JY-70-1

CONTAIN-LMRのモデル及び妥当性確認について

1. はじめに

本資料は、格納容器破損防止措置の有効性評価(以下「有効性評価」という。)に適用する計算コ ードのうちCONTAIN-LMR^[1]について、

- ・有効性評価において重要となる現象の特定
- ・解析モデルに関する説明
- · 妥当性確認

に関してまとめたものである。

2. 重要現象の特定

2.1 事故シーケンスと評価指標

CONTAIN-LMRが適用される格納容器破損防止措置の有効性評価における事象グループ について、具体的な事故シーケンス(評価事故シーケンス)、及びその事象推移と評価指標について 記載する。なお、本資料では、各事象の事故が開始し、炉内事象過程以降に生じる「格納容器応答過 程」を対象とする。

(1) 炉心流量喪失時原子炉停止機能喪失(ULOF: Unprotected Loss Of Flow)

本事象グループは、原子炉運転中に炉心流量が減少した際に、何らかの理由(原子炉トリッ プ信号の発信失敗等)により、制御棒の急速挿入に失敗することによって原子炉停止機能が 喪失し、炉心の著しい損傷に至る事故である。ULOFにおける格納容器応答過程では、先行す る機械的応答過程の解析において、不確かさの影響を考慮してもナトリウムの格納容器(床 上)への噴出は起こらないと評価されたが、ここでは格納容器の健全性を入念に確認するた めに、敢えて 230kg(既許可申請書の仮想事故時の噴出量)のナトリウムの噴出を仮定した解 析を実施している(第1図)。

この際の事象推移は、噴出したナトリウムと雰囲気中の酸素や水蒸気との反応(①スプレイ 燃焼)に始まり、その燃え残ったナトリウムが床面に落下・堆積して生じる②プール燃焼へと 進展する。加えて、格納容器(床上)の床面にはライナが敷設されていないため、落下したナ トリウムと構造コンクリートが接触することとなり、③ナトリウム-コンクリート反応も同 時に発生する。これらの燃焼や反応は全て発熱反応であるため、格納容器(床上)の雰囲気圧 力や各部の温度を上昇させる。さらに、ナトリウム-コンクリート反応では、可燃性ガスであ る水素を生成するとともに、接触したコンクリートを侵食する。

以上の事象推移において、格納容器の健全性に対して重要となる現象は、スプレイ燃焼、プ ール燃焼、ナトリウム-コンクリート反応、及びこれらの燃焼等により発生する熱や物質の 移行挙動である。また、評価指標は、雰囲気圧力、構造材温度、水素濃度、コンクリート侵食 量、及びエアロゾル濃度となる。

なお、以上の ULOF 格納容器応答過程を保守的に評価するため、各現象(①~③)が独立し

て起こるものとして計算している。すなわち、230kgのナトリウムが各々の現象において消費 されるような条件を設定して計算している。

(2) 崩壞熱除去機能喪失 (PLOHS: Protected Loss Of Heat Sink)

本事象グループは、原子炉の崩壊熱除去中に、1次主冷却系による強制循環冷却に必要な原 子炉容器液位が確保された状態で、何らかの理由(1次主循環ポンプポニーモータの故障、補 助電磁ポンプの故障等)により、すべての強制循環及び自然循環冷却機能を喪失することに よって、崩壊熱除去機能が喪失し、炉心の著しい損傷に至る事故である。PLOHS における格納 容器応答過程は、1次アルゴンガス系に整備・設置した安全板の開放によりナトリウム蒸気 が窒素雰囲気の格納容器(床下)へ流出・漏えいすることから始まる(第2図)。この時のナ トリウム蒸気の流出・漏えい条件(温度及び速度)は、先行する炉内事象過程の解析で計算さ れている。なお、漏えいナトリウムの熱的影響を緩和するために、安全板が設置される部屋に は断熱材及びヒートシンク材が敷設される。

この際の事象推移は、格納容器(床下)に流出したナトリウム蒸気は雰囲気中の酸素及び水 蒸気(酸素濃度3.5vol%、水蒸気濃度1.2vol%)と反応するとともに、残りは凝縮して格納 容器(床下)の底部にプール状に溜るか、もしくは蒸気やミストの状態で隣接室へ移行する。 さらに移行先において、同様に微量の酸素や水蒸気と反応しつつ、同室の底部にプール状に 溜る。これらが熱源となり、対流、輻射や熱伝導により周辺の構造材や雰囲気へ伝熱し、格納 容器(床下)の他室へ、さらには格納容器(床上)へと伝熱していく。なお、格納容器(床上) と格納容器(床下)の間には通気があるため、熱だけでなく物質(ガスやエアロゾル等)も移 行する。

以上の事象推移において、格納容器の健全性に対して重要となる現象は、スプレイ燃焼、プ ール燃焼、ナトリウムの凝縮・蒸発、これらの燃焼等により発生する熱や物質の移行挙動であ る。また、評価指標は、雰囲気圧力、構造材温度、水素濃度、エアロゾル濃度となる。

2.2 ランクの定義

CONTAIN-LMRで評価する格納容器応答過程において考慮すべき物理現象を対象に、第1 表の定義に従って「H」、「M」、「L」のランクに分類し、「H」及び「M」に分類された物理現象を重要現 象として抽出する。

2.3 物理現象に対するランク付け

本資料の2.1 で述べた事象進展を踏まえ、CONTAIN-LMRで評価する事項において考慮す べき物理現象を対象に、2.2 のランクの定義に従い評価指標への影響に応じて第2表の通りランク付 けを行い、「H」及び「M」に分類された物理現象を重要現象として抽出した。

ランク付けに当たっては、まずナトリウム漏えいが空気雰囲気で発生する ULOF においては、雰囲 気圧力、構造材温度は燃焼初期に卓越するスプレイ燃焼からの影響を強く受けるため、これらに関す る物理現象を相対的に高いランクとした。また、プール領域下部の構造材(コンクリートやライナ) 温度は床面で発生するプール燃焼からの影響を強く受けるため、関連する物理現象を相対的に高いラ ンクとした。さらに、水素濃度、コンクリート侵食量に関しては、発生要因であるナトリウム-コン クリート反応の影響を強く受けるため、関連する物理現象を相対的に高いランクとした。一方、PLOHS はナトリウム漏えいが窒素雰囲気で発生するため、ナトリウム(スプレイ及びプール)燃焼に関連す る物理現象について、ULOFよりもランクを下げるとともに、逆にナトリウムの蒸発・凝縮のランクを 上げている。なお、PLOHSではナトリウム-コンクリート反応は発生しないため対象外とする。

以下に、物理現象ごとに考え方を示す。

(1) 液滴径分布 [スプレイ燃焼]

液滴径分布は、スプレイ燃焼において反応面表面積を支配する物理現象であり、雰囲気圧力、構造材温度に強い影響を及ぼす。また、反応生成物であるエアロゾル発生量にも強く影響を及ぼす。 このため、ULOFのランクは「H」とする。一方、PLOHSは窒素雰囲気で発生することを考慮して「M」 とする。なお、液滴径分布は解析では入力条件となる。

(2) 燃焼(含水分との反応) [スプレイ燃焼]

雰囲気中におけるナトリウムと酸素及び水蒸気との反応は、雰囲気圧力、構造材温度、エアロゾル濃度に強い影響を与える。このため、上記(1)と同様に、ULOFのランクは「H」、PLOHSは「M」とする。なお、スプレイ燃焼が支配的となる燃焼初期においてはコンクリートからの水分放出は少ないため、水素濃度への影響は小さいものと考えられる。

(3) 反応熱移行 [スプレイ燃焼]

反応熱移行では、燃焼により発生した熱の雰囲気及び液滴への熱輸送割合を支配するため、雰囲気圧力、構造材温度に強い影響を与える。このため、ULOFのランクは「H」、PLOHSは「M」とする。

(4) プール広がり面積 [プール燃焼]

プール広がり面積は、プール燃焼における反応面積・反応領域を決定するため、プール領域下部 の構造材(コンクリートやライナ)の温度上昇やエアロゾル濃度に影響を及ぼす。なお、プール燃 焼はスプレイ燃焼に比べると穏やかであり、雰囲気圧力の上昇に及ぼす影響はそれほど大きくな い。以上より、ULOF 及び PLOHS のランクは「M」とする。なお、プール広がり面積は解析では入力 条件となる。

(5) 燃焼(含水分との反応) [プール燃焼]

ナトリウムプールと酸素及び水蒸気との反応は、雰囲気圧力、水素濃度、エアロゾル濃度に影響 を与えるが、現象としては比較的緩やかであるといえる。ただし、プール燃焼直下にある構造材温 度に対しては強い影響がある。したがって、ULOFに対するランクは「H」とし、PLOHS(窒素雰囲 気で発生)に対するランクは「M」とする。

(6) 反応熱移行 [プール燃焼]

反応熱移行では、燃焼により発生した熱の雰囲気及びプールへの熱輸送割合を支配する。プー ルへ輸送された熱は、熱伝導によりライナ及びコンクリートへ移行する。したがって、反応熱移行 では、これらの構造材温度に強い影響を与える。以上より、上記(5)と同様に、ULOF に対するラン クは「H」、PLOHS は「M」とする。

(7) 熱伝導 [雰囲気・構造物への熱移行]

熱伝導は、構造材温度の上昇に強い影響を与える。また、結果としてコンクリートからの水蒸気 放出に影響を及ぼすことで、評価指標である水素濃度にも影響を与える。以上より、ULOF及び PLOHS に対するランクは「H」とする。

- (8) 対流熱移行 [雰囲気・構造物への熱移行]
 - 対流熱移行は、部屋間の圧力差及び温度差に伴う浮力差による対流現象であり、部屋全体及び 部屋(セル)間の熱輸送を支配する。このため、雰囲気圧力に強い影響を与える。また、対流熱伝 達により隣接する構造材温度に影響を与える。同様にエネルギー輸送に伴うセル間の浮力差の要 因となるため、水素濃度及びエアロゾル濃度に対しても影響を与える。このため、ULOF及びPLOHS に対するランクは「H」とする。
- (9) 輻射熱移行 [雰囲気・構造物への熱移行]
 - 輻射熱移行は、燃焼面(熱源)から輻射により周辺壁、天井、床面に熱が移行される。したがって、構造材温度に強い影響を与える。また、雰囲気にはエアロゾルが存在するため、エアロゾル を介して周辺雰囲気ガスへも熱が輸送される。このため、雰囲気圧力にも影響を与える。したがって、ULOF 及び PLOHS に対するランクは「H」とする。
- (10) 質量・運動量移行 [雰囲気・構造物へのガス・エアロゾル移行]

セル間(部屋間)の質量・運動量移行は、圧力差及び温度差に伴う浮力差を駆動力とした部屋間 の運動量輸送現象であり、運動量輸送の結果、雰囲気圧力、構造材温度、水素濃度及びエアロゾル 濃度に対して強い影響を与える。したがって、ULOF 及び PLOHS に対するランクは「H」とする。

(11) ガス成分濃度移行 [雰囲気・構造物へのガス・エアロゾル移行]

ガス成分濃度移行では、酸素の消費に加え水蒸気及び水素の発生、移行が重要な現象となる。ナ トリウム漏えい・燃焼によりコンクリートが昇温されることで水蒸気が放出する。水蒸気放出に 伴い蒸発潜熱がコンクリートより奪われるが、コンクリート温度変化に対する影響は比較的小さ い。水蒸気はナトリウムと反応することで水素を発生するため、水素濃度に強い影響を与える。ま た、エアロゾルについても、酸素とナトリウムとの反応に加え、水蒸気との反応で水酸化物のエア ロゾルが生成されるため、エアロゾル濃度にも影響を及ぼす。

ナトリウムと水蒸気との反応により生成される水素は、さらに酸素と反応することで2次的な 温度上昇、圧力上昇を伴う可能性がある。したがって、水素濃度変化は、雰囲気の温度や圧力に対 しても影響を及ぼす。

したがって、ULOF 及び PLOHS に対するランクは「H」とする。

(12) エアロゾル移行 [雰囲気・構造物へのガス・エアロゾル移行]

エアロゾル移行は、エアロゾルの凝集や沈着による部屋内部での滞留・堆積及び流動による部 屋間の移行であり、エアロゾル濃度に強い影響を与える。また、エアロゾルは雰囲気中の水蒸気と 反応するため、水蒸気濃度の変化に伴う水素濃度変化に対して影響を与える。以上より、ULOF及 びPLOHS に対するランクは「H」とする。

(13) ナトリウム-コンクリート反応 [その他ナトリウム特有の物理現象]

ナトリウム-コンクリート反応は、漏えいナトリウムがコンクリートと接触することにより発生 する。この際、コンクリートを侵食しながら水素を発生する。即ち、水素濃度、コンクリート侵食 量に対する主要要因となる。

したがって、ULOF に対するランクは「H」、PLOHS は漏えいナトリウムがコンクリートと直接接

触しないため対象外とする。

(14) ナトリウムの凝縮・蒸発 「その他ナトリウム特有の物理現象]

ナトリウムの凝縮・蒸発は、雰囲気圧力、構造材温度に影響を与えるものの、スプレイ燃焼と比較すると相対的に小さい。逆に、PLOHS(窒素雰囲気で発生)においては燃焼や反応がほとんど起きないため、本項の影響が相対的に大きくなる。

したがって、ULOF に対するランクは「M」、PLOHS は「H」とする。

3. 解析モデルについて

3.1 コード概要

CONTAIN-LMRは、シビアアクシデント時に格納容器内で生じる様々な現象(ナトリウム 燃焼、ナトリウム-コンクリート反応等)を解析し、格納容器の健全性を評価するとともに、環境へ 漏えい・放出される放射性物質の種類と量(ソースターム)を評価するために開発されてきた計算コ ードである(第3図)。同コードは米国サンディア国立研究所で開発を開始され^[1]、国立研究開発法 人日本原子力開発機構では1980年代に導入し、独自のモデル改良及び検証を行ってきた^[2]。

CONTAIN-LMRは、ナトリウム燃焼、ナトリウム-コンクリート反応、水素燃焼等の個別 現象解析コードを統合したモジュラー型のコードシステムであり、格納容器内における広範の事故解 析に適用可能である。

解析体系は、セルと呼ぶ単位に分割して、各セルの物理量(圧力、ガス温度・成分、エアロゾル濃 度等)は、平均値で記述される。また、セル内には複数の構造物(床、壁、天井、内部構造物)を設 定することができる。構造物内部の温度変化は、1次元の熱伝導で扱われ、セルの雰囲気との間での 自然対流熱伝達、水やナトリウム蒸気の凝縮、エアロゾルの沈着等を考慮できる。

3.2 重要現象に対する解析モデル

本資料の前章において重要現象に分類された物理現象について、その物理現象を計算するために 必要となる解析モデルを第3表に示す。

3.3 解析モデル

CONTAIN-LMRは、多セル間の質量(ガス成分種含)、運動量及びエネルギー輸送を計算 するフローネットワークモデル、輻射熱移行モデル、ナトリウム燃焼、水素燃焼、ナトリウム-コン クリート反応等を計算する化学反応モデル、並びにエアロゾル及び放射性物質移行挙動に関するモデ ルで構成される。

3.3.1 スプレイ燃焼

CONTAIN-LMRでは、ナトリウムスプレイ燃焼解析モデルとして個別現象解析コード NACOM^[3]が内蔵されており、スプレイを抜山-棚沢分布の径を持つ液滴の群として扱い、単一液滴へ の重力・抗力を考慮した落下運動を計算する(第4図)。液滴の燃焼は、燃料液滴への適用で実績の ある d²則に球体周囲の強制対流熱伝達による蒸発促進効果を考慮したモデルで、雰囲気中に噴出し たナトリウム液滴の燃焼挙動を計算する。酸素との反応(燃焼)に加えて、雰囲気中の水分との反 応も考慮し、その際の反応生成物及び反応熱による雰囲気の圧力及び温度上昇を計算する。 (1) 液滴径分布

大きさの異なる液滴の燃焼による影響を考慮するため、以下に示す抜山-棚沢の分布関数^[3]を 用いている。

$$\frac{\mathrm{dF}}{\mathrm{dd}} = \left(\frac{3.915}{\overline{\mathrm{d}}}\right)^6 \frac{\mathrm{d}^5}{120} \exp\left(-\frac{3.915\mathrm{d}}{\overline{\mathrm{d}}}\right) \tag{3-1}$$

ここで、

F : その粒径における体積分率[-]

d : 液滴直径[m]

______ : 体積平均直径[m]

解析では体積平均直径を入力で与え、(3-1)式より体積平均直径における体積分率の1%となる最小、最大直径を計算し、その間を多群(11群で固定)に分割する。

(2) 燃焼(含水分との反応)

各粒径群におけるスプレイ(液滴)燃焼速度は、液滴の蒸発過程(着火前・着火後)により計算 式を分けている。液滴の蒸発過程の判定式は、以下のB(トランスファー数[-])により、 $B \leq 0$ で は着火前過程、B > 0では着火後過程と判定する。

$$B = \frac{1}{h_{fg}} \left\{ C_{p} (T_{g} - T_{b}) + \frac{H_{c}Y}{i} \right\}$$
(3-2)

ここで、

Tg	:	周辺ガス温度[K]
$T_{\rm b}$:	ナトリウム沸点[K]
T _s	:	液滴表面温度[K]
C _p	:	混合ガスの定圧比熱[J/(kg·K)]
$H_{\rm C}$:	化学反応熱[J/kg]
Y	:	反応物の質量分率[kg/kg]
h_{fg}	:	蒸発潜熱[J/kg]
i	:	反応量論比(反応により消費される Na と反応物の質量割合)[kg/kg

液滴が蒸発しない着火前は、燃焼速度前_f[kg/s]を熱輸送と物質輸送のアナロジを用いて、酸素又は水蒸気の流入フラックスより以下の式で計算する。

$$\dot{\mathbf{m}}_{\rm f} = \frac{\pi \cdot {\rm C} \cdot {\rm D} \cdot {\rm Y} \cdot {\rm d}}{{\rm i}} (2 + 0.6 {\rm Re}^{1/2} {\rm Sc}^{1/3}) \cdot {\rm M}$$
 (3-3)

ここで、

C : 反応物のモル密度[mol/m³]

D : 反応物の拡散係数[m²/s]

M : 反応物のモル質量[kg/mol]

一方、着火後は、d²則に基づき、燃焼速度を以下の式で計算する。

$$\dot{m} = \frac{\pi \rho_1 K}{4} d$$
, $d^2 = d_1^2 - K t$ (3-4)

ここで、Kは蒸発係数[m²/s]であり、以下の式で与えられる。

$$K = \frac{8\lambda}{C_{p}\rho_{1}} \ln (1+B)$$
 (3-5)

ここで、

λ : 混合ガスの熱伝導率[W/(m·K)] ρ_1 : 液滴の密度[kg/m³]

さらに、(3-4)式に強制対流による蒸発促進の効果^[4]を考慮して、最終的に燃焼速度は以下の式 で計算する。

$$\dot{\mathbf{m}}_{f} = \dot{\mathbf{m}} \left(1 + 0. \ 3 \text{Re}^{1/2} \text{Pr}^{1/3} \right)$$

$$= 2 \pi \frac{\lambda d}{C_{p}} \ln (1 + B) \left(1 + 0. \ 3 \text{Re}^{1/2} \text{Pr}^{1/3} \right)$$
(3-6)

(3) 反応熱移行

化学反応による発熱量は、

$$Q_{\rm burn} = \sum_{j} \dot{m}_{\rm f,j} H_{\rm c,j}$$
(3-7)

で表される。ここで j は反応物を示す。

着火前は、液滴から周辺ガスへの熱移行量 $Q_g \varepsilon$ (3-3)式の相関式を用いて以下の式で計算して、 残りの発熱量($Q_{burn}-Q_g$)が液滴の昇温に寄与するものとする^[5]。

$$Q_{g} = \pi \, d \, \lambda \, (2+0.6 \text{Re}^{1/2} \text{Pr}^{1/3}) \left(T_{s} - T_{g} \right)$$
(3-8)

着火後は、液滴から周辺ガスへの熱移行量Qgを、全発熱量(3-7)式からナトリウムの蒸発潜熱を除いた以下の式で計算する。

$$Q_{g} = \sum_{j} \dot{m}_{fj} (H_{cj} - h_{fg})$$

= $\sum_{j} 2 \pi \frac{\lambda d}{C_{p}} \ln (1+B) (1+0.3 \text{Re}^{1/2} \text{Pr}^{1/3}) (H_{cj} - h_{fg})$ (3-9)

(4) 化学反応

スプレイ燃焼における化学反応では、以下を考慮している。

① ナトリウムの反応

(酸素との反応)

$2Na(g) + 1/20_2(g) \rightarrow Na_20(s)$	∆h= −1.381E4 kJ/kg-Na
$2Na(g) + O_2(g) \rightarrow Na_2O_2(s)$	∆h= -1.588E4 kJ/kg-Na
(水蒸気との反応)	
$2Na(g) + H_2O(g) \rightarrow Na_2O(s) + H_2(g)$	∆h = −8.565E3 kJ/kg-Na
$Na(g) + H_2O(g) \rightarrow NaOH(s) + 1/2H_2(g)$	∆h = −1.265E4 kJ/kg-Na

② 水素の再結合

 $H_2(g) + 1/2O_2(g) \rightarrow H_2O(g)$ $\Delta h = -1.209E5 \text{ kJ/kg-H}_2$

これらの式で、Δh は化学反応に伴う系のエンタルピー変化を表し、マイナスは発熱反応、プラスは吸熱反応を示す。

(5) 雰囲気中におけるその他の化学反応

上述のスプレイ燃焼以外に、雰囲気中で考慮している化学反応を下表に示す。これらの化学反応は瞬時反応を仮定している。

- ① $2H_2[gas]+O_2[gas]\rightarrow 2H_2O[vapor]$
- 2 $2Na[vapor/aeroso1]+H_20[vapor]\rightarrow Na_20[aeroso1]+H_2[gas]$
- ③ $2Na[vapor/aeroso1]+(1-0.5x)0_2[gas]\rightarrow(x)Na_20+(1-x)Na_20_2[aeroso1]$
- $(4) \quad Na_2O_2[aeroso1]+2Na[vapor/aeroso1] \rightarrow 2Na_2O[aeroso1]$
- $(5) \quad Na_20[aeroso1]+H_20[vapor]\rightarrow 2Na0H[aeroso1]$
- 6 $Na_2O_2[aerosol]+H_2O[vapor]\rightarrow 2NaOH[aerosol]+0.5O_2[gas]$

3.3.2 プール燃焼

CONTAIN-LMRでは、ナトリウムプール燃焼解析モデルとして個別現象解析コード SOFIRE-II^[6]が内蔵されており、漏えいしたナトリウムが床上でプールを形成した場合の燃焼挙動を 計算することができる。酸素との反応(燃焼)に加えて、雰囲気中の水分との反応も考慮し、その 際の反応生成物と反応熱による雰囲気の圧力及び温度上昇を計算する。

(1) プール広がり面積

漏えいしたナトリウムが瞬時に床面に広がるとして、その広がり面積(一定値)を入力で指定す る。この際、ナトリウムの表面張力と床面との接触角をもとにプールの厚さを求め、これを参考に 広がり面積を設定している。

(2) 燃焼(含水分との反応)及び反応熱移行 プール燃焼モデルの概要を第5図に示す。燃焼速度は自然対流により雰囲気からプール表面に 供給される酸素及び水蒸気のフラックスから評価される。水平平板における自然対流熱伝達^[7]及 び熱輸送と物質輸送のアナロジにより、以下の式で計算する。

Sh=0. 14 (Gr · Sc)^{$$1/3$$} (3-10)

(3-10)式を用いて、プール表面への物質伝達係数(H_{g,j}:m/s)は以下の式で表される。

$$H_{g, j}=0.14D_{j}\left(\frac{g \cdot Sc \cdot \beta_{g} \cdot (T_{p}-T_{g})}{\nu_{g}^{2}}\right)^{1/3} \qquad (j=0_{2} \text{ or } H_{2}0) \qquad (3-11)$$

ここで、

プールのナトリウム燃焼速度 ($B_r: kg-Na/(m^2 \cdot s)$)は、プール燃焼面へ到達する酸素又は水蒸気 の量に化学量論比を乗じて、以下の式で計算される。

$$B_{r} = H_{g,02} \cdot \rho_{g} \cdot C_{02} \cdot \chi_{Na,02} + H_{g,H20} \cdot \rho_{g} \cdot C_{H20} \cdot \chi_{Na,H20}$$
(3-12)

ここで、

$C_{\rm 02}$, $C_{\rm H20}$:	酸素濃度又は水蒸気濃度[mass-fraction]
ho g	:	ガス密度[kg/m ³]
$\chi_{ m Na,02}$:	酸素の化学量論比[kg-Na/kg-O ₂]
$\chi_{ m Na, H20}$:	水蒸気の化学量論比[kg-Na/kg-H ₂ 0]

χは各々以下の式で表される。

$$\chi_{\text{Na, 02}} = f_1 \frac{4 \cdot 23}{32} + (1 - f_1) \frac{2 \cdot 23}{32}$$

$$\chi_{\text{Na, H20}} = f_0 \frac{2 \cdot 23}{18} + (1 - f_0) \frac{23}{18}$$
(3-13)

ここで、 f_1 は酸素による燃焼で Na₂0 生成に消費される 0_2 量の割合、 f_0 は水蒸気による反応で Na₂0 生成に消費される H_2 0 量の割合であり、 f_1 及び f_0 は入力で与えられる。

プール燃焼の反応熱q_bはプール及び雰囲気に分配される。

$$q_b = q_p + q_g \tag{3-14}$$

ここで、下付添字g及びpはそれぞれ雰囲気ガス及びナトリウムプールを示し、プール燃焼の反応 熱のプール及び雰囲気の分配は以下の式で評価される。

$$q_p = f_2 q_b$$
, $q_g = (1 - f_2) q_b$ (3-15)

ここで、f₂はプール燃焼の反応熱q_bのプールへの熱移行割合であり、入力で指定する。

(3) 化学反応

プール燃焼モデル(第5図)に組み込まれている化学反応は①~⑤である。

(1), (5): 水素と酸素との反応(水素再結合)

	$H_2(g) + 1/20_2(g) \rightarrow H_20(g)$	Δh = -1.210E5 kJ/kg-H ₂
2:	ナトリウムと酸素との反応	
	$2Na(1) + 1/2O_2(g) \rightarrow Na_2O(s)$	$\Delta h\text{=}$ –9.465E3 kJ/kg–Na
	$2Na(1) + O_2(g) \rightarrow Na_2O_2(s)$	∆h= -1.129E4 kJ/kg-Na
3:	ナトリウムと水蒸気との反応	
	$2Na(1) + H_2O(g) \rightarrow Na_2O(s) + H_2(g)$	$\Delta h = -3.759E3 \text{ kJ/kg-Na}$
	$Na(1) + H_2O(g) \rightarrow NaOH(s, 1) + 1/2H_2(g)$	$\Delta h = -7.995E3 \text{ kJ/kg-Na}$
4) : i	酸化ナトリウム-水蒸気との反応	
	$Na_{2}O(s) + H_{2}O(g) \rightarrow 2NaOH(s, 1)$	$\Delta h = -3.147E3 \text{ kJ/kg-Na}_20$
	$Na_2O_2(s) + H_2O(g) \rightarrow 2NaOH(s, 1) + 1/2O_2(g)$	$\Delta h = -1.268E3 \text{ kJ/kg-Na}_20_2$

3.3.3 雰囲気・構造物への熱移行

(1) 熱伝導

CONTAIN-LMRでは、部屋の周囲の構造物(壁)、床面に敷設されたライナ等について 以下の非定常熱伝導方程式を解くことで熱伝導を計算する。

$$\rho \operatorname{Cp} \frac{\partial T}{\partial t} = \nabla \cdot \lambda \nabla T + S$$
(3-16)

ここでSは生成項であり、例えば加熱コンクリートから水分が放出するために必要な熱量(自由水の蒸発、結合水の分解)等が該当する。

部屋の雰囲気については代表温度を1点とし、構造物については深さ方向に分割して温度分布 を計算する。

(2) 対流熱移行

部屋(セル)間の温度差に起因する浮力差により発生する対流通気量は Brown 等のモデル^{[8],[9]} をもとに評価している。なお、各部屋間の開口は1箇所とし、複数開口部がある場合は、Brown 等 のモデルより等価な代表開口部を設定する。 部屋内の雰囲気ガスと周辺壁との対流熱伝達については、雰囲気ガス温度(T_{gas})と構造材温度(T_F :床、 T_R : 天井)との大小関係をもとに、以下の式により熱伝達率を評価する。

	計法教仁法の主	構造林	約古(個陸)	
	対加熱伝達の氏	水平(床)	水平(天井)	站但(侧壁)
(i) 層流	Nu=0. 27Ra ^{1/4}	$T_F < T_{gas}$	$T_{gas} < T_R$	常に(ii)式で
(ii) 乱流	Nu=0. 14Ra ^{1/3}	$T_F > T_{gas}$	$T_{gas} > T_R$	扱われる。

補足)(i)式:熱い屋根と冷たい床、(ii)式:冷たい屋根と熱い床、側壁に用いられる。

(3) 輻射熱移行

輻射熱移行を評価するモデルは、プールから各壁面の輻射フラックスを以下の式で評価する。

$$q_r = \sigma \epsilon_{eff} F_i \left(T_p^4 - T_w^4 \right)$$
(3-17)

ここで、 σ は Stefan-Boltzmann 定数、Tは温度(下付添字のpはプール、wは壁面)、Fは形態係数で ある。また、 ϵ_{eff} は各表面での反射を考慮した等価輻射率であり、各表面の輻射率を乗じた値で ある。壁面毎の View factor (vufac= $\epsilon_{eff}F_i$)を入力で指定する。

3.3.4 雰囲気・構造物へのガス・エアロゾル移行

(1) フローネットワークモデル

部屋間の通気では、前述したように Brown 等のモデル^{[8],[9]}で計算される部屋間の温度差に起因 する浮力差で発生する対流通気があり、流路の開口部が開く条件として時間を設定することがで きる。この他に、部屋間の圧力差に起因する圧力均衡通気があり、流路の開口部が開く条件として 差圧又は時間を設定することができる。

(2) コンクリートからの水分放出モデル

コンクリートからの水分放出については、そのソースとして自由水及び結合水を考慮しており、 コンクリートの温度変化に応じて水分放出量(速度)が計算される。なお、CONTAIN-LM Rでは、コンクリート温度と放出水量の関係を入力テーブルで与え、これを直接用いて放出水量 を簡易的に計算することができる。ただし、コンクリートの深さ方向に分割した1ノード毎につ いて温度と放出量を求め、これらの各ノードの合計水量がコンクリート表面から放出されるとい う、即ちコンクリート内の水分の移動(時間遅れ)を無視した保守的な計算を行っている。

(3) エアロゾル移行

CONTAIN-LMRではエアロゾル挙動解析モデルとして個別現象解析コードMAEROSが組み込まれており、粒径分布、ブラウン拡散、拡散泳動、熱泳動、重力沈降、凝集、沈着及びナトリウム燃焼に伴うエアロゾル生成を計算することができる。また、エアロゾルのセル間移行については、ガス成分濃度移行と同様にセル間の移流及び周辺壁(天井、床含む。)への沈着を生成項としてフローネットワークモデル内で評価される。

3.3.5 ナトリウムーコンクリート反応

CONTAIN-LMRには、ナトリウム-コンクリート反応(<u>Sodium-Concrete Reaction:SCR</u>) 解析モデルとして個別現象解析コード SLAM が組み込まれている。SLAM は、構造コンクリートを深 さ方向(一次元)にノード分割し、SCR に関わるエネルギー方程式、化学反応、質量保存式等の支配 方程式を解く。SLAM の概要を第6図に示す。SLAM では、コンクリートを自由水が存在しない DRY 領 域、自由水が存在する WET 領域に分割し、さらに DRY 領域は、プール層から浸透・移動したナトリ ウムがコンクリートの構成成分と反応する領域(B/L 領域)、反応しない領域(未反応領域)に分割 される。SLAM の主な解析モデルは以下の通りである。

(1) 化学反応モデル

SLAMには、ナトリウムとコンクリート成分との化学反応として、以下の10種の反応式が考慮さ れており、コンクリートの成分に応じて計算される。例えば、主成分がシリカ(SiO₂)である玄武 岩や硬質砂岩系コンクリートの場合には、主に①、⑥、⑦、⑩の反応によりSCRが計算される。ま ず、コンクリート内の自由水の蒸発や結合水の分解により水蒸気が反応領域へ移動・供給されナ トリウムと反応(反応①)することにより水酸化ナトリウムや水素が生成する。この水酸化ナトリ ウムやナトリウムとシリカ(二酸化ケイ素)との反応(反応⑥及び⑦)によりコンクリートが侵食 される。また、反応①に加えて反応⑩により水素が生成される。

$$(1) \quad \text{Na} + \text{H}_2\text{O} \rightarrow \text{NaOH} + \text{O}.5\text{H}_2$$

(2)
$$4Na + CO_2 \rightarrow 2Na_2O + C$$

$$(3) \quad 4Na + 3CaCO_3 \rightarrow 2Na_2CO_3 + 3CaO + C$$

$$(4) \quad 4Na + 3MgCO_3 \rightarrow 2Na_2CO_3 + 3MgO + C$$

$$(5) \quad 2NaOH + CaCO_3 \rightarrow Na_2CO_3 + CaO + H_2O$$

$$(6) \quad 2NaOH + SiO_2 \rightarrow Na_2SiO_3 + H_2O$$

- (7) 4Na + 3SiO₂ \rightarrow 2Na₂SiO₃ + Si
- (8) $2NaOH + A1_2O_3 \rightarrow 2NaA1O_2 + H_2O$
- $(9) \quad 3Na + 2A1_2O_3 \rightarrow 3NaA1O_2 + A1$
- $(10) \quad 2Na + 2NaOH \rightarrow 2Na_2O + H_2$
- (2) コンクリートの侵食モデル

SLAM では、反応界面での化学反応量に比例してコンクリート侵食速度(VELN)を計算する(下式)。例えば、硬質砂岩系コンクリート(主成分はSiO₂)の場合、侵食に係る反応は、Na 又はNaOH とSiO₂の反応である(上述の⑥式と⑦式)。なお、一次元(深さ方向のみ)の侵食を計算する。

$$VELN=-AKK \cdot DRIVE \cdot FRACV (DEL1 ZXI(2))$$
(3-18)

ここで、

 AKK
 : 単位時間当たりの反応速度 [m³/kg-mol-s]

 DRIVE
 : 反応界面 (B/L 領域最下端ノード) における反応物濃度 [kg-mol/m³]

 FRACV
 : コンクリート侵食速度係数 (補正係数) [-]

 DEL1 ZXI(2):
 DRY 領域厚さに対する 1 ノード幅の厚さ [m]

(3) 非定常熱伝導モデル

SLAM では、DRY 領域及び WET 領域において各ノードでの反応熱、構成成分(反応物及び生成物) の有効熱伝導率を考慮したエネルギー方程式を解くことにより温度分布が計算される。なお、一 次元(深さ方向のみ)の伝熱計算を行う。

(4) 水分の移動モデル

SLAM では、コンクリート中の水分を凝縮水及び水蒸気の2相として考慮しており、コンクリートの温度上昇に伴い、水蒸気への相変化あるいは水蒸気の移動が起きる。この際、コンクリート中の圧力差が駆動力となって水蒸気が移動するという下式(Darcy 式)を使用して計算される。

$$U = \left(\frac{K}{\mu}\right) \frac{\partial p}{\partial x}$$
(3-19)

ここで、

- U: 水蒸気の移動速度 [m/s]
- K : 透水係数 [m²]
- μ : 水蒸気の粘度 [atm/s]
- <u>∂p</u> _____: 深さ方向の圧力勾配 [atm/m]
- 3.3.6 ナトリウムの凝縮・蒸発

雰囲気におけるナトリウムの凝縮・蒸発は雰囲気の温度及び圧力に影響を与える。CONTAI N-LMRでは、ナトリウムの飽和蒸気圧曲線として、Kirchhoff^[10]やNa-NaK Handbook^[11]と同等 の下式を採用しており、これをもとにナトリウムの凝縮及び蒸発を計算する。

 $\ln(P) = 26.90991 - 12767.71/T - 0.61344 \ln(T)$ (3-20)

ここで、

P: ナトリウムの飽和蒸気圧 [Pa]

T: 雰囲気の温度 [K]

- 4. コードの検証及び妥当性確認
- 4.1 重要現象に対する妥当性確認方法

CONTAIN-LMRの評価マトリクスを第4表に示す。各試験解析の目的を4.1.1~4.1.5 に 示すとともに、4.2 以降に各々の結果を説明する。

なお、以下の物理現象に関しては、下記に示す理由により、直接的に妥当性評価の対象とすること は不要とした。

前述のように、CONTAIN-LMRではナトリウムプールが瞬時に広がるとして、その面積(一 定値)を入力で指定する。この扱いはプールが広がるまでの燃焼挙動を保守的に評価するとともに、 同面積自体はナトリウム漏えい条件等により概ね決まることから、妥当性確認は不要とする。

また、コンクリートからの水分放出に関しては、コンクリート温度と放出水量の関係を入力テーブ ルで与えることができるため、「常陽」で使用されているシリカ系コンクリートに対する同入力テー ブルを直接使用して計算している。この際、コンクリート内の水分の移動(時間遅れ)を無視した保 守的な計算を行っているため、妥当性確認は不要とした。 4.1.1 スプレイ燃焼実験 (RUN-E1)

スプレイノズルから噴出されたナトリウム液滴群の燃焼実験(RUN-E1)をCONTAIN-LM Rにより解析し、液滴径分布を考慮したスプレイ燃焼モデル、実験装置内構造物への熱移行モデル の妥当性を確認する。

4.1.2 プール燃焼実験 (RUN-D1)

試験装置内に設置されたナトリウムプールにおけるプール燃焼実験(RUN-D1)をCONTAIN -LMRにより解析し、プール燃焼モデル、雰囲気・構造物への熱移行及び物質(エアロゾル)移 行モデルの妥当性を確認する。

4.1.3 マルチセルプール燃焼実験 (RUN-D3)

鉛直断面内に開口部を有した水平2室におけるプール燃焼実験(RUN-D3)をCONTAIN-L MRにより解析し、プール燃焼モデル、雰囲気・構造物への熱移行及び物質・運動量移行モデル(フ ローネットワークモデル)の妥当性を確認する。

4.1.4 ナトリウム-コンクリート反応実験(Ⅲ-1M)

硬質砂岩コンクリートを使用して実施されたナトリウム-コンクリート反応実験(Ⅲ-1M)をCO NTAIN-LMRにより解析し、水素発生量やコンクリート侵食量に関する評価を行い、ナトリ ウム-コンクリート反応モデルの妥当性を確認する。この際、3.3.5で説明した「コンクリート侵食 速度係数(FRACV)」の最適値についても確認する。

4.1.5 大規模ナトリウム-コンクリート反応実験(LSC-1)

SNLにおいて玄武岩コンクリート(4.1.4とは異なる種類と大きさのコンクリート)を使用して実施された大規模ナトリウム-コンクリート反応実験(LSC-1)を対象に、4.1.4 と同様の内容について確認する。

- 4.2 スプレイ燃焼実験(RUN-E1)解析
- スプレイ燃焼実験(RUN-E1)の概要

スプレイ燃焼試験装置を第7図に示す^[12]。試験装置は直径3.6mの密閉容器であり、内径8.7mm のスプレイノズルが容器内に設置されている(高さ3.98m)。落下したナトリウムは下端面での傾 斜により燃焼抑制室に流入することで、プール燃焼の影響を排除している。ナトリウム液滴の平 均径は体積平均で2mmであり、漏えい温度は505℃、漏えい量は約510g/s(1,800s)となっている。 実験では、容器内圧力、温度、酸素濃度が測定されている。

解析体系(第8図)は、スプレイ燃焼室及び燃焼抑制室の2セル体系で構成される。スプレイ ノズルから噴出したナトリウムは、燃焼を伴いながら燃焼抑制板上(燃焼室床)に滴下する。燃焼 抑制板に滴下したナトリウムは、傾斜に沿って燃焼抑制室へ流れ込む(オーバーフロー)。

(2) スプレイ燃焼実験の解析結果

解析結果と実験結果との比較を第9図に示す。ガス温度(第9図(a))については、実験では計 測点によりばらつきがみられる。特にノズル下方の熱電対(TE2082)では、初期において1,000℃ に達しており、燃焼しているナトリウム液滴の接触の影響が考えられる。このTE2082を除くと、 解析結果(一点近似による平均値)は実験結果を概ね包絡する挙動を示している。一方、ガス圧力 (第9図(b))に関しては、解析結果は実験結果を保守的に評価している。

酸素濃度(第9図(c))については、解析ではセル全体での平均酸素濃度を評価しているため、 実験でみられた一部の急激な減少は再現できないものの、全体としての減少傾向は実験と整合し ている。

壁面への熱流束について解析結果と実験結果との比較(第9図(d))を示す。実験ではスプレイ ノズルと同じ高さにおいて熱流束を測定している。同図より、解析では熱流束のピーク値を含め て、その全体的な傾向を概ね再現している。

以上より、雰囲気の圧力を保守側に評価する傾向にあるが、ガス温度や壁面への熱流束は実験 結果を概ね再現しており、CONTAIN-LMRのスプレイ燃焼解析の妥当性が確認された。

4.3 プール燃焼実験(RUN-D1)解析

プール燃焼実験(RUN-D1)の概要

プール燃焼実験装置を第 10 図に示す^[13]。実験装置は約 4m(W)×4m(D)×3m(H)の空間に 1.5m(W)×1.5m(D)×0.5m(H)のプールを設けた構造となっている。実験では、505℃のナトリウムを プール下端から 2.56kg/s で 215s 間供給し、その後約 1hr 燃焼を継続させている(供給終了時の ナトリウムプール高さは約 0.3m、総供給量は約 550kg である。)。また、実験中の酸素濃度の急激 な低下を抑制するために、実験装置上部から酸素を約 2000/min で約 1hr 継続して供給している。 なお、実験では、雰囲気、ナトリウム、コンクリートの各温度履歴、圧力履歴、エアロゾル濃度等 を計測している。

解析体系(第11図)は、プール燃焼部及び外部環境の2セル体系で構成される。プール部へ供給されるナトリウムは床面積2.25m²の範囲に瞬時に広がるとする。

(2) プール燃焼実験の解析結果

解析結果と実験結果との比較を第12図に示す。実験のガス温度(第12図(a))は、測定高さに より約30℃程度違いがあるが、概ね体系内で同様な温度履歴となっている。解析では、実験に比 べて初期の立ち上がりが速いものの、それ以降の時間においては概ね同様の挙動を示している。 なお、解析の立ち上がりが速い理由は、ナトリウムプールが瞬時に広がるとしているためである。

一方、プール中ナトリウム温度(第12図(b))及びプール下端でのライナ温度(第12図(c)) については、解析では約3,600秒までのナトリウム温度を過小評価しているものの、その他の挙 動は概ね実験と整合している。

壁のライナ温度(第12図(d))及びコンクリート温度(第12図(e))については、上述のガス 温度の影響を受けて、解析では初期のライナ温度を若干高めに評価しているものの、いずれも実 験との整合性は高い。

酸素濃度(第12図(f))については、実験では酸素供給期間(0~3,600s)においてほぼ一定値 (約17mo1%)で推移し、その後(酸素供給終了後)低下している。解析では、これを概ね再現し ている。

最後に雰囲気中のエアロゾル濃度(第12図(g))については、解析では実験に比べて約3倍の 濃度となっており、エアロゾル濃度を過大評価している。これはRUN-D1実験では、中心部に設置 された燃焼皿が約500mmであり、ナトリウムプール高さ(約300mm)よりも周囲壁が比較的高い構 造となっている。また、実験体系全体の換気も弱く、プール燃焼で生成した反応生成物エアロゾル が比較的プールに落下しやすい体系のためと考えられる。

以上より、CONTAIN-LMRでは、エアロゾル濃度を実験結果に比べて高めに評価する ものの、それ以外については実験を概ね再現しており、プール燃焼モデルの妥当性が確認された。

4.4 マルチセルプール燃焼実験(RUN-D3)解析

(1) マルチセルプール燃焼実験(RUN-D3)の概要

マルチセルプール燃焼実験装置の概要を第13図及び第14図に示す^[14]。実験装置はプール燃焼 実験(RUN-D1)と同じものを用い、装置内を2枚の仕切り板で分離することで水平方向2セル体系 としている。また、RUN-D1実験と同じサイズ(1.5m×1.5m)のプール容器に500℃のナトリウムを 約0.46kg/s で2min(総量約55kg)供給することにより、プール燃焼させている。実験では、両 セルの温度、酸素濃度並びにエアロゾル濃度を計測している。

解析体系(第13図)は、燃焼室、連通室及び外部環境の3セル体系で構成される。

(2) マルチセルプール燃焼実験の解析結果

解析結果と実験結果との比較を第 15 図に示す。燃焼室における実験のガス温度(第 15 図(a)) について、ナトリウムプールに近い位置(凡例:○TG-120[床面から約 0.4m]、△TG-117[同約 1.3m]) では高い温度履歴を示すが、プールから離れた計測点(■TG-109,▲TG-115,●TG-118)では低めに 推移する。一方、解析のガス温度については、CONTAIN-LMRのナトリウムプールの瞬時 広がりによる影響で、初期は高めであるが、それ以降は実験結果に概ね近づく。連通室(第 15 図 (b))においても同様に、実験結果と概ね整合している。

第15図(c),(d)に壁ライナ温度の実験結果との比較を示す。燃焼室及び連通室の壁ライナ温度 ともに、解析結果は概ね実験結果と整合している。

第 15 図(e)にナトリウムプール直下にある燃焼皿ライナ温度の比較結果を示す。実験では、ナ トリウム流入口から離れるほど(例えば、熱電対 TP-102)、ナトリウムの到達に時間がかかるため 温度上昇も緩慢になることがわかる。一方、解析ではプールが瞬時に広がるとしているため、漏え い開始からナトリウム流入口に最も近い熱電対(TP-104)の温度に漸近しており、1,000 秒以降は 概ね実験結果と整合している。

第 15 図(f)に浮力差に伴う対流通気量及び圧力差に伴う通気量の比較結果を示す。実験では通 気量全体の測定は行われておらず、また、これらの通気量を分離して計測することは困難である ため、直接的な妥当性評価はできない。しかしながら、部屋間の対流通気に占める浮力差の寄与割 合が大きく、前述のように各部の温度変化は実験と概ね整合していることから、対流通気モデル は妥当であるといえる。

第15図(g)に各部屋の酸素濃度の比較結果を示す。解析では2,000秒以降において両部屋とも に酸素濃度が若干高くなる傾向があるものの、概ね実験結果を再現している。

第15図(h)に各部屋のエアロゾル濃度の比較結果を示す。解析では両部屋ともに初期のエアロ ゾル濃度を多めに評価しているものの、全体的な挙動は概ね再現できている。

以上より、燃焼室及びナトリウム燃焼を伴わない連通室におけるガス温度、壁ライナ温度、酸素 濃度、エアロゾル濃度は概ね実験結果と整合しており、複数部屋間の対流通気を含めたプール燃 焼解析の妥当性が確認された。 4.5 ナトリウム-コンクリート反応実験(Ⅲ-1M)解析

(1) ナトリウム-コンクリート反応実験(Ⅲ-1M)の概要

ナトリウム-コンクリート反応実験(Ⅲ-1M)装置の概要を第16回に、主な実験条件を第5表に 示す^[15]。不活性雰囲気に置換された試験装置の内部に、0.2m φ×0.6mH の硬質砂岩コンクリート 試験体を設置し、530℃に予熱されたナトリウムを16kg 供給した。その後、放熱によりナトリウ ム温度は一旦下がるが、鋼製容器の周りに設置したヒータによりナトリウム温度が530℃になる よう加熱・制御し、ナトリウム-コンクリート反応を開始させている。実験における主な計測項目 は、ナトリウム温度、コンクリート内の温度分布(深さ20mm、40mm、70mm、100mm、130mm、160mm、 190mm、220mm、300mm、400mm、500mm)、試験装置内に供給する不活性ガス量、排気ガス中の水素濃 度である。また、コンクリート内の温度変化・上昇によりコンクリートの侵食状況を推定するとと もに、実験後にコンクリート試験体を解体して、最終的なコンクリート侵食量の調査・測定が行わ れている。なお、使用した硬質砂岩コンクリートの主成分はSiO₂(約73%)であり、含水率は7.2% であった。

解析体系は、コンクリート試験体及びナトリウムプール部を含む鋼製容器内をセル1、同容器内 のガスが排気される先(外部)をセル2とした2セル体系とする。解析では、ヒータで制御され たナトリウムプール温度を入力として与え、重要物理量であるコンクリート侵食量、水素発生量 の時間変化について実験結果と比較する。この際、主要パラメータであるコンクリート侵食速度 係数(FRACV)について、その取り得る範囲や最適値を把握するため、0.001~0.005の範囲で感度 解析を行った(設定値:0.001、0.003、0.005の3通り。)。なお、III-1M実験は、装置周辺を断熱 材で完全に覆っており、周囲への放熱を極力抑えている。即ち、深さ方向の侵食となるよう設定さ れているため、CONTAIN-LMRの1次元計算モデルの妥当性確認に適している実験であ る。

(2) ナトリウムーコンクリート反応実験の解析結果

コンクリート侵食量及び水素発生量について、比較した結果を第17回及び第18回に示す。これらより、FRACVが大きいほどコンクリート侵食量及び水素発生量が増大する傾向が見られる。また、FRACVが0.003前後のとき、実験結果を概ね再現することがわかる。

以上より、コンクリート侵食速度係数(FRACV)を適切な値(0.003前後)に設定することにより、コンクリート侵食量や水素発生量を概ね再現することができ、CONTAIN-LMRにおけるナトリウム-コンクリート反応モデルの妥当性が確認された。

4.6 大規模ナトリウム-コンクリート反応実験(LSC-1)解析

(1) 大規模ナトリウム-コンクリート反応実験(LSC-1)の概要

大規模ナトリウム-コンクリート反応実験(LSC-1)装置の概要を第 19 図及び第 20 図に示す^[16]。 不活性雰囲気に置換された試験装置の内部に、0.91mL × 0.91mW × 0.61 mHの玄武岩コンクリ ート試験体を設置し、593℃に予熱されたナトリウムを 454kg 供給した。その後、放熱によりナト リウム温度は一旦下がるが、鋼製容器の周りに設置したヒータによりナトリウム温度が 593℃に なるよう約 1.5 時間加熱された。実験における主な計測項目は、ナトリウム温度、コンクリート 内の温度分布、水素発生量である。なお、使用した玄武岩コンクリートの主成分は SiO₂(約 54%) であり、含水率は7.5%であった。

解析体系は、4.5のⅢ-1M実験解析と同様に2セル体系とし、コンクリート侵食速度係数(FRACV) についても同様に、0.001~0.005の範囲で感度解析を行った(設定値:0.001、0.003、0.005の3 通り)。

(2) 大規模ナトリウム-コンクリート反応実験の解析結果

コンクリート侵食量及び水素発生量について、比較した結果を第21回及び第22回に示す。これらより、4.5のIII-1M実験解析と同様に、FRACVが大きいほどコンクリート侵食量及び水素発生量が増大することが分かる。しかし、III-1Mの場合と異なり、水素発生量の解析結果は実験結果よりも過大評価する傾向となっている。この理由は、LSC-1実験における周囲への放熱の影響が現れたものと推察される。

以上より、比較的大きなシリカ系コンクリートに対して、かつ周囲への放熱がある体系において、水素発生量を保守的に評価する傾向にあるものの、コンクリート侵食量を概ね再現することができ、CONTAIN-LMRにおけるナトリウム-コンクリート反応モデルの妥当性が確認された。

4.7 重要現象に対する不確かさ

4.2 から 4.6 で実施した妥当性確認では別途不確かさ評価を行い、その感度を把握している。第6 表に不確かさ評価結果の概要を示すとともに、「常陽」の格納容器応答過程における不確かさ評価に 関する方針を以下に記す。

ULOF は空気雰囲気下で発生するため、格納容器の健全性評価の観点からは、スプレイ燃焼(雰囲気 への発熱量・発熱速度が最大)が重要現象となる。この際、最も影響のある因子はスプレイの液滴径 であり、「常陽」の格納容器応答過程では、不確かさの影響を考慮した上で評価項目に対して厳しい 結果となるような小さな液滴径(0.1mm)を設定しているため感度解析は不要である。したがって、 ここでは次に影響のあるプール広がり面積を選定する。前述のようにCONTAIN-LMRでは、 ナトリウムの表面張力等から算出されるプールの厚さをもとに広がり面積(一定値)を設定している。 しかし、実際の事故時には、漏えいする部屋の床形状(漏えい用堰の高さ等を含む。)によっても広 がり面積が変わるため、このような不確かさを考慮して同面積を2倍とした感度解析を実施する。な お、プール面積を2倍としたプール燃焼計算でもスプレイ燃焼結果(雰囲気圧力、構造材温度)に包 絡されるため、水素濃度に着目してナトリウム-コンクリート反応を対象に感度解析(広がり面積= 反応面積を2倍)を実施する。加えて、解析条件の不確かさとして崩壊熱があり、崩壊熱計算に用い た計算コードの不確かさを考慮して崩壊熱の不確かさの影響評価を実施する。

一方、PLOHS は窒素雰囲気下で発生するため、ナトリウム燃焼(スプレイやプール)よりもナトリ ウムの凝縮・蒸発が相対的に重要となる。この際、流出ナトリウム条件が最も影響のある因子であり、 「常陽」の格納容器応答過程では、不確かさの影響を考慮した上で評価項目に対して厳しい結果とな るよう「ナトリウム蒸気」を対象として計算しているため感度解析は不要である。なお、ULOF と同様 に、解析条件の不確かさとして崩壊熱の不確かさの影響評価を実施する。

5. 実機解析への適用性

5.1 重要現象への適用性

(1) 液滴径分布 (スプレイ燃焼)

液滴径分布は入力条件となるため妥当性確認は不要であるが、スプレイ燃焼実験解析により、 液滴形状が予測された条件での妥当性確認及び感度解析を実施した。CONTAIN-LMRで は、ガス圧力を保守的に評価する傾向にあるものの、ガス温度、構造材温度、酸素濃度等を総合的 に比較することにより、実験との整合性を確認した。

(2) 燃焼及び反応熱移行(スプレイ燃焼)

スプレイ燃焼実験解析により、スプレイ状の燃焼及び周辺ガスへの熱移行について、各部の温 度上昇挙動等を比較したところ、実験を概ね再現することを確認した。

以上より、CONTAIN-LMRは、スプレイ燃焼に伴う各部の温度上昇挙動等を概ね精度 よく予測するため、スプレイ燃焼の解析に適用できる。

(3) プール広がり面積(プール燃焼)

CONTAIN-LMRでは、保守的にナトリウムプールが瞬時に広がるとして、その面積(一 定値)を入力で与える。この面積はナトリウム漏えい条件等により概ね決まるため妥当性確認は 不要である。ただし、4.7に記したように、実際の事故時には、漏えいする部屋の床形状(漏えい 用堰の高さ等を含む)によっても広がり面積が変わるため、念のため広がり面積の不確かさの影 響を評価しておく必要がある。

(4) 燃焼及び反応熱移行(プール燃焼)

プール燃焼実験及びマルチセルプール燃焼実験の解析により、CONTAIN-LMRは、ガス温度や酸素濃度等の熱移行・物質移行を概ね良好に評価できることを確認した。

以上より、CONTAIN-LMRはプール燃焼の解析に適用できる。

(5) 熱伝導(雰囲気・構造物への熱移行)

プール燃焼実験及びマルチセルプール燃焼実験の解析により、ライナ温度及びコンクリート温 度の実験結果を概ね良好に評価できることを確認した。

以上より、CONTAIN-LMRは構造の熱伝導の解析に適用できる。

(6) 対流熱移行(雰囲気・構造物への熱移行)

マルチセルプール燃焼実験の解析より、雰囲気ガス温度、周辺壁のライナ温度の実験結果を概 ね良好に評価できることを確認した。

以上より、CONTAIN-LMRは対流熱移行の解析に適用できる。

(7) 輻射熱移行(雰囲気・構造物への熱移行)

スプレイ燃焼実験、プール燃焼実験及びマルチセルプール燃焼実験の解析により、CONTA IN-LMRの輻射モデルで予測された雰囲気ガス、ナトリウムプール、周辺構造材(ライナ、コ ンクリート)等の温度変化は良好に評価できることを確認した。

以上より、CONTAIN-LMRは、直接計測ではないものの周辺への輻射熱流束評価は実験と概ね整合しており、輻射熱移行の解析に適用できる。

(8) 質量・運動量移行及びガス成分濃度移行(雰囲気・構造物へのガス・エアロゾル量移行) マルチセルプール燃焼実験解析により、開口部を介した酸素濃度及びエアロゾル濃度について 実験結果を概ね良好に評価できることを確認した。

以上より、CONTAIN-LMRは質量・運動量移行及びガス成分濃度移行の解析に適用で きる。

(9) エアロゾル移行(雰囲気・構造物へのガス・エアロゾル移行)

プール燃焼実験解析では、実験特有の条件により一部実験結果よりも高めにエアロゾル濃度を 評価するものの、マルチセルプール実験解析では実験結果を概ね再現できることを確認した。 以上より、CONTAIN-LMRはエアロゾル移行挙動解析に適用できる。

(10) ナトリウム-コンクリート反応(その他ナトリウム特有の物理現象)

種類と大きさの異なるコンクリートを使用した2つのナトリウム-コンクリート反応実験を対象 にした解析により、主要物理量であるコンクリート侵食量及び水素素発生量の実験結果を概ね再 現することを確認した。また、この際、コンクリート侵食速度係数(FRACV)の値が 10⁻³ オーダー となり、その最適値は 0.003 前後となることが分かった。

以上より、CONTAIN-LMRはナトリウム-コンクリート反応の解析に適用できる。

- 5.2 試験装置のスケーリング
- (1) スプレイ燃焼実験

スプレイ燃焼及び周辺への熱移行の妥当性確認として実施しているスプレイ燃焼実験では、ス プレイ燃焼高さが約4mであり、着火後の液滴燃焼が支配的となる十分な高さを有している。また、 熱移行は輻射及び自然対流となり、輻射の観点では温度差が、自然対流の観点ではグラスホフ数 及びプラントル数がスケーリングとして重要となる。温度差及びプラントル数については、実機 と同じナトリウムによる燃焼としており、本試験装置で得られた結論を実機に適用できる。また、 グラスホフ数で重要となる代表寸法(装置高さ)は実機に比べ約1/2~同程度であり、グラスホフ 数で最大1桁実機よりも小さくなるが、十分に発達した乱流自然対流領域であり、本試験装置で 得られた結論を実機に適用できる。なお実機に比べ容積が小さく、また、実験では密閉空間として いるため、燃焼に伴う圧力上昇は実機に比べ大きく、また、急激に減衰するが、実験初期における 最高圧力等を評価対象としているためその影響は比較的小さいといえる。

(2) プール燃焼実験

プール燃焼、周辺への熱移行(輻射モデル)及びエアロゾル移行の妥当性確認として実施してい るプール燃焼実験では、容器高さを約3m、プール燃焼領域を1.5m×1.5mとしている。スプレイ燃 焼実験装置と同様に、温度差、プラントル数及び実験装置高さの観点では、本試験装置で得られた 結論を実機に適用できる。また、プール燃焼における代表寸法である等価直径については、実機に おける大規模漏えいに対してはグラスホフ数が2桁以上小さくなるものの、十分に発達した乱流 自然対流領域であり、本試験装置で得られた結論を実機に適用できる。

(3) マルチセルプール燃焼実験

プール燃焼、周辺への熱、質量、運動量移行及びエアロゾル移行の妥当性確認として実施しているマルチセルプール燃焼実験装置は、前項(2)のプール燃焼実験装置を改良したものであり、(2) と同様に、本試験装置で得られた結論を実機に適用できる。 (4) ナトリウム-コンクリート反応実験

ナトリウム-コンクリート反応実験(Ⅲ-1M)において使用しているコンクリートは硬質砂岩コ ンクリート(主成分はシリカ)であり、その大きさは「0.2m φ×0.6mH」である。一方、大規模実 験(LSC-1)では、玄武岩コンクリート(主成分はシリカ)で、大きさは「0.91mL×0.91mW×0.61mH」 のものを使用している。また、Ⅲ-1M は装置全体を断熱材で覆って周囲への放熱を極力防いでいる のに対し(深さ方向の侵食となるよう設定)、LSC-1 では放熱等の影響を受けて多次元的な侵食挙 動となっている(実機の事故条件に近い)。このような条件の異なる実験に対して、CONTAI N-LMRはナトリウム-コンクリート反応挙動(コンクリート侵食量、水素発生量)を概ね再現 又は保守的に評価しており、本試験装置で得られた結論を実機(シリカ系コンクリート)に適用で きる。

6. まとめ

以上より、ナトリウム漏えい事故に起因する格納容器応答過程評価に係る重要現象に関するCON TAIN-LMRの解析モデルは、各試験の結果と比較して概ね妥当であることを確認するとともに、 各解析モデルの不確かさを把握した。その不確かさを考慮することにより、CONTAIN-LMR は格納容器破損防止措置の有効性評価に適用することができる。

7. 参考文献

- [1] K. K. Murata, et al., "CONTAIN/1B-Mod.1, A Computer Code for Containment Analysis of Accidents in Liquid-Metal-Cooled Nuclear Reactors", SAND91-1490 • UC-610, Jan. 1993.
- [2] S. Miyahara, et al., "Development of Fast Reactor Containment Safety Analysis Code, CONTAIN-LMR (1) Outline of Development Project", 23rd International Conference on Nuclear Engineering (ICONE-23), Chiba, Japan, (2015), ICONE23-1586.
- [3] S. S. Tsai, "The NACOM Code for Analysis of Postulated Sodium Spray Fires in LMFBRs", NUREG/CR-1405, U.S. Nuclear Regulatory Commission, 1980.
- [4] Ranz, W.E., and W.R., Marshall, "Evaporation from drops", Chemical Engineering Progress, 48, 3, p.141-146, 1952.
- [5] 山口彰,田嶋雄次, "SPHINCS コードのスプレイ燃焼モデルの開発と検証 液滴燃焼実験解析と 技術課題の摘出", JNC TN-9400 99-059, 1999.
- [6] P. Beiriger, J. Hopenfeld and M. Silberberg, et al., "SOFIRE II User Report" AI-AEC-13055, March 1973.
- [7] Fishenden, M., Saunders, O.A., "Introduction to Heat Transfer", Clarendon Press, p. 180, 1959.
- [8] W. G. Brown and K. L. Solvason, "Natural Convection through Rectangular Opening in Pratitions-1 Vertical Partitions", Int J. Heat Mass Transfer, 5, p. 859-868, 1962.
- [9] W. G. Brown, "Natural Convection through Rectangular Opening in Pratitions-2 Horizontal Partitions", Int J. Heat Mass Transfer, 5, p. 869-878, 1962.
- [10] K. Thurnay: "Thermophysical Properties 01 Sodium in the Liquid and Gaseous States", Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter, Kernforschungszentrum Karlsruhe, KfK 2863 Februar 1981

- [11] O. J. Foust: "Sodium-NaK engineering handbook Vol. I Sodium chemistry and physical properties", Gordon and Breach, Science Publishers. Inc. (1972).
- [12] 森井正他, "大規模ナトリウム漏洩燃焼実験(III)", PNC-TN9410 86-124, 1986.12
- [13] 宮原信哉他, "大規模ナトリウム漏洩燃焼試験(I) -空気雰囲気におけるナトリウムプール燃焼試験, Run-D1", PNC TN9410 87-081, 1987.
- [14] 大野修司, "2 セル体系ナトリウム燃焼実験における熱影響の評価",日本機械学会 2015 年度 年次大会予稿集, S0820105, 9.13-16,札幌, 2015.
- [15] 畝本他, "ナトリウム-コンクリート反応基礎試験(III)", PNC-TJ 270 84-01.1984.10
- [16] M. W. McCormick, L. D. Muhlestein, R. P. Colburn, and B. V. Winkel, HEDL-TME80-57 (1981)

第1表 ランクの定義

ランク	ランクの定義	本資料での扱い
Н	評価指標に対する影響が大き いと考えられる現象	物理現象に対する不確かさを実験との比較や 感度解析等により求め、実機評価における評価 指標への影響を評価する。
М	評価指標に対する影響が中程 度と考えられる現象	事象推移を模擬する上で一定の役割を担うが、 影響が「H」に比べて顕著でない物理現象であ るため、必ずしも不確かさによる実機評価にお ける評価指標を評価する必要はないが、本資料 では、実機評価への影響を感度解析等により評 価するか、「H」と同様に評価することとする。
L	評価指標に対する影響が小さ いと考えられる現象	事象推移を模擬するためにモデル化は必要で あるが、評価指標への影響が明らかに小さい物 理現象であるため、検証/妥当性評価は記載し ない。

第2表 CONTAIN-LMRにおける物理現象のランクテーブル

		ULOF	PLOHS
分類	評価指標物理現象	雰囲気圧力 構造材温度 水素濃度 コンクリート侵食量 エアロソ・ル濃度	雰囲気圧力 構造材温度 水素濃度 エアロソ [・] ル濃度
	(1) 液滴径分布	Н	М
スプレイ燃焼	(2) 燃焼(含水分との反応)	Н	М
	(3) 反応熱移行	Н	М
	(4) プール広がり面積	М	М
プール燃焼	(5) 燃焼(含水分との反応)	Н	М
	(6)反応熱移行	Н	М
雯田气, 構準伽。	(7)熱伝導	Н	Н
分囲メーーーのかいの教務行	(8)対流熱移行	Н	Н
02884341	(9)輻射熱移行	Н	Н
雰囲気・構造物へ	(10) 質量·運動量移行	Н	Н
のガス・エアロゾ	(11)ガス成分濃度移行	Н	Н
ル移行	(12)エアロゾル移行	Н	Н
その他ナトリウム	(13) ナトリウム-コンクリート反応	Н	-
特有の物理現象	(14) ナトリウムの凝縮・蒸発	М	Н

第3表 重要現象に対する解析モデル

分類	重要現象	必要な解析モデル		
	液滴径分布	抜山-棚沢分布モデル		
マー・ノルに	燃焼	弦波 御 使 テ 一 い 「 い 「 い 「 い の い 」		
スノレイ 燃焼	(含水分との反応)	液間燃焼セテル [NACOM] (反広制会なみカで指字)		
	反応熱移行	(反応割合を八刀で指定)		
	プール広がり面積	(一定値を入力で指定)		
プール燃焼	燃焼	プール燃焼モデル【SOFIRE】		
	(含水分との反応)	(反応割合を入力で指定)		
	反応熱移行	(反応熱の配分を入力で指定)		
	熱伝導	非定常熱伝導方程式		
雯囲 気•構造		フローネットワークモデル		
かられて、 保道 物への執移行	対流熱移行	・エネルギー保存		
		・周辺構造物との対流熱伝達		
	輻射熱移行	輻射モデル		
	質量・運動量移行	フローネットワークモデル		
雰囲気・構造 物へのガス・ エアロゾル移	ガス成分濃度移行	・ 質量、 連動量保存 ・ ガス成分種質量保存 ・ 圧力勾配に伴う運動量交換 ・ 浮力差に伴う運動量交換 コンクリートからの水分放出モデル		
行	エアロゾル移行	フローネットワークモデル(同上) エアロゾル挙動モデル【MAEROS】 ・粒径分布モデル ・凝集・沈着モデル		
その他 ナトリウム特 有の物理現象	ナトリウム-コンクリート 反応	 ナトリウム-コンクリート反応モデル 【SLAM】 ・化学反応モデル ・コンクリートの侵食モデル ・非定常熱伝導モデル ・水分の移動モデル ナトリウムの飽和蒸気圧を考慮した凝 		
	ナトリウムの凝縮・蒸発	縮・蒸発		

			実 験			
分類	重要現象	必要な解析モデル	^{スプ°} レイ 燃焼 (RUN-E1)	プール燃焼 (RUN-D1)	マルチセルフ [°] ール燃焼 (RUN-D3)	†トリウム-コンクリート 反応 (Ⅲ-1M) (LSC-1)
	液滴径分布	抜山-棚沢分布モデル	—	—	_	—
スプレイ 燃焼	燃焼 (含水分との反応)	液 滴 燃 焼 モ デ ル 【NACOM】	4.2			
	反応熱移行	(反応割合を人力で指定)	4.2			
プール 燃焼	プール広がり面積	(一定値を入力で指定)	_	_	_	—
	燃焼 (含水分との反応)	プール燃焼モデル【SOFIRE】 (反応割合を入力で指定)	$(4. 2)^1$	4.3	4.4	
	反応熱移行	(反応熱の配分を入力で指定)	$(4. 2)^{1}$	4.3	4.4	
	熱伝導	非定常熱伝導方程式	$(4.2)^2$	4.3	4.4	
雰囲気・ 構造物 への熱移行	対流熱移行	フローネットワークモデル ・エネルギー保存 ・周辺構造物との対流熱伝達	$(4.2)^2$	$(4.3)^2$	4.4	
	輻射熱移行	輻射モデル	4.2	$(4.3)^2$	$(4. 4)^2$	

第4表 重要現象に対する妥当性確認方法(1/2)

- :4.1 に記載の理由により、又は入力条件のため妥当性確認が不要である重要現象

() 1:現象としては実験に含まれるが影響が小さく妥当性確認の対象外

()²:温度分布評価で総合的に検証

			実 験			
分類	重要現象	必要な解析モデル	スプ [°] レイ 燃焼 (RUN-E1)	プール燃焼 (RUN-D1)	マルチセルフ [°] ール燃焼 (RUN-D3)	ナトリウム-コンクリート 反応 (Ⅲ-1M) (LSC-1)
	質量・運動量移行	フローネットロークエデル			4.4	
雰囲気・ 構造物 ヘのガス・ エアロゾル 移行	ガス成分濃度移行	 ・質量、運動量保存 ・ガス成分種質量保存 ・圧力勾配に伴う運動量交換 ・浮力差に伴う運動量交換 			4.4	
		コンクリートからの水分放出モデル	_	—	_	—
	エアロゾル移行	フローネットワークモデル(同上) エアロゾル挙動モデル【MAEROS】 ・粒径分布モデル ・凝集・沈着モデル		4. 3	4. 4	
その他ナト リウム特有 の物理現象	ナトリウム-コンクリ ート反応	ナトリウム-コンクリート反応モデル 【SLAM】 ・化学反応モデル ・コンクリートの侵食モデル ・非定常熱伝導モデル ・水分の移動モデル				4.5 4.6
	ナトリウムの凝縮・蒸 発	ナトリウムの飽和蒸気圧を考慮した凝 縮・蒸発	$(4. 2)^3$	(4. 3) ³	$(4. 4)^3$	

第4表 重要現象に対する妥当性確認方法(2/2)

- : 4.1 に記載の理由により、又は入力条件のため妥当性確認が不要である重要現象

()³:現象としては一部実験に含まれるため間接的に検証

	硬質砂岩コンクリート			吐胆		
Exp. No.	高さ	重さ	重さ	深さ	温度	时[目]
	(mm)	(kg)	(kg)	(mm)	(°C)	(mrs)
III - 1M	600	45.0	16.0	600	530	8

第5表 ナトリウム-コンクリート反応実験(Ⅲ-1M)の主な実験条件

分 類	重要現象	必要な解析モデル	妥当性確認	不確かさ	感度評価
スプレイ	液滴径分布	抜山-棚沢分布モデル	不要	入力値に 含まれる	平均液滴径 : -10%で最高圧力 約 + 7%
燃焼	燃焼 (含水分との反応)	液滴燃焼モデル【NACOM】 (反広割合を入力で指定)	スプレイ燃 (F1)	入力値に 会まれる	_
	反応熱移行				
プール燃	プール広がり面積	(一定値を入力で指定)	不要	入力値に 含まれる	_
焼	燃焼 (含水分との反応)	プール燃焼モデル【SOFIRE】 (反応割合を入力で指定)			
	反応熱移行	(反応熱の配分を入力で指定)	プール燃焼 実験(D1) マルチセル プール燃焼 実験(D3)	入力値に含まれる (反応熱のプールへ の移行割合 : f2)	反応熱のプールへの移行割合 f2(0.65の+10%=0.72)とした場合、 プールの最高温度は基準ケース (0.65)よりも約35℃上昇

第6表 重要現象に対する不確かさ(1/3)

分類	重要現象	必要な解析モデル	妥当性確認	不確かさ	感度評価
雰囲気	熱伝導	非定常熱伝導方程式	プール燃焼実験(D1) マルチセルプール燃焼 実験(D3)	入力値に 含まれる	_
・構造物への熱移行	対流熱移行	フローネットワークモデル ・エネルギー保存 ・周辺構造物との対流熱伝達	マルチセルプール燃焼 実験(D3)	入力値に 含まれる	_
	輻射熱移行	輻射モデル	スプレイ燃焼実験(E1)	入力値に 含まれる	ガス〜周辺壁輻射率:-30%で、ガス温度約+ 9%、ガス圧力約+5%
雰囲気・構造物へのガス・エアロゾル移行	質量・運動 量移行	フローネットワークモデル ・質量、運動量保存 ・ガス成分種質量保存 ・圧力勾配に伴う運動量交換 ・浮力差に伴う運動量交換	マルチセルプール燃焼 実験(D3)	浮力差に伴う 運動量交換 (モデル定数 C	定数 C(約-22%~+30%)に対し、浮力差に伴 う対流通気量は約-19%~+24%
	ガス成分濃 度移行			の不確かさ幅: 約-22%~+30%)	
		コンクリートからの水分放出 モデル	不要	入力値に 含まれる	_
	エアロゾル 移行	フローネットワークモデル (同上) エアロゾル挙動モデル 【MAEROS】 ・粒径分布モデル ・凝集・沈着モデル	プール燃焼実験(D1) マルチセルプール燃焼 実験(D3)	入力値に 含まれる	反応生成物エアロゾルのプール落下割合: 0.75→0.95で、最大エアロゾル濃度約-38%

第6表 重要現象に対する不確かさ(2/3)

分類	重要現象	必要な解析モデル	妥当性確認	不確かさ	感度評価
そった マントンの で り 特 物 象	ナトリウム-コンク リート反応	ナトリウム-コンクリート反応モデル 【SLAM】 ・化学反応モデル ・コンクリートの侵食モデル ・非定常熱伝導モデル ・水分の移動モデル	ナトリウム- コンクリート 反応実験 (Ⅲ-1M) (LSC-1)	入力値に 含まれる (コンクリート侵食 速度係数 : FRACV)	FRACV を 0.001~0.005 と変更 させた感度解析により、その値 が 0.003 前後の時、ナトリウム -コンクリート反応現象(コン クリート侵食量、水素発生量) を概ね再現できることを確認
	ナトリウムの凝縮・ 蒸発	ナトリウムの飽和蒸気圧を考慮した凝 縮・蒸発	スプレイ燃焼 実験(E1) プール燃焼実 験(D1) マルチセルプ ール燃焼実験 (D3)	入力値に 含まれる	_

第6表 重要現象に対する不確かさ (3/3)

第1図 ULOF の事象推移と解析評価の流れ

第2図 PLOHS の事象推移と解析評価の流れ

第3図 CONTAIN-LMRの主な解析機能

第4図 スプレイ燃焼モデルの概要

"SLAM"の化学反応で発生するH。

第5図 プール燃焼モデルの概要

第6図 ナトリウム-コンクリート反応モデルの概要

第7図 スプレイ燃焼実験(RUN-E1)装置

第8図 スプレイ燃焼実験(RUN-E1)解析体系

第9図 実験結果との比較(RUN-E1) (1/2)

第11図 プール燃焼実験(RUN-D1)の解析体系

第12図実験結果との比較(RUN-D1) (1/3)

第12図 実験結果との比較(RUN-D1) (2/3)

第12図 実験結果との比較(RUN-D1) (3/3)

第13図 マルチセルプール燃焼実験(RUN-D3)装置と解析体系

第14図 マルチセルプール燃焼実験(RUN-D3)の熱電対計測点

(a) ガス温度時刻歴変化・燃焼室

第15図 実験結果との比較(RUN-D3) (1/3)

第15図 実験結果との比較(RUN-D3) (2/3)

第16図 ナトリウム-コンクリート反応実験装置 (Ⅲ-1M)

第17図 ナトリウム-コンクリート反応実験(Ⅲ-1M)におけるコンクリート侵食量 (FRACV=0.001, 0.003, 0.005の感度解析)

第18図 ナトリウム-コンクリート反応実験(Ⅲ-1M)における水素発生量 (FRACV=0.001, 0.003, 0.005の感度解析)

第20図 コンクリート試験体の概要(LSC-1)

第21図 大規模ナトリウム-コンクリート反応実験(LSC-1)におけるコンクリート侵食量 (FRACV=0.001,0.003,0.005の感度解析)

第22図 大規模ナトリウム-コンクリート反応実験(LSC-1)における水素発生量 (FRACV=0.001,0.003,0.005の感度解析)