<u>実線</u>・・設備

まとめ資料比較表 〔別添資料-2 残留熱代替除去系を用いた代替循環冷却の成立性について〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	(重大事故等対処設備 50条補足説明資料と比較)		
	50-11 代基循環冷却系の成立性について		
別添資料-2		別添資料-2	
復水補給系を用いた代替循環冷却の成立性		残留熱代替除去系を用いた代替循環冷却	
について		の成立性について	

実線・	・設備運用又は体制等の相違(設計方針の相違)
波線・	・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<目次>	目次	<目次>	
1. 代替循環冷却系の構成 ・・・・・・・・・・・・・1	1. 代替循環冷却系設備の構成 ・・・・・・・・50-11-3	1. 残留熱代替除去系の構成 ・・・・・・・・・・1	
1.1 設置目的 ・・・・・・・・・・・・・・・・・1	1.1 設置目的・・・・・・・・・・・・・・・50-11-3	1.1 設置目的 ・・・・・・・・・・・・・・・・1	
1.2 設備構成の概略 ・・・・・・・・・・・・・2	1.2 設備構成の概略・・・・・・・・・・・・50-11-4	1.2 設備構成の概略 ・・・・・・・・・・・・2	
1.3 系統設計仕様 ・・・・・・・・・・・・・・・4	1.3 系統設計仕様・・・・・・・・・・・・・・50-11-6	1.3 系統設計仕様 ・・・・・・・・・・・・・・4	
1.3.1 機械設備 ・・・・・・・・・・・・・・4	1.3.1 設計方針・・・・・・・・・・・・・・50-11-6	1.3.1 機械設備 ・・・・・・・・・・・・・・4	
1.3.2 計測制御設備 ・・・・・・・・・・・・5	1.3.2 注水先流量分配・・・・・・・・・・・・50-11-6	1.3.2 計測制御設備 ・・・・・・・・・・・5	
1.3.3 電源設備・・・・・・・・・・・・・・26	1.3.3 他条文に対する位置づけ・・・・・・・50-11-8	1.3.3 電源設備・・・・・・・・・・・・・24	
2. 代替循環冷却系の成立性確認・・・・・・・・・31	2. 代替循環治却系の成立性確認・・・・・・・・50-11-9	2. 残留熱代替除去系の成立性確認 ・・・・・・・28	
2.1 有効性評価シナリオの成立性・・・・・・・31	2.1 代替循環冷却系の運用について・・・・・・50-11-9	2.1 有効性評価シナリオの成立性・・・・・・・28	
2.1.1 <u>代替循環冷却系</u> の運用について・・・・・31	2.2 代替循環冷却系の有効性について・・・・・50-11-9	2.1.1 残留熱代替除去系の運用について・・・・28	
2.1.2 代替循環冷却系の有効性について・・・・31	2.3 代替循環冷却系の操作性・・・・・・・・・50-11-10	2.1.2 <u>残留熱代替除去系</u> の有効性について・・・28	
2.2 <u>代替循環冷却系</u> の操作性・・・・・・・・・33	3. 代替循環冷却系の健全性について・・・・・・50-11-11	2.2 残留熱代替除去系の操作性・・・・・・・・29	
2.2.1 代替循環冷却系運転のために	3.1 代替循環冷却系運転時の系統水漏えいの可能性・50-11-11	2.2.1 残留熱代替除去系運転のために	
必要な系統・機器とアクセス性・・・・・33	3.2 耐放射線に関する設計考慮について・・・・50-11-15	必要な系統・機器とアクセス性・・・・・29	
2.2.2 操作概要について・・・・・・・・・・45	3.3 水の放射線分解による水素影響について・・・50-11-15	2.2.2 操作の概要について・・・・・・・・・36	
2.3 系統運転時の監視項目・・・・・・・・・・52		2.3 系統運転時の監視項目・・・・・・・・・・43	
2.3.1 水素ガス及び酸素ガス発生時の		2.3.1 水素ガス及び酸素ガス発生時の	
対応について・・・・・・・・・・・52		対応について・・・・・・・・・・・43	
3. 本系統の運用にあたって考慮すべき項目 ・・・・60		3. 本系統の運用にあたって考慮すべき項目・・・・・49	
3.1 放射線による影響について・・・・・・・・60		3.1 放射線による影響について・・・・・・・・49	
<u>3.2 意図的な航空機衝突に対する耐性について</u> ・・・61			・設備の相違
<u>3.3</u> 系統の健全性について・・・・・・・・・・63		<u>3.2</u> 系統の健全性について・・・・・・・・・50	
別紙	<別紙 目次>	別紙	
1. 格納容器水素濃度・酸素濃度の		1. 格納容器水素濃度・酸素濃度の	
測定原理と適用性について ・・・・・・・・66		測定原理と適用性について	
2. 循環流量の確保について ・・・・・・・・・85	別紙1 循環流量の確保について	2. 循環流量の確保について	
3. 長期的に維持される格納容器の状態(温度・圧力)		3. 長期的に維持される格納容器の状態(温度・圧力)	
での適切な地震力に対する格納容器の		での適切な地震力に対する格納容器の	
頑健性の確保の考え方について・・・・・・・105		頑健性の確保の考え方について	
4. 系統のバウンダリに対する影響評価について・・106	別紙2 系統のバウンダリに対する影響評価について	4. 系統のバウンダリに対する影響評価について	
5. 代替循環冷却系の運転開始時期が評価より			・設備の相違
早まる場合について・・・・・・・・・・・108			
<u>6.</u> 系統が高線量となった場合の影響について・・・110		5系統が高線量となった場合の影響について	
7. 代替循環冷却系運転時の回り込み			・設備の相違
防止対応について・・・・・・・・・・・・・112		<u>参考</u>	・資料構成の相違
		重大事故等時の長期安定冷却手段について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
1. 代替循環冷却系の構成	1. 代替循環冷却系設備の構成	1. 残留熱代替除去系の構成	
1.1 設置目的	1.1 設置目的	1.1 設置目的	
代替循環冷却系は、「実用発電用原子炉及びその附属施設の位	代替循環冷却系は、「実用発電用原子炉及びその附属施設の位	残留熱代替除去系は、「実用発電用原子炉及びその附属施設の位	
置,構造及び設備の基準に関する規則の解釈」の第50条(原子炉	置,構造及び設備の基準に関する規則の解釈」の第50条(原子炉	置、構造及び設備の基準に関する規則の解釈」の第五十条(原子	
格納容器の過圧破損を防止するための設備)のうち、①原子炉格	格納容器の過圧破損を防止するための設備)のうち、原子炉格納	炉格納容器の過圧破損を防止するための設備)のうち、原子炉格	
納容器内の圧力及び温度を低下させるために必要な設備であり,	容器内の圧力及び温度を低下させるために必要な設備であり、格	納容器内の圧力及び温度を低下させるために必要な設備であり,	
②格納容器ベントを実施する場合においても、ベント時間を遅延	納容器ベントを実施する場合においても、ベント時間を遅延させ	格納容器ベントを実施する場合においても、ベント時間を遅延さ	
させることが可能な設備である。更に「viii)格納容器圧力逃がし	ることが可能な設備である。	せることが可能な設備である。	
装置は、長期的にも溶融炉心及び水没の悪影響を受けない場所に			
接続されていること。」に対し,③ウェットウェルベントの長期的			
な継続性をより確実にするための対策となる。			
重大事故等時においては、サプレッション・チェンバを水源と	重大事故等においては、サプレッション・チェンバを水源とし	重大事故等時においては、サプレッション・チェンバを水源と	
した残留熱除去系が使用できないため、外部水源からの炉心冷却	た残留熱除去系が使用できない状況も想定されるが、格納容器圧	した残留熱除去系が使用できない状況も想定されるが、格納容器	
及び格納容器スプレイを継続し, <u>サプレッション・チェンバ・プ</u>	力逃がし装置を使用する場合は、外部水源による原子炉注水及び	フィルタベント系を使用する場合は、外部水源による原子炉注水	
ール水位がウェットウェルベントラインに到達するまでに格納容	格納容器スプレイを継続し,ベントラインの水没を防止するため,	及び格納容器スプレイを継続し、サプレッション・プール通常水	
<u>器スプレイを停止し</u> ,格納容器ベント操作を実施し,フィード・	サプレッション・プール通常水位+6.5m 到達により、格納容器ス	位+約1.3m 到達により、格納容器スプレイを停止し、格納容器べ	・運用の相違
アンド・ブリード冷却を継続することとなる。	プレイを停止し、格納容器ベント操作を実施することにより、フ	ント操作を実施することにより、フィード・アンド・ブリード冷	【東海第二】
	ィード・アンド・ブリード冷却を継続することとなる。	却を継続することとなる。	格納容器の型式及び
			外部注水制限値の相違
			により,格納容器スプレ
			イ停止基準が異なる
上記に対し, 重大事故等時において, サプレッション・チェン	上記に対し、代替循環冷却系を使用する場合、代替循環冷却系	上記に対し、残留熱代替除去系を使用する場合、残留熱代替除	
バを水源とし、格納容器除熱機能を有する代替循環冷却系を用い	の格納容器除熱機能により、格納容器圧力の上昇を抑制でき、か	去系の原子炉格納容器除熱機能により、格納容器圧力の上昇を抑	
ることにより、以下について可能となる。	つ、サプレッション・チェンバを水源とすることにより水位上昇	制でき、かつ、サプレッション・チェンバを水源とすることによ	
①代替循環冷却系の格納容器除熱機能により、格納容器圧力の	を抑制できることから、格納容器の過圧破損及びベントラインの	り、水位上昇を抑制できることから、原子炉格納容器の過圧破損	
上昇を抑制でき、かつ、サプレッション・チェンバが水源で	水没を防止することができる。代替循環冷却系による格納容器除	を防止することができ, <u>また</u> ,有効性評価の範囲においてはベン	
あり、その水位上昇を抑制できることから、有効性評価の範	熱を継続中において、水の放射線分解によって発生する酸素濃度	ト回避が可能となる。残留熱代替除去系による原子炉格納容器除	
囲においてはベント回避が可能となる。	が上昇し、格納容器内の酸素濃度がドライ条件において 4.3vo1%	熱を継続中において、水の放射線分解によって発生する水素ガス	・運用の相違
②格納容器ベントを実施する場合においても、格納容器除熱機	に到達した場合には、格納容器内での水素燃焼を防止する観点か	及び酸素ガスの濃度が上昇し,原子炉格納容器内の酸素ガス濃度	【東海第二】
能により格納容器圧力の上昇を低減でき、ベント時間を遅延	ら格納容器ベントを実施するが、代替循環冷却系を使用しない場	がドライ条件において <u>4. 4vo1%及びウェット条件において</u>	計器誤差等の相違に
させることができる。	合と比較し、大幅にベント時間を遅延させることができる。	<u>1.5vol%</u> に到達した場合には,原子炉格納容器内での水素燃焼を	より,酸素濃度を起点と
			した格納容器ベントの
		系を使用しない場合と比較し、大幅にベント時間を遅延させるこ	実施基準が異なる
		とができる。	
③ベント後もサプレッション・チェンバ・プール水位の上昇は			
抑制され、スクラビング効果が継続的に得られることからウ			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号烷
<u>エットウェルベントの継続性がより確実なものとなる。また,</u>		
格納容器圧力逃がし装置が使用できない場合においても、耐		
圧強化ベント系及び代替循環冷却系を用いることによって,		
ウェットウェルベントの信頼性が向上する。		
		1

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
1.2 設備構成の概略	1.2 設備構成の概略	1.2 設備構成の概略	
代替循環冷却系の系統概要は以下のとおりである。	代替循環冷却系の系統概要は以下のとおりである。(第1.2-	残留熱代替除去系の系統概要は以下のとおりである。	
	1. 図)		
 ・本系統は、サプレッション・チェンバを水源とし、復水移送ポ 	(1) 本系統は、サプレッション・チェンバを水源とし、代替循環	本系統は, サプレッション・チェンバを水源とし, <u>残留熱</u>	
ンプによる原子炉及び格納容器の循環冷却を行うことができる	<u>冷却系ポンプ</u> による原子炉及び格納容器の循環冷却を行うこ	代替除去ポンプによる原子炉及び原子炉格納容器の循環冷	
系統である。	とができる系統である。	却を行うことができる系統である。	
 ・系統水は、サプレッション・チェンバから、残留熱除去系の配 	(2) 系統水は、サプレッション・チェンバから、残留熱除去系の	…系統水は,サプレッション・チェンバから,残留熱除去系	
管 <u>及び熱交換器</u> を通り, <u>高圧炉心注水系の配管を経て,復水移</u>	配管 <u>及び熱交換器</u> を通り, <u>代替循環冷却系ポンプ</u> に供給され	の配管を通り, <u>残留熱代替除去ポンプ</u> に供給される。	・設備の相違
送ポンプに供給される。	る。		【柏崎 6/7,東海第二】
			島根2号炉は,残留熱
			除去系熱交換器の上流
			に残留熱代替除去ポン
			プを配置する設計とす
			る
復水移送ホンブにより昇圧された糸統水は、復水補給水糸配管,	代替循環治却系示ンプにより昇圧された系統水は,残留熱除去	<u>残留熱代替除去ボンプ</u> により昇圧された系統水は、 <u>残留熱</u>	・設備の相違
残留熱除去糸配官を通り、原子炉への注水及の格納谷器スプレ	糸配官を通り,原子炉への注水及び格納容器スプレイに使用さ	<u>除去系熱交換器及び</u> 残留熱除去糸配官を通り,原子炉 <u>圧力</u>	【相崎 6/7,東海第二】
イに使用される。	れる。	<u> </u>	米統 構成 の 相 遅
また。百乙辰正力宏思。の注水ができず。百乙辰正力宏思の疎		また 百乙に口力宏昭。の沖水ができず 百乙に口力宏昭	、記載士紀の扣法
また、原丁炉圧刀谷谷、の住小がてきり、原丁炉圧刀谷谷の戦 損を判断した損合け、故納宏צ下却への注水及び故納宏צフプ			「
		の 戦損 で 判断 した 物 ー は 、 指 制 合 語 ハ ア レ イ 及 の 信 制 合 語	↓ 承 毎 舟 一 】
		パノレイによる床」が宿岡谷福一部の谷融が心の川辺で1	【拍蔭 6/7】
			▲根9号恒及び 車根9号恒及び 車根9号
			第二日 格納容器スプレ
			イにより格納容器下部
			への注水を行う
・原子炉及び格納容器内に注水された系統水は、原子炉本体や格	(3) 原子炉及び格納容器内に注水された系統水は,原子炉本体や	・原子炉圧力容器及び原子炉格納容器内に注水された系統水	
納容器内配管の破断口等から, ダイヤフラムフロア, ペデスタ	格納容器内配管の破断口等から <u>ダイヤフラムフロア及び</u> ベン	は、原子炉本体や原子炉格納容器内配管の破断口等から,	・炉型の違い
<u>ル</u> を経て, <u>連通孔から</u> サプレッション・チェンバに流出するこ	ト管を経由し, サプレッション・チェンバに流出することによ	<u>ベント管を経て</u> サプレッション・チェンバに流出すること	【柏崎 6/7,東海第二】
とにより、循環冷却ラインを形成する。	り,循環冷却ラインを形成する。	により、循環冷却ラインを形成する。	PCV の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
 ・なお、重大事故等時における想定として、非常用炉心冷却系等の設計基準事故対処設備に属する動的機器は、機能を喪失していることが前提条件となっていることから、本系統は、全交流動力電源が喪失した場合でも、代替交流電源設備からの給電が可能な設計としている。 	(4) 本系統は,全交流動力電源喪失した場合でも,発電所構内に 配備した代替交流電源設備からの給電が可能な設計とする。	 ・なお、重大事故等時における想定として、非常用炉心冷却 系等の設計基準事故対処設備に属する動的機器は、機能を 喪失していることが前提条件となっていることから、本系 統は、全交流動力電源が喪失した場合でも、代替交流電源 設備からの給電が可能な設計と<u>する</u>。 	島根2号炉:MARK-I改 柏崎6/7:ABWR 東海第二:MARK-Ⅱ
・前述のとおり、本系統はサプレッション・チェンバを水源とし て、原子炉圧力容器への注水及び格納容器スプレイ、又は原子 炉格納容器下部への注水及び格納容器スプレイとして使用する 系統であるが、重大事故等時におけるサプレッション・チェン バのプール水の温度は100℃を超える状況が想定され、高温水 を用いて原子炉圧力容器又は原子炉格納容器へ注水を行った場 合、格納容器に対して更なる過圧の要因となりえる。	(5) 前述のとおり,本系統はサプレッション・チェンバに流出し た水を,再び原子炉注水及び格納容器スプレイの水源として使 用する系統であるが,重大事故等時におけるサプレッション・ プール水の温度は約100℃を超える状況が想定され,高温水を 用いて原子炉圧力容器又は格納容器へ注水を行った場合,格納 容器に対して更なる過圧の要因となり <u>得</u> る。	 ・前述のとおり、本系統はサプレッション・チェンバを水源 として、原子炉圧力容器への注水及び格納容器スプレイと して使用する系統であるが、重大事故等時におけるサプレ ッション・チェンバのプール水の温度は100 ℃を超える状 況が想定され、高温水を用いて原子炉圧力容器又は原子炉 格納容器へ注水を行った場合、原子炉格納容器に対して更 なる過圧の要因となりえる。 	 ・設備の相違 【柏崎 6/7】 島根2号炉及び東海 第二は,格納容器スプレ イにより格納容器下部 への注水を行う
このため, <u>代替循環冷却を行うには</u> , <u>代替原子炉補機冷却系</u> からの冷却水の供給により,残留熱除去系熱変換器を介した冷却 機能を確保する。	このため, <u>代替循環治却系</u> の使用においては, <u>緊急用海水系又</u> <u>は代替残留熱除去海水系</u> からの冷却水の供給により,残留熱除 去系熱交換器を介した冷却機能を確保する。	このため, <u>残留熱代替除去系の使用においては,原子炉補機代替冷却系</u> からの冷却水の供給により,残留熱除去系熱 交換器を介した冷却機能を確保する。	・設備の相違 【東海第二】 島根2号炉は可搬設 備である原子炉補機代 替冷却系により対応す る設計とするが,東海第 二は常設設備である緊 急用海水系により対応 する設計としている
・代替循環治却機能を確保する際に使用する系統からの核分裂生 成物の放出を防止するため、代替循環治却系による循環ライン は閉ループにて構成する。	(6) <u>代替循環治却系</u> の機能を確保する際に,使用する系統からの 核分裂生成物の放出を防止するため, <u>代替循環治却系</u> による循 環ラインは閉ループにて構成する。	<u>残留熱代替除去系の</u> 機能を確保する際に使用する系統から の核分裂生成物の放出を防止するため, <u>残留熱代替除去系</u> による循環ラインは閉ループにて構成する。 <u>なお,残留熱代替除去ポンプの有効吸込水頭確保の観点か</u> ら,残留熱代替除去ポンプ設置場所に近いB-残留熱除去系 に接続する設計とする。	 ・記載方針の相違 【柏崎 6/7,東海第二】 島根2号炉は接続系 統の考え方を記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
1.3 系統設計仕様	1.3 系統設計仕様	1.3 系統設計仕様	
1.3.1 機械設備	1.3.1 <u>設計方針</u>	1.3.1 機械設備	
代替循環冷却系について、格納容器過圧・過温破損を防止する	代替循環冷却系について、格納容器除熱を実施することで、	<u>残留熱代替除去系</u> について,格納容器過圧 <u>・</u> 過温破損を防	
とともに、格納容器ベントを実施することなく、格納容器からの	格納容器の過圧及び過温破損を防止可能な設計とする。	止するとともに、格納容器ベントを実施することなく、原子	
除熱を行うことができるよう設計する。		炉格納容器からの除熱を行うことができるよう設計する。	
<設計条件> 当該系統起動後,原子炉格納容器限界温度・圧力(200℃・ 0.62MPa)を超えないようサプレッション・チェンバを水源とし,	<設計条件> <u>格納容器限界圧力及び格納容器限界温度に到達することを防</u> 止するため、原子炉注水及び格納容器スプレイによって、格納	<設計条件> 当該系統起動後,原子炉格納容器限界温度・圧力 (200℃・ 853kPa) を超えないようサプレッション・チェンバを水源と	・炉型の違い
原子炉への注水及び格納容器スプレイ、又は格納容器下部への注	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	し、原子炉への注水及び格納容器スプレイができること。	【柏崎 6/7,東海第二】
水及び格納容器スプレイができること。	制できること。		島根2号炉 (Mark-I
			改)の最高使用圧力との
			相違
			・設備の相違
			【柏崎 6/7】
			島根2号炉及び東海
			第二は,格納容器スプレ
			イにより格納容器下部
			への注水を行う
 ・原子炉注水流量:炉心を冠水できる流量であること ・格納容器下部注水流量:格納容器下部の溶融炉心を冷却できる流量であること ・格納容器スプレイ流量:スプレイ水が蒸気凝縮可能な粒径となる流量であること 			 ・設計条件の相違 【柏崎 6/7】 島根2号炉は,有効性 評価において,格納容器 ベントを実施すること なく除熱可能であることが確認された流量を 設定している
<主要仕様>	<主要仕様>	<主要仕様>	
主要仕様は、以下に示すとおりである。	主要仕様は、以下に示すとおりである。	主要仕様は、以下に示すとおりである。	
<u>代替循環冷却系</u> 系統流量: <u>190 m³/h</u> (原子炉注水流量: <u>90m³/h</u> , 格納容器スプレイ 流量: <u>100m³/h</u>) (<u>格納容器下部注水流量:50m³/h</u> , 格納容器ス プレイ流量: <u>140m³/h</u>)	<u>代替循環冷却系統</u> 系統流量: <u>250m³/h</u>	<u>残留熱代替除去系</u> 系統流量 : <u>150m³/h</u> (<u>原子炉注水流量:30m³/h</u> ,格納容器ス プレイ流量: <u>120m³/h</u>)	・設備の相違 【柏崎 6/7,東海第二】 設計仕様の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
水 源: サプレッション・チェンバ	水 源:サプレッション・チェンバ	水源 : サプレッション・チェンバ	
除熱手段: 代替原子炉補機冷却系	除熱手段:緊急用海水系又は代替残留熱除去系海水系	除熱手段 : 原子炉補機代替冷却系	・設備の相違
			【東海第二】
			島根2号炉は可搬設
			備である原子炉補機代
			替冷却系により対応す
			る設計とするが,東海第
			二は常設設備である緊
			急用海水系により対応
			する設計としている
	<u>1.3.2</u> 注水先流量分配		・資料構成の相違
	代替循環冷却系の系統流量については、格納容器の状態及び		【東海第二】
	試験等の状況に応じて注水先の流量を分配できる設計としてい		島根2号炉の注入先
	<u>る。</u>		流量分配は, 1.3.1の主
	第1.3-1表に注水先の流量分配パターンを示す。		要仕様に記載(原子炉注
			水流量:30m ³ /h, 格納容
	第1.3-1表 代替循環冷却系の流量分配パターン		器スプレイ流量:120m ³ /
	注水先 (m ³ /h)		h))
	モード $49 / 1.6$ $47 & / 1.4$ $49 & / 1.6$ 備考 備考		
	Immittene 原子炉注水 ジー・ジェンバ スプレイ ア・チェンバ 有効性評価で		
	① 循環冷却 150 100 0 期待 ② & 数数容界スプレイ 250 0 0 有効性評価で		
	③ 原子炉注水 250 0 0 期待		
	④ 原子炉注水/サプレッ 0 100 150		
	⑤ サプレッション・プー ル冷却/テスト 0 0 250		
	<u>①循環冷却モード</u>		・設備及び運用の相違
	循環冷却モードは、炉心損傷前において格納容器圧力が		【東海第二】
	245kPa [gage] (0.8Pd) 到達後又は炉心の著しい損傷, 溶融		島根2号炉の残留熱
	が発生した場合において、原子炉への注水及び格納容器スプ		代替除去系は,炉心損傷
	レイを実施する際に使用する流量分配パターンである。有効		後に循環冷却として使
	<u> 住評価シナリオ 雰囲気圧力・温度による静的負荷(格納容</u>		用する。事象発生から
	<u> </u>		10 時间後に起動し、有
	<u> 八 </u>		別性を唯認している
	ないことを推認している。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所	2 号炉
	②格納容器スプレイモード		
	格納容器スプレイモードは、炉心の著しい損傷、溶融が発		
	生し、原子炉への注水が実施できない場合において、溶融炉		
	心が原子炉下部プレナムに移行した場合及び原子炉圧力容器		
	が破損した場合に発生する過熱蒸気を抑制することを目的と		
	して、格納容器スプレイを実施する際に使用する流量分配パ		
	ターンである。原子炉への注水を実施しない有効性評価シナ		
	リオ「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」,「3.3		
	原子炉圧力容器外の溶融燃料ー冷却材相互作用」及び「3.5		
	溶融炉心・コンクリート相互作用」において,事象発生 90分		
	後起動し、代替循環冷却系及び代替格納容器スプレイ冷却系		
	(常設)の効果によって格納容器が過圧・過温破損しないこ		
	とを確認している。		
	③原子炉注水モード		
	原子炉注水モードは,炉心損傷前及び炉心損傷後において,		
	原子炉への注水を実施する際に使用する流量分配パターンで		
	ある。		
	④原子炉注水/サプレッション・プール冷却モード		
	原子炉注水/サプレッション・プール冷却モードは、炉心		
	<u>損傷前において格納容器圧力が 245kPa [gage] (0.8Pd) に到</u>		
	<u>達していない場合及び格納容器ベントを停止する際に使用す</u>		
	る流量分配パターンである。格納容器ベント停止時において		
	は、炉心損傷の有無に関わらず、格納容器内雰囲気はほぼ蒸		
	気で満たされていることが予想され、格納容器スプレイを実		
	施した場合には負圧に至るおそれがあるため、サプレッショ		
	ン・プール水の冷却によって蒸気を凝縮させ、加えて窒素を		
	注入することによって格納容器雰囲気を蒸気から窒素へ置換		
	を実施する。		

戶	備考
	・設備及び運用の相違
	【東海第二】
	島根2号炉の残留熱
	代替除去系は,炉心損傷
	後に循環冷却として使
	用する。事象発生から
	10 時間後に起動し, 有
	効性を確認している
	・設備の相違
	【東海第二】
	島根2号炉の残留熱
	代替除去系は, 炉心損傷
	後に循環冷却として使
	用する
	・設備の相違
	【東海第二】
	島根2号炉の残留熱
	代替除去系は, 炉心損傷
	後に循環冷却として使
	用する。サプレッショ
	ン・チェンバへは直接注
	水せず,原子炉圧力容器
	及び原子炉格納容器へ
	注水する

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
	⑤サプレッション・プール冷却/テストモード	
	サプレッション・プール冷却/テストモードは,炉心損傷	
	前及び炉心損傷後において,サプレッション・プールを冷却	
	する際又はプラント通常運転中において,起動試験を実施す	
	る場合に、サプレッション・チェンバへの注水を実施し、機	
	3.	
	$\frac{1.3.3}{(1)} - (1) - (1) + (1) $	
	$(1) 原于炉注水機能 (4/ \frac{2}{\sqrt{1.4}})$	
	炉心損傷前において、原子炉高圧状態から低圧注水への移	
	行段階での炉心損傷を防止するための注水量としては十分で	
	ない場合があるため、目主設備として位置付けている。また、	
	<u>炉心の著しい損傷, 溶融が発生した場合においては, 代替循</u>	
	<u>環冷却系ポンプにて溶融炉心の冷却が可能であり,重大事故</u>	
	<u>等対処設備として位置付けている。</u>	
	<u>(2)</u> 格納容器スプレイ機能(49条/1.6)	
	設計基準事故対処設備である残留熱除去系(格納容器スプ	
	レイ冷却系)ボンブの機能喪失時に、炉心の著しい損傷及び	
	格納容器の破損を防止するため、又は炉心の著しい損傷、溶	
	融が発生した場合において、格納容器内に浮遊する放射性物	
	<u>質の濃度を低下させるための設備であり,重大事故等対処設</u>	
	備として位置付けている。	
	(3) サブレッション・ブール冷却機能(49条/1.6)	
	設計基準事故対処設備である残留熱除去系(サブレッショ	
	ン・ブール冷却系) ボンブの機能喪失時に, サプレッション・	
	プール水を冷却できる機能を有するため、重大事故等対処設	
	備として位置付けている。	
	<u> </u>	

炉	備考
	・設備の相違
	【東海第二】
	島根2号炉の残留熱
	代替除去系は,炉心損傷
	後に循環冷却として使
	用する。サプレッショ
	ン・チェンバへは直接注
	水せず,原子炉圧力容器
	及び原子炉格納容器へ
	注水する。また, ポンプ
	性能試験には,テストタ
	ンクを用いる
	・設備の相違
	【東海第二】
	島根2号炉の残留熱
	代替除去系は, 炉心損傷
	後に格納容器の過圧破
	損を防止するための設
	備(50 条)として整備
	し,他条文に適合する設
	備としては整備しない

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
1.3.2 計測制御設備	比較対象無し	1.3.2 計測制御設備	
<u>代替循環冷却系</u> について,使用時の状態を監視するため,流量		<u>残留熱代替除去系</u> について,使用時の状態を監視するため,流	
計,温度計,水位計及び圧力計を設置する(図 1.3.2-1参照)。		量計,温度計,水位計及び圧力計を設置する(図1.3.2-1参照)。	
これらの監視パラメータは、中央制御室及び緊急時対策所で監視		これらの監視パラメータは、中央制御室及び緊急時対策所で監視	
可能な設計としている。		可能な設計としている。	
①設計方針		①設計方針	
代替循環冷却系により有効に除熱できていることを確認するた		残留熱代替除去系により有効に除熱できていることを確認する	
め、原子炉格納容器の熱バランスを把握できる監視設備を設置す		ため、原子炉格納容器の熱バランスを把握できる監視設備を設置	
る。代替循環治却系運転時の原子炉格納容器の熱バランスは、原		する。 残留熱代替除去系運転時の原子炉格納容器の熱バランスは,	
子炉格納容器内部の温度と、代替循環冷却系統により除熱される		原子炉格納容器内部の温度と、残留熱代替除去系統により除熱さ	
量を確認することで把握が可能である。よって, サプレッション・		れる量を確認することで把握が可能である。よって, <u>サプレッシ</u>	
<u>チェンバ・プール水温度</u> 及び,除熱量を確認するための <u>代替循環</u>		<u>ョン・プール水温度及び水位,原子炉格納容器内の温度及び圧力</u>	
<u>治却系</u> の系統流量(原子炉圧力容器への注水量及び原子炉格納容		並びに除熱量を確認するための残留熱代替除去系の系統流量(原	
器へのスプレイ流量), 残留熱除去系熱交換器入口温度及び残留熱		子炉圧力容器への注水量及び原子炉格納容器へのスプレイ流量),	
除去系出口温度を監視できる設計とする。		残留熱除去系出口温度を監視できる設計とする。	
また,格納容器下部への注水を確認するための代替循環冷却系		また, <u>原子炉格納容器へのスプレイによる</u> 格納容器下部への注	・設備の相違
の系統流量(格納容器下部への注水流量),格納容器下部の温度及		水を確認するための残留熱代替除去系の系統流量(原子炉格納容	【柏崎 6/7】
<u>び水位</u> を監視できる設計とする。		<u>器</u> への注水流量)を監視できる設計とする。	島根2号炉及び東海
			第二は,格納容器スプレ
			イにより格納容器下部
			への注水を行う。
			また、島根2号炉は、
			ペデスタル代替注水系
			(可搬型), (常設) によ
			り事前水張りを行い, 原
			子炉圧力容器破損後の
			注水に残留熱代替除去
			系を使用する。原子炉圧
			力容器破損後は,格納容
			器下部の温度及び水位
			ではなく,系統流量によ
			り監視する運用として
			いる
			(以下, ①の相違)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 18 版)	島根原子力発電所 2号炉	備考
以上より、下記で示す@~ @の計器を設置する。			以上より、下記で示す@~0の計器を設置する。	
・系統流量: ⑧ <u>復水補給水系流量(RHR A 系代替注水流量)</u>			·系統流量: ⑧ 残留熱代替除去系原子炉注水流量	
⑤復水補給水系流量(RHR B系代替注水流量)			<u> し 残 留 熱 代 替 除 去 系 格 納 容 器 ス プ レ イ 流 量 </u>	
⑦復水補給水系流量(格納容器下部注水流量)				・設備の相違
				【柏崎 6/7】
・残留熱除去系熱交換器入口温度: @サプレッション・チェン			・残留熱除去系熱交換器入口温度: ②サプレッション・プール	①の相違
バ・プール水温度			<u>水温度(SA)</u>	
・残留熱除去系熱交換器出口温度:@復水補給水系温度(代替			 ・残留熱除去系熱交換器出口温度: <u>@残留熱除去系熱交換器出</u> 	
循環冷却)			口温度	
・格納容器下部の温度:①ドライウェル雰囲気温度			 ・原子炉格納容器内の温度:@ドライウェル温度(SA) 	
・格納容器下部の水位: @格納容器下部水位				・設備の相違
				【柏崎 6/7】
				①の相違
			・原子炉格納容器内の圧力:①ドライウェル圧力(SA)	(柏崎と設備上の相違
			<u> ②サプレッション・チェンバ圧力</u>	はなく,使用時の状態を
			<u>(SA)</u>	監視する計器を明確に
			・残留熱代替除去系の水源: <u>6</u> サプレッション・プール水位(S	記載している)
			<u>A)</u>	
また、復水移送ホンプの運転状態を監視するため、ト記で示す <u>し</u>			また、残留熱代替院去ホンプの連転状態を監視するため、ト記	
の計話を設直する。			で不可逆の計器を設直する。	
・復水移达ホンノの連転状態: <u>D復水移达ホンノ吐田圧力</u>			・残留熱代督味去ホンノの運転状態・①残留熱代督味去ホンノ	
みよ し 記と加ら 武の劫陸士で劫去接明二次回の沮疾 法見			田日生が	
なわ,上記に加え,残留熱味云米熱交換器二次側の値度, 加重			なわ,上記に加え,残留熱係云赤熱交換器二次側の温度, 加里	
寺を11省原丁炉佃機行动式側で確認りることにより、シスノム生体の熱バランフな畑堤ナスことが可能である			寺を広丁ゲ畑機に省口知志側と確認りることにより、シベノム主体の熱バランスを知思することが可能である	
体の熱ハノンスを把握することが可能である。			体の熱ハノンスを把握することが可能である。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号
Image: second		<complex-block></complex-block>
図1.3.2-1 代替循環冷却系使用時の概略図		図 1.3.2-1 残留熱代替除去系使用

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 18版)			島根原子	力発電所 2号炉	i	
②計測設備の仕様について			②計	測設備の仕	様について			
a. 機器仕様			a.機	器仕様				
計測設備の主要仕様を表 1.3.2-1 に示す。			計	測設備の主	要仕様を表1	1.3.2-1 に示す。		
表 1.3.2-1 代替循環冷却糸運転に必要な計測設備の主要仕様				3.2-1 残	留熱代替除去 	糸運転に必要な計	·測設(<u> 第の主要仕様</u>
計測範囲 計測範囲の供担 値数 監視場所 ④ 復水補給木采流量 0~200㎡/h (6 号炉) 復水移送ボンブを用いた低圧代替法水系 中央制御室 ③ (RIR A系代替正水液量) 0~150㎡/h (7 号炉) (RIR A系ライン) における最大注水量 1 中央制御室				監視計器	計測範囲	計測範囲の根拠	個数	監視場所
(90m/h)を整視可能。 (90m/h)を整視可能。 (90m/h)を整視可能。 (90m/h) () (資水補給水系流量 (第18 8系代替書水流量) 0~350m ³ /h (ブレイ系 (BE E系ライン)の最大注水量 1 中人調柳案 (完急時対策所) () (後術客話不完流量 (修術容器下部注水資量) 0~150m ³ /h (6 5分) (140m/h)を監視可能。 1 中央創創案 () (修術容器下部注水資量) 0~150m ³ /h (6 5分) (140m/h)を監視可能。 1 中央創創案 () (修術容器下部注水清量) 0~100m ³ /h (7 5分) 水系の最大注水量(90m/h) 2 1 中央創創案			a	残留熱代替 除去系原子 炉注水流量 *1	$0 \sim 50 m^3/h$	残留熱代替除去系原子 炉注水の最大注水量 (30 m ³ /h)を監視可能。	1	中央制御室 (緊急時対策所)
			đ	残留熱代替 除去系格納 容器スプレ イ流量 ^{*1}	$0 \sim 150 m^3/h$	残留熱代替除去系格納 容器スプレイの最大注 水量 (120m ³ /h)を監視 可能。	1	中央制御室 (緊急時対策所)
加速 後期に 後期に 後期に (万元時本市) ③ 特納容器下部水位 11m, 12m, 13m (万元時本市) (万元時本市) (万元時本市) ⑤ 特納容器下部水位 (丁.M. S.1. 5000mm) (丁.M. S.1. 5000mm) <td></td> <td></td> <td>©</td> <td>サプレッシ ョン・プー ル水温度 (SA)*1</td> <td>0∼200℃</td> <td>原子炉格納容器の限界 圧力(2Pd:853kPa [gage])におけるサ プレッション・プール 水の飽和温度(約 178℃)を監視可能。</td> <td>2</td> <td>中央制御室 (緊急時対策所)</td>			©	サプレッシ ョン・プー ル水温度 (SA)*1	0∼200℃	原子炉格納容器の限界 圧力(2Pd:853kPa [gage])におけるサ プレッション・プール 水の飽和温度(約 178℃)を監視可能。	2	中央制御室 (緊急時対策所)
*2:T.M.S.L.=東京湾平均海面			Q	残留熱除去 系熱交換器 出口温度	0 ~200℃	残留熱代替除去系の運 転時における,残留熱 除去系熱交換器出口温 度の最高使用温度 (185℃)を監視可能。	1	中央制御室 (緊急時対策所)
			e	ドライウェ ル温度(S A) ^{*1}	0 ~300℃	原子炉格納容器の限界 温度(200℃)を監視可 能。	7	中央制御室 (緊急時対策所)
			Ð	ドライウェ ル圧力(S A) ^{※1}	0 ~ 1000kPa (abs)	原子炉格納容器の限界 圧力 (2Pd: 853kPa[gage])を監視 可能。	2	中央制御室 (緊急時対策所)
			Ø	サプレッシ ョン・チェ ンバ圧力 (SA) ^{※1}	0 ~ 1000kPa (abs)	原子炉格納容器の限界 圧力 (2Pd: 853kPa[gage])を監視 可能。	2	中央制御室 (緊急時対策所)
			Đ	サプレッシ ョン・プー ル水位(S A)*1	-0.80~5.50m ^{*2}	ウェットウェルベント 操作可否判断を把握で きる範囲を監視可能。	1	中央制御室 (緊急時対策所)
			٩	残留熱代替 除去ポンプ 出口圧力 ^{*1}	$0 \sim 3 \text{MPa}$ [gage]	重大事故等時におけ る,残留熱代替除去ポ ンプの最高使用圧力 (2.5MPa[gage])を監 視可能。	2	中央制御室 (緊急時対策所)
			₩1	:新規設置	する監視計器			
			₩2	:基準点は	サプレッショ	ン・プール通常水	位(EL	5610)

・設備の相違

備考

【柏崎 6/7】

①の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
b. 配置図		b.配置図	
			ר
			J
図 1.3.2-2 機器配置図(6 号炉原子炉建屋地下1 階)		図 1.3.2-2 機器配置図(原子炉建物地下2階)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図 1.3.2-3 機器配置図(6 号炉原子炉建屋地下2階)		図 1.3.2-3 機器配置図(原子炉建物地下1階)	
図 1.3.2-3 機器配置図 (6 号炉原子炉建屋地下 2 階)		図 1.3.2-3 機器配置図 (原子炉建物地下 1 階)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図 1.3.2-4 機器配置図(6 号炉原子炉建屋地下 3 階)		図 1.3.2-4 機器配置図(原子炉建物 1 階)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図 1.3.2-5 機器配置図(廃棄物処理建屋地下3階)		図 1.3.2-5 機器配置図(原子炉建物 2 階)	

	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図 1.3.2-6機器配置図(7号炉原子炉建屋地上1階) 図 1.3.2-6機器配置図(原子炉建物中2階)	図 1.3.2-6 機器配置図(7 号炉原子炉建屋地上1 階)		図 1.3.2-6 機器配置図 (原子炉建物中2階)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版) 島根原子力発電所 2号炉	備考
図 1.3.2-7 機器配置図 (7 号炉原子炉建屋地下1 階) 図 1.3.2-7 機器配置図 (原子炉建物3階)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 18版)	島根原子力発電所 2号炉	備考
図 1.3.2-8 機器配置図 (7 号炉原子炉建屋地下2 階)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図 1.3.2-9 機器配置図(7 号炉原子炉建屋地下3 階)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図 1.3.2-10 機器配置図(廃棄物処理建屋地下 3 階)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 18 版)	島根原子力発電所 2号炉	備考
原子炉格納容器内における、サプレッション・チェンバ・プー			原子炉格納容器内における,サプレッション・プール水温度(S	
<u>ル水温度</u> の位置を図 1.3.2-11 に示す。			<u>A</u>)の位置を図 1.3.2-8_に示す。	
原子护格纳容器				
サブレッション・チェンパ・ブール未選度計 66分: 753-TEOODF T. K.S.L3000(216°). サブレッション・チェンパ・ブール未選度計 66分: 753-TEOODF T. K.S.L3000(216°). サブレッション・チェンパ・ブール未選度計 66分: 753-TEOODF T. K.S.L4660(16°). サブレッション・チェンパ・ブール未選度計 66分: 753-TEOODF T. K.S.L4660(16°). サブレッション・チェンパ・ブール未選度計 66分: 753-TEOODF T. K.S.L4660(16°). サブレッション・チェン・ (************************************			原子が格納容器 (F) 学習 (F) 学 (F) 学 (F) (
図 1. 3. 2-11 サプレッション・チェンバ・プール水温度の位置			図 1.3.2-8 サプレッション・プール水温度(SA)の位置	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
c. システム構成		c. システム構成	
@復水補給水系流量(RHR A系代替注水流量)		⑧残留熱代替除去系原子炉注水流量	
復水補給水系流量(RHR A系代替注水流量)は、重大事故等対		残留熱代替除去系原子炉注水流量は、重大事故等対処設備の機	
処設備の機能を有しており、復水補給水系流量(RHR A系代替注		能を有しており,残留熱代替除去系原子炉注水流量の検出信号は,	
水流量)の検出信号は、差圧式流量検出器からの電流信号を, 中		差圧式流量検出器からの電流信号を演算装置にて流量信号へ変換	
央制御室の演算装置を経由して指示部にて流量信号へ変換する処		する処理を行った後、残留熱代替除去系原子炉注水流量を中央制	
理を行った後, <u>復水補給水系流量(RHR A 系代替注水流量)</u> を中		御室に指示し、緊急時対策所にて記録する。	
央制御室に指示し、記録する。		(図 1.3.2-9「残留熱代替除去系原子炉注水流量の概略構成図」	
(図 1.3.2- <u>12</u> 「 <u>復水補給水系流量(RHRA 系代替注水流量)</u> の概		参照。)	
略構成図」参照。)			
第二日第二日 中央朝御町 「山田」 山田」 山田 山田 山田 山田 <th></th> <th>SETTINE 中央制御室 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●</th> <th> ・設備の相違 【柏崎 6/7】 設計方針の相違によ る設計仕様の相違 </th>		SETTINE 中央制御室 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	 ・設備の相違 【柏崎 6/7】 設計方針の相違によ る設計仕様の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 18 版)	島根原子力発電所 2号炉	備考
©復水補給水系流量(RHR B系代替注水流量)			 	
復水補給水系流量(RHR B系代替注水流量)は、重大事故等対			残留熱代替除去系格納容器スプレイ流量は、重大事故等対処設	
処設備の機能を有しており、復水補給水系流量(RHR B系代替注			備の機能を有しており、残留熱代替除去系格納容器スプレイ流量	
水流量)の検出信号は、差圧式流量検出器からの電流信号を、中			の検出信号は、差圧式流量検出器からの電流信号を <u>演算装置</u> にて	
央制御室の演算装置を経由して指示部にて流量信号へ変換する処			流量信号へ変換する処理を行った後、残留熱代替除去系格納容器	
理を行った後, <u>復水補給水系流量(RHR B 系代替注水流量)</u> を中			スプレイ流量を中央制御室に指示し,緊急時対策所にて記録する。	
央制御室に指示し, 記録する。			(図 1.3.2-10「残留熱代替除去系格納容器スプレイ流量の概略構	
(図 1.3.2 - <u>13</u> 「 <u>復水補給水系流量(RHR B 系代替注水流量)</u> の			成図」参照。)	
概略構成図」参照。)				
差圧式流量 中央制御室 検出器 重 (重) 運 (重) (重) (重) (重) (注) (二) (二) (二) (2) (二) (2) (二) (2) (二) (2) <td< td=""><td></td><td></td><td>差圧式流量 検出器 中央制御室 」 」 <t< td=""><td></td></t<></td></td<>			差圧式流量 検出器 中央制御室 」 」 <t< td=""><td></td></t<>	
<u>図1.3.2-13 復水補給水系流量(RHR B 系代替注水流量)の概略構</u> <u>成図</u>			図 1.3.2-10 残留熱代替除去系格納容器スプレイ流量の概略構成 図	 ・設備の相違 【柏崎 6/7】 設計方針の相違によ る設計仕様の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
②復水補給水系流量(格納容器下部注水流量)			・設備の相違
復水補給水系流量(格納容器下部注水流量)は,重大事故等対			【柏崎 6/7】
処設備の機能を有しており、復水補給水系流量(格納容器下部注			①の相違
水流量)の検出信号は,差圧式流量検出器からの電流信号を,中			
央制御室の演算装置を経由して指示部にて流量信号へ変換する処			
理を行った後,復水補給水系流量(格納容器下部注水流量)を中			
央制御室に指示し, 記録する。			
(図 1.3.2 -14「復水補給水系流量(格納容器下部注水流量)の			
概略構成図」参照。)			
美正式 海骨			
検出器 中央制御室			
(株)27 			
(注1) 記録計			
(注2)緊急時対策支援システム伝送装置			
29-94 其 淮 (社 女) 49 1 新 29-9			
重大事故等対処設備			
里入事成等对处战期			
図 1.3.2-14 復水補給水系流量(格納容器下部注水流量)の概略構			
成図			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 18 版)	島根原子力発電所 2号炉	備考
<u> </u>			<u> </u>	
サプレッション・チェンバ・プール水温度は,重大事故等対処			サプレッション・プール水温度 (SA) は、重大事故等対処設	
設備の機能を有しており, <u>サプレッション・チェンバ・プール水</u>			備の機能を有しており, <u>サプレッション・プール水温度(SA)</u>	
温度の検出信号は、測温抵抗体の抵抗値を、中央制御室の指示部			の検出信号は、測温抵抗体の抵抗値を演算装置にて温度信号に変	
にて温度信号に変換する処理を行った後, <u>サプレッション・チェ</u>			換する処理を行った後, <u>サプレッション・プール水温度(SA)</u>	
ンバ・プール水温度を中央制御室に指示し、記録する。			を中央制御室に指示し、緊急時対策所にて記録する。	
(図 1. 3. 2-15 「サプレッション・チェンバ・プール水温度の概			(図 1.3.2-11「 <u>サプレッション・プール水温度(SA)</u> の概略構	
略構成図」参照。)			成図」参照。)	
哈樺成図」参照。) 潮温 中央制御室 単二 中央制御室 (注1) 記録計 (注1) 記録計 (注2) 緊急時対策支援システム伝送装置 (注2) 緊急時対策支援システム伝送装置 (注1) 記録計 (注2) 緊急時対策支援システム伝送装置 (注1) 記録計 (注2) 緊急時対策支援システム伝送装置 (注1) 記録計 (注2) 緊急時対策支援システム伝送装置 (注2) 緊急時対策支援システム伝送装置 (注3) 記書業政策対処設備 (図1.3.2-15 サプレッション・チェンバ・プール水温度の概略構成			成図] 参照。) 測温抵抗体	 ・設備の相違 【柏崎 6/7】 設計方針の相違による設計仕様の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 18 版)	島根原子力発電所 2号炉	備考
@復水補給水系温度(代替循環冷却)			@残留熱除去系熱交換器出口温度	
復水補給水系温度(代替循環冷却)は,重大事故等対処設備の			残留熱除去系熱交換器出口温度は,設計基準対象施設及び重大	・設備の相違
機能を有しており、復水補給水系温度(代替循環冷却)の検出信			事故等対処設備の機能を有しており、残留熱除去系熱交換器出口	【柏崎 6/7】
号は、熱電対からの起電力を、 <u>中央制御室の指示部</u> にて温度信号			温度の検出信号は、熱電対からの起電力を、演算装置にて温度信	島根2号炉は設計基
に変換する処理を行った後,復水補給水系温度(代替循環冷却)			号に変換する処理を行った後,残留熱除去系熱交換器出口温度を	準対象施設及び重大事
を中央制御室に指示し,記録する。(図1.3.2-16 「復水補給水系			中央制御室に指示し, <u>緊急時対策所にて</u> 記録する。(図 1.3.2-12	故等対処設備の機能を
温度(代替循環冷却)の概略構成図」参照。)			「残留熱除去系熱交換器出口温度の概略構成図」参照。)	有している
			PeyningImage: strateging of the	・設備の相違 【柏崎 6/7】 設計方針の相違によ る設計仕様の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
①ドライウェル雰囲気温度		@ドライウェル温度 (SA)	
ドライウェル雰囲気温度は、重大事故等対処設備の機能を有し		ドライウェル温度 (SA) は、重大事故等対処設備の機能を有	
ており、 ドライウェル雰囲気温度の検出信号は、熱電対からの起		しており, ドライウェル温度 (SA) の検出信号は, 熱電対から	
電力を, <u>中央制御室の指示部</u> にて温度信号に変換する処理を行っ		の起電力を, <u>演算装置</u> にて温度信号に変換する処理を行った後,	
た後, <u>ドライウェル雰囲気温度</u> を中央制御室に指示し,記録する。		<u>ドライウェル温度(SA)</u> を中央制御室に指示し, <u>緊急時対策所</u>	
(図 1.3.2-17「 <u>ドライウェル雰囲気温度</u> の概略構成図」参照。)		<u>にて</u> 記録する。(図 1.3.2- <u>13</u> 「 <u>ドライウェル温度(SA)</u> の概略	
		構成図」参照。)	
		中央制御室 熱電対 <u>演算装置</u> 指示	
(注 1) 記録計		緊急時対策所	
 (注 2) 緊急時対策支援システム伝送装置 設計基準対象施設 重大事故等対処設備 		設計基準対象施設 (注 1) 安全パラメータ表示システム (SPD S) 重大事故等対処設備 (注 1) 安全パラメータ表示システム (SPD S) 設計基準対象施設及び (注 1) 安全パラメータ表示システム (SPD S) (注 1) 安全パラメータ表示システム (SPD S) (注 1) 安全パラメータ表示システム (SPD S)	
<u> </u>		図 1.3.2-13 ドライウェル温度(SA)の概略構成図	・設備の相違
			【柏崎 6/7】
			設計方針の相違によ
			る設計仕様の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
		①ドライウェル圧力 (SA)	
		ドライウェル圧力(SA)は、重大事故等対処設備の機能を有	
		しており、ドライウェル圧力(SA)の検出信号は、弾性圧力検	
		出器からの電流信号を中央制御室の指示部にて圧力信号へ変換す	
		る処理を行った後、ドフィリエル圧力(SA)を中央制御室に指	
		弹性压力 中央制御室	
		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	
		重大事故等対処設備 (注1) 安全パラメータ表示システム(SP 1000000000000000000000000000000000000	
		重大事故等対処設備	
		図1.3.2-14 ドライウェル圧力(SA)の概略構成図	(柏崎と設備上の相違
			はなく,使用時の状態を
			監視する計器を明確に
			記載している)

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.18版)	島根原子力発電所 2号炉	備考
					@サプレッション・チェンバ圧力(SA)	
					サプレッション・チェンバ圧力 (SA) は,重大事故等対処設	
					備の機能を有しており、サプレッション・チェンバ圧力 (SA)	
					の検出信号は、弾性圧力検出器からの電流信号を中央制御室の指	
					示部にて圧力信号へ変換する処理を行った後、サプレッション・	
					チェンバ圧力(SA)を中央制御室に指示し,緊急時対策所にて	
					記録する。(図 1.3.2-15「サプレッション・チェンバ圧力 (SA)	
					の概略構成図」参照。)	
					弹性压力 中央制御室	
					緊急時対策所	
					設計基準対象施設 重量 重大事が築対処設備 (注1) 安全パラメータ表示システム (SP)	
					里大事故寺对处設備	
					 図 1.3.2-15 サプレッション・チェンバ圧力(SA)の概略構成	(柏崎と設備上の相違
						はなく、使用時の状態を
						監視する計器を明確に
						記載していろ)

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所	(2018. 9. 18版)	島根原子力発電所 2号炉	備考
				<u> </u>	
				サプレッション・プール水位 (SA)は,重大事故等対処設備	
				の機能を有しており、サプレッション・プール水位(SA)の検	
				出信号は、差圧式水位検出器からの電流信号を中央制御室の指示	
				部にて水位信号へ変換する処理を行った後、サプレッション・フ	
				ール水位(SA)を中央制御室に指示し,緊急時対策所にて記録	
				<u>する。(図1.3.2-16「サプレッション・プール水位(SA)の概</u>	
				略構成図」参照。)	
				差圧式水位 検出器 中央制御室 第急時対策所 第急時対策所 記録(注1) 設計基準対象施設 まままめ第分地 習供	
				 重大事故等対処設備 設計基準対象施設及び 重大事故等対処設備 ジョ1 3 2-16 井 プレッシュン・プール水位 (SA)の概略構成区 	(柏崎と設備上の相違
					はなく,使用時の状態を 監視する計器を明確に 記載している)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 18 版)	島根原子力発電所 2号炉	備考
@格納容器下部水位				・設備の相違
格納容器下部水位は,重大事故等対処設備の機能を有しており,				【柏崎 6/7】
格納容器下部水位の検出信号は、電極式水位検出器からの水位状				①の相違
<u>態 (ON-OFF</u> 信号) を, 中央制御室に指示し, 記録する。(図 1.3.2-18				
「格納容器下部水位の概略構成図」参照。)				
電極式水位 中央制御室				
検出器				
۲				
(注1) 記録計				
(注 2) 緊急時対策支援システム伝送装置				
設計基準対象施設				
重大事故等対処設備				
設計基準対象施設及び 重大事故等対処設備				
図 1.3.2-18 格納容器下部水位の概略構成図				
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考	
--	----------------------	--	-------------	
1.3.3 電源設備	比較対象無し	1.3.3 電源設備		
① 概要		① 概要		
代替循環冷却系の使用時に必要な電動機、計測制御設備、電		残留熱代替除去系の使用時に必要な電動機、計測制御設備、		
動駆動弁を作動させるため、代替交流電源設備から非常用所内		電動駆動弁を作動させるため、 <u>常設</u> 代替交流電源設備から <u>代</u>	・設備の相違	
<u>電気設備</u> を経由して必要な電力を供給する設計として <u>いる。</u> ま		<u> 替所内電気設備</u> を経由して必要な電力を供給する設計として	【柏崎 6/7】	
た,既設非常用所内電気設備が使用不能の場合においても、 <u>代</u>		おり、非常用所内電気設備が使用不能の場合においても、必	島根2号炉の残留熱	
<u> 替所内電気設備を用いて</u> 必要な電力を供給できる設計としてい		要な電力を供給できる設計としている。	代替除去系は重大事故	
る。			等対処設備として設置	
② 電源供給負荷		② 電源供給負荷	する系統であり通常運	
代替循環治却系の使用時に必要な負荷は図 1.3. 3-1 及び表		残留熱代替除去系の使用時に必要な負荷は図 1.3.3-1 及び	転時に使用することは	
1.3.3-1 に示すとおりである。		表 1.3.3-1 に示すとおりである。	ないため,重大事故等対	
			処設備専用の負荷とし	
			て代替所内電気設備を	
			経由し電源供給を行う	
			電源系統構成としてい	
			る	
i) i) ii) ii) iii) i				
<u>図 1.3.3-1 代替循環冷却系 概略図</u>		<u>図 1.3.3-1 残留熱代替除去系概略図</u>	・設備の相違	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.18版)		島根原子力発	毛電所 2号炉		備考
表 1.3.3-1 代替循環冷却系の電源供給負荷				表 1.3.3-1 残留熱代替	* 除去系の電源	供給負荷	・設備の相違
図番 負荷 通常時の 代替所内電気器 電源供給元 使用時の電源供	備合元		図番	負荷	通常時の 雪源供給示	代替所内電気設備	【柏崎 6/7】 重大事故等対処設備
(a) 残留熱除去系最小流量バィパス弁(B) MCC 7D-1-1 AM 用 MCC 7B ※ (b) 残留熱除去系熱交換器出口弁(B) MCC 7D-1-1 AM 用 MCC 7B ※ (c) 残留熱除去系高圧炉心注水系第一止め弁※4 MCC 7D-1-1 AM 用 MCC 7B %			(a)	RHR RHARライン入口止 めか ^{※3}	SA2-C/C ^{*1}	SA2-C/C ^{*1}	専用の負荷として代替
(d) 残留熱除去系高圧炉心注水系第二止め弁※4 MCC 7D-1-1 AM 用 MCC 7B ※ (e) タービン建屋負荷遮断弁 AM 用 MCC 7B ※1 AM 用 MCC 7B ※1			(b)	^{80升¹⁰} RHARライン流量調節弁 ^{※3}	SA2-C/C ^{**1}	SA2-C/C ^{**1}	電源供給を行う電源系
(f) 残留熱除去系洗浄水弁(A) MCC 7C-1-1 AM 用 MCC 7B ※ (g) 残留熱除去系洗浄水弁(B) AM 用 MCC 7B ※1 AM 用 MCC 7B ※ (h) 残留熱除去系注入弁(A) MCC 7C-1-1 AM 用 MCC 7B ※			(c)	RHR A-FLSR連絡ライ ン止め弁 ^{※3}	SA2-C/C ^{*1}	SA2-C/C ^{×1}	統構成としている
(i) 残留熱除去系格納容器冷却流量調節弁(B) MCC 7D-1-1 AM 用 MCC 7B ※ (j) 残留熱除去系格納容器冷却ライン隔離弁(B) MCC 7D-1-1 AM 用 MCC 7B ※ (k) 残留熱除去系ボンブ炉水吸込弁(B) MCC 7D-1-1 AM 用 MCC 7B ※			(d)	RHR A-FLSR連絡ライ ン流量調節弁 ^{※3}	SA2-C/C ^{**1}	SA2-C/C ^{*1}	
(1) 下部ドライウェル注水流量調節弁 MCC 7C-1-7 AM 用 MCC 7B % (m) 下部ドライウェル注水ライン隔離弁 MCC 7D-1-7 AM 用 MCC 7B % (n) 復水移送ボンプ(A) MCC 7C-1-1 AM 用 MCC 7B % (n) 復水移送ボンプ(A) MCC 7C-1-1 AM 用 MCC 7B %			(e)	RHR PCVスプレイ連絡ラ イン流量調節弁 ^{※3}	SA2-C/C**1	SA2-C/C ^{*1}	
(o) 復水移送ホンプ(B) AM用 MCC 7B %1 AM用 MCC 7B %1 (p) 復水移送ポンプ(C) AM用 MCC 7B %1 AM用 MCC 7B %1			(f)	A-RHR注水弁	C2-C/C	SA2-C/C ^{**1}	
□ 計測制御設備※3 MCC 7C-1-4 AM用 MCC 7B ※ ※1 :P/C 7D-1 より AM 用 MCC 7B を受電する			(g)	B-RHRドライウェル第2ス プレイ弁	D2-C/C	SA2-C/C ^{**1}	
※2:AM 用動力変圧器より AM 用 MCC 7B を受電する			(h)	B-RHR熱交バイパス弁	D2-C/C	SA2-C/C ^{**1}	
※3:AM 用直流 125V 充電器を経由して以下のパラメーク	を確		(i)	A-残留熱代替除去ポンプ ^{※3}	SA2-C/C ^{**1}	SA2-C/C ^{**1}	
認する			(j)	B-残留熱代替除去ポンプ ^{※3}	SA2-C/C ^{*1}	SA2-C/C ^{**1}	
・復水補給水系流量(RHR A系代替注水流量)					SA1-C/C ^{*1}	SA1-C/C ^{**1}	
・復水補給水系流量(RHR B系代替注水流量)					011 0/0	511 0/ 0	
 ・復水補給水系流量(格納容器下部注水流量) 			× 1	·CAI/C 上的 巫 電 十 Z			
・復水移送ポンプ吐出圧力			* 1	・SA-L/しより文电りる。	知上マ		
·復水補給水系温度(代替循環冷却)			* 2	: 以下のハフメータを監	倪可 る。 二 二 、 、 、 、 、 、 二		
• 原子恒水位 (SA)				• 残留熱代替除去杀原-	子炉注水流量		
• 故如穷哭内压力				• 残留熱代替除去系格為	納容器スプレイ	流量	
拉州/在44/11/2/1 按 她容明古泪 座				・サプレッション・プ	ール水温度(S	5 A)	
				 残留熱除去系熱交換器 	器出口温度		
・サフレッション・チェンハ・フール水位				・ドライウェル温度(SA)		
・サプレッション・チェンパ・プール水温度				・ドライウェル圧力(SA)		
※4:代替循環冷却系設置に伴い新設した設備				・サプレッション・チ	ェンバ圧力(S	5 A)	
				・サプレッション・プ	ール水位(SA		
				・ 建留執代 基 除 去 ポン	プ出口圧力	,	
			* 9	· 建切勒代获除土玄弘罟)	ア伴い設置する	、乳借	
			~ 3	• · 汉田杰氏官际五术叹里(に下* 、叱胆りる	アロベル田	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
③単線結線図		③単線結線図	
代替循環冷却系の単線結線図は、図1.3.3-2及び図1.3.3-3に		<u>残留熱代替除去系</u> の単線結線図は図 1.3.3-2 に示す <u>通り</u> であ	
示すとおりである。		る。	
外部電源喪失時における <u>代替循環冷却系</u> の電源供給元は,次の とおりとして、aからbの順に優先順位を定めることとする。		<u>全交流動力</u> 電源喪失時における <u>残留熱代替除去系</u> の電源供給元 は、次のとおりとする。	 ・設備の相違
		(a, y) = (a, y) = (a, y) = (a, y)	【柏崎 6/7】
			重大事故等対処設備
			専用の負荷として代替
			電源供給を行う電源系
			統構成としているため,
			電源供給の優先順位は
a. 常設代替交流電源設備(第一ガスタービン発電機)から非常			1211
<u>用所内電気設備(M/C, P/C, MCC)を経由して, 代替循環冷却</u>			
<u>系の運転に必要な設備に電源供給を行う。(図 1.3.3-2)</u>			
b		a 党設代表応法電源設備(ガスタービン発電機)から代表研	
所内電気設備(動力変圧器, MCC)を経由して、代替循環冷		<u>a.</u> 市政代律父派電源設備(<u>MAC, SA-L/C, SA1-C/C, SA2-C/C</u>)を 内電気設備(緊急用 M/C, SA-L/C, SA1-C/C, SA2-C/C)を	
<u>却系</u> の運転に必要な設備に電源供給を行う。(図 1.3.3-3)		経由して、残留熱代替除去系の運転に必要な設備に電源供	
		給を行う。(図 1.3.3-2)	
		なお、通常時に非常用所内電気設備の負荷である設備に	・設備の相違
		<u>ついては、代替所内電気設備からの電源供給に切替えて電</u> 適供 <u>始</u> た <u>行</u> る	【柏崎 6/7】
		<u> 彼快福を119。</u>	単人争 0 寺 刈 処 設 佣
			・ 「「「「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」
			電源供給を行う電源系
			統構成としている

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
Weight			・設備の相違 【柏崎 6/7】 重大事故等対処設備 専用の負荷として代替 所内電気設備を経由し 電源供給を行う電源系 統構成としているため, 非常用電気設備を経由 した電源供給はない

~炉	備考
≺ s	
a mean manual manu manu manu manu manu manu manu manu	
Action Barting Action	
www.united to the second sec	
<u>単線結線図</u>	・設備の相違 【柏崎 6/7】 電源系統構成の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
2. 代替循環治却系の成立性確認	2. 代替循環治却系の成立性確認	2. 残留熱代替除去系の成立性確認	
2.1 有効性評価シナリオの成立性		2.1 有効性評価シナリオの成立性	
2.1.1 代替循環冷却系の運用について	2.1 代替循環治却系の運用について	<u>2.1.1 残留熱代替除去系</u> の運用について	
代替循環冷却系は、代替原子炉補機冷却系の準備時間を考慮し			・記載方針の相違
事故後 22.5 時間以降の運転開始を想定している。			【柏崎 6/7,東海第二】
運転中の原子炉における重大事故に至るおそれがある事故にお	代替循環冷却系は、1.2に示すとおりサプレッション・チェン	残留熱代替除去系は、1.2に示すとおりサプレッション・チェ	島根2号炉は,残留熱
いて,格納容器ベントを実施するシナリオは, 高圧・低圧注水機	バを水源とした低圧の原子炉注水及び格納容器除熱を実施可能な	ンバを水源とした原子炉注水及び原子炉格納容器の除熱が可能な	代替除去系の系統概要
能喪失,全交流動力電源喪失,LOCA時注水機能喪失等があり,	系統であり、サプレッション・プールの水位上昇に対する悪影響	系統であり, サプレッション・チェンバの水位上昇を抑制できる。	を記載するとともに,格
22.5時間後より以前に格納容器ベントを実施することになるため	はないが、運転に当たり残留熱除去系海水系又は緊急用海水系等	残留熱代替除去系の運転に当たり,原子炉補機冷却系(原子炉	納容器フィルタベント
格納容器ベントまでに代替循環冷却系の運転開始をすることはで	による冷却水供給を必要とすることから、事象初期における原子	補機冷却海水系を含む。)又は原子炉補機代替冷却系による冷却水	系よりも残留熱代替除
きない。しかしながら、最も格納容器ベント時の実効線量が高い	<u>炉注水に当たっては、冷却水を必要としない低圧代替注水系(常</u>	供給を必要とするが、格納容器フィルタベント系による原子炉格	去系を優先することを
全交流動力電源喪失の敷地境界外での実効線量の評価結果は、格	設)を優先し、冷却水が確保された後に代替循環冷却系による原	納容器の除熱が必要となるまでに残留熱代替除去系への冷却水供	記載
納容器圧力逃がし装置を用いた場合は約9.9×10⁻³mSv であるが,	子炉注水に切り替える運用としている。	給を確保することが可能であることから,原子炉格納容器の除熱	
耐圧強化ベント系を用いた場合でも約4.9×10 ⁻² mSv であり, 敷地		に当たっては残留熱代替除去系を優先して使用する運用としてい	
境界での実効線量の 5mSv を大きく下回り, 周辺の公衆に対して著		<u>Zem</u>	
しい放射線被ぱくのリスクを与えることはない。なお、格納容器			
ベント後においても、代替循環冷却系はサプレッション・チェン			
バ・プール水位上昇の抑制を更に確実にするための有効な対策と			
<u>なる。</u>			
また、代替循環冷却系が使用できる場合には、格納容器圧力逃			
がし装置よりも優先して使用するものとする。			
2.1.2 代替循環治却系の有効性について	2.2 代替循環治却系の有効性について	2.1.2 残留熱代替除去系の有効性について	
代替循環治却系の有効性については、「柏崎刈羽原子力発電所6	代替循環治却系の有効性については、格納容器除熱の観点で厳	<u>残留熱代替除去系</u> の有効性については、「 <u>島根原子力発電所2号</u>	
号及び7号炉重大事故等対策の有効性評価について」の「3.1 雰	しいシナリオである「東海第二発電所 重大事故等対策の有効性	炉重大事故等対策の有効性評価」の「3.1 雰囲気圧力・温度に	
囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」にお	評価について」の「3.1 雰囲気圧力・温度による静的負荷(格納	よる静的負荷(格納容器過圧・過温破損)」における、「 <u>冷却材喪失</u>	
ける,「 <u>大破断 LOCA+ECCS 注水機能喪失+全交流動力電源喪失</u> 」シ	容器過圧・過温破損)」の「3.1.2 代替循環冷却系を使用する場	(大破断LOCA)+ECCS注水機能喪失+全交流動力電源喪	
ナリオにて事象を通じて限界圧力に到達することなく、格納容器	合」,「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」,「3.3	失」シナリオにて事象を通じて限界圧力に到達することなく,格納	
ベントを回避することが可能となるととを確認している。また,	原子炉圧力容器外の溶融燃料-冷却材相互作用」,「3.4 水素燃	容器ベントを回避することが可能となることを確認している。ま	
「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」における,「過	焼」及び「3.5 溶融炉心・コンクリート相互作用」において、事	た、「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」における、	
渡事象+高圧注水失敗+原子炉減圧失敗+炉心損傷後の原子炉減	象を通じて限界圧力に到達することなく、格納容器ベントを回避	「過渡事象+高圧炉心冷却失敗+原子炉減圧失敗+炉心損傷後の	
<u> 圧失敗(+DCH 発生)</u> 」シナリオ ^{*1} においても事象を通じ限界圧力	又は大幅に遅延することが可能となることを確認している。なお,	<u>原子炉減圧失敗+原子炉注水失敗+DCH発生</u> 」シナリオにおい	・設備設計の相違
に到達することなく、格納容器ベントを回避することができるこ	炉心損傷防止対策の有効性評価のうち、格納容器圧力逃がし装置	ても事象を通じて限界圧力に到達することなく,格納容器ベント	【東海第二】
とを確認している。	による格納容器除熱に期待している事故シーケンスグループにつ	を回避することができることを確認している。	島根2号炉は,残留熱
	いては、代替循環冷却系に期待した有効性評価を実施することも		代替除去系を炉心損傷
	考えられるが、評価の仮定として、代替循環冷却系に期待しない		防止対策として位置付
	場合を想定し、有効性を確認している。炉心損傷防止対策の有効		けていない
	性評価において代替循環冷却系に期待した場合、格納容器圧力及		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	び格納容器温度はより低く推移する。		
※1「過渡事象+高圧注水失敗+原子炉減圧失敗+炉心損傷後の			・解析条件の相違
原子炉減圧失敗(+DCH 発生)」シナリオは原子炉への注水			【柏崎 6/7】
ができず、原子炉圧力容器が破損する場合について評価し			島根2号炉の有効性
ており,格納容器スプレイ及び格納容器下部への注水を実			評価では、「3.1 雰囲
施している。また,代替循環冷却系の運転開始は事故後20.5			気圧力・温度による静的
時間以降として成立性を評価しているが、このうち代替原			負荷(格納容器過圧・過
子炉補機冷却系の準備時間については「大破断 LOCA+ECCS			温破損)」と「3.2 高圧
<u>注水機能喪失+全交流動力電源喪失」シナリオとの違いは</u>			溶融物放出/格納容器
<u>無い。なお,「大破断 LOCA+ECCS 注水機能喪失+全交流動力</u>			雰囲気直接加熱」におけ
<u>電源喪失」シナリオにおいて事故後 22.5 時間以降の運転開</u>			る残留熱代替除去系の
始を想定している理由は、代替原子炉補機冷却系の準備が			運転開始時間は同じ
<u>完了した後の原子炉水位の制御操作等,同シナリオ固有の</u>			
代替循環冷却系に切り替える上での準備操作によるもので			
<u>ある。</u>			
なお、高圧・低圧注水機能喪失に対しては、重大事故等対処設		なお、高圧・低圧注水機能喪失に対しては、重大事故等対処設	
備である <u>高圧代替注水系</u> による原子炉注水を行うことで,原子炉		備である高圧原子炉代替注水系による原子炉注水を行うことで,	
減圧を実施することなく、炉心損傷は回避可能である。また、耐		原子炉減圧を実施することなく、炉心損傷は回避可能である。ま	
圧強化ベント系によるベント実施により格納容器の健全性は維持		た, 格納容器フィルタベント系によるベント実施により格納容器	
され、周辺の公衆に対して著しい放射線被ばくのリスクを与える		の健全性は維持され、周辺の公衆に対して著しい放射線被ばくの	
ことはない。高圧代替注水系の有効性については、「柏崎刈羽原子		リスクを与えることはない。高圧原子炉代替注水系の有効性につ	
<u>力発電所6号及び7号炉</u> 重大事故等対策の有効性評価について」		いては、「島根原子力発電所2号炉重大事故等対策の有効性評価」	
の「2.3.2 <u>全交流電源喪失(外部電源喪失+DG 喪失)</u> +RCIC 失敗」		の「2.3.2 全交流動力電源喪失 (TBU)」にて確認している。	
にて確認している。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
2.2 <u>代替循環冷却系</u> の操作性	2.3 代替循環治却系の操作性	2.2 残留熱代替除去系の操作性	
2.2.1 代替循環冷却系運転のために必要な系統・機器とアクセス		2.2.1 残留熱代替除去系運転のために必要な系統・機器とアクセ	
性		ス性	
<u>代替循環冷却系</u> 運転時あるいは運転後において,以下の操	代替循環冷却系の運転時において, 確実に操作及び監視がで	<u>残留熱代替除去系</u> 運転時 <u>あるいは運転後</u> において,以下の	
作並びに作業が確実に実施できることが必要である。	きることが必要であるため、以下を考慮する。	操作並びに作業が確実に実施できることが必要である。	
(1)代替循環冷却系運転継続に必要な操作 監視ができろこと		(1)残留熱代替除去系運転継続に必要な操作, 監視ができること	
 (2)低圧代替注水系(可搬型)による原子炉注水^{*1}.格納容器べ 		(2)格納容器ベント操作ができること	
ント操作ができること			・運用の相違
			【柏崎 6/7】
			島根2号炉は,別々の
※1原子炉への注水ができない状態において,原子炉圧力容器の破			ポンプ(FLSR, RHAR)を
損を確認した場合は格納容器下部への注水を実施する。			使用することから循環
			冷却の系統構成と原子
			炉注水を並行して実施
			可能
(1)代替循環治却系運転継続に必要な操作,監視		(1) 残留熱代替除去系運転継続に必要な操作,監視	
<u>代替循環冷却系</u> 運転開始前の系統構成は,中央制御室からの	代替循環冷却系の系統構成及び運転操作は、中央制御室で	残留熱代替除去系運転開始前の系統構成は、中央制御室から	
電動駆動弁の遠隔操作の <u>他, 廃棄物処理建屋での手動弁の操作</u>	の遠隔操作が可能な設計とする。	の電動駆動弁の遠隔操作のため、操作への放射線による大きな	・設備の相違
<u>が必要であるが,操作は運転開始前</u> のため, <u>アクセス及び</u> 操作へ		影響はない。	【柏崎 6/7】
の放射線による大きな影響はない。(表 2.2.1-1 及び図 2.2.1-1			島根2号炉は,中央制
<u>参照)</u>			御室で操作可能な設計
また,運転開始時の復水移送ポンプの起動は中央制御室から		また、運転開始時の残留熱代替除去ポンプの起動は中央制御	としている
遠隔で操作が可能な設計としているため,操作への放射線によ		室から遠隔で操作が可能な設計としているため、操作への放射	
る大きな影響はない。		線による大きな影響はない。	
代替循環沿却糸運転を開始した後は、復水移送ボンブの運転	代替循環治却系の運転を開始した後は、代替循環治却系ボ	<u>残留熱代替除去糸</u> 運転を開始した後は、 <u>残留熱代替除去ボン</u>	
状態を復水移送ホンプ吐出圧力により監視する。また、糸統流量	ンプの運転状態を吐出圧力により監視する。また、原子炉へ	ブの運転状態を残留熱代替除去ボンブ出口圧力により監視す	
の監視は、原子炉汪水流量を復水補給水系流量(RHR A 糸代替注	の注水流量を代替循環冷却糸原子炉注水流量にて監視し、格	る。また、糸統流量の監視は、原子炉注水流量を残留熱代替除	
水流重)で、格納谷器スノレイ流重を復水補給水糸流重(RHRB糸	約谷益人ノレイ派重を代替値境位却糸格納谷益人ノレイ派重 に て 既知中する。	<u> 去糸原ナ炉注水流重で, 格納谷器人ノレイ流重を残留熱代替味</u> まぁ故始 <u>傍</u> 開スプレイ流見にて影視力ス	乳供の打き
<u>11 (台注水流重)</u> じ,	<u>CCERTER Com</u>	<u> </u>	
(格納谷希下部汪水派重)にく監視する。			【 相崎 6/ 7】
仕井須彊公却で海転にトスでな水冷却性氾さ、復水靖公水で	()	帝の勅任共陸士で軍転に上てでな水沙却性泊さ, 産の勅陸士	「「一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
1、自加泉田辺ボ理報による示配小田辺仏仇を, 復小開起水ボ 泪度(仕扶毎晋冷却)及びサプレッション、チェンバ・プーリー	1、宜堰衆田辺水理報による永ณ小田辺仏伍を,1、貸増現田辺 るポンプ入口泪度及びサプレッション、デール大温度により	2次用が1人前床五式理転による示杭小市型仏仇を, 次面が床五 執方協思出口泪度及びサプレッション・プールナ泪度(SA)	1個による、フクル注
<u> 通及には直頂採用が</u> 及びリノレッション・フェンハ・ノール水 温度により確認する	ホルノノハロ価度及いリノレソション・ノール小価度により 確認する	が法法的山田通送及いリノレッション・ノール小価度(SA)	小は、111111111111111111111111111111111111
(皿及により)(理100) つ。 (代麸活費)と却る)((定)の)が見た 原之に水位・故如の空内に力・	<u> 地思いた。</u> また 化 株 低 得 必 却 系 の 運 転 の 効 思 た の て ス に れ ゆ い う	により理論する。 産辺執代共陸主玄運転の効果を	「こく大心
<u>しい記憶流しいが</u> でもいかったで、ホールが小位・俗配合品とり圧力・ 枚納容哭内沮庶・サプレッション・チェンバ・プールかけにト	よい…」、「日本の日本の「日本の「日本の」」、「「「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、		
り確認する	ル愛囲気温度、サプレッション・チェンバテ囲気温度、サプ	エンバ圧力 (SA) サプレッション・プール水位 (SA) に	
> νμЩμμ 1 · 3 0	レッション・プール水位に上り確認する	n確認する	
		く 予算を与う へのの	1

											Т
柏崎刈羽原子力発電所	6/7号/	炉 (20)17.12.20版)		東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉			備考		
これらのパラメータは「	パラメータは中央制御室及び緊急時対策所で監視が これらのパラメータは中央制御室及び緊急時対策所で監視が										
可能な設計としているため, 代替循環冷却系運転により配管周						可能な設計としている	ため,残留熱	热代替除去	系運転により)配管	
りの放射線量が上昇した	湯合におい~	ても監視	が可能である) ₀		廻りの放射線量が上昇した場合においても監視が可能である。					
また,代替循環冷却系運	転時には原	〔子炉注7	水流量, 格納容	「器ス		また、残留熱代替除	去系運転時)	こは原子炉	「注水流量及び	び格納	
プレイ流量 <u>及び格納容器</u>	下部注水流量	量 を調整	する場合は,	流量		容器スプレイ流量を調整	整する場合に	は,流量調	駆弁の操作に	こより	・設備の相違
調整弁の操作により行う;	が,中央制御	国室から這	遠隔で操作が	可能		行うが中央制御室からの	の遠隔で操作	乍が可能な	設計としてい	いるた	【柏崎 6/7】
な設計としているため,	放射線量が	上昇した	場合において	こも操		め,放射線量が上昇した	こ場合におい	いても操作	が可能である	5。(表	島根2号炉は,常設設
作が可能である。(表 2.2	. 1-1 及び図	2.2.1-	1 参照)			2.2.1-1 及び図 2.2.1-1	参照)				備によるペデスタル注
その他の作業としては、	代替原子炉	前機冷却	却系の運転状	態確		その他の作業としてに	は, 原子炉補	甫機代替冶	却系の運転	犬態確	水は,格納容器スプレイ
認及び代替熱交換器車(熱	交換器ユニ	<u>-ット)の</u>	付帯設備であ	っる電		認及び大型送水ポンプ	重への給油作	乍業がある	。これらは唇	屋外作	にて実施
<u>源車</u> への給油作業がある。	これらは	屋外作業	こうちょう うちょう こうちょう こうちょう しんちょう しんしょう しんしょ しんしょ	容器べ		業であり格納容器ベン	ト操作前でお	あるため高	「線量になるこ	ことは	
ント操作前であるため高級	泉量になる、	ことはな	く,温度・湿度	度等に		なく,温度・湿度等に~	ついても問題	頃になるこ	とはなく作業	業環境	
ついても問題になること	はなく作業現	環境は維	持されている	D _o		は維持されている。					
なお,代替循環冷却系運	転の評価は	、事故発	生 22.5 時間	後と							・運用の相違
しているが,対応要員が早	期に確保さ	れ代替征	盾環冷却系運	転の							【柏崎 6/7】
判断がされた場合は,評価	上の時間を	待つこ。	となく運転を	開始							島根2号炉は,要員の
する。その場合の対応に、	ついて「別約	紙-5」に	記す。								参集に期待せずとも必
											要な作業を常駐要員に
											より実施可能
表 2.2.1-1 代替循環冷却系	における操	操作対象	弁・監視対象	機器		表 2.2.1-1 残留熱代替除	去系におけ	る操作対象	象弁・監視対象	象機器	・設備の相違
対象弁・監視機器	実施時期	操作概要	場所	図番		対象弁・監視機器	実施時期	操作概要	場所	図番	【柏崎 6/7】
残留熱除去系最小流量バイハス弁 (B)	運転開始前	弁閉	中央制御室	(a)		RHR RHARライン入口止 め弁	運転開始前	弁開	中央制御室	(a)	設備構成の相違によ
残留熱除去系熱交換器出口弁(B)	運転開始前	弁閉	中央制御室	(b)		RHARライン流量調節弁	運転開始時	弁開	中央制御室	(b)	る操作対象弁及び監視
高圧炉心注水系復水貯蔵槽出口第 一元弁	運転開始前	弁閉	廃棄物処理建 屋	(c)		RHR A-FLSR連絡ライ ン止め弁	運転開始前	弁開	中央制御室	(c)	対象機器の相違
高圧炉心注水系復水貯蔵槽出口第 二元弁	運転開始前	弁閉	廃棄物処理建 屋	(d)		RHR A-FLSR連絡ライ ン流量調節弁	運転開始時	弁開	中央制御室	(d)	
高圧炉心注水系復水貯蔵槽出口第 三元4	運転開始前	弁閉	展 展 展	(e)		RHR PCVスプレイ連絡ラ イン流量調節弁	運転開始時	弁開	中央制御室	(e)	
復水移送ポンプ(A)ミニマムフロー 逆止な後金	運転開始前	弁閉	展 廃棄物処理建 展	(f)		A-RHR注水弁	運転開始前	弁開	中央制御室	(f)	
レル ア (B) ミニマムフロー 遊 止 か 後 か	運転開始前	弁閉	展 廃棄物処理建	(g)		B-RHRドライウェル第2ス プレイ弁	運転開始前	弁開	中央制御室	(g)	
使止开後开 復水移送ポンプ(C)ミニマムブロー	運転開始前	弁閉	產 廃棄物処理建	(h)		B-RHR熱交バイパス弁	運転開始前	弁閉	中央制御室	(h)	
迎止开夜开 残留熱除去系高圧炉心注水系第一	運転開始前	弁開	中央制御室	(k)		計測制御設備 ^{※1}	運転時		中央制御室	_	
止め弁 残留熱除去系高圧炉心注水系第二	運転開始前	弁開	中央制御室	(1)		L	1	<u> </u>	光心时 闪 界月	1	
止め弁 確認執险主系注入 か(4)	(二百万百万百万百万百万百万百万万万万万万万万万万万万万万万万万万万万万万万万	金圓	山山則御安	(n)							
残留熱除去系格納容器冷却ライン	運転開始前	一 开闭	T 不 前 仰 主	(1)	-						
隔離弁(B) 建四執险土系故如宏聖本却法是調	2011年4月7月9日日月	נדקו דו כ	一一八咖喱主	(0)							
2×田杰际云示俗和谷奋们却加重调 節弁(B)	運転開始前	弁開	中央制御室	(p)							
ト部ドライウェル注入ライン隔離	運転開始前	弁開	中央制御室	(s)							

柏崎刈羽原子力発電所	6/7号	戸 (20	17.12.20版))	東海第二発電所	(2018.9.12版)	島根原子力発電所	2 号炉	備考
復水移送ポンプ(B)	運転開始時	起動	中央制御室	(i)					
復水移送ポンプ(C)	運転開始時	起動	中央制御室	(j)	-				
残留熱除去系洗浄水弁(A)	運転開始時	弁開	中央制御室	(r)					
残留熱除去系洗浄水弁(B)	運転開始時	弁開	中央制御室	(m)					
下部ドライウェル注水流量調節弁	運転開始時	弁開	中央制御室	(t)					
残留熱除去系高圧炉心注水系第一 止め弁	RHR 復旧時	弁閉	中央制御室	(k)					
残留熱除去系高圧炉心注水系第二 止め弁	RHR 復旧時	弁閉	中央制御室	(1)					
残留熱除去系洗浄水弁(A)	RHR 復旧時	弁閉	中央制御室	(r)					
残留熱除去系洗浄水弁(B)	RHR 復旧時	弁閉	中央制御室	(m)					
残留熱除去系注入弁(A)	RHR 復旧時	弁閉	中央制御室	(n)					
残留熱除去系格納容器冷却流量調節弁(B)	RHR 復旧時	弁閉	中央制御室	(₀)					
残留熱除去系格納容器冷却ライン 隔離弁(B)	RHR 復旧時	弁閉	中央制御室	(p)					
下部ドライウェル注入ライン隔離 弁	RHR 復旧時	弁閉	中央制御室	(s)					
下部ドライウェル注水流量調節弁	RHR 復旧時	弁閉	中央制御室	(t)					
残留熱除去系ポンプ炉水吸込弁(B)	RHR 復旧時	弁開	中央制御室	(q)					
計測制御設備※1	運転時		中央制御室 緊急時対策所	-					
※1:以下のパラメータを監	見する						※1:以下のパラメータを監視する。		
・復水補給水系流量(RHRA 系	系代替注水济	充量)					· 残留熱代替除去系原子炉注水流量		
・復水補給水系流量(RHRB系	系代替注水液	充量)					・残留熱代替除去系格納容器スプレー	イ流量	
 ・復水補給水系流量(格納容) 	器下部注水	(流量)					• 残留熱除去系熱交換器出口温度		
·復水補給水系温度(代替循	環冷却)								
・サプレッション・チェン	バ・プールス	水温度					・サプレッション・プール水温度(S A)	
・復水移送ポンプ吐出圧力							・残留熱代替除去ポンプ出口圧力		
・原子炉水位							・原子炉水位		
・格納容器内圧力							 ・ドライウェル圧力(SA) 		
・格納容器内温度							・ドライウェル温度 (SA)		
・サプレッション・チェン	バ・プール	水位					・サプレッション・チェンバ圧力(S A)	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , ,	1.1.1.1						() ()	
							・サブレッション・ブール水位(SA	\overline{f})	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2-
(1-1) (1-1) <td< td=""><td></td><td></td></td<>		
<u>図 2.2.1-1 代替循環冷却系概略図</u>		図 2.2.1-1 残留熱代替除去
(2)低圧代替注水系(可搬型)による原子炉注水,格納容器ベント操作 代替循環冷却系運転開始前に,代替原子炉注水として低圧代 替注水系(可搬型)の準備が必要となる。これは屋外作業であり, 格納容器ベント操作前であるため作業環境は維持されている。 代替循環冷却系運転への切替操作時及び代替循環冷却系運転 開始後に機能喪失した場合の対応として,低圧代替注水系(可搬型)による原子炉注水,格納容器ペント操作が必要となる。低圧 代替注水系(可搬型)による原子炉注水は,代替循環冷却系運転 開始前にあらかじめ系統構成をした上で,注水操作を屋外で実 施することにより,建屋内放射線量が上昇した場合においても 対応が可能である。		(2)格納容器ベント操作

柏崎刈羽原子力系	ě電所 6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力	発電所 2号炉	備考
格納容器ベント掛	操作について,操作対象	¢弁は図 2.2.1−2 のと			格納容器ベント操作につい	ヽて,操作対象弁は図2.2.1-2のと	
おりであり,これら	の操作対象弁と代替術	f環冷却系配管の主た			おりであり、これらの操作対	†象弁と <u>残留熱代替除去系</u> 配管の主	
る流路の位置関係を	を表 2.2.1-2 及び図 2.	2.1-3~図2.2.1-6に			たる流路の位置関係を表 2.2	. 1-2 及び図 2. 2. 1-3~ <u>図 2. 2. 1-5</u>	
示す。これらの操作	作弁は中央制御室から	遠隔操作可能な設計で			に示す。これらの操作弁は中	中央制御室から遠隔操作可能な設計	
あるため,代替循環	蒙冷却系運転後の放射	線量上昇による操作へ			であるため, 残留熱代替除去	<u> 系運転後の放射線量上昇による操</u>	
の影響はない。なお	5,何らかの理由により	ベント操作弁が中央制			作への影響はない。なお,何	「らかの理由によりベント操作弁が	
御室から遠隔操作る	下能となる場合は, 放射	対線量上昇による影響			中央制御室から遠隔操作不能	ことなる場合は, 放射線量上昇によ	
が小さい原子炉建屋	屋内の原子炉区域外に	おいて空気作動あるい			る影響が小さい原子炉建物作	」属棟において遠隔手動操作で開閉	
は遠隔手動操作で閉	閉する方法を備えて	いる。なお,これらの操			する方法を備えている。なお	5,これらの操作位置は原子炉建物	
作位置は原子炉建屋	屋内の原子炉区域外で	あっても,代替循環冷			付属棟であっても,残留熱性	<u>、 替除去系</u> 運転により高線量となる	
<u>却系</u> 運転により高線	泉量となる配管との位	置が比較的近い箇所も			配管との位置が比較的近い箇	「所もあるため,放射線量上昇によ	
あるため,放射線量	上昇によるアクセス性	主及び弁操作性を考慮			るアクセス性及び弁操作性を	*考慮し,必要に応じて放射線防護	
し,必要に応じて放	射線防護対策を施す。				対策を施す。		
<image/>					ま2.2.1-2 ベント換		 ・設備の相違 【柏崎 6/7】 ・設備の相違
	6 号炉	7 号炉			MW217-5(第1弁S/C)	弁①(第2.2.1-3図)	
F022(一次隔離弁					MV217-4(第1弁D/W)	弁②(第2.2.1-4図)	
S/C)	开①(図 2.2.1-3)	开①(図 2.2.1-5)			MV217-18 (第2弁)	弁③(第2.2.1-4図)	
F019(一次隔離弁 D/W)	弁②(図 2.2.1-4)	弁②(図 2.2.1-6)					
F070(二次隔離弁)	弁③(図 2.2.1-4)	弁③(図 22.1-6)					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
図2.2.1−3機器配置図(6号炉原子炉建屋地上中1階及び地下1階)		図 2.2.1−3 機器配置図	
図 2.2.1-4 機器配置図(6 号炉原子炉建屋地上2階及び地上3階)		図 2.2.1-4 機器配置図	
図2.2.1-5機器配置図(7号炉原子炉建屋地上中1階及び地下1階)			
図 2.2.1-6 機器配置図(7 号炉原子炉建屋地上2 階及び地上4 階)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
(3)残留熱除去系の復旧作業		(3) 残留熱除去系の復旧作業	
代替循環冷却系は,残留熱除去系による冷却機能を喪失した		<u>残留熱代替除去系</u> は,残留熱除去系による冷却機能を喪失し	
場合に使用する系統であり,残留熱除去系が復旧するまで運転		た場合に使用する系統であり、残留熱除去系が復旧するまで運	
継続することを目的としている。よって,代替循環冷却系運転に		転継続することを目的としている。よって, 残留熱代替除去系	
よる放射線量上昇の影響があっても,残留熱除去系復旧作業が		運転による放射線量上昇の影響があっても、残留熱除去系復旧	
できることを示す。		作業ができることを示す。	
<u>代替循環冷却系</u> では, サプレッション・チェンバからの吸込み		<u>残留熱代替除去系</u> では,サプレッション・チェンバからの吸	
及び原子炉格納容器内へのスプレイとして,残留熱除去系の B		込み及び原子炉格納容器内へのスプレイとして、残留熱除去系	
系を使用することを想定(原子炉への注水はA系を想定)してい		のB系を使用することを想定(原子炉への注水はA系を想定)	
る。このため,残留熱除去系の復旧に際しては, <u>代替循環冷却系</u>		している。このため、残留熱除去系の復旧に際しては、残留熱	
運転の影響を受ける可能性が最も低い⊆系を復旧することを想		<u>代替除去系</u> 運転の影響を受ける可能性が最も低い <u>A</u> 系を復旧す	
定する。		ることを想定する。	
残留熱除去系(C)ポンプ類の復旧のためには,機能喪失要因に		<u>A</u> _残留熱除去ポンプ類の復旧のためには,機能喪失要因に	
もよるが原子炉建屋地下 <u>3.階</u> の残留熱除去系 <u>(C)</u> ポンプ室又は		もよるが原子炉建物地下 <u>2階のA</u> 一残留熱除去ポンプ室又は原	
原子炉建屋地下2階の残留熱除去系(C)ポンプ室の上部ハッチ		子炉建物地下 <u>1階のA</u> 一残留熱除去ポンプ室の上部ハッチまで	
までアクセスすることができる必要がある。		アクセスすることができる必要がある。	
<u>6 号炉については,図 2.2.1-7</u> に示すとおり,代替循環治却系		<u>第2.2.1-5図</u> に示すとおり, <u>残留熱代替除去系</u> により高線量	
により高線量となる配管は,残留熱除去系(C)ポンプ室及び上部		となる配管は、 <u>A</u> 一残留熱除去ポンプ室及び上部ハッチ付近か	
ハッチ付近から十分離れていることから,アクセスは可能であ		ら十分離れていることから、アクセスは可能である。	
る。			
<u>7 号炉については,図 2.2.1-8 に示すとおり,代替循環冷却系</u>			・設備の相違
により高線量となる配管は,残留熱除去系(C)ポンプ室から十分			【柏崎 6/7】
離れていることから,アクセスは可能である。一方,上部ハッチ			島根2号炉は,上部ハ
付近には高線量となる配管があることから,代替循環冷却系運			ッチ付近に高線量とな
転時の放射線量を考慮し,必要に応じて放射線防護対策を施す。			る配管はない
このときの上部ハッチ付近の線量評価結果を以下に示す。			
<u>線源となる配管は図2.2.1-8にて青ラインで示す口径250Aの</u>			
配管であるが,保守的に口径 500A の配管中にサプレッション・			
<u>チェンバのプール水が満たされているものとして評価した。ま</u>			
た,サプレッション・チェンバのプール水中の放射性物質の濃度			
の評価に当たり,セシウム及びよう素については炉内内蔵量の			
全量がサプレッション・チェンバのプール水中に溶け込んだも			
のと想定した。評価モデル図を図 2.2.1-9 に示す <u>。</u>			
評価の結果,事故発生後 30 日間経過した場合,上部ハッチ付			
近(線源となる配管からの距離が 10m の地点)において約			
500mSv/h となった。			
作業場所が高線量である場合は,放射線防護対策として,福島			
<u>第一原子力発電所の作業で使われているような移動式遮蔽体等</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
を用いることで、当該箇所へのアクセス、復旧作業への影響がな			
いように適切に対策を講じる。移動式遮蔽体を用いた場合の一			
例を図 2.2.1-10 に示す。なお,前述の線量率(約 500mSv/h)を約			
20mSv/hに低減することを想定した場合に必要な遮蔽厚さ(減衰			
率:0.04)は, 遮蔽体が鉄の場合約 11cm となる(図 2.2.1-11 参			
照)。			
減衰率=低減後の線量率(mSv/h)/上部ハッチ付近の線量率			
(mSv/h)			
<u>=20/500</u>			
<u>=0.04</u>			
これが上記のとおり保守的な配管口径を想定した遮蔽厚さに			
なるが,実際の配管口径が 250A であることを踏まえ,移動式遮			
蔽体は適切な遮蔽効果を有し,構造強度を有する設計とする。			
<u>これらの遮蔽を現場状況に応じて適切に設置すること等で放</u>			
射線防護の対策を講じる。			
なお,現場操作時は放射線量を測定し適切な防護装備を装備			
した上でアクセスすることとしている。			
			_
図 2.2.1-7機器配置図(6 号炉原子炉建屋地下 3 階及び地下 2 階)		図 2.2.1-5 機器配置図(原子炉建物地下 2 階)(1 / 2)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
図221-8機器配置図(7号炉原子炉建屋地下3階及75地下9階)		図 2. 2. 1−5 機器配置図(原子炉建物地下1 階)(9 / 9)	
9.5 K			
10000			
水(線源) Void			
緣源(密度1:0g/cm ³) 鉄(密度:7.86g/cm ³)			
QAD-CGGP2R コードを用いて評価 ×:評価点 (単位:nm)			
図 2. 2. 1-9 RHR(C)ポンプ室上部ハッチ付近線量評価モデル			・設備の相違
			【柏崎 6/7】
			島根2号炉は、上部ハ
			ッナ付近に 局線量とな ス 配 管け たい
			う日口日(なくなく)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
図 2.2.1-10 7 号炉 RHR(C)ポンプ室上部ハッチへのアクセスに			
必要な放射線防護対策			
図 2.2.1-11 遮蔽体(鉄,鉛)の減衰率			
(QAD-CGGP2R コードを用いて評価)			
2.2.2 操作機要について		2.2.2 操作の概要について	
格納谷츎破損モート「芬囲気圧力・温度による静的負荷(格納		格納谷畚陂損モート「芬囲気圧力・温度による静的負荷(格納容哭過圧・過渡破損)」(建図執代麸除主系を使用する提合)	
F溶融物放出/格納容器雰囲気直接加熱」の手順の概要を図		及び「高圧溶融物放出/格納容器雰囲気直接加熱」の手順の概	
2.2.2-1~3に,必要な要員と作業項目を図2.2.2-4~6に示す。		要を図 2. 2. 2-1~3 に,必要な要員と作業項目を図 2. 2. 2-4~6	
		に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
Image: State of the state			I Line (Line	・運用及び設備の相違 【柏崎 6/7】 有効性評価の解析条 件及び解析結果の相違 に伴う運用の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
Extrational Extrat		重大事故等対策の有効性評4 「雰囲気圧力・温度による計 「「「「「「「」」」」」」 「「」」」 「「「」」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」 「「」」」 「」 「」」 「」 「」」 「」」 「」 「
		低工用や中学物本品(官僚)(申止) 「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
図 2.2.2-2 代替循環冷却系運転の手順概要(「雰囲気圧力・温度に よる静的負荷(格納容器過圧・過温破損)」の場合)「抜 <u>粋図」</u>		図 2.2.2-2 残留熱代替除去系運転の手順構 度による静的負荷(格納容器過圧・過温破損

Image: Display

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<form><form></form></form>		<text><text><text><complex-block></complex-block></text></text></text>	・運用及び設備の相違 【柏崎 6/7】 有効性評価の解析条 件及び解析結果の相違 に伴う運用の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
Hatt Hatt		図 2. 2. 2-6 残留熱代替除去系運転の作業と所要時間「高圧溶融 物放出/格納容器雰囲気直接加熱の場合」	・運用及び設備の相違 【柏崎 6/7】 有効性評価の解析条 件及び解析結果の相違 に伴う運用の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
 2.3 系統運転時の監視項目 	比較対象無し	 2.3 系統運転時の監視項目 	
2.3.1 水素ガス及び酸素ガス発生時の対応について		2.3.1 水素ガス及び酸素ガス発生時の対応について	
(1) 想定水素ガス及び酸素ガス発生量		(1) 想定水素ガス及び酸素ガス発生量	
a)監視が必要となる状況と監視計器に求められる性能		a 監視が必要となる状況と監視計器に求められる性能	
有効性評価の事故シーケンス選定のプロセスにおいて、重大		有効性評価の事故シーケンス選定のプロセスにおいて、重大	
事故等対処設備に期待しても炉心損傷を回避できず、有効性評		事故等対処設備に期待しても炉心損傷を回避できず、有効性評	
価の対象とすべき評価事故シーケンスとしては、現状、「大破断		価の対象とすべき評価事故シーケンスとしては、現状、「冷却材	
LOCA+ECCS 注水機能喪失」のみを選定している。 <u>さらに有効性</u>		喪失(大破断LOCA)+ECCS注水機能喪失+全交流動力	・記載方針の相違
評価では、この「大破断 LOCA+ECCS 注水機能喪失」の事故シー		重源喪失」のみを選定している。	【柏崎 6/7】
ケンスに対して、より厳しい状況下での重大事故等対処設備の			島根2号炉は,シーケ
有効性を確認する観点から、全交流動力電源喪失を重畳させ、			ンス選定において, 全交
「大破断 LOCA+ECCS 注水機能喪失」への対応を確認している。			流動力電源喪失を重畳
			させている
よって,この「 <u>大破断 LOCA+ECCS 注水機能喪失+全交流動力</u>		よって,この「 <u>冷却材喪失(大破断LOCA)+ECCS注</u>	
<u>電源喪失</u> 」への対応の中で想定される水素濃度及び酸素濃度を		水機能喪失+全交流動力電源喪失」への対応の中で想定される	
監視できる能力を備えることが、重大事故等時の水素濃度及び		水素濃度及び酸素濃度を監視できる能力を備えることが、重大	
酸素濃度の監視に最低限要求される性能となる。		事故等時の水素濃度及び酸素濃度の監視に最低限要求される性	
		能となる。	
b) 重大事故等時の原子炉格納容器内の環境と水素濃度及び酸素		b. 重大事故等時の原子炉格納容器内の環境と水素濃度及び酸	
濃度		素濃度	
「大破断 LOCA+ECCS 注水機能喪失+全交流動力電源喪失」事		「冷却材喪失(大破断LOCA)+ECCS注水機能喪失+	
故時における各パラメータの推移は、雰囲気圧力・温度による		<u>全交流動力電源喪失</u> 」事故時における各パラメータの推移は,	
静的負荷(格納容器過圧・過温破損)の有効性評価において示		雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	
すとおりである。これに加え、必要な水素濃度及び酸素濃度の		(残留熱代替除去系を使用する場合)の有効性評価において示	
監視能力を決定する上で必要な情報であるドライウェル及びサ		すとおりである。これに加え、必要な水素濃度及び酸素濃度の	
プレッション・チェンバの気体組成の推移を図 2.3.1-1 及び図		監視能力を決定する上で必要な情報であるドライウェル及びサ	
2.3.1-2に示す。		プレッション・チェンバの気体の組成の推移を図2.3.1-1及び	
		図2.3.1-2に示す。	
c) 重大事故等時の水素濃度及び酸素濃度の陸視計器に求められ		c. 重大事故等時の水素濃度及び酸素濃度の陸視計器に並めら	
る性能		いる性能	
①計測目的について		①計測目的について	
ー般に気相中の体積割合で 5vo1%以上の酸素ガスとともに水		一般に気相中の体積割合で5vol%以上の酸素ガスと共に水	
素ガスが存在する場合,水素濃度 4vo1%で燃焼,13vo1%で燥轟		素ガスが存在する場合,水素濃度4vol%で燃焼,13vol%で爆	
が発生すると言われている。この観点から、少なくとも水素濃		轟 が発生すると言われている。この観点から、少なくとも水素	
度は 4vo1%, 酸素濃度は 5vo1%までの測定が可能であることが		濃度は4 vol%,酸素濃度は5 vol%までの測定が可能であるこ	
必要である。		とが必要である。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
②測定が必要となる時間			②測定が必要となる時間	
図 2.3.1-1 及び図 2.3.1-2 のとおり、解析上は事象発生から			図 2.3.1-1 及び図 2.3.1-2 のとおり,解析上は <u>事象発生から</u>	・運用の相違
約168時間後まで酸素濃度が可燃限界である5vo1%を超えるこ			12時間後に原子炉格納容器への窒素供給を実施することで、事	【柏崎 6/7】
とは無く,原子炉格納容器内での水素燃焼は生じない。			象発生から約168時間後まで酸素濃度が可燃限界である5	島根2号炉は,水の放
			vo1%を超えることは無く、原子炉格納容器内での水素燃焼は生	射線分解による酸素濃
			じない。	度の上昇を抑制するた
				めに,原子炉格納容器内
				に窒素を注入する
しかしながら、徐々にではあるが、酸素濃度は上昇し続けるこ			しかしながら、徐々にではあるが、水の放射線分解により水素	
とから,除熱系(代替原子炉補機冷却系)が使用可能となった			<u>濃度及び</u> 酸素濃度は上昇し続けることから、 <u>格納容器内水素濃</u>	・設備の相違
時点で速やかに酸素濃度を測定可能とすることが必要である			度(SA)及び格納容器内酸素濃度(SA)起動後(事象発生	【柏崎 6/7】
(水素濃度については事故初期から継続して監視が可能)。			から約2時間),水素濃度及び酸素濃度を継続して監視可能とし	島根2号炉は,除熱系
			ている。	の復旧がなくても,常設
				代替交流電源設備の起
				動により,水素濃度及び
				酸素濃度の監視が可能
除熱系(代替原子炉補機冷却系)が復旧されない場合、炉心				
から発生する崩壊熱が原子炉格納容器内に蓄積され、それに伴				
い発生する蒸気の過圧によって格納容器内圧力は上昇し、原子				
炉格納容器の限界圧力(0.62MPa[gage])に到達するまでに格納				
容器ベントを実施することとなる(有効性評価「雰囲気圧力・				
温度による静的負荷(格納容器過圧・過温破損)」では約38時				・解析結果の相違
<u>間</u> 後に格納谷器ヘントを実施)。格納谷器ヘントを実施する <u>約</u>				
<u>38 時間</u> までは、図 2.3.1-1 及び図 2.3.1-2 のとおり、水の放 時頃の知れた。 エジルナス 新ま ギュの 準定は低 のかよ し 見 ナス				局根2 号炉は,水素及
射線分離によっく発生する酸素ガスの濃度は緩やかに上升する				い酸素濃度か監視り能
ことから、原士炉格納谷菇内の酸素侲度か可燃限券(5001%)				となる事家先生から2
に到走りるわて40はない。				时间後ましたわいし, 残
				苗然代谷际云ボを使用 オス坦会しは田1 わい
				9 る場合と使用しない
				第日とて、事家進展が同じであることから 記載
				していたい

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
なお,「 <u>大破断 LOCA+ECCS 注水機能喪失+全交流動力電源喪</u>			なお,「冷却材喪失(大破断LOCA)+ECCS注水機能喪	
<u>失</u> 」事故時において, G 値を設計基準事故対処設備である可燃			<u>失+全交流動力電源喪失</u> 」事故時において,G値を設計基準事	
性ガス濃度制御系の性能を評価する際に用いた <u>G(H2)= 0.4,</u>			故対処設備である可燃性ガス濃度制御系の性能を評価する際に	・解析条件の相違
<u>G(02)=0.2</u> とした場合についても,原子炉格納容器内の酸素			用いた <u>G値(沸騰状態:G(H2)=0.4, G(02)=0.2,</u> 非沸騰状態:	【柏崎 6/7】
濃度が <u>可燃限界(5vol%)</u> に到達するのは,事象発生から <u>約 51</u>			<u>G(H2)=0.25, G(02)=0.125)</u> とした場合についても, 原子炉格納	DBA の性能評価では
<u>時間後</u> である(<u>図 2. 3. 1-3 及び図 2. 3. 1-4 参照</u>)。			容器内の酸素濃度が <u>4. 4vo1%(ドライ条件)</u> に到達するのは,	沸騰状態と非沸騰状態
			事象発生から <u>約 85 時間後</u> である。	でG値を変更して評価
				しており,島根2号炉は
				その条件どおりに評価
				を行っている。(柏崎刈
				羽 6/7 は, DBA の性能評
				価において,保守的な条
				件として沸騰状態のG
				値を非沸騰状態にも適
				用して評価している)
				・運用の相違
				【柏崎 6/7】
				格納容器ベント実施
				基準の相違
				・運用の相違
			<u>また,窒素封入の切替え操作(原子炉格納容器内の酸素濃度4</u>	【柏崎 6/7】
			<u>vo1%到達時)は,事象発生から約49時間後である(図2.3.1-3</u>	島根2号炉は,酸素濃
			及び図 2.3.1-4 参照)。	度を基準とした窒素封
				入の切替え(D/W→S/C)
				操作を実施する
これより, 除熱系の復旧がされない約 22.5 時間以前において			これより, 格納容器内酸素濃度(SA)を起動する事象発生	
は原子炉格納容器内の酸素濃度が可燃限界(5vo1%)に到達す			から約2時間までに原子炉格納容器内の酸素濃度が可燃限界	
ることはない。			(5 vo1%)に到達することはない。	
さらに、過圧破損の回避を目的とした格納容器ベントを実施			さらに、過圧破損の回避を目的とした格納容器ベントを実施	
することにより、発生する蒸気とともに原子炉格納容器内の非			することにより、発生する蒸気とともに原子炉格納容器内の非	
凝縮性ガスのほとんどは格納容器ベントを通じて排出されるこ			凝縮性ガスのほとんどは格納容器ベントを通じて排出されるこ	
ととなることから、酸素濃度の監視は必要とはならない。			ととなることから,酸素濃度の監視は必要とはならない。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
③耐環境条件			③耐環境条件	
「大破断LOCA+ECCS 注水機能喪失+全交流動力電源喪失」事			「冷却材喪失(大破断LOCA)+ECCS注水機能喪失+	
故時における各パラメータの推移を踏まえても測定可能である			<u>全交流動力電源喪失</u> 」事故時における各パラメータの推移を踏	
ことが必要である。			まえても測定可能であることが必要である。	
			パロドライシェル内の 小田村喪失発生に伴う水蒸気の 流入により上昇 パロ 月留熱代特陥去系の格納容器スプレイによるドライウェル内の の蒸気凝縮により水蒸気濃度が低下 パロ の蒸気凝縮により水蒸気濃度が低下 パロ の蒸気凝縮により水蒸気濃度が低下 パロ の蒸気減後のドライウェルへの パロ19 24 イロ10 12 水蒸気 ・ 水蒸気 ・ 水素の違んによる上昇 ・ 酸素可燃化学り5メイタールへの ・ パロ 12 パロ 12 <td< td=""><td></td></td<>	
事故後の時間(h) 図2.2.1-1.ドライウェルの与切濃度の推移(ウェット冬件)				・解伝結果の相違
因2.3.1-1 トノイリエルのX11億度の推移(リエット米件) 故如宏聖冯正・冯沮砘揖(代恭毎晋公却玄た使田ナス				・
<u>俗称谷品迥仁・迥温恢復(代省循泉市动示を使用する</u> 坦今)				11回 0/1
$\frac{201}{10}$			1000000000000000000000000000000000000	効性評価「3.4 水素燃 焼」参照
図2.3.1-2 サプレッション・チェンバの気相濃度の推移(ウェッ ト条件)格納容器過圧・過温破損(代替循環冷却系を 使用する場合)			図 2.3.1-2 サプレッション・チェンバの気相濃度の推移(ウェ ット条件)格納容器過圧・過温破損(残留熱代替除 去系を使用する場合)	・解析結果の相違 【柏崎 6/7】 詳細な相違理由は,有 効性評価「3.4 水素燃 焼」参照

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)		島根原子力	発電所 2	号炉		備考
(2) 水素濃度及び酸素濃度の監視方法			(2) 水素濃度及	び酸素濃度の	監視方法			
水素濃度は 4vol%, 酸素濃度は 5vol%までの測定が可能であ			水素濃度は4	4 vo1%,酸素	濃度は5 vo	1%ま~	での測定が可能で	
ることが必要であることから,代替循環冷却時「大破断			あることが必要	要であることな	いら、「冷却林	才喪失	(大破断LOCA)	~
LOCA+ECCS 注水機能喪失+全交流動力電源喪失」における原子			+ E C C S 注7	<u> </u>	全交流動力電	፪ 源喪生	夫」(残留熱代替除	
炉格納容器内の水素濃度・酸素濃度の監視は, 以下の設備によ			去系を使用する	5場合)におけ	ナる原子炉樽	各納容署	器内の水素濃度及	
り実施する。			び酸素濃度の	監視は、以下の	の設備により)実施	する。	
表2.3.1-1 計装設備の主要仕様			3	表 2.3.1-1 言	十装設備の主	主要仕格	<u>*</u>	 ・設備の相違 【 柏崎 6/7】
名外 復日都の種類 計測範囲 回效 取行箇所 格納容器内水素濃度 水素吸蔵材料式 (SA) 0~100vo1% 2 原子炉格納容器内			名称	検出器の種類	計測範囲	個数	取付箇所	島根2号炉は,重大事
格納容器内水素濃度 熱伝導式 水素検出器 0~30vo1%(6号炉) 0~20vo1%/0~100vo1% (7号炉) 2 原子炉建屋地上3,中3階(6号炉) 原子炉建屋地上中3階(7号炉)			格納容器水素濃度 (SA)	熱伝導式 水素検出器	0~100vo1%	1	原子炉建物中2階	故等対処設備として,
格納容器内酸素濃度 熱磁気風式 0~30vo1%(6号炉) 酸素検出器 0~10vo1%/0~30vo1% 2 原子炉建屋地上3,中3階(6号炉) (7号炉) 2 原子炉建屋地上4,中3階(7号炉)			格納容器酸素濃度 (SA)	磁気力式 酸素検出器	0~25vo1%	1	原子炉建物中2階	 格納容器酸素濃度(S A)」と「格納容器酸素
			格納容器水素濃度 (B系)	熱伝導式 水素検出器	0∼5%/ 0~100%	1	原子炉建物3階	濃度(B系)」がある
			格納容器酸素濃度 (B系)	熱磁気風式 酸素検出器	0~5%/ 0~25%	1	原子炉建物3階	
(3) 水素ガス及び酸素ガスの処理方法			(3) 水素ガス及	及び酸素ガスの	D処理方法			
有効性評価では、機能喪失を仮定した設備の復旧には期待せ			有効性評価で	では、機能喪失	長を仮定した	と設備の	の復旧には期待せ	
ず,重大事故等時の環境下におけるG値に基づき,7日間以内			ず,重大事故等	等時の環境下 に	こおけるG値	直に基・	づき,7日間以内	
に水素ガスと酸素ガスの両方の濃度が可燃限界に到達しないこ			に水素ガスと暫	酸素ガスの両力	ちの濃度が同	可燃限身	界に到達しないこ	
とを確認している。			とを確認してい	いる。				
しかしながら、ここでは7日間以内に水素ガスと酸素ガスの			しかしながら	ら,ここでは7	7日間以内に	こ水素ス	ガスと酸素ガスの	
両方の濃度が可燃限界に到達した場合と事象発生後8日目以降			両方の濃度が可燃限界に達した場合と事象発生後8日目以降の					
の水素ガス及び酸素ガスの扱いについて以下に示す。			水素ガス及び酢	凌素ガスの扱 い	いについて見	人下にえ	示す。	
a)7日間以内に水素ガスと酸素ガスの両方の濃度が可燃限界に			<u>a.</u> 7日間以内は	こ水素ガスと酢	凌素ガスの同	町方の派	農度が可燃限界に	
到達した場合			到達した場合					
機能喪失を仮定した設備の復旧には期特しないという前提に			機能喪失を使	反定した設備の	り復旧には其	開待した	ないという前提に	
おいては、原子炉格納容器内の水素ガス及び酸素ガスを処理す			おいては, 原子	子炉格納容器内	内の水素ガス	マ及び暦	酸素ガスを処理す	
る方法は格納容器ベントによって原子炉格納容器外へ放出する			る方法は格納容	容器ベントによ	よって 原子 炉	戸格納領	容器外へ放出する	
手段となる。よって,酸素濃度が 5vo1%に至るまでに格納容器			手段となる。よ	こって,酸素濃	と 度が5vol 9	%に至	るまでに格納容器	L F
ベントを実施する。なお、格納容器ベントの実施により蒸気と			ベントを実施す	する。なお,楮	各納容器ベン	/トの算	実施により蒸気と	
ともに非凝縮性ガスは排出され、その後の原子炉格納容器内の			共に非凝縮性力	ガスは排出され	ι, その後の	D原子炸	戸格納容器内の気	
気体組成は水蒸気がほぼすべてを占めることとなる。			体組成は水蒸気	気がほぼすべて	てを占めるこ	こととれ	える。	
代替原子炉補機冷却系等による除熱系が復旧し、格納容器圧			残留熱代替除	余去系等が復開	日し, 原子炉	戸格納家	容器圧力制御が可	
力制御が可能になった場合であっても,仮に酸素濃度が 5vol%			能になった場合	合にあっても,	仮に酸素濃	度が5	ivol%に到達する	,
に到達するおそれがある場合、格納容器ベントを通じて非凝縮			おそれがある場	易合,格納容器	帚ベントを通	通じて非	ド凝縮性ガスを原	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
性ガスを原子炉格納容器外へ排出することとなる。このとき格			子炉格納容器外へ排出することとなる。このとき格納容器スプ	
納容器スプレイによって、格納容器内圧力が低い状態での排出			レイによって、原子炉格納容器内圧力が低い状態での排出とな	
となるが, 炉心崩壊熱による蒸気発生は長時間継続するため,			るが、炉心崩壊熱による蒸気発生は長時間継続するため、その	
その蒸気とともに非凝縮性ガスは同時に排出され、原子炉格納			蒸気とともに非凝縮性ガスは同時に排出され、原子炉格納容器	
容器内に残る水素ガス及び酸素ガスは無視し得る程度となり,			内に残る水素ガス及び酸素ガスは無視し得る程度となり、可燃	
可燃限界に至ることはない (「重大事故等対策の有効性評価につ			限界に至ることはない(「重大事故等対策の有効性評価,3.4 水	
いて,3.4 水素燃焼,添付資料3.4.1 G値を設計基準事故ベー			素燃焼, 添付資料 3.4.1 G値を設計基準事故ベースとした場	
スとした場合の評価結果への影響」参照)。			合の評価結果への影響」参照)。	
b)事象発生後8日目以降の水素ガス及び酸素ガスの処理方法			b事象発生後8日目以降の水素ガス及び酸素ガスの処理方法	
この場合、機能喪失を仮定した設備の復旧又は外部からの支			この場合、機能喪失を仮定した設備の復旧又は外部からの支	
援等に期待することができ、多様な手段を確保することができ			援等に期待することができ、多様な手段を確保することができ	
る。			る。	
まず,可燃性ガス濃度制御系の復旧を試みることで,水の放			まず、可燃性ガス濃度制御系の復旧を試みることで、水の放	
射線分解により発生する酸素ガスを処理する。また, <u>a)</u> と同			射線分解により発生する酸素ガスを処理する。また, <u>a.</u> と同様	
様に格納容器ベントによる排出も可能であり、水素ガス及び酸			に格納容器ベントによる排出も可能であり、水素ガス及び酸素	
素ガスの処理については多様な手段を有する。			ガスの処理については多様な手段を有する。	
(4) 代替原子炉補機冷却系復旧以前における原子炉格納容器内の			(4) <u>代替パラメータによる</u> 原子炉格納容器内の酸素濃度の推定	・記載方針の相違
酸素濃度の推定				【柏崎 6/7】
原子炉格納容器内の酸素濃度を把握する目的としては、事故			原子炉格納容器内の酸素濃度を把握する目的としては、事故	島根2号炉は,除熱系
後の原子炉格納容器内の水素ガスが燃焼を生じる可能性の把握			後の原子炉格納容器内の水素ガスが燃焼を生じる可能性の把握	(原子炉代替補機冷却
である。			である。	系)の復旧以前から,主
有効性評価においては,約22.5時間以前に原子炉格納容器内			原子炉格納容器内の酸素濃度の主要パラメータである格納容	要パラメータである,格
の酸素濃度が可燃限界(5vol%)に至らないことを確認している			<u>器酸素濃度(SA)の計測が困難になった場合,代替パラメー</u>	納容器酸素濃度(SA)
が,約22.5時間以前において原子炉格納容器内の酸素濃度を把			タの格納容器酸素濃度により推定する。	により継続的に格納容
<u>握する方法として,推定手段を整備している。</u>			<u>有効性評価においては、代替パラメータの格納容器酸素濃度</u>	器内の酸素濃度が監視
格納容器内酸素濃度の計測が困難になった場合、格納容器内			は,原子炉補機代替冷却系が復旧する事象発生から約10.5時間	可能であることから,本
雰囲気放射線レベル(D/W)又は格納容器内雰囲気放射線レベル			後から計測が可能である。	項では代替パラメータ
(S/C)にて炉心損傷を判断した後,初期酸素濃度と保守的なG				による推定について記
値(G(H2)=0.4, G(02)=0.2)を入力とした評価結果(解析結果)				載
により推定する。				
推定可能範囲:0~約5vol%				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 「 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5 5 6 6 0 5 5 8 6 7 5 8 8 0 0 9 0 5 5 8 6 9 0 8 9 0 8 9 8 6 10 9 1 10 9 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
 る格納容器スプレイ実施時には、原子炉格納容器内への空気(酸素)の流入防止を目的として、格納容器内圧力(D/W)又は格納容器内圧力(S/C)が ひ上であることを確認してスプレイ操作を判断することとしている。 格納容器過圧・過温破損(代替循環冷却系を使用する場合) の格納容器内圧力の変化を図2.3.1-6に示す。有効性評価の結果では、格納容器内圧力が正圧に保たれる結果となっており、 原子炬格納容器への空気流入の可能性がたいことを確認してい 			
<u>3.</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
0.8			
「「「「「「「「」」」」で「「」」で「「」」で「「」」で「「」」で「」」で「」			
評価結果(解析結果)では 主際の原子恒格納容器内の酸素濃			
度よりも高く評価されることになるが、原子炉格納容器内での			
水素燃焼を防止する目的のためには、妥当な推定手段である。			
また、椿納容器内圧力を確認し、事故後の原子炉格納容器内			
への空気(酸素)の流入有無を把握することは、炉心損傷判断			
後の初期酸素濃度と保守的なG値を入力とした評価結果(解析			
結果)の信頼性を上げることとなるから、原子炉格納容器内で			
の水素燃焼の可能性を把握する目的のためには、妥当な推定手			
段である。			
炉格納容器内の水素ガスが燃焼を生じる可能性の高い濃度にあ			
るかどうかを把握することであり、代替パラメータ(格納容器			
素濃度の傾向及びインリークの有無の傾向を把握でき、計器誤			
差(格納容器内雰囲気放射線レベル(D/W)の誤差:5.3×10 ^{№-1}			
~1.9×10 ^N Sv/h, N:-2~5,格納容器内雰囲気放射線レベル(S/C)			
の誤差:5.3×10 ^{№-1} ~1.9×10 [№] Sv/h, N:-2~5, 格納容器内圧力			
(D/₩)の誤差:±15kPa, 格納容器内圧力(S/C)の誤差:			
 ±15.6kPa)を考慮した上で対応することにより,重大事故等時			
の対策を実施することが可能である。			

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
3. 本系統の運用にあたって考慮すべき項目		3. 本系統の運用にあたって考慮すべき項目	
3.1 放射線による影響について		3.1 放射線による影響について	
①耐放射線に関する設計考慮について	3.2 耐放射線に関する設計考慮について	①耐放射線に関する設計考慮について	
代替循環冷却系は、重大事故時に炉心損傷した場合の放射線	代替循環冷却系は、重大事故時に炉心損傷した場合の放射線	残留熱代替除去系は、重大事故時に炉心損傷した場合の放	
影響を考慮して設計を行う。具体的には、放射線による劣化影	影響を考慮して設計を行う。具体的には、放射線による劣化影	射線影響を考慮して設計を行う。具体的には、放射線による	
響が懸念される有機材(シール材等)が使用されている機器に	響が懸念される機器(電動機,ケーブル,シール材等)が使用	劣化影響が懸念される <u>有機材</u> (シール材等)が使用されてい	
ついて、代替循環冷却系を運転する環境における放射線影響を	されている機器について,代替循環冷却系を運転する環境にお	る機器について、残留熱代替除去系を運転する環境における	
考慮して設計する。	ける放射線影響を考慮して設計する。	放射線影響を考慮して設計する。	
<u>代替循環治却系</u> を運転する際の放射線量については、簡易解		<u>残留熱代替除去系を運転する際の放射線量については、簡</u>	・記載方針の相違
析評価の結果,運転時間90日とした場合に、代表的な配管表面		易解析評価の結果,運転時間 90 日とした場合に,代表的な配	【東海第二】
部において積算放射線量は約 Gy であることが目安として		管表面部において積算放射線量は約 kGy であることが目	
ある。よって, <u>代替循環治却系</u> の運転操作に必要な機器で,放		安としてある。よって、残留熱代替除去系の運転操作に必要	
射線による劣化影響が懸念される機器(電動機、ケーブル、シ		な機器で、放射線による劣化影響が懸念される機器(電動機、	
ール材等)については、運転環境下における当該部位の放射線		ケーブル、シール材等)については、運転環境下における当	
量を考慮して機能確保可能な設計とする。		該部位の放射線量を考慮して機能確保可能な設計とする。	
②水の放射線分解による水素影響について	3.3 水の放射線分解による水素影響について	②水の放射線分解による水素影響について	
炉心損傷後の冷却水には、放射性物質が含まれていることに	「「「」「」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」	 炉心損傷後の冷却水には,放射性物質が含まれていること	
より、水の放射線分解による水素等の可燃性ガスの発生が想定	により、水の放射線分解による水素等の可燃性ガスの発生が	により、水の放射線分解による水素等の可燃性ガスの発生が	
されるが,代替循環治却系運転中は配管内に流れがあり,また,	想定されるが, 代替循環冷却系運転中は配管内に流れがあり,	想定されるが, <u>残留熱代替除去系</u> 運転中は配管内に流れがあ	
冷却水が滞留する箇所がないことから、配管内に水素が大量に	配管内に水素が大量に蓄積されることは考えにくい。	り, <u>また,冷却水が滞留する箇所がないことから,</u> 配管内に	
蓄積されることは考えにくい。		水素が大量に蓄積されることは考えにくい。	
<u>代替循環治却系</u> 運転を停止した後は,可燃性ガスの爆発防止	<u>代替循環冷却系</u> 運転を停止した後は,可燃性ガスの爆発防	残留熱代替除去系の運転を停止した後は、可燃性ガスの爆	
等の対策として、系統水を入れかえるためにフラッシングを実	止等の対策として、系統水を入れ替えるためにフラッシング	発防止等の対策として、系統水を入れかえるためにフラッシ	
施することとしており、水の放射線分解による水素発生を防止	を実施することとしており、水の放射線分解による水素発生	ングを実施することとしており、水の放射線分解による水素	
することが可能となる。具体的には <u>残留熱除去系ポンプ</u> の <u>サプ</u>	を防止することが可能となる。具体的には残留熱除去系ポン	発生を防止することが可能となる。具体的には残留熱除去ポ	
<u>レッション・チェンバ吸込弁</u> を閉じ, <u>復水補給水系の洗浄水弁</u>	<u>プのサプレッション・プール吸込弁</u> を閉じ, <u>可搬型代替注水</u>	ンプの <u>B-RHRポンプトーラス水入口弁</u> を閉じ, <u>残留熱代</u>	・設備の相違
を開き,復水補給水系に低圧代替注水系(可搬型)から外部水	大型ポンプから系統内に外部水源を供給することにより、系	<u> </u>	【柏崎 6/7,東海第二】
源を供給することにより、系統のフラッシングを実施する。	統のフラッシングを実施する。	系統のフラッシングを実施する。	系統構成の相違
	1		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
3.2 意図的な航空機衝突に対する耐性について			
図 3.2-1 航空機衝突が行われた場合の影響について			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
3.3.系統の健全性について	3. 代替循環治却系の健全性について	<u>3.2</u> 系統の健全性について	
(1) 代替循環冷却系運転時の系統水漏えいの可能性	3.1 代替循環冷却系運転時の系統水漏えいの可能性	(1) <u>残留熱代替除去系</u> 運転時の系統水漏えいの可能性	
代替循環冷却系運転時に系統水の漏えいがないことを確認	代替循環冷却系運転時に系統水の著しい漏えいがないこと		
し、系統の健全性を示す。	を以下のとおり確認した。		
代替循環冷却系は残留熱除去系,高圧炉心注水系,復水補給	代替循環冷却系は、既設の残留熱除去系と組み合せて重大	残留熱代替除去系は残留熱除去系と組み合せて重大事故	・設備の相違
<u>水系を</u> 組み合せて重大事故等対処設備として系統を構成してい	事故等対処設備として系統を構成しているものである。	等対処設備として系統を構成しているものである。	【柏崎 6/7】
るものである。			系統構成の相違
これら各系統を単独で通常どおり使用する場合には系統水が	<u>残留熱除去系を単独で通常どおり使用する場合には系統水</u>	<u> 残留熱代替除去系を使用する場合に流路となる残留熱除</u>	・設備の相違
漏えいしない設計としているが、代替循環冷却系は通常と異な	の著しい漏えいがない設計としているが、代替循環冷却系を	去系の配管, 弁及び熱交換器については, 残留熱除去系とし	【柏崎 6/7,東海第二】
る流路であり、機器の状態も通常と異なることから、この点に	使用する場合は通常と異なる流路であり、機器の状態も通常	て使用する場合と同様に流路として使用する設計であるこ	島根2号炉は残留熱
着目して系統水が漏えいする可能性について検討した。	<u>と異なることから、この点に着目して系統水が漏えいする可</u>	と及び残留熱除去系の設計条件を超えない範囲で使用する	除去ポンプを流路とし
図 3.3-1 に示すとおり、代替循環冷却系は復水移送ポンプで	能性について検討した。	ため,系統水が漏えいすることはない。 残留熱代替除去系の	ない
サプレッション・チェンバのプール水を循環させる系統構成と	第3.1-1図に示すとおり、代替循環冷却系は代替循環冷却	流路を図 3.2-1 に示す。	
なっており、残留熱除去系が機能喪失している前提で使用する	<u>系ポンプでサプレッション・プール水を循環させる系統構成</u>		
設備であるため、代替循環冷却系運転時は、残留熱除去系ポン	となっており、残留熱除去系が機能喪失している前提で使用		
<u>プが停止している状態でポンプ内を流体が流れることとなる。</u>	する設備であるため,残留熱除去系ポンプは,停止している		
<u> 残留熱除去系ポンプの軸封部はメカニカルシールで構成され</u>	状態でポンプ内を系統水が流れることとなる。		
ており,ポンプ吐出側から分岐して送水されるフラッシング水	残留熱除去系ポンプの軸封部はメカニカルシールで構成さ		
により温度上昇を抑えることが可能な設計としているが, ポン	れており,ポンプ吐出側から分岐して送水される冷却水によ		
<u>プ停止時に流体が流れる状態においては、通常どおりメカニカ</u>	り温度上昇を抑える設計としている。(第3.1-2図)		
<u>ルシールにフラッシング水が送水されないことが考えられるた</u>	ポンプ停止時に系統水が流れる状態においては、通常どお		
め、その際のシール機能への影響について確認した。	りメカニカルシールに冷却水が送水されないことが考えられ		
なお、残留熱除去系ポンプとは異なる軸封構造で、他系統か	るため、その際のシール機能への影響について確認した。		
らのシール水により軸封部をシールする構造のポンプがあった	残留熱除去系ポンプのメカニカルシールは, スプリングに		
場合は、同様に影響の確認が必要であるが、代替循環冷却系統	よって摺動部を押さえつける形でシールする構造となってい		
内に当該構造のポンプはない。	る。(第3.1-3図)		
	代替循環冷却系運転時には残留熱除去系ポンプが停止して		
	いる状態であるため、通常のポンプ運転時のようにフラッシ		
	ング水が封水ラインを通じてメカニカルシール部に通水され		
	ないことが想定されるが、上述のとおり、フラッシング水は		
	メカニカルシールの温度上昇を抑えるためのものであり、ポ		
	ンプが停止している状態では冷却の必要がなく、特にメカニ		
	カルシールの機能に影響はない。		
	新設する代替循環冷却系ポンプについては,残留熱除去系		
	熱交換器の下流側に配置し、温度が下がった系統水が流れる		
	ようにすることでメカニカルシールの健全性を維持できる設		
	計としている。具体的には、以下のとおり代替循環冷却系ポ		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
	ンプに流れる系統水が代替循環冷却系ポンプの最高使用温度	
	原子炉格納容器が限界圧力を下回る0.62MPa [gage] (2Pd)	
	(2Pd) における飽和温度167℃となるため, 評価条件は以下	
	のとおりとする。	
	 緊急用海水ポンプ流量 [*] : 600m ³ /h	
	サプレッション・プール水温度 : 167℃	
	上記の条件で残留熱除去系熱交換器出口温度を評価した結	
	果,出口温度は約70℃と評価され,代替循環冷却系ポンプの	
	したがって、代替循環冷却系運転時において系統水の著し	
	 い漏えいはないと考えられる。	
	是外 (西南)	
0.とり RHR(B)派 MO MO 基納容器スプレイ 代替HX 代替HX		版:子句·理物 (版:子句·增价) 世子
		低圧原子切代替注水系上り (明) (明) (明) (明) (明) (明) (明) (明) (明) (明)
NHK: 現開始正希 HPCF 諸臣伊心法未所 SPCU: サブレンション一ル浄化系 MVWC: 現代補助未希		
SC : サブレッシュンテェンパ SFH : サブレッシュンテール水線水系 廃棄物処理建量 MO : 電配電動弁		A-市電源 除去ポンプ 除去ポンプ 除去ポンプ C-電源制 レーー 一
Hx :教交換編 F :流量計		
	内留際結正式 施系系トレーナ(10) 成留開結正式	
	(代替循環冷却系A系及び残留熱除去系海水系A系使用時の図を示す。 低大都振環冷却系A系及び残留熱除去系海水系A系使用時の図を示す。 低大都振環御機造和	
図 3.3-1 代替循環冷却系 系統概要図(7号炉の例)	第3.1-1 図 代替循環冷却系 系統概要図	図 3.2-1 残留熱代替除去系系

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
(2) 残留熱除去系ポンプ停止時のメカニカルシールのシール性			・設備の相違
について			【柏崎 6/7,東海第二】
<u> 残留熱除去系ポンプはメカニカルシールにより漏えいを防止</u>			島根2号炉は残留熱
する設計となっており,図 3.3-2に示すとおりポンプ吐出水の			除去ポンプを流路とし
一部を封水ラインに分岐し、メカニカルシール冷却器を通して			ない
軸封部にフラッシング水を送ることで、ポンプ運転時のメカニ			
カルシールの温度上昇を抑える構造となっている。			
<u> 残留熱除去系ポンプのメカニカルシールは,図 3.3-3 に示す</u>			
とおり、スプリングによって固定環と回転環から構成される摺			
動部を押さえつける形でシールする構造となっている。			
代替循環冷却系運転時には残留熱除去系ポンプが停止してい			
る状態であるため、通常のポンプ運転時のようにフラッシング			
水が封水ラインを通じてメカニカルシール部に通水されないこ			
とが想定されるが、上述のとおり、フラッシング水はメカニカ			
ルシールの摺動部の温度上昇を抑えるためのものであり、ポン			
<u>プが運転していない状態では冷却の必要がないため、特にメカ</u>			
ニカルシールの機能としては問題にならない。よって,フラッ			
<u>シング水が無くても、メカニカルシールはスプリングによって</u>			
摺動部を押さえつけるタイプであるため漏えいを防止すること			
<u>ができる。なお,残留熱除去系ポンプ内を流れる流体は高温で</u>			
あることが想定されるが、この場合、メカニカルシールのうち			
最も影響を受けると考えられる部位は0リングシールであり,			
その耐熱温度は約 250℃であるが,想定流体温度(約 166℃)を			
上回っているため、熱によるメカニカルシールの機能への影響			
はない。			
したがって、代替循環冷却系運転時の残留熱除去系ポンプが			
停止している状態においても軸封部のシール性に影響はなく,			
系統水が漏えいすることはないと考えられる。			
なお,系統水の流れによるポンプ空転の可能性については,			
ポンプロータ及び電動機ロータの質量(約2.2 t)が鉛直下方			
向に作用しているため、軸受の抵抗損失により、ポンプが空転			
<u>することはないと考えられるが、万が一空転した場合の影響に</u>			
ついて以下に示す。			
保守的に上記の軸受損失がないと仮定した場合、代替循環冷			
却系運転(流量190m3/h)時に想定されるポンプ回転速度は,残			
留熱除去系ポンプ定格運転(流量 954m³/h)時のポンプ回転速度			
の約 🌄%である。この場合,最も影響を受ける部位は,メカ			
ニカルシールの固定環と回転環の摺動部と考えられるが、想定			

~炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙-1	比較対象無し	別紙-1	
格納容器内水素濃度・酸素濃度の測定原理と適用性について		格納容器水素濃度・酸素濃度の測定原理と適用性について	
1. 格納容器内水素濃度(SA)について		1. 格納容器水素濃度 (SA) について	
(1)システム構成		(1)システム構成	
格納容器内水素濃度(SA)は,重大事故等対処設備の機能を有し		<u>格納容器水素濃度(SA)のシステム概要を図1に示す。格納</u>	・設備の相違
ており,格納容器内水素濃度(SA)の検出信号は,水素吸蔵材料式水		容器水素濃度(SA)は、重大事故等対処設備の機能を有してお	【柏崎 6/7】
素検出器からの抵抗値を、中央制御室の演算装置を経由して指示		り,格納容器水素濃度(SA)の検出信号は、熱伝導式水素検出	設計方針の相違によ
部にて水素濃度信号へ変換する処理を行った後,格納容器内水素		<u>器からの電流信号を演算装置にて</u> 水素濃度信号へ変換する処理を	る設計仕様の相違
濃度(SA)を中央制御室に指示し,記録する。(図1「格納容器内水		行った後, <u>格納容器水素濃度(SA)</u> を中央制御室に指示し,緊	島根2号炉は熱伝導
<u>素濃度(SA)</u> の概略構成図」参照。)		急時対策所にて記録する。(図2「格納容器水素濃度(SA)の	式水素検出器を採用し
		概略構成図」参照。)	ている
		中央制御室 原子炉建物 (2): * 水素検出器 … サンプリング配管 ● ● ● ●	
		図1 格納容器水素濃度(SA)システム概要	・設備の相違
水素吸蘸材料式 水素検出器 中央制御室 () ()		熱伝導式 水素検出器 直算装置 単央制御室 指示 緊急時対策所 「正 録(^注 」」 記 録(^注 」」 記 録(^注 」」 記 録(^注 」」 (注1) 安全パラメーク表示システム(SPDS) (SPDS伝送サーバ)	【柏崎 6/7】 設計方針の相違によ る設計仕様の相違
図1 格納容器内水素濃度(SA)の概略構成図		<u>図2 格納容器水素濃度(SA)の概略構成図</u>	 ・設備の相違 【柏崎 6/7】 設計方針の相違によ る設計仕様の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(2)測定原理		(2)測定原理	
格納容器内の水素濃度を測定するために用いる格納容器内水素		原子炉格納容器内の水素濃度を測定するために用いる格納容器	
<u>濃度(SA)</u> は, <u>水素吸蔵材料式</u> のものを用いる。		<u>水素濃度(SA)</u> は、 <u>熱伝導式</u> のものを用いる。 <u>熱伝導式の水素</u>	・設備の相違
水素吸蔵材料式の水素検出器は,水素吸蔵材料(Pd:パラジウム)		検出器は、図3に示すとおり、検知素子と補償素子(サーミスタ)	【柏崎 6/7】
が水素を吸蔵すると電気抵抗が増加する性質を利用している。		でブリッジ回路が構成されている。検知素子の部分のみに測定対	設計方針の相違によ
		象ガスが流れ、補償素子に測定対象ガスが流れない構造としてい	る設計仕様の相違
		<u> </u>	島根2号炉は熱伝導
水素吸蔵材料式の測定原理は、図2のとおりである。パラジウム		水素濃度の測定部より電圧を印加して検知素子と補償素子の両	式水素検出器を採用し
に水素分子が吸着すると水素分子は水素原子へと分離する。分離		方のサーミスタを一定温度に加熱した状態で、検知素子側に水素	ている
した水素原子はパラジウムの内部へと侵入し、パラジウムの格子		を含む測定ガスを流すと、測定ガスが熱を奪い、検知素子の温度	
の歪みと水素原子のポテンシャルの影響により,パラジウムの中		が低下することにより抵抗が低下する。	
で自由電子が散乱することにより,パラジウムの電気抵抗が増加		この検知素子の抵抗が低下することによりブリッジ回路の平衡	
する。		が失われ、図3のAB間に電位差が生じる。この電位差が水素濃	
		度に比例する原理を用いて,水素濃度を測定する。	
P ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		検出部 測定部 予期容期内 第四気がよ し (相像東子) (使知東子) (使知東子) (使知東子) (使加東子) (使加東子) (使加東子) (使加東子) (使加東子) (使加東子) (使加東子) (使加東子) (加速) Sa AahaaBakaaBage (SA) 検出回路の概要図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(3)設置場所		(3) 設置場所	
図 3 機器配置図(6 号炉原子炉建屋地上2階)		図4 機器配置図(原子炉建物中2階)	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.18版)	島根原子力発電所	2 号炉	備考
図4 機器配置図(6	;号炉原子炉建	屋地下中1階)					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図 5 機器配置図(7 号炉原子炉建屋地上1 階)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図 6 機器配置図(7 号炉原子炉建屋地下1 階)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
2. 格納容器内水素濃度について		2. <u>格納容器水素濃度(B系)</u> について	
(1)システム構成		(1)システム構成	
格納容器内水素濃度のシステム概要を図7に示す。格納容器内		格納容器水素濃度(B系)のシステム概要を図5に示す。格納	
水素濃度は,設計基準対象施設及び重大事故等対処設備の機能を		<u>容器水素濃度(B系)</u> は,設計基準対象施設及び重大事故等対処	
有しており, 格納容器内水素濃度の検出信号は, 熱伝導式水素検出		設備の機能を有しており, <u>格納容器水素濃度(B系)</u> の検出信号	
器にて水素濃度を検出し、演算装置にて電気信号へ変換する処理		は,熱伝導式水素検出器からの電圧信号を,前置増幅器で増幅し,	
を行った後,格納容器内水素濃度を中央制御室に指示し,記録す		中央制御室の演算装置にて水素濃度信号へ変換する処理を行った	
る。(図8「 <u>6</u> 号炉格納容器内水素濃度の概略構成図」, 図9「7号		後, 格納容器水素濃度(B系) を中央制御室に指示し, 緊急時対	・設備の相違
炉格納容器内水素濃度の概略構成図」参照。)		<u>策所にて</u> 記録する。(図6「格納容器水素濃度(B系)の概略構成	島根2号炉は単独申
		図」参照。)	請であり、該当なし
<image/> <complex-block></complex-block>		<complex-block></complex-block>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18	版) 島根原子力発電所 2号炉	備考
(2)測定原理		(2)測定原理	
格納容器内の水素濃度を測定するために用いる格納容器内水素		原子炉格納容器内の水素濃度を測定するために用いる格納容器	
濃度は,熱伝導式のものを用いる。熱伝導式の水素検出器は,図10		<u>水素濃度(B系)</u> は,熱伝導式のものを用いる。熱伝導式の水素	
に示すとおり,検知素子と補償素子(サーミスタ),及び2つの固定		検出器は、図7に示すとおり、検知素子と補償素子(サーミスタ)、	
抵抗でブリッジ回路が構成されている。検知素子の部分に,サンプ		及び2つの固定抵抗でブリッジ回路が構成されている。検知素子	
リングされたガスが流れるようになっており,補償素子には基準		の部分に、サンプリングされたガスが流れるようになっており、	
となる標準空気が密閉されており測定対象ガスとは接触しない構		補償素子には基準となる標準空気が密閉されており測定対象ガス	
造になっている。		とは接触しない構造になっている。	
水素濃度計指示部より電圧を印加して検知素子と補償素子の両		水素濃度計指示部より電圧を印加して検知素子と補償素子の両	
方のサーミスタを約150℃に加熱した状態で,検知素子側に水素を		方のサーミスタを約150℃に加熱した状態で、検知素子側に水素	
含む測定ガスを流すと,測定ガスが熱を奪い,検知素子の温度が低		を含む測定ガスを流すと、測定ガスが熱を奪い、検知素子の温度	
下することにより抵抗が低下する。この検知素子の抵抗が低下す		が低下することにより抵抗が低下する。この検知素子の抵抗が低	
るとブリッジ回路の平衡が失われ,図10の AB 間に電位差が生じ		下するとブリッジ回路の平衡が失われ、図2のAB間に電位差が	
る。この電位差が水素濃度に比例する原理を用いて,水素濃度を測		生じる。この電位差が水素濃度に比例する原理を用いて、水素濃	
定する。		度を測定する。	
<image/> <image/>		水素濃度計指示部 検出器 レレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(3)設置場所		(3)設置場所	
図 11 機器配置図(6 号炉原子炉建屋地上中3階)		図8 機器配置図(原子炉建物3階)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図 12 機器配置図(6 号炉原子炉建屋地上3 階)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図 13 機器配置図(7 号炉原子炉建屋地上中3階)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
		3. 格納容器酸素濃度(SA)について	・設備の相違
		(1)システム構成	【柏崎 6/7】
		格納容器酸素濃度(SA)のシステム概要を図9に示す。格納	設計方針の相違によ
		容器酸素濃度(SA)は、重大事故等対処設備の機能を有してお	る設備の相違
		り,格納容器酸素濃度(SA)の検出信号は,磁気力式酸素検出	島根2号炉は磁気力
		器からの電流信号を演算装置にて酸素濃度信号へ変換する処理を	式酸素検出器を採用し
		行った後、格納容器酸素濃度(SA)を中央制御室に指示し、緊	ている
		急時対策所にて記録する。(図10「格納容器酸素濃度(SA)の	
		概略構成図」参照。)	
		<complex-block></complex-block>	
		磁気力式 中央制御室 酸素検出器	
		図10 格納容器酸素濃度(SA)の概略構成図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
		(2)測定原理	・設備の相違
		原子炉格納容器内の酸素濃度を測定するために用いる格納容器	【柏崎 6/7】
		酸素濃度(SA)は、磁気力式のものを用いる。	設計方針の相違によ
		磁気力式の酸素検出器は、図 11「格納容器酸素濃度(SA)の	る設備の相違
		原理図」に示すとおり、吊るされた2つの球体、くさび型状の磁	島根2号炉は磁気力
		極片、LEDからの光を受光素子へ反射する鏡等で構成されてい	式酸素検出器を採用し
		る。また、格納容器酸素濃度(SA)の検出回路を図 12「格納容	ている
		器酸素濃度(SA)検出回路図」に示す。	
		初期状態において球体は上から見て右回りに傾いた位置で静止	
		している。ガラス管内に強い磁化率を持つ酸素分子が流れ込むと、	
		磁場に引き寄せられ、磁極片の先端部に酸素分子が引き寄せられ	
		る。磁極片先端部に引き寄せられた酸素分子により2つの球体が	
		磁極片先端部から端部へ押し出され、右回りに回転する。これに	
		より、LEDからの光を受光素子への光量が一定となるように制	
		御しており、受光素子への光量が変化する。増幅器は受光素子へ	
		の光量の変化を検知するとフィードバック電流を増加させる。球	
		体はフィードバック電流がコイルを流れることで発生するカウン	
		ターモーメントを受けて光量が一定となる初期位置で静止する。	
		このフィードバック電流が酸素濃度に比例する原理を用いて酸素	
		<u>濃度の測定を行う。(図 13「格納容器酸素濃度(SA)の動作原</u>	
		理イメージ」参照)。	
		受光素子の光量を一定とするため 球体の回転を戻す力	
		酸素分子が 引き寄せられる <u> 愛光来子</u> <u> 安光来子</u> <u> 安光来子</u> <u> 安光来子</u> <u> </u>	
		(平面図)	
		(正面図)	
		図11 格納容器酸素濃度(SA)の原理図	

				· · · · · · · · · · · · · · · · · · ·
□	(2017.12.20 版)	▶ 果海第二発電所	(2018.9.18版)	□
				④受光素子 ⑤増幅器 ⑥指示部 図 12 格納容器酸素濃度 (SA) 6
				・ ・
				アイードバック電流 カウンターモーメント シウンターモーメント (3)増幅器が受光素子への光量の変化を検知し、 フィードバック 電流により球体にカウンターモーメントが働く
				図 13 格納容器酸素濃度(SA)の動

柏崎刈羽原子力発電所 6,	/7号炉	(2017.12.20版)	東海第二発電所	f (2018. 9. 18 版)	島根原子力発電所 2号
					(3)設置場所
					<u>図 14</u> 機器配置図(原子炉建物

	/ 世 · 世
<u>با</u>	加方
	・設備の相違
	【柏崎 6/7】
	設計方針の相違によ
	る設備の相違
	島根2号炉は磁気力
	式酸素検出器を採用し
	ている
中?陛)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
3. 格納容器内酸素濃度について		4. 格納容器酸素濃度(B系)について	
(1)システム構成		(1)システム構成	
格納容器内酸素濃度のシステム概要を図14に示す。格納容器内		<u>格納容器酸素濃度(B系)</u> のシステム概要を図15に示す。格納	
酸素濃度は、設計基準対象施設及び重大事故等対処設備の機能を		容器酸素濃度(B系)は,設計基準対象施設及び重大事故等対処	
有しており, 格納容器内酸素濃度の検出信号は, 熱磁気風式酸素検		設備の機能を有しており, <u>格納容器酸素濃度(B系)</u> の検出信号	
出器にて酸素濃度を検出し,演算装置にて電気信号へ変換する処		は,熱磁気風式酸素検出器からの電圧信号を,前置増幅器で増幅	
理を行った後,格納容器内酸素濃度を中央制御室に指示し,記録す		し、中央制御室の演算装置にて酸素濃度信号へ変換する処理を行	
る。		った後, <u>格納容器酸素濃度(B系)</u> を中央制御室に指示し, <u>緊急</u>	
(図15「6号炉格納容器内酸素濃度の概略構成図」,図16「7号炉		時対策所にて記録する。(図 16 「格納容器酸素濃度(B系)」の概	・設備の相違
格納容器内酸素濃度の概略構成図」参照。)		略構成図」参照。)	島根2号炉は単独申
7.04			請であり、該当なし
(209本 次昭市 オ田市 オングリン学校等		- :サンプリング配管	
		中央制御室 原子炉建物 (02E):酸素檢出器	
原子印建品		:信号系 指示計 原子炉格納容器	
РЭ <i>г</i> /удара.			
		サンプリング ポンプ 冷却系	
		$\begin{array}{c} & & \\$	
		格納容器酸素濃度	
		※2系列のうちB系を示す。	
図 14 格納容器内酸素濃度システム概要		図 15 格納容器酸素濃度 (B系) システム概要	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 18 版)	島根原子力発電所 2号炉	備考
(2)測定原理			(2)測定原理	
格納容器内の酸素濃度を測定するために用いる酸素濃度計は,			原子炉格納容器内の酸素濃度を測定するために用いる格納容器	
熱磁気風式のものを用いる。熱磁気風式の酸素検出器は,図17に			酸素濃度(B系)は、熱磁気風式のものを用いる。熱磁気風式の	
示すとおり,サーミスタ温度素子(発風側素子,受風側素子)及び2			酸素検出器は、図17に示すとおり、サーミスタ温度素子(発風側	
つの固定抵抗でブリッジ回路が構成されており,検出素子及び補			素子,受風側素子)及び2つの固定抵抗でブリッジ回路が構成さ	
償素子は一定温度で保温されている。			れており、検出素子及び補償素子は一定温度で保温されている。	
酸素濃度計指示部 検出器 「「」」」」「」」」」」」」」」 「」」」」」」 「」」」」」」 「」」」」」 「」」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」 「」」」 「」」 」			酸素濃度計指示部	
融書会右ガマの法わた図 10 にデオ 融書濃度計け 9 層構造の手			救幼宏聖秘書濃度(P 系)の原理図な図 19 にテオ - 秘書濃度計	
酸素百月以入の加412区10に小り。酸素低度訂は2層構造のフ			俗利谷益販業振伎(D示)の原理因を因10に小り。販業振度計 けり層構造のチャンバーで構成されており、サンプル入口上り下	
ー内にサンプルガスが流入する サンプルガスの大部分け下部流			「シンプー内にサンプルガスが流入する」サンプルガスの	
入チャンバーを通過しサンプル出口へ流出するが 小量のサンプ			大部分け下部流入チャンバーを通過しサンプル出口へ流出する	
ルガスは上部測定チャンバー内に流入する。酸素は極めて強い常			が 小量のサンプルガスは上部測定チャンバー内に流入する 酸素	
磁性体であることから、上部測定チャンバーに流入したサンプル			は極めて強い常磁性体であることから、上部測定チャンバーに流	
ガスは磁界中心部に引き寄せられ、加熱された発風側素子により			入したサンプルガスは磁界中心部に引き寄せられ、加熱された発	
温度が上昇する。磁化率は温度に反比例することから、後から流入			風側素子により温度が上昇する。磁化率は温度に反比例すること	
してくる低温のサンプルガスにより、高温となったサンプルガス			から、後から流入してくる低温のサンプルガスにより、高温となっ	
は磁界中心部から追い出されることとなる。発風側素子は低温の			たサンプルガスは磁界中心部から追い出されることとなる。発風	
サンプルガスに熱を奪われることで冷やされることとなり、磁界			側素子は低温のサンプルガスに熱を奪われることで冷やされるこ	
外の受風側素子は発風側素子が奪われた熱を受け取り,暖められ			ととなり、磁界外の受風側素子は発風側素子が奪われた熱を受け	
ることとなる。			取り、暖められることとなる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
$ \vec{v} $ 18		Image: state stat	
凶 10 酸米 占有 ル への (加4 し		誘導ガスフロー(サーミスタ加熱前): 誘導ガスノロー(サーニスタ加熱液): 酸素分子の常磁性により磁界に引き 磁化率は温度に反比例しガス(加熱前)より 寄せられる 磁界に引き寄せられる力が弱いため、外側へ 追い出される	
		(立体図) (平面図)	
		図18 格納容器酸素濃度(B系)の原理図	
チャンバー内に酸素を含む <u>格納容器内雰囲気ガス</u> を流すと,磁 気風により発風側素子の温度が下がることで,発風側素子の抵抗 は小さくなる。一方,受風側素子の温度が上がることで,受風側素 子の抵抗は大きくなる。発風側素子と受風側素子の抵抗値が変化 することで,ブリッジ回路の平衡が変化し,図17のAB間に電位差 (電流)が生じる。この電位差が酸素濃度に比例する原理を用いて, 酸素濃度を測定する。		チャンバー内に酸素を含む <u>原子炉格納容器内雰囲気ガス</u> を流す と、磁気風により発風側素子の温度が下がることで、発風側素子 の抵抗は小さくなる。一方、受風側素子の温度が上がることで、 受風側素子の抵抗は大きくなる。発風側素子と受風側素子の抵抗 値が変化することで、ブリッジ回路の平衡が変化し、図 17 のAB 間に電位差(電流)が生じる。この電位差が酸素濃度に比例する 原理を用いて、酸素濃度を測定する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(3)設置場所		(3)設置場所	
図 19 機器配置図(6 号炉原子炉建屋地上中3階)		図 19 機器配置図 (原子炉建物3階)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図 20 機器配置図(6 号炉原子炉建屋地上3階)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図 21 機器配置図(7 号炉原子炉建屋地上中3階)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙−2	別紙 1	別紙 <u>2</u>	
循環流量の確保について	循環流量の確保について	循環流量の確保について	
代 幸循環 冷却系の必要容量は 「2 1 有効性評価シナリオの成立	代替循環冷却系の必要容量は一格納容器破損防止対策の有効	務留執代替除去系の必要容量は「21 有効性評価シナリオの	
性」で有効性が確認できている循環流量 190m ³ /h (原子炉注水:	性評価において有効性期待している流量 250m ³ /h [*] を確保す	成立性」で有効性が確認できている循環流量 150m ³ /h (原子炉注	・設備の相違
90m ³ /h 及び格納容器スプレイ:100m ³ /h 又は,格納容器下部注水:	$\overline{\mathbf{a}}_{\mathbf{a}}$	水:30m ³ /h 及び格納容器スプレイ:120m ³ /h) 以上とする。	【柏崎 6/7,東海第二】
	~~~~~~		設備仕様の相違
			・設備の相違
			【柏崎 6/7,東海第二】
			島根2号炉は PCV ス
			プレイにより PCV 下部
			へ注水する
	※: 3.1 雰囲気圧力・温度による静的負荷(格納容器過圧・		
	過温破損), 3.2 高圧溶融物放出/格納容器雰囲気直接加熱,		
	3.3 原子炉圧力容器外の溶融燃料 - 冷却材相互作用, 3.4 水		
	素燃焼,3.5 溶融炉心・コンクリート相互作用で期待する流量		
よって、代替循環冷却糸が循環流量 <u>190m²/h</u> 以上を確保可能で		よって,残留熱代替除去糸は循環流量 <u>150m³/h</u> 以上を確保す	・設備の相違
あることを示す。			【 和崎 6/7, 東海弟 _ 】
			术预11.1体07相连
	代基循環冷却系ポンプは 補足説明資料 50-6 に示すとおり	残留熱代萃除去ポンプは 補足説明資料 50-7 に示すとおり	<ul> <li>設備の相違</li> </ul>
	循環流量 $250m^3$ /h 以上を確保できるものを設置する。	<u> </u>	【柏崎 6/7】
評価にあたっては「①ポンプの NPSH(Net Positive Suction	代替循環冷却系ポンプの NPSH (Net Positive Suction Head)	評価にあたっては「(1)ポンプの NPSH(Net Positive Suction	島根2号炉は, SA 専
Head)評価」で系統圧力損失を考慮した有効 NPSH が MUWC ポンプ	の評価を「(1) ポンプの NPSH 評価」に示す。	Head)評価」で系統圧力損失を考慮した有効 NPSH が残留熱代替	用設備として残留熱代
の必要 NPSH を満足することを確認する。		除去ポンプの必要 NPSH を満足することを確認する。	替除去ポンプを設置す
			る
			【東海第二】
			設備仕様の相違
次に,「②循環流量評価」で系統圧力損失を考慮して,循環流量			・設備の相違
190m ³ /h が確保可能であることを確認する。			【柏崎 6/7】
			島根2号炉は,SA専
			用設備として残留熱代
			省际 ムホンフを 設置す
また。代表征晋必却玄運転時の玄兹明軍にトス州総任下た陆山	また。代表征晋必却玄運転時の玄兹開棄に上る姓能低下な陆山	また。建岡勅代扶除土玄軍転時の玄鉉明軍にトス州部低下た吐	<u>ଚ</u>
よた, <u> し目現然田却</u> が定地すの示肌肉茎による注肥低」を防止 するために「③系統の閉塞防止対策」で閉塞防止対策を示す	よた, <u>111間境田研究</u> 理報可の示肌肉牽による注肥低」を防止 するための対策を「(9) 系統の閉塞防止対策」に示す	よた, <u> 然用が1人間が</u> ム不理称呼の示抗因素による注能低下を防 止するために「(2)系統の閉塞防止対策」で閉塞防止対策を示	
「うってのに「⑤水加ジロ金町工刈水」(固金町工刈水でかり。	プラルマンンAIAAAA (C/ AAMOVAI 本内エAA R 」(CA Y。	エテラにのに「(2) 小型の山谷水」(四奎的山谷水)	
		/ 0	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
①ポンプの NPSH 評価	<ol> <li>ポンプの NPSH 評価</li> </ol>	<u>(1)</u> ポンプの NPSH 評価	
ポンプがキャビテーションを起こさず正常に動作するために	ポンプがキャビテーションを起こさず正常に動作するために	ポンプがキャビテーションを起こさず正常に動作するために	
は、流体圧力や吸込配管圧力損失等により求められる「有効	は、流体圧力や吸込配管圧力損失等により求められる「有効	は、流体圧力や吸込配管圧力損失等により求められる「有効	
NPSH」が,ポンプの「必要 NPSH」と同等かそれ以上であること	NPSH」が,ポンプの「必要 NPSH」以上(有効 NPSH≧必要 NPSH)	NPSH」が,ポンプの「必要 NPSH」と同等かそれ以上であること	
(有効 NPSH≧必要 NPSH)を満足する必要があり,有効 NPSH と	であることが必要であり,有効NPSHと必要NPSHを比較するNPSH	(有効 NPSH≧必要 NPSH) <u>を満足する</u> 必要 <u>が</u> あり,有効 NPSH と必	
必要 NPSH を比較する NPSH 評価により確認を行う。ここでは,	評価により確認を行う。	要 NPSH を比較する NPSH 評価により確認を行う。	
代替循環冷却系において MUWC ポンプが正常に動作することを			
NPSH評価により確認する。			
本評価では,図1の系統構成を想定し,格納容器内圧力 <u>(S/C)</u> ,	本評価では, <u>第1</u> 図の系統構成を想定し, 格納容器内圧力,	本評価では,図1の系統構成を想定し,格納容器内圧力,サ	
サプレッション・チェンバ・プール水位と MUWC ポンプ軸レベル	サプレッション・プール水位と代替循環冷却系ポンプ軸レベル	プレッション・プール水位と残留熱代替除去ポンプ軸レベル間	
聞の水頭差,吸込配管圧力損失(残留熱除去系ストレーナ <u>,…残</u>	間の水頭差,…吸込配管圧力損失(残留熱除去系ストレーナ,…残	の水頭差及び吸込配管圧力損失(残留熱除去系ストレーナの圧	・設備の相違
<u> 留熱除去系ポンプ,残留熱除去系熱交換器</u> の圧力損失を含む)	<u>留熱除去系ポンプ,残留熱除去系熱交換器</u> の圧力損失を含む)	力損失を含む)により求められる有効 NPSH と,残留熱代替除去	【柏崎 6/7,東海第二】
により求められる有効 NPSH と, <u>MUWC ポンプ</u> の必要 NPSH を比較	により求められる有効 NPSH と, <u>代替循環冷却系ポンプ</u> の必要	ポンプの必要 NPSH を比較することで評価する。	島根2号炉は,残留熱
することで評価する。	NPSH を比較することで評価する。		除去ポンプを流路とせ
			ず,残留熱代替除去ポン
			プ下流に残留熱除去系
			熱交換器を配置する設
			計とする
代替循環冷却系においては、格納容器内圧力 (S/C) が変動す	評価条件を第1表に示す。	残留熱代替除去系においては、格納容器内圧力が変動するこ	
ることが想定され、これに伴い有効 NPSH が変動することとなる		とが想定され,これに伴い有効 NPSH が変動することとなるた	
ため,ここでは,有効 NPSH を満足できる格納容器内圧力 (S/C)		め、ここでは、有効 NPSH を満足できる格納容器内圧力の下限を	
の下限を示す。評価条件を図2,表1に示す。		示す。評価条件を図2,表1に示す。	



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
表 1 NPSH 評価条件	第1表 NPSH 評価条件	<u>表1 NPSH 評価条件</u>	・設備の相違
項 目 6 号炉 7 号炉 設定根拠	項目 設定値 単位 設定根拠	項目 2 号炉 設定根拠	
Pa     S/C 圧力     -     -     -     -     (本評価では, NPSH 評価を成立させる S/C 圧力の下限を求めるものである)       Pv     MUWC ポンプ入口温度     S/C 限界圧力 0. 62MPa     に対する S/P 水	$P_a$ サプレッション・チェ ンパ空間圧力     m     保守的に大気圧と仮定 $P_v$ 代替循環冷却系ポンプ 入口温度での飽和蒸気 圧 (水質圧換算値)     m     50℃における飽和蒸気圧力	Pa     S/C 圧力     (本評価では,NPSH 評価を成立 させる S/C 圧力の下限を求める ものである)	
での飽和蒸気圧(水頭 換算値)         飽和温度166℃を想定した場合の,代替 循環冷却系統運転時の冷却を考慮した           MUWC ポンプ入口温度(①℃と設定**)           での飽和蒸気圧とする           H         S/P 水位と MUWC ポン	H     サプレッション・プー ル水位と代替循環冷却 系ポンプ軸レベル間の 水頭差     S/P 水位レベル(LWL):EL m とポンプ軸レベル:EL mの差       ΔH     吸込配管圧損 (ストレーナ込)     m     ポンプ流量 250m ³ /h における圧 損値	<ul> <li>         ・ Pv 残留熱代替除去ポンプ         Pv 入口温度での飽和蒸気             圧(水頭換算値)    有効性評価解析値であるピーク温度 132℃の飽和蒸気圧力</li></ul>	
プ軸レベル間の水頭     (T. M. S. L1200)とし、MUWC ポンプ軸レ       差     ベルは T. M. S. L.       ΔH     吸込配管圧損       WUWC ポンプ人口までの配管の圧損	デブリ圧損     m     ボンブ流量 250m ³ /h における 圧損値       代替循環冷却系ポンプ の必要 NPSH     m     ポンプ予想性能曲線読み取り値 (@250m ³ /h)	S/P 水位と残留熱代替除     S/P 水位レベル(LWL):       H     去ポンプ軸レベル間の       水頭差     の差	
RHR ストレーナ圧損     工認記載値に、RHR 定格流量 954m ³ /h と       加 ³ /h (本系統循環流量 190m ³ /h に余       裕を見込んだ値)の二乗比を掛けて算出       した圧損約     n に余裕を見込み In       とする		ΔH     吸込配管圧損(ストレー     ポンプ流量 150m³/h における圧       ナ込)     損値	
RHR ホシラク注訳     RHR ホシラク病道を接続して外出した       圧損(本系統循環流量 190m ³ /h に余裕を       見込んだ     m ³ /h 時における値)       RHR ポンプ定格流量時の許容圧損値に       RHR 定格流量 954m ³ /h と       面 ³ /h (本系       統循環流量 190m ³ /h (本系		残留熱代替除去ポンプ     ポンプ定格流量時の必要 NPSH	
<ul> <li></li></ul>			
表1の条件を元に,(有効NPSH) $\geq$ (必要NPSH)の式より,有 効NPSHを満足できる格納容器内圧力(S/C)の下限を求める。 【6号炉】 (有効NPSH) = Pa - Pv + H - $\Delta$ H $\geq$ (必要NPSH) Pa $\geq$ $\square$ MPa[gage] 以上の評価結果より,6号炉では格納容器内圧力(S/C) が「 $\square$ MPa[gage] 以上」の条件において有効NPSHを 満足できることを確認した。	第1表の条件を元に, (有効 NPSH) ≧ (必要 NPSH)の式より, 有効 NPSH が必要 NPSH を満足できるか確認する。 (有効 NPSH) =Pa−Pv+H−ΔH ≧ (必要 NPSH)	表1の条件を元に,(有効 NPSH)≧(必要 NPSH)の式より, 有効 NPSH が必要 NPSH を満足できるか確認する。 (有効 NPSH) =Pa−Pv+H−ΔH≧(必要 NPSH) Pa≧ MPa [gage]	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
【7号炉】 (有効NPSH)=Pa−Pv+H−ΔH ≧(必要NPSH) Pa ≧ ■ MPa[gage] 以上の評価結果より,7号炉では格納容器内圧力(S/C)			
が「 MPa[gage] 以上」の条件において有効NPSHを 満足できることを確認した。 上記の結果を踏まえ,格納容器内圧力 <u>(S/C)</u> が6号炉で は MPa[gage]以上,7号炉では MPa[gage] 以上の 状態であればMUWCポンプの必要NPSHを満足することから,重	上記の結果 <u>から</u> ,重大事故等時において <u>代替循環冷却系</u> は成 立する。	上記の結果 <u>を踏まえ,格納容器内圧カが</u> MPa[gage]以 上の状態であれば残留熱代替除去ポンプの必要 NPSH を満足す る。重大事故等時においては,格納容器内圧力が MPa	
大事故等時において代替循環冷却系は成立する。		[gage]以上であることから,残留熱代替除去系は成立する。	
                                        			<ul> <li>・設備の相違</li> <li>【柏崎 6/7】</li> <li>島根 2 号炉は,循環冷</li> <li>却運転初期の条件にお</li> <li>いて,格納容器圧力が,</li> <li>NPSH 評価を成立させる</li> <li>最低圧力を上回るため,</li> <li>事故後長期の条件にお</li> <li>ける条件緩和を期待し</li> <li>た評価は不要である(以</li> <li>下,別紙 2 では①の相</li> <li>違)</li> </ul>
<u>うことで、ホンフの起動停止操作を極刀繰り返すことのない、長</u> 期的な運転が可能である。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
1) 復水移送ポンプ入口温度での飽和蒸気圧(Pv)の低下			
継続的な冷却によりサプレッション・チェンバ・プール水温			
度が低下する。これに伴い、復水移送ポンプ入口温度での飽和			
蒸気圧が低下し,格納容器内圧力 (S/C)の下限値は低下するこ			
ととなる。また、事故後の崩壊熱減少に伴い代替循環冷却系統			
流量を低下させることも可能であり、それによって復水移送ポ			
ンプ入口温度を低下させることも可能である。したがって、系			
統温度を監視し、系統流量調整を行うことで、代替循環冷却系			
の成立条件を極力逸脱しないような運転操作が可能となる。			
2) 圧力損失(ΔH)の低下			
継続的な冷却により格納容器圧力・温度が低下するため、格			
納容器スプレイ流量を絞ることが可能となる。流量を絞った場			
合, 圧力損失が低下し, 格納容器内圧力 (S/C) の下限値が低下			
することとなる。しがたって,格納容器内圧力・温度を監視し,			
格納容器内圧カ・温度の時間変化にあわせて格納容器スプレイ			
の流量調整弁により流量を調整することで、代替循環冷却系統			
の成立条件を極力逸脱しないような運転操作が可能となる。			
加えて、継続的な冷却により崩壊熱量は低下することから、			
格納容器内圧力・温度を監視した上で代替原子炉補機冷却系の			
流量を調整することにより,格納容器内圧力 (S/C)の低下を抑			
えることも可能であり、この操作を行うことで代替循環冷却系			
の成立条件を極力逸脱しないような運転操作が可能となる。			
PCV			
格納容器スプレイ			
炉注水			
1)流量調整によりPv低下 2)流量調整によりΔH低下			
MUWCポンプ S/C Pa S/C			
H S/P S/P			
RHR Hx RHRポンプ			
熱交換量を調整することでPa低下抑制			
図3 運転成立条件の拡張			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.18版)	島根原子力発電所 2号炉	備考
代替循環冷却系の運転が長期的に継続可能なことの例として,			また、残留熱代替除去系の運転が長期的に継続可能なことの	・設備の相違
事故後長期の状態を想定した場合の「NPSH評価の結果(格納容器			例として、「残留熱代替除去系運転を 30 日間継続した場合の評	【柏崎 6/7】
<u>内圧力(S/C)の下限)」及び「代替循環冷却系運転を30日間継続</u>			価結果例」を示す。	<ol> <li>の相違</li> </ol>
した場合の評価結果例」を示す。				・記載方針の相違
<nsph評価></nsph評価>				【東海第二】
事故後長期の状態を想定した場合の NPSH 評価を行い, 格納容				
器内圧力(S/C)の下限を示す。条件を図 2,表 2 に示す。なお,				
代表として6号炉における結果を示す。				
表2 NPSH評価条件(事故後長期を想定したケース)				
項 目 6号炉 設定根拠				
(本評価では、NPSH 評価を成立させる 5/0 圧力の下版 を求めるものである)				
Pv         MUWC ポンプ入口温度         S/P 水温度 130°C ^{単1} を想定した場合の,代替循環冷却系				
での飽和蒸気圧(水頭 線算値)  を設定 ³² ) での飽和蒸気圧とする				
H S/P 水位と MUWC ポン S/P 水位は T. M. S. L. 0 ^{第1} とし, MUWC ポンプ軸レベルは				
プ軸レベル間の水頭 差				
ΔH         吸込配管圧損           本系統循環流量 190m ² /h 時の RHR ストレーナ ~ MUWC ポン				
プ入口までの配管の圧損           PUD 7 トレーナ圧損           T辺辺地域/c           PUD 7 トレーナ圧損				
Rik ストレー ) 注頭 1-10-11 Rule に, Rik 上村 小風 50-11 / パ と 本示航 / 1 深の風 版 190m ³ /h の二乗比を掛けて算出した圧損				
RHR ポンプ圧損 RHR ポンプの構造を模擬して算出した圧損(本系統循環				
190m/n 時における他)に示格を見込み ■n とする RHR 熱交換器圧損 RHR ポンプ定格流量時の許容圧損値に RHR 定格流量				
954m ³ /h と本系統循環流量 190m ³ /h の二乗比を掛けて算				
ー         MUWC ポンプの           ポンプ定格流量時の必要 NPSH				
必要NPSH				
※1 「2.1 有効性評価シナリオの成立性」における事故後7日後を				
想定				
※2 代替原子炉補機冷却系により残留熱除去系熱交換器を介し				
て除熱した場合の. MUWC ポンプ入口温度評価結果に余裕を見				
た値としている。なお、MUWC ポンプ入口温度評価にあたっては、				
代替循環冷却系必要流量 190m ³ /h を用いて評価している。				
表2の条件を基に (有効NPSH) ≥ (必要NPSH)の式より 有効				
NPSHを満足できる格納容器内圧力 $(S/C)$ の下限を求める				
$\frac{1}{2} (C^{2}(V) + (C^{2}(V$				
				1

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.18版)	島根原子力発電所 2号炉	備考
【6号炉】					
(有効NPSH) = $Pa - Pv + H - \Delta H \ge (4)$	必要NPSH)				
Pa ≧ MPa[gage]					
以上の評価結果より,6号炉では格納容	容器内圧力(S/C)が				
□ 「□ MPa[gage] 以上」の条件において	<u>て有効NPSHを満足でき</u>				
<u>ることを確認した。</u>					
	と坦くによい、て、物体				
	に場合において、格納 しの世能でなわげ MIWC				
<u>谷岡内圧力(S/C)か</u> Mra[gage]人 ポンプの必要 NDSH を満足する この値か					
の運転け長期的に継続可能と考えられる	<u>「りり,」(自治球市44水</u>				
	<u> </u>				
   <代替循環冷却系運転を30日間継続した場)	合の評価結果例>			〈残留熱代替除去系運転を 30 日間継続した場合の評価結果例〉	
「2.1 有効性評価シナリオの成立性」の	格納容器過圧・過温破			「2.1 有効性評価シナリオの成立性」の格納容器過圧・過温破	
  損( <u>代替循環冷却系</u> を使用する場合)におい	いて,循環流量 <u>190m³/h</u>			損(残留熱代替除去系を使用する場合)において,循環流量 150m ³ /h	・設備の相違
にて代替循環冷却系を30日間運転継続した	場合の格納容器圧力の			にて残留熱代替除去系を 30 日間運転継続した場合の格納容器圧	【柏崎 6/7】
推移の評価結果例を図4に示す。				力の推移の評価結果例を図3に示す。	設計仕様の相違
図4より、事故30日後の格納容器圧力は	<u>約0.13MPa [gage]</u> であ				
るため,上記NPSH評価結果のMPa[gag	ge]以上であり, 代替循			図3より,事故30日後の格納容器圧力は約0.4MPa[gage]であ	・設備の相違
環冷却系の運転は継続可能である。				るため、上記 NPSH 評価結果の MPa[gage]以上であり、残	【柏崎 6/7】
				留熱代替除去糸の運転は継続可能である。	設計仕様の相違
なお、長期的に安定状態を維持するにある	たり、原子炉格納谷器				
か隔離されている义は隔離した場合,水-放	( 射線分解により発生す			なわ、女別的に女足状態を維持するにのにり、原士炉俗納谷 思が厚離されている又は厚離した担合 水-故計組公室により発	
る可燃性ガスの復度前御か必要となる。こ 7日以降にわいて、可憐姓ガス濃度制御系(	の仮皮前仰は、争议依の復回により、故如宏			品がII 解離されている文は隔離した物面,小一成別旅方件により先 生する可燃性ガスの濃度制御が必要とたる。この濃度制御け	
<u> 一日</u> 以供にわいて、 <u> 「然にカハ張反前仰</u> 、 哭内の酸素 $/ x 素 \delta$ 再結合することにとり	<u>の後</u> により、福利谷 可燃限界濃度に到達			事故後12時間後において、可搬式窒素供給装置により、格納容	<ul> <li>・設備の相違</li> </ul>
することなく長期安定停止状態を維持する。	ことが可能となる。			器内に窒素ガスを注入し酸素濃度を抑制することにより、水素	【柏崎 6/7】
				が可燃限界濃度に到達することなく長期安定停止状態を維持す	可燃性ガスの濃度制
				ることが可能となる。	御設備および制御方法
					の相違
仮に可燃性ガス濃度制御系の復旧に期待	できない場合,原子炉				・設備の相違
格納容器内の酸素濃度監視により、酸素濃度	度が5%に至る前に排				【柏崎 6/7】
気(ベント)する運用としている。このと	き, ベント弁の開度を				島根2号炉は,格納容
調整することにより、徐々に格納容器圧力	を低下させ、かつ、原				器ベント中,残留熱代替
子炉格納容器が負圧となるととを防止する;	ための措置として,窒				除去系を運転しない
素注入を継続し、長期的な安定状態を維持	する。排気(ベント)				



炉	備考
	<ul> <li>・設備の相違</li> <li>【柏崎 6/7】</li> <li>島根 2 号炉は循環流</li> <li>量を変更することなく</li> <li>必要 NPSH が確保可能</li> </ul>
ドライウェル サブレッション・チェンバ 480 528 576 624 672 720	・設備の相違
	・設備の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.18版)	島根原子力発電所	2号炉	備考
②循環流量評価					・設備の相違
代替循環冷却系において循環流量190m ³ /h以上確保できること					【柏崎 6/7】
を確認する。					島根2号炉は, SA 専
確認方法は、MUWCポンプの「性能曲線」(揚程と流量の関係図)と					用設備として流量が確
図1の系統構成を想定した場合の「システム抵抗曲線」との交点					保できる残留熱代替除
(ポンプの動作点)が190m ³ /h以上であることを確認する。ここで					去ポンプを設計し,設置
想定するシナリオとして、「2.1 有効性評価シナリオの成立性」の					する
想定シナリオである「大破断LOCA+ECCS注水機能喪失+全交流動					
力電源喪失」の状態に加え、流量評価として保守側となるよう、					
原子炉圧力が高い状態を想定して評価を行う。					
評価条件は、図2及び表1の条件に、表3の条件を加えたもの					
とする。					
表3 循環流量評価条件(図2及び表1の追加条件)					
項 目 6号炉 7号炉 設定根拠					
Pb     RPV 圧力     MPa[gage]     MPa[gage]     S/C 限界圧力 0.62MPa+SRV 開圧力					
ー         RPV 水位         MS ノズル         MS ノズル         RPV 水位は、RPV 満水の状態を想定					
(T. M. S. L. ) (T. M. S. L. ) し, MS ノズルまで					
(T. M. S. L.) とする Pc PCV圧力 0.62 MPa[gage] 0.62 MPa[gage] PCV限界圧力 0.62MPa とする					
(略語) SRV:主蒸気逃がし安全弁, MS :主蒸気					
※SRV 弁体の自重を押し上げるために必要な圧力					
【6号炉】					
6号炉のMUWCポンプ性能曲線及び系統のシステム抵抗曲線を用					
いて,循環流量190m ³ /h以上(原子炉注水90m ³ /h以上かつ格納容器)					
スプレイ100m ³ /h以上)を達成できることを確認する。本評価にあ					
たっては,原子炉注水流量が90m ³ /h以上であることを仮定し,格					
納容器スプレイが100m ³ /h以上並びに,原子炉注水流量と格納容器					
スプレイの合計流量が190m ³ /h以上が達成できることを確認する。					
なお,原子炉注水流量の仮定値については,MUWCポンプ性能曲線					
と,仮定値の原子炉注水流量から評価されるシステム抵抗曲線に					
交点があることを以て,妥当性を確認する。					
上記の考えを踏まえ,6 号炉におけるMUWCポンプの「性能曲線」					
と「システム抵抗曲線」の関係図を図6に示す。					
図6より,原子炉注水の必要流量約90m ³ /h~約100m ³ /hの範囲に					
おいて,性能曲線とシステム抵抗曲線の交点は約m ³ /h~約					
<u>m³/hとなり,190m³/h以上を示していることから,6号炉において,</u>					
必要循環流量190m ³ /hが確保可能であることを確認した。また,こ					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考	
の範囲において格納容器スプレイ流量は約 m ³ /h~約 m ³ /h				
となり,必要流量100m ³ /h以上を満足している。				
よって, 6号炉の代替循環冷却系は原子炉注水90m ³ /h以上,格				
図6 ポンプ性能曲線とシステム抵抗曲線の関係図(6号炉)				
【7号炉】				
7号炉のMUWCポンプ性能曲線及び系統のシステム抵抗曲線を				
用いて,循環流量190m ³ /h以上(原子炉注水90m ³ /h以上かつ格納				
容器スプレイ100m ³ /h以上)を達成できることを確認する。本評				
価にあたっては、原子炉注水流量が90m3/h以上であることを仮				
定し, 格納容器スプレイが100m ³ /h以上並びに, 原子炉注水流				
<u>量と格納容器スプレイの合計流量が190m³/h以上が達成できる</u>				
ことを確認する。なお、原子炉注水流量の仮定値については、				
MUWCポンプ性能曲線と、仮定値の原子炉注水流量から評価され				
るシステム抵抗曲線に交点があることを以て、妥当性を確認す				
<u> </u>				
上記の考えを踏まえ,7号炉におけるMUWCポンプの「性能曲				
線」と「システム抵抗曲線」の関係図を図7に示す。				
図7より,原子炉注水の必要流量約90m ³ /h~約100m ³ /hの範囲				
<u>において,性能曲線とシステム抵抗曲線の交点は約</u> m ³ /h~				
約── m ³ /hとなり, 190m ³ /h以上を示していることから, 7 号炉				
において, 必要循環流量190m ³ /hが確保可能であることを確認し				
<u>た。</u> また,この範囲において格納容器スプレイ流量は約 m³/h				
<u>~約</u> m ³ /hとなり,必要流量100m ³ /h以上を満足している。				
よって,7号炉の代替循環冷却系は原子炉注水90m³/h以上,				
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (201	18.9.18版)	島根原子力発電所 2号炉	備考
-----------------------------------------------------------------------------------	--------------	-----------	--------------	----
格納容器スプレイ 100m³/h 以上を同時に達成することが可能				
である。				
図7 ポンプ性能曲線とシステム抵抗曲線の関係図(7号炉)				
<u>また,原子炉に注水できず,原子炉圧力容器が破損した場合</u>				
を想定した「2.1 有効性評価シナリオの成立性」の「過渡事象				
+高圧注水失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧失				
<u>敗(+DCH発生)」シナリオ時においても,同様に,循環流量</u>				
$190 \mathrm{m}^3/\mathrm{h}$ (格納容器下部注水: $50 \mathrm{m}^3/\mathrm{h}$ , 格納容器スプレイ:				
<u>140m³/h) 以上確保できることを確認する。</u>				
<u>評価条件は、図2及び表1の条件に、表4の条件を加えたも</u>				
のとする。				
表4 循環流量評価条件(図2及び表1の追加条件)(原子炉圧力				
容器破損時)				
項 目 6号炉 7号炉 設定根拠				
Pc         D/W 圧力及         S/C 圧力         S/C 圧力         有効性評価結果の代替循環冷却				
び下部 D/W + MPa[gage] + MPa[gage] 系運転開始後における D/W 圧力				
为性評価「3.2 高圧溶融物放出				
/格納容器雰囲気直接加熱」参 四次, the 265万元 text 2.5 (the 1.5 )				
照)をS/C圧力に加えた値とす る				
- 下部 D/W 水 下部 D/W 水位 下部 D/W 水位 下部 D/W 底面 (T. M. S. L.				
位 (T. M. S. L_) (T. M. S. L_) に有効性評価結果の最大水位約 (T. M. S. L_)				
心・コンクリート相互作用」参				
照)を想定し,(T.M.S.L.)				
270				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
【6号炉】			
6号炉のMUWCポンプ性能曲線及び系統のシステム抵抗曲線を用			
いて,循環流量190m ³ /h以上(格納容器下部注水50m ³ /h以上かつ格			
納容器スプレイ140m ³ /h以上)を達成できることを確認する。図8			
に6号炉におけるMUWCポンプの「性能曲線」 と「システム抵抗曲			
線」の関係図を示す。			
図8より,性能曲線とシステム抵抗曲線の交点は約 🧰 <u>m³/h</u>			
(格納容器下部注水流量約 m³/h,格納容器スプレイ流量			
<u>約</u> m ³ /h) となり, 190m ³ /h (格納容器下部注水流量50m ³ /h,			
格納容器スプレイ流量140m³/h) 以上を示していることから,6号			
炉において,必要循環流量190m ³ /hが確保可能であることを確認し			
<u>t.</u>			
よって,6号炉の代替循環冷却系は格納容器下部注水 50m³/h 以			
上,格納容器スプレイ 140m³/h 以上を同時に達成することが可能			
である。			
図8 ポンプ性能曲線とシステム抵抗曲線の関係図(6号炉)(原			
子炉圧力容器破損時)			
【7号炉】			
いて,循環流量190m ³ /h以上(格納容器下部注水50m ³ /h以上かつ格			
に7号炉におけるMUWCポンプの「性能曲線」と「システム抵抗曲」			
図9より、性能曲線とシステム抵抗曲線の応占け約 m ³ /h			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
<u>約</u> m ³ /h) となり, 190m ³ /h(格納容器下部注水流量50m ³ /h,			
格納容器スプレイ流量140m ³ /h) 以上を示していることから,7号			
炉において,必要循環流量190m ³ /hが確保可能であることを確認し			
<u>た。</u>			
よって,7号炉の代替循環冷却系は格納容器下部注水 50m³/h 以			
上, 格納容器スプレイ 140m³/h 以上を同時に達成することが可能			
である。			
図9 ポンプ性能曲線とシステム抵抗曲線の関係図(7号炉)(原			
子炉圧力容器破損時)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
<ol> <li>系統の閉塞防止対策</li> </ol>	(2) 系統の閉塞防止対策	<u>(2)</u> 系統の閉塞防止対策	
(a) 系統の閉塞評価について	a. 系統の閉塞評価について	a系統の閉塞評価について	
代替循環冷却系において系統機能喪失に繋がる閉塞事象が懸	代替循環冷却系において系統機能喪失に繋がる閉塞事	残留熱代替除去系において系統機能喪失に繋がる閉塞事象	
念される箇所は, 流路面積が小さくなる残留熱除去系吸込スト	象が懸念される箇所は、流路面積が小さくなる残留熱除	が懸念される箇所は、流路面積が小さくなる残留熱除去系ス	
レーナ,格納容器スプレイノズル部が考えられる。	<u>去系吸込ストレーナ</u> ,格納容器スプレイノズル部が考え	<u>トレーナ</u> ,格納容器スプレイノズル部が考えられる。	
	られる。		
格納容器スプレイノズル部については、最小流路面積部に異	格納容器スプレイノズル部については,最小流路面積	格納容器スプレイノズル部については、最小流路面積部に	
物が詰まることを防止するために、残留熱除去系吸込ストレー	部に異物が詰まることを防止するために、残留熱除去系	異物が詰まることを防止するために, 残留熱除去系ストレー	
<u>ナ</u> 孔径が最小流路面積以下になるように設計している(表5参	吸込ストレーナ孔径が最小流路面積以下になるように設	<u> 土</u> 孔径が最小流路面積以下になるように設計している(表2)	
照)。	計している(第2表)。	<u>参照</u> )。	
表5 残留熱除去系吸込ストレーナについて	第2表 残留熱除去系ストレーナについて	表2 残留熱除去系ストレーナについて	
プラント 格納容器スプレイノズル最小流路サイズ 残留熱除去系吸込ストレーナ孔径	残留熱除去系ストレーナ孔径	残留熱除去系ストレーナ孔径	
6 号炉	PCVスプレイ最小流路サイズ	格納容器スプレイノズル最小流路サイズ	
7号炉			
よって,代替循環冷却系の閉塞防止に関する説明は,残留熱	よって,以下に残留熱除去系吸込ストレーナの閉塞防止対策に	よって, <u>残留熱代替除去系の閉塞防止に関する説明は,「b.</u> 残	
除去系吸込ストレーナの閉塞防止対策についてまとめている。	ついて記載する。	<u>留熱除去系ストレーナ</u> の閉塞防止対策について <u>」に</u> 記載する。	
(b) <u>残留熱除去系吸込ストレーナ</u> の閉塞防止対策について	b. 残留熱除去系吸込ストレーナの閉塞防止対策について	b. 残留熱除去系ストレーナの閉塞防止対策について	
6号及び7号炉では,残留熱除去系吸込ストレーナを含む非	東海第二発電所では, 残留熱除去系ストレーナを含む非	<u>残留熱除去系ストレーナ</u> の閉塞防止対策として,多孔プ	
常用炉心冷却系ストレーナの閉塞防止対策として、多孔プレー	<u>常用炉心冷却系ストレーナ</u> の閉塞防止対策として,多孔プ	レートを組み合わせた大型ストレーナを採用するととも	
トを組み合わせた大型ストレーナを採用するとともに、格納容	レートを組み合わせた大型ストレーナを採用するととも	に、原子炉格納容器内の保温材のうち事故時に破損が想定	
器内の保温材のうち事故時に破損が想定される繊維質保温材は	に、格納容器内の保温材のうち事故時に破損が想定される	される繊維質保温材は撤去することとしているため、繊維	
撤去していることから、繊維質保温材の薄膜効果*1による異物	繊維質保温材は使用していないことから、繊維質保温材の	質保温材の薄膜効果*1による異物の捕捉が生じることはな	
の捕捉が生じることはない。	薄膜効果*1による異物の捕捉が生じることはない。	لا ^ر م	
また、事故時に格納容器内において発生する可能性のある異	また、重大事故等時に格納容器内において発生する可能	また、重大事故等時に原子炉格納容器内において発生す	
物としては保温材(ケイ酸カルシウム等),塗装片,スラッジが	性のある異物としては保温材( <u>ケイ酸カルシウム等</u> ), 塗	る可能性のある異物としては保温材(パーライト等), 塗装	
想定されるが,LOCA時のブローダウン過程等のサプレッショ	装片,スラッジが想定されるが,LOCA時のブローダウ	片,スラッジが想定されるが,LOCA時のブローダウン	
ン・チェンバのプール水の流動により粉砕され粉々になった状	ン過程等のサプレッション・プール水の流動により粉砕さ	過程等のサプレッション・プール水の流動により粉砕され	
態でストレーナに流れ着いたとしても、繊維質 <u>の</u> 保温材がなく、	れ粉々になった状態でストレーナに流れ着いたとしても,	粉々になった状態でストレーナに流れ着いたとしても、繊	
薄膜効果による異物の捕捉が生じる可能性がないことから、こ	繊維質の保温材がなく、薄膜効果による異物の捕捉が生じ	維質保温材がなく、薄膜効果による異物の捕捉が生じる可	
れら粉状の異物がそれ自体によってストレーナを閉塞させるこ	る可能性がないことから、これら粉状の異物がそれ自体に	能性がないことから、これら粉状の異物がそれ自体によっ	
とはない。	よってストレーナを閉塞させることはない。	てストレーナを閉塞させることはない。	
なお、本系統の成立性評価として「①ポンプのNPSH評価」で		<u>なお, 本系統の成立性評価として「(1) ポンプの NPSH 評</u>	・記載方針の相違
NPSH評価を実施しているが、この評価はストレーナを設置した		価」で NPSH 評価を実施しているが, この評価はストレーナ	【東海第二】
際の工事計画書において評価した手法と同様の手法を用いて評		を設置した際の工事計画書において評価した手法と同様の	
価したものである。評価においては、繊維質の付着を考慮した		手法を用いて評価したものである。評価においては,繊維質	
ストレーナの圧損評価を実施しており、更に代替循環冷却系で		<u>の付着を考慮したストレーナの圧損評価を実施しており,</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
想定している定格流量に余裕を見込んだ流量を用いて評価した		残留熱代替除去ポンプ定格流量時の必要 NPSH を満足して	
結果,ポンプ定格流量時の必要NPSHを満足しており,本系統の		いることから,本系統の成立性に問題がないことを確認し	
成立性に問題がないことを確認している(表1参照)。		ている(表1参照)。	
また,代替循環冷却系を使用開始する時点ではサプレッショ		また,残留熱代替除去系を使用開始する時点ではサプレ	・評価の相違
ン・チェンバ内の流況は十分に静定している状態であり、スト		<u>ッション・チェンバ内の流況は十分に静定している状態で</u>	【東海第二】
レーナメッシュの通過を阻害する程度の粒径を有する異物はサ		あり,ストレーナメッシュの通過を阻害する程度の粒径を	島根2号炉では,残留
プレッション・チェンバ底部に沈着している状態であると考え		有する異物はサプレッション・チェンバ底部に沈着してい	熱代替除去ポンプの流
られる ^{*2} 。		<u>る状態であると考えられる^{※2}。</u>	量により S/C 底部に沈
			着したデブリは再浮遊
			しない評価を※2に記
			載
重大事故環境下では、損傷炉心を含むデブリが生じるが、仮	重大事故等時には,損傷炉心を含むデブリが生じるが,	<u>重大事故等時には</u> ,損傷炉心を含むデブリが生じるが,	
に原子炉圧力容器外に落下した場合でも、原子炉圧力容器下部	仮に原子炉圧力容器外に落下した場合でも,原子炉圧力容	仮に原子炉圧力容器外に落下した場合でも,原子炉圧力容	
のペデスタルに蓄積することからサプレッション・チェンバヘ	器下部のペデスタル <u>部(ドライウェル部)</u> に蓄積すること	器下部の圧力容器ペデスタル内に蓄積することからサプレ	
の流入の可能性は低い。	からサプレッション・チェンバへの流入の可能性は低い。	ッション・チェンバへの流入の可能性は低い。	
万が一, ペデスタルからのオーバフローや, ベント管を通じ	万が一、ペデスタルからオーバフローし、ベント管を通	万が一, <u>圧力容器ペデスタル内</u> からオーバフロー <u>し</u> ,、ベ	
てサプレッション・チェンバに流入する場合であっても、金属	じてサプレッション・チェンバに流入する場合であっても,	ント管を通じてサプレッション・チェンバに流入する場合	
を含むデブリが流動により巻き上がることは考えにくく*3,ス	金属を含むデブリが流動により巻き上がることは考えにく	であっても、金属を含むデブリが流動により巻き上がるこ	
トレーナを閉塞させる要因になることはないと考えられる。	く※2,ストレーナを閉塞させる要因になることはないと考	とは考えにくく ^{※3} ,ストレーナを閉塞させる要因になるこ	
	えられる。	とはないと考えられる。	
このため、苛酷事故環境下においても残留熱除去系吸込スト		このため, 苛酷事故環境下においても残留熱除去系スト	・記載方針の相違
レーナが閉塞する可能性を考慮する必要はないと考えている。		レーナが閉塞する可能性を考慮する必要はないと考えてい	【東海第二】
		<u> 3.</u>	
さらに、仮にストレーナ表面にデブリが付着した場合におい	さらに仮にストレーナ表面にデブリが付着した場合にお	さらに,仮にストレーナ表面にデブリが付着した場合にお	
ても、ポンプの起動・停止を実施することによりデブリは落下	いても、ポンプの起動・停止を実施することによりデブリ	いても、ポンプの起動・停止を実施することによりデブリは	
するものと考えられ ^{※4} ,加えて,長期冷却に対する更なる信頼	は落下するものと考えられ ^{※3} ,加えて,長期冷却に対する	落下するものと考えられ ^{※4} , 加えて, 長期冷却に対する更な	
性の確保を目的に, 次項にて示すストレーナの逆洗操作が可能	更なる信頼性の確保を目的に、次項にて示すストレーナの	る信頼性の確保を目的に, 次項にて示すストレーナの逆洗操	
となるよう設計上の考慮を行っている。	逆洗操作が可能な設計としている。	作が可能な設計としている。	
※1・蒲晴形成に上ス粒工作デブⅡの坩堝効用について	※1・蒲晴形市に上て約乙仲デブルの瑞坦効用について	※1・蒲踖形成にトス粒乙仲デブルの堵坦効用について	
△1・傍床/// (による位」 (ハノノリック111年)の本について 「 「 帯間形成にとる物子( ドブリの 市地切効果」 レけ っし、			
「傍床ルルスによる松丁仏ノノリジ捕捉効本」とは、ヘト レーナの表面のメッシュ(約1~9mm)な通過ナストニわ細	「母医心風による松丁仏ノノソツ捕捉効木」とは、ヘト レーナの表面のメッシュ(約 1~9mm)な通過ナストニカ細	「 (伊) () () () () () () () () () () () () ()	
レーノッス面ッククソイユ(ボローム回回)を通過りるような神 かわ約乙中のデブリ(フラッジゲ)が、雄維质デブリアト	レーテンス国シアフィス(ボコーン回回)を通過するような神かな物で、	ハドレーノの衣山のクツマユ(ボ)1/~2回(花垣垣)	
がな松丁(NV)/ ノッ(ヘノツン寺/ M, 桃稚貝/ ノリにより い形成した 間に とり は切 たわ 正唱 た し 見 た みて しい ふ が 田	ルームゼナ小ツノノソ (ヘノツン守) ハー, 戦雅員ノノリによ ス形式した 間に とり は切 なり 広場 たい見 ちみて しい ふが 思	しような神がなせず仏のノフソ(ヘノツン寺)が、戦	
ソルルしに戻により捕捉され圧損を上升させるという効果	① // // // // // // // // // // // /	11日、インにより//// しに族により捕捉さ40上損を ト見たみなしいるが思たいる。(図4条四)	
を v · フ。	をいう。(東ム凶)	工弁させるという効果をいう。(図4変現)	



図10 薄膜形成による粒子状デブリの補足効果のイメージ

繊維質保温材の薄膜形成については、NED0-32686に対するNRC の安全評価レポートのAppendix Eで実験データに基づく考察と して、「1/8inch以下のファイバ層であれば、ファイバ層そのも のが不均一であり, 圧力損失は小さいと考えられる」, と記載さ れている。また, R.G. 1.82 においても「1/8inch. (約3.1mm) を十分下回るファイバ層厚さであれば、安定かつ均一なファイ バ層ではないと判断される」との記載がされており、薄膜を考 慮した圧力損失評価は必要ないと考えられる。LA-UR-04-1227 においても、この効果の裏付けとなる知見が得られており、理 論厚さ 0.11 inch (2.79 mm) において、均一なベッドは形成 されなかったという見解が示されている。ゆえに、繊維質保温 材の堆積厚さを評価し十分薄ければ、粒径が極めて微細な塗装 片等のデブリは全てストレーナを通過することとなり、繊維質 保温材と粒子状デブリの混合状態を仮定した圧損評価は不要で あると考えられる。

また, GSI-191 において議論されているサンプスクリーン表 面における化学的相互作用による圧損上昇の知見に関して、上 述のとおり繊維質保温材は使用されておらず、ストレーナ表面 におけるデブリベット形成の可能性がないことから、化学的相 互作用による圧損上昇の影響はないと考えられ、代替循環冷却 系による長期的な冷却の信頼性に対して影響を与えることはな いと考えられる。

表6 NUREG/CR-6224において参照されるスラッジ粒径の例

Table B-4 B	WROG-Provided Size f the Suppression Poo	OG-Provided Size Distribution Suppression Pool Sludge			
Size Range µm	Average Size µm	% by weight			
0-5	2.5	81%			
5-10	7.5	14%			
10-75	42.5	5%			

第2図 薄膜形成による粒子状デブリの補足効果のイメージ

繊維質保温材の薄膜形成については、NEDO-32686 に対 するNRCの安全評価レポートの Appendix E で実験データに 基づく考察として、「1/8 inch 以下のファイバ層であれば、 ファイバ層そのものが不均一であり、圧力損失は小さいと考 えられる」, と記載されている。また, R.G.1.82 においても 「1/8 inch. (約 3.1mm)を十分下回るファイバ層厚さであれ ば、安定かつ均一なファイバ層ではないと判断される」との 記載がされており、薄膜を考慮した圧力損失評価は必要ない と考えられる。LA-UR-04-1227においても、この効果の裏付け となる知見が得られており,理論厚さ0.11 inch (2.79mm) に おいて、均一なベッドは形成されなかったという見解が示さ れている。故に、繊維質保温材の堆積厚さを評価し十分薄け れば、粒径が極めて微細な塗装片等のデブリは全てストレー ナを通過することとなり、繊維質保温材と粒子状デブリの混 合状態を仮定した圧損評価は不要であると考えられる。

また,GSI-191において議論されているサンプスクリー ン表面における化学的相互作用による圧損上昇の知見に関し て、上述のとおり繊維質保温材は使用されておらず、ストレ ーナ表面におけるデブリベット形成の可能性がないことか ら,化学的相互作用による圧損上昇の影響はないと考えられ, 代替循環冷却系による長期的な冷却の信頼性に対して影響を 与えることはないと考えられる。



	島相	表原子力発電所 2号	炉		備考	
立子状	デブリ					
	→ g					
繊維的	*デブリ 🤸 🛱	***********	- ストレーナメ	ツシュ		
<u>×4</u>	薄膜形成によ	る粒子状デブリの補足	2効果のイメー	ジ		
	繊維質保温材の	薄膜形成については,	NEDO-32686 K	対する		
NRO	この安全評価レ	ポートの Appendix E ~	で実験データに	基づく		
考	察として,「1/8	3 inch 以下のファイノ	「層であれば,	ファイ		
バ	層そのものが不	均一であり、圧力損失	夫は小さいと考	えられ		
る	」、と記載され	ている。また, R.G.1	.82 において	€ 「1/8		
in	ch. (約 3.1 mm) る	を十分下回るファイバ	層厚さであれば	ば, 安定		
カ	つ均一なファイ	バ層ではないと判断さ	される」との証	記載がさ		
れ	ており,薄膜を	考慮した圧力損失評価	西は必要ないと	考えら		
れ	る。LA-UR-04-1	227 においても、この	の効果の裏付け	トとなる		
知	見が得られてお	り, 理論厚さ 0.11 inc	ch(2.79mm)にま	らいて,		
均	ーなベッドは刑	<b>彡成されなかったとい</b>	う見解が示さ	れてい		
る。	。故に、繊維質	保温材の堆積厚さを詞	平価し十分薄け	れば,		
粒	径が極めて微細	はな塗装片等のデブリば	は全てストレー	・ナを通		
過	することとなり	,繊維質保温材と粒子	子状デブリの混	合状態		
を	仮定した圧損評	価は不要であると考え	えられる。			
	また, GSI-191	において議論されてい	いるサンプスク	リーン		
表	面における化学	学的相互作用による圧	損上昇の知見	に関し		
ζ,	上述のとおり	繊維質保温材は使用さ	されておらず,	ストレ		
<u> </u>	ナ表面における	るデブリベット形成の	可能性がない	ことか		
Б,	化学的相互作	用による圧損上昇の影	響はないと考	えられ,		
残	留熱代替除去系	による長期的な冷却の	の信頼性に対し	て影響		
を	与えることはな	いと考えられる。				
表 3	NUREG/CR-622	24 において参照される	らスラッジ粒径	の例	・記載方針の相違	
	Table B-4 B	WROG-Provided Size	Distribution	1	【東海第二】	
	o	f the Suppression Poo	l Sludge			
	Size Range µm	Average Size µm	% by weight			
	0-5	2.5	81%			
	5-10	7.5	14%			
	10-75	42.5	5%			

		炉		備考	-
· [ []		//			-
粒子状デブリ					
繊維質デブリ					
		- ストレーナメ	ツシュ		
図4 薄膜形成によ	る粒子状デブリの補足	己効果のイメー	・ジ		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
繊維質保温材の	薄膜形成については,	NEDO-32686 3	二対する		
NRC の安全評価レス	ポートの Appendix E ~	で実験データに	ニ基づく		
考察として,「1/8	inch 以下のファイノ	「層であれば,	ファイ		
バ層そのものが不	均一であり,圧力損失	夫は小さいと考	きえられ		
る」,と記載されて	ている。また, R.G.1	.82 において	も「1/8		
inch. (約 3.1 mm)を	2十分下回るファイバ	層厚さであれば	ゴ, 安定		
かつ均一なファイ	バ層ではないと判断さ	される」との話	己載がさ		
れており, 薄膜を	考慮した圧力損失評価	町は必要ないと	考えら		
れる。LA-UR-04-1	227 においても, この	ワ効果の裏付け	けとなる		
知見が得られてお	り, 理論厚さ 0.11 inc	ch(2.79mm)にま	おいて,		
均一なベッドは形	(成されなかったとい	う見解が示さ	れてい		
る。故に、繊維質	保温材の堆積厚さを詞	平価し十分薄け	ければ,		
粒径が極めて微細	な塗装片等のデブリド	は全てストレー	-ナを通		
過することとなり	,繊維質保温材と粒子	子状デブリの渇	記合状態		
を仮定した圧損評	価は不要であると考え	こられる。			
また, GSI-191	において議論されてい	いるサンプスク	リーン		
表面における化学	的相互作用による圧	損上昇の知見	に関し		
て,上述のとおり	繊維質保温材は使用さ	されておらず,	ストレ		
ーナ表面における	ラデブリベット形成の	可能性がない	ことか		
ら, 化学的相互作用	用による圧損上昇の影	響はないと考	えられ,		
残留熱代替除去系	による長期的な冷却の	り信頼性に対し	て影響		
を与えることはな	いと考えられる。				
表 3 NUREG/CR-622	4において参照される	らスラッジ粒径	の例	・記載方針の相違	
Table B-4 B	WROG-Provided Size	Distribution	1	【東海第二】	
of	the Suppression Poo	l Sludge			
	Noncession (Service Annual Service Annual Service Annual Service Annual Service Annual Service Annual Service A				
Size Range µm	Average Size µm	% by weight			
0-5	2.5	81%	1		
5-10	7.5	14%			
10-75	42.5	5%			
	Historen er en en anderen en e		1		-

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
※2:代替循環冷却系の使用開始は事故後約 22.5時間後で		※2:残留熱代替除去系の使用開始は事故後約10時間後で	・評価の相違
あり,LOCA 後のブローダウン等の事故発生直後のサプ		あり, LOCA後のブローダウン等の事故発生直後	【東海第二】
レッション・チェンバ内の攪拌は十分に静定しており,		のサプレッション・チェンバ内の撹拌は十分に静定	島根2号炉では,残留
大部分の粒子状異物は底部に沈着している状態である		しており,大部分の粒子状異物は底部に沈着してい	熱代替除去ポンプの流
と考える。また,粒子径が 100μm程度である場合に		る状態であると考える。また,粒子径が 100μm 程度	量により S/C 底部に沈
浮遊するために必要な流体速度は、理想的な球形状に		である場合に浮遊するために必要な流体速度は,理	着したデブリは再浮遊
おいて 0.1m/s 程度必要であり(原子力安全基盤機構		想的な球形状において 0.1m/s 程度必要であり(原子	しない評価を記載
(H2 1. 3), PWR プラントの LOCA 時長期炉心冷却性		力安全基盤機構(H21.3), PWR プラントのLOCA時	
に係る検討), 仮にストレーナメッシュを閉塞させる程		長期炉心冷却性に係る検討),仮にストレーナメッシ	
度の粒子径を有する異物がプール内に存在していた場		ュを閉塞させる程度の粒子径を有する異物がプール	・設備の相違
合においても,ストレーナ表面流速は <u>約 0.03 m/s (7</u>		内に存在していた場合においても,ストレーナ表面	【柏崎 6/7】
<u>号炉の例,250m³/hの時)</u> 程度であり,底部に沈降し		流速は約0.008m/s(150m ³ /hの時)程度であり,底部に	循環流量の相違によ
たデブリがストレーナの吸い込みによって生じる流況		<u>沈降したデブリがストレーナの吸い込みによって生</u>	る表面流速の相違
によって再浮遊するとは考えられない。		じる流況によって再浮遊するとは考えられない。	
※3: <u>ABWR は原子炉圧力容器</u> 破損後の溶融炉心の落下先は <u>下</u>	※2: RPV破損後の溶融炉心の落下先はペデスタル(ドライ	※3: RPV_破損後の溶融炉心の落下先は圧力容器ペデスタル	
<u>部ペデスタル</u> であり, <u>代替循環冷却系</u> の水源となるサ	ウェル部)であり、代替循環冷却系の水源となるサプレ	内であり残留熱代替除去系の水源となるサプレッショ	
プレッション・チェンバへ直接落下することはない。	ッション・チェンバへ直接落下することはない。原子炉	ン・チェンバへ直接落下することはない。 <u>RPV</u> へ注水さ	
RPV へ注水された冷却水は下部ペデスタルへ落下し,	<u>圧力容器へ注水された冷却水はペデスタル(ドライウェ</u>	れた冷却水は <u>圧力容器ペデスタル内</u> へ落下し, <u>ベント</u>	・炉型の違い
<u>下部ペデスタル床面から約7mの位置にあるリターン</u>	<u>ル部)</u> へ落下し, <u>ダイヤフラムフロア及び</u> ベント管を通	<u>管</u> を通じてサプレッション・チェンバへ流入すること	【柏崎 6/7,東海第二】
<u>ライン</u> を通じてサプレッション・チェンバへ流入する	じてサプレッション・チェンバへ流入することとなる。	となる(図 5 参照)。粒子化した溶融炉心等が圧力容器	PCV の相違
こととなる(図11参照)。粒子化した溶融炉心等が下	(第3図) 粒子化した溶融炉心等が下部ペデスタル内	<u>ペデスタル内</u> に存在している場合にストレーナメッシ	島根2号炉:MARK-I改
部ペデスタル内に存在している場合にストレーナメッ	に存在している場合にストレーナメッシュを閉塞させ	ュを閉塞させる程度の粒子径を有する異物が流動によ	柏崎 6/7:ABWR
シュを閉塞させる程度の粒子径を有する異物が流動に	る程度の粒子径を有する異物が流動によって下部ペデ	って <u>圧力容器ペデスタル内</u> から巻き上げられ, <u>更に</u> ベ	東海第二:MARK-Ⅱ
よって下部ペデスタルから巻き上げられ,更にベント	スタルから巻き上げられ, <u>さらに</u> ベント管からストレー	ント管からストレーナまで到達するとは考えにくく,	
管からストレーナまで到達するとは考えにくく、溶融	ナまで到達するとは考えにくく、溶融した炉心等による	溶融した炉心等によるストレーナ閉塞の可能性は極め	
した炉心等によるストレーナ閉塞の可能性は極めて小	ストレーナ閉塞の可能性は極めて小さいと考えられる。	て小さいと考えられる。	
さいと考えられる。			

炉	備考
原子炉注木	
除去系による冷却水の	・設備の相違
、サンプスクリーンを を停止させた際に付着 の結果が示されている リーン形状を想定して レーナ形状は円筒形で い停止によるデブリ落 のと考えられ,注水流 の起動・停止を実施す やかに冷却を再開する	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.18版)	島根原子力発電所	2 号炉	備考
	大ドレーナ	また ポンプ停止後	れた ポンプ得止前	<u>構整</u> ストレーナ 保温材 停止後	
図12 ポンプ停止により模擬ストレーナから試験体が剥がれ落ち	第4図 ポンプ停止により模擬ス	、トレーナから試験体が剥がれ落	図6 ポンプ停止により模擬ストレー	ナから試験体が剥がれ落ち	
た試験	ちた	試験	た試験		
(Apri12004, LANL, GSI-191:Experimental Studies of	(Apri12004, LANL, GSI-191:Experi	imental Studies of	(Apri12004, LANL, GSI-191:Experiment;	al Studies of	
Loss-of-Coolant-Accident-Generated Debr is Accumulation and	Loss-of-Coolant-Accident-Gener	cated Debr is Accumulation and	Loss-of-Coolant-Accident-Generated	Debr is Accumulation and	
Head Loss with Emphasis on the Effects of Calcium Silicate	Head Loss with Emphasis on the	e Effects of Calcium Silicate	Head Loss with Emphasis on the Effe	ects of Calcium Silicate	
Insulation)	Insulation)		Insulation)		
6号炉 残留熱除去系吸込ストレーナ図 7号炉 残留熱除去系吸込ストレーナ図					
図 12 ADWD たわいて記墨されていてっしいナ	笠 「 図 北 労 田 仮 ♪	公知変ったし、一十	网7 自相9 马后碇网劫险-	+ズフトレーナ	
図 13 ADWR において設置されているストレー)	用 おう凶 非市用炉ル		因1 局限25炉残留熟味		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
別紙-3	比較対象無し	別紙-3	
長期的に維持される格納容器の状態(温度・圧力)での		長期的に維持される格納容器の状態(温度・圧力)での	
適切な地震力に対する格納容器の頑健性の確保の考え方について		適切な地震力に対する格納容器の頑健性の確保の考え方について	
重大事故等時における格納容器の耐震評価にあたって,対象		重大事故等時における格納容器の耐震評価にあたって,対象	
となる事故シーケンスは,格納容器温度・圧力条件が厳しい格納		となる事故シーケンスは,格納容器温度・圧力条件が厳しい格納	
容器破損防止の事故シーケンスである、「雰囲気圧力・温度によ		容器破損防止の事故シーケンスである、「雰囲気圧力・温度によ	
る静的負荷(格納容器過圧・過温破損)代替循環冷却を使用する		る静的負荷(格納容器過圧・過温破損)残留熱代替除去系を使用	
場合」及び「雰囲気圧力・温度による静的負荷(格納容器過圧・		する場合」及び「雰囲気圧力・温度による静的負荷(格納容器過	
過温破損)代替循環冷却を使用しない場合」が対象となる。		圧・過温破損) 残留熱代替除去系を使用しない場合」が対象と	
		なる。	
「別紙-2 循環流量の確保」で示したとおり,代替循環冷却		「別紙-2循環流量の確保」で示したとおり, 残留熱代替除	
系の運転は長期的に継続可能と考えられるが、この場合、格納容		<u>去系の運転は長期的に継続可能と考えられるが、この場合、格</u>	
器の温度・圧力が比較的高い状態で長期的に維持されることか		納容器の温度・圧力が比較的高い状態で長期的に維持されるこ	
ら,適切な地震力に対する格納容器の頑健性の確保が必要であ		とから、適切な地震力に対する格納容器の頑健性の確保が必要	
る。		である。	
よって,格納容器の耐震評価に際しては,		よって,格納容器の耐震評価に際しては,	
①事故後の運転状態 V(L) ^{※1} (10 ⁻² ~2×10 ⁻¹ 年)における適切な地		①事故後の運転状態 V(L) ^{※1} (10 ⁻² ~2×10 ⁻¹ 年)における適切な地	
震力との組合せ評価		震力との組合せ評価	
②事故後の運転状態 V(LL) ^{※2} (2×10 ⁻¹ 年以降)における適切な地		②事故後の運転状態 V(LL) ^{※2} (2×10 ⁻¹ 年以降)における適切な地	
震力との組合せ評価		震力との組合せ評価	
を行うこととなる。		を行うこととなる。	
※1 運転状態 V(L):重大事故等の状態のうち長期的(過渡状態を		※1運転状態V(L):重大事故等の状態のうち長期的(過渡状態を	
除く一連の期間)に荷重が作用している状態		除く一連の期間)に荷重が作用している状態	
※2 運転状態 V(LL):重大事故等の状態のうち V(L)よりさらに長		※2運転状態 V(LL):重大事故等の状態のうち V(L)よりさらに	
期的に荷重が作用している状態		長期的に荷重が作用している状態	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
別紙-4	別紙 2	別紙 <u>-4</u>	
	でなっていたい、ドリントとしたマロノのディアンティント・イ		
糸統のバウンダリに対する影響評価について	糸統のパウンタリに対する影響評価について	糸統のバウンタリに対する影響評価について	
1. はじめに	1. はじめに	1. はじめに	
復水補給水系を用いた代替循環冷却系運転を行う場合に,系統内の	<u>代替循環冷却系</u> を使用する場合に,系統内の弁,配管及び	<u> 残留熱代替除去系を使用する</u> 場合に,系統内の弁,配管及び	
弁, 配管及びポンプのバウンダリに使用されているシール材につい	ポンプのバウンダリに使用されているシール材について、放	ポンプのバウンダリに使用されているシール材について、放射	
て,放射線影響や化学影響によって材料が劣化し, 漏えいが生じる	射線影響や化学影響によって材料が劣化し、漏えいが生じる	線影響や化学影響によって材料が劣化し、漏えいが生じる可能	
可能性がある。これらの影響について、下記のとおり評価を行った。	可能性がある。これらの影響について,下記のとおり評価を	性がある。これらの影響について,下記のとおり評価を行った。	
	行った。		
2. シール材の影響評価	2. シール材の影響評価	2. シール材の影響評価	
(1)評価対象	(1) 評価対象	(1)評価対象	
復水補給水系を用いて代替循環冷却系運転を行う場合に, サプレ	代替循環冷却系を使用する場合に、サプレッション・プ	残留熱代替除去系を使用する場合に、サプレッション・チ	
ッション・チェンバ・プールからの流体が流れる経路として,配管,	ール水が流れる経路として、配管、弁及びポンプがあるた	エンバからの流体が流れる経路として、配管、弁及びポンプ	
弁及びポンプがあるため、これらの機器においてバウンダリを構成	め、これらの機器においてバウンダリを構成する部材であ	があるため、これらの機器においてバウンダリを構成する部	
する部材である「配管フランジガスケット」「弁グランドシール」	る「配管フランジガスケット」「弁グランドシール」「ポ	材である「配管フランジガスケット」,「弁グランドシール」「ポ	
「ポンプメカニカルシール」「ポンプケーシングシール」を対象に	ンプメカニカルシール」「ポンプケーシングシール」を対	ンプメカニカルシール」「ポンプケーシングシール」を対象に	
評価を行った。	象に評価を行った。	評価を行った。	
(2) 放射線による影響	(2) 放射線による影響	(2) 放射線による影響	
復水補給水系による代替循環冷却系では,重大事故時に炉心損傷	代替循環冷却では、重大事故時に炉心損傷した状況で系	<u> 残留熱代替除去系</u> は,重大事故時に炉心損傷した状況で系	
した状況で系統を使用することとなる。このため、系統内を高放射	統を使用することとなる。このため、系統内を高放射能の	統を使用することとなる。このため、系統内を高放射能の流	
能の流体が流れることとなり、放射線による劣化が懸念される。	流体が流れることとなり、放射線による劣化が懸念される。	体が流れることとなり、放射線による劣化が懸念される。	
上記(1)に示す部材のうち, 配管フランジガスケット及び弁グ	上記(1)に示す部材のうち, 配管フランジガスケット及び	上記(1)に示す部材のうち,配管フランジガスケット及	
ランドシールには, 膨張黒鉛又はステンレス等の金属材料が用いら	弁グランドシールには,膨張黒鉛若しくはステンレス等の	び弁グランドシールには、膨張黒鉛又はステンレス等の金属	
れている。これらは無機材料であり、高放射線下においても劣化の	金属材料が用いられている。これらは無機材料であり、高	材料が用いられている。これらは無機材料であり、高放射線	
影響はないか、又は極めて小さい。このため、これらについては放	放射線下においても劣化の影響はないか極めて小さい。こ	下においても劣化の影響はないか,又は極めて小さい。この	
射線による影響はないか,又は耐放射線性能が確認されたシール材	のため、これらについては放射線による影響はないか、耐	ため、これらについては放射線による影響はないか、又は耐	
を用いることにより、シール性能が維持されるものと考える。	放射線性能が確認されたシール材を用いることにより、シ	放射線性能が確認されたシール材を用いることにより、シー	
	ール性能が維持されるものと考える。	ル性能が維持されるものと考える。	
	残留熱除去系ポンプのバウンダリを構成する部材(メカ		・設備の相違
	ニカルシール,ケーシングシール等)のシール材には、エ		【東海第二】
	チレンプロピレンゴム(EPDM)やフッ素ゴムが用いら		島根2号炉は残留
	れており、放射線による影響を受けて劣化することが考え		熱除去ポンプを流路
	られるため、今後、必要により耐放射線性に優れたエチレ		としない
	<u>ンプロピレンゴム</u> (改良EPDM)のシール材への取り替		
	えを行うことにより、耐放射線性を確保する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
また, ポンプメカニカルシールには, ニトリルゴムが使用されて	また, <u>代替循環冷却系ポンプ</u> のバウンダリを構成する部	また、残留熱代替除去ポンプのバウンダリを構成する部材	・設備の相違
おり、耐放射線に関する性能が確認されていることから、シール性	材(メカニカルシール,ケーシングシール等)のシール材	(メカニカルシール,ケーシングシール等)のシール材につ	【柏崎 6/7】
能は維持されるものと考える。	についても耐放射線性に優れた材料を選定する。	いても同様に、耐放射線性に優れた材料を選定する。	島根2号炉は, SA
一方, ポンプケーシングシールには, ニトリルゴム以外にフッ素			環境下において健全
ゴムが用いられているものがあり,フッ素ゴムについては放射線に			性が確保される残留
よる影響を受けて劣化することが考えられる。このため、フッ素ゴ			熱代替除去ポンプを
ムを使用している復水移送ポンプのケーシングシールについては、			SA 専用設備として設
耐放射線性に優れたエチレンプロピレンゴム(以下,「EPDM」とい			計し,設置する(以下,
う)のシール材への取替を行うことにより,耐放射線性を確保する。			②の相違)
(3) 化学種による影響 炉心損傷時に発生する核分裂生成物の中で化学的な影響を及ぼ す可能性がある物質として,アルカリ金属であるセシウム,及び, ハロゲン元素であるよう素が存在する。このうち,アルカリ金属の セシウムについては,水中でセシウムイオンとして存在しアルカリ 環境の形成に寄与するが,膨張黒鉛ガスケット☆金属ガスケットは	(3) 化学種による影響 炉心損傷時に発生する核分裂生成物の中で化学的な影響 を及ぼす可能性がある物質として、アルカリ金属であるセ シウム及びハロゲン元素であるよう素が存在する。このう ち、アルカリ金属のセシウムについては、水中でセシウム イオンとして存在しアルカリ環境の形成に寄与するが、膨	(3)化学種による影響 炉心損傷時に発生する核分裂生成物の中で化学的な影響を 及ぼす可能性がある物質として、アルカリ金属であるセシウ ム及びハロゲン元素であるよう素が存在する。このうち、ア ルカリ金属のセシウムについては、水中でセシウムイオンと して存在しアルカリ環境の形成に寄与するが、膨張黒鉛ガス	
アルカリ環境において劣化の影響はな <u>く,また,ニトリルゴムや</u>	張黒鉛ガスケットや金属ガスケットはアルカリ環境におい	ケット及び金属ガスケットはアルカリ環境において劣化の影	・設備の相違
EPDMについても耐アルカリ性を有する材料である。このため、セシ	て劣化の影響はなく、また、EPDM についても耐アルカリ性	響はない。このため、セシウムによる化学影響はないものと	【柏崎 6/7】
ウムによる化学影響はないものと考える。	<u>を有する材料である</u> 。このため、セシウムによる化学影響	考える。	②の相違
	はないものと考える。		【柏崎 6/7, 東海第二】
			流路バウンダリに
			用いられるシール材
			の相違
一方、ハロゲン元素のよう素については、無機材料である膨張黒	一方、ハロゲン元素のよう素については、無機材料であ	一方、ハロゲン元素のよう素については、無機材料である	
鉛ガスケットや金属ガスケットでは影響がないが、有機材料である	る膨張黒鉛ガスケットや金属ガスケットでは影響がない	膨張黒鉛ガスケットや金属ガスケットには影響がないため、	
ニトリルゴムやEPDMでは影響を生じる可能性がある。このうち,設	が,,有機材料であるEPDMでは影響を生じる可能性があ	漏えい等が生じることはないものと考える。	【柏崎 6/7, 東海第二】
備での使用を考慮しているEPDMについては、当社での社内試験によ	る。このうち、今後、設備での使用を考慮している改良 EPDM		(流路バウンダリに
り影響の確認を行っており、炉心損傷時に想定されるよう素濃度	については、自社研究による影響の確認を行っており、炉		用いられるシール材
(約8200mg/m [°])よりも高濃度のよう素境境下(10000mg/m [°] 以上)に	心損傷時に想定されるよう素濃度(約450mg/m ³)よりも		の相違
おいても、圧縮永久金み等のシール材としての性状に大きな変化が	高濃度のよう素境境ト(約1,000mg/m ³)においても、圧縮		
ないことを確認している。このように、よう素に対する性能が確認	水人金み等のシール材としての性状に大きな変化がないこ		
された材料を用いることにより, 漏えい等の影響が生じることはな	とを確認している。このように、よう素に対する性能が確		
いものと考える。	<u> 認された材料を用いることにより</u> , 漏えい等の影響が生じ		
	ることはないものと考える。		
		また、残留熱代替除去ホンプのバウンダリを構成する部材	・設備の相違
		(メカニカルシール, ケーシングシール等) のシール材につ	【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		<u>いても同様に,化学種に対する耐性に優れた材料を選定す</u> ス	②の相違
3. まとめ	3. まとめ	3. まとめ	
以上より, 復水補給水系を用いた代替循環冷却系の流路において	以上より、 <u>代替循環冷却系</u> の流路においてバウンダリを構	以上より, <u>残留熱代替除去系</u> の流路においてバウンダリを構	
バウンダリを構成する部材である「配管フランジガスケット」「弁	成する部材である「配管フランジガスケット」「弁グランド	成する部材である「配管フランジガスケット」「弁グランドシー	
グランドシール」「ポンプメカニカルシール」「ポンプケーシングシ	シール」「ポンプメカニカルシール」「ポンプケーシングシ	ル」を対象に評価を行った結果,無機材料である膨張黒鉛及び	
<u>ール」</u> を対象に評価を行った結果, 無機材料である膨張黒鉛及び金	<u>ール」</u> を対象に評価を行った結果, 無機材料である膨張黒鉛	金属ガスケットには影響がないと評価できる。	
属ガスケットには影響がないと評価できる。	及び金属ガスケットには影響がないと評価できる。		
		また、残留熱代替除去系に使用する「ポンプメカニカルシー	・設備の相違
		ル 「ポンプケーシングシール」についても耐性に優れた材料を	【柏崎 6/7】
			2の相違
一方 ポンプケーシングシールに田いられているフッ麦ゴムにつ	一方 ポンプのバウンダリを構成する如材 (メカーカルシー		・設備の相違
いてけ放射線に上る影響が生じる可能性があり ポンプメカニカル	ール ケーシングシール等)に用いられていろエチレンプロ		【柏崎6/7 東海第二】
シールやケーシングシールに用いられているニトリルゴムは、核分	ピレンゴム (EPDM) フッ素ゴムについては放射線によ		流路バウンダリに
裂生成物によろ化学的な影響が生じろ可能性があろため、これらへ	る影響が生じる可能性があるため、これらへの耐性を有する		用いられるシール材
の耐性を有することを確認したシール材への変更を行っていく。	ことを確認したシール材への変更を行っていく。		の相違
これにより、流路からの漏えいの発生を防止する。	これにより、流路からの漏えいの発生を防止する。	これにより、流路からの漏えいの発生を防止する。	
以上		以上	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<u>別紙-5</u>	比較対象無し		・運用の相違
			【柏崎 6/7】
代替循環冷却系の運転開始時期が評価より早まる場合について			島根2号炉は,要員の
			参集に期待せずとも必
代替循環冷却系の運転の評価では,代替原子炉補機冷却系の運			要な作業を常駐要員に
転のため緊急時対策要員の参集に10時間,準備作業時間に10時間			より実施可能であるた
を想定しており,代替原子炉補機冷却系の運転開始時間を 20 時間			め、該当資料無し
後と想定している。ただし,緊急時対策要員の確保が容易にできる			
場合は,この時間より早くなる可能性がある。			
その場合の運転員の対応について以下に示す。必要な要員と作			
業項目を図1に示す。			
●中央制御室運転員の場合			
常設代替交流電源設備からの交流電源回復後,復水移送ポ			
ンプによる原子炉注水及び格納容器スプレイ操作を実施して			
いる。この操作を実施している運転員とは別の運転員が代替			
循環冷却系の運転を準備することが可能であり,緊急時対策			
要員の作業が早まることからの影響はない。			
●現場操作運転員の場合			
常設代替交流電源設備からの交流電源回復後,格納容器薬			
品注入等の現場操作を実施している。これらの操作は事故発			
生約4時間後まで継続する。その後,代替原子炉補機冷却系の			
運転準備を開始する。この準備操作は「2名」の現場操作運			
転員により「約5時間」で実施することを想定しているが,			
実態の操作では「約1時間」で完了する。その後,別の「2名」			
の現場操作運転員と共に代替循環冷却系の運転準備を実施す			
る。事故発生約 10 時間後には終了するため, 緊急時対策要員			
の作業が早まることからの影響はない。			
事故発生約1時間後から,緊急時対策要員による準備作業			
を開始することを想定した場合,現場操作運転員の作業は「約			
10時間後」に終了し,緊急時対策要員による準備作業は「約			
11 時間後」に終了することになる。なお, 緊急時対策要員に			
よる準備作業は,継続した訓練により短縮することが期待で			
きる。			
現場操作運転員による準備作業は,実態の代替原子炉補機			
冷却系運転準備作業時間を考慮すると,代替循環冷却系運転			
準備作業を含めても「約3時間」で完了することができ,想定			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
時間の事故発生約10時間後を大幅に短縮することができる。			
以上により,評価で考慮している代替原子炉補機冷却系「20			
時間後」の運転開始時間から早まる場合があっても対応は可			
能である。			
*			
ネー 権利にす。 第2922年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日			
20 10 10 10 10 10 10 10 10 10 1			
- 単、 - 一、 - 一 - 一、 - 一、 - 一、 - 一、 - 一、 - 一、 - 一 - 一 - 一 - 一 - 一 - 一 - 一 - 一			
四 (0100) 日 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Solution Solution			
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
новымы в в в в в в в в в в в в в в в в в в			
◎			
2個人現除 4人 4人 4人 4人 4人 4人 4人 4人 4人 4人			
1111111111111111111111111111111111111			
業業			
常规代制的 希提代制化 的一种的有效的 的工作。 在一种的一种的 的工作。 在一种的一种的 用于一种用于 用于一种用于 用于一种用于 用于一种用于 用于一种用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
別紙-6	比較対象無し	<u>別紙—5</u>	
系統が高線量となった場合の影響について		系統が高線量となった場合の影響について	
代替循環冷却系の運転に伴い,系統が高線量となることが想定		<u>残留熱代替除去系</u> の運転に伴い,系統が高線量となることが想	
されるが,高線量となった場合には,放射線による「操作性・アク		定されるが、高線量となった場合には、放射線による「操作性・	
セス性」の影響,及び「機器」に対する放射線劣化影響が考えられ		アクセス性」の影響,及び「機器」に対する放射線劣化影響が考	
る。		えられる。	
「操作性・アクセス性」に関する影響としては以下の影響が考		「操作性・アクセス性」に関する影響としては以下の影響が考	
えられる。		えられる。	
・ 代替循環 冷却系の系統構成, 起動操作, 運転継続に必要な操		・ 残留熱代替除去系の系統構成,起動操作,運転継続に必要	
作・監視への影響		な操作・監視への影響	
・代替循環治却系が機能喪失した場合に必要な操作への影響		・残留熱代替除去系が機能喪失した場合に必要な操作への影	
		響	
・代替循環治却系運転時に必要な復旧作業(残留熱除去系の復		・残留熱代替除去系運転時に必要な復旧作業(残留熱除去系	
旧作業)への影響		の復旧作業)への影響	
「機器」に対する放射線劣化影響としては以下の影響が考えら		「機器」に対する放射線劣化影響としては以下の影響が考えら	
れる。		れる。	
 ・<u>代替循環冷却系</u>において使用する機器のうち,放射線劣化影 		 ・残留熱代替除去系において使用する機器のうち、放射線劣 	
響が懸念される機器(シール材,電動機,計器,ケーブル)へ		化影響が懸念される機器(シール材、電動機、計器、ケー	
の影響		ブル)への影響	
上記の影響について,確認結果を表1に示す。		上記の影響について、確認結果を表1に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉			備考	
表1 高線量となった場合の操作性・アクセス性,機器への影響		表1 高	高線量とな	よった場合	の操作性・アクセス性、機器への影響	・設備の相違
確認項目 放射線影響			確認項目		放射線影響	【柏崎 6/7】
 ぼ転開始前の系統構成は、中央制御室から の電動駆動弁の遠隔操作の他、廃棄物処理 建屋等での手動弁の操作、代替原子炉補機 冷却系の熱交換器ユニットの操作が必要 であるが、弁操作は運転開始前の実施であ り、熱交換器ユニット操作は屋外作業であ り、熱交換器ユニット操作は屋外作業であ り、格納容器ベント操作前であるため、ア クセス及び操作への放射線による影響は わい (222-25 百参昭) 				系統構成	運転開始前の系統構成は,中央制御室から の電動駆動弁の遠隔操作の他,原子炉補機 代替冷却系の操作が必要であるが,弁操作 は運転開始前の実施であり,原子炉補機代 替冷却系操作は屋外作業であり,格納容器 ベント操作前であるため,アクセス及び操 作への放射線による影響はない。(29,30 頁参照)	設備構成の相違によ る操作及び監視項目の 相違
化替循 復水移 運転開始時の復水移送ポンプの起動は中 環冷却 アの起 しているため,操作への放射線による大き 系の系 動 な影響はない。(32~35 頁参照)		操作	残留熱 代替除 去 系 繊 構	残留熱 代替除 去ポン プの起 動	運転開始時の残留熱代替除去ポンプの起 動は中央制御室から遠隔で操作が可能な 設計としているため,操作への放射線によ る大きな影響はない。(29,30 頁参照)	
性・ア 起動操 パラメ クセ 作,運転 ータ監 ス性 継続に 視 必要な 代替循環冷却系運転時の原子炉注水及び		地 た た ス性	点成,起動操作,運転継続に必要	パラメ ータ監 視	運転を開始した後の運転パラメータの監 視は、中央制御室及び緊急時対策所で監視 が可能な設計としているため、放射線によ る大きな影響はない。(29,30頁参照) 残留熱代替除去系運転時の原子炉注水及	
操作・監 視格納容器スプレイの流量を調整する場合 は、流量調整弁の操作により行うが、中央 制御室から遠隔で操作が可能な設計とし ているため、放射線による大きな影響はな い。(32~35 頁参照)			な操作・監視	流量調 整	び格納容器スプレイの流量を調整する場合は,流量調整弁の操作により行うが,中 央制御室から遠隔で操作が可能な設計と しているため,放射線による大きな影響は ない。(29,30 頁参照)	
その他の作業として,代替原子炉補機冷却 系の運転状態確認及び熱交換器ユニット その他の付帯設備である電源車への給油作業が 操作あるが,これらは屋外作業であり格納容器 ベント操作前であるため,放射線による大きな影響はない。(32~35 頁参照)				その他 操作	その他の作業として,原子炉補機代替冷却 系の運転状態確認及び大型送水ポンプ車 への給油作業があるが,これらは屋外作業 であり格納容器ベント操作前であるため, 放射線による大きな影響はない。(29,30 頁参照)	

確認項目 施財線影響 拍針線影響 拉爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾爾	
確認項目 成射線影響 確認項目 確認項目 確認項目 体射線影響	
に必要な 操作 に必要な 操作 活納容器 る影響が小さい原子炉建屋内の原子炉区 域外において空気作動あるいは遠隔手動 操作で開閉する方法を備えている。なお。 これらの操作位置は原子炉建屋内の原子 上昇によるアクセス性及び弁操作性を考 慮し、必要に応じて遮蔽体設置等の放射線 防護対策を施す。(32, 33 頁参照) 操作 格納容器 域外において空気作動あるいは遠隔手動 操作で開閉する方法を備えている。なお。 これらの操作位置は原子炉建屋内の原子 これらの操作位置は原子炉建屋内の原子 操作 ドマ 「好区域外であっても,代替循環冷却系運転 ごより高線量となる配管との位置が比較 ウセ 「より高線量となる配管との位置が比較 「広じい箇所もあるため,放射線量上昇によ るアクセス性及び弁操作性を考慮し,必要 ハ性 「日本 「日本 水性 「日本 「日本 を施す。(35~38 頁参照) 「日本 (項目作業) 「までアクセスすることができる必要が	
中 小 小 小 小 小 次 ご<	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.18版)	島根原子力発電所 2号	炉
<u>另14氏—7</u>				・設備の相違
代替循環冷却系運転時の回り込み防止対応について				【柏崎 6/7】
代替循環冷却系を運用する際、サプレッション・チェンバのプ				島根2号炉の残留熱
ール水を水源とするため、炉心損傷した場合については高線量の				代替除去系が兼用する
水が循環することで、周辺エリアの線量が大きく上昇することが				系統は残留熱除去系で
想定される。その為,代替循環冷却系を運転中,及び,その後の				あり,高線量水の流れる
長期的な収束のための各機器の復旧作業に悪影響を及ぼす懸念が				範囲は限定的であるこ
ある。				とから,回り込みを防止
代替循環冷却系の流路を構成する既設の復水補給水系は、プラ				するための弁操作は不
ント運転時に様々な供給先(負荷)を持っており、主流路からの				要であるため,該当資料
分岐が多数ある。これらの分岐配管は耐震性を有する設計とする				なし
<u>とともに、分岐先において閉じた系を構成している(供給先にお</u>				
いて弁が閉止している)ため, 高線量の水が建屋内に溢水するこ				
とや、予期しない他の系統に流入することはない。				
しかし、事故後長期の復旧作業への影響を考慮すると、可能な				
限り高線量の水の流れる範囲を限定することが必要である。そこ				
で、代替循環冷却系の主流路からの分岐配管については、可能な				
限りプラント運転時から, 主ラインから最も近い弁(第一止め弁)				
にて常時閉止することを検討し,事故時の対応に支障を来たす等				
の理由から第一止め弁の閉止が不可能な場合には代替循環冷却系				
の運転前に弁の閉操作を実施することを検討した。				
<u>検討の結果を図1,図2,表1~表4に示す。分岐配管のうち</u>				
非常用炉心冷却系等の封水供給配管については、弁の閉止により				
供給先の系統に悪影響(ウォーターハンマーの発生等)を及ぼす				
可能性があるので、常時閉止運用とすることは不可と判断した。				
また、低圧代替注水系や格納容器下部注水系のように事故対応で				
使用する弁についても常時閉止運用とすることは不可と判断し				
た。しかし、それ以外の供給先(負荷)については、分岐部を閉				
止することが可能である。このため、これらの供給先(負荷)に				
悪影響を及ぼさない箇所については、通常運転中から弁を閉止す				
ることにより、高線量の水が流入することを防止する措置を講じ				
ることとする。				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
図1 代替循環冷却系 系統図(6号炉)			
図2 代基循環冷却系 系統図 (7号后)			

;	柏崎刈羽	原子力発電所 6/7号	骨炉 (2017.12.20版)	東海第二発電所	(2018.9.18版)	島根原子力発電所 2号炉	備考
	表1	代替循環冷却系閉止并	キリスト(6号炉)				
No. ³⁶¹	弁番号	并名称	対応策				
1	P13-F059	廃スラッジ移送ライン復水元弁	プラント運転中から全閉運用とする				
2	P13-F056	原子炉冷却材浄化系ろ過脱塩装置補 等復水元弁	前給用 プラント運転中から全閉運用とする				
3	P13-F085	ドライウェル高電導度廃液系サンフ 洗浄用等復水元弁	^{*配管} プラント運転中から全閉運用とする				
4	P13-F054	原子炉冷却材浄化系逆洗洗浄用復水	、元弁 プラント運転中から全閉運用とする				
5	P13-F090	制御棒駆動系補修室等復水元弁	プラント運転中から全閉運用とする				
6	P13-F023	復水補給水系サンプリング戻り止め	o弁 プラント運転中から全閉運用とする				
7	P13-F009	復水貯蔵槽常用給水管止め弁	系統運転時に現場で全閉操作を実施				
8	P13-M0-F15) タービン建屋負荷遮断弁	系統運転時に遠隔で全閉操作を実施				
9	G51-M0-F00	サプレッションプール浄化系復水貯 側吸込弁	京蔵槽 系統運転時に遠隔で全閉操作を実施				
10	P13-F403	廃棄物処理建屋復水積算流量計バイ 弁	パス 系統運転時に現場で全閉操作を実施				
11	P13-F010	制御棒駆動系復水入口弁	系統運転時に現場で全閉操作を実施				
12	P13-F017A	復水移送ポンプ(A)最小流量出口弁	系統運転時に現場で全閉操作を実施				
13	P13-F017B	復水移送ポンプ(B)最小流量出口弁	系統運転時に現場で全閉操作を実施				
14	P13-F017C	復水移送ポンプ(C)最小流量出口弁	系統運転時に現場で全閉操作を実施				
15	E22-F021	高圧炉心注水系復水貯蔵槽出口第一	- 元弁 系統運転時に現場で全閉操作を実施				
16	E22-F022	高圧炉心注水系復水貯蔵槽出口第二	二元弁 系統運転時に現場で全閉操作を実施				
17	E22-F023	高圧炉心注水系復水貯蔵槽出口第三	三元弁 系統運転時に現場で全閉操作を実施				
*7	k表の「No.」	は,図1記載の「弁 No.」を示す。					
	表 2	代替循環冷却系閉止不可	可弁リスト (6号炉)				
	<u>X 1</u>						
No.**	弁番号	弁名称	閉止不可理由				
18	P13-F069	消火系連絡弁後弁	SA時の消防車による原子炉注水時に使用				
19	P13-F081	原子炉隔離時冷却系系統洗浄用等復水元弁	HPAC/RCIC 封水ライン				
20	P13-F058	残留熱除去系(B)系統洗净用等復水元弁	SA 時の代替格納容器スプレイ冷却系で使用				
21	P13-F057	残留熱除去系(A) (C)系統洗浄用等復水元弁	HPCF(C)封水ライン SA時の格納容器下部注水系で使用				
22	P13-F061	スキマサージタンク (B)復水積算流量計入 口弁	SFP スキマサージタンクへの自動注水補給で使用				
23	G51-F015	サプレッションプール浄化系復水補給水系 封水弁	SPCU を用いた SFP 注水,原子炉ウェル注水で使用				
24	P13-F096B	高圧炉心注水系(B)系統封水用復水減圧オ リフィス前弁	IIPCF(B)封水ライン				
25	E22-MO-F001B	高圧炉心注水系復水貯蔵槽側吸込弁 (B)	HPCF(B)吸込みライン (水源)				
26	E22-F030	高圧代替注水系ポンプ吸込弁	HPAC 吸込みライン(水源)				
27	E51-MO-F001	原子炉隔離時冷却系復水貯蔵槽側吸込弁	RCIC 吸込みライン (水源)				
28	E22-MO-F001C ※本表の「No	高圧炉心注水系復水貯蔵槽側吸込弁(C) 、」は、図1記載の「弁No」を示す。	HPCF(C)吸込みライン(木源)				
		and the for a headly of a 11 those of a 12 th 1 to					

柏崎刈羽	羽原子力発電所 6/7号	号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 18 版)	島根原子力発電所 2号炉	備考
表	3 代替循環冷却系閉止弁	キリスト(7号炉)				
Not ^要 弁番号	并名称	対応策				
1 P13-F087	復水補給水系原子炉冷却材浄化系ろ過脱塩器 供給元弁	器逆洗水 プラント運転中から全閉運用とする				
2 P13-F721	復水補給水系復水移送ポンプ出口復水試料技	采取元弁 プラント運転中から全閉運用とする				
4 P13-F105	復水補給水系蒸気乾燥器気水分離器ピットオ 給弁	k張用供 プラント運転中から全閉運用とする				
5 P13-F110	復水補給水系原子炉建屋運転階供給元弁	プラント運転中から全閉運用とする				
6 P13-F722	復水補給水系復水移送ポンプ入口復水試料抵	采取元弁 プラント運転中から全閉運用とする				
7 P13-M0-F029	タービン建屋負荷遮断弁	系統運転時に遠隔で全閉操作を実施				
8 G51-MO-F010	サプレッションプール浄化系復水貯蔵槽側明	及込弁 系統運転時に遠隔で全閉操作を実施				
9 P13-F021	復水補給水系制御棒駆動系駆動水供給元弁	系統運転時に現場で全閉操作を実施				
10 P13-F008A	復水移送ポンプ(A)ミニマムフロー逆止弁後	弁 系統運転時に現場で全閉操作を実施				
11 P13-F008B	復水移送ボンブ(B)ミニマムフロー逆止弁後	弁 系統運転時に現場で全閉操作を実施				
12 P13-F008C	復水移送ボンプ(C)ミニマムフロー逆止弁後	弁 系統運転時に現場で全閉操作を実施				
13 P13-F001	復水補給水系復水貯蔵槽出口弁	系統運転時に現場で全閉操作を実施				
14 E22-F028	高圧炉心注水系復水貯蔵槽出口第一元弁	系統運転時に現場で全閉操作を実施				
15 E22-F029	高圧炉心注水系復水貯蔵槽出口第二元弁	系統運転時に現場で全閉操作を実施				
16 E22-F030	高圧炉心注水系復水貯蔵槽出口第三元弁	系統運転時に現場で全閉操作を実施				
27 P13-F079	復水補給水系原子炉冷却材淨化系 5 過脫塩素 洗浄水供給元弁	^{常Yスト} プラント運転中から全閉運用とする				
28 P13-F075	復水補給水系原子炉冷却材浄化系逆洗水ボン 洗浄用供給弁	プ入口 プラント運転中から全閉運用とする				
※本表の「No.」	は, 図2記載の「弁 No.」を示す。					
表4	代替循環冷却系閉止不可	可弁リスト(7号炉)				
Na ^樂 并番号	弁名称	閉止不可理由				
3 P13-F077	復水補給水系-075 ライン供給元弁	HPAC 封水ライン				
17 P13-F086	復水補給水系 RO-D032 入口弁	HPCF(C)封水ライン				
18 P13-F093	復水補給水系格納容器冷却ライン元弁	SA 時の格納容器下部注水系で使用				
19 P13-F099	復水補給水系 P13-F091 出口弁	SA 時の消防車による原子炉注水時に使用				
20 P13-F101	復水補給水系-101 ライン供給元弁	SFP スキマサージタンクへの自動注水補給で使用				
21 P13-F083	復水補給水系-077 ライン供給元弁	SA時の代替格納容器スプレイ冷却系で使用 HPCF (B) 封水ライン				
22 E22-M0-F001	B 高圧炉心注水系復水貯蔵槽側吸込弁(B)	HPCF(B) 吸込みライン (水源)				
23 E22-F023	高圧炉心注水系高圧代替注水系冷却水 ライン隔離弁	HPAC 吸込みライン(水源)				
24 E51-M0-F001	原子炉隔離時冷却系復水貯蔵槽側吸込 弁	RCIC 吸込みライン (水源)				
25 E22-M0-F001	C 高圧炉心注水系復水貯蔵槽側吸込弁(C)	HPCF(C)吸込みライン(水源)				
26 P13-F084	復水補給水系 RO-D030 入口弁	RCIC 封水ライン				
※本表の「No	.」は,図2記載の「弁 No.」を示す。					参考 重大事故等時の
						長期安定冷却手段につ
						いて」の比較は, 39 条
						補説(参考9)の比較表
						を再掲する
			1			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		参考9	
〔参考9〕重大事故等時の長期安定冷却手段について	〔参考8〕重大事故等発生後の長期安定冷却手段について	〔参考.9.〕 重大事故等時の長期安定冷却手段について	
重大事故等時の原子炉格納容器除熱としては、原子炉格納容器	重大事故等時の原子炉格納容器除熱としては, 原子炉格納容器	重大事故等時の原子炉格納容器除熱としては、原子炉格納容器	
を最高使用温度以下に除熱することを基本としている。炉心損傷	を最高使用温度以下に除熱することを基本としている。重大事故	を最高使用温度以下に除熱することを基本としている。炉心損傷	
に至る重大事故等時、代替循環冷却系により格納容器内温度は緩	等時、代替循環冷却系を使用することにより原子炉格納容器内温	に至る重大事故等時,残留熱代替除去系により格納容器内温度は	
やかに低下し <u>約15 日後</u> には, <u>サプレッション・チェンバ・プール</u>	度を100℃未満に低下させることができる。	緩やかに低下し <u>約177時間後</u> には, <u>サプレッション・チェンバ水温</u>	・解析結果の相違
水温度が最高使用温度の104℃を下回る(「重大事故等対策の有効		度が最高使用温度の104℃を下回る(「重大事故等対策の有効性評	【柏崎 6/7】
性評価について「2.1 高圧・低圧注水機能喪失」(別紙1)安定		価について「2.1 高圧・低圧注水機能喪失」(別紙1)安定状態	設備, 運用, 解析条件
状態の維持について」参照)。		の維持について」参照)。	等の違いによる相違(有
			劾性評価「格納容器過
			圧•過温破損 (残留熱代
			替除去系を使用する場
			合)」)
しかし、残留熱除去系熱交換器が使用できない場合は、代替循	しかし、残留熱除去系熱交換器が使用できない場合は、代替循	しかし、残留熱除去系熱交換器が使用できない場合は、残留熱	
環冷却系が使用できないため格納容器ベントにより格納容器の除	環冷却系も使用できなくなるが、この場合には格納容器ベントを	代替除去系が使用できないため格納容器フィルタベント系により	
熱を行う。格納容器ベントによる除熱では、格納容器圧力の低下	行うことにより原子炉格納容器除熱を行う。格納容器ベントによ	格納容器の除熱を行う。格納容器フィルタベント系による除熱で	
は早いものの、格納容器温度の低下は代替循環冷却系より遅く、	る除熱では、サプレッション・プール水温が飽和状態で維持され	は、格納容器圧力の低下は早いものの、格納容器温度の低下は残	
サプレッション・チェンバ・プール水温度が最高使用温度の104℃	ることとなるため、 サプレッション・プール水温を 100℃未満に	留熱代替除去系より遅く、サプレッション・チェンバ水温度が最	
を下回るのは約35 日後となる(「重大事故等対策の有効性評価に	できず、サプレッション・プール最高使用温度近くで長期間推移		・解析結果の相違
ついて「2.1 高圧・低圧注水機能喪失」 (別紙1) 安定状態の維	することとなる。	対策の有効性評価について「2.1 高圧・低圧注水機能喪失」(別	【柏崎 6/7】
特について」参照)。		(紙1)安定状態の維持について」参照)。	設備,運用,解析条件
			等の違いによる相違(有
			动性評価 「格納容器過
			F· · · · · · · · · · · · · · · · · · ·
			基
			場合)」)
そのため、格納容器内温度低減対策として残留勢除去系勢交換	そのため、原子炉格納容器温度低減対策として残留熱除去系熱	そのため、格納容器内温度低減対策として残留熱除去系熱交換	
器が使用できない場合の除熱手段を検討した。検討にあたっては	交換器が使用できない場合の除熱手段を検討した。検討に当たっ	器が使用できない場合の除熱手段を検討した。検討にあたっては	
事故発生30日後の崩壊熱が除熱可能であることを目標とした。	ては事故発生 30 日後の崩壊熱が除去可能であることを目標とし	事故発生約30日後の崩壊熱が除熱可能であることを目標とした。	
重大事故等時において、格納容器ベントによる格納容器除熱を	重大事故等時、格納容器ベントによろ原子炉格納容器除熱を実	「重大事故等時において」格納容器フィルタベント系による格納	
主が見ている場合 残留執除去系の補修による原子炉格納容器の	施している場合 残留勢除去系を補修により復旧し 原子炉格納	容器除熱を実施している場合 残留熱除去系の補修による原子炉	
除熱復旧を実施する。また、残留熱除去系の機能回復が長期間実	容器の除熱を実施するが、残留熱除去系の機能回復が困難か場合	格納容器の除熱機能を復旧する。また一残留熱除去系の機能回復	
施できない場合。可搬ポンプ及び可搬動交換器を用いた除熱毛段	を想定し、可搬ポンプ及び可搬型教交換器を用いた除執手段であ	が長期間実施できない場合。可搬ポンプ及び可搬執交換器を用い	
である「1」可搬型格納容器除執系によろ格納容器除執」を構築	る「可搬型原子炉格納容器除熱系統によろ原子炉格納容器除熱」	た除執手段である「1」可搬型格納容器除執系による格納容器除	
する。既設設備である残留熱除去系の使用を優先するが、復旧が		数 を構築する。既設設備である残留執除主系の使用を優失する。	
困難な場合はこの可搬型格納容器除熱系に上ス除熱を実施する		が、復旧が困難な場合はこの可搬型格納容器除熱系による除熱を	
困難な場合はこの可搬型格納容器除熱系による除熱を実施する。		が、復旧が困難な場合はこの可搬型格納容器除熱系による除熱を	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
本書では、それらの実現可能性と実施した場合の効果について確		実施する。本書では、それらの実現可能性と実施した場合の効果	
認している。これに加え、「2.可搬熱交換器によるサプレッシ		について確認している。	・設備の相違
<u>ョンプール浄化系(以下,SPCUという)を用いた除熱」を構</u>			【柏崎 6/7】
築し、それらの実現可能性と実施した場合の効果について確認し			島根2号炉は SPCU 無
ている。			L
なお、これらに加え格納容器を直接除熱することはできないが		なお、これらに加え原子炉格納容器を直接除熱することはでき	
原子炉圧力容器を除熱することにより間接的に格納容器を除熱す		ないが原子炉圧力容器を除熱することにより間接的に原子炉格納	
る「代替原子炉補機冷却系を用いた原子炉冷却材浄化系(以下、		容器を除熱する「原子炉補機代替冷却系を用いた原子炉浄化系(以	
CUWという)による原子炉除熱」を構築する。CUW系による		下、CUWという)による原子炉除熱」を構築する。CUW系に	
原子炉除熱については〔参考9-補足1〕に示す。		よる原子炉除熱については〔参考9-補足1〕に示す。	
参考1 表 重大事故等時における格納容器除熱手段		参考1表 重大事故等時における格納容器除熱	・設備の相違
除熱手段 備考		除熱手段	【柏崎 6/7】
代替循環冷却系による除熱		残留熱代替除去系による除熱	島根2号炉は SPCU 無
格納谷益ヘントによる际烈 残留熱除去系の補修による除熱復旧		格納容器フィルタベント系による除熱 ・取切執除土系の補修に上る除熱律中	L
可搬型格納容器除熱系による格納容器除熱 本資料1. で成立性を示す		可搬型格納容器除熱系による格納容器除熱 本資料1. で成立性を示す	
可搬熱交換器によるSPCUを用いた格納容器除熱 本資料2. で成立性を示す		原子炉補機代替冷却系を用いたCUWによる原子炉除熱 補足1で成立性を示す	
【代替原子炉補機冷却系を用いたCUWによる原子炉除熱 補足1 で成立性を示す 本表は裏が聴いなける除熱手段の配備せ況を示すものであり 除熱手段の優先順位を示すものでけない			
		執毛段の傷失順位を示すたのでけない	
1 可搬刑枚納宏哭险執系による枚納宏哭险執	可搬刑百子后枚納容哭除執系に上入百子后枚納容哭除執		
、大焼引配に 、 、 、 、 、 、 、 、 、 、 、 、 に と 、 な 、 、 、 、 に と 、 な 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	、大切り配に 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	、大売可能に 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	
里八事 取 寺 守 に わ い く 、 俗 和 谷 福 い ン 下 に よ る 俗 和 谷 碕 床 然 を 実 抜 し て い ス 坦 今 一 産 の 麹 除 土 亥 の 靖 修 に ト ス サ プ し ッ ション・	里八事 取 寺 时, 俗 和 谷 命、 シート による <u>広 丁 が</u> 俗 和 谷 碕 広 然 と 夫	里八争叹寺时につい、 俗称谷谷、 ントによる俗称谷谷际然を 実施している担合 産の麹除土玉の症体にたるサプレッシュン・	
天地している場合, 残留然际云ボの補修によるリノレッション・	旭している場合, 残留怒味云ボ <u>を復旧し, リノレッション・ノー</u>	天旭している場合、残留怒际云ボの袖修によるリノレッション・	
<u> テェンハ・ノール水行却モート</u> の復旧を美施する。また、残留熱	ル水の行却を美触する。また、残留熱味云系の復旧が困難な場合	ノール水行却モートの復旧を夫施りる。また、残留熱味云糸の復	
除去糸の復旧か困難な場合に可搬設備等により構成される可搬型	には、可搬設備等により構成される可搬型原子炉格納谷器除熱糸	旧か困難な場合に可搬設備等により構成される可搬型格納谷結底	
格納谷器除熱糸による格納谷器除熱を構築する。可搬型格納谷器	<u> </u>	<u>熱糸</u> による格納容器除熱を構築する。可搬型格納容器除熱糸は,	
除熱系は、 <u>高圧炉心注水系(以下、HPCFという)</u> 配管から耐		<u>高圧炉心スプレイ系(以下, HPCSという)</u> 配管から耐熱ホー	
熱ホース・可搬ボンブを用いて可搬熱交換器にサブレッション・		ス・可搬ボンブを用いて可搬熱交換器にサブレッション・チェン	
<u>チェンバ・プール水</u> を供給し、そこで除熱した水を <u>残留熱除去系</u>		<u>バのプール水</u> を供給し、そこで除熱した水を <u>低圧原子炉代替注水</u>	・設備の相違
の原子炉注水ラインで原子炉圧力容器に注水するライン構成であ		<u>系</u> の原子炉注水ラインで原子炉圧力容器に注水するライン構成で	【柏崎 6/7】
り、可搬設備を運搬・設置する等の作業があるが、長納期品につ	<u>この対応には</u> ,可搬型設備を運搬・設置する等の作業 <u>を伴う</u> が,	あり,可搬設備を運搬・設置する等の作業 <u>がある</u> が,長納期品に	系統構成の相違
いては事前に準備しておくことにより、1ヵ月程度で系統を構築	事前に可搬型設備等を準備しておくことにより、1ヵ月程度で系	<u>ついては</u> 事前に準備しておくことにより、1ヵ月程度で系統を構	
することが可能であると考えられる。	統を構築することが可能であると考えられる。	築することが可能であると考えられる。	
<u>また,可搬ポンプを用いた可搬型格納容器除熱系に加え,常設</u>			・設備の相違
のSPCUポンプを用いた「可搬熱交換器及びSPCUポンプを			【柏崎 6/7】
			島根2号炉はSPCU 無
るサプレッションプール浄化系を用いた除熱」で示す。			ll

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	可搬型原子炉格納容器除熱系統のうち、可搬ポンプの吸込み箇	可搬型格納容器除熱系について,可搬ポンプの吸込み箇所は,	
可搬型格納容器除熱系について、可搬ポンプの吸込み箇所は、	所は、原子炉隔離時冷却系ボンプ入口逆止弁とし、耐熱ホースで	<u>HPCSポンプの吸込配管にある「HPCSポンプ復水貯蔵タン</u>	・設備の相違
HPCFボンブの吸込配管にある HPCF復水貯蔵槽側吸込逆	接続する構成とする。	<u>ク水人口逆止弁</u> 」とし,耐熱ホースで接続する構成とする。 	【柏崎 6/7, 東海第二】
<u>止开(B)</u> 」とし,耐熱ホースで接続する構成とする。 			糸統構成の相違
可拠ポンプの叶屮については 両数ホースを用いて原子に建長	可拠ポンプの叶山については、耐熱ホースを用いて原子に建長	可拠ポンプの叶出については、耐熱ホースを用いて原子恒建物	
「「「「「」」」、「「」」、「」」、「」、「」、「」、「」、「」、「」、「」、「	「一般小シノの吐山に ジャ ては、 耐然小 へを用いて広」が 定生	「「城小ノノの旦山に」、しては、「町然小 へを用いて広」が定初 大物搬入口に設置する可搬執交換男と接続する構成とし 可搬執	
六物滅入口に設置するう滅怒(実施と)支税する特別にし、う滅怒 交換器の出口側についてけ建図執除主系の原子恒注水配管にある	ホール (初版八日に設置する日服主然又英雄とほれする構成と する 可搬刑執交換器の出口側についてけ低圧代基注水系 (可搬	大物	 ・設備の相違
「残留執除去系注入ライン洗浄水入口逆止弁(B)」と耐熱ホース	型)の逆止争と耐勢ホースで接続する構成とする 可搬型熱交換	受決部の出す (RC) そ てな <u>国に</u> 、 F (R) の R (R) 0 R (R (R) 0 R (R (R) 0 R (R) 0 R (R (R) 0 R (R (R) 0 R (R	【柏崎 6/7 東海第二】
で連結する構成とする。これらの構成で、可搬ポンプによりサプ		ースで連結する構成とする。これらの構成で、可搬ポンプにより	系統構成の相違
レッション・チェンバ・プール水を可搬勢交換器に送水し、そこ	通水できる構成とする。	サプレッション・チェンバのプール水を可搬勢交換器に送水し、	
で除熱した水を原子炉圧力容器に注水する系統を構築する。なお、		そこで除熱した水を原子炉圧力容器に注水する系統を構築する。	
可搬熱交換器の二次系については、大容量送水車により海水を通		なお、可搬熱交換器の二次系については、大型送水ポンプ車によ	
水できる構成とする。		り海水を通水できる構成とする。	
	原子伊速屋原子炉棟		
		低圧原子炉 代替注水ポンプ 図 Mo	
	低压		
原子炉递星			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	移動式熱交換器の一般交換器の	
		設備へ サプレッション・チェンバ	
	可開空預交換器 にんれいら 東子伊爾麗時冷却系 ポンプ入口逆止弁		
	可能ポンプ 原子炉隔離時冷却系ポンプ		
		★型送水 ★ 大型送水 ★ ボンプ車 ○	
	SA用海水ビット 可範型代替注水大型ボンブ	は 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	
参考1図 可搬型格納容器除熱系の系統概要図	図1 可搬型原子炉格納容器除熱系統の系統概略図	参考1図 可搬型格納容器除熱系の系統概略図	・設備の相違
			【柏崎 6/7,東海第二】

柏崎刈羽原子力発電所 6/	7号炉 (2017.12.20版)	東海第二発電所(2018.9.	18版)	島根原子力発電所 2号	炉	備考
参考2表 可搬型格納容器	余熱系構築に必要な作業	表1 可搬型原子炉格納容器除熱系統の)構築に必要な作業	参考2表 可搬型格納容器除熱系構築	経に必要な作業	・設備の相違
作業	所要期間	作業	所要期間	作業	所用時間	【柏崎 6/7,東海第二】
HPCFポンプ吸込ラインの逆止弁と残留 熱除去系洗浄水ラインの逆止弁の上蓋等取 外し,耐熱ホース取付 可搬ポンプ準備 可搬熱交換器準備	これらの作業は、1ヵ月程度で準備可能と 考えている。	原子炉隔離時冷却系ポンプ入口逆止弁と低圧代替 注水系(可搬型)逆止弁の上蓋等取外し,耐熱ホー ス取付	これらの作業は、1ヵ月 - 程度で準備可能と考え	HPCSポンプ吸込みラインの逆止弁と低圧原子炉代替注水 系注水ラインの逆止弁の上蓋取り外し,耐熱ホース取付 可搬ポンプ準備 可搬熱交換器準備 通水試験等	これらの作業は,1ヵ月程度 で準備可能と考えている。	
通水試験等		 可搬ボンブ準備 可搬型熱交換器準備 通水試験等 	ている。			
<効果> 「雰囲気圧力・温度による静的」 において事象発生後約1ヵ月まで った後,可搬型格納容器除熱系に パラメータ推移を評価した。ここ は,事故発生30日後の崩壊熱を」 力逃がし装置は微開(流路面積39 系より窒素ガスを <u>600m³/h</u> 注入す	負荷(格納容器過圧・過温破損)」 格納容器ベントによる除熱を行 よる除熱とした場合の格納容器 で可搬型格納容器除熱系の流量 ニ回る160m ³ /h とし,格納容器圧 6開)とするとともに <u>不活性ガス</u> る。	<効果> 可搬型原子炉格納容器除熱系統における め、「雰囲気圧力・温度による静的負荷(格 (代替循環冷却系を使用できない場合)」に 後まで格納容器ベントによる除熱を行った 停止し、可搬型原子炉格納容器除熱系統に 合の原子炉格納容器パラメータ推移を評価 子炉格納容器除熱系統の流量は、事故発生 相当以上の流量として 100m ³ /h とし、低 等による原子炉注水及び格納容器ベントを 子炉格納容器内が負圧となることを防止及	 	<効果> 「雰囲気圧力・温度による静的負荷(格納 において事象発生後約1ヵ月まで格納容器 る除熱を行った後,可搬型格納容器除熱系に の格納容器パラメータ推移を評価した。ここ 熱系の流量は,事故発生30日後の崩壊熱を 格納容器フィルタベント系は微開(流路面利 もに可搬式窒素供給装置により窒素ガスを <u>1</u>	容器過圧・過温破損)」 <u>スイルタベント系</u> によ こよる除熱とした場合 で可搬型格納容器除 二回る m ³ /hとし, <u>責3%開)</u> とするとと <u>00m³/h</u> 注入する。	 ・運用の相違 【東海第二】 島根2号炉は,可燃性 ガスの蓄積を防止する ために,格納容器ベント を停止せず,微開にする 運用としている
		不活性化のために,可搬型窒素供給装置に サプレッション・チェンバ内へ窒素を注入 する。	こよりド <u>ライウェル及び</u> (総注入流量 400m ³ /h)			・設備の相違 【柏崎 6/7,東海第二】 窒素ガス注入量
参考2~4 図に格納容器圧力,格	A納容器気相部温度, サプレッシ	図 2~4 に原子炉格納容器圧力,原子炉	后格納容器気相部温度,	参考2~4図に格納容器圧力、格納容器気	気相部温度,サプレッ	
<u>ョン・ナェンパ・フール水温の推構</u> に示す通り,格納容器気相部温度 <u>プール水温</u> を低減させることがで	多を示す。参考3 図及び参考4 図 , <u>サプレッション・チェンバ・</u> きる。	サフレッション・フール水温の推移を示す とおり、可搬型原子炉格納容器除熱系によ 相部温度、サプレッション・プール水温を	。 <u>図3_及び図4</u> に示す <u>り,原子炉</u> 格納容器気 と低減させることができ	ション・チェンパ水温の推移を示す。参考: すとおり、格納容器気相部温度、サプレッジ を低減させることができる。	3図及び参考4図に示 /ョン・チェンバ水温	
なお,本評価のように,格納容器 圧力が低下している状態では,べ の非凝縮性ガスは排出され,原子 生する蒸気で満たされる状態とな 系(可搬型格納容器除熱系)の運 <u>ョン・チェンバ・プール水温</u> が100 い格納容器圧力は負圧となる可能	正力逃がし装置により格納容器 ント実施時に原子炉格納容器内 炉格納容器内は崩壊熱により発 る。こうした状況において除熱 転を開始する場合,サプレッシ ℃を下回ると,飽和蒸気圧に従 性がある。よって,可搬型格納容	る。 なお、本評価のように、格納容器圧力対 器圧力が低下している状態では、格納容器 格納容器内の非凝縮性ガスは排出され、原 熱により発生する蒸気で満たされる状態と おいて除熱系(可搬型原子炉格納容器除熱 る場合、サプレッション・プール水温が 蒸気圧に従い原子炉格納容器圧力は負圧と	些がし装置により格納容 マント実施時に原子炉 子炉格納容器内は崩壊 なる。こうした状況に 気系統)の運転を開始す 100℃を下回ると、飽和 なる可能性がある。よ	なお、本評価のように、格納容器フィルク 容器圧力が低下している状態では、格納容器 炉格納容器内の非凝縮性ガスが排出され、原 壊熱により発生する蒸気で満たされる状態と において除熱系(可搬型格納容器除熱系)の サプレッション・チェンバ水温が100℃を下 従い格納容器圧力は負圧となる可能性がある	ベント系により格納 最ベント実施時に原子 原子炉格納容器内は崩 となる。こうした状況 の運転を開始する場合, 回ると,飽和蒸気圧に 5。よって,可搬型格	
器除熱系の運転を開始する際には	,格納容器圧力逃がし装置は微	って、可搬型原子炉格納容器除熱系統の通	E転を開始する <u>前</u> には,	<u>納容器除熱系</u> の運転を開始する際には、 <u>格約</u>	内容器フィルタベント	・運用の相違
開とした上で, <u>不活性ガス系</u> より が負圧とならないよう制御する運	^{遙素ガスを注入し, 格納容器圧力} 用とする。	原子炉格納容器内が負圧となることを防止 の不活性化のために,原子炉格納容器内へ	<u>- 及び原子炉格納容器内</u> - 窒素を注入する。	系は微開とした上で,可搬式窒素供給装置よ 格納容器圧力が負圧とならないよう制御す?	り窒素ガスを注入し, 5運用とする。	【東海第二】 島根2号炉は,可燃性

備考

ガスの蓄積を防止する ために,格納容器ベント を停止せず,微開にする 運用としている

・解析結果の相違

【柏崎 6/7】

島根2号炉は,可搬型 格納容器除熱系の開始 以降,設備容量等の違い により,蒸気凝縮による 急激な圧力低下が生じ る

【東海第二】

島根2号炉は、ベント 微開とするため,可燃性 ガスは蓄積しない。(東 海第二では,ベント閉止 するため,可燃性ガス濃 度の上昇により再度べ ントをしており,格納容 器圧力の増減がある)

解析結果の相違

【柏崎 6/7, 東海第二】 島根2号炉は,可搬型 格納容器除熱系の開始 前に,窒素を注入するこ とによる格納容器の圧 力上昇により一時的に 格納容器温度が上昇す る

可搬型格納容器除熱系は、事故発生30日後の崩壊熱相当(約

6.5MW)を除熱できる設計とし、本章ではその系統成立性評価を示

す。評価にあたっては「①可搬ポンプのNPSH(Net Positive Suction

Head)評価」で原子炉建屋地下3階に設置する可搬ポンプの必要

NPSHが系統圧力損失を考慮して有効NPSHを満足することを確認す

る。次に「②流量評価」で系統圧力損失を考慮して、本系統で確

保可能な系統流量を評価し、その流量で可搬熱交換器による除熱

可能な除熱量を「③除熱量評価」で示し、本系統が事故発生30日

後の崩壊熱相当(約6.5MW)を除熱できることを確認し,系統成立

ポンプがキャビテーションを起こさず正常に動作するためには,

流体圧力や吸込配管圧力損失等により求められる「有効NPSH」が、

ポンプの「必要NPSH」と同等かそれ以上であること(有効NPSH≧

必要NPSH)を満足する必要があり、有効NPSHと必要NPSHを比較す

るNPSH評価によりポンプの成立性を確認する。本評価では参考5

図の系統構成を想定し、格納容器内圧力(S/C)、サプレッシ

ョン・チェンバ・プール水位と可搬ポンプ軸レベル間の水頭差,

吸込配管(HPCF常設配管及び耐熱ホース)圧力損失により求めら

れる有効NPSHと、可搬ポンプの必要NPSHを比較することで評価す

る。有効NPSHの評価式は以下の通りであり、評価結果は参考3表に

示す通り、6号炉及び7号炉ともにポンプのNPSH評価は成立する。

<系統成立性評価>

性を示す。

① ポンプのNPSH評価

<系統成立性評価>

可搬型原子炉格納容器除熱系統は,事故発生 30 日後の崩壊熱 相当(約 5.7MW)を除熱できる設計とし,本章ではその系統成立 性評価を示す。評価に当たっては「①可搬ポンプの NPSH (Net Positive Suction Head)評価」で原子炉建屋原子炉棟地下 2 階 に設置する可搬ポンプの必要 NPSH が,系統圧力損失を考慮して 有効 NPSH を満足することを確認する。次に「②流量評価」で系 統圧力損失を考慮して,本系統で確保可能な系統流量を評価し, その流量で可搬熱交器による除熱可能な除熱量を「③除熱量評価」 で示し,本系統が事故発生 30 日後の崩壊熱相当(約 5.7MW)を除 熱できることを確認し,系統成立性を示す。

① ポンプの NPSH 評価

を確認する。

ポンプがキャビテーションを起こさず正常に動作するために は、流体圧力や吸込配管圧力損失等により求められる「有効 NPSH」 が、ポンプの「必要 NPSH」と同等かそれ以上であること(有効 NPSH ≧必要 NPSH)を満足する必要があ<u>る。</u> このため、本評価では図5 の系統構成を想定し、原子炉格納容 器内圧力(サプレッション・チェンバ)、サプレッション・プール 水位と可搬ポンプ軸レベル間の水頭差、吸込配管(原子炉隔離時 冷却系配管及び耐熱ホース)圧力損失により求められる有効 NPSH

有効 NPSH の評価式は以下のとおりであり,評価結果は表2 に

と、可搬ポンプの必要 NPSH を比較することで、ポンプの成立性

<系統成立性評価>

可搬型格納容器除熱系は,事故発生30日行 3.9MW)を除熱できる設計とし,本章ではそう す。評価にあたっては「①可搬ポンプのNI Suction Head)評価」で原子炉建物地下2階 の必要NPSHが系統圧力損失を考慮して行 ることを確認する。次に「②流量評価」で浮 て,本系統で確保可能な系統流量を評価し, 換器による除熱可能な除熱量を「③除熱量調 が事故発生30日後の崩壊熱相当(約3.9MW) 認し,系統成立性を示す。

① ポンプのNPSH評価

ポンプがキャビテーションを起こさず正 は、流体圧力や吸込配管圧力損失等により SH」が、ポンプの「必要NPSH」と同 と(有効NPSH≧必要NPSH)を満足 NPSHと必要NPSHを比較するNPS 成立性を確認する。本評価では参考5図の 納容器内圧力(S/C),サプレッション 位と可搬ポンプ吸込ロレベル間の水頭差, 設配管及び耐熱ホース)圧力損失により求 と、可搬ポンプの必要NPSHを比較する NPSHの評価式は以下の通りであり、評 す通り、ポンプのNPSH評価は成立する。

別添2-137

寺炉	備考
D運転を事象発生 730 時間後 サブレッション・チェンバ 1,680 1,920 2,160 2,400 ノバ水温の推移	・解析結果の相違 【柏崎 6/7,東海第二】 島根2号炉は,可搬型 格納容器除熱系の開始 前に,窒素を注入するこ とによる格納容器の圧 力上昇により一時的に サプレッション・チェン バ水温が上昇する
後の崩壊熱相当(<u>約</u> の系統成立性評価を示 PSH(Net Positive に設置する可搬ポンプ 有効NPSHを満足す 系統圧力損失を考慮し ,その流量で可搬熱交 評価」で示し,本系統 を除熱できることを確	 ・設備の相違 【柏崎 6/7,東海第二】 崩壊熱の相違 ・設備の相違 【柏崎 6/7,東海第二】 崩壊熱の相違
常に動作するために 求められる「有効NP 等かそれ以上であるこ する必要があ <u>り</u> ,有効 日評価によりポンプの 系統構成を想定し,格 ・チェンバのプール水 吸込配管(<u>HPCS</u> 常 められる有効NPSH ことで評価する。有効 価結果は <u>参考3表</u> に示	・設備の相違 【柏崎 6/7,東海第二】 系統構成の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 有効 NPSH = Pa - Pv + H - ΔH Pa: 木源気相部の圧力[m] Pv: ポンプ入口温度での飽和蒸気圧力[m] H: 静水頭 (水源水位~ポンプ) [m] ΔH: ポンプ吸込ラインの圧力損失[m]	東海第二発電所 (2018.9.18版) <u>有効 NPSH = Pa - Pv + H - ΔH</u> <u>Pa : 水源気相部の圧力 [m]</u> <u>Pv : ポンプ入口温度での飽和蒸気圧力 [m]</u> <u>H : 静水頭 (水源水位~ポンプ) [m]</u> <u>ΔH : ポンプ吸込ラインの圧力損失 [m]</u> <u>G # ポンプ吸込ラインの圧力損失 [m]</u> <u>F 炉</u> <u>F 小</u> <u>F 炉</u> <u>F 小</u> <u>F 炉</u> <u>F 小</u> <u>F </u>	島根原子力発電所 2号炉 (************************************	備考
参考5図 可搬型格納容器除熱系のNPSH 評価	図5 可搬型原子炉格納容器除熱系統の NPSH 評価	^{■■■●ク} 参考5図 可搬型格納容器除熱系のNPSH評価	・設備の相違 【柏崎 6/7,東海第二】
参考3表 NPSH 評価結果	表2 NPSH 評価結果	参考3表 NPSH評価結果	・設備の相違
項目 6号炉 7号炉 設定根拠	項目 評価条件 設定根拠	項目 2号炉 設定根拠	【柏崎 6/7,東海第二】
Pa サブレッション・ チェンバ圧力 (水頭換算値) 10.3m 10.3m 保守的に大気圧 (OMPa[gage])とする	Pa サプレッション・チェン バ圧力(水頭換算値) 安全解析における事故発生 30 日後のサプレ ッション・チェンバ圧力(0.143MPa)の水	Pa サプレッション・チェン 11.6m 安全解析における事故発生30日後 バ圧力(水頭圧換算値) のS/C圧力の水頭圧換算	
Pv 可搬ボンブ入口温 12.9m 12.9m 安全解析における事故発生 30 日後の S/P 水 度での飽和蒸気圧 (水頭換算値) 12.9m 12.9m 12.9m	Pv 可搬ポンプ入口温度での 飽和蒸気圧(水頭換算値) 14.6m 現換算値 14.6m 安全解析における事故発生 30 日後のサプレ ッション・プール水飽和温度 110℃での飽和 蒸気圧	Pv 可搬ポンプ入口温度で 12.0m 安全解析における事故発生30日後 の飽和蒸気圧(水頭圧換 のS/P水温105℃での飽和蒸気圧 算値)	
H S/P 水位と可搬ポ ンプ軸レベル間の 水頭差 13.2m 13.2m 安全解析における事故発生30日後のS/P 水 位(T. M. S. L. 6000)とし,可搬ポンプ軸レベル は原子炉建屋地下3階床上1mを想定し	H サプレッション・プール 水位と可搬ポンプ軸レベ ル間の水頭差 サプレッション・プール水位は通常最低水 位(EL.2.9m)とし、可搬ポンプ軸レベルは 原子炉建屋原子炉棟地下2階床上1mを想定 し EL3.0mとする。	H S/P水位と可搬ポン 3.9m 安全解析における事故発生30日後 プ軸レベル間の水頭差 のS/P水位(EL.5778)とし,可 搬ポンプ吸込口レベルは原子炉建	
ΔH 吸込配管圧損 T. M. S. L7200とする。 HPCF ストレーナ〜耐熱ホース取付箇所まで HPCF ストレーナ〜耐熱ホース取付箇所まで	ΔH (原子炉隔離時冷却系配 管) 原子炉隔離時冷却系配 原子炉隔離時冷却系入トレーナ~耐熱ホー ス取付箇所までの配管の圧損(100m ³ /h)	物地下2階床上0.5mを想定し EL.1800とする。	
(HPCF 配管) の配管の圧損(6号炉(□ m³/h),7号炉 (□ m³/h))	吸込配管圧損 可搬ポンプ吸込み側の耐熱ホースの圧損 (耐熱ホース) (100m ³ /h)	ΔH 吸込配管圧損(HPCS HPCSストレーナ~耐圧ホース 配管) 取付箇所までの配管の圧損(
吸込配管圧損 可搬ポンプ吸込み側の耐熱ホースの圧損(6			
(耐熱ホース) HPCF ストレーナEF HPCF ストレーナEF HPCF ストレーナの圧損 (6 号短 (合計 配管,ホース,ストレーナ圧損合計	ス) の圧損(国加3/h)	
山口(ストレー)の上頂(0万万)(損 山口(ストレー)の上頂(0万万)(山山(水), 7号炉((山水), 7号炉((山水))	有効 NPSH Pa-Pv+H-ΔH	HPCSストレーナ圧 HPCSストレーナ圧	
合計 配管、ホース、ストレーナ圧損合計	必要 NPSH 可搬ポンプの必要 NPSH		
有効 NPSH Pa-Pv+H-ΔH		有効NPSH 3.1m Pa-Pv+H-ΔH	
必要 NPSH 可搬ポンプの必要 NPSH	成立性評価 〇 有効性 NPSH>必要 NPSH	必要NPSH2.0m可搬ポンプの必要NPSH	
放 工 任 評 恤 · · · · · · · · · · · · · · · · · ·		成立性評価 ○ 有効NPSH≧必要NPSH	
(哈爾) I. M. 5. I. : 東京湾平均海田			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
② 流量評価	② 流量評価	② 流量評価	
可搬ポンプ及び可搬熱交換器を用いた可搬型格納容器除熱系の	可搬ポンプ及び可搬型熱交換器を用いた可搬型原子炉格納容器	可搬ポンプ及び可搬熱交換器を用いた可搬型格納容器除熱系	
系統流量は、後述する評価により6号炉では m ³ /h以上,7号炉	除熱系統の系統流量は、後述する評価により 100m ³ /h 以上確保	の系統流量は、後述する評価により m ³ /h以上確保可能である	
ではm ³ /h以上確保可能であることを確認している。本章では,	可能であることを確認している。本章では、その評価結果につい	ことを確認している。本章では、その評価結果について示す。流	
その評価結果について示す。流量確認方法としては、可搬ポンプ	て示す。	量確認方法としては、可搬ポンプの「性能曲線」(揚程と流量の	
の「性能曲線」(揚程と流量の関係図)と参考1図の系統構成を想	流量確認方法としては、可搬ポンプの「性能曲線」(揚程と流量	関係図)と参考1図の系統構成を想定した場合の「システム抵抗	
定した場合の「システム抵抗曲線」との交点がポンプの動作点と	の関係図)と図1.の系統構成を想定した場合の「システム抵抗曲	曲線」との交点がポンプの動作点となるため、ポンプの動作点の	
なるため、ポンプの動作点の流量を確認する。その結果は参考6	線」との交点が、ポンプの動作点となるため、そのポンプの動作	流量を確認する。その結果は参考6図に示す通り, m ³ /h以上	
図 <u>及び参考7図</u> に示す通り, <u>6号炉では</u> m ³ /h以上, <u>7号炉では</u>	点の流量を確認する。	確保可能であることを確認した。参考として,系統流量 m ³ /h	
m ³ /h以上確保可能であることを確認した。参考として, <u>6</u> 号炉の系	その結果は図6.に示すとおり, 100m ³ /h 以上確保可能である	時の圧力損失を参考4表に示す。	
統流量 m ³ /h時,7号炉の系統流量 m ³ /h時の圧力損失を参考	ことを確認した。参考として,系統流量100m ³ /h時の圧力損失		
 4表に示す。	を表3 に示す。		
	200		
	180全揭程(m)		
	していた い い い し し し し し し し し し し し し し		
	4 120 - 中 120 - ド 100 -		
	。		
	開始 60 - 一 戦略 40 -		
	流童(m²/h)		
	図6. 可拠刑百乙に故如宏聖吟教系なの法書証価は用	を老6回 可搬刑救納容器除教系の法导証価結果	・恐備の知道
多与0 因 ···································	00 引版至原于炉俗附谷备际积示机 00 加重计 Ш 和 木	<u>参考0因,前撤至俗称拾袖际款示约仇重计侧柏木</u>	• 取佣90伯座
			【怕呵 0/1, 宋伊弗二】
参考7 図 可搬型格納容器除熱系の流量評価結果(7 号炉)			

力発電所 6/	~7 号炉 (2017.	12.20版)	東海	第二発電所(2018	. 9. 18 版)		島根原子力	」発電所 2号
参考4表 圧	力損失内訳			表3 圧力損失内	1訳		参考4表	圧力損失内詞
)	6 号炉	7 号炉	流量		100m ³ /h	除熱手段(評価	ルート)	
	-			告 むう イン		流量	<u>半日~ /、</u>	-
常設ライン	-		間目・开現圧力損大	市成ノイン		配官・开類圧刀損失	常設フイン	ł
耐熱ホース	-			耐熱ホース			前庄小二 八 可搬埶交换罢	1
可搬熱交換器	~			可搬型熱交換器			门放派文换审	
水源	T.M.S.L1200 (通常最低水位)	T.M.S.L1200 (通常最低水位)				静水頭	水源	(安全解析におり
注水先			静水頭	水源	EL. 2. 9m			P水位)
	_				(通常最低水位)		注入先	
水酒	0.014MPs	0.014MPa		注水先				
小你 注水生	0. 014MPa	0. 12MPa				压力差 [1]	水源	
	0.12m a	0.12mi a					注人先	
失)	11.0m	11.011	圧力差	水源	0.465MPa	システム抵抗(E	E力損失)	
				注水先	0.920MPa			
					約 46.4m			
			システム抵抗(圧力損会	失)				
	 力発電所 6/ 参考4表 圧 常設ライン 耐熱ホース 可搬熱交換器 水源 注水先 大源 注水先 失) 	<u>力発電所 6 / 7 号炉 (2017.</u> <u>参考4表 圧力損失内訳</u> 6 号炉 常設ライン 耐熱ホース 可搬熱交換器 水源 T. M. S. L1200 (通常最低水位) 注水先 11.3m 失)	力発電所 6/7号炉 (2017.12.20版) 参考4表 圧力損失内訳 0 6号炉 7号炉 常設ライン 耐熱ホース 可搬熱交換器 水源 T.M.S.L1200 (通常最低水位) (通常最低水位) 注水先 11.3m 失)	力発電所 6/7号炉 (2017.12.20版) 東海 参考4表 圧力損失内訳 0 6号炉 7号炉 7号炉 常設ライン 耐熱ホース 可搬熱交換器 而管・弁類圧力損失 水源 T.M.S.L1200 T.M.S.L1200 (通常最低水位) (通常最低水位) (通常最低水位) (通常最低水位) 注水先 0.014MPa 11.3m 11.3m 大原 0.12MPa システム抵抗 (圧力損)	力発電所 6 / 7 号炉 (2017.12.20 版) 東海第二発電所 (2018. 参考4表 圧力損失内訳 表3 圧力損失内 6 号炉 7 号炉 ଲि量 6 号炉 7 号炉 ㎡酸ライン ଲि量 ホ変 1. M. S. L1200 (通常最低水位) (通常最低水位) (通常最低水位) (通常最低水位) (通常最低水位) (通常最低水位) (通常最低水位) (通常最低水位) (通常最低水位) (正常 1. 3m 11. 3m	力発電所 6 / 7 号炉 (2017.12.20 版) 東海第二発電所 (2018.9.18 版) 参考4表 圧力損失内訳 表3 圧力損失内訳 	力発電所 6 / 7 号炉 (2017.12.20 版) 東海第二発電所 (2018.9.18 版) 参考4表 圧力損失内訳 表3 圧力損失内訳 参考4表 圧力損失内訳 表3 圧力損失内訳 ⑥ 6 号炉 7 号炉 ⑦歳 100m ³ /h ⑦ 100m ³ /h	力発電所 6 / 7 号炉 (2017, 12, 20 版) 東海第二発電所 (2018, 9, 18 版) 島根原子丸 参考4表 圧力損失内訳 次3 圧力損失内訳 参考4表 ○ 6 号炉 7 号炉 (副熟ホース) 一 100m³ / h 一 (副常泉低水位) (副常泉低水位) (副常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) 0.0140Pa (国常泉低水位) 0.0140Pa (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低水位) (国常泉低小位) (国常泉低小位) (国常泉低小位) (国常泉低小位) (国常泉低小位)

③ 除熱量評価

上述②の評価結果の通り,可搬型格納容器除熱系の流量は6号炉 では m³/h以上, 7号炉では m³/h以上が確保可能であるこ とから、その時の系統の除熱量を評価した。

評価条件は参考5表に示す通りであり,可搬熱交換器の性能及び 大容量送水車による海水側の条件を踏まえて本系統の除熱量を評 価したところ,事故発生30日後の崩壊熱相当(約6.5MW)を除熱で きることを確認した。

③ 除熱量評価

②の評価結果のとおり、可搬型原子炉格納容器除熱系統の流量 は100m³/h以上確保可能であることから,そのときの系統の除熱 m³/ 量を評価した。

評価条件は表4 に示すとおりであり、可搬型熱交換器の性能及 び可搬型代替注水大型ポンプによる海水側の条件を踏まえて本系 統の除熱量を評価したところ、事故発生30日後の崩壊熱相当(約) <u>5.7MW</u>)を除熱できることを確認した。

3

価

びフ 量 除熱

参考5表 可搬熱交換器の除熱量評価条件

可搬熱交換器	淡水系	1次側入口温度	105°C
		1次側流量	m³/h(6 号炉)
			m³/h(7 号炉)
	海水系	海水温度	30°C
		海水流量	900m³/h

表4 可搬型熱交換器の除熱量評価条件

	冰水亚	1次側入口温度	100°C
可她刑劫六協职	<i>次</i> 小	1次側流量	 次側入口温度 100℃ 1次側流量 100m³/h 海水温度 32℃ 海水流量 300m³/h
可版空款父换奋	海山石	海水温度	32°C
	(毋小术	海水流量	300m³∕h

	F	島根原子力	発電所 2	号炉		備	考
		参考4表	圧力損失内	訳		・設備の相違	<u>ل</u>
除熱手段	(評価ル	- F)		2 号炉		【柏崎 6/7,	東海第二】
P1.44 1 124	流量	. ,		_ 3//			
2管・弁類圧力	損失	常設ライン					
		耐圧ホース					
	н	「版熱父換奋					
静水頭		水源		EL. 5778	;		
			(安全解析にま)	3ける事故	発生30日後のS/		
		注入先	P7K位)				
		1 - अस्ट					
圧刀差		 · · · · · · · · · ·		1.4m 2.9m			
				1. 5m			
システム抵	抗(圧力]損失)					
除熱量評値	Щ						
上述②の評	価結果	の通り. ī	可搬型格納容	器除熱	系の流量は		
/hじ/トが確/	保可能	であるこう	・から その	時の系統	************************************		
			. ~				
シル。 転伍友(中)ユ		キャニナ	エル・チャ	二十400 表面:	おお田の社会工		
計価余件は		一本に不り1	担りでめり、	り 版款	文換命の性能及		
大型送水ボ	ンプ車	による海7	K側の条件を	「踏まえ」	て本糸統の除熱		
を評価した	ところ	,事故発生	Ξ30日後の崩	壞熱相	当(<u>約3.9MW</u>)を	・設備の相違	
熱できるこ	とを確	認した。				【柏崎 6/7,	東海第二】
						崩壊熱の権	目違
参	<u> 考5</u> 君	長 可搬熱す	を換器の除熱	量評価約	<u>条件</u>	・設備の相違	<u>+</u>
可搬熱交換器	淡水系	1次			105℃	【柏崎 6/7,	東海第二】
		1	次側流量		m ³ /h		
	海水系	Ì	每水温度 		30°C		
		í	#小///.里		180m7n		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
可搬ポンプ 可搬ポンプ 105 ℃ 5/P 5/P 可搬熱交換器 5/P 00 m ³ /h (7号炉) 30 ℃ 900 m ³ /h	300m ³ /h 海水 ソープレッ ション ・チェンバ 可搬型熱交換器 可搬型熱交換器 可搬型熱交換器 100°C 100m ³ /h 可搬ポンプ	可搬ポンプ	
参考8図 可搬型格納容器除熱系の除熱量評価図	図 8 可搬型原子炉格納容器除熱系統の除熱量評価図	参考7図 可搬型格納容器除熱系の除熱量評価図	・設備の相違
以上の「①ポンプのNPSH評価」,「②流量評価」,「③除熱量 評価」の結果から,可搬型格納容器除熱系は事故発生30日後の崩 壊熱相当(約6.5MW)を除熱するための系統流量が確保可能なシス テムであることを確認した。 <具体的な手順の概要> (1)可搬型格納容器除熱系の概要 可搬ポンプ,可搬熱交換器を用いた可搬型格納容器除熱系の概 要を以下に示す。 <u>HPCFポンプB室(T.M.S.L-8200)のHPCF復水貯蔵槽側</u> <u>吸込逆止弁(B)</u> の上蓋 <u>及び弁体</u> を取り外し,上蓋フランジに耐熱 ホースが接続できる仮蓋を取り付け,その仮蓋に耐熱ホースを接 続する。	以上の「①ポンプの NPSH 評価」,「②流量評価」及び「③除熱 量評価」の結果から,可搬型原子炉格納容器除熱系統は事故後 30 日後の崩壊熱相当(約5.7WW)を除熱するための系統流量が確保 可能なシステムであることを確認した。 <具体的な手順の概要> (1)可搬型原子炉格納容器除熱系統の概要 可搬ポンプ,可搬型熱交換器を用いた可搬型原子炉格納容器除 熱系統の概要を以下に示す。 原子炉隔離時冷却系ポンプ室(EL4.0m)の <u>原子炉隔離時冷却</u> <u>系ポンプの入口逆止弁</u> の上蓋 <u>及び弁体</u> を取り外し,上蓋フランジ に耐熱ホースが接続できる仮蓋を取り付け,その仮蓋に耐熱ホー スを接続する。	以上の「①ポンプのNPSH評価」,「②流量評価」,「③除 熱量評価」の結果から,可搬型格納容器除熱系は事故発生30日後 の崩壊熱相当(約3.9MW)を除熱するための系統流量が確保可能な システムであることを確認した。 <具体的な手順の概要> (1)可搬型格納容器除熱系の概要 可搬ポンプ,可搬熱交換器を用いた可搬型格納容器除熱系の概 要を以下に示す。 <u>HPCSポンプ室(EL.1300)のHPCSポンプ復水貯蔵タンク</u> 水入口逆止弁の上蓋を取り外し,上蓋フランジに耐熱ホースが接 続できる仮蓋を取り付け,その仮蓋に耐熱ホースを接続する。	【柏崎 6/7,東海第二】 ・設備の相違 【柏崎 6/7,東海第二】 崩壊熱の相違 ・設備の相違 (前壊熱の相違 、設備の相違。 ま に、島根 2 号炉の本系統 は逆止弁に対して逆流 方向から流れるため、逆 止弁の弁体は閉状態で 流路が形成されること から、弁体の取り外しは 不要
<u>HPCF復水貯蔵槽側吸込逆止弁(B)</u> に取り付けた耐熱ホース を, <u>HPCFポンプB室前通路</u> に設置した可搬ポンプの吸込側フ ランジに連結し,可搬ポンプ吐出側フランジに取り付けた耐熱ホ ースを原子炉建屋1階大物搬入口(T.M.S.L.12300)に設置した可 搬熱交換器入口側フランジに連結する。また,B <u>系弁室</u> (T.M.S.L.12300)の残留熱除去系注入ライン洗浄水入口逆止弁 (B)の上蓋及び弁体を取り外し,上蓋フランジに耐熱ホースが接 続できる仮蓋を取り付け,その仮蓋に耐熱ホースを接続し,可搬	<u>原子炉隔離時冷却系ポンプの入口逆止弁</u> に取り付けた耐熱ホー スを, <u>原子炉隔離時冷却系ポンプ室</u> に設置した可搬ポンプの吸込 側フランジに連結し,可搬ポンプ吐出側フランジに取り付けた耐 熱ホースを原子炉建屋原子炉棟1階大物搬入口(EL.8.2m)に設 置した可搬型熱交換器入口側フランジに連結する。また, <u>低圧代</u> 替注水系(可搬型)の低圧代替注水系逆止弁(EL.20m)の上蓋及 び弁体を取り外し,上蓋フランジに耐熱ホースが接続できる仮蓋 を取り付け,その仮蓋に耐熱ホースを接続し,可搬型熱交換器出	<u>HPCSポンプ復水貯蔵タンク水入口逆止弁</u> に取り付けた耐熱 ホースを, <u>HPCSポンプ室</u> に設置した可搬ポンプの吸込側フラ ンジに連結し,可搬ポンプ吐出側フランジに取り付けた耐熱ホー スを原子炉建物1階大物搬入口(EL.15300)に設置した可搬熱交 換器の入口側フランジに連結する。また,原子炉建物1階 (EL.15300)のFLSR可搬式設備A-注水ライン逆止弁の上蓋 を取り外し,上蓋フランジに耐熱ホースが接続できる仮蓋を取り 付け,その仮蓋に耐熱ホースを接続し,可搬熱交換器出口側フラ	 ・設備の相違 【柏崎 6/7,東海第二】 系統構成の相違 ・設備の相違 【柏崎 6/7,東海第二】 系統構成の相違。また,島根2号炉の本系統

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
熱交換器出口側フランジに連結する。このように系統を構成する	ロ側フランジに連結する。	ンジに連結する。このように系統を構成することで、サプレッシ	は逆止弁に対して逆流
ことで,サプレッション・チェンバ・プール水を可搬ポンプ及び	このように系統を構成することで、サプレッション・プール水	<u>ヨン・チェンバのプール水</u> を可搬ポンプ及び可搬熱交換器を用い	方向から流れるため, 逆
可搬熱交換器を用いて原子炉圧力容器に注水することが可能とな	を可搬ポンプ及び可搬型熱交換器を用いて原子炉圧力容器に注水	て原子炉圧力容器に注水することが可能となる。可搬型格納容器	止弁の弁体は閉状態で
る。可搬型格納容器除熱系を構成する耐熱ホース等は,作業時の	することが可能となる。可搬型原子炉格納容器除熱系統を構成す	除熱系を構成する耐熱ホース等は、作業時の被ばく線量を考慮し	流路が形成されること
被ばく線量を考慮した配置に設置する。	る耐熱ホース等は、作業時の被ばく線量を考慮した配置に設置す	た配置に設置する。	から, 弁体の取り外しは
	る。		不要
なお,可搬型格納容器除熱系の使用にあたっては,サプレッシ	なお,可搬型原子炉格納容器除熱系統の使用に当たっては,汚	なお, 可搬型格納容器除熱系の使用にあたっては, サプレッシ	
<u>ョン・チェンバ・プール水</u> からの汚染水を通水する前に <u>復水移送</u>	<u>染したサプレッション・プール水</u> を通水する前に, <u>可搬型代替注</u>	<u>ョン・チェンバのプール水からの汚染水</u> を通水する前に <u>復水輸送</u>	
ポンプで非汚染水による水張りを実施し、可搬部位の健全性確認	水大型ポンプを用いて非汚染水による水張りを実施し、可搬部位	ポンプで非汚染水による水張りを実施し、可搬部位の健全性確認	
を行う。参考9図に系統水張りの概要図を示す。	の健全性確認を行う。図9.に系統水張りの概要図を示す。	を行う。参考8図に系統水張りの概要図を示す。	
また,可搬熱交換器の二次系については,屋外に大容量送水車	また,可搬型熱交換器の二次系については,屋外に <u>可搬型代替</u>	また、可搬熱交換器の二次系については、屋外に大型送水ポン	
とホースを配備して連結し, <u>大容量送水車</u> を起動することで海水	注水大型ポンプとホースを配備して連結し, 可搬型代替注水大型	<u>プ車とホースを配備して連結し、大型送水ポンプ車</u> を起動するこ	
を通水する。	ポンプを起動することで海水を通水する。	とで海水を通水する。	
系統水張りによる健全性確認が完了した後, <u>HPCFサプレッ</u>	系統水張りによる健全性確認が完了した後、原子炉隔離時冷却	系統水張りによる健全性確認が完了した後, <u>HPCSポンプト</u>	・設備の相違
<u>ションプール側吸込隔離弁(B)</u> を開操作し, <u>残留熱除去系</u> から原	<u>系ポンプのサプレッション・チェンバ側入口弁</u> を開操作し, <u>低圧</u>	<u>ーラス水入口弁</u> を開操作し, <u>低圧原子炉代替注水系</u> から原子炉圧	【柏崎 6/7,東海第二】
子炉圧力容器へ注水し循環することにより除熱する。	代替注水系(可搬型)から原子炉圧力容器へ注水し循環すること	力容器へ注水し循環することにより除熱する。	系統構成の相違
可搬ポンプ,可搬熱交換器を用いた可搬型格納容器除熱系の除	により除熱する。	可搬ポンプ,可搬熱交換器を用いた可搬型格納容器除熱系の除	
熱可能量は,事故発生30日後の崩壊熱「 <u>6.5MW</u> 」を上回る系統設計		熱可能量は,事故発生30日後の崩壊熱「約3.9MW」を上回る系統設	・設備の相違
とする。		計とする。	【柏崎 6/7】
系統を構成する機器の配置イメージを以下に示す。また,系統	系統を構成する機器の配置イメージを図_10_に示す。また、系	系統を構成する機器の配置イメージを <u>以下</u> に示す。また,系統	崩壊熱の相違
を構成する機器の仕様等は参考6表の通りである。	統を構成する機器の仕様等は表5_のとおりである。	を構成する機器の仕様等は参考6表の通りである。	
	RF#PD.sc/ RF#PERLER*OW F##ERE RF#ERE WERKER F##ERE WERK		
参考9図 復水補給水系を用いた系統水張り概要図	図9 可搬型代替注水大型ポンプを用いた系統水張り概要図	参考8図 復水輸送系を用いた系統水張り概要図	・設備の相違 【柏崎 6/7,東海第二】

炉	備考
幾器配置図	
後器配置図	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
			図 10-3 機器配置図 (3/5)	
			図 10-4 機器配置図 (4/5)	

~炉	備考		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
--------------------------------	---------------------	--------------	----
	図 10-5 機器配置図 (5∕5)		

伯酮利尔175元电// 07 7 5% (2011.12.20)()	東海第二発電所(2018.9.18 版)	島根原子力発電所 2号炉	備考
参考6表 可搬型格納容器除熱系の機器仕様	表5 可搬型格納容器除熱系の機器仕様	参考6表 可搬型格納容器除熱系の機器仕様	・設備の相違
構成機器 仕様等 備考 可搬機器 耐熱ホース(フ) レキシブルメタ 口径 150A ルホース) 圧力 1MPa 以上	構成機器 仕様等 備考 可搬機器 耐熱ホース(フレ	構成機器 仕様等 備考 可搬機器 可搬機器 耐熱ホース(フ) 口径 150A レキシブルメタ 圧力 1.6MPa ルホース) 温度 450℃	【柏崎 6/7,東海第二】
※弁接続部の仮 蓋含む 温度 350°C 可搬ポンプ 容量 約 90m³/h 全揚程 約 85m	キシブルメタルホ 口径 150A ース) 圧力 2.1MPa以上 ※弁接続部の仮蓋 温度 110℃ 含む 可搬ボンブ	※弁接続部の仮 日径 100A まで 蓋含む 日径 100A まで 加 正力 1.7MPa 100A: 可搬ポンプ 温度 450°C ~FLSR可搬 可搬ポンプ 容量 約60m³/h 全揚程 約86m 1000	
可搬熱交換器 6.5MW以上 6.5MW以上	谷重 約100m ³ /h 全揚程 約135m 可搬型熱交換器	可搬熱交換器 除熱量 3.9MW以上	
大容量送水車 容量 900m ³ /h 吐出圧力 1.25MPa		大型送水ポンプ 容量 1,800m³/h 車 世出圧力	
既設機器 (なりなどう) (なりためります)	可搬型代替注水大	1. 4MPa	
復水や近小ノノ 容量 125m ³ /h 全揚程 85m —	型ポンプ 容量約1,380m ³ /h 全揚程約135m	既設機器 仮水輸送ポンプ 容量 85m³/h 復水輸送ポンプ 容量 70m 個水輸送系	
※機器図は一般例を示すものである。 ※詳細設計に伴い機器仕様の変更が必要な場合は、仕様を変更する。	 ※機器図は一般例を示すものである。 ※詳細設計に伴い機器仕様の変更が必要な場合は、仕様を変更る。 	 ※機器図は一般例を示すものである。 更す ※詳細設計に伴い機器仕様の変更が必要な場合は、仕様を変更する。 	
(2)作業に伴う被ばく線量 炉心損傷により発生する汚染水はサプレッション・チェンバ・	(2)作業に伴う被ばく線量 炉心損傷で発生した汚染水はサプレッション・プール水中	(2)作業に伴う被ばく線量にあ 炉心損傷で発生した汚染水はサプレッション・プール水中にあ	
プール内にあるが, HPCFポンプBおよびHPCF復水貯蔵槽	るが, <u>原子炉隔離時冷却系</u> については,サプレッション・チ	ェン るが, <u>高圧炉心スプレイ系</u> については,サプレッション・チェン	・設備の相違
側吸込逆止弁(B)はサプレッションプール側隔離弁により常時隔	バ側のポンプ入口弁が通常時開となっているため、原子炉隔	<u>離時</u> バ側のポンプ入口弁が通常時開となっているため, <u>HPCSポン</u>	【柏崎 6/7】
離されているため直接汚染水に接することはない。	<u> 冷却糸ボンブ人口逆止弁</u> にはサブレッション・ブール水が流 ていることが考えられる。ただし、 <u>原子炉隔離時冷却系</u> につい は、運転している場合には炉心損傷を防止でき、運転が停止 後に炉心損傷に至ることが考えられる。このため、炉心損傷い ってサプレッション・プール水が汚染する段階では、原子炉「	人し <u>ブ復水貯蔵タンク水人口逆止弁</u> にはサブレッション・プール水が いて 流入していることが考えられる。ただし、 <u>高圧炉心スプレイ系</u> に した ついては、運転している場合には炉心損傷を防止でき、運転が停 によ 止した後に炉心損傷に至ることが考えられる。このため、炉心損 隔離 傷によってサプレッション・プール水が汚染する段階では、高圧	高圧注水系の第一水 源が島根2号炉はサプ レッション・チェンバで あるため,サプレッショ ン・チェンバ側の入口弁

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	<u>時冷却系</u> の系統内は流動がない状態であり,汚染したサプレッション・プール水が作業エリアに敷設されている配管系まで流入し	<u>炉心スプレイ系</u> の系統内は流動がない状態であり,汚染したサプ レッション・プール水が作業エリアに敷設されている配管系まで	は開 【柏崎 6/7. 東海第二】
	ないことも考えられる。	流入しないことも考えられる。	系統構成の相違
また.残留熱除去系注入ライン洗浄水入口逆止弁(B)は復水貯	また。低圧代替注水系(可搬型)は、代替淡水貯槽等を水源と	また、FLSR可搬式設備A-注水ライン逆止弁は低圧原子炉	・設備の相違
蔵槽を水源とする復水補給水系(以下 $MUWC$ という)で満たさ	する系統であり、低圧代替注水系逆止弁が直接汚染水に接するこ	代替注水槽を水源とする低圧原子炉代替注水系で満たされている	【柏崎 6/7. 東海第二】
れているため直接汚染水に接することはない。		ため直接汚染水に接することはない。	系統構成の相違
HPCFポンプB室内(T.M.S.L8200)におけるHPCF復水	■ 原子炉隔離時冷却系ポンプ室内(EL4.0m)における原子炉隔	│ │ HPCSポンプ室内(EL.1300)におけるHPCSポンプ復水貯	・設備の相違
貯蔵槽側吸込逆止弁(B)付近の雰囲気線量は、格納容器からの漏	離時冷却系ポンプ入口逆止弁付近の雰囲気線量は、原子炉格納容	蔵タンク水入口逆止弁付近の雰囲気線量は、格納容器からの漏え	【柏崎 6/7. 東海第二】
えいに起因する室内の空間線量率及び線源配管からの直接線によ	器からの漏えいに起因する室内の空間線量率及び線源配管からの	いに起因する室内の空間線量率及び線源配管からの直接線による	系統構成の相違
る線量率により約26.1mSv/h となる。「参考9-補足2]	直接線による線量率により約 20mSv/h となる。(参考 8-補足 1	線量率により約12.8mSv/h となる。「参考9-補足2〕	・評価結果の相違
	参照)		【柏崎 6/7】
			作業場所の線量率の
			相違
HPCF復水貯蔵槽側吸込逆止弁(B)への耐熱ホース接続作業		HPCSポンプ復水貯蔵タンク水入口逆止弁への耐熱ホース接	・資料構成の相違
については、準備作業、後片付けを含めて作業時間は約10 時間程		続作業については、準備作業、後片付けを含めて作業時間は約10	【東海第二】
度(5人1班で作業)と想定しており、遮蔽等の対策を行い、作		□ 時間程度(5人1班で作業)と想定しており、遮蔽等の対策を行	本項最終段落に記載
業員の交代要員を確保し、交代体制を整えることで実施可能であ		い、作業員の交代要員を確保し、交代体制を整えることで実施可	 ・設備の相違
a		能である。	【柏崎 6/7】
			系統構成の相違
<u> B 系弁室(T. M. S. L. 12300)</u> 内における <u>残留熱除去系注入ライン</u>	低圧代替注水系(可搬型)の低圧代替注水系逆止弁(EL.20m)	<u>原子炉建物1階(EL.15300)</u> における <u>FLSR可搬式設備A-</u>	・設備の相違
<u>洗浄水入口逆止弁(B)</u> 付近の雰囲気線量は、格納容器からの漏え	付近の雰囲気線量は、原子炉格納容器からの漏えいに起因する室	<u>注水ライン逆止弁</u> 付近の雰囲気線量は、格納容器からの漏えいに	【柏崎 6/7,東海第二】
いに起因する室内の空間線量率により <u>約12.8mSv/h</u> となる。〔参考	内の空間線量率及び線源配管からの直接線による線量率により約	起因する室内の空間線量率により <u>約3.3mSv/h</u> となる。 <u>〔参考9</u> -	系統構成の相違
9 一補足 2 〕	<u>20mSv/h</u> となる。(参考8-補足1参照)	植足2〕	・評価結果の相違
			【柏崎 6/7,東海第二】
			作業場所の線量率の
			相違
<u>残留熱除去系注入ライン洗浄水入口逆止弁(B)</u> への耐熱ホース		<u> FLSR可搬式設備A-注水ライン逆止弁への耐熱ホース接続</u>	・資料構成の相違
接続作業については、準備作業、後片付けを含めて作業時間は約		作業については, 準備作業, 後片付けを含めて作業時間は約10 時	【東海第二】
10 時間程度(5人1班で作業)と想定しており,遮蔽等の対策を		間程度(5人1班で作業)と想定しており,遮蔽等の対策を行い,	本項最終段落に記載
行い、作業員の交代要員を確保し、交代体制を整えることで実施		作業員の交代要員を確保し、交代体制を整えることで実施可能で	・設備の相違
可能である。		ある。	【柏崎 6/7, 東海第二】
			系統構成の相違
原子炉建屋大物搬入口における可搬熱交換器配備箇所の雰囲気	原子炉建屋原子炉棟の大物搬入口における可搬型熱交換器設置	原子炉建物大物搬入口における可搬熱交換器配備箇所の雰囲気	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
線量は、格納容器からの漏えいに起因する室内の空間線量率によ	箇所(EL.8.2m)の雰囲気線量は、原子炉格納容器からの漏えいに	線量は、格納容器からの漏えいに起因する室内の空間線量率によ	
り <u>約21.7mSv/h</u> となる。〔参考9-補足2〕	起因する室内の空間線量率及び線源配管からの直接線による線量	り <u>約5.2mSv/h</u> となる。 <u>〔参考9-補足2〕</u>	・評価結果の相違
	率により <u>約13mSv/h</u> となる。 <u>(参考8-補足1参照)</u>		【柏崎 6/7,東海第二】
			作業場所の線量率の
			相違
可搬熱交換器への耐熱ホース接続作業については,準備作業,	これらの作業については、準備作業、後片付けを含めて作業時	可搬熱交換器への耐熱ホース接続作業については,準備作業,	
後片付けを含めて作業時間は約10時間程度(5人1班で作業)と	間は, <u>約13時間</u> 程度(<u>6人1班</u> で作業)と想定しており,必要	後片付けを含めて作業時間は約10時間程度(5人1班で作業)と	・運用の相違
想定しており、遮蔽等の対策を行い、作業員の交代要員を確保し、	に応じて遮蔽等の対策を行い,作業員の交代要員を確保し,交代	想定しており、遮蔽等の対策を行い、作業員の交代要員を確保し、	【東海第二】
交代体制を整えることで実施可能である。	体制を整えることで実施可能である。	交代体制を整えることで実施可能である。	作業時間,作業人数の
			相違
(3)フランジ部からの漏えい発生時の対応	(3)フランジ部からの漏えい発生時の対応	(3)フランジ部からの漏えい発生時の対応	
系統のフランジ部からの漏えい発生等の異常を検知した場合	系統のフランジ部からの漏えい発生等の異常を検知した場合	系統のフランジ部からの漏えい発生等の異常を検知した場合	
は、直ちに可搬ポンプを停止し復水移送ポンプからの非汚染水に	は、直ちに可搬ポンプを停止し、可搬型代替注水大型ポンプから	は、直ちに可搬ポンプを停止し復水輸送ポンプからの非汚染水に	
よりフラッシングを実施する。	の非汚染水によりフラッシングを実施する。	よりフラッシングを実施する。	
フラッシングにより現場へのアクセスが可能になった後、増し	フラッシングにより現場へのアクセスが可能になった後、増し	フラッシングにより現場へのアクセスが可能になった後、増し	
締め等の補修作業を実施する。	締め等の補修作業を実施する。	締め等の補修作業を実施する。	
非汚染水によるファッシングの糸統イメージを以下に示す。	非汚染水によるファッシングの糸統イメージを <u>図11</u> に示す。	非汚染水によるファッシングの糸統イメージを以下に示す。	
Image: State of the state	RPUTURE RPUTURE RPUTURE RPUTURE Image: Rest of the set		
参考12図 復水補給水系からの洗浄水ラインを使用したフラッシ	図 11 可搬型代替注水大型ポンプを用いたフラッシング	参考11図 復水補給水系からの洗浄水ラインを使用したフラッシ	・設備の相違
ング		<u>ング</u>	【柏崎 6/7,東海第二】
I.残留熱除去系Bの循環運転で使用した弁を全て全閉とする。	I. 可搬型原子炉格納容器除熱系統による循環運転で使用した弁 を全て全関する	I. 可搬型格納容器除熱系の循環運転で使用した弁を全て全閉 とする	
■ 建留執除去系Bの洗海水弁を開損作1 洗海水油止金接続の		 □ 「○」 ○ □ 高圧 「「□」 ○ □ □ 高圧 「□」 ○ □ □ 二 □ □ □ □ □ □ <	 ・設備の相違
耐熱ホース及び可搬ポンプを逆流し、HPCFポンプB最小流量	正代替注水系逆止弁接続の耐熱ホース及び可搬ポンプを逆流	RHR注水弁を開操作し、復水輸送系の水が耐勢ホース	【柏崎 6/7. 東海第一】
バイパス弁を開操作することで、サプレッション・チェン	し、原子炉隔離時冷却系ミニフロー弁を開操作することで	可搬ポンプ及び可搬熱交換器を経由し、原子炉圧力容器へ	フラッシング系統の

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
<u>バ・プール</u> へ流入 <u>し</u> , 系統をフラッシングする		<u>サプレッション・チェンバ</u> へ流入 <u>し</u> ,系統をフラッシングす	流入することで、系統をフラッシングする	相違
		Z _{em}		
Ⅲ. <u>サプレッション・チェンバ・プール水位</u> に影響しない範囲で,	Ш.	サプレッション・プール水位が格納容器ベントライン水没レ	Ⅲ. <u>サプレッション・チェンバのプール水位</u> に影響しない範囲	
空間線量が下がるまでフラッシングを実施する		<u>ベルに達</u> しない範囲で,空間線量が下がるまでフラッシング	で、空間線量が下がるまでフラッシングを実施する	
		を実施する _。		
Ⅳ. フラッシングにより漏えいフランジ近辺の空間線量が十分	IV.	フラッシングにより漏えいフランジ近辺の空間線量が十分低	Ⅳ. フラッシングにより漏えいフランジ近辺の空間線量が十分	
低下した場合,漏えいフランジ部にアクセスする		下した場合,漏えいフランジ部にアクセスする _{em}	低下した場合,漏えいフランジ部にアクセスする	
V. 漏えいフランジの増し締めを行い, 系統を復旧する	ν.	漏えいフランジの増し締めを行い,系統を復旧する _{sm}	V. 漏えいフランジの増し締めを行い,系統を復旧する	
2.可搬熱交換器によるSPCUを用いた格納容器除熱				・設備の相違 【柏崎 6/7】
<実現可能性>				島根2号炉は SPCU 無
格納容器ベントによる格納容器除熱を実施している場合、残留				L
熱除去系による格納容器除熱機能の回復を実施する。残留熱除去				
系の機能回復が長期間実施できない場合,可搬設備を用いた可搬				
型格納容器除熱系を構築する。				
また,可搬型格納容器除熱系に加え,サプレッション・チェン				
バ・プールを水源として運転可能なSPCUポンプを使用する除				
熱系を構築する。除熱設備として可搬熱交換器を使用し、残留熱				
除去系から原子炉圧力容器へ注水し循環することにより除熱す				
る。				
「SPCUポンプ吐出弁」に耐熱ホースを接続し,原子炉建屋				
搬入口に設置する可搬熱交換器と接続する構成とする。可搬熱交				
換器の出口側については残留熱除去系の原子炉注水配管にある				
「残留熱除去系注入ライン洗浄水入口逆止弁(B)」と耐熱ホース				
で連結する構成とする。これらの構成で、SPCUポンプにより				
サプレッション・チェンバ・プール水を可搬熱交換器に送水し,				
そこで除熱した水を原子炉圧力容器に注水する系統を構築する。				
なお、可搬熱交換器の二次系については、大容量送水車により海				
水を通水できる構成とする。				
SPCU系はサプレッション・チェンバ・プール水を浄化する				
ことが目的であり、通常運転時及び事故時には停止状態で待機し				
ている。さらに、待機時は復水貯蔵槽を水源とした系統構成とな				
っているため、サプレッションプール内の汚染水が流入する可能				
性は無い。				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
RT-fP/& Resultion REFERENCE RE			
参考13 図 SPCU による格納容器除熱系の系統概要図 参考7 表 SPCU による格納容器除熱系構築に必要な作業			
作業 所要期間 SPCUポンプの吐出弁と残留熱除去系洗 浄水ラインの逆止弁の上蓋等取外し,耐熱ホ ース取付 これらの作業は、1ヵ月程度で準備可能と 可搬熱交換器準備 通水試験等			
< 効果> 除熱量は事故発生30 日後の崩壊熱「6.5MW」を上回ることか ら「①可搬型格納容器除熱系による格納容器除熱」の参考2~4 図 にて示したものと同等の除熱効果が得られる。			
<系統成立性評価> SPCUによる格納容器除熱系は,事故発生30日後の崩壊熱相			
当(約6.5MW)を除熱できる設計とし、本章ではその系統成立性評価を示す。評価にあたっては「①SPCUポンプのNPSH(Net Positive Suction Head)評価」で原子炉建屋地下3階に設置され			
ているSPCUポンプの必要NPSH が系統圧力損失を考慮して有 効NPSH を満足することを確認する。次に「②流量評価」で系統圧 力損失な考慮して、本系統で確保可能な系統液量な評価」、その			
流量で可搬熱交換器による除熱可能な除熱量を「③除熱量評価」 で示し、本系統が事故発生30日後の崩壊熱相当(約6.5MW)を除			
熱できることを確認し、系統成立性を示す。 ① SPCUポンプのNPSH 評価			
ボンブがキャビテーションを起こさす正常に動作するために は、流体圧力や吸込配管圧力損失等により求められる「有効NPSH」 が、ポンプの「必要NPSH」と同等かそれ以上であること(有効NPSH>			
必要NPSH)を満足する必要があり、有効NPSH と必要NPSH を比較 する			
NPSH 評価によりポンプの成立性を確認する。本評価では参考14 図の系統構成を想定し、格納容器内圧力(S/C)、サプレッシ			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
ョン・チェンバ・プール水位とSPCUポンプ軸レベル間の水頭			
差,吸込配管圧力損失により求められる有効NPSH と,SPCUポ			
ンプの必要NPSHを比較することで評価する。有効NPSH の評価式は			
以下の通りであり,評価結果は参考8表に示す通り,6号炉及び7			
号炉ともにポンプのNPSH 評価は成立する。			
 有効 NPSH = Pa - Pv + H - ΔH Pa : 木源気相部の圧力[m] Pv : ポンプ入口温度での飽和蒸気圧力[m] H : 静水頭 (水源水位~ポンプ) [m] ΔH : ポンプ吸込ラインの圧力損失[m] 参考14 図 S P C U による格納容器除熱系のNPSH 評価 			
参考8 表 NPSH 評価結果			
項目 6号炉 7号炉 設定根拠			
Pa サブレッション・チェンバ圧力 10.3m 10.3m 保守的に大気圧 (OMPa[gage]) とする			
(水頭換算値) (水頭換算値) Pv SPCU ポンプ入口温度 12.9m 52全解析における事故発生 30 日後の			
での飽和蒸気圧(水頭 S/P 水温 105℃での飽和蒸気圧			
換算値) 13.2m 13.2m た全観析における裏故発生 30.日後の			
11. 3.1 小位 2.3 (0 小び) 13.2 m 15.2 m			
差 ンプ軸レベルは原子炉建屋地下3階床			
上 1m を想定して.M.S.L7200 とす る。			
ΔH 吸込配管圧損 m ³ /h 時の SPCU ストレーナ〜SPCU			
(SPCU配管) - ポンプ間の配管圧損 - パル 時の SPCU スレル - 中のビター			
SPUUストレーナ圧損 に余裕を見込んだ圧損			
合計 配管,ストレーナ圧損合計			
有効 NPSH Pa-Pv+H-ΔH			
必要 NPSH SPC0 ホシブの必要 NPSH 成立性評価 ○ ○ ○			
(略語) T. M. S. L. :東京湾平均海面			
② 法导評価			
SPCII ポンプ及び可搬熱交換器を用いたSPCII ポンプに上ろ格納			
容器除熱系の系統流量は、後述する評価により 3/h 以上確保			
可能であることを確認している 本音でけ その評価結果につい			
て示す			
、イン・ 流量確認方法としてけ SPCII ポンプの「歴む曲線」(埋在レ法)			
単い因が回/ C 参 つ10 回い不凡時限 C 恋庄 しに物ロワーノ ヘノム 抵抗曲線 - レのな占がポンプの動作占したてたみ ポンプの動作			
131ル四林」とい文点がホイノい動作品となるため、ホイノの動作			
品の加重を帷認する。その結果は参考15 図及の参考16 図に示す			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
通りであり,m ³ /h 以上確保可能であることを確認した。参考			
として,6 号炉及び7 号炉の系統流量 m³/h 時の圧力損失を参			
考9 表に示す。			
参考15 図 SPCUによる格納容器除熱系の流量評価結果(6 号			
炉)			
参考16 図 SPCUによる格納容器除熱系の流量評価結果(7 号			
炉)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
参考9 表 圧力損失内訳			
除熱手段(評価ルート) 6 号炉 7 号炉			
流量			
可搬熱交換器			
静水頭 水源 T. M. S. L. 6000 T. M. S. L. 6000			
(安全解析における (安全解析における 事物発生 20 日後の 事物発生 20 日後の			
事成先生の日後の「事成先生30日後の」 S/P 水位) S/P 水位)			
注水先			
圧力差 水源 0.014MPa 0.014MPa 注水生 0.12MPa 0.12MPa			
11. 3m 11. 3m			
システム抵抗			
③ 除熱量評価			
上述②の評価結果の通り, SPCU による格納容器除熱系の流量			
は,6号炉及び7号炉ともに			
m ³ /h 以上が確保可能であることから, m ³ /h 時の系統の			
除熱量を評価した。評価条件は参考10表に示す通りであり、可搬			
熱交換器の性能及び大容量送水車による海水側の条件を踏まえて			
本系統の除熱量を評価したところ,事故発生30 日後の崩壊熱相当			
(約6.5MW)を除熱できることを確認した。			
参考10 表 可搬熱交換器の除熱量評価条件			
可搬熱交換器 淡水系 1次側入口温度 105℃			
1 次側流量 m ³ /h			
海水系 海水温度 30°C 海水流量 900m³/h			
SPCUポンプ			
m ³ /h 海水			
(S/P) ↓ Hx Hx ↓ 大容量送水車			
900 m ³ /h 可搬勢交換哭			
以上ッシュ しかイノッハIFSE 計画」、「必加重計画」、「③际熱重評 価」の結果から、SDCIIにたて故純宏思吟類では重要なたの。日後			
「Ш」の柏木がら、SFUUによる俗酌谷荷际款がは事政先生30日復 の出境教力业(約6 SMW)な除教士スための変体法具が使用可能的			
い用家然作当(承10.0MW)を际然りつにのの未成孤重が確体可能な システムでなることな確認した			
マヘテムにのることと推認した。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
<具体的な手順の概要>			
(1) 可搬熱交換器によるSPCUを用いた格納容器除熱系概要			
可搬熱交換器によるSPCUを用いた格納容器除熱手順の概要			
を以下に示す。			
S P C U ポンプ室(T.M.S.L8200) 内のS P C U ポ			
ンプ吐出弁及びB 系弁室(T.M.S.L.12300)内の残留熱除去系注			
入ライン洗浄水入口逆止弁(B)のボンネット及び弁体を取り外			
し、ボンネットフランジに耐熱ホースが接続できる仮蓋を取り付			
け、その仮蓋に耐熱ホースを接続する。それぞれの箇所から、原			
子炉建屋1階大物搬入口(T.M.S.L.12300)に配置した可搬熱交換			
器出入口側フランジに連結する。このように系統を構成すること			
で、サプレッション・チェンバ・プール水をSPCUポンプ及び			
可搬熱交換器を用いて原子炉圧力容器に注水することが可能とな			
る。可搬設備を連結する耐圧ホース等は、作業時の被ばく線量を			
考慮した配置に設置する。			
なお,本系統の使用にあたっては,サプレッション・チェンバ・			
プール水からの汚染水を通水する前に復水移送ポンプで非汚染水			
による水張りを実施し、可搬部位の健全性確認を行う。参考18 図			
に系統水張りの概要図を示す。			
また、可搬熱交換器の二次系については、屋外に大容量送水車			
とホースを配備して連結し、大容量送水車を起動することで海水			
を通水する。			
系統水張りによる健全性確認が完了した後、SPCUサプレッ			
ションプール側吸込第一,第二隔離弁を開操作し,残留熱除去系			
から原子炉圧力容器へ注水し循環することにより除熱する。			
可搬熱交換器を用いたSPCUポンプによる除熱可能量は、事			
故発生30 日後の崩壊熱「6.5MW」を上回る。			
系統を構成する機器の配置イメージを以下に示す。また、系統			
を構成する機器の仕様等は参考11 表のとおりである。			
参考18 図 復水補給水系を用いた系統水張り概要図			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
参考19 図 原子炉建屋地下3階 機器配置図(7 号炉の例)			
参考20 図 原子炉建屋地上1階 機器配置図(7 号炉の例)			

柏崎刈	羽原子力発電展	所 6/7号炉 (20	017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
参考	11 表 SPCU k	こよる格納容器除熱系	の機器仕様			
構成機界			備考	1		
可搬機器	1714 4		5° 890			
耐熱ホース(フ		в	н			
レキシブルメタ	口径 150A		<u></u>			
ルホース) ※弁接続部の仮	圧力 IMPa 以上 温度 350℃					
蓋含む		H	÷			
可搬熱交換器						
	除熱量 6.5MW 以上					
大容量送水車						
	容量 900m ³ /h					
	吐出圧力					
	1.25MPa					
既設機器						
SPCUポンプ	安县 050.30		サプレッションプー			
	容量 250m ⁻ /n 全揚程 90m		ル神化赤			
復水移送ポンプ			復水補給水系			
	容量 125m ³ /h	-				
	全揚程 85m					
※機器図は一般※詳細設計に伴	例を示すものである い機器仕様の変更な		-3.			
(0) (左梁)	マムにこうせいぞくく	泊 目.				
(2) 作来(に) 把作(に作り彼はくれ	尿里				
炉心損傷(こより発生す	る汚染水はサノレツン	/ヨン・ナエンハ・			
フール内にる	あるが, SP	CUホンフおよびSF	アビリホンフ吐出弁	2		
はサプレッ	ションプール	則隔離弁2個により隔	帰離されているため			
直接汚染水は	こ接すること	はない。				
また,残日	留熱除去系注)	入ライン洗浄水入口迫	逆止弁(B)は復水貯			
蔵槽を水源。	とするMUW	C系の水で満たされて	こいるため直接汚染			
水に接する、	ことはない。					
SPCIE	ポンプ室内 (τ	、M S I -8200)にたい	オスSPCUポンプ	$\hat{\mathcal{T}}$		
中出金付近(、、、王口(I D	1 格納容哭からの漏	, ここて ここれ マク 属えいに 起因する 宝	3		
小の空間線も	- 赤山へ脉重! 量率及び線源	、 11/11/17/11/2000 個語をおいていていていていていていていていていていていていていていていていていていて	この線量率により約	-		
22.8 mSv/h	となる。「参	考9-補足2]				
SPCU	ポンプ吐出弁・	への耐熱ホース接続作	「業については、進			
					1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
備作業,後片付けを含めて作業時間は約10 時間程度(5 人1 班で			
作業)と想定しており、遮蔽等の対策を行い、作業員の交代要員			
を確保し、交代体制を整えることで実施可能である。			
B系弁室 (T.M.S.L.12300) 内における残留熱除去系注入ライン			
洗浄水入口逆止弁(B)付近の雰囲気線量は、格納容器からの漏え			
いに起因する室内の空間線量率により約12.8mSv/h となる。〔参			
考9-補足2〕			
残留熱除去系注入ライン洗浄水入口逆止弁(B)への耐熱ホース			
接続作業については、準備作業、後片付けを含めて作業時間は約			
10 時間程度(5人1班で作業)と想定しており, 遮蔽等の対策を			
行い,作業員の交代要員を確保し,交代体制を整えることで実施			
可能である。			
原子炉建屋大物搬入口における可搬熱交換器配備箇所の雰囲気			
線量は、格納容器からの漏えいに起因する室内の空間線量率によ			
り約21.7 mSv/h となる。〔参考9-補足2〕			
可搬熱交換器への耐熱ホース接続作業については,準備作業,			
後片付けを含めて作業時間は約10 時間程度(5 人1 班で作業)と			
想定しており, 遮蔽等の対策を行い, 作業員の交代要員を確保し,			
交代体制を整えることで実施可能である。			
(3)フランジ部からの漏えい発生時の対応			
系統のフランジ部からの漏えい発生等の異常を検知した場合			
は、直ちにSPCUポンプを停止し復水移送ポンプからの非汚染			
水によりフラッシングを実施する。			
フラッシングにより現場へのアクセスが可能になった後、増し			
締め等の補修作業を実施する。			
非汚染水によるフラッシングの系統イメージを以下に示す			
原子何建築			
■ 日本			
麥 考 21 凶 復 水 備 結 水 糸 か ら の 洗 浄 水 フ イ ン を 使 用 し た フ フ ッ シ			
ンク			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
I. 残留熱除去系Bの循環運転で使用した弁を全て全閉とす			
る。 			
II. 残留熱除去系Bの洗浄水弁及びSPCUサプレッションプ			
ール戻り弁を開操作し、洗浄水逆止弁接続の耐熱ホース及			
びSPCUポンプの吐出ラインからサプレッション・チェ			
ンバ・プールに流入することで系統をフラッシングする			
III. サプレッション・チェンバ・プール水位に影響しない範囲			
で、空間線量が下がるまでフラッシングを実施する			
IV. フラッシングにより漏えいフランジ近辺の空間線量が十分			
低下した場合,漏えいフランジ部にアクセスする			
V. 漏えいフランジの増し締めを行い,系統を復旧する			
〔参考9-補足1〕長期安定性の維持のためにFPCと <u>CUW熱</u>		〔参考9-補足1〕長期安定性の維持のためにFPCと <u>CUW補</u>	・設備の相違
交換器使用の可能性について		助熱交換器使用の可能性について	【東海第二】
			東海第二は,長期安定
			冷却手段として, 可搬型
			除熱系統を説明
			【柏崎 6/7】
			系統構成の相違
長期安定性の維持のためにFPC熱交換器又は <u>CUW熱交換器</u>		長期安定性の維持のためにFPC熱交換器又は <u>CUW補助熱交</u>	・設備の相違
による格納容器除熱が可能であるかの検討を行った。ただし, F		<u>換器</u> による格納容器除熱が可能であるかの検討を行った。ただし,	【柏崎 6/7】
PC熱交換器については、これを用いて格納容器除熱を実施する		FPC熱交換器については、これを用いて格納容器除熱を実施す	系統構成の相違
ラインを構成することで使用済燃料プールの冷却が行えなくなる		るラインを構成することで燃料プールの冷却が行えなくなるた	
ため、格納容器除熱としては使用しないこととする。なお、FP		め,格納容器除熱としては使用しないこととする。なお,FPC	
C熱交換器を用いて <u>サプレッション・チェンバ・プール水</u> を除熱		熱交換器を用いてサプレッション・チェンバのプール水を除熱す	
するためには、FPCポンプを使用する必要があるが、FPCポ		るためには、FPCポンプを使用する必要があるが、FPCポン	
ンプは原子炉建屋地上2 階に設置されており、水源であるサプレ		プは原子炉建物中2階に設置されており、水源であるサプレッシ	
<u> ジション・チェンバ・プール</u> とのレベル差が大きく,ポンプNPSH		<u>ヨン・チェンバ</u> とのレベル差が大きく,ポンプNPSH評価が成	
評価が成立しないため、使用は困難と考えている。一方で、 <u>CU</u>		立しないため、使用は困難と考えている。一方で、 <u>CUW補助熱</u>	・設備の相違
W熱交換器による格納容器除熱手段については系統成立性が確認		交換器による格納容器除熱手段については系統成立性が確認でき	【柏崎 6/7】
できたため使用可能と判断した。詳細の成立性評価について以下		たため使用可能と判断した。詳細の成立性評価について以下に示	系統構成の相違
に示す。		す。なお, CUW非再生熱交換器は原子炉補機冷却系の常用負荷	・設備の相違
		に接続されているため、より実現可能性の高い格納容器除熱系と	【柏崎 6/7】
		して非常用負荷に接続されているCUW補助熱交換器を用いた系	系統構成の相違
		統を検討する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(1)代替原子炉補機冷却系を用いたCUW系による原子炉除熱		(1)原子炉補機代替冷却系を用いたCUW系による原子炉除熱	
〈実現可能性〉		〈実現可能性〉	
CUW系は通常運転中に原子炉冷却材の浄化を行う系統であ		CUW系は通常運転中に原子炉冷却材の浄化を行う系統であ	
り,重大事故等時に原子炉水位の低下(レベル2)により隔離状		り,重大事故等時に原子炉水位の低下(レベル3)により隔離状	
態になる。		態になる。	
また、通常は原子炉補機冷却系を冷却水として用いているが、		また,通常は原子炉補機冷却系を冷却水として用いているが,	
本除熱手段では代替原子炉補機冷却系を用いることで冷却水を確		本除熱手段では原子炉補機代替冷却系を用いることで冷却水を確	
保する。		保する。	
耐熱ホース等はCUW系では使用する必要が無く, <u>手動弁</u> によ		耐熱ホース等はCUW系では使用する必要がなく, <u>弁操作</u> によ	・設備の相違
る系統構成のみで運転可能である。		る系統構成のみで運転可能である。	【柏崎 6/7】
			島根2号炉の CUW 系
			による原子炉除熱系の
			弁は,手動弁,電動弁及
			び空気作動弁で構成さ
			れる
CUW系は原子炉圧力容器が水源であり、CUWポンプの吸込		CUW系は原子炉圧力容器が水源であり、CUW補助ポンプは	・設備の相違
み圧力を確保するため原子炉水位が吸込配管である原子炉停止時		原子炉圧力が低圧時にも冷却材の循環を行うことが可能である	【柏崎 6/7】
冷却モードの取り出し配管高さ以上(事故時は原子炉水位低「レ		が、大LOCA事象のように原子炉水位を十分に確保できない場	島根2号炉は原子炉
		合は運転することができない。	低圧時にも循環運転可
原子炉水位「NWL」以上としている)に十分に確保されている			能なCUW補助ポンプ
ことが必要である。そのため、大LOCA事象のように原子炉水			を設置している。ポンプ
位を十分に確保できない場合は運転することができない。			部とモータ部をカップ
さらに、CUWポンプは電動機とポンプが一体型のキャンドモ			リングで連結するポン
ーータポンプであるため,通常運転中は制御棒駆動系から電動機に			プであり,パージ水は不
			要
制御棒駆動系からのパージ水が必要となる。制御棒駆動系からの			
パージ水供給が不可能な場合は、補給水系等による代替パージ水			
を供給する手段を整えることによりCUW系による原子炉除熱を			
実施することができる。			
		CUW系による原子炉除熱の条件を満たした上で,原子炉補機	
CUW系による除熱可能量は事故発生30日後の崩壊熱「6.5MW」を		代替冷却系を用いたCUW系による除熱可能量は事故発生30日後	
上回る。		の崩壊熱「約3.9MW」を上回る。	・設備の相違
			【柏崎 6/7】
			崩壊熱の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 25
N 子 P Y W W W W W 子 P Y W W W W W T Y W W W W W T Y W W W W W T Y W W W W W T Y W W W W W T Y W W W W W T Y W W W W W T Y W W W W T Y W W W W W T Y W W W W T Y W W W W T Y W W W W T Y W W W W T Y W W W W W T Y W W W W W T Y W W W W T Y W W W W T Y W W		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
図2 代替原子炉補機冷却系(CUW除熱ライン)系統概要図(7 号		図2 原子炉補機代替冷却系(CUW除熱
<u>炉の例)</u>		
<効果>		<効果>
除熱量は事故発生30日後の崩壊熱「 <u>6.5MW</u> 」を上回ることから		除熱量は事故発生30日後の崩壊熱「約 <u>3.</u>
「1. 可搬型格納容器除熱系による格納容器除熱」の参考2~4図		「1. 可搬型格納容器除熱系による格納容
にて示した同等の除熱効果が得られる。		図にて示した同等の除熱効果が得られる。
<系統成立性評価>		<系統成立性評価>
<u>代替原子炉補機冷却系</u> を用いたCUW系による原子炉除熱は,		原子炉補機代替冷却系を用いたCUW系
事故発生30日後の崩壊熱相当(約6.5MW)を除熱できることとし、		事故発生30日後の崩壊熱相当(<u>約3.9MW</u>)を
本章ではその系統成立性評価を示す。評価にあたっては「① <u>CU</u>		本章ではその系統成立性評価を示す。評価
<u>Wポンプ</u> のNPSH(Net Positive Suction Head)評価」で原子炉建屋		<u>W補助ポンプ</u> のNPSH(Net Positive Suc
地下3階に設置されている <u>CUWポンプ</u> の必要NPSHが系統圧力損		子炉建物地下1階に設置されている <u>CUW</u>
失を考慮して有効NPSHを満足することを確認する。次に「②流量		SHが系統圧力損失を考慮して有効NPS
評価」で系統圧力損失を考慮して、本系統で確保可能な系統流量		認する。次に「②流量評価」で系統圧力損
を評価する。このとき、 <u>CUWポンプ流量</u> については基本的に通		で確保可能な系統流量を評価する。このと
常運転時と使用条件が変わらないため定格流量は確保可能であ		については基本的に通常運転時と使用条件
り、改めて評価する必要はない。一方で、従来流路として考慮し		流量は確保可能であり、改めて評価する必
ていなかった常用系ラインを通水することとなる代替原子炉補機		来流路として考慮していなかった常用系ラ
<u>冷却水ポンプ</u> については流量評価を行い,その流量で <u>代替原子炉</u>		なる原子炉補機代替冷却水ポンプについて
補機冷却系による除熱可能な除熱量を「③除熱量評価」で示し,		の流量で原子炉補機代替冷却系による除熱
本系統が事故発生30日後の崩壊熱相当(約6.5MW)を除熱できるこ		熱量評価」で示し、本系統が事故発生30日
とを確認し、系統成立性を示す。		<u>3.9MW</u>)を除熱できることを確認し,系統成
① <u>CUWポンプ</u> のNPSH評価		① <u>CUW補助ポンプ</u> のNPSH評価
ポンプがキャビテーションを起こさず正常に動作するために		ポンプがキャビテーションを起こさず正

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考	
は、流体圧力や吸込配管圧力損失等により求められる「有効NPSH」		は、流体圧力や吸込配管圧力損失等により求められる「有効NP	系統構成の相違	
が,ポンプの「必要NPSH」と同等かそれ以上であること(有効NPSH≧		SH」が、ポンプの「必要NPSH」と同等かそれ以上であるこ		
必要NPSH)を満足する必要があり、有効NPSHと必要NPSHを比較す	と(有効NPSH≧必要NPSH)を満足する必要があり、有効			
るNPSH評価によりポンプの成立性を確認する。本評価では図3の系		NPSHと必要NPSHを比較するNPSH評価によりポンプの		
統構成を想定し,原子炉圧力,原子炉水位と <u>CUWポンプ</u> 軸レベ		成立性を確認する。本評価では図3の系統構成を想定し、原子炉	・設備の相違	
ル間の水頭差,吸込配管圧力損失により求められる有効NPSHと,		圧力,原子炉水位と <u>CUW補助ポンプ</u> 軸レベル間の水頭差,吸込	【柏崎 6/7】	
<u>CUWポンプ</u> の必要NPSHを比較することで評価する。有効NPSHの		配管圧力損失により求められる有効NPSHと、 <u>CUW補助ポン</u>	系統構成の相違	
評価式は以下の通りであり、評価結果は表1に示す通り、6号炉及		<u>プ</u> の必要NPSHを比較することで評価する。有効NPSHの評		
び7号炉ともにポンプのNPSH評価は成立する。		価式は以下の通りであり、評価結果は表1に示す通り、ポンプの		
		NPSH評価は成立する。		
f効 NPSH = Pa - Pv + H - ΔH Pa: 水源気相部の圧力[m] Pv: ポンプ入口温度での飽和蒸気圧力[n] H: 静水頭 (水源水位~ポンプ) [m] ΔH: ポンプ吸込ラインの圧力損失[m] 図3 CUW系による原子炉除熱のNPSH 評価		有効 NPSH=Pa-Pv+H-AH Pa: 水源気相部の圧力[m] Pv: ポンプ入口温度での飽和蒸気圧力[m] H: ポンプ吸込ラインの圧力損失[m] AH: ポンプ吸込ラインの圧力損失[m] 図3 CUW系による原子炉除熱のNPSH評価	・設備の相違 【柏崎 6/7】	
表1 NPSH評価結果		<u>表1 NPSH評価結果</u>	・設備の相違	
項目 6号炉 7号炉 設定根拠		項目 2号炉 設定根拠 Pa 原子炉 よう知知になっていた。	【柏崎 6/7】	
Pa 原子炉圧力 44.9m 原子炉減圧後の圧力(0.34MPa)の水頭 換算値		Pa 原目が出り Pa 13.2m 安主牌がにおりる事政発生3 0日後の原子炉圧力(0.028MP)		
Pv CUWポンプ入口温 2.7m 2.7m ポンプ入口温度彩 ℃に余裕を見て		a)の水頭圧換算値		
度での飽和蒸気圧(水 66℃とした場合の飽和蒸気圧		Pv CUW補助ボンブ入口温 12.0m 安全解析における事故発生 度での飽和蒸気圧力(水) 30日後の原子炉冷却材温度		
現典昇順) H 原子炉水位とCUW 原子炉水位は「原子炉水位低(レベル		頭圧換算) (105℃)の飽和蒸気圧		
ボンプ軸レベル間の 3) (T. M. S. L. 17800)とし, CUW ボンプ		H 原子炉水位とCUW補助 原子炉水位は「原子炉水位低		
水頭差 軸レベルは 6 号炉は T. M. S. L.		ホンプ軸レベル間の水頭 差 とし、ポンプ軸レベルはEL。		
とし,7号炉はT.M.S.L.		したする。		
ΔH 吸込配管圧損 定格流量 77m³/h 時のポンプ吸込配管		ΔH 吸込配管圧損(CUW配 定格流量228m ³ /h時のポンプ (CUW配) (1) (CUW配) (CUWR) (CUW		
(CUW配管) 圧損		官) 吸込配官灶損 有効NPSH Pa-Pv+H-ΛH		
		必要NPSH CUW補助ポンプの必要N		
有効 NPSH Pa=Pv+H- Δ H		PSH		
必要 NPSH CUWポンプの必要 NPSH		成立性評価 〇 有効NPSH>必要NPS H H		
成立性評価 〇 有効 NPSH > 必要 NPSH				
(略語) T.M.S.L. : 東京湾平均海面				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
② 流量評価		2 流量評価	
代替原子炉補機冷却系を用いたCUW系による原子炉除熱の,代替		<u>原子炉補機代替冷却系</u> を用いたCUW系による原子炉除熱の,	
原子炉補機冷却系の系統流量は、後述する評価により6号炉では		原子炉補機代替冷却系の系統流量は、後述する評価により	
m ³ /h以上,7号炉ではm ³ /h以上確保可能であることを確認して		m ³ /h以上確保可能であることを確認している。本章では、その評	
いる。本章では、その評価結果について示す。		価結果について示す。	
流量確認方法としては、代替原子炉補機冷却水ポンプの「性能		流量確認方法としては、原子炉補機代替冷却水ポンプの「性能	
曲線」(揚程と流量の関係図)と図2の系統構成を想定した場合の		曲線」(揚程と流量の関係図)と図2の系統構成を想定した場合の	
「システム抵抗曲線」との交点がポンプの動作点となるため、ポ		「システム抵抗曲線」との交点がポンプの動作点となるため、ポ	
 ンプの動作点の流量を確認する。その結果は図4及び図5に示す通		ンプの動作点の流量を確認する。その結果は図4に示す通り、ポ	
り、ポンプ動作点が6号炉では m³/h、7号炉では m³/hであ		ンプ動作点が m ³ /h以上であることから、本系統流量は	
ることから、本系統流量は6号炉では m ³ /h以上、7号炉では		m ³ /h以上確保可能であることを確認した。	
m ³ /h以上確保可能であることを確認した。		参考として、系統流量 m ³ /h時の圧力損失を表2に示す。	
参考として、6号炉における系統流量 m ³ /h時、7号炉におけ			
る系統流量 n ³ /h時の圧力損失を表2に示す。			
図4 CUW糸による原子炉除熱 代替原子炉補機冷却糸 糸統流量評		図4 CUW糸による原子炉除熱 原子炉補機代替冷却糸 糸統流	
恤結果(6 号炉)		重評価結果 	

柏崎刈羽原子力発電所 6/7号均	戸 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
図5 CUW 系による原子炉除熱 代替原子 価結果(7 号炉)	炉補機冷却系 系統流量評	Ϋ́Υ.		
表2 圧力損失内	訳		表 2 圧力損失内訳	
除熱手段(評価ルート) 6 流量 配管・弁類圧力損失 常設ライン 淡水ホース 代替熱交換器	号炉 7号炉 .		除熱手段(評価ルート) 2号炉 流量 配管・弁類圧力損失 常設ライン 淡水ホース 代替熱交換器	
静水頭 水源 注水先 0 圧力差 水源	 (閉ループ) 		静水頭 水源 - 違入先 - 正力差 水源 -	
注水充 0 システム抵抗 1	(閉ループ) (閉ループ) 0 (閉ループ)		注入先 ー 0 (閉ループ) システム抵抗 (圧力損失)	
③ 除熱量評価			③ 除熱量評価	
上述②の評価結果の通り、CUWによ 炉補機冷却系系統流量は、6号炉では流 m ³ /hが確保可能であることから、それそ	★ る原子炉除熱の,代替原子量 m³/h,7号炉では 着 m³/h,7号炉では ぎれの流量における系統の		上述②の評価結果の通り、CUWによる原子炉除熱の、原子炉補 機代替冷却系系統流量は m ³ /hが確保可能であることから、系 統の除熱量を評価した。	
除熱量を評価した。	1111北五化劫六按四五7%//		該何久供はまった二十倍のでもか。 CIUU社時間で推明及びな	乳供の相当
辞価条件は表3に小り通りであり、 <u>C</u> 替熱交換器車の性能、大容量送水車によ	<u>しw非再生熱交換器</u> 及い11 よる海水側の条件を踏まえ	· ·	計価条件は表3に示す通りであり、 <u>COW補助系交換器</u> 及び透 動式代替熱交換設備の性能,大型送水ポンプ車による海水側の条	・設備の相違 【柏崎 6/7】
て本系統の除熱量を評価したところ、事	事故発生30日後の崩壊熱相		件を踏まえて本系統の除熱量を評価したところ、事故発生30日後	系統構成の相違
当(<u>約6.5MW</u>)を除熱できることを確認	した。		の崩壊熱相当(<u>約3.9MW</u>)を除熱できることを確認した。	 ・設備の相違 【柏崎 6/7】 崩壊熱の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表3 代替熱交換器車の除熱量評価条件		表3 移動式熱交換設備の除熱量評価条件	・設備の相違
代替熱交換器車 淡水系 淡水側入口温度 約 ℃ (6 号炉) 淡水側流量 約 ㎡ (6 号炉) 液水 滴/h (6 号炉) 海水系 海水流量 30℃ 海水流量 900m³/h		移動式代替熱交換設備 淡水系 淡水側入口温度 ℃ 液水側流量 m³/h 海水系 海水温度 30℃ 海水流量 780m³/h	【柏崎 6/7】
CUW非再生Hx CUW補機類 m³/h (6号炉) m³/h (7号炉) 海水 CUW非再生Hx CUW補機類 第30°C 900 m³/h K替熱交換器車 (搭載している代替原子炉補機冷却水ポンプで循環)		CUW 補助 CO(L) m³/h 海水 CUW 補助 その他 移動式 大型送水 熱交換器 負荷 熱交換設備 ポンプ車 105℃ 105℃ 30℃ 780m³/h	
図6 CUW系による原子炉除熱の除熱量評価図		図5 CUW系による原子炉除熱の除熱量評価図	・設備の相違 【柏崎 6/7】
以上の「①ポンプのNPSH評価」,「②流量評価」,「③除熱量		以上の「①ポンプのNPSH評価」,「②流量評価」,「③除熱量	
 評価」の結果から、代替原子炉補機冷却系を用いたCUW系による原		評価」の結果から,原子炉補機代替冷却系を用いたCUW系によ	
 子炉除熱は事故発生30日後の崩壊熱相当(約6.5MW)を除熱するた		る原子炉除熱は事故発生30日後の崩壊熱相当(約3.9MW)を除熱す	・設備の相違
めの系統流量が確保可能なシステムであることを確認した。		るための系統流量が確保可能なシステムであることを確認した。	【柏崎 6/7】 崩壊熱の相違
〔参考9-補足2〕作業エリアの線量評価について	参考 8- 補足 1	<u>〔参考9-補足2〕</u> 作業エリアの線量評価について	
	作業エリアの線量評価について		
各作業エリアにおける線量評価は「格納容器からの漏えいに起	各作業エリアにおける線量評価は「原子炉格納容器からの漏え	各作業エリアにおける線量評価は「格納容器からの漏えいに起	
因する室内の線量率」と「線源配管からの直接線による線量率」	いに起因する室内の線量率」と「線源配管からの直接線による線	因する室内の線量率」と「線源配管からの直接線による線量率」	
の寄与を合わせて評価するものとする。	量率」の寄与を合わせて評価するものとする。	の寄与を合わせて評価するものとする。	
1. 評価の方法	1. 評価の方法	1. 評価の方法	
(1)格納容器から漏えいに起因する線量率	(1) 原子炉格納容器から漏えいに起因する線量率	(1) 格納容器からの漏えいに起因する線量率	
原子炉区域内の線量率は、「雰囲気圧力・温度による静的負荷	原子炉建屋原子炉棟内の区域の線量率は、「雰囲気圧力・温度に	原子炉棟内の線量率は、「雰囲気圧力・温度による静的負荷(格	
(格納容器過圧・過温)」において、格納容器ベントを実施した	よる静的負荷(格納容器過圧・過温)」において、格納容器ベント	納容器過圧・過温)」において、格納容器ベントを実施した場合	
場合の事故発生30 日後の原子炉建屋内の放射能量を考慮し、サブ	を実施した場合の事故発生 30 日後の原子炉建屋原子炉棟内の放	の事故発生30 日後の原子炉建物内の放射能量を考慮し,サブマー	
マージョンモデルにより計算する。格納容器から漏えいした放射	射能量を考慮し,サブマージョンモデルにより計算する。原子炉	ジョンモデルにより計算する。格納容器から漏えいした放射性物	
性物質は <u>原子炉区域内</u> に一様に分散しているものとし, 原子炉区	格納容器から漏えいした放射性物質は原子炉建屋原子炉棟内に一	質は <u>原子炉棟内</u> に一様に分散しているものとし, <u>原子炉棟</u> 内から	
城内から環境中への漏えいはないものとして計算した。表1に各	様に分散しているものとし、原子炉建屋原子炉棟内から環境中へ	環境中への漏えいはないものとして計算した。表1に各作業エリ	
作業エリア空間容積を示す。	の漏えいはないものとして計算した。表1に各作業エリア空間容	ア空間容積を示す。	
	積を示す。		

やはいお店フトがます。						
相喻刈羽原于刀発電所 6	/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 18 版)	島根原子力発電所	f 2号炉	備考
$\mathbf{D} = 6.2 \times 10^{-14} \cdot \frac{q_Y}{v_{R/B}} e_Y \{1 - e^{-\mu R}\} \cdot 3600$ $\subset \subset \nabla,$ $\mathbf{D} = (1 + 2\mu) + 2\mu + 2\mu + 2\mu + 2\mu + 2\mu + 2\mu + 2$	$D = 6.2 \times 10^{-14} \cdot \frac{Q_{\gamma}}{v_{R/B}} E_{\gamma} \cdot \left(1 - e^{-\mu \cdot R}\right) \cdot 3600$ $D = 6.2 \times 10^{-14} \cdot \frac{Q_{\gamma}}{V_{R/B}} E_{\gamma} \cdot \left(1 - e^{-\mu \cdot R}\right) \cdot 3600$		$D = 6.2 \times 10^{-14} \cdot \frac{Q_{\gamma}}{V} \cdot E_{\gamma} \cdot$	$\left(1-\mathrm{e}^{-\mu\cdot\mathrm{R}}\right)\cdot3600$		
D : 放射線重半 (Gy/n) *** ※1 GyからSvへの換算	D : 成別称重平 (Gy/n) ** ※1 GyからSvへの換算係数は1とする。 ここで,		ここで,			
 6.2×10⁻¹⁴ : サブマージョンモデルによる換算係数 (dism³Cp) Q_y : 格納容器から原子炉区域内に漏えいした放射性物質による放射能量 (Bq: γ 線実効エネルギ 0.5MeV 換算値) V_{R/B} : 原子炉区域内気相部容積 (86000m³) E_y : γ線エネルギ (0.5MeV/dis) 		D :放射線量率 (Gy/h)		D:外部被ばくによる放射線量率(Gy/h) ^{*1} ※1 Gy から Sv への換算係数は1とする。		
		6.2×10 ⁻¹⁴ :サブマージョンモデルによる換算係数				
		$\left(\frac{\mathrm{dis}\cdot\mathrm{m}^{3}\cdot\mathrm{Gy}}{\mathrm{MeV}\cdot\mathrm{Bq}\cdot\mathrm{s}}\right)$		6.2×10 ⁻¹⁴ :サブマージョンモデルは		
μ : 空気に対する γ 脉のエネル r 吸取病数 (3.9×10 /m) R :評価対象部屋の空間容積と等価な半球の半径 (m)		Qγ :原子炉建屋内放射能	量	$\mathbf{Q}_{\gamma}:$ 原子炉建物内の存在量(Bq:ガンマ線実効エネルギ 0.5MeV		
V _{oF} :評価対象エリアの容積(3 (3-Vor	(Bq:γ線実効エネル	ギ0.5MeV 換算値)	換算値)		
K	$=\sqrt{\frac{-OF}{2\pi}}$	V _{R/B} :原子炉建屋原子炉棟	頃内の区域の気相部容積(85,000m	Ⅴ:原子炉建物内の空間容積(101,00	00m ³)	
		3)		$\mathbf{E}_{\gamma}: \gamma$ 線エネルギ (0.5MeV/dis)		
		Eγ :γ線エネルギ(0.5	MeV⁄dis)	μ:空気に対するγ線のエネルギ吸u	汉係数(3.9×10⁻³/m)	
		μ : 空気に対する γ 線	のエネルギ吸収係数(3.9×10 ⁻³	R:評価対象エリアの空間と等価な半	洋球の半径 (m)	
		/m)		V _F :評価対象エリアの空間容積(m ³)		
		R :評価対象エリアの2	空間容積と等価な半球の半径(m)			
		V _{OF} :評価対象エリアの	容積	2 3 .	3.14	
				$R = \frac{3}{2\pi} \left(\frac{3 \sqrt{F}}{2\pi} \right)$		
		$R = \frac{3}{2 \cdot v_{OF}}$		$\sqrt{2}$		
			$\sqrt{2}$			
	山中中田市住		山石中田中住		フ内田内住	
│ <u>表 1</u> 谷作美	<u>エリア空間谷積</u>		リア空間谷積	<u>衣1 谷作業エリア空間谷積</u>		・設備の相遅 【地域 c /2 東海第二】
作業エリア	作業エリアの空間容積(Vor)	作業エリア	作業エリアの空間容積 (V _{oF})	作業エリア	「キャリアの空間の巷 \mathbf{V} (m ³)	【
$HDCE \neq \chi \neq (D) \neq$						
HPUF ホンノ(b) 室	600 m ³	原子炉隔離時冷却系ポンプ室内	5, 100m ³	HPCSポンプ室	F末エリアの至前谷損V _F (III) 600	
nFCF ホンプ(b)室 SPCU ポンプ室	600 m ³ 300 m ³	原子炉隔離時冷却系ポンプ室内	5, 100m ³	HPCSポンプ室 大物搬入口	+来エックの空间谷復V _F (III) 600 3800	
HPCF ホンプ(b)室 SPCU ポンプ室 大物搬入口	600 m ³ 300 m ³ 1500 m ³	原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近	5, 100m ³ 10, 000m ³	HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近)	+来エック・の空间谷復 V _F (III) 600 3800 1000	
HFCF ホンプ(b)室 SPCU ポンプ室 大物搬入口 B系弁室	600 m ³ 300 m ³ 1500 m ³ 300 m ³	原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近 大物搬入口	5, 100m ³ 10, 000m ³ 3, 500m ³	HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近)	F来エック・の空间各領 V _F (III) 600 3800 1000	
HFCF ホシア(b)室 SPCU ポンプ室 大物搬入口 B系弁室	600 m ³ 300 m ³ 1500 m ³ 300 m ³	原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近 大物搬入口	5, 100m ³ 10, 000m ³ 3, 500m ³	HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近)	+来エック・の空间各領 V _F (III) 600 3800 1000	
Import ホンプ(b)室 SPCU ポンプ室 大物搬入口 B系弁室 (2)線源配管からの直接線に	600 m ³ 300 m ³ 1500 m ³ 300 m ³	原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近 大物搬入口 (2)線源配管からの直接線に。	5,100m ³ 10,000m ³ 3,500m ³	HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近) (2)線源配管からの直接線による約	<u>→</u> <u>600</u> <u>3800</u> <u>1000</u> 泉量率	
Infer ホシア(b)室 SPCU ポンプ室 大物搬入口 B系弁室 (2)線源配管からの直接線に 図1に示すとおり、炉心損傷	600 m ³ 300 m ³ 1500 m ³ 300 m ³	原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近 大物搬入口 (2)線源配管からの直接線に。 図1に示すとおり、炉心損傷	5,100m ³ 10,000m ³ 3,500m ³ よる線量率 により発生する汚染水は、原子炉	HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近) (2)線源配管からの直接線による約 図1に示すとおり、炉心損傷により	→ → → → → → → → → → → → →	
Infer ホシア(b)室 SPCU ポンプ室 大物搬入口 B系弁室 (2)線源配管からの直接線に 図1に示すとおり、炉心損傷 器貫通部とサプレッションプー	600 m³ 300 m³ 1500 m³ 300 m³ 300 m³	原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近 大物搬入口 (2)線源配管からの直接線に。 図1に示すとおり、炉心損傷 格納容器貫通部とサプレッション	5,100m ³ 10,000m ³ 3,500m ³ よる線量率 により発生する汚染水は、原子炉 ン・プール側一次隔離弁までの配	HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近) (2)線源配管からの直接線による終 図1に示すとおり、炉心損傷により 器貫通部とサプレッション・プール(FREE 600 600 3800 1000 9 泉量率 り発生する汚染水は、格納容 則一次隔離弁までの配管に存	
Hrtr ホンプ(b)室 SPCU ポンプ室 大物搬入口 B系弁室 (2)線源配管からの直接線に 図1に示すとおり、炉心損傷 器貫通部とサプレッションプー することになるため、当該配管	600 m³ 300 m³ 1500 m³ 300 m³ 300 m³ よる線量率 により発生する汚染水は、格納容 ル側一次隔離弁までの配管に存在 は線源となる。線源配管からの直	原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近 大物搬入口 (2)線源配管からの直接線にこ 図1に示すとおり、炉心損傷 格納容器貫通部とサプレッション 管に存在することになるため、	5,100m ³ 10,000m ³ 3,500m ³ よる線量率 により発生する汚染水は,原子炉 ンプール側一次隔離弁までの配 当該配管は線源となる。線源配管	HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近) (2)線源配管からの直接線による終 図1に示すとおり、炉心損傷により 器貫通部とサプレッション・プール(在することになるため、当該配管は約	FREE 600 600 3800 1000 3800 1000 9 泉量率 9 9 9 生する汚染水は、格納容 則一次隔離弁までの配管に存 線源となる。線源配管からの	
Import ホシア(b)室 SPCU ポンプ室 大物搬入口 B系弁室 (2)線源配管からの直接線に 図1に示すとおり、炉心損傷 器貫通部とサプレッションプー することになるため、当該配管 接線による線量率は、必要な遮	600 m³ 300 m³ 1500 m³ 300 m³ 300 m³ 300 m³ よる線量率 により発生する汚染水は、格納容 ル側一次隔離弁までの配管に存在 は線源となる。線源配管からの直 蔽対策を実施することによって、	原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近 大物搬入口 (2)線源配管からの直接線に。 図1に示すとおり、炉心損傷 格納容器貫通部とサプレッション 管に存在することになるため、 からの直接線による線量率は、	5,100m ³ 10,000m ³ 3,500m ³ よる線量率 により発生する汚染水は,原子炉 ン・プール側一次隔離弁までの配 当該配管は線源となる。線源配管 必要な遮蔽対策を実施することに	IFRACTY HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近) (2)線源配管からの直接線による網 図1に示すとおり、炉心損傷により 器貫通部とサプレッション・プール(在することになるため、当該配管は網 直接線による線量率は、必要な遮蔽素	600 600 3800 1000 9 泉量率 り発生する汚染水は、格納容 則一次隔離弁までの配管に存 線源となる。線源配管からの 対策を実施することによって、	
HPCF ホシア(b)室 SPCU ポンプ室 大物搬入口 B系弁室 (2)線源配管からの直接線に 図1に示すとおり、炉心損傷 器貫通部とサプレッションプー することになるため、当該配管 接線による線量率は、必要な遮 約10mSv/h 以下に低減させる。	600 m³ 300 m³ 1500 m³ 300 m³ 300 m³ 300 m³ 1500 m³ 300 m³ 300 m³ 1500 m³ 300 m³ 1500 m³ <td>原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近 大物搬入口 (2)線源配管からの直接線によ 図1に示すとおり、炉心損傷 格納容器貫通部とサプレッション 管に存在することになるため、 からの直接線による線量率は、 よって、約 10mSv/h 以下に低料</td> <td>5,100m³ 10,000m³ 3,500m³ よる線量率 により発生する汚染水は,原子炉 ン・プール側一次隔離弁までの配 当該配管は線源となる。線源配管 必要な遮蔽対策を実施することに 咸させる。線量率はQADコード</td> <td>IFRACTY HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近) (2)線源配管からの直接線による線 図1に示すとおり、炉心損傷により 器貫通部とサプレッション・プール(在することになるため、当該配管は緒 直接線による線量率は、必要な遮蔽支 約 10mSv/h 以下に低減させる。線量</td> <td><u>600</u> <u>600</u> <u>3800</u> <u>1000</u> <u>10000</u> <u>1000</u></td> <td></td>	原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近 大物搬入口 (2)線源配管からの直接線によ 図1に示すとおり、炉心損傷 格納容器貫通部とサプレッション 管に存在することになるため、 からの直接線による線量率は、 よって、約 10mSv/h 以下に低料	5,100m ³ 10,000m ³ 3,500m ³ よる線量率 により発生する汚染水は,原子炉 ン・プール側一次隔離弁までの配 当該配管は線源となる。線源配管 必要な遮蔽対策を実施することに 咸させる。線量率はQADコード	IFRACTY HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近) (2)線源配管からの直接線による線 図1に示すとおり、炉心損傷により 器貫通部とサプレッション・プール(在することになるため、当該配管は緒 直接線による線量率は、必要な遮蔽支 約 10mSv/h 以下に低減させる。線量	<u>600</u> <u>600</u> <u>3800</u> <u>1000</u> <u>10000</u> <u>1000</u>	
HPCF ホシア(b)室 SPCU ポンプ室 大物搬入口 B系弁室 (2)線源配管からの直接線に 図1に示すとおり、炉心損傷 器貫通部とサプレッションプー することになるため、当該配管 接線による線量率は、必要な遮 約10mSv/h 以下に低減させる。 1中の評価モデルの体系により	600 m³ 300 m³ 1500 m³ 300 m³ 300 m³ 300 m³ よる線量率 により発生する汚染水は、格納容 ル側一次隔離弁までの配管に存在 は線源となる。線源配管からの直 蔽対策を実施することによって、 線量率はQADコードを用いて図 評価を実施した。表2に線源配管	原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近 大物搬入口 (2)線源配管からの直接線によ 図1に示すとおり、炉心損傷 格納容器貫通部とサプレッション 管に存在することになるため、 からの直接線による線量率は、 よって、約 10mSv/h 以下に低減 を用いて図1 中の評価モデルの	5,100m ³ 10,000m ³ 3,500m ³ よる線量率 により発生する汚染水は,原子炉 ン・プール側一次隔離弁までの配 当該配管は線源となる。線源配管 必要な遮蔽対策を実施することに 咸させる。線量率はQADコード 体系により評価を実施した。表2	IFRACTY HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近) (2)線源配管からの直接線による線 図1に示すとおり、炉心損傷により 器貫通部とサプレッション・プール(在することになるため、当該配管は縦 直接線による線量率は、必要な遮蔽支 約 10mSv/h 以下に低減させる。線量等 1中の評価モデルの体系により評価表	<u> 600</u> <u> 600</u> <u> 3800</u> <u> 1000</u> <u> 1000 </u>	
HPCF ホシア(b) 至 SPCU ポンプ室 大物搬入口 B系弁室 (2)線源配管からの直接線に 図1に示すとおり、炉心損傷 器貫通部とサプレッションプー することになるため、当該配管 接線による線量率は、必要な遮 約10mSv/h 以下に低減させる。 1中の評価モデルの体系により からの直接線の寄与を10mSv/h	600 m³ 300 m³ 1500 m³ 300 m³ 300 m³ 300 m³ 300 m³ 300 m³ 300 m³ よる線量率 により発生する汚染水は、格納容 ル側一次隔離弁までの配管に存在 は線源となる。線源配管からの直 蔵対策を実施することによって、 線量率はQADコードを用いて図 評価を実施した。表2に線源配管 以下とするために必要な鉛遮蔽の	原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近 大物搬入口 (2)線源配管からの直接線によ 図1に示すとおり、炉心損傷 格納容器貫通部とサプレッション 管に存在することになるため、 からの直接線による線量率は、 よって、約 10mSv/h 以下に低減 を用いて図1 中の評価モデルの に線源配管からの直接線の寄与表	5,100m ³ 10,000m ³ 3,500m ³ よる線量率 により発生する汚染水は,原子炉 ン・プール側一次隔離弁までの配 当該配管は線源となる。線源配管 必要な遮蔽対策を実施することに 咸させる。線量率はQADコード 体系により評価を実施した。表 2 を 10mSv/h 以下とするために必	HPCSポンプ室 HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近) (2)線源配管からの直接線による網 図1に示すとおり、炉心損傷により 器貫通部とサプレッション・プール(在することになるため、当該配管は網 直接線による線量率は、必要な遮蔽支約 約10mSv/h以下に低減させる。線量 1中の評価モデルの体系により評価額 からの直接線の寄与を10mSv/h以下に	<u>600</u> <u>600</u> <u>3800</u> <u>1000</u> <u>10000</u> <u>10000</u>	
HPCF ホシア(b)室 SPCU ポンプ室 大物搬入口 B系弁室 (2)線源配管からの直接線に 図1に示すとおり、炉心損傷 器貫通部とサプレッションプー することになるため、当該配管 接線による線量率は、必要な遮 約10mSv/h 以下に低減させる。 1中の評価モデルの体系により からの直接線の寄与を10mSv/h 厚さを示す。	600 m³ 300 m³ 1500 m³ 300 m³ 300 m³ 300 m³ 300 m³ 4 300 300 m³ 4 300 300 m³ 4 4 5 5 4 5 5 5 4 5 4 5 5 5 5 5 6 5 6 5 6 5 6 5 7 5 7 5 8 5 8 5 9 5 10 5 10 5 10 5 10 5 11 5 12 5 13 5 14 5 15 5 16	原子炉隔離時冷却系ポンプ室内 低圧代替注水系逆止弁付近 大物搬入口 (2)線源配管からの直接線に。 図1に示すとおり、炉心損傷 格納容器貫通部とサプレッション 管に存在することになるため、 からの直接線による線量率は、 よって、約 10mSv/h 以下に低減 を用いて図1 中の評価モデルの に線源配管からの直接線の寄与表 要な鉛遮蔽の厚さを示す。	5,100m ³ 10,000m ³ 3,500m ³ よる線量率 により発生する汚染水は,原子炉 ン・プール側一次隔離弁までの配 当該配管は線源となる。線源配管 必要な遮蔽対策を実施することに 域させる。線量率はQADコード 体系により評価を実施した。表 2 を 10mSv/h 以下とするために必	IFRACTY HPCSポンプ室 大物搬入口 原子炉建物1階(FLSR可搬式設備 操作対象弁付近) (2)線源配管からの直接線による網 図1に示すとおり、炉心損傷により 器貫通部とサプレッション・プール(在することになるため、当該配管は新 直接線による線量率は、必要な遮蔽支 約 10mSv/h 以下に低減させる。線量 1 中の評価モデルの体系により評価 からの直接線の寄与を 10mSv/h 以下 厚さを示す。	<u>600</u> <u> 600</u> <u> 3800</u> <u> 1000</u> <u> 1000 </u>	

计问	備考
作業対象 逆止弁 予 評価点	
とする必要な厚さを計算 意切に遮蔽出来る前提とする ついては配管内の冷却材(汚染水でな 整蔽により低下させることは可能である 点	
<u>沿遮蔽体厚さ</u> 西点ま 維 線源配管からの直 接線による線量率 を10mSv/h以下に するために必要な 鉛遮蔽厚さ h 約8cm	・評価対象及び評価結果 の相違 【柏崎 6/7,東海第二】
アにおける線量率を評 率を示す。	

柏崎刈羽』	原子力発電所 6/	7号炉 (2017.)	12.20版)		東海第二発電所	(2018.9.18版)			島根原子力発	電所 2号
	表3 各作業エリアにおける線量率				表 4 各作業エリアにおける線量率			<u>表</u>	そ3 各作業エリ	アにおける
作業エリア	格納容器から漏えいに起	線源配管からの直接	合計線量率	作業エリア	原子炉格納容器から漏 えいに起因する線量率	線源配管からの直接 線による線量率	合計線量率	作業エリア	格納容器からの 漏えいに起因す	線源配管から
HPCF ポンプ(B) 安	因する線量率 約16 1mSv/h	線による線量率 約 10mSv/h	約 26 1mSu/h	原子炉隔離時冷却系ポンプ室内	約 1.3×10 ¹ mSv/h	約 7.4mSv/h	約 2.0×10 ¹ mSv/h		る線量率	
In CF ポンプ (b) 主 SPCU ポンプ室	約 12. 8mSv/h	約 10mSv/h ※1	約 22. 8mSv/h ^{※1}	低圧代替注水系	約1.6×10 ¹ mSy/h	約1.4 1mSv/h	約20×10 ¹ mSv/h	HPCSポンプ室	約2.8mSv/h	約10mSv/
大物搬入口	約 21.7mSv/h	- *2	約 21.7mSv/h	逆止弁付近	", 1. 0 × 10 m3 v / m	₩9 4. THIOV / II	", <u>2.0</u> , <u>10</u> mov/ n	大物搬入口	約5.2mSv/h	-*1
B 系弁室 ※1 K6 では作業	約 12.8mSv/h 巻エリアが R/B 地下 2 階(SPG	│ - ※2 CU ポンプ室外)であるた	約 12.8mSv/h め,線源配管から	大物搬入口	約 1.1×10 ¹ mSv/h	約 1.3mSv/h	約 1.3×10 ¹ mSv/h	原子炉建物1階(F LSR可搬式設備 操作対象弁付近)	約3.3mSv/h	- * 1
の直接線に	よる線量率を考慮不要								1	1

※2 線源配管が存在しないため、考慮不要

※1 線源配管が存在しないため、考慮不要

〔参考9-補足3〕不活性ガス系 系統概要図

可搬型格納容器除熱系をインサービスする場合は,格納容器ベントを<u>停止し,不活性ガス系の窒素</u>ガス供給装置あるいは可搬型の窒素供給装置により窒素ガスを注入し格納容器除熱による格納容器圧力低下を抑制する。図1 に<u>不活性ガス系の窒素</u>ガス供給装置により窒素ガスを格納容器に注入する系統の例を示す。

図1 不活性ガス系 系統概要図(6号炉の例)

〔参考9-補足3〕窒素ガス制御系 系統概 可搬型格納容器除熱系をインサービスする ントを微開とし,窒素ガス制御系の窒素ガス 搬式の窒素供給装置により窒素ガスを注入し 格納容器圧力低下を抑制する。図1に窒素丸 供給装置により窒素ガスを格納容器に注入す

備考
・評価対象及び評価結果
の相違
【柏崎 6/7,東海第二】
・設備の相違 【柏崎 6/7】