島根原子力発電所2号炉 審査資料	
資料番号	EP(E)-087改01
提出年月	令和3年5月19日

島根原子力発電所 原子炉設置変更許可申請書 (2号原子炉施設の変更) 添付書類六のうち地盤(敷地周辺の地質・地質構造) (修正案)

令和3年5月19日 中国電力株式会社

- 3. 地盤
- 3.1 地質調査の経緯

島根原子力発電所の地質については、1号、2号及び3号炉の建設時点 等で調査を実施し、本敷地が原子力発電所の適地であることを確認してい る。

3.1.1 敷地周辺の調査

敷地周辺の地質・地質構造を把握するため,陸域(完道湖及び中海を含む)については,まず文献調査を行い,変動地形学的視点に基づいた地形調査,地表地質踏査,必要に応じてトレンチ調査等を実施した。

また、海域については、文献調査、音波探査等を実施した。

3.1.2 敷地近傍の調査

敷地近傍の地質・地質構造を把握するため,敷地近傍について文献調査, 変動地形学的視点に基づいた地形調査,地表地質踏査,地球物理学的調査 (反射法地震探査等),ボーリング調査,トレンチ調査等を実施した。

3.1.3 敷地の調査

敷地の地質・地質構造を把握するため,敷地付近及び敷地全般について, 変動地形学的視点に基づいた地形調査及び地表地質踏査を行うとともに, 地表からの弾性波探査,ボーリング調査,試掘坑調査等を実施した。

3.1.4 原子炉設置位置付近の調査

原子炉設置位置付近の基礎地盤性状及び原子炉施設の設計,施工に必要 な検討資料を得るため、ボーリング調査,試掘坑調査等を実施した。

また,基礎地盤の強度,変形特性等を把握するため,試掘坑内において 岩盤試験を実施するとともに,基礎地盤を構成する岩石の物理的・力学的 特性を把握するため,ボーリングコア及び試掘坑から採取した供試体によ る岩石試験を実施した。以上の調査・試験の結果から,基礎地盤は原子炉 施設の設置に十分適した条件を有するものであることを確認した。 3.2 敷地周辺の地質・地質構造

3.2.1 調查内容

3.2.1.1 文献調查

敷地周辺陸域の地質・地質構造に関する主要な文献としては,地質調査 所発行の鹿野・吉田 (1985) 5万分の1地質図幅「境港」⁽¹⁾,鹿野・中 野 (1985)「美保関」⁽²⁾,鹿野・中野 (1986)「恵曇」⁽³⁾,鹿野ほか (1989) 「大社」⁽⁴⁾,鹿野ほか (1991)「今市」⁽⁵⁾及び鹿野ほか (1994)「松江」⁽⁶⁾, 地質調査所発行の坂本・山田 (1982) 20万分の1地質図「松江及び大 社」⁽⁷⁾,鹿野ほか (1988)「浜田」⁽⁸⁾及び寺岡ほか (1996)「高梁」⁽⁹⁾,地 質調査所発行の佃ほか (1985) 50万分の1活構造図「岡山」⁽¹⁰⁾,新編島根 県地質図編集委員会 (1997)「新編 島根県地質図」⁽¹¹⁾,活断層研究会編 (1980)「日本の活断層」⁽¹²⁾,活断層研究会編 (1991)「[新編]日本の活断 層」⁽¹³⁾,今泉ほか編 (2018)「活断層詳細デジタルマップ[新編]」⁽¹⁴⁾,三 梨・徳岡編 (1988)「中海・宍道湖ー地形・底質・自然史アトラス」⁽¹⁵⁾, 徳岡・高安編 (1992)「中海北部 (本庄工区)アトラス」⁽¹⁶⁾等があり,こ れらの地質図等により,敷地周辺陸域の地質概要を把握するとともに,地 質・地質構造についても詳細な調査を実施した。

また,周辺海域の地質・地質構造に関する主要な文献としては,地質調 査所発行の本座ほか(1979)「日本海南部および対馬海峡周辺広域海底地 質図」⁽¹⁷⁾,玉木ほか(1981)「日本海中部海域広域海底地質図」⁽¹⁸⁾,玉木 ほか(1982)「隠岐海峡海底地質図」⁽¹⁹⁾及び山本ほか(1989)「鳥取沖海底 地質図」⁽²⁰⁾,地質調査所編の脇田ほか(1992)「日本地質構造図日本地質 アトラス(第2版)」(以下「日本地質アトラス(第2版)」という。)⁽²¹⁾, 海上保安庁水路部発行の海底地質構造図「鳥取沖」(1976)⁽²²⁾,「隠岐海峡」 (1978a)⁽²³⁾,「日御碕沖」(1978b)⁽²⁴⁾及び「島後堆」(1980)⁽²⁵⁾,並びに 海底地形図・海底地質構造図及び調査報告「隠岐北部」(1987)⁽²⁶⁾,「隠岐 南部」(1990)⁽²⁷⁾,「赤碕」(1991a)⁽²⁸⁾,「日御碕」(1991b)⁽²⁹⁾,「美保関」 (1992a)⁽³⁰⁾,「鳥取」(1992b)⁽³¹⁾,「大社」(1993a)⁽³²⁾,「奈部埼」(1993b)⁽³³⁾, 「江津」(1995a)⁽³⁴⁾,「須佐」(1995b)⁽³⁵⁾及び「浜田」(1996)⁽³⁶⁾,活断層 研究会編(1991)「[新編]日本の活断層」,徳山ほか(2001)「日本周辺海 域中新世最末期以降の構造発達史」⁽³⁷⁾,国土交通省・内閣府・文部科学省 (2014)「日本海における大規模地震に関する調査検討会報告書」⁽³⁸⁾,文 部科学省研究開発局・国立大学法人東京大学地震研究所(2015)「平成26 年度日本海地震・津波調査プロジェクト成果報告書」⁽³⁹⁾等があり,これら の地質図等により,海域の地質概要を把握するとともに,海底地質・地質

3.2.1.2 広域地質構造調査

構造についても詳細な調査を実施した。

(1) 敷地周辺陸域

文献調査の結果を踏まえて,敷地を中心とする半径約 30 kmの範囲の 陸域において,地形調査,地球物理学的調査及び地質・地質構造調査を 実施した。

地形調査としては,主に国土地理院で撮影された縮尺2万分の1及び 8千分の1の空中写真,米軍で撮影された縮尺1万分の1の空中写真, 並びに国土地理院発行の縮尺5万分の1及び2万5千分の1の地形図 に加えて航空レーザー測量による高精度の2千5百分の1の等高線図 を使用して行った。地形判読に当たっては,敷地周辺陸域の地質・地質 構造を考慮した変動地形学的視点により変動地形の可能性のある地形 (以下「変位地形・リニアメント」という。)を抽出した。

地球物理学的調査としては,重力異常及び微小地震分布に関する調査 を実施した。関連する文献としては,地質調査総合センター編(2013)⁽⁴⁰⁾, 気象庁地震カタログ⁽⁴¹⁾等があり,これらの文献により,敷地周辺の重 力異常及び微小地震分布の概要を把握し,変位地形・リニアメントとの 関連について検討した。

地質・地質構造調査としては,地形調査に使用した空中写真,地形図 等を用いて変位地形・リニアメントを対象に地表地質踏査を実施すると

6 - 3 - 4

ともに、これまでに実施した地表地質踏査結果等も踏まえて地質・地質 構造の検討を行った。また、汽水域である宍道湖及び中海についてこれ までに音波探査等を実施し、三梨・徳岡編(1988)及び徳岡・高安編(1992) の音波探査記録とともに検討を行った。

これらの調査結果に基づいて,原縮尺 20 万分の1の敷地周辺陸域の地質図,地質断面図,変位地形・リニアメント分布図等を作成した。

(2) 敷地周辺海域

敷地周辺の海域については、海底の地形、地質・地質構造に関する資料を得るため、敷地を中心として沿岸方向約 100km、その沖合方向約 60km の範囲の海域(以下「敷地前面海域」という。)及び敷地を中心とする 半径約 150km の範囲のうち敷地前面海域を除く範囲(以下「敷地周辺海 域」という。)について、音波探査を実施し、海上保安庁水路部等で実 施した音波探査記録とともに、解析・検討した。

敷地前面海域において実施した音波探査は水中放電(スパーカー)方 式等であり,探査した測線は沿岸方向及び沖合方向にそれぞれ約2km~ 約4km間隔の86測線で総延長約2,250kmである。また,その後ウォー ターガン・マルチチャンネル方式による調査を33測線で,ジオパルス 及びブーマー・マルチチャンネル方式による調査を15測線で実施し, 総延長は約458kmである。

さらに,2014年に敷地前面海域及び敷地周辺海域の一部において実施 した音波探査はエアガン・マルチチャンネル方式,ウォーターガン・マ ルチチャンネル方式及びブーマー・マルチチャンネル方式であり,エア ガン・マルチチャンネル方式による調査は27測線で,ウォーターガン・ マルチチャンネル方式による調査は114測線で,ブーマー・マルチチャ ンネル方式による調査は100測線で実施し,総延長は約2,963kmである。

音波探査記録の解析結果に基づいて, 縮尺 20 万分の1の敷地前面海 域の海底地形図, 海底地質図及び海底地質断面図を作成した。

また,敷地周辺海域については、日本地質アトラス(第2版)等に図

示されている断層について,海上保安庁水路部,地質調査所等で実施し た音波探査記録について解析を行い,断層の性状等について検討した。

3.2.2 陸域の調査結果

敷地を中心とする半径約 30km の範囲及びその周辺陸域における地形, 地質・地質構造は,文献調査,地形調査,地表地質踏査等の結果によると 以下のとおりである。

3.2.2.1 敷地周辺陸域の地形

敷地周辺陸域の地形図を第3.2-1図に示す。

敷地周辺陸域は島根県の北東部に位置し,北側は日本海に面し,南側は ^{50,523} 中国山地の北縁部に接している。敷地周辺陸域の地形は,その特徴から, 島根半島主部,大社山塊,宍道湖・中海低地帯及び宍道湖南方地域に大別 される。敷地は島根半島主部のほぼ中央部の日本海沿岸に位置する。

(1) 島根半島主部

島根半島主部は、宍道湖及び中海の北方に位置し、大社山塊を除く東西に約60km,幅約6km(松江市北方では幅約12km)の地域である。

島根半島主部は,ほぼ中央部を横断する佐陀川沿いの低地を境に,そ の東部と西部の2つの地域に区分される。このうち,佐陀川以東の地域 では,松江市北方の三坂山(標高 536m)を最高地点として,東方の美保 関町の蒿尾山(標高 328m)にかけて,標高 200m~500m 前後の東西に延 びる狭長な山地が連なっている。一方,佐陀川以西の地域では,西方へ 朝日山(標高 342m), 大船山(標高 327m)を経て,十六島湾東方の峰(標 高 415m)へと連なる狭長な山地を形成している。敷地周辺陸域の切峰面 図(第 3.2-2 図)によると,島根半島主部の山地は佐陀川以東の地域 では,南側がそや急で北側が緩い傾斜を呈するのに対し,佐陀川以西の 地域では,南側が緩く北側が急な傾斜を呈している。 (2) 大社山塊

大社山塊は、出雲市北方の違高山(標高 536m)を中心とする東西約 16 km,南北約6 kmの独立した山塊である。分水界がやや南に偏っている ため、出雲平野に面する南斜面は比較的急な勾配を呈しているのに対し、 大社山塊の北斜面は比較的緩やかで、日本海側の十六島湾から出雲市平 苗町に抜ける丘陵地を境に、島根半島主部と区分される。

(3) 宍道湖·中海低地帯

宍道湖・中海低地帯は、西から出雲平野、宍道湖、松江平野、中海及 び芎ヶ浜に至る幅約5km~約10km、延長約50kmの低地帯である。この 低地帯では、神戸川、斐伊川、飯梨川、百野川等の河川による土砂の供 給が、平野や湖の形成に関わってきた。低地帯周辺には、何段かの段丘 が存在するが、その発達の程度は良くない。低地帯東端の弓ヶ浜は、美 保湾の湾口を埋積した砂州である。また、宍道湖と中海の間には、和久 輸山(標高262m)及び着山(標高298m)があり、独立した山体をなし ている。また、中海の大根島及び流島は、なだらかな地形をなしている。

(4) 宍道湖南方地域

宍道湖南方地域は、中国山地の北縁部に位置する。宍道湖南方地域に は、標高 100m~600m 程度のなだらかな山地が広がっており、小起伏の 尾根が東北東-西南西ないし北東-南西方向に連なっている。本地域内 の南部には、 デ約山 (標高 610m) がある。

3.2.2.2 敷地周辺陸域の地質

敷地を中心とする半径約 30km の範囲における陸域の地質層序表及び地 層対比表を第3.2-1表及び第3.2-2表に,並びに敷地周辺陸域の地質図 を第3.2-3図に,地質断面図を第3.2-4図に示す。また,宍道湖及び中 海の音波探査測線図を第3.2-5図に,地質図を第3.2-6図に,地質断面 図を第3.2-7図及び第3.2-8図に,音波探査記録を第3.2-9図及び 第3.2-10図に示す。 島根半島主部及び大社山塊には,新第三紀中新世の堆積岩類及び火山岩 類が広く分布する。これらの新第三系は褶曲し,大局的にほぼ東北東-西 南西方向に連続する。

宍道湖・中海低地帯には、第四系の沖積低地堆積物が広く分布しており、 出雲平野や弓ヶ浜等には砂丘堆積物が、また、宍道湖及び中海の南岸沿い を中心に、段丘堆積物が分布する。宍道湖及び中海の湖底下では、第四系 に覆われて新第三系が広く分布する。宍道湖・中海低地帯のやや東寄りに 突出した和久羅山及び嵩山は、新第三紀中新世の末期に噴出した和久羅山 安山岩から成り、中海の大根島及び江島は、第四紀更新世に噴出した大根 島玄武岩から成る。

宍道湖南方地域には,白亜紀に形成された白亜紀後期火山岩類と古第三 紀に貫入した花崗岩類が広く分布する。これらの先新第三系がなす地形的 高まりの両側部,すなわち,出雲市南方及び松江市南西方では,新第三系 が南方へ湾状に入り込むような分布を示す。この他,宍道湖南方地域には, 白亜紀後期より古い時代の上意東及び蔦屋郷変成岩,第四紀前期更新世に 噴出した野宮玄武岩及び第四紀後期更新世に堆積した古期扇状地堆積物 が小規模に分布する。

3.2.2.3 敷地周辺陸域の地質系統

(1) 先新第三系

宍道湖南方地域の先新第三系は,白亜紀後期より古い時代の上意東及 び鳥屋郷変成岩,白亜紀後期火山岩類及び古第三紀に貫入した花崗岩類 で構成される。上意東及び鳥屋郷変成岩は,堆積岩起源の接触変成岩で ある。白亜紀後期火山岩類は,酸性火山岩を主としており,花崗岩類に 貫かれている。

島根半島主部及び大社山塊には,先新第三系の露出は知られていない が,島根県地質図説明書編集委員会(1985)⁽⁴²⁾によると,松江市嫁島温 泉の掘削井で花崗閃緑岩を確認しており,少なくとも宍道湖の地下では

6 - 3 - 8

花崗岩類が伏在しているものと推定される。

a. 上意東及び鳥屋郷変成岩

上意東及び鳥屋郷変成岩は,東出雲町上意東と松江市八雲町鳥屋郷 東方の極めて小範囲に分布する。東出雲町上意東では,白亜紀後期火 山岩類に,松江市八雲町鳥屋郷では新第三系中新統の波多層にそれぞ れ不整合に覆われる。

本変成岩は,主に凝灰質泥岩,砂岩等の堆積岩を原岩とするホルンフェルスから成る。

鹿野ほか(1994)によると、白亜紀後期火山岩類中に本変成岩起源 の礫が含まれていることから、本変成岩の形成時代は少なくとも白亜 紀後期よりも古い時代とされている。

b. 白亜紀後期火山岩類

白亜紀後期火山岩類は,出雲市ど島町周辺,雲南市大東町塩苗付近, 松江市八雲町熊野から東出雲町上意東にかけての地域等に分布する。 本火山岩類は,八雲火山岩類(鹿野ほか(1994))及び上島火山岩類(鹿 野ほか(1991))に相当し,上意東及び鳥屋郷変成岩を不整合に覆い, 花崗岩類に貫かれ新第三系に不整合に覆われる。

本火山岩類は主に流紋岩質-デイサイト質火砕岩,流紋岩溶岩等から成る。

鹿野ほか(1991)及び鹿野ほか(1994)によると、花崗岩類との貫 入関係から本火山岩類の形成年代は、白亜紀後期とされている。

c. 花崗岩類

花崗岩類は, 宍道湖南方地域に広く分布する。本岩類は, 上意東及 び鳥屋郷変成岩と白亜紀後期火山岩類を貫き, 新第三系に不整合に覆 われる。

本岩類は、主に花崗岩と花崗閃緑岩から成る。

鹿野ほか(1994)によると、本岩類は、K-Ar放射年代値により、 古第三紀に貫入したものとされており、これら年代値と貫入関係から 大東花崗閃緑岩、^で鵯[®]花崗岩、希部花崗岩及び下久野花崗岩の各岩体に区分されている。

(2) 新第三系

新第三系は、中新世に形成された堆積岩類及び火山岩類から成る。こ れらの地層は宍道湖・中海低地帯を挟んで北側と南側に分かれて分布す ることから、両地域で異なった地質層序がたてられている。島根半島主 部及び大社山塊の新第三系は、下位から古浦層、成相寺層、牛切層、古 江層、松江層及び和久羅山安山岩に、宍道湖南方地域の新第三系は、下 位から、波多層、川合層、久利層、大森層及び布志名層に区分される。 鹿野ほか(1994)によると、生層序及び放射年代値を基に、古浦層は波 多層に、成相寺層は川合層及び久利層に、牛切層は大森層に、古江層は 布志名層にそれぞれ対比されている。宍道湖・中海低地帯の新第三系に ついては、宍道湖では下位からⅥs層、Ⅴs層、Ⅳs層及びⅢs層に、火 山岩・貫入岩をWIs層に区分し、中海では下位からVIN層、VN層、IVN 層及びⅢN層に、火山岩・貫入岩をⅦN層に区分している。音波探査、ボ ーリング調査等の結果、VIs層及びVIN層が古浦層、波多層、成相寺層、 川合層及び久利層に、Vs層及びVN層が牛切層及び大森層に、Vs層及 びⅣN層が古江層及び布志名層に、Ⅲs層及びⅢN層が松江層に、Ⅶs層 が新第三紀の貫入岩類に、₩N層が新第三紀(一部に第四紀を含む。)の 貫入岩類にそれぞれ対比される。

a. 古浦層及び波多層

古浦層は, 鹿島町古浦西方の海岸沿い及び島根半島東部を中心とし て広く分布する。本層は島根半島に露出する新第三系の最下部をなし, 下限は不明で, 上位の成相寺層に整合に覆われる。

本層は泥岩,砂岩,礫岩,火山円礫岩,流紋岩質火砕岩,デイサイ ト質火砕岩及び安山岩質火砕岩を主体とする。本層の砂岩や泥岩から は,植物化石及び淡水棲貝化石を産する。

鹿野ほか(1991)によると、フィッション・トラック年代値や台島型

の植物化石を産出すること等から,本層は前期中新世の地層とされて いる。

波多層は,雲南市大東町中屋から南方にかけての地域,天狗山から * 京 羅 木山を経て安来市に至る地域等に分布する。本層は下位の先新第 三系を不整合に覆い,上位の川合層,久利層等に不整合に覆われる。

本層は安山岩質火砕岩を主体とし,安山岩溶岩,デイサイト質火砕 岩等を挟む。

鹿野ほか(1994)によると、本層のデイサイト質火砕岩のフィッション・トラック年代値として、約20Maが得られていることから、本層は前期中新世の地層とされている。

b. 成相寺層,川合層及び久利層

成相寺層は島根半島主部及び大社山塊に広く分布する。本層は,下 位の古浦層を整合に覆い,上位の牛切層に整合に覆われる。

本層は,泥岩,流紋岩溶岩及び流紋岩質火砕岩を主体とし,島根半 島東部ではしばしば安山岩溶岩,デイサイト質火砕岩及び安山岩質火 砕岩を伴う。本層の泥岩はかなり硬質で,頁岩の岩相を呈する部分も ある。

鹿野ほか(1994)によると、本層のフィッション・トラック年代値 や上部に産出する浮遊性有孔虫化石等から、本層は、20Ma~18Ma以降 の地層であり、前期中新世から中期中新世の地層とされている。

川合層及び久利層は,出雲市南方から松江市宝湯町にかけての宍道 湖南岸沿いの地域,雲南市大東町 常湯 岩から東出雲町揖屋にかけての 地域,安来市の東部等に分布する。川合層は,下位の波多層等を不整 合に覆う。久利層は川合層と一部指交し,川合層を欠いて下位の波多 層を覆うこともある。両層は上位の大森層等に不整合に覆われる。

川合層は砂岩, 礫岩, 安山岩溶岩, デイサイト質火砕岩等から成り, 久利層は泥岩, 流紋岩質火砕岩, 流紋岩溶岩等から成る。

鹿野ほか(1994)によると、川合層下部の火山岩のK-Ar放射年

代値が15Ma~19Maであることや、久利層のフィッション・トラック年 代値として14Ma~15Maを得ていることから、両層は、前期中新世から 中期中新世の地層とされている。

c. 牛切層及び大森層

牛切層は,大社山塊の北部から十六島湾北部にかけての地域,松江 市牛切から茜椿苗町にかけての地域等に,成相寺層を取り巻くように 分布する。本層は下位の成相寺層を整合に覆い,上位の古江層に整合 に覆われる。

本層は砂岩・泥岩互層及び礫岩を主体とし,一部,安山岩質火砕岩, 安山岩溶岩等を伴う。

鹿野ほか(1994)によると、本層に挟在する流紋岩質凝灰岩のフィ ッション・トラック年代値が約14Maであることや、本層から産出する 浮遊性有孔虫化石等から、本層は中期中新世の地層とされている。

大森層は, 宍道湖の南側にほぼ連続して帯状に分布するほか, 松江 市佐草町から南方の雲南市大東町付近にかけての地域等に分布する。 本層は下位の久利層等を不整合に覆い, 上位の布志名層に整合に覆わ れる。

本層は,安山岩溶岩を主体とし,砂岩,礫岩,デイサイト溶岩等を 伴う。

鹿野ほか(1994)によると、本層の火山岩のK-Ar放射年代値が 約14Ma~約16Maであることから、本層は中期中新世の地層とされてい る。

d. 古江層及び布志名層

古江層は,主に宍道湖の北岸に沿って広く分布する。本層は下位の 牛切層を整合に覆い,上位の松江層に概ね整合に覆われる。

本層は主に泥岩及びシルト岩から成る。

鹿野ほか(1994)によると、本層から産出する浮遊性有孔虫化石から、本層は中期中新世の地層とされている。

布志名層は,主に宍道湖や中海の南岸沿いに帯状に分布する。本層 は下位の大森層を整合に覆い,上位の松江層に概ね整合に覆われる。

本層は主に砂岩、シルト岩及び礫岩から成り、貝化石を多産する。

鹿野ほか(1994)によると、本層からまれに産出する浮遊性有孔虫 化石から、本層は中期中新世の地層とされている。

e. 松江層

松江層は,松江市街地周辺,島根半島北部の高渋山周辺,斐川町 置注 付近等に分布する。本層は下位の古江層及び布志名層を概ね整合に覆 う。

本層は主に砂岩,玄武岩溶岩,玄武岩質火砕岩及びシルト岩から成 る。

鹿野ほか(1994)によると、本層の火山岩のK-Ar放射年代値が 約11Ma~約12Maであることから、本層は中期中新世から後期中新世の 地層とされている。

なお、本層のうち、島根半島北部の高渋山周辺に分布するものは、 鹿野・吉田(1985)により高渋山層と新称されている。高渋山層の火 山岩のK-Ar放射年代値として、約10Ma~約12Maの年代値が得られ たことから、高渋山層は松江層とほぼ同時期の地層と判断される。

f. 和久羅山安山岩

和久羅山安山岩は,松江市東部の和久羅山及び嵩山を中心とした半 径約3km~約5kmの地域に分布する。本安山岩は松江層を不整合に覆 う。

本安山岩は主に安山岩溶岩から成り,和久羅山及び嵩山のドーム状の山体を構成する。

鹿野ほか(1994)によると、本安山岩のK-Ar放射年代値が約5 Ma~約6Maと報告されていることから、本安山岩は後期中新世の末期 に噴出したものとされている。

なお,和久羅山の一部を構成するデイサイト溶岩は,Pineda-Velasco

et al. (2018)⁽⁴³⁾ によると, K-Ar放射年代値が約0.7Ma~約0.9Ma と報告されていることから,本デイサイト溶岩は中期更新世に噴出し たものとされている。

g. 貫入岩類

貫入岩類は,島根半島主部,大社山塊及び宍道湖南方地域の広い地 域に,岩脈状ないし岩床状に分布する。

本岩類は宍道湖南方地域において先新第三系のみに貫入するものと, 島根半島主部,大社山塊及び宍道湖南方地域において新第三系までに 貫入するものの2つに大別できる。前者は,石英斑岩,花崗斑岩等の 酸性貫入岩が主であり,後者はドレライト,安山岩等の塩基性~中性 貫入岩を主としている。

(3) 第四系

敷地周辺陸域に分布する第四系は,主として更新世の火山岩類,段丘 堆積物及び古期扇状地堆積物,並びに完新世の砂丘堆積物及び沖積低地 堆積物から成る。

宍道湖・中海低地帯の第四系については、宍道湖では下位からⅡs層 及びⅠs層に、中海では下位からⅡx層及びⅠx層に、火山岩・貫入岩を Ⅶx層及びⅦx層に区分している。音波探査及びボーリング調査の結果、 Ⅱs層及びⅡx層が中期~後期更新世の段丘堆積物及び古期扇状地堆積 物に、Ⅰs層及びⅠx層が完新世の砂丘堆積物及び沖積低地堆積物に、 Ⅷx層が大根島玄武岩に、Ⅷx層の一部が第四紀の火山岩・貫入岩にそれ ぞれ対比される。

a. 火山岩類

第四紀の火山岩類としては、野呂玄武岩と大根島玄武岩がある。

野呂玄武岩は,東出雲町野呂付近とその南方の京羅木山山頂に分布 する。本玄武岩は布志名層等を不整合に覆う。

本玄武岩は玄武岩溶岩から成る。

鹿野ほか(1994)によると、本玄武岩のK-Ar放射年代値が約1

Ma であることから,本玄武岩は前期更新世に噴出したものとされている。

大根島玄武岩は中海にある大根島及び江島に分布する。

本玄武岩は主に玄武岩溶岩から成る。

地表では本玄武岩と下位層との関係は不明であるが、後述する中海 北部で実施した湖上ボーリング調査結果によると、大山松江軽石層(約 13万年前;町田・新井(2011)⁽⁴⁴⁾)を挟む上部更新統の下位に本玄武 岩が分布することを確認している。また、沢田ほか(2006)⁽⁴⁵⁾による と、層厚70m以上に達する本玄武岩には火山活動の長い休止期を示す ような古土壌は認められないことから、K-Ar放射年代値 0.19± 0.01Maを本玄武岩の噴出年代とするのが妥当であるとされている。こ れらのことから、本玄武岩の噴出年代は、中期更新世の末期であると 判断される。

b. 段丘堆積物及び古期扇状地堆積物

段丘堆積物は, 宍道湖・中海低地帯の沿岸や宍道湖南方地域の比較 的規模の大きい河川沿いに分布する。

段丘堆積物は礫,砂及びシルト〜粘土から成る。

島根半島では段丘地形の発達が悪く,段丘堆積物の分布は極めて断 片的であるが,宍道湖・中海低地帯の南岸沿いでは,何段かの段丘面 を形成する。これらの段丘面については,地形調査結果,地表地質踏 査結果等により,高位のものから,高位面,中位面及び低位面に区分 した。さらに,高位面は4面に,中位面は2面に,低位面は3面に細 分される。敷地周辺陸域の段丘面分布図を第3.2-11図に示す。

高位段丘堆積物は,出雲市山塑の一帯,松江市乃首から松江市装め町, 松江市ど乃茶町付近,松江市嶺原町付近等に分布し,現河床面から比 高差15m~50m程度の開析された段丘面を形成する。堆積物の上部には 顕著な赤色土壌化がみられ,礫の一部はくさり礫化している。厚さ約 1m以上の風成ロームを介して大山松江軽石層及び芝瓶未装軽石層(約 10.5万年前;町田・新井(2011))に覆われる。これらのことから,高 位面群は中期更新世に形成された段丘面であると判断される。なお, 高位面群は,大西(1979)⁽⁴⁶⁾の山廻層,乃白層及び乃木層に相当する。

中位 I 面段丘堆積物及び中位 II 面段丘堆積物は, 宍道湖南岸沿いや 宍道湖南方地域の比較的規模の大きい河川沿いに断片的に分布する。 宍道湖南岸沿いでは,前者が現河床面からの比高差約10m~約15m,後 者が約5m~約10mの段丘面を形成する。中位 I 面段丘堆積物を覆う風 成ロームの下部には,大山松江軽石層及び三瓶木次軽石層が挟まれ, 中位 II 面段丘堆積物は堆積物最上部若しくは堆積物を覆う風成ローム の最下部に,三瓶木次軽石層が挟まれる。これらのことから,中位 I 面は中期更新世末~後期更新世初頭に,中位 II 面は後期更新世前期に 形成された段丘面であると判断される。

低位面段丘堆積物は、宍道湖南方地域の斐伊川、 新川等の中流域に 現河床面から比高差10m前後の河成段丘面を形成する。 鹿野ほか(1994) によると、低位面段丘堆積物は後期更新世末期の堆積物とされている ものであり、低位面は後期更新世末期に形成された段丘面であると判 断される。

古期扇状地堆積物は, 宍道湖南方地域等に分布する。鹿野ほか(1991) は,本堆積物を覆う風成ロームの下部に大山松江軽石層若しくは三瓶 木次軽石層が挟まれることから,中位 I 面段丘堆積物あるいは中位 Ⅱ 面段丘堆積物に対比されるとしている。

c. 砂丘堆積物

砂丘堆積物は,出雲平野の海岸砂丘,鹿島町古浦の佐陀川河口付近 及び弓ヶ浜の砂州の一部に分布する。

本堆積物は、未固結で淘汰の良い砂から成る。

d. 沖積低地堆積物

沖積低地堆積物は,主に宍道湖や中海の湖岸沿いの低地及び斐伊川, 飯梨川等の規模の大きい河川沿いの低地に分布する。 本堆積物は、未固結の礫、砂及びシルト〜粘土から成る。

沖積低地堆積物には,平野の山際に分布する扇状地堆積物,山麓斜 面や谷沿いに分布する崖錐堆積物,干拓地や埋立地を構成する盛土等 を含めている。

なお、島根県地質図説明書編集委員会(1985)によると、中海及び 宍道湖の湖底下には、中海層と呼ばれる完新世の泥質堆積物が堆積し ている。

3.2.2.4 敷地周辺陸域の地質構造

(1) 褶曲構造

島根半島の新第三系は、東西ないし東北東-西南西方向の軸を有する 褶曲構造をなす。大局的にみると、島根半島主部及び大社山塊では、そ れぞれ背斜をなし、十六島湾から出雲市平田町に至る丘陵地及び出雲平 野から宍道湖に至る低地帯はそれぞれ向斜をなす。これらの大構造とし ての背斜及び向斜は、更に多くの小規模な背斜及び向斜の複合から成る (第3.2-3 図)。多井 (1973)⁽⁴⁷⁾等によると、この島根半島の新第三系 の褶曲帯は、宍道褶曲帯と呼ばれている。

宍道湖の新第三系は、湖の中央より軸がやや北側に偏った極めて緩や かな向斜をなし、中海の新第三系は、軸が北側に偏った非対称の向斜を なす。これに関して、山内・岩田(1998)⁽⁴⁸⁾では地溝状の地質構造を推 定しているとともに、沢田ほか(2001)⁽⁴⁹⁾では地溝状の盆地を宍道地溝 帯と定義している。

一方, 宍道湖南方地域の新第三系は, 著しい褶曲構造が認められず, 大局的には緩やかに北側に傾斜する。

多井(1973),山内・吉谷(1992)⁽⁵⁰⁾,鹿野・吉田(1985)等による と,島根半島の褶曲構造は松江層まで及んでいるが,約5Ma~約6Maに 噴出した和久羅山安山岩が松江層を不整合に覆うことから,後期中新世 末期には褶曲構造の形成がほぼ終了したとされている。また,宍道湖及 び中海の音波探査等の結果並びに三梨・徳岡編(1988)及び徳岡・高安 編(1992)によると、新第三系を覆う更新統及び完新統に、褶曲構造や 断層は認められない。さらに、大西(1979)によると、宍道湖・中海低 地帯周辺における段丘面に関する検討の結果、中期更新世以降、低地帯 の中央部が沈降するような動きは認められないとされている。

(2) 海岸地形

日本海に面する島根半島北岸は,主に岩石海岸から成り,潮間帯やそ れよりも高い位置に形成された波食棚(以下「ベンチ」という。)が認 められる。敷地周辺陸域の海岸侵食地形分布図を第3.2-12図に示す。

ベンチの平面的な分布については,数10km スケールあるいは数km ス ケールでみると,発達程度の地域的な偏りが認められる。断片的に分布 するベンチの幅は,数m~数10m 程度のものが大半であり,また,潮間 帯より上位に発達するベンチも様々なものが存在し,定高性及び系統的 な高度変化等の規則性は認められない。

島根半島沿岸域で実施した音波探査の結果,後期更新世以降に沿岸域 を隆起させるような運動様式の断層は確認されない。また,小池・町田 (2001)⁽⁵¹⁾,藤原ほか(2005)⁽⁵²⁾等によると,島根半島沿岸域の地殻運 動は,段丘面の分布状況等から,後期更新世には安定又は若干の沈降傾 向であるとされている。

したがって,島根半島北岸のベンチは,少なくとも地震性地殻変動に 伴う隆起により形成されたものではないと判断される。

(3) 断層及び変位地形・リニアメント

島根半島の新第三系には、褶曲軸とほぼ平行する東西性の逆断層が多 く存在する。

多井(1952)⁽⁵³⁾は、鹿島町古浦から鹿島町南講武、松江市上本庄町 を通り、美保関町宇井付近に至る断層を、宍道断層と命名し、この地域 の断層の中で最も大きいものとしている。鹿野・吉田(1985)によると、 宍道断層は相対的に北上がりの逆断層と考えられ、周辺には宍道断層か ら派生したと思われる北上がりあるいは南上がりの高角逆断層がいく つかみられるとしている。

また,多井(1973)によると,大社山塊と出雲平野の境界付近に,大 社衝上断層が推定されている。大社衝上断層は,通商産業省(1969⁽⁵⁴⁾, 1970⁽⁵⁵⁾)が実施した重力探査及び地震探査の結果,東西方向に延びる 重力急傾斜帯があること及び大社山塊と出雲平野の速度層構造に著し い差が認められることから,北上がりの逆断層として推定されたもので ある。その後の通商産業省(1971)⁽⁵⁶⁾の調査結果によると,大社衝上断 層は陸域から海域まで連続するものとされている。

多井(1973)は、島根半島の新第三系の褶曲・断層系の主な形成が、 中新世末期頃までにほぼ完了したとしている。

宍道湖南方地域には、新第三系に東西ないし東北東-西南西方向の断層がいくつかみられる。また、白亜紀後期火山岩類及び花崗岩類は、東北東-西南西ないし北東-南西方向に配列する分布を示しており、これとほぼ同方向の断層がいくつか存在する。

活断層研究会編(1991)によると,敷地を中心とする半径約 30 kmの 範囲の陸域には,第3.2-13 図に示すとおり,古浦東方断層,宍道断層 [北][南],枕木山東断層(「枕木山東断層」の名称は橋本ほか(1980)⁽⁵⁷⁾ による。),森山断層,高尾山断層,法笛断層, 古殿[北][南]断層, 山中 付近断層, 壇の方北側断層, 半場-石原断層, 方面付近断層, 矣尾町付 近断層及び木次南断層が挙げられる。

活断層研究会編(1991)によると、このうちの古浦東方断層及び宍道 断層[北][南]は、多井(1952)の宍道断層にほぼ一致するとされている。 また、活断層研究会編(1991)及び鹿野ほか(1989)によると、矢尾町 付近断層は、多井(1973)の大社衝上断層にほぼ一致するとされている。

今泉ほか編(2018)によると,敷地を中心とする半径約 30 kmの範囲の陸域には第 3.2-14 図に示すような断層が示されている。このうち,活断層研究会編(1991)による古浦東方断層,宍道断層[北][南]及び森

6 - 3 - 19

山断層が, 宍道(鹿島)断層帯と称され, 一連の活断層として示されて いる。

活断層研究会編(1991)に示される古浦東方断層, 宍道断層[北][南], 枕木山東断層, 森山断層, 法田断層及び高尾山断層については, 一連と する文献もあることから, 以下ではこれらの断層を一括して宍道断層と して用いる。

また, 宍道断層, 古殿[北][南]断層及び山中付近断層については, 敷 地からの距離を考慮し, 「3.3 敷地近傍の地質・地質構造」で詳述する。

活断層研究会編(1991)によると,第3.2-15 図に示すように,敷地 を中心とする半径 30 km以遠の陸域にも,地震断層及び活断層が示され ている。これらのうち,地震断層として苦岡断層及び鹿野断層があり, 比較的延長の長い確実度 I の活断層としては山崎断層系がある。

敷地を中心とする半径約 30km の範囲の陸域について,地形調査を実施した。地形判読に当たっては,敷地周辺陸域の地質・地質構造を考慮 した変位地形・リニアメント判読基準を作成し,変動地形学的視点によ り変位地形・リニアメントを抽出するとともに,段丘面の区分及び海岸 地形の分類を実施した。なお,変位地形・リニアメントは変動地形の可 能性が高いものから,ランクをA~Dに区分した。変位地形・リニアメ ント判読基準を第3.2-3表に示す。

敷地を中心とする半径約 30km の範囲の陸域の変位地形・リニアメントを第 3.2-4 表及び第 3.2-16 図に示す。

また,敷地を中心とする半径約 30km の範囲について,重力異常及び 微小地震分布に関する文献調査を実施した。

敷地を中心とする半径約 30km の重力異常については,地質調査総合 センター編(2013)をもとに検討を行った。敷地周辺の重力異常図を 第3.2-17図に示す。

重力異常としては,背斜を成す島根半島主部及び大社山塊では高重力 域が認められ,一方,向斜を成す宍道湖・中海低地帯では低重力域が認

6 - 3 - 20

められる。「境水道から中海北部を通り,松江市内にかけて東北東-西南 西方向に延びる重力コンターの急傾斜部が認められ,西方の松江市内及 び東方の美保関町東方沖合いへ向かうほど不明瞭となる。これは後述す るF-B断層及びF-C断層にほぼ対応する。同様に,大社山塊南限沿 いから出雲市大社町西方海域にかけて,大社衝上断層に対応する東北東 -西南西方向に延びる重力コンターの急傾斜部が認められ,東方の宍道 湖へ向かうほど不明瞭になる。これらの重力異常から,共に北上がりの 地質構造の存在が推定される。また,鹿島町古浦から出雲市十六島町の 沿岸域にかけて,東北東-西南西方向に延びる重力コンターの傾斜部が 認められる。これは後述するF-①断層及びF-②断層による音響基盤 の落差(音響基盤の傾斜部)を反映した重力変化と判断される。

敷地を中心とする半径約 30km の微小地震分布については,気象庁地 震カタログの 1997 年 10 月から 2019 年 8 月までの約 22 年間を対象とし て検討した。微小地震分布図を第 3.2-18 図に示す。その結果,鳥取県 西部地域に震央の集中がみられる。また,変位地形・リニアメントとの 関連が考えられる微小地震は認められない。

a. 垣の内北側断層

(a) 文献調查結果

橋本ほか(1980)は、松江市島根町北道北方の尾根から南東方向 の延長4.0km間に、西北西-東南東方向の準確実活断層を記載し、垣 の内断層と呼び、主に尾根に連続して明瞭な右横ずれ地形が認めら れるとしている。

活断層研究会編(1980, 1991)は,橋本ほか(1980)と同位置に, 長さ4.0kmの垣の内北側断層を記載し,確実度Ⅱ,活動度Cとしてい る。

鹿野・吉田(1985)は、橋本ほか(1980)の垣の内断層について、 そのほかのリニアメントに比べてもはるかに明瞭さを欠くものであ り、活断層とする根拠は乏しいとしている。 (1985),中田ほか(2008)⁽⁵⁸⁾及び今泉ほか編(2018)に は、同位置に活断層あるいは推定活断層は示されていない。

(b) 地形調査結果

垣の内北側断層周辺の地形調査結果を第3.2-19図に示す。

島根町北垣から島根町垣の内にかけて,直線状の谷,鞍部及び傾 斜変換線等から成る北西-南東方向のDランクの変位地形・リニア メントが判読される。

これらの変位地形・リニアメントは活断層研究会編(1980, 1991) の垣の内北側断層にほぼ対応する。変位地形・リニアメントの南東 側の山地斜面には逆向き崖による北東側低下の高度差が認められ, 変位地形・リニアメントの北西側では一部に河谷と尾根に右屈曲が 認められるが不明瞭で系統的ではない。

(c) 地表地質踏查結果

垣の内北側断層周辺の地質図及び地質断面図を第3.2-20図に示す。

垣の内北側断層沿いには,新第三系中新統の牛切層の流紋岩~デ イサイト質火砕岩,砂岩・礫岩,砂岩・泥岩互層,泥岩,並びに貫 入岩であるデイサイト,安山岩及び玄武岩が分布する。

牛切層は,ほぼ東西方向の走向で北傾斜の緩やかな同斜構造を示 す。

島根町垣の内南東部のピット調査(Loc. KN-1)では, 泥 岩及び流紋岩~デイサイト質火砕岩が北傾斜の緩やかな構造を示し, 変位地形・リニアメント位置には断層は認められない (第3.2-21図)。

島根町垣の内の北部では,変位地形・リニアメントの一部が流紋 岩〜デイサイト質火砕岩と貫入岩であるデイサイトとの地質境界に 対応する。 (d) 総合評価

垣の内北側断層にほぼ対応する変位地形・リニアメントには,一 部に河谷と尾根に右屈曲が認められるが不明瞭で系統的ではない。 垣の内北側断層付近に分布する地層は,北傾斜の緩やかな同斜構造 を示し,変位地形・リニアメント位置に断層は認められない。また, 変位地形・リニアメントの一部は,牛切層の流紋岩〜デイサイト質 火砕岩と貫入岩であるデイサイトとの地質境界に対応する。

以上のことから垣の内北側断層にほぼ対応する変位地形・リニア メントは、岩質の差を反映した組織地形であると評価する。

- b. 大社衝上断層及び矢尾町付近断層
- (a) 文献調査結果

大社衝上断層は,通商産業省(1969,1970,1971)の重力探査, 地震探査等の結果,大社山塊と出雲平野を境する高角度逆断層とし て推定されたもので,多井(1973)は,これらの調査結果をもとに, 大社衝上断層が西方の海域まで連続するものとしている。なお,大 社衝上断層については,活断層とする文献はない。

橋本ほか(1980)は、出雲市大社町遙堪から出雲市国富町に至る 延長6.0km間に東西ないし東北東-西南西方向の推定活断層を記載 し、矢尾町断層と呼んだ。

活断層研究会編(1980, 1991)は,橋本ほか(1980)と同位置に, 長さ6kmの矢尾町付近断層を記載し,確実度Ⅲ,活動度Cとしている。

鹿野ほか(1989)は,橋本ほか(1980)及び活断層研究会編(1980, 1991)とほぼ同じ位置にリニアメントを図示しているが、リニアメ ントは地質断層あるいは浸食に対する抵抗の差が大きい岩石の境界 にほぼ一致しており、リニアメントに沿った地域に明瞭な変位地形 等活断層であることを示す証拠は認められないとしている。

今泉ほか編(2018)には、同位置に推定活断層が示されている。

一方,佃ほか(1985)には,同位置に活断層あるいは推定活断層 は示されていない。

活断層研究会編(1980, 1991)及び鹿野ほか(1989)は,矢尾町 付近断層が,多井(1973)の大社衝上断層にほぼ一致するとしてい る。

以下では大社衝上断層及び矢尾町付近断層に関する調査結果をあ わせて記載する。

(b) 地形調查結果

大社山塊及び矢尾町付近断層周辺の地形調査結果を第3.2-22図 に示す。

国富町から大社町にかけて、山脚部の崖, 傾斜変換線, 山地・平 野境界をなす崖等から成るほぼ西北西-東南東~東北東-西南西方 向のA, B及びCランクの変位地形・リニアメントが判読され, 一 部の河谷と尾根に右屈曲が認められるほか, H3面(高位面)に撓 みが, 沖積面及び扇状地面に低崖が認められる。

これらの変位地形・リニアメントは東半部が活断層研究会編 (1991)の矢尾町付近断層にほぼ対応する。

(c) 地質調査結果

大社山塊及び矢尾町付近断層周辺の地質図及び地質断面図を 第3.2-23図に示す。

地表地質踏査結果によると、矢尾町付近断層沿いには、新第三系 中新統の古浦層、成相寺層、牛切層及び古江層、並びに貫入岩であ るドレライト及び安山岩が分布する。また、これらを覆ってH3面 (高位面)及びMm面(中位II面)段丘堆積物が局所的に認められ るほか、谷沿いには沖積低地堆積物が分布する。

変位地形・リニアメント東部の国富町篤伏付近では、牛切層中に 幅約10cm~約50cmの断層破砕帯を伴う断層露頭が認められ、この断 層より北西の岩盤は幅約5mにわたって破砕を受け軟質化している (第3.2-24図)。この断層露頭から西方にかけて、変位地形・リニ アメントを境に地質分布・構造の不連続がみられることから、変位 地形・リニアメントにほぼ一致する断層が存在するものと判断され る。断層露頭周辺では、北西側に礫岩・砂岩主体の地層が、南東側 に泥岩・砂岩主体の地層が分布し、断層の両側で牛切層の岩相が異 なる。

断層露頭にみられる断層破砕帯は全体に弱い熱水変質作用を受け, 一部に軟質な断層粘土が認められるが,全体に固結しており,最近 の活動を示唆する新しいせん断面は認められない。

出雲市百下町から国富町までの牛切層の分布域では,断層の両側 で牛切層の岩相が異なる。特に,Cランクの変位地形・リニアメン トが判読される出雲市東林木町以東では,断層の北西側に硬質な砂 岩・礫岩主体の地層が分布し,断層の南東側に比較的軟質な泥岩主 体の地層が分布する。

一方,日下町周辺の成相寺層の分布域では,変位地形・リニアメ ントは,硬質な流紋岩溶岩と,軟質な流紋岩質火砕岩との地質境界 にほぼ一致する。

なお、出雲市西林禾町から出雲市美談町にかけて、並びに大社町 から矢尾町にかけての山地・平野境界に認められる変位地形・リニ アメントは、新第三系中新統と沖積層との地質境界にほぼ一致する。

大社山塊周辺の重力データ(地質調査所編(2000))⁽⁵⁹⁾の再解析 結果による重力異常分布図を第3.2-25図に,大社山塊東部から宍道 湖にかけての詳細な重力探査結果による重力異常分布図を 第3.2-26図に示す。

重力探査結果によると,大社山塊南限沿いから大社町西方海域に かけて,大社衝上断層に対応する東北東-西南西方向に延びる重力 コンターの急傾斜部が認められ,北上がりの地質構造の存在が推定 される。また,この重力コンターの急傾斜部は,東方の宍道湖へ向 かうほど不明瞭になる。

大社衝上断層の西方延長に位置する大社町西方海域の音波探査結 果によると、中新統上面及びそれを覆う更新統に変位や変形は認め られない。

一方,大社衝上断層の東方延長に位置する宍道湖の音波探査結果 によると,中新統に断層は認められない。

(d) 総合評価

矢尾町付近断層については,空中写真判読により変位地形・リニ アメントが大社山塊南限の山麓に沿って大社衝上断層の北側に近接 して認められることから大社衝上断層に含めて評価する。

大社衝上断層については,活断層とする文献はないが,変位地形・ リニアメントが判読されること,上部更新統が欠如し活動性が明確 に判断できないこと等から,震源として考慮する活断層とし,その 長さについては,大社町西方海域において中新統上面及びそれを覆 う更新統に変位や変形が認められない音波探査測線から,宍道湖に おいて断層が認められない音波探査測線までの約28kmとする。

- c. 木次南断層
- (a) 文献調查結果

活断層研究会編(1980, 1991)は,雲南市掛合町花道付近から斐 伊川沿いの雲南市木次町西日登を通り,雲南市大東町清苗付近に至 る延長20km間に,北東-南西方向の木次南断層を記載し,確実度III としている。活動度は記載されていない。これによると,斐伊川は 1,000m以上,その西の2つと東の2つの小さな川は1,000m以下の右 横ずれがみられるとしている。

佃ほか(1985)及び今泉ほか編(2018)には,同位置に活断層あ るいは推定活断層は示されていない。

(b) 地形調査結果

木次南断層周辺の地形調査結果を第3.2-27図に示す。

掛合町多根志養の南方から大東町清田にかけて,傾斜変換線,鞍 部等から成る北東-南西方向のDランクの変位地形・リニアメント が断続的に判読される。

これらの変位地形・リニアメントは,活断層研究会編(1980,1991) の木次南断層にほぼ対応する。変位地形・リニアメントの南西部で は、山地斜面に逆向き崖から成る南東側低下の高度差が認められる が、それ以外の区間では顕著な高度差は認められない。また、変位 地形・リニアメントには河谷と尾根の屈曲は認められない。

(c) 地表地質踏查結果

木次南断層周辺の地質図及び地質断面図を第3.2-28図に示す。

本次南断層沿いには,古第三紀に貫入した花崗岩類が広く分布し, 掛合町北迫付近には古第三系の^代神火山岩類が分布する。鹿野ほか (1994)によると,花崗岩類は,大東花崗閃緑岩,鵯花崗岩及び下 久野花崗岩に区分されている。また, 三力 を川, 斐伊川等の河川沿 いには,高位面,中位面及び低位面段丘堆積物が河成段丘を形成し ており,北東端に近い大東町 金歳付近には古期扇状地堆積物が分布 する。

本断層の北東部にあたる大東町金成付近では、中〜粗粒の大東花 崗閃緑岩とこれを貫く細粒の下久野花崗岩が分布しており、変位地 形・リニアメントは両者の貫入境界にほぼ一致する。大東花崗閃緑 岩は、下久野花崗岩に比べ風化がみられ、大東花崗閃緑岩が分布す る北西側の山地高度が全体に低くなっている。大東町金成付近では 両者が粘土等を介して接する露頭も確認しているが、その北東延長 方向に位置する大東町清田付近には、上部更新統に対比される古期 扇状地堆積物が分布し、これが形成する扇状地面に変位地形は認め られず、古期扇状地堆積物を覆う三瓶木次軽石層(約10.5万年前) の上面にも有意な高度差はなく、さらにその北東方において新第三 系の波多層が連続して分布している。 この西方の木次町宇谷付近では,変位地形・リニアメントの方向 と調和的な小規模な閃緑岩の貫入岩体が分布しており,貫入岩中に 北東-南西方向の粘土脈が認められる。

本次町西日登の斐伊川沿いでは,文献により1,000m以上の右横ず れが指摘されているが,上下流の河道には変位が認められず,変位 地形・リニアメントに沿って河谷や尾根が系統的に大きく屈曲する ような変位地形は認められない。さらに,変位地形・リニアメント 南西部にあたる掛合町松尾付近の三刀屋川沿いにあるH3面(高位 面)に変位地形は認められず,段丘堆積物を覆う三瓶木次軽石層に も有意な高度差は認められない。

この他,周辺に分布する花崗岩中には,変位地形・リニアメント と同方向の節理等の分離面が多数認められ,挟在物中には小規模な 粘土化した部分や熱水変質作用を受けている部分も確認している。

(d) 総合評価

木次南断層沿いには,北東-南西方向のDランクの変位地形・リ ニアメントが断続して判読されるが,河谷や尾根の系統的な屈曲は 認められない。

大東町清田付近から東阿用付近にかけて,変位地形・リニアメン トは大東花崗閃緑岩と下久野花崗岩の境界にほぼ一致し,両者が粘 土等を介して接する露頭も確認されているが,その延長方向の大東 町清田付近の古期扇状地面に変位地形は認められず,古期扇状地堆 積物を覆う三瓶木次軽石層の上面にも有意な高度差はなく,さらに その北東において新第三系の波多層が連続して分布している。大東 町東阿用付近から木次町西日登を経て掛合町北迫付近に至る間では, 花崗岩中に変位地形・リニアメントと同方向の節理等の分離面が多 数認められ,挟在物中には小規模な粘土化した部分や熱水変質作用 を受けている部分も確認している。木次町西日登付近において, 1,000m以上の右横ずれが指摘されている斐伊川屈曲部の上下流の河

6 - 3 - 28

道には変位が認められず,変位地形・リニアメントに沿って河谷や 尾根が系統的に大きく屈曲するような変位地形は認められない。さ らに,掛合町松尾付近ではH3面(高位面)に変位地形は認められ ず,段丘堆積物を覆う三瓶木次軽石層にも有意な高度差は認められ ない。

以上のことから、木次南断層については、後期更新世以降の活動 を示唆するものは認められず、変位地形・リニアメントは花崗岩中 の卓越する節理等の分離面に沿って浸食を受けた組織地形と評価す る。

d. その他の断層及び変位地形・リニアメント

文献に示されるその他の陸域の断層並びに地形調査結果による変位 地形・リニアメントについては、後期更新世以降の活動が認められな いか、若しくはその長さと敷地からの距離とを考慮すると、いずれも 前述の断層の影響を上回らないと判断される。

宍道湖及び中海については、音波探査記録等から、宍道湖では、 第3.2-6図及び第3.2-7図に示すように断層は認められない。また、 中海では、第3.2-6図に示すようにF-A断層、F-B断層及びF-C断層の3条の断層が認められる。第3.2-8図に示すように、これら の断層はいずれもⅢN層以下の地層に変位又は変形を与えているが、 ⅦN層、ⅡN層及びIN層に変位や変形を与えていないことから、少な くとも後期更新世以降の断層活動は認められない。

e. 敷地を中心とする半径 30km 以遠の主な断層

活断層研究会編(1991)には、敷地を中心とする半径30km以遠の陸 域にも、地震断層及び活断層が示されている(第3.2-15図)。これら のうち、地震断層として吉岡断層及び鹿野断層があり、比較的延長の 長い確実度Iの活断層としては山崎断層系がある。

吉岡断層及び鹿野断層は、1943年の鳥取地震(マグニチュード(以下「M」という。)7.2)に際して活動した地震断層である。活断層研

究会編(1991)によると、鹿野断層は地形的にも活断層として認められ、長さ8km、確実度 I とされているが、活動度は記載されていない。

津屋(1944)⁽⁶⁰⁾は,鳥取地震の直後に震源地付近の地質学的観察を 行い,吉岡断層及び鹿野断層沿いにあらわれた地震断層の長さ,変位 の方向,変位量等を検討した。

安藤ほか(1980)⁽⁶¹⁾は,鹿野断層について,鳥取県鳥取市鹿野町送 築寺と鳥取市奴六原の2箇所でトレンチ調査を実施し,法楽寺のトレ ンチによって,断層の上下方向の変位量を60cm~80cmと読み取り,津 屋(1944)の報告とほぼ一致するとしている。

一方,山崎断層系は,活断層研究会編(1991)によると,岡山県と 鳥取県の県境に位置する那岐山の北方付近から,ほぼ東南東方向に延 び,兵庫県宍葉市山崎町を経て同県 二木市に至る総延長87kmの断層系 であり,活動度Bとされている。

岡田ほか(1987)⁽⁶²⁾は、安富断層のトレンチ調査を行い、最新活動 時期として868年の播磨地震(M≥7.0)の可能性を示唆している。

遠田ほか(1995)⁽⁶³⁾は、山崎断層系の北西部を構成する大原断層の トレンチ調査を行い、最新活動時期は868年の播磨地震の可能性が強い とし、大原断層、土万断層及び安富断層が同時に動くか、時間差を伴 って連鎖的に動く関係にあるとしている。

岡山県(1996)⁽⁶⁴⁾は同じく大原断層のトレンチ調査を行い,最新活動時期を平安時代中期に特定し,播磨地震に該当するとしている。

兵庫県(1996)⁽⁶⁵⁾は,土万断層及び安富断層のトレンチ調査を行い, このうちの安富断層の最新活動時期が播磨地震である可能性が高いと している。

(1985)によると、安富断層とその東方の琵琶甲断層との間 に分布する中位面ないし低位面段丘堆積層には断層が記載されていな いことから、播磨地震で活動したとされる大原断層、土万断層及び安 富断層の一連の活断層は、その東方には延長しないことを示唆してい る。

また,兵庫県(1999)⁽⁶⁶⁾は,山崎断層系の地形・地質調査を行い, 安富断層の横ずれ変位は,東方にゆくにつれ変位量が小さくなる傾向 が認められ,東方延長線上でも明瞭な変位地形を伴ったリニアメント は見出せなくなることから,安富断層は琵琶甲断層には直接連続して いない可能性が高いとしている。

さらに,兵庫県(2001)⁽⁶⁷⁾は、トレンチ調査等により,琵琶甲断層 及び三木断層が約2,000年前の前後数百年の間に活動した可能性があ り,また,安富断層と琵琶甲断層の間の約7kmについては変位地形は 認められないとしている。

岡田・東郷編(2000)⁽⁶⁸⁾は,総延長約87kmの断層帯として山崎断層 帯と呼び,大原断層から安富断層までが一連の活断層であり,琵琶甲 断層や三木断層を別の活動をもつ断層とすれば,この延長は約60kmで あるとしている。

今泉ほか編(2018)は、長さ約55kmの断層帯として山崎断層帯と呼び、西北西-東南東方向に直線的に連なる大原断層、土万断層及び安 富断層と、南部で南東方へ分岐するように発達する暮坂端が断層によっ て構成され、系統的な河谷や尾根の左屈曲が明瞭なB級の活動度を持 つ左横ずれ断層と推定されるが、暮坂峠断層や東部に位置する活動度 の低い断層ではこれらの変位地形は不明瞭であるとしている。

地震調査研究推進本部(2013)⁽⁶⁹⁾によると、山崎断層帯主部は、岡山県美作市勝笛町から兵庫県三木市に至る断層帯で、ほぼ西北西-東 南東方向に一連の断層が連なるように分布している。全体の長さは約 79kmで,左横ずれが卓越する断層帯であるとしている。なお,山崎断 層帯主部は,兵庫県姫路市より北西側と兵庫県福崎町より南東側とで はそれぞれ最新活動時期が異なるため,北西部及び南東部に分けて評 価を行ったとしている。北西部では,M7.7程度の地震が発生する可能 性があり,また,南東部では,M7.3程度の地震が発生する可能性があ るとしている。なお,山崎断層帯主部全体が連動して活動することも 考えられるため,その場合,M8.0程度の地震が発生する可能性がある としている。

以上のことから、山崎断層系については、大原断層から三木断層に 至る長さ約79kmの区間の活動性を考慮する。

また、文献により敷地を中心とする半径30km以遠に示されたその他の断層については、その長さと敷地からの距離とを考慮すると、いずれも前述の断層の影響を上回らないと判断される。

3.2.3 海域の調査結果

敷地前面海域及びこれを含む敷地周辺海域の地質・地質構造は,文献調 査,敷地前面海域等の音波探査結果によると以下のとおりである。

3.2.3.1 海底地形

敷地前面海域の音波探査結果,海上保安庁水路部(1990,1991a,1991b, 1992a,1993a)の「海底地形図」及び日本水路協会(2008)⁽⁷⁰⁾の「海底地 形デジタルデータ」により,第3.2-29図に示す敷地前面海域の海底地形 図を作成した。

敷地前面海域は、大部分が島根半島から隠岐諸島の島棚まで連なっている水深 150m 以浅の大陸棚に属し、水深 50m~70m 付近の傾斜変換点を境にして、傾斜及び起伏が異なる沿岸海域と沖合海域に分けられる。

沿岸海域は島根半島北側では屈曲に富んだ海岸線で陸域と接し,海底面は 10/1,000~50/1,000 程度の勾配で,小島,堆,海底谷等を伴う起伏

の激しい複雑な形状を呈している。なお,沿岸海域のうち,美保湾及び大 社前面海域はいずれも中国山地と島根半島を隔てる沖積平地の湾入部に 接し,海岸から沖合に向かって緩やかに傾斜する起伏に乏しい単調な平坦 面で形成されている。

沖合海域の海底面は島根半島中央部と隠岐諸島を結ぶ線を境として,東 側では2/1,000 前後の勾配で北方へ極めて緩やかに傾斜する斜面で,西 側ではその中央部に東西方向の緩やかな起伏を伴い,全体として 3/1,000 前後の勾配で北西方へ緩やかに傾斜する斜面でそれぞれ形成さ れている。

3.2.3.2 海底地質

敷地前面海域の海底地質は,第 3.2-5 表に示すように,音波探査で認 められる反射面の連続性,下位層との不整合関係,堆積構造及び反射パタ ーンの特徴に着目し,上位からA層,B層,C層,D層の堆積物又は堆積 岩及びV層の火山岩・貫入岩に区分される。

敷地前面海域の海底地質図を第3.2-30図に、主要測線の海底地質断面
図を第3.2-31図に、音波探査記録を第3.2-32図に示す。

A層は陸域近傍及び敷地前面海域の北西部の大陸棚外縁~大陸縁辺台 地を除いたほとんどの海域に薄く堆積しており,下位層を不整合関係で覆 っている。本層は未固結の泥,砂,礫等から成る堆積物と考えられる。

B層は敷地前面海域の東部及び北西部に広く分布して大部分が上位層 に覆われており、下位層を不整合関係で覆っている。本層は未固結~半固 結の泥,砂及びこれらの互層から成り、部分的に砂礫層を挟んでいると考 えられる。

B層は層内の不整合面等により細区分される。細区分に当たっては,東 部海域のB層は大陸棚に位置し,層内に浸食面が認められることから,そ の浸食面に着目し,連続する反射面を追跡することにより境界面を認定し た。また,北西部海域のB層は大陸棚外縁~大陸縁辺台地に位置し,プロ グラデーションが認められることから、その反射パターンを有する地層の 不整合面に着目し、連続する反射面を追跡することにより境界面を認定し た。その結果、東部海域のB層は上位からB1E層及びB2E層の2層に、 北西部海域のB層は上位からB1w層、B2w層及びB3w層の3層にそれぞ れ細区分される。また、東部及び北西部以外の海域では、分布が小範囲に 限られ、かつB層の層厚が薄いことから細区分せずBx層とする。

C層は敷地前面海域の東部,北西部,西部の中央部及び日御碕西方に広 く分布しているが,大部分が上位層に覆われており,下位層を顕著な不整 合関係で覆っている。本層は固結した泥岩,砂岩及びこれらの互層から成 り,部分的に礫岩層を挟んでいると考えられる。

D層は敷地前面海域の最下位層であり,層内の不整合面により,上位か らD1層及びD2層の2層に細区分される。D1層は敷地前面海域中央部の D2層隆起部を除く海域及び日御碕西方に広く分布しているが,大部分を 上位層に覆われている。本層は固結した泥岩,砂岩及びこれらの互層から 成り,部分的に礫岩層を挟んでいると考えられる。D2層は敷地前面海域 に分布する地層の最下部層で,島根半島周辺,敷地前面海域中央部,島前 西方及び日御碕西方では海底面下浅部又は海底面で広く分布が認められ る。本層は,堅硬な泥岩,砂岩及びこれらの互層から成り,しばしば礫岩 及び火山砕屑岩を挟んでいると考えられる。

∇層は岩床状,又は岩脈状を呈し,敷地前面海域中央沿岸部及び隠岐諸 島南方沖の小範囲に分布しているが,大部分が上位層に覆われている。本 層は火山岩・貫入岩から成ると考えられる。

音波探査記録の解析により区分されたこれら各層は,玉木ほか(1981), 採泥試料から微化石分析を行っている山本ほか(1989)及び深部試錐から 微化石分析を行っている田中・小草(1981)⁽⁷¹⁾との層序対比並びに海域と 陸域との層序対比等を検討することにより,A層は完新統,B層は中部~ 上部更新統,C層は鮮新統~下部更新統,D層は中新統及びV層は中新世 ~更新世の火山岩・貫入岩に対比される。

6 - 3 - 34

また,細区分されたB層は,さらに堆積構造,地層の累重関係及び堆積 の場と海水準変動との関係から地質年代対比を検討した。

東部海域ではB1E層は大陸棚に分布し、一部でプログラデーションパタ ーンを示す。また、B1E層はA層に不整合に覆われ、B2E層上面の浸食 面を不整合に覆う。B2E層上面の浸食面は、最終氷期最寒冷期(海洋酸素 同位体ステージ2)に形成されたA層とB1E層の不整合面の下位に位置す ることから、安全評価上、至近の低海水準の時期であるステージ6に形成 されたと考える。したがって、B1E層は低海水準の時期(ステージ6)よ り後の堆積物として上部更新統に対比される。また、B2E層はB1E層の 下位に位置し、前述のとおりB層が中部~上部更新統であることから、中 部更新統に対比される。

なお、東部海域の地層対比の妥当性を確認するため、松江市鹿島町沖約 7kmに位置する大陸棚において柱状採泥調査により試料を採取し、火山灰 分析及び放射性炭素同位体法による年代測定を実施した結果、前述した地 層区分に基づくA層から採取した大部分の試料の地質年代が後期更新世 を示したことから、従来のA層は表層部を除きB1E層であることが確認さ れた。このB1E層の分布範囲は、少なくともブーマー・マルチチャンネル 方式等による高分解能の音波探査が実施されている範囲で確認されてい る。

北西部海域ではB1w層は大陸棚外縁~大陸縁辺台地に分布し,ほぼ水平 かやや傾斜する成層パターンを示す。また,B1w層は大陸棚外縁付近にお いてA層に不整合に覆われ,B2w層上面をオンラップ状の不整合で覆う。 B2w層上面の不整合面は,最終氷期最寒冷期(ステージ2)に形成された A層とB1w層の不整合面の下位に位置することから,安全評価上,至近の 低海水準期であるステージ6から海進へ移行するステージ5の初期に形 成されたと考える。したがって,B1w層は海進した時期(ステージ5の初 期)より後の堆積物として上部更新統に対比される。また,B2w層及びそ の下位に位置するB3w層は,これらがB1w層の下位に位置し,B層が中

6 - 3 - 35
部~上部更新統であることから、ともに中部更新統に対比される。

敷地前面海域をはじめとする敷地周辺海域の海底地質については、玉木 ほか(1982)、山本ほか(1989)等に示されており、それら及び陸域と海 域の地層の対比を第3.2-6表に示す。

3.2.3.3 海底地質構造

(1) 敷地前面海域

音波探査の結果,敷地前面海域の地質構造は島根半島陸域と調和的な 傾向を示している。すなわち,D層は著しい隆起及び沈降を伴い北東-南西ないし東北東-西南西方向に延びる褶曲構造を示す。これを覆うC 層は緩やかな褶曲を示し,更にこれらの上位層であるB層及びA層はほ とんど褶曲を示さずほぼ水平に堆積している。

敷地前面海域に発達する顕著な褶曲構造は,海域中央部を東北東一西 南西方向に延びる複向斜構造と,これとほぼ平行してその北側に延びる 複背斜構造である。これらの構造はD層内に形成されており,そのうち, D2層はD1層よりも著しい褶曲を示している。これらの複向斜構造及び 複背斜構造は,いずれも雁行する向斜及び背斜で形成されている。また, 島根半島陸域で東北東-西南西方向に延びる構造としては,多井(1952, 1973)が示した宍道断層及び大社衝上断層を含む宍道褶曲帯が分布する が,その海域延長部には,東方及び西方ともにD2層の向斜・背斜構造 又は沈降・隆起を示す構造が認められ,これらの複向斜構造及び複背斜 構造と調和的である。

敷地前面海域では,音波探査の解析結果により,連続性のある断層・ 撓曲として第 3.2-7 表に示すF-I断層~F-WI断層,K-1撓曲~ K-7撓曲,F-①断層及びF-②断層の 16 条が認められる。これら 16 条の断層・撓曲は北東-南西ないし東-西系を示し,いずれも顕著な 褶曲構造の翼部に位置している。また,玉木ほか(1982),海上保安庁 水路部(1991b,1992a),徳山ほか(2001)等により敷地前面海域に示 されている断層を第 3.2-33 図に示す。 F-I断層は,敷地前面海域中央部を東北東-西南西方向に延びる複 向斜構造の北翼に沿って松江市島根町沖約 16km に認められる断層であ る。また,玉木ほか(1982)は,ほぼ同様な位置に断層を記載している。 断層は,B2E層に変位や変形を与えていないことから,その活動は後期 更新世以降に及んでいないと判断される。

F-Ⅱ断層は,敷地前面海域中央部を東北東-西南西方向に延びる複 向斜構造の南翼に沿って松江市島根町沖約8kmに位置し,東西方向に認 められる断層である。また,海上保安庁水路部(1992a)は,ほぼ同様 な位置に断層を記載している。断層は,B2E層に変位や変形を与えてい ないことから,その活動は後期更新世以降に及んでいないと判断される。

F-Ⅲ断層は、敷地前面海域中央部を東北東-西南西方向に延びる複 向斜構造の南翼に沿って松江市鹿島町沖約7kmに位置し、北東-南西方 向に認められる断層である。また、玉木ほか(1982)及び海上保安庁水 路部(1992a)は、ほぼ同様な位置に断層を記載している。断層は、C 層までに変位や変形を与えているが、北東部においてその上位のB2E 層に変位や変形を与えていない。一方、南西部においてB2E層は欠如し ているものの、B1E層に変位や変形を与えていないと考えられるが、ブ ーマー・マルチチャンネル方式等による高分解能の音波探査記録が得ら れていないことから、後期更新世以降の活動を考慮するものとし、その 長さをB2E層に変位や変形を与えていないことが確認できる測線から、 B1E層、C層、D1層及びD2層に変位や変形を与えていないことが確 認できる測線までの最大約4.5kmとする。

F-IV断層は,敷地前面海域中央部を東北東-西南西方向に延びる複 向斜構造の南翼に沿って出雲市 ╧津町沖約9kmに位置し,東西方向に認 められる断層である。また,玉木ほか(1982)及び海上保安庁水路部 (1991b)は,ほぼ同様な位置に断層を記載している。断層は,C層ま でに変位又は変形を与えており,その上位のB2E層は欠如しているもの の,B1E層に変位や変形を与えていないと考えられるが,ブーマー・マ ルチチャンネル方式等による高分解能の音波探査記録が広域的に得ら れていないことから,後期更新世以降の活動を考慮するものとし,その 長さをB1E層,C層及びD1層に変位を与えていないことが確認できる 測線から,D1層及びD2層に変位や変形を与えていないことが確認でき る測線までの最大約20.0kmとする。

F-V断層は,敷地前面海域中央部を東北東-西南西方向に延びる複 向斜構造の南翼に沿って出雲市日御碕沖約 15km に位置し,東西方向に 認められる断層及び撓曲である。また,海上保安庁水路部(1991b)は, ほぼ同様な位置に断層を記載している。断層は,C層までに変位又は変 形を与えており,その上位のB層については欠如しているが,A層には 変位や変形を与えていない。したがって,F-V断層については,後期 更新世以降の活動を考慮するものとし,その長さをC層に変位や変形を 与えていないことが確認できる測線までの最大約17.5kmとする。

F-VI断層は,敷地前面海域北部を東北東-西南西方向に延びる複背 斜構造の北翼に沿って松江市島根町沖約25kmに認められる断層である。 また,玉木ほか(1982)は,ほぼ同様な位置に断層を記載している。断 層は,B1E層に変位や変形を与えていないことから,その活動は後期更 新世以降に及んでいないと判断される。

F-①断層は、松江市鹿島町沖約5kmに位置し、北東-南西方向に認 められるF-III断層の南側約1kmを並走して分布する断層である。断層 は、D2層下部に変位や変形を与えているが、D2層上部に変位や変形を 与えていないことから、その活動は後期更新世以降に及んでいないと判 断される。また、F-①断層は、地下深部においてF-III断層に収斂す ると考えられる。

F-②断層は、出雲市三津町沖約4kmに位置し、東西方向に認められるF-IV断層の南側約4kmを並走して分布する断層である。断層は、D2層上部に変位や変形を与えているが、D2層上面及びそれを覆うB1E層に変位や変形を与えていないことから、その活動は後期更新世以

降に及んでいないと判断される。

F-WI断層及びK-3 撓曲は、敷地前面海域北部を東北東-西南西方 向に延びる複背斜構造の北翼に沿って出雲市三津町沖約 31km に認めら れる断層及び撓曲である。また、玉木ほか(1982)及び徳山ほか(2001) は、ほぼ同様な位置に断層を記載している。F-WI断層及びK-3 撓曲 は、走向が概ね一致しており近接していることから、一連のものとして 検討する。これらの断層及び撓曲は、C層までに変位又は変形を与えて おり、その上位のB層については欠如しているか、又はB2w層に変形を 与えている箇所がある。また、A層には変位や変形を与えていない。し たがって、これらの断層及び撓曲については、後期更新世以降の活動を 考慮するものとして「FK-1断層」と呼び、その長さをB2E層上面及 びそれを覆うB1E層に変位や変形を与えていないことが確認できる測 線から、B2w層に変位を与えていないことが確認できる測線までの最大 約19.0kmとする。

K-1 撓曲は,敷地前面海域北部を東北東-西南西方向に延びる背斜 構造の北翼に沿って松江市鹿島町沖約 52km に認められる撓曲である。 撓曲は,西部においてB1w層までに変位又は変形を与えている。一方, 東部においてC層までに変位又は変形を与えており,その上位のB2w 層には変位や変形を与えていない。したがって,K-1 撓曲の西部につ いては,後期更新世以降の活動を考慮するものとし,その長さをB2w 層に変位や変形を与えていないことが確認できる測線から,Bx層,C 層及びD1層に変位や変形を与えていないことが確認できる測線までの 最大約 32.0kmとする。

K-2 撓曲は,敷地前面海域北部を東北東-西南西方向に延びる背斜 構造の北翼に沿って松江市鹿島町沖約 49km に認められる撓曲である。 撓曲は,中央部においてB2w層までに変形を与えており,その上位の B1w層は層厚が薄いこと等により層理が不明瞭である。一方,東部にお いてB2w層に,西部においてB3w層に変位や変形を与えていない。し

たがって, K-2 撓曲の中央部については,後期更新世以降の活動を考慮するものとし,その長さをB2w層に変位や変形を与えていないことが確認できる測線から,B3w層に変位や変形を与えていないことが確認できる測線までの最大約3.5kmとする。

K-4 撓曲は,敷地前面海域北部を東北東-西南西方向に延びる複背 斜構造の南翼に沿って松江市鹿島町沖約 19km に位置し,東西方向に認 められる撓曲である。撓曲は,D1層に変形を与えており,その上位の B2E層及びB1E層は欠如しているか,又は層厚が薄いこと等により層 理が不明瞭となっているが,A層には変形を与えていない。したがって, K-4 撓曲については,後期更新世以降の活動を考慮するものとし,そ の長さをB2E層までに変位や変形を与えていないことが確認できる測 線から,D1層に変位や変形を与えていないことが確認できる測線まで の最大約9.0kmとする。

K-5 撓曲は,敷地前面海域北部を東北東-西南西方向に延びる複背 斜構造の南翼に沿って松江市島根町沖約 13km に位置し,北東-南西方 向に認められる撓曲である。撓曲は,B2E層に変位や変形を与えていな いことから,その活動は後期更新世以降に及んでいないと判断される。

K-6 撓曲は,敷地前面海域北部を東北東-西南西方向に延びる複背 斜構造の南翼に沿って松江市鹿島町沖約 17km に認められる撓曲である。 また,玉木ほか(1982)は,ほぼ同様な位置に断層を記載している。撓 曲は,D1層に変位又は変形を与えており,西部においてその上位のB 層は欠如しているか,又は層厚が薄いこと等により層理が不明瞭となっ ているが,A層には変位や変形を与えていない。一方,東部において B2E層に変位や変形を与えていない。したがって,K-6 撓曲の西部に ついては,後期更新世以降の活動を考慮するものとし,その長さを B2E層に変位や変形を与えていないことが確認できる測線から,D1層 に変位や変形を与えていないことが確認できる測線までの最大約 9.5km とする。 K-7 撓曲は,敷地前面海域北部を東北東-西南西方向に延びる複背 斜構造の南翼に沿って出雲市三津町沖約13kmに認められる撓曲である。 撓曲は,C層までに変形を与えており,その上位のBx層は欠如してい るか又は層厚が薄いこと等により層理が不明瞭となっているが,A層に は変形を与えていない。したがって,K-7 撓曲については,後期更新 世以降の活動を考慮するものとし,その長さをD1層に変位や変形を与 えていないことが確認できる測線から,C層に変位や変形を与えていな いことが確認できる測線までの最大約9.0kmとする。

なお, F-Ⅲ断層, F-Ⅳ断層及びF-V断層については, 敷地前面 海域中央部を東北東-西南西方向に延びる複向斜構造の南翼に沿って 分布する等の地質構造の類似性が認められ, 断層間の距離が近いことか ら連動するものとし, その長さは最大約 48.0km とする。

K-4 撓曲, K-6 撓曲, K-7 撓曲及び孤立した短い撓曲について は, 敷地前面海域北部を東北東-西南西方向に延びる複背斜構造の南翼 に沿って分布する等の地質構造の類似性が認められ, 撓曲間の距離が近 いことから連動するものとし, その長さは最大約 19.0km とする。

K-1 撓曲及びK-2 撓曲については,敷地前面海域北部を東北東-西南西方向に延びる2条の背斜構造の北翼に分布する等の地質構造の 類似性が認められ,撓曲間の距離が近いことから連動するものとし,さ らに,「(2) 敷地周辺海域」で詳述する F ко断層とも連動するものとし て評価する。

敷地前面海域において前述した以外の断層及び撓曲が認められるが, これらについては後期更新世以降の活動が認められないか,若しくはそ の長さと敷地からの距離とを考慮すると,いずれも前述の断層の影響を 上回らないと判断される。

なお,松江市美保関町東方,地蔵崎北東沖及び出雲市大社町西方に分 布し連続性のある数条の断層は,「(2) 敷地周辺海域」で詳述する。

(2) 敷地周辺海域

敷地周辺海域では、文献^{(13)(17)~(28)(31)~(34)(36)~(39)}により複数の 断層又は撓曲が示されているが、それらの文献のうち、断層の活動時期 を示しているものは、活断層又は活撓曲と記載している活断層研究会編 (1991),新第三紀の逆断層と記載している日本地質アトラス(第2版) 及び逆断層を記載している徳山ほか(2001)である。これらを含む全断 層のうち、敷地に与える影響の大きな断層としては、日本地質アトラス (第2版)等で兵庫県新温泉町沖の大陸斜面から島根県松江市美保関町 東方沖の大陸棚を通り島根半島東部の陸域に示された断層(以下「鳥取 沖の断層」という。),同じく日本地質アトラス(第2版)等で島根県中 部沿岸の大陸棚に示された断層(以下「大田沖の断層」という。)、活断 層研究会編(1991)等で隠岐北西方の大陸斜面に示された断層(以下「隠 岐北西方の断層」という。),日本地質アトラス(第2版)等で島根県西 部から福岡県沿岸の大陸棚に示された断層(以下「見島付近の断層」と いう。), 活断層研究会編(1991)で見島北方沖の大陸斜面に示された断 層(以下「見島北方沖の断層」という。)、及び玉木ほか(1982)で鳥取 県東部から島根半島東部沿岸の大陸棚に示された断層(以下「地蔵崎北 東沖の断層」という。),国土交通省・内閣府・文部科学省(2014)で隠 岐西方の大陸斜面に示された断層(以下「Fко断層」という。),同じく 国土交通省・内閣府・文部科学省(2014)で島根県中部沿岸の大陸棚~ 大陸斜面に示された断層(以下「F57断層」という。)がある (第3.2-34図)。

これらの断層又は撓曲について,当社,海上保安庁水路部,地質調査 所等の音波探査記録等に基づいて,分布性状,活動性等を検討した結果 を第3.2-8表に示す。

鳥取沖の断層の評価に当たっては,断層周辺の地層について音波探査 で認められる反射面の連続性,下位層との不整合関係,堆積構造及び反 射パターンの特徴に着目して検討を行った。その結果,断層周辺の地層

は、上位からA層、B層、C層並びにD層(D1層及びD2層)に区分さ れる。また、B層は層内の不整合面等により、B1層、B2層、B3層及 びB4層に細区分される。これら各層は、山本ほか(1989)による海域 の地質等を検討することにより、A層は完新統に、B層は中部〜上部更 新統に、C層は鮮新統〜下部更新統に、D層は中新統に対比される (第3.2-6表)。

このうち、B1層は大陸棚においてA層に不整合に覆われ、大陸棚外 縁で急激に層厚が薄くなる。また、B1層はプログラデーションパター ンが認められ、B2層を不整合に覆う。したがって、B1層は高海水準か ら海退しつつある時期となる海洋酸素同位体ステージ5~2の堆積物 として上部更新統に対比される。B2層は大陸棚から大陸棚外縁におい てB1層に不整合に覆われ、沖に向かって徐々に厚さを増す。また、B2 層にはプログラデーションパターンが認められ、B3層を不整合に覆う。 したがって、B2層は低海水準の時期となる海洋酸素同位体ステージ6 の堆積物として中部更新統に対比される。

また, B₃層及びその下位に位置するB₄層は, これらがB₂層の下位 に位置し, B層が中部〜上部更新統であることから, ともに中部更新統 に対比される。

なお、ブーマー・マルチチャンネル方式による高分解能の音波探査記録を用いて敷地前面海域(東部海域)と鳥取沖海域との間における地質層序の連続性を確認した結果、東部海域のB1E層が鳥取沖海域のB1層に、東部海域のB2E層が鳥取沖海域のB2層、B3層及びB4層にそれぞれ連続し、その他の地層も連続している。

鳥取沖の断層のうち,兵庫県新温泉町沖から鳥取県湯梨浜町沖に分布 する断層又は撓曲については,走向が概ね東北東-西南西方向で近接し て分布しており,B1層までに変位若しくは変形が認められるか,又は 一部で欠如しており,A層は欠如しているか,又は層厚が薄いこと等に より層理が不明瞭である。 鳥取県湯梨浜町沖から鳥取県北栄町沖に分布する断層については, B2層までに変位又は変形が認められるが,B1層に変位や変形は及んで いない。

鳥取県北栄町沖から鳥取県大山町沖に分布する断層については、走向 が概ね東北東-西南西方向で近接して分布しており、B1層までに変位 又は変形が認められ、A層は欠如しているか、又は層厚が薄いこと等に より層理が不明瞭である。また、鳥取県北栄町沖のB1層までに変位又 は変形が認められる区間では、比較的大きい断層変位を示し、累積性が 認められ、また、横ずれ運動を示唆する地層の落ち込みや盛り上がり、 引きずり込み構造が確認されたのに対し、西南西方の鳥取県大山町沖で は、断層が雁行・分岐し、変位量が小さくなる傾向が認められ、横ずれ 断層の末端部付近を示唆する性状を示しており、断層活動性が低下して いる。

鳥取県大山町沖から島根県松江市美保関町東方沖に分布する断層に ついては、C層までに変位又は変形が認められるが、B層に変位や変形 を与えていない。

以上のことから,兵庫県新温泉町沖から鳥取県湯梨浜町沖に分布する 断層及び撓曲については,後期更新世以降の活動が高いものとして考慮 し,一括して「鳥取沖東部断層」と呼称し,その長さを後期更新世以降 の地層に変位や変形を与えていないことが確認できる測線までの最大 約50kmとする。

鳥取県北栄町沖から鳥取県大山町沖に分布する断層については、後期 更新世以降の活動が高いものとして考慮し、一括して「鳥取沖西部断層」 と呼称し、その長さを後期更新世以降の地層に変位や変形を与えていな いことが確認できる測線までの最大約40kmとする。

さらに、鳥取沖東部断層及び鳥取沖西部断層については、その間に B1層に変位や変形は及んでいない区間が狭在し、連動の可能性は低い と考えられるが、国土交通省・内閣府・文部科学省(2014)により、鳥

取沖東部断層と鳥取沖西部断層が同時に破壊すると考えられる断層帯 としてグルーピングされていることを踏まえ連動するものとし,その長 さは最大約 98km とする。

大田沖の断層の評価に当たっては、断層周辺の地層について音波探査 で認められる反射面の連続性、下位層との不整合関係、堆積構造及び反 射パターンの特徴に着目して検討を行った。その結果、断層周辺の地層 は、上位からA層、B×層、C層並びにD層(D1層及びD2層)に区分 され、A層は完新統に、B×層は中部~上部更新統に、C層は鮮新統~ 下部更新統に、D層は中新統に対比される(第3.2-6表)。

大田沖の断層については,海上保安庁水路部等の音波探査記録による と,文献に示されている断層に沿って,断層及び撓曲が認められる。こ れらの断層及び撓曲はセンスが必ずしも一致しないものの,全体として 走向が概ね東-西方向で近接して雁行しており,中部更新統以上までに 変位又は変形が認められる。これらの断層及び撓曲については,後期更 新世以降の活動が高いものとして考慮し,一括して「大田沖断層」と呼 称し,その長さを中部更新統以上に変位や変形を与えていないことが確 認できる測線までの最大約53kmとする。

隠岐北西方の断層,見島付近の断層,見島北方沖の断層及び地蔵崎北 東沖の断層の評価に当たっては,文献による海域の地質を参考にして, 音波探査で認められる不整合関係等に着目して音響層序区分を行った。 その結果,これらの断層周辺に分布する地層はQ層及びT層に区分され, Q層は中部更新統~完新統,T層は中新統~下部更新統に対比される。 なお,地蔵崎北東沖の断層の西部は,前述の敷地前面海域に含まれるた め,断層周辺の地層はA層,B層,C層及びD層に区分される。

隠岐北西方の断層については,海上保安庁水路部等の音波探査記録に よると,文献で示されている断層の中央部及び南部において断層が認め られない。また,北部において海上保安庁水路部の音波探査記録による と,約 36km 区間で一部に不明瞭な部分があり,活動が後期更新世以降

に及んでいる可能性のある断層も認められるが,敷地からの距離を考慮 すると,敷地に与える影響は小さいと判断される。

見島付近の断層については,文献で示されている断層の中央部におい て,海上保安庁水路部等の音波探査記録によると,中部更新統以上には 連続性のある断層は認められない。また,東部及び西部において中部更 新統以上に影響を与える数条の断層が認められるが,いずれも長さが短 く,敷地からの距離を考慮すると,敷地に与える影響は小さいと判断さ れる。

見島北方沖の断層については,海上保安庁水路部等の音波探査記録に よると,文献で示されている断層の東部において,中部更新統以上に連 続性のある断層は認められない。また,西部において,海上保安庁水路 部等の音波探査記録によると,約 38km 区間で一部に不明瞭な部分もあ るが,中部更新統以上に影響を与えている断層が認められる。この約 38km 区間について,活動が後期更新世以降に及んでいる可能性があるが, 敷地からの距離を考慮すると,敷地に与える影響は小さいと判断される。

地蔵崎北東沖の断層については,当社,海上保安庁水路部等の音波探 査記録によると,文献に示されている断層位置において,中部更新統以 上に変位や変形は認められない。したがって,少なくとも後期更新世以 降の活動はないものと判断される。

Fко断層及びF57断層の評価に当たっては,前述の敷地前面海域及 び大田沖海域に該当するため,断層周辺の地層は,上位からA層,Вх 層,С層及びD層に区分される。

Fκo断層については、地質調査所等の音波探査記録によると、国土交 通省・内閣府・文部科学省(2014)に示されている断層位置において、 走向が東北東-西南西方向を示す2条の断層が認められ、Bx層までに 変位又は変形が認められることから、後期更新世以降の活動を考慮する ものとし、その長さは断層活動を示唆する変位や変形を与えていないこ とが確認できる測線までの最大約 32km とする。

また, Fкo断層の南方にはK-1撓曲及びK-2撓曲が分布している。 これらの断層周辺において、ブーマー・マルチチャンネル方式等による 高分解能の音波探査記録が得られていないこと等から、K-1撓曲, K -2撓曲及びFкo断層は連動するものとし、その長さは最大約 36km と する。

F57断層については、地質調査所等の音波探査記録によると、国土 交通省・内閣府・文部科学省(2014)に示されている断層位置において、 走向が東-西方向又は北東-南西方向を示す複数条の断層が直線状又 は平行状に分布し、Bx層までに変位又は変形が認められることから、 後期更新世以降の活動を考慮するものとし、その長さは断層活動を示唆 する変位や変形を与えていないことが確認できる測線までの最大約 108kmとする。

また,文献により敷地周辺海域に示されたその他の断層については, その長さと敷地からの距離とを考慮すると,いずれも前述の断層の影響 を上回らないと判断される。 3.3 敷地近傍の地質・地質構造

3.3.1 調査内容

敷地近傍において,不明瞭若しくは小規模な変動地形までも含めて地 質・地質構造を詳細に把握するために,敷地周辺の調査結果を踏まえ,敷 地を中心とする半径約5kmの範囲において,文献調査,地形調査,地表地 質踏査,地球物理学的調査(反射法地震探査等),ボーリング調査,ピッ ト調査,トレンチ調査,音波探査,海底面調査及び潜水調査を実施した。 なお,調査範囲としては,敷地を中心とする半径約5kmの範囲に加え,変 位地形・リニアメントが断続的ではあるが判読されるため,松江市美保関 町までを含めて調査を実施した。

敷地近傍の地質・地質構造に関する主要な文献としては、地質調査所発行の鹿野・吉田(1985)5万分の1地質図幅「境港」、鹿野・中野(1985)「美保関」、鹿野・中野(1986)「恵曇」、中田ほか(2008)等がある。

地形調査としては,主に国土地理院で撮影された縮尺4万分の1,2万 分の1及び8千分の1の空中写真,米軍で撮影された縮尺1万分の1の空 中写真,並びに国土地理院発行の縮尺5万分の1及び2万5千分の1の地 形図に加えて航空レーザー測量による高精度の2千5百分の1の等高線 図を使用して,変動地形学的視点により変位地形・リニアメントを抽出し た。

地表地質踏査としては,詳細な地質・地質構造を把握するために,地形 調査に使用した空中写真及び地形図を用いて実施した。

地球物理学的調査としては,敷地近傍の地下構造を把握するために,反 射法地震探査を実施した。反射法地震探査として古浦層,成相寺層等の新 第三系内の構造を調査するためにP波探査を実施し,その総延長は約5km である。また,地下浅部の詳細な構造を調査するためにS波探査を実施し, その総延長は約4kmである。

ボーリング調査としては,文献調査,地形調査,地表地質踏査及び地球 物理学的調査の結果を踏まえて,断層の有無又は通過位置を確認するため に実施した。

ピット調査及びトレンチ調査としては,文献調査,地形調査,地表地質 踏査,地球物理学的調査及びボーリング調査の結果を踏まえて,断層有無 の確認,活動性等を詳細に把握するために実施した。

地表地質踏査,ボーリング調査等において粘土状破砕部が確認された場 合には,必要に応じて,研磨片及び岩石薄片を作成し,せん断面の性状, 複合面構造,条線の観察等を実施した。

音波探査としては、海底の地形、地質・地質構造に関する資料を得るために実施した。解析に使用した音波探査は、水中放電(スパーカー)方式及びウォーターガン・マルチチャンネル方式による調査であり、その測線間隔は沖合方向(南北方向)が約1km間隔,沿岸方向(東西方向)が約2km間隔である。

古浦沖で実施した音波探査はウォーターガン・マルチチャンネル方式, ジオパルス・マルチチャンネル方式,ジオパルス方式及びソノプローブ方 式による調査であり,探査した測線は18測線で総延長は約24kmである。 また,2014年に実施した音波探査はウォーターガン・マルチチャンネル方 式及びブーマー・マルチチャンネル方式による調査であり,探査した測線 は12測線で総延長は約15kmである。

探査技術上の理由により音波探査が困難な沿岸部については,海底面調 査及び潜水調査を実施し,海底の地形,地質・地質構造を確認した。

これらの調査結果に基づいて,敷地を中心とする半径約5kmの範囲について,原縮尺2万5千分の1の詳細な地質図,地質断面図,変位地形・リニアメント分布図等を作成した。

3.3.2 調査結果

敷地近傍における地形,地質・地質構造は,文献調査,地形調査,地表 地質踏査,地球物理学的調査等の結果によると以下のとおりである。 3.3.2.1 敷地近傍の地形

敷地近傍の地形図を第3.3-1図に示す。

敷地近傍の陸域地形は敷地の南側は東西に延びる半島の脊梁山地から 成り, さらに南側には東西に低地が広がる。

敷地近傍の海底地形は北西方向に 10/1,000~50/1,000 程度の勾配を 示す大陸棚から成り,沿岸部では屈曲に富んだ海岸線で陸域と接している。

3.3.2.2 敷地近傍の地質

敷地近傍の地質図及び地質断面図を第3.3-2図に示す。

敷地近傍の地質層序は敷地周辺の地質層序と同じである(第3.2-1表)。 敷地近傍の陸域には下位より,新第三系中新統の古浦層,成相寺層,牛 切層,古江層,松江層及び和久羅山安山岩が分布している。中海では下位 よりVIN層(古浦層,波多層及び成相寺層),VN層(牛切層),IVN層(古 江層)及びⅢN層(松江層)が分布している。

第四系は,更新世の火山岩類及び段丘堆積物,並びに完新世の砂丘堆積 物及び沖積低地堆積物等から成る。また,中海では下位から II N層(中期 ~後期更新世の段丘堆積物),I N層(完新世の砂丘堆積物及び沖積低地堆 積物)が分布し,火山岩・貫入岩として VII N層(大根島玄武岩)が分布し ている。

敷地近傍の海域の地層は、敷地前面海域と同様、音波探査で認められる 反射面の連続性、下位層との不整合関係、堆積構造及び反射パターンの特 徴に着目し、上位からA層、B層、C層、D層の堆積物又は堆積岩及びV 層の火山岩・貫入岩に区分され、B層はB1E層及びB2E層に、D層はD1 層及びD2層にそれぞれ細区分される。また古浦沖の海域の地質は上位か らI κ層、Πκ層、Ⅲκ層及びD2層に区分され、I κ層及びⅡκ層は敷地前 面海域のA層に対比される。これらのうち敷地近傍の海域には、D2層、 Ⅲк層及びA層が分布している。

- 3.3.2.3 敷地近傍の地質構造
 - (1) 概要

敷地近傍の地質構造として、新第三系の古浦層及び成相寺層に東西方 向の背斜構造が認められる。多井(1973)、山内・吉谷(1992)、鹿野・ 吉田(1985)等によると、島根半島の褶曲構造は松江層まで及んでいる が、約5Ma~約6Maに噴出した和久羅山安山岩が松江層を不整合に覆う ことから、後期中新世末期には褶曲構造の形成がほぼ終了したとされて いる。

(2) 断層及び変位地形・リニアメント

敷地近傍の変位地形・リニアメント分布図を第3.3-3図に示す。 敷地近傍陸域の地形調査によると、宍道断層、古殿[北][南]断層及び 山中付近断層とほぼ同じ位置に変位地形・リニアメントが判読されるが、 それ以外には判読されない。

また,敷地近傍海域の音波探査によると,敷地近傍の海域に断層及び 撓曲は認められない。

- a. 宍道断層
- (a) 文献調查結果

橋本ほか(1980)は、鹿島町古浦から鹿島町尾坂付近までの延長 約3.5km間に東西方向の準確実活断層を記載し、古浦断層と呼び、 尾根線に北側落ちの高度不連続地形が認められるとしている。鹿島 町南講武から枕木町付近までの延長 8.5 km間及び鹿島町南御(地 名)から鹿島町七田までの延長 1.7 km間に2本の準確実活断層を記 載し、宍道断層と呼び、谷や尾根において最高約30mの右横ずれ変 位地形を呈しているとしている。また、美保関町宇井から美保関町 法田付近までの延長 1.8km間に北東-南西方向の準確実活断層を記 載し、法田断層と呼び、中央部の嶺線に約25m~30mの高度不連続地 形が認められるとしている。さらに、枕木町北方から美保関町花浦南 方までの延長 2.7km間、美保関町下字部尾から美保関町森山までの 延長 4.0km 間及び美保関町宇井から美保関町福浦までの延長 4.7km 間にそれぞれ推定活断層を記載し,枕木山東断層,森山断層及び高 尾山断層と呼んでいる。

活断層研究会編(1980)は、橋本ほか(1980)とほぼ同じ位置に 古浦東方断層(長さ3.4km),宍道断層(長さ8.5km),宍道断層[南] (長さ1.7km)及び法田断層(長さ1.8km)を記載し,いずれも確 実度II,活動度Cとしている。また、橋本ほか(1980)とほぼ同じ 位置に森山断層(長さ4.0km)及び高尾山断層(長さ4.7km)を記載 し、確実度III,活動度Cとしている。このほか、橋本ほか(1980) の枕木山東断層に相当する位置に延長約3.1kmの確実度IIIの断層を 記載している。

鹿野・吉田(1985)は、鹿島町古浦から鹿島町客戸付近までを古 浦東方リニアメントと呼び、リニアメントに沿って分離丘陵や山脚 部の急傾斜が点在するが,確実に断層変位地形としてみなせるもの はないとしている。また、活断層研究会編(1980)の宍道断層及び 宗道断層[南]をそれぞれ講武-納蔵リニアメント及び七田断層と新 称した。このうち,講武-納蔵リニアメントは,断層変位地形が認 められず、坂本町坂本上から東へは続かないとしている。一方、七 田断層については、鹿島町南側(地名)から鹿島町七田の約2km間 に支谷の系統的な右屈曲が認められることから、活断層であると判 断し、変位地形の明瞭さから、日本国内の他地域においてB級とさ れているものに匹敵するとしている。さらに、橋本ほか(1980)の 枕木山東断層とほぼ同じ位置に枕木山東リニアメントを記載し、リ ニアメントを境にして北西側の山地高度が南東側に比べやや高いと しているが、断層変位地形が認められないことから、組織地形によ るものと判断されるとしている。また、橋本ほか(1980)及び活断 層研究会編(1980)の森山断層の東半部約2km間を森山リニアメン トと呼び,リニアメントを境にして南側の山地が低いとしているが,

断層変位地形が認められないことから,組織地形によるものと判断 されるとしている。橋本ほか(1980)及び活断層研究会編(1980) の高尾山断層とほぼ同じ位置に高尾山リニアメントを記載し,地質 断層とリニアメントが一致するものの,確実に断層変位地形が認め られないこと,断層両側の地層の浸食に対するコントラストが大き いこと等から,組織地形によるものと判断されるとしている。橋本 ほか(1980)及び活断層研究会編(1980)の法田断層とほぼ同じ位 置に法田リニアメントを記載し,地質断層とリニアメントが一致す るものの,断層変位地形は伴っていないとしている。

佃ほか(1985)は、鹿島町南講武から東方約5km間に右横ずれで 活動度がB級以下の活断層を記載し、主として第四紀後期に活動し たものとしている。

鹿野・中野(1986)は、古浦東方リニアメントについて、分離丘 陵が認められることや、佐陀川の沖積地とその南の山地との間が直 線的な境界として認められることは、このリニアメントが活断層で ある可能性を示唆するとしている。

活断層研究会編(1991)は、活断層研究会編(1980)の宍道断層 及び宍道断層[南]の記載内容を変更し、宍道断層[北]として、鹿島 町南講武から鹿島町七田までの延長2km間に確実度II,活動度Cを 示し、宍道断層[南]として、鹿島町南側(地名)から東持笛町納蘆 東までの延長約5km間に確実度I,活動度C,これより枕木町まで の延長約5km間に確実度II,活動度Cを図示している(ただし、表 中では鹿島町南側(地名)から枕木町までの延長10km間を確実度I, 活動度Cとして記載している。)。また、活断層研究会編(1980)の 法田断層について、確実度IIから確実度IIIへ記載内容を変更してい る。そのほか、活断層研究会編(1980)の古浦東方断層、森山断層, 高尾山断層及び橋本ほか(1980)の枕木山東断層に相当する確実度 IIIの断層については、同一の記載をしている。 鹿野ほか(1994)は、宍道断層あるいはその周辺の断層で確実に 活断層として認定し得るのは、長さ約2kmの七田断層のみであると している。

中田・後藤(1998)⁽⁷²⁾は,活断層研究会編(1991)の宍道断層[南] と古浦東方断層を一連の活断層として認定し,橋本ほか(1980)の 枕木山東断層に相当する区間を含めた延長約 15km 間を新たに鹿島 断層と呼び,断層末端の屈曲形態から一括して活動するセグメント であるとする説を提案している。

中田・今泉編(2002)⁽⁷³⁾は、中田・後藤(1998)の鹿島断層をや や東方に延長し、延長約15kmの活断層を記載し、鹿島断層帯と呼ん でいる。

佐藤・中田(2002)⁽⁷⁴⁾は、中田・今泉編(2002)の鹿島断層帯を 更に東方に延長させ、手角町を通り、美保関町下宇部尾までの延長 約18kmの活断層を鹿島断層として記載し、断層変位地形の分布、断 層線の分岐形態、縦ずれ分布パターン等から、一括して活動すると 推測されるとしている。

中田ほか(2002)⁽⁷⁵⁾は,佐藤・中田(2002)とほぼ同じ位置に活 断層を記載し,鹿島断層と呼んでいる。

原子力安全基盤調査研究(2005)⁽⁷⁶⁾は,佐藤・中田(2002)及び 中田ほか(2002)とほぼ同じ位置に活断層を記載し,鹿島町佐陀宮内 なかだ 仲田のトレンチ調査及びジオスライサー調査の結果,最新活動時期 は 5,800 年前~3,300 年前の間,その一つ前は 12,000 年前~5,800 年前の間と推定されると記載している。

渡辺ほか(2006)⁽⁷⁷⁾は、上本庄町のトレンチ調査の結果、走向N 60°E、傾斜87°Nの断層面を確認し、奈良時代の腐植土層まで変 位させており、放射性炭素同位体法の結果によると最新活動時期は 奈良時代以降、17世紀以前と考えられ、880年出雲の地震に対応す る可能性が高く、始長Tn火山灰(約2.8万年前~約3.0万年前; 町田・新井(2011))の降下堆積以降,5回程度の活動を繰り返して いる可能性があると記載している。

徳岡ほか(2007)⁽⁷⁸⁾は,渡辺ほか(2006)のトレンチ調査地点に おいて考古学的調査を実施し,鹿島断層の最新活動は850年以後, 平安時代末期から鎌倉時代初期以前に限定され,880年出雲の地震 に対応すると判断されると記載している。

中田ほか(2008)は、中田ほか(2002)の鹿島断層を一部改訂し、 西方及び東方に延長させている。

地震調査研究推進本部(2016)⁽⁷⁹⁾は,活断層研究会編(1991), 原子力安全基盤調査研究(2005),中田ほか(2008),中国電力株式 会社島根原子力発電所の新規制基準適合性に係る審査資料等の既往 調査研究成果に基づき,鹿島町古浦から美保関町下宇部尾までの延 長約21kmの活断層を記載し,宍道(鹿島)断層と呼んでいる。また, 下宇部尾の東方には,活断層の可能性のある構造を記載し,重力異 常による構造不連続,島根半島東部の地形的特徴等により,東方延 長の陸海境界付近には,地質構造が連続する可能性があるとしてい る。

今泉ほか編(2018)は、中田・今泉編(2002)の鹿島断層帯を改 訂し、鹿島町古浦から美保関町美保関までの延長約 30km の活断層を 記載し、宍道(鹿島)断層帯と呼んでいる。

(b) 地形調查結果

宍道断層周辺の変位地形・リニアメント分布図を第3.3-4図に示す。

鹿島町古浦から鹿島町佐花本郷客戸に至る間は,東北東-西南西 の走向をもつ山麓の急斜面から成り,主として山地と平野との境界 付近を連続する北側低下の崖として認められ,また,谷や尾根の系 統的でかつ明瞭な右屈曲が認められる。

鹿島町古浦から男島に至る海岸に沿った陸域には、変位地形・リ

ニアメントは認められなくなるが,その西方の男島付近には鞍部地 形が認められ,一部に尾根・谷の左屈曲が認められる。更に西方の女 島付近では,変位地形・リニアメントは認められない。

鹿島町佐陀本郷根蓮木では山麓線に連続する変位地形・リニアメ ントに平行して山地内に谷や尾根の系統的な右屈曲が認められる。

鹿島町^{みょうぶん} お分では沖積地に入り伏在となるが,東方の南講武で認め られる変位地形・リニアメントに連続すると考えられる。

鹿島町南側(地名)から鹿島町七田を経て鹿島町橋立までは谷や 尾根の系統的かつ明瞭な右屈曲が認められる。

鹿島町橋立から坂本町を経て福原町までは河谷や尾根の屈曲が認 められ、坂本町坂本上からは断続・雁行する。

福原町から上本庄町の間は,変位地形・リニアメントの連続性は 認められなくなるが,上本庄町から枕木町の間では,走向が北東-南西方向へ変化するとともに,段丘面に変位や変形の可能性のある 地形が一部で認められる。

枕木町周辺では谷や尾根の右屈曲が認められ,枕木町周辺から東 方については,変位地形・リニアメントが北東延長と東方延長の2 方向に認められる。

枕木町の北東延長については, 養海川北限付近では河谷や尾根の 系統的な右屈曲が認められ, 山地高度は北西側が比較的高い。 「思」 付近では谷や尾根の屈曲は認められず, 山地内の鞍部, 直線谷及び 開析された南東側低下の崖の連続が認められる。

枕木町の東方延長については,長海川の河谷の北縁では山麓線が 東西に連続し,沖積面に低崖が認められる。さらに,長海町から手 角町の間では,北側に鞍部列や山麓線が連なり,長海川の南縁には 一部の河谷と尾根の屈曲が認められる。

美保関町万原から下宇部尾の間では,河谷や尾根に明瞭な右屈曲 が認められ,道路に沿って直線的な凹地が認められ,低地部の東で は直線谷が認められる。また,北東方向にも谷や尾根の屈曲及び鞍 部が認められる。

美保関町森山では鞍部が断続的に認められる。

美保関町宇井から福浦の間では, 鞍部列を境に, 丘陵の南側が低 い高度不連続が認められる。また, 鞍部列の南側にも, 谷や尾根の 右屈曲, 鞍部及び直線谷が断続する。

高尾山の西側から美保関町法田の間では,直線谷と鞍部が認めら れ,山地高度は北西側がやや高い。

美保関町福浦から美保関の間では,島根半島の南北の水系を境す る分水界が南側へ偏り,分水界には風隙及び截頭谷が発達するもの の,系統性は認められない。

宍道断層周辺の右横ずれ変位地形に着目した谷の屈曲量及び屈曲 率を第3.3-5図に示す。

宍道断層周辺の谷の屈曲量及び屈曲率は,鹿島町南側(地名)から鹿島町七田を経て鹿島町橋立までの区間(以下「南講武付近」という。)において大きくなる傾向が認められる。また,南講武付近から西方の鹿島町古浦に向かって谷の屈曲量及び屈曲率は次第に小さくなる傾向が認められる。更に西方の男島付近では,右屈曲の変位地形は認められない。

南講武付近から東方の鹿島町橋立から上本庄町までは,一部にお いて南講武付近と同程度の谷の屈曲量が認められる。また,上本庄 町から長海町以東の谷の屈曲量及び屈曲率は,南講武付近と比較し て,大局的には次第に小さくなる傾向が認められる。更に東方の美 保関町下宇部尾から福浦では,明瞭な右屈曲の変位地形は認められ ず,谷の屈曲量及び屈曲率からも系統性は認められない。

(c) 地質調査結果

宍道断層周辺の地質図を第 3.3-6 図に,地質断面図を 第 3.3-7 図に示す。 ア. 南講武周辺

地表地質踏査結果によると, 鹿島町南講武周辺では変位地形・ リニアメントを挟んで北側には成相寺層の凝灰角礫岩, 泥岩等が 分布し, 南側には古浦層の安山岩質火砕岩, 砂岩, 礫岩, 貫入岩 である安山岩等が分布する。また, 変位地形・リニアメントを境 に, 地質構造が不連続となり, 鹿島町南講武〜福原町区間の変位 地形・リニアメントは, 鹿野・吉田 (1985) 等の文献でいわれる 宍道断層とほぼ一致している。

また,鹿島町七田の変位地形・リニアメント直下で,かつ地形 の屈曲が最も明瞭な鹿島町七田南方の沢(Loc. S-1)にお いて,断層を確認した(第3.3-8 図及び第3.3-9 図)。ここでは, 安山岩質火砕岩,砂岩及び泥岩から成る古浦層と,泥岩及び流紋 岩質火砕岩から成る成相寺層が東西方向の断層で接しており,こ れらの岩石が破砕を受け,軟質化している。

次に、変位地形・リニアメント延長上の鹿島町南講武の低地に おいて、反射法地震探査及びボーリング調査を行い、断層位置を 特定し、その位置においてトレンチ調査を実施した (第3.3-10図及び第3.3-11図)。

ボーリング調査結果等によると、標高±0m~-8m付近以深に 新第三系が存在し、3本のボーリングにより断層を確認した。ま た、標高6m~8m付近に大山松江軽石層、その直上に三瓶木次軽 石層が確認され、断層を挟んでこれらの軽石層の分布標高に差が 生じている。断層北側には、泥岩、流紋岩質凝灰角礫岩等から成 る成相寺層が、南側には安山岩質火砕岩及び泥岩から成る古浦層 が分布しており、断層を挟んだ新第三系の上面の標高は、南側が 北側に比べ約6m 高くなっている。さらに、この断層位置が変位 地形・リニアメント延長線上にあること及び反射法地震探査の結 果からもほぼ同じ位置に断層の存在が推定されることから、この 断層が宍道断層に対応するものと判断した。

トレンチ調査結果によると、明瞭な断層がトレンチ中央部付近 に認められ、大山松江軽石層、三瓶木次軽石層及び姶良Tn火山 灰を含む層が断層により変位を受けている(第3.3-12図)。また、 トレンチ最下部において、新第三系に接する幅10cm程度の断層粘 土が認められた。姶良Tn火山灰を含む地層、その上位の各地層 より採取した木片等の放射性炭素同位体法の結果によると、断層 は約1万1千年前の腐植土層を変位させているが、その上位の約 3千年前の砂礫層を変位させていない。

ボーリング調査により採取した断層試料を用いて研磨片観察 及び薄片観察を実施した結果,断層角礫及び断層粘土の積層構造 が認められ,最新面と判断される細粒化が進行した直線的でシャ ープな面が確認される。また,この最新面付近において複合面構 造が確認され,右横ずれセンスを示す。これは,鹿島町南講武周 辺で認められる右屈曲の変位地形・リニアメントとも調和的であ る。

イ. 南講武~尾坂間の平野部

変位地形・リニアメント延長上の鹿島町南講武〜尾坂間の平野 部において,ボーリング調査等を実施した(第 3.3-13 図及び 第 3.3-14 図)。

ボーリング調査結果等によると,標高-4m~-8m付近以深に 新第三系が存在し,地質構造の不連続が推定される箇所付近の斜 めボーリングにより断層を確認した。この断層の北側には成相寺 層の流紋岩質凝灰角礫岩~流紋岩質凝灰岩及び貫入岩であるドレ ライトが,また,南側には成相寺層の泥岩が分布しており,断層 を挟んだ新第三系の上面の標高は,南側が北側に比べ約5m 高く なっている。この断層を境に,第四系各層の分布深度に高低差が 認められ,姶良Tn火山灰を含む更新統及び海洋酸素同位体ステ ージ2最上位の堆積物(腐植土層)が変位を受けている。断層の 位置,変位のセンス,変位を受けている地層の年代等から,この 断層は鹿島町南講武で確認された断層の西方延長部に相当すると 判断した。

ウ. 佐陀本郷周辺

地表地質踏査結果によると、鹿島町佐陀本郷周辺には、新第三 系中新統の古浦層及び成相寺層とこれらに貫入したドレライト及 び安山岩が分布する。変位地形・リニアメントの直下に位置する 鹿島町佐陀本郷養麺池西方の道路法面には、成相寺層の泥岩と流 紋岩を境する断層露頭(Loc.K-1)が観察される (第3.3-15図)。また、変位地形・リニアメントを境に古浦層及 び成相寺層の分布・構造に大きな違いがみられることから、変位 地形・リニアメントに一致する断層が存在するものと判断される。

次に、変位地形・リニアメント延長上の鹿島町佐陀本郷において、電気探査、ボーリング調査等を行い、断層位置を特定し、その位置においてトレンチ調査を実施した(第 3.3-16 図、 第 3.3-17 図及び第 3.3-18 図)。

電気探査結果によると,第3.3-19図に示すように,新第三系 と推定されるゾーン中に,低比抵抗値を示す部分が認められ,こ の位置に断層の存在が推定される。

ボーリング調査結果によると、 I 断面(第3.3-17図)におい て、標高-9m~-10m付近以深に新第三系が存在し、ボーリング において礫岩と安山岩質火砕岩を境する断層を確認した。この断 層を境に北と南には異なる地質が分布し、断層位置が変位地形・ リニアメント上にあること及び電気探査結果からもほぼ同じ位置 に断層の存在が推定できることから、この断層が宍道断層に対応 するものと判断した。また、新第三系を覆う地層のほとんどが砂 礫質の堆積物から成っているが、このうち、標高-1m~-2m付 近にみられる腐植質粘土層中に大山松江軽石層が含まれることを 確認した。

トレンチ調査結果によると、標高-10m 付近において、北側の 礫岩と南側の安山岩質火砕岩との間に幅 30cm 程度の連続する断 層粘土が認められた(第3.3-20図)。この断層の走向は、変位地 形・リニアメントの方向とほぼ一致している。また、断層を覆う 堆積物の大半は砂礫層で、標高-1m 付近にみられる大山松江軽 石層を含む層は、ほぼ水平に堆積しており、その下位の標高-3m 付近において、粘土の薄層及び礫混り砂層がほぼ水平に連続して 堆積している。

さらに、トレンチ調査範囲の北側でボーリング調査等を実施し た。ボーリング調査結果等によると、 I 断面(第3.3-17図)で は、新第三系として古浦層の礫岩と貫入岩である安山岩が分布し、 この間で新第三系上面に約5mの標高差が認められるが、これを 覆う海洋酸素同位体ステージ5の堆積物(硬質な砂礫(未風化部) 及び灰白色の砂質シルト)を含む第四系は、ほぼ水平に分布して おり、後期更新世以降の断層活動を示唆する地層の変位や変形は 認められない。 II 断面(第3.3-18図)では、新第三系として古 浦層の礫岩が一様に分布し、その上面は標高-10m付近で水平に 連続し、また、これを覆う海洋酸素同位体ステージ5の堆積物(硬 質な砂礫)を含む第四系は、ほぼ水平に分布しており、後期更新 世以降の断層活動を示唆する地層の変位や変形は認められない。

エ. 古浦周辺

地表地質踏査結果によると、鹿島町古浦から佐陀本郷麺谷周辺 には、新第三系中新統の古浦層及び成相寺層が分布する。また、 古浦から男島付近には、新第三系中新統の古浦層が緩やかな構造 で広がり、これらに安山岩及びデイサイトが貫入している (第3.3-21図)。 変位地形・リニアメント直下の鹿島町佐陀本郷廻谷において, 反射法地震探査及びボーリング調査を行った。

反射法地震探査結果によると,第3.3-22図に示すように,変 位地形・リニアメント位置及びそれより北側において南上がりの 逆断層が推定される。

ボーリング調査結果等によると、I 断面(第3.3-23 図)では、 急傾斜した古浦層が分布し、古浦層上面に高度差が認められ、北 側の砂礫2層と南側の泥岩とを境する断層が認められる。さらに、 反射法地震探査の結果からも、ほぼ同じ位置に断層の存在が推定 される。この断層を境に、大山松江軽石層に高度差が推定され、 シルト~砂層(約20,000年前)及び青灰色砂礫層(約25,000年 前)にも断層を挟んで高度差が認められるため、後期更新世以降 の断層活動が認められると判断した。また、佐陀本郷廻谷では、 谷の屈曲量及び断層による鉛直変位量(ボーリングで確認した地 層の高度差)は、東側(鹿島町佐陀宮内仲田、鹿島町南講武)に 比べて小さいことから、断層活動性は低く、震源として考慮する 活断層の末端に近いと判断される。

Ⅱ 断面(第3.3-24 図)では,南側の凝灰質シルト岩と北側の 砂礫1層とを境する断層が認められる。さらに,反射法地震探査 の結果からもほぼ同じ位置に断層の存在が推定される。しかしな がら,この断層を覆う砂礫2層及び大山松江軽石層を含む砂礫3 層は,ほぼ水平に堆積していることと,反射法地震探査の結果, 断層を覆う地層の反射面は水平に連続することから,少なくとも 大山松江軽石層を含む砂礫3層より上位に変位や変形は認められ ない。

また, 佐陀本郷廻谷から男島に至る海岸に沿った陸域(以下 「古浦西方」という。)には, 海岸部では古浦層の礫岩, 泥岩及び 砂岩が連続分布しており, 断層は認められない(第3.3-21図)。 なお、中田ほか(2008)に示される断層位置付近において、ほぼ 全面に分布する古浦層に断層は認められない。

その西方の男島付近には鞍部地形が認められ,一部に尾根・谷 の左屈曲が認められる。地表地質踏査の結果,変位地形・リニア メント及び中田ほか(2008)に示された推定活断層の通過位置付 近には,古浦層の砂岩,泥岩及び火山円礫岩が全体的に緩やかに 傾斜して分布し,また,推定活断層の西端付近の海岸部には,古 浦層の火山円礫岩が連続しており,断層は認められない。さらに, 明瞭な鞍部地形の直下において,ピット調査(Loc. O-1) を行った結果,古浦層の礫岩・凝灰岩とこれに貫入するデイサイ トが認められるが,断層は認められない(第3.3-25 図)。

したがって,男島付近の変位地形・リニアメントは古浦層と, 貫入岩との岩相差を反映した組織地形であると評価する。

オ. 古浦沖

鹿島町古浦沖において,第3.3-26図に示す位置で音波探査を 実施した。

古浦沖の海底に分布する地層は,第 3.2-6 表に示すように, 上位からΙκ層, Πκ層, Πκ層及びD2層に区分され,周辺陸域 の地質分布状況並びに他機関のボーリング調査結果から, Ικ層 及びΠκ層が完新統に, Πκ層が更新統に,D2層が下部~中部中 新統にそれぞれ対比される。

音波探査結果によると、Ⅲ κ層の内部反射面及びD 2 層上面に断 層活動を示唆する反射面は確認されず、また、Ι κ層及びⅡ κ層は ほぼ水平に分布しており、これらの地層に断層活動を示唆する変 位や変形は認められないことから古浦沖では断層・褶曲は認めら れないことを確認した(第 3.3-27 図及び第 3.3-28 図)。

力. 古浦沖以西(男島付近~女島付近)

鹿島町古浦沖から女島の西方(以下「女島西方」という。)に

至る海岸に沿った海域において,海底面調査及び音波探査を実施 した(第3.3-29図)。

海底面調査結果によると、男島付近及び女島付近において東西 方向に分布する直線状の海底地形の高まりが認められた。男島付 近の海底地形は、高まり部と基部との高度差が約2m,延長は約 45m と小規模であり、連続性に乏しい。この海底地形の東方延長 部における潜水調査の結果、断層は認められず、高まり部は火山 円礫岩、基部は泥岩から成る地質境界に位置し、男島付近の陸域 海岸部においても同構造の組織地形が認められる。また、女島付 近の海底地形は、高まり部と基部との高度差が約1m、延長は約 140m と小規模である。女島付近の陸域海岸部においても同構造の 組織地形が認められ、高まり部は火山角礫岩、基部は泥岩から成 る地質境界に位置し、はぎ取り調査の結果、火山角礫岩と泥岩と は密着し、断層は認められない。

音波探査結果によると、直線状の海底地形の延長部を含む海岸 に沿った海域において、D2層上面に断層活動を示唆する反射面 は確認されない。

したがって,男島付近及び女島付近の直線状の海底地形は,陸 域海岸部において認められる組織地形と同様に,岩相差を反映し た組織地形であると評価する。

キ. 女島周辺

女島付近には,新第三系中新統の古浦層及び成相寺層が分布す る。鹿野・中野(1986)は,女島付近の層理面が急傾斜を示す古 浦層と緩傾斜を示す成相寺層との地質境界に,鹿島町古浦沖から 海岸に沿って連続する伏在断層を記載している。また,鹿野・中 野(1986)は,女島付近において,この伏在断層から分岐する断 層(以下「分岐断層」という。)を記載し,女島西方の陸域へ連続 するとしている(第3.3-30図)。 地形調査の結果, 女島付近には, 変位地形・リニアメントは認 められない。

地表地質踏査の結果によると、女島付近の海岸部において、層 理面が急傾斜(北傾斜)を示す古浦層の礫岩と緩傾斜(北傾斜) を示す成相寺層の火山角礫岩が分布することから、鹿野・中野 (1986)に示される伏在断層通過位置付近には、南傾斜の逆断層 の存在が示唆される。

鹿野・中野(1986)に示される伏在断層通過位置付近において, ボーリング調査を実施し,断層の存否を確認した(第3.3-31図及 び第3.3-32図)。

ボーリング調査の結果によると、鹿野・中野(1986)に示され る伏在断層通過位置付近において、古浦層中に複数の細粒化した 破砕部が認められるものの、これらの連続性は確認されない。ま た、古浦層は地表から約20mまでの地層は急傾斜を示し、それ以 深の地層は緩傾斜を示しており断層は認められない。古浦層中の 地層は連続して分布すること及び古浦層と成相寺層が整合関係に あると考えられることから、地層に顕著な不連続は想定されず、 また、古浦層と成相寺層との境界に鹿野・中野(1986)に示され る伏在断層に相当する断層は認められない。さらに、成相寺層の 泥岩中に貫入岩の分布が認められるものの、貫入岩中や貫入岩と 成相寺層との貫入境界にも、断層活動を示唆するせん断面及び破 砕は認められない。

鹿野・中野(1986)に示される伏在断層通過位置付近における 地層の急傾斜部(Loc. MS-1)における地表地質踏査の結 果,古浦層の礫岩及び火山円礫岩,並びに泥岩,凝灰岩等の薄層 が分布し,凝灰岩の一部は風化作用により明灰色の粘土混りシル ト状を呈するが上方及び下方へは連続しないこと,層理面沿いは 固結,密着していることから,少なくとも固結後の断層活動を示 唆する地層の変位や変形は認められない(第3.3-33図)。

また,鹿野・中野(1986)に示される分岐断層について,地表 地質踏査を実施した。地表地質踏査結果によると,女島西方の分 岐断層通過位置付近の海岸部には,第3.3-30 図に示すように緩 やかな南傾斜を示す古浦層の砂岩が分布し,断層は認められない。 また,分岐断層の西方延長部(Loc. MS-2)における地表 地質踏査の結果,古浦層の礫岩,砂岩,泥岩及び凝灰岩が南傾斜 の同斜構造としてほぼ連続的に分布し,断層活動を示唆する構造 は認められない (第3.3-34 図)。

ク. 福原町周辺

島根大学生物資源科学部付属生物資源教育研究センター農業 生産科学部門本庄総合農場(島根大学農場)北方地点における詳 細な地表地質踏査結果によると,変位地形・リニアメントの位置 付近(Loc.S-2)において,成相寺層の流紋岩が熱水変質 作用を受け軟質化した部分が認められたが,断層露頭は認められ ない(第3.3-35図及び第3.3-36図)。

ケ. 上本庄町周辺

地形調査の結果,第 3.3-4 図に示すように,北東-南西方向 の変位地形・リニアメントが認められる。渡辺ほか(2006)によ ると、上本庄町のトレンチ調査において、完新統まで変位させる 断層を確認し、その断層面は走向N60°E、傾斜87°Nとしてお り、この断層の走向は北東-南西方向の変位地形・リニアメント に対応している。

地表地質踏査の結果からも,段丘面に変位や変形の可能性のあ る地形が一部で認められることから断層が推定される。

コ. 枕木町~美保関町北浦

枕木町から美保関町北浦にかけては,背斜構造を有する南東側 の古浦層及び成相寺層と,北西傾斜の同斜構造を示す成相寺層と の間に断層が推定される(第3.3-37図)。

断層が推定される位置及び変位地形・リニアメント位置付近 (Loc. M-1)での詳細な地表地質踏査の結果によると,成 相寺層とそれに貫入したドレライトが分布し,成相寺層の泥岩中 に変位地形・リニアメントと同方向の断層が認められるが,断層 内物質は固結しており,これを切るような新しいせん断面は認め られないことから,断層は少なくとも後期更新世以降の活動はな いものと考えられる(第3.3-38 図及び第3.3-39 図)。また,変 位地形・リニアメント位置付近でのピット調査(Loc. M-2) においても,北西側に貫入岩のデイサイトが,南東側に泥岩が分 布しており,断層は認められない(第3.3-40 図)。

したがって,変位地形・リニアメントは成相寺層及び古浦層と, 貫入岩との岩相差を反映した組織地形であると評価する。

サ. 長海町周辺

地表地質踏査の結果,成相寺層の流紋岩質火砕岩,安山岩質火 砕岩及び泥岩が分布しており,南側の山塊では,南に緩傾斜の同 斜構造を示す(第3.3-41図)。また,佐藤・中田(2002),原子 力安全基盤調査研究(2005),中田ほか(2008)及び今泉ほか編 (2018)で示される位置付近(Loc. N-1)での詳細な地表 地質踏査の結果によると,ほぼ全面に分布する成相寺層に断層は 認められない(第3.3-42図)。

ボーリング調査によると、 I 断面(第3.3-43 図)では、安山 岩質火砕岩及び流紋岩質火砕岩とこれらに貫入したドレライト及 び玄武岩が分布し、これらを被覆して中期更新世から完新世の地 層が分布するが、基盤に高度不連続は認められず、第四系に断層 活動を示唆する変位や変形は認められない。

シ. 中海北部

文献により断層が通過するとされている中海北部の手角町の

沖合いにおいて、第3.3-44 図に示す位置で実施した音波探査及 びボーリング調査結果によると、VIN層(古浦層,波多層,成相 寺層,川合層及び久利層)に断層活動を示唆する顕著な反射記録 は認められない。また、IN層(完新統)並びに、大山松江軽石 層及び姶良Tn火山灰を含む IIN層(中部~上部更新統)は大局 的にはほぼ水平に分布しており、これらの地層に断層活動を示唆 する変位や変形は認められない(第3.3-45 図及び第3.3-46 図)。 ス.下宇部尾周辺

地表地質踏査結果によると、変位地形・リニアメントが認められる国道 431 号沿いには泥岩(古浦層)が両側に分布しており、 北緩傾斜を示す(第3.3-47図)。

下宇部尾の低地において実施したボーリング調査結果による と、I断面(第3.3-48図)では、北側に泥岩・礫岩を主とする 堆積岩類が、南側に安山岩質火砕岩が分布しており、両者は断層 によって境される。断層を挟んで基盤の上面に高低差が認められ、 基盤と海洋酸素同位体ステージ7以前の地層が高角度で接してい ることから、断層が海洋酸素同位体ステージ7以前の地層にまで 及んでいる可能性があるが、それらを覆う大山松江軽石層及び海 洋酸素同位体ステージ5 c 層準と推定される堆積物に変位や変形 は認められない。また、II断面(第3.3-49図)では、安山岩質 火砕岩が広く分布し、小規模な変質帯は認められるものの、断層 は認められない。

したがって、後期更新世以降の断層活動はないものと考えられ るが、活動性の確認のため、変位地形・リニアメント延長上及び 文献に示された4地点において、トレンチ調査を実施した (第3.3-47図)。

下宇部尾西トレンチ(北)は、変位地形・リニアメント及び中田ほか(2008)に示される活断層の位置に対応しており、基盤(デ

イサイト質火砕岩)には変位地形・リニアメント及び文献に対応 する断層は認められない(第3.3-50図)。

下宇部尾西トレンチ(南)は,変位地形・リニアメントの西側 延長部に位置しており,基盤(デイサイト)に局所的な変形が認 められるが,断層活動を示唆する構造は認められない (第3.3-51 図及び第3.3-52 図)。

下宇部尾北トレンチは、中田ほか(2008)に示される活断層(や や位置不明確)及び今泉ほか編(2018)に示される活断層の位置 に対応しており、文献に示される範囲において基盤に断層が認め られないが、トレンチ北西端の基盤(デイサイト)に断層が認め られた(第3.3-53図)。火山灰分析の結果によると断層を覆う地 層のうちA層及びB層上部層に含まれる普通角閃石及びカミング トン閃石を含む火山灰は,層序的関係,鉱物組成及び屈折率の町 田・新井(2011) との対比から、A層に含まれる火山灰は 大山h1(約23万年前;町田・新井(2011)),B層上部層に含ま れる火山灰は大山松江軽石層に同定され、B層中・下部層にこれ らの鉱物はほとんど含まれないことから、A層及びB層上部層の 堆積時期には時間間隙があるものと推定される (第3.3-54図)。花粉化石分析の結果を含め、A層は海洋酸素同 位体ステージ6以前の地層, B層は海洋酸素同位体ステージ5 e の地層と判断され、断層は、A層に変位を与えB層に変位や変形 が認められないことから、震源として考慮する活断層ではないと 判断される。ただし、A層に含まれる火山灰は再堆積したもので あるとも考えられることから、後期更新世以降の活動を完全には 否定できない。

下宇部尾トレンチは、変位地形・リニアメントの西側延長部及 び活断層研究会編(1991)に示される活断層の疑いのあるリニア メントの位置に対応しており、基盤(デイサイト質火砕岩)に断

層は認められない(第3.3-55図)。

また、東方の下宇部尾東において、変位地形・リニアメント、 中田ほか(2008)に示される活断層(やや位置不明確)及び今泉 ほか編(2018)に示される活断層の位置におけるボーリング調査 の結果、走向が概ね南北方向の断層は認められるが、変位地形・ リニアメント、中田ほか(2008)の活断層(やや位置不明確)及 び今泉ほか編(2018)の活断層に対応する断層は認められない (第3.3-56 図)。同様に、下宇部尾東の北東側の谷筋におけるボ ーリング調査の結果、走向が北北西-南南東方向の断層は認めら れるが、谷筋に連続する断層は認められず、走向が概ね東西方向 の変位地形・リニアメントの延長位置、中田ほか(2008)の活断 層(やや位置不明確)及び今泉ほか編(2018)の活断層に対応す る断層も認められない(第3.3-57 図)。

さらに、下宇部尾東において、変位地形・リニアメントの延長 位置における詳細なはぎとり踏査(Loc. S-3)の結果、幅 約70mにわたって連続分布する砂岩、安山岩質火砕岩及び安山岩 に断層は認められない(第3.3-58図)。

セ. 森山周辺

地表地質踏査の結果,森山の北側には古浦層の安山岩質火砕岩, 砂岩,礫岩及びデイサイト~流紋岩質火砕岩が分布し,南側には 成相寺層の流紋岩質火砕岩が分布する(第3.3-59図)。

森山北の変位地形・リニアメントの延長位置には中位 I 段丘面 が分布しており、この段丘面には高度不連続は認められない (第3.3-60 図)。

段丘面上でのボーリング調査及びピット調査の結果,大山松江 軽石層を含むローム層基底はほぼ水平に連続しており,少なくと も大山松江軽石層の堆積時期以降の活動はないものと評価した (第3.3-61図)。なお,ボーリング調査により基盤で確認した断 層については、ピット調査の結果、大山松江軽石層を含むローム 層の下位に分布する砂層・角礫層に変位や変形は認められない。

森山の平野部では、変位地形・リニアメントは認められないが、 原子力安全委員会ワーキンググループ3第17回会合参考資料第 2号(2009)⁽⁸⁰⁾に記載された推定活断層、今泉ほか編(2018)に 示される活断層及び鹿野・吉田(1985)に示される断層の通過位 置において反射法地震探査を実施した(第3.3-62図)。また、鹿 野・吉田(1985)に示される断層通過位置付近において、反射法 地震探査測線に並走するボーリング調査を実施した結果、古浦層 のデイサイト質火砕岩中の断層及び古浦層と成相寺層とを境する 断層が認められるものの、基盤岩上面、完新統及び南側に分布す る上部更新統には断層活動を示唆する変位や変形は認められない (第3.3-63図)。

平野部の北東側においても、鹿野・吉田(1985)に示される断 層に対応する古浦層の安山岩質火砕岩と成相寺層のデイサイト質 火砕岩とを境する断層露頭(Loc. MW-1)が認められる (第3.3-64図)。露頭観察の結果、断層には明瞭なせん断面は認 められず、また、断層を覆う崖錐堆積物に変位や変形は認められ ない。遊離酸化鉄分析の結果によると、断層を覆う地層のうち、 下位の崖錐堆積物3層の遊離酸化鉄の結晶化指数は、0.50~0.67 の範囲にあり、永塚(1973)⁽⁸¹⁾における赤色土に分類されること、 松江市内における大山松江軽石層より下位のローム層の遊離酸化 鉄の結晶化指数と同程度であること等から、崖錐堆積物3層の形 成年代は、大山松江軽石の降灰層準と考えられる。さらに、ブロ ックサンプリングにより採取した断層試料を用いて研磨片観察及 び薄片観察を実施した結果、幅2cm程度の角礫部が認められるが 断層粘土は確認されない等、後期更新世以降の活動が認められる
第3.3-66図)。

したがって、これらの断層の後期更新世以降の活動はないもの と考えられるが、断層性状の確認のため、断層通過位置において、 トレンチ調査を実施した(第3.3-67図)。

トレンチ調査の結果,ボーリング調査により基盤で確認した断 層に対応する2条の断層が認められる。火山灰分析の結果による と,断層を覆う地層のうち礫混じりシルト層に含まれる普通角閃 石及びカミングトン閃石を含む火山灰は,鉱物組成及び屈折率の 町田・新井(2011)との対比から,大山h1又は大山松江軽石に 同定され,下位のシルト質礫層は,層序的関係から,海洋酸素同 位体ステージ5e以前の地層と判断される(第3.3-68図)。2条 の断層は,礫混じりシルト層及びシルト質礫層に変位や変形が認 められないことから,震源として考慮する活断層ではないと判断 される。

原子力安全委員会ワーキンググループ3第17回会合参考資料 第2号(2009)に記載された推定活断層及び今泉ほか編(2018) に示される活断層通過位置付近において,幅約150mのはぎ取り 調査を実施した結果,成相寺層の流紋岩溶岩と流紋岩質火山円礫 岩とを境する断層及び成相寺層の流紋岩溶岩中に発達する流理構 造を切る断層露頭(Loc. MW-2)が認められる (第3.3-69図)。いずれの断層面も全体的には湾曲し不明瞭であ るが,成相寺層の流紋岩溶岩と流紋岩質火山円礫岩とを境する断 層に断層粘土が認められることから,ボーリング調査により採取 した断層試料を用いて研磨片観察及び薄片観察を実施した結果, 幅4mm程度の白色を呈する細粒部が認められる(第3.3-70図, 第3.3-71図及び第3.3-72図)。断層の連続性の確認のため,断

層露頭の南西方約 30m の位置でボーリング調査を実施した結果, 明瞭な断層面は確認されず,断層露頭(Loc. MW-2)に対 応する断層は認められないことから、震源として考慮する活断層 ではないと判断される。

森山の平野部から北東方約 500m の鹿野・吉田(1985)に示さ れる断層通過位置付近の露頭において,成相寺層の流紋岩中に断 層(Loc. MW-3)が認められる(第3.3-73図)。露頭観察 の結果,北側から成相寺層の流紋岩質溶岩,礫岩,泥岩及び流紋 岩質火砕岩が比較的高角度で接しており,露頭面は地層境界及び 断層沿いで熱水変質作用を受け,軟質な粘土が認められる。ブロ ックサンプリングした断層試料を用いて研磨片観察及びCT画像 解析を実施した結果(第3.3-74 図及び第3.3-75 図),幅1 cm ~3 cm 程度の低密度部が認められ,その境界に湾曲した断層面が 確認される。

また,その北東方延長部にあたる森山の造成地では,西側法面 (Loc. MW-4)において成相寺層の流紋岩質火砕岩中に最 大で幅 70cm 程度の破砕幅を有する断層が認められ,断層面には極 めて薄い粘土が確認されるものの,連続性に乏しく法面上部では 確認されない(第3.3-76図)。

造成地の東側(Loc. MW-5)では,古浦層の安山岩質火 砕岩と成相寺層の流紋岩質火砕岩とを境する断層が認められ,ま た,古浦層の安山岩質火砕岩中に複数の断層が確認される (第3.3-77図)。露頭面は全体に熱水変質作用を受けており,特 に,古浦層の安山岩質火砕岩には,暗紫灰色や緑灰色の岩石が斑 状に分布し,青灰色粘土や白色粘土脈を多く伴う。古浦層の安山 岩質火砕岩と成相寺層の流紋岩質火砕岩とを境する断層について, 詳細な露頭観察及びブロックサンプリングした断層試料を用いて CT画像解析を実施した結果,最新活動面と考えられる粘土を伴 う平滑な断層面が認められる(第3.3-78図)。実体顕微鏡により この断層面を観察した結果,縦ずれ優勢の変位方向を示すと考え

られる条線が確認される。古浦層の安山岩質火砕岩中の断層についても同様に,詳細な露頭観察等を実施した結果,一部に粘土を伴う不連続面が認められるが,いずれも湾曲し連続性に乏しいこと等から,最近の活動を示唆するせん断面は認められない(第3.3-79図,第3.3-80図及び第3.3-81図)。

森山の造成地付近において確認された断層露頭 (Loc. MW-3, Loc. MW-4及びLoc. MW-5), 断層露頭(Loc. MW-1), 平野部のトレンチ調査等により確 認された断層は, 破砕幅が数m~数10m程度である, 破砕部に泥 岩が取り込まれる, 古浦層と成相寺層の地質境界付近に位置する 等の共通的な地質学的特徴が認められることから, 鹿野・吉田 (1985)に示される断層に対応すると考えられる。これらの一連 の断層は, 平野部のトレンチ調査等の結果, 後期更新世以降の断 層活動は認められないと考えられるが, 一部の断層において年代 指標となる上載地層がなく, 後期更新世以降の活動を完全には否 定できない。

その他,森山の造成地の南東方約 300m の鹿野・吉田(1985) に示される断層通過位置付近において,成相寺層の流紋岩質火砕 岩中及び流紋岩と流紋岩質火砕岩とを境する断層露頭 (Loc. MW-6)が認められる(第3.3-82図)。詳細な露頭 観察並びにブロックサンプリングした断層試料を用いて研磨片観 察及びCT画像解析を実施した結果,主に断層沿いで熱水変質作 用を受け軟質化しており,断層面付近に低密度部が認められるが, いずれの断層面も直線性に乏しい。また,露頭観察及び条線観察 の結果,正断層又は逆断層センスを示唆する構造が認められ,横 ずれ運動を示唆する構造は確認されないことから,後期更新世以 降の断層活動は認められないと考えられるが,上載地層がなく, 後期更新世以降の活動を完全には否定できない(第3.3-83図,

第3.3-84 図及び第3.3-85 図)。

ソ. 高尾山周辺

地表地質踏査の結果,古浦層の流紋岩質火砕岩,砂岩及び礫岩 が分布し,これらに貫入するデイサイト及び玄武岩が認められる (第3.3-86図)。

① 高尾山南側(北)

地表地質踏査の結果,美保関町宇井西において,変位地形・ リニアメント位置付近(Loc. T-1)では,急傾斜する古 浦層中に上載地層が存在しないため活動性が不明であるもの の,下宇部尾北トレンチにおいて認められた断層等とは傾斜方 向が異なる断層を確認した(第3.3-87図)。露頭観察の結果, 断層面付近の地層は正断層センスの引きずり込み構造を呈し、 ブロックサンプリングにより採取した断層試料を用いた実体 顕微鏡による断層面の観察結果からも,縦ずれ優勢の変位方向 を示す条線が確認される。断層の走向は東西系を示しているこ とから、少なくとも東西圧縮応力場の下にある後期更新世以降 に活動したものではないと判断される。また、断層面は凹凸が 著しいものの、断層粘土が認められることから、研磨片観察及 びCT画像解析を実施した結果,低密度化した幅6mm程度の灰 色を呈する細粒部が認められるものの、積層構造は確認されな いなど、後期更新世以降の活動が認められる鹿島町南講武の断 層の性状とは異なっている(第3.3-88図)。

さらに,東方の美保関町^{ひゅう が うら} 水砕岩と北側の砂岩との間に断層の延長が推定され,変位地 形・リニアメント位置付近でのピット調査(Loc. T-2) の結果,急傾斜する流紋岩質火砕岩が確認されるが,北側には 変位地形・リニアメントと同走向の貫入岩が分布しており,断 層は認められず,その上位には大山松江軽石層を含むローム層 がほぼ水平に分布している(第 3.3-89 図)。福浦東において も,変位地形・リニアメント位置付近でのピット調査(Loc. T-3)の結果,古浦層のデイサイトに対して変位地形・リニ アメントと同走向に貫入する玄武岩が分布しており,断層は認 められない(第 3.3-90 図)。福浦東の鹿野・吉田(1985)及 び鹿野・中野(1985)の断層通過位置付近,並びに原子力安全 委員会ワーキンググループ3第 17 回会合参考資料第2号

(2009)に記載された推定活断層及び今泉ほか編(2018)の活 断層通過位置付近において,道路改良に伴い露出した切土法面 (Loc.T-3')を観察した結果,古浦層の流紋岩質火砕 岩が分布しており,砕屑岩脈が認められ,まれに砕屑岩脈の貫 入面が弱く破砕し,断層が確認される(第 3.3-91 図及び 第 3.3-92 図)。断層面の走向はN25°~39°E,傾斜は 60° ~85°Nを示し,同系統の断層から成るが,鹿野・吉田(1985) 及び鹿野・中野(1985)の断層,並びに原子力安全委員会ワー キンググループ3第 17 回会合参考資料第2号(2009)に記載 された推定活断層及び今泉ほか編(2018)の活断層の走向とは 対応していない。なお,砕屑岩脈及び断層の姿勢は,節理系の 卓越する姿勢と調和的であることから,これらは同時期に形成 されたものと判断される。

したがって、変位地形・リニアメントに対応して一部に断層 が認められるものの、変位地形・リニアメントと同走向の貫入 岩が分布し、変位や変形は認められないこと等から後期更新世 以降の断層活動は認められないと考えられるが、一部の断層に おいて上載地層がなく、後期更新世以降の活動を完全には否定 できない。

② 高尾山南側(南)

宇井南において変位地形・リニアメント位置付近でのピット

調査(Loc. T-4)の結果,古浦層の砂岩・泥岩が分布し ており,断層は認められない(第3.3-93図)。また,福浦付 近において,変位地形・リニアメント延長位置に連続する流紋 岩質火砕岩に断層は認められない(第3.3-86図)。森山東の 採石場(Loc. T-5)では,地表地質踏査の結果,古浦層 の砂岩・泥岩互層及び安山岩質火砕岩,並びに安山岩(貫入岩) が分布し,主として2条の正断層変位を伴う断層が認められる ものの,断層面は固結,密着しており,変位地形・リニアメン トとも対応しないことから後期更新世以降の断層活動は認め られないと考えられるが,上載地層がなく,後期更新世以降の 活動を完全には否定できない(第3.3-94図)。

③ 高尾山西側

地表地質踏査の結果,古浦層の礫岩,砂岩及び流紋岩質火砕 岩が分布し、北緩傾斜の同斜構造を示す(第 3.3-86 図)。鹿 野・吉田(1985)の法田リニアメント及び変位地形・リニアメ ント位置付近において断層は認められず、流紋岩質火砕岩等の 分布にくい違いも認められないことから、変位地形・リニアメ ントに対応する断層は認められない(第 3.3-95 図)。鹿野・ 吉田(1985)及び鹿野・中野(1985)の断層通過位置付近にお ける地表地質踏査の結果,変位地形・リニアメントと同走向の 正断層変位を伴う断層が認められる。採石場 (Loc. TW-1) では、古浦層の砂岩、泥岩、砂岩・泥岩 互層及び貫入岩が分布し、主として2条の正断層変位を伴う断 層が認められるものの、断層面は固結、密着しており、露頭上 部の古浦層の泥岩に変位や変形は認められない。また、断層面 沿いには角張って不規則な形態を有する岩石と白色脈(濁沸 石)から成るジグソーパズル状の水圧破砕組織が認められ、こ れらの組織に変位や変形は認められない(第 3.3-96 図)。採 石場(Loc. TW-1)から東北東方約 600m の道路沿いの 露頭では,古浦層の流紋岩質火砕岩と砂岩・泥岩互層を境する 正断層変位を伴う断層が認められるものの,断層面は密着して おり,破砕は認められない。

変位地形・リニアメント沿いについて,地震調査研究推進本部(2016)に示される重力異常・地質構造から推定された構造 不連続とは斜交関係にあること,道路沿いの露頭では上載地層 がなく,後期更新世以降の断層活動を完全には否定できないが, 採石場(Loc. TW-1)では後期更新世以降の断層活動は 認められないこと及び変位地形・リニアメント位置付近を含む 幅広な地表地質踏査の結果,断層は確認されないこと等を踏ま え,変位地形・リニアメント沿いに宍道断層は連続しないと評 価した。

タ.美保関周辺

地表地質踏査の結果,古浦層の砂岩,泥岩及び流紋岩質〜デイ サイト質火砕岩・溶岩等が分布し,東西方向に延びる山稜線のや や南側に背斜軸が推定される(第3.3-97図)。鹿野・中野(1985) によると,その背斜軸を横断するように南北走向の胴切り断層が 示されているが,詳細な地表地質踏査の結果によると,大局的に は緩い東傾斜の地層を呈し,堆積構造や地質分布の不連続は認め られない(第3.3-98図)。また,地表地質踏査の結果,地蔵崎付 近の北側沿岸部において,2本の断層が確認されるが,いずれも 南西落ちの正断層センスを示し,断層面は固結・密着している。 これらの断層の走向方向延長部における音波探査記録によると, 後期更新世以降の断層活動を示唆する変位や変形は認められない。 チ.美保湾及び美保関町東方沖合い

宍道断層の東方延長に位置する美保湾及び美保関町東方沖合 いにおいて,複数の音源による音波探査を実施した。

第3.2-29 図に示す敷地前面海域の海底地形図によると,美保 湾の海底面は,大局的には海岸から沖合北東方に向かって緩やか に傾斜する斜面で,さらに沖合に向かって北方へ緩やかに傾斜す る斜面でそれぞれ形成されている。

また,美保関町東方沖合いの海底面は,沖ノ御前島による海流 の変化の影響を受けて局所的に起伏の激しい複雑な形状を呈して いるものの,鳥取沖西部断層の西方延長部を含む海底面に断層活 動を示唆する変状は認められない(第3.3-99図)。

美保湾及び美保関町東方沖合いの海底に分布する地層は、ほぼ 全域にB層以上の地層が分布し、鳥取沖西部断層の西方延長部を 含む地層に断層活動を示唆する地質分布の不連続は認められない (第3.3-100図)。

境水道の東方延長部にあたる美保関町沿岸域付近の地質・地質 構造を把握するため、沿岸域を横断するように美保関港内に進入 する音波探査、更には、島根半島の東方延長部を南北に横断し、 かつ稠密な測線間隔による音波探査を実施した結果、美保関町東 方沖合いにおいて、D2層の高まりの南縁に分布する断層が確認 されるものの、少なくともB1層に変位や変形は及んでおらず、 後期更新世以降の断層活動は認められない(第 3.3-101 図及び 第 3.3-102 図)。このうち、地震調査研究推進本部(2016)の活 断層の可能性のある構造として指摘されている明瞭な重力異常が 認められなくなる位置の音波探査測線は No.3.5 測線である。

(d) 総合評価

松江市鹿島町南講武から鹿島町七田を通り福原町までの断層は, 南講武のトレンチ調査結果によると約3千年前から約1万1千年前 の間に最新の活動があったと認められ,その西方の鹿島町南講武か ら尾坂の間の平野部における調査でも確認されている。

その西方の鹿島町尾坂から鹿島町佐陀本郷を通り、鹿島町古浦沖

にかけては、鹿島町佐陀本郷において、後期更新世以降の断層活動 はないものと判断されるが、古浦周辺において後期更新世以降の断 層活動が認められると判断した。しかしながら、①変動地形学的調 査結果によると古浦西方では変位地形・リニアメントが認められな いこと、②地表地質踏査結果によると、古浦西方の海岸部では断層 は認められないこと、③男島付近では変位地形・リニアメントは認 められるが、後期更新世以降の断層活動はないこと、④古浦沖以西 の音波探査結果によると断層・褶曲は認められないこと、⑤海底面 調査結果によると古浦沖から女島西方に至る海岸部では断層は認め られないこと、⑥女島付近では変位地形・リニアメントが認められ ず、地表地質踏査結果においても断層は認められないこと、及び⑦ 女島付近の鹿野・中野(1986)に示される伏在断層通過位置付近に おけるボーリング調査結果によると断層は認められない。

以上のことから,古浦から女島付近において宍道断層の延長部に 対応する断層は認められないが,陸海境界の調査結果の不確かさを 考慮し,宍道断層について震源として考慮する活断層の西端を,ボ ーリング調査等により精度や信頼性のより高い調査結果が得られて いる女島とする。

一方,東方の上本庄町周辺において活断層が推定されるが,枕木 山東方において後期更新世以降の活動を示唆する断層は認められず, 長海町周辺においても,第四系に断層活動を示唆する顕著な変位や 変形は認められない。また,中海北部の手角町の沖合いにおいて, 中部〜上部更新統及び完新統に断層活動を示唆する変位や変形は認 められない。

美保関町下宇部尾の下宇部尾北トレンチにおいて後期更新世以降 の活動を完全には否定できないが,①変動地形学的調査結果による と下宇部尾東以東では,鞍部,高度不連続,谷や尾根の屈曲等が断 続し,不鮮明であることから,断層活動性が低下していること,② 下宇部尾東では、ボーリング調査及び約70mの幅広なはぎとり調査 の結果、変位地形・リニアメント、中田ほか(2008)の活断層(や や位置不明確)及び今泉ほか編(2018)の活断層に対応する断層は 認められないこと、③その東方の美保関町森山では、トレンチ調査 等の結果、後期更新世以降の断層活動は認められないこと、④森山 から美保関において断層が確認され、年代指標となる上載地層がな いことから後期更新世以降の断層活動を完全には否定できないもの の、断層性状等から最近の断層活動は示唆されないこと、⑤美保湾 では、美保関町沿岸域付近の陸海境界において十分な調査が実施で きないものの、美保関港内に進入する音波探査の結果、後期更新世 以降の断層活動は認められないこと、及び⑥更に東方の美保関町東 方沖合いでは、島根半島の東方延長部を南北に横断し、かつ稠密な 測線間隔による浅部から深部の地質構造を調査した音波探査の結果、 後期更新世以降の断層活動は認められない。

以上のことから、下宇部尾東において幅広なはぎ取り調査等の結 果, 宍道断層に対応する断層は認められず, 更に東方の森山におけ るトレンチ調査等の結果,後期更新世以降の断層活動は認められな いが,森山から美保関において一部の断層を除いて上載地層がなく, 後期更新世以降の断層活動が完全に否定できなかったこと及び陸海 境界付近の調査結果の不確かさを考慮し,宍道断層について震源と して考慮する活断層の東端を,音波探査により精度や信頼性のより 高い調査結果が得られており,かつ地震調査研究推進本部(2016) の活断層の可能性のある構造として指摘されている明瞭な重力異常 が認められない美保関町東方沖合いの少なくともB1層に変位や変 形は及んでおらず,後期更新世以降の断層活動は認められない測線 (No. 3.5)とする。

したがって,震源として考慮する宍道断層の長さとして,女島か ら美保関町東方沖合いまでの約 39km を評価する。

宍道断層とその東方の鳥取沖西部断層の間については、島根半島 の東方延長部を南北に横断し、かつ稠密な測線間隔による音波探査 を実施した結果,後期更新世以降の断層活動は認められず,断層間 に雁行等の非単調な構造も確認されない。宍道断層と鳥取沖西部断 層の間の詳細な地質構造を確認するため、美保湾及び美保関町東方 沖合いのB2層上面等深線図及びD2層上面等深線図を作成し,断層 分布との関係を確認した(第3.3-103図及び第3.3-104図)。B2 層上面等深線図によると,断層間には,断層に沿う変形,高まり又 は溝等の後期更新世以降の断層活動を示唆する構造は認められない。 D2層上面等深線図によると、断層間には、D2層の高まりとその高 まりの南縁に後期更新世以降の活動は認められない断層が分布し, これらの構造を横断する断層は確認されない。また、島根半島の東 方延長部を南北に横断するエアガン・マルチチャンネル方式による 音波探査結果を用いて速度構造断面図を作成した結果,D2層の高 まりにおいて断層活動を示唆する速度構造の不連続は認められない (第3.3-105図)。さらに、宍道断層で認められる明瞭な重力異常

は、鳥取沖西部断層へ連続しない。

以上のことから, 宍道断層と鳥取沖西部断層は連動しないと評価 する。

- b. 古殿[北][南]断層
- (a) 文献調查結果

橋本ほか(1980)は、松江市鹿島町北講武から鹿島町上講武に至る延長3.5km間及び延長0.7km間に東西方向の準確実活断層を2条記載し、古殿断層と呼び、谷や尾根の右横ずれ・北側隆起と左横ずれ・南側隆起の断層地形があり、その間の約400mが地溝状を示すとしている。

活断層研究会編(1980, 1991)は,橋本ほか(1980)とほぼ同じ 位置に,長さ3.5km及び0.7kmの古殿[北]断層及び古殿[南]断層を 記載し,いずれも確実度II,活動度Cとしている。このうち,古殿[北] 断層が北側隆起・右横ずれの断層変位としているのに対し,古殿[南] 断層については,活断層研究会編(1980)は南側隆起・左横ずれ, 活断層研究会編(1991)は南側隆起・右横ずれとしている。

鹿野・吉田(1985)は、2本のリニアメントを古殿北及び古殿南 リニアメントと呼び、これらに挟まれた地溝状の部分に著しく風化 したドレライトの貫入岩体が分布しているとし、変位地形とみなせ るものがないことから、組織地形によるものとしている。

今泉ほか編(2018)は、活断層研究会編(1991)の古殿[北][南] 断層とほぼ同じ位置に、長さ2.0kmの推定活断層を記載している。

(1985)、中田ほか(2002)及び中田ほか(2008)には、同位置に活断層あるいは推定活断層は示されていない。

(b) 地形調查結果

古殿[北][南]断層周辺の地形調査結果を第3.3-106図に示す。

鹿島町 単過から鹿島町古殿に至る間に, 鞍部列から成る変位地 形・リニアメントが判読され, 鹿島町古殿から鹿島町山奥に至る間 に, 谷や尾根の左屈曲, 鞍部等から成る変位地形・リニアメントが 判読される。

(c) 地表地質踏查結果

古殿[北][南]断層周辺の地質図及び地質断面図を第 3.3-107 図 に示す。

古殿[北][南]断層沿いには,主に新第三系中新統の成相寺層の泥 岩,流紋岩質火砕岩,デイサイト〜安山岩質火砕岩及び貫入岩であ るドレライトが分布する。これらの地層は全体に東西方向の走向で 北傾斜の同斜構造を示し,ドレライトも周囲の地層に調和的な岩床 状の貫入岩体として分布する。ドレライトは著しく風化し,成相寺 層の泥岩や流紋岩質火砕岩に比べ軟質化している。

鹿島町上講武清永における変位地形・リニアメント直下において

ビット調査(Loc. F-1)を実施した結果,成相寺層の凝灰岩, 泥岩及び貫入岩のドレライトが分布しており,断層は認められない (第3.3-108図)。

(d) 総合評価

地表地質踏査等の結果によると,変位地形・リニアメントの付近 に分布する地層は同斜構造を示し,断層は認められない。また,変 位地形・リニアメントはドレライトと成相寺層の貫入境界とほぼ一 致する。

以上のことから,古殿[北][南]断層にほぼ対応する変位地形・リ ニアメントは、岩相差を反映した組織地形であると評価する。

- c. 山中付近断層
- (a) 文献調查結果

橋本ほか(1980)は、松江市教鹿町六坊から松江市西谷町牛切に 至る延長3.5km間に西北西-東南東方向の推定活断層を記載し、山 中断層と呼び、さらにこの東南東に延長2.7km間に東西ないし東北 東-西南西方向の推定活断層を記載し、荘が断層と呼び、いずれも北 側隆起としている。

活断層研究会編(1980, 1991)は,橋本ほか(1980)と同位置に, 長さ3.5kmの山中付近断層を記載し確実度Ⅲ,活動度Cとし,この 東南東に別の確実度Ⅲの活断層を示している。

鹿野・中野(1986)は、リニアメントに沿って、地形的に鞍部が 連続し山地高度にも南が低いという不連続が認められ、その一部は 地質断層と一致するとしているが、地質断層と一致する所で確実に 変位地形といえるものはなく、山地高度の不連続の原因として、北 側に主として分布する成相寺層の流紋岩・安山岩と南側に分布する 成相寺層等の堆積岩との浸食に対する抵抗の差が考えられるとして いる。

佃ほか(1985), 今泉ほか編(2018) 及び中田ほか(2008) は, 同

位置に活断層あるいは推定活断層を示していない。

(b) 地形調查結果

山中付近断層周辺の地形調査結果を第3.3-109図に示す。

秋鹿町山中から西谷町牛切にかけて,溝状地, 鞍部, 傾斜変換線 等から成るDランクの変位地形・リニアメントが判読されるが, 河 谷と尾根の屈曲は認められない。

これらの変位地形・リニアメントは,活断層研究会編(1980,1991) の山中付近断層とこの東南東に位置する別の確実度IIIの活断層にほ ぼ対応している。変位地形・リニアメントの北側は,南側に比べ山 地高度が高い。これらの地形要素は一部で断続し,不鮮明である。

(c) 地表地質踏查結果

山中付近断層周辺の地質図及び地質断面図を第 3.3-110 図に示す。

変位地形・リニアメント沿いには,新第三系中新統の成相寺層, 牛切層及び貫入岩が分布する。成相寺層は本断層の南北に分布し, 変位地形・リニアメントの北側では主に流紋岩質火砕岩,デイサイ ト〜安山岩質火砕岩が分布し,変位地形・リニアメントの南側では 主に泥岩が分布する。牛切層は砂岩・礫岩,泥岩及び砂岩・泥岩互 層から成る。貫入岩は安山岩から成る。

松江市西長江町上組において,成相寺層と牛切層が東西方向の軸 を持つ緩やかな褶曲構造を示し,変位地形・リニアメントは北側の 成相寺層のデイサイト~安山岩質火砕岩と南側の成相寺層の泥岩と の境界,又は北側の成相寺層の泥岩と南側の牛切層の砂岩・泥岩互 層との境界付近に位置する。

秋鹿町山中において,成相寺層の泥岩が変位地形・リニアメント 近傍で急傾斜を示すものの,変位地形・リニアメント位置(Loc. YM-1及びLoc.YM-2)では北側に成相寺層のホルンフェ ルス化した泥岩が,南側には安山岩(貫入岩)が広く分布しており, 断層は認められない(第3.3-111 図及び第3.3-112 図)。安山岩 (貫入岩)は高標高部では赤色風化が著しく,成相寺層のホルンフ ェルス化した泥岩に比べ軟質である。

(d) 総合評価

山中付近断層等にほぼ対応する変位地形・リニアメントは,西部 では成相寺層のホルンフェルス化した泥岩と風化の著しい安山岩 (貫入岩)との地質境界に,東部では成相寺層のデイサイト~安山 岩質火砕岩と成相寺層の泥岩との地質境界,又は成相寺層の泥岩と 牛切層の砂岩・泥岩互層との地質境界に概ね一致する。

以上のことから,山中付近断層等にほぼ対応する変位地形・リニ アメントは,岩質の差を反映した組織地形であると評価する。

第3.2-1表 敷地周辺陸域の地質層序表

第3.2-2表 敷地周辺陸域の地層対比表

第四紀更新世 貫入岩類 新第三紀中新世 (V∭N	V∎s	
-------------------------------------	-----	-----	--

||||||| :地層欠如

	山地・	丘陵内	段丘面,扇状	地等の		
ランク	崖・鞍部等	尾根・水系の屈曲	崖・溝状凹地・撓み・傾斜面			
	・鮮明な崖,鞍部等が長く,連続の良い配列をな	・さまざまな規模の尾根・水系が長い区間で連続	・かつて一連であったことが明瞭な段丘面等の上	・段丘		
	し、山地高度・丘陵高度に一様な高度差が認め	性がよく、同方向に屈曲し、形態が鮮明であり、	にみられる鮮明な崖,溝状凹地,撓み,急傾斜	られ		
А	られるもの。そして、延長上至近距離あるいは	かつ,	面等の連続性が良く,長く配列をなし,	(1)		
	リニアメントを横切る谷に沿って分布する扇状	(1) 水系の規模と屈曲量との相関がみられるも	(1)時代の異なる複数の地形面に連続し、古い地	. 1		
	地や段丘に明瞭な崖等や高度不連続があるも	\mathcal{O}_{\circ}	形面ほど比高, 撓み量, 傾斜等が大きいもの。	ある		
	\mathcal{O}_{\circ}	あるいは,	あるいは,	(2)		
		(2) 隣接して閉塞丘,風隙等の特異な地形のいず	(2) 地形面の傾斜方向とは逆向きの崖からなる			
		れかが認められるもの。	もの。			
			あるいは,			
			(3)山地・丘陵内の崖等に連続するもの。			
	・崖,鞍部等が長く,連続の良い配列をなし,山	・さまざまな規模の尾根・水系が同方向に屈曲し,	・かつて一連であったと推定される段丘面等の上	・段丘		
	地高度・丘陵高度に一様な高度差が認められ,	形態が鮮明であり、かつ、	にみられる崖,溝状凹地,撓み,急傾斜面等の	(1)		
	かつ,	(1) 屈曲が長い区間で連続的にみられるが, 水系	連続性が良く,長く配列をなし,	1		
	(1) 地形形態は鮮明であるが, 新期の地形面の変	の規模と屈曲量との相関があまり良くない	(1)時代の異なる複数の地形面に連続し、古い地	ある		
	位が不確実なもの。	もの。	形面で比高,撓み量,傾斜等が大きいもの。	(2)		
В	あるいは,	あるいは,	あるいは,			
	(2) 地形形態はやや不鮮明であるが, 延長上ある	(2) 屈曲のみられる区間は短いが, 水系の規模と	(2) 地形面の傾斜方向とは逆向きの崖からなる			
	いはリニアメントを横切る谷に沿って分布	屈曲量との相関が認められるもの。	もの。			
	する扇状地や段丘に崖等があったり, 高度不	あるいは,	あるいは,			
	連続が推定されるもの。	(3) 屈曲のみられる区間は短いが, 隣接して閉塞	(3)山地・丘陵内の崖等に連続するもの。			
		丘,風隙等の特異な地形のいずれかが認めら				
		れるもの。				
	・崖、鞍部等が配列をなし、山地高度・丘陵高度	・尾根・水系が同方向に屈曲するもので,	・かつて一連であったかどうか不明な段丘面等の	・段丘		
	に一様な高度差があるが,	(1) 長い区間でみられるが,一部で鮮明さに欠	上にみられる崖,溝状凹地, 撓み, 急傾斜面等	(1)		
	(1) 長い区間でみられるが, 地形形態が不鮮明な	け, 水系の規模と屈曲量との相関が認められ	が連続的な配列をなし,			
C	もの。	ないもの。	(1)長いが、一部で不鮮明となるもの。	ある		
	あるいは,	あるいは,	あるいは,	(2)		
	(2) 短いが地形形態が鮮明なもの。	(2) 短いが屈曲は鮮明あるいは屈曲量の相関が	(2) 鮮明だが、短く一部で不連続となるもの。			
		あるもの。				
	・崖, 鞍部等が配列するが, 山地高度・丘陵高度	・尾根・水系が部分的に屈曲しているが水系の規	・段丘面等の上に崖,溝状凹地,撓み,急斜面等	・段丘		
	に高度差はみられるが局地的で,	模と屈曲量との相関はなく,	が配列し,	(1) 5		
D	(1) 長いが不鮮明なもの。	(1) 屈曲はやや鮮明であるが短いもの。	(1) 短いもの。	ある		
	あるいは,	あるいは,	あるいは,			
	(2) やや鮮明であるが短いもの。	(2)屈曲のみられる区間は長いが,不鮮明である	(2) 断続するもの。			
		もの。				

第3.2-3表 変位地形・リニアメント判読基準

地形面

段丘崖や旧流路等の屈曲

上崖、旧流路等に累積的な同方向の屈曲がみ ,

山地, 丘陵内の屈曲, 崖等の延長上至近距離 にあるもの。

らいは,

段丘面,扇状地の崖・溝状地などと連続する もの。

:崖, 旧流路等に同方向の屈曲がみられ, 山地, 丘陵内の屈曲, 崖等の延長上至近距離 にあるもの。

らいは,

段丘面,扇状地の崖・溝状地などと連続する もの。

:崖, 旧流路等に同方向の屈曲がみられ, 屈曲は一部で不鮮明だが, 長く連続の良いも の。

いは,

短く一部で不連続だが、屈曲が鮮明なもの。

上, 旧流路等に同方向の屈曲がみられ, 短いもの。 らいは,

断続するもの。

第3.2-4表(1) 変位地形・リニアメントー覧表(その1)

変位地	形・リニア>	メントの名称・番号	ランク	走向	長さ (km)	地形形態	基準地形	変位方 縦ずれ低下側(m)	向・量 横ずれ(m)	活断層研究会編(1991)及び 今泉ほか編(2018)との対応
1		古浦-尾坂	А, В	E-W	3.6	急斜面 屈曲,孤立丘	山地斜面 尾根,谷	Ν	R	活断層研究会編(1991)の古浦東方断 層(確実度II)に対応 今泉ほか編(2018)の宍道(鹿島)断 層帯(活断層)に対応
		南講武一枕木		E-W	9.0	急斜面 屈曲,鞍部 低崖	山地斜面 尾根,谷 沖積面	S N	R	活断層研究会編(1991)宍道断層
2		上本庄	В, С	NE-SW	2.1	崖,逆向き崖	谷 H3段丘 H3段丘/Mf段丘 丘陵斜面	NW SE S		□[北] [南] (確美度 1 , Ⅱ) に対応 今泉ほか編(2018)の宍道(鹿島)断 層帯(活断層)に対応
3		長海-手角	B, D	E-W	3.1	急斜面, 鞍部 低崖 屈曲	山麓線 沖積面 尾根,谷	S S	R	今泉ほか編(2018)の宍道(鹿島)断 層帯(活断層)に対応
4	宍道	枕木山東	B, D (C)	NE-SW	3.6	直線状の谷, 鞍部 屈曲, 鞍部	山地斜面 尾根,谷	S E (200)	R	活断層研究会編(1991)の枕木山東断 層(確実度Ⅲ)に対応
5		下宇部尾-森山	D (B,C)	E N E – W S W	3.9	鞍部 傾斜変換線 屈曲	山地斜面 尾根,谷		R (50)	活断層研究会編(1991)の森山断層 (確実度Ⅲ)に対応 今泉ほか編(2018)の宍道(鹿島)断 層帯(活断層)に対応
6		男島	С	WNW-ESE	0.6	屈曲	尾根,谷		L	
7		高尾山南限	C,D	E-W	4.2	高度不連続 鞍部 屈曲	丘陵斜面 尾根,谷	S	R (50-100)	今泉ほか編(2018)の宍道(鹿島)断 層帯(活断層)に対応
8]	高尾山	D	E-W	2.1	鞍部 高度不連続	山地斜面	S		活断層研究会編(1991)の高尾山断層 (確実度Ⅲ)に対応
9		法田	D	NE-SW	1.8	高度不連続 急斜面,三角末端面,鞍部	山地斜面	S		活断層研究会編(1991)の法田断層 (確実度Ⅲ)に対応
10	古殿	ī殿		WNW-ESE	2.4	鞍部,急斜面,傾斜変換線 屈曲,溝状地	山地斜面 尾根,谷	S	L	活断層研究会編(1991)の古殿[北]断 層(確実度Ⅱ)に対応 今泉ほか編(2018)の宍道(鹿島)断 層帯(推定活断層)に対応
11	垣の内北側	1	D	NW-SE	1.8	直線状の谷,逆向き崖 鞍部,傾斜変換線 屈曲	山地斜面 尾根,谷	ΝΕ	R	活断層研究会編(1991)の垣の内北側 断層(確実度Ⅱ)に対応
12	山中付近		D	NW - SE ENE-WSW	5.3	高度不連続,鞍部,溝状地 急斜面,傾斜変換線	山地斜面	S		活断層研究会編(1991)の山中付近断 層(確実度Ⅲ)に対応
13	田の戸	の戸		ENE-WSW	5.0	屈曲 急斜面, 鞍部 撓み	尾根,谷 山地斜面 Lf1段丘	N (20~60) N (5以下)	R	活断層研究会編(1991)の確実度Ⅲに 対応
14	大船山東		D	NNE - SSW	3.0	急斜面, 鞍部, 逆向き崖	山地斜面			活断層研究会編(1991)の確実度Ⅲに 対応
15 万田付近			C,D	WNW - ESE $ \overset{?}{ENE - WSW } $	8.5	三角末端面 鞍部,高度不連続 逆向き崖,傾斜変換線	山地斜面	S (150~200)		活断層研究会編(1991)の万田付近断 層(確実度II)に対応

第3.2-4表(2) 変位地形・リニアメントー覧表(その2)

			1							
			1		変位地形・リニアメント	判読内容		/. 日	活断層研究会編(1991)及び	
发位地方	ド・リニアメントの名称・番号	ランク	走向	長さ	地形形態	基準地形	変位方向・重		- 今泉ほか編(2018)との対応	
	1			(km)			縦すれ低ト側(m)	横すれ(m)		
16	大社衝上(大社-国富)	A, B (C)	E N E - W S W $\langle \\ W N W - E S E$	11.0	 産,傾斜変換線,急斜面 低崖,撓み 低崖 低崖 屈曲 	山地斜面 H3段丘 Mm段丘 沖積面 扇状地 Mm段丘,尾根,谷	S (200-400) S (25) S (10-15) S (5以下) S (5以下)	R (20±)	活断層研究会編(1991)の矢尾町付近 断層(確実度Ⅲ)に対応 今泉ほか編(2018)の推定活断層に対 応	
17	東来侍-新田畑	D	ENE-WSW	9.9	溝状地,急斜面,鞍部	丘陵/山地	N $(50 \sim 100)$ S $(30 \sim 40)$		活断層研究会編(1991)の確実度Ⅲに 対応	
18	仏経山北	С	WNW-ESE	4.2	屈曲 急斜面	尾根,谷 山地斜面	N (40~100)	L		
19	三刀屋北	C (D)	E-W	6.2	直線状の谷, 鞍部 屈曲	山地斜面 尾根,谷		R (20~100) R (100~200)		
20	木次南	D	NE-SW	18.8	急斜面,傾斜変換線, 直線状の谷,鞍部 逆向き低崖	山地斜面 尾根	NW S		活断層研究会編(1991)の木次南断層 (確実度Ⅲ)に対応	
21	半場-石原	С	E-W	2.8	三角末端面,高度不連続, 鞍部	山地斜面	S (40~70)		活断層研究会編(1991)の半場-石原 断層(確実度Ⅲ)に対応	
22	布部	C,D	E N E – W S W	8.1	屈曲 直線状の谷, 鞍部	尾根,谷 山地斜面	N (50)	R	今泉ほか編(2018)の布部断層帯(活 断層・推定活断層)に対応	
23	東忌部	D	NE-SW	1.8	鞍部	山地斜面			活断層研究会編(1991)の確実度Ⅲに 対応	
24	柳井	D	NW-SE	1.1	鞍部,逆向き崖	山地斜面	$SW(10\sim 20)$		活断層研究会編(1991)の確実度Ⅲに 対応	
25	山王寺	D	ENE-WSW	1.7	高度不連続, 鞍部	山地斜面	N (60~70)		活断層研究会編(1991)の確実度Ⅲに 対応	
26	大井	D	NW-SE	1.8	高度不連続, 鞍部	山地斜面	SW(50)		活断層研究会編(1991)の確実度Ⅲに 対応	

地層名		名	地層境界及び堆積構造	記録パターンの特徴 水中放電シングルチャンネル ジオパルス及びブーマー・マルチチャンネル ウォーターガン・マルチチャンネル エアガン・マルチチャンネル	推定される岩相	分布範囲		
A層			下位層上面の浸食面を不整合に覆う。	一般に海底面にほぼ平行な成層パターンを,一 部で散乱パターン,一部で海底面に斜交するパ ターンを示す。	未固結の泥、砂、礫等から成る堆積物	陸域近傍及び敷地前面海域の北西部の 大陸棚外縁~大陸縁辺台地を除いたほ とんどの海域に薄く堆積している。		
	東部海域	B _{1E} B _{2E}	下位層上面の浸食面を不整合に覆い,下位 層上面が起伏面の場合は,部分的にオンラ ップ状の不整合関係を示す。 下位層上面の浸食面を不整合に覆い,下位 層上面が起伏面の場合は,部分的にオンラ ップ状の不整合関係を示す。	連続性に乏しい波状パターン,ほぼ水平な成層 パターン又は一部でプログラデーションパター ンを示す。 ほぼ水平かやや傾斜する成層パターンを示す。	未固結〜半固結の泥,砂及びこれらの 互層から成り,部分的に砂礫層を挟む。	 敷地前面海域の東部の大陸棚等に広く 分布している。 B_{1E}層は,最終氷期最寒冷期の陸化に 伴う削剥により分布が一部欠如している。 		
В	北西部	B _{1W}	下位層上面をオンラップ状の不整合で覆 う。 下位層上面を不整合に覆う。 層内の一部に軽微な不整合面が見られる	連続性の良い層理パターンを示し、ほぼ水平か やや傾斜する成層パターンを示す。 連続性の良い層理パターン又は顕著なプログラ デーションパターンを示す。	未固結~半固結の泥,砂及びこれらの 互層から成り,部分的に砂礫層を挟む。	敷地前面海域の北西部の大陸棚外縁~ 大陸縁辺台地に広く分布している。 B _{1w} 層は,最終氷期最寒冷期の陸化に 伴う削剥により分布が一部欠如してい る。		
層	海域	B _{3w}	が,連続性は乏しい。 下位層上面を不整合に覆う。	ほぼ水平かやや傾斜する成層パターンを示す。				
	その他の海域	B _x	下位層上面を不整合に覆う。	連続性に乏しい波状パターンを示す。	未固結〜半固結の泥,砂及びこれらの 互層から成り,部分的に砂礫層を挟む。	敷地前面海域の東部及び北西部以外の 海域に小範囲に分布している。		
	C層		下位層上面の浸食面を不整合に覆い,下位 層上面が起伏面の場合は,部分的にオンラ ップ状の不整合で覆う。	一般に極めて緩やかに褶曲した波状パターン又 は連続性に乏しい成層パターンを,一部で成層 パターンを示す。	固結した泥岩,砂岩及びこれらの互層 から成り,部分的に礫岩層を挟む。	敷地前面海域の東部,北西部,西部の 中央部及び日御碕西方に広く分布し, 大部分が上位層に覆われている。		
D	D D 1		起伏する下位層上面をオンラップ状の不 整合で覆う。	褶曲した成層パターンを示す。	固結した泥岩,砂岩及びこれらの互層 から成り,部分的に礫岩層を挟む。	敷地前面海域の中央部沖合及び島根半 島沿岸の海域に分布し,大部分が上位 層に覆われている。		
層	Ι	D ₂	音響基盤	連続性に乏しく褶曲した成層パターン又は無層 理パターンを示す。	堅硬な泥岩,砂岩及びこれらの互層か ら成り,しばしば礫岩及び火山砕屑岩 を挟む。			
 V層			D層又は一部でC層及びB層に貫入し、岩 床状又は岩脈状を呈する。	無層理パターンを示す。	火山岩・貫入岩	敷地前面海域中央沿岸部及び隠岐諸島 南方沖等の小範囲に分布し,大部分が 上位層に覆われている。		

第3.2-5表	敷地前面海域の地層区分

3.2-6表 陸域と海域の地層対比表

箫

\backslash		持代	策	E (<u>7</u> 2		兼	笰		11]	彩			舟	
查区域	\setminus	献名 	完新世	<u>載</u> 調	چ چ	B <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	鮮新世				中新世			く山岩・貫入	
贈	美保関	水路部 [1992a)*4	I	м м т	- 14	Ē	M			IV_{M}		$\mathbf{V}_{\mathbf{M}}$		Υ.	
	日御碕	水路部 (1991b) ^{*4} (1	I _H	н, Ш.н, IV.н	$\rm V_{H}, \rm W_{H}$	ли	I.		VIII н		IX_{H}	\mathbf{X}_{H}			
	大社	水路部 (1993a)* ⁴	IT	I _Т , Ш _Т , IV _Т П	$V_{\rm T}, W_{\rm T}$	\¶_T		νш _T		IXT		\mathbf{X}_{T}			
	隠岐海峡	玉木ほか (1982) ^{*3,*4}	Q 1	Q 2		<u>م</u>				M		${ m M}_2$			
	鳥取沖	山本ほか [。] (1989) ^{*4}		Tt_2		${\rm Tt_1}$	$\operatorname{Hm}_{2\mathrm{a,b}}$	Hm_1		香住沖層 (Ka)		音響基盤 (At)			一型
掝	鳥取沖*2	中国電力㈱	Α	B B B B B 2 B 2 B 2 B 2 B 2 B 1	[−] [−] [−] [−] [−] [−]	Ċ)			D_1	D	D_2			→ 離 小 ・・・
埬	大田沖*1	中国電力㈱	А	B		Ċ)			D_1	D	D_2			
	敷地周辺	中国電力㈱		g					H						
	敷地前面	中国電力㈱	A	$\begin{bmatrix} B_{1E} & B_{1W} \\ B & B_{2W} \\ B & B_{2W} \end{bmatrix} B_{X}$	B _{3w}	ţ)			D_1	D	D_2		Λ	10
	古浦沖	中国電力㈱	$\frac{I_{\rm K}}{\Pi_{\rm K}}$	Πĸ								D_2			の海域を示す
	宍道湖	中国電力㈱	Is	Пs						∎ Ns	Vs	٧Is		VШ _S	r沖にかけて0 照した。
	中海	中国電力㈱	I _N	ΠΝ							\mathbf{V}_{N}	VI_{N}	VII N	VIII _N	ệ保関町東붓 か(1989)を参
陸域の地質	敷地周辺	中国電力㈱	沖積低地堆積物 砂丘堆積物	段丘堆積物						松江層 古江層	牛切層 成相寺層	古浦層	大根島玄武岩	和久羅山安山岩 新第三紀貫入岩類)海域を示す。 Γ沖から島根県松江市∮ の地質時代は、山本ほ 第は記載されていない。
調査区域		文献名 [時代	完新世	更新: 後 + 期 期 #	単	L642 FIE	鮮新世				中新世			山岩・貫入岩	:島根県中部沖の :兵庫県新温泉町 :玉木ほか(1982)6 :整合・不整合関係
		书	箫	EI (1		兼	策		11]	骀			×	*** *** **3

6-3-136

		1		l.	i			. 1								
	F - 2	N	$\mathrm{E}-\mathrm{W}$	D_2 層	A層 B _{1E} 層	I	1		K - 7	- X I	SSE	E N E - W S W	C	A@	最大 "~~~"	承J 9. UKm
	F - (]	NW	N E - S W	D2層下部	A層 B _{1 E} 層 D ² 層上部				К — 6		SSE	E N E - W S W	D1層	A層 B _{1E} 層 B _{2E} 層	最大	彩 9. 5km 最大約 19. 0km
	$\mathrm{F}-\mathrm{VI}$	NNW	E N E - W S W	B _{2E} 層下部	A層 B _{1E} 層 B _{2E} 層上部	I	1		$K - \Lambda$	F VI	S	$\mathrm{E}-\mathrm{W}$	D1層	A層	最大 "。。"	承J 9. UKm
	$\mathrm{F}-\mathrm{V}$	N	$\rm E-W$	C	A層	最大 約 17.5km			с – Х		SF	N E - S W	C 層	A層 B _{1 E} 層 B _{2 E} 層	I	1
I	$\mathrm{F}-\mathrm{IV}$	Z	E-W	C 層	A層 B _{1E} 層	最大 約 20.0km	最大約 48.0km		K = 2	7 7	NNW	E N E - W S W	B 2w層	A層 B _{1w} 層	最大	※) 3. pkm に記載
	F−Ⅲ	NW	N E - S W	C 圉	A層 B _{1E} 層 B _{2E} 層	最大 約 4. 5km			K = 1	т т	NNW	E N E - W S W	Bıw層	A層	最大 "	*v) 32. UKm 周辺海域
	$\mathrm{F}-\mathrm{II}$	Z	$\rm E-W$	D1個	A層 B _{1E} 層 B _{2E} 層	I	I		K-3	- 1	IW	- M S W	B 2w層	A層 B 1 w層	×	. 0km
	$\mathrm{F}-\mathrm{I}$	S S E	E N E - W S W	C層下部	A層 B ^{1 E} 層 B ^{2 E} 層 C 層上部	I	1		$\mathrm{F}-\mathrm{VII}$	F _K -	ΝΝ	ENE-	B _{2E} 層下部	A層 B _{1E} 層 B _{2E} 層上部 (一部B _X 層)	上	約 19
	断層名	相対的落下側	走向	変位又は 変形している 最上位層	変位及び変形していない地層	期更新世以降の活 を考慮する長さ	動を考慮する長さ		撓曲名		相対的落下側	走向	変位又は 変形している 最上位層	変位及び変形していない地層	期更新世以降の活 ****、5、	どろ慮りの女い 動を考慮する長さ
				断層運	動により	後載	連			項目			断層運	動により	後	劉連

第3.2-7表 敷地前面海域の断層一覧表

							第3.2-8表	敷地周辺海域の主	要断層一覧表
項目	断層名	鳥 取 沖 の 断 層	大 田 沖 の 断 層	隠 岐 北 西 方 の 断 層	見 島 付 近 の 断 層	見 島 北 方 沖 の 断 層	地蔵崎北東沖の 断層	F _{KO} 断層	F 5 7 断層
断層	を記載している 文献 [*]	(1), (2), (3), (6), (7), (8)	(1), (2), (8)	(4), (5)	(1), (2)	(4)	(3)	(8)	(8)
文献	敷地からの距離	57km ((1)による)	64km ((1)による)	132km ((4)による)	173km ((2)による)	178km ((4)による)	41km ((3)による)	57km ((8)による)	103km ((8)による)
に示されて	地形的位置	兵庫県新温泉町沖の大陸斜面~ 島根県松江市美保関町東方沖の大陸棚~ 島根半島東部の陸域	島根県中部沿岸 の大陸棚	隠岐北西方 の大陸斜面	島根県西部〜山口県〜 福岡県沿岸の大陸棚	見島北方沖 の大陸斜面	鳥取県東部~ 島根半島東部 沿岸の大陸棚	隠岐西方の大陸斜面	島根県中部沿岸 の大陸棚~大陸斜面
いる	走 向	ENE-WSW	E-W	$NW-SE \sim N-S$	ENE-WSW	$NE-SW \sim E-W$	ENE-WSW	ENE-WSW	$E - W \sim N E - S W$
ě 状	長さ	約130km ((1)による)	約55km ((1)による)	約65km ((4)による)	約175km ((2)による)	約85km ((4)による)	約50km ((3)による)	27km ((8)による)	102km ((8)による)
音波探査記録の解析結	中 部 更 新 統 以上への影響	兵庫県新温泉町沖から鳥取県大山町沖に かけて断続して分布する断層群が推定さ れる。そのうち,兵庫県新温泉町沖から 鳥取県湯梨浜町沖の約50km区間,鳥取県 湯梨浜町沖から鳥取県北栄町沖の約8km区 間及び鳥取県北栄町沖から鳥取県大山町 沖の約40km区間は,変位のセンスが様々 であり,かつ2km以下の複数の不連続部 分を含むものの,それぞれ一連の構造で ある可能性を否定できないものと判断さ れる。ただし,鳥取県湯梨浜町沖から鳥 取県北栄町沖の約8km区間の断層群は,後 期更新世の地層に影響を及ぼしていない ものと判断される。 また,鳥取県大山町沖以西では,連続す る断層は認められない。	約53km区間で断 続して分布する 断層群が推定さ れる。	 北部の約36km区間で 断層が推定される。 中央部及び南部では 断層は認められない。 	東部及び西部で数条の断 層が推定されるが,いず れも長さが短い。これら の間では,連続する断層 は認められない。	西部の約38km区間で 不明瞭な部分を含み 断層が推定される。 東部では連続する断 層は認められない。	断層は認められない。	約32km区間で断層が 推定される。	約108km区間で断続 して分布する断層群 が推定される。
 和果	下 部 更 新 統 以下への影響	上記の中部更新統以上へ影響を与える断層に加えて,鳥取県大山町沖から島根県 松江市美保関町東方沖にかけての約9km 区間に,断層が推定される。	上記の中部 東 を 与 え る 断 個 し て 新 を 加 び て 約 に 連 続 し て 、 東 側 し て 、 東 側 し て 、 東 観 し で 、 雨 側 し で 、 雨 側 し で 、 雨 側 し で 、 雨 側 し て 、 雨 側 し て 、 雨 側 し て 、 雨 側 し て 、 雨 側 し て 、 雨 側 し て 、 雨 側 し て 、 下 画 続 一 び に 画 続 売 い び 下 の で 前 の で の で 、 の 、 で 、 の で の で 、 の で の の で の で の で の の で の で の の の で の の の で の の の で の の の の の の の の の の の の の	上記の中部更新統以 上へ影響を与える断 層と同様の位置に断 層が推定される。	上記の中部更新統以上へ 影響を与える断層に加え て、中央部から西部にか けて数条の断層が推定さ れるが、いずれも長さが 短い。 これらの間では、記録が 見られる深度には連続す る断層が認められない。	上記の中部更新統以 上へ影響を与える断 層と同様の位置に断 層が推定される。 東部では,記録が見 られる深度には連続 する断層が認められ ない。	記録が見られる 深度には断層は 認められない。	上記の中部更新統以 上へ影響を与える断 層と同様の位置に断 層が推定される。	上記の中部更新統以 上へ影響を与える断 層と同様の位置に断 層が推定される。
, mar	· 評 価	兵庫県新温泉町沖から鳥取県湯梨浜町沖 の約50km区間(鳥取沖東部断層)及び鳥 取県北栄町沖から鳥取県大山町沖の約 40km区間(鳥取沖西部断層)について は,後期更新世以降の活動性が高いもの として評価する。また,鳥取沖東部断層 及び鳥取沖西部断層は連動するものとし て評価し,約98kmの区間を考慮する。	約53km区間(大 田沖断層)につ いては,後期更 新世以降の活動 性が高いものと して評価する。	北部の約36km区間に ついては、活動が後 期更新世以降に及ん でいる可能性がある が、敷地からの距離 を考慮すると、敷地 に与える影響は小さ いと判断される。	東部及び西部で推定され た中部更新統以上に影響 を与える断層は,いずれ も長さが短く,敷地から の距離を考慮すると,敷 地に与える影響は小さい と判断される。	西部の約38km区間に ついて,活動が後期 更新世以降に及んで いる可能性がある が,敷地からの距離 を考慮すると,敷地 に与える影響は小さ いと判断される。	少なくとも本断 層の後期更新世 以降における活 動はないものと 判断される。	約32km区間について は,後期更新世以降 の活動性が高いもの として評価する。ま た,F _{KO} 断層,K- 1 撓曲及びK-2 撓 曲は連動するものと して評価し,約36km の区間を考慮する。	約108km区間につい ては,後期更新世以 降の活動性が高いも のとして評価する。

*:(1):地質調査所「日本地質構造図」1/300万,(2):地質調査所「海洋地質図」1/100万,(3):地質調査所「海洋地質図」1/20万,(4):活断層研究会「新編 日本の活断層」1/100万, (5):海上保安庁水路部「海底地質構造図」1/20万,(6):海上保安庁水路部「海底地質構造図」1/5万,(7):徳山ほか(2001)「日本周辺海域中新世最末期以降の構造発達史」, (8):国土交通省・内閣府・文部科学省(2014)日本海における大規模地震に関する調査検討会「海底断層ワーキンググループ報告書」

第3.2-1図 敷地周辺陸域の地形図

第3.2-2図 敷地周辺陸域の切峰面図

第3.2-3図 敷地周辺陸域の地質図

D

第3.2-4図 敷地周辺陸域の地質断面図

第3.2-5図(1) 宍道湖及び中海の音波探査測線図(その1) 6 - 3 - 193

第3.2-5図(2) 宍道湖及び中海の音波探査測線図(その2) 6 - 3 - 194

第3.2-6図 宍道湖及び中海の地質図

第3.2-7図 宍道湖の地質断面図

数字(角度)は水平・垂直比が1:1の傾斜角度

- 凡 例
- Ⅰ_N Ⅰ_N層 完新統
- **Ⅱ** № **Ⅱ** № 層 中部~上部更新統
- N IIIN層 中部~上部中新統 (松江層)
- IV_N層 中部中新統 (布志名層・古江層)
- ♥ N
 V N
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P

- Ⅷ☆層 新第三紀~第四紀の火山岩・貫入岩 VIII N
- 断層及び断層名 F — A
- 地層境界
- --- 推定地層境界

数字(角度)は水平・垂直比が1:1の傾斜角度

第3.2-8図 中海の地質断面図

第3.2-9図(1) 宍道湖の音波探査記録(エアガン・マルチチャンネル)

6 - 3 - 198

第3.2-9図(2) 宍道湖の音波探査記録(ウォーターガン)