島根原子力発電所2号炉 審査資料							
資料番号	EP(E)—081改01						
提出年月	令和3年3月3日						

島根原子力発電所2号炉

耐震重要施設及び常設重大事故等対処施設の 基礎地盤及び周辺斜面の安定性評価(コメント回答)

令和3年3月3日 中国電力株式会社

No.	コメント要旨	審査会合	頁
1	防波壁について, 傾斜が生じた場合の各部位の構造成立性の見通し	令和3年1月29日	1, 3, 5, 7章,
	を説明すること。	第940回審査会合	補足説明13章

回答方針

・防波壁(逆T擁壁)について,評価基準値の目安である1/2,000を上回る傾斜が生じた場合においても,防波壁の構造が成立する見通しがあることを確認する。

基礎地盤の安定性評価の主な変更点(防波壁(逆T擁壁)改良地盤の物性値)

〈基礎地盤及び周辺斜面の安定性評価〉

【第940回審査会合(令和3年1月29日)】

○評価対象施設のうち,支持地盤が改良地盤である防波壁(逆T擁壁) のすべり安定性評価において,保守的な評価の観点から,地盤改良に よる強度増加は見込まないこととし,解析用物性値は埋戻土(掘削ズ リ)を流用して設定していた。

○動的解析に基づいて防波壁(逆T擁壁)基礎底面の傾斜を評価した結
 果,評価基準値の目安である1/2,000を上回る結果となった。

〈津波による損傷の防止 基礎底面の傾斜による防波壁の構造成立性〉

【第948回審査会合(令和3年2月18日)】

○全応力解析及び有効応力解析の結果を用いて照査した結果,防波壁(逆T擁壁)基礎底面の傾斜を考慮しても,防波壁 は構造成立することを確認した。

〇全応力解析と有効応力解析の解析結果を比較すると、改良地盤の解析用物性値に埋戻土(掘削ズリ)を流用する等、 解析条件に保守性がある全応力解析の特徴により、基礎底面の傾斜が大きくなっていると判断した。

〈基礎地盤及び周辺斜面の安定性評価〉

【今回の説明】

- 〇防波壁の構造成立性に係る審査との整合を図るため,全応力解析に おける改良地盤の解析用物性値を有効応力解析で用いた物性値に見 直してすべり安全率,支持力及び傾斜を算定する。
- 〇以降に,解析用物性値等の条件設定及び解析結果を示す。

2

:本日ご説明範囲

1. 評価概要
2. 地質の概要
3. 基礎地盤の安定性評価 3.1 評価方針
3.2 代表施設の選定 3.3 評価対象断面の選定 3.4 解析用物性値 2.5 評価本は
 3.5 計画方法 3.6 入力地震動 3.7 評価結果 3.8 満躍化影響を考慮したすべい安定性評価の有効応力解析による第当性確認
4. 周辺地盤の変状による重要施設への影響評価 4.1 評価方針 4.2 評価結果
5. 地殻変動による基礎地盤の変形の影響評価 5.1 評価方針 5.2 評価結果
6.周辺斜面の安定性評価 6.1 評価方針 6.2 評価対象斜面の選定 6.3 評価方法
6.4 2号炉南側盛土斜面における液状化範囲の検討 6.5 評価結果 6.6 液状化影響を考慮したすべり安定性評価の有効応力解析による妥当性確認
7. まとめ
参考文献

【別冊】補足説明資料

目次(補足説明資料)

- 1. 地質の概要の補足
- 2. 解析用物性値の設定方法
- 2.1 物理特性
- 2.2 強度特性
- 2.3 静的変形特性
- 2.4 動的変形特性
- 2.5 シームの代表性
- 2.6 地盤の支持力
- 2.7 埋戻土(掘削ズリ)の物性
- 3. 建物のモデル化方法
- 3.1 各建物のモデル化
- 3.2 固有値解析による検証
- 4. 隣接施設のモデル化
- 5. 建物影響範囲の設定方法
- 6. 要素の局所安全係数図
- 7. すべり安全率一覧
- 8. 液状化影響検討用地下水位に係るデーター覧
- 9. 防波壁の構造概要
- 9.1 防波壁の地盤安定性評価上の区分
- 9.2 各防波壁の構造
 - 9.2.1 防波壁(波返重力擁壁)
 - 9.2.2 防波壁(多重鋼管杭式擁壁)
 - 9.2.3 防波壁(逆T擁壁)
- 10. 建物・構築物の地震応答解析における入力地震動評価
- 11. 地震による盛土斜面崩落事例との比較
- 12.3次元浸透流解析の解析条件
- 13. 基礎底面の傾斜による防波壁の構造成立性
 - 参考文献

5

評価概要(1/3)

第940回審査会合 資料1-1 P6 再掲

- ・原子炉建物等の耐震重要施設^{※1}及び重大事故等対処施設^{※2}(以下,「評価対象施設」)の基礎地盤及び周辺斜面の安定性評価について, 「実用発電用原子炉及びその附属施設の位置,構造及び設備の基準に関する規則(解釈含む)」(以下,「設置許可基準規則」)に適合して いることを確認する。
- ※1 耐震重要度分類Sクラスの機器・系統及びそれらを支持する建物・構築物,津波防護施設等※2 常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設

<基礎地盤(設置許可基準規則3条,38条)>

第3条

- 1 耐震重要施設は、次条第2項、第3項の規定により算定する地震力[※]が作用した場合においても当該耐震重要施設を十分に支持することができる地盤に 設けなければならない。
- 2 耐震重要施設は、変形した場合においてもその安全機能が損なわれるおそれがない地盤に設けなければならない。
- 3 耐震重要施設は、変位が生ずるおそれがない地盤に設けなければならない。

第38条

- 1 重大事故等対処施設は,基準地震動による地震力が作用した場合においても当該重大事故等対処施設を十分に支持することができる地盤に設けなけれ ばならない。
- 2 重大事故等対処施設は、変形した場合においても重大事故等に対処するために必要な機能が損なわれるおそれがない地盤に設けなければならない。
- 3 重大事故等対処施設は、変位が生ずるおそれがない地盤に設けなければならない。

<周辺斜面(設置許可基準規則 第4条第4項, 第39条第2項)>

第4条

4 耐震重要施設は,前項の地震*の発生によって生ずるおそれがある斜面の崩壊に対して安全機能が損なわれるおそれがないものでなければならない。

第39条

- 2 重大事故等対処施設は,第4条第3項の地震[※]の発生によって生ずるおそれがある斜面の崩壊に対して重大事故等に対処するために必要な機能が損な われるおそれがないものでなければならない。
- ※ 地震の発生によって生ずるおそれがある設計基準対象施設の安全機能の喪失に起因する放射線による公衆への影響の程度に応じて算定する地震力

評価概要(2/3)

第940回審査会合 資料1-1 P7 加筆・修正 修正個所を青字で示す

・評価対象施設における基礎地盤の安定性評価について、設置許可基準規則に基づき、以下の項目について確認する。

**	設置許可基準規則	確認内容	本資料の
本文 第3条第1項 第38条第1項 施設を十分支持 することができる	<u>り</u> 本文の「施設を十分支持することがで きる」=地震力が作用した場合におい ても,接地圧に対する十分な支持力を 有する設計	・動的解析の結果に基づいて算定した基礎の接地圧が評価基準値を超えないこと を確認する。	<u></u> 3章 (及び耐震 設計)
することができる 地盤に設けなけ ればならない	上記に加え, 地震力が作用することに よって弱面上のずれ等が発生しないこ とを含め, 地震力に対する支持性能が 確保されてることを確認する	 ・動的解析の結果に基づく時刻歴のすべり安全率が1.5を上回ることを確認する。 ・簡便法・動的解析では、液状化によるせん断強度の低下を考慮する。 ・なお、杭を介して岩盤で支持する施設は、周囲に分布する地下水位以深の埋戻 土、盛土等の液状化特性を考慮した場合においても、杭本体が成立するように設 計することから、基礎地盤のすべりとしては、杭体を貫通するようなすべりは仮定 せず、杭基礎先端以深の基礎地盤を通るすべり面を対象とした評価を実施する。 ・動的解析の結果に基づいて求められた基礎底面の傾斜が評価基準値の目安を 超えないことを確認する。評価基準値の目安を超えた場合は、基礎底面の傾斜を 考慮しても、施設の構造成立性が確保されることを確認する。 ・施設の詳細設計段階において、傾斜を考慮した場合においても、施設の機能が 損なわれるおそれがないように設計する。 	3章
第3条第2項 第38条第2項 施設は変形した 場合においても その安全機能が 損なわれるおそ	本文の「変形」=地震発生に伴う地殻 変動によって生じる支持地盤の傾斜 及び撓み	 ・地震発生に伴う地殻変動によって生じる地盤の傾斜を算出し、地震動による地盤の傾斜も考慮した最大傾斜が、評価基準値の目安を超えないことを確認する。評価基準値の目安を超えた場合は、基礎底面の傾斜を考慮しても、施設の構造成立性が確保されることを確認する。 ・施設の詳細設計段階において、傾斜を考慮した場合においても、施設の機能が損なわれるおそれがないように設計する。 	5章
れがない地盤に 設けなければな らない	本文の「変形」=地震発生に伴う建 物・構築物間の不等沈下,液状化及 び揺すり込み沈下等の周辺地盤の変 状	 ・施設の設置状況を踏まえ、地震発生に伴う不等沈下、液状化及び揺すり込み沈 下等を起因とする施設間の不等沈下が生じないことを確認する。 ・施設の詳細設計段階において、液状化、揺すり込み沈下等の変状を考慮した場 合においても、施設の機能が損なわれるおそれがないように設計する。 	4章 (及び耐震 設計)
第3条第3項 第38条第3項 施設は変位が生 ずるおそれがな い地盤に設けな ければならない	本文の「変位が生ずるおそれがない地 盤」=震源として考慮する活断層のほ か、地震活動に伴って永久変位が生 じる断層に加え、支持地盤まで変位及 び変形が及ぶ地すべり面が生じるお それがない地盤	・敷地には将来活動する可能性のある断層等が分布していないことを確認する。	2章

評価概要(3/3)

・評価対象施設における周辺斜面の安定性評価について、設置許可基準規則に基づき、以下の項目について確認する。

設	置許可基準規則	本司市家	本資料の
本文	, 	唯認內谷	対応
第4条第4項 第39条第2項 施設は斜面の崩壊に対 して安全機能が損なわ れるおそれがないもの でなければならない	 ・基準地震動による安定解析を行い, 崩壊のおそれがないことを確認する ・崩壊のおそれがある場合には,当該 部分の除去あるいは敷地内土木工 作物による斜面の保持等の措置を 講ずる ・地質・地盤の構造,地盤等級区分, 液状化の可能性及び地下水の影響 等を考慮する 	・動的解析の結果に基づく時刻歴のすべり安全率が1.2を上回ることを確認 する。 ・簡便法・動的解析では、液状化によるせん断強度の低下を考慮する。	6章

3. 基礎地盤の安定性評価 3. 2 代表施設の選定

防波壁(逆T擁壁)直下の地盤について、液状化を抑制するため、薬液注入工法により地盤改良を実施している。
 液状化抑制を目的としているため、簡便法及び動的解析のすべり安全率の算定において、液状化影響は考慮しないこととする。また、解析
 用物性値については、「島根原子力発電所2号炉 津波による損傷の防止防波壁の構造についての設計方針及び構造成立性」(次頁参照)
 の設計値を参照して設定する。

防波壁(逆T擁壁)鉛直断面図

※ 施設側の評価に合わせ、鋼管杭には期待しないものとして地盤安定性評価を行う。

薬液注入工 状況写真(2011年撮影)

薬液注入

薬液注入工 概要図

3. 基礎地盤の安定性評価 3.2 代表施設の選定

(参考)防波壁の構造成立性に係る有効応力解析における防波壁(逆T擁壁)改良地盤の物性値

		物理	特性		強度特性	ŧ	変刑	《特性			
	材料種別		単位体積重量		粘着力	せん断	せん断強度	せん断弾性係数		最大	設定根拠
			飽和,湿潤 γsat,γt (kN/m³)	水中 ץ' (kN/m³)	C (kN/m ²)	抵抗角 Φ _f (°)	T _f ^{**1, 2} (kN/m ²)	G **1, 3, 4 (ヤング率 E) *5 (kN/m ²)	ホアソン比 減衰定数 V h _{max}		
	埋戻土	気中	19.6	-	0	39.35	σ' _m sin39.35°	76570(σ' _m /98) ^{0.5}	防波壁の		
	(通前入り) T.P.+6.0m盤	水中	20.7	10.6	0	39.35	σ' _m sin39.35°	76570(σ' _m /98) ^{0.5}	構造成立 設計値	5 成立性に係る より設定 +値 (粘着力)	
	埋戻土	気中	19.6	-	0	39.35	σ' _m sin39.35°	76570(σ' _m /98) ^{0.5}			・理戻土(掘削スリ)は『設計事例集』に準拠し設定 ・改良地盤は『浸透固化処理工法技術マニュアル』に準拠し設定 (せん断抵抗角)
+#1	(強制人)) T.P.+8.5m盤	水中	20.7	10.6	0	39.35	σ' _m sin39.35°	76570(σ' _m /98) ^{0.5}			 ・理戻土(掘削ズリ)は液状化パラメータ設定支援環境 FLIPSIM(Ver.3.0.1)により算定 ・地殻や良は原地殻相当(理戸土(掘削ズリ))の値を設定
地盤	改良地盤① (水中)		20.7	10.6	628	38.00	628 cos38.00° +σ' _m sin38.00°	404600(σ' _m /98) ^{0.5}	0.33	0.24	・「FLIP取扱説明書』に示された定義式に基づき設定
	改良地盤② (水中)		20.7	10.6	490		490 cos40.54° +σ' _m sin40.54°	$327900(\sigma'_m/98)^{0.5}$			(ビん町)学は休安) ・液状化パラメーク設定支援環境 FLIPSIM(Ver.3.0.1) により 基準せん断弾性係数Gmaを算出し、『FLIP取扱説明書、
	改良地盤③ (水中)		20.7	10.6	1140	40.54	1140 cos40.54° +σ'_m sin40.54°	742900(σ′ _m /98) ^{0.5}			p.8-2』に示された定義式に基うさ設定 (ポアソン比) 『設計事例集』に準拠し設定 (最大減衰定数)
	改良地盤④ (水中)		20.7	10.6	1253	38.71	1253 cos38.71° +σ' _m sin38.71°	777300(σʻ _m /98) ^{0.5}			・国土技術政策総合研究所HP公開の『一次元FLIP入力データ 作成プログラム1D-MAKER 操作マニュアル』に準拠し設定
	施設護岸 (パラペット)		24.0	-	-	-	-	(E=2.330×10 ⁷)			
護出	施設護岸 (上部コンクリート	.)	22.6	_	_	_	-	(E=2.040×10 ⁷)			(単位体積重量) ・施設護岸は『港湾基準』及び『コンクリート標準示方書』に準拠
厈構	施設護岸	気中	23.0	_	_	_	-	(E=2.330×10 ⁷)	0.20	0.20 - (せん断弾性係数) ・地盤と同様 -	
成 材	(コンクリート詰)	水中	23.0	12.9	_	-	-	(E=2.330×10 ⁷)			(ポアソン比) ・護岸は『コンクリート標準示方書』に準拠し設定
1.2	施設護岸 (セルラーブロック (栗石詰))	22.0	11.9	_	_	-	(E=2.330×10 ⁷)			

第909回審査会合 資料1-2 P106 加筆·修正

※1 σ'mは各要素における平均有効拘束圧

※2 せん断強度式は $r_f = \sigma'_m \sin \varphi_f + C \cos \varphi_f$

※3 せん断弾性係数の式は $G=G_m(\sigma'_m/\sigma'_m)$ ^{mG}。ここに G_m は基準平均有効拘束圧における基準せん断弾性係数, σ'_m は基準平均有効拘束圧, mGは拘束圧依存性のパラメータ(標準値=0.5)。

※4 せん断弾性係数を求める際の基準平均有効拘束圧については、粘性土は層中央部における平均有効拘束圧を設定し、粘性土以外については一律98kN/m²(標準値)とする。

※5 線形材料については、変形特性としてヤング率を設定する。

3. 基礎地盤の安定性評価 3. 3 評価対象断面の選定

3. 基礎地盤の安定性評価 3. 4 解析用物性値

3. 基礎地盤の安定性評価 3.4 解析用物性値

設定方法(D級岩盤・シーム・埋戻土・旧表土・MMR・改良地盤)

・解析用物性値は、各種試験により設定した。

・MMR等については、慣用値を解析用物性値として設定した。

・防波壁(逆T擁壁)の支持地盤である改良地盤IIについては、設計値等を用いて解析用物性値を設定した。(設計値はP11参照)

第940回審査会合

資料1-1 P102 加筆·修正

修正個所を青字で示す

17

		強度特性	Ė		減衰特性						
	物理特性		ᅷᇭᆇᇠ	静的特	性	動的特性					
		ビーク強度	残留强度	静弾性係数	静ポアソン比	動せん断弾性係数 動ポアソン比		减 衰定致			
D級岩盤		中型三軸圧縮試験		中型三軸圧縮試験		動的中型三軸圧縮試験	慣用値 ^{※9}	動的中型三軸 圧縮試験			
シーム	密度試験 (飽和)	単純せん断試験		単純せん断試験	 慣用値 ^{※8}	, 慣用値 ^{※8}	動的単純せん断試験		動的単純 せん断試験		
埋戻土, 盛土 ^{※1}		大型三軸圧縮試験	ピーク強度 と同じ値	大型三軸圧縮試験			動的大型三軸圧縮試験	憎田 庙※10	動的大型三軸 圧縮試験		
埋戻土(購入土) ^{※2}		三軸正統試驗	軸圧縮試験 三軸圧縮試験		繰返し中空ねじり せん断試験		繰返し中空ねじり せん断試験				
旧表土 ^{※3}						動的三軸圧縮試験		動的三軸圧縮試験			
MMR ^{%4}	慣用值 ^{※8}	_	_	慣用値 ^{※8}	慣用值 ^{※8}	慣用値 ^{※8}	慣用値 ^{※8}	慣用值 ^{※8}			
改良地盤 (高圧噴射撹拌工法) ^{※5}				凝灰岩·凝灰	灰角礫岩(C _M 級	りを流用					
改良地盤 <mark>I</mark> (薬液注入工法) ^{※6}				埋月	夏土, 盛土を流用						
改良地盤Ⅱ (薬液注入工法) ^{※7}	設計値	設計値		換算値	設計値	G ₀ は設計値 ひずみ依存特性は 埋戻土,盛土を流用	設計値	埋戻土, 盛土を流用			
 ※1「海底堆積物,崖錐堆積物」は、 ※2「埋戻土(購入土)」は、加工砂 ※3「旧表土」は、2号炉南側盛土第 ※4「MMR」は、1・2号炉タービン建 ※5 防波壁(波返重力擁壁)におけ ※6 防波壁(多重鋼管杭式擁壁)及 ※7 防波壁(塗丁擁壁)の支持地盤、 ※8「MMR」の慣用値は、原子力発 ※9 設計用地盤定数の決め方一結 ※10原子力発電所の基礎地盤及び ※11 詳細な設定方法については補 	(栄化/エハー/広/^^ 埋戻土,盛土を流用 ※1 「海底堆積物,崖錐堆積物」は、主要構成地質(礫混り砂質土・礫混り粘性土)が盛土と同じであること、及び評価対象の基礎地盤及び周辺斜面に対して地震時安定性への影響が軽微であることから,「埋戻土・盛土」の値を流用。 ※2 「埋戻土(購入土)」は、加工砂(主に花崗岩の砕砂)であり、ガスタービン発電機建物周りの埋戻土のみに使用。 ※3 「旧表土」は、2号炉南側盛土斜面のみに使用。 ※4 「MMR」は、1・2号炉タービン建物直下のみに使用。 ※5 防波壁(波返重力擁壁)における改良地盤を指す。 ※6 防波壁(多工鋼管杭式擁壁)及び防波壁(逆下擁壁)周辺の追加改良地盤を指す。 ※7 防波壁(逆下擁壁)の支持地盤となる改良地盤を指す。 ※8 「MMR」の慣用値は、原子力発電所屋外重要土木構造物の耐震性能照査指針(土木学会、1992年・2005年)を参考に設定。 ※9 設計用地盤定数の決め方-岩盤編-(地盤工学会、2007年)を参考に設定。 ※10 原子力発電所区人類面の安定性評価技術(技術資料)(土木学会、2009年)を参考に設定。										

3. 基礎地盤の安定性評価 3. 4 解析用物性値 解析用物性値③

・D級岩盤,シーム,埋戻土,旧表土,MMR及び改良地盤の解析用物性値を以下に示す。

		物理特性		強度特性		静的変	形特性	動的変形特	性	減衰特性
		密度 ρ _s (g/cm ³)	せん断強度 T ₀ (N/mm ²)	内部摩擦角 φ ^{(°})	残留強度 T (N/mm ²)	静弾性係数 E(N/mm ²)	静ポアソン比 V _s	動せん断弾性係数 G _d (N/mm ²)	動ポアソン比 V d	減衰定数 h
D級岩	盤	2.28	0.11	6	0.11+σ tan6°	1410 ^{0.39}	0.30	$G_o = 148\sigma^{0.49}$ $G/G_o = 1/(1+\gamma /0.00062)$	0.45	$\begin{array}{l} \gamma \; \leq \!$
<u>ب</u> –ز	4	2.23	0.19	18	0.19+σ tan18°	$G_{0.5}$ =44 $\sigma^{0.34}$	0.40	$\begin{array}{c} G_{o}\text{=}225\sigma^{-0.31} \\ G/G_{o}\text{=}1/[1\text{+}(\gamma \\ \text{$/0.00149)^{0.849}$}] \end{array}$	0.45	h=y /(2.14y +0.017)+0.031
埋戻土, 虚	整土 ^{※1}	2.11	0.22	22	0.22+σ tan22°	E _{0.5} =115σ ^{0.61}	0.40	$G_o=749\sigma^{0.66}$ $G/G_o=1/(1+\gamma/0.00027)$	0.45	h=0.0958 γ /(γ +0.00020)
埋戻土(購)	入土) ※2	2.01	0.04	21	0.04+σ tan21°	E _{0.5} =227σ ^{0.75}	0.40	$G_o=275\sigma^{0.61}$ $G/G_o=1/(1+\gamma /0.00048)$	0.45	h=0.2179 γ /(γ +0.00085)
旧表土	*3	2.00	0.03	21	0.03+σ tan21°	E _{0.5} =37σ ^{0.79}	0.40	$\begin{array}{c} G_{o}{=}240\sigma \ ^{0.61} \\ G/G_{o}{=}1/(1{+}\gamma \ /0.0011) \end{array}$	0.45	h=0.20y /(y +0.000413)
MMR ³	※ 4	2.35	-	_	_	23,500	0.20	9,792	0.20	0.05
改良地 (高圧噴射撹	2盤 2拌工法)	2.44	1.14	47	0.340 ^{0.54}	1.47	0.20	6.25	0.38	0.03
改良地 (薬液注入	盤 <mark>I</mark> .工法)	2.11	0.22	22	0.22+σ tan22°	E _{0.5} =115σ ^{0.61}	0.40	$G_o=749\sigma^{0.66}$ $G/G_o=1/(1+\gamma/0.00027)$	0.45	h=0.0958 γ /(γ +0.00020)
	改良地盤①	2.11	0.63	38	0.63+σ tan38°	1,087	0.33	G _o =409 G/G _o =1/(1+y /0.00027)	0.33	
改良地盤Ⅱ ^{※5} (薬液注入工法)	改良地盤②	2.11	0.49	41	0.49+σ tan41°	898	0.33	G _o =338 G/G _o =1/(1+y /0.00027)	0.33	h=0.0958y /(y +0.00020)
	改良地盤③	2.11	1.14	41	1.14+σ tan41°	2,088	0.33	G _o =785 G/G _o =1/(1+γ /0.00027)	0.33	

※1 「海底堆積物, 崖錐堆積物」は, 主要構成地質(礫混り砂質土・礫混り粘性土)が盛土と同じであること, 及び評価対象の基礎地盤及び周辺斜面に対して地震時安定性への影響が軽微であることから, 「埋戻 土・盛土」の値を流用。

※2「埋戻土(購入土)」は、加工砂(主に花崗岩の砕砂)であり、ガスタービン発電機建物周りの埋戻土のみに使用。

※3 「旧表土」は、2号炉南側盛土斜面のみに使用。

※4「MMR」は、1・2号炉タービン建物直下のみに使用。

※5 静弾性係数EはG=E/2(1+v)より算出

3. 基礎地盤の安定性評価 3. 5 評価方法

基礎底面の傾斜

・二次元有限要素法に基づく地震応答解析(周波数応答解析)の鉛直変位量から求められる基礎の傾斜が,評価基準値の目安の1/2,000を超えないことを確認する。

対象施設	評価基準値の目安	備考
2号炉原子炉建物		
ガスタービン発電機建物	1/2,000	審査ガイドの目安値(基本設計段階の目安値):- 般建築物の構造的な障害が発生する限界(亀裂の 発生率、発生区間に上は判断)
防波壁(多重鋼管杭式擁壁) 防波壁(逆T擁壁)		元工平, 元工区间により刊剧/

3. 基礎地盤の安定性評価 3. 7 評価結果

3. 基礎地盤の安定性評価 3.7 評価結果

防波壁(逆T擁壁)基礎地盤 ⑪-⑪'断面

・すべり安全率(平均強度)

第940回審查会合

資料1-1 P155 加筆·修正

修正個所を青字で示す

23

・動的解析の結果,平均強度を用いたすべり安全率は1.5を上回ることを確認した。

- 3. 基礎地盤の安定性評価 3.7 評価結果 防波壁(逆T擁壁)基礎地盤 ①-①'断面
- ・強度のばらつきを考慮したすべり安全率

- ※ | 奉 年 地 辰 朝 (+,+) は 仅 転 な し ぞ 示 9
- ※2 〔〕は,発生時刻(秒)を示す。
- ※3 グラウンドアンカーはモデル化せず,安全率算定 時にグラウンドアンカーによる緊張力を考慮する。

【凡例	IJ】				
	: CH級 岩盤	: C _M 級 岩盤	: CL級 岩盤	: D級 岩盤	
	: 埋戻 土 , 盛土	<u></u> : シーム			
_	— : すべり面				,

- ・平均強度を用いたすべり安全率のうち最小ケースに対して、強度のばらつきを考慮して評価を行った結果、すべり安全率は1.5を上回ることを確認した。
- ・しかしながら,自主的な裕度向上対策として,防波壁背後の地盤改良を実施する。

第940回審査会合 資料1-1 P156 加筆・修正 修正個所を青字で示す

・いずれの施設においても、地震時最大接地圧は評価基準値を下回っていることから、施設の基礎地盤は十分な支持 力を有している。

対象施設	基準地震動 [※]	地震時最大接地圧 (N∕mm²) 〔発生時刻(秒)〕	基礎地盤支持力の評価基準値 (N/mm²)
2号炉原子炉建物	Ss−D (−,−)	2.19 〔14.58〕	9.8以上
防波壁(多重鋼管杭式擁壁)	Ss-D (-,-)	2.39 [8.80]	9.8以上
ガスタービン発電機建物	Ss-D (-,-)	1.01 [9.03]	3.9
防波壁(逆T擁壁)	Ss-F2	0.38 〔15.43〕	1.2

※ 基準地震動(+,+)は反転なし, (-,+)は水平反転, (+,-)は鉛直反転, (-,-)は水平反転かつ鉛直反転を示す。

3. 基礎地盤の安定性評価 3.7 評価結果

基礎底面の傾斜 防波壁(逆T擁壁)(⑪ー⑪'断面)

・各地震動による基礎底面の傾斜の一覧を下表に示す。

					防波壁	(逆T擁壁)(⑪-①'断	面) ^{※1, 2}						
	Ss-N1			Ss-N2				0	5					
			水平	ZNS	水平	ZEW		55	—D		Ss-F1	Ss-F2		
	(+,+)	(–,+)	(+,+)	(–,+)	(+,+)	(-,+)	(+,+)	(+,-)	(–,+)	(-,-)				
相対変位 (cm)	4.87	-4.58	1.51	-1.39	-1.33	-1.59	4.59	5.38	-5.38	-4.59	1.92	-2.41		
傾斜	1/174	1/186	1/562	1/613	1/638	1/534	1/185	1/158	1/158	1/185	1/443	1/353		

其礎底面の傾斜

※1 基準地震動(+,+)は反転なし、(-,+)は水平反転、(+,-)は鉛直反転、(-,-)は水平反転かつ鉛直反転を示す。
※2 相対変位がプラスの場合は東傾斜、マイナスの場合は西傾斜を示す。

断面位置図

相対変位イメージ図

第940回審査会合

資料1-1 P168 加筆·修正

修正個所を青字で示す

■:最大傾斜

3. 基礎地盤の安定性評価 3.7 評価結果 基礎底面の傾斜 まとめ(2/2)

第940回審査会合						
資料1-1 P170 加筆·修正	-					
修正個所を青字で示す						

各施設における基礎底面の最大傾斜

対象施設	検討断面	基準地震動※	最大相対鉛直変位 (cm) 〔発生時刻(秒)〕	最大傾斜	評価基準値 の目安
防波壁(多重鋼管杭式擁壁)	⑦一⑦'断面 (南北)	Ss−D (+,−)	0.0056 〔10.08〕	1/39,000	1/2,000
防波壁(逆T擁壁)	⑪一⑪' 断面 (東西)	Ss−D (+,−)	5.38 〔34.51〕	1/158	1/2,000

※ 基準地震動(+,+)は反転なし, (-,+)は水平反転, (+,-)は鉛直反転, (-,-)は水平反転かつ鉛直反転を示す。

・防波壁(多重鋼管杭式擁壁)については、最大傾斜が評価基準値の目安を下回っていることを確認した。

- ・防波壁(逆T擁壁)については,最大傾斜が評価基準値の目安を上回っていることから,基礎底面の傾斜による防波 壁(逆T擁壁)の照査を行い,基礎底面の傾斜を考慮しても防波壁の構造成立性が確保される見通しがあることを確 認した。(第948回審査会合資料1-2-1(島根原子力発電所2号炉 津波による損傷の防止「基礎底面の傾斜による 防波壁の構造成立性」,補足説明資料13章)参照)
- ・施設の詳細設計段階において、傾斜を考慮した場合においても、施設の機能が損なわれるおそれがないように設計 する。

5. 地殻変動による基礎地盤の変形の影響評価 5. 1 評価方針

5. 地殻変動による基礎地盤の変形の影響評価 5.1 評価方針

評価方針

第940回審査会合 資料1-1 P204 再掲

・評価対象施設における地殻変動による基礎地盤の変形の影響評価について、設置許可基準規則に基づき、以下に示す事項を確認する。

	<地殻変動による基礎地盤の変形の影響評価>
!	地震発生に伴う地殻変動解析による基礎地盤の傾斜及び撓みにより,評価対象施設が重大な影響を受けないこと
ł	を確認する。

5. 地殻変動による基礎地盤の変形の影響評価 5.1 評価方針

評価方針

【評価方針】

- ・地殻変動解析の鉛直変位量から求められる基礎の傾斜について、傾斜方向を東西方向及び南北方向で確認し、傾斜が最大となる方向 により評価を実施する。
- ・地震による傾斜と上記の傾斜を足し合わせることにより、最大傾斜を算出する。それぞれの傾斜方向が異なる場合も、保守的にそれらを 足し合わせる。

【評価基準値】

・地殻変動解析の鉛直変位量から求められる基礎の最大傾斜に、地震応答解析から求められる基礎の最大傾斜(3.7章 評価結果 を参照)を加えた傾斜が、評価基準値の目安を超えないことを確認する。

対象施設	評価基準値の目安	備考
2号炉原子炉建物		
ガスタービン発電機建物	1/2 000	審査ガイドの目安値(基本設計段階の目安値):
防波壁(多重鋼管杭式擁壁) 防波壁(逆T擁壁)	17 2,000	発生率,発生区間により判断)

地殻変動解析による最大傾斜

(東西方向において最大傾斜)

二次元有限要素法による最大傾斜 (南北方向において最大傾斜)

地震による傾斜の重ね合わせによる最大傾斜 (傾斜方向が異なる場合も,保守的に傾斜を足し合わせる)

最大傾斜 =
$$\frac{\left|\delta_{AY} - \delta_{A'Y}\right|}{B_1}$$
 + $\frac{\left|\delta_{CY} - \delta_{C'Y}\right|}{D}$

傾斜= $\frac{\left|\delta_{CY} - \delta_{C'Y}\right|}{D}$ 地震による傾斜の重ね合わせのイメージ

5. 地殻変動による基礎地盤の変形の影響評価 5. 2 評価結果

5. 地殻変動による基礎地盤の変形の影響評価 5.2 評価結果 評価結果(地殻変動解析による傾斜(防波壁(逆T擁壁)))

亦位質定位置 相対亦位(mm)※

防波壁(逆T擁壁))
0 200m	

防波壁(逆T擁壁) 隅角部番号

第940回審査会合

資料1-1 P216 再掲

32

地殻変動解析による各施設の最大傾斜(防波壁(逆T擁壁))

検討ケーマ

计多新国

		叉世并 无世世		
	基本ケース	①, ②(東西)	0.25	1/34,000
陸域活断層 (宍道断層)	不確かさケース (すべり角)	①, ②(東西)	-0.10	1/85,000
	不確かさケース (断層傾斜角)	①, ②(東西)	0.50	1/17,000
海域活断層	上昇最大ケース	①, ②(東西)	-0.40	1/21,000
(F- Ⅲ~ F-Ⅴ断層)	下降最大ケース	①, ②(東西)	-0.50	1/17,000

■:断層毎の最大傾斜

旧剑

※ 東西方向については、相対変位がプラスの場合に東傾斜、相対変位がマイナスの場合に西傾斜となる 南北方向については、相対変位がプラスの場合に南傾斜、相対変位がマイナスの場合に北傾斜となる

相対変位イメージ図

5. 地殻変動による基礎地盤の変形の影響評価 5.2 評価結果 評価結果(地震動による最大傾斜の重ね合わせ)(2/2)

対象断層		①地殻変動による傾斜		②地震動による最大傾斜		①+②	
	計1110元支	最大傾斜	傾斜方向	最大傾斜	傾斜方向	地殻変動及び地展動を 考慮した最大傾斜 [※]	
陸域活断層	防波壁 (多重鋼管杭式擁壁)	1/22,000 (不確かさケース(すべり角))	北方向	1/39,000 (Ss-D)	北方向	1/14,000	
(宍道断層)	防波壁 (逆T擁壁)	1/17,000 (不確かさケース(断層傾斜角))	東方向	1/158 (Ss-D)	<mark>東</mark> 方向	1/156	
海域活断層 (F−Ⅲ~F−Ⅴ断層)	防波壁 (多重鋼管杭式擁壁)	1/22,000 (上昇最大ケース)	北方向	1/39,000 (Ss-D)	北方向	1/14,000	
	防波壁 (逆T擁壁)	1/17,000 (下降最大ケース)	西方向	1/158 (Ss-D)	東方向	1/156	

地殻変動解析による最大傾斜及び地震動による最大傾斜の重ね合わせ結果

※ ①と②の傾斜方向が異なる場合も、保守的に①と②の傾斜を足し合わせることにより評価を実施する。

第940回審查会合

資料1-1 P218 加筆·修正

修正個所を青字で示す

33

防波壁(多重鋼管杭式擁壁)については、最大傾斜が評価基準値の目安を下回っていることを確認した。

- ・防波壁(逆T擁壁)については,最大傾斜が評価基準値の目安を上回っていることから,基礎底面の傾斜による防波 壁(逆T擁壁)の照査を行い,基礎底面の傾斜を考慮しても防波壁の構造成立性は確保される見通しがあることを確 認した。(第948回審査会合資料1-2-1(島根原子力発電所2号炉 津波による損傷の防止「基礎底面の傾斜による 防波壁の構造成立性」,補足説明資料13章)参照)
- ・施設の詳細設計段階において, 傾斜を考慮した場合においても, 施設の機能が損なわれるおそれがないように設計 する。

7. まとめ

7. まとめ

[第3条第1項,第38条第1項]

- ・動的解析の結果に基づいて算定した基礎の接地圧が評価基準値を超えないことを確認した。
- 液状化によるせん断強度の低下を考慮した動的解析の結果に基づく時刻歴の基礎地盤のすべり安全率が1.5を上回ることを確認した。
 動的解析の結果に基づいて求められた基礎底面の傾斜が評価基準値の目安を超えないことを確認した。
- ・防波壁(逆T擁壁)については,評価基準値の目安を超えたため,基礎底面の傾斜を考慮しても,施設の構造成立性が確保される見通しがあることを確認した。
- ・施設の詳細設計段階において、傾斜を考慮した場合においても、施設の機能が損なわれるおそれがないように設計する。

[第3条第2項,第38条第2項]

- ・地震発生に伴う地殻変動によって生じる地盤の傾斜を算出し、地震動による地盤の傾斜も考慮した最大傾斜が、評価基準値の目安を 超えないことを確認した。
- ・防波壁(逆T擁壁)については,評価基準値の目安を超えたため,基礎底面の傾斜を考慮しても,施設の構造成立性が確保される見通し があることを確認した。
- ・施設の設置状況を踏まえ, 地震発生に伴う不等沈下, 液状化及び揺すり込み沈下等を起因とする施設間の不等沈下が生じないことを確 認した。
- ・施設の詳細設計段階において, 傾斜, 液状化, 揺すり込み沈下等の変状を考慮した場合においても, 施設の機能が損なわれるおそれが ないように設計する。

[第3条第2項,第38条第2項]

・敷地には将来活動する可能性のある断層等が分布していないことを確認した。

[第4条第4項,第39条第2項]

液状化によるせん断強度の低下を考慮した動的解析の結果に基づく時刻歴の周辺斜面のすべり安全率が1.2を上回ることを確認した。

以上のことから,島根原子力発電所2号炉の評価対象施設の基礎地盤及び周辺斜面は,基準地震動による地震力に対して十分な安定 性を有しており,設置許可基準則第3条,4条,38条,及び39条に適合していることを確認した。

補足説明資料

13. 基礎底面の傾斜による防波壁の構造成立性

・「島根原子力発電所2号炉 津波による損傷の防止 基礎底面の傾斜による防波壁の構造成立性」 (第948回審査会合,2021年2月18日)の抜粋

第948回審査会合 資料1-2-1 P5 再掲

防波壁(逆T擁壁)の傾斜に対する性能目標と設計評価方針

設置許可基準規則の各条文に対して、防波壁の耐震性(第4条)及び耐津波性(第5条)については第909回審査会合(令和2年10月15日)において、基礎地盤の支持力及びすべり(第3条)については第940回審査会合(令和3年1月29日)において、それぞれ説明している。
 今回、基礎底面の傾斜(第3条)について、防波壁の要求機能を担保するため、防波壁(逆T擁壁)の各部位に対する性能目標及び設計方針(損傷モード、許容限界等)を以下のとおり整理し、逆T擁壁、止水目地及びグラウンドアンカーの構造成立性について確認する。

37

防波壁(逆 T 擁壁) : 本資料において,構造成立性を確認する部位

要求機能	評価対象部位		西対象 部位	傾斜による性能目標 (第3条)	応力等の状態	損傷モード	設計に用いる許容限界	
 防波壁は、地震 後の繰返しの襲 来を想定した入 		逆T擁壁 (鉄筋コンクリート造)		構造部材の健全性を保持するために、逆T 擁壁が概ね弾性状態に留まること。	曲げ・せん断	部材が弾性域に留まらず 塑性域に入る状態	「コンクリート標準示方書,構造性能照査 編,2002年制定」を踏まえた短期許容応力 度とする。	
カ津波に対して, 津波による漏水 及び浸水を防止 することが要求さ	防波壁(止水	止 水 日 地 単 北水目地の 鋼製部材	逆T擁壁間から有意な漏えいを生じないため	変形·水圧	有意な漏えいに至る 変形・水圧	メーカー規格及び今後必要に応じて実施 する性能試験に基づく許容変形量及び許 容水圧以下とする。	
れる。 ・防波壁(逆T擁 壁)は,基準地震	ピ T擁壁)	目 地		に,止水目地の変形性能を保持すること。	曲げ・せん断	部材が弾性域に留まらず 塑性域に入る状態	「建築基準法施行令2006年6月」を踏まえ た許容応力度とする。	
動Ssに対し, 津 波防護施設が要 求される機能を 損なう恐れがな			グラウンド アンカー	逆T擁壁及び改良地盤の転倒抑止のために, グラウンドアンカーが概ね弾性状態に留まるこ と。	変位	グラウンドアンカーが伸張し, 逆T擁壁が転倒	「グラウンドアンカー設計・施工基準, 同解 説(平成24年5月)」を踏まえた弾性変位量 とする。	
いよう, 十分な構 造強度を有した 構造であること が要求される。		地盤	改良地盤 地 盤	ᇃᅌᄮᅇ	逆T擁壁を鉛直支持するため 十分な支持	支持力	鉛直支持機能を喪失する状態	「道路橋示方書・同解説 IV下部構造編 (平成14年3月)」を踏まえ, 妥当な安 全余裕を考慮した極限支持力度とする。
	地 盤			カを保持すること。 基礎地盤のすべり安定性を確保するため,	すべり安全率	すべり破壊し,難透水性を喪失す る状態	「耐津波設計に係るエ認審査ガイド」を準 用してすべり安全率1.2以上とする。	
			岩盤	十分なすべり安全性を保持すること。	支持力	鉛直支持機能を喪失する状態	「道路橋示方書・同解説 IV下部構造編 (平成14年3月)」を踏まえ,妥当な安全余 裕を考慮した極限支持力度とする。	

防波壁(逆T擁壁)の傾斜により要求機能を喪失する事象の抽出(1/2)

防波壁(逆T擁壁)の各部位が,損傷して要求機能を喪失する事象を抽出し,それに対する設計・施工上の配慮について整理した。

部位の名称	要求機能を喪失する事象	想定 ケース [※]	設計・施工上の配慮	照査
	• 地盤が傾斜することにより曲げ・せん断破壊し, 遮水 性を喪失する。	1	• 逆T擁壁の発生応力度が,許容応力度以下であることを確認する。	0
逆T擁壁	 地盤が傾斜することにより逆T擁壁の隣接する躯体同 士が相互に支圧することにより破壊し、遮水性を喪失 する。 	2	 隣接する躯体同士が衝突しないことを確認する。 隣接する躯体同士が衝突する場合,逆T擁壁の支圧応力度が,許容応力度以下であることを確認する。 	0

※ 喪失する事象の想定ケース

38

第948回審査会合 資料1-2-1 P7 再掲

防波壁(逆T擁壁)の傾斜により要求機能を喪失する事象の抽出(2/2)

部位の名称	要求機能を喪失する事象	想定 ケース*	設計・施工上の配慮	照査
止水目地 (支持部含む)	 ・ 地盤が傾斜することにより隣接する躯体間(法線方向,法線直交方向)の変形により,止水目地の許容変形量を超える変形が生じ,遮水性を喪失する。 	3	 メーカー規格及び性能試験に基づく許容変形 量以下であることを確認する。 	0
グラウンドアンカー	 地盤が傾斜することによりグラウンドアンカーが破損し, 逆T擁壁が転倒する。 	4	 地盤の傾斜による変位量が、グランドアンカーの弾性変位量以下であることを確認する。 	0

※ 喪失する事象の想定ケース

39

④グラウンドアンカーの破損

40

設計方針及び検討概要

- ▶ 防波壁(逆T擁壁)における要求機能を喪失する事象に対する設計方針を下表に示す。
- > 設置許可段階においては、下表の設計方針による構造成立性の見込みについて確認する。

構造成立性の確認に当たっては、地盤の安定解析に用いた動的FEM解析(全応力解析)に加え、防波壁の耐震性及び耐津波性に関する構造成立性の確認に用いた動的FEM解析(有効応力解析)を用いる。

施設	部位の名称	設計方針	照査 項目	設置許可段階での検討方針
防波壁(逆T擁壁)	逆T擁壁	 逆T擁壁の発生応力度が、許容応力度 以下となる設計とする。 	曲げ せん断	• 逆T擁壁の発生応力度が,許容応力度 以下であることを確認する。
	(鉄筋コンクリート造)	 隣接する躯体同士が衝突しないように離隔を設ける等の設計とする。 上記設計が困難な場合,逆T擁壁の支圧応力度が,許容応力度以下となる設計とする。 	曲げ せん断	 隣接する躯体同士が衝突すると仮定し、 支圧応力度を算定し、許容応力度以下 であることを確認する。
	止水目地 (支持部含む)	 隣接する躯体間の相対変位量が、止水 目地のメーカー規格及び性能試験に基 づく許容変形量以下となる設計とする。 	変形	 隣接する躯体間の相対変位量を算定し、 その相対変位量が止水目地の許容変形量 以下であることを確認する。
	グラウンドアンカー	 地盤の傾斜による変位量が、グランドアンカーの弾性変位量以下となる設計とする。 	変位	 基礎底面の傾斜による変位量を算定し, その変位量がグラウンドアンカーの弾性変位 量以下であることを確認する。

<u>第948回審査会合 資料1-2-1 P10 再掲</u>

動的FEM解析(全応力解析)

- ▶ 防波壁(逆T擁壁)基礎地盤の安定解析における動的FEM解析(全応力解析)では、以下のとおり解析条件を設定していることから、基礎底面の傾斜が大きくなり易い条件となっている。
 - 逆T擁壁直下の改良地盤の解析用物性値については、すべり安定性に大きく寄与する強度特性の増加を見込まないようにするため、保守的に埋戻土(掘削ズリ)の解析用物性値を流用していることから、有効応力解析における剛性の1/2以下となっている。
 - 逆T擁壁と改良地盤のモデル化において、両者の節点を共有させているため、改良地盤は地震時慣性力による逆T 擁壁の変形の影響を受け易い。
 - 逆T擁壁及び改良地盤の転倒等を抑止する機能を有するグラウンドアンカーをモデル化していないため、逆T擁壁及び改良地盤が変形し易い。

動的FEM解析(全応力解析)解析モデル図

第948回審査会合 資料1-2-1 P11 再掲

動的FEM解析(全応力解析)における最大傾斜発生時の変形モード

0.5 (m)

表示倍率:7倍

変形後

変形前:

改良地盤

- ▶ 防波壁(逆T擁壁)基礎底面の地震時傾斜が最大となる時刻(Ss-D, 12.09秒)における変形図及び主応力図を下図に示す。
- ▶ 最大傾斜発生時には、逆T擁壁及びその直下の改良地盤部は、大きく変形しているが、その周辺の地盤には、その影響は及んでいない。
- ➤ このことから、基礎底面に生じた傾斜は、逆T擁壁に作用した地震時慣性力の作用による影響が大きいと考えられる。

地震動による最大傾斜

最大傾斜発生時の変形図(Ss-D,12.09秒)

逆T擁壁

最大傾斜発生時の主応力図(Ss-D,12.09秒)

13. 基礎底面の傾斜による防波壁の構造成立性 動的FEM解析(有効応力解析)

第948回審査会合 資料1-2-1 P12 再掲 43

- 防波壁(逆T擁壁)の構造成立性を確認した動的FEM解析(有効応力解析)の条件は以下の特徴を有しており、 より現実的な応答を示すモデルとなっている。
 - 逆T擁壁直下の改良地盤については、PS検層結果を踏まえた剛性を解析用物性値として設定している。
 - 防波壁と周辺地盤など、要素間の滑り・剥離を考慮する箇所は、ジョイント要素でモデル化している。
 - 逆T擁壁の変形抑制機能を有するグラウンドアンカーをモデル化していない。なお、グラウンドアンカーは実態に合った モデル化を実施し、詳細設計段階において説明する。

13. 基礎底面の傾斜による防波壁の構造成立性 <u>第948回審査会合資料1-2-1 P13 再掲</u> 動的FEM解析(有効応力解析)における最大傾斜発生時の変形モード

 動的 F E M解析(有効応力解析)の最大傾斜発生時の変形図及び主応力図を下図に示す。
 最大傾斜発生時には、逆 T 擁壁の直下の改良地盤部及び周辺地盤に大きな変形は生じておらず、防波 壁(逆 T 擁壁)の基礎地盤の傾斜については、動的 F E M解析(全応力解析)と比較して小さい。

※動的 F E M解析(全応力解析)の変形図に合わせ,左右反転している。

動的 F E M解析(有効応力解析) 最大傾斜発生時の変形図

※動的 F E M解析(全応力解析)の主応力図に合わせ,左右反転している。

動的 F E M解析(有効応力解析) 最大傾斜発生時の主応力図

45

動的FEM解析結果による考察及び構造成立性検討方針

- ▶ 地盤の安定解析で用いた動的 F E M解析(全応力解析)と防波壁の構造成立性で用いた動的 F E M 解析(有効応力解析)の結果を比較すると、改良地盤の解析用物性値に埋戻土(掘削ズリ)を流用 する等,解析条件に保守性がある動的 F E M解析(全応力解析)の特徴により、基礎底面の傾斜が 大きくなっていると判断した。
- ▶ また,防波壁基礎底面の傾斜は躯体の地震時加速度による影響が大きいと判断した。
- 防波壁(逆T擁壁)の傾斜による構造成立性検討に当たっては、地殻変動による傾斜が地震動による最大傾斜と比較して十分小さいことを踏まえ、地震時の地盤の安定解析で用いた動的FEM解析(全応力解析)及び防波壁の構造成立性で用いた動的FEM解析(有効応力解析)の結果を確認する。
 詳細設計段階においては、現実的な応答を示す動的FEM解析(有効応力解析)を用いて傾斜の影響を確認する。

第948回審査会合 資料1-2-1 P15 再掲

46

①逆T擁壁の損傷(動的FEM解析(全応力解析))

構造成立性検討方法

▶ 動的 F E M解析における逆T擁壁の発生応力度が,許容応力度以下であることを確認する。

構造成立性検討結果

- ▶ 動的FEM解析(全応力解析)による結果を以下に示す。
- 逆T擁壁基礎底面に最大傾斜が発生した時刻における部材照査の結果,当該時刻において逆T擁壁に 作用する曲げ・せん断は短期許容応力度以下であることを確認した。

評価 部位	照査項目	地震動	発生応力 (N/mm²)		許容応力 (N/mm²)		安全率 (許容応力/ 発生応力)	判定 (>1.0)	
	ᆎᅸᇗᆂᆋᆂ		曲げ圧縮応力度o _c	0.9	許容曲げ圧縮応力度σ _{ca}	18	20.00	OK	
竪壁			引張応力度σ _s	30	許容引張応力度ơ _{sa}	323	10.76	OK	
	せん断		せん断応力度τ	0.04	許容せん断応力度T _a	0.9	22.50	OK	
底版			5 S -D	曲げ圧縮応力度o _c	3.2	許容曲げ圧縮応力度の _{ca}	18	5.62	OK
			引張応力度ơ _s	124	許容引張応力度ơ _{sa}	323	2.60	OK	
	せん断		せん断応力度τ	0.24	許容せん断応力度 _{Ta}	0.9	3.75	OK	

■ 短期許容応力に対する照査(全応力解析)

第948回審査会合 資料1-2-1 P16 再掲

①逆T擁壁の損傷(動的FEM解析(有効応力解析))

構造成立性検討結果

- > 防波壁の構造成立性で確認した動的FEM解析(有効応力解析)による結果を以下に示す。
- ▶ 逆 T 擁壁の部材照査(曲げ, せん断照査の最小安全率時刻)の結果, 逆 T 擁壁に作用する曲げ・せん断は短期許容応力度以下であることを確認した。

評価 部位	照査項目	地震動	時刻 (s)	発生応力 (N/mm²)		許容応力 (N/mm²)		最小 安全率 (許容応カ/ 発生応力)	判定 (>1.0)
竪壁	击 (判·對·對·		9.17	曲げ圧縮応力度ơ _c	5.6	許容曲げ圧縮応力度 σ_{ca} 1		3.21	OK
			9.17	引張応力度ơ _s	242.3	許容引張応力度ơ _{sa}	323	1.33	OK
	せん断		23.91	せん断応力度τ	0.32	許容せん断応力度T _a	0.9	2.81	ОК
底版	曲げ・軸力	- 55-0	9.17	曲げ圧縮応力度o _c	5.4	許容曲げ圧縮応力度o _{ca}	18	3.33	ОК
			9.17	引張応力度σ _s	262.8	許容引張応力度o _{sa}		1.22	OK
	せん断		23.91	せん断応力度τ	0.46	許容せん断応力度T _a	0.9	1.95	OK

■ 短期許容応力に対する照査(最小安全率時)

2隣接する躯体同士の支圧による損傷

構造成立性検討方法

防波壁(逆T擁壁)の傾斜による構造成立性検討に当たっては、隣接する躯体同士は同位相で挙動すると考えているが、隣接する躯体同士が衝突すると仮定し、動的FEM解析(全応力解析)の躯体加速度から躯体間に作用する支圧応力度を算定し、許容応力度以下であることを確認する。また、動的FEM解析(有効応力解析)においても同様の確認を行う。

構造成立性検討結果

地盤の安定解析に用いた動的FEM解析(全応力解析)及び防波壁の構造成立性に用いた動的FEM解析(有効応 力解析)における逆T擁壁に作用する支圧応力度は許容応力度以下であることを確認した。

○逆T擁壁に働く慣性力F

 F = ma
 m<: 逆T擁壁の質量</th>

 a: 地震時加速度

〇逆 T 擁壁側の支圧応力度 σ_{cv}

 $\sigma_{cv} = F \div \Sigma b_i \cdot h_i \leq \sigma_{ca}$ $b_i : 防波壁の幅$ $h_i : 防波壁の高さ$ $\sigma_{ca} : 支圧応力度の許容応力度$ F=ma ←北 南→

隣接する躯体に働く慣性力

第948回審查会合 資料1-2-1 P17再掲

逆 T 擁壁の相互の支圧イメージ図

評価 部位	照査項目	地震動	支圧応力度 (N/mm²)		支圧応力度の許容応力度(N/mm²)		安全率 (許容応力/ 発生応力)	判定 (>1.0)
治工体段	+ C		全応力解析	0.51	圧縮応力度σ _{ca}	10.8	21.1	ОК
迎班堂		55-0	有効応力解析	0.81	圧縮応力度σ _{ca}	10.8	13.3	ОК

第948回審査会合 資料1-2-1 P18 再掲

③防波壁間の変形による止水目地の損傷

<u>構造成立性検討方法</u>

- 防波壁(逆T擁壁)の傾斜による構造成立性検討にあたっては,隣接する躯体同士は同位相で挙動すると考えているが,保守的に逆位相になった場合の変形量を算定し,先行炉で審査実績を有する止水目地で対応可能であることを確認する。
- 止水目地の変形量は、法線直交方向の動的FEM解析(全応力解析、有効応力解析)における最大傾斜から算出 された防波壁(逆T擁壁)天端の相対変位と、保守的に法線方向においても同傾斜とした場合の相対変位を基に合 成変形量を算出した。
- 止水目地の仕様については、現時点では、先行炉で審査実績を有する止水目地(2000mm)に余裕を考慮して 1000mmとする。

構造成立性検討結果

地盤の安定解析に用いた動的FEM解析(全応力解析)及び防波壁の構造成立性に用いた動的FEM解析(有効応力解析)における止水目地の変形量は先行炉で審査実績を有する止水目地で対応可能であることを確認した。

評価 部位	照査項目	地震動	変形量 (mm)		止水目地の仕 (mm)	<u>چ</u>	安全率 (止水目地/ 変形)	判定 (>1.0)
	赤叱		全応力解析	640	変形量	1000	1.56	ОК
		55-0	有効応力解析	90	変形量	1000	11.11	ОК

49

④グラウンドアンカーの破損

構造成立性検討方法

- 防波壁(逆T擁壁)はグラウンドアンカーを設置するため、基礎底面の傾斜による顕著な変位は生じないと考えている \succ が、動的FEM解析では、グラウンドアンカーを考慮していないことから、基礎底面の傾斜によるグラウンドアンカーの 変位量は、動的FEM解析(全応力解析、有効応力解析)における初期位置からの変位量を算出し、グラウンドアン カーの弾性変位量以下であることを確認する。
- ▶ グラウンドアンカー設計・施工基準、同解説(平成24年5月)により算出したグランウンドアンカーの弾性変位量uは、グ ラウンドアンカーの仕様からu=約133mmとなる。

構造成立性検討結果

地盤の安定解析に用いた動的FEM解析(全応力解析)及び防波壁の構造成立性に用いた動的FEM解析(有効応力解 \geq 析)における最大傾斜時の変位量は弾性変位量以下であることを確認した。

逆 丁 擁壁の傾斜イメージ図

グラウンドアンカー弾性変位量 u グラ	フンドアンカー設計・施工基準, 同解	説(平成24年5月)
---------------------	--------------------	------------

項目	記号	備考		
計画最大荷重	Т	2,400kN(テンドン降伏荷重)		
テンドン自由長	I_{sf}	16,220mm		
テンドン弾性係数	E_S	191kN/mm ²		
テンドン断面積	A_S	1,525.7mm ²		
弾性変位量	u	133mm		

第948回審査会合 資料1-2-1 P19再掲

50

評価 部位	照査項目	地震動	変位量 (mm)		弾性変位量 (mm)		安全率 (弾性変位/ 最大変位)	判定 (>1.0)
グラウン	<u>-</u>		全応力解析	102	弾性変位量	133	1.30	OK
ドアン カー	変位	Ss-D	有効応力解析	18	弾性変位量	133	7.38	ОК

第948回審査会合 資料1-2-1 P20 再掲

51

詳細設計段階での検討方針

> 防波壁(逆T擁壁)における要求機能を喪失する事象における詳細設計段階での検討方針を下表に示す。

施設	部位の名称	要求機能を喪失する事象	照査 項目	詳細設計段階での検討方針
防波壁(逆T擁壁)		 地盤が傾斜することにより曲げ・せん断破壊し, 遮水性を喪失する。 	曲げ せん断	• 動的FEM解析(有効応力解析)を行い, 逆 T 擁壁が損傷しないことを確認する。
	逆T擁壁 (鉄筋コンクリート造)	 地盤が傾斜することにより逆T擁壁の隣接 する躯体同士が相互に支圧することにより 破壊し、遮水性を喪失する。 	曲げ せん断	 防波壁(逆T擁壁)の法線方向の動的 FEM解析(有効応力解析)を行い,隣 接する躯体の挙動を把握し,防波壁が損 傷しないことを確認する。 逆T擁壁の支圧応力度が許容応力度を上 回る場合,許容限界を満足する対策を講 じる。
	止水目地 (支持部含む)	 地盤が傾斜することにより隣接する躯体間 (法線方向,法線直交方向)の変形 により,止水目地の許容変形量を超える 変形が生じ,遮水性を喪失する。 	変形水圧	 防波壁の法線直交方向及び法線方向の 動的 F E M解析(有効応力解析)を行い、止水目地の変形量が許容変形量以下であることを確認する。 また、止水目地にかかる水圧が許容水圧以下であることを確認する。
	グラウンドアンカー	• 地盤が傾斜することによりグラウンドアン カーが破損し, 逆T擁壁が転倒する。	引張	 グラウンドアンカーをモデル化した動的 F E M解析(有効応力解析)を行い,設計 アンカーカにより逆 T 擁壁が転倒しないことを確認する。 裕度が確保できなくなった場合には,グラウンドアンカーを追加設置する。

まとめ

第948回審査会合 資料1-2-1 P21 再掲 52

- ▶ 基礎底面の傾斜に対して防波壁に要求される安全機能,及び防波壁(逆T擁壁)の設計方針(損傷モード,許容限界等)を整理した。
- 防波壁(逆T擁壁)の逆T擁壁,止水目地及びグラウンドアンカーが基礎底面の傾斜により損傷し,要求機能を喪失する事象を抽出した。
- 要求機能を喪失する事象に対し,動的FEM解析(全応力解析)及び動的FEM解析(有効応力解析)を用いた照査の結果,防波壁(逆T擁壁)の各部位は許容限界を満足 することから,基礎底面の傾斜を考慮しても防波壁は構造成立することを確認した。