| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                      | 備考            |
|--------------------------------|---------------------|-------------------------------------------------------------------|---------------|
|                                |                     | 別紙-2                                                              |               |
|                                |                     |                                                                   |               |
|                                |                     | 極小飛来物の衝突に対する施設への影響について                                            | ・資料構成の相違      |
|                                |                     |                                                                   | 【柏崎 6/7,東海第二】 |
|                                |                     | 砂利等の極小飛来物及び砂等の粒子状の極小飛来物について、                                      | 島根2号炉は砂利等の    |
|                                |                     | 外部事象防護対象施設への影響の有無を確認する。                                           | 極小飛来物の衝突に対    |
|                                |                     | 砂利及び砂等の飛来物による外部事象防護対象施設への影響と                                      | する影響を記載       |
|                                |                     | しては、                                                              |               |
|                                |                     | (1) 砂利,ひょう等の極小飛来物による貫通及び衝突                                        |               |
|                                |                     | (2) 砂等の粒子状の極小飛来物による目詰まり、閉塞及び噛                                     |               |
|                                |                     | 込み                                                                |               |
|                                |                     | が考えられることから、これらについて評価する。                                           |               |
|                                |                     | (1)砂利,ひょう等の極小飛来物による施設への影響につい                                      |               |
|                                |                     | ては、衝撃荷重 ₩ 及び鋼板に対する貫通力のいずれの観点におい                                   |               |
|                                |                     | ても無視し得ると考えられる。この理由を以下に示す。                                         |               |
|                                |                     | a 極小飛来物に上ろ衝撃荷重 W.                                                 |               |
|                                |                     | 砂利でたう等の極小飛来物の衝突は瞬間的で衝突時間が極                                        |               |
|                                |                     | めて短いため、施設は振動しにくく破壊は生じないと考えられ                                      |               |
|                                |                     | る。これは、高速の極小飛来物が施設に衝突した場合、施設に                                      |               |
|                                |                     | 生じる荷重は衝突時間の極めて短い片振幅波形となるため、施                                      |               |
|                                |                     | 設に有意な変位(応力)が生じないためである。                                            |               |
|                                |                     | このような衝撃により伝達される荷重については、機械工学                                       |               |
|                                |                     | 便覧の「過渡振動・衝撃」に、図1のとおり示されている。                                       |               |
|                                |                     | 図1は、横軸には衝突時間(tr)と衝突される施設の固有周期                                     |               |
|                                |                     | (T)との比である tr/T, 縦軸は応答加速度 <b>x<sub>max</sub> (施設に伝わっ</b>           |               |
|                                |                     | た加速度)と入力加速度 <i>x<sub>0max</sub>(施設へ伝えようとした加速度)</i>                |               |
|                                |                     | の応答加速度比として, $\ddot{x}_{max}/\ddot{x}_{0max}$ の関係としてまとめられて         |               |
|                                |                     | いる。                                                               |               |
|                                |                     | 図1より、衝撃パルスの形状によって関数形は異なるものの、                                      |               |
|                                |                     | 衝突物の入力加速度x <sub>0max</sub> と被衝突構造物の応答加速度x <sub>max</sub> の比       |               |
|                                |                     | ( x <sub>max</sub> /x <sub>0max</sub> )が、衝突時間 tr と被衝突構造物の固有周期 T の |               |
|                                |                     | 比(tr/T)に依存していることを示している。衝突時間 tr が                                  |               |
|                                |                     | 被衝突構造物の固有周期 T より小さいときには、衝撃パルスの                                    |               |
|                                |                     | 形状によらず応答加速度 は入力加速度 を下回っており,特に                                     |               |

| 柏崎刈羽原子力発電所 6/7号炉 | (2017. 12. 20 版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 備考 |
|------------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                  |                  |                     | 衝突時間が非常に短く衝突時間と被衝突構造物の固有周期の比                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                  |                  |                     | (tr/T)が非常に小さい場合,入力加速度と被衝突構造物の応                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                  |                  |                     | 答加速度の比(x <sub>max</sub> /x <sub>0max</sub> )は非常に小さい値となる。これは衝                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                  |                  |                     | 突時間が被衝突構造物の固有周期に比べて小さい値をとる場合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                  |                  |                     | には、衝突物から非衝突物に伝達されるエネルギが小さく、施                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                  |                  |                     | 設に有意な変位(応力)が生じないことを示している。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                  |                  |                     | $1 + \frac{1}{10}$<br>$1 + \frac{1}{10}$<br>1 |    |
|                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                  |                  |                     | 図1より,飛来物の速度が速くて,衝撃パルスの作用時間(tr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                  |                  |                     | が施設の固有周波数より短い場合(横軸が1より小さい場合)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                  |                  |                     | には,入力加速度と応答加速度の比は1を下回り,エネルギの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                  |                  |                     | 伝達は小さくなることがわかる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                  |                  |                     | 砂利やひょう等の極小飛来物による荷重は、このような短時                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                  |                  |                     | 間の衝突となるため、施設全体に影響を及ぼす荷重はごくわず                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                  |                  |                     | かしか発生しないため、衝撃による影響はない。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                  |                  |                     | b. 極小飛米物の負囲刀<br>動利していたら第の振り飛車施の網石に対力で置きた。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                  |                  |                     | 10/11, いより寺の極小常米物の鋼板に対する貝通刀について,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                  |                  |                     | 以下に小り DRL れて用いて昇田し, 極小飛米物の貝通刀が悪況<br>1 得ることを確認した。たた。 砂毛の土地は善差陸護さったの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                  |                  |                     | の一日の一日には「日本」であった。この、1971の「石は田谷町でイットの<br>細日の一注(40mm 日合い)を考慮して設定する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 備考 |
|--------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | 極小飛来物として砂利及び大型のひょう(直径 5cm, 10cm)を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | 対象に,鋼板に対する貫通力を BRL 式により算出した結果を表                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     | 1に示す。いずれも貫通力は 1mm 未満であり, 鋼板への影響は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     | 無視し得るものである。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     | ま1 振小恐立物の御垣貫通力                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | み1           サイズ           重量           速度           鋼板貫通厚さ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | 飛来物 (m) (kg) (m/s) (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | 砂利 0.04×0.04×0.04 0.2 54 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | (設計飛来物) 0.04×0.04×0.04 0.2 54 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | 直径 0.05 0.06 33 <sup>※</sup> 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     | ひょう 直径 0.1 0.5 59** 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | ※ ひょうの速度は直径に対応した終端速度に基づいて設定し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | た. (別紙-4 参昭)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     | (9) 砂笠の粒乙母の振小孤立物に上る日封され 閉塞及び噛み                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | (2) 切等の粒子状の極小飛米物による日田より、闲蒸及び噛込                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     | 砂等の粒子状の極小飛米物による目詰まり、閉塞及び噛込み                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | の影響を受ける可能性がある施設として、軸受け等の狭隘部を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 有する屋外施設、水循環系や換気系の流路を有する屋外施設・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 屋内の施設で外気と繋がっている施設・屋外にある外部事象防                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 護対象施設の付属施設について評価する。評価施設を表2に示                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     | 表2 目詰まり、閉塞、噛込みに対する評価施設                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     | → 分類 評価施設 → 分類 ■ ■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                |                     | (単小小ンク) 咽込み 閉塞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | ・海水ポンプ電動機         閉塞           ・海水ストレーナ         日詰まり                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                |                     | ・ディーゼル燃料移送ポンプ(Aー非常用ディーゼル 噛込み                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 発電機(燃料移送系),高圧炉心スプレイ系ディー 閉塞<br>ゼル発雷機(燃料移送系))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | ・排気筒(非常用ガス処理系排気管含む)         閉塞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | 屋内の施設で ・換気空調設備(中央制御室換気糸,原子炉棟換気糸,目詰まり<br>  外気と繋がっ 原子炉建物付属棟換気系)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                |                     | ている施設 ・給気消音器(非常用ディーゼル発電機及び高圧炉心                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | エージャン・1         エージャン・1         アン・1         アン・1 |    |
|                                |                     | 部事象防護対     機及び高圧炉心スプレイ系ディーゼル発電機の付       象施設の付属     属施設)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | 施設 ・ベント管(ディーゼル燃料貯蔵タンク、ディーゼル 閉塞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | 燃料デイタンク,潤滑油サンプタンクの付属施設)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                       | 備考 |
|--------------------------------|---------------------|------------------------------------|----|
|                                |                     |                                    |    |
|                                |                     |                                    |    |
|                                |                     |                                    |    |
|                                |                     | [屋外施設]                             |    |
|                                |                     | a. 海水ポンプ                           |    |
|                                |                     | (a)水循環系の閉塞                         |    |
|                                |                     | ①流水部の閉塞                            |    |
|                                |                     | 海水ポンプ流水部の狭隘部は、以下に示すとおりであり、砂        |    |
|                                |                     | 等の粒子状の極小飛来物より十分大きいため、閉塞には至らな       |    |
|                                |                     | لا کې                              |    |
|                                |                     | ・原子炉補機海水ポンプ 約 60mm                 |    |
|                                |                     | ・高圧炉心スプレイ補機海水ポンプ 約 30mm            |    |
|                                |                     | ②軸受部の噛込み                           |    |
|                                |                     | 海水ポンプの軸受の隙間は,約1.38mm~1.58mm で管理してい |    |
|                                |                     | る。一部の砂等の粒子状の極小飛来物は軸受の隙間より、軸受       |    |
|                                |                     | 内部に入り込む可能性があるが,図2及び図3のとおり,異物       |    |
|                                |                     | 逃がし溝(約3.5mm~5.5mm)が設けられており,軸受部の閉塞  |    |
|                                |                     | には至らない。                            |    |
|                                |                     | ・原子炉補機海水ポンプ                        |    |
|                                |                     | 軸受部(異物逃がし溝):                       |    |
|                                |                     | 軸受①:3.5mm ₩∞∞                      |    |
|                                |                     | 軸受②、③、⑤:4.5mm                      |    |
|                                |                     | 軸受④:5.5mm                          |    |
|                                |                     | 4420                               |    |
|                                |                     |                                    |    |
|                                |                     | 120 H                              |    |
|                                |                     |                                    |    |
|                                |                     | 1                                  |    |
|                                |                     | 40次位                               |    |
|                                |                     | jet                                |    |
|                                |                     |                                    |    |
|                                |                     | 4820 A                             |    |
|                                |                     | Media La                           |    |
|                                |                     | $\checkmark$                       |    |
|                                |                     |                                    |    |
|                                |                     | 図2 原子炉補機海水ポンプ軸受構造                  |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号                                                                                                                          |
|--------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                |                     | ・高圧炉心スプレイ補機海水ポンプ<br>軸受部(異物逃がし溝):                                                                                                     |
|                                |                     | 軸受①~⑤:3.5mm                                                                                                                          |
|                                |                     |                                                                                                                                      |
|                                |                     | 図3 高圧炉心スプレイ補機海水ボ                                                                                                                     |
|                                |                     | <ul> <li>b. 海水ポンプ電動機の閉塞</li> <li>(a) 原子炉補機海水ポンプ電動機</li> <li>原子炉補機海水ポンプ電動機は、全閉外</li> <li>取替を行うことから、砂等の粒子状の極かとはない。</li> </ul>          |
|                                |                     | (b)高圧炉心スプレイ補機海水ポンプ電動機<br>高圧炉心スプレイ補機海水ポンプ電動機<br>動機本体が全閉外扇形構造となっており,<br>動機の外筒に伝達され,外気を外扇により<br>て放熱している。全閉外扇形の冷却方式で<br>極小飛来物が侵入することはない。 |



| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                         | 備考 |
|--------------------------------|---------------------|--------------------------------------|----|
|                                |                     | 経路の最小径(約 11mm)に対して小さく,運転中はファンから      |    |
|                                |                     | の通風により外部に排出されることから、閉塞に至らないため         |    |
|                                |                     | 影響はない。                               |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     | 図4 高圧炉心スプレイ補機海水ポンプ電動機冷却方式            |    |
|                                |                     | c. 海水ストレーナの目詰まり                      |    |
|                                |                     | 各海水ストレーナのフィルタ穴径を以下に示す。               |    |
|                                |                     | ・原子炉補機海水系 7mm                        |    |
|                                |                     | ・高圧炉心スプレイ補機海水系 7mm                   |    |
|                                |                     | 砂等の粒子状の極小飛来物は、海水ストレーナのエレメント          |    |
|                                |                     | のメッシュサイズより小さく、また、取水口からポンプ取水箇         |    |
|                                |                     | 所までの距離が約 120m あるため,海水ストレーナは閉塞する可     |    |
|                                |                     | 能性は低い。なお、海水ストレーナは2系統設けており、フィ         |    |
|                                |                     | ルタが閉塞することがないよう差圧管理されており、一定の差         |    |
|                                |                     | 圧 (原子炉補機海水系: 0.13MPa, 高圧炉心スプレイ補機海水系: |    |
|                                |                     | 0.05MPa)になると切替えて,清掃を行うことも可能である。      |    |
|                                |                     |                                      |    |
|                                |                     | d. ディーゼル燃料移送ポンプ(A-非常用ディーゼル発電機(燃      |    |
|                                |                     | 料移送系),高圧炉心スプレイ系ディーゼル発電機(燃料移送         |    |
|                                |                     | 系))の噛込み・閉塞                           |    |
|                                |                     | ディーゼル燃料移送ポンプ本体への異物混入経路としては,          |    |
|                                |                     | 軸貫通部があるが、当該部はメカニカルシール等を用いて潤滑         |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                    | 備考 |
|--------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | 剤や内部流体の漏えいのないよう適切に管理されていることか                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | ら、砂等の粒子状の極小飛来物がポンプ本体へ侵入することは                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | なく噛込みや摩耗による影響はない。                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | ディーゼル燃料移送ポンプの概略構造図を図5に示す。                                                                                                                                                                                                                                                                                                       |    |
|                                |                     | 動力源となる電動機については「全閉外扇屋外型」であり,                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | ケーシングの放熱フィン等に砂等の粒子状の極小飛来物が冷却                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | ファン側から吸入された場合でも、電動機内部に砂等の粒子状                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | の極小飛来物が侵入することはない。                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | <ul> <li>(a)排気筒(非常用ガス処理系排気管含む)の閉塞</li> <li>(a)排気筒</li> <li>(b)非常用ガス処理系排気管含む)の閉塞</li> <li>(a)排気筒</li> <li>(b)非常用ガス処理系排気管含む)の閉塞</li> <li>(c)非常用ガス処理系排気管含む)の閉塞</li> <li>(c)非常用ガス処理系排気管含む)の閉塞することはないと考える。</li> <li>(c)非常用ガス処理系排気管は図6に示すとおり、横方向を向いており砂等の粒子状の極小飛来物が侵入しにくい構造となっている。また、竜巻の通過に要する時間は短時間であるため、閉塞する量の飛来物は侵入し難い。</li> </ul> |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 備考 |
|--------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | With a state       With a state         With a state       With a state <tr< th=""><th></th></tr<> |    |
|                                |                     | <ul> <li>[屋内の施設で外気と繋がっている施設]</li> <li>a. 換気空調設備(外気取入口)の目詰まり</li> <li>各評価対象設備の外気取入口には,図7に示すとおりルーバ<br/>が取り付けられており,砂等の粒子状の極小飛来物が侵入しに<br/>くい構造となっている。</li> <li>また,外気取入口には平型フィルタ(粒径2µmに対して76%)以上を捕獲する性能)や袋型フィルタ(粒径2µmに対して80%)以上を捕獲する性能)が設置されており,想定する砂等の粒子<br/>状の極小飛来物は十分除去されることから,給気を供給する系<br/>統及び機器に対して砂等の粒子状の極小飛来物が与える影響は<br/>少ない。また、フィルタには差圧計が設置されており,必要に<br/>応じて取替え又は清掃をすることが可能である。</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                              | 備考 |
|--------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | <complex-block></complex-block>                                                                                                                                                                                                                                                                           |    |
|                                |                     | <ul> <li>b. 給気消音器(非常用ディーゼル発電機及び高圧炉心スプレイ系<br/>ディーゼル発電機の付属施設)の目詰まり<br/>給気消音器の上流側の外気取入口にはフード又はルーバが取<br/>り付けられおり,砂等の粒子状の極小飛来物が侵入しにくい構<br/>造である。非常用ディーゼル発電機及び高圧炉心スプレイ系デ<br/>ィーゼル発電機の給気空気の流れを図8に示す。<br/>また,機関給気口の給気消音器にはフィルタ(粒径1µm以上<br/>の砂等の粒子状の極小飛来物は80%以上捕集)が設置されてお<br/>り,砂等の粒子状の極小飛来物の侵入を防止している。</li> </ul> |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                      | 備考 |
|--------------------------------|---------------------|-----------------------------------|----|
|                                |                     |                                   |    |
|                                |                     |                                   |    |
|                                |                     |                                   |    |
|                                |                     |                                   |    |
|                                |                     |                                   |    |
|                                |                     |                                   |    |
|                                |                     |                                   |    |
|                                |                     |                                   |    |
|                                |                     |                                   |    |
|                                |                     |                                   |    |
|                                |                     |                                   |    |
|                                |                     |                                   |    |
|                                |                     | 図 8 非常田ディーゼル発雪烨の公気空気の流れ           |    |
|                                |                     | 因る 非市用ノイ ビル光电域の相ズ生ズの加40           |    |
|                                |                     | 「屋外にある外部事象防護対象施設の付属施設」            |    |
|                                |                     | a. 排気消音器(排気管含む)(非常用ディーゼル発電機及び高圧   |    |
|                                |                     | 炉心スプレイ系ディーゼル発電機の付属施設)の閉塞          |    |
|                                |                     | #気消音器及び排気管は図9に示すとおり、横方向を向いてお      |    |
|                                |                     | り砂等の粒子状の極小飛来物が侵入しにくい構造となっている。     |    |
|                                |                     | また、運転中は排気しているため、砂等の粒子状の極小飛来物が     |    |
|                                |                     | 侵入することはない。また、竜巻の通過に要する時間は短時間で     |    |
|                                |                     | あるため、閉塞する量の飛来物は侵入し難い。             |    |
|                                |                     |                                   |    |
|                                |                     | 図9 非常用ディーゼル発電機排気消音器及び排気管          |    |
|                                |                     | b. ベント管 (ディーゼル燃料貯蔵タンク, ディーゼル燃料デイタ |    |
|                                |                     | ンク,潤滑油サンプタンクの付属施設)の閉塞             |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                  | 備考 |
|--------------------------------|---------------------|-------------------------------|----|
|                                |                     | (a) ディーゼル燃料貯蔵タンク              |    |
|                                |                     | ディーゼル燃料貯蔵タンク本体は、ディーゼル燃料貯蔵タン   |    |
|                                |                     | ク室内(地下埋設式)であり、砂等の粒子状の極小飛来物から  |    |
|                                |                     | の影響は受けないが、ディーゼル燃料貯蔵タンクのベント管は  |    |
|                                |                     | 屋外に設置していることから影響について確認する。      |    |
|                                |                     | ディーゼル燃料貯蔵タンクのベント管先端には図 10 のとお |    |
|                                |                     | り,カバーが取り付けられており,開口部の閉塞には至らない。 |    |
|                                |                     | 地上 (EL8600)                   |    |
|                                |                     | 図10 ディーゼル燃料貯蔵タンク及びベント管の概要     |    |
|                                |                     | (b) ディーゼル燃料デイタンク、潤滑油サンプタンク    |    |
|                                |                     | ディーゼル燃料デイタンク、潤滑油サンプタンクのベント管   |    |
|                                |                     | は、下方向を向いており砂等の粒子状の極小飛来物が侵入しに  |    |
|                                |                     | くい構造となっている。また、竜巻の通過に要する時間は短時  |    |
|                                |                     | 間であるため、閉塞する量の飛来物は侵入し難い。       |    |
|                                |                     |                               |    |
|                                |                     |                               |    |
|                                |                     |                               |    |
|                                |                     |                               |    |
|                                |                     |                               |    |
|                                |                     |                               |    |
|                                |                     |                               |    |
|                                |                     |                               |    |
|                                |                     |                               |    |
|                                |                     |                               |    |
|                                |                     |                               |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉 | 備考                |
|--------------------------------|----------------------------------|-------------------|
|                                | 別紙-3                             | (柏崎 6/7 は「添付資料    |
|                                | 二次飛来物の現地調査について                   | 3.3 3.3(1) 飛来物調査」 |
|                                |                                  | 及び「添付資料 3.3 別紙    |
|                                | 1. 現地調査の概要                       | 1(2) 柏崎刈羽原子力発電    |
|                                | 竜巻による二次飛来物を抽出するため、発電所構内において      | 所の屋外屋根, シャッタ      |
|                                | 平成26年8月に現地調査を実施した。現地調査では、風圧力や    | ー,ガラス窓,仮設足場の      |
|                                | 飛来物による被害を受けると考えられる設備及び建物・構築物     | 状況」で記載)           |
|                                | を確認した。                           | (東海第二は「添付資料 9     |
|                                | 二次飛来物の発生を考慮する建物・構築物として、以下を調      | 2. 発電所構内の物品調      |
|                                | 査対象施設とした。調査対象施設の配置を図1に示す。        | 査」及び「別紙 9-1 (2)   |
|                                | a) 原子炉建物                         | 発電所の屋外屋根及びガ       |
|                                | b) 廃棄物処理建物                       | ラス窓の状況」で記載)       |
|                                | c) タービン建物                        |                   |
|                                | d) サービス建物                        |                   |
|                                | e) サイトバンカ建物                      |                   |
|                                | f) 制御室建物                         |                   |
|                                | g) 補助ボイラ                         |                   |
|                                | h) 固体廃棄物貯蔵所                      |                   |
|                                | i) 開閉所                           |                   |
|                                | j) 管理事務所                         |                   |
|                                | k) 協力会社事務所                       |                   |
|                                | 1) 送電鉄塔                          |                   |
|                                | m) 技術訓練棟                         |                   |
|                                | n) 免震重要棟                         |                   |
|                                | o) 純水装置建物                        |                   |
|                                | p) 排気筒                           |                   |
|                                |                                  |                   |
|                                |                                  |                   |
|                                |                                  |                   |
|                                |                                  |                   |
|                                |                                  |                   |
|                                |                                  |                   |
|                                |                                  |                   |
|                                |                                  |                   |
|                                |                                  |                   |
|                                |                                  |                   |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号                                                                                                                                                                                                                                                     |
|--------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                     | 回川以川、J J J J L HEIJI 24         ● 伊原東他紀環境         ● 日田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田                                                           |
|                                |                     | <ul> <li>2.現地調査結果 <ul> <li>二次飛来物の発生を考慮する設備及びた結果,建物の金属製屋根・外壁、シャ給排気用格子が飛散物となり得ると判断定されていたり,複数のボルト等で締結ては二次飛来物となり難いことから除外り得る部位の抽出結果を表1に、二次飛写真を図2に示す。</li> <li>建物の金属製屋根・外壁、シャッター用格子については、「過去の竜巻事例に基紙-1)」により、二次飛来物となった場軽量な物品となるため、その影響は設計考えられる。</li> </ul> </li> </ul> |



| ま1 二次飛来物の発生を考慮する設備及び建物・構築物におけ る二次飛来物となり得る部位の抽出結果(1/4)              日本部に対して服装けの可能性から成認        この取用         この         この         この                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Comparison of the second seco       |  |
| 3 $2 \text{CW} \Re \Re \Im $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| P     Retrict US     Retrin US     RetrinUS     RetrinUS     Ret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| I       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 11111112111111132211111132211111114111111111151111111111151111111111117111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 1 $2 \ 8 \ 4 \ 6 \ 6 \ 8 \ 7 \ 7 \ 2 \ 8 \ 6 \ 6 \ 7 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 6 \ 7 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 4 $1 \Phi_R w/B m (0 + v_2 - (1 F L)$ 0 $0 + v_2 - v_2$ 5 $1 \Phi_R w/B m (0 + v_2 - (2 F L)$ 0 $0 + v_2 - v_2$ 6 $1 \Phi_R w/B m (0 + v_2 - (2 F L))$ 0 $0 + v_2 - v_2$ 7 $1 \Phi_R v/B m (0 + v_2 - (2 F L))$ 0 $4 h \psi_2 - h \psi_2$ 9 $1 \Phi_R v/B m (0 + v_2 - v_2)$ 0 $4 h \psi_2 - h \psi_2$ 9 $1 \Phi_R v/B m (0 + v_2 - v_2)$ 0 $4 h \psi_2 - h \psi_2$ 10 $1 \Phi_R v/B m (0 + v_2 - v_2)$ 0 $4 h \psi_2 - h \psi_2$ 11 $2 \Phi_R f v/B w (0 + v_2 - w_2)$ 0 $4 h \psi_2 - h \psi_2$ 12 $2 \Phi_R f v/B w (0 + v_2 - w_2)$ 0 $2 v_2 - y_2$ 14 $2 \Phi_R f v/B w (0 + v_2 - w_2)$ 0 $2 v_2 - y_2$ 15 $m (u + v_2 - v_2)$ 0 $v_2 - y_2$ 16 $m (u + v_2 - v_2)$ 0 $v_2 - y_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 5 $19_{RW}/B_{B} M (2v_{2}y_{2} - (1\Gamma L))$ 0 $2v_{2}y_{2} - 2v_{2}y_{2}$ 6 $19_{RW}/B_{B} M (2v_{2}y_{2} - (1\Gamma L))$ 0 $2v_{2}y_{2} - 2v_{2}y_{2}$ 7 $19_{T}/B_{2} B M (2x_{3}x_{3}x_{3}x_{3}m R + (M L))$ 0 $8k_{2}m R + 2v_{2}$ 8 $19_{T}/B_{2} B M (2x_{3}x_{3}x_{3}x_{3}x_{3}m R + (M L))$ 0 $8k_{2}m R + 2v_{2}$ 9 $19_{T}/B_{2} B M (2x_{3}x_{3}x_{3}x_{3}x_{3}x_{3}x_{3}x_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 6 $1 \exists Rw x B t m (2 \ge 1)$ 0 $2 \lor x y y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x y - x$                                                                |  |
| 71号丁/B空調機気系給気用格子(限上)○給椎気用格子81号丁/B空調機気系給気用格子(水平)○給椎気用格子91号中央制鋼室空調機気系給気用格子○給椎気用格子101号R/B空調機気系給気用格子○総椎気用格子112号丁/B北東側未煮ガスボンベ高シャッター○シャッター122号株式水浴解タンク(取木槽)○シャッター132号株式水俗管地やッター(取木槽)○シャッター142号丁/Bシャッター○シャッター15ベーシャッター○シャッター16レーシャッター○シャッター172号丁/Bシャッター○シャッター182号丁/Bシャッター○シャッター19レーシャッター○シャッター19レーシャッター○シャッター101<日本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 8       1号丁/B空調機気系給気用格子(水平)       ○       給排気用格子         9       1多中央制御室空調機気系給気用格子       ○       給排気用格子         10       1号ア/B空調機気系給気用格子       ○       給排気用格子         10       1号ア/B空調機気系給気用格子       ○       給排気用格子         11       2号ア/B北東側水素ガスボン(室シャッター)       ○       約非気用各子         12       2号気イオン溶解タンク(取水槽)       ○       シャッター         13       2号気イオン保管建物シャッター(取水槽)       ○       シャッター         14       2号丁/Bシャッター       ○       シャッター         15       機械メンテナンス建物東側シャッター       ○       シャッター         16       ・       ・       ・       ・         17       2号丁/Bシャッター       ○       シャッター         18       2号丁/Bシャッター       ○       シャッター         19       ・       ・       ・       ・         10       シャックー       ○       シャックー         14       2号丁/Bシャック       ○       シャックー         15       ・       ・       ・       ・         18       ・       ・       ・       ・       ・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 9       1号中央制御室空調換気系給気用格子       ○       給排気用格子         10       1号R/B空調換気系給気用格子       ○       給排気用格子         11       2号T/B北東側水素ガスボンベ室シャッター       ○       シャッター         12       2号狭イオン保管建物シャッター(取水槽)       ○       シャッター         13       2号狭イオン保管建物シャッター(取水槽)       ○       シャッター         14       2号T/Bシャッター       ○       シャッター         15       補機メンテナンス建物東側シャッター       ○       シャッター                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 101号R/B空調換気糸船気用格子〇給鮮気用格子112号T/B北東側水素ガスボンベ室シャッター〇シャッター122号鉄イオン溶解タンク(取水槽)一1132号鉄イオン保管建物シャッター(取水槽)〇シャッター142号T/Bシャッター〇シャッター15補機メンテナンス建物東側シャッター〇シャッター                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 11 $2 \forall 7 J B J L R [m] \times \pi J J A J J A J J A J J A J J A J J A J J A J J A J J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A J$                                |  |
| 12     とりがいっいてはアレック (ないほ)     〇     シャックー       13     2 号鉄イオン保管建物シャッター (取水槽)     〇     シャックー       14     2 号丁/Bシャッター     〇     シャックー       15     補機メンテナンス建物東側シャッター     〇     シャックー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 14 $2\beta T / B \dot{\nu} \tau \gamma \beta  \bigcirc$ $\dot{\nu} \tau \gamma \beta -$ 15iiik x $\dot{\nu} \tau \gamma \gamma \beta  \bigcirc$ $\dot{\nu} \tau \gamma \beta -$ 16iiik x $\dot{\nu} \tau \gamma \gamma \beta  \bigcirc$ $\dot{\nu} \tau \gamma \beta -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 15     補機メンテナンス建物東側シャッター     〇     シャッター                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $\frac{16}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 価級人ンソリン入産物四側シャックー、ガリス恋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 17     補機メンテナンス建物南側シャッター、ガラス窓     シャッター       ガラス窓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 18     補機メンテナンス建物北側シャッター     〇     シャッター                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 19 $interimation interimation interimatio$ |  |
| 20 法地方シテキング理論再用シャックー ガラス第                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 「簡優人シノノノンへ産物四週シャック」、カノへ志 し ガラス窓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 21     R/B西側液化酸素タンク     ー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 22     水素ガストレーラ庫     ー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 23     HPCS-DEG室排気用格子     〇     給排気用格子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 24     K/B空調換风水指风用格士     〇     結排风用格士       95     UBCS=DEC室給写用株式     〇     給排留用株式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 26     A. B-DEG室給気用格子     〇     給排気用格子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 27     HPCS電気室空調換気系給気用格子     ○     給排気用格子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 28     HPCS電気室空調換気系排気口     —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 29     A, B非常用電気室空調換気系給気用格子     〇     給排気用格子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 30 T/B空調換気系給気用格子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 常用電気室空調換気系給気用格子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

| 柏崎刈羽原子力発電所 6/7号炉 | (2017. 12. 20 版) | 東海第二発電所(2018.9.18版) |       | 島根原子力発電所 2号                                                                                                  | 炉        |         | 備考 |
|------------------|------------------|---------------------|-------|--------------------------------------------------------------------------------------------------------------|----------|---------|----|
|                  |                  |                     | 表 1   | 一次飛来物の発生を考慮する設備及7                                                                                            | 『建物・構築   | 墓物におけ   |    |
|                  |                  |                     | -11 - |                                                                                                              |          |         |    |
|                  |                  |                     | 5     | - 次飛来物となり得る部位の抽出結果(                                                                                          | (2/4)    |         |    |
|                  |                  |                     |       | 飛来物に対して影響を受ける可能性のある部位                                                                                        | 二次飛来物になり | 二次飛来物にな |    |
|                  |                  |                     | 01    | り                                                                                                            | 得る部位の有無  | り得る部位   |    |
|                  |                  |                     | 31    | Rw/B空調換気米給気用格子<br>中央制御室在環境気系給気用株工                                                                            | 0        | 給排気用格子  |    |
|                  |                  |                     | 33    | エスカレータガラス窓(44m盤)                                                                                             | 0        | ガラス窓    |    |
|                  |                  |                     | 34    | 上水タンク (50m盤, 77m盤)                                                                                           | _        |         |    |
|                  |                  |                     | 35    | 日立6号棟シャッター (44m盤)                                                                                            | 0        | シャッター   |    |
|                  |                  |                     | 36    | 日立6号棟ガラス窓(44m盤)                                                                                              | 0        | ガラス窓    |    |
|                  |                  |                     | 37    | 日立5号棟ガラス窓 (44m盤)                                                                                             | 0        | ガラス窓    |    |
|                  |                  |                     | 38    | CPC事務所ガラス窓 (44m盤)                                                                                            | 0        | ガラス窓    |    |
|                  |                  |                     | 39    | 日立2号棟ガラス窓(44m盤)                                                                                              | 0        | ガラス窓    |    |
|                  |                  |                     | 40    | 日立1号棟ガラス窓(44m盤)                                                                                              | 0        | ガラス窓    |    |
|                  |                  |                     | 41    | 日立3,4 5棟 ルフス窓(44 m 盔)<br>故 カ 今 社 軍 薬 正 座 側 ガ ラ ス 突 (4 4 m 盔)                                                 | 0        | ガラス変    |    |
|                  |                  |                     | 43    | 1997年1日1977/1日19777/1日197777/1日197777/1日197777/1日197777/1日197777/1日197777/1日1977777/1日1977777/1日197777777777 | 0        | ガラス窓    |    |
|                  |                  |                     | 44    | 第2防護本部シャッター (44m盤)                                                                                           | 0        | シャッター   |    |
|                  |                  |                     | 45    | 免震重要棟                                                                                                        | _        | 窓等なし    |    |
|                  |                  |                     | 46    | 事務所2号館西側給排気用格子                                                                                               | 0        | 給排気用格子  |    |
|                  |                  |                     | 47    | 事務所2号館北側給排気用格子                                                                                               | 0        | 給排気用格子  |    |
|                  |                  |                     | 48    | 事務所2号館北側シャッター                                                                                                | 0        | シャッター   |    |
|                  |                  |                     | 49    | 事務所1号館ガラス窓                                                                                                   | 0        | ガラス窓    |    |
|                  |                  |                     | 50    | 事務所3号館シャッター                                                                                                  | 0        | シャッター   |    |
|                  |                  |                     | 51    | 事務所3号館シャッター                                                                                                  | 0        | シャッター   |    |
|                  |                  |                     | 52    | 事務者3号館ガラス窓<br>                                                                                               | 0        | ガラス窓    |    |
|                  |                  |                     | 54    | 純水処理建物指気用格士<br>補助ポイラー室北側にないター(1)                                                                             | 0        | お俳気用格士  |    |
|                  |                  |                     | 55    | 福助ホイラー宝北周シャッター(1) 補助ボイラー宝北側シャッター(2)                                                                          | 0        | シャッター   |    |
|                  |                  |                     | 56    | 純水タンク (A)                                                                                                    | _        |         |    |
|                  |                  |                     | 57    | 純水タンク (B)                                                                                                    | _        |         |    |
|                  |                  |                     | 58    | り旦会康軍側シュッカー ガラフタ                                                                                             | 0        | シャッター   |    |
|                  |                  |                     |       | 3万月庫東側シャックー, カノへ応                                                                                            | 0        | ガラス窓    |    |
|                  |                  |                     | 59    | 3号倉庫北側シャッター、ガラス窓                                                                                             | 0        | シャッター   |    |
|                  |                  |                     |       |                                                                                                              | _        | ガラス窓    |    |
|                  |                  |                     | 60    | 2号倉庫西側シャッター, ガラス窓                                                                                            | 0        | シャッター   |    |
|                  |                  |                     | 61    |                                                                                                              |          | シャッター   |    |
|                  |                  |                     | 01    | 2号倉庫南西側シャッターガラス窓                                                                                             | 0        | ガラス窓    |    |
|                  |                  |                     | 62    | 2号倉庫南東側シャッター                                                                                                 | 0        | シャッター   |    |
|                  |                  |                     | 63    | 2号倉庫東側シャッター                                                                                                  | 0        | シャッター   |    |
|                  |                  |                     | 64    | 2号倉庫ガラス窓                                                                                                     | 0        | ガラス窓    |    |
|                  |                  |                     | 65    | サイトバンカ建物西側シャッター                                                                                              | 0        | シャッター   |    |
|                  |                  |                     | 66    | サイトバンカ建物南側シャッター                                                                                              | 0        | シャッター   |    |
|                  |                  |                     | 67    | サイトハン刀運物給気口<br>サイトバンカ建物ガラス突(1)                                                                               | -        | ガラフ空    |    |
|                  |                  |                     | 69    | ソココンシル地切ルノヘ芯(1)<br>サイトバン力建物ガラス窓(2)                                                                           | 0        | ガラス窓    |    |
|                  |                  |                     | 70    | 危険物屋内貯蔵所東側シャッター                                                                                              | 0        | シャッター   |    |
|                  |                  |                     | 71    | プロワ室ガラス窓                                                                                                     | 0        | ガラス窓    |    |
|                  |                  |                     | 72    | 汚水処理施設ガラス窓                                                                                                   | 0        | ガラス窓    |    |
|                  |                  |                     | 73    | 固体廃棄物貯蔵庫A棟西側シャッター                                                                                            | 0        | シャッター   |    |
|                  |                  |                     | 74    | 空コンテナ保管庫西側に面するシャッター                                                                                          | 0        | シャッター   |    |
|                  |                  |                     | 75    | 技術訓練棟1号館ガラス窓                                                                                                 | 0        | ガラス窓    |    |
|                  |                  |                     | 76    | 技術訓練棟1号館北側シャッター, ガラス窓                                                                                        | 0        | シャッター   |    |
|                  |                  |                     | 77    |                                                                                                              |          | ハワム窓    |    |
|                  |                  |                     |       | 技術訓練棟2号館西側シャッター、ガラス窓                                                                                         | 0        | ガラス窓    |    |
|                  |                  |                     | 78    |                                                                                                              | ~        | シャッター   |    |
|                  |                  |                     |       | 1 方の適水装置建物の四側ジャッター,ガラス窓                                                                                      | 0        | ガラス窓    |    |
|                  |                  |                     | 79    | 1 号ろ過水装置タンク(1)                                                                                               | _        | ļ]      |    |
|                  |                  |                     | 80    | 1 号ろ過水装置タンク(2)                                                                                               | —        |         |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) |     | 島根原子力発電所 2                                    | 号炉                      |                  | 備考 |
|--------------------------------|---------------------|-----|-----------------------------------------------|-------------------------|------------------|----|
|                                |                     | 表1  | 二次飛来物の発生を考慮する設備                               | 及び建物・構                  | 築物におけ            |    |
|                                |                     | る   | 二次飛来物となり得る部位の抽出結果                             | 県(3/4)                  |                  |    |
|                                |                     |     | 飛来物に対して影響を受ける可能性のある部位                         | 二次飛来物<br>になり得る<br>部位の有無 | 二次飛来物にな<br>り得る部位 |    |
|                                |                     | 81  | 2号ろ過水装置建物シャッター,ガラス窓                           | O UNITED HIM            | シャッター            |    |
|                                |                     | 82  | 2号ろ過水装置建物ガラス窓                                 | 0                       | ガラス窓             |    |
|                                |                     | 83  | 2号ろ過水装置タンク(1)                                 | _                       |                  |    |
|                                |                     | 84  | 2 号ろ過水装置タンク(2)                                | _                       |                  |    |
|                                |                     | 85  | 2号ろ過水タンク                                      | _                       |                  |    |
|                                |                     | 86  | 固体廃棄物貯蔵庫B棟南西側シャッター(1)                         | 0                       | シャッター            |    |
|                                |                     | 87  | 固体廃棄物貯蔵庫B棟南西側シャッター(2)                         | 0                       | シャッター            |    |
|                                |                     | 88  | 高圧ガス貯蔵所南側フェンス扉                                | _                       |                  |    |
|                                |                     | 89  | 5号倉庫給気用格子,ガラス窓                                | 0                       | 給排気用格子<br>ガラス窓   |    |
|                                |                     | 90  | 5号倉庫南側シャッター                                   | 0                       | シャッター            |    |
|                                |                     | 91  | 5号倉庫西側シャッター                                   | 0                       | シャッター            |    |
|                                |                     | 92  | 4 4 m版事務所東側シャッター                              | 0                       | シャッター            |    |
|                                |                     | 93  | 固体廃棄物貯蔵庫C棟西側シャッター                             | 0                       | シャッター            |    |
|                                |                     | 94  | 1 号開閉所ガラス窓                                    | 0                       | ガラス窓             |    |
|                                |                     | 95  | 1 号開閉所西側シャッター                                 | 0                       | シャッター            |    |
|                                |                     | 96  | 1号開閉所南側シャッター                                  | 0                       | シャッター            |    |
|                                |                     | 97  | 2 号開閉所ガラス窓                                    | 0                       | ガラス窓             |    |
|                                |                     | 98  | 2号炉T/B北側事務所西側シャッター, ガラス窓                      | 0                       | シャッター<br>ガラス窓    |    |
|                                |                     | 99  | 鉄イオン貯蔵建物南側シャッター                               | 0                       | シャッター            |    |
|                                |                     | 100 | エスカレータ南側シャッター (4 4 m盤)                        | 0                       | シャッター            |    |
|                                |                     | 101 | 2号No. 1 鉄塔                                    |                         |                  |    |
|                                |                     | 102 | 2号No. 2鉄塔                                     | _                       |                  |    |
|                                |                     | 103 | 3号No. 3鉄塔                                     | _                       |                  |    |
|                                |                     | 104 | ガスタービン発電機資材倉庫南側シャッター                          | 0                       | シャッター            |    |
|                                |                     | 105 | 資材倉庫シャッター                                     | 0                       | シャッター            |    |
|                                |                     | 106 | 緊急用電気室入口                                      | _                       |                  |    |
|                                |                     | 107 | 危険物屋内貯蔵建物給気用格子                                | 0                       | 給排気用格子           |    |
|                                |                     | 108 | 危険物屋内貯藏倉庫給気用格子                                | 0                       | 給排気用格子           |    |
|                                |                     | 109 | R/B東側給気口                                      | -                       |                  |    |
|                                |                     | 110 | T/B東側給気口                                      | -                       |                  |    |
|                                |                     | 111 | R/B南側給気口                                      | -                       |                  |    |
|                                |                     | 112 | S/B屋上階東側給気口                                   | -                       |                  |    |
|                                |                     | 113 | S/B南側ガラス窓                                     | 0                       | ガラス窓             |    |
|                                |                     | 114 | 出入管理棟南側ガラス窓                                   | 0                       | ガラス窓             |    |
|                                |                     | 115 | S/B屋上階西側給気口                                   |                         | ┟────┤│          |    |
|                                |                     | 116 | S/B西側ガラス窓                                     | 0                       | ガラス窓             |    |
|                                |                     | 117 | S∕B西側給気口                                      |                         | ╂────┤│          |    |
|                                |                     | 118 | 補助ボイラー建物北側給気口                                 |                         | ┼───┤│           |    |
|                                |                     | 119 | 補助ボイラー建物北側重油サービスタンク                           | -                       |                  |    |
|                                |                     | 120 | 補助ボイラー建物東側シャッター、ガラス窓                          | 0                       | シャッター<br>ガラス空    |    |
|                                |                     | 191 | 固体廃棄物貯蔵所D 棟南東側シャッター                           | 0                       | シャッター            |    |
|                                |                     | 121 | 10011-20-7-10051 1000/12/14-173 / 102 / 1/2/2 | 0                       | シャッター            |    |
|                                |                     | 122 | 国体廃棄物貯蔵所D棟付属建物西側ガラス窓                          | 0                       | ガラス窓             |    |
|                                |                     | 120 | 3 号期閉所                                        |                         |                  |    |
|                                |                     | 125 | 倉庫西,東側シャッター                                   | 0                       | シャッター            |    |
|                                |                     | 126 | 倉庫北,南側ガラス窓                                    | 0                       | ガラス窓             |    |
|                                |                     | 127 | 除じん機メンテナンス建物北,南側シャッター                         | 0                       | シャッター            |    |
|                                |                     | 128 | 除じん機建物東、西側ガラス窓                                | 0                       | ガラス窓             |    |
|                                |                     | 129 | 補機海水系ポンプメンテナンス建物北,東,南側シャッター                   | 0                       | シャッター            |    |
|                                |                     | 130 | 補機海水系ポンプメンテナンス建物東,西側ガラス窓                      | 0                       | ガラス窓             |    |
|                                |                     |     |                                               |                         | ·                |    |
|                                |                     | 1   |                                               |                         |                  |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所                                                          | 2号炉        |                                   | 備考 |
|--------------------------------|---------------------|-------------------------------------------------------------------|------------|-----------------------------------|----|
|                                |                     | 表1 二次飛来物の発生を考慮する認                                                 | 備及び建物      | ・構築物におけ                           |    |
|                                |                     | <br>  る二次飛来物となり得る部位の抽出                                            | 結果(4/4     | .)                                |    |
|                                |                     | 飛来物に対して影響を受ける可能性のある部位                                             | 二次飛来物になり得る | 二次飛来物になり得る部                       |    |
|                                |                     | 131         ガスボンベ庫東側給気口                                           | 部位の有無      | 位                                 |    |
|                                |                     | 132         ガスボンベ庫西側給気口                                           | _          |                                   |    |
|                                |                     | 133 第3危険物倉庫東側シャッター                                                | 0          | シャッター                             |    |
|                                |                     | 134 ボーリングコア倉庫東側シャッター                                              | 0          | シャッター                             |    |
|                                |                     | 135 ボーリングコア倉庫南,北側ガラス窓                                             | 0          | ガラス窓                              |    |
|                                |                     | 136 島根原子力幹線送電鉄塔(No.1,2)                                           |            |                                   |    |
|                                |                     | 131         局依原丁刀軒厥送电款培(N0.3)           138         給水設備建劾車側シャッター | _          | シャッター                             |    |
|                                |                     | 100         和小氏(細定的末)(() ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (        | 0          | ガラス窓                              |    |
|                                |                     | 140         給水設備建物西側ガラス窓                                          | 0          | ガラス窓                              |    |
|                                |                     | 141 純水タンク,ろ過水タンク,消火用水タンク                                          | _          |                                   |    |
|                                |                     | 142 排気筒                                                           | _          |                                   |    |
|                                |                     | 143         重油タンク移送ポンプ室南側ガラス窓                                     | 0          | ガラス窓                              |    |
|                                |                     | 144         2 号炉放水路モニタ室東,南側に面するガラス窓                               | 0          | ガラス窓                              |    |
|                                |                     | 145         海水電解装置設備周囲のアクリルケース                                    | _          |                                   |    |
|                                |                     | 146 東口建物北側ガラス窓                                                    | 0          | ガラス窓                              |    |
|                                |                     | 147         東口建物東,西側アクリル扉           140         北口港航運網ビニス第        |            | <b>ガニッ</b> 加                      |    |
|                                |                     | 148 北口建物四個カラス志<br>149 北口建物南 北側アクリル屋                               | _          | ルフス志                              |    |
|                                |                     | 150 1号炉原子炉建物                                                      | 0          | 金属製外壁                             |    |
|                                |                     | 151         1 号炉タービン建物                                            | 0          | 金属製屋根                             |    |
|                                |                     | 152 1号炉廢棄物処理建物                                                    | _          | and the state of the second state |    |
|                                |                     | 153 1号炉排気筒                                                        | _          |                                   |    |
|                                |                     | 154 2号炉原子炉建物                                                      | _          |                                   |    |
|                                |                     | 155         2 号炉タービン建物                                            | _          |                                   |    |
|                                |                     | 156         2 号炉廃棄物処理建物                                           | _          |                                   |    |
|                                |                     | 157 2 号炉排気筒                                                       | _          |                                   |    |
|                                |                     | 158 制御室建物                                                         | _          |                                   |    |
|                                |                     | 159 3 号炉原子炉建物                                                     | _          |                                   |    |
|                                |                     | 160         3 号炉タービン建物                                            | _          |                                   |    |
|                                |                     | 161 3 号炉廃棄物処理建物                                                   | _          |                                   |    |
|                                |                     | 162 3 号炉排気筒                                                       | _          |                                   |    |
|                                |                     | 163 3 号炉制御室建物                                                     | _          |                                   |    |
|                                |                     | 164 3 号炉サービス建物                                                    | _          |                                   |    |
|                                |                     | 165         3 号炉補助ボイラ                                             | 0          | 金属製屋根・外壁                          |    |
|                                |                     | 166 3号出入管理棟                                                       | 0          | 金属製屋根・外壁                          |    |
|                                |                     | 167 固体廃棄物貯蔵所(A棟)                                                  | _          |                                   |    |
|                                |                     | 168 固体廃棄物貯蔵所(B棟)                                                  | _          |                                   |    |
|                                |                     | 169 固体廃棄物貯蔵所(C棟)                                                  | _          |                                   |    |
|                                |                     | 170 固体廃棄物貯蔵所(D棟)                                                  | _          |                                   |    |
|                                |                     | 171 6 6 k V 開閉所 (1 号機屋内開閉所)                                       | 0          | 金属製屋根・外壁                          |    |
|                                |                     | 172 2 2 0 k V 開閉所(2 号機開閉所電気室)                                     | —          |                                   |    |
|                                |                     | 173 500kV開閉所(開閉所電気品室)                                             | —          |                                   |    |
|                                |                     | 174 管理事務所1号館                                                      | 0          | 金属製屋根・外壁                          |    |
|                                |                     | 175 管理事務所2号館                                                      | _          |                                   |    |
|                                |                     | 176 管理事務所3号館                                                      | 0          | 金属製屋根                             |    |
|                                |                     | 177 管理事務所4号館                                                      | 0          | 金属製屋根                             |    |
|                                |                     | 178         サイトバンカ建物                                              | _          |                                   |    |
|                                |                     | 179 サイトバンカ付属倉庫                                                    | 0          | 金属製屋根                             |    |
|                                |                     | 180 純水装置建物                                                        | 0          | 金属製屋根・外壁                          |    |
|                                |                     | 181 免震重要棟                                                         | 0          | 金属製屋根                             |    |
|                                |                     | 182 技術訓練棟                                                         | —          |                                   |    |
|                                |                     |                                                                   |            |                                   |    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ころ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.111-2014       1.111-2014       1.111-2014       1.111-2014         1.111-2014       1.111-2014       1.111-2014       1.111-2014         1.111-2014       1.111-2014       1.111-2014       1.111-2014         1.111-2014       1.111-2014       1.111-2014       1.111-2014         1.111-2014       1.111-2014       1.111-2014       1.111-2014         1.111-2014       1.111-2014       1.111-2014       1.111-2014         1.111-2014       1.111-2014       1.111-2014       1.111-2014         1.111-2014       1.111-2014       1.111-2014       1.111-2014         1.111-2014       1.111-2014       1.111-2014       1.111-2014         1.111-2014       1.111-2014       1.111-2014       1.111-2014         1.111-2014       1.111-2014       1.111-2014       1.111-2014         1.111-2014       1.111-2014       1.111-2014       1.111-2014         1.111-2014       1.111-2014       1.111-2014       1.111-2014 |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                           | 備考 |
|--------------------------------|---------------------|----------------------------------------------------------------------------------------|----|
|                                |                     |                                                                                        |    |
|                                |                     | 9 1 号中央制御室空調換気系給気用格子 10 1 号R/B空調換気系給気用格子                                               |    |
|                                |                     | 11 2号T/B北東側水素ガスボンベ室シャッター       13 2号鉄イオン保管建物シャッター(取水槽)         13 2号鉄イオン保管建物シャッター(取水槽) |    |
|                                |                     | 14 2号T/Bシャッター<br>15 補機メンテナンス建物東側シャッター<br>図2 二次飛来物になり得る施設の写真(2/20)                      |    |
|                                |                     |                                                                                        |    |
|                                |                     |                                                                                        |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 号炉                      | 備考 |
|--------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----|
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |
|                                |                     | <u>16 補機メンテナンス建物西側シャッター, ガラス</u> 窓 17 補機                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | メンテナンス建物南側シャッター, ガラス窓     |    |
|                                |                     | 18 補機メンテナンス建物北側シャッター       19 補機         10 補機       19 補機         10 補機       10 補機         10 抽機       10 抽機         10 抽機       10 抽機         10 抽機       10 抽機         11 日       10 抽機         12 日       10 抽機         13 日       10 抽機         14 日       10 抽機         15 日       10 抽機         16 日       10 日         17 日       10 日         18 日       10 日         19 日       10 日         10 日       10 日 | メンテナンス建物東側シャッター, ガラス窓<br> |    |
|                                |                     | 図2 二次飛来物になり得る旅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 認の写真(3/20)                |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                         | 備考 |
|--------------------------------|---------------------|------------------------------------------------------------------------------------------------------|----|
|                                |                     |                                                                                                      |    |
|                                |                     | 24 R/B空調換気系給気用格子       25 HPCS-DEG室給気用格子                                                             |    |
|                                |                     | 26 A, B-DEG室給気用格子       27 HPCS電気室空調換気系給気用格子         27 HPCS電気室空調換気系給気用格子       27 HPCS電気室空調換気系給気用格子 |    |
|                                |                     | 常用電気室空調換気系給排気用格子                                                                                     |    |
|                                |                     | 図2 二次飛来物になり得る施設の写真(4/20)                                                                             |    |
|                                |                     |                                                                                                      |    |
|                                |                     |                                                                                                      |    |
|                                |                     |                                                                                                      |    |
|                                |                     |                                                                                                      |    |
|                                |                     |                                                                                                      |    |
|                                |                     |                                                                                                      |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                  | 備考 |
|--------------------------------|---------------------|-----------------------------------------------------------------------------------------------|----|
|                                |                     |                                                                                               |    |
|                                |                     | 31 Rw/B空調換気系給気用格子       32 中央制御室空調換気系給気用格子         ジロレンジンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシン |    |
|                                |                     | 33 xスカレータガラス窓 (44m盤) 35 日立6 号棟シャッター (44m盤)                                                    |    |
|                                |                     | 36 日立6号棟ガラス窓(44m盤) 37 日立5号棟ガラス窓(44m盤)                                                         |    |
|                                |                     | 図2 _ 次飛米物になり得る施設の写具(5/20)                                                                     |    |
|                                |                     |                                                                                               |    |
|                                |                     |                                                                                               |    |
|                                |                     |                                                                                               |    |
|                                |                     |                                                                                               |    |
|                                |                     |                                                                                               |    |
|                                |                     |                                                                                               |    |
|                                |                     |                                                                                               |    |
|                                |                     |                                                                                               |    |
|                                |                     |                                                                                               |    |
|                                |                     |                                                                                               |    |
|                                |                     |                                                                                               |    |
|                                |                     |                                                                                               |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                    | 備考 |
|--------------------------------|---------------------|-------------------------------------------------------------------------------------------------|----|
|                                |                     |                                                                                                 |    |
|                                |                     | 38 CPC事務所ガラス窓 (44m盤)<br>39 日立2号棟ガラス窓 (44m盤)                                                     |    |
|                                |                     | 40日立1号棟ガラス窓(44m盤)       41日立3,4号棟ガラス窓(44m盤)         1日立3,4号棟ガラス窓(44m盤)       1日立3,4号棟ガラス窓(44m盤) |    |
|                                |                     | 42 協力会社事務所相側カラス急(4 4 m 盤)<br>図 2 二次飛来物になり得る施設の写真(6 / 20)                                        |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                     | 備考 |
|--------------------------------|---------------------|--------------------------------------------------------------------------------------------------|----|
|                                |                     |                                                                                                  |    |
|                                |                     | 44 第 2 防護本部シャッター(4 4 m盤)       46 事務所 2 号館西側給排気用格子         46 事務所 2 号館西側給排気用格子                   |    |
|                                |                     | 47 事務所 2 号館北側給排気用格子       48 事務所 2 号館北側シャッター         47 事務所 2 号館北側シャッター       48 事務所 2 号館北側シャッター |    |
|                                |                     | 49 事務所1号館ガラス窓 50 事務所3号館シャッター<br>図2 二次飛来物になり得る施設の写真(7/20)                                         |    |
|                                |                     |                                                                                                  |    |
|                                |                     |                                                                                                  |    |
|                                |                     |                                                                                                  |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 備考 |
|--------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     | 51 ##ğr 3 θ@t 2 # g# 3 9@t J 9 x@<br>52 #g# 3 9@t J 9 x@<br>53 #g# J 9 x@<br>54 #g# 3 0 x@<br>55 #g# 3 0 x@<br>56 #g# 3 0 x@<br>57 # |    |
|                                |                     | 53 純水処理建物給気用格子       54 補助ボイラー宝北側シャッター (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                     | 55 補助ポイラー室北側シャッター(2) 58 3 号倉庫東側シャッター, ガラス窓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                     | 図2 <u>一</u> (水飛米物になり侍る施設の与具(8/20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                            | 備考 |
|--------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     |                                                                                                                                         |    |
|                                |                     | 59 3 号倉庫北側シャッター、ガラス窓       60 2 号倉庫西側シャッター、ガラス窓         「「「「」」」」」」」」」」」」」」」」」」」」         (1) 日日合車古田地山、白、石石工会         1) 日日合車古田地山、白、石石工会 |    |
|                                |                     | 61 2 分目車用 四関ンキッターカウス記       62 2 分目車用 東関ンキッター         62 2 分目車用 東関ンキッター         100000000000000000000000000000000000                    |    |
|                                |                     | 83294単東調ジャラジェ<br>図2 二次飛来物になり得る施設の写真(9/20)                                                                                               |    |
|                                |                     |                                                                                                                                         |    |
|                                |                     |                                                                                                                                         |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 備考 |
|--------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | 65 サイトバンカ建物南側シャッター       66 サイトバンカ建物南側シャッター         「「「「「」」」」」」」」         「「」」」」」」」         「「」」」」」」         「「」」」」」」         「「」」」」」」         「「」」」」」」         「「」」」」」」         「」」」」」         「「」」」」」         「」」」」」         「」」」」」         「」」」」」         「」」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」 |    |
|                                |                     | 68 サイトバンカ建物ガラス窓(1)       69 サイトバンカ建物ガラス窓(2)         「「「」」」」       69 サイトバンカ建物ガラス窓(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 70 危険物屋内貯蔵所東側シャッター 71 ブロワ室ガラス窓<br>図2 二次飛来物になり得る施設の写真(10/20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |

| 柏崎刈羽原子力発電所 6/7号炉 (20 | 017.12.20版) 東海第二発電所 | (2018. 9. 18 版) | 島根原子力発                  | 電所 2号炉                     | 備考 |
|----------------------|---------------------|-----------------|-------------------------|----------------------------|----|
|                      |                     |                 |                         |                            |    |
|                      |                     |                 | 72 汚水処理施設ガラス窓           | 73 固体廃棄物貯蔵庫A棟西側シャッター       |    |
|                      |                     |                 | 74 空コンテナ保管庫西側に面するシャッター  | 75 技術訓練棟 1 号館ガラス窓          |    |
|                      |                     |                 | 76 技術訓練棟1号館北側シャッター,ガラス窓 | 77 技術訓練棟 2 号館西側シャッター, ガラス窓 |    |
|                      |                     |                 | 因2 二伏飛米初になり侍            | る施設の今具(11/20)              |    |
|                      |                     |                 |                         |                            |    |
|                      |                     |                 |                         |                            |    |
|                      |                     |                 |                         |                            |    |
|                      |                     |                 |                         |                            |    |
|                      |                     |                 |                         |                            |    |
|                      |                     |                 |                         |                            |    |
|                      |                     |                 |                         |                            |    |
|                      |                     |                 |                         |                            |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                    | 備考 |
|--------------------------------|---------------------|-------------------------------------------------------------------------------------------------|----|
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     | 32 2 与 5 過水装置建物ガラス窓       36 固体廃棄物貯蔵庫 B 棟南西側シャッター(1)         36 回体廃棄物貯蔵庫 B 棟南西側シャッター(1)       1 |    |
|                                |                     | 87 固体廃棄物貯蔵庫B棟南西側シャッター(2) 89 5号倉庫給気用格子,ガラス窓<br>図2 二次飛来物になり得る施設の写真(12/20)                         |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |
|                                |                     |                                                                                                 |    |

| 柏崎刈羽原子力発電所 6/7号炉 | (2017. 12. 20 版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                         | 備考 |
|------------------|------------------|---------------------|----------------------------------------------------------------------|----|
|                  |                  |                     |                                                                      |    |
|                  |                  |                     | 90 5号倉庫南側シャッター     91 5号倉庫西側シャッター                                    |    |
|                  |                  |                     |                                                                      |    |
|                  |                  |                     | 92 4 4 m版事務所東側シャッター<br>93 固体廃東物貯蔵庫C棟西側シャッター<br>93 回体廃東物貯蔵庫C棟西側シャッター  |    |
|                  |                  |                     | 94 1号開閉所ガラス窓     95 1号開閉所西側シャッター       図2     二次飛来物になり得る施設の写真(13/20) |    |
|                  |                  |                     |                                                                      |    |
|                  |                  |                     |                                                                      |    |
|                  |                  |                     |                                                                      |    |
|                  |                  |                     |                                                                      |    |
|                  |                  |                     |                                                                      |    |
|                  |                  |                     |                                                                      |    |
|                  |                  |                     |                                                                      |    |
|                  |                  |                     |                                                                      |    |
|                  |                  |                     |                                                                      |    |
|                  |                  |                     |                                                                      |    |
|                  |                  |                     |                                                                      |    |
|                  |                  |                     |                                                                      |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                          | 備考 |
|--------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------|----|
|                                |                     |                                                                                                                       |    |
|                                |                     | 96 1 昼間閉所道身(1)       97 2 号閉閉所ガラス懲         97 2 号閉閉所ガラス懲       97 2 号閉閉所ガラス懲                                          |    |
|                                |                     | 98 2 号炉T/B北側車務所西側シャッター、ガラス密       99 鉄イオン貯蔵建物南側シャッター         100 エスユレータ座側シャッター (人生の等)       101 ガスタービン客雪地高力を広声回したホッター |    |
|                                |                     | 図2 二次飛来物になり得る施設の写真(14/20)                                                                                             |    |
|                                |                     |                                                                                                                       |    |
|                                |                     |                                                                                                                       |    |
|                                |                     |                                                                                                                       |    |
|                                |                     |                                                                                                                       |    |
|                                |                     |                                                                                                                       |    |
|                                |                     |                                                                                                                       |    |
|                                |                     |                                                                                                                       |    |
|                                |                     |                                                                                                                       |    |
|                                |                     |                                                                                                                       |    |
|                                |                     |                                                                                                                       |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                         | 備考 |
|--------------------------------|---------------------|--------------------------------------------------------------------------------------|----|
|                                |                     |                                                                                      |    |
|                                |                     | 105 資材倉庫シャッター       107 危険物屋内貯蔵建物給気用格子         レビレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレ |    |
|                                |                     | 108                                                                                  |    |
|                                |                     | 114 出入管理棟南側ガラス窓 116 S/B 西側ガラス窓                                                       |    |
|                                |                     | 図2 二次飛来物になり得る施設の写真(15/20)                                                            |    |
|                                |                     |                                                                                      |    |
|                                |                     |                                                                                      |    |
|                                |                     |                                                                                      |    |
|                                |                     |                                                                                      |    |
|                                |                     |                                                                                      |    |
|                                |                     |                                                                                      |    |
|                                |                     |                                                                                      |    |
|                                |                     |                                                                                      |    |
|                                |                     |                                                                                      |    |
|                                |                     |                                                                                      |    |
|                                |                     |                                                                                      |    |
|                                |                     |                                                                                      |    |
|                                |                     |                                                                                      |    |

| 120 HB: C+2 - B B # D+ y - 2 - 3 2 - 3       121 HB: C+2 - B B # D+ y - 2 - 3 2 - 3       121 HB: C+2 - 4 B # # D+ y - 2 - 3 2 - 3         120 HB: C+2 - B B # D+ y - 2 - 3 2 - 3       121 HB: C+2 - 4 B # # D+ y - 2 - 3 2 - 3       121 HB: C+2 - 4 B # # D+ y - 2 - 3 2 - 3 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 120 補助ポイラー連執東側シャッター、ガラス第       121 固体廃来物貯蔵所D棟南東側シャッター         121 回体廃       121 回体廃         121 回体廃       121 回体廃                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                 |
| 122 D棟市西衡シャッター123 固体廃業物貯蔵所D 棟付属建物西衡ガラス窓正東側にも<br>同様のシャフター正東側にも<br>同様のナ・ラス窓                                                                                                                                                                                                       |
| 125 倉庫西, 東側シャッター 126 倉庫北, 南側ガラス窓                                                                                                                                                                                                                                                |
| 図2 二次飛来物になり得る施設の写真(16/20)                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                 |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                              | 備考 |
|--------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------|----|
|                                |                     | 南側にも<br>同様のシャワター     北       原     一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一                                   |    |
|                                |                     | 127 除じん機メンテナンス建物北, 南側シャッター       128 除じん機建物東, 西側ガラス窓         「「様のシャッター       北         東       「「様のカ*ラス窓」 |    |
|                                |                     | 129 補機権水系ボンブメンテナンス建物北,東,南側シャ       130 補機権水系ボンブメンテナンス建物東,西側ガラス窓         ッター                               |    |
|                                |                     | 図2 二次飛来物になり得る施設の写真(17/20)                                                                                 |    |
|                                |                     |                                                                                                           |    |
|                                |                     |                                                                                                           |    |
|                                |                     |                                                                                                           |    |
|                                |                     |                                                                                                           |    |
|                                |                     |                                                                                                           |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                       | 備考 |
|--------------------------------|---------------------|----------------------------------------------------------------------------------------------------|----|
|                                |                     | 北側にも<br>同様のガラス窓<br>中<br>「<br>「<br>「<br>市<br>」                                                      |    |
|                                |                     | 135 ボーリングコア倉庫南, 北側ガラス窓       138 給水設備建物東側シャッター         136 治水設備建物東, 北側ガラス窓       138 給水設備建物東側シャッター |    |
|                                |                     | 143 重油タシク移送ポンプ室南側ガラス窓       110 幅小低 備金 10 10 00 000                                                |    |
|                                |                     | 図2 二次飛来物になり得る施設の写真(18/20)                                                                          |    |
|                                |                     |                                                                                                    |    |
|                                |                     |                                                                                                    |    |
|                                |                     |                                                                                                    |    |
|                                |                     |                                                                                                    |    |
|                                |                     |                                                                                                    |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)  | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 備考 |
|--------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所 (2018.9.18版) | 自根原子力発電所 2 号炉         (北) (北) (中) (中) (中) (中) (中) (中) (中) (中) (中) (中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 備考 |
|                                |                      | 16 3 9 th Reference of the set |    |
| 柏崎刈羽原子力発電所 6/7号炉 | (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 備考 |
|------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                  |               |                     | <image/> Area control c |    |
|                  |               |                     | with a state of the stat           |    |
|                  |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                  |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                             | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉 | 備考             |
|------------------------------------------------------------------------------------------------------------|---------------------|--------------|----------------|
|                                                                                                            |                     |              | (島根2号炉は「添付資料   |
|                                                                                                            |                     |              | 3.2 竜巻影響評価及び竜巻 |
|                                                                                                            |                     |              | 対策の概要」で記載)     |
| し。能外させると性能う 必要で、 な性能で、 なるので、 な     |                     |              |                |
| し た 加強 です し 通知 ひょう                                                     |                     |              |                |
| をに に 落た いうちょう かい ちょう ない うちょう ない ない ひょう ひょう うちょう うちょう うちょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ            |                     |              |                |
| ● ● ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○                                                                    |                     |              |                |
| ▲ 部 図 2 0 0 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                              |                     |              |                |
| 、 は に 来来。<br>、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、                                                         |                     |              |                |
| たった,<br>たない課題をない。<br>第721月1日                                                                               |                     |              |                |
| 初な示緒は書物である。                                                                                                |                     |              |                |
| 安来が高響物の定め国をにの場合に、物国さにの調(の「「」の「」の「」                                                                         |                     |              |                |
| の 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                    |                     |              |                |
| 高度整代本に、おお米和は、おお米和は、おお米和は、おお米和は、おお米和は、おお米和は、おお米和は、おお、おお、おお、おお、おお、おお、おお、お、お、お、お、お、お、お、お、                     |                     |              |                |
| 高 すうし 裁 が高 なにた 計告 おお おお ちょう お な た た いちょう ちょう お 谷 雅 レー                                                      |                     |              |                |
| 高を物に、おけて、「「「「」」」で、「」」で、「」」で、「」」で、「」」で、「」」で、「」」で                                                            |                     |              |                |
| <b>肉」「「」」」ので、「」」」</b><br>「「」」」では、「」」」<br>「」」」」                                                             |                     |              |                |
| ×<br>・<br>・<br>た<br>た<br>た<br>た<br>ま<br>の<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・ |                     |              |                |
|                                                                                                            |                     |              |                |
| 物之高保讨的改善之。                                                                                                 |                     |              |                |
| あるの書をは、「「「」」を書きた。                                                                                          |                     |              |                |
| る高速う国は続任来う国は、「「」」の「「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、    |                     |              |                |
| 実設高を考えて、「「「「「「「「」」」を、「」」を、「」」を、「」」を、「」」を、「」」を、                                                             |                     |              |                |
| 家 盲 & 登山 福祉 なってい 御塚 大 た をする オンローン おお し 昭和 多 大 た をする すう そうちょう しょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ     |                     |              |                |
| 毎年 ○」 改<br>の と う で と<br>飛行 ち 記 ○<br>離何・ 4 第の                                                               |                     |              |                |
| を受ける 御道 高、 余慧 高・ な 図 福祉                                                                                    |                     |              |                |
|                                                                                                            |                     |              |                |
| 図1 各代表飛来物の設置場所を踏まえた初期高さ                                                                                    |                     |              |                |
|                                                                                                            |                     |              |                |
|                                                                                                            |                     |              |                |
|                                                                                                            |                     |              |                |
|                                                                                                            |                     |              |                |
|                                                                                                            |                     |              |                |
|                                                                                                            |                     |              |                |
|                                                                                                            |                     |              |                |

| 柏崎刈                                     | 」羽原子力発電所 6         | 5/7号炉 (2017.12.20版)                   | 東海第二発電             | 所(2018. 9. 18版)                         | 島根原子力                           | 発電所 2号炉              | 備考 |
|-----------------------------------------|--------------------|---------------------------------------|--------------------|-----------------------------------------|---------------------------------|----------------------|----|
|                                         |                    |                                       |                    | 添付資料 10                                 |                                 | 別紙-4                 |    |
|                                         |                    | 別紙 3                                  |                    |                                         |                                 |                      |    |
|                                         | 辛米味に致化すて           | ひょうの影響について                            | 辛米味に惑化する           | これにの影響について                              | · 辛米哇/= 兆十→ Z                   | ていたらの見細いついて          |    |
|                                         | 电苍时に宠生りる           | いようの影響について                            | 电を时に完生する           | のいようの影響について                             | 电谷时に先生りる                        | いようの影響について           |    |
| 竜巻時は                                    | ないようを伴うことも         | あるため,ひょうに関する文献を                       | ー<br>竜巻においてはひょうを伴  | うことがあるため、ひょうの影響に                        | 竜巻時はひょうを伴うこと                    | こもあるため,ひょうに関する文献     |    |
| 参考にひょ                                   | うの影響について検          | 討を行った。                                | ついて検討を行った。         |                                         | を参考にひょうの影響につい                   | て検討を行った。             |    |
| ひょうは                                    | tあられが大きく成長         | したもので,直径5mm 以上の氷の                     | ひょうはあられが大きく成       | 長したもので,直径 5mm 以上の氷の                     | ひょうはあられが大きく成                    | え長したもので, 直径 5mm 以上の氷 |    |
| 粒子である                                   | 。ひょうの大きさは          | 、,通常は直径が5~50mm である <sup>※1</sup> 。    | 粒子である。ひょうの粒径の      | <u>上限は, 文献 <sup>(1)</sup> によれば通常は</u> 直 | の粒子である。ひょうの大き                   | さは,通常は直径が 5~50mm であ  |    |
| このことか                                   | ゝら,直径50mm のひょ      | こうを対象に影響評価を行う。なお,                     | 径が 5mm~50mm とされている | が、ひょうの粒径の変化に対する影                        | る <sup>**1</sup> 。このことから, 直径 50 | 0mmのひょうを対象に影響評価を行    |    |
| ひょうの大                                   | きさの変化に対する          | 影響度を確認するため、比較対象                       | 響度を確認するため、別の文      | 献 <sup>(2)</sup> に記載のひょうのうち最大の          | Žen                             |                      |    |
| として,参                                   | 考文献※2に記載の雹         | で最大である10cm のひょうにて評                    | 10cmのひょうまでを想定した    | 評価を実施した。                                |                                 |                      |    |
| 価を実施し                                   | たとしても設計飛来          | 物に包含されることも確認した。                       |                    |                                         |                                 |                      |    |
| 空気中を                                    | 落下する物体は空気          | 〔抵抗を受けるので,時間を経れば                      | 空気中を落下する物体は空       | 気抵抗を受けるので,時間が経てば                        | 空気中を落下する物体は空                    | 2気抵抗を受けるので,時間が経て     |    |
| 空気抵抗と                                   | 重力が釣り合い等す          | 運動となり、一定の速度(終端速                       | 空気抵抗と重力とが釣り合い      | 等速運動となり、一定の速度(終端                        | ば空気抵抗と重力が釣り合い                   | 、等速運動(終端速度)となる。空     |    |
| 度) となる                                  | 。空気中を落下する          | ひょうもこの終端速度で落下する。                      | 速度)となる。空気中を落下      | するひょうもこの終端速度で落下す                        | 気中を落下するひょうもこの                   | D終端速度で落下する。ひょうの粒     |    |
| ひょうの粒                                   | Z径ごとの終端速度を         | :表1 に示す。                              | る。ひょうの粒径ごとの終端      | 速度を <u>第1-1表</u> に示す。                   | 径毎の終端速度を表1 に示す                  | t.                   |    |
|                                         |                    |                                       |                    |                                         |                                 |                      |    |
|                                         | 表 1 ひょうの粒          | 2径ごとの終端速度 <sup>※2</sup>               | 第1-1表 ひょう          | の粒径ごとの終端速度 <sup>(2)</sup>               | 表 1 ひょうの料                       | 立径毎の終端速度*2           |    |
| Γ                                       | 粒径 (cm)            | 終端速度 (m/s)                            | 粒径(cm)             | 終端速度(m/s)                               | 粒径(cm)                          | 終端速度(m/s)            |    |
|                                         | 1                  | 9                                     | 1                  | 9                                       | 1                               | 9                    |    |
|                                         | 2                  | 16                                    | 2                  | 16                                      | 2                               | 16                   |    |
|                                         | 5                  | 33                                    | 5                  | 33                                      | 5                               | 33                   |    |
|                                         | 10                 | 59                                    | 10                 | 59                                      | 10                              | 59                   |    |
|                                         |                    |                                       |                    |                                         |                                 |                      |    |
| ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ひょうの影響を評価          | 「するため、運動エネルギー、貫通                      | ここで、ひょうの影響を評価~     | するため,運動エネルギ,貫通力(貫                       | ひょうの大きさの変化に対                    | けする影響度を確認するため、比較     |    |
| のしやすさ                                   |                    | ************************************* | 通限界厚さ)を評価した結果を     | を設計飛来物(鋼製材)と比較し第1                       | 対象として,参考文献 <sup>※2</sup> に記     | 載のある最大 10cm のひょうに対し  |    |
| 示す。ひょ                                   | <u>- うの影響は設計飛来</u> |                                       | -2表に示す。            |                                         | て運動エネルギ、貫通のしや                   | っすさの評価を実施し,設計飛来物     |    |
| 3                                       |                    |                                       | その結果,ひょうの影響は設      | 計飛来物(鋼製材)に十分包絡でき                        | (鋼製材) との比較した結果                  | そを表2に示す。ひょうの影響は設     |    |
| ~~~~~                                   |                    |                                       | ると言える。             |                                         | 計飛来物(鋼製材)に包含で                   | <u>*きる。</u>          |    |
|                                         |                    |                                       |                    |                                         |                                 |                      |    |
|                                         |                    |                                       |                    |                                         |                                 |                      |    |
|                                         |                    |                                       |                    |                                         |                                 |                      |    |
|                                         |                    |                                       |                    |                                         |                                 |                      |    |
|                                         |                    |                                       |                    |                                         |                                 |                      |    |
|                                         |                    |                                       |                    |                                         |                                 |                      |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) |                                 |                  | 東海第二発電所(2018.9.18版)           |            |                | 島根原子力発電所 2号炉 |                      |        |              | 備考               |              |                  |                |          |
|--------------------------------|---------------------------------|------------------|-------------------------------|------------|----------------|--------------|----------------------|--------|--------------|------------------|--------------|------------------|----------------|----------|
|                                |                                 |                  | 第1-2表 粒径 5cm 及び 10cm ひょうの影響評価 |            |                |              | 表 2 粒径 5cm           | 及び10cm | ひょうの影響       | 評価               | ・設計飛来物の相違    |                  |                |          |
|                                | <u>表 2 粒径 5cm</u>               | <u> </u> 及び 10cm | n ひょうのț                       | 影響評価       |                | 及び設計飛来       | 物との比較結果              |        |              |                  | 粒径5cm<br>ひょう | 粒径10cm<br>てN F う | 設計飛来物<br>(綱制材) | 【柏崎 6/7】 |
|                                |                                 | 粒径 5cm           | 粒径 10cm                       | 設計飛来物(鋼製材) |                |              | 貫通限界厚さ               | (鉛直)   |              | カエネルギ            | 0.04kJ       | 0.91kJ           | 176kJ          |          |
| (軍重                            | カエネルギー                          | ひょう<br>0.04kI    | ひょう<br>0.91 kI                | 3 kI       | 評価対象           | 運動エネルギ       | コンクリート               |        |              | コンクリー            |              |                  |                |          |
| 貫通限界厚さ                         | ミニコンクリート                        | 0.8cm            | 2.7cm                         | Acm        |                |              | $(F_c = 225 kgf/cm)$ | 鋼板     | 頁通限界<br>  厚さ | Fc=330kgf/c      | 0.8cm        | 2.7cm            | 27cm           |          |
| (鉛直)                           | Fc=330kgf/cm <sup>2</sup><br>編版 | 0. 80m           | 0.7mm                         |            |                |              | 2)                   |        | (鉛直)         | m <sup>2</sup>   |              |                  |                |          |
|                                | 30911X                          | 0. 200           | 0.71111                       | 211111     | 粒径 5cm ひょう     | 0.04kJ       | 0.8cm                | 0.2mm  |              | 鋼板               | 0.2mm        | 0.8 mm           | 34mm           |          |
|                                |                                 |                  |                               |            | 粒径 10cm ひょう    | 0.85kJ       | 2.9cm                | 0.8mm  |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            | 設計飛来物(鋼製<br>材) | 79kJ         | 18.8cm               | 19mm   |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            | <参考文献>         |              |                      |        |              |                  |              |                  |                |          |
| ※1 :白ス                         | <b>卞正規,百万人</b>                  | の天気教室            | 至,成山堂書                        | 書店         | (1) 白木正規,      | 百万人の天気教      | 室,成山堂書店              |        | ※1 : 白オ      | マ正規, 百万人の        | の天気教室,       | 成山堂書居            |                |          |
| ₩2 :小1                         | 拿義光, 一般象                        | 〔象学,東〕           | 京大学出版                         | <b>A</b>   | (2) 小倉義光,      | 一般気象学,東      | 京大学出版会               |        | ※2 :小倉       | <b>〕</b> 義光, 一般気 | 、象学,東京       | 大学出版会            |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            |                |              |                      |        |              |                  |              |                  |                |          |
|                                |                                 |                  |                               |            | 1              |              |                      |        |              |                  |              |                  |                | 1        |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                   | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 備考                                              |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                | 別紙 9-2                                                                                                                                                                                                                                                                                                                | 別紙-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |
|                                | 空力パラメータについて<br>物品の飛散解析に用いる空力パラメータは「竜巻影響評価ガイ<br>ド」の参考文献 <sup>(1)</sup> 及び米国NRCの竜巻設計のための飛来物特性<br>を与えるNUREG-0800 (1996) <sup>(2)</sup> に引用されている文献 <sup>(3)</sup><br>を参照し,下式により算出する。                                                                                                                                      | <u>空力パラメータについて</u><br><u>物体の飛散解析に用いる空力パラメータは「竜巻影響評価ガイ</u><br><u>ド」の参考文献<sup>(1)</sup>及び米国 NRC の竜巻設計のための飛来物特性を</u><br><u>与える NUREG-0800 (1996)<sup>(2)</sup>に引用されている文献<sup>(3)</sup>を参照し,</u><br><u>下式により算出する。</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ・記載方針の相違<br>【柏崎 6/7】<br>島根2号炉は空力パラ<br>メータについて記載 |
|                                | $\begin{aligned} \frac{C_DA}{m} &= c \frac{(C_D)(A_1 + C_D A_2 + C_D A_3)}{n} \\ \text{ここで,} \\ \frac{C_DA}{m} &: 密力バラメータ (m2 / kg) \\ n &: 物品の質量 (kg) \\ c &: 係数 (0.33) \\ C_{D1}, C_{D2}, C_{D3} : 直交 3 方向における物品の抗力係数 (別表 2-1 より適定) \\ A_1, A_2, A_3 :: C_{D1} \sim C_{D3} & c 定義 した各方向に対する見付面積 (m2) \end{aligned}$ | $\frac{C_{D}A}{m} = c \frac{(C_{D1}A_{1} + C_{D2}A_{2} + C_{D3}A_{3})}{m}$ ここで、<br>$\frac{C_{D}A}{m} : 空力バラメータ (m2/kg)$ m : 物体の質量 (kg)<br>c : 係数 (0.33)<br>$C_{D1}, C_{D2}, C_{D3} : i i c c 3 j n i c l c l c b k c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d h c n i d $ |                                                 |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                                                                            | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 備考 |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                | 別表 2-1 空力パラメータ算出のための抗力係数                                                                                                       | 表1 空力パラメータ算出のための抗力係数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                | 物体の形状 C <sub>D1</sub> C <sub>D2</sub> C <sub>D3</sub>                                                                          | 物体の形状         C <sub>D1</sub> C <sub>D2</sub> C <sub>D3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                | 塊状 2.0 2.0 2.0                                                                                                                 | 塊状 2.0 2.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                | 板状 1.2 1.2 2.0                                                                                                                 | 板状 1.2 1.2 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                | 棒状         2.0         0.7 (円形断面)         0.7 (円形断面)           1.0 (FEFENETE)         1.0 (FEFENETE)         1.0 (FEFENETE)    | はい、1.2 1.2 1.2 1.3<br>はい、0.7 (円形断面) 0.7 (円形断面)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                | 1.2(地形姆T曲)         1.2(地形姆T曲)           C <sub>D2</sub> :2.0         C <sub>D2</sub> :1.2           C <sub>D2</sub> :0.7(円形断面) | 棒状 2.0 1.2(矩形断面) 1.2(矩形断面)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                                                                                                                                | С <sub>D2</sub> :1.2<br>С <sub>D2</sub> :1.2<br>С <sub>D2</sub> :0.7 (円形断面)<br>:1.2 (矩形断面)<br>:1.2 (矩形断面)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                | A1     CD3       2.0     A1       2.0     A1       A1     CD3       A2     CD3       A3     C17 (円形断面)       1.2 (矩形断面)        | A1     A1     CD3     CD3 <td></td> |    |
|                                | $C_{D1}$ :2.0 $C_{D1}$ :1.2 $C_{D1}$ :2.0<br>・ $A_3 > A_2, A_1$ ・円形断面の場合、 $A_2, A_3$ は<br>「見付面類(直径文長さ)」                        | $C_{D_1}:2.0$ $C_{D_1}:1.2$ $C_{D_1}:2.0$ · 円形断面の場合, $A_2, A_3$ は<br>「見附面積(直径×長さ)」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                | <u> 塊状物体                                   </u>                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                | <参考文献> (1) 東京工共七党(2011)・平式 21-22 年度原子九党会其船調本                                                                                   | <参考文献>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                | (1) 東京工芸八子(2011)・ 平成 21~22 平夜原子乃女主塞盗調査<br>研究(平成 22 年度) 竜巻による原子力施設への影響に関す                                                       | 研究(平成22年度) 竜巻による原子力施設への影響に関す                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                | る調査研究,独立行政法人原子力安全基盤機構                                                                                                          | る調査研究, 独立行政法人原子力安全基盤機構                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                | <ul><li>(2) US-NRC: "3. 5. 1. 4 MISSILE GENERATED BY NATURAL PHENOMENA,"<br/>StandardReview Plan, NUREG-0800, 1996.</li></ul>  | " (2) US-NRC: "3.5.1.4 MISSILE GENERATED BY NATURAL PHENOMENA,"<br>StandardReview Plan, NUREG-0800, 1996.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                | (3) E.Simiu, M. Cordes: "Tornado-Borne Missile Speeds,"                                                                        | (3) E.Simiu, M. Cordes: "Tornado-Borne Missile Speeds,"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                | NBSIR76-1050,National Bureau of Standards, Washington                                                                          | NBSIR76-1050, National Bureau of Standards, Washington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                | D. C. , 1976.                                                                                                                  | D. C. , 1976.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                         | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 備考                                                                   |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                | 別紙 9-3                                                                                                                                                                                                                                                                                                                                                                                      | <u>別紙-6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
|                                | フジタモデル採用時に「竜巻影響評価ガイド」の鋼製材を<br>設計飛来物とすることの妥当性について                                                                                                                                                                                                                                                                                                                                            | 設計飛来物の最大水平速度の妥当性について                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ・記載方針の相違<br>【柏崎 6/7】                                                 |
|                                | 発電所の竜巻影響評価に用いる設計飛来物である鋼製材は、「竜<br>巻影響評価ガイド」に示されている数値を採用しているが、その<br>最大水平速度 (51m/s) は非定常乱流渦モデルによるシミュレー<br>ション (LES) にて導出されている。<br>一方,発電所の竜巻影響評価における物品の飛散解析にはフジ<br>タモデルを適用する方針としており、フジタモデルでは風速が地<br>表からの高さによって変化するため、飛来物源の地表面からの初<br>期高さにより飛散時の挙動が異なる。<br>このため、任意の初期高さにある鋼製材をフジタモデルで飛散<br>させた場合でも、その最大水平速度が 51m/s を超えることがない<br>ことを確認した。結果を別図 3-1 に示す。また、別図 3-1 には<br>参考としてランキン渦モデルによる最大水平速度も記す。 | 1. 鋼製材の最大水平速度の妥当性について<br><u>発電所の竜巻影響評価に用いる設計飛来物である鋼製材は、</u><br>「竜巻影響評価ガイド」に示されている数値を採用しているが、<br><u>その最大水平速度(51m/s)は非定常乱流渦モデルによるシミュ</u><br><u>レーション(LES)にて導出されている。</u><br><u>一方、発電所の竜巻影響評価における物体の飛散解析にはフ<br/>ジタモデルを適用する方針としており、フジタモデルでは風速<br/>が地上からの高さによって変化するため、飛来物源の地上から<br/><u>の初期高さにより飛散時の挙動が異なる。</u><br/><u>このため、任意の地上からの初期高さにある鋼製材をフジタ<br/>モデルで飛散させた場合でも、その最大水平速度が51m/sを超<br/>えることがないことを確認した。結果を図1に示す。また、図<br/>1には参考としてランキン渦モデルによる最大水平速度も記<br/><u>す。</u></u></u> | 島根2号炉はフジタモ<br>デル採用時に「竜巻影響<br>評価ガイド」の鋼製材を<br>設計飛来物とすること<br>の妥当性について記載 |
|                                | 別図 3-1 から,いずれの高さから飛散した場合でも,その最大<br>水平速度は 51m/s を上回ることはないことが分かる。よって,フ<br>ジタモデルを採用する場合においても,設計飛来物の最大水平速<br>度には「竜巻影響評価ガイド」の数値である 51m/s を用いること<br>は問題なく,かつ保守性を有すると判断している。<br>以上                                                                                                                                                                                                                 | 図1から,いずれの地上からの初期高さから飛散した場合で<br>も,その最大水平速度は51m/sを上回ることはないことが分か<br>る。よって,フジタモデルを採用する場合においても,設計飛<br>来物の最大水平速度には「竜巻影響評価ガイド」の数値である<br>51m/sを用いることは問題なく,かつ保守性を有すると判断し<br>ている。                                                                                                                                                                                                                                                                                               |                                                                      |

| 1       各国には1000000000000000000000000000000000000 | 1         20         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>図2</u> 砂利の飛散解料<br>(砂利):40mm×40mm×40mm          | $ \frac{444}{10} \times 10^{-10} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 最大値(ワジタモデル):約42m         最大値(ワジタモデル):約42m         ガイド(LES):         ガイド(LES),風         フジタモデル(原         ガイド(LES,風         ランキン渦モデ         0       10         20       30         地上からの初         1       各風速場モデルにおける鋼製         (鋼製材:300mm×200mm×4,20         20       30         空最大水平速度の妥当性について         5巻影響評価ガイド」に記載のない         5については、フジタモデルを適)         20         21         東大値:約54m/s (設計飛来物とし)         (個製材:300mm×200mm×4,200         21         22         21         22         23         24         25         25         26         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27 |



| 柏崎刈羽原子力発電所 6/7号炉 | 「 (2017. 12. 20 版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                           | 備考          |
|------------------|--------------------|---------------------|--------------------------------------------------------------------------------------------------------|-------------|
|                  |                    |                     | <u>補足1</u>                                                                                             |             |
|                  |                    |                     |                                                                                                        |             |
|                  |                    |                     | フジタモデルによる飛散解析の特徴について                                                                                   | ・記載方針の相違    |
|                  |                    |                     |                                                                                                        | 【東海第二】      |
|                  |                    |                     | 1. <u>はじめに</u>                                                                                         | 島根2号炉は、フジタモ |
|                  |                    |                     | フジタモデルを用いた飛散解析では、物体の地上からの初期                                                                            | デルを用いた飛散解析の |
|                  |                    |                     | 高さが飛散速度や飛散距離に影響する。ここでは、フジタモデ                                                                           | 特徴について記載してい |
|                  |                    |                     | ルの風速場の概要及びフジタモデルを用いた飛散解析の特徴に                                                                           | 3           |
|                  |                    |                     | ついて,設計飛来物 (鋼製材) に対する飛散解析結果を例に説                                                                         |             |
|                  |                    |                     | <u>明する。</u>                                                                                            |             |
|                  |                    |                     |                                                                                                        |             |
|                  |                    |                     | 2. ノンタモナルの風速場のモナル化<br>(1) 国 声明の振声                                                                      |             |
|                  |                    |                     | (1) 風迷場の (4) (1) 風迷場の (4) (1) 風迷場の (4) (1) 風迷場の (4) (1) 四世の (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 |             |
|                  |                    |                     |                                                                                                        |             |
|                  |                    |                     | ば)で構成され、鉛直方向け流入層と非流入層で構成されス                                                                            |             |
|                  |                    |                     | 流入層では竜巻中心方向に向かう強い流れ(流入風)があり.                                                                           |             |
|                  |                    |                     | この空気の流れ込みが外部コア内での上昇風となる。流入風の                                                                           |             |
|                  |                    |                     | 最大風速は流入層の上限で発生するようにモデル化されてお                                                                            |             |
|                  |                    |                     | り,地表面に近づくにつれて連続的に減衰する。水平風速は,                                                                           |             |
|                  |                    |                     | 周方向の風速と流入風の風速を合成することで得られ、最大水                                                                           |             |
|                  |                    |                     | 平方向風速は最大周方向風速に竜巻の移動速度を足したものと                                                                           |             |
|                  |                    |                     | <u>一致する。フジタモデルの風速場における最大水平風速と地上</u>                                                                    |             |
|                  |                    |                     | からの高さの関係を図2に示す。                                                                                        |             |
|                  |                    |                     | フジタモデルにおける最大水平風速は,地表面(0m)から流                                                                           |             |
|                  |                    |                     | 入層高さ(15m)までは大きく上昇し,流入層高さにおいて最                                                                          |             |
|                  |                    |                     | 大風速が発生する。流入層高さを超えると、地上からの高さが                                                                           |             |
|                  |                    |                     | 高くなるにつれて最大水平風速は緩やかに減少するモデルとな                                                                           |             |
|                  |                    |                     | <u>っている。</u>                                                                                           |             |
|                  |                    |                     |                                                                                                        |             |
|                  |                    |                     |                                                                                                        |             |
|                  |                    |                     |                                                                                                        |             |
|                  |                    |                     |                                                                                                        |             |
|                  |                    |                     |                                                                                                        |             |
|                  |                    |                     |                                                                                                        |             |
|                  |                    |                     |                                                                                                        |             |

| 柏崎刈羽原子力発電所 | 6/7号炉 | (2017.12.20版) | 東海第二発電 | ,所(2018. 9. 18 版) |                                                                                        | 島村                                                       | <b>≹原子力発</b>                                                | 電所 2号                                      |
|------------|-------|---------------|--------|-------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|
|            |       |               |        |                   |                                                                                        |                                                          | 竜巻                                                          | 中心軸                                        |
|            |       |               |        |                   |                                                                                        |                                                          |                                                             |                                            |
|            |       |               |        |                   | Æ<br>流<br>へ<br>層                                                                       | コア半径R <sub>m</sub><br>「 Vr<br><u>図1 フ</u>                | ジタモデ.                                                       | <b>V</b><br>一<br>で<br>面<br>ルの風速場           |
|            |       |               |        |                   | 60<br>50<br>[ <b>Ⅲ</b> 水單の公袋子<br>報<br>10                                               |                                                          |                                                             |                                            |
|            |       |               |        |                   |                                                                                        | 0 20<br>竜着<br>ジタモデルの                                     | 40<br>の <b>最大水</b><br>風速場に:                                 | 60<br><b>、平風速[m/</b><br>おける最大 <del>/</del> |
|            |       |               |        |                   | <ol> <li>(2)地面弦</li> <li>地表面作</li> <li>効果)を力</li> <li>物体高さ0</li> <li>(別添 2-</li> </ol> | <u>)果の影響</u><br>†近の物体に<br>コえている。<br>2 3 倍までの<br>2 5. 参照) | <u>高さの関</u><br><u>ついては,</u><br><u>揚力は空</u> ;<br><u>範囲で連</u> | 係 <u>(r=1)</u><br>物体の形:<br>カパラメー<br>続的に減衰  |



| 柏崎刈羽原子力発電所 6/7号炉 | (2017. 12. 20 版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                         | 備考 |
|------------------|------------------|---------------------|--------------------------------------|----|
|                  |                  |                     | 3. フジタモデルによる飛散解析の特徴について              |    |
|                  |                  |                     | フジタモデルによる飛散解析の特徴的な傾向として、地上から         |    |
|                  |                  |                     | の初期高さが増加するに従い,約 10m までは飛来物の水平速度が     |    |
|                  |                  |                     | 大きく増加し、その後の変化は緩やかとなる。(図3参照)          |    |
|                  |                  |                     | ①地上からの初期高さが増加するに従い(約 10m までの範囲(図     |    |
|                  |                  |                     | <u>中の①))</u> ,風速場に滞空する時間が長くなり,飛来物の水平 |    |
|                  |                  |                     | 速度は増加する傾向となる。                        |    |
|                  |                  |                     | ②地上からの初期高さが高い場合(約 10m 以上の範囲(図3中の     |    |
|                  |                  |                     | ②))は、図2に示す通り、地上からの初期高さが高くなるに         |    |
|                  |                  |                     | つれて竜巻の水平風速は緩やかに減少していくモデルとなって         |    |
|                  |                  |                     | いることから、飛来物の水平速度も同様に低下していく。           |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     | 0 10 20 30 40 50 60                  |    |
|                  |                  |                     | 地上からの初期局さ [m]                        |    |
|                  |                  |                     | <br>  図3 フジタモデルを用いた飛散解析における地上からの初期高  |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |
|                  |                  |                     |                                      |    |

| Line         Line <thline< th="">         Line         Line         <thl< th=""><th>柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)</th><th>東海第二発電所(2018.9.18版)</th><th>島根原子力発電所 2号炉</th><th>備考</th></thl<></thline<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                         | 島根原子力発電所 2号炉                                                    | 備考                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------|-----------------------------------------------------------------|-------------------------------|
| Image: State |                                | 別紙 9-4                                      | 別紙-7                                                            |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                             |                                                                 |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | 車両の飛散範囲について                                 | <u>飛来物発生防止対策エリアの設定について</u>                                      | ・対象車両の相違                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | <b>古王然四ーリマの乳ウにソヨム敵原に敵然され食子スとはの</b> す        |                                                                 | 【東海第二】                        |
| 1000年度期に構成の支援した。         第本地区委員会の支援した。         第本員会の支援した。         第本員会の支援した。         第本員会の支援した。         第本員会の支援した。         第本員会の支援した。         第本員会の支援した。         第本員会の支援した。         第本員会の支援した。        第本員会の支援した。       第本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 単向管理エリアの設定に必要な離隔距離等を考慮するための単                | 飛来物発生防止対策エリアは、ワオークタワン等で確認された                                    | 島根2号炉は、資機                     |
| <ul> <li> <ul> <li></li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | <u>両の</u> 飛散範囲(飛散距離及び浮上高さ)については、以下の方針       | 一般散した場合の影響が設計飛来物を超える「貨機材・車両」及び<br>「収見上刑機材」の恋欺欠だは用たり記字してたり、恋欺欠だけ | 材・車両の飛来物発生                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | に基づきノンタモナルを用いて昇田した。                         | <u>「軽重人空機材」の常散脾竹結末より設たしており、常散脾竹は</u><br>い下の古母に其べきつジタエデルも用いて実施した | 防止対策エリアを資                     |
| 1         二         第二次の一般などの第二ションクス         第末税権から各い第二次のの第二シンクス         第末税権から各い第二次の第二シンクス         第末税権から各い第二次の第二シンクス         第末税権から各い第二次の第二シンクス         第末税権から各い第二次の第二シンクス         第末税権から各い第二次の第二シンクス         第末税権から各い第二次の第二シンクス         第末税権がら各部に大大規の第二シンクス         第末税権がら各部に大大規の第二シンクス         第末税付款         第二の日の東北市本の         第二の日本の         第四の日本の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                             | 以下の万町に歩つさノンタモナルを用いて美施した。                                        | 機材・車両のうち最も                    |
| <ul> <li>(1) 正国の最低無抗法任</li> <li>(1) 正国の最低無抗法任</li> <li>(1) 成長しまい形式な考慮し、代表が支持とび達力を返び</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                             | なわ,「軽重八至機材」は、アレバラ小座、ユンアアホリッハ<br>室の飛動」やすい傾向にある軽量で大刑の物品と」 「資機材・   | 米散距離か大さい乗                     |
| (1) 正要のの意識販売条件         (1) 選挙提示         (1) 選挙         (1) 選         (1) 選挙         (1) 選挙         (1) 選         (1) ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                             | 事面」け 「軽量大型機材」以外の物品とする                                           | 用単の飛取距離から                     |
| (1) …東西の道設施商条性         (1) 二酸四の道設施商条性         (1) 通数加強条性         (1) 通数加強条性           (1) 通数加強条性         (1) 通数加強条性         (1) 通数加強条性         (1) 通数加量条性           (1) 点         (1) 点         (1) 点         (1) 点         (1) 点           (1) 点         (1) 点         (1) 点         (1) 点         (1) 点         (1) 点           (1) 点         (1) 点         (1) 点         (1) 点         (1) 点         (1) 点           (1) 点         (1) 点         (1) 点         (1) 点         (1) 点         (1) 点           (1) 点         (1) 点         (1) 点         (1) 点         (1) 点         (1) 点           (1) 点         (1) 点         (1) 点         (1) 点         (1) 点         (1) 点           (1) 点         (1) 点         (1) 点         (1) 点         (1) 点         (1) 点           (1) 点         (1) 点         (1) 点         (1) 点         (1) 点           (1) 点                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                                             |                                                                 | □ 設止している (別称<br>9-1 沃什 次判 2 9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | <ul><li>(1) 車両の飛散解析条件</li></ul>             | (1) 飛散解析条件                                                      | 2-1 你们員科 3.2                  |
| する。         する。         「確式 (太面読入) 1 かつ [意度が扱い] 物品が理面<br>1.場いことから。以下の車種を代表として選定した。         「価値 67]<br>局限 2 やかは現来物<br>発生防止対策コリア           ・とシック (大型へ小型のバスス)<br>・パス (人型へマイクロバス)         ・パース(人型へマイクロバス)         「周辺 2 やかは現来物<br>発生防止対策コリア           ・パス (人型へマイクロバス)         ・パース (人型へマイクロバス)         ・パース(人型へマイクロバス)           ・ 修下シック         ・ 参加は地表面(位置する(加面からの初期高きの))と見<br>なた。         ・ 物品は地表面(位上からの初期高きの)に配置されたが品の取扱施行の送当性を<br>考慮し、地表面に設置されたが品の取扱施行の送当性を<br>考慮し、地表面に設置されたが品の取扱施行の送当性を<br>考慮し、地表面に設置されたが品の取扱施行の送当性を<br>考慮したたからのの現高さな回した場合の         ・ 特性条件の知識<br>に取得 3 「           ・         ・ 売店は地表面(位上からの初期高きの)にの定きれたがした場合の<br>の現式ので施定性を<br>考慮し、地上からの初期高きな面とした場合の<br>見電解析した場にあっての知識面は設定になる金融したからの<br>現式ので施定性を知るしたのでは、2000年でかの地表面目近のの         ・ 特性条件の知識<br>に取りるこの現式のの運動ので施定性を<br>考慮し、地上からの<br>の現式のでを<br>を考慮し、ションシャデルの地表面目近ののに変重ので施定性を<br>なることたする。         ・ 特性条件の知識<br>に取りる<br>の同様の不能変性<br>を考慮し、ションシャンシャンションを<br>の現式ので変更にたいです<br>この地域地域部分の展示がたいです<br>この地域地域にないです<br>このため気を描述された。         ・ 特性条件の知識<br>にないる           ・         ・ 数点に読み気が、2000年でかい地表面目近のので変更なのでたって<br>いた。         ・ 特性条件の知識<br>についろ         ・ 特性条件の知識<br>に取りる<br>の現式ので変更にとた<br>のの現式ので変更にとな<br>の現式ので変更にと<br>った。         ・ 特徴の超したの<br>の見て、ないです<br>このした<br>の見て、ないです<br>このした<br>の見て、ないです<br>になるの高にまた、他の<br>の見て、ないです<br>このした<br>の見て、ないです<br>このした         ・ 特徴のあれたた<br>いです<br>このした<br>の<br>した。         ・ 特徴のあれたた<br>いです<br>このした         ・ 特徴のあれた<br>の<br>の見て、ないです<br>このした<br>の<br>になるの<br>になるの高にまた         ・ や<br>・ 特徴のあれた<br>の<br>になる         ・ この<br>の<br>にでする<br>の<br>にでする         ・<br>・<br>日本の研究<br>の<br>になるのことた<br>の<br>の<br>になるの<br>の<br>になるの<br>の<br>になるの<br>の<br>になるの<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の                                                                                                                                                                                                                                                                                                                                                                   |                                | a. 飛散し易い形状を考慮し, 代表的な寸法及び重量 <sup>※</sup> を選定 |                                                                 | ・<br>資料構成の相違                  |
| ※         「猫状 (表面種大)」かつ「咳咳が低い」物品が熟数<br>LBN:ととから、以下の車種を代表として選定した。<br>・トラック(大衆ーへが知っいを及び平型))<br>・バス (大愛ーマイクロバス)<br>・究在(大学マイクロバス)<br>・繁白動車(最大名)(面積大)、最修量)<br>・感とラック<br>・SUV (パトロール車規定)         島根 2 号炉は果来物<br>等生防止対策・リア<br>の成定過薄について<br>記載している           ・ ドラック<br>・バス (大愛ーマイクロバス)<br>・戦自動車(最大名)(面積大)、最修量)         ・         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                             |                                                                 | 【柏崎 6/7】                      |
| 上島いことから、以下の車種を代表として選定した。         発生防止対策エリアの設定運動(<br>・トラック(大型へ小型のバン及び平型)         第4生防止対策エリアの設定通程について、<br>記載している           ・パロシーク<br>・パロシーク<br>・SUV (パトロール車選定)         新島は地表面(値大),長軽魚)         第4<防止対策エリアの設定通程について、<br>記載している           ・範トラック<br>・SUV (パトロール車選定)         第         第4<防止対策の可能での認識高さの)と思<br>なた。         第4           なた。         「本市局は地表面(に位置する(地面からの初期高さの))と思<br>なた。         第4         第4           なた。         「本市局は地表面(に位置する(地面からの初期高さの))と思<br>なた。         第4         第4           なた。         「本市局は地表面(に位置する(地面からの初期高さの))と思<br>なた。         第4         第4           なた。         「本市局は地表面(に位置する(地面からの初期高さの))と思<br>なたったのに、フジクモデルの地表面付近の週速想の不確定性を<br>考慮し、地来方面に設置された物品の状態 (地方のの)         #42           ・         「市海第二]         #42         第4           「市海第二]         「市海第二]         #42         9月           となる高さであったりたっの期間高さた面とした場合の<br>電数が行るために、フジクモデルの地表面付近の         「市海第二]         #42         9月           ・         「市海第二]         「市海第二]         #42         9月         75           ・         「市海第二]         「市海第二]         #42         9月         75         75         75         75           ・         「市の地表面付近の         「市海第二]         #42         75         75         75         75         75         75         75         75         75         75         75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | <br>※ 「箱状(表面積大)」かつ「密度が低い」物品が飛散              |                                                                 | 島根2号炉は飛来物                     |
| ・トウック(大型へ小型のバン及び平型)<br>・バス(大型へイクロバス)         の設定過報について           ・経自動車(最大高(価値大),最啓量)         記載している           ・経日ション         ・シリン(バトロール車気定)           ・SUV(バトロール車気定)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | し易いことから、以下の車種を代表として選定した。                    |                                                                 | 発生防止対策エリア                     |
| ・バス (大型へマイクロバス)         ・経日熟車(最大高(画雑大),最軽量)         記載している           ・経トラック         ・飯トラック         。           ・飯トラック         ・シレマ (ハトロール車転売)         。           b. 車両は地表面に位置する(地面からの初期高さの)と見<br>なぶ。         点、物品は地表面(地上からの初期高さの)に配置されている         。           なた。         なたとさてる。<br>なお、フジクモデルの地表面付近の風速場の不確定性を<br>考査し、地表面に設置された物品の飛数解析の楽当性を<br>考査し、地表面に設置された物品の飛数解析の楽当性を<br>考査し、地表面に設置された物品の飛数解析の楽当性を<br>考査し、地表面に設置された物品の飛数解析の楽当性を<br>考査し、地表面に設置された物品の飛数解析の楽当性を<br>考査し、地表面に設置された物品の飛数解析の楽当性を<br>考査し、地表面に設置された物品の飛数解析の楽当性を<br>考慮し、地表面に設置された物品の飛び手<br>に<br>がの回渡場の不確定性<br>電振の不確定性に係る至近の研究催者を見ていては、列<br>超上のをの<br>いた。         ・解析条件の相違<br>(現海第二)           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | <ul> <li>・トラック(大型〜小型のバン及び平型)</li> </ul>     |                                                                 | の設定過程について                     |
| ・軽白動車(最大高(面積大),最軽量)<br>・軽トラック<br>・SUV(パトロール車載定)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | ・バス (大型~マイクロバス)                             |                                                                 | 記載している                        |
| ・<         ・          ・          ・          ・          ・          ・          ・          ・          ・          ・          ・          ・          ・           ・          ・         ・         ・         ・         ・          ・          ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・ <th></th> <th><ul> <li>・軽自動車(最大高(面積大),最軽量)</li> </ul></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | <ul> <li>・軽自動車(最大高(面積大),最軽量)</li> </ul>     |                                                                 |                               |
| ・SUV (パトロール車規定)         a. 物品は地表面(地上からの初期高さ0m)に配置されてい         a. 物品は地表面(地上からの初期高さ0m)に配置されてい         AF           なす.         ることとする。         なない、の地球のの変化したののの変化のなどのなどのなどのなどのなどのなどのなどのなどのなどのなどのなどのなどのなどの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | <ul> <li>・軽トラック</li> </ul>                  |                                                                 |                               |
| b. 車両は地表面に位置する(地面からの初期高さの)と見<br>なす。         a. 物品は地表面(地上からの初期高さの)と見<br>なす。         a. 物品は地表面(地上からの初期高さの)に配置されてい<br>ることとする。         *解析条件の相違           なお、ブジタモデルの地表面付近の風速場の不確定性を<br>考慮し、地表面に設置された物品の飛散解析の変当性を<br>考慮し、地表面に設置された物品の飛散解析の変当性を<br>となる高さである地上からの初期高さを5mとした場合の         *解析条件の相違           確認するために、フジタモデルの回速場で約90m/sの風速         島根 2 号炉はフジタ<br>モデルの地表面付近の<br>環散解析も実施する。(フジタモデルの地表面付近の風<br>飛散解析において考慮する気が上からの初期高さを5mとした場合の         の風速場の不確定性           ***の地表面付近         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | <ul> <li>・SUV (パトロール車想定)</li> </ul>         |                                                                 |                               |
| 広工。         公工 シーン         シー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | b. 車両は地表面に位置する(地面からの初期高さ0)と見                | <u>a.物品は地表面(地上からの初期高さ0m)に配置されてい</u>                             |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | to to                                       | ることとする。                                                         |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                             | なお、フジタモデルの地表面付近の風速場の不確定性を                                       | ・解析条件の相違                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                             | <u>考慮し、地表面に設置された物品の飛散解析の妥当性を</u>                                | 【東海第二】                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                             | <u>催認するにめに、ノンタモナルの風速場で約90m/sの風速</u>                             | 島根 2 号炉はフジタ                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                             | <u>となる局さてめる地上からの初期局さを知るした場合の</u><br>恐労敏振れ実施する (フジタエデルの地表面付近の周   | モデルの地表面付近                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                             | 液取時間も実施する。<br>(ノンタモアルの地衣面内近の風<br>連場の不確定性に係る至近の研究報告等についてけ 別      | の風速場の个確定性                     |
| <u>c. 飛散距離に影響を与える飛散の出発点と到達点の高低差</u> <u>b. 竜巻の最大風速は, 設計竜巻の最大風速92m/sを設定する。</u> <u>id, 評価対象施設等の配置状況を考慮し別表4-1のとおり</u> <u>c. 飛散解析において考慮する敷地の高低差は, 物品を設置</u> <u>h. 電参の最大風速1, 設計竜巻の最大風速92m/sを設定する。</u> <u>id</u> 合の飛散解析を実 <u>id</u> 合の飛散解析を実 <u>id</u> 合の飛散解析を実 <u>id</u> (EL8.5, 15m) を考慮し, 表1のとおり余裕をもって設定 <u>id</u> (EL8.5, 15m) を考慮し) (EL8.5, 15m) (EL8.5, 15m) を考慮し) (EL8.5, 15m) (EL8.5, 1                                                                                |                                |                                             | 添加少个幅足口に防劲主处的航光报音等に少少では, <u>所</u><br>添2-2 发昭 )                  | を 考慮し、 地上からの                  |
| <u>             i, 評価対象施設等の配置状況を考慮し別表4-1のとおり</u> <u>             c. 飛散解析において考慮する敷地の高低差は,物品を設置</u> <u>             i, 評価対象施設等の配置状況を考慮し別表4-1のとおり</u> <u>             c. 飛散解析において考慮する敷地の高低差は,物品を設置</u> <u>             i, 都として設定した。             (EL8.5, 15m) を考慮し,表1のとおり余裕をもって設定             <u>             Lた。             [             Lた。             ]     </u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | c.飛散距離に影響を与える飛散の出発点と到達点の高低差                 | b. 竜巻の最大風速は. 設計竜巻の最大風速92m/sを設定すろ                                | 10) 別別向さな 5m とした<br>担合の孤勘知時な史 |
| 余裕をもって設定した。       する敷地高さ(EL8.5~50m)と評価対象施設の設置高さ         (EL8.5,15m)を考慮し,表1のとおり余裕をもって設定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | は,評価対象施設等の配置状況を考慮し別表4-1のとおり                 | c. 飛散解析において考慮する敷地の高低差は、物品を設置                                    | 物ロジバ取所例を美<br>施していろ            |
| (EL8.5,15m)を考慮し,表1のとおり余裕をもって設定<br>した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | 余裕をもって設定した。                                 | <u>する敷地高さ(EL8.5~50m)</u> と評価対象施設の設置高さ                           |                               |
| した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                                             | (EL8.5,15m)を考慮し,表1のとおり余裕をもって設定                                  |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                             | した。                                                             |                               |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東                 | [海第二発電所(2018.                               | 9.18版)                                        | 島根原                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 原子力発電所 2号烷                    | Ē                 | 備考 |
|--------------------------------|-------------------|---------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|----|
|                                | 別見                | 長4-1 出発点と到達                                 | 点の高低差                                         | 表1 飛散解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | において考慮する敷                     | 地の高低差             |    |
|                                | 原 対象施設 排気         | 子炉建屋,タービン建屋,<br>筒,海水ポンプ室内設備 <sup>*,</sup> , | 緊急時対策所建屋                                      | 物品を設置する敷地高さ<br>(発電所の敷地高さ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EL8.5~15m                     | EL45~50m          |    |
|                                |                   | 使用済燃料乾式貯蔵建屋                                 |                                               | 評価対象施設の設置高さ<br>(EL8.5, 15m)との高低差                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Om                            | 41.5m             |    |
|                                | 高低差               | 20m                                         | Om                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | <u> </u>          |    |
|                                | 対象<br>根拠 盤)<br>低差 | 施設の配置高さ(3m盤, 8m<br>と敷地内の車両通行箇所の高<br>に余裕を見た値 | 緊急時対策所建屋と周辺の車<br>両通行箇所の高低差に余裕を<br>見た値         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                   |    |
|                                | <u>※ 以下の</u>      | )評価対象施設を示す。                                 | <u>)                                     </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                   |    |
|                                | 残留蔡               | 熱除去系海水系ポンプ                                  |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                   |    |
|                                | 非常月               | 目ディーゼル発電機(ア                                 | 高圧炉心スプレイ系ディー                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                   |    |
|                                | ゼル発               | <b>巻電機を含む。)用海</b>                           | 水ポンプ                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                   |    |
|                                | 残留素               | 熱除去系海水系ストレ                                  | <u>ーナ</u>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                   |    |
|                                | 非常用               | 目ディーゼル発電機 (話                                | 高圧炉心スプレイ系ディー                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                   |    |
|                                | ゼル系               | <sup>後電機を含む。)用海</sup>                       | 水ストレーナ                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                   |    |
|                                |                   |                                             |                                               | (2) 飛散解析結果及び飛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 来物発生防止対策工                     | リアの設定             |    |
|                                | 別表4-2             | に,車両の寸法,重量                                  | 』,空力パラメータ,最ナ                                  | $\underline{x}$ <u>表2に、ウォークダ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ウン等で確認された                     | 飛来物となり得る物         |    |
|                                | 浮上高さ及             | び上記の2種類の高低                                  | 差に対する最大飛散距離                                   | 品の形状(棒状,板状                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,塊状),寸法,質                     | 量、空力パラメータ         |    |
|                                | を示す。              |                                             |                                               | 及び表1に記載してい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | る2種類の飛散解析                     | において考慮する敷         |    |
|                                |                   |                                             |                                               | 地の高低差に対する地                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 上からの初期高さを                     | <u>Omとした場合の飛散</u> |    |
|                                |                   |                                             |                                               | 解析結果(最大飛散距)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 離,最大水平速度,                     | 最大飛散高さ等)を         |    |
|                                | この結果              | より、車両の最大浮上                                  | こ高さはおおむね20m未満                                 | <u>新</u> 示す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                   |    |
|                                | に留まると             | 考えられ,また高低差                                  | 20m及び0mの最大飛散距離                                | <u>離</u> <u>表2の結果より, </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 資機材・車両」及び                     | 「軽量大型機材」の         |    |
|                                | <u>から, 車両</u>     | 管理エリアの設定に用                                  | 引いる必要離隔距離をそれ                                  | <u>飛来物発生防止対策工</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>リアを,「資機材・</u>              | 車両」及び「軽量大         |    |
|                                | <u>ぞれ230m,</u>    | <u>190mとした。</u>                             |                                               | 型機材」のうち飛散距                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 離が最大となる「乗                     | 用車」及び「プレハ         |    |
|                                | 飛散解析              | においては上記の高低                                  | k差の他にも保守的な取扱                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>ら、凶1、2のとお</u>              | り設定する。            |    |
|                                | いがなされ             | ており、上記数値は係                                  | 除守性を有したものとなっ                                  | <u>また,地上からの初期</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 朝高さを5mとした場                    | 合の飛散解析結果を         |    |
|                                | ている。              |                                             |                                               | <u>表3に示す。表2,3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>より,以下の通りフ</u><br>いままま、これまま | ジタモデルの地表面         |    |
|                                |                   |                                             |                                               | 付近の風速場の不確定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 性を考慮しても飛米                     | 物発生防止対策エリ         |    |
|                                |                   |                                             |                                               | <u>アの設定に影響はない</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>ことを催認した。</u><br>郷バ記記歌士始まね  |                   |    |
|                                |                   |                                             |                                               | <ul> <li>・</li> <li>・</li> <li>・</li> <li>※</li> <li>%</li> <li>%</li></ul>                                                 | 響か設計飛米物を超                     | える物品は、地上か         |    |
|                                |                   |                                             |                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | とした場合において                     | <u>も、飛米物発生防止</u>  |    |
|                                |                   |                                             |                                               | 対東エリアの設定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | に用いた最大形散跑                     | 離を超えない            |    |
|                                |                   |                                             |                                               | <ul> <li>・ * * * 前 前 ・ ボ ボ ・ ボ ボ ・ ・ ボ ・ ・ ・ ボ ・ ・ ・ ・ ・ ボ ・ ・ ・ ・ ・ ・ ・ <p< td=""><td>響い設計形米物以下<br/>1 たりへに かいてい</td><td>の物品は、地上から</td><td></td></p<></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 響い設計形米物以下<br>1 たりへに かいてい      | の物品は、地上から         |    |
|                                |                   |                                             |                                               | <u> り<br/>り<br/>い<br/>下<br/>ず<br/>キ<br/>z</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | しに場合においくも                     | ,                 |    |
|                                |                   |                                             |                                               | <u> 以下じめる</u><br>- 孤掛しない物日は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 地上ふこの知明寺                      | そなにしした相合に         |    |
|                                |                   |                                             |                                               | <ul> <li>・</li> <li>・</li> <li>形</li> <li>取</li> <li>し</li> <li>ない</li> <li>物</li> <li>品</li> <li>は</li> <li>す</li> <li>ボ</li> <li>い</li> <li>い<td>,��上からの初期局</td><td>さをbmとしに場合に</td><td></td></li></ul> | ,��上からの初期局                    | さをbmとしに場合に        |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                         | 備考 |
|--------------------------------|---------------------|--------------------------------------|----|
|                                |                     | おいても、飛散しない(初期位置から浮上しない)              |    |
|                                |                     | <u>地上からの初期高さを5mとしたことで作用する初期風速が増</u>  |    |
|                                |                     | 加し、飛散距離が増加した物品もあるが、飛来物発生防止対策         |    |
|                                |                     | エリアの設定に用いた「乗用車」や「プレハブ小屋」について         |    |
|                                |                     | は、地上からの初期高さを0mとした方が飛散距離が大きくなっ        |    |
|                                |                     | た。これは、「資機材・車両」や「軽量大型機材」に分類され         |    |
|                                |                     | るような表面積及び物品高さが大きい物品は、地面効果による         |    |
|                                |                     | <u> 揚力の影響により高く浮上すること及び地上からの初期高さを</u> |    |
|                                |                     | Omとした方が地上からの初期高さを5mとした場合より長時間設       |    |
|                                |                     | 計竜巻の最大風速程度の強い風を受けたことが要因と考えられ         |    |
|                                |                     | <u>a.</u>                            |    |
|                                |                     | 「資機材・車両」及び「軽量大型機材」のうち,飛散距離が          |    |
|                                |                     | 最大となる「乗用車」及び「プレハブ小屋」の、地上からの初         |    |
|                                |                     | 期高さを0m及び5mとした場合における飛跡(飛散距離と飛散高       |    |
|                                |                     | さの関係)を図3~6に示す。「乗用車」及び「プレハブ小屋」        |    |
|                                |                     | 共に、地上からの初期高さを0mとした方が地上からの初期高さ        |    |
|                                |                     | を5mとした場合より、初期位置からの飛散高さは高くなってお        |    |
|                                |                     | り,飛散距離が大きくなっている。地上からの初期高さを0mと        |    |
|                                |                     | した場合の最大飛散高さは,「乗用車」は約8m,「プレハブ小        |    |
|                                |                     | 屋」は約30mとなっており,地上からの高さ8m以上では,90m/s    |    |
|                                |                     | 程度の強い風を受けることになる。                     |    |
|                                |                     | 以上より、飛来物発生防止対策エリアの設定に対して、地表          |    |
|                                |                     | 面付近の風速場の不確定性の影響は小さく,地表面に設置した<br>     |    |
|                                |                     | 物品に対する飛散解析結果を用いることは妥当であると考え          |    |
|                                |                     | <u>る。</u>                            |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |
|                                |                     |                                      |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 備考 |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                | 別表 4-2 車両の飛散距離 <u>表2</u> 想定飛来物の飛散解析結果(地上からの初期高さ 0m)(1/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                | 一語の (min)   一語の (                                                                                                                                                                                                                                                                                                                               |    |
|                                | 長大泽上<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                | 小小小18418418617818617817822217822217815717815617815617815617991561799156167156167156167156167157158156167157159156150157151156151156151157151156151156151157152156153157154157155156156233157156158333159157150156150233151157152156153333154333155156156333157157158158159233150233150333150333150333150333150333150333150334150335150335150335150335150335150335150335150335150 <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                | 順方 人<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                | <ul> <li>(g)</li> <li(g)< li=""> <li(g)< li=""> <li(g)< li=""> <li>(g)</li> &lt;</li(g)<></li(g)<></li(g)<></ul> |    |
|                                | 一番目前の目的では、「「「」」」では、「「」」」では、「「」」」では、「「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」」では、「」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」」では、「」」」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」」では、「」」」」」」では、「」」」」では、「」」」」では、「」」」」」では、「」」」」」では、「」」」」」では、「」」」」」」」」では、「」」」」」」」」では、「」」」」」」」」」」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                | $\frac{h_{1}+h_{2}}{m}$ $\frac{h_{1}+h_{2}}{m}$ $\frac{11.990}{11.990}$ $\frac{11.91.990}{11.91.990}$ $\frac{11.91.990}{9.444}$ $\frac{9.444}{11.990}$ $\frac{9.444}{11.990}$ $\frac{9.444}{11.990}$ $\frac{9.444}{11.990}$ $\frac{9.444}{11.990}$ $\frac{9.444}{11.990}$ $\frac{9.44}{11.990}$ $\frac{11.990}{11.990}$ $\frac{9.600}{11.990}$ $\frac{0.0000}{0.0000}$ $\frac{0.0100}{0.0000}$ $\frac{0.0000}{0.0000}$ $\frac{0.0000}{0.0000}$ $\frac{0.0000}{0.0000}$                                                                                                                                                                                                                                                              |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                | <ul> <li>一川</li> <li>八90</li> <li>790</li> <li>791</li> <li>791</li></ul>                                        |    |
|                                | 中<br>中<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二                                                                                                                                                                                                |    |
|                                | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                | 「「「「「」」、「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                | 「「「「「」」」」」「「「」」」」」」」「「「」」」」」」」「「「」」」」」」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 備考 |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                | 別表 4-2 車両の飛散距離 <u>表2</u> 想定飛来物の飛散解析結果(地上からの初期高さ 0m)(2/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                | 一上市式       1)     6.3       6.3     6.3       6.3     7.6       8.2     9.3       10.1     10.1       10.1     10.1       11.5     11.6       11.5     11.6       11.5     11.6       11.6     11.5       11.5     11.6       11.5     11.6       11.6     9       11.6     9       11.7     6       11.6     11.6       11.7     11.6       11.1     11.7       11.1     11.7       11.1     11.1       11.1     11.1       11.1     11.1       11.1     11.1       11.1     11.1       11.1     11.1       11.1     11.1       11.1     11.1       11.1     11.1       11.1     11.1       11.1     11.1       11.1     1       11.1     1       11.1     1       11.1     1       11.1     1       11.1     1       11.1     1       11.1     1       11.1     1       11.1     1       11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                | 長<br>大<br>大<br>大<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                | 離低(m)<br>引(氏) (1)<br>引(氏) (2)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)<br>引(1)                                                                                                                                           |    |
|                                | 海波 指数 170 2000 1170 1170 1181 1181 1181 1181 1181 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                | 一二一二100二100二190二950二950二950二950二950二950二950二950二950二950二950二950二950二950二950二950二950二950二950二950二950195019501950195019501950195019501950195019501950195019501950195019501950195019501950195019501950195019501950195019501950195019501950195019501950195019501950950950 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                | ● 1285 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                | 決     法     (1)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2) |    |
|                                | ○ つんし<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                | 市市   (m)   (m)   (m)   (m)   3.035   2.635   2.735   1.1910   1.1880   1.280   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1745   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1.1885   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                | 車     ●     へ     へ     へ     一     一     一     一     一     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                | 中<br>マ<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 島根原子力発電所 2号炉 | 備考 |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|
|                                | <ul> <li></li> <li>&lt;</li></ul> |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 | (2017.12.20版) 東海第二発電所(2 | 2018. 9. 18 版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 備考 |
|------------------|-------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                  |                         |                | 表2 想定飛来物の飛散解析結果(地上からの初期高さ 0m)(4/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                  |                         |                | 第110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                  |                         |                | 4/8<br>4/8<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                  |                         |                | ····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                  |                         |                | 海院 総 41<br>「(m/s)<br>14<br>14<br>15<br>15<br>15<br>15<br>10<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                  |                         |                | 第大海索<br>第大海索<br>1<br>(m)<br>44<br>44<br>44<br>44<br>11<br>111<br>111<br>111<br>111<br>111<br>111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                  |                         |                | K 指式<br>K 指式<br>(m)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                  |                         |                | 載初 <sup>「</sup> 送<br>1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                  |                         |                | (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1) </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                  |                         |                | 地域         (大学 44)         ( <b>(</b> )         ( <b>(</b> ) <th)< th="">         (<b></b></th)<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                  |                         |                | <ul> <li>「加大学校会会」</li> <li>「加大学校会会会会会会会会会会会会会会会会会会会会合合。</li> <li>「加大学校会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                  |                         |                | (大)<br>(加)<br>(加)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                  |                         |                | 大規一式(m)<br>能均<br>(m) 1 1 2 2 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                  |                         |                | <ul> <li>ペック<br/>(AB)</li> <li>(AB)</li> <li>(AB)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                  |                         |                | 32         1           22         0         0         0           2         0         0         0         0           2         0         0         0         0         0           2         0         0         0         0         0         0         0           2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                  |                         |                | (kt)<br>10<br>(kt)<br>10<br>(kt)<br>10<br>(kt)<br>10<br>(kt)<br>10<br>(kt)<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                  |                         |                | 高小<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm) |    |
|                  |                         |                | <ul> <li>●</li> <li>●</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                  |                         |                | 振さ<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm)<br>(mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                  |                         |                | 第 28 28 28 28 28 28 28 28 28 28 28 28 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                  |                         |                | 来<br>そ<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                  |                         |                | <ul> <li>○ 送 √ (2)</li> <li>※ √ (2)</li> <li>※ (2)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                  |                         |                | ·····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                  |                         |                | 飛の ・車両<br>来種 数計飛来物の影響を超えない物品 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                  |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                  |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                  |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                  |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                  |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 備考 |
|--------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | 表2 想定飛来物の飛散解析結果(地上からの初期高さ 0m)(5/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     | ●         ●           ○         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                |                     | 第 34 1. 5n<br>大大<br>大大<br>マンション<br>11<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                |                     | <ul> <li>・</li> <li>・<td></td></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | ● 単本の<br>単本の<br>本価で<br>本価で<br>(1)<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     | 第次前前<br>前心が通信です。<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | ▲<br>業務:(元法)<br>キ*(元式)<br>キ(二法)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>(人工)<br>((人工)<br>()<br>((人工))<br>((人工)<br>()<br>(((LT))<br>(((LT)))<br>(((LT)))<br>((((LT)))<br>((((LT))))<br>((((LT))))<br>(((((LT)))))<br>((((((LT)))))<br>((((((((LT)))))))<br>((((((((((((((((((((((((((((((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                |                     | Kernel Apple Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | ····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | 15 単単<br>19 目前<br>10 目前<br>10<br>10<br>1 |    |
|                                |                     | 高<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     | <ul> <li>東点</li> <li>上</li> <li>L</li> <li>L</li> <li>L</li> <li>L</li> <li>L</li> <li>State</li> <li>State&lt;</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 形 現 題 種 種 種 種 種 種 極 種 極 種 極 種 極 種 植 植 板 載 號 號 號 離 種 種 種 極 種 極 極 極 極 極 極 寬 魄 魄 魄 魄 魄 魄 魄 魄 魄 魄 魄 魄 魄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                |                     | (決議業)<br>コンクリートブロック」<br>コンクリートブロック」<br>コンクリートブロック」<br>「「ジーマン」<br>「ジーンクリート海護<br>「ジーン」<br>「ジーン」」<br>「ジーン」」<br>「ジーン」」<br>「「洗」」<br>「「洗」」<br>「「洗」」<br>「「洗」」<br>「「洗」」」<br>「「洗」」」<br>「「洗」」」<br>「「洗」」」<br>「「洗」」」<br>「「洗」」」<br>「「「洗」」」<br>「「洗」」」<br>「「「洗」」」<br>「「「、」」」<br>「「「、」」」」<br>「「「、」」」」<br>「「「、」」」」<br>「「「、」」」」<br>「「、」」」」<br>「「、」」」」<br>「「、」」」」<br>「「、」」」」<br>「「、」」」」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | 飛 の<br>飛 の<br>来 値<br>数 値<br>数 値<br>数 値<br>数 値<br>数 値                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 備考 |
|--------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | 表2 想定飛来物の飛散解析結果(地上からの初期高さ0m)(6/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     | 第時                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     | ug<br>第一次<br>(公元)<br>(二)<br>(二)<br>(二)<br>(二)<br>(二)<br>(二)<br>(二)<br>(二                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     | 海線計<br>「A<br>数(大)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     | m         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 第201 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | 第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | Bh         FM         C         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     | 大概 4 (3)<br>本 4 (3)<br>x 4 (                                                             |    |
|                                |                     | (ペテカー)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                |                     | 11.11.11.11.11.11.11.11.11.11.11.11.11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | 南東<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                |                     | 南点<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000) |    |
|                                |                     | 南<br>市<br>(mm)<br>(mm)<br>(11000<br>28000<br>28000<br>28000<br>28000<br>28000<br>20000<br>20000<br>20000<br>20000<br>20000<br>20000<br>11500<br>997<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     | 来さした。<br>1 1 1406 (man) 35755 35800 35755 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 358000 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 35800 358000 35800 35800 35800 35800 358000 35800000 358000 358000 358000 3580003000 3580000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 彩 电地地地地地地像 拳拳拳 动拳拳簧 经 板 板 板 地地地地地 化计计计计计计计计计计计计计计计计计计计计计算                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     | 田田 (180 年)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                |                     | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | ・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 現の一致後、お子を完善を見てきます。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |

| 柏崎刈羽原子力発電所 | 6/7号炉 | (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉           | 備考 |
|------------|-------|---------------|---------------------|------------------------|----|
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     | 図1 資機材・車両の飛来物発生防止対策エリア |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     | 図2 軽量大型機材の飛来物発生防止対策エリア |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |
|            |       |               |                     |                        |    |

| 柏崎刈羽原子力発電所 6/7号 | 一炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 備考 |
|-----------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                 |                  |                     | 表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(1/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                 |                  |                     | 一 通 (mu)<br>前 次 前<br>前 次 前<br>前 次 前<br>前 次 前<br>前 次 前<br>前 次 前<br>前 次 前<br>月 1 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                 |                  |                     | <ul> <li>「(水平)</li> <li>「(水平)</li> <li>「(水平)</li> <li>(к.1)</li> <li>14118</li> <li>9411</li> <li>1714</li> <li>9411</li> <li>1714</li> <li>9458</li> <li>2590</li> <li>2690</li> <li>2690</li> <li>2690</li> <li>2690</li> <li>2690</li> <li>2719</li> <li>2612</li> <li>2719</li> <li>2727</li> <li>2727</li> <li>2731</li> <li>2731</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                 |                  |                     | <ul> <li>(m) (m) (m) (m) (m) (m) (m) (m) (m) (m)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                 |                  |                     | <ul> <li>●</li> <li>●<td></td></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                 |                  |                     | 大通(a)<br>第5000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                 |                  |                     | Xi (and and and and and and and and and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                 |                  |                     | 利用         利用           水工         人名二           水工         人名二           水工         人名二           (k1)         14118           9411         1714           1714         945           9411         1714           1714         945           916         12160           13160         559           2237         11360           11268         5527           2339         5527           1135         2373           11360         11045           5523         5693           9617         5339           1979         5693           9616         11045           1979         1979           1979         7803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                 |                  |                     | (1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                 |                  |                     | ● 単二の 100 mm m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                 |                  |                     | 火焼市 1<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                 |                  |                     | $\begin{array}{c} \gamma \ \gamma $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                 |                  |                     | ・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                  |                     | 通法 (mm)<br>カ<br>(mm)<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2000<br>2500<br>2000<br>2500<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2 |    |
|                 |                  |                     | <ul> <li>●価目</li> <li>●目目</li> <li>●目</li> <li>●目&lt;</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                 |                  |                     | 本小<br>上<br>(mm)<br>(mm)<br>(2000<br>18000<br>18000<br>18000<br>18000<br>18000<br>18000<br>18000<br>18000<br>18000<br>18000<br>18000<br>18000<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>11500<br>115000<br>11500<br>11500<br>11500<br>11500<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>115000<br>1150000<br>115000<br>115000<br>115000<br>115000<br>1150000<br>115000<br>115000<br>115000<br>115000<br>1150000<br>115000<br>115000<br>115000<br>115000<br>1150000<br>1150000<br>115000<br>11000000<br>1150000<br>11500000000                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                 |                  |                     | 次         3         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000          1000         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                 |                  |                     | バルボルシング・<br>イレンシング・<br>海峡深マンプ小島10<br>ガレンシング・<br>海峡深レインション<br>クレード<br>イレンシング小島10<br>イレンング小島10<br>イレンング小島11<br>イレング小島11<br>イレング小島11<br>イレング小島11<br>イレング小島11<br>イレング小島11<br>イレング小島11<br>イレング小島11<br>イレング小島11<br>イレング小島11<br>イレング小島11<br>イレング小島11<br>イレング小島11<br>イレング小島11<br>イレング小島11<br>(11)年40<br>米島111<br>(11)年40<br>米島111<br>(11)年40<br>米島111<br>(11)年40<br>米島111<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)年40<br>米)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                 |                  |                     | 院の<br>米酒<br>参照<br>を通<br>で<br>構<br>構<br>構<br>構<br>構<br>構<br>構<br>構<br>構<br>で<br>構<br>に<br>、<br>構<br>に<br>、<br>構<br>に<br>、<br>構<br>に<br>、<br>通<br>に<br>、<br>、<br>通<br>に<br>、<br>、<br>通<br>に<br>、<br>、<br>通<br>に<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                 |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                 |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                 |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                 |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                 |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 備考 |
|--------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | 表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(2/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | 法         通貨店           11)         通貨店           11)         1           11         1           12         232           235         (mm)           2365         7           2361         7           2362         7           2361         7           2361         7           2361         7           3610         5           3611         7           3621         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     | 規模<br>構成<br>(加)<br>(加)<br>(加)<br>(加)<br>(加)<br>(加)<br>(加)<br>(加)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     | 第一条 未満<br>市 市<br>(m)<br>(m)<br>(m)<br>(m) (m)<br>(m) (m)<br>(m) (m)<br>(m) (m) (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                |                     | (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     | 未売         金売港           市         1           (m)         106           1         105           1         10           1         72           1         72           1         72           1         72           1         72           1         72           1         72           1         72           1         72           1         72           1         72           1         72           1         73           1         73           1         73           1         749           1         749           1         749           1         749           1         749           1         749           1         749           1         749           1         749           1         749           1         749           1         749           1         740           1         740           1         740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | Radiustriculuity         Radiustriculuity           A, A, A, A, A, A, A, A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | <ul> <li>第合</li> <li>第合</li> <li>第合</li> <li>第合</li> <li>1</li> <li>1</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                |                     | 東点         備           L         第           (mm)         (mm)           (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     | 代決視来的<br>該美兴/ブレビレット載<br>15.10ック(41)1<br>5.10ック(41)2<br>1.10ック(41)2<br>1.10ック(41)2<br>1.10ック(41)2<br>4.11ック<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ック(21)<br>4.11ッ |    |
|                                |                     | 株の<br>水衡<br>参照<br>2011<br>2011<br>2011<br>2011<br>2011<br>2011<br>2011<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 備考 |
|--------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | 表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(3/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 海 廠 指                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                |                     | 確     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     | R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | (mu)<br>(mu)<br>(mu)<br>(mu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     | 繊維<br>(水子)<br>(k1)<br>(k1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | 海大海 大瀬 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | ***         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 2014年1月11日1日11日11日11日11日11日11日11日11日11日11日11日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                |                     | 離離<br>市<br>1975<br>5010<br>5010<br>5010<br>50145<br>5045<br>5045<br>5045<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | 助 示<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | (minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(minu)<br>(min |    |
|                                |                     | <ul> <li>売点</li> <li>上</li> <li>上</li> <li>1430</li> <li>1430</li> <li>5500</li> <li>5500</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                |                     | 彩 电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                     | (1380秒)<br>(1380秒)<br>(1380秒)<br>(1380秒)<br>(1380秒)<br>(1380秒)<br>(1380秒)<br>(1380秒)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | <ul> <li>(35.0%)</li> <li>(25.0%)</li> <li>(25.0%)</li> <li>(25.0%)</li> <li>(25.0%)</li> <li>(11.5%)</li> <li>(11.5%)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | 型(1)中米)統中圧イ水ン統シマド居実量搬運用1)分量器、学業、1)計量本がポールで水ン統シード度実量搬運用1(分量器)等業、1)計量で、一部、電力電力の管理を受け、発展、消水、1)、電力電力・11車力機 加工した電 本宅用・商 本定 第一部 (2)・2・1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | ※強<br>物理<br>たのか、<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                     | ₩ Ĉ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 備考 |
|--------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | 表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(4/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | 嚴<br>凝<br>顧<br>心<br>(un)<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                     | 00<br>業務:24<br>× (大平)<br>* (大平)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                |                     | 現金 (11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                |                     | <ul> <li>未売入売業</li> <li>売入売業</li> <li>売入売業</li> <li>(m)</li> <li>(m)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     | ・ 単本 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                |                     | Set Control (man) に 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | 業齢+3%<br>業務+3%<br>× (大平)<br>- (大王)<br>- (大丁)<br>(k,1)<br>107<br>110<br>110<br>110<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<1<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | 利用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                |                     | <ul> <li>小川市</li> <li>小川市<td></td></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                |                     | ■<br>●<br>米疱 ( ( )<br>米疱 ( )<br>( )<br>( )<br>( )<br>( )<br>( )<br>( )<br>( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | 22.71/-57<br>2.21/A/m<br>(III2/A/A)<br>(III2/A/A)<br>(III2/A/A)<br>(III2/A/A)<br>(III2/A/A)<br>(III2/A/A)<br>(III2/A/A)<br>(III2/A/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)<br>(III2/A)                                                                                                                                                                                                                                                                                     |    |
|                                |                     | (KK)<br>市<br>(KK)<br>(KK)<br>(KK)<br>(KK)<br>(KK)<br>(KK)<br>(KK)<br>(KK)<br>(KK)<br>(KK)<br>(100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | 第一点<br>1<br>1<br>(mm)<br>1<br>(mm)<br>1<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1 |    |
|                                |                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     | <ul> <li>長さしていた。</li> <li>上していかいた。</li> <li>(mm)</li> <li>22500</li> <li>220000</li> <li>120000</li> <li>120000</li> <li>12000</li> <li>12000</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     | 完         高         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | (2決発売米参<br>ホイールローダー」<br>大型法米式とレイ単<br>ドッム市<br>下ッム市<br>の場合。<br>小型目参二番単<br>小型目参「電車<br>小型」を<br>ので、「加工ンナナ<br>のシービートノロック、<br>小型総合。<br>の利」<br>の利」<br>の利」<br>の利2<br>の利2<br>の利2<br>の利2<br>の利2<br>の利2<br>の利2<br>の利2<br>の利2<br>の利2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | 飛の<br>来獲 客荷材 設計需実物の影響を超えない物品   *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 備考 |
|--------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | 表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(5/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                |                     | 新規模型   新規模型   第   第   第   第   第   第   第   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | 田田 10 - 10 - 10 - 10 - 10 - 10 - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                |                     | Ku (a)     Ku                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     | 第 (mage and find a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 第二     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | <ul> <li>ハイ・ション・ション・ション・ション・ション・ション・ション・ション・ション・ション</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     | <ul> <li>第点</li> <li>1)</li> <li>(mn)</li> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | 長さ         幅           L         第           L         第           (mm)         (mm)           200         197           390         197           380         2100           380         2100           500         4200           500         4200           500         4200           500         2200           500         100           550         100           550         100           550         100           550         100           550         100           550         100           550         100           550         100           550         100           550         100           550         100           550         100           550         2300           550         2300           550         2300           550         2300           550         2500           550         2500           550         2500           550         2500      1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     | 形         風 勘 審 審 審 審 審 常 所 離 招 照 照 图 點 書 書 書 書 書 整 整 服 服 服 服 配 點 點 點 於 於 於 於 於 於 於 於 於 於 於 於 於 於 於 於                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     | (小県県米参<br>コンクリートブロック1<br>コンクリートブロック2<br>田ンクリートブロック2<br>市ブロック2<br>海環地にイブ1<br>コンクリート通識<br>海環バイブ1<br>ビンゴン「ビンド」<br>御賀がイブ1<br>マンボンズ<br>マンボンズ<br>マンボンズ<br>マンボンズ<br>マンボンズ<br>「ビンド」<br>「北米(小山<br>(大)<br>1300.クレート第<br>(大)<br>1300.クレート第<br>(大)<br>1300.クレート第<br>(大)<br>1300.クレート第<br>(大)<br>1300.クレート第<br>(大)<br>1300.クレート第<br>(大)<br>1300.クレート第<br>(大)<br>1300.クレート第<br>(大)<br>1300.クレート<br>1300.クレート<br>1300.クレート<br>1300.クレート<br>1300.クリート<br>1300.クレート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.クリート<br>1300.<br>1300.クレート<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1300.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000.<br>1000. |    |
|                                |                     | 飛 の<br>来獲 設計売末物の影響を超えない物品   *<br>物類                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 備考 |
|--------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | 表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(6/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | <ul> <li>(第14)</li> <li>(第14)</li> <li>(第14)</li> <li>(第15)</li> <li>第次第二</li> <li>第次第二</li> <li>第次第二</li> <li>第次第二</li> <li>第次第二</li> <li>(8,1)</li> <li>第次第二</li> <li>(8,1)</li> <li>(8,1)</li> <li>(8,1)</li> <li>(9,1)</li> <li>(9,1)</li> <li>(9,1)</li> <li>(1,1)</li> <li>(1,1</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     | 代析         ①         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         <th1< th=""> <th1< th=""></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     | 後<br>後<br>後                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                |                     | 林策、電子・学校・学校・学校・学校・学校・学校・学校・学校・学校・学校・学校・学校・学校・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     | ■<br>「「「」」」<br>「」」」<br>「」」」<br>「」」」」<br>「」」」」<br>「」」」」<br>「」」」<br>「」」」<br>「」」」<br>「」」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」<br>「                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     | 海農業子(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | weight for the formation of the |    |
|                                |                     | 、<br>、<br>、<br>、<br>、<br>、<br>、<br>の<br>の<br>の<br>の<br>た<br>、<br>の<br>の<br>た<br>い<br>の<br>な<br>の<br>の<br>の<br>た<br>の<br>の<br>の<br>た<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | <ul> <li>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                |                     | <ul> <li>市</li> <li>市</li> <li>市</li> <li>(kg)</li> <li>(kg)&lt;</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                |                     | 謝小<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | <ul> <li>(mm)</li> <li>(mm)</li> <li>(mm)</li> <li>(mm)</li> <li>11000</li> <li>12250</li> <li>12250</li> <li>12260</li> <li>22000</li> <li>22000</li> <li>22000</li> <li>22000</li> <li>20000</li> <li>1500</li> <li>1500<!--</td--><td></td></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                |                     | <ul> <li>東点</li> <li>(mm)</li> <li>1</li> <li>(mm)</li> <li>3775</li> <li>3775</li> <li>3779</li> <li>3600</li> <li>11405</li> <li>2600</li> <li>15500</li> <li>15500</li> <li>15500</li> <li>15500</li> <li>15500</li> <li>15000</li> <li>15000</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     | ※ 2013 2013 2013 2013 2013 2013 2013 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                     | (決決決決)<br>イメークリフト(31)<br>フォークリフト(31)<br>フォークリフト<br>シフタークレーン(000)<br>シフタークレーン2<br>シフタークレーン2<br>(000)<br>シフタークレーン2<br>(000)<br>シフタークレーン2<br>(000)<br>シフタークレーン2<br>(000)<br>参加第二<br>新備2<br>新聞1<br>新備2<br>新聞1<br>大規協議議員<br>大規協議議員<br>(大)第)(優合 除結<br>新聞日、第)(費合 除結<br>自力:(200)<br>大規協議議員<br>中見図((大)第)(優合 除後<br>新聞日、第)(費合 除結<br>自力:(200)<br>大規協議議員<br>中別の読載(2006)<br>大規協会議員<br>中別の読載(2006)<br>大規協会議員<br>(運動日:大小式評価)(2006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                |                     | 飛 の<br>来値 設計戒実物の影響を超えない物品<br>や風                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 備考 |
|--------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | 表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(7/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | - 日本: 1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | ● 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                     | 大瓶<br>市<br>市<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     | a<br>業齢に<br>(小子子)<br>(小子子)<br>(小子子)<br>(小子子)<br>(小子子)<br>(小子子)<br>(小子子)<br>(小子子)<br>(小子子)<br>(小子子)<br>(小子子)<br>(小子子)<br>(小子子)<br>(小子子)<br>(小子)<br>(小                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     | 唐岳路路<br>東大水<br>「<br>15<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                |                     | 昭<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | 大振行 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | ・ ネック<br>(加) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                |                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | 100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     | <ul> <li>第一次</li> <li>第二次</li> <li>第二次<th></th></li></ul>                          |    |
|                                |                     | <ul> <li>第</li> <li>第</li> <li>第</li> <li>第</li> <li>1000</li> <li>10000</li> <li>1000</li> <li>1000</li> <li>1000<th></th></li></ul> |    |
|                                |                     | 東京<br>市<br>110<br>110<br>110<br>110<br>110<br>110<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                |                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | **<br>「「「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | (1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                |                     | <ul> <li>●項</li> <li>●</li> <li>●<td></td></li></ul>                                                                                         |    |
|                                |                     | 飛の ない物品<br>球(種) 部告开資化者電客方式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |

| 柏崎刈羽原子力発電所 | 6/7号炉 | (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|-------|---------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |       |               |                     | 9       8       7         6       5       7         6       5       7         6       5       7         1       0       20         0       20       40       60       80       100         R       R       8       100       100       100         R       B       8       100       100       100         R       8       8       100       100       100         R       8       8       100       100       100 |
|            |       |               |                     | <u>(</u> 乗用車の諸元 : 長さ 1, 900mm 幅 5, 200<br><u>質量 1, 890kg</u><br><u>最大風速 : 92m/s,地上からの初期</u>                                                                                                                                                                                                                                                                                                                        |
|            |       |               |                     | $\begin{bmatrix} 35 \\ 30 \\ 25 \\ 10 \\ 5 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                            |
|            |       |               |                     | <u>図4</u> プレハブ小屋(軽量大型機<br><u>(プレハブ小屋の諸元:長さ7,200mm 幅27</u><br><u>質量7,500kg</u><br><u>最大風速:92m/s,地上からの初其</u>                                                                                                                                                                                                                                                                                                         |



| 柏崎刈羽原子力発電所 | 6/7号炉 | (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|-------|---------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |       |               |                     | 9       8         7       1         0       20       40       60       80       100         2       0       20       40       60       80       100         2       0       20       40       60       80       100         2       0       20       40       60       80       100         2       0       20       40       60       80       100         2       0       20       40       60       80       100         2       10       10       100       100       100         2       20       4       4       4       4       4         3       30       1       100       150       100       150         3       30       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""></t<> |
|            |       |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| 柏崎刈羽原子力発電所 6 / 7 号炉 (2017.1 | 2.20版) 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                        | 備考            |
|-----------------------------|----------------------------|-------------------------------------|---------------|
|                             |                            |                                     |               |
|                             |                            |                                     |               |
|                             |                            | 飛散距離に対する地上からの初期高さの感度解析について          | ・資料構成の相違      |
|                             |                            |                                     | 【柏崎 6/7,東海第二】 |
|                             |                            | 添付資料3.3 別紙−7 表2, 3では, 地上からの初期高さを0m及 | 島根2号炉は,地上か    |
|                             |                            | び5mとした場合の飛散距離を示したが,ここでは,地上からの       | らの初期高さが飛散     |
|                             |                            | 初期高さが飛散距離に及ぼす影響を確認するために、地上から        | 距離に及ぼす影響を     |
|                             |                            | の初期高さ(0~5m)の感度解析を実施する。              | 確認するために,地上    |
|                             |                            | (1) 感度解析範囲                          | からの初期高さの感     |
|                             |                            | 解析範囲は、フジタモデルの風速場で約90m/sの風速となる高      | 度解析を実施してい     |
|                             |                            | さである地上からの初期高さ5mまでの範囲とする。            | る             |
|                             |                            | <ul><li>(2)対象物品について</li></ul>       |               |
|                             |                            | 感度解析を実施する対象物品については,3種類の物品形状         |               |
|                             |                            | (板状,棒状,塊状)のうち,それぞれ地上からの初期高さを        |               |
|                             |                            | 0mとした場合の飛散距離が最大となるプレハブ小屋(塊状),       |               |
|                             |                            | 仮設足場(板状),鋼製材(棒状)を選定する。              |               |
|                             |                            | (3) 感度解析結果                          |               |
|                             |                            | 感度解析結果を図1に示す。                       |               |
|                             |                            | プレハブ小屋(塊状)については、地上からの初期高さが増         |               |
|                             |                            | 加するに従い,飛散距離が減少している。                 |               |
|                             |                            | 地上からの初期高さが増加するに従い物品に作用する初期風         |               |
|                             |                            | 速も増加するが、地面効果による揚力の減少の影響のほうが大        |               |
|                             |                            | きいため飛散距離が減少したと考えられる。地上からの初期高        |               |
|                             |                            | さ 0m で飛散距離が最大となったのは,地面効果による揚力の影     |               |
|                             |                            | 響により、物品が高く浮上し、長時間設計竜巻の最大風速程度        |               |
|                             |                            | の強い風を受けたためと考えられる。                   |               |
|                             |                            | 仮設足場(板状)については,地上からの初期高さ約0.1mま       |               |
|                             |                            | では、地上からの初期高さの増加に伴い飛散距離が減少し、地        |               |
|                             |                            | 上からの初期高さ約 0.1m 以上では,地上からの初期高さの増加    |               |
|                             |                            | に伴い飛散距離は増加している。                     |               |
|                             |                            | 地上からの初期高さ約0.1mまでで地上からの初期高さの増加       |               |
|                             |                            | に伴い飛散距離が減少したのは、プレハブ小屋(塊状)と同様        |               |
|                             |                            | に、物品の地上からの初期高さの増加に伴い地面効果による揚        |               |
|                             |                            | 力が減少したためと考えられる。                     |               |
|                             |                            | 一方で,地上からの初期高さ約0.1m以上で地上からの初期高       |               |
|                             |                            | さの増加に伴い飛散距離が増加したのは、地上からの初期高さ        | I             |

| 柏崎刈羽原子力発電所 | 6/7号炉 | (2017. 12. 20 版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                   | 備考 |
|------------|-------|------------------|---------------------|------------------------------------------------|----|
|            |       |                  |                     | 0.12m以上で地面効果による揚力は消滅するため、物品の地上か                |    |
|            |       |                  |                     | らの初期高さの増加に伴い物品に作用する初期風速が増加する                   |    |
|            |       |                  |                     | ためと考えられる。                                      |    |
|            |       |                  |                     | 鋼製材(棒状)については、地上からの初期高さの増加に伴                    |    |
|            |       |                  |                     | い,飛散距離が徐々に増加している。                              |    |
|            |       |                  |                     | これは、鋼製材(棒状)は物品高さが低く地面効果による揚                    |    |
|            |       |                  |                     | 力の影響を受けにくいこと,空力パラメータがプレハブ小屋(塊                  |    |
|            |       |                  |                     | 状)や仮設足場(板状)に比べて小さく竜巻風速により加速さ                   |    |
|            |       |                  |                     | れにくいことが理由と考えられる。                               |    |
|            |       |                  |                     | なお、仮設足場(板状)及び鋼製材(棒状)は地上からの初                    |    |
|            |       |                  |                     | 期高さの増加に伴い飛散距離も大きくなる傾向が確認された                    |    |
|            |       |                  |                     | が、これらを含め構内の現地調査等で確認された板状、棒状の                   |    |
|            |       |                  |                     | 物品は、飛散した場合の影響(運動エネルギ、貫通力)が設計                   |    |
|            |       |                  |                     | 飛来物以下であることを確認しており、飛来物発生防止対策エ                   |    |
|            |       |                  |                     | リアの設定に影響しない。                                   |    |
|            |       |                  |                     |                                                |    |
|            |       |                  |                     |                                                |    |
|            |       |                  |                     | 250 (710.2m)                                   |    |
|            |       |                  |                     | 200                                            |    |
|            |       |                  |                     |                                                |    |
|            |       |                  |                     |                                                |    |
|            |       |                  |                     |                                                |    |
|            |       |                  |                     | A 100                                          |    |
|            |       |                  |                     | 味<br>                                          |    |
|            |       |                  |                     | 50 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●       |    |
|            |       |                  |                     | 0.12加<br>(仮設足場)<br>0.6m                        |    |
|            |       |                  |                     |                                                |    |
|            |       |                  |                     | していたいでは、1000000000000000000000000000000000000  |    |
|            |       |                  |                     | 図1 プレハブ小屋(塊状),仮設足場(板状), 綱製材(棒状)                |    |
|            |       |                  |                     | の地上からの初期高さと飛散距離の関係                             |    |
|            |       |                  |                     | (プレハブ小屋の諸元・長さ7 200mm 幅 27 000mm 高さ3 400mm      |    |
|            |       |                  |                     | 質量 7.500kg. 空力パラメータ 0.0277m <sup>2</sup> /ko   |    |
|            |       |                  |                     | 仮設足場の諸元:長さ250mm 幅 4,000mm 高さ40mm 質量 14kg       |    |
|            |       |                  |                     | 空力パラメータ 0 0557 m <sup>2</sup> /kg              |    |
|            |       |                  |                     |                                                |    |
|            |       |                  |                     | 空力パラメータ 0.0066 m <sup>2</sup> /kg. 最大風速:92m/s) |    |
|            |       |                  |                     |                                                |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                             | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                          | 備考                                         |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                | 別紙 9-5                                                                                                                                                                                                                                                                                          | <u>別紙-8</u>                                                                                                                                                                                                                                                                                           |                                            |
|                                | 東海発電所<br>廃止措置作業の概要及び解体・撤去物品の管理について                                                                                                                                                                                                                                                              | <u>島根原子力発電所1号炉</u><br>廃止措置における解体撤去作業の概要及び解体・撤去物品の管理                                                                                                                                                                                                                                                   | ・資料構成の相違<br>【柏崎 6/7】<br>良根 2 号には良根 1       |
|                                | <ul> <li>東海発電所の廃止措置工事の概要は、以下に示す3つに区分す<br/>ることができ、それぞれの段階での解体撤去作業の内容を示す。</li> <li>別図 5-1 図には、各段階での東海発電所の状態とその作業概要を示す。</li> <li>(1) 原子炉領域以外の解体撤去【屋内作業】<br/>原子炉領域の解体撤去にて発生する解体撤去物の搬出ルー<br/>ト確保、放射性廃棄物保管エリア確保等のため、原子炉領域<br/>以外の設備を解体撤去。</li> <li>(2) 原子炉領域解体撤去【屋内作業】<br/>原子炉領域解体撤去【屋内作業】</li> </ul> | <ul> <li><u>島根原子力発電所1号炉の廃止措置は、4つに区分すること</u></li> <li><u>ができ、以下にそれぞれの段階での解体撤去作業の内容を示す。</u></li> <li>(1) 解体工事準備期間【屋外・屋内作業】</li> <li><u>供用を終了した設備のうち、管理区域外の設備の解体撤去を</u></li> <li>(2) 原子炉本体周辺設備等解体撤去期間【屋外・屋内作業】</li> </ul>                                                                                | 品板25% は 品板1<br>号炉の廃止措置時の<br>物品の管理方法を記<br>載 |
|                                | 加丁加展スIII加入Thile 2000 (2010), 反上和展代信 201,<br>放射能を減衰させた後,原子炉領域の解体撤去。<br>(3) 建屋等解体撤去 【屋外作業あり】<br>原子炉領域の解体撤去後、各建屋等は汚染を除去し管理区<br>域を解除して解体撤去。                                                                                                                                                         | <ul> <li>供用を終了した設備のうち,管理区域内にある放射性物質に<br/>より汚染された設備(原子炉本体除く)等の解体撤去を行う。</li> <li>(3)原子炉本体等解体撤去期間【屋外・屋内作業】</li> <li>放射能レベルの比較的高い原子炉本体等の解体撤去を行う。</li> <li>(4)建物等解体撤去期間【屋外・屋内作業】</li> <li>供用を終了する放射性廃棄物の廃棄施設,換気設備,その他</li> <li>解体の対象とするすべての設備,建物等の解体撤去を行う。</li> <li>また,各段階での島根原子力発電所1号炉の状態とその作業</li> </ul> |                                            |
|                                | <u>また,別図5-1において,東海発電所の廃止措置の上記の各段階</u><br>での解体,撤去作業の各段階での物品の管理方法を示す。                                                                                                                                                                                                                             | 概要及び竜巻防護に関する廃止措置の各段階での解体撤去作業<br>の物品の管理方法を図1に示す。                                                                                                                                                                                                                                                       |                                            |
|                                |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                       |                                            |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                    | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 備考 |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                | <ul> <li>竜巻防護に関する</li> <li>森体樹大物の管理</li> <li>一般体術大物の管理</li> <li>一般体作業に関わる資機材、単<br/>同は、東二と同様の管理を行</li> <li>い、設計飛米物の影響を超え</li> <li>ることのないように管理する。</li> <li>ることのないように管理する。</li> <li>注意のないように管理する。</li> <li>注意の影響を超え、</li> <li>注意のないように管理する。</li> <li>注意の影響を超え、</li> <li>「設計飛大物の影響を超え、</li> <li>「設計飛大物の影響を超え、</li> <li>「設計電子ののないように管理する。</li> <li>「設計部本物の影響を超え、</li> </ul> | 電巻防護に関する<br>電巻防護に関する<br>解体敵法物の管理<br>と号がと同様の管理<br>を行業に伝る電機材、車両は、島<br>を特定同様の管理を行い、設計<br>た物の影響を超えることのないよ<br>に管理する。<br>で理する。<br>の客体作業時は、設計飛行。<br>を設定する等の管理を行う。<br>を設定する等の管理を行う。<br>文士 された 物 品 管理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                | <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                    | (中かけ、ための開設にないにある「「「「」」」」     (中かけ、ための開設にないにある「「「」」」     (中かけ、ための開設にないにある「「「」」」     (中かけ、ための開設にないにある「「「」」」     (中かけ、ための開設にないにある「「「」」」     (中かけ、ための開設にないによる「たかけ・いいいい」     (中かけ、ための開設にないによる」「たかけ・いいい」     (中かけ、ための開設にないによる」「たかけ・いいい」     (中かけ、ための開設にないによる」「たかけ・いいい」     (中かけ、ための開設にないによる」「たかけ・いいい」     (中かけ、ための開設にないによる」「たかけ・いいい」     (中かけ、ための開設にないによる」「たかけ・いいい」     (中かけ、ための開設にないによる」「たかけ・いい」     (中かけ、ための開設にないによる」「たかけ・いい」     (中かけ、ための開設にないによる」「たかけ・いい」     (中かけ、ための開設にないによる」「たかけ・いい」     (中かけ、たいいい」     (中かけ、たいいいい) |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                     | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 島根原子力発電所 2号炉 | 備考                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------|
| 添付資料3.4                                                                                                                                                            | 添付資料 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                            |
| 3.4 竜巻随伴事象の抽出について                                                                                                                                                  | <ul><li>竜巻随伴事象の抽出について</li><li>1. 概要</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | (島根2号炉は「別添<br>2-1 3.5. 竜巻随伴事<br>象に対する評価」で記 |
| 過去の竜巻被害を参考に竜巻の随伴事象を検討し,柏崎刈羽原<br>子力発電所のプラント配置から考慮する必要がある事象として,<br>火災,溢水及び外部電源喪失事象を抽出した。                                                                             | 過去の竜巻被害事例及び発電所の施設の配置から想定される竜<br>巻の随伴事象を検討し,発電所において考慮する必要がある事象<br>として,火災,溢水及び外部電源喪失を抽出した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 載)                                         |
| (1)過去の竜巻被害について、1990年以降の主な竜巻による被害概要を調査した文献から検討を行った。竜巻の被害の状況写真から日本国内での竜巻被害では、風圧力及び飛来物の衝突により発生している建築物、電柱、電線等の損傷がみられ、竜巻の随伴事象としては、電柱や電線の損傷による停電事象が発生している。(図3.4.1,3.4.2) | <ul> <li>2. 過去の竜巻被害について</li> <li>1990 年以降の主な竜巻による被害概要を調査した文献から検討<br/>を行った。第 2-1 表に、1990 年以降に日本で発生した最大級の<br/>竜巻である下 3 クラスの竜巻を示す。</li> <li>第 2-1 表 1990 年以降の下 3 クラス 奄巻</li> <li>1000年11月7日 北海道在日間町 下3 9 31 7 76 158<br/>1900年12月11日 北海道在日間町 下3 0 415 40 309<br/>1900年12月11日 千葉県茂原市 下3 1 77 82 161</li> <li>1000年12月11日 千葉県茂原市 下3 1 73 82 161</li> <li>1000年12月11日 千葉県茂原市 下3 1 73 82</li> <li>1010年12月11日 千葉県茂原市 下3 1 73 82</li> <li>1010年12月11日 千葉県大阪町市 1 73 1 73 82</li> <li>1010年12月11日 1 73</li> <li>1010年12月11日 1 73&lt;</li></ul> |              |                                            |
| (建物の被害)       (建物の被害)         (建物の被害)       全壊した家屋    飛来物により被害を受けた住宅等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Image: Constraint of the system of the sy |  |  |
| (電柱:の折損, 傾斜)<br>(1)(1)図 3. 4. 1 2012 年茨城県常総市で発生した F3 竜巻による被害状況<br>(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 御壊した道路標識支柱         通路側へ倒壊した電柱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 第 2-2 図 2006 年 11 月 7 日北海道にて発生したF3 竜巻<br>による被害 <sup>(2)(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                             | 東海第二発電所(2018.9.18版)                                              | 島根原子力発電所 2号炉 | 備考 |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------|----|
| <image/> <image/> <image/> <image/>                                                        | <image/> <image/> <image/> <image/> <image/> <image/> <image/> 2 |              |    |
|                                                                                            | 横転したバス 曲がった鉄筋(工事現場)                                              |              |    |
| <section-header><section-header><image/><image/><image/></section-header></section-header> | 第 2-3 図 1990 年 12 月 11 日千葉県にて発生したF3 竜巻<br>による被害 <sup>(4)</sup>   |              |    |
| 図 3. 4. 2 2006 年に北海道佐呂間町にて発生した F3 竜巻による被<br>害状況 <sup>(2)(3)</sup>                          |                                                                  |              |    |
|                                                                                            |                                                                  |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)  | 東海第二発電所(2018.9.18版)           | 島根原子力発電所 2号炉 | 備考 |
|---------------------------------|-------------------------------|--------------|----|
| (2) 柏崎刈羽原子力発電所のプラント配置を参考にした竜巻随伴 | 3. 発電所にて考慮すべき竜巻随伴事象           |              |    |
| 事象について                          |                               |              |    |
| (1)の過去の竜巻による被害状況から, 柏崎刈羽原子力発電所に | 上述の過去の竜巻による被害事例及び第 3-1 図に示す発電 |              |    |
| おいては送電線等が竜巻                     | 所の施設の配置から判断すると、発電所においては送電線等が竜 |              |    |
| による被害を受けることにより、外部電源喪失事象の発生が考え   | 巻による被害を受けることにより、外部電源喪失の発生が考えら |              |    |
| られる。                            | れる。さらに、屋外に油タンク及び水タンクが配備されているこ |              |    |
| さらに,柏崎刈羽原子力発電所のプラント配置から,屋外に軽    | とから、飛来物の衝突により火災及び溢水が発生する可能性があ |              |    |
| 油タンク,水タンクが配                     | る。                            |              |    |
| 備されていることから、飛来物の衝突により火災事象及び溢水事   |                               |              |    |
| 象が発生する可能性があ                     |                               |              |    |
| る。 (図3.4.3)                     |                               |              |    |
| 以上から、竜巻随伴事象として火災、溢水、外部電源喪失事象    | 以上のことから、発電所における竜巻随伴事象として、火災、  |              |    |
| を抽出する。                          | 溢水及び外部電源喪失を抽出する。              |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |
|                                 |                               |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                         | 島根原子力発電所 2号炉 | 備考 |
|--------------------------------|---------------------------------------------|--------------|----|
|                                | 第 3-1 図 発電所の評価対象施設のうち屋外施設及び竜巻随件事象の検討対象施設の配置 |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                | 東海第二発電所(2018.9.18版)                | 島根原子力発電所 2号炉 | 備考 |
|-----------------------------------------------|------------------------------------|--------------|----|
| 参考文献                                          | <参考文献>                             |              |    |
| (1)「平成24 年(2012 年)5 月6 日に茨城県つくば市で発生した建        | (1) (財)消防科学総合センター,平成24年(2012年)5月6日 |              |    |
| 築物等の竜巻被害状況調査報告」(ISSN1346-7328 国総研資料 第         | 茨城県つくば市竜巻災害写真報告,2012               |              |    |
| 703 号 ISSN 0286-4630 建築研究資料 第141 号 平成25 年1 月) | (2) (財)消防科学総合センター,平成18年11月7日北海道    |              |    |
| (2)2006 年佐呂間町竜巻被害調査報告(2006 年11 月21 日)         | 佐呂間町竜巻災害写真報告, 2006                 |              |    |
| (3) 佐呂間竜巻災害の記録―若佐地区―                          | (3) (社) 土木学会 北海道佐呂間町竜巻緊急災害調査団, 平成  |              |    |
|                                               | 18年11月北海道佐呂間町竜巻緊急災害調査,2007年4月      |              |    |
|                                               | (4) 千葉県総務部消防地震防災課,防災誌「風水害との闘い」     |              |    |
|                                               | 第3章 90m 超えの突風に街が飛ばされた! - 茂原で最大スケール |              |    |
|                                               | の竜巻が発生-,平成22年3月                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |
|                                               |                                    |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)      | 東海第二発電所(2018.9.18版)                 | 島根原子力発電所 2号           |
|-------------------------------------|-------------------------------------|-----------------------|
| 別 添 2-2                             | 別添資料2                               |                       |
| <u> 柏崎刈羽原子力発電所6号及び7</u><br><u> </u> | 東海第二発電所                             | 島根原子力発電所              |
| <u> 竜巻影響評価における</u><br>フジタモデルの適用について | <u> 竜巻影響評価における</u><br>フジタモデルの適用について | 竜巻影響評価にま<br>フジタモデルの適用 |
|                                     |                                     |                       |

| と行      | 備老           |
|---------|--------------|
| ///     | ・木次約はつジタエデル  |
|         | の東京社の訪明次判    |
|         | の女ヨ性の読明真科    |
| 则 沃 2-2 | このり、相呵 0/1、果 |
|         | 御弟」と説明内谷に    |
|         | 相遅はないことから、   |
|         | 以下の波線は省略     |
|         |              |
|         |              |
|         |              |
| 2       |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
| おける     |              |
|         |              |
| について    |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |
|         |              |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)      | 東海第二発電所(2018.9.18版)                     | 島根原子力発電所 2号炉                        | 備考             |
|-------------------------------------|-----------------------------------------|-------------------------------------|----------------|
| 目次                                  | 目 次                                     | 目次                                  |                |
|                                     |                                         |                                     |                |
| 別添 2-2                              |                                         | 別添 2-2                              |                |
| 1. はじめに                             | 1. はじめに 1                               | 1. はじめに                             |                |
| 2. 各風速場モデルの概要                       | 2 各風速場モデルの概要 4                          | 2. 各風速場モデルの概要                       |                |
| 2.1.フジタモデル                          | 2.1 フジタモデル 4                            | 2.1.フジタモデル                          |                |
| 2.2. ランキン渦モデル                       | 2.2 ランキン渦モデル 7                          | 2.2. ランキン渦モデル                       |                |
| 2.3. 非定常乱流渦モデル(LES による数値解析)         | 2.3       非定常乱流渦モデル(LESによる数値解析)         | 2.3. 非定常乱流渦モデル(LES による数値解析)         |                |
| 3. 各風速場モデルの比較                       | 3. 各風速場モデルの比較 10                        | 3. 各風速場モデルの比較                       |                |
| 4. 米国におけるフジタモデルの取扱い                 | 4. 米国におけるフジタモデルの取扱い 12                  | 4. 米国におけるフジタモデルの取扱い                 |                |
| 4.1.フジタモデルの利用実績                     | 4.1 フジタモデルの利用実績 12                      | 4.1.フジタモデルの利用実績                     |                |
| 4.2. NRC ガイドでの取扱い                   | 4.2 NRCガイドでの取扱い 14                      | 4.2. NRC ガイドでの取扱い                   |                |
| 5. 飛来物評価における不確定性の考慮                 | 5. 飛散解析における保守性の考慮 15                    | 5. 飛来物評価                            |                |
| 5.1. 物体の浮上・飛来モデルにおける不確定性の考慮         | 5.1 物体の浮上,飛散モデルにおける保守性の考慮 15            | 5.1. 物体の浮上・飛来モデルにおける不確定性の考慮         |                |
| 5.2. 竜巻が物体に与える速度に関する不確定性の考慮         | 5.2 物体が受ける風速における保守性の考慮 31               | 5.2. 竜巻が物体に与える速度に関する不確定性の考慮         |                |
|                                     |                                         | 5.3.フジタモデルの地表面付近の風速場に関する不確定性の考慮     | ・記載方針の相違       |
| 5.3. 飛来物評価法のまとめ                     | 5.3 飛散解析手法まとめ 35                        | 5.4. 飛来物評価法のまとめ                     | 【柏崎 6/7, 東海第二】 |
| 6. 実際の飛散状況に対する検証                    | <ol> <li>実際の飛散状況に対する検証 37</li> </ol>    | 6. 実際の飛散状況に対する検証                    | 島根 2 号炉はフジタモ   |
| 6.1. フジタスケールとの比較                    | 6.1 フジタスケールとの比較 37                      | 6.1. フジタスケールとの比較                    | デルの地表面付近の風     |
| 6.2.米国 Grand Gulf 原子力発電所への竜巻来襲事例    | 6.2 米国 Grand Gulf 原子力発電所への竜巻来襲事例との比較 38 | 6.2.米国 Grand Gulf 原子力発電所への竜巻来襲事例    | 速場に関する不確定性     |
| 6.3. 佐呂間竜巻での車両飛散事例                  | 6.3 佐呂間竜巻での車両飛散事例との比較 40                | 6.3. 佐呂間竜巻での車両飛散事例                  | について記載している     |
| 7. 飛散以外の挙動に対する考慮                    | <ol> <li>7. 飛散以外の挙動に対する考慮 48</li> </ol> | 7. 飛散以外の挙動に対する考慮                    |                |
| 8. まとめ                              | 8. まとめ 50                               | 8. まとめ                              |                |
| 9. 参考文献                             | <参考文献> 52                               | 9. 参考文献                             |                |
| <br> 別紙1 「フジタモデル」及び「ランキン渦モデル」並びに「それ | <br> 別紙1「フジタモデル」及び「ランキン渦モデル」並びに「それぞ     | <br> 別紙1 「フジタモデル」及び「ランキン渦モデル」並びに「それ |                |
| ぞれの風速場モデルを用いた際の飛来物評価手法」の比           | れの風速場モデルを用いた際の飛散解析手法」の比較                | ぞれの風速場モデルを用いた際の飛来物評価手法」の比           |                |
| 較                                   |                                         | 較                                   |                |
|                                     |                                         | 別紙2 フジタモデルのパラメータ設定等について             |                |
|                                     | 別紙2発電所における竜巻風速場モデルの適用方針                 | 別紙3 竜巻影響評価と竜巻モデルの関係                 |                |
|                                     |                                         |                                     |                |
|                                     |                                         |                                     |                |
|                                     |                                         |                                     |                |
|                                     |                                         |                                     |                |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                 | 東海第二発電所(2018.9.18版)                                                                                                                                                                        | 島根原子力発電所 2号炉                                                                                                                                                               | 備考 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1. はじめに                                                                                                                                                                        | 1. はじめに                                                                                                                                                                                    | 1. はじめに                                                                                                                                                                    |    |
| 「原子力発電所の竜巻影響評価ガイド」(1)(以下「ガイド」と                                                                                                                                                 | 「竜巻影響評価ガイド」に従い竜巻影響評価を行う上で、飛来                                                                                                                                                               | 「原子力発電所の竜巻影響評価ガイド」(1)(以下「ガイド」と                                                                                                                                             |    |
| いう。)に従い竜巻影響評価を行う上で、設計飛来物の飛来速度を                                                                                                                                                 | 物の挙動(飛散速度,飛散距離等)を評価するための竜巻風速場                                                                                                                                                              | いう。)に従い竜巻影響評価を行う上で、設計飛来物の飛来速度を                                                                                                                                             |    |
| 設定するための風速場モデルを選定する必要がある。これまでの                                                                                                                                                  | モデルを選定する必要がある。これまでの竜巻飛来物評価におい                                                                                                                                                              | 設定するための風速場モデルを選定する必要がある。これまでの                                                                                                                                              |    |
| 竜巻飛来物評価において用いられている風速場モデルとして、米                                                                                                                                                  | て用いられている風速場モデルとしては、米国NRCの基準類に                                                                                                                                                              | 竜巻飛来物評価において用いられている風速場モデルとして、米                                                                                                                                              |    |
| 国 NRC の基準類に記載されている「ランキン渦モデル <sup>(2)(3)</sup> 」,原子                                                                                                                             | 記載されている「ランキン渦モデル <sup>(i)(ii)</sup> 」及び原子力安全基盤機                                                                                                                                            | 国 NRC の基準類に記載されている「ランキン渦モデル <sup>(2)(3)</sup> 」,原子                                                                                                                         |    |
| 力安全基盤機構の調査研究報告書に記載されている                                                                                                                                                        | 構の「竜巻による原子力施設への影響に関する調査研究」の報告                                                                                                                                                              | 力安全基盤機構の調査研究報告書に記載されている                                                                                                                                                    |    |
| 「LES(Large-eddy simulation)」の数値解析 <sup>(4)</sup> があるが, 当社の                                                                                                                     | 書に記載されている「非定常乱流渦モデル(LES:Large Eddy                                                                                                                                                         | 「LES(Large-eddy simulation)」の数値解析 <sup>(4)</sup> があるが, 当社の                                                                                                                 |    |
| 竜巻影響評価においては,地面に置かれた物体への影響をよく表                                                                                                                                                  | Simulation)」の数値解析 <sup>(iii)</sup> があるが、今回の評価においては、地                                                                                                                                       | 竜巻影響評価においては、地面に置かれた物体への影響をよく表                                                                                                                                              |    |
| 現できている風速場モデルにより、評価対象施設の影響評価・防                                                                                                                                                  | 面に置かれた物体への影響をより良く表現できている風速場モデ                                                                                                                                                              | 現できている風速場モデルにより、評価対象施設の影響評価・防                                                                                                                                              |    |
| 護対策を実施するため、風速場モデルとしてフジタの竜巻工学モ                                                                                                                                                  | ルとして、藤田哲也シカゴ大学名誉教授が考案した竜巻工学モデ                                                                                                                                                              | 護対策を実施するため、風速場モデルとしてフジタの竜巻工学モ                                                                                                                                              |    |
| デルDBT-77(DBT: Design Basis Tornado) <sup>(5)</sup> を選定する。                                                                                                                      | ルDBT-77(DBT: Design Basis Tornado) <sup>(iv)</sup> (以下「フジタ                                                                                                                                 | デルDBT-77(DBT: Design Basis Tornado) <sup>(5)</sup> を選定する。                                                                                                                  |    |
| 第1 図に風速場モデルの選定及び飛来物評価方法に関する検討                                                                                                                                                  | モデル」という。)を選定した。                                                                                                                                                                            | 図1 に風速場モデルの選定及び飛来物評価方法に関する検討フ                                                                                                                                              |    |
| フローを示す。また、第2図に竜巻影響評価フローとフジタモデ                                                                                                                                                  | 第1-1図に,風速場モデルの選定及び飛散解析手法に関する検                                                                                                                                                              | ローを示す。また、図2に竜巻影響評価フローとフジタモデルの                                                                                                                                              |    |
| ルの関連箇所を示す。                                                                                                                                                                     | 討フローを示す。また、第1-2図に、竜巻影響評価の基本フロー                                                                                                                                                             | 関連箇所を示す。                                                                                                                                                                   |    |
| 次節以降にてフジタモデルの詳細や、フジタモデルを適用した                                                                                                                                                   | とフジタモデルを適用する箇所を示す。                                                                                                                                                                         | 次節以降にてフジタモデルの詳細や、フジタモデルを適用した                                                                                                                                               |    |
| 理由等を説明する。                                                                                                                                                                      | 次節以降にて、フジタモデルの詳細やフジタモデルを適用した                                                                                                                                                               | 理由等を説明する。                                                                                                                                                                  |    |
| 各風速場モデルに関する調査・検討<br>・各風速場モデルの概要・比較(2.,3.)<br>・米国におけるフジタモデルの利用実績を確認(4.)<br>■ 速場モデルの選定                                                                                           | 理由等を説明する。                                                                                                                                                                                  | 各風速場モデルに関する調査・検討<br>・各風速場モデルの概要・比較(2.,3.)<br>・米国におけるフジタモデルの利用実績を確認(4.)<br>■ 速爆モデルの選定                                                                                       |    |
| 地面に置かれた物体へ影響を与える風速場をよく表現できている<br>「フジタモデル」を選定                                                                                                                                   | 実     現場       泉モデルの濁定     にデ                                                                                                                                                              | 地面に置かれた物体へ影響を与える風速場をよく表現できている<br>「フジタモデル」を選定                                                                                                                               |    |
| 入力パラメータの設定         フジタモデルの入力パラメータ(竜巻の移動速度 Vr,最大接線風速 Vram,最大接線風速半径 Rm)について,適用性を確認の上,適切な値を設定         内         内         ア                                                       | <ul> <li>・地面に置かれた物体へ影響を与える風速場を良く表現できている         「フジタモデル」を選定         入力パラメータの設定</li></ul>                                                                                                   | 入力パラメータの設定         場で計           フジタモデルの入力パラメータ(竜巻の移動速度 Vr,最大接線風速 Vram,最大接線風速半径 Rm)について,適用性を確認の上,適切な値を設定         場の                                                        |    |
| 物体の浮上・飛来モデルに関する検討(5.1)<br>・ 揚力係数の設定(抗力係数と見附面積の積の平均値 C <sub>6</sub> Aによる代用)((2))<br>・ 揚力係数の適用性(風の受け方や高度依存性)の確認((3),(4))<br>・ 地面効果による揚力を考慮した飛来物の運動方程式((5),(6))                   | <ul> <li>・フジタモデルの入力パラメータ(竜巻の移動速度V<sub>T</sub>,最大接線風速<br/>V<sub>Rm</sub>,最大接線風速半径R<sub>m</sub>)について,適用性を確認の上適切な値<br/>を設定</li> </ul>                                                         | 物体の浮上・飛来モデルに関する検討(5.1) ・揚力係数の設定(抗力係数と見附面積の積の平均値 C₀Aによる代用)((2)) ・揚力係数の適用性(風の受け方や高度依存性)の確認((3),(4)) ・地面効果による揚力を考慮した飛来物の運動方程式((5),(6)) そ                                      |    |
| <ul> <li>         ・竜巻が物体に与える速度に関する検討         (5.2)         ・竜巻に対する物体の場所依存性を考慮し、多点数配置された物体の飛来速度の中から、最大となる飛来速度を設定         ・物体を強制的に高速域に配置し、物体が瞬時に最大風速を受けるよう設定         </li> </ul> | 物体の浮上,飛散モテルに関する検討     ・揚力係数の設定(抗力係数と見付面積の積の平均値C <sub>D</sub> Aによる代用)     ・揚力係数の適用性(風の受け方や高度依存性)の確認     ・地面効果による揚力を考慮した飛来物の運動方程式                                                            | <ul> <li>竜巻が物体に与える速度に関する検討(5.2)</li> <li>・竜巻に対する物体の場所依存性を考慮し、多点数配置された物体の飛来速度の中から、最大となる飛来速度を設定</li> <li>・物体を強制的に高速域に配置し、物体が瞬時に最大風速を受けるよう設定</li> </ul>                       |    |
| 実際の飛散事例に対する検証(6.) <ul> <li>フジタモデルの風速場を用いた評価が事例に<u>おおむね合致すること</u>を確認</li> <li>上記の飛来物評価手法を用いた評価が<u>保守的な結果となること</u>を確認</li> <li>(・ランキン渦モデルの評価では、過度に保守的な結果となることを確認)</li> </ul>     | 物体が受ける風速に関する検討<br>・ 竜巻内の風速の不均一性を考慮し、物体を多点配置<br>(物体を強制的に高速域に配置し、物体が最大風速を受けるよう設定) 考の 意 検 計                                                                                                   | 実際の飛散事例に対する検証(6.)       ・         ・フジタモデルの風速場を用いた評価が事例に <u>おおむね合致すること</u> を確認         ・上記の飛来物評価手法を用いた評価が <u>保守的な結果となること</u> を確認         (・ランキン渦モデルの評価では、過度に保守的な結果となることを確認) |    |
| 第1図風速場モデルの選定及び飛来物評価方法に関する検討<br>フロー                                                                                                                                             | 実際の飛散事例に対する検証         散風           ・フジタモデルを用いた評価が、事例におおむね合致することを確認         新場           ・上記の飛散解析手法を用いた評価が、保守的な結果となることを確認         手モ           (・ランキン渦モデルの評価では、過度に保守的な結果となることを確認         法デ | 図1 風速場モデルの選定及び飛来物評価方法に関する<br>検討フロー                                                                                                                                         |    |
| (括弧内の数字は、本資料の節番号)                                                                                                                                                              | 認) のル<br>検、<br>証 飛 第 1-1 図 風速場モデルの選定及び飛散解析手法に関する検討フロー                                                                                                                                      | (括弧内の数字は、本資料の節番号)                                                                                                                                                          |    |



| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 東海第二発電所(2018.9.18版)                                    | 島根原子力発電所 2号炉                                 | 備考 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|----|
| 2. 各風速場モデルの概要                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 各風速場モデルの概要                                           | 2. 各風速場モデルの概要                                |    |
| 2.1 フジタモデル                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.1 フジタモデル                                             | 2.1 フジタモデル                                   |    |
| フジタモデルは、米国 NRC の実際の竜巻風速場をモデル化した                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | フジタモデルは、米国NRCの実際の竜巻風速場をモデル化し                           | フジタモデルは、米国 NRC の実際の竜巻風速場をモデル化した              |    |
| いという要望により,藤田博士が1978年に竜巻観測記録をもとに                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | たいという要望により,藤田名誉教授が1978年に竜巻観測記録を                        | いという要望により,藤田博士が1978年に竜巻観測記録をもとに              |    |
| 考案した工学モデルである。モデル作成に当たっては, 1974 年8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 基に考案した工学モデルである。モデル作成に当たっては、1974                        | 考案した工学モデルである。モデル作成に当たっては, 1974 年8            |    |
| 月に米国カンザス州 Ash Valley 等で発生した竜巻(第3図)の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 年8月に米国カンザス州 Ash Valley 等で発生した竜巻(第2.1-1                 | 月に米国カンザス州 Ash Valley 等で発生した竜巻(図3)の記録         |    |
| 記録ビデオ画像の写真図化分析を行い、竜巻の地上痕跡調査、被                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 図)のビデオ画像の写真図化分析を行い, 竜巻の地上痕跡調査及                         | ビデオ画像の写真図化分析を行い、竜巻の地上痕跡調査、被災状                |    |
| 災状況調査結果と照合することで風速ベクトルを作成し、そのベ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | び被災状況調査結果と照合することで風速ベクトルを作成し、そ                          | 況調査結果と照合することで風速ベクトルを作成し、そのベクト                |    |
| クトル図をもとに作成した流線モデルから、竜巻風速場を代数式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | のベクトル図を基に作成した流線モデルから、竜巻風速場を代数                          | ル図をもとに作成した流線モデルから、竜巻風速場を代数式で表                |    |
| で表現している(第4図)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 式で表現している。(第2.1-2図)                                     | 現している (図 4)。                                 |    |
| フジタモデルの特徴は、地表面付近における竜巻中心に向かう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | フジタモデルの特徴は、地表面付近における竜巻中心に向かう                           | フジタモデルの特徴は、地表面付近における竜巻中心に向かう                 |    |
| 強い水平方向流れ、及び外部コアにおける上昇流といった、実際                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 強い水平方向流れ及び外部コアにおける上昇流といった、実際の                          | 強い水平方向流れ、及び外部コアにおける上昇流といった、実際                |    |
| の竜巻風速場を良く表現している点にある。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 竜巻風速場を良く表現している点にある。                                    | の竜巻風速場を良く表現している点にある。                         |    |
| 第3 図 Ash Valley 音券 (1974 8 30) のビデオ画像                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 第21-1 図       Ash Valley 音券(1974 8 30)のビデオ画像           | 図 3 Ash Valley 音巻 (1974 8 30) のビデオ画像         |    |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ | (た) (4)<br>(10) 10 10 10 10 10 10 10 10 10 10 10 10 10 |                                              |    |
| 第4 図 分析によって作成した風速ヘクトル(左)、ヘクトル図<br>より作成したフジタモデル流線(右)((5)に一部加筆)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        | 図4ノンタモアルの流線(左)と風速ヘクトルの分析図(右)                 |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                              |    |
| フジタモデルの風速場は第5 図に示すように半径方向に3 つの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | フジタモデルの風速場は,第2.1-3図に示すように半径方向に                         | フジタモデルの風速場は図 5-1 に示すように半径方向に 3 つの            |    |
| 領域(内部コア,外部コア,最外領域)で構成され、内部コアと                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3つの領域(内部コア,外部コア及び最外領域)で構成され、内部                         | 領域(内部コア,外部コア,最外領域)で構成され、内部コアと                |    |
| 外部コアの接線(周)方向風速 V <sub>0</sub> は半径に比例し,その外側の最                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | コアと外部コアの接線(周)方向風速 $V_{\theta}$ は半径に比例し、その外             | 外部コアの接線(周)方向風速 V <sub>0</sub> は半径に比例し、その外側の最 |    |
| 外領域では周方向風速は半径に反比例するモデルとなっている。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 側の最外領域では周方向風速は半径に反比例するモデルとなって                          | 外領域では周方向風速は半径に反比例するモデルとなっている。                |    |
| 内部コアには上昇風速 Vz や半径方向風速 Vr は存在しないが,外                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | いる。内部コアには上昇風速Vzや半径方向風速Vrは存在しない                         | 内部コアには上昇風速 $V_z$ や半径方向風速 $V_r$ は存在しないが、外     |    |
| 部コアには存在する。高さ方向には地面から高さ Hi までを流入層                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | が、外部コアには存在する。高さ方向には地面から高さH <sub>i</sub> までを            | 部コアには存在する。高さ方向には地上からの高さ H <sub>i</sub> までを流入 |    |
| としてモデル化しており, 竜巻中心方向に向かう半径方向風速 V <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 流入層としてモデル化しており、竜巻中心方向に向かう半径方向                          | 層としてモデル化しており、竜巻中心方向に向かう半径方向風速                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 東海第二発電所(2018.9.18版)                                                                                                                                                                               | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                           | 備考             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| があり、この空気の流れ込みが外部コア内での上昇流となる。流                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 風速 V <sub>r</sub> があり、この空気の流れ込みが外部コア内での上昇流と                                                                                                                                                       | V <sub>r</sub> があり、この空気の流れ込みが外部コア内での上昇流となる。                                                                                                                                                                                                                                                            |                |
| 入層より上部では外向きの半径方向風速が存在し、各風速成分は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | なる。流入層より上部では外向きの半径方向風速が存在し、各風                                                                                                                                                                     | 流入層より上部では外向きの半径方向風速が存在し、各風速成分                                                                                                                                                                                                                                                                          |                |
| 高さとともに減衰する流れとなっている。フジタモデルは、流体                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 速成分は上部に向かうにつれて減衰する。フジタモデルは、流体                                                                                                                                                                     | は地上からの高さとともに減衰する流れとなっている。フジタモ                                                                                                                                                                                                                                                                          |                |
| の連続式を満たす形で定式化されており、力学的に根拠のある風                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 力学の連続の式を満たす形で定式化されており、力学的に根拠の                                                                                                                                                                     | デルは、流体の連続式を満たす形で定式化されており、力学的に                                                                                                                                                                                                                                                                          |                |
| 速場となっている。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ある風速場となっている。                                                                                                                                                                                      | 根拠のある風速場となっている。フジタモデルの風速場における                                                                                                                                                                                                                                                                          | ・記載方針の相違       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   | 最大水平風速と地上からの高さの関係を図 5-2 に示す。                                                                                                                                                                                                                                                                           | 【柏崎 6/7, 東海第二】 |
| フジタモデル DBT-77 における接線風速等の関係式については,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | フジタモデル(DBT-77)における接線風速等の関係式につい                                                                                                                                                                    | フジタモデル DBT-77 における接線風速等の関係式については,                                                                                                                                                                                                                                                                      | 島根 2 号炉はフジタモ   |
| Fujita Work Book <sup>(5)</sup> の Chapter6 に下記のとおり記載されている。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ては, Fujita Work Book <sup>(4)</sup> の第6章に, 第2.1-3図のとおり記載                                                                                                                                          | Fujita Work Book <sup>(5)</sup> の Chapter6 に下記のとおり記載されている。                                                                                                                                                                                                                                             | デルの風速場における     |
| (Chapter6 では, 単一渦型のモデルであるフジタモデル DBT-77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | されている。                                                                                                                                                                                            | (Chapter6 では, 単一渦型のモデルであるフジタモデル DBT-77                                                                                                                                                                                                                                                                 | 最大水平風速と地上か     |
| を引用しているが、多重渦型のモデルであるフジタモデル DBT-78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   | を引用しているが,多重渦型のモデルであるフジタモデル DBT-78                                                                                                                                                                                                                                                                      | らの高さの関係を示し     |
| は引用されていない。)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 無次元座標 $r = R/R_n$ , $z = Z/H_i$ 章巻中心軸                                                                                                                                                             | は引用されていない。)                                                                                                                                                                                                                                                                                            | ている            |
| 無次元座標 $r = R/R_{\mu}$ , $z = Z/H_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 接線風速 $V_{\sigma} = F_{r}(r)F_{s}(z)V_{s}$                                                                                                                                                         | 無次元座標 $r = R/R_{m}$ , $z = Z/H$ , 竜巻中心軸                                                                                                                                                                                                                                                                |                |
| 接線風速 $V_{\rho} = F_{r}(r)F_{b}(z)V_{u}$ $r= V$ $r=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $F_r(r) = \begin{cases} r & (r < 1) \\ 1/r & (r \ge 1) \end{cases} F_h(z) = \begin{cases} z^{h_h} & (z < 1) \\ \exp(-k(z - 1)) & (z \ge 1) \end{cases}$                                           | 接線風速 $V_{\rho} = F_{\rho}(r)F_{h}(z)V_{u}$                                                                                                                                                                                                                                                             |                |
| $F_r(r) = \begin{cases} r & (r<1) \\ 1/r & (r\ge1) \end{cases} \\ F_b(z) = \begin{cases} z^{b_0} & (z<1) \\ \exp(-k(z-1)) & (z\ge1) \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 半径方向風速 $\begin{pmatrix} 0 & (r \le \nu) \\ V_r \tan \alpha_0 (1 + \nu^2) & (r_r \le \nu) \end{pmatrix}$                                                                                           | $F_r(r) = \begin{cases} r & (r<1) \\ 1/r & (r\ge1) \end{cases} \\ F_h(z) = \begin{cases} z^{k_0} & (z<1) \\ \exp(-k(z-1)) & (z\ge1) \end{cases}$                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{p} = \begin{pmatrix} 1 - r^{2} \\ 1 - r^{2} \\ V_{g} \tan \alpha_{0} & (r \ge 1) \end{pmatrix}$                                                                                               | 半径方向風速 $\begin{bmatrix} 0 & (r \le v) \end{bmatrix}$                                                                                                                                                                                                                                                   |                |
| $V_r = \left\{ \frac{V_{\nu} \tan \alpha_0}{1 - \nu^2} \left( 1 - \frac{\nu^2}{r^2} \right)  (\nu < r < 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\tan \alpha_{0} = \begin{cases} -A(1-z^{15}) & (z<1) \\ B(1-\exp(-k(z-1))) & (z\geq1) \\ \end{bmatrix} = \boxed{7}$                                                                              | $V_r = \left\{ \frac{V_o \tan \alpha_o}{1 - v^2} \left( 1 - \frac{v^2}{r^2} \right)  (v < r < 1) \right\}$                                                                                                                                                                                             |                |
| $\tan \alpha_{z} = \begin{cases} -A(1-z^{1.5}) & (z<1) \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LFR LE $H_i$<br>$\frac{3}{2} \frac{\eta V_m}{r_m} A(16z^{\frac{3}{2}} - 7z^{\frac{1}{3}})$ (z < 1) $\lambda$                                                                                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                  |                |
| $ \begin{array}{c} B\{1-\exp(-k(z-1))\} & (z\geq 1) \\ L \neq \mathbb{R} \\ \mathbb{R} $ | $V_{z} = \begin{cases} 281 - v^{-} \\ \frac{\eta V_{m}B \exp(-k(z-1))}{k(1-v^{2})} (2 - \exp(-k(z-1))) \\ \frac{\eta V_{m}B \exp(-k(z-1))}{k(1-v^{2})} (2 - \exp(-k(z-1))) \end{cases}$           | $B\{1-\exp(-k(z-1))\}$ (z $\geq 1$ )<br>上昇風速                                                                                                                                                                                                                                                           |                |
| $V = \begin{cases} \frac{3}{28} \frac{\eta V_{u}}{1 - v^2} A(16z^2 - 7z^{\frac{8}{3}}) & (z < 1) \end{cases} \xrightarrow{\pi} \prod_{k=1}^{n_k} \sqrt{v_k} e^{-z^2} A(16z^2 - 7z^{\frac{8}{3}}) & (z < 1) \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $k_{\rho,k,V,\eta,A,Bit 定数}$<br><i>V<sub>θ</sub></i> 接線万回風速<br><i>V<sub>θ</sub></i> 接線万回風速<br><i>V<sub>θ</sub></i> 生谷方向風速(内向きが正)                                                                  | $V = \begin{bmatrix} \frac{3}{28} \frac{\eta V_{m}}{1 - v^2} A(16z^{\frac{2}{n}} - 7z^{\frac{8}{3}}) & (z < 1) \end{bmatrix} \xrightarrow{\mathbb{R}^{n_1}} \sqrt{\mathbf{v}} \mathbf{v}$                                                                                                              |                |
| $\frac{\eta V_{s} B \exp(-k(z-1))}{k(1-v^{2})} \{2 - \exp(-k(z-1))\}  (z \ge 1)$ 第5図 フジタモデルの概要                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | よた、以下の理税の式を個定する。<br>$V_z$ 上昇風速                                                                                                                                                                    | $\frac{\eta V_{B} \exp(-k(z-1))}{k(1-v^{2})} (z-\exp(-k(z-1))) (z\geq 1)$ 図 5-1 フジタモデルの概要                                                                                                                                                                                                              |                |
| $k_0, k, v, \eta, A, B dz z b$<br>$V_0$ 接線(B)方向風速                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $c \equiv \frac{1}{R} \frac{\partial V_{\theta}}{\partial r} + \frac{1}{R} \frac{\partial (rV_r)}{\partial r} + \frac{1}{H} \frac{\partial V_z}{\partial z} = 0 \qquad V_m \qquad \text{Bxkkala}$ | $k_0, k, v, \eta, A, B d c c b d b c b d c b d c c d d c d d c d d c d c d d c d d c d d d c d d d d d d d d$                                                                                                                                                                                          |                |
| 連続の式: $c = \frac{1}{R_m r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{1}{R_m r} \frac{\partial (rr_r)}{\partial r} + \frac{1}{H_i} \frac{\partial v_z}{\partial z} = 0$<br>$\frac{\nabla r}{\partial z} + \frac{1}{R_m r} \frac{\partial v_{\theta}}{\partial z} + \frac{1}{R_m r} \frac{\partial v_z}{\partial z} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $R_m$ , $\delta \delta$ $R_n$ , $\delta h$ $R_i$ $\delta h$ $\pi$ $\pi$ $h$ $\pi$ $\pi$ $h$ $\pi$ $\pi$ $h$ $\pi$ $\pi$ $h$ $\pi$ $\pi$ $\pi$                                                     | 連続の式: $c \equiv \frac{1}{R_m r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{1}{R_m r} \frac{\partial (rr_r)}{\partial r} + \frac{1}{H_i} \frac{\partial v_z}{\partial z} = 0$<br>$\frac{\mathbf{v}_r}{\mathbf{v}_z} + \mathbf{t} \mathbf{z} \beta \mathbf{u} \mathbf{z} \mathbf{z} \mathbf{z}$ |                |
| フジタモデルでは $c=0$ となり <u>連続の式を満たす</u> 。<br>$R_m$ 外部コア半径                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 第2.1-3 因 ノンタモケルの概要                                                                                                                                                                                | フジタモデルでは $c=0$ となり <u>連続の式を満たす</u> 。<br>$R_m$ 外部コア半径                                                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   | 60                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   | 50                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   | $\frac{E}{\mathcal{H}}$ 40                                                                                                                                                                                                                                                                             |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   | 型 10                                                                                                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        | ・記載方針の相違       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   | 0 20 40 60 80 100                                                                                                                                                                                                                                                                                      | 【柏崎 6/7, 東海第二】 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   | 竜巻の最大水平風速[m/s]                                                                                                                                                                                                                                                                                         | 同上             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   | 図 5-2 フジタモデルの風速場における最大水平風速と地上か                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   | <u>らの高さの関係 (r=1)</u>                                                                                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |                |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                 | 東海第二発電所(2018.9.18版)                                                                  | 島根原子力発電所 2号炉                                                      | 備考 |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|----|
| 内部コアの半径 Ah と外部コアの半径 R <sub>m</sub> の比 ν = R <sub>n</sub> / R <sub>m</sub> について | ここで、内部コアの半径 $R_{\nu}$ と外部コアの半径 $R_{m}$ の比 $\nu$ (= $R_{\nu}$ /                       | 内部コアの半径 $R_n$ と外部コアの半径 $R_m$ の比 $\nu = R_n / R_m$ について            |    |
| は、Fujita <sup>(5)</sup> が以下の経験式を提案しているので、これを用いる。                               | $R_m$ ) については, Fujita $^{(4)}$ が以下の経験式を提案しているので,                                     | は,Fujita <sup>(5)</sup> が以下の経験式を提案しているので,これを用いる。                  |    |
| $\nu = 0.9 - 0.7 \exp(-0.005 R_m)$                                             | これを用いた。                                                                              | $\nu = 0.9 - 0.7 \exp(-0.005 R_m)$                                |    |
| (1)                                                                            | $v = 0.9 - 0.7 exp(-0.005R_m)$ (1)                                                   | (1)                                                               |    |
| また、流入層は、地面との摩擦により低下した遠心力と圧力分                                                   | また、流入層は、地面との摩擦により低下した遠心力と圧力分                                                         | また、流入層は、地面との摩擦により低下した遠心力と圧力分                                      |    |
| 布のバランスが崩れ、流体が竜巻中心方向の低圧部に引き込まれ                                                  | 布のバランスが崩れ、流体が竜巻中心方向の低圧部に引き込まれ                                                        | 布のバランスが崩れ、流体が竜巻中心方向の低圧部に引き込まれ                                     |    |
| ることにより形成されることから、摩擦の影響が及ぶ範囲のみで                                                  | ることにより形成されることから、摩擦の影響が及ぶ範囲のみで                                                        | ることにより形成されることから、摩擦の影響が及ぶ範囲のみで                                     |    |
| 形成される。Fujita <sup>(5)</sup> は、流入層高さH <sub>i</sub> を竜巻中心の低圧部の大                  | 形成される。Fujita <sup>(4)</sup> は、流入層高さH <sub>i</sub> を竜巻中心の低圧部の                         | 形成される。Fujita <sup>(5)</sup> は,流入層高さ H <sub>i</sub> を竜巻中心の低圧部の大    |    |
| きさ(外部コア半径) R <sub>m</sub> に比例するものとして,以下の経験式を                                   | 大きさ(外部コア半径) R <sub>m</sub> に比例するものとして,以下の経験式                                         | きさ(外部コア半径)R <sub>m</sub> に比例するものとして,以下の経験式を                       |    |
| 提案しており、これを用いる。                                                                 | を提案しており、これを用いた。                                                                      | 提案しており、これを用いる。                                                    |    |
| $H_i = \eta R_m$                                                               | H = nP                                                                               | $H_i = \eta R_m$                                                  |    |
| (2)                                                                            | $m_i - \eta \alpha_m$                                                                | (2)                                                               |    |
|                                                                                |                                                                                      |                                                                   |    |
| ここで、 $\eta$ は1以下の正の値であり、Fujita Work Book <sup>(5)</sup> の(6.4)                 | ここで、ηは1以下の正の値であり、下式で定義される。                                                           | ここで、 $\eta$ は1以下の正の値であり、Fujita Work Book <sup>(5)</sup> の(6.4)    |    |
| 式より $\eta = 0.55(1 - \nu^2)$ で定義される。                                           | $\eta = 0.55 \left( 1 - v^2 \right)$                                                 | 式よりη = 0.55(1-ν <sup>2</sup> )で定義される。                             |    |
| 上記式において、外部コア半径 $R_m$ =30(m)の場合、 $\eta$ = 0.501( $H_i$                          | 上式において、外部コア半径 $R_m$ = 30mの場合、 $\eta$ = 0.50 ( $H_i$ =                                | 上記式において,外部コア半径 $R_m$ =30 (m)の場合, $\eta$ = 0.501 ( $H_i$           |    |
| =15(m))となり,原子力安全基盤機構の調査研究報告書 <sup>(4)</sup> の図                                 | 15m)となり,独立行政法人原子力安全基盤機構が東京工芸大学に                                                      | =15(m))となり、原子力安全基盤機構の調査研究報告書 <sup>(4)</sup> の図                    |    |
| 2.2.3.10 における流入層高さと竜巻半径の比 (η=0.4 程度) や,                                        | 委託した研究「竜巻による原子力施設への影響に関する調査研究」                                                       | 2.2.3.10 における流入層高さと竜巻半径の比 (η=0.4 程度) や,                           |    |
| Kosiba <sup>(6)</sup> により示されている流入層高さ (H <sub>i</sub> =10~14(m)以下) と            | (3)の図 2.2.3.10 における流入層高さと竜巻半径の比(η=0.4 程                                              | Kosiba <sup>(6)</sup> により示されている流入層高さ(H <sub>i</sub> =10~14(m)以下)と |    |
| おおむね同じである。                                                                     | 度) や, Kosiba <sup>(v)</sup> により示されている流入層高さ(H <sub>i</sub> =10m~14m<br>以下)とおおむね同じである。 | おおむね同じである。                                                        |    |
| なお,その他の定数についても,Fujita <sup>(5)</sup> の提案している値と                                 | なお,その他の定数についても,Fujita <sup>(4)</sup> の提案している値と                                       | なお,その他の定数についても,Fujita <sup>(5)</sup> の提案している値と                    |    |
| して, k <sub>0</sub> = 1/6, k = 0.03, A = 0.75, B = 0.217 を用いる。                  | して, $k_0 = 1/6$ , $k$ = 0.03, A= 0.75, B= 0.0217を用いた。                                | して, k <sub>0</sub> = 1/6, k = 0.03, A = 0.75, B = 0.217 を用いる。     |    |
|                                                                                |                                                                                      |                                                                   |    |
| 2.2 ランキン渦モデル                                                                   | 2.2 ランキン渦モデル                                                                         | 2.2 ランキン渦モデル                                                      |    |
| ランキン渦モデルは,米国 NRC ガイドでも採用されており,設                                                | ランキン渦モデルは米国NRCガイドでも採用されており、設                                                         | ランキン渦モデルは,米国 NRC ガイドでも採用されており,設                                   |    |
| 計竜巻の特性値を設定する際に用いられている。しかし、米国で                                                  | 計竜巻の特性値を設定する際に用いられている。しかし,第2.2                                                       | 計竜巻の特性値を設定する際に用いられている。しかし、米国で                                     |    |
| 開発された飛来物速度評価用のランキン渦モデル <sup>(3)</sup> は, 竜巻中心                                  | -1図(b)に示す飛散解析用のモデル <sup>(2)</sup> では、竜巻中心に向かう半                                       | 開発された飛来物速度評価用のランキン渦モデル <sup>(3)</sup> は, 竜巻中心                     |    |
| に向かう半径方向風速 V <sub>r</sub> と上昇風速 V <sub>z</sub> を特別に付加している                      | 径方向風速V <sub>r</sub> と上昇風速V <sub>z</sub> を特別に付加しているため、流体力                             | に向かう半径方向風速 $V_r$ と上昇風速 $V_z$ を特別に付加している                           |    |
| (第6図)。そのため、流れの連続の式(質量保存式)を満たして                                                 | 学の連続の式を満たしておらず,第2.2-2図の様な地面から吹き                                                      | (図 6)。そのため,流れの連続の式(質量保存式)を満たしておら                                  |    |
| おらず,第7図に示すように地面から吹き出しが生じるような流                                                  | 出しが生じる流れとなっており、地上からの物体の浮上、飛散を                                                        | ず,図7に示すように地面から吹き出しが生じるような流れとな                                     |    |
| れとなっており、地上からの物体の浮上・飛散を現実的に模擬す                                                  | 現実的に模擬することができない。ランキン渦モデルを用いて飛                                                        | っており、地上からの物体の浮上・飛散を現実的に模擬すること                                     |    |
| ることができない。ランキン渦モデルを用いて飛散評価を行う場                                                  | 散解析を行う場合、地上の物体であっても空中浮遊状態を仮定し                                                        | ができない。ランキン渦モデルを用いて飛散評価を行う場合、地                                     |    |
| 合,地上の物体であっても空中浮遊状態を仮定して評価すること                                                  | て評価することになる。                                                                          | 上の物体であっても空中浮遊状態を仮定して評価することにな                                      |    |



| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                                                        | 東海第二発電所(2018. 9. 18版)                                                                                                | 島根原子力発電所 2号炉                                                                                                               | 備考 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                                                                                                                                                                                       | $\frac{\partial U_1}{\partial x_1} + \frac{\partial U_2}{\partial x_2} + \frac{\partial U_3}{\partial x_3} = 0 $ (5) | $\frac{\partial U_1}{\partial x_1} + \frac{\partial U_2}{\partial x_2} + \frac{\partial U_3}{\partial x_3} = 0 \qquad (4)$ |    |
| ここで, U <sub>i</sub> 及び P は, i 方向の流速ベクトル及び圧力を表し,                                                                                                                                                                                                                                                                                       | ここで,Ui及びPは,i方向の流速ベクトル及び圧力を表し,                                                                                        | ここで,U <sub>i</sub> 及びPは,i方向の流速ベクトル及び圧力を表し,                                                                                 |    |
| $\nu$ は動粘性係数を, $f_i$ は i 方向の外力加速度を表す。また, $x_i$ は                                                                                                                                                                                                                                                                                      | $v$ は動粘性係数を, $f_i$ はi方向の外力加速度を表す。また, $x_i$ は                                                                         | $ u $ は動粘性係数を, $f_i$ は i 方向の外力加速度を表す。また, $x_i$ は                                                                           |    |
| i 方向の座標を表す。                                                                                                                                                                                                                                                                                                                           | i 方向の座標を表す。                                                                                                          | i 方向の座標を表す。                                                                                                                |    |
| ー<br>一方, Smagorinsky モデルの渦粘性係数 v 。は以下のように定                                                                                                                                                                                                                                                                                            | 一方, Smagorinsky モデルの渦粘性係数 ν <sub>s</sub> は以下のように定義さ                                                                  | 一方, Smagorinsky モデルの渦粘性係数v。は以下のように定                                                                                        |    |
| 義される。                                                                                                                                                                                                                                                                                                                                 | れる。                                                                                                                  | 義される。                                                                                                                      |    |
| $\nu_{s} = (C_{s}h)^{2} \sqrt{\sum_{i,j=1}^{3} 2S_{ij}^{2}} $ (5)                                                                                                                                                                                                                                                                     | $\nu_{s} = (C_{s}h)^{2} \sqrt{\sum_{i,j=1}^{3} 2S_{ij}^{2}} $ (6)                                                    | $\nu_{s} = (C_{s}h)^{2} \sqrt{\sum_{i,j=1}^{3} 2S_{ij}^{2}} $ (5)                                                          |    |
| ここで, h は解像スケール (メッシュ幅相当), C <sub>s</sub> は Smagorinsky                                                                                                                                                                                                                                                                                | ここで、h は解像スケール (メッシュ幅相当), Cs は Smagorinsky                                                                            | ここで,h は解像スケール(メッシュ幅相当),C <sub>s</sub> は Smagorinsky                                                                        |    |
| 定数を表し,ひずみ速度テンソル S <sub>ij</sub> は                                                                                                                                                                                                                                                                                                     | 定数を表し、ひずみ速度テンソル S <sub>ij</sub> は                                                                                    | 定数を表し,ひずみ速度テンソル S <sub>ij</sub> は                                                                                          |    |
| $S_{ij}$ =0.5( $\partial U_i / \partial x_j + \partial U_j / \partial x_i$ )で定義される。                                                                                                                                                                                                                                                   | $S_{ij}=0.5(\partial U_i / \partial x_j + \partial U_j / \partial x_i)$ で定義される。                                      | $S_{ij}=0.5(\partial U_i / \partial x_j + \partial U_j / \partial x_i)$ で定義される。                                            |    |
| 以上のとおり、LES は風速の時間的な変動(乱流)を考慮でき                                                                                                                                                                                                                                                                                                        | 以上のとおり、LESは風速の時間的な変動(乱流)を考慮で                                                                                         | 以上のとおり、LES は風速の時間的な変動(乱流)を考慮でき                                                                                             |    |
| る点が特長となっている。                                                                                                                                                                                                                                                                                                                          | きる点が特長となっている。                                                                                                        | る点が特長となっている。                                                                                                               |    |
| wbit         1.2m           wbit         1.2m           wbit         wbit           wbit         Baba           wbit         Baba | 収束域         (         自由流入出境界           収束域         (         風速を与える           着りなし境界         (         (vi)         | wb<br>wb<br>wb<br>wb<br>wb<br>wb<br>wb<br>wb<br>wb<br>wb<br>wb<br>wb<br>wb<br>w                                            |    |
| 以上が一般的な LES の説明となる。LES の手法自体は、広く活                                                                                                                                                                                                                                                                                                     | LESの手法自体は広く活用されているものであるが、実スケ                                                                                         | 以上が一般的な LES の説明となる。LES の手法自体は,広く活                                                                                          |    |
| 用されているものであるが、実スケールでの精緻な評価を行うた                                                                                                                                                                                                                                                                                                         | ールでの精緻な評価を行うためには、必要なメッシュ解像度の確                                                                                        | 用されているものであるが、実スケールでの精緻な評価を行うた                                                                                              |    |
| めには、必要なメッシュ解像度の確保に膨大な計算機資源が必要                                                                                                                                                                                                                                                                                                         | 保に膨大な計算機資源が必要となる。また、「竜巻影響評価ガイド」                                                                                      | めには、必要なメッシュ解像度の確保に膨大な計算機資源が必要                                                                                              |    |
| となる。                                                                                                                                                                                                                                                                                                                                  | で例示されているLESによる数値解析については、条件設定等                                                                                        | となる。                                                                                                                       |    |
| また,ガイドで例示されている LES による数値解析については,                                                                                                                                                                                                                                                                                                      | に関して下記のような問題点がある。                                                                                                    | また,ガイドで例示されている LES による数値解析については,                                                                                           |    |
| 条件設定等に関して下記のような問題点がある。                                                                                                                                                                                                                                                                                                                | <ul> <li>「竜巻影響評価ガイド」で例示されているLESによる解析では、</li> </ul>                                                                   | 条件設定等に関して下記のような問題点がある。                                                                                                     |    |
| ガイドで例示されている LES による解析では,境界条件(側面                                                                                                                                                                                                                                                                                                       | 境界条件(側面からの流入風速の分布等)や解析領域の形状(流                                                                                        | ガイドで例示されている LES による解析では,境界条件(側面                                                                                            |    |
| からの流入風速の分布等)や解析領域の形状(流入箇所を局所的                                                                                                                                                                                                                                                                                                         | 入箇所を局所的に配置等)を調整して人為的な乱れを与え, 竜巻                                                                                       | からの流入風速の分布等)や解析領域の形状(流入箇所を局所的                                                                                              |    |
| に配置等)を調整して人為的な乱れを与え, 竜巻状の渦を生成し                                                                                                                                                                                                                                                                                                        | 状の渦を生成しているが、渦の生成に当たって以下のような条件                                                                                        | に配置等)を調整して人為的な乱れを与え、竜巻状の渦を生成し                                                                                              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                 | 東海第二発電所(2018.9.18版)                                | 島根原子力発電所 2号炉                                                                 | 備考          |
|----------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------|-------------|
| ている。渦の生成に当たって、以下のような条件を仮定している                                  | を仮定していることから、実スケールでの評価を実施するには課                      | ている。渦の生成に当たって、以下のような条件を仮定している                                                |             |
| ことから、実スケールでの評価を実施するには課題があるものと                                  | 題があるものと考えられる。                                      | ことから、実スケールでの評価を実施するには課題があるものと                                                |             |
| 考えられる。                                                         |                                                    | 考えられる。                                                                       |             |
| ・人為的な流入境界条件(流入風速分布や流入箇所の局所的配                                   | 人為的な流入境界条件(流入風速分布や流入箇所の局所的                         | ・人為的な流入境界条件(流入風速分布や流入箇所の局所的配                                                 |             |
| 置等)を設定していることから,流入境界条件の影響を受け                                    | 配置等)を設定していることから、流入境界条件の影響を                         | 置等)を設定していることから、流入境界条件の影響を受け                                                  |             |
| る地表面付近の実際の竜巻風速場の再現はできていないもの                                    | 受ける地表面付近の実際の竜巻風速場の再現はできてい                          | る地表面付近の実際の竜巻風速場の再現はできていないもの                                                  |             |
| と考えられる。                                                        | ないものと考えられる。                                        | と考えられる。                                                                      |             |
| <ul> <li>小規模な計算領域によるシミュレーションであり、実スケー</li> </ul>                | ▶ 小規模な計算領域によるシミュレーションであり, 実スケ                      | ・小規模な計算領域によるシミュレーションであり、実スケー                                                 |             |
| ルへの適用(飛来物評価)の際には単純に速度を規格化して                                    | ールへの適用(飛散解析)の際には単純に速度を規格化し                         | ルへの適用(飛来物評価)の際には単純に速度を規格化して                                                  |             |
| 飛来物評価に適用している。                                                  | て適用している。                                           | 飛来物評価に適用している。                                                                |             |
| ⇒風速の規格化の際には、時間平均の最大風速を100m/s(風速                                | ⇒ 風速の規格化の際には,時間平均の最大風速を100m/s(風速                   | ⇒風速の規格化の際には,時間平均の最大風速を 100m/s (風速                                            |             |
| +移動速度)に設定している。Maruyama <sup>(7)</sup> によれば,瞬間的                 | +移 動速度)に設定している。Maruyama <sup>(vii)</sup> によれば,瞬間的な | +移動速度)に設定している。Maruyama <sup>(7)</sup> によれば,瞬間的                               |             |
| な周方向風速は 1.7 倍程度まで大きくなる場合があり,移動                                 | 周方向風速は1.7倍程度まで大きくなる場合があり、移動速度と                     | な周方向風速は1.7 倍程度まで大きくなる場合があり,移動                                                |             |
| 速度と合わせると最大 160m/s 程度まで達するため, 飛来物評                              | 合わせると最大160m/s程度まで達するため,飛散解析の際に非                    | 速度と合わせると最大 160m/s 程度まで達するため, 飛来物評                                            |             |
| 価の際に非常に保守的な結果が算出されることが考えられ                                     | 常に保守的な結果が算出されることが考えられる。                            | 価の際に非常に保守的な結果が算出されることが考えられ                                                   |             |
| る。                                                             |                                                    | る。                                                                           |             |
| ⇒流速が早い場合には粘性の影響は小さくなる傾向となるが,                                   | ⇒ 流速が早い場合には粘性の影響は小さくなる傾向となるが,                      | ⇒流速が早い場合には粘性の影響は小さくなる傾向となるが,                                                 |             |
| その影響については考慮していないことから、特に地表面付                                    | その影響については考慮していないことから、特に地表面付近に                      | その影響については考慮していないことから、特に地表面付                                                  |             |
| 近については実際の風速場の再現はできていないものと考え                                    | ついては実際の風速場の再現はできていないものと考えられる。                      | 近については実際の風速場の再現はできていないものと考え                                                  |             |
| られる。                                                           |                                                    | られる。                                                                         |             |
| (参考:フジタモデルを適用した場合の飛来物の飛跡)                                      |                                                    | (参考:フジタモデルを適用した場合の物体の飛跡)                                                     | ・記載方針の相違    |
| 第9図にフジタモデルを適用した場合におけるコンテナの飛散                                   |                                                    | 図9 にフジタモデルを適用した場合におけるコンテナの飛散解                                                | 【東海第二】      |
| 解析(長さ6m×幅2.4m×高さ2.6m, 2300kg,CD <sub>A</sub> /m=0.0105, 最大風    |                                                    | <u>析(諸元:長さ6m×幅2.4m×高さ2.6m,2300kg,CD<sub>4</sub>/m=0.0105,最</u>               | 島根 2 号炉は流入層 |
| 速 100m/s)における飛跡を示す。                                            |                                                    | 大風速100m/s)における飛跡を示す。                                                         | 高さの感度解析につい  |
| また,フジタモデルの流入層高さH <sub>i</sub> は,外部コア半径 R <sub>m</sub> =30(m)   |                                                    | <u>また,フジタモデルの流入層高さ H<sub>i</sub>は,外部コア半径 R<sub>m</sub>=30(m)</u>             | て記載している     |
| の場合, $H_i = 15(m)$ であり, 2.1 に記載のとおり他の文献 <sup>(4)(6)</sup> とも   |                                                    | <u>の場合, <math>H_i = 15(m)</math> であり, 2.1 に記載のとおり他の文献<sup>(4)(6)</sup>とも</u> |             |
| おおむね整合しているが、ここでは、その不確実性を考慮し、流                                  |                                                    | おおむね整合しているが、ここでは、その不確実性を考慮し、流                                                |             |
| 入層高さH <sub>i</sub> を±10%変化させた場合の飛跡も示す。                         |                                                    | <u>入層高さ H<sub>i</sub>を±10%変化させた場合の飛跡も示す。</u>                                 |             |
| H <sub>i</sub> =15(m)の際のコンテナの最大飛散距離 189.4(m)に対し,流              |                                                    | <u>H<sub>i</sub>=15(m)の際のコンテナの最大飛散距離 189.4(m)に対し,流</u>                       |             |
| 入層高さ H <sub>i</sub> を±10%変化させた場合の最大飛散距離は                       |                                                    | 入層高さ H <sub>i</sub> を±10%変化させた場合の最大飛散距離は                                     |             |
| 183.4(m) (-3.2%), 194.7(m) (+2.8%)となり, 流入層高さH <sub>i</sub> に対す |                                                    | <u>183.4(m) (-3.2%), 194.7(m) (+2.8%)となり, 流入層高さ H<sub>i</sub> に対す</u>        |             |
| る最大飛散距離の感度は小さいことが分かる。                                          |                                                    | る最大飛散距離の感度は小さいことが分かる。                                                        |             |
|                                                                |                                                    |                                                                              |             |
|                                                                |                                                    |                                                                              |             |
|                                                                |                                                    |                                                                              |             |



## 3. 各風速場モデルの比較

各風速場モデルの特徴の比較を第1表に示す。また、フジタモ ジタモデルの風速場構造の流線は、地面付近を含め、より実際の 竜巻風速場に即した形で表現されており、地上からの物体の浮 上・飛散解析が可能となっていることがフジタモデルの大きなメ リットとなっている。

それに対し、ランキン渦モデルは上空での水平方向風速の観点 からは比較的よく表現できると言えるものの、地上付近では実現 象と乖離しており、地上からの飛散挙動は解析するには適切でな い。ガイドで例示されている LES で生成した風速場も、2.3 の通 から、地上付近での風速場が実現象と乖離していると考えられる ため、地上からの飛散挙動を解析するには適切でない。また、他 のモデルと比較して、フジタモデルは特に問題となるような点も ないことから、 竜巻影響評価に用いる風速場モデルとしてフジタ モデルを選定することは妥当であると考えられる。

## 3. 各風速場モデルの比較

上述の各風速場モデルの特徴の比較を第3-1表に示す。また、 デルとランキン渦モデルの風速場構造の比較を第10図に示す。フレフジタモデルとランキン渦モデルの風速場構造の比較を第3-1図レルとランキン渦モデルの風速場構造の比較・ に示す。フジタモデルの風速場構造の流線は、地面付近を含めよ り実際の風速場に即した形で表現されており、これがフジタモデ ルの大きなメリットとなっている。

それに対し、ランキン渦モデルは上空での水平方向風速の観点 からは比較的よく表現できると言えるものの、地上付近では実現 象と乖離している。LESも同様に地上付近での風速場が実現象 と乖離している。また、他のモデルと比較して、フジタモデルは り人為的な境界条件を設定していることや、小規模領域での計算 | 特に問題となるような点も無いことから、竜巻影響評価に用いる 結果を定数倍して実スケールサイズの値に変換している<sup>(4)(7)</sup>こと | 風速場モデルとしてフジタモデルを選定することは妥当であると

3. 各風速場モデルの比較 各風速場モデルの特徴の比較を表1に示 モデルの風速場構造の流線は、地面付近を 風速場に即した形で表現されており、地上 散解析が可能となっていることがフジタモ

となっている。

それに対し、ランキン渦モデルは上空で からは比較的よく表現できると言えるものの 象と乖離しており、地上からの飛散挙動は い。ガイドで例示されている LES で生成し り人為的な境界条件を設定していることや, 結果を定数倍して実スケールサイズの値に から,地上付近での風速場が実現象と乖離 ため、地上からの飛散挙動を解析するには のモデルと比較して、フジタモデルは特に ないことから、 竜巻影響評価に用いる風速: モデルを選定することは妥当であると考え

| 计炉                                                                                                                                                                 | 備考 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| HI=13.5<br>HI=15.0<br>HI=15.0<br>200 250<br>ノテナの飛跡(最大風速                                                                                                            |    |
| す。また,フジタモデ<br>を図 10 に示す。フジタ<br>含め,より実際の竜巻<br>からの物体の浮上・飛<br>デルの大きなメリット                                                                                              |    |
| の水平方向風速の観点<br>の,地上付近では実現<br>解析するには適切でな<br>た風速場も,2.3の通<br>,小規模領域での計算<br>変換している <sup>(4)(7)</sup> こと<br>していると考えられる<br>適切でない。また,他<br>問題となるような点も<br>場モデルとしてフジタ<br>られる。 |    |
|                                                                                                                                                                    |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 備考 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 第1表各風速場モデルの特徴の比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 第3-1表 各風速場モデルの特徴の比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 表1 各風速場モデルの特徴の比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 風速場モデル         使用実結         特長         問題点           - 電老飛来物設計速度、飛散高さに閉<br>する米国DOE要実施設の設計基準作<br>成に利用されている         ・第観測に基ついで考案されたモデル<br>であり、実際に近い風速場構造を設め<br>している。         ・特になし         ・特になし           フジタモデル         - 「「スキスストリー」」」         ・北政的簡易な代数式により風速場合<br>表現できる         ・特になし         ・「クレンマン渦モデルと比較すると、解析ブログ<br>うムが経緯になるが、計算機能力の向上、お<br>と取り合いになるが、計算機能力の向上、たい<br>の本版はge(X-10, K-25,Y-12)(テネシー<br>州). Savannah River Site (サウスカロラ<br>イナ州)         ・北政的簡易な代数式により風速場合<br>表現できる         ・現<br>の主要加を見加にした状態から見完整の<br>の変動を解析できる。         ・現<br>に存在する(地面かられ次さし)           ランキン渦モデル         ・米国NRC Regulatory Guide 1.76で採<br>刊をたいている<br>・ブイド(設計食差の特性値の設定)で         ・間易な式で上空での水平方向の風速<br>場を表現できる         ・<br>の実現金から追求た為にしていない | 風速場<br>モデル         使用実績         特徴           フジタ<br>モデル         ・竜巻飛来物設計速度及び飛散<br>高さに関する、米国DOE 重<br>要施設の設計基準作成に利用<br>されている。(「4 米国にお<br>けるフジタモデルの取扱い」         ・実観測に基づいて考案されたモデルであり、実際に近い<br>風速場構造を表現している。           マジタ<br>モデル         ・市参形電炉に成し利用<br>されている。(「4 米国にお<br>けるフジタモデルの取扱い」         ・ジャン満モデルよりは複雑だが、計算機能力の向上<br>及び評価ツールの高度化により実用可能となった)           ・米国NRCの R.G 1.76 に採用<br>されている。         ・簡易な式により風速場を表現できる。           ・米国NRCの R.G 1.76 に採用<br>されている。         ・簡易な式により風速場を表現できる。           ・地域的高度依存住がなく、上昇流が全領域に存在し、<br>地本近後の回避出生を体験していない。                                                                                                                                                                                                                                                                                                                                                                                                                                        | 風速場モデル         使用実績         特長         問題点           ・電差現末物設計速度、飛散高さに関<br>する米国DOE重要施設の設計基準作<br>におり、実際に近い風速場構造を表現<br>している。         *東観調に差小ルで考索されたモデル<br>であり、実際に近い風速場構造を表現<br>している。         ・特になし           フジタモデル         「対象施設の例】<br>Partex Plant (テキサス州),<br>Oak Ridge(X-10, K~25,Y-12)(テキシー<br>州), Swannah River Site(サウスカロラ<br>イナ州)         ・地域的簡易な代数式により風速場を<br>表現できる         ・地はなり<br>の連続式を満たす定式化           シンキン渦モデル         *パトロマーク<br>(1)         ・加速の加速の加速の<br>(1)         ・加速の加速の<br>(1)         ・加速の加速の<br>(1)         ・加速の加速の<br>(1)         ・加速の加速の<br>(1)         ・加速の加速の<br>(1)         ・加速の加速の<br>(1)         ・加速の加速の<br>(1)         ・加速の加速の<br>(1)         ・加速の加速の<br>(1)         ・加速の<br>(1)         ・加速の<br>(1)        ・加速の<br>(1)         ・加速の<br>(1) <td></td> |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | モデル         巻の特性値の設定)において<br>例示されている。         ・流体の連続式を満足しない。           ・流体の連続式を満足しない。         ・流体の連続式を満足しない。           ・流体の連続式を満足しない。         ・流体の連続式を満足しない。           ・二         ・電差影響評価ガイド」において、<br>いて、飛来物の飛散速度等の<br>評価例が示されている。         ・風速の時間的な変動や乱れを、ある程度模擬できる。           ・         ・         ・           非定常乱流<br>満モデル<br>(LES)         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 第10 図 フシタモアル (左) とフンキン渦モアル (石) の風速<br>場構造の比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 第3-1図 フジタモテル(左)とフンキン渦モテル(右)の風速<br>場の構造                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 図 10 フジタモテル (左) とフンキン渦モテル (右) の風速場構<br>造の比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <ol> <li>4. 米国におけるフジタモデルの取扱い</li> <li>4.1 フジタモデルの利用実績</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ol> <li>4. 米国におけるフジタモデルの取扱い</li> <li>4.1 フジタモデルの利用実績</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4. 米国におけるフジタモデルの取扱い<br>4.1 フジタモデルの利用実績                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| 米国エネルギー省 (DOE:Department of Energy) が管理するエ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 米国エネルギー省DOE(Department of Energy)が管理する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 米国エネルギー省(DOE:Department of Energy)が管理するエ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| ネルギー関連施設等に適用する基準 <sup>(8)</sup> において, 竜巻飛来物速度,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | エネルギー関連施設等に適用する基準(100)において, 竜巻飛来物速                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ネルギー関連施設等に適用する基準 <sup>(8)</sup> において, 竜巻飛来物速度,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 飛散高さの設定にフジタモデルを用いた計算結果が使用されてい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 度,飛散高さの設定にフジタモデルを用いた計算結果が使用され                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 飛散高さの設定にフジタモデルを用いた計算結果が使用されてい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| る <sup>(9)(10)</sup> (文献(8)のD.4 節:Windbornemissilecriteriaspecified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ている <sup>(ix)(x)</sup> (文献 <sup>(8)</sup> の D.4節:Windborne missile criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | る <sup>(9)(10)</sup> (文献(8)の D.4 節:Windborne missile criteriaspecified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| herein are based on windstorm damage documentation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | specified herein are based on windstorm damage documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | herein are based on windstorm damage documentation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| computer simulation of missiles observed in the field. $\cdot$ $\cdot$ $\cdot$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and <u>computer simulation of missiles</u> observed in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | computer simulation of missiles observed in the field. •••.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| Computer simulation of tornado missiles is accomplished using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | field. • • •. <u>Computer simulation of tornado missiles is</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Computer simulation of tornado missiles is accomplished using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| a methodology developed at Texas Tech University.) $_{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | accomplished using a methodology developed at Texas Tech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a methodology developed at Texas Tech University.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>University</u> .) <sub>°</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| この基準では、施設に要求される性能ごとにカテゴリ0から4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | この基準では、施設に要求される性能ごとにカテゴリ0から4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | この基準では、施設に要求される性能ごとにカテゴリ 0 から 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| まで分類し、カテゴリ0~2 は一般的な建築物、カテゴリ3、4 は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | まで分類し、カテゴリ0から2は一般的な建築物、カテゴリ3及                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | まで分類し,カテゴリ0~2 は一般的な建築物,カテゴリ3,4 は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 核物質や危険物質を取り扱う施設に適用される。カテゴリ3,4 に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | び4は核物質や危険物質を取り扱う施設に適用される。カテゴリ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 核物質や危険物質を取り扱う施設に適用される。カテゴリ3,4 に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                               | 東海第二発電所(2018.9.18版)                                            | 島根原子力発電所 2号炉                                                 | 備考 |
|--------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|----|
| 該当する施設として, Pantex Plant, Oak Ridge (X-10, K-25, Y-12),       | 3及び4に該当する施設として, Pantex Plant, Oak Ridge(X-10,                  | 該当する施設として, Pantex Plant, Oak Ridge (X-10, K-25, Y-12),       |    |
| Savannah River Site が挙げられている。                                | K-25,Y-12), Savannah River Site が挙げられている。                      | Savannah River Site が挙げられている。                                |    |
| フジタモデルの技術的な妥当性の検証については,米国 DOE 管                              | フジタモデルの技術的な妥当性の検証については、米国DOE                                   | フジタモデルの技術的な妥当性の検証については,米国 DOE 管                              |    |
| 轄のローレンス・リバモア国立研究所報告書(11)にてまとめられて                             | 管轄のローレンス・リバモア国立研究所報告書 <sup>(xi)</sup> にてまとめら                   | 轄のローレンス・リバモア国立研究所報告書(11)にてまとめられて                             |    |
| いる。この報告書では,フジタモデルDBT-77を他の風速場モデル                             | れている。この報告書では、フジタモデルDBT-77を他の風速場                                | いる。この報告書では,フジタモデルDBT-77を他の風速場モデル                             |    |
| と比較検討しており、流体力学の連続の式を満足する(Fluid                               | モデルと比較検討しており、「流体力学の連続の式を満足する                                   | と比較検討しており,流体力学の連続の式を満足する (Fluid                              |    |
| mechanics equations of continuity are satisfied) こと, モデ      | (Fluid mechanics equations of continuity are satisfied)]       | mechanics equations of continuity are satisfied) こと, モデ      |    |
| ル流況は、竜巻の映像分析で得られる流れの空間分布と整合する                                | こと、「モデル流況は、竜巻の映像分析で得られる流れの空間分布                                 | ル流況は、竜巻の映像分析で得られる流れの空間分布と整合する                                |    |
| (Flow patterns are consistent with the spatial distribution  | と整合する(Flow patterns are consistent with the spatial            | (Flow patterns are consistent with the spatial distribution  |    |
| of flow observed in photogrammetric analysis of tornado      | distribution of flow observed in photogrammetric analysis of   | of flow observed in photogrammetric analysis of tornado      |    |
| movies)こと等を利点として挙げている。                                       | tornado movies)」こと等を利点として挙げている。                                | movies)こと等を利点として挙げている。                                       |    |
| また、実際の事例に対するフジタモデルの検証としては、1978                               | また,実際の事例に対するフジタモデルの検証としては,1978                                 | また,実際の事例に対するフジタモデルの検証としては,1978                               |    |
| 年 12 月 3 日に米国ルイジアナ州 Bossier 市で発生した F4 竜巻                     | 年 12 月 3 日に米国ルイジアナ州 Bossier 市で発生した F4 竜巻に                      | 年 12 月 3 日に米国ルイジアナ州 Bossier 市で発生した F4 竜巻                     |    |
| による鋼製材の飛来について,フジタモデルDBT-77 で再現した事                            | よる鋼製材の飛散について,フジタモデルDBT-77で再現した事                                | による鋼製材の飛来について,フジタモデルDBT-77 で再現した事                            |    |
| 例 <sup>(9)</sup> がローレンス・リバモア国立研究所報告書 <sup>(11)</sup> 及び米国気象学 | 例 <sup>(9)</sup> がローレンス・リバモア国立研究所報告書 <sup>(11)</sup> 及び米国気象    | 例(9) がローレンス・リバモア国立研究所報告書(11)及び米国気象学                          |    |
| 会論文集 <sup>(12)</sup> に掲載されている。                               | 学会論文集 <sup>(x ii)</sup> に掲載されている。                              | 会論文集 <sup>(12)</sup> に掲載されている。                               |    |
| なお, 米国 LES (Louisiana Energy Services)の濃縮施設 (NEF :           | なお,米国LES(Louisiana Energy Services)の濃縮施設N                      | なお, 米国 LES (Louisiana Energy Services)の濃縮施設 (NEF :           |    |
| National Enrichment Facility) では, 上記の DOE 施設の基準に             | EF (National Enrichment Facility) では, 上記のDOE施設                 | National Enrichment Facility)では, 上記の DOE 施設の基準に              |    |
| 基づき竜巻飛来物(鋼鉄パイプや木材の板等)を設定しており、                                | の基準に基づき竜巻飛来物(鋼製パイプや木材の板等)を設定し                                  | 基づき竜巻飛来物(鋼鉄パイプや木材の板等)を設定しており、                                |    |
| 米国 NRC は当該施設に対する安全評価報告書 (NUREG-1827) <sup>(13)</sup>         | ており、米国NRCは当該施設に対する安全評価報告書(NUR                                  | 米国 NRC は当該施設に対する安全評価報告書 (NUREG-1827) <sup>(13)</sup>         |    |
| の中で竜巻飛来物に対する LES の竜巻設計を是認している。                               | EG-1827) <sup>(x iii)</sup> の中で竜巻飛来物に対するLESの設計を是認し             | の中で竜巻飛来物に対する LES の竜巻設計を是認している。                               |    |
|                                                              | ている。                                                           |                                                              |    |
| (Based on the review of the information concerning tornados  | ("Based on the review of the information concerning tornados   | (Based on the review of the information concerning tornados  |    |
| and tornado-generated missiles, NRC concludes: (i) the       | and tornado-generated missiles, NRC concludes: (i) the         | and tornado-generated missiles,NRC concludes: (i) the        |    |
| information is accurate and is from reliable sources; and    | information is accurate and is from reliable sources; and (ii) | information is accurate and is from reliable sources; and    |    |
| (ii) the design bases tornado-generated missiles are         | the design bases tornado-generated missiles are acceptable     | (ii)the design bases tornado-generated missiles are          |    |
| acceptable because they were determined based on an          | because they were determined based on an appropriate DOE       | acceptable because they were determined based on an          |    |
| appropriate DOE standard. The use of a DOE standard is an    | standard. The use of a DOE standard is an acceptable approach  | appropriate DOE standard. The use of a DOE standard is an    |    |
| acceptable approach to NRC staff.)                           | to NRC staff.")                                                | acceptable approach to NRC staff.)                           |    |
|                                                              |                                                                |                                                              |    |
| 4.2 NRC ガイドでの取扱い                                             | 4.2 NRCガイドでの取扱い                                                | 4.2 NRC ガイドでの取扱い                                             |    |
| 2.1 でも述べたとおり、フジタモデルは実際の竜巻風速場をモ                               | 2.1節でも述べた通り,フジタモデルは実際の竜巻風速場をモデ                                 | 2.1 でも述べたとおり、フジタモデルは実際の竜巻風速場をモ                               |    |
| デル化したいという米国 NRC の要請を受けて考案されたものであ                             | ル化したいという米国NRCの要請を受けて考案されたものであ                                  | デル化したいという米国 NRC の要請を受けて考案されたものであ                             |    |
| るが, 米国 NRC Regulatory Guide 1.76 <sup>(2)</sup> では, フジタモデルにつ | るが,米国NRCのRegulatory Guide 1.76 <sup>(1)</sup> では,フジタモデ         | るが,米国 NRC Regulatory Guide 1.76 <sup>(2)</sup> では,フジタモデルにつ   |    |
| VT  "The NRC staff chose the Rankine combined vortex model   | ルについて "The NRC staff chose the Rankine combined vortex         | いて "The NRC staff chose the Rankine combined vortex model    |    |
| for its simplicity, as compared to the model developed by T. | model for its simplicity, as compared to the model developed   | for its simplicity, as compared to the model developed by T. |    |
|                                                              |                                                                |                                                              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                | 東海第二発電所(2018.9.18版)                                           | 島根原子力発電所 2号炉                                                  | 備考             |
|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------|
| Fujita (Ref. 7)."と述べられており、単に数式の簡易さを理由                         | by T. Fujita."と述べられており、数式の簡易さを理由にランキ                          | Fujita (Ref. 7)."と述べられており、単に数式の簡易さを理由                         |                |
| にランキン渦モデルが選定されている。また, NRC スタッフ自身                              | ン渦モデルが選定されている。また、NRCスタッフ自身で水平                                 | にランキン渦モデルが選定されている。また, NRC スタッフ自身で                             |                |
| で水平方向の飛来物速度(Simiu らの運動方程式 <sup>(3)</sup> )を計算する               | 方向の飛散速度(Simiuらの運動方程式 <sup>(2)</sup> )を計算するプログラ                | 水平方向の飛来物速度(Simiu らの運動方程式 <sup>(3)</sup> )を計算するプ               |                |
| プログラムを開発している(The NRC staff developed a computer               | ムを開発している("The NRC staff developed a computer program          | ログラムを開発している(The NRC staff developed a computer                |                |
| program to calculate the maximum horizontal missile speeds by | to calculate the maximum horizontal missile speeds by solving | program to calculate the maximum horizontal missile speeds by |                |
| solving these equations.)ことが明記されている。                          | these equations.")ことが明記されている。                                 | solving these equations.)ことが明記されている。                          |                |
| したがって,米国 NRC ガイドでランキン渦モデルが採用されて                               | したがって、米国NRCガイドでランキン渦モデルが採用され                                  | したがって,米国 NRC ガイドでランキン渦モデルが採用されて                               |                |
| いるのは、フジタモデルより簡易であるという理由が主であり、                                 | ているのは、フジタモデルより簡易であるという理由が主であり、                                | いるのは、フジタモデルより簡易であるという理由が主であり、                                 |                |
| 竜巻風速場としての優劣を指摘されたものではない。                                      | 竜巻風速場としての優劣を指摘されたものではない。                                      | 竜巻風速場としての優劣を指摘されたものではない。                                      |                |
| (参考)米国におけるランキン渦モデル以外の風速場モデルの                                  | (参考)米国におけるランキン渦モデル以外の風速場モデルの利                                 | (参考)米国におけるランキン渦モデル以外の風速場モデルの利                                 |                |
| 利用実績                                                          | 用実績                                                           | 用実績                                                           |                |
| 米国 NRC では, 竜巻防護対策の追加を検討しているプラントに                              | 米国NRCでは、竜巻防護対策の追加を検討しているプラント                                  | 米国 NRC では, 竜巻防護対策の追加を検討しているプラントに                              |                |
| 対し,確率論的竜巻飛来物評価手法 TORMIS の利用を承認してい                             | に対し、確率論的竜巻飛来物評価手法TORMISの利用を承認                                 | 対し,確率論的竜巻飛来物評価手法 TORMIS の利用を承認してい                             |                |
| る。                                                            | している。                                                         | る。                                                            |                |
| TORMIS は,米国の EPRI で開発され,原子力発電所の構造物・                           | <b>TORMISは、米国のEPRIで開発された原子力発電所の</b>                           | TORMIS は,米国のEPRI で開発され,原子力発電所の構造物・                            |                |
| 機器への竜巻飛来物の衝突・損傷確率を予測する計算コードであ                                 | 構造物、機器への竜巻飛来物の衝突及び損傷確率を予測する計算                                 | 機器への竜巻飛来物の衝突・損傷確率を予測する計算コードであ                                 |                |
| り、同コードでは、ランキン渦モデル以外の風速場モデル(統合                                 | コードであり、同コードでは、ランキン渦モデル以外の風速場モ                                 | り、同コードでは、ランキン渦モデル以外の風速場モデル(統合                                 |                |
| 風速場モデル)が利用されていることから、米国 NRC においても、                             | デル(統合風速場モデル)が利用されている。(米国NRCにおい                                | 風速場モデル)が利用されていることから,米国NRC においても,                              |                |
| ランキン渦モデル以外の風速場モデルが認められていないわけで                                 | ても、ランキン渦モデル以外の風速場モデルが認められていない                                 | ランキン渦モデル以外の風速場モデルが認められていないわけで                                 |                |
| はない。                                                          | わけではない)                                                       | はない。                                                          |                |
| 5. 飛来物評価における不確定性の考慮                                           | 5. 飛散解析における保守性の考慮                                             | 5. 飛来物評価                                                      |                |
| 前節まででは、フジタモデルの風速場を適用することの妥当性                                  | 前節までに述べてきたとおり、フジタモデルの風速場を適用す                                  | 前節まででは、フジタモデルの風速場を適用することの妥当性                                  |                |
| について述べてきた。フジタモデルの風速場を適用することで、                                 | ることで、より現実的な竜巻影響評価を行うことが可能と考えら                                 | について述べてきた。フジタモデルの風速場を適用することで,                                 |                |
| より現実的な竜巻影響評価を行うことが可能と考えられるが、一                                 | れるが、一方で、実際の竜巻による物体の飛散挙動の保守性につ                                 | より現実的な竜巻影響評価を行うことが可能と考えられるが、一                                 |                |
| 方で、実際の竜巻による物体の飛散挙動の不確定性についても考                                 | いても考慮する必要がある。                                                 | 方で,実際の竜巻による <u>風速場や</u> 物体の飛散挙動の不確定性につ                        | ・記載方針の相違       |
| 慮する必要がある。                                                     |                                                               | いても考慮する必要がある。                                                 | 【柏崎 6/7, 東海第二】 |
| 本節では、フジタモデルの特長である地上からの飛散挙動に関                                  | 本節では、フジタモデルを用いた地上からの飛散挙動解析に関                                  | 本節では、 <u>地表面付近の風速場、</u> フジタモデルの特長である地                         | 島根 2 号炉はフジタ    |
| する不確定性や、竜巻が物体と衝突する際の竜巻風速に関する不                                 | する保守性や、物体が竜巻に晒される際の風速に関する不確定性                                 | 上からの飛散挙動及び竜巻が物体と衝突する際の竜巻風速に関す                                 | モデルの地表面付近の     |
| 確定性等について、飛来物評価の中でどのように考慮しているか                                 | 等について、飛散解析の中でどのように考慮しているかについて                                 | る不確定性等について、飛来物評価の中でどのように考慮してい                                 | 風速場に関する不確定     |
| を説明する。                                                        | 説明する。                                                         | るかを説明する。                                                      | 性についても記載して     |
|                                                               |                                                               |                                                               | いる             |
| 5.1 物体の浮上・飛来モデルにおける不確定性の考慮                                    | <br>  5.1 物体の浮上,飛散モデルにおける保守性の考慮                               | 5.1 物体の浮上・飛来モデルにおける不確定性の考慮                                    |                |
| 本評価における物体の浮上・飛来モデルの考え方と、その中で                                  | 本評価における物体の浮上・飛散モデルの考え方と、その中で                                  | 本評価における物体の浮上・飛来モデルの考え方と、その中で                                  |                |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 東海第二発電所(2018.9.18版)                                                                                                           | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 備考 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 保守性の観点から評価上考慮している点について説明する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 保守性の観点から考慮している点について説明する。                                                                                                      | 保守性の観点から評価上考慮している点について説明する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| (1)物体の揚力の計算式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ol> <li>(1) 物体の揚力の計算式</li> </ol>                                                                                             | (1)物体の揚力の計算式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 物体が空中にある場合、物体に作用する力は、ガイドの飛来物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 物体が空中にある場合,物体に作用する力は,「竜巻影響評価ガ                                                                                                 | 物体が空中にある場合、物体に作用する力は、ガイドの飛来物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 運動モデル <sup>(3)(4)</sup> と同様に, 飛来物は第 11-1 図のようにランダムに                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | イド」の飛来物運動モデル <sup>(2)(3)</sup> と同様に,飛来物は第5.1-1図                                                                               | 運動モデル <sup>(3)(4)</sup> と同様に,物体は図11-1のようにランダムに回転                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 回転しているものとし、平均的な抗力(流れの速度方向に平行な                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (a)のようにランダムに回転しているものとし,平均的な抗力(流                                                                                               | しているものとし,平均的な抗力(流れの速度方向に平行な力)F <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 力)F <sub>D</sub> と重力のみが作用する飛行モデルを採用している。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | れの速度方向に平行な力) F <sub>D</sub> と重力のみが作用する飛行モデルを                                                                                  | と重力のみが作用する飛行モデルを採用している。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 採用している。                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 一方、物体が地面に置かれている場合や地面に近い場合は、地                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 一方、物体が地面に置かれている場合や地面に近い場合は、地                                                                                                  | 一方、物体が地面に置かれている場合や地面に近い場合は、地                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 面効果による揚力(次頁参照)を考慮している(14)。具体的には、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 面効果による揚力を考慮している <sup>(x iv)</sup> 。具体的には,物体の形状                                                                                | 面効果による揚力(次頁参照)を考慮している <sup>(14)</sup> 。具体的には,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 物体の形状が流れ方向の軸に関して対称であっても,第11-2 図に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | が流れ方向の軸に関して対称であっても,第5.1-1図(b)に示す                                                                                              | 物体の形状が流れ方向の軸に関して対称であっても,図11-2に示                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 示すように地面の存在により流れが非対称になり、物体上部の圧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ように地面の存在により流れが非対称になり、物体上部の圧力が                                                                                                 | すように地面の存在により流れが非対称になり、物体上部の圧力                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 力が低くなることで物体を浮上させる駆動力が生じることから、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 低くなることで物体を浮上させる駆動力が生じることから、これ                                                                                                 | が低くなることで物体を浮上させる駆動力が生じることから、こ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| これを揚力 F <sub>L</sub> として考慮する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | を揚力F <sub>L</sub> として考慮する。                                                                                                    | れを揚力 $F_L$ として考慮する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| $V_w$<br>对称流 $F_D$<br>$F_D$<br>$V_w$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_$ |                                                                                                                               | $V_w$<br>对称流 $F_D$<br>$F_D$<br>$F_D$<br>$V_w$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_D$<br>$F_$ |    |
| 第11-1 図 空中で飛来物へ 第11-2 図 地面付近で飛来物へ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (a)空中 (b)地表付近                                                                                                                 | 図 11-1 空中で物体へ 図 11-2 地面付近で物体へ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 作用する力作用する力                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 第 5.1-1 図 物体へ作用する力                                                                                                            | 作用する力 作用する力                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| このような揚力 $F_L$ は地面での揚力係数 $C_L$ ,地上での物体の見附面積(風向方向から見た投影面積) a を用いて,以下のように表される <sup>(15)</sup> 。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | このような揚力F <sub>L</sub> は,地表付近での揚力係数C <sub>L</sub> 及び物体の見付<br>面積(風向方向から見た投影面積)aを用いて,以下のように表さ<br>れる。                             | このような揚力 $F_L$ は地面での揚力係数 $C_L$ , 地上での物体の見附面積(風向方向から見た投影面積) a を用いて,以下のように表される <sup>(15)</sup> 。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| $F_L = \frac{1}{2} \rho C_L a \left  \mathbf{V}_w - \mathbf{V}_M \right _{x,y}^2 \tag{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $F_{L} = \frac{1}{2} \rho C_{L} a \left  \mathbf{V}_{\mathbf{W}} - \mathbf{V}_{\mathbf{M}} \right _{x,y}^{2} $ <sup>(7)</sup> | $F_{L} = \frac{1}{2} \rho C_{L} a \left  \mathbf{V}_{\mathbf{W}} - \mathbf{V}_{\mathbf{M}} \right _{x,y}^{2} $ (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| ただし、 $\rho$ は空気密度、 $V_{M}$ は飛来物の速度ベクトル、 $V_{w}$ は風<br>速ベクトル、 $ * x, y$ は*の x, y 成分(水平成分)の大きさを表<br>す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ここで、 $\rho$ は空気密度、 $V_M$ は飛来物の速度ベクトル、 $V_w$ は風<br>速ベクトル、 $ \alpha _{x,y}$ はベクトル $\alpha$ の x, y 成分(水平成分)の大き<br>さを表す。          | ただし、 $\rho$ は空気密度、 $V_{M}$ は物体の速度ベクトル、 $V_{w}$ は風速<br>ベクトル、 $ * x,y$ は $*$ の x, y 成分(水平成分)の大きさを表す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| (参考) 地上の物体における地面効果に上ろ提力について                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                             | (参考) 地上の物体における地面効果に上ろ場力について                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 物体や地面は完全か滑面でけたく 凹凸を有しているため 空                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 物体や地面け完全か漫面でけかく凹凸を右しているため 三今                                                                                                  | 物体や地面は完全か滑面でけたく 四匹を有しているため 空                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 図の左) け物体が溢休に接する全寿面で圧力け一定(n) シムか                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -9 図の $(a)$ ) け物体が流体に接すス全表面で圧力け一定 $(n)$                                                                                       | の     た     )     け     物     休     が     法     成     は     て     に     な     た     、     に     物     な     が     法     な     た     て     た     、     た     、     に     な     が     な     た     、     た     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、      、     、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、       、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、      、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                   | 東海第二発電所(2018.9.18版)                                                                             | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 備考 |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| せるため,鉛直方向(上向き)に作用する揚力 F <sub>L0</sub> は,以下で与     | と見なせるため、鉛直方向(上向きを正とする)に作用する揚力                                                                   | るため,鉛直方向(上向き)に作用する揚力 F <sub>L0</sub> は,以下で与え                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| えられる。                                            | F <sub>L0</sub> は以下で与えられる。                                                                      | られる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| $F_{Lo} = -p_o A + p_o (A - s) = -p_o s \tag{7}$ | $F_{L0} = -p_0 A + p_0 (A - s) = -p_0 s$ (8)<br>ここで、0< s ≦ Aであることから、F <sub>L0</sub> は負の値となり、揚力は | $F_{L0} = -p_0 A + p_0 (A - s) = -p_0 s \tag{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                                  | 発生しないことが分かる。                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 吸盤のように完全に地面に密着している場合は s=A となるた                   |                                                                                                 | 吸盤のように完全に地面に密着している場合は s=A となるた                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| め,大気圧 p <sub>0</sub> に投影面積 A を乗じた力が下向きに作用し,物体    |                                                                                                 | め,大気圧 p <sub>0</sub> に投影面積 A を乗じた力が下向きに作用し,物体                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| と地面の間に僅かに空隙が生じる場合には、大気圧 p <sub>0</sub> に完全接触     |                                                                                                 | と地面の間に僅かに空隙が生じる場合には、大気圧 p <sub>0</sub> に完全接触                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 面積 s を乗じた力が下向きに作用することになるため、いずれの                  |                                                                                                 | 面積 s を乗じた力が下向きに作用することになるため、いずれの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 場合においても揚力は発生しないことが分かる。                           |                                                                                                 | 場合においても揚力は発生しないことが分かる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 一方, 竜巻通過時(第12図の右)の物体に圧力差に伴う流体力                   | 一方, 竜巻通過時(第5.1-2図の(b))の物体に圧力差に伴う                                                                | 一方, 竜巻通過時(図12の右)の物体に圧力差に伴う流体力が                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| が作用(簡単のため上面での圧力 $p_1$ ,下面での圧力 $p_2$ と仮定)す        | 流体力が作用(簡単のため上面での圧力をp <sub>1</sub> ,下面での圧力をp                                                     | 作用(簡単のため上面での圧力 p <sub>1</sub> ,下面での圧力 p <sub>2</sub> と仮定)する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| る場合,鉛直方向の流体力 F <sub>L</sub> は,以下で与えられる(圧力分布が     | <sub>2</sub> と仮定) する場合, 鉛直方向の流体力 F <sub>L</sub> は以下で与えられる (圧                                    | 場合,鉛直方向の流体力 F <sub>L</sub> は,以下で与えられる(圧力分布があ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| ある任意形状の物体についても圧力の表面積分を用いれば同様に                    | 力分布がある任意形状の物体についても、圧力の表面積分を用い                                                                   | る任意形状の物体についても圧力の表面積分を用いれば同様に計                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 計算は可能)。                                          | れば同様に計算可能)。                                                                                     | 算は可能)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| $F_{L} = -p_1 A + p_2 (A - s) \tag{8}$           | $F_{L} = -p_{1}A + p_{2}(A - s) \tag{9}$                                                        | $F_{L} = -p_{1}A + p_{2}(A - s) \tag{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 吸盤のように完全に地面に密着している場合は s=A となるた                   | 吸盤の様に完全に地面に密着している場合は s = A となるため、                                                               | 吸盤のように完全に地面に密着している場合は s=A となるた                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| め、上面の圧力 p, に投影面積 A を乗じた力が下向きに作用する                | 上面の圧力 $p$ 、に投影面積 $A$ を乗じた力が下向きに作用するが、物                                                          | め、上面の圧力 p, に投影面積 A を乗じた力が下向きに作用する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| が、物体と地面の間に僅かに空隙が生じる場合には、地面と物体                    | 体と地面の間に僅かに空隙が生じる場合には、地面と物体の接触                                                                   | が、物体と地面の間に僅かに空隙が生じる場合には、地面と物体                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| の接触状態によっては上向きの力が発生することがある。実際に                    | 状態によっては上向きの力が発生することがある。                                                                         | の接触状態によっては上向きの力が発生することがある。実際に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| は、地面と物体の接触状態を確認することは難しいことから、本                    | 実際には、地面と物体の接触状態を確認することは難しいこと                                                                    | は、地面と物体の接触状態を確認することは難しいことから、本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 評価においては、保守的に地上における物体に揚力が作用するこ                    | から、本評価においては、保守的に地上における物体に揚力が作                                                                   | 評価においては、保守的に地上における物体に揚力が作用するこ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| トレーマンス                                           | 用することとしている。                                                                                     | トレーている。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| CCC CC L C C C C C C C C C C C C C C C           | <ul> <li>(a) 無風時</li> <li>(b) 強風時</li> <li>第 5.1-2 図 部分的に地面に接する物体に作用する力</li> </ul>              | CCCVT・30<br>$V_D=0$ $F_{L0}$ $F_{D0}$ $V_D$ $P=P_1$ $f_L$<br>$p=P_0$ $P=P_0$ $P=P_1$ $P$ |    |
| (2)                                              | (2)<br>湯力係数の設定                                                                                  | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                        | 東海第二発電所(2018.9.18版)                                                      | 島根原子力発電所 2号炉                                                                    | 備考 |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|----|
| (6)式の C <sub>L</sub> a は風洞実験から求められる値であるが,実験条件                         | (7)式のC <sub>L</sub> aは風洞実験から求められる値であるが,実験条件                              | (6)式の C <sub>L</sub> a は風洞実験から求められる値であるが,実験条件                                   |    |
| (風を受ける方向等)により様々な値を取り得るため、それを包                                         | (風を受ける方向等)により様々な値を取り得るため、それを包                                            | (風を受ける方向等)により様々な値を取り得るため、それを包                                                   |    |
| 含するような係数を設定することが望ましい。                                                 | 含するような係数を設定することが望ましい。本評価では、条件                                            | 含するような係数を設定することが望ましい。                                                           |    |
| 本評価では, 条件によらず保守性を確保できるよう, C <sub>L</sub> a に代                         | によらず保守性を確保できるよう、C <sub>L</sub> aに代わり、以下で定義さ                              | 本評価では,条件によらず保守性を確保できるよう,C <sub>L</sub> a に代                                     |    |
| わり以下で定義される抗力係数と見附面積の積の平均値 C <sub>D</sub> A を用                         | れる抗力係数と見付面積の積の平均値C <sub>D</sub> Aを用いることとする。                              | わり以下で定義される抗力係数と見附面積の積の平均値 C <sub>D</sub> A を用                                   |    |
| いることとする。                                                              | $C_{\rm D}A = \frac{1}{C_{\rm D}}(C_{\rm D}A + C_{\rm D}A + C_{\rm D}A)$ | いることとする。                                                                        |    |
| $C_{D}A = \frac{1}{3} (C_{Dx}A_{x} + C_{Dy}A_{y} + C_{Dz}A_{z}) $ (9) | $3  3  b_y  y  b_z  z  z  z  z  z  z  z  z  z $                          | $C_{D}A = \frac{1}{3} \Big( C_{Dx}A_{x} + C_{Dy}A_{y} + C_{Dz}A_{z} \Big) $ (9) |    |
| ここで, C <sub>Dx</sub> は空中での x 軸方向流れに対する抗力係数, A <sub>x</sub> は          | ここで、C <sub>Di</sub> は空中での i 軸方向流れに対する抗力係数、A <sub>i</sub> は               | ここで、 $C_{Dx}$ は空中での x 軸方向流れに対する抗力係数、 $A_x$ は                                    |    |
| x 軸方向流れに対する見附面積であり、その他も同様である。                                         | i 軸方向流れに対する見付面積を示す。                                                      | x 軸方向流れに対する見附面積であり、その他も同様である。                                                   |    |
| 飛来物の運動モデルを第13図に示す。上記(9)式の考え方は,                                        | 物体の運動モデルを第5.1-3図に示す。上述のC <sub>L</sub> aをC <sub>D</sub> Aで                | 物体の運動モデルを図 13 に示す。上記 (9) 式の考え方は,図 13                                            |    |
| 第13 図に当てはめ整理すると以下のとおり。                                                | 代用する考え方を本図に基づき整理すると、以下のとおりとなる。                                           | に当てはめ整理すると以下のとおり。                                                               |    |
| ・物体がある程度浮き上がった後の状態(第13 図の状態 B)で                                       | ・物体がある程度浮き上がった後の状態(B)であれば、物体はラ                                           | ・物体がある程度浮き上がった後の状態(図 13 の状態 B)であ                                                |    |
| あれば、物体はランダム回転し、物体各面に均等に風を受け                                           | ンダムに回転し、物体各面に均等に風を受けるものと考えられ                                             | れば、物体はランダム回転し、物体各面に均等に風を受ける                                                     |    |
| るものと考えられること。                                                          | る。                                                                       | ものと考えられること。                                                                     |    |
| ・物体が地面に置かれた状態(第13図の状態A)から,実際に                                         | ・物体が地面に置かれた状態(A)から浮き上がる場合,実際には                                           | ・物体が地面に置かれた状態(図13の状態A)から,実際に浮                                                   |    |
| 浮き上がる際には、物体の上面や下面での圧力が均一ではな                                           | 物体の上面や下面での圧力が均一ではなく、傾きながら浮き上                                             | き上がる際には、物体の上面や下面での圧力が均一ではなく、                                                    |    |
| く、傾きながら浮き上がるようなことも考えられるが、この                                           | がるようなことも考えられるが、このような挙動を理論的に評                                             | 傾きながら浮き上がるようなことも考えられるが、このよう                                                     |    |
| ような挙動を理論的に評価することは難しい。そのため、こ                                           | 価することは難しい。そのため、これに準ずる方法として、地                                             | な挙動を理論的に評価することは難しい。そのため、これに                                                     |    |
| れに準ずる方法として、評価に用いる係数は、地面から浮か                                           | 面から浮かせた状態で実測されたC <sub>L</sub> aのうち,物体が地面に置                               | 準ずる方法として、評価に用いる係数は、地面から浮かせた                                                     |    |
| せた状態で実測された C <sub>L</sub> a のうち,物体が地面に置かれた状                           | かれた状態(A)にできる限り近い場合の値よりも大きな係数C                                            | 状態で実測された $C_{L}a$ のうち,物体が地面に置かれた状態(図                                            |    |
| 態(第13図の状態A)にできる限り近い場合の値よりも大き                                          | <sub>D</sub> Aを用いることで,保守性は確保できると考えられる(「C <sub>D</sub>                    | 13 の状態 A)にできる限り近い場合の値よりも大きな係数を                                                  |    |
| な係数を用いることで、保守性は確保できると考えられるこ                                           | A>C <sub>L</sub> a」となることの説明は後述)。                                         | 用いることで、保守性は確保できると考えられること。                                                       |    |
| と。                                                                    |                                                                          |                                                                                 |    |
| ・物体が地面に置かれた状態(第13図の状態A)と物体がある                                         | ・物体が地面に置かれた状態(A)と物体がある程度浮き上がった                                           | ・物体が地面に置かれた状態(図13の状態A)と物体がある程                                                   |    |
| 程度浮き上がった状態(第13図の状態B)での評価にて,共                                          | 状態(B)での評価にて共通の係数を用いることは、地上からの物                                           | 度浮き上がった状態(図 13 の状態 B)での評価にて,共通の                                                 |    |
| 通の係数を用いることは、地上からの物体浮上・飛散評価に                                           | 体浮上及び飛散解析における実用性の観点からも望ましい。                                              | 係数を用いることは、地上からの物体浮上・飛散評価におけ                                                     |    |
| おける実用性の観点からも望ましいこと。                                                   | 物体の飛散解析におけるモデル化の基本的な考え方は、地面に                                             | る実用性の観点からも望ましいこと。                                                               |    |
|                                                                       | おける揚力係数 $C_L$ 見付面積 $a$ の積 $C_L a$ をより大きな値で置き換                            |                                                                                 |    |
|                                                                       | えて、浮上現象を保守的に評価できるようにすることであり、こ                                            |                                                                                 |    |
|                                                                       | の保守的な代用値としてC <sub>D</sub> Aの利用が適切であることを以下に                               |                                                                                 |    |
|                                                                       | 説明する。                                                                    |                                                                                 |    |
|                                                                       |                                                                          |                                                                                 |    |
|                                                                       |                                                                          |                                                                                 |    |
|                                                                       |                                                                          |                                                                                 |    |
|                                                                       |                                                                          |                                                                                 |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                      | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 島根原子力発電所 2号炉                                                                                      | 備考 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----|
| C<br>V <sub>v</sub><br>本<br>加加<br>加加<br>な<br>本<br>大<br>の<br>本<br>大<br>の<br>の<br>た<br>の<br>の<br>た<br>の<br>の<br>た<br>の<br>た<br>の<br>た<br>の<br>た<br>の<br>た<br>の<br>た<br>の<br>た<br>の<br>し<br>い<br>の<br>か<br>の<br>の<br>た<br>の<br>し<br>い<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の | 「物体成面の高度と34」<br>の取成<br>「物体成面の高度と34」<br>の取成<br>(1:物件の高さ)<br>の取成<br>(1:物件の高さ)<br>の取成<br>(1:物件の高さ)<br>(1:物件の高さ)<br>(1:物件の高さ)<br>(1:物件の高さ)<br>(1:物件の高さ)<br>(1:物件の高さ)<br>(1:物件の高さ)<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m))<br>(1:小(1:m)) | C<br>V<br>W<br>地面効果による撮力 $F_L$<br>B<br>地面効果による撮力 $F_L$<br>地面効果による撮力 $F_L$<br>地面効果による撮力 $F_L$<br>国 |    |
|                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                   |    |
| 第13 図 飛来物の運動モデルの模式図                                                                                                                                                                                                                                                                                 | 第 5.1-3 図 物体の運動モデルの模式図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 図 13 物体の運動モデルの模式図                                                                                 |    |
| (A:地面上, B:Z<3d の高度範囲, C:Z>3d の高度範囲,                                                                                                                                                                                                                                                                 | 第5.1-3図 物体の運動モデルの模式図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (A:地面上, B:Z<3d の高さの範囲, C:Z>3d の高さの範                                                               |    |
| ただし, Z=z-d/2, d:物体高さ)                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 囲, ただし, Z=z-d/2, d:物体高さ)                                                                          |    |
|                                                                                                                                                                                                                                                                                                     | 物体が風速Uを受ける場合の揚力係数C <sub>L</sub> は,一般にその定義に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   |    |
|                                                                                                                                                                                                                                                                                                     | より揚力F <sub>L</sub> と以下の関係にある。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |    |
|                                                                                                                                                                                                                                                                                                     | $F_L = \frac{1}{2}\rho U^2 C_L a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |    |
| 物体の飛散解析におけるモデル化の基本的な考え方は、地面に                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 物体の飛散解析におけるモデル化の基本的な考え方は、地面に                                                                      |    |
| おける揚力係数 $C_L$ と見附面積 a の積 $C_L$ をより大きな値で置き                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | おける揚力係数 $C_L$ と見附面積 a の積 $C_L$ a をより大きな値で置き                                                       |    |
| 換えて、浮上現象を保守的に評価できるようにすることであり、                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 換えて、浮上現象を保守的に評価できるようにすることであり、                                                                     |    |
| この保守的な代用値として飛行定数 C <sub>D</sub> A/m と同類の C <sub>D</sub> A の利用                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | この保守的な代用値として飛行定数 C <sub>D</sub> A/m と同類の C <sub>D</sub> A の利用                                     |    |
| が適切であることを以下で説明する。                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | が適切であることを以下で説明する。                                                                                 |    |
| 物体が風速 U を受ける場合の揚力係数 C <sub>L</sub> は,一般にその定義                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 物体が風速 U を受ける場合の揚力係数 C <sub>L</sub> は,一般にその定義                                                      |    |
| により揚力 F <sub>L</sub> と以下の関係にある。                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | により揚力 F <sub>L</sub> と以下の関係にある。                                                                   |    |
| $F_L = \frac{1}{2} \rho U^2 C_L a \tag{10}$                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $F_L = \frac{1}{2}\rho U^2 C_L a \tag{10}$                                                        |    |
| これを変形すると、 $C_1 a=2F_1/\rho U^2$ となり、風速、風向及び物体                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | これを変形すると、 $C_1 a=2F_1/\rho U^2$ となり、風速、風向及び物体                                                     |    |
| の向きが一定であれば, 揚力 FL 及び速度圧 q=1/2ρU <sup>2</sup> は見附面                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | の向きが一定であれば, 揚力 FL 及び速度圧 q=1/2ρU <sup>2</sup> は見附面                                                 |    |
| │ 積 a の取り方には無関係の物理量であるので、C <sub>1</sub> a も見附面積 a                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | │ 積 a の取り方には無関係の物理量であるので、C <sub>t</sub> a も見附面積 a                                                 |    |
| の取り方(風向投影面積や揚力方向投影面積)に依存しないこと                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | の取り方(風向投影面積や揚力方向投影面積)に依存しないこと                                                                     |    |
| が分かる。                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | が分かる。                                                                                             |    |
| ー方,同じ風速Uが同じ物体に作用する場合であっても,地面                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 一方,同じ風速 U が同じ物体に作用する場合であっても,地面                                                                    |    |
| に置かれた物体の向きと風向の関係によって積 C <sub>L</sub> a は変化する。                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | に置かれた物体の向きと風向の関係によって積 C <sub>L</sub> a は変化する。                                                     |    |
| (例えば,円柱の長手方向と風向が平行な場合の揚力は小さい                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (例えば、円柱の長手方向と風向が平行な場合の揚力は小さい                                                                      |    |
| が, 直角の場合には最大となる)                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | が、直角の場合には最大となる)                                                                                   |    |
| そこで、典型的な塊状物体・柱状物体・板状物体が地面に置か                                                                                                                                                                                                                                                                        | ここで、典型的な塊状物体、柱状物体及び板状物体が地面に置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | そこで、典型的な塊状物体・柱状物体・板状物体が地面に置か                                                                      |    |
| れた場合の C <sub>L</sub> a の最大値(又は,それに近い値)の実測結果と物                                                                                                                                                                                                                                                       | かれた場合のC <sub>L</sub> aの最大値(又はそれに近い値)の実測結果と,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | れた場合の C <sub>L</sub> a の最大値(又は,それに近い値)の実測結果と物                                                     |    |
| 体の幾何学形状のみで決定される C <sub>D</sub> A の値を比較する。(第2表)                                                                                                                                                                                                                                                      | 物体の幾何学形状のみで決定されるC <sub>D</sub> Aの値を比較した。(第5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 体の幾何学形状のみで決定される C <sub>D</sub> A の値を比較する。(表 2)                                                    |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                              | 東海第二発電所(2018.9.18版)                        | 島根原子力発電所 2号炉                                                                                  | 備考 |
|-----------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------|----|
| 第2表より, C <sub>D</sub> A>C <sub>L</sub> a の関係が成立しており, C <sub>L</sub> a の代用とし | -1表)                                       | 表 2 より, C <sub>D</sub> A>C <sub>L</sub> a の関係が成立しており, C <sub>L</sub> a の代用として                 |    |
| て C <sub>p</sub> A の利用が適切であることが確認できる。なお, C <sub>p</sub> A は各方               | 同表より、「 $C_DA > C_L a$ 」の関係が成立しており、揚力の評価    | C <sub>p</sub> A の利用が適切であることが確認できる。なお, C <sub>p</sub> A は各方向                                  |    |
| 向の抗力係数と見附面積の積の平均値であり,例えば,一辺 d の                                             | モデルとして $C_L a$ の代わりに $C_D A$ を用いることで保守性は確保 | の抗力係数と見附面積の積の平均値であり, 例えば, 一辺 d の立                                                             |    |
| 立方体では $C_pA=2d^2$ , 一辺 d の平板では $C_pA=0.66d^2$ となる。両者                        | できる。                                       | 方体では C <sub>D</sub> A=2d <sup>2</sup> ,一辺 d の平板では C <sub>D</sub> A=0.66d <sup>2</sup> となる。両者に |    |
| には約 3 倍の違いがあるが, いずれの場合も実際の C <sub>L</sub> a 値より                             |                                            | は約 3 倍の違いがあるが, いずれの場合も実際の C <sub>L</sub> a 値よりも                                               |    |
| も大きな値であり,揚力の評価モデルとして C <sub>L</sub> a 値の代わりに                                |                                            | 大きな値であり,揚力の評価モデルとして C <sub>L</sub> a 値の代わりに C <sub>D</sub> A                                  |    |
| C <sub>D</sub> A を用いることで保守性は確保できる。                                          |                                            | を用いることで保守性は確保できる。                                                                             |    |
| また,以上の揚力のモデル化の説明は浮上時(第 13 図の状態                                              | また,以上の揚力のモデル化の説明は浮上時(第5.1-3図A)             | また,以上の揚力のモデル化の説明は浮上時(図 13 の状態 A)                                                              |    |
| A) に対するものであるが,この揚力が物体高さの3 倍までの飛                                             | に対するものであるが、この揚力が物体高さの3倍までの飛散高              | に対するものであるが,この揚力が物体高さの3 倍までの高さの                                                                |    |
| 散高度の範囲で連続的に低減するように作用するようにモデル                                                | 度の範囲で連続的に低減するように作用するようにモデル化して              | 範囲で連続的に低減するように作用するようにモデル化してお                                                                  |    |
| 化しており,第13図の状態A,B,Cの全領域で揚力の連続性が                                              | おり、第5.1-3図の状態A,B及びCの全領域で揚力の連続性が            | り,図13の状態A,B,Cの全領域で揚力の連続性が確保されて                                                                |    |
| 確保されている。                                                                    | 確保されている。                                   | いる。                                                                                           |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |
|                                                                             |                                            |                                                                                               |    |

| 柏崎刈羽原子力                                                                                                                                                                                                                                                             | り発電所 6/                                                                                                                                                                                                                                                                                                          | /7号炉                                                                                                                                                           | (2017                                                                                                                                            | 7.12.2                                                                                                                                        | 0版)                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                    | 東洋                                                                                                                                                                                                  | 毎第二                                                                                                                   | 発電所                                                                                                                         | 所(2018.9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18版)                                                                                                                                                                                                                                                                                                                                |                                                                                              | 島根原子力発電所 2号炉              |                                                                                                                                                            |                                                                                                                     |                                                                                                                                                    |                                                                                                                                                                                             |                                                                                                                                               | 備考                                                                                                                                                     |         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| 第2表 主な物体                                                                                                                                                                                                                                                            | 体の C <sub>D</sub> A と地                                                                                                                                                                                                                                                                                           | 面に置かれ                                                                                                                                                          | れた物体                                                                                                                                             | 本の C <sub>L</sub> a                                                                                                                           | a(実測値)                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                    | , simil                                                                                                                                                                                             | >                                                                                                                     | 10                                                                                                                          | <u>ил</u> пт                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                     | -#                                                                                           | 表 2 Ξ                     | 主な物体                                                                                                                                                       | 本の C <sub>D</sub> A                                                                                                 | A と地面                                                                                                                                              | 面に置かれ                                                                                                                                                                                       | た物体のC                                                                                                                                         | La(実測                                                                                                                                                  | 値) の    |  |
|                                                                                                                                                                                                                                                                     | の大小                                                                                                                                                                                                                                                                                                              | 関係(1/2)                                                                                                                                                        | 1                                                                                                                                                |                                                                                                                                               |                                                                                                                                           |                                        | ) ~ (                                                                                                                                                                                                                                                                              | )<br>(<br>を<br>計<br>(<br>の<br>計<br>の                                                                                                                                                                | ן<br>ק (                                                                                                              | おける                                                                                                                         | )<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>第<br>(二)<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[<br>]<br>[ | 画<br>通<br>通<br>通<br>道<br>(<br>)<br>と<br>し<br>一<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し                                                                                                                                                                                                                     | 柱の車                                                                                          |                           |                                                                                                                                                            |                                                                                                                     |                                                                                                                                                    | 比較                                                                                                                                                                                          |                                                                                                                                               |                                                                                                                                                        |         |  |
| C <sub>1</sub> a (実測値)に係る試験条件等<br>気洞試験 <sup>(16)</sup> (風速 22~31m/s, Re=2.8×10 <sup>6</sup> ~4.0×10 <sup>6</sup> )<br>La が最大となる流入角での値を C <sub>1</sub> a (実測値)として記載<br>気洞試験 <sup>(22)</sup> (風速 0~150m/s, Re=0~3.0×10 <sup>6</sup> )<br>1 つのタイヤに作用する地面からの反力のうち、少なくとも | <ul> <li>一がゼロとなった時点の風速 Uから C<sub>l</sub>a 値を計算</li> <li>C<sub>l</sub>a が最大となる流入角での値を C<sub>l</sub>a (実測値)として記載</li> <li>S<sub>la</sub> が最大となる流入角での値を C<sub>l</sub>a (実測値)として記載</li> <li>S<sub>la</sub> が最大となる流入角での値を C<sub>l</sub>a (実測値)として記載</li> <li>S<sub>l</sub>A がら セムが (Re=8.0×10<sup>3</sup>)</li> </ul> | (実))(1) こして記載)<br>(実))(1) として記載)<br>風洞試験(10) (Re=1.3×10 <sup>6</sup> )<br>乱人方向と円柱の軸直角方向が垂直になる配置(円柱の軸方<br>引は地面と平行)における値を C <sub>1</sub> a (実測値)として記載<br>司記地跡(1) | A.酒品廠(Re=3.5×10 <sup>*</sup> ~1.2×10 <sup>*</sup> )<br>能入方向と円柱の軸直角方向が垂直になる配置(円柱の軸方<br>司は地面と平行)における値を C <sub>L</sub> a(実測値)として記載(電<br>り中央研究所風洞実験) | K路試験( <sup>17)</sup> (Re=8.0×10 <sup>3</sup> ~2.8×10 <sup>4</sup> )<br>能入方向と角柱の軸方向が垂直となる配置(角柱の軸方向は<br>1面と平行)における値を C <sub>l</sub> a(実測値)として記載 | 私神試験(Re=3.8×10 <sup>4</sup> )<br>低入方向と角柱の軸方向が垂直になる配置(角柱の軸方向は地<br>面と平行)<br>長方形断面(アスペクト比 4:3)の角柱は地面から 0.167D 以<br>三離れると揚力は負となる(電力中央研究所風洞実験) | ビ地面に置かれた物体のC <sub>L</sub> a(実測値) (1/2) | OLd (大田)         OLd (大田)         OLD (大田)         OLD (大田)           ・風洞試験(15)(風速22m/s~31m/s, Re=2.8×1)         48.7ft.2         4×10 <sup>6</sup> )         4×10 <sup>6</sup> )           48.7ft.2         ・CLa が最大となる流入角での値をCLa (実測(<br>で記載)         ・CLa が最大となる流入角での値をCLa (実測( | <ul> <li>7.76m<sup>2</sup></li> <li>・風洞討験<sup>(1 6)</sup> (風速 0~150m/s, Re=0~3×10<sup>(</sup>)</li> <li>・4 つのタイヤに作用する地面からの反力のうち,<br/>とも 1 つが 0 となった時点の風速 U からC<sub>L</sub>a<sup>(</sup>)</li> </ul> | (C <sub>L</sub> a <sup>22</sup> mic/ ρU <sup>2</sup> )<br>- C <sub>L</sub> a が最大となる流入角での値をC <sub>L</sub> a (実測<br>で記載 | <ul> <li>・水路試験<sup>(17)</sup> (Re-8, 000~28, 000)</li> <li>・流入方向と立方体面の一面が垂直になる配置は<br/>値をC<sub>1</sub>a(実測値)として記載</li> </ul> | <ul> <li>・風洞試験<sup>(15)</sup>(Re-1.3×10<sup>6</sup>)</li> <li>・流入方向と円柱の軸直角方向が垂直になる配置</li> <li>・流入方向と円柱の軸直角方向が垂直になる配置</li> <li>の軸方向は地面と平行)における値をC<sub>1</sub>a(3</li> <li>・流入方向と円柱の軸直角方向が垂直になる配置</li> <li>・流入方向と円柱の軸直角方向が垂直になる配置</li> <li>・流入方向と円柱の軸直角方向が垂直になる配置</li> </ul>                                                                                                                                                                                   | <ul> <li>として記載</li> <li>として記載</li> <li>・水路試験<sup>(17)</sup> (Re-8, 000~28, 000)</li> <li>・水路試験<sup>(17)</sup> (Re-8, 000~28, 000)</li> <li>・長光断面 (アスペクト比 4:3) の角柱は地</li> <li>長二方町 (アスペクト比 4:3) の角柱は</li> <li>(167D 以上離れると揚力は負となる(電中の<br/>験)</li> <li>・流入方向と角柱の軸方向が垂直となる配置(有<br/>方向は地面と平行)における値をC<sub>1</sub>a(実測<br/>方言書</li> </ul> | <ul> <li>① (地面との隙間が<br/>・流入方向と角柱の軸方向が垂直になる配置(∮<br/>167D 以上の場合)</li> <li>方向は地面と平行)</li> </ul> | <i>い。</i> (主測値)」7.仮ス計略条件並 | <ul> <li>・ 文献(16) の風洞試験(風速 22~31m/s, Re=2 8x10<sup>6</sup>~4x10<sup>6</sup>)</li> <li>・ C<sub>L</sub>a が最大となる流入角での値を C<sub>L</sub>a (実測値) として記載</li> </ul> | <ul> <li>・ 文献(17) の水路試験(Re=8000~28000)</li> <li>・流入方向と立方体面の一面が垂直になる配置における値を<br/>C<sub>1</sub>a(実測値)として記載</li> </ul> | <ul> <li>・ 文献(16)の風洞試験(Re=1.3x10<sup>6</sup>)</li> <li>・ 流入方向と円柱の軸直角方向がる垂直になる配置(円柱の<br/>軸方向は地面と平行)における値を C<sub>i</sub>a (実測値)として<br/>記載</li> </ul> | <ul> <li>・ 文献(17) の水路試験(Re=8000~28000)</li> <li>・ 長方形断面(アスペクト比4:3)の角柱は地面から0.167D</li> <li>以上離れると揚力は負となる(電中研風洞実験)</li> <li>・ 流入方向と角柱の軸方向が垂直となる配置(角柱の軸方向は地面と平行)における値をC.a(実測値)として記載</li> </ul> | <ul> <li>・ 文献(18)の風洞試験(幅 B に基づく Re=2x10<sup>5</sup>)</li> <li>・ 流入方向と平板の長さ方向が垂直になる配置(平板は地面<br/>と平行)における値を C<sub>L</sub>a(実測値)として記載</li> </ul> | <ul> <li>・ 文献(19) の木路試験(Re=5x10<sup>4</sup>程度)</li> <li>・ 流入方向と平板状プロックの長さ方向が垂直になる配置<br/>(平板状プロックは地面と平行)における値を C<sub>1</sub>a(実測<br/>値)として記載</li> </ul> |         |  |
|                                                                                                                                                                                                                                                                     | · · · ·                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                | •••                                                                                                                                              | ••                                                                                                                                            |                                                                                                                                           | C <sub>D</sub> A.                      |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                   | ₩°.                                                                                          | ,<br>1/C-a                | 1                                                                                                                                                          | 围                                                                                                                   |                                                                                                                                                    | $\sim 1.6$                                                                                                                                                                                  |                                                                                                                                               |                                                                                                                                                        |         |  |
| 训值)                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                | 23DA                                                                                                                                             | ZDX                                                                                                                                           | 面との<br>0.167D<br>合)                                                                                                                       | 9体の                                    | ft. <sup>2</sup>                                                                                                                                                                                                                                                                   | 07m <sup>2</sup>                                                                                                                                                                                    | 58m <sup>2</sup>                                                                                                      | )2                                                                                                                          | μγ                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dλ<br>λ)*2                                                                                                                                                                                                                                                                                                                          | +B) λ                                                                                        | C <sup>2</sup>            | 2.65                                                                                                                                                       | 10 程                                                                                                                | 2.35                                                                                                                                               | 1.14                                                                                                                                                                                        | 16.5                                                                                                                                          | 6.6                                                                                                                                                    |         |  |
| C <sub>L</sub> a(実<br>後.7ft. <sup>2</sup><br>7.76m <sup>2</sup>                                                                                                                                                                                                     | 7.89m <sup>2</sup><br>0.2D <sup>2</sup> 程度                                                                                                                                                                                                                                                                       | 0.2DA                                                                                                                                                          | 0.05Dλ~0.                                                                                                                                        | 0.5Dλ~0.<br>程度                                                                                                                                | 負値(地回<br>隙間が(<br>以上の場(                                                                                                                    | 1表 主な物                                 | a 1294                                                                                                                                                                                                                                                                             | <sup>2m</sup> , 12. (                                                                                                                                                                               | 12<br>69 14. E                                                                                                        | 21                                                                                                                          | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8                                                                                                                                                                                                                                                                                                                                 | の<br>0.4(D-<br>、て記載                                                                          | (主게値)                     | (wd<br>5.5ft. <sup>2</sup> )                                                                                                                               | 2程度                                                                                                                 | č                                                                                                                                                  | <b>λ∼0.7</b> Dλ                                                                                                                                                                             | 丘い値<br><sup>面から</sup><br>離れた位<br>:04Bれ)                                                                                                       | 、程度                                                                                                                                                    | せる場合    |  |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                  |                                                                                                                                               |                                                                                                                                           | 5.1-                                   | art<br>7ft.,<br>.3ft.)                                                                                                                                                                                                                                                             | た 4.85<br>た 1.45                                                                                                                                                                                    | 馬馬<br>(a)<br>(a)<br>(a)<br>(b)<br>(b)<br>(b)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c     |                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 R – ۲                                                                                                                                                                                                                                                                                                                             | ), 幅 B<br>产無視 L                                                                              | <u> </u>                  | 1.865<br>(=40                                                                                                                                              | 0.2D <sup>2</sup>                                                                                                   | 0.2D)                                                                                                                                              | 0.5D)<br>程度                                                                                                                                                                                 | 0 にえ<br>(地団<br>0.25B<br>置で<br>C <sub>L</sub> a=0                                                                                              | 0.1B2                                                                                                                                                  | 24 t2 1 |  |
| C <sub>D</sub> A <sup>#1</sup><br>129ft. <sup>2</sup><br>12.07m <sup>2</sup>                                                                                                                                                                                        | 14.58m <sup>2</sup><br>2D <sup>2</sup>                                                                                                                                                                                                                                                                           |                                                                                                                                                                | 0.4/DV                                                                                                                                           | 0.8Dλ<br>(1.3Dλ) <sup>#2</sup>                                                                                                                | 0.4(D+B)λ                                                                                                                                 | 新<br>新                                 | 正14%<br>実物の Dodge D<br>(長さ 16.7<br>5.8ft., 高さ4                                                                                                                                                                                                                                     | 1/6縮尺模型<br>(セダン:長<br>幅 1.79m,高<br>質量 1633kg)                                                                                                                                                        | 1/6 縮尺模型<br>(ミニバン:J<br>m,幅1.94m,<br>m,質量 2086k                                                                        | 一辺の長さD                                                                                                                      | 長さん,直径D                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 長さん, 断面が<br>正方形                                                                                                                                                                                                                                                                                                                     | 長さん, 高さ D<br>長方形断面<br>坂状では微小項<br>なせる場合                                                       | *****                     | d+ds)/3                                                                                                                                                    |                                                                                                                     |                                                                                                                                                    | *                                                                                                                                                                                           |                                                                                                                                               | ·+D(B+λ))**                                                                                                                                            | **:塊状と  |  |
| 3ft. 、<br>函配 、                                                                                                                                                                                                                                                      | 2m,<br>9m,                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                |                                                                                                                                                  | 6                                                                                                                                             | の長                                                                                                                                        | 44m f+-                                | 1                                                                                                                                                                                                                                                                                  | 動車                                                                                                                                                                                                  |                                                                                                                       | 方体                                                                                                                          | 日在                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 角                                                                                                                                                                                                                                                                                                                                   | =<br>-<br>:<br>状<br>と<br>見<br>ノ                                                              |                           | 2(sw+w<br>=129ft                                                                                                                                           | $D^{2}$                                                                                                             | .47Dλ                                                                                                                                              | .8Dλ<br>1.3Dλ)                                                                                                                                                                              | ).66Bλ                                                                                                                                        | .66Bλ<br>).66(Bλ                                                                                                                                       | 載       |  |
| eart<br>幅 5.<br>4.85m<br>1.42m                                                                                                                                                                                                                                      | 1.5 1.6<br>1.6                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                                                  | - 12 D                                                                                                                                        | 四<br>四<br>日                                                                                                                               | 4                                      | <                                                                                                                                                                                                                                                                                  | <br>                                                                                                                                                                                                |                                                                                                                       | -171                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                                                                                                                                   | 光 ※<br>※ ※                                                                                   |                           | L:)雪                                                                                                                                                       | 7                                                                                                                   | 0                                                                                                                                                  | <br>                                                                                                                                                                                        | 0                                                                                                                                             | 00                                                                                                                                                     | でし      |  |
| (<br>                                                                                                                                                                                                                                                               | を<br>い<br>の<br>の<br>の<br>の<br>で<br>で<br>し<br>の<br>で<br>で<br>で<br>し<br>の<br>の<br>で<br>で<br>で<br>で<br>で<br>し<br>の<br>の<br>の<br>で<br>で<br>一<br>で<br>一<br>で<br>一<br>で<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一                                                                               |                                                                                                                                                                | 句<br>D                                                                                                                                           | 画が                                                                                                                                            | ち<br>そ<br>し<br>し                                                                                                                          | TY VH                                  |                                                                                                                                                                                                                                                                                    | 影                                                                                                                                                                                                   |                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 柱                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                           | nrt<br>1. ,<br>1=4.3 f                                                                                                                                     |                                                                                                                     |                                                                                                                                                    | D O                                                                                                                                                                                         | な D<br>5mm,<br>湯合)                                                                                                                            | D<br>tu                                                                                                                                                | 無法      |  |
| 実物の Do<br>(長さ 16<br>(長さ 12)<br>(た女ン<br>(セダン<br>1.79m,                                                                                                                                                                                                               | <u>車 1633</u><br><u>1/</u> 6                                                                                                                                                                                                                                                                                     | ないである。                                                                                                                                                         | 友 さん, 直                                                                                                                                          | 長さA,断<br>正方形                                                                                                                                  | 長さん, <sub>帚</sub><br>方形断面                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                     |                                                                                              | 仕<br>様                    | Dodge Da<br>s=16.7f<br>t., 声さ d                                                                                                                            | 臣さ D                                                                                                                | 直径 D                                                                                                                                               | 断面が一                                                                                                                                                                                        | 幅 B,厚<br>20mm, D=-<br>000mm の封                                                                                                                | 重 B, 重                                                                                                                                                 | は微小項を   |  |
| 物体                                                                                                                                                                                                                                                                  | 1.55体                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                | ₩<br>T                                                                                                                                           |                                                                                                                                               | 角柱                                                                                                                                        |                                        |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                     |                                                                                              | -                         | 実物の<br>(長ら<br>w=5.8fi                                                                                                                                      | 0 Й<br>—                                                                                                            | 長さん,                                                                                                                                               | 長さ <b>ん</b> ,<br>正 方 形                                                                                                                                                                      | 長さん,<br>(B=2(<br>入=10                                                                                                                         | たなど、                                                                                                                                                   | び平板で()  |  |
| 影                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                | -                                                                                                                                                | 柱状                                                                                                                                            | ~                                                                                                                                         |                                        |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                     |                                                                                              | 物休                        | 自動車                                                                                                                                                        | 立方体                                                                                                                 | 日柱                                                                                                                                                 | 角柱                                                                                                                                                                                          | 減い                                                                                                                                            | 平板<br>、<br>ロ<br>ッ                                                                                                                                      | : 柱状及;  |  |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                  |                                                                                                                                               |                                                                                                                                           |                                        |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                     |                                                                                              | 法                         | i i                                                                                                                                                        | <u>考</u><br>(1)                                                                                                     |                                                                                                                                                    | 柱<br>状                                                                                                                                                                                      | 平核                                                                                                                                            |                                                                                                                                                        | *       |  |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                  |                                                                                                                                               |                                                                                                                                           |                                        |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                     |                                                                                              |                           |                                                                                                                                                            |                                                                                                                     |                                                                                                                                                    |                                                                                                                                                                                             |                                                                                                                                               |                                                                                                                                                        |         |  |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                  |                                                                                                                                               |                                                                                                                                           |                                        |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                     |                                                                                              |                           |                                                                                                                                                            |                                                                                                                     |                                                                                                                                                    |                                                                                                                                                                                             |                                                                                                                                               |                                                                                                                                                        |         |  |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 島根原子力発電所 2号炉 | 備考 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|
| 第2表 主な物体の $C_{DA}$ と地面に置かれた物体の $C_{La}$ (実測値)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
| の大小関係(2/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 検報  C: た   C: O   C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
| 「「「」」」<br>「「」」」<br>「」」」<br>「」」」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
| 平 で 通 な実                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
| 験 (\$02) け 記 (?m)<br>(*) (?m)<br>(*) (?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m)<br>(?m) | 「<br>し<br>の<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |    |
| 2010日回 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (値) 基 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |    |
| に 20 前 重 渡の川 「「重帅」 02 直 (長び                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |    |
| $ \begin{bmatrix} \hline a \\ \hline b \\ \hline c \\ c \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\overrightarrow{\mathbf{m}} \stackrel{(\mathcal{D})}{=} \begin{array}{c} \vdots \\ \vdots $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |    |
| (実) に長を 8 な 0520面                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | () 一、败而平、膝×向行逐败而衣止,(*)。 (*)。 (*)。 (*)。 (*)。 (*)。 (*)。 (*)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |    |
| 「<br>い<br>の<br>で<br>し<br>の<br>で<br>し<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 「「「「「「「「」」」」「「」」」(「」」」(「」」(「」」(「」」」(「」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |    |
| 検討して、後、前・検討す<br>8. とお 2. と のと ジー<br>1. 可け 1. 第一年ケー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 本<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |    |
| 「「「「「」」」(大」「「「」」を、「」」(「」」を、「」」(「」」(「」」(「」」(「」」(「」」(「」」)「」」「「」」「」」「」」(「」」(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
| 風流平 風り流行 水流极行                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 、<br>で<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 第一日 2010年 2011年 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |
| 劉 値 2 紀 翌 度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 国<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |    |
| (本)<br>(本)<br>(本)<br>(本)<br>(本)<br>(本)<br>(本)<br>(本)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
| (B+3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1) $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 第 4 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |    |
| の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 第100-1<br>- 100-1<br>- 1 |              |    |
| を通知 なるに なる な な な か む ひ ひ ひ む ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
| 長し、長し、水とびみ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 板「「「な」」をついて、「なって」をついて、「なって」をついて、「なって」をついて、「なって」をついて、「なって」をついて、「なって」をついて、「なって」をついて、「なって」をついて、「なって」をついて、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |    |
| 体 亚 翼 坎 河 柱 埋 极 一枚 一枚 二 水 水 一 本 埋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>  物   い   数   広   比<br>  本   子   第  <br>  本   予   水   ズ · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
| <br> <br> <br> <br> <br> <br> <br> <br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |

| <ul> <li>(1) 次にした方が違いの時代しの語び</li> <li>(2) 次にした方が違いの時代しの語び</li> <li>(3) 次にした方が違いの時代しの語び</li> <li>(4) 次にしたうか違いの時代しの語び</li> <li>(4) 次にしたうか違いの目的とないので、前き などいいろ。</li> <li>(4) 次にしたうか違いの目的とないので、前き などいいろ。</li> <li>(4) 次にしたうか違いの目的とないので、かて、レインス次いの見かいてきかっとないのたいの目がかいて、レインス次の見違いのた</li> <li>(4) 次にしたいろく、ないの見かいてきかった。</li> <li>(4) 次にしたいろくないのしたいの意味がにないる。</li> <li>(4) 次にしたいろくないのしたいろくないのことのないので、たいのしたいの意味がにないる。</li> <li>(4) 次にしたいろくないのしたいろくないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないの</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                     | 東海第二発電所(2018.9.18版)                                            | 島根原子力発電所 2号炉                                                                | 備考 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|----|
| Lucical/Add/regic (Lucical/Add/regic (Lucical/Add/reg                                                                                                                                                                                                                                                                                                                          | (3)設定した揚力係数の適用性の確認                                                 | (3) 設定した揚力係数の適用性の確認                                            | (3)設定した揚力係数の適用性の確認                                                          |    |
| $ \begin{aligned} C_{AA} & z B p (x)_{A} & (x) B (x)_{A} & (x) A z z z z z z z z z z z z z z z z z z $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 地面における揚力係数 $C_L$ と見附面積 a の積 $C_L$ a が,飛行定数                         | 第 5.1-1 表における C <sub>L</sub> a (実測値) が竜巻における物体の飛散              | 地面における揚力係数 C <sub>L</sub> と見附面積 a の積 C <sub>L</sub> a が,飛行定数                |    |
| Ga ( qmll) $\Delta c = hard c = hard$                                                                                                                                                                                                                                                                                                                    | C <sub>D</sub> A/m と同類の C <sub>D</sub> A で代用できることについて,第2 表における     | 解析に適用可能であることについて、レイノルズ数の観点から確                                  | C <sub>D</sub> A/m と同類のC <sub>D</sub> A で代用できることについて,表2におけるC <sub>L</sub> a |    |
| 5.1 Er over, 1.4 / $J$ /2.4 weight object over, 1.4 / $J$ /2.4 weight object over, 1.4 / $J$ /2.4 weight over, 2.4 weight over,                                                                                                                                                                                                                                                                                                                        | C <sub>L</sub> a(実測値)が竜巻における飛来物の飛散解析に適用可能であ                        | 認を行った。                                                         | (実測値) が竜巻における物体の飛散解析に適用可能であること                                              |    |
| <ul> <li>高度の含えな()の実験でのレイノムズ葉はしば用きの信頼()</li> <li>高し11度の含えな()の実験ではなしてんべ葉菜()</li> <li>高し11度の含えな()の実験ではなしてんべ葉菜()</li> <li>ここで、実験の自動車()の点()、()、()、()、()、()、()、()、()、()、()、()、()、(</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ることについて、レイノルズ数の観点から確認を行う。                                          |                                                                | について、レイノルズ数の観点から確認を行う。                                                      |    |
| につくせたり、10 から10 のオ・グ・ドあら、価格価格価格につくついのかけ、グ・ため、ここの、実物の目離市 0.642 Bart (日本) 10 ~ 10 0.642 Bart (長本) 10 0.642 Bart (日本) 10 0.642 Bart (10 0.644 Bart (10                                                                                                                                                                                                                                                                                                                                                                                   | 第2 表の各文献中の実験でのレイノルズ数Re は同表の備考欄                                     | 第5.1-1表の各文献中の実験におけるレイノルズ数は、同表の                                 | 表2の各文献中の実験でのレイノルズ数Re は同表の備考欄に                                               |    |
| ここで、素助の自転用のないためにたきしたフレースなるたし、<br>高くないまし、ては気酸なの面白し面のしたらしたフレースなるために、<br>高くないまし、ては気酸なの面白し面のしたらした。<br>高くないまし、ては気酸なの面白し面のした。<br>高くないまし、ては気酸なの面白し面のした。<br>高くないまし、ては気酸なの面白し面のした。<br>ないたいためであり、このような物ななれている。<br>本数におして業者な料解かないことが確認されている。<br>本数におして業者な料解かないことが確認されている。<br>本数におして業者な料解かないことが確認されている。<br>本数にないためであり、このような物ななれている。<br>本数にないためであり、このような物ななれている。<br>本数にないためであり、このような物ななれている。<br>本数にないためであり、このような物ななれている。<br>本数にないためであり、このような物ななれている。<br>本数にないためできから、このような物ななれている。<br>本数にないためできから、このような物ななれている。<br>本数にないためできから、このような物ななれている。<br>本がなないためできから、このような物ななれている。<br>本なななれていたいためできか。<br>たいたいためでもか。<br>たいためでから、このような物ななれていたいためでもか。<br>本がなないためでから、<br>たいためでからか、このような物ななれていたいためできか。<br>本がなないためでから、<br>本がなないためできから、このような物ななれていたいためでもか。<br>本がなないためでから、<br>本がなないためできか。<br>たいためでから、<br>たいためでから、<br>たいためでから、<br>本がなないためでから。<br>本がなないためでから、<br>本がなないためでから。<br>本がなないためでから、<br>本がなないためでから。<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないためでから、<br>本がなないたかでから、<br>本がなないたかでかた。<br>本がなないたかでから、<br>本がなないたかでかた。<br>本がなないたかでから、<br>本がなないたかでかた。<br>本がなないたかでから、<br>本がなないたかでかた。<br>本がなないたかでかたかたかでか。<br>本がなないたかでかたかでか。<br>本がなないたかでかたかた。<br>本がなないたかでかたかでか。<br>本がなないたかでかたかでか。<br>本がなないたかでから、<br>本がなないたかでかたかでか。<br>本がなないたかでかたかでかたかでか。<br>本がなないたかでかたかでかたかでかたかでか。<br>本がなないたかでかたかでかたかでかたかでかたかでかたかでかたかでかたかでかたかでかたかで                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | に示すとおり, 10 <sup>4</sup> から 10 <sup>6</sup> のオーダーにある。               | 備考欄に示すとおり、10 <sup>4</sup> ~10 <sup>6</sup> の範囲にある。             | 示すとおり, 10 <sup>4</sup> から 10 <sup>6</sup> のオーダーにある。                         |    |
| <ul> <li>              カン・ストナーでは現金を300mh(10m/2) かっし200 mp(10m/2) おうし20             で成立たち、ひては現金を300mh(10m/2) についたした。              マロン・スタン・スタン・スタン・スタン・スタン・スタン・スタン・スタン・スタン・スタ</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ここで, 実物の自動車 (Dodge Dart:長さ 16.7 ft. ,幅 5.8 ft.,                    | ここで,実物の自動車(Dodge Dart : 長さ 16.7ft.,幅 5.8ft.,                   | ここで, 実物の自動車 (Dodge Dartの諸元 : 長さ16.7 ft. ,                                   |    |
| <ul> <li>注文変化をセレイノルス数の影響を悪くな壊壊、回転出を塗り、「変化をせてレイノルズ数の影響を調べたは壊、回想な多な月谷</li> <li>自該なが自じて繁美な影響がないことが確認されている「□」、</li> <li>認知が加速者が完全にないためであり、このような無いをもないなる。</li> <li>一方、円井周りの説化のように認識式が重加にためる場合についてない</li> <li>「カ、円井周りの説化のように認識式が重加にためる場合については、資生は用にすったが知られている。</li> <li>一方、円井周のの説化のように認識式が重加にためる場合については、資生は用にすったが知られている。</li> <li>一方、円井周のの説化のように認識式が重加にためる場合については、資生は用にすったが知られている。</li> <li>二方、円井周のの説化のように認識式が重加にためる場合については、資生は用にすったが知られている。</li> <li>二方、円井周のの説化のように認識式が重加にためる場合については、資生は用にすったななどのためであり、このような無いを考示する立方が知られている。</li> <li>一方、円井周のの説化のように認識式が重加にためる場合については、資生は用にすったかないる。</li> <li>二方のビナは10月日の説化が加速になどのになる。</li> <li>二方のビナは10月日の説化がないると考えられる。</li> <li>一方、円井周のの説化のようにないる。</li> <li>二方のビナは10月日の説化がないる。</li> <li>二方のビナは10月日の説化がないると考えられる。</li> <li>一方、円井周のの説化のようにないる。</li> <li>二方のビナは10月日の説化がまたまた。</li> <li>(11日、小井、25日になどの知られている。</li> <li>21日の日の説研究要素中にないのが出て調査が認知にたいる。</li> <li>11日の見知を発生していかったも10月1日、</li> <li>21日のビオブロレイノルズ数に注意とが取られている。</li> <li>11日の見知を発生の完全のためたいたき、</li> <li>正の日の見知を発生の空活のが出た</li> <li>正の日の見知を発生の完正したがなき、</li> <li>11日の見知を発生の完正したがなられ、</li> <li>エレイルズ数は11日の、</li> <li>エレイルズ数は11日本とおり見は11日の</li> <li>21日の見ばたいためまためためたいため。</li> <li>11日の見知を発生の完正したがたきまたいため、</li> <li>エレイルズ数</li> <li>エレイルズ数</li> <li>エレイルズ数</li> <li>エレイルズ数</li> <li>エレイルズ数</li> <li>エレースのためたいためためためためたい</li> <li>エレイルズ数</li> <li>エレイルズ数</li> <li>エレイルズ数</li> <li>エレイルズ数</li> <li>エレイルズ数</li> <li>エレイルズ数数</li> <li>エレイルズ数数</li> <li>エレイルズ数</li> <li>エレイルズ数3000000000000000000000000000000000000</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 高さ4.3 ft.) では風速を30 mph(13m/s)から120 mph(54m/s)                      | 高さ4.3ft.) では風速を30mph(13m/s)~120mph(54m/s)ま                     | 幅5.8 ft., 高さ4.3 ft.) では風速を30 mph (13m/s) から120                              |    |
| (象に対して類音が響致ないことが確認されている <sup>199</sup> 、これ<br>点になせ、「類面点が物体角帯等に固定されてレイノルズ数にほとんど依示<br>ないためであり、このような物体を有する立方体等について<br>もレイルズ数依存性はないものと考えられる。<br>一方、円柱用りの液化のように刻風が物面上にある場合につ<br>マノルズ数依存性はないものと考えられる。<br>一方、円柱用りの液化のように刻風が病面上にある場合につ<br>マノルズ数依存性はないものと考えられる。<br>一方、円柱用りの液化のように刻風が病面上にある場合につ<br>マノルズ数依存性はないものと考えられる。<br>一方、円柱用りの液化のように刻風が病面上にある場合につ<br>マノルズ数依存性はないものと考えられる。<br>一方、円柱用りの液化のように刻風が病面上にある場合につ<br>マノルズ数依存性はないものと考えられる。<br>一方、円柱用りの液化のように刻風が病面上にある場合につ<br>マノルズ数依存性はないものと考えられる。<br>一方、円柱用りの液化のように刻風が病面上にある場合につ<br>マノルズ数依存性はないものと考えられる。<br>一方、円柱用りの液化のように刻風が病面上にある場合につ<br>マノルズ数なが中かしたのと考えられる。<br>一方、円柱用りの液化のように刻風が病面上にある場合につ<br>マンは、素よし、相に示すようにマイノルズ数 (あ)、方気体(考)、(本)<br>ないためであり、これに、到面」が伸出しためで使した。(本)<br>定は、素は、(本)、(本)、(本)、(本)、(本)、(本)、(本)、(**********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | まで変化させてレイノルズ数の影響を調べた結果, 風速は各空力                                     | で変化させてレイノルズ数の影響を調べた結果、風速は各空力係                                  | mph(54m/s)まで変化させてレイノルズ数の影響を調べた結果,                                           |    |
| は、創催点が始後含音楽に関語されてレイノルズ数ににとしなど、<br>存しないためであり、このような特性を有すな立方体等に向すされてレイノルズ数<br>作しないためであり、このような特性を有すな立方体等についても、<br>かためであり、このような特性を有する立方体等についても、<br>クレベルズ数な存住はないためと考えられる、<br>一方、円柱周りの成れのように創肥が知道にしたる場合については、<br>市ち、一日起きのの就たなまたとならた。<br>いては、着はまた示すようにレイノルズ数な存住はないためと考えられる、<br>一方、円柱周ものがはたなったう。<br>本が移動し、机力常数率が変化することがいたれてのと考えられる、<br>一方、円柱周ものがはたなったう。<br>本のが生たがたいても、<br>本のが生たがたいても、<br>本のが生たがたいても、<br>本のが生たがたいても、<br>本のが生たがたいても、<br>本のが生たがたいても、<br>本のが生たがたいても、<br>本のが生たがたいても、<br>本のが生たがたいても、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のがたいでも、<br>本のが生たがたいでも、<br>本のが生たがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでからたいでも、<br>本のがたいでからたいでも、<br>本のがたいでからたいでからたいでからたいでも、<br>本のがたいでからたいでからたいでも、<br>本のがたいでからたいでからたいでいたいでいたいでで | 係数に対して顕著な影響がないことが確認されている(16)。これ                                    | 数に対して顕著な影響がないことが確認されている(15)。これは,                               | 風速は各空力係数に対して顕著な影響がないことが確認されて                                                |    |
| <ul> <li>         éLoxiv.sov.boj. 20.3 うた料性を有するで方体等について<br/>bu イノルズ数数存性はないものと考えられる。        </li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | は, 剥離点が物体角部等に固定されてレイノルズ数にほとんど依                                     | 剥離点が物体角部等に固定されてレイノルズ数にほとんど依存し                                  | いる(16)。これは, 剥離点が物体角部等に固定されてレイノルズ数                                           |    |
| 5.レイルベス数な存住はないものと考えられる。イルベス数な存住はないものと考えられる。体等についてもレイルへ次数な存住されいものと考えられる。一方、円柱周りの意味のようび通識なが自体にある場合についてあ、クレイルベス数な存住されている。のよう、円柱周りの意味のようにと利用へな数な存住されている。ー方、円柱周りの意味のようび通識なが自体にある場合についてあ、なり、用体用のしていた。ー方、円柱周りの意味のようび通識なが自体によるる場合についてあ、なりたり、一方、円柱周りの意味のように、通識なが自体にないていた。2. 点の DFM の用住の実得よ気にレイルベス数 & が変化することが知られている。第ビバス 第21 に一個に示すようにレイルベス数な存住されている。第ビス教養化で得られたものであり、電管中の円柱次見来は熟ま!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 存しないためであり、このような特性を有する立方体等について                                      | ないためであり、このような特性を有する立方体等についてもレ                                  | にほとんど依存しないためであり,このような特性を有する立方                                               |    |
| 一方、甲杆則のの就れのとうに利用はが用面上にある場合についたけ、用料助りの激化のとうに利用はが用面上にある場合についたけ、第 14 図に示すようにレイノルズ数 ko が変化すると、<br>が変化すると、が知られている。第ー方、甲杆則のの就れのとうに利用はが用面上にある場合についたけ、第 (本)、<br>(本)、<br>(本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | もレイノルズ数依存性はないものと考えられる。                                             | イノルズ数依存性はないものと考えられる。                                           | 体等についてもレイノルズ数依存性はないものと考えられる。                                                |    |
| いては、第 14 図に示すようにレイノルズ数 Re が変化すると、<br>料解点が移動し、抗力係数等が変化することが知られている。会<br>和解点が移動し、抗力係数等が変化することが知られている。会<br>和解点が移動し、抗力係数等が変化することが知られている。会<br>和解点が移動し、抗力係数等が変化することが知られている。会<br>本が移動し、抗力係数等が変化することが知られている。会<br>本が移動し、抗力係数等が変化することが知られている。会<br>本が移動し、抗力係数等が変化することが知られている。会<br>本が移動し、抗力係数等が変化することが知られている。会<br>本が移動し、抗力係数等が変化することが知られている。会<br>なるであったいたい。<br>なりたいの気気をして、<br>ないたいの気が、<br>ないたいの気気をして、<br>ないたいの気力レイノルズ数は Reed、0.x10 <sup>6</sup> 後<br>セイノルズ数値 Reed、0.x10 <sup>6</sup> 後<br>セイノルズ数値 Reed、0.x10 <sup>6</sup> 後<br>セロッチ研究所分成子型に行めの吹出式開放型風洞(吹<br>セージェンス数条件で得られたものと考えられる(例えば、相対風速<br>なの面谷 0.1m のバイブのレイノルズ数は Reed、0.x10 <sup>6</sup> 後<br>セロッチ研究所分成子型に行めの吹出式開放型風洞(吹<br>セージェース<br>電力中央研究所教養子型に内の吹出式開放型風洞(吹<br>セージェース<br>電力中央研究所教養子型に内の吹出式開放型風洞(吹<br>セージェース<br>電力中央研究所教養子型に内の吹出式開放型風洞(吹<br>セージェース<br>電力中央研究所教養子型に内の吹出式開放型風洞(吹出ージェース<br>電力・単気研究所の気候は、4000mm×検型し、000mm<br>それたりでないる。<br>田口の黒洞球験と電力中央研究所の風洞球験には、レイノル<br>本数条件に大きな違いがあるが、第 15 図に示すとおり風洞球験<br>で得られた日本語/ASMに顕著な相応は認められない。<br>以上より、地面における各物体のあ方、第 15 図に示すとおり風洞球験<br>ご報が行われている。<br>EPAT の風洞球験と電力中央研究所の風洞球験には、レイノル<br>本数条件に大きな違いがあるが、第 51 図に示すとおり風洞球験<br>ご報が行わたている。<br>EPAT の風洞球験と電力中央研究所の風洞球験にはかるるがのあるが、第 51 15 図に示すとおり、風洞<br>な数条件に大きな違いがあるが、第 51 図に示すとおり風洞球験<br>ご報が行わたている。<br>EPAT の風洞球験と電力中央研究所の風洞球験に電力中央研究所の風洞球験に電力中央研究所の風洞球験に電力中文研究所の風洞球験に電力・大部<br>な数条件に大きな違いがあるが、第 51 図に示すとおり風洞球験<br>ご報が行わたている。<br>EPAT の風洞球験と電力中央研究所の風洞球験に電力中央研究所の風洞球験に電力中文研究所の風洞球験に電力中文研究所の風洞球験に電力中交研究所の風洞球験に電力中交研究所の風洞球験に電力や文部をしたいがる<br>のしたいがあるのが、図 15 に示すとおり風洞球験<br>ご報が行したている。<br>EPAT の風洞球験に電力中央研究所の風洞球験に電力中文研究所の風洞球験に電力中交研究所の風洞球験に電力中交研究所の風洞球験に電力中交研究所の風洞球験に電力中交研究所の風洞球験に電力・インル<br>ス数条件に大きな違いがあるが、第 51 目前です<br>たいうくの型の<br>たいかくのないたい。<br>たいうく<br>EPAT の風洞球験に電力中式研究所の風間構成<br>ないたするたれたいたい。<br>たいたする物体の最近にないたするたれたい。<br>な数条件に大きな違いがあるが、第 51 11表に示すたいたいたい。<br>たいたうな物体の一型分数では、12 見加着作画<br>のしたいたうるを物体のの風がしたい。<br>ないたいたうな細球の様でになんたな体です。第 2 に示す、風洞<br>「動た」日本(4)の様になんたりで、またいたするたれたいたい。<br>ないたれたるを物体のの風力構成。<br>ないたするたたのためたい。<br>ないたるたかためたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたい                                                                                                                                                                                                                                                                                                                                                                                                                                           | 一方, 円柱周りの流れのように剥離点が曲面上にある場合につ                                      | 一方、円柱周りの流れのように剥離点が曲面上にある場合につ                                   | 一方, 円柱周りの流れのように剥離点が曲面上にある場合につ                                               |    |
| 新羅点が移動し、抗力係数等が変化することが知られている。第<br>2 素の ERI の目性の見漏試験造業 <sup>(1)の</sup> は Re-1.3×10 <sup>(0</sup> の高レ<br>ノルズ数条件で得られたちのであり、竜者中の目性状の承珠物のレイノルズ数<br>第42かる数余件で得られたちのであり、竜者中の目性状の承珠物のレイノルズ数<br>(2)かな数条件で得られたちのであり、竜者中の目性状の承珠物のレイノルズ数<br>(2)かな数条件で得られたちのであり、竜者中の目性状の承珠物のレイノルズ数<br>(2)かな数条件で得られたちのであり、竜者中の目性状の承珠物のレイノルズ数<br>(2)かな数条件で得られたちのであり、竜者中の目性状のみ珠物のレイノルズ数<br>(2)かな数条件で得られたちのであり、竜者中の目性状のみ珠物のレイノルズ数<br>(2)かな数条件で得られたちのであり、竜者中の目性状のみ珠物のレイノルズ数<br>(2)かな数条件で得られたちのであり、竜者中の目性状のみ珠物のレイノルズ数<br>(2)かな数条件で得られたちのであり、竜者中の目性状のみ珠物のレイノルズ数<br>(2)かな数条件で得られたちのであり、竜者中の目性状のみ珠物の<br>(2)かく力ルズ数(2)かな数<br>(2)かかのたちかでのまり、竜者中の目性状のみ状物のかれ、(2)かんのな珠<br>(2)かなかれ、(2)かな数<br>(2)かなの世俗のかいに気間が数型風洞(秋)<br>(2)かくすの世イノルズ数(2)かられ(2)(1)かなの<br>(2)かな数条件で得られたちのであり、竜者中の明性状のみ珠物<br>(2)かく力ルズ数(2)かな数<br>(2)かく力ルズ数(2)かる(2)か(2)か(2)かかのみ、(2)か(2)か(2)か(2)か(2)か(2)か(2)か(2)か(2)か(2)か                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | いては, 第 14 図に示すようにレイノルズ数 Re が変化すると,                                 | いては,第5.1-4図に示すように,レイノルズ数が変化すると剥                                | いては, 図 14 に示すようにレイノルズ数 Re が変化すると, 剥離                                        |    |
| 2 素の URL の用抗の風洞試験結果 <sup>100</sup> は Re=1.3×10 <sup>6</sup> の高レイ<br>ノルズ数条件で得られたものであり、電差中の円柱状の残未物<br>レイノルズ数条件で得られたものであり、電差中の円柱状の残未物<br>レイノルズ数条件で得られたものであり、電差中の円柱状の残未物<br>レイノルズ数条件で得られたものであり、電差中の円柱状の残未物<br>レイノルズ数条件で得られたものであり、電差中の円柱状の残未物<br>レイノルズ数条件で得られたものであり、電差中の円柱状の残未物<br>レイノルズ数条件で得られたものであり、電差中の円柱状の残未物<br>レイノルズ数条件で得られたものであり、電差中の円柱状の残未物<br>レイノルズ数条件で得られたものであり、電差中の円柱状の残未物<br>レイノルズ数条件で得られたものであり、電差中の円柱状の残未物<br>レイノルズ数、相容<br>(加くすかしイノルズ数、18 cm(.0×10 <sup>6</sup> 和封風速<br>2015)ー1表のEPRIの円柱の風洞試験結果 <sup>100</sup> はRe=1.3×10 <sup>6</sup> の高レ<br>イノルズ数条件で得られたものであり、電差中の円柱状の残未物<br>レイノルズ数、14 cm(.0×10 <sup>6</sup> 和封風速<br>2015)URL の用柱の風洞試験結果 <sup>100</sup> はRe=1.3×10 <sup>6</sup> の高レ<br>ストー<br>ストーズ数<br>ストーズ数条件で得られたものであり、電差中の円柱状の残未物<br>ストーズ数<br>ストーズ<br>ストーズ数<br>第1 cm(.1×10 <sup>10</sup> 和封風速<br>2015)ー1表のEPRI の用木の風洞試験結果 <sup>100</sup> はRe=1.3×10 <sup>6</sup> の高レ<br>ストーズ数<br>ストーズ数<br>ストーズ<br>ストーズ数<br>ストーズ<br>ストーズ数<br>ストーズ<br>ストーズ数<br>ストーズ<br>ストーズ数<br>ストース<br>ストーズ数<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース<br>ストース <br< td=""><td>剥離点が移動し、抗力係数等が変化することが知られている。第</td><td>離点が移動し, 抗力係数等が変化することが知られている。第5.1</td><td>点が移動し、抗力係数等が変化することが知られている。表2の</td><td></td></br<>                                                                                                                                                                                                                                                                       | 剥離点が移動し、抗力係数等が変化することが知られている。第                                      | 離点が移動し, 抗力係数等が変化することが知られている。第5.1                               | 点が移動し、抗力係数等が変化することが知られている。表2の                                               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 表の EPRI の円柱の風洞試験結果 <sup>(16)</sup> は Re=1.3×10 <sup>6</sup> の高レイ | -1表のEPRIの円柱の風洞試験結果 <sup>(15)</sup> はRe=1.3×10 <sup>6</sup> の高レ | EPRI の円柱の風洞試験結果 <sup>(16)</sup> は Re=1.3×10 <sup>6</sup> の高レイノルズ数           |    |
| レイノルズ数範囲に入るものと考えられる(例えば、相対風速<br>92m/s の直径 0.1m のバイブのレイノルズ数範囲に入るものと考えられる(例えば、相対風速<br>92m/s の直径 0.1m のバイブのレイノルズ数は6×0.0×10*<br>29m/s の直径 0.1m のバイブのレイノルズ数は6×10°程度)。また、<br>電力中央研究所我孫子地区内の吹出式開放型風洞(欧田コ)法:高さ 2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~16.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~10.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~10.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~10.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~10.5m/s<br>2.5m×福<br>1.6m、風速:3.0m/s~10.5m/s<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×福<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.5m×G<br>2.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ノルズ数条件で得られたものであり, 竜巻中の円柱状の飛来物の                                     | イノルズ数条件で得られたものであり、竜巻中の円柱状の飛来物                                  | 条件で得られたものであり、竜巻中の円柱状の飛来物のレイノル                                               |    |
| 92m/s の直径 0.1m のバイブのレイノルズ数は Re=6.0×10 <sup>5</sup> 程<br>度)。また、電力中央研究所我孫子地区内の吹出式開放型風洞(吹)<br>出口寸法:高さ2.5m×幅 1.6m、風速:3.0~16.5m/s)において<br>出口寸法:高さ2.5m×幅 1.6m、風速:3.0~16.5m/s)において<br>5.0m/低 1.6m、風速:3.0~16.5m/s)においても、<br>定(地面)近くに設置した円柱 (直径 100mm×模型長 1000mm)を対象として、Re=3.0×10 <sup>4</sup> 色和と用な<br>7.0m/1×10 <sup>5</sup> 程度までの場力係数の測定試験が行われている。<br>FRI の風測試験に置力中央研究所の風洞試験には、レイノル<br>ズ数条件に大きな違いがあるが、第 15 回に示すとおり風洞試験<br>で得られた円柱揚力係数に顕著な相遠は認められない。<br>以上より、地面における各物体の揚力係数で」と見付面積:0<br>だしより、地面における各物体の揚力係数で」と見付面積:0<br>た1.6m、風速 注、気子、水化は受当であると考えられる。<br>第1150 (1.5m/S)<br>5.0m/S 1.5m/S 1                                                                                                                                                                                                                                  | レイノルズ数範囲に入るものと考えられる(例えば、相対風速                                       | のレイノルズ数範囲に入るものと考えられる(例えば、相対風速                                  | ズ数範囲に入るものと考えられる (例えば, 相対風速 92m/s の直                                         |    |
| 度)。また、電力中央研究所我孫子地区内の吹出式開放型風洞(吹<br>出口寸法:高さ2.5m×幅1.6m、風速:3.0~16.5m/s)において<br>も、壁(地面)近くに設置した円柱(値径100mm×模型長1000mm)<br>を対象として、Re=3.0×10 <sup>6</sup> から1.0×10 <sup>5</sup> 程度までの場方係数<br>の測定試験が行われている。電力中央研究所我孫子地区内の吹出式開放型風洞(吹出口寸法:<br>高さ2.5m×幅1.6m、風速:3.0~16.5m/s)においても、壁(地<br>面)近くに設置した円柱(値径100mm×模型長1000mm)を対象として、Re=3<br>いかから1.0×10 <sup>5</sup> 程度までの場方係数<br>いかっ1.0×10 <sup>5</sup> 程度までの場方係数<br>で得られた円柱場力係数に顕著な相違は認められない。<br>以上より、地面における各物体の場力係数 $C_1$ と見附面積 a の<br>積 $C_1$ はレイノルズ数にほとんど依存せず,第 2 表に示す風洞試験結果に基づくモデル化は妥当であると考えられる。電力中央研究所我孫子地区内の吹出式開放型風洞(吹出口寸法:<br>高さ2.5m×幅1.6m、風速:3.0~05,5m/s)においても、壁(地<br>面)近くに設置した円柱(値径100mm×模型長1000mm)を対象と<br>して、Re=3.0×10 <sup>6</sup> から1.0×10 <sup>5</sup> 程度までの場方係数の測定試<br>験が行われている。EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル<br>ズ数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞<br>試験で得られた円柱場力係数に近著な相違は認められない。<br>以上より、地面における各物体の場力係数 $C_1$ と見付面積 a の<br>積 $C_1$ はレイノルズ数にほとんど依存せず,第 2 表に示す風洞試験<br>調議線編果に基づくモデル化は妥当であると考えられる。電力中央研究所我系子地区内の吹出式開放型風洞(吹出口寸法:<br>高さ2.5m×幅 1.6m、風速:3.0~06,5m/s)においても、壁(地<br>面)近くに設置した円柱(値径100mm×模型長1000mm)を対象と<br>して、Re=3.0×10 <sup>6</sup> から1.0×10 <sup>5</sup> 程度までの場力係数の測定試<br>数が行われている。EPRI の風洞試験には、レイノル<br>ズ数条件に大きな違いがあるが、第 5.1-5 図に示すとおり風洞試験にはレイノル<br>ズ数条件に大きな違いがあるが、第 5.1-5 図に示すとおり風洞試験にはレイノル<br>ス数条件に大きな違いがあるが、第 5.1-1表に示す風洞試験<br>試験結果に基づくモデル化は妥当であると考えられる。EPRI の風洞試験に置いつえる<br>の人前の教の(2.2.2.見)中面積 a の<br>積 $C_1$ はレイノルズ数にほとんど依存せず,第 2 に示す風洞試験<br>結果に基づくモデル化は妥当であると考えられる。第 本日本はおろ名物体の場力係数 $C_1$ と見附面積 a の<br>積 $R_2$ はレイノルズ数にほとんど依存せず, 表 2 に示す風洞試験<br>結果に基づくモデル化は妥当であると考えられる。第 本日本ははひろとと考えられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92m/s の直径 0.1m のパイプのレイノルズ数は Re=6.0×10 <sup>5</sup> 程               | 92m/sの直径0.1mのパイプのレイノルズ数は6×10 <sup>5</sup> 程度)。また,              | 径 0.1m のパイプのレイノルズ数は Re=6.0×10 <sup>5</sup> 程度)。また,                          |    |
| 出口 寸法: 高さ 2.5m×輻 1.6m, 風速: 3.0~16.5m/s) において 1.6m, 風速: 3.0m/s~16.5m/s) においても, 壁(地面) 近くに 2.5m×幅 1.6m, 風速: 3.0~16.5m/s) において 4. 壁(地面) 近くに 2.5m×幅 1.6m, 風速: 3.0~16.5m/s) に 5mm 24mm 24mm 24mm 24mm 24mm 24mm 24mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 度)。また、電力中央研究所我孫子地区内の吹出式開放型風洞(吹                                     | 電力中央研究所の吹出式開放型風洞(吹出口寸法:高さ 2.5m×幅                               | 電力中央研究所我孫子地区内の吹出式開放型風洞(吹出口寸法:                                               |    |
| も、壁(地面)近くに設置した円柱(直径 100mm×模型長 1000mu)<br>を対象として、Re=3.0×10 <sup>4</sup> から 1.0×10 <sup>5</sup> 程度までの場力係数<br>の測定試験が行われている。<br>EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル<br>ズ数条件に大きな違いがあるが、第 15 図に示すとおり風洞試験<br>で得られた円柱揚力係数に顕著な相違は認められない。<br>以上より、地面における各物体の揚力係数 C_ と見附面積 a の<br>積 C <sub>1</sub> a はレイノルズ数にほとんど依存せず、第 2 表に示す風洞<br>試験結果に基づくモデル化は妥当であると考えられる。<br>他工作の低洞試験にはレイノルズ数にほどんど依存せず、素 2 たいです風洞<br>試験結果に基づくモデル化は妥当であると考えられる。<br>他工作の低洞試験にはレイノルズ数にほどんど依存せず、素 2 たいです風洞<br>ご供加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 出口寸法:高さ 2.5m×幅 1.6m, 風速:3.0~16.5m/s) において                          | 1.6m, 風速:3.0m/s~16.5m/s) においても, 壁(地面) 近くに                      | 高さ 2.5m×幅 1.6m, 風速 : 3.0~16.5m/s)においても, 壁(地                                 |    |
| を対象として、Re=3.0×10 <sup>4</sup> から 1.0×10 <sup>5</sup> 程度までの揚力係数<br>の測定試験が行われている。×10 <sup>4</sup> ~1×10 <sup>5</sup> 程度までの揚力係数の測定試験が行われている。して、Re=3.0×10 <sup>4</sup> から 1.0×10 <sup>5</sup> 程度までの揚力係数の測定試<br>験が行われている。EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル<br>ズ数条件に大きな違いがあるが、第 15 図に示すとおり風洞試験<br>で得られた円柱揚力係数に顕著な相違は認められない。<br>以上より、地面における各物体の揚力係数 C_ と見附面積 a の<br>積 C <sub>1</sub> a はレイノルズ数にほとんど依存せず、第 2 表に示す風洞<br>詞試験結果に基づくモデル化は妥当であると考えられる。E PR I の風洞試験と電力中央研究所の風洞試験には、レイノル<br>ズ数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞<br>試験で得られた円柱揚力係数に顕著な相違は認められない。<br>以上より、地面における各物体の揚力係数 C_ と見附面積 a の<br>程 C <sub>1</sub> aはレイノルズ数にほとんど依存せず、第 2 表に示す風洞試験<br>詞試験結果に基づくモデル化は妥当であると考えられる。Uて、Re=3.0×10 <sup>4</sup> から 1.0×10 <sup>5</sup> 程度までの揚力係数の測定試<br>験が行われている。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | も, 壁 (地面) 近くに設置した円柱 (直径 100mm×模型長 1000mm)                          | 設置した円柱(直径100mm×模型長1000mm)を対象として, Re=3                          | 面)近くに設置した円柱(直径 100mm×模型長 1000mm)を対象と                                        |    |
| の測定試験が行われている。験が行われている。EPRI の風洞試験と電力中央研究所の風洞試験には、レイノルEPRI の風洞試験と電力中央研究所の風洞試験には、レイノルズ数条件に大きな違いがあるが、第15 図に示すとおり風洞試験ズ数条件に大きな違いがあるが、第5.1-5 図に示すとおり、風洞び得られた円柱揚力係数に顕著な相違は認められない。ご験で得られた円柱揚力係数に顕著な相違は認められない。以上より、地面における各物体の揚力係数CLと見附面積aの以上より、地面における各物体の揚力係数CLと見付面積aの積 C <sub>1</sub> a はレイノルズ数にほとんど依存せず、第2表に示す風洞記験結果に基づくモデル化は妥当であると考えられる。減験結果に基づくモデル化は妥当であると考えられる。洞試験結果に基づくモデル化は妥当であると考えられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | を対象として, Re=3.0×104 から 1.0×105 程度までの揚力係数                            | ×10 <sup>4</sup> ~1×10 <sup>5</sup> 程度までの揚力係数の測定試験が行われている。     | して, Re=3.0×10 <sup>4</sup> から 1.0×10 <sup>5</sup> 程度までの揚力係数の測定試             |    |
| EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル<br>ズ数条件に大きな違いがあるが、第 15 図に示すとおり風洞試験<br>で得られた円柱揚力係数に顕著な相違は認められない。<br>以上より、地面における各物体の揚力係数 $C_L$ と見附面積 a の<br>積 $C_La$ はレイノルズ数にほとんど依存せず、第 2 表に示す風洞<br>試験結果に基づくモデル化は妥当であると考えられる。EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル<br>ズ数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞<br>、数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞<br>、数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞<br>、数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞<br>、数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞<br>、数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞<br>、数条件に大きな違いがあるが、図 15 に示すとおり風洞試験で<br>(4られた円柱揚力係数に顕著な相違は認められない。<br>以上より、地面における各物体の揚力係数 $C_L$ と見附面積 a の<br>積 $C_La$ はレイノルズ数にほとんど依存せず、第 5.1-1 表に示す風洞試験<br>結果に基づくモデル化は妥当であると考えられる。EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル<br>ズ数条件に大きな違いがあるが、図 15 に示すとおり風洞試験で<br>(4られた円柱揚力係数に顕著な相違は認められない。<br>以上より、地面における各物体の揚力係数 $C_L$ と見附面積 a の<br>積 $C_La$ はレイノルズ数にほとんど依存せず、第 2.1-1 表に示す風洞試験<br>結果に基づくモデル化は妥当であると考えられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | の測定試験が行われている。                                                      |                                                                | 験が行われている。                                                                   |    |
| ズ数条件に大きな違いがあるが、第15 図に示すとおり風洞試験<br>で得られた円柱揚力係数に顕著な相違は認められない。<br>以上より、地面における各物体の揚力係数 C_ と見附面積 a の<br>積 C_a はレイノルズ数にほとんど依存せず、第 2 表に示す風洞<br>試験結果に基づくモデル化は妥当であると考えられる。ズ数条件に大きな違いがあるが、図 15 に示すとおり風洞試験で<br>得られた円柱揚力係数に顕著な相違は認められない。<br>以上より、地面における各物体の揚力係数 C_ と見附面積 a の<br>て La はレイノルズ数にほとんど依存せず、第 5.1-1 表に示す風<br>洞試験結果に基づくモデル化は妥当であると考えられる。ズ数条件に大きな違いがあるが、図 15 に示すとおり風洞試験で<br>得られた円柱揚力係数に顕著な相違は認められない。<br>以上より、地面における各物体の揚力係数 C_ と見附面積 a の<br>積 C_a はレイノルズ数にほとんど依存せず、表 2 に示す風洞試験<br>結果に基づくモデル化は妥当であると考えられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル                                     | EPRIの風洞試験と電力中央研究所の風洞試験にはレイノル                                   | EPRI の風洞試験と電力中央研究所の風洞試験には, レイノル                                             |    |
| で得られた円柱揚力係数に顕著な相違は認められない。<br>以上より,地面における各物体の揚力係数 C <sub>L</sub> と見附面積 a の<br>積 C <sub>L</sub> a はレイノルズ数にほとんど依存せず,第 2 表に示す風洞<br>試験結果に基づくモデル化は妥当であると考えられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ズ数条件に大きな違いがあるが, 第15 図に示すとおり風洞試験                                    | ズ数条件に大きな違いがあるが、第5.1-5図に示すとおり、風洞                                | ズ数条件に大きな違いがあるが,図15に示すとおり風洞試験で                                               |    |
| 以上より,地面における各物体の揚力係数 C <sub>L</sub> と見附面積 a の<br>積 C <sub>L</sub> a はレイノルズ数にほとんど依存せず,第 2 表に示す風洞<br>試験結果に基づくモデル化は妥当であると考えられる。  以上より,地面における各物体の揚力係数 C <sub>L</sub> と見附面積 a の<br>て <sub>L</sub> a はレイノルズ数にほとんど依存せず,第 5.1-1 表に示す風<br>洞試験結果に基づくモデル化は妥当であると考えられる。  以上より,地面における各物体の揚力係数 C <sub>L</sub> と見附面積 a の<br>積 C <sub>L</sub> a はレイノルズ数にほとんど依存せず,表 2 に示す風洞試験<br>結果に基づくモデル化は妥当であると考えられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | で得られた円柱揚力係数に顕著な相違は認められない。                                          | 試験で得られた円柱揚力係数に顕著な相違は認められない。                                    | 得られた円柱揚力係数に顕著な相違は認められない。                                                    |    |
| 積 C <sub>L</sub> a はレイノルズ数にほとんど依存せず,第2表に示す風洞 C <sub>L</sub> aはレイノルズ数にほとんど依存せず,第5.1-1表に示す風 積 C <sub>L</sub> a はレイノルズ数にほとんど依存せず,表2に示す風洞試験<br>減験結果に基づくモデル化は妥当であると考えられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 以上より,地面における各物体の揚力係数 C <sub>L</sub> と見附面積 a の                       | 以上より,地面における各物体の揚力係数C <sub>L</sub> と見付面積 a の積                   | 以上より,地面における各物体の揚力係数 C <sub>L</sub> と見附面積 a の                                |    |
| 試験結果に基づくモデル化は妥当であると考えられる。 洞試験結果に基づくモデル化は妥当であると考えられる。 結果に基づくモデル化は妥当であると考えられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 積 C <sub>L</sub> a はレイノルズ数にほとんど依存せず, 第 2 表に示す風洞                    | C <sub>L</sub> aはレイノルズ数にほとんど依存せず,第5.1-1表に示す風                   | 積 C <sub>L</sub> a はレイノルズ数にほとんど依存せず,表2に示す風洞試験                               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 試験結果に基づくモデル化は妥当であると考えられる。                                          | 洞試験結果に基づくモデル化は妥当であると考えられる。                                     | 結果に基づくモデル化は妥当であると考えられる。                                                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                                                                |                                                                             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                                                                |                                                                             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                                                                |                                                                             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                                                                |                                                                             |    |



| 炉                                                                                          | 備考 |
|--------------------------------------------------------------------------------------------|----|
| <ul><li>の流れ</li></ul>                                                                      |    |
| $= 2.0 \times 10^{\circ}$                                                                  |    |
| CH<br>Rep - 1.30 x 10 <sup>6</sup><br>L/d - 14.12<br>CH<br>mm <sup>2</sup> h<br>2.0<br>h/d |    |
| 験<br>の風洞試験 <sup>(16)</sup> (Re=1.3<br>力係数                                                  |    |
|                                                                                            |    |
| 減衰するので, 既往の<br>さ d の物体にかかる揚<br>った時に消滅すると仮                                                  |    |
| にある物体に作用する<br>└る。(Ζ∶物体底面の高                                                                 |    |
| (11)<br>果 <sup>(16) (22)</sup> を参考に,以下                                                     |    |
| $Z \le 3d $ (12)                                                                           |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                             | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 備考 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Z = \begin{array}{c} z - (d/2) \\ 0 \end{array} \begin{cases} (d/2 \le z \le 7d/2) \\ (7d/2 \le z) \end{cases} $ (13)                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| また,以下において,塊状物体(自動車),柱状物体(角柱,円                                                                                                                                                                                                                                                                                                                                                                                                                                             | また、以下において、塊状物体(自動車)、柱状物体(角柱及び                                                                                                                                                                                                                                                                                   | また,以下において,塊状物体(自動車),柱状物体(角柱,円                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 柱),板状物体(平板)の風洞試験結果を踏まえ,物体高さ dの                                                                                                                                                                                                                                                                                                                                                                                                                                            | 円柱)及び板状物体(平板)の風洞試験結果を踏まえ、「高さ寸法                                                                                                                                                                                                                                                                                  | 柱),板状物体(平板)の風洞試験結果を踏まえ,物体高さ dの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 物体にかかる揚力は、物体底面が地面から 3d の高度で消滅する                                                                                                                                                                                                                                                                                                                                                                                                                                           | dの物体に働く揚力は、物体底面の高度が地面から3dとなった時                                                                                                                                                                                                                                                                                  | 物体にかかる揚力は,物体底面が地面から 3d の高さで消滅する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| とした仮定が適切であることを確認する。                                                                                                                                                                                                                                                                                                                                                                                                                                                       | に消滅する」とした設定が適切であることを確認する。                                                                                                                                                                                                                                                                                       | とした仮定が適切であることを確認する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| <ul> <li>① 塊状物体(自動車)の揚力の高さ依存性</li> <li>自動車の揚力係数は、EPRIの風洞試験<sup>(16)</sup>にて、地面及び風洞</li> <li>中央(h/d≒3.5)に設置した場合にて計測されており、第16-1 図</li> <li>に示すように流入角(0°は正面,90°は側面に風を受ける角度)</li> <li>に依存した揚力係数が得られている。</li> <li>また、第16-2 図にて、EPRIの風洞試験によって得られた揚力</li> <li>係数と本モデルにて代用した揚力係数の関係を示す。EPRIの風</li> <li>洞試験では空中での自動車の姿勢は地面設置と同じ姿勢に保た</li> <li>れているため、空中においても揚力係数がゼロとはならないが、</li> <li>実際に飛来する自動車の姿勢はランダムに変化することから、平</li> <li>均的な揚力係数は本モデルでの代用した揚力係数に近いものと</li> <li>考えられる</li> </ul> | a. 塊状物体(自動車)の揚力の高さ依存性<br>自動車の揚力係数は, EPRIの風洞試験 <sup>(15)</sup> にて,地面及び<br>風洞中央(h/d≒3.5)に設置した場合にて計測されており,第5.1<br>-6図に, EPRIの風洞試験によって得られた揚力係数と本モデ<br>ルにて代用した揚力係数の関係を示す。EPRIの風洞試験では<br>空中での自動車の姿勢は地面設置と同じ姿勢に保たれているた<br>め,空中においても揚力係数が0とはならないが,実際に飛散す<br>る自動車の姿勢はランダムに変化することから,平均的な揚力係<br>数は本モデルでの代用揚力係数に近いものと考えられる。 | a. 塊状物体(自動車)の揚力の高さ依存性<br>自動車の揚力係数は,EPRIの風洞試験 <sup>(16)</sup> にて,地面及び風洞<br>中央(h/d≒3.5)に設置した場合にて計測されており,図 16-1<br>に示すように流入角(0°は正面,90°は側面に風を受ける角度)<br>に依存した揚力係数が得られている。<br>また,図 16-2 にて,EPRIの風洞試験によって得られた揚力係<br>数と本モデルにて代用した揚力係数の関係を示す。EPRIの風洞<br>試験では空中での自動車の姿勢は地面設置と同じ姿勢に保たれ<br>ているため,空中においても揚力係数がゼロとはならないが,実<br>際に飛来する自動車の姿勢はランダムに変化することから,平均<br>的な揚力係数は本モデルでの代用した揚力係数に近いものと考<br>えられる                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <ul> <li>ちんられる。</li> <li>・地面での得力係数(実測値、原数支持)<br/>・地面での得力係数(実測値、原数支持)<br/>・空中での得力係数(実測値、原数支持)<br/>・空中での得力係数(実測値、原数支持)<br/>・空中での得力係数(実測値、原数支持)<br/>・空中での得力係数(実測値、原数支持)</li> <li>第 16-1 図 地面及び風洞中央に 第 16-2 図 自動車の風洞試験</li> </ul>                                                                                                                                                                                                                                             | 第       空中での揚力係数(実測値、後方支持)         第                                                                                                                                                                                                                                                                            | $\chi$ 5410。<br>$\frac{2}{9}$ $\frac{1}{9}$ $\frac$ |    |
| 設置した目動車の湯 による揚力係数と本                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 第5.1-6図 目動車の風洞実験による揚力係数と代用揚力係数                                                                                                                                                                                                                                                                                  | 設置した目動車の揚 による揚力係数と本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| カ係数の流入角依存性<br>揚力係数の関係                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (又厭いがを基に作成及び代用揚刀係剱を加車)                                                                                                                                                                                                                                                                                          | カ係数の流入角依存性<br>揚力係数の関係                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| ②柱状物体(角柱・円柱)の揚力の高さ依存性                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b. 柱状物体(角柱及び円柱)の揚力の高さ依存性                                                                                                                                                                                                                                                                                        | b. 柱状物体(角柱・円柱)の揚力の高さ依存性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 角柱の揚力係数は、電力中央研究所我孫子地区内の吹出式開放                                                                                                                                                                                                                                                                                                                                                                                                                                              | 角柱の揚力係数は、電力中央研究所の吹出式開放型風洞(吹出                                                                                                                                                                                                                                                                                    | 角柱の揚力係数は、電力中央研究所我孫子地区内の吹出式開放                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 型風洞(吹出口寸法:高さ2.5m×幅1.6m,風速:3.0~16.5m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 口寸法:高さ2.5m×幅1.6m, 風速:3.0m/s~16.5m/s) にて測                                                                                                                                                                                                                                                                        | 型風洞(吹出口寸法:高さ2.5m×幅1.6m,風速:3.0~16.5m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| にて測定しており, 第17 図にその結果を示す。角柱の場合, 地面                                                                                                                                                                                                                                                                                                                                                                                                                                         | 定しており,第5.1-7回に示すように,地面から0.167D以上離                                                                                                                                                                                                                                                                               | にて測定しており,図17にその結果を示す。角柱の場合,地面か                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| から 0.167D 以上離れると揚力は負となるので,正の揚力を与える                                                                                                                                                                                                                                                                                                                                                                                                                                        | れると揚力は負となるので、正の揚力を与える本モデルの代用揚                                                                                                                                                                                                                                                                                   | ら 0.167D 以上離れると揚力は負となるので,正の揚力を与える本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |



| -炉                                                           | 備考 |
|--------------------------------------------------------------|----|
| 保守的な結果となって                                                   |    |
|                                                              |    |
| こて測定しており、図                                                   |    |
| 数(図18の赤線)は実                                                  |    |
| 人さな値となっている                                                   |    |
|                                                              |    |
|                                                              |    |
|                                                              |    |
|                                                              |    |
|                                                              |    |
|                                                              |    |
|                                                              |    |
|                                                              |    |
| 本モデルで代用した揚                                                   |    |
| ×模型長 1000mm)                                                 |    |
|                                                              |    |
|                                                              |    |
|                                                              |    |
|                                                              |    |
| 何武破右来に $C_{DA} f(Z/a)/a$<br>プロット)                            |    |
|                                                              |    |
| Af(Z/d)/a=0.5f(Z/d)                                          |    |
| $2^{2} + 0.7 \times 14.1d^{2} + 2.0 \times 0.25\pi d^{2})/2$ |    |
| +0.7 ~ 14.10 +2.0 ~ 0.257a )/5                               |    |
| d (長さ/直径=14.1より)                                             |    |
|                                                              |    |
| 本モデルで代用した揚                                                   |    |
|                                                              |    |
|                                                              |    |
| 習(迎在 0° )の封殿                                                 |    |
| 乗 (些内 0 ) の試験<br>用した揚力係数(図 19                                |    |
| ······································                       |    |



| 炉                                                                     | 備考             |
|-----------------------------------------------------------------------|----------------|
| 揚力係数よりもおおむ                                                            |                |
| 奥行方向が長い形状で                                                            |                |
| 実際の平板に比べて揚                                                            |                |
| の平板の揚力係数は更                                                            |                |
|                                                                       |                |
|                                                                       |                |
|                                                                       |                |
|                                                                       |                |
|                                                                       |                |
|                                                                       |                |
| $\frac{y}{p_1}$ $\frac{c}{p_2}$ $\frac{p_3}{p_4}$ $\frac{p_5}{p_5}$   |                |
| P12 P11 P10 P9 P8 P7<br>h                                             |                |
| Fig. 2. Locations of pressure tappings.                               |                |
| デルで代田した掲力区                                                            |                |
|                                                                       |                |
|                                                                       |                |
|                                                                       | ・記載方針の相違       |
| 数は、風洞試験により                                                            | 【柏崎 6/7, 東海第二】 |
| なっており,物体高さ d                                                          | 島根2号炉は,揚力の高    |
| 5 3d の高さで消滅する                                                         | さ依存性の確認結果を     |
| <u> </u>                                                              | 記載             |
|                                                                       |                |
|                                                                       |                |
| :向きの単位ベクトル k                                                          |                |
| ように記述される。                                                             |                |
| $(g-L)\mathbf{k}$                                                     |                |
| (13)                                                                  |                |
|                                                                       |                |
| 計算には陽解法(一定                                                            |                |
| てにわりる物体の位直                                                            |                |
| $b_{\lambda}$ $b_{\lambda}$ $b_{\lambda}$ $b_{\lambda}$ $b_{\lambda}$ |                |
| におけろ加速度ベクト                                                            |                |
|                                                                       |                |
|                                                                       |                |
|                                                                       |                |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 島根原子力発電所 2号炉                                                                                                                                                                                                        | 備考 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| $\mathbf{V}_{M}(\tau + \Delta \tau) = \mathbf{V}_{M}(\tau) + \mathbf{A}(\tau) \Delta \tau $ (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbf{X}_{\mathbf{M}}(\tau + \Delta \tau) = \mathbf{X}_{\mathbf{M}}(\tau) + \mathbf{V}_{\mathbf{M}}(\tau) \Delta \tau + \frac{\mathbf{A}(\tau) \Delta \tau^{2}}{2} $ (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathbf{X}_{\mathbf{M}}(\tau + \Delta \tau) = \mathbf{X}_{\mathbf{M}}(\tau) + \mathbf{V}_{\mathbf{M}}(\tau) \Delta \tau + \frac{\mathbf{A}(\tau) \Delta \tau^{2}}{2} $ (15)                                        |    |
| $\mathbf{X}_{M}(\tau + \Delta \tau) = \mathbf{X}_{M}(\tau) + \mathbf{V}_{M}(\tau)\Delta \tau + \frac{\mathbf{A}(\tau)\Delta \tau^{2}}{2} $ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                     |    |
| $A(\tau)$ の計算には、時刻 t= $\tau$ における風速場も必要であるが、初                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\mathbf{A}(\tau)$ の計算には、時刻 t= $\tau$ における風速場も必要であるが、初                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathbf{A}(\tau)$ の計算には、時刻 t= $\tau$ における風速場も必要であるが、初                                                                                                                                                              |    |
| 期に原点に位置する竜巻の中心が x 軸上を移動速度 V <sub>t</sub> で移動す                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 期に原点に位置する竜巻の中心が x 軸上を移動速度 V <sub>tr</sub> で移動す                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 期に原点に位置する竜巻の中心が x 軸上を移動速度 V <sub>t</sub> で移動す                                                                                                                                                                       |    |
| ることを仮定しており、任意の時刻での風速場を陽的に求められ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ることを仮定しており、任意の時刻での風速場を陽的に求められ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ることを仮定しており、任意の時刻での風速場を陽的に求められ                                                                                                                                                                                       |    |
| るため,飛来物速度τ位置を算出することができる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | るため、物体の速度及び位置を算出することができる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | るため、物体の速度τ位置を算出することができる。                                                                                                                                                                                            |    |
| (6) 飛来物の運動方程式((13)式)に関する考察                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (6) 物体の運動方程式((14)式)に関する考察                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (6) 物体の運動方程式 ((13)式) に関する考察                                                                                                                                                                                         |    |
| 地上面の物体(第13図の状態A)が浮上するには、地面からの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 地上面の物体(第5.1-3図A)が浮上するには、地面からの反                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 地面上の物体(図13の状態A)が浮上するには、地面からの反                                                                                                                                                                                       |    |
| 反力が消滅(R<0,つまりmg <fl)する条件で浮上し,浮上後は,< td=""><td>力が消滅する (R &lt; 0, つまり mg &lt; F<sub>L</sub>)条件で浮上し,浮上後は</td><td>力が消滅 (R&lt;0, つまり mg<fl) (13)<="" td="" する条件で浮上し,="" 浮上後は,=""><td></td></fl)></td></fl)する条件で浮上し,浮上後は,<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 力が消滅する (R < 0, つまり mg < F <sub>L</sub> )条件で浮上し,浮上後は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 力が消滅 (R<0, つまり mg <fl) (13)<="" td="" する条件で浮上し,="" 浮上後は,=""><td></td></fl)>                                                                                                                                         |    |
| (13)式を成分表示した以下の飛来物の運動方程式に従って飛散す                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (14)式を成分表示した以下の運動方程式に従って飛散する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 式を成分表示した以下の運動方程式に従って飛散する。                                                                                                                                                                                           |    |
| る。<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{dV_{M,x}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{\left(V_{w,x} - V_{M,x}\right)^2 + \left(V_{w,y} - V_{M,y}\right)^2 + \left(V_{w,z} - V_{M,z}\right)^2} \times \left(V_{w,x} - V_{M,x}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{dV_{M,x}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{\left(V_{w,x} - V_{M,x}\right)^2 + \left(V_{w,y} - V_{M,y}\right)^2 + \left(V_{w,z} - V_{M,z}\right)^2} \times \left(V_{w,x} - V_{M,x}\right)$         |    |
| $\frac{dV_{M,x}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{\left(V_{w,x} - V_{M,x}\right)^2 + \left(V_{w,y} - V_{M,y}\right)^2 + \left(V_{w,z} - V_{M,z}\right)^2 \left(V_{w,x} - V_{M,x}\right)} $ (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (16)                                                                                                                                                                                                                |    |
| $\frac{dV_{M,y}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{(V_{w,x} - V_{M,x})^2 + (V_{w,y} - V_{M,y})^2 + (V_{w,z} - V_{M,z})^2} (V_{w,y} - V_{M,y}) $ (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $dV_{M_{y}} = I - C_{D}A \left[ \frac{1}{(y_{L} - y_{L})^{2}} + \frac$ | $dV_{M,y} = I - C_D A \sqrt{(y_1 - y_2)^2 + (y_2 - y_2)^2 + (y_1 - y_2)^2} (y_1 - y_2)$                                                                                                                             |    |
| $\frac{dU}{dV_{M,z}} = \frac{1}{2} \frac{C_D A}{C_D A} \frac{V_{M,z}}{V_{M,z} + V_{M,z} + V$ | $\frac{1}{dt} = \frac{1}{2}\rho \frac{1}{m} \sqrt{(V_{w,x} - V_{M,x}) + (V_{w,y} - V_{M,y}) + (V_{w,z} - V_{M,z})} \times (V_{w,y} - V_{M,y})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{dt} = \frac{1}{2}\rho \frac{1}{m} \sqrt{(V_{w,x} - V_{M,x}) + (V_{w,y} - V_{M,y}) + (V_{w,z} - V_{M,z}) \times (V_{w,y} - V_{M,y})}$                                                                      |    |
| $\frac{1}{dt} = \frac{2}{2} \frac{p}{m} \sqrt{(r_{w,x} - r_{M,x}) + (r_{w,y} - r_{M,y}) + (r_{w,z} - r_{M,z}) (r_{w,z} - r_{M,z}) - g + L} $ (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (17)                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{dV_{M,z}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{\left(V_{w,x} - V_{M,x}\right)^2 + \left(V_{w,y} - V_{M,y}\right)^2 + \left(V_{w,z} - V_{M,z}\right)^2} \times \left(V_{w,z} - V_{M,z}\right) - g + L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{dV_{M,z}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{\left(V_{w,x} - V_{M,x}\right)^2 + \left(V_{w,y} - V_{M,y}\right)^2 + \left(V_{w,z} - V_{M,z}\right)^2} \times \left(V_{w,z} - V_{M,z}\right) - g + L$ |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (18)                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                     |    |
| ここで、 飛来物速度 Vu=(Vu, x, Vu, v, Vu, z)、 竜巻風速                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ここで、物体速度 $V_{M=}(V_{M=1}, V_{M=2})$ 、 竜巻風速 $V_{m=}(V_{W})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ここで、物体の速度 Vu=(Vu, x, Vu, v, Vu, z)、 竜巻風速                                                                                                                                                                            |    |
| $\mathbf{V}_{\mu}=(V_{\mu\nu}, V_{\mu\nu}, V_{\mu\nu})$ であり、右辺第1項が流体抗力 $F_{\mu}$ の加速度を表                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $V_{W,u}, V_{W,u}$ )であり、右辺第1項が流体抗力Fpによる加速度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathbf{V}_{\mu}=(V_{\mu\nu}, V_{\mu\nu}, V_{\mu\nu})$ であり、右辺第1項が流体抗力 F <sub>b</sub> の加速度を表                                                                                                                        |    |
| しており,(18)式の右辺第3項が地面効果による揚力 F <sub>1</sub> の加速度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ★ 19)式の右辺第3項が地面効果による揚力F」による加速度を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | しており,(18)式の右辺第3項が地面効果による揚力F <sub>1</sub> の加速度                                                                                                                                                                       |    |
| <br> を表している。上記の式で、物体が静止している状態(上記の式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -<br>表している。上記の式で,物体が静止している状態((17)式~(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | を表している。上記の式で、物体が静止している状態(上記の式                                                                                                                                                                                       |    |
| (16)~(18)で飛来物速度 𝗛 を 0) を仮定すると, 以下の式となる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 式で物体速度 $V_M = 0$ )を仮定すると,以下の式となる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (16)~(18)で物体の速度 $V_{M}$ を 0)を仮定すると,以下の式となる。                                                                                                                                                                         |    |
| $\frac{dV_{M,x}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,x} $ (16')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{dV_{M,x}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,x} $ (17')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{dV_{M,x}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,x} $ (16')                                                                                              |    |
| $\frac{dV_{M,y}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,y} $ (17')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{dV_{M,y}}{dt} = \frac{1}{2}\rho \frac{C_D A}{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{dV_{M,y}}{dt} = \frac{1}{2}\rho \frac{C_D A}{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,y}$                                                                                                              |    |
| $\frac{dV_{M,z}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,z} - g + L $ (18')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{cccc} at & 2 & m \end{array} \tag{18'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{cccc} a & 2 & m \\ d & & & (17') \\ d & & & & \end{array}$                                                                                                                                           |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{dv_{M,z}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,z} - g + L $ (19')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{dv_{M,z}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,z} - g + L $ (18')                                                                                      |    |
| フジタモデルでは,物体が地面上にある場合(第13図の状態A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | フジタモデルでは,物体が地面近傍にある場合(第5.1-3図A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | フジタモデルでは,物体が地面上にある場合(図13の状態A)                                                                                                                                                                                       |    |
| では上昇速度はゼロに近く、地面で静止している飛来物が受ける                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | では鉛直方向の風速 V <sub>w, z</sub> はゼロに近いため,式(19')の右辺第1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | では上昇速度はゼロに近く、地面で静止している物体が受ける上                                                                                                                                                                                       |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                   | 東海第二発電所(2018.9.18版)                                                                             | 島根原子力発電所 2号炉                                                                                     | 備考 |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----|
| 上昇速度はほぼゼロであるため,式(18')の右辺第1項は右辺第                                                                  | 項は右辺第2項及び第3項に比べてはるかに小さな量となり,以                                                                   | 昇速度はほぼゼロであるため,式(18')の右辺第1項は右辺第2,                                                                 |    |
| 2, 第3項に比べてはるかに小さな量となり,以下のとおり物理的                                                                  | 下のとおり物理的に合理的な関係式が成立する。                                                                          | 第3項に比べてはるかに小さな量となり、以下のとおり物理的に                                                                    |    |
| に合理的な関係式が成立する。                                                                                   | $\frac{dV_{M,z}}{dV_{M,z}} \sim -a + I$                                                         | 合理的な関係式が成立する。                                                                                    |    |
| $\frac{dV_{M,z}}{dt} \approx -g + L \tag{19}$                                                    | $dt \sim g + L$ (20)                                                                            | $\frac{dV_{M,z}}{dt} \approx -g + L \tag{19}$                                                    |    |
| 例として, 竜巻コア半径 30m, 設計竜巻の最大風速 92m/s の竜                                                             | 例として, 竜巻コア半径 30m, 最大風速 100m/sの竜巻が原点に                                                            | 例として, 竜巻コア半径 30m, 設計竜巻の最大風速 92m/s の竜                                                             |    |
| 巻が原点に位置し x 方向に 14m/s で移動する場合, 点(0,-30m)に                                                         | 位置し, x 方向に 15m/s で移動する場合, 点(0,-30m)における式                                                        | 巻が原点に位置しx 方向に14m/s で移動する場合,点(0,-30m)に                                                            |    |
| おける式(18')の右辺第1項の値(z 方向抗力(流体抗力)によ                                                                 | (19')の右辺第1項の値(z方向抗力(流体抗力)による加速度)                                                                | おける式(18')の右辺第1項の値(z 方向抗力(流体抗力)によ                                                                 |    |
| る加速度)と第3項の値(地面効果による揚力加速度)を第20図                                                                   | と第3項の値(地面効果による揚力加速度)を第5.1-10図に示                                                                 | る加速度)と第3項の値(地面効果による揚力加速度)を図20                                                                    |    |
| に示す。                                                                                             | す。                                                                                              | に示す。                                                                                             |    |
| 第 20 図より,地面上(z=0)においては, z 方向抗力による加                                                               | 同図より,地面上(z=0)近傍においては, z 方向の抗力による                                                                | 図 20 より,地面上 (z=0) においては, z 方向抗力による加速                                                             |    |
| 速度は十分小さく,地面効果による揚力加速度の影響が大きいこ                                                                    | 加速度は十分小さく、地面効果による揚力加速度の影響が大きい                                                                   | 度は十分小さく、地面効果による揚力加速度の影響が大きいこと                                                                    |    |
| とが分かる。                                                                                           | ことが分かる。                                                                                         | が分かる。                                                                                            |    |
| $f_{1}$ (現本物の特性: 0.5 $\rho$ C <sub>p</sub> A/m=0.004 [m <sup>-1</sup> ], d=1.31[m])              | $f(1/2)  ho C_D A/m=0.004m^{-1}, d=1.31m)$                                                      | f = 1 - 2方向の抗力加速度<br>                                                                            |    |
| なお,高さ方向の依存性が考慮されていないランキン渦の場合<br>は,上昇風速が水平風速の約60%にも達するため,地面から非現実<br>的な風の噴出が発生する。地面効果は地面の存在によって水平な | なお,高さ方向の依存性が考慮されていないランキン渦(飛散<br>解析用)の場合は,地面から水平風速の約60%にも達する上昇流<br>の噴出を設定する。地面効果は地面の存在によって水平な風が物 | なお,高さ方向の依存性が考慮されていないランキン渦の場合<br>は,上昇風速が水平風速の約60%にも達するため,地面から非現実<br>的な風の噴出が発生する。地面効果は地面の存在によって水平な |    |
| 風が物体付近で湾曲・剥離することによって生じるものであるが.                                                                   | 体付近で湾曲、剥離することによって生じるものであるが、ラン                                                                   | 風が物体付近で湾曲・剥離することによって生じるものであるが、                                                                   |    |
| ランキン渦の風速場では地面の有無によって物体周りの流況が大                                                                    | キン渦の風速場では地面の有無によって物体周りの流況が大きく                                                                   | ランキン渦の風速場では地面の有無によって物体周りの流況が大                                                                    |    |
| きく変化せず、地面効果は物理的に発現しにくいため、ランキン                                                                    | 変化せず、地面効果は物理的に発現しにくいため、ランキン渦モ                                                                   | きく変化せず、地面効果は物理的に発現しにくいため、ランキン                                                                    |    |
| <br>  渦モデルを用いた解析においては鉛直方向による揚力 L を付加し                                                            | <br> デルを用いた解析においては鉛直方向の揚力Lを付加していない。                                                             | 渦モデルを用いた解析においては鉛直方向による揚力 L を付加し                                                                  |    |
| ていない (第 21 図)。                                                                                   | (第 5.1-11 図)                                                                                    | ていない (図 21)。                                                                                     |    |



## 5.2 竜巻が物体に与える速度に関する不確定性の考慮

竜巻によって飛散する物体の飛来速度や飛散距離は、同じ竜巻 内であっても物体の受ける風速(物体がある位置の竜巻風速)に よって大きく変動する。その影響度合いを確認するため、米国 NRC ガイド<sup>(2)</sup> に記載されている方法(物体の1点配置)と,物体を多 点数配置した場合の飛来速度の違いを比較する。配置の違いにつ いて, 第22 図に示す。

1 点配置の場合は、特定位置(竜巻進行方向の竜巻半径の位置) (x, y) = (R<sub>m</sub>, 0)) に物体 1 個を設置する。また多点数配置の場合 は、竜巻半径の4 倍の正方形状の領域に 51×51 個の物体を配置す る。その上で飛散させた物体のうち、最も速度が大きくなったも のをその物体の飛来速度とする。



5.2 物体が受ける風速における保守性の考慮

竜巻によって飛散する物体の飛散速度や飛散距離は、同じ竜巻 内であっても物体が受ける風速(物体がある位置の竜巻風速)に よって大きく変動する。その影響度合いを確認するため、米国N RCガイド<sup>(1)</sup>に記載されている方法(物体の1点配置)と、物体 を多点配置した場合の飛散速度の違いを比較した。配置の違いに ついて, 第5.2-1 図に示す。

1 点配置の場合は、特定の位置(竜巻進行方向の最大接線風速半 径の位置(x,y)=(R<sub>m</sub>,0))に物体1個を設置する。また多点配置 の場合は、竜巻半径の4倍の辺長の正方形領域に51×51個の物体 を配置する。その上で飛散させた物体のうち、最も速度が大きく なったものをその物体の飛散速度とする。



て,図22に示す。

1 点配置の場合は、特定位置(竜巻進行) (x, y) = (R<sub>m</sub>, 0)) に物体1 個を設置する。ま 竜巻半径の4倍の正方形状の領域に51×51 その上で飛散させた物体のうち、最も速度に その物体の飛来速度とする。





| *炉                                         | 備考 |
|--------------------------------------------|----|
| FD                                         |    |
|                                            |    |
|                                            |    |
|                                            |    |
| n <sup>FD</sup>                            |    |
|                                            |    |
| Cia                                        |    |
|                                            |    |
| 動モデルの模式図                                   |    |
|                                            |    |
| 催定性の考慮                                     |    |
| る位置の竜巻風速)に                                 |    |
| 崔認するため、米国 NRC                              |    |
| 点配置)と、物体を多                                 |    |
| る。配置の違いについ                                 |    |
| 方向の竜巻半径の位置                                 |    |
| こころ こう |    |
| 個の物体を配置する。                                 |    |
| が大きくなったものを                                 |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
| x                                          |    |
| NRCガイド(1点配置)                               |    |
| の物体初期位直                                    |    |
|                                            |    |
|                                            |    |
| 勿体の位置関係                                    |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                    | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 備考 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 評価条件として, 竜巻の最大風速を 92m/s とし, フジタモデル                                                                                                                                                                | 評価条件として, 竜巻の最大風速を 100m/s とし, フジタモデ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 評価条件として, 竜巻の最大風速を 92m/s とし, フジタモデル                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| の風速場を用いて地上から飛散させるものとする。また、ガイド                                                                                                                                                                     | ルの風速場を用いて地上から飛散させるものとする。また、「竜巻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | の風速場を用いて地上から飛散させるものとする。また、ガイド                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| の記載より竜巻の移動速度 $V_t$ を14m/s,竜巻コア半径 $R_m$ を30mと                                                                                                                                                      | 影響評価ガイド」の記載より竜巻の移動速度V <sub>tr</sub> を15m/s, 竜巻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | の記載より竜巻の移動速度 $V_t$ を15m/s,竜巻コア半径 $R_m$ を30mと                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| する。飛散させる物体のパラメータとして、原子力安全基盤機構                                                                                                                                                                     | コア半径R <sub>m</sub> を30mとする。飛散させる物体としては、「竜巻によ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | する。飛散させる物体のパラメータとして,原子力安全基盤機構                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| の調査研究報告書 $^{(4)}$ に掲載されている物体の飛行定数 $(5.1 \ O \ C_{ m D} A$                                                                                                                                         | る原子力施設への影響に関する調査研究」 <sup>(3)</sup> に掲載されている物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | の調査研究報告書 <sup>(4)</sup> に掲載されている物体の飛行定数(5.1 の C <sub>D</sub> A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| を質量で割った値:C <sub>D</sub> A/m(m <sup>2</sup> /kg)) を用いる。第23 図に比較結果                                                                                                                                  | 体を用いた。第5.2-2図に比較結果を示す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | を質量で割った値:C <sub>D</sub> A/m(m <sup>2</sup> /kg))を用いる。図 23 に比較結果を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| を示す。                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 示す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 米国 NRC で用いられている1点配置の手法と比較し, 多点数配                                                                                                                                                                  | 米国NRCで用いられている1点配置の手法と比較し、多点配                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 米国 NRC で用いられている1点配置の手法と比較し,多点配置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 置の手法では、飛行定数の大きい物体の多くが1点配置に比べて                                                                                                                                                                     | 置の手法では1点配置に比べて大きな飛散速度となった。多点配                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | の手法では、飛行定数の大きい物体の多くが1点配置に比べて大                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 大きな飛来速度となる。多点数配置することで、その竜巻風速場                                                                                                                                                                     | 置することで、その竜巻風速場における最大風速(最大接線風速                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | きな飛来速度となる。多点配置することで、その竜巻風速場にお                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| における最大風速(最大接線風速と半径方向風速のベクトル和が                                                                                                                                                                     | と半径方向風速のベクトル和が竜巻移動方向と重なる点)を受け                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ける最大風速(最大接線風速と半径方向風速のベクトル和が竜巻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 竜巻移動方向と重なる点)を受ける物体が出てくるため、このよ                                                                                                                                                                     | る物体が出てくるため、このような結果になったと考えられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 移動方向と重なる点)を受ける物体が出てくるため、このような                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| うな結果となったと考えられる。                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 結果となったと考えられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| したがって、物体を多点数配置することは、竜巻から受ける風                                                                                                                                                                      | したがって、物体を多点配置することは、竜巻から受ける風速                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | したがって、物体を多点配置することは、竜巻から受ける風速                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 速に関する不確定性を考慮できるものと考えられるため、本検討                                                                                                                                                                     | に関する不確定性を考慮できるものと考えられるため、本検討に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | に関する不確定性を考慮できるものと考えられるため、本検討に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| における方法として適用することとする。                                                                                                                                                                               | おける方法として適用することとする。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | おける方法として適用することとする。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| i (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                         | 物品高さ<br>(m)他の寸法<br>(m)CoA/m<br>(m)アニークリフト1.101.103.600.0026アニークリフト1.301.905.000.0026アニークリフト1.301.905.000.0026アニークリフト1.603.100.0026アニークリフト1.201.200.0026アニークリフト1.201.200.0026アニークリフト1.201.200.0026アニークリフト1.201.200.0016アニークリフト1.201.200.0119アニークリフト1.851.851.85アニークリフト1.851.851.0119アニークリート板0.151.000.00221アニークリート板0.151.000.0021アニークリート板0.151.000.0021アニークリート板0.151.000.0021アニークリート板0.151.000.0021アニークリート板0.151.000.0021アニークリート板0.151.000.0021アニークリート板0.151.000.0021アニークリート板0.050.00アニークリート板0.050.00アニークリート板0.050.00アニークリート板0.050.00アニークリート板0.050.00アニークリート板0.050.00アニークリート板0.05アニークリート板0.05アニークリート板0.05アニークリート板0.05アニークリート板0.05アニークリート板0.05アニークリート板0.05アニークリート板0.05アニークリート板0.05 | Image: Section of the section of |    |
| 前頁の第22 図に示す物体の多点数配置(竜巻半径の4 倍の正<br>方形状の領域に51×51 個の物体を配置)を初期状態として適用し<br>たが,この手法は、物体の直上に竜巻を発生させており、竜巻発<br>生地点の不確定性についても考慮した設定となる。<br>第24 図に遠方から物体に接近する竜巻と、物体直上に発生する<br>竜巻による飛散の比較イメージ図を示す。実際の竜巻に遭遇する | 第5.2-3 図に,遠方から物体に接近する竜巻と物体直上に発生<br>する竜巻による飛散の比較イメージ図を示す。実際の竜巻に遭遇                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 前頁の図 22 に示す物体の多点配置(竜巻半径の4 倍の正方形状<br>の領域に 51×51 個の物体を配置)を初期状態として適用したが,<br>この手法は,物体の直上に竜巻を発生させており,竜巻発生地点<br>の不確定性についても考慮した設定となる。<br>図 24 に遠方から物体に接近する竜巻と,物体直上に発生する竜<br>巻による飛散の比較イメージ図を示す。実際の竜巻に遭遇する状                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                         | 東海第二発電所(2018.9.18版)                                                                    | 島根原子力発電所 2号炉                                                     | 備考 |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|----|
| 状況(海上で竜巻が発生して上陸する場合等)を考慮すると、竜                                          | する状況(海上で竜巻が発生して上陸する場合など)を考慮する                                                          | 況(海上で竜巻が発生して上陸する場合等)を考慮すると、竜巻                                    |    |
| 巻は遠方から物体に近づくため,最大風速より低い風速に曝され,                                         | と、竜巻は遠方から物体に近づくため、最大風速より低い風速に                                                          | は遠方から物体に近づくため,最大風速より低い風速に曝され,                                    |    |
| 飛散することになる。しかし、物体の直上に竜巻を発生させる設                                          | 曝された時点で飛散する可能性がある。しかし、物体の直上に竜                                                          | 飛散することになる。しかし、物体の直上に竜巻を発生させる設                                    |    |
| 定とすることで、実際の竜巻による飛散と比較して、より厳しい                                          | 巻を発生させることで、実際の竜巻による飛散と比較して、より                                                          | 定とすることで、実際の竜巻による飛散と比較して、より厳しい                                    |    |
| 結果を与えることになる。                                                           | 厳しい結果を与えることになる。                                                                        | 結果を与えることになる。                                                     |    |
|                                                                        | また、この多点配置を初期状態として適用する手法は、物体の                                                           |                                                                  |    |
|                                                                        | 直上に竜巻を発生させており、竜巻発生地点の不確定性について                                                          |                                                                  |    |
|                                                                        | も考慮した設定となっている。この物体を多点配置する方法と,                                                          |                                                                  |    |
|                                                                        | 竜巻を直上に発生させる方法を組み合わせることにより、必ずそ                                                          |                                                                  |    |
|                                                                        | の竜巻の最大風速に曝される物体が発生するため、竜巻が物体に                                                          |                                                                  |    |
|                                                                        | 与える速度の不確定性を考慮した上で包絡できると考えられる。                                                          |                                                                  |    |
|                                                                        |                                                                                        |                                                                  |    |
|                                                                        | <実際の竜巻(遠方から接近)による物体の飛散イメージ> #外線螺 外部コア アドロア 展大風速 最大風速 していたいの様体が限してしまう可能性がある(物体の飛び場さに依る) |                                                                  |    |
| ・物体の直上に瞬時に竜巻が発生し、飛散し始める。           ・           物体直上に発生する竜巻による物体の飛散イメージ | <本評価の竜巻(物体直上に発生)による物体の飛散イメージ> 第33 第3                  | ・物体の直上に瞬時に竜巻が<br>発生し、飛散し始める。           ・規大風速に曝され飛散する<br>物体が存在する。 |    |
| <br>  第24 図 物体に接近する竜巻と物体直上に発生する竜巻の比較                                   | <br>  第5.2-3図 物体に接近する竜巻と物体直上に発生する竜巻のイ                                                  | 図 24 物体に接近する竜巻と物体直上に発生する竜巻の比較イ                                   |    |
| イメージ図                                                                  | メージ                                                                                    | メージ図                                                             |    |
|                                                                        |                                                                                        |                                                                  |    |
| この物体を多点数配置する方法と、竜巻を直上に発生させる方                                           |                                                                                        | この物体を多点配置する方法と、竜巻を直上に発生させる方法                                     |    |
| 法を組み合わせることにより、必ずその竜巻による最大風速に曝                                          |                                                                                        | を組み合わせることにより、必ずその竜巻による最大風速に曝さ                                    |    |
| される物体が発生するため、竜巻が物体に与える速度の不確定性                                          |                                                                                        | れる物体が発生するため、竜巻が物体に与える速度の不確定性を                                    |    |
| を考慮することができると考えられる。                                                     |                                                                                        | 考慮することができると考えられる。                                                |    |
|                                                                        | また第5.2-2 図の結果から、多点配置は1点配置より全体的に                                                        |                                                                  |    |
|                                                                        | 大さな保守性を与えると考えられ、よってフジタモテルの風速場                                                          |                                                                  |    |
|                                                                        | に 関する 个 確 美性 に つ い て も , そ の 保 守性 で 包 絡 出 来 て い る と 考                                  |                                                                  |    |
|                                                                        | えられる。                                                                                  |                                                                  |    |
| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                                                                            | 島根原子力発電所 2号炉                                            | 備考             |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------|
|                                | フジタモデルの風速場に関する不確実性として、フジタモデル                                                                                                   |                                                         |                |
|                                | の特徴的なパラメータである流入層高さH <sub>i</sub> の影響を検証した。外                                                                                    |                                                         |                |
|                                | 部コア半径 $R_m$ =30mの場合モデルでは $H_i$ =15mとなり,これは2.1                                                                                  |                                                         |                |
|                                | に記載のとおり他の文献 <sup>(3)(5)</sup> ともおおむね整合しているが,不確                                                                                 |                                                         |                |
|                                | 実性を考慮し,流入層高さH <sub>i</sub> を±10%変化させた場合にコンテナ                                                                                   |                                                         |                |
|                                | (長さ6m×幅2.4m×高さ2.6m, 質量2,300kg, C <sub>D</sub> A/m=0.0105)                                                                      |                                                         |                |
|                                | の最大飛散距離、最大飛散距離及び飛散高さがどの様に変化する                                                                                                  |                                                         |                |
|                                | かを確認した。                                                                                                                        |                                                         |                |
|                                | コンテナの1点配置及び多点配置時の飛散距離等も含めた評価結                                                                                                  |                                                         |                |
|                                | 果を第5.2-1表に示す。流入層高さH <sub>i</sub> に対するこれらの感度は                                                                                   |                                                         |                |
|                                | 小さく、多点評価の保守性に包絡されることが分かる。                                                                                                      |                                                         |                |
|                                | 第5.2-1表 流入層高さを変化させた場合のコンテナの飛跡                                                                                                  |                                                         |                |
|                                | パラメータ     飛散特性の変化率       最大     最大                                                                                             |                                                         |                |
|                                | 及び変化率 水平速度 飛散距離 浮上高さ                                                                                                           |                                                         |                |
|                                | 流入層高さ         -10%         0.4%         -3.2%         -4.9%            Hi         +10%         -0.6%         2.8%         5.1% |                                                         |                |
|                                | 多点配置<br>(1点配置からの変化率) 420% 1411% 957% —                                                                                         |                                                         |                |
|                                |                                                                                                                                |                                                         |                |
|                                |                                                                                                                                |                                                         |                |
|                                |                                                                                                                                | <u>5.3</u> フジタモデルの地表面付近の風速場に関する不確定性の考慮                  | ・記載方針の相違       |
|                                |                                                                                                                                |                                                         | 【柏崎 6/7, 東海第二】 |
|                                |                                                                                                                                | 竜巻の地表面付近の風速分布に関する研究として, Kosiba and                      | 島根 2 号炉はフジタ    |
|                                |                                                                                                                                | Wurman 2013 <sup>(6)</sup> は、図 25 に示すとおり地上からの高さ約 5m におけ | モデルの地表面付近の     |
|                                |                                                                                                                                | る風速は地上からの高さ約 40m に比べて約 25% 大きな値が観測さ                     | 風速場に関する不確定     |
|                                |                                                                                                                                | れたことが報告されている。                                           | 性について記載してい     |
|                                |                                                                                                                                | ただし、地上から高さ3m程度は観測していないこと等を踏まえ                           | 3              |
|                                |                                                                                                                                | て、本研究の結論としては、「地表面付近の竜巻特性として一般化                          |                |
|                                |                                                                                                                                | するには、種々の渦構造・強度の竜巻について更なる観察が必要                           |                |
|                                |                                                                                                                                | である」としている。よって、現状では、フジタモデルの風速分                           |                |
|                                |                                                                                                                                | 一布に直接関連付けられるものではないが、地表面付近の風速場の                          |                |
|                                |                                                                                                                                | <u> 个確定性を踏まえて保守性を確保することとする。</u>                         |                |
|                                |                                                                                                                                |                                                         |                |
|                                |                                                                                                                                |                                                         |                |
|                                |                                                                                                                                |                                                         |                |
|                                |                                                                                                                                |                                                         |                |
|                                |                                                                                                                                |                                                         |                |
|                                |                                                                                                                                |                                                         |                |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                             | 備考 |
|--------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | 45                                                                                                                                                                                                                                                                                                                                                       |    |
|                                |                     | 図 25 地上からの高さと風速(ドップラー速度)分布 <sup>(6)</sup>                                                                                                                                                                                                                                                                                                                |    |
|                                |                     | <ul> <li>(2) 設計飛来物設定における保守性</li> <li>フジタモデルを用いた飛散解析においては、物体の地上からの</li> <li>初期高さを高く設定したほうが地表面から解析した場合に比べて</li> <li>最大水平速度は高くなり、最大水平速度に依存するパラメータで</li> <li>ある運動エネルギ及び貫通力も大きくなる。</li> <li>設計飛来物の設定においては、任意の地上からの高さにある鋼</li> <li>製材をフジタモデルを用いて飛散解析をした結果を包絡するガイ</li> <li>ド記載の鋼製材を設定しており、フジタモデルの地上付近の風速</li> <li>場の不確定性は考慮できている。(添付資料 3.3 別紙-6 参照。)</li> </ul> |    |
|                                |                     | (3) 飛来物評価における保守性                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | 物体の飛散距離,飛散高さ及び飛散速度についても, 5.2,5.3                                                                                                                                                                                                                                                                                                                         |    |
|                                |                     | に示す保守性を考慮することで実際の被災事例に対し,保守的な                                                                                                                                                                                                                                                                                                                            |    |
|                                |                     | 結果が得られることも確認している。(6.3 参照。)                                                                                                                                                                                                                                                                                                                               |    |
|                                |                     | (4) 地表面付近の風速場の不確定性について<br>フジタモデルは高さ方向に風速が変化し,地上からの高さ 0m で                                                                                                                                                                                                                                                                                                |    |
|                                |                     | は風速が 0m/s となるモデルである。地表面付近の風速場には不確                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     | <u> 定性かあることから、物体の地上からの初期高さを変化させた感</u><br>度解析を実施し、地表面に設置された物体の飛散解析の妥当性を                                                                                                                                                                                                                                                                                   |    |
|                                |                     | <u>確認する。</u>                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                     | a. 物体の地上からの初期高さの感度解析           物体の地上からの初期高さの感度解析条件を(a), (b)に示す。           (a) 地上からの初期高さの解析範囲           地上からの初期高さの解析範囲は、フジタエデルの回声場で最                                                                                                                                                                                                                      |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                          |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017. | 2.20版) 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                              | 備考 |
|-------------------------|----------------------------|-----------------------------------------------------------|----|
|                         |                            | 大水平風速の 97.7% (89.9m/s) の風速となる地上高さ 5m までの範                 |    |
|                         |                            | <u>囲とする。(図 5-2 参照。)</u>                                   |    |
|                         |                            |                                                           |    |
|                         |                            | <u>(b)</u> 対象飛来物について                                      |    |
|                         |                            | 資機材・車両及び軽量大型機材の飛来物発生防止対策エリアの                              |    |
|                         |                            | <u>設定に用いている「乗用車」及び「プレハブ小屋」を対象とする。</u>                     |    |
|                         |                            | (c) 感度解析結果                                                |    |
|                         |                            | 最大飛散距離と地上からの初期高さの関係を図 26 に示す。図 26                         |    |
|                         |                            | より,乗用車,プレハブ小屋ともに,地上からの初期高さが高く                             |    |
|                         |                            | なるに従い、最大飛散距離が徐々に減少する傾向にある。地上か                             |    |
|                         |                            | らの初期高さが増加するに従い物品に作用する初期風速も増加す                             |    |
|                         |                            | るが、地面効果による揚力の減少の影響のほうが大きいため飛散                             |    |
|                         |                            | 距離が減少したと考えられる。以上より、飛来物発生防止対策エ                             |    |
|                         |                            | リアの設定に対して、地表面付近の風速場の不確定性の影響は小                             |    |
|                         |                            | さく、地表面に設置した物品に対する飛散解析結果を用いること                             |    |
|                         |                            | は妥当であると考える。                                               |    |
|                         |                            |                                                           |    |
|                         |                            | 250                                                       |    |
|                         |                            |                                                           |    |
|                         |                            | Ê 200                                                     |    |
|                         |                            |                                                           |    |
|                         |                            |                                                           |    |
|                         |                            |                                                           |    |
|                         |                            | × 100                                                     |    |
|                         |                            |                                                           |    |
|                         |                            |                                                           |    |
|                         |                            | 0                                                         |    |
|                         |                            |                                                           |    |
|                         |                            | 地上からの初期高さ(m)                                              |    |
|                         |                            | 図 26 最大飛散距離と地上からの初期高さの関係                                  |    |
|                         |                            | <u>(</u> 最大風速 92m/s, 敷地の高低差: 0m, 飛来物: 乗用車 (5.2m×1.9m      |    |
|                         |                            | <u>×2.3m,1,890kg)</u> , プレハブ小屋 (27.0m×7.2m×3.4m,7,500kg)) |    |
|                         |                            |                                                           |    |
|                         |                            |                                                           |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                          | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 備考             |
|--------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 5.3 飛来物評価法のまとめ                 | 5.3 飛散解析手法まとめ                                                                | 5.4 飛来物評価法のまとめ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 飛来物の浮上·飛散モデルにおいて,実際の実験結果よりも浮   | 物体の浮上及び飛散モデルにおいて、実際の実験結果よりも浮                                                 | 物体の浮上・飛散モデルにおいて、実際の実験結果よりも浮上                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 上しやすい係数を設定することで、浮上に関する不確定性を考慮  | 上しやすい係数を設定することで、浮上に関する保守性を考慮で                                                | しやすい係数を設定することで、浮上に関する不確定性を考慮で                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| できるような設定とする。                   | きるような設定とした。                                                                  | きるような設定とする。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| また、物体を多点数配置し、その物体直上で竜巻が発生すると   | また、物体を多点配置し、その物体直上で竜巻が発生するとい                                                 | また、物体を多点配置し、その物体直上で竜巻が発生するとい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| いう設定を組み合わせることにより、竜巻風速場内で物体が受け  | う設定を組み合わせることにより、竜巻風速場内での物体が受け                                                | う設定を組み合わせることにより、竜巻風速場内で物体が受ける                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| る風速の不確定性を考慮し、その竜巻において最大となる飛来速  | る風速の不確定性を考慮し、その竜巻において最大となる飛散速                                                | 風速の不確定性を考慮し、その竜巻において最大となる飛来速度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 度が評価できるような設定とする。               | 度が評価できるような設定とした。                                                             | が評価できるような設定とする。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|                                |                                                                              | <u>当社が実施するフジタモデルの風速場を用いた飛散評価手法で</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ・記載方針の相違       |
|                                |                                                                              | は、地表面付近の風速場の不確定性を踏まえ、設計飛来物設定に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 【柏崎 6/7, 東海第二】 |
|                                |                                                                              | おける保守性や飛来物評価における保守性を確保している。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 同上             |
| 以上により、フジタモデルを用いて飛来物の飛散速度評価を行   | 以上により、フジタモデルを用いて物体の飛散解析を行う場合                                                 | 以上により、フジタモデルを用いて物体の飛散速度評価を行う                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| う場合でも、竜巻による物体飛散の不確定性を考慮した評価結果  | でも、保守性や不確定性を考慮した評価結果が得られると考えら                                                | 場合でも、竜巻による物体飛散の不確定性を考慮した評価結果が                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| が得られるものと考えられる。                 | れる。                                                                          | 得られるものと考えられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| なお,参考として第25 図に本検討の条件設定による,物体の飛 | なお、参考として、第5.3-1図に本条件設定によるトラックの                                               | なお、参考として図27に本検討の条件設定による、物体の飛散                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 散イメージを示す。同じ物体でも,受ける風速によって大きく飛  | 飛散イメージを示す。同じ物体でも、受ける風速によって大きく                                                | イメージを示す。同じ物体でも、受ける風速によって大きく飛散                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 散状況が変わる様子が分かる。                 | 飛散状況が変わる様子が分かる。                                                              | 状況が変わる様子が分かる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 第25 図 竜巻による物体の飛散イメージ           | f = 5.3 - 1 図 竜巻によるトラックの飛散イメージ <sup>(x.ti)</sup><br>(第 6.3 - 5 表 (後述)の条件による) | ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・ |                |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                         | 東海第二発電所(2018.9.18版)                                                                                                                                      | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 備考 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| 6. 実際の飛散状況に対する検証                                                                                                                                       | 6. 実際の飛散状況に対する検証                                                                                                                                         | 6. 実際の飛散状況に対する検証                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |  |
| 前節までは、フジタモデルの風速場を用いる優位性や、飛来物                                                                                                                           | 前節までで,フジタモデルの風速場を用いる利点や,飛散解析                                                                                                                             | 前節までは、フジタモデルの風速場を用いる優位性や、飛来物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |  |
| 評価を行う上で考慮している事項等についての説明である。                                                                                                                            | を行う上で考慮している事項等について説明した。                                                                                                                                  | 評価を行う上で考慮している事項等についての説明である。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |  |
| 本節では、フジタモデルの風速場や、前節の飛来物評価法を適                                                                                                                           | 本節では、フジタモデルの風速場や前節の飛散解析手法を適用                                                                                                                             | 本節では、フジタモデルの風速場や、前節の飛来物評価法を適                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |  |
| 用した場合、実際の事例等に比べて妥当な結果となるかどうかの                                                                                                                          | した場合、実際の事例等に比べて妥当な結果となるかどうかの検                                                                                                                            | 用した場合、実際の事例等に比べて妥当な結果となるかどうかの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |  |
| 検証を行う。                                                                                                                                                 | 証を行った。                                                                                                                                                   | 検証を行う。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |  |
|                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |
| 6.1 フジタスケールとの比較                                                                                                                                        | 6.1 フジタスケールとの比較                                                                                                                                          | 6.1 フジタスケールとの比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |
| フジタスケールは、竜巻等の突風により発生した建築物や車両                                                                                                                           | フジタスケールは、竜巻等の突風により発生した建築物や車両                                                                                                                             | フジタスケールは、竜巻等の突風により発生した建築物や車両                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |  |
| 等の被害状況から、当時の竜巻風速を推定するために考案された                                                                                                                          | 等の被害状況から竜巻風速を推定するために考案された指標であ                                                                                                                            | 等の被害状況から、当時の竜巻風速を推定するために考案された                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |  |
| 指標である。このフジタスケールで示されている自動車の被災状                                                                                                                          | る。フジタスケールで示されている自動車の被災状況を第6.1-                                                                                                                           | 指標である。このフジタスケールで示されている自動車の被災状                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |  |
| 況を第3表に示す。                                                                                                                                              | 表に示す。                                                                                                                                                    | 況を表3に示す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |  |
| ここで,各スケールに対応する最大風速(69m/s,92m/s,116m/s)                                                                                                                 | ここで,各スケールに対応する最大風速 (69m/s,92m/s,116                                                                                                                      | n ここで,各スケールに対応する最大風速(69m/s,92m/s,116m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |  |
| を用いて、フジタモデルによる自動車飛散解析を行う。その結果                                                                                                                          | /s)を用いて、フジタモデルによる自動車飛散解析を行った結界                                                                                                                           | と を用いて、フジタモデルによる自動車飛散解析を行う。その結果                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |
| を第4表に示す。                                                                                                                                               | を第6.1-2表に示す。                                                                                                                                             | を表4に示す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |  |
| フジタモデルによる自動車飛散解析の結果は、各スケールに対                                                                                                                           | フジタモデルによる自動車飛散解析の結果は、各スケールに対                                                                                                                             | フジタモデルによる自動車飛散解析の結果は、各スケールに対                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |  |
| 応する自動車の被災状況とおおむね合致していると考えられる。                                                                                                                          | 応する自動車の被災状況とおおむね合致していると考えられる。                                                                                                                            | 応する自動車の被災状況とおおむね合致していると考えられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |  |
| なお, ランキン渦モデルを用いた場合は, F2 相当の風速(69m/s)                                                                                                                   | なお,ランキン渦モデルを用いた場合は,F2相当の風速(69m/                                                                                                                          | ~ なお, ランキン渦モデルを用いた場合は, F2 相当の風速(69m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |  |
| で評価しても大きく飛散することになり、フジタスケールの定義                                                                                                                          | s)でも大きく飛散することになり、フジタスケールの定義とのb                                                                                                                           | こ で評価しても大きく飛散することになり、フジタスケールの定義                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |
| の観点からは過度に保守的な結果となる。                                                                                                                                    | 較からは過度に保守的な結果となる。                                                                                                                                        | の観点からは過度に保守的な結果となる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |  |
|                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |
| 第3表 フジタスケールで示されている自動車の飛散状況                                                                                                                             | 第6.1-1表 フジタスケールによる目動車の被災分類(**)                                                                                                                           | 表3フジタスケールで示されている自動車の飛散状況                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |  |
| フジタス         風速         自動車の被災状況           ケール         [m/s]         自動車の被災状況                                                                          | ノンタ         風速         自動車の被災状況           スケール         (m/s)         (m/s)                                                                               | フジタス         風速         自動車の被災状況           ケール         [m/s]         自動車の被災状況                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |  |
| F2 50-69 cars blown off highway<br>(自動車が道路からそれる)                                                                                                       | F2 50~69 cars blown off highway (自動車が道路から逸れる。)                                                                                                           | F2 50-69 cars blown off highway<br>(自動車が道路からそれる)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |  |
| F3     70-92     cars lifted off the ground<br>(自動車が地面から浮上する)                                                                                          | F 3 70~92 cars lifted off the ground (目動車が地面から浮上す<br>る。)                                                                                                 | F3 70-92 cars lifted off the ground<br>(自動車が地面から浮上する)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |  |
| F4 93-116 cars thrown some distances or rolled considerable distances<br>(自動車がある距離を報げされる、又は、かたりの距離を転がる)                                                | cars thrown some distances or rolled considerable                                                                                                        | F4 93-116 cars thrown some distances or rolled considerable distances $(白 動 古 ぶ 5.5 \square b e \wedge 5.5 \square b$ |    |  |
|                                                                                                                                                        | F4     93~116     distances (自動車がある距離を飛ばされる又はかなりの距<br>離を転がろ)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |
| 第4 表 フジタエデルに上る自動車の飛散解析結果                                                                                                                               | 第61-2表 フジタエデルによる自動車 (C A $/m=0.0052m^2/kg)$ の                                                                                                            | <b>素 4</b> フジタエデルに上る自動車の飛動解析結果                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
|                                                                                                                                                        | 来 0.1 2 次 / ジノ ビノルによる日勤単(C <sub>D</sub> A/ III-0.0052III / Kg) 07                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |
| (日勤平の)村王: 及その. 加べ間 1. 村面へ同と 1. 51m, 貢重<br>1814 4kg C.4/m=0 0066 m <sup>2</sup> /kg)                                                                    |                                                                                                                                                          | $(\exists y) \neq 0, \forall \forall t : \forall \forall t = 0, \forall t = 1, \forall t = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |
|                                                                                                                                                        | フジタ<br>スケール<br>$(r_{1}(r_{2}))$<br>長大水平風速<br>接線風速<br>移動速度<br>最大水平速度<br>飛散距離<br>飛散高さ<br>(r_{1}(r_{2}))<br>(r_{1}(r_{2}))                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |
| ノンシュ     取入     电台     电台     市       スケール     水平風速     接線速度     移動速度         との対応 $[m/s]$ $[m/s]$                                                     | F 2         69         59         10         1.0         1,4         0                                                                                   | フシダ<br>スケール最大水平風速<br>(m < s)竜巻竜巻計見結果スケール接線風速移動速度最大水平速度飛散距離飛散高さ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| F2         69         59         10         8.9         4.4         0.1                                                                                | F 3         92         79         13         23         34         1.1           F 4         116         99         17         42         59         3.1 | との対応         (m/s)         (m/s)         (m/s)         (m)         (m)           F2         69         59         10         8.9         4.4         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |  |
| F3         92         79         13         30         35         1.8           F4         116         99         17         51         95         4.3 |                                                                                                                                                          | F 3         92         79         13         30         35         1.8           F 4         116         99         17         51         95         4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |  |
|                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                          | 東海第二発電所(2018.9.18版)                                                                                                                | 島根原子力発電所 2号炉                                                                                                                                                                                         | 備考 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6.2 米国 Grand Gulf 原子力発電所への竜巻来襲事例                                                                                                                                        | 6.2 米国 Grand Gulf 原子力発電所への竜巻来襲事例との比較                                                                                               | 6.2 米国 Grand Gulf 原子力発電所への竜巻来襲事例                                                                                                                                                                     |    |
| 1978 年 4 月 17 日に米国のミシシッピー州にて建設中の Gran                                                                                                                                   | 1 1978 年 4 月 17 日に,米国のミシシッピー州にて建設中の Grand                                                                                          | 1978 年 4 月 17 日に米国のミシシッピー州にて建設中の Grand                                                                                                                                                               |    |
| Gulf 原子力発電所に F3 の竜巻が来襲した <sup>(24)</sup> 。主な被害として,                                                                                                                      | Gulf 原子力発電所にF3の竜巻が来襲した。主な被害として、建                                                                                                   | Gulf 原子力発電所にF3 の竜巻が来襲した <sup>(23)</sup> 。主な被害として,                                                                                                                                                    |    |
| 建設中の冷却塔内部に設置されていたコンクリート流し込み用の                                                                                                                                           | 設中の冷却塔内部に設置されていたクレーンが倒壊し、冷却塔の                                                                                                      | 建設中の冷却塔内部に設置されていたコンクリート流し込み用の                                                                                                                                                                        |    |
| クレーンが倒壊し、冷却塔の一部が破損したことが挙げられる。                                                                                                                                           | 一部が破損したことが挙げられる。また、竜巻によりトレーラー                                                                                                      | クレーンが倒壊し、冷却塔の一部が破損したことが挙げられる。                                                                                                                                                                        |    |
| また、竜巻によりトレーラーが台から剥がれ移動したことや、直                                                                                                                                           | ハウスが荷台から剥がれ移動したことや,直径8から10インチの                                                                                                     | また、竜巻によりトレーラーが台から剥がれ移動したことや、直                                                                                                                                                                        |    |
| 径 8~10 インチの木が折れた事例等も確認されており, 第 26 図                                                                                                                                     | 木が折れた事例等も確認されている。                                                                                                                  | 径 8~10 インチの木が折れた事例等も確認されており,図 28 は,                                                                                                                                                                  |    |
| は、 竜巻による飛来物の飛散状況が定量的に分かる事例として,                                                                                                                                          | 第6.2-1 図は、竜巻による飛来物の飛散状況が定量的に分かる                                                                                                    | 竜巻による飛来物の飛散状況が定量的に分かる事例として、資材                                                                                                                                                                        |    |
| 資材置き場のパイプの飛散状況を示したものである。なお、通過                                                                                                                                           | 事例として,資材置場のパイプの飛散状況を示したものである。                                                                                                      | 置き場のパイプの飛散状況を示したものである。なお、通過時の                                                                                                                                                                        |    |
| 時の竜巻規模はF2 であったと考えられている。このパイプはコン                                                                                                                                         | なお,資材置場通過時の竜巻規模はF2であったと考えられてい                                                                                                      | 竜巻規模はF2 であったと考えられている。このパイプはコンクリ                                                                                                                                                                      |    |
| クリート・石綿製で、長さは8フィート、直径(内径)は8イン                                                                                                                                           | る。このパイプはコンクリート・石綿製で、長さは8フィート、                                                                                                      | ート・石綿製で、長さは8フィート、直径(内径)は8インチで                                                                                                                                                                        |    |
| チであった。このパイプの飛散状況に対して、フジタモデルある                                                                                                                                           | 直径(内径)は8インチであった。このパイプの飛散状況に対し                                                                                                      | あった。このパイプの飛散状況に対して、フジタモデルあるいは                                                                                                                                                                        |    |
| いはランキン渦モデルを風速場として用いた飛来解析を行った。                                                                                                                                           | て、フジタモデル及びランキン渦モデルを風速場として用いた飛                                                                                                      | ランキン渦モデルを風速場として用いた飛来解析を行った。その                                                                                                                                                                        |    |
| その計算条件は過去の記録に基づき第5表のとおりとする。                                                                                                                                             | 散解析を行った(25)。解析条件は、過去の記録に基づき第6.2-1                                                                                                  | 計算条件は過去の記録に基づき表5のとおりとする。                                                                                                                                                                             |    |
|                                                                                                                                                                         | 表のとおりとした。                                                                                                                          |                                                                                                                                                                                                      |    |
| "Courtesy of HathiTrust"       http://babel.hathitrust.org/cgi/pt?id=mdp.39015037472209#view=1up:seq=65       (9)         第 26 図 Grand Gulf 原子力発電所資材置き場におけるパイプの<br>散乱状況 |                                                                                                                                    | <ul> <li>Courtesy of HathiTrust<sup>®</sup> http://babel.hathitrust.org/cgi/pt?id=mdp.39015037472209#view=1up:seq=65<sup>(19)</sup></li> <li>図 28 Grand Gulf 原子力発電所資材置き場におけるパイプの散乱<br/>状況</li> </ul> |    |
| 被害状況<br>・パイプを収納した木箱(一部は二段重ね)は浮上せずに転倒し,パイ<br>プが周辺7m~9mに散乱。                                                                                                               | パイプを収納した木箱 (一部 2 段重ね) は浮上せずに転倒し, パイプが周囲 7m~9m に散<br><sup>1</sup>                                                                   | 被害状況 ・パイプを収納した木箱(一部は二段重ね)は浮上せずに転倒し,パイ<br>プが周辺 7m~9m に散乱。                                                                                                                                             |    |
| (Pieces of pipe were scattered over the area, but none traveled more than 25-30 ft. The pipe joints are 8 in. dia x 8 ft $long.^{(24)}$ )                               | (Pieces of pipe were scattered over the area, but none travelled more than 25-<br>30ft. The pipe joints are 8in. dia. x 8ft.long.) | (Pieces of pipe were scattered over the area, but none traveled more than 25-30 ft. The pipe joints are 8 in. dia x 8 ft $long^{(24)}$ )                                                             |    |
|                                                                                                                                                                         | 第6.2-1図 Grand Gulf 原子力発電所資材置場におけるパイプの<br>散乱状況 <sup>(x vii)</sup>                                                                   |                                                                                                                                                                                                      |    |

| 柏崎刈    | 羽原子力発電所                                     | 6/7号炉     | (2017.12.20版)             |                  | 東海第二発電所(20                         | 018. 9. 18 版)            |             | 島根原子力発電所 2-                                         |
|--------|---------------------------------------------|-----------|---------------------------|------------------|------------------------------------|--------------------------|-------------|-----------------------------------------------------|
| 第5表Gra | nd Gulf 原子力発                                | 隆電所の竜巻ば   | こよるパイプ飛散の再現               | 第 6.2            | 2-1 表 Gland Gulf 原子力発電             | 所のパイプ飛散解析条件(25)          | 表 5 Grand G | ulf 原子力発電所の竜巻による                                    |
|        | をする                                         | 上での計算条    | 件                         | 竜巻条件             | 竜巻の最大風速                            | 67 m/s                   |             | る上での計算条件                                            |
| 竜巻条件   | 設計竜巻風速                                      | 67m/      | s                         |                  | 最大接線風速                             | 53.6 m⁄s                 | 竜巻条件        | 竜巻の最大風速                                             |
|        | 最大接線風速                                      | 53.6      | m/s                       |                  | 移動速度                               | 13.4 m/s                 |             |                                                     |
|        | 移動速度                                        | 13.4      | m/s                       |                  | コア半径                               | 45.7 m                   |             | 我所当 <u>你</u>                                        |
|        | コア半径                                        | 45.7      | m                         | 飛来物条件            | 直径 (外径)                            | 0.2286 m (=9 in.)        |             | 初期还及                                                |
| 飛来物条件  | 直径(外径)                                      | 9 ir      | ch (0.2286m)              |                  | 物体高さ                               | 0.229 m                  |             | コア半径                                                |
|        | 物体高さ                                        | 0. 22     | 9m                        |                  |                                    | 1700 kg /m <sup>3</sup>  | 飛来物条件       | 直径 (外径)                                             |
|        | 密度                                          | 1700      | kg/m <sup>3</sup>         |                  |                                    |                          |             | 物品高さ                                                |
|        | 飛行定数 C <sub>D</sub> A/m                     | 0.00      | 80 m <sup>2</sup> /kg     | 4-2-140-21-2-140 |                                    |                          |             | 密度                                                  |
| 初期配置   | ・物体個数 51×51 個,                              | 竜巻半径の4倍を  | ・一辺とする正方形内( <i>x, y</i> = | 初期配置             | ・物体値数:51×51 本を,最                   | 大接線風速半径の4倍を1辺とす          |             |                                                     |
|        | [-2R <sub>m</sub> , +2R <sub>m</sub> ]) に等間 | 冒隔配置      |                           |                  | る正方形内(x, y=[−2R <sub>m</sub> , +2R | ℓ <sub>m</sub> ])に等間隔配置。 | 1           |                                                     |
|        | Ⅰ・設置高さ1 m (パイ)                              | プが収納されていた | と木箱が2段重ねで配置されて            |                  | <ul> <li>・設置高さ:1m(パイプ収納</li> </ul> | 箱が2段重ねされた状況を想定)          | 初期配置        | ・物体個数:51×51 本を,最大接線                                 |
|        | いた状況を想定。)                                   |           |                           |                  | ·                                  |                          |             | する正方形内(x, y=[-2R <sub>m</sub> , +2R <sub>m</sub> ]) |
|        |                                             |           |                           |                  |                                    |                          |             | ・設置高さ:1m(パイプ収納箱が28                                  |
| 計算結果   | を第6表に示す。                                    | フジタモデル    | を風速場とした場合は、               | 解析結果を            | を第 6.2-2 表に示す。フ                    | 7ジタモデルを風速場とした場           | 計算結果:       | <u>-</u><br>を表6に示す。 フジタモデルを                         |
|        |                                             |           |                           |                  |                                    |                          |             |                                                     |

われる状況とおおむね合致している。

なお、参考としてランキン渦モデルで評価した場合、飛散距離 や最大水平速度に大きな違いがあり、実際の報告と比較して過度 に保守的な評価結果となる。

パイプがほとんど飛散せず、木箱が倒れた影響で散らばったと思
合は、パイプがほとんど飛散せず、収納箱が倒れた影響で散乱した と思われる状況とおおむね合致している。

> なお、ランキン渦モデルで評価した場合は、飛散距離や最大水 | 平速度に実際の報告と大きな違いがあり,過度に保守的な評価結 果となる。

### 第6表 Grand Gulf 原子力発電所のパイプの飛散計算結果

| 周連提エデル   | 初期物体                |        | 計算結果    |          |
|----------|---------------------|--------|---------|----------|
| 風速場モノル   | 高さ                  | 飛散距離   | 飛散高さ**2 | 最大水平速度   |
| フジタモデル   | 1 m                 | 1.2 m  | 0.0 m   | 4.9 m/s  |
| ランキン渦モデル | $1 \text{ m}^{\#1}$ | 42.6 m | 0.34 m  | 30.7 m/s |
| ランキン渦モデル | 40 m                | 227 m  | 0.34 m  | 40.9 m/s |

※1:ランキン渦モデルでは地上付近の風速場を模擬できていないが、フジタモデルの 計算結果(飛散距離)と比較をするため、フジタモデルと同条件とする。 ※2:初期物体高さからの飛散高さ。

### 6.3 佐呂間竜巻での車両飛散事例

2006 年 11 月 7 日に北海道網走支庁佐呂間町に発生した竜巻 動したことが報告されている(25)。被災状況を第27図に示す。こ トラックの初期位置と移動位置が分かっている(第27 図左上画像 像の③と⑥)について、初期位置と被災後の移動位置が分かって が分かっている。このように竜巻被災前後で車両等の位置が明確

### 第6.2-2表 Gland Gulf 原子力発電所のパイプ飛散解析結果<sup>(25)</sup>

| 国津相を追い   | 初期                  |        | 計算結果    |          |
|----------|---------------------|--------|---------|----------|
| 風速場モナル   | 物体高さ                | 飛散距離   | 飛散高さ**2 | 最大水平速度   |
| フジタモデル   | 1 m (地上)            | 1.2 m  | 0.0 m   | 4.9 m⁄s  |
| ランキン渦モデル | $1 \text{ m}^{\%1}$ | 42.6 m | 0.94    | 30.7 m⁄s |
|          | 40 m                | 227 m  | 0.34 m  | 40.9 m⁄s |

※1 比較のため、フジタモデルと同条件とした。

※2 初期物体高さからの飛散(浮上)高さ。

### 6.3 佐呂間竜巻での車両飛散事例との比較

2006年11月7日に北海道網走支庁佐呂間町に発生した竜巻(以 (以下「佐呂間竜巻」という。)により、4t トラックが約 40m 移 下「佐呂間竜巻」という。)により、4t トラックが約 40m 移動した ことが報告<sup>(x ix)</sup>されている。被災状況を第6.3-1図に示す。この の事例では被災時に 4t トラックに乗員 2 名が乗車しており、4t 事例では被災時に 4t トラックに乗員 2 名が乗車しており、4t トラ ックの初期位置と移動位置が分かっている(②)。また、4t トラッ の②)。また、4t トラックの他に2 台の自動車(第 27 図左上画 クの他に、2 台の自動車(③と⑥)の初期位置と被災後の移動位置

|                                       | 島根原子                       | 力発電所                                            | 2号炉              |                         | 備考  |
|---------------------------------------|----------------------------|-------------------------------------------------|------------------|-------------------------|-----|
| €5 Grand Gulf 原子力発電所の竜巻によろパイプ飛散の再現をす  |                            |                                                 |                  | }-                      |     |
|                                       | z L                        | での計管タ                                           | (H-              |                         |     |
|                                       | っ上                         | での計昇采                                           | <del> +</del>    |                         |     |
| 竜巻条件                                  | 竜巻の最大風速                    |                                                 | 67 m⁄s           |                         |     |
|                                       | 最大接線風速                     |                                                 | 53.6 m∕s         |                         |     |
|                                       | 移動速度                       |                                                 | 13.4 m/s         |                         |     |
|                                       | コア半径                       |                                                 | 45.7 m           |                         |     |
| 飛来物条件                                 | 直径(外径)                     |                                                 | 0.2286 m (       | =9 in.)                 |     |
|                                       | 物品局さ                       |                                                 | 0.229 m          | 3                       |     |
|                                       | 密度<br>孤行字数(C A /           | (m)                                             | 1700 kg/m        |                         |     |
| 初期配置                                  | ・物休個数・51×5                 | <br>1 木を - 最大接                                  | 0.0080 m/        | · Kg<br>4 倍を 1 辺と       |     |
| 仍刻起臣                                  | する正方形内(x.v                 | $= [-2R_{m}, +2R_{m}]$                          | 1) に等間隔断         | 置。                      |     |
|                                       | ・設置高さ:1m(パ                 | イプ収納箱が                                          | 2段重ねされた          |                         |     |
| 計質結果な                                 | を表らに示す フ                   | ジタエデル                                           | を風速場と            | した場合けノ                  | Ŝ   |
| イデボルし                                 | いい武のにたけ。                   | 「 広 が 何 し れ た                                   | - 彭郷で勘ら          | げったし田も                  |     |
| IJNILCI                               |                            | ▶↑目 // 1日 4し/ご                                  | - 影音く取り          | はつにと応4                  |     |
| 1る状況と‡                                | おおむね合致して                   | いる。                                             |                  |                         |     |
| なお、参考                                 | 考としてランキン                   | /渦モデルて                                          | 「評価した場           | 合,飛散距离                  | 推   |
| ら星ナ水亚道                                | <b>歯歯に</b> 十キわ清し           | いがあり ま                                          | 「欧の却生し           | 比較して温度                  | É l |
| (取八小十)                                | 11反に八さな座(                  | $\cdot \lambda \cdot \alpha , \gamma , \gamma $ |                  | 比較して通り                  | z   |
| こ保守的な話                                | 平価結果となる。                   |                                                 |                  |                         |     |
|                                       |                            |                                                 |                  |                         |     |
| 表 6 G                                 | rand Gulf 原子               | 力発電所の                                           | パイプの飛背           | <b> </b>                |     |
| 国注語すば                                 | 地上からの                      |                                                 | 計算結果             |                         | ]   |
| 風速場モリ                                 | が初期高さ                      | 飛散距離                                            | 飛散高さ*2           | 最大水平速度                  |     |
| フジタモデ                                 | ル 1 m (地上)                 | 1.2 m                                           | 0.0 m            | 4.9 m⁄s                 |     |
| ランキン渦モ                                | デル <u>1 m<sup>*1</sup></u> | 42.6 m                                          | 0.34 m           | 30.7 m∕s                | 4 1 |
| · · · · · · · · · · · · · · · · · · · | 40 m                       | 227 m                                           | 0101 m           | 40.9 m⁄s                |     |
| ※1 比較のた                               | こめ, フジタモデルと                | :同条件とした                                         | 0                |                         |     |
| ※2 初期物体                               | 本局さからの飛散(洋                 | 洋上)局さ。                                          |                  |                         |     |
|                                       |                            |                                                 |                  |                         |     |
|                                       |                            |                                                 |                  |                         |     |
|                                       | 旧立光への古王河                   |                                                 |                  |                         |     |
| 6.3 佐呂區                               | 間竜巷での車両升                   | ¥散爭例                                            |                  |                         |     |
| 2006 年 1                              | 1月7日に北海                    | 再道網走支庁                                          | 佐呂間町に            | 発生した竜着                  | ۶.  |
| (以下「佐昌                                | 呂間竜巻」という                   | 。) により,                                         | 4t トラッ           | クが約 40m 利               | 多   |
| 助したことが                                | ジ報告されている                   | 。 <sup>(24)</sup> 。被災状                          | 況を図 29 に         | 「示す。この耳                 |     |
| 加でけ神俗明                                | キに イナ トラック                 | に垂目のタ                                           | が垂声1 イ           | おり 1+ トモ                | 7   |
|                                       | マローロ トノソン                  |                                                 | **本平しし           | ₄J ソ,±L 下ノ<br>· L 両体のの) |     |
| ソクの初期位                                | 10回と移動位直の<br>              | 方かつてい                                           | いつ (図 29 左<br>(回 | 上画像の2)                  | 0   |
| €た,4t ト                               | ラックの他に 2                   | 台の自動車                                           | (図 29 左上ī        | 画像の③と⑥                  |     |
| こついて, 褚                               | 刃期位置と被災後                   | その移動位置                                          | 量が分かって           | いる。この。                  | t   |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 備考 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| いる。このように竜巻被災前後で車両等の位置が明確になってい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | になっている事例は極めて稀である。なお、竜巻による飛散物の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | うに竜巻被災前後で車両等の位置が明確になっている事例は極め                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| る事例は極めてまれである。なお、竜巻飛来物の再現計算は、竜                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 再現計算は, 竜巻が頻発する米国でもほとんど実施されていない。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | てまれである。なお、竜巻飛来物の再現計算は、竜巻が頻発する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 巻が頻発する米国でもほとんど実施されていない。この理由とし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | この理由としては、来襲した実際の竜巻特性を精度良く計測、推                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 米国でもほとんど実施されていない。この理由としては、来襲し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| ては、来襲した実際の竜巻特性を精度よく計測・推測することが                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 測することが困難であることや、自動車等の移動前後の位置が不                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | た実際の竜巻特性を精度よく計測・推測することが困難であるこ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 困難であることや自動車等の移動前後の位置が不明確な場合が多                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 明確な場合が多いことが挙げられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | とや自動車等の移動前後の位置が不明確な場合が多いことが挙げ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| いことが挙げられる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | られる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Image: second | A(H)<br>4 t トラック<br>来用車(赤)<br>王専用重複<br>日 第四の位置<br>※ 乗り上げた果用車<br>品 宿舎<br>C 倉庫<br>日 宿舎<br>B 宿舎<br>C 倉庫<br>日 日 宿舎<br>A 工事専務所<br>B 宿舎<br>C 倉庫<br>日 日 日<br>日 日 日 日<br>日 日 日<br>日 日 日<br>日 日 日<br>日 日 日 日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Image: state in the state |    |
| 第 27 図 佐呂間竜巻 (2006.11.7) による被災状況 (工事事務所                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 第6.3-1図 佐呂間竜巻による被災状況(工事事務所敷地内の車                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 図 29 佐呂間竜巻(2006.11.7)による被災状況(工事事務所敷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 敷地内の車両被災)(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 両被災)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 地内の車両被災) (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| (文献(25)で示されている竜巻被害の方向を 📫で加筆)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (文献 <sup>(27)</sup> の写真に竜巻被害の方向を加筆)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (文献(24)で示されている竜巻被害の方向を 📫 で加筆)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| ここでは、フジタモデルを風速場として用いた車両(4t トラック,乗用車)の飛散評価を行い、実際の被害状況と比べて妥当な結果となるかどうかの確認を行う。方法としては、下記の2 通り                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ここでは、フジタモデルを風速場として用いた車両(4tトラック及び乗用車)の飛散解析を行い、実際の被害状況と比べて妥当な結果となるかどうかの確認を行った。方法としては、下記の2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ここでは、フジタモデルを風速場として用いた車両(4t トラック,乗用車)の飛散評価を行い、実際の被害状況と比べて妥当な<br>結果となるかどうかの確認を行う。方法としては、下記の2 通り                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| とする。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | とおりとした。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | とする。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| (a) 竜巻特性や飛来物(4t トラック,乗用車)の状況を現実的<br>に設定した場合の再現解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>・ 竜巻特性や飛来物(4tトラック及び乗用車)の状況を現実的</li> <li>に設定した場合の再現解析</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (a) 竜巻特性や飛来物(4t トラック,乗用車)の状況を現実的<br>に設定した場合の再現解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| (b) 相崎刈羽原子力発電所に適用する飛来物評価法による検証                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>         ・ 今回の</li> <li>         ・ 一</li> <li>         ・ ・</li> <li>         ・・</li> <li>         ・</li> <li></li></ul> | (b) 今回の飛散解析 手法による検証                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| (a) 竜巻特性や飛来物の状況を現実的に設定した場合の再現解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1) 竜巻特性や飛来物 (4t トラック及び乗用車)の状況を現実的<br>に設定した場合の再現解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (a) 竜巻特性や飛来物の状況を現実的に設定した場合の再現解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| (i)4t トラックの飛散解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a. 4t トラックの飛散解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (i)4t トラックの飛散解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 再現解析の条件として、入手可能なデータ <sup>(25)(26)</sup> に基づき、合理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 解析条件として,入手可能なデータ <sup>(27)(28)</sup> に基づき,合理的と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 再現解析の条件として、入手可能なデータ <sup>(24)(25)</sup> に基づき、合理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 的と考えられる竜巻特性条件と飛来物(4t トラック)の条件を第                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 考えられる竜巻特性条件と飛来物(4tトラック)の条件を第6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 的と考えられる竜巻特性条件と飛来物(4t トラック)の条件を表                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 7表のように設定する。初期配置の条件として,配置個数は1個                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1表のとおり設定した。初期配置の条件として,配置数は1台と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7のように設定する。初期配置の条件として,配置個数は1個とし,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| とし, 竜巻が遠方から近づく状況設定としている。また, 風速 60m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | し、竜巻が遠方から近づく状況設定としている。また、風速 60m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 竜巻が遠方から近づく状況設定としている。また,風速 60m/s 以                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 以下では浮上しない設定となっている。その上で、竜巻との距離                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /s以下では浮上しない設定 <sup>(16)</sup> とした。その上で, 竜巻との距離                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 下では浮上しない設定となっている。その上で、竜巻との距離を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| を合理的な範囲で変化させ、佐呂間竜巻の再現性を確認する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | を合理的な範囲で変化させ、佐呂間竜巻の再現性を確認した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 合理的な範囲で変化させ、佐呂間竜巻の再現性を確認する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)         | 東海第二発電所(2018.9.18版)                           | 島根原子力発電所 2号                |
|----------------------------------------|-----------------------------------------------|----------------------------|
| 車両と竜巻中心との距離を 18 m, 20 m, 22 m とした場合の解析 | 車両と竜巻中心との距離を 18m, 20m, 22m とした場合の解析結          | 車両と竜巻中心との距離を 18 m, 20 m, 2 |
| 結果を第8表及び第28図に示す。車両の軌跡は竜巻中心との相          | 果を第6.3-2表及び第6.3-2図に示す。車両の軌跡は竜巻中心              | 結果を表8及び図30に示す。車両の軌跡は       |
| 対位置関係に敏感であるが、各ケースとも飛散方向が実際の移動          | との相対位置関係に敏感であるが、各ケースとも飛散方向が実際                 | 関係に敏感であるが、各ケースとも飛散方        |
| 方向とおおむね合致しており,特に車両と竜巻中心との距離を 20m       | の移動方向とおおむね合致しており、特に車両と竜巻中心との距                 | おおむね合致しており、特に車両と竜巻中        |
| としたケース2 では飛散距離もほぼ正確に再現されている。この         | 離を 20m としたケース 2 では飛散距離もほぼ正確に再現されてい            | たケース2 では飛散距離もほぼ正確に再現       |
| ように、フジタモデルを風速場とした飛散解析で、飛来物が地上          | る。このように、フジタモデルを風速場とした飛散解析で、物体                 | に、フジタモデルを風速場とした飛散解析        |
| に設置された状況からの飛散挙動が再現できることが確認でき           | が地上に設置された状況からの飛散挙動が再現できることが確認                 | された状況からの飛散挙動が再現できるこ        |
| る。                                     | できた。                                          |                            |
|                                        | 第6.3-1表 佐呂間竜巻による4tトラックの飛散解析条件 <sup>(25)</sup> | 表7 佐呂間竜巻の4t トラック           |

第7表 佐呂間竜巻の4t トラックの計算条件

| 竜巻条件  | 設計竜巻風速                              |      | 92m/s                     |  |  |  |  |
|-------|-------------------------------------|------|---------------------------|--|--|--|--|
|       | 最大接線風速                              |      | 70m/s                     |  |  |  |  |
|       | 移動速度                                |      | 22m/s                     |  |  |  |  |
|       | コア半径                                |      | 20m                       |  |  |  |  |
| 飛来物条件 | 車種不明のため,三菱 車両長さ                     |      | 8.1m                      |  |  |  |  |
|       | ふそう PA-FK71D の仕                     | 車両幅  | 2.24m                     |  |  |  |  |
|       | 様を採用                                | 車両高さ | 2. 5m                     |  |  |  |  |
|       |                                     | 車両質量 | 4000kg                    |  |  |  |  |
|       | 飛行定数 $C_DA/m$                       |      | 0.0056 m <sup>2</sup> /kg |  |  |  |  |
| 初期配置  | <ul> <li>・物体個数1個</li> </ul>         |      |                           |  |  |  |  |
|       | │・竜巻は遠方から物体に近づくが,風速 60m/s 以下では浮上しない |      |                           |  |  |  |  |
|       | ・設置高さ0m                             |      |                           |  |  |  |  |

# 第8表 佐呂間竜巻での4t トラックの飛散計算結果

| 解析  | 車両と竜巻中心と | 計算結果(フジタモデル) |      |          |  |
|-----|----------|--------------|------|----------|--|
| ケース | の距離      | 飛散距離         | 飛散高さ | 最大水平速度   |  |
| 1   | 22m      | 45.4 m       | 2.8m | 25.8 m/s |  |
| 2   | 20m      | 35.5 m       | 2.3m | 22.2 m/s |  |
| 3   | 18m      | 25.9 m       | 1.7m | 18.8 m/s |  |

| 竜巻条件  | 竜巻の最大風速                               | 92 m∕s <sup>‰1</sup> |
|-------|---------------------------------------|----------------------|
|       | 最大接線風速                                | 70 m/s               |
|       | 移動速度                                  | 22 m/s               |
|       | コア半径                                  | 20 m                 |
| 飛来物条件 | 車両長さ**2                               | 8.1 m                |
|       | 車両幅**                                 | 2.24 m               |
|       | 車両高さ**                                | 2.5 m                |
|       | 車両重量                                  | 4000 kg              |
|       | 飛行定数 (C <sub>D</sub> A/m)             | 0.0056 m²⁄kg         |
| 初期配置等 | <ul> <li>物体個数:1台</li> </ul>           |                      |
|       | ・設置高さ:0m(地上)                          |                      |
|       | <ul> <li>「竜巻は遠方から物体に近づくが、」</li> </ul> | 風速 60m/s 以下では浮上      |
|       | しない」ことを条件として付加                        |                      |

※1 佐呂間竜巻のフジタスケール (F3)に基づく。 ※2 車種不明のため,三菱ふそう PA-FK71D を仮定。

第6.3-2表 佐呂間竜巻による4tトラックの飛散解析結果

| L 7 | 車両と竜巻中心との | 計算結果   |       |          |  |
|-----|-----------|--------|-------|----------|--|
| 7-2 | 距離        | 飛散距離   | 飛散高さ  | 最大水平速度   |  |
| 1   | 22 m      | 45.4 m | 2.8 m | 25.8 m⁄s |  |
| 2   | 20 m      | 35.5 m | 2.3 m | 22.2 m⁄s |  |
| 3   | 18 m      | 25.9 m | 1.7 m | 18.8 m⁄s |  |

|                  | 島根原子ナ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 備考             |                      |                                          |   |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|------------------------------------------|---|
| 車両と竜着            | 途中心との距離を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                      |                                          |   |
| 果を表8及            | とび図 30 に示す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                      |                                          |   |
| 係に敏感で            | であるが. 各ケー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | スとも飛           | 散方向がま                | <b> </b> 際の移動方向と                         |   |
| おかね合致            | 女しており、特に」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 重両と音楽          | 巻中心との                | )距離を 20m とし                              |   |
| ケースの、            | でけ飛散距離もほ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 再祖さわっ                |                                          |   |
| 7 2 2            | についた国法坦し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | は正確に           | 町ちても                 |                                          |   |
| , ノンタイ<br>いたいいロン | こうルを風速場と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | した形取           | 所作が「しい、そ<br>マート」、ごでも | の仲か地上に改直                                 |   |
| れた状況カ            | らの飛散季動から                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 再現でき.          | ることか確                | 認でさる。                                    |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |                                          |   |
|                  | 表7 佐呂間竜巻の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | り4t トラ         | ラックの計                | 算条件                                      |   |
| 竜巻条件             | 設計最大風速                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 92 m/s               | 3                                        |   |
|                  | 最大接線風速                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 70 m/s               | 3                                        |   |
|                  | 移動速度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 22 m/s               | 3                                        |   |
|                  | コア半径                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1              | 20 m                 |                                          |   |
| 飛来物条件            | 車種不明のため, 三菱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 長さ             | 8.1 m                |                                          |   |
|                  | ふそう PA-FK71D の仕                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 幅              | 2.24 m               |                                          |   |
|                  | 様を採用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 高さ             | 2.5 m                |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 重量             | 4000 kg              | 5                                        |   |
|                  | 飛行定数(C <sub>D</sub> A/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )              | 0.0056               | m²⁄kg                                    |   |
| 初期配置             | <ul> <li>物体個数1個</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                      |                                          |   |
|                  | <ul> <li>・ 竜巻は遠方から物体</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | に近づくが,         | 風速 60m/s↓            | 以下では浮上しない                                |   |
|                  | <ul> <li>・地上からの初期高さ</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 m            |                      |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |                                          |   |
| 主。               | の仕口明幸半での                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4+ 15 - 5      | いカの孤共                | 4.14.14.14.14.14.14.14.14.14.14.14.14.14 |   |
| 12 (             | の化白间电合ての                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4t r /         | ソンシア順氏               | 和异加不                                     |   |
| 解析               | 車両と竜巻中心と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 計              | 算結果(フジタ              | (モデル)                                    |   |
| ケース              | の距離                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 飛散距離           | 飛散高さ                 | 最大水平速度                                   |   |
| 1                | 22m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.4 m         | 2.8m                 | 25.8 m/s                                 |   |
| 2                | 20m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.5 m         | 2.3m                 | 22.2 m/s                                 |   |
| J                | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 <b>0.9</b> m | 1.70                 | 10.0 11/ 5                               |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |                                          |   |
|                  | And in case of the local division of the loc |                | 10.000               |                                          |   |
|                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                      |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1000                 |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 111          | 100.000              |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111            |                      |                                          |   |
|                  | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HIP.           |                      |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7- 5-          | ス1                   |                                          |   |
|                  | and and a start and a start a  | の着             | 地点                   |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17-2           | 2                    |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | の着地            | 点                    |                                          |   |
|                  | 5 U ma 🦓 🖉 🐧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                      |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ワース3           | 5                    |                                          |   |
|                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 07/11/10/      | a                    |                                          |   |
|                  | 1 8 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1-            |                      |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |                      |                                          |   |
|                  | 1/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              |                      |                                          |   |
|                  | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 BL           | CO                   |                                          |   |
|                  | / - Manager - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 175            | 00m                  |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 .8. 19       | 100                  |                                          |   |
| 11               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~ . ~          | الملك من             |                                          |   |
| 凶 30             | フシタモデルによ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | るトラッ           | ク飛散の                 | 再垷解朳結果                                   |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |                                          |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |                                          | 1 |

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                    |      | _ |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------|--------------------|------|---|
|           | 島根原子プ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 備考          |                                   |                    |      |   |
| 車両と竜      | 巻中心との距離を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2析          |                                   |                    |      |   |
| 土田 た主 の   | 及び図 20 にテオ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·æ          |                                   |                    |      |   |
| 日本を衣の     | 及び図30にかり。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 中回の知        | ┉は电仓╸                             |                    | .旦.  |   |
| 関係に敏感     | であるが,各ケー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | スとも飛        | 散方向が多                             | <b> </b>           | 12   |   |
| おむね合      | 致しており、特に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 車両と竜        | 巻中心との                             | )距離を 20m と         | L    |   |
| こケース2     | では飛散距離もほ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ぼ正確に        | 再現されて                             | ている。このよ            | 5    |   |
| こ フジタ     | エデルを圃速場と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | した孫散        | 解析でま                              | か休が地上に 設           | ・罟   |   |
|           | こうがを困惑のと                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | カサルト く 、 ド<br>マ テート ユミ <i>サ</i> オ |                    | . 但. |   |
| されに状況     | からの飛取争動か                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 冉呪 じさ       | ることが帷                             | 「記できる。             |      |   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                    |      |   |
|           | 表7 佐呂間竜巻の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | の 4t トラ     | ラックの計                             | 算条件                |      |   |
| 音卷条件      | 設計量大風速                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 92 m /                            | s                  | 1    |   |
| -6-E /KII | 最大接線風速                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 70 m/s                            | s                  |      |   |
|           | 移動速度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 22 m/s                            | s                  |      |   |
|           | コア半径                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>F</b> 1. | 20 m                              |                    |      |   |
| 飛来物条件     | <ul> <li>車種不明のため、二参</li> <li>らそう PA-FK71D の仕</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 長さ          | 8.1 m                             |                    |      |   |
|           | ふて J FA-FAID の仕<br>様を採用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 幅           | 2.24 m                            |                    |      |   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 重量          | 4000 kg                           | g                  |      |   |
|           | 飛行定数(C <sub>D</sub> A/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )           | 0.0056                            | m <sup>2</sup> /kg |      |   |
| 初期配置      | <ul> <li>物体個数1個</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                   |                    |      |   |
|           | <ul> <li>・ 竜巻は遠方から物体</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | に近づくが,      | 風速 60m/s↓                         | 以下では浮上しない          |      |   |
|           | ・地上からの初期局で                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 m         |                                   |                    | ]    |   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                    |      |   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                    |      |   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                    |      |   |
| 表         | 8 佐呂間竜巻での                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ・4t トラ      | ックの飛背                             | 女計算結果              |      |   |
| 伯召太后      | 車両と竜巻中心と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 計:          | <br>算結果(フジタ                       | (モデル)              | 1    |   |
| ケース       | の距離                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 飛散距離        | 飛散高さ                              | 最大水平速度             |      |   |
| 1         | 22m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.4 m      | 2.8m                              | 25.8 m/s           |      |   |
| 2         | 20m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.5 m      | 2. 3m                             | 22.2 m/s           | ]    |   |
| 3         | 18m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.9 m      | 1.7m                              | 18.8 m/s           |      |   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                    |      |   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                    |      |   |
|           | And in case of the local division of the loc |             | March 1998                        |                    |      |   |
|           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                   |                    |      |   |
|           | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11          | - C                               |                    |      |   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14          |                                   |                    |      |   |
|           | ON A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11          |                                   |                    |      |   |
|           | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-          | 71                                |                    |      |   |
|           | S 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | の着          | 地点                                |                    |      |   |
|           | State  | ケース         | .2                                |                    |      |   |
|           | 50 m 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | の着地         | 巴京                                |                    |      |   |
|           | 2 2 2 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ケース3 の着地は   | 5                                 |                    |      |   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A           |                                   |                    |      |   |
|           | 19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1           |                                   |                    |      |   |
|           | 1742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           |                                   |                    |      |   |
|           | × ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the         | 60                                |                    |      |   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11          | ovm                               |                    |      |   |
|           | コンントーー・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~ / -       | ь <del>л</del> ини                |                    |      |   |
| 図 30      | ノンタモデルによ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 、るトフッ       | ック 形 散の・                          | 冉垷解朳結果             |      |   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                    |      |   |





第28 図 フジタモデルによるトラック飛散の再現解析結果



第6.3-2図 フジタモデルによる4tトラックの飛散解析結果 (文献<sup>(27)</sup>の写真に軌跡を加筆)

# 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所(2018.9.18版)

# (ii) 乗用車の飛散解析

白い乗用車(第27図の⑥)の被災事例を対象として、物体を1 点初期配置した条件で最大水平速度等を計算する。

白い乗用車の計算条件について, 第9表に示す。

第9表 佐呂間竜巻の白い乗用車の計算条件

| 竜巻条件  | 第7表と同様                                                                                     |      |        |  |  |
|-------|--------------------------------------------------------------------------------------------|------|--------|--|--|
|       | 白い乗用車                                                                                      | 車両長さ | 4. 40m |  |  |
| 飛来物条件 | トヨタカローラ   [                                                                                | 車両幅  | 1.70m  |  |  |
|       |                                                                                            | 車両高さ | 1.50m  |  |  |
|       | 飛行定数 C <sub>D</sub> A/m 0.0097 m <sup>2</sup> /kg                                          |      |        |  |  |
| 初期配置  | <ul> <li>・物体個数1個</li> <li>・ 竜巻は遠方から物体に近づくが、風速 60m/s 以下では浮上しない</li> <li>・ 設置高さ0m</li> </ul> |      |        |  |  |

白い乗用車と竜巻中心との距離を, 18m, 20m, 22m とした場合 の解析結果を第10表及び第29図に示す。飛散距離についてはケ 析結果を,第6.3-4表及び第6.3-3図に示す。飛散距離につい ース1 でおおむね合致している。

飛散方向については、飛び出し方向はおおむね合致しているも のの、最終的な着地点には多少のずれが生じている。これは乗用 車(白)が建物に近接して駐車していたため、この建物の倒壊の 影響を受けて飛散方向のずれが生じたものと推定される。

なお、赤い乗用車(第27図の③)について評価した場合は、竜 巻中心との距離が大きいため飛散しない解析結果となる。ただし, 造2階建て,第27図のA)の直ぐ下流側に駐車しており、その瓦 造2階建,第 6.3-1図のA)のすぐ下流側に駐車しており、 礫の影響を受けて一緒に移動したものと考えられる。

第10表 佐呂間竜巻での白い乗用車の飛散計算結果

| ケース         中心との距離         飛散距離         飛散高さ         最大水平速度           1         22m         51.9 m         3.6m         28.9 m/s           2         20m         43.5 m         3.4m         24.7 m/s           3         18m         34.7 m         2.9m         21.1 m/s | 解析  | 白い乗用車と竜巻 | 計算結果(フジタモデル) |      |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|--------------|------|----------|
| 1         22m         51.9 m         3.6m         28.9 m/s           2         20m         43.5 m         3.4m         24.7 m/s           3         18m         34.7 m         2.9m         21.1 m/s                                                                       | ケース | 中心との距離   | 飛散距離         | 飛散高さ | 最大水平速度   |
| 2         20m         43.5 m         3.4m         24.7 m/s           3         18m         34.7 m         2.9m         21.1 m/s                                                                                                                                            | 1   | 22m      | 51.9 m       | 3.6m | 28.9 m/s |
| 3 18m 34.7 m 2.9m 21.1 m/s                                                                                                                                                                                                                                                 | 2   | 20m      | 43.5 m       | 3.4m | 24.7 m/s |
|                                                                                                                                                                                                                                                                            | 3   | 18m      | 34.7 m       | 2.9m | 21.1 m/s |

b. 乗用車の飛散解析

白い乗用車(第6.3-1図の⑥)の被災事例を対象として、物体 を1点初期配置した条件で最大水平速度等を計算した。 乗用車の計算条件について、第6.3-3表に示す。

第6.3-3表 佐呂間竜巻による乗用車の飛散解析条件

| 竜巻条件                               | トラック(第6.3-1表)に同じ          |                                |  |  |  |  |  |
|------------------------------------|---------------------------|--------------------------------|--|--|--|--|--|
| 飛来物条件                              | 車両長さ**2                   | 4.4 m                          |  |  |  |  |  |
|                                    | 車両幅**                     | 1.7 m                          |  |  |  |  |  |
|                                    | 車両高さ <sup>*</sup> 1.5 m   |                                |  |  |  |  |  |
|                                    | 飛行定数 (C <sub>D</sub> A/m) | $0.0097 \text{ m}^2/\text{kg}$ |  |  |  |  |  |
| 初期配置等                              | 初期配置等 · 物体個数:1台           |                                |  |  |  |  |  |
| <ul> <li>・設置高さ:0 m (地上)</li> </ul> |                           |                                |  |  |  |  |  |
| ・「竜巻は遠方から物体に近づくが,風速 60m/s 以下では浮上   |                           |                                |  |  |  |  |  |
| しない」ことを条件として付加                     |                           |                                |  |  |  |  |  |
| ※1 佐呂間竜巻のフジタスケール (F3) に基づく。        |                           |                                |  |  |  |  |  |

※2 車種不明のため、トヨタカローラを仮定。

乗用車と竜巻中心との距離を 18m, 20m 及び 22m とした場合の解 ては、ケース1でおおむね合致している。

飛散方向については、飛び出し方向はおおむね合致しているも のの、最終的な着地点には多少のずれが生じている。これは乗用 車(白)が建物(A棟)に近接して駐車していたため、この建物 の倒壊の影響を受けて飛散方向のずれが生じたものと推定され る。

なお,赤い乗用車 (第6.3-1 図の③) について評価した場合は, 竜巻中心との距離が大きいため飛散しない結果となった。ただし, 実際には、赤い乗用車は全壊・飛散したプレハブ建物(軽量鉄骨 | 実際には、赤い乗用車は全壊、飛散したプレハブ建物(軽量鉄骨 そのがれきの影響を受けて一緒に移動したものと考えられる。

第6.3-4表 佐呂間竜巻による乗用車の飛散解析結果

| 4 7 | 車両と竜巻中心との | 計算結果   |       |          |  |  |
|-----|-----------|--------|-------|----------|--|--|
| ケース | 距離        | 飛散距離   | 飛散高さ  | 最大水平速度   |  |  |
| 1   | 22 m      | 51.9 m | 3.6 m | 28.9 m⁄s |  |  |
| 2   | 20 m      | 43.5 m | 3.4 m | 24.7 m⁄s |  |  |
| 3   | 18 m      | 34.7 m | 2.9 m | 21.1 m⁄s |  |  |

|                                |                               | 島根原子                                    | 力発電所                  | 2号炉                                          |             |            | 備考 |
|--------------------------------|-------------------------------|-----------------------------------------|-----------------------|----------------------------------------------|-------------|------------|----|
|                                |                               |                                         |                       |                                              |             |            |    |
|                                | (ⅲ)乗                          | 用車の飛散解析                                 |                       |                                              |             |            |    |
| I                              | 白い乗用                          | 車(図 29 の⑥)の                             | の被災事例                 | を対象と                                         | して,物体を1     | 点          |    |
| 初1                             | 却配置し                          | た冬供で最大水ゴ                                | 「東西笑を言                | 計算する                                         |             |            |    |
| - <b>F</b> (1.                 |                               | これ (取八小)                                |                       |                                              |             |            |    |
| ł                              | ヨい来用」                         | 単の計昇余件にご                                |                       | 9亿不9。                                        |             |            |    |
|                                |                               |                                         |                       |                                              |             |            |    |
|                                |                               | 表9 佐呂間竜湯                                | 巻の白い乗,                | 用車の計算                                        | 算条件         |            |    |
|                                | 竜巻条件<br>(1)                   | 表7と同様                                   |                       |                                              |             |            |    |
| 5                              | 髦米物条件                         | 長さ <sup>**1</sup><br>                   |                       | 4.4 1                                        | n<br>       |            |    |
|                                |                               | n曲<br>高さ <sup>※1</sup>                  |                       | 1. 7 1                                       | n           |            |    |
|                                |                               | 飛行定数(C <sub>D</sub> A/                  | m)                    | 0.009                                        | 97 m²⁄kg    |            |    |
| Ŕ                              | 切期配置等                         | <ul> <li>・物体個数:1台</li> </ul>            |                       |                                              |             |            |    |
|                                |                               | <ul> <li>・地上からの初期</li> <li>・「</li></ul> | 寄さ:0 m (地.<br>勿体に近づくが | 上)<br>シ.風谏 60mィ                              | ´s 以下では浮上しフ | <i>t</i> 2 |    |
|                                |                               | い」ことを条件と                                | して付加                  | , <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> |             |            |    |
| *                              | (1 車種不明                       | 月のため、トヨタカロ                              | ーラを仮定。                |                                              |             |            |    |
|                                |                               |                                         |                       |                                              |             |            |    |
| ł                              | 白い乗用                          | 車と竜巻中心との                                | )距離を,]                | 18m, 20m,                                    | 22m とした場    | 合          |    |
| の                              | 解析結果                          | を表 10 及び図 31                            | に示す。飛                 | 散距離に                                         | ついてはケース     | ス1         |    |
| で、                             | おおむね                          | 合致している。                                 |                       |                                              |             |            |    |
| Ŧ                              | <b>飛散方向</b>                   | については、飛び                                | バ出し方向に                | はおおむね                                        | 2合致している     | 55         |    |
| D<br>0                         | のの 最終的な差地占にけ多小のずれが生じている これけ毎日 |                                         |                       |                                              |             |            |    |
| 車                              |                               |                                         |                       |                                              |             |            |    |
| 平·<br>日/ %                     | 単(日)が建物に辺接して駐車していたため、この建物の倒壊の |                                         |                       |                                              |             |            |    |
| 影響を受けて飛散方向のずれが生じたものと推定される。     |                               |                                         |                       |                                              |             |            |    |
|                                |                               |                                         |                       |                                              |             |            |    |
| 7                              | なお,赤い                         | い乗用車(図 29 の                             | の③)につ                 | いて評価                                         | した場合は,竜     | 宦卷         |    |
| 中,                             | 中心との距離が大きいため飛散しない解析結果となる。ただし、 |                                         |                       |                                              |             |            |    |
| 実際には、赤い乗用車は全壊・飛散したプレハブ建物(軽量鉄骨  |                               |                                         |                       |                                              |             | 卡骨         |    |
| 造2階建て 図29のA)の直ぐ下流側に駐車しており その瓦礫 |                               |                                         |                       |                                              |             | 石純         |    |
|                                |                               |                                         |                       |                                              |             |            |    |
| ())]                           | 影響を安い                         | りて一緒に移動し                                | ノにものとす                | 与えられる                                        | D .         |            |    |
|                                |                               |                                         |                       |                                              |             |            |    |
|                                | 表                             | 10 佐呂間竜巻て                               | 「の白い乗用                | 目車の飛背                                        | 故計算結果       |            |    |
|                                | 解析                            | 白い乗用車と竜巻                                | 計算                    | 算結果(フジタ                                      | マモデル)       | 7          |    |
|                                | ケース                           | 中心との距離                                  | 飛散距離                  | 飛散高さ                                         | 最大水平速度      |            |    |
|                                | 1                             | 22m                                     | 51.9 m                | 3.6m                                         | 28.9 m/s    |            |    |
|                                | 2                             | 20m                                     | 43.5 m                | 3.4m                                         | 24.7 m/s    |            |    |
|                                | 3                             | 18m                                     | 34.7 m                | 2.9m                                         | 21.1 m/s    |            |    |
|                                |                               |                                         |                       |                                              |             |            |    |
|                                |                               |                                         |                       |                                              |             |            |    |
|                                |                               |                                         |                       |                                              |             |            |    |

|                    | 島根原子                                           | 力発電所                                       | 2号炉               |                | 備考 |
|--------------------|------------------------------------------------|--------------------------------------------|-------------------|----------------|----|
|                    |                                                |                                            |                   |                |    |
| (ii)乗戶             | 用車の飛散解析                                        |                                            |                   |                |    |
| 白い乗用耳              | 車(図 29 の⑥)の                                    | の被災事例                                      | を対象と              | して,物体を1点       | Ĩ  |
| 期配置した              | こ条件で最大水平                                       | ☑速度等を書                                     | 計算する。             |                |    |
| 白い乗用す              | 車の計算条件にく                                       | いて 表(                                      | 9に示す              |                |    |
|                    |                                                | , <u>х</u>                                 | 0 (2)1 ) 0        |                |    |
|                    | 主 0 廿口明之)                                      | との白い垂                                      | 田市の利佐             | 当久 (小          |    |
| <b>善</b> 举冬仲       | 衣9 佐 田 同 电 7<br>ま7 レ 同 様                       | い日い来                                       | 用車の計算             | <b>幕</b> 宋件    |    |
| 電空末日<br>飛来物条件      | 表 7 こ 向 1 秋<br>長 さ <sup>※1</sup>               |                                            | 4.4 r             | 1              |    |
| ,,                 |                                                |                                            | 1.7 r             | 1              |    |
|                    | 高さ※1                                           |                                            | 1.5 m             | 1              |    |
|                    | 飛行定数(C <sub>D</sub> A/                         | m)                                         | 0.009             | 97 m²∕kg       |    |
| 初期配置等              | <ul> <li>・物体個数:1台</li> <li>・地上からの初期</li> </ul> | ミン・0 m (地                                  | F)                |                |    |
|                    | ・「竜巻は遠方から物                                     | の体に近づくか                                    | エ/<br>ぶ, 風速 60m/  | ´s 以下では浮上しな    |    |
| ※1 声插不明            | しい」ことを条件と<br>3のため トヨタカロ                        | : して付加<br>ーラを仮定                            |                   |                |    |
| ※1 単種小り            |                                                | ノを収定。                                      |                   |                |    |
| 白い垂田司              | まと会类山心との                                       | い昭離た                                       | 1.8m 2.0m         | 99m レレた担A      |    |
|                    |                                                |                                            |                   |                |    |
| 「解析結果を             | と表 10 及び図 31                                   | に不す。飛                                      | 前距離に              | ついてはケース        |    |
| おおむね合              | 含致している。                                        |                                            |                   |                |    |
| 飛散方向に              | こついては,飛び                                       | ド出し方向は                                     | はおおむれ             | a合致しているも       |    |
| の,最終的              | 内な着地点には多                                       | 多少のずれ                                      | が生じてい             | いる。これは乗用       | 3  |
| 〔(白)が類             | 書物に近接して顯                                       | 主車してい                                      | たため、こ             | この建物の倒壊の       |    |
| 響を受けて              | て飛散方向のずれ                                       | ぃが生じたう                                     | ものと推定             | こされる。          |    |
|                    |                                                |                                            |                   |                |    |
| わたまし               | 、垂田重(図 90 /                                    | ひの) につ                                     | いて証価              | した坦公は一会当       | 4  |
| いし<br>の<br>LT<br>マ |                                                | ×#41 3.55                                  |                   | した物口は,电包       |    |
| いとの距離              | 誰か大さいため用                                       | も取 しない)                                    | 弊 <u></u> 忻 結 未 。 |                |    |
| 際には、               | 赤い乗用車は全境                                       | <b>後・</b> 飛散した                             | たプレハン             | ブ建物(軽量鉄骨       |    |
| き2階建て,             | 図 29 の A)のī                                    | 直ぐ下流側                                      | に駐車し              | ており,その瓦礴       | ĸ  |
| 影響を受け              | けて一緒に移動し                                       | たものとネ                                      | 考えられる             | D <sub>o</sub> |    |
|                    |                                                |                                            |                   |                |    |
| 丰                  | 10 佐모問                                         | 「の白い垂目                                     | 日宙の飛費             | #計質結里          |    |
| 1                  |                                                |                                            |                   |                |    |
| 解析 ケース             | 日い来用単と电巻<br>中心との距離                             | 可与<br>一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一 | ■稲未(ノンク)          | 最大水亚速度         |    |
| 1                  | 22m                                            | 51.9 m                                     | 3. 6m             | 28.9 m/s       |    |
| 2                  | 20m                                            | 43.5 m                                     | 3.4m              | 24.7 m/s       |    |
| 3                  | 18m                                            | 34.7 m                                     | 2.9m              | 21.1 m/s       |    |
|                    |                                                |                                            |                   | _              |    |
|                    |                                                |                                            |                   |                |    |
|                    |                                                |                                            |                   |                |    |
|                    |                                                |                                            |                   |                |    |

| 柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版) | 東海第二発電所(2018.9.18版) |                         | 島相                                                      | 限原子力発電所 2号                                                                                                               | 炉                                                                                                                             | 備考 |
|------------------------------------|---------------------|-------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----|
|                                    |                     | 竜巻条件<br>飛来物条件<br>初期配置等  | <u>表</u><br>表7と同様<br>表7と同様<br>・物体個数:<br>方形内(x<br>・地上からの | 11 多点配置時の計算<br>51×51台を,最大接線風速<br>;,y=[-2Rm,+2Rm])に等間隔離<br>D初期高さ:0m(地上)                                                   | <u>条件</u><br>半径の4倍を1辺とする正<br>2置。                                                                                              |    |
|                                    |                     | 表12 実                   | 際の被災状                                                   | 況と多点配置等を考慮                                                                                                               | <u>意した場合の飛散解析</u>                                                                                                             |    |
|                                    |                     |                         |                                                         | 手法の結果の比較                                                                                                                 |                                                                                                                               |    |
|                                    |                     | 計算結果<br>(TONBOS)        | 飛散距離<br>86.5 m                                          | <ul><li>飛散局さ</li><li>5.3 m</li></ul>                                                                                     | 取入水平速度     39.9 m/s     (約 144 km/hr)                                                                                         |    |
|                                    |                     | (TONBOS)<br>実際の被災<br>状況 | 約 40 m                                                  | トラックの運転席に乗<br>車していた乗員2名が<br>幸いにも存命で救出さ<br>れ,搬送先の病院で聞<br>き取り調査に応じてお<br>り,被災したトラック<br>が地面から5.3m以上<br>の高所から落下したと<br>は考えにくい。 | (株) 144 km/hr)<br>被災後もほぼ元の外形<br>を留めていることが示<br>されており,実際の飛<br>来物速度は本解析で得<br>られた最大飛来物速度<br>(約 144 km/hr)を遙か<br>に下回るものと推察で<br>きる。 |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                  | 東海第二発電所(2018.9.18版)                                                                                                | 島根原子力発電所 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                 |                                                                                                                    | 5.3m<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                 |                                                                                                                    | (a) 物体の軌跡(水平移動距離と飛散高さの関係) (b)<br>(フジタモデル,地上)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                 |                                                                                                                    | $\left( \underbrace{u}_{u} \\ \underbrace{u}_{$ |
|                                                                                                 |                                                                                                                    | (a)物体の軌跡(水平移動距離と飛散高さの関係)(b)<br>(参考:ランキン渦モデル,地」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (b) 柏崎刈羽原子力発電所に適用する飛来物評価法による検証<br>(27)                                                          | (2) 今回の飛散解析手法による検証                                                                                                 | 図 32 多点配直等を考慮した場合の飛散解<br>(b) 今回の飛散解析手法による検証 <sup>(26)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ここでは、柏崎刈羽原子力発電所に適用する飛来物評価法の竜<br>巻条件・物体初期配置条件で前述の佐呂間竜巻における4tトラッ<br>ク及び白い乗用車の被災事例を評価し、佐呂間竜巻での実際の被 | ここでは、今回の飛散解析手法で、前述の佐呂間竜巻における<br>4t トラック及び乗用車の被災事例を評価し、実際の被災状況(飛<br>散距離等)と比較する。                                     | ここでは、今回の飛散解析手法で、前近<br>4t トラック及び白い乗用車の被災事例を<br>実際の被災状況(移動距離等)との結果を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>         、</li></ul>                                                                   | <ul> <li>a.4tトラックの飛散解析</li> <li>解析条件について第6.3-5表に示す。竜巻条件としては、最大</li> <li>風速を92m/sとし、その他の特性量については、竜巻影響評価ガ</li> </ul> | (i)4t トラックの飛散解析<br>計算条件について表13に示す。竜巻条(<br>最大風速を92m/sとし,その他の特性量)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                     |           | 東海第二発電所(2018.9                             | 9.18版)                          |         | 島根原子力発電所 2                                                     | 2 号炉                       | 備考 |
|----------------------------------------------------|-----------|--------------------------------------------|---------------------------------|---------|----------------------------------------------------------------|----------------------------|----|
| 例示されている方法に従い,移動速度 Vt を 14 m/s (最大風速の               | イドに例示さ    | れている方法に従い、移動                               | 速度V <sub>tr</sub> を14m/s(最大     | 示されている  | 方法に従い,移動速度 V <sub>t</sub> を                                    | 14 m/s (最大風速の 15%),        |    |
| 15%), 竜巻コア半径 R <sub>m</sub> を 30 m とする。            | 風速の 15%), | , 竜巻コア半径 R m を 30m と                       | こた。                             | 竜巻コア半径  | €R <sub>m</sub> を 30 m とする。                                    |                            |    |
|                                                    |           |                                            |                                 |         |                                                                |                            |    |
| 第11表 柏崎刈羽原子力発電所に適用する飛来物評価法の計算                      | 第(        | 6.3-5表 今回の飛散解析手法に基                         | <b>基づく計算条件</b>                  | 表 13 島  | 根原子力発電所に適用する飛                                                  | そ来物評価法の計算条件                |    |
| 条件                                                 | 竜巻条件      | 設計竜巻風速                                     | 92 m/s                          | 竜巻条件    | 設計竜巻風速                                                         | 92 m⁄s                     |    |
|                                                    |           | 最大接線風速<br>移動速度                             | 78 m/s                          |         | 最大接線風速                                                         | 78 m/s                     |    |
| 最大接線風速         78m/s           移動速度         14m/s  |           | コア半径                                       | 30 m                            |         | 移動速度<br>コア半径                                                   | 14 m⁄s<br>30 m             |    |
| コア半径         30m           飛来物条件         第7表と同様    | 飛来物条件     | トラック(第6.3-1表)に同じ                           |                                 | 飛来物条件   | 表7と同様                                                          |                            |    |
| 初期配置 ・物体個数 51×51 個, 竜巻半径の 4 倍を一辺とする正方形内 (x, y=     | 初期配置      | ・物体個数:51×51 台を,最大接<br>とする正方形内(x, v=「-2R_++ | 線風速半径の 4 倍を 1 辺<br>2R_])に等間隔配置。 | 初期配置    | <ul> <li>・物体個数:51×51台を,最大</li> <li>コトナスエナ形内(n == 0)</li> </ul> | 大接線風速半径の4倍を1               |    |
| [-2 <i>Rm</i> , +2 <i>Rm</i> ]) に等面隔配置<br>・設置高さ 0m |           | <ul> <li>・設置高さ:0 m (地上)</li> </ul>         |                                 |         | 辺とりる止力形的(x, y-l-2)<br>置。                                       | K m, +∠ K m 」) (⊂ 寺 旧) 烱 昛 |    |
|                                                    |           |                                            |                                 |         | <ul> <li>・地上からの初期高さ:0m(</li> </ul>                             | 地上)                        |    |
| 第12表に実際の被災状況と, 柏崎刈羽原子力発電所に適用する                     | 第 6.3-6 表 | 長に実際の被災状況と、今回                              | の飛散解析手法による結                     | 表 14 に実 | 察の被災状況と, 今回の飛散                                                 | x解析手法による結果の比               |    |
| 飛来物評価法の結果の比較を示す。また,第30 図に被災後の4t ト                  | 果との比較を    | 示す。また、第6.3-4図に                             | こ被災後の 4t トラックの                  | 較を示す。ま  | た,図 33 に被災後の 4t ト                                              | ラックの状況を示す。                 |    |
| ラックの状況を示す。                                         | 状況を示す。    |                                            |                                 |         |                                                                |                            |    |
| フジタモデルによる飛散評価結果として、4t トラックの最大飛                     | フジタモデ     | ルによる評価結果として、                               | 4t トラックの最大飛散速                   | フジタモテ   | ·<br>ルによる飛散評価結果とし                                              | て,4t トラックの最大飛              |    |
| 来物速度は36 m/s,最大飛散高さは3.6 m,最大飛散距離は63.4 m             | 度は 36m/s  | , 最大飛散高さは 3.6m, 最                          | :大飛散距離は 63.4m とな                | 来物速度は3  | 6 m/s,最大飛散高さは 3.6 m                                            | n,最大飛散距離は 63.4 m           |    |
| となる。                                               | った。       |                                            |                                 | となる。    |                                                                |                            |    |
| 実際の 4t トラック飛散距離は約 40m であり, フジタモデルに                 | 実際の 4t    | トラック飛散距離は約 40m て                           | ごあり, フジタモデルによ                   | 実際の 4t  | トラック飛散距離は約 40m                                                 | であり、フジタモデルに                |    |
| よる飛散距離の評価結果はこれを上回る。また、飛散高さや最大                      | る評価結果は    | これを上回った。また,飛                               | 散高さや最大水平速度に                     | よる飛散距離  | fの評価結果はこれを上回る                                                  | 。また、飛散高さや最大                |    |
| 水平速度については,直接の比較はできないものの,4t トラック                    | ついては, 直   | 接の比較は出来ないものの                               | ,4tトラックの乗員2名                    | 水平速度につ  | いては,直接の比較はでき                                                   | ないものの,4t トラック              |    |
| の乗員2名が存命であったこと、被災後の4tトラックがほぼ元                      | が存命であっ    | たこと, 被災後の4t トラッ                            | クがほぼ元の外形をとど                     | の乗員2名7  | が存命であったこと、被災後                                                  | その 4t トラックがほぼ元             |    |
| の外形をとどめていること等から、柏崎刈羽原子力発電所に適用                      | めていること    | などから,今回の飛散解析                               | 手法で評価をした場合で                     | の外形をとと  | がのていること等から、今回                                                  | の飛散解析手法で評価を                |    |
| する飛来物評価法で飛散解析をした場合でも、実際の被災状況と                      | も、実際の被    | 災状況と比較して妥当な結                               | 果となるものと考えられ                     | した場合でも  | ,実際の被災状況と比較し                                                   | て妥当な結果となるもの                |    |
| 比較して妥当な結果となるものと考えられる。                              | る。        |                                            |                                 | と考えられる  | ) <sub>0</sub>                                                 |                            |    |
| なお、参考として同様の検証をランキン渦モデルでも実施して                       | なお, 参考    | として同様の検証をランキ:                              | ン渦モデルでも実施した。                    | なお、参考   | きとして同様の検証をランキ                                                  | ン渦モデルでも実施して                |    |
| おり、ランキン渦モデルによる評価では、最大飛散高さ、最大飛                      | ランキン渦モ    | デルによる評価では、最大                               | 飛散高さ,最大飛散距離                     | おり、ランキ  | シ渦モデルによる評価では                                                   | ,最大飛散高さ,最大飛                |    |
| 散距離ともに実際の被災状況と比較して非常に保守性が大きい結                      | ともに実際の    | 被災状況と比較して非常に                               | 保守的な結果となってい                     | 散距離ともに  | 実際の被災状況と比較して                                                   | 非常に保守性が大きい結                |    |
| 果となっていることが分かる。                                     | ることが分か    | る。                                         |                                 | 果となってい  | ることが分かる。                                                       |                            |    |
|                                                    |           |                                            |                                 |         |                                                                |                            |    |
|                                                    |           |                                            |                                 |         |                                                                |                            |    |
|                                                    |           |                                            |                                 |         |                                                                |                            |    |
|                                                    |           |                                            |                                 |         |                                                                |                            |    |
|                                                    |           |                                            |                                 |         |                                                                |                            |    |
|                                                    |           |                                            |                                 |         |                                                                |                            |    |
|                                                    |           |                                            |                                 |         |                                                                |                            |    |
|                                                    |           |                                            |                                 |         |                                                                |                            |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20 | )版)           | 東海第二発電所(2018.9.18版)    |     | 島根原子力発電所 2         | 寻灯 |
|------------------------------|---------------|------------------------|-----|--------------------|----|
| 第12表 実際の被災状況と「柏崎刈羽原子力発電所の    | の飛来物評 第6.3-6表 | 実際の被災状況と今回の飛散解析手法による評価 | 結 表 | 14 実際の被災状況と今回の飛散解析 | 手  |

価法」との結果の比較(4t トラックの場合)

飛散高さ\*\*2 飛散距離 最大水平速度 風速場モデル フジタモデル 36.0m/s 63.4m 3.6m (地上) (毎時 130 km) ランキン渦モデル 193.7m 11.7m  $43.9 \mathrm{m/s}$ (地上\*1) ランキン渦モデル 254.9m 11.7m 43.9m/s (40m) 4t トラックの運転席に 被災後もほぼ元の外 乗車していた乗員 2 名 形をとどめているこ が幸いにも存命で救出とが示されており され, 搬送先の病院で間 (25), 実際の飛来物速 実際の被災状況 約40 m | き取り調査に応じてお | 度は本解析で得られ り<sup>(25)</sup>, 被災した 4t ト た最大飛来物速度 ラックが地面からは (約 130 km/h)を遙 3.6m 以上の高所から落 かに下回るものと推 下したとは考えにくい。察できる。

※1:ランキン渦モデルでは地上付近の風速場を模擬できていないが、フジタモデルの 計算結果(飛散距離)と比較をするため、フジタモデルと同条件とする。

※2:初期物体高さからの飛散高さ。

果 (4t トラック)

| 国津相王三百     | 初期                         | 計算結果    |                                                                                             |                                                                                           |  |
|------------|----------------------------|---------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| 風速場モナル     | 物体高さ                       | 飛散距離    | 飛散高さ**2                                                                                     | 最大水平速度                                                                                    |  |
| フジタモデル     | 0 m (地上)                   | 63.4 m  | 3.6 m                                                                                       | 36.0 m∕s                                                                                  |  |
| ランキン渦モデル   | 0 m<br>(地上 <sup>※1</sup> ) | 193.7 m | 11.7 m                                                                                      | 43.9 m⁄s                                                                                  |  |
| <b>参</b> 考 | 40 m                       | 254.9 m |                                                                                             |                                                                                           |  |
| 実際の被災状況    | 0 m (地上)                   | 約 40 m  | 乗員 2 名が存命<br>で,病り調査がてて<br>たてであったこと<br>から <sup>(27)</sup> ,3.6m<br>をしたシックが落<br>下したとは考え<br>難い | トラックはお<br>おむね外形を<br>とどめている<br>ことから,36m<br>/s<br>(約130km/h)<br>を超える飛散<br>速度であった<br>とは考え難い。 |  |

※1 比較のため、フジタモデルと同条件とした。 ※2 初期物体高さからの飛散(浮上)高さ。

|                                 | 島根                        | 原子力発電所 2号                                                                                                                             | 炉                                                                                                                        | 備考 |
|---------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----|
| 表 14 実際の                        | >被災状況                     | と今回の飛散解析                                                                                                                              | 手法による評価結果の                                                                                                               |    |
|                                 | 比較                        | (4t トラックの場合                                                                                                                           | <u>}</u> )                                                                                                               |    |
| 風速場モデル                          | 飛散距離                      | 飛散高さ**2                                                                                                                               | 最大水平速度                                                                                                                   |    |
| フジタモデル<br>(地上)                  | 63.4 m                    | 3.6 m                                                                                                                                 | 36.0 m/s<br>(約 130 km/hr)                                                                                                |    |
| ランキン渦モデル<br>(地上 <sup>*1</sup> ) | 193.7 m                   | 11.7 m                                                                                                                                | 43.9 m/s                                                                                                                 |    |
| ランキン渦モデル<br>(40 m)              | 254.9 m                   | 11.7 m                                                                                                                                | 43.9 m/s                                                                                                                 |    |
| 実際の被災状況                         | 約 40 m                    | トラックの運転席に乗車<br>していた乗員2名が幸い<br>にも存命で救出され,搬送<br>先の病院で聞き取り調査<br>に応じており <sup>(24)</sup> ,被災し<br>たトラックが地面から<br>3.6m以上の高所から落下<br>したとは考えにくい。 | 被災後もほぼ元の外形を留<br>めていることが示されてお<br>り <sup>(24)</sup> ,実際の飛来物速度は<br>本解析で得られた最大飛来<br>物速度(約 130 km/hr)を<br>遙かに下回るものと推察で<br>きる。 |    |
| ※1:ランキン渦=                       | モデルでは地                    | 上付近の風速場を模擬できて                                                                                                                         | [いないが, フジタモデルの計                                                                                                          |    |
| 算結果(飛青                          | 改距離) と比輔                  | 咬をするため,フジタモデル<br>ニュ                                                                                                                   | と同条件とする。                                                                                                                 |    |
| ※2:初期物体尚                        | さからの飛散                    | 6 合                                                                                                                                   |                                                                                                                          |    |
|                                 |                           |                                                                                                                                       |                                                                                                                          |    |
| 図 33 青                          | 竜巻による                     | る被災後の4t トラ                                                                                                                            | ックの様子 <sup>(24) (25)</sup>                                                                                               |    |
| ( ii )乗用車<br>4t トラック(<br>飛散解析を行 | E (白) の<br>の場合と[<br>テった場合 | 9飛散解析<br>司様に, 今回の飛散<br>♪の結果を表 15 に示                                                                                                   | 解析手法で白い乗用車<br>す。                                                                                                         |    |
|                                 |                           |                                                                                                                                       |                                                                                                                          |    |

|                                | 島根                        | 原子力発電所 2号                                                                                                                             | ~炉                                                                                                                       | 備考 |
|--------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----|
| 表 14 実際の                       | >被災状況                     | と今回の飛散解析                                                                                                                              | 手法による評価結果の                                                                                                               |    |
|                                | 比較                        | (4t トラックの場合                                                                                                                           | <sup>2</sup> )                                                                                                           |    |
| 風速場モデル                         | 飛散距離                      | 飛散高さ**2                                                                                                                               | 最大水平速度                                                                                                                   |    |
| フジタモデル<br>(地上)                 | 63.4 m                    | 3.6 m                                                                                                                                 | 36.0 m/s<br>(約 130 km/hr)                                                                                                |    |
| ランキン渦モデル<br>(地上*1)             | 193.7 m                   | 11.7 m                                                                                                                                | 43.9 m/s                                                                                                                 |    |
| ランキン渦モデル<br>(40 m)             | 254.9 m                   | 11.7 m                                                                                                                                | 43.9 m/s                                                                                                                 |    |
| 実際の被災状況                        | 約 40 m                    | トラックの運転席に乗車<br>していた乗員2名が幸い<br>にも存命で救出され,搬送<br>先の病院で関き取り調査<br>に応じており <sup>(24)</sup> ,被災し<br>たトラックが地面から<br>3.6m以上の高所から落下<br>したとは考えにくい。 | 被災後もほぼ元の外形を留<br>めていることが示されてお<br>り <sup>(21)</sup> ,実際の飛来物速度は<br>本解析で得られた最大飛来<br>物速度(約 130 km/hr)を<br>遙かに下回るものと推察で<br>きる。 |    |
| ※1:ランキン渦                       | モデルでは地                    | 上付近の風速場を模擬できて                                                                                                                         | いないが, フジタモデルの計                                                                                                           |    |
| 算結果(飛青                         | ▶距離)と比≢                   | 交をするため,フジタモデル                                                                                                                         | と同条件とする。                                                                                                                 |    |
| ※2:初期物体高                       | さからの飛散                    | 高さ                                                                                                                                    |                                                                                                                          |    |
|                                |                           |                                                                                                                                       |                                                                                                                          |    |
| 図 33 市                         | 竜巻による                     | る被災後の4t トラ                                                                                                                            | ックの様子 <sup>(24)(25)</sup>                                                                                                |    |
| (ii)乗用車<br>4t トラック)<br>D飛散解析を行 | E (白) の<br>の場合と[<br>fった場合 | 9飛散解析<br>司様に, 今回の飛散<br>かの結果を表 15 に示                                                                                                   | 解析手法で白い乗用車<br>す。                                                                                                         |    |
|                                |                           |                                                                                                                                       |                                                                                                                          |    |



第30図 竜巻による被災後の4t トラックの様子(25)(26)

(ii) 乗用車(白)の飛散解析

4t トラックの場合と同様に、柏崎刈羽原子力発電所に適用する 飛来物評価条件で白い乗用車の飛散解析を行った場合の結果を第 | 価を行った結果を第 6.3-7 表に示す。 13 表に示す。



第6.3-4図 竜巻による被災後の4tトラックの様子<sup>(x x)(x x i)</sup>

b. 乗用車(白)の飛散解析

4t トラックの場合と同様に、今回の飛散解析手法で乗用車の評

乗用車の場合も、フジタモデルによる評価が、実際の被災状況 を包含する結果となっている。



| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                               | 東海第二発電所(2018.9.18版)                                                   | 島根原子力発電所 2号炉                                                                                                                 | 備考 |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----|
| 第13表実際の被災状況と「柏崎刈羽原子力発電所の飛来物評                                                                                                 | 第6.3-7表 実際の被災状況と今回の飛散解析手法による評価結                                       | 表 15 実際の被災状況と今回の飛散解析手法による評価結果の                                                                                               |    |
| 価法」との結果の比較(白い乗用車の場合)                                                                                                         | 果 (乗用車)                                                               | 比較(白い乗用車の場合)                                                                                                                 |    |
| 風速場モデル 飛散距離 飛散高さ <sup>※2</sup> 最大水平速度                                                                                        | 初期計算結果                                                                | 風速場モデル 飛散距離 飛散高さ <sup>※2</sup> 最大水平速度                                                                                        |    |
| フジタモデル<br>(地上)         82.3m         4.2m         44.1m/s                                                                    | 風速場モデル         助知<br>物体高さ         前共和末<br>飛散高さ <sup>*2</sup> 最大水平速度   | フジタモデル<br>(地上)         82.3m         4.2m         44.1m/s                                                                    |    |
| ランキン渦モデル<br>(地上 <sup>歩)</sup> 269.6m 39.4m 49.6m/s                                                                           | フジタモデル         0 m (地上)         82.3 m         4.2 m         44.1 m/s | ランキン渦モデル<br>$(地上^{\pm i})$ 269.6m 39.4m 49.6m/s                                                                              |    |
| ランキン渦モデル<br>(40m) 305.8m 39.4m 49.6m/s                                                                                       | ランキン渦モデル 0 m 269.6 m 39.4 m 49.6 m/s                                  | ランキン渦モデル<br>(40m) 305.8m 39.4m 49.6m/s                                                                                       |    |
| 実際の被災状況 約 50m                                                                                                                | 40 m 305.8 m                                                          | 実際の被災状況 約 50m                                                                                                                |    |
| <ul> <li>※1:ランキン渦モデルでは地上付近の風速場を模擬できていないが、フジタモデルの<br/>計算結果(飛散距離)と比較をするため、フジタモデルと同条件とする。</li> <li>※2:初期物体高さからの飛散高さ。</li> </ul> | 王房の彼及状況   0 m (地上)   約 30 m   −   −   −   −   −   −   −   −   −       | <ul> <li>※1:ランキン渦モデルでは地上付近の風速場を模擬できていないが、フジタモデルの<br/>計算結果(飛散距離)と比較をするため、フジタモデルと同条件とする。</li> <li>※2:初期物体高さからの飛散高さ。</li> </ul> |    |
| 7. 飛散以外の挙動に対する考慮                                                                                                             | 7. 飛散以外の挙動に対する考慮                                                      | 7. 飛散以外の挙動に対する考慮                                                                                                             |    |
| 前節までで、飛来物の竜巻による挙動のうち、飛散に関する評                                                                                                 | 前節までで、飛来物の竜巻による挙動のうち、飛散に関する評                                          | 前節までで、飛来物の竜巻による挙動のうち、飛散に関する評                                                                                                 |    |
| 価手法について説明をした。実際の竜巻による飛来物の挙動とし                                                                                                | 価手法について説明をしたが,実際の竜巻による飛来物の挙動と                                         | 価手法について説明をした。実際の竜巻による飛来物の挙動とし                                                                                                |    |
| ては、飛散だけではなく、横滑りや転がりによる挙動が発生する                                                                                                | しては、飛散だけではなく横滑りや転がりが発生することも考え                                         | ては、飛散だけではなく、横滑りや転がりによる挙動が発生する                                                                                                |    |
| ことも考えられるため、本節では、これらの飛来物の挙動につい                                                                                                | られる。                                                                  | ことも考えられるため、本節では、これらの飛来物の挙動につい                                                                                                |    |
| て,下記の2点に分けて考察する。                                                                                                             | 本節では、横滑りや転がりの影響について、以下2点に分けて                                          | て,下記の2点に分けて考察する。                                                                                                             |    |
|                                                                                                                              | 考察する。                                                                 |                                                                                                                              |    |
| (a) 飛散する物体における横滑りや転がりの影響                                                                                                     | <ul> <li>・ 飛散する物体における横滑りや転がりの影響</li> </ul>                            | (a) 飛散する物体における横滑りや転がりの影響                                                                                                     |    |
| (b)飛散しない物体における横滑りや転がりの影響                                                                                                     | <ul> <li>・ 飛散しない物体における横滑りや転がりの影響</li> </ul>                           | (b) 飛散しない物体における横滑りや転がりの影響                                                                                                    |    |
| (a)飛散する物体における横滑りや転がりの影響                                                                                                      | <br>(1) 飛散する物体における横滑りや転がりの影響                                          | (a)飛散する物体における横滑りや転がりの影響                                                                                                      |    |
| 「5.2 竜巻が物体に与える速度に関する不確定性の考慮」に記                                                                                               | 「5.2 物体が受ける風速における保守性の考慮」に記載のとお                                        | 「5.2 竜巻が物体に与える速度に関する不確定性の考慮」に記                                                                                               |    |
| 載のとおり、本検討においては、竜巻を直上に発生させる方法を                                                                                                | り、本検討においては、竜巻を直上に発生させる方法を採用して                                         | 載のとおり、本検討においては、竜巻を直上に発生させる方法を                                                                                                |    |
| 採用していることから、実際には横滑りや転がりを伴い移動する                                                                                                | いることから、実際には横滑りや転がりを伴い移動する物体も強                                         | 採用していることから、実際には横滑りや転がりを伴い移動する                                                                                                |    |
| 物体も強制的に高速域に配置され、浮上をして飛散することにな                                                                                                | 制的に高速域に配置され、浮上をして飛散することになる。                                           | 物体も強制的に高速域に配置され、浮上をして飛散することにな                                                                                                |    |
| る。                                                                                                                           |                                                                       | る。                                                                                                                           |    |
| この場合、空中では地面の摩擦力を受けないため、実際に比べ                                                                                                 | この場合,空中では地面の摩擦力を受けないため,実際に比べ                                          | この場合,空中では地面の摩擦力を受けないため,実際に比べ                                                                                                 |    |
| て大きな水平速度が得られることになる。                                                                                                          | て大きな水平速度が得られることになる。                                                   | て大きな水平速度が得られることになる。                                                                                                          |    |
| また、浮上後に地面に衝突する場合は、運動エネルギの大部分                                                                                                 | また、浮上後に地面に衝突する場合は、運動エネルギの大部分                                          | また、浮上後に地面に衝突する場合は、運動エネルギの大部分                                                                                                 |    |
| は物体や地面の変形・破損等で消費されることから、落下後の横                                                                                                | は物体や地面の変形、破損等で消費されることから、落下後の横                                         | は物体や地面の変形・破損等で消費されることから、落下後の横                                                                                                |    |
| 滑りや転がりによる移動距離は実際には小さいものと考えられ                                                                                                 | 滑りや転がりによる移動距離は実際には小さいものと考えられ                                          | 滑りや転がりによる移動距離は実際には小さいものと考えられ                                                                                                 |    |
| る。                                                                                                                           | る。                                                                    | る。                                                                                                                           |    |
| 「6.3 佐呂間竜巻での車両飛散事例」における飛散した4t トラ                                                                                             | 「6.3 佐呂間竜巻での車両飛散事例との比較」における飛散し                                        | 「6.3 佐呂間竜巻での車両飛散事例」における飛散した 4t トラ                                                                                            |    |
| ックや乗用車は、実際には飛散だけではなく、横滑りや転がりを                                                                                                | た4tトラックや乗用車は、実際には飛散だけではなく横滑りや転                                        | ックや乗用車は、実際には飛散だけではなく、横滑りや転がりを                                                                                                |    |
| 伴ったものと考えられるが、飛散解析より得られた飛散距離や最                                                                                                | がりを伴ったものと考えられるが、飛散解析より得られた飛散距                                         | 伴ったものと考えられるが、飛散解析より得られた飛散距離や最                                                                                                |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)   | 東海第二発電所(2018.9.18版)                | 島根原子力発電所 2号炉                               | 備考 |
|----------------------------------|------------------------------------|--------------------------------------------|----|
| 大水平速度は、実際の被災状況よりも保守的な評価となっている    | 離や最大水平速度は、実際の被災状況よりも保守的な評価となっ      | 大水平速度は、実際の被災状況よりも保守的な評価となっている              |    |
| ことから,飛散過程における不確実性を裕度として包含している。   | ていることから、飛散過程における不確実性を裕度として包含し      | ことから,飛散過程における不確実性を裕度として包含している。             |    |
|                                  | ている。                               |                                            |    |
|                                  |                                    |                                            |    |
| (b)飛散しない物体における横滑りや転がりの影響         | (2) 飛散しない物体における横滑りや転がりの影響          | (b)飛散しない物体における横滑りや転がりの影響                   |    |
| 飛散しない物体においても、竜巻による風荷重が静止摩擦力よ     | 飛散しない物体においても、竜巻による風荷重が静止摩擦力よ       | 飛散しない物体においても、竜巻による風荷重が静止摩擦力よ               |    |
| り大きい場合には、横滑りをする。また、横滑りをしない場合で    | り大きい場合には、横滑りをする。また、横滑りをしない場合で      | り大きい場合には、横滑りをする。また、横滑りをしない場合で              |    |
| も、風荷重によるモーメントが自重のモーメントよりも大きい場    | も、風荷重によるモーメントが自重のモーメントよりも大きい場      | も、風荷重によるモーメントが自重のモーメントよりも大きい場              |    |
| 合には転がることになる。このように、竜巻により横滑りや転が    | 合には転がることになる。このように、竜巻により横滑りや転が      | 合には転がることになる。このように、竜巻により横滑りや転が              |    |
| る場合には、地面での摩擦力の影響を受けながら移動することか    | りが生じる場合には、地面での摩擦力の影響を受けながら移動す      | る場合には、地面での摩擦力の影響を受けながら移動することか              |    |
| ら、移動距離や水平速度は十分に小さいものと考えられる。      | ることから、移動距離や水平速度は十分に小さいものと考えられ      | ら、移動距離や水平速度は十分に小さいものと考えられる。                |    |
|                                  | る。                                 |                                            |    |
| また、物体と外部事象防護対象施設の間に、障害物となるフェ     | また、物体と評価対象施設等の間に障害物となるフェンス等が       | また、物体と外部事象防護対象施設の間に、障害物となるフェ               |    |
| ンス等がある場合には、横滑りや転がった物体が外部事象防護対    | ある場合には、横滑りや転がった物体が評価対象施設等に到達す      | ンス等がある場合には、横滑りや転がった物体が外部事象防護対              |    |
| 象施設に到達することは阻止される。                | ることは阻止される。                         | 象施設に到達することは阻止される。                          |    |
| 以上より、飛散しない物体が横滑りや転がりにより、障害物の     | 以上より、飛散しない物体が、障害物の影響を受けずに、横滑       | 以上より、飛散しない物体が横滑りや転がりにより、障害物の               |    |
| 影響を受けず、外部事象防護対象施設と衝突することが想定され    | りや転がりによって評価対象施設等と衝突することが想定される      | 影響を受けず、外部事象防護対象施設と衝突することが想定され              |    |
| る場合については、横滑りや転がった物体の影響が設計飛来物の    | 場合については、横滑りや転がった物体の影響が設計飛来物の影      | る場合については、横滑りや転がった物体の影響が設計飛来物の              |    |
| 影響に包含されることを確認し、包含されない場合には固縛等の    | 響に包含されることを確認し、包含されない場合には固縛等の措      | 影響に包含されることを確認し、包含されない場合には固縛等の              |    |
| 措置を実施する。固縛等の措置に当たっては、フジタモデルの風    | 置を実施する。固縛等の措置に当たっては、フジタモデルの風速      | 措置を実施する。固縛等の措置に当たっては、フジタモデルの風              |    |
| 速場より求まる風荷重に,地面での摩擦力を適切に考慮した上で,   | 場より求まる風荷重や地面での摩擦力を適切に考慮した上で、設      | 速場より求まる風荷重に,地面での摩擦力を適切に考慮した上で,             |    |
| 設計用荷重を設定する。                      | 計用荷重を設定する。                         | 設計用荷重を設定する。                                |    |
|                                  |                                    |                                            |    |
| 8. まとめ                           | 8. まとめ                             | 8. まとめ                                     |    |
| フジタモデルは、米国 NRC による要望で実際の竜巻観測記録を  | フジタモデルは、米国NRCの要望により実際の竜巻観測記録       | フジタモデルは、米国 NRC による要望で実際の竜巻観測記録を            |    |
| もとに考案された風速場モデルであり、米国 DOE の重要施設に対 | を基に考案された風速場モデルであり、米国DOEの重要施設に      | もとに考案された風速場モデルであり、米国 DOE の重要施設に対           |    |
| する設計基準の作成の際にも用いられている。フジタモデルは,    | 対する設計基準の作成の際にも用いられている。フジタモデルは、     | する設計基準の作成の際にも用いられている。フジタモデルは,              |    |
| 他のモデルではできなかった地上からの物体の浮上を現実的に評    | 他のモデルではできなかった地上からの物体の浮上を現実的に評      | 他のモデルではできなかった地上からの物体の浮上を現実的に評              |    |
| 価することができる点が大きなメリットである。           | 価することができる点が大きなメリットである。これは、「6.3 佐   | 価することができる点が大きなメリットである。                     |    |
| これは、「6.3 佐呂間竜巻での車両飛散事例」の「(a)竜巻特性 | 呂間竜巻での車両飛散事例との比較」の「(1) 竜巻特性や飛来物(4t | これは、「6.3 佐呂間竜巻での車両飛散事例」の「(a)竜巻特性           |    |
| や飛来物の状況を現実的に設定した場合の再現解析」において、    | トラック及び乗用車)の状況を現実的に設定した場合の再現解析」     | や飛来物の状況を現実的に設定した場合の再現解析」において、              |    |
| フジタモデルを風速場とした飛散解析結果が実際の飛散状況とお    | において、フジタモデルを風速場とした飛散解析結果が実際の飛      | フジタモデルを風速場とした飛散解析結果が実際の飛散状況とお              |    |
| おむね合致していることからも、確認することができる。       | 散状況とおおむね合致していることからも確認できる。          | おむね合致していることからも、確認することができる。                 |    |
| また,フジタモデルにより算出される風速(Vw)は,飛来物の    | また、フジタモデルにより算出される風速(Vw)は、飛来物の      | また,フジタモデルにより算出される風速(V <sub>w</sub> )は,飛来物の |    |
| 飛散評価のインプットとして用いるものであり,設計竜巻の最大    | 飛散評価のインプットとして用いるものであり、設計竜巻の最大      | 飛散評価のインプットとして用いるものであり,設計竜巻の最大              |    |
| ┃風速の算出に当たっては保守性を確保した上で、「5. 飛来物評価 | 風速の算出に当たっては保守性を確保したうえで、「5. 飛散解析    | 風速の算出に当たっては保守性を確保した上で、「5. 飛来物評価            |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)   | 東海第二発電所(2018.9.18版)             | 島根原子力発電所 2号炉                      | 備考 |
|----------------------------------|---------------------------------|-----------------------------------|----|
| における不確定性の考慮」のとおり、竜巻を多数の物体の直上に    | における保守性の考慮」のとおり、竜巻を多数の物体の直上に瞬   | における不確定性の考慮」のとおり、竜巻を多数の物体の直上に     |    |
| 瞬時に発生させて物体が最大風速を受けるような初期条件を用い    | 時に発生させて物体が最大風速を受けるような初期条件を用いる   | 瞬時に発生させて物体が最大風速を受けるような初期条件を用い     |    |
| る等の評価手法により、不確実性も含めて飛来物速度等を保守的    | 等の評価手法により、不確実性も含めて飛来物速度等を保守的に   | る等の評価手法により、不確実性も含めて飛来物速度等を保守的     |    |
| に評価できるようにしている。                   | 評価できるようにしている。                   | に評価できるようにしている。                    |    |
| これにより、「6.3 佐呂間竜巻での車両飛散事例」の「(b)柏崎 | これにより、「6.3 佐呂間竜巻での車両飛散事例との比較」の  | これにより、「6.3 佐呂間竜巻での車両飛散事例」の「(b) 今回 |    |
| 刈羽原子力発電所に適用する飛来物評価法による検証」では,本    | 「(2)今回の飛散解析手法による検証」では、本評価手法を用いる | の飛散解析手法による検証」では、本評価手法を用いることでフ     |    |
| 評価手法を用いることでフジタモデルにおいても実際の飛散状況    | ことで、フジタモデルにおいても実際の飛散状況に対し保守性を   | ジタモデルにおいても実際の飛散状況に対して、保守性を有した     |    |
| に対して,保守性を有した妥当な結果となることを確認している。   | 有した妥当な結果となることを確認している。           | 妥当な結果となることを確認している。                |    |
| 地上からの浮上・飛散評価を行うことのメリットは、発電所敷     | 地上からの浮上,飛散評価を行うことのメリットは,発電所敷    | 地上からの浮上・飛散評価を行うことのメリットは、発電所敷      |    |
| 地内に数多く存在する物の中から、竜巻による飛来物化の影響度    | 地内に数多く存在する物品の中から、竜巻による飛来物化の影響   | 地内に数多く存在する物の中から、竜巻による飛来物化の影響度     |    |
| 合いを、浮上の有無の観点を含め、より正確に把握できることで    | 度合いを、浮上の有無の観点を含めより正確に把握できることで   | 合いを、浮上の有無の観点を含め、より正確に把握できることで     |    |
| ある。竜巻飛来物の影響(浮上の有無,飛散高さ,飛散距離,最    | ある。竜巻飛来物の影響(浮上の有無,飛散高さ,飛散距離,最   | ある。竜巻飛来物の影響(浮上の有無,飛散高さ,飛散距離,最     |    |
| 大速度等)を正確に捉えることにより,飛来物の発生防止対策や    | 大速度等)を正確に捉えることにより、飛来物発生防止対策や評   | 大速度等)を正確に捉えることにより、飛来物の発生防止対策や     |    |
| 評価対象施設の防護対策の範囲や強度について、適切な保守性を    | 価対象施設等の防護対策の範囲や強度について、適切な保守性を   | 評価対象施設の防護対策の範囲や強度について、適切な保守性を     |    |
| 確保した上で実効性の高い竜巻防護対策を実施することが可能と    | 確保した上で実効性の高い竜巻防護対策を実施することが可能に   | 確保した上で実効性の高い竜巻防護対策を実施することが可能と     |    |
| なると考えられる。                        | なると考えられる。                       | なると考えられる。                         |    |
| 評価全体として一定の保守性を確保しつつ、適切な竜巻対策に     | 評価全体として一定の保守性を確保しつつ、適切な竜巻対策に    | 評価全体として一定の保守性を確保しつつ、適切な竜巻対策に      |    |
| よりプラント全体の安全性を向上させるため、当社の竜巻影響評    | よりプラント全体の安全性を向上させるため、竜巻影響評価にお   | よりプラント全体の安全性を向上させるため、当社の竜巻影響評     |    |
| 価については、フジタモデルを適用することとする。         | ける物体の浮上,飛散評価については、フジタモデルを適用する   | 価については、フジタモデルを適用することとする。          |    |
|                                  | こととする。                          |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  |                                 |                                   |    |
|                                  | 1                               | 1                                 |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                 | 東海第二発電所(2018.9.18版)                                         | 島根原子力発電所 2号炉                                                   | 備考 |
|----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----|
| 9. 参考文献                                                        | <参考文献>                                                      | 9. 参考文献                                                        |    |
| (1) 原子力規制委員会,2013:原子力発電所の竜巻影響評価ガ                               | (1) U.S. Nuclear Regulatory Commission, Regulatory Guide    | (1) 原子力規制委員会, 2013: 原子力発電所の竜巻影響評価ガ                             |    |
| イドの制定について,原規技発第 13061911 号,平成 25 年 6 月                         | 1.76: Design-Basis Tornado and Tornado Missiles for Nuclear | イドの制定について,原規技発第 13061911 号,平成 25 年 6 月                         |    |
| 19 日制定, 平成 26 年 9 月一部改正.                                       | Power Plants, Revision 1, March 2007.                       | 19 日制定, 平成 26 年 9 月一部改正.                                       |    |
| (2) U.S. NUCLEAR REGULATORY COMMISSION: REGULATORY GUIDE       |                                                             | (2) U.S. NUCLEAR REGULATORY COMMISSION: REGULATORY GUIDE       |    |
| 1.76, 2007: Design-BasisTornado and Tornado Missiles for       |                                                             | 1.76, 2007: Design-Basis Tornado and Tornado Missiles for      |    |
| Nuclear Power Plant, Revision 1.                               |                                                             | Nuclear Power Plant, Revision 1.                               |    |
| (3) Simiu, E. and Cordes, M., Tornado-Borne Missile Speeds,    | (2) Simiu, E. and Cordes, M., Tornado-Borne Missile Speeds, | (3) Simiu, E. and Cordes, M., Tornado-Borne Missile Speeds,    |    |
| NBSIR 76-1050, 1976.                                           | NBSIR 76-1050, 1976.                                        | NBSIR 76-1050, 1976.                                           |    |
| (4) 東京工芸大学(2011):平成 21~22 年度原子力安全基盤調                           | (3) 東京工芸大学(2011):平成 21~22 年度原子力安全基盤調査                       | (4) 東京工芸大学(2011):平成 21~22 年度原子力安全基盤調                           |    |
| 査研究(平成 22 年度)竜巻による原子力施設への影響に関する調                               | 研究(平成22年度) 竜巻による原子力施設への影響に関する調査                             | 査研究(平成 22 年度)竜巻による原子力施設への影響に関する調                               |    |
| 查研究,独立行政法人原子力安全基盤機構.                                           | 研究,独立行政法人原子力安全基盤機構                                          | 查研究, 独立行政法人原子力安全基盤機構.                                          |    |
| (5) Fujita, T. T. (1978) Workbook of tornadoes and high winds  | (4) Fujita, T. T., Workbook of tornadoes and high winds for | (5) Fujita, T. T. (1978) Workbook of tornadoes and high winds  |    |
| for engineering applications. SMRP Research Paper 165,         | engineering applications, U. Chicago, 1978.                 | for engineering applications. SMRP Research Paper 165,         |    |
| Department of Geophysical Sciences, University of Chicago,     |                                                             | Department of Geophysical Sciences, University of Chicago,     |    |
| 142pp.                                                         |                                                             | 142pp.                                                         |    |
| (6) Karen A. Kosiba and Joshua Wurman, 2013: The               | (5) Karen A. Kosiba and Joshua Wurman, 2013: The            | (6) Karen A. Kosiba and Joshua Wurman, 2013: The               |    |
| Three-Dimensional Structure and Evolution of a Tornado         | Three-Dimensional Structure and Evolution of a Tornado      | Three-Dimensional Structure and Evolution of a Tornado         |    |
| Boundary Layer. Wea. Forecasting, 28, 1552–1561.               | Boundary Layer. Wea. Forecasting, 28, 1552–1561.            | Boundary Layer. Wea. Forecasting, 28, 1552–1561.               |    |
|                                                                | (6) 数値的に生成された竜巻状の渦の性質, 平成21年度京都大                            |                                                                |    |
|                                                                | 学防災研究所研究発表要                                                 |                                                                |    |
| (7) Maruyama, T. (2011) Simulation of flying debris using      | (7) Maruyama, T., Simulation of flying debris using a       | (7) Maruyama, T. (2011) Simulation of flying debris using      |    |
| a numerically generated tornado-like vortex. J. Wind Eng. Ind. | numerically generated tornado-like vortex. Journal of Wind  | a numerically generated tornado-like vortex. J. Wind Eng. Ind. |    |
| Aerodyn., 99, 249-256.                                         | Engineering and Industrial Aerodynamics, vol.99(4),         | Aerodyn., 99, 249-256.                                         |    |
|                                                                | pp. 249–256, 2011.                                          |                                                                |    |
| (8) U.S. Department of Energy, Natural Phenomena Hazards       | (8) U.S. Department of Energy, Natural Phenomena Hazards    | (8) U.S. Department of Energy, Natural Phenomena Hazards       |    |
| Design and Evaluation Criteria for Department of Energy        | Design and Evaluation Criteria for Department of Energy     | Design and Evaluation Criteria for Department of Energy        |    |
| Facilities, DOE-STD-1020-2002, 2002.                           | Facilities, 0E-STD-1020-2002, 2002.                         | Facilities, DOE-STD-1020-2002, 2002.                           |    |
| (https://www.standards.doe.gov/standards-documents/1000/       | (http://pbadupws.nrc.gov/docs/ML0302/ML030220224.pdf)       | (https://www.standards.doe.gov/standards-documents/1000/       |    |
| 1020-astd-2002/@@images/file)                                  |                                                             | 1020-astd-2002/@@images/file)                                  |    |
| (9) Malaeb, D. A., Simulation of tornado-generated missiles.   | (9) Malaeb, D. A., Simulation of tornado-generated          | (9) Malaeb, D. A., Simulation of tornado-generated missiles.   |    |
| M.S. thesis, TexasTech University, 1980.                       | missiles. M.S. thesis, Texas Tech University, 1980          | M.S. thesis, Texas Tech University, 1980.                      |    |
| (10) PH. Luan, Estimates of Missile Speeds in Tornadoes,       | (10) PH. Luan, Estimates of Missile Speeds in Tornadoes,    | (10) PH. Luan, Estimates of Missile Speeds in Tornadoes,       |    |
| M.S. thesis, Texas Tech University, 1987.                      | M.S. thesis, Texas Tech University, 1987.                   | M.S. thesis, Texas Tech University, 1987.                      |    |
| (11) J. R. McDonald, Rationale for Wind-Borne Missile          | (11) J. R. McDonald, Rationale for Wind-Borne Missile       | (11) J. R. McDonald, Rationale for Wind-Borne Missile          |    |
| Criteria for DOE facilities, UCRL-CR-135687, Lawrence          | Criteria for DOE facilities, UCRL-CR-135687, Lawrence       | Criteria for DOE facilities, UCRL-CR-135687, Lawrence          |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                 | 東海第二発電所(2018.9.18版)                                            | 島根原子力発電所 2号炉                                                  | 備考 |
|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----|
| Livermore National Laboratory, 1999.                           | Livermore National Laboratory, 1999.                           | Livermore National Laboratory, 1999.                          |    |
| (https://e-reports-ext.llnl.gov/pdf/236459.pdf)                | (https://e-reports-ext.llnl.gov/pdf/236459.pdf)                | (https://e-reports-ext.llnl.gov/pdf/236459.pdf)               |    |
| (12) McDonald, J. R., T. Theodore Fujita: His contribution     | (12) McDonald, J. R., T. Theodore Fujita: His contribution     | (12) McDonald, J. R., T. Theodore Fujita: His contribution    |    |
| to tornado knowledgethrough damage documentation and the       | to tornado knowledge through damage documentation and the      | to tornado knowledge through damage documentation and the     |    |
| Fujita scale. Bull. Amer. Meteor. Soc., 82, pp. 63-72, 2001.   | Fujita scale. Bull. Amer. Meteor. Soc., 82, pp. 63-72, 2001    | Fujita scale. Bull. Amer. Meteor. Soc., 82, pp. 63-72, 2001.  |    |
| (13) NUREG-1827 Safety Evaluation Report for the National      | (13) NUREG-1827 Safety Evaluation Report for the National      | (13) NUREG-1827 Safety Evaluation Report for the National     |    |
| Enrichment Facility in Lea County, New Mexico(Docket           | Enrichment Facility in Lea County, New Mexico(Docket           | Enrichment Facility in Lea County,New Mexico(Docket           |    |
| No. 70–3103)                                                   | No. 70–3103)                                                   | No. 70–3103)                                                  |    |
| (14) 江口譲, 杉本聡一郎, 服部康男, 平口博丸, 竜巻による物                            | (14) 江口譲, 杉本聡一郎, 服部康男, 平口博丸, 竜巻による物                            | (14) 江口譲, 杉本聡一郎, 服部康男, 平口博丸, 竜巻による物                           |    |
| 体の浮上・飛来解析コード TONBOS の開発, 電力中央研究所 研究                            | 体の浮上・飛来解析コード TONBOS の開発, 電力中央研究所 研究                            | 体の浮上・飛来解析コード TONBOS の開発, 電力中央研究所 研究                           |    |
| 報告 N14002, 2014. (15) 日本鋼構造協会,構造物の耐風工学, p82                    | 報告 N14002, 2014.                                               | 報告 N14002 , 2014.                                             |    |
| (16) EPRI, Wind field and trajectory models for tornado-       | (15) EPRI, Wind field and trajectory models for tornado-       | (15)日本鋼構造協会,構造物の耐風工学, p82                                     |    |
| propelled objects, Report NP-748, 1978.                        | propelled objects, report NP-2898, 1978.                       | (16) EPRI, Wind field and trajectory models for tornado-      |    |
| (17) 林建二郎・大井邦昭・前田稔・斉藤良,開水路中に水没設                                | (16) Schmidlin, T., B. Hammer, P. King, Y. Ono, L. S. Miller,  | propelled objects, Report NP-748, 1978.                       |    |
| 置された立方体および桟粗度の流体力,土木学会論文集 B1(水工                                | and G. Thumann, 2002: Unsafe at any (wind)speed Testing the    | (17)林建二郎・大井邦昭・前田稔・斉藤良,開水路中に水没設                                |    |
| 学) Vol.67, No.4, I_1141-I_1146, 2011.                          | stability of motor vehicles in severe winds. Bull. Amer.       | 置された立方体および桟粗度の流体力,土木学会論文集 B1(水工                               |    |
| (18) 松宮央登, 中岡宏一, 西原 崇, 木村吉郎:太陽光発電パ                             | Meteor. Soc., 83,1821-1830.                                    | 学) Vol.67, No.4, I_1141-I_1146, 2011.                         |    |
| ネルに作用する空気力の地面効果に関する風洞実験、構造工学論                                  | (17) 林建二郎・大井邦昭・前田稔・斉藤良,開水路中に水没設                                | (18)松宮央登,中岡宏一,西原 崇,木村吉郎:太陽光発電パ                                |    |
| 文集, Vol.60A, pp.446-454, 2014.                                 | 置された立方体及び桟粗度の流体力, 土木学会論文集 B1 (水工                               | ネルに作用する空気力の地面効果に関する風洞実験,構造工学論                                 |    |
| (19) 山本晃一,林建二郎, 関根正人,藤田光一,田村正秀,西                               | 学)Vol.67, No.4, I_1141-I_1146, 2011.                           | 文集, Vol.60A, pp.446-454, 2014.                                |    |
| 村晋,浜口憲一郎,護岸ブロックの抗力・揚力係数、および相当                                  | (18) 松宮央登,中岡宏一,西原 崇,木村吉郎:太陽光発電パ                                | (19)山本晃一,林建二郎,関根正人,藤田光一,田村正秀,西                                |    |
| 粗度の計測方法について,水工学論文集,第44巻,pp1053~1058,                           | ネルに作用する空気力の地面効果に関する風洞実験、構造工学論                                  | 村晋,浜口憲一郎,護岸ブロックの抗力・揚力係数、および相当                                 |    |
| 2000.                                                          | 文集, Vol.60A, pp.446-454, 2014.                                 | 粗度の計測方法について,水工学論文集,第44巻,pp1053~1058,                          |    |
| (20)江口 譲, 西原 崇, 水流動試験による電線の風荷重低減化                              | (19) M.R. Ahmed, S.D. Sharma, An investigation on the          | 2000.                                                         |    |
| のメカニズム解明, 電力中央研究所 研究報告 U96050, 1997.                           | aerodynamics of a symmetrical airfoil in ground effect,        | (20)江口 譲, 西原 崇, 水流動試験による電線の風荷重低減化                             |    |
| (21) M.R. Ahmed, S.D. Sharma, An investigation on the          | Experimental Thermal and Fluid Science, 29, pp. 633–647, 2005. | のメカニズム解明, 電力中央研究所 研究報告 U96050, 1997.                          |    |
| aerodynamics of a symmetrical airfoil in ground effect,        | (20) 山本晃一,林建二郎,関根正人,藤田光一,田村正秀,西                                |                                                               |    |
| Experimental Thermal and Fluid Science, 29, pp. 633–647, 2005. | 村晋,浜口憲一郎,護岸ブロックの抗力・揚力係数,及び相当粗                                  |                                                               |    |
| (22) Schmidlin, T., Hammer, B., King, P., Ono, Y., Miller, L.  | 度の計測方法について,水工学論文集,第44巻,pp1053~1058,                            | (21) Schmidlin, T., Hammer, B., King, P., Ono, Y., Miller, L. |    |
| S. and Thumann, G., Unsafe at any (wind) speed? -Testing the   | 2000.                                                          | S. and Thumann, G., Unsafe at any (wind) speed? -Testing the  |    |
| stability of motor vehicles in severewinds-, Vol.83, No.12,    | (21) 江口 譲, 西原 崇, 水流動試験による電線の風荷重低減化                             | stability of motor vehicles in severe winds-, Vol.83, No.12,  |    |
| pp. 1821–1830, 2002.                                           | のメカニズム解明, 電力中央研究所 研究報告 U96050, 1997.                           | pp. 1821–1830, 2002.                                          |    |
| (23) Lei, C., Cheng, L. and Kavanagh, K., Re-examination of    | (22) Lei, C., Cheng, L. and Kavanagh, K., Re-examination of    | (22) Lei, C., Cheng, L. and Kavanagh, K., Re-examination of   |    |
| the effect of a planeboundary on force and vortex shedding of  | the effect of a plane boundary on force and vortex shedding    | the effect of a plane boundary on force and vortex shedding   | 1  |
| a circular cylinder, J. Wind Eng. Ind.Aerodyn., Vol.80,        | of a circular cylinder, J. of Wind Engineering and Industrial  | of a circular cylinder, J. Wind Eng. Ind. Aerodyn., Vol.80,   | 1  |
| pp. 263–286, 1999.                                             | Aerodynamics, Vol.80, pp.263-286, 1999.                        | pp. 263–286, 1999.                                            |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                               | 東海第二発電所(2018.9.18版)                                           | 島根原子力発電所 2号炉                                                 | 備考 |
|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|----|
| (24) Fujita, T. T., and J. R. McDonald, Tornado damage at    | (23) 江口譲, 杉本聡一郎, 服部康男, 平口博丸, 原子力発電所                           | (23) Fujita, T. T., and J. R. McDonald, Tornado damage at    |    |
| the Grand Gulf, Mississippi nuclear power plant site: Aerial | での竜巻飛来物速度の合理的評価法(Fujita の竜巻モデルを用い                             | the Grand Gulf, Mississippi nuclear power plant site: Aerial |    |
| and ground surveys, U.S. NuclearRegulatory Commission        | た数値解析コードの妥当性確認),                                              | and ground surveys, U.S. Nuclear Regulatory Commission       |    |
| NUREG/CR-0383, 1978.                                         | (24) Fujita, T. T., 1971: Proposed characterization of        | NUREG/CR-0383, 1978.                                         |    |
| (25) 札幌管区気象台: 平成18 年11 月7 日から9 日に北海道                         | tornadoes and hurricanes by area and intensity. SMRP Research | (24) 札幌管区気象台: 平成18 年11 月7 日から9 日に北海道                         |    |
| (佐呂間町他) で発生した竜巻等の突風. 災害時気象調査報告,                              | Paper 91, University of Chicago, Chicago, IL, 42 pp           | (佐呂間町他) で発生した竜巻等の突風. 災害時気象調査報告,                              |    |
| 災害時自然現象報告書, 2006 年第1 号,2006.                                 | (25) 日本保全学会 原子力規制関連事項検討会, 2015:軽水                             | 災害時自然現象報告書, 2006 年第1 号,2006.                                 |    |
| (http://www.jma-net.go.jp/sapporo/tenki/yohou/saigai/sa      | 型原子力発電所の竜巻影響評価における設計竜巻風速および飛来                                 | (http://www.jma-net.go.jp/sapporo/tenki/yohou/saigai/sa      |    |
| roma/saroma.html にて閲覧可能。)                                    | 物速度の設定に関するガイドライン(JSM-NRE-009)                                 | roma/saroma.html にて閲覧可能。)                                    |    |
| (26)奥田泰雄, 喜々津仁密, 村上知徳, 2006 年佐呂間町竜巻                          | (26) Fujita, T. T., and J. R. McDonald, Tornado damage at     | (25)奥田泰雄, 喜々津仁密, 村上知徳, 2006 年佐呂間町竜巻                          |    |
| 被害調查報告. 建築研究所災害調查, 49, 2006.                                 | the Grand Gulf, Mississippi nuclear power plant site: Aerial  | 被害調查報告. 建築研究所災害調查, 49, 2006.                                 |    |
| (http://www.kenken.go.jp/japanese/contents/activities/o      | and ground surveys, U.S. Nuclear Regulatory Commission        | (http://www.kenken.go.jp/japanese/contents/activities/o      |    |
| ther/other.html)                                             | NUREG/CR-0383, 1978.                                          | ther/other.html)                                             |    |
| (27)江口譲,杉本聡一郎,服部康男,平口博丸,原子力発電所                               | (27) 札幌管区気象台:平成18年11月7日から9日に北海道(佐                             | (26) 江口讓, 杉本聡一郎, 服部康男, 平口博丸, 原子力発電所                          |    |
| での竜巻飛来物速度の合理的評価法 (Fujita の竜巻モデルを用                            | 呂間町他)で発生した竜巻等の突風. 災害時気象調査報告, 災害                               | での竜巻飛来物速度の合理的評価法 (Fujita の竜巻モデルを用                            |    |
| いた数値解析コードの妥当性確認),日本機械学会論文集, Vol. 81,                         | 時自然現象報告書, 2006 年第1号, 2006.                                    | いた数値解析コードの妥当性確認),日本機械学会論文集, Vol. 81,                         |    |
| No. 823, 2015.                                               | (28) 奥田泰雄, 喜々津仁密, 村上知徳, 2006 年佐呂間町竜巻被害                        | No. 823, 2015.                                               |    |
|                                                              | 調査報告.建築研究所災害調査, 46, 2006.                                     |                                                              |    |
|                                                              | (29) 土木学会 平成18年11月北海道佐呂間町竜巻緊急災害調                              |                                                              |    |
|                                                              | 查報告書                                                          |                                                              |    |
|                                                              |                                                               |                                                              |    |
|                                                              |                                                               |                                                              |    |
|                                                              |                                                               |                                                              |    |
|                                                              |                                                               |                                                              |    |
|                                                              |                                                               |                                                              |    |
|                                                              |                                                               |                                                              |    |
|                                                              |                                                               |                                                              |    |
|                                                              |                                                               |                                                              |    |
|                                                              |                                                               |                                                              |    |
|                                                              |                                                               |                                                              |    |
|                                                              |                                                               |                                                              |    |
|                                                              |                                                               |                                                              |    |
|                                                              |                                                               |                                                              | 1  |
|                                                              |                                                               |                                                              | 1  |
|                                                              |                                                               |                                                              | 1  |
|                                                              |                                                               |                                                              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017. | 17.12.20版) 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉 | 備考 |
|-------------------------|--------------------------------|--------------|----|
|                         | <form></form>                  |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20 | 版) 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                | 備考 |
|------------------------------|------------------------|---------------------------------------------------------------------------------------------|----|
|                              |                        | 別紙 2                                                                                        |    |
|                              |                        | フジタモデルのパラメータ設定等について                                                                         |    |
|                              |                        | <ol> <li>適用するフジタモデルについて</li> <li>フジタモデルのパラメータ設定については、フジタワークブック</li> </ol>                   |    |
|                              |                        | (文献(1))において、単一渦型のDBT-77モデル(文献(1)第6章)                                                        |    |
|                              |                        | と複数の小さな吸込渦 (suction vortices) を有する多重渦型の                                                     |    |
|                              |                        | DBT-78 モデル (文献(1)第7章) について記載されている (図1参                                                      |    |
|                              |                        | 照)。                                                                                         |    |
|                              |                        | DBT-77 DBT-78                                                                               |    |
|                              |                        | i The second state of a scale tornado with its funnel<br>図 1 フジタモデル「DBT-77」と「DBT-78」のモデル図(文 |    |
|                              |                        | 献(1))                                                                                       |    |
|                              |                        | 米国エネルギー省の管理するエネルギー施設(DOE 施設)に対<br>する竜巻飛来物の検証を行ったローレンス・リバモア国立研究所                             |    |
|                              |                        | 報告書(文献(2))においては,「多重渦型のDBT-78 モデルで考慮                                                         |    |
|                              |                        | されている吸込渦はすぐに減衰するので、大多数の専門家は竜巻                                                               |    |
|                              |                        | 被災の重要因子ではないと考えている」と述べており、単一渦型                                                               |    |
|                              |                        | のフジタモデルDBT-77を飛来物評価の竜巻風速場として選定して                                                            |    |
|                              |                        | いる。以上のことから、今回の竜巻影響評価においても DBT-77 モ                                                          |    |
|                              |                        | デルを用いている。(なお,文献(1)において,DBT-78 モデルは,                                                         |    |
|                              |                        | 最大風速や発生率がモデル化されているのみであり、飛散解析に                                                               |    |
|                              |                        | 必要となる風速場に関する数式が明確となっていない。)                                                                  |    |
|                              |                        | また,米国 REG 1.76 (文献(3))は DBT-78 モデルの竜巻半径を                                                    |    |
|                              |                        | 採用した場合は, 改訂前(2007年以前)から米国 REG 1.76で採用                                                       |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                              | 備考 |
|--------------------------------|---------------------|---------------------------------------------------------------------------|----|
|                                |                     | されている竜巻半径(45.7m)よりも大きな半径となり,圧力の時                                          |    |
|                                |                     | 間変化率は半径に反比例して大きくなるため、改訂前の半径                                               |    |
|                                |                     | (45.7m)のままするとの記述があるが、今回の竜巻影響評価では                                          |    |
|                                |                     | 外部コア半径を 30m としているため,米国 REG 1.76 よりも圧力の                                    |    |
|                                |                     | 時間変化率を保守的に評価している。                                                         |    |
|                                |                     | 最大風速が同じ場合, DBT-78 モデルは DBT-77 モデルに比べ竜巻                                    |    |
|                                |                     | 半径は大きくなるが, 高速域の大きさは DBT-77 モデルの方が                                         |    |
|                                |                     | DBT-78 モデルに比べ大きくなるため物体は加速されやすく, 飛散                                        |    |
|                                |                     | 解析においては保守的であることから、当社の竜巻影響評価にお                                             |    |
|                                |                     | いては,単一渦型のDBT-77 モデルを適用している。                                               |    |
|                                |                     | 2. 入力パラメータの設定について                                                         |    |
|                                |                     | 文献(1)において,単一渦型の DBT-77 の入力パラメータは,最                                        |    |
|                                |                     | 大接線風速 V <sub>m</sub> ,外部コア半径 R <sub>m</sub> 及び移動速度 V <sub>T</sub> の3つであり, |    |
|                                |                     | これらの入力値の制約に係る記載はなく、竜巻影響評価ガイドに                                             |    |
|                                |                     | 基づき, $V_{Rm}$ =85m/s, $R_m$ =30m, $V_T$ =15m/sを設定している。                    |    |
|                                |                     | 竜巻影響評価ガイドにおいては, ランキン渦モデルを仮定して,                                            |    |
|                                |                     | 観測された被害幅から最大接線風速半径 R <sub>m</sub> を推定している。竜巻                              |    |
|                                |                     | によって被害が生じる風速 V₀とした場合, R₂を超えた範囲では,                                         |    |
|                                |                     | 風速 V=V <sub>Rm</sub> ・( $R_m/r_0$ )と表せるため、 $V_0$ と、被害幅 $r_0$ 、及び最大接線      |    |
|                                |                     | 風速 V <sub>Rm</sub> が分かれば最大接線風速半径 R <sub>m</sub> を得ることができる。(図              |    |
|                                |                     | 2)                                                                        |    |
|                                |                     | フジタモデルでは、ランキン渦モデルと異なり高さによって風                                              |    |
|                                |                     | 速が変化するが、ある任意の高さの風速分布はランキン渦モデル                                             |    |
|                                |                     | と同様となる(図2と同じ)ため、ランキン渦を仮定して設定し                                             |    |
|                                |                     | た外部コア半径を用いても問題ないと考える。                                                     |    |
|                                |                     | 例えば,東京工芸大報告書 <sup>(4)</sup> p. 163の仮定2より,F3 あるいは                          |    |
|                                |                     | F3 に近い F2 竜巻(最大風速 V <sub>m</sub> =70m/s)の被害幅 250m を基にラン                   |    |
|                                |                     | キン渦モデルを仮定する場合, 竜巻半径の外側では V=V <sub>m</sub> R <sub>m</sub> /r が成            |    |
|                                |                     | 立するので,Vに被害をもたらす風速である17m/sを,rに被害幅                                          |    |
|                                |                     | (250m)に接する円の半径である 125m を代入すると R <sub>m</sub> =30m を得る。                    |    |
|                                |                     | 一方,フジタモデルの水平風速 V は接線風速と径方向風速を合                                            |    |
|                                |                     | 成したものであるので,外部コア半径の外側では水平風速 V は以                                           |    |
|                                |                     | 下で与えられる。                                                                  |    |
|                                |                     |                                                                           |    |
|                                |                     |                                                                           |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                 | 備考 |
|--------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | $V = \sqrt{V_o^2 + V_r^2}$                                                                                                                                   |    |
|                                |                     | $- E(r)E(z)V \sqrt{1 + \tan^2 \alpha}$                                                                                                                       |    |
|                                |                     | $= \Gamma_r(r)\Gamma_h(z)v_m\sqrt{1+\tan^2\alpha_0}$                                                                                                         |    |
|                                |                     | $- \dots R \qquad F(z) \qquad \qquad$ |    |
|                                |                     | $F_r(r) = -\frac{m}{r} \qquad F_h(z) = \begin{cases} \exp(-k(z-1)) & (z \ge 1) \end{cases}$                                                                  |    |
|                                |                     |                                                                                                                                                              |    |
|                                |                     | $\tan \alpha = \int -A(1-z^{1.5}) \qquad (z<1)$                                                                                                              |    |
|                                |                     | $\tan \alpha_0 = B\{1 - \exp(-k(z-1))\} \qquad (z \ge 1)$                                                                                                    |    |
|                                |                     | フジタモデルでは、ランキン渦モデルと異なり高さによって風                                                                                                                                 |    |
|                                |                     | 速が変化するが、外部コア半径の内側ではrに比例して風速が大                                                                                                                                |    |
|                                |                     | きくなり,外部コア半径の外側ではrに反比例して小さくなる点                                                                                                                                |    |
|                                |                     | ではランキン渦モデルと同様であり, 竜巻半径と風速の関係は図2                                                                                                                              |    |
|                                |                     | の通りとなる。                                                                                                                                                      |    |
|                                |                     | また,接線風速Vが最大となる流入層の上端(z=1)では,F <sub>h</sub> (z)=1,                                                                                                            |    |
|                                |                     | $\tan \alpha_0 = 0$ となり、竜巻外部コア半径の外側ではランキン渦モデル                                                                                                                |    |
|                                |                     | と同様に V=V <sub>m</sub> R <sub>m</sub> /r が近似的に成立する。従って, ランキン渦と同                                                                                               |    |
|                                |                     | じ竜巻半径を用いることができると考えられる。                                                                                                                                       |    |
|                                |                     | 流入層高さ H <sub>i</sub> は,外部コア半径 R <sub>m</sub> =30m の場合, H <sub>i</sub> =15m(i=0.501)                                                                          |    |
|                                |                     | となり, 文献(4)の図 2.2.3.10 における流入層高さと竜巻半径の                                                                                                                        |    |
|                                |                     | 比 (i=0.4 程度) や, Kosiba <sup>(5)</sup> により示されている流入層高さ (H <sub>i</sub> =10                                                                                     |    |
|                                |                     | ~14m以下)と概ね同じである。                                                                                                                                             |    |
|                                |                     |                                                                                                                                                              |    |
|                                |                     | Vmax                                                                                                                                                         |    |
|                                |                     | V=ar                                                                                                                                                         |    |
|                                |                     |                                                                                                                                                              |    |
|                                |                     | V=b/r                                                                                                                                                        |    |
|                                |                     |                                                                                                                                                              |    |
|                                |                     | $r_c$                                                                                                                                                        |    |
|                                |                     | r <sub>c</sub> r <sub>o</sub>                                                                                                                                |    |
|                                |                     | → → → → → → → → → → → → → → → → → → →                                                                                                                        |    |
|                                |                     | (未知)(観測値)                                                                                                                                                    |    |
|                                |                     | 図2 ランキン渦の風速分布と竜巻スケールの関係                                                                                                                                      |    |
|                                |                     |                                                                                                                                                              |    |
|                                |                     |                                                                                                                                                              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                 | 備考 |
|--------------------------------|---------------------|--------------------------------------------------------------|----|
|                                |                     |                                                              |    |
|                                |                     | 文献(1)Fujita, T. T., Workbook of tornadoes and high winds for |    |
|                                |                     | engineering applications (1978), U. Chicago.                 |    |
|                                |                     | 文献(2)Rationale for Wind-Borne Missile Criteria for DOE       |    |
|                                |                     | facilities, UCRL-CR-135687, Lawrence Livermore               |    |
|                                |                     | National Laboratory, 1999                                    |    |
|                                |                     | 文献(3)U.S. Nuclear Regulatory Commission, Design-basis        |    |
|                                |                     | tornado and tornado missiles for nuclear power plants,       |    |
|                                |                     | Regulatory Guide 1.76, Revision 1 (2007).                    |    |
|                                |                     | 文献(4) 東京工芸大学, 平成 21~22 年度原子力安全基盤調査研                          |    |
|                                |                     | 究(平成 22 年度) 竜巻による原子力施設への影響に関す                                |    |
|                                |                     | る調査研究,独立行政法人原子力安全基盤機構委託研究 成                                  |    |
|                                |                     | 果報告書, 2011.                                                  |    |
|                                |                     | 文献(5) Karen A. Kosiba Joshua WurmanThe three-dimensional     |    |
|                                |                     | structure and evolution of a tornado boundary layer          |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |
|                                |                     |                                                              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 島根原子力発電所 2号炉                    | 備考 |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----|
|                                | 別紙−2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 別紙 3                            |    |
|                                | 発電所における竜巻風速場モデルの適用方針                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 竜巻影響評価と竜巻モデルの関係                 |    |
|                                | 発電所の竜巻影響評価における竜巻風速場モデルの適用状況を,<br>先行審査プラントの状況と合わせ、別表 2—1 のとおり整理した。<br>これより,竜巻影響評価における設計荷重(風圧力による荷重W <sub>w</sub> ,<br>気圧差による荷重W <sub>P</sub> 及び設計飛来物による衝撃荷重W <sub>M</sub> )の設定<br>においては、<br>·W <sub>w</sub> :竜巻風速場モデルに依存しない<br>·W <sub>w</sub> :竜巻風速場モデルを選択する必要がある<br>ことが分かるが、W <sub>P</sub> ,W <sub>M</sub> の設定においては、以下のとおりモデ<br>ルを適用した。<br>1. W <sub>P</sub> ,W <sub>M</sub> の設定に用いる竜巻風速場モデルの選定の考え方<br>1.1 W <sub>P</sub> について<br>「竜巻影響評価ガイド」に示される、ランキン渦モデルに基づく<br>評価式を採用した。<br>1.2 W <sub>M</sub> について<br>発電所は敷地近傍に一般道や隣接事業所の施設等があり、こ<br>れらの場所からの物品の飛来を完全に管理することは難しいこと<br>から、その影響を現実的に評価することとし、多数の飛来物源が<br>想定される地表付近の物品の飛散挙動を、より実現象に近く評価<br>できるという特徴を踏まえ、フジタモデルを採用した。<br>2. 設計竜巻による複合荷重W <sub>T1</sub> ,W <sub>T2</sub> の設定の考え方<br>竜巻影響評価におけるフジタモデルの適用についてして」に示すと<br>おり保守性を確保した手法となっている。<br>2. 設計竜巻による複合荷重W <sub>T1</sub> ,W <sub>T2</sub> の設定の考え方<br>竜巻影響評価に用いる設計竜巻荷重は、設計竜巻による風圧<br>力による荷重(W <sub>M</sub> )を組み合わせた複合荷重とし、以下の式に<br>よって算出する。<br>W =W | <complex-block></complex-block> |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                                  | 島根原子力発電所 2号炉 | 備考 |
|--------------------------------|--------------------------------------------------------------------------------------|--------------|----|
|                                | $W_{T2} = W_W + 0.5 W_P + W_M$                                                       |              |    |
|                                | W <sub>T1</sub> , W <sub>T2</sub> : 設計竜巻による複合荷重                                      |              |    |
|                                | Ww:設計竜巻の風圧力による荷重                                                                     |              |    |
|                                | W <sub>P</sub> :設計竜巻の気圧差による荷重                                                        |              |    |
|                                | W <sub>M</sub> :設計飛来物による衝撃荷重                                                         |              |    |
|                                | なお, 複合荷重W <sub>T2</sub> の算出は, W <sub>W</sub> , W <sub>P</sub> 及びW <sub>M</sub> の作用方向 |              |    |
|                                | が同一となる様に扱うこととしており、ランキン渦モデルベース                                                        |              |    |
|                                | のW <sub>P</sub> を用いることは、複合荷重としても保守側になる                                               |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |
|                                |                                                                                      |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 島根原子力発電所 2号炉 | 備考 |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |    |
|                                | 治・<br>備考<br>して、設計者が任意に設定可<br>して、設計者が任意に設定可<br>でつ、設置高さを創切したが<br>がたので、米国基準等を参考<br>でたの風速場の形を決める/<br>前はV <sub>R.</sub> , Rだけで決ま、<br>で。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
|                                | 「「「「「「」」」」<br>「「」」」<br>「「」」」<br>「「」」」<br>「」」」<br>「」」」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |    |
|                                | における竜巻風速場モデル<br>ビデルの適用<br>ビデルの適用<br>シンキン渦モデル)<br>大飯3/4,高浜1~4,<br>美浜3,伊方3,<br>川内1/2, 交海3/4<br>【許可済】<br>85m/s<br>15m/s<br>85m/s<br>15m/s<br>15m/s<br>15m/s<br>(各社の設定値)<br>(各社の設定値)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |
|                                | 信所と先行審査プラント/<br>信所と先行審査プラント/<br>(□:フジタモデル,<br>*商等風速場:<br>85m/s 85m/s 85m/s 15m/s 85m/s 15m/s 90h2#*1 |              |    |
|                                | 第 過 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |    |
|                                | 東<br>「<br>「<br>「<br>「<br>」<br>「<br>」<br>「<br>」<br>「<br>」<br>「<br>」<br>「<br>」<br>「<br>」<br>」<br>「<br>」<br>」<br>「<br>」<br>」<br>」<br>」<br>「<br>」<br>」<br>」<br>」<br>」<br>」<br>」<br>」<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |    |
|                                | を<br>2 2-1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |
|                                | 別表<br>設計荷重設定要素<br>設計荷重設定要素<br>二                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |    |
|                                | 電巻の基本特性 飛散解析に関する設定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |    |



| 炉 | 備考 |
|---|----|
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉 | 備考 |
|--------------------------------|---------------------|--------------|----|
| 別 添 3-1                        | 別添資料1               | 別添 3-1       |    |
| 柏崎刈羽原子力発電所6号及び7<br>号炉          | 東海第二発電所             | 島根原子力発電所2号炉  |    |
|                                | 火山影響評価について          | 火山影響評価について   |    |
| 火山影響評価について                     |                     |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)       | 東海第二発電所(2018.9.18版)                 | 島根原子力発電所 2号炉                                    | 備考             |
|--------------------------------------|-------------------------------------|-------------------------------------------------|----------------|
| 第6条・外部からの衝撃による損傷の防止                  | E %                                 | 第六条 外部からの衝撃による損傷の防止 (火山)                        |                |
| 1 第0末、戸町かりの国手による頂傷の例正<br>日次          |                                     | カバ木 /下叩からの国手による頂傷の例止 (八田)                       |                |
| 日次 日次 日次                             |                                     | <日次>                                            |                |
|                                      | 1 基本方斜                              |                                                 |                |
|                                      |                                     |                                                 |                |
| 1.1 風安                               | 1.1 風安<br>1.9 水山影響亚価の法わ             | 1.1 100 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |                |
|                                      |                                     | 1.2 火山浜書町110,0000000000000000000000000000000000 | ・              |
| 2 立地評価                               | 2 立地評価                              | <u>1.5 </u><br>9                                | 【柏崎 6/7 南海笛一】  |
| 2. エルローー<br>9.1 百子力発雲所に影響を及ぼし得る水山の抽出 | 2. 立地前面<br>9.1 百子力発電所に影響を及ぼし得る水山の抽出 | 2. 立地計画<br>9.1 百子力発電所に影響を及ぼ〕得る火山の抽出             | ▲<br>自根9号にけ 水山 |
| 2.1 ボリカ光電所に影響を及なし待る人口の加山             |                                     | 2.1 赤丁万元電所に影響を及ばじ時5万円の加山                        | ガイドの改正を反映      |
|                                      |                                     |                                                 |                |
|                                      |                                     | <u>3.1</u><br>水山影響評価の根拠が維持されていることの確認を目的と        |                |
|                                      |                                     |                                                 |                |
| 3 影響評価                               | 3. 影響評価                             |                                                 |                |
| 3.1 水山事象の影響評価                        | 2. 水音町画<br>3.1 水山事象の影響評価            |                                                 |                |
| 3.9 火山事象(降下水砕物)に対する設計の基本方針           | 3.9 火山事象(降下水砕物)に対すろ設計の基本方針          | 4.9 火山事象(降下水砕物)に対する設計の基本方針                      |                |
| 3.3 安全施設のうち評価対象施設の抽出                 | 3.3 火山事象(降下水砕物)から防護すろ施設             | 4.3 安全施設のうち評価対象施設の抽出                            |                |
| 34 降下水砕物による影響の選定                     | 3.4 降下火砕物によろ影響の選定                   | 4.4 降下火砕物による影響の選定                               |                |
|                                      | 3.4.1 隆下火砕物の特徴                      |                                                 |                |
|                                      | 3.4.2 直接的影響                         |                                                 |                |
|                                      | 3.4.3. 間接的影響                        |                                                 |                |
| <ul><li>3.5 設計荷重の設定</li></ul>        | 3.5 設計荷重の設定                         | 4.5 設計荷重の設定                                     |                |
| <ol> <li>3.6 隆下火砕物に対する設計</li> </ol>  | 3.6 隆下火砕物の直接的影響に対する設計方針             | <ul> <li>4.6 隆下火砕物に対する設計</li> </ul>             |                |
|                                      | 3.6.1 隆下火砕物による荷重に対する設計方針            |                                                 |                |
|                                      | 3.6.2 降下火砕物による荷重以外に対する設計方針          |                                                 |                |
|                                      | 3.6.3 外気取入口からの降下火砕物の侵入に対する設計方針      |                                                 |                |
| <br> 3.7 降下火砕物の除去等の対策                | 3.7 降下火砕物の除去等の対策                    | 4.7 降下火砕物の除去等の対策                                |                |
|                                      | 3.7.1 降下火砕物に対応するための運用管理             |                                                 |                |
|                                      | 3.7.2 手順                            |                                                 |                |
|                                      | 3.8         降下火砕物の間接的影響に対する設計方針     |                                                 |                |
| 4. まとめ                               | 4. まとめ                              | <u>5</u> . まとめ                                  |                |
|                                      |                                     |                                                 |                |
|                                      |                                     |                                                 | ・資料構成の相違       |
|                                      | -1 降下火砕物の特徴について                     |                                                 | 【東海第二】         |
|                                      | -2 評価すべき影響の要因と評価手法                  |                                                 | 島根2号炉は、別添      |
|                                      | -3 直接的影響の評価結果                       |                                                 | 3-1 本文及び個別評価   |
|                                      | - 4 建屋構築物に係る影響評価                    |                                                 | (別添付属)に記載      |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                | 島根原子力発電所 2号炉 | 備考          |
|--------------------------------|------------------------------------|--------------|-------------|
|                                | -5 残留熱除去系海水系ポンプ及び非常用ディーゼル発         |              |             |
|                                | 電機(高圧炉心スプレイ系ディーゼル発電機を含             |              |             |
|                                | む。)用海水ポンプ(電動機含む)に係る影響評価            |              |             |
|                                | -6 残留熱除去系海水系ストレーナ及び非常用ディーゼ         |              |             |
|                                | ル発電機(高圧炉心スプレイ系ディーゼル発電機を            |              |             |
|                                | 含む。)用海水ストレーナ(下流設備含む)に係る影           |              |             |
|                                | 響評価                                |              |             |
|                                | - 7 海水取水設備に係る影響評価                  |              |             |
|                                | - 8 計測制御設備 (安全保護系) に係る影響評価         |              |             |
|                                | -9 換気空調設備に係る影響評価                   |              |             |
|                                | -10 非常用ディーゼル発電機(高圧炉心スプレイ系ディ        |              |             |
|                                | ーゼル発電機を含む。)に係る影響評価                 |              |             |
|                                | <u>-11</u> 主排気筒及び非常用ガス処理系排気筒に係る影響評 |              |             |
|                                | 価                                  |              |             |
|                                | -1.2 間接的影響の評価結果                    |              |             |
|                                |                                    |              |             |
|                                | 参考資料                               |              | (以下にて,再掲比較) |
|                                | -1 発電用原子炉の高温停止及び冷温停止に必要な設備         |              |             |
|                                | LINC                               |              |             |
|                                | -2 降下火砕物堆積荷重評価への材料強度×1.1 の適用       |              |             |
|                                | LINC                               |              |             |
|                                | -3 降下火砕物の残留熱除去系海水系ポンプ及び非常用         |              |             |
|                                | ディーゼル発電機(高圧炉心スプレイ系ディーゼル            |              |             |
|                                | 発電機を含む。)用海水ポンプ基礎部堆積による影響           |              |             |
|                                | 評価について                             |              |             |
|                                | <u>-4</u> 降下火砕物と積雪の重ね合わせの考え方について   |              |             |
|                                | -5 原子力発電所で使用する塗料について               |              |             |
|                                | <u>-6</u> 降下火砕物の金属腐食研究について         |              |             |
|                                | <u>-7</u> 給水処理設備に係る影響評価について        |              |             |
|                                | -8 降下火砕物のその他の設備への影響評価について          |              |             |
|                                | <u>-9</u> 降下火砕物の除去に要する時間及び灰置場について  |              |             |
|                                | <u>-10</u> 降水による降下火砕物の固結の影響について    |              |             |
|                                | <u>-11</u> 火山影響評価ガイドとの整合性について      |              |             |
|                                | <u>-12</u> 原子炉建屋の健全性評価について         |              |             |
|                                | -13 タービン建屋の健全性評価について               |              |             |
|                                | <u>-14</u> 外部事象に対する津波防護施設,浸水防止設備及び |              |             |
|                                | 津波監視設備の防護方針について                    |              |             |
|                                | -15 降下火砕物の偏りによる影響評価について            |              |             |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)              | 東海第二発電所(2018.9.18版)                                   | 島根原子力発電所 2号炉                                    | 備考                      |
|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------|-------------------------|
|                                             | -1.6 除灰時の人員荷重の考え方について                                 |                                                 |                         |
|                                             | <u>-17</u> 気中降下火砕物対策に係る検討について                         |                                                 |                         |
|                                             |                                                       |                                                 |                         |
|                                             |                                                       |                                                 |                         |
| 【比較のため一部補足資料の番号を入れ替えて記載】                    | 【比較のため「資料」、「参考資料」の番号を入れ替えて記載】                         |                                                 |                         |
| 補足資料                                        |                                                       | 補足資料                                            |                         |
| 1. 評価ガイドとの整合性について                           | 参考資料-11 火山影響評価ガイドとの整合性について                            | 1:「原子力発電所の火山影響評価ガイド」との整合性について                   |                         |
|                                             |                                                       |                                                 |                         |
| 2. 降下火砕物の特徴及び影響モードと,影響モードから選定され             | 資料-1 降下火砕物の特徴について                                     | 2:降下火砕物の特徴及び影響モードと,影響モードから選定さ                   |                         |
| た影響因子に対し影響を受ける評価対象施設の組み合わせにつ                | 参考資料-10 降水による降下火砕物の固結の影響について                          | れた影響因子に対し影響を受ける評価対象施設等の組合せに                     |                         |
| いて                                          |                                                       |                                                 | 次が進みのおを                 |
| 3. 降下火砕物による摩粘について<br>4. 略下水砕物の化学的影響(府食)について | 去老资料5 万子力発電所で使用する涂料について                               | 3: 降下欠件物による摩札についし $4: 涂柱による降下水砂物の化学的影響(府食)について$ | ・ 資科(柄)(り)相遅<br>【 宙海第一】 |
|                                             | 多分息Minutional And |                                                 | 【术博炉—】                  |
| 6. 降下火砕物による送電鉄塔への影響について                     |                                                       | 5:降下火砕物による送電鉄塔への影響について                          | ・資料構成の相違                |
|                                             |                                                       |                                                 | 【東海第二】                  |
| 7. 降下火砕物による非常用ディーゼル発電機の吸気に係るバグ              | 資料-10 非常用ディーゼル発電機(高圧炉心スプレイ系ディ                         | 6:降下火砕物による非常用ディーゼル発電機の給気フィルタへ                   |                         |
| フィルタの影響評価                                   | <u>ーゼル発電機を含む。)に係る影響評価</u>                             | の影響について                                         |                         |
| 8. アイスランド火山を用いる基本的考え方とセントヘレンズ火              |                                                       | 7:アイスランド火山を用いる基本的考え方とセントへレンズ火                   | ・資料構成の相違                |
| 山による影響評価                                    |                                                       | 山による影響評価について                                    | 【東海第二】                  |
| 9 降下水砕物の侵入によろ非常用ディーゼル機関空気冷却器へ               | <br>  資料-10 非常用ディーゼル発雷機(高圧炉心スプレイ系ディ                   | 8. 陈下水砕物の得入による非常田ディーゼル機関空気冷却哭へ                  |                         |
| の影響                                         | ーゼル発電機を含む。)に係る影響評価                                    | の影響について                                         |                         |
| 10. 降下火砕物の侵入による潤滑油への影響                      |                                                       | 9:降下火砕物の侵入による非常用ディーゼル発電機の潤滑油へ                   | ・資料構成の相違                |
|                                             |                                                       | の影響について                                         | 【東海第二】                  |
| 11. 降下火砕物のその他設備への影響について                     | 参考資料-8 降下火砕物のその他の設備への影響評価について                         | 10:降下火砕物のその他設備への影響評価について                        |                         |
|                                             |                                                       |                                                 |                         |
| 12. 降下火砕物の金属腐食研究                            | 参考資料-6 降下火砕物の金属腐食研究について                               | 11:降下火砕物の金属腐食研究について                             |                         |
| 13. 安全保護系盤への降下火砕物の影響                        |                                                       | 19. 計測制御系統施設(安全保護系般) 計測制御用電源設備(計                |                         |
|                                             |                                                       | 装用無停電電源設備)及び非常用所内電源設備(所内低圧系                     |                         |
|                                             |                                                       | 統)への影響について                                      |                         |
| 14. 6 号及び7 号炉の建屋及び屋外タンクの降灰除去について            | 参考資料-9 降下火砕物の除去に要する時間及び灰置場につい                         | 13:降下火砕物の除灰に要する時間について                           |                         |
|                                             |                                                       |                                                 |                         |
| 15. アクセスルートにおける降下火砕物除去時間の評価について             |                                                       |                                                 | ・資料構成の相違                |
|                                             |                                                       |                                                 | 【柏崎 6/7】                |
|                                             |                                                       |                                                 | 島根2<br>号炉では、ア           |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)           | 島根原子力発電所 2号炉                        | 備考              |
|--------------------------------|-------------------------------|-------------------------------------|-----------------|
|                                |                               |                                     | クセスルートの除灰時      |
|                                |                               |                                     | 間評価を「技術的能力      |
|                                |                               |                                     | 添付資料 1.0.2: 可搬型 |
|                                |                               |                                     | 重大事故等対処設備保      |
|                                |                               |                                     | 管場所及びアクセスル      |
|                                |                               |                                     | ートについて」で確認      |
|                                |                               |                                     | しているため,作成し      |
|                                |                               |                                     | ていない            |
| 16. 降下火砕物降灰時のバグフィルタ取替えについての手順  | 資料-9 換気空調設備に係る影響評価            | 14:降下火砕物降灰時のフィルタ取替等の手順について          |                 |
| 17. 観測された諸噴火の最盛期における噴出率と継続時間   | 資料-9 換気空調設備に係る影響評価            | <br> 15:観測された諸噴火の最盛期における噴出率と継続時間につい |                 |
|                                |                               | 7                                   |                 |
| 18. 重大事故等対処設備への考慮              |                               |                                     | ・資料構成の相違        |
| 19. 軽油タンクからの燃料移送について           |                               |                                     | 【東海第二】          |
| 20. 水質汚染に対する補給水等への影響について       | 参考資料-7 給水処理設備に係る影響評価について      | 18:水質汚染に対する補給水等への影響について             |                 |
| 5. 積雪と降下火砕物との重畳の考え方について        | 参考資料-4 降下火砕物と積雪の重ね合わせの考え方について | 19: 主荷重と組み合わせる場合の積雪荷重の考え方について       |                 |
|                                | 参考資料-12 原子炉建屋の健全性評価について       | 20:原子炉建物の屋根トラス部材の健全性評価について          |                 |
|                                | 参考資料-13 タービン建屋の健全性評価について      | 21:タービン建物の屋根トラス部材の健全性評価について         |                 |
|                                |                               | 22: 排気筒モニタ室の健全性評価について               | ・資料構成の相違        |
|                                |                               |                                     | 【東海第二】          |
|                                | 参考資料-17 気中降下火砕物対策に係る検討について    | 23:気中降下火砕物対策に係る検討について               | ・資料構成の相違        |
|                                |                               |                                     | 【柏崎 6/7】        |
|                                | -1 発電用原子炉の高温停止及び冷温停止に必要な設備    |                                     | ・記載方針の相違        |
|                                | について                          |                                     | 【東海第二】          |
|                                |                               |                                     | 島根2号炉は,火山影      |
|                                |                               |                                     | 響評価の対象施設とし      |
|                                |                               |                                     | て,全てのクラス1,ク     |
|                                |                               |                                     | ラス2と安全評価上そ      |
|                                |                               |                                     | の機能に期待するクラ      |
|                                |                               |                                     | ス3設備を抽出してお      |
|                                |                               |                                     | り,発電用原子炉の高温     |
|                                |                               |                                     | 停止・冷温停止に必要と     |
|                                |                               |                                     | なる系統及び機器を含      |
|                                |                               |                                     | んでいるため作成して      |
|                                |                               |                                     | いない             |
|                                | -2 降下火砕物堆積荷重評価への材料強度×1.1 の適用  |                                     | ・設計方針の相違        |
|                                | について                          |                                     | 【東海第二】          |
|                                |                               |                                     | 島根2号炉では短期       |
|                                |                               |                                     | 許容応力度に基づく評      |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)            | 島根原子力発電所 2号炉 | 備考           |
|--------------------------------|--------------------------------|--------------|--------------|
|                                |                                |              | 価としており,材料強度  |
|                                |                                |              | ×1.1 は適用していな |
|                                |                                |              | いため作成していない   |
|                                | -3 降下火砕物の残留熱除去系海水系ポンプ及び非常用     |              | (島根2号炉は,評価結  |
|                                | ディーゼル発電機(高圧炉心スプレイ系ディーゼル        |              | 果を別添 3-1 の個別 |
|                                | 発電機を含む。)用海水ポンプ基礎部堆積による影響       |              | 評価-2に記載)     |
|                                | 評価について                         |              |              |
|                                | -14 外部事象に対する津波防護施設,浸水防止設備及び    |              | ・資料構成の相違     |
|                                | 津波監視設備の防護方針について                |              | 【東海第二】       |
|                                |                                |              | 島根2号炉は,火山と   |
|                                |                                |              | 津波の重畳確率は低く   |
|                                |                                |              | 評価項目としていない   |
|                                | <u>-15</u> 降下火砕物の偏りによる影響評価について |              | ・設計方針の相違     |
|                                |                                |              | 【東海第二】       |
|                                |                                |              | 島根2号炉では,短期   |
|                                |                                |              | 許容応力度に基づく許   |
|                                |                                |              | 容堆積荷重に対し十分   |
|                                |                                |              | な余裕があり,構造健全  |
|                                |                                |              | 性への影響がないこと   |
|                                |                                |              | から評価項目としてい   |
|                                |                                |              | ない           |
|                                | <u>-16</u> 除灰時の人員荷重の考え方について    |              | ・設計方針の相違     |
|                                |                                |              | 【東海第二】       |
|                                |                                |              | 島根2号炉では,短期   |
|                                |                                |              | 許容応力度に基づく許   |
|                                |                                |              | 容堆積荷重に対し十分   |
|                                |                                |              | な余裕があり、構造健全  |
|                                |                                |              | 性への影響がないこと   |
|                                |                                |              | から評価項目としてい   |
|                                |                                |              |              |
|                                |                                |              | · · · ·      |
|                                |                                |              |              |
|                                |                                |              |              |
|                                |                                |              |              |
|                                |                                |              |              |
| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)     | 東海第二発電所(2018.9.18版)              | 島根原子力発電所 2号炉                         | 備考            |
|------------------------------------|----------------------------------|--------------------------------------|---------------|
| 1. 基本方針                            | 1. 基本方針                          | 1. 基本方針                              |               |
| 1.1 概要                             | 1.1 概要                           | 1.1 概要                               |               |
| 原子力規制委員会の定める「実用発電用原子炉及びその附属施       | 原子力規制委員会の定める「実用発電用原子炉及びその附属      | 原子力規制委員会の定める「実用発電用原子炉及びその附属施         |               |
| 設の位置,構造及び設備の基準に関する規則 ( 平成25 年6 月28 | 施設の位置,構造及び設備の基準に関する規則(平成25年6月    | 設の位置、構造及び設備の基準に関する規則(平成25年6月28       |               |
| 日原子力規制委員会規則第五号)」第六条において, 外部からの     | 28 日原子力規制委員会規則第五号)」第六条において,外部か   | 日原子力規制委員会規則第五号)」第六条において,外部からの        |               |
| 衝撃による損傷防止として,安全施設は,想定される自然現象(地     | らの衝撃による損傷防止として、安全施設は、想定される自然     | 衝撃による損傷防止として, 「安全施設は、想定される自然現象       |               |
| 震及び津波を除く。) が発生した場合においても安全機能を損な     | 現象(地震及び津波を除く。)が発生した場合においても安全機    | (地震及び津波を除く。次項において同じ。)が発生した場合に        |               |
| わないものでなければならないとしており、敷地周辺の自然環境      | 能を損なわないものでなければならないとしており、敷地周辺     | おいても安全機能を損なわないものでなければならない。」とし        |               |
| をもとに想定される自然現象の一つとして、火山の影響を挙げて      | の自然環境を基に想定される自然現象の一つとして、火山の影     | ており,「実用発電用原子炉及びその附属施設の位置、構造及び        | ・資料構成の相違      |
| いる。                                | 響を挙げている。                         | 設備の基準に関する規則の解釈」第6条において,敷地の自然環        | 【柏崎 6/7,東海第二】 |
| 火山の影響により発電用原子炉施設の安全性を損なわない設計で      | 火山の影響により発電用原子炉施設の安全性を損なうことの      | 境をもとに想定される自然現象の一つとして,火山の影響を挙げ        | 島根2号炉は、火山     |
| あることを評価するため、火山影響評価を行い、発電用原子炉施      | ない設計であることを評価するため、火山影響評価を行い、発     | ている。                                 | ガイドの改正を反映     |
| 設へ影響を与えないことを評価する。                  | 電用原子炉施設へ影響を与えないことを評価する。          | 火山の影響により発電用原子炉施設の安全性を損なわない設          |               |
|                                    |                                  | 計であることを評価するため,火山影響評価を行い,発電用原子        |               |
|                                    |                                  | 炉施設へ影響を与えないことを評価する。                  |               |
| <br> 1.2 火山影響評価の流れ                 | 1.2 火山影響評価の流れ                    | 1.2 火山影響評価の流れ                        |               |
| 火山影響評価は、図1.1 に従い、立地評価と影響評価の2 段階    | 火山影響評価は「原子力発電所の火山影響評価ガイド」を参      | 火山影響評価は、1.2(1)および(2)に示す立地評価と影響評価     | • 資料構成の相違     |
| で行う。                               | 照し、第1.2-1 図のフローに従い立地評価と影響評価の2 段階 | の2段階で行う。                             | 【柏崎 6/7、東海第二】 |
|                                    | で行う。                             | また、火山影響評価のほか、評価時からの状態の変化の検知に         | 島根2号炉は、火山     |
|                                    |                                  | より評価の根拠が維持されていることを確認する目的として、         | ガイドの改正を反映     |
|                                    |                                  | 1.3のとおり評価を行う。火山影響評価の基本フローを第1.1図      |               |
|                                    |                                  | に示す。                                 |               |
|                                    |                                  | (1) 立地評価                             |               |
| 立地評価では,原子力発電所に影響を及ぼし得る火山の抽出を       | 立地評価では、原子力発電所に影響を及ぼし得る火山の抽出      |                                      |               |
| 行い, 抽出された火山の火山活動に関する個別評価を行う。具体     | を行い,抽出された火山の火山活動に関する個別評価を行う。     | 出を行う。具体的には,原子力発電所の地理的領域において第四        |               |
| 的には設計対応不可能な火山事象が柏崎刈羽原子力発電所の運用      | 具体的には設計対応不可能な火山事象が発電所の運用期間中に     | 紀に活動した火山(以下「第四紀火山」という。)を抽出し(第        |               |
| 期間中に影響を及ぼす可能性の評価を行う。               | 影響を及ぼす可能性の評価を行う。                 | 1.1 図①), その中から, 完新世に活動があった火山(第 1.1 図 |               |
| 設計対応不可能な火山事象が影響を及ぼす可能性が十分低いと       | 設計対応不可能な火山事象が影響を及ぼす可能性が十分小さ      | ②)及び完新世に活動を行っていないものの将来の活動可能性が        |               |
| 評価された場合は、原子力発電所に影響を与える可能性のある火      | いと評価された場合は、原子力発電所に影響を与える可能性の     | 否定できない火山(第1.1図③)は,原子力発電所に影響を及ぼ       |               |
| 山事象の抽出とその影響評価を行う。                  | ある火山事象の抽出とその影響評価を行う。             | し得る火山として個別評価対象とする。                   |               |
|                                    |                                  | 原子力発電所に影響を及ぼし得る火山として抽出した火山に          |               |
|                                    |                                  | ついて原子力発電所の運用期間における火山活動に関する個別         |               |
|                                    |                                  | 評価を行い,設計対応が不可能な火山事象が原子力発電所に影響        |               |
|                                    |                                  | を及ぼす可能性が十分小さいと評価した場合は,原子力発電所に        |               |
|                                    |                                  | 影響を与える可能性のある火山事象の抽出とその影響評価を行         |               |
|                                    |                                  | <u>ð.</u>                            |               |
|                                    |                                  |                                      |               |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                     | 東海第二発電所(2018.9.18版)                                                                                                                                     | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                 | 備考                                                    |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 影響評価では, 個々の火山事象への設計対応及び運転対応の妥<br>当性について評価を行う。影響評価の詳細フローは図1.2 に示す。                                  | 影響評価では、個々の火山事象への設計対応及び運転対応の<br>妥当性について「3.1 火山事象の影響評価」にて評価を行う。<br>(第1.2-2 図)<br>なお、立地評価及び原子力発電所に影響を与える可能性のあ<br>る火山事象の抽出とその影響評価については、「添付書類六7.火<br>山」にて示す。 | <ul> <li>(2)影響評価</li> <li>立地評価として実施した個別評価において立地が不適とならない場合は、原子力発電所の安全性に影響を与える可能性のある火山事象を抽出し、各火山事象に対する設計対応及び運転対応の妥当性について評価を行う(第1.1図⑤)。</li> <li>ただし、火山事象のうち降下火砕物に関しては、原子力発電所の敷地及びその周辺調査から求められる単位面積当たりの質量と同等の火砕物が降下するものとする。なお、敷地及び敷地周辺で確認された降下火砕物の噴出源である火山事象が同定でき、これと同様の火山事象が原子力発電所の運用期間中に発生する可能性が十分に小さい場合は考慮対象から除外する。</li> <li>影響評価の詳細フローは第1.2図に示す。</li> </ul> |                                                       |
| <figure><figure><section-header><complex-block></complex-block></section-header></figure></figure> | <figure><complex-block></complex-block></figure>                                                                                                        | <figure><figure></figure></figure>                                                                                                                                                                                                                                                                                                                           | ・資料構成の相違<br>【柏崎 6/7,東海第二】<br>島根 2 号炉は,火山<br>ガイドの改正を反映 |



| ~炉                                                                                                                                      | 備考                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| - 間接的影響評価<br>影響因子の選定<br>影響評価結果                                                                                                          |                                                     |
| 1                                                                                                                                       |                                                     |
| <u> もり原子力発電所の運</u><br><u> 事象が原子力発電所</u><br>した火山であっても,<br>した火山事象が原子力<br>ない火山に対しては,<br>前の根拠が維持されて<br>月期間中のモニタリン<br>」データの有意な変化<br>1.1 図⑥)。 | ・資料構成の相違<br>【柏崎 6/7,東海第二】<br>島根2号炉は,火山<br>ガイドの改正を反映 |

| 柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)   | 東海第二発電所(2018.9.18版)                              | 島根原子力発電所 2号炉                                                             | 備考                              |
|--------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------|---------------------------------|
| 2. 立地評価                              | 2. 立地評価                                          | 2. 立地評価                                                                  |                                 |
| 2.1 原子力発電所に影響を及ぼし得る火山の抽出             | 2.1 原子力発電所に影響を及ぼし得る火山の抽出                         | 2.1 原子力発電所に影響を及ぼし得る火山の抽出                                                 |                                 |
| 地理的領域内に分布する第四紀火山(82火山)について,完新        | 地理的領域 <u>(160km)に位置する</u> 第四紀火山( <u>32</u> 火山)につ | 地理的領域内に分布する第四紀火山(24_火山)について、完                                            | <ul> <li>・立地場所,評価対象火</li> </ul> |
| 世における活動の有無を確認し、将来の活動可能性のある火山,        | いて,完新世の活動の有無,将来の活動性を検討した結果,原                     | 新世における活動の有無等を確認し,原子力発電所に影響を及ぼ                                            | 山の相違                            |
| 若しくは将来の活動可能性が否定できない火山を抽出した。          | 子力発電所に影響を及ぼし得る火山として,高原山,那須岳,                     | し得る火山(以下、「検討対象火山」という。)を抽出した。                                             | 【柏崎 6/7, 東海第二】                  |
| その結果, <u>黒岩山,苗場山,妙高山,志賀高原火山群,新潟焼</u> | 男体・女峰火山群,日光白根山,赤城山,燧ケ岳,安達太良山,                    | さんべさん だいこんじま もりたやま めんがめやま<br>その結果,三瓶山,大根島,シゲグリ,森田山,女亀山,                  | ・資料構成の相違                        |
| 山,新潟金山,黒姫山,燧ヶ岳,志賀,沼沢,飯縄山,草津白根        |                                                  | ほうじょうはちまん かわもと まきはら こおけ きほう おおや とどろき かみきの<br>北条八幡、川本、槙原、郡家、佐坊、大屋・ 轟、上佐野・ | 【柏崎 6/7,東海第二】                   |
|                                      |                                                  | <u>あきが かくらやま だいせん くらよし おき どうご みがたかきんぐん</u><br>目坂、和久羅山、大山、倉吉、隠岐島後、美方火山群及び | 島根2号炉は、火山                       |
|                                      |                                                  | 神鍋火山群の18火山を検討対象火山として評価した。                                                | ガイドの改正を反映                       |
|                                      |                                                  |                                                                          |                                 |
| 安達太良山, 環諏訪湖及び笹森山の33 火山を将来の活動可能性の     |                                                  | については、地理的領域外の火山も確認し、鬱陵島(韓国領)                                             |                                 |
| ある火山又は将来の活動可能性を否定できない火山として評価し        |                                                  | 等について,原子力発電所に影響を及ぼし得る火山として抽出し                                            |                                 |
| た。                                   |                                                  |                                                                          |                                 |
|                                      |                                                  |                                                                          |                                 |
|                                      |                                                  |                                                                          |                                 |
| 2.2 運用期間における火山活動に関する個別評価             | 2.2 抽出された火山の火山活動に関する個別評価                         | 2.2 運用期間における火山活動に関する個別評価                                                 |                                 |
| 将来の活動可能性のある火山又は将来の活動可能性を否定でき         | 原子力発電所に影響を及ぼし得る火山として抽出した 13 火                    | 検討対象火山として評価した 18 火山を対象として, 文献調査                                          | ・立地場所,評価対象火                     |
| ない火山として評価した33火山を対象として、文献調査に基づ        | 山について、設計対応不可能な火山事象(火砕物密度流、溶岩                     | に基づき,運用期間における火山活動に関する設計対応不可能な                                            | 山の相違                            |
| き,運用期間における火山活動に関する設計対応不可能事象(火        | 流,岩屑なだれ,地滑り及び斜面崩壊,新しい火口の開口,地                     | 火山事象(火砕物密度流,溶岩流,岩屑なだれ,地滑り及び斜面                                            | 【柏崎 6/7, 東海第二】                  |
| 砕物密度流,溶岩流,岩屑なだれ,地滑り及び斜面崩壊,新しい        | 殻変動)が影響を及ぼす可能性について個別評価を行った。                      | 崩壊,新しい火口の開口,地殻変動)の個別評価を行った。                                              |                                 |
| 火口の開口,地殻変動)の個別評価を行った。                |                                                  |                                                                          |                                 |
| 火砕物密度流による堆積物が敷地周辺では確認されておらず、         | 火砕物密度流については、敷地と火砕密度流の到達可能性範                      | 火砕物密度流については、地質調査の結果、敷地には、検討対                                             | ・火山活動に関する個                      |
| 敷地まで十分に離隔距離があることから、発電所に影響を及ぼす        | 囲の距離から発電所に影響を及ぼす可能性は十分に小さいと評                     | 象火山を起源とする火砕流堆積物は確認されていない。文献調査                                            | 別評価結果の相違                        |
| 可能性は十分に低いと評価した。                      | 価した。                                             | の結果,確認されている最大到達距離は,検討対象火山と敷地と                                            | 【柏崎 6/7, 東海第二】                  |
|                                      |                                                  | の距離よりも十分小さいことから,原子力発電所に影響を及ぼす                                            |                                 |
|                                      |                                                  | 可能性は十分に小さいと評価した。                                                         |                                 |
| 溶岩流,岩屑なだれ,地滑り及び斜面崩壊については, <u>それぞ</u> | <br>  溶岩流,岩屑なだれ,地滑り及び斜面崩壊については, <u>敷地</u>        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                     |                                 |
| れの火山と敷地との位置関係より、敷地まで十分な離隔距離があ        | と火山の距離から発電所に影響を及ぼす可能性はないと評価し                     | 査の結果,敷地には,検討対象火山を起源とする火山噴出物は確                                            |                                 |
| ることから、発電所に影響を及ぼす可能性は十分に低いと評価し        | た。                                               | 認されていない。また、文献調査の結果、確認されている溶岩・                                            |                                 |
| た。                                   |                                                  | 火砕物堆積物の最大到達距離は,検討対象火山と敷地との距離よ                                            |                                 |
|                                      |                                                  | りも十分小さいことから, 原子力発電所に影響を及ぼす可能性は                                           |                                 |
|                                      |                                                  | 十分に小さいと評価した。                                                             |                                 |
|                                      | 新しい火口の開口、地殻変動については、敷地は火山フロン                      | 新しい火口の開口については,文献調査の結果,敷地と活火山                                             |                                 |
| 動がないこと、地温勾配が小さく、また地殻熱流量が小さいこと        | トより前弧側(東方)に位置すること、敷地周辺では火成活動                     | である三瓶山は約 55km と十分な距離があり、また、敷地近傍で                                         |                                 |
| から、発電所に影響を及ぼす可能性は十分に低いと評価した。         | は確認されていないことから、この事象が発電所の運転期間中                     | は熱水活動及び深部低周波地震が認められないことから,原子力                                            |                                 |
|                                      | に影響を及ぼす可能性は十分に小さいと評価した。                          | 発電所に影響を及ぼす可能性は十分に小さいと評価した。                                               |                                 |
| 地殻変動については、敷地周辺が過去の火山活動に伴う火口及         |                                                  | 地殻変動については、文献調査の結果、新しい火口の開口によ                                             |                                 |
| びその近傍に位置しないことから、発電所に影響を及ぼす可能性        |                                                  | る敷地への影響はないことから,原子力発電所に影響を及ぼす可                                            |                                 |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                       | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                              | 備考                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)<br>は十分に低いと評価した。<br>以上の検討結果より,発電所の運用期間に設計対応不可能な火<br>山事象が,発電所に影響を及ぼす可能性は十分に低いと評価した。<br>また,これらの火山活動は,既往最大規模の噴火を考慮しても,<br>発電所に影響を及ぼさないと評価し,火山モニタリングは不要と<br>判断した。                                                                                                                                                                                                                                                                                              | 東海第二発電所(2018.9.18版)<br>以上から,設計対応不可能な火山事象が発電所に影響を及ぼ<br>す可能性はなく,この結果から,抽出した13火山はモニタリン<br>グの対象とならないと判断した。                                                                                                                                    | <ul> <li>島根原子力発電所 2号炉</li> <li>         能性は十分に小さいと評価した。         以上の検討結果より,原子力発電所の運用期間に設計対応不可         能な火山事象が,発電所に影響を及ぼす可能性は十分に小さいと         評価した。     </li> <li>         3. 火山活動のモニタリング         3.1 火山影響評価の根拠が維持されていることの確認を目的と         した火山活動のモニタリング         第四紀に設計対応不可能な火山事象が原子力発電所の敷地に         到達しておらず,モニタリング対象とする火山はない。     </li> </ul> | 備考<br>・資料構成の相違<br>【柏崎 6/7,東海第二】<br>島根2号炉は,火山<br>ガイドの改正を反映 |
| <ul> <li>3. 影響評価</li> <li>3. 1 火山事象の影響評価</li> <li>将来の活動可能性が否定できない火山について,柏崎刈羽原子<br/>力発電所6号及び7号炉の運用期間中の噴火規模を考慮し,それが<br/>噴火した場合,原子力発電所の安全機能に影響を及ぼし得る火山</li> <li>事象を抽出した結果,降下火砕物 (火山灰)(以下「降下火砕物」<br/>という。)のみが柏崎刈羽原子力発電所に影響を及ぼし得る火山事<br/>象であるという結果となった。</li> <li>地質調査において,発電所敷地周辺で確認されている降下火砕<br/>物堆積層について,給源が特定できる降下火砕物については、各<br/>火山の活動性を評価し,同規模の噴火が発生する可能性は十分に<br/>低いと評価した。また,給源不明の降下火砕物(阿相島テフラ等)<br/>は、敷地内で最大35cm を確認しているが、水系等の影響を受けて<br/>堆積したと推定され、当時の堆積環境は現在と異なると考えられ<br/>る。</li> </ul> | <ul> <li>3. 影響評価</li> <li>3.1 火山事象の影響評価</li> <li> <u>将来の活動可能性のある火山若しくは将来の活動可能性を否定できない火山</u>について,発電所の運用期間中の噴火規模を考慮し,原子力発電所の安全機能に影響を及ぼし得る火山事象を<br/>抽出した結果,降下火砕物のみが発電所に影響を及ぼし得る火<br/>山事象となった。よって,降下火砕物による安全施設への影響<br/>評価を行う。     </li> </ul> | <ul> <li>4. 影響評価</li> <li>4.1 火山事象の影響評価</li> <li>検討対象火山について,島根原子力発電所2号炉の運用期間中の噴火規模を考慮し,それが噴火した場合,原子力発電所の安全機能に影響を及ぼし得る火山事象を抽出した結果,降下火砕物のみが島根原子力発電所に影響を及ぼし得る火山事象であるという結果となった。</li> </ul>                                                                                                                                                    |                                                           |
| 一方, 発電所運用期間中に, このような規模の降下火砕物が敷<br>地周辺に生じる蓋然性を確認するため,文献, 既往解析結果の知<br>見及び降下火砕物シミュレーションを用い検討した結果, 降下火<br>砕物の層厚を約23.1cm と評価した。以上のことから,発電所運用<br>期間中に敷地内で想定する降下火砕物の最大層厚は,評価結果の<br>約23.1cm に対し,敷地内で給源不明なテフラの最大層厚35cm が<br>確認されていることを踏まえ,保守的に35cm と設定する。                                                                                                                                                                                                                                         | 影響評価に用いる条件として,降下火砕物の分布状況,シミ<br>ユレーション及び分布事例から総合的に判断し,保守的に <u>堆積</u><br>厚さ50cmと設定する。また,粒径及び密度については,文献調<br>査及び地質調査の結果を踏まえ粒径8mm以下,密度0.3g/cm <sup>3</sup><br>(乾燥状態)~1.5g/cm <sup>3</sup> (湿潤状態)と設定した。第3.1-1<br>表に設計条件を示す。                     | 発電所運用期間中に,このような規模の降下火砕物が敷地周辺<br>に生じる蓋然性を確認するため,文献,地質調査,降下火砕物シ<br>ミュレーション及び敷地周辺の層厚を踏まえた検討を実施した。<br>評価対象火山は,発電所敷地からの位置関係,過去の噴火規模を<br>考慮して,大山及び三瓶山を対象火山として詳細評価を実施し<br>た。想定する降下火砕物堆積量は,敷地周辺の層厚等を考慮し,<br>降下火砕物堆積量を56cmと設定する。                                                                                                                   | ・火山活動に関する個<br>別評価結果の相違<br>【柏崎 6/7, 東海第二】                  |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                             | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 備考                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| そのほか得られた降下火砕物の特性を表1.1 に示す。なお,鉛<br>直荷重については,湿潤状態の降下火砕物に, <u>プラント寿命期間</u><br>を考慮して年超過確率10 <sup>-2</sup> 規模の積雪を踏まえ設定する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                 | そのほか得られた降下火砕物の特性を第1.1表に示す。なお,<br>鉛直荷重については,湿潤状態の降下火砕物に建築基準法の考え<br>方を参考とし設計基準積雪深(100cm)に係数0.35を考慮した値<br>を踏まえ設定する。                                                                                                                                                                                                                                                                                                                                                                                                                   | ・自然現象の重畳の考<br>え方の相違<br>【柏崎 6/7】<br>自然現象の荷重の組<br>合せについて,設計基準<br>で想定している規模の                                                                                                                                                                              |
| <u>表 1.1 降 ト 火 仲 物 特 性 の 設 定 結 来</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>第3.1-1 表 降下火砕物の設計条件</u>                                                                                                                                                                                                                                      | <u>第1.1表降下火砕物特性の設定結果</u><br>項日<br>シーニー<br>一番考                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 王事家と、<br>年超過確率<br>10 <sup>-2</sup> の<br>月<br>描の<br>副<br>東<br>象の                                                                                                                                                                                        |
| 現日         設た         随号           密度*:         湿潤密度:1.5g/cm <sup>3</sup> 給直荷重に対する健全性評価<br>に使用           位         位         化         小         結環系の閉塞並びに換気<br>系,電気系及び計測制創系の<br>機械的影響(閉塞・摩耗)評           ※1:密度は、構造物への静的負荷の評価に用いる値であり、乾燥状態の密度は、湿潤状態の密度に包含<br>される。         ※2:湿潤状態の降下火砕物の荷重(35cm×1500kg/m <sup>3</sup> ×9,80665m/s <sup>2</sup> ) + 積雪荷重(115,4cm <sup>3-3</sup> ×29,4%/(m <sup>2</sup> ・<br>cm) <sup>3-4</sup> ) = 8,5428/m <sup>2</sup> (小数点以下を切り上げ)           ※3:積雪量 = 1日あたりの積雪量の年超過確率10 <sup>2</sup> の値(84.3cm)<br>+日最深積雪量の年超過確率10 <sup>2</sup> の値(84.3cm)           # 日最深積雪量の平均値(31,1cm) = 115,4cm           ※4:新潟県建築基準法施行細則に基づく積雪の単位荷重(積雪1cm 当たり29,4N/m <sup>2</sup> ) | 項目         設定条件         備考           堆積厚さ         50cm         鉛直荷重に対する健全性評価に<br>使用           密度         (乾燥状態)         (湿潤状態)           加径         Smm 以下         水循環系の閉塞及び換気系,電気<br>系及び計測制御系に対する機械<br>的影響評価に使用                                                | 項目       設定       備考         層厚       56cm       鉛直荷重に対する健全性         密度       湿潤密度: 1.5g/cm³       評価に使用         荷重**1       8,938N/m²       水循環系の閉塞並びに換         粒径       4.0mm以下       水循環系の閉塞並びに換         気系,電気系及び計装制御       系に対する機械的影響評         価に使用       ※1: 飽和状態の降下火砕物に積雪条件を踏まえた鉛直荷重         ● 個和状態の降下火砕物の荷重 + 積雪荷重       = (56cm×1500kg/m³×9.80665m/s²) + (35cm*²×20N/         (m²・cm) *3)       = 8,938N/m² (小数点切り上げ)         ※2:建築基準法の考え方を参考とし設計基準積雪深 (100cm)       に係数 0.35 を考慮した値         ※3:松江市建築基準法施行細則に基づく積雪の単位荷重 (積 | <ul> <li>10 <sup>2</sup>の規模の副事家の</li> <li>重畳を考慮しているが、</li> <li>島根2号炉は東海第二</li> <li>と同様、建築基準法の考</li> <li>え方を準用する方法及び観測記録による方法</li> <li>を参照している(以下、</li> <li>火山別-①の相違)</li> <li>・資料構成の相違</li> <li>【東海第二】</li> <li>島根2号炉は、積雪</li> <li>荷重の条件を記載</li> </ul> |
| 3.2 火山事象(降下火砕物)に対する設計の基本方針<br><u>将来の活動可能性が否定できない火山</u> について,柏崎刈羽原子<br>力発電所 <u>6</u> 号及び7号炉の運用期間中の噴火規模を考慮し,それ<br>が噴火した場合,原子力発電所の安全機能に影響を及ぼし得る火<br>山事象を抽出した結果,降下火砕物のみが柏崎刈羽原子力発電所<br>に影響を及ぼし得る火山事象であるという結果となった。<br>降下火砕物に対し,防護すべき評価対象施設の安全機能を損な<br>わない設計とする。以下に,火山事象に対する防護の基本方針を<br>示す。                                                                                                                                                                                                                                                                                                                                                                                                      | 3.2 火山事象(降下火砕物)に対する設計の基本方針<br><u>将来の活動可能性を否定できない火山</u> について,発電所の運<br>用期間中の噴火規模を考慮し,発電所の安全機能に影響を及ぼ<br>し得る火山事象を抽出した結果,「3.1 火山事象の影響評価」<br>に示すとおり該当する火山事象は降下火砕物のみであり,地理<br>的領域(160km)の広範囲に影響を及ぼす降下火砕物に対し,安<br>全施設の安全機能を損なわない設計とする。以下に火山事象(降<br>下火砕物)に対する設計の基本方針を示す。 | <ul> <li>雪量1cm当たり20N/m<sup>2</sup>)</li> <li>4.2 火山事象(降下火砕物)に対する設計の基本方針<br/>検討対象火山について,島根原子力発電所2号炉の運用期間中<br/>の噴火規模を考慮し,それが噴火した場合,原子力発電所の安全<br/>機能に影響を及ぼし得る火山事象を抽出した結果,降下火砕物の<br/>みが島根原子力発電所に影響を及ぼし得る火山事象であるとい<br/>う結果となった。</li> <li>降下火砕物の影響により安全機能を損なわないよう,降下火砕<br/>物の影響を設計に考慮すべき施設(以下「評価対象施設」という。)</li> <li>を抽出し,評価対象施設の安全機能を損なわない設計とする。以<br/>下に火山事象に対する防護の基本方針を示す。</li> </ul>                                                                                                                                                   |                                                                                                                                                                                                                                                        |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)     | 東海第二発電所(2018. 9. 18版)          | 島根原子力発電所 2号炉                      | 備考          |
|------------------------------------|--------------------------------|-----------------------------------|-------------|
| (1)降下火砕物による直接的な影響(荷重,閉塞,摩耗,腐食等)    | (1) 降下火砕物による直接的な影響(荷重,閉塞,摩耗,腐食 | (1) 降下火砕物による直接的な影響(荷重,閉塞,摩耗,腐食    |             |
| に対して、安全機能を損なわない設計とする。              | 等)に対して、安全機能を損なわない設計とする。        | 等)に対して、安全機能を損なわない設計とする。           |             |
| (2)発電所内の構築物,系統及び機器における降下火砕物の除去     | (2) 発電所内の構築物,系統及び機器における降下火砕物の除 | (2)発電所内の構築物,系統及び機器における降下火砕物の除     |             |
| 等の対応が可能な設計とする。                     | 去等の対応が可能な設計とする。                | 去等の対応が可能な設計とする。                   |             |
| (3)降下火砕物による間接的な影響として考慮する、広範囲にわ     | (3) 降下火砕物による間接的な影響である7日間の外部電源の | (3) 降下火砕物による間接的な影響として考慮する, 広範囲に   |             |
| たる送電網の損傷による7 日間の外部電源の喪失及び発電所       | 喪失,発電所外での交通の途絶によるアクセス制限事象に対    | わたる送電網の損傷による7日間の外部電源の喪失及び発        |             |
| 外での交通の途絶によるアクセス制限に対し、発電用原子炉        | し,発電所の安全性を維持するために必要となる電源の供給    | 電所外での交通の途絶によるアクセス制限に対し、発電用        |             |
| の停止及び停止後の発電用原子炉の冷却,並びに使用済燃料        | が継続でき、安全機能を損なわない設計とする。         | 原子炉の停止及び停止後の発電用原子炉の冷却,並びに燃        |             |
| プールの冷却に係る機能を担うために必要となる電源の供給        |                                | 料プールの冷却に係る機能を担うために必要となる電源の        |             |
| が非常用ディーゼル発電機により継続できる設計とすること        |                                | 供給が非常用ディーゼル発電機及び高圧炉心スプレイ系デ        | ・設備構成の相違    |
| により、安全機能を損なわない設計とする。               |                                | <u>ィーゼル発電機により継続できる設計とすることにより、</u> | 【柏崎 6/7】    |
|                                    |                                | 安全機能を損なわない設計とする。                  | 島根2号炉は、電源   |
|                                    |                                |                                   | 設備として,高圧炉心  |
| 3.3 安全施設のうち評価対象施設の抽出               | 3.3 火山事象(降下火砕物)から防護する施設        | <u>4.3 安全施設のうち評価対象施設の抽出</u>       | スプレイ系の発電機が  |
| 「実用発電用原子炉及びその附属施設の位置、構造及び設備の       | 「実用発電用原子炉及びその附属施設の位置,構造及び設備    | 「実用発電用原子炉及びその附属施設の位置,構造及び設備の      | ある(以下,火山別-② |
| 基準に関する規則(平成25 年6 月28 日原子力規制委員会規則第  | の基準に関する規則(平成25年6月28日原子炉規制委員会規  | 基準に関する規則(平成25年6月28日原子力規制委員会規則第    | の相違)        |
| 五号)」第六条において,外部からの衝撃による損傷の防止として,    | 則第五号)」第六条において、「安全施設は、想定される自然現  | 五号)」第六条において、外部からの衝撃による損傷の防止とし     |             |
| 「安全施設は、想定される自然現象(地震及び津波を除く。)が発     | 象が発生した場合においても安全機能を損なわないものでなけ   | て、「安全施設は、想定される自然現象が発生した場合において     |             |
| 生した場合においても安全機能を損なわないものでなければなら      | ればならない。」とされていることから,隆下火砕物の影響から  | も安全機能を損なわないものでなければならない。」とされてい     |             |
| ない。」とされている。                        | 防護する施設は、発電用原子炉施設の安全性を確保するため、   | る。                                |             |
| 設置許可基準規則第六条における安全施設とは、「発電用軽水型      | 「発電用軽水型原子炉施設の安全機能の重要度分類に関する審   | 設置許可基準規則第六条における安全施設とは、「発電用軽水      |             |
| 原子炉施設の安全機能の重要度分類に関する審査指針」で規定さ      | 査指針」で規定されている安全重要度分類クラス1, クラス2  | 型原子炉施設の安全機能の重要度分類に関する審査指針」で規定     |             |
| れているクラス1, クラス2 及びクラス3 に該当する構築物, 系統 | 及びクラス3に該当する構築物,系統及び機器とする。      | されているクラス1, クラス2 及びクラス3 に該当する構築    |             |
| 及び機器(以下「安全重要度分類のクラス1, クラス2 及びクラス   |                                | 物,系統及び機器(以下「安全重要度分類のクラス1,クラス2     |             |
| 3に属する構築物,系統及び機器」という。)を指していることか     |                                | 及びクラス3に属する構築物,系統及び機器」という。)を指し     |             |
| ら、降下火砕物によってその安全機能が損なわれないことを確認      |                                | ていることから,降下火砕物によってその安全機能が損なわれな     |             |
| する必要がある施設を,安全重要度分類のクラス1,クラス2及び     |                                | いことを確認する必要がある施設を、安全重要度分類のクラス      |             |
| クラス3 に属する構築物,系統及び機器とする。            |                                | 1. クラス2 及びクラス3 に属する構築物,系統及び機器とす   |             |
|                                    |                                | - Julien                          |             |
| また、以下の点を踏まえ、降下火砕物によってその安全機能が       | また、以下の点を踏まえ、外部事象防護対象施設は、発電用    | また,以下の点を踏まえ,隆下火砕物によってその安全機能が      |             |
| 損なわれないことを確認する必要がある施設のうち、外部事象防      | 原子炉を停止するため又は停止状態にある場合は引き続きその   | 損なわれないことを確認する必要がある施設のうち,外部事象防     |             |
| 護対象施設は、外部事象に対し必要な構築物、系統及び機器(発      | 状態を維持するために必要な異常の発生防止の機能又は異常の   | 護対象施設は、外部事象に対し必要な構築物、系統及び機器(発     |             |
| 電用原子炉を停止するため、また、停止状態にある場合は引き続      | 影響緩和の機能を有する構築物、系統及び機器、並びに使用済   | 電用原子炉を停止するため,また,停止状態にある場合は引き続     |             |
| きその状態を維持するために必要な異常の発生防止の機能、又は      | 燃料プールの冷却機能及び給水機能を維持するために必要な異   | きその状態を維持するために必要な異常の発生防止の機能、又は     |             |
| 異常の影響緩和の機能を有する構築物,系統及び機器,並びに,      | 常の発生防止の機能又は異常の影響緩和の機能を有する構築    | 異常の影響緩和の機能を有する構築物,系統及び機器,並びに,     |             |
| 使用済燃料プールの冷却機能及び給水機能を維持するために必要      | 物,系統及び機器として安全重要度分類のクラス1,クラス2   | 燃料プールの冷却機能及び給水機能を維持するために必要な異      |             |
| な異常の発生防止の機能、又は異常の影響緩和の機能を有する構      | 及び安全評価上その機能に期待するクラス3に属する構築物,   | 常の発生防止の機能,又は異常の影響緩和の機能を有する構築      |             |
| 築物,系統及び機器として安全重要度分類のクラス1,クラス2及     | 系統及び機器とする。また、外部事象防護対象施設及び外部事   | 物,系統及び機器として安全重要度分類のクラス1,クラス2及     |             |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)    | 東海第二発電所(2018.9.18版)             | 島根原子力発電所 2号炉                                     | 備考          |
|-----------------------------------|---------------------------------|--------------------------------------------------|-------------|
| び安全評価上その機能に期待するクラス3に属する構築物,系統及    | 象防護対象施設を内包する建屋を併せて外部事象防護対象施設    | び安全評価上その機能に期待するクラス3に属する構築物,系統                    |             |
| び機器)に加え、それらを内包する建屋とする。            | 等という。                           | 及び機器)に加え、それらを内包する建物とする。                          |             |
| ・降下火砕物襲来時の設備損傷状況を踏まえ、必要に応じプラ      | ・降下火砕物襲来時の状況を踏まえ、必要に応じプラント停     | <ul> <li>・降下火砕物襲来時の設備損傷状況を踏まえ、必要に応じプラ</li> </ul> |             |
| ント停止の措置をとること                      | 止の措置をとること                       | ント停止の措置をとること                                     |             |
| ・プラント停止後は、その状態を維持することが重要であるこ      | ・プラント停止後は、その状態を維持することが重要である     | <ul> <li>・プラント停止後は、その状態を維持することが重要であるこ</li> </ul> |             |
| と                                 | こと                              | と                                                |             |
|                                   |                                 |                                                  |             |
| その上で、外部事象防護対象施設のうち、屋内設備は内包する      | その上で、外部事象防護対象施設等のうち、屋内設備は内包     | その上で、外部事象防護対象施設のうち、屋内設備は内包する                     |             |
| 建屋により防護する設計とし、評価対象施設を、屋外設備、建屋     | する建屋により防護する設計とし、評価対象施設を、建屋, 屋   | 建物により防護する設計とし、評価対象施設を、屋外設備、建物                    |             |
| 及び屋外との接続がある設備(屋外に開口している設備又は外気     | 外に設置されている施設、降下火砕物を含む海水の流路となる    | 及び屋外との接続がある設備(屋外に開口している設備、海水の                    |             |
| から取り入れた屋内の空気を機器内に取り込む機構を有する設      | 施設、降下火砕物を含む空気の流路となる施設、外気から取り    | 流路となる設備又は外気から取り入れた屋内の空気を機器内に                     |             |
| 備)に分類し、抽出する。                      | 入れた屋内の空気を機器内に取り込む機構を有する施設に分類    | 取り込む機構を有する設備)に分類し、抽出する。また, 評価対                   |             |
|                                   | し抽出する。また、評価対象施設及び外部事象防護対象施設等    | 象施設及び外部事象防護対象施設に波及的影響を及ぼし得る施                     |             |
|                                   | に波及的影響を及ぼし得る施設を評価対象施設等という。      | 設を評価対象施設等という。                                    |             |
| なお、上記以外の安全施設については、降下火砕物に対して機      | 上記以外の安全施設については、降下火砕物に対して機能を     | なお、上記以外の安全施設については、降下火砕物に対して機                     |             |
| 能を維持すること,若しくは,降下火砕物による損傷を考慮して,    | 維持すること若しくは降下火砕物による損傷を考慮して、代替    | 能を維持すること,若しくは,降下火砕物による損傷を考慮して,                   |             |
| 代替設備により必要な機能を確保すること、安全上支障のない期     | 設備により必要な機能を確保すること、安全上支障のない期間    | 代替設備により必要な機能を確保すること,安全上支障のない期                    |             |
| 間での除灰,修復等の対応,又は、それらを適切に組み合わせる     | での除灰,修復等の対応又はそれらを適切に組み合わせること    | 間での除灰,修復等の対応,又は,それらを適切に組み合わせる                    |             |
| ことで、その安全機能を損なわない設計とする。            | で、その安全機能を損なわない設計とする。            | ことで、その安全機能を損なわない設計とする。                           |             |
|                                   |                                 |                                                  |             |
| 以上を踏まえた,評価フローを図1.3 に示す。評価フローに基    | 以上を踏まえた抽出フローを第3.3-1 図に示す。抽出フロー  | 以上を踏まえた, 評価フローを第 1. 3-1, 2 図に示す。 評価フロ            |             |
| づき抽出した評価対象施設を表1.2 及び表1.3 に示すとともに, | に基づき抽出した評価対象施設等を第3.3-1表,第3.3-2表 | ーに基づき抽出した評価対象施設等を第1.2表及び第1.3表に示                  |             |
| 評価対象施設の設置場所を図1.4 に示す。             | に示すとともに,評価対象施設等の設置場所を第3.3-2図に示  | すとともに,評価対象施設等の設置場所を第1.4図に示す。                     |             |
|                                   | す。                              |                                                  |             |
| また,設置許可基準規則第四十三条の要求を踏まえ,設計基準      |                                 | また,設置許可基準規則第四十三条の要求を踏まえ,設計基準                     | ・資料構成の相違    |
| 事象によって、設計基準対象施設の安全機能と重大事故等対処設     |                                 | 事象によって,設計基準事故対処設備の安全機能と重大事故等対                    | 【東海第二】      |
| 備の機能が同時に損なわれることがないことを確認するととも      |                                 | 処設備の機能が同時に損なわれることがないことを確認すると                     |             |
| に,重大事故等対処設備の機能が喪失した場合においても,外殻     |                                 | ともに,重大事故等対処設備の機能が喪失した場合においても,                    |             |
| となる建屋による防護に期待できる代替手段等により必要な機能     |                                 | 外殻となる建物による防護に期待できる代替手段等により必要                     |             |
| を維持できることを確認する。(補足資料-18)           |                                 | な機能を維持できることを確認する。(補足資料-16)                       |             |
| なお,降下火砕物に対する重大事故等対処設備の設計方針は,      |                                 | なお,降下火砕物に対する重大事故等対処設備の設計方針は,                     |             |
| 設置許可基準規則第四十三条(重大事故等対処設備)にて考慮す     |                                 | 設置許可基準規則第四十三条 (重大事故等対処設備) にて考慮す                  |             |
| る。                                |                                 | <u> </u>                                         |             |
|                                   | また,発電用原子炉の高温停止,冷温停止に必要となる機能     |                                                  | ・記載方針の相違    |
|                                   | を達成するために必要となる施設を参考資料-1に示す。      |                                                  | 【東海第二】      |
|                                   |                                 |                                                  | 島根2号炉は,火山影  |
|                                   |                                 |                                                  | 響評価の対象施設とし  |
|                                   |                                 |                                                  | て,全てのクラス1,ク |



| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20 版                                                                                                                    | )                                                                                                                                                                                                                                                                                          | 東海                                                                                                                                                                                                                                                                                 | 第二発電所(2018. 9. 18 版)                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | É                                                                                                                                                                              | 品根原子力発電所 2号炉                                                                                                                                                                                     | 備考                                                                                                                                                                                         |                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 表 1.2 評価対象施設                                                                                                                                      |                                                                                                                                                                                                                                                                                            | 第 3.3-                                                                                                                                                                                                                                                                             | 1表 評価対象施設等の抽出結果                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>第</u>                                                                                                                                                                       | 1.2表 評価対象施設等                                                                                                                                                                                     | • 外部事象防護対象施                                                                                                                                                                                |                             |
| 分類 評価対象施設                                                                                                                                         |                                                                                                                                                                                                                                                                                            | 設備区分                                                                                                                                                                                                                                                                               | 評価対象施設等                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 設備区分                                                                                                                                                                           | 評価対象施設等                                                                                                                                                                                          | 設の設置場所及び抽出                                                                                                                                                                                 |                             |
| 屋外設備         ・軽油タンク(クラス1)           ・燃料移送ポンプ(クラス1)         ・燃料移送ポンプ(クラス1)           建屋         ・原子炉建屋           ・タービン建屋海水熱交換器区域         ・コントコール建屋 |                                                                                                                                                                                                                                                                                            | 建量                                                                                                                                                                                                                                                                                 | <ul> <li>・原子炉建屋</li> <li>・タービン建屋</li> <li>・使用済燃料乾式貯蔵建屋</li> <li>・排気筒モニタ建屋</li> </ul>                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 建物                                                                                                                                                                             | <ul> <li>・原子炉建物</li> <li>・タービン建物</li> <li>・制御室建物</li> <li>・廃棄物処理建物</li> <li>・</li></ul>                                                                                                          | 範囲の相違<br>【柏崎 6/7】<br>火山別-③の相違                                                                                                                                                              |                             |
|                                                                                                                                                   | <ul> <li>・コントロール建屋</li> <li>・廃棄物処理建屋</li> <li>・原子炉補機冷却海水系(クラス1)</li> <li>いる設備又は外気から取り入れた屋内の空</li> <li>(海水ボンブ・海水ストレーナ)</li> <li>(海水ボンブ・海水ストレーナ)</li> <li>・取水設備(除塵装置) (クラス3)</li> <li>・非常用換気空調系(クラス1)</li> <li>(中央制御室換気空調系)</li> <li>・非常用換気空調系(クラス2)</li> <li>(非常用ディーゼル発電機電気品区域換気</li> </ul> | 屋外に設置されてい<br>る施設                                                                                                                                                                                                                                                                   | <ul> <li>・ 我留系術云系は小系ホレノ</li> <li>・ 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル<br/>発電機を含む。)用海水ポンプ</li> <li>・ 残留熱除去系海水系ストレーナ</li> <li>・ 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル<br/>発電機を含む。)用海水ストレーナ</li> <li>・ 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル<br/>発電機を含む。)吸気口</li> <li>・ 中央制御室換気系が凍機</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 屋外に設置されてい<br>る施設                                                                                                                                                               | <ul> <li>・海水ボンプ(原子炉補機海水ボンプ,高圧炉心スプレイ補<br/>機海水ボンプ)</li> <li>・ディーゼル燃料移送ボンプ(A-非常用ディーゼル発電機<br/>(燃料移送系),高圧炉心スプレイ系ディーゼル発電機(燃<br/>料移送系))</li> <li>・排気筒</li> <li>・非常用ガス処理系排気管</li> <li>・排気筒モニタ</li> </ul> | 島根2号炉は,評価対<br>象施設の屋外設備とし<br>て海水ポンプ,非常用ガ<br>ス処理系排気管,排気筒<br>を抽出。また,軽油タン                                                                                                                      |                             |
| <ul> <li>風機含む),コントロール建量計測<br/>源盤区域換気空調系,海水熱交換器</li> <li>気空調系)</li> <li>・非常用ディーゼル発電機(クラス)</li> <li>・非常用ディーゼル発電機吸気系</li> </ul>                      | 刊御電<br><<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、                                                                                                                                                                                                                  | <b>小</b>                                                                                                                                                                                                                                                                           | <ul> <li>発電機を含む。) 室ルーフベントファン</li> <li>・主排気筒</li> <li>・非常用ガス処理系排気筒</li> <li>・放水路ゲート</li> <li>・排気筒モニタ</li> </ul>                                                                                                                                                | 外部事象防護                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 降下火砕物を含む海<br>水の流路となる施設                                                                                                                                                         | <ul> <li>・海水ポンプ(原子炉補機海水ポンプ,高圧炉心スプレイ補<br/>機海水ポンプ)</li> <li>・海水ストレーナ(原子炉補機海水ストレーナ,高圧炉心ス<br/>プレイ補機海水ストレーナ)及び下流設備</li> </ul>                                                                         | クは地下埋設構造であ<br>るため抽出していない                                                                                                                                                                   |                             |
| 1)<br>・安全保護系盤(クラス1)                                                                                                                               |                                                                                                                                                                                                                                                                                            | 読         ・ 洗 留熱除去系海水系ポンプ           * 洗 留熱除去系海水系ポンプ         * 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル           * 水の流路となる施設         * 洗 留熱除去系海水系ストレプ           * 水の流路となる施設         * 洗 留熱除去系海水系ストレーナ及び下流設備           * 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル           ※ 電機を含む。)           第           * 素 | 護対象施設                                                                                                                                                                                                                                                         | レ         ・海水ボンブ(原子炉補機海水ボンブ,高圧<br>機海水ボンブ)           ・非常用ディーゼル発電機及び高圧炉心スプ<br>ル発電機           レ         ・非常用ディーゼル発電機吸気系及び高圧炉<br>ィーゼル発電機吸気系           レ         ・非常用ディーゼル発電機吸気系及び高圧炉<br>ィーゼル発電機吸気系           ・非常用ディーゼル発電機吸気系のび高圧炉<br>オーゼル発電機吸気系           ・非常用ディーゼル発電機吸気系のび高圧炉<br>マーゼル発電機吸気系           ・非常用ディーゼル発電機吸気系のび高圧炉<br>オーゼル発電機吸気系           ・非常用ディーゼル発電機吸気系のび高圧炉<br>マーゼル発電機吸気系           ・非常用ガス処理系排気管           ・ディーゼル燃料移送ポンプ(A, B-非常<br>電機(燃料移送系))           ・排気筒モニタ           外気から取り入れた<br>屋内の空気を機器内<br>に取り込む機構を有<br>する施設           ・計測制御系統施設(安全保護系盤)           ・計測制御用電源設備(所内低圧系統) | 護対象施設                                                                                                                                                                          | 護対<br>象施設                                                                                                                                                                                        | <ul> <li>(原子炉補機海水ポンプ,高圧炉心スプレイ補機海水ポンプ)     <li>(原子炉補機海水ポンプ,高圧炉心スプレイ補機海水ポンプ)     <li>・非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機     <li>・非常用ディーゼル発電機吸気系及び高圧炉心スプレイ系ディーゼル発電機吸気系</li> </li></li></li></ul> | (以下,火山別-④の相<br>違)<br>【東海第二】 |
|                                                                                                                                                   |                                                                                                                                                                                                                                                                                            | 降下火砕物を含む空<br>気の流路となる施設                                                                                                                                                                                                                                                             | <ul> <li>・非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル<br/>発電機を含む。)</li> <li>・換気空調設備(外気取入口)のうち中央制御室換気系</li> <li>・換気空調設備(外気取入口)のうち非常用ディーゼル発電<br/>機(高圧炉心スプレイ系ディーゼル発電機を含む。)室換<br/>気系</li> <li>・主排気筒</li> <li>・非常用ガス処理系排気筒</li> </ul>                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>・換気空調設備(中央制御室換気系,原子炉建物付属棟換気系)</li> <li>・排気筒</li> <li>・非常用ガス処理系排気管</li> <li>・ディーゼル燃料移送ポンプ(A,B-非常用ディーゼル発電機(燃料移送系),高圧炉心スプレイ系ディーゼル発電機(燃料移送系))</li> <li>・排気筒モニタ</li> </ul> | 島根2号炉は,使用済<br>燃料乾式貯蔵建屋及び<br>放水路ゲートを有して<br>いない。また,中央制御                                                                                                                                            |                                                                                                                                                                                            |                             |
|                                                                                                                                                   |                                                                                                                                                                                                                                                                                            | 外気から取り入れた<br>屋内の空気を機器内<br>に取り込む機構を有<br>する施設                                                                                                                                                                                                                                        | <ul> <li>・排気筒モニタ</li> <li>・計測制御設備(安全保護系)</li> </ul>                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 外気から取り入れた<br>屋内の空気を機器内<br>に取り込む機構を有<br>する施設                                                                                                                                    | <ul> <li>・計測制御系統施設(安全保護系盤)</li> <li>・計測制御用電源設備(計装用無停電電源設備)</li> <li>・非常用所内電源設備(所内低圧系統)</li> <li>・非常用ディーゼル発電機吸気系(給気口)</li> </ul>                                                                  | 室換気系冷凍機,ルーフ<br>ベントファンは建物内<br>に設置しており,ディー                                                                                                                                                   |                             |
|                                                                                                                                                   | 5<br>10<br>2                                                                                                                                                                                                                                                                               | ▲部事象防護対象施設等<br>☆波及的影響を及ぼし得<br>5.施設                                                                                                                                                                                                                                                 | <ul> <li>・非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル<br/>発電機を含む。)排気消音器及び排気管</li> <li>・海水取水設備(除塵装置)</li> <li>・換気空調設備(外気取入口)</li> </ul>                                                                                                                                         | 外部<br>波及<br>施設                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 事象防護対象施設に<br>的影響を及ぼし得る                                                                                                                                                         | ゼル燃料移送ポンプは<br>屋外に設置している(以<br>下 火山別-⑤の相違)                                                                                                                                                         |                                                                                                                                                                                            |                             |
|                                                                                                                                                   |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                |                                                                                                                                                                                                  | 島根2号炉は,波及的<br>影響を及ぼし得る施設<br>に非常用ディーゼル発<br>電機吸気系(給気口)を<br>抽出している                                                                                                                            |                             |
|                                                                                                                                                   |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                                                                                            |                             |

|    | 柏崎刈羽                                                                           | 羽原子力発電所 6/7号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 告炉 (2017. I                                                                                                                                    | 12.20版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                |          | 東                                                                                                               | 海第二                                                | 二発電                                                                     | 「所(                                                           | (2018                                                       | 8. 9.                                                                                          | 18                                          | 扳)                                     |                        |                                  |                                                                                          |         |                                                                                                | 島                                                                           | 根原子力                                                                                                                          | 発電所 2号                                                                                                          |
|----|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|------------------------|----------------------------------|------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|    |                                                                                | <u>表 1.3</u> 評価対象施設の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | の抽出(1/4)                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |          |                                                                                                                 |                                                    |                                                                         |                                                               |                                                             |                                                                                                |                                             |                                        |                        |                                  | -                                                                                        |         |                                                                                                | <u>第 1.3</u>                                                                | 3表 評価                                                                                                                         | 対象施設等の                                                                                                          |
| 9  | <ul> <li>成能</li> <li>原子炉合加材(正方パ<br/>ングリ機能</li> <li>通頻反応度の印加防</li> </ul>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | して補助部件<br>少の特別による<br>大変的のいい。<br>ち支援的のいい。<br>適引を施設の × × × 通<br>現月を施設の × × ×                                                                     | 評価対象施設<br>所了你健康<br>19-4-47244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |          | 平航対象施設等                                                                                                         | I                                                  | 1                                                                       | I                                                             | I                                                           | I                                                                                              | I                                           | I                                      | 1 1                    | 1 1                              |                                                                                          |         | 重                                                                                              | 要度分類指針                                                                      |                                                                                                                               | 島根原子力発電所25                                                                                                      |
|    | <ul> <li>機能</li> <li>炉心形状の維持機能</li> <li>原子炉の緊急停止機</li> </ul>                   | エムの対理     エムの対     エムの対理     エムの対理     エムの対理     エムの対     エム     エム    | (外)<br>護対象施設の × ×<br>護対象施設の × ×<br>減対象施設の × × ×                                                                                                | 原子炉建屋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |          | INT.                                                                                                            |                                                    |                                                                         |                                                               |                                                             | _                                                                                              |                                             |                                        | _                      |                                  | -                                                                                        | ク<br>判  | テレンジン 定義<br>頁                                                                                  | 機能                                                                          | 構築                                                                                                                            | 物,系統又は機器                                                                                                        |
|    | 木曜界准持機能<br>原子炉冷却料作力パ<br>シグリの過圧防止機<br>原子炉停止後の施熱<br>能                            | (1997)、初連サキャロホー<br>時子でゆう、キー(1997)にようぶ、はう他水は<br>か     ホーム<br>オートーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 高行な転送の<br>高行な転送の<br>高行な転送の<br>法行な転送の<br>高行な転送の<br>パケリ<br>第二次を転送の<br>メーター<br>本<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、 | 00千年9220<br>105千473年14<br>100千473年14<br>100千474年14<br>100千474日<br>100千474日<br>100千474日<br>100千474日<br>100千474日<br>100千474日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74日<br>100千年74 | ○ : Yes × : Nc                                                                                   | Step3    | 条下大砕物の影響を受ける<br>電設であって、その停止分<br>電設であって、その停止な<br>により、上位の安全重要度<br>により、上位の安全重要度<br>の<br>高設の運転に影響を及ら<br>す」能性のある風外施設 | I                                                  | I                                                                       | I                                                             | I                                                           | I                                                                                              | I                                           | I                                      | 1 1                    | 1 1                              |                                                                                          | PS<br>1 | <ul> <li>その損傷又は</li> <li>障により発生する事象によって、</li> <li>(a) 炉心の著い損傷、又は</li> <li>(b) 燃料の大針</li> </ul> | <ul> <li>☆ 1)原子炉</li> <li>却材圧力/</li> <li>ウンダリあ</li> <li>能</li> </ul>        | <ul> <li>市 原子炉冷却材</li> <li>「圧力バウンダ</li> <li>リを構成する</li> <li>機器・配管系</li> <li>(計装等の小</li> <li>口径配管・機器</li> <li>は除く。)</li> </ul> | 原子炉圧力容器<br>原子炉再循環系ポンプ<br>配管・弁<br>隔離弁<br>制御棒駆動機構ハウジ<br>中性子束計装管ハウジ                                                |
|    | 少し治理機能                                                                         | レッションブール     なべ新述な系 (法人計画)     なん新述な系 (法人計画)     ひょか     て、ジェオタン     なん新述な系 (法人計画)     ひょか     て、ジェオタン     レーン     レー     レー     レー     レー     レー     レー     レー | 通行繁編及の<br>送付繁編及の<br>送付繁編成の<br>次付繁編成の<br>の(対)   × × ×<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二                          | 逐氧物处理凝缺<br>原了67组网<br>原了67组员                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5)                                                                                               |          | の外気取入空気を<br>数学に取り込む<br>装備を有する施設。                                                                                | ×                                                  | ×                                                                       | ×                                                             | ×                                                           | ×                                                                                              | ×                                           | ×                                      | ××                     | ××                               | -                                                                                        |         | の破損<br>を引き起こすま<br>それのある構<br>物,系統及び<br>器                                                        | <ol> <li>2)過剰反応</li> <li>度の印加度</li> <li>止機能</li> <li>3)炉心形れの維持機前</li> </ol> | <ul> <li>5. 制御棒カップ<br/>リング</li> <li>サング</li> <li>た 炉心支持構造<br/>物(炉心シュラ<br/>ウド シュラウ</li> </ul>                                  | <ul> <li>制御棒カップリング</li> <li>制御棒駆動機構カップ</li> <li>グ</li> <li>炉心シュラウド</li> <li>シュラウドサポート</li> <li>レッ枚スセ</li> </ul> |
| vs | 機能,故射線の進載<br>び坂出鉱減機能                                                           | 火<br>+最気気(赤常田ダス処理系接気管の支持機<br>転)<br>単のののののののののののののののののののののののののののののののののののの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | よる影響なし<br>規系結約につ<br>侵入しにくい<br>響なしり<br>め、影響なし)<br>さけの協力の                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1)                                                                                              | p2       | ● 注気流<br>路施設<br>考                                                                                               | ×                                                  | ×                                                                       | ×                                                             | ×                                                           | ×                                                                                              | ×                                           | ×                                      | ××                     | ××                               |                                                                                          |         |                                                                                                |                                                                             | <ul> <li>ジャド, ジェノジ</li> <li>ドサポート,上</li> <li>部格子板,炉心</li> <li>支持板,制御棒</li> </ul>                                              | 上前格于极<br>炉心支持板<br>燃料支持金具<br>制御棒案内管                                                                              |
|    | 工学的安全確設及び<br>了炉停止系への作動<br>号の発生繊維                                               | <u>3 単晶定準備(二次進高等) (世日) この3 目</u> (世日) この3 目 (日日)     (日)     (日)     (日)     (日)     (日)     (日)     (日)     (日)  | (1)                                                                                                                                            | 高子が建成<br>原子が建成<br>コントロール役配<br>安全保護運動<br>弱子が建設<br>コントロール役配<br>コントロール役配<br>コントロール役配<br>コントロール役配<br>コントロール役配                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | アンし                                                                                              | Ste      | ③衛大流<br>路庙設                                                                                                     | ×                                                  | ×                                                                       | ×                                                             | ×                                                           | ×                                                                                              | ×                                           | ×                                      | ××                     | ××                               |                                                                                          |         |                                                                                                |                                                                             | <ul> <li></li></ul>                                                                                                           | 制御棒駆動機構ハウジ<br>燃料集合体(上部タイ<br>ート,下部タイプレー<br>スペーサ チャンネル                                                            |
|    | 安全上特に重要な問<br>機能                                                                | マメルになる構成できた時の         0.0         レージャル         レクル         アメント                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                | ・ビン(Palla)なお(2)(第<br>) 河子や山谷<br>(中な田子) (一七) 化電路<br>(市る) (一七) 化電路<br>(市る) (一七) 化電路<br>(市る) (一七) (市る)<br>(市る) (市る)<br>(市る) (市る)<br>(市る)<br>(市る)<br>(市る)<br>(市る)<br>(市る)<br>(市る)<br>(市る)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | が出出に                                                                                             |          | )注屋*3<br>施設<br>施設                                                                                               | ×                                                  | ×                                                                       | ×                                                             | ×                                                           | ×                                                                                              | ×                                           | ×                                      | × ×<br>× ×             | × × ×                            | ご関する ものを記載                                                                               | MS<br>1 | <ul> <li>- 1) 異常状態発生</li> <li>時に原子炉を見</li> <li>急に停止し、列留熱を除去し、</li> </ul>                       | <ul> <li>土 1)原子炉の</li> <li>緊急停止構</li> <li>戦</li> </ul>                      | <ul> <li>原子炉停止系の制御棒による系(制御棒及び制御棒駆動</li> </ul>                                                                                 | クス)       制御棒       制御棒案内管       制御棒案助機構       本圧制御ユニット(ス)                                                      |
|    |                                                                                | 原ナ伊藤観希輝永系・原ナ年建築治理商永系         8/3・7/0・<br>C/B         - (第部半発助<br>たが引着           非常相応実現原系・計画種創用電源設備         0.0・C/B         - (第第半発助<br>(第二条列目)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 度対象範段の<br>(24)<br>度対象範段の<br>(24) × × ×                                                                                                         | 新子が種類<br>シービン種類的人然会後認識ス成<br>コントロール漫画<br>第子が補償が認知不差<br>取木設備 (約/変更約)<br>所子が違屈<br>コントロール/建屋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 施設勞                                                                                              |          | 機能 かの 豊裕 から 豊裕 かた から 進物 代 安修 推納 代 安修 推定 谷全 復 二二                                                                 |                                                    |                                                                         |                                                               |                                                             |                                                                                                |                                             |                                        |                        |                                  | → 余緒 設 华<br>「                                                                            |         | 原子炉冷却材<br>カバウンダリの<br>過圧を防止し,                                                                   | ED                                                                          | 系 (スクラム機<br>能))                                                                                                               | ホ圧制御ユージト (ハ<br>ムパイロット弁,スク<br>弁,アキュムレータ,<br>容器,配管・弁)                                                             |
|    | <ul> <li>○:各外部事象に<br/>又は各外部事</li> <li>※1:間接場連系は、</li> <li>※2:重大事故等対</li> </ul> | 対し安全頻能を維持できる<br>象による損傷を考慮して、代物設備による機能維持や安全上支障のない。<br>、当該系の外援施室行に直接必要ない、構成物、系統及び機器である。<br>処設備(SA設備)、原子が建屋(R/B)、タービン建屋(T/B)、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 期間での接後等の対応が可能<br>ため、記載を省略した「評価対象施<br>コントロール建屋(C/B), 廃戦等<br>〇:YES ×:N0 -:該当せ                                                                    | 設に関する物のみ記載)<br>効処理建量(Rw/B)<br><sup>+</sup> +*もしくは評価完了                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 評価対象                                                                                             | Stepl    | 降下大命物に対して持ず大人の時代する。又は降下人たまする。又は降下人たまる。又は降下人たたるな鹿してたの物能能にいる物能能推注上支降のない期間で                                        | 21<br>**<br>                                       | 01 (<br>9 )                                                             | 21<br>*<br>                                                   | 77<br>**                                                    | м<br>Ж                                                                                         | 01<br>19<br>1                               | 51<br>**                               | 01 02<br>***           | <br># #<br>01 N                  | ま省略した。(評価)<br>進む)<br>記載や省略した。                                                            |         | 敷地周辺公衆 <sup>2</sup><br>の過度の放射線<br>の影響を防止す<br>る構築物,系線<br>及び機器                                   | <ul> <li>2)未臨界<sup>(</sup></li> <li>非機能</li> <li>方</li> </ul>               | <ul> <li>         原子炉停止系<br/>(制御棒によ<br/>る系,ほう酸水<br/>注入系)     </li> </ul>                                                      | 制御棒           制御棒取動機構カップリング           制御棒駆動機構ハッブ           グ           制御棒駆動機構ハウジ           制御棒駆動機構             |
|    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2 表                                                                                             |          | 外 象                                                                                                             | 0                                                  | 0                                                                       | 0                                                             | 0                                                           | 0                                                                                              | 0                                           | 0                                      | 0 0                    | 0 0                              | め, 記載4<br>(Stop2 へ)<br>ることから                                                             |         |                                                                                                |                                                                             |                                                                                                                               | ほう酸水注入系(ほう<br>注入ポンプ,注入弁,<br>ク出口弁,ほう酸水貯                                                                          |
|    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 第 3.3-                                                                                           | 沙類       | 構築約, 系統又は機器 <sup>21</sup>                                                                                       | 原子炉冷却材圧力バウンダリを<br>構成する機器・配管系(計装等<br>の小口径配管・機器は除く。) | 副鋼棒カップリング<br>炉心支持構造物(炉心シュラウ<br>ド、シュラウドサポート、上部                           | 格子板、炉心支持板、制御杯茶<br>内管)、燃料集合体(ただし、燃<br>料を除く。)<br>同己活営止るの自知株ドレスス | 原丁が存止来の習慣体による米(周鐘棒及び間鐘棒度動系(ス<br>(「自鐘棒及び間鐘棒度動系(ス<br>アラー技能能)) | 原了炉停止糸(制御禘による糸,<br>ほう酸水注入系)                                                                    | 遷がし安全介(安全介としての<br>開機能)<br>参留時報・陸士士とおな (参留時  | 残留熟で麻去する赤崎(残留熟<br>除止系,原子炉停止時冷却モー<br>ド) | 原子炉隔離時治却系<br>高圧炉心スプレイ系 | 逃がし安全介(手動逃がし機能)<br>動蔵圧系(手動逃がし機能) | い構築物, 系統及び機器であるた<br>の作め, 本項日には該当しない。<br>3後能を有する評価対象施設であ                                  |         |                                                                                                | 3) 原子炉≥<br>却材圧力/<br>ウンダリ∂<br>過圧防止#<br>能                                     | <ul> <li>ふ 逃がし安全弁</li> <li>(安全弁とし)</li> <li>ての開機能)</li> </ul>                                                                 | ンク,ポンプ吸込配管<br>注入配管・弁)<br>逃がし安全弁(安全弁<br>能)                                                                       |
|    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  | 安全機能の重要度 | 驗                                                                                                               | 1)原子炉冷却材圧力<br>パウンダリ機能                              | 2.)通知文件など正加<br>防止機能<br>3.)何心形状の維持機                                      |                                                               | 1)原子炉の緊急停止<br>機能                                            | <ol> <li>大臨界維持機能</li> <li>第)原子炉冷却好用力</li> </ol>                                                | o/ 32-1 // 11 - 11 - 11 - 12 - 12 - 12 - 12 |                                        | 4)原子炉停止後の除<br>熱機能      |                                  | 该条の機能に直接必要な<br>該部等として袖田してい<br>ごは、当該建屋が MS-1 の                                            | * 1     | :R/B:原子炉颈                                                                                      | 書物, C/B:                                                                    | 制御室建物, T/                                                                                                                     | 'B:タービン建物,                                                                                                      |
|    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |          | 资援                                                                                                              | その損傷乂は故障に<br>より発生する事象に<br>よって、                     | <ul> <li>(a) 炉心の著しい損</li> <li>(b) 然料の大量の</li> <li>(b) 然料の大量の</li> </ul> | たのある構築物、系<br>靴及び機器                                            |                                                             | <ol> <li>1) 異常状態発生時<br/>に原子炉を緊急に停</li> <li>2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</li></ol> | 正し、残留熱を除去<br>し、原子炉冷却材圧<br>カバウンダリの過圧         | を防止し、敷地周辺<br>公衆への過度の放射<br>線の影響を防止する    | 構築物,系統及び機<br>器         |                                  | <ul> <li>間接関連系は、当該</li> <li>「閉接関連系は、当該</li> <li>小部市象防護対象施</li> <li>「原子炉建屋について</li> </ul> |         |                                                                                                |                                                                             |                                                                                                                               |                                                                                                                 |
|    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |          | -<br>厳                                                                                                          |                                                    | I-S4                                                                    |                                                               |                                                             |                                                                                                | U-SN                                        | T SUM                                  |                        |                                  | ] * * * *<br>* * *                                                                       |         |                                                                                                |                                                                             |                                                                                                                               |                                                                                                                 |

| ŧ . |     | 1.5 |   | •  |  |
|-----|-----|-----|---|----|--|
| ۰.  |     | ю   | - | •  |  |
| -   | •   |     | _ | а. |  |
| 7   | . 4 | 5   |   |    |  |
|     | 1   | ~   |   |    |  |

## 等の抽出

|                                      |                        | (1/12)                                                                                |
|--------------------------------------|------------------------|---------------------------------------------------------------------------------------|
| 号炉                                   | 設置場所 <sup>※</sup><br>1 | 降下火砕物の影響を<br>受ける設備(屋外の<br>施設,屋外に開口し<br>ている施設,海水の<br>流路となる施設,屋<br>内の空気を機器内に<br>取り込む施設) |
|                                      | R/B                    | -                                                                                     |
| ŕ                                    | R/B                    | -                                                                                     |
|                                      | R/B                    | -                                                                                     |
|                                      | R/B                    | -                                                                                     |
| シング                                  | R/B                    | -                                                                                     |
| シング                                  | R/B                    | _                                                                                     |
|                                      | R/B                    | -                                                                                     |
| プリン                                  | R/B                    | _                                                                                     |
|                                      | R/B                    | _                                                                                     |
|                                      | R/B                    | -                                                                                     |
|                                      | R/B                    | -                                                                                     |
|                                      | R/B                    | _                                                                                     |
|                                      | R/B                    | _                                                                                     |
|                                      | R/B                    | -                                                                                     |
| シング                                  | R/B                    | -                                                                                     |
| イプレ<br>ート,<br>レボッ                    | R/B                    | _                                                                                     |
|                                      | R/B                    | _                                                                                     |
|                                      | R/B                    | _                                                                                     |
|                                      | R/B                    | _                                                                                     |
| スクラ<br>クラム<br>窒素                     | R/B                    | _                                                                                     |
|                                      | R/B                    | -                                                                                     |
|                                      | R/B                    | -                                                                                     |
| プリン                                  | R/B                    | _                                                                                     |
| シング                                  | R/B                    | _                                                                                     |
| <i>,</i>                             | R/B                    | _                                                                                     |
| 5酸水<br>タン<br>庁蔵タ<br><sup>5</sup> ・弁, | R/B                    | _                                                                                     |
| <b>弁開機</b>                           | R/B                    | _                                                                                     |

售物,Rw/B:廃棄物処理建物

 外部事象防護対象施 設の設置場所及び抽出 範囲の相違

備考

【柏崎 6/7, 東海第二】

火山別-③, ④, ⑤の 相違

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                      | 東海第二発電所(2018.9.18版)                                                                      | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                     | 備考 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)<br><u>表 1.3 評価対象施設の抽出 (2/4)</u><br>$\frac{100}{100}$<br><u>家 1.3 評価対象施設の抽出 (2/4)</u><br><u>家 1.3 評価対象施設の抽出 (2/4)</u><br><u>※ 1000</u><br><u>************************************</u> | 東海第二発電所(2018.9.18版)<br>東海第二代電所(2018.9.18版)<br>* ####<br>* #####<br>##################### | 島根原子力発電所 2号炉           (2/12)           重要度分類指針         島根原子力発電所 2号炉           分類         定義         機能         構築物,系統又は機器           NS-1         1)         異常状態発生時<br>に原子炉を緊急に<br>停止し,残留熱会協業         4)         原子炉停         残留熱を除ます<br>る系統(残留熱絵<br>去系(原子炉停止         残留熱除去系(ポンプ,熱交換<br>家)、原子炉停止時冷却モードの<br>ルートとなる配管・弁,熱交換         R/B         - | 備考 |
|                                                                                                                                                                                                                     |                                                                                          | 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                            |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)               | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 備考 |
|--------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <u>表 1.3</u> 評価対象施設の抽出(4/4)    |                                   | (4/12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                | <section-header></section-header> | уни представите представителя       уни представителя       уни представителя       уни представителя       уни представителя       уни представителя       уни представителя         10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td></td> |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉 | 備考 |
|--------------------------------|---------------------|--------------|----|
|                                |                     |              |    |

| 柏崎刈羽原子力発電所 | 6/7号炉 | (2017.12.20版) | 東海第二発電所(2018.9.18版) |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ŀ                                                                                                                                                       | 島根原子                                      | ·力発電所 2号炉                                                                                                | ī               |                                                                                       | 備考 |
|------------|-------|---------------|---------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------|----|
|            |       |               |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                           |                                                                                                          |                 |                                                                                       |    |
|            |       |               |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                           |                                                                                                          |                 | (6/12                                                                                 | )  |
|            |       |               |                     | 分類   | 重要定義                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 度分類指針機能                                                                                                                                                 |                                           | 島根原子力発電所2号炉<br>構築物,系統又は機器                                                                                | 設置場所*1          | 降下火砕物の影響を<br>受ける設備(単外の<br>施設,屋外に開口し<br>ている施設,海水の<br>流路となる施設,屋<br>内の空気を機器内に<br>取り込む施設) |    |
|            |       |               |                     | PS-2 | <ol> <li>その損傷又</li> <li>は故障により</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ol> <li>原子炉冷</li> <li>却材を内蔵</li> </ol>                                                                                                                 | 主蒸気系,原<br>子炉冷却材                           | 主蒸気系(格納容器隔離弁の外側)<br>原子炉浄化系(原子炉冷却材圧力バ                                                                     | R/B, T/B<br>R/B |                                                                                       |    |
|            |       |               |                     |      | 光上って、炉のの、りのライン、<br>など、<br>など、<br>など、<br>しい料の大<br>に<br>しい料の大<br>に<br>しい料の大<br>に<br>しい料の大<br>に<br>しい料の大<br>に<br>た<br>れのの<br>引き起は<br>外<br>い<br>が、<br>が<br>しい<br>り<br>の<br>の<br>の<br>、<br>が<br>都<br>しい<br>料の、<br>た<br>個<br>の<br>の<br>に<br>引き<br>た<br>は<br>、<br>、<br>物<br>、<br>の<br>の<br>の<br>引き<br>た<br>は<br>、<br>の<br>の<br>の<br>、<br>の<br>で<br>の<br>に<br>う<br>、<br>の<br>の<br>の<br>に<br>う<br>、<br>の<br>の<br>の<br>に<br>う<br>、<br>の<br>の<br>の<br>に<br>う<br>、<br>の<br>の<br>の<br>こ<br>こ<br>れの、<br>の<br>、<br>の<br>の<br>の<br>の<br>う<br>き<br>た<br>は<br>れの、<br>、<br>の<br>の<br>の<br>か<br>、<br>の<br>の<br>の<br>の<br>か<br>、<br>の<br>し<br>れ<br>の<br>へ<br>の<br>の<br>の<br>の<br>の<br>の<br>か<br>、<br>の<br>し<br>な<br>ろ<br>へ<br>の<br>の<br>の<br>の<br>か<br>の<br>、<br>の<br>の<br>の<br>の<br>か<br>の<br>、<br>の<br>の<br>の<br>の<br>か<br>の<br>、<br>の<br>の<br>の<br>の<br>の<br>の<br>か<br>の<br>の<br>の<br>の<br>か<br>の<br>の<br>の<br>の<br>か<br>の<br>、<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の | → Some に<br>だし、邦体の保子<br>がウトントン<br>から除外した<br>がらら除外した<br>していた<br>ののの<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の | APILボ (V・)<br>れも,格納容<br>器 隔離 弁 の<br>外側のみ) | リンクリからみれる部分1<br>原子炉隔離時冷却系タービン蒸気<br>供給ライン(原子炉冷却材圧力パウ<br>ンダリから外れる部分であって外<br>側隔離弁下流からタービン止め弁<br>まで)         | R/B             | _                                                                                     |    |
|            |       |               |                     |      | る博楽物, 糸絨<br>及び機器                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ないものは<br>除く。)<br>2)原子炉冷                                                                                                                                 | 放射性廃棄                                     | 排ガス処理系 (活性炭式希ガスホー                                                                                        | Rw/B            |                                                                                       |    |
|            |       |               |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 却材圧力バ<br>ウンダリに<br>直接接続さ                                                                                                                                 | 物処理施設<br>(放射能イ<br>ンベントリ                   | <ul> <li>ルドアップ装置)</li> <li>燃料プール (使用済燃料貯蔵ラック<br/>を含む)</li> </ul>                                         | R/B             | _                                                                                     |    |
|            |       |               |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | れていない<br>ものであっ<br>て,放射性物<br>質を貯蔵す                                                                                                                       | の大きいも<br>の),燃料プ<br>ール(使用済<br>燃料貯蔵ラ        | 新燃料貯蔵庫「臨界を防止する機<br>能」(新燃料貯蔵ラック)                                                                          | R/B             | _                                                                                     |    |
|            |       |               |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | る機能<br>2) <i>厳料 た 広</i>                                                                                                                                 | ックを含<br>む。)<br>縦刈 町 栖 初                   | A44 金1 165 中午 十张                                                                                         | D/D             |                                                                                       |    |
|            |       |               |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>5) 照料を安</li> <li>全に取り扱</li> </ol>                                                                                                              | 備                                         | 原子炉ウェル                                                                                                   | R/B             |                                                                                       |    |
|            |       |               |                     |      | <ol> <li>2)通常運転時<br/>及び運転時の</li> <li>異常な過渡変</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>う機能</li> <li>1) 安全弁及</li> <li>び逃がし弁</li> <li>の吹き止ま</li> </ul>                                                                                  | 逃がし安全<br>弁(吹き止ま<br>り機能に関                  | 原子炉建物天井クレーン<br>逃がし安全弁(吹き止まり機能に関<br>連する部分)                                                                | R/B             |                                                                                       |    |
|            |       |               |                     |      | 化時に作動を<br>要求されるも<br>のであって、そ<br>の故障により、<br>炉心冷却が損<br>なわれる可能<br>性の高い構築<br>物、系統及び機                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | り機能                                                                                                                                                     | 連する部分)                                    |                                                                                                          | R/B             | _                                                                                     |    |
|            |       |               |                     | MS-2 | 器<br>1) PS-2の構築<br>物、系統及び構築<br>との構築<br>地周辺公衆能にり敷<br>により敷<br>により敷<br>に<br>りたる<br>た<br>す<br>る<br>成<br>射<br>線<br>、<br>、<br>統<br>し<br>て<br>は<br>り<br>、<br>に<br>、<br>の<br>構築<br>、<br>、<br>統<br>し<br>て<br>、<br>、<br>統<br>し<br>て<br>、<br>、<br>統<br>し<br>、<br>、<br>統<br>、<br>、<br>統<br>、<br>、<br>統<br>、<br>、<br>統<br>、<br>、<br>統<br>、<br>、<br>統<br>、<br>、<br>統<br>し<br>、<br>、<br>、<br>統<br>し<br>、<br>、<br>、<br>統<br>し<br>、<br>、<br>、<br>、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ol> <li>1)燃料ブー<br/>ル水の補給<br/>機能</li> </ol>                                                                                                             | 非常用補給水系                                   | 残留熱除去系(ボンブ,サブレッシ<br>ヨン・ブール,サブレッション・ブ<br>ールから燃料ブールまでの配管・<br>弁,ボンブミニマムフローライン配<br>管・弁,サブレッション・ブールス<br>トレーナ) | R/B             | -                                                                                     |    |
|            |       |               |                     | *1:  | R/B:原子炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,<br>建物, C/B                                                                                                                                            | 制御室建物                                     | カ, T/B:タービン建物, Rw                                                                                        | 7/B:廃棄物処        | 理建物                                                                                   |    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 柏崎刈羽原子力発電所 6/7号炉 (20 | 2017.12.20版) 東海第二発電所(2018.9.18版)        | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 備表 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | 柏崎刈羽原子力発電所 6/7号炉 (20 | 2017. 12. 20 版) 東海第二発電所 (2018. 9. 18 版) | 自根原子力発電所 2号炉           (7/12)           重要な分類形         自根原子力発電所 2号炉           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1)           1)         52(1) | 備  |
| 2) 異常状態<br>の緩和機能     BRR は対象外     -     -       3) 制御室外     制御室外原子炉     中央制御室外原子炉停止系<br>内らの安全     中山制御室外原子炉停止系<br>停止機置(安全停     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                         | 第二日の主人文術     他の把型機     他の把型機     「「日本(本)、燃料域)、     R/B, C/B, Re/B     -       第子伊水位     (広帯域、燃料域)、     R/B, C/B, Re/B     -       「低温停止への移行」     原子伊水位     (広帯域、燃料       原子伊た力、原子伊水位     (広帯域、燃料       「低温停止への移行」     原子伊水位       「日本域)     「日本(本)       「日本(広帯域)     R/B, C/B, Re/B       「日本(広)     「日本(本)       「日本(広)     「日本(本)       「「日本(本)     「日本(本)       「「サブレッション・ブール     」       「サブレッション・ブール     」       「「サブレッション・ブール     」       「「サブレッション・ブール     」       「「大和(広)」     「日本(本)」       「日本(本)」     「日本(本)」                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                         | 2) 異常状態<br>の緩和機能     BWR は対象外     -     -     -       3) 制御室外     制御室外原子炉     中央制御室外原子炉停止系<br>からの安全     中央制御室外原子炉停止系<br>作止装置(安全停<br>停止機能     R/B     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)     | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 備考 |
|--------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所 (2018. 9. 18 版) | 島根原子力発電所     2号炉       10     68/12       10     東京市     10     日本市     日本市     日本市       10     10     東京市     日本市     日本市     日本市     日本市       10     日本市     日本市     日本市     日本市     日本市       10     日本市     日本市     日本市     日本市     日本市       10     日本市     日本市     日本市     日本     日本       10     日本     日本     日本     日本 | 備考 |
|                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 備考 |
|--------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                |                     | (0/10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                |                     | 重要度分類指針         島根原子力発電所2号炉         除下头時に対して機能維持する、若しくは、降下火         その停止等により上           分類         定義         機能         構築物,系統又は機器         設置         時下人時に対して機能維持する、若しくは、降下火         その停止等により上           (1)         (特徴報告)         (日本)         (日本) |    |
|                                |                     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                |                     | PS-2 以<br>外の構<br>築物,系<br>統及び<br>機器     系,送電<br>線,変圧<br>設,開閉所     取水設備(屋外トレンチ含<br>む)     〇<br>屋外     評価対象施<br>(閉塞等に対し<br>て,影響のないこ<br>とを確認)     設として抽<br>出(除じん装<br>置)       常用所内電源系(発電機又<br>は外部電源から所内負荷<br>までの配電設備及び電路<br>(MS-1関連以外))     ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                     | 直流電源系(蓄電池,蓄電<br>池から常用負荷までの配<br>電設備及び電路(MS-1 関連<br>以外)),充電器<br>計装制御電源系(電源装置<br>から常用計測制御装置ま<br>での配電設備及び電路<br>(MS-1関連以外))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                |                     | 送電線       変圧器(所)の変圧器,起動       変圧器,予備変圧器,電路)       変圧器       進装置       冷却装置       開閉所(母線,遮断器,断       路器,電路)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                |                     | 5) ブラ     原子 炉制     原子 炉制御系(制御棒価値       ント計御系(制御     ミニマイザを含む)       測・制御棒価値     原子 炉核計装の一部       機能(安)     原子 炉核計装の一部       食能を原子 炉核     原子 炉水 切一ジントプロセス       計装の一部     計装の一部       計支、原子     アラン       トブロセ     コリオ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                |                     | 人前後         不前後         所内ボイ         所内ボイラ設備(所内ボイ           6) プラ         所内ボイ         所内ボイラ設備(所内ボイ           ント運         ラ,計装用         ブ、給水タンク,給水ボン           転補助         圧縮空気         ブ、配管・弁)           機能         系         一           カボジブ、配管・弁)         屋内         〇           (補修を実施)         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |

| 柏崎刈羽原子力発電所 | 6/7号炉 | (2017.12.20版) | 東海第二発電所 | (2018.9.18版) |   |      |                                                                              |                                                  | 島根』                                                                         | 原子力発電所                                                                                                                                                                                                                                           | 2 号炉   | î                                                                                           |                                                              |
|------------|-------|---------------|---------|--------------|---|------|------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|            |       |               |         |              |   |      |                                                                              |                                                  |                                                                             |                                                                                                                                                                                                                                                  |        |                                                                                             | (10/12                                                       |
|            |       |               |         |              |   |      | 金可庄                                                                          | 〇編作句                                             |                                                                             | 真地向スカ務電話の品行                                                                                                                                                                                                                                      |        | PR TT 1. Th Mart - ALL - or Middle of                                                       |                                                              |
|            |       |               |         |              |   | 分類   | 定義                                                                           | 機能                                               |                                                                             | 商成所1万元地所2ろゲ                                                                                                                                                                                                                                      | 設置場所   | PF 下火年時に対して機能課<br>持する、若しくは、降下火<br>砕物による損傷を考慮し<br>て、代替設備による機能維<br>持や安全上支障のない期間<br>での補修等の対応可能 | その特定等によ<br>り上位の安全重<br>要度の設備の運<br>転に影響を及ぼ<br>す可能性のある<br>野死の始時 |
|            |       |               |         |              | 1 | PS-3 | <ol> <li>1) 異常状態<br/>の起因事象<br/>となるもの<br/>であって、<br/>PS-1 及び</li> </ol>        | <ol> <li>6) プラント<br/>運転補助機</li> <li>能</li> </ol> | 所内ボ<br>イラ,計<br>装用圧<br>縮空気<br>系                                              | 所内蒸気系(配管・弁)<br>計装用空気系(空気圧縮機,<br>管・弁,中間冷却器,後部冷却器<br>気水分離器,空気貯槽)                                                                                                                                                                                   | 屋内屋外屋内 | <ul> <li>○</li> <li>(補修を実施)</li> <li>○</li> <li>(屋内設備のため、</li> <li>影響なし、)</li> </ul>        | -                                                            |
|            |       |               |         |              |   |      | PS-2 以外の<br>構築物,系統<br>及び機器                                                   |                                                  |                                                                             | 原子炉補機冷却水系(MS-1 関連<br>以外)(配管・弁)<br>タービン補機冷却水系(ボンプ,<br>熱交換器,配管・弁,サージタン<br>ク)                                                                                                                                                                       | 屋内     | ○<br>(屋内設備のため,<br>影響なし)                                                                     |                                                              |
|            |       |               |         |              |   |      |                                                                              |                                                  |                                                                             | タービン補機冷却海水系 (ポン<br>ブ, 配管・弁, ストレーナ)<br>復水輸送系 (ポンプ, 配管・弁)                                                                                                                                                                                          | 屋外     | ○<br>(補修を実施)<br>○<br>(屋内設備のため,<br>影響なし)                                                     | _                                                            |
|            |       |               |         |              |   | -    | 2) 原子炉冷                                                                      | <ol> <li>核分裂生</li> </ol>                         | 燃料被                                                                         | 復水貯蔵タンク<br>燃料被覆管,上/下部端栓,タイ                                                                                                                                                                                                                       | 屋外     | <ul> <li>(適切な除灰対応<br/>により,機能維持可<br/>能)</li> </ul>                                           | -                                                            |
|            |       |               |         |              |   |      | 却材中放射<br>性物質濃重転<br>に支障のない<br>程度に低                                            | 成物の原子<br>炉冷却材中<br>への放散防<br>止機能<br>2)原子炉冷         | 覆管原子炉                                                                       | ロッド 原子炉浄化系 (再生熱交換器, 非                                                                                                                                                                                                                            | 屋内     | ○<br>(屋内設備のため,<br>影響なし)                                                                     | -                                                            |
|            |       |               |         |              | - | MS-3 | く抑える構<br>築物,系統及<br>び機器<br>1)運転時の                                             | 却材の浄化<br>機能<br>1)原子炉圧                            | <ul> <li>冷却材</li> <li>浄化系,</li> <li>復水浄</li> <li>化系</li> <li>逃がし</li> </ul> | 再生熱交換器,ポンプ,ろ過脱塩<br>装置,配管・弁)<br>復水浄化系(復水ろ過装置,復オ<br>脱塩装置,配管・弁)<br>透がし安全弁(逃がし弁機能)                                                                                                                                                                   | 屋内     | ○<br>(屋内設備のため,<br>影響なし)                                                                     | -                                                            |
|            |       |               |         |              |   |      | 異常な過渡<br>変化があっ<br>ても, MS-1,<br>MS-2 とあい<br>まって、事象<br>を緩和う系<br>構築物,系統<br>及び機器 | カの上昇の<br>設和機能                                    | 〜安 ( し 弁 が 機 タ ン パ<br>ネ 生 逃 弁 ) ビ パ イ                                       | 原子炉圧力容器から透がし安全<br>弁までの主席気配管<br>適がし安全弁アキュムレータル設<br>がし安全弁アキュムレータルに<br>遠がし安全弁アキュムレータルに<br>適がし安全弁までの配管・弁<br>タービン・バイバス弁<br>原子炉圧力容器からタービン・バイ<br>パス弁までの主席気配管<br>タービン・バイバス弁アキュムレ<br>ータ、タービン・バイバス弁アキュムレ<br>ータ、タービン・バイバスキア<br>コムレータからタービン・バイノ<br>ス弁までの配管・弁 | 屋内     | <br>(屋内設備のため,<br>影響なし)                                                                      | -                                                            |
|            |       |               |         |              |   |      |                                                                              |                                                  |                                                                             |                                                                                                                                                                                                                                                  |        |                                                                                             |                                                              |
|            |       |               |         |              |   |      |                                                                              |                                                  |                                                                             |                                                                                                                                                                                                                                                  |        |                                                                                             |                                                              |

| 炉 |  |
|---|--|
|   |  |
|   |  |

# 2)

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) |                                                                   |                                            | 島根原                                                                                                                                                                                         | 子力発電所                                                                                                                                                  | 2 号炉              |                                                                                             |                                                              | 備考 |
|--------------------------------|---------------------|-------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|----|
|                                |                     |                                                                   |                                            |                                                                                                                                                                                             | 息粮商子力發電研2号                                                                                                                                             |                   | 降下火酔物に対して                                                                                   | (11/12)                                                      |    |
|                                |                     | 分類 定義                                                             | 要度分類指針<br>機能                               | 構築                                                                                                                                                                                          | か<br>が<br>が<br>か<br>が<br>で<br>の<br>の<br>、系統又は機器                                                                                                        | 設置<br>場所          | 機能維持する、若し<br>くは、降下火砕物に<br>よる損傷を考慮し<br>て、代替設備による<br>機能維持や安全上支<br>障のない期間での補                   | その停止等によ<br>り上位の安全重<br>要度の設備の運<br>転に影響を及ぼ<br>す可能性のある<br>歴外の施設 |    |
|                                |                     | MS-3 1)運転時<br>の異常な<br>があって<br>も、MS-1、<br>MS-2 とあ<br>いまって、<br>事象を緩 | <ol> <li>2) 出力上<br/>昇の抑制<br/>機能</li> </ol> | 原<br>却<br>環<br>系<br>(再<br>備<br>環<br>、<br>ン<br>ッ<br>、<br>制<br>(<br>制<br>(<br>制<br>御<br>振<br>(<br>二<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、 | 原子炉再循環系(再循<br>環ポンプトリップ機<br>能)<br>制御棒引抜監視装置                                                                                                             | 屋内                | <ul> <li>(屋内設備<br/>のため,影響<br/>なし)</li> </ul>                                                | _                                                            |    |
|                                |                     | 和 する 構<br>築物,系統<br>及び機器                                           | <ol> <li>原子炉<br/>冷却材の<br/>補給機能</li> </ol>  | 制御棒駆動水圧系,<br>原子炉隔<br>離時冷却系                                                                                                                                                                  | 制御棒駆動水圧系(ボ<br>ンプ,復水貯蔵タンク<br>から制御棒駆動機構ま<br>での配管・弁,ボンプ<br>サクションフィルタ,<br>ボンプミニマムフロー<br>ライン配管・弁)<br>(4)                                                    | 屋内<br>屋外<br>(ダクト) | ○<br>(屋内,ダク<br>ト内設備の<br>ため,影響な<br>し)                                                        | _                                                            |    |
|                                |                     |                                                                   |                                            |                                                                                                                                                                                             | 復水貯蔵タンク<br>原子炉隔離時冷却系                                                                                                                                   | 屋外                | <ul> <li>(適切な除</li> <li>灰対応により,機能維持</li> <li>可能)</li> </ul>                                 | -                                                            |    |
|                                |                     |                                                                   |                                            |                                                                                                                                                                                             | <ul> <li>(ポンプ、タービン、</li> <li>サプレッション・プール、</li> <li>サプレッション・</li> <li>プールから注水先まで</li> <li>の配管・弁、ボンブミ</li> <li>ニマムフローライン配</li> <li>ニマムフローライン配</li> </ul> | 屋内                | ○<br>(屋内設備<br>のため,影響<br>なし)                                                                 | _                                                            |    |
|                                |                     |                                                                   |                                            |                                                                                                                                                                                             | <ul> <li>E・<i>π</i>/</li> <li>タービンへの蒸気供給</li> <li>配管・弁</li> <li>潤清油冷却器及びその</li> <li>冷却器までの冷却水供</li> </ul>                                              | 屋内                | <ul> <li>○</li> <li>(屋内設備</li> <li>のため,影響</li> <li>なし)</li> <li>○</li> <li>(屋内設備</li> </ul> | _                                                            |    |
|                                |                     |                                                                   |                                            |                                                                                                                                                                                             | 給配管                                                                                                                                                    | <u> </u>          | のため, 影響<br>なし)                                                                              |                                                              |    |
|                                |                     |                                                                   |                                            |                                                                                                                                                                                             |                                                                                                                                                        |                   |                                                                                             |                                                              |    |
|                                |                     |                                                                   |                                            |                                                                                                                                                                                             |                                                                                                                                                        |                   |                                                                                             |                                                              |    |
|                                |                     |                                                                   |                                            |                                                                                                                                                                                             |                                                                                                                                                        |                   |                                                                                             |                                                              |    |
|                                |                     |                                                                   |                                            |                                                                                                                                                                                             |                                                                                                                                                        |                   |                                                                                             |                                                              |    |
|                                |                     |                                                                   |                                            |                                                                                                                                                                                             |                                                                                                                                                        |                   |                                                                                             |                                                              |    |

| 備考 |  |
|----|--|
|    |  |

| 始体が明白ストが東部 |       |                |                       |      |                                    |                                          | сі та і              | テノムが声                                                                   |                    |       | •                                     |                    |
|------------|-------|----------------|-----------------------|------|------------------------------------|------------------------------------------|----------------------|-------------------------------------------------------------------------|--------------------|-------|---------------------------------------|--------------------|
| 相崎刈羽原子刀発電所 | 6/7号炉 | (2017.12.20 版) | 果海弟発電所(2018. 9. 18 版) |      |                                    |                                          | <b></b>              | <b></b> 「「「「「「「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「 | 所 2                | ,亏炉   | 1                                     |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       | (12/12)            |
|            |       |                |                       | _    |                                    |                                          |                      |                                                                         |                    |       |                                       | (12/12             |
|            |       |                |                       |      | 重                                  | 要度分類指針                                   |                      | 島根原子力発電所                                                                | 2 号炉               |       | 降下火砕物に対して機能維                          | その停止等によ            |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         | I                  | 設置    | 科する。右しては、同下穴<br>砕物による損傷を考慮し           | り上世の安主重<br>要度の設備の運 |
|            |       |                |                       | 分類   | 定義                                 | 機能                                       | 構                    | 「築物,系統又は機器                                                              | I                  | 場所    | て,代替設備による機能維<br>持や完全上支障のない難期          | 転に影響を及ぼ            |
|            |       |                |                       |      |                                    |                                          |                      | 1                                                                       |                    |       | での補修等の対応可能                            | 屋外の施設              |
|            |       |                |                       | MS-3 | <ol> <li>2)異常状<br/>熊への対</li> </ol> | <ol> <li>1) 緊急</li> <li>時 対 策</li> </ol> | 原子力発電所<br>緊急時対策所,    | 緊急時対策所(緊急時<br>報収集設備,通信連約                                                | →対策所,情<br>         |       | <ul> <li>(設計荷重等に対</li> </ul>          |                    |
|            |       |                |                       |      | 応上必要                               | 上重要                                      | 試料採取系,通              | 及び器材,遮蔽設備)                                                              |                    | 屋外    | して影響ないこと                              | -                  |
|            |       |                |                       |      | な構築物,<br>系統及び                      | なもの<br>及び異                               | 信連絡設備, 放<br>射線監視設備,  | 試料採取系 (異常時に                                                             | 必要な以下              |       | を確認)                                  |                    |
|            |       |                |                       |      | 機器                                 | 常状態                                      | 事故時監視計               | の機能を有するもの。                                                              | 原子炉冷却              |       | 0                                     |                    |
|            |       |                |                       |      |                                    | の 把 握<br>機能                              | 器の一部, 消火<br>系, 安全避難通 | 材放射性物質濃度サ<br>分析,格納容器雰囲気                                                 | ンプリング<br>,放射性物質    | 屋内    | <ul><li>(屋内設備のため、<br/>影響なし)</li></ul> | -                  |
|            |       |                |                       |      |                                    |                                          | 路,非常用照明              | 濃度サンプリング分析                                                              | ŕ)                 |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      | 通信運給取備(150)<br>含む複数の回路を有                                                | 専用回路を<br>する通信連     | 屋内    | (代替設備(衛星系                             |                    |
|            |       |                |                       |      |                                    |                                          |                      | 絡設備)                                                                    | I                  | 屋外    | <ul><li>等)により機能維持<br/>可能)</li></ul>   | _                  |
|            |       |                |                       |      |                                    |                                          |                      | 排気筒モニタ                                                                  |                    |       | 0                                     |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         | I                  | 屋外    | (設計荷重等に対<br>して影響かいこと                  | -                  |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       | を確認)                                  |                    |
|            |       |                |                       |      |                                    |                                          |                      | 放射能監視設備(排気<br>外)                                                        | 筒モニタ以              |       | <ul> <li>(代替設備(可搬型)</li> </ul>        |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         | I                  | 屋外    | モニタリング設備)                             | -                  |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         | I                  |       | により機能維持可<br>能)                        |                    |
|            |       |                |                       |      |                                    |                                          |                      | 事故時監視計器の一部                                                              | ß                  | 屋内    | 0                                     | -                  |
|            |       |                |                       |      |                                    |                                          |                      | 消火系 水消:                                                                 | と設備(補助             | 屋外    | (補修を実施)                               |                    |
|            |       |                |                       |      |                                    |                                          |                      | 消火                                                                      | ょ槽, サイト            |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      | タン                                                                      | 7 建物消火<br>7,44m 盤消 | 日中    |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      | 火タン                                                                     | ィク,45m 盤           | 屋外    | (代替設備(用防単<br>等)により機能維持                | _                  |
|            |       |                |                       |      |                                    |                                          |                      | 盤消                                                                      | レタンク,ポ             |       | 可能)                                   |                    |
|            |       |                |                       |      |                                    |                                          |                      | ンプ,<br>泡道:                                                              | 配管・弁等)             |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      | 固定                                                                      | 式ガス消火              |       | 0                                     |                    |
|            |       |                |                       |      |                                    |                                          |                      | 設備                                                                      | I                  | 屋内    | <ul><li>(屋内設備のため,<br/>影響なし)</li></ul> | -                  |
|            |       |                |                       |      |                                    |                                          |                      | 防火扉,防火ダンパ,                                                              | 耐火壁,隔              |       | 0                                     |                    |
|            |       |                |                       |      |                                    |                                          |                      | 壁(消火設備の機能を<br>するために必要なもの                                                | 維持・担保<br>))        | 座内    | (屋内設備のため,<br>影響なし)                    | _                  |
|            |       |                |                       |      |                                    |                                          |                      | 火災検出装置(受信根                                                              | (含む)               | 辰内    | ○ (局内設備のため)                           | _                  |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    | 座内    | (単内設備のため,<br>影響なし)                    | _                  |
|            |       |                |                       |      |                                    |                                          |                      | 安全避難通路<br>安全避難用扉                                                        |                    | 辰内    | ○<br>(屋内設備のため)                        | _                  |
|            |       |                |                       |      |                                    |                                          |                      | 非常用照明                                                                   |                    | AET 1 | (星円設備のため),<br>影響なし)                   |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |
|            |       |                |                       |      |                                    |                                          |                      |                                                                         |                    |       |                                       |                    |

| 1 | , | h | F | î |
|---|---|---|---|---|
| t | ) | 9 |   | 1 |

### 2)

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                         | 備考 |
|--------------------------------|---------------------|--------------------------------------|----|
| ◎ [1.4] 評価対象設備の設置場所 (1/6)      |                     | <figure>         Base (1.2)</figure> |    |



| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                   | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉 | 備考 |
|--------------------------------------------------|---------------------|--------------|----|
| 7 時時多一ビン建屋地上3階         7 時時多い設置場所 (3/6)          |                     |              |    |
| 7月中夕一ビン建屋地下1階         7月中夕一ビン建屋地下2階         7月小月 |                     |              |    |
|                                                  |                     |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)               | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉 | 備考 |
|----------------------------------------------|---------------------|--------------|----|
| 6 号炉原子炉碡屋地上 4 階                              |                     |              |    |
| 6号炉原子炉建屋地上3路(中間路)       1.4 評価対象施設の設置場所(4/6) |                     |              |    |
| 6号炉原子炉糠屋拖上3階                                 |                     |              |    |
|                                              |                     |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                  | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉 | 備考 |
|---------------------------------------------------------------------------------|---------------------|--------------|----|
| 6号ゆタービン線屋地上2階         6号ゆタービン建屋地上3階         6号ゆタービン建屋地上3階         1訳の設置場所 (5/6) |                     |              |    |
| 6号炉タービン健局地ド1階         6号炉タービン健局地ド2階         6号炉タービン健園地ド2階         1.4<計価が多施     |                     |              |    |
|                                                                                 |                     |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)        | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉 | 備考 |
|---------------------------------------|---------------------|--------------|----|
| 6. 7号炉コントロール建屋圧         商記の設置場所 (6/6) |                     |              |    |
| 6. 7号がコントロール地上2階         1.1 引 評価対象が  |                     |              |    |
|                                       |                     |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                  | 東海第二発電所(2018.9.18版)                    | 島根原子力発電所 2号炉                        | 備考 |
|-------------------------------------------------|----------------------------------------|-------------------------------------|----|
| <ol> <li>3.4 降下火砕物による影響の選定</li> </ol>           | <ol> <li>3.4 降下火砕物による影響の選定</li> </ol>  | <ul><li>4.4 降下火砕物による影響の選定</li></ul> |    |
| 降下火砕物の特徴及び評価対象施設の構造や設置状況等を考慮                    | 降下火砕物の特徴及び評価対象施設等の構造や設置状況を考            | 降下火砕物の特徴及び評価対象施設等の構造や設置状況等を         |    |
| して,降下火砕物が直接及ぼす影響(以下「直接的影響」という。)                 | 慮して、降下火砕物が直接及ぼす影響(以下「直接的影響」と           | 考慮して、降下火砕物が直接及ぼす影響(以下「直接的影響」と       |    |
| とそれ以外の影響(以下「間接的影響」という。)として選定する。                 | いう。)と <u>発電所外での</u> 影響(以下「間接的影響」という。)を | いう。)とそれ以外の影響(以下「間接的影響」という。)として      |    |
|                                                 | 選定する。                                  | 選定する。                               |    |
|                                                 |                                        |                                     |    |
| <ol> <li>3.4.1 降下火砕物の特徴</li> </ol>              | <u>3.4.1</u> 降下火砕物の特徴                  | <u>4.4.1</u> 降下火砕物の特徴               |    |
| 各種文献の調査結果より, 降下火砕物は以下の特徴を有する。                   | 各種文献の調査結果より,降下火砕物は以下の特徴を有する。           | 各種文献の調査結果より、降下火砕物は以下の特徴を有する。        |    |
| (1) 火山ガラス片, 鉱物結晶片から成る。ただし,火山ガラス片                | (1) 火山ガラス片, 鉱物結晶片から成る。ただし, ガラス片は       | (1)火山ガラス片,鉱物結晶片から成る。ただし,火山ガラス       |    |
| は砂よりもろく硬度は低く,主要な鉱物結晶片の硬度は砂同等                    | 砂よりもろく硬度は低く,主要な鉱物結晶辺の硬度は砂同等            | 片は砂よりもろく硬度は低く、主要な鉱物結晶片の硬度は          |    |
| またはそれ以下である。                                     | 又はそれ以下である。                             | 砂同等またはそれ以下である。                      |    |
| (2) 硫酸等を含む腐食性のガス(以下「腐食性ガス」という。)が                | (2) 硫酸等を含む腐食性のガス(以下「腐食性ガス」という。)        | (2) 硫酸等を含む腐食性のガス(以下「腐食性ガス」という。)     |    |
| 付着している。                                         | が付着している。                               | が付着している。                            |    |
| ただし,金属腐食研究の結果より,直ちに金属腐食を生じさせ                    | ただし、金属腐食研究の結果より、直ちに金属腐食を生じさ            | ただし、金属腐食研究の結果より、直ちに金属腐食を生じさ         |    |
| ることはない。                                         | せることはない。                               | せることはない。                            |    |
| (3) 水に濡れると導電性を生じる。                              | (3) 水に濡れると導電性を生じる。                     | (3) 水に濡れると導電性を生じる。                  |    |
| (4) 湿った降下火砕物は乾燥すると固結する。                         | (4) 湿った降下火砕物は乾燥すると固結する。                | (4) 湿った降下火砕物は乾燥すると固結する。             |    |
| (5) 降下火砕物粒子の融点は約1,000℃ であり,一般的な砂に比              | (5) 降下火砕物粒子の融点は約 1,000℃であり,一般的な砂に      | (5) 降下火砕物粒子の融点は約1,000℃であり,一般的な砂に比   |    |
| べ低い。                                            | 比べ低い。                                  | べ低い。                                |    |
| (補足資料-2)                                        |                                        |                                     |    |
|                                                 |                                        |                                     |    |
| 3.4.2 直接的影響                                     | <u>3</u> .4.2 直接的影響                    | 4.4.2 直接的影響                         |    |
| 降下火砕物の特徴から直接的影響の要因となる荷重、閉塞、摩                    | 降下火砕物の特徴から直接的影響の要因となる荷重,閉塞,            | 降下火砕物の特徴から直接的影響の要因となる荷重、閉塞、摩        |    |
| 耗,腐食,大気汚染,水質汚染及び絶縁低下を抽出し,評価対象                   | 摩耗,腐食,大気汚染,水質汚染及び絶縁低下を抽出し,評価           | 耗,腐食,大気汚染,水質汚染及び絶縁低下を抽出し,評価対象       |    |
| 施設の構造や設置状況等を考慮して直接的な影響因子を以下のと                   | 対象施設等の構造や設置状況等を考慮して直接的な影響因子を           | 施設等の構造や設置状況等を考慮して直接的な影響因子を以下        |    |
| おり選定する。なお、 <u>柏崎刈羽</u> 原子力発電所 <u>6</u> 号及び7号炉で想 | 以下のとおり選定する。                            | のとおり選定する。なお,島根原子力発電所2号炉で想定される       |    |
| 定される降下火砕物の条件を考慮し,表1.4 に示す項目について                 |                                        | 隆下火砕物の条件を考慮し, 第1.4表に示す項目について評価を     |    |
| 評価を実施する。                                        |                                        | 実施する。                               |    |
|                                                 |                                        |                                     |    |
| (1) 直接的影響の要因の選定と評価手法                            |                                        | (1) 直接的影響の要因の選定と評価手法                |    |
| (a)荷重                                           | (1) 荷重                                 | a荷重                                 |    |
| 「荷重」について考慮すべき影響因子は、屋外設備及び建屋の                    | 「荷重」について考慮すべき影響因子は、建屋及び屋外設             | 「荷重」について考慮すべき影響因子は、屋外設備及び建物の        |    |
| 上に堆積し静的な負荷を与える「構造物への静的負荷」、並びに屋                  | 備の上に堆積し静的な負荷を与える「構造物への静的負荷」,           | 上に堆積し静的な負荷を与える「構造物への静的負荷」、並びに       |    |
| 外設備及び建屋に対し降灰時に衝撃を与える「粒子の衝突」であ                   | 並びに建屋及び屋外設備に対し降灰時に衝撃を与える「粒子            | 屋外設備及び建物に対し降灰時に衝撃を与える「粒子の衝突」で       |    |
| る。                                              | の衝突」である。                               | ある。                                 |    |
|                                                 | 【比較のため □□下を再現】                         |                                     |    |
|                                                 | (2) 粉子の衝空                              |                                     |    |
|                                                 |                                        |                                     |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)       | 東海第二発電所(2018.9.18版)            | 島根原子力発電所 2号炉                           | 備考 |
|--------------------------------------|--------------------------------|----------------------------------------|----|
| 粒子の衝突による影響については,「別添2-1 竜巻影響評価につ      | 評価対象施設等のうち、建屋及び屋外設備は、粒子の衝突に    | 粒子の衝突による影響については,「別添 2-1 竜巻影響評価に        |    |
| いて」に包絡される。                           | 対して,「1.7.2 竜巻防護に関する基本方針」に基づく設計 | ついて」に包絡される。                            |    |
|                                      | によって,外部事象防護対象施設の安全機能を損なわない設計   |                                        |    |
|                                      | LtJ.                           |                                        |    |
|                                      | 【ここまで】                         |                                        |    |
| なお、建屋の評価は、建築基準法における積雪の荷重の考え方         |                                | なお、建物の評価は、建築基準法における積雪の荷重の考え方           |    |
| に準拠し、降下火砕物及び積雪の除去を適切に行うことから、短        |                                | に準拠し、降下火砕物及び積雪の除去を適切に行うことから、短          |    |
| 期許容応力度を許容限界とする。                      |                                | 期許容応力度を許容限界とする。                        |    |
| また、建屋を除く評価対象施設においては、許容応力を「日本         |                                | また、建物を除く評価対象施設等においては、許容応力を「日           |    |
| 工業規格」、「日本機械学会の基準・指針類」及び「原子力発電所       |                                | 本産業規格」、「日本機械学会の基準・指針類」及び「原子力発電         |    |
| 耐震設計技術指針JEAG4601-1987(日本電気協会)」に準拠する。 |                                | 所耐震設計技術指針 JEAG4601-1987(日本電気協会)」に準拠する。 |    |
|                                      |                                |                                        |    |
| (b) 閉塞                               | 閉塞                             | <u>b</u> 閉塞                            |    |
| 「閉塞」について考慮すべき影響因子は、降下火砕物を含む海         | 「閉塞」について考慮すべき影響因子は,降下火砕物を含     | 「閉塞」について考慮すべき影響因子は、降下火砕物を含む海           |    |
| 水が流路の狭隘部等を閉塞させる「水循環系の閉塞」、並びに降下       | む海水が流路の狭隘部等を閉塞させる「水循環系の閉塞」及    | 水が流路の狭隘部等を閉塞させる「水循環系の閉塞」 <u>…並びに</u> 降 |    |
| 火砕物を含む空気が機器の狭隘部や換気系の流路を閉塞させる         | び降下火砕物を含む空気が機器の狭隘部や換気系の流路を閉    | 下火砕物を含む空気が機器の狭隘部や換気系の流路を閉塞させ           |    |
| 「換気系,電気系及び計測制御系の機械的影響(閉塞)」である。       | 塞させる「換気系,電気系及び計測制御系の機械的影響(閉    | る「換気系,電気系及び計装制御系の機械的影響(閉塞)」であ          |    |
|                                      | 塞)」である。                        | る。                                     |    |
|                                      |                                |                                        |    |
| (c) 摩耗                               | (3) 摩耗                         | <u> </u>                               |    |
| 「摩耗」について考慮すべき影響因子は、降下火砕物を含む海         | 「摩耗」について考慮すべき影響因子は,降下火砕物を含     | 「摩耗」について考慮すべき影響因子は、降下火砕物を含む海           |    |
| 水が流路に接触することにより配管等を摩耗させる「水循環系の        | む海水が流路に接触することにより配管等を摩耗させる「水    | 水が流路に接触することにより配管等を摩耗させる「水循環系の          |    |
| 内部における摩耗」,並びに降下火砕物を含む空気が動的機器の摺       | 循環系の内部における摩耗」及び降下火砕物を含む空気が動    | 内部における摩耗」,並びに降下火砕物を含む空気が動的機器の          |    |
| 動部に侵入し摩耗させる「換気系,電気系及び計測制御系の機械        | 的機器の摺動部に侵入し摩耗させる「換気系,電気系及び計    | 摺動部に侵入し摩耗させる「換気系,電気系及び計装制御系の機          |    |
| 的影響(摩耗)」である。                         | 測制御系の機械的影響(摩耗)」である。            | 一械的影響(摩耗)」である。                         |    |
|                                      |                                |                                        |    |
| (d) 腐食                               | (4)腐食                          | _d 腐食                                  |    |
| 「腐食」について考慮すべき影響因子は,降下火砕物に付着し         | 「腐食」について考慮すべき影響因子は,降下火砕物に付     | 「腐食」について考慮すべき影響因子は、降下火砕物に付着し           |    |
| た腐食性ガスにより建屋及び屋外施設の外面を腐食させる「構築        | 着した腐食性ガスにより建屋及び屋外施設の外面を腐食させ    | た腐食性ガスにより建物及び屋外施設の外面を腐食させる「構造          |    |
| 物への化学的影響(腐食)」、換気系、電気系及び計測制御系にお       | る「構造物への化学的影響(腐食)」,換気系,電気系及び    | 物への化学的影響(腐食)」、換気系、電気系及び計装制御系にお         |    |
| いて降下火砕物を含む空気の流路等を腐食させる「換気系,電気        | 計測制御系において降下火砕物を含む空気の流路等を腐食さ    | いて降下火砕物を含む空気の流路等を腐食させる「換気系,電気          |    |
| 系及び計測制御系の化学的影響(腐食)」,並びに海水に溶出した       | せる「換気系, 電気系及び計測制御系に対する化学的影響 (腐 | 系及び計装制御系に対する化学的影響(腐食)」,並びに海水に溶         |    |
| 腐食性成分により海水管等を腐食させる「水循環系の化学的影響        | 食)」及び海水に溶出した腐食性成分により海水管等を腐食    | 出した腐食性成分により海水管等を腐食させる「水循環系の化学          |    |
| (腐食)」である。                            | させる「水循環系の化学的影響(腐食)」である。        | 的影響(腐食)」である。                           |    |
|                                      |                                |                                        |    |
| (e)大気汚染                              | <u>(5)</u> 大気汚染                | e 大気汚染                                 |    |
| 「大気汚染」について考慮すべき影響因子は,降下火砕物によ         | 「大気汚染」について考慮すべき影響因子は,降下火砕物     | 「大気汚染」について考慮すべき影響因子は、降下火砕物によ           |    |
| り汚染された発電所周辺の大気が運転員の常駐する中央制御室内        | により汚染された発電所周辺の大気が運転員の常駐する中央    | り汚染された発電所周辺の大気が運転員の常駐する中央制御室           |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                         | 東海第二発電所(2018.9.18版)                                                | 島根原子力発電所 2号炉                                                                                               | 備考 |
|------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----|
| に侵入することによる居住性の劣化,並びに降下火砕物の除去,                                          | 制御室内に侵入することによる居住性の劣化並びに降下火砕                                        | 内に侵入することによる居住性の劣化, 並びに降下火砕物の除                                                                              |    |
| 屋外設備の点検等,屋外における作業環境を劣化させる「発電所                                          | 物の除去及び屋外設備の点検等の屋外における作業環境を劣                                        | 去,屋外施設の点検等,屋外における作業環境を劣化させる「発                                                                              |    |
| 周辺の大気汚染」である。                                                           | 化させる「発電所周辺の大気汚染」である。                                               | 電所周辺の大気汚染」である。                                                                                             |    |
| (f) 水质许氿                                                               | (6) 水质洗礼                                                           | f 小 阮·汉子 沙山                                                                                                |    |
| (1) 小貝17年                                                              |                                                                    | 小 小貝/7年<br>「水质汚洗」についてけ、鈴水笠に使用する巡流水に際下水疏                                                                    |    |
| 「小貝行朱」については、                                                           | 「小貝行朱」については、和小寺に使用りる工業用小に陸                                         | 「小貝行朱」については、加小寺に使用りる疾加小に陸下八件                                                                               |    |
| 小胆小に陸下八叶初が此八りることによる行朱が与えられるが、                                          | 「八件初が低八りることによる行来が与えられるか, 光电/                                       | 初が低八りることによる行朱が与えられるが, <u><u><u></u><u></u><u></u><u></u><u></u><br/>一では鈴水伽理設備により水伽理した鈴水を使用してたり。また水</u></u> |    |
| <u>伯崎川</u> 初床丁刀光电所では和小処埋設備により小処埋した和小を<br>使用してたり、また水飯等理た行っていることから、安全な許の | じは和小処理設備により小処理した和小を使用してわり, <u>脾</u><br>下止功物の影響な受けた工業用水な声描絵水上して使用した | じは和小処理設備により小処理した和小を使用してわり、また小                                                                              |    |
| 使用してわり、また水員管理を11つていることから、 <u>女主他政</u> の                                |                                                                    | 員管理を打ちていることから、ノーノントの女主機能に影響しな                                                                              |    |
| 女主機能に影響しない。 (オロ次約 20)                                                  | いこと、<br>よに小貝官理を引っていることから、女主他設の女<br>人機やなけい想にない、(会表次約 - 7)           | (10)                                                                                                       |    |
| (佣足貨科-20)                                                              | 全機能には影響しない。 (参考資料()                                                | (佣足填料-18)                                                                                                  |    |
| (g) 絶縁低下                                                               | (7) 絶縁低下                                                           | g. 絶縁低下                                                                                                    |    |
| 「絶縁低下」について考慮すべき影響因子は、湿った降下火砕                                           | 「絶縁低下」について考慮すべき影響因子は,湿った降下                                         | 「絶縁低下」について考慮すべき影響因子は、湿った降下火砕                                                                               |    |
| 物が電気系及び計測制御系絶縁部に導電性を生じさせることによ                                          | 火砕物が、電気系及び計測制御系絶縁部に導電性を生じさせ                                        | 物が電気系及び計装制御系絶縁部に導電性を生じさせることに                                                                               |    |
| る盤の「絶縁低下」である。                                                          | ることによる「盤の絶縁低下」である。                                                 | よる盤の「絶縁低下」である。                                                                                             |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        | 【比較のため,資料-2を再掲】                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |
|                                                                        |                                                                    |                                                                                                            |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 備考 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| $B_{1.4}$ (k) TA, (k |                     | 第1.4.表、直接的影響因子の進症結果<br>影響を与える可能性のある因子 進度的影響因子の進症結果<br>構造物への時的負荷 単分い情報によりで除すとみる可能について、「なお、資産条件は大きなんだ場合の角<br>構造物への時的負荷 増がえてなるため、原面系作な影響が低いことも影響を評価する。なお、資産条件は大きなんだ場合の角<br>一般が大くなるため、原面系作な影響がないことを評価する。なお、資産条件は大きなんだ場合の角<br>一般が大くなるため、原面系作な影響がないことを評価する。<br>化子の衝突 良いたえるが参加で確心ないなが整定がないことを評価する。<br>本価環系の内能における操作 満分でしていることから、詳細的意味を評価する。また、必要に応じて、満水を出始し<br>本価環系の内能における操作 満分でしていることから、詳細的意味を評価する。また、必要に応じて、満水を出始し<br>一人価環系の内能における操作 満分でした。<br>本価環系の内能における操作 満分でしていることから、詳細的意味を評価する。また、必要に応じて、満水を出始し<br>一人価環系の内能における操作 一<br>本価環系の内能における操作 一人の予定のの影響とついても考慮する。<br>本価環系の内的語には正常の作用を非常的によるの予修でも必要にないていた。<br>本価報本の内容的研究におった。<br>本価報本の内容的における作用を非常ないた影響でついても考慮する。<br>本価であるの内容のにはたいた影響となどの、読み必要についても考慮する。<br>本価ののの影響についても考慮する。<br>本価ののの気を知のの批判で意識の行動でする。たお、必要に応じて、満水を出始して<br>一<br>本質的点<br>本質的点<br>本質的点<br>本質的点<br>本質的点<br>本質的点<br>本質的点<br>本質的点<br>本質的点<br>本質的点<br>本質的点<br>本質的点<br>本質的点<br>本質的点<br>本質の点<br>本質の点<br>本式の一般ののののののののののののでも参加るのでいた。<br>本質的点<br>本質的点<br>本質の点<br>本質の点<br>本質の点<br>本質の点<br>本質の点<br>本式の子供加合のののが<br>本質の点<br>本式の一般のののののののののののののののののでも参加るので<br>本質の点<br>本式の言葉ののから<br>本質の点<br>本質の点<br>本式の言葉ののから<br>本式ののののののののののののののののののののののののでも<br>本式ののののののののののののののので、<br>本式のののののののののののののののののので<br>本質のでいた<br>本式のののののででのののののので<br>本式のののののででののので、<br>本式のののののののででのののののののののので<br>本式のののののででののののででののので、<br>本式のでいた<br>本式のでいた<br>本式のででいた<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのののののののののののののののののののででのの<br>本式のででのの、<br>本式のででのの、<br>本式のでででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででのの、<br>本式のででののででのの、<br>本式のででののででの。<br>本式のででのででのででのの、<br>本式のででのでのでのででのの、<br>本式のででのででのでのでのでのででののでのででのでのででのででのででのででのでのででのででのででのでの |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)         | 東海第二発電所(2018.9.18版)                   | 島根原子力発電所 2号炉                          | 備考             |
|----------------------------------------|---------------------------------------|---------------------------------------|----------------|
| 3.4.3 間接的影響                            | 3.4.3 間接的影響                           | 4.4.3 間接的影響                           |                |
| 降下火砕物によって <u>柏崎刈羽</u> 原子力発電所に間接的な影響を及  | 降下火砕物によって発電所に間接的な影響を及ぼす因子             | 降下火砕物によって <u>島根原子力</u> 発電所に間接的な影響を及ぼ  |                |
| ぼす因子は、湿った降下火砕物が送電線の碍子、開閉所の充電露          | は,湿った降下火砕物が送電線の碍子,開閉所等の充電露出           | す因子は, 湿った降下火砕物が送電線の碍子, 開閉所の充電露出       |                |
| 出部等に付着し絶縁低下を生じさせることによる広範囲にわたる          | 部等に付着し絶縁低下を生じさせることによる広範囲にわた           | 部等に付着し絶縁低下を生じさせることによる広範囲にわたる          |                |
| 送電網の損傷に伴う「外部電源喪失」、並びに降下火砕物が道路に         | る送電網の損傷に伴う「外部電源喪失」及び降下火砕物が道           | 送電網の損傷に伴う「外部電源喪失」,並びに降下火砕物が道路         |                |
| 堆積することによる交通の途絶に伴う「アクセス制限」である。          | 路に堆積することによる交通の途絶に伴う「アクセス制限」           | に堆積することによる交通の途絶に伴う「アクセス制限」である。        |                |
|                                        | である。                                  |                                       |                |
|                                        |                                       |                                       |                |
|                                        | 【比較のため,資料-2を再掲】                       |                                       |                |
| 3.4.4 評価対象施設に対する影響因子の想定                |                                       | 4.4.4 各評価対象施設等に対する影響因子の選定             |                |
| 評価すべき直接的影響の要因については、その内容によりすべ           | 評価すべき直接的影響の要因については、その内容によりすべ          | 評価すべき直接的影響の要因については、その内容によりすべ          |                |
| ての評価対象施設に対して評価する必要がない項目もあることか          | ての評価対象施設等に対して評価する必要がない項目もあること         | ての評価対象施設等に対して評価する必要がない項目もあるこ          |                |
| ら、各評価対象施設と評価すべき直接的影響の要因について整理          | から、各評価対象施設等と評価すべき直接的要因について、第2         | とから、各評価対象施設等と評価すべき直接的影響の要因につい         |                |
| し,評価対象施設の特性を踏まえて必要な評価項目を表1.5のと         | <u>表のとおり整理し</u> ,評価対象施設の特性を踏まえて必要な評価項 | て整理し, 評価対象施設の特性を踏まえて必要な評価項目を第         |                |
| おり選定した。                                | 目を選定した。                               | <u>1.5表のとおり</u> 選定した。                 |                |
|                                        | 【ここまで】                                |                                       |                |
|                                        |                                       |                                       |                |
| <u>3.5</u> 設計荷重の設定                     | 3.5 設計荷重の設定                           | 4.5 設計荷重の設定                           |                |
| 設計荷重は、以下のとおり設定する。                      | 設計荷重は、以下のとおり設定する。                     | 設計荷重は、以下のとおり設定する。                     |                |
| (1) 評価対象施設に常時作用する荷重,運転時荷重              | (1) 評価対象施設等に常時作用する荷重,運転時荷重            | (1) 評価対象施設等に常時作用する荷重,運転時荷重            |                |
| 評価対象施設に作用する荷重として、自重等の常時作用する荷           | 評価対象施設等に作用する荷重として、自重等の常時作用            | 評価対象施設等に作用する荷重として、自重等の常時作用する          |                |
| 重、内圧等の運転時荷重を適切に組み合わせる。                 | する荷重,内圧等の運転時荷重であり,隆下火砕物との荷重           | 荷重、内圧等の運転時荷重を適切に組み合わせる。               |                |
|                                        | と適切に組み合わせる。                           |                                       |                |
| (2) 設計基準事故時荷重                          | (2) 設計基準事故時荷重                         | (2) 設計基準事故時荷重                         |                |
| 外部事象防護対象施設は、降下火砕物によって安全機能を損な           | <u>評価対象施設等</u> は,降下火砕物によって安全機能を損なわ    | 外部事象防護対象施設は、降下火砕物によって安全機能を損な          |                |
| わない設計とするため、設計基準事故とは独立事象である。            | ない設計とするため、設計基準事故とは独立事象である。            | わない設計とするため、設計基準事故とは独立事象である。           |                |
|                                        |                                       |                                       |                |
| また、評価対象施設のうち設計基準事故時荷重が生じる屋外設           | なお、評価対象施設等のうち設計基準事故時荷重が生じ得            | また、評価対象施設等のうち設計基準事故時荷重が生じる屋外          |                |
| 備としては、 <u>軽油タンク</u> 及び燃料移送ポンプが考えられるが、設 | る設備としては、屋外設備の動的機器である残留熱除去系海           | 設備としては、海水ポンプ(原子炉補機海水ポンプ、高圧炉心ス         | ・外部事象防護対象施     |
| 計基準事故時においても、通常運転時の系統内圧力及び温度と変          | 水系ポンプ及び非常用ディーゼル発電機(高圧炉心スプレイ           | プレイ補機海水ポンプ)及びディーゼル燃料移送ポンプ(A-非         | 設の設置場所の相違      |
| わらないため、設計基準事故により考慮すべき荷重はなく、設計          | 系ディーゼル発電機を含む。)用海水ポンプが考えられるが、          | 常用ディーゼル発電機(燃料移送系),高圧炉心スプレイ系ディ         | 【柏崎 6/7, 東海第二】 |
| 基準事故時荷重と降下火砕物との組み合わせは考慮しない。            | 設計基準事故時において残留熱除去系海水系ポンプ及び非常           | <u>ーゼル発電機(燃料移送系))</u> が考えられるが,設計基準事故時 | 火山別-④, ⑤の相違    |
|                                        | 用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機           | においても、通常運転時の系統内圧力及び温度と変わらないた          |                |
|                                        | を含む。)用海水ポンプに有意な機械的荷重は発生しないこと          | め,設計基準事故により考慮すべき荷重はなく,設計基準事故時         |                |
|                                        | から、設計基準事故時に生じる荷重の組み合わせは考慮しな           | 荷重と降下火砕物との組み合わせは考慮しない。                |                |
|                                        | Line.                                 |                                       |                |
| (3) その他の自然現象の影響を考慮した荷重の組み合わせ           | (3) その他の自然現象の影響を考慮した荷重の組み合わせ          | (3) その他の自然現象の影響を考慮した荷重の組み合わせ          |                |
| 降下火砕物と組み合わせを考慮すべき火山以外の自然現象は,           | 降下火砕物と組み合わせを考慮すべき自然現象は、荷重の            | 降下火砕物と組み合わせを考慮すべき火山以外の自然現象は、          |                |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                 | 島根原子力発電所 2号炉                           | 備考              |
|--------------------------------|-------------------------------------|----------------------------------------|-----------------|
| 荷重の影響において地震及び積雪であり、降下火砕物の荷重と適  | 影響において風及び積雪であり、降下火砕物との荷重と適切         | 荷重の影響において <u>風(台風)</u> 及び積雪であり、降下火砕物の荷 | ・自然現象の重畳の考      |
| 切に組み合わせる。                      | に組み合わせる。                            | 重と適切に組み合わせる。                           | え方の相違           |
| (補足資料-5)                       | 参考資料4)                              |                                        | 【柏崎 6/7】        |
|                                |                                     |                                        | 火山別-①の相違        |
| <u>3.6</u> 降下火砕物に対する設計         | 3.6 降下火砕物の直接的影響に対する設計方針             | 4.6 降下火砕物に対する設計                        |                 |
| <u>3.</u> 6.1 直接的影響に対する設計      |                                     | 4.6.1 直接的影響に対する設計                      |                 |
| 直接的影響については、評価対象施設の構造や設置状況等(形   | 直接的影響については、評価対象施設等の構造や設置状況等         | 直接的影響については、評価対象施設等の構造や設置状況等            |                 |
| 状,機能,外気吸入や海水通水の有無等)を考慮し,想定される  | (形状,機能,外気吸入や海水通水の有無等)を考慮し,想定        | (形状,機能,外気吸入や海水通水の有無等)を考慮し,想定さ          |                 |
| 各影響因子に対して、影響を受ける各評価対象施設が安全機能を  | される各影響因子に対して、影響を受ける各評価対象施設等が        | れる各影響因子に対して,影響を受ける各評価対象施設等が安全          |                 |
| 損なわない以下の設計とする。(表1.6)           | 安全機能を損なわない以下の設計とする。                 | 機能を損なわない以下の設計とする。                      |                 |
|                                | <u>評価対象施設等のうち放水路ゲートについては、津波の流</u>   |                                        | ・設備構成の相違        |
|                                | <u>入を防ぐための閉止機能を有している。火山の影響を起因と</u>  |                                        | 【東海第二】          |
|                                | して津波が発生することはないが、独立事象としての重畳の         |                                        | 島根2号炉には,放水      |
|                                | 可能性を考慮し、放水路ゲートは安全上支障のない期間に補         |                                        | 路ゲートと同様な設備      |
|                                | <u>修等の対応を行うことで,安全機能を損なわない設計とする。</u> |                                        | はない             |
|                                | 評価対象施設等のうち排気筒モニタについては, 放射性気         |                                        | ・防護方針の相違        |
|                                | 体廃棄物処理施設の破損の検出手段として期待している。火         |                                        | 【東海第二】          |
|                                | 山の影響を起因として放射性気体廃棄物処理施設の破損が発         |                                        | 島根2号炉は、安全       |
|                                | <u>生することはないが、独立事象としての重畳の可能性を考慮</u>  |                                        | 評価上その機能に期待      |
|                                | し、排気筒モニタ建屋も含め安全上支障のない期間に補修等         |                                        | するクラス3設備とし      |
|                                | の対応を行うことで、安全機能を損なわない設計とする。          |                                        | て、排気筒モニタに係      |
|                                |                                     | (個別評価-1~個別評価-10)                       | る評価を実施          |
|                                |                                     |                                        |                 |
|                                | 3.6.1 隆下火砕物による荷重に対する設計方針            |                                        | (島根2号炉はまとめ      |
|                                | <u>(1) 構造物への静的負荷</u>                |                                        | 資料本文 2.3.4(1)a. |
|                                | 評価対象施設等のうち,降下火砕物が堆積する建屋及び屋          |                                        | 項に記載)           |
|                                | 外施設は、以下の施設である。                      |                                        |                 |
|                                | <u>a建屋</u>                          |                                        |                 |
|                                | 原子炉建屋、タービン建屋、使用済燃料乾式貯蔵建屋            |                                        |                 |
|                                | b. 屋外に設置されている施設                     |                                        |                 |
|                                | 残留熱除去系海水系ポンプ,非常用ディーゼル発電機(高          |                                        |                 |
|                                | <u> 圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン</u>  |                                        |                 |
|                                | プ,残留熱除去系海水系ストレーナ,非常用ディーゼル発          |                                        |                 |
|                                | 電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海         |                                        |                 |
|                                | 水ストレーナ,非常用ディーゼル発電機(高圧炉心スプレ          |                                        |                 |
|                                | イ系ディーゼル発電機を含む。)吸気口,中央制御室換気系         |                                        |                 |
|                                | 冷凍機,非常用ディーゼル発電機(高圧炉心スプレイ系デ          |                                        |                 |
|                                | <u>ィーゼル発電機を含む。) 室ルーフベントファン</u>      |                                        |                 |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                 | 島根原子力発電所 2号炉 | 備考              |
|--------------------------------|-------------------------------------|--------------|-----------------|
|                                | <u>c. 降下火砕物の影響を受ける施設であって、その停止等に</u> |              |                 |
|                                | より、上位の安全重要度の施設の運転に影響を及ぼす可能          |              |                 |
|                                | 性のある屋外の施設                           |              |                 |
|                                | 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ           |              |                 |
|                                | ル発電機を含む。)排気消音器及び排気管                 |              |                 |
|                                | 当該施設の許容荷重が、降下火砕物による荷重に対して安          |              |                 |
|                                | 全裕度を有することにより、構造健全性を失わず安全機能を         |              |                 |
|                                | 損なわない設計とする。若しくは、降下火砕物が堆積しにく         |              |                 |
|                                | い、又は直接堆積しない構造とすることで、外部事象防護対         |              |                 |
|                                | 象施設の安全機能を損なわない設計とする。                |              |                 |
|                                | 評価対象施設等の建屋においては、建築基準法における一          |              |                 |
|                                | 般地域の積雪の荷重の考え方に準拠し、降下火砕物の除去を         |              |                 |
|                                | <u>適切に行うことから、降下火砕物の荷重を短期に生じる荷重</u>  |              |                 |
|                                | として扱う。また、降下火砕物による荷重と他の荷重を組み         |              |                 |
|                                | 合せた状態に対する許容限界は次の通りとする。              |              |                 |
|                                | ・原子炉建屋、タービン建屋、使用済燃料乾式貯蔵建屋           |              |                 |
|                                | 原子炉建屋に要求されている気密性及び遮蔽性を担保す           |              |                 |
|                                | る屋根スラブは、建築基準法の短期許容応力度を許容限界          |              |                 |
|                                | とする。また、屋根スラブとともに建屋の構造強度を担保          |              |                 |
|                                | <u>する主トラスは,終局耐力に対して妥当な安全余裕を有す</u>   |              |                 |
|                                | る許容限界とする。                           |              |                 |
|                                | 落下によって内包する外部事象防護対象施設が損傷する           |              |                 |
|                                | ことを防止する屋根スラブは,部材の終局耐力を許容限界          |              |                 |
|                                | とする。また、複数部材で構成されている主トラスの崩壊          |              |                 |
|                                | によって内包する外部事象防護対象施設が損傷することを          |              |                 |
|                                | 防止するため、主トラスは構造物全体として崩壊機構が形          |              |                 |
|                                | 成されないことを許容限界とする。                    |              |                 |
|                                | ・建屋を除く評価対象施設等                       |              |                 |
|                                | 許容応力を「原子力発電所耐震設計技術指針」EAG            |              |                 |
|                                | 4601-1987 (日本電気協会)」等に準拠する。          |              |                 |
|                                | (資料-4~6, 9, 10)                     |              |                 |
|                                |                                     |              |                 |
|                                | (2) 粒子の衝突                           |              | (島根2号炉は         |
|                                | 評価対象施設等のうち,建屋及び屋外設備は,粒子の衝突に         |              | 4.4.2(1)a.項に記載) |
|                                | 対して,「1.7.2 竜巻防護に関する基本方針」に基づく設計      |              |                 |
|                                | によって,外部事象防護対象施設の安全機能を損なわない設計        |              |                 |
|                                | Lt Jan                              |              |                 |
| a. 軽油タンク(燃料移送ポンプ含む)            |                                     |              | (島根2号炉 は        |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                 | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                          | 備考            |
|------------------------------------------------|---------------------|---------------------------------------|---------------|
| 「構造物への静的負荷」について、当該施設の許容荷重が、降                   |                     |                                       | 4.6.1(4)項に記載) |
| 下火砕物による荷重に対して安全裕度を有することにより、構造                  |                     |                                       |               |
| 健全性を失わず安全機能を損なわない設計とする。                        |                     |                                       |               |
| 「腐食」については、金属腐食研究の結果より、降下火砕物に                   |                     |                                       |               |
| 含まれる腐食性ガスによって直ちに金属腐食は生じないが、外装                  |                     |                                       |               |
| の塗装等によって、短期での腐食により安全機能を損なわない設                  |                     |                                       |               |
| 計とする。なお、降灰後の長期的な腐食の影響については、日常                  |                     |                                       |               |
| 保守管理等により、状況に応じて補修が可能な設計とする。                    |                     |                                       |               |
| 「閉塞」及び「摩耗」については、軽油タンクのベント管を下                   |                     |                                       |               |
| 向きに取り付ける,また,燃料移送ポンプは,降下火砕物が侵入                  |                     |                                       |               |
| しにくい設計とする。                                     |                     |                                       |               |
|                                                |                     |                                       |               |
| b. <u>外部事象防護対象施設を内包する建屋</u>                    |                     | (1) 建物                                |               |
| 原子炉 <u>建屋</u> ,タービン <u>建屋海水熱交換器区域</u> ,コントロール建 |                     | 原子炉建物,制御室建物,タービン建物,廃棄物処理建物及び          | ・防護方針の相違      |
| 屋及び廃棄物処理建屋は、「構造物への静的負荷」について、当該                 |                     | <u>排気筒モニタ室</u> は、「構造物への静的負荷」について、当該施設 | 【柏崎 6/7】      |
| 施設の許容荷重が、降下火砕物による荷重に対して安全裕度を有                  |                     | の許容荷重が、降下火砕物による荷重に対して安全裕度を有する         | 島根2号炉は,排気     |
| することにより、構造健全性を失わず安全機能を損なわない設計                  |                     | ことにより,構造健全性を失わず安全機能を損なわない設計とす         | 筒モニタを内包する建    |
| とする。                                           |                     | る。                                    | 物として排気筒モニタ    |
| なお、建屋の評価は、建築基準法における積雪の荷重の考え方                   |                     | なお、建物の評価は、建築基準法における積雪の荷重の考え方          | 室を評価対象として抽    |
| に準拠し、降下火砕物の除去を適切に行うことから、降下火砕物                  |                     | に準拠し、降下火砕物の除去を適切に行うことから、降下火砕物         | 出             |
| の荷重を短期に生じる荷重とし、建築基準法による短期許容応力                  |                     | の荷重を短期に生じる荷重とし、建築基準法による短期許容応力         |               |
| 度を許容限界とする。                                     |                     | 度を許容限界とする。                            |               |
| 「腐食」については、金属腐食研究の結果より、降下火砕物に                   |                     | 「腐食」については、金属腐食研究の結果より、降下火砕物に          |               |
| 含まれる腐食性ガスによって直ちに金属腐食は生じないが、外装                  |                     | 含まれる腐食性ガスによって直ちに金属腐食は生じないが,外装         |               |
| の塗装等によって、短期での腐食により安全機能を損なわない設                  |                     | の塗装等によって, 短期での腐食により安全機能を損なわない設        |               |
| 計とする。なお、降灰後の長期的な腐食の影響については、日常                  |                     | 計とする。なお、降灰後の長期的な腐食の影響については、日常         |               |
| 保守管理等により、状況に応じて補修が可能な設計とする。                    |                     | 保守管理等により、状況に応じて補修が可能な設計とする。           |               |
|                                                |                     |                                       |               |
| c. 原子炉補機冷却海水ポンプ                                |                     | <u>(2) 海水ポンプ</u>                      |               |
|                                                |                     | a. 原子炉補機海水ポンプ                         |               |
|                                                |                     | 「構造物への静的負荷」について、当該施設の許容荷重が、降          | •外部事象防護対象施    |
|                                                |                     | 下火砕物による荷重に対して安全裕度を有することにより、構造         | 設の設置場所及び抽出    |
|                                                |                     | 健全性を失わず安全機能を損なわない設計とする。               | 範囲の相違         |
| 「閉塞」については、降下火砕物は粘土質ではないことから水                   |                     | 「閉塞 (水循環系)」については、降下火砕物は粘土質ではな         | 【柏崎 6/7】      |
| 中で固まり閉塞することはないが、降下火砕物の粒径に対し十分                  |                     | いことから水中で固まり閉塞することはないが、降下火砕物の粒         | 火山別ー④の相違      |
| な流路幅を設ける設計とするともに、ポンプ軸受部が閉塞しない                  |                     | 径に対し十分な流路幅を設ける設計とするとともに、ポンプ軸受         |               |
| 設計とする。                                         |                     | 部が閉塞しない設計とする。                         |               |
| 「摩耗」については、主要な降下火砕物は砂と同等または砂よ                   |                     | 「摩耗」については、主要な降下火砕物は砂と同等または砂よ          |               |
| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                   | 備考          |
|--------------------------------|---------------------|--------------------------------|-------------|
| り硬度が低くもろいことから、摩耗の影響は小さく、また、日常  |                     | り硬度が低くもろいことから、摩耗の影響は小さく、また、日常  |             |
| 保守管理等により、状況に応じて補修が可能であり、摩耗により  |                     | 保守管理により、状況に応じて補修が可能であり、摩耗により安  |             |
| 安全機能を損なわない設計とする。               |                     | 全機能を損なわない設計とする。                |             |
|                                |                     | 「閉塞(機械的影響)」については,原子炉補機海水ポンプ(電  |             |
|                                |                     | 動機)本体は外気と遮断された全閉構造の冷却方式に取替を行う  |             |
|                                |                     | ことにより、降下火砕物が侵入しにくく、閉塞しない設計とする。 |             |
| 「腐食」については、金属腐食研究の結果より、降下火砕物に   |                     | 「腐食」については、金属腐食研究の結果より、降下火砕物に   |             |
| 含まれる腐食性ガスによって直ちに金属腐食は生じないが、耐食  |                     | 含まれる腐食性ガスによって直ちに金属腐食は生じないが、耐食  |             |
| 性のある材料の使用や塗装の実施等によって、短期での腐食によ  |                     | 性のある材料の使用や塗装の実施等によって,短期での腐食によ  |             |
| り安全機能を損なわない設計とする。なお、降灰後の長期的な腐  |                     | り安全機能を損なわない設計とする。なお、降灰後の長期的な腐  |             |
| 食の影響については、日常保守管理等により、状況に応じて補修  |                     | 食の影響については、日常保守管理等により、状況に応じて補修  |             |
| が可能な設計とする。                     |                     | が可能な設計とする。                     |             |
|                                |                     |                                |             |
|                                |                     | <u>b. 高圧炉心スプレイ補機海水ポンプ</u>      | ・設備構成の相違    |
|                                |                     | 「構造物への静的負荷」について、当該施設の許容荷重が、降   | 【柏崎 6/7】    |
|                                |                     | 下火砕物による荷重に対して安全裕度を有することにより、構造  | 島根2号炉は,非常用  |
|                                |                     | 健全性を失わず安全機能を損なわない設計とする。        | 海水系の設備として,高 |
|                                |                     | 「閉塞(水循環系)」については、降下火砕物は粘土質ではな   | 圧炉心スプレイ系補機  |
|                                |                     | いことから水中で固まり閉塞することはないが、降下火砕物の粒  | 冷却用のポンプ及びス  |
|                                |                     | 径に対し十分な流路幅を設ける設計とするとともに,ポンプ軸受  | トレーナがある(以下, |
|                                |                     | 部が閉塞しない設計とする。                  | 火山別-⑥の相違)   |
|                                |                     | 「閉塞(機械的影響)」については,高圧炉心スプレイ補機海   |             |
|                                |                     | 水ポンプ(電動機)本体は外気と遮断された全閉構造であり、空  |             |
|                                |                     | 気冷却器の冷却管内径及び冷却流路は降下火砕物粒径以上の幅   |             |
|                                |                     | を設ける構造とすることにより、閉塞しない設計とする。     |             |
|                                |                     | 「摩耗」については、主要な降下火砕物は砂と同等または砂よ   |             |
|                                |                     | り硬度が低くもろいことから、摩耗の影響は小さく、また、日常  |             |
|                                |                     | 保守管理により、状況に応じて補修が可能であり、摩耗により安  |             |
|                                |                     | 全機能を損なわない設計とする。                |             |
|                                |                     | 「腐食」については、金属腐食研究の結果より、降下火砕物に   |             |
|                                |                     | 含まれる腐食性ガスによって直ちに金属腐食は生じないが、耐食  |             |
|                                |                     | 性のある材料の使用や塗装の実施等によって,短期での腐食によ  |             |
|                                |                     | り安全機能を損なわない設計とする。なお、降灰後の長期的な腐  |             |
|                                |                     | 食の影響については、日常保守管理等により、状況に応じて補修  |             |
|                                |                     | が可能な設計とする。                     |             |
|                                |                     |                                |             |
|                                |                     |                                |             |
|                                |                     |                                |             |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)        | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                                    | 備考                       |
|---------------------------------------|---------------------|---------------------------------------------------------------------------------|--------------------------|
| d. 原子炉補機冷却海水系ストレーナ                    |                     |                                                                                 | (島根2号炉 は                 |
| 「閉塞」については、降下火砕物の粒径に対し十分な流路幅を          |                     |                                                                                 | 4.6.1(7)項に記載)            |
| 設ける又は差圧の確認が可能な設計とする。                  |                     |                                                                                 |                          |
| 「摩耗」については、主要な降下火砕物は砂と同等または砂よ          |                     |                                                                                 |                          |
| り硬度が低くもろいことから、摩耗の影響は小さく、また、日常         |                     |                                                                                 |                          |
| 保守管理等により、状況に応じて補修が可能であり、摩耗により         |                     |                                                                                 |                          |
| 安全機能を損なわない設計とする。                      |                     |                                                                                 |                          |
| 「腐食」については、金属腐食研究の結果より、降下火砕物に          |                     |                                                                                 |                          |
| 含まれる腐食性ガスによって直ちに金属腐食は生じないが、耐食         |                     |                                                                                 |                          |
| 性のある材料の使用や塗装の実施等によって、短期での腐食によ         |                     |                                                                                 |                          |
| り安全機能を損なわない設計とする。なお、降灰後の長期的な腐         |                     |                                                                                 |                          |
| 食の影響については, 日常保守管理等により, 状況に応じて補修       |                     |                                                                                 |                          |
| が可能な設計とする。                            |                     |                                                                                 |                          |
|                                       |                     |                                                                                 |                          |
| e取水設備(除塵装置)                           |                     |                                                                                 | (島根2号炉は                  |
| 「閉塞」については、降下火砕物の粒径に対し十分な流路幅を          |                     |                                                                                 | 4.6.1(8)項に記載)            |
| 設ける設計とする。                             |                     |                                                                                 |                          |
| 「摩耗」については、主要な降下火砕物は砂と同等または砂よ          |                     |                                                                                 |                          |
| り硬度が低くもろいことから、摩耗の影響は小さく,また,日常         |                     |                                                                                 |                          |
| 保守管理等により,状況に応じて補修が可能であり, 摩耗により        |                     |                                                                                 |                          |
| 安全機能を損なわない設計とする。                      |                     |                                                                                 |                          |
| 「腐食」については、金属腐食研究の結果より、降下火砕物に          |                     |                                                                                 |                          |
| 含まれる腐食性ガスによって直ちに金属腐食は生じないが、耐食         |                     |                                                                                 |                          |
| 性のある材料の使用や塗装の実施等によって、短期での腐食によ         |                     |                                                                                 |                          |
| り安全機能を損なわない設計とする。なお、降灰後の長期的な腐         |                     |                                                                                 |                          |
| 食の影響については、日常保守管理等により、状況に応じて補修         |                     |                                                                                 |                          |
| が可能な設計とする。                            |                     |                                                                                 |                          |
|                                       |                     |                                                                                 |                          |
| 【比較のため、以下を再掲】                         |                     |                                                                                 |                          |
| g. 非常用アイーセル発電機(非常用アイーセル発電機吸気糸含        |                     | (3) 非常用ティーセル発電機及び高圧炉心スフレイ糸ティー                                                   | • 外部事象防護対象施              |
| E)                                    |                     | <u>セル発電機</u> (吸気糸 <u>, 排気消音器及び排気官</u> 含む)                                       | 設の設置場所及び抽出               |
|                                       |                     | 「構造物への静的負荷」について、当該施設の許容荷重が、降                                                    | 範囲の相違                    |
|                                       |                     | <u> 下火</u> 仲物による何里に対して女全俗度を有することにより,構造<br>ゆへいませた。 おかん様 かさねました、 デーコート・ティーサークン、 デ |                          |
|                                       |                     | <u> 健主性を大わす女主機能を損なわない設計とする。右しくは、降</u><br>エル西輪が推発したくいるたちに使用したい構築としたる。            | 局根2 <u>劳</u> 炉は、 敗気      |
|                                       |                     | <u> 下火</u> 仲物か 堆積しにくい 乂は 直接 堆積しない 構造とすることで、                                     | ・ ボス消音器及び排<br>「「「「「「」」」」 |
|                                       |                     | 唐 道健 全性を 大わり 女 全機 能を 損なわない 設計 とする。                                              | 気官を評価対象として               |
| 「闭巻」については、非吊用アイーセル発電機の <u>敗気日</u> の上流 |                     | 「闭基」(機械的影響)」については、構造上の対応として、非                                                   | 加供推出の招告                  |
| 1期のクトヌ、収入口には、ルーハか取り付けられており、ト方から吸      |                     | 吊用アイーセル発電機及い尚圧炉心人フレイ糸アイーセル発電                                                    | ・設備博成の相遅                 |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)        | 東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉              | 備考         |
|---------------------------------------|-----------------------------------------------|------------|
| い込む構造であること、非常用換気空調系のバグフィルタ(粒径         | 機の <u>給気フィルタ</u> の上流側の外気取入口には, フード又はルーバ       | 【柏崎 6/7】   |
| 約2μmに対して80%以上を捕獲する性能)を設置することにより,      | が取り付けられており、下方から吸い込む構造であること、 <u>給気</u>         | 火山別-②の相違   |
| フィルタメッシュより大きな降下火砕物が内部に侵入しにくい設         | 消音器にフィルタ(粒径約1~5µmに対して 80%以上を捕獲す               | ・空気取込口の構造及 |
| 計とし、また、降下火砕物がバグフィルタに付着した場合でも取         | る性能)を設置することにより、フィルタメッシュより大きな降                 | びフィルタ仕様の相違 |
| 替え又は清掃が可能な構造とすることで、降下火砕物により閉塞         | 下火砕物が内部に侵入しにくい設計とし、また、降下火砕物が二                 | 【柏崎 6/7】   |
| しない設計とする。                             | <u>イルタ</u> に付着した場合でも取替え又は清掃が可能な構造とする          |            |
|                                       | ことで、降下火砕物により閉塞しない設計とする。                       |            |
| なお、バグフィルタを通過した小さな粒径の降下火砕物が侵入          | なお、フィルタを通過した小さな粒径の降下火砕物が侵入した                  |            |
| した場合でも、降下火砕物により閉塞しない設計とする。            | 場合でも、降下火砕物により閉塞しない設計とする。                      |            |
| 「摩耗」については、主要な降下火砕物は砂と同等または砂よ          | 「摩耗」については、主要な降下火砕物は砂と同等または砂よ                  |            |
| り硬度が低くもろいことから、摩耗の影響は小さく、かつ構造上         | り硬度が低くもろいことから、摩耗の影響は小さく、かつ構造上                 |            |
| の対応として、吸気口の上流側の外気取入口には、ルーバが取り         | の対応として, 給気フィルタの上流側の外気取入口には, フード               |            |
| 付けられており、下方から吸い込む構造であること、 <u>非常用換気</u> | 又はルーバが取り付けられており、下方から吸い込む構造である                 | ・空気取込口の構造の |
| <u>空調系のバグフィルタを設置することで、降下火砕物が流路に侵</u>  | こと、また、給気消音器にフィルタを設置することで、降下火砕                 | 相違         |
| 入しにくい設計とし、仮に当該設備の内部に降下火砕物が侵入し         | 物が流路に侵入しにくい設計とし、仮に当該設備の内部に降下火                 | 【柏崎 6/7】   |
| た場合でも耐摩耗性のある材料を使用することで、摩耗により安         | 砕物が侵入した場合でも耐摩耗性のある材料を使用することで,                 |            |
| 全機能を損なわない設計とする。                       | 摩耗により安全機能を損なわない設計とする。                         |            |
| 「腐食」については、金属腐食研究の結果より、降下火砕物に          | 「腐食」については、金属腐食研究の結果より、降下火砕物に                  |            |
| 含まれる腐食性ガスによって直ちに金属腐食を生じないが、金属         | 含まれる腐食性ガスによって直ちに金属腐食は生じないが、金属                 |            |
| 材料を用いることによって, 短期での腐食により安全機能を損な        | 材料を用いることや塗装の実施によって,短期での腐食により安                 |            |
| わない設計とする。なお、降灰後の長期的な腐食の影響について         | 全機能を損なわない設計とする。なお、降灰後の長期的な腐食の                 |            |
| は、日常の保守管理等により、状況に応じて補修が可能な設計と         | 影響については、日常の保守管理等により、状況に応じて補修が                 |            |
| する。                                   | 可能な設計とする。                                     |            |
| 【ここまで】                                |                                               |            |
| 【比較のため,以下を再掲(並び替え実施)】                 |                                               |            |
| a. <u>軽油タンク</u> (燃料移送ポンプ含む)           | (4) ディーゼル燃料移送ポンプ                              | •外部事象防護対象施 |
| 「構造物への静的負荷」について、当該施設の許容荷重が、降          |                                               | 設の設置場所の相違  |
| 下火砕物による荷重に対して安全裕度を有することにより、構造         |                                               | 【柏崎 6/7】   |
| 健全性を失わず安全機能を損なわない設計とする。               |                                               | 火山別-④の相違   |
| 「閉塞」及び「摩耗」については, <u>軽油タンクのベント管を下</u>  | 「閉塞 <u>(機械的影響)</u> 」及び「摩耗」については, <u>ディーゼル</u> |            |
| 向きに取り付ける, また, 燃料移送ポンプは, 降下火砕物が侵入      | 燃料移送ポンプは、降下火砕物が侵入しにくい設計とする。                   |            |
| しにくい設計とする。                            |                                               |            |
| 「腐食」については、金属腐食研究の結果より、降下火砕物に          | 「腐食」については、金属腐食研究の結果より、降下火砕物に                  |            |
| 含まれる腐食性ガスによって直ちに金属腐食は生じないが、外装         | 含まれる腐食性ガスによって直ちに金属腐食は生じないが、塗装                 |            |
| <u>の</u> 塗装等によって,短期での腐食により安全機能を損なわない設 | の実施等によって、短期での腐食により安全機能を損なわない設                 |            |
| 計とする。なお、降灰後の長期的な腐食の影響については、日常         | 計とする。なお、降灰後の長期的な腐食の影響については、日常                 |            |
| 保守管理等により、状況に応じて補修が可能な設計とする。           | の保守管理等により、状況に応じて補修が可能な設計とする。                  |            |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)         | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                            | 備考            |
|----------------------------------------|---------------------|-----------------------------------------|---------------|
| 【ここまで】                                 |                     |                                         |               |
|                                        |                     |                                         |               |
|                                        |                     |                                         |               |
| f. <u>非常用換気空調系</u>                     |                     | (5) 換気空調設備(中央制御室換気系及び原子炉建物付属棟           |               |
| 非常用換気空調系(非常用ディーゼル発電機電気品区域換気空           |                     | 換気系)                                    |               |
| 調系(非常用ディーゼル発電機非常用送風機含む),中央制御室換         |                     |                                         |               |
| 気空調系、コントロール建屋計測制御電源盤区域換気空調系、海          |                     |                                         |               |
| 水熱交換器区域換気空調系)は、「閉塞」及び「摩耗」について、         |                     | 「閉塞 (機械的影響)」及び「摩耗」について,外気取入口に           |               |
| 外気取入口に、ルーバが取り付けられており、下方から吸い込む          |                     | ルーバが取り付けられており、下方から吸い込む構造であるこ            |               |
| 構造であること, <u>非常用換気空調系のバグフィルタ(粒径約2μm</u> |                     | と,また空気の流路にそれぞれフィルタを設置することで,フィ           | ・記載内容の相違      |
| に対して80%以上を捕獲する性能)を設置することで、降下火砕物        |                     | ルタメッシュより大きな降下火砕物が流路に侵入しにくい設計            | 【柏崎 6/7】      |
| が流路に侵入しにくい設計とする。                       |                     | とする。                                    | 島根2号炉は、個別     |
| さらに降下火砕物がバグフィルタに付着した場合でも取替え又           |                     | さらに降下火砕物がフィルタに付着した場合でも取替え又は             | 評価-5にてフィルタ    |
| は清掃が可能な構造とすることで、降下火砕物により閉塞しない          |                     | 清掃が可能な構造とすることで,降下火砕物により閉塞しない設           | の仕様を記載        |
| 設計とする。                                 |                     | 計とする。                                   |               |
| 「腐食」については、金属腐食研究の結果より、降下火砕物に           |                     | 「腐食」については、金属腐食研究の結果より、降下火砕物に            |               |
| 含まれる腐食性ガスによって直ちに金属腐食は生じないが、金属          |                     | 含まれる腐食性ガスによって直ちに金属腐食は生じないが, 金属          |               |
| 材料を用いることによって, 短期での腐食により安全機能を損な         |                     | 材料を用いることによって, 短期での腐食により安全機能を損な          |               |
| わない設計とする。なお、降灰後の長期的な腐食の影響について          |                     | わない設計とする。なお、降灰後の長期的な腐食の影響について           |               |
| は、日常保守管理等により、状況に応じて補修が可能な設計とす          |                     | は,日常保守管理等により,状況に応じて補修が可能な設計とす           |               |
| る。                                     |                     | る。                                      |               |
| 「大気汚染」については、中央制御室換気空調系の外気取入ダ           |                     | 「大気汚染」については、中央制御室 <u>換気系の給気隔離弁</u> の閉   |               |
| ンパの閉止及び再循環運転を可能とすることにより、中央制御室          |                     | 止及び <u>系統隔離運転モード</u> を可能とすることにより, 中央制御室 |               |
| 内への降下火砕物の侵入を防止すること、さらに外気取入遮断時          |                     | 内への降下火砕物の侵入を防止すること、さらに外気取入遮断時           |               |
| において室内の居住性を確保できる設計とする。                 |                     | において室内の居住性を確保できる設計とする。                  |               |
|                                        |                     |                                         |               |
| g. 非常用ディーゼル発電機(非常用ディーゼル発電機吸気系含         |                     |                                         | (島根2号炉 は      |
| <u>te</u> )                            |                     |                                         | 4.6.1(3)項に記載) |
| 「閉塞」については、非常用ディーゼル発電機の吸気口の上流           |                     |                                         |               |
| 側の外気取入口には、ルーバが取り付けられており、下方から吸          |                     |                                         |               |
| い込む構造であること、非常用換気空調系のバグフィルタ(粒径          |                     |                                         |               |
| 約2μmに対して80%以上を捕獲する性能)を設置することにより、       |                     |                                         |               |
| フィルタメッシュより大きな降下火砕物が内部に侵入しにくい設          |                     |                                         |               |
| <u>計とし、また、降下火砕物がバグフィルタに付着した場合でも取</u>   |                     |                                         |               |
| <u> 替え又は清掃が可能な構造とすることで、降下火砕物により閉塞</u>  |                     |                                         |               |
| しない設計とする。                              |                     |                                         |               |
| なお、バグフィルタを通過した小さな粒径の降下火砕物が侵入           |                     |                                         |               |
| した場合でも、降下火砕物により閉塞しない設計とする。             |                     |                                         |               |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                           | 備考                            |
|--------------------------------|---------------------|----------------------------------------|-------------------------------|
| 「摩耗」については、主要な降下火砕物は砂と同等または砂よ   |                     |                                        |                               |
| り硬度が低くもろいことから、摩耗の影響は小さく、かつ構造上  |                     |                                        |                               |
| の対応として、吸気口の上流側の外気取入口には、ルーバが取り  |                     |                                        |                               |
| 付けられており、下方から吸い込む構造であること、非常用換気  |                     |                                        |                               |
| 空調系のバグフィルタを設置することで、降下火砕物が流路に侵  |                     |                                        |                               |
| 入しにくい設計とし、仮に当該設備の内部に降下火砕物が侵入し  |                     |                                        |                               |
| た場合でも耐摩耗性のある材料を使用することで、摩耗により安  |                     |                                        |                               |
| 全機能を損なわない設計とする。                |                     |                                        |                               |
| 「腐食」については、金属腐食研究の結果より、降下火砕物に   |                     |                                        |                               |
| 含まれる腐食性ガスによって直ちに金属腐食を生じないが、金属  |                     |                                        |                               |
| 材料を用いることによって、短期での腐食により安全機能を損な  |                     |                                        |                               |
| わない設計とする。なお、降灰後の長期的な腐食の影響について  |                     |                                        |                               |
| は,日常の保守管理等により,状況に応じて補修が可能な設計と  |                     |                                        |                               |
| I.S.                           |                     |                                        |                               |
|                                |                     |                                        |                               |
|                                |                     | (6) 排気筒及び非常用ガス処理系排気管                   | <ul> <li>外部事象防護対象施</li> </ul> |
|                                |                     | 「閉塞(機械的影響)」については、排気筒は、排気筒の排気           | 設の設置場所の相違                     |
|                                |                     | 速度から排気流路が閉塞しない設計とし,非常用ガス処理系排気          | 【柏崎 6/7】                      |
|                                |                     | 管は、開口部の配管の形状を降下火砕物が侵入しにくい構造に設          | 火山別-③の相違                      |
|                                |                     | 計することにより閉塞しない設計とする。また、排気筒及び非常          |                               |
|                                |                     | 用ガス処理系排気管は、仮に降下火砕物が侵入した場合でも、内          |                               |
|                                |                     | 部の点検、並びに状況に応じて除去等の対応が可能な設計とす           |                               |
|                                |                     | <u>る。</u>                              |                               |
|                                |                     | 「腐食」については、金属腐食研究の結果より、降下火砕物に           |                               |
|                                |                     | 含まれる腐食性ガスによって直ちに金属腐食は生じないが、塗装          |                               |
|                                |                     | の実施等によって, 短期での腐食により安全機能を損なわない設         |                               |
|                                |                     | 計とする。なお、降灰後の長期的な腐食の影響については、日常          |                               |
|                                |                     | の保守管理等により、状況に応じて補修が可能な設計とする。           |                               |
|                                |                     |                                        |                               |
| 【比較のため,以下を再掲】                  |                     |                                        |                               |
| d. 原子炉補機冷却海水系ストレーナ             |                     | (7) 海水ストレーナ(原子炉補機海水ストレーナ,高圧炉心          | ・設備構成の相違                      |
|                                |                     | <u>スプレイ補機海水ストレーナ)及び下流設備</u>            | 【柏崎 6/7】                      |
| 「閉塞」については、降下火砕物の粒径に対し十分な流路幅を   |                     | 「閉塞 (水循環系)」については、降下火砕物の粒径に対し十          | 火山別-⑥の相違                      |
| 設ける又は差圧の確認が可能な設計とする。           |                     | 分な流路幅を設ける。 <u>また</u> , 差圧の確認が可能な設計とする。 |                               |
| 「摩耗」については、主要な降下火砕物は砂と同等または砂よ   |                     | 「摩耗」については、主要な降下火砕物は砂と同等または砂よ           |                               |
| り硬度が低くもろいことから、摩耗の影響は小さく、また、日常  |                     | り硬度が低くもろいことから、摩耗の影響は小さく、また、日常          |                               |
| 保守管理等により、状況に応じて補修が可能であり、摩耗により  |                     | 保守管理により,状況に応じて補修が可能であり,摩耗により安          |                               |
| 安全機能を損なわない設計とする。               |                     | 全機能を損なわない設計とする。                        |                               |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)          | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                   | 備考         |
|-----------------------------------------|---------------------|------------------------------------------------|------------|
| 「腐食」については、金属腐食研究の結果より、降下火砕物に            |                     | 「腐食」については、金属腐食研究の結果より、降下火砕物に                   |            |
| 含まれる腐食性ガスによって直ちに金属腐食は生じないが、耐食           |                     | 含まれる腐食性ガスによって直ちに金属腐食は生じないが、耐食                  |            |
| 性のある材料の使用や塗装の実施等によって、短期での腐食によ           |                     | 性のある材料の使用や塗装の実施等によって,短期での腐食によ                  |            |
| り安全機能を損なわない設計とする。なお、降灰後の長期的な腐           |                     | り安全機能を損なわない設計とする。なお、降灰後の長期的な腐                  |            |
| 食の影響については、日常保守管理等により、状況に応じて補修           |                     | 食の影響については、日常保守管理等により、状況に応じて補修                  |            |
| が可能な設計とする。                              |                     | が可能な設計とする。                                     |            |
| 【ここまで】                                  |                     |                                                |            |
|                                         |                     |                                                |            |
| 【比較のにめ,以下を冉掲】                           |                     |                                                |            |
|                                         |                     |                                                |            |
| 「閉塞」については、降下火砕物の粒径に対し十分な流路幅を            |                     | 「閉塞(水循環系)」については、降下火砕物の粒径に対し十                   |            |
| 設ける設計とする。                               |                     | 分な流路幅を設ける設計とする。                                |            |
| 「摩耗」については、主要な降下火砕物は砂と同等または砂よ            |                     | 「摩耗」については、主要な降下火砕物は砂と同等または砂よ                   |            |
| り硬度が低くもろいことから、摩耗の影響は小さく、また、日常           |                     | り硬度が低くもろいことから、摩耗の影響は小さく、また、日常                  |            |
| 保守管理等により、状況に応じて補修が可能であり、摩耗により           |                     | 保守管理により、状況に応じて補修が可能であり、摩耗により安                  |            |
| 安全機能を損なわない設計とする。                        |                     | 全機能を損なわない設計とする。                                |            |
| 「腐食」については、金属腐食研究の結果より、降下火砕物に            |                     | 「腐食」については、金属腐食研究の結果より、降下火砕物に                   |            |
| 含まれる腐食性ガスによって直ちに金属腐食は生じないが、耐食           |                     | 含まれる腐食性ガスによって直ちに金属腐食は生じないが、耐食                  |            |
| 性のある材料の使用や塗装の実施等によって、短期での腐食によ           |                     | 性のある材料の使用や塗装の実施等によって, 短期での腐食によ                 |            |
| り安全機能を損なわない設計とする。なお、降灰後の長期的な腐           |                     | り安全機能を損なわない設計とする。なお、降灰後の長期的な腐                  |            |
| 食の影響については、日常保守管理等により、状況に応じて補修           |                     | 食の影響については、日常保守管理等により、状況に応じて補修                  |            |
| が可能な設計とする。                              |                     | が可能な設計とする。                                     |            |
| 【ここまで】                                  |                     |                                                |            |
| h. <u>安全保護系盤</u>                        |                     | (9) 計測制御系統施設(安全保護系盤),計測制御用電源設備                 |            |
|                                         |                     | (計装用無停電電源設備)及び非常用所内電源設備(所内                     |            |
|                                         |                     | 低圧系統)                                          |            |
| 当該機器の設置場所は非常用ディーゼル発電機電気品区域換気            |                     | 当該機器の設置場所は原子炉棟換気系,原子炉建物付属棟換気                   |            |
| 空調系(非常用ディーゼル発電機非常用送風機含む)及び中央制           |                     | 系,中央制御室換気系により,空調管理されており,外気取入口                  |            |
| 御室換気空調系により、空調管理されており、外気取入口にはバ           |                     | <u>の空気流路</u> には、 <u>それぞれフィルタ</u> を設置していることから、仮 |            |
| <u>グフィルタ(粒径約2μmに対して80%以上を捕獲する性能)</u> を設 |                     | に室内に侵入した場合でも降下火砕物は微量であり、粒径は極め                  | ・記載内容の相違   |
| 置することで、降下火砕物による「絶縁低下」により安全機能を           |                     | て細かな粒子である。                                     | 【柏崎 6/7】   |
| 損なわない設計とする。                             |                     | また、中央制御室換気系については、給気隔離弁を閉止し系統                   | 島根2号炉は、個別  |
|                                         |                     | 隔離運転モードを行うことにより侵入を阻止することも可能であ                  | 評価-9にてフィルタ |
|                                         |                     | 5em                                            | の仕様を記載     |
|                                         |                     | バグフィルタの設置により降下火砕物の侵入に対する高い防護                   |            |
|                                         |                     | 性能を有すること、また給気隔離弁の閉止による侵入防止が可能                  |            |
|                                         |                     | な設計とすることにより、降下火砕物の付着に伴う絶縁低下及び                  |            |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)            | 東海第二発電所(2018.9.18版)             | 島根原子力発電所 2号炉                                               | 備考              |
|-------------------------------------------|---------------------------------|------------------------------------------------------------|-----------------|
|                                           |                                 | 化学的影響(腐食)による影響を防止し、計測制御系統施設(安                              | ・評価項目の相違        |
|                                           |                                 | 全保護系盤),計測制御用電源設備(計装用無停電電源設備),非                             | 【柏崎6/7】         |
|                                           |                                 | 常用所内電源設備(所内低圧系統)の安全機能を損なわない設計                              | 島根2号炉は,外気か      |
|                                           |                                 | とする。                                                       | らの取込空気による腐      |
|                                           |                                 |                                                            | 食を考慮            |
|                                           |                                 |                                                            |                 |
|                                           |                                 | (10) 排気筒モニタ                                                | ・防護方針の相違        |
|                                           |                                 | 「閉塞(機械的影響)」については,排気筒モニタのサンプリ                               | 【柏崎 6/7】        |
|                                           |                                 | ング配管の計測口は、排気筒内部に設置するとともに下方から吸                              | 島根2号炉は,安全       |
|                                           |                                 | い込む構造とすることにより、閉塞しない設計とする。                                  | 評価上その機能に期待      |
|                                           |                                 | 「腐食」については、金属腐食研究の結果より、降下火砕物に                               | するクラス3設備とし      |
|                                           |                                 | 含まれる腐食性ガスによって直ちに金属腐食は生じないが、金属                              | て、排気筒モニタに係      |
|                                           |                                 | 材料の使用等によって、短期での腐食により安全機能を損なわな                              | る評価を実施          |
|                                           |                                 | い設計とする。なお、降灰後の長期的な腐食の影響については、                              |                 |
|                                           |                                 | 日常の保守管理等により,状況に応じて補修が可能な設計とする。                             |                 |
|                                           |                                 |                                                            |                 |
|                                           | 【比較のため, 「3.8」を再掲】               |                                                            |                 |
| <ol> <li>3.6.2 間接的影響に対する設計方針</li> </ol>   | 3.8 隆下火砕物の間接的影響に対する設計方針         | 4.6.2 間接的影響に対する設計方針                                        |                 |
| 柏崎刈羽原子力発電所6_号及び7_号炉の非常用所内交流電源設            | 広範囲にわたる送電網の損傷による7日間の外部電源喪失及     | 島根原子力発電所2号炉の非常用所内交流電源設備は、非常用                               |                 |
| 備は、非常用ディーゼル発電機(3 台/号炉)とそれぞれに必要な           | び発電所外での交通の途絶によるアクセス制限事象に対し、発    | ディーゼル発電機(2台)及び高圧炉心スプレイ系ディーゼル発                              | ・非常用所内電源設備      |
| 耐震Sクラスの燃料ディタンク <u>(3基;18kL以上)</u> を有している。 | 電用原子炉の停止並びに停止後の発電用原子炉及び使用済燃料    | <u>電機</u> (1台)とそれぞれに必要な <u>燃料ディタンク(2基;16m<sup>3</sup>/</u> | の構成の相違          |
| さらに, 軽油タンク(2 基 ; 550kL 以上)を有している。         | プールの冷却に係る機能を担うために必要となる電源の供給が    | <u>基,1基;9m³/基)〔耐震Sクラス〕</u> を有している。さらに,燃料                   | 【柏崎 6/7, 東海第二】  |
|                                           | 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電    | 貯蔵タンク(A-非常用ディーゼル発電機(燃料移送系)(2基;                             |                 |
|                                           | 機を含む。)及びそれぞれに必要な耐震Sクラスの軽油貯蔵タン   | 170kL/基),高圧炉心スプレイ系ディーゼル発電機(燃料移送系)                          |                 |
|                                           | ク2基(400kL/基)により継続できる設計とすることにより, | <u>(1基;170 kL/基))</u> 及び(B-非常用ディーゼル発電機(燃料移                 |                 |
|                                           | 安全機能を損なわない設計とする。                | 送系) <u>(3基;100 kL/基)</u> ) <u>〔耐震Sクラス〕</u> を有している。         |                 |
|                                           | 【ここまで】                          | これらにより、7日間の外部電源喪失に対して、また、原子力                               |                 |
| これらにより、7日間の外部電源喪失に対して、また、原子力              |                                 | 発電所外での影響(長期間の外部電源の喪失及び交通の途絶)を                              |                 |
| 発電所外での影響(長期間の外部電源の喪失及び交通の途絶)を             |                                 | 考慮した場合においても、発電用原子炉の停止及び停止後の発電                              |                 |
| 考慮した場合においても、発電用原子炉の停止及び停止後の発電             |                                 | 用原子炉の冷却,並びに燃料プールの冷却に係る機能を担うため                              |                 |
| 用原子炉の冷却、並びに使用済燃料プールの冷却に係る機能を担             |                                 | に必要となる電源の供給が継続できる設計とする。                                    |                 |
| うために必要となる電源の供給が継続できる設計とする。                |                                 | (補足資料-17)                                                  |                 |
| (補足資料-19)                                 |                                 |                                                            |                 |
|                                           | 3.6.2 降下火砕物による荷重以外に対する設計方針      |                                                            | (島根2号炉は         |
|                                           | 隆下火砕物による荷重以外の影響は、構造物への化学的影響     |                                                            | 4.6.1(1)~(9)項に記 |
|                                           | (腐食),水循環系の閉塞,内部における摩耗及び化学的影響    |                                                            | 載)              |
|                                           | (腐食),電気系及び計測制御系に対する機械的影響(閉塞)    |                                                            |                 |
|                                           | 及び化学的影響(腐食)等により外部事象防護対象施設の安全    |                                                            |                 |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                 | 島根原子力発電所 2号炉 | 備考                |
|--------------------------------|-------------------------------------|--------------|-------------------|
|                                | 機能を損なわない設計とする。                      |              |                   |
|                                | 外気取入口からの降下火砕物の侵入に対する設計について          |              |                   |
|                                | は,「3.6.3 外気取入口からの降下火砕物の侵入に対する設計     |              |                   |
|                                | 方針」に示す。                             |              |                   |
|                                |                                     |              |                   |
|                                | (1) 構造物への化学的影響(腐食)                  |              | (島根2号炉はまとめ資       |
|                                | 評価対象施設等のうち、降下火砕物による構造物への化学          |              | 料本文 2.3.4(3) a.項に |
|                                | 的影響(腐食)を考慮すべき施設は、降下火砕物の直接的な         |              | 記載)               |
|                                | 付着による影響が考えられる以下の施設である。              |              |                   |
|                                | <u>a建屋</u>                          |              |                   |
|                                | 原子炉建屋,タービン建屋,使用済燃料乾式貯蔵建屋            |              |                   |
|                                | <u>b. 屋外に設置されている施設</u>              |              |                   |
|                                | 残留熱除去系海水系ポンプ,非常用ディーゼル発電機(高          |              |                   |
|                                | <u> 圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン</u>  |              |                   |
|                                | プ,残留熱除去系海水系ストレーナ,非常用ディーゼル発          |              |                   |
|                                | <u>電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海</u>  |              |                   |
|                                | 水ストレーナ,非常用ディーゼル発電機(高圧炉心スプレ          |              |                   |
|                                | <u>イ系ディーゼル発電機を含む。)吸気口,中央制御室換気系</u>  |              |                   |
|                                | <u> 冷凍機,非常用ディーゼル発電機(高圧炉心スプレイ系デ</u>  |              |                   |
|                                | <u>ィーゼル発電機を含む。)室ルーフベントファン,主排気筒,</u> |              |                   |
|                                | 非常用ガス処理系排気筒                         |              |                   |
|                                | <u>c. 降下火砕物の影響を受ける施設であって、その停止等に</u> |              |                   |
|                                | より、上位の安全重要度の施設の運転に影響を及ぼす可能          |              |                   |
|                                | 性のある屋外の施設                           |              |                   |
|                                | 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ           |              |                   |
|                                | ル発電機を含む。)排気消音器及び排気管                 |              |                   |
|                                | 金属腐食研究の結果より、降下火砕物に含まれる腐食性ガ          |              |                   |
|                                | スによって直ちに金属腐食を生じないが、外装の塗装等によ         |              |                   |
|                                | って短期での腐食により外部事象防護対象施設の安全機能を         |              |                   |
|                                | 損なわない設計とする。なお、降灰後の長期的な腐食の影響         |              |                   |
|                                | については, 日常保守管理等により, 状況に応じて補修が可       |              |                   |
|                                | 能な設計とする。                            |              |                   |
|                                | <u>(資料-4~6, 9~11 参考資料-5, 6)</u>     |              |                   |
|                                |                                     |              |                   |
|                                | (2) 水循環系の閉塞, 内部における摩耗及び化学的影響(腐食)    |              | (島根2号炉はまとめ資       |
|                                | 評価対象施設等のうち、水循環系の閉塞、内部における摩          |              | 料本文 2.3.4(3)b.項に  |
|                                | 耗及び化学的影響(腐食)を考慮すべき施設は、降下火砕物         |              | 記載)               |
|                                | を含む海水の流路となる以下の施設である。                |              |                   |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                  | 島根原子力発電所 2号炉 | 備考                |
|--------------------------------|--------------------------------------|--------------|-------------------|
|                                | <u>a. 降下火砕物を含む海水の流路となる施設</u>         |              |                   |
|                                | 残留熱除去系海水系ポンプ,非常用ディーゼル発電機(高           |              |                   |
|                                | 圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン           |              |                   |
|                                | プ,残留熱除去系海水系ストレーナ及び下流設備,非常用           |              |                   |
|                                | ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機           |              |                   |
|                                | を含む。)用海水ストレーナ及び下流設備                  |              |                   |
|                                | <u>b. 降下火砕物の影響を受ける施設であって, その停止等に</u> |              |                   |
|                                | より、上位の安全重要度の施設の運転に影響を及ぼす可能           |              |                   |
|                                | 性のある屋外の施設                            |              |                   |
|                                | 海水取水設備(除塵装置)                         |              |                   |
|                                | 降下火砕物は粘土質ではないことから水中で固まり閉塞す           |              |                   |
|                                | ることはないが、当該施設については、降下火砕物の粒径に          |              |                   |
|                                | 対し十分な流路幅を設けることにより、海水の流路となる施          |              |                   |
|                                | 設が閉塞しない設計とする。                        |              |                   |
|                                | 内部における摩耗については、降下火砕物は砂よりも硬度           |              |                   |
|                                | が低くもろいことから摩耗による影響は小さい。また当該施          |              |                   |
|                                | 設については, 定期的な内部点検及び日常保守管理により,         |              |                   |
|                                | <u>状況に応じて補修が可能であり、摩耗により外部事象防護対</u>   |              |                   |
|                                | 象施設の安全機能を損なわない設計とする。                 |              |                   |
|                                | 化学的影響(腐食)については、金属腐食研究の結果より、          |              |                   |
|                                | <u>降下火砕物によって直ちに金属腐食を生じないが, 耐食性の</u>  |              |                   |
|                                | ある材料の使用や塗装の実施等によって、腐食により外部事          |              |                   |
|                                | 象防護対象施設の安全機能を損なわない設計とする。なお、          |              |                   |
|                                | 長期的な腐食の影響については、日常保守管理等により、状          |              |                   |
|                                | 況に応じて補修が可能な設計とする。                    |              |                   |
|                                | <u>(資料-5~7,参考資料-5,6,10)</u>          |              |                   |
|                                |                                      |              |                   |
|                                | (3) 電気系及び計測制御系に対する機械的影響(閉塞)及び化       |              | (島根2号炉はまとめ資       |
|                                | 学的影響 (腐食)                            |              | 料本文 2.3.4(3) c.項に |
|                                | 評価対象施設等のうち、電気系及び計測制御系に対する機           |              | 記載)               |
|                                | 械的影響(閉塞)及び化学的影響(腐食)を考慮すべき施設          |              |                   |
|                                | は, 電気系及び計測制御系のうち屋外に設置されている以下         |              |                   |
|                                | の施設である。                              |              |                   |
|                                | a. 屋外に設置されている施設                      |              |                   |
|                                | 残留熱除去系海水系ポンプ,非常用ディーゼル発電機             |              |                   |
|                                | (高圧炉心スプレイ系ディーゼル発電機を含む。)用海            |              |                   |
|                                | 水ポンプ                                 |              |                   |
|                                |                                      |              |                   |

|                                | 古海竺二水電託 (2010 0 10 년)        | 自相百乙五戏電話 0月         |
|--------------------------------|------------------------------|---------------------|
| 柏崎利羽原于刀笼黾所 6/7亏炉 (2017.12.20版) | 東御弗二光竜所(2018.9.18版)          | 局 做 尿 于 刀 矩 黽 所 2 万 |
|                                | 機械的影響(闭基)については、残留熱味去糸油水糸ホン   |                     |
|                                | ノ及い非常用ナイーセル発電機(高圧炉心人ノレイ系ナイー  |                     |
|                                | セル発電機を含む。) 用海水ホンノの電動機本体は外気と遮 |                     |
|                                | 断された全闭構造、空気冷却器の冷却管内径及い冷却流路は  |                     |
|                                | 降下火砕物粒径以上の幅を設ける構造とすることにより、機  |                     |
|                                |                              |                     |
|                                | 損なわない設計とする。                  |                     |
|                                | 化学的影響(腐食)については、金属腐食研究の結果より、  |                     |
|                                | 隆下火砕物によって直ちに金属腐食を生じないが、耐食性の  |                     |
|                                | ある材料の使用や塗装の実施等によって、腐食により外部事  |                     |
|                                | 象防護対象施設の安全機能を損なうことのない設計とする。  |                     |
|                                | なお,長期的な腐食の影響については,日常保守管理等によ  |                     |
|                                | り、状況に応じて補修が可能な設計とする。         |                     |
|                                | <u>(資料-5,参考資料-5,6)</u>       |                     |
|                                |                              |                     |
|                                | (4) 絶縁低下及び化学的影響(腐食)          |                     |
|                                | 評価対象施設等のうち,絶縁低下及び化学的影響(腐食)   |                     |
|                                | を考慮すべき施設は、電気系及び計測制御系のうち外気から  |                     |
|                                | 取り入れた屋内の空気を機器内に取り込む機構を有する以下  |                     |
|                                | の施設である。                      |                     |
|                                | a. 外気から取り入れた屋内の空気を機器内に取り込む機構 |                     |
|                                | を有する施設                       |                     |
|                                | 計測制御設備(安全保護系)                |                     |
|                                | 当該施設の設置場所は中央制御室換気空調系にて空調管理   |                     |
|                                | されており、本換気空調設備の外気取入口にはバグフィルタ  |                     |
|                                | を設置していることから、仮に室内に侵入した場合でも降下  |                     |
|                                | 火砕物は微量であり、粒径は極めて細かな粒子である。    |                     |
|                                | また、本換気空調設備については、外気取入ダンパを閉止   |                     |
|                                | し閉回路循環運転を行うことにより侵入を阻止することも可  |                     |
|                                | 能である。                        |                     |
|                                | これらフィルタの設置により降下火砕物の侵入に対する高   |                     |
|                                | い防護性能を有すること、また外気取入ダンパの閉止による  |                     |
|                                | 侵入防止が可能な設計とすることにより、降下火砕物の付着  |                     |
|                                | に伴う絶縁低下及び化学的影響(腐食)による影響を防止し, |                     |
|                                | 計測制御設備(安全保護系)の安全機能を損なわない設計と  |                     |
|                                | t.J.                         |                     |
|                                | (資料-8)                       |                     |
|                                |                              |                     |

| 炉  | 備考                                    |
|----|---------------------------------------|
| ·炉 | 備考                                    |
|    | (島根2号炉はまとめ資<br>料本文2.3.4(2)e.項に<br>記載) |
|    |                                       |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                          | 島根原子力発電所 2号炉 | 備考                |
|--------------------------------|----------------------------------------------|--------------|-------------------|
|                                | 3.6.3 外気取入口からの降下火砕物の侵入に対する設計方針               |              |                   |
|                                | 外気取入口からの降下火砕物の侵入に対して、以下のとおり                  |              |                   |
|                                | 安全機能を損なわない設計とする。                             |              |                   |
|                                | (1) 機械的影響(閉塞)                                |              | (島根2号炉はまとめ資       |
|                                | 評価対象施設等のうち、外気取入口からの降下火砕物の侵                   |              | 料本文 2.3.4(2) a.項に |
|                                | 入による機械的影響(閉塞)を考慮すべき施設は、降下火砕                  |              | 記載)               |
|                                | 物を含む空気の流路となる以下の施設である。                        |              |                   |
|                                | a. 降下火砕物を含む空気の流路となる施設                        |              |                   |
|                                | 非常用ディーゼル発電機(高圧炉心スプレイ系ディー                     |              |                   |
|                                | ゼル発電機を含む。),非常用ディーゼル発電機(高圧                    |              |                   |
|                                | <u> 炉心スプレイ系ディーゼル発電機を含む。)吸気口,換</u>            |              |                   |
|                                | 気空調設備(外気取入口),主排気筒,非常用ガス処理                    |              |                   |
|                                | 系排気筒                                         |              |                   |
|                                | 久施設の構造上の対応として 非常田ディーゼル発雲機(真                  |              |                   |
|                                |                                              |              |                   |
|                                | ロ郭を下向きの構造とすることにより 降下水砂物が流路に                  |              |                   |
|                                | 日間を11月200倍星とパンシーとにあり、近日1000円と<br>得入したくい設計とする |              |                   |
|                                | 主排気筒は、降下水砕物が得入した堪会でも、主排気筒の                   |              |                   |
|                                | 構造から排気流路が閉塞したい設計とする 非常用ガス処理                  |              |                   |
|                                | 系排気筒は 隆下水砕物の侵入防止を目的とする構造物を取                  |              |                   |
|                                | れたいのは、サンバロシンは、シリーを日子をついて機能を損た                |              |                   |
|                                | わたい設計とする                                     |              |                   |
|                                | キキ 外気を取り入れる拗気空調設備(外気取入口)及び                   |              |                   |
|                                | ま堂田ディーゼル発雪機(高圧恒心スプレイ系ディーゼル発                  |              |                   |
|                                | 雪機を会む。)の空気の流路にそれぞれフィルタを設置する                  |              |                   |
|                                | ことにより、フィルタメッシュより大きな降下水砕物が内部                  |              |                   |
|                                | に得入しにくい設計とし、さらに降下水砕物がフィルタに付                  |              |                   |
|                                | 差した場合でも取萃又け清掃が可能か構造とすることで 降                  |              |                   |
|                                | したの物により閉塞したい設計とする                            |              |                   |
|                                | ディーゼル発電機機関は「フィルタを通過した小さた粒径                   |              |                   |
|                                |                                              |              |                   |
|                                | かい設計とする                                      |              |                   |
|                                | $(25\%) = 0 \sim 1.1$                        |              |                   |
|                                |                                              |              |                   |
|                                |                                              |              |                   |
|                                |                                              |              |                   |
|                                | (2) 機械的影響 (摩耗)                               |              | (自想9旦后けましみ次       |
|                                | 評価対象施設等のうち、外気取入口からの降下火砕物の侵                   |              | (岡似 2 万)がはまこの)貫   |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                | 島根原子力発電所 2号炉 | 備考                |
|--------------------------------|------------------------------------|--------------|-------------------|
|                                | 入による機械的影響(摩耗)を考慮すべき施設は、外気から        |              | 料本文 2.3.4(2) b.項に |
|                                | 取り入れた屋内の空気を機器内に取り込む機構及び摺動部を        |              | 記載)               |
|                                | 有する以下の施設である。                       |              |                   |
|                                | a. 外気から取り入れた屋内の空気を機器内に取り込む機構       |              |                   |
|                                | 及び摺動部を有する施設                        |              |                   |
|                                | 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ          |              |                   |
|                                | ル発電機を含む。)                          |              |                   |
|                                | 降下火砕物は砂よりも硬度が低くもろいことから、摩耗の         |              |                   |
|                                | 影響は小さい。                            |              |                   |
|                                | 構造上の対応として,非常用ディーゼル発電機(高圧炉心         |              |                   |
|                                | スプレイ系ディーゼル発電機を含む。)吸気口は、開口部を        |              |                   |
|                                | 下向きとすることによりディーゼル発電機機関に降下火砕物        |              |                   |
|                                | が侵入しにくい設計とする。                      |              |                   |
|                                | また、仮にディーゼル発電機機関の内部に降下火砕物が侵         |              |                   |
|                                | 入した場合でも耐摩耗性のある材料を使用することで、摩耗        |              |                   |
|                                | により非常用ディーゼル発電機(高圧炉心スプレイ系ディー        |              |                   |
|                                | ゼル発電機を含む。)の安全機能を損なわない設計とする。        |              |                   |
|                                | 外気を取り入れる非常用ディーゼル発電機(高圧炉心スプ         |              |                   |
|                                | レイ系ディーゼル発電機を含む。)の空気の流路にフィルタ        |              |                   |
|                                | を設置することにより、フィルタメッシュより大きな降下火        |              |                   |
|                                | <u>砕物が内部に侵入しにくい設計とし、摩耗により非常用ディ</u> |              |                   |
|                                | ーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含         |              |                   |
|                                | む。)の安全機能を損なわない設計とする。               |              |                   |
|                                |                                    |              |                   |
|                                |                                    |              |                   |
|                                | (3) 化学的影響(腐食)                      |              | (島根2号炉はまとめ資       |
|                                | 評価対象施設等のうち、外気取入口からの降下火砕物の侵         |              | 料本文 2.3.4(2) c.項に |
|                                | 入による化学的影響(腐食)を考慮すべき施設は、降下火砕        |              | 記載)               |
|                                | 物を含む空気の流路となる以下の施設である。              |              |                   |
|                                | a. 降下火砕物を含む空気の流路となる施設              |              |                   |
|                                | 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ          |              |                   |
|                                | ル発電機を含む。),換気空調設備(外気取入口),主排         |              |                   |
|                                | 気筒,非常用ガス処理系排気筒                     |              |                   |
|                                |                                    |              |                   |
|                                | 金属腐食研究の結果より、降下火砕物によって直ちに金属         |              |                   |
|                                | 腐食を生じないが、塗装の実施等によって、腐食により外部        |              |                   |
|                                | 事象防護対象施設の安全機能を損なわない設計とする。なお、       |              |                   |
|                                | 降灰後の長期的な腐食の影響については、日常保守管理等に        |              |                   |

| 柏崎刈羽原子力発電所 6/7号炉 | (2017.12.20版) | 東海第二発電所(2018.9.18版)          | 島根原子力発電所 2号炉 | 備考                 |
|------------------|---------------|------------------------------|--------------|--------------------|
|                  |               | より、状況に応じて補修が可能な設計とする。        |              |                    |
|                  |               | <u>(資料-9~11,参考資料-5,6)</u>    |              |                    |
|                  |               |                              |              |                    |
|                  |               | (4) 大気汚染(発電所周辺の大気汚染)         |              | (島根2号炉はまとめ資        |
|                  |               | 評価対象施設等のうち、大気汚染を考慮すべき中央制御室   |              | 料本文 2.3.4(2) d. 項に |
|                  |               | は、降下火砕物により汚染された発電所周辺の大気が、中央  |              | 記載)                |
|                  |               | 制御室空調装置の外気取入口を通じて中央制御室に侵入しな  |              |                    |
|                  |               | いようバグフィルタを設置することにより、降下火砕物が外  |              |                    |
|                  |               | 気取入口に到達した場合であってもフィルタメッシュより大  |              |                    |
|                  |               | きな降下火砕物が内部に侵入しにくい設計とする。      |              |                    |
|                  |               | また、中央制御室空調装置については、外気取入ダンパの   |              |                    |
|                  |               | 閉止及び閉回路循環運転を可能とすることにより, 中央制御 |              |                    |
|                  |               | 室内への降下火砕物の侵入を防止する。さらに外気取入遮断  |              |                    |
|                  |               | 時において、酸素濃度及び二酸化炭素濃度の影響評価を実施  |              |                    |
|                  |               | し, 室内の居住性を確保する設計とする。         |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |
|                  |               |                              |              |                    |

| 柏       | 崎刈羽                                                                                     | 羽原子                   | ·力発電                                          | 訴                                 | 6 / ′               | 7 号炉       | i (      | 2017.                                 | 12.20    | 0版)                           |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 東海第                                                        | 第二発電                                                                                                   | 所(2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 9. 18                                                                                          | 版)         |                                                                                                        |         |                                                                     |                                       | 島村                                             | 退原子                                                        | 力発                                                                                               | 電所          | 2                                   | 号炉                           |            |                                                               |       |                                                       |        | 備考                                                |              |
|---------|-----------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------|-----------------------------------|---------------------|------------|----------|---------------------------------------|----------|-------------------------------|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------|---------------------------------------|------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------|-------------------------------------|------------------------------|------------|---------------------------------------------------------------|-------|-------------------------------------------------------|--------|---------------------------------------------------|--------------|
|         |                                                                                         |                       |                                               |                                   |                     |            |          |                                       |          |                               | 【比 <b>集</b> | 夜のた              | め, 」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 資料-                                                        | - 2を再                                                                                                  | 掲】                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                  |            | -                                                                                                      |         |                                                                     |                                       |                                                |                                                            |                                                                                                  |             |                                     |                              |            |                                                               |       |                                                       |        |                                                   |              |
|         | 絶縁低下                                                                                    | - (®)                 | - (®)                                         | - (®)                             | (®) –               | (3)        | - (®)    | - (3)                                 | •        | 、 <b>ハ</b> ダ                  |             |                  | <b>0</b> 絶縁低下                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | × 1                                                        | - S<br>- X<br>- M                                                                                      | 1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ۵۱<br>× ۱                                                                                        | 0          | _                                                                                                      |         | 絶縁低下                                                                | - (6)                                 | - (8)                                          |                                                            | - (6)                                                                                            | - (6)       | - (0)                               | - (6)                        | 1 (6)      | •                                                             | - (6) |                                                       |        |                                                   |              |
| Ę       | 電所周辺<br>大気汚染                                                                            | - (③)                 | (®) –                                         | - (®)                             | (®) –               | (©) –      | •        | - (3)                                 | (®) –    | と直接関連し、                       | /2)         |                  | ⑧化学的瘾1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                          | (光)<br>(光)<br>(素<br>(美)                                                                                | <ul> <li>○</li> <li>○<td>0</td><td>0</td><td>-</td><td>ち</td><td>発電所周辺の<br/>大気汚染</td><td>- 6</td><td>- (0)</td><td>- (6)</td><td>- ©</td><td>•</td><td>- ©</td><td>- (0)</td><td>- (0)</td><td>- ©</td><td>- (0)</td><td>子と直接関連しな</td><td>•<br/>設</td><td>外部事象防護対象が<br/>この設置場所及び抽出</td><td>施<br/>出</td></li></ul>                                                                      | 0                                                                                                | 0          | -                                                                                                      | ち       | 発電所周辺の<br>大気汚染                                                      | - 6                                   | - (0)                                          | - (6)                                                      | - ©                                                                                              | •           | - ©                                 | - (0)                        | - (0)      | - ©                                                           | - (0) | 子と直接関連しな                                              | •<br>設 | 外部事象防護対象が<br>この設置場所及び抽出                           | 施<br>出       |
| 子の組み合わ  | <ul> <li>(系) 電気系及び</li> <li>第</li> <li>第</li> <li>第</li> <li>(原食)</li> <li>の</li> </ul> | ●<br>紫料移送ポンプ)         | – (®)                                         | $(\overline{\mathbb{T}} - \beta)$ | - (3)               | - (3)      | •        | •                                     | - (3)    | 습む) ③ : 影響因子 <sup>[</sup>     | 要因対比(1      |                  | (系及び)<br>(対する) ⑦発電所周辺の<br>大気汚染                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * -                                                        | - ×                                                                                                    | - <u>*</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - *                                                                                              |            | 告と 直後関連がない<br>よい                                                                                       | 繆因子の組合  | <ul> <li>株式系、電気系及び計</li> <li>装制御系に対する化</li> <li>学的影響(腐食)</li> </ul> | - (@)                                 | €-÷                                            | •                                                          | •                                                                                                | •           |                                     | - (0)                        | - (0)      | •                                                             | - (6) | 城合名む) ③:影瓣因-                                          | 範      | 6囲の相違<br>【柏崎 6/7, 東海第二<br>島根2号炉と共通の<br>∓価対象設備であっつ | ニ】<br>の<br>て |
| 設と影響因   | 5、電気系及び<br>  換5<br>  御系の機械的<br>  計<br> <br>  閉塞・摩耗)                                     | (¢)<br>•              | (®) –                                         | $(\mathfrak{X} - \beta)$          | (®) –               | - (③)      | •        | •                                     | (®) –    | 틉(屋内設備の場合<br>影響を受け難い          | 直接的影響の      | 直接的影響の要因<br>「家み」 | <ul> <li>●換気系,電な系</li> <li>●換気系,電な</li> <li>●</li> <li>●</li></ul> | *3                                                         | (<br>~ )<br>*)                                                                                         | *3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ** -                                                                                             | ** 1       | 構造<br>ない<br>及び計測制御系の機食<br>進がない<br>前の影響を直接受けり                                                           | 象施設等と景  | 換気系,電気系及び<br>薬制御系に対する機<br>械的影響(閉塞,摩耗                                | - (@)                                 | • +                                            | •                                                          | •                                                                                                | •           | •                                   | - (0)                        | 1 @        | - (6)                                                         | •     | こくい構造(屋内設備の<br>有意な影響を受けにくい                            | ٹ<br>ک | 」設置場所が異なるこ<br>から評価内容が相違                           | 、<br>こ<br>違  |
| 面対象施    | の 換気系<br>響 計測問<br>影響 (                                                                  |                       |                                               |                                   |                     |            |          |                                       |          | 受け難い構込                        | こよる値        | (6) 換信系 指令       | び計測制御<br>対する機械I<br>構                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * 1                                                        | (モータ)<br>(モータ)                                                                                         | - **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * *                                                                                              | * 1        | を受けたくい<br>と直接関連が<br>気系, 電気系<br>用性と直接関<br>関連がない<br>あり, 静的負                                              | 評価対     | 水循環系の<br>化学的影響<br>(腐食)                                              | - (6)                                 | まとプ                                            | - (0)                                                      | - (©)                                                                                            | - (0)       | 1 (0)                               | (下消設備<br>そ 命む)               | •          | - ©                                                           | - ©   | 音の影響を受けけ<br>いても、機能に7                                  |        |                                                   |              |
| える評値    | 水循環系<br>化学的影<br>(魔食)                                                                    | - (®)                 | (®)<br>-                                      | (ポンプ                              | •                   | •          | (®) –    | (®) –                                 | (®) –    | 御<br>御<br>御                   |             |                  | )水循環系の<br>内部における<br>摩耗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * -                                                        | (ポンプ)<br>(ポンプ)                                                                                         | <ul> <li>○</li> <li>(下流設備を<br/>ゆむ)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                | *2         | 理用<br>市<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>( | い中える    | 水循環系の<br>閉塞, 摩耗                                                     | - (®)                                 | ●<br>ポンプ                                       | (®)                                                        | (®)                                                                                              | -           | - (®)                               | (下流設備<br>を含む)                | •          | - (0)                                                         | - (0) | 【評価除外理由】<br>①:静的荷重等<br>②:腐食があっ                        |        |                                                   |              |
| 響を与     | 水循環系の<br>閉塞・摩耗                                                                          | - (®)                 | - (®)                                         | (ポンプ)                             | •                   | •          | (®) –    | (®) –                                 | (®) –    | 【評価除外」<br>①:静的荷<br>②:腐食が<br>2 | 第と降下        |                  | 水循環系の<br>閉塞<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                                                          | (ポンパ)<br>(ポンプ)                                                                                         | <ul> <li>■</li> <li>■</li> <li>●</li> <li>●<td>0</td><td>*2</td><td>【<br/>》<br/>《<br/>》<br/>》<br/>》<br/>》<br/>》<br/>》<br/>》<br/>》<br/>》<br/>》<br/>》<br/>》<br/>》<br/>》<br/>》<br/>》<br/>》</td><td>が影響る</td><td>構造物への<br/>化学的影響<br/>(腐食)</td><td>•</td><td>•</td><td>•</td><td>•</td><td>- (3)</td><td>•</td><td>- (9)</td><td>- (0)</td><td>ı (j)</td><td>•</td><td></td><td></td><td></td><td></td></li></ul> | 0                                                                                                | *2         | 【<br>》<br>《<br>》<br>》<br>》<br>》<br>》<br>》<br>》<br>》<br>》<br>》<br>》<br>》<br>》<br>》<br>》<br>》<br>》       | が影響る    | 構造物への<br>化学的影響<br>(腐食)                                              | •                                     | •                                              | •                                                          | •                                                                                                | - (3)       | •                                   | - (9)                        | - (0)      | ı (j)                                                         | •     |                                                       |        |                                                   |              |
| 砕物が景    | 構造物への<br>七学的影響<br>(腐食)                                                                  | •                     | •                                             | (D)<br>-                          | (D)<br>-            | - (3)      | - (3)    | (D) –                                 | (D)<br>- | -                             | ↓象施設∮       |                  | )構造物への<br>静的負荷<br>③                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                          | 0                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - *                                                                                              | 9%         | 面を実施                                                                                                   | 下火砕物    | に<br>構造物への<br>静的負荷                                                  | •                                     | •                                              | •                                                          | - @                                                                                              | + @         | 1 (i)                               | 1 @                          | - @        | (①) (屋内)                                                      | ı @   | 2設備<br>数値は理由                                          |        |                                                   |              |
| 1.5 降下火 | 構造物への<br>静的負荷                                                                           | •                     | •                                             | (D)<br>-                          | (D)<br>-            | (©)<br>-   | (D)<br>- | (D) –                                 | (D)<br>- | が必要な設備<br>()内数値は理由            | 2表 評価次      |                  | ■対象施設等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 書屋<br>/建屋<br>然料乾式貯蔵建屋                                      | 会社系施大系ポンプ<br>ディーセル発電機<br>「ロシスプレイ系」<br>レ発電機を含む。)<br>パソプ                                                 | 会社系満大系ストレ<br>ディーゼン発電機<br>下心スプレイ系引<br>下的名式を合わ。)<br>という+<br>・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>) | 1設備(安全保護系) | 約子に対する個別評<br> 対象外                                                                                      | 1.5 表 降 | 影響因子的象施設等                                                           | 「炉建物」制御室建物,<br>ビン連物、廃業物処理建<br>排気筒モニタ室 | cポンプ (原子炉補機海水<br>ノプ, 高圧炉心スプレイ補<br>ţ水ポンプ)       | 5用ディーゼル発電機及<br>5日ビロ心スプレイ系ディ<br>2ル発電機(機関,吸気系、<br>(消音器及び排気管) | ーゼル燃料移送ポンプ                                                                                       | (空調設備       | 〔箭及び非常用ガス処理<br>■気管<br>ビストレーナ (国ユ信雄雄 | マントレーナ, 恵田治心スマーナ, 東藤海大ストレーナ, | <設備(除じん装置) | 制御承統結股(依全保護杀盤),<br>制御用義源設備(計读用無存尊<br>設備)及び非常用所内電源設備<br>内住田系術) | (筒モニタ | <ul> <li>●: 詳細な評価が必要な</li> <li>一: 評価対象外()内</li> </ul> |        |                                                   |              |
| 枨       | 影響因子<br>評価対象施設                                                                          | 軽油タンク (燃料移送<br>ポンプ含む) | 原子炉建屋、タービン<br>建屋海水熱交換器区域、コントロール建<br>屋、欧華物品通線區 | 原子炉補機冷却海水ポンプ                      | 原子炉補機冷却海水<br>糸ストレーナ | 取水設備(除塵装置) | 非常用换気空調系 | 非常用ディーゼル発<br>電機(非常用ディーゼ<br>ル発電機吸気系含む) | 安全保護系盤   | 凡例 ●:詳細な評価が<br>-:評価対象外        | 新           |                  | 步法世                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>・ 原子類を</li> <li>・ タービン</li> <li>・ 使用済射</li> </ul> | <ul> <li>・ 残留熱原</li> <li>・ 非常田=</li> <li>( 高田,</li> <li>( 高田,</li> <li>( 一大)</li> <li>( 一番,</li> </ul> | - (<br>後留                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /////////////////////////////////////                                                            | · 計測制备     | ····································                                                                   | 兼       | 型雄                                                                  | 通<br>子<br>一<br>5<br>,<br>に            | を 通り かん うちょう うちょう うちょう うちょう うちょう うちょう うちょう うちょ | <u>非</u> び − 排<br>(1)                                      | <i>™</i> , <i>1</i> | 载<br>家<br>家 | 掛<br>系<br>(<br>一)                   |                              | - 取<br>    | (原本)<br>(原本)<br>(版)<br>(版)                                    | 排     | J                                                     |        |                                                   |              |
|         |                                                                                         |                       |                                               |                                   |                     |            |          |                                       |          |                               |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |            |                                                                                                        |         |                                                                     |                                       |                                                |                                                            |                                                                                                  |             |                                     |                              |            |                                                               |       |                                                       |        |                                                   |              |
|         |                                                                                         |                       |                                               |                                   |                     |            |          |                                       |          |                               |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |            |                                                                                                        |         |                                                                     |                                       |                                                |                                                            |                                                                                                  |             |                                     |                              |            |                                                               |       |                                                       |        |                                                   |              |
|         |                                                                                         |                       |                                               |                                   |                     |            |          |                                       |          |                               |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |            |                                                                                                        |         |                                                                     |                                       |                                                |                                                            |                                                                                                  |             |                                     |                              |            |                                                               |       |                                                       |        |                                                   |              |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) |       |                                                                                                   | 東海第      | 三発電            | ፪所(20                                                 | 018.9.             | 18版                                          | ) 島根原子力発電所 2号炉                                                                              | 備考 |
|--------------------------------|-------|---------------------------------------------------------------------------------------------------|----------|----------------|-------------------------------------------------------|--------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|----|
|                                |       |                                                                                                   |          |                |                                                       |                    |                                              |                                                                                             |    |
|                                |       |                                                                                                   |          |                |                                                       |                    |                                              |                                                                                             |    |
|                                |       | 圆絶縁低下                                                                                             | ×5       | ×2 -           | - <sup>20</sup>                                       | - *5               | × 1                                          |                                                                                             |    |
|                                | 2)    | ⑧化学的腐食                                                                                            | - (⑥や評価) | 0              | 0                                                     | 0                  | 0                                            |                                                                                             |    |
|                                | 比(2/  | <ul> <li>③発電所周辺</li> <li>の大気汚染</li> </ul>                                                         | 0        | - <del>*</del> | * +                                                   | *4                 | × 4<br>*                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          |    |
|                                | 響の要因対 | ◎ 換気系,電気系<br>及び計測制領<br>米に対する化<br>学的影響                                                             | 0        | - (憲法)         | (単雄シ®)                                                | -<br>(⑧で評価)        | - *                                          | 町、 修正 「「」」、 「「」」、 「「」」、 「」」、 「」」、 「」」、 「」」、                                                 |    |
|                                | る直接的影 | <ul> <li>③換気系, 電気系</li> <li>● 換約系, 電気系</li> <li>● 及び計測制領</li> <li>※に対する機</li> <li>検的影響</li> </ul> | 0        | 0              | 0                                                     | 0                  | 0                                            | 「秋香香香香香香香香香香香香香香香香香香香香香香香香香香香香香香香香香香香香                                                      |    |
|                                | 火砕物によ | ①水循環系の内部<br>における摩耗                                                                                | * - *    | * 1            | O<br>(海水ストレーナ<br>下流側設備として<br>評価)                      | *2                 | * - *                                        | 大 章 大 屋 中 縮 歴田 田 御 御 香 香 香 香 香 香 香 香 香 香 香 香 香 香 香 香                                        |    |
|                                | 設等と降下 | <ul><li>③水循環系の</li><li>閉塞</li></ul>                                                               | * -      |                | <ul> <li>〇<br/>(海水ポンプ下<br/>浜甸設備として<br/>評価)</li> </ul> | *2                 | - *                                          |                                                                                             |    |
|                                | 価対象施  | ①構造物への<br>静的負荷                                                                                    | 9*       | 0              | 9                                                     | 0                  | - *                                          | →<br>を<br>を<br>後<br>低<br>ま<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・ |    |
|                                | 表 —   |                                                                                                   | 厨 設      | 感識             | 國證                                                    | 屠 茶<br>籠           | §排気筒                                         | 本<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                         |    |
|                                | 第2    | 評価対象施認                                                                                            | 豊富が      | ・換気空調設備        | ・非常用ディーゼ<br>ル発電機(高圧炉<br>心スプレイ系デ                       | ー イーゼル発電機<br>を含む。) | <ul> <li>・主排気筒</li> <li>・非常用ガス処理系</li> </ul> | ○                                                                                           |    |
|                                |       |                                                                                                   |          |                |                                                       |                    |                                              |                                                                                             |    |
|                                |       |                                                                                                   |          |                |                                                       |                    |                                              |                                                                                             |    |
|                                | [:::: | <b>そで】</b>                                                                                        |          |                |                                                       |                    |                                              |                                                                                             |    |
|                                |       |                                                                                                   |          |                |                                                       |                    |                                              |                                                                                             |    |
|                                |       |                                                                                                   |          |                |                                                       |                    |                                              |                                                                                             |    |
|                                |       |                                                                                                   |          |                |                                                       |                    |                                              |                                                                                             |    |

| 柏崎刈                                                                                                | 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                       | Ē                                               | 島根原子                        | 子力発                                                                                                    | 電所                                                                                                                                                                                                                  | 2 5                                                                                                                                                                                                                               | 号炉                                                                                                       |                                                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |                                                                                                                                       |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 降下火砕物による直接的影響の評価結果<br><sup>確認結果</sup><br>(A22//#"であり, 軽油タンクの許容堆積荷重は約13,000//#(暫定億)以上であるため, 安全性 5 次 | 総要が施されており、降下火砕物による短期での腐食により機能を喪失することはない。<br>の間に部に、雪舎対策して、タンノ農根外側、地上から約10mの高さに下向きに設置されてい<br>しる降下火砕物堆積慮に対し、開止部団悪皮の摩船には至らない。<br>しる降下火砕物が均部に優入することはない。<br>動機は、その構造上から、降下火砕物が内部に優入することはない。<br>動機は、その構造上から、降下火砕物が内部に優入することはない。<br>動機に、その構造上から、降下火砕物ににするため、転金能力を設計とする。<br>1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1262年等の対応を実施しており、降下火砕物による短期での腐食により機能を喪失することはない。<br>1262年時半する腐眠に対して、降下火砕物がによる短期での腐食により機能を喪失することはない。<br>1252年にはいたなびパンフィルタ(粒径約 2.mmに対して 800以上を補獲する性能)が設置 6<br>約552年により旅びパマさる。<br>12-0いては、外気取入ダンパを閉止し、再痛環運転することにより、中央制御室の居住環境が維<br>13-0いては、外気取入ダンパを閉止し、再痛環運転することにより、中央制御室の居住環境が維<br>13-0、<br>12-0いては、外気取入ダンパを閉止し、再痛環運転することにより、中央制御室の居住環境が維<br>13-0、<br>12-0いては、外気取入ダンパを閉止し、再痛深運転することにより、中央制御室の居住環境が維<br>13-0、<br>12-0いては、外気取入ダンパを閉止し、再痛深運転することにより、中央制御室の居住環境が維<br>13-0、<br>13-0いては、外気取入ダンパを閉止し、再痛なして 800以上を補獲す<br>14-10<br>14-0、<br>15-0、12-1、小ダフィルタ(粒谷約 2.mmに対して 800以上を補獲す<br>14-10<br>15-0、12-1、小ダフィルタ(12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10,12-10 | 価対象施設等の評価結果(1/2) | をのため<br>思惑 個別 | 黄荷重は、各毬屋の許容堆積荷重以下であることから、各進屋の健全性に影響を及ぼすことはな<br>ほ及び屋上防水がなされているにとから、降下火砕物による化学的館食により直ちに影響を及ぼ の 一 資料-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 第構産により発生する応力は、満水ボンブモータフレームの許容応力値以下であることから、満<br>客む)の機能に影響を及ぼすことはない。<br>る下方の機能に影響を及ぼすことはない。<br>る下大砕物の粒径より大きく、軸受には異物逃がし満が設けられているため、満水部の開塞、軸<br>たく、機能に影響を及ぼすことはない。<br>こと、機能に影響を及ぼすことはない。<br>こと、確認に影響を及ぼすことはない。<br>このら、確定が小さいが、にれまで砂等を原因とした摩組の影響によって満水ボンブ<br>ことない。<br>たい体動が設備に影響を手える可能性は小さい。<br>され気を直接電動機内部に取り込まない冷却方式であり、モータの冷却流路は降下大砕物の粒倍<br>ふ、機能に影響を友ぼすことはない。<br>この意味にない。こ。から、降下火砕物による化学的簡食により直ちに影響を及<br>う、機能に影響を支援しており、降下火砕物による化学的簡食により直ちに影響を及 | 5個により発生する応力は、海水ストレーナの評容応力値以下であることから、海水ストレーナ<br>はぼすことはない。<br>しますことはない。<br>かの粒程は、ストレーナメッシュ径以下であり、ストレーナが閉塞することはない。また、下流<br>かの粒程は、ストレーナメッシュ径以下であり、ストレーナが閉塞することはない。また、下流<br>が加速用の空気のは知客やの熱交破器に熱管についても、降下火砕物の粒径以上の内径を確保す<br>い酸化が要失した事例はないことから、降下火砕物の試置しよって海水ストレ<br>い酸化が要失した事例はないことから、降下火砕物が設備に影響を与える可能性は小さい。<br>ことへ破砕し易く、硬度が小さいか、これまで砂等を原因とした摩毛の影響によって海水ストレ<br>い酸化が要素しいたい。また、下流設備の設定器のにない。<br>いたいきにに酸器の酸化に影響を改成すことはない。<br>オテレーン表で的加に影響を及ぼすことはない。<br>いていることから、降下火砕物による化学的筋肉に影響を及ぼすことはない。<br>10、ていることから、降下火砕物による化学的筋肉に影響を及ぼすことはない。 | めの粒径は海水取水設備のバービッチ及び網枠メッシュ開展より小さいため閉塞することはな<br>こ比べ破砕し易く、硬度が小さいが、これまで砂等を原因とした廃葬の影響によって海水ストレ<br>D機能が更失した事例はないことから、降下火砕物が設備に影響を与える可能性は小さい。<br>5塗装がなされていることから、降下火砕物による化学的腐食により直ちに影響を及ぼすことは | ※ 確認結果内の丸数字は,資料 -2 第1表記載 影響を与える可能性のある因子 No. を示す | <u>表 降下火砕物による直接的影響の評価結果</u> | FF 単一番 米<br>1988/m1 であり、建物の許容堆積街面はそれ以上の設計とするため、安全性への影響はない。<br>ちことから、降下火砕物による化学的協食により直ちに酸酸に影響を及ぼすことはない。 | 88Mの前、であり、発生する広力より、満本ポンプの評定な力はそれ以上の設計とするため、安全性への影響はない。<br>2-5、外面及び水循環系ともに降下大時物による化学的頃食により直ちに機能に影響を及ぼすことはない。<br>神神の成長とり文を、「中天大師時」による閉塞には主の形式では奥物透がし課を設けてより、降下火砕物による閉塞には<br>14、酸酢し、皮膚によるの響点にもない。<br>他は、酸酢に、たるの響力によるか。 | 1888/面」であり、発生する広力より、統領ロの評賞広力はそれ以上の設計とするため、安全性への影響はない。<br>体静地/4長人しにくい構造であり、また、統領フィルタにより除すが清晰まされること及び得入した場合でも降下火幹物は演<br>とから、機能に影響を及ぼすことはない。また、フィルタによる運気して影響及び消絶することにより読択ができる。<br>単語信は外禁酸能な実施しており、降下火砕結による化学的顕亮により直ちに機能に機能を及ぼすことはない。 | 81、その構造上から、際下火砕粉が内部に保入することはない。<br>業が常認備又は熱却野濃クンと特許量に設置することで除下火砕粉に直接接触する可能性は低く、除下火砕粉による化学的服食に<br>ますことにない。 | コにはかーバ及びフィルタが設置されていることから、給気を供給する設備に対して、降下火砕物が機能に影響を及ぼすことはな 5<br>こむじて的情長び情勝することにより時沢できる。<br>には、約支隔離手を閉止し、系統簡難単転モードとすることにより、中央制御室の胎住性が維持できることを確認する。 | 高の株気速度が降下火砕物の降下速度を上回っており、非常用力ス処理家非気管については、侵入しにくい構造となっていること<br>することはない。<br>から、降下火砕物による化学的備度により直ちに機能に影響を及ぼすことはない。 | トレートロッシッションサイズと目的もでんに対応し、海米・ロントレードは常に推測されており、一定の第日にたると切 7 (1) 開発することにたない、ため、ストレーナのスッシュを通過した際下大学者の性格にエナシッさく、下演の豪華、現式集種)に対 1) にはたい、また、幕下大学者は、柔酔し思く要素によった素素にない。 1) にはたい、また、幕下大学者に、柔酔し思く要素によった学校重要したは、10世のに悪素に影響を及ぼすしとはない。 1) 自11日に防治整練が厳まれており、幕下大学者によった学校重要したに | いさく、取水設備(除じん装置)が閉業することはない。<br>速鉄等の対応を実施しており、降メX時的による化学的腐食により直ちに機能に影響を及ぼすことはない。<br>また服子に算子体験施気系、原子学体験な気系、研中期創産は最高系にてな調管層されており、外気取入口には各種フィルタ<br>身も脱出に対する高い防壊性能を有している。<br>また、最大学校時に対する高い防壊性能を有している。<br>また、最大学校時代前、の安全機能が損なわれることはない。 | ッグ配管の計測口は、下力から吸い込む構造であること。また非気质内部に設置することにより、降下火砕物が侵入しないことか。<br>ますことはない。<br>ッグ配管は、耐食性のあるステンレス数であることから、降下火砕物による短期での腐食により、機器の機能に影響を及ぼすこと |
| <u>表 1.6 降下</u> ;<br><sup>評価対象施設</sup> · **應する堆積荷重は8, 6420/m <sup>**</sup>                         | <ul> <li>への影響はない。</li> <li>・他国家 (タンク (熊科客送: 小大学型の)</li> <li>・「音む)</li> <li>・「音い)</li> <li>・「二、中学会の、、「音い、「音い、「音い、「音い、「音い、「音い、「音い、「音い、「音い、「音</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 第1表 評価対象         | 評価対象施設等       | <ul> <li>・原子伊建屋</li> <li>・原子伊建屋</li> <li>・タービン進展</li> <li>・&gt;</li> <li>・</li> <li>・<td><ul> <li>● 「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」</li></ul></td><td>・残留熟除去系海水<br/>・残留熟除去系海水<br/>の確全性に影響を及ぼすこと<br/>の確全性に影響を及ぼすこと<br/>系ストレーナ<br/>・非常用ディーセル<br/>る値でする族子、一世か落電機<br/>高価であるディーゼか落電機<br/>高価であるディーゼかる電機<br/>る価でする。<br/>の能でする解示し、<br/>したす人称物は砂等に比く破砕<br/>か着電機を含む。)<br/>用油水ストレーナ<br/>はなん、化学的脳長たこりし<br/>食性のある材料を用いている</td><td>③地定する降下火砕物の腔症に<br/>い。         ③地定する降下火砕物の腔症に           ・海水取水設備         ①称下火砕物は砂等に比べ破損           (除塵装置)         ③称木取水設備は防汚塗装がな<br/>ない。</td><td></td><td>第1.6表 陷</td><td>Field来職成事<br/>原子伊建物、創御追進物。 ・参慮する堆積措置は「8,038V/a」」で<br/>タービアも物、廃掛物は ・外照の遊波がたされていることから、<br/>自主命、単合成シュッジ</td><td>満水ゴンブ(現子好補機)、参離する堆積積重に「8,030/6」で、<br/>満水系、満伝が心スプレー、塗装がなされていることから、外面(5)<br/>一般がなされていることから、外面(5)<br/>一般がなされていることから、外面(5)<br/>一般がなされていて確認をから、<br/>たらない、また、降すた検索や曲(2)<br/>一部のはない、など、「1)</td><td>非常用ディーセル発電機 ・ 考慮する複積消重は「8,088//m」で、<br/>及び痛圧的レステレイ系 ・結束は、非常管は、降下大砕物が成長<br/>ディーセル発電機(機関) 使が防く、破砕しやすいことから、極線<br/>一般気化、単気消音器及び ・着気は、非気消音器及び非気管に外す<br/>非気管)</td><td>パートロントの一般になるというというないで、「「「「「」」、「「」」、「「」、「」、「」、「」、「」、「」、「」、「」、「</td><td>換気空調設備 ・換気空調設備の外気形入口には20-0-0<br/>い。また、アイルタは必要に応じて作表<br/>・中央創錬室換気系については、結気原</td><td>排気筒及び非常用ガス ・排気筒については、排気筒の排気速度<br/>から降下が除物により閉塞することはは<br/>・塗装がたされていることから、降下&gt;</td><td>道米ストレーリ(原子中)・(原子中)・(原子中)・(原子・ビーン)・<br/>「酸素ストレーナ」は「「東太」、演響を行っておらい。「四番子子<br/>田がらスレーナ」、「四番等の影響を与えるにとばない。<br/>本ストレーナ」、<br/>素次、トレーナは<br/>ポストレーナ」、<br/>また、「一大ない下演の展躍を回えるにしたはない。<br/>また、「一大ない下演の展躍を回えるにしたはない。</td><td>取水設備(除しん装置)・除下火給物の対径は十分小さく、取み<br/>(時にしん装置)・原ひ装置(ほじん装置)は塗装等いを<br/>一般が設備(ほじん装置)になどを発電したいのも問題は、「<br/>最後載したま用的場面用電源設<br/>備(市後用版内電源設備)<br/>(市後用版内電源設備)<br/>ののとお用所内電源設備(所内低正系)<br/>(用の化価不差)</td><td>排気筒モニタ ・排気筒モニタのサンプリング配管の書<br/>り、機器の機能に影響を及ぼすことはた<br/>・ 排気筒モニタのサンプリング配管は<br/>はない。</td></li></ul> | <ul> <li>● 「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」</li></ul>                                                                                                                                                                                                                                                                                                                                                                                    | ・残留熟除去系海水<br>・残留熟除去系海水<br>の確全性に影響を及ぼすこと<br>の確全性に影響を及ぼすこと<br>系ストレーナ<br>・非常用ディーセル<br>る値でする族子、一世か落電機<br>高価であるディーゼか落電機<br>高価であるディーゼかる電機<br>る価でする。<br>の能でする解示し、<br>したす人称物は砂等に比く破砕<br>か着電機を含む。)<br>用油水ストレーナ<br>はなん、化学的脳長たこりし<br>食性のある材料を用いている                                                                                                                                                                                                                                                                                    | ③地定する降下火砕物の腔症に<br>い。         ③地定する降下火砕物の腔症に           ・海水取水設備         ①称下火砕物は砂等に比べ破損           (除塵装置)         ③称木取水設備は防汚塗装がな<br>ない。                                                   |                                                 | 第1.6表 陷                     | Field来職成事<br>原子伊建物、創御追進物。 ・参慮する堆積措置は「8,038V/a」」で<br>タービアも物、廃掛物は ・外照の遊波がたされていることから、<br>自主命、単合成シュッジ      | 満水ゴンブ(現子好補機)、参離する堆積積重に「8,030/6」で、<br>満水系、満伝が心スプレー、塗装がなされていることから、外面(5)<br>一般がなされていることから、外面(5)<br>一般がなされていることから、外面(5)<br>一般がなされていて確認をから、<br>たらない、また、降すた検索や曲(2)<br>一部のはない、など、「1)                                       | 非常用ディーセル発電機 ・ 考慮する複積消重は「8,088//m」で、<br>及び痛圧的レステレイ系 ・結束は、非常管は、降下大砕物が成長<br>ディーセル発電機(機関) 使が防く、破砕しやすいことから、極線<br>一般気化、単気消音器及び ・着気は、非気消音器及び非気管に外す<br>非気管)                                                                               | パートロントの一般になるというというないで、「「「「「」」、「「」」、「「」、「」、「」、「」、「」、「」、「」、「」、「                                            | 換気空調設備 ・換気空調設備の外気形入口には20-0-0<br>い。また、アイルタは必要に応じて作表<br>・中央創錬室換気系については、結気原                                                                          | 排気筒及び非常用ガス ・排気筒については、排気筒の排気速度<br>から降下が除物により閉塞することはは<br>・塗装がたされていることから、降下>                                       | 道米ストレーリ(原子中)・(原子中)・(原子中)・(原子・ビーン)・<br>「酸素ストレーナ」は「「東太」、演響を行っておらい。「四番子子<br>田がらスレーナ」、「四番等の影響を与えるにとばない。<br>本ストレーナ」、<br>素次、トレーナは<br>ポストレーナ」、<br>また、「一大ない下演の展躍を回えるにしたはない。<br>また、「一大ない下演の展躍を回えるにしたはない。                                                             | 取水設備(除しん装置)・除下火給物の対径は十分小さく、取み<br>(時にしん装置)・原ひ装置(ほじん装置)は塗装等いを<br>一般が設備(ほじん装置)になどを発電したいのも問題は、「<br>最後載したま用的場面用電源設<br>備(市後用版内電源設備)<br>(市後用版内電源設備)<br>ののとお用所内電源設備(所内低正系)<br>(用の化価不差)                                                   | 排気筒モニタ ・排気筒モニタのサンプリング配管の書<br>り、機器の機能に影響を及ぼすことはた<br>・ 排気筒モニタのサンプリング配管は<br>はない。                                                         |
|                                                                                                    | 離<br>(1−2)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1−1)<br>(1− | 非常月<br>非常月<br>微電(引<br>後電(引<br>次全伤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                       |                                                 | L                           | 通<br>通<br>m<br>m<br>m                                                                                  | 通道イ                                                                                                                                                                                                                 | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                           |                                                                                                          | 94<br>1                                                                                                                                           | 排 例                                                                                                             | 演<br>推<br>王<br>大                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                  |                                                                                                                                       |

 外部事象防護対象施 設の設置場所及び抽出 範囲の相違

【柏崎 6/7, 東海第二】 島根2号炉と共通の 評価対象設備であって も設置場所が異なるこ とから評価内容が相違

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)   |         |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                            | 島根原子力発電所 2号炉 | 備考 |
|--------------------------------|-----------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|
|                                |                       | 8       | 资料——8                                                                                                                                                               | 6<br>- 读频                                                                                                                                                                                                                                                                                                                       | 資料-10                                                                                                                                                                                                                                                                                                                                                                                             | 資料—11<br>資料—11<br>どっす                                                                                                                                                                                                                                                                                                      |              |    |
|                                |                       | 確結      | 0                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                 | No.                                                                                                                                                                                                                                                                                                                        |              |    |
|                                | 第1表 評価対象施設等の評価結果(2/2) | 確認結果    | ⑧③計測制御設備(安全保護系)が設置されている部屋の空調系の外気取入口にはバグフィルタが設置されてい<br>るため長入する降下火砕物は微細なものに限られ、さらに、外気取入ダンパを閉止し閉回路循環運転が可能<br>であることなどから,化学的腐食及び絶縁低下により計測制御設備(安全保護系)の機能に影響を及ぼすこ<br>とはない。 | ①⑤③中央制御室換気系冷凍機及びディーゼル発電機室ルーフベントファンについては、全体を防護する構造物<br>を設置することで降下火砕物が直接堆積しない設計とすることから、堆積荷重及び化学的影響により機能に<br>影響を及ぼすことはない、<br>影響を及ぼすことはない、<br>⑤外気取入口にはガラリ及びフィルタが取り付けられており降下火砕物が侵入し難い構造となっており、フィル<br>クは交換・清掃が可能であること等から、フィルタ及び流路が閉塞することはない。<br>⑦中央制御室換気空調系は、外気取入ダンバを閉止した閉回路循環運転により中央制御室の居住性を維持するこ<br>とができるため、発電所周辺の大気汚染による短期的な影響はない。 | ①降下火砕物の堆積荷重により吸気口に発生する応力は許容応力値以下であることから、吸気口の健全性に影響<br>を及ぼすことはない。また、排気消音器及び排気管は降下火砕物が堆積し難い形状になっているため、影響はない。<br>ない。<br>⑤吸気口及び排気管は降下火砕物が侵入し難い構造であり、また、吸気フィルタにより降下火砕物が捕集される<br>⑤吸気口及び排気管は降下火砕物が侵入し難い構造であり、また、吸気フィルタにより降下火砕物が捕集される<br>こと、及びディーゼル機関に侵入した場合でも降下火砕物の硬度が低く破砕しやすいことから、機能に影響を<br>及ぼすことはない。また、吸気フィルタは必要に応じて清掃及び交換することができる<br>⑧の気口、排気消音器及び排気管は、外装塗装を実施しており、降下火砕物による化学的腐食により直ちに影響<br>参及ぼすことはない。 | <ul> <li>③主排気筒は降下火砕物が侵入しても排気流路を閉塞されることはなく,機能に影響を及ぼすことはない。また,非常用ガス処理承排気筒については,降下火砕物に対して他全性を損なわない設計とすることから,機能に影響を及ぼすことはない。</li> <li>③主排気筒外面は外装塗装を実施しており,降下火砕物による化学的腐食により直ちに影響を及ぼすことはない。</li> <li>③主排気筒外面は外装塗装を実施しており,降下火砕物による化学的腐食により直ちに影響を及ぼすことはない。</li> <li>③主排気筒外面は外装塗装を実施しており,降下火砕物による化学的腐食により直ちに影響を及ぼすことはない。</li> </ul> |              |    |
|                                |                       | 評価対象施設等 | ・計測制御設備<br>(安全保護系)                                                                                                                                                  | <ul> <li>換気空調設備</li> <li>(外気取入口)</li> </ul>                                                                                                                                                                                                                                                                                     | ・非常用ディーゼル発電<br>機(高圧炉心スプレイ<br>系ディーゼル発電機を<br>合む。)                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>主排気筒</li> <li>・非常用ガス処理系排気<br/>筒</li> </ul>                                                                                                                                                                                                                                                                        |              |    |
|                                | [22                   | まで      | ,                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                            |              |    |
|                                |                       |         |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                            |              |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                            | 東海第二発電所(2018.9.18版)                        | 島根原子力発電所 2号炉                          | 備考 |
|---------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|----|
| 3.7 降下火砕物の除去等の対策                                                          | <ol> <li>3.7 降下火砕物の除去等の対策</li> </ol>       | 4.7 降下火砕物の除去等の対策                      |    |
| 3.7.1 降下火砕物に対応するための運用管理                                                   | 3.7.1 降下火砕物に対応するための運用管理                    | 4.7.1 降下火砕物に対応するための運用管理               |    |
| 降下火砕物に備え、手順を整備し、 図1.5 のフローのとおり                                            | 段 降下火砕物に備え、手順を整備し、第3.7.1-1図のフローの           | 降下火砕物に備え、手順を整備し、第1.5図のフローのとおり         |    |
| 階的に対応することとしている。その体制については、地震、                                              | とおり段階的に対応することとしている。その体制については、              | 段階的に対応することとしている。その体制については、地震,         |    |
| 波,火山噴火等の自然災害に対し,保安規定に基づく保安管理                                              | 地震,津波,火山事象等の自然災害に対し,保安規定に基づく               | 津波,火山噴火等の自然災害に対し,保安規定に基づく保安管理         |    |
| 制として整備し、その中で体制の移行基準、活動内容について                                              | 品 保安管理体制として整備し、その中で体制の移行基準、活動内             | 体制として整備し、その中で体制の移行基準、活動内容について         |    |
| 明確にする。                                                                    | 容についても明確にする。なお、多くの火山では、噴火前に、               | も明確にする。なお、多くの火山では、噴火前に、震源の浅い火         |    |
|                                                                           | 震源の浅い火山性地震の頻度が急増し、火山性微動の活動が始               | 山性地震の頻度が急増し、火山性微動の活動が始まるため、事前         |    |
|                                                                           | まるため、事前に対策準備が可能である。                        | <u>に対策準備が可能である。</u>                   |    |
| ①近隣火山の大規模な噴火兆候がある場合                                                       |                                            | ①近隣火山の大規模な噴火兆候がある場合                   |    |
| <ul> <li>・火山情報等の収集     </li> </ul>                                        | (1) 通常時の対応                                 |                                       |    |
| <ul> <li>・連絡体制の強化(要員の確認)</li> </ul>                                       | <ul> <li>・資機材の配備状況</li> </ul>              | ・火山情報等の収集                             |    |
| ②近隣大山の大規模な噴火が発生した場                                                        | (2) 近隣火山に噴火兆候がある場合                         | ・連絡体制の強化(要員の確認)                       |    |
| 台又は、敷地内に降下火砕物が降り積も<br>る状況となった場合                                           | <ul> <li>・火山情報等の収集</li> </ul>              |                                       |    |
| ↓ · · · · · · · · · · · · · · · · · · ·                                   | (3) 降下火砕物の飛来の恐れがある場合                       | ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● |    |
| ・資器材の配備状況の確認                                                              | <ul> <li>・監視強化体制の発令</li> </ul>             | 下水砂物が降り積まる世況となった場合                    |    |
| - フラントの機器, 運産等の状況確認<br>・降下火砕物の除去                                          | <ul> <li>・資機材の配備状況確認,建屋等の開口部閉鎖等</li> </ul> |                                       |    |
| <ul> <li>・非常用換気空調系のバグフィルタ</li> <li>(約8約 2000 になり、マ 2000 になります)</li> </ul> | (4) 降下火砕物が堆積する状況となった場合                     | ・対策本部設置判断(必要な要員招集)                    |    |
| (私住約24mに対して80%以上を推獲)<br>る性能)の差圧確認,取替え又は清掃等                                | ・状況把握及び巡視点検                                | ・資機材の配備状況の確認                          |    |
|                                                                           | ・降下火砕物の侵入防止処置及び除去作業                        | ・プラントの機器,建物等の状況確認                     |    |
|                                                                           |                                            | ・降下火砕物の除去                             |    |
|                                                                           |                                            | ・ 換気空調設備のフィルタの差圧確認,                   |    |
| 図 1.5 降下火砕物に対応するための運用管理フロー                                                | 第3.7.1-1図 降下火砕物に対応するための運用管理フロー             | 取替え又は清掃等                              |    |
|                                                                           |                                            |                                       |    |
|                                                                           |                                            | 第1.5図 降下火砕物に対応するための運用管理フロー            |    |
|                                                                           |                                            |                                       |    |
|                                                                           | <ul><li>(1) 通常時の対応</li></ul>               | ①通常時の対応                               |    |
|                                                                           | 火山の噴火事象発生に備え、担当箇所は隆下火砕物の除去                 | 火山の噴火事象発生に備え、担当箇所は隆下火砕物の除去等に          |    |
|                                                                           | 等に使用する資機材等(シャベル、ゴーグル及び防護マスク                | 使用する資機材等(ショベル、ゴーグル及び防護マスク等)につ         |    |
|                                                                           | 等)については 定期的に配備状況を確認する。                     | いては<br>定期的に<br>配備<br>状況<br>を確認<br>すろ  |    |
|                                                                           |                                            |                                       |    |
| <br>①近隣火山の大規模な噴火兆候がある場合                                                   | (2) 近隣火山の噴火兆候がある場合                         | ②近隣火山の大規模な噴火兆候がある場合                   |    |
| 担当箇所は、火山情報(火山の位置、規模、風向、隆灰予測等                                              | ) 近隣火山で噴火警戒レベル3 (入山規制). 4 (避難準備)           | 発電所において災害の発生のおそれがあると判断される場合           |    |
| を把握し、連絡体制を強化する。                                                           | となる引上げが発表され発電所において災害の発生のおそれ                | は、原子力防災管理者の指示のもと、担当箇所は、火山情報(火         |    |
|                                                                           |                                            |                                       |    |
|                                                                           | があると判断された場合、担当箇所は防災管理者の承認を得                | 山の位置,規模,風向,降灰予測等)を把握し、連絡体制を強化         |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)  | 東海第二発電所(2018.9.18版)                        | 島根原子力発電所 2号炉                          | 備考            |
|---------------------------------|--------------------------------------------|---------------------------------------|---------------|
|                                 | 下において、火山情報等を把握し、連絡体制を強化(要員の                |                                       |               |
|                                 | <u>確認) する。</u>                             |                                       |               |
|                                 |                                            |                                       |               |
| ②近隣火山の大規模な噴火が発生した場合又は、降下火砕物が降   | (3) 降下火砕物の飛来のおそれがある場合                      | ③近隣火山の大規模な噴火が発生した場合又は、敷地内に降下火         |               |
| り積もる状況となった場合                    | 近隣火山で噴火警戒レベル5 (避難)が発表され発電所に                | 砕物が降り積もる状況となった場合                      |               |
| 担当箇所は,近隣火山において大規模な噴火が確認された場合,   | おいて災害の発生のおそれがあると判断された場合、防災管                | 担当箇所は、近隣火山において大規模な噴火が確認された場           |               |
| 又は、発電所敷地で降灰が確認された場合に、関係箇所と協議の   | 理者は監視強化体制を発令し,発電所の各マネージャーは,                | 合,又は,発電所敷地内で降灰が確認された場合に,関係個所と         |               |
| 上,対策本部の設置判断をする。                 | 発電所の保安管理下において、資機材の配備状況確認等に必                | 協議の上,対策本部の設置判断をする。                    | ・運用内容の相違      |
|                                 | 要な要員を招集する。                                 |                                       | 【東海第二】        |
| 換気空調系の取替え用バグフィルタの配備状況を確認するとと    | <u>また、取水路前面にオイルフェンスを設置することで、取</u>          | <u>換気空調設備の取替用フィルタの配備状況を確認するととも</u>    | 島根2号炉は,降下火    |
| もに、アクセスルート・屋外廻りの機器・屋外タンク・建屋等の   | <u>水路への降下火砕物の流入量を低減する</u> ,とともに <u>屋外機</u> | に, アクセスルート・屋外廻りの機器・屋外タンク・建物等の降        | 砕物が海水中に降灰し    |
| 降下火砕物の除去のため、発電所内に保管しているホイールロー   |                                            | 下火砕物の除去のため、発電所内に保管しているホイールロー          | た際の設備への影響評    |
| ダ・スコップ・マスク等の資機材の配備状況の確認を行う。     | いるスコップ,ほうき,マスク等の資機材の配備状況の確認                | ダ・ショベル・マスク等の資機材の配備状況の確認を行う。           | 価を行い影響がないこ    |
| プラントの機器,建屋等の現在の状態(屋外への開口部が開放    | を行う。                                       | プラントの機器,建物等の現在の状態(屋外への開口部が開放          | とを確認。また, 深層取  |
| されていないか)を確認する。                  |                                            | されていないか)を確認する。                        | 水方式であり取水路へ    |
|                                 |                                            |                                       | の降下火砕物の流入量    |
|                                 |                                            |                                       | の低減は不要(なお,東   |
|                                 |                                            |                                       | 海第二は,表層取水方    |
|                                 |                                            |                                       | 式)            |
|                                 |                                            |                                       | (以下,火山別-⑦の相   |
|                                 |                                            |                                       | 違)            |
|                                 |                                            |                                       |               |
|                                 |                                            |                                       | (島根2号炉は,4.7.1 |
|                                 |                                            |                                       | ③項にまとめて記載)    |
|                                 |                                            |                                       |               |
|                                 | (4) 隆下火砕物が堆積する状況となった場合                     |                                       |               |
|                                 | 降下火砕物が確認され重要安全施設の安全機能を有する設                 |                                       |               |
|                                 | 備が損傷等により機能を失うおそれがある場合、防災管理者                |                                       |               |
|                                 | は発生事象の災害区分を「警戒事態」とし、発電所警戒本部                |                                       |               |
|                                 | を設置する。                                     |                                       |               |
| 敷地内に降下火砕物が到達した場合には,降灰状況を把握する。   |                                            | 敷地内に降下火砕物が到達した場合には、降灰状況を把握す           |               |
|                                 |                                            | Ze                                    |               |
| プラント及び屋外廻りの監視を強化し、アクセスルート・屋外    | <u>発電所警戒本部の指揮の下,発電所</u> 及び屋外廻りの監視を         | <u>プラント</u> 及び屋外廻りの監視を強化し,アクセスルート・屋外  |               |
| 廻りの機器・屋外タンク・建屋等の降下火砕物の除去を行うとと   | 強化 <u>する。また,屋外機器・建屋等</u> の降下火砕物の除去を行       | <u>廻りの機器・屋外タンク・建物等</u> の降下火砕物の除去を行うとと |               |
| もに, 非常用換気空調系のバグフィルタ差圧を確認し, バグフィ | うとともに, <u>換気空調設備</u> のフィルタを確認し,フィルタの       | もに,換気空調設備のフィルタ差圧を確認し,状況に応じてフィ         |               |
| ルタの取替え又は清掃などを行う。                | 取替,清掃を行う。                                  | ルタの取替え又は清掃を行う。                        |               |
| 降下火砕物により安全機能を有する設備が損傷等により機能が    | さらに、降下火砕物により重要安全施設の安全機能を有す                 | 降下火砕物により安全機能を有する設備が損傷等により機能           |               |
| 確保できなくなった場合、必要に応じプラントを停止する。     | る設備が損傷等により機能を失った場合、災害区分を「非常                | が確保できなくなった場合、必要に応じプラントを停止する。          |               |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                | 島根原子力発電所 2号炉                          | 備考           |
|--------------------------------|------------------------------------|---------------------------------------|--------------|
|                                | 事態」に移行し、発電所対策本部を設置してその指揮の下、        |                                       |              |
|                                | 必要な処置を行う。                          |                                       |              |
|                                |                                    |                                       |              |
| 3.7.2 手順                       | 3.7.2 手順                           | 4.7.2 手順                              |              |
| 火山に対する防護については、降下火砕物に対する影響評価を   | 火山に対する防護については、降下火砕物に対する影響評価        | 火山に対する防護については,降下火砕物に対する影響評価を          |              |
| 行い、安全施設が安全機能を損なわないよう手順を定める。    | を行い,安全施設が安全機能を損なわないように手順を定める。      | 行い、安全施設が安全機能を損なわないよう手順を定める。           |              |
| 降灰が確認された場合には、建屋や屋外の設備等に長期間降下   | (1) 発電所内に降灰が確認された場合には、建屋や屋外の設備     | 降灰が確認された場合には,建物や屋外の設備等に長期間降下          |              |
| 火砕物の荷重をかけ続けないこと、また降下火砕物の付着による  | 等に長期間降下火砕物による荷重を掛け続けないこと、また        | 火砕物の荷重をかけ続けないこと,また降下火砕物の付着による         |              |
| 腐食等が生じる状況を緩和するために、評価対象施設に堆積した  | 降下火砕物の付着による腐食等が生じる状況を緩和するため        | 腐食等が生じる状況を緩和するために,評価対象施設等に堆積し         |              |
| 降下火砕物の除灰を適切に実施する。              | に、評価対象施設等に堆積した降下火砕物の除去に係る手順        | た降下火砕物の除灰を適切に実施する手順を定める。              |              |
|                                | を定める。                              |                                       |              |
| 降灰が確認された場合には、状況に応じて外気取入ダンパの閉   | (2) 降灰が確認された場合には、状況に応じて外気取入ダンパ     | 降灰が確認された場合には,状況に応じて <u>給気隔離弁</u> の閉止, |              |
| 止,換気空調系の停止又は再循環運転により,建屋内への降下火  | の閉止,換気空調設備の停止又は閉回路循環運転により、建        | 換気空調設備の停止又は系統隔離運転モードにより,建物内への         |              |
| 砕物の侵入を防止する手順を定める。              | 屋内への降下火砕物の侵入を防止する手順を定める。           | 降下火砕物の侵入を防止する手順を定める。                  |              |
| 降灰が確認された場合には、非常用換気空調系の外気取入口の   | (3) 降灰が確認された場合には、換気空調設備の外気取入口の     | 降灰が確認された場合には,換気空調設備の外気取入口のフィ          |              |
| バグフィルタについて,バグフィルタ差圧を確認するとともに,  | フィルタについて、フィルタ差圧又は流量を確認するととも        | ルタについて,フィルタ差圧を確認するとともに,状況に応じて         |              |
| 状況に応じて取替え又は清掃等を実施する。           | に、状況に応じて清掃や取替を実施する手順を定める。          | 取替え又は清掃を実施する手順を定める。                   |              |
|                                | (4) 降灰確認後,放水路ゲートに損傷を発見した場合の措置に     |                                       | ・運用内容の相違     |
|                                | ついて,放水路ゲートの駆動装置に損傷を発見した場合,安        |                                       | 【東海第二】       |
|                                | <u>全機能を回復するために速やかな補修等を行う手順を整備</u>  |                                       | 島根2号炉には,同様   |
|                                | し、的確に実施する。また、速やかな補修等が困難と判断さ        |                                       | の設備がない       |
|                                | れた場合には、プラントを停止する手順を整備し、的確に実        |                                       |              |
|                                | 施する。                               |                                       |              |
|                                | (5) 降灰が確認された場合には、取水路前面にオイルフェンス     |                                       | ・運用内容の相違     |
|                                | <u>を設置することで、取水路への降下火砕物の流入量を低減す</u> |                                       | 【東海第二】       |
|                                | る手順を定める。                           |                                       | 火山別-⑦の相違     |
|                                |                                    |                                       |              |
|                                |                                    |                                       |              |
|                                | 3.8 降下火砕物の間接的影響に対する設計方針            |                                       | (島根2号炉は4.6.2 |
|                                | 広範囲にわたる送電網の損傷による7日間の外部電源喪失及        |                                       | 項に記載)        |
|                                | び発電所外での交通の途絶によるアクセス制限事象に対し、発       |                                       |              |
|                                | 電用原子炉の停止並びに停止後の発電用原子炉及び使用済燃料       |                                       |              |
|                                | プールの冷却に係る機能を担うために必要となる電源の供給が       |                                       |              |
|                                | 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電       |                                       |              |
|                                | 機を含む。)及びそれぞれに必要な耐震Sクラスの軽油貯蔵タン      |                                       |              |
|                                | ク2基(400kL/基)により継続できる設計とすることにより,    |                                       |              |
|                                | 安全機能を損なわない設計とする。                   |                                       |              |
|                                |                                    |                                       |              |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                       | 島根原子力発電所 2号炉                  | 備考 |
|--------------------------------|-------------------------------------------|-------------------------------|----|
|                                |                                           |                               |    |
| 4. まとめ                         | 4. まとめ                                    | 5. まとめ                        |    |
| 降下火砕物による直接的影響及び間接的影響のすべての項目に   | 降下火砕物による直接的影響及び間接的影響のすべての項目               | 降下火砕物による直接的影響及び間接的影響のすべての項目   |    |
| ついて評価した結果、降下火砕物による直接的及び間接的影響は  | について評価した結果、降下火砕物による直接的影響及び間接              | について評価した結果,降下火砕物による直接的及び間接的影響 |    |
| なく、発電用原子炉施設の安全機能を損なうことはない。     | 的影響はなく,発電用原子炉施設の安全機能を損なうことはな<br>いことを確認した。 | はなく、発電用原子炉施設の安全機能を損なうことはない。   |    |
| 降下火砕物の飛来のおそれがある場合は、火山噴火対策を行う   | 降下火砕物の飛来のおそれがある場合は、火山事象対策を行               | 降下火砕物の飛来のおそれがある場合は,火山噴火対策を行う  |    |
| ための体制を構築し、プラント及び屋外廻りの監視の強化、降下  | うための体制を構築し、発電所及び屋外廻りの監視の強化、降下             | ための体制を構築し、プラント及び屋外廻りの監視の強化、降下 |    |
| 火砕物の除去等を実施する。                  | 火砕物の除去等を実施する。                             | 火砕物の除去等を実施する。                 |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                |                                           |                               |    |
|                                | 1                                         |                               |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                                       | 島根原子力発電所 2号炉                                      | 備考             |
|--------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------|----------------|
| 個別評価-1                         | 資料-4                                                                                      | 個別評価一1                                            |                |
| 建屋に係る影響評価                      | 建屋構築物に係る影響評価                                                                              | 建物に係る影響評価                                         |                |
|                                |                                                                                           |                                                   |                |
| 降下火砕物による原子炉建屋等への影響について以下のとおり評  | 降下火砕物による原子炉建屋,タービン建屋及び <u>使用済燃料乾</u>                                                      | 降下火砕物による原子炉建物等への影響について以下のとおり                      |                |
| 価した。                           | <u>式貯蔵建屋</u> への影響について,以下のとおり評価 <u>する。</u>                                                 | 評価した。                                             |                |
|                                |                                                                                           |                                                   |                |
| (1)評価項目                        | (1)評価項目及び内容                                                                               | 1. 評価項目及び内容                                       |                |
| ①構造物への静的負荷                     | ① 構造物への静的負荷                                                                               | (1)構造物への静的負荷                                      |                |
| 降下火砕物の堆積荷重(降雨の影響含む)により原子炉建屋,   | 降下火砕物の堆積荷重により原子炉建屋、タービン建屋                                                                 | 降下火砕物の堆積荷重(降雨の影響含む)による影響につい                       |                |
| タービン建屋海水熱交換器区域,コントロール建屋,廃棄物処理  | 及び <u>使用済燃料乾式貯蔵建屋</u> の健全性に影響がないことを                                                       | て, MS-1(放射性物質の閉じ込め機能,放射線の遮蔽及び放出                   | •外部事象防護対象施設    |
| 建屋の健全性に影響がないことを評価する。           | 評価する。 <u>なお,設置許可においては,</u> MS-1(放射性物質                                                     | 低減機能)及び MS-2(放射性物質放出の防止機能)の機能を有                   | の設置場所の相違       |
| なお、堆積荷重は、積雪との重畳を考慮する。          | の閉じ込め機能,放射線の遮蔽及び放出低減機能)及びMS-2                                                             | する原子炉建物, MS-1 (安全上特に重要な機能)の機能を有す                  | 【柏崎 6/7, 東海第二】 |
|                                | (放射性物質放出の防止機能)の機能を有する原子炉建屋                                                                | る <u>制御室建物</u> 及び <u>廃棄物処理建物</u> ,建物自身がクラス 1,2 施設 | 火山別-⑤の相違       |
|                                | と建屋自身がクラス 1,2 施設に該当しない建屋 <u>のうち,構</u>                                                     | に該当しない <u>タービン建物及び排気筒モニタ室</u> を対象として健             |                |
|                                | <u>造的にもスパンが長く評価結果が厳しくなるタービン建屋</u>                                                         | 全性に影響がないことを評価する。 <u>各建物に求められる機能設</u>              | ・記載方針の相違       |
|                                | を代表として評価概要及び評価結果を示す。                                                                      | 計上の性能目標を確保するため,堆積荷重が直接作用する屋根                      | 【東海第二】         |
|                                | また,工事計画認可においては,原子炉建屋,タービン                                                                 | スラブに加え、これを支持する大梁·小梁及び屋根トラス部に                      | 島根2号炉は,全ての     |
|                                | 建屋及び使用済燃料乾式貯蔵建屋について屋根スラブ、主                                                                | おいては主トラス及び二次部材について、構造健全性を確認す                      | 評価対象建物の評価結     |
|                                | トラス及び二次部材の構造性性能を確認し、各建屋に求め                                                                | る。                                                | 果を記載           |
|                                | られる機能設計上の性能目標を確保していることを計算書                                                                | なお、堆積荷重は、積雪との重畳を考慮する。風荷重につい                       | (以下,火山別-⑧の相    |
|                                | に示す。                                                                                      | ては、屋根スラブ等の部材では堆積荷重に対して逆向きの荷重                      | 違)             |
|                                |                                                                                           | となることから考慮しないこととするが、風による水平力を建                      | 詳細設計段階での評      |
|                                |                                                                                           | 物フレームの構成部材として負担する原子炉建物及びタービン                      | 価方針について,「4.構   |
|                                |                                                                                           | 建物の屋根トラス部の主トラスについては風荷重の重畳を考慮                      | 造物への静的負荷に対     |
|                                |                                                                                           | する。                                               | する詳細設計段階での     |
|                                |                                                                                           |                                                   | 評価方針」にまとめて記    |
| ② 構造物への化学的影響(腐食)               | <ol> <li>② 構造物への化学的影響(腐食)</li> </ol>                                                      | <br>(2)構造物への化学的影響(腐食)                             | 載している          |
| 降下火砕物の構造物への付着や堆積による化学的腐食により構   | 降下火砕物の構造物への付着や堆積による化学的腐食に                                                                 | 降下火砕物の構造物への付着や堆積による化学的腐食によ                        |                |
| 造物への影響がないことを評価する。              | より、構造物へ影響がないことを評価する。                                                                      | り構造物への影響がないことを評価する。                               |                |
|                                |                                                                                           |                                                   |                |
| (2)評価条件                        | (2) 評価条件                                                                                  | 2. 評価条件                                           |                |
| ① 降下火砕物条件                      | ① 降下火砕物条件                                                                                 | (1) 降下火砕物条件                                       |                |
| ・<br>堆積量:35cm                  | a. 堆積量:50cm                                                                               | a. 堆積量:56cm                                       | ・評価条件の相違       |
| ・密度:1.5g/cm <sup>3</sup>       | b. 密度:1.5g/cm <sup>3</sup> (湿潤状態)                                                         | b. 密 度:1.5g/cm <sup>3</sup> (湿潤状態)                | 【柏崎 6/7, 東海第二】 |
|                                | <u>0.5(m) × 1.500(kg/m<sup>3</sup>) × 9.80665(m/s<sup>2</sup>)=7.355(N/m<sup>2</sup>)</u> |                                                   |                |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                              | 東海第二発電所(2018.9.18版)                                             | 島根原子力発電所 2号炉                                                                              | 備考             |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------|
| ② 積雪条件                                                                      | <ol> <li>② 積雪条件</li> </ol>                                      | (2) 積雪条件                                                                                  |                |
| ・積雪量: <u>115.4cm</u>                                                        | a. 堆積量: <u>10.5cm</u> (建築基準法の考え方を参考とした東                         | a. 積雪量: <u>35.0cm</u>                                                                     | ・自然現象の重畳の考え    |
| 積雪量=1日あたりの積雪量の年超過確率10 <sup>-2</sup> の値(84.3cm)                              | 海村における平均的な積雪量)                                                  | (建築基準法の考え方を参考とし設計基準積雪深                                                                    | 方の相違           |
| +最深積雪量の平均値 (31.1cm) =115.4cm                                                |                                                                 | (100cm) に係数 0.35 を考慮した値)                                                                  | 【柏崎 6/7】       |
| ・単位荷重: <u>29.4N/m<sup>2</sup> (新潟県</u> 建築基準法施行細則に基づく積雪                      | b. 単位荷重:堆積量 1cm ごとに 20N/m <sup>2</sup> (建築基準法よ                  | b. 単位荷重:積雪量1cm あたり <u>20N/m<sup>2</sup></u>                                               | 火山別-①の相違       |
| の単位荷重)                                                                      | り)                                                              | (松江市建築基準法施行細則に基づく積雪の単位荷                                                                   |                |
|                                                                             | <u>10.5(cm) × 20(N/m<sup>2</sup>/cm) = 210(N/m<sup>2</sup>)</u> | 重)                                                                                        |                |
|                                                                             | ③ 固定荷重                                                          | (3) 固定荷重                                                                                  |                |
|                                                                             | a. 原子炉建屋:5,364N/m <sup>2</sup>                                  | 各建物の評価対象部材の自重による荷重                                                                        |                |
|                                                                             | b. タービン建屋:5,678N/m <sup>2</sup>                                 |                                                                                           |                |
|                                                                             | ④ 積載荷重                                                          | (4) 積載荷重                                                                                  |                |
|                                                                             | 「建築構造設計規準の資料(国土交通省 平成27年版)」                                     | 「建築構造設計規準の資料(国土交通省 平成 30 年版)」に                                                            |                |
|                                                                             | における「屋上(通常人が使用しない場合)」の床版計算用                                     | おける「屋上(通常人が使用しない場合)」の床版計算用積載                                                              |                |
|                                                                             | 積載荷重 <u>における980N/m<sup>2</sup>を包絡するように,除灰時の人</u>                | 荷重 <u>を参考として,除灰時の人員荷重として 981N/m<sup>2</sup>とする。</u>                                       |                |
|                                                                             | <u>員荷重として1,000N/m<sup>2</sup>とする。</u>                           |                                                                                           |                |
|                                                                             |                                                                 |                                                                                           |                |
| (3)評価結果                                                                     | (3) 評価結果                                                        | 3. 評価結果                                                                                   |                |
| <ol> <li>構造物への静的負荷</li> </ol>                                               | <ol> <li>(1) 構造物への静的負荷</li> </ol>                               | (1)構造物への静的負荷                                                                              |                |
| 設計堆積荷重は以下のとおり。                                                              | <u>a.</u> 評価対象部位の選定                                             | 評価は、設計時の構造計算結果に基づく評価を行うことを基                                                               | ・評価条件の相違       |
| <u>飽</u> 和状態の降下火砕物の荷重(35cm×1500kg/m <sup>3</sup> ×9.80665m/s <sup>2</sup> ) | 以下の理由から各建屋の屋根スラブと主トラスを評価                                        | 本とするが、原子炉建物及びタービン建物の屋根トラス部につ                                                              | 【東海第二】         |
| +積雪荷重(115.4 $cm$ ×29.4N/( $m^2 \cdot cm$ ))=8,542N/ $m^2$                   | 対象部位として選定する。                                                    | いては、補強工事を実施済であり、設計時と各部材の寸法等の                                                              |                |
|                                                                             | (a) 主要な部位のうち,梁間方向に配されている主トラ                                     | 条件が異なるため、補強内容を反映した条件に基づき設計時と                                                              |                |
|                                                                             | スと、屋根スラブが主体構造として、降下火砕物の鉛                                        | 同様の方法を用いた評価を行う。                                                                           |                |
| 表1-1 に, 建屋ごとに裕度が最も小さい部位の評価結果を示す。                                            | 直方向に対して抵抗している。                                                  | また、排気筒モニタ室については、降下火砕物の堆積時の構                                                               | ・評価結果の相違       |
| 評価の結果、全ての建屋において、許容堆積荷重は堆積荷重を十                                               | (b) 原子炉建屋の屋根スラブはMS-1 (放射性物質の閉                                   | 造強度を確保するため補強工事を行う計画とし、補強計画を反                                                              | 【柏崎 6/7, 東海第二】 |
| 分に上回っていることから,対象建屋の安全性への影響はない。                                               | じ込め機能,放射線の遮蔽及び放出低減機能)及び                                         | 映した条件に基づき、応力解析を行い発生応力が許容値を超え                                                              | ・評価方針の相違       |
|                                                                             | MS−2(放射性物質放出の防止機能)の安全機能を担保                                      | ないことを確認する。                                                                                | 【柏崎 6/7, 東海第二】 |
|                                                                             | LTN3teben                                                       | なお、評価に用いる許容限界については、材料の短期許容応                                                               | 島根2号炉は, a. 設   |
|                                                                             |                                                                 | 力度に基づき設定することとし、屋根スラブ(排気筒モニタ室                                                              | 計時の構造計算結果に     |
|                                                                             |                                                                 | を除く)に関しては、構造強度の確認に合わせて気密性能、遮                                                              | 基づく評価」を基本と     |
|                                                                             |                                                                 | 蔽性能に対する機能維持の確認を行う。                                                                        | し,補強工事を行ってい    |
|                                                                             |                                                                 | a. 設計時の構造計算結果に基づく評価                                                                       | る部材は,「b. 補強内容  |
|                                                                             |                                                                 | 設計堆積荷重は、以下のとおり。                                                                           | を反映した条件に基づ     |
|                                                                             |                                                                 | <u>飽和状態の降下火砕物の荷重(56cm×1,500kg/m<sup>3</sup>×</u>                                          | く評価」、補強工事を行    |
|                                                                             |                                                                 | <u>9.80665m/s<sup>2</sup>)</u> +積雪荷重 (35cm×20N/m <sup>2</sup> ·cm) =8,938N/m <sup>2</sup> | う計画とする排気筒モ     |
|                                                                             |                                                                 | 第1-1表に,構造強度の確認として,各部位のうち建物ご                                                               | ニタ室は「c.補強計画を   |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                       | 備考           |
|--------------------------------|---------------------|------------------------------------|--------------|
|                                |                     | とに裕度が最も小さい部位(補強工事を実施した原子炉建物        | 反映した条件に基づく   |
|                                |                     | 及びタービン建物の屋根トラス部並びに補強工事を行う計画        | 評価」として対象部材毎  |
|                                |                     | とする排気筒モニタ室については後述する。)の評価結果を        | に分けた評価を行って   |
|                                |                     | 示す。また,機能維持の確認を行う原子炉建物屋根トラス上        | いる。また, 屋根スラブ |
|                                |                     | 部の屋根スラブの評価結果も合わせて示す。               | の機能維持の確認につ   |
|                                |                     | 評価部位とした屋根スラブの概要を第 1-1 図, 評価位置を     | いては, 許容限界を同一 |
|                                |                     | 第1-2図に示す。                          | とすることで, 構造強度 |
|                                |                     | 評価の結果、全ての建物において、許容堆積荷重は降下火         | の確認を合わせて行う   |
|                                |                     | <u>砕物堆積荷重を上回っていることから,対象建物の健全性へ</u> |              |
|                                |                     | の影響はない。                            |              |
|                                |                     | <figure></figure>                  |              |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                             | 東海第二発電所(2018.9.18版)                    |                    |                    |                              |                          |                                  | 島根原子力                                        | 発電所 2号炉                | ī                        |                  | 備考                            |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|--------------------|------------------------------|--------------------------|----------------------------------|----------------------------------------------|------------------------|--------------------------|------------------|-------------------------------|
| 表 1-1 建屋の堆積荷重概略評価結果                                                                                                                        | b                                      | . 許容限界(            | の設定                |                              |                          | 第 1-1 表                          | 設計対象建?                                       | 物の堆積荷重機                | 既略評価結果                   |                  | ・評価対象施設の相違                    |
| 日后 现在当众处理,此为现代上世之 許容堆積荷重 <sup>举1</sup> 降下火碎物                                                                                               |                                        | (a) 原子炉建           | 屋                  |                              |                          |                                  |                                              | 許容                     | 設計                       | 評価               | 【柏崎 6/7, 東海第二】                |
|                                                                                                                                            | 要求機能                                   | 機能設計上の<br>性能目標     | 部位                 | 機能維持のための考え方                  | 許容限界                     | 設計対象建物                           | 評価部位                                         | 堆積荷重 <sup>※1,3</sup>   | 堆積荷重 <sup>※2</sup>       | 結果               | ・設計方針の相違                      |
| □ ントロー 中央制御室上部(全体)<br>21,000 ○                                                                                                             |                                        |                    | 屋根                 |                              | 終局耐力に対し妥当な               |                                  |                                              | (N/m <sup>2</sup> )    | $(N/m^2)$                |                  | 【東海第二】                        |
| 6         ル運産         7号炉共通           タービン建                                                                                                |                                        | 構造強度を              | スラブ                | 部材に生じる応力が構造強<br>度を確保するための許容限 | 安玉裕度を有する計谷<br>限界*1       |                                  | 屋根スラブ                                        | $17 \ 200^{*4}$        |                          | $\bigcirc$       | 島根2号炉では,設計                    |
| 屋海水熱交 海水熱交換器区域上部     10,000       換器区域                                                                                                     |                                        | 有すること              | 主<br>トラス           | 界を超えないことを確認                  | 終局耐力に対し妥当な<br>安全裕度を有する許容 | 原子炉建物                            | (屋根トラス上部)                                    | 11,200                 | -                        |                  | 時の長期荷重に対する                    |
| 原子炉建屋         使用済燃料プール上部         12,000         8,542         〇           コントロー         中央制御室上部(全体)         21,000         6,542         〇 |                                        | 摘気性能とないす           |                    | 楽材に生じる広力が気密性                 | 限界**2                    |                                  | 小梁                                           | 13, 100                | 8 938                    | 0                | 部材裕度から許容堆積                    |
| 小建屋         6号炉共通         21,000           7         タービン建                                                                                 | 気密性                                    | って気密機能を維<br>持すること  | 屋根<br>スラブ          | を維持するための許容限界<br>を超えないことを確認   | 短期許容応力度※3                | 制御室建物                            | 屋根スラブ                                        | 23, 700                | 0,000                    | 0                | 荷重を算定する「a. 設計                 |
| (     屋海水熱交     海水熱交換器区域上部     11,000     ○       換器区域     ○                                                                               |                                        | 遮蔽生体の損傷に           |                    | 部材に生じる応力が遮蔽性                 |                          | タービン建物                           | 大梁                                           | 15,000                 | -                        | 0                | 時の構造計算結果に基                    |
| 廃棄物処理         復水貯蔵槽位置上部         9,000 <sup>※2</sup> 建屋         (6号行と共通)         9,000 <sup>※2</sup>                                        | 遮蔽性                                    | より遮蔽機能を損<br>なわないこと | 屋根<br>スラブ          | を維持するための許容限界<br>を超えないことを確認   | 短期許容応力度**3               | 廃棄物処理建物                          | 大梁                                           | 11,900                 |                          | $\bigcirc$       | づく評価」を基本として                   |
|                                                                                                                                            |                                        |                    |                    |                              |                          | ※1:積載荷重と                         | して考慮する                                       | 除灰時の人員                 | 荷重 981N/m <sup>2</sup>   | <sup>2</sup> を差し | いる                            |
| ※1:許容堆積荷重は、以下の方法で算出した。                                                                                                                     | <u>※1</u>                              | <u> 構造強度に対</u>     | しては                | ,「終局耐力に対し                    | 妥当な安全裕度を                 | 引いて設定                            | した値。                                         |                        |                          |                  |                               |
| (1) 建屋の屋根部を構成する構造部材の断面性能を元に、各構造部                                                                                                           | 1                                      | 「する許容限             | 界」が                | 許容限界となるが,                    | 気密性, 遮蔽性に                | ※2:降下火砕物                         | 7堆積量(56 cr                                   | n) に積雪量(3              | <u>35 cm)を加え</u>         | て設定              |                               |
| 材で発生する応力が短期許容応力度となるような屋根部の鉛直荷                                                                                                              | 4                                      | さいて 短期             | 許容応                | 力度」を許容限界と                    | していることから、                | した荷重。                            |                                              |                        |                          |                  |                               |
| 重(以下「耐荷重」という)を計算する。(耐荷重算定の詳細フ                                                                                                              | ~                                      |                    | 力度」                |                              |                          | ※3:許容堆積荷                         | <u> 「重は,以下の</u>                              | )方法で算出し                | た。耐荷重算                   | 算定の詳             | ・設計方針の相違                      |
|                                                                                                                                            | <u>*2</u> 5                            | 単性限耐力と             | して,                |                              | 許容応力度設計法                 | 細フローを第 1-3 図に示す。                 |                                              |                        |                          |                  | 【東海第二】                        |
| (2) 屋根部に作用する荷重としては堆積物による荷重以外に、常時                                                                                                           |                                        | - ((社) 日7          | 「建築日               | ≤会,2005)」(以下                 | <u> S規準] という。)</u>       | - ① 建物の屋根部を構成する構造部材の断面性能を元に、各構   |                                              |                        |                          | <u></u> 各構       | 島根2号炉では, 短期<br>** 中国に共正式 (新)  |
| 作用する何里(固定何里,機器何里及び配官何里等)かめるため、                                                                                                             | <u>0</u>                               | の短期許容応             | <u>、月度の</u>        | 評価式に平成 12 年<br>  ま 注田        | 建設省告示第 2464              | 造部材で発生する応力が短期許容応力度となるような屋根       |                                              |                        |                          | 計谷心力度に基づく評       |                               |
| ①で計算した耐何里から吊時作用する何里の差し引いた値を計容                                                                                                              |                                        | <u> テに基つさら</u>     | <u> 個×1.</u>       |                              |                          | 部の鉛直荷重(以下、耐荷重という)を計算する。          |                                              |                        |                          | ~                | 価としており、平成 12<br>広連部以降三体 and 日 |
| 唯積何里として設定する(有効数子2桁で切り下け)。                                                                                                                  | <u>**3</u>                             | <u>原于力施設</u>       |                    |                              |                          | ② 屋根部に作用する荷重としては堆積物による荷重以外に,     |                                              |                        |                          | 人外に,             | 年建設省告示弗 2464 号                |
| ※2:廃業物処理建産については、産上のルーノフロックを撤去す                                                                                                             | <u> </u><br>+                          |                    | <u>;</u> 2005<br>: | )」(以下「RC-N 規f                | 準」という。)の短                | <u>常時作用する荷重(固定荷重,積載荷重等)があるため</u> |                                              |                        |                          | 5ため,             | に基づく材料強度×1.1                  |
| ることとしており、計谷堆積何里の暫定個として記載。                                                                                                                  | <u></u>                                | 明許谷心力度             | 「で評価               | <u> </u>                     |                          | <u>①で計算し</u>                     | た耐荷重から                                       | 。常時作用する                | 荷重の差し引                   | いた値              | は週用していない                      |
|                                                                                                                                            |                                        | (b) タービン           | 建屋                 |                              |                          | を許容堆利                            | 責荷重として                                       | 設定する(有多                | 効数字3桁で                   | 「切り下             |                               |
|                                                                                                                                            | 要求                                     | 機能設計上の             | den ( ) -          |                              |                          | <u>げ)。</u>                       |                                              |                        |                          |                  | 、司耕士組の相当                      |
|                                                                                                                                            | 機能                                     | 性能目標               | 部位                 | 機能維持のための考え方                  | 許容限界                     | <u>※4:許容堆積荷</u>                  | 「重の算定の許                                      | 羊細について,                | 構造強度の確                   | 権認に合             | ・ 記載力 町の相遅                    |
|                                                                                                                                            |                                        |                    | 屋根<br>スラブ          | 落下しないことを確認**1                | 終局耐力※3                   | わせ機能維                            | 持の確認を行                                       | う原子炉建物                 | <u>屋根トラス上</u>            | <u>:部の屋</u>      | 【 相呵 0/1】                     |
|                                                                                                                                            | _                                      | 構造強度を<br>有すること     |                    |                              |                          | <u>根スラブ ()</u>                   |                                              | 配筋:長辺・                 | 短辺共 D13@                 | <u>200 (上</u>    | 局限 2 方炉 Cは, 代表                |
|                                                                                                                                            |                                        | n / J = C          | 主<br>トラス           | 崩壊機構が形成されないこ<br>とを確認         | 崩壊機構が形成されな           いこと | <u>端・下端)</u>                     | (SD345),長                                    | ;辺7,500 mm×;           | 短辺 3,000 m               | m) を代            | 前初について計谷堆積                    |
|                                                                                                                                            | ×1 F                                   | 忌根マラブの             | 滅下に                | トロ 内句オスクラ                    | フの設備を指作さ                 | <u>表として以</u>                     | <u>トに示す。</u><br>三地士エー-                       |                        |                          | a                | 前里の昇足の中神で記載している               |
|                                                                                                                                            | ※1 産低人フノの浴下により、内包するクフム2設価を損傷さ          |                    |                    |                              | <u>①設計時の</u>             | <u> </u>                         | 700N/m² (長夷                                  | 明検討用の積                 | 貢載何重                     |                  |                               |
|                                                                                                                                            | こうり形111かののことから、  液肥粧行のにのに洛下しない         |                    |                    |                              |                          | <u>588N/m²を言</u>                 | <u>ŝt)</u>                                   |                        |                          |                  |                               |
|                                                                                                                                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                    | けぬ目                | 耐力がኋ念限界レオ                    | ってが「DC_N 担滩」             | $(2)$ 余裕率 $\alpha$ :             | <u>2.07 (min (</u> ₿                         | <u> 当げ(2.07:必</u><br>- | 安鉄筋量に蒸                   | <u>すする設</u>      |                               |
|                                                                                                                                            | × 4                                    | 成肥に刈して             | 山旅店                | 11107月1日夜外という                |                          | <u>計鉄筋量の</u>                     | )比), せん圏<br>(1)                              | <u>r (6.59:コン</u><br>、 | <u>クリートの</u> 発           | <u>隆生応力</u>      |                               |
|                                                                                                                                            | ~                                      | 一些初盯往凡             |                    | .E.L.IIII                    |                          | <u>に対する評</u>                     | <u>・                                    </u> |                        |                          | 0                |                               |
|                                                                                                                                            |                                        |                    |                    |                              |                          | <u>(3)計浴できる</u>                  | )                                            | <u>「里(山×(2))</u>       | : 15,939N/m <sup>2</sup> | -                |                               |
|                                                                                                                                            |                                        |                    |                    |                              |                          | (4) 短期計浴応                        | い月度と長期計                                      | 一谷心力度の比                | : 1.59                   |                  |                               |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                                                                                                                                          | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 備考                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)<br>(1)設計時の長期荷重に対して,屋根を構成する各構<br>造部材が持つ設計荷重に対する余裕率 α を設計時の<br>構造計算結果をもとに算出する。<br>(2)設計時の長期荷重に余裕率 α を乗算することによ<br>り,部材として許容できる最大の長期荷重を算定す<br>る。なお,最大の長期荷重算出には,各構造部材に対<br>する余裕率αの中で最小となるαを用いる。<br>(3)建築基準法施行令における鋼材等の短期許容応力<br>度と長期許容応力度の関係から(2)で算定した荷重を<br>1.5倍したものを耐荷重とする。 | 東海第二発電所(2018.9.18版)           c. 評価方法 <ul> <li>(a) 屋根スラブ</li> <li>RC-N規準に基づき,評価対象部位に生じる曲げモ</li> <li>ーメント及び面外せん断応力度が,許容限界を超えないことを確認する。</li> <li>(b) 主トラス             <ul></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>島根原子力発電所 2号炉</li> <li>⑤耐荷重(③×④):25,343N/m<sup>2</sup></li> <li>⑥常時作用する荷重(①+積載荷重 393N/m<sup>2</sup>(①に含まれる<br/>長期検討用の積載荷重 588N/m<sup>2</sup>と積載荷重として考慮する<br/>除灰時の人員荷重 981N/m<sup>2</sup>の差分)):8,093 N/m<sup>2</sup></li> <li>⑦許容堆積荷重(⑤-⑥):17,200 N/m<sup>2</sup></li> <li>(1) ①設計時の長期荷重に対して,屋根を構成する各構造部材<br/>が持つ設計荷重に対する②余裕率αを設計時の構造計算結果<br/>を基に算出する。</li> <li>(2) 設計時の長期荷重に余裕率 α を乗算することにより,部<br/>材として許容できる③最大の長期荷重を算定する。なお,最大<br/>の長期荷重算出には,各構造部材に対する余裕率αの中で最小<br/>となるαを用いる。</li> <li>(3) (2)で算定した荷重に,各構造部材の材料の④短期許容応<br/>力度と長期許容応力度の比を乗算することにより,⑤耐荷重を<br/>算定する。</li> <li>(4) (3) で算定した耐荷重から⑥常時作用する荷重を差し引く<br/>ことにより⑦許容堆積荷重を算定する。</li> </ul>                                                                                                                                                      | 備考<br>・記載方針の相違<br>【東海第二】<br>島根2号炉では,詳細<br>設計段階での評価方針<br>について,「4.構造物へ<br>の静的負荷に対する詳<br>細設計段階での評価方                                                                                                     |
| 1.5倍したものを耐荷重とする。<br>図1-1 耐荷重算定フロー                                                                                                                                                                                                                                                                       | 立ね,一部の部材について座屈順力で評価したタービン         建屋については,工事計画認可において荷重増分解析を         実施し,改めて屋根部が崩壊しないことを確認する。         第1表 原子炉建屋 屋根スラブ(曲げモーメント)評価結果         (検定:短期許容応力度)               第位       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※       ※         ※ | <ul> <li>(4) (3) で算定した耐荷重から⑥常時作用する荷重を差し引く<br/>ことにより⑦許容堆積荷重を算定する。</li> <li>第1-3図 耐荷重算定フロー</li> <li><u>第1-3</u>図 耐荷重算定フロー</li> <li><u>第1-3</u>度が許容値を返去した条件に基づく評価</li> <li><u>東子炉建物及びタービン建物の屋根トラス部の補強は、主トラスやサブトラスの余裕の少ない部材に対して補強材の追加等</u>による強度向上を行っている。補強の内容について、原子炉建<br/>物屋根トラスを代表として、補強箇所を第1-4 図に、補強部材<br/>の詳細を第1-2 表に示す。第1-3 表、第1-4 表に、建物ごとの<br/>主トラス部材の断面検討結果の内、最大応力度比となった部材</li> </ul> | 設計段階での評価方針<br>について,「4.構造物へ<br>の静的負荷に対する詳<br>細設計段階での評価方<br>針」にまとめて記載して<br>いる<br>・設計方針の相違<br>【東海第二】<br>島根2号炉では,補強<br>工事を実施済である原<br>子炉建物,タービン建物<br>屋根トラス部について<br>は,補強内容を反映した<br>条件に基づく評価を行<br>いとを確認している |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) |                           | 東海第二発           | 巻電所(2018.9.                    | 18版)           |      | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 備考 |
|--------------------------------|---------------------------|-----------------|--------------------------------|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                | 第2表 原子炉建屋 屋根スラブ(せん断力)評価結果 |                 |                                |                |      | を有する代表フレーム(R10通り,T7通り)の評価結果*5を示                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                           | (検定             | : 短期許容応力                       | 1度)            |      | <u>†.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                |                           | 장심 가 기세지 구      | 11.2 断合力库                      |                |      | <u>また,表 1-5 表,表 1-6 表に,建物ごとのトラス二次部材の</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                | 部位                        | 発生せん)町刀<br>(KN) | せん断応力度<br>(N/mm <sup>2</sup> ) | 計容値<br>(N/mm²) | 検定比  | 断面検討結果の内,最大応力度比となった部材の評価結果を示                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                | EL 64.08<br>(S1-1)        | 13.67           | 0.295                          | 1.06           | 0.28 | <u>す。評価の結果,全ての建物において,降下火砕物の堆積時に</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                | EL 64.08                  | 9.21            | 0.199                          | 1.06           | 0.19 | おいて、発生応力度が許容値を超えないことを確認した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                | (31-2)                    |                 |                                |                |      | ※5:フレーム解析において,積雪荷重・降下火砕物の堆積荷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                |                           |                 |                                |                |      | <u>重に加え,風荷重(水平方向)を考慮した評価結果。</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                           |                 |                                |                |      | $\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$ |    |
|                                |                           |                 |                                |                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                           |                 |                                |                |      | (3斜材補強 ④ 部)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                |                           |                 |                                |                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                |                           |                 |                                |                |      | サブトラス断面図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                |                           |                 |                                |                |      | 第1-4 図 原子炉建物屋根トラスの補強箇所                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |

| 柏崎刈羽原子力発電所 6 | 6/7号炉 | (2017.12.20版) | 東海第二発電所(2018.9.18版) |     | 島根原               | 子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 備考 |
|--------------|-------|---------------|---------------------|-----|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|              |       |               |                     |     | 第 1-2 录           | 表 補強部材の詳細                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|              |       |               |                     | N o |                   | 箇所及び補強方法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|              |       |               |                     | 1   | 主トラス下弦材<br>補強材追加  | 演弾金材 PL-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|              |       |               |                     | 2   | 主トラス斜材<br>補強材追加   | 補強前<br>補強後                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|              |       |               |                     | 3   | サブトラス斜材<br>補強材追加  | 補強的         補強後           ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ● <th></th> |    |
|              |       |               |                     | ٩   | サブトラス斜材<br>接合部補強  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|              |       |               |                     | 5   | サブトラス下弦材<br>補強材追加 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|              |       |               |                     |     |                   | 30, AC 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|              |       |               |                     |     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|              |       |               |                     |     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|              |       |               |                     |     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|              |       |               |                     |     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|              |       |               |                     |     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|              |       |               |                     |     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東                                        | 海第二発電              | <b></b> 重所(2018.9.               | 18版)                                     |                                    | 自己的意思。                                                   | 根原子力           | ]発電所                 | 2 号炉                 |      |          | 備考 |
|--------------------------------|------------------------------------------|--------------------|----------------------------------|------------------------------------------|------------------------------------|----------------------------------------------------------|----------------|----------------------|----------------------|------|----------|----|
|                                | 第33                                      | 表 原子炉              | 戸建屋 主トラ                          | ス評価結果                                    |                                    | 第 1-3 表                                                  | 〔子炉建物          | の主トラ                 | ス部材 評                | 価結果  |          |    |
|                                |                                          | (検定                | : 弹性限耐力                          | 1)                                       |                                    | रेग दिन                                                  | 発生             | 応力度                  | 許容値                  | 応力度  | 位墨       |    |
|                                | 部材                                       | 発生応力               | 応力度                              | 許容値                                      | 検定値                                | 司りひ                                                      | 応力             | $(N/mm^2)$           | $(N/mm^2)$           | 比    | 1业.0     |    |
|                                |                                          | (圧縮)               | (N/mm <sup>2</sup> )             | (N/mm <sup>2</sup> )                     |                                    | 上弦材                                                      | (圧縮)           | 125.7                | 290                  | 0.48 | TU05     |    |
|                                | 上弦材<br>(H-400×400×13×21)                 | (<br>(<br>曲<br>げ)  | 40. 3                            | 255.4                                    | 0.60                               | $\text{H-400}\!\times\!400\!\times\!13\!\times\!21$      | (曲げ)           | 13.4                 | 316                  | 0.40 | TU06     |    |
|                                | 下改材                                      | (引張)               | 157.6                            | 258.5                                    |                                    | 下弦材                                                      | (圧縮)           | 76.1                 | 205                  | 0.61 | TI OO    |    |
|                                | $(H-400 \times 400 \times 13 \times 21)$ | (曲げ)               | 44. 9                            | 195.9                                    | 0.79                               | $BH\!\!-\!400\!\times\!400\!\times\!19\!\times\!35$      | (曲げ)           | 74.9                 | 318                  | 0.01 | 11200    |    |
|                                | 斜材<br>(21 s=150×150×15)                  | (引張)               | 207.8                            | 258.5                                    | 0.81                               | 斜材                                                       | (引張)           | 150 8                | 235                  | 0.65 | L01      |    |
|                                | 束材                                       | (圧縮)               | 152.0                            | 158.2                                    | 0.97                               | $2CT_{S}175\times350\times12\times19$                    |                | 100.0                | 200                  | 0.00 | LUI      |    |
|                                | $(2Ls-150 \times 150 \times 15)$         |                    |                                  |                                          |                                    | 束材                                                       | (圧縮)           | 95.1                 | 176                  | 0.55 | V09      |    |
|                                |                                          |                    |                                  |                                          |                                    |                                                          | ()— He7        |                      |                      |      |          |    |
|                                | <u>第4表 タービン</u>                          |                    | <u>スフフ(</u> 囲り                   | <u>fモーメント)</u>                           | 評価結果                               | 第1-4表タ                                                   | ービン建!          | 物の主トラ                | ス部材                  | 評価結果 |          |    |
|                                |                                          | (                  | 短期許容心刀                           | 度)                                       |                                    | 部位                                                       | 発生             | 応力度                  | 許容値                  | 応力度  | 位置       |    |
|                                | 設計配筋                                     | 量<br>発生<br>に<br>ント | 曲げモーメ 必<br>(kN・m)                | 、要鉄筋量<br>(mm <sup>2</sup> )              | 検定比                                |                                                          | 応力             | $(N/mm^2)$           | (N/mm <sup>2</sup> ) | 比    |          |    |
|                                | 部位 端部                                    | 中央 端部              | 中央 端部                            | R 中央 端                                   | 部 中央                               | 上弦材                                                      | (圧縮)           | 127.7                | 223                  | 0.73 | TU76     |    |
|                                | EL 40.65 635.0 6                         | 35.0 7.36          | 4. 14 460.                       | 0 258.7 0.7                              | 0.41                               | $\text{H-}428 \times 407 \times 20 \times 35$            | (曲げ)           | 35.8                 | 231                  |      | TU77     |    |
|                                |                                          |                    |                                  |                                          |                                    | 下弦材                                                      | (圧縮)           | 130.3                | 210                  |      |          |    |
|                                | 第5表ター                                    | ごン建屋 丿             | 屋根スラブ(・                          | せん断力)評                                   | 価結果                                | $BH-428\times407\times32\times40$                        | (曲)子)          | 41 5                 |                      | 0.80 | TL712    |    |
|                                | <u></u>                                  | (検定:               | <u>-</u><br>短期許容応力               | 度)                                       |                                    | $+2BC_{s}-386 \times 100 \times 19 \times 19^{*}$        | (曲り)           | 41. 5                | 233                  |      |          |    |
|                                |                                          |                    |                                  |                                          |                                    | 斜材                                                       | (7176)         |                      | 005                  | 0.00 | LDELO    |    |
|                                | 部位発生せ                                    | ん<br>断力<br>N       | せん断応力度<br>(N / mm <sup>2</sup> ) | 許容値<br>(N < mm <sup>2</sup> )            | 検定比                                | $2BCT_{s} - 175 \times 350 \times 22 \times 22$          | (引張)           | 208.4                | 235                  | 0.89 | LD712    |    |
|                                |                                          |                    | (11/2 11111 )                    |                                          |                                    | $+2PL_{s}$ -16×250 <sup><math>\times</math></sup>        |                |                      |                      |      |          |    |
|                                | EL 40.65 17                              | . 69               | 0.381                            | 1.06                                     | 0.36                               | 朱村<br>2017 - 150 × 200 × 10 × 15                         | (圧縮)           | 134.0                | 154                  | 0.88 | LV77     |    |
|                                |                                          |                    |                                  |                                          |                                    | 201 <sub>8</sub> -130×300×10×13<br>※・補砕工事で追加1            | た立なオ           |                      |                      |      |          |    |
|                                | 第6表 タービン                                 | 建屋 主ト              | ・ラス評価結果                          | 艮(検定:弾性                                  | <u> </u>                           | <ol> <li>二、福風工事で追加</li> <li>第 1-5 表 頁-</li> </ol>        | こに即り。<br>子炉建物( |                      | ~次部材 副               | 評価結果 | L        |    |
|                                | 部材                                       | 発生応力               | 応力度                              | 許容値                                      | 检定值                                |                                                          | 発生             | 応力度                  | 許容値                  | 志力度  | <u> </u> |    |
|                                | 1 1444                                   | (圧縮)               | (N/mm <sup>2</sup> )             | (N/mm <sup>2</sup> )<br>250, 0           |                                    | 部位                                                       | 応力             | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | 比    | 位置       |    |
|                                | 上弦材<br>(H-428×407×20×35)                 | (曲げ)               | 59.9                             | 258.0                                    | 0.96                               | 母屋 (sb23)                                                |                |                      |                      |      | R6~R7    |    |
|                                | 下弦材                                      | (圧縮)               | 55. 2                            | 152.0                                    |                                    | $\text{H-}244 \!\times\! 175 \!\times\! 7 \!\times\! 11$ | (曲げ)           | 122.6                | 181                  | 0.68 | RD~RE    |    |
|                                | $(H-428 \times 407 \times 20 \times 35)$ | (曲げ)               | 162.1                            | 241.0                                    | 1.04 <sup><sup>&amp; 1</sup></sup> | サブビーム (sb21)                                             |                |                      |                      |      | R3~R4    |    |
|                                | 斜材<br>(2Ls=200×200×20)                   | (引張)               | 201.7                            | 258.0                                    | 0.79                               | $\text{H-}400\!\times\!400\!\times\!13\!\times\!21$      | (曲げ)           | 173.6                | 220                  | 0.79 | RD~RE    |    |
|                                | (21.2 2007(2007(20))<br>東材               | (圧縮)               | 184.7                            | 212.0                                    | 0.88                               | 繋ぎ梁(ST1)                                                 |                |                      |                      |      |          |    |
|                                | (2LS-200 × 200 × 15)                     | +77)16 2           | │<br>                            | <u> </u><br>                             |                                    | $2CT_{s}125\times250\times9\times14$                     | (圧縮)           | 45.2                 | 73                   | 0.62 | R3~R4    |    |
|                                | ※1                                       | 通道した               | 下弦材は、終点                          | 可  「  「  」  「  」  」  「  」  」  」  」  」  」 | し評価を行                              | $+4L_{s}-65 \times 65 \times 6^{**}$                     |                |                      |                      |      | RG       |    |
|                                | ン。                                       |                    |                                  |                                          |                                    | ※:補強工事で追加                                                | した部材。          |                      | I                    | I    |          |    |
|                                |                                          |                    |                                  |                                          |                                    |                                                          |                |                      |                      |      |          |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版)                                                                                                                        | 島根原子力発電所 2号炉                                                                                                                                                                                                                          | 備考                |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                |                                                                                                                                            | 第1-6表 タービン建物のトラス二次部材 評価結果                                                                                                                                                                                                             |                   |
|                                | 第7表 タービン建屋 主トラス評価結果(検定:終局耐力)                                                                                                               | 発生         応力度         許容値         応力度           部位         広力         (N/mm <sup>2</sup> )         (N/mm <sup>2</sup> )         位置                                                                                                   |                   |
|                                | 部材         発生応力         応力度<br>(N/mm <sup>2</sup> )         許容値<br>(N/mm <sup>2</sup> )         検定値                                        | 日本 (N/mm <sup>-</sup> ) (N/mm <sup>-</sup> ) 比<br>母屋 (sb2④) (曲げ) 160.7 102 0.88 T10~T11                                                                                                                                               |                   |
|                                | 下弦材         (圧縮)         55.2         177.3         0.94           (H-428×407×20×35)         (曲げ)         162-1         258-5         0.94 | $H-400 \times 200 \times 8 \times 13 \qquad (HIV) \qquad 109.7 \qquad 193 \qquad 0.88 \qquad TB \sim TC$                                                                                                                              |                   |
|                                |                                                                                                                                            | サブビーム (sb1①)<br>BH-428×300×12×19<br>(曲げ) 201.1 232 0.87<br>TA~TB                                                                                                                                                                      |                   |
|                                | 評価の詳細は、参考資料-12「原子炉建屋の健全性評価                                                                                                                 | 第ぎ梁 (ST1)     T6~T7                                                                                                                                                                                                                   |                   |
|                                | <u>について」及び参考資料-13「タービン建屋の健全性評価</u>                                                                                                         | $\begin{array}{ c c c c c c c c } \hline & (E \widehat{m}) & 64.8 & 86 & 0.76 \\ \hline & & & & & & \\ 2CT_{S} - 100 \times 204 \times 12 \times 12 & & & \\ \hline & & & & & & \\ TB & & & & & \\ \hline & & & & & & \\ \end{array}$ |                   |
|                                | について」を参照。                                                                                                                                  | 評価の詳細は、補足資料-20「原子炉建物の屋根トラス部                                                                                                                                                                                                           |                   |
|                                |                                                                                                                                            | 材の健全性評価について」及び補足資料-21「タービン建物                                                                                                                                                                                                          |                   |
|                                |                                                                                                                                            | の屋根トラス部材の健全性評価について」に示す。                                                                                                                                                                                                               |                   |
|                                |                                                                                                                                            | <u>c. 補強計画を反映した条件に基づく評価</u>                                                                                                                                                                                                           | ・設計方針の相違          |
|                                |                                                                                                                                            | <u>排気筒モニタ室は、降下火砕物の堆積時の構造強度を確保す</u>                                                                                                                                                                                                    | 【柏崎 6/7, 東海第二】    |
|                                |                                                                                                                                            | るため補強工事を行う計画とし、補強計画を反映した条件に基                                                                                                                                                                                                          | 局根2号炉では,補強        |
|                                |                                                                                                                                            | <u>づき屋根スラブ,小梁,大梁及び補強工事で追加する梁の中間</u>                                                                                                                                                                                                   | 上事を行う計画として        |
|                                |                                                                                                                                            | 支持点(支持柱)について、応力解析を行い発生応力等が許容                                                                                                                                                                                                          | いる排気同七二ダ至に        |
|                                |                                                                                                                                            | 値を超えないことを確認する。                                                                                                                                                                                                                        | ついては、補強計画を反       |
|                                |                                                                                                                                            | 排気筒モニタ室の補強は、屋根スラブを支持する小梁及び大                                                                                                                                                                                                           | 一 映しに余件に基づく評<br>( |
|                                |                                                                                                                                            | 梁に対し、支持柱による中間支持点を追加することで強度向上                                                                                                                                                                                                          | 他を行い健全性に影響        |
|                                |                                                                                                                                            | する計画とする。補強計画の内容について、評価対象部位及び                                                                                                                                                                                                          | がないことを確認して        |
|                                |                                                                                                                                            | <u> 追加する中間支持点の位置を第 1−5 図に、中間支持点の概要を</u>                                                                                                                                                                                               |                   |
|                                |                                                                                                                                            |                                                                                                                                                                                                                                       |                   |
|                                |                                                                                                                                            | 第1-7表~第1-11表に補強計画を反映した条件に基づく評価                                                                                                                                                                                                        |                   |
|                                |                                                                                                                                            | <u> </u>                                                                                                                                                                                                                              |                   |
|                                |                                                                                                                                            | 超えないことを確認した。                                                                                                                                                                                                                          |                   |
|                                |                                                                                                                                            | 小梁 2.8 中間支持点(62)                                                                                                                                                                                                                      |                   |
|                                |                                                                                                                                            | 中間支持点 (C3)<br>中間支持点 (C1)                                                                                                                                                                                                              |                   |
|                                |                                                                                                                                            | 2/5<br>11.25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                   |                   |
|                                |                                                                                                                                            | 第 1-5 図 評価対象部位及び中間支持点位置                                                                                                                                                                                                               |                   |

| 柏崎刈羽原子力発電所 | 6/7号炉 | (2017. 12. 20 版) | 東海第二発電所(2018.9.18版) |                 |                 | 島根原子力発                                           | 電所 2号炉                               |                | 備考 |
|------------|-------|------------------|---------------------|-----------------|-----------------|--------------------------------------------------|--------------------------------------|----------------|----|
|            |       |                  |                     |                 |                 |                                                  | <u>支持柱 H-250×250×9×14</u>            |                |    |
|            |       |                  |                     | 笜 1_7           | 7 志 排写          | <u>第1-6図</u>                                     | 中間支持点概要                              | 亚価結果           |    |
|            |       |                  |                     | <u>新17</u><br>部 | 材               | <u>いまてーク重の度</u><br>必要鉄筋量<br>(mm <sup>2</sup> /m) | 設計配筋量<br>(mm <sup>2</sup> /m)        | 検定比            |    |
|            |       |                  |                     | S1              | 短辺<br>方向        | 522                                              | 635<br>(D13@200)                     | 0.83           |    |
|            |       |                  |                     | <u>第 1-8</u>    | 表排気             | 筒モニタ室の層                                          | 昼根スラブ(せん勝                            | <u>f) 評価結果</u> |    |
|            |       |                  |                     | 音[];            | 材               | せん断応力度<br>(N/mm <sup>2</sup> )                   | 許容せん断応<br>力度<br>(N/mm <sup>2</sup> ) | 検定比            |    |
|            |       |                  |                     | S1              | 短辺<br>方向        | 0.37                                             | 1.03                                 | 0. 36          |    |
|            |       |                  |                     |                 | <u>第 1-9 表</u>  | 排気筒モニタ                                           | 「室の梁(曲げ)                             | 評価結果           |    |
|            |       |                  |                     | 部               | 材               | 必要鉄筋量<br>(mm <sup>2</sup> )                      | 設計配筋量<br>(mm <sup>2</sup> )          | 検定比            |    |
|            |       |                  |                     | 小梁              | B1              | 404                                              | 774<br>(2-D22)                       | 0. 53          |    |
|            |       |                  |                     | 大梁              | G1              | 436                                              | 1548<br>(4-D22)                      | 0. 29          |    |
|            |       |                  |                     | <u> </u>        | <u> 第1-10 表</u> | 排気筒モニタ                                           | 室の梁(せん断)                             | 評価結果           |    |
|            |       |                  |                     | 音()             | 材               | せん断力<br>(×10 <sup>3</sup> N)                     | 許容せん断力<br>(×10 <sup>3</sup> N)       | 検定比            |    |
|            |       |                  |                     | 小梁              | B1              | 117.9                                            | 296.4                                | 0.40           |    |
|            |       |                  |                     | 大梁              | G1              | 95.0                                             | 386.9                                | 0.25           |    |
|            |       |                  |                     |                 |                 |                                                  |                                      |                |    |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)                                                                                                                                                            | 東海第二発電所(2018.9.18版)                                                                                                                                                                                                                                                                                                                                                     | 島根原子力発電所 2号炉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 備考                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)<br>②構造物への化学的影響(腐食)<br>原子炉建屋, <u>タービン建屋海水熱交換器区域</u> , <u>コントロール建屋</u><br>及び廃棄物処理建屋については、外壁塗装を施していることから、<br>降下火砕物による短期での腐食により機能に影響を及ぼすことは<br>ない。<br>(補足資料-4) | <ul> <li>東海第二発電所(2018.9.18版)</li> <li>② 構造物への化学的影響(腐食)<br/>原子炉建屋,タービン建屋及び使用済燃料乾式貯蔵建屋<br/>は外壁塗装及び屋上防水がなされていることから,降下火<br/>砕物による化学的腐食により短期的に影響を及ぼすことは<br/>ない。</li> <li>また,降下火砕物堆積後の長期的な腐食の影響について<br/>は,堆積した降下火砕物を除去し,除去後の点検等におい<br/>て,必要に応じて補修作業を実施する。</li> </ul>                                                                                                          | 島根原子力発電所 2号炉           第1-11表 排気筒モニタ室の中間支持点(支持柱) 評価結果           部材         圧縮応力度<br>(N/mm <sup>2</sup> )         許容圧縮応力度<br>(N/mm <sup>2</sup> )         検定比           C1         22.8         208.5         0.11           評価の詳細は,補足資料-22「排気筒モニタ室の健全性評価に<br>ついて」に示す。         の化学的影響(腐食)         原子炉建物, <u>周御室建物</u> , <u>タービン建物</u> , <u>廃棄物処理建物</u><br>及び <u>排気筒モニタ室</u> については, 外壁の塗装を施しているこ<br>とから,降下火砕物による短期での腐食により機能に影響を<br>及ぼすことはない。           また,降下火砕物堆積後の長期的な腐食の影響については,<br>堆積した降下火砕物を除去し,除去後の点検等において,必<br>要に応じて補修作業を実施する。         (袖足資料-4) | 備考<br>・外部事象防護対象施設<br>の設置場所の相違<br>【柏崎 6/7,東海第二】<br>火山別-⑤の相違<br>・運用方針の明記<br>【柏崎 6/7】                                                         |
| ない。<br>(補足資料-4)                                                                                                                                                                           | ない。<br>また、降下火砕物堆積後の長期的な腐食の影響について<br>は、堆積した降下火砕物を除去し、除去後の点検等におい<br>て、必要に応じて補修作業を実施する。<br>(4) 個別評価から除外した直接的影響の要因<br>個別評価から除外した直接的影響の要因及び理由を第8<br>表に示す。<br>第8表 個別評価から除外した直接的影響の要因及び理由<br>を第8<br>素に示す。<br>第8表 個別評価から除外した直接的影響の要因及び理由<br>直接的影響の要因 理由<br>水循環系の閉塞 水循環系の機能と直接関連がない<br>水循環系の内部における摩擦 水循環系の機能と直接関連がない<br>換気系、電気系及び計測制御系に対する機械 屋外に面した換気系、電気系及び計測制御系<br>の機能と直接関連がない | 及ぼすことはない。 <u>また,降下火砕物堆積後の長期的な腐食の影響については,</u><br><u>堆積した降下火砕物を除去し,除去後の点検等において,必</u><br><u>要に応じて補修作業を実施する。</u> <u>(補足資料-4)</u>                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>火山別-⑤の相違</li> <li>・運用方針の明記<br/>【柏崎 6/7】</li> <li>(島根2号炉は,個別評<br/>価から除外した直接<br/>的影響の要因を別添<br/>3-1(4.6.2項第1.5<br/>表)に記載)</li> </ul> |
|                                                                                                                                                                                           | 換入状況, 電気状及び計測時時状に対するに子     運びた曲じた換入状, 電気状及び計測時時状       的影響     の機能と直接関連がない       発電所の大気汚染     中央制御室の居住性と直接関連がない       絶縁低下     絶縁低下と直接関連がない                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                            |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                       | 備考            |
|--------------------------------|---------------------|------------------------------------|---------------|
|                                |                     | 4. 構造物への静的負荷に対する詳細設計段階での評価方針       | ・記載方針の相違      |
|                                |                     | (1) 評価対象部位                         | 【東海第二】        |
|                                |                     | 原子炉建物、制御室建物、タービン建物、廃棄物処理建物         | 島根2号炉では,詳細    |
|                                |                     | <u>及び排気筒モニタ室の各部位のうち、降下火砕物の堆積荷重</u> | 設計段階での評価方針    |
|                                |                     | が直接作用する各建物の屋根スラブに加え、大スパン空間を        | について,「4. 構造物へ |
|                                |                     | 構成し堆積荷重による影響を受けやすい構造であるととも         | の静的負荷に対する詳    |
|                                |                     | に、補強工事により原設計時から構成部材が変更されている        | 細設計段階での評価方    |
|                                |                     | 原子炉建物及びタービン建物の屋根トラス部(二次部材を含        | 針」にまとめて記載して   |
|                                |                     | む)を評価対象とする。                        | いる            |
|                                |                     |                                    |               |
|                                |                     | (2) 評価条件                           |               |
|                                |                     | 「2. 評価条件」と同じとする。                   |               |
|                                |                     | なお,風荷重については,屋根スラブでは堆積荷重に対し         |               |
|                                |                     | て逆向きの荷重となることから考慮しないこととするが、風        |               |
|                                |                     | による水平力を建物フレームの構成部材として負担する原子        |               |
|                                |                     | 炉建物及びタービン建物の屋根トラス部の主トラスについて        |               |
|                                |                     | は風荷重の重畳を考慮することとし、風荷重の方向は主トラ        |               |
|                                |                     | ス方向とする。                            |               |
|                                |                     |                                    |               |
|                                |                     | (3) 評価方針                           |               |
|                                |                     | 設置許可段階では設計時の構造計算結果に基づく評価を行         |               |
|                                |                     | うことを基本としたが、詳細設計段階では、全ての評価対象        |               |
|                                |                     | 部位に対し評価条件に基づく応力解析を行い各部位に生じる        |               |
|                                |                     | 応力が許容値を超えないことを確認する。                |               |
|                                |                     | 許容値は各部位の構造種別に応じ,「原子力施設鉄筋コン         |               |
|                                |                     | クリート構造計算規準・同解説」(以下、「RC-N 規準」とい     |               |
|                                |                     | う。),「鋼構造設計規準-許容応力度設計法-」(以下,        |               |
|                                |                     | 「S 規準」という。)等に従うとともに,短期許容応力度に       |               |
|                                |                     | 基づくものとして設定する。                      |               |
|                                |                     | なお,原子炉建物の主トラスについては,設置許可段階で         |               |
|                                |                     | は原設計時の設計方針を踏まえ二次元フレームモデルを用い        |               |
|                                |                     | <u>た応力解析を行っているが,屋根トラスについては,当該ト</u> |               |
|                                |                     | ラス部が支える屋根スラブが原子炉棟を構成し、気密を確保        |               |
|                                |                     | <u>する境界となることから、その重要性を踏まえ、詳細設計段</u> |               |
|                                |                     | <u>階では、三次元立体モデルを用いた応力解析によりフレーム</u> |               |
|                                |                     | 間の応力伝達を考慮した詳細な評価を行うこととする。          |               |

| 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) | 東海第二発電所(2018.9.18版) | 島根原子力発電所 2号炉                                                               | 備考 |
|--------------------------------|---------------------|----------------------------------------------------------------------------|----|
|                                |                     | また、原子炉建物の屋根スラブについては、原子炉建物原                                                 |    |
|                                |                     | <u>子炉棟の二次格納施設バウンダリを構成する部位であるた</u>                                          |    |
|                                |                     | め、火山灰堆積荷重と積雪荷重等の荷重を重ね合わせた荷重                                                |    |
|                                |                     | に対して、換気機能とあいまっての気密性能、遮蔽性能及び                                                |    |
|                                |                     | 構造健全性を確保する方針とする。                                                           |    |
|                                |                     |                                                                            |    |
|                                |                     | (4) 詳細設計段階で用いる原子炉建物主トラスの応力解析モデル                                            |    |
|                                |                     | 概要                                                                         |    |
|                                |                     | <u>詳細設計段階において原子炉建物主トラスの応力解析に用</u>                                          |    |
|                                |                     | いる三次元立体モデルの概念図を第 1-7 図に示す。                                                 |    |
|                                |                     | 三次元立体モデルの作成方針は以下のとおり。                                                      |    |
|                                |                     | ・屋根トラスの補強工事の内容を反映したモデルとする。                                                 |    |
|                                |                     | ・燃料取替床より上部の構造を三次元の立体構造でモデル                                                 |    |
|                                |                     | <u>化する。</u>                                                                |    |
|                                |                     | <u>・主トラス弦材は、軸・曲げ・せん断剛性のある梁要素、</u>                                          |    |
|                                |                     | <u>斜材と束材は軸剛性のみ考慮されたトラス要素とし、部</u>                                           |    |
|                                |                     | <u>材長さは部材芯位置でモデル化する。また、二次部材に</u>                                           |    |
|                                |                     | <u>ついては,梁要素又はトラス要素でモデル化する。</u>                                             |    |
|                                |                     | <ul> <li>・屋根スラブの自重等の屋根スラブにかかる荷重は主トラ</li> </ul>                             |    |
|                                |                     | <u>ス上弦材に負荷する。その際,屋根スラブの剛性は保守</u>                                           |    |
|                                |                     | 的に考慮しない。                                                                   |    |
|                                |                     | ・材料の物性値については,鋼材は S 規準, コンクリート                                              |    |
|                                |                     | <u>材料は RC-N</u> 規準に基づき設定する。                                                |    |
|                                |                     | <ul> <li>・三次元立体モデルによる応力解析から得られる解析結果</li> </ul>                             |    |
|                                |                     | に基づき、主トラスの構造評価を行う。また、二次部材                                                  |    |
|                                |                     | <u>については個別に応力解析を行い構造評価を行う。</u>                                             |    |
|                                |                     | サブトラス ・トラス要素<br>/ 「屋根トラスモデル化範囲 ・梁要素(上下弦材) カリ サブビーム<br>・トラス要素(別材) / カリ ・梁要素 |    |
|                                |                     |                                                                            |    |
|                                |                     |                                                                            |    |
|                                |                     |                                                                            |    |
|                                |                     |                                                                            |    |
|                                |                     |                                                                            |    |
|                                |                     | エデル化範囲 ニルテウオエデル (脚合図)                                                      |    |
|                                |                     | ビノル「山聖四 二八九五伊モノノル(風心因)     第1-7 図 原子恒建物主トラスの広力解析に用いる三次元立休エ                 |    |
|                                |                     |                                                                            |    |
|                                |                     | / / / (1)(1)(1)                                                            |    |