島根原子力発電所2号炉 審査資料						
資料番号	EP(E)-077改03					
提出年月	令和3年4月28日					

島根原子力発電所 2号炉

津波評価について

(参考資料)

令和3年4月28日 中国電力株式会社

6. 津波

6.1 基本方針

施設の安全設計に用いる基準津波は,最新の科学的・技術的知見を踏ま え,波源海域から敷地周辺までの海底地形,地質構造及び地震活動性等の 地震学的見地から策定する。

また,基準津波の策定に当たっては,地震のほか,地震以外の要因及び これらの組合せによるものを複数選定し,不確かさを考慮して数値解析を 実施する。

基準津波の策定における検討フローを第6.1-1図に示す。

なお,津波評価に当たっては,津波水位及び標高に係る表記をT.P.(東 京湾平均海面)とする。敷地における標高EL.はT.P.±Omを基準とし ているため,T.P.=EL.となる。 6.2 文献調查

文献調査^{(1)~(22)}の結果より、日本海側で発生した既往津波のうち、敷 地の位置する山陰沿岸に影響を及ぼしたと考えられる主な津波を抽出した。

これらの津波の概要を第6.2-1表に、日本海における既往地震の震央位 置及び地震規模を第6.2-1図に示す。

1872年に島根県西部で浜田地震による津波が発生したが,山陰沖,対馬海峡及び九州の西方海域ではほとんど津波は発生していない。

なお、1600年以前に山陰沖で発生したと考えられる主な津波として、1026 年の万寿津波が挙げられるが、飯田(1979)及び渡辺(1998)を踏まえる と、少なくとも島根半島には津波による影響はなかったものと考えられる。

また,島根県及び鳥取県の沿岸部の市町村史等を対象として津波及び津 波被害の記述・伝承を確認した結果,文献調査により確認した津波以外に ついては,いずれも規模に関する具体的記述がないものであった。

既往津波について調査した結果,島根半島に影響を与えたと考えられる 津波として,1983年日本海中部地震津波及び1993年北海道南西沖地震津波 があるが,発電所においてこれらを観測した記録はなく,敷地への影響は なかった。

北海道から島根県に至る日本海沿岸の既往津波高の記録を第6.2-2図に 示す。

1983年日本海中部地震津波では、津波の最大高さ(検潮記録)は、能代港で194cm、次いで「南津の127cmとなっている。一方、敷地周辺の記録としては、気象庁境検潮所で津波の最大高さは42cmであり、また、発電所近傍の痕跡高として、 意曇で0.90m、 加賀で1.15mが記録されている。

1993年北海道南西沖地震津波では,既往津波高の最大は,北海道鄭崑島 の藻芮地区で約29mとなっている。一方,敷地周辺の記録としては,気象庁 境検潮所で津波の最大高さは37cmであり,また,発電所近傍の痕跡高とし て,恵曇で1.40m, 奉緒で1.20m, 笄句で1.70m,御津で1.93m,加賀で1.52m が記録されている。 なお,島根半島に影響を与えたと考えられる地震以外の要因による津波 について,敷地周辺における記録はない。 6.3 津波評価手法及び評価条件

6.3.1 数値シミュレーションの手法と条件

津波評価における計算条件を第6.3-1表に、計算領域と水深を
第6.3-1図に、計算領域と格子分割を第6.3-2図に示す。取放水施設計算
条件を第6.3-2表に、取水施設を第6.3-3図に示す。

津波解析は,対馬海峡付近から間宮海峡付近に至る東西方向約1,300km, 南北方向約2,100kmを対象とし,水深と津波の周期から推定される津波の波 長及び日本海東縁部に想定される地震による津波の伝搬経路上に位置する 大和堆の影響を考慮したうえで,計算格子間隔を設定⁽²³⁾した。

また,海底地形は日本水路協会等による海底地形図^{(24)~(33)}を用いてモ デル化し,特に敷地近傍については,深浅測量等による地形図を用いて詳 細にモデル化した。

基準津波の策定においては、津波防護対象施設等への津波の影響を確認 するため、津波の水位上昇側の評価地点は施設護岸とする。また、施設護 岸を越えた津波は防波壁に到達することから防波壁も対象とする。

引き津波に対する影響を確認するため、津波の水位下降側の評価地点は 2号炉取水口とする。

基準津波の策定においてはこれらの評価地点を基本とするが、ドライサ イト及び海水ポンプの取水性を確認する観点から、水位上昇側については 1号、2号及び3号炉の取・放水槽、水位下降側については2号炉取水槽 も評価地点として設定し、基準津波を策定する。

基準津波の策定における津波水位の評価地点を第6.3-4図に示す。

また,輪谷湾に設置している防波堤については,地震による損傷が否定 できないことから,防波堤無し条件において防波堤有り条件と同様の手順 でパラメータスタディを行う。なお,防波堤有り条件では防波堤ケーソン 及び捨石マウンドをモデル化し,防波堤無し条件では防波堤ケーソン及び 捨石マウンドを全て取り除いた状態でモデル化を行う。

防波堤の位置及び構造を第6.3-5図に示す。

6 - 6 - 4

6.3.2 再現性確認のための対象津波

1983年日本海中部地震津波及び1993年北海道南西沖地震津波が,島根半島に影響を与えたと考えられることから,これらの津波を再現性確認のための検証解析及び敷地における予測解析の対象となる既往津波として選定した。

6.3.3 既往津波の再現性

数値シミュレーションによる津波の再現性確認に際しては,北海道から 島根県に至る日本海沿岸における既往津波高と数値シミュレーションによ る津波高を比較した。

再現性確認の指標としては,相田(1977)⁽³⁴⁾による既往津波高と数値シ ミュレーションによる津波高との比である幾何平均値 *K* 及び幾何標準偏 差*κ*を用いた。

以下に,幾何平均値 K 及び幾何標準偏差 K の算定式を示す。

$$\ell og K = \frac{1}{N} \sum_{i=1}^{N} (\ell og K_i)$$
$$\ell og \kappa = \left\{ \frac{1}{N} \sum_{i=1}^{N} (\ell og K_i)^2 - (\ell og K)^2 \right\}^{1/2}$$
$$R$$

$$K_i = \frac{K_i}{H_i}$$

ここで、 R_i は i 番目の地点の観測値(既往津波高)を、 H_i は数値シミュレーションによる津波高を表す。

なお,幾何平均値 *K* 及び幾何標準偏差_κについては,土木学会(2016) (以下「土木学会」という。)において「0.95 < *K* < 1.05, _κ < 1.45」が再 現性の指標(目安)とされている。

数値シミュレーションによる津波の再現性については、以下のとおり検 討した。

1983年日本海中部地震津波については,相田(1984)⁽³⁵⁾による波源モデ

ルを設定し、1993年北海道南西沖地震津波については、高橋ほか(1995)⁽³⁶⁾ による波源モデルを設定し、津波の再現計算を行った。これらの波源モデ ルの断層パラメータ及びその設定位置を第6.3-6図に示す。

計算結果の再現性は、数値シミュレーションによる津波高を東北大学・ 原子力規制庁(2014)による既往津波高と比較することで確認した。

北海道から島根県に至る日本海沿岸の既往津波高と数値シミュレーションによる津波高の比較を第6.3-7図に示す。

結果は第6.3-3表に示すとおり、1983年日本海中部地震津波については 日本海沿岸でK = 1.04, $\kappa = 1.39$ 及び島根半島でK = 0.96, $\kappa = 1.30$, 1993 年北海道南西沖地震津波については日本海沿岸でK = 1.02, $\kappa = 1.41$ 及び 島根半島でK = 1.05, $\kappa = 1.39$ となり、いずれも土木学会による再現性の 指標(目安)を満足している。

6.3.4 既往津波の予測結果

1983年日本海中部地震津波の数値シミュレーション結果から求めた敷地における水位上昇側及び水位下降側の評価水位を第6.3-4表に示す。

これによると、施設護岸又は防波壁における最高水位はT.P.+2.7mで ある。また、2号炉取水口における最低水位はT.P.-1.4mである。

1993年北海道南西沖地震津波の数値シミュレーション結果から求めた敷地における水位上昇側及び水位下降側の評価水位を第6.3-5表に示す。

これによると、施設護岸又は防波壁における最高水位はT.P.+1.8mで ある。また、2号炉取水口における最低水位はT.P.-1.2mである。 6.4 基準津波の検討

6.4.1 地震による津波の想定

地震による津波の想定に当たっては,海域活断層から想定される地震に よる津波として,敷地周辺の海域活断層から想定される地震による津波を 検討する。

さらに,文献調査の結果,敷地から遠く離れているが,島根半島に影響 を与えたと考えられること及び大和堆の影響により島根半島に向かう傾向 があることから,日本海東縁部に想定される地震による津波についても検 討の対象とする。

数値シミュレーションに当たっては、土木学会を参考に、津波の波源モ デルに係る不確定性を考慮したパラメータスタディを実施する。

また,行政機関が想定する波源モデル等を対象とした検討を行い,比較・ 分析を実施する。

6.4.1.1 海域活断層から想定される地震による津波の検討

6.4.1.1.1 土木学会に基づく検討

(1) 簡易予測式による津波高さの検討

海域活断層から想定される地震による津波については,敷地周辺の海 域において,後期更新世以降の活動を考慮する断層及び撓曲を対象とし て,阿部(1989)⁽³⁷⁾の予測式により,敷地における津波の予測高を検討 した。

主な海域の活断層を第6.4-1図に,阿部(1989)の予測式による津波 の予測高の算定フローを第6.4-2図に,津波の予測高を第6.4-1表に示 す。

第6.4-1表に示すとおり、津波の予測高が最大となる断層はF - III断層, F - IV断層及びF - V断層の連動を考慮する場合(以下「F - III断層+F - IV断層+F - V断層」という。)であり、予測高は3.6mである。

(2) 数値シミュレーションによる津波の検討

阿部(1989)の予測式により予測高が最大となったF-Ⅲ断層+ F-Ⅳ断層+F-V断層を対象として,傾斜角,すべり角(主応力軸の ばらつきを考慮して傾斜角と走向に基づき設定)及び断層上縁深さを不 確かさとして考慮した数値シミュレーションによるパラメータスタディ を実施した。

(3) 概略パラメータスタディ

傾斜角及びすべり角を不確かさとして考慮した数値シミュレーション による概略パラメータスタディを実施した。概略パラメータスタディに おけるパラメータを第6.4-2表に示す。

(4) 詳細パラメータスタディ

概略パラメータスタディによる評価水位が最高及び最低となる波源モ デルについて,傾斜角,すべり角及び断層上縁深さを不確かさとして考 慮した数値シミュレーションによる詳細パラメータスタディを実施した。 詳細パラメータスタディにおけるパラメータを第6.4-3表に示す。

これらの結果,施設護岸又は防波壁における最高水位はT.P.+3.6m である。また,2号炉取水口における最低水位はT.P.-3.9mである。

評価水位が最高又は最低となる波源モデルのパラメータ並びに敷地に おける水位上昇側及び水位下降側の評価水位を第6.4-4表に示す。

- 6.4.1.2 日本海東縁部に想定される地震による津波の検討
- 6.4.1.2.1 土木学会に基づく検討

土木学会及び地震調査研究推進本部(2003)⁽³⁸⁾を参考に,日本海東縁部 に想定される地震規模に応じた波源の基準波源モデルを設定し,数値シミ ュレーションによるパラメータスタディを実施した。

(1) 基準波源モデルの設定

第6.4-3図に示すように、日本海東縁部に想定される地震による津波の波源として、北海道北西沖から新潟県沖までの海域にモーメントマグ

ニチュードMw7.85の基準波源モデルを設定した。

(2) 概略パラメータスタディ

基準波源モデルについて,第6.4-3図に示すように傾斜角を60°,す べり角を90°,断層上縁深さを0kmとし,位置及び傾斜方向を不確かさ として考慮した数値シミュレーションによる概略パラメータスタディを 実施した。

(3) 詳細パラメータスタディ

概略パラメータスタディによる評価水位が最高及び最低となる波源モ デルについて、位置、傾斜角、断層上縁深さ及び走向を不確かさとして 考慮した数値シミュレーションによる詳細パラメータスタディを実施し た。詳細パラメータスタディの波源モデルを第6.4-4図に示す。

これらの結果,施設護岸又は防波壁における最高水位はT.P.+7.2m である。また,2号炉取水口における最低水位はT.P.-4.2mである。

評価水位が最高又は最低となる波源モデルのパラメータ並びに敷地に おける水位上昇側及び水位下降側の評価水位を第6.4-5表に示す。

(4) 断層上縁深さ1kmの影響検討

詳細パラメータスタディで評価水位が最高及び最低となる波源モデル に基づき,国土交通省・内閣府・文部科学省(2014)⁽³⁹⁾に示される知見 を踏まえ,断層上縁深さを1kmとした数値シミュレーションを実施した。 これらの結果,施設護岸又は防波壁における最高水位はT.P.+7.2m である。また、2号炉取水口における最低水位はT.P.-4.2mである。

評価水位が最高又は最低となる波源モデルのパラメータ並びに敷地に おける水位上昇側及び水位下降側の評価水位を第6.4-6表に示す。

6.4.1.2.2 地震発生領域の連動を考慮した検討

地震調査研究推進本部(2003)が示す地震発生領域の連動の可能性は低いと考えるが、2011年東北地方太平洋沖地震では、広い領域で地震が連動して発生したことを踏まえ、科学的想像力を発揮し、不確かさとして地震発生領域の連動を考慮した数値シミュレーションを実施した。

(1) 波源領域位置の影響検討

地震調査研究推進本部(2003)を参考に設定した波源領域を14区分に 細区分し、波源領域位置の違いによる津波の敷地への影響を確認した。

第6.4-5図に示すように、津波の敷地への影響が大きい波源領域が青 森県西方沖及び佐渡島北方沖であることを確認した。

(2) 基準波源モデルの設定

第6.4-6図に示すように、津波の敷地への影響が大きい波源領域であ る青森県西方沖及び佐渡島北方沖が連動する延長350kmの基準波源モデ ルを設定した。すべり量については、国土交通省・内閣府・文部科学省 (2014)を踏まえ、平均すべり量は6m、最大すべり量は平均すべり量の 2倍の12mとした。また、根本ほか(2009)⁽⁴⁰⁾に基づき、大すべり域と 背景領域の面積比を1:3とした。

なお、国土交通省・内閣府・文部科学省(2014)に基づき設定した最 大すべり量は、地震調査研究推進本部(2016)⁽⁴¹⁾及び土木学会に基づき 算出されるすべり量を上回ることを確認した。

(3) 概略パラメータスタディ

波源モデル位置を概略的に検討するため、基準波源モデルについて、 第6.4-7図に示すように、位置、傾斜角及び大すべり域位置を不確かさ として考慮した数値シミュレーションによる概略パラメータスタディを 実施した。

(4) 詳細パラメータスタディ①

概略パラメータスタディにおいて評価水位が最高及び最低となる波源 モデルに基づき,各々の影響因子による影響を確認するため, 第6.4-8図に示すように,断層上縁深さ,走向,大すべり域位置及び波 源モデル位置を不確かさとして考慮した数値シミュレーションによる詳 細パラメータスタディ①を実施した。

(5) 詳細パラメータスタディ②

詳細パラメータスタディ①において評価水位に対する影響が大きい影

響因子を抽出し,第6.4-8図に示すように,各々の影響因子を不確かさ として考慮した数値シミュレーションによる詳細パラメータスタディ② を実施した。

(6) 詳細パラメータスタディ③

詳細パラメータスタディ②において評価水位が最高及び最低となる波 源モデルに基づき,第6.4-8図に示すように,影響の大きい因子である 大すべり域位置を南北に10~30km(10kmピッチ)変化させた数値シミュ レーションによる詳細パラメータスタディ③を実施した。

これらの結果,施設護岸又は防波壁における最高水位はT.P.+8.7m である。また,2号炉取水口における最低水位はT.P.-4.5mである。

評価水位が最高又は最低となる波源モデルのパラメータ並びに敷地に おける水位上昇側及び水位下降側の評価水位を第6.4-7表に示す。

6.4.1.3 行政機関による津波評価

「6.4.1.1 海域活断層から想定される地震による津波の検討」及び 「6.4.1.2 日本海東縁部に想定される地震による津波の検討」の結果につ いて,安全側の評価を実施する観点から必要な科学的・技術的知見が反映 されていることを確認するため,行政機関による津波評価との比較・分析 を実施する。

- 6.4.1.3.1 海域活断層から想定される地震による津波の検討
 - (1) 国土交通省・内閣府・文部科学省(2014)に基づく検討
 - a. 検討対象波源モデルの選定

国土交通省・内閣府・文部科学省(2014)に示される波源モデルのうち,敷地周辺の海域における波源モデルの中で,島根県に与える影響が大きいとされているF55断層,F56断層及びF57断層を検討対象 波源モデルとする。

国土交通省・内閣府・文部科学省(2014)に示される波源モデルを 第6.4-9図に示す。 b. 数値シミュレーションによる津波の検討

検討対象波源モデルに基づき,大すべり域を不確かさとして考慮した 数値シミュレーションを実施した。

これらの結果,評価水位が最高及び最低となるのはF56断層から想 定される地震による津波であり,施設護岸又は防波壁における最高水位 はT.P.+1.9m,2号炉取水口における最低水位はT.P.-1.0mである。

評価水位が最高又は最低となる波源モデルのパラメータ並びに敷地 における水位上昇側及び水位下降側の評価水位を第6.4-8表に示す。

(2) 国土交通省・内閣府・文部科学省(2014)の横ずれ断層に対するすべ り角の知見を踏まえた検討

a. 検討内容

「6.4.1.1.1 土木学会に基づく検討」において評価水位が最高及び 最低となる波源モデルに基づき,国土交通省・内閣府・文部科学省(2014) の横ずれ断層に対するすべり角の知見を踏まえた検討を実施した。

すべり角については、主応力軸から求まるすべり角が0°若しくは 180°の横ずれ断層に対して、すべり角35°に対応する鉛直変位を考慮 した数値シミュレーションを実施した。

また, すべり角を変更したケースに対して, 断層上縁深さを1kmとし た数値シミュレーションを実施した。

b. 数値シミュレーションによる津波の検討

「6.4.1.1.1 土木学会に基づく検討」において評価水位が最高及び最低となる波源モデルに基づき,国土交通省・内閣府・文部科学省(2014)の横ずれ断層に対するすべり角の知見を踏まえた数値シミュレーションを実施した。

これらの結果,施設護岸又は防波壁における最高水位はT.P.+3.6m である。また,2号炉取水口における最低水位はT.P.-3.8mである。

評価水位が最高又は最低となる波源モデルのパラメータ並びに敷地に おける水位上昇側及び水位下降側の評価水位を第6.4-9表に示す。

- (3) 地方自治体独自の波源モデルに基づく検討
 - a. 島根県(2016)に基づく検討

島根県(2016)⁽⁴²⁾に示される波源モデルを第6.4-10図に示す。

隠岐北西沖の地震による津波については,断層長さ及び敷地からの距離を考慮すると,「6.4.1.1.1 土木学会に基づく検討」において評価を行った隠岐北西方北部断層から想定される地震による津波と同程度と推定されるため,敷地への影響は十分小さいと評価した。

F55断層, F56断層及びF57断層から想定される地震による津 波については, 「6.4.1.3.1(1) 国土交通省・内閣府・文部科学省(2014) に基づく検討」において敷地への影響の確認を行った。

浜田市沖合の地震による津波については,断層長さ及び敷地からの距離を考慮すると「6.4.1.1.1 土木学会に基づく検討」において評価を行った大田沖断層から想定される地震による津波の敷地への影響を下回ると評価した。

F60断層から想定される地震による津波については,断層長さ及び 敷地からの距離を考慮するとF57断層から想定される地震による津 波の敷地への影響を下回ると評価した。

b. 鳥取県 (2012) に基づく検討

鳥取県(2012)⁽⁴³⁾に示される波源モデルを第6.4-10図に示す。鳥取 沖東部断層及び鳥取沖西部断層から想定される地震による津波につい て,断層長さ及び敷地からの距離を考慮すると、「6.4.1.1.1 土木学会 に基づく検討」において評価を行った鳥取沖東部断層及び鳥取沖西部断 層の連動を考慮する場合(以下「鳥取沖西部断層+鳥取沖東部断層」と いう。)に想定される地震による津波の敷地への影響を下回ると評価し た。 6.4.1.3.2 日本海東縁部に想定される地震による津波の検討

- (1) 国土交通省・内閣府・文部科学省(2014)に基づく検討
 - a. 検討対象波源モデルの選定

国土交通省・内閣府・文部科学省(2014)に示される波源モデルのうち、日本海東縁部における波源モデルの中で、島根県に与える影響が大きいとされているF24断層及びF30断層並びに鳥取県に与える影響が大きいとされるF17断層及びF28断層を検討対象波源モデルとする。

国土交通省・内閣府・文部科学省(2014)に示される波源モデルを 第6.4-11図に示す。

b. 数値シミュレーションによる津波の検討

検討対象波源モデルに基づき,不確かさの因子である,大すべり域を 変化させた数値シミュレーションを実施した。

これらの結果,評価水位が最高となるのはF28断層から想定される 地震による津波であり,施設護岸又は防波壁における最高水位はT.P. +3.6mである。また,評価水位が最低となるのはF24断層から想定さ れる地震による津波であり,2号炉取水口における最低水位はT.P. -2.4mである。

評価水位が最高又は最低となる波源モデルのパラメータ並びに敷地 における水位上昇側及び水位下降側の評価水位を第6.4-10表に示す。

- (2) 地方自治体独自の波源モデルに基づく検討
 - a. 検討対象波源モデルの選定

日本海東縁部において地方自治体が想定した波源モデルについて、 「6.4.1.2.1 土木学会に基づく検討」において想定しているモーメン トマグニチュードMw7.85を上回る規模の波源モデルを検討対象波源 モデルとする。

地方自治体独自の波源モデルを第6.4-12図に示す。

b. 数値シミュレーションによる津波の検討

検討対象波源モデルに基づき、数値シミュレーションを実施した。

これらの結果,評価水位が最高及び最低となるのは鳥取県(2012)が 日本海東縁部に想定した波源モデルであり,施設護岸又は防波壁におけ る最高水位はT.P.+10.5mである。また,2号炉取水口における最低 水位はT.P.-5.0mである。

評価水位が最高及び最低となる波源モデルのパラメータ並びに敷地 における水位上昇側及び水位下降側の評価水位を第6.4-11表に示す。 c. 波源モデル設定の妥当性検討

鳥取県(2012)が日本海東縁部に想定した波源モデルにおけるすべり 量及びすべりの均質・不均質性の設定について,他の波源モデルへの適 用性の検討を文献調査により行った。検討結果を第6.4-12表に示す。

その結果,すべり量については過大な設定となっていることを確認した。また,すべりの均質性についても,長大断層に関する最新の知見を 踏まえるとすべりの不均質性を考慮するのが適当であると評価した。

これらの検討結果を踏まえ、「6.4.1.2.2 地震発生領域の連動を考慮 した検討」では、鳥取県(2012)におけるすべり量及びすべりの均質・ 不均質性の設定は採用しない。

また,鳥取県(2012)が日本海東縁部に想定した波源モデルについて は,長大断層に関する最新の知見を踏まえた設定でないため,パラメー タスタディによる不確かさの考慮は行わない。

しかしながら,安全側の評価を実施する観点及び地方自治体による地 域防災計画との整合を図る観点から,鳥取県が独自に設定している波源 モデルに対して数値シミュレーションを実施し,基準津波の策定におい て考慮する。

6.4.2 地震以外の要因による津波の想定

地震以外の要因による津波の想定に当たっては、地滑り、岩盤崩壊及び

火山現象に起因する津波を考慮する。

- 6.4.2.1 海底地滑りに起因する津波の検討
 - (1) 評価対象地滑り地形の選定

海底地滑りに起因する津波の検討を行うため,隠岐トラフ及び対馬海 盆のうち島根半島に近い大陸斜面を対象とした地滑りに関する 文献調査^{(44)~(51)}等を行い,地滑り地形を抽出した。抽出した地滑り地 形の概略体積を算出し,地滑りの位置及び崩落方向を考慮して区分した エリアごとに,概略体積が最大となる地滑り地形を評価対象地滑り地形 として選定した。評価対象地滑り地形の位置を第6.4-13図に示す。

(2) Watts et al. (2005)の方法を用いた評価対象地滑りによる敷地への 影響の検討

選定した評価対象地滑り地形について,海底地形図に基づき地滑りブ ロックを想定し, Watts et al. (2005)^{(52), (53)}の方法を用いた数値シミ ュレーションを実施した。Watts et al. (2005)の方法を用いた数値シ ミュレーションの算定フローを第6.4-14図に,数値シミュレーションの 結果を第6.4-13表に示す。

第6.4-13表に示すとおり,評価水位が最高及び最低となる地滑り地形 は地滑り①であり,施設護岸又は防波壁における最高水位はT.P. +2.0m, 2号炉取水口における最低水位はT.P.-1.2mである。

(3) 二層流モデル及び Watts et al. (2005)の方法を用いた数値シミュレーションの実施

敷地への影響検討において想定した地滑りブロックを包絡するように 設定した土塊範囲に基づき,二層流モデル⁽⁵⁴⁾及びWatts et al. (2005) の方法を用いた数値シミュレーションを実施した。

これらの結果,二層流モデルを用いた場合において評価水位が最高及 び最低となり,施設護岸又は防波壁における最高水位はT.P.+4.1m, 2号炉取水口における最低水位はT.P.-2.8mである。 二層流モデルによる計算条件を第6.4-14表に示す。

二層流モデル及びWatts et al. (2005)の方法において評価水位が最 高及び最低となる地滑り①の断面形状を第6.4-15図,敷地における水位 上昇側及び水位下降側の評価水位を第6.4-15表に示す。

- 6.4.2.2 陸上地滑りに起因する津波の検討
 - (1) 地滑り地形の抽出

陸上地滑りに起因する津波の検討を行うため,防災科学技術研究所 (2005⁽⁵⁵⁾,2006⁽⁵⁶⁾)で示される地滑り地形を確認し,空中写真判読等 により沿岸域の地滑り地形の規模や地滑り方向等を推定し,地滑り地形 を抽出した。抽出した敷地周辺の陸上地滑り位置を第6.4-16図に示す。

(2) Huber and Hager (1997) の予測式を用いた津波高の検討

抽出した地滑り地形について, Huber and Hager (1997)⁽⁵⁷⁾の予測式 を用いた敷地における津波高さ(全振幅)を検討した。予測式による検 討結果を第6.4-16表に示す。第6.4-16表に示すとおり,敷地における 津波高さ(全振幅)が最大となる地滑り地形はLs7であり,その津波高 さ(全振幅)は1.2mである。

(3) 二層流モデル及び Watts et al. (2005)の方法を用いた数値シミュ レーションの実施

Huber and Hager (1997) の予測式を用いた敷地における津波高さ(全振幅)が相対的に大きな地滑りLs7及びLs26について,二層流モデル及びWatts et al. (2005)の方法を用いた数値シミュレーションを実施した。

これらの結果、二層流モデルを用いた場合において評価水位が最高及 び最低となり、施設護岸又は防波壁における最高水位はT.P.+1.2m, 2号炉取水口における最低水位はT.P.-0.5mである。

二層流モデルによる計算条件を第6.4-17表に示す。

Ls7及びLs26の断面形状を第6.4-17図,敷地における水位上昇側及び

水位下降側の評価水位を第6.4-18表に示す。

6.4.2.3 岩盤崩壊に起因する津波の検討

(1) Huber and Hager (1997) の予測式を用いた津波高の検討

岩盤崩壊の可能性がある地点を選定するため,航空レーザー測量結果の各メッシュ間の傾斜角を求め,60°以上となっている地点を抽出した。 抽出した地点より,敷地に与える影響が大きい岩盤崩壊について,Huber and Hager (1997)の予測式を用いた敷地における津波高さ(全振幅)を 検討した。

敷地周辺の岩盤崩壊の位置を第6.4-18図に,予測式による結果を 第6.4-19表に示す。

岩盤崩壊に起因する津波高さ(全振幅)は,陸上地滑りに起因する津 波高さ(全振幅)を下回ることから,岩盤崩壊に起因する津波の敷地へ の影響は小さいと評価した。

6.4.2.4 火山現象に起因する津波の検討

(1) 文献調査等による津波の検討

火山現象に起因する津波の敷地への影響が想定される第四紀火山として, 鬱陵島及び隠岐島後が挙げられる。また, 渡島大島は, 1741年に山体崩壊を起こし, 日本海沿岸に津波を引き起こしたとされることから, 渡島大島についても検討を実施する。

検討対象とする第四紀火山の位置を第6.4-19図に示す。

文献調査^{(58)~(62)}によると,鬱陵島及び隠岐島後については,いずれ も山体崩壊を伴うような爆発的噴火の可能性は低く,敷地に与える影響 が大きい津波は発生することはないと評価した。また,渡島大島の山体 崩壊による津波は,羽鳥・片山(1977)によると江の川河口において1 ~2mを観測したとされ,鳥取県(2012)が日本海東縁部に想定した波源 モデルによる地震に伴う津波を下回ることから,敷地においても津波高 さを下回ると評価した。

6.4.3 津波起因事象の重畳による津波の検討

地震による津波と地震以外の要因による津波の組合せとして 第6.4-20図に示す位置関係及び敷地への津波の到達時間を考慮して選定 した。また,数値シミュレーションに当たっては,地震動の継続時間の中 で,水位の足し合わせが最大となる時間差を考慮した。

これらの結果,施設護岸又は防波壁における最高水位はT.P.+3.8mで ある。また,2号炉取水口における最低水位はT.P.-3.7mである。

敷地における水位上昇側及び水位下降側の評価水位を第6.4-20表に示 す。

6.4.4 防波堤無し条件の津波評価

6.4.4.1 防波堤無し条件の津波評価の方針

防波堤は地震による損傷が否定できないことから,防波堤無し条件において防波堤有り条件と同様の手順でパラメータスタディを行う。防波堤無 し条件の検討に当たっては,防波堤有り条件において敷地への影響が大きい「日本海東縁部に想定される地震による津波」及び「海域活断層から想 定される地震による津波」を対象とし,「地震以外の要因による津波」については敷地への影響が小さいと判断した。

6.4.4.1.1 日本海東縁部を波源域とする地方自治体独自の波源モデルに基づく検討(鳥取県(2012))

鳥取県(2012)が日本海東縁部に想定した波源モデルによる地震に伴う 津波について,傾斜方向を不確かさとして考慮した数値シミュレーション を実施した。

これらの結果,防波堤無し条件で評価水位が最高及び最低となる波源モ デルは防波堤有り条件と同様であることを確認した。

防波堤無し条件の数値シミュレーションによる敷地における水位上昇側

及び水位下降側の評価水位を第6.4-21表に示す。

6.4.4.1.2 日本海東縁部を波源域とする地震発生領域の連動を考慮した検討(断層長さ 350km)

日本海東縁部に想定される地震発生領域の連動を考慮した検討による津 波について,数値シミュレーションによる概略パラメータスタディ及び詳 細パラメータスタディ(①,②及び③)を実施した。

これらの結果,防波堤無し条件で評価水位が最高及び最低となる波源モ デルは防波堤有り条件と異なるため,基準津波の策定において防波堤無し 条件ではこれらの波源モデルを用いる。

防波堤無し条件について評価水位が最高となる波源モデルのパラメータ 及び敷地における水位上昇側の評価水位を第6.4-22表,評価水位が最低と なる波源モデルのパラメータ及び敷地における水位下降側の評価水位を第 6.4-23表に示す。

6.4.4.1.3 海域活断層を波源域とする土木学会に基づく検討(F-Ⅲ断層
 +F-Ⅳ断層+F-V断層)

海域活断層(F-Ⅲ断層+F-Ⅳ断層+F-V断層)から想定される地 震による津波について、数値シミュレーションによる概略パラメータスタ ディ及び詳細パラメータスタディを実施した。

これらの結果,防波堤無し条件で評価水位が最低となる波源モデルは防 波堤有り条件と同様であることを確認した。

防波堤無し条件の数値シミュレーションによる敷地における水位下降側 の評価水位を第6.4-24表に示す。

6.4.5 基準津波の策定

これまでの数値シミュレーションの結果を踏まえ,水位上昇側及び水位 下降側について基準津波の策定を行った。

基準津波の策定位置を第6.4-21図に,計算水位の時刻歴波形を 第6.4-22図に,基準津波の波源モデルのパラメータ及び評価水位の一覧を 第6.4-25表に示す。

水位上昇側に関して,防波堤有り条件で施設護岸又は防波壁において最 高水位を示す津波を基準津波1として策定した。

基準津波1(防波堤有り)による2号及び3号炉取水槽における評価水 位を上回る,又はほぼ同値となる津波を基準津波2として策定した。

また,防波堤無し条件で防波堤有り条件と異なる波源において評価水位 が最高となる津波を基準津波5として策定した。

水位下降側に関して,防波堤有り条件で2号炉取水口において最低水位 を示す津波を基準津波1として策定した。

基準津波1(防波堤有り)による2号炉取水槽における評価水位とほぼ 同値となる津波を基準津波3及び基準津波4として策定した。

また,防波堤無し条件で防波堤有り条件と異なる波源において評価水位 が最低となる津波を基準津波6として策定した。

6.5 津波堆積物調查

基準津波の策定結果の検証として,山陰地方における痕跡高及び津波堆 積物の分布標高から推定される津波高及び浸水域を上回ることを確認する。

6.5.1 敷地周辺における津波堆積物調査

調査地点は、海岸に砂州堆積物や砂丘堆積物が認められ津波堆積物が保存されやすい地形であり、また、内陸に平野が広がり、津波の遡上範囲・ 高さの追跡が可能である、松江市鹿島町佐陀本郷及び美保関町辛齢の2地 点とした。調査地点においてボーリング調査及び定方位試料採取によるコ ア採取を実施したが、津波由来を示す証拠は見出せなかった。調査地点の 位置図を第6.5-1図に示す。

また,基準津波1を対象とした数値シミュレーションの結果,基準津波 1は調査地点の標高を上回ることを確認した。

6.5.2 山陰地方における津波堆積物調査

(1) 津波堆積物及び津波痕跡高に関する文献調査

津波堆積物に関する文献調査を実施した結果,1833年山形・庄内沖地 震による津波に由来する可能性が高いイベント堆積物が検出されている ことを確認した。文献調査の結果を第6.5-1表及び第6.5-2図に示す。

1833年山形・庄内沖地震による津波に由来する可能性が高いイベント 堆積物の層厚は3~70cmであるが,米子空港周辺を除く地点については 層厚10cm未満であり,分布標高は海面下である。

米子空港周辺の層厚が大きいイベント堆積物は,当該地点が堤間低地 に位置すること及び複雑な堆積環境によるものであることから,津波の 規模を反映したものではないと判断した。米子空港周辺のイベント堆積 物の層厚は,川沿いに遡上した津波が堆積させた10cm程度と評価し,分 布標高については当該地点の標高1.4mと評価した。

また、1833年山形・庄内沖地震津波の津波痕跡高に関して文献調査を

実施した結果を第6.5-3図に示す。島根半島における1833年山形・庄内 沖地震津波の津波痕跡高は、都司ほか(2017)⁽⁶³⁾により、^{とちまい}で3.1m, 餘子神社で2.4mであることを確認した。

(2) 基準津波との比較

基準津波の規模と痕跡高等から推定される1833年山形・庄内沖地震津 波の規模を比較した。その結果,基準津波のモーメントマグニチュード Mwは,土木学会に示される1833年山形・庄内沖地震津波の痕跡高を説 明できる波源モデルのモーメントマグニチュードMwを十分上回る設定 であることを確認した。

次に,基準津波と痕跡高及び津波堆積物の分布標高を比較した。その 結果,数値シミュレーションに基づく基準津波の津波高は,隠岐諸島で は痕跡高を上回り,島根県の七類,鳥取県の餘子神社及び米子空港周辺 では痕跡高及び津波堆積物の分布標高を上回らないことを確認した。

当該地点に影響の大きい因子を抽出した結果,餘子神社及び米子空港 周辺に影響の大きい因子は,敷地に影響の大きい因子とは異なる傾向と なることを確認し,当該地点に影響の大きい波源はいずれも敷地への影 響が小さいことを確認した。

また,1833年山形・庄内沖地震津波発生時の地形状況を可能な範囲で 考慮し,数値シミュレーションを実施した結果,基準津波を策定する際 に考慮した波源による水位が,餘子神社の痕跡高及び米子空港周辺の津 波堆積物の分布標高を上回ることを確認した。なお,七類においては, 1833年当時の地形状況を考慮した結果,基準津波が痕跡高を上回ること を確認した。

1833年山形・庄内沖地震津波により浸水域となる餘子神社及び米子空 港周辺の痕跡高等を上回る当該波源について,敷地における水位を確認 した結果,基準津波に比べ十分小さい。したがって,基準津波は,餘子 神社の痕跡高及び米子空港周辺の津波堆積物の分布標高から推定される 津波高及び浸水域を上回る規模であると評価した。

6 - 6 - 23

以上より,津波堆積物調査に係る文献調査等を行った結果,基準津波 が山陰地方における痕跡高及び津波堆積物の分布標高から推定される津 波高及び浸水域を上回っていると評価した。

- 6.6 基準津波による水位及び砂移動に対する検討
- 6.6.1 基準津波による最高水位及び最低水位

数値シミュレーションの結果,施設護岸又は防波壁における最大水位上 昇量は,基準津波1による11.13mであり,最高水位は朔望平均満潮位 T.P.+0.46m及び地盤変動量を考慮するとT.P.+11.6mである。また, 2号炉取水槽における最大水位下降量は,基準津波6による7.74mであり, 最低水位は朔望平均干潮位T.P.-0.02m及び地盤変動量を考慮すると T.P.-7.8mである。

- 6.6.2 基準津波による砂移動に対する検討
- 6.6.2.1 砂移動に関する数値シミュレーションの手法と条件

藤井ほか(1998)⁽⁶⁴⁾及び高橋ほか(1999)⁽⁶⁵⁾の手法に基づき,津波 による砂移動の数値シミュレーションを実施した。

数値シミュレーションのフローを第6.6-1図に,数値シミュレーションの手法及び条件を第6.6-1表,第6.6-2表に示す。

6.6.2.2 砂移動に関する検討結果

数値シミュレーションの結果,2号炉取水口付近の砂の堆積は最大で 2 cm程度である。

2号炉取水口周辺における各基準津波による砂移動の数値シミュレー ション結果を第6.6-3表,2号炉取水口における砂の堆積が最大となっ たケースの砂移動に伴う地形変化量の分布を第6.6-2図に示す。

また、2号炉取水槽の砂の堆積は最大で2cm程度である。

2号炉取水槽における各基準津波による砂移動の数値シミュレーション結果を第6.6-4表,2号炉取水槽における砂の堆積が最大となったケースの砂移動に伴う取水槽内の砂の堆積厚さ及び浮遊砂堆積濃度の時系列を第6.6-3図に示す。

6.7 超過確率の参照

6.7.1 評価方針

日本原子力学会(2012)⁽⁶⁶⁾,土木学会(2011)⁽⁶⁷⁾及び土木学会を踏まえ て,確率論的津波ハザード評価を行い,基準津波による水位の年超過確率 を検討した。

6.7.2 超過確率の検討

確率論的津波ハザード評価に用いたロジックツリーを第6.7-1図に,フ ラクタイル及び平均ハザード曲線を第6.7-2図に示す。

施設護岸又は防波壁における最高水位に対する年超過確率は10⁻⁴~ 10⁻⁵程度である。また、2号炉取水槽における最低水位に対する年超過確 率は10⁻⁴程度である。

- 6.8 参考文献
 - (1) (社)土木学会原子力土木委員会津波評価部会(2002):原子力発電所の津波評価技術
 - (2) (公社)土木学会原子力土木委員会津波評価部会(2016):原子力発電所の津波評価技術2016
 - (3) 渡辺偉夫(1998):日本被害津波総覧【第2版】,東京大学出版会,238p.
 - (4) 宇佐美龍夫・石井寿・今村隆正・武村雅之・松浦律子(2013):日本被 害地震総覧 599-2012,東京大学出版会,p.694
 - (5) 羽鳥徳太郎(1996):日本海における津波マグニチュードの特性,津波 工学研究報告13, p.17-26
 - (6) 羽鳥徳太郎(1986):津波の規模階級の区分,東京大学地震研究所彙報,
 第61冊第3号, p. 503-515
 - (7) 国立天文台編(2016):理科年表 平成29年, 丸善
 - (8) 羽鳥徳太郎(1984a):日本海の歴史津波,月刊海洋科学,Vol.16,
 p.538-545
 - (9) 東北大学・原子力規制庁(2014):津波痕跡データベース, http://tsunami-db.irides.tohoku.ac.jp/
 - (10) 箕浦幸治・菅原大助・山野井徹・山田努(2014):海溝型地震の予後:
 津波痕跡による変動の評価,日本地質学会学術大会講演要旨,121st,
 p.134
 - (11) 飯田汲事(1979):歴史地震の研究(2)万寿3年5月23日(1026年6月16日)の地震および津波の災害について、愛知工業大学研究報告、専門関係論文集、p.199-206
 - (12) 佐竹健治・加藤幸弘(2002):1741年寛保津波は渡島大島の山体崩壊 によって生じた,海洋,28号,p.150-160
 - (13) 羽鳥徳太郎(1995):日本海沿岸における津波のエネルギー分布,地
 震,第2輯,第48巻, p.229-233
 - (14) 都司嘉宣,加藤健二,荒井賢一,上田和枝(1994):北海道南西沖地

震津波の西日本海岸での浸水高,月刊海洋,号外No.7,p.192-200

- (15) 羽鳥徳太郎(1994):山陰地方の津波の特性,津波工学研究報告,第11
 号, p. 33-40
- (16) 阿部邦昭(1996):津波に対する島のレンズ効果-その1.1993年北海
 道南西沖地震津波,地震,第2輯,第49巻, p.1-9
- (17) 気象庁(1984):昭和58年(1983年)日本海中部地震調査報告,気象庁技術報告,第106号, p.252
- (18) (社) 土木学会日本海中部地震震害調査委員会(1986):1983年日本 海中部地震震害調査報告書,(社) 土木学会, p.111-181
- (19) 気象庁(1995):平成5年(1993年)北海道南西沖地震調査報告,気象庁技術報告,第117号, p.281
- (20) (社) 土木学会耐震工学委員会(1997):1993年北海道南西沖地震震
 害調査報告,(社)土木学会, p. 76-106
- (21) 羽鳥徳太郎・片山通子(1977):日本海沿岸における歴史津波の挙動とその波源域、東京大学地震研究所彙報、Vol. 52、p. 49-70
- (22) 羽鳥徳太郎(1984):北海道渡島沖津波(1741年)の挙動の再検討– 1983年日本海中部地震津波との比較–,東京大学地震研究所彙報,Vol.59, p.115–125
- (23) 長谷川賢一・鈴木孝夫・稲垣和男・首藤伸夫(1987):津波の数値実験における格子間隔と時間積分間隔に関する研究,土木学会論文集,第 381号,Ⅱ-7, p.111-120
- (24) 日本水路協会(2008):海底地形デジタルデータM7009(北海道西部),
 M7010(秋田沖), M7012(若狭湾), M7013(隠岐), M7015(北海道北部)
- (25) 日本水路協会(2009):海底地形デジタルデータM7014(対馬海峡),M7024(九州西岸海域)
- (26) 日本水路協会(2011):海底地形デジタルデータM7011(佐渡)
- (27) 日本水路協会(2011): JTOP030 日本近海30秒グリッド水深データ(M

1306, M1307, M1308, M1407, M1408, M1508)

- (28) 日本海洋データセンター(2002): J-EGG500 500mメッシュ水深データ.
- (29) IOC and IHO (2010) : GEBC030
- (30) 国土地理院(2006):数値地図 25000(行政界・海岸線)
- (31) 国土地理院(1999): 数値地図50mメッシュ(標高)日本-I
- (32) 国土地理院(2014):5mメッシュ標高,10mメッシュ標高
- (33) USGS (1996) : GTOPO30 Global 30 Arc Second Elevation Data Set
- (34) 相田勇(1977):三陸沖の古い津波のシミュレーション,東京大学地 震研究所彙報, Vol.52, p.71-101
- (35) 相田勇(1984):1983年日本海中部地震津波の波源数値モデル,東京 大学地震研究所彙報, Vol. 59, p. 93-104
- (36) 高橋武之・高橋智幸・首藤伸夫(1995):津波数値計算による北海道 南西沖地震の検討,地球惑星科学関連学会1995年合同大会予稿集, p. 370
- (37) 阿部勝征(1989):地震と津波のマグニチュードに基づく津波高の予測,東京大学地震研究所彙報, Vol.64, p.51-69
- (38) 地震調査研究推進本部地震調査委員会長期評価部会(2003):日本海 東縁部の地震活動の長期評価について,

http://www.jishin.go.jp/main/chousa/03jun_nihonkai/index.html

- (39) 国土交通省・内閣府・文部科学省(2014):日本海における大規模地 震に関する調査検討会,最終報告書(H26.9)
- (40) 根本信・高瀬嗣郎・長谷部大輔・横田崇(2009):日本海におけるア スペリティを考慮した津波波源モデルの検討,土木学会論文集B2(海 岸工学), Vol. B 2-65, No. 1, p. 346-350
- (41) 地震調查研究推進本部地震調查委員会(2016):「全国地震動予測地図 2016年版」
- (42) 島根県(2016):島根県地震津波防災対策検討委員会,
 http://www.pref.shimane.lg.jp/bousai_info/bousai/bousai/bosai_shi
 ryo/tsunamibousai.html

(43) 鳥取県(2012):鳥取県津波対策検討業務報告書概要, p. 3-23

- (44) 徳山英一・本座栄一・木村政昭・倉本真一・芦寿一郎・岡村行信・荒 戸裕之・伊藤康人・徐垣・日野亮太・野原壯・阿部寛信・坂井眞一・向 山建二郎(2001):日本周辺海域中新世最末期以降の構造発達史,海洋調 査技術、13:別添CD-ROM
- (45) 本座栄一・玉木賢策・湯浅真人・村上文敏(1979):日本海南部および対馬海峡周辺広域海底地質図(100万分の1)海洋地質図,13号,地質調査所
- (46) 玉木賢策・本座栄一・湯浅真人・西村清和・村上文敏(1981):日本 海中部海域広域海底地質図(100万分の1)海洋地質図,15号,地質調査 所
- (47) 玉木賢策・湯浅真人・村上文敏(1982): 隠岐海峡海底地質図(20万分の1),海洋地質図,20号,地質調査所
- (48) 山本博文・上嶋正人・岸本清行(1989):鳥取沖海底地質図(20万分の1)及び同説明書,海洋地質図,35号,地質調査所
- (49) 池原研・片山肇・佐藤幹夫(1990):鳥取沖表層堆積図(20万分の1)及び同説明書,海洋地質図,36号,地質調査所
- (50) 池原研(2007):日御碕沖表層堆積図(20万分の1)及び同説明書,海洋地質図,62号(CD),地質調査総合センター
- (51) 池原研(2010): 隠岐海峡表層堆積図(20万分の1)及び同説明書,海洋地質図,69号(CD),地質調査総合センター
- (52) Watts, P., Grilli, S. T., ASCE, M., Tappin, D. R., and Fryer, G. J. (2005) : Tsunami Generation by Submarine Mass Failure. II : Predictive Equations and Case Studies, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, p. 298-310
- (53) Grilli, S. T., ASCE, M., and Watts, P. (2005) : Tsunami Generation by Submarine Mass Failure. I:Modeling, Experimental Validation, and Sensitivity Analyses, Journal of Waterway, Port, Coastal, and Ocean

Engineering, ASCE, p. 283-297

- (54) Maeno, F. and Imamura, F. (2007) : Numerical investigations of tsunamis generated by pyroclastic flows from Kikai caldera, Japan, GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L23303, 2007
- (55) 防災科学技術研究所(2005):地すべり地形分布図 第25集「松江・ 高梁」,国立研究開発法人防災科学技術研究所
- (56) 防災科学技術研究所(2006):地すべり地形分布図 第26集「浜田・ 大社」,国立研究開発法人防災科学技術研究所
- (57) Huber, A. and W. H. Hager (1997) : Forecasting Impulse Waves in reservoirs, Dix-neuvieme Congres des Grands Barrages C31:993-1005. Florence, Italy. Commission Internationale des Grands Barrages, Paris
- (58) 町田洋・新井房夫(2011):新編日本の火山灰アトラス,東京大学出版会
- Harumoto, A. (1970) : Volcanic Rocks and Associated rocks of Utsuryoto island, (Japan Sea), Dept. Geol. Mineral. Kyoto Univ, p. 39
- (60) 金允圭(1985):韓国, 鬱陵島火山島の岩石学―その1. 地質―, 岩石鉱物鉱床学会誌, Vol. 80, p. 128-135
- (61) 太田陽子・成瀬敏郎・田中眞吾・岡田篤正編(2004):日本の地形6近畿・中国・四国,東京大学出版会, p. 383
- (62) 山内靖喜・沢田順弘・高須晃・小室裕明・村上久・小林伸治・田山良
 一(2009):西郷地域の地質,地域地質研究報告(5万分の1地質図幅),
 (独)産業技術総合研究所地質調査総合センター
- (63) 都司嘉宣・今井健太郎・岩瀬浩之・森谷拓実・松岡祐也・佐藤雅美・ 芳賀弥生・今村文彦(2017):天保四年(1833)出羽沖地震津波の隠岐諸 島,および島根半島での津波高,津波工学研究報告,第33号,p.333-356
 (64) 藤井直樹・大森政則・高尾真・金山進・大谷英夫(1998):津波によ

る海底地形変化に関する研究,海岸工学論文集,第45巻, p. 376-380

- (65) 高橋智幸・首藤信夫・今村文彦・浅井大輔(1999): 掃流砂層・浮遊
 砂層間の交換砂量を考慮した津波移動床モデルの開発,海岸工学論文集,
 第46巻, p. 606-610
- (66) (社)日本原子力学会(2012):日本原子力学会標準 原子力発電所に 対する津波を起因とした確率論的リスク評価に関する実施基準,2011
- (67) (社)土木学会 原子力土木委員会 津波評価部会(2011):確率論的津 波ハザード解析の方法
- (68) 後藤智明・小川由信(1982): Leap-frog法を用いた津波の数値計算 法,東北大学工学部土木工学科資料, p. 52
- (69) 小谷美佐・今村文彦・首藤伸夫(1998): GISを利用した津波遡上計算
 と被害推定法,海岸工学論文集,第45巻,p.356-360
- (70) Mansinha, L. and Smylie, D. E. (1971) : The displacement fields of inclined faults, Bull. Seism. Soc. Am., Vol. 61, p. 1433-1440
- (71) (社) 土木学会 (1999):「水理公式集 [平成11年版]」, p. 713
- (72) 電力土木技術協会(1995):「火力・原子力発電所土木構造物の設計ー 補強改訂版-」, p.1102
- (73) 千秋信一(1967):「発電水力演習」, 学献社, p. 423
- (74) 武村雅之(1998):日本列島における地殻内地震のスケーリング則 地震断層の影響および地震被害との関連-,地震第2輯,第51巻, p.211
 -228
- Murotani, S., Matsushima, S., Azuma, T., Irikura, K. and Kitagawa,
 S. (2015): Scaling Relations of Source Parameters of Earthquakes
 Occurring on Inland Crustal Mega-Fault Systems, Pure and Applied
 Geophysics, Vol. 172, p. 1371-1381
- (76) 安本善征(2013):鳥取沿岸津波堆積物調査の途中経過報告,平成25年度 中国地質調査協会鳥取支部第15回技術講演
- (77) 酒井哲弥(2014a):鳥取県内での津波堆積物検出作業の経過報告,鳥

取沿岸津波堆積物調査報告会(第2回),鳥取県,配布資料

- (78) 酒井哲弥(2014b):山陰に押し寄せた津波の痕跡を探る:2012年度津 波堆積物検出調査の結果報告,山陰防災フォーラム 2013年春の講演会, http://www.geo.shimane-u.ac.jp/sdpf/Sakai-2013-Spring-SYDPF.pdf
- (79) 酒井哲弥・入月俊明(2014):山陰地域における自然災害データベースの構築および防災研究拠点の形成研究成果報告書 津波堆積物調査報告,島根大学研究機構戦略的研究推進センター「萌芽研究部門」平成24~25年度プロジェクト, p. 57~62
- (80) 酒井哲弥・瀬戸浩二・安本善征・林照悟・田代誠士(2014):鳥取県 西部弓ヶ浜半島で見つかった津波由来の可能性のある堆積物とその意義, 日本地質学会第121年学術大会講演要旨, p.104
- (81) 西口幹人・佐藤慎司・山中悠資・竹森涼(2014):海岸堆積砂のルミネッセンス計測に基づく歴史津波の分析,土木学会論文集B2(海岸工学), Vol. 70, No. 2, I_291-I_295
- (82) 入月俊明・横地由美・河野重範・吉岡薫・野村律夫(2014):隠岐島 後重栖における津波堆積物の報告,山陰防災フォーラム2014春の講演会, 予稿集
- (83) 文部科学省 (2016):日本海地震・津波調査プロジェクト 平成27年 度成果報告書,

http://www.eri.u-tokyo.ac.jp/project/Japan_Sea/JSH27Report/PDF/1 1_H27JSPJ-C3.2.1.2.pdf

- (84) 酒井哲弥・入月俊明・藤原勇樹・安井絵美(2016):山陰での津波堆 積物調査とその成果,日本地質学会学術大会講演要旨,123st,p.181
- (85) 宮本新平・玉井孝謙(2014):島根半島における津波堆積物調査について(佐陀本郷および千酌の事例),日本応用地質学会中国四国支部研究 発表会発表論文集,2014, p.65-70
- (86) 小林昭男・織田幸伸・東江隆夫・高尾誠・藤井直樹(1996):津波に よる砂移動に関する研究,海岸工学論文集, Vol. 43, p. 691-695

- (87) Kanamori, H. (1977): The energy release in great earthquakes,JOURNAL OF GEOPHYSICAL RESEARCH Vol. 82, No. 20, p. 2981-2987
- (88) 秋田県(2013):「地震被害想定調査」に係る津波関連データについて、 http://www.pref.akita.lg.jp/www/contents/1356530698859/
- (89) 石川県(2012):石川県津波浸水想定区域図,

http://www.pref.ishikawa.jp/bousai/tsunami/index.html

(90) 福井県(2012):福井県における津波シミュレーション結果の公表について,

http://www.pref.fukui.lg.jp/doc/kikitaisaku/kikitaisaku/tunami-s
outei.html

- (91) 島根県(2012):島根県津波浸水想定区域マップ、 http://web-gis.pref.shimane.lg.jp/tsunami/
- (92) 入倉孝次郎・三宅弘恵(2001):シナリオ地震の強震動予測,地学雑誌, Vol. 110, p. 849-875
- (93) 山口県(2012):第3回山口県地震・津波防災対策検討委員会,
 http://www.pref.yamaguchi.lg.jp/cms/a10900/bousai/jisin-tunamiika
 i.html
- (94) 活断層研究会編(1991):[新編]日本の活断層-分布図と資料,東京 大学出版会
- (95) 今泉俊文・宮内崇裕・堤浩之・中田高編(2018):活断層詳細デジタ ルマップ[新編],東京大学出版会
- (96) 奥村俊彦・石川裕(1998):活断層の活動度から推定される平均変位
 速度に関する検討,土木学会第53回年次学術講演会講演概要集,第I部
 (B), p. 554-555
- (97) 塚原弘昭・小林洋二(1991):中・西部日本の地殻応力,地震,第2輯, 第44巻, p. 221-231

第6.2-1表(1) 主な既往の津波一覧(その1)

		震央位置		* 11/15	津波		
発生年月日 元号	波源域	緯度 (°N)	経度 (°E)	規模 M	井板 規模 m	地震・津波の概要	発電所近傍の痕跡高 m
701年5月12日 大宝1年	若峡湾	_	_	_	<2>	・地震うこと3日。若狭湾内の凡海郷が海に没したという「冠島伝説」があるが, 疑わしい。	記録なし
850年11月27日 嘉祥3年	山形沖	39. 0°	139. 7°	≒7.0	<2>	 ・地裂け、山崩れ、国府の城柵は傾頽し、圧死多数。最上川の岸崩れ、海水は国府から6里のところまで迫った。 	記録なし
863年7月10日 貞観5年	新潟沖	_	_	7 以上	<2?>	・山崩れ,谷埋まり,水湧き,民家破壊し,圧死多数。長江津付近にあった数個 の小島が潰滅したという。	記録なし
887年8月2日 仁和3年	新潟南部沖				$<\!2>$	・越後で津波を伴い,溺死者数千という。京都有感。越後に関する史料の信慿性 不十分。(宇佐美ほか(2013))	記録なし
1026 年 6 月 16 日 万寿 3 年	島根県沖			_		 ・現益田市高津川河口沖にあった鴨島が大波(あるいは大海嘯)によって崩され, 海中に没したという。波は川沿いに16km上流に達したという。被害は50km以上 東の黒松(現江津市黒松町)にまで及んだ。口碑および信憑性の低い史料による。 その上,これら口碑・史料に「地震」という語は見出せない。(宇佐美ほか(2013)) ・石見(現在の島根県益田市)の海岸に巨大な津波が襲来した。大規模な斜面崩 壊による海岸変動が津波発生の原因とされている。 (箕浦ほか(2014)) ・影響範囲は山口県の須佐から島根県の江津の間とされている。 (飯田(1985)) ⇒島根県に影響があったのは益田市から江津市とされていることから,敷地には 津波による影響はなかったと考えられる。 	記録なし
1092年9月13日 寛治6年	新潟沖	_	_	_	<2?>	・柏崎〜岩船間の沿岸,海府浦・親不知大津波におそわる。「地震」とある古記あるも,地震の状況を記した古記録未発見。疑わしい。(宇佐美ほか(2013))	記録なし
1614年11月26日 慶長19年	新潟南部沖	_	_	_	2	・従来,越後高田の地震とされていたもの。大地震の割に史料が少なく,震源については検討すべきことが多い。京都で家屋・社寺などが倒壊し,死2,傷370という。京都付近の地震とする説がある。	記録なし
1644年10月18日 正保1年	秋田本庄	39. 4°	140. 0°	$6.5 \pm 1/4$	<1>	 ・本荘城廓大破し,屋倒れ,死者があった。市街で焼失が多かった。金浦村・石 沢村で被害。院内村で地裂け、水が湧出した。 	記録なし
1729年8月1日 享保14年	能登近海	37.4°	137. 1°	6.6∼ 7.0	<-1?>	・珠洲郡・鳳至郡で損・潰家 791, 死 5, 山崩れ 1731 ヶ所。輪島村で潰家 28, 能 登半島先端で被害が大きかった。	記録なし
1741年8月29日 寛保1年	北海道南西沖	41. 6°	139. 4°	6.9	<3.5>	 ・渡島大島この月の上旬より活動,13日に噴火した。19日早朝に津波,北海道で 死1467,流出家屋729,船1521破壊。津軽で田畑の損も多く,流失潰家約100, 死37。佐渡・能登・若狭にも津波。 ・江の川河口(島根県江津市)で1~2mの津波が観測された。(羽鳥・片山(1977)) ・津波地震によるものか,火山噴火に伴うものなのか,あるいは他の現象(たとえば海底地すべり)によるものか不明。江津(島根県)でも津波の影響があった。 津波の高さは1~2mである。(渡辺(1998)) ・渡島大島の山体崩壊によって生じたとされている。(佐竹・加藤(2002)) 	記録なし
第6.2-1表(2) 主な既往の津波一覧(その2)

於 仕 左 日 □		震央	:位置	地震	津波		※ 示記 に 体の 点 叶 古
第生年月日 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	波源域	緯度	経度	規模	規模	地震・津波の概要	発電所近傍の痕跡局
九 夕		(° N)	(° E)	М	m		111
1762年10月31日 宝暦12年	新潟県沖	38.1°	138. 7°	≒7.0	1	・石垣・家屋が破損,銀山道が崩れ,死者があった。鵜島村で津波により26戸流出。新潟で地割れを生じ,砂と水を噴出。酒田・羽前南村山郡・日光で有感。	記録なし
1792年6月13日 寛政4年	北海道西方沖	$43 \ 3/4^\circ$	140. 0°	≒7.1	2	 ・津波があった。忍路で港頭の岸壁が崩れ,海岸に引き上げていた夷船漂流,出 漁中の夷人5人溺死。美国でも溺死若干。 	記録なし
1793年2月8日 寛政4年	青森県西方沖	40.85°	139. 95°	6.9∼ 7.1	1	・鰺ヶ沢・深浦で激しく,全体で潰家 154,死 12 など。大戸瀬を中心に約 12kmの 沿岸が最高 3.5m 隆起した。小津波があり,余震が続いた。	記録なし
1799 年 6 月 29 日 寛政 11 年	石川近海	36.6°	136. 7°	$6.0\pm 1/4$	<1>	・上下動が激しく,屋根石が1尺も飛び上がったという。金沢城で石垣破損,城 下で潰家4169。能美・石川・河北郡で損家1003,潰家964,全体で死21。	記録なし
1802年12月9日 享和2年	佐渡	37.8°	138.35°	6.5∼ 7.0	<0?>	・巳刻の地震で微小被害,未刻の地震は大きく,佐渡3郡全体で焼失328,潰家 732,死19.島の西南海岸が最大2m強隆起した。鶴岡で強く感じ,米沢・江戸・ 日光・高山・秋田・弘前で有感。	記録なし
1804年7月10日 文化1年	秋田・山形県 境沿岸 「象潟地震」	39.05°	139.95°	7.0± 0.1	<1>	・5月より付近で鳴動があった。被害は全体で潰家5千以上,死300以上。象潟湖が隆起して乾陸あるいは沼となった。余震が多かった。象潟・酒田などに津波の記事がある。	記録なし
1810年9月25日 文化7年	男鹿半島沿岸	39.9°	139. 9°	6.5± 1/4	<-1>	・男鹿半島の東半分5月頃より鳴動し,7月中旬から地震が頻発,27日に大地震。 寒風山を中心に被害があり,全潰1003,死57,秋田で強く感じ,角館・大館・鯵 ヶ沢・弘前・鶴岡で有感。	記録なし
1833年12月7日 天保4年	山形県沖	38.9°	139. 25°	$7 \ \frac{1/2 \pm}{1/4}$	<2.5>	・庄内地方で特に被害が大きく, 潰家 475, 死 42。津波が本庄から新潟に至る海岸と佐渡を襲い, 能登で大破流出家約 345, 死約 100。	記録なし
1834年2月9日 天保5年	石狩湾	43.3°	141. 4°	≒6.4	<1>	・地割れ,泥噴出。アイヌの家 23 潰れる。その他,会所などに被害。	記録なし
1872年3月14日 明治5年	島根県沖 「浜田地震」	35. 15°	132. 1°	7.1 ± 0.2	0	・1週間ほど前から鳴動,当日には前震もあった。全体で全潰約5千,死約550,特に石見東部で被害が多かった。海岸沿いに数尺の隆起・沈降がみられ,小津波があった。	記録なし
1892年12月9日 明治25年	石川県西岸	37.1°	136. 7°	6.4	0	・家屋・土蔵の破損があった。11日にも同程度の地震があり、羽咋郡で全潰2, 死1。	記録なし
1894年10月22日 明治27年	山形 「庄内地震」	38. 9°	139. 9°	7.0	<-1>	・被害は主として庄内平野に集中した。山形県下で全潰 3858, 半潰 2397, 全焼 2148, 死 726。	記録なし
1898年4月3日 明治31年	山口県見島	34.6°	131.2°	6.2	-1	・見島西部で強く、神社仏閣の損傷・倒潰、石垣の崩壊があった。	記録なし
1927年3月7日 昭和2年	京都府北西部 沿岸 「北丹後地震」	35° 38'	134° 56'	7.3	0	・被害は丹後半島の頸部が最も激しく,淡路・福井・岡山・米子・徳島・三重・ 香川・大阪に及ぶ。全体で死 2925,家屋全潰 12584(住家 5106,非住家 7478)。 郷村断層(長さ 18km,水平ずれ最大 2.7m)とそれに直交する山田断層(長さ 7km)を 生じた。測量により,地震に伴った地殻の変形が明らかになった。	記録なし
1939年5月1日 昭和14年	男鹿半島沖 「男鹿地震」	39° 57'	$\frac{139^{\circ}}{47'}$	6.8	-1	・2 分後にも M6.7 の地震があった。半島頸部で被害があり,死 27,住 家全潰 479 など。軽微な津波があった。半島西部が最大 44cm 隆起した。	 記録なし
1940年8月2日 昭和15年	北海道西方沖 「積丹半島沖 地震」	44° 22'	139° 49'	7.5	2	・震害はほとんどなく, 津波による被害が大きかった。波高は, 羽幌・天塩 2m, 利尻 3m, 金沢・宮津 1m。天塩河口で溺死 10。	記録なし

第6.2-1表(3) 主な既往の津波一覧(その3)

発生年月日	N L NEW L N	震央	位置	地震	津波	ref and here here and	発電所近傍の痕跡高
元号	波源域	緯度 (°N)	経度 (°E)	規模 M	規模 m	地震・津波の破要	m
1947年11月4日 昭和22年	北海道西方沖	43° 55'	140° 48'	6.7	1	・北海道西方沖:北海道の西岸に津波があり,波高は利尻島沓形で2m,羽幌付近で0.7m。小被害があった。	記録なし
1964年5月7日 昭和39年	秋田県沖	40° 24'	138° 40'	6.9	-0.5	 ・青森・秋田・山形3県に民家全壊3などの被害があった。 	記録なし
1964年6月16日 昭和39年	新潟県沖 「新潟地震」	38° 22'	139° 13'	7.5	2	・新潟・秋田・山形の各県を中心に被害があり,死26,住家全壊1960,半壊6640, 浸水15297,その他船舶・道路の被害も多かった。新潟市内の各所で噴砂水がみら れ、地盤の液状化による被害が著しかった。石油タンクの火災が発生。津波が日 本海沿岸一帯を襲い,波高は新潟県沿岸で4m以上に達した。栗島が約1m隆起し た。	記録なし
1964年12月11日 昭和39年	秋田県沖	40° 26'	139°00'	6.3	-1	・八郎潟干拓堤防約 1km が 20cm 沈下, 亀裂 2。津波は深浦で全振幅 10cm。(宇佐 美ほか(2013))	記録なし
1971年9月6日 昭和46年	樺太南西沖	_	_	_	(1)	・震度は稚内3,北見枝幸2,網走・根室1であったが,樺太全域で有感。震央付 近では気象庁震度で5~6で地震による被害があったと思われる(詳細不明)。日本 において津波は稚内で最も大きく,検潮記録による津波の波高は64cm。(渡辺 (1998))	記録なし
1983 年 5 月 26 日 昭和 58 年	秋田・青森県 沖 「日本海中部 地震」	40° 21.6'	139° 04. 7'	7.7	3	 ・被害は秋田県で最も多く、青森・北海道がこれに次ぐ。日本全体で死104(うち 津波によるもの100)、傷163(同104)、建物全壊934、半壊2115、流失52、一部 破損3258、船沈没255、流失451、破損1187。津波は早い所では津波警報発令以 前に沿岸に到達した。石川・京都・島根など遠方の府県にも津波による被害が発 生した。 	加賀:1.15 恵曇:0.90
1993年2月7日 平成5年	能登半島沖	37° 39. 4'	137° 17. 8'	6.6	-0.5	・被害は珠洲市を中心に発生した。火災は130km 離れた金沢市で1件発生したという統計もある。輪島に小津波(最大波高26cm)あり、小木港にも小津波があった。住家・非住家の被害には地盤沈下によるものも約20件くらいあった。(宇佐美ほか(2013))	記録なし
1993 年 7 月 12 日 平成 5 年	北海道南西沖 「北海道南西 沖地震」	42° 46. 9'	139° 10. 8'	7.8	3	・地震に加えて津波による被害が大きく,死202,不明28,傷323。特に地震後間 もなく津波に襲われた奥尻島の被害は甚大で,島南端の青苗地区は火災もあって 壊滅状態,夜10時すぎの闇のなかで多くの人命,家屋等が失われた。津波の高さ は青苗の市街地で10mを越えたところがある。 ・津波は日本海沿岸の各地に達した。船の転覆沈没は新潟県で24,石川県24,島 根県70隻で島根では床下浸水50世帯を出した。(宇佐美ほか(2013))	加賀:1.52 御津:1.93 片句:1.70 手結:1.20 恵曇:1.40
2007 年 3 月 25 日 平成 19 年	能登地方 「能登半島地 震」	37° 13. 2'	136° 41. 2'	6.9	-1	 ・海陸境界域の横ずれ成分を含む逆断層型地殻内地震。死1,傷356,住家全壊686, 半壊1740(2009年1月現在)。最大震度6強(石川県3市町),珠洲と金沢で0.2mの津波。 	記録なし
2007 年 7 月 16 日 平成 19 年	柏崎沖 「新潟県中越 沖地震」	37° 33. 4'	138° 36. 6'	6.8	-1	・新潟県沿岸海域の逆断層型地殻内地震(深さ17km)。2004年中越地震に近いが 余震活動は不活発。震源域内の原子力発電所が被災した初めての例。死15,傷2346, 住家全壊1331,半壊5710。最大震度6強(新潟県3市村,長野県1町),地盤変状・ 液状化なども目立った。日本海沿岸で最大35cm(柏崎)の津波。	 記録なし

第6.3-1表 計算条件一覧

領域項目	A領域	B領域	C領域	D領域	E領域	F領域	G領域	H領域
計算領域	対馬海	峡付近から	。間宮海峡作	け近に至る勇	東西方向約1	,300km, 南	雨北方向約2	,100km
計算格子間隔	800m	400m	200m	100m	50m	25m	12.5m	6.25m
計算時間間隔	0.05秒							
基礎方程式	非線形長波	皮						
計算スキーム	空間差分に (1982) ⁽⁶⁸⁾	はスタッガ-)	ード格子,ド	時間差分は	リープ・フ	ロッグ法を	用いる。(彳	炎藤・小川
沖合境界条件	開境界部分	うは自由透道	邑,領域 結	合部は水位	と流速を接	続する。(彳	後藤・小川	(1982))
陸岸境界条件	静水面より上昇する津波に対しでは完全反射条件,または小谷ほか(1998) ⁶⁹⁾ の 条件とする。 静水面より下降する津波に対しては小谷ほか(1998)の移動境界条件を用いて海 出を考慮する。					⁽⁶⁹⁾ の遡上 いて海底露		
初期条件	地震断層モデルを用いて, Mansinha and Smylie (1971) ⁽⁷⁰⁾ の方法により計算され 海底地盤変位が瞬時に生じるように設定する。						↑算される	
海底摩擦	マニングの	D粗度係数	$0.03 \text{m}^{-1/3}$	S				
水平渦動粘性	$0m^2/s$							
計算潮位	T.P. ±	0. Om						
想定する潮位条件	上昇側評位 下降側評位	 	近の計算結: 平価水位と 近の計算結: 平価水位と	果に, 朔望 する。 果に, 朔望 する。	平均満潮位 平均干潮位	T.P.+0.4	46m を足し行)2m を足し行	うわせ,上 うわせ,下
地盤変動条件	「初期条件	キ」におい~	て設定した	海底地盤変	位による地	盤変動量を	考慮する。	
計算時間	日本海東約 海域活断履 地滑りに赴	豪部に想定る 層から想定る 起因する津浜	される地震 される地震 皮は地滑り	に伴う津波 に伴う津波 発生後3時	は地震発生 は地震発生 間まで	後6時間ま 後3時間ま	でで	

基礎方程式:非線形長波(浅水理論)の連続式及び運動方程式

$$\begin{aligned} \frac{\partial \eta}{\partial t} + \frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} &= 0 \\ \frac{\partial Q_x}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q_x^2}{D}\right) + \frac{\partial}{\partial y} \left(\frac{Q_x Q_y}{D}\right) + g D \frac{\partial \eta}{\partial x} + \frac{g n^2}{D^{\frac{7}{3}}} Q_x \sqrt{Q_x^2 + Q_y^2} = 0 \\ \frac{\partial Q_y}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q_x Q_y}{D}\right) + \frac{\partial}{\partial y} \left(\frac{Q_y^2}{D}\right) + g D \frac{\partial \eta}{\partial y} + \frac{g n^2}{D^{\frac{7}{3}}} Q_y \sqrt{Q_x^2 + Q_y^2} = 0 \\ \vdots \vdots it, \\ x, y : K \Psi E^{\frac{1}{2}} \qquad t : \text{IFIB} \end{aligned}$$

<i>x</i> , <i>y</i>	:	水平座標	t	:時間
η	:	静水面からの水位	Q_x , Q_y	: x, y方向の単位幅当たりの流量
h	:	静水深	D	:全水深 $(= h + \eta)$
g	:	重力加速度	n	:マニングの粗度係数

項目	計 算 条 件
計算領域	【取水施設】1,2号炉:取水口 ~ 取水管 ~ 取水槽 3号炉:取水口 ~ 取水路 ~ 取水槽 【放水施設】1~3号炉:放水口 ~ 放水路 ~ 放水槽
計算時間間隔	0.01秒
基礎方程式	非定常管路及び開水路流れの連続式並びに運動方程式
取水槽側境界条件 (ポンプ取水量)	 1 号炉 循環水ポンプ運転時:19m³/s,循環水ポンプ停止時:1.0m³/s 2 号炉 循環水ポンプ運転時:59m³/s,循環水ポンプ停止時:2.3m³/s 3 号炉 循環水ポンプ運転時:95m³/s,循環水ポンプ停止時:3m³/s
摩擦損失係数 (マニングの粗度係数)	【取水施設】1・2号炉取水口,1・2号炉取水管:0.014m ^{-1/3} ・s 3号炉取水口,3号炉取水路,1~3号炉取水槽:0.015m ^{-1/3} ・s 【放水施設】1~3号炉放水口,1~3号炉放水路,1~3号炉放水槽:0.015m ^{-1/3} ・s
貝の付着代	塩素注入しているため、貝の付着代は考慮せず
局所損失係数	土木学会(1999)等 (71) ~ (73) による
想定する潮位条件	水位上昇側:朔望平均満潮位T.P.+0.46m 水位下降側:朔望平均干潮位T.P0.02m
地盤変動条件	地盤変動量を考慮する
計算時間	日本海東縁部に想定される地震に伴う津波は地震発生後6時間まで 海域活断層から想定される地震に伴う津波は地震発生後3時間まで 地滑りに起因する津波は地滑り発生後3時間まで

基礎方程式

- (1) 管路の連続式及び運動方程式
 - ・連続式

$$\frac{\partial Q}{\partial x} = 0$$

 ∂x

$$\frac{\partial Q}{\partial t} + gA\frac{\partial H}{\partial x} + gA\left(\frac{n^2 |v| v}{R^{4/3}} + \frac{1}{\Delta x}f\frac{|v|v}{2g}\right) = 0$$

- (2) 開水路の連続式及び運動方程式
 - ・連続式

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$$

·運動方程式

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right) + gA \frac{\partial H}{\partial x} + gA \left(\frac{n^2 |v| v}{R^{4/3}} + \frac{1}{\Delta x} f \frac{|v| v}{2g} \right) = 0$$

- ここに t:時間,Q:流量,v:流速,x:管底に沿った座標,A:流水断面積
 H:圧力水頭+位置水頭(管路の場合),位置水頭(開水路の場合)
 z:管底高,g:重力加速度,n:マニングの粗度係数,R:径深
 - △x:管路の流れ方向の長さ, f:局所損失係数

(3) 水槽の連続式

$$A_P \frac{dH_P}{dt} = Q_S$$

ここに A_P:水槽の平面積(水位の関数となる), H_P:水槽水位 Q_s:水槽へ流入する流量の総和, t:時間

第6.3-3表 既往津波高の再現性

対象津波(領域)	項目	データ数 <i>N</i>	<i>K</i> ^{** 1}	κ^{*2}
1983年	日本海沿岸	212	1.04	1.39
日本海中部地震津波	島根半島	14	0.96	1.30
1993年	日本海沿岸	220	1.02	1.41
北海道南西沖地震津波	島根半島	25	1.05 $[1.049]$	1.39

土木学会による再現性指標(目安)

0.95 < K < 1.05 かつ $\kappa < 1.45$

※1 : K : $logK = \frac{1}{N} \sum_{i=1}^{N} logK_i$, ただし, $K_i = \frac{(既往津波高)_i}{(計算津波高)_i}$

第6.3-4表(1) 1983年日本海中部地震津波の数値シミュレーション結果 (水位上昇側)

	100	評価水位(T.P. m)*							
既往津波	運転状況	施設護岸 又は防波壁	1 号炉 取水槽	2 号炉 取水槽	3号炉 取水槽	1 号炉 放水槽	2 号炉 放水槽	3号炉 放水槽	
日本海中部	運転時	10.7	-	+3.0	+1.9	-	+3.2	+2.5	
地震津波	停止時	+2.1	+3.7	+3.2	+2.7	+1.6	+2.7	+1.8	

※ 数値は朔望平均満潮位(T.P.+0.46m)を考慮

第6.3-4表(2) 1983年日本海中部地震津波の数値シミュレーション結果 (水位下降側)

	評価水位(T.P. m)*							
既往津波	2 号炉	2 号炉	2号炉取水槽					
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時				
日本海中部 地震津波	-1.4	-1.3	-2.1	-2.1				

第6.3-5表(1) 1993年北海道南西沖地震津波の数値シミュレーション結果 (水位上昇側)

	1°	評価水位(T.P. m) [※]							
既往津波	運転状況	施設護岸 又は防波壁	1 号炉 取水槽	2 号炉 取水槽	3号炉 取水槽	1 号炉 放水槽	2 号炉 放水槽	3号炉 放水槽	
北海道南西沖	運転時	1.0	_	+1.6	+1.5	_	+3.3	+2.3	
地震津波	停止時	+1.8	+2.3	+1.9	+2.2	+1.4	+3.6	+1.6	

※ 数値は朔望平均満潮位(T.P.+0.46m)を考慮

第6.3-5表(2) 1993年北海道南西沖地震津波の数値シミュレーション結果 (水位下降側)

	評価水位(T.P. m)*							
既往津波	2 号炉	2 号炉	2号炉取水槽					
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時				
北海道南西沖 地震津波	-1.2	-1.1	-1.9	-1.7				

断層	断層長さ L(km)	津波の 伝播距離 Δ (km)	Mw	予測高 H(m)
F-Ⅲ断層+F-Ⅳ断層+F-Ⅴ断層	48.0	24	7.3	3.6
鳥取沖西部断層+鳥取沖東部断層	98	84	7.7	2.7
F 5 7 断層	108	103	7.7	2.2
K-4 撓曲+K-6 撓曲+K-7 撓曲	19.0	12.9	6.7	1.8
大田沖断層	53	67	7.3	1.4
K-1 撓曲+K-2 撓曲+F _{K0} 断層	36	50	7.1	1.2
F _K -1 断層	19.0	28.4	6.7	0.8
隠岐北西方北部断層	36	149	7.1	0.4
見島北方沖西部断層	38	201	7.1	0.3

第6.4-1表 阿部(1989)の予測式による津波の予測高

第6.4-2表 海域活断層から想定される地震による津波(土木学会) の波源モデル(概略パラメータスタディ)

パラメータ	設定方法
剛性率	土木学会に基づき 3.5×10^{10} N/m ² と設定(固定)
位置・走向・長さ	海上音波探査結果に基づき設定(固定)
傾斜方向	海上音波探査結果に基づき南傾斜と設定(固定)
Mw	断層長さ 48.0km から武村(1998) ⁽⁷⁴⁾ のスケーリング則に基づき Mw7.27 と設定(固定)
傾斜角	土木学会によると1973年~1998年8月に近畿~九州の西南日本内陸部で発生した地震 に対する発震機構解の検討より45°~90°と設定(45°,60°,75°,90°)
地震発生層深さ	敷地周辺で発生した地震の震源鉛直分布等に基づき,地震発生層深さを15kmと設定(固定)
断層上縁深さ	土木学会に示される変動範囲 0~5km のうち 0km と設定
すべり角	ハーバード CMT 発震機構解及び文献により主応力軸の向きの範囲(90°,105°,120°) を推定し,発震機構の原理に基づき,すべり角を主応力軸と走向・傾斜から幾何学的 に設定(F-Ⅲ断層:115°,120°,125°,145°,150°,180°)(F-Ⅳ断層及 びF-V断層:180°)
すべり量	$D = M_0 / \mu L W$ D : すべり量, M_0 : 地震モメント, μ : 剛性率, L :長さ, W : 幅

第6.4-3表 海域活断層から想定される地震による津波(土木学会) の波源モデル(詳細パラメータスタディ)

パラメータ	設定方法
剛性率	土木学会に基づき 3.5×10 ¹⁰ N/m ² と設定(固定)
位置・走向・長さ	海上音波探査結果に基づき設定(固定)
傾斜方向	海上音波探査結果に基づき南傾斜と設定(固定)
Mw	断層長さ 48.0km から武村(1998)のスケーリング則に基づき Mw7.27 と設定(固定)
傾斜角	概略パラメータスタディの評価水位最高・最低ケースの傾斜角を基準として変動範囲 を補間するように設定(基準,±7.5°,±15°)
地震発生層深さ	敷地周辺で発生した地震の震源鉛直分布等に基づき,地震発生層深さを15kmと設定(固定)
断層上縁深さ	土木学会に示される変動範囲 0~5km 及び敷地周辺で発生した地震の震源鉛直分布等から推定される断層上縁深さ 2km に基づき, 断層上縁深さの変動範囲を 0km, 2km 及び 5km と設定
すべり角	概略パラメータスタディの評価水位最高・最低ケースの主応力軸を基準として変動範 囲を補間するように設定(基準,±5°,±10°)
すべり量	$D = M_0 / \mu L W$ D : すべり量, M_0 : 地震モメント, μ : 剛性率, L :長さ, W : 幅

第6.4-4表(1) 土木学会に基づく検討の評価水位が 最高又は最低となる波源モデル

	波源モデル							
断層	断層長さ	モーメントマク゛ニ チュート゛Mw	傾斜角 (°)	すべり角 (°)	上縁深さ (km)	傾斜方向		
	(KIII)) I I' IVIW			(KIII)			
F − III 断層 + F − IV 断層 + F − V 断層 (評価水位最高ケース)	48.0	7.27	90	130, 180	0	南傾斜		
 F-Ⅲ断層+F-Ⅳ断層 +F-V断層 (評価水位最低ケース) 	48.0	7.27	90	115, 180	0	南傾斜		

第6.4-4表(2) 土木学会に基づく検討の数値シミュレーション結果 (水位上昇側)

断層	1 00								
	- ホンフ 運転状況	施設護岸 又は防波壁	1 号炉 取水槽	2 号炉 取水槽	3号炉 取水槽	1 号炉 放水槽	2 号炉 放水槽	3号炉 放水槽	
F - Ⅲ断層+F - Ⅳ 断層+F - V断層	運転時	+3.6	+1.9 (+0.27)	+1.4 (+0.27)	+1.3 (+0.28)	+2.7 (+0.25)	+2.8 (+0.32)	+2.1 (+0.30)	
	停止時	(+0.32)	+2.2 (+0.27)	+2.0 (+0.27)	+2.9 (+0.28)	+1.3 (+0.25)	+2.7 (+0.32)	+2.4 (+0.30)	

※ 括弧内の数値は地盤変動量(m),上段の数値は朔望平均満潮位(T.P.+0.46m)及び地盤変動量を考慮

第6.4-4表(3) 土木学会に基づく検討の数値シミュレーション結果 (水位下降側)

	評価水位(T.P. m) [※]							
断層	2 号炉	2 号炉	2号炉取水槽					
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時				
F-Ⅲ断層+F-Ⅳ 断層+F-V断層	-3.9 (+0.34)	-3.9 (+0.34)	-5.9 (+0.34)	-4.8 (+0.34)				

※ 括弧内の数値は地盤変動量(m),上段の数値は朔望平均干潮位(T.P.-0.02m)及び地盤変動量を考慮

第6.4-5表(1) 土木学会に基づく検討の評価水位が 最高又は最低となる波源モデル

	波源モデル						
領域	断層長さ	モーメントマク゛ニ	傾斜角	すべり角	上縁深さ		
	(km)	チュート゛Mw	(°)	(°)	(km)		
E 1 領域 (評価水位最高ケース)	131.1	7.85	60	90	0		
E 2, E 3 領域 (評価水位最低ケース)	131.1	7.85	60	90	2.5		

第6.4-5表(2) 土木学会に基づく検討の数値シミュレーション結果 (水位上昇側)

領域	ポンプ 運転状況	施設護岸 又は 防波壁	1 号炉 取水槽	2 号炉 取水槽	3 号炉 取水槽	1 号炉 放水槽	2 号炉 放水槽	3号炉 放水槽
下 1 / 酒村:	運転時	± 7 9	_	+6.4	+4.9	_	+5.3	+4.4
亡 1 頃 残	停止時	<i>τι.</i> 2	+6.9	+8.1	+6.3	+2.3	+4.3	+5.5

第6.4-5表(3) 土木学会に基づく検討の数値シミュレーション結果 (水位下降側)

 領域 2 号炉 取水口 (東) 	評価水位(T.P. m) [※]						
	2 号炉	2 号炉	2 号炉取水槽				
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時			
E 2, E 3 領域	-4.2	-4.1	-5.3	-5.0			

第6.4-6表(1) 土木学会に基づく検討(断層上縁深さ1kmの影響検討)の 評価水位が最高又は最低となる波源モデル

	波源モデル						
領域	断層長さ	モーメントマク゛ニ	傾斜角	すべり角	上縁深さ		
	(km)	チュート゛Mw	(°)	(°)	(km)		
E 1 領域 (評価水位最高ケース)	131.1	7.85	60	90	1		
E 2, E 3領域 (評価水位最低ケース)	131.1	7.85	60	90	1		

第6.4-6表(2) 土木学会に基づく検討(断層上縁深さ1kmの影響検討)の 数値シミュレーション結果(水位上昇側)

		評価水位(T.P. m) [※]						
領域	ポンプ 運転状況	施設護岸 又は 防波壁	1 号炉 取水槽	2 号炉 取水槽	3号炉 取水槽	1 号炉 放水槽	2 号炉 放水槽	3号炉 放水槽
下 1 / 酒村:	運転時	± 7 9	_	+6.5	+5.0	Ι	+5.3	+4.4
已工模戏	停止時	<i>τι.</i> 2	+6.9	+8.2	+6.3	+2.3	+4.4	+5.4

第6.4-6表(3) 土木学会に基づく検討(断層上縁深さ1kmの影響検討)の 数値シミュレーション結果(水位下降側)

領域 2 号炉 取水口 (東)	評価水位(T.P. m) [※]							
	2 号炉	2 号炉	2 号炉取水槽					
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時				
E 2, E 3 領域	-4.2	-4.1	-5.4	-5.1				

第6.4-7表(1) 地震発生領域の連動を考慮した検討の 評価水位が最高又は最低となる波源モデル

		波源モデル							
領域	断層長さ	モーメントマク゛	傾斜角	すべり角	上縁深さ	大すべり	土白	古田位墨	
	(km)	ニチュート゛Mw	(°)	(°)	(km)	域	疋円	米四位但	
「青森県西方沖」及び 「佐渡島北方沖」 (評価水位最高ケース)	350	8.09	60	90	0	IV V	8.9°	(3)	
「青森県西方沖」及び 「佐渡島北方沖」 (評価水位最低ケース)	350	8.09	60	90	0	IV VI	8.9°	(3)	

第6.4-7表(2) 地震発生領域の連動を考慮した検討の数値シミュレーション結果 (水位上昇側)

		評価水位(T.P. m) [※]							
領域	ポンプ 運転状況	施設護岸 又は 防波壁	1 号炉 取水槽	2 号炉 取水槽	3 号炉 取水槽	1号炉 放水槽	2 号炉 放水槽	3号炉 放水槽	
「青森県西方沖」 及び 「佐渡島北方沖」	運転時	+9.7	_	+6.9	+6.1	-	+6.1	+4.4	
	停止時	<i>⊤</i> 0. <i>(</i>	+7.1	+9.0	+7.2	+3.0	+6.5	+4.9	

第6.4-7表(3) 地震発生領域の連動を考慮した検討の数値シミュレーション結果 (水位下降側)

領域	評価水位(T.P. m) [※]						
	2 号炉	2 号炉	2 号炉取水槽				
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時			
「青森県西方沖」及び 「佐渡島北方沖」 -4.5		-4.5	-5.9	-5.2			

第6.4-8表(1) 国土交通省・内閣府・文部科学省(2014)に基づく検討の 評価水位が最高又は最低となる波源モデル

		波源モデル							
断層	断層長さ (km)	モーメントマク゛ニ チュート゛Mw	傾斜角 (°)	すべり角 (°)	上縁深さ (km)	大すべり域			
F56断層 (評価水位最高ケース)	49.0	7.2	60, 60	143, 215	1	中央			
F56断層 (評価水位最低ケース)	49.0	7.2	60, 60	143, 215	1	隣接 LR			

第6.4-8表(2) 国土交通省・内閣府・文部科学省(2014)に基づく検討の 数値シミュレーション結果(水位上昇側)

	ナオベり		評価水位(T.P. m) [※]						
断層	域の 配置	ポンプ 運転状況	施設護岸 又は 防波壁	1号炉 取水槽	2号炉 取水槽	3 号炉 取水槽	1 号炉 放水槽	2 号炉 放水槽	3号炉 放水槽
F56断層	大すべり	運転時	+1.9	+1.9 (0.00)	+1.6 (0.00)	+1.1 (-0.01)	+2.8 (0.00)	+3.1 (-0.01)	+2.4 (-0.01)
	域中央	停止時	(0.00)	+2.1 (0.00)	+2.2 (0.00)	+1.8 (-0.01)	+1.3 (0.00)	+1.5 (-0.01)	+1.5 (-0.01)

※ 括弧内の数値は地盤変動量(m),上段の数値は朔望平均満潮位(T.P.+0.46m)及び地盤変動量を考慮

第6.4-8表(3) 国土交通省・内閣府・文部科学省(2014)に基づく検討の 数値シミュレーション結果(水位下降側)

		評価水位(T.P. m)*					
断層	大すべり域の	2 号炉	2 号炉	2 号炉取水槽			
	配置	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時		
F56断層	大すべり域隣接 LR	-1.0 (+0.01)	-1.0 (+0.01)	-1.5 (+0.01)	-1.1 (+0.01)		

※ 括弧内の数値は地盤変動量(m), 上段の数値は朔望平均干潮位(T.P.-0.02m)及び地盤変動量を考慮

第6.4-9表(1) すべり角の知見を踏まえた検討の 評価水位が最高又は最低となる波源モデル

		波源モデル							
断層	断層長さ (km)	モーメントマク゛ニ チュート゛Mw	傾斜角 (°)	すべり角 (°)	上縁深さ (km)	傾斜方向			
F-Ⅲ断層+F-Ⅳ断層 +F-V断層 (評価水位最高ケース)	48.0	7.27	90	130, 215	0	南傾斜			
F − Ⅲ断層 + F − Ⅳ断層 + F − V 断層 (評価水位最低ケース)	48.0	7.27	90	115, 215	0	南傾斜			

第6.4-9表(2) すべり角の知見を踏まえた検討の数値シミュレーション結果 (水位上昇側)

断層	ポンプ 運転状況	評価水位(T.P. m) [※]							
		施設護岸 又は防波壁	1 号炉 取水槽	2 号炉 取水槽	3 号炉 取水槽	1 号炉 放水槽	2 号炉 放水槽	3号炉 放水槽	
F — Ⅲ断層+F — Ⅳ 断層+F — V断層	運転時	+3.6	+2.0 (+0.25)	+1.5 (+0.25)	+1.4 (+0.26)	+2.7 (+0.24)	+2.9 (+0.30)	+2.1 (+0.29)	
	停止時	(+0.30)	+2.3 (+0.25)	+2.1 (+0.25)	+3.1 (+0.26)	+1. 4 (+0. 24)	+2.5 (+0.30)	+2.4 (+0.29)	

※ 括弧内の数値は地盤変動量(m),上段の数値は朔望平均満潮位(T.P.+0.46m)及び地盤変動量を考慮

第6.4-9表(3) すべり角の知見を踏まえた検討の数値シミュレーション結果 (水位下降側)

断層	評価水位(T.P. m) [※]						
	2 号炉	2 号炉	2号炉取水槽				
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時			
F-Ⅲ断層+F-Ⅳ 断層+F-V断層	-3.8 (+0.32)	-3.8 (+0.32)	-5.8 (+0.32)	-4.8 (+0.32)			

※ 括弧内の数値は地盤変動量(m),上段の数値は朔望平均干潮位(T.P.-0.02m)及び地盤変動量を考慮

第6.4-10表(1) 国土交通省・内閣府・文部科学省(2014)に基づく検討の 評価水位が最高又は最低となる波源モデル

	波源モデル							
断層	断層長さ (km)	モーメントマク゛ニ チュート゛Mw	傾斜角 (°)	すべり角 (°)	上縁深さ (km)	大すべり域		
F28断層 (評価水位最高ケース)	126	7.7	45	115, 93, 118	1	隣接 LRR		
F24断層 (評価水位最低ケース)	132	7.9	30, 30	74, 80	1	中央		

第6.4-10表(2) 国土交通省・内閣府・文部科学省(2014)に基づく検討の 数値シミュレーション結果(水位上昇側)

	ナナベカ			評価水位(T.P. m) [※]							
断層	大 「 城の 配置	ポンプ 運転状況	施設護岸 又は 防波壁	1号炉 取水槽	2 号炉 取水槽	3 号炉 取水槽	1 号炉 放水槽	2 号炉 放水槽	3 号炉 放水槽		
チ28断層	大すべり	運転時	12.6	_	+4.8	+3.8	-	+4.1	+3.4		
	或解接 LRR	停止時	+3.6	+5.8	+6.2	+4.6	+1.7	+3.3	+2.1		

第6.4-10表(3) 国土交通省・内閣府・文部科学省(2014)に基づく検討の 数値シミュレーション結果(水位下降側)

断層		評価水位(T.P. m) [※]					
	大すべり域の 配置	2 号炉	2 号炉	2 号炉取水槽			
		取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時		
F 2 4 断層	大 す べり 域 中央	-2.4	-2.4	-3.4	-3.3		

第6.4-11表(1) 地方自治体独自の波源モデルに基づく検討の 評価水位が最高及び最低となる波源モデル

	波源モデル						
地方自治体	断層長さ	モーメントマク゛ニ	傾斜角	すべり角	上縁深さ		
	(km)	チュート゛Mw	(°)	(°)	(km)		
鳥取県(2012)	222.2	8.16	60	90	0		

第6.4-11表(2) 地方自治体独自の波源モデルに基づく検討の 数値シミュレーション結果(水位上昇側)

地方自治体	ポンプ 運転状況	評価水位(T.P. m)*							
		施設護岸 又は 防波壁	1 号炉 取水槽	2 号炉 取水槽	3号炉 取水槽	1号炉 放水槽	2 号炉 放水槽	3号炉 放水槽	
鳥取県(2012)	運転時	+10 5	_	+7.0	+5.9	_	+6.8	+6.6	
	停止時	+10. 5	+7.6	+9.0	+7.0	+4.0	+7.1	+6.4	

第6.4-11表(3) 地方自治体独自の波源モデルに基づく検討の 数値シミュレーション結果(水位下降側)

地方自治体	評価水位(T.P. m) *							
	2 号炉	2 号炉	2 号炉取水槽					
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時				
鳥取県(2012)	-5.0	-5.0	-5.9	-5.4				

第6.4-12表 鳥取県(2012)の波源モデル設定の妥当性検討結果

すべり量	16m
すべりの 均質・不均質性	均質
波源モデルの妥 当性についての 評価	・鳥取県(2012)のすべり量 16m は、地震調査研究推進本部(2016) 及び土木学会に示される近年の長大断層に対するスケーリング則を 用いて算出される最大すべり量を上回る設定であること、及び鳥取県 (2012)が採用している武村(1998)のスケーリング則に用いた内陸地 殻内地震データの断層長さが最大 85km であり、それ以上の断層長さ は外挿領域となっていることから、過大な設定となっていることを確 認した。 ・すべりの均質・不均質性についても、国土交通省・内閣府・文部科 学省(2014)及び Murotani et al.(2015) ⁽⁷⁵⁾ 等の最新の知見を踏まえ ると、すべりの不均質性を考慮することが適当であると評価した。
上記評価を踏ま えた検討の位置 付け	 ・鳥取県(2012)の波源モデルについては、長大断層に関する最新の科学的・技術的知見を踏まえた設定でないため、パラメータスタディによる不確かさの考慮は行わない。 ・日本海東縁部に想定される地震による津波の検討においては、鳥取県(2012)におけるすべり量及びすべりの均質・不均質性の設定は採用しない。 ・しかしながら、安全側の評価を実施する観点及び地方自治体による地域防災計画との整合を図る観点から、鳥取県が独自に設定している波源モデルに対して数値シミュレーションを実施し、基準津波の策定において考慮する。

第6.4-13表 Watts et al. (2005)の方法を用いた数値シミュレーションの結果

			設定	官値	
		地滑り①	地滑り②	地滑り③	地滑り④
γ	崩壊部比重	1.85	1.85	1.85	1.85
b (m)	崩壊部長さ	6, 208	4, 966	4, 700	2, 021
T (m)	崩壊部厚さ	106	116	158	64
w (m)	崩壊部幅	7,400	3, 800	1,000	7,100
d (m)	初期の崩壊部水深	351	634	432	353
θ (deg)	斜面勾配	1.8	3.2	2.6	2.1
C_d	抗力係数	1.0	1.0	1.0	1.0
C _m	付加質量係数	1.0	1.0	1.0	1.0
ψ	底面摩擦係数	0.0	0.0	0.0	0.0
u _t (m/s)	最終速度	50. 512	60. 226	52.818	31.129
$a_0(m^2/s)$	初期加速度	0.092	0. 163	0. 133	0. 107
$t_0^{(sec)}$	特性時間	550. 2	369. 1	398.4	290.6
S ₀ (m)	特性距離	27, 791. 8	22, 231. 6	21,040.8	9, 047. 6
$\lambda_0(m)$	特性津波波長	32, 269. 0	29, 096. 6	25, 920. 0	17, 094. 9
上昇側の)評価水位(T.P.m) ^{※1}	+2.0	+1.2	+1.0	+0.8
下降側の)評価水位(T.P.m) ^{※2}	-1.2	-0.5	-0.6	-0.4

※1 数値は朔望平均満潮位(T.P.+0.46m)を考慮

第6.4-14表 二層流モデルの計算条件(海底地滑りに起因する津波)

計算時間間隔 (秒)	現象時間	マニングの (m ⁻¹)粗度係数 ^{1/3} s)	界而抵抗係数	下層の 渦動粘性係数	
	(時間)	上層	下層		(m^2/s)	
0.05	3	0.03	0.40	0.0	0.0	

(上層)

$$\frac{\partial \left(\eta_{1} - \eta_{2}\right)}{\partial t} + \frac{\partial M_{1}}{\partial x} + \frac{\partial N_{1}}{\partial y} = 0$$

$$\frac{\partial M_{1}}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M_{1}^{2}}{D_{1}}\right) + \frac{\partial}{\partial y} \left(\frac{M_{1}N_{1}}{D_{1}}\right) + gD_{1} \frac{\partial \eta_{1}}{\partial x} = -\beta \frac{\tau_{1,x}}{\rho_{1}} - (1 - \beta) \cdot INTF_{x}$$

$$\frac{\partial N_{1}}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M_{1}N_{1}}{D_{1}}\right) + \frac{\partial}{\partial y} \left(\frac{N_{1}^{2}}{D_{1}}\right) + gD_{1} \frac{\partial \eta_{1}}{\partial y} = -\beta \frac{\tau_{1,y}}{\rho_{1}} - (1 - \beta) \cdot INTF_{y}$$

(下層)

 η :水位変動量 (η_1 :静水面からの水位変化量, η_2 :土砂流の厚さ),D:全水深, g:重力加速度,M,N:x,y方向の線流量, ρ :密度 (ρ_1 =1.03g/m³, ρ_2 =2.0g/m³), α :密度比 (= ρ_1/ρ_2), β :下層に土砂がない場合 β =1,下層に土砂がある場合 β =0, τ/ρ :底面摩擦力,n:マニングの粗度係数

$$\frac{\tau_{1,x}}{\rho_1} = \frac{gn^2}{D_1^{7/3}} M_1 \sqrt{M_1^2 + N_1^2}, \quad \frac{\tau_{1,y}}{\rho_1} = \frac{gn^2}{D_1^{7/3}} N_1 \sqrt{M_1^2 + N_1^2}$$

$$\frac{\tau_{2,x}}{\rho_2} = \frac{gn^2}{D_2^{7/3}} M_2 \sqrt{M_2^2 + N_2^2}, \quad \frac{\tau_{2,y}}{\rho_2} = \frac{gn^2}{D_2^{7/3}} N_2 \sqrt{M_2^2 + N_2^2}$$

$$INTF: R \text{ m抵抗力}, \quad f_{int}: R \text{ m抵抗係数}, \quad u, \quad v: x, \quad y \text{ fried} \mathcal{O} \text{ 流速}$$

$$INTF_x = f_{int} \overline{u} \sqrt{\overline{u^2 + v^2}}, \quad INTF_y = f_{int} \overline{v} \sqrt{\overline{u^2 + v^2}}$$

DIFF: 渦動粘性項, ν : 渦動粘性係数

$$DIFF_{2,x} = v_2 \left(\frac{\partial^2 M_2}{\partial x^2} + \frac{\partial^2 M_2}{\partial y^2} \right), \quad DIFF_{2,y} = v_2 \left(\frac{\partial^2 N_2}{\partial x^2} + \frac{\partial^2 N_2}{\partial y^2} \right)$$

第6.4-15表(1) 海底地滑りに起因する津波の数値シミュレーションによる 計算結果(水位上昇側)

		評価水位(T.P. m) [※]							
地滑り	ポンプ 運転状況	施設護岸 又は 防波壁	1 号炉 取水槽	2 号炉 取水槽	3号炉 取水槽	1号炉 放水槽	2号炉 放水槽	3号炉 放水槽	
海底地滑り① (二層流モデル)	運転時	+4 1	+3.5	+3.2	+2.3	+3.4	+4.3	+4.0	
	停止時	⁺ 4. 1	+4.0	+4.5	+4.0	+2.1	+3.8	+4.2	

※ 数値は朔望平均満潮位(T.P.+0.46m)を考慮

第6.4-15表(2) 海底地滑りに起因する津波の数値シミュレーションによる 計算結果(水位下降側)

	評価水位(T.P. m) **							
地滑り	2 号炉	2 号炉	2 号炉取水槽					
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時				
海底地滑り① (二層流モデル)	海底地滑り① (二層流モデル) -2.8		-3. 7	-3. 3				

第6.4-16表(1)	Huber and Hager	(1997)	の予測式を用レ	いた津波高の検討結果	(陸上地滑りに起因する津波	(その1))
	_					

地滑り	長さ L(m)	幅 b(m)	厚さ t(m)	土量 Vs(m ³)	すべり面の 傾斜角 α(°)	進行角 γ (°)	突入水深 d ₁ (m)	発電所水深 d ₂ (m)	発電所までの 距離 r (km)	発電所での 津波高さ (全振幅) H ₂ (m)
Ls1	478	430	43	8, 838, 220	20	+75	10	20	11	0.37
Ls2	180	140	20	504, 000	34	+80	5	20	11	0.12
Ls3	490	400	40	7, 840, 000	20	+70	10	20	10	0.43
Ls4	240	160	23	883, 200	17	+90	5	20	10	0.06
Ls5	250	110	16	440,000	16	+95	5	20	10	0.04
Ls6	370	160	23	1, 361, 600	19	+100	10	20	10	0.09
Ls7	402	190	28	2, 138, 640	27	+35	15	20	9	1.20
Ls8	242	100	20	484, 000	30	+85	5	20	9	0.12
Ls9	106	120	18	228, 960	41	+100	5	20	8	0.06
Ls10	272	260	38	2, 687, 360	23	+95	5	20	8	0.10
Ls11	112	190	28	595, 840	27	+95	5	20	8	0.06
Ls12	130	100	20	260, 000	23	+150	5	20	8	0.01
Ls13	231	340	34	2, 670, 360	18	+55	5	20	7	0.23
Ls14	158	140	20	442, 400	18	+105	5	20	6	0.03
Ls15	100	150	22	330, 000	37	+40	5	20	6	0.32
Ls16	136	90	18	220, 320	17	+135	5	20	5	0.00
Ls17	112	110	16	197, 120	27	+120	5	20	5	0.01
Ls18	121	120	18	261, 360	24	+80	5	20	5	0.11
Ls19	371	120	18	801, 360	14	+110	10	20	5	0.05
Ls20	72	80	16	92, 160	34	+50	5	20	5	0.22

第6.4-16表(2) Huber and Hager (1997)の予測式を用いた津波高の検討結果(陸上地滑りに起因する津波(その2))

地滑り	長さ L(m)	幅 b(m)	厚さ t(m)	土量 Vs(m ³)	すべり面の 傾斜角 α(°)	進行角 γ(°)	突入水深 d ₁ (m)	発電所水深 d ₂ (m)	発電所までの 距離 r (km)	発電所での 津波高さ (全振幅) H ₂ (m)
Ls21	71	90	18	115, 020	45	+25	5	20	5	0.38
Ls22	170	100	20	340, 000	28	+65	5	20	4	0.27
Ls23	125	170	25	531, 250	29	+110	10	20	1	0.20
Ls24	172	80	16	220, 160	22	-130	5	20	0.5	0.01
Ls25	265	140	20	742,000	19	-125	10	20	0.5	0.05
Ls26	289	290	42	3, 520, 020	14	-105	10	20	0.5	0.44
Ls27	328	110	16	577, 280	12	-90	5	20	1	0.18
Ls28	155	140	20	434, 000	15	-85	5	20	1	0.21
Ls29	318	130	19	785, 460	13	-105	5	20	1	0.10
Ls30	47	140	20	131, 600	32	-170	5	20	2	0.08
Ls31	286	150	22	943, 800	12	-115	5	20	1	0.05
Ls32	573	220	32	4, 033, 920	12	-110	10	20	2	0.13
Ls33	196	200	29	1, 136, 800	15	-145	5	20	4	0.01
Ls34	724	400	40	11, 584, 000	11	-100	10	20	4	0.18
Ls35	843	470	47	18, 621, 870	10	-100	5	20	5	0.09
Ls36	310	170	25	1, 317, 500	21	-65	5	20	6	0.24
Ls37	313	500	50	7, 825, 000	17	-115	5	20	6	0.03

第6.4-17表 二層流モデルの計算条件(陸上地滑りに起因する津波)

計算時間間隔 (秒)	現象時間	マニングの (m ⁻¹	D粗度係数 ^{1/3} s)	界面抵抗係数	下層の 渦動粘性係数	
	(時間)	上層	下層		(m^2/s)	
0.05	3	0.03	0.40	0.0	0.0	

(上層)

$$\frac{\partial(\eta_{1} - \eta_{2})}{\partial t} + \frac{\partial M_{1}}{\partial x} + \frac{\partial N_{1}}{\partial y} = 0$$

$$\frac{\partial M_{1}}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M_{1}^{2}}{D_{1}}\right) + \frac{\partial}{\partial y} \left(\frac{M_{1}N_{1}}{D_{1}}\right) + gD_{1} \frac{\partial \eta_{1}}{\partial x} = -\beta \frac{\tau_{1,x}}{\rho_{1}} - (1 - \beta) \cdot INTF_{x}$$

$$\frac{\partial N_{1}}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M_{1}N_{1}}{D_{1}}\right) + \frac{\partial}{\partial y} \left(\frac{N_{1}^{2}}{D_{1}}\right) + gD_{1} \frac{\partial \eta_{1}}{\partial y} = -\beta \frac{\tau_{1,y}}{\rho_{1}} - (1 - \beta) \cdot INTF_{y}$$

(下層)

 η :水位変動量 (η_1 :静水面からの水位変化量, η_2 :土砂流の厚さ),D:全水深, g:重力加速度,M,N:x,y方向の線流量, ρ :密度 (ρ_1 =1.03g/m³, ρ_2 =2.0g/m³), α :密度比 (= ρ_1/ρ_2), β :下層に土砂がない場合 β =1,下層に土砂がある場合 β =0, τ/ρ :底面摩擦力,n:マニングの粗度係数

$$\frac{\tau_{1,x}}{\rho_1} = \frac{gn^2}{D_1^{7/3}} M_1 \sqrt{M_1^2 + N_1^2}, \quad \frac{\tau_{1,y}}{\rho_1} = \frac{gn^2}{D_1^{7/3}} N_1 \sqrt{M_1^2 + N_1^2}$$
$$\frac{\tau_{2,x}}{\rho_2} = \frac{gn^2}{D_2^{7/3}} M_2 \sqrt{M_2^2 + N_2^2}, \quad \frac{\tau_{2,y}}{\rho_2} = \frac{gn^2}{D_2^{7/3}} N_2 \sqrt{M_2^2 + N_2^2}$$

INTF: 界面抵抗力, f_{int} : 界面抵抗係数, u, v: x, y方向の流速 $INTF_x = f_{int}\bar{u}\sqrt{u^2 + v^2}$, $INTF_y = f_{int}\bar{v}\sqrt{u^2 + v^2}$ $\bar{u} = u_1 - u_2$, $\bar{v} = v_1 - v_2$

 $DIFF: 渦動粘性項, \nu: 渦動粘性係数$

$$DIFF_{2,x} = v_2 \left(\frac{\partial^2 M_2}{\partial x^2} + \frac{\partial^2 M_2}{\partial y^2} \right), \quad DIFF_{2,y} = v_2 \left(\frac{\partial^2 N_2}{\partial x^2} + \frac{\partial^2 N_2}{\partial y^2} \right)$$

6 - 6 - 60

第6.4-18表(1) 陸上地滑りの数値シミュレーションによる計算結果 (水位上昇側)

		評価水位(T.P. m)*							
地滑り	ポンプ 運転状況	施設護岸 又は 防波壁	1 号炉 取水槽	2号炉 取水槽	3号炉 取水槽	1 号炉 放水槽	2号炉 放水槽	3号炉 放水槽	
Ls26	運転時	-1.0	+1.0	+0.7	+0.5	+2.6	+2.4	+1.8	
(二層流モデル)	停止時	+1.2	+1.1	+1.1	+1.0	+1.1	+1.0	+0.8	

※ 数値は朔望平均満潮位(T.P.+0.46m)を考慮

第6.4-18表(2) 陸上地滑りの数値シミュレーションによる計算結果 (水位下降側)

	評価水位(T.P. m) **							
地滑り	2 号炉	2 号炉	2 号炉取水槽					
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時				
Ls26 (二層流モデル)	-0.5	-0.5	-1.1	-0.7				

地滑り	長さ L(m)	幅 b(m)	厚さ t(m)	土量 Vs(m ³)	すべり面の傾斜角 α(°)	進行角 γ(°)	突入水深 d ₁ (m)	発電所水深 d ₂ (m)	発電所までの 距離 r (km)	発電所での津波高さ (全振幅) H ₂ (m)
Rf-2	50	60	12	36, 000	50	+20	5	20	2.8	0. 42
Rf-1	38	45	9	15, 390	62	+10	5	20	2.7	0.39
Rf-3	79	85	17	144, 155	33	-40	5	20	2.8	0. 38
Rf-4	66	40	8	21, 120	76	-15	5	20	5.9	0.31
Rf-5	89	70	14	87, 220	50	+45	5	20	5.9	0.29
(参考) Ls26	289	290	42	3, 520, 020	14	-105	10	20	0.5	0.44

第6.4-19表 Huber and Hager (1997)の予測式を用いた津波高の検討結果 (岩盤崩壊に起因する津波)

第6.4-20表(1) 津波起因事象の重畳による津波の検討の数値シミュレーションに よる計算結果(水位上昇側)

	12,			評価水	泣(T.P.	m)**		
検討項目	ホンプ 運転状況	施設護岸 又は防波壁	1 号炉 取水槽	2 号炉 取水槽	3 号炉 取水槽	1 号炉 放水槽	2 号炉 放水槽	3 号炉 放水槽
F - Ⅲ断層 + F - Ⅳ断層 + F - Ⅴ断層 + # 陸上地滑り Ls26	運転時	+3.8	+1.5 (+0.27)	+1. 1 (+0. 27)	+1.0 (+0.28)	+2.7 (+0.26)	+2.8 (+0.32)	+1.9 (+0.30)
	停止時	(+0.32)	+1.8 (+0.27)	+1.7 (+0.27)	+2.7 (+0.28)	+1.2 (+0.26)	+2.6 (+0.32)	+2.4 (+0.30)

※ 括弧内の数値は地盤変動量(m),上段の数値は朔望平均満潮位(T.P.+0.46m)及び地盤変動量を考慮

第6.4-20表(2) 津波起因事象の重畳による津波の検討の数値シミュレーションに よる計算結果(水位下降側)

	評価水位(T.P. m)*										
檢討項目	2 号炉	2 号炉	2 号炉取水槽								
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時							
F-Ⅲ断層+F-Ⅳ断層 +F-V断層 + 陸上地滑りLs26	-3.7 (+0.34)	-3.7 (+0.34)	-5.7 (+0.34)	-4.7 (+0.34)							

※ 括弧内の数値は地盤変動量(m),上段の数値は朔望平均干潮位(T.P.-0.02m)及び地盤変動量を考慮

第6.4-21表(1) 地方自治体独自の波源モデルに基づく検討(防波堤無し)の数値シミュレーション結果(水位上昇側)

		評価水位(T.P. m) [※]										
地方自治体	ポンプ 運転状況	施設護岸 又は 防波壁	1 号炉 取水槽	2 号炉 取水槽	3 号炉 取水槽	1 号炉 放水槽	2 号炉 放水槽	3号炉 放水槽				
自取旧 (2012)	運転時	+11 6	_	+9.0	+6.4	_	+6.1	+6.4				
局収乐(2012)	停止時	'11.0	+9.0	+10.4	+7.7	+4.1	+7.2	+6.3				

※ 数値は朔望平均満潮位(T.P.+0.46m)を考慮

第6.4-21表(2) 地方自治体独自の波源モデルに基づく検討(防波堤無し)の数値シミュレーション結果(水位下降側)

		評価水位(T.P. m)*										
地方自治体	2 号炉	2 号炉	2 号炉取水槽									
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時								
鳥取県(2012)	-5.9	-5.9	-7.5	-5.5								

第6.4-22表(1) 地震発生領域の連動を考慮した検討(防波堤無し)

の評価水位が最高となる波源モデル

		波源モデル											
領域	断層長さ (km)	モーメントマク゛ニ チュート゛Mw	傾斜角 (°)	すべり角 (°)	上縁深さ (km)	大すべり 域	走向	東西位置					
「青森県西方沖」及び 「佐渡島北方沖」 (評価水位最高ケース)	350	8.09	60	90	0	VIVII 南へ 30km	走向一定 -10°変化	(3)から東 に 15.9km					

第6.4-22表(2) 地震発生領域の連動を考慮した検討(防波堤無し) の数値シミュレーション結果(水位上昇側)

		評価水位(T.P. m) *										
領域	ポンプ 運転状況	施設護岸 又は 防波壁	1 号炉 取水槽	2 号炉 取水槽	3号炉 取水槽	1 号炉 放水槽	2号炉 放水槽	3号炉 放水槽				
「青森県西方沖」及び	運転時	+11 2		+8.3	+5.8	_	+5.5	+6.8				
「佐渡島北方沖」	停止時	111.2	+8.0	+10.2	+7.5	+2.6	+5.4	+7.3				

※ 数値は朔望平均満潮位(T.P.+0.46m)を考慮

第6.4-23表(1) 地震発生領域の連動を考慮した検討(防波堤無し)

の評価水位が最低となる波源モデル

		波源モデル											
領域	断層長さ (km)	モーメントマク゛ニ チュート゛Mw	傾斜角 (°)	すべり角 (°)	上縁深さ (km)	大すべり 域	走向	東西位置					
「青森県西方沖」及び 「佐渡島北方沖」 (評価水位最低ケース)	350	8.09	60	90	1	VIVI 南へ 20km	走向一定 -10°変化	(3)					

第6.4-23表(2) 地震発生領域の連動を考慮した検討(防波堤無し) の数値シミュレーション結果(水位下降側)

	評価水位(T.P. m)*										
領域	2 号炉	2 号炉	2 号炉取水槽								
	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時							
「青森県西方沖」及び 「佐渡島北方沖」	-6.0	-5.9	-7.8	-5.7							

第6.4-24表 土木学会に基づく検討(防波堤無し)

の数値シミュレーション結果(水位下降側)

		評価水位(T.P. m)*										
断層	2 号炉	2 号炉	2 号炉取水槽									
600	取水口 (東)	取水口 (西)	循環水ポンプ 運転時	循環水ポンプ 停止時								
F-Ⅲ断層+F-Ⅳ 断層+F-V断層	$^{-4.1}_{(+0.34)}$	$^{-4.1}_{(+0.34)}$	$^{-6.3}_{(+0.34)}$	-5.0 (+0.34)								

※ 括弧内の数値は地盤変動量(m),上段の数値は朔望平均干潮位(T.P.-0.02m)及び地盤変動量を考慮

第6.4-25表(1) 基準津波評価結果一覧(水位上昇側)

Γ			断層	チーメント		すべ	上縁					ポンプ		評	価水位	(T.P.	m) *2		
	基準津波	波源**1	が 長 (km)	マク゛ニチュ ート゛ Mw	傾斜角 (°)	り角 (°)	深さ (km)	大すべ り域	走向	東西 位置	防波堤 有無	運転状況	施設護岸 又は 防波壁	1号炉 取水槽	2 号炉 取水槽	3号炉 取水槽	1 号炉 放水槽	2 号炉 放水槽	3号炉 放水槽
		日本海甫绿郊									古	運転	10 F	-	+7.0	+5.9	_	+6.8	+6.6
	甘涎冲水	<u>(鳥取県モデル;防波</u> 堤有り,防波堤無し)	000 0	0.16	60	00	0				伯	停止	+10. 5	+7.6	+9.0 [9.00]	+7.0	+4.0	+7.1	+6.4
	×平伴仮Ⅰ	<地方自治体独自の波源モデ ルに基づく検討(鳥取県	<i>444.4</i>	8.10	60	90	0	_	_	_	価	運転	+11 6	-	+9.0	+6.4	-	+6.1	+6.4
		(2012))>									***	停止	+11.0	+9.0	+10.4	+7.7	+4.1	+7.2	+6.3
	井洋市市の	<u>日本海東縁部</u> (2領域連動モデル							走向			運転		-	+6.9	+6.1	_	+6.1	+4.4
	基準律波 2	<u>;</u> 防波堤有り) <地震発生領域の連動を考慮 した検討(断層長さ 350km)>	350	8.09	60	90	0	IV V	一定	(3)	有	停止	+8.7	+7.1	+9.0 [8.91]	+7.2	+3.0	+6.5	+4.9
		<u>日本海東縁部</u> (2領域連動モデル						VIVII	走向	(3)から		運転		_	+8.3	+5.8	_	+5.5	+6.8
	基準津波 5	<u>;防波堤無し)</u> <地震発生領域の連動を考慮 した検討(断層長さ 350km)>	350	8.09	60	90	0	南 30km	一定 -10°変化	東 15.9km	無	停止	+11.2	+8.0	+10.2	+7.5	+2.6	+5.4	+7.3

※1 < >内は検討項目を示す。 ※2 朔望平均満潮位(T.P.+0.46m)及び地盤変動量を考慮

第6.4-25表(2) 基準津波評価結果一覧(水位下降側)

		断層	モーメントマ	店内内	すべ	上縁	ا ا		++		ポンプ	評価水	:位(T.P.	m) ^{**2}
基準津波	波源**1	長さ (km)	ク゛ニチュー ト゛ Mw	傾斜角 (°)	り角 (°)	深さ (km)	大すべり域	走向	東西 位置	防波堤 有無	運転 状況	2 号炉 取水口 (東)	2 号炉 取水口 (西)	2 号炉 取水槽
	日本海本组织									右	運転	-5.0	-5.0	-5.9 [-5.81]
其淮海沚 1	<u>日本海東稼部</u> (鳥取県モデル;防波堤有 り 防波堤無1)	<u>,,,,</u> ,,	9 16	60	90	0	_	_	_	伯	停止	-5.0	-3.0	-5.4
巫 中伴似 I	<u>り, 例び定無し)</u> <地方自治体独自の波源モデルに基 づく 検討(鳥取県(2012))>	222.2	0.10	00	90	0				無	運転	-5.9	-5.9	-7.5
											停止	5. 5	0.9	-5.5
	<u>日本海東縁部</u> (2領域連動モデル							去向			運転			-5.9 [-5.88]
基準津波3	<u>;防波堤有り)</u> <地震発生領域の連動を考慮した検 討(断層長さ 350km)>	350	8.09	60	90	0	IVVI	定定	(3)	有	停止	-4.5	-4.5	-5.2
	海域活断層									右	運転	-2.0	-2.0	-5.9 [-5.84]
其淮海沚 4	<u>(F-Ⅲ</u> 断層+F-Ⅳ断層 +F-V断層;防波堤有り,	18 0	7 97	00	115 190	0	_	_	_	Ϋ́Γ	停止	5.9	5.9	-4.8
本中伴似4	<u>防波堤無し)</u> <土木学会に基づく検討(F-Ⅲ~F	40.0	1.21	90	115, 160	0				徣	運転	-4 1	_4 1	-6.3
	-V断層)>									兼	停止	4.1	4.1	-5.0
	<u>日本海東縁部</u> (2領域連動モデル						VIVI	走向			運転			-7.8
基準津波6	<u>(と 頃 坂 建助 に) / / / / / / / / / / / / / / / / / /</u>	350	8.09	60	90	1	vivii 一定-10° 南 20km 変化		一定-10° (3) 変化		停止	-6.0	-5.9	-5.7

※1 < >内は検討項目を示す。 ※2 朔望平均干潮位(T.P.-0.02m)及び地盤変動量を考慮

第6.5-1表 津波堆積物に関する文献調査結果

番号	文献	著者	調査結果 ^{※1}	
1	①-1:鳥取沿岸津波堆積物調査の途中経過報告	安本(2013) ⁽⁷⁶⁾	 ・2013年度の津波堆積物調査の結果,<u>米子空港周辺からは,1833年山形・庄内沖地震^{**2}による津波により堆積したとして矛盾はないと評価される堆積物が検出されている。</u> ・北栄町大谷からは紀元前3600年頃と推定されるイベント層から,津波由来の可能性のある堆積物が検出されている。 ・北栄町瀬戸からは2000年前頃と想定されるイベント層から,津波由来の可能性のある堆積物が検出されている。 ・鳥取市気高町日光からは盛土中のイベント堆積物から,津波由来の可能性のある堆積物が検出されている。 	
	①-2:鳥取県内での津波堆積物検出作業の経過報告	酒井(2014a) ⁽⁷⁷⁾		
	①-3:山陰に押し寄せた津波の痕跡を探る:2012年 度津波堆積物検出調査の結果報告	酒井(2014b) ⁽⁷⁸⁾		
	①-4:津波堆積物調査報告	酒井・入月(2014) ⁽⁷⁹⁾		
	①-5:鳥取県西部弓ヶ浜半島で見つかった津波由来の可能性のある堆積物とその意義	酒井ほか(2014) ⁽⁸⁰⁾		
2	海岸堆積砂のルミネッセンス計測に基づく歴史津 波の分析	西口ほか(2014) ⁽⁸¹⁾	2013 年度の米子空港東における砂質堆積物の分析の結果,1833 年山形・庄内沖地震による 津波と整合的な年代が得られたとされている。	
3	隠岐島後重栖における津波堆積物の報告	入月ほか ^{、(2014)⁽⁸²⁾}	2012,2013 年度の <u>隠岐諸島 重栖湾における津波堆積物調査の結果</u> ,顕著な砂層は認められ なかったものの, <u>1833 年山形県沖地震による津波により運搬された可能性がある木材層を</u> 境に貝形虫群集の急激な変化や,木材層の上位で貝形虫個体数と粒度(砂の含有率)の繰 り返しが認められたとされている。	
4	日本海地震・津波調査プロジェクト	文部科学省(2016) ⁽⁸³⁾	島根県大田市久手町,島根県海士町諏訪湾,鳥取県北栄町西園における津波堆積物調査の 結果,複数のイベント堆積物の挟在が認められたとされている。	
5	山陰での津波堆積物調査とその成果	酒井ほか(2016) ⁽⁸⁴⁾	<u>隠岐諸島や鳥取県における津波堆積物調査の結果</u> ,確実に津波堆積物と断言できるイベン ト堆積物はないが、およそ 5700 年前,4000 年前,2000 年前の地層より津波由来の可能性 が高い堆積物が検出されるとともに、1833 年山形・庄内沖地震津波に由来する可能性の高 い堆積物が検出されたとされている。山陰地域における調査により検出された津波由来の 可能性の高い堆積物は、非常に薄く、微化石や化学分析を実施しない限り検出は困難であ るとされている。	
6	島根半島における津波堆積物調査について(佐陀本 郷および千酌の事例)	宮本・玉井(2014) ⁽⁸⁵⁾	松江市鹿島町佐陀本郷地点及び松江市美保関町千酌地点における津波堆積物調査の結果, 複数のイベント堆積物の可能性のある地層を抽出したとされている。イベント堆積物を対 象に各種分析を実施したが,津波由来を示す証拠は無いと判断されている。	

※1 下線部は1833年山形・庄内沖地震による津波に関する記載。

※2 当該地震について地震調査研究推進本部(2003)では「1833年庄内沖地震」と称しているが、主な引用文献の中で「1833年山形・庄内沖地震」と称していることから、後者で表記すること とする。

第6.6-1表 砂移動の数値シミュレーションの手法

ſ		藤井ほか(1998)の手法		高橋ほか(1999)の手法					
	地盤高の連続式	$\frac{\partial Z}{\partial t} + \alpha \left(\frac{\partial Q}{\partial x}\right) + \frac{E - S}{\sigma(1 - \lambda)} = 0$		$\frac{\partial Z}{\partial t} + \frac{1}{1 - \lambda} \left(\frac{\partial Q}{\partial x} + \frac{E - S}{\sigma} \right) = 0$					
	浮遊砂濃度連続式	$\frac{\partial C}{\partial t} + \frac{\partial (UC)}{\partial x} - \frac{E - S}{D} = 0$		$\frac{\partial(C_SD)}{\partial t} + \frac{\partial(MC_S)}{\partial x} - \frac{E-S}{\sigma} = 0$					
-	流砂量式	小林ほか(1996) ⁽⁸⁶⁾ の実験式 $Q = 80 au_* \sqrt[1.5]{sgd^3}$		高橋ほか(1999)の実験式 $Q = 21 au_* \sqrt[1.5]{sgd^3}$					
	巻き上げ量の算定式	$E = \frac{(1-\alpha)Qw^2\sigma(1-\lambda)}{Uk_Z \left[1 - exp\left\{\frac{-wD}{k_Z}\right\}\right]}$		$E = 0.012 \tau_* \sqrt[2]{sgd} \cdot \sigma$					
	沈降量の算定式	$S = wC_b$		$S = wC_s \cdot \sigma$					
-	摩擦速度の計算式	log-wake 則を鉛直方向に積分 より算出	した式	マニング則より算出 $u_* = \sqrt{gn^2 U^2/D^{1/3}}$					
Z	:水深変化量(m)	t :時間(s)	Х	:平面座標					
Q	:単位幅,単位時間当たりの掃流砂量 (m ³ /s/m) て、			: シールズ数					
σ	:砂の密度(=2.76g/cm ³ ,自社調査結果より) s			$:=\sigma \nearrow \rho -1$					
d	:砂の粒径(=0.3mm, 自社調査結果より) g		g	: 重力加速度(m/s ²)					
U	:流速(m/s)	D :全水深(m)	ρ	:海水の密度(=1.03g/cm ³ ,国立天文台編(2016)より)					
λ	:空隙率 (=0.4, 藤井ほか(1998) より) M		:単位幅あたりの流量 (m^2/s)						
n	n :Manning の粗度係数(=0.03m ^{-1/3} s, 土木学会より)								
α	α :局所的な外力のみに移動を支配される成分が全流砂量に占める比率 (=0.1,藤井ほか(1998)より)								
W	: 土粒子の沈降速度(Rubey 式より算出) (m/s) z_0			:粗度高さ(=ks/30)(m)					
k _z	:鉛直拡散係数(=0.2ĸu _* h,藤井ほか(1998)より)(m ² /s) ks			:相当粗度(=(7.66ng ^{1/2}) ⁶)(m)					
κ	: :カルマン定数 (=0.4, 藤井ほか(1998)より) h			:水深(m)					
C, C _b : 浮遊砂濃度, 底面浮遊砂濃度 (藤井ほか(1998)より浮遊砂濃度から算出) (kg/m ³)									
C:浮遊砂体積濃度									
log	log-wake 則:対数則 u _* /U = κ/{ln(h/z ₀) – 1} に wake 関数(藤井ほか(1998)より)を付加した式								
第6.6-2表 砂移動の数値シミュレーションの条件

設定項目	設定値
砂移動モデル	藤井ほか(1998)による方法 高橋ほか(1999)による方法
計算時間間隔	0.05秒
沖側境界条件	 ・開境界部分は自由透過、領域結合部は、水位と流速を接続 ・解析領域境界での砂の流入出を考慮
陸側境界条件	 ・静水面より上昇する津波に対しては完全反射条件、または小谷ほか(1998)の遡上条件とする。 ・静水面より下降する津波に対しては小谷ほか(1998)の移動境界条件を用いて海底露出を考慮する。
浮遊砂上限濃度	・藤井ほか(1998)による方法:1%,5% ・高橋ほか(1999)による方法:1%
計算時間	 ・日本海東縁部に想定される地震による津波は地震発生後6時間まで ・海域活断層から想定される地震による津波は地震発生後3時間まで
初期砂層厚	砂層は無限に供給されるものとして設定
砂の粒径	0. 3mm
砂の密度	2. 76g/cm^3

第6.6-3表 砂移動の数値シミュレーション結果(2号炉取水口周辺)

				取水口堆積	
基準津波	防波堤の 右無	砂移動モデル	浮遊砂 上限濃度	2号炉	2号炉
				取水口 (東)	取水口 (西)
			1 %	0.00	0.00
	右	膝井(おか(1998)	5 %	0.00	0.00
基準津波1	伯	高橋ほか(1999)	1 %	0.02 [0.020]	0.02 [0.011]
		盛井ほか (1008)	1 %	0.00	0.00
	無	膝井(よが (1990)	5 %	0.00	0.00
		高橋ほか(1999)	1 %	0.00	0.00
		盛井ほか、(1008)	1%	0.00	0.00
基準津波2	有	膝开はハー(1990)	5 %	0.00	0.00
		高橋ほか(1999)	1 %	0.01	0.00
	有	藤井ほか(1998)	1 %	0.00	0.00
基準津波3			5%	0.00	0.00
		高橋ほか(1999)	1 %	0.00	0.00
基準津波4	有	藤井ほか(1998)	1 %	0.00	0.00
			5%	0.00	0.00
		高橋ほか(1999)	1 %	0.00	0.00
	焦	藤井ほか (1908)	1 %	0.00	0.00
		旅行(よ)(* (1990)	5%	0.00	0.00
		高橋ほか(1999)	1 %	0.00	0.00
		盛井ほか、(1008)	1 %	0.00	0.00
基準津波 5	無	膝开はか (1990)	5%	0.00	0.00
		高橋ほか(1999)	1%	0.00	0.00
基準津波6	無	藤井ほか (1000)	1 %	0.00	0.00
		が余フ干(より、(1990)	5 %	0.00	0.00
		高橋ほか(1999)	1 %	0.00	0.00

第6.6-4表 砂移動の数値シミュレーション結果(2号炉取水槽)

基準津波	上昇側・下降側	防波堤の 有無	ポンプ 運転状況	砂移動 モデル	浮遊砂 上限濃度	2 号炉取水槽における 砂の堆積厚さ(m)
		有	運転			0.02[0.0161]
			停止			0.00
	上升彻	ÁTT.	運転			0.01
甘滩净油 1		***	停止			0.00
至毕伴似 I		右	運転			0.02[0.0162]
	下陈间	Ĥ	停止			0.00
	下陸们	毎	運転			0.01
		***	停止			0.00
基準津波2	上昇側	有	運転			0.01
			停止	高橋ほか	1 0/	0.00
基準津波3	下降側	有	運転	(1999)	1 70	0.01
			停止			0.00
	下降側	右	運転			0.00
甘滩海冲 4		伯	停止			0.00
基準准波4		Aut	運転			0.00
		***	停止			0.00
基準津波5	し目仰	無	運転			0.00
	上升則		停止			0.00
甘油油水。	下欧加	無	運転			0.00
本 単 律 彼 り	下阵侧		停止			0.00

第6.1-1図 基準津波の策定における検討フロー

6 - 6 - 75

第6.2-1図 日本海における既往地震の震央位置及び地震規模

第6.2-2図(1) 日本海沿岸における既往津波高(1983年日本海中部地震津波)

第6.2-2図(2) 日本海沿岸における既往津波高(1993年北海道南西沖地震津波)

第6.3-1図(1) 計算領域と水深(全域)

第6.3-1図(2) 計算領域と水深(敷地周辺)

第6.3-1図(3) 計算領域と水深(敷地前面)

領域	格子間隔(m)
А	800
В	400
С	200
D	100

第6.3-2図(1) 計算領域と格子分割

領域	格子間隔(m)
А	800
В	400
С	200
D	100
Е	50
F	25
G	12.5
Н	6. 25

第6.3-2図(2) 計算領域と格子分割(島根原子力発電所周辺)

第6.3-3図 2号炉取水施設概要図

第6.3-4図 基準津波の策定における津波水位の評価地点

防波堤位置

第6.3-5図 防波堤の位置及び構造

第6.3-6図 波源モデルの断層パラメータ及びその設定位置

第6.3-7図(1) 日本海沿岸における既往津波高と計算津波高の比較(1983年日本海中部地震津波)

(島根半島)

(日本海沿岸)

第6.3-7図(2) 日本海沿岸における既往津波高と計算津波高の比較(1993年北海道南西沖地震津波)

番号	断層名
1+2+3	F-Ⅲ断層+F-Ⅳ断層+F-V断層
<u>(4)+(5)</u>	鳥取沖西部断層+鳥取沖東部断層
6	F 5 7 断層
7+8+9	K-4 撓曲+K-6 撓曲+K-7 撓曲
10	大田沖断層
(1)+(12)+(13)	K-1 撓曲+K-2 撓曲+F _{K0} 断層
14)	F _K -1 断層
15	隠岐北西方北部断層
16	見島北方沖西部断層

第6.4-1図 敷地周辺の主な海域の活断層

- ※1:断層幅の上限W_tは、地震発生層の厚さHeを15kmとし、傾斜角δを90°(45~90°のうちM_wが最大 となる値)とした際には、W_t=He/sinδ=15kmとなる。また、断層幅の上限に対応する断層長さ L_tは、L_t=1.5W_t=22.5kmとなる。
- ※2:断層幅の上限に対応するすべり量D_tは,モーメントマグニチュードを $M_{w_t} = (logL_t + 3.77)/0.75 = 6.83$, 地震モーメントを $M_{0t} = 10^{(1.5M_{wt}+9.1)} = 2.21 \times 10^{19}$ Nm, 剛性率を $\mu = 3.50 \times 10^{10}$ N/m²とした際には, D_t= $M_{0t}/(\mu L_t W_t) = 1.87$ mとなる。

第6.4-2図 阿部(1989)の予測式による津波の予測高の算定フロー

$$6 - 6 - 90$$

0 200 km

パラメータ	設定方法
剛性率	土木学会に基づき3.5×10 ¹ N/m²と設定(固定)
位置	土木学会及び地震調査研究推進本部(2003)を参考に南北・東西方向に波源位置を変動
走向	土木学会及び地震調査研究推進本部(2003)を参考に設定
Mw・長さ	地震規模は既往最大の波源モデルを上回るMw7.85とし,武村(1998)のスケーリング則に基づき長さを131.1km と設定(固定)
傾斜方向	土木学会によると既往津波の痕跡高を再現できる波源モデルの傾斜方向は一定でないため、東・西傾斜の双 方を設定
傾斜角	土木学会によると既往津波の痕跡高を再現できる波源モデルの傾斜角は概ね30°~60°であるため,このうち60°と設定
地震発生層 深さ	土木学会によると1976年1月~2000年1月に日本海東縁部において発生したMw5.0以上,深さ60km以下の地震を 抽出すると,地震の発生深さは概ね15km~20kmであるため,すべり量が大きくなり,安全側の評価になると 考えられる15kmと設定(固定)
断層上縁 深さ	土木学会によると既往津波の波源モデルの断層上縁深さは概ね0~5kmであるため,このうち0kmと設定
すべり角	土木学会によると既往津波の波源モデルのすべり角は90°付近に分布していることから、すべり角を安全側 の評価になると考えられる90°と設定(固定)
すべり量	$D=M_0/\mu LW$ D:すべり量, M_0 :地震モーメント, μ :剛性率,L:長さ,W:幅

第6.4-3図 日本海東縁部に想定される地震に伴う津波(土木学会)の波源モデル (概略パラメータスタディ)

6 - 6 - 91

※ 図は評価水位最高ケースを示す

パラメータ	設定方法
剛性率	土木学会に基づき3.5×10 ¹⁰ N/m ² と設定(固定)
位置	概略パラメータスタディの評価水位最高・最低ケースの位置を基準とし、変動範囲を補間するように、南 北・東西方向に移動
走向	概略パラメータスタディの評価水位最高・最低ケースの走向を基準として変動(基準,基準±10°)
Mw・長さ	地震規模は既往最大の波源モデルを上回るMw7.85とし,武村(1998)のスケーリング則に基づき長さを131.1km と設定(固定)
傾斜方向	概略パラメータスタディの評価水位最高・最低ケースの傾斜方向
傾斜角	土木学会に基づき45°, 52.5°, 60°と設定
地震発生層 深さ	土木学会によると1976年1月~2000年1月に日本海東縁部において発生したMw5.0以上,深さ60km以下の地震を 抽出すると,地震の発生深さは概ね15km~20kmであるため,すべり量が大きくなり,安全側の評価になると 考えられる15kmと設定(固定)
断層上縁 深さ	土木学会に基づき0km, 2.5km, 5kmと設定
すべり角	土木学会によると既往津波の波源モデルのすべり角は90°付近に分布していることから、すべり角を安全側の評価になると考えられる90°と設定(固定)
すべり量	$D=M_0/\mu LW$ D:すべり量, M_0 :地震モーメント, μ :剛性率, L:長さ, W:幅

第6.4-4図 日本海東縁部に想定される地震に伴う津波(土木学会)の波源モデル (詳細パラメータスタディ)

	-	
絔柆	南北※	評価水位(T.P. m)
限坝	位置	施設護岸又は防波壁
10/百七	1	+1.7
EU 限 奥	2	+1.9
	1	+1.4
	2	+1.9
	3	+1.6
	4	+2.0
E1領域	5	+1.7
	6	+2.6
	$\overline{\mathcal{O}}$	+2.7
	8	+3.0
	9	+5.5
E2, E3 領域	1	+5.8
	2	+4.7
	3	+4.4
N.L.		※東西位置はよぶて再出した7

※東西位置はすべて西端とする。

第6.4-5図 日本海東縁部に想定される地震に伴う津波(地震発生領域の連動を考 慮した検討)の波源モデル(波源領域位置の影響検討)

項目	諸元			主な設定根拠
長さ L (km)	350km			地震調査研究推進本部 (2003)に示される「青森 県西方沖」の領域から「佐渡島北方沖」の領域
走向 θ (°)	東傾斜	¥8.9°,西傾斜18	8. 9°	地震調査研究推進本部(2003)の領域を踏まえ設定
傾斜角 δ (°)	60°	45°	30°	土木学会に示される変動範囲30~60°
幅 W (km)	23. 1	28.3	40.0	地震発生層厚さ20km(固定), 傾斜角より設定
すべり角 λ(°)	90°			土木学会に基づき安全側となる90°固定
すべり量 D (m)	大すべり域:12m, 背景領域:4m 平均:6m			国土交通省・内閣府・文部科学省(2014), 根本 ほか(2009)等に基づき設定
剛性率 µ (N/m ²)	$3.5 imes 10^{10}$			土木学会に基づき設定
地震モーメントMo (N・m)	1.70×10^{21}	2.08×10^{21}	2.94×10^{21}	$M_0 = \mu LWD$
モーメントマク゛ニ チュート゛Mw	8.09	8.15	8.25	Mw= (logM ₀ -9.1) /1.5
大すべり域 の設定	8セグメントに等 域となるよう, 2 ⁻	分割し,全断層面和 セグメントを大す~	漬25%が大すべり べり域として設定	根本ほか (2009)に基づき設定

第6.4-6図 日本海東縁部に想定される地震に伴う津波(地震発生領域の連動を考 慮した検討)の波源モデル(基準断層モデル)

パラメータ	設定方法
長さ	地震調査研究推進本部(2003)に示される「青森県西方沖」の領域と「佐渡島北方沖」の領域の連動を考慮し,350kmと設定
位置	地震調査研究推進本部(2003)を参考に東西方向に波源位置を変動
走向	地震調査研究推進本部(2003)を参考に設定
傾斜方向	土木学会によると既往津波の痕跡高を再現できる波源モデルの傾斜方向は一定でないため,東・西傾斜の双方を設定
傾斜角	土木学会によると既往津波の痕跡高を再現できる波源モデルの傾斜角は概ね30°~60°であるため,30°,45°,60°と設定
断層下限深さ	土木学会によると1976年1月~2000年1月に日本海東縁部において発生したMw5.0以上,深さ60km以下の地震を抽出すると,地震の発生 深さは概ね15km~20kmであるため,断層面積が広くなり,安全側の評価になると考えられる20kmと設定(固定)
断層上縁深さ	土木学会によると既往津波の波源モデルの断層上縁深さは概ね0~5kmであるため、このうち0kmを設定
すべり角	土木学会によると既往津波の波源モデルのすべり角は90°付近に分布していることから,すべり角を安全側の評価になると考えられる 90°と設定(固定)
すべり量	土木学会に検討事例として記載されている国土交通省・内閣府・文部科学省(2014)より最大すべり量を12m, 平均すべり量を6mと設定。 また,背景領域のすべり量は根本ほか(2009)に基づき4mとする。
剛性率	土木学会に基づき3.5×10 ¹⁰ N/m ² と設定(固定)
M ₀ , Mw	Kanamori(1977)により算出 logM ₀ =1.5Mw+9.1 M ₀ =µDS
大すべり域	根本ほか(2009)に基づき大すべり域(アスペリティ領域)と背景領域の面積比を1:3とし,波源モデルを8等分したセグメントについて,隣り合う2つのセグメントを大すべり域として設定する。

第6.4-7図 日本海東縁部に想定される地震に伴う津波(地震発生領域の連動を考慮した検討)の波源モデル(概略パラメータスタディ)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
詳細-1	断層上縁深さ	土木学会に示される既往津波の痕跡高を再現できる波源モデルの変動範囲0~5kmより設定する。
詳細-2	走向	地震調査研究推進本部(2003)の地震発生領域を一つの領域と考え,走向を一定に変化させたケース(走向一 定ケース)及び,地震発生領域毎に走向を変化させたケース(折曲ケース)を設定する。
詳細-3	大すべり域位置 (隣接しない場合)	大すべり域位置が離れる場合も想定し、大すべり域が隣接しないケースを考慮し、設定する。
詳細-4	波源モデル位置 (東西位置を補間するように設定)	概略パラメータスタディで実施した東西位置を補間するように設定する。

(1) 詳細パラメータスタディ①

※詳細パラメータスタディ①により影響が大きいと確認された影響因子を組合せる

(2) 詳細パラメータスタディ②

※大すべり域位置を更に細かく移動(図は大すべり域位置VVIの場合を示す)

(3) 詳細パラメータスタディ③

第6.4-8図 日本海東縁部に想定される地震に伴う津波(地震発生領域の連動を考慮した検討)の波源モデル(詳細パラメータスタディ)

国土交通省・内閣府・文部科学省(2014)より引用・加筆

第6.4-9図 国土交通省・内閣府・文部科学省(2014)に示される波源モデル (敷地周辺海域)

島根県(2016)より引用・加筆

地方 自治体	No.	名称	断層長さ L	敷地からの 距離Δ	評価
	1	隠岐北西沖 の地震	36km	145km	断層の長さ及び敷地からの距離を考慮すると、左記地震による津波の敷地への影響は、第6.4-1表にて評価済みの「(A)隠岐北西方北部断層(L=36km, Δ=149km)」 から想定される地震による津波(H=0.4m)と同程度と推定されるため、敷地への 影響は十分小さいと評価した。
	2	F55	95km	82km	国土交通省・内閣府・文部科学省 (2014) に基づく検討に基づく検討において,津 波の敷地への影響を評価済みである。
	3	F56	49km	24km	
島根県 (2016)	4	F57	102km	103km	
	5	浜田市沖合 の地震	27km	92km	断層の長さ及び敷地からの距離を考慮すると、左記地震による津波の敷地への影響は、第6.4-1表にて評価済みの「(B)大田沖断層(L=53km、 Δ =67km)」から想定される地震による津波の敷地への影響を下回ると評価した。
	6	F60	137km	300km	断層の長さ及び敷地からの距離を考慮すると、左記地震による津波の敷地への影響は、第6.4-1表にて評価済みの「(C)F57断層(L=108km、Δ103km)」から想 定される地震による津波の敷地への影響を下回ると評価した。

地方 自治体	No.	名称	断層長さ L	敷地からの 距離Δ	評価
鳥取県 (2012)	1	鳥取沖東部 断層	51.0km	109km	断層の長さ及び敷地からの距離を考慮すると,左記地震による津波の敷地への影響は,第6.4-1表にて評価済みの「(A鳥取沖西部断層+鳥取沖東部断層(L=98km, Δ=84km)」(左記断層を連動させて評価)から想定される地震による津波の敷地 への影響を下回ると評価した。
	2	鳥取沖西部 断層	33. Okm	53km	

第6.4-10図 地方自治体独自の波源モデル (敷地周辺海域)

国土交通省・内閣府・文部科学省(2014)より引用・加筆

第6.4-11図 国土交通省・内閣府・文部科学省(2014)に示される波源モデル (日本海東縁部)

地方自治体	モーメントマグニチュード Mw
秋田県(2013) ⁽⁸⁸⁾	8.69
石川県 (2012) ⁽⁸⁹⁾ ・福井県 (2012) ⁽⁹⁰⁾	7.99
鳥取県(2012)	8.16
島根県(2012) ⁽⁹¹⁾	8.01

地震調査研究推進本部(2003)に加筆

第6.4-12図 地方自治体独自の波源モデル(日本海東縁部)

第6.4-13図 海底地滑り地形位置図

6-6-101

第6.4-14図 Watts et al. (2005)の方法を用いた 数値シミュレーションの算定フロー

第6.4-15図 海底地滑り地形の断面形状(地滑り①)

第6.4-16図 陸上地滑り地形位置図

Ls7

第6.4-17図 陸上地滑り地形の断面形状 (Ls7, Ls26)

第6.4-18図 岩盤崩壊位置図

第6.4-19図 第四紀火山位置図

第6.4-20図 津波波源の位置図

第6.4-21図 基準津波策定位置

第6.4-22図(1) 基準津波の時刻歴波形

第6.4-22図(2) 基準津波の時刻歴波形

調査地点	ボーリング調査	定方位試料採取
佐陀本郷地点	1本	5本
千酌地点	1本	4本

第6.5-1図 津波堆積物調査地点

第6.5-2図 1833年山形・庄内沖地震による津波に由来する可能性が高いイベント堆積物

第6.5-3図 1833年山形・庄内沖地震津波の津波痕跡高

第6.6-1図 砂移動の数値シミュレーションのフロー

第6.6-2図 砂移動の堆積侵食分布図及び最大堆積分布図

第6.6-3図 砂移動による2号炉取水槽における水位,堆積厚 及び浮遊砂濃度の時系列

第6.7-1図(1) 日本海東縁部のロジックツリー

第6.7-1図(2) E0領域の地震発生モデル

第6.7-1図(3) E1領域の地震発生モデル

第6.7-1図(4) E2領域の地震発生モデル

第6.7-1図(6) E0~E3領域の津波高さ推定モデル

第6.7-1図(7) E0~E3領域の津波推定値のばらつき分岐

	ļ	①地震発生	②津波高さ推定] :	③津波推定値の
「運動唄域」		モデル	モデル※		ばらつきの分岐へ
				- i	

※ 各波源の「②津波高さ推定モデル」については、以下のとおり設定する。
・地震発生領域の連動を考慮した波源:基準津波の検討で考慮したモデル

・地震発生頃域の運動を考慮した波源:基準律波の検討で考慮したモデ
 ・地方自治体独自の波源:地方自治体が想定した波源モデル

波源モデル	Mw	発生頻度
	Mw=8.09	一様分布, 1個/3,000-6,000年
地震発生領域の連動を 考慮した波源(350km)	Mw=8.15	一様分布, 1個/3,000-6,000年
	Mw=8.25	一様分布,1個/3,000-6,000年
自防退 (2010)	Mw=7.85	一様分布, 1個/500-1,000年
局取県(2012)	Mw=8.16	一様分布,1個/1,500-3,000年
	Mw=7.82	一様分布, 1個/500-1,400年
	Mw=7.89	一様分布, 1個/500-1,000年
秋田県 (2013)	Mw=8.46	一様分布, 1個/1,000-2,000年
	Mw=8.28	一様分布, 1個/1,500-3,000年
	Mw=8.69	一様分布,1個/3,000-6,000年
石川県(2012)・福井県(2012)	Mw=7.99	一様分布,1個/1,500-3,000年
自相但 (2012)	Mw=7.85	一様分布, 1個/500-1,000年
 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	Mw=8.01	一様分布,1個/1,500-3,000年
山口県(2012) ⁽⁹³⁾	Mw=7.85	一様分布, 1個/500-1,000年

連動領域の地震発生モデル

第6.7-1図(8) 連動領域の地震発生モデル及び津波高さ推定モデル

第6.7-1図(9) 連動領域の津波推定値のばらつき分岐

第6.7-1図(10) 海域活断層のロジックツリー

パラメータ	設定根拠
断層破壊過程	土木学会(2011)より、一括放出型と設定。
長さ・走向	海上音波探査結果に基づき設定。
発生層厚さ	土木学会(2011)より,15kmと設定。
傾斜角	土木学会に示される45~90°を変動範囲とし、15°毎に値を設定。 重みは西南日本で発生した地震の傾斜角に関するデータより設定。
スケーリング則	土木学会(2011)に示される「津波評価技術」の式を適用する。
Mw範囲	海上音波探査結果に基づき設定した断層長さ(48.0km)から、「津波評価技術」に示される武村 (1998)のスケーリング則より求めたMwに分布幅を設定。 重みは一様分布と設定。
平均変位速度	海域活断層の活動度に関する知見は得られていないため、周辺の陸域活断層(宍道断層)の活動 度であるB, C級(活断層研究会編(1991) ⁽⁹⁴⁾ 及び今泉ほか(2018) ⁽⁹⁵⁾ より設定)を参考と し、平均変位速度は奥村・石川(1998) ⁽⁹⁶⁾ に基づきB級を0.25mm/年, C級を0.047mm/年と設定。 重みは一様分布と設定。

第6.7-1図(11) 海域活断層の地震発生モデル

パラメータ	設定根拠
断層上縁深さ	土木学会(2011)に示される変動範囲0~5km及び敷地周辺で発生した地震の震源鉛直分布等から推定される断層上縁深さ2kmに基づき0km,2km及び5kmと設定。 重みは一様分布と設定。
応力場 (P軸)	塚原・小林(1991) ⁽⁹⁷⁾ , ハーバードCMT発震機構解及び気象庁初動発震機構解より90~120°と考えられることから, 90°, 105°及び120°と設定。 重みは一様分布と設定。
傾斜方向	海上音波探査結果より、南傾斜と設定。

第6.7-1図(12) 海域活断層の津波高さ推定モデル

第6.7-1図(13) 海域活断層の津波推定値のばらつき分岐

第6.7-2図(1) 基準津波策定位置におけるフラクタイル及び平均ハザード曲線

第6.7-2図(2) 施設護岸又は防波壁におけるフラクタイル及び平均ハザード曲線

第6.7-2図(3) 2号炉取水口におけるフラクタイル及び平均ハザード曲線

第6.7-2図(4) 2号炉取水槽におけるフラクタイル及び平均ハザード曲線