まとる	り資料比較表 〔第5条 津波による損傷の防止 別	添1添付資料 26] 波線・・	記載表現,設備名称の相違(実質的な相違なし)
東海第二発電所(2018.9.12版) 女	川原子力発電所 2号炉(2019.11.6 版)	島根原子力発電所 2号	炉	備考
添付資料.2.7.	添付資料 21		添付資料 26	
防潮堤及び貯留堰における津波荷重の設定方針について	期堤における津波波力の設定方針について	防波壁及び防波壁通路防波扉における津波荷	重の設定方針について	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
目 次1. 津波荷重の算定式(1)津波波圧算定式に関する文献の記載		目 次 1.津波荷重の算定式 (1)津波波圧算定式に関する文献の記載 0. 検討する1	、弐歩十分しの担害
2. 東海第二発電所のサイト特性を反映した防潮堤に作用する津		2. 使的力町 3. ソリトン分裂波及び砕波の発生、並びに津波波圧への影響	・記載万町の相選 【東海第二,女川2】 記載方針の相違によ る記載内容の相違
<u>波波圧の把握について</u> (1)分裂波発生に関する検討 (2)水理模型実験		(1) 平面二次元津波シミュレーションによる検討 (2) 水理模型実験及び断面二次元津波シミュレーションの条件整理	 ・設計方針の相違 【東海第二,女川2】 設計方針の相違による記載内容の相違
<u>(3)水理模型実験結果の検証(再現性検討)</u> <u>(4)まとめ</u>		 (3)水理模型実験による検討 (4)断面二次元津波シミュレーションによる検討 (5)三次元津波シミュレーションによる検討 	
 <u>津波波圧算定式適用に対する考え方</u> <u>(1)防潮堤及び防潮扉</u> (2)貯留堰 		<u>4.既往の津波波圧算定式との比較</u> <u>(1)検討概要</u> <u>(2)津波波圧検討フロー</u>	・設計方針の相違 【東海第二,女川2】 設計方針の相違によ
		 (3)朝倉式による津波波圧算定 (4)津波波圧の比較朝倉式(敷地高以上) (5)谷本式による津波波圧算定 (6)津波波圧の比較谷本式(敷地高以深) (7)まとめ 5.設計で考慮する津波波圧の設定 	る記載内容の相違

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
1. 津波荷重の算定式	1. 津波荷重の算定式	1. 津波荷重の算定式	
津波防護施設の津波荷重の算定式は、朝倉ら(2000)の研究	津波防護施設の津波荷重の算定式は、朝倉ら(2000)の研究	津波防護施設の津波荷重の算定式は、朝倉ら(2000)の研究を	
を元にした「港湾の津波避難施設の設計ガイドライン(国土交	を元にした「港湾の津波避難施設の設計ガイドライン(国土交	元にした「港湾の津波避難施設の設計ガイドライン(国土交通省	
通省港湾局,平成25年10月)」や「防波堤の耐津波設計ガイド	通省港湾局,平成 25 年 10 月)」や「防波堤の耐津波設計ガイ	港湾局,平成 25 年 10 月)」や「防波堤の耐津波設計ガイドライ	
ライン(平成27年12月一部改訂)等を参考に設定する。以下に,	ドライン(平成 27 年 12 月一部改訂)」等を参考に設定する。	ン(平成 27 年 12 月一部改訂)」等を参考に設定する。以下に,	
参考にした文献の津波荷重算定式の考え方と津波防護施設への	以下に、参考にした文献の津波波圧算定式の考え方と津波防護	参考にした文献の津波荷重算定式の考え方と津波防護施設への	
適用を示す。	施設への適用を示す。	適用を示す。	
(1) 津波波圧算定式に関する文献の記載	(1)津波波圧算定式に関する文献の記載	(1)津波波圧算定式に関する文献の記載	
a. 東日本大震災における津波による建築物被害を踏まえた津	a. 東日本大震災における津波による建築物被害を踏まえた津	a. 東日本大震災における津波による建築物被害を踏まえた津波	
波避難ビル等の構造上の要件に係る暫定指針(平成 23 年)	波避難ビル等の構造上の要件に係る暫定指針(平成 23 年)	避難ビル等の構造上の要件に係る暫定指針(平成 23 年)	
構造設計用の進行方向の津波波圧は、次式により算定す	構造設計用の進行方向の津波波圧は,次式により算定する。	構造設計用の進行方向の津波波圧は、次式により算定する。	
る。			
構造設計用の進行方向の津波波圧 q Ζ = ρ g (a h − Ζ)	$q z = \rho g (ah-z) (\boxtimes 1)$	構造設計用の進行方向の津波波圧 q z = ρ g (a h − z)	
(第1図)	ρg:海水の単位体積重量	(第1図)	
h:設計用浸水深	h : 設計用浸水深	h : 設計用浸水深	
Z:当該部分の地盤面からの高さ(0≦Z≦ah)	z : 当該部分の地盤面からの高さ(0≦z≦ah)	z :当該部分の地盤面からの高さ(0≦z≦ a h)	
a :水深係数	a : 水深係数。3とする。	a :水深係数	
ρg:海水の単位体積重量		ρg:海水の単位体積重量	
型設計用浸水深 之 版計用浸水深 之 上 加 之 人 的 一 之 人 的 一 之 人 一 之 人 一 之 人 一 之 人 一 之 人 一 之 人 の ($ah - z$) 文 人 人 の の ($ab - z$) 人 の の の の 人 の の の の の の の の の の の の の	<u>gz = µg(gh - z)</u> → → → → → → → → → → → → →	✓ 型計用浸水泵 6 apph 第1図 津波波圧算定図	
第1図 津波波圧算定図			
b. 港湾の津波避難施設の設計ガイドライン(平成 25 年 10 月) 文献 a に基づく。ただし,津波が生じる方向に施設や他 の建築物がある場合や,海岸等から 500m 以上離れている 場合において,水深係数は 3 以下にできるとしている。	 b. 港湾の津波避難施設の設計ガイドライン(平成25年10月) 文献 a. に基づく。ただし、津波が生じる方向に施設や他の 建築物がある場合や、海岸等から500m以上離れている場合 において、水深係数は3以下にできるとしている。 	b. 港湾の津波避難施設の設計ガイドライン(平成25年10月) 文献a.に基づく。ただし、津波が生じる方向に施設や他の 建築物がある場合や、海岸等から500m以上離れている場合に おいて、水深係数は3以下にできるとしている。	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
c.朝倉ら(2000):護岸を越流した津波による波圧に関する実	c. 朝倉ら(2000):護岸を越流した津波による波圧に関する実	c.朝倉ら(2000):護岸を越流した津波による波力に関する実験	
験的研究,海岸工学論文集,第 47 巻,土木学会,911-915	験的研究,海岸工学論文集,第47巻,土木学会,pp.911-915.	的研究,海岸工学論文集,第47卷,土木学会,911-915	
直立護岸を越流した津波の遡上特性から護岸背後の陸上	直立護岸を越流した津波の遡上特性から護岸背後の陸上構	直立護岸を越流した津波の遡上特性から護岸背後の陸上構	
構造物に作用する津波波圧について実験水路を用いて検討	造物に作用する津波波圧について実験水路を用いて検討し	造物に作用する津波波圧について実験水路を用いて検討し	
している。	ている。その結果,非分裂波の場合,フルード数が 1.5 以	ている。	
その結果,非分裂波の場合,フルード数が 1.5 以上では	上では構造物前面に作用する津波波圧分布を規定する水平	その結果, 非分裂波の場合, フルード数が 1.5 以上では構	
構造物前面に作用する津波波圧分布を規定する水平波圧指	波圧指標(遡上水深に相当する静水圧分布の倍率) α は最	造物前面に作用する津波波圧分布を規定する水平波圧指標	
標(遡上水深に相当する静水圧分布の倍率)αは最大で 3.0	大で 3.0 となるとしている (図 2)。	(遡上水深に相当する静水圧分布の倍率) α は最大で 3.0	
となるとしている。一方,ソリトン分裂波の場合は,構造	一方、ソリトン分裂波の場合は、構造物前面に働く津波	となるとしている。一方,ソリトン分裂波の場合は,構造物	
物前面に働く津波波圧は、構造物底面近傍で非分裂波のα	波圧は、構造物底面近傍で非分裂波のαを1.8倍した値と	前面に働く津波波圧は,構造物底面近傍で非分裂波の α を	
を1.8倍した値となるとしている(第2図及び第3図)。	なるとしている (図3)。	1.8 倍した値となるとしている(第2図及び第3図)。	
f_{x} 第2図 非分裂波の場合の 津波水平波圧 f_{x} f_{x			
 d.NRA技術報告「防潮堤に作用する津波波圧評価に用いる 水深係数について」(平成28年12月) 持続波圧を対象としてフルード数が1を超える場合の防 潮堤に対する作用波圧の評価方法を明確にするため、水理 試験及び解析を実施した結果、従来の評価手法でフルード 数が1以下になることが確認できれば、水深係数は3を適 用できるとされている。 	d. NRA 技術報告「防潮堤に作用する津波波圧評価に用いる水 深係数について」(平成28年12月) 持続波圧を対象としてフルード数が1を超える場合の防潮 堤に対する作用波圧の評価方法を明確にするため、水理試験 及び解析を実施した結果、従来の評価手法でフルード数が1 以下になることが確認できれば、水深係数は3を適用できる とされている。	 d.NRA技術報告「防潮堤に作用する津波波圧評価に用いる水 深係数について」(平成28年12月) 持続波圧を対象としてフルード数が1を超える場合の防潮 堤に対する作用波圧の評価方法を明確にするため、水理試験及 び解析を実施した結果、従来の評価手法でフルード数が1以下 になることが確認できれば、水深係数は3を適用できるとされ ている。 	
e.防波堤の耐津波設計ガイドライン(平成 27 年 12 月一部改		e.防波堤の耐津波設計ガイドライン(平成 27 年 12 月一部改訂)	
		め波啶の 準波波 上の 適用の 考え 力 として 、 ソリトン 分裂 波が 変 た よ え 細 へ は 依 エ の + - ・	
防波堤の 防波堤の アントン分裂			
彼が発生する場合は修正谷本式を、そうでない場合におい		り 防波堤を 越流する 場合には 静水比差による 算定式を、 越流しな	
て津波が防波堤を越流する場合には静水圧差による算定式		い場合は谷本式を用いることとしている。(第4図~第5図)。	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		<u>2. 検討方針</u>	・設計方針の相違
		島根原子力発電所の防波壁等*の設計で考慮する津波荷重は,	【東海第二,女川2】
		「水理模型実験及び津波シミュレーションによる津波波圧」と「既	設計方針の相違によ
		往の津波波圧算定式による津波波圧」を比較・検証することで設定	る記載内容の相違
		する。	
		既往の津波波圧算定式は、ソリトン分裂波や砕波の発生有無によ	
		り、算定式の適用性が異なる。そのため、島根原子力発電所におけ	
		る基準津波の特性及び沿岸の陸海域の地形を考慮した科学的根拠	
		に基づく,水理模型実験及び断面二次元津波シミュレーションを実	
		施し、ソリトン分裂波及び砕波の有無を確認する。	
		また,島根原子力発電所は輪谷湾を中心とした半円状の複雑な地	
		形である。そのため、三次元津波シミュレーションにより、複雑な	
		地形特性を考慮した三次元的な流況による津波波圧への影響を確	
		認し,水理模型実験及び断面二次元津波シミュレーションによる津	
		波波圧の妥当性を確認する。第6図に検討フローを,第1表に検討	
		項目及び検討内容を示す。	
		※防波壁及び防波壁通路防波扉を「防波壁等」という。	
		3. ソリトン分裂波及び砕波の発生,並びに津波波圧への影響	
		(1) 平面二次元津波シミュレーションによる検討 目的:「防波堤の耐津波設計ガイドライン」に基づくソリトン分裂波の発生確認	
		(2)水理模型実験及び断面二次元津波シミュレーションの条件整理 目的:地形特性及び津波特性の観点から津波波圧に影響するサイト特性を整理し,不確かさを考慮した検討条件を整理	
		(3)水理模型実験による検討 目的:津波波形の検証によるツリトン分裂波・砕波の発生確認及び津波波圧の算定	
		(4) 断面二次元津波シミュレーションによる検討 目的:水理模型実験の再現性の確認,津波波形の検証によるソリトン分裂波・砕波の発生確認及び津波波圧の算定	
		(5) 三次元津波シミュレーションによる妥当性確認 目的:島根原子力発電所の複雑な地形や三次元的な流況による津波波圧への影響を確認し、3.(3)章及び3.(4)章により算定 される津波波圧の妥当性確認	
		↓ 4. 既往の津波波圧算定式との比較 目的:水理模型実験及び津波シミュレーションと既往の津波波圧算定式の津波波圧を比較	
		 ↓ 5. 設計で考慮する津波波圧の設定 	
		第6図 検討フロー	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉 (2019.11.6 版)	島根」	原子力発電所 2号炉	備考
		第1表	検討項目及び検討内容	・設計方針の相違
		検討項目	検討内容	【東海第二,女川2】
		3. ソリトン分裂波及び砕波の発生,並びに津波波日 (1) 平面二次元津波シミュレーション	への影響 平面二次元津波シミュレーション結果及び海底勾配を用いて,「防波堤の耐津波設	設計方針の相違によ
		による検討	計ガイドライン」に基づき、ソリトン分裂波の発生有無を確認する。 水理模型実験及び断面二次元津波シミュレーションの追加実施に当たって、地形	る記載内容の相違
		(2)が理模型実験及び断面二次元津波 シミュレーションの条件整理	特性及び津波特性の観点から津波波圧に影響するサイト特性を整理し,不確かさ を考慮した検討条件を設定する。	
		(3) 水理模型実験による検討	流体の挙動を直接確認でき、サイト特性に応じた評価が可能となる水理模型実験 を追加実施し、水位の時刻歴波形からソリトン分裂波及び砕波の発生有無を確認 するとともに、防波壁及び施設護岸位置における津波波圧を算定する。	
		(4) 断面二次元津波シミュレーション による検討	水理模型実験結果について、ソリトン分裂波及び砕波を表現可能な断面二次元 津波シミュレーション(CADMAS-SURF(Ver.5.1))を追加実施し、再現性を確認す るとともに、防波壁及び施設護岸位置における津波波圧を算定する。	
		(5) 三次元津波シミュレーションによる検討 による妥当性確認	複雑な地形特性及び津波特性に応じた評価が可能である三次元津波シミュレーションCADMAS-SURF/3D(Ver.1.5)を追加実施し,3.(3)章及び3.(4)章による津波波圧と比較することで妥当性を確認する。	
		4. 既往の津波波圧算定式との比較	敷地高以上の構造物については、津波シミュレーション及び水理模型実験により防 波壁に作用する波圧を直接算定し、陸上構造物に作用する津波波圧算定式(朝 倉式)により算定した津波波圧と比較する。 敷地高以深の構造物については、津波ジミュレーション及び水理模型実験により敷 地高以深の構造物に作用する波圧を直接算定し、海中構造物に作用する津波波 圧算定式(谷本式)により算定した津波波圧と比較する。	
		5. 設計で考慮する津波波圧の設定	防波壁等について保守的な設計を行う観点から,上記の検討結果を踏まえた設計 用津波波圧を設定する。	
		津波シミュレーション	及び水理模型実験の長所・短所を整理した	
		うえで,島根原子力発電所	fにおけるソリトン分裂波及び砕波の発生	
		確認,津波波圧の確認に	係る検討内容を第2表に示す。	
		第2表 津波シミュレー 解析手法 長所 中面二次元 *店範囲にわたる地形のモデル化が 理面二次元 *層状の電 連波シミュレーション *解析時間が短い *審査における実績がある *ジリトン分裂波及び砕波の発生有 認か可能 水理模型実験 *審査における実績がある *理模型実験 *審査における実績がある *理波シミュレーション *理域波圧を直接評価可能 *意広おける実績がある *理波波したの市場が可能 *ジリトン分裂波及び砕波の発生有 認か可能 *ジリトン分裂波及び砕波の発生有 認知が可能 *理波シミュレーション *理域波圧を直接評価可能 *アルテンラシン *電なおける実績がある *夏次元 *環境な形見前が良い *現本な規則波形及び三次元的な流況 まえた津波波正を直接評価可能 シリトン分裂波は注波 *理福田する現象である。ま 波高が高くなると波が砕 いずれも構造物へ衝撃的 ある。第7図にソリトン	ション解析及び水理模型実験の長所・短所 短所 展所・短所を踏まえた検討内容 認所困難 ・ジリトン分裂波及び砕波の発生有無の確 認が困難 ・夏素津度波の策定 (人力津波高さ・流速) ・津波波圧の直接評価が不可能 「防波堤の耐津波設計ガイドライン」に 基ズジリトン分裂波の発生確認 第の確 複雑な地形や構造物のモデル化が困難 ・言次元的な流況の再現が不可能 ・科学的根拠に基ズソリトン分裂波の発生確認 第の確 複雑な地形や構造物のモデル化が困難 ・言次元的な流況の再現が不可能 ・科学的根拠に基ズソリトン分裂波及 (特波の発生確認) 第の確 複雑な地形や構造物のモデル化が困難 ・言次元的な流況の可規が不可能 ・科学的根拠に基ズソリトン分裂波及 (特波の発生確認) 第の確 ・複雑な地形特性及び非波病性 たい システンプロな流況の可規が不可能 ・秋理模型実験の再現性確認 ・ 津波波正の確認 可能 ・ご次元的な流況の可規が不可能 ・秋理模型実販の可規定の発生確認 ・ 津波波正の確認 ・ ・ 注意 (日前な完美績がない) 可能 の 伝播 過程 で 複数の 波 に 分裂し, 波 高が た, 砕波は 波が 浅海域を進行する際に, け, 波 高 が 急激 に 小 さくなる 現象 で ある。 ・ な 波 圧 を 作用 さ せ る 可能性 が ある 現象 で 分裂波及び非分裂波の 概要を示す。	
		<u>非分裂波の場合の構造</u> <u>に依存した直線形状とな</u> <u>は,構造物の底面近傍で</u> <u>水平波力は非分裂波に比</u>	物に作用する津波波圧分布は,津波高さ る。一方,ソリトン分裂波が生じた場合 は非分裂波を 1.8 倍した波圧が作用し, べて約 20%大きくなる可能性がある。	

 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
2. 東海第二発電所のサイト特性を反映した防潮堤に作用する津	2. 女川原子力発電所のサイト特性を反映した防潮堤に作用する	3. ソリトン分裂波及び砕波の発生,並びに津波波圧への影響	
波波圧の把握について	津波波圧の把握		
 (1) <u>分裂波発生に関する検討</u> 	(1) <u>分裂波発生に関する概略検討</u>	(1) 平面二次元津波シミュレーションによる検討	
沖合から伝播してくる津波が、サイト前面においてソリト	沖合から伝播してくる津波が,サイト前面においてソリトン	沖合から伝播してくる津波が,サイト前面においてソリトン分	
ン分裂波を伴うか否かの判定に当たっては、「防波堤の耐津	分裂波を伴うか否かの判定に当たっては、「防波堤の耐津波設計	裂波を伴うか否かの判定に当たっては、「防波堤の耐津波設計ガ	
波設計ガイドライン」において以下の2つの条件に合致する	ガイドライン」において以下の2つの条件に合致する場合,ソ	イドライン」において,以下に示す①かつ②の条件に合致する場	
場合、ソリトン分裂波が発生するとされている。	リトン分裂波が発生するとされている。	合、ソリトン分裂波が発生するとされている。	
①おおむね入射津波高さが水深の 30%以上(津波数値解析	① おおむね入射津波高さが水深の 30%以上(津波数値解析等	条件①:津波高さが水深の 60%程度以上	
等による津波高さが水深の60%以上)	による津波高さが水深の60%以上)		
②海底勾配が 1/100以下程度の遠浅	② 海底勾配が 1/100 以下程度の遠浅	条件②:海底勾配 1/100 程度以下	
東海第二発電所前面の海底地形は約1/200勾配で遠浅であ	<u>女川原子力発電所では防潮堤前面に盛土法面があることから</u>	条件①について検討した結果を第3表,第8図及び第9図に示	・記載方針の相違
り、入射波津波高さと水深の関係も入射津波高さが水深の	入射津波高さを精緻に評価することは難しいが、一般的には入射	<u>す。地点1~3 では津波高さは水深の60%以下となるが,水深が10</u>	【東海第二,女川2】
30%以上であることから、両方の条件に合致する(第6図及	津波高さは水深の 50%程度であり、津波が盛土法面により堰上げ	mよりも浅い地点 1'~3'では護岸の反射波の影響により津波高	記載方針の相違によ
び表 1)。そこで、沖合におけるソリトン分裂波及び砕波の発	される効果も考えると入射津波高さと水深の関係は少なくとも	<u>さが水深の 60%以上となる。</u>	る記載内容の相違
生の有無や陸上へ遡上する過程での減衰の状況と防潮堤が	30%以上となる。		
受ける津波波圧への有意な影響の有無を定量的に確認する	また,女川原子力発電所前面の海底地形を図4及び図5に示す。	<u>第3表</u> 津波高さと水深の割合	
ため, 東海第二発電所のサイト特性を考慮した水理模型実験	前面の沖合地形の概要は,沖合 2km 付近まで急峻な勾配で,その	(2))津波喜さ※1 (2)/(1)	
を行い、防潮堤が受ける波圧分布等を測定した。	後沖合 6km 付近までは緩やかな地形が続き,その後,再び急峻な		
	勾配が続いている。沖合10km付近までの平均勾配はおよそ1/100	地点1 16m 5.0m 4.0m 31.3% 25.0%	
	となっている。	地点2 16m 6.0m 6.0m 37.5% 37.5%	
時7 西200	<u>よって,①及び②の条件に合致し,ソリトン分裂波が発生する</u>	地点3 17m 5.0m 7.0m 29.4% 41.2%	
	可能性があることから、ソリトン分裂波の発生有無と防潮堤が受		
	ける津波波圧への影響を定量的に確認するため, 女川原子力発電	地占※2 (1)水深 (2)津波高さ※1 (2)/(1)	
	所のサイト特性を考慮した数値流体解析及び水理模型実験を行	防波堤有 防波堤無 防波堤有 防波堤無	
0 10000 20000 30000 40000 50000 距離[m]	い,防潮堤が受ける波圧分布等を詳細検討する。	地点1' 4.0m 7.5m 6.0m 187.5% 150.0%	
and the second sec		地点2′ 6.0m 6.0m 6.0m 100.0% 100.0%	
第6図 海底地形断面位置図及び海底地形断面図		_ 地点3′ 5.0m 6.0m 8.0m 120.0% 160.0%	
		※1 平面二次元津波シミュレーションによる津波高さを保守的に評価した値	
第1表 津波高さと水深の関係		※2 地点1~30円万回における護年則面位直	
地点 (1)水深 (2)入射津波高さ* (2)/(1)			
東海第二発電所前面 7.5m 4.7m 62%			
※津波数値解析による津波高さの1/2を入射津波高さと定義(防測堤の耐津波ガイドライン)			

炉	備考
(EL.(m)) 9,59 9,00 8,59 8,00 7,59 7,50 7,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6	 ・設計方針の相違 【東海第二,女川2】 設計方針の相違によ る記載内容の相違
(EC(m)) 9,00 9,00 8,00 7,00 6,00 7,00 6,00 5,00 5	
<u> なび第11図に示す。</u> <u> 結果より,津波高さの</u> <u> 朔望平均満潮位</u> <u> ・考慮した入力津波 EL.</u> <u> 0.64m)を考慮しても,</u> <u> き波は越流しない。</u> <u> m から施設近傍までの</u> <u> った。</u> <u> っか合 200m までの海底</u>	

市海笠二双雲正(2010 0 10 町)		自相匠了力戏電話。05
□		局极尿于刀笼电 <u>所</u> 27
		A LI & Same
		A HER STORE
	基準律波の策定に用いた波源については、2011年3月11日	Cherry is a pro-
	に発生した東北地方太平洋沖地震で得られた知見を踏まえて設	A Bar Bar
	定した波源のすべり領域を拡大したり、すべり量の割増しを行	CITY States
	うなどの保守的な設定を複数加えた波源である。	
	<u>女川原子力発電所の防潮堤の設計で考慮する津波波圧につい</u>	Carl
	ては,東北地方太平洋沖地震に伴う津波の状況やサイト特性(地	- Sintan
	形,構造,津波等)を反映した検討(数値流体解析,水理模型	0
	実験)を行い、既往の津波波圧算定式との比較結果も踏まえて	-20 1/35
	保守的に設定する。	ε -40 -60
		-80
	b. 検討方法	-100 0 5000 10000 15000 20000
	津波波圧の検討は数値流体解析(断面二次元津波シミュレーシ	2,500 距離(m)
	ョン解析)と水理模型実験(平面水槽実験)により行う。数値流	第10図 海底地形断面
	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	
	水理模型実験は流体の挙動を直接確認でき、サイト特性や津波	最大波高を拡大
		. 地点3
	波理論に基づいた数値流体解析により基準津波による水位・流	
	····································	
	せて比較・考察を行うことでソリトン分裂波の発生有無や津波波	-8
	Fの作用状況等に関して信頼性の高い評価が可能となる。	0 5000 10000 時間(秒)
		第1波を拡大
	表 1 数値流休解析と水理構型実験の比較	
		(E)
	検討方法 長所 短所	マ 米 -0.5
	✓ 理論式に基づく流体の挙動を確認可能 ✓ 評価値の信頼性(再現 * 分裂波の発生有無を確認可能 性)に関して、流体の実	-1
	<u> </u>	6800 6850 6900 6950 5 時間(秒)
	✓ 流体の実挙動を直接確認可能 ✓ 複雑な不規則波形の車	8
	✓ 分裂波の発生有無を確認可能 現は困難 水理模型実験 ✓ 地形や構造物の特性,津波特性に応じた ✓ 地形や構造物の複雑な	♀ ⁴ 【最大波高発生時】
	評価が可能 ✓ 測定値の信頼性(再現性)が高い モデル化は困難	
		-4
		-8
		<u>第11図</u> 津波高さの時刻
		(地点3,基準津波1:防液

東海第二発電所(2018.9.12版)		女川原子力発電所 2号炉(2019.11.6 版)	島根原子力発電所 2号
	<u>c. 検討項</u>	<u>1</u>	「防波堤の耐津波設計ガイドライン」の条
	数值流体	解析及び水理模型実験による検討項目を表2に示す。	に合致しないため,ソリトン分裂波が発生し
	数值流体解	析では基準津波を対象とし、水理模型実験では津波の	砕波発生有無の確認を含めて,科学的根拠にま
	波形特性(周期,波高)を変化させた複数の模擬津波を対象とし,	めに,水理模型実験及び断面二次元津波シミニ
	<u>それぞれ検</u>	<u>討を行う。</u>	<u>施する。</u>
		表2 検討項目	
	検討項目	確認内容	
	津波波圧の 確認	✓ 非線形分散波理論に基づいた解析と、実流体を対象とした実験により、サイト 特性を踏まえた津波波圧を確認する。	
	ソリトン分裂 の有無	✓ 防潮堤近傍でソリトン分裂が発生する場合には、構造物底面近傍の水深係 数が大きくなることから、非分裂波かソリトン分裂波かを確認する。	
	水深係数の	✓ 朝倉式では水深係数として3が使用されているが、平成28年12月NRA技 術報告において水深係数3の適用範囲をフルード数が1以下としていることを踏まえ、防潮堤前面位置でのフルード数を確認する。	
	整理	✓ 防潮堤に作用する波圧分布を無次元化し、水深係数として整理することで、 朝倉式の水深係数3と比較する。	
	d. 検討概要		
	検討概要	を図6に示す。最初に基準津波や東北地方太平洋沖地	
	震による津	波の特性に関して、周辺地形等の影響も踏まえて確認	
	し, 津波の	第1波が後続波と比較して極端に大きくなること,数	
	<u>值</u> 流体解析	及び水理模型実験による検討では津波の第1波を評価	
	<u>対象とする</u>	ことを示す。次に数値流体解析による検討結果に関し	
	<u>て,基準津</u>	波に伴うソリトン分裂の有無や津波波圧の発生状況等	
	(おおむね	静水圧の波圧分布)を示す。次に水理模型実験による	
	検討結果に	ついて,模擬津波(波形特性の不確かさを考慮)に伴	
	<u>うソリトン</u>	分裂の有無や津波波圧の発生状況等(波圧分布は静水	
	<u>圧型)を</u> 示	す。次に数値流体解析及び水理模型実験の検討結果を	
	既往の津波	波圧算定式と比較し,水深係数として整理した結果が	
	朝倉式に包	含されることを示す。最後に設計で考慮する津波波圧	
	の設定方法	に関して、保守性を確保する観点から朝倉式を参照す	
	<u>ることを示</u>	<u></u>	

·炉	備考
件①かつ条件②の条件	・設計方針の相違
、ないと考えられるが,	【東海第二,女川2】
基づいた確認を行うた	設計方針の相違によ
ュレーションを追加実	る記載内容の相違

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炮
	 (1) 基準津波等の特性の確認(周辺地形等の影響確認) 	
	☆ 御中洋 (1997年18月1日) 津波の第1波が絶赫波と仕較して極端に大きい	
	 (2) 数值法体報析による論討(基準律波に伴う津波波圧の確認) 	
	おおむね藤水圧の波圧分布	
	 ③ 水理様型実験による検討(波形特性の不確かさを考慮した違波波圧の確認) 	
	(4) 既往の津波波圧算定式との比較(解析及び実験の保守性の確認)	
	 (5) 設計で考慮する違波波圧の設定(設計荷重の保守性を確保) 	
	図6 検討概要	
	(3) 基準津波・東北地方太平洋沖地震による津波の特性の確認	
	<u>女川原子力発電所の基準津波はプレート間地震(東北地方太</u>	
	<u>平洋沖型の地震)による津波であり,策定位置は沖合約 10km</u>	
	となっている。基準津波の第1波は複数の波の重なり合いによ	
	る二段型波形となっており,第1波全体としての半周期は約10	
	<u>~20分,二段型波形のうちの個別波部分の半周期は約5分とな</u>	
	<u>っている。数値流体解析及び水理模型実験により津波波圧の検</u>	
	<u>討を行うにあたり、基準津波及び東北地方太平洋沖地震による</u>	
	<u>津波の特性の確認を行った。</u>	
	<u>a. 第1波と後続波の関係</u>	
	基準律波及び東北地方太平洋沖地震による津波の第1波は二段	
	型波形が特徴となっている。また、津波は指向性を有しているこ	
	とから、一般に震源付近の津波水位が高く、第1波が支配的とな	
	<u>女川原子力発電所は、湾や人り江形状を呈する地形が多数存在</u>	
	するリアス式海岸の南部に位置し、後続波(周辺地形からの反射	
	<u>波)の重なり合い等による津波水位の増幅が見られる可能性があ</u>	
	<u>ることから、基準準波(水位上昇側)、基準準波(水位上降側)を</u>	
	<u> 対象とした半面一次元津波シミュレーション解析により、2号炉</u>	
	<u> 取水日前面における水位時刻歴波形を確認を行った結果,各津波</u>	
	ともに後続波は減衰惧回を示しており、第1波の水位が後続波と	
	比較して極端に大きくなることを確認した(凶 9 ~凶 11)。	

炉	備考			
	・設計方針の相違			
	【東海第二,女川2】			
	設計方針の相違によ			
	る記載内容の相違			

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6 版)	島根原子力発電所 2
	また,東北地方太平洋沖地震において,震源から離れた八戸港	
	では、周辺地形からの反射波の影響が含まれた第2波で最高水位	
	<u>を生じているが、その津波水位は約4.6mと小さいことを確認し</u>	
	た (図 12)。	
	なお,女川原子力発電所の基準津波の検討において,震源位置	
	(大すべり域)を移動させた場合の津波水位に与える影響につい	
	ても検討しており、発電所に正対する位置に震源(大すべり域)	
	がある場合,最も津波水位が高く,発電所から離れるにつれてそ	
	の影響は小さくなることを確認している(図13及び図14)。	
	以上の結果から、震源から離れた位置では後続波で最高水位を	
	生じる可能性があるが、女川の基準津波は発電所に正対する位置	
	に震源を設定することで第1波で最高水位を生じることになり,	
	後続波が減衰傾向を示すことと併せて、第1波の影響が支配的と	
	なることを確認した。	
	$ \begin{array}{c} $	
	図 7 基準津波の時刻歴波形(水位上昇側)	
	10.0 10.0	
	観測記録:3月11日14:30~24:00(地盤変動量考慮前)(東北電力(2011)より)	
	図8 東北地方太平洋沖地震の観測波形(港湾内潮位計)	

炉	備考			
	・設計方針の相違			
	【東海第二,女川2】			
	設計方針の相違によ			
	る記載内容の相違			

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
(2) 水理模型実験		(2)水理模型実験及び断面二次元津波シミュレーションの条件整	・設計方針の相違
		理	【東海第二,女川2】
	THE STEP IN THE STEP	地形特性及び津波特性の観点から津波波圧に影響するサイト特	設計方針の相違によ
		性を整理し、不確かさを含めて実験条件及び解析条件を設定する。	る記載内容の相違
		水理模型実験及び断面二次元津波シミュレーションに使用する	
		基準津波の選定に当たっては、ソリトン分裂波や砕波の発生及び津	
		波波圧への影響要因である津波高さ及び流速を指標とした。	
	「「ない」の不確かさ 「「ない」」、「なない」、「なない」、「なない」、「なない」、「ない」、「ない」	基準津波のうち津波波圧に対して支配的となる水位上昇側の基	
		準津波を対象とし、各防波壁前面位置の結果について整理した。整	
	水位上昇側 水位下降側	理結果より、3号炉においては基準津波1(防波堤有)、1、2号炉	
	図9 基準津波(東北地方太平洋沖型の地震)	においては基準津波1(防波堤無)を選定した。基準津波(水位上昇	
		<u>側)における津波高さと流速を第4表に示す。</u>	
	20.0 19.14m(42.459)	<u>第4表 基準津波(水位上昇側)における津波高さと流速</u>	
	a	基準 地形変化 津波高さ 流速	
		津波 市政堤 最高水位 発生位置 最大流速 (m/s) 発生位置	
		1 1 1 1 1 3 つよいの 3 つよいの	
	-20.00 1 2 3 4 5 6 7 8 9 ===================================	日本海東緑部 石 9.0 3号炉東側 5.7 1, 2号炉 1/4回	
		5 無 11.5 1,2号炉 北側 6.2 1,2号炉 北側	
	<u>図10 基準律波(水位上升側)の2 万</u> 炉取水口削面にわける水位 味力度速率		
	时刻膛放形		
		<u>基準律後1(防波堤有,防波堤無)による律波局さを防波壁主</u> 奥 にわいて評価するため、水畑増刑実験及び販売三次二シミート。シ	
	20.0 17.14mK 37.359	において評価するため,小理模型美缺及び倒面二次元シミュレーシ	
	* 10.0		
	to o - o - o - o - o - o - o - o - o - o	<u>こして、 律仮向さかり仮望入端向さてのる EL. $\pm 13.0 \text{III}$ こなる仮圧 検計田決速(15_m 決速)を設定した</u>	
	(m) -10.010.30m(61.29)		
		「「「「「「「「「」」」」。 「「「」」」。 「「」」」。 「「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」、 「	
		<u>昇足を日所に</u> , 防疫型がない 私法 Cの 年返過 L (化を確認) 57 スも併せて実施した 津波波 F に 影響する 不確 か さの 孝慮 内 突一 皆	
	図11 基準津波(水位下降側)の9号 「「「取水口前面におけろ水位」	<u> あめ</u> が 協力 た して 、 律 仮 仮 上 に 影 音 う る い 能 が こ の う 感 り 行 に う る 、 に い こ の う 感 り 行 に う る 、 に い こ の う 感 り 行 に う る 、 に い こ の う 感 り 行 に う の う 感 り 行 し れ い こ の う 感 い れ い こ の う 感 り れ い こ の う 感 い れ い こ の う 感 い れ い こ の う 感 い れ い こ の う の い れ い こ の う 感 い れ い こ の う 感 い れ い こ の う 感 い れ い こ の う 感 い れ い こ の う の い れ い こ の う 感 い れ い こ の う の い れ い い い こ の う の い れ い こ の う の い れ い こ の う の い れ い こ の う の い れ い こ の う の い れ い こ の う の い れ い い こ の う の い れ い こ の う の い れ い い こ の う の い れ い こ の う の い れ い こ の う の い れ い い い い い れ い い い い い い い い い い い	
	<u>因 II 坐牛使 (水區 陸國) - 2 号於坂水百前面(230) - 3水區</u> 時刻壓波形	$\frac{\chi\chi_0(\chi_{\rm H})}{\chi_0}$	

炉			備考
の考	f慮内容-	一覧表	・設計方針の相違
:			【東海第二,女川2】
- 3	异炉)		設計方針の相違によ
hote	5	比較する	る記載内容の相違
でですが	観内谷 <u>を考慮</u>	検討ケース	
及び基	準津波1(防波堤	(m) (U, (U)	
皮圧検	討用津波(15n	1)津波)	 -
準津波	皮1(防波堤有)の	3, 6半周期	
石)			-
,,,		**	1
壁	水埋模型 実験	断面次元津波 シミュレーション	- 1
	0	0	
	0	0	
	0		-
	0		
	0	_	
		※通過波計測ケース	
. 2	号炉)		
かさのき	考慮内容	比較する	
する防	波堤は無いものと	検討ケーフ	
<u>慮</u> 是無)		7, 8	-
討用海 <u>う慮</u>	◎波(15m)津波)		-
e無) 波1(防波堤無)の半周	期 (0, 10)	
炉	i)		
壁	水理模型 実験	断面二次元津波 シミュレーション	
	0	0	
	0	0	
	0	_	_
	0	_	_
	0	—	
		※通過波計測ケース	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
<u>a. 目的</u>	<u>b.</u> 周辺地形の影響	【目的及び入射津波の造波】	・設計方針の相違
基準津波の策定に用いた波源については,2011 年東北	<u>女川原子力発電所の敷地周辺は複雑に入り組んだ湾構造になっ</u>	水理模型実験は,ソリトン分裂波や砕波の発生の有無及び防波壁	【東海第二,女川2】
<u>地方太平洋沖地震で得られた知見を踏まえて設定した波</u>	ているため、敷地に到達する津波は周辺地形からの回り込みの影	が受ける津波波圧への有意な影響の有無,並びにフルード数の把握	設計方針の相違によ
<u>源のすべり領域を拡大したり,すべり量の割増しを行う</u>	響もある。この影響を確認するため、基準津波の第1波の敷地へ	を目的に実施する。	る記載内容の相違
<u>などの保守的な設定を複数加えた波源である。</u>	の到達に関して、平面二次元津波シミュレーション解析と、後述	水理模型実験における再現範囲は施設護岸から離れた沖合約	
<u>水理模型実験は,ソリトン分裂波が生じない沖合 5.0km</u>	する断面二次元津波シミュレーション解析(非線形分散波理論を	2.5kmの位置とし、入力津波高さが最大となる基準津波1(防波堤	
<u>における津波波形を入力し、ソリトン分裂波や砕波の発</u>	考慮)の波形比較を行った。	有・無)の平面二次元津波シミュレーションから求めた同地点にお	
<u>生の有無及び陸上へ遡上する過程での減衰状況と防潮堤</u>	<u>基準津波策定位置において,平面二次元津波シミュレーション</u>	ける津波波形(最大押し波1波)を入力する。	
<u>が受ける津波波圧への有意な影響の有無並びにフルード</u>	解析の出力波形を断面二次元津波シミュレーション解析に入力し	実験における入射津波は、同地点の水位と流速を用いて入射波成	
数の把握を目的に実施した。	て検討した結果,敷地近傍(港口部,2号炉取水口前面)での両	分と反射波成分に分離し、入射波成分を造波する。	
	者の第1波の出力波形はおおむね一致した(図 15)。	入射津波高さについては,基準津波1(防波堤有・無)と,不確か	
	断面二次元津波シミュレーション解析においては周辺地形から	<u>さを考慮した波圧検討用津波(15m津波)を設定する。波圧検討</u>	
	の回り込みの影響を考慮していないため、出力波形の一致は平面	<u>用津波(15m津波)は、基準津波1(防波堤有・無)と同周期とし</u>	
	二次元津波シミュレーション解析においても,第1波到達におけ	て防波壁前面における反射波を含む遡上高が EL. +15m となるよう	
	る周辺地形の影響がほとんどないことを示しており、基準津波の	振幅を調整する。なお、本波圧検討用津波(15m津波)は、防波	
	第1波は周辺地形の影響をほとんど受けずに策定位置から直線的	壁等の設計用津波波圧として用いるものではない。	
	に到達することを確認した。	周期については、基準津波1(防波堤有・無)の周期と、不確かさ	
	<u>また,断面二次元津波シミュレーション解析では周辺地形から</u>	を考慮した基準津波1(防波堤有・無)の半周期を設定する。入射津	
	の回り込みの影響を考慮できないこと、解析境界からの反射波の	波の造波波形図を第12図及び第13図に示す。	
	影響が平面二次元津波シミュレーション解析と断面二次元津波シ		
	ミュレーション解析で異なることから、津波の第1波を評価対象	—————————————————————————————————————	
	(後続波は評価対象外)とし,非線形分散波理論に基づいた断	6	
	面二次元津波シミュレーション解析により、分裂波の発生有無及	5	
	び分裂波の影響も考慮した津波波圧の評価が可能となる。		
		☐ 2 最局水位EL.+2.44m ()	
	· · · · · · · · · · · · · · · · · · ·	to MANA LANA ANA ANA	
	(iii) zi		
		-2	
	0 5 23 25 28 25 36 35 48 45 59		
		時間(分)	
	· · · · · · · · · · · · · · · · · · ·		
	29炉泡水口前面	第12図(1) 入射津波の造波波形図(防波堤有)	
	凶 15 水位時刻歴波形の比較(上段:港口部, 下段:2号炉取水		

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6 版)	島根原子力発電所 2号
	<u>c. まとめ</u>	
	<u>女川原子力発電所の基準津波及び東北地方太平洋沖地震による</u>	基準律波1(防波堤有) 基準律; 15m津波【ケース③~⑤】15m津波
	津波の特性を確認した結果,第1波の影響が支配的となる(第1	6
	<u>波の水位は後続波と比較して極端に大きい)こと,第1波は周辺</u>	5 4 A A
	地形の影響をほとんど受けずに策定位置から直線的に到達するこ	
	とを確認した。	夏1 入射波
	<u>以上を踏まえて、津波の第1波を検討対象として津波防護施設</u>	料 0 米 1
	に作用する津波波圧の検討を行うこととし、数値流体解析(断面	-2
	二次元津波シミュレーション解析)による検討と併せて、波形特	4
	性(周期,波高)の不確かさも考慮した水理模型実験による検討	6.0 0.5 1.0 1.5 2.0 2.5 時間(分)
	<u>を補完的に行う。</u>	
		第12図(2) 入射津波の造波波形図
	(4) 数値流体解析による検討	
	<u>a. 解析条件</u>	——基準津波1(防波堤無)
	女川の地形特性(海底勾配, 2段敷地, 鋼管式鉛直壁)を再現	6
	したうえで、基準津波を対象とした数値流体解析(断面二次元津	4
	波シミュレーション解析)により、津波の水位・流速・波圧等の	G 3 最高水位EL,+2.33
	確認を行った。数値流体解析は、非線形分散波理論に基づいた解	
	析手法であり,ソリトン分裂波を表現可能な数値波動水路	별 · · · · · · · · · · · · · · · · · · ·
	CADMAS-SURF/3D (Ver.1.5) を用いた。	· · · 1 -2
	解析領域は後述する水理模型実験と同じ区間をモデル化し,入	-3
	射波は平面二次元津波シミュレーション解析による基準津波(東	-4 0 20 40 60 80 100 120 140 160
	北地方太平洋沖型の地震(水位上昇側))の出力波形(第1波)と	時間(分)
	し,基準津波策定位置に入力した。解析モデルを図 16 に示す。	第13図(1) 入射津波の造波波形
		基準津i(防波堤無)基準津i
		15m津波【ケース⑧~⑩】15m津沢
		6
		∃ 1 到 0 入射波
		× 1 -2
		-3
		0.0 0.5 1.0 1.5 2.0 2.5 時間(分)
		第13図(2) 入射津波の造波波形図

·炉	備考
	・設計方針の相違
	【東海第二,女川2】
皮の伝播特性を踏まえ <u>,</u>	設計方針の相違によ
交し,海底地形を示す	る記載内容の相違
水理模型実験における	
- 0	
Ĩ	
~ / 5	
R	
示 車女 <u>批</u>	
1 I I I I I I I I I I I I I I I I I I I	
安堤無)	
形:防波堤無)	
-	
堤無 ─●─ 実験断面 3号炉 防波堤有	
堤無 現地地形_3号炉_防波堤有	
基準津波策定位置	
1/65.8	
253500 254000 254500 255000	
※海底地形勾配を示す。	
<u> </u>	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	(5) 水理模型実験による検討	水理模型実験の実験装置例の写真を第18図及び第19図に示	・設計方針の相違
	<u>a. 実験条件</u>	<u> </u>	【東海第二,女川2】
	水理模型実験の条件設定フローを図 20 に示す。発電所の地形特		設計方針の相違によ
	性,構造物(防潮堤)特性,津波特性(基準津波,東北地方太平		る記載内容の相違
	洋沖地震による津波)の観点から津波波圧に影響するサイト特性	A CONTRACTOR OF A CONTRACTOR O	
	を整理し、保守的な結果が得られる条件を設定する。		
	<u>津波波圧に影響するサイト特性の整理と水理模型実験条件への</u>		
	反映結果を表3に示す。地形特性、構造物特性及び津波特性の観		
	<u>点から津波波圧に影響するサイト特性を整理し、保守的になるよ</u>		
	う実験条件を設定するとともに、津波の波形特性としての周期(継		
	<u>続時間)及び波高の不確かさを考慮した。</u>		
	<u>津波の波形特性(周期,波高)の不確かさが津波波圧等に与え</u>	<u>第18図(1) 実験施設写真(3号炉)</u>	
	る影響を確認するため、津波の周期を2種類、波高を6種類で変		
	化させた計12種類の津波波形(1波形あたり3回)による水理模		
	型実験を行った(表4)。なお、二段型津波の波形信号は、半周期	The second se	
	20分のガウス分布に半周期5分の同じ津波高さのガウス分布を重		
	<u>ね合わせた(図 21)。</u>		
	<u>実験装置は,長さ60m×幅20m(内幅18m)×高さ15mの平</u>		
	面水槽を用い、実験縮尺(幾何縮尺)は1/125とした。また、目		
	標最大水位 0. P. +37. 5m となる高水位の津波を増波するため, 増波		
	装置の能力や水槽内の貯留可能水量を考慮し、沖合部に津波水位		
	<u>を高くするための収斂壁(幅18mより4mに絞る)を設置し、下</u>	<u>第18図(2)</u> 実験施設写真(1,2号炉)	
	流側に幅 4m水路,陸上模型(護岸・盛土・敷地)及び防潮堤模		
	型を構築した。実験装置及び実験模型の概要を図 22,図 23 及び		
	写真1に示す。		

炉	備考
	 ・設計方針の相違 【東海第二,女川2】 設計方針の相違によ る記載内容の相違
3号炉)	
2号炉)	

東海第二発電所(2018.9.12版)		女川原	子力発電府	斤 2 号炉(2019.11	.6版)	島根原子力発電所 2号炉	備考
<u>e.</u> 水理模型実験の結果	表3 津波波圧に影響するサイト特性の整理と水理模型実験条件		水理模型実験条件	<u>.c</u> 水理模型実験の結果	・設計方針の相違		
(a) 水理模型実験におけるソリトン分裂波の確認		<u>への反映結果</u>			(a) ソリトン分裂波及び砕波の確認【ケース①】	【東海第二,女川2】	
平面二次元津波シミュレーション解析に即した津波波						発電所沖合から防波壁の近傍において,ソリトン分裂波及び砕波	設計方針の相違によ
形を造波し、水理模型実験を行った。水理模型実験にお	分類	項目	サイト特性	津波波圧への影響	実験条件への反映結果	を示す波形がなく、水位は緩やかに上昇していることを確認した	る記載内容の相違
ける時刻歴図を第10図に示す。その結果、目視観察と波		海底勾配	1/100	 海底勾配が 1/100 以下程度の 遠浅で、かつ津波高さが水深の 	サイト特性を再現(与条件) ※:津波高さの違いがソリトン分裂	(H1~H12 地点)。また,水理模型実験(H10 地点)と同等な水深に	
高計による計測により,沖合約 220m 地点(W7)におい			(平均勾配)	が発生する可能性がある	波の有無に影響するため、準 波高さの項目で反映	おける平面二次元津波シミュレーション(地点1)の時刻歴波形を	
てソリトン分裂波が生じることを確認した。ただし、陸					<u>保守性を考慮(防波堤なしでモデ</u> <u>ル化)</u>		
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー					 防波堤なしの場合に津波は直接 防潮堤に作用すること、基準津 		
での有意な波圧分布への影響は認められない。また、防	地形	防波機	防波得去し	 防波堤の有無は防潮堤に対す る津波の流向に影響する(防) 	波の最高水位か防波堤よりも十 分高く波長も長いことから、津波 波広への影響論計り ご防波場	生しないことを確認した。	
潮堤前面位置(W10)で砕波は生じず、防潮堤位置で		WT AX HE	W7.4X.4E.00*/	潮堤に対して沿波になるか否 か)	設住への影響後前として防波堤 なしが保守的と考えられる [#] ※: 女川の水位評価としては防波	=	
の有音な波圧分布への影響は認められない。					堤ありの方が保守的となるが、 実験では水位条件ごとの波圧	ついて、緩やかに上昇していることを確認した。実験条件を第6表	
					計測を目的とするので防波堤な しでの条件設定は妥当		
		前面地形	2段數地	 防潮堤海側の敷地法面は、防潮 場に作用する津波波圧を減勢す 	サイト特性を再現(与条件)		
		(防潮堤海側)	-10.40.54	る効果をきたす可能性がある		第6表 実験条件(ケース①)	
		設置位置	法面上部 (法肩)	 ・ 汀線から離れるほど津波が減勢 し、津波波圧は小さくなる 	サイト特性を再現(与条件)		
		防潮堤高さ	0.P.+29m	 影響なし 	サイト特性を再現(与条件)	ケース 津波 (周期) 防波堤 護岸 防波壁 ケース① 有 有 有	
	構造物			 鋼管式鉛直壁(直立構造)と比 約して 成十提防けま決測とに 	<u>保守性を考慮(鋼管式鉛直壁(一</u> 給収)でモデル化)	ケース② エード・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(W) AM SE		鋼管式鉛直壁 (一般部,岩盤	伴う滅勢効果があり、津波波圧 が小さくなる可能性がある	 ・ 鋼管式鉛直壁は盛土堤防よりも ま流遡上に伴う減勢効果は小さ 	ケース④ [※] 波圧 有 有 無	
		754⊼	部)と盛土堤防 の併用	 構造物設置高さ(海側地形の標 高)が高い方が構造物に作用す 	いと考えられる ・ 鋼管式鉛直壁の岩盤部は一般	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
				る津波の水深が小さくなる(津波 波圧は小さくなる)	部よりも海側地形の標高が高く。 津波波圧は小さい		
					<u>不確かさを考慮(半周期5分,20</u> 分の2ケース)		
		波形	二段型波形	 津波の周期は、防潮堤に作用する津波の波長、流速の大小に影響する。 	 基準津波の第1波の半周期が約 10~20分、二段型波形のうちの 		
	津波 (基準津波,			¥90	個別波部分の半周期が約5分 であることを考慮して設定		
	東北地方太 平洋沖地震 (ことる)津波)				<u>不確かさを考慮(0.P.+17.0m~</u> 0.P.+37.5mの6ケース)	11	
	1~40件故)	津波高さ	O.P.+24.4m (入力津波高さ)	 津波高さが高い方が、流速も含めた津波のエネルギーが大き 	 ・ 鋼管式鉛直壁(一般部)の直立 壁部分に作用する規模の津波 		
				く、津波波圧は大きくなる	ー 高さとして越波の可能性まで考 慮して設定	Н	
		1	Į		LI	Ha	
						米 H8 均	
						н	
						но	
				H11 H12			
				ніз			
						0 60 120 180 240 300 360 時間(sec)	
						第20図 水理模型実験における水位の時刻歴波形 (ケース①)	

~炉			備考
-ス②			・設計方針の相違
リトン分裂波及び砕波			【東海第二,女川2】
ていることを確認した			設計方針の相違によ
	_		る記載内容の相違
ン分	刻波7	るび砕波は発	
<u> </u>			
びく	かって	を後の波形に	
5).	ま ま 殿	を供た第7主	
/ <u>`</u> :	天阪ラ	<u> 村田を用く衣</u>	
(2))	_		
護岸	防波壁		
有有	有有		
	有		
有	無		
無	無		
有	有		
 通過波計測ケース			
		反射波	
/			
1			
240 200 200			
240 300 360			
如麻波形(ケーマの)			
刻歴》	ゼ 形	(ケース(2))	

	准书
	111 方
-ス(3)	・設計方針の相違
リトン分裂波及び砕波	【東海第二,女川2】
ていることを確認した	設計方針の相違によ
	る記載内容の相違
ン分裂波及び砕波は発	
ぶつかった後の波形に	
して影響を確認する	
に示す	
(\mathfrak{I})	
設 岸 防波壁	
9 月	
う 有	
<u>う 無</u> 無 無	
亨 有	
反射波	
- Annon	
240 300 360	
刻歴波形(ケース③)	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		(d) ソリトン分裂波及び砕波の確認【ケース④】	・設計方針の相違
		防波壁が無い状態での津波遡上状況の把握を目的に,通過波実験	【東海第二,女川2】
		を行い、水位・フルード数の確認を行った。	設計方針の相違によ
		発電所沖合から防波壁の近傍において,ソリトン分裂波及び砕波	る記載内容の相違
		を示す波形がなく、水位は緩やかに上昇していることを確認した	
		<u>(H1~H12地点)。</u>	
	収斂壁 陸上模型·防潮堤模型	防波壁前面のH13地点においても、ソリトン分裂波及び砕波は発	
		生しないことを確認した。	
		また, 第一波の反射波と第二波の入射波がぶつかった後の波形に	
		ついて乱れを確認した。実験条件を第9表に,時刻歴波形を第23	
		図に示す。	
	防潮堤模型断面 波圧計設置(盛土・防潮堤前面)	<u>第9表</u> 実験条件(ケース④)	
		r_{λ} r_{λ}	
	<u>- 与具 1 美験装直</u>	$5 \rightarrow k_{\odot}$ $4\bar{x}$ $15 \rightarrow 15$ $7-\lambda^2$ $\pm \bar{x}$ m f	
		ケース③ 基準津波1 有 有 ケース④ [※] **** 有 有	
	<u>0. 週週仮夫</u> 練 	<u> 坂</u> 工 ケース(5) [※] 校訂用津波 (15m津波) 有 無 無	
	構造物がない状態での律波状況把握を目的に, 防衛堤がないて	ケース⑥ 基準津波1 の半周期 有 有 有	
		※通過波計測ケース	
	防潮堤の近傍において津波の第1波の水位波形は滑らかにたっ	11. 入射波 第二波 反射波 反射波	
	ており ソリトン分裂は発生しておらず 水位が緩やかに上昇す		
	るような水位変動型の津波が発生した。なお、単峰型津波の沖合		
	· · · · · · · · · · · · · · · · · · ·	H4	
	平面水槽実験による収斂壁による水流の漸縮・水位上昇や側壁か	н	
	らの反射の影響が含まれているものと考えられるが、主たる確認	T H6	
	対象である陸上模型位置(W04~W08)の第1波は安定した波形と	Т	
	なっている。	₩ H8	
	<u>各ケースでの通過波実験(防潮堤なし)における津波の水理諸</u>	Н	
	<u>量を表5に示す。また、防潮堤前面位置でのフルード数は単峰型</u>	H10	
	で 0.8 程度, 二段型で 0.6 程度となり, 最大でも 0.843 で 1.0 を	H11	
	下回った。津波の水平流速の小ささ(周期の長さ)や2段敷地の	H12	
	盛土法面の影響等によって津波が減勢し、防潮堤前面位置では常	H13	
	流(Fr<1.0)となった可能性が考えられる。	0 60 120 180 240 300 360 時間(sec)	
		第23図 水理模型実験における水位の時刻歴波形 (ケース④)	

炉	備考
おけるフルード数の時	・設計方針の相違
後の浸水深が浅い時間	【東海第二,女川2】
水深と同時刻における	設計方針の相違によ
最大浸水深及び同時刻	る記載内容の相違
図に示す。	
使用する水深係数(水	
されている。	
では陸上構造物前面に	
皮圧指標 (遡上水深に相	
)となる。	
大浸水深と同時刻にお	
圧算定で使用する水深	
よる波圧に関する実験	
木学会,PP.911-915	
けるフルード数	
侍)	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
果准弗	<complex-block></complex-block>	Britker+7.9発電所 2 5 pr (e) ソリトン分裂波及び砕波の確認 [ケース⑤] 反射波の影響を受けない状態でのソリトン分裂波及び砕波の発 生有無の確認のため、施設護岸及び防波壁無による通過波実験を行 い、発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕 波を示す波形がなく、水位は緩やかに上昇していることを確認した (用へH12地点)。実験条件を第11表に、時刻歴波形を第25図 に示す。 第11表 実験条件 (ケース⑤) 第11表 実験条件 (ケース⑥) 第11表 実験条件 (ケース⑥) 第11表 実験条件 (ケース⑥) 第11表 実験条件 (ケース⑥) 第11章 第 第 第 第 第 9 - 20 第4年度1 第 第 第 9 - 20 9 - 20 第 第 第 9 - 20 9 - 20 第 8 第 8 1 9 - 20 9 - 20 第 8 第 8 1 9 - 20 9 - 20 第 8 第 8 1 9 - 20 9 - 20 第 8 第 8 1 9 - 20 9 - 20 第 8 第 8 1 9 - 20 9 - 20 第 8 第 8 1 9 - 20 9 - 20 第 8 第 8 1 9 - 20 9 - 20 9 8 8 8 2 9 - 20 9 - 20 9 8 8 8 2 9 - 20 9 - 20 9 8 8 8 2 9 - 20 9 - 20 9 8 8 8 2 9 - 20 9 - 40 9 8 8 8 2 9 - 20 9 - 40 9 8 8 8 2 9 8 8 2 9 8 8 2 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 ・設計方針の相違 【東海第二,女川2】 設計方針の相違によ る記載内容の相違

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	防衛堤岸波得重実験:防衛堤前方 WAVF004:0.P.+32.5m, 半周期5.分, 単純型 WAVF004:0.P.+32.5m, 半周期5.分, 単純型	(f) ソリトン分裂波及び砕波の確認【ケース⑥】	・設計方針の相違
		不確かさケースとして,極端に周期を短くした場合の検討(基準	【東海第二,女川2】
	F F	津波1の半周期)を実施した。	設計方針の相違によ
		発電所沖合から防波壁の近傍において, ソリトン分裂波を示す波	る記載内容の相違
	and the second s	形がなく,水位は緩やかに上昇していることを確認した(H1~H12)。	
		また,第一波の反射波と第二波の入射波がぶつかった後の波形に	
		ついて乱れを確認したことから,波圧を算定して影響を確認する。	
	防衛堤岸拔荷重実験:防衛堤前方 WAVE005:0.P.+35.0m,半周期5分,単峰型 WAVE005:0.P.+35.0m,半周期5分,単峰型	実験条件を第12表に、時刻歴波形を第26図に示す。	
		第12表 実験条件 (ケース⑥)	
		検討 ケース 液形 (周期) 防波堤 施設 護岸 防波壁	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		ケース③ 基準津波1 有 有 有	
	防潮堤律波彻重実験:防潮堤前方 WAYE006:0.P.+37.5m, 半周期5分, 単峰型 WAVE006:0.P.+37.5m, 半周期5分, 単峰型	ケース④ [×] 波圧 有 有 トース@ [×] 検討田津波 ケース 畑 畑	
		リース(5) (15m)津波) 月 無 無 たっての 基準津波1 た た た	
		1. 84 300	
		H2 10.0m	
	写真 2-2 実験状況(津波荷重実験)	НЗ	
		H4	
		H5	
		H10	
		H11	
		H12	
		н13	
		0 60 120 180 240 300 360	
		<u></u>	

炉	備考
	・設計方針の相違
作用する波圧分布を第	【東海第二,女川2】
と縦軸の標高を津波に	設計方針の相違によ
験により算定した3号	る記載内容の相違
なり, ソリトン分裂波	
iないため, ソリトン分	
はないことを確認した。	
有))	
108	
_2回目	
3回目	
+15.0m	
3 3.5 4 ×	
20	
の不確かさ	
の半周期)	
〕10目	
》_2回目	
0_30目	
1	
L.+15.0m	
3 3.5 4	
Teach -	
した波圧分布	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	防潮堤塗波街重実験:防潮堤前方 防網堤塗波樹重実験:防潮堤横方	(h) ソリトン分裂波及び砕波の確認【ケース⑦】	・設計方針の相違
	WAVE104:0.P.+32.5m, 半周期20分, 二段型 WAVE104:0.P.+32.5m, 半周期20分, 二段型	発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波	【東海第二,女川2】
		を示す波形がなく、水位は緩やかに上昇していることを確認した	設計方針の相違によ
		(H1~H12 地点)。また,水理模型実験(H10 地点)と同等な水深	る記載内容の相違
		における平面二次元津波シミュレーション(地点3)の時刻歴波形	
		を比較した結果、同等の津波を再現できていることを確認した。	
		防波壁前面の H13 地点においても, ソリトン分裂波及び砕波は発	
	防潮堤津波荷重実験:防潮堤前方 WAVE105:0.P.+35.0m。半周期20分,二段型 WAVE105:0.P.+35.0m。半周期20分,二段型	<u>生しないことを確認した。</u>	
		また, 第一波の反射波と第二波の入射波がぶつかった後の波形に	
		ついて、緩やかに上昇していることを確認した。実験条件を第13	
		表に、時刻歴波形を第28図に示す。	
		<u>第13表</u> 実験条件(ケース⑦)	
	防潮堤津波荷重実験:防潮堤前方 防潮堤津波荷重実験:防潮堤横方	検討 ケース 波形 (周期) 防波堤 施設 護岸 防波壁	
	WAVELUD: 0. P. +37. 5m, 中周期20万, 二政型 WAVELUD: 0. P. +37. 5m, 中周期20万, 二政型	ケース⑦ 基準津波1 無 有 有	
		ケース⑧	
		$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	
		ケース⑪ ^{陸準準ル1} 無 有 有 の半周期 無 有 有	
		※通過波計測ケース	
	<u> </u>		
		H1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		H2 10.0m	
		H3	
		H4	
		H6	
		₩ ⁴ H8	
		н11	
		H12	
		H13 0	
		0 60 120 180 240 300 360 時間(sec)	
		第28図 水理模型実験における水位の時刻歴波形 (ケース⑦)	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
東海第二発電所(2018.9.12版)	<section-header></section-header>	島根原子力発電所 2号炉 (1) ソリトン分裂波及び砕波の確認【ケース®】 発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波 を示す波形がなく、水位は緩やかに上昇していることを確認した (旧〜H12地点)。 防波壁前面のH13地点においても、ソリトン分裂波及び砕波は発 生しないことを確認した。 また、第一波の反射波と第二波の入射波がぶつかった後の波形に ついて乱れを確認したことから、波圧を算定して影響を確認する。 実験条件を第14表に、時刻歴波形を第29図に示す。 第14表 実験条件 (ケース③) 第14表 実験条件 (ケース③) 第14素 実験条件 (ケース③)	備考 ・設計方針の相違 【東海第二, 女川2】 設計方針の相違によ る記載内容の相違

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	MANEDOG: 0. P. + 37. 0年、学用現 5 分、米4条型 FATEDOG: 0. P. + 37. 1年、中用現 5 分、米4条型 WATEDOG: 0. P. + 37. 1年、中用現 5 分、米4条型 FATEDOG: 0. P. + 37. 1年、中用現 5 分、米4条型 WATEDOG: 0. P. + 37. 1年、中用現 20 分、二尺型 FATEDOG: 0. P. + 37. 1年、中用現 20 分、二尺型 WATEDOG: 0. P. + 37. 1年、中用現 20 分、二尺型 FATEDOG: 0. P. + 37. 15、中用現 20 分、二尺型	 (j) ソリトン分裂波及び砕波の確認【ケース⑨】 防波壁がない状態での津波遡上状況の把握を目的に,通過波実験 を行い,水位・フルード数の確認を行った。 発電所沖合から防波壁の近傍において,ソリトン分裂波及び砕波 を示す波形がなく,水位は緩やかに上昇していることを確認した (H1~H12地点)。 防波壁前面のH13地点においても,ソリトン分裂波及び砕波は発 生しないことを確認した。 また,第一波の反射波と第二波の入射波がぶつかった後の波形に ついて乱れを確認した。実験条件を第15表に,時刻歴波形を第3 0図に示す。 	 ・設計方針の相違 【東海第二,女川2】 設計方針の相違による記載内容の相違
	<u>写真2-6 実験状況(津波荷重実験)</u>	fritter (fritter fritter fritt	

	(井 十)
	偏考
さけるフルード数の時	・設計方針の相違
後の浸水深が浅い時間	【東海第二,女川2】
水深と同時刻における	設計方針の相違によ
と。最大浸水深及び同時	る記載内容の相違
1図に示す。	
使用する水深係数(水	
されている。	
では陸上構造物前面に	
皮圧指標 (遡上水深に相	
)となる。	
と同時刻におけるフル	
算定で使用する水深係	
よる波圧に関する実験	
木学会, PP.911-915	
けるフルード数	
臣)	
<u>ר די</u>	

~炉	備考
-ス10	・設計方針の相違
ン分裂波及び砕波の発	【東海第二,女川2】
 による通過波実験を行	設計方針の相違によ
ソリトン分裂波及び砕	る記載内容の相違
時刻歴波形を第32図	
-ス(11))	
a 施設 護岸 防波壁	
有有	
有有	
有無	
無 無	
有有有	
通過波計測ケース	
240 300 360	
刻歴波形(ケース⑪)	

炉	備考
-ス(1)】	・設計方針の相違
 した場合の検討 (基準	【東海第二,女川2】
	設計方針の相違によ
<u>リトン分裂波を</u> 示す波	る記載内容の相違
を確認した(H1~H12)。	
ぶつかった後の波形に	
として影響を確認する。	
3図に示す。	
-ス①)	
有有	
有無	
無 無	
有有有	
通過波計測ケース	
反射波	
John market	
2 million and a second	
m	
240 300 360	
2-TU JUU 30U	
刻歴波形(ケース⑪)	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	<u>d. まとめ</u>	<u>(m)</u> 波圧の算定結果	・設計方針の相違
	女川原子力発電所のサイト特性を反映した防潮堤に作用する津	水理模型実験において計測した防波壁に作用する波圧分布を第	【東海第二,女川2】
	波波圧について、鋼管式鉛直壁を模擬した水理模型実験により、	34図に示す。水理模型実験により算定した1,2号炉前面の防波	設計方針の相違によ
	不確かさとして津波の波形特性(周期、波高)の違いが津波波圧	壁における波圧分布は,直線型の波圧分布となりソリトン分裂波や	る記載内容の相違
	等に与える影響を確認した。	砕波発生時にみられる波圧増加がみられないため,ソリトン分裂波	
	検討の結果,防潮堤の近傍で津波のソリトン分裂は確認されず,	や砕波による津波波圧への有意な影響はないことを確認した。	
	防潮堤前面位置でのフルード数は1以下となった。また、津波の		
	波形特性(周期,波高)の違いに関わらず,津波の衝撃圧は発生	ケース⑧ (周期:基準津波1(防波堤無))	
	<u>せず,持続</u> 圧が作用した。また,防潮堤に作用する波圧分布はい		
	<u>せず, 特続圧が作用した。また, 防潮堤に作用する波圧分布はい</u> <u>ずれも直線型となった。</u>	4	
		0 0 0.5 1 1.5 2 2.5 3 3.5 4 無次元最大波圧Pmax/pghimax	
		第34図 水理模型実験により算定した波圧分布	

東海第二発電所(2018.9.12版)		女川原子	·力発電所	2 号炉(2019.11	.6版)	島根原子力発電所 2号炉	備考
<u>(3)</u> 水理模型実験結果の検証(再現性検討)	(6) 津波波圧評価に影響を与える不確かさの考慮方法			与える不確かさの)考慮方法	(4) 断面二次元津波シミュレーションによる検討	・設計方針の相違
水理模型実験結果について, 断面二次元津波シミュレーシ				明堤に作用する津波	ぼ波圧について、数	水理模型実験と同じ条件(ケース①、③、⑦及び⑧)について、	【東海第二,女川2】
ョン解析を実施し,防潮堤位置での津波波圧算定式が朝倉式	<u>値流体</u> 角	解析及びオ	く理模型実	ミ験による検討を 行	<u> 「っているが,津波</u>	断面二次元津波シミュレーションを実施した。	設計方針の相違によ
①で妥当であることを検証した。断面二次元津波シミュレー	波圧評位	価に影響を	与える項	夏目を網羅的に抽出	は・整理(表3)し	(a) ソリトン分裂波及び砕波の確認【ケース①】	る記載内容の相違
ション解析は、分散波理論に基づいた解析手法であり、ソリ	<u>た上で</u> ,	影響のナ	こ きい項目	目に対して不確かさ	を考慮した検討を	ケース①の解析結果は、以下のとおり、水理模型実験と同等の津	
トン分裂波を表現可能な数値波動水路 CADMAS-SURF/2D	行ってい	いる。津波	友波圧に影	/響する不確かさの)考慮方法を表6に	波を再現できていることを確認した(H1~H13地点)。	
(Ver.5.1) を用いた。	示す。					 ・発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕 	
<u>a.</u> 水理模型実験結果の再現性	津波江	皮圧の検討	たおいて	こは,水理模型実験	で周期と波高の不	<u>波を示す波形がなく、水位は緩やかに上昇している(H1~H12</u>	
<u>水理模型実験でモデル化した区間と同じ区間を解析領</u>	確かさる	を考慮して	こいるが,	数値流体解析で考	意する不確かさの	地点)。	
域としてモデル化した(第 13 図)。また,入射波は水理	<u>検討結</u>	果を以下に	示す。			・防波壁前面の H13 地点においても,ソリトン分裂波及び砕波は	
模型実験の入力波形に合わせて作成した。						<u>発生しない。</u>	
	<u>表</u>	6 津波波	圧評価に	影響する不確かさ	の考慮方法	 ・第一波の反射波と第二波の入射波がぶつかった後の波形につい 	
W1 W3 W7	分類	項目	サイト特性	不確かさ	の考慮方法	て、緩やかに上昇している。	
			1/100	水理模型実験(表3の要約)	数值流体解析	解析条件を第19表に、時刻歴波形を第35図に示す。	
∇DL5.5mm(T.P.+1.11m) DL20mm DL23.5mm (T.P.+4.7m)		海底勾配	(平均勾配)			<u>第19表 解析条件 (ケース①)</u>	
166 mm 146 mm 40 mm	地形	防波堤	防波堤あり	 【防波堤なしで代表】	 【防波堤なしで代表】	検討 ケース 波形 (周期) 防波堤 施設 護岸 防波壁	
		前面抽転		_	敷地法面が津波波圧の減勢 効果を有するかを確認するた	ケース① 有 有 有 ケース② 基準津波1 無 有 有	
x=-25100mm x=-1100mm x=300mm		(防潮堤海側)	2段敷地	(与条件)	<u>め、法面の形状変化を仮定し</u> た感度解析を実施	ケース③ 基準津波1 有 有 有	
x=0mm		設置位置	法面上部			ケース(4) ^{**} 波圧 有 用 ケース(5) ^{**} (検討用津波) 有 無	
<u>第13図 解析モデル図</u>			(法肩)	(与来件)	(与来件)	ケース(6) 日本	
断面二次元津波シミュレーション解析の結果を第 14 図(1)	構造物 (防潮場)	高さ	0.P.+29m	(与条件)	(与条件)	※通過波計測ケース	
<u>~(2)に示す。水理模型実験結果と同様,沖合約220m地点(W</u>	(W/MORE/	T < 45	鋼管式鉛直 壁(一般部,				
7)においてソリトン分裂波を確認した。ただし、陸上に遡		TP 4X	右望部)2登 土堤防の併 田	【調査式館置型(一般部)で 代表】	【調査式指置型(一般部)で 代表】		
上する過程で分裂波は減衰しており、防潮堤位置での有意な				周期の不確かさを考慮(模擬			
<u>波圧分布への影響は認められない。また、防潮堤位置(W1</u>	津波 (基準津波,	波形	二段型波形	<u>津波)</u> (半周期約20分と約5分の2 ケース)	基準津波(水位上昇側)と波	H3	
0) で砕波は生じず,防潮堤位置での有意な波圧分布への影	東北地方太 平洋沖地震		0.P.+24.4m	注波高さの不確かさを考慮	<u>形特性の異なる津波として、</u> <u> 基準津波(水位下降側)の補</u> 見給料を実施	H4 0 H5	
響は認められない。	による津波)	津波高さ	(入力津波 高さ)	<u>(模擬津波)</u> (O.P.+17.0m~O.P.+37.5m ま エのミケーマ)	A-15(8) 2 34.85	H6	
防潮堤壁面に作用する津波波圧は実験値とほぼ同等のもの				(0007-2)	ļ		
<u>となり、朝倉式()による波圧分布を下回るとともに、朝倉式</u>						₩ H8 H9	
(2)のような波圧分布は認められす,朝倉式①と整合する結果						на	
						н	
<u> 断面 _ </u>							
<u> </u>						0 60 120 180 240 300 360	
<u>く, 単直線型の朝倉式山に包含されることを確認した。</u>							
						<u> 弗33凶 </u>	
						時刻歴波形 (ケース①)	

炉	備考
	・設計方針の相違
基準津波 1(防波堤有))	【東海第二,女川2】
基に波形の水面勾配を	設計方針の相違によ
	る記載内容の相違
大きくなる時刻に着目	
長大で 1.40°であり,	
30°~40°に比べて十	
リトン分裂波や砕波と	
裂波及び砕波は発生し	

炉	備考
-ス⑦】	・設計方針の相違
理模型実験と同等の津	【東海第二,女川2】
13 地点)。	設計方針の相違によ
 ソリトン分裂波及び砕	る記載内容の相違
と昇している(H1~H12	
i	
トン分裂波及び砕波は	
かった後の波形につい	
38図に示す。	
ス(7))	
超設 防波壁 防波壁	
有有	
有有	
有無	
有 有 有	
(2017年)	
青線:解析結果	
反射波	
240 300 360	
-) //テナンナフ -レ/- の	
ヨノにおける水位の	

備考 ・設計方針の相違 「東海棠二」 / 川本)
・設計方針の相違
【果碑弗二,女川2】
設計方針の相違によ
る記載内容の相違

炉	備考
	・設計方針の相違
津波1(防波堤無))の断	【東海第二,女川2】
波形の水面勾配を確認	設計方針の相違によ
	る記載内容の相違
大きくなる時刻に着目	
最大で 1.83°であり,	
30°~40°に比べて十	
リトン分裂波や砕波現	
ン分裂波及び砕波は発	

·炉	備考
	・設計方針の相違
草定した防波壁 (敷地高	【東海第二,女川2】
る波圧分布を第41図	設計方針の相違によ
る水理模型実験結果 (3	る記載内容の相違
示す。なお,敷地高以	
を静水面からの津波高	
章定した波圧分布は,水	
<u>生があることを確認し</u>	
トン分裂波や砕波によ	
<u> </u>	
))	
ション	
模型実験	
3	
(上))	
/ーション	
· 模型実験	
3	
 波圧分布の比較	

~ 炉	備考
	・設計方針の相違
))	【東海第二 廿1119】
	設計力針の相遅によ
シミュレーション	る記載内容の相違
3	
深))	
ンミュレーション 水理様型実験	
3	
波圧分布の比較	

東海第二発電所(2018.9.12版)	女」	女川原子力発電所 2号炉(2019.11.6版)					島根原子力発電所	2号
		表 7 水深係数一覧(水理模型実験)						
			-		大海保護さ			
	波条	件 波形	最大值	平均值	標準偏差			
	WAVE	001	2.44	2.18	0.15			
	WAVE	002	2.34	2.12	0.13			
	WAVE	003 単峰型	2.46	2.24	0.16			
	WAVE	004 半周期 5分	2.57	2.31	0.16			
	WAVE	005	2.54	2.27	0.16			
	WAVE	006	2.62	2.31	0.16			
	WAVE	101	2.85	2.39	0.23			
	WAVE	102 - ED-#1	2.68	2.33	0.17			
	WAVE	103	2.62	2.22	0.17			
	WAVE	104 千周期 20分	2.67	2.34	0.20			
	WAVE	105	2.78	2.37	0.20			
	WAVE	106	2.60	2.31	0.16			
		(全体)	2.85	2.28	0.18			
			編集(木似上昇類ケース1) 編集(木似上昇類ケース2) 編集(上秋山子類サース2) 第第2012 ・朝倉式(2) ・朝倉式(2) ・朝倉式(2) ・朝倉式(2) ・朝倉式(2) ・初前白(2) ・ 一 (1) ・ 一 (1) ・ 一 (1) ・ 一 (1) ・ (2) (2) ・ (2) ・ (2) ・ (2) ・ (2) ・ (2) (2) ・ (2) ・ (2) ・ (2) (2) ・ (2) (2) ・ (2) (2) ・ (2) (2) (2) (2) (2) (2) (2) (2)): 木理模型実験に基): 木理模型実験に基 12): 陸上構造物にf (20³ a = 1+1, 4Fr で計 2 FF=0, 843 (実験の) 40 (無:次元:) 	つく実験式。 つく実験式。 に用する津波特核波正 価できるとした式、 適てきるとした式、 最大価)で記載 最大津波波	の算定式		

炉	備考
	・設計方針の相違
	【東海第二,女川2】
	設計方針の相違によ
	る記載内容の相違

東海第二発電所(2018.9.12版)	女川原子力発電所 2 号炉(2019.11.6 版) 島根原子力発電所 2 号炉	備考
	(5) 三次元津波シミュレーションによる検討	・設計方針の相違
	(a) 検討概要	【東海第二,女川2】
	前項で行った水理模型実験及び断面二次元津波シミュレーショ	設計方針の相違によ
	ンでは、島根原子力発電所の代表断面について検討した。島根原子	る記載内容の相違
	力発電所は輪谷湾を中心とした半円状の複雑な地形であるため,三	
	次元津波シミュレーションを実施して,複雑な地形や三次元的な流	
	況による津波波圧への影響を確認し,水理模型実験及び断面二次元	
	津波シミュレーションによる津波波圧の妥当性を確認する。	
	入射津波については、基準津波1(防波堤有、防波堤無)の場合、	
	敷地への浸水が局所的であり,防波壁等への津波波圧の影響の確認	
	ができないことから、波圧検討用津波(15m津波)を設定する。	
	なお,波圧検討用津波(15m津波)により算定した波圧は,防波	
	壁等の設計用津波波圧として用いるものではない。	
	解析モデルについては,島根原子力発電所の陸海域の地形特性を	
	再現したモデルとする。	
	<u>(b) 解析条件等</u>	
	三次元津波シミュレーション概要図を第42図に示す。	
	the (m)	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
		3 2 1 1 1 1 1 1 1 1 1 1 1 1 1
		第42図(2) 入射津波の造波波形
		2 5機西側からの距離 () 防波堤基高か () 防波堤基高か () 所 () 所 () 所 () 所 () 所
		解析モデルについては,防波壁位置におけ 圧を算定するため,陸海域の地形等の特性 組んだ複雑な地形)を再現して海底地形及び ともに,防波壁等の形状及び高さを再現した を第23表に示す。

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		<u>第23表 解析条件</u>	・設計方針の相違
		モデル化領域 南北方向:2,175m, 東西方向:1,125m	【東海第二,女川2】 設計方針の相違に上
		格子間隔 Δx=6.25m, Δy=6.25m, Δz=1.0~2.0m	る記載内容の相違
		解析時間 1079秒(基準津波1の押し波最大波)	
		<u>(c) 津波水位</u> 波圧検討田津波(15m津波)を用いた三次元津波シミュレーシ	
		ョンにより抽出された防波壁前面における最高水位位置を第43	
		図に、最高水位分布を第44図に示す。なお、代表として防波堤有	
		の結果を示す。	
		<image/>	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
東海第二発電所 (2018.9.12版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2月 18 14 12 10 8 6 500 400 300 200 防波堤基部からの距離 第44図(1) 防波壁前面におけ (3号炉北側前面) 18 10 10 10 14,16 14,16 0 50 100 150 2号炉西側からの距離 第44図(2) 防波壁前面におけ (1,2号炉北側前面)

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6 版)	島根原子力発電所 2号炉	備考
		<figure><figure><section-header><equation-block></equation-block></section-header></figure></figure>	 ・設計方針の相違 【東海第二,女川2】 設計方針の相違による記載内容の相違

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		1000000000000000000000000000000000000	 ・設計方針の相違 【東海第二,女川2】 設計方針の相違による記載内容の相違
		<u>第46図(1)防波壁に作用する標高別の最大波圧分布</u> <u>(3号炉北側前面)</u> $\frac{1}{9}$ 	
		<u>第46図(2)防波壁に作用する標高別の最大波圧分布</u> <u>(1,2</u> 号炉前面)	
		第0 70 60 50 40 30 20 10 0 70 60 50 40 30 20 0 70 60 50 40 30,20 0 70 40 30,20 0 70 40 0 70 50 0 70 50 50 50 50 70 50 50 70 50 50 70 50 50 70 50 50 70 50 50 70 50	
		<u>第46図(3)防波壁に作用する標高別の最大波圧分布</u> (3号炉東側前面)	
		 (e)津波波圧(標高毎) <u>波圧検討用津波(15m津波)を用いた三次元津波シミュレーションにより防波壁に作用する波圧(標高毎)を直接算定した結果を</u> 第47図に示す。 	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉 (2019.11.6 版)	島根原子力発電所 2号
		※凡伊 防波 0 18 16 7 50 10 0 50 10 0 50 100 150 最大波圧(kN/m²) ※凡伊 防波 • 0 • 65.63 • 96.88 • 100 • 200 • 300 • 400 • 465.6
		20 6.25 18 15.63 16 マ防波壁天端高さ EL. + 15.0 m 14 43.75 14 12 10 マ敷地高さ EL. + 8.5 m 6 50 100 10 50 100 8 50 100 150 三大波圧(kN/m²) 第4 7 図 (2) 防波壁に作用する波圧分布
		20 ● 12.50 18 ● 134.38 16 ▽防波壁天端高さ EL. + 15.0 m ● 134.38 ● 337.50 ● 346.88 ○ 20 14 14 14 10 10 マ敷地高さ EL. + 8.5 m ○ 20 10 50 100 150 最大波圧 (kN/m²) 第 4 7 図 (3) 防波壁に作用する波圧分布

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
		(参考)三次元津波シミュレーションによる
		三次元津波シミュレーションによる最大派
		用状況を第48回に示す。
		208.00 s
		第48図(1)津波の作用状況(3号炉北側)
		248.00 s
		<u>第48図(2)津波の作用状況(1,2</u> 号炉
		265.00 s
		第48図(3)津波の作用状況(3号炉東側

小 0		備老
1. 100 円 単次 1. 100 円 単準 皮到達時刻の津波の作 【東海第二、女川2】 設計方針の相違による記載内容の相違 1. 100 円 単 2. 100 円 単 山前面最大波到達時刻) 1. 100 円 単 1. 100 円 単 1. 100 円 単 山前面最大波到達時刻) 1. 100 円 単	/// 、 浄油の作田中辺	·
(本世の主要で支付の)(学校区の)(学校E))		□ 以□ 刀 □ □ □ 11 □ □ □ □ □ □ □ □ □ □ □ □ □ □
 (1000)	<u> 対達時刻の律彼の</u> 作	【果御弗二, 女川2】
3記載内容の相違 山前面最大波到達時刻) 前面最大波到達時刻) 前面最大波到達時刻) 前面最大波到達時刻) 前面最大波到達時刻)		設計方針の相違によ
<u>山前面最大波到達時刻</u>) 前面最大波到達時刻)	14.000 (m)	る記載内容の相違
 前面最大波到達時刻) 前面最大波到達時刻) 	<u> 前面最大波到達時刻)</u>	
1400000	前面最大波到達時刻)	
前面最大波到達時刻)	14.000 [m]	
	前面最大波到達時刻)	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
		_(f)津波波圧比較
		3号炉北側前面及び1,2号炉前面の敷地高
		おける、三次元津波シミュレーション、断面
		ション及び水理模型実験(3号炉北側前面の
		より算定した波圧分布の比較結果を第49日
		複雑な地形を考慮した三次元的な流況を
		<u>シミュレーションの結果を踏まえても,水理</u>
		元津波シミュレーションによる津波波圧と
		とを確認した。これらの結果より,島根原子
		ー や三次元的な流況による影響は認められない
		び断面二次元津波シミュレーションによる!
		は妥当であると判断した。
		3号炉北侧前面(敷地高以上) 波圧分布 1,2号
		25
		20 xm u u d z z
		## 10 05
		0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 無次元最大波圧P _{INIX} /Pp ¹ _{INIX}
		3号炉北侧前面(敷地高以深)波圧分布 1,25
		12 1.2 1.2
		0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
		0.4 0.4 0.4
		0 EL±0.0m EL±0.0m EL±0.0m EL±0.0m EL±0.0m EL±0.0m EL±0.0m
		-0.8
		-1.2 0 加次元最大波氏Press/pt/ptmax
		<u>第49図 敷地高以上及び敷地高以深に</u>

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
3. 津波波圧算定式適用に対する考え方	3. 津波波圧算定式適用に対する考え方	4.既往の津波波圧算定式との比較	・設計方針の相違
(1) 防潮堤及び防潮扉	(1) 津波波圧の確認結果と考察	(1) 検討概要	【東海第二,女川2】
防潮堤及び防潮扉位置図を第20図に示す。	<u>女川原子力発電所の防潮堤の設計で考慮する津波波圧に関し</u>	既往の津波波圧算定式の妥当性を確認するため,水理模型実験,	設計方針の相違によ
防潮堤がないモデルで実施した水理模型実験においては,	て,非線形分散波理論に基づいた数値流体解析(断面二次元津	断面二次元及び三次元津波シミュレーションによる波圧と比較検	る記載内容の相違
防潮堤通過位置におけるフルード数が 1.0 を下回っており,	<u>波シミュレーション解析)及び水理模型実験により検討を行っ</u>	討する。なお、津波波圧の算定に当たっては、波圧検討用津波(1	
水理模型実験結果及び分散波理論に基づく断面二次元津波	た。確認結果の概要及び考察を表8~表10に示す。	<u>5 m津波)を用いる。</u>	
シミュレーション解析結果から,設計用津波波圧は朝倉式①	基準津波の発生に伴い、女川防潮堤には水位上昇型の津波が	島根原子力発電所の防波壁の位置図を第50図に、断面図を第5	
に基づき算定する。	作用し,波圧分布としてはおおむね静水圧程度となることを確	1図に示す。	
朝倉式①に用いるη(設計浸水深)については、水理模型	認した。また、津波波圧評価における不確かさとして、敷地法		
実験結果,断面二次元津波シミュレーション解析結果,平面	<u>面の形状変化の影響,基準津波(水位上昇側)と異なる特性の</u>	波返重力擁壁(岩盤部)延長約690m N	
二次元津波シミュレーション解析から求められた浸水深及	<u>津波の影響,周期の異なる津波の影響,波高の異なる津波の影</u>		
び入力津波高さと地盤高さとの差の 1/2 を用いて朝倉式①	響を考慮して検討した結果、いずれのケースにおいても分裂波	波返車力構業 ((
により算出した波圧分布を比較した。第21図及び第22図に	や衝撃圧が発生せず、津波波圧への影響が小さいことを確認し		
津波荷重の作用イメージ図を,第23図に最大波圧分布の比	<u>te</u>		
較を示す。	<u>女川原子力発電所の基準津波の第1波は、周辺地形からの回</u>	多重鋼管杭 式排盤延長	
比較の結果,朝倉式①に用いるη(設計浸水深)について	り込みや反射の影響をほとんど受けずに策定位置から直線的に		
は、入力津波高さと地盤高さとの差の 1/2 を用いるものと	到達し,波の重なり合いによる二段型波形が特徴(図30)とな		
<u> </u>	<u>っている。基準津波を対象とした数値流体解析結果の考察とし</u>	第50図 防波壁位置図	
and the second	て,二段型波形全体としての津波の半周期は約10~20分と長い		
	<u>ことに起因し、水面全体が緩やかに上昇するような津波が作用</u>	←海 <u>EL.+15m</u> 陸→	
防潮扉	し、分裂波や衝撃圧が発生せずに、防潮堤に作用する津波波圧	微値コンクリート壁(鉄肪コンクリート道) 御管杭(単管) ▽敷地高 、 、	
Attended To THE	<u>がおおむね静水圧と小さくなったことが要因と考えられる(図</u>	施設護岸被覆石	
防潮堤	$17 \sim \boxtimes 19)_{\circ}$	♥H.W.L. 鋼管杭(多重管)	
防潮堤	<u>また,模擬津波を対象とした水理模型実験結果の考察として,</u>	消波ブロック 埋戻土 (粘性土)	
防潮扉	二段型津波(半周期 20 分)と単峰型津波(半周期 5 分)の結果		
	を比較(表9)すると、実験結果のばらつきはあるが、周期(波		
第 20 図 防潮堤及び防潮扉位置図	長)の短い単峰型津波の方が流速及びフルード数が大きくなる	<u>第51図(1) 防波壁(多重鋼管机式擁壁)断面図</u>	
	傾向が確認できる。一般的には流速が大きくなると津波波圧へ	_ 海 陈_	
	の影響が大きくなるが、女川サイトの特徴として防潮堤を高台	EL.+15m 重力擁壁(鉄筋コンクリート造) ケーン(2)(施設擁定) 重力擁壁(鉄筋コンクリート造)	
	上に設置していることから、防潮堤に作用する津波としては浸	「 消波ブロック の世紀 Kei+7 「 一 ▽ 敷地高	
	水深(水位)の大きい条件となるため、浸水深の大きさによっ	マH.W.L. グラウンドアンカー	
	てフルード数の上昇が抑えられ、流速の大きい単峰型津波を含	理戻土(掘削ズリ)	
	めた全てのケースでフルード数が1以下の穏やかな流れ(常流)	MMR	
	<u>となり、分裂液や衝撃圧が発生せずに、防潮堤に作用する津波</u>	岩盤	
	<u> </u>	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	
	<u>また、津波水位の大きさで比較した場合、水位条件の大小に</u>	<u> </u>	

(2)貯留堰

<u>a</u>. 貯留堰に適用する津波波圧算定式

<u> 貯留堰の鳥瞰図を第24 図に, 断面図を第25 図に示す。</u> <u> 貯留堰は, 鋼管矢板を連結した構造であり, 引き波時に</u> <u> 海底面から突出した鋼管矢板頂部(T.P.-4.9m)におい</u> <u> て海水を貯留する。</u>

このため、貯留堰に有意な津波波力が作用するのは、 引き波により海水貯留堰が海面から露出し、その後、押 し波が貯留堰に作用してから越流するまでの間に限定さ れる。

「防波堤の耐津波設計ガイドライン(国土交通省港湾 局)」(平成27年12月一部改訂)によると、津波が構造 物を越流する場合の津波荷重の算定については、若干越 流している状態に静水圧差による算定式を適用する場合 は、それより水位の低い越流直前の状態の方が高い波力 となる可能性があるので、両者を比較して高い方を採用 する必要があるとしている。

このため、貯留堰における津波波力としては、越流直 前の波力及び越流時の静水圧差のうち保守的なものを適 用することとする。

		女川原	千刀発	龍所	2	⊐ (20	19.11.	6 版)
		表 10	津波波	圧確調	忍結果	の全体	本概要	と考察
	7 -2	不確かき 希慮の目的	编数方法	京都派の 発発	20 20 20 20 20	RESec RESec	第22第二の 未定業	**
2 0 (*0.		- [##7-2]		発生しない。 (余分数)	第金しない (時間目)	静水斑盤 (単面酸分布)	219	■読む中東副が約10~20分と長いた め、大変全体が勝やかに上原するような場 油が作用。分数法や整確さが長生すず に、設置後に作用する単体波正が長ませず に、設置後に作用する単体波正が長またね。
23 (#32)	1982) 1983)	●地法国の 時代前代の影響 第回2時代化等 (1.2.5 間代の可 前代を考慮)	医腺液体系统	発生しない。 (曲日前)		▶水田盤 (単重量分析)	7-21:219 7-22:217 7-23:220	単独の手展開が約10-20分とした 高大型を使か増くかったと思うするような満 治が外期。国家構築は小規会でも5日数 作業電話が長まなりた。開業はた何考える 準測価がお供たの時本品からなのた に、国際時代の飲たの時間がほとんど満 たなかったものと考えられる。
1 (*3		2017-745 5344-023 01922	泰维洪体组织	₩91.01\ (#19 8 0	東京しない。 (神観王)	●●水花型 (● 重要 (9 句)	13	建築の中間間が約11日分と長いため、水 間を出た場合ったこの子をふから電波が約 間に、高かうースと見なく三面質があった。 自分型的なごの見たい高い、使なたした後 合からの目前や電気にが先出すがに、別間 通っ作用する建築地で加えたした時を正と からなり、対面特徴の変化の高質のなみと (認知なかったみの使用えられる。
(4) (4) 5.9;	20 (9)	単約の単位る第 第の参数量数2 (金数量数2) (金数量数2) (金数量数2) (金数量数2) (金数量)	*24058	無意しない。 (第日間)	第2しない (神経日)	●●本花型 (●道道分布)	5月:13~13 30月:13~13 (美聞紀長の 무박道(聖道)	■単の個、場合型素法の方で表面及び ・一部が大きくなる様式が確認されたが、 蓄充との意味が一部ができまた。 なっただい場合となるれた、いずたの実施 整合くたい一部がすい。 までしたが、 特定していたが、 分型ができまた。 ないまたになっ、 分型ができまた。 ないまたになった。 ないまたになった。 ないまた、 ないまた。 ないまた
CRU OPAT	8≢28 13.5m∼ 01.5m)	波画の異なる非 波の影響雑誌 (別環想起版の 可能性点で調晶 所に考慮)	木建模型装饰	興生(Q1) (会分報)	奥生しない。 (時間日)	₩本征型 (● Ⅲ● 分布)	(10m,218~139 210m,212~139 210m,221~139 210m,221~139 200m,222~139 315m,231~137 (実験数単の 平均値で簡單)	QP+12amケースでははちつきが大きい の、会社としては大部分手作の大小によって満 事法パジルード部が大きく変更するような場 月は確認からない、いずれの意味を発きた レード部が、は下の時やな沈れして、別様 場に内用する単数があけてはあ大石と小さ ない、力学数や数学のなかし、 本人、効果をの手作のない、小菜の単数手の はちつきの影響も含まれているが、本原活動 が意識実験がの意見というしておの などかったこと考測するようと、使用の情報数 が高いたきたくろう。

島根原子力発電所 2号 (3)朝倉式による津波波圧算定 朝倉式は,津波の通過波の浸水深に応じて済 り,「通過波の浸水深」を最大浸水深(入力 の1/2と保守的に仮定して**津波波圧を算定 朝倉式の概念図を第53図に,朝倉式におい を第54図に示す。

朝倉式

$$q_z = \rho g (a \eta - z)$$

 $\sum i i$

- q_Z:津波波圧(kN/m²)
- η : 浸水深(通過波の浸水深=
- z :当該部分の地盤面からの高(0≤ z ≤ a h)
- a :水深係数(最大:3)
- ρg:海水の単位体積重量(kN/m³

非分裂波の場合の津波水平

炉	備考
	・設計方針の相違
波圧を算定する式であ	【東海第二,女川2】
」津波高さ-敷地標高)	設計方針の相違によ
する。	る記載内容の相違
ける津波波圧の考え方	
最大浸水深の 1/2) (m)	
さ (m)	
3)	
7	
油口	
-1/X/-L-	
01010A	
07421/1177	
1.8α	
η max	
分布	

~炉	備考
	・設計方針の相違
	【東海第二,女川2】
	設計方針の相違によ
<u> EL.+15.0</u> m	る記載内容の相違
\	
敷地標高▽EL.+6.5m	
防波壁	
: 圧の考え方	
力津波高さから敷地標	
水理模型実験から比較	
<u> </u>	
<u>実験による確認結果</u>	
浸水深η	
4.199m	
浸水深の1/2)	
3.643m 過波の浸水深)	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
T.P.+0.08m(朝倉式)		 ・1,2号炉の水理模型実験 	・設計方針の相違
		<u>ケース⑧:防波壁がある場合の最大浸水深hの1/2</u>	【東海第二,女川2】
建波波力 p=50.3kN/m ²		ケース⑨:防波壁位置の通過波の浸水深	設計方針の相違によ
貯水堰天端高 T.P4.90m 津波高さ T.P4.90m			る記載内容の相違
		<u>第25表</u> 保守的な浸水深ηの水理模型実験による確認結果	
		(1,2号炉)	
		実験 最大 ト/2 浸水沢市	
第27図 津波波力の作用イメージ図		ケース 浸水深h ^{11/2} ^{/ 浸水/米1}	
		ケース⑧ 6.511m 3.256m 3.256m (最大浸水深の1/2)	
<u>c</u> . 越流時の津波波力の設定方針		<i>τ</i> −7⊚ 2.015m	
<u>引き波後に到達する津波が貯留堰を越流する際, 貯留堰</u>		9-入場 (通過波の浸水深)	
の内外での水位差はつきにくいが,保守的に引き波水位と			
その後の押し波水位の差が最も大きくなるものを選定し,		上記より、「最大浸水深の1/2」が「通過波の浸水深」より保守	
津波波力を算定した。		的な値となることを確認した。	
<u>津波高さとしては貯留堰天端からの越流を考慮して、「防</u>			
波堤の耐津波設計ガイドライン(国土交通省港湾局)」(平			
<u>成 27 年 12 月一部改訂)による静水圧差による算定式を参</u>		(4) 津波波圧の比較 朝倉式 (敷地高以上)	
考に設定する。		3号炉北側前面の敷地高以上における,朝倉式により算定した波	
<u> 貯留堰位置における水位差が最大となる箇所の時刻歴水</u>		圧分布と水理模型実験,断面二次元津波シミュレーション及び三次	
位波形を第 28 図に,津波波力の作用イメージを第 29 図に		<u>元津波シミュレーションにより算定した波圧分布の比較結果を第</u>	
<u>示す。</u>		<u>55図に示す。</u>	
		水理模型実験,断面二次元津波シミュレーション及び三次元津波	
12		シミュレーションによる波圧分布は,朝倉式による波圧分布に包絡	
		されることを確認した。	
8 T.P4.9m以下の水位となった後の水位変動量最 大位置における最大水位			
\vec{E} = T.P. + 3.276 m \Rightarrow T.P. + 3.3 m			
-4 TP-4-9m(PPIIIIIE, 1988)			
-6 0 30 60 90 120 150 180 210 240			
時間(分)			
第28回 貯留堰の内外の水位差が最大となる時刻歴水位波形図			

炉	備考
* -	・設計方針の相違
リ山 <u>量</u>	【東海第二,女川2】
	設計方針の相違によ
Y.	る記載内容の相違
G	
数値は,	
基部からの距離	
0.m	
\searrow	
3.0	
(位置)	
5.0 m	
\mathbf{X}	
3.0	
前面)	
¹⁷¹ 田/ 七較	
号炉北側前面)	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6 版)	島根原子力発電所 2号炉	備考
		1,2号炉前面の敷地高以上における,朝倉式により算定した波	・設計方針の相違
		圧分布と水理模型実験,断面二次元津波シミュレーション及び三次	【東海第二,女川2】
		元津波シミュレーションにより算定した波圧分布の比較結果を第	設計方針の相違によ
		56図に示す。	る記載内容の相違
		水理模型実験,断面二次元津波シミュレーション及び三次元津波	
		シミュレーションによる波圧分布は,朝倉式による波圧分布に包絡	
		されることを確認した。	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
東海第二発電所 (2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6 版)	B根原子力発電所 2 5 炉	 備考 ・設計方針の相違 【東海第二,女川2】 設計方針の相違による記載内容の相違
		0.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 無次元最大波圧分面(1) 2.5 3.0 無次元最大波圧分面(1) 2.5 3.0	
		****/ レロスへ ぶくし ガリレ (1, とち) がり回り 実験及びシミュレーションと朝倉式の比較	
		第56図 無次元最大波圧分布(1,2号炉前面)	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6 版)	島根原子力発電所 2号炉	備考
		3号炉東側前面の敷地高以上における,朝倉式により算定した波	・設計方針の相違
		圧分布と三次元津波シミュレーションにより算定した波圧分布の	【東海第二,女川2】
		比較結果を第57図に参考として示す。	設計方針の相違によ
		三次元津波シミュレーションによる波圧分布は,朝倉式による波	る記載内容の相違
		<u>圧分布に包絡されることを確認した。</u>	
		<figure></figure>	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		(5) 谷本式による津波波圧算定	・設計方針の相違
		谷本式は,構造物前面の津波高さ(津波シミュレーション)に応	【東海第二,女川2】
		じて波圧を算定する式である。谷本式を以下に示す。	設計方針の相違によ
		<u>なお,谷本式で使用する入射津波の静水面上の高さ(2 a 」)は,</u>	る記載内容の相違
		各津波シミュレーションにより抽出された護岸前面の最高水位を	
		使用する。谷本式による波圧分布を第58図に示す。	
		【谷本式】	
		$\eta = 3.0 \text{ a}_{1}$	
		$P_1 = 2.2 \rho_0 g a_1$	
		$Pu = P_1$	
		ここに、	
		η* :静水面上の波圧作用高さ (m)	
		a _I :入射津波の静水面上の高さ(振幅) (m)	
		ρ ₀ g :海水の単位体積重量 (kN/m ³)	
		Pu : 直立壁前面下端における揚圧力 ^{**} (kN/m ²)	
		※島根原子力発電所の防波壁は、岩盤又は改良地盤により支持され	
		ており十分に止水性があるため揚圧力は考慮しない。	
		(港外側) (港内側)	
		シミュレーションの津波高さ 7*	
		浮力	
		<u> 第38因 谷平氏による彼圧万</u> 加 (北五水位が畑) 沈味に整水五とりてがさない相合)	
		・ 阜根 臣 子力 発 雪 斫 の 防 波 膵 悲 谷 け 動 地 で ち ス た み 迷 迹 め の 逆 正	
		<u>一四国が「刀元电川の四以至日後は放地とのるにの, 宿得外の仮圧</u> を管定した図を引用した	
		・たお 「背面水位が押し波時に静水面上り下がろ場合」でも洪久	
		個に作用する津波波圧け同じである	

(第第第二条は近 (2016.9.12.92) (2017.9		I	- T
(-6) 音波弦迎上波 なえた (秋田長田区) 戦速万田により万重に 水田石分を50 9 301:3 3 日気 及び、1 2 500 2 10:3 3 日気 及び、1 2 500 2 10:3 2 1 2 10:3 1 2 10:3	東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6 版)	島根原子力発電所 2号
 			(6) 津波波圧の比較 谷本式 (敷地高以深)
広告の日本 広告の日本 広告の日本 1.25 広告の日本 1.25 たたの日本 1.25			敷地高以深における断面二次元津波シミュ
第二日日日 11日日 11日 11日 </th <th></th> <th></th> <th></th>			
(本)したりますした彼にすりになったりはな話 3.5500年によりますした彼にすりになった。 第の通知法律になったされまい。 3.5600年にかられたが用いる。 3.5600年にかられたが用いる。 3.5600年にかられたが用いる。 3.5600年にかられたが用いる。 3.5600年にかられたが用いる。 3.5600年にかられたが用いる。 3.5600年にかられたが、日本のから、 3.5600年にかられたが、日本のから、 3.5500年にかられたが、日本のから、 3			
3 法学校です。2 法理の定任の中心性感覚 法正分析会での対応でなっている。 通の注意を定するためです。2 とうた部 違の注意を定するためです。2 とうた部 違の注意を定するためです。2 とうた部 違の注意を定するためです。2 とうた部 違の注意を定するためです。2 とうた部 違の注意を定するためです。2 とうた部 違の注意を定するためです。2 とうた部 違うしたのでのかけのです。2 とうた部 違うしたのでのかけのです。2 とうた部 にはのませんでのかけのです。2 とうた。 第55 日間、時にのできたではなった。2 とうた。 第55 日間、時にのできたではなった。2 とうた。 第55 日間、時にのできたではなった。2 とうた。 第55 日間、時にのできたではなった。2 とうた。 第55 日間、時にのできたではなった。2 とうた。 1 2 とうた。2 とうた。 2 とうた。2 とうた。 2 とうた。 2 とうた。2 とうた。 3 にはのまで、2 とうた。 3 にはのまで、3 にはのまで、3 にはのまで、3 にはのまで、3 にはのまで、5 にはのまで			本式)により昇走しに波圧分布を第59図に入
送生分析が全ての変化を空催することを容置 透の速度の主要定に含金式を引いる。			3号炉及び1,2号炉の波圧分布の比較結
透の建度法に算定に付き木をを用いる。			波圧分布が全ての波圧を包絡することを確認
第5.6 凶 販売工会研究の 第5.6 凶 販売工会研究の 1.2号研究の ションシン ションシン ションシン ションシン ションシン ビニング第位した法定分			深の津波波圧算定には谷本式を用いる。
第559回 割(由二次元用限)という。			3号炉波圧分布(ケース③)
第59図断面二次元津波シミュレーション 第59図断面二次元津波シミュレーション 一ション、水理模型実験(1,29年),既在			
第59図 断面二次元津波シミュレーション 一ション,水理模型実験(1,2号炉),既行 により算定した波圧分布			
第59図 断面二次元津波シミュレーション 一ション,水理模型実験(1,2号炉),既行 により算定した波圧分布			
<u>ーション,水理模型実験(1,2号炉),既</u> Llassicality.com Llassicality.com <a href="https://wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww</td> <td></td> <td></td> <td>第59図 断面二次元津波シミュレーション</td>			第59図 断面二次元津波シミュレーション
により算定した波圧分石			<u>ーション,水理模型実験(1,2号炉),既行</u>
			により算定した波圧分布

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		(7)まとめ	・設計方針の相違
		津波は波浪に比べて周期が長いことから,その波力は水位の上昇	【東海第二,女川2】
		による静水圧として評価される場合が多い。しかし、実際には流れ	設計方針の相違によ
		に伴う動的な影響や作用の継続時間による影響が考えられ,精度よ	る記載内容の相違
		く波力を評価するためには、水理模型実験等を行うことが望ましい	
		ため,水理模型実験,断面二次元津波シミュレーション及び三次元	
		津波シミュレーションを実施した。	
		敷地高以上(防波壁前面)においては、敷地標高や遡上水深等に	
		より津波波圧への影響が大きいことから,朝倉式に用いる通過波の	
		<u>浸水深において,最大浸水深(津波高さ-敷地高さ)×1/2を用い</u>	
		ることで,水理模型実験,断面二次元津波シミュレーション及び三	
		次元津波シミュレーションにより算定される波圧に対して保守性	
		を確保している。	
		<u>敷地高以深(護岸前面)においては、水理模型実験、断面二次元</u>	
		津波シミュレーション及び三次元津波シミュレーションの結果, い	
		ずれもばらつきの小さい線形の波圧分布となり、これらの実験や解	
		析手法の差異による波圧分布に有意な差異はない。また,3号炉の	
		水理模型実験では,敷地高以深の波圧を測定できていないが,護岸	
		前面で緩やかな水位上昇を示しており、1,2号炉の津波シミュレ	
		<u>ーション及び水理模型実験と同様な波圧分布になると考えられる</u>	
		ことから、いずれも谷本式により算定される波圧分布に包絡される	
		と判断した。以上のことから、津波波圧を谷本式で評価することの	
		保守性を確認した。	
東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号	
---------------------	--	---------------------------------	
	(2)防潮堤の設計で考慮する津波波圧の設定	5. 設計で考慮する津波波圧の設定	
	基準津波を対象とした津波波圧の確認結果及び不確かさを考	水理模型実験の結果,科学的根拠に基づき	
	慮した検討結果を踏まえ,保守的な設計を行う観点から,図36	が発生しないことを確認した。また、津波波	
	のとおり朝倉式①を参照して防潮堤の設計波圧として設定す	以上の波圧分布は直線型となり,敷地高以深	
	る。なお、朝倉式は津波の通過波の浸水深に応じて波圧を算定	海水位までは直線型,静水面以深では一定と	
	する式であり、通過波の浸水深を入力津波水深(最大浸水深)	<u>意な影響がないことを確認した。</u>	
	の1/2と仮定して津波波圧を算定する。	断面二次元津波シミュレーション解析の編	
	$p = \rho \cdot g \cdot (\alpha \cdot \eta - z)$	現でき,時刻歴波形,水位分布及び水面勾配	
	ここで、	<u>砕波が発生しないことを確認した。また,波</u>	
	p :津波波圧(kN/m ²)	模型実験と同様に津波波圧への有意な影響は	
	ρ :海水の密度(=1.03 t/m ³)	三次元津波シミュレーション解析の結果,	
	g :重力加速度 (=9.80665 m/s ²)		
	α :水深係数 (=3)	ることを確認した。この結果より、島根原子	
	η :浸水深(通過波の浸水深=入力津波水深の 1/2)	<u>や三次元的な流況による影響は認められない</u>	
	(m)	び断面二次元津波シミュレーションによる	
	z :陸上地面を基準とした上向の正の座標 (m)	と判断した。	
		水理模型実験及び津波シミュレーション編	
		既往の津波波圧算定式による津波波圧に包約	
		te.	
	<u>OP+138m</u> <u>P</u> =225m	上記検討結果を踏まえ,防波壁等の設計で	
		下のとおり設定する。	
	図 36 津波波圧設定の考え方(鋼管式鉛直式の断面図)	・敷地高以上については,平面二次元津波	
		で設定した入力津波高さに基づき,朝倉	
	参考文献	定し,敷地高以深については,平面二次	
	1) 朝倉良介・岩瀬浩二・池谷 毅・高尾 誠・金戸俊道・藤井直樹・	ン解析で設定した入力津波高さに基づき	
	大森政則(2000):護岸を越流した津波による波力に関する実験	圧を設定する。	
	<u>的研究,海岸工学論文集,第 47 巻,pp. 911 - 915.</u>	・防波壁及び防波壁通路防波扉の設計用津	
	2) 石田暢生・森谷暢生・東喜三郎・鳥山拓也・中村英孝(2016):	津波高さは,平面二次元シミュレーショ	
	防潮堤に作用する津波波圧評価に用いる水深係数について、NRA	<u>高さ(EL.+11.9m)に潮位のばらつきを</u> ま	
	技術報告, NTEC-2016-4001.	<u>を用いる。</u>	
	3) 気象庁(2011): 災害時地震・津波速報 平成 23 年(2011 年)		
	東北地方太平洋沖地震,災害時自然現象報告書 2011 年第1 号.	津波波圧設定フローを第60図に,波圧算	
	4) 榊山 勉 (2012): 陸上遡上津波の伝播と構造物に作用する津波	<u>面)を第61図に示す。</u>	
	波圧に関する研究,土木学会論文集 B2(海岸工学), Vol. 68, No.		
	<u>2, pp. 771 - 775.</u>		

-炉	備考
	・設計方針の相違
ソリトン分裂波や砕波	【東海第二,女川2】
圧については, 敷地高	設計方針の相違によ
の波圧分布については	る記載内容の相違
なり,津波波圧への有	
吉果, 水理模型実験を再	
からソリトン分裂波や	
圧分布についても水理	
はないことを確認した <u>。</u>	
水理模型実験及び断面	
万と同等,又は包絡され	
力発電所の複雑な地形	
ヽため,水理模型実験及	
<u>津波波圧は妥当である</u>	
吉果による津波波圧は <u>,</u>	
絡されることを確認し	
考慮する津波波圧を以	
<u>シミュレーション解析</u>	
式により津波波圧を設	
<u>元津波シミュレーショ</u>	
き,谷本式により津波波	
波波圧の算定に用いる	
ン結果による入力津波	
考慮した「EL. +12.6m」	
〔定イメージ(3 号炉前	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	5) 池谷毅・秋山義信・岩前伸幸(2013):陸上構造物に作用する		・設計方針の相違
	<u>津波持続波圧に関する水理学的考察,土木学会論文集 B2(海岸工</u>		【東海第二,女川2】
	<u>学</u>), Vol.69, No.2, pp.816 - 820.		設計方針の相違によ
		平面二次元津波シミュレーション	る記載内容の相違
		防波壁等の設計に用いる津波高さ	
		【敷地高以上】 【敷地高以深】	
		津波波圧設定	
		第60図 津波波圧設定フロー	
		文世に+12.0m 東地高以上: 「敷地高以上: 朝倉式により津波波圧算定	
		· 静水面▽EL.±0.00m	
		が地向以床・谷本式により津波波圧算定	
		海底面▽	
		第61図 波圧算定イメージ(3号炉前面)	

まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料27〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		添付資料 27	
		浸水防護重点化範囲内に設置する海域と接続する低耐震クラス機	・評価条件の相違
		器及び配管の津波流入防止対策について	【柏崎 6/7,東海第二】
			島根2号炉は,浸水防
		1. 概要	護重点化範囲内に海域
		内郭防護においては、海域と接続する低耐震クラス(浸水	と接続する低耐震クラ
		防止機能を除く)の機器及び配管が地震により損傷して保有	スの機器及び配管を設
		水が溢水するとともに、損傷箇所を介して津波が流入する事	置することによる流入
		象を想定する。	防止対策を説明
		ここでは、地震による配管損傷後に津波が襲来した場合の	
		浸水防護重点化範囲への直接的な津波の流入に対する対策に	
		ついて説明する。	
		0、 海球と協会ナス副等	
		2. (研究こ仮記りの記号 流域と控結する任耐電クラスの挑架及び配管が設置される)	
		一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	
		していい。 「「「「「」」」 「「」」」 「」」 「」 「	
		海を成置するニシング、東京省福泉水ベンシーシンズの東京省	
		設備を設置するエリア) 取水槽循環水ポンプエリア及び取水	
		横海水ポンプエリアに設置される海域と接続する低耐震クラ	
		スの機器及び配管を表 1. 図1に示す。なお、海域と接続す	
		る機器及び配管については、外郭防護1の「取水路・放水路	
		等の経路からの津波の流入防止」において耐震Sクラスの機	
		器及び配管も含め特定しており、それらの機器及び配管と同	
		じである。	
		これらの機器及び配管については、地震により損傷した場	
		合には、その後襲来する津波が、損傷箇所を介し浸水防護重	
		点化範囲内に直接流入することから,基準地震動 Ss による地	
		震力に対してバウンダリ機能を保持する等の設計とする。	

実線・・設備運用又は体制等の相違(設計方針の相違) 波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉 表1 海域と接続する基準地震動Ssによる地震力に対してバウ ンダリ機能を保持する等の設計とする機器及び配管 海域と接続する低耐震クラス の機器及び配管を設置する浸 水防護重点化範囲 左記に設置する低耐震クラス の機器及び配管 耐震 クラス** タービン建物 (耐震Sクラスの設備を設置 するエリア) タービン補機海水系配管 (放水配管) Cクラス 高圧炉心スプレイ補機海水系 Cクラス 高圧炉心スプレイ補機海水系 Cクラス	備考
		液体廃棄物処理系配管 C クラス 取水槽循環水 循環水ポンプ及び配管 C クラス ポンプエリア タービン補機海水系配管 C クラス 取水槽循環水 クービン補機海水ポンプ及び C クラス	
		取が情報が ポンプエリア 配管 0774 除じんポンプ及び配管 C クラス	
		Image: Stream of the stre	
		図1 浸水防護重点化範囲内に設置する海域と接続する低耐震ク ラスの機器及び配管の設置概要	
		3. 津波流入防止対策 循環水系は、基準地震動Ssによる地震力に対してバウン ダリ機能を保持する設計とし、津波の流入を防止する。 タービン補機海水系は、インターロックによりポンプ出口 弁を閉止し、ポンプ及びポンプからポンプ出口弁までの配管	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		を基準地震動 S s による地震力に対してバウンダリ機能を保	
		持するとともに、出口側配管の逆止弁及び逆止弁から放水槽	
		までの配管を基準地震動S s による地震力に対してバウンダ	
		リ機能を保持することにより津波の流入を防止する(図2参	
		照)。海域活断層に想定される地震による津波襲来に係る時系	
		列を図3に、日本海東縁部に想定される地震による津波襲来	
		に係る時系列を図4に示す。	
		また、インターロックによるポンプ出口弁の閉止について	
		は、津波襲来前に確実に閉止するため、多重化・多様化を図	
		る。	
		液体廃棄物処理系については、出口側配管の逆止弁及び逆	
		止弁から放水槽までの配管を基準地震動Ssによる地震力に	
		対してバウンダリ機能を保持することにより津波の流入を防	
		止する。	
		原子炉補機海水系配管(放水配管)及び高圧炉心スプレイ	
		補機海水系配管(放水配管)については,基準地震動Ssに	
		よる地震力に対してバウンダリ機能を保持する設計とし、津	
		波の流入を防止する。	
		除じん系については,基準地震動Ssによる地震力に対し	
		てバウンダリ機能を保持する設計とし、津波の流入を防止す	
		る。	
		この結果,浸水防護重点化範囲であるタービン建物(耐震	
		Sクラスの設備を設置するエリア), 取水槽循環水ポンプエリ	
		ア,取水槽海水ポンプエリアにおいて,循環水系,原子炉補	
		機海水系,高圧炉心スプレイ補機海水系及び除じん系の機器	
		及び配管は地震により破損することなく、タービン補機海水	
		系、液体廃棄物処理系については、地震により配管が損傷し	
		た後に、津波が襲来した場合でも、タービン建物(耐震Sク	
		ラスの設備を設置するエリア), 取水槽循環水ポンプエリア及	
		び取水槽海水ポンプエリアに流入しない。対策及び取・放水	
		路からの流入防止結果を表2に、対策概要図を図5に示す。	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号
				EL_+8.8m	タービン建物 <u>漏えい検知器</u> #1 TCIT 熱交
				図2 ター1	
				時系列	 ▼地震(海域活断層) ▼溢水発生 → 約1分 約
				タービン 補機海水系	インター ロックに よるポン プ停止及 び弁閉止
				図3 海域活動	断層から想定される地震 係る時系列
				時系列 -	「地震(敷地近傍) 「溢水発生 ▼地震後点検 「SS」「SS」 約1分 1日
				タービン 補機海水系	インター ロックに よるポン プ停止及 び弁閉止
				図4 日本海頭	東縁部に想定される地震 係る時系列

法会 加速 地球 地球 中立 中述	A2Bay kito sho sha shu	柏崎刈羽原子力発電所	6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子	一力発電所 2号炉	ī	備考
					東神弟二光电灯(2018.9.12 J队)	定日本以上学校、「「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」	クノヂ 电/) 2 万 州 る 基準地震動 S s (持する等の設計とつ 策 対策 取水! シターロックによる 動弁用止 にキア開止 (インターー ・る隔離, 一 、3 隔離, 一 、3 隔離, 一 、3 隔離, 一 、3 高幅性、なり、 ジターロックによる この、 (インターー ・る 高幅業, 一 、3 高幅, 一 、4 一 、3 高幅, 一 、4 一 、3 高幅, 一 、4 一 、3 高幅, 一 、4 一 、3 二 、4 一 、4 二 、4 二 、4 二 、4 二 、4 二 、4 二 、4 二 、4 二	なよる地震力に対し する配管に対する対	

まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料28〕

柏崎刈羽原子力発電所 6/7号炉 (20)17.12.20版) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		添付資料 28	
		タービン建物(耐震Sクラスの設備を設置するエリア)及び取水	・設備の配置条件の相違
		槽循環水ポンプエリアに設置する耐震 S クラスの設備に対する浸	【柏崎 6/7,東海第二】
		水影響について	島根2号炉はタービ
			ン建物等に非常用海水
		1. 概要	系配管等の津波防護対
		耐震 S クラスの設備を内包する建物及び区画として,原子炉建	象設備を設置している
		物,タービン建物(耐震Sクラスの設備を設置するエリア),廃棄	ことによる影響評価を
		物処理建物(耐震 S クラスの設備を設置するエリア),制御室建物	実施
		(耐震Sクラスの設備を設置するエリア), 取水槽海水ポンプエリ	
		ア, 取水槽循環水ポンプエリア及び屋外配管ダクト(B-ディー	
		ゼル燃料貯蔵タンク~原子炉建物、タービン建物~排気筒、ター	
		ビン建物~放水槽)並びにA,B-非常用ディーゼル発電機(燃料	
		移送系),高圧炉心スプレイ系ディーゼル発電機(燃料移送系)及	
		び排気筒を設置するエリアがあり、これらの範囲を浸水防護重点	
		化範囲と設定している。	
		このうち、タービン建物(耐震Sクラスの設備を設置するエリ	
		ア)及び取水槽循環水ポンプエリアについては、海域と接続する	
		低耐震クラスの機器及び配管であるタービン補機海水系等を設置	
		しており、地震時には配管等の破損による保有水の溢水及び破損	
		箇所を介した津波の流入を想定する範囲となる。	
		そのため、タービン建物(耐震Sクラスの設備を設置するエリ	
		ア)及び取水槽循環水ポンプエリアに設置する耐震Sクラスの設	
		備について, 地震・津波時の浸水状況を考慮した浸水に対して,	
		同区画に設置される津波防護対象設備の浸水による機能喪失要因	
		の網羅的な抽出を踏まえ,浸水による影響がないことを確認する。	
		タービン建物(耐震Sクラスの設備を設置するエリア)及び取水	
		槽循環水ポンプエリアに設置する耐震Sクラスの設備を表1に,	
		その配置を図1に示す。	
		なお,タービン建物(耐震Sクラスの設備を設置するエリア)	
		及び取水槽循環水ポンプエリアに設置する耐震Sクラスの配管	
		に、電動弁等の浸水により機能喪失する設備は設置していない。	

実線・・設備運用又は体制等の相違(設計方針の相違) 波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
			表 1 タービン び取水槽循環水	✓建物(耐震 S クラスの設備を設置するエリア)及 <ポンプエリアに設置する耐震 S クラスの設備 設備	
			—————————————————————————————————————		
				原子炉補機海水系 ケーブル	
			タービン建物	高圧炉心スフレイ補機海水糸 ケーブル	
			(画展39) スの設備を設 置するエリア)	非常用ディーゼル発電機(燃 料移送系) 配管・手動弁	
				高圧炉心スプレイ系ディーゼ配管・手動弁	
				ル発電機(燃料移送糸)ケーブル	
				非吊用ガス処理糸 配官・手馴升 配管・手動弁 配管・毛動弁	
				原子炉補機海水系(ストレーナ含む)	
			取水槽循環水	ケーブル	
			~~~~~~	配管・手動弁   高圧炉心スプレイ補機海水系   (ストレーナ含む)	
				ケーブル	
			Rx######         Rx######         Image: 1         Image: 1	<complex-block></complex-block>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		ļ	島根原子力発電所	2号炉		備考
		2. 耐震	Sクラスの記	設備に対する浸水 は	こよる機能喪	要失要因	
		抽出	された耐震S	クラスの設備の浸	水による影	響有無を評価す	
		るため,	機能喪失要	因を抽出した。			
		ター	ビン建物(耐	震Sクラスの設備	「を設置する	エリア)及び取	
		水槽循環	環水ポンプエ	リアにおける地震	・津波時の	浸水状況を踏ま	
		えた範	囲に設置する	耐震Sクラスの設	備に対する	浸水による機能	
		喪失要	因を表2に示	す。津波流入によ	り生じる漂	流物による配管	
		等の損付	傷の可能性に	ついては,タービ	ン建物(耐	震Sクラスの設	
		備を設け	置するエリア	)及び取水槽循環	水ポンプエ	リアに津波を流	
		入させ	ない対策(添作	け資料 27 参照)を第	実施すること	から,当該エリ	
		アに津江	皮の流入はな	く、漂流物は生じ	ない。		
		表2	耐震Sクラ	スの設備に対する	浸水による	機能喪失要因	
		7.0.444			機能引	喪失要因	
		設備	設置区画	糸統	水圧による 損傷	電気接続部の 没水	
				原子炉補機海水系			
				高圧炉心スプレイ 補機海水系			
			タービン建物 (耐震Sクラ	非常用ガス処理系	地震・津波時		
		配管・	スの設備を設 手 <mark>置</mark> するエリ	非常用ディーゼル 発電機(燃料移送	の浸水による水頭圧(外		
		助开 (ストレー 十合す。)	- 7)	系)	圧)により, 配管の構造	—	
		7百四7		高圧炉心スノレイ糸 ディーゼル発電機 (燃料段送系)	的損傷の可 能性がある。		
				原子炉補機海水系			
			循環水ポンプ エリア	高圧炉心スプレイ			
				補機御水糸			
			タービン建物	原于炉桶機構小ボ 三 三 下 后 い スプレイ	-		
			(	補機海水系	地震・津波時の浸水による	地震・津波時の	
		ケーブル	■9るエリ ア)	高圧炉心スプレイ 系ディーゼル発電	水頭圧(外圧) により,ケー	浸水が電気接続 部に接すること 変 機能悪性士	
				機(燃料移送系)	ブルの構造的 損傷の可能性	る可能性がある	
			取水槽 循環水ポンプ	原子炉補機海水系	がある。	്ച _്	
			エリア	高圧炉心スプレイ 補機海水系			
			I				
		3. 機能	喪失要因に対	すする評価			
		地震	・津波時の浸	水状況を踏まえ,	抽出された	機能喪失要因に	
		対する詞	評価を実施し	た。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		(1) 水圧による損傷に対する評価及びケーブルの電気接続部の	
		没水に対する評価	
		タービン建物(耐震Sクラスの設備を設置するエリア)に設	
		置される耐震Sクラスの設備の水圧による損傷に対する評価及	
		びケーブルの電気接続部に対する評価については,「第9条 溢	
		水による損傷の防止等 9.4 タービン建物に設置されている	
		防護対象設備について」において説明しており、地震・津波時	
		の浸水による水圧に対して機能喪失しないこと、また電気接続	
		部がないことを確認している。同様に、取水槽循環水ポンプエ	
		リアに設置される耐震Sクラスの設備の水圧による損傷に対す	
		る評価については、「第9条 溢水による損傷の防止等 添付資	
		料1 機能喪失判定の考え方と選定された溢水防護対象設備に	
		ついて」において説明しており、地震・津波時の浸水による水	
		圧に対して機能喪失しないことを確認している。具体的な内容	
		を図2、図3に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		2.3 溢水影響評価の対象外とする理由 (1)「①溢水により機能を喪失しない」による対象外 溢水により機能を喪失しないとした防護対象設備について,没水時の健全性を 評価した。表 2-4 に示すように,各建物の最大階高(当該床から上階床までの階 高さのうち最大となる値)に相当する水頭圧を外圧条件とした。	
		表24     各速物の外近条件       ////////////////////////////////////	
		a. 配管及び弁 配管及び弁の没水時の外圧に対する健全性評価の例を表 2-5 に示す。 「発電用原子力設備規格 設計・建設規格 JSME S XC1 2005/2007」に基づ き算出した機器の外圧に対する許容圧力が溢水水位による外圧を上回るため, 健全性を維持できる。なお,弁は配管に比べ肉厚であるため,配管の評価に包 含される。	
		表 2-5 配管の没水時の外圧による影響評価結果(代表例) 使み レビス行せた 広報物(1) 現せた (代表例)	
		1 代表記号 ¹¹ 700A-RS第一7A 200A-RC第一61A 700A-RS第一2A 2013年10月 7日 2015年11月 201	
		「「11.2 210.3 711.2 」 お厚す[mm] 95 82 95	
		取得上最小厚さts[mm]         8.5         7.17         8.5	
		15.9 89.5 16.6 より定まる値 B	
		材任 SM41C STPT42 SM41C	
		許容圧力「MPa ¹⁺² 0.25 3.95 0.26	
		水預圧   MPa   0.08 0.07 0.10	
		許容圧力>水頭圧判定	
		※1 評価を実施するにあたり,各建物の対象配管のうち、保守的に外径(Do)/板厚(t)が最大とな	
		る配管を代表として運定した。なお、評価では内圧は大気圧とした。	
		※2 「発電用原子力設備規格 設計・建設規格 (JSWE S XC1-2005/2007) PPC-3411 直管 (2) 外	
		$t_s = \frac{3r_e D_0}{4B} \qquad \begin{array}{c} r_e : [RRD] + M(3) \\ t_s : [WELD0] A \cap [S_s] mm \end{array}$	
		D ₀ :管理外金 1mm. お:付麸材料図 差 Part7 により定まる値	
		9 条-別添 1-添付 1-24	
		·	
		設備の水圧による損傷に対する評価	

	よしめ次料比較主 「5冬、沖沖に上て増値の防止、別法	<u>実線</u> ・・設備運用又は体制等の相 波線・・記載表現,設備名称の相	<u> 1違(設計方針の相違)</u> 1違(実質的な相違なし)
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	添付資料28	添付資料 <u>29</u>	<ul> <li>・対象施設の相違</li> <li>【柏崎 6/7】</li> <li>島根 2 号炉と比較対</li> <li>象施設が柏崎 6/7 号炉</li> <li>に無い(以下,女川 2</li> <li>と比較)</li> </ul>
	1 号炉 <u>取放水路</u> 流路縮小工について	1 号炉 <u>取水槽</u> 流路縮小工について	<ul> <li>・対象施設の相違 島根2号炉では,流路 縮小工を1号炉取水槽 内に設置する。(以下, ①の相違)</li> </ul>
			山在北部山市地海
	1号炉 <u>取放水路に設置する取放水路</u> 流路縮小上(以下「流路縮	1 号炉 <u>取水槽</u> 流路縮小上(以下,「流路縮小上」と <u>記</u> す)は、 <u>1</u>	・対象施設の相違
	「小上」という。」)は、 <u>1万炉御水小ノノ主及い1万炉放水並</u> れ た 決速が 沈水し 9 号 恒 が 掲 復 士 ろ こ ト た 広 止 士 る た か に 议 亜 か 恐	<u> 方炉取水路を遡上りる律族に対して、1万炉取水價から敷地への</u> 津油の到達 法人を防止するために設置することから 2号 「原用	①の相違
	<u> 今年仮が価小して方がが損傷</u> することを防止するために必要な成 備であり、2号に由誌の中で決沈防護施設として敷理している		
	<u> </u>	明の十て年後的 過絶設 として 金座している。 加昭和小工の 設置 位 置を図1 に 示す	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号
	1号炉放水路       3号炉         加水路線小工       2号炉         1号炉取水路       2号炉         防潮壁       0         1日       流路縮小工         医11       流路縮小工設置位置	····································
	<ul> <li>2. 流路縮小工設置による1号炉への影響について</li> <li>(1)流路縮小工の構造概要 <ul> <li>a. <u>取水路の</u>流路縮小工(図2参照)</li> <li>(a)取水路の流路縮小工は,取水路の海水ポンプ室側直線部に設置する。</li> </ul> </li> <li>(b)取水路の流路縮小工は,取水路からの敷地への津波の流入を防止するために設置し,1号炉の補機冷却海水ポンプ(常用系・非常用系)に必要な海水を取水するため,貫通部(φ1.0m×2条)を設ける。</li> </ul>	<ul> <li>2. 流路縮小工設置による1号炉への影響に</li> <li>(1)流路縮小工の構造概要         <ul> <li>a. 流路縮小工の構造(図2参照)</li> <li>(a)既設部</li> <li>流路縮小工の既設部は,鋼製の取水</li> <li>(b)新設部</li> <li>流路縮小工の新設部は,開口率5害</li> <li>取付板及び固定ボルトで構成する鋼集</li> <li>管端部に設置する。</li> <li>新設部材の設置は,取水管フランシ</li> </ul> </li> </ul>
	<ul> <li>b. 放水路の流路縮小工(図3参照)         <ul> <li>(a) 放水路の流路縮小工は,放水路の放水立坑側に設置 する。</li> <li>(b) 放水路の流路縮小工は,放水路からの敷地への津波 の流入を防止するために設置し,1号炉の補機冷却海 水ポンプ(常用系・非常用系)からの放水を流下する ため,貫通部(φ0.5m×1条)を設ける。</li> </ul> </li> </ul>	<u>縮小板と取付板を固定ボルトで固定す</u>





柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	(2) 流路縮小工設置による1 号炉取水機能 <u>・放水機能</u> への影	(2) 流路縮小工設置による1号炉取水機能への影響について	・対象施設の相違
	響について		①の相違
	a. 1号炉取水機能への影響について	a.1号炉取水機能への影響について	
		1 号炉に貯蔵中の使用済燃料の冷却は十分進んでおり,崩	・運用の相違
		<u>壊熱による発熱量は小さいため,使用済燃料プールの冷却が</u>	島根1号炉は,使用済
		停止しても、その水温の上昇は緩やかな状況であるため、こ	燃料の冷却が十分進ん
		<u>こでは流路縮小工設置による原子炉補機海水ポンプへの取水</u>	でいる旨記載
		性について評価した。	
	(a ) <u>補機冷却海水ポンプ</u> ( <u>常用系・非常用系</u> )の取水性	(a) <u>原子炉補機海水ポンプ</u> の取水性評価	・評価条件の相違
	評価		島根 1 号炉ではプー
			ル冷却のため原子炉補
			機海水ポンプを評価対
			象とする (以下, ②の相
			違)
	<u>取水路</u> への流路縮小工設置により <u>増加する損失水</u>	流路縮小工設置後は,1号炉循環水ポンプは全台停止する	・運用及び評価結果の相
	頭は約0.01~0.02mであり,海水ポンプ室水位は僅か	運用とすることから,表1に示すとおり,流速が小さくなり,	違
	に低下するものの, ポンプの取水可能最低水位から十	<u>損失水頭は低下するため、</u> 流路縮小工設置により <u>取水槽内の</u>	
	<u>分余裕があることから,プラント停止状態における常</u>	水位が低下することはなく、原子炉補機海水ポンプの取水機	
	用海水系の取水機能及び事故時における非常用海水	能への影響はない。	
	系の取水機能への影響はない <u>(表1,2参照)</u> 。		
	表1 流路縮小工設置による1 号炉取水機能(常用系)への影響		・評価条件の相違
	流量 水路断面積 流速 取水口 海水ポンプ室 ポンプ取水可能		②の相違
	(m [*] /s) (m [*] ) (m/s) 水位(m) 液位(水位(m) 液位(水位(m))		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	設置後 ( \ ( \ 0. 1.0×2 条) 0. 34 ^{※3} 0. P. −0. 16		
	※1 原子炉補機冷却海水ポンプ運転時の流量(960 m³/h×2 台)		
	※2 貝付着代10cm を考慮		
	※3 取水路については,流路縮小工設置後は,設置前のプラン		
	ト通常運転時と同様, 流速は小さいことなどから, 通水性		
	に問題はない。		
	※4 取水路の流路縮小工における局所損失(急拡,急縮)及び		
	摩擦損失を考慮(「参考2」図2参照)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	表2 流路縮小工設置による1 号炉取水機能(非常用系)への影	表1 流路縮小工設置による1号炉取水機能への影響	
	響	流路縮小工 循環水ポンプ状態 流量(m3/s) 水路断面積(m ² ) 流速(m/s)	
	流量 水路断面積 流速 取水口 海水ポンプ室 ポンプ取水可能	設置前         ホンプ運転時         28         約17.63         約1.59           設置後         ポンプ停止時         1         約8.81         約0.11	
	(m ⁻ /s) (m ⁻ ) (m/s) 水位(m) 水位 [∞] (m) 撞低水位 (m)		
	$0.84^{\pm 1} \qquad 0.84^{\pm 1} \qquad 0.8$		
	設置後 (\$1.0×2条) 0.54 ^{%3} 0.P0.17		
	※1 残留熱除去海水ポンプ運転時の流量(545 m ³ /h×4 台)+		
	非常用補機冷却海水ポンプ運転時の流量(390 m ³ /h+450		
	$m^3/h)$		
	※2 貝付着代10cm を考慮		
	※3 取水路については, 流路縮小工設置後は, 設置前のプラン		
	ト通常運転時と同様, 流速は小さいことなどから, 通水性		
	に問題はない。		
	※4 取水路の流路縮小工における局所損失(急拡,急縮)及び		
	摩擦損失を考慮(「参考2」図2参照)。		
	(b) 津波襲来時の海水確保について		・評価内容の相違
	基準津波の引き波時の水位低下に対して、補機冷却海水		島根1号炉における
	ポンプの運転に必要な海水を確保する必要があることか		使用済燃料の冷却は十
	ら、流路縮小工設置後の水路内貯留量について検討した。		分進んでおり,使用済燃
	基準津波による引き波時において、海水面が取水路の流		料プールの冷却に対し、
	<u>路縮小工開口部下端(0.P4.55m)を下回る時間は約5分</u>		一時的な引き波の影響
	(244 秒)である。また,3.11 地震の余効変動による約0.3m		は軽微
	の隆起を考慮した場合の流路縮小工開口部下端を下回る時		
	間は255 秒, 今後も余効変動が継続することを想定し3.11		
	地震の広域的な地殻変動の解消により約1m 隆起したとし		
	ても流路縮小工開口部下端を下回る時間は292秒である。		
	なお、津波に伴う水位変動により水路内に海水が繰り返		
	し流人・流出するが、取水口前面水位が最も低くなる第1		
	<u>波引き波時の地震発生後45 分~70 分のうち取水路の流路</u>		
	縮小上開口部下端を下回る時間を保守的にすべて足し合わ		
	せると362 秒である。また、3.11 地震の余効変動による約		
	0.3m の隆起を考慮した場合の流路縮小工開口部下端を下		
	回る時間は393 秒,3.11 地震の広域的な地殻変動の解消に		
	より約1m 隆起したとしても流路縮小工開口部下端を下回		
	<u>る時間は539 杪である(図5 参照)。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	これに対し,補機冷却海水ポンプが15 分間取水するた		
	めの貯留量(2,155 m ³ )以上を確保する設計とする [※] 。1号		
	<u> 炉取水路~海水ポンプ室縦断図を図4に示す。表3のとお</u>		
	り流路縮小工設置後の水路内貯留量は2,600m ³ であり,基		
	<u>準津波の引き波時に補機冷却海水ポンプの運転に必要な海</u>		
	水を確保できることを確認した。		
	<ul> <li>※ 設計確認値 (2,155 m³) =海水ポンプの運転による容量 (755m³) +デッドストック分 (1,400m³)</li> <li>・海水ポンプの運転による容量:755m³ (15分の運転を想定) 残留熟除去海水ポンプ4台 (545m³/h/台) 非常用補機冷却海水ポンプ2台 (A系:390m³/h/台,B系:450m³/h/台)</li> <li></li></ul>		
	<figure></figure>		
	^{瞬(分)}		
	凶 J J 万 𝒴 収小 Ⅰ 川 固 に わ ℓ ) る 差 平 岸 彼 に よ る 小 世 時 刻 歴 彼 形 ( 水 位 下 路 側)		
	小昭133J田墨         海水ポンプ室内           水路長         流積*         貯留量         計         貯留量         合計		
	A 系 30.07m 2.37 m ² 71.3m ³ 100 5 ³ 0.101 0 ³ 2,600m ³		
	B $\Re$ 38. 16m         2. 39 n ² 91. 2m ³ 102. 5m         2, 464. 5m         (2, 626. 8m ³ )		
	※ 海側の最小となる流積にて算出(水路勾配により敷地側のほうが流積が大きくなるが,保守 的に計算)		
		l	ıl

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	(c) 漂流物による閉塞の可能性評価		・評価内容の相違
	基準津波に伴って生じた漂流物が1号炉取水口に到達		島根1号炉における
	して,1号炉取水口及び取水路の流路縮小工を閉塞させる		使用済燃料の冷却は十
	可能性について評価した。		分進んでおり,使用済燃
	図6に示すとおり、1号炉取水口は2号炉取水口と同じ		料プールの冷却に対し,
	発電所の港湾内に位置し,離隔は100m 程度であるため, 1		一時的な漂流物の影響
	号炉取水口が閉塞する可能性の検討において考慮すべき漂		は軽微
	流物は,2号炉取水口が閉塞する可能性で考慮した漂流物		
	と同様と考えることができる。		
	「別添資料1 2.5(2)津波の二次的な影響による非常用		
	海水冷却系の機能保持確認」において、上記と同様に2号		
	炉取水口が閉塞する可能性を評価しており,2号炉取水口		
	前面に到達する可能性がある施設・設備として、発電所敷		
	地内からは, 車両, カーテンウォールPC 板, キュービクル		
	<u>類</u> , 角落し, 3号炉放水口モニタリング架台及びがれき (壁		
	材等)を考慮し、発電所敷地外からは、車両、コンテナ・		
	ユニットハウス, 小型船舶, 油槽所のタンク及びがれき (壁		
	材,木片,廃プラスチック類等)を考慮したが,2号炉取		
	水口の取水面積との比較や形状,水面を浮遊することから,		
	いずれも2号炉取水口を閉塞することはないと評価してい		
	<u> 3.</u>		
	1号炉取水口は、2号炉取水口と取水口形状が異なるも		
	のの、考慮すべき漂流物のうち投影面積が最大となる施		
	<u>設・設備は車両(約15.2m×約3m)であるのに対して,1号</u>		
	炉取水口の取水面積(6m×4m, 4 口)はこの車両の投影面		
	積よりも十分に大きいことから、1号炉取水口を閉塞する		
	ことはない(図7)。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	<u>また,固定式バースクリーンは溶接接合した構造となっ</u>		
	ており,仮に変形するようなことがあっても,個々の鋼材		
	が分離し漂流物化することや大きな開口が生じることは <u>考</u>		
	<u>えにくい。</u>		
	<u>以上より,取水路の流路縮小工が漂流物によって閉塞す</u>		
	る可能性はない。		
	なお、東北地方太平洋沖地震に伴う津波によって、発電		
	所港湾内にがれき等の漂流物が到達していたが、各号炉の		
	<u>取水性への影響はなく、その後に作業船等により撤去して</u>		
	いる。この実績を踏まえ、津波襲来後には必要に応じて漂		
	<u>流物を撤去する方針としていることから,補機冷却海水ポ</u>		
	ンプの取水は可能である。		
	バースクリーン: FB125nm×12mm ピッチ 200mm		
	写真1 1号炉取水口固定式バースクリーン		
	(d) 海生生物の付着による閉塞の可能性	(b) 海生生物の付着による閉塞の可能性	
	「火力原子力発電所土木構造物の設計-増補改訂版-(電	1号炉取水槽の流路縮小工の開口部は,1箇所あたり直径約	・点検結果の相違
	力土木技術協会)」によると、暗渠水路における貝等の付	2.4m であり,これまでの取水設備の点検結果から,海生生物	
	<u>着代は0~200mm</u> に対し,1号炉取水路の至近3回の定期点	の付着代は最大で 5cm 程度であることを確認していることか	
	検時における調査結果では,貝等の付着厚さは平均で5~	<u>ら,海生生物の</u> 付着による閉塞の可能性は <u>ない</u> 。	
	<u>20mm, 最大で90mm となっている(表4)。</u>		
	取水路に設置する流路縮小工の貫通部はφ1,000mm で		
	あり、断面縮小に伴い当該区間の流速が増大することによ		
	<u>り,流路縮小工設置前より当該区間には海生生物が付着し</u>		
	にくくなる。仮に設置前と同等程度付着したとしても、貫		
	<u>通部は貝付着厚さに比べて十分大きいことから,</u> 付着によ		

る閉塞の可能性はない。 なお、流路縮小工設置後においても定期的な点検と清掃 なお、流路縮小工 う。       なお、流路縮小工 う。         を行う。 り、海生生物による流路縮小工の閉塞の可能性は ない。       う。         以上より、海生生物による流路縮小工の閉塞の可能性は ない。       以上より、海生 地 <t< th=""><th></th></t<>	
なお,流路縮小工設置後においても定期的な点検と清掃 を行う。 以上より,海生生物による流路縮小工の閉塞の可能性はない。       なお,流路縮小工 う。 以上より,海生 <u>表4 1号炉取水路における貝付着実績</u> (流路縮小工設置前)       以上より,海生 <u>長4 1号炉取水路における貝付着実績</u> (流路縮小工設置前) <u>見付着厚さ</u> 最大          日付着厚さ          平均          日          1          1          1          1          30mm	
を行う。       う。         以上より,海生生物による流路縮小工の閉塞の可能性はない。       以上より,海生ない。 <u>表4 1号炉取水路における貝付着実績(流路縮小工設置前)</u> い。          1日          1日          1日          1日          1日          1日          1日          1日          1日          11          30mm	L設置後においても定
以上より,海生生物による流路縮小工の閉塞の可能性は ない。     以上より,海生 い。 <u>表4 1号炉取水路における貝付着実績</u> (流路縮小工設置前)     い。            月付着厚さ 平均        平均        日20.5~H20.10       20mm     70mm       H26.8~H26.11     5mm       30mm	
ない。     い。 <u>表4 1号炉取水路における貝付着実績</u> (流路縮小工設置前).     い。            月付着厚さ	生物による流路縮小コ
表4 1号炉取水路における貝付着実績 (流路縮小工設置前)             点検時期       貝付着厚さ         平均       最大         H20.5~H20.10       20mm       70mm         H26.8~H26.11       5mm       30mm	
<	
点検時期 平均 日20.5~H20.10 H26.8~H26.11 5mm 30mm	
点検時期     平均     最大       H20.5~H20.10     20mm     70mm       H26.8~H26.11     5mm     30mm	
H20.5~H20.10     20mm     70mm       H26.8~H26.11     5mm     30mm	
H26. 8~H26. 11 5mm 30mm	
H28.9~H29.2 10mm 90mm	
<ul> <li>b. 1 号炉放水機能への影響について</li> </ul>	
(a) 補機冷却海水ポンプ(常用系) 運転時の排水	
·····································	
り、プラント停止状態における常用海水系運転時における	
放水立坑水位が約0.64m上昇し, 0.P.+2.08mとなるもの	
の,放水立坑高さの0.P.+14.0mより低いことから,1号炉	
放水立坑から敷地への溢水は生じない(表5参照)。流路	
縮小工設置による抵抗増分に関する検討について、「参考	
1」に示す。	
表5 流路稲小工設直による1 号炉放水機能(常用糸)への影響	
流路縮小工     流量     水路断面積 (m ³ /s)     流速     放水口     放水立坑 水位 ^{※4} 流路縮小工     (m ² )     (m ² )     (m/s)     水位(m)     放水立坑	
設置前 $\frac{15.2}{(\phi 4.4^{\#2} \times 1  \text{条})}$ 0.03 ^{\#3} 0.P.+1.44	
設置後 $0.53^{\times 1}$ 0.20 0.P.+1.43 0.P.+2.08 0.P.+2.08	
<ul> <li>※1 原子炉補機冷却海水ポンブ運転時の流量(960 m³/h×2台)</li> <li>※2 貝付着代 10cm を考慮</li> <li>※3 放水路については,「建設省河川砂防基準(案)同解説 設計編〔1〕」で定める一般的な設計流速(常時 2~5 m/s 程度)であることから,通水性に問題はない。</li> <li>※4 放水路の流路縮小工における局所損失(急拡,急縮)及び摩擦損失を考慮(「参考2」図2参照)。</li> </ul>	

5条-別添1-添付29-10

炉	備考
期的な点検と清掃を行	
この閉塞の可能性はな	
	出存状乳の切等
	<ul> <li>· 対象施設の相違</li> <li>①の相違</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2 号炉 (2019.11.6 版)	島根原子力発電所 2 号炉	備考
	プラント事故時における非常用海水系運転時における		
	の0. P. +14. 0mより低いことから,1号炉放水立坑から敷地		
	への溢水は生じない(表6参照)		
	表6 流路縮小工設置による1 号炉放水機能(非常用系)への影		
	響		
	流量         水路断面積         流速         放水口         放水立坑         放水立坑           流路縮小工         (m³/s)         (m²)         (m/s)         水位(m)         水位 ^{w4} 高さ(m)		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	設置後 $\begin{pmatrix} 0.20\\ (\phi 0.5 \times 1  \hat{\pi}) \end{pmatrix}$ 4.20 ^{*3} 0. P. +2. 97		
	※1 残留熱除去海水ポンプ運転時の流量(545 m²/h×4 台)+非常用補機冷却海水ポンプ運 転時の流量(300 m²/h+450 m³/h)	1	
	※2 目付着代 10cm を考慮		
	※3 放水路については,「建設省河川砂防基準(案)同解説 設計編 [1]」で定める一般的な 設計流速(常時 2~5 m/s 程度)であることから,通水性に問題はない。		
	※4 放水路の流路縮小工における局所損失(急拡,急縮)及び摩擦損失を考慮(「参考2」図 2 参照)		
	_( b ) 補機冷却海水ポンプ(常用系)運転時の排水性評価		
	放水路への流路縮小工設置後のプラント停止状態にお		
	ける放水立坑水位0. P. +2. 08mは, 原子炉補機冷却海水ポン		
	プの放水高さ0. P. +4. 6mより低いことから,ポンプの排水		
	機能(ポンプ性能)への影響はない(図8参照)。なお,		
	津波時における排水性に関しては、取水側及び放水側の水		
	位が上昇するため,ポンプ排水性への影響はない。		
	D.P.+13.8m         O.P.+14.0m         O.P.+14.0m         O.P.+13.8m           放水立坑         放水立坑         「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」		
	研究和時末まシラ             版水屋菅                  街環水系                  B                 が水路                 B                    B                          B                   B		
	図8 放水立坑内の原子炉補機冷却海水ポンプ放出配管位置		
		1	
		1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	(3) 原子炉施設保安規定への影響	(3) 原子炉施設保安規定への影響	
	流路縮小工設置による1 号炉停止状態における保安管理	流路縮小工設置による1 号炉における保安管理に関する	
	に関する事項として、原子炉施設保安規定(以下「保安規	事項として、原子炉施設保安規定(以下「保安規定」とい	
	定」という。)上の影響について以下のとおりまとめた。	う。)上の影響について以下のとおりまとめた。	
	a.1 号炉 <u>停止状態</u> の保安確保における該当条文	a. 1 号炉の保安確保における該当条文	
	(a) 第27条(計測および制御設備) :		・運用の相違
	・中間領域モニタ(動作不能でないことを毎日1回確		島根1号炉は廃止措
	認)		置段階であり,対象条文
	・中性子源領域モニタ(計数率が3cps 以上であること		が相違
	を毎日1 回確認)		
	・原子炉建屋隔離系計装(原子炉建屋原子炉棟内での		
	照射された燃料に係る作業時に動作不能でないこと		
	を指示により確認)		
	<ul> <li>・中央制御室非常用換気空調系計装(原子炉建屋原子)</li> </ul>		
	炉棟内での照射された燃料に係る作業時に動作不能		
	でないことを指示により確認)		
	<ul><li>(b)第36条(原子炉停止時冷却系その2):</li></ul>		
	・原子炉停止時冷却系が停止した場合においても、原		
	子炉冷却材温度を100℃未満に保つことができること		
	(c)第40 条(非常用炉心冷却系その2) :		
	・非常用炉心冷却系2系列または非常用炉心冷却系1		
	系列および復水補給水系1 系列		
	・ただし、原子炉内から全燃料が取り出され、かつプ		
	ールゲートが閉の場合本条文は適用しない		
	(d) 第49 条(原子炉建屋) :		
	・原子炉建屋原子炉等の機能が健全であること(原子		
	<b>炉建屋原子炉棟内での照射された燃料に係る作業時</b>		
	において)		
	<u>(e)第51 条(非常用ガス処理系) :</u>		
	・2 系列が動作可能であること(原子炉建屋原子炉棟		
	内での照射された燃料に係る作業時において)		
	( <u>f</u> ) 第 <u>56</u> 条(使用済燃料プールの水位 <u>・</u> 水温):	( <u>a</u> )第 <u>143</u> 条(使用済燃料プールの水位 <u>および</u> 水温)	
	・使用済燃料プールの水位がオーバーフロー水位付近	・使用済燃料プールの水位がオーバーフロー水位付近に	
	にあること	あること	
	・使用済燃料プールの水温が65℃以下	・使用済燃料プールの水温が65℃以下	
	(g)第58 条(中央制御室非常用換気空調系):		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	<ul> <li>女川原子力発電所 2号炉 (2019.11.6版)</li> <li>・2 系列が動作可能であること (原子炉建屋原子炉棟 内での照射された燃料に係る作業時において)</li> <li>(h) 第60 条 (外部電源その2):</li> <li>・外部電源1 系列が動作可能であること</li> <li>(i) 第62 条 (非常用ディーゼル発電機その2):</li> <li>・非常用交流高圧母線に接続する非常用ディーゼル発 電機を含め2 台の非常用発電設備が動作可能である こと</li> <li>(j) 第63 条 (非常用ディーゼル発電機燃料油等):</li> <li>・非常用ディーゼル発電機に対し必要量確保されてい ること</li> <li>(k) 第65 条 (直流電源その2):</li> <li>・直流電源が動作可能であること</li> <li>(1) 第67 条 (所内電源系統その2):</li> </ul>	島根原子力発電所 2号炉	備考
	<ul> <li>・第27条,第35条,第36条および第40条で要求される設備の維持に必要な非常用交流高圧電源母線,直流電源母線および原子炉保護系母線が受電されていること</li> <li>b.保安規定上直接影響がある条文上記a.の該当条文の結果から流路縮小工設置に伴い関連する条文は以下のとおり。</li> <li>(a)第56条(使用済燃料プールの水位・水温):</li> <li>・使用済燃料プールの冷却水として,原子炉補機冷却系を使用しているため</li> <li>(b)第62条(非常用ディーゼル発電機の冷却水として非常用補機冷却系表を使用しているため</li> </ul>	<ul> <li>b.保安規定上直接影響がある条文 上記a.の該当条文の結果から流路縮小工設置に伴い関連 する条文は以下のとおり。</li> <li>(a)第143条(使用済燃料プールの水位および水温)</li> <li>・使用済燃料プールの冷却水として,原子炉補機冷却系 を使用しており,流路縮小工の設置により通水面積が 小さくなるため,関連する条文として抽出した。</li> </ul>	
	c. 保安規定上の影響 <u>上記a.及びb.</u> の結果から流路縮小工設置後においても, 海水系(原子炉補機冷却海水系 <u>,非常用補機冷却海水系</u> )に必 要な流量は確保されていることから,保安規定上要求される事 項への影響がないことを確認した。	c. 保安規定上の影響 (2)の結果から流路縮小工設置後においても,海水系(原 子炉補機冷却海水系)に必要な流量は確保されていることか ら,保安規定上要求される事項への影響がないことを確認し た。	<ul> <li>・評価条件の相違</li> <li>②の相違</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	3. 流路縮小工の保守管理について	3. 流路縮小工の保守管理について	
	流路縮小工については,津波防護施設としての機能及び1	流路縮小工については,津波防護施設としての機能及び1 号	
	号炉取水機能 <u>・放水機能</u> を維持していくため,別途定める保	炉取水機能を維持していくため,別途定める保全計画に基づき,	・対象施設の相違
	全計画に基づき、適切に管理していく。具体的には、取水路	適切に管理していく。	<ol> <li>①の相違</li> </ol>
	については定期的な抜水による点検・清掃等を実施する。 <u>ま</u>	具体的には、 流路縮小工の縮小板・取付板は腐食代を確保す	・保守管理方針の相違
	た放水路については定期的な抜水、ダイバー、水中カメラ等	るとともに、縮小板・取付板・固定ボルトは腐食防止のため塗	島根1号炉は腐食に
	を用いた点検・清掃等を実施することにより、流路縮小工部	<u>装を行う。固定ボルト及び固定ボルト近傍部材の腐食による固</u>	対する保守管理方針を
	の変状の有無等を確認し、変状等が確認された場合には、詳	<u>定ボルトの脱落を防止するため,固定ボルトの径を大きくする,</u>	記載している
	細な調査等を行うこととする。	本数を増やす等の対応を実施することとし、対応方法は詳細設	
		計段階において決定する。また,潜水士により取水槽内の定期	
		的な点検・清掃を行い、縮小板や固定ボルト等の流路縮小工の	
		各部位を確認する。固定ボルトに塗装の劣化や腐食等の傾向が	
		確認された場合には、当該ボルトを交換する。	
	4. 放水路の貝付着の有無が入力津波に与える影響について		・対象施設の相違
	1号炉放水路は,1系統のみで抜水点検できない構造である		①の相違
	<u>ことから、「貝付着あり」を基本条件としているが、流路縮小</u>		
	工設置時に施工区間の清掃を実施することから、当該区間を		
	「貝付着なし」とした場合の入力津波への影響について検討し		
	た。清掃範囲を図9に示す。影響検討については,入力津波の		
	設定と同様に一次元不定流の管路解析を実施した。管路解析の		
	主な解析条件を表7に,解析結果を表8に示す。管路解析の結		
	果、「貝付着なし」とした場合の評価水位は僅かに高くなるも		
	のの、入力津波水位に与える影響はないことを確認した。		
	第本立次約100       第本口約24m         第二       第二         第二       第二 </th <th></th> <th></th>		
	1		·

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発	電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	項目	解析条件**		
	快討刈家伴仮	基準律波 (小位工升側) 防波堤:あり		
	地震による地形変化	護岸付近の敷地の沈下:なし(現地形)		
	潮位条件	朔望平均満潮位: 0. P. +1. 43m		
		潮位のはらつき:+0.16m		
	林山山北	貝付着:清掃区間のみ貝代なし		
	官路状態	スクリーン損失:なし		
	※ 1号炉放水路入力津波	決定ケース		
	表8 貝付着	Fの有無が入力津波に与える影響		
	目付着状況 放水口 最高 <i>河</i>	前面         放水立坑         入力津波         1 号炉放水           水位         高さ         立坑高さ		
	貝付着なし	0. P. +11. 80m 0. P. +11. 8m		
	0.P.+1 貝付着あり	8.70m 0. P. +11.79m 0. P. +11.8m 0. P. +14.0m		
	LI	· · · · · · · · · · · · · · · · · · ·		
	<u>5</u> . 流路縮小工( <u>取</u> 7	<u> </u>	<u>4</u> . 流路縮小工( <u>取水槽</u> )の開口面積について	・対象施設の相違
	流路縮小工は,1-	号炉取 <u>放</u> 水路から敷地への津波の流入を防	流路縮小工は,1号炉取水路から敷地への津波の流入を防止	①の相違
	止することに加え,	1号炉の補機冷却海水ポンプの取水機能に	することに加え,1号炉の補機冷却海水ポンプの取水機能に影	
	影響を与えないこと	が求められる。	響を与えないことが求められる。	
	津波の流入防止の	観点からは、流路縮小工の開口径(貫通部	管路計算の結果を踏まえて,流路縮小工の開口面積を4.4m ²	・設備の相違
	の大きさ) を小さく	設定した方が、流路抵抗の増大により津波	とする構造としている。(2) a. (a) に示す通り, 循環水ポ	
	の水位上昇が抑制さ	れるため効果的である。 一方,開口径の縮	ンプを停止運用とすることにより,原子炉補機海水ポンプの必	
	小は,海水ポンプ室の	の水位低下に伴い補機冷却海水ポンプの取	要流量に対し, 十分な開口面積を確保している。	
	水機能に影響を与え	<u></u>		
	このため, 取水路	における流路縮小工の最小開口径は, 補機		
	<u>冷却海水ポンプの</u> 取	水可能最低水位 (0.P2.43m) を指標とし		
	<u>て,海水ポンプ室水</u>	位がこれを下回らないよう検討した。検討		
	の結果,開口径φ0.	3mとしても,海水ポンプ室水位		
	<u>(0. P1. 56m) であ</u>	り、取水可能最低水位を上回ることを確認		
	している。			
	よって,流路縮小	<u> 工 (取水路)の開口径 (φ1.0m) は, 取</u>		
	水性に対して十分な	裕度を持った開口径である(「参考2」参		
	照)			
				1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	<u>6</u> . 流路縮小工部の異常の検知性について	5. 流路縮小工部の異常の検知性について	
	流路縮小工部が閉塞する可能性はないと評価しているもの	流路縮小工部が閉塞する可能性はないと評価しているもの	
	の、仮に閉塞を仮定した場合の検知性について検討する。	の,仮に閉塞を仮定した場合の検知性について検討する。	
	(1) 取水路側流路縮小工が閉塞した場合の検知性		
	<u>取水路側で</u> 閉塞した場合, <u>海水ポンプ室入口</u> 水位が低下	流路縮小工が閉塞した場合、取水槽水位が低下傾向を示	
	傾向を示すため、中央制御室においてその兆候が確認でき	すため, 「取水槽水位低」の警報が中央制御室において発	
	る。また,水位の低下が継続した場合は,「海水ポンプ(A)	報することにより検知可能であり, 保安規定に紐づくQM	
	または(B)室入口水位低」の警報が中央制御室で発報す	S 文書「設備別運転要領書」別冊 警報発生時の措置」に	
	<u>ることから</u> ,保安規定に紐づくQMS文書「警報処理運転	基づき対応が可能である。	
	手順書」に基づき対応が可能である。		
	(2) 放水路側流路縮小工が閉塞した場合の検知性		・対象施設の相違
	放水路側で閉塞した場合,流路縮小の上流側である放水		①の相違
	立坑の水位が上昇し、反対に下流側である放水口側の水位		
	<u>は低下する(外洋の水位による)ことになるため、以下に</u>		
	より検知が可能であり、いずれの事象においても、中央制		
	御室での警報確認後,保安規定に紐づくQMS文書「警報		
	処理運転手順書」に基づき対応が可能である。		
	a. 流路縮小工下流側にある, 排水路試料採取設備異常が発		
	生する。		
	b. 放水立坑水位の上昇により, 補機冷却海水ポンプ(常用)		
	系)の排水性が確保できなくなることから、補機冷却海		
	水ポンプ(常用系)の過負荷トリップや冷却水の温度		
	「高」等の異常が発生する。なお、この場合でも放水立		
	坑水位は最高でも0.P.+13m程度であり、敷地へ溢水す		
	<u>ることはない。</u>		
	<u></u> . まとめ	<u>6</u> . まとめ	
	流路縮小工を設置することによる影響について,以下のとお	流路縮小工を設置することによる影響について,以下のとお	
	り確認した。	り確認した。	
	<ul><li>(1) 1 号 炉 取 水 機 能 へ の 影 響</li></ul>	<ul><li>(1) 1 号炉取水機能への影響</li></ul>	
		1号炉に貯蔵中の使用済燃料の冷却は十分進んでおり、崩壊	・運用の相違
		熱による発熱量は小さいため,使用済燃料プールの冷却が停止	島根1号炉は,使用済
		しても、その水温の上昇は緩やかな状況であることを踏まえ、	燃料の冷却が十分進ん
		流路縮小工の設置による取水機能への影響を以下のとおり確	でいる旨記載
		認した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	a. <u>プラント停止状態における常用海水系の取水機能及び</u> 事 <u>故時における</u> 非常用海水系の取水機能への影響はない。 <u>b. 基準津波による水位の低下に対して冷却に必要な海水が</u> <u>確保される。</u> <u>c</u> . 漂流物による流路縮小工部の閉塞の可能性はない。	a. 非常用海水系の取水機能への影響はない。	<ul> <li>・評価条件の相違</li> <li>②の相違</li> <li>・評価内容の相違</li> <li>島根1号炉における</li> <li>使用済燃料の冷却は十</li> </ul>
	<ul> <li><u>d</u>. 海生生物による流路縮小工部の閉塞の可能性はない。</li> <li>(2) 1号炉放水機能への影響</li> <li>a 1号炉放水立坑から敷地への浴水は生じない</li> </ul>	<u>b</u> . 海生生物による流路縮小工部の閉塞の可能性はない。	分進んでおり,使用済燃 料プールの冷却に対し て一時的な引き波・漂流 物の影響は軽微 ・対象施設の相違 ①の相違
	<ul> <li> <u> <u> </u></u></li></ul>	(2) 流路縮小工設置後においても,原子炉補機冷却海水系に 必要な流量は確保されていることから,保安規定上要求	<ul> <li>・評価条件の相違</li> <li>のの相違</li> </ul>
	<ul> <li>(4)流路縮小工については、津波防護施設としての機能及び1</li> <li>号炉取水機能<u>・放水機能</u>を維持していくため、別途定める保全計画に基づき、適切に管理していく。</li> </ul>	<ul> <li>(3)流路縮小工については、津波防護施設としての機能及び1</li> <li>号炉取水機能を維持していくため、別途定める保全計画に基づき、適切に管理していく。</li> </ul>	<ul> <li>・対象施設の相違</li> <li>①の相違</li> </ul>
	<ul> <li>(5)流路縮小工(取水路)の開口径をφ0.3mとしても補機冷 <u>却海水ポンプの取水可能最低水位を上回り,流路縮小工</u> (取水路)の開口径(φ1.0m)は,取水性に対して十 分な裕度を持った開口径である。</li> </ul>	( <u>4</u> ) 流路縮小工の <u>開口面積(4.4m²)は, 原子炉補機冷却海水</u> ポンプの必要流量から十分な <u>開口面積</u> である。	
	(6)流路縮小工部が閉塞する可能性はないと評価しているものの、仮に閉塞を仮定した場合の検知性について評価し、中央制御室で異常を検知(警報の確認)した後、保安規定に紐づくQMS文書「警報処理運転手順書」に基づき対応が可能であることを確認した。	(5)流路縮小工部が閉塞する可能性はないと評価しているものの、仮に閉塞を仮定した場合の検知性について評価し、中央制御室で異常を検知(警報の確認)した後、保安規定に紐づくQMS文書「設備別運転要領書別冊 警報発生時の措置」に基づき対応が可能であることを確	
	参考1 取放水路流路縮小工(1 号炉放水路)設置に伴い増加す る抵抗(損失)について 参考2 流路縮小工の開口径設定の考え方 参考3 流路縮小工の津波時の流速による構造成立性	認した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	参考4 流路縮小工の設置に伴う放水立坑の水位について,貝付		
	着等の保守的な条件を考慮した場合の2号炉の安全性		
	等への影響		
	参考5 流路縮小工の施工方針及び常時における津波防護機能		
	維持の確認方法		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	参考1		・結果の相違
			流路縮小工設置によ
	取放水路流路縮小工(1号炉放水路)設置に伴い増加する抵抗		り循環水ポンプ停止運
	(損失) について		用とするため, 流速が小
			さくなり,抵抗も小さく
	流路縮小工の設置に伴い、①急縮による抵抗(損失)、②急拡		なる
	による抵抗(損失),③摩擦による抵抗(損失)が働く。放水路		
	を対象とした管路解析(補機冷却系運転時)から得られる流路縮		
	小工内の流速(U2=2.7m/s)を用いて,各抵抗(損失)を算定し		
	た結果を以下に示す。		
	①急縮による抵抗(損失)		
	$h_{sc} = f_{sc} \frac{U_2^2}{2g} = 0.18(m)$		
	②急拡による抵抗(損失)		
	$h_{se} = f_{se} \frac{U_2^2}{2} = 0.36(m)$ (管路解析: + 2.10 m)		
	水路流路縮小工設置前		
	③摩擦による抵抗(損失) 0.64mと整合的である。)		
	$h_f = f \frac{D}{D} \frac{D}{2g} = 0.13(m)$		
	補機冷却系運転時の管路内の流速が遅いことから,その抵抗(損		
	失)は小さいものとなっている。		
	表 各局所損失の算定式		
	①急縮による抵抗(損失)		
	急縮による損失水頭は下記のとおり。流路形状から $f_{sc}$ =0.499と設定した。 $h = f \frac{V_2^2}{2}$		
	$n_{sc} = J_{sc} 2g$ ここに、 $h_{sc}$ : 急縮による損失水頭		
	f _{sc} : 急縮損失係数 V ₂ : 急縮後の流速		
	 ②急拡による抵抗(損失)		
	急拡による損失水頭は下記のとおり。流路形状から $f_{se}=0.974$ と設定した。		
	$h_{se} = f_{se} \frac{v_1}{2g}$		
	ここに、 $n_{se}$ : 急拡損失係数 $f_{se}$ : 急拡損失係数		
	V1: 忌加削の流送 ②庭榜にトスにた/提供)		
	③/単振による私仇 (限大) $b_r = f \frac{LV^2}{L} f - \frac{124.5n^2}{L}$		
	$(f - f)_{D2g}, f = D^{1/3}$ ここに、 $h_f$ : 摩擦による損失水頭 L: 管路の長さ		
	f: 摩擦損失係数 V: 平均流速 ア: 平均流速 D: 管の直径 n: マニングの知度係数(0.015)		
			1]

柏崎刈羽原子力発電所 6/7号炉 (2017.12	2.20版) 女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	参考2		・資料構成の相違
			島根2号炉では,後述
	流路縮小工の開口径設定の考え方		する参考2において,角
			落とし付近にて開口率
	流路縮小工に求められる要求事項及び開口径の設定に関する留		を3割とすることで溢
	意点を以下に示す。また,開口径の設定の流れを図1に,流路縮		水防止対策の成立性の
	小工設置による抵抗(損失)の概念図を図2に、開口径の大小に		見通しが確認できたこ
	よる機能への影響を表1に示す。		とを示している
	(1) 流路縮小工に求められる要求事項		
	【取放水路から敷地への津波の流入防止】		
	① 基準津波による水位の上昇高さが施設高さを上回らないこ		
	と(構造成立性を含む)。		
	【津波時における非常用海水冷却系の取水機能】		
	② 基準津波による水位の低下に対して冷却に必要な海水が確		
	保(貯留)できること。		
	③ 基準津波による水位の低下に対して取水機能が確保できる		
	こと(補機冷却海水ポンプの取水機能維持)。		
	【非津波時における取水・放水機能*】		
	④ 非津波時の取水機能が確保できること(補機冷却海水ポン		
	(5) 非律波時の放水機能が確保できること(放水立坑から溢水		
	しないこと、補機冷却海水ボンブの放水機能維持)。		
	※ 通水性の確保を前提とする。		
	(2)開口径の設定に関する留意点		
	① 基準津波による水位の上昇高さが施設高さ以下となる、十		
	分な抵抗(損失)が得られる開口径であること(水位上昇		
	側の観点)。		
	② 流路縮小工設置に伴う抵抗(損失)の増加が、津波時及び		
	非津波時の取水機能(補機冷却海水ポンプの機能保持)に		
	影響を及ぼさない開口径とすること(水位下降側の観点)。		
	③ 非津波時の放水機能が確保できる開口径を有しているこ		
	と。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
相崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	<figure><complex-block></complex-block></figure>	局根原子力発電所 2 岁炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	参考3.	参考1	
	流路縮小工の津波時の流速による構造成立性	<u>1号炉取水槽</u> 流路縮小工の構造成立性	・対象施設の相違
			①の相違
	<u>津波時流速が作用した場合において</u> ,構造成立性に関する既往	1号炉取水槽流路縮小工(以下,「流路縮小工」と記す)は津波	・資料構成の相違
	知見について整理するとともに、それを踏まえ流路縮小工の各部	防護施設であることから、基準地震動Ssによる地震荷重や基準	島根2号炉の流路縮
	位が損傷し要求機能を喪失しうる事象(例えば、津波による作用	<u>津波による津波荷重に対し、構成する部材がおおむね弾性域内に</u>	小工では, 地震荷重や津
	水圧や貫通部の高流速により躯体安定性が確保できない、すりへ	収まるよう設計する。	波荷重に対する設計方
	りや負圧により損傷する)を抽出し、これらの損傷モードの発生	ここでは、地震荷重や流水圧等の津波荷重により流路縮小工を	針や構造成立性の見通
	可能性を評価する。これを踏まえ、構造成立性を示す。	構成する部材が曲げやせん断等により損傷する以外に、津波時流	しについて、津波時流速
		速が作用した場合の構造成立性に関する既在知見について整理す	が作用した場合の構造
		るとともに、それを踏まえ、旅路縮小上の各部位が損傷して要求	成立性に関する知見も
		機能を喪失しうる事象(例えば、津波による作用水圧や縮小部の	踏まえて示している(以
		<u>流速により躯体安定性が確保できない等)を整理する。</u> これらの	ト、③の相違)
		損傷モードの発生可能性を評価し、設計・施工上の配慮事項を整	
	(1)推生や去地に明みて町分加日の動田		次判律中の相当
	(1) 構造成 立性に 関う る 既 社 知 見 の 整 埋	(1) <u>律波時流速が作用した場合の</u> 構造成並性に関する既任知見	・資料構成の相違
	法取続しての久如位が提復し亜式機能な転生しるて東色	の登理 	300相连
	(加鉛帽小工の谷部位が損傷し安水機能を送入しりる事象の抽出になたり、 既分知見を敷理した結果を以下に示す。	(加鉛相小工の合司位が損傷し、安米機能を送入しりる事象の抽出になたり、 海波時流速が佐田」を担合の構造成立所に	
	の抽山にめたり、既住知見を登埋した福未を以下に示す。	の抽山にめたり、 <u>律仮時加速が作用した場合の</u> 構造成立住に 関オる既往知目を敷理した結果を出下に示す	
	・ 流敗縮小工は 補機冷却海水ポンプ流量の通水が可能な貫通	<u> </u>	・対象施設の相違
	部を確保しつつ断面をコンクリートで閉塞する構造であ		の相違
	この「十地改良事業計画設計基準 設計「ダム」技術書「コン		
	クリートダム編](H15.4. 農林水産省)   によれば、作用水		
	丘に対して閉塞工がせん断破壊、滑動、円板としての曲げに		
	対する安定性の観点から、必要閉塞工長を設定することとさ		
	れている。また、同様に「多目的ダムの建設-平成17年版		
	第6巻 施工編((財)ダム技術センター)」では,作用水		
	圧に対して確実な止水を行うため、プラグ※そのものが水圧		
	によって破壊しないこと、プラグが抜けないことが求められ		
	るとしている。		
	※ プラグとは、水路トンネルを閉塞するコンクリート		
	のことである。		・対象施設の相違
	<ul> <li>・ 津波時には、<u>流路縮小工貫通部</u>を高流速の津波が通過する。</li> </ul>	・津波時には、 <u>流路縮小工による開口部</u> を高流速の津波が通	①の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	「水門鉄管技術基準(水圧鉄管・鉄鋼構造物編)平成29 年	過する。「水門鉄管技術基準(水圧鉄管・鉄鋼構造物編)平	
	版((社)水門鉄管協会)」によれば、水圧鉄管の固定台(ア	成 29 年版((社)水門鉄管協会)」によれば,水圧鉄管の	
	ンカーブロック)の設計において、考慮すべき外力として、	固定台(アンカーブロック)の設計において、考慮すべき外	
	管の重量(管傾斜による推力)や湾曲部に作用する遠心力等	力として、管の重量(管傾斜による推力)や湾曲部に作用す	
	に加え、管内流水の摩擦による推力が挙げられる。	る遠心力等に加え、管内流水の摩擦による推力が挙げられ	
		る。	
	<ul> <li>         ・ 津波時には、<u>流路縮小工貫通部を高流速の津波</u>が通過する。     </li> </ul>	・津波時には、 <u>流路縮小工による開口部</u> を高流速の津波が通	・対象施設の相違
	「建設省河川砂防技術基準(案)同解説 設計編 [ I ] 」に	過する。「建設省河川砂防技術基準(案)同解説 設計編	①の相違
	よれば、ダムの放水設備について、流水に接する構造物の表	[I]」によれば,ダムの放水設備について,流水に接する	
	面は,流水による洗堀や摩耗の軽減に配慮して設計するとと	構造物の表面は、流水による洗掘や摩耗の軽減に配慮して	
	もに,流速が大きい場合には, <u>流水やキャビテーション</u> によ	設計するとともに,流速が大きい場合には, <u>渦や流水</u> によ	
	る摩耗や浸食の対策を考える必要があり、施工上生じたコン	る摩耗や浸食の対策を考える必要があるとしている。 <u>島根</u>	・対象施設の相違
	クリート面の不整や段差がキャビテーションの原因となる	2号炉の津波時に流入する海水については、参考資料に示	① 相違
	ことも予想されるとしている。	すとおり,輪谷湾の底質は岩及び砂礫で構成されており,	
		島根2号炉の基準津波における砂移動の検討結果から取水	
		口及び取水槽付近の砂の最大堆積厚さが小さく、砂の流入	
		は少ないことから,海水に含まれる砂等による影響は小さ	
		いと判断する。	
	・ 津波時には、流路縮小工前後及び貫通部に砂礫を含んだ海水		・対象施設の相違
	の流れが生じる。「コンクリート診断技術[基礎編]'19 日		<ol> <li>①の相違</li> </ol>
	本コンクリート工学会」によれば、ダムや水路などの水路構		
	造物は、流水に砂礫を含むとすりへりによる損傷が増大する		
	<u>とされている。</u>		
	・ 流路縮小工は, 流路断面が縮小されることから, 流路縮小工	<ul> <li>・流路縮小工は、流路断面が縮小されることから、流路縮小</li> </ul>	
	前面と貫通部の間で津波流速の変化が生じる。「コンクリー	工前面と流路縮小工による開口部の間で津波流速の変化が	
	ト診断技術[基礎編]'19 日本コンクリート工学会」によれ	生じる。「ダム・堰施設技術基準(案)平成 23 年版((社)	
	ば, 凹凸や急激な屈曲をもつコンクリート表面に沿って高速	ダム・堰施設技術協会)」によれば、高流速の水が流れる放	
	の水が流れる場合などに局部的な圧力低下が加わると、その	流管内では, 管路の湾曲や壁面の凹凸によって局所的に圧	
	下流は負圧となって空洞を生じ、水の流れが圧力の高いとこ	力降下が生じ、その下流は負圧となって空洞を生じ、水の	
	ろに移動すると水蒸気の気泡は急激に圧潰され壁面に大き	流れが圧力の高いところに移動すると水蒸気の気泡は急激	
	な衝撃を与えて、ピッチング損傷を与えるとされている。	に圧潰され壁面に著しい損傷を与えるとしている。	
			1
			1
			1
			1
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
--------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------
	(2)要求機能を喪失しうる事象の抽出	(2)要求機能を喪失しうる事象の抽出	
	前述を踏まえ、流路縮小工各部位が損傷し要求機能を喪失	前述を踏まえ、流路縮小工各部位が損傷により要求機能を	
	しうる事象を抽出し、これに対する設計・施工上の配慮を整	喪失しうる事象を抽出し、これに対する設計・施工上の配慮	
	理した。表1及び表2に整理結果を示す。	を整理した。表1~表3に整理結果を示す。	
	表1 津波時の流速により要求機能を喪失しうる事象と設計・施	5 表1 <u>地震荷重や津波荷重により要求機能を喪失しうる事象と設</u>	・対象施設の相違
	工上の配慮事項(流路縮小工全体)	<u>計・施工上の配慮事項(新設の鋼製部材)</u>	①の相違
	部位の名称 変支機能を準先しうる事象 設計・施工上の配慮 照査	部位の名称         要求機能を喪失しうる事象         設計・施工上の記慮         照査           ・地震荷重や津波荷重により、向小板が曲げ接壊又はせん         ・縮小板に生じる断面力による応力度が、許容限界以下であることを	
	・ 津波商量により、縮小工がせん断破壊又は滑動することで、     ・ 津波商量に対する躯体の安定性を評価する。なお、より保守     郎体全体の安定性を失い、要求機能を喪失する。     ・      ・      ・      津波商量に対する躯体の安定性を評価する。なお、より保守     的な評価となるように、貫通部が存在しないものとして荷重	間板破壊することで単次防機機能を提供する。 ・福火域から伝達する資産により、取代核及び固定ポルトが 破断し、津波防機機能を提供する。 ===== ===== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・電灯体板及び固定ポルトについては、各部位に生じる断面力による応 力度が、許容限界以下となるように詳細設計が関帯で設計する。 ・===== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・==== ・=== ・=== ・=== ・=== ・=== ・=== ・=== ・=== ・=== ・=== ・=== ・=== ・=== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・== ・= ・	
	を算定する。 まま、 用小工 カー 用小工 カー 用小工 カー 一 日 日 日 日 日 日 日 日 日 日 日 日 日		
	新商前         新商         新商         新商         新商		
	・ 急縮減・急縮減に失生すり気がではないになりすがない。 ロージョン算和いいたなで、形状に変化が生じ、津波防護 機能を長大する。 「ロージョン算和いいたないなが、ためにすったのに、ためにすいないないの」 ないたいな類をなんでしたい、ためにないために、ためにないないないないために、ためにないないないないないないないないないないないないないないため、ためを参考に、 コングリート的を設計において配慮を行う。		
	※1 エロージョン爆発には、速体振子・国体権手あるいは速体の皮化が分散をなしてコンジリードに素皮することで広じ爆発なある。 ※2 土地会発表実計開設は真実なご選手「解説で用く成立なり引着体表な重要が展開展整備開設設計運営後、本書では、1水セジト比を小さくしたσck=50k/em/程度の富配合コングリートで設備発性。 耐薬着性とも変れている。構築者は少なくすることによって更に効果があるとされている。	表2 地震荷重や津波荷重により要求機能を喪失しうる事象と設	
		計 ・施工上の配慮事項(取水管)	
	表2 津波時の流速により要求機能を喪失しうる事象と設計・施	部位の名称 要求機能を喪失しうる事象 設計・施工上の配慮 照音	・対象施設の相違
	工上の配慮事項(流路縮小工貫通部)	<ul> <li>・地震高量や新設の鋼製製材から広達する学家改商量により、</li> <li>・取水管合曲が発現、付人紙板装置くび引張破壊することで、</li> <li>・地震高量や新潟の鋼製製料がら広達する法装の着重により、</li> <li>・地震高量や新潟の鋼製製料がら広達する法装の着重により、</li> <li>・地震高量や新潟の鋼製製料がら広達する法装の着重により、</li> <li>取水管ランジが曲ば破壊文以往ん断破壊することで、</li> </ul>	①の相違
	部位の名称         要求機能を喪失しうる事象         設計・施工上の配慮         開査           ・ 砂硬や目を含んだ津波の志入により、コンクリート表面に         ・ アプレージョン産耗はギリヘリの一つであり、終年的にコンク		
	すりへり(アフレージョン摩集町)が発生することによって、 貫通部が広がり津波防護機能を喪失する。 「しの、」」、「レージンタンドレの低下や細骨材を少 なくすることしない、定めに以下の屋底を行う、 ・すりへり現象に対しては、水セント比の低下や細骨材を少 なくすることしない、有から、それらを参考に、コ ンクリート配合設計において配慮を行う。		
		断面図(管軸直交方向) 断面圆(管轴方向) 断面圆(管轴方向) 断面圆(管轴方向)	
	<ul> <li>・ 急端部に高速な津波が流れ込むことよる局部的な圧力降</li> <li>・ キャビテーションの免生の可能性について評価を行い、免生</li> <li>する場合はキャビテーションに配慮した設計とする。</li> </ul>	表3 津波時流速により要求機能を喪失しうる事象と設計・施工	
	気の気泡は急激に圧渡され、壁面に損傷を与えることによ り、形状に変化が生じ、流路縮小性能を喪失する(ビッチン グ損傷)。 発生の	上の配慮事項(流路縮小工全体)	
	「0000 「0000 「0000 第一回の 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「10000 「100000 「10000 「10000 「10000 「10000 「10000 「10000	設備の名称 要求機能を喪失しうる事象 設計・施工上の配慮 照査 ・急端部・急拡部で発生する砂や貝を含んだ高や流水になる 厚軽(エロージョン弾耗率)によって形状に変化が生し、津波 防護機能を喪失する。 の接機能を喪失する。	
	※ アプレージュレ電話とは読辱がコンクリート表面を転がったり滑ったりすることで、コンク リートを預失えせる編載である。 すりへりの原因として珍嫌等による。プレージョン 権利が想定され.三股階で通行する。 (①コンワリー大概記:送知:レモルタル層がすりへる。②年ルクル層がすりへった後.粗算材 ① ② ③ が質出し損害材自体がすりへる。③相素材が時期する。	まする保守管理が見たすることから、陳年による流怒縮小工の健全 性への際着はパロンと判断する。 ・考認は説明的な要求であるが、安全知道に以下の改進を行う。「水門 会社は説明的な運行をあった」となり、「東本国の進少に ((社)水門数を描述り、になれば、全部の準和による振見の進少に 対して強切な余裕厚を維細設計段階で設定する。	
		正面図         断面図           金綿部に高速な津麦が涼れ込なごとる局部的な圧力降 下によって、その下派は均圧となって空洞を生い(キャビテ- ション)、圧力が薄まる参加部りが近に移動すると、水蒸気、 の気泡は変数に圧減れ、異応調査機に対象に支払の、電気が加速した、小価面で得か減速行の小を基因える の気泡は変数に圧減れ、異応調査機に対象に支払の、電気が加速した。小価面で得か減速行の小を基因える 電管パク基礎が見たしたが、気気が開いたのですで、流器箱 の大泡は支払りによい、流器線小性能を喪失する(ビッテング損 報)、トロールドント・コント・コント・コント・コント・コント・コント・コント・コント・コント・コ	
		正面回 所面回 ※1:エロージョン爆耗とは、液体粒子のあいは液体の流れが角度をなして物体表面に衝突することで生じる弊耗である。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	<ul><li>(3)流路縮小工全体の構造成立性</li></ul>	(3) 流路縮小工全体の構造成立性の見通しの確認	・資料構成の相違
		a. 概要及び評価方針	③の相違(島根2号炉
	津波時における流路縮小工全体の構造成立性について, 国	流路縮小工全体の構造成立性の見通しについて以下に示	の(3)章における相違
	や地方自治体等のダムの水路閉塞において、多数の実績を有	す。	理由は、以下、同様)
	する「土地改良事業計画設計基準 設計[ダム] 技術書[コン	流路縮小工は、津波防護施設であり、津波時及び地震時に	
	クリートダム編](H15.4,農林水産省)」の評価手法(次頁	おいて開口面積を確保する必要があるため、部材が降伏しな	
	に示す)に基づき,評価を行った。	いことが求められる。流路縮小工は開口率5割程度とした縮	
	同基準によれば、打設面のせん断強さからの必要閉塞長	小板,取付板及び固定ボルトで構成する鋼製部材を取水管端	
	さ、滑動に対する必要閉塞長さ、周辺が固定の円板としての	部に設置し、取水管は取水槽北側壁を貫通して設置している	
	必要閉塞長さの3つの観点から,これを全て満足するよう	ことから、取水槽北側壁が間接支持部材となり、部材が終局	
	に、必要閉塞長を算定することとされている。	状態に至らないことが求められる。	
	評価の結果、以下のとおり、流路縮小工は、津波時に作用	なお、流路縮小工は鋼材で構成することから、部材の許容	
	する外力に対して十分な安定性を有していることを確認し	限界は「鋼構造設計規準-許容応力度設計法-((社)日本建	
	た。	築学会,2005 改定)」に基づき設定し,取水槽北側壁は鉄筋	
		コンクリート部材で構成されていることから、部材の許容限	
		界は「原子力発電所屋外重要土木構造物の耐震性能照査指	
		針・マニュアル(土木学会, 2005)」に基づき設定する。	
		以上のことから、構造成立性の見通しの確認における、各	
		部位に必要な性能に係る許容限界は、表4に示すとおり設定	
		する。	
		(南) (北)	
		縦断図	
		取け板 固定ボルト 縮小板 1号炉取水槽 加水管 流路縮小工(新設部材) 流路縮小工(知設取水管)	
		図1 流路縮小工及び流路縮小工を間接支持する部材	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		表4 構造成立性の見通しの確認における要求機能に応じた許容	
		限界	
		- 評価対象設備(部位) - 要求性能に対する	
		ご該に応じ         画げ         ぜん断         51弦           流路縮小工(縮小板)         部材が降伏しない         許容応力度         許容応力度         -         鋼構造設計規準	
		流路縮小工(取水管) 部材が降伏しない 許容応力度 許容応力度 許容応力度 鋼構造設計規準	
		b. 縮小板のモデル化方針	
		流路縮小工の縮小板は、図2に示すとおり、取水管端部の	
		フランジを挟んで取付板とボルト接合し、鋼製部材が地震荷	
		重や津波荷重により一体的に応答するモードとなることか	
		ら、有孔円の固定板としてモデル化する。	
		(南) 固定ボルト 固定ボルト (市) 取付板 面定ボルト (北)	
		取水管 縮小板 縮小板	
		(正面図)	
		(断面図)	
		図2 縮小板のモデル化方針	
		c.荷重組合せ	
		流路縮小工の設計においては、以下のとおり、常時荷重、	
		地震荷重及び津波荷重を適切に組合せて設計を行う。	
		①地震時:常時荷重+地震荷重	
		②津波時:常時荷重+津波荷重	
		③重畳時:常時荷重+津波荷重+余震荷重	
		また,設計に当たっては,その他自然現象との組合せを適切	
		に考慮する(添付資料20参照)。	
	a. 荷重条件	d. 荷重条件	
	津波時荷重として,津波時の静水圧※1,流水圧※2,	流路縮小工の設計において考慮する荷重は、以下のように	
	及び流水の摩擦による推力※3を考慮する。	設定する。	
	※1 取放水口前面の最大津波水位から算定(取水口前	(a)常時荷重	
	面:0.P.+20.78m, 放水路前面: 0.P.+20.02m )。	自重を考慮する。	
	※2 「漂流物対策施設設計ガイドライン (H26.3 沿岸	(b) 地震荷重	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	技術センター・寒地港湾技術研究センター)」及	基準地震動 S s を考慮する。なお,構造成立性の見通し	
	び「港湾の施設の技術上の基準・同解説(日本港	の確認においては、取水槽底版の水平方向1次固有周期に	
	湾協会)」に基づく評価式により算定。津波時流	おける加速度応答スペクトルが最も大きい基準地震動S s	
	速は、管路解析による流路縮小工前面及び背面の	-Dを用いる。	
	最大流速に基づき保守的に10m/s と設定(取水路		
	2.7m/s, 放水路6.5m/s) (満管時のみを対象)	(c)津波荷重	
	※3 貫通部内の津波時流速によって貫通部に生じる	津波時の静水圧,流水圧及び流水の摩擦による推力を考	
	摩擦による推力を水門鉄管技術基準(水圧鉄管・	慮する。	
	鉄鋼構造物編) 平成29 年版((社) 水門鉄管協会)	静水圧は、津波時及び重畳時において、以下の管路計算	
	に基づく評価式により算定。津波時流速は、管路	により算定された流路縮小工の上流側と下流側の水位差か	
	解析による流路縮小工貫通部の最大流速に基づき	ら算定し、上流側と下流側の水位差が最大となる時の水位	
	保守的に20m/s と設定(取水路13.0m/s, 放水路	差から求める。なお、重畳時は管路計算における流路縮小	
	14.3m/s) (満管時のみを対象)	工上流側の水位が最大となる時の水位差からも算定する。	
		・津波時(対象:日本海東縁部に想定される地震による	
		津波(基準津波1, 2, 3, 5, 及び6))	
		流路縮小工上流側EL.+7.51m, 流路縮小工下流側E	
		L0.75m	
		・重畳時(対象:海域活断層から想定される地震による	
		津波(基準津波4))	
		流路縮小工上流側EL.+1.64m, 流路縮小工下流側	
		E L. +1.63m	
		流水圧は、流路縮小工が水中の部材で構成されることか	
		ら,「港湾の施設の技術上の基準・同解説(日本港湾協会)」	
		に基づく評価式により算定する。なお、津波の流速は、管	
		路計算による流路縮小工地点の最大流速に基づき保守的	
		に,津波時は9.5m/s,重畳時は5.5m/sと設定する。	
		流水の摩擦による推力は、「水門鉄管技術基準(水圧鉄	
		管・鉄鋼構造物編) 平成 29 年版((社) 水門鉄管協会)」に	
		基づく評価式により算定する。	
		(d)余震荷重	
		海域活断層から想定される地震による津波荷重に組み合	
		わせる余震荷重として,弾性設計用地震動 Sd による荷重	
		を設定する(添付資料 22 参照)。	

7	女川原子力発電所 2号炉 (20]	19.11.6版	)	島根原子力発電所 2号炉	備考
b. 評価結果				e. 評価方法	
評価結果を表3に示す。また、津波時の荷重作用イメージ				(a) 地震時	
を図1	に示す。			地震時の検討では,基準地震動Ssに対する地震応答解	
なお	5,評価式の概要を「c.評価式」	に、評価	結果の詳細	析を実施し、部材の発生応力度が許容限界を超えないこと	
を「d.	算定結果」に示す。			を確認する。	
				地震時の縮小板に作用する水平方向荷重イメージは図3	
				に示すとおりであり、動水圧は以下の Westergaard 式から	
	表3 評価結果			算定する。	
C(T)D		F-1.14	+6lentr		
SIEP	項目 P1 · 静水压	取水路	放水路	・動水圧 (Westergaard 式)	
	(津波水位)	267.9kN/m ²	265. 5kN/m ²		
①荷重 算定*	P2:流水圧 (縮小工全面に作用する流体力)	103.5kN/m²	103. 5kN/m ²	(Westergaard 式)	
	P3:推力 (貫通部の流水の摩擦により生じる推力)	21.4kN/m²	77. 3kN/m²	$p_{\rm w} = \frac{7}{8} \times c \times \gamma_{\rm w} \times \sqrt{(h \times y)} \times Kh$	
· · · · · ·			· · · · · · · · · · · · · · · · · · ·		
	L1:打設面のせん断強さからの必要閉塞長さ	0. 66m	0.95m	$p_w$ :動水圧(tf/m²)	
②必要長	L2:滑動に対する必要閉塞長さ	0. 66m	0.95m	Kh :水平震度	
昇疋	L3:周辺が固定の円板としての必要閉塞長さ	2. 19m	3.26m	<b>6</b>	
	(A) 必要長 (MAX(L1, L2, L3))	2. 19m	3.26m	L/h<1.5の場合:c=L/(1.5h) L/h≧1.5の場合:c=1.0 L :水路幅(m)	
	(D) 法收缩业工の目され	2 50-	E 00-		
③判定	(B) ) (A) ・・・OK	5. 50m	OK		
× P1, P	2の算定にあたっては、流路縮小工には貫通部がある	が,表1の設計	・施工上の配慮	γ _w :内水の単位体積重量(tf/m ³ )	
に示	すとおり,保守的に開口が無いものとみなし,縮小コ 証価士子 (D2 については贯通知のひに佐田) また	L全体に荷重が作 絵小工の敷地側	用することと	h :水深(m)	
もの	計画する。いいにういては負担的のみたいドカル。よた、として評価する。	相行、工の方知道則	- 144 J/KN-14 V .	y :水面から動水圧を求める点までの深さ(m)	
				(南) (北) (東本) (中国) <	
				凶る 地辰时の伽姆袖小工の袖小似にTF用する水平力内何里イメ ージ	
	D. 評価 評評 を「d. STEP ① 御 章 定 * ③ 判定 * * * PI,P に示 てもの	女川原子力発電所 2号炉 (20)         b. 評価結果         評価結果を表3に示す。また,津波りを図1に示す。         なお,評価式の概要を「c. 評価式」を「d. 算定結果」に示す。         なお,評価式の概要を「c. 評価式」を「d. 算定結果」に示す。         家で「d. 算定結果」に示す。         (再生 )         (注 ) <t< td=""><td></td><td>女川原子力発電所 2号炉 (2019.11.6 版) b. 評価結果 評価結果を表 3 に示す。また, 津波時の荷重作用イメージ を図 1 に示す。 なお, 評価式の概要を「c. 評価式」に, 評価結果の詳細 を「d. 算定結果」に示す。 33 評価結果 $512^{2}$ 10.55%/² (現在時間上で加速に作用する液体力) 103.56%/² (現在時の液水の解析により生して他) 103.56%/² (現在時の液水の解析により生して他) 103.56%/² (現在時の液水の解析により生して他) 103.56%/² (現在時の液水の解析により生して他) 103.56%/² (現在時の液水の解析により生して他) 103.56%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (13.50%/² (1</td><td>女川原子力発電所2号炉2号炉b. 評価結果 評価結果 評価結果 不力一一評価方法 地震時の積寸では、基準地震動ちょに対する地震なるないこと を離ける。 地震時の積寸では、基準地震動ちょに対する地震なるないこと を準載する。 地震時の前村では、基準地震動ちょに対する地震なるないこと を準載する。 地震時の前村では、基準地震動ちょに対する地震なるないこと を準載する。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・<br< td=""></br<></td></t<>		女川原子力発電所 2号炉 (2019.11.6 版) b. 評価結果 評価結果を表 3 に示す。また, 津波時の荷重作用イメージ を図 1 に示す。 なお, 評価式の概要を「c. 評価式」に, 評価結果の詳細 を「d. 算定結果」に示す。 33 評価結果 $512^{2}$ 10.55%/ ² (現在時間上で加速に作用する液体力) 103.56%/ ² (現在時の液水の解析により生して他) 103.56%/ ² (現在時の液水の解析により生して他) 103.56%/ ² (現在時の液水の解析により生して他) 103.56%/ ² (現在時の液水の解析により生して他) 103.56%/ ² (現在時の液水の解析により生して他) 103.56%/ ² (13.50%/ ² (1	女川原子力発電所2号炉2号炉b. 評価結果 評価結果 評価結果 不力一一評価方法 地震時の積寸では、基準地震動ちょに対する地震なるないこと を離ける。 地震時の積寸では、基準地震動ちょに対する地震なるないこと を準載する。 地震時の前村では、基準地震動ちょに対する地震なるないこと を準載する。 地震時の前村では、基準地震動ちょに対する地震なるないこと を準載する。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ <br< td=""></br<>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.2	20版) 女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		(b) 津波時	
		津波時の検討では,入力津波による津波荷重を作用させ,	
		部材の発生応力度が許容限界を超えないことを確認する。	
		津波時の縮小板に作用する水平方向荷重イメージは図4	
		に示すとおりであり、流水圧及び流水の摩擦による推力は	
		下式から算定する。	
		・流体力	
		$\mathbf{F}_D = \frac{1}{2} C_D \rho_0 A U^2$	
		$F_D: 流体力(kN), C_D: 抗力係数(保守的に最大値 2.01 とする)$	
		$\rho_0$ :水の密度(海水 1.03t/ $m^3$ )	
		A:流れの方向の物体の投影面積 ( <i>m</i> ² ), U:流速 (m/s)	
		<ul> <li>・推力</li> </ul>	
		$2f0^2$	
		$P = \frac{1}{g\pi D^3}L$	
		P:流水の摩擦による推力(kN)	
		f: 流水の摩擦抵抗係数 (=0.2D ^{-1/3} ) L. 貫通部長さ(m) Q. 流量( $m^3$ /s) D. 貫通部直径(m)	
		(南) 取水口位置での水位(北)	
	(津波水位)		
	▼HWL → 縮小工	推力 🛟 📥 🕌	
	P1 $P2$ $P3$	│	
	(静水圧)(淮力)		
	図1 津波時の荷重作用イメージ*	図4 津波時の流路縮小工の縮小板に作用する水平方向荷重イメ	
	※ P1, P2 の算定にあたっては, 流路縮小工には貫通部がある		
	が、表1の設計・施工上の配慮に示すとおり、保守的に開口が無		
	いものとみなし、縮小工全体に荷重が作用することとして評価す		
	る (P3 については貫通部のみに作用)。また,縮小工の敷地側に		
	は内水がないものとして評価する。		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 女	川原子力発電所	2号炉 (20	019.11.6版)	島根原子力発電所 2号炉	備考
					(c) 重畳時	
					重畳時の検討では,余震荷重及び津波荷重を作用させ,	
					部材の発生応力度が許容限界を超えないことを確認する。	
					重畳時の縮小板に作用する水平方向荷重イメージは図5	
					に示すとおりであり、構造成立性の見通しの確認では、流	
					路縮小工に作用する荷重が大きい、管路計算による流路縮	
					小工上流側の水位が最大となる時の静水圧及び動水圧を考	
					慮する。	
					(南) (北)	
					EL.+1.63m EL.+1.64m	
					動水圧	
					図5 重畳時の流路縮小工の縮小板に作用する水平方向荷重イメ	
					(d) 作用荷重を踏まえた構造成立性の見通しの確認における	
					検討ケースの絞り込み	
					流路縮小工の縮小板に作用する地震時,津波時及び重畳	
					時の荷重について、水平方向の荷重を比較すると、表5に	
					示すとおり、津波時の作用荷重が大きいことから、構造成	
					立性の見通しの確認においては、津波時について評価を行	
					うとともに、南北方向を評価対象断面に設定する。	
					また、地震性、決定性など食用性にわけて法的にしての流したに	
					衣 5 地展时, 律彼时及び里宜时にわける (加路 補小上の 補小 板に 作用 オエル 亚 古 白 芸 重 比 軟	
					TF用りる小平刀印何里比較	
					地震時         津波時         重盛時           適路協小工 調整局量         荷重内銀         荷重内銀         荷重内銀         荷重           1001         荷重         001         01         荷重	
					mode         mode <thmode< th="">         mode         mode         <thm< th=""><th></th></thm<></thmode<>	
					C 0/1 kN 0.36 kN kN kN kN kN kN kN angles	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号%
	c. 評価式	f. 評価式
	評価式を以下に示す。	評価式を以下に示す。
	(a) 安定性の確保のために必要な長さ	(a) 流路縮小工(縮小板)
	・せん断に対する安定性から求まる必要長さL1	・曲げに対する評価式
		縮小板に生じる曲げ応力度を下式
	a <u>打設面のせん</u> 開強さからの必要開発長 <u>L</u> (図-11.5-2)	示す鋼材の短期許容応力度以下であ
	ここにP:水圧 (kPa) A:水圧を受ける断面積 (m ⁱ )	М
	$r$ :コンクリートと岩盤との接触面のせん断強さ $(kN/m^2)$ $L_s: 付着の周長 (m)$	$\sigma = \frac{1}{Z}$
	a :安全半 (4以上) L	ここに, σ:曲げ応力度
		M:曲げモーメント
		Z:断面係数
	図-11.5-2 ブラグ部のせん断強さ	
	「土地改良事業計画設計基準 設計[ダム] 技術書[コンクリートダム編] (H15.4, 農林水産省)」 「11.5 閉塞工の設計」より抜粋(一部加筆)	表6 囲けに対する短期計谷
		短期許容// 使用材料 (N/mn
	・ 滑動に対する安定性から求まる必要長さし2	曲げ
	b 潜動に対する必要閉塞長L ブラグコンクリートに作用する水圧(H)に対して、プラグコンクリートと周辺コンクリー ト璇の間の付着力とブラグコンクリートの自重による摩擦力が抵抗して安定する。	SS400(板厚t≤40mm) 235
	$\begin{aligned} \int L = w \cdot \frac{W}{(A + A)}, \qquad (11.5-2), \\ \vdots  \forall \in W \text{ Marke } H = P \cdot A, \\ & \forall : \forall \in W \text{ Marke } H = P \cdot A, \\ & \forall : \forall \in W \text{ Marke } H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, \\ & A : \forall E \in W \text{ Base}, H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, H = H = P \cdot A, \\ & P : \forall E \in W \text{ Base}, H = H = P \cdot A, \\ & P : \forall E = V \text{ Base}, V \text{ Base}, H = H = P \cdot A, \\ & P : \forall E = V \text{ Base}, V \text{ Base}, H = H = H = H + H + B + B + B + B + B + B + B + B +$	・せん断に対する評価式 縮小板に生じるせん断応力度を下式 示す短期許容応力度以下であることを $\tau = \frac{Q}{A}$ ここに、 $\tau$ : せん断応力度 Q: せん断力 A: 断面積 表7 せん断に対する短期許容 $\frac{(N/mn)}{(t/mn)}$
	・工地収良事業計画設計基準 設計Lクム」 技術者Lコンクリートタム編」(H15.4, 農林水産省)」 「11.5 閉塞工の設計」より抜粋(一部加筆)	

宁炉	備考
式から算定し,表6に あることを確認する。	
⁵ 応力度 ^{5応力度 ^{1m²)} げ 35 式から算定し,表7に を確認する。}	
容応力度 S応力度 Im ² ) 断 35	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	・曲げに対する安定性から求まる必要長さL3 C 周辺が固定の円板としての必要閉塞長L (図-11.5-4) ここに、a:閉塞部半径 M:円周方向モーメント 等分布荷重載荷の周辺固定の円形板とすれば、 $M_r = \frac{P^z}{16} \left[ (3+\nu) \left\{ 1 - \left( \frac{r}{a} \right)^s \right\} - 2 \right]$ $M_r = \frac{P^z}{16} \left[ (1+3\nu) \left\{ 1 - \left( \frac{r}{a} \right)^s \right\} - 2 \right]$ ここに、 $\nu: = 2 \neq j = 1 - 5 $	(b)流路縮小工(取水管) ・引張に対する評価式 取水管に生じる引張応力度を下式から算定し,表8に 示す短期許容応力度以下であることを確認する。 $\sigma_t = \frac{T}{4}$	
	はたがって周辺においては、 $M = \frac{P^2}{8}, M = M, v$ ここで、円周方向のモーメントについて検討するとコ ンクリート板の断面係数は $W = \frac{GL^2}{6}$ したがって $a = \frac{3}{4} \cdot \frac{P^*}{bL^2}$ ここに、 $b : 単位幅$ (m) L : = z > 0 )ート板の厚 (m) コンクリートの許容曲げ引張強度を $a'$ とすれば、必要閉塞長 $L$ は、 $L = a \frac{2}{2\sqrt{a'}}$ (11.5-4) ここに、 $a : 安全率$ 「土地改良事業計画設計基準 設計[ダム] 技術書[= ンクリートダム編] (H15.4、農林水産省)] 「11.5 閉塞工の設計」より抜粋 (一部加筆)	A ここに、σ _t :引張応力度 T:引張力 A:断面積 表8 引張に対する短期許容応力度 使用材料 <u>使用材料</u> <u>気</u> 張 SS400 (板厚t≦40mm) <u>235</u>	
	<ul> <li>(b) 作用水圧の算定</li> <li>・流水圧</li> <li>F_D = ¹/₂C_Dρ₀AU²</li> <li>F_D: 流体力(kN), C_D: 抗力係数(保守的に最大値 2.01 とする)</li> <li>ρ₀: 木の密度(海水 1.03t/m³)</li> <li>A: 流れの方向の物体の投影面積(m²), U: 流速(m/s)</li> <li>・推力</li> <li>P = ^{2fQ²}/_{gπD³}L</li> <li>P: 流水の摩擦による推力(kN)</li> <li>f: 流水の摩擦抵抗係数(コンクリートの場合 0.3/D^{1/3})</li> <li>L: 貫通部長さ(m), Q: 流量(m³/s), D: 貫通部直径(m)</li> </ul>	g. 評価結果 評価結果を表9に示す。 流路縮小工は,地震荷重より大きい津波荷重に対して十分 な安定性を有しており,構造成立性の見通しがあることを確 認した。 なお,本評価結果は暫定条件を用いた評価結果であること から,正式条件を用いた評価結果は詳細設計段階で示す。 89  流路縮小工に関する評価結果(津波時)	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2 号炉 (20	)19.11.6版)	島根原子力発電所 2号炉	備考
			(c) 評価に用いる物性値			(参考1)基準津波に伴う取水槽及び取水口周辺の砂移動評価	
			分類 せん断強度	内部摩擦角	許容曲げ引張応力度	参考に、島根2号炉における基準津波に伴う取水槽及び取水口	
			$(\tau, C)$	(φ)	(σ΄)	周辺の砂移動評価について以下に示す。	
			岩盤 1.58N/mm ^{。***} (C _用 級) (1,580kN/m ² )	43° ^{*1}	-		
			3. 23N/mm ² **2	0° *3	0. 37N/mm ² **4	<ul> <li>・砂移動解析領域における初期砂層分布は、輪谷湾周辺は当社による底質調査結果、輪谷湾周辺以遠は海上 保安庁水路部(1992)⁽⁸⁾による底質調査結果を参照し設定した。</li> </ul>	
			(3, 230kN/m ² )	0	(375kN/m ² )		
			※1 解析用物性値(狐崎部層の Cul級岩盤 ※2 コンクリート標準示方書(ダムコン	(砂岩,頁岩,ひ クリート編 2013)	ん岩)の最小値を採用) の記載を参考に設定		
			(τ=1/5×fck' /γ, ここでfck' =	21N/mm ² (既設覆コ	ニコンクリート), γ=1.3)		
			<ul><li>※3 保守的に考慮しないこととする</li><li>※4 コンクリート標準示方書(構造性能</li></ul>	照査編 2002,設計	編 2012)に基づき設定	1000000000000000000000000000000000000	
			(σ'=1/7×ftk×1.5, ここでftk=	0.23×fck' ^{2/3} N/1	nm ² )		
			d. 算定結果				
			評価結果を以下に示す。			R# 輪谷湾周辺以遠の底質分布 海上保安庁水路部(1992)に加筆	
			なお, L1 及びL2 の算定にあ	たっては、	縮小工と既設覆工コン		
			クリート間でのせん断を想定し	た場合に加	え,既設覆エコンクリ	ドロの地形は3号炉造成前であり、上図の     輸谷湾周辺の底質分布     現在の地形とは土地形状が築なる。	
			ートと周辺岩盤間でのせん断を	想定した場	合の2 ケースで算定		
			し、必要長が大きい方の算定結	果を採用す	る。	・基準違法を評価対象として、砂移動の数値シミュレーションを実施した結果のうち、取水口位置における最大雄穂度さを下表に示す。	
						基準波波         波派         防波堤 の有案         政務加モデル         東港の 上級派官         2号好政水口         2号好政水口         建築没食)時利益 (注)         101         2月回日         105	
			(a) L1の算定結果			本準連波 地方自治体独自の波源モデルに基づく検討     本	
			<ol> <li>縮小工と既設覆エコン</li> </ol>	クリート間	でのせん断を想定した	1         (鳥取泉(2012))         藤井ほか(1988)         196         0.000         0.000         P11         P28           (第)         (第)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980)         (1980) <td< td=""><td></td></td<>	
			場合			基準準波 2 単満発生領域の運動を考慮した検討 2 (断層長さ350km) 4 有	
			(取水路)	D 4 1 D		基準津波         地磁発生領域の通動を考慮した検討 (断層長さ350km)         有         勝井(第0/11996)         56         0.00         0.00         P15         P35           3         (新留長さ350km)         (新留長さ450km)         第4(日本)(1996)         1%         0.00         0.00         P16         P36           4         (新日本)(1998)         1%         0.00         0.00         P17         P37	
			$L1 = \alpha \frac{p \cdot A}{\tau \cdot L_0} = \alpha \frac{P_1 \cdot A_1 + r}{r \cdot L_0}$	$\frac{P_2 \cdot A_1 + P_3}{\tau \cdot L_0}$	• A ₂	基準津波         土木学会に基づく検討 (F-田~F-V 断常)         有 (第日本)(1996)         196 196         0.00         0.00         P17         P38           4         (F-田~F-V 断常)         高額(国本)(1996)         196         0.00         0.00         P18         P39           4         (F-田~F-V 断常)         画         商券目(国本)(1996)         196         0.00         P019         P40           5         0.00         0.00         P14         P39         P40         P39         P40	
			$= 4 \times \frac{267.9 \times 8.55 + 1}{267.9 \times 8.55 + 1}$	03.5 × 8.55 +	$21.4 \times 0.79 = 0.38m$	本語先生領域の運動た考慮した検討         無相ほか(1999)         1%         0.00         0.00         P20         P42           基準津波         地震免生領域の運動た考慮した検討         無用         藤井(ほか(1999)         1%         0.00         0.00         P21         P43	
			3,2	30 × 10.37	- 0.5011	G         (新和文C-0.000)         高額ほか(1999)         196         0.00         0.00         P22         P45           基準津波         地震鬼生領域の連點を考慮した検討 (新常長さ306m)         無         1%         0.00         0.00         P23         P47                5%         0.00         0.00         P23         P47	
			$= -(-, A_1 : m// L )// \pi \times D^2 \pi \times D^2$	型/俱 3.3 ²			
			$=\frac{n+2}{4}=\frac{n+2}{4}$	$\frac{610}{4} = 8.55n$	れ2 ※貫通部は非考慮	は水ビュニー315 3次ス通行はそは、途中率点ででの回時は水(1353 かけが生き 100 点(1555 100 元) 100 2 5 がのパロ(水) (ストー35 COOLING 05 7) 海底面から取水口呑口下端までの高さ(5.50m) №2 に対して十分に小さく、取水の影響はないことを確認した。 ※2 海底面:TP-1800m, 取水口呑口下端:TP-1250m	
			A2:貫通部の断	面積			
			$=\frac{\pi \times D_2^2}{4}=\frac{\pi \times D_2^2}{4}$	$\frac{1.0^2}{4} = 0.79n$	1 ²		
			$\tau = 3,230 k N/m^2$	<i>(コンクリー</i>	・ト)		
			$L_0 = \pi \times D_1 = \pi$	× 3.3 = 10.37	m		
			(D1: 涧小工直行	$23.3m, D_2$ :	<i>員迪部直径</i> 1.0m)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	(放水路) L1 = $\alpha \frac{P \cdot A}{\tau \cdot L_0} = \alpha \frac{P_1 \cdot A_1 + P_2 \cdot A_1 + P_3 \cdot A_2}{\tau \cdot L_0}$ = $4 \times \frac{265.5 \times 16.62 + 103.5 \times 16.62 + 77.3 \times 0.20}{3,230 \times 14.45} = 0.53m$ ここに、 $A_1 : 縮小工の断面積$ $= \frac{\pi \times D_1^2}{4} = \frac{\pi \times 4.6^2}{4} = 16.62m^2$ ※貫通部は非考慮 $A_2 : 貫通部の断面積$ $= \frac{\pi \times D_2^2}{4} = \frac{\pi \times 0.5^2}{4} = 0.20m^2$ $\tau = 3,230kN/m^2 (\Box \checkmark / J - F O @ b c K H)$ $L_0 = \pi \cdot D_1 = \pi \times 4.6 = 14.45m$ $(D_1 : 縮小工直径 4.6m, D_2 : 貫通部直径 0.5m)$	•Bararado estimation of the second estim	
	(2) 既設覆エコンクリートと周辺岩盤間でのせん断を想定した場合) (取水路) $1 = \alpha \frac{P \cdot A}{\tau \cdot L_0} = \alpha \frac{P_1 \cdot A_1 + P_2 \cdot A_1 + P_3 \cdot A_2}{\tau \cdot L_0}$ $= 4 \times \frac{267.9 \times 8.55 + 103.5 \times 8.55 + 21.4 \times 0.79}{1.580 \times 12.25} = 0.66m$ ここに、 $A_1 : 縮小工の断面積$ $= \frac{\pi \times D_1^2}{4} = \frac{\pi \times 3.3^2}{4} = 8.55m^2$ ※貫通部は非考慮 $A_2 : 貫通部の断面積$ $= \frac{\pi \times D_2^2}{4} = \frac{\pi \times 1.0^2}{4} = 0.79m^2$ $\tau = 1,580kN/m^2$ (強度の小さい岩盤の値を採用) $L_0 = \pi \times D_3 = \pi \times 3.9 = 12.25m$ ( $D_1 : 縮小工直径 3.3m, D_2 : 貫通部直径 1.0m, D_3 : 既設覆 T = 2 \times 0 - 1 - 1 \times 0 \times 0 \times 0$ (放水略) $1 = \alpha \frac{P \cdot A}{\tau \cdot L_0} = \alpha \frac{P_1 \cdot A_1 + P_2 \cdot A_1 + P_3 \cdot A_2}{\tau \cdot L_0}$ $= 4 \times \frac{265.5 \times 16.62 + 103.5 \times 16.62 + 77.3 \times 0.20}{1.580 \times 16.34} = 0.95m$ ここに、 $A_1 : 縮 \to T \mod m $ $a_2 : 貫通部の斷面積$	(参考2)港湾基準における流水圧の適用性について 流路縮小工に作用する津波による流水圧は,「港湾の施設の技術 上の基準・同解説(日本港湾協会)」に基づく評価式により算定す る。 同基準によると,「水中又は水面付近の部材及び施設に作用する 流れによる力は,流速の2乗に比例する力であり,流れの方向に 作用する抗力がある」としている。また,「流れによる抗力は,粘 性による表面抵抗と圧力による形状抵抗の和として表され,抗力 係数は物体の形状,粗度,流れの方向,レイノルズ数などによっ て異なり,レイノルズ数が10 ³ 程度より大きい場合は,物体の形 状に応じて0.2~2.01の値を標準値として用いることができる」 としている。 流路縮小工は水中に設置する構造物であること,管路計算によ る流路縮小工地点の最大流速発生時における縮小板付近のレイノ ルズ数が10 ⁶ ~10 ⁷ のオーダーであることから,流路縮小工は同基 準における流水圧の適用性があると判断する。 なお,流水圧の算定に当たっては,保守的に抗力係数の最大値 である 2.01を採用する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版) $= \frac{\pi \times D_2^2}{4} = \frac{\pi \times 0.5^2}{4} = 0.20m^2$ $\pi = 1,580kN/m^2$ (強度の小さい岩盤の値を採用) $L_0 = \pi \cdot D_3 = \pi \times 5.2 = 16.34m$ $(D_1: 縮小工直径 4.6m, D_2: 貫通部直径 0.5m,$ $D_3: 既設覆エコンクリート外径 5.2m)$ (b) L2の算定結果 ① 縮小工と既設覆エコンクリート間の滑動を想定した場合 (取水路) $L2 = n \frac{P \cdot A}{CA' + fN} = n \times \frac{P_1 \cdot A_1 + P_2 \cdot A_1 + P_3 \cdot A_2}{C \cdot \pi \cdot D_1 + \tan \varphi \cdot \frac{\pi \cdot W_1}{2D_1}}$ $= 4 \times \frac{267.9 \times 8.55 + 103.5 \times 8.55 + 21.4 \times 0.79}{3,230 \times \pi \times 3.3 + 0 \times \frac{\pi \cdot 110.3}{2 \times 3.3}} = 0.38m$ ここに、 $A_1: 縮小工の断面積$ $= \frac{\pi \times D_1^2}{4} = \frac{\pi \times 3.3^2}{4} = 8.55m^2$ ※貫通部は非考慮	島根原子力発電所 2号炉	備考
	(放水路) $\begin{aligned} &= \frac{\pi \times D_{1}^{2}}{4} = \frac{\pi \times 3.3^{2}}{4} = 8.55m^{2}  &\times \vec{g}$ $= \frac{\pi \times D_{2}^{2}}{4} = \frac{\pi \times 1.0^{2}}{4} = 0.79m^{2}$ $C = 3,230kN/m^{2},  \varphi = 0^{\circ}  (\neg \angle \neg \angle \neg \lor $		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	5版) 島根原子力発電所 2号炉	
	$= \frac{\pi \times D_2^2}{4} = \frac{\pi \times 0.5^2}{4} = 0.20m^2$ $C = 3,230kN/m^2, \ \varphi = 0^\circ \ (\neg \neg $		
	② 既設覆エコンクリートと周辺岩盤間の滑動を想定した場		
	合		
	(取水路) L2 = $n \frac{P \cdot A}{CA' + fN} = n \times \frac{P_1 \cdot A_1 + P_2 \cdot A_1 + P_3 \cdot A_2}{C \cdot \pi \cdot D_3 + \tan \varphi \cdot \frac{\pi \cdot W_2}{2D_3}}$ = $4 \times \frac{267.9 \times 8.55 + 103.5 \times 8.55 + 21.4 \times 0.79}{1,580 \times \pi \times 3.9 + 0.93 \times \frac{\pi \cdot 154.2}{2 \times 3.9}} = 0.66m$ $= 4 \times \frac{267.9 \times 8.55 + 103.5 \times 8.55 + 21.4 \times 0.79}{1,580 \times \pi \times 3.9 + 0.93 \times \frac{\pi \cdot 154.2}{2 \times 3.9}}$ ここに, $A_1 : 縮小 工の断面積$ $= \frac{\pi \times D_1^2}{4} = \frac{\pi \times 3.3^2}{4} = 8.55m^2  & \times 貫 通部は非考慮$ $A_2 : 貫 通部の断面積$ $= \frac{\pi \times D_3^2}{4} = \frac{\pi \times 1.0^2}{4} = 0.79m^2$ $C = 1,580kN/m^2, \varphi = 43^\circ  (\underline{m} \underline{\psi} \underline{\phi} n \wedge \underline{z} \vee \underline{\beta} \underline{m} \underline{m} \underline{d} \underline{e} \underline{\xi} \underline{\xi} \underline{h} \underline{h} \underline{h} \underline{h} \underline{h} \underline{h} \underline{h} h$		
	(放水路) L2 = n $\frac{P \cdot A}{CA' + fN}$ = n × $\frac{P_1 \cdot A_1 + P_2 \cdot A_1 + P_3 \cdot A_2}{C \cdot \pi \cdot D_3 + \tan \varphi \cdot \frac{\pi \cdot W_2}{2D_3}}$ = 4 × $\frac{265.5 \times 16.62 + 103.5 \times 16.62 + 77.3 \times 0.20}{1,580 \times \pi \times 5.2 + 0.93 \times \frac{\pi \cdot 274.0}{2 \times 5.2}}$ = 0.95m ここに, $A_1 : 縮小工の断面積$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	$= \frac{\pi \times D_1^2}{4} = \frac{\pi \times 4.6^2}{4} = 16.62m^2                                   $		
	(c) L3の算定結果 (取水路) L3 = $\alpha \left(\frac{a}{2}\right) \sqrt{\frac{3P}{\sigma'}} = \alpha \left(\frac{a}{2}\right) \sqrt{\frac{3 \cdot (P_1 + P_2 + P_3)}{\sigma'}}$ = $1.5 \times \left(\frac{1.65}{2}\right) \times \sqrt{\frac{3 \times (267.9 + 103.5 + 21.4)}{375}} = 2.19m$ ここに、 $\alpha = 1.5$ (保守的に 1.5 とする) $\alpha = \frac{D_1}{2} = \frac{3.3}{2} = 1.65m$ ( $D_1: 縮小工直径 3.3m$ ) $\sigma' = 375kN/m^2$		
	(放水路) $L3 = \alpha \left(\frac{a}{2}\right) \sqrt{\frac{3P}{\sigma'}} = \alpha \left(\frac{a}{2}\right) \sqrt{\frac{3 \cdot (P_1 + P_2 + P_3)}{\sigma'}}$ $= 1.5 \times \left(\frac{2.30}{2}\right) \times \sqrt{\frac{3 \times (265.5 + 103.5 + 77.3)}{375}} = 3.26m$ ここに、 $\alpha = 1.5$ (保守的に 1.5 とする) $a = \frac{D_1}{2} = \frac{4.6}{2} = 2.30m$ ( $D_1 : 縮小工直径 4.6m$ ) $\sigma' = 375kN/m^2$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	表 4 算定結果一覧		
	算定項目 取水路 放水路		
	L1:打設面のせん断強さからの必要閉塞長さ     ①     0.38m     0.53m       ②     0.66m     0.95m		
	L2:滑動に対する必要閉塞長さ     ①     0.38m     0.53m		
	13:周辺が固定の円板としての必要閉塞長さ         2.19m         3.26m		
	(①縮小工と既設覆エコンクリート間,②既設覆エコンクリートと周辺岩盤問)		
	(4) キャビテーションの発生の可能性に関する評価		
	a. キャビテーションに関する知見の整理		
	「コンクリート診断技術[基礎編]'19 日本コンクリート		
	工学会」では、風化・劣化現象の一つとしてキャビテーシ		
	ョンが挙げられ, 経年的に劣化していくものとされており,		
	徐々に欠損していく現象である。		
	$\lceil$ Cavitation Guide for Control Valves, NUREG/CR-6031,		
	Tullis ら」によれば,キャビテーションは段階的に発達し,		
	軽い間欠的なキャビテーションの発生領域を初生キャビテ		
	ーションとしており、更に発達すると壁面等に損傷を及ぼ		
	す初生損傷キャビテーションと定義されている(図2)。		
	キャビテーションの発生有無は図3により算定されるキ		
	ャビテーション係数により予測できるとされており*1,		
	2,文献※3によるとキャビテーション現象の発生限界と		
	される初生キャビテーション係数(σ i )を1.8 としてい		
	る。		
	<ol> <li>Incipient cavitation σ_i ←初生キャビテーション</li> <li>Critical (or constant) cavitation σ_c 初生損傷キャビテーション</li> <li>Incipient damage σ_{id} ← 初生損傷キャビテーション</li> <li>Incipient choking σ_{ich} (or K_c)</li> <li>Choked flow σ_{ch}</li> <li>Maximum noise and vibration level σ_{max}</li> </ol>		
	図2 キャビテーションの発達過程(文献 ^{**4} による,一部加筆)		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		【キャビテーション係数の算定式】 $\sigma = \frac{P_0 - P_v}{\frac{\rho v^2}{2}}$		
		図3 キャビテーション係数の算定式		
		<ul> <li>※1 「応用水理工学,巻幡ら」</li> <li>※2 「水理公式集[昭和60 年版],土木学会」</li> <li>※3 「Hydraulics Engineering, Hunter Rouse」</li> <li>※4 「Cavitation Guide for Control Valves, NUREG/CR-6031, Tullis ら」</li> </ul>		
		<ul> <li>b. 評価方針及び保守性確保の考え方 キャビテーションによる影響は経年的に劣化するものと分 類されているが、津波時においても評価を行う。 キャビテーションの発生によって損傷が生じる可能性があ るが、ここでは閾値を保守的に初生キャビテーション係数と する。 キャビテーション係数の算定においては、キャビテーショ ン現象発生近傍の大気圧を含む平均圧力(P₀)や飽和蒸気圧 (Pv)が支配的な要因の一つであることから、これらの不確 実性を考慮し、保守的に設定する。</li> </ul>		
		①大気圧を含む平均圧力算定における保守性 $P_0$ は大気圧と貫通部下端からの上流側水深の合算によって 算定されることから、図4のとおり貫通部下端の標高を仮想 的に0.P. $\pm 0$ mと高く設定することにより、相対的に水深を 小さくした場合を想定し、保守的に $P_0$ を算定する。		
		②飽和蒸気圧の設定における保守性 女川海域よりも高い海水温度*として30℃(この場合の飽和 蒸気圧4,250Pa)を設定する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	※女川3号環境影響調査書によると女川海域の海水温は最		
	高でも22℃である。		
	Po' = 大気圧+H'       Po=大気圧+H         H'       H'         J通報F端提高       Gain Fille         (貫通部F端の標高とP.約-4.9m(放水路)       Gain Fille         0.P.約-3.8m(取水路)       Jain Fille		
	C. ギャビアーションの発生の可能性に関する評価 前述の評価方針に基づき、表5のとおりCase1 は「②飽和 蒸気圧の設定における保守性」を考慮し、Case2 は更に「① 大気圧を含む平均圧力算定における保守性」を考慮して、貫 通部周辺のキャビテーション係数を評価した(満管状態とな っている場合の評価)。		
	この結果, Case1, 2 ともに取水路貫通部において初生キャ ビテーション係数1.8 を下回るものの,継続時間は極めて短 時間であることから、キャビテーションにより流路縮小工の		
	形状に変化を生じさせるような損傷は発生しないと考えられる。なお、常時におけるキャビテーション係物は取水路・		
	放水路ともに10以上であり、キャビテーションは発生しな		
	い。 以上のことから,キャビテーションにより流路縮小工の健		
	全性に影響を及ぼさないことを確認した。		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		表5 取水路貫通部及び放水路貫通部のキャビテーション係数		
		評価結果		
		<figure></figure>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	参考4	参考2	・記載の相違
			島根1号炉では,流路
	流路縮小工の設置に伴う放水立坑の水位について、貝付着等の	1号炉取水管端部への流路縮小工設置による	縮小工設置に伴う水位
	保守的な条件を考慮した場合の2号炉の安全性等への影響	人力津波高さ低減効果について	の変化について記載
	盗敗縮小工貫通郊の目付差け プラント停止世能における放水	1 1 号 恒 取 水 施 塾 の 概 更	
	立坊の水位評価に影響を与えることから、貫通部の流速等を踏ま	1.1.7.7% 取水温度の成要	
	えた、貫通部への貝付着の可能性について検討した。	を確認する。1号炉取水施設の平面図、断面図及び管路解析モデ	
		ルについては添付資料6に示す。	
	(1) 文献調査		
	坂口ら**は、貝等の付着に影響する流速は、壁面付近での	2. 計算条件	
	流速であり、平均流速が同一でも管径により壁面付近の流	計算条件については、添付資料6のとおりとする。	
	速が異なるため、付着限界流速の検討は、壁面付近の流速		
	を対象としなければならないとしている。	3.計算結果	
	また、図1に示す「発電所海水設備の汚損対策ハンドブ	1号炉取水管端部への流路縮小工設置を考慮した管路計算の結	
	ック(火刀原子刀発電協会編)」によれは、流速は貝付者	米, 最大の人刀津波高さに外乳防護の俗度評価において参照する 直さである0.64mな老店してす。1.8に取水槽の玉端直さである	
	の重要な安囚とされている。向ハンドノックでは、実験に トり 管路の流速と海生生物の付着との関係を調べており	同さてめるいの知道を与思しても、15分取水管の人端同さてめる FI +8 8mを越えたいことを確認した(表1 发昭)	
	壁面流速が1.0m/s 以上であれば、付着量は極めて少量で	また、1号炉取水槽の浸水範囲を図1に、最大水位上昇量を示し	
	実用上はこの程度の流速でほとんど問題は生じないとさ	たケースの時刻歴波形を図2に示す。なお、対策前の取水槽の時	
	れ, 1.4m/s では付着しなかったとしている。	刻歴波形を図3に示す。	
	※ 海水管内の流速と汚損生物付着との関係, 化学工学,	表1 基準津波による取水槽水位の結果	
	47(5), 316-318	1号炉取水槽の入力津波高さ EL. (m)	
		波源         防波堤 有無         貝付着         循環水ボン 3         対策後**         (参考)            有無         プ運転状況         対策後**         対策前            取水槽         取水槽         取水槽	
		有り         有り         停止         +6.3         +7.2           基準建設         無し         停止         +6.4         +7.7	
		日本 海     1     有り     停止     +6.8     +8.2       無し     無し     停止     +7.0     +9.2	
		東 緑         基準律波 2         有り         停止         +6.0         +6.8           第         2         有り         停止         +6.1         +7.3	
		基準課波         有り         停止         +6.4         +7.6           5         無し         停止         +6.7         +8.1	
		有り         有り         停止         +2.7[+2.61]         +3.0           基準建波         無し         停止         +2.7[+2.68]         +3.0	
		4         有り         停止         +2.5         +3.4           無し         無し         停止         +2.7[+2.67]         +3.8	
		協 層         海域活断層         有り         停止         +2.5         +2.6           上昇側最大         点見         停止         +2.5         +2.6	I
		となるケー         有り         停止         +2.5         +3.2           無し         停止         +2.6         +3.5	I
		※下線部が最大水位上昇量の値	



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	着に関する既往文献等を踏まえ、貫通部内を一律全面的に		
	貝付着代6cm ^{※1} に設定した。この場合,貝付着が無い場合		
	に比べ放水立坑水位は約1.8m 上昇するが,放水立坑水位は		
	0.P.+3.90m であり,放水立坑天端レベル(0.P.+14.0m)に		
	対して十分な余裕があることを確認した。		
	以上のとおり、貫通部への貝付着等の保守的な条件を考		
	慮しても,2号炉の安全性に影響がないことを確認した。		
	なお、貝等の貫通部への付着については、抜水点検やダ		
	イバー点検等で、変状有無を定期的に確認していく。		
	※1 貝付着の実績として,流速が放水路貫通部よりも遅		
	く貝が付着しやすいと考えられる1 号炉取水路(流		
	路縮小工設置前(壁面流速0.7m/s 程度))では平		
	均0.5 ㎝~2㎝である。一方,既往文献から貝が付		
	着する限界の壁面流速は1.4m/s であり,貫通部の		
	流速は貝付着厚さが6cmでこの流速を超える。さら		
	に貫通部は、直線形状で延長が短いことから、流れ		
	の澱みにより局所的に貝付着が発生しにくい構造		
	である。これらを踏まえ,保守的に貝付着厚さを6		
	cmに設定した。		
	表1 貝付着を考慮した場合の放水立坑水位		
	貝付着代**2         ポンプ流量 (m ³ /s)         通水断面積 (m ² )         平均流速 (m/s)         壁面流速 (m/s)         放水立坑水位 (m)         放水立坑水位 天端レベル (m)         (参考) 福穂ポンブ 出口レベル (m)           無し         0.53         0.20         2.65         1.16         0.9.+3.00         0.9.+14.0         0.9.+4.6           6cm         0.11         4.82         1.54         0.9.+3.90         0.9.+14.0         0.9.+4.6           *2         貫通部以外の取水路と版水路の流速は、ほぼ同等であるため取水路内の貝付着代実績(最大)に基づき設定)         (afki)         (bfk)         0.9.+3.90         0.1         0.53         0.11         0.9.+3.90         0.9.+14.0         0.9.+4.6           *2         貫通部以外の取水路と版水路の流速は、ほぼ同等であるため取水路の貝付着代実績(最大)に基づき設定)         3.3         月付着代6cmを考慮した場合の流水立坑水位は0.9.+3.90m         であり、補機冷却海水ボンブの放水高さ0.P.+4.6m         7.4.6           *3         貝付着代6cmを考慮した場合の読水症は0.4.5.4.5.4.5.4.5.4.5.5.5.5.5.5.5.5.5.5.		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	女川原子力発電所 2 号炉 (2019.11.6 版)	島根原子力発電所 2 号炉	備考
		参考3	
			島根1号炉では、流路
		1 号炉取水槽に設置する流路縮小工に関する	縮小工設置に関する水
		水理模型実験の実施について	理模型実験について記
			載
		1号炉取水槽に設置する流路縮小工について、生じる損失は火	
		力・原子力発電所土木構造物の設計(電力土木技術協会),作用す	
		る流水圧は港湾の施設の技術上の基準・同解説(日本港湾協会)	
		に基づき設定しており、当該損失及び流水圧の妥当性を詳細設計	
		段階において水理模型実験により確認する。	
		模型実験における流れの状態は、津波による最大水位上昇時は	
		満管状態の流れによるものであることから、実験においても満管	
		状態の流れを想定する。	
		 模型実験の相似則はフルード則を用い,縮尺の詳細については,	
		実験装置の性能等を踏まえて設定する。模型実験の概要図を図1,	
		<u>損失水頭</u> <u>急拡損失</u> <u>急拡損失</u> <u>流水圧</u> <u>流水圧</u> <u>図1 模型実験概要図</u>	
		<u>表1</u> 実験条件の概要	
		実験条件内容	
		計測項目 - 流水圧	
		(満管状態の流れ)           相似則         フルード則	
		模型縮尺 1/10程度	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2	2 号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
				参考4	・記載の相違
				1号炉取水槽内へ堰を設置した場合の	島根1号炉では,取水
				入力津波高さ低減効果について	槽内に堰を設置した場
					合の水位の変化につい
				<u>1. 検討概要</u>	て記載
				1号炉取水槽への流路縮小工は、取水管端部に設置することとす	
				るが、当初選定していた取水槽内に堰を設置した場合の入力津波	
				高さ低減効果を確認する。1号炉取水施設の平面図を図1,断面	
				図を図2,管路計算モデルを図3に示す。	
				2. 計算条件	
				計算条件については、添付資料6のとおりとする。ただし、1号	
				取水槽内へ流路縮小工を設置した場合の各損失は表1の損失水頭	
				表のとおりとする。1号取水槽内の流路縮小工による損失を表2	
				及び図4に示す。	
				3.計算結果	
				1号炉取水槽内へ堰を設置した場合を考慮した管路計算の結果,	
				最大の入力津波高さに外郭防護の裕度評価において参照する高さ	
				<u>である 0.64m を考慮しても, 1号炉取水槽の天端高さであるE</u>	
				L.+8.8m を越えないことを確認した。(表1参照) 1 号炉取水槽	
				の浸水範囲を図5に、最大水位上昇量を示したケースの時刻歴波	
				形を図6に示す。なお、対策前の取水槽の時刻歴波形を図7に示	
				<u></u>	
				1号取水槽へ堰を設置によることにより、図8に示すとおり、漸	
				拡タクト部の水位は堰を設置しない場合に比較し、一時的に水位	
				が上昇し、その影響により、図9に示すとおり、取水槽への津波	
				の流入量は減少することを確認した。除じん糸+ホンフ室及び漸	
				<u>払ダクト部の最大水位は、取水槽への津波の流入量の減少及び堰</u>	
				の設直による損失から、 速を設直しない場合と比較し、 <u>低減する</u>	
				<u>以上より、1万別収小僧へ</u> をび直しに場合にわい <u>い</u> り、 禰 <u>仏</u>	
				<u>ククア市の取小帽にツトにし八刀伴彼尚さは計谷値以下でめり</u>	
				<u> 収小帽 に ツ ト 闭 止 板 寺 の 対 束 上 を 該 直 う ら 必 安 は な い こ と を 唯 認</u>	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2 号炉	(2019.11.6版)	島根原子力発電所 2号
						<u>した。</u> 派路縮小工
						除じん機系 +ボンブ室     防波壁     B.+15.0m       B8.80     B9.50     D. 01 K L D E       B7.10     重なタクト     取水管       第拡ダクト     取水管     mm       第拡ダクト     取水管     mm       図2     断面図(1号炉取水力
						取水槽 (所比久概系+ボンプ密)     29管       10     20       10     20       10     6       15     12       16     15       17     13       18     10       19     6       19     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10
						<u>図3 1 号炉取水施設</u> の官路計



柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	備考
		表2損失水頭算定公式スルース ゲートに よる流量 公式公式係数根拠スルース ゲートに よる流量 公式 $Q : 流量(m^3/s)$ 土木学会水理 公式集(平成 a: ゲートの開き(m)公式集(平成 11 年版) p. 254-255 $h_0 : 上流水深(m)$	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		(土木字会水理公式集 (平成 11 年版) p.255) ^世 注) スルースゲートの流量公式 $Q = C_1 a B \sqrt{2gh_0}$ により,流量 $Q$ ,ゲートの開き $a$ , 流出幅 $B$ および上流水深 $h_0$ が既知の場合,流量係数 $C_1$ が決定される。さらに,図の 関係から下流水深 $h_2$ が決定されるため,スルースゲートによる損失水頭 $\Delta h = h_0 - h_2$ が算定される。	
		<section-header></section-header>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号         46100         1         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000
		(1) = 120 (m)
		除じん機系+ポンプ室 図6 時刻歴波形(基準津波1 防波堤4 (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号
		10 10 10 10 10 10 10 10 10 10
		(漸拡ダクト部,除じん機系+ポンプ室,高
		(取水管部, 取水槽への流入方向の流



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所	2 号炉 備考	
	<u>参考5</u>		・対象施設の相違	
			①の相違	
	流路縮小工の施工方針及び常時における			
	津波防護機能維持の確認方法			
	流路縮小工の構築に際し、取水路は2系統ある水路を切り替え			
	ながら、また、放水路はバイパス水路を設置し、施工する計画で			
	あり、施工ステップ図及び既往の施工実績を示す。			
	常時において津波防護機能を維持していく観点から、その機能			
	が喪失しうる事象*1を踏まえた設計・施工上等の配慮*2を行うと			
	ともに、機能が喪失しうる事象の進展速度が緩速であることや先			
	行の類似構造物の維持管理事例等を踏まえ、定期的に抜水点検や			
	ダイバー点検等により機能が維持されていることを確認すること			
	で、流路縮小工の常時の健全性を維持する方針とする。			
	※1 機能が喪失しうる事象として,砂礫や貝を含んだ海水の流			
	下によるコンクリート表面のすりへり,貝付着による流路			
	の縮小,及び水路内の異物混入による流路阻害。			
	※2 設計・施工上等の配慮として、すりへり抵抗を増すための			
	観点から水セメント比の低下や細骨材を少なくするなど			
	コンクリート配合の配慮,貫通部に貝付着を防止する観点			
	から付着しにくい流速となっていることを確認する。ま			
	た、定期的な点検時に貝や異物の除去を行う。			
	(1)流路縮小工(取水路)の施工について			
	流路縮小工は基準地震動Ss 及び津波波圧等に十分耐え			
	られるよう頑健で耐久性のあるコンクリート構造として計			
	画している。			
	本構造を構築するに当たり、コンクリートの強度管理及			
	び貫通部の寸法管理は重要であり、ドライ環境で施工を行			
	い確実に機能確保を行うこととする。			
	1号炉取水路に設置する流路縮小工の施工フローを図1			
	に示す。			
	工事に当たっては、2系統ある取水路を1系統ずつ断水			
	しドライ環境の中で工事を行う**。			
	水路内の貝等の付着物の除去を行った後、既往の水路構			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	造物の施工実績等を踏まえ、既設取水路表面を目粗し等の		
	一体化処理を施す。		
	次に,温度応力によるひび割れを抑制するため適切なリ		
	フト割を検討した上で、型枠を設置しコンクリート打設を		
	実施する。		
	施工完了後に出来形を検査し、設計上必要な寸法が確保		
	されているか確認を行う(出来形検査)。		
	※ 1系統ずつ断水することで1号炉の取水機能は維持される。		
	<complex-block></complex-block>		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.	11.6版)	島根原子力発電所 2-	号炉	備考
	() 版文 () 版文 () 版文 () 版文 () 版文 () () () () () () () () () () () () () (	販売水位低下作業(事前準備)     ②作業用立坑設置・放水路一部搬去       Cの作業環境確長のため、放水路海 1%((版))及び工事用ドンプを設 済内の水心を低下させる。     ・ 流路ホン設置箇所能に作業用立坑を設置。     ・ 飲 常用立坑と放水路やシネル屋工の片倒を 設太路・シネル     ・ 飲 愛知        金体振展図 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%)次路 (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (199%) (19				
	④武路         ● 数次器+1         ● 1         ● 正書付近         ● 東京         ● 東京	Markawa     Control (Control (Contro) (Control (Control (Control (Control (Control (Control	<ul> <li>IX縮小工構築、作業用立坑垣め更し</li> <li>IZ及び板水路トンネル最大部分の復旧をそ、</li> <li>IX投資屋の地築は、地長行近まで送着す。</li> <li>IX目前にないため、</li> <li>IX目前にないため、&lt;</li></ul>			
	(3) を ※ る 積 工	水路閉塞に関する既往の施工実績につ 水力発電所の廃止に伴い,ダムから発 コンクリートプラグにて閉塞する施工 っれている。 これは,作用水圧に対し閉塞に必要な もので,今回の女川の例は,それと同 や延長は実績の範囲内にある。 図4に,東北電力㈱沼沢沼発電所にま の例では,地山の状況も踏まえ,湧	oいて 巻電所までの導水路 E実績が数多く報告 なプラグ長を確保す 同様なもので施工面 Gける水路閉塞の施 勇水処理のためプラ			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	グ施工前に覆工背面の地山にグラウトを実施している。		
	その後、水和熱によるひび割れ発生を抑制するため打設		
	のリフト割を検討の上, コンクリートの打設を実施してい		
	る。		
	コンクリートプラグの施工終了後、プラグ上流側を充水		
	し、プラグ下流から目視確認を実施したところ、漏水は認		
	められず、コンクリートプラグが問題なく施工されたこと		
	を確認している。		
	※1 国,地方自治体,電力会社において,多数の実績が		
	報告されている。<土木学会図書館蔵書の施工記録等		
	より確認〉(文献調査範囲においては,竣工年=1975		
	年~2004 年, A≒10m2~70m2, L≒16m~80m )。		
	※2 電力土木(316)「沼沢沼発電所廃止に伴う土木設備		
	撤去工事の概要」前田ほか(平成17 年3 月)		
	<complex-block><complex-block></complex-block></complex-block>		
	図4 東北電力㈱沼沢沼発電所における水路閉塞の施工例		
	<ul> <li>(4)常時における津波防護機能維持の確認方針について 流路縮小工の常時における津波防護機能維持を図ってい く観点から,海水中に設置されていることや構造的な特徴 に鑑み機能が喪失しうる事象を挙げ,それを踏まえた設 計・施工上等の配慮及び事象の進展予想等を行った上で, 機能維持の確認方針を検討した。</li> <li>常時において機能が喪失しうる事象と,それを踏まえた 設計・施工上の配慮及び事象の進展予想を表1に示す。</li> </ul>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	表1 常時において要求機能を喪失しうる事象を踏まえた		
	設計・施工上の配慮及び事象の進展予想		
	叙伯 要求機能を得免しる基準 19計・第工上等の影響 基金の准用を共		
	<ul> <li>       ・ 環境から供給される砂礫や海生生物(主に具)を含んだ補機冷却水の流       ・ すりへり現象に対しては、水セメント比       ・ すりへり現象は段階的に進むもので       下により、コンクリート表面にすりへり汚発生することによって、貫通部が       広がりまず認識物を見安えする。       かされている***ことから、それとなずることが対       虚から、事業の基準差度を加減量であ       虚かし、事業の基準差度を加減量であ     </li> </ul>		
	すた、コンクリート配合設計において配 なりついたのですがした。 意を行う。 またのですがした。 意を行う。		
	流 水式は水位かと伴うなっとによって温水が増生し、2号炉の安全等に影・ 大阪等を描えた見が有なしない読者 響くの温暖温度が最低である60/2 第 第 第 1 1 1 1 1 1 1 1 1 1 1 1 1		
	・水溶内に入った良や電機に目の死態率)が覆蓋部前面に付着、堆積し貫 通師を高くことで夏通部の水が流れにくなる。放水部では放水支払水 位かと見ずることで溢水が増生し、2号がの安全時に影響を与える可能     ・定期的な点検時に良や異物の除去を はたくに増えることから、事業の 道法をない違果であったがの、運動度が確認であるために想定さ		
	の富配合コンクリートで劇爆発性、動衝撃性とも使れている。細管対は少なくすることによって更に効果がある」ときれている。		
	流路縮小工は、先に述べたとおり、頑健で耐久性のある		
	コンクリート構造であるとともに、施工はドライ環境で確		
	実にでき、機能が喪失しうる事象に対しては、設計・施工		
	上等の配慮を行った上で、事象の進展速度が緩速であるこ		
	とを示した。		
	これを踏まえると、常時における津波防護機能維持の確		
	認方法としては、定期的な抜水点検、ダイバー点検及び水		
	中カメラによる点検が有効と考えられる。		
	施工の段階で寸法管理が確実にできることから、点検に		
	ついては有意な損傷や変状に着目し実施する。		
	<ul> <li>① 1 号炉流路縮小上は取放水路内部にある海水中に設置された設備となるため,点検は定期点検時に合わせ実施する。</li> </ul>		
	② 取水路については定期的な抜水による目視点検・清掃等を実施する。放水 略については定期的な抜水による目視点検・清掃等を実施する。放水		
	路については定期のな扱小、タイハー及び小中カメノによる日祝点便・信 掃等を実施する。		
	<ul> <li>③ 損傷や変状の状況に応じ,詳細な点検を行う。</li> <li>④ 占検結果を踏まえ、必要に広じ占検期間の見直しを行う。</li> </ul>		
	また。今回と同様に海水中に設置されたコンクリート構		
	告物の維持管理について 躯体が受ける劣化の機構 (風化・		
	老化のうち摩耗、生物付着)が同様と想定される川内原子		
	力発電所の貯留堰コンクリートでは、次のように定期的な		
	点検方法により機能が維持されていることを確認※してい		
	る事例もある。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	① 取水路内部の水中設備となるため,水中からの点検頻度は定		
	期点検時に合わせて実施する。		
	② 点検は潜水士が水中カメラで撮影し、同時に社員が外観を目		
	視点検(確認)する。		
	③ 点検の状況(表面の損傷やクラックなどの異常)に応じ,詳		
	細な点検を計画実施する。		
	④ 長期点検計画は今後,保全の有効性評価を行うことで,適宜		
	見直しを行う。		
	※ 川内原子力発電所1号機 工事計画に係る説明資料(平成27		
	年3月)資料番号K0-118 改1		
	事象の進展影響として各構造物における水位の変動が考		
	えられるが、すりへりと貝付着による水位変動について試		
	算した結果を表2に示す。		
	開口径が広がると津波防護機能の低下に繋がるが、保守		
	的にすりへり量を設定した場合でも海水ポンプ室における		
	設計値との水位差は1cm と試算され,水位による事象検出		
	は難しいものと考えられる。		
	また,放水立坑における設計値との水位差は34cm である		
	が、事象の進展速度が緩速であることを踏まえると、水位		
	変動も同様となり経時変化の検出が難しく、定期的な抜水		
	等による直接的な点検が維持管理には適しているものと考		
	えられる。		
	なお、これまで述べてきたとおり2号炉の津波防護機能		
	維持だけではなく、1号炉に対しても取水機能・放水機能		
	維持の観点から検討し、すりへりや貝付着の事象進展を保		
	守的に考慮した場合において、海水ポンプ室水位は補機冷		
	却海水ポンプの取水可能最低水位を上回り、また、放水立		
	坑水位は補機冷却海水ポンプの放水高さを下回ることか		
	ら、すりへりや貝付着による水位変動は、1号炉の取水機		
	能・放水機能に影響がないことを確認した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	表2 事象が進展した場合における海水ポンプ室及び放水立坑		
	の水位変動(常時, ポンプ容量=0.53m³/s)		
	<text></text>		

## まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料31〕

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
				添付資料 31	
				施設護岸の漂流物評価における遡上域の範囲及び流速について	・資料構成の相違
					【柏崎6/7,東海第二】
				1. 概要	島根2号炉は荷揚場
				非常用冷却海水系の海水ポンプの取水性へ影響を及ぼす可能性	にある設備等の漂流評
				については, 施設護岸の設備等が漂流物となる可能性を踏まえ評	価のため, 遡上域の範囲
				価している。ここでは、施設護岸の設備等が漂流物となる可能性	及び流速について示し
				の評価のうち滑動評価に用いる流速を確認する。	ている
				<ul> <li>の評価のうち滑動評価に用いる流速を確認する。</li> <li>2.検討内容 遡上域の範囲(最大水位上昇量分布)を保守的に評価するため、 地震による荷揚場周辺の沈下及び初期潮位を考慮した津波解析を 実施した。解析に当たっては、荷揚場付近の水位上昇量が大きい 基準津波1(防波堤有無)を対象とした。解析条件を以下に示す。</li> <li>・荷揚場周辺の沈下については、防波壁前面を一律1m沈下 させたケースを用いる。</li> <li>・初期潮位については、朔望平均満潮位+0.58mに潮位のばら っき+0.14mを考慮する。</li> <li>基準津波1(防波堤有無)における施設護岸の最大水位上昇量 分布(拡大図)を図1に示す。図1より、防波堤有りに比べ、防 波堤無しの方が最大水位上昇量は大きく、遡上範囲が広いことか ら、防波堤無しの流速を評価する。</li> </ul>	

実線・・設備運用又は体制等の相違(設計方針の相違) 波線・・記載表現,設備名称の相違(実質的な相違なし)
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		инскити лижени и дени	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		3.確認結果 遡上域における流速分布を図2に、主な荷揚場漂流物の配置を 図3に示す。 流速の抽出にあたっては、荷揚場漂流物の配置を踏まえ、遡上 域である荷揚場周辺の12地点(図4参照)を選定し各地点の最大 流速を抽出した。 図2に示すとおり、遡上域における流速は概ね8.0m/s以下であ るが、遡上域の一部において8.0m/sを超える流速が確認できる。 各地点における最大流速抽出結果を表1に示す。 表1に示すとおり、東西方向の流速は荷揚場へ押し波として遡 上する西方向(取水ロ反対方向)の流水が速く支配的であること がわかる。一方、東方向(取水ロ方向)の流れとなる引き波では、 地点10に示す4.8m/sが最大流速となるが、漂流物評価に用いる 流速は、最大流速(11.9m/s)とする。最大流速を示す地点7及び 取水ロ方向への最大流速を示す地点10について、浸水深・流速の 時刻歴波形及び各地点における最大流速発生時の水位分布・流速 ベクトルをそれぞれ図5、図6に示す。 なお、図5に示すとおり、最大流速(11.9m/s)を示す地点におけ る8.0m/sを超える時間は極めて短い(1秒以下である)。	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
				図3         主な荷揚場漂流物の



□「「「「」」」」」「「」」」」」」」」」」」」」」」」」」」」」」」」」」			島根原子	力発電所	2号
		:	表1 各均	也点の流遠	東評価
	地点	Vx方向 最大流速 (m/s)	Vy方向 最大流速 (m/s)	Vx方向 流速	全方向 Vyī 流
	1	-4.2	2.1	-4.2	1
	2	-4.0	2.5	-4.0	1
	3	-6.7	2.1	-6.7	-0
	4	-3.6	3.7	-3.2	3
	5	-3.6	3.8	-3.6	3
	6	-5.5	4.1	-5.5	2
	7	-11.8	3.4	-11.8	1
	8	-5.3	1.5	-5.3	1.
	9	-5.9	1.9	-5.9	1.
	10	4.8	-7.6	4.8	-7
	11	-8.9	2.5	-8.9	-1
	12	-2.7	5.1	-1.4	5
		182 184	186 188 時間(分)	- 浸水深(m) 10 192 西方向流達(m/s) 180 192	
	4		時間(分)		
	2 0 2 2 4 6 8 -10 -12 180 図 5 地 歴波形)	182 184 182 184 1857(最 及び最大済	186 188 時間(分) (病 大流速を対 充速発生時	4.2 JPRAE8(m/s) 100 192 た大流速発生時刻(約1 気)におけ	<ul> <li>194</li> <li>(190分))</li> <li>にお</li> <li>る水位</li> </ul>



柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
				0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0



まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料32〕

相似利息原子人を電解         8人でを分         (2017.12.2018)         演演演学電電解         (2018.0.1218)         通信         活用資源 <th></th> <th></th> <th></th> <th></th>				
	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			添付資料 32	
近く、ひって思惑性はなめについて         1         日本市らいまな数         日本市らいまな数         日本市らいまな数         日本市らいまな数         港を257424         シンジ長大化に注 、たシンジ長大化に注 るお話については、実験性の気候によりオンジン件数は「読書からか」 ばさないことを確認した。以下にその10時をホートに登録した。         ジンジ長大化に注 る話をかったしたできの10時をホートに登録した。         ジンジ長大化に注 る話をかったした。         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         ご         <				
<ul> <li>1. にじめに         はしかに         は、とめには         は、とのに         は、とのに         は、とのに         は、とのでのス下粉への数に使えていた。と認知         なかとうス下粉への数にありたいとの構成にありまいという         なかとしてないた         なかとしていて         電源を取した。以下にその内容を示す。         </li> <li>2. 動量を受         にないこと         ながっとない取りたもものである。創意りポートの構定         を図したが、         ながっとない取りたもものである。創意りポートの構定         を図したが、         ながっとない取りたもものである。創意りポートの構定         を図したが、         ながっとない取りたもものである。創意りポートの構定         を図したが、         ながっとないのながない         ながっとない         ながっとない         ながっとない         ながっとない         ながっとない         ながっとない         ながっとない         ながっ         な</li></ul>			海水ポンプの実機性能試験について	・設備の相違
<ul> <li>1. たじめに</li> <li>こにとめにすったホマウスド型へのたまプロス・実践と記録使えた</li> <li>こので見たいにする実験とないでは、実験と記録使えた。</li> <li>定てないことを使用した。以下にその内容を示す。</li> <li>2. 前式でポートに確かがって見た化に伴う可要性能使のため に、ヘルマクス別に取付するものである。前はアポートの構造 を図1.1 に示す。</li> <li>原1. 前式でポート構造団(KBR ボンブの時)</li> <li>3. 実験性能交換について 実施にプラートは確認したとなが聞いてなな個した実施でビットに感覚 し、ホンプ性性を保護した目法。単純方、ボンプスキレ、認知 が、可以支援を注意していてて 実施にプラートな個様の中国法、制造方、ボンプスキレ、認知 が、可以支援を注意していてことながのいてのなどした実施を注 がないためためためでは、</li> </ul>				【柏崎 6/7, 東海第二】
ボンズル代に体すべんやウス下派への容量サポート改換によ るが際については、実施を認知によりな少せ違いに等な次 際学校のためを使われたについて 耐量サポートに適本ボンブは尺化に伴う耐量使経体のため に、ベルマクス部に取付けるものである。可量サポートの佛定 を図って示す:			1. はじめに	島根2号炉は海水ポ
る影響については、実物性が実践によりボンプ件科に影響を及 ぼさないことを確認した、以下にその内容を示す。 2.  商売リポートについて 消費リポート構造図(28年ポンプの例) 3.  実験性能対象について 実験化ンプを、必要サポートを改選した状態でピットに改置 し、ポンプを始(な過程とに出意、電気が、パンプが明) 3.  実験性能対象について 実験化ンプを、必要サポートを改選した状態でピットに改置 し、ポンプを始(な過程とに出意、電気が、パンプが完全、技働) が、対策性能対象について 実験化ンプを、必要サポートを改選した状態でピットに改置 し、ポンプを始(な過程とに出意、電気が、パンプが完全、技働) が、対策性能対象におりる 再提りポートを調測した、実験対象を変まして示す。			ポンプ長尺化に伴うベルマウス下端への耐震サポート設置によ	ンプの長尺化による影
ばるないことを確認した。以下にその内容を示す。			る影響については、実機性能試験によりポンプ性能に影響を及	響評価を実施
<ul> <li>1. 転換サポートは海大ボンブ東尺化に伴う耐換性薄無のために、ペルマウス高に取付けるものである。耐酸サポートの構造を図1に示す。</li> <li>図1. 耐酸サポート構造図(Max ポンプの例)</li> <li>1. 実機性結果時について 実現ポンプを、耐酸サポート構造図(Max ポンプの例)</li> <li>1. 実機性結果時について 実現ポンプを、耐酸サポートを設置した状態でピットに改置し、ポンプ効率、反動) が、相定量等を対応していること及びポンプが安定した温症状 施であることを確認した。実験要の実績例と実験時における 研究サポート試算状況を図2に、確認使用を表1に示す。</li> </ul>			ぼさないことを確認した。以下にその内容を示す。	
耐張サポートは満水ボンプ長尺化に伴う耐殺性確似のため に、ベルマウス部に取付けるものである。前属サポートの特達 を図1に示す。           (又1) 前属サポート考達図(650 ポンプの物)           (又1) 前属サポート考達図(650 ポンプの物)           3. 実践性説取取について 実践研ジプを、耐容ラポートを改置した状態でビットに設置 し、ボンブ作用(全傷相と中山電、輪動力、ポンプ効率、振動) が、和定法押を満足していること及びポンプが安定した運転状 態であることを確認した。試験改画の類応図と実践時における 耐淀サポート改置状況を図2に、確認結果を支1に示す。			2. 耐震サポートについて	
に、ベルマウス部に取付けるものである。研集サポートの情違 を図1に示す。 図1 耐震サポート構造図 (R37 ポンプの例) 3. 実際性能研解について 実験がにごかった 実験がについて 実験がにごかる定した状態でピットに設置 し、ポンプ化能(全局をとれ出き、純軟力、ポンプ効率、振動) が、判定基準を満足していること及びポンプが安定した運転状 能であることを確認した、純軟実面の組織商と試験時における 副編サポート設置状況を図2に、体認能果を表1に示す。			耐震サポートは海水ポンプ長尺化に伴う耐震性確保のため	
を図1に示す。 を図1に示す。 図1 面積サポート構造図(85%ポンプの例) 3. 実験性能設験について 実機変ンプを、面質サポートを設置した状態ででットに設置 し、ポンプ性能(支援を止用量、軸動力、ポンプ効率、扱動) が、相応互換を満足していること及びポンプが安定した運転状 能であることを確認した。試験波響の知時図と試験時における 耐費サポート設置状況を図2に、確認結果を表1に示す。			に、ベルマウス部に取付けるものである。耐震サポートの構造	
図1 耐震サポート構造図(RSFボンブの例) 3. 実機性結試験について 実機ポンプを、耐震サポートを設置した状態でピットに設置 し、ポンプ性能(全操型を出出量、軸動力、ポンプ効率、振動) が、判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験設置の細路(図と試験時における 耐震サポート設置状況を図2に、確認結果を表1に示す。			を図1に示す。	
2				
図1 耐酸サポート構造図(R5Wボンブの例) 3. 実機性能試験について 実機ポンプを、耐酸サポートを設置した状態でビットに設置 し、ポンプ性能(全揚程と吐出量、軸動力、ポンプ効率、振動) が、判定基準を満足していること及びポンプが安定した運転状 能であることを確認した。試験実置の概略図と試験時における 耐酸サポート設置状況を図2に、確認結果を表1に示す。				
図1 耐震サポート構造図(RSW ポンプの例) 3. 実機作能試験について 実機ポンプを、耐震サポートを設置した状態でピットに設置 し、ポンプ性能(全傷程と吐出量、軌動力、ポンプ効率、振動) が、判定基準を満足していること及びポンプが安定した運転状 能であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に、確認結果を支1に示す。				
図 1 耐震サポート構造図(RSWポンプの例) 3. 実機性能試験について 実機ポンプを, 耐震サポートを設置した状態でピットに設置 し、ポンプ性能(全揚程と吐出量, 軸動力, ポンプ効率, 振動) が、判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に,確認結果を表1に示す。				
区1 耐震サポート構造図(RSWポンプの例) 3. 実機性能試験について 実機ポンプを,耐震サポートを設置した状態でピットに設置 し、ポンプ性能(全揚程と吐出量,軸動力,ポンプ効率,振動) が、判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験装置の疑路図と試験時における 耐震サポート設置状況を図2に,確認結果を表1に示す。				
図1 耐震サポート構造図(RSWポンプの例) 3. 実機性能試験について 実機ポンブを,耐震サポートを設置した状態でビットに設置 し、ポンブ性能(全掛線と叱出量、軸動力、ポンプ効率、振動) が、判定基準を満足していることと及びポンプが安定した運転状 態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に、確認結果を表1に示す。				
図1 耐震サポート構造図(RSW ポンプの例) 3. 実機性能試験について 実機ポンプを,耐震サポートを設置した状態でピットに設置 し、ポンプ性能(全揚程と吐出量,軸動力,ポンプ効率,振動) が、判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に,確認結果を表1に示す。				
図1 耐震サポート構造図(RSW ポンプの例) 3. 実機性能試験について 実機ポンプを,耐震サポートを設置した状態でビットに設置 し、ポンプ性能(全揚程と吐出量,軸動力,ポンプ効率,振動) が、判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に,確認結果を表1に示す。				
図1 耐震サポート構造図(RSWポンプの例) 3. 実機性能試験について 実機ポンプを,耐震サポートを設置した状態でピットに設置 し、ポンプ性能(全揚程と吐出量,軸動力,ポンプ効率,振動) が、判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に,確認結果を表1に示す。				
図1 耐震サポート構造図(RSWボンブの例) 3. 実機性能試験について 実機ポンプを,耐震サポートを設置した状態でピットに設置 し、ポンプ性能(全揚程と吐出量,軸動力,ポンプ効率,振動) が,判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に,確認結果を表1に示す。				
図1 耐震サポート構造図(RSW ポンプの例) 3. 実機性能試験について 実機ポンプを,耐震サポートを設置した状態でビットに設置 し,ポンプ性能(全揚程と吐出量,軸動力,ポンプ効率,振動) が,判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に,確認結果を表1に示す。			VVen ////	
<ul> <li>図1 耐震サホート構造図(KSWホンノの例)</li> <li>3. 実機性能試験について 実機ポンプを,耐震サポートを設置した状態でピットに設置 し、ポンプ性能(全揚程と吐出量,軸動力,ポンプ効率,振動) が,判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に,確認結果を表1に示す。</li> </ul>				
<ul> <li>3. 実機性能試験について 実機ポンプを,耐震サポートを設置した状態でピットに設置 し、ポンプ性能(全揚程と吐出量,軸動力,ポンプ効率,振動) が,判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に,確認結果を表1に示す。</li> </ul>			図1   胴展サルート構造図 (RSW ルンノの例)	
実機ポンプを,耐震サポートを設置した状態でピットに設置 し、ポンプ性能(全揚程と吐出量,軸動力,ポンプ効率,振動) が,判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に,確認結果を表1に示す。			3. 実機性能試験について	
し、ポンプ性能(全揚程と吐出量,軸動力,ポンプ効率,振動) が、判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に,確認結果を表1に示す。			実機ポンプを、耐震サポートを設置した状態でピットに設置	
が、判定基準を満足していること及びポンプが安定した運転状 態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に、確認結果を表1に示す。			し、ポンプ性能(全揚程と吐出量、軸動力、ポンプ効率、振動)	
態であることを確認した。試験装置の概略図と試験時における 耐震サポート設置状況を図2に,確認結果を表1に示す。			が、判定基準を満足していること及びポンプが安定した運転状	
耐震サポート設置状況を図2に,確認結果を表1に示す。			態であることを確認した。試験装置の概略図と試験時における	
			耐震サポート設置状況を図2に,確認結果を表1に示す。	

<u>実線</u>・・設備運用又は体制等の相違(設計方針の相違) 波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		<complex-block></complex-block>	
		表 1 試験結果	
		全揚程と         合格	
		軸動力合格	
		ポンプ 効率 合格	
		振動 合格	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		参考	
		原子炉補機海水ボンブの取水性能試験	
		1 概	
		□. 風云 原子炉補機海水ポンプ(RSWポンプ)の取水性能を確認す	
		るため、実機RSWポンプを用いた試験を実施した。実機RS	
		Wポンプ取水性能試験では、基準津波襲来による引き波を模擬	
		した水位低下時の取水可能水位を確認した。	
		その結果、水位低下中においても連続渦は確認されず、RS	
		Wポンプベルマウス下端(EL.−9.3m)付近まで取水が可能である	
		ことを確認した。	
		ここでは、その試験内容を示す。	
		2. 原子炉補機海水ポンプ(RSWポンプ)の取水試験につい	
		7	
		a. 試験内容	
		基準津波襲来による引き波を模擬した取水槽における時系列	
		を想定し、模擬試験水槽の水位を徐々に低下させ、RSWポン	
		プの運転パラメータ等を確認した。津波を模擬した試験水槽の	
		水位変化とRSWポンプの試験確認項目を表1に示す。	
		表1 津波を模擬した試験水槽の水位変化とRSWポンプの試	
		験確認項目	
		津波時の2号取水槽の想定時系列 津波模擬試験水槽	
		取水槽水位         取水槽の状態         試験水槽の状態         試験確認項目	
		【引き波】         ・引き波による取水         ・RSW ポンプと水位調整         ・RSW ポンプ流量,電流等ボ           通常水位~         槽水位低下         ポンプにより試験水槽         ンプ運転パラメータ           取水槽取水管下端水         水位低下         水位低下	
		位(EL7.3m) 【引き波】 ・PSW ポンプレトス ・PSW ポンプレル位調整 ・PSW ポンプの助水可能水位	
		RSW ポンプ取水可能     ンプ運転パラメータ       水位	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12 版)	島根原子力発電所 2号炉         b. 試験結果         図1に示す試験装置を用い、ポンプ取水性能試験を行った。         試験時の状態を図2に,試験中のポンプ流量と水位の関係を         図3に示す。RSWポンプは、RSWポンプペルマウス下端         (EL9.3m)付近まで定格流量を取水し、その後、再冠水し         でも、定格流量が取水可能であった。また、その他の運転パラメータについても、水位低下中に連続渦などは確認されず、         運転試験後に実施したポンプ開放点検による外観点検でも部         品に異常は確認されなかった。         図1 ポンプ取水性能試験装置	備考
		図 2 試験時の状態	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		図3 試験中のポンプ流量と水位変化	

## まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料33〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		添付資料 33	
		<u>海水ポンプの吸込流速が砂の沈降速度を上回る範囲について</u>	・資料構成の相違
			【柏崎 6/7, 東海第二】
		1. はじめに	島根2号炉は海水ポ
		海水ポンプの長尺化に伴う海水ポンプ近傍への砂の堆積につ	ンプの長尺化に伴う海
		いては、ベルマウス下端近傍の取水槽床面においても海水ポン	水ポンプ近傍への砂の
		プの吸込流速が砂の沈降速度を上回っており、海水ポンプ下端	堆積について資料を作
		に到達する砂はポンプに吸込まれることから、ベルマウス下端	成
		近傍に砂は堆積しないと評価している。	
		ここでは、評価内容について示す。	
		2. 砂の沈降速度について	
		砂の沈降速度は Rubey 式より算出する。砂の粒径及び密度は、	
		基準津波に伴う砂移動評価において設定した値(0.3mm)を用い	
		る。砂の諸元及び沈降速度を表1に示す。表1より、砂の沈降	
		速度は 0.05m/s となる。	
		Rubey 式:	
		$w_0 = \sqrt{(s-1)gd} \left( \sqrt{\frac{2}{3} + \frac{36v^2}{(s-1)gd^3}} - \sqrt{\frac{36v^2}{(s-1)gd^3}} \right)$	
		$\Box \subseteq C, S=0/\rho^{-1}$	
		表1 砂の諸元及び沈降速度	
		粒径 d 砂密度 $\sigma$ 海水密度 $\rho$ 重力加速度 g 動粘性係数 $\nu$ 沈降速度 $w_o$	
		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
		3. 海水ポンプの吸込流速が砂の沈降速度を上回る範囲につい	
		τ	
		海水ポンプ定格流量Qを吸込面積Sで除した吸込流速Vが,	
		砂の沈降速度 w。と等しくなる直径 D を算出する。算出の概要を	
		図1に,算出結果を表2に示す。	
		表2に示すとおり、原子炉補機海水系、高圧炉心スプレイ補	
		機海水系の各々ポンプから直径約 2.99m,約0.86mの範囲は,	

<u>実線</u>・・設備運用又は体制等の相違(設計方針の相違) 波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		ポンプの吸込流速が、砂の沈降速度を上回ることから、この範	
		囲は砂が堆積しないと考えられる。	
		国ははかかみますしてよいこともえてられてる。 していたいこともないこころになっている。 取水槽床面までの 距離:h 取込流速が砂の沈降速度と等しくなる直径:D ご:吸込面積 $S = D\pi h + (D^2 - d^2) \times \frac{\pi}{4}$ ポンプ吸込流速 $V = \frac{Q}{S}$ $V = \frac{Q}{S} = w_0$ $\frac{Q}{D\pi h + (D^2 - d^2) \times \frac{\pi}{4}} = w_0$ $D^2 + 4hD - \left(d^2 + \frac{4Q}{\pi w_0}\right) = 0$	
		$D = -2h + \left[ (-2h)^2 + \left( d^2 + \frac{4Q}{\pi w} \right) \right]$	
		√ ^{#₩₀} / <i>D</i> が上記の範囲内の吸込流速は, 砂の沈降速度を上回る	
		図1 ポンプ吸込流速が砂の沈降速度と等しくなる直径算出の概	
		要	
		表2 海水ポンプ諸元及び吸込流速が砂の沈降速度と等しくなる 直径	
		液量Q         ベルマウス径 d         取水槽床面までの         吸込流速が砂の沈降速度と           海水ポンプ         [m³/s]         「[m]         距離 h         等しくなる直径 D           [m]         [m]         [m]         [m]	
		原子炉補機 海水系         0.567         0.75         0.50         2.99	
		高圧炉心ス プレイ補機         0.093         0.34         0.50         0.86           海水系         0.50         0.86         0.86	

まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料34〕

実線・・設備運用又は体制等の相違(設計方針の相違) 波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2号炉(2020.2.7版)	島根原子力発電所 2号
					中国 1633 163 163 163 163 163 163 163 163 16



柏崎刈羽原子	力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	f 2号炉(2020.2.7版)	島根原子力発電所 2号
						metrin (1933) 日1335) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日1355) 日135



子力発電所 2号	島根原		女川原子力発電所 2号炉(2020.2.7版)	(2017.12.20版)	6/7号炉	柏崎刈羽原子力発電所
100 45		陸周				
100 <del>у</del>	e de marco	発電所周辺海城				
		発電所港湾部(防波堤有り)				
	Same	発電所港湾部(防波堤無し)				
<u> 港波1の水位変動</u>	1図(1) 基準済	<u>第</u>				
		発電所港湾部(防波堤有り) 発電所港湾部(防波堤無し) 第一				



まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料35〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		添付資料 35	
		荷揚場作業に係る車両・資機材の漂流物評価について	・資料構成の相違
			【柏崎 6/7, 東海第二】
		1. 概要	島根2号炉は荷揚場
		荷揚場では、使用済燃料輸送に係る作業や低レベル放射性廃	作業に係る車両・資機材
		棄物 (LLW) の輸送に係る作業等を定期的に実施することから,	の漂流物評価について
		荷揚場作業中の地震または津波の発生を想定し、荷揚場作業に	資料を作成
		用いる車両・資機材が津波により漂流物となるか評価する。	
		2. 評価する基準津波と地震影響	
		島根原子力発電所において想定する基準津波のうち、海域活	
		断層から想定される地震による津波は荷揚場に遡上しないこと	
		から、日本海東縁部に想定される地震による津波に対して評価	
		を実施する。	
		評価にあたっては、日本海東縁部に想定される地震による津	
		波については、波源が敷地から離れており地震による敷地への	
		影響はないが、敷地近傍の震源による地震が発生した後に、独	
		立した事象として日本海東縁部に想定される地震による津波が	
		発生し,襲来することも想定し,荷揚場作業中に「(1)津波が	
		発生する場合」と「(2) 地震が発生し、その後独立事象として	
		津波が発生する場合」を評価する。	
			<u>.</u>

実線・・設備運用又は体制等の相違(設計方針の相違) 波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/	~7 号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)		島根原	〔子力発電	所 2号炉			備考
				3. 荷揚場作	業に係る車	車両・資機	幾材			
				定期的に実	施する荷掛	湯場作業は	こ係る車両・資	資機材を	表1に示	
				す。						
				表	1 荷揚城	易作業に係	系る車両・資格	幾材		
				作業項目	作業頻度	種類	名称	個数	質量	
				①使用済燃料輸送作	2回/年 20座	車両 ×	)送車両 5日这燃料キャスク	2	約 32t	
				未 ①ロw(低いぶれな母	0回/年	車両 輔	命送車両	4	約 11t	
				(2)LLW(低レベル放射 性廃棄物)搬出作業	2回/平 程度	車両フ	オークリフト	2	約 17t	
						算機材 LI 車両 ト	LW 輸达谷岙 、ラック	10*	約 It 約 5t	
				③デリッククレーン	1回/年	車両ラ	ラフタークレーン	1	約 39t	l
				点検作業	程度	車向         ト           資機材         発	、レーフー ⁶ 電機	1	約 21t 約 8t	l
				④防舷材設置作業	大型船舶入	車両ラ	ラフタークレーン	2	約 25t	l
					港の都度	車両	<u>、ラック</u>	1	約 5t	
							※うち	8 個は輸送	車両に積載	
				4. 評価内容						
				(1)荷揚場作	業中に津渡	皮が発生す	トる場合			l
				荷揚場作業中	に,日本海	毎東縁部に	こ想定される地	也震によ	る津波が	
				発生した場合,	地震発生後	後に発電所	所へ津波が到近	_{幸するま} 、	での時間	
				は約 110 分であ	っる。この「	間に、荷掛	湯場作業に用い	いている	車両・資	
				機材が荷揚場か	ら防波壁内	内に退避す	可能か評価する	5°		
				各荷揚場作業	において,	荷揚場は	こ仮置きする資	資機材と	その個数	
				及び車両等への	積載時間を	を以下に,	また退避に弱	要する時間	間を表 2	
				に示す。各荷揚	場作業にお	おける,但	反置き資機材の	り車両等・	への積載	
				時間, 車両退避	時間(約:	10 分),图	方波壁通路防活	皮扉(以	下「防波	
				扉」という。)の	の開放・閉	止時間(	開放・閉止各	約 10 分	(電動))	
				から求まる退避	時間は、着	聿波到達明	寺間(地震発 <u>生</u>	E後約 11	0分)よ	
				り短く、車両・	資機材の記	退避は可能	もである。			
				<ol> <li>使用済</li> </ol>	燃料輸送作	F業				
				荷揚場に	仮置きする	る使用済炊	然料キャスクレ	は, デリ	ッククレ	
				ーンを用い	使用済燃料	斗輸送車両	両に積載してi	₿避する	手順とし	1
				ている。						1
				【仮置き資	機材と積載	<b></b> 載時間】				l
				使用済燃	料キャスク	ク個数:2	2個			l
				輸送車両	への積載時	寺間:15 🤇	分/個			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		② LLW 荷役作業	
		荷揚場に仮置きする LLW 輸送容器は, 輸送船のクレーンを	
		用い,輸送船に積載し退避する手順としている。	
		【仮置き資機材と積載時間】	
		LLW 輸送容器個数:2個	
		輸送船への積載時間:5分/2個※	
		※:LLW輸送容器は2個ずつ輸送船へ積載	
		③ デリッククレーン点検作業	
		荷揚場に仮置きする発電機は、ラフタークレーンを用いト	
		ラックに積載して退避する手順としている。	
		【仮置き資機材と積載時間】	
		举雷機個数·1個	
		トラックへの積載時間・10分/個	
		<ol> <li>④ 防舷材設置作業</li> </ol>	
		防舷材については、「2.5 水位変動に伴う取水性低下による	
		重要な安全機能への影響防止」において、漂流物として抽出	
		し取水性へ影響を与えないことを確認している。また、作業	
		車両については、退避する手順としている。	
		表2 退避に要する時間	
		作業項目 防波扉開 資機材の 車両退 防波扉閉 合計 評価結果	
		積載<進         進           ①使用済燃料輸送作         約 00 0	
		(a) いかが新す         約5分*2         約10分         約20分         (約10分           性廃棄物) 搬出作業         約10分*1         約5分*2         約10分         約10分         約20分         (約110分)	
		③デリッククレーン         約10分         約30分         可能)	
		④防舷材設置作業         -         約 20 分	
		※1 負機材の模載,単両退産と同時に防波扉の開作薬を実施するため,合計には含まない。 ※2 輸送船へ積載するため,合計には含まない。	
		(2)荷揚場作業中に地震が発生し、その後独立事象として津波	
		が発生する場合	
		敷地近傍の震源による地震が発生した後に、独立した事象とし	
		て日本海東縁部に想定される地震による津波が発生することを想	
		定する。	
		荷揚場作業中に、敷地近傍の震源による地震が発生した場合、	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
				荷揚場の沈下・	や車両の故障等が想定されるが、地震により荷揚場	
				の沈下や車両の	D 故障等が生じた場合においても、荷揚場の復旧や	
				車両の牽引等は	こより、津波襲来までに車両・資機材が荷揚場から	
				防波壁内に退	産可能か評価する。	
				a. 地震によ	5影響	
				荷揚場作業中	中に地震が発生する場合の車両・資機材の退避への	
				影響及びこれ	らへの対応のための退避作業について整理した結果	
				を,表3に示~	t.	
				表3 地震に	こよる車両・資機材の退避への影響と退避作業	
				地震による		
				避ルート	とにより車両が通行できない可 ①* 荷揚場復旧(別紙1) (段差解消)	
					商揚場常設設 荷揚場常設設備が転倒し,退産ル 備の倒壊 ートにエルナスことで 東西水通 ⑦* 段博梅の放土	
				3%+446+++ -		
				貢機内への影響	<ul> <li>● 通動場所 和政政 ● 回動場所 和政政間が回線 し、貢(物)</li> <li>● 個換物の干渉回避</li> <li>● (可断・撤去等)</li> </ul>	
				車両への	荷揚場常設設         荷揚場常設設備が倒壊し,車両に         倒壊物の干渉回避	
				影響	備の倒壊     干渉することで、牽引できない可     ③*     (切断・撤去等)       能性がある。     (     (	
					車両の故障         油漏れ等で自走不可になる可能         ⑤*         牽引による退避を実           性がある。         ⑤*         施	
				* 21	のフローの番号と整合	
				b. 車両・j	資機材の退避	
				地震発生後に	こ、荷揚場からの車両・資機材を退避させる作業手	
				順を図1に示	す。また、以下の(a)~(d)に、各荷揚場各作業にお	
				ける単阿・貨	幾日の退避に係る具体的な作業内谷及び退避時間を	
				小9。	11.77.70 H	
					①荷揚場復旧	
					②倒壊物の撤去作業により、退避ルートの           ②倒壊物の撤去           確保及び荷揚場への必要資機材の配置	
				3	を可能とする。 ③倒壊物の干渉回避作業により、資機材 御壊物の干渉回避・業により、資機材	
					の海峡のの根辺にまたりなった。 単 引による車両退避を可能とする。 の海峡社の車両環辺を実にという参考社の	
					資機材の車両積込 退避を可能とする。	
					・         ・         ⑤車両退避作業により、車両及び資機材の退避を実施する。	
					◆ 作業完了	
				図 1	荷揚場からの車両・資機材の退避作業手順	

(a) 使用済燃料輸送作業 使用済燃料輸送作業中には、荷揚場に使用済燃料輸送車 用済燃料輸送容器がある。津波による漂流物の発生を防止 め、これらを退避させる。 使用済燃料輸送作業中に地震が発生した場合の、車両・ の退避への影響、退避作業及びこれに必要な資機材等につ 理した結果を表4に示す。また、荷揚場作業と退避ルート 図を図2に、退避作業に係る時系列を図3に示す。 表4 地震による車両・資機材の退避への影響と退避作 (使用済燃料輸送作業)	
(a) 使用済燃料輸送作業 使用済燃料輸送作業中には、荷揚場に使用済燃料輸送車 用済燃料輸送容器がある。津波による漂流物の発生を防止 め、これらを退避させる。 使用済燃料輸送作業中に地震が発生した場合の、車両・ の退避への影響、退避作業及びこれに必要な資機材等につ 理した結果を表4に示す。また、荷揚場作業と退避ルート 図を図2に、退避作業に係る時系列を図3に示す。 表4 地震による車両・資機材の退避への影響と退避作 (使用済燃料輸送作業)	画 一 両 、 使 : す る た 登機材 かいて 整 ・ の 概要
使用済燃料輸送作業中には、荷揚場に使用済燃料輸送車 用済燃料輸送容器がある。津波による漂流物の発生を防止 め、これらを退避させる。 使用済燃料輸送作業中に地震が発生した場合の、車両・ の退避への影響、退避作業及びこれに必要な資機材等につ 理した結果を表4に示す。また、荷揚場作業と退避ルート 図を図2に、退避作業に係る時系列を図3に示す。 表4 地震による車両・資機材の退避への影響と退避作 (使用済燃料輸送作業)	画 、 使 満 満 様 材 か い て 整 、 の 概 要 - - - - - - - - - - - - -
田田田山 『四田田山 四田田山 四田田山 四田田山 四田田山 四田田山 四田田山	:するた 資機材 oいて整 ·の概要
用用燃料輸送存蓄がある。律板による係加物の先生を防止 め、これらを退避させる。 使用済燃料輸送作業中に地震が発生した場合の、車両・ の退避への影響、退避作業及びこれに必要な資機材等につ 理した結果を表4に示す。また、荷揚場作業と退避ルート 図を図2に、退避作業に係る時系列を図3に示す。 表4 地震による車両・資機材の退避への影響と退避作 (使用済燃料輸送作業)	- 9 の 資機材 かいて整 、の概要
め、これらを退避させる。 使用済燃料輸送作業中に地震が発生した場合の、車両・ の退避への影響、退避作業及びこれに必要な資機材等につ 理した結果を表4に示す。また、荷揚場作業と退避ルート 図を図2に、退避作業に係る時系列を図3に示す。 表4 地震による車両・資機材の退避への影響と退避作 (使用済燃料輸送作業)	資機材 かいて整 の概要
使用済燃料輸送作業中に地震が発生した場合の、車両・の退避への影響、退避作業及びこれに必要な資機材等につ 理した結果を表4に示す。また、荷揚場作業と退避ルート 図を図2に、退避作業に係る時系列を図3に示す。 表4 地震による専両・資機材の退避への影響と退避作 (使用済燃料輸送作業)	資機材 かいて整 、の概要
の退避への影響,退避作業及びこれに必要な資機材等につ 理した結果を表4に示す。また、荷揚場作業と退避ルート 図を図2に、退避作業に係る時系列を図3に示す。 表4 地震による車両・資機材の退避への影響と退避作 (使用済燃料輸送作業)	oいて整 への概要
理した結果を表4に示す。また、荷揚場作業と退避ルート 図を図2に、退避作業に係る時系列を図3に示す。 表4 地震による車両・資機材の退避への影響と退避作 (使用済燃料輸送作業)	の概要
図を図2に、退避作業に係る時系列を図3に示す。   表4 地震による草語・資機材の退避への影響と退避作 (使用済燃料輸送作業)   進歴作業の内容   し、ののと要	**
図を図2に、退産作業に係る時糸列を図3に示す。 表4 地震による車両・資機材の退避への影響と退避作 (使用済燃料輸送作業)	- 業
表 4 地震による車両・資機材の退避への影響と退避作 (使用済燃料輸送作業)	:業
(使用済燃料輸送作業) 速度による荷揚場への影響 逃避への影響 逃避作業の内容 逃避作業に必要な 荷揚場改 荷揚場次降 良差が発生することによ ・読石を運搬し、東画通行 ・ショベルカー	
(1史/日/日/20:471平明)15(1日未) 地震による荷揚場への影響 退避への影響 退避作業の内容 退避作業に必要な 荷根場法 荷根場次隆 母差が発生することによ ・読石を運搬」、東画通行 ・ショベルカー	
地震による荷揚場への影響 退避への影響 退避への影響 退避作業の内容 退避作業に必要な 結場場退 荷場場沈隆 啓差が発生することによ ● •砼石を運輸1東面通行 •ショベルカー	
地震による荷揚場への影響         退避への影響         退避作業の内容         退避作業に必要な           宿場場注         荷場場沈路         貴差が発生することによ         ・乾石を運輸し、車両通行         ・ショベルカー	
	資機材等
●レート 「キーの小面」」できない「「」」」 への影響 能性がある。 差を復旧する。 ・ホイールローダ	
荷揚場常設設備 荷揚場常設設備が転倒	
の転倒による干 し、退避ルートに干渉す の ・倒壊物の撤去作業を実施	
渉 ることで、車両が通行で する。 する。	
きない可能性がある。	
( 酸化へ) 「街場場常設設備」の日葵 ・田葵物の「沙田連(5)町, ・クレーン の影響 の転倒による資 ↓。使用済燃料輪送容器 撤去等)により、燃料輪送 ・玉かけ資機材	
機材への干渉 に干渉することで、車両 ③ 容器への玉かけ作業を可 ・溶断器	
への積込を阻害する可能 能とする。 ・トラック	
性がある。	
資機材の転倒     使用済燃料輸送容器が転     ・使用済燃料輸送車両また     ・クレーン	
間する可能性かめる。 ④ 「 間する可能性かめる。 ④ 「 都込み退避を実施する。 ・ 主がり質機格 ・ 主がり質機格 ・ 主がり質機格 ・ 主がり質機格	両または代
替可能な運搬車両	
車両への         荷揚場常設設備         荷揚場常設設備が倒壊         ・倒壊物の撤去(切断, 撤         ・クレーン	
影響 の転倒による車 し,使用済燃料輸送車両 去等)により,燃料輸送車 ・玉かけ資機材 ③ (3)	
両への干渉 に干渉することで、牽引 両の牽引作業を可能とす · 溶断器 つきない可能性がある ス ス - トラック	
車両の故障         油漏れ等で自走不可にな         ・牽引により退避を実施す         ・使用済燃料輸送車	両または代
る可能性がある。 ⑤ る。 替可能な牽引車両	
・牽引資機材	
- 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)		島根原	子力発電	所	25
				2√↓ デリック 段差最大 70cm え	デリッククレーン巻上装置) クレーン荷重試験用ウエイト ヤスク版扱収納庫他		整 登 登	TT T
				図 2 使用済 作業 ① _{段差復旧}	·燃料·輸送作 	業の荷払 作業時間 (h) 6	易場(	F業6n
				②倒壊物の撤去	作業車両移動 撤去作業等 作業車両移動	6		
				③倒壊初の十渉回避 ④ ④資機材積込	<u>撤去作業等</u> 作業車両移動 下かけ	3		
				⑤車両·資機材退避	<u>積込等</u> 作業車両移動 車両接続	3		
				図3 退 (b) LLW搬出 がある。津 退避させる LLW 搬出 退避に影響 等について 退避ルート に示す。	<ul> <li>選作業に係</li> <li>非業</li> <li>作業</li> <li>作業</li> <li>に業</li> <li>にまる</li> <li>作業</li> <li>による</li> <li>作業</li> <li>にすす</li> <li>を</li> <li>を</li> <li>理</li> <li>した</li> <li>に</li> </ul>	 、 荷 物 が 建 泉 、 ま 、 で ま 、 で 、 、 、 、 、 、 、 、 、 、 、 、 、	- 前 ( 化 名 上 2 、 退 1 1 1 1 1 1 1 1 1 1 1 1 1	↓ 吏 ↓ を こ 業 示 産



柏崎刈羽原子力発電所 6/7号	异炉	(2017.12.20版)		東海	事第二発電	前(2018.	9.12版)			島根原子力	発電所	2 号炉		備考	
								表 5	地震に。	よる荷揚場から (LLW	。の退避~ 搬出作業	の影響 )	と退避作業		
								地震によ	る荷揚場への影響	退避への影響	退避作業	の内容	退避作業に必要な資機材等		
								荷揚場退	荷揚場沈降	段差が発生することによ	・砕石を 	運搬し、車両	<ul> <li>・ショベルカー</li> </ul>		
								産ルート		り単両か通行できない可	① 通行可能	73公司配に73る	・トフック 		
								への影響	<b>声退退带劲劲借</b>	E1生かめる。 	より収力	を復旧する。	• **1 = ***		
									何物物市政政備の転倒に上る手	同物物帯の設備が転回	<ul> <li>• 倒壞影</li> </ul>	の撤去作業を			
									涉	ることで、車両が通行で	② 実施する		・ホイールローダ		
										きない可能性がある。	20007				
								資機材へ	荷揚場常設設備	荷揚場常設設備が倒壊	・荷揚場	常設設備の撤	・クレーン		
								の影響	の転倒による資	し,LLW 輸送容器に干渉す	去(切禺	,撤去等)に	・玉かけ資機材		
									機材への干渉	ることで、車両への積込	3 より, L	₩ 輸送容器へ	・溶断器		
										を阻害する可能性があ	の玉かけ	作業を可能と	・トラック		
										る。	する。				
									資機材の転倒	LLW 輸送容器が転倒する	・LLW 輯	送車両または	・クレーン		
										可能性がある。	代替可能	な運搬車両に	・玉かけ資機材		
											積込み	と避を実施す	・LLW輸送車両または代替可		
											る。		能な運搬車両		
								車両への	荷揚場常設設備	荷揚場常設設備が倒壊	・荷揚場	常設設備の撤	・クレーン		
								影響	の転倒による車	し,LLW 輸送車両に干渉す	去 (切瞧 ③	,撤去等)に	<ul> <li>・玉かけ資機材</li> </ul>		
									両への千渉	ることで,牽引できない	より, L	₩ 車両の牽引	<ul> <li>溶断器</li> <li>、</li> </ul>		
									+= ++**	可能性がある。	作業を中	能とする。	<ul> <li>トラック</li> <li>エンナエ</li> </ul>		
									単同の政庫	油油和お等で目走へ可にな ス可能性がもえ	・ 室 916 ⑤ 歩 本 本 本 本	より退産を実	<ul> <li>・ 軍 引 単 両</li> <li>-        ・</li></ul>		
								2.✔	デリッククレー     デリッククレー     オャスク     オャスク	リッククレーン巻上装置建物 ン荷重武験用ウエイト 取扱収納庫他 日日日日日 LLW輸送	(注意)	デリッククレーン 11.W輸送容	8		
													<ul> <li>: 作業エリア</li> <li>: 防波壁</li> <li>: 防波壁</li> <li>: 防波壁</li> <li>: 防波壁</li> <li>: 治着部</li> <li>: 社音部</li> <li>: 社会地盤</li> <li>: 車両通行範囲</li> <li>: 段差発生箇所</li> <li>: 退避ルート</li> <li>: 倒壊範囲</li> </ul>		
								図4	LLW 搬出	出作業の荷揚場	作業と退	腔ルー	トの概要図		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉		備考
				作業内容    作業時間    経過 (h)    6h   12h	時間 18h 24h	
			①段差復旧	作業車両移動 砕石積込 6		
			-			
			<ol> <li>②倒壊物の</li> <li>③例壊物の</li> </ol>	撤去 11 年 1 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
				市が回転         撤去作業等         0         1         1         1           作業車両移動         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		
			(4)貝成村族	22 王がり 3 積込等 作業車両移動		
			⑤車両·資	幾材退避 車両接続 3 牽引等 3		
				図5 退避作業に係る時系列(LLW 搬	設出作業)	
			(c) <del>ž</del>	デリッククレーン点検作業		
			デ	リッククレーン点検作業中には、荷揚	場に発電機、ト	ラ
			ック	, ラフタークレーンがある。津波によ	る漂流物の発生	<i>を</i>
			防止	するため、これらを退避させる。		
			デ	リッククレーン点検作業中に地震が発	生した場合の,	車
			両•	資機材の退避に影響を及ぼす事象,退	避作業及びこれ	NZ
			必要	な資機材等について整理した結果を表	6に示す。また	,
			荷揚	場作業と退避ルートの概要図を図6に	,退避作業に係	5
			時系	列を図7に示す。		
			表	6 地震による荷揚場からの退避への景	彡響と退避作業	
				(デリッククレーン点検作業	)	
			地震によ	る荷揚場への影響 退避への影響 退避作業の内容	退避作業に必要な資機材等	
			荷揚場退 避ルート	荷揚場沈降 段差が発生することによ ・砕石を運搬し、車両通 り車両が通行できない可 ① 行可能な勾配になるよう	・ショベルカー ・トラック	
			への影響	能性がある。         段差を復旧する。	・ホイールローダ	
				荷揚場常設設備 荷揚場常設設備が転倒 の転倒による干 し, 退産ルートに干渉す の ・倒壊物の撤去作業を実	and the strenge off	
				渉 ることで、車両が通行で ぬする。 きたい可能性がある。	• 44 - 22 - 2	
			資機材へ	荷揚場常設設備         荷揚場常設設備が倒壊         ・荷揚場常設設備の撤去	・クレーン	
			の影響	の転倒による資 機材への干渉 とで、車両への積込を阻 ③ (切断, 撤去等)により、 ③ 発電機への玉かけ作業を	<ul> <li>・玉かけ資機材</li> <li>・溶断器</li> </ul>	
				客する可能性がある。 可能とする。	・トラック	
				資機材の転倒         発電機が転倒する可能性         ・トラックに積込み退産           がある。         ④         を実施する。	<ul> <li>・クレーン</li> <li>・玉かけ資機材</li> </ul>	
					・トラック	
			<ul><li>車両への</li><li>影響</li></ul>	研揚場常設設備                で             街場常               ・             街場場常               ・             街場	<ul> <li>・クレーン</li> <li>・玉かけ資機材</li> </ul>	
				両への干渉 クレーンに干渉すること ③ トラック、ラフタークレ	<ul> <li>溶断器</li> </ul>	
				で, 牽引できない可能性     ーンの牽引作業を可能と       がある。     する。	・トラック	
				車両の故障 油漏れ等で自走不可にな ⑤ ・牽引により退避を実施	・牽引車両	
				る可能性がある。する。	・牽引資機材	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
				アリッククレーン巻上装置建物     アリ・       アリッククレーン荷重試験用ウェイト        段差最大 70cm     キャスク取扱収納庫他       日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日
				図 6 デリッククレーン点検作業の荷揚 概要図



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		表7 地震による荷揚場からの退避への影響と退避作業	
		(防舷材設置作業)	
		地震による荷揚場への影響 追避作業の内容 追避作業に必要な資機材等	
		荷揚場退 荷揚場沈降 段差が発生することによ ・砕石を運搬し、車両通行可 ・ショベルカー 離ルート り車両が通行できない可 ① 能かね配にたるよう母差を ・トラック	
		への影響	
		荷揚場常設設備 荷揚場常設設備の転倒範 の転倒によるま、囲は退費ルートには到達 の ・倒壊物の敏去作業を実施す	
		車両への 荷揚場常設設備 荷揚場常設設備が倒壊 ・荷揚場常設設備の撤去(切・クレーン) 影響 の転向による車 と トラック ラフター 断 節志気により トラッ ・エかけな時れ	
		「「「「「「「」」」」」」「「「「」」」」」「「「「」」」」」「「「」」」」」「「」」」」	
		で、牽引できない可能性 作業を可能とする。 ・トラック がある	
		車両の故障         油漏れ等で自走不可にな         ・牽引により退避を実施す         ・牽引車両	
		□ る可能性がある。 [□] る。 ・牽引資機材	
		マー デリッククレーン デリッククレーン巻上装置建物	
		デリッククレーン荷重鉄範用ウェイト 「一方シク」 オイルフェンスドラム・ オイルフェンスドラム・ オイルフェンス	
		段差最大 45cm	
		段差最大 40cm	
		: 作業エリア	
		□ · 10 水安型通路防波屏 	
		: 石有印 - 改良地密 - 本 再通行範囲	
		→ : 秋葉 歩生 岡所 → : 退差ルート : 個域範囲	
		図8 防舷材設置作業の荷揚場作業と退避ルートの概要図	
		作業内容 作業時間 経過時間 (h) 6b 12b 18b 24b	
		① 校左後旧         碎石運搬         6           碎石敷設等	
		②倒壊物の撤去 作業車両移動 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
		③倒壊物の干渉回避     作業車両移動 撤去作業等     6     日     日     日     日	
		④車両・資機材退避     1 ^{15 未単回移助} 車両接続 安리集     3     1     1     1     1     1     1	
		[1] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
		。地震政府後の東西、次機社の氾濫の実現地	
		C. 地展発生仮の単一・貨機材の返避の表現性	
		谷何揚場作業において退避に要する時間は, いすれも 24 時	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		間程度であり,必要資機材の手配に1週間を要すると仮定す	
		ると、荷揚場作業に係る車両・資機材は10日間程度で退避可	
		能である。従って、荷揚場作業中に、敷地近傍の震源による	
		地震が発生した場合,荷揚場の沈下や車両の故障等が想定さ	
		れるが、独立事象である日本海東縁部に想定される地震によ	
		る津波が襲来するまでの間に、荷揚場の復旧や車両の牽引等	
		による退避が可能である。なお、更なる地震発生後の車両・	
		資機材の退避の実現性を高める対策として、地震による段差	
		が生じないよう荷揚場作業エリア及び退避ルートに鉄筋コン	
		クリート床版による段差対策を講じる(図10参照)。	
		17.001	
		荷提場	
		断面図(A-A) 平 面 図	
		図 10 段差対策範囲	
		5. まとめ	
		荷揚場作業中に、日本海東縁部に想定される地震による津波	
		が発生する場合は、津波が到達するまでに荷揚場作業に係る車	
		両 ・資機材の退避が可能である。 また、荷揚場作業中に、敷地	
		近傍の震源による地震が発生する場合は、独立事象である日本	
		海東縁部に想定される地震による津波が襲来するまでに、荷揚	
		場作業に係る車両・資機材の退避が可能である。	
		荷揚場作業を実施する場合には、その都度、作業に必要な車	
		両 ・資機材が、 津波または 地震が発生する 場合に 退避可能であ	
		るか確認することから、荷揚場作業に用いる車両・資機材が津	
		波により漂流物となることはないと考えられる。	
		なお、仮にこれらの車両・資機材が漂流物となった場合にお	
		いても、水面上を漂流するものは深層取水方式の取水口に到達	
		することはなく,港湾内に沈むものは海底面から 5.5m の高さが	
		ある取水口に到達することはないため、取水口の通水性への影	
		響を及ぼすことはない。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		別紙 1	
		地震による荷揚場への影響と復旧作業について	
		1. 概要	
		地震による荷揚場への影響として、荷揚場沈下に伴う段差が発	
		生する。地震による段差復旧については、「「実用発電用原子炉に	
		係る発電用原子炉設置者の重大事故の発生及び拡大の防止に必要	
		な措置を実施するために必要な技術的能力に係る審査基準」への	
		適合状況について」のうち「添付資料 1.0.2 可搬型重大事故等対	
		処設備保管場所及びアクセスルートについて」において試験を実	
		施している。地震により段差が発生した場合でも同様な復旧作業	
		が可能であり、ここでは、地震による荷揚場への影響と復旧作業	
		について示す。	
		2. 地震による荷揚場への影響について	
		荷揚場は海側の施設護岸下部を岩着構造としており、沈下しな	
		い範囲もあるが,その西側や荷揚場道路付近は埋戻土(掘削ズリ)	
		により敷地造成していることから、地中埋設構造物(施設護岸)	
		及び地盤改良部との境界部に不等沈下に伴う段差が発生する可能	
		性がある。ここで、荷揚場付近で段差が発生する可能性がある箇	
		所を図1に示す。	
		ここで、埋戻土(掘削ズリ)の沈下量を計算した結果、荷揚場	
		付近の沈下しない範囲との段差は北側通路付近で最大約 70cm,南	
		側通路付近で最大約45cm,荷揚場付近で最大約40cmとなる。	
		Po 差が想とする可能性がある箇所 Po 差が想とする可能性がある箇所 Po 差が想とする可能性がある箇所 Po 差が想とする可能性がある箇所 Po 差が想とする可能性がある箇所 Po 差が想とする可能性がある箇所 Po 差が想とする可能性がある箇所 Po 差が想とする可能性がある箇所 Po 点で Po 点でのまた。 Po 点でのまた。	
		図1 荷揚場付近の沈下により段差が発生する可能性がある箇所	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		3. 段差高の計算方法について	
		埋戻土(掘削ズリ)の沈下量については、液状化及び揺すり込	
		みに伴う沈下量として、保守的にばらつきを考慮した相対密度か	
		ら求まる沈下率 (3.5%) を用い, 埋戻土 (掘削ズリ) の層厚×3.5%	
		で算出する。	
		段差高は、道路部における埋戻土(掘削ズリ)の層厚から地中	
		埋設構造物 (施設護岸) 及び地盤改良部の層厚を引いた差に 3.5%	
		を乗じて算出する。	
		表1 各断面における埋戻土層厚および段差評価一覧表	
		境界部における         段差高さ(cm)           箇所         畑豆土の層厚差         =畑豆土層厚         評価値	
		(m) ×3.5% (cm)	
		北側通路付近 18.2 64 70	
		南側通路付近     11.4     40     45       基相相付近     10.0     25     40	
		[ [ [ ] 物物] 10.0 35 40	
		防波壁	
		道路部 股差計算箇所 い ののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とののの とのののの とのののの とのののの とのののの とのののの とのののの とのののの とのののの とのののの とのののの とのののののののの	
		- 地盤改良部と全層埋戻土部の境界における 埋戻土部の層厚差=18.7m-0.5m	
		図2 北側通路付近断面図(A-A 断面)	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
				セルラーブロック部と全層埋戻土部の境界における 埋戻土部の層厚差=15.0m-5.0m
				^{地表面} 地盤改良部と全層埋戻土部 の境界における埋戻土部の 層厚差=13.4m-2.0m 図 4 荷揚場付近断面図(C-4



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		4. 段差復旧作業について	
		地震により段差が発生した場合でも、砕石の敷設により段差復	
		旧が可能である。	
		段差復旧作業について,「添付資料 1.0.2 可搬型重大事故等対	
		処設備保管場所及びアクセスルートについて」のうち「別紙(9)	
		構内道路補修作業の検証について」の内容を抜粋して示す。	
		<text><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></text>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		·	
		測定結果とり 匹美縫和対策を行うたのの 五一 匹美が双仕した根本に	
		おいても、約10分/箇所で作業を実施できることを確認した。	
		1. 0. 2–248	
		l	

まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料36〕

柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 17.	添付資料 36	
	津波の流況を踏まえた漂流物の津波防護施設等及び取水口への到	構外海域の漂流物が施設護岸及び取水口へ到達する可能性につい	
	達可能性評価について	τ	
	1. はじめに	1. はじめに	
	「2.5 水位変動に伴う取水性低下による重要な安全機能への	構外海域の漂流物となる可能性のある施設・設備 <u>が、施設護</u> 岸	
	影響防止」における評価のひとつとして、基準津波に伴う漂流	及び取水口に到達する可能性について,第2.5-18図に示す漂流	
	物が津波防護施設等の健全性及び非常用海水ボンプの取水性に	物の選定・影響確認フローに基づき、津波の流況を踏まえて評	
	<u> </u>	価する。	
	設・設備を「第2.5-11図 漂流物評価フロー」に基づき評価し		
	  2. 「津波防護施設等,取水機能を有する安全設備等に対する漂		
	流物となる可能性」について		
	津波防護施設等, 取水機能を有する安全設備等に対する漂流		
	物となる可能性について、津波の流況を踏まえて、 <u>東海第二発</u>		
	<u>電所の津波防護施設等及び</u> 取水口に対する漂流物の動向を確認		
	することにより評価する。		
	2.1 津波流況の考察	2. 津波流況の考察	
	(1) 流況考察時間の分類	<ol> <li>(1) 流況考察時間の分類</li> </ol>	
	東海第二発電所敷地内及び敷地外における津波襲来時の流	島根原子力発電所構内及び構外における津波襲来時の流況	
	況について整理した。津波流向の時刻歴を確認した結果, <u>津</u>	について考察した。考察に当たっては、流況考察時間を最大	・基準津波の相違
	波が襲来する時間帯(以下流況の評価においては「津波襲来	水位・流速を示す時間帯とその前後の3区分に分類する。	【果海第二】
	<u> </u>	日本 海東 縁 部 に 想 正 さ れ る 地 震 だ よ る 准 波 ( 基 準 准 版 1 )	局恨2 亏炉は基準準 並の時時 レノエ 海波国
	<u> い时间市(以下000000</u> 評価にわいては「51ざ彼時」という。) である地電発生後約40公。約50公に十きた声度を去する。	は、取入小位・加速を示り時间常か地震発生依約180分~200	仮い村住として, 律波向   加が伝く動地国コルマド
	<u> このる地展光工版和40万~和30万に入さな速度を有する</u> 定方向の流向が継続しており 引き連絡け継続的でわい流向	<u>カてのソ, (西域伯別層が)の芯足される地展による</u> 岸仮(基準 津波4)は、最大水位・流油を示す時間帯が地震怒生後約5	ガル 応 入 取 地 同 辺 及 い 満 恋 内 の 法 向 が ज 時 問
	を示す傾向にあった 湾流物の動向に影響を与えス流況とし	<u> 日本語の</u> $ \frac{1+1237}{3}, \frac{1}{3}, $	に変化することから 島
	ては、大きな速度を有する継続的な一定方向の流向が支配的	流況考察時間の分類例を示す。	大流速・水位を示す時間

実線・・設備運用又は体制等の相違(設計方針の相違) 波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	であると考えられるが、ここでは保守的に引き波後の流況に	日本海東縁部に想定される地震による津波(基準津波1)	帯とそれ以外に分類
	ついても把握することを目的とし,津波による流況が収束し	【1】最大水位・流速を示す時間帯以前(地震発生後約 100 分~	
	つつある時間帯(以下流況の評価においては「収束時」とい	180分)	
	う。)である地震発生後約50分~約90分についても整理した。	【2】最大水位・流速を示す時間帯(地震発生後約 180 分~200	
	<u>第1図に流況考察時間の分類を示す。</u>	分)	
		【3】最大水位・流速を示す時間帯以降(地震発生後約 200 分~	
		360 分)	
		海域活断層に想定する地震による津波(基準津波4)	
		【1】最大水位・流速を示す時間帯以前(地震発生後約0分~5	
		【2】最大水位・流速を示す時間帯(地震発生後約5分~7分)	
		【3】最大水位・流速を示す時間帯以降(地震発生後約7分~30	
			1

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
	<figure></figure>	(2) 基準津波1の流況の考察         基準津波1の水位変動・流向ベクト/         1回に示す。この図に基づく、流況の         す。なお、[1]内は添付資料34の図



柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	a. 防波堤あり	a. 防波堤有り	
	(a) 津波龍亚時(地震発生後 約 34 分~約 40 分)	(a) 最大水位・流速を示す時間帯以前(地震発生後約 100	・ 其 淮 津 波 の 相 造
		(a) 取入不區 加速 $(a)$ 将同情头前 (地震) $(a)$	【東海第二】
			基準津波の違いによ
	i) 発電所敷地エリア	<u>i)</u> 構外海域	る考察結果の相違(以
	東方より北西向きの流向を主流として襲来し、地震発	約 109 分では,津波の第1波が敷地の東側から沿岸を	下,同様)
	生から約35分後に敷地前面に到達する。地震発生から	<u>沿うように襲来する [第 1 図(19)]。また,約 113 分 30</u>	
	約37分後には敷地への遡上が始まり,第2図(4/11)	<u>秒では,敷地の北西側から津波が襲来する[第1図(28)]。</u>	
	の地震発生から 38 分後における発電所敷地エリア拡大	構外海域において流速は小さく,水位変動も1m程度であ	
	図のように, 取水口以北では防潮堤の敷地前面東側から	る。その後,約180分まで主に敷地の北西側からの押し	
	敷地側面北側に沿うように遡上し, 取水口以南では防潮	<u>波,引き波により,短い周期で北西方向と南東方向の流</u>	
	堤の敷地前面東側から敷地側面南側に沿うように遡上	れを繰返す。 いずれの時間帯においても流速は 1m/s 未満	
	する。地震発生から約40分後には引き波となる。	<u>である。</u>	
	::) 変量記せ加えリマ		
	<u>11) 光电川北側エリノ</u> 東方とり北西向きの流向を主流として龍本し 地震発	<u>1)</u> 抽り借場(細台偈) 約 116 公 30 秒では 津油の第 1 油が輪公迹に到達する	
		水位が 1m 程度上昇 $0.5m/s$ 程度の流速が防波提付近	
	する、地震発生から約37分後には北西向きの流向を主	で発生する「第1図(34)] その後 約180分主で 短い	
	流として発電所北側エリアの陸域及び久慈川へ溯上し、	周期で輪谷湾内と湾外への流れを繰返す。水位変動は最	
	第2図(5/11)の地震発生から40分後における発電所	大でも 3m 程度で, 流速は最大でも 3m/s 程度である「第1	
	周辺広域図のように,発電所敷地エリアでは引き波へと	$\boxtimes (157) \sim (160) ]_{\circ}$	
	転じる地震発生から約 40 分後においても,発電所北側	流れの特徴としては、押し波時、引き波時とも防波堤	
	エリアの陸域及び久慈川では津波の遡上が続く(地震発	を回り込む流れが生じ、港湾内のうち防波堤を回り込む	
	生から約43分後まで遡上が継続する)。	流れによる流速が比較的速い。	
	<u>iii) 発電所南側エリア</u>		
	東方より北西向きの流向を主流として襲来し、地震発		
	生から約34分後に発電所南側エリア前面の海域に到達		
	する。前面海域に到達した津波は常陸那珂港区沖防波堤		
	の影響により、常陸那珂火力発電所敷地へは直接遡上せ		
	す、 沖防波堤の北側に回り込む。 地震発生から約 36 分		
	後には常陸那珂港区押防波堤の北側に回り込んだ津波		
	か吊陸那切火刀発電所敷地の北側から遡上を始める。第		
	<u>2 図 (3/11) の地震発生から 37.5 分後における発電所</u>		
柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------	-------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----
	周辺広域図のように,常陸那珂火力発電所敷地の北側か		
	らは南向きの流向を主流とした津波が陸域へ遡上し,常		
	陸那珂火力発電所敷地の南側からは北向きの流向を主		
	流とした津波が陸域へ遡上するが, 地震発生から約 40		
	分後には引き波となる。国立研究開発法人日本原子力研		
	究開発機構敷地では地震発生から約 37 分後に西向きの		
	流向を主流とした津波が陸域へ遡上するが, 地震発生か		
	ら約 39 分後には引き波となる。		
	(b) 引き波時(地震発生後 約 40 分~約 50 分)	(b) 最大水位・流速を示す時間帯(地震発生後約 180 分~	
		200分) [第1図(161)~(201)]	
	i) 発電所敷地エリア	<u>i</u> ) 構外海域	
	地震発生から約 40 分後に引き波へと転じ,敷地前面	約 180 分では,敷地の北西側から引き波が襲来する。	
	東側から外海へ向かう流況となる。引き波時は津波襲来	引き波の影響により北西方向の流れとなり 1m/s 程度の	
	時のように防潮堤に沿うような流況は示さず, 第2図(5	流れが確認できる[第1図(161)]。約183分では,敷地の	
	/11)の地震発生から 40 分後における発電所敷地エリ	北西側から押し波が襲来し、押し波の影響により南東方	
	ア拡大図のように,敷地前面東側の一部を除き,直接外	向の流れとなり,引き波の流速と同様 1m/s 流れが確認で	
	海へ向かう流況となっている。また,第2図(7/11)	きる[第1図(166)]。	
	の地震発生から 43 分後における発電所敷地エリア拡大	約 187 分では,敷地の北西側から引き波が襲来し [第	
	図のように、防波堤の間隔が狭いため、引き波方向に大	1図(175)],約191分では,水位変動が3m程度の大きい	
	きな流速が出ていることが確認される。引き波の流況は	押し波が襲来し 2m/s 程度の流れが確認できる[第 1 図	
	地震発生から約 50 分後まで継続する。	(183)]。その後も,敷地の北西側から押し波,引き波が	
		約 200 分まで交互に襲来する。	
	::) 攻重正小側ヶ川マ	:)	
	117 光电/小七	<u>1) 神田海域(細台得)</u> 約 184 公では - 藪地の北西側から知し油が龍本し - 流	
	並展先生から約40万後以降においても久恋川及い久	$\frac{104 }{104 }$ $C(a), 新地の北西國がら計し彼が襲来し、流 = 5m/a 租度の防波増な回り込む流れが発生する「第1回$	
		(160)] 約184公20秒では 輪公迹内水位が 5m 租度上	
		(109)。 $(109)$ 。 $(104)$ $700$ $(104)$ $700$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$ $(104)$	
	ら約 50 分後以降も継続する たお 防波提上り動地側	<u> </u>	
		(170)] その直後には輪公徳外へ向かう流れとなる「第	
		$(110)]。 この世夜には福石湾ア・「同かり1040となる」1 \overline{y}(171)] 約 102 分 30 秒でけ 齢公恋の水位が低い出$	
		能において動物の北西側から押し波が龍本オスー島ナ	
	後における発電所周辺広域図の上るに日立法区油防波		
	堤の北側又は南側に同り込みたがら波が引いていく流	度の流れが発生する「筆1図(186)」 その1分後の約103	
	況となる。さらに、第2図(8/11)の地震発生から45	☆ 30 秒では、構外海域は押し波傾向であろが 輪谷湾水	
	分後における発電所周辺広域図のように、日立港区東防	位が高いため、輪谷湾に向かう流れはない「第 1 図	

柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	波堤及び南防波堤の間隔が狭いため,引き波方向に大き	(188)]。その後,約 200 分まで,短い周期で輪谷湾内と	
	な流速が出ていることが確認される。発電所北側エリア	<u>輪谷湾外への流れを繰返す。</u>	
	の前面海域については地震発生から約 40 分後には引き		
	<u>波へと転じ、外海へ向かう流況となる。この流況は地震</u>		
	発生から約43分後まで継続する。		
	<u>iii) 発電所南側エリア</u>		
	発電所南側エリアの常陸那珂火力発電所敷地では,地		
	震発生の約 40 分後から約 45 分後にかけて引き波とな		
	<u>る。第2図(6/11)の地震発生から42分後における発</u>		
	電所周辺広域図のように、常陸那珂港区沖防波堤の北側		
	に回り込みながら波が引いていく流況を示し, 第2図(7		
	/11)の地震発生から 43 分後における発電所周辺広域		
	図のように, 旋回する流況が確認される。旋回する流況		
	は地震発生後約 55 分まで継続する。国立研究開発法人		
	日本原子力研究開発機構敷地前面海域では地震発生の		
	約40分後から約50分後にかけて引き波となり,外海へ		
	向う流向を主流とした流況となる。		
	(c) 収束時(地震発生後 約 50 分~約 90 分)	(c) 最大水位・流速を示す時間帯以降(地震発生後約 200	
		分~360分)[第1図(202)~(281)]	
	i) 発電所敷地エリア	<u>i)</u> 構外海域	
	敷地前面海域において, 第2図 (9/11)の地震発生	約 201 分では, 南東方向の流れとなり, 流速は 1m/s 程	
	から 55 分後における発電所周辺広域図のように、旋回	<u>度である[第 1 図(203)]。約 204 分では,流れは逆向き</u>	
	<u>する流況が確認される(旋回する流況は地震発生後約</u>	<u>となる[第1図(209)]。その後, 敷地北西側からの押し波,</u>	
	<u>75 分まで継続する)。また, 第 2 図 (9/11) の地震発</u>	<u>引き波により短い周期で北西方向と南東方向の流れを繰</u>	
	生から 60 分後における発電所敷地エリア拡大図のよう	返す。また, 流速は速くても 1m/s 程度である。	
	に, 東海港の防波堤付近にて旋回する流況となるが, 継		
	続的な流況とはならない。地震発生の約 65 分後から約		
	75 分後にかけては一部旋回する流況となるものの, 穏		
	<u>やかな流況が継続する。第2図(11/11)の地震発生か</u>		
	ら 80 分後における発電所敷地エリア拡大図のように,		
	地震発生から約 80 分後に西向きの流向で津波が襲来		
	し,物揚岸壁及び敷地前面東側の一部に津波が遡上する		1
	が、この流況が継続することはなく、地震発生から約		
	85 分後には引き波へと転じ、地震発生から約 90 分後に		
	<u>は一部で引き波及び旋回する流況が確認されるものの</u>		
	比較的穏やかな流況となる。		

<u>ii)発電所北側エリア</u> <u>ii)構内海域(輸谷湾)</u> 地震発生から約 55 分後までは陸域から外海へ向かう       約 201 分では、輸谷湾外への流れとなり、流速は 1m/s         施高を主流とした流況が継続する。地震発生の約 65 分       経度である[第 1 図(203)]。約 205 分では、押し波が襲         後から約 80 分後にかけては穏やかな流況が継続する。       来し、輪谷湾内への流れとなり、流速は 1m/s 程度となる         地震発生の約 55 分後から約 90 分後では引き波となり、       [第 1 図(211)]。         外海へ向う流向を主流とした流況となる。       流れの特徴としては、押し波時、引き波時とも防波堤         111)発電所南側エリア       を回り込む流れが生じ、港湾内の流速のうち防波堤を回         地震発生の約 60 分後から約 80 分後にかけては穏やか       り込む流れによる流速が比較的速い。	柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
ii) 発電所北側エリアii) 構内海域 (輸谷湾)地震発生から約 55 分後までは陸域から外海へ向かう 流向を主流とした流況が継続する。地震発生の約 65 分 後から約 80 分後にかけては穏やかな流況が継続する。 セ震発生の約 85 分後から約 90 分後では引き波となり、 小鹿へ向う流向を主流とした流況となる。 iii) 発電所南側エリアii) 構内海域 (輸谷湾) 約 201 分では、輪谷湾外への流れとなり、流速は 1m/s 程度である [第 1 図(203)]。約 205 分では、押し波・等 ・ 報連なり、流速は 1m/s 程度となる (第 1 図(211)]。 法れの特徴としては、押し波時、引き波時とも防波堤 を回り込む流れが生じ、港湾内の流速のうち防波堤を回 り込む流れによる流速が比較的速い。				
ii) 発電所北側エリア       ii) 構内海域(輪谷湾)         地震発生から約 55 分後までは陸域から外海へ向かう       約 201 分では、輪谷湾外への流れとなり、流速は 1m/s         流向を主流とした流況が継続する。地震発生の約 65 分       程度である [第 1 図(203)]。約 205 分では、押し波が襲         後から約 80 分後にかけては穏やかな流況が継続する。       来し、輪谷湾内への流れとなり、流速は 1m/s 程度となる         地震発生の約 85 分後から約 90 分後では引き波となり、       [第 1 図(211)]。         外海へ向う流向を主流とした流況となる。       流れの特徴としては、押し波時、引き波時とも防波堤         iii) 発電所南側エリア       左回り込む流れが生じ、港湾内の流速のうち防波堤を回         地震発生の約 60 分後から約 80 分後にかけては穏やか       り込む流れによる流速が比較的速い。				
地震発生から約 55 分後までは陸域から外海へ向かう       約 201 分では、輪谷湾外への流れとなり、流速は 1m/s         流向を主流とした流況が継続する。地震発生の約 65 分       程度である [第 1 図(203)]。約 205 分では、押し波が襲         後から約 80 分後にかけては穏やかな流況が継続する。       来し、輪谷湾内への流れとなり、流速は 1m/s 程度となる         地震発生の約 85 分後から約 90 分後では引き波となり、       [第 1 図(211)]。         外海へ向う流向を主流とした流況となる。       流れの特徴としては、押し波時、引き波時とも防波堤         1ii) 発電所南側エリア       を回り込む流れが生じ、港湾内の流速のうち防波堤を回         地震発生の約 60 分後から約 80 分後にかけては穏やか       り込む流れによる流速が比較的速い。		<u>ii) 発電所北側エリア</u>	<u>ii) 構内海域(輪谷湾)</u>	
流向を主流とした流況か継続する。地震発生の約 65 分 後から約 80 分後にかけては穏やかな流況が継続する。 地震発生の約 85 分後から約 90 分後では引き波となり、 小海へ向う流向を主流とした流況となる。程度である [第1 図(203)]。約 205 分では、押し波が要 来し、輪谷湾内への流れとなり、流速は 1m/s 程度となる [第1 図(211)]。小海へ向う流向を主流とした流況となる。 111) 発電所南側エリア 地震発生の約 60 分後から約 80 分後にかけては穏やか三第 1 図(203)」。約 205 分では、押し波が要 来し、輪谷湾内への流れとなり、流速は 1m/s 程度となる [第1 図(211)]。小海へ向う流向を主流とした流況となる。 111) 発電所南側エリア 地震発生の約 60 分後から約 80 分後にかけては穏やか三第 1 図(203)」。約 205 分では、押し波が要 来し、輪谷湾内への流れとなり、流速は 1m/s 程度となる [第1 図(211)]。小海へ向う流向を主流とした流況となる。 111) 発電所南側エリア 地震発生の約 60 分後から約 80 分後にかけては穏やか近む流れが生じ、港湾内の流速のうち防波堤を回 り込む流れによる流速が比較的速い。		地震発生から約55分後までは陸域から外海へ向かう	約 201 分では, 輪谷湾外への流れとなり, 流速は 1m/s	1
			<u>程度である [第1図(203)]。約205分では、押し汲が襲</u>	
地震発生の約 85 分後から約 90 分後では与さ波となり、       [第1 図(211)]。         外海へ向う流向を主流とした流況となる。       流れの特徴としては、押し波時、引き波時とも防波堤         iii) 発電所南側エリア       を回り込む流れが生じ、港湾内の流速のうち防波堤を回         地震発生の約 60 分後から約 80 分後にかけては穏やか       り込む流れによる流速が比較的速い。		<u>後から約80分後にかけては穏やかな流況が継続する。</u>	<u>米し, 輪谷湾内への流れとなり, 流速は lm/s 桂度となる</u> 「	1
小市の市田の主流とした加洗となる。       小市の行儀としては、沖し彼時、引き彼時とも防波堤         iii) 発電所南側エリア       を回り込む流れが生じ、港湾内の流速のうち防波堤を回         地震発生の約60分後から約80分後にかけては穏やか       り込む流れによる流速が比較的速い。		<u>地展発生の約85万後から約90万後では引き彼となり、</u> h ~ a $a$ $b$	<u> し</u> 弟 $I$ 凶(211)」。 法わの性徴ししてけ、畑し沈時、引き沈時した防沈相	
111/     光電所用風エック/     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019     2019 </td <td></td> <td><u>2)(神)、同り流向を主流とした流流となる。</u></td> <td></td> <td></td>		<u>2)(神)、同り流向を主流とした流流となる。</u>		
		<u>1117 元电// 用岡子 / / / </u>	<u>を回り込むれれが上し、溶得的の流速のプラめ夜堤を回</u> り込む流れに上ろ流速が比較的速い	
な流況が継続する。地震発生から約 85 分後に引き波へ		な流況が継続する。地震発生から約85分後に引き波へ		1
		と転じ、地震発生から約 90 分後には再び穏やかな流況		
 となる。		となる。		1
				1
				1
				1
				1
				1
				1
				1
				1
				1
		ļ		1
				1
		ļ		1
		ļ		1
		ļ		1

柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<b>14 四 ※</b>		
	呼回         発電所周辺広域         発電所敷地エリア拡大           (分)		
	33.5         発電所北側エリア 発電所敷地エリア 発電所停側エリア           (点志川 東海第二発電所         (回立研究開発法人 日本原子力研究開発機構数地		
	34.0 34.0 34.0		
	34.5         34.5         34.5		
	※:津波の原因となる地震発生後の経過時間		
	<u>第2図 発電所周辺海域及び発電所敷地前面海域の流向べく</u> (防波堤ありの場合)(1/11)	<u>· トル</u>	・資料構成の相違 【東海第二】 島根2号炉は,軌跡解
	<u>第3図に発電所周辺海域及び発電所敷地前面海域の液 クトル(防波堤なしの場合)を示す。また、防波堤なし</u> 合における流況の考察の詳細を以下に示す。	<u> た向べ</u> <u>、の場</u>	析の傾向も踏まえ,第3 図に記載

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			1
	<u>b.防波堤なし</u>	b. 防波堤無し	1
			1
	(a) 津波襲来時(地震発生後 約 34 分~約 40 分)	(a) 最大水位・流速を示す時間帯以前(地震発生後約 100)	
		$\underline{\beta} \sim 180  \underline{\beta}$ [第1図(1)~(160)]	
	<u>果力より北四回さの流回を土流として襲米し、地震発</u> たかこめ 25 八後に敷地並若に到去たて一地震発生から	「a. 防波堤有り」に記載した内谷と回し。	
	<u>生から約35万後に</u> 数27 公次には動地。の潮上が始まり 第2 図 $(4/11)$		
	図のように 取水口以北では防潮堤の敷地前面更側から		1
	動地側面北側に沿うように溯上し。 取水口以南では防潮		
	堤の敷地前面東側から敷地側面南側に沿うように溯上		
	する。地震発生から約40分後には引き波となる。		
	ii) 発電所敷地エリア	ii) 構內海域(輪谷湾)	
	 東方より北西向きの流向を主流として襲来し, 地震発	約116分30秒では,津波の第1波が輪谷湾に到達する。	
	生から約 35 分後に発電所北側エリア前面の海域に到達	水位が 1m 程度上昇するが,流速の変化は小さい [第1図	1
	する。地震発生から約 37 分後には北西向きの流向を主	(34)]。その後,約180分まで,短い周期で輪谷湾内と輪	
	<u>流として発電所北側エリアの陸域及び久慈川へ遡上し,</u>	<u>谷湾外への流れを繰返す。水位変動は最大でも 3m 程度</u>	
	<u>第3図(5/11)の地震発生から40分後における発電所</u>	<u>で,流速は最大でも 3m/s 程度である [第 1 図(151)~</u>	
	周辺広域図のように,発電所敷地エリアでは引き波へと	(160)]。	
	転じる地震発生から約 40 分後においても,発電所北側		
	エリアの陸域及び久慈川では津波の遡上が続く(地震発		
	<u>生から約 43 分後まで遡上が継続する)。</u>		
	<u>iii) 発電所南側エリア</u>		1
	東方より北西向きの流向を主流として襲来し、地震発		1
	生から約34分後に発電所南側エリア前面の海域に到達		1
	する。地震発生から約35分後には北西向きの流向を主		1
	流として常陸那珂火力発電所敷地へ遡上し始め,第3図		
	(3/11)の地震発生から37.5分後における発電所周辺 広球回のトラスーク 歴期日にも認定 ておりょう		1
	<u> 広政図のように、常陸那珂火刀発電所敷地の北側からは</u> 南西向きの法向なた法にした決決が時代、潮しし一党性		1
	<u>     四回さい流回を土流としに伴波か陸球へ遡上し, 吊陸</u> 取可止力発電ご動地の声側からけれまったの法ったナ		1
	加州八刀光电灯放地の用側がらは北四回さの加回を土 流とした津波が陸城へ遡上するが一地電路生から約40		1
	<u>かこしに伴びが怪気、愛工するが、地震光生がられても</u> 分後には引き渡とたろ、国立研究開発法人日本原子力研		1
	<u>ルスには近に扱います。国立町九開元44八日平原17月</u>		<u>ــــــــــــــــــــــــــــــــــــ</u>

柏崎刈羽原子力発電所 6/7号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	究開発機構敷地では地震発生から約 37 分後に西向きの		
	流向を主流とした津波が陸域へ遡上するが, 地震発生か		
	ら約 39 分後には引き波となる。		
	(b) 引き波時(地震発生後 約 40 分~約 50 分)	(b) 最大水位・流速を示す時間帯(地震発生後約 180 分~	
		200分) 第1図(161)~(201)]	
	i) 発電所敷地エリア	<u>i)</u> 構外海域	
	地震発生から約 40 分後に引き波へと転じ,敷地前面	「a.防波堤有り」に記載した内容と同じ。	
	東側から外海へ向かう流況となる。引き波時は津波襲来		
	時のように防潮堤に沿うような流況は示さず, 第3図(5		
	/11)の地震発生から 40 分後における発電所敷地エリ		
	ア拡大図のように,敷地前面東側の一部を除き,直接外		
	海へ向かう流況となっている。この流況は地震発生から		
	約 50 分後まで継続する。		
	ii) 発電所敷地エリア	<u>ii)</u> 構内海域(輪谷湾)	
	地震発生から約 40 分後以降においても久慈川及び久	約 183 分 30 秒では,敷地の北西側から押し波が襲来し,	
	<u>慈川周辺陸域については遡上を続けるが, 地震発生から</u>	輪谷湾内における流速は 3m/s 程度である [第1図(168)]。	
	約43分後には引き波へ転じ始め,陸域から外海へ向か	約 184 分 30 秒では,輪谷湾内水位が 6m 程度上昇し,構外	
	う流向を主流とした流況となる。この流況は地震発生か	海域では押し波傾向であるが、輪谷湾水位が高いため、輪	
	ら約 50 分後以降も継続する。発電所北側エリアの前面	<u>谷湾内への流れはない [第1図(170)]。その直後には輪谷</u>	
	海域については地震発生から約 40 分後には引き波へと	湾外へ向かう流れとなる [第1図(171)]。約192分30秒で	
	転じ,外海へ向かう流況となる。この流況は地震発生か	は、輪谷湾の水位が低い状態において、敷地の北西側から	
	ら約 50 分後以降も継続する (地震発生から約 55 分後ま	大きい押し波が襲来する。最大流速が発生する時間帯であ	
	で引き波が継続する)。	り, 9m/s 程度の流れが発生する [第1図(186)]。約 193 分	
	<u>iii) 発電所南側エリア</u>	30 秒では、構外海域は押し波傾向であるが、輪谷湾水位が	
	発電所南側エリアの常陸那珂火力発電所敷地では,地	高いため,輪谷湾外への流れとなる [第1図(188)]。その	
	震発生の約 40 分後から約 45 分後にかけて引き波とな	後,約200分まで,短い周期で輪谷湾内と輪谷湾外への流	
	り,第3図(7/11)及び(8/11)の発電所周辺広域図	れを繰返す。	
	のように, 地震発生から約 42 分後から約 45 分後にかけ		
	て常陸那珂火力発電所敷地前面海域にて旋回する流況		
	となるものの,おおむね遡上時とは逆の流向を主流とし		1
	た流況となる。地震発生から約 50 分後には常陸那珂火		1
	力発電所敷地前面海域にて南向きの流向を主流とした		1
	流況となる。国立研究開発法人日本原子力研究開発機構		1
	敷地前面海域では地震発生の約40分後から約50分後に		1
	かけて引き波となり, 外海へ向う流向を主流とした流況		1

柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	となる。		
	(c) 収束時(地震発生後 約 50 分~約 90 分)	(c) 最大水位・流速を示す時間帯以降(地震発生後約 200	
		分~360分)[第1図(202)~(281)]	
	i) 発電所敷地エリア	<u>i)</u> 構外海域	
	敷地前面海域において,地震発生から約 55 分後には	「a.防波堤有り」に記載した内容と同じ。	
	南向きの流況となり,地震発生から約 65 分後には北向		
	きの流況となるが、いずれも継続的な流況とはならず、		
	地震発生の約65分後から約75分後にかけては穏やかな		
	流況が継続する。第 3 図(11/11)の地震発生から 80		
	<u>分後における発電所敷地エリア拡大図のように、地震発</u>		
	生から約 80 分後に西向きの流向で津波が襲来し,物揚		
	岸壁及び敷地前面東側の一部に津波が遡上するが, この		
	流況が継続することはなく、地震発生から約 85 分後に		
	は引き波へと転じ、地震発生から約 90 分後には一部で		
	引き津波が継続するものの比較的穏やかな流況となる。		
	ii) 発電所敷地エリア	<u>ii) 構內海域(輪谷湾)</u>	
	地震発生から約 55 分後までは陸域から外海へ向かう	<u>約 201 分では,輪谷湾外への流れとなり,流速は 1m/s</u>	
	流向を主流とした流況が継続する。地震発生から約 60	<u>程度である[第1図(203)]。約205分では,押し波が襲来</u>	
	分後には北西へ向かう流向を主流とした流況となるが、	し, 輪谷湾内への流れとなり, 流速は 1m/s 程度となる [第	
	継続的な流況とはならず,地震発生の約 65 分後から約	<u>1 図 (211)]。</u>	
	80 分後にかけては穏やかな流況が継続する。地震発生		
	<u>の約85分後から約90分後では引き波となり,外海へ向</u>		
	う流向を主流とした流況となる。		
	<u>iii) 発電所南側エリア</u>		
	地震発生から約 55 分後にて西向きの流向を主流とし		
	た流況となるが、継続的な流況とはならず、地震発生の		
	約60分後から約80分後にかけては穏やかな流況が継続		
	する。地震発生から約 85 分後に引き波へと転じ、地震		
	発生から約90分後には再び穏やかな流況となる。		
		<u>(3) 基準津波4の流況の考察</u>	
		<u>基準津波4の水位変動・流向ベクトルを,添付資料34の第4</u>	
		図に示す。この図に基づく、流況の考察の詳細を以下に示す。	
		<u>なお, []</u> 内は添付資料 34 の図番号を示す。	
		<u>a. 防波堤有り</u>	
		(a) 最大水位・流速を示す時間帯以前(地震発生後約0分	

柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		~5分)[第4図(1)~(11)]	
		<u>i) 構外海域</u>	
		約2分では、津波の第1波が敷地の北西側から押し波	
		<u>として襲来する。水位も低く流速の変化は小さい[第4</u>	
		図(5)]。約4分では、北西側への大きい引き波により、	
		<u>北西方向の流れとなる [第 4 図(9)] が, いずれも 1m/s</u>	
		以上の流速は確認されない。	
		<u>ii) 構内海域(輪谷湾)</u>	
		約3分では、津波の第1波が輪谷湾に押し波として襲来	
		<u>する。水位も低く流速の変化は小さい [第4図(7)]。</u>	
		(0) 取入水位・流速を小9时间帝(地展先生仮約3分~7) (1) 「第4回(12)。(15)]	
		$ \frac{7}{2} $ (12) (13) (15) (15) (15) (15) (15) (15) (15) (15	
		$\frac{1}{1}$ (時27)(時期) 約5公では、動地の北西側への大きい引き波に上り北西	
		<u>$_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$</u>	
		$n_{3m/s}$ 程度の流速となる「箆4図(13)]	
		(c) 最大水位・流速を示す時間帯以降(地震発生後約7分	
		~30 分) [第4図(16)~(61)]	
		約7分では、敷地の北西側への引き波が継続しており、	
		<u>北西方向の流れが継続する[第4図(15)]。約9分では、</u>	
		敷地北西側から押し波が襲来し、南東方向の流れとなる	
		[第4図(19)]。いずれも、1m/s以上の流速は確認されず、	
		<u>以降も,1m/sを超える流速はない。</u>	
		<u>ii)</u> 構内海域(輪谷湾)	
		約7分では、輪谷湾内への、約9分では、輪谷湾外へ	
		<u>の流れとなる [第4図(15), (19)]。湾内のうち防波堤を</u>	
		回り込む流速が比較的速く 2m/s 程度の流速が確認でき	
		<u>る [第4図(17)]。以降,輪谷湾内と輪谷湾外への流向が</u>	
		短い周期で変化するが, 流速は 1m/s 程度である。	
		<u>b. 防波堤無し</u>	

柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所 (2018. 9. 12 版)       時間 [*] (分)       発電所周辺広塚       発電所敷地エリア拡大       (分)       発電所見辺広塚       第電所東地エリア拡大       (分)       第電所東地エリア       第電所東地エリア       (分)       第二系電子       (分)       第二系電子       第二系電子       (分)       第二系電子       第二系電子       (分)       第二系電子       (分)       第二系電子       (分)       第二系電子       (分)       第二系電子       (分)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (2)       (2)       (31.0)       (1)	島根原子力発電所 2号炉           (a) 最大水位・流速を示す時間帯以前(地震発生後約0分 ~5分)[第4図(1)~(11)]           i) 構外海域           「a. 防波堤有り」に記載した内容と同じ。           ii) 構内海域(輪谷湾)           約3分では,津波の第1波が輪谷湾に押し波として襲来す る。水位も低く流速の変化は小さい[第4図(7)]。           (b) 最大水位・流速を示す時間帯(地震発生後約5分~7 分)[第4図(12)~(15)]           i) 構内海域           「a. 防波堤有り」に記載した内容と同じ。           ii) 構内海域           「a. 防波堤有り」に記載した内容と同じ。           (b) 最大水位・流速を示す時間帯(地震発生後約5分~7 分)[第4図(12)~(15)]           j) 構み海域           「a. 防波堤有り」に記載した内容と同じ。           (i) 構内海域(輪谷湾)           約6分では、大きい引き波により輪谷湾外への流れとなり、 3m/s 程度の流速となる[第4図(13)]。約7分では、輪谷湾 内への流向となり、2m/s程度の流速となる[第4図(15)]。           (c) 最大水位・流速を示す時間帯以降(地震発生後約7分 ~30分)[第4図(16)~(61)]           i) 構外海域           「a. 防波堤有り」に記載した内容と同じ。	備考
	34.5       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th><u>i</u>) 構内海域(輪谷湾)         約7分では,輪谷湾内への流れとなる[第4図(15)]。約9         分では,輪谷湾外への流れとなるが,流速は2m/s程度である         [第4図(19)]。以降,輪谷湾内への流れ,輪谷湾外への流れ         が短い周期で変化するが,流速は1m/s程度である。</th> <th><ul> <li>・資料構成の相違</li> <li>【東海第二】</li> <li>島根2号炉は,軌跡解</li> <li>析の傾向も踏まえ,第3</li> <li>図に記載</li> </ul></th>	<u>i</u> ) 構内海域(輪谷湾)         約7分では,輪谷湾内への流れとなる[第4図(15)]。約9         分では,輪谷湾外への流れとなるが,流速は2m/s程度である         [第4図(19)]。以降,輪谷湾内への流れ,輪谷湾外への流れ         が短い周期で変化するが,流速は1m/s程度である。	<ul> <li>・資料構成の相違</li> <li>【東海第二】</li> <li>島根2号炉は,軌跡解</li> <li>析の傾向も踏まえ,第3</li> <li>図に記載</li> </ul>

柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	2.2 漂流物の津波防護施設等及び取水口への到達可能性評価 :	3. 構外海域の漂流物の施設護岸及び取水口への到達可能性評価	
		日本海東縁部に想定される地震による津波(基準津波1)と	
	津波流況の考察より,以下のとおり時間分類毎に漂流物の津	海域活断層から想定される地震による津波(基準津波4)の流	・評価方法及び資料構成
	波防護施設等及び取水口への到達可能性について評価を実施	況の考察結果から,発電所方向への継続的な流向がないことが	の相違
	<u>Lite</u>	確認された。	【東海第二】
		このため,施設護岸及び取水口への到達可能性評価に当たっ	島根2号炉は,流況の
	(1) 津波襲来時(地震発生後 約 34 分~約 40 分)	<u>ては、漂流物となる可能性のある施設・設備のうち、発電所沿</u>	考察に加え軌跡解析の
	発電所敷地エリアについては、津波襲来時の流況から,	<u>岸にある漁船に着目して評価を行う。 到達可能性評価は, 津波</u>	結果も踏まえ評価を実
	取水口以北の漂流物は敷地前面東側から敷地側面北側へ防	流況の考察結果に加え仮想的な浮遊物の軌跡解析**の結果も参	施
	潮堤に沿うように移動し, 取水口以南の漂流物は敷地前面	考にして行う。	
	東側から敷地側面南側へ防潮堤に沿うように移動すると考	※津波解析から求まる流向流速をもとに、質量を持たず、	
	<u> えられる。</u>	抵抗を考慮しない仮想的な浮遊物が,水面を移動する軌	・基準津波の相違
	発電所北側エリアについては、津波襲来時の流況から,	跡を示す解析。	【東海第二】
	当該エリアの漂流物は北西方向へ移動すると考えられ、発	発電所沿岸の漁港, 漁船の操業区域及び軌跡解析の初期位置	基準津波の特性の違
	電所敷地エリアでは引き波へと転じる時間においても当該	を第2図に示す。発電所沿岸部では,3号北側施設護岸付近及	いによる評価結果の相
	エリアの漂流物は津波の遡上方向である北西へ移動すると	び輪谷湾でサザエ網・カナギ漁の漁船,発電所北東施設護岸付	違(以下,同様)
	<u>考えられる。</u>	近でかご漁及びカナギ漁・採貝藻漁の漁船,施設護岸から北側	
	発電所南側エリアのうち常陸那珂火力発電所敷地につい	500m 付近で一本釣り漁の漁船,施設護岸から北西 600m 付近で	
	ては, 津波襲来時の流況から, 常陸那珂火力発電所の敷地	イカ釣り漁及びわかめ養殖の漁船が操業する。	
	における漂流物のうち北側に存在するものは南方向へ移動	軌跡解析の初期位置としては, 輪谷湾入口付近に1点(地点	
	し、南側にあるものは北方向へ移動すると考えられる。国	A),サザエ網・カナギ漁の操業区域内の3号炉北岸付近に1点	
	立研究開発法人日本原子力研究開発機構敷地については,	(地点 B),サザエ網・採貝藻漁及びかご漁の操業区域付近に 1	
	津波襲来時の流況から,国立研究開発法人日本原子力研究	点(地点 C),一本釣り漁区域内に2点(地点 D,E),わかめ養	
	開発機構敷地に存在する施設・設備は津波の遡上方向であ	殖場,イカ釣り漁の操業区域付近1点(地点 F),御津漁港近	
	る西へ移動すると考えられる。しかしながら、発電所南側	傍に1点(地点 G), 計7地点設定した。軌跡解析結果を第3	
	エリアの一部については東海第二発電所の敷地に隣接して	図に示す。また,流向・流速ベクトル及び軌跡解析の考察結果	
	いることから、漂流物が津波防護施設である防潮堤の敷地	を第4、5図に示す。流向・流速ベクトル及び軌跡解析の考察	
	前面東側及び敷地側面南側,取水口へ向かうことを否定で	結果より,構外海域にある漂流物には以下の移動傾向が確認さ	
	<u>きない。</u>	<u>nt.</u>	
		【漂流物の移動傾向】	
		・最大水位・流速を示す時間帯以前,以降においては,流速	
		が小さく、移動量も小さい	
	以上より、漂流物の津波防護施設等及び取水口への到達	・いずれの時間帯も主に北西・南東方向の移動を繰返す傾向	
	可能性について以下のとおり整理した。	がある。	

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>a.</u> 津波防護施設等への到達可能性評価		
	発電所敷地エリアについては漂流物が津波防護施設	日本海東縁部に想定される地震による津波と海域活断層から	
	である防潮堤の敷地前面東側,敷地側面北側及び敷地	想定される地震による津波による漂流物の施設護岸及び取水口	
	側面南側へ向かう可能性があるため、津波防護施設等	への到達可能性評価を,各々以下に示す。日本海東縁部に想定	
	へ向かう可能性があるものと評価した。なお、漂流物	される地震による津波は,発電所到達まで110分程度あり,沖	
	の衝突力が大きいと考えられる津波襲来時の流況とし	合等への退避が可能であると考えられるが、航行不能となるこ	
	て,敷地前面東側においては防潮堤の軸直交方向に津	とも考慮し、操業区域で津波が襲来すると想定して、評価を行	
	波が襲来し,敷地側面北側及び敷地側面南側において	<u>う。また、海域活断層から想定される地震による津波は、発電</u>	
	は防潮堤に沿うように軸方向に津波が襲来することか	所到達まで2分程度であり, 操業区域で津波が襲来すると想定	
	ら、漂流物の衝突による影響が大きくなるのは敷地前	して評価を行う。	
	面東側であると考えられる。 		
	発電所南側エリアについては漂流物が津波防護施設	(1)日本海東縁部に想定される地震による津波	
	である防潮堤の敷地前面東側及び敷地側面南側へ向か	日本海東縁部に想定される地震による津波について, 添付資	
	う可能性があるため、津波防護施設等へ向かう可能性	料 34 第1図に示す基準津波1の流向・流速・軌跡の特徴を評	
	があるものと評価した。	価した結果を以下に示す。なお, [ ] 内は添付資料 34 の図番	
	発電所北側エリアについては漂流物が津波の遡上方	号を示す。	
	向である北西へ移動すると考えられることから津波防	a. 施設護岸への到達可能性評価	
	護施設等へ向かわないと評価した。	i)施設護岸から 500m 以遠で操業する漁船	
		施設護岸から 500m 以遠で操業する漁船としては,施設護岸	
	b. 取水口への到達可能性評価	から北西約 600m においてイカ釣り漁及びわかめ養殖の漁船	
	発電所南側エリアについては漂流物が取水口へ向か	がある。これらの漁船に対し、施設護岸及び輪谷湾への到達	
	う可能性があるものと評価した。	可能性を評価した。	
	その他のエリアにおける漂流物は陸域側又は久慈川	(a) 最大水位・流速を示す時間帯以前(地震発生後約 100 分~	
	上流へ移動すると考えられることから、取水口へ向か	180分) [第1図(1)~(160)]	
	わないと評価した。	約180分までは、全体的に流速が約1m/s未満と小さい。ま	
		た, 流向は主に北西・南東方向に変化しており, 漂流物は北西,	
		南東方向に移動すると考えられ, 発電所に対する連続的な流れ	
	<ul><li>(2) 引き波時(地震発生後 約 40 分~約 50 分)</li></ul>	もないため,施設護岸から 500m 以遠で操業する漁船は施設護	
	発電所敷地エリアについては、引き波時の流況から、漂	岸及び輪谷湾に到達しないと考えられる。	
	流物が津波襲来時に敷地側面北側及び敷地側面南側へ移動		
	した後に外海方向へ移動すると考えられるが、津波襲来時	(b) 最大水位・流速を示す時間帯(地震発生後約 180 分~200	
	に敷地前面東側に漂流物が留まった場合,引き波時におい	分) [第1図(161)~(201)]	
	て漂流物が貯留堰、取水口へ向かうことを否定できない。	発電所北西の半島沿岸において,約183分で,流速5m/s程	
	発電所北側エリアについては、引き波時の流況から、漂	度の半島を回り込み発電所に向かうような流れが確認される	
	流物が外海方向へ移動すると考えられる。	[第1図(167)]が、流向は短い間隔で主に北西・南東方向に	

柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	発電所南側エリアのうち常陸那珂火力発電所敷地につい	変化しており、発電所に対する連続的な流れもないため、施	
	ては、引き波時の流況から、漂流物が外海へ移動すると考	設護岸及び輪谷湾に到達しないと考えられる。その他の海域	
	えられる。国立研究開発法人日本原子力研究開発機構敷地	においても,流速は速くて 2m/s 程度 [第 1 図(167)] であり,	
	については,引き波時の流況から,漂流物が外海へ移動す	発電所に対する連続的な流れもないため、施設護岸及び輪谷	
	<u>ると考えられる。</u>	湾に到達しないと考えられる。	
	以上より、漂流物の津波防護施設等及び取水口への到達		
	可能性について以下のとおり整理した。	(c) 最大水位・流速を示す時間帯以降(地震発生後約 200 分~360	
	a. 津波防護施設等への到達可能性評価	分) [第1図(202)~(281)]	
	発電所敷地エリアについては、津波襲来時に防潮堤	約 200 分以降は,全体的に流速が小さい。また,流向は主	
	の敷地側面北側及び敷地側面南側へ到達した漂流物	に北西・南東方向に変化しており、漂流物は北西、南東方向	
	が、引き波時に津波防護施設である貯留堰へ向かう可	に移動すると考えられる。 流速が小さく発電所に対する連続	
	<u>能性があるため、津波防護施設等へ向かう可能性があ</u>	的な流れもないため,施設護岸から 500m 以遠で操業する漁船	
	るものと評価した。	は施設護岸及び輪谷湾に到達しないと考えられる。	
	その他のエリアにおける漂流物は継続的に外海方向		
	へ移動すると考えられることから津波防護施設等へ向	(a)~(c)より,施設護岸から 500m 以遠を操業する漁船につ	
	かわないと評価した。	いては、流向が短い間隔で主に北西・南東方向に変化してお	
		り,発電所に対する連続的な流れもないため,施設護岸及び	
		輪谷湾に到達しないと考えられる。また、イカ釣り漁及びわ	
		かめ養殖場の操業区域の近傍である地点 F における軌跡解析	
		の結果からも、軌跡は発電所から遠ざかる方向に移動してお	
		り,施設護岸及び輪谷湾に到達しないと考えられる(第 4-1	
	<u>b.</u> 取水口への到達可能性評価	$\sim 27 \boxtimes)_{\circ}$	
	発電所敷地エリアについては漂流物が取水口へ向か		
	う可能性がある。	ii ) 施設護岸から 500m 以内で操業する漁船	
	その他のエリアにおける漂流物は継続的に外海方向	施設護岸から約 500m 以内で操業する漁船としては,3 号北側	
	へ移動すると考えられることから、取水口へ向かわな	沿岸部において、サザエ網漁及びカナギ漁の漁船、発電所北東沿	
	いと評価した。	<u>岸部においてかご漁,カナギ漁及び採貝藻漁の漁船,発電所北側</u>	
		500m 程度の区域で一本釣り漁の漁船がある。これらの漁船に対	
	(3) 収束時(地震発生後 約 50 分~約 90 分)	し、施設護岸及び輪谷湾への到達可能性を評価した。	
	発電所敷地エリアについては,収束時の流況から,発電		
	所敷地前面の漂流物は一時的に外海へ移動すると考えられ	(a) 最大水位・流速を示す時間帯以前(地震発生後約 100 分~	
	るが、比較的穏やかな流況が継続することから、漂流物は	180分)[第1図(1)~(160)]	
	<u>大きな移動を伴わないと考えられる。</u>		
	発電所北側エリアについては、収束時の流況から、当該	に北西・南東方向に変化しており、漂流物は北西、南東方向	
	エリアの漂流物は一時的に外海へ移動すると考えられる	に移動すると考えられる。 流速は 2m/s 程度 [第1図(155)]	
	が、比較的穏やかな流況が継続することから、漂流物は大	であり、発電所に対する連続的な流れもないため、施設護岸	

柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	きな移動を伴わないと考えられる。	から 500m 以内で操業する漁船は施設護岸及び輪谷湾に到達	
	発電所南側エリアについては、収束時の流況から、当該	しないと考えられる。	
	エリアの漂流物は一時的に外海へ移動すると考えられる		
	が、比較的穏やかな流況が継続することから、漂流物は大	(b) 最大水位・流速を示す時間帯(地震発生後約 180 分~200	
	きな移動を伴わないと考えられる。	分) [第1図(161)~(201)]	
	以上より、漂流物の津波防護施設等及び取水口への到達	(a)と同様に,流向は短い間隔で主に北西・南東方向に変化	
	可能性について以下のとおり整理した。	しており、発電所に対する連続的な流れもないため、施設護	
	a. 津波防護施設等への到達可能性評価	岸から 500m 以内で操業する漁船は施設護岸及び輪谷湾に到	
	各エリアにおける漂流物は大きな移動を伴わないと	達しないと考えられるが,3 号北側防波壁から約 50m 以内の	
	考えられることから、津波防護施設等へは向かわない	水深が約20mの浅い位置において、5m/s以上の流速が確認さ	
	と評価した。	れる [第1図(164), (187)] ことから, 施設護岸から 500m 以	
		内で操業する漁船は、当該位置に接近することを考慮し、施	
	b. 取水口への到達可能性評価	設護岸及び輪谷湾に到達する可能性があると評価した。 	
	各エリアにおける漂流物は大きな移動を伴わないと考えら		
	れることから, 取水口へ向かわないと評価した。	(c)最大水位・流速を示す時間帯以降(地震発生後約 200 分~	
		360 分)[第1図(202)~(281)]	
		約 200 分以降は、流速が小さい。また、流向は主に北西・	
		南東方向に変化しており、漂流物は北西、南東方向に移動す	
		ると考えられる。流速が小さく発電所に対する連続的な流れ	
		もないため,施設護岸から 500m 以内で操業する漁船は施設護	
		岸及び輪谷湾に到達しないと考えられる。	
		$(a) \sim (c) より、最大水位・流速を示す時間帯において、3$	
		号北側防波壁から約 50m 以内の水深か約 20m の浅い位置で,	
		一方、上記以外の範囲においては、流向が短い間隔で主に	
		北西・南東方向に変化しており、発電所に対する連続的な流	
		れもない。また、ササエ網、カナキ畑及び一本釣り畑の操業	
		<u>北四万回と南東万回に移動を繰り返している(第 4-1~27</u>	
		は、3 万化則的波壁から約 50m 以内の水保が約 20m の浅い位 	
		<u> 直に                                   </u>	
		<u> り 眠性</u> かめると評価した <u>。</u>	

柏崎刈羽原子力発電所 6/7号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		<u>b.</u> 取水口への到達可能性評価	
		a. ii)より,発電所沿岸部で操業する漁船が漂流物となっ	
		た場合,輪谷湾に到達する可能性があるため,構内海域(輪	
		<u>谷湾)の流況から到達の可能性を評価した。</u>	
		(a) 最大水位・流速を示す時間帯以前(地震発生後約 100 分~	
		180分) [第1図(1)~(160)]	
		構内海域(輪谷湾)においては,約 180 分までは,流速が	
		小さく移動量は小さい。また、港湾部はその形状から、押し	
		波後はすぐに引き波に転じることから、構内海域(輪谷湾)	
		に漂流物は到達しないと考えられる。	
		<ul><li>(b) 最大水位・流速を示す時間帯(地電発生後約 100 分~180</li></ul>	
		(5) 取(161)~(201)]	
		構内海域(輪谷湾)においては、約180~200分では、流速	
		は最大 9m/s 程度と速いが、港湾部はその形状から、押し波後	
		はすぐに引き波に転じることから、構内海域(輪谷湾)に漂	
		流物は到達しないと考えられる。	
		(c)最大水位・流速を示す時間帯以降(地震発生後約 200 分~	
		360 分) [第1図(202)~(281)]	
		構内海域(輪谷湾)においては、約 200 分以降は、流速が	
		<u>遅く移動量は小さい。また、港湾部はその形状から、押し波</u>	
		後はすぐに引き波に転じることから、構内海域(輪谷湾)に	
		漂流物は到達しないと考えられる。	
		(a)~(c)上り 最大水位・流速を示す時間帯において 最	
		大 9m/s 程度の速い流速が確認されたが. 港湾部はその形状か	
		ら、押し波後はすぐに引き波に転じることから、構内海域(輪	
		谷湾)に漂流物は到達しないと考えられる。また、輪谷湾近	
		傍の地点 A の軌跡解析の結果から、軌跡は北西方向と南東方	
		向に移動を繰り返しており、輪谷湾に到達しないと考えられ	
		る。(第 4-1~27 図)	
		(2)海域活断層から想定される地震による津波	
		海域活断層から想定される地震による津波について、添付	

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		資料34第4図に示す基準津波4の流向・流速・軌跡の特徴を	
		評価した結果を以下に示す。	
		<u>a. 施設護岸への到達可能性</u>	
		<u>i)施設護岸から500m以遠で操業する漁船</u>	
		(a) 最大水位・流速を示す時間帯以前(地震発生後約0分~5)	
		$\underline{\beta}$ [第4図(1)~(11)]	
		<u>約0分から約5分まで流速は約1m/s未満と小さく,流向は</u>	
		短い間隔で変化し,発電所に対する連続的な流れもないため,	
		施設護岸から 500m 以遠で操業する漁船は施設護岸に到達し	
		<u>ないと考えられる。</u>	
		(b) 最大水位・流速を示す時間帯(地震発生後約5分~7分)	
		$\frac{\left[ \hat{B} 4 \boxtimes (12) \sim (15) \right]}{\left[ \frac{1}{2} + \frac$	
		<u>流速は速くても $Im/s$ 程度(第4図(15)」と小さく、流回</u>	
		は思い間隔で変化し、発電所に対する連続的な流れもないた	
		8), 施設護岸から 500m 以速で操業する漁船は施設護岸及び軸	
		沿湾に到達しないと考えられる。	
		(。) 長士水位, 流速なデオ時間豊门際 (地震発生後約7分。)	
		(C) 取八水恒·加速 $(C)$ 项间 市 以 阵 ( 地 展 光 王 夜 新 $T$ ) $(C)$ 30 公) [ 笛 4 図 (16) ~ (61) ]	
		<u>30))) 7</u> 分以降も流速け約 1m/s 未満と小さく 流向け短い間隔で	
		変化し 発電所に対する連続的な流れもたいため 施設護岸	
		から 500m 以遠で操業する渔船は施設護岸及び輪谷湾に到達	
		しないと考えられる。	
		(a)~(c)より、 いずれの時間帯も流速が小さく、かつ、最	
		大水位・流速を示す時間帯も2分(地震発生後5分~7分)	
		と短いことから、施設護岸に到達しないと評価した。また、	
		軌跡解析の結果より,施設護岸から 500m 以遠の地点 (C~F)	
		において、初期位置から移動していないことから、漂流物は	
		施設護岸及び輪谷湾に到達しないと考えられる(第 5-1~10	
		図)。	
		ii)施設護岸から 500m 以内で操業する漁船	
		(a) 最大水位・流速を示す時間帯以前(地震発生後約0分~	

柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		5分) [第4図(1)~(11)]	
		約0分から約5分まで流速は約1m/s未満と小さく,流向は	
		短い間隔で変化し,発電所に対する連続的な流れもないため,	
		施設護岸から 500m 以内で操業する漁船は施設護岸及び輪谷	
		湾に到達しないと考えられる。	
		(b) 最大水位・流速を示す時間帯(地震発生後約5分~7分)	
		[第4図(12)~(15)]	
		(a)と同様に,流向は短い間隔で変化し,発電所に対する連	
		続的な流れもないため、漂流物は施設護岸及び輪谷湾に到達	
		しないと考えられるが,3号北側防波壁から約50m以内の水	
		深が約 20m の浅い位置において, 2m/s 程度の流速が確認され	
		<u>る [第4図(13)]。当該位置で漁船が航行不能であった場合に</u>	
		<u>は、施設護岸及び輪谷湾に到達する可能性があると考えられ</u>	
		<u>る。</u>	
		(c) 最大水位・流速を示す時間帯以降(地震発生後約7分~)	
		$\frac{30 分) [第 4 凶 (16) ~ (61)]}{2}$	
		7分以降も流速は約1m/s 未満と小さく,流向は短い間隔で 	
		<u>変化し、発電所に対する連続的な流れもないため、施設護岸</u>	
		から 500m 以内で操業する漁船は施設護岸及び輪谷湾に到達	
		しないと考えられる。	
		(。)。(。) トル 法向け短い問題で亦化し 発電正に対すて	
		<u>運航的な肌化しないため</u> , 奈肌初は肥成設件及び軸台得に到 達したいと考えられる。また、サザエ綱、カナゼ漁及び一本	
		55, 執動ななどのと移動していないことから, 伝統物な施 設護農及び輪公湾に利達したいと考えられる(第 5-1~10	
		<u> 取扱に報告</u> 得に到達しないと考えられる ( $-51^{-10}$ ) 図) 一方 3 号北側防波廃から約 50m 以内の水深が約 20m の	
		因し、フィックスに関防波型から新すの加速すの大体が不下之の間の 注い位置において $2m/s 程度の流速が確認されることから$	
		<u> 山、西島にないて、2回/3/1日及い/7日前で40分ことから、</u> 当該位置で海船が航行不能であった場合け 施設講岸及び論	
		<u>→ 四日日、100000000000000000000000000000000000</u>	
		b. 取水口への到達可能性評価	
		a. ii)より,発電所沿岸部で操業する漁船が漂流物となっ	

柏崎刈羽原子力発電所 6/7号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		た場合,輪谷湾に到達する可能性があるため,構内海域(輪	
		谷湾)の流況から到達の可能性を評価した。	
		(a) 最大水位・流速を示す時間帯以前(地震発生後約0分~5	
		分) [第4図(1)~(11)]	
		0分から5分まで流速は約 1m/s 未満と小さく, 港湾部はそ	
		の形状から、押し波後はすぐに引き波に転じることから、構	
		内海域(輪谷湾)に漂流物は到達しないと考えられる。	
		(b) 最大水位・流速を示す時間帯(地震発生後約5分~7分)	
		[第4図(12)~(15)]	
		流速は速くて 3m/s 程度であるが, 輪谷湾外へ向かう流向で	
		あり[第4図(13)],輪谷湾に向かう流速は小さい[第4図(11)]	
		ことから、構内海域(輪谷湾)に漂流物は到達しないと考え	
		られる。	
		(c) 最大水位・流速を示す時間帯以降(地震発生後約7分~30	
		分) [第4図(16)~(61)]	
		7 分以降も流速は約 1m/s 未満と小さく,港湾部はその形状	
		から、押し波後はすぐに引き波に転じることから、構内海域	
		(輪谷湾)に漂流物は到達しないと考えられる。	
		(a)~(c)より,いずれの時間帯も流速が小さく,かつ,最	
		大水位・流速を示す時間帯も2分(地震発生後5分~7分)	
		と短いことから、輪谷湾に到達しないと評価した。また、輪	
		谷湾近傍の地点 A の軌跡解析の結果から, 軌跡は輪谷湾から	
		離れる方向に移動しており、輪谷湾に到達しないと考えられ	
		る (第5-1~10図)。	

柏崎刈羽原子力発電所 6/7号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2 号
		1000000000000000000000000000000000000



柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
		(基準津波1 (防波堤有り))



柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		тасказа влечерье, выявности1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 <td>・評価内容の相違 【東海第二】 島根2号炉は,水位変 動・流向ベクトルに加 え,軌跡解析の傾向も踏 まえ評価を実施 (以降,同様な図であり 記載を省略する)</td>	・評価内容の相違 【東海第二】 島根2号炉は,水位変 動・流向ベクトルに加 え,軌跡解析の傾向も踏 まえ評価を実施 (以降,同様な図であり 記載を省略する)

## まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料37〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.	20版) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		添付資料 37	
		津波発生時の運用対応について	・資料構成の相違
			【柏崎 6/7, 東海第二】
		1. 概要	島根2号炉は津波発
		設置許可基準規則第5条「津波による損傷の防止」に基づき,	生時の運用対応につい
		敷地等への浸水防止として防波壁通路防波扉(以下「防波扉」	て資料を作成
		という。)の設置, 襲来する津波を監視するため津波監視設備を	
		設置している。ここでは、上記設備に係る運用に加え、大津波	
		警報発令時の原子炉停止操作及び循環水ポンプの停止の津波発	
		生時のプラント操作に係る対応等を示す。	
		2. 津波発生時の対応について	
		津波発生時の対応は、気象庁が発令する「島根県 出雲・石	
		見」区域の津波注意報,津波警報又は大津波警報及び津波の襲	
		来状況に基づき実施する。津波発生時の対応を以下の(1)~	
		(3)に区分し、それぞれの対応について示す。また、気象庁	
		から発令される津波警報・注意報の種類と発表される津波高さ	
		を表1に、地震・津波発生時に想定されるプラント対応フロー	
		を図1に示す。	
		(1) 津波注意報, 津波警報又は大津波警報発令時(津波襲来	
		(3) 准波襲米後	
			1

実線・・設備運用又は体制等の相違(設計方針の相違) 波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
			表1 気象	庁から発令される津波警報・注意報の種類と津波高さの 関係	
			種類	発表基準 発表される津波の高さ	
				10m超え	
			大津波警報	(10m<予想高さ)	
				(3m<予想高さ≦5m)	
			津波警報	<ul> <li>予想される津波の高さが高いところで1 m</li> <li>3 m</li> <li>を超え、3 m以下の場合</li> <li>(1 m&lt;予想高さ≦3 m)</li> </ul>	
			津波注意報	<ul> <li>予想される津波の高さが高いところで 0.2m</li> <li>以上, 1 m以下の場合であって, 津波による</li> <li>災害の恐れがある場合</li> <li>1 m</li> <li>(0.2m&lt;予想高さ≦1m)</li> </ul>	
			(1)津波	注意報,津波警報又は大津波警報発令時(津波襲来前)	
			地震系	生後、津波注意報、津波警報又は大津波警報が発令さ	
			れた場合	は、速やかに湾岸及び取水槽廻りから待避するよう所	
			内通信運	E絡設備(警報装置を含む。)により発電所内に周知し,	
			所員は高	所台(EL. +11. 9m 以上)に待避を行う運用としている。	
			ただし,	漂流物発生防止に係る対応を実施する場合は、対応実	
			施後に追	避を行う。また、津波に関する情報(津波到達予想時	
			刻,津波	我規模、津波監視カメラによる津波の状況等)を確認し	
			作業安全	が確認されるまでは、湾岸及び取水槽廻りでの作業は	
			実施した	こいこととしている。	
			さらに	,大津波警報の場合は,緊急時警戒体制を発令し,緊	
			急時対策	で要員を非常招集することにより,速やかに重大事故等	
			に対処で	きる体制を整える。	
			これら	のの他,発令される警報の種類(津波注意報,津波警報)	
			又は大津	き波警報)に応じ、津波に対する対応を以下のとおり実	
			施する。		
			a. 津波	ア監視に係る対応	
			"· 评论 与复	マールマント 2000 マールら発信される津波情報も全め 津波に関する情報	
			た旧住	マインション ション ション ション ション ション ション ション ション ション	
			正相オ		
			m. 元 2	סיי 7 יםן אבע. סייסי 1 יםן אבע.	
			b.原子	一炉の停止に係る対応	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		大津波警報が発令された場合は、原子炉の停止操作及び冷	
		却操作を開始する。ただし、地震により原子炉が自動停止す	
		る場合を除く。	
		c. 海水ポンプの取水性に係る対応	
		大津波警報が発令された場合は、原則として*1、津波到達	
		前に気象庁より発表される第一波の到達予想時刻の5分前ま	
		でに循環水ポンプを停止する。海水ポンプの取水性に係る循	
		環水ポンプの停止運用の妥当性について、別紙に示す。	
		※1 敷地近傍の津波による大津波警報発令時は,速やかに循	
		環水ポンプ停止操作を実施するが、海域活断層から想定	
		される地震による津波は敷地に到達するまでの時間が	
		短く、循環水ポンプ停止前に襲来する可能性がある。な	
		お、海域活断層から想定される地震による津波に対して	
		は、循環水ポンプ運転時においても取水槽水位が非常用	
		海水冷却系の海水ポンプの取水可能水位を下回らない	
		ことを確認している。	
		d. 防波扉の閉止操作及び漂流物発生防止に係る対応	
		防波扉は、常時閉運用としているが、作業等で開放する場	
		合においては、速やかに閉止できるよう、あらかじめ人員を	
		確保する(添付資料 39 参照)。なお、開放時には現場ブザー	
		音により注意喚起されること及び中央制御室にて開閉状態が	
		確認できる。	
		一方、荷揚場(防波壁外)で作業を実施している場合は、	
		作業を中断し、原則として*2、燃料等輸送船の緊急離岸及び	
		陸側作業に係る車両等の緊急退避を実施し、防波扉の閉止操	
		作を実施する。	
		※2 燃料等輸送船の緊急離岸や陸側作業に係る車両等の緊	
		急退避については、作業完了までに津波が到達する可能	
		性がある場合は実施しない。防波扉については、人員の	
		安全を優先し、可能な範囲で扉の閉止操作を実施する。	
		なお、海域活断層から想定される地震による津波は荷揚	
		場に溯上することなく、陸側作業に係る車両等は漂流物	
		になることはない。また. 燃料等輸送船は荷揚場に係留	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		(2)津波襲来時	
		a.津波の監視に係る対応	
		津波監視カメラによる津波襲来状況の監視を継続するとと	
		もに、取水槽水位計による取水槽水位の監視を強化する。	
		b 原子恒の停止に係る対応	
		合け 原子炉を手動停止し、原子炉の冷却操作を開始する。	
		c. 海水ポンプの取水性に係る対応	
		取水槽水位が「取水槽水位低低」(EL3.0m)まで低下した	
		場合は、循環水ポンプを停止する。	
		d. 大型送水ポンプ車の取水性に係る対応	
		重大事故時に海水を取水する大型送水ポンプ車は、基準津	
		波により想定される引き波最大水位に対しても取水可能であ	
		ることを確認している。	
		(3) 津波襲来後	
		津波注意報、津波警報又は大津波警報解除後、巡視点検等に	
		より取水口を設置する輪谷湾内に漂流物が確認される場合に	
		は、必要に応じて漂流物を撤去する。	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子	·力発電所 2号
				>建放時の運用式応 業務指導に係る対応 ・気勢で物態等の集 ・気勢度物がない。	「成子年の時」に「係るおはご ・大津波麗(観察行時): 「成子7年時止」操作 選案 海ケボレンプの取た性に係る対応 ご事業 (アチ単分生): アチ単分生に アチ単分生に アチ単分生に の変別の間止」操作として満成物発生防止に係る 構成 一・飲ま別のの関止上操作 ・修知時の以及ら越算 ・修改制の利止進作 ・ の数目のの間に上操作 ・ 修改制の利止した	薄波能用に伝え対応 ・津波能能わりつい能利強化 ・非常な能和カリックの能利強化 ・取水用水位計の能利強化 ・取水用水位に伝え対応 ・1取水槽水位成(EL・2.0m)」重縮発発明によ る成子が平和停止 薄水やフクの取水性に係る対応
				時系列	(1) 第級工憲報(1) 報双は大部(4) 報報公告( (津波襲来前 (津波襲来前	(C) (2) (2)
				地震・東安陸生 地震・東安陸生 地震・水とう (外部電源に常時) (水学)(1-(外部電源に常時)) (水学)(1-(外部電源に常時))		[5/C6HII] (5/C6LidBA級例1)) (5/C6LidBA級例2)) (5/C6LidBA級例2)) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (5/C6HII) (
				図1-1	地震・津波発生	寺のプラント対応 常時)



柏崎刈羽原子力発電所 6/7号烷	戸 (2017. 12. 20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
			建波能用の通用均広 建設能用の通用均広 、電源で有限等の運用均広 、電源で有限等の非常有限の集 、電源で有限等の非常有限の集 、電源で有限等の時間の低 、電源で有限等の結合 、電源で有限等の結合 、電源の用止操作 。 の認問の用止操作 。 の認問の用止操作 。 の認問の相止操作 。 の認問の相止操作 。 の認問の相止操作 。 の認問の相止操作 。 の認問の相止操作 。 の認問の相止操作 。 の認問の相止操作 。 の認問の相止操作 。 の認問の相止操作 。 の認問の相止操作 。 。 の認問の相止操作 。 。 の認問の相止操作 。 。 の認問の相止操作 。 。 の認問の相止操作 。 の認問的 の の の の の の の の の
			時采列 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
			Lign: - #36%: Lign: 0.72>> 345,770 - (7+61%:00; Eq. (4))           Lign: - #36%: Lign: - #100           Lign: - #26%: Lign: - #100           Lign: - #100
			図1-2 地震・津波発生時のプラント対応 失時)



(別紙) 海水ポンプの取水性に係る循環水ポンプの停止運用の妥当性 大津波警報発令に伴う循環水ポンプの停止は,図1に示す通り, 日本海東縁部に想定される地震による津波の取水槽最低水位が海 水ポンプの取水可能水位に対して余裕がないことから設計に係る
海水ポンプの取水性に係る循環水ポンプの停止運用の妥当性 大津波警報発令に伴う循環水ポンプの停止は,図1に示す通り, 日本海東縁部に想定される地震による津波の取水槽最低水位が海 水ポンプの取水可能水位に対して余裕がないことから設計に係る
大津波警報発令に伴う循環水ポンプの停止は,図1に示す通り, 日本海東縁部に想定される地震による津波の取水槽最低水位が海 水ポンプの取水可能水位に対して余裕がないことから設計に係る
大津波警報発令に伴う循環水ポンプの停止は,図1に示す通り, 日本海東縁部に想定される地震による津波の取水槽最低水位が海 水ポンプの取水可能水位に対して余裕がないことから設計に係る
日本海東縁部に想定される地震による津波の取水槽最低水位が海 水ポンプの取水可能水位に対して余裕がないことから設計に係る
水ポンプの取水可能水位に対して余裕がないことから設計に係る
運用事項として位置付けたものである。
大津波警報が発令された場合、以下を踏まえ、気象庁より発表
される第一波の到達予想時刻の5分前までに循環水ポンプを停止
する。原子炉の冷却方法の切替及び循環水ポンプの停止操作は表
1に示す通りであり、循環水ポンプ停止を判断した時点から数分
あれば循環水ポンプによる海水取水を停止することができる。
・原子炉の冷却方法としては、常用系である循環水系を用いた復
水器による冷却と非常用系である残留熱除去系による冷却があ
るが、復水器による冷却が可能な場合、復水器による原子炉冷
却を用いた方が、冷却方法の多様性が確保され、より原子炉冷
却機能の信頼性が高い状態である。
・日本海東縁部に想定される地震による津波では、2号炉取水槽
における水位変動は地震発生後約120分以降から始まるが、水
位変動が大きくなる(4mを超える)時間はその約30分以降で
あり、非常用海水冷却系の海水ポンプの取水可能水位
(EL. −8. 32m) 付近まで水位が低下する時間はその約 60 分以降
である (図1)。
(m)
12.0 10.0 8.0 6.0 第二次第二次第二文字上▼ 15.49(198.3分)
★ 4.0 - 6.0 - 8.0 - 8.0 - 8.0.0 ↓ 日本の学校授働法ポンプ取次可能永位(EL8.32m) - 7.97(190.8分)
-12.0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 時間 (分)
※最大水位下降量-7.97m-地殻変動量 0.34m≒ E L8.4m(E
L8.31m)
(入力津波6,防波堤無し)
図1 日本海東縁部に想定される地震による津波の取水槽水位

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		まれのいたのこの、そのが、そのか、またが、またの、またが、またの、たいの、たいの、たいの、たいの、ないの、たいの、たいの、たいの、たいの、たいの、たいの、たいの、たいの、たいの、た	

まとめ資料比較表 「第5条 津波による損傷の防止 別添1添付資料38〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 18	添付資料 38	
	地震後の <u>防波堤</u> の津波による影響評価について	地震後の <u>荷揚場</u> の津波による影響評価について	・対象施設の相違
			【柏崎 6/7, 東海第二】
			島根2号炉は荷揚場
	<u>目 次</u>		について記載している
	<u>1. 防波堤の施設概要</u>	発電所の構内(港湾内)にある港湾施設として、2号炉取水口	
	2. 防波堤の漂流物化に係る検討方針	の西方に荷揚場があり、この他に、発電所港湾の境界を形成する	
	3. 地震時評価		
	(1)解析方法 (a) #毛玉式共和の組合社	防波堤については、耐震性を有していないことから漂流物評価	
	(2) 何里及い何里の組合せ(2) れた地震動	<u>としているため、本資料では地震後の何揚場の律彼による影響許</u>	
	(A) 解析工デル		
	(5) 使用材料及び材料の物性値		
	(6) 評価結果		
	(7) 基準地震動 S _s による防波堤への影響評価のまとめ		
	4. 津波時評価		
	(1) 評価方法		
	(2) 傾斜堤の津波時安定性		
	(3) ケーソン堤の津波時安定性		
	(4) 防波堤漂流物の重要施設への到達の可能性評価		
	(5) 取水施設における取水機能の成立性		
	(6) 津波による防波堤損壊の影響評価のまとめ		
			<u>.</u>

実線・・設備運用又は体制等の相違(設計方針の相違) 波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	1. <u>防波堤</u> の施設概要	1. <u>荷揚場</u> の施設概要	・対象施設の相違
	東海第二発電所の防波堤は,傾斜堤,ケーソン堤及び物揚岸	<u>島根原子力発電所の荷揚場は岩盤上に設置され,背後に埋戻</u>	【東海第二】
	壁からなる。傾斜堤は捨石や消波ブロック類からなり、上端に	<u>土(掘削ズリ)が分布している。荷揚場は、基礎コンクリート、</u>	島根2号炉は荷揚場
	は上部工を設置し道路として使用している。ケーソン堤は傾斜	<u>セルラーブロック及び上部工からなる。</u> 平面図及び構造断面図	の施設概要について記
	堤の先端部に 2 函ずつ設置されている。また,物揚岸壁は北側	を第1図~第2図に示す。	載している
	の防波堤にあり、港内側は控え杭式鋼管矢板の岸壁からなる。		
	平面図及び構造断面図を第1図~第 <u>8</u> .図に, <u>東海港深浅図を第</u>		
	<u>9図に</u> 示す。		
	評価を行う断面は,構造形式の異なる傾斜堤,ケーソン堤,		
	物揚岸壁の3断面を選定した。傾斜堤の評価位置は、水深が深		
	い北防波堤先端付近とし、また、大型船舶の緊急離岸のための		
	航路も考慮し, 航路幅が最も狭隘となる断面①-①を選定した。		
	ケーソン堤の評価断面は,同様に緊急離岸航路を考慮し南防波		
	堤ケーソン堤断面②-②とした。		
	物揚岸壁の評価断面は、構造や水深が一様なため、大型船舶	評価を行う断面は、構造がおおむね一様なため、断面①-①	・対象施設の相違
	が接岸する中央位置の断面③一③とした。	<u>Elte</u>	【東海第二】
	ケーソン堤		島根2号炉は荷揚場
	5		の施設概要について記
			載している
	ケーソン堤		
	Wight's Design of the second s		
	北防波堤		
		(アスファルト舗装)	
			・対象施設の相違
	9 <u>596</u> 1596		【東海第二】
	第1図 港湾施設平面図	第1図 荷揚場平面図	島根2号炉は荷揚場
			の施設概要について記
			載している



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉 備考
	R +4.31m R +4.31m R +4.31m R +1.31m A # M.L. I. P. 40.61m T 1 + 0.81m M # 4 + 0.81m	<ul> <li>・対象施設の相違</li> <li>【東海第二】</li> <li>島根2号炉は荷揚場の施設概要について記載している</li> </ul>
	16000 16000 1 1 1 1 1 1 1 1 1 1 1 1 1	
	<ul> <li>         上部コンクリート         上部コンクリート         上部コンクリート         上部コンクリート         上部コンクリート         基礎実石 (100kg/個)         指否 (100~500kg/個)         指否 (100~500kg/個)         指否 (100~500kg/個)         指否 (100~500kg/個)         加合 (100~500kg/個)         加合 (100~500kg/個)         加合 (100~500kg/個)         加合 (100~500kg/個)         1026-3         D26-3         D26-3</li></ul>	
	町0 57-4     町0 57-4       町10 77-4     町10 77-4       町10 77-4     町10 77-4       町10 77-4     1       丁10 77-4     1   <	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	A HURAD-JERENT (2010-0-12 KG)         A HURAD-JERENT (2010-0-12 KG)		・対象施設の相違 【東海第二】 島根2号炉は荷揚場 の施設概要について記 載している

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	ш ш ц ц ц		・対象施設の相違
	P -1 - 2 - 99 P -1 - 1 - 3 - 99 P -1 - 1 - 3		【東海第二】
			島根2号炉は荷揚場
			の施設概要について記
			載している
	4         33           1         1           1         1		
	() () () () () () () () () () () () () (		
	11000 日子(		
	- 「 「 「 「 (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100- (100-		
	1211111111111111111111111111111111111		
	C3t		
	將 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	k∰ 022 032-3		
	第5図 南側防波堤傾斜堤断面(④-④)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12 版) 東海第二発電所 (2018. 9. 12 版) (III - 30 (III - 30 (II	島根原子力発電所 2号炉	<ul> <li>備考</li> <li>・対象施設の相違</li> <li>【東海第二】</li> <li>島根2号炉は荷揚場の施設概要について記載している</li> </ul>
	<u>第6図</u> 北側防波堤ケーソン堤断面(⑤-⑤)		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------	----------------------------------------------------------------------------------------------------
	< 港外側 > T.P3.19m (単位:1.P9.6181m (単位:mm)		<ul> <li>・対象施設の相違</li> <li>【東海第二】</li> <li>島根2号炉は荷揚場</li> <li>の施設概要について記</li> <li>載している</li> </ul>
	様石 (100~500kg/個) (第第7日ック (第第7日ック (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマロロ) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガン (ガンマエル21) (ガンマエル21) (ガンマエル21) (ガン (ガン (ガンマエル21)) (ガン (ガン (ガン (ガン)) (ガン (ガン)) (ガン (ガン (ガン)) (ガン (ガン)) (ガン (ガン)) (ガン (ガン)) (ガン (ガン)) (ガン (ガン)) (ガン) (ガン		
	张内俐 >     北小 LP-40.61m     Sh >     Sh >		
	<u>第7図物揚岸壁進入路断面(⑥-⑥)</u>		

<ul> <li>・対象施設の相違</li> <li>・対象施設の相違</li> <li>「東海第二]</li> <li>島根2号炉は荷揚</li> <li>の施設概要について調査</li> <li>・対象施設の相違</li> <li>・対象施設の相違</li> <li>・対象施設の相違</li> <li>・対象施設の相違</li> </ul>	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 「 東海第二発電所 (2018.9.12版) 「 「 「 「 「 」 」 」 」 「 」 」 」 」 」 」 」 」 」 」 」 」 」	島根原子力発電所 2号炉	備考         ・対象施設の相違         【東海第二】         島根2号炉は荷揚場         の施設概要について記載している

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$\left  I, P, - (n) \right  T, P, - (n)$ $\left  I, P, - (n) \right  T, P, - (n)$ $\left  1, P, - (n) \right  T, P, - (n)$ $\left  0, 9 \right  0 = 0$ $\left  0 = 0 = 0 = 0$ $\left  0 = 0 = 0 = 0 = 0$ $\left  0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 $		<ul> <li>・対象施設の相違</li> <li>【東海第二】</li> <li>島根2号炉は荷揚場</li> <li>の施設概要について記</li> <li>載している</li> </ul>
	<u>第9図 東海港深浅図(2016年12月12日測量)</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	2. 防波堤の漂流物化に係る検討方針	2. 荷揚場の漂流物化に係る検討方針	・対象施設の相違
	基準地震動S _s 及び基準津波により損傷した防波堤が漂流物	基準地震動Ss及び基準津波により損傷した <u>荷揚場</u> が漂流物	【東海第二】
	化した場合,取水施設である取水口 <u>及びSA用海水ピット取水</u>	化した場合、取水施設である取水口に波及的影響を及ぼすこと	島根2号炉は荷揚場
	<u>塔の取水機能並びに貯留堰の海水貯留機能</u> に波及的影響を及ぼ	となる。	の漂流物化について記
	すこととなる。		載している
	このため, <u>防波堤</u> の基準地震動 S _s 及び基準津波による耐性を	このため, <u>荷揚場</u> の基準地震動Ss及び基準津波による耐性	
	確認するとともに, <u>防波堤</u> を構成する部材の漂流物化の可能性,	を確認するとともに, <u>荷揚場</u> を構成する部材の漂流物化の可能	
	取水施設への到着の有無について評価を行う。	性、取水施設への到着の有無について評価を行う。	
	その結果,取水施設への到達が否定できない場合,漂流物化	その結果、取水施設への到達が否定できない場合、漂流物化	
	した <u>防波堤</u> の構成部材に対して,取水施設に期待される機能へ	した <u>荷揚場</u> の構成部材に対して、取水施設に期待される機能へ	
	の影響を確認する。	の影響を確認する。	
	<u>防波堤</u> の漂流物化に伴う波及的影響検討対象施設と想定され	荷揚場の漂流物化に伴う波及的影響検討対象施設と想定され	
	る損傷モードについて第1表に, <u>防波堤</u> の漂流物化に係る波及	る損傷モードについて第1表に、荷揚場の漂流物化に係る波及	
	的影響検討対象施設図を第10.図に,波及的影響検討フローを第	的影響検討対象施設図を第3.図に,波及的影響検討フローを第	
	11.図に示す。	4.図に示す。	
	第1表 波及的影響給討対象施設と指傷モード一覧表	第1表 波及的影響給討対象施設と損傷モード一覧表	<ul> <li>対象施設の相違</li> </ul>
			【東海第二】
		· 漂流物による閉塞	島根2号炉は取水口
		取水口 ・漂流物の堆積による取水量の減少	を波及的影響検討対象
			施設としている
	2. 灯笛嘘 ・ 原孤物の側矢による損傷		
	3.5A用海水ビット取水     ・漂流物の衝突による損傷		
	・ 漂流物による肉墨		
	・漂流物の堆積による取水量の減少		
		約75m 取水口	
			・対象施設の相違
			【東海第二】
			島根2号炉は荷揚場
		第3図 波及的影響検討対象施設図	の漂流物化について記
	第10回 波及的影響検討対象施設図		載している



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	3) 減衰定数	3) 減衰定数	
	減衰特性は,数値計算の安定のための Rayleigh 減衰	減衰特性は,数値計算の安定のための Rayleigh 減衰	
	と、地盤の履歴減衰を考慮する。	と、地盤の履歴減衰を考慮する。	
	(2) 荷重及び荷重の組合せ	(2) 荷重及び荷重の組合せ	
	荷重及び荷重の組合せは、以下の通り設定する。	荷重及び荷重の組合せは、以下の通り設定する。	
	1) 荷重	1) 荷重	
	地震応答解析において考慮する荷重を以下に示す。	地震応答解析において考慮する荷重を以下に示す。	
	a. 常時荷重	a. 常時荷重	
	常時荷重として,構造物及び海水の自重を考慮する。	常時荷重として,構造物及び海水の自重を考慮する。	
	物揚岸壁については、「港湾の施設の技術上の基準・		・解析条件の相違
	同解説(日本港湾協会,平成19年7月)」に準じて,		【東海第二】
	<u>上載荷重(15kN/m²)を考慮する。</u>		島根2号炉では上載
	b. 地震荷重	b. 地震荷重	荷重を考慮していない
	地震荷重として,基準地震動Ssによる地震力を考慮	地震荷重として,基準地震動 S s による地震力を考	
	する。	慮する。	
	の一本重の知会社	2) 本手の知会社	
	2) 何里の祖古で 古香の知会社な第9末にデオ	2) 何里の租口で 本重の知会社な知りまた三十	
	何里の組合せを弗と衣に小り。	何里の祖旨せを弗と表に小り。	
	第2表 荷重の組合せ	第2表 荷重の組合せ	
	外力の状態 荷重の組合せ	外力の状態荷重の組合せ	
	地震時(S _s ) a + b	地震時(S s )     a + b	
	(3) 入力地震動	(3) 入力地震動	
	地震応答解析に用いる入力地震動は、解放基盤表面で定義	地震応答解析に用いる入力地震動は、解放基盤表面で定義	
	される基準地震動Ssを一次元波動論によって地震応答解析	される基準地震動S s を一次元波動論によって地震応答解析	
	モデルの下端位置で評価した地震波を用いる。	モデルの下端位置で評価した地震波を用いる。	
	入力地震動算定の概念図を第12.図に示す。	入力地震動算定の概念図を第5.図に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	地震応答解析モデル 重要土木構造物	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	第12図 入力地震動算定の概念図	第5図 入力地震動算定の概念図	・解析条件の相違 【東海第一】
	(4) 解析モデル	(4) 解析モデル	島根2号炉は解放基
	地震応答解析モデルを第 13 図及び第 14 図に示す。	地震応答解析モデルを第6回に示す。	盤表面が EL10.0m に
	1) 解析領域	1) 解析領域	ある
	解析領域は、側方境界及び底面境界が構造物の応答	解析領域は、側方境界及び底面境界が構造物の応答	
	に影響しないよう、構造物と側方境界及び底面境界と	に影響しないよう、構造物と側方境界及び底面境界と	
	の距離が十分長くなるよう広く設定する。	の距離が十分長くなるよう広く設定する。	
	3) 境界条件	2) 境界条件	
	解析領域の側面及び底面には、エネルギーの逸散効	解析領域の側面及び底面には、エネルギーの逸散効	
	果を評価するため,粘性境界を設ける。	果を評価するため、粘性境界を設ける。	
	3) 構造物のモデル化	3) 構造物のモデル化	
	構造物のコンクリート部材は線形平面要素,鋼部材	構造物のコンクリート部材は線形平面要素でモデル	・対象施設の相違
	は非線形はり要素又は非線形バネ要素でモデル化す	化する。	【東海第二】
	<u>る。また,傾斜堤の石材はマルチスプリング要素,消</u>		島根2号炉は荷揚場
	<u>波ブロックは節点荷重</u> でモデル化する。		の解析モデルについて
	4) 地盤のモデル化	4) 地盤のモデル化	記載している
	<u>地盤は、</u> 地質区分に基づき、平面ひずみ要素でモデ	地質区分に基づき, <u>岩盤は</u> 平面ひずみ要素 <u>,地盤は</u>	・対象施設の相違
	ル化する。	<u>マルチスプリング要素</u> でモデル化する。	【東海第二】
	5) ジョイント要素	5) ジョイント要素	島根2号炉は荷揚場
	構造物と地盤の境界部にジョイント要素を設けるこ	構造物と地 <u>盤及び構造物と構造物</u> の境界部にジョイ	の解析モデルについて
	とにより、構造物と地盤の剥離・すべりを考慮する。	ント要素を設けることにより、構造物と地盤及び構造	記載している
		物と構造物の剥離・すべりを考慮する。	



计位	備考
<u>:の基準・同解説(日本</u> <u>基づく残留水圧を考慮</u> <u>残留水位</u> R. W. L. EL+ 塁平均干潮位 L. W. L.	<ul> <li>・解析条件の相違</li> <li>【東海第二】</li> <li>島根2号炉は荷揚場</li> <li>の水位条件を港湾基準</li> <li>に基づき設定している</li> </ul>
和⑤速度層) … : ジョイント要素 全 … L型操鍵 EL. (m) 	
5.损场断面)	<ul> <li>・対象施設の相違</li> <li>【東海第二】</li> <li>島根2号炉は荷揚場の解析モデルについて</li> <li>記載している</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力	発電所 2号	炉		備考
	(5) 使用材料及び材料の物性値		(5) 使用材料及び材料の物性値				
	<ol> <li>構造物の物性値</li> </ol>	1)	構造物の物性値				
	使用材料を第3表に,材料の物性値を第4表に示す。		使用材料を第3表	に,材料の物	性値を第4	表に示す。	
	第3表 使用材料		<u>第3表</u>	使用材料			・解析条件の相違
	材料         前位         請元           上部工         設計基準強度         24.0N/mm ²	材料	部位				【果海弗二】
	コンク基礎設計基準強度18.0N/mm²リートケーソン (気中)設計基準強度24.0N/mm²		上部工(有	前筋)	20.61	华短度 V/mm ²	局根2 方炉は何揚場 の住田      の協
	ケーソン(海中)         設計基準強度 24.0N/mm ² 鋼管矢板 焼き工鋼管杭         SKV490 SKK490		上部工(無	筋)	設計星 14.7N	陸強度 1/mm ²	の使用材料の物性値を
	鋼材 タイロッド HT690	コンクリート	セルラーブロック	気中 水中	設計基 20.6M 設計基 20.6M	準強度 J/mm ² 準強度 I/mm ²	
			基礎コンクル	J-ト		¼強度 √/mm²	
	第4表 材料の物性値		第4表 材	材料の物性値			
	材料         部位         単位体積重量         ヤング係数         ボア ソン	材料	部位	位体積重量(kN/m ³ )	ヤング係数 (kN/mm ² )	ポアソン比	
	上部工 24.0 25 0.2			和, 湿润 水中 24.0 -	23.3	0.2	
	コンク         基礎         22.6         22         0.2           リート         ケーソン(気中)         21.8         25         0.2		上部工(無筋)	22.6 –	20.4	0.2	
	一根固方塊         21.8         25         0.2           細管矢板 控之工鋼管結         27.0         200         0.3	コンクリート	セルラーブロック (コンクリート詰)	23.0 12.9	23.3	0.2	
	鋼材 <u>タイロッド</u> - 200 -		セルラーブロック (栗石詰)	22.0 11.9	23.3	0.2	
			基礎コンクリート	22.6 12.5	20.4	0.2	
	<ol> <li>1) 地盤の物性値</li> </ol>	2)	地盤の物性値				
	解析に用いる地盤の物性値と液状化パラメータを第	_,	解析に用いる地盤	の物性値と液	「状化パラメ	ータを第	
	5表に示す。液状化検討対象層である du 層, Ag2 層,		5表に示す。地盤の物	勿性値は,「島	晶根原子力発	電所2号	・対象施設の相違
	As 層, Ag1 層及び D2g-3 層について液状化強度特性を		炉 地震による損傷	の防止 別組	-11 液状化	ム影響の	【東海第二】
	設定する。液状化パラメータについては,液状化強度		検討方針について」	の検討方針に	基づき設定	する。液	島根2号炉は荷揚場
	試験結果より設定する。		状化の評価対象とし	て取り扱う埋	戻土(掘削	ズリ)及	の地盤物性値について
	試験結果から設定した解析上の液状化強度曲線を第		び砂礫層の有効応力	解析に用いる	液状化パラ	メータ	記載している
	<u>15 図に示す。なお、液状化強度特性が保守的に評価さ</u>		は,液状化試験結果	: (繰返し非排	水せん断試	験結果)	
	れるように,液状化強度試験値の平均-1σ の液状化		<u>に基づき,地盤</u> のば	らつき等を考	慮し,保守	的に簡易	
	強度特性を再現するように設定する。		設定法により設定し	た。設定した	液状化強度B	曲線を第 <u>7</u>	
			図に示す。				

柏崎刈羽原子力発電所 6/7号炉 (2017.1	2.20版)	東海第二発電所(2018.9.12	2版)	島根原子力発電所 2号
	第5表	(1) 地盤の物性値と液状	化パラメータ	第5表 地盤の物性値と液状化/
	本株        単位k積質量        間隙率        基準セル所発生        基準        基準        均東        近アン        内部        水浴        水浴        水浴        東        水浴        玉準        水浴        水        水        水        水        水        水        水        水        水        水        水        水        水        水        水        水        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ        ボ	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	비용         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100
	第5表	(2) 地盤の物性値と液状	<u>化パラメータ</u>	
	名称         単位体積質量         間隙率         基準体積弾性係数         基準体積弾性係数         基準本有効主応力         拘束圧依存係数         ポアンン比         内部喫旗角         粘着力         最大減衰定数         液状化パラメータ	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	第         Km           1.15         1.72-1.03×10 ⁻⁴ ×Z           30         0.54           1,843 $\rho \times V_{-}^{2}$ 3,225 $2(1+\nu)/3/(1-2\nu)×G$ m         m           467 $\partial E $ 能           50         0.00           26         0.16+0.00025×Z           4.4         23.2+0.099×Z           0         358-6.03×Z           130         世際 データを扱かっそ無し部 総定           130         セ           130         セ           130         セ           130         -           130         -           130         -           132         -           133         -           134         -           1352         -           136         -           137         -           138         -           14         -           152         -           160         -           162         -           17         -           18         -           19         -           10         -	
		Image: state of the state	(in the second s	



<ul> <li>2) ジェインド電気</li> <li>3) ジェインド電気</li> <li>3) ジェインド電気</li> <li>4) ジェイン</li> <li>4) ジェインド電気</li> <li>4) ジェイン</li> <li>4) ジェイ</li></ul>	柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<ul> <li>構成的性態的な原品にウィント等なまたとし、 となかえたし、成分の内心・インシスを式すえ、 ジーイントは個心内には、引成な力なたしたなら、 用なたりたいでは、 気気がらったたり、これのなかれたいのない、 したないたないたないでは、 したないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでいて、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 うないたいでは、 ういたったいでは、 ういたいでは、 ういたいでは、 ういたいでは、 うないたいででは、 うないたいでは、 うないたいででは、 うないたいででは、 うないたいででは、 うないたいででは、 うないたいでは、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないたいで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 う うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 う うないで、 うないで、 うないで、 うないで、 うないで、 うないで、 う うないで、 う う う う う う う う う う う う う</li></ul>		3) ジョイント要素	3) ジョイント要素	
<ul> <li>とを振みとし、東菜などのが違い、「水やなき取った」、 のコンと実要の特性はないが、 のコンと実もの特性はないが、 のコンとすいたが見ていたがないために、 の方法を見たが、 したびのないために、 の方法をしたす。 の方法をしたすが、 したびのないために、 のたがないために、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたかなきになから、 のたなきになから、 のたなきになから、 のたなきになから、 のたなきになから、 のたなきをになった。 のたなきを、 のたななら、 のたななら、 のたななら、 のたななら、 のたななら、 のたななら、 のたなる のたなる いたから、 のたななら、 のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる のたなる</li></ul>		構造物と地盤の境界部にジョイント要素を設けるこ	構造物と地盤 <u>及び構造物と構造物</u> の境界部にジョイ	・対象施設の相違
ショーント 実施の特に法規があった。 がきたう、お使用すたがに、川のジー語を加えてあまえ、加ま がきたうな、使用すたがに、川のジー語を加えておまえ、加ま はたいのがきたまたと、「かたたき またの、作用すたがに、川のジー語を加えておまえ、「加上市 飲力」: 12 はたいのがあま、加ました。 がきためならればにかったした。 がきためならればにかったした。 でする。     ・ パタな気がする。 がきためならればにかったした。 がきためならればにかった。 がったいのがかられたがない。 がったいのでは、常さまた。 がきためならればにかった。 にようのなしたがたいた。 ないのからならればにかった。 にないのからならればにかった。 いでは、常さまた。 かたのないたかに、 がたいでは、常さまた。 ないのからならればにかった。 いたでは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がたいのは、 がいのは、 、 がたのは、 がのは、		とを基本とし、境界部での剥離・すべりを考慮する。	ント要素を設けることを基本とし、境界部での剥離・	【東海第二】
<ul> <li>(数本方法: (法)で数方では、(法会)、(数点方理(大点)、(数点方理)、(法会)、(数件条件について充</li></ul>		ジョイント要素の特性は法線方向,接線方向に分けて	すべりを考慮する。 ジョイント要素の特性は法線方向,	島根2号炉は荷揚場
<ul> <li> <ul> <li>                  もとなどの方をなっとして利用を考慮。 がしたびの見用のいたがに対応力がしかけん。 がしたびの見用のいたが、 がしたびの見用のいたが、 がしたびの見用のいたが、 がしたびの見用のいたが、 がしたびの見用のいたが、 がしたびの見用のいたが、 がしたびの見用のいたが、 がしたびの見用のいたが、 がしたびの見用のいたが、 がしたびの見用のいたが、 がしたびの見用のいたが、 がしたびの見用のいたが、 がしたびのしたが、 がしたびのしかたが、 がしたびのしかたが、 がしたびのしかたが、 がしたびのしかたが、 がしたびのしかたが、 がしたびのしかたが、 がしたびのしかしたがいたががなしたがある。            がしたびのしかたが、 がしたびのしかしたがいたがないなしたがある。 がしたびのしかしたがいたがないないたがないしいたが からのたびのしかたかた がたびのしかしたがたがいないないないないないないないないないないないないないないないないないな</li></ul></li></ul>		設定する。法線方向では、引張応力が生じた場合、剛	接線方向に分けて設定する。法線方向では,引張応力	の解析条件について記
iz, $Right de lattice of Right de lattice of Right de lattice de la terminal de$		性及び応力をゼロとして剥離を考慮する。接線方向で	が生じた場合、剛性及び応力をゼロとして剥離を考慮	載している
前点力が差年した場合、即性をせたとし、すべきのを考 属する。使生態力を、は1960年のになめまごはまり現在 する。   取力以上のとな地域力が盛化した場合、即性をやた とし、すべきのを考慮する。等止態態力を、は2 とし、すべきのを考慮する。等止態態力を、は2 とし、すべきのを考慮する。等止態態力を、は2 とし、すべきのを考慮する。等止態態力を、は2 しかけてのにの気により現合する。     (4) 公式の入力法 点、常時常量、常時含量である自己は、 <u>先任ーンクリートや変度欠</u> 起意ので気がのも自己は、 <u>1000万万倍</u> 。、常時常量、 常時含量である自己は、 <u>1000万万倍</u> 。、常時常量、 常く考していう方法で、     (5) 形式新品 5. 形式が高品 5. 形式が高品では意味がする。     1. たたって、東市販売報告まる、構造学数に対する評価は果を示す。     (6) 評価結果 天中の     2. なり見ば重要になって最近した場点は広告に、のなした、ことの     (7) 計価結果     天中の     (6) 評価結果     5. 小式な法をよってした意なられらても実施してする。     (7) 計価結果     天中の     (7) 計価結果     天中の     (7) 計価結果     天中の     (7) 計価結果     大力したがって、生産販売報してきた。     (7) 計価はため、     (7) 二のの     (7) 計価     (7) 計価     (7) 二の     (7) 計価     (7) 二の     (8) がの     (9) 計画     (9) 計画     (9) 計画     (9) 計画     (9) 計画     (9) 計画     (9) 二の    <		は、構造物と地盤の境界部のせん断抵抗力以上のせん	する。接線方向では、構造物と地盤の境界部のせん断	
<ul> <li></li></ul>		断応力が発生した場合、剛性をゼロとし、すべりを考	抵抗力以上のせん断応力が発生した場合,剛性をゼロ	
する。     Mon-Coulom 次により規定する。     ・ 対象施設の用意       1) 常生の人方方法。		慮する。静止摩擦力τ _f は Mohr-Coulomb 式により規定	とし, すべりを考慮する。静止摩擦力τ _f は	
1) 育社の人力方法 <ul> <li></li></ul>		する。	Mohr-Coulomb 式により規定する。	
<ul> <li>a.常時資重 常時資重である自電は、<u>数協コンクリートや期空</u>た 販売の単位体損量兼を踏まえ、構造物の街面の大きさ に応じて営産する。</li> <li>b.地震資重 地震資重性、 地震資重性、 地震資重性、 地震資重性、 地震資重性、 地震資重性、 地震資重性、 地震資重性、 地震資重性、 地震資重性、 地震資重性、 地震資重性、 地震資重性、 地震資重性、 地震資重性、 地震資重性、 加速工作 「 一 クーンン場、 加速工作 「 生 の一 工作 」 たの一 工、工作性に勤勉多、強に多少値得し、水学致 「 一 の一 工業 」 の一 工業 「 」 の一 工業 「 」 の一 工業 「 」 の一 工業 「 」 の一 工業 「 」 の一 工業 「 」 の一 工業 「 」 の一 工業 「 」 の一 工業 「 」 の 一 工業 「 」 の 一 、 工業 「 」 の 一 、 工業 「 」 の 一 、 工業 「 」 の 一 、 工業 「 」 の 一 、 工業 「 」 の 一 、 工業 「 」 の 一 、 工業 「 」 の 一 、 工業 「 」 の 一 、 工業 「 」 の 一 、 二、 一 、 二、 二、 一 、 二、 一 、 二、 一 、 二、 一 、 二、 一 、 二、 一 、 二、 一 、 二、 一 、 一</li></ul>		<ul><li>4) 荷重の入力方法</li></ul>	<ul><li>4) 荷重の入力方法</li></ul>	
		a. 常時荷重	a. 常時荷重	
<u> </u>		常時荷重である自重は、鉄筋コンクリートや鋼管矢	常時荷重である自重は、コンクリートの単位体積重	・対象施設の相違
に応じて等定する。       「品様2 号炉(注養場場)の保留条件について記事業の登録を目で定義される基準地画等的。」       「品様2 号炉(注養場場)の保留条件について記事業の登録を目で定義される基準地画等的。」       「品様2 号炉(注養場場)の保留条件について記事業の登録を目で定義される基準地画等的。」       「日本の主要素を用いて算定する。       「日本の主要素を用いて算定する。       「日本の主要素を用いて算定」       「日本の主要書」       「日本の主要」       「日本の主要」 <th></th> <th>板等の単位体積重量を踏まえ,構造物の断面の大きさ</th> <th>量を踏まえ,構造物の断面の大きさに応じて算定する。</th> <th>【東海第二】</th>		板等の単位体積重量を踏まえ,構造物の断面の大きさ	量を踏まえ,構造物の断面の大きさに応じて算定する。	【東海第二】
b. 地酸荷面       0.着菜条件について記載         地酸荷面は、解放基盤表面で定義される基準地理商為       b. 地磨荷面       20         生成药合口、分元成均晶によって地酸応客解时モデルの「 端位置で評価した地酸設を用いて算定する。       5. s. e. 一次元成均晶によって地酸応客解时モデルの「 下端位置で評価した地酸設を用いて算定する。       60       評価結果         (6)       評価結果       現状の <u>常福嶋</u> に対する評価結果を示す。       -       -       -         1)       ケーソン堤       (賃留)       評価結果       -       -       -       -         1)       ケーソン堤       (賃留)       第価素の       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -		に応じて算定する。		島根2号炉は荷揚場
b. 地震荷電     b. 地震荷電     歳していろ       地震荷電白、解放基盤表面で定義される基準地震動 S_&を、一次元波動論によって地震応答解析モデルの 端位置で評価した地震波を用いて算定する。     b. 地震荷電(二、解放基盤表面で定義される基準地震動 S_& を、一次元波動論によって地震応答解析モデルの 下端位置で評価した地震波を用いて算定する。     k       (6) 評価結果     現状の <u>グーソン堤、低鉛堤、物特岸壁</u> に対する評価結果を示す。     「6) 評価結果       1) ケーソン堤     ケーンン堤は基準地震動S_&(などを少紙経し、木平式)     「8) 評価結果       2) ケーソン堤     ケーンン堤は基準地震動S_&(などを少紙経し、木平式)     「6) 評価結果       1) ケーソン堤     ケーンン堤は基準地震動S_&(などの重である)     「1) たがって、基準地震動S_&(などの低谷し、木平式)       1) ケーンン堤     ケーンン堤は基準地震動S_&(などの低谷し、木平式)     「5) 読者を見かして街島場       1) ケーンシ堤     ケーンン堤は国話したの、浜管密位国を第16回、通利開除 水圧比分在回る気11回に示す。     「1) 「1) 「1) 「1) 「1) 「1) 「1) 「1) 「1) 「1)				の荷重条件について記
地震荷重は,解放基盤表面で定義される基準地震動 S。を,一次元波動論によって地震応答解析モデルの 端位置で評価した地震波を用いて算定する。       地震荷重は,解放基盤表面で定義される基準地震動 S。を,一次元波動論によって地震応答解析モデルの 下端位置で評価した地震波を用いて算定する。       ・対象施設の相違 下端位置で評価した地震波を用いて算定する。         (6) 評価結果 現状の <u>ゲーンン堤、傾斜堤、物揚岸壁</u> に対する評価結果を がす。       (6) 評価結果 現状の <u>荷揚場</u> に対する評価結果を示す。       ・対象施設の相違 [東涼第二] 高根 2 号炉は荷揚場 の評価結果について記 載世2 号炉は荷揚場 の評価結果について記 載している         したがって、基準地震動S。後に書な資産してた」にほぼ当初の位置、高さを確保して、いろものと判断される、我確要な因を第17回に示す。       ・対象施設の用違 (1) クロンン堤		b. 地震荷重	b. 地震荷重	載している
S _s を,一次元波動論によって地震応答解析モデルの下端位置で評価した地震波を用いて算たする。S s を,一次元波動論によって地震応答解析モデルの下端位置で評価した地震波を用いて算たする。S s を,一次元波動論によって地震応答解析モデルの下端位置で評価した地震波を用いて算たする。(6) 評価結果 現状の <u>ケーソン堤,傾斜堤、物揚座電</u> に対する評価結束を 示す。 1) ケーソン堤                                                                                                                                                                                                                                                                                                          		地震荷重は、解放基盤表面で定義される基準地震動	地震荷重は、解放基盤表面で定義される基準地震動	
端位置で評価した地震波を用いて算定する。       下磁位置で評価した地震波を用いて算定する。       「磁位置で評価した地震波を用いて算定する。         (6) 評価結果       現状の <u>ケーソン堤、傾斜堤、物湯岸壁</u> に対する評価結果を示す。       現状の <u>荷揚場</u> に対する評価結果を示す。         (1) ケーソン堤       ケーソン堤は基準地震動S ₅ 後に多少傾斜し、水平残       現状の <u>荷揚場</u> に対する評価結果を示す。         ケーソン堤は基準地震動S ₅ 後に多少傾斜し、水平残       塩変位量は約 20cm、公前直接留変位量は約 20cmである。         したがって、基準地震動S ₅ 後、律波襲来前のケーン       シ炭の状態としては、ほぼ当初の位置、高さを確保していろものと判断される。残留変位図を第 16 図、通測関旗         水圧比分布図を第 17 図に示す。		S _s を,一次元波動論によって地震応答解析モデルの下	S s を,一次元波動論によって地震応答解析モデルの	
(6) 評価結果       (6) 評価結果       ・対象応設の利達         現状のケーソン堤、傾斜堤、物楊岸壁に対する評価結果を示す。       ・対象応設の利達         (1) ケーソン堤       ・カーソン堤は基準地震動S。後に多少傾斜し,水平残       現状の杏樹場に対する評価結果を示す。         ケーソン堤は基準地震動S。後に多少傾斜し,水平残       ・対象応設の利達         留変位量は約 30cm、翁直残留変位量は約 26cm である。       ・大市衣、基準地震動S。後、津波襲来前のケーソ         したがって、基準地震動S。後、津波襲来前のケーソ       ・大児の状態としては、ほぼ当初の位置、高さを確保して         いるものと判断される。残留変位図を第 16 図、過剰間隙         水圧比分布図を第 17 図に示す。		端位置で評価した地震波を用いて算定する。	下端位置で評価した地震波を用いて算定する。	
<ul> <li>現状の<u>ケーソン堤,傾斜堤,物揚岸壁</u>に対する評価結果を示す。</li> <li>現状の<u>ケーソン堤,傾斜堤,物揚岸壁</u>に対する評価結果を示す。</li> <li>現状の<u>荷揚場</u>に対する評価結果を示す。</li> <li>・対象施設の相違 東海第二] 島根2号炉は荷揚場 の評価結果について記 載している</li> <li>したがって、基準地震動S₃後、津波襲来前のケーン ン堤の状態としては、ほぼ当初の位置、高さを確保して いるものと判断される。残留変位図を第 16 図、過剰間隙 水圧比分布図を第 17 図に示す。</li> </ul>		(6) 評価結果	(6) 評価結果	
示す。     1) ケーソン堤     「東海第二]       金田ノン堤     ケーソン堤は基準地震動S。後に多少傾斜し,水平残 留変位量は約 30cm, 鉛直残留変位量は約 26cmである。     「東海第二]       上たがって,基準地震動S。後、津波襲来前のケーソ ン堤の状態としては、ほぼ当初の位置、高さを確保して いるものと判断される。残留変位図を第 16 図、過剰間隙 水圧比分布図を第 17 図に示す。     「東海第二]		現状のケーソン堤、傾斜堤、物揚岸壁に対する評価結果を	現状の荷揚場に対する評価結果を示す。	<ul> <li>対象施設の相違</li> </ul>
1) ケーソン堤       島根 2 号炉は荷揚場         ケーソン堤は基準地震動S ₅ 後に多少傾斜し,水平残       島根 2 号炉は荷揚場         留変位量は約 30cm,鉛直残留変位量は約 26cm である。       したがって、基準地震動S ₅ 後、津波襲来前のケーソ         火堤の状態としては,ほぼ当初の位置,高さを確保して       いるものと判断される。残留変位図を第 16 図,過剩間隙         水圧比分布図を第 17 図に示す。		示す。		【東海第二】
ケーソン堤は基準地震動S _s 後に多少傾斜し,水平残     の評価結果について記       留変位量は約 30cm, 鉛直残留変位量は約 26cm である。     したがって,基準地震動S _s 後、津波襲来前のケーソ       したがって,基準地震動S _s 後、津波襲来前のケーソ     シ堤の状態としては、ほぼ当初の位置、高さを確保して       いるものと判断される。残留変位図を第 16 図,過剰間隙       水圧比分布図を第 17 図に示す。		<ul> <li>1) ケーソン堤</li> </ul>		島根2号炉は荷揚場
<u> </u>		ケーソン堤は基準地震動S。後に多少傾斜し、水平残		の評価結果について記
したがって、基準地震動S _s 後, 津波襲来前のケーソ       シ堤の状態としては、ほぼ当初の位置、高さを確保して       いるものと判断される。残留変位図を第16 図、過剰間隙       水圧比分布図を第17 図に示す。		<u> </u>		載している
<u>ン堤の状態としては、ほぼ当初の位置、高さを確保して</u> いるものと判断される。残留変位図を第 16 図, 過剰間隙 水圧比分布図を第 17 図に示す。		したがって、基準地震動S。後、津波襲来前のケーソ		
<u>いるものと判断される。残留変位図を第 16 図, 過剰間隙</u> <u>水圧比分布図を第 17 図に示す。</u>		ン堤の状態としては、ほぼ当初の位置、高さを確保して		
<u>水圧比分布図を第17図に示す。</u>		いろものと判断される。残留変位図を第16図、過剰間隙		
		水圧比分布図を第17図に示す。		



炉	備考
	・対象施設の相違
	【東海第二】
	島根2号炉は荷揚場
	の評価結果について記
	載している



<b>计</b> 炉	備考
より <u>ほとんど変形せず</u> ,	・対象施設の相違 【東海第二】 島根2号炉は荷揚場
ご残留変形量は <u>約0.1cm</u>	の最終変形量について 記載している
ーフロックの海側及び ころ,いずれも変形量	
における埋戻土中間の	
は <u>生じておらず,ジョ</u> 挙動に悪影響を及ぼし	
<u> 震時におけるセルラー</u> 変形量図を第 9 図及び 5図を第 <u>111</u> 図に示す。	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
				<u>第10図</u> 最大変形量図(最大変形
			第21 図 過剰間隙水圧比分布図	第11図 過剰間隙水圧比分



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>b. 照查結果</u>		・対象施設の相違
	前面鋼管矢板の最大曲げモーメント分布図を第 22		【東海第二】
	図,タイロッドの軸方向伸び量時刻歴図を第23図,控		島根2号炉は荷揚場
	<u>え工鋼管杭 (斜杭) の最大曲げモーメント図を第 24 図,</u>		の最終変形量について
	控え工鋼管杭(斜杭)の最大曲げモーメント位置にお		記載している
	ける軸力を考慮した合成照査図 (M-N図) を第 25 図,		
	控え工鋼管杭(斜杭)の最大軸力分布図を第26図,支		
	持力の照査結果を第6表に示す。		
	前面鋼管矢板は、曲げに対して海底面付近で降伏モ		
	ーメントを超過する。また、前面鋼管矢板を支えるタ		
	イロッドは、降伏時の伸びを超過する。さらに、控え		
	工鋼管杭(斜杭)は、作用軸力が地盤の極限支持力以		
	下であるが、最大曲げモーメント位置における軸力を		
	考慮した合成照査において、降伏モーメントを超過す		
	<u>る。</u>		
	① 前面鋼管矢板		
	第四個的 大橋 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小		
	② <u>タイロッド</u>		
	0.200       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ● </th <th></th> <th></th>		
	第23図 タイロッドの軸方向伸び量時刻歴図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	③ <u>控え工鋼管杭(斜杭)</u>		<ul> <li>・対象施設の相違</li> <li>【東海第二】</li> <li>島根2号炉は荷揚場</li> </ul>
	$\frac{\frac{1}{2} \frac{1}{2} $		の最終変形量について 記載している
	最大モーメント 降伏モーメント 571(kN/m/m) > 499(kN/m/m) ない の 日 し 世 デ ア こ こ に ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (		
	第24図 控え上鋼官机(斜机)の最大曲けモーメント図		
	(押込杭) (引抜杭)		
	image: constrained based of the constrained based of		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 耳	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(2011:12:20 /(X))	(Klip XJ → JL HE)/( (2010, 0.12 hK)) $f(x) = \frac{1}{2} \frac{1}{$		<ul> <li>・対象施設の相違</li> <li>【東海第二】</li> <li>島根2号炉は荷揚場の評価結果について記載している</li> </ul>
	<ul> <li>… 物掛</li> <li>基準</li> <li>曲 に</li> <li>過する</li> <li>抗)に</li> <li>した</li> <li>ての棒</li> <li>いこと</li> <li>い設計</li> </ul>	過岸壁の評価結果 進地震動S _s により、物揚岸壁の前面鋼管矢板は、 だに対して全塑性モーメントに至り、降伏点を超 ち。また、タイロッド並びに、控え工鋼管杭(斜 こついても、降伏点を超過する。 こがって、物揚岸壁は、基準地震動S _s に対して全 構造部材が降伏点を超過し、健全性が確保されな こから耐震対策を実施すると共に、漂流物化しな 十方針とする。	<ul> <li>b. 評価結果</li> <li>荷揚場を構成する荷揚護岸の最終変形量の許容限界</li> <li>については、荷揚護岸自体が漂流物化せず、また、燃料等輸送船の漂流防止装置である係船柱等の支持性能を保持する観点から、「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」に基づき、1</li> <li>加を許容限界値とする。</li> <li>荷揚場は、基準地震動Ssによる地震応答解析から 得られる最終変形量が許容限界値を超えないことを確認した。</li> </ul>	<ul> <li>・対象施設の相違</li> <li>【東海第二】</li> <li>島根2号炉は荷揚場の影響評価について記載している</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>d.</u> 物揚岸壁対策の方針		
	<u>物揚岸壁においては、前面鋼管矢板、タイロッド、</u>		
	並びに控え工鋼管杭の発生断面力を低減させるため		
	<u>に,地盤改良,控え工の増設等による対策を検討し,</u>		
	<u>基準地震動Ss後においても、物揚岸壁が健全な状態を</u>		
	維持するように設計する。		
	また、津波襲来時の越流による前面鋼管矢板背後地		
	<u>盤の洗掘防止に対しては、表層改良等により、津波襲</u>		
	来時の土砂流出等を防止する方針とする。物揚岸壁の		
	対策工イメージを第 27 図に示す。		
	李曹改良笔		
	地盤改良. — du du du		
	Ag2 Ag2 Ag2 As As		
	Ac Ac		
	Ac 控え杭の 増設		
	Ac		
	As As As		
	Ag1 Ag1 Ag1 Ag1 As		
	Km Ag1		
	Km		
	<u>第 27 図 物揚岸壁の対策工イメージ図</u>		
	<ul> <li>(7) 基準地震動S_sによる防波堤への影響評価のまとめ</li> <li>(7) ボボル(素)(</li> </ul>	(7) 基準地震動Ssによる荷揚場への影響評価のまとめ	
	基準地震動Ssが <u>防波堤</u> に及ぼす影響としては,主に <u>傾斜堤</u>	基準地震動Ssが <u>荷揚場</u> に及ぼす影響としては、主に <u>荷揚</u>	・対象施設の相違
	の沈下であるが、地震後の <u>残留変位量</u> の評価結果から、 <u>大規</u>	場の沈下であるが、地震後の最終変形量が許容限界を満足し	【東海第二】
	<u> </u>	<u>ている</u> ことから、基準地震動Ssによる大型船舶の緊急離岸	局限2号炉は荷揚場 の運ば(いた) いったむ
	<u> 動Ss後に航路への影響はないものと考えられる。また、物揚</u>	<u> …</u> の影響はないものと判断される。	の漂流化について記載
	<u> 岸壁においては、対策上を実施する方針とすることにより、</u>		している
	物弱岸壁の健全性を維持することから、基準地震動Ssによる		
	大型船舶の緊急離岸 <u>に関しては</u> ,影響はないものと判断され		
	る。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	4. 津波時評価	4. 津波時評価	
	(1) 評価方法		・対象施設の相違
	<u>津波に対する防波堤の安定性を評価するにあたっては,防</u>		【東海第二】
	<u>波堤を構成する各部材の重量や形状に対して、津波の水位や</u>		島根2号炉は荷揚場
	<u>流速,波圧データに基づき評価を行う。</u>		の漂流化について記載
	<ol> <li>         (</li></ol>		している
	個斜堤の被覆材やブロック類の安定性検討として		
	は、「港湾の施設の技術上の基準・同解説(日本港湾協		
	<u>会, 平成 19 年 7 月)」に準じて, イスバッシュ式*1を</u>		
	用いて評価する。この式は米国の海岸工学研究センタ		
	ーが潮流による洗掘を防止するための捨石質量として		
	示したものであり、水の流れに対する被覆材の安定質		
	量を求めるものである。		
	※1 「港湾の施設の技術上の基準・同解説(日本港湾協会,		
	平成 19 年 7 月)」のイスバッシュ式		
	$M_d = \frac{\pi \rho_r U_d^6}{48g^3 (y_d)^6 (S_r - 1)^3 (\cos \theta - \sin \theta)^3}$		
	<ul> <li>M: 捨石等の安定質量(t)</li> <li>pr: 捨石等の密度(t/m³)</li> <li>U:捨石等の上面における水の流れの速度(m/s)</li> <li>g: 重力加速度(m/s²)</li> <li>y: イスバッシュ(Isbash)の定数 (埋込まれた石は 1.20, 露出した石は 0.86)</li> <li>Sr: 捨石等の水に対する比重</li> <li>θ:水路床の軸方向の斜面の勾配(°)</li> </ul>		
	なお、上式に用いるイスバッシュ係数は、各検討状		
	態において設定するものとし、基準津波襲来時におい		
	ては,マウンド被覆材が露出した状態として 0.86 とす		
	<u>る。また、基準津波襲来後の状態においては、海底表</u>		
	層の液状化による緩い状態の地盤面に落下し埋もれる		
	<u>ことから,イスバッシュ係数は1.20と設定する。</u>		
	<u>2) ケーソン堤</u>		
	<u>ケーソン堤については、「港湾の施設の技術上の基</u>		
	準・同解説(日本港湾協会,平成19年7月)」の滑動,		
	転倒**2 に基づく安定性の評価並びにイスバッシュ式に		
	<u>よる漂流物化の評価を行う。なお、津波波力は、「防波</u>		
	堤の耐津波設計ガイドライン(国土交通省,平成 27 年		
	<u>12月)」の式^{*3}を用いる。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	※2 「港湾の施設の技術上の基準・同解説(日本港湾協会,		・対象施設の相違
	平成19年7月)」の滑動,転倒照査式		【東海第二】
			島根2号炉は荷揚場
	○堤体の滑動照査式		の漂流化について記載
	$f_d \left( W_d - P_{B_d} - P_{U_d} \right) \geq \gamma_a P_{H_d}$		している
	f: 壁体底面と基礎との摩擦係数		
	₩:堤体の重量 (kN/m)		
	P _B :浮力 (kN/m)		
	P _U :津波の揚圧力 (kN/m)		
	P _H :津波の水平波力 (kN/m)		
	γ _a :構造解析係数		
	○堤体の転倒照査式		
	$a_1 W_d - a_2 P_{B_d} - a_3 P_{U_d} \ge \gamma_a a_4 P_{H_d}$		
	W:堤体の重量 (kN/m)		
	P _B :浮力 (kN/m)		
	P _U :津波の揚圧力 (kN∕m)		
	<i>P_H</i> :津波の水平波力 (kN/m)		
	<i>a₁~a₄</i> :各作用のアーム長 (m)		
	$\gamma_a$ :構造解析係数		
	※3 「防波堤の耐津波設計ガイドライン(国土交通省,平成		
	27 年 12 月)」の津波波力算定式		
	$\eta * = 3.0a_I$		
	$p_1 = 3.0 \rho_0 g a_1$		
	$p_u = p_1$		
	x, 整水王上の池匠佐田古さ ()		
	$a_I$ :八別律彼の靜水面上の尚さ(派幅)(四)		
	$\rho_{0g}$ : (一) 中心 (小) 中心 (小) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		
	$P_1$ ・ 前小山にわける似江 独皮 (KN/ III) カー・ 直立 廃前 面下 逆に なける 坦 広力 (LN $/m^2$ )		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>シミュレーションの津波高さ</u> (港外側) マ ー ア ー ア ー ア ー (港内側)		<ul> <li>・対象施設の相違</li> <li>【東海第二】</li> <li>島根2号炉は荷揚場</li> <li>の漂流化について記載</li> <li>している</li> </ul>
	<ul> <li>(2) 傾斜堤の津波時安定性</li> <li>1) 基準津波襲来時(1波目)での限界流速</li> <li>イスバッシュ式を適用する防波堤マウンドの被覆材</li> <li>等の種類とその重量及び算定した限界流速について第</li> <li>7 表に示す。なお,基準津波襲来時においては、マウンド被覆材が露出した状態としてイスバッシュ係数は、0.86とする。</li> </ul>		
	第7表 被覆材等の安定性に係る限界流速(1)           部位         規格         限界流速 ((An [*] y2x式より算定))           ケーソン         5,000t/基((防波堤堤頭部))         16.3m/s           上部工         600t/基((傾斜堤部))         12.0m/s           32t根固め方塊ブロック         7.2m/s           30t被覆ブロック         5.5m/s           さガンマエル         2.5m/s           2t ガンマエル         2.5m/s           2t ガンマエル         2.5m/s           ブロック         5.5m/s           オガンマエル         2.5m/s           2t ガンマエル         2.6m/s           2t ガンマエル         2.8m/s           2t ガンマエル         2.8m/s           25t テトラボット         3.7m/s           基礎和石 100kg/個以下         1.1m/s           基礎菜石 1000kg/個         1.9m/s           被覆石 500~1000kg/個         1.7m/s           グラベルマット等 100~500kg/個         1.3m/s		
	2) 基準津波襲来後(2波目以降)の限界流速 <u>イスバッシュ式を適用する防波堤マウンドの被覆材</u> 等の種類とその重量及び算定した限界流速について第 8表に示す。なお、基準津波襲来後の状態においては、 海底表層の液状化による緩い状態の地盤面に落下し埋 もれることから、イスバッシュ係数は、1.20とする。		
	<u>第8表 被覆材等の安定性に係る限界流速(2)</u>		

		C mu
i i i i i i i i i i i i i i i i i i i	部位         規格         限界流速 (イスベッ2>式より算定)           ケーソン         5,000t/基(防波堤堤頭部)         22.7m/s           上部工         600t/基(傾斜堤部)         16.8m/s           32t 根固め方塊ブロック         10.1m/s           30t 被覆ブロック         10.0m/s           8t ガンマエル         8.0m/s           5t ガンマエル         6.4m/s           16t テトラポット         9.9m/s           25t テトラポット         9.6m/s           基礎和石 100kg/個以下         3.6m/s           基礎菜石 1000kg/個         5.5m/s           グラベルマット等 100~500kg/個         4.1m/s	<ul> <li>・対象施設の相違</li> <li>【東海第二】</li> <li>島根2号炉は荷揚場</li> <li>の漂流化について記載</li> <li>している</li> </ul>
3	<ul> <li>         ・敷地前面海域の流速          ・基準津波に対して、防波堤がある場合とない場合及         が耐震評価結果から保守的に防波堤を1m汰下させた         場合の3 つのケースで津波シミュレーションを実施し         流速を確認した。その結果、防波堤範囲における最大         流速は、防波堤がある場合の約7.0m/s であることか         ら、基準津波襲来時(1 波目)においては、30t 被覆ブ         ロック以下の重量の被覆材については、安定性が確保         されずに漂流物化する。一方、基準津波襲来後(2 波         日以降)においては、海底表層の液状化による緩い状         態の地盤面に落下し埋もれることから、限界流速が増         加するため、2t 被覆ブロック以下の重量のマウンドの         被覆材については、安定性が確保         されずに漂流物化する。      </li> <li>         動地前面海域における最大流速分布図を第 28 図~         第 30 図、漂流物化の可能性があるマウンドの被覆材に         ouc第 9 表及び第 31 図に示す。      </li> <li>         \$ 28 図 前面海域における最大流速分布図(防波堤あり)         </li> </ul>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	3.8 3.7 3.6 3.5 3.4 3.8 3.3 3.2 3.3         3.9 3.9 3.9 4.0 3.6 3.6 3.4 3.5 3.5         4.3 4.3 4.1 4.2 8.7 41 3.9 3.7 3.7         5.0 5.1 4.9 5.9 4.2 3.9 4.1 3.9 3.8         5.0 5.4 4.6 6.4 4.0 4.0 4.3 3.9 3.8         5.0 5.4 4.6 6.4 4.0 4.0 4.3 3.9 3.8         5.0 5.4 4.6 6.4 1.0 2.2 8.6 3.9 3.1         取用的面面接取上述 (m/s)         取水口 施設付近最大講達(m/s)         取水口 施設付近最大講達(m/s)         第 29 図 前面海域における最大流速分布図(防波堤なし)		<ul> <li>・対象施設の相違</li> <li>【東海第二】</li> <li>島根2号炉は荷揚場</li> <li>の漂流化について記載</li> <li>している</li> </ul>
	3.9 3.9 3.8 3.5 3.6 4.6 4.1 3.8 3.7 4.1 4.1 4.2 3.7 50 6.3 3.5 3.7 3.7 4.6 4.7 4.6 5.8 5.9 2.8 3.9 3.8 3.8 5.1 5.3 5.3 6.6 6.9 2.6 41 4.0 3.9 4.9 5.1 4.7 3.2 3.7 4.0 4.6 4.0 3.9 4.5 3.3 3.5 4.1 2.5 2.2 5.1 4.3 取水口鑑設付近最大演達(m/s) 取水口鑑設付近最大演達(m/s)		
	第9表 漂流物化の可能性があるマウンドの被覆材            部位           規格             被覆ブロック         2t ガンマエル(北,南側防波堤等の一部範囲)             基礎割石 100kg/個以下             基礎栗石 1000kg/個             被覆石 500~1000kg/個             グラベルマット等 100~500kg/個		
	(港外側)       (福外側)       (福井)       (福井)		
	<ul> <li>(3) ケーソン堤の津波時安定性</li> <li>ケーソン堤における基準津波時の津波波力を「防波堤の耐 津波設計ガイドライン(国土交通省,平成27年12月)」の式</li> <li>^{※3}を用いて算定し,「港湾の施設の技術上の基準・同解説(日 本港湾協会,平成19年7月)」^{※2}に準じて,ケーソン堤の滑</li> </ul>		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	動、転倒照査を行った。		・対象施設の相違
	ケーソン堤位置の最大津波高さは,南防波堤で T.P.+13m		【東海第二】
	程度であり、滑動、転倒照査の結果、安定性は確保されない		島根2号炉は荷揚場
	結果となった。ケーソン堤照査図を第32図に示す。		の漂流化について記載
			している
	< 航路側 >		
	<u>第32図 ケーソン堤照査図</u>		
	また、イスバッシュ式による安定性の評価は、第7表、第		
	8表に示す通り、限界流速が最大流速を上回ることから、ケ		
	ーソンは漂流物化しないものと判断される。		
	<u>※2:添付18-32ページで示した式。</u> <u>※3:添付18-33ページで示した式。</u>		
	(4) 防波堤漂流物の重要施設への到達の可能性評価		
	1) 傾斜堤		
	傾斜堤においては、基準津波襲来後(2 波目以降)		
	<u>に、海底表層の液状化による緩い状態の地盤面に落下</u>		
	し埋もれることから,限界流速が増加するため,2t被		
	覆ブロック以下の重量のマウンドの被覆材について		
	は、安定性が確保されずに漂流物化するものと考える。		
	しかし、取水施設付近での最大流速は概ね 4m/s 程度		
	であり限界流速を下回ることから、マリントの彼復材		
	<u>か保流物化したとしても、これらの施設へ到達するり</u> 能性は低いと考えこれてが、促空的に運法物化すて可		
	<u>能性は低いと考えられるか,休寸的に保加物化する円</u> 能性がなるたのとして取り扱う		
	<u>肥けれるののものとして取り扱う。</u> 2) ケーソン堤		
	<u>- / / / / / / / / / / / / / / / / / / /</u>		
	水施設から直線距離にして 350m~550m 程度の離隔距		
	離がある。ケーソン堤に関する既往の津波被災事例※4		
	を調査した結果、津波による強い流れによって防波堤		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	のマウンドが大きく洗掘・流出し、かつ津波による強		・対象施設の相違
	い水平力が原因でケーソン堤が転倒し,場合によって		【東海第二】
	は回転しながらの移動が推定されるとされている。ま		島根2号炉は荷揚場
	<u>た,津波によるケーソン堤の移動距離は,最大 150m 程</u>		の漂流化について記載
	<u>度の事例(東北地方太平洋沖地震,田老漁港,1,000t</u>		している
	級ケーソン)が報告されている。		
	<u>東海第二発電所のケーソン堤は,5,000t 級の重量構</u>		
	造物であり、取水施設まで十分な離隔距離があること		
	及びイスバッシュ式による評価では限界流速が最大津		
	波流速を上回っているため,漂流物として取水施設ま		
	での到達を考慮しない。第33図に取水設備からの離隔		
	距離図を示す。		
	第 33 図 取水設備からの離隔距離図         第 33 図 取水設備からの離隔距離図         ※4 水産総合研究センター 震災復興に向けた活動報告集1, 平成 24 年 3 月,東日本大震災による漁港施設の地震・津 波被害に関する調査報告(第1報),独立行政法人 水産総 合研究センター         3) 物揚岸壁         物揚岸壁は、耐震性を確保する対策工及び岸壁背後	入力津波が荷揚場に及ぼす影響としては、荷揚場の漂流物化	<ul> <li>・対象施設の相違</li> <li>【東海第二】</li> </ul>
	地の洗掘防止対策工を実施することから、物揚岸壁構	が考えられる。	島根2号炉は荷揚場
	造部材並びに背後地の土砂の漂流物化はないものと考	<u>荷揚場は、前述のとおり、基準地震動Ss後でも、ほぼ当初</u>	の漂流化について記載
	 える。	の位置及び高さを確保しており、荷揚場背後地はコンクリート	している
		舗装等の洗掘防止対策工を実施することから、荷揚場構造部材	
		並びに背後地の土砂の漂流物化はないものと考える。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(5) 取水施設における取水機能の成立性		・対象施設の相違
	1) 取水口		【東海第二】
	取水口周りの概念図を第34図に示す。		島根2号炉は荷揚場
	取水口の吞口は8口あり,幅42.8m,高さ10.35m(1		の漂流化について記載
	口当たりの内部寸法は幅 4.1m, 高さ 8.35m) である。		している
	また, 呑口下端高さは T.P6.04m, 呑口前面海底面		
	<u>高さは T.P6.89m であり,取水口前面(カーテンウ</u>		
	<u>ォール外側)には、天端高さ T.P4.9m の貯留堰を設</u>		
	置する。		
	仮にマウンドの被覆材が漂流物化し、取水口周りに		
	到達したとしても貯留堰やカーテンウォールの鋼管杭		
	等の存在, 呑口前面海底面高さ(T.P6.89m)と吞口		
	下端高さ(T.P6.04m)に約85cmの段差があること		
	から、漂流物が取水口前面又は固定バースクリーンへ		
	<u>到達し難いことは明らかであるが、保守的にマウンド</u>		
	の被覆材が漂流物化し、取水口前面に堆積した場合の		
	取水機能を検討する。		
	マウンドの被覆材が貯留堰から固定式バースクリー		
	ンまで堆積したと仮定し、マウンドの被覆材(100kg		
	<u>/</u> 個の捨石程度)の透水係数を 10 ² cm/s ^{※5} として算出		
	される通水量は約 14m ³ /s ^{※6} となる。ここで, マウンド		
	の被覆材の石材は砂利より間隙が大きく、透水性は高		
	いと考えられるが、保守側に砂利相当の透水係数を用		
	いた。		
	<u>また,非常用ポンプ7台の必要取水量は,1.2m³/s[※]</u>		
	であり、被覆材の堆積を仮定した場合の通水量が上回		
	ることから、取水機能が失われることはない。		
	B ロ前面海底面高さ T.P-6.89m ターテン ウェール P ローン B ロード編高さ T.P-6.04m アーク・ B ロード編高さ T.P-6.04m アーク・ B ロード編高さ T.P-6.04m アーク・ B ロード編高さ T.P-6.04m アーク・ B ロード編高さ T.P-6.04m F ロード編高さ T.P-6.04m F ロード編高さ T.P-6.04m F ロード ロード ロード ロード ロード ロード ロード ロード		
	<u> 用 34 凶 取水口向りの概念凶</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			・対象施設の相違
	<u>※5 マウンドの被覆材の透水係数:</u>		【東海第二】
	「水理公式集(土木学会) P375 表 1.1」より		島根2号炉は荷揚場
			の漂流化について記載
	表 1.1 透水係数の概略値と決定法 ⁵ * k (cm/s) 10 ² 1.0 10 ⁻² 10 ⁻⁴ 10 ⁻⁶ 10 ⁻⁸		している
	土砂の種類 きれいな砂利 きれいな砂利 御砂、シルト、 難透水性土 きれいな砂利 砂とシルトの混合砂 粘 土		
	法 定 法 揭水試驗法, 定水位法, 実驗公式   麥 水 位 法		
	※6 捨石の堆積箇所における通水量:		
	「水理公式集(土木学会) P383 表 1.5」より		
	• 街 水 味 キ ト の 助 水 县 ハ ゴ ※ 左式は水路両面からの流入量のため,算出は		
	・ 未 小 咱 さ よ の 取 小 重 ム 氏 1/2 倍 と す る。 指名の 遺伝 係数 k=1×10 ² cm/s た/田2 - h ² ) · l		
	Q =		
	(解説)本式は準一様 流の仮定より得られ。 H=(T.P0.81m)-(T.P6.89m)=6.08m h=(T.P5.66m)-(T.P6.89m)=1.23m		
	Dupuit-Forchheimer の式と呼ばれている。 7////////////////////////////////////		
	- L=42.33m 流路長(貯留堰~スクリーンの距離)		
	$Q = \frac{k \times (H^2 - h^2) \times \ell}{L} \times \frac{1}{2} = \frac{1 \times 10^2 \times 10^{-2} \times (6.08^2 - 1.23^2) \times 32.8}{42.33} \times \frac{1}{2} = 13.7 \mathrm{m^3/s}$		
	<u>※7</u> 非常用ポンプ必要取水量:		
	ポンプを新 空放法号(パイト) 運転会教(会) 取水量合計		
	истиновая (ш/л) / детиновая (ш/л) (m³/n) (m³/nin)		
	次留奈麻玉永滞不永ホンノ         88b         4         3, 544         59.07           非常用ディーゼル発電機用海水ボンブ         273         2         546         9.10		
	高圧炉ムスプレイ系ディーゼル発電機用海水ボンプ         233         1         233         3.88		
	合計         4,323         72.05		
	必要取水量:72.05m°/min=1.2m°/s		
	<ol> <li>中京11年</li> </ol>		
	町留地は、取水日の則面に設直されており、50tの 洒法物の海空芸者な老虎した記記ししていて、にに見		
	<u> </u>		
	<u>人里軍の保祇物である2t 彼復ノロック 沙餌矢したと</u> してま - 招悔はしない、また、一点、じの地運せまご運		
	しても、損壊はしない。また、マワンドの被復材が漂		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	流物化し、貯留堰を越えて貯留堰内に流入する可能性		・対象施設の相違
	は低いと考えられるものの、保守的に貯留堰内に到達		【東海第二】
	したものと仮定し、引き波時の貯留機能を検討する。		島根2号炉は荷揚場
	<u>被覆材が貯留堰からスクリーンまでの約 40m 範囲を</u>		の漂流化について記載
	<u>埋めつくしたとしても,スクリーン内部の貯留量が約</u>		している
	<u>517m³(第 36 図)であり,引き波時間約 3 分間の非常</u>		
	<u>用ポンプ必要取水量約 220m³(≒72.05m³/min×3min)</u>		
	を確保することが出来る。		
	貯留堰の有効容量平面図を第35図に,有効容量縦断		
	<u> 面図を第36図に, 貯留堰前面の引き波の継続時間を第</u>		
	<u>37 図に示す。</u>		
	捨石の堆積を仮定すろ範囲		
	42. 33m 35. 40m		
	fabra de gre de mental         1,008,6m²		
	<u> </u>		
	<ul> <li>(面積×高さ) - (スロッシングによる溢水量)</li> <li>有効容量算定範囲 高さ:0.76m</li> <li>= 517m³</li> <li>(T.P4.9m) - (T.P5.66m)</li> </ul>		
	第36図 有効容量縦断面図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			・対象施設の相違
	<u>※8 スロッシングによる溢水量:</u>		【東海第二】
	「貯留堰の設置位置及び天端高さの決定の考え方」から引		島根2号炉は荷揚場
	<u>用</u>		の漂流化について記載
			している
	<pre>     full is a constrained in the second is a constrained</pre>		
	第 37 図 引き波の継続時間		
	<u>3) SA用海水ピット取水塔</u>		
	SA用海水ピット取水塔の平面図を第38図,断面図		
	を第39図に示す。SA用海水ピット取水塔は、海底面		
	からRC構造の立坑が1m程度突出した構造であり、立		
	<u> 坑内には鋼製の通水管を設置している。</u>		
	当該取水塔は、50tの漂流物の衝突何重を考慮した 記記したている。佐に見去手見の運送物でたるの。地震		
	<u> </u>		
	<u>ノロックが個矢したとしても、損壊しない。</u> 水株上面にけ、酒滋物の流入防止として販水株の側		
	<u> </u>		
	の鋼材により開口を設けた蓋を設置するため、漂流物		
	<u></u>		
	状:立方体1辺 約32cm~35cm)のものに対しても,		
	<u>進入を防止出来る。</u>		
	また、立坑内に設置する通水管の取水部は、ピット		
	底部から約12m上方に,複数個設置し,その開口は下		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版	) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	向きとすることでピット上部の格子蓋を通過した漂流		・対象施設の相違
	物の直接的な侵入及び堆積物の進入を抑止している。		【東海第二】
	更に,漂流物化するマウンド被覆材が,SA用海水		島根2号炉は荷揚場
	ピット取水塔周辺を覆いつくしたとして、SA用海水		の漂流化について記載
	ピットの取水機能を検討する。		している
	<u>漂流物化したマウンドの被覆材が, SA用海水ピッ</u>		
	ト取水塔を中心に円形に堆積したと仮定し、マウンド		
	<u>の被覆材(100kg/個の捨石程度)の透水係数を 10²cm</u>		
	<u>/s^{※5}として算出される通水量は約1.5m³/s^{※9}となる。</u>		
	ここで、マウンドの被覆材の石材は砂利より間隙が大		
	<b>きく,透水性は高いと考えられるが,保守側に砂利相</b>		
	<u>当の透水係数を用いた。また、SA用海水ピット取水</u>		
	塔の必要取水量は0.75m ³ /s ³⁰ であり,マウンドの被覆		
	材の堆積を仮定した場合の通水量が上回ることから,		
	<u>取水機能が失われることはない。SA用海水ピット取</u>		
	水塔部の漂流物堆積イメージ図を第40図に示す。		
	<u>※9 捨石の堆積箇所における通水量:</u> 「水理公式集(土木学会) P378 表 1.3」より ・通常井戸の取水量公式 $\begin{aligned}                                    $		
	$Q = \frac{n \times k \times (n - n_0)}{2.3 \times \log_{10}(R/r_0)} = \frac{n \times 1 \times 10^{-1} \times (10^{-1} \times (1.59^{-0}))}{2.3 \times \log_{10}(129/2.85)} = 1.593 \mathrm{m}^3/\mathrm{s}$		
	2,000 / 11-0.10 / 5		



·炉	備考
	・対象施設の相違
	【東海第二】
	島根2号炉は荷揚場
	の漂流化について記載
	している

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		(6) 津波による防波堤損壊の影響評価のまとめ		・対象施設の相違
		基準津波が防波堤に及ぼす影響としては、防波堤のマウン		【東海第二】
		ドの被覆材の漂流物化が考えられるが、取水施設周辺の流速		島根2号炉は荷揚場
		が小さいことから取水施設へ到達する可能性は低いものと考		の漂流化について記載
		えられる。		している
		防波堤損壊により漂流物化したマウンドの被覆材が取水施		
		設に到達したとしても、各取水施設は漂流物の衝突に対して		
		十分な耐力を確保している。また、仮にマウンドの被覆材が		
		取水施設の周辺に堆積したとしても、マウンドの被覆材の透		
		水性能が高いことから、取水施設は取水機能を満足する。し		
		たがって、防波堤損壊により取水施設が取水機能を失うこと		
		はないものと判断する。		
		漂流物による各取水施設への影響評価結果を以下に示す。		
		・取水口において,堆積したマウンド被覆材の通水量約 14m ³		
		/s が,非常用ポンプ7台の必要取水量1.2m ³ /sを上回る		
		ため、取水口の取水機能を満足する。		
		<ul> <li>・貯留堰において、貯留堰からスクリーンまでの範囲をマウ</li> </ul>		
		ンド被覆材が埋めつくしたとしても、スクリーン内部の貯		
		留量約517m ³ により,引き波時間約3分間の非常用ポンプ		
		必要取水量約 220m ³ を確保しており,引き波時の取水機能		
		を満足する。		
		<ul> <li>・SA用海水ピット取水塔において、堆積したマウンド被覆</li> </ul>		
		材の通水量約1.5m³/s が,SA用海水ピット取水塔の必要		
		取水量 0.75m³/s を上回るため,SA用海水ピット取水塔		
		の取水機能を満足する。なお、SA用海水ピット取水塔内		
		に堆積する砂については, 定期的な点検を実施し, 必要に		
		応じて排砂することとする。		
			5. 地震後の荷揚場の津波による影響評価のまとめ	・資料構成の相違
			以上のことから、荷揚場は基準地震動Ss並びに入力津波に	【東海第二】
			<u>対する耐性を有しており、荷揚場の損傷が想定されないことか</u>	島根2号炉は荷揚場
			<u>ら、取水施設である取水口に波及的影響を及ぼす可能性は低い</u>	の影響評価についてま
			ものと判断する。	とめを記載している

<u>実線</u>・・設備運用又は体制等の相違(設計方針の相違) 波線・・記載表現,設備名称の相違(実質的な相違なし)

### まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料39〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		添付資料 39	
		防波壁通路防波扉の設計及び運用対応について	・資料構成の相違
			【柏崎 6/7, 東海第二】
		1. 防波壁通路防波扉の設計について	島根2号炉は防波扉
		津波防護施設である防波壁通路防波扉(以下「防波扉」という。)	の設計及び運用対応に
		については, 耐震 S クラスの設備とし, 人力での開閉が可能な設	ついて添付資料を作成
		計とし、さらに発電機又は常用電源により開閉が可能な設計とす	
		る。	
		防波扉の人力による閉止操作に係る時間は最大 30 分程度(電動	
		による閉止操作に係る時間は最大10分程度)であり、日本海東縁	
		部に想定される地震による津波の到達時間(約110分)を十分に	
		下回る。	
		また、開閉状態の確認のため、防波扉に対して扉設置場所及び	
		中央制御室に警報ブザーを設置することにより,「扉設置場所での	
		"開"状態の認知性向上」及び「中央制御室での開閉状態の監視」	
		を実施し、防波扉の閉め忘れを防止する。	
		2.防波扉の運用管理について	
		防波扉については、常時閉運用とし、現場に注意表示をし、各	
		種手順書に明記するとともに、開放後の確実な閉操作、閉止され	
		ていない状態が確認された場合の閉止操作を確実に実施するため	
		の運用管理を行う。また、開放の際には、津波注意報、津波警報	
		又は大津波警報発令時に速やかに閉止できる人員を確保すること	
		としている。	
		具体的な運用について、積雪、風等の様々な環境条件下でも確	
		実に閉止できることとするための配慮事項及び設備の保守・点検	
		の方針を以下に示す。	
		・防波豆は党時間演田とし 佐業上東両通過が必要な提合等に	
		の政府は市所相連加とし、「F末上平阿迪迪が必要な物日寺に け 一時的に開放し 車両通過後け凍やかに閉止すス ただ	
		し、 車両が連続して通過する場合等け 凍やかに閉止できる	
		な制を維持することを条件に	
		•防波扉開放時に 津波注音報 津波藝報又け大津波藝報が発	
		今された場合け 防波辟外側の人員が退避後 凍やかに戻を	
			1

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島	根原子力発電所 2号炉	備考
				閉止する。敷地近	丘傍の震源による津波が発生した場合は、人	
				員の安全を優先し	、,可能な範囲で扉の閉止操作を行う(海域	
				活断層から想定さ	ちれる地震による津波は、敷地への遡上はな	
				( ۱ ی _ا		
				・防波扉についてに	は,人員が出入りする昇降設備(梯子など)	
				を設置し、車両カ	³ 通過する等の扉開放が必要な場合以外は,	
				扉を開放しない運	運用とする。また、防波壁の内側と外側の両	
				方から開閉操作が	「できるよう設計する。	
				・雪や風等に関する	5警報が発出されている場合には原則開操作	
				を行わないことと	こするなど、閉止が困難となる可能性がある	
				場合に開操作を行	行わない運用を定めることとする。	
				・日本海東縁部に想	思定される地震による津波の到達までに、手	
				動ウインチを用い	いた操作により確実に閉止可能な運用とす	
				る。また,より水	<密性を確保するため, ロックを設ける。	
				・設備の保守点検に	こついては、各部位の要求性能等を踏まえ、	
				点検項目や点検力	5法等を定めて実施するものとする。また,	
				確実に開閉可能で	であることを維持するため、動作を確認する	
				点検を実施する。		
				・交換が必要な部品	品が発生した場合には、作業中に防波扉が連	
				続して開放状態に	こならないような配慮として、代替品を準備	
				するなどの対応を	≥行う。	
				3.防波扉の開放作業	後について	
				防波扉は常時閉運用	目であるが、作業上車両通過が必要な場合等	
				に一時的に開放を許容	Fする運用とする。防波扉の開放を伴う作業	
				は、以下のとおりであ	53。	
				<ul> <li>・荷揚場作業実施時</li> </ul>	:使用済燃料輸送作業(車両が連続して通過)	
					する作業)	
					LLW 搬出作業(車両が連続して通過する作	
					業)	
					デリッククレーン点検作業	
					防舷材設置作業 等	
				·重大事故等時	: 海上モニタリング	
					放射能測定装置による水中の放射性物質	
					の濃度測定	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		シルトフェンスによる海洋への放射性物	
		質の拡散抑制	
		海を水源とした送水及び補給 等	
		・その他 :発電所長が認めたもの	

		実線・・設備運用又は体制	等の相違(設計方針の相違)
	まとめ資料 比較表 〔第5条 津波による損傷の防	止別添2〕 波線・・記載表現、設備名	称の相違(実質的な相違なし)
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所6 号及び7 号炉		島根原子力発電所2号炉	
運用, 手順説明資料		運用,手順説明	
津波による損傷の防止		津波による損傷の防止	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20 カ	東海第二発電所(2018.9.12版)	島根原子力発電所 2号	
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------	-----------------	
第5条 津波防護		<u>第5条</u> 津波防護	
Image: series of the series			



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
設計基準に係る運用対策等		設計基準に係る運用対策等	・津波に対する防護対策
2. 設置許可基本(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2			の相違 の 相違

		実線・	・設備運用又は体制等の	1違(設計方針の相違)
	まとめ資料 比較表 「第5条 津波による損傷の防止	波線・	・記載表現,設備名称の株	目違(実質的な相違なし)
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12版)	島根原子力発電所 2	2号炉	備考
柏崎刈羽原子力発電所6 号及び7 号炉	添付資料2	<u> </u>	<u> </u>	
耐津波設計において	耐津波設計における現場確認プロセスについて	耐津波設計におけ	5	
現場確認を要するプロセス		現場確認を要するプロセス	えについて	
目 次		且次		
1. はじめに	1	1. はじめに		
2. 遡上解析に関する敷地モデルの作成プロセス		2. 遡上解析に関する敷地モデルの作成フ	プロセス	
2.1 基準要求		2.1 基準要求		
2.2 作成プロセス		2.2 作成プロセス		
2.3 現場確認記録の品質保証上の取り扱い		2.3 現場確認記録の品質保証上の取り扱	<u>zv</u>	
2.4 今後の対応		2.4 今後の対応		
3. 耐津波設計に関する入力条件等の設定プロセス		3. 耐津波設計に関する入力条件等の設定	ミプロセス	
3.1 基準要求		3.1 基準要求		
3.2 入力条件等の設定プロセス		3.2 入力条件等の設定プロセス		
3.3 現場確認記録の品質保証上の取り扱い		3.3 現場確認記録の品質保証上の取り扱	夏しい	
3.4 今後の対応		3.4 今後の対応		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. はじめに	1. はじめに	1. はじめに	
耐津波設計を行うに当たって現場確認を要するプロセスとし	耐津波設計を行うに当たって <u>必要となる現場確認について</u> ,	耐津波設計を行うに当たって現場確認を要するプロセスとし	
て、遡上解析に必要となる敷地モデルの作成プロセスと耐津波設	遡上解析に必要となる敷地モデル作成 <u>に関する現場確認</u> プロ	<u> 二</u> , 遡上解析に必要となる敷地モデル <u>の</u> 作成プロセスと耐津波設	
計の入力条件等(各施設及び設備の配置,寸法等)の設定プロセ	セスと,耐津波設計の入力条件等(配置,寸法等)の現場確認	計の入力条件等(各施設及び設備の配置,寸法等)の設定プロセ	
スの2 つがある。現場確認を含めたこれらのプロセスをそれぞれ	プロセスの2つに分けて以下に示す。	スの2つがある。現場確認を含めたこれらのプロセスをそれぞれ	
以下に示す。		以下に示す。	
	2. 津波遡上解析に関する敷地モデル作成に関する現場確認プロ		
2. 遡上解析に関する敷地モデルの作成プロセス	セスについて	2. 遡上解析に関する敷地モデルの作成プロセス	
2.1 基準要求	2.1 基準要求	2.1 基準要求	
【第五条】		【第五条】	
設置許可基準規則第五条(津波による損傷の防止)においては,	設置許可基準規則第5条 (津波による損傷の防止) において,	設置許可基準規則第五条(津波による損傷の防止)においては,	
設計基準対象施設は、その供用中に当該設計基準対象施設に大き	設計基準対象施設は、その供用中に当該設計基準対象施設に大	設計基準対象施設は、その供用中に当該設計基準対象施設に大き	
な影響を及ぼすおそれがある津波に対して安全機能が損なわれる	きな影響を及ぼすおそれがある津波に対して安全機能が損な	な影響を及ぼすおそれがある津波に対して安全機能が損なわれる	
おそれがないことを要求されている。また,解釈の別記3 により,	われるおそれがないことを要求している。また、解釈の別記3	おそれがないことを要求されている。また,解釈の別記3により,	
遡上波の到達防止に当たっては、敷地及び敷地周辺の地形とその	により, 遡上波の到達防止に当たっては, 敷地及び敷地周辺の	遡上波の到達防止に当たっては,敷地及び敷地周辺の地形とその	
標高などを考慮して、敷地への遡上の可能性を検討することが規	地形及びその標高などを考慮して,敷地への遡上の可能性を検	標高などを考慮して、敷地への遡上の可能性を検討することが規	
定されている。	討することを規定している。	定されている。	
当該基準要求を満足するにあたっては,「基準津波及び耐津波	当該基準要求を満足するに当たっては、「基準津波及び耐津	当該基準要求を満足するに当たっては、「基準津波及び耐津波設	
設計方針に係る審査ガイド」において,遡上解析上,影響を及ぼ	波設計方針に係る審査ガイド」において, 遡上解析上, 影響を	計方針に係る審査ガイド」において、遡上解析上、影響を及ぼす	
すものの考慮が要求されており、具体的には、敷地及び敷地周辺	及ぼすものの考慮を要求しており,具体的には,敷地及び敷地	ものの考慮が要求されており、具体的には、敷地及び敷地周辺の	
の地形とその標高、伝播経路上の人工構造物を考慮した遡上解析	周辺の地形とその標高, 伝播経路上の人工構造物を考慮した遡	地形とその標高、伝播経路上の人工構造物を考慮した遡上解析を	
を実施することとしている。	上解析を実施することとしている。	実施することとしている。	
2.2 作成プロセス	2.2 敷地モデル作成プロセス	2.2 作成プロセス	
上記要求事項を満足するために, <u>第2-1</u> 図に示すフローに従っ	上記要求事項を満足するために, 第1図に示すフローに従っ	上記要求事項を満足するために,図1に示すフローに従って敷	
て敷地モデルを作成した。次の(1)~(4)にプロセスの具体的内容	て敷地モデルを作成した。次の(1)~(4)にプロセスの具体的	地モデルを作成した。次の(1)~(4)にプロセスの具体的内容を示	
を示す。	内容を示す。	す。	
(1) 敷地及び敷地周辺の地形とその標高のモデル化	(1)敷地及び敷地周辺の地形とその標高のモデル化	(1) 敷地及び敷地周辺の地形とその標高のモデル化	
敷地及び敷地周辺の地形とその標高について、QMS 図書とし	敷地及び敷地周辺の地形とその標高について、QMS図書と	敷地及び敷地周辺の地形とその標高について、QMS図書と	
て維持管理されている図面等を確認し、遡上域のメッシュサイ	して維持管理されている図面等を確認し, 遡上域の格子サイズ	して維持管理されている図面等を確認し、 遡上域のメッシュサ	
ズを踏まえて、適切な形状にモデル化を行った。	を踏まえて、適切な形状にモデル化を行った。	イズを踏まえて、適切な形状にモデル化を行った。	
(2) 津波伝播経路上の人工構造物の調香	(2)津波伝播経路上の人工構造物の調査	(2) 津波伝播経路上の人工構造物の調査	
敷地において津波伝播経路上に存在する人工構造物として	敷地において伝播経路上に存在する人工構造物として抽出	敷地において津波伝播経路上に存在する人工構造物として	
抽出すべき対象物をあらかじめ定義し調査を実施した。	すべき対象物をあらかじめ定義し調査を実施した。	抽出すべき対象物をあらかじめ定義し調査を実施した。	

5条-別添3-2

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
具体的な対象物は, 耐震性や耐津波性を有する恒設の人工構	具体的な対象物は、津波の遡上経路に影響する護岸などの恒	具体的な対象物は, 耐震性や耐津波性を有する恒設の人工構	
造物である。その他の津波伝播経路上の人工構造物について	設の人工構造物及び耐震性や耐津波性を有する建物などの恒	造物である。その他の津波伝播経路上の人工構造物について	
は、構造物が存在することで津波の影響軽減効果が生じ、遡上	設の人工構造物である。その他の津波伝播経路上の人工構造物	は,構造物が存在することで津波の影響軽減効果が生じ, 遡上	
範囲を過小に評価する可能性があることから,遡上解析上,保	については,構造物が存在することで津波の影響軽減効果が生	範囲を過小に評価する可能性があることから, 遡上解析上, 保	
守的な評価となるよう対象外とした。	じ, 遡上範囲を過小に評価する可能性があることから, 遡上解	守的な評価となるよう対象外とした。	
	析上,保守的な評価となるよう対象外とした。		
a. 図面等による調査	a. 図面等による調査	a. 図面等による調査	
上記で定義した対象物となる既設の人工構造物について	上記で定義した対象物となる既設の人工構造物については,	上記で定義した対象物となる既設の人工構造物について	
は, 高さ,面積について,QMS 図書として維持管理されてい	高さ, 面積について, QMS図書として維持管理されている図	は、高さ、面積について、QMS図書として維持管理されて	
る図面等の確認を実施した。また、将来設置される計画があ	面等の確認を実施した。また、将来設置される計画がある人工	いる図面等の確認を実施した。また、将来設置される計画が	
る人工構造物のうち、上記で定義した対象物に該当するもの	構造物のうち,上記で定義した対象物に該当するものについて	ある人工構造物のうち、上記で定義した対象物に該当するも	
については,計画図面等により調査を実施した。	は、計画図面等により調査を実施した。	のについては、計画図面等により調査を実施した。	
海底地形及び陸域の地形については, 一般財団法人 日本水		海底地形及び陸域の地形については、一般財団法人 日本	
路協会の最新の地形データ及び国土地理院発行の最新の地形		水路協会の最新の地形データ及び国土地理院発行の最新の地	
図からデータを抽出した。発電所敷地内の地形及び構造物の		形図からデータを抽出した。発電所敷地内の地形及び構造物	
データについては、建設時の工事竣工図からデータを抽出し		のデータについては、建設時の工事竣工図からデータを抽出	
た。		Lte	
b. 現場確認	b. 現場調査	b. 現場調査	
上記a. で実施した図面等による調査において確認した既設	a. で実施した図面等による調査において確認した既設の人	<u>上記</u> a. で実施した図面等による調査において確認した既	
の人工構造物については、社員による現場ウォークダウンに	工構造物については, 社員による現場ウォークダウンにより図	設の人工構造物については、社員による現場ウォークダウン	
より図面等と相違ないことを確認した。また、図面に反映さ	面等と相違ないことを確認した。また,図面に反映されていな	により図面等と相違ないことを確認した。また、図面に反映	
れていない人工構造物について、遡上解析に影響する変更が	い対象物となる人工構造物について, 遡上解析に影響する変更	されていない人工構造物について、遡上解析に影響する変更	
ないことを確認した。	がないことを確認した。	がないことを確認した。	
発電所敷地における構造物、地盤などの変位及び変形につ		発電所敷地における構造物、地盤などの変位及び変形につ	
いては、発電所における定期保守業務で特定地点の計測を実		いては、発電所における定期保守業務で特定地点の計測を実	
施し、有意な変位及び変形がないことを確認した。		施し、有意な変位及び変形がないことを確認した。	
(3) 敷地モデルの作成	(3)敷地モデルの作成	(3) 敷地モデルの作成	
(2)で実施した調査結果を踏まえ,敷地モデルの作成を実施	(2)で実施した調査結果を踏まえ,敷地モデルの作成を実施	(2)で実施した調査結果を踏まえ,敷地モデルの作成を実施	
した。	した。	した。	
(4) 敷地モデルの管理	(4)敷地モデルの管理	(4) 敷地モデルの管理	
遡上解析に係る地形の改変や人工構造物の新設等の変更が	遡上解析に係る地形の改変やい人工構造物の新設等の変更が	遡上解析に係る地形の改変や人工構造物の新設等の変更が	
生じれば,必要に応じ上記(1)及び(2)に戻り再度モデルを構築	生じれば必要に応じ(1), (2)に戻り再度モデルを構築する。	生じれば, 必要に応じ上記(1)及び(2)に戻り再度モデルを構築	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
する。		する。	
0.0.7月月かずになって近りました。	2.2. 田田翌本の日毎4月末」の時後期、	0.0.11日17月1日の日時1月1日の市地址15	
2.3 現場確認記録の品質保証上の取り扱い 現現確認手順及び確認な思の記得について、日節促証記得し	2.3 現場調査の品質保証上の取り扱い 現現確認手順及び確認な用の記録について、日節記録トレーズ	2.3 現場推設記録の品質保証上の取り扱い	
現場確認手順及び確認結果の記録について, 前負 <u>休</u> 証記録とし て答理する	現場確認于順及び確認結果の記録について、苗貨記録として	現場確認手順及び確認結果の記録について、面質記録として管理する	
	目生する。		
2.4 今後の対応	2.4 今後の対応	2.4 今後の対応	
今後、改造工事等により、津波伝播経路上の敷地の状況(地形	今後、改造工事等により、津波伝播経路上の敷地の状況(地	今後、改造工事等により、津波伝播経路上の敷地の状況(地形	
の改変、人工構造物の新設等)が変更となる場合は、その変更が	形の改変、人工構造物の新設等)が変更となる場合は、その変	の改変、人工構造物の新設等)が変更となる場合は、その変更が	
耐津波設計の評価に与える影響の有無を検討し、必要に応じて遡	更が耐津波設計の評価に与える影響の有無を検討し,必要に応	耐津波設計の評価に与える影響の有無を検討し、必要に応じて遡	
上解析を再度実施する。	じて遡上解析を再度実施する体制を構築する。	上解析を再度実施する。	



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
正在自然無違行度助 単年 平 面図 r m d r m d d d r m d d d r m d d d d d d d d d d d d d d d d d d			
第2-2図 解析モデルの確認例			
<complex-block></complex-block>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3. 耐津波設計に関する入力条件等の設定プロセス	3. 耐津波設計に関する入力条件等現場確認プロセス	3. 耐津波設計に関する入力条件等の設定プロセス	
3.1 基準要求	3.1 基準要求	3.1 基準要求	
【第五条】		【第五条】	
設置許可基準規則第五条(津波による損傷の防止)においては、	設置許可基準規則第5条(津波による損傷の防止)において,	設置許可基準規則第五条(津波による損傷の防止)においては、	
設計基準対象施設は、その供用中に当該設計基準対象施設に大き	設計基準対象施設は、その供用中に当該設計基準対象施設に大	設計基準対象施設は、その供用中に当該設計基準対象施設に大き	
な影響を及ぼすおそれがある津波に対して安全機能が損なわれる	きな影響を及ぼすおそれがある津波に対して安全機能が損な	な影響を及ぼすおそれがある津波に対して安全機能が損なわれる	
おそれがないことを要求されている。また,解釈の別記3及び「基	われるおそれがないことを要求している。また,解釈の別記3	おそれがないことを要求されている。また,解釈の別記3及び「基	
準津波及び耐津波設計方針に係る審査ガイド」において、敷地へ	及び「基準津波及び耐津波設計方針に係る審査ガイド」におい	準津波及び耐津波設計方針に係る審査ガイド」において、敷地へ	
の浸水の可能性のある経路の特定、バイパス経路からの流入経路	て, 敷地への浸水の可能性のある経路の特定, バイパス経路か	の浸水の可能性のある経路の特定、バイパス経路からの流入経路	
の特定,取水・放水施設や地下部等における漏水の可能性の検討、	らの流入経路の特定, 取水・放水施設や地下部等における漏水	の特定、取水・放水施設や地下部等における漏水の可能性の検討	
浸水想定範囲の境界における浸水の可能性のある経路の特定,浸	の可能性の検討及び浸水想定範囲の境界における浸水の可能	及び浸水想定範囲の境界における浸水の可能性のある経路の特	
水防護重点化範囲への浸水の可能性のある経路の特定及び漂流物	性のある経路の特定,浸水防護重点化範囲への浸水の可能性の	定,浸水防護重点化範囲への浸水の可能性のある経路の特定及び	
の可能性の検討を行うこととしている。	ある経路の特定及び漂流物の検討を行うことを規定している。	漂流物の <u>可能性の</u> 検討を行うこととしている。	
【第四十条】		【第四十条】	
設置許可基準規則第四十条(津波による損傷の防止)において	<u>また</u> ,設置許可基準規則第 <u>40</u> 条(津波による損傷の防止)	設置許可基準規則第四十条(津波による損傷の防止)において	
は、重大事故等対処施設は、基準津波に対して重大事故等に対処	においては、重大事故等対処施設は、基準津波に対して重大事	は、重大事故等対処施設は、基準津波に対して重大事故等に対処	
するために必要な機能が損なわれるおそれがないことを要求して	故等に対処するために必要な機能が損なわれるおそれがない	するために必要な機能が損なわれるおそれがないことを要求して	
おり,解釈は同解釈の別記3 に準じるとしている。	ことを要求しており,解釈は <u>第5条</u> に準じるとしている。	おり,解釈は <u>同解釈の別記3</u> に準じるとしている。	
3.2 入力条件等の設定プロセス	3.2 入力条件等現場確認プロセス	3.2 入力条件等の設定プロセス	
上記要求事項を満足するために, 第3-1 図に示すフローに従っ	上記要求事項を満足するために, 第2図に示すフローに従っ	上記要求事項を満足するために、図2に示すフローに従って耐	
て耐津波設計において必要となる入力条件等を設定した。次の(1)	て耐津波設計において必要となる入力条件等の確認を行った。	津波設計において必要となる入力条件等を設定した。次の(1)~	
~(3)にプロセスの具体的内容を示す。なお、本資料において、設	次の(1)~(8)にプロセスの具体的内容を示す。なお、本資料	(3)にプロセスの具体的内容を示す。なお、本資料において、設計	
計基準対象施設の津波防護対象設備と重大事故等対処施設の津波	において,設計基準対象施設の津波防護対象設備と重大事故等	基準対象施設の津波防護対象設備と重大事故等対処施設の津波防	
防護対象設備を併せて、「津波防護対象設備」とする。	対処施設の津波防護対象設備を併せて,「津波防護対象設備」	護対象設備を併せて、「津波防護対象設備」とする。	
	とする。		
(1) 入力条件等の設定・確認		<ol> <li>(1) 入力条件等の設定・確認</li> </ol>	
耐津波設計において必要となる入力条件等は, 下記a. 及びb.		耐津波設計において必要となる入力条件等は, 下記 a.及び	
のとおり設定し、確認する。		b.のとおり設定し,確認する。	
a. 図面等による入力条件等の調査及び設定		a. 図面等による入力条件等の調査及び設定	
耐津波設計に係る各施設・設備について、図面等を用いて		耐津波設計に係る各施設・設備について、図面等を用いて	
設置箇所・寸法等を確認し、入力条件等を設定する。		設置個所・寸法等を確認し、入力条件等を設定する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
b. 現場 <u>確認</u> a. で実施した図面等による調査により設定した入力条件等		<u>b. 現場調査</u> <u>a.で実施した図面等による調査により設定した入力条件</u>	
について、現場ウォークダウンにより現場と相違ないことを		等について、現場ウォークダウンにより現場と相違ないこと	
確認する。		を確認する。	
各施設・設備等における入力条件等の設定及び確認内容の詳細		各施設・設備等における入力条件等の設定及び確認内容の詳細	
を以下に記載する。		を以下に記載する。	
1) 津波防護対象設備について	(1)津波防護対象設備について	1) 津波防護対象設備について	
設置許可基準規則第五条及び第四十条においては、設計基準対	設置許可基準規則第5条及び第40条において,設計基準対	設置許可基準規則第五条及び第四十条においては、設計基準対	
象施設の安全機能及び重大事故等対処施設の重大事故等に対処す	象施設の安全機能及び重大事故等対処施設の重大事故等に対	象施設の安全機能及び重大事故等対処施設の重大事故等に対処す	
るために必要な機能が損なわれるおそれがないことが要求されて	処するために必要な機能が損なわれるおそれがないことを要	るために必要な機能が損なわれるおそれがないことが要求されて	
いる。そのため、津波防護対象設備を設定し、想定している建屋	求している。 二のため, 津波防護対象設備を設定し, 津波防護	いる。そのため、津波防護対象設備を設定し、想定している建物	
及び区画以外に津波防護対象設備が設置されていないことを確認	対象設備を内包する建屋及び区画以外に,津波防護対象設備が	及び区画以外に津波防護対象設備が設置されていないことを確認	
する。	設置されていないことを確認する。	する。	
2) 外郭防護1 (遡上波の地上部からの到達及び流入防止) につい	(2)外郭防護1(敷地への浸水防止)について	2) 外郭防護 1 (遡上波の地上部からの到達及び流入防止) につい	
7		τ	
津波防護対象設備を内包する建屋及び区画は、基準津波による	津波防護対象設備を内包する建屋及び区画は、基準津波によ	津波防護対象設備を内包する建物及び区画は、基準津波による	
遡上波が到達しない十分高い場所に設置する、または、津波防護	る遡上波が到達しない十分高い場所に設置する、又は、津波防	遡上波が到達しない十分高い場所に設置する、または、津波防護	
施設及び浸水防止設備を設置することで流入を防止することが要	護施設、浸水防止設備を設置することで流入を防止することが	施設及び浸水防止設備を設置することで流入を防止することが要	
求されている。そのため、各施設・設備が設置されている敷地高	要求されている。 このため, 各施設・設備が設置されている敷	求されている。そのため、各施設・設備が設置されている敷地高	
さを調査し、基準津波による遡上波が到達しない十分高い場所に	地高さ及び必要な浸水対策の現場状況を確認する。	さ <u>を調査し、基準津波による遡上波が到達しない十分高い場所に</u>	
設置されていること又は津波防護施設及び浸水防止設備により流		設置されていること又は津波防護施設及び浸水防止設備により流	
入を防止されていることを確認する。また、浸水対策が必要とな		入を防止されていることを確認する。また、浸水対策が必要とな	
る箇所については、現場状況を確認する。		<u>る箇所については、</u> 現場状況を確認する。	
3) 外郭防護1(取水路,放水路等の経路からの流入防止) につい	(3)外郭防護1(取水路・放水路等の経路からの <u>津波の</u> 流入防止)	3) 外郭防護1(取水路, 放水路等の経路からの流入防止) につい	
て	について	て	
取水路、放水路等の経路から津波が流入する可能性を検討し特	取水路,放水路等の経路から津波が流入する可能性の検討,	取水路,放水路等の経路から津波が流入する可能性を検討し特	
定すること及び必要に応じて浸水対策を行うことが要求されてい	特定及び必要に応じて浸水対策を行うことを要求している。こ	定すること及び必要に応じて浸水対策を行うことが要求されてい	
る。そのため、海水が流入する可能性のある経路を網羅的に調査	<u>のため</u> , 海水が流入する可能性のある経路を網羅的に調査し,	る。そのため、海水が流入する可能性のある経路を網羅的に調査	
し、特定する。また、浸水対策が必要となる箇所については、現	必要な浸水対策の現場状況を確認する。	し, 特定する。また, 浸水対策が必要となる箇所については, 現	
場状況を確認する。		場状況を確認する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
4) 外郭防護2(漏水による重要な安全機能への影響防止) につい	(4)外郭防護2(漏水による重要な安全機能への影響防止)につ	4) 外郭防護2(漏水による重要な安全機能への影響防止) につい	
τ	いて	7	
取水・放水設備の構造上の特徴等を考慮して, 取水・放水施設	取水, <u></u> ,放水設備の構造上の特徴等を考慮して,取水,放水施	取水 <u>…</u> 放水設備に構造上の特徴等を考慮して, 取水・放水施設	
や地下部等における漏水の可能性を検討すること、浸水想定範囲	設や地下部等における漏水の可能性 <u>の</u> 検討及び浸水想定範囲	や地下部等における漏水の可能性を検討すること,浸水想定範囲	
の境界において浸水の可能性のある経路及び浸水口(扉,開口部,	の境界において,浸水の可能性のある経路,浸水口(扉,開口	の境界において浸水の可能性のある経路及び浸水口(扉,開口部,	
貫通口等)を特定すること並びに特定した経路及び浸水口に対し	部,貫通口等)を特定することを要求 <u>している。このため</u> ,漏	貫通口等)を特定すること並びに特定した経路及び浸水口に対し	
て浸水対策を施し、浸水範囲を限定することが要求されている。	水の可能性のある経路及び浸水想定範囲内の津波防護対象設	て浸水対策を施し、浸水範囲を限定することが要求されている。	
そのため、漏水の可能性並びに浸水想定範囲の境界における浸水	<u> 備</u> の安全機能もしくは重大事故等に対処するために必要な機	そのため,漏水の可能性並びに浸水想定範囲の境界における浸水	
の可能性のある経路及び浸水口を調査し、特定する。浸水想定範	能に影響を与える閾値(機能喪失高さ)並びに必要な浸水対策	の可能性のある経路及び浸水口を調査し、特定する。浸水想定範	
囲内に津波防護対象設備がある場合は、その重要な安全機能又は	の現場状況を確認する。	囲内に津波防護対象設備がある場合は、その重要な安全機能又は	
重大事故等に対処する機能に影響を与える閾値(機能喪失高さ)		重大事故等に対処する機能に影響を与える閾値(機能喪失高さ)	
を調査し、設定する。また、浸水対策が必要となる箇所について		を調査し、設定する。また、浸水対策が必要となる箇所について	
は、現場状況を確認する。		は現場状況を確認する。	
5) 内郭防護(重要な安全機能を有する施設の隔離)について	(5)内郭防護(重要な安全機能を有する施設の隔離)について	5) 内郭防護(重要な安全機能を有する施設の隔離)について	
浸水防護重点化範囲への浸水の可能性のある経路及び浸水口	浸水防護重点化範囲への浸水の可能性のある経路,浸水口	浸水防護重点化範囲への浸水の可能性のある経路及び浸水口	
(扉,開口部,貫通口等)を特定し,それらに対して浸水対策を	(扉,開口部,貫通口等)を特定し,それらに対して浸水対策	(扉,開口部,貫通口等)を特定し,それらに対して浸水対策を	
施すことが要求されている。そのため、浸水の可能性のある経路	を施すことを要求している。このため、可能性のある経路を特	施すことが要求されている。そのため、浸水の可能性のある経路	
及び浸水口を特定し、浸水対策が必要な箇所の現場状況を確認す	定し, 必要な浸水対策の現場状況を確認する。	及び浸水口を特定し、浸水対策が必要な箇所の現場状況を確認す	
る。		る。	
6) 漂流物について	(6)漂流物について	6) 漂流物について	
基準津波に伴う取水口付近の漂流物については、遡上解析結果	基準津波に伴う取水口付近の漂流物については、遡上解析	基準津波に伴う取水口付近の漂流物については、遡上解析結果	
における取水口付近を含む敷地前面及び遡上域の寄せ波及び引き	結果における取水口付近を含む敷地前面及び遡上域の押し波	における取水口付近を含む敷地前面及び遡上域の <u>寄せ波及び</u> 引き	
波の方向及び速度の変化を分析した上で、漂流物の可能性を検討	及び引き波の方向,速度の変化の分析した上で,漂流物の可能	波の方向及び速度の変化を分析した上で、漂流物の可能性を検討	
することが要求されている。そのため、遡上解析を踏まえた上で	性を検討すること <u>を要求している。こ</u> のため, 遡上解析を踏ま	することが要求されている。そのため、遡上解析を踏まえた上で	
漂流物調査を網羅的に行い、取水性に影響を与えないことを確認	えた上で漂流物調査を網羅的に行い,取水性に影響を与えない	漂流物調査を網羅的に行い、取水性に影響を与えないことを確認	
する。	ことを確認する。	する。	
	<u>a. 図面等による調査</u>		(島根2は, a.に記載)
	上記の調査対象となる施設・設備等については図面等を用		
	いて確認を実施する。		
	<u>b現場調査</u>		
	a. で実施した図面等による調査において確認した施設・		
	設備等については,現場ウォークダウンにより図面等と相違		
	ないことを確認する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2) 耐津波設計の成立性の確認	(7)耐津波設計の成立性の確認	(2) 耐津波設計の成立性の確認	
上記(1)で実施した設定・確認結果を踏まえ,耐津波設計の	(1)~(6)で実施した調査結果を踏まえ,耐津波設計の成立	<u>上記(1)</u> で実施した <u>設定・確認結</u> 果を踏まえ,耐津波設計の	
成立性を確認する。また、新たに必要となる浸水対策がある場	性を確認する。また,新たに必要となる浸水対策がある場合は	成立性を確認する。また、新たに必要となる浸水対策がある場	
合は、実施する。	実施する。	合は、実施する。	
<ul><li>(3)入力条件等の管理</li></ul>	(8)入力条件等の管理	(3) 入力条件等の管理	
設備改造等により耐津波設計の入力条件等が変更となる可	設備改造等により耐津波設計の入力条件等が変更となる可	設備改造等により耐津波設計の入力条件等が変更となる可	
能性がある場合は、必要に応じ上記(1)に戻り、再評価する。	能性がある場合は,必要に応じ( <u>1)~(6)</u> に戻り,再設定する。	能性がある場合は,必要に応じ <u>上記(1)</u> に戻り,再評価する。	
3.3 現場確認記録の品質保証上の取り扱い	3.3 品質保証上の取り扱い	3.3 現場確認記録の品質保証上の取り扱い	
現場確認手順及び確認結果の記録について、品質保証記録とし	現場確認手順及び確認結果の記録について、品質記録として	現場確認手順及び確認結果の記録について、品質記録として管	
て管理する。	管理する。	理する。	
3.4 今後の対応	3.4 今後の対応	3.4 今後の対応	
今後、改造工事等により、耐津波設計に用いる入力条件等の変	今後、改造工事等により、耐津波設計に用いる入力条件等の	今後、改造工事等により、耐津波設計に用いる入力条件等の変	
更が生じた場合、その変更が耐津波設計の評価に与える影響の有	変更が生じた場合,その変更が耐津波設計の評価に与える影響	更が生じた場合、その変更が耐津波設計の評価に与える影響の有	
無を検討し、必要に応じて入力条件等の再設定・再確認を実施す	の有無を検討し、必要に応じて入力条件等の再評価を実施す	無を検討し、必要に応じて入力条件等の再設定・再確認を実施す	
る。	る。	る。	



·炉	備考
.のとおり設定し,確認する。設	
去等を図面等で確認し,入	
現場で相違ないことを確	
置されていないことを確認する。	
したよる週上波が到達しない熟地 備を設置することにより流入の防	
なる箇所の現場状況を確認する。	
し,流入経路を特定する。また,	
る。また、浸水想定範囲の境界に	
コ等)を特定する。浸水想定範囲	
する閾値を設定する。浸水対策が	
(扉,開口部,貫通口等)を特定 5.	
<i>•</i> 0	
没・設備等を特定し, 取水性に影	
以西に広じ 英たに	
必要に応じ、新たに 浸水対策を実施	
生がある場合は、必要に応じ上	
認プロセスフロー図	