	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
43.	. 原子炉減圧に関する各種対策及び逃がし安全弁(SRV)の耐環	資料なし	30. 原子炉減圧に関する各種対策及び逃がし安全弁(SRV)の耐	
	境性能向上に向けた今後の取り組みについて		環境性能向上に向けた今後の取り組みについて	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
【資料1】		【資料1】	(資料1は「重大事故
「柏崎川羽原子力発雲正6号及757号炉重大			等対処設備について(補
事故等対処設備について(補足説明資料)		島根原子力発電所2号炉	足説明資料) 46-10 その
(平成 29 年 1 月 27 日提出)抜粋		重大事故等対処設備について(補足説明資料)抜粋	他設備」の再掲であるた
			め,重大事故等対処設備
			の比較表において比較
			を行う。)
46-10		46-10 その他設備	
その他設備			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
【資料2】		【資料2】	
SRVの耐環境性能向上に向けた取り組みについて		SRVの耐環境性能向上に向けた取り組みについて	
1. 概要		1. 概要	
SRVの耐環境性向上対策は,更なる安全性向上対策として設置を		SRVの耐環境性向上対策は,更なる安全性向上対策とし	
進めている <u>代替SRV駆動装置</u> に対して,SRV駆動源である高圧窒素		て設置を進めている逃がし安全弁窒素ガス代替供給設備に対し	
ガスの流路となる「SRV用電磁弁」及び「SRVシリンダ_」に対し		て、SRV駆動源である高圧窒素ガスの流路となる「SRV	
てシール材の改良を実施するものとする。		用電磁弁」及び「SRVシリンダ」に対してシール材の改良	
		を実施するものとする。	
<u>代替SRV駆動装置</u> は, <u>HPIN系(A/B)</u> と独立した窒素ガスボンベ,		逃がし安全弁窒素ガス代替供給設備は、逃がし安全弁窒素ガ	
自圧式切替弁及び配管・弁類から構成し, SRV用電磁弁の排気ポー		<u>ス供給系</u> と独立した窒素ガスボンベ,自圧式切替弁及び配	
トに <u>窒素ボンベ</u> の窒素ガスを供給することにより、電磁弁操作を		管・弁類から構成し,SRV用電磁弁の排気ポートに <u>窒素ガ</u>	
不要としたSRV開操作が可能な設計とする。		<u>スボンベ</u> の窒素ガスを供給することにより,電磁弁操作を不	
		要としたSRV開操作が可能な設計とする。	
ここで、自圧式切替弁 <u>は、</u> SRV用電磁弁の排気ポートと <u>代替SRV</u>		ここで,自圧式切替弁 を SRV 用電磁弁の排気ポートと逃	
駆動装置の接続部に設置し、以下の(1)通常運転時、(2) HPIN		<u>がし安全弁窒素ガス代替供給設備</u> の接続部に設置し,以下の	
系によるSRV動作時,(3)代替SRV駆動装置によるSRV動作時に示		(1)通常運転時,(2)逃がし安全弁窒素ガス供給系によ	
すとおりの切替操作が可能な設計とする。		るSRV動作時,(3)逃がし安全弁窒素ガス代替供給設備によ	
		るSRV動作時に示すとおりの切替操作が可能な設計とす	
		る。	
(1) 通常運転時 (SRV待機時)		(1)通常運転時(SRV待機時)	
自圧式切替弁は,弁体が <u>代替SRV駆動装置の窒素ボンベ側</u> を		自圧式切替弁は,弁体が <u>逃がし安全弁窒素ガス代替供給</u>	
閉止し _い 排気ポート側を原子炉格納容器内に開放することで,		<u>設備の窒素ガスボンベ側</u> を閉止し排気ポート側を原子炉	
SRVピストンが閉操作するときの排気流路を確保する。		格納容器内に開放することで,SRVピストンが閉動作	
		するときの排気流路を確保する。	
(2) <u>HPIN系</u> によるSRV動作時		(2) 逃がし安全弁窒素ガス供給系によるSRV動作時	
自圧式切替弁は、排気ポート側を解放しており、SRV閉動作		自圧式切替弁は,排気ポート側を <u>開放</u> しており,SR	
時のピストンからの排気を原子炉格納容器へ排気するための		V閉動作時のピストンからの排気を原子炉格納容器へ	
流路を確保する。		排気するための流路を確保する。	
(3) 代替SRV駆動装置によるSRV動作時		(3) 逃がし安全弁窒素ガス代替供給設備によるSRV動作時	
自圧式切替弁は、代替SRV駆動装置の窒素ボンベ圧力により		自圧式切替弁は,逃がし安全弁窒素ガス代替供給設備の	
バネ及び弁体を押し上げられることにより排気ポートを閉止		窒素ガスボンベ圧力によりバネ及び弁体を押し上げら	
し, <u>代替SRV駆動装置の窒素ボンベ</u> からSRVピストンまでの流		れることにより排気ポートを閉止し,逃がし安全弁窒素ガ	
路を確保する。		<u>ス代替供給設備の窒素ガスボンベ</u> からSRVピストンま	
また、白下子切井台の台仔ションがはヘイ、価裕嶋マキュ地正		じの流路を確保する。	
よた,日庄八切省井の井仲ンール部は至し, 悪機物でめる膨振 用のシュートた住田してわり、香土市共営性の言語等を含む単純		また、日上式切谷井の井体ンール部は全て、悪機物である	
黒跖ンートを使用しており、 里大事故等時の局温烝気や局放射線		膨張黒鉛ンートを使用しており, 皇天事故等時の局温烝気や	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
量の影響によりシール性が低下することがない設計としている。 本系統は、ADS機能なしの4個(B21-F001D, E, K, U)へ、代替SRV 駆動装置の窒素ガスボンベの窒素ガスの供給を行う設計する。 ここで、代替SRV駆動装置の系統概要図を図1に、SRV本体に対す る電磁弁及び自圧式切替弁の配置図を図2に、自圧式切替弁の構造 図を図3に、自圧式切替弁及び電磁弁の動作概要図を図4に示す。		高放射線量の影響によりシール性が低下することがない設 計としている。 本系統は、ADS機能 <u>がない2個</u> へ、逃がし安全弁窒素ガ ス代替供給設備の窒素ガスボンベの窒素ガスの供給を行う設 計とする。 ここで、逃がし安全弁窒素ガス代替供給設備の系統概要図を 図1に、SRV本体に対する電磁弁及び自圧式切替弁の配置 図を図2に、自圧式切替弁の構造図を図3に、自圧式切替弁 及び電磁弁の動作概要図を図4に示す。	・設備設計の相違 【柏崎 6/7】 減圧に必要な弁数の 相違。
<complex-block></complex-block>			
図1. 代替逃がし安全弁駆動装置の系統概要図		図1 逃がし安全弁窒素ガス代替供給設備 系統概要図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
因2. 500平平に列,分电磁开及0日上式则省开90111直因		図2 SKV 本体に対する电磁开及び日圧式切合开の配直因	
図3 白圧式切萃金の構造図		図3 白圧式切基金 構造図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
図4. 自圧式切替弁及び電磁弁の動作概要図		図4 自圧式切替弁及び電磁弁 動作概要図	

柏崎圳羽盾子力涨震所 6 / 7 号后 (2017 12 20 版)	市海第 [−] 務雲 町 (2018 0 12 町)	自根百乙力恣雪正 9月
	来海尔—先电/J(2010. 9. 12 版)	
2.SKV用電磁升の		2. 5 K V 用電磁井の
		(1)
ガス供給糸及い代替SRV駆動装置により高圧室系ガスを供給す		し女生开室素ガス供給系及び逃がし女生
る際に流路となるパワンタリについて、電磁开の作動性能に影		備により局圧窒素ガスを供給する際に流
響を与えないシール部を、従来のフッ素ゴムより高温耐性が優		ついて, 電磁弁の作動性能に影響を与え;
れた改良EPDM材に変更し、高温蒸気環境下におけるシール性能		のフッ素ゴムより高温耐性が優れた改良
を試験により確認する。		高温蒸気環境下におけるシール性能を試
(2) 計驗休期更		(9) 計驗休概两
(2) PNの体成安 計験体であるSDV田雪磁金の塀亜並びに改自FDDMはの採田盛		(2) 心狭体成支 計除休でなるSPV田雪磁会の概要並)
武波体である510万电磁力の成安亚した成長日加肉の抹角固		武破体でのなるKV用電磁开の焼姜亚(坂田笠正ち回らにデオ
川を図れてかり。		休用固川を <u>因う</u> に小り。
図5 以良EPDM材を採用したSKV用電磁开概要図		図5 改良EPDM树を採用したSR

计炉	備考
並びに今後の方針につ	
安全対策として、逃が	
弁窒素ガス代替供給設	
略となるパワンタリに	
ないシール部を、従来	
EPDMMに変更し、 除に上り 確認する	
映により唯祕りる。	
びに改良FPDM材の	
V用電磁弁概要図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
(3) 試験手順及び項目		(3) 試験手順及び項目
本試験で実施する試験項目を図6に示す。		本試験で実施する試験項目を図6に示
初期機能試験		初期機能試験
熱・放射線同時劣化処理		熱・放射線同時劣化処理
↓ 加圧劣化処理		加圧劣化処理
機械劣化処理		楼械劣化処理
↓		
振動劣化処理		振動劣化処理
小したの工用ない、の、特徴会社等を服金		
多化処理後の機能試験		劣化処理後の機能試験
事故時放射線照射処理		■ ## ## ## ## ## ## ## ## ## ## ## ## ##
		デデームペイリ バスカ 1 かたいており ノンシェニ
蒸気曝露試験(シール性能確認**1)		✓ 蒸気曝露試験(シール性能確認 ³⁶¹)
図6 試験手順及び項目		図6 試験手順及び項
 ※1シール性確認の判定基準 排気(EXH)ポート側圧力に供給(SUP)ポート側圧力の漏えいが認められないこと。 ・無励磁時の漏えい量は目標として□□以下であること。 (4)蒸気曝露試験装置概要及び蒸気曝露試験条件 本試験で使用する蒸気曝露試験装置の概要を図7に示す。また,重大事故環境試験条件を表1及び蒸気曝露試験条件を図8に示す。 		 ※1シール性確認の判定基準 ・排気(EXH)ポート側圧力に供給(SUえいが認められないこと。 ・無励磁時の漏えい量は目標として (4)蒸気曝露試験装置概要及び蒸気曝露本試験で使用する蒸気曝露試験装置のた,重大事故環境試験条件を表1及び蒸に示す。
図7 蒸気曝露試験装置の概要		図7 蒸気曝露試験装置(

炉	備考
ł	
9.0	
H	
P)ポート側圧力の漏	
以下であること。	
試験条件	
概要を <u>図7</u> に示す。ま	
気曝露試験条件を図8	
)概要	

柏崎刈羽原子力発電所 6,	/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)			島根原子力発電所	2 号炉	備考
表1 重大事故	次環境試験多	条件				表1 重大事故環境調	试験条件	
項目 条件		解析結果(参考)		項目			6件	
時間(経過) 0~168 時間	168~175 時間	間 0~約7時間 ^{*2}		時間(経道	昏)	0~168 時間	168~175 時間	
压力(kPa[gage]) 710	854	150kPa 以下**3		圧力(kPa[g	age])	710	854	
温度(℃) 171	178	150℃以下**4		温度(℃	.)	171	178	
秀囲気 蒸気	蒸気	蒸気割合 12%以下**3		雰囲気		蒸気	蒸気	
放射線量(MGy)	× 1	0.1MGy 以下**3		放射線量(MGy)	1	^{#1}	
※1:事象発生から7日間の累	【積放射線 量	を示す。		※1:事	家発生	こから7日間の累積放射	村線量を示す。	
※2:有効性評価「高圧溶融物	物放出/格	納容器雰囲気直接加熱						・記載方針の相違
(DCH)」において,逃が	ぶし安全弁(SRV)の機能に期待する						【柏崎 6/7】
(原子炉圧力容器破損に	<u>こ至る)期間</u>	(事象発生から約7時間						全ての有効性評価シ
後まで)。								ナリオを包絡する条件
<u>※3:有効性評価「DCH」にお</u>	おける※2の	期間の値。放射線量に	ţ.					で試験を行っているた
<u>※2の期間の累積値。</u>								め,代表的なシナリオ
<u>※4:有効性評価「DCH」にお</u>	けるSRVのi	温度評価(三次元熱流重	þ.					(DCH) の解析結果を掲
<u>解析)結果(PCVスプレイ</u>	(無し。)							載しない。
図8 蒸気購	暴霰試験条件	4				図8 蒸気曝霰試験	論条件	
		I						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(5) 蒸気曝露試験並びに分解調査結果		(5) 蒸気曝露試験並びに分解調査結果	
蒸気曝露試験の結果,蒸気曝露試験中において漏えいが確認		蒸気曝露試験の結果、蒸気曝露試験中において漏えいが確認	
されることはなく、分解調査の結果、僅かな変形、軟化が確認		されることはなく、分解調査の結果、僅かな変形、軟化が確認	
されたものの、従来の設計基準事故環境下に比べ高温蒸気に対		されたものの、従来の設計基準事故環境下に比べ高温蒸気に対	
して,より長時間(図8参照)にわたって,SRV駆動部(シリン		して,より長時間(図8参照)にわたって,SRV駆動部(シリ	
ダー)へ窒素ガスを供給する経路のシール性能が発揮され耐環		ンダ)へ窒素ガスを供給する経路のシール性能が発揮され耐環	
境性が向上していることを確認した。		境性が向上していることを確認した。	
蒸気曝露試験後のSRV用電磁弁を分解し,主弁,ピストン弁シ		蒸気曝露試験後のSRV用電磁弁を分解し、主弁、ピストン	
ート部及び主弁シート部Uパッキン(図5参照)シール部分につ		弁シート部及び主弁シート部Uパッキン(図 <u>5</u> 参照)シール部分	
いて,健全品との比較調査を行った。表2にシール部分の分解調		について,健全品との比較調査を行った。 <u>表2</u> にシール部分の	
査結果(主弁シート部シール部分及び主弁シート部Uパッキンシ		分解調査結果(主弁シート部シール部分及び主弁シート部Uパ	
ール部分)を示す。		ッキンシール部分)を示す。	
外観及び寸法確認の結果、主弁シート部シール部分について		外観及び寸法確認の結果、主弁シート部シール部分について	
は、シート部が軟化してシール部分の凹部の変形が確認された		は、シート部が軟化してシール部分の凹部の変形が確認された	
が僅かなものであった。また、従来のフッ素ゴム材を使用する		が僅かなものであった。また、従来のフッ素ゴム材を使用する	
主弁シート部Uパッキンについても変形が確認されたが僅かな		主弁シート部Uパッキンについても変形が確認されたが僅かな	
ものであった。		ものであった。	
表2 シール部分の分解調査結果		表2 シール部分の分解調査結果	
(主弁シート部シール部分及び主弁シート部Uパッキンシール部		(主弁シート部シール部分及び主弁シート部Uパッキンシール部	
分)		分)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(6) 今後の方針		(6) 今後の方針	
SRV駆動部 (シリンダ) へ窒素ガスを供給する経路のシール		SRV駆動部(シリンダ)へ窒素ガスを供給する経路のシー	
性能が発揮されていることが確認されたことから, SRVの機能向		ル性能が発揮されていることが確認されたことから、SRVの	
上させるための更なる安全性向上対策として,代替SRV駆動装置		機能向上させるための更なる安全性向上対策として, <u>全てのS</u>	・運用の相違
による駆動時の高圧窒素ガス流路となるSRV用電磁弁に対して		<u>RV</u> 用電磁弁について改良EPDM材を採用した電磁弁に交換	【柏崎 6/7】
改良EPDM材へ優先的に交換し,他のSRV用電磁弁についても計画		<u>する。</u>	島根2号炉は更なる
的に交換していく。			安全性向上対策として,
			再稼働までに SRV の全
			ての電磁弁を交換する。
3. SRVシリンダー改良の進捗及び今後の方針について		3. SRVシリンダ改良の進捗及び今後の方針について	
(1) 設計方針		(1) 設計方針	
SRV <u>シリンダー</u> のシール部においては, 熱によって損傷する恐		SRV <u>シリンダ</u> のシール部においては,熱によって損傷する	
れがあることから、高温蒸気環境下におけるシール性能を向上		恐れがあることから、高温蒸気環境下におけるシール性能を向	
させることを目的として,シリンダーピストンの作動に影響を		上させることを目的として, <u>シリンダ</u> ピストンの作動に影響を	
与えないシール部(シリンダ_0リング)を、従来のフッ素ゴム		与えないシール部(シリンダOリング)を,従来のフッ素ゴム	
より高温耐性が優れた改良EPDM材に変更する予定である。		より高温耐性が優れた改良EPDM材に変更する予定である。	
また、従来のフッ素ゴム材を使用するピストンの摺動部にお		また、従来のフッ素ゴム材を使用するピストンの摺動部にお	
いては、ピストン全開動作時に、フッ素ゴム材のシート部(ピ		いては,ピストン全開動作時に,フッ素ゴム材のシート部(ピ	
ストン0リング)の外側に改良EPDM材のシート部(バックシート		ストンOリング)の外側に改良EPDM材のシート部(バック	
0リング)を設置することにより、ピストン0リングが機能喪失		シートOリング)を設置することにより、ピストンOリングが	
した場合においてもバックシート <u>0リング</u> によりシール機能を		機能喪失した場合においてもバックシートによりシール機能を	・設備設計の相違
維持することが可能となる改良を実施する予定である。		維持することが可能となる改良を実施する予定である。	【柏崎 6/7】
ここで,既設 <u>SRV</u> の概要図を <u>図9</u> に,既設シリンダー及び改良		ここで,既設 <u>シリンダ</u> の概要図を図 <u>9</u> に,改良 <u>シリンダ</u> の概	設備仕様の相違。
<u>シリンダー</u> の概要図を図10に示す。		要図を図10に示す。	
なお,改良 <u>シリンダー</u> に対しては, <u>シリンダー</u> 単体試験,SRV		なお,改良 <u>シリンダ</u> に対しては, <u>シリンダ</u> 単体試験,SRV	
組合せ試験を実施するとともに、高温蒸気環境下におけるシリ		組合せ試験を実施するとともに、高温蒸気環境下におけるシリ	
ンダー漏えい試験を実施している。		ンダ漏えい試験を実施している。	

炉	備考
E	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
既設シリンダー 「 「 「			
図10 既設シリンダー及び改良シリンダーの概要図		図 10 改良シリンダ 概要図	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所	2号炉	備考
(2)健全性確認試験			(2)健	挂全性確認試験		
改良シリンダ …の健全性確認試験として	(, 下記の表3に示すシ		改良	シリンダの健全性確認試験と	して,放射線劣化試験後(放	
リンダ一単体試験,SRV組合せ試験及び蒸気	気曝露試験(試験装		射線量	<u>: 約 MGy)</u> 下記の表3	に示すシリンダ単体試験,	
置:図11,試験条件:図12参照)を実施し	,SRV動作に対して影		SRV	組合せ試験及び蒸気曝露試験	を実施し、SRV動作に対	
響がないことの確認を実施した。			して影	「響がないことの確認を実施し	た。	
表3. 改良シリンダーの健全性確認	認試験内容			表3 改良シリンダの健全	全性確認試験内容	
確認項目 試驗条件	判定基準結果			確認項目	判定基準 結果	
シリンダー 駆動部漏えい試験 単体試験 販動部体作動試験	漏えいがないこと 良		シリンダ 単体試験	駆動部作 動試験	円滑に作動すること	
+++++ P vox 34:39) ID 1:39) P vox	今期場化司先なこと 白※1			駆動部漏	漏えいがないこと	
SAV 和口U 取小中動圧推嵌 M 試験 験	王囲採作可能なことし及び			えい試験		
アキュムレータ容	全開操作可能なこ良		SRV組 合社試験	最小作動 压確認試	全開操作可能なこと 自*1	
重堆認為狹 作動試験	2 5回全開操作 ^{**2} 可良)上 ITE pic pic 験	R	
応答時間確認試験	能なこと 入力信号から 0.2 良			逃がし弁 機能試験	アキュムレータ容量 (し) で全開作動	
	秒以内**2に全開動 作可能なこと				すること	
蒸気曝露 漏えい試験 試験 (シリンダー単体)	漏えいがないこと 良				_ 回全開操作 ^{**2} 可能な こと し	
					入力信号から	
					内**に全開動作可能な こと	
			蒸気曝露	開保持確	168時間連続開保持可良	
			四			
※1:最小作動圧力 MPaで動作可能なこ			※1:最/	小作動圧力 MPa で動作		
※2:設計基準事故対処設備のECCS機能(ADS	S機能)としての糸統		※2:設計	計基準事故対処設備のECC	S機能(ADS機能)として	
設計要求事項			0);	彩統設計要求爭項		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
図11 蒸気曝露試験装置の概要			
		図 11 蒸気曝露試験装置の概要	
凶12 烝気曝露試験余件			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	備考
(3) 今後の方針	(3) 今後の対応	
①耐SA環境性の向上	SRVシリンダの改良は、DBA時のSRV動作に影響を	
代替SRV駆動装置においては, SRV用電磁弁が機能喪失した場	与える変更*1となることから、今後、信頼性確認試験*2を実	
合においても、SRV用電磁弁の排気ポートから窒素ガスを供給	施し、プラント運転に影響を与えないこと <u>及び200℃/</u>	・資料作成時点の試験進
することにより, SRV全開操作が可能な設計としていることか	<u>0.854MPa[gage]/168hr の環境下において開保持可能できる</u>	捗による相違
ら,改良シリンダ一の耐SA環境性の目標として図13に示すとお	ことを確認した。試験条件を図12(緑線)に示す。また、耐	【柏崎 6/7】
り、格納容器の限界温度・圧力を目指す設計とする。	環境性試験(200℃/0.854MPa[gage]/168hr)前後のシリン	
	ダピストン部の外観写真を図 13 に示す。	
	※1:改良シリンダは、SRV本体に接続するシリンダ摺動部	
	となるピストン寸法及び重量が増加する	
	※2:信頼性確認試験の項目は機械劣化試験,放射線劣化試験,	
	熱劣化試験,加振試験, 耐震試験, 水力学的動荷重試験,	
	事故時放射線試験,蒸気曝露環境試験及び作動試験等と	
	なる	
	<u>今後は、更なる安全性向上のため改良シリンダを採用する</u>	
	こととし、実機への導入準備が整い次第、至近のプラント停	
	止中に設置する。	
図13 耐SA環境性向上の設計条件		
②DB機能に対する影響評価		
SRVシリンダ_の改良は、DBA時のSRV動作に影響を与える変		
更*1となることから、今後、信頼性確認試験*2を実施し、プ		
ラント運転に影響を与えないことを確認する予定である。		
※1:改良シリンダ…は、SRV本体に接続するシリンダ…摺動部		
となるピストン寸法及び重量が増加する		
※2:信頼性確認試験の項目は機械劣化試験,放射線劣化試験,		
熱劣化試験,加振試験,耐震試験,水力学的動荷重試験,	図 12 試験条件	
事故時放射線試験,蒸気曝露環境試験及び作動試験等と		
なる		
③スケジュール		
改良シリンダー導入の今後のスケジュールとしては, SRV本		
体及び試験治工具の製作がクリチカルとなり、下記のとおり約		
3年を目途に進めていく予定である。		
 ・200℃, 2Pdの耐環境試験:6ヶ月 		
・信頼性確認試験:36か月(供試体製作(標準納期24ヶ月),	(a) 耐環境試験前(b) 耐環境試験後	
試験(SRV開発時に行った項目を全て確	図 13 耐環境性試験前後のシリンダピストン部の外観写真	
認した場合:12ヶ月))		

 4 A-WohekeReterovic 5 A-WohekeReterovic 5	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
<text><text><text><text> Subord Systems Sys</text></text></text></text>	4. シール材の健全性について	4. シール材の健全性について	
 documents of the state of the st	SRV用電磁弁及びSRVシリンダ_のシール材をフッ素ゴムから	SRV用電磁弁及びSRVシリンダのシール材をフッ素ゴ	
<text></text>	改良EPDMへ変更することにより、シール機能の耐環境性向上に	ムから改良EPDMへ変更することにより、シール機能の耐	
<text><text><text></text></text></text>	ついて下記のとおり示す。	環境性向上について下記のとおり示す。	
© $2\pi^{2}$ Control Co			
 Berner Berner B	① フッ素ゴム及び改良EPDM製シール材の圧縮永久ひずみ試験	①フッ素ゴム及び改良EPDM製シール材の圧縮永久ひずみ試	
クッボニムなび変換用の競争へみれつに確認ないやわめ、 物語のといた変を変えに下す、 二	について	験について	
 Network activity 基本のな確認したなすた数では、「「「「「」」、「「」」」、「」」」、「」」」、「」」」、「」」」、「」」	フッ素ゴム及び改良EPDM製シール材の圧縮永久ひずみ試	フッ素ゴム及び改良EPDM製シール材の圧縮永久ひずみ	
 	験結果の比較を表4に示す。	試験結果の比較を表4に示す。	
Philade<	表4の試験結果は、SRVが設置されている原子炉格納容器	表4の試験結果は、SRVが設置されている原子炉格納容	
無対し、原子が無機等容認見視度である2007C以上の規定に 場合した後、フッ素イム及び改良印の観シール村の円箱永久 い可ジタ通じした結果を含している。その認え、フッ素イム に書添した後、フッ素イムとびのの規定に引用「なが」場合されるこ と存用者へ及び改良定した結果を含っている。その認え、フッ オスは 5000Cか、成熟、2007Cの規算にご引用「なが」 場合されるこ とて用者へ及び改良定に引用「(なが) 場合されるこ とて用者へ及び改良定に引用「(なが) 場合されるこ たることが用意できている。 なのに定して、表生ロV規ジール村は20%成に した後してお洗さたが なることが確認できることが にまたしてお洗かたプラムは たおり、成良口の規算い・サイはてシェオス たおり、成良口の規算い、中村は5000Cか、 なることが確認できることが たおり、成良口の規算い、中村は5000Cか にまたして、表生日レス観シール村は20%式 の人口グラム(たち) 再換算がオーレム ご定かることが確認できることが、 たおり、成長している。 たおり、成長している。 たおり、成長している。 たおり、成長している。 たおり、成長している。 たおり、なることが なることか なることが なることが なることか なることが なることか なることか なることか なることが なることが なることが なることが なることが なることが なることか なることか なることか なることが なることか <	内における事故後7日間の累積放射線量を上回る800kGyを	器内における事故後7日間の累積放射線量を上回る 800kGy	
Seg 12.6. $\gamma = z d \Delta dyrold (200 glab) = 0.000 for the constant of th$	照射し,原子炉格納容器限界温度である200℃以上の環境に	を照射し,原子炉格納容器限界温度である 200℃以上の環境	
のすみを設定した操奏示している。その結果、ファボム は800.60、乾熱、200°の選ばに3日間(72)、場合されて になんのすかみに ことないておったすることが手たまた なるのに対して、改良DD(数字)、やが相200.65、乾燥、25 (第次人のすかる数定にと決壊を示している。その結果、ファ 第二人は3600.66、乾熱、200°の選ばに3日間(72)、場合されて した者にすることが手たまた なるのに対して、改良DD(数字)、やが相200.65、乾燥、25 になったけることが確認できている。 とおいたことが確認できている。 たまたいる。 とおいた、ことが確認できている。 たまたいる。 たまたいた。 またいた。 なることが確認できている。 たまたいる。 たまたいた。 なることが確認できている。 たまれたいた。 たまたいた。 たたいた。 たまたいたされたいた。 たまたいた。 たまたいた。 たまたいたされたされたいたされたいためたまたた。 たまたいためたたたいためたいためたいためたたたまたいためたたた。 たまたいためたたた。 たたいためためたたたたまたたまたたたたた。 たまたいためたたたたたいためためたたたためたいためたちたたたかためたたたたいためためたたためたたかためたたたたためためたたたためためたたたためたたため	曝露した後,フッ素ゴム及び改良EPDM製シール材の圧縮永久	に曝露した後、フッ素ゴム及び改良EPDM製シール材の圧	
13800067, %.d. 2007.008.450.208.47.62 2^{12} UPERTAGO F70/10 2^{12} (K.T.G.2.5.77.83.64 3^{12} (K.T.G.2.5.77.83.64 3^{12} COUNTRALSON - 0.47.80.00 6^{12} (K.T.G.2.5.77.83.64 3^{12} (K.T.G.2.5.77.83.64 3^{12} COUNTRALSON - 0.47.80.00 3^{12} (K.T.G.2.5.77.83.64 3^{12} (K.T.G.2.5.77.83.64 3^{12} COUNTRALSON - 0.47.80.00 3^{12} (K.T.G.2.5.77.83.64 3^{12} (K.T.G.2.5.77.83.64 3^{12} COUNTRALSON - 0.48.00 3^{12} (K.T.G.2.5.77.83.64 3^{12} (K.T.G.2.5.77.83.64 3^{12} COUNTRALSON - 0.48.00.07.65.77.77.77.77.77.77.77.77.77.77.77.77.77	ひずみを測定した結果を示している。その結果、フッ素ゴム	縮永久ひずみを測定した結果を示している。その結果、フッ	
とで比縮水久のずみがこの化することが「想きれ るのに対して、改良EPD類型シール材は2006.0%、 を構成していたが確認できている。 本部にたが確認できている。 本部にたが確認できている。 本語を入いすみば酸さしていた。 生まり、成良EPDA類シール材は2つまごんとり 環境性面上が確認できるとめ、いいル構造の耐潤増性面上が 達成できると考えている。れることで比縮水久のずみが ご数のにためで書かですかは ないてかば最大 してあることが確認できている。 本語をかけた確認できている。 本語をかけた ないためであることを考えている。 <td>は800kGy, 乾熱, 200℃の環境に3日間(72h)曝露されるこ</td> <td>素ゴムは 800kGy, 乾熱, 200℃の環境に3日間(72h)曝露さ</td> <td></td>	は800kGy, 乾熱, 200℃の環境に3日間(72h)曝露されるこ	素ゴムは 800kGy, 乾熱, 200℃の環境に3日間(72h)曝露さ	
るのに対して、改良PPDM製シール材は20060年、乾葱、落気、 2001Cの環境に7月間(168)) 帰還されても戸治水入ひすみは 要素されても戸治水入ひすみは 意志したが確認できている。本 	とで圧縮永久ひずみが に劣化することが予想され	れることで圧縮永久ひずみが に劣化することが	
200°Cの境境に7日間 (168)) 場響されても圧縮水久ひずみは 最大転換が強大したが確認できている。本語気が示す とおり、改良DPD開ジシール材はフッ素ゴムより耐爆境性が上が 違成できるとあり、ない、シール機能の耐爆境性的上が 違成できると考えている。 g_{3} 広いため、施設の耐爆境性的上が 違成できるとあり、シール機能の耐爆境性的上が 違成できると考えている。 g_{4} シール材の圧縮水久ひずみは数々、シール機能の耐爆境性的上が 違成できると考えている。 g_{4} シール材の圧縮水久ひずみな観線 g_{4} シール対応 g_{4}	るのに対して,改良EPDM製シール材は800kGy,乾熱/蒸気,	予想されるのに対して,改良 E P D M 製シール材は 800kGy,	
$k_{\rm L}$ c b b c b b c c b d c b d c d	200℃の環境に7日間(168h)曝露されても圧縮永久ひずみは	乾熱/蒸気, 200℃の環境に7日間(168h)曝露されても圧縮永	
とおり、改良EPD類型シール材はフッ素ゴムより耐薬境性がけ 分高いことが確認できるため、シール機能の耐爆境性向上が 達成できると考えている。	最大 であることが確認できている。本結果が示す	久ひずみは最大であることが確認できている。本	
からいことが確認できるため、シール機能の耐爆焼件向上が 達成できると考えている。 x4 シール材の圧縮水久ひずみ試験結果	とおり,改良EPDM製シール材はフッ素ゴムより耐環境性が十	結果が示すとおり、改良EPDM製シール材はフッ素ゴムよ	
d d d d d d d d d d d d d d d d d d d	分高いことが確認できるため,シール機能の耐環境性向上が	り耐環境性が十分高いことが確認できるため、シール機能の	
$k_1 + v_1 + k_1 + $	達成できると考えている。	耐環境性向上が達成できると考えている。	
支払 シール材の圧縮大久のすみ試験結果 			
東田田 中 中 中 	表4 シール材の圧縮永久ひずみ試験結果	表4 シール材の圧縮永久ひずみ試験結果	
水圧縮永久ひずみ試験とは、所定の圧縮率をかけ変形させた後、 開放時の戻り量を評価するものである。完全に元の形状に戻った場合を0%、全く復元せずに完全に圧縮された状態のまま である状態を100%としている。圧縮水久ひずみ試験結果が低い程、シール材の い程、シール材の復元量が確保されていることを意味してお りシール機能は健全であることを示している。水圧縮永久ひずみ試験には、研究の圧縮率をかけ変形させた後、 開放時の戻り量を評価するものである。完全に元の形状に戻った場合を0%、全く復元せずに完全に圧縮された状態を100% としている。圧縮水久ひずみ試験結果が低い程、シール材の 復元量が確保されていることを意味しており、シール機能は 健全であることを示している。	放射線 ガス性状 温度 圧縮永久ひずみ試験 [※] 24b 72b 168b	放射線 圧縮永久ひずみ試験*	
	フッ素ゴム 800kGy 乾熱 200℃ 改良 FPDM 800kGy 乾熱 200℃	材質 ガス性状 温度 ゴムサイン 168h	
	改良 EPDM 800kGy 乾熱 250℃ 改良 EPDM 800kGy 乾熱 250℃	<u>フッ素ゴム</u> 800kGy 乾熱 200℃ た点アアアン 2001 年末末 200℃	
 ※圧縮永久ひずみ試験とは、所定の圧縮率をかけ変形させた後、 開放時の戻り量を評価するものである。完全に元の形状に戻 った場合を0%、全く復元せずに完全に圧縮された状態のまま である状態を100%としている。圧縮永久ひずみ試験結果が低 い程、シール材の復元量が確保されていることを意味してお りシール機能は健全であることを示している。 ※圧縮永久ひずみ試験結果が低いない。 	改良 EPDM 800kGy 蒸気 250℃	$\alpha \beta \epsilon P D M = 800 kGy = \delta \delta \delta c C$	
 ※圧縮永久ひずみ試験とは、所定の圧縮率をかけ変形させた後、 開放時の戻り量を評価するものである。完全に元の形状に戻った場合を0%、全く復元せずに完全に圧縮された状態のままである状態を100%としている。圧縮永久ひずみ試験結果が低いままである状態を100%としている。圧縮永久ひずみ試験結果が低い程、シール材の復元量が確保されていることを意味しており、シール材の復元量が確保されていることを意味しており、シール様能は健全であることを示している。 		改良EPDM 800kGy 蒸気 200℃	
 ※圧縮永久ひずみ試験とは、所定の圧縮率をかけ変形させた後、 開放時の戻り量を評価するものである。完全に元の形状に戻った場合を0%、全く復元せずに完全に圧縮された状態のままである状態を100%としている。圧縮永久ひずみ試験結果が低いままである状態を100%としている。圧縮永久ひずみ試験結果が低い程、シール材の復元量が確保されていることを意味しており、シール様能は健全であることを示している。 ※圧縮永久ひずみ試験結果が低い程、シール材の復元量が確保されていることを意味しており、シール機能は 		改良EPDM 800kGy 蒸気 250℃	
 ※圧縮永久ひずみ試験とは、所定の圧縮率をかけ変形させた後、 開放時の戻り量を評価するものである。完全に元の形状に戻 った場合を0%、全く復元せずに完全に圧縮された状態のまま である状態を100%としている。圧縮永久ひずみ試験結果が低 い程、シール材の復元量が確保されていることを意味してお りシール機能は健全であることを示している。 			
開放時の戻り量を評価するものである。完全に元の形状に戻 った場合を0%、全く復元せずに完全に圧縮された状態のまま である状態を100%としている。圧縮永久ひずみ試験結果が低 い程、シール材の復元量が確保されていることを意味してお りシール機能は健全であることを示している。	※圧縮永久ひずみ試験とは、所定の圧縮率をかけ変形させた後、	※圧縮永久ひずみ試験とは,所定の圧縮率をかけ変形させた後,	
った場合を0%、全く復元せずに完全に圧縮された状態のまま である状態を100%としている。圧縮永久ひずみ試験結果が低 い程、シール材の復元量が確保されていることを意味してお りシール機能は健全であることを示している。	開放時の戻り量を評価するものである。完全に元の形状に戻	開放時の戻り量を評価するものである。完全に元の形状に戻	
である状態を100%としている。圧縮永久ひずみ試験結果が低 い程、シール材の復元量が確保されていることを意味してお りシール機能は健全であることを示している。 健全であることを示している。	った場合を0%、全く復元せずに完全に圧縮された状態のまま	った場合を0%,全く復元せず完全に圧縮された状態を100%	
い程、シール材の復元量が確保されていることを意味してお りシール機能は健全であることを示している。 健全であることを示している。	である状態を100%としている。圧縮永久ひずみ試験結果が低	としている。圧縮永久ひずみ試験結果が低い程、シール材の	
りシール機能は健全であることを示している。 健全であることを示している。	い程、シール材の復元量が確保されていることを意味してお	復元量が確保されていることを意味しており, シール機能は	
	りシール機能は健全であることを示している。	健全であることを示している。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
② 改良EPDM製シール材の性能確認試験について	②改良EPDM製シール材の性能確認試験について	
上記の①で示すシール材特性試験に加え,改良EPDM製シー	上記の①で示すシール材特性試験に加え、改良EPDM製	
ル材のシール機能を確認するために, 小型フランジ試験装置	シール材のシール機能を確認するために、小型フランジ試験	
を用いて事故環境下に曝露させ,性能確認試験を実施してい	装置を用いて事故環境下に曝露させ、性能確認試験を実施し	
る。本試験は,原子炉格納容器内における事故後7日間の累	ている。本試験は原子炉格納容器内における事故後7日間の	
積放射線量の目安である800kGy,格納容器限界温度である	累積放射線量の目安である 800kGy, 格納容器限界温度である	
200℃と余裕を見た250℃の環境に7日間(168h)曝露した試	200℃と余裕を見た 250℃の環境に7日間(168h)曝露した試験	
験体に対してHe気密性能確認試験を実施し,格納容器限界圧	体に対して He 気密性能確認試験を実施し,格納容器限界圧力	
力2Pd <u>(0.62MPa)</u> を超える0.9MPa加圧時において漏えいがな	2Pd <u>(0.853MPa)</u> を超える MPa 加圧時において漏えいがな	・設備設計の違い
いことを確認した。	いことを確認した。	【柏崎 6/7】
		柏崎 6/7(ABWR)と島
なお,改良EPDM製シール材の試験の詳細を <u>別紙-1</u> 「改良EPDM	なお,改良EPDM製シール材の試験の詳細を <u>別紙-1</u> 「改	根2号炉(Mark-I改)
シール材の試験について(平成27年11月19日審査会合資料抜	良EPDMシール材の試験について」で示す。	の最高使用圧力の相違。
<u>粋)」で示す。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
別紙-1	別紙-1	
改良EPDMシール材の試験について	改良EPDMシール材の試験について	
改良EPDMシール材について、耐高温性、耐蒸気性を確認するた		
めに、800kGyのカンマ緑照射を行った材料を用いて、高温曝露入	るために、800kGyのカンマ緑照射を行った材料を用いて、高温曝 電力は英有唱賞さな、さん、有点な知識除させたして思い。のた	
は蒸気曝露を行った後、気密確認試験を実施して漏えいの有無を	露人は蒸気曝露を行った後、気密確認試験を実施して漏えいの有	
確認した。また、試験後の外観観祭、FI-IR分析及び硬さ測定を行	無を確認した。また,試験後の外観観祭,FT-TR分析及び硬	
い、曝露後のシール材の状況を確認した。本試験に使用した試験	さ測定を行い、曝露後のシール材の状況を確認した。本試験に使	
治具寸法を図1,外観を図2に示す。シール材の断面寸法は実機の	用した試験治具寸法を図1,外観を図2に示す。シール材の断面	
1/2とし、内側の段差1mmに加えて外側からも高温空気又は蒸気に	寸法は実機の1/2とし、内側の段差1mmに加えて外側からも高	
曝露されるため、実機条件と比較して保守的な条件となると想定	温空気又は蒸気に曝露されるため、実機条件と比較して保守的な	
される。試験の詳細と結果を以下に記載する。	条件となると想定される。試験の詳細と結果を以下に記載する。	
①高温曝露	①高温曝露	
熱処理炉を使用して200℃, 168hの高温曝露を実施した。	熱処理炉を使用して 200℃, 168h の高温曝露を実施した。	
②蒸気曝露	②蒸気曝露	
東京電力技術開発センター第二研究棟の蒸気用オートクレ	東京電力技術開発センター第二研究棟の蒸気用オートクレ	
ーブを使用して, 1MPa, 250℃の蒸気環境下で168時間曝露を	ーブを使用して, 1 MPa, 250℃の蒸気環境下で 168 時間曝露	
実施した。蒸気用オートクレーブの系統図を図3に、試験体設	を実施した。蒸気用オートクレーブの系統図を図3に、試験	
置状況を図4に示す。	体設置状況を図4に示す。	
③He気密確認試験	③He 機密確認試験	
高温曝露及び蒸気曝露後の試験体について、Heを用いて気	高温曝露及び蒸気曝露後の試験体について、He を用いて気	
密試験を実施した。負荷圧力は0.3MPa, 0.65MPa, 0.9MPaとし、	密試験を実施した。負荷圧力は 0.3MPa、 0.65MPa、 0.9MPa と	
スヌープでのリーク確認と、0.3MPaは保持時間10分、0.65MPa	し、スヌープでのリーク確認と、0.3MPa は保持時間 10 分、	
及び0.9MPaは保持時間30分で圧力隆下の有無を確認した。ま	0.65MPa 及び 0.9MPa は保持時間 30 分で圧力降下の有無を確	
た.0.8mmの隙間ゲージを用いて開口変位を模擬した気密確認	認した。また、0.8mmの隙間ゲージを用いて開口変位を模擬	
試験も実施した(実機1 $6mm$ 相当の変位)。試験状況を図5 -6	した機密確認試験も実施した(実機1 6mm 相当の変位)、試験	
に 試験結果を表1に示す いずれの条件下でもリーク及び圧		
カ降下け認められたかった	でもリーク及び圧力降下け認められたかった	
	① 計驗後外組細察	
でいたの小売売示	ご いい (水) (ア) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
に割れ笠の頭茎な少化け認められたかった	シール 祝知 と 既 宗 し に 。 既 宗 加 木 と 四 … に か り 。 シール 初	
(こう)なし守 (ノ)駅 有 (よう) [L(よ)(ひりし(よ)) つ (こ)。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2 号
図1 試験治具寸法		図1 試験治具寸法
<image/>		「「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 <th」< th=""> 「」」」 <th」< th=""></th」<></th」<>
図3 蒸気用オートクレーブ系統図		図3 蒸気用オートクレーン

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<image/> <caption></caption>		<image/> <caption></caption>	
<image/> <image/> <image/> <image/> <image/> <image/> <image/>		<image/> <image/> <complex-block><complex-block><image/><image/><image/></complex-block></complex-block>	
表1 He気密確認試験状況		表 1 He 気密試験確認状況	
ガンマ線 変位 0.3MPa 0.65MPa 0.9MPa		No. 曝露条件 γ線照射 量 変位 0.3MPa 0.65MPa 0.9MPa	
照射量 照射量 1<		1 乾熱 200°C, 168h 800kGy 無し ○ ○ 0.8mm ○ ○ ○	
2 蒸気 1MPa, 250°C, 168b 800kGy 無し 〇 〇		2 蒸気 1MPa, 250°C, 168h 800kGy 無し ○ ○ 素気 1MPa, 250°C 4冊1 ○ ○	
item item 0.8mm 0 0 3 蒸気 1MPa, 250°C, 168b 800kGy 無し 0 0		3 ※X INLA, 200C, 168h 800kGy ※KC 0 0 0 0: リーク及び圧力降下なし	
10001 0.0000 0:リーク及び圧力降下なし			
		1	1
	ネ甫_੨੭1		

		自相臣又力戏電武 0 巴尼	/ 进 耂
柏崎利羽原于刀笼龟別 6/ 7 亏炉 (2017.12.20 版)	東伊弗→先电//(2018.9.12 版)	高根原于刀宪电 <u>所</u> 2 亏炉	111.5
F = F = F = F = F = F = F = F = F = F =		W T	
区/ 武歌後/戰戰/紀元 π		囚 (武破後)/戰戰法和 π (a ·鼓劾 200℃ 168b b a ·苏气 250℃ 168b)	
(a. 乾熬200℃, 108n, b, c.※気250℃, 108n)		(a. 転款 200 C, 168n D, C. ※ 気 250 C, 168n)	
⑤ FT-IR分析 試験後のシール材のFT-IR分析結果を図8,9に示す。FT-IR は赤外線が分子結合の振動や回転運動のエネルギーとして吸 収されることを利用して,試料に赤外線を照射して透過又は 反射した光量を測定することにより分子構造や官能基の情報 を取得可能である。高温曝露中に空気が直接接触する位置(曝 露面)では、ベースポリマーの骨格に対応するピークが消失 していたが、その他の分析位置、曝露条件では顕著な劣化は 認められなかった。		⑤FT-IR分析 試験後のシール材のFT-IR分析結果を図8,9に示す。 FT-IRは赤外線が分子結合の振動や回転運動のエネルギ ーとして吸収されることを利用して,試料に赤外線を照射し て透過又は反射した光量を測定することにより分子構造や官 能基の情報を取得可能である。高温曝露中に空気が直接接触 する位置(曝露面)では、ベースポリマーの骨格に対応する ピークが消失していたが、その他の分析位置、曝露条件では 顕著な劣化は認められなかった。	
図8 FT-IR分析結果 (曝露面)		図8 FT-IR分析結果 (曝露面)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
図9 FT-IR分析結果(シート面)		図 9 F T – I R 分析結果 (シート面)	
 ④ 硬さ測定 		⑥硬さ測定	
試験後のシール材の硬さ測定結果を図10に示す。曝露面, シート面,裏面,断面の硬さを測定した。曝露面において,		試験後のシール材の硬さ測定結果を図 <u>10</u> に示す。曝露面, シート面,裏面,断面の硬さを測定した。曝露面において,	
乾熱200℃,168h条件では酸化劣化によって硬さが顕著に上昇		乾熱 200℃, 168h 条件では酸化劣化によって硬さが顕著に上	
していた。その他の部位,条件では,蒸気250C,168h条件の 曝露面で若干の軟化が確認された以外,硬さは初期値近傍で		昇していた。その他の部位,条件では,蒸気250C,168h条 件の曝露面で若干の軟化が確認された以外,硬さは初期値近	
あり、顕著な劣化は確認されなかった。		傍であり、顕著な劣化は確認されなかった。	
		◆ ◆暴露麺 ■ シート類	
●シント面 ● 裏面 ▲断面		· · · · · · · · · · · · · · · · · · ·	
•			
		→ 初期値 乾式200°C 蒸気250°C 168時間 168時間	
▲ 初期値 乾熱 200℃ 蒸気 250℃ 168h 168h			
図10 硬さ測定結果		図 10 硬さ測定結果	
以上の試験結果から, 200℃, 2Pd, 168hの条件下では, 改良		以上の試験結果から,200℃,2Pd,168hの条件下では,改	
EPDMシール材を使用した場合は、圧力上昇時のフランジ部の開 ロを勘案しても原子恒格納容器フランジ部の気容性は保たれる		良EPDMシール材を使用した場合は、圧力上昇時のフランジ 部の開口を勘案しても原子恒核純容界フランジ部の気密性は保	
ロを開来してひか」が11111日曲/ ノンシロのX田住は休に463と考えられる。		たれると考えられる。	
以上			

44.非常用ガス処理系の使用を考慮した評価について 資料なし 31.非常用ガス処理系の使用を考慮した評価について <u>柏崎刈羽原子力発電所6号及び7号炉</u> においては、重大事故時における現場 における現場作業の成立性を確かなものにするため、必要な対策 を実施の上、以下の運用を行うこととしている。 <u>島根原子力発電所2号炉</u> においては、重大事故時における現場 作業の成立性を確かなものにするため、必要な対策 を実施の上、以下の運用を行うこととしている。 ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
 <u>柏崎刈羽原子力発電所6 号及び7 号炉</u>においては、重大事故時における現場 における現場作業の成立性を確かなものにするため、必要な対策を実施の上、 じたける見場作業の成立性を確かなものにするため、必要な対策を実施の上、 以下の運用を行うこととしている。 作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する 作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する 	44. 非常用ガス処理系の使用を考慮した評価について	資料なし	31. 非常用ガス処理系の使用を考慮した評価について	
 <u>柏崎刈羽原子力発電所6 号友び7 号炉</u>においては、重大事故時における現場 における現場作業の成立性を確かなものにするため、必要な対策 を実施の上、以下の運用を行うこととしている。 ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・全交流電源喪失時においても屋外作業を行わずに速やかに非 常用ガス処理系を使用できるよう、ガスタービン発電機を中 央制御室から遠隔操作により起動する 				
における現場作業の成立性を確かなものにするため、必要な対策 を実施の上、以下の運用を行うこととしている。 ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・全交流電源喪失時においても屋外作業を行わずに速やかに非 常用ガス処理系を使用できるよう、ガスタービン発電機を中 央制御室から遠隔操作により起動する	柏崎刈羽原子力発電所6 号及び7 号炉においては,重大事故時		<u>島根原子力発電所2号炉</u> においては、重大事故時における現場	
 を実施の上,以下の運用を行うこととしている。 ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・全交流電源喪失時においても屋外作業を行わずに速やかに非 常用ガス処理系を使用できるよう、ガスタービン発電機を中 央制御室から遠隔操作により起動する レアの運用を行うこととしている。 ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 	における現場作業の成立性を確かなものにするため、必要な対策		作業の成立性を確かなものにするため、必要な対策を実施の上、	
 ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・全交流電源喪失時においても屋外作業を行わずに速やかに非 常用ガス処理系を使用できるよう、ガスタービン発電機を中 央制御室から遠隔操作により起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する ・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する 	を実施の上,以下の運用を行うこととしている。		以下の運用を行うこととしている。	
を起動する 全交流電源喪失時においても屋外作業を行わずに速やかに非 常用ガス処理系を使用できるよう,ガスタービン発電機を中 央制御室から遠隔操作により起動する を起動する を起動する を起動する や全交流電源喪失時においても屋外作業を行わずに速やかに非 常用ガス処理系を使用できるよう,ガスタービン発電機を中 央制御室から遠隔操作により起動する 	・作業現場の放射線量の上昇の緩和のため,非常用ガス処理系		・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系	
 ・全交流電源喪失時においても屋外作業を行わずに速やかに非 常用ガス処理系を使用できるよう,ガスタービン発電機を中 央制御室から遠隔操作により起動する ・全交流電源喪失時においても屋外作業を行わずに速やかに非 常用ガス処理系を使用できるよう,ガスタービン発電機を中 央制御室から遠隔操作により起動する 	を起動する		を起動する	
常用ガス処理系を使用できるよう,ガスタービン発電機を中 央制御室から遠隔操作により起動する 常用ガス処理系を使用できるよう,ガスタービン発電機を中 央制御室から遠隔操作により起動する	・全交流電源喪失時においても屋外作業を行わずに速やかに非		・全交流電源喪失時においても屋外作業を行わずに速やかに非	
央制御室から遠隔操作により起動する 央制御室から遠隔操作により起動する	常用ガス処理系を使用できるよう、ガスタービン発電機を中		常用ガス処理系を使用できるよう、ガスタービン発電機を中	
	央制御室から遠隔操作により起動する		央制御室から遠隔操作により起動する	
ここでは、非常用ガス処理系の運転を考慮した場合の重大事	ここでは、非常用ガス処理系の運転を考慮した場合の重大事		ここでは、非常用ガス処理系の運転を考慮した場合の重大事故	
は時における作業時の被ばく線量を確認した。 時における作業時の被ばく線量を確認した。	故時における作業時の被ばく線量を確認した。		時における作業時の被ばく線量を確認した。	
なお、格納容器ベント実施に伴う現場作業の線量影響の評価	なお、格納容器ベント実施に伴う現場作業の線量影響の評価		なお、格納容器ベント実施に伴う現場作業の線量影響の評価条	
条件及び評価結果の詳細は,「重大事故等対処設備について 別	条件及び評価結果の詳細は,「重大事故等対処設備について 別		件及び評価結果の詳細は,「重大事故等対処設備について 別添資	
添資料−1 原子炉格納容器の過圧破損を防止するための設備(格) 料−1 格納容器フィルタベント系について」の別紙8に示す。	添資料-1 原子炉格納容器の過圧破損を防止するための設備 (格		料-1 格納容器フィルタベント系について」の別紙8に示す。	
納容器圧力逃がし装置)について」の別紙33 に示す。	納容器圧力逃がし装置)について」の別紙33 に示す。			
また、中央制御室での被ばく線量については、「59条 原子炉	また, 中央制御室での被ばく線量については,「59 条 原子炉		また,中央制御室での被ばく線量については,「59 条 運転員	
<u>制御室</u> (補足説明資料) 59-11 原子炉制御室の居住性に係る被 が原子炉制御室にとどまるための設備(補足説明資料) 59-11 原	<u>制御室</u> (補足説明資料) 59-11 原子炉制御室の居住性に係る被		が原子炉制御室にとどまるための設備(補足説明資料)59-11原	
ばく評価について」に示す。 子炉制御室の居住性に係る被ばく評価について」に示す。	ばく評価について」に示す。		子炉制御室の居住性に係る被ばく評価について」に示す。	
1.現場の作業環境 1.現場の作業環境	1.現場の作業環境		 1.現場の作業環境 	
現場の作業環境の評価結果を表1に示す。評価の結果,被ば	現場の作業環境の評価結果を表1 に示す。評価の結果,被ば		現場の作業環境の評価結果を表1に示す。評価の結果、被ば	
く線量は最大でも <u>約87mSv</u> となった。このことから,各々の現場・評価結果の相違・	く線量は最大でも <u>約87mSv</u> となった。このことから,各々の現場		く線量は最大でも <u>約 53mSv</u> となった。このことから,各々の現	・評価結果の相違
	作業は作業可能であることを確認した。		場作業は作業可能であることを確認した。	【柏崎 6/7】
なお、作業の評価条件及び評価結果の詳細は別紙「給油等の	なお、作業の評価条件及び評価結果の詳細は別紙「給油等の		なお、作業の評価条件及び評価結果の詳細は別紙「給油等の	
現場作業の線量影響について」に示す。 現場作業の線量影響について」に示す。	現場作業の線量影響について」に示す。		現場作業の線量影響について」に示す。	

柏崎刈羽	原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
表1 有効性評	価(重大事故)で想定する主	こな現場作業と放射線環	表1 有効性評価	(重大事故)で想定する主な現場作業と放射線	・評価結果の相違
	現				【相畸 6/7】
作業項目	具体的な運転操作・作業内容	放射線環境	低圧原子炉代 ・	大量送水車による輪谷貯水槽か	
復水貯蔵槽への	・可搬型代替注水ポンプ (A-2 級) による	淡水貯水池 最大約63mSv	替注水槽への	ら低圧原子炉代替注水槽への補 約 23mSv	
竹田亦曰	・軽油タンクからタンクローリへの補給		補給準備	給	
各機器への給油	・可搬型代替注水ポンプ(A-2 級),電源	車,大容量 最大約87mSv*	· · · ·	ガスタービン発電機用軽油タン	
省 344 扶太法雪	送水車(熱交換器ユニット用)への燃	料給油作業	な物理。の外	クからタンクローリへの補給	
席設代香交流電 源設備からの受	 ・ 吊設代替交加電励設備準備操作及び運 (第一ガスタービン発電機) 	1 mSv以下	合機 な への 応	大量送水車,大型送水ポンプ車,約19mSv*	
電操作	・M/C 受電確認, MCC 受電			可搬式窒素供給装置への燃料給	
代替原子炉補機	 ・代替原子炉補機冷却系 準備操作,運 	転状態監視 最大約54mSv		油作業	
※評価結果 への燃料	が最大となる「 <u>大容量送水車</u> 給油作業」の値を示す	<u>(熱交換器ユニット用)</u>	・ 常設代替交流 電源設備から の受電操作 ・	常設代替交流電源設備準備操作 及び運転状態確認(ガスタービ ン発電機) M/C受電操作,受電確認	
			原子炉補機代 替冷却系運転 操作	原子炉補機代替冷却系準備操作, 海 53mSv 運転状態監視	
			※格納容器フィルタ	タベント実施後に、タンクローリから大量送水	
			車,可搬式窒素体	供給装置,大型送水ポンプ車に順に給油すると	
			きの値を示す		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙		別紙	
給油等の現場作業の線量影響について		給油等の現場作業の線量影響について	
重大事故時における現場作業は放射線環境下での作業となる。		重大事故時における現場作業は放射線環境下での作業となる。	
ここでは、有効性評価(重大事故)で想定する主な現場作業のう		ここでは、有効性評価(重大事故)で想定する主な現場作業のう	
ち,別紙表1 に示す作業について作業時の被ばく線量の評価を行		ち、別紙表1に示す作業について作業時の被ばく線量の評価を行	
った。作業の時間帯等を別紙表2 に示す。また,各現場作業にお		った。作業の時間帯等を別紙表2に示す。また、各現場作業にお	
ける線量影響評価で採用した評価点を別紙図1から別紙図4に示		ける線量影響評価で採用した評価点を別紙図1から別紙図3に示	
す。		す。	
各作業の評価時間には作業場所への往復時間を含めた。なお、		各作業の評価時間には作業場所への往復時間を含めた。なお、	
移動中における線量率が作業中における線量率と異なることを考		移動中における線量率が作業中における線量率と異なることを考	
慮し、作業によっては、作業中と移動中で異なる場所を評価点と		慮し、作業によっては、作業中と移動中で異なる場所を評価点と	
設定し評価した。線源強度や大気拡散評価等の評価条件は、「重大		設定し評価した。線源強度や大気拡散評価等の評価条件は、「重大	
事故等対処設備について 別添資料-1 原子炉格納容器の過圧破損		事故等対処設備について 補足説明資料 59-11 原子炉制御室の	
を防止するための設備(格納容器圧力逃がし装置)について」の		居住性(炉心の著しい損傷)に係る被ばく評価について」と同じ	
別紙33 と同じとした。また,格納容器ベント実施後の作業は,7号		とした。また,格納容器ベント実施後の作業は,W/Wベントを	
炉にてW/W ベントを実施した場合を代表として評価した。評価結		実施した場合を代表として評価した。評価結果を別紙表2に示す。	
果を別紙表2」に示す。			
評価の結果,被ばく線量は最大でも <u>約87mSv</u> となった。このこ		評価の結果,被ばく線量は最大でも <u>約53mSv</u> となった。このこ	・評価結果の相違
とから、各々の現場作業は作業可能であることを確認した。		とから、各々の現場作業は作業可能であることを確認した。	【柏崎 6/7】
別紙表1 有効性評価(重大事故)で想定する主な現場作業		別紙表1 有効性評価(重大事故)で想定する主な現場作業	・設備設計の相違
作業項目 具体的な運転操作・作業内容		作業項目 具体的な運転操作・作業内容	【柏崎 6/7】
夜水貯蔵槽への補給 ・可搬型代替注水ポンプ(A-2 級)による淡水貯水池から復水貯蔵 ・の補給		低圧原子炉代 ・大量送水車による輪谷貯水槽から低圧原子炉代替注水槽への補	
・軽油タンクからタンクローリへの補給		宿住水宿×60 給 補給準備	
各機器への給油 ・可搬型代替注水ポンプ(A-2級),電源車,大容量送水車(熱交換		各機器への給 ・ガスタービン発電機用軽油タンクからタンクローリへの補給	
		油 ・ 入重达水単, 入型达水ホンク単, 可搬式室素供給装直への燃料 給油作業	
常該11督父流电源設 備からの受電操作 ビン発電機)		常設代替交流・常設代替交流電源設備準備操作及び運転状態確認(ガスタービ	
		電源設備から の受電操作 ・M/C受電操作,受電確認	
系運転操作・、「谷原ナゲー相機冷却糸」ー準備操作、運転状態監視		原子炉補機代	

テノヂ	電所 6/7号炉	(2017.12.	. 20版)	東海第二発電所(2018.9.12版)			島根	原子ナ]発電所	2号炉			備考
度小 40 時間 45 分後 ^{%3}	移動 10 分 作業 10 分	养约 84mSv	. や . と し や。			格納容器ベント実施 後の作業	各機器への給油 ^{※1}	屋外	約 42.5 時間後	作業 69 分 移動 30 分	約 19mSv	することを想定 間,評価時間を設定	・設備設計,運用,評価 条件の相違 【柏崎 6/7】
度小 40時間35分後 ^{※3}	移動 10 分 作業 20 分 ^{%5}	岽) 87mSv	 事象収束に成功した場合を想定す 代替注水ボンプへの給油」と同 5。		見場作業に伴う被ばく		原子炉補機代替 令却系準備操作	屋外	2時間 30 分後	╞業7時間30分 移動35分	約 53mSv	パンプ車に順に給油 甚づき、移動開始時	
/ / / / / / / / / / / / / / / / / / /	1 班: 移動 190 分 作業 120 分 移動 20 分 作業 240 分	1 班:約 54mSv 2 班:約 49mSv			() で想定する主な明	ト実施前の作業	子炉代替 の補給準備 2	₹	分後	時間5分 1 35分	13mSv	接置,大型送水 認表 (一覧)」に動	
□□□□□□□□□□□□□□□□□□□□□□□□□000000000000	移動 55 分 ^{%(} 作業 310 分	約 63mSv	後用いて事象収束に成功 #/m ベント)に至り,6号 量送水車への給油」の作為 時間除く)に,時間余裕3		生評価(重大事故	格納容器ベン	■ 「一」 「「「」」 「「」」 「」」 「」」 「」」 「」」		50	作業 2F 務動	約 2	可搬式窒素供給 策の成立性確請	
度10 10 分後	移動,作業 60 分	举9 0. 32mSv	 1、両号炉共に代替循環治却3 1、弓炉で格納容器ベント (1、7・号炉で格納容器ベント (活 となるように設定。「大容 言丁となるむ。 15、分を含む。 15、分を含む。 17、分(移動 		別紙表2 有効		常設代替交流電) 設備からの受電操	屋内	20 分後	作業 70 分 移動 15 分	糸 41mSv	いら大量送水車, 1.1 重大事故等*	
移動開始時間 (事象開始後)	開朝御御	被ぼく線量	 ※1 評価に当たって1 ※2 評価に当たって1 ※3 41 時間後に作業: ※4 高台での作業時間 ※5 技術的能力で想気 						够動開始時間 ^{※2} (事象開始後)	評価時間 	被ばく線量	1 タンクローリ ₇ 2 「茶付資料 1.5	
	移動開始時間 10 分後 6 時間 5 分後 11 時間後 40 時間 35 分後 ^{%3} 40 時間 45 分後 ^{%3}	移動開始時間 10 分後 6 時間 5 分後 11 時間後 40 時間 35 分後 ⁵⁵ 40 時間 45 分後 ⁵⁵ (事象開始後) 10 分後 6 時間 5 分後 11 時間後 40 時間 35 分後 ⁵⁵ 40 時間 45 分後 ⁵⁵ 評価時間 移動,作業 60 分 修動 190 分 移動 100 分 移動 100 分 移動 10 分 評価時間 移動,作業 60 分 修動 55 分 ⁵⁶ 2 班 : 作業 20 分 ⁵⁶ 将動 10 分 評価時間 移動,作業 60 分 作業 310 分 2 班 : 作業 20 分 ⁵⁶ 作業 10 分 評価時間 移動,作業 60 分 作業 310 分 2 班 : 作業 20 分 ⁵⁶ 作業 10 分	移動開始時間 (事象開始後) 10分後 6時間5分後 11時間後 40時間35分後*** 40時間45分後*** (事象開始後) 10分後 6時間5分後 11時間後 40時間35分後*** 40時間45分後** (事象開始6) 約動190分 1班: 移動190分 11 10 評価時間 移動,作業60分 移動55分** 移動100分 移動10分 移動10分 被加時間 移動,作業120分 移動10分 1班: 1 作業20分** 作業10分 被1<	移動開始(約) 10分核 6時間5分後 11時間後 40時間35分後 ⁴³ 40時間35分後 ⁴³ (事業開始後) 10分核 6時間5分後 11時間後 40時間35分後 ⁴³ 40時間35分後 ⁴³ 市業回分 務動190分 務動190分 務動100分 移動10分 移動10分 市業回分 移動100分 移動100分 移動10分 移動10分 修動10分 市業10分 修動10分 修動10分 修動10分 修動10分 修動10分 市業200分 作業200分 修動10分 修動10分 作業20分 被ばく線曲 約0.32mSv 約63mSv 1.01.2mSv 約8mDv 被はく線曲 約0.32mSv 約63mSv 1.01.51mSv 約8mDv 第1時間に当たっては、同分地転にたったい 約.03.2mSv 約.63mSv 2.01.54mSv 約.8mSv 第1時間に当たっても常いまがたい 2.01.54mSv 2.01.54mSv 約.8mSv 約.8mSv 第1時間に当たってい、約.8mBが 約.03.2mSv 約.63mSv 2.01.54mSv 約.8mSv 第1時間に当たったい 約.03.2mSv 約.63.8mSv 2.01.54mSv 約.8mSv 第1時間に当たったい 約.03.2mSv 約.63.8mSv 2.01.54mSv 約.8mSv <	##################################	時期時時間 10.5% 648.05.5% 11.0000 40.0000 648.05.5% 0.0000 648.05.5% 0.0000 648.05.5% 0.0000 648.05.5% 0.0000 648.05.5% 0.0000 648.05.5%	時間用して用 0.048	時期間時間 13.9月編 0.0110(5.9月編 1.11 1010(5.9) 0.0100(5.9) 0.0110(5.9) 0.0100(5.9) 0.0100(5.9) 0.0100(5.9) 0.0100(5.9) 0.0100(5.9) 0.0100(5.9) 0.0101(5.9) 0.0101(5.9) 0.0101(5.9) 0.0101(5.9) 0.0101(5.9) 0.0101(5.9) 0.0101(5.9) 0.0101(5.9) 0.01010(5.9) 0.0101(5.9)	時期時代時代 10.00% 0.00101.00% 10.00% 0.00101.00% 0.0010	Watersment Internation Internation Internation Antimater and control Antimater and contro Antimater and control	(Weinstein 10.06 11.000 11.000 0.0000000 0.000000 <	(●ののののので) (●ののののので) (●のののののののの) (●のののののののの) (●ののののののの) (●ののののの) (●ののののの) (●のののの) (●のののの) (●のののの) (●のののの) (●のののの) (●ののの) (●ののの) (●ののの) (●ののの) (●ののの) (●ののの) (●のの) (●の) (●の) (●の) (●のの) (●の) (●の)	With Ministry Other Cole Lith Ministry Config Cole Lith Ministry Config Cole Config Cole

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
即巡回1 发表的基本		山如园 1 低了匠了后丛共没大捷。 页法处 匠了后途撒丛共盗地系	
加和区II 復小时做帽 ,207曲和		準備操作及び各機器への給油時の線量評価点	
N新図2 代基百子恒補機冷却系運転撮作(7 号恒対広時)			
		別紙図2 屋外移動中の評価点	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
]
別紙図3 大容量送水車への給油		別紙図3 常設代替交流電源設備からの受電操作の評価点	
別紙図4 可搬型代替注水ポンプへの給油			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 3.2.17		
45. 原子炉圧力容器の破損位置について	原子炉圧力容器の破損位置について	32. 原子炉圧力容器の破損位置について	
原子恒圧力変異の破損について MAAD でけ N下の破損エ			
	て以下のものが考慮されており 解析においてけこれらの中か	「ホードから判定された破損モードが適用される	
	ら判定された破損モードが適用される。		
a) 下部ヘッド貫通部への溶融物流入による破損	a)下部ヘッド貫通部への溶融物流入による破損	a) 下部ヘッド貫通部への溶融物流入による破損	
b)下部ヘッド貫通部の逸出	b)下部ヘッド貫通部の逸出	b) 下部ヘッド貫通部の逸出	
c) デブリジェットの衝突による下部ヘッドの局所破損	c)デブリジェットの衝突による下部ヘッドの局所破損	c)デブリジェットの衝突による下部ヘッドの局所破損	
d)金属層による原子炉圧力容器壁の破損	d)金属層による原子炉圧力容器壁の破損	d)金属層による原子炉圧力容器壁の破損	
e)原子炉圧力容器のクリープ破損	e)原子炉圧力容器のクリープ破損	e)原子炉圧力容器のクリープ破損	
原子炉圧力容器の下部ヘッドは径方向(5 ノード)及び厚さ	原子炉圧力容器の下部ヘッドは径方向(5 ノード)及び厚さ	原子炉圧力容器の下部ヘッドは径方向(5ノード)及び厚	
方向(5 ノード)に分割されており, ノードごとに破損に至っ	方向(5 ノード)に分割されており、ノードごとに破損に至っ	さ方向(5ノード)に分割されており、ノードごとに破損に	
ているかの判定が行われる。第1図に原子炉圧力容器下部ヘッ	ているかの判定が行われる。 <u>第1図</u> に原子炉圧力容器下部ヘッ	至っているかの判定が行われる。図1に原子炉圧力容器下部	
ドのノード分割の概念図を示す。	ドのノード分割の概念図を示す。	ヘッドのノード分割の概念図を示す。	
有効性評価(※1)においては,下部プレナムへ移行した溶	有効性評価のうち,3.2 高圧溶融物放出/格納容器雰囲気直	有効性評価(※1)においては、下部プレナムへ移行した	
融炉心の加熱により, 原子炉圧力容器下部の中心部ノードの温	接加熱にて対象としている事故シーケンス「過渡事象+高圧炉	溶融炉心の加熱により、原子炉圧力容器下部の中心部ノード	
度が最も高くなり, 制御棒駆動機構ハウジング溶接部のひずみ	心冷却失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧失敗	の温度が最も高くなり、制御棒駆動機構ハウジング溶接部の	
量がしきい値(0.1)に至る原子炉圧力容器破損(※2)が最初	(+DCH)」(「3.3 原子炉圧力容器外の溶融燃料-冷却材相	ひずみ量がしきい値(0.1)に至る原子炉圧力容器破損(※2)	
に発生する結果となっている。	互作用」及び「3.5 溶融炉心・コンクリート相互作用」の評価	が最初に <u>発生する</u> 結果となっている。	
	事故シーケンスへの対応及び事象進展と同じ)においては、下		
	部プレナムへ移行した溶融炉心からの加熱により,原子炉圧力		
	容器下部の中心部ノードの温度が最も高くなり,制御棒駆動機		
	構ハウジング溶接部のひずみ量がしきい値(0.1)に至ること		
	による原子炉圧力容器破損(「b)下部ヘッド貫通部の逸出」に		
	該当)が最初に判定される結果となっている。		
径方向のノードごとの制御棒駆動機構ハウジング溶接部の	径方向のノードごとの制御棒駆動機構ハウジング溶接部の	径方向のノードごとの制御棒駆動機構ハウジング溶接部の	
ひずみ量の推移を第2回に,原子炉圧力容器下部ヘッド温度の	ひずみ量の推移を第2図に,原子炉圧力容器下部ヘッド温度の	ひずみ量の推移を図2に、原子炉圧力容器下部ヘッド温度の	
推移を第3図に示す。第2図に示すとおり、原子炉圧力容器下	推移を第3図に示す。第2図に示すとおり、原子炉圧力容器下	推移を図3に示す。図2に示すとおり、原子炉圧力容器下部	
部の中心ノードに該当するノード1 のひずみ量がしきい値	部の中心ノードに該当するノード 1 のひずみ量がしきい値	の中心ノードに該当するノード1のひずみ量がしきい値	
(0.1)に達して原子炉圧力容器破損に至っている。また, 第3	(0.1)に達して原子炉圧力容器破損に至っている。また、第	(0.1)に達して原子炉圧力容器破損に至っている。また、図	
図に示すとおり、ノード1 が高温を長時間維持していることが オヨンレート	3. 図に示すとおり、ノード1が高温を長時間維持していること	3.に示すとおり、ノード1が高温を長時間維持していること	
催認された。	か確認された。	か確認された。	
※1・DCH、 炉外FCI 及びMCCI にて対象としている事故シーケ		※1·DCH、炉外FCI及びMCCIにて対象としていろ	
ンス		事故シーケンス	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
46. 逃がし安全弁 (SRV) 出口温度計による炉心損傷の検知性につ	3 逃がし安全弁出口温度による炉心損傷の検知性について	33. 逃がし安全弁 (SRV) 出口温度計による炉心損傷の検知性	
いて		について	
「「「「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」	「「「「「「「」」」「「」」「「」」「「」」「「」」「「」」「」」「「」」「	「「「「「「「「「」」」」」「「「」」」「「」」「「」」「「」」「「」」「「	
り行うが、逃がし安全弁(SRV)出口温度計による炉心損傷の検知	うが、 逃がし安全弁(以下「SRV」という。)出口温度(排気)	より行うが、逃がし安全弁(以下「SRV」という)出口温度計	
性については以下の通り。	<u>管温度</u>)による炉心損傷の検知性については以下のとおり。	による炉心損傷の検知性については以下のとおり。	
1. SRV 出口温度計の設備概要	1. <u>SRV排気管温度の計装</u> 設備概要	1. <u>SRV出口温度計</u> の設備概要	
SRV 出口温度計は,原子炉運転中にSRV からの漏えいを検出	<u>SRV排気管温度</u> は、原子炉運転中にSRVからの漏えいを	<u>SRV出口温度計</u> は,原子炉運転中にSRVからの漏えいを検	
するために,SRV の <u>吐出配管</u> に設けており,測定範囲は0~300℃	検出するために、SRVの <u>吐出配管</u> に設けており、測定範囲は	出するために、SRVの排出配管に設けており、測定範囲は0~	
である。温度検出器は,SRV 本体からの熱伝導による誤検出を	0℃~300℃である。温度検出器は、SRV本体からの熱伝導に	300℃である。温度検出器は、SRV本体からの熱伝導による誤検	
防ぐために、弁本体から十分離れた位置に取り付けている(図	よる誤検出を防ぐために、弁本体から十分離れた位置に取り付	出を防ぐために, 弁本体から十分離れた位置に取り付けている(図	
<u>1</u> 参照)。	けている。(<u>第1図</u> 参照)	<u>1</u> 参照)。	
9 百子恒水位低下時の百子恒圧力容哭内沮産の概略送動	9	2	
事故発生後 原子炉水位が低下する過程において 炉心が訝	事故発生後 原子炬水位が低下する過程において 炬心が冠	事故発生後 原子炉水位が低下する過程において 炉心が冠水	
水した状能では、炉心部及び原子炉圧力容器ドーム部の温度は	水した状態では、炉心部及び原子炉圧力容器ドーム部の温度は、	した状態では、 炉心部及び原子炉圧力容器ドーム部の温度は、 と	
ともに定格原子炉圧力 (7.07MPa [gage]) ないしはSRV 動作圧	ともに定格原子炉圧力(6.93MPa[gage])ないしはSRV動作圧	もに定格原子炉圧力(6.93MPa [gage])ないしはSRV動作圧力	・設備設計の相違
力(安全弁機能の最大8.20MPa [gage])に対応する飽和蒸気温	力(安全弁機能の最大 8.31MPa[gage])に対応する飽和蒸気温	(安全弁機能の最大 8.35MPa[gage])に対応する飽和蒸気温度近	【柏崎 6/7,東海第二】
度近傍(約287℃~約298℃)となる。	度近傍(約 286℃~約 299℃)となる。	傍(約 286℃~約 299℃)となる。	設備仕様の相違。
さらに原子炉水位が低下すると、炉心が露出した炉心部と原	さらに、原子炉水位が低下すると、炉心が露出した炉心部と	さらに原子炉水位が低下すると、炉心が露出した炉心部と原子	
子炉圧力容器ドーム部は過熱蒸気雰囲気となり、温度は飽和蒸	原子炉圧力容器ドーム部は過熱蒸気雰囲気となり、温度は飽和	炉圧力容器ドーム部は過熱蒸気雰囲気となり、温度は飽和蒸気温	
気温度を超えて上昇する。	蒸気温度を超えて上昇する。	度を超えて上昇する。	
3. SRV 出口温度計による炉心損傷の検知性 	3. <u>SRV排気官温度</u> による炉心損傷の検知性 素状変化後、 OPNUにたる対応され、 OPNU地気効果産	3. SRV出口温度計による炉心損傷の傾知性	
事政発生後, SKV による減圧を行うと, SKV 出口温度計は原 フロビカ空聖 いーノ如の温度に相当たて温度た将ニナスト考点	事政先生後, SKVによる減圧を行うと, SKV排入官温度 は国スににも常い、 1 如の温度に担当する温度な特定する。	事政先生後, SKVによる順圧を打りと, <u>SKV田日温度計</u> は 原乙に広ち空間に、「如の温度に相当する温度た指示する」ます。	
ナ炉圧刀谷器トーム部の温度に相当りる温度を指示りると考え たれる	は原于炉圧刀谷器トーム部の温度に相当りる温度を指示りると	原于炉圧刀谷器下一ム部の温度に相当りる温度を指示りると考え	
540公。 「百子后水位の低下に上り后心が露出」 「百子后正力交界ドー	ちんりれいる。 「百子に水位の低下に上りに心が露出」 百子に正力容器ドー	9413。 「百子恒水位の低下に上り恒心が露出」 「百子恒圧力容器ドーム	
小丁が小匹の低下によりが心が盛山し、赤丁が二刀谷福下 人部が過熱蒸気雲囲気とたっている状能でSRV を開放した場	ふ」が小匹の低ーによりが心が露山し, 赤」が二刀存留中 人部が過熱表気雲囲気となっている状能でSRVを開放した場	部が過熱表気雰囲気とたっている状能でSRVを開放した場合	
合 SRV 出口温度計の指示値は 的和蒸気温度近傍よりも高い	合 SRV排気管温度の指示値は 約和蒸気温度近傍上りも高	SRV出口温度計の指示値は 飽和蒸気温度近傍上りも高い温度	
温度を示し、さらに過熱度が大きいと温度計の測定範囲(300℃)	い温度を示し、更に過数度が大きいと温度計の測定範囲(300℃)		
を超えるため、指示値はオーバースケールになると考えられる。	を招えるため、指示値はオーバースケールになると考えられる。	えるため、指示値はオーバースケールになると考えられる。	
一方、炉心が露出した場合において、炉心は蒸気冷却等によ	一方, 炉心が露出した場合において. 炉心は蒸気冷却等によ	一方、炉心が露出した場合において、炉心は蒸気冷却等により	
り健全性を維持している場合と、損傷している場合が考えられ	り健全性を維持している場合と、損傷している場合が考えられ	健全性を維持している場合と、損傷している場合が考えられる。	
3.	3.		
したがって、不確実さはあるものの,SRV 出口温度計のオー	したがって、不確実さはあるものの、 <u>SRV排気管温度計</u> の	したがって、不確実さはあるものの、 <u>SRV出口温度計</u> のオー	
バースケールにより炉心損傷を検知できる可能性がある。	オーバースケールにより炉心損傷を検知できる可能性がある。	バースケールにより炉心損傷を検知できる可能性がある。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
4. SRV 出口温度計測と原子炉圧力容器温度計測	4. <u>SRV排気管温度計測</u> と原子炉圧力容器温度計測	4. <u>SRV出口温度計測</u> と原子炉圧力容器温度計測	
SRV 出口温度と原子炉圧力容器温度は中央制御室にて確認可	SRV排気管温度と原子炉圧力容器温度は中央制御室にて確	<u>SRV出口温度</u> と原子炉圧力容器温度は中央制御室にて確認	
能であるが,故障等により中央制御室で確認できない場合, <u>SRV</u>	認可能であるが, 故障等より中央制御室で確認できない場合,	可能であるが、故障等により中央制御室で確認できない場合、	
出口温度の可搬型計測器による測定は現場盤で実施する必要が	<u>中央制御室</u> において可搬型計測器による測定が可能である。可	<u>その他の建物内の補助盤室</u> において可搬型計測器による測定が	・設備設計の相違
あり、原子炉圧力容器温度は中央制御室で実施可能である。そ	搬型計測器による測定が必要になった場合は、炉心損傷確認の	可能である。可搬型計測器による測定が必要になった場合は、	【柏崎 6/7,東海第二】
のため、可搬型計測器による測定が必要になった場合は、炉心	精度が高い原子炉圧力容器温度の測定を優先する。	炉心損傷確認の精度が高い原子炉圧力容器温度の測定を優先す	可搬型計測器の接続
損傷確認の精度が高く、中央制御室で測定が可能な原子炉圧力		る。	場所の相違。
容器温度の測定を実施する。			
<image/>	<complex-block></complex-block>	<image/>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 3.1.2.10		
48. 炉心損傷前に発生する可能性がある水素の影響について	格納容器内に存在するアルミニウム/亜鉛の反応により 発生する水素の影響について	34. 炉心損傷前に発生する可能性がある水素の影響について	
BWR において, 炉心損傷前に原子炉格納容器内で水素を発生さ せ得る現象としては, 原子炉格納容器内のグレーチングに含まれ る亜鉛と水蒸気の反応等が考えられる。 ここでは, 柏崎刈羽原子力発電所6 号及び7 号炉において, 炉 心損傷前に水素ガスが発生した場合の影響を考察する。	1. はじめに 格納容器内では配管の保温材等にアルミニウムを使用してお り、サプレッション・プール水p日制御装置により注入される 水酸化ナトリウムが格納容器内に存在するアルミニウムに被水 すると化学反応により水素が発生する。 また、格納容器内のグレーチングには亜鉛メッキが施されて おり、亜鉛も同様に水酸化ナトリウムと反応して水素が発生す る。 以上の化学反応が、格納容器内の水素発生量及び格納容器圧 力上昇に与える影響を評価する。なお、実際に水酸化ナトリウ ムと反応する金属は、格納容器スプレイの飛散範囲と考えられ るが、保守的に格納容器内全ての亜鉛とアルミニウムが反応し、 水素が発生するとして評価を行う。 A1 + NaOH + H ₂ O → NaAlO ₂ + 3/2H ₂ 式(a) Zn + NaOH + H ₂ O → NaHZnO ₂ + H ₂ 式(b)	BWRにおいて、炉心損傷前に原子炉格納容器内で水素を発生 させ得る現象としては、原子炉格納容器内のグレーチングに含ま れる亜鉛と水蒸気の反応等が考えられる。 ここでは、 <u>島根原子力発電所2号炉</u> において、炉心損傷前に水 素ガスが発生した場合の影響を考察する。	
1. 発生し得る水素量について 有効性評価の添付資料3.1.2.4「原子炉格納容器内に存在する亜 鉛及びアルミニウムの反応により発生する水素ガスの影響につい て」において、上記の現象によって、原子炉格納容器内に存在す る亜鉛及びアルミニウムが全量反応した場合に、発生し得る水素 ガスの量を、 <u>表1</u> のとおりに評価している。 <u>表1 水素ガスの発生量</u> <u>金属 発生する水素の量</u> <u>亜鉛 約77kg(約850Nn³)</u> アルミニウム 約162kg(約1,800Nm ³)	 2. 影響評価 (1) 格納容器内アルミニウム量及び亜鉛量 格納容器内でアルミニウムを使用している構造物は配管保 温材等であり、重量は約1,027kgである。 一方,格納容器内で亜鉛を使用している構造物はグレーチングの亜鉛メッキ等であり、重量は約4,244kgである。 (2) アルミニウム及び亜鉛と水酸化ナトリウムの化学反応による水素発生量 a. アルミニウムと水酸化ナトリウムの化学反応によって発生する水素量 式(a)より、アルミニウム1molに対して水素発生量は1.5molであり、アルミニウムの原子量が27,水素の原子量が2であるため、アルミニウム9kgに対して水素1kgが発 	1.発生し得る水素量について 有効性評価の添付資料 3.1.2.3「原子炉格納容器内に存在する 亜鉛及びアルミニウムの反応により発生する水素ガスの影響について」において、上記の現象によって、原子炉格納容器内に存在する亜鉛及びアルミニウムが全量反応した場合に、発生し得る水素ガスの量を、表1のとおりに評価している。 麦1 水素ガスの発生量 金属 発生する水素の量 亜鉛 約 73kg(約 803m³[norma1]) アルミニウム 約 374kg(約 4, 156m³[norma1])	・評価結果の相違 【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	0.8 I.OC A酸断口からの蒸気流出及び原子炉注木に伴って発生する過熱蒸気による格納容器圧力上昇を抑制するため、 (大替格納容器 スブレイ冷却系(常設)による格納容器冷却 ードライウェル 0.6 ーサブレッション・チェンバ (15) ・サブレッション・チェンバ (15) 0.6 ・サブレッション・チェンバ (15) ・サブレッション・チェンバ (15) 0.7 ・レックション・チェンバ (15) ・サブレックション・チェンバ (15) 0.4 ・レックション・チェンバ (15) ・レック・(15) 0.4 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
 (2)水素濃度への影響 燃料棒の健全性が損なわれず、よう素が冷却材中に放出されない条件(純水)*において、G 値は以下のとおりとなる^[1] ・沸騰条件 : 0.2 (H₂) /0.1 (0₂) ・非沸騰条件: 0 (H₂) /0 (0₂) 	 水素燃焼への影響について 水素及び酸素の可燃限界は、水素濃度 4vol%以上かつ酸素濃 度 5vol%以上である。BWRの格納容器内は窒素により不活性 化されており、本反応では酸素の発生はないことから、本反応 単独での水素の燃焼は発生しない。 	 (2)水素濃度への影響 燃料棒の健全性が損なわれず、よう素が原子炉冷却材中に放出 されない条件(純水)^{**}において、G値は以下のとおりとなる^[1] ・沸騰条件 : 0.2 (H₂) /0.1 (0₂) ・非沸騰条件: 0 (H₂) /0 (0₂) 	
炉心損傷に至らない場合,燃料がヒートアップし,炉心内での 沸騰が長期間継続することはないと考えると,過渡的に短時間の 沸騰が生じる可能性はあるものの,G値はほぼゼロと考えられるこ とから,水素濃度が4vol%に至ることはないと考えられる。なお、 炉心損傷に至らない場合,燃料被覆管温度は低く維持されること から,ジルコニウム-水反応による水素も実質発生しないと考えら れる。 また,炉心損傷前の格納容器ベント時の気相部のモル分率にお いて,1.で示した水素を考慮した場合 <u>も</u> 水素のモル分率は <u>約0.03</u> であり,有意な影響はないと考えられる。		炉心損傷に至らない場合,燃料がヒートアップし,炉心内での 沸騰が長期間継続することはないと考えると,過渡的に短時間の 沸騰が生じる可能性はあるものの,G値はほぼゼロと考えられる ことから,水素濃度が4vol%に至ることはないと考えられる。な お,炉心損傷に至らない場合,燃料被覆管温度は低く維持される ことから,ジルコニウム-水反応による水素も実質発生しないと考 えられる。 また,炉心損傷前の格納容器ベント時の気相部のモル分率にお いて,1.で示した水素を考慮した場合には,水素のモル分率は 約0.16であるが,BWRの原子炉格納容器内は窒素ガスにより不 适性化されており,亜鉛及びアルミニウムの反応では酸素ガスの 発生はないことから,本反応単独での水素ガスの燃焼は発生しな	・評価結果の相違 【柏崎 6/7】
(3)酸素濃度への影響 仮に,炉心内で沸騰状態が長期間継続し,水の放射線分解によ		いものと考える。 (3)酸素濃度への影響 炉心損傷に至らない場合,炉心内での沸騰が長期間継続するこ とはなく,水の放射線分解による酸素濃度の上昇はないものと考 えられるが,仮に,炉心内で沸騰状態が長期間継続し,水の放射	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考	
---	---	----------------------	
って炉内で発生した水素及び酸素がすべて原子炉格納容器内へ移	線分解によって炉内で発生した水素及び酸素がすべて原子炉	ī格納	
行することを想定すると、初期酸素濃度 <u>3.5vol%</u> とした場合、酸素	容器内へ移行することを想定すると、初期酸素濃度 2.5vol9	<u>6</u> とし ・評価条件の相違	
濃度が5vo1%に至る時間は事象発生 <u>約20 日後(492 時間後)</u> であ	た場合,酸素濃度が5vol%に至る時間は事象発生約73.5日	後 【柏崎 6/7】	
り,十分な時間余裕がある。なお,仮に格納容器圧力 <u>0.31MPa[gage]</u>	<u>(1765 時間後)</u> であり、十分な時間余裕がある。なお、仮に	2 <u>炉心</u> ・評価結果の相違	
で格納容器ベントを行った場合は、格納容器ベントにより酸素濃	<u>損傷前に</u> 格納容器ベントを行った場合は、格納容器ベントに	より 【柏崎 6/7】	
度が低下する可能性があるが、これを考慮して、初期酸素濃度を	酸素濃度が低下する可能性があるが、これを考慮して、初期]酸素	
<u>1.5vol%</u> とした場合は,酸素濃度が5vol%に至る時間は事象発生 <u>約</u>	濃度を <u>1 vol%</u> とした場合は、酸素濃度が 5 vol%に至る時間	」は事・評価条件の相違	
62 日後(1,490 時間後)となる。	象発生約182日後(4,371時間後)となる。	【柏崎 6/7】	
		・評価結果の相違	
		【柏崎 6/7】	
したがって、有効性評価の炉心損傷防止シナリオにおいて、水	したがって、有効性評価の炉心損傷防止シナリオにおいて	1,水	
の放射線分解により発生する水素及び酸素は、有意な影響を及ぼ	の放射線分解により発生する水素及び酸素は、有意な影響を	:及ぼ	
さないと考えられる。	さないと考えられる。		
※よう素の追加放出の影響について	※よう素の追加放出の影響について		
炉心損傷前のシナリオでは,基本的に炉心は健全に維持されて	炉心損傷前のシナリオでは、基本的に炉心は健全に維持さ	れて	
いるが,仮に,設計基準事故と同程度のよう素の追加放出が発生	いるが、仮に、設計基準事故と同程度のよう素の追加放出が	·発生	
した場合を想定する。	した場合を想定する。		
設計基準事故において, 追加放出されるよう素は, 炉内内蔵量	設計基準事故において、追加放出されるよう素は、炉内内	J蔵量	
の0.01%未満である。	の 0.01%未満である。		
よう素濃度を変化させた場合の吸収線量と酸素濃度の変化量の	よう素濃度を変化させた場合の吸収線量と酸素濃度の変化	;量の	
関係を図1に示す。図1より、よう素の放出量が炉内内蔵量の約1%	関係を図1に示す。図1より、よう素の放出量が炉内内蔵量	の約	
未満(よう素濃度:6×10 ⁻⁷ mol/L)であれば、よう素が冷却材中に	1 %未満(よう素濃度: 6×10 ⁻⁷ mol/L)であれば, よう素	が原	
放出されない条件(純水)と同様にG値は、ほぼゼロと考えられる。	子炉冷却材中に放出されない条件(純水)と同様にG値は,	ほぼ	
	ゼロと考えられる。		
このため、炉心損傷前の水素燃焼への影響を検討する観点で、	このため、炉心損傷前の水素燃焼への影響を検討する観点	、で,	
設計基準事故と同等のよう素の追加放出を考慮した場合も、非沸	設計基準事故と同等のよう素の追加放出を考慮した場合も,	非沸	
騰状態におけるG値はゼロと考えられる。	騰状態におけるG値はゼロと考えられる。		

炉	備考
う素濃度が、炉内内蔵 の約1%未満であれ G値(グラフの傾き) ゼロと考えられる。	
水反応割合 当 % 9%放山相当 非沸騰)	
う素濃度を変化させた	
器内に存在する亜鉛及 しても発生する水素量 格納容器圧力に有意な に炉心内で沸騰状態が も, <u>約73.5日間</u> ,可燃 線分解により発生する ないと考えられる。	・評価結果の相違 【柏崎 6/7,東海第二】
	 ・記載方針の相違 【東海第二】 島根2号炉は,当該の 文献を参照していない。
WR 電力共同研究 昭和	
以上	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
49. 溶融炉心落下位置が原子炉格納容器下部の中心軸から外れ、	22 溶融炉心が原子炉圧力容器下部の偏心位置より落下した場合	35. 溶融炉心落下位置が原子炉格納容器下部の中心軸から外れ,	
壁側に偏って落下した場合の影響評価	の影響評価	壁側に偏って落下した場合の影響評価	
1. 評価の目的	1. 評価目的	1. 評価の目的	
平成29 年2 月の1F2 原子炉格納容器下部の調査結果では,			・評価方針の相違
原子炉格納容器下部の中心軸から外れた位置のグレーチング			【柏崎 6/7】
の落下が確認されている。確認された範囲は原子炉格納容器下			島根2号炉および東
部の一部であり, 原子炉格納容器下部の中心等未確認の箇所が			海第二では現実的な評
<u>多く、グレーチングの落下理由についても現状不明であるが、</u>			価条件で水蒸気爆発評
グレーチングの落下理由の可能性の1 つとして, RPVから流出			価を実施。柏崎 6/7 で
した溶融炉心が落下したことの影響が考えられる。			は、現実的および保守
			的な評価条件で水蒸気
			爆発評価が実施されて
			いる。
	実機において,水蒸気爆発 <u>(以下「SE」という。)</u> が発生	実機において、水蒸気爆発が発生する可能性は、これまで	
	する可能性は、これまでの知見からも極めて低いと考えられる	の知見からも極めて低いと考えられるが, <u>島根2号炉</u> では,	
	が, <u>東海第二発電所</u> では, 事象の不確かさを踏まえ保守性を考	事象の不確かさを踏まえ保守性を考慮した入力条件による水	
	慮した入力条件による <u>SE評価</u> (以下「基本ケース」という。)	蒸気爆発評価(以下「基本ケース」という。)を実施し、万が	
	を実施し、万が一の <u>SE</u> の発生を想定した場合でも <u>格納容器</u> の	一の水蒸気爆発の発生を想定した場合でも原子炉格納容器の	
	健全性が損なわれないことを確認している。	健全性が損なわれないことを確認している。	
	有効性評価のMAAP解析では,下部プレナムへ移行した溶	有効性評価のMAAP解析では、下部プレナムへ移行した	
	融炉心 <u>(以下「デブリ」という。)</u> による過熱で原子炉圧力容	溶融炉心による過熱で原子炉圧力容器下部の中心部温度が最	
	器(以下「RPV」という。)下部の中心部温度が最も高くな	も高くなり、その位置の制御棒駆動機構ハウジング溶接部に	
	り、その位置の制御棒駆動機構 (以下「CRD」という。) ハ	生じるひずみによって原子炉圧力容器破損に至る結果となっ	
	ウジング溶接部に生じるひずみによって <u>RPV</u> 破損に至る結	ている。このため,基本ケースの入力条件のうち,溶融炉心	
	果となっている。このため、基本ケースの入力条件のうち、メ	の放出口については原子炉圧力容器下部の中心としている。	
	<u>ルト放出位置</u> については <u>RPV</u> 下部の中心としている。また,	また, 溶融炉心の放出口径については, 爆発規模が大きくな	
	<u>メルト放出</u> 口径については, 爆発規模が大きくなる条件として	る条件として <u>制御棒駆動機構</u> ハウジングの逸出を想定したロ	
	<u>CRD</u> ハウジングの逸出を想定した口径を設定している。	径を想定している。	
	しかしながら、実際に重大事故が発生した場合においては、	しかしながら,実際に重大事故が発生した場合においては,	
	有効性評価上期待していない原子炉注水手段の復旧等,想定と	有効性評価上期待していない原子炉注水手段の復旧等、想定	
	は異なる対応や事故進展の影響により, <u>RPV</u> 下部の中心から	とは異なる対応や事故進展の影響により, 原子炉圧力容器下	
	外れた偏心位置での貫通部溶接破損によって生じたわずかな	部の中心から外れた偏心位置での貫通部溶接破損によって生	
	間隙から <u>デブリ</u> 流出する等,基本ケースでの想定と異なる落下	じたわずかな間隙から溶融炉心が流出する等,基本ケースで	
	様態となることも考えられる。また,偏心位置で <u>SE</u> が発生し	の想定と異なる落下様態となることも考えられる。また、偏	
	た場合,爆発位置が基本ケースよりも側壁に近接するため,局	心位置で水蒸気爆発が発生した場合、爆発位置が基本ケース	
	部的に大きな動的荷重が作用する可能性がある。	よりも側壁に近接するため、局部的に大きな動的荷重が作用	
		する可能性がある。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
今回,確認されたグレーチングの落下位置がCRD ハウジング	ここでは, 偏心位置における現実的なデブリの落下様態を想	ここでは, 偏心位置における現実的な溶融炉心の落下様態	
の外周部近傍の下部であることを踏まえ,KK6/7 に対して溶融	定した <u>SE</u> の影響を評価し、 <u>格納容器</u> の健全性が損なわれない	を想定した水蒸気爆発の影響を評価し,原子炉格納容器の健	
炉心の落下位置がCRD ハウジングの外周部に溶融炉心が落下	ことを確認するとともに、基本ケースの評価の代表性を確認す	全性が損なわれないことを確認するとともに、基本ケースの	
し、水蒸気爆発の発生を仮定した場合の影響を確認した。	る。	代表性を確認する。	
2. 評価に用いた解析コード等	2. 評価方法	2. 評価方法	
水蒸気爆発の影響を評価するにあたっては、溶融燃料-冷却	(1) 評価条件	(1)評価条件	
材相互作用によって発生するエネルギー,発生エネルギーによ	解析コードは基本ケースと同様に, <u>SE</u> 解析コードJAS	解析コードは基本ケースと同様に,水蒸気爆発解析コード	
る圧力伝播挙動及び構造応答が重要な現象となる。よって、こ	MINE <u>及び汎用有限要素解析コードLS-DYNA</u> を用	JASMINE,構造応答解析コードAUTODYN-2D	・評価コードの相違
れらの現象を適切に評価することが可能である水蒸気爆発解	いて評価した。本評価における各コードの入力条件及び評価	を用いて評価した。本評価における各コードの入力条件及び	【東海第二】
析コードJASMINE,構造応答解析コードAUTODYN-2D により圧力	モデルの取扱いを以下に示す。	評価モデルの取扱いを以下に示す。	島根2号炉の原子炉
伝播挙動及び構造応答,格納容器圧力等の過渡応答を求める。			格納容器下部は,周方向
			に規則的な構造物であ
			るため, AUTODYN-2D を
			用いた。
3. 評価条件	a. JASMINE	a. JASMINE	
主要解析条件を表1 に示す。溶融炉心は原子炉圧力容器底部	第1表に主要入力条件を示す。本評価の入力条件及び評価モ	<u>表1</u> に主要入力条件を示す。本評価の入力条件及び評価モ	・評価条件の相違
<u>のCRDハウジングの外周部直下に落下するものとし,溶融炉心</u>	デルは基本ケースと同様とするが,以下については現実的な条	デルは基本ケースと同様とするが、以下については現実的な	【柏崎 6/7】
が原子炉圧力容器の破損口から落下する際には、溶融炉心・コ	件として適用する。	条件として適用する。	島根2号炉および東
ンクリート相互作用の緩和策として,原子炉格納容器下部に水			海第二では現実的な評
位2m の水張りが実施されているものとした。また,原子炉格			価条件で水蒸気爆発評
納容器下部の水位が上昇するケースとして,原子炉格納容器下			価を実施。基本ケースの
部にリターンラインまでの高さ(7m)の水位が形成されている			評価は保守性を含んだ
場合の評価も実施した。構造応答解析コードAUTODYN-2D によ			条件設定となっており,
る評価モデルのイメージを図1 に示す。図1 の通り, 評価モデ			溶融炉心が偏心位置に
ルを溶融炉心落下位置から格納容器下部壁面までの最短距離			落下した場合について,
<u>を半径とする円筒とした。なお、粗混合過程で溶融炉心が拡が</u>			保守的な条件を重畳さ
る範囲が図1 に示す範囲よりも十分に小さいため, 円筒の半径			せた評価としていない。
の差異は溶融燃料-冷却材相互作用によって発生するエネル			
ギーに影響しないと考えられることから, 水蒸気爆発解析コー			
ドJASMINE の評価モデルでは円筒の半径を狭めず実機に即し			
たモデルとし,溶融燃料-冷却材相互作用によって発生するエ			
ネルギーを評価した。			
	(a)メノレト放出口径	<u>(a) 溶融炉心落下量</u>	
	<u>第1図及び第2図にCRDハウジングサポート構造を示す。C</u>	図1に制御棒駆動機構ハウジング支持金具構造を示す <u>。</u>	・記載方針の相違
	<u>RDハウジングサポートは、ペデスタル内側の鋼板に固定され</u>	制御棒駆動機構ハウジング支持金具は、原子炉本体の基礎	【東海第二】
	た上部サポートビームにハンガーロッド等を介してグリッド	の鋼板に固定されたサポートビームに吊り棒等を介してグ	記載方法は異なるが,
	<u>プレートを接続した構造によりCRDハウジングの逸出を防</u>	<u>リッドプレートを接続した構造により制御棒駆動機構ハウ</u>	島根2号炉と東海第二

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	止する設計としている。	ジングの溢出を防止する設計としている。	で同様の評価条件が想
	基本ケースでは、CRDハウジングの逸出を想定した口径	基本ケースでは、制御棒駆動機構ハウジング1本分	定されている。
	を考慮しているが, 上記のとおりCRDハウジングの外	(0.15m) に流出時の溶融炉心による口径の拡大分 (0.05m)	
	部サポートが設置されているため現実的には逸出は考えにく	を見込んだ口径のジェット(0.20m)を考慮しているが,上	
	い。このため,本評価ではCRDハウジングが保持された状態	記のとおり制御棒駆動機構ハウジングの支持金具が設置さ	
	を想定し、CRDハウジングとRPV下鏡板との間に生じる間	れているため現実的には制御棒駆動機構ハウジング1本が	
	隙からのメルト放出を考慮する。	瞬時に脱落することは考えにくく,溶接の薄い箇所等,僅	
		かな口径から流出した溶融炉心が構造材を伝い、あるいは	
		構造材によって分散され、細い径で徐々に落下する形態が	
		考えられる。このため、本評価では制御棒駆動機構ハウジ	
		ングと原子炉圧力容器の下鏡部との間に生じる間隙からの	
		溶融炉心の放出を考慮する。	
	<u>CRD</u> ハウジングと <u>RPV下鏡板</u> との間に生じる間隙の幅	制御捧駆動機構ハウジングと原子炉圧力容器の下鏡部と	
	は、サンディア国立研究所の <u>RPV</u> 下部ヘッド破損を模擬した	の間に生じる間隙の幅は,サンディア国立研究所の原子炉	
	LHF試験 ^[1] において,貫通部溶接の破損によって約4mmの間	圧力容器下部ヘッド破損を模擬したLHF試験[1]におい	
	隙が生じたことを踏まえ, これと同じ間隙幅を本評価において	て,貫通部溶接の破損によって約4mmの間隙が生じたこと	
	仮定する。	を踏まえ、これと同じ間隙幅を本評価において仮定する。	
	以上より想定したCRDハウジングとRPV下鏡板との間	以上より制御棒駆動機構ハウジングと原子炉圧力容器の	
	に生じる開口面積(約)と等価な口径である をメ	下鏡部との間に生じる隙間幅を4mmと想定し, 面積に換算	
	ルト放出口径として設定する。	<u>すると約10cm²となる。この開口面積(約10cm²)と等価な</u>	
		<u> 口径である 35.7mm を溶融炉心の放出口径として設定する。</u>	
		なお,島根原子力発電所2号機の制御棒駆動機構ハウジ	
		ングと原子炉圧力容器の下鏡部の間の開口面積は最大でも	
		<u>約3cm²であり, 10cm²に包絡される。</u>	
	(b) 粗混合時液滴径	(b) <u>粗混合粒径</u>	
	既存のFCI試験ではサウター平均粒径として0~3mm程度	既存のFCI試験 (FARO, COTELS等) ではサ	
	と報告されていることから,基本ケースでは保守的にを設	ウター平均粒径として0~3mm 程度と報告されていること	
	定しているが、本評価では現実的な条件として既往の実験から	から、基本ケースでは保守的に4mmを設定しているが、本	
	得られている平均粒径の条件であるを設定する。	評価では現実的な条件として既在の実験から得られている	
		平均粒径の条件である3mmを設定する。	
	(c) トリガリングタイミング	(c) トリガリングタイミング	
	基本ケースでは、SEにより発生する運動エネルギが最も大	基本ケースでは、水蒸気爆発により発生すろ運動エネル	
	きくなると考えられる条件である知混合融体質量ピーク時点	ギが最も大きくなると考えられる条件である知混合融休質	
	としている。一方、実機条件では、高圧ガスや爆薬を用いた大	量ピーク時点としている。一方、実機条件では 高圧ガス	
	規模FCI実験のトリガ装置で発生させているような外部ト	や爆薬を用いた大規模FCI実験のトリガ装置で発生させ	
	リガが与えられる状況は考えにくく、また、東海第二発電所で	ているような外部トリガが与えられる状況は考えにくく、	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	は重大事故時のペデスタル水位を <u>1mに制限する運用とするこ</u>	また, <u>島根2号炉</u> では重大事故時のペデスタル水位 <u>は</u> 2.4m	
	<u>とから</u> ,現実的にはメルトジェットがペデスタル床面に接触す	としていることから,現実的にはメルトジェットが原子炉	
	る際の衝撃によりトリガリング発生する可能性が高いと考え	格納容器下部床面に接触する際の衝撃によりトリガリング	
	られる。このため、本評価ではメルトジェット先端が床面に到	が発生する可能性が高いと考えられる。このため、本評価	
	達した時点を設定する。	ではメルトジェット先端が床面に到達した時点を設定す	
		る。	
	以上のとおり,本評価では一部現実的な入力条件を適用する	以上のとおり、本評価では一部現実的な入力条件を適用す	
	が、実機での <u>SE</u> に対して次の保守性が含まれているものと考	るが,実機での <u>水蒸気爆発</u> に対して次の保守性が含まれてい	
	える。	るものと考える。	
	第3図に <u>RPV下部</u> 構造物配置状況を示す。 JASMINE	図2に <u>原子炉格納容器下部</u> 構造物配置状況を示す。JAS	
	ではメルトが放出口から直線的に自由落下し直接水プールに	MINEでは <u>溶融炉心</u> が放出口から直線的に自由落下し直接	
	侵入する理想的なメルトジェットを仮定した評価モデルとな	水プールに侵入する理想的なメルトジェットを仮定した評価	
	っているが, 実機の <u>RPV</u> 下部には <u>CRD</u> ハウジング, <u>炉内計</u>	モデルとなっているが、実機の <u>原子炉圧力容器</u> 下部には <u>制御</u>	
	<u>装ハウジング、ケーブル等</u> が設置されており、更に下部には足	<u>棒駆動機構</u> ハウジングが設置されており,更に下部には <u>CR</u>	
	場となるグレーチング等の構造物が存在する。このため,実機	<u> D交換装置等</u> の構造物が存在する。このため,実機の重大事	
	の重大事故において <u>RPV</u> 下部から流出した <u>デブリ</u> はこれら	故において <u>原子炉圧力容器</u> 下部から流出した <u>溶融炉心</u> はこれ	
	の構造物に接触し、分散するものと想定され、RPV下部から	らの構造物に接触し、分散するものと想定され、原子炉圧力	
	流出した <u>デブリ</u> が理想的なジェット形状を保ったまま直接水	<u>容器</u> 下部から流出した <u>溶融炉心</u> が理想的なジェット形状を保	
	プールに侵入することはないと考えられる。したがって、実機	ったまま直接水プールに侵入することはないと考えられる。	
	の重大事故において爆発に寄与する粗混合融体質量はJAS	したがって、実機の重大事故において爆発に寄与する粗混合	
	MINEで考慮されている粗混合融体質量よりも更に少なく	融体質量はJASMINEで考慮されている粗混合融体質量	
	なり、爆発規模は小さくなると考えられる。	よりも更に小さくなり, 爆発規模は小さくなると考えられる。	
	$\frac{b. LS - DYNA}{math }$	b. AUTODYN-2D	・評価コードの相違
	第2表に爆発源仕様を、第4図に解析モデルを示す。本評価の	図3に解析モデルを示す。本評価の人力条件及び評価モデル	【東海第二】
	人力条件及び評価モデルは基本ケースと同様とするが、半径方	は基本ケースと同様とするが、半径方向の爆発源位置について	島根2号炉の原子炉
	向の爆発源位置については、ペデスタル側壁に最も近接する <u>R</u>	は,格納容器側壁に最も近接する原子炉圧力容器下部最外周の	格納容器下部は、周方向
	<u>PV</u> 下部最外周の <u>CRD</u> ハウジング直下の位置とする。	制御棒駆動機構ハウジング直下の位置とする。	に規則的な構造物であ
			るため、AUTODYN-2D を
	(2) 判断基準		用いた。このため、島根
	<u>LS-DYNAによるペデスタル構造健全性評価の判断基</u>		2号炉と東海第二でペ
	準は基本ケース同様とする。		デスタル構造健全性評
			価の判断基準も異なる。
4. 評価結果	3. 評価結果	3. 評価結果	
原子炉格納容器下部に水位2m の水張りが実施されている場	(1) JASMINE	水蒸気爆発に伴うエネルギ,原子炉格納容器下部内側及び	
<u>合における</u> 水蒸気爆発に伴うエネルギー, 原子炉格納容器下部	第3表にJASMINE評価結果を示す。流体の運動エネル	外側鋼板の応力の推移を図4、図5及び図6に示す。水蒸気	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
内側及び外側鋼板の応力の推移を図2,図3_及び図4_に示す。	ギの最大値は <u>約1.1MJ</u> である。	爆発の発生を想定した場合に原子炉格納容器下部の水に伝達	・評価結果の相違
水蒸気爆発の発生を想定した場合に原子炉格納容器下部ドラ		される運動エネルギの最大値は, <u>約 0.6MJ</u> である。このエネ	【柏崎 6/7,東海第二】
<u>イウェル</u> の水に伝達される運動 <u>エネルギー</u> の最大値は, <u>約7MJ</u>	(2) $L S - D Y N A$	ルギを入力とし、原子炉格納容器下部内側及び外側鋼板にか	
である。この <u>エネルギー</u> を入力とし, <u>原子炉格納容器下部</u> 内側	<u>第4表にLS-DYNAによるペデスタル構造健全性評価結</u>	かる応力を解析した結果,原子炉格納容器下部の内側鋼板に	
及び外側鋼板にかかる応力を解析した結果, 原子炉格納容器下	果を,第5図にペデスタル変位時刻歴,第6図にコンクリート最	加わる応力は <u>約 53MPa</u> , 外側鋼板にかかる応力は <u>約 12MPa</u> と	
部の内側鋼板に加わる応力は <u>約98MPa</u> ,外側鋼板にかかる応力	小主ひずみ分布,第7図に鉄筋軸ひずみ分布及び第8図にコンク	なった。これは内側及び外側鋼板の降伏応力を大きく下回る	
は <u>約47MPa</u> となった。これは内側及び外側鋼板の降伏応力を大	<u>リートせん断応力度を示す。LS-DYNAの解析結果はすべ</u>	値であり,かつ,弾性範囲内にあることから,原子炉圧力容	
きく下回る値であり、かつ、弾性範囲内にあることから、原子	ての項目の判断基準を満足している。よって, 偏心位置でのS	器の支持に支障が生じるものではない。	
炉圧力容器の支持に支障が生じるものでは無い。	Eによってもペデスタルに要求される機能は維持され、格納容		
	器の健全性は損なわれることはない。		
	なお, 側壁及び床スラブの面外せん断応力度の検討範囲及び		
	<u>算定方法は基本ケースと同じである。</u>		
また,原子炉格納容器下部に水位7m の水張りが実施されて			・評価条件の相違
いる場合における水蒸気爆発に伴うエネルギー, 原子炉格納容			【柏崎 6/7】
<u>器下部内側鋼板の相当塑性ひずみの推移及び外側鋼板の応力</u>			島根2号炉および東
の推移を図5, 図6 及び図7 に示す。水蒸気爆発の発生を想定			海第二では,現実的な
した場合に原子炉格納容器下部ドライウェルの水に伝達され			水張り水位でのみの水
る運動エネルギーの最大値は,約16MJ である。このエネルギ			蒸気爆発評価を実施。
<u>ーを入力とし、原子炉格納容器下部内側及び外側鋼板にかかる</u>			
応力を解析した結果,原子炉格納容器下部の内側鋼板にかかる			
応力は降伏応力を超えるものの,相当塑性ひずみは約0.13%,			
外側鋼板にかかる応力は約326MPa となった。応力評価の対象			
としている内側及び外側鋼板(厚さ30mm)降伏応力は約490MPa			
である。外側鋼板にかかる応力は降伏応力を大きく下回る値で			
<u>あり、かつ、弾性範囲内にあることから、原子炉圧力容器の支</u>			
持に支障が生じるものでは無い。			
なお、構造上、原子炉格納容器下部の内側鋼板にかかる応力		なお,構造上,原子炉格納容器下部の内側鋼板にかかる応	
の方が外側鋼板にかかる応力よりも大きくなる傾向があるが、		力の方が外側鋼板にかかる応力よりも大きくなる傾向がある	
原子炉圧力容器の支持機能については原子炉格納容器下部の		が,原子炉圧力容器の支持機能については原子炉格納容器下	
外側鋼板のみで維持可能である。		部の外側鋼板のみで維持可能である。	
以上の結果から, <u>水位2m 及び水位7m において,</u> 水蒸気爆発		以上の結果から, <u>現実的と考えられる評価条件において溶融</u>	・評価条件の相違
の発生を想定した場合であっても, 原子炉格納容器バウンダリ		<u>炉心が偏心位置に落下して</u> 水蒸気爆発の発生を想定した場合	【柏崎 6/7】
の機能を維持できることを確認した。		であっても,原子炉格納容器バウンダリの機能を維持できるこ	島根2号炉は,現実
		とを確認した。	的な水張り水位でのみ
			の水蒸気爆発評価を実
			施。

柏崎刈羽原子力発電所 6 / 7 号炬 (2017-12-20版)	東海第 ^一 举電所 (2018 9 12 版)	鳥根原子力発電所 2号炉	備老
5 水蒸気爆発についての延価の保守性について			 ・記載方針の相違
5. 小 流 気 像 光 に り く く の 計 曲 の 水 引 上 に り く くト 記 の 評 価 純 単 が 示 す 通 り 如 即 水 蒔 り 水 伝 7m の 評 価 冬 代			【柏崎 6/7】
でけ内側綱板が僅かに至む結果となったと記の結果であって			現状の水蒸気爆発評
KK6/7の枚納容哭下部の支持機能は十分維持されるものと			価が様々な保守性を含
老えろが 現状の水蒸気爆発の評価け様々な保守性を含んでい			んでいることを継みて
ろと考えており 溶融炉心変下時の溶融炉心の挙動や実機の状			水蒸気爆発評価の評価
況を現実的に考えれば 爆発の規模はより低減されるものと考			条件の保守性について
える。以下ではRPV 破損時の溶融炉心のふるまいを考慮し、本			の考察が記載されてい
水蒸気爆発評価における評価条件の保守性について述べる。			3.
(1)			
IASMINE では、RPV 破損後、溶融炉心はペデスタルに張ら			
れた初期水張りの水面まで自由落下し、プール内へ流入する			
評価モデルとなっている。しかしながら実機のRPV 下部には			
CRD, 炉内計装ハウジング, ケーブルが設置されており, 更に			
下部にはCRD 交換機や足場となるグレーチング等の構造物が			
存在している(図8, 図9 参照)。実機の構造上, RPV 底部から			
流出した溶融炉心はこれらの構造物に接触し、分散すること			
が自然と考えられることから、溶融炉心が直接初期水張りの			
水面まで落下することはないと考えられる。したがって、溶			
融炉心の落下を考慮する上では、少なくとも溶融炉心が一旦			
留まる可能性が高いCRD 交換機のターンテーブル高さ(ペデ			
スタル床上約5m)を考慮することが現実的と考えられる。			
水張り高さが5m 未満の場合は溶融炉心がCRD 交換機の高			
さで一旦停止した上で初期水張りの水面に落下することか			
ら、溶融炉心の落下速度が遅くなり、これにより粗混合量が			
減少することから, RPV 底部から直接初期水張りの水面に落			
下する場合に比べて水蒸気爆発の規模が小さくなる。水張り			
高さが5m 以上の場合は溶融炉心がグレーチング等の構造物			
に接触することでトリガリングを誘発する可能性が考えら			
れ、この場合、爆発発生の位置が高く、粗混合量が少ない状			
<u>態での爆発となることから、粗混合量のピークをとるまで沈</u>			
んでから爆発する場合に比べて水蒸気爆発の規模が小さくな			
<u>る。</u>			
(2) 溶融炉心の放出速度			
溶融炉心の放出速度は破損口にかかる溶融炉心の堆積圧			
等からMAAP4 で計算されており, 8m/s が設定されている。溶			
融炉心の堆積圧の計算では,燃料に加えて炉内構造物が考慮			
されているものの,実際には燃料や構造材の一部が炉心位置			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
に滞留することが考えられる。			
また,端部から落下する場合,RPV 底部が半球状になって			
いることから、堆積圧が低下し、放出速度が緩和される可能			
性が考えられる。			
(3) 溶融炉心落下量			
溶融炉心のRPV 破損口からの落下の形態については,現			
状,CRD ハウジング1 本分(0.15m)に流出時の溶融炉心による			
口径の拡大分(0.05m)を見込んだ口径のジェット(0.20m)を考			
慮しているが, 実際にはCRD ハウジング1 本が瞬時に脱落す			
ることは考えにくく、溶接の薄い箇所等、僅かな口径から流			
出した溶融炉心が構造材を伝い、あるいは構造材によって分			
散され、細い径で徐々に落下する形態が考えられる。現実的			
な流出箇所と流下の形態を想定する場合, 粗混合量はCRD ハ			
ウジング1 本分の口径のジェットを想定する場合に比べて少			
ないものと考えられることから、水蒸気爆発の規模が小さく			
なる。			
下部プレナムに溶融炉心が落下した後の流出経路に関す			
る知見としては,NUREG/CR-5582 に実験結果が示されている。			
<u>NUREG-5582</u> では,RPV 及びRPV 底部の貫通部を模擬した圧力			
容器に高温の溶融炉心の模擬物質を落下させた際の圧力容器			
の破損の挙動を調査しており、その結果、貫通部材の抜け落			
ちは確認されず、圧力容器と貫通部材の間の溶接部の貫通が			
確認されたと報告されている。また、貫通した箇所の隙間の			
<u>大きさは元々の大きさである0.2mm から約4mm まで増加した</u>			
と報告されている。			
柏崎刈羽原子力発電所6 号及び7 号炉のFMCRD とRPV の構			
<u>造に照らすと,RPV とCRDハウジングの隙間の大きさは0.25mm</u>			
であり, 面積に換算すると0.6cm2 となる。また, 仮に隙間の			
大きさが4mm まで増加した場合を想定すると,面積は約10cm2			
となる。この様にRPV とCRD ハウジングの隙間から溶融炉心			
が流出する場合を想定するとしても, RPV とCRD ハウジング			
の溶接面の全周が均一に溶融し、同時に貫通して溶融炉心が			
下部プレナムに一斉に流出することは考えにくく、実際には			
溶接面の一部から流出が開始するものと考えると、溶融炉心			
の流出の口径は更に狭まるものと考えられるため、上記の想			
定についても未だ保守性を有しているものと考えられる。			
<u>(4) 溶融炉心の温度</u>			
RPV から流出した溶融炉心は構造材を伝う間に構造材によ			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
って熱を奪われ,冷却される可能性が考えられる。この場合,			
溶融炉心はクエンチされ易くなることから,冷却効果を考慮			
しない場合に比べて爆発に寄与する溶融炉心の量が減少する			
可能性が考えられる。			
(5) トリガ位置およびタイミング			
(1)に記載の通り,初期水張り高さを5m以上とする場合,			
溶融炉心は5m 高さのグレーチング等に接触した際の衝撃で			
トリガリングが発生する可能性が考えられる。この場合、爆			
発発生の位置が高く、粗混合量が少ない状態での爆発となる			
ことから,粗混合量のピークをとるまで沈んでから爆発する			
場合に比べて水蒸気爆発の規模が小さくなる。			
初期水張り高さ7m を考える場合であっても, 2m の深さで			
水蒸気爆発が生じると考えれば,爆発の規模としては2m 水張			
りの場合と同程度の結果※と考えられる。			
※ 水深7m で粗混合量のピークをとるまで沈んでから爆発			
する場合に発生するエネルギーは16MJ だが, 2m 水張りの場			
<u>合は7MJ。</u>			
(6) 粗混合粒径			
既存のFCI 試験ではザウター平均粒径として0~3mm 程度			
と報告されていることからJASMINE 解析では保守的に4mm を			
設定してきた。このため、現実的な条件として既往の実験か			
ら得られている平均粒径の条件である3mm を設定することが			
<u>妥当と考える。これにより、溶融炉心はクエンチされ易くな</u>			
ることから, 粒径を4mm とする場合に比べて爆発に寄与する			
溶融炉心の量が減少する可能性が考えられる。			
(7) 格納容器下部の水温			
評価では格納容器下部の水温を50℃としているが,実際に			
は格納容器スプレイによってスプレイ時の水温50℃よりも高			
い温度の水が格納容器下部に流入する可能性が考えられる			
(有効性評価「炉外FCI」のベースケースのRPV 破損前のドラ			
イウェルの雰囲気温度は約80℃)他, サプレッション・チェン			
バ・プール水位が上昇しリターンラインから水が流入する場			
合には,有効性評価「炉外FCI」のベースケースのサプレッシ			
ョン・チェンバの水温が約100℃になっていることから, 50℃			
より高い水温の水で格納容器下部が満たされると考えられ			
<u>る。</u>			
溶融炉心がサブクールの低い水中(高温の水中)に落下する			
場合, 落下し, 分散した溶融炉心の近傍が高ボイド率となり,			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
衝撃力の伝播を抑制すると考えられることから、格納容器下			
部の水温が高い場合に水蒸気爆発に伴って発生するエネルギ			
<u>ーは、格納容器下部の水温が低い場合に比べて小さくなるも</u>			
のと考えられる。			
なお,溶融炉心がサブクールの低い水中(高温の水中)に落			
下する場合,トリガリングが発生しにくいという知見が得ら			
れている。これはサブクールが高い水中(低温の水中)に落下			
した場合に比べて溶融炉心を覆う蒸気膜が安定なためと考え			
<u>られている。</u>			
6. 現実的と考えられる評価条件における影響評価			・記載方針の相違
上記5. の通り,現在の水蒸気爆発の評価条件は種々の保守			【柏崎 6/7】
性を有していると考えられることから,NUREG-5582 を参考に			前項の水蒸気爆発評
<u>RPV 底部破損(溶融物流出)口径を見直す等,大きな保守性を</u>			価の評価条件の保守性
有していると考えられるパラメータについては評価条件を見			についての考察を踏ま
直し、水蒸気爆発による影響評価を実施した。			え、現実的な評価条件
(1) 評価条件(図1 及び表2 参照)			での水蒸気爆発解析が
・溶融炉心落下位置:CRD ハウジング最外周での溶融炉心			実施されている。
の落下を想定			
・RPV 底部破損(溶融物流出)口径:0.0357m(約10cm2)(RPV			
<u>とCRD ハウジングの隙間の面積0.6cm² に余裕を見込ん</u>			
<u>だ値)</u>			
・溶融物の放出速度:8m/s(ベースケースから変更なし。)			
・初期水張り水位:7m			
・トリガリング位置:格納容器下部床面から5m(グレーチン			
<u>グ高さ)</u>			
・粗混合粒子径3mm			
・初期水張り水温50℃(ベースケースから変更なし。)			
・構造応答解析コードAUTODYN-2D による評価モデル:溶融			
<u>炉心落下位置から格納容器下部壁面までの最短距離を半</u>			
径とする円筒			
(2) 評価結果			
・運動エネルギーの最大値 : 1.5MJ (図10 参照)			
・内側鋼板におけるミーゼス相当応力の最大値:70MPa(図			
11 参照)			
・外側鋼板におけるミーゼス相当応力の最大値:33MPa(図			
12 参照)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
7. 評価結果の比較	(3) 基本ケース解析との比較	4. 評価結果の比較	
初期水張り水位,溶融炉心落下位置,その他評価条件を変	第5表に基本ケース解析との比較を示す。 評価対象とする項	<u>表2に基本ケース解析との比較を示す。</u> 現実的と考えられ	・評価結果の相違
<u>更して実施した評価結果の比較を表3 に示す。6.に示す,</u> 現	目のうち, 側壁下部の面外せん断応力度及び側壁鉄筋の引張ひ	る評価条件において溶融炉心が偏心位置に落下した場合の影	【柏崎 6/7,東海第二】
実的と考えられる評価条件において溶融炉心が偏心位置に落	ずみ以外は、基本ケース解析結果を下回るか、同様(変位、圧	響評価の結果,基本ケースよりも原子炉格納容器下部の内側	島根2号炉の基本ケ
下した場合の影響評価の結果, <u>ベースケース(初期水張り水位</u>	壊の範囲)である。	及び外側それぞれの鋼板に加わる応力が小さくなる結果とな	ースでは,保守的な評
2m の格納容器下部中心に溶融炉心が落下した場合について,	側壁下部の面外せん断応力度は基本ケースの解析結果を上	<u>った。</u>	価条件が適用されてお
保守的な評価条件で評価したケース)よりも格納容器下部の	回っているが、判断基準である終局面外せん断応力度に対して		り、現実的な評価条件
内側及び外側それぞれの鋼板に加わる応力が大きくなった。	十分な余裕がある。また、上部側壁に発生する面外せん断応力		を適用した偏心ケース
一方,ベースケースに対して初期水張り水位のみ7m に変更し	度は基本ケースの6割程度にとどまっている。		の評価結果を包絡する
た評価結果よりは、格納容器下部の内側及び外側それぞれの	側壁の鉄筋の引張ひずみも基本ケースの解析結果を上回っ		結果となっている。
鋼板に加わる応力が小さくなる結果となった。	ているが、判断基準の許容ひずみを十分に下回り、更に降伏応		
	<u>力345N/mm²に対して発生応力の最大値は約52N/mm²にとど</u>		
	まり、弾性限界に対しても十分な余裕がある。		
このことから、現実的と考えられる評価条件において溶融	以上より, 偏心位置における現実的なデブリの落下様態を想	このことから、現実的と考えられる評価条件において溶融	・記載方針の相違
炉心が偏心位置に落下した場合 <u>の影響評価の結果は,保守的</u>	定したSEの影響は基本ケースに代表されるものと考えられ	炉心が偏心位置に落下した場合 <u>に対しても,基本ケースの評</u>	【柏崎 6/7】
な評価条件において溶融炉心が中心位置に落下した場合の評	<u>a.</u>	価は代表性を有していることを確認した。	島根2号炉および東
価結果に包絡されると扱うことができると考える。			海第二では現実的な評
			価条件で水蒸気爆発評
以上			価を実施。
		5. FCI発生時のエネルギ低減策について	・記載方針の相違
		BWRにおける原子炉圧力容器外のFCIに関して,島根	【柏崎 6/7,東海第二】
		<u>2号炉の審査での整理は、以下のとおりである。</u>	島根2号炉はFCI
		①これまでの代表的なFCIの実験で水蒸気爆発が観測さ	発生時のエネルギ低減
		れた例は,外部トリガがある条件又は溶融物温度が高い	策について記載。
		<u>ものであり,実機条件ではこのようなトリガ装置で発生</u>	
		させているような圧力外乱となる要因は考えられず,ま	
		た溶融物の過熱度は実験条件ほど高くならないと考えら	
		れることから、実機において大規模な水蒸気爆発が発生	
		する可能性は極めて小さいと考えられる。	
		②加えて, BWRの原子炉圧力容器下部は, 制御棒駆動機構	
		等の様々な構造物が存在するとともに、原子炉格納容器	
		<u>下部床の上方にはCRD交換装置等の干渉物が存在し,</u>	
		発生可能性を更に低減する又は仮に発生した場合のエネ	
		ルギを小さくする要素となり得る。	
		③一方で,落下後の溶融炉心冷却の際の事前の水張りに際	
		しては, MCCIによる侵食を可能な限り低減しつつ, 仮	
		に水蒸気爆発が発生した場合のエネルギを増加させない	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		 措置として初期水張り高さは 2.4m にするなど,MCCI 対策とFCI対策のバランスを踏まえた対策としている。 ④仮にペデスタル水位が上昇した場合(約3.8m)や溶融炉心が偏心位置に落下した場合に水蒸気爆発が起きたと仮定した場合の感度解析として,水蒸気爆発解析コードJA SMINE,構造応答解析コードAUTODYN-2Dにより圧力伝播挙動等を求めた結果,原子炉圧力容器の支持に支障が生じるものではない。 	
		上述のとおり, BWRにおける水蒸気爆発の可能性は極め て低いこと,水蒸気爆発の発生を仮定した場合でも原子炉圧 力容器の支持に支障が生じるものではないことを確認してい るが,水蒸気爆発により格納容器破損に至るシナリオの重要 性を踏まえ,更なる安全性向上を目的として,FCI発生時 のエネルギ低減策について検討を進めることとする。	
	4. まとめ 偏心位置における現実的なデブリの落下様態を想定したS Eの影響を評価した。その結果、ペデスタル構造健全性評価の すべて判断基準を満足し、ペデスタルに要求される機能が損な われず、格納容器の健全性は維持されることを確認した。 また、基本ケースとの解析結果の比較を行い、偏心位置での 現実的なデブリの落下様態を想定したSEに対しても、基本ケ ースの評価は代表性を有していることを確認した。		
	参考文献 [1] T.Y.Chu, M.M.Pilch, J.H.Bentz, J.S.Ludwigsen, W-YLu and L.L.Humperies, "Lower Head Failure Experiment and Analyses," NUREG/CR-5582, SAND98-2047, 1999. [2] General Electric Systems Technology Manual Chapter 2.1 Reactor Vessel System, USNRC HRTD, Rev 09/11	参考文献 [1] T.Y.Chu, M.M.Pilch, J.H.Bentz, J.S.Ludwigsen, W-YLu and L.L.Humperies, "Lower Head Failure Experiment and Analyses," NUREG/CR-5582 , SAND98-2047,1999.	

炉	備考
	・評価モデルの相違 【柏崎 6/7】 島根2号炉の原子炉 格納容器下部の構造お よび溶融炉心落下位置 を反映。
压力源	
計算モデルの座標原点 (鉛直方向=X) X(対称軸) X(径) YN-2Dコードの	

炉	備考
	・評価条件の相違 【柏崎 6/7】 柏崎 6/7 は,保守的な 評価条件における水蒸 気爆発評価結果を示し ている。

炉	備考
	・評価条件の相違 【柏崎 6/7】 柏崎 6/7 は,保守的な 評価条件における水蒸 気爆発評価結果を示し ている。

炉	備考

·炉	備考
	・評価結果の相違
	【東海第二】
	島根2号炉は内側鋼
	板,外側鋼板,リブ鋼板
	からなる二重鋼板製ペ
	デスタルであるのに対
	し, 東海第二はペデスタ
	ル側壁及び床スラブは
	鉄筋コンクリート製ペ
	デスタルであることか
	ら,構造の違いによりペ
	デスタル構造健全性評
	価の評価結果が異なる。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>第8図 コンクリート面外せん断応力度</u>		

	6 / 7	7 号炉	(2	2017.	12.20版)	. 20版) 東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
							・評価条件の相 【柏崎 6/7】 保守的な水素 評価の評価条件。
※THAKEのウスカ 制御棒駆動機構、ウジング1本の外径として設定 溶融炉心ーコンクリート相互作用による格納容器破損防止対策として、落下 した溶融炉心を微粒子化し、十分な除熱量を確保するため、予め水張りを行 うものとして手順上定めている値 原子炉格納容器下部にリターンラインまでの高さ(7m)の水位が形成されて いろものとして書作。	・	破損口にかかる溶融炉心の堆積圧等から MAP4 で計算	FAR0 試験結果におけるデブリ粒径分布をもとに設定	FARO, KROTOS 等の各種試験結果におけるデブリ粒径分布をもとに設定	- JASMINE による解析結果をもとに設定	NAMASA 14 14 14 14 14 14 14 14 14 14 14 14 14	
土炭砕化米叶 0.2m 2m 7m	50°C	8m/s	4mm	50 µ m	ペデスタル木深 2m の 場合:約 7MJ ペデスタル木深 7m の 場合:約 16MJ	場合:約7MJ ペデスタレオ深 7mの 場合:約16MJ	
項日 原子炉圧力容器の破損径 ペデスタル水深	原子炉格納容器下部への水振りに用いる水の温度	溶融物の放出速度	粗混合粒子径	爆発計算時の微粒子径	溶融炉心ー冷却材相互作用 による発生エネルギー	海 学び 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 子 子 小 小 子 子 イ イ ナ イ ナ イ イ ナ 十 山 キ イ ト イ イ イ モ モ モ モ モ モ モ モ モ モ モ モ モ モ モ	
	JASMINE				UT0DYN-2D	AUTODYN-2D	

	: (原子炉)	エノノ谷谷グトリン谷間ボットワー			. <u> </u>
Participande 0.0.0003		項目	主要解析条件	条件設定の考え方	柏崎
(小小の小の) 市 原用金小の(10,10,10,10,10,10,10,10,10,10,10,10,10,1	E.	〔子炉圧力容器の破損径	0. 0357m (糸1 10cm ²)	vt と CRD ハウジングの隙間の面積 0. 9cm ² に余裕を見込んだ値	刈羽原
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1 1	~デスタル水深	7m 2	(子炉格納容器下部にリターンラインまでの高さ(Jm)の水位が形成されて いるものとして設定	子力発電
		原子炉格納容器下部への水 張りに用いる水の温度	50°C	部水源の水温として設定	電所 6
● 1000 回加 <		茶融物の放出速度	8m/s	街口にかかる溶融炉心の堆積圧等から MAAP4 で計算	/7号灯
検検知(2000)000101 (cit) 0.0114		粗混合粒子径	EA EC	注の実験から得られている平均粒径	戸 (20
「「Make-0of-AntHALLUM」」 B0.001		爆発計算時の微粒子径	50 μ m F.	ARO, KROTOS 等の各種試験結果におけるデブリ粒径分布をもとに設定	17. 12. 2
単価 単価 日本中によりまます 日本市によります 日本市に		溶融炉心一冷却材相互作用 による発生エネルギー		NSMINE による解析結果をもとに設定	0版)
 田子が搭掛への溶融炉山、一治地村相互作用のうち、水蒸気爆発の評価(偏心落下及び現実的な燈だによる評価) ビ 項目 1. 東朝 東井が圧力容器の破損後 (約 10cm) 3. 小 (約 10cm) (約 10cm) (11 10.5 A (10 5 gth filt 12 5 fth filt 12 6 fth filt 12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					東海第二発電所(2018.9.12版)
所 項目 主要解析条件 条件設定の考え方 原子炉圧力容器の破損倍 (約100m) 原子炉圧力容器の破損倍 (約100m) 3557m 原子炉圧力容器の破損倍 (約100m) 3557m 第子炉圧力容器を削削を開発 (約100m) 3550m 第子炉厂力等系数加上式の特許容器 10.0357m 第階野心 - コンクリート相互作用による特許容器就量成正対 マデスタル水深 2.4m 第老ビで落形した高級野心を微粒子化し、十分な除熟量を確保 10.550m 第会ビで落下した高級野心を微粒子化し、十分な除熟量を確保 10.550m 水振りに用いる水の温度 3.4m 第そして落下した高級野心を微粒子化し、十分な除熱量を確保 10.550m 5.4m 10.550m 水振りに用いる水の温度 3.4m 第たした 第たした 10.550m 10.500m 水振りに用いる水の温度 3.4m 第たたの 350m 株式市販売しの転用を行うりたりでいる中の能合 10.500m 水振りかした 3.50 3.50m 既損したいる中の範疇 10.500m 10.500m 10.500m 10.50 3.50 3.50 10.500m 10.500m 10.500m 10.500m 10.50 10.50m 3.50 10.50m 10.500m 10.500m 10.500m 10.500m 10.50 第の小面前 10.500m 10.500m 10.500m 10.500m 10.500m	王 王			うち, 水蒸気爆発の評価(偏心落下及び現実的な想定による評価))	
原子炉圧力容器の破損格 0.0857m 原子炉圧力容器と制鋼像駆動機構、ウジングの瞬間の面積 (約100ml) 30mlに会術を見込んだ面 (約100ml) 30mlに会術を見込んだ面 (約100ml) 30mlに会術を見込んだ面 (約100ml) 30mlに会術を見込んだ面 (第100ml) 30mlに会術を見込んだ面 第次して客客Tした器線市心の電機構にしっち始発離設施的には するため、あらかじの水銀りを行うものとして手順上定めてい う能 オるため、あらかじの水銀しといて手順上定めてい 水銀りに用いる水の温度 35C 外部水額の水温として設定 外部水酸のた山産度 3ml 新麗かの放出進度 8m/s 酸損口にかから溶酸炉口の油酸脂子のの作用にためでい 35C 外部水酸の水田を 水酸のかは油度 8m/s 砂油水酸の水油を 3ml 5ml 和語合粒子格 3mm 防化のいるの高額になった 5ml 5ml 加速の放出者 3mn 防化の気動物が原子が酸粉がのた 5ml 5ml 加速のた 3mm 防化のいるの有能能能能 5ml 5ml 加加 ため 3ml ための気動物が原子したがおからが筋化す 5ml 加加 5m 加加 5ml 5ml 第名前のの酸粒子名 3ml 防化ののの多いた 5ml 5ml 第名前のの酸粒子名 3ml ための気動物が原子した 5ml 5ml 第名前のの酸粒子名 5ml たの気がした	24	項目	主要解析条件	条件設定の考え方	
学術会中による格納容器破損防止対 ペデスタル水浴 2.4m ペデスタル水浴 2.4m オックンシリート相互作用による格納容器破損防止が 市子列格納容器下部への 3.5℃ 水振りに用いる水の温度 3.5℃ 水振動の飲出速度 8m/s 潮画 既任の実験から得られている平均乾倍 和混合粒子径 3.0m 現金の酸粒子径 3.0m 原発計算時の酸粒子径 3.0m 原名前参会に応用に 第0.6U 加したのため 1.000,0% 加したの 5.0.5 市 1.50.5 市 1.50.5 市 1.50.00 市 1.50.00 市 1.50.00 市 1.50.00 市 1.50.00 市 1.50		原子炉圧力容器の破損径	0. 0357m (約 10cm ²)	原子炉圧力容器と制御棒駆動機構ハウジングの隙間の面積 3cm ² に余裕を見込んだ値	
原子伊格納容器下部への 水張りに用いる水の温度 溶融物の放出速度 溶融物の放出速度 和混合粒子径 和混合粒子径 3mm 根胞合粒子径 3mm 原在の実験から得られている平均粒径 和混合粒子径 3mm 原在の実験から得られている平均粒径 3mm 原在の実験から得られている平均粒径 3mm 原在の実験から得られている平均粒径 3mm 原在の実験から得られている平均粒径 3mm 原在の実験から得られている平均粒径 3mm に設定 10, mm に設定 10, mm 10, mm	ы	ペデスタル水深	2. 4m	溶融炉心-コンクリート相互作用による格納容器破損防止対策として落下した溶融炉心を微粒子化し、十分な除熱量を確保するため、あらかじめ水張りを行うものとして手順上定めていえ値	島
 		原子炉格納容器下部への 水張りに用いる水の温度	35°C	≫ 計水源の水温として設定	根原子
相混合粒子径 3mm 既往の実験から得られている平均粒径 爆発計算時の微粒子径 50 µ m FAR0.KR0TOS等の各種試験結果におけるデブリ粒径分布をもと 振発計算時の微粒子径 50 µ m FAR0.KR0TOS等の各種試験結果におけるデブリ粒径分布をもと 1 市力ガリングタイミング 現産の確要によりトリガリングが発生する可能性が高いと考え 20 溶融物が床面に 酸の衝撃によりトリガリングが発生する可能性が高いと考え 20 溶融炉心一冷却材相互作 約0.6MJ 1 Astacととから設定 1 Astacととから設定 1 Astacととから設定 1 Astacととから設定 2 約.6MJ 1 Astacととから設定 1 Astacととから設定 2 約.6MJ 1 Astacととから設定 2 約.6MJ 1 Astacとのものの谷和市		溶融物の放出速度	8m/s	破損ロにかかる溶融炉心の堆積圧等から MAP4 で計算	·力発管
爆発計算時の微粒子径 50 μm FARO, KROTOS 等の各種試験結果におけるデブリ粒径分布をもと トリガリングタイミング 窓融物が床面に 現実的条件には溶融物が原子炉格納容器下部床面に接触する 20<溶融炉心ー冷却材相互作		粗混合粒子径	3mm	既往の実験から得られている平均粒径	電所
トリガリングタイミング 利達した時点 現実的条件には溶融物が原子炉格納容器下部床面に接触する 前、前、 20 溶融炉心一治却材相互作 第の6-0-治却材相互作 用による発生エネルギ 約.6.00 月ASMINEによる解析結果をもとに設定 爆発源の径方向位置 最外周制御棒位置下 心落下を想定して設定		爆発計算時の微粒子径	50μ m	FARO, KROTOS 等の各種試験結果におけるデブリ粒径分布をもと に設定	2号
20 溶融炉心一冷却材相互作 約 0.6MJ JASMINE による解析結果をもとに設定 用による発生エネルギ 約 0.6MJ JASMINE による解析結果をもとに設定 爆発源の径方向位置 最外周制御棒位置下 応落下を想定して設定		トリガリングタイミング	溶融物が床面に 到達した時点	現実的条件には溶融物が原子炉格納容器下部床面に接触する際の衝撃によりトリガリングが発生する可能性が高いと考えられることから設定	·炉
爆発源の径方向位置 最外周制御棒位置下 応答下を想定して設定	-2D	溶融炉心-冷却材相互作 用による発生エネルギ	〔W〕 0. 6W〕	JASMINE による解析結果をもとに設定	
		爆発源の径方向位置	最外周制御棒位置下	原子炉圧力容器下部の中心から外れた偏心位置からの溶融炉 心落下を想定して設定	
	ļ			た , つ 張 構 相	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			東海	第二発'	電所((2018. 9	9.12版	į)			島根原子力発電所 2号炉	備考
										1		 ・判断基準の相違 【東海第二】 島根2号炉は内側鋼 板,外側鋼板,リブ鋼板 からなる二重鋼板製ペ
	近/年※1		0	0	0	0	0	0	0			テスタルであるのに対し、東海第二けペデスタ
				12								ル側壁及び床スラブは
		L tru	ない	N/mn/NS	7	L tru	ĽŻI	mm ²	7			鉄筋コンクリート製ペ
	日 日 一 二 二 二 二 二 二 二 二 二 二 二 二 二	墙大[日 瀬 し び ご) 0. 52) 0. 95	249 μ	増大1	E 横 に 仕	13N	101μ			デスタルであることか
	部 の 日 〇	「位は」	画館の目	招 出 光 派 派	资	位は	л Л	約 2.	後			ら,構造の違いによりペ
	「「」」			귀논		痰	枨					デスタル構造健全性評
	「「」」	1	5	3側壁		12	5					価の判断基準が異なる。
	第4表 ペデスタル構造健全性評価の評価結果(偏 _酒 ¹¹¹¹	- ユロー	iひずみ 機能に影響を及ぼす範囲の圧壊(3,000 µ) が生じない	*せん断 2.65N/mm ²)を超えない	らひずみ 許容ひずみ(5,000μ)を超えない	ご 変位が増大せず, SE後の構造物の進行性の崩壊がない	jひずみ 機能に影響を及ばす範囲の圧壊(3,000μ)が生じない	、せん断	らひずみ 許容ひずみ(5,000μ)を超えない	判断基準を満足する 皆率 1.0 にて算定した終局面外せん断応力度		
		※	Ē	恒	E	逐	Ē	围	E E	5 手 約増(
	料加速		コンクリー		鉄筋	п	ンクリー	·	鉄筋	释析給 度動		
	世/ 近岸)III)	四壁			床ス	ラブ		○」魚 縮強		
	다. 상태 위해	1)38 HC	K C >	支持機能			デブリ保	水持機能		$1: \begin{bmatrix} 1 \\ -\end{bmatrix}$		
										* *		

;	柏崎刈	小羽原-	子力発	電所	6/7号炉	(2017. 12. 20	0版)				東	海第二	発電所	f (201	8.9.1	2版)					Ē	最限了	力発電所	2号炉		
							_															表 2 字	平価結果の」	<u>七較</u> 	基本ケース	
									N	4						P			内	側鋼板にカ	かる圧力		約 53MPa		約 233MPa	
				よ想定		'OMPa 33MPa			に対すい	果の比			約 0. 56 約 1. 23	. 35		スに対し が軽微)	- 28	. 28	外	側鋼板にカ	かる圧力		約 12MPa		約 140MPa	
				現実的/	1	内側鋼板:約7 外側鋼板:約3			<u> </u>	解析結			上部3:糸 下部3:糸	約 1	I	(振本ケー、 影響範囲)	約 0	0 6涉								
るミーゼス相当応力)の比較	溶融炉心落下位置	CRD ハウジング最外周	评価条件(溶融炉心落下量等)	ħı	а Б.	板に加わる応力は降伏応力 (490MPa) る。相当塑性ひずみ約 0, 13% ^{%6} IPa	よらないと考える。	解析との比較	結果	基本ケース (中心位置)	変位は増大しない	圧壊は側壁に生じない	上部:約0.93N/mm ² 下部:約0.77N/mm ²	統 184 μ	変位は増大しない	圧壊は床スラブ上面の わずかな範囲にとどまる	条9 3. 70N/nm ²	糸5 364 μ								
外側鋼板に加わ			その色の豊	保守的な想定	内侧鋼板:約 98MP- 外側鋼板:約 47MP	内側鋼板:内側鋼 を超え 外側鋼板:約 326M	 う支持機能の支障とは	表 基本ケース	解析	评価 位置)	大しない	に生じない). 52N∕mm²). 95N∕mm²	49μ	大しない	ブに生じない	3N / mm ²	01μ								
納容器下部内側//		容器下部中心位置			くケース】 て:約 32MPa て:約 25MPa	て、約 278MPa 2 : 約 168MPa	であり,内側鋼板のす	第5		(偏心)	変位は増	圧壊は側壁	上部:約0下部:約0	約 2	変位は増	圧壊は床スラ	約 2.13	約 1								
吉果(格)		格納			【ベース 内側鋼板 外側鋼板	内側鋼板外側鋼板	0.2%未識		l	通日		ひずみ	せん断	ひずみ		ひずみ	せん断	ひずみ								
3 評価約					2m	7m	ひずみは(変位	田橋	画	引張	変位	田籍	画	引張								
表					張 0	1	相当塑性(1			評価部位	11)	型	飽通	11	床ス	- <u>_</u> 1 N N	砂斑								
					初期水	水位	※6 最大			機能		K d ≻∔	又持機能			デブリロ	床持機能									

•	J	b	î	

備考	

・評価結果の相違

【柏崎 6/7】

島根2号炉の基本ケー スでは,保守的な評価 条件が適用されており, 現実的な評価条件を適 用した偏心ケースの評 価結果を包絡する結果 となっている。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
51. 格納容器ベント時に使用するベントラインによる	23 格納容器ベント時に使用するベントラインによるCs-137	36. 使用する格納容器フィルタベント系の除去効果(DF)につ	
Cs-137の放出量の差の要因等について	の放出量の差の要因等について	いて	
「柏崎刈羽原子力発電所6 号及び7号炉の重大事故等対策	「東海第二発電所 重大事故等対策の有効性評価」の添付資	「島根原子力発電所2号炉の重大事故等対策の有効性評	
の有効性評価について」の <u>添付資料3.1.3.3</u> において, 雰囲気	<u>料3.1.3.4</u> において, 雰囲気圧力・温度による静的負荷(格納	価」の <u>添付資料3.1.3.3</u> において, 雰囲気圧力・温度による静	
圧力・温度による静的負荷(格納容器過圧・過温破損)時に	容器過圧・過温破損)時に <u>代替循環冷却系</u> を使用 <u>できない</u> 場	的負荷(格納容器過圧・過温破損)時において残留熱代替除	
おいて代替循環冷却系を使用しない場合における格納容器圧	合における <u>格納容器圧力逃がし装置</u> からのCs-137の放出	<u>去系</u> を使用しない場合における <u>格納容器フィルタベント系</u> か	
<u>力逃がし装置</u> からのCs-137の放出量について検討を行ってお	量について検討を行っており、サプレッション・チェンバの	らのC s -137の放出量について検討を行っており, サプレッ	
り,サプレッション・チェンバのラインを経由した場合の放出	ラインを経由した場合の放出量は <u>約1.2×10⁻⁴TBq</u> (7日間),	ション・チェンバのラインを経由した場合の放出量は <u>約</u>	
量は <u>約1.4×10⁻³TBq</u> (7 日間), ドライウェルのラインを経由	ドライウェルのラインを経由した場合の放出量は <u>約3. 7TBq</u> (7	<u>2.1×10⁻³TBq</u> (7日間),ドライウェルのラインを経由した場	・解析結果の相違
した場合の放出量は <u>約2.0TBq</u> (7 日間)と評価している。ま	日間)と評価している。また,評価に当たっては <u>,格納容器</u>	合の放出量は <u>約3.4TBq</u> (7日間)と評価している。また,評	【柏崎 6/7,東海第二】
た,評価に当たっては <u>格納容器圧力逃がし装置</u> の除去効果	<u>圧力逃がし装置</u> の除去効果(DF)を1,000としている。	価に当たっては <u>格納容器フィルタベント系</u> の除去効果(DF)	
(DF) を1000 としている。		を1,000としている。	
ここでは, 経由するベントラインによる放出量の差(<u>約</u>	ここでは,経由するベントラインによる放出量の差(<u>約</u>	ここでは, 格納容器フィルタベント系の除去効果(DF)	
<u>1400 倍 = 約2.0TBq/約1.4×10⁻³TBq</u>)の要因及び <u>格納容器</u>	<u>30,800倍=約3.7TBq/約1.2×10⁻⁴TBq</u>)の要因及び <u>格納容器</u>	として1,000を使用することについての妥当性について検討	
<u>圧力逃がし装置</u> の除去効果(DF)として1000 を使用すること	<u>圧力逃がし装置</u> の除去効果 (DF) として1,000を使用すること	を行った。	
についての妥当性について検討を行った。	についての妥当性について検討を行った。		
1. 経由するベントラインによる放出量の差について	1. 経由するベントラインによる放出量の差について		・解析結果の相違
ドライウェルのラインを経由した場合(以下, 「D/W ベン	ドライウェルのラインを経由した場合(以下「D/Wベン		【柏崎 6/7,東海第二】
<u> ト時」という。) とサプレッション・チェンバのラインを経</u>	<u>ト時」という。)とサプレッション・チェンバのラインを経由</u>		島根2号炉は,経由す
由した場合(以下,「W/W ベント時」という。)とでは,格	<u>した場合(以下「W/Wベント時」という。)とでは,格納容</u>		るベントラインによる
納容器ベント実施後の原子炉圧力容器及び原子炉格納容器内	<u>器ベント実施後の原子炉圧力容器及び格納容器内の温度,圧</u>		放出量の差としてはサ
の温度,圧力等が異なるため, 格納容器ベント後のCs-137 の	力等が異なるため,格納容器ベント後のCs-137の振る舞い		プレッション・プールで
振る舞いも異なるものとなる。このため, Cs-137 の環境中へ	<u>も異なるものとなる。このため、C s -137の環境中への放出</u>		の除去効果が主な要因
の放出量の差(約1400 倍)はサプレッション・プールでのス	<u>量の差(約30,800倍)はサプレッション・プールでのスクラ</u>		となっている。
クラビングによる除去効果の違いだけに起因するものではな	ビングによる除去効果の違いだけに起因するものではなく,		
く,「約1400」を直接サプレッション・プールでの除去効果	「約30, 800」を直接サプレッション・プールでの除去効果(DF)		
(DF) と見なすことはできないと考えられる。	と見なすことはできないと考えられる。		
Cs-137 の環境中への放出量の差を生む要因として, サプ	C s −137の環境中への放出量の差を生む要因として, サ		
レッション・プールでの除去効果の違い以外では、例えば原	<u>プレッション・プールでの除去効果の違い以外では,例えば</u>		
子炉圧力容器から原子炉格納容器へのセシウムの放出量の違	原子炉圧力容器から格納容器へのセシウムの放出量の違いが		
いが挙げられる。	挙げられる。		
D/W ベント時はW/W ベント時よりも水頭圧分だけ炉圧が	D/Wベント時はW/Wベント時よりも水頭圧分だけ炉		
低くなるため、炉内ガスの比熱容量が小さくなり、炉内ガス	圧が低くなるため,炉内ガスの比熱容量が小さくなり,炉内		
が温度上昇しやすくなる ^{※1} 。炉内ガス温度が高いと,構造材	ガスが温度上昇しやすくなる*1。炉内ガス温度が高いと,構		

E2を含したキシウムが気伸縮に終行しやすくなるため、原子 空路確認識への放出や多くなる ²⁰ 、このことが、DF ペント 陸のCo-137 の放出金の対量は果美を増加させている一周にな っていると考えられる。 遊林に洗着したキシウムが気伸縮に終行しやすくなるため、 器・御客誌への放出や多くなる ²⁰ 、このことが、DF ペント 陸のCo-137 の放出金の対量は果美を増加させている一周にな っていると考えられる。 遊林に洗着したキシウムが気伸縮に終行しやすくなるため、 器・御客誌への放出や多くなる ²⁰ 、このことが、DF ペント 陸のCo-137 の放出金の対量は多えたいです。 21 格納容器ペント実施後においては、原子グアエノを習め トップへッドンクシンジス、DF ペント時の方が厚め内 キャプへッドンクシンジス、DF ペント時の方が厚め内 たっていると考えられる。 ※1 格納容器ペント実施後においては、原子グアエノを認め トップへッドンクシンジス、DF ペント時の方が厚め内 シント時に比べるシャマいろ。 ※1 格納容器ペント実施後においては、原子グアエクを認め トップへッドンクシンジス、DF ペント時の方が厚め内 メント時に比べるシャマンジス、DF ペント時の方が厚め内 素 2 大破断LOC A時には、かわ内は このいろ、DF ペント時の方が厚め内 電子レビカな絵は容器にな出されると評価している。 ※2 大破断LOC A時には、かわ内は このいろ、DF ペント時の方が厚め内 電子レビカな絵は容器にな出されると評価している。 ※2 大破断LOC A時には、かわ内は このいろ、DF ペント時の方が厚め内 電子レビカなんとが容易にな出されると評価している。 2. 使用する経動容器に力法がと実置の除去効果 (OF) について て エアニアノルな子に対する体的容器に力成功しため にないて なっていためななど、AB ペントラント系のの除去効果 (DF) について モアニアノルな子に対する体的容器に力感がした変の除去。 1. 使用する経動容器フィルクベント派の除去効果 (DF) について ないて なっていためなどのなどのためのなどのなどのためなど、AB ペント のいて ないためなどのなどのためなどのなどのためなどのなどのなどのためなどのなどのなどのなどのなどのなどのなどのなどのなどのなどのなどのなどのなどのな	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>brikkingS5-obgHivsetdesen<u>Dre <>></u><u>BingS5-obgHivsetdesen<u>BingS5-obgHivsetdesen<u>BingS5-obgHivsetdesen<math>britBingS5-obgHivsetdesenBingS5-obgHivsetdesenBingS5-obgHivsetdesenBingS5-obgHivsetdesen<math>britBingS5-obgHivsetdesenBingS5-obgHivsetdesenBingS5-obgHivsetdesenBingS5-obgHivsetdesen<math>britBingS5-obgHivsetdesenBingS5-obgHivsetdesenBingS5-obgHivsetdesenBingS5-obgHivsetdesen<math>britBingS5-obgHivsetdesen<t< math=""></t<></math></math></math></math></u></u></u></u>	に沈着したセシウムが気相部に移行しやすくなるため、原子	造材に沈着したセシウムが気相部に移行しやすくなるため,		
B <u>D</u> (S-137 D <u>M</u>)Ll B <u>O</u> (2 D [137 D <u>M</u>)Ll B <u>D</u> [137 D <u>M</u>]Ll B <u>D</u> [137 D]Ll B [137 D]Ll D [137 D]Ll B [137 D	炉格納容器への放出が多くなる ^{※2} 。このことが,D/W ベント	格納容器への放出が多くなる ^{※2} 。このことが, D/Wベント		
コていると考えられる。 なっていると考えられる。 ※1 格納容器ベント実施窓においては、原子炉円力容器の トップヘッドブランジは、D/M ベント時の方が9/0 ペ ント時に比べ20~40℃程度高くなっている。 ※1 格納容器ベント実施窓においては、原子炉円力容器の トップヘッドブランジは、D/W ベント時の方が9/0 ペ Wベント時に比べ見大で30℃程度高くなっている。 ※2 大磁明LOCA 時には、炉内内蔵量の約50%の20c が原子 空圧力容器から原子炉格満容器に広けされると評価 しているみ、DF ペント時の方が9/0 内蔵量の約50%の20c が原子 空圧力容器から原子炉格満容器に広けされると評価 しているみ、DF ペント時の方が9/0 内蔵量の約30% C3600 グループ:約0.20% ※2 大磁新LOCA時には、炉内内蔵量の約37%の2C sが 原子炉用力容器から原子線の25km などト時の方が9/0 内蔵量の約30% ※2 大磁新LOCA時には、炉内内蔵量の約37%の2C sが 原子炉用力容器から原子線の25km などト時の方が9/0 内蔵量の約30% ※3 体験の2 km の2 km 2. 使用する経納容器圧力速が上装置の除去効果 (DF) につい て 1. 使用する経納容器三ノネルクベント系の除去効果 (DF) につい て 1. 使用する経納容器三ノネルクベント系の除去効果 (DF) につい て ・設備成けの相応	時のCs-137 の放出量の評価結果を増加させている一因にな	時のC s-137の放出量の評価結果を増加させている一因に		
※1 格納容器ペント実施後においては、原子好圧力容器の トップヘッドフランジは、D/ ペント時の方がf/ ペ ント時に比べ20~40℃湿度高くなっている。 ※1 格納容器ペント実施後においては、原子好圧力容器の トップヘッドフランジは、D/ ペント時の方がf/ ペ Wベント時の方がW/ Wベント時の方がW ※2 大酸断LOCA時には、炉内内蔵量の約50%のCs が原子 炉圧力容器から原子炉給物容器に放出されると評価 しているが、D/ ペント時の方が炉内内度量の約0.3% (Coll グループ:約0.20%, Csl グループ:約0.20%) だけ多く放出されると評価している。 ※2 大酸断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価 しているが、D/ ペント時の方が炉内内度量の約0.3% (Coll グループ:約0.20%, Csl グループ:約0.20%) だけ多く放出されると評価している。 ※2 大酸断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価している。 ※2 大酸断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価している。 2. 使用する整約容器に力込むしま類の除去効果 (DF)について て アプログル粒子に対する修約容器圧力逃がしま短の除去 2. 使用する整約容器圧力逃がしま短の除去効果 (DF)について て アプログル粒子に対する修約容器圧力逃がしま短の除去 1. 使用する整約容器二クルタベント系のフィルタ気化ント系のフィルタ気化と大系のマルタ気提は、大規権な生 ・設備取り相連	っていると考えられる。	<u>なっていると考えられる。</u>		
※1 格納容器ベント実施後においては,原子炉圧力容器の トップヘッドフランジは,D/X ベント時の方がW/Y ベ ント時に比べ20へ4072程度高くなっている。 ※1 格納容器ベント実施後においては,原子炉圧力容器の トップヘッドフランジは,D/X ベント時の方がW/Y ベ Wベント時に比べ急くと時の方がW/Y Wベント時の方がW/Y Wベント時の方がW/Y Wベント時の方がW/Y Wベント時の方がW/Y Wベント時に比べ最大で3072程度高くなっている。 ※2 大蔵断LOCA 時には、炉内内蔵量の約50%のCs が原子 炉圧力容器から原子炉格納容器に加されると評価 しているが、D/X ベント時の方が炉内内蔵量の約50%のCs が原子 (CsOH グルーブ:約0.20%) だけ多く放出されると評価している。 ※2 大蔵断LOCA時には、炉内内蔵量の約37%のC sが 原子炉圧力容器から格納容器に加されると評価してい いるが、D/W ベント時の方が炉内内蔵量の約0.0% く放出されると評価している。 ※2 大蔵断LOCA時には、炉内内蔵量の約37%のC sが 2. 使用する格納容器圧力透がし装置の除去効果 (DF) について て ※2 使用する格納容器圧力透がし装置の除去効果 (DF) について て 1. 使用する格納容器2.4.4.4.4.4.2.5.5.6.0.7.4.4.4.4.4.5.5.6.4.4.6.6.4.4.4.5.4.4.6.4.4.6.4.4.4.4				
$k \cdot y'' \sim y'' \vee y''' \vee y'' \vee y''' \vee y'''' \vee y''' \vee y''' \vee y''''' \vee y''''' \vee y''''''''$	※1 格納容器ベント実施後においては,原子炉圧力容器の	※1 格納容器ベント実施後においては,原子炉圧力容器の		
シト時に比べ20~40℃程度高くなっている。 Wベント時に比べ最大で30℃程度高くなっている。 ※2 大破断LOCA 時には、炉内内蔵量の約50%のCs が原子 炉圧力容器から原子炉格納容器に放出されると評価 しているが、D/W ベント時の方が知内内蔵量の約0.3% (CsOH グループ:約0.2%) だけ多く放出されると評価している。 ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/W ベント時の方が知内内蔵量の約0.3% (CsOH グループ:約0.2%) だけ多く放出されると評価している。 ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/W ベント時の方が知内内蔵量の約0.3% (CsOH グループ:約0.2%) ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/W ベント時の方が知内内蔵量の約0.3% (CsOH グループ:約0.2%) ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/W ベント時の方が知内内蔵量の約5.3% (CsOH グループ:約0.2%) ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価 いるが、D/W ベント時の方が知内内蔵量の約5.3% (CsOH グループ:約0.2%) ※2 使用する 施納容器に加入したいな。 ※2 使用する 施納容器で加入のペント素のの除去効果 (DF) について て 1. 使用する 施納容器でクルクベント系のフィルクベント系のフィルクベント系のフィルクズント系のフィルク支置は、大規模なさ いためでので加入のペント系ののためないためで いためでのためでのためでのためで いためでのためでのためで いためでのためでのためで いためでのためでのためで いためでのためでのためで しためでのためでのためでのためで いためでのためでのためで いためでのためでのためで いためでのためでのためで いためでのためでのためで いためでのためで いためでのためで いためでのためで いためで いためでのためで いためでのためで いためで いためで いためで いためで いためで いためで いためで い	トップヘッドフランジは, D/W ベント時の方がW/W ベ	<u>トップヘッドフランジは,D/Wベント時の方がW/</u>		
※2 大破斯L0CA 時には、炉内内蔵量の約50%のCs が原子 ※2 大破断LOCA時には、炉内内蔵量の約50%のCs が原子 炉圧力容器から原子炉格納容器に放出されると評価 しているが、D/W ペント時の方が炉内内蔵量の約0.3% (CsOH グループ:約0.29%、CsI グループ:約0.29%) ※2 大破断LOCA時には、炉内内蔵量の約37%のC sが (CsOH グループ:約0.29%、CsI グループ:約0.29%) いるが、D/W ペント時の方が炉内内蔵量の約0.7%多 く放出されると評価している。 2. 使用する格納容器圧力速がし装置の除去効果 (DF) につい て 2. 使用する格納容器圧力速がし装置の除去効果 (DF) につい て エンロジル粒子に対する格納容器圧力速がし装置の除去 1. 使用する格納容器フィルタベント系の除去効果 (DF) に ついて エンロジル粒子に対する格納容器圧力速がし装置の除去 ・設備設計の相違	ント時に比べ20~40℃程度高くなっている。	Wベント時に比べ最大で30℃程度高くなっている。		
※2 大破断LOCA 時には、炉内内蔵量の約50%のCs が原子 ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 炉圧力容器から原子炉格納容器に放出されると評価 原子炉圧力容器から格納容器に放出されると評価している。 第37%のC s が しているが、D/W ベント時の方が炉内内蔵量の約0.3% (CSOII グルーブ:約0.29%) CSOII グルーブ:約0.29%) だけ多く放出されると評価している。 シンボーン シンボーン 2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について 2. 使用する <u>格納容器圧力逃がし装置の除去効果 (DF) について</u> 1. 使用する <u>格納容器に力水がに装置の除去効果 (DF) について</u> エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 b. おいのについて				
※2 大破断LOCA 時には、炉内内蔵量の約50%のCs が原子 ※2 大破断LOCA時には、炉内内蔵量の約50%のCs が原子 炉圧力容器から原子炉格納容器に放出されると評価 しているが、D/W ベント時の方が炉内内蔵量の約0.3% (CsOH グルーブ:約0.25%) (CsOH グルーブ:約0.29%, CsI グループ:約0.25%) Noが、D/Wベント時の方が炉内内蔵量の約0.7%多 だけ多く放出されると評価している。 (Statistic Statistic St				
※2 大破断LOCA 時には、炉内内蔵量の約50%のCs が原子 炉圧力容器から原子炉格納容器に放出されると評価 しているが、D/W ペント時の方が炉内内蔵量の約0.3% (CsOH グループ:約0.29%, CsI グループ:約0.25%) だけ多く放出されると評価している。 ※2 大破断LOCA時には、炉内内蔵量の約37%のCs が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/Wペント時の方が炉内内蔵量の約0.7%多 く放出されると評価している。 ※2 大破断LOCA時には、炉内内蔵量の約37%のCs が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/Wペント時の方が炉内内蔵量の約0.7%多 く放出されると評価している。 ※2 大破断LOCA時には、炉内内蔵量の約37%のCs が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/Wペント時の方が炉内内蔵量の約0.7%多 く放出されると評価している。 ※2 大破断LOCA時には、炉内内蔵量の約37%のCs が 原子炉圧力容器から格納容器に放出されると評価して いる。 ※2 大破断LOCA時には、炉内内蔵量の約37%のCs が 原子炉厂力容器から格納容器に放出されると評価して いる。 ※2 大破断LocA時の容式のの約37%のCs が 原子炉厂力容器から格納容器に立つ容 のがのの のいて て て ついて ※2 大破断LocA時の路 原子炉厂力で 2. 使用する格納容器圧力逃がし装置の除去効果 (DF)につい て て エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 (DF)についで で もたのたり世界の格式のなどで た ためたるたがに ためためためためためためためためためためためためためためためためためためため				
※2 大破断LOCA 時には、炉内内蔵量の約50%のCs が原子 ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 炉圧力容器から原子炉格納容器に放出されると評価 原子炉圧力容器から格納容器に放出されると評価して しているが、D/W ベント時の方が炉内内蔵量の約0.3% (Cs0H グループ: 約0.29%, CsI グループ: 約0.25%) だけ多く放出されると評価している。 いるが、D/Wベント時の方が炉内内蔵量の約0.7%多 どけ多く放出されると評価している。 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去 ・設備設計の相違 ・設備設計の相違				
炉圧力容器から原子炉格納容器に放出されると評価 しているが、D/W ベント時の方が炉内内蔵量の約0.3% (CsOH グループ:約0.29%, CsI グループ:約0.25%) だけ多く放出されると評価している。 原子炉圧力容器から格納容器に放出されると評価して いるが、D/Wベント時の方が炉内内蔵量の約0.7%多 く放出されると評価している。 2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について 2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 1. 使用する <u>格納容器フィルタベント系</u> の除去効果 (DF) について マ エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 グレージ・パクレージ・パクレージ・パクレージ・パクレージ・シェックレージ・パクレージ・シェックレクジント系の グレージ・約0.25%) マ 2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について マ マ ・設備設計の相違	※2 大破断LOCA 時には, 炉内内蔵量の約50%のCs が原子	<u>※2</u> 大破断LOCA時には、炉内内蔵量の約37%のCsが		
しているが、D/W ベント時の方が炉内内蔵量の約0.3% いるが、D/Wベント時の方が炉内内蔵量の約0.7%多 (Cs0H グループ:約0.29%, CsI グループ:約0.25%) く放出されると評価している。 だけ多く放出されると評価している。 く放出されると評価している。 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 (DF) について	<u> 炉圧力容器から原子炉格納容器に放出されると評価</u>	原子炉圧力容器から格納容器に放出されると評価して		
(CsOH グループ: 約0.29%, CsI グループ: 約0.25%) く放出されると評価している。 だけ多く放出されると評価している。 く放出されると評価している。 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果	しているが, D/W ベント時の方が炉内内蔵量の約0.3%	いるが、D/Wベント時の方が炉内内蔵量の約0.7%多		
だけ多く放出されると評価している。 だけ多く放出されると評価している。 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について 1. 使用する格納容器フィルタベント系の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 1. 使用する格納容器フィルタベント系のアイルタ装置は、大規模など ・設備設計の相違	(CsOH グループ:約0.29%, CsI グループ:約0.25%)	く放出されると評価している。		
2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について 2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について 1. 使用する <u>格納容器フィルタベント系</u> の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 1. 使用する <u>格納容器フィルタベント系のマイルタベント系のマイルタビント系の定すの保護では、大規模なセ</u>	だけ多く放出されると評価している。			
2. 使用する格納容器圧力逃がし装置の除去効果(DF)について 2. 使用する格納容器圧力逃がし装置の除去効果(DF)につい 1. 使用する格納容器フィルタベント系の除去効果(DF)に エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 1. 使用する格納容器フィルタベント系の除去効果(DF)に				
2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果(DF)について こ. 使用する <u>格納容器圧力逃がし装置の除去効果(DF)について</u> エアロゾル粒子に対する格納容器圧力逃がし装置の除去 <u>エアロゾル粒子に対する格納容器圧力逃がし装置の除去</u> <u>エアロゾル粒子に対する格納容器圧力逃がし装置の除去</u> <u>エアロゾル粒子に対する格納容器圧力逃がし装置の除去</u> <u>エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果</u> <u>エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果</u> <u>本アロゾル粒子に対する格納容器圧力逃がし装置の除去</u> <u>エアロゾル粒子に対する格納容器圧力逃がし</u> <u>エアロゾル粒子に対する格納容器圧力逃がし</u> <u>エアロゾル粒子に対する格納容器圧力逃がし</u> <u>また」またや、たた、たたや、たた、たたや、たた、たたや、たた、たたや、たた、たたや、たた、たた</u>				
エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 格納容器フィルタベント系のフィルタ装置は、大規模なセ ・設備設計の相違	2. 使用する <u>格納谷益圧力逃かし装直</u> の除去効果(DF)について	2. 使用する <u>格納谷器圧力逃かし装直</u> の除去効果(DF)につい	1. 使用する <u>格納谷器フィルタペント糸</u> の除去効果(DF)に	
二アロソル粒子に対する格納容器圧力逃がし装直の除去 二アロソル粒子に対する格納容器圧力逃がし装直の除去 ・設備設計の相違 ・設備設計の相違				
	エアロソル私士に対する格納谷器圧力逃かし装直の际去	エアロソル粒子に対する格納谷器圧力逃かし装置の际去効果	格納谷茶ノイルタベント糸のノイルタ装直は、大規模なセ	
<u> </u>		については、性能検証試験(JAVA試験)により、格納谷希へン	クター試験装置を用いて美施された性能検証試験の試験余 他に知めまれてたる記述していて	【 相崎 6/1, 果 御 弗 一】
① 格納谷 福圧 力 逃 か し 装 直 ぐ 朔 付 ぐ さ る 际 云 刻 未 (DF) 下 夫 肥 中 に 忽 止 さ れ る 連 転 配 囲 に ね い く , DF 1,000以上 を 摘 足 り た 時 保 ご し に 定 貯 3,000以上 を 摘 足 り 件 に 包 裕 さ れ る よ う 設 計 し くい る 一 件 に 包 裕 さ れ る よ う 設 計 し くい る 一 本 性 公 検 試 計 除 ぶ は 実 性 の 相 字 更 角 に わ は て 種 ち の 計 除 タ	① 格納谷 品上 力 処 か し 装直 ご 男 侍 で さ る 味 云 効 朱 (DF)	下 夫 他 中 に 忠 た さ れ る 連 転 範 囲 に わ い く 、 DF 1 、 000 以 上 を 摘 足 g		
	<u> を 松 住 こ と に 夫 映 じ 唯 心 の っ っ い し な 壮 卑 に 法 し ナ て ェ ア ロ い い れ や て の や な ハ ナ</u>	<u>ることを唯能している。</u> われ、故地宏明にも兆がし壮思けざいチーリュクラバルバム	<u> 化 </u> 化 に 検	
	2 $77/29 表 lic ((), (), (), (), (), (), (), (), (), ()$	なわ, 俗柄谷奋圧力延かし装直はハンチュリスタノハ及び金	<u> 件(ハントカスの圧力・温度・加重及のエアロノル粒径・</u> 産業)な老虎した歴史はお話またに、 タタルにおいて発展	
$\underline{c}, \underline{MAAF}$ 册们に基づき計恤 $\underline{a}, \underline{c}, \underline{b}, \underline{c}, \underline$			<u>皮寺) とち思した住北快証訊練を打い, 谷米件にわいて光律</u> されて研究を取りていて	
$ \frac{3}{3} 3$		<u>る。(「米伊弗二光电/」 重八争収守刈処設備について 5.7 床</u> 子后枚納容哭の過圧破損を防止するための設備【50条】の補足		
		1) が招利存留の週上吸損を防止するための設備【30 未】の補足	住肥便証料練相未がら、岡低2万かの使用未住を包括する 範囲においてDF1 000 ドトを満足することを確認してい	
	核納容器圧力逃がし装置に上る除去効果(DE-1000) けート		<u> 範囲においてDF1,000 以上を個定りることを確応してい</u> るため、ベントラインに流入するエアロゾルに対し、DF	
$\frac{4\pi}{4} \frac{3\pi}{6} \frac{3\pi}{6} \frac{3\pi}{7} \frac$	$\frac{11}{1000}$ は、1000000000000000000000000000000000000		るため, マンドノインに派八するエノロノルに対し、DT1 000 を適田することは巫当であると考えられる	
<u>ロンフルR くショーロルガロスに入って、 フノアノンコン ノーバン</u> スクラビングを経た後のエアロゾル粒子の粒径分布等を考慮 わた マクラバ交界はベンチョルマクラバレ会尾繊維フノル	<u> ロン・「「限くい」」 画加れたに入して、 リノレソンヨン・ノールの</u> スクラビングを経た後のエアロゾル粉子の粉保公在空た考慮		1,000 で週川1 るここは女ヨこのるこうんり40る。	
$\frac{(x,y)}{(x,y)} = \frac{(x,y)}{(x,y)} + \frac{(x,y)}{(x,y)} = \frac{(x,y)}{(x,y)} + \frac{(x,y)}{($	ハノノビノノを社に及び一ノビノル位丁の社住力加速で与歴 し、適用可能か値を設定しているものである。このため、ベ			
	し、通知可能な限を取たしているものでのる。このため、、 ントラインに流入するエアロゾル粒子に対しDF1000 を適田		べいチョリスクラバ単体でもDF100以上と評価している (「自	
	することは妥当であると考えられるかお、フィルタ装置け			
x = 2 = 1 = 2 = 1 = 1 = 1 = 1 = 2 = 1 = 1	水スクラバと金属フィルタの両方を合わせてDF=1000 を確保		格納容器フィルタベント系について」の別紙 34 を参昭)	
できる設計としており、水スクラバ単体での除去効果は大破	できる設計としており、水スクラバ単体での除去効果は大破			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
断LOCA(D/W ベント)時でDF=34~115 と評価している。			
(「柏崎刈羽原子力発電所6 号及び7 号炉 重大事故等対			
処設備について 別添資料-1原子炉格納容器の過圧破損を防			
止するための設備(格納容器圧力逃がし装置)について」の			
別紙30 を参照)			

「 炉	備考
	・解析結果の相違
	【柏崎 6/7】
	①島根2号炉,東海第二
	では,崩壊熱にジルコニ
	ウムー水反応の酸化発
	熱反応が加わりヒート
	アップが加速されるが,
الم الم	蒸気が炉心部へ供給さ
₩¥¥ ₩¥#雪	れることにより燃料温
- 1000 - 500 - 500	度の低下が確認できる。
位はシュ	
	②ジルコニウムー水反
*	応による反応熱の挙動
	が, 柏崎 6/7 と島根2
	号炉,東海第二で異なる
	が、これは減圧タイミ
	ングの差に起因すると
町	考えられる。
	島根2号炉は、燃料最
	高温度が 1,000℃を超
*11 ¹¹	えた付近でジルコニウ
	ムー水反応による反応
	熱が上昇しているが,原
	子炉減圧後であること
	から、水位低下に伴い
	※気発生重が低トし反 広想ジェニュ
0. 05+1 2. 0E+1 0. 0E+1	11 0/1 では燃料 最高
量烧	温度か 1,000 Cを超え たけにでは
	た何近では, 原子炉が
	减圧されていないため、
	逃かし安全开の開閉に (4)、 黄気は見いまれ
	伴い、烝気流量が変化
	し、反応烈が増減して
	いると推定される。

柏崎刈羽原子力発電所6/7号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
資料なし	添付資料 4.1.13		
	使用済燃料プール水の沸騰状態継続時の鉄筋コンクリートへの熱 影響について	38. <u>燃料プール水</u> の沸騰状態継続時の鉄筋コンクリートへの熱影 響について	
	 はじめに 想定事故1及び想定事故2においては、事象発生後、可搬型 代替注水中型ボンブによる代替燃料ブール注水系(注水ライン) を使用した使用済燃料ブールへの注水によって、使用済燃料ブ ールの水位は回復・維持される。 その後、残留熟除去系等の使用済燃料ブールの冷却機能を復 旧することにより、使用済燃料ブールの水温は高温状態が継続する こととなるが、使用済燃料ブールの水温は高温状態が継続する こととなるが、使用済燃料ブールの水温は高温状態が継続する こととなるが、使用済燃料ブールの帯造材であるコンクリート 及び鉄筋は、一般的に温度の上昇と共に強度及び剛性が劣化す る傾向にあるとされている。 このため、使用済燃料ブール水の沸騰状態が長期間継続した 場合の鉄筋コンクリートへの影響について検討した。 使用済燃料ブールへの沸騰状態総統の影響について 使用済燃料ブールは、ステンレス鋼によりライニングされた 構造となっており、重大事故等時に使用済燃料ブール水が沸騰 状態となった場合でも、代替注水設備により使用済燃料ブールへの注水が行われるため、使用済燃料ブールはコンクリートか らの水分逸散のないシール状態が維持される。第1表に示す文 献によると、シール状態が維持されている場合は加熱温度 110℃で加熱期間3.5 年間(又は2 年間)の場合でも、圧縮強 度の低下傾向は認められないとされている。また、加熱による 剛性についても、シール状態が維持された状態において大きな 低下はないとされている。 また、鉄筋については、強度及び剛性はおおむね200℃から 300℃までは常温時の特性を保持するとされている。 以上より、使用済燃料ブール本の沸騰状態が3.5 年間継続 した場合にも、コンクリートの健全性は維持されるものと考え られる。 	 1.はじめに 想定事故1及び想定事故2においては、事象発生後、燃料ブ ールスブレイ系を使用した燃料ブールへの注水によって、燃料 ブールの水位は回復・維持される。 その後、残留熱除去系等の燃料ブールの冷却機能を復旧する ことにより、燃料ブール水温を低下させるが、それまでの間は、 燃料ブールの水温は高温状態が継続することとなるが、燃料ブ ールの構造材であるコンクリート及び鉄筋は、一般的に温度の 上昇と共に強度及び剛性が劣化する傾向にあるとされている。 このため、燃料ブール水の沸騰状態が長期間継続した場合の 鉄筋コンクリートへの影響について検討した。 2.燃料ブールへの沸騰状態継続の影響について 燃料ブールは、ステンレス鋼によりライニングされた構造と なっており、重大事故等時に燃料ブールへの注水が行われる ため、燃料ブールはコンクリートからの水分逸散のないシール 状態が維持される。表1に示す文献によると、シール状態が維 持されている場合は加熱温度110℃で加熱期間3.5年間(又は 2年間)の場合でも、圧縮強度の低下傾向は認められないとさ れている。また、加熱による剛性についても、シール状態が維 持された状態において大きな低下はないとされている。 また、鉄筋については、強度及び剛性はおおむね 200℃から 300℃までは常温時の特性を保持するとされている。 以上より、燃料ブール水の沸騰状態が3.5年間継続した場合 にも、コンクリートの健全性は維持されるものと考えられる。 	

柏崎刈羽原子力発電所6/7号炉(2017.12.20版)	東海第二発電所(2018.9.12 片		島根原子力	P発電所 2号炉		備考
	第1表 高温を受けたコンクリートの圧縮	強度に関する文献	表 1 高温を受けたコンクリ	ートの圧縮強度に関	する文献	
	文献名(出典) 試験条件 温度 期間	- 結果	文献名(出典)	試験条件	結果	
	熱影響場におけるコンクリートの劣化に関 する研究 (第 48 回セメント技術大会講演集 1994) 110℃ 1日~ 一定加熱*1 3.5年間*	シール状態の場合, 圧縮 強度, 剛性の低下は認め られない。 シール状態でない場合, 圧縮強度の低下は認め られないが, 剛性の低下 が認められる。	熱影響場におけるコンクリートの 劣化に関する研究 (第 48 回セメント技術大会講演集 1994)	温度 期间 110℃ 1日~ 一定加熱 ^{※1} 3.5 年間 ^{※1}	シール状態の場合, 圧縮強度,剛性の低 下は認められない。 シール状態でない場	
	 長期間加熱を受けたコンクリートの物性変 化に関する実験的研究 (その1実験計画と結果概要) (日本建築学会大会学術講演梗概集(中国) 1999年9月) 長期間加熱を受けたコンクリートの物性変 化に関する実験的研究 (その2 差 コンクリートの力学等性計算) 	シール状態の場合, 圧縮 強度, 剛性の低下は認め られない。	長期間加熱を受けたコンクリート		 合, 圧縮強度の低下 は認められないが, 剛性の低下が認めら れる。 	
	 結果) (日本建築学会大会学術講演梗概集(中国) 1999年9月) 長期周加熱を受けたコンクリートの物性変 化に関する実験的研究 (その3 耐熱コンクリートの力学特性試験 (日本建築学会大会学術講演梗概集(中国) 110C 1日~ 一定加熱*1 24 ヶ月*1 24 ヶ月*1 	シール状態でない場合, 圧縮強度の低下は認め られないが,剛性の低下 が認められる。	 の物性変化に関する実験的研究 (その1 実験計画と結果概要) (日本建築学会大会学術講演梗概 集(中国)1999年9月) 長期間加熱を受けたコンクリートの物性変化に関する実験的研究 		シール状態の場合, 圧縮強度,剛性の低	
	※1 文献ではこの他にも温度条件等を変え	た実験も実施している	 (その2 普通コンクリートの力 学特性試験結果) (日本建築学会大会学術講演梗概 集(中国)1999年9月) 長期間加熱を受けたコンクリートの物性変化に関する実験的研究 (その3 耐熱コンクリートの力 学特性試験結果) (日本建築学会大会学術講演梗概 集(中国)1999年9月) 	110℃ 1 日~ 一定加熱 ^{*1} 24ヶ月 ^{*1}	下は認められない。 シール状態でない場 合,圧縮強度の低下 は認められないが, 剛性の低下が認めら れる。	
			※1 文献ではこの他にも温度条件	4等を変えた実験も実施し	ている。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 1.3.1		
	有効性評価における機能喪失を仮定した設備一覧について	40. 有効性評価における機能喪失を仮定した設備一覧について	
	做工業。做工業局部提供工具体、投始常用性提供工具体		
	用1衣~用4衣に炉心損傷的止刈束, 格納谷菇破損的止刈束, 使用这牌料プールの牌料提復は止対策及び実転信止中の牌料提復	弗Ⅰ衣~弗4衣に炉心損傷防止対束, 恰納谷奋破損防止対束,	
	使用済然科ノールの燃料損傷防止対束及び運転停止中の燃料損傷	<u> 燃料ノールの</u> 燃料損傷防止対象及の運転停止中の 燃料損傷防止対 第の た 効果 に やの 燃料損傷防止対	
	防止対策の有効性評価の合重要争取シークンス等において機能要	東の月刻性評価の谷里安争战シークンス等にわいく機能喪失を仮 ウトた記供の 覧まごす	
	大を仮正した設備の一覧を示す。	正した設備の一覧を示す。 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
		 ・設備設計の相違 【東海第二】 残留熱代替除去系は炉 心損傷防止の設備として
	 (1/3) 解析上考慮しない主なSA設備 高圧代替注水系 高圧代替注水系 高圧代替注水系 高圧代替注水系 高圧代替注水系 高圧代替注水系 (常設代替高圧電源装置による非常 用決線の受電(~24時間)) 時線の受電(~24時間)) 時に時名加酸能喪失を仮定 ・停止時沿加の機能喪失を仮定 (二/3) 確一覧(1/3) 確析上考慮しない主なSA設備 高圧原子炉代替注水系 	U 172 U N
	(こおける機能喪失を仮定した記 安全機能の喪失に対する仮定等 日毎心スプレイ系 日毎心スプレイ系 日毎心スプレイ系 日毎心スプレイ系 日毎心スプレイ系 日毎心スプレイ系 日毎心スプレイ系 日毎心スプレイ系 日毎心スプレイ系ディーゼル発電機 日毎心スプレイ系ディーゼル発電機 日毎心スプレイ系ディーゼル発電機 「 「 「 「 」 「 」 「 」 」 」 」 」 」 」 」 」 」 」	
	指傷防止対策の有効性評価、 重要事後(給水滤車の全康先) 「「「」」」」」 「「」」」」」」 「「」」」」」」」」 「「」」」」」」」」	
	第1 表 近心 - 高田・街田洋水藏龍農次 - 高田・街田洋水藏龍農疾 - 高田 - 高田 - 一 - 一 - 一 - 一 - 一 - 一 - 一 - 一	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12片)	島根原子力発電所	2号炉 備考
	莆一覧 (2/3) <i>解析上考慮しない主なSA設備</i> (常設代替高圧電源装置による非常 用母線の受電 (~24 時間)) -	 (代替制御棒挿入機能) 一覧(2/3) 解析上考慮しない主なSA設備 常設代替交流電源設備による非 	常用高圧母線の受電 (~24h) 常設代替交流電源設備による非 常用高圧母線の受電 (~24h)	
	 面における機能喪失を仮定した設備 安全機能の喪失に対する仮定した設備 非常用ディーゼル発電機 逃がし安全弁1個期固着 逃がし安全弁1個期固着 適圧炉心スプレイ系ディーゼル発電機 一 残留熱除去系海水系 小発電機海水系、外部電源喪失 大 一 残留熱除去系 	 「平ヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶ	115V - B系所内用蓄電池 230V 系蓄電池 原子炉隔離時冷却系 原子炉隔離時冷却系 部電 非常用ディーゼル発電機 逃がし安全弁1個が開固着 高圧炉心スプレイ系ディーゼル 発電機	
	頃心損傷防止対策の有効性評 重要事故シーケンス等 外部電源喪失 外部電源喪失 DG失敗 逃がし安全弁再閉鎖失敗 出PCS失敗 過渡事象(給水流量の全喪失) RHR失敗 RHR失敗 RHR失敗	 	 源喪失+DG失敗) 直流電源喪失 一 一 全交流動力電源喪失 (外i 源喪失+DG失敗) SRV再閉失敗 HPCS失敗 	
	 第1表 事故シーケンスグループ 全交流動力電源喪失(T BP) - 唐獎熱除去機能喪失(取 	 ・原子炉停止機能喪失 第1表 歩 事故シーケンスグルーン 全交流動力電源喪失 (TBI 	全交流動力電源喪失(TB	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
	 備一覧 (2/3) 解析上考慮しない主なSA設備 (希設代春崎圧電源装置による非常 (希設代春崎正憲憲装置による非常 (代春制御棒挿入機能) (代春制御棒挿入機能) (代春制御棒挿入機能) (代春制御棒挿入機能) (代春制御棒挿入機能) (代春制御棒挿入機能) 	
	(面における機能喪失を仮定した設 安全機能の喪失に対する仮定等 非常用ディーゼル後電機 進必じ次全弁1個開固着 適圧炉心スプレイ系ディーゼル後電機 意圧炉心スプレイ系ディーゼル後電機 意用炉心スプレイ系ディーゼル後電機 たすーゼル発電機満水系,外部電源環 大・一ゼル発電機満水系,外部電源環 大・一ゼル発電機満水系,外部電源環 大・一ゼル発電機満水系,外部電源環 大・一ゼル経電機消水系,外部電源環 大・一ゼル経電機消水系,外部電源 大・一世ル発電機消水系,外部電源環 人、 「「「「」」」	
	「「小損傷防止対策の有効性評 ● 「「「」」」 ● 「」」 ● 「」」 ● 「」」 ● 「」 ● 「」 ● 「」 ● 「」 ● 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」	
	第1 歩 (18) (18) (18) (18) (10) (11)	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
--------------------------------	--	--
		 ・記載方針の相違 【東海第二】 「安全機能の喪失に対する仮定等」には機能喪失するSA設備は記載しない
	 一た設備一覧(1/2) 一一一一次にはない主なS 格納容器下部注水系(電設) 格約容器下部注水系(電設) 小谷辺,停止時沿却の機能漫大系(電設) 原田原子与代替注水系(電設) 原田原子与代替注水系(電設) 原田原子与代替法水系(電設) 原田原子系(原子系(原表)) 原田原子系(原子系(原子系)) 	
	 (面によおける機能の喪失に対する仮定等 安全機能の喪失に対する仮定等 安全機能の喪失に対する仮定等 正行やシスプレイ系 正行やシスプレイ系 一一 二、中国、大学、大学、大学、 二、中国、大学、 (原田市大米米、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	
	破損防止対策の有効性評 重要事核シーケンス等 正気心治却失敗 日気心治却失敗 日気心治者失敗 日気心治者失敗 日気心治者失敗 日気心治者失敗 日気心治者失敗 日気治疗患者 日気心治者失敗 日気心治者失敗 日気治疗患者 日気治疗患者 日気湯 日気治疗患者 日気湯 日気 日気湯 日気	
	第111111111111111111111111111111111111	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	
	 「備一覧 (2/2) 「確析上考慮しない主なSA設備 高圧代替注水系 高圧代替注水系(常設)^{※3} 低圧代替注水系(常設)^{※3} 代替循環治却系(原子炉注水)^{※3} (特上時冷却の機能喪失を仮定 (禁止ない) 	 した設備一覧 考慮しない主なSA設備 考慮しない主なSA設備 予慮しない主なSA設備 予節代替注水系(常設) 子炉代替注水系(常設) 代替除去系(第設) 代替除去系(原子炉注水) 	
	1効性評価における機能喪失を仮定した設 安全機能の喪失に対する仮定体 (失) - 高圧炉心スプレイ系 原子炉隔離時治却系 低圧炉心スプレイ系 残留熱除去系(低圧注水系) ^{*1} 全交流動力電源喪失(外部電源喪失) 残留熱除去系海水系 ^{*2} 務納容器スプレイ,サプレッション・プール冷 各納容器スプレイ,サプレッション・プール冷	 第の有効性評価における機能喪失を仮定 一 二 二<td></td>	
	第2表格納容器破損防止対策の有格納容器破損防止対策の有格納容器破損モード 重要事故シーケンス等 時海海路城損モード 重要事故シーケンス等 時期気直接加熱 過渡事象(給水流量の全喪 意圧炉心冷却失敗 高圧炉心冷却失敗 高圧炉心冷却失敗 高圧炉心冷却失敗 一 1五作用 1五作用 水倉留熱除去系(低圧注水系)の機能喪失に伴い,格 緊急用滴水系を優先して使用するため,残留熱除去 原子炉圧力容器破損前	第2表格約容器破損モード 格納容器破損モード 素囲気圧力・温度による静的負荷 大被断LOCA (格納容器過圧・過温破損)(残 た素燃売 水素燃焼 水素燃焼 水素燃焼 水素燃焼 水素燃焼 水素燃焼 水素燃焼 水素燃度 水素燃焼 水素燃度 水素燃度 水素燃度 水素燃度 水素燃度 水素燃度 水素燃度 水素燃度 水素燃度 水素の 水素 水酸 加合 (格納容器過圧・過温破損)(残 定CS注水機 合) 素囲気による静的負荷 大破断LOCA 一 一 一 一 一 一 一 一 一 一 一 一 一	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			・設備設計の相違 【東海第二】
	奥失を仮定した設備一覧(1/1) 解析上考慮しない主なSA設備 常設低圧代替注水系ポンプによる代替燃料 プール注水系(注水ライン) 可搬型代替注水大型ポンプによる代替燃料 プール注水系(可搬型スプレイノズル) 前搬型代替注水天型ポンプによる代替燃料 プール注水系(可搬型スプレイノズル) 可搬型代替注水大型ポンプによる代替燃料 プール注水系(可搬型スプレイノズル)	<u> 現 大 え 仮 定 し た 設 備 一 覧</u>	
	 上対策の有効性評価における機能 安全機能の喪失に対する仮定等 残留熱除去系 燃料プール治却浄化系 補給水系 補給水系 補給水系 補給水系 	 1上対策の有効性評価によいうる機能 ・ーケンス等 安全機能の喪失に対する(反応等 (※ 料ブール治規系 (※ 料ブール油船 (※ 料ブール補給水系 (※ 料ブール補給水系) 	
	燃料プールの燃料損傷防」 重要事故シーケンス等 冷却機能喪失及び注水機 能喪失 谷却機能喪失及び注水機 能喪失	 	
	第3表使用済 · · ·	第 3 天 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	3 <td>備考 ・設備設計の相違 【東海第二】</td>	備考 ・設備設計の相違 【東海第二】
	第4 表 運転停止中の燃料損傷防止対策の有効性評価における機	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		実用発電用原子炉に係る炉心損傷防止対策及び格納容器	
		破損防止対策の有効性評価に関する審査ガイド(改正 平	
		成 29 年 11 月 29 日 原子力規制委員会決定) 抜粋	
		 砂山の石山、ガボの「小山、山、山、山、山、山、山、山、山、山、山、山、山、山、山、山、山、山、山、	

柏崎刈羽原子力発電所 6	ⅰ/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			添付資料 1.2.1		
			外圧支配事象における燃料被覆管の健全性について	45. 外圧支配事象における燃料被覆管の健全性について	
			事故シーケンスグループ「原子炉停止機能喪失」のような外圧	事故シーケンスグループ「原子炉停止機能喪失」のような外圧	
			支配事象において高温高圧状態が継続する場合の燃料被覆管の健	支配事象において高温高圧状態が継続する場合の燃料被覆管の健	
			全性について説明する。	全性について説明する。	
			1. 有効性評価結果	1. 有効性評価結果	
			原子炉停止機能喪失により燃料被覆管表面で沸騰遷移(ドライ	原子炉停止機能喪失により燃料被覆管表面で沸騰遷移(ドライ	
			アウト)が発生し、燃料被覆管温度及び燃料被覆管にかかる圧力	アウト)が発生し、燃料被覆管温度及び燃料被覆管にかかる圧力	
			が上昇しリウェットする場合,燃料被覆管表面最高温度 <u>約870℃</u> ,	が上昇しリウェットする場合,燃料被覆管表面最高温度 <u>約 818℃</u> ,	・解析結果の相違
			燃料被覆管外圧 <u>約 8.2MPa</u> (内外圧差: <u>約 6.4MPa</u>)の状態が <u>20 秒</u>	燃料被覆管外圧約 8.9MPa(内外圧差:約 7.1MPa)の状態が <u>4秒</u> 程	【東海第二】
			程度継続する解析評価結果を得ている。	度継続する解析評価結果を得ている。	
			2. 高温高圧時の燃料被覆管の健全性について	2. 高温高圧時の燃料被覆管の健全性について	
			(1) 出力 - 冷却不整合時の燃料健全性について	(1) 出力 - 冷却不整合時の燃料健全性について	
			出力-冷却不整合(以下「PCM」(Power Cooling Mismatch)	出力-冷却不整合(以下「PCM」(Power Cooling Mismatch)	
			という。)時の燃料のふるまいについて以下のとおり整理した。	という。)時の燃料のふるまいについて以下のとおり整理した。	
			PCMにより膜沸騰を開始した燃料被覆管は、燃料被覆管温度	PCMにより膜沸騰を開始した燃料被覆管は,燃料被覆管温度	
			の上昇により 900℃以上になると、ジルコニウム-水反応が進行	の上昇により 900℃以上になると、ジルコニウム-水反応が進行	
			し、燃料被覆管表面に酸化膜が生成され、酸化の進行に伴い燃料	し、燃料被覆管表面に酸化膜が生成され、酸化の進行に伴い燃料	
			被覆管の脆化が進行することが知られている。また、燃料被覆管	被覆管の脆化が進行することが知られている。また、燃料被覆管	
			温度の上昇により燃料被覆管の強度が低下し、外圧支配であるこ	温度の上昇により燃料被覆管の強度が低下し、外圧支配であるこ	
			とから燃料被覆管内側へのつぶれ変形が発生する可能性がある	とから燃料被覆管内側へのつぶれ変形が発生する可能性がある	
			[1] °	[1] °	
			PCM時の燃料破損は,沸騰遷移が生じ燃料被覆管が高温とな	PCM時の燃料破損は、沸騰遷移が生じ燃料被覆管が高温とな	
			り酸化脆化することが主な原因であり、沸騰遷移により高温を持	り酸化脆化することが主な原因であり、沸騰遷移により高温を持	
			続した場合の燃料健全性について以下に示す。	続した場合の燃料健全性について以下に示す。	
			一時的に沸騰遷移が発生しても速やかに原子炉出力が低下してリ	一時的に沸騰遷移が発生しても速やかに原子炉出力が低下してリ	
			ウェットする事象発生時の燃料健全性に関する炉内試験結果を第	ウェットする事象発生時の燃料健全性に関する炉内試験結果を第	
			1 図に示す[2]。	1図に示す[2]。	
			第1図より、本解析評価結果(燃料被覆管表面最高温度約	第1図より,本解析評価結果(燃料被覆管表面最高温度 <u>約818℃</u> ,	・解析結果の相違
			<u>870℃</u> ,持続時間 <u>20秒</u>)において,燃料被覆管は健全であると考	持続時間 <u>4秒</u>)において,燃料被覆管は健全であると考えられる。	【東海第二】
			えられる。このことは、後述の(3)のハルデン炉を用いた沸騰遷移	このことは、後述の(3)のハルデン炉を用いた沸騰遷移試験からも	
			試験からもわかる。	わかる。	
			なお,文献[2],[3]において,第1図の結果等を元に沸騰遷	なお,文献[2],[3]において,第1図の結果等を元に沸騰遷	
			移時の燃料健全性に関する整理及び適用の妥当性の検討が行われ	移時の燃料健全性に関する整理及び適用の妥当性の検討が行われ	
			ている。	ている。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	1800 0 <td< td=""><td>第1 図 沸騰遷移発生後の燃料健全性に関する炉内試験結果^[2]</td><td></td></td<>	第1 図 沸騰遷移発生後の燃料健全性に関する炉内試験結果 ^[2]	
	 (2) 化学量論的酸化量(以下「ECR」という。)について PCMの破損モードである酸化脆化に関し、本解析評価におけ るECRを評価した。原子炉停止機能喪失による燃料被覆管表面 での沸騰遷移の発生により燃料被覆管が高温維持された場合の9 ×9燃料(A型)被覆管の酸化割合について、Baker-Jus tの式^[4]に基づき評価した結果を、第2 図に示す。参考にCat h cartの式^[5]に基づく評価結果も示す。 燃料被覆管表面最高温度<u>約870℃</u>,持続時間<u>20秒</u>であれば、E CRは<u>約0.3%</u>であり、沸騰遷移期間中に燃料被覆管母材に取り 込まれる酸素の量は少なく、燃料被覆管の酸化による脆化が問題 になることはない。また、この温度及び持続時間では、ECRが LOCA時の燃料被覆管脆化破損の判断基準である15%に達する までに十分な余裕があるため、つぶれ変形が生じたとしても、燃 料被覆管の健全性は維持されると考えられる。 	 (2) 化学量論的酸化量(以下「ECR」という。)について PCMの破損モードである酸化脆化に関し、本解析評価におけ るECRを評価した。原子炉停止機能喪失による燃料被覆管表面 での沸騰遷移の発生により燃料被覆管が高温維持された場合の9 ×9燃料(A型)被覆管の酸化割合について、Baker-Jus tの式^[4]に基づき評価した結果を、第2図に示す。参考にCat h cartの式^[5]に基づく評価結果も示す。 燃料被覆管表面最高温度約818℃,持続時間<u>4秒</u>であれば、E CRは 0.1%以下であり、沸騰遷移期間中に燃料被覆管母材に取 り込まれる酸素の量は少なく、燃料被覆管の酸化による脆化が問 題になることはない。また、この温度及び持続時間では、ECR がLOCA時の燃料被覆管脆化破損の判断基準である15%に達す るまでに十分な余裕があるため、つぶれ変形が生じたとしても、 燃料被覆管の健全性は維持されると考えられる。 	・解析結果の相違 【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
	<figure><figure></figure></figure>	1200 0
	 (3) ハルデン炉を用いた沸騰遷移試験によるつぶれ変形について本解析評価に近い条件に基づく沸騰遷移試験における燃料の変化について参考に示す。 BWR燃料の未照射燃料棒及び照射燃料棒(燃料棒燃焼度は22GWd/t~40GWd/t)を用い,高温,外圧支配時の沸騰遷移試験を行った^[6]。 [照射条件] a.燃料被覆管表面最高温度:977℃以上(試験後のprior-β相形成より推定) b.沸騰遷移積算時間:約49秒*1 ※1 熱電対での燃料被覆管表面温度が断続的に600℃~720℃を記録した時間の合計。ただし,熱電対先端と溶接位置の関係から,燃料被覆管表面温度の過小評価が考えられ及 	 (3) ハルデン炉を用いた沸騰遷移試験によれ本解析評価に近い条件に基づく沸騰遷移 化について参考に示す。 BWR燃料の未照射燃料棒及び照射燃料 22GWd/t~40GWd/t)を用い,高温,外圧 を行った^[6]。 〔照射条件〕 a.燃料被覆管表面最高温度:900℃以上 形成より推定) b.沸騰遷移積算時間:約49秒*1 ※1 熱電対での燃料被覆管表面温度が断た時間の合計。ただし,熱電対先端と 燃料被覆管表面温度の過小評価が考
	 ・ ・ ・	照射条件のa.及びb.を経験した 管外観写真と直径測定結果を第3図に この試験燃料棒のドライアウト領域 覆管外圧:約7MPa,内外圧差:約6. ット間の局所的なつぶれ変形(燃料ペ 下端チャンファ)位置に沿った,燃料 20µm~約50µmの食い込み)があり

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		厚さ及び水素吸収量の僅かな増加,燃料被覆管の脆化による	膜厚さ及び水素吸収量の僅かな増加、燃料被覆管の脆化によ	
		引張強度・延性の僅かな低下,燃料被覆管の酸化膜の剥離が	る引張強度・延性の僅かな低下、燃料被覆管の酸化膜の剥離	
		見られたものの、リウェット時の熱衝撃によっても燃料棒は	が見られたものの、リウェット時の熱衝撃によっても燃料棒	
		非破損であったとの結果が得られている。	は非破損であったとの結果が得られている。	
		and the second of the second o		
		12.8	12.8	
		12.7 Lower Upper	12.7 Lower Upper	
		E 12.6 § 12.6 May man man man man man	12.6 mananananananananananananananananananan	
		12.8 0 200 400 800 1000	12.3 0 200 400 600 800 1000	
		第3図 試験燃料棒の燃料被覆管外観写真と直径測定結果	第3図 試験燃料棒の燃料被覆管外観写真と直径測定結果	
		上記の試験に本解析評価条件は同等と考えられ、また、現	上記の試験に本解析評価条件は同等と考えられ、また、現	
		在使用している燃料棒(9×9燃料)は、より高密度のペレ	在使用している燃料棒(9×9燃料)は,より高密度のペレ	
		ット採用により焼きしまりが小さくなっており、軸方向の燃	ット採用により焼きしまりが小さくなっており、軸方向の燃	
		料ペレット間の大きな間隙が発生し難くなっているため,燃	料ペレット間の大きな間隙が発生し難くなっているため,燃	
		料被覆管のつぶれ変形によって貫通破損が生じる可能性は小	料被覆管のつぶれ変形によって貫通破損が生じる可能性は小	
		さいと考えられる。	さいと考えられる。	
			3 ペレットー被覆管相互作用(PCI)について	 記載方針の相違
			第4 図に原子炉停止機能喪失の評価における燃料被覆管温度の	【東海第二】
			1次ピーク発生位置での燃料棒温度の時間変化を示す。第4図に	島根2号炉は、PCI
			示すように,事象初期にペレット平均温度は約 520℃上昇してい	によって燃料が破損しな
			る。	い理由を記載している。
			第5図に UO2ペレットの熱膨張ひずみの温度依存性を示す。事	
			象初期のペレット平均温度の上昇約 520℃に対するペレットの熱	
			膨張ひずみの増加は、約 0.7%に相当する。したがって、ペレッ	
			トの熱膨張の増加による被覆管のひずみの増加は、ペレットー被	1
			覆管機械的相互作用(PCMI)による破損に対する判断基準で	
			ある被覆管1%塑性ひずみより小さいと考えられる。	
			また、ペレットー被覆管化学的相互作用(PCCI)を考慮し	1
			ても、出力が上昇している期間が15秒程度と短く、被覆管の応力	1
			腐食割れ(SCC)の進展による破損も生じないと考えられる。	1
			事象初期の出力上昇が収束した後は、ペレット平均温度は事象	1

 東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
	発生前の温度より低いため、PCIが生じ
	れる。
	2500
	2000
	(Q)
	型 1500 月
	▲ 1000 ペレット中心温度
	500 ペレット外面温度
	· · · · · · · · · · · · · · · · · · ·
	0 100 200 事故後の時間(s)
	第4図 燃料棒温度の時間変化(1次)
	0.040 Model prediction
	1 standard error o Data
	0.035 -
	0.050
	0.030
	0.025
	間 0.020
	0.015
	0.010
	0.005
	温度 (K)
	 第5図 UO ₂ ペレットの熱膨張

 e. 出版市のサーマルウェックについて 出版市教会場下でいったなににの「日本教会教師」の「日本日の支援のなどで、 品格の教育教育会社会社」の「日本日の支援のなどで、 品格教育教育会社会社」の工作者教育教育会社会社。 品の教育教育会社会社」の工作者教育教育会社会社。 この教育教育会社会社」の工作者教育教育会社会社。 この教育教育会社会社」の工作者教育教育会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社	4.軸方向のサーマルショックについて 燃料の事故時健全性確認を目的に実施された、リウェット時の 軸方向拘束条件下での急冷破断試験 ^{[3][9][00][11]} の知見をもとに、 島根2号炉TCシーケンスにおける軸方向のサーマルショックに よる燃料破損の可能性を検討した。以下に急冷破断試験の概要を マーマ・ション (1) PWR ^[8] ・未照射で、ECRが約10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では、試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束した。といわことも	
 中心可能快速を加加しな利用しては、またしたり、リアレスなおから、リターント時か 物力の可要なが「日本のしてのないない」の「ローマルションの」に ここれでする利用していークンスにながく利用したいた。 これていためのではかい このではないためのしていための「日本の」ののの日本のから、「日本の のためのではかいための」である「日本の」ののの日本のから、「日本の日本のの日本のの日本のの日本のの日本のの日本のの日本のの日本のの日本のの	燃料の事故時健全性確認を目的に実施された、リウェット時の 軸方向拘束条件下での急冷破断試験 ^{[3][9][0][11]} の知見をもとに、 島根2号炉TCシーケンスにおける軸方向のサーマルショックに よる燃料破損の可能性を検討した。以下に急冷破断試験の概要を 示す。 < <	
はり、前原以金や「空空の大規構と発信」(1)11月10月のためによど、 読むさきないました。 読むさせていっついたいけうなしがのいい、いんだーの少し、 こも想料な気の可能性を接出した。以下に大会へ結果を決議の構築と 、、、、 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	軸方向拘束条件下での急冷破断試験 ^{[8][9][10][11]} の知見をもとに、 島根2号炉TCシーケンスにおける軸方向のサーマルショックに よる燃料破損の可能性を検討した。以下に急冷破断試験の概要を 示す。 < <	
 あゆえる林では、マシンスにおける私の様のシーマルとニックに よる為れな思うい能性大統にした。以下に会かな防治状況が改めた なた。 (1) PVR¹³ ・未知時で、たて名が前にかっなのクマス教育学が出いられた。 ・会件徴が見なたは、報知処理(201巻からにしかる料約の単方内 必定な安全に専用に合う(1000)ででありまたが利用した。 (2) B 2010101 ・スパス・ライブシックカ びにないてごかた現実すで的は、E000 * スパス・ライブシックカ びにないてごかた現実すでのは、E000 * スパス・ライブジョクカ いたいたいでありための * このためが可能にないないための * このための * このため * このため	島根2号炉TCシーケンスにおける軸方向のサーマルショックに よる燃料破損の可能性を検討した。以下に急冷破断試験の概要を 示す。 <<< 合冷破断試験の概要> (1) PWR ^[8] ・未照射で, ECRが約 10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では, 試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重	
 たる熱味(g)の(金融・各情)した。(3)トド 気の((部の) (部を))、 く焼ん切び(気の)の(部へ)(50)の(FWR 低制中の)(1)、 (1) FWR 11 ・ 未見ない ここに Sがわしくの((部の) FWR 低制中の)(1)、 ・ 木 24 (1)、 ここに Sがわしくの((部の) FWR 低制中の)(1)、 ・ 木 24 (1)、 ここに Sがわしくの((市))、 ・ 木 24 (1)、 ここに S(1)、 ・ スイン・ 2 (1)、 2 (1)、 (1)、 ・ スクル((市))、 (1)、 (1)、 (1)、 ・ スクル((市))、 (1)、 (1)、 (1)、 ・ たい ・ たい	よる燃料破損の可能性を検討した。以下に急冷破断試験の概要を示す。 < <	
 新史: 二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	示す。 <急冷破断試験の概要> (1) PWR ^[8] ・未照射で, ECRが約 10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では,試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重	
 <a href="https://www.setup.se</th><th><急冷破断試験の概要> (1) PWR^[8] ・未照射で, ECRが約10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では,試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重</th><th></th>	<急冷破断試験の概要> (1) PWR ^[8] ・未照射で, ECRが約10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では,試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重	
 (1) PWK^{IC} ・東京都市支援では、2005年後日により海洋地で加方内 水やごつた地市になか(図7条例)により海洋地であ方向 水やごつた地市にない(図7条例)により海洋地で高速検索で開始し、BF マインジェクジックが与えるわた。 (2) BWK^{IC} ・スインジェクジックトがにおいて高速検索で開始し、BF が10~2050 BWR機構想(1.2 R T I ~ I. Z R T I ~ Z R T R T ~ Z R T R T ~ Z R T	 (1) PWR^[8] ・未照射で, ECRが約 10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では,試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重 	
 ・ 東京はで、下く下が通りの一体のためて数な数料成が用いたなた。 ・ 治疗後期発気(加いためなた)、 ・ 治疗後期発気(加いためなた)、 ・ 治疗後期発気(加いためなた)、 ・ 治疗後期発気(加いためなた)、 ・ 治疗(加)・(1)・(1)・(1)・(1)・(1)・(1)・(1)・(1)・(1)・(1	 ・未照射で, ECRが約10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では, 試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重 	
 ・ 合か使動発展では、教授医型(第6 季約)により他の特徴を知られた。 ・ 合か使動発展において高級技巧に対し、して、 を伴うり、マネシャックが与えられた。 ・ スイス・ライブシュタット間において高級技巧に関係し、DLR が 10-0000 UW 民族神経 (L Z K T 1 ~ L Z K T 4) が用い うわた。 ・ 令 冷漠動式酸では、武策技術(L Z K T 1 ~ L Z K T 4) が用い うわた。 ・ 令 冷漠動式酸では、武策技術(L Z K T 1 ~ L Z K T 4) が用い うわた。 ・ 令 冷漠動式酸では、武策技術(L Z K T 1 ~ L Z K T 4) が用い うわた。 ・ 令 冷漠動式酸では、武策技術(L Z K T 1 ~ L Z K T 4) が用い うわた。 ・ 令 冷漠動式には、 のの目前になった。 ・ 令 冷漠動式には、 のの目前になった。 ・ 令 冷漠動式には、 のの目前にないためたで、 のの目前にないためた。 ・ の のの目前にないためたで、 のの目前にないためためて、 のの目前にないためためて、 のの目前にないためためて、 のの目前にないためためて、 のの目前にないためた。 ・ 分 の ののの のの目前にないためためて、 のの目前にないためて、 のの目前にないためて	・急冷破断試験では,試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重	
 変体を完全に拘束し急冷(は7を%形)により独方向に大きな含重 を伴うが、マルショックが与えられた。 (2) R NR ⁽²⁾(10) スイス・ケイブシュクットがにおいて高速施圧まで振見し、DR が 10~2000 DK K燃料棒 (LZ RT 1~LZ RT 4) が用い のれた。 命冷破紛発度では、放取装置 (図6 参照)により触対体の地方 向変位を恢复し急冷(図8 参照)により触対向に大きな背重を 伴うサーマルショックが与えられた。 (3) R NK 近日の (4) のでののののののののののののののののののののののののののののののののののの	変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重	
 を伴うや・マルショックが与えられた。 (2) BWR⁽¹⁾⁽¹⁰⁾ 010 (スイ、ジイアショクット時において高燃焼度まで発行し、DR が10~20503 BWR燃料等(LZRT1~LZRT4)が用い られた。 令が後期不験では、試験報道(図6 参照)により触ち向に大きな荷蓋を 作うサーマルショックが与えられた。 (3) 合が後期不動では、試験報道(図6 参照)により触ち向に大きな荷蓋を 作うサーマルショックが与えられた。 		
 (2) BWR⁽⁰⁾⁽⁰⁾⁽⁴⁾ スイス・ライブシュタット与において高速地定まで取射し、取用 が10-20050 HWR燃料棒(L2RT1~L2RT1)が用い られた。 合冷破防戦では、武敏速証(図6 参照)により燃料棒の地方 向速位を拘束し合わて(図8 参照)により執力向に大きな両面を 伸うサーマカショックが与えられた。 	を伴うサーマルショックか与えられた。	
 ・スイス・ライブシェクット炉(において高燃焼度まで焼射し、BQR が10~200のBWR燃料体(LZRT1~LZRT4)が用い らわた。 ・命冷破防決験では、決験装置(図6参現)により熱対向に大きな荷重を 作うジーマルショックが与えられた。 ・面容破防決験では、決験装置 ・面容破防決験では、実験装置 	(2) BWR ^{[9][10][11]}	
が10~20%のBWR機料種(1.2.RT1~1.2.RT4)が用い しれた。 ・急冷破財務項では、鉄酸装置(図6参照)により敷対陣の職方 向変位を何東し急冷(図8参照)により敷対陣に大きな荷重を 伴うサーマルショックが与えられた。	・スイス・ライプシュタット炉において高燃焼度まで照射し、ECR	
られた。 ・ 念介徴断決策では、試験装置(図 6 参照)により燃み特部の軸方 向変位を拘束し急谷(図 8 参照)により燃力向に大きな併重を 伴うサーマルジョックが与えられた。 「Game and load cell Suther Units and cell Suther Units and cell Suther Entered Suther Entered Maundo on secult Entered Maundo on secult Entered Maundo on secult	が 10~20%のBWR燃料棒(LZRT1~LZRT4)が用い	
 ・ 治冷叙時試験では、試験装置(図6 参照)により強力特に大きな責重を 市の変位を拘束に気着(図8 参照)により強力特に大きな責重を 伴うサーマルショックが与えられた。 ・ 「「「「「「」」」」」 ・ 「」」 ・ 「」」 ・ 「」」 ・ 「」」 ・ 「」 ・ 「」」 ・ 「」 ・ 「」」 ・ 「」 ・ ・ ・	られた。	
的変位を拘束し急冷(図 8 参照)により 軸方向に大きな荷重を 住うウーマルショックが 5 えられた。	・急冷破断試験では、試験装置(図6参照)により燃料棒の軸方	
伴うサーマルショックが与えられた。 (4) サーマルショックが与えられた。 (4) Grabing device Subject Subject	向変位を拘束し急冷(図8参照)により軸方向に大きな荷重を	
(a) Grabbing device aupply system Upper and pase upper system Upper s	伴うサーマルショックが与えられた。	
	(a) Grabbing device and load cell usupply system Usupply system	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号
				2000 Y 1600 1200 Support 1200 Cladding Quench rupture flooding water
				0 100 200 30 Time (s) 第7図 PWR燃料の温度履 ²⁰⁰⁰ ⁶⁰⁰ ⁵ 1200 ⁶⁰⁰ ⁶⁰⁰ ⁶⁰⁰ ⁶⁰⁰ ⁶⁰⁰ ⁶⁰⁰
				第8図 BWR燃料の温度履 <急冷破断試験結果> (1) PWR 急冷破断試験の結果を図9に示す。ECF は,完全拘束条件下で約600℃の急冷による 受けても健全であった。
				40 (d) Fully res 5 30 5 20 10 0 5 5 0 10 0 5 5 0 10 0 5 0 10 1
				図9 PWR燃料棒の軸方向完全拘 急冷破断試験結果

柏崎刈羽原子力発電所	6/7号炉	(2017, 12, 20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
	-, -,				(2) BWR	
					急冷破断試験の結果を図10に示す。530Nの軸方向拘束力条件	
					下でECRを約10%~20%としても、被覆管の破断はなくサーマル	
					ショックを受けても燃料は健全であった。	
					注記:青枠で囲んだ試験がBWR燃料被援管の結果を示す。 50 日 #破断 日 #破断 日 #破断 日 #破断 日 #破断 日 #破断 日 #破断 日 #破断 日 # 0 1 1 100 1 1 100 1 10	
					初期水素濃度 (wppm)	
					第10図 BWR/PWR燃料棒の軸方向拘束条件下での	
					急冷破断試験結果試験装置	
					BWRでけ燃料棒の軸方向移動がスペーサたどで妨げられたい	
					ため 軸方向の大きた荷重 (拘束力) が発生する可能性け小さい	
					が島根2号炉のTCシーケンスにおいて一軸方向完全拘束条件	
					を想定し仮にサーマルショックを受けたとしても ECRは0 1%	
					以下(図2参照)であり、急冷による温度差はPWR急冷破断試	
					験よりも低い約 510℃(図 4 参照)であるため、燃料は健全であ	
					ると考えられる。	
			3. まとめ		5. まとめ	
			外圧支配条件の下,燃料被覆管:	表面最高温度約 870℃を 20 秒程	^	・解析結果の相違
			度継続しても、燃料は健全である	と考えられる。	度継続しても、燃料は健全であると考えられる。	【東海第二】
			4. 文献		6. 文献	
			[1] 軽水炉燃料のふるまい(平凡	成 25 年 3 月 公益財団法人原子	[1] 軽水炉燃料のふるまい(平成 25 年 3 月 公益財団法人原子	
			力安全研究協会)		力安全研究協会)	
			[2] 日本原子力学会標準「BWR	Rにおける過渡的な沸騰遷移後の	[2] 日本原子力学会標準「BWRにおける過渡的な沸騰遷移後の	
			燃料健全性評価基準:2003」		燃料健全性評価基準:2003」	
			[3] 沸騰遷移後燃料健全性評価会	分科会報告書(平成 18 年 6 月	[3] 沸騰遷移後燃料健全性評価分科会報告書(平成18年6月29	
			29 日 原子力安全委員会了承	<)	日 原子力安全委員会了承)	
			[4] L.Baker, Jr. and L. C. J	Just," Studies of Metal-Water	[4] L.Baker, Jr. and L. C. Just," Studies of Metal-Water	

5炉	備考
I. Experimental and	
m- Water Reaction",	
letal-Water Oxidation	
ORNL/NUREG-17, Aug.	
VR燃料のふるまい(日	
)3)	
1発電所 燃料の設計手	
<u>)53 訂2, 平成11年2月</u>	
e-hydrided Zircaloy-4	
litions", Journal of	
2], 209-218 (2005)	
avior of High Burn-up	
, Journal of Nuclear	
-769 (2009)	
等委託費(燃料等安全	
立研究開発法人日本原	
· 青,「原子刀施設等防	
家儿子美(半成28年度	
无用光懱悟女王听先	