柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)		島根原子力	発電所 2号炉	備考
	<u>3. 設計飛来物の設定</u>	3.3.2.2 現地調	調査結果の整	理	(柏崎 6/7 は「3.3 (1) 飛
					来物調査」で記載)
		고타 기다 글찌 -*			
	飛来物源のうち、適去の電を放告事例(添付資料9 別紙9-1) たたまれり、記書ですなるの間はの影響なて同るし、地路	現 地 調 盆	「により加山」	」に想正飛米物から,小型軽重	
	<u>を参考とし、 取訂成米物医価 じめる 刺裂材の 影響を 下回ると 判断</u>	い物休及7	<u> 腎計皿刈家加良</u> ド 損	欧本物とならない物体を設計系	
	価を不要とした	来物の選定	に思慮り、2.//1	K1, F	
		その他の)想定飛来物は	こついて. 表3.3.1に基づき形	
		状,変形性	ま状,サイズな	ド同程度なものに分類し、グル	
		ープ分けし	_120m		
			表3.3.1 想觉	三飛来物の分類基準	・想定飛来物の分類方法
			分類	基準	の相違
			棒状	_	【東海第二】 島根2号炉は,抽出し
		形状	板状	_	た想定飛来物を剛・柔の
			塊状	_	観点でも分類している
			柔	木製、ゴム製、中空状又は	
		□ 変形性状		複数の材からなる。	
			岡山	コンクリート又は鋼製で密 実 単休からなろ	
					
			極小	概ね1kg未満	
			d.	概ね0.01m ² \sim 0.5m ²	
				概ね1kg~20kg	
		サイズ	中	概ね0.5m ² ~2.0m ²	
				概ね20kg~500kg	
			大	概ね2.0m ² ~10m ²	
			特大	概ね2,000kg以上	
		形状が核	棒状又は板状	で変形性状が柔と分類されたも	
		のについて	ては、評価対応	象施設に衝突した場合の影響が	
		軽微であり	り、同形状の	変形性状が剛なものに包絡され	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		ると考えられるため、設計飛来物の選定候補から除外	
		<u>した。</u>	
		各グループにおいて,ガイドの設定例も参考にし,	
		発電所構内に存在するもののうち,運動エネルギ又は	
		貫通力が大きいと考えられるものを代表として選定し	
		た。想定飛来物の分類及び各グループを代表する想定	
		飛来物の選定結果を表3.3.2に示す。	

	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
Image: state	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	日本の19年1月19日 日本の19年1月19日 日本の19年1	備考
			Participant Participant Partitipant </td <td></td>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(2)固定状況等を踏まえた抽出	3.1 固定状況等を踏まえた飛来物源の抽出		(島根2号炉は、
(1)で抽出した結果を踏まえ,過去の被害事例等(別紙1)を参	現地調査にて確認された物品のうち以下に示すもののうち,		「3.3.2.1(1)現地調査の
考に、以下の観点のいずれにも当てはまらない物品を設計飛来物	過去の竜巻被害事例(【添付資料 9 別紙 9-1】)も参考とし,		観点」及び「別紙-1 過去
候補として抽出した。(表3.3.3)	以下の観点のいずれにも当てはまらない物品を飛来物源として		の主な竜巻事例に基づく
①溶接やボルトにより頑健に固定されているか	抽出した。		飛来物の検討について」
②分解し小型軽量となる物品か	(1) 溶接やボルト等により頑健に固定されている物品		に記載)
③竜巻の影響により転倒はするが、飛来物とはならない物品か	(2) 竜巻の影響により損傷はするが,飛散しない物品		
	3.2 飛来物源の飛散評価		(島根2号炉は,
	3.2.1 設計飛来物候補の設定		「3.3.4.1 設計飛来物の
	設計飛来物候補は、現場調査結果を踏まえ、飛来物防護対策		仮設定」に記載)
	として設置する設備の規模と固縛等の飛来物発生防止対策を要		
	する物品の物量のバランスを考えて設定した。(第3.2.1-1表		
	参照)		
	発電所における現場調査結果, 第 3. 2. 1-1 表に示すような,		
	上記の竜巻防護対策(飛来物防護対策と飛来物発生防止対策)		
	のバランス、先行プラントにおける設定実績並びに竜巻飛来物		
	防護ネットの存在を踏まえ、「竜巻影響評価ガイド」に例示さ		
	れる鋼製材を、設計飛来物候補として設定した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 18版)	島根原子力発電所 2号炉	備考
	第 3.2.1-1 表 設計飛来物	勿候補と竜巻防護対策の関係		
		護対策		
	設計飛来物 飛来物防護対策	飛来物発生防止対策 採用		
	規模	物量		
	配置, 耐震面の制約が 大きい可能性がある。	対象と物品は少ない。		
	車両 大 健屋壁の増改築,小型の	少 (4.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		
	施設でも単両寸法をカ バーする規模の設備が	影響を下回る。		
	先行プラント事例等から 成立性が見通しやすい。	元行ノラント事例等から 対策が必要となる物品が		
		見通しやすい。		
	鋼製材 中 电を飛来物的護対束設 備の規模,鋼製材を念	甲 (細々した物品について) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		
	頃に直いた防護不ット の実績等,具体的なイ	おおむね対策が不要と		
	(メージが容易である。)	処置する物量が膨大かつ		
	施設は少ない。	運用面の負担大きい。		
	▲ 「 「 衝撃力, 貫通力共に 」	大多数の物品が木片の		
		(泉)音を抱える。)		
	3.2.2 評価不要物品の抽出			(島根2号炉は,「別紙-1
	飛来物源のうち, 過去の竜着	参被害事例(添付資料9 別紙9-1)		過去の主な竜巻事例に基
	を参考とし、設計飛来物候補	である鋼製材の影響を下回ると判		づく飛来物の検討につい
	断した物品については、設計	飛来物にならないものとして、飛		て」に記載)
	散評価を不要とした。			
(3) 代表的た飛来物の飛散評価	323 飛来物源の飛散評価		3 3 3 飛来物の運動エネルギ及び貫通力の質出	
(2)で抽出をした代表的な飛来物に対し、設計竜巻の最大風速	3.2.2 にて抽出された飛来物	勿源に対し、設計竜巻の最大風速	前項にて代表として選定した想定飛来物について、解	
92m/s, 風速場モデルとしてフジタモデルを適用した場合における	100m/s, 風速場モデルとして	フジタモデルを適用した場合にお	析コード「TONBOS」を用いてフジタモデルの風速場にお	
飛散評価を実施し,浮上する物品を抽出した結果を表3.3.3 に示	ける飛散評価を実施した。		ける運動を解析することにより浮き上がりの有無及び最	
<u>す。飛来物の初期高さは、プラントウォークダウンにて確認した</u>			大速度を求めた。	
飛来物の設置場所と外部事象防護対象施設との高低差を踏まえ設				
定した。 ·				
	なお、発電所は、敷地近傍	<u>に一般道や隣接事業所が存在する</u>		・施設の相違
	ことから、管理が困難な一般	道(国道245号線)からの車両		【東海第二】
	の飛散の影響を現実的に評価	することとし、保守性を確保した		島根2号炉は敷地近傍
	<u>上で, ランキン渦モデルに比</u>	べ物品の飛散挙動をより実現象に		に隣接事業所はない
	近く捉えることができるフジ	タモデルを,飛散評価の風速場モ		
	デルとして適用する。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	(1) 初期高さ		・初期高さの設定対象の
但し, 仮設物のように設置場所の特定が困難な物品については,	フジタモデルを使用した飛散評価においては,第3.2.3-1		相違
外部事象防護対象施設に到達する可能性のある初期高さのうち,	図に示すように,評価対象物品の配置位置と敷地高さとの高		【柏崎 6/7,東海第二】
最大の高さを飛来物の初期高さとして設定した。(別紙2)	低差を示す初期高さの設定が必要となる。評価対象物品の初		島根2号炉は足場パイ
そのため、飛来物の飛散距離については、上記で設定した飛来	<u>期高さは、現地調査結果等を踏まえて設定するものとするが、</u>		プ,足場板に対して初期
物の初期高さから外部事象防護対象施設の高さまでに飛散した距	仮設材のように設置場所が特定できず、高所に置かれる可能		高さを設定して飛散解析
離を設定した。(例えば,初期高さ30m における飛散評価であれ	性を有する飛来物源に対しては、使用場所が地表高さである		を実施している
ば, 初期高さ30m から0m 迄の飛散距離となる)	か高所であるかを考慮の上,適切な初期高さを設定する。		(島根2号炉は、
			「3.3.4.1 設計飛来物の
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		仮設定」に記載)
	(3) 飛散速度の選定と横滑りの考慮		
また、飛来物の速度については、ガイドに基づき、飛散評価に	飛来物源の飛散速度については、「竜巻影響評価ガイド」	飛来物の飛散速度については,「竜巻影響評価ガイド」	
より求まる飛散した際の最大水平速度及び最大鉛直速度を設定し	に基づき、飛散評価により算出される際の最大水平速度及び	に基づき,飛散解析により算出される際の最大水平速度	
T	最大鉛直速度を設定した。	及び最大鉛直速度を設定した。	
なお、浮上しないが横滑りにより外部事象防護対象施設に影響	なお、浮上しないが横滑りにより評価対象施設等に影響を		(島根2号炉は、
を与え得る物品については、浮上する物品同様、(4)以降の結果を	与え得る物品については,浮上する物品同様,3.3の結果を踏		「3.3.4.2 横滑りの考
踏まえ設計飛来物として選定する必要があるかを確認する。	まえ設計飛来物として選定する必要があるかを判断する。		慮」に記載)
		解析方法の詳細については別添2-2に示す。	
(4) 飛来物発生防止対策の可否を踏まえた抽出	3.2.4 飛来物発生防止対策の可否を踏まえた飛来物源のスクリ		(島根2号炉は、
			「3.3.4.3 飛来物発生防
(3)で抽出した結果を踏まえ、固縛、撤去等の飛来物発生防止対	飛散評価の結果を踏まえ、設計飛来物候補である鋼製材に対		止対策の実施」に記載)
策が可能かどうかを考慮し、設計飛来物の候補を抽出した。(表	し,その影響(運動エネルギ又は貫通力)を上回るパラメータ		
3.3.3 右端欄参照)	を有する飛来物源に対し、固縛あるいは離隔及び撤去等の飛来		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	物発生防止対策の可否を考慮し、新たに設計飛来物候補とする		
	必要の有無を評価した。		
(5) 評価パラメータの代表性の確認	<u>(1) 運動エネルギ</u>		
(4)で抽出した結果に対し、竜巻及び飛来物により想定される評	飛来物源の運動エネルギ E は下式によって算出する。		
価対象施設の損傷モードより設定した評価パラメータ(運動エネ	-1 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		
ルギー,貫通力,寸法)が,最大となる物品を(寸法については	$E = \frac{1}{2}M \cdot V^2$		
最小),設計飛来物として選定する。(表3.3.3 黄色箇所参照)			
	M: 飛来物の重重(kg)		
	V :		
	(9) コンクリートに対する貫通力		
	コンクリートに対する貫通力は 一番主物の衝空に対する評	また、租地調本の結果から代表として選定した飛来物	
	価として MEI07-13 及び米国NRCの基準類に 寛定式と	に加えて ガイドに設定例として示されている飛来物を	
	して記載されている修正NDRC式(①式)を用いて貫入深	考慮することとし、解析により求めた最大速度又はガイ	
	さ x_e を求め、Degen式(②式)により貫通限界厚さ t_e を	ドに示された最大速度を用いて、運動エネルギ及び貫通	
	算定する。	力を算出した。貫通力については、BRL式を用いて鋼板に	
		対する貫通厚さTを、鉄筋コンクリート版に対する貫入深さ	
		r を修正NDDC式で管出し Decon式を用いて鉄筋コンクリート	
		版に対する貫通限界版厚t,を算出した。コンクリートの評価	
		においては, kg/cm ² 単位系の値を使用する。	
		【BRL式】(鋼板に対する貫通厚さT):	
		$T^{3/2} = \frac{0.5MV^2}{1000000000000000000000000000000000000$	
		$1.4396 \times 10^9 K^2 D^{3/2}$	
		T:鋼板貫通厚さ(m)	
		M:ミサイル質量(kg)	
		V:ミサイル速度(m/s)	
		D:ミサイル直径 (m)	
		K:鋼板の材質に関する係数 (≒1)	
		出典:ISES7607-3「軽水炉構造機器の衝撃荷重に関す	
		山六・102010010「在小川借但1%曲の周手間里に因う	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	$\frac{x_c}{\alpha_c d} \le 2 \text{ OD} \boxplus \stackrel{\text{H}}{\Rightarrow} \stackrel{\text{C}}{=} 2\left\{ \left(\frac{12145}{\sqrt{Fc}}\right) N d^{02} \frac{M}{d^3} \left(\frac{V}{1000}\right)^{1.8} \right\}^{0.5}$ $\frac{x_c}{\alpha_c d} \ge 2 \text{ OD} \stackrel{\text{H}}{\Rightarrow} \stackrel{\text{C}}{=} \left(\frac{12145}{\sqrt{Fc}}\right) N d^{02} \frac{M}{d^3} \left(\frac{V}{1000}\right)^{1.8} + 1$	る調査 その3 ミサイルの衝突による構造壁 の損傷に関する評価式の比較検討」(高温構造安 全技術研究組合)	
	$\frac{x_c}{\alpha_c d} \le 1.52 \mathcal{O} - 3 \left\{ 2.2 \left(\frac{x_c}{\alpha_c d} \right) - 0.3 \left(\frac{x_c}{\alpha_c d} \right)^2 \right\}$ $1.52 \le \frac{x_c}{\alpha_c d} \le 13.42 \mathcal{O} - 3 \left(\frac{x_c}{\alpha_c d} \right)^2 $ $t_p = \alpha_p d \left\{ 0.69 + 1.29 \left(\frac{x_c}{\alpha_c d} \right) \right\}$ $t_p : 貫 通限 界厚 \stackrel{\circ}{\to} (cm)$	【修正 NDRC 式】 (コンクリートに対する貫入深さ x_c): $x_c = \alpha_c \left\{ 4 \left(\frac{12145}{\sqrt{F_c}} \right) WNd \left(\frac{V}{1000d} \right)^{1.8} \right\}^{0.5}, (U, \frac{x_c}{\alpha_c d} < 2)$ [Degen 式] (コンクリートに対する貫通限界版厚 t_p):	
	 x_c :貫入深さ(cm) Fc : コンクリートの設計基準強度(kgf/cm²):250 kgf/cm² d :飛来物の直径(cm) (飛来物の衝突面の外形の最小投影面積に等しい円の直径) 	$t_{p} = \alpha_{p} d \left\{ 2.2 \left(\frac{x_{c}}{\alpha_{c} d} \right) - 0.3 \left(\frac{x_{c}}{\alpha_{c} d} \right) \right\}, \square \cup, \frac{x_{c}}{\alpha_{c} d} \leq 1.52$ $t_{p} : 貫通限界版厚 (cm)$	
	 M :飛来物の重量(kg) V :飛来物の最大水平速度(m∕s) N :飛来物の先端形状係数:1.14 	x_c :貫入深さ(cm) d:飛来物直径(cm) F_c :コンクリートの設計基準強度 (kgf/cm ²) (=240kgf/cm ²)	
	「構造工学シリーズ6構造物の衝撃挙動と設計法」(土木学会) を参考に設定。 保守的な評価となる,非常に鋭い場合の数値を一律使用した。	 W:飛来物重量(kgf) V:衝突速度(m/s) N:飛来物先端形状係数で,以下の値を使用する。 ・棒状の物体,板状の物体:1.14 	
	α _c :飛来物の低減係数:1.0 α _p :飛来物の低減係数:1.0 保守的な評価となる,剛の場合の数値を一律使用した。		
	 (3) 銅板に対する貫通力 鋼板に対する貫通力は、「タービンミサイル評価について(昭和 52 年 7 月 20 日 原子炉安全専門審査会)」の中で、鋼板に対する貫通厚さの算出 式に使用されているBRL式(③式)を用いて貫通限界厚さTを算定する。 T³/₂ = 0.5MV²/(1.4396×10°K²・d²) T : 鋼板貫通限界厚さ(m) M : 飛来物の重量(kg) V : 飛来物の重量(kg) V : 飛来物の最大水平速度(m/s) d : 飛来物の直径(m) (飛来物の直径(m) (飛来物の耐笑面の外形の最小投影面積に等しい円の直径) K : 鋼板の材質に関する係数(≒1) 	する。 なお、BRL式は「タービンミサイル評価について(昭和 52年7月20日 原子炉安全専門審査会)」の中で、鋼板に 対する貫通厚さの算出式として用いられているものであ る。 最大風速92m/sの竜巻によるフジタモデル(地上からの 初期高さ0m)を用いた飛散解析による飛来物の浮き上がり の有無及び運動エネルギ、貫通力の算出結果を表3.3.3に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	(4) 代表的な飛来物源の飛散評価結果及びスクリーニング		
	現場調査によって確認された飛来物源に対して、初期高さ		
	を設定し、飛散評価を実施する。飛散評価結果とスクリーニ		
	ングの結果の例として, 第3.2.4—1表に示す。		
	なお、飛来物源の特徴を考慮し、仮設材等の建屋屋上に配		
	置されることが考えられる物品については、一例として初期		
	高さ40mでの結果も並列して記載している。		
	<u>第 3.2.4―1 表における飛来物源は、初期高さ 0m での運動</u>		
	エネルギ及び貫通力の評価結果によって分類している。(表		
	<u>中の No.のハッチング色)</u>		
	また,初期高さ40mの飛散評価結果による分類は,表中の		
	飛来物発生要否の欄のハッチング色により示しており、初期		
	高さの設定により分類が変更となるものは、ハッチング色に		
	より判別できる。		

柏崎刈羽原子力発電	所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 3.3.3 代表的な飛来物	の飛散評価結果	及び飛散防止対策・固定	第3.2.4-1表 代表的な飛来物源の飛散評価結果整理表の例	表3.3.3 想定飛来物の飛散解析結果(フジタモデル(地上からの	・想定飛来物の相違
状況等を	踏まえた選定結界	そ (1/6)		<u>初期高さ 0m),最大風速 92m/s)</u>	【柏崎 6/7,東海第二】
	A 2 ボン (Num Statute Alter-scale Reg. 2010/01 Reg. 2010/01 <t< td=""><td>DJRAČE ODJ. JE JENEJE VENCIJATV na na</td><td>【柏崎 6/7,東海第二】 抽出した想定飛来物の 相違</td></t<>	DJRAČE ODJ. JE JENEJE VENCIJATV na	【柏崎 6/7,東海第二】 抽出した想定飛来物の 相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 3.3.3 代表的な飛来物の飛散評価結果及び飛散防止対策・固定	第3.2.4-1表 代表的な飛来物源の飛散評価結果整理表の例		
状況等を踏まえた選定結果 (2/6)			
(3.1) <			
を し い に に に に に に に に に に に に に			
で、 「「「」」、 「」、 「			
×****			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 3.3.3 代表的な飛来物の飛散評価結果及び飛散防止対策・固定	第3.2.4-1表 代表的な飛来物源の飛散評価結果整理表の例		
<u> 状況等を踏まえた選定結果(3/6)</u>			
<section-header><caption></caption></section-header>	No. Service (M11:101-Crientin) Territion (M11:101-Crientin) Territion (M11:101-Crientin) Refer to the Refer to the M11:101 Refer to the M11:101 Ref to the M11:101		

柏崎刈羽原	原子力	発電	所 (6/7	7 号炉	ī	(2017	7.12.	. 20版)				-	東海鉤	第二	発電	訂所	(20	18.9	9. 18	版)					島根	原子力多	论電所	24	寻炉			備考	×.	
表 3.3.3 代表	的な刑	毫来物	の飛	散評(面結り	果及て	び飛背	效防⊥	上対策・固定	第	3.2.4	-1 表	ŧſ	、表的	りなす	来邠	物源	夏の手	形散	評価	結果	製整	理表の例												
	状況	等を	皆まえ	えた選	尾定結	课	(5/6)	_																											
ならないか ^{や4} 1室(彼立、国 苫さむるか	>特生金防護対 る又は回線等や 当派米物ハート		8生時止対策が 計派朱物として		小部 中衆防護対 る又は困難等を シスは困難等を	計浜朱物とした	8年時止対策が 計飛来物として			張来物発生 陆止封飾の	19日 A 来の 検討が必要 【①,②,③の	× لايدريالا و-ديا	× × (× O	××	× × 0		× × ×	< × ×	0 ×	××													
以下の点で完美者で 以下の点で完美者で 業金粉(加加加) までの高の素実施(白素	(4) 冷上しないが、ケ 後緒設との藻踊をと 実績することから設	選定しない。	(4)固縛等の飛来物系 回能なことから、設 隠むしたい。	0 5 1	(4)洋上しないが、タ 象施設との離隔をと	実施することから設 設定しない。	(4)固緯等の飛米物別 可能なことから、設	暖産 レバン。		貫通力(鋼板)	貫通 鋼製材超 限界 (T> ^{0mm})	(mm) 【条件③】 3 ×	~ × ×	× × ×	3 4 × ×	3 5 X	2 4 2	× × > • • • •	× × ×	x x x	4 8 × ×	2 3 ×													
発がして、	×	0	0	0	×	×	0	0		()-()	[材超 > 9cm)	() () () () () () () () () () () () () (× × :	× 0	××	× ×	× × >	< × >	× × ×	. × ×	××	××													
 「 「 「 「 「 「 「 	- 0	0	0	9	0	0	5	-		重力 (コン:	日 (fb) 3 (fb)	0 ⁰	.1.5	: 8. 00	.2	.7	4. 8. c	9.	- 8.9	.9	.7 14	14													
2011年 1月10日 1月111日 1月111日 1月111日 1月111日 1月1111 1月1111 1月11111 1月11111 1月11111 1月111111	0	ى م	~	10	0	0	4	67		レギ 貫通	村超 貫通 - 限男 strl) 同当	牛①】 (cm × 16	15 16	14 14	× 14	× × 13	11 12		× × ×	13	0 × 0	× × 12													
、の)墳 ² [cm.]	0	39	12	45	0	0	12	9		働した	(E> (E>	<u>و</u>		06	0	0 2	4 9 b	- 9 4		5 4 6															
本 本 本 本 本 本 本 、 本 、 本 、 、 、 、 、 、 、 、 、 、 、 、 、	4	40	31	67	0	0	20	<i>6</i> 1		涭	最 運 " 大 蓟 "	(kJ) 15	0 15	23 15	33 13 30	4 11	6 11 0	00 11	10 10 10 10 10 10 10 10 10 10 10 10 10 1	95 9	7 18	6 00													
	0	5	27	in I	0	0	m	61) (Leo)		, <u>5</u>	92	58	6			-	5, 1	1 2	20													
		ę	0.	_	0	0	61	21			最経点	(m) 6.077	2.185	0.428	3.710	37.614	1.121	10.441	20.842 20.842 52.463	1.545	3.317	37.449													
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	°	16	-	-	14	16			大散雌	m) 57.2	43.8	13.6	28 189.4	244.3	810.5 149.6	197.2	195	31.3	216.3	14													
選 ネ イ マ ー ン (型 (空) (窓)		2211	2561	3464	0	0	64	10			大平商	62 1 (1) 62 1 (1)	40 5 59	40	31 46 1	86 2	48 1	01 0 19 2 19 2 19 2 19 2 19 2 19 2 19 2 19 2	2 00 63 5	45 1 35 2	49 2 58 1	18 28													
画 ネギビッ エル・ディー 「人	(+	2427	1321	8647	0	0	296	31	王	-	期は、現本は	(ii) (ii) (ii)	40	40	0 40	0 0	40	0 0 0	40 0 4	0 0	40	40													
長大鉛 10 18 1 18	0	24	24	24	0	0	23	22	22		E HE	)         	0104	0040	0078	0381	0318	0456	0407	0159	2010	0047													
大水 憲定 [1]	0	25	17	38	0	0	41	40	KI 表 定 定		CD CD		1.4 0.	1.6 0.	1.3 0.	1.2 0. 6.5 0.	1.85 0.	1.5 0.	215 0.	915 0.	0 7 6	1.5 0.													
ガメタメ ベー 。 当	0026	0036	0031	0047	0023	0016	0088	0.015	いち		(m)	高さ以外 0	0.9	1.5	1.2	1.2	0.85 4	1.5	0.9 1.	0.55 1.		1.08													
いで、「」	1750 0.	.0 0.	9210 0.	2100 0.	1000 0.	9635 0.	365 0,	40 0	オイ		十 —		.75		0.7	0.6	0.2	0.4	765	0.5	0. LL	.75													
	1.3	.04	5 12	. 75 1:	. 25 2,	. 74 39	. 36	0.6	物 いぼう おうちょう おうちょう おうちょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ			ie	0			-		_	0	$\left  \right $		0													
で 	6	3	28	49 3	19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	83	).3 7 L X X	し 価の この に、		ざした酸田					1000				車															
	2	88	11 2.	39 2.	15 3.	59	73 I.		の田のに、「「」」で		カテニ		室外機	ボックス	室外機	71-17	標識.	۲. ۲.	台車	7, 自転 会互振															
」 		6.9	7.	11.6		12.3	.0	·0 群臣	記で イーション 小学 パント		۳) ۱۳)		· · · · · · · · · · · · · · · · · · ·	62 鋼製	74 空調	21 IV	53 看板	01 7 7 1 1 7	72 運搬	17 バイ/ 17 バイ/	76 42 谷子	·····································													
反設物) ^{4条}	(ガイド) トラック ^{楽1}	電源式	.审幻说	АХ	ホイールローダ	タレーン車	自鄭珉売機	☆講座を整 てもいいとよ ✓ があて8番号ふ	- zav、Cサイスの理重か 16 式及び、Degen 式を用い 院子炉施設のタービンミサ 良施設に想定される損傷モ		Z		5 K						4		f or	<u> </u>													
影 ・				现状					ィェ電笛 ト J 距 オ リ 男 月 オ																										
(道)				<b>汞</b> 飛 求	發			Ĭ.	不修発評																										
								×	× × × ×																										

柏崎刈羽原	(子力多	発電所	6 /	7 号炉	i (2	2017.12.20版)				-	東海	第二	発電	所	(20	18. 9	9.18	版)				島	根原	予力発電	重所	2号炸	戶			備る	夸	
表 3.3.3 代表的	りな飛	来物の飛	發散評	価結果	見及び	飛散防止対策・固定	<u>第</u>	3.2.	4-1 💈	表亻	代表的	内な	飛来	物源	夏の手	飛散	評佃	i結身	見整 王 王	理表の例												
	状況等	흊を踏ま	えたi	選定結	果(6	/6)																										
2 3	緒ど		1	( 11 ²	W.		1	の要の	şţ																							
らないか。* (酸な)	4(0) (m) (元位 (米参と)	° %	L-2°。 *** 101-11-11-11 101-11-11-11 101-11-11-11 101-11-11-11 101-11-11-11-11 101-11-11-11-11-11-11 101-11-11-11-11-11-11-11-11-11-11-11-11-	そうに、	助止対策 冬米物と1		米物発	1.1.2 (1.2) (1.0) (1.0) (1.0)	いずれか ("0") ×	( × × )	$\langle \times   \times$	$\times$ $\times$	o ×	×××	×××	×××	$\times$ $\times$ $\times$	$\times \times$	××													
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	に包括さ (足場川 ), 設計所	調査	人類活力 米参発生、当学声	が 「 ( 数) に 1 ( 数 ) に 1 ( 数 ) に 1 ( 数 ) に 1 ( ) ( 数 ) に 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ) ) ( ) ( ) ) ( ) ) ( ) ) ( ) ) ( ) ) ( ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ) ( ) ) ) ) ( ) ) ) ) ) ( ) ) ) ) ) ( ) ) ) ) ) ) ) ) ) ) ) ) ) )	米鄉差年. 。 设計預		() 承	超り																								
点で (泉水) (泉水) (日本) (日本) (日本) (日本)	の読業的 扱いイブ いとから ない。	来物 とし 本称	米物でしてきたの単語	あた。 参た。 動板 (鋼) 、 設計所	悪辱の飛い ととから ない。		力(鋼巷	鋼製材 (T>	^{9mu} 3年 ×		$\langle \times   \times$	$ \times \times$	××	×××	× × ×	×××	$\times \times \times$	××	××													
(1) 第2 (1) 第3 (1) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		数井湯 (4)団約 「能力	(B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	(4) 回( ) 一 (4) 回 ( 一 一 一		貫通	町 町 町 い	厚さ (mm) 3	5 5 5	3 2	2	3	n 02 0	7 07 0	2 5	3	1 2 1	3													
がな	0 6	0 0 • <u>2</u>			0		(-life)	製材超 > >	.9cm) (作②] ×		<	××	××	×××	×××	×××	<	×××	××													
波 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	11 1,	17	o 1-		13	TT*	重力(12)	田 (f) 周 (f) (f)	12 22 22 12 23 12	1.2	8.8	2.9	9.8	0.5	9.2	9.3	3.4	0 0	0.8	-												
唐 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		10	un 00	o 4	\$	を使用	道	12111111111111111111111111111111111111			14 8	51 11	15						12	-												
· · · · · · · · · · · · · · · · · · ·	68 tp.	11 4	5 13	11 5	22	建屋	エネルキ	鋼製材) (E>	176kJ 条件① ×	: × × :	$\langle \times   \times \rangle$	$\times$ $\times$	0 ×	×××	×××	×××	<	$\times \times \times$	××													
日本	()					ポン	運動:	▲ 玉 御 (	E (kJ) 76	64 76	73	64 63	219 61	52	43	52 44	49 49	44 49	45 68													
また。 「「「」」 「」」 「」」	. 64+(148	. 57+(148	52+(148 48-(25	57+(148	29+((	職大		) 王 (王)	(kg)	30	72	441	50-	122	20	20.5	241	302	40													
	262 (	0 198	373	394	271	小小小小小小小小小		<u>к</u> ч;	ارت 1.726	3.966	9.605	0.193	2.372	1.096	4.608	4.296	0.24	3.877	1.442 7.449	-												
水 · 名 天羅 天福	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00 0	m <u>+</u>	e 1	10	ю цс.				9 2 5	47 3		9 5	1.1 3	.6 5 1	73 5-	4 4 6	1 2 2	65 3'													
(1) (第一日) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1					a.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		■ 泉 飛 ⊨ 大 都 i		272 238	269	4 19	9 132	259	2 273	2 2 10	196	5 272 8 14	7 143 8 2 ¹	-												
) ) ) ) ) ) ) ) ) ) ) ) ) )	<u>+</u>				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	なよう			速度 (m/s	0 0	0 0 0	0 0	0 4	000	0 0 0	000	0 0 0	000	0 4	-												
康 漸增 [三/s]	38	38	18	19	100	漸 重 個		気高	(E)	19 4	10	36	32 4	93 4	12	60		16 4	33 4	-												
大水 平康 約[11/8]	12	42	55 61	54	69	ち 音 で 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		C _D A/i	(m²/k	1 0.04 3 0.048	0.03	0.00	0.019	00.0	0.04	0.046	7 0.01	0.04	2 0.02:	-												
デー (1) (1) (1) (1) (1) (1) (1) (1)	.0088	0087	0525	0683	. 0578	BUL J 記 る 形 版 版			以外	6 1. 7 1.	00	1 2.1	2 1.	6	6 0.8	6 0.8		5 1.	7 1.:	-												
	9		90 0 90 0	11 0	36	いいる		寸法(m)	喧	0.0	-	2.	· · · ·	0.	0.	0. 0	1.	0.9	0.													
	05	02	2 04	. 63	51	国った			さ 信	0.6	0.1	0.15	0.5	0.5	0.6	0.6	0.1	0.5	0.3													
- 10 - 和 - 和	0.	0 0	0 0	34 0.0	9.	高 用評る い価範			整理)	-14			٥m							]												
[1] 一世	0.0	0.0	8 0.5	0.0	0.5	物、評よ国家の、一個のきく品、いう、その。		カテゴリ	国った	(議) ック容器	讔		" 箭格納希	F7A				r r9A	盲格納須													
本 「 」 「 」			<u></u>		0.03	1011111111111111111111111111111111111			3 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三	看板, 槽 プラスチ	看板, 楞	調製蓋 回勤金)	(小) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	ゲーブル	ドラム缶	バラム缶	調製業	バリケー	消火設(													
			3.857 ) 36.5			地いミ纂オブ地へすそ象た面でサモ象たいブイー施場		No.		194	382	164	152	13	П	93	253 5	181 338	153													
			- 御子	56. 日初	≇屋) ^{※6}	さた どる 防を しき ション 掲 藤 講																										
名称	2m)	4m)	アンドネ		★ポンプ∮	初 期 の文事が ま ー ー イ の 条 第																										
	(足場用)	(連場用)	[契) 長-伝統[[2]	(ミイ	子炉缮環。	来記 を し い を で の で た が し の で で と が で う で う で う で う で う で う で う で う で う で																										
長物)	製バイブ	戦 パイナ	地役 (選 正式 (S	un (1) 場後 (ア	蛭 (5÷	現立了施壁にまた。																										
∠ 搬 →		拆状 校	·状棒: 足 副	¥ ! ₹ 2	极状 外	石の F NDK 馬馬 「 王 三 王 三 王 三 王 三 王 三 王 三 王 三 王 三 王 三 王																										
		剛飛末物		柔 飛 来	\$	○修発評屋仮」可谓何书部																										
						× × × × × × × × × × × × × × × × × × ×																										

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	第3.2.4-1表 代表的な飛来物源の飛散評価結果整理表の例		
	生の夏のが		
	(1、/)-/) (tp > (tp ) (tp > (tp > (		
	「 ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) ((m)) (		
	後期 数 2 2 2 2 2 2 2 2 2 2 2 2 2		
	「「「「「」」」     「「」」     「「」」     「「」」     「「」」     「「」」     「「」」     「「」」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「」     「     「」     「     「」     「     「」     「     「」     「     「」     「     「」     「     「」     「     「     「」     「     「」     「     「」     「     「     「」     「     「」     「     「」     「     「     「」     「     「     「」     「     「     「     「」     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「     「		
	・ 小 市 元 大 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
	2011年1月11日1日11日11日11日11日11日11日11日11日11日11日11日		
	廃 一部 「1139-9 1148- 1148- 1148- 1148- 1148- 1148- 1147- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1148- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1158- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178- 1178-		
	- 第二 - 11 - 11		
	$\begin{array}{c} C_{\rm p}A/n\\ (m^2/k_{\rm f})\\ 0.001\\ 0.003\\ 0.0058\\ 0.0058\\ 0.0158\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ $		
	1.5     0.77       0.77     0.77       0.77     0.77		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	前合 0.12 0.66 0.084 0.3 0.3 0.3 0.04 0.06 0.06 0.065 0.35 0.35 0.35 0.05 0.005 0.05 0.05 0.		
	う 		
	「おうな」を、「なっか」を、「なっか」を、「なっか」を、「なっか」を、「なっか」を、「なっか」を、「な」を、「な」を、「な」を、「な」を、「な」を、「な」を、「な」を、「な		
	No. 298 6 405 9 405 3 33 3 351 1 176 1 405 3 351 2 252 2 272 2 255 7 212 1 107 1		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	第3.2.4-1表 代表的な飛来物源の飛散評価結果整理表の例		
	2. 2. 2. 2. 2. 2. 2. 2. 2. 2.		
	第2時間である		
	[1] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2		
	描述 (1) 11:1 (1) 12:1 (1) 12:1		
	× 参 □ つ つ つ 22 25 25 25 25 25 25 25 25 25 25 25 25		
	0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		
	、 、 、 、 、 、 、 、 、 、 、 、 、		
	廃 張 宗 宗 宗 宗 宗 宗 宗 宗 宗 宗 宗 宗 宗 宗 宗 宗 宗 宗		
	職 大瀬 東京 (11) 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
	整施(m)		
	^{14⁷/b₁/²/k₈) 0.0188 0.0117- 0.01131 0.01117- 0.01181 0.011181 0.011181 0.01181 0.01141 0.01141 0.01141 0.0013 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.001141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.000141 0.0000000000000000000000000000000}		
	**         *           1         1           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0		
	¹¹ (m) 前会以(1) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5		
	4 ² 1.15.3 0.7 1.15.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	No No No No No No No No No No		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	第3.2.4-1表 代表的な飛来物源の飛散評価結果整理表の例		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	第3.2.4-1表 代表的な飛来物源の飛散評価結果整理表の例		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		<u>3.3.4</u> 設計飛来物の設定	
		<u>3.3.4.1</u> 設計飛来物候補Aの設定	
		フジタモデルによる飛散解析においては、物体の地上からの	
		初期高さを高く設定したほうが地表面から解析した場合に比べ	
		て最大水平速度は高くなり、最大水平速度に依存するパラメー	
		タである運動エネルギ及び貫通力も大きくなる。	
		よって, 前項にて算出した想定飛来物の飛散解析結果に加	
		え、工事に伴い組み上げた仮設足場から鋼製パイプ(足場パイ	
		プ),足場板が飛散する可能性を考慮し,鋼製パイプ等が地上か	
		らの初期高さ40mから飛散した場合を想定し、フジタモデルに	
		より最大水平速度を求め,運動エネルギ及び貫通力を算出した。	
		算出結果を表 3.3.4 に示す。	
		また,ガイドにおいて例示されている棒状飛来物の最大水平	
		速度を参照し、運動エネルギ及び貫通力を算出した。算出結	
		果を表 3.3.5 に示す。	
		表 3.3.3~3.3.5の結果を踏まえ,運動エネルギおよび貫	
		通力の観点から表 3.3.4 の算出結果に対して保守性を	
		考慮し,表3.3.5の鋼製材[ガイド]を設計飛来物候補A	
		として設定した。	
		<u>&lt;鋼製材を選定した理由&gt;</u>	
		・鋼製材は、想定飛来物の中で大きな運動エネルギを有し	
		ているコンテナボックスやプレハブ小屋, 車両等に	
		固定・固縛が容易なものを除き、比較的大きな運動	
		エネルギおよび最大の貫通力を有している。	
		<ul> <li>・コンテナボックス、プレハブ小屋等は鋼製材を超える運</li> </ul>	
		動エネルギを有しているが、固定・固縛対策が容易であ	
		る。車両等については、避難が可能である。	
		<u>表 3.3.4 想定飛来物の飛散解析結果(フジタモデル(地上からの</u>	・条件の相違
		<u>初期高さ 40m),最大風速 92m/s)</u>	【柏崎 6/7,東海第二】
		形状         長さ         幅         高さ         質量         飛散の         最大速度         運動         ブグリーの         領板の           形状         名称         (mn)         (mn)         (kg)         有無         (m/s)         貫通限界	設計飛来物選定にかか
		鋼製バイブ         2000         50         50         8.4         〇         45         9         11         14	る条件の相違
		$rac{1}{9}$ $rac{1}$ $rac{1}{9}$ $rac{1}{9}$ <th></th>	
		(1.) 修正 NDDC ポルブド Docon ポオ・田いブ管山	
		※1.1 ※2:BRL式を用いて算出	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		表3.3.5 想定飛来物の飛散解析結果(ガイド)	
		$\mathcal{R}$	
		<ul> <li>※1:ガイドの飛散速度から算出</li> <li>※2:ガイドの飛散速度から修正 NDRC 式及び, Degen 式を用いて算出</li> <li>※3:ガイドの飛散速度から BRL 式を用いて算出</li> </ul>	
		<ul> <li>3.3.4.2 横滑りの考慮</li> <li>浮上しないが横滑りにより評価対象施設等に影響を与え</li> <li>得る物品については,浮上する物品同様,3.3.4.3以降の</li> <li>結果を踏まえ設計飛来物として選定する必要があるかを判断する。</li> <li>3.3.4.3 飛来物発生防止対策の実施</li> <li>竜巻影響評価対象施設への影響の大きさが設計飛来物として</li> <li>仮設定した鋼製材を超過する想定飛来物については,風荷重を</li> </ul>	(柏崎6/7は「(3)代表的 な飛来物の飛散評価」で 記載) (東海第二は「3.2.3 (3) 飛散速度の選定と横滑り の考慮」で記載)
		考慮した固定・固縛等の飛来物発生防止対策を実施することか ら設計飛来物としない。また,鋼製材は地上からの初期高さ40m から飛散した場合を想定していることから,仮設足場の飛散の 影響を包絡できていると考え,仮設足場に対する固縛・固定等 は実施しない。	<ul> <li>・条件及び運用の相違</li> <li>【柏崎 6/7,東海第二】</li> <li>設計飛来物設定時に考 慮する条件及び運用の</li> <li>相違</li> </ul>
<ul> <li>(6)設計飛来物の選定結果 <ul> <li>(1)~(5)より,柏崎刈羽原子力発電所における設計飛来物は,</li> <li>表3.3.4 のとおりとする。</li> <li>仮設足場材(足場パイプ,鋼製足場板)については,設計飛来</li> </ul> </li> <li>物候補の中で,足場パイプがコンクリートに対する貫通力(鉛直)</li> <li>及び鋼板に対する貫通力が最大であり,鋼製足場板が,運動エネ</li> <li>ルギー及びコンクリートに対する貫通力(水平)が最大であるが,</li> <li>仮設足場に飛散防止対策を講じた場合を考慮し,運動エネルギー,</li> <li>貫通力が仮設足場材(足場パイプ,鋼製足場板)に次ぐ飛来物に</li> <li>ついても抽出する。</li> <li>仮設足場材(足場パイプ,鋼製足場板)に次ぐ飛来物として,</li> <li>鋼製材については,設計飛来物候補の中で,運動エネルギー, コ</li> </ul>	<ul> <li>3.3 設計飛来物の設定</li> <li>3.2におけるスクリーニングの結果,鋼製材の影響を上回る飛 来物源については,飛来物発生防止対策を施すことが可能であ ると判断したため,鋼製材を設計飛来物として決定した。</li> <li>また,設計飛来物に対する竜巻飛来物防護対策設備として設 置する防護ネットを通過する可能性があり,鋼製材にて包含で きないものとして,砂利も設計飛来物に設定した。</li> <li>第3.3-1表に,発電所における設計飛来物の仕様を示す。</li> </ul>	<ul> <li>3.3.4.4 設計飛来物の設定結果 前項の飛来物発生防止対策を実施する想定飛来物を除外した 上で,運動エネルギおよび貫通力が最大である「鋼製材」を設 計飛来物Iとする。</li> <li>また,設計飛来物に対する竜巻防護対策設備として設置する 竜巻防護ネットを通過する可能性があり,鋼製材にて包含でき ないものとして,砂利も設計飛来物に設定した。砂利等の極小 飛来物が外部事象防護対象施設に与える影響について,別紙-2 に示す。</li> <li>以上の結果により設定した設計飛来物を表 3.3.6 に示す。</li> </ul>	<ul> <li>・設計飛来物の相違</li> <li>【柏崎 6/7】</li> <li>島根 2 号炉は,設計飛</li> <li>来物をガイド記載の鋼</li> <li>製材としていることか</li> <li>ら,柏崎 6/7 の足場パ</li> <li>イプ,鋼製足場板等は</li> <li>鋼製材に包含されている</li> <li>・資料構成の相違</li> <li>【柏崎 6/7,東海第二】</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
<ul> <li>ンクリートに対する貫通力が最大であり、角型鋼管(大)につい</li> <li>ては、鋼板に対する貫通力が最大である。</li> <li>また、砂利については、非常用換気空調系ルーバへの防護対策</li> <li>として設置する竜巻防護ネットを通過する可能性があり、鋼製材、</li> <li>角型鋼管(大)、足場パイプ及び鋼製足場板にて包含できないこ</li> <li>とから、設計飛来物として選定する。</li> </ul>			<ul> <li>島根2号炉は砂利等の</li> <li>極小飛来物の衝突に対す</li> <li>る影響を記載</li> <li>(砂利の影響について再</li> <li>掲)</li> </ul>
<section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header>			・設計飛来物の相違 【柏崎 6/7】 (同上)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		3.3.5 二次飛来物の確認	(柏崎6/7は「(1) 飛来物
		竜巻による風圧力や飛来物によって破損して飛来物となり得	調査」及び「別紙1(2) 固
		る物体(以下「二次飛来物」という。)について,過去の竜巻事	定状況等を踏まえた抽
		例(別紙-1)に基づき, 平成 26 年 8 月に現地調査を実施した。	出」で記載)
			(東海第二は「2. 発電
		(1)現地調査の観点	所構内の物品調査」及び
		風圧力や飛来物による被害を受けると考えられる設備及び建	「3.1 固定状況等を踏
		物・構築部(固定状況等含む)を調査し、二次飛来物となり得	まえた飛来物源の抽出」
		る部位を抽出した。	で記載)
		(2)現地調査結果	
		現地調査の結果,建物の金属製屋根・外壁,シャッター,ガ	
		ラス窓及び給排気用格子を二次飛来物として抽出した。これら	
		の二次飛来物について、設計飛来物の影響を超過するものはな	
		いことを確認した。	
		詳細は別紙-2「二次飛来物の現地調査について」に示す。	
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 1	別紙 9-1	別紙一1.	
分解され小型軽量となる物品及び倒壊するが飛来物とならない物 品等について	分解され小型軽量となる物品 及び損傷するが飛来物とならない物品について	過去の主な竜巻事例に基づく飛来物の検討について	
設計飛来物の選定フローにおいて,「分解し小型軽量となる物 品」及び「倒壊するが飛来物とはならない物品」は設計飛来物と して選定しないこととしている。これは,過去の主な竜巻の被害 概要の調査結果から,分解され小型軽量となる物品及び倒壊する が飛来物とならない物品について検討を行った結果より確認をし ている。 以下に平成2 年以降の主な竜巻による被害概要を調査した文献 から検討を行った結果を示す。「分解し小型軽量となる物品」, 「倒壊するが飛来物とはならない物品」は柏崎刈羽原子力発電所 における調査結果を念頭に被害状況を示す。	設計飛来物の抽出フローにおいて,「分解され小型軽量とな る物品」は設計飛来物のうち鋼製材に包絡されること,また「損 傷するが飛散しない物品」は飛散しないことから,いずれも設 計飛来物として選定しないとしている。これは,過去の主な竜 巻の被害概要の調査結果等から,このような物品の状況につい て検討を行った結果より判断した。 以下に,平成2年以降の主な竜巻による被害概要の調査結果 等に基づく検討結果を示す。	島根原子力発電所における設計飛来物の設定にあたり,「損傷す るが飛来物とならない物品」及び「分解して小型軽量となる物体」 について,過去の主な竜巻による被害概要を調査した文献を用い て検討を行った。検討の結果,「樹木,フェンスについては,竜巻 時に損傷するが飛来物とならない」,「建物の金属製屋根・外壁, シャッター,ガラス窓等については,竜巻時に飛散するが,分解 され小型軽量となるため,設計飛来物に包含される」と判断した。 検討内容を以下に示す。	
		<ul> <li>(1)損傷するが飛来物とならない物体</li> <li>①樹木</li> <li>樹木の被害状況を図1~7に示す。</li> <li>樹木については,被害状況より幹の折損,根の引き抜き等が見られるが,折損した場合,引き抜かれた場合どちらにおいてもその場で損傷しているのみであることが確認できる。これは竜巻の風荷重により,樹木が損傷した後,竜巻が既に通過しているためであると考えられ,樹木が折損,引き抜かれた後,さらに竜巻により巻き上げられ,飛来物となることは考え難い。</li> </ul>	<ul> <li>(柏崎6/7は「(3) 倒壊するが飛来物とならない物品(確認対象:樹木,フェンス)」で記載)</li> <li>(東海第二は「(3) 損傷するが飛散しない物品(樹木,フェンス及び原子炉建屋原子炉棟外壁の原子炉建屋外側ブローアウトパネル)」で記載)</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		写真16 樹木の転倒 写真38 樹木の転倒(緑ヶ丘) 図 9 正式 19 年 0 日 17 日 宁 岐 圓 延 岡 古 に て 惑 仕 1 た 19 音 巻 に と	
		因2 十成10 牛 9 月 17 日 呂 剛 衆 延 同 印 に し 先 生 し に F 2 电 各 に よ て お 本 の 拡 字 比 氾 ※ 2	
		る樹木の被害状況**	
		F ユ 25 倒木(火打谷地区)         図4 平成21年7月19日岡山県美作市にて発生したF2竜巻による樹木の被害状況*4	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		写真 44 樹木の被害	
		図 5 平成 21 年 10 月 8 日茨城県土浦市にて発生した F1 竜巻によ る樹木の被害状況 ^{*5}	
		写真 3.5-15 樹木の折損 写真 3.5-16 樹木の折損と鳥居の被害	
		図 6 平成 24 年 5 月 6 日次城県つくは市にて発生した F3 竜巻に よろ樹木の被害状況 ^{※6}	
		みる資料でが成百代化	

柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力系	発電所 2号炉	備考
			<image/> <caption><caption></caption></caption>	<image/> <caption><image/><image/></caption>	
			写真 5.2.16 樹木の被害           図 7 平成 25 年 9 月 2 日 埼玉1	<ul> <li>              Fig.5.2.17 横木の被害      </li> <li>             Bはてて発生した F2 音差による樹木         </li> </ul>	
				害状況 ^{※7}	
			②フェンス フェンスの被害状況を図8- フェンスについては,被害 るが樹木と同様にその場で損 後,竜巻はすでに通過してい げられ,飛来物となることは	~10 に示す。 ※状況より,傾き,損傷等が見られ 適傷しているのみであり,損傷した ふると考えられ,竜巻により巻き上 考え難い。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		写真 20 フェンスの著しい変形 写真 31 フェンスの変形	
		図8 平成21年7月27日群馬県館林市にて発生したF1(F2) 竜巻	
		によるフェンスの被害状況**	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		$f = 4.1.16$ $f = 2 \pm 5.2.18$ $f = 2 \pm 5.2.19$ $f = 2 \pm $	
		写真 5.2.20 フェンスの被害	
		図 10 平成 25 年 9 月 2 日埼玉県にて発生した F2 竜巻によるフェ	
		ンスの 被害状況 ^{*7}	
		③原ナ炉建物外側ノローアリトハイル	(果海弗は「(3) d.   原子に建屋原子に挿が時
		ホール 建物 パープ アンドバイルには 用放時の 溶ー を 的 エ す ス 継 構 が 付け ら れ て お り 一 音 巻 に と っ て 外 れ た 堪 合 で む 一 茲	の百子乍建屋外側ブロー
		下時の挙動は通常の開放時と変わりないと考えられることか	アウトパネル」で記載)
		ら,落下防止機構が破断して飛来物となることはないと考えら	・資料構成の相違
			【柏崎 6/7】
		<u> 竜巻は速やかに遠ざかっていくと考えられることから、開放し</u>	島根2号炉はブローア
		た原子炉建物外側ブローアウトパネルが強風に煽られ、落下防	ウトパネルの飛来物化に
		止機構が破断し飛来物化する可能性も小さいと考えられる。	ついて検討している

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)		島根原子力発電	前 2-	号炉		備考
(1) 分解し小型軽量となる物品(確認対象:屋外屋根,シャッタ	(1) 分解され小型軽量となる物品(屋外屋根及びガラス窓)	(2) 分解され/	小型軽量となる物体	<u>本</u>			
一,ガラス窓,仮設足場)							
童巻の被害概要調査結果において分解し小型軽量となる物品と	<b>竜巻の被害概要調査結果において,分解され小型軽量とな</b>						
して、柏崎刈羽原子力発電所に設置の類似品として屋外屋根、シ	る物品として屋外屋根及びガラス窓が確認できた。これらの						
<u>ャッター,ガラス窓,仮設足場を確認した。屋外屋根,シャッタ</u>	被害状況を以下に示す。						
一,ガラス窓,仮設足場の被害状況は以下のとおり。							
<u>a. 屋外屋根の被害状況</u>	<u>a. 屋外屋根</u>	①建物の金属集	製屋根·外壁				
図1~5 に屋外屋根の被害状況を示す。これらより、屋外屋根に	別図1-1~5に屋外屋根の被害状況を示す。これらより、	建物の金属集	製屋根・外壁の被害	喜状況を	図 11~15	に示す。	
ついては, F0~F3 の被害状況において形を保ったままではなく,	屋外屋根については、F0~F3の竜巻において、形を保	建物の金属製	製屋根・外壁につい	いては、	<u>F0~F3 の</u> ネ	波害状況にお	
分解された状態で飛来していることが分かる。また、厚みが薄く、	ったままではなく、分解された状態で飛来していることが	いて形を保った	たままではなく、ケ	う解され	た状態で飛	来しており,	・対策方針の相違
受風面積が大きいため風の影響を受けやすいことから形状が変形	分かる。また、厚みが薄いことから形状が変形しており柔	また,厚さが枝	極めて薄い柔飛来	物である	ため,飛背	故した場合大	【柏崎 6/7】
(柔飛来物)しており、剛飛来物に比べ、貫通等の影響が小さく	飛来物と見なせると考えられることから、衝突の際に与え	きく形状が変用	形していることが分	分かる。			島根2号炉は設計飛来
はなるが、外部事象防護対象施設への影響が考えられる屋根につ	る衝撃荷重及び貫通力については、設計飛来物である鋼製	発電所構内0	の資機材等のうち,	運動工	ネルギ及び	「貫通力が設	物をガイド記載の鋼製
いては,飛散防止対策を実施する。	材の評価に包絡されると考えられる。	計飛来物を超近	過するものは飛散	<u>方止対策</u>	を実施する	こととして	材にしており、金属製屋
		いるが,建物の	の金属製屋根・外国	達は柔飛	来物であり	<u>,設計飛来</u>	根・外壁が飛散した場合
		物に比べ貫通の	の影響は小さい。多	<u>発電所構</u>	内の建物の		の運動エネルギを包絡
		根・外壁が飛青	散した場合,運動=	エネルギ	は表1にオ	ドすとおり最	していることから、金属
		<u>大でも 103kJ で</u>	であり、設計飛来物	勿(鋓製 Tritter	材)の運動	コエネルギよ	製屋根・外壁に飛散防止
		<u>りも十分に小さ</u>	さいことから、発電	<u>電所構内</u>	の建物の金	2. 禹製屋根・	対策は実施しない
		外壁についてに	は飛散防止対東のメ	付家とし	721V <u>°</u>		
		表 1 設計磁本地	物(綱制材)と全日	届制层相	の飛動運用	キレ軍動エネ	
			ルギ				
				=		運動	
			寸法	重量	飛散速度	エネルギ	
		金属製屋根	5,000×700×1.0t	42kg	70m/s	103kJ	
		設計飛来物					
		(鋼製材) 4,	,200×300×200×4.2t	135kg	51m/s	176kJ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
<image/>		<image/>	
図 <u>1</u> 平成16年6月27日佐賀県にて発生したF2 竜巻による野 外屋根の被害状況 ⁽¹⁾	<u>別図1-1</u> 平成16年6月27日佐賀県で発生したF2竜巻による 屋外屋根の被害状況 ⁽¹⁾	<u>図11</u> 平成16 年6 月27 日佐賀県にて発生したF2 竜巻によ る野外屋根の被害状況 ^{**9}	



炉	備考
F @ da o wat	
『発生した F2 竜巻によ ※2	
<ul> <li>ボードの被害</li> <li>き生した F1 竜巻による</li> </ul>	
·き材	
発生した F0 竜巻によ ^{※10}	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
正共1-5-9年1日は	電線等に引っ掛かった飛来物(鋼板製屋根材)		
R散した新板泉室秋村	a $a$		
	<complex-block><image/> <caption>         Røt b. b. fræge benedes at til state benes at til state benedes at til state benes</caption></complex-block>	<image/>	
図5平成24年5月6日茨城県つくば市で発生したF3 竜巻によ ストロートロッサオン(5)	別図1-5 平成24年5月6日茨城県つくば市で発生したF3竜巻	図 15 平成 24 年 5 月 6 日茨城県つくば市で発生した F3 竜巻に トス 号々 号相の地字 地辺※6	
る屋外屋根の破害状況。 b. シャッター 図 6~10 にシャッターの被害状況を示す。これらより、シャッ ターについては、F1~F3、EF5 の竜巻において形状は変形してい るが、固定部が外れていないことが確認できる。	による産外産他の彼書状況、	よる屋外屋根の被害状況 ^{*0} ②シャッター シャッターの被害状況を図 16~20 に示す。 シャッターについては,被害状況より,F1(F2),F3,EF5の竜巻 において形状は変形しているが,固定部が外れていないことが確 認できる。	(東海第二は「(3) 損傷 するが飛散しない物品(樹 木,フェンス及び原子炉建 屋原子炉棟外壁の原子炉 建屋外側ブローアウトパ ネル)」で記載)

柏崎刈羽原子力発電所 6/7号炸	戶 (2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
図6 平成20 年5 月25 日米国アイオリ	フ州にて発生した EF5 竜巻		^{写真 31} 図 16 平成 20 年 5 月 25 日米国アイオワ州にて発生した EF5	
によるシャッター被害	害状況 ⁽⁶⁾		竜巻によるシャッターの被害状況 ^{※3}	
シャッターの破損				
図7 平成21 年10 月8 日茨城県土浦市	所にて発生したF1 竜巻によ		写真 10 シャッターの破損	
るシャッターの被害	F状況 ⁽³⁾		図 17 平成 21 年 10 月 8 日茨城県土浦市にて発生した F1 竜巻	
レンジャッターの外れ			によるシャッターの被害状況*5	
図8 平成21 年7 月27 日群馬県館林市	市で発生した F1 (F2) 竜巻に		写真 22 シャッターの外れ	
よるシャッターの被害	害状況 ⁽⁷⁾		図 18 平成 21 年 7 月 27 日群馬県館林市にて発生した F1 (F2)	
<ul> <li>A (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</li></ul>	with a function of the second se		<ul> <li>竜巻によるシャッターの被害状況*8</li> <li>ジャッターの被害状況*8</li> <li>Fig. 3.4-37 消防団施設のシャッターの被害状況</li> <li>図 19 平成 24 年 5 月 6 日茨城県つくば市にて発生した F3 竜 巻によるシャッターの被害状況*6</li> </ul>	
柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------	----
			デスタン・デスタン・ション・ション・ション・ション・ション・ション・ション・ション・ション・ショ	
図 10 平成 25 年 9 月 2 日埼玉県発生したF2 一の被害状況 ⁽⁸⁾	2 电苍によるンヤツタ		図 20 平成 25 年 9 月 2 日埼玉県にて発生した F2 竜巻による	
			シャッターの被害状況*7	
<ul> <li>c. ガラス窓</li> <li>図 11~16 にはガラス窓の被害状況を示す</li> <li>ス窓については, F0~F3, EF5 の竜巻においていることが確認できる。分解された状態でたおり,設計飛来物である鋼製材若しくは研究という。</li> </ul>	<u>す。これらより,ガラ</u> いて損壊し,分解され では,小型軽量となっ 砂利等に包含されると	<ul> <li>bガラス窓</li> <li>別図1-6~11にガラス窓の被害状況を示す。これらより、</li> <li>ガラス窓については、F0~F3及びEF5の竜巻において損壊し、分解されていることが確認できる。分解された</li> <li>状態では小型軽量となっており、その影響は設計飛来物である鋼製材若しくは砂利に包絡されると考えられる。</li> </ul>	③ガラス窓 ガラス窓の被害状況を図 21~26 に示す。 ガラス窓については,被害状況より,F0~F3,EF5の竜巻にお いて損壊し,分解されていることが確認できる。分解された状 態では小型軽量となっており,設計飛来物に包含されると考え る。	
エントランスの意ガラスの破損       ご         図11 平成18 年9月17日宮崎県延岡市でも	ラス片の屋内壁面への突き刺さり         予発生した F2 竜巻によ	image: with the set of		
るガラス窓の被害状況 ⁽³⁾ 「「「「」」」 「「」」」」 「「」」」」」 「「」」」」」 「」」」」 「」」」」」 「」」」」 「」」」」」 「」」」」 「」」」」 「」」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」」 「」」」」」 「」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」」	(2)	によるガラス窓の被害状況 ⁽²⁾ <b>ジェントン</b> <i>Sao</i> (2) <i>Sao</i> (	によるガラス窓の被害状況*2	
図12 平成20 年5 月25 日米国アイオワ州で よるガラス窓の被害状況	で発生した EF5 竜巻に と ⁽⁶⁾	別図 1-7 平成 20 年 5 月 25 日米国アイオワ州で発生したEF 5 竜巻によるガラス窓の被害状況 ⁽⁶⁾	^{9 英44} パスの窓ガラス磁積 図 22 平成 20 年 5 月 25 日米国アイオワ州にて発生した EF5 竜巻によるガラス窓の被害状況 ^{※3}	



炉	備考
窓カラスの飛来物衝突張	
L ( 発生した FI (F2)	
℃況** 8	
⁻ 発生した F1 竜巻によ *5	
発生した F0 竜巻によ ^{※9}	



炉	備考
<ul> <li>2 店舗の窓ガラスの被害状況</li> <li>5 がラスへの飛来物の衝突度</li> <li>5 ボラスへの飛来物の衝突度</li> <li>5 ドレて発生した F3 竜 況※6</li> </ul>	
	<ul> <li>・設計飛来物の相違</li> <li>【柏崎 6/7】</li> <li>島根2号炉は仮設足場を包絡する飛来物としてガイドの鋼製材を設計飛来物としている</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(2) 柏崎刈羽原子力発電所の屋外屋根,シャッター,ガラス窓,	(2) 発電所の屋外屋根及びガラス窓の状況		(島根2号炉は「別紙-3
仮設足場の状況			二次飛来物の現地調査に
柏崎刈羽原子力発電所における屋外屋根の状況を図18,シャッ	発電所における屋外屋根の状況を別図 1-12, ガラス窓の状		ついて」で記載)
ターの状況を図19,ガラス窓の状況を図20,仮設足場の状況を図	況を別図 1-13 に示す。発電所におけるこれらの物品の構造		
21 に示す。柏崎刈羽原子力発電所におけるこれらの物品の構造に	については、上記の被害にあった物品の構造と大きく変わら		
ついては、上記の被害にあった物品の構造と大きく変わらないこ	ないことから、竜巻通過時には同様の被害状況になると考え		
とから、竜巻通過時には、同様の被害状況になると考えられる。	られ、飛来物としては設計飛来物の影響に包絡されると考え		
そのため、上記の被害状況からこれらの物品については、飛散	られる。		
をしていないシャッターを除き,二次飛来物となる可能性がある。			
仮設足場材については、飛散を想定し、設計飛来物に選定する。			
ただし、飛散防止対策を講じた場合を除く。また、ガラス窓につ			
いては設計飛来物に包含されるが、屋外屋根については設計飛来			
物に包含されないことから、飛散防止対策を実施する。			
<image/> <image/> <image/> <image/> <image/> <image/>	<image/>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
図 19 柏崎刈羽原子力発電所におけるシャッターの状況	別図 1-13 発電所におけるガラス窓の状況		
図 20 柏崎刈羽原子力発電所におけるガラス窓の状況			
図 21 柏崎刈羽原子力発電所における仮設足場の状況			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所	2 号炉 備考
(3) 倒壊するが飛来物とならない物品(確認対象:樹木,フェン	(3) 損傷するが飛散しない物品(樹木,フェンス及び原子炉建		(島根2号炉は「別紙-1
ス)	屋原子炉棟外壁の原子炉建屋外側ブローアウトパネル)		(1) 損傷するが飛来物と
竜巻の被害概要調査結果において倒壊するが飛来物とならない	竜巻の被害概要調査結果等における「損傷するが飛散しな		ならない物体」で記載)
物品で、柏崎刈羽原子力発電所に存在する類似品として樹木、フ	い物品」に関し、発電所に存在する物品としてシャッター、		
ェンスを確認した。樹木,フェンスの被害状況は以下のとおり。	樹木、フェンス及び原子炉建屋原子炉棟外壁の原子炉建屋外		
	側ブローアウトパネルが確認できた。これらの被害状況を以		
	下に示す。		
	a. シャッター		
	別図 1-14~18 にシャッターの被害状況を示す。これら		
	より、シャッターについては、F1~F3及びEF5の竜		
	巻において形状は変形しているが、固定部は外れていない		
	ことが確認できる。なお、外れて飛来物となったとしても、		
	衝突の際に与える衝撃荷重及び貫通力については、上記の		
	屋外屋根と同様、設計飛来物である鋼製材の評価で包絡さ		
	れると考えられる。		
	別図1-14 平成20年5月25日米国アイオワ州で発生したEF5		
	竜巻によるシャッター被害状況 ⁽⁶⁾		
	シャッターの変形		
	別図1-15 平成21年10月8日茨城県土浦市で発生したF1竜巻		
	によるシャッターの被害状況 ⁽³⁾		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		$F = \frac{1}{2} \int dx dx dx$ $F = \frac{1}{2} \int dx dx dx$		
		別図 1-16 平成 21 年 7 月 27 日群馬県館林市で発生した F 1 (F		
		2) 竜巻によるシャッターの被害状況 ⁽⁷⁾		
		消防団施設のシャッターの変形		
		別図 1-17 平成 24 年 5 月 6 日茨城県つくば市で発生した F 3 竜 巻によるシャッターの被害状況 ⁽⁵⁾		
		$\widehat{b}$ म्प्रजनिक्सि		
		   別図 1-18 平成 25 年 9 月 2 日埼玉県発生した F2 竜巻による		
		シャッターの被害状況 ⁽⁸⁾		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
a. 樹木	b. 樹木		
図22~28 には樹木の被害状況を示す。これらより、樹木につ	別図 1-19~25 に樹木の被害状況を示す。これらより,		
いては, F1~F3 及びEF5の被害状況において幹の折損, 根の引き	樹木については、F1~F3及びEF5の竜巻において幹		
抜き等が見られるが折れた場合、引き抜かれた場合どちらにおい	の折損,根の引き抜き等が見られるが,折れた場合若しく		
てもその場で倒壊しているのみであることが確認できる。これは	は引き抜かれた場合のいずれにおいても、その場で倒壊し		
竜巻の風荷重により、樹木が損壊を受けたあと、竜巻がすでに通	ているのみであることが確認できる。これは,竜巻の風荷		
り過ぎているためであると考えられ、樹木が折損、引き抜かれた	重により樹木が損壊を受けた後では、竜巻が既に通り過ぎ		
後,更に竜巻により巻き上げられ,飛来物となることは考え難い。	ているためと考えられ,樹木が折損若しくは引き抜かれた		
	後、さらに竜巻により巻き上げられ、飛来物となることは		
	考えにくい。		
倒木(南から見る) 倒木(北西から見る)	倒木(南から見る) 倒木(北西から見る)		
倒れなかった樹木も点在している。	倒れなかった樹木も点在している。		
図 22 平成14 年7 月10 日群馬県境町で発生したF2 竜巻による	別図 1-19 平成 14 年 7 月 26 日群馬県境町で発生した F 2 竜巻に		
樹木被害状況(10)	よる樹木被害状況(9)		
樹木の転倒 樹木の転倒 (緑ヶ丘)	樹木の転倒樹木の転倒		
図 23 平成18 年9 月17 日宮崎県延岡市で発生したF2 竜巻によ	別図1-20 平成18年9月17日宮崎県延岡市で発生したF2竜巻		
る樹木被害状況 ⁽²⁾	による樹木被害状況(2)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
First A A A A A A A A A A A A A A A A A A A	使本の折損		
図 24 平成 20 年 5 月 25 日米国アイオワ州にて発生した EF5 竜 另	Ⅰ図1-21 平成20年5月25日米国アイオワ州で発生したEF5		
巻による樹木被害状況(6)	竜巻による樹木被害状況 ⁽⁶⁾		
前末 (大打谷地区)	i μημαρικά ματαγραφορατικά ματαγραφορα		
図 25 平成 21 年7 月 19 日岡山県美作市にて発生した F2 竜巻に 另	Ⅰ図1-22 平成21年7月19日岡山県美作市で発生したF2竜巻		
よる樹木被害状況(11)	による樹木被害状況(10)		
前本の被害	<image/> <image/>		
図 26 平成 21 年 10 月 8 日茨城県土浦市にて発生した F1 竜巻に 月	J図1-23 平成21年10月8日茨城県土浦市で発生したF1竜巻		
よる樹木被害状況(3)	による樹木被害状況(3)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
i f r r r r r r r r r r r r r r r r r r	新わり 新期 新力の 新用 新力の 新力の 新力の 新力の 新力の 新力の 新力の 新力の 新力の		
i $f$	前本の倒木         新本の倒木		
図 27 平成 24 年 5 月 6 日茨城県つくば市にて発生した F3 竜巻	別図 1-24 平成 24 年 5 月 6 日茨城県つくば市で発生した F 3 竜		
による樹木被害状況(5)	巻による樹木被害状況(5)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
<image/>	<i>w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w</i> <		
<image/>	<image/>		
<image/> <image/>	<image/> <image/>		
図 28 平成 25 年 9 月 2 日埼玉県発生した F2 竜巻による樹木被 害状況 ⁽⁸⁾	別図 1-25 平成 25 年 9 月 2 日埼玉県で発生した F 2 竜巻による 樹木被害状況 ⁽⁸⁾		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(201	8. 9. 18 版)	島根原子力発電所 2号炉	備考
b. フェンス	c. フェンス			
図29~31 にはフェンスの被害状況を示す。これらよりフェンス	別図 1-26~28 にフェンスの	)被害状況を示す。これらよ		
については, F1~F3 の被	り,フェンス類については, F	「1~F3の竜巻において傾		
害状況において傾き、倒壊等が見られるが樹木と同様にその場で	き、倒壊等が見られるが、樹木	たと同様にその場で倒壊して		
倒壊しているのみであり,	いるのみであり、倒壊した後て	ごは、竜巻は既に通り過ぎて		
倒壊した後、竜巻はすでに通り過ぎていると考えられ、竜巻によ	いると考えられることから、竜	5巻により巻き上げられ,飛		
り巻き上げられ、飛来物と	来物となることは考えにくい。			
なることは考え難い。				
<ul> <li>デェンスの着しい変形</li> <li>デェンスの着しい変形</li> </ul>	Frequencies	デージンの変形		
   図 29 平成 21 年 7 月 27 日群馬県館林市で発生した F1(F2) 音巻	   別図 1-26 平成 21 年 7 月 27 日群馬	県館林市で発生した F1(F		
によるフェンスの被害状況(7)	2) 音巻によるフェンス	への被害状況 ⁽⁷⁾		
レビジョン アーション アーション アーション アーション アーション の 被害状況	データンの変形	単語標識の倒壊		
図 30 平成 24 年 5 月 6 日茨城県つくば市にて発生した F3 竜巻	別図 1-27 平成 24 年 5 月 6 日茨城県	県つくば市で発生したF3竜		
によるフェンスの被害状況(5)	巻によるフェンス類の	)被害状況 ⁽⁵⁾		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
デージョン・ション・ション・ション・ション・ション・ション・ション・ション・ション・シ	i $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $i$		
フェンスの倒壊       支柱部の破断	同時の に 取りの 変形 (工事中の建築物) に 取りの 定 の 変形 (工事中の建築物) アェンスの 変形 (工事中の 建築物) アェンスの 領援		
同時の に 取り 取り に 取り の 建築物 ) に 第 に の 使 築物 ) に の し の ま の で あ の し の ま の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し つ し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し つ し つ し の し し			
図 31 平成 25 年 9 月 2 日埼玉県発生した F2 竜巻によるフェン スの被害状況 ⁽⁸⁾	別図 1-28 平成 25 年 9 月 2 日埼玉県で発生した F 2 竜巻による フェンス類の被害状況 ⁽⁸⁾		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	d. 原子炉建屋原子炉棟外壁の原子炉建屋外側ブローアウト		(島根2号炉は「(1)
	パネル		③原子炉建物外側ブロー
	原子炉建屋原子炉棟外壁の原子炉建屋外側ブローアウト		アウトパネル」で記載)
	パネルには開放時の落下を防止する機構が付けられており、		
	竜巻によって外れた場合でも、落下時の挙動は通常の開放時		
	と変わりないと考えられることから,落下防止機構が破断し		
	て飛来物となることはないと考えられる。また、原子炉建屋		
	外側ブローアウトパネルの開放後には竜巻は速やかに遠ざか		
	っていくと考えられることから、開放した原子炉建屋外側ブ		
	ローアウトパネルが強風に煽られ、落下防止機構が破断し飛		
	来物化する可能性も小さいと考えられる。		
(4)柏崎刈羽原子力発電所の樹木,フェンスの状況	(4) 発電所のシャッター,樹木,フェンス及び原子炉建屋原子		
a. 樹木	炉棟外壁の原子炉建屋外側ブローアウトパネルの状況		
柏崎刈羽原子力発電所における樹木の状況を図32 に示す。上記	発電所におけるシャッターの状況を別図 1-29 に,樹木の		
にて示した被害にあった	状況を別図 1-30 に示す。上記の被害実績に示された樹木と		
樹木と大きく変わらないことから、竜巻通過時には、同様の被害	大きく変わらないと考えられることから、竜巻通過時には、		
状況になり、幹の折損、根	同様の被害状況になり、幹の折損若しくは根の引き抜きによ		
の引き抜きによりその場で倒壊すると考えられる。	りその場で倒壊するのみと考えられる。		
	別図1-29 発電所におけるシャッターの状況		
		1	1



戶	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	別図1-22 発電所における原之后建民原之后棟外降の		
	原子炉建屋外側ブローアウトパネルの設置状況		
	以上より,シャッター,樹木,フェンス及び原子炉建屋原		
	子炉棟外壁の原子炉建屋外側ブローアウトパネルは、竜巻に		
	より損傷若しくは脱落するが、飛散せず設計飛来物として選		
	定が不要と判断した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	備考
参考文献	<参考文献> ※1:「群馬県境町で発生した突風による建築物等の被害	につい
<ul><li>(1)「佐賀市・鳥栖市竜巻現地被害調査報告」(平成16 年7 月13</li></ul>	(1)「佐賀市・鳥栖市竜巻現地被害調査報告」(平成16年7月13 て」(平成14年7月26日独立行政法人建築研究所)	
日)	日)       ※2:「2006 年台風 13 号被害調査報告延岡市の竜巻被害と	:飯塚市
(2) 「2006 年台風13 号被害調査報告-延岡市の竜巻被害と飯塚	(2) 「2006 年台風 13 号被害調査報告 - 延岡市の竜巻被害と飯塚市 文化施設の屋根被害-」(平成 18 年 10 月 10 日)	
市文化施設の屋根被害-」	文化施設の屋根被害-」(平成18年10月10日) ※3:「米国アイオワ州におけるトルネード被害調査報告」	」(平成
(平成18 年10 月10 日)	(3) 「平成 21 年 10 月 8 日茨城県土浦市竜巻被害調査報告」(平 20 年 6 月 9 日)	
(3) 「平成21 年10 月8 日茨城県土浦市竜巻被害調査報告」(平	成 21 年 10 月 13 日) ※4:「平成 21 年 7 月 19 日岡山県美作市竜巻被害調査報	告」(平
成21 年10 月13 日)	<ul><li>(4)「平成24年2月1日島根県出雲市で発生した突風被害調査報 成21年8月4日)</li></ul>	
(4) 「平成24 年2 月1 日島根県出雲市で発生した突風被害調査報	告」(平成 24 年 2 月 14 日)       ※5:「平成 21 年 10 月 8 日茨城県土浦市竜巻被害調査報	告」(平
告」(平成24 年2 月14日)	(5) 「平成 24 年(2012 年) 5 月 6 日に茨城県つくば市で発生した 成 21 年 10 月 13 日)	
(5) 「平成24 年 (2012 年) 5 月6 日に茨城県つくば市で発生し	建築物等の竜巻被害調査報告」(ISSN 1346-7328 国総研資 ※6:「平成 24 年(2012 年)5 月 6 日に茨城県つくば市で発	≜生した
た建築物等の竜巻被害調査	料第 703 号 ISSN 0286-4630 建築研究資料第 141 号 平成 25 建築物等の竜巻被害調査報告」(ISSN1346-7328 国総研資料	科第 703
報告(ISSN1346-7328 国総研資料第703 号ISSN0286-4630 建築研	年1月) 号 ISSN0286-4630 建築研究資料第 141 号平成 25 年 1 月)	
究資料第141 号平成25	(6) 「米国アイオワ州におけるトルネード被害調査報告」(平成 ※7:「平成25年9月2日に発生した竜巻による埼玉県起	遂谷市、
年1月)	20年6月9日) 北葛飾郡松伏町及び千葉県野田市での建築物等被害(速率	<b>殺)」(国</b>
(6) 「米国アイオワ州におけるトルネード被害調査報告」(平成	(7) 「平成 21 年 7 月 27 日群馬県館林市竜巻被害調査報告」(平 土交通省国土技術政策総合研究所 独立行政法人建築研	f究所平
20 年6 月9 日)	成 21 年 8 月 17 日一部修正) 成 25 年 9 月 10 日一部修正)	
(7) 「平成21 年7 月27 日群馬県館林市竜巻被害調査報告(平成	(8) 「平成 25 年 9 月 2 日に発生した竜巻による埼玉県越谷市,北 ※8:「平成 21 年 7 月 27 日群馬県館林市竜巻被害調査報	告」(平
21 年8 月17 日 一部修正)	葛飾郡松伏町及び千葉県野田市での建築物等被害(速報)」 成 21 年 8 月 17 日一部修正)	
(8) 「平成25 年9 月2 日に発生した竜巻による埼玉県越谷市,北	(国土交通省国土技術政策総合研究所独立行政法人建築研 ※9:「佐賀市・鳥栖市竜巻現地被害調査報告」(平成 16)	年7月
葛飾郡松伏町及び千葉県	究所平成 25 年 9 月 10 日一部修正) 13 日)	
野田市での建築物等被害(速報)」(国土交通省国土技術政策総	(9)「群馬県境町で発生した突風による建築物等の被害について」 ※10:「平成24年2月1日島根県出雲市で発生した突風	1.被害調
合研究所 独立行政法	(平成 14 年 7 月 26 日独立行政法人建築研究所) 查報告」(平成 24 年 2 月 14 日)	
人建築研究所 平成25 年9 月10 日 一部修正)	(10) 「平成 21 年 7 月 19 日岡山県美作市竜巻被害調査報告」(平	
(9) 「2006 年台風13 号に伴って発生した竜巻による延岡市の建	成 21 年 8 月 4 日)	
物被害」		
(10) 「群馬県境町で発生した突風による建築物等の被害につい		
て」(平成14 年7 月26 日独		
立行政法人建築研究所)		
(11)「平成 21 年 7 月 19 日岡山県美作市竜巻被害調査報告」(平		
成21 年 8 月 4 日)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		別紙-2	
		極小飛来物の衝突に対する施設への影響について	・資料構成の相違
			【柏崎 6/7,東海第二】
		砂利等の極小飛来物及び砂等の粒子状の極小飛来物について、	島根2号炉は砂利等の
		外部事象防護対象施設への影響の有無を確認する。	極小飛来物の衝突に対
		砂利及び砂等の飛来物による外部事象防護対象施設への影響と	する影響を記載
		しては、	
		(1) 砂利,ひょう等の極小飛来物による貫通及び衝突	
		(2) 砂等の粒子状の極小飛来物による目詰まり、閉塞及び噛	
		込み	
		が考えられることから、これらについて評価する。	
		(1)砂利,ひょう等の極小飛来物による施設への影響につい	
		ては、衝撃荷重 ₩ 及び鋼板に対する貫通力のいずれの観点におい	
		ても無視し得ると考えられる。この理由を以下に示す。	
		a 極小飛来物に上ろ衝撃荷重 W.	
		砂利でたう等の極小飛来物の衝突は瞬間的で衝突時間が極	
		めて短いため、施設は振動しにくく破壊は生じないと考えられ	
		る。これは、高速の極小飛来物が施設に衝突した場合、施設に	
		生じる荷重は衝突時間の極めて短い片振幅波形となるため、施	
		設に有意な変位(応力)が生じないためである。	
		このような衝撃により伝達される荷重については、機械工学	
		便覧の「過渡振動・衝撃」に、図1のとおり示されている。	
		図1は、横軸には衝突時間(tr)と衝突される施設の固有周期	
		(T)との比である tr/T, 縦軸は応答加速度 <b>x_{max} (施設に伝わっ</b>	
		た加速度)と入力加速度 <i>x_{0max}(施設へ伝えようとした加速度)</i>	
		の応答加速度比として, $\ddot{x}_{max}/\ddot{x}_{0max}$ の関係としてまとめられて	
		いる。	
		図1より、衝撃パルスの形状によって関数形は異なるものの、	
		衝突物の入力加速度x _{0max} と被衝突構造物の応答加速度x _{max} の比	
		( x _{max} /x _{0max} )が、衝突時間 tr と被衝突構造物の固有周期 T の	
		比(tr/T)に依存していることを示している。衝突時間 tr が	
		被衝突構造物の固有周期 T より小さいときには、衝撃パルスの	
		形状によらず応答加速度 は入力加速度 を下回っており,特に	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		衝突時間が非常に短く衝突時間と被衝突構造物の固有周期の比	
		(tr/T)が非常に小さい場合,入力加速度と被衝突構造物の応	
		答加速度の比(x _{max} /x _{0max} )は非常に小さい値となる。これは衝	
		突時間が被衝突構造物の固有周期に比べて小さい値をとる場合	
		には、衝突物から非衝突物に伝達されるエネルギが小さく、施	
		設に有意な変位(応力)が生じないことを示している。	
		2.0 1.0(方形波)	
		0.9(台形波)	
		0.8(台形波)	
		$t_{1,2}$ $t_{1,1}$ $t_{1$	
		0.8 0.5(パーサイン)0.64(正弦半波)	
		0.4	
		$\omega_n t_r = (=t_d T)$	
		図1 代表的理想衝撃パルスによる加速度衝撃スペクトル	
		(機械工学便覧より)	
		図1より,飛来物の速度が速くて,衝撃パルスの作用時間(tr)	
		が施設の固有周波数より短い場合(横軸が1より小さい場合)	
		には,入力加速度と応答加速度の比は1を下回り,エネルギの	
		伝達は小さくなることがわかる。	
		砂利やひょう等の極小飛来物による荷重は、このような短時	
		間の衝突となるため、施設全体に影響を及ぼす荷重はごくわず	
		かしか発生しないため、衝撃による影響はない。	
		b. 極小飛来物の貫通力	
		砂利,ひょう等の極小飛来物の鋼板に対する貫通力について,	
		以下に示す BRL 式を用いて算出し,極小飛来物の貫通力が無視	
		し得ることを確認した。なお、砂利の寸法は竜巻防護ネットの	
		網目の寸法(40mm 目合い)を考慮して設定する。	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)		島根原子力	発電所	2号炉		備考
			極小飛来	物として砂利及ひ	「大型のひ	、よう(直径	5cm, 10cm) を	
			対象に、鎁	板に対する貫通力	」を BRL I	式により算l	出した結果を表	
			1に示す。	いずれも貫通力は	t 1mm 未清	帯であり、	岡板への影響は	
			無視し得る	ものである。		• • • • • • • •		
			W.05 C 14 D					
				表1 極小飛	来物の鋼	板貫通力		
			飛来物	サイズ	重量 (lrg)	速度 (m/a)	鋼板貫通厚さ	
			701-50	(11)	(Kg)	(11/3)	(iiiii)	
				$0.04 \times 0.04 \times 0.04$	0.2	54	0.8	
			(設計飛米物)					
			ひょう	直径 0.05	0.06	33**	0.2	
				直径 0.1	0.5	59*	0.8	
			※ ひょうの	) 速度は直径に対	応した終	端速度に基	ういて設定し	
			た。(別紙	-4参照。)				
			(2)砂等の	粒子状の極小飛来	そ物による	ら目詰まり、	閉塞及び噛込	
			み					
			砂等の粒	子状の極小飛来物	かによる目	詰まり、	周塞及び噛込み	
			の影響を受	ける可能性がある	ら施設とし	~て、軸受!	け等の狭隘部を	
			有する屋外	施設,水循環系や	P換気系の	)流路を有っ	トる屋外施設・	
			屋内の施設	で外気と繋がって	いる施設	と・屋外にな	ある外部事象防	
			護対象施設	の付属施設につい	ヽて評価す	「る。評価カ	施設を表2に示	
			す。					
			表 2	目詰まり、閉塞、	噛込みに	こ対する評(	西施設	
			分類		評価施設		分類	
			座?Ւ肔砹	<ul> <li>一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一</li></ul>				
				・海水ポンプ電動機			閉塞 日詰まり	
				・ディーゼル燃料移送	送ポンプ		噛込み	
				<ul> <li>・排気筒(非常用ガス</li> </ul>	ス処理系排気	(管含す。)	閉塞	
			屋内の施設で	・換気空調設備(中央	制御室換気	系,原子炉棟換	気系, 目詰まり	
			ットスと繋かっ ている施設	原于炉建物竹偶棵杏	突风术)			
			屋外にある外 部事象防護対	• 給気消音器(非常月	用ディーゼル	発電機の付属	施設)閉塞	
			象施設の付属					
			施設	<ul> <li>・排気消音器(排気管</li> <li>機の付属施設)</li> </ul>	管含む) (非	常用ディーゼノ	レ発電 閉塞	
				·ベント管 (ディーセ	ル燃料貯蔵	タンク,ディー	ーゼル 閉塞	
				燃料デイタンク,清	<b>閏滑油サンプ</b>	「タンクの付属」	施設)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		[屋外施設]	
		a. 海水ポンプ	
		(a)水循環系の閉塞	
		①流水部の閉塞	
		海水ポンプ流水部の狭隘部は、以下に示すとおりであり、砂	
		等の粒子状の極小飛来物より十分大きいため、閉塞には至らな	
		k vo	
		・原子炉補機海水ポンプ 約 60mm	
		・高圧炉心スプレイ補機海水ポンプ 約 30mm	
		②軸受部の噛込み	
		海水ポンプの軸受の隙間は,約1.38mm~1.58mm で管理してい	
		る。一部の砂等の粒子状の極小飛来物は軸受の隙間より、軸受	
		内部に入り込む可能性があるが,図2及び図3のとおり,異物	
		逃がし溝(約3.5mm~5.5mm)が設けられており,軸受部の閉塞	
		には至らない。	
		・原子炉補機海水ポンプ	
		軸受部(異物逃がし溝):	
		軸受①:3.5mm	
		軸受②, ③, ⑤:4.5mm	
		軸受④:5.5mm	
		14/2 D	
		*12.2	
		**20 <b>**</b> *	
		MEISLU MEISLU	
		図2 原ナ炉 補機 御水ホンフ 軸 受 構 适	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
		・高圧炉心スプレイ補機海水ポンプ 軸受部(異物逃がし溝):
		軸受①~⑤:3.5mm
		図3 高圧炉心スプレイ補機海水ボ
		<ul> <li>b. 海水ポンプ電動機の閉塞</li> <li>(a)原子炉補機海水ポンプ電動機</li> <li>原子炉補機海水ポンプ電動機は、全閉タ</li> <li>取替を行うことから、砂等の粒子状の極/</li> <li>とはない。</li> </ul>
		(b)高圧炉心スプレイ補機海水ポンプ電動機 高圧炉心スプレイ補機海水ポンプ電動機 動機本体が全閉外扇形構造となっており, 動機の外筒に伝達され,外気を外扇により て放熱している。全閉外扇形の冷却方式で 極小飛来物が侵入することはない。



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		経路の最小径(約 11mm)に対して小さく,運転中はファンから	
		の通風により外部に排出されることから、閉塞に至らないため	
		影響はない。	
		図4 高圧炉心スプレイ補機海水ポンプ電動機冷却方式	
		c. 海水ストレーナの目詰まり	
		各海水ストレーナのフィルタ穴径を以下に示す。	
		・原子炉補機海水系 7mm	
		・高圧炉心スプレイ補機海水系 7mm	
		砂等の粒子状の極小飛来物は、海水ストレーナのエレメント	
		のメッシュサイズより小さく、また、取水口からポンプ取水箇	
		所までの距離が約 120m あるため,海水ストレーナは閉塞する可	
		能性は低い。なお,海水ストレーナは2系統設けており,フィ	
		ルタが閉塞することがないよう差圧管理されており、一定の差	
		圧 (原子炉補機海水系: 0.13MPa, 高圧炉心スプレイ補機海水系:	
		0.05MPa)になると切替えて,清掃を行うことも可能である。	
		d.ディーゼル燃料移送ポンプの噛込み・閉塞	
		燃料移送ポンプ本体への異物混入経路としては、軸貫通部が	
		あるが、当該部はメカニカルシール等を用いて潤滑剤や内部流	
		体の漏えいのないよう適切に管理されていることから、砂等の	
		粒子状の極小飛来物がポンプ本体へ侵入することはなく噛込み	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		や摩耗による影響はない。	
		ディーゼル燃料移送ポンプの概略構造図を図5に示す。	
		動力源となる電動機については「全閉外扇屋外型」であり、	
		ケーシングの放熱フィン等に砂等の粒子状の極小飛来物が冷却	
		ファン側から吸入された場合でも、電動機内部に砂等の粒子状	
		の極小飛来物が侵入することはない。	
		● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
		図5 ディーゼル燃料移送ポンプ概略構造図	
		e. 排気筒(非常用ガス処理系排気管含tr)の閉塞	
		(a) 排気筒	
		排気筒の径は 63,300mm あり、短期間の竜巻による砂等の粒子	
		状の極小飛来物により閉塞することはないと考える。	
		(b)非常用ガス処理系排気管	
		非常用ガス処理系排気管は図6に示すとおり、横方向を向い	
		ており砂等の粒子状の極小飛来物が侵入しにくい構造となって	
		いる。また、竜巻の通過に要する時間は短時間であるため、閉	
		塞する量の飛来物は侵入し難い。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		with a state       with a state         with a state       with a state <tr< td=""><td></td></tr<>	
		各評価対象設備の外気取入口には、図7に示すとおりルーバ	
		か取り付けられており、砂寺の粒子状の極小飛来物が使べてに くい構造となっている。	
		また,外気取入口には平型フィルタ(粒径2μmに対して 76% 以上を捕獲する性能)や袋型フィルタ(粒径2μmに対して 80%	
		以上を捕獲する性能)が設置されており,想定する砂等の粒子 状の極小飛来物は十分除去されることから,給気を供給する系	
		統及び機器に対して砂等の粒子状の極小飛来物が与える影響は	
		少ない。また、フィルタには差圧計が設直されており、必要に 応じて取替え又は清掃をすることが可能である。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	<ul> <li>島根原子力発電所 2号炉</li> <li>●「「「」」」」「」」」」」」</li> <li>●「」」」」」」</li> <li>●「」」」」」」</li> <li>●「」」」」」</li> <li>●「」」」」」</li> <li>●「」」」」」</li> <li>●「」」」」」</li> <li>●「」」」」」</li> <li>●「」」」」</li> <li>●「」」」</li> <li>●「」」</li> <li>●「</li></ul>	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		図8 非常用ティーセル発電機の給気空気の流れ	
		(b) 排気消音器(排気管会ま)	
		排気消音器及び排気管は図9に示すとおり、横方向を向いて	
		おり砂等の粒子状の極小飛来物が侵入しにくい構造となってい	
		る。また、運転中は排気していること、待機中であっても外気	
		を吸い込む構造ではないため、砂等の粒子状の極小飛来物が侵	
		入することはない。また、竜巻の通過に要する時間は短時間で	
		あるため、閉塞する量の飛来物は侵入し難い。	
		図9 非常用ディーセル発電機排気消音器及び排気管	
		ンク、潤滑油サンプタンクの付属施設)の閉塞	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		(a) ディーゼル燃料貯蔵タンク	
		ディーゼル燃料貯蔵タンク本体は、ディーゼル燃料貯蔵タン	
		ク室内(地下埋設式)であり、砂等の粒子状の極小飛来物から	
		の影響は受けないが、ディーゼル燃料貯蔵タンクのベント管は	
		屋外に設置していることから影響について確認する。	
		ディーゼル燃料貯蔵タンクのベント管先端には図 10 のとお	
		り,カバーが取り付けられており,開口部の閉塞には至らない。	
		地上 (EL8600)         地上 (EL8600)         〇 丁ィーゼル燃料貯蔵タンク及びベント管の概要	
		(b) ディーゼル燃料デイタンク,潤滑油サンプタンク	
		ディーゼル燃料デイタンク,潤滑油サンプタンクのベント管	
		は、下方向を向いており砂等の粒子状の極小飛来物が侵入しに	
		くい構造となっている。また、竜巻の通過に要する時間は短時	
		間であるため、閉塞する量の飛来物は侵入し難い。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
	別紙-3	(柏崎 6/7 は「添付資料
	二次飛来物の現地調査について	3.3 3.3(1) 飛来物調査」
		及び「添付資料 3.3 別紙
	1. 現地調査の概要	1(2) 柏崎刈羽原子力発電
	竜巻による二次飛来物を抽出するため、発電所構内において	所の屋外屋根, シャッタ
	平成26年8月に現地調査を実施した。現地調査では、風圧力や	ー,ガラス窓,仮設足場の
	飛来物による被害を受けると考えられる設備及び建物・構築物	状況」で記載)
	を確認した。	(東海第二は「添付資料 9
	二次飛来物の発生を考慮する建物・構築物として、以下を調	2. 発電所構内の物品調
	査対象施設とした。調査対象施設の配置を図1に示す。	査」及び「別紙 9-1 (2)
	a) 原子炉建物	発電所の屋外屋根及びガ
	b) 廃棄物処理建物	ラス窓の状況」で記載)
	c) タービン建物	
	d) サービス建物	
	e) サイトバンカ建物	
	f) 制御室建物	
	g) 補助ボイラ	
	h) 固体廃棄物貯蔵所	
	i) 開閉所	
	j) 管理事務所	
	k) 協力会社事務所	
	1) 送電鉄塔	
	m) 技術訓練棟	
	n) 免震重要棟	
	o) 純水装置建物	
	p) 排気筒	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
		回川以川、J J J J L HEIJI 2 4         ● 伊原東他紀環境         ● 日田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田
		<ul> <li>2.現地調査結果 <ul> <li>二次飛来物の発生を考慮する設備及びた結果,建物の金属製屋根・外壁、シャ給排気用格子が飛散物となり得ると判断定されていたり,複数のボルト等で締結ては二次飛来物となり難いことから除外り得る部位の抽出結果を表1に、二次飛写真を図2に示す。</li> <li>建物の金属製屋根・外壁、シャッター用格子については、「過去の竜巻事例に基紙-1)」により、二次飛来物となった場軽量な物品となるため、その影響は設計考えられる。</li> </ul> </li> </ul>



表1       二次飛来物の発生を考慮する設備及び建物・構築性         る二次飛来物となり得る部位の抽出結果(1/4)            年未物に対して影響を受ける可能性のある部位             集状に対して影響を受ける可能性のある部位             北田大野響を受ける可能性のある部位             1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1 <td< th=""><th></th></td<>	
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	勿におけ
ふ 二 久茂 米 牧り どうな り 付う 合 折山 ひり 田田 応行 米 (1 / 4)             東 米物に対して影響を受ける可能性のある部位           二 次 茂 米物             北田 万日 の (1 )           二 (1 )         子 / 五次 茂 米物           二 (1 )         二 次 茂 米物             1         1         1	
株物に対して影響を受ける可能性のある部位       二次株装物	
RKR014 U E # B # 2 (1) 4 3 HE LO Ø 5 G HE	次飛来物にな
1       1号丁/B北側DEG給気口       一         2       鉄イオン溶解槽、電解設受槽(取水槽)       一         3       北側出入管理建物ガラス窓       〇       ガ         4       1号Rw/B南側シャッター(1FL)       〇       ジ         5       1号Rw/B南側シャッター(1FL)       〇       ジ         6       1号Rw/B南側シャッター(2FL)       〇       ジ         7       1号T/B空調換気系給気用格子(限上)       〇       純         8       1号T/B空調換気系給気用格子(水平)       〇       純         9       1号中央制御室空調換気系給気用格子       〇       純	り得る部位
2       鉄イオン溶解槽、電解液受槽(取木槽)       ー         3       北側出入管理建物ガラス窓       0       ガ         4       1号Rw/B南側シャッター(1FL)       0       ジ         5       1号Rw/B南側シャッター(1FL)       0       ジ         6       1号Rw/B南側シャッター(2FL)       0       ジ         7       1号T/B空調機気系給気用格子(版上)       0       約         8       1号T/B空調機気系給気用格子(水平)       0       約         9       1号中央制御室空調換気系給気用格子       0       約	
3       北側出入管理建物ガラス窓       0       ガ         4       1号Rw/B南側シャッター(1FL)       0       シ         5       1号Rw/B南西側シャッター(1FL)       0       シ         6       1号Rw/B南囲(シャッター(2FL)       0       シ         7       1号T/B空調換気系給気用格子(屋上)       0       約         8       1号T/B空調換気系給気用格子(水平)       0       約         9       1号中央制御室空調換気系給気用格子(水平)       0       約	
4       1号Rw/B南側ジャッター(1FL)       0       ジ         5       1号Rw/B南側ジャッター(1FL)       0       ジ         6       1号Rw/B南側シャッター(2FL)       0       ジ         7       1号T/B空調換気系給気用格子(屋上)       0       総         8       1号T/B空調換気系給気用格子(水平)       0       総         9       1号中央制御宝空調換気系給気用格子(水平)       0       総	ラス窓
6       1分KW分分HELMOV(2) (11 2)       0       2         6       1号Rw/B南側シャッター(2FL)       0       2         7       1号T/B空調換気系給気用格子(屋上)       0       条         8       1号T/Zez調換気系給気用格子(水平)       0       給         9       1号中央制御室空調換気系給気用格子(公平)       0       給	<u>+ y9-</u>
7       1号T/B空調換気系給気用格子(屋上)       ○       余         8       1号T/B空調換気系給気用格子(水平)       ○       条         9       1号中央制御室空調換気系給気用格子       ○       条	+ >> 4
8         1号T/B空調機気系給気用格子(水平)         ○         給           9         1号中央制御室空調機気系給気用格子         ○         給	排気用格子
9 1号中央制御室空調換気系給気用格子 〇 給1	<b>非</b> 気用格子
	非気用格子
10     1号R/B空調換気系給気用格子     〇     給打	非気用格子
$\begin{array}{ c c c c c }\hline 11 & 2\beta T / B \lambda \mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I}$	<u>+                                    </u>
$\begin{array}{ c c c c c c } 12 & 2 \overline{\sigma} \frac{1}{3} \sqrt{2 \overline{\sigma} \frac{1}{3} \sqrt$	+
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ту <i>9</i> —
15     補機メンテナンス建物東側シャッター     ○     シ	ヤッター
16 補機メンテナンス建物西側シャッター、ガラス窓	ャッター
	ラス窓
17     補機メンテナンス建物南側シャッター、ガラス窓     ○     ジー       ガガ     ガガ     ガガ	ャッター ラス窓
18     補機メンテナンス建物北側シャッター     〇     シ	<u>ャッター</u>
19          ・         ・         ・	ヤッター
	ラス窓
20 補機メンテナンス建物西側シャッター、ガラス窓 のガ	マック ^ー ラス窯
21     R/B西側液化酸素タンク     —	
22     水素ガストレーラ庫     —	
23     HPCS-DEG室排気用格子     〇     給	非気用格子
24         R/B空調換気系給気用格子         〇         給損           マレー         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・	非気用格子
25     HPCS-DEG玺器氛用格子     〇     網子       26     A B-DEG室給気用格子     〇     絵	非気用格子
20     N, D D D S 宝 編 (MH )     ()     ()       27     H P C S 電気室辺海換気系給気用格子     ()     ()	排気用格子
28         HPCS電気室空調換気系排気口         —	
29     A, B非常用電気室空調換気系給気用格子     〇     給出	非気用格子
30     T/B空調換気系給気用格子     給	非気用格子
常用電気室空調換気系給気用格子	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)		島根原子力発電所 25	予炉		備考
		表 1	一次飛来物の発生を考慮する設備及	び建物・構築	築物におけ	
		- - -				
		5	一次 飛米物となり 得る 部位の 抽出結果	(2/4)		
			飛来物に対して影響を受ける可能性のある部位	二次飛来物になり 得る部位の有無	二次飛来物にな り得る部位	
		31	Rw∕B空調換気系給気用格子	0	給排気用格子	
		32	中央制御室空調換気系給気用格子	0	給排気用格子	
		33	エスカレータガラス窓(44m盤)	0	ガラス窓	
		34	上水タンク (50m盤, 77m盤)	_		
		35	日立6号棟シャッター (44m盤)	0	シャッター	
		36	日立6号棟ガラス窓(44m盤)	0	ガラス窓	
		37	日立5号棟ガラス窓(44m盤)	0	ガラス窓	
		38	C P C 事務所ガラス窓 (4 4 m盤)	0	ガラス窓	
		39	日立2号棟ガラス窓(44m盤)	0	ガラス窓	
		40	日立1号棟ガラス窓(44m盤)	0	ガラス窓	
		41	日立3,4号棟ガラス窓(44m盤)	0	ガラス窓	
		42	協力会社事務所南側ガラス窓(44m盤)	0	ガラス窓	
		43	協力会社事務所北側ガラス窓(44m盤)	0	ガラス窓	
		44	第2防護本部シャッター(44m盤)	0	シャッター	
		45	免震重要棟		窓等なし	
		46	事務所2号館西側給排気用格子	0	給排気用格子	
		47	事務所2号館北側給排気用格子	0	給排気用格子	
		48	事務所2号館北側シャッター	0	シャッター	
		49	事務所1号館ガラス窓	0	ガラス窓	
		50	事務所3号館シャッター	0	シャッター	
		51	事務所3号館シャッター	0	シャッター	
		52	事務者3号館ガラス窓	0	ガラス窓	
		53	純水処理建物給気用格子	0	給排気用格子	
		54	補助ボイラー室北側シャッター(1)	0	シャッター	
		55	補助ボイラー室北側シャッター(2)	0	シャッター	
		56	純水タンク (A)			
		57	純水タンク(B)			
		58	3号倉庫東側シャッター, ガラス窓	0	シャッター	
		50			メラス忠	
		99	3号倉庫北側シャッター,ガラス窓	0	ジャッター	
		60			シャッター	
		00	2号倉庫西側シャッター, ガラス窓	0	ガラス窓	
		61			シャッター	
			2号倉庫南西側シャッターガラス窓	0	ガラス窓	
		62	2号倉庫南東側シャッター	0	シャッター	
		63	2号倉庫東側シャッター	0	シャッター	
		64	2号倉庫ガラス窓	0	ガラス窓	
		65	サイトバンカ建物西側シャッター	0	シャッター	
		66	サイトバンカ建物南側シャッター	0	シャッター	
		67	サイトバンカ建物給気口	_		
		68	サイトバンカ建物ガラス窓 (1)	0	ガラス窓	
		69	サイトバンカ建物ガラス窓(2)	0	ガラス窓	
		70	危険物屋内貯蔵所東側シャッター	0	シャッター	
		71	ブロワ室ガラス窓	0	ガラス窓	
		72	汚水処理施設ガラス窓	0	ガラス窓	
		73	固体廃棄物貯蔵庫A棟西側シャッター	0	シャッター	
		74	空コンアナ保管庫西側に面するシャッター せた調査地1日始ポニュ空	0	ジャッター	
		75	12円	0	ルフム窓	
		76	技術訓練棟1号館北側シャッター, ガラス窓	0	ンヤツター	
		77			シャッター	
			技術訓練棟2号館西側シャッター、ガラス窓	0	ガラス窓	
		78			シャッター	
			1 号ろ過水装置建物の西側シャッター,ガラス窓	0	ガラス窓	
		79	1号ろ過水装置タンク(1)			
		80	1号ろ過水装置タンク(2)	_		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)		島根原子力発電所 2	号炉		備考
		表1	二次飛来物の発生を考慮する設備	及び建物・構	築物におけ	
		る	二次飛来物となり得る部位の抽出結果	県(3/4)		
			飛来物に対して影響を受ける可能性のある部位	二次飛来物 になり得る 部位の有無	二次飛来物にな り得る部位	
		81	2号ろ過水装置建物シャッター,ガラス窓	O UNITED HIM	シャッター	
		82	2号ろ過水装置建物ガラス窓	0	ガラス窓	
		83	2号ろ過水装置タンク(1)	_		
		84	2 号ろ過水装置タンク(2)	_		
		85	2号ろ過水タンク	_		
		86	固体廃棄物貯蔵庫B棟南西側シャッター(1)	0	シャッター	
		87	固体廃棄物貯蔵庫B棟南西側シャッター(2)	0	シャッター	
		88	高圧ガス貯蔵所南側フェンス扉	_		
		89	5号倉庫給気用格子,ガラス窓	0	給排気用格子 ガラス窓	
		90	5号倉庫南側シャッター	0	シャッター	
		91	5号倉庫西側シャッター	0	シャッター	
		92	4 4 m版事務所東側シャッター	0	シャッター	
		93	固体廃棄物貯蔵庫C棟西側シャッター	0	シャッター	
		94	1 号開閉所ガラス窓	0	ガラス窓	
		95	1 号開閉所西側シャッター	0	シャッター	
		96	1号開閉所南側シャッター	0	シャッター	
		97	2 号開閉所ガラス窓	0	ガラス窓	
		98	2号炉T/B北側事務所西側シャッター, ガラス窓	0	シャッター ガラス窓	
		99	鉄イオン貯蔵建物南側シャッター	0	シャッター	
		100	エスカレータ南側シャッター (4 4 m盤)	0	シャッター	
		101	2号No. 1 鉄塔			
		102	2号No. 2鉄塔	_		
		103	3号No. 3鉄塔	_		
		104	ガスタービン発電機資材倉庫南側シャッター	0	シャッター	
		105	資材倉庫シャッター	0	シャッター	
		106	緊急用電気室入口	_		
		107	危険物屋内貯蔵建物給気用格子	0	給排気用格子	
		108	危険物屋内貯藏倉庫給気用格子	0	給排気用格子	
		109	R/B東側給気口	-		
		110	T/B東側給気口	-		
		111	R/B南側給気口	-		
		112	S/B屋上階東側給気口	-		
		113	S/B南側ガラス窓	0	ガラス窓	
		114	出入管理棟南側ガラス窓	0	ガラス窓	
		115	S/B屋上階西側給気口		┟────┤│	
		116	S/B西側ガラス窓	0	ガラス窓	
		117	S∕B西側給気口		╂────┤│	
		118	補助ボイラー建物北側給気口		┼───┤│	
		119	補助ボイラー建物北側重油サービスタンク	-		
		120	補助ボイラー建物東側シャッター、ガラス窓	0	シャッター ガラス空	
		191	固体廃棄物貯蔵所D 棟南東側シャッター	0	シャッター	
		121	10011-20-7-10051 1000/12/14-173 / 102 / 1/2/2	0	シャッター	
		122	国体廃棄物貯蔵所D棟付属建物西側ガラス窓	0	ガラス窓	
		120	3 号期閉所			
		125	倉庫西,東側シャッター	0	シャッター	
		126	倉庫北,南側ガラス窓	0	ガラス窓	
		127	除じん機メンテナンス建物北,南側シャッター	0	シャッター	
		128	除じん機建物東、西側ガラス窓	0	ガラス窓	
		129	補機海水系ポンプメンテナンス建物北,東,南側シャッター	0	シャッター	
		130	補機海水系ポンプメンテナンス建物東,西側ガラス窓	0	ガラス窓	
					·	
		1				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所	2号炉		備考
		表1 二次飛来物の発生を考慮する認	は備及び建物	・構築物におけ	
		る二次飛来物となり得る部位の抽出	結果(4/4	L)	
		飛来物に対して影響を受ける可能性のある部位	二次飛来物になり得る	、 二次飛来物になり得る部	
		131 ガスボンベ庫東側給気ロ	部位の有無	位	
		132         ガスボンベ庫西側給気口	_		
		133 第3危険物倉庫東側シャッター	0	シャッター	
		134 ボーリングコア倉庫東側シャッター	0	シャッター	
		135 ボーリングコア倉庫南,北側ガラス窓	0	ガラス窓	
		136 島根原子力幹線送電鉄塔(No.1,2)	—		
		137 島根原子力幹線送電鉄塔(No.3)	_		
		138         給水設備建物東側シャッター	0	シャッター	
		139         給水設備建物東,北側ガラス窓	0	ガラス窓	
		140 給水設備建物西側ガラス窓	0	ガラス窓	
		141         純水ダンク, ら画水ダンク, 泪火用水ダンク           142         地気等			
		142         研究向           143         重油タンク務送ポンプ家南側ガラス密		ガラス変	
		140         141         2号炉放水路モニタ室東、南側に面するガラス窓	0	ガラス窓	
		145         海水電解装置設備周囲のアクリルケース	_		
		146         東口建物北側ガラス窓	0	ガラス窓	
		147 東口建物東,西側アクリル扉	_		
		148         北口建物西側ガラス窓	0	ガラス窓	
		149 北口建物南,北側アクリル扉	_		
		150 1 号炉原子炉建物	0	金属製外壁	
		151         1 号炉タービン建物	0	金属製屋根	
		152 1 号炉廃棄物処理建物	_		
		153 1 号炉排気筒	_		
		154 2 号炉原子炉建物	_		
		155         2 号炉タービン建物	_		
		156 2 号炉廃棄物処理建物	_		
		157 2 号炉排気筒	_		
		158 制御室建物	—		
		159 3 号炉原子炉建物	_		
		160         3 号炉タービン建物	_		
		161 3 号炉廃棄物処理建物	_		
		162 3 号炉排気筒	_		
		163 3 号炉制御室建物	—		
		164 3 号炉サービス建物	—		
		165 3 号炉補助ボイラ	0	金属製屋根・外壁	
		166 3 号出入管理棟	0	金属製屋根・外壁	
		167 固体廃棄物貯蔵所(A棟)	_		
		168 固体廃棄物貯蔵所(B棟)	_		
		169 固体廃棄物貯蔵所(C棟)	_		
		170 固体廃棄物貯蔵所 (D 棟)	_		
		171 6 6 k V 開閉所(1 号機屋内開閉所)	0	金属製屋根・外壁	
		172 2 2 0 k V 開閉所 (2 号機開閉所電気室)	—		
		173         5 0 0 k V 開閉所(開閉所電気品室)	_		
		174 管理事務所1号館	0	金属製屋根・外壁	
		175 管理事務所2号館			
		176 管理事務所3号館	0	金属製屋根	
		177 管理事務所4号館	0	金属製屋根	
		178         サイトバンカ建物			
		179         サイトバンカ付属倉庫	0	金属製屋根	
		180 純水装置建物	0	金属製屋根・外壁	
		181 免震重要棟	0	金属製屋根	
		182 技術訓練棟	—		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考			
		9 1 号中央制御室空調換気系給気用格子 10 1 号R/B 空調換気系給気用格子				
		11 2号T/B北東側水素ガスボンベ室シャッター       13 2号鉄イオン保管建物シャッター (取水槽)         13 2号鉄イオン保管建物シャッター (取水槽)				
		14 2号T/Bシャッター 15 補機メンテナンス建物東側シャッター 図2 二次飛来物になり得る施設の写真(2/20)				
柏崎刈羽原子力発電所	6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所	2 号炉	備考
------------	-------	------------------	---------------------	-----------------------------------------------------	-----------------------------------------------------------------	----
				16 補機メンテナンス建物西側シャッター, ガラス窓 17 補機	メンテナンス建物南側シャッター, ガラス窓	
				18 補機メンテナンス建物北側シャッター 19 補機	メンテナンス建物東側シャッター、ガラス窓 「「「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「	
				20 補機メンテナンス建物西側シャッター, ガラス窓 23 HP 図9 一次飛 立物にたり得ス族	cs-Deg室排気用格子 :設の写直(3/20)	

柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力	」発電所 2号炉	備考
			24 R/B空調換気系給気用格子	25 H P C S - D E G 室給気用格子	
			26 A, B-DEC室給気用格子	27 HPCS電気室空調換気系給気用格子	
			29 A, B非常用電気室空調換気系給気用格子	30 1/ 5 呈調換気示給非気用格子	
			図2 二次飛来物にな	り得る施設の写真(4/20)	

柏崎刈羽原子力発電所 6/7号炉 (201	17.12.20版) 東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		31 Rw/B空調換気系給気用格子       32 中央制御室空調換気系給気用格子         ジン       マレージー         ジン       ワレージー         ジン	
		33 エスカレータガラス窓 (44m盤)       35 日立6 号棟シャッター (44m盤)         レージ       レージ         レージ       レージ         レージ       レージ         レージ       レージ         レージ       レージ         シージ       レージ         シージ       レージ         レージ       レージ         シージ       レージ         レージ       レージ         レージ       レージ         レージ       レージ         シージ       レージ         レージ       レージ	
		36日立6号棟ガラス窓(44m盤) 37日立5号棟ガラス窓(44m盤) 図 9 一次 孤立物にたり得る施設の写直(5 / 9 0)	
		因と 二次派末初になり待る施設の子具(3/20)	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所	2 号炉	備考
			38 CPC事務所ガラス遼 (4 4 m 盤) 39 日式	立2号棟ガラス窓 (44m盤)	
			40 日立1号棟ガラス窓(4 4 m盤)       41 日立         「「「「「「」」」」」」」」」」」」         「「」」」」」」」」」」」         「」」」」」」」」」」」」」」」」         (4 4 m盤)         (4 4 m盤)         (4 4 m盤)         (4 4 m盤)         (1 4 m盤)	立3,4号棟ガラス窓(44m盤)         「「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」         「」」         「」」         「」」         「」」         「」」         「」」         「」」         「」」         「」」         「」」         「」」         「」」         「」」      <	
			32 協力芸任事務所補助カラス感(44 m型) 43 協力 図2 二次飛来物になり得る旅	世設の写真(6 / 2 0)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		44 第2防護本部シャッター(44m盤)       46 事務所29館西側給排気用格子	
		47 事務所 2 号館北側給排気用格子       48 事務所 2 号館北側シャッター         100000000000000000000000000000000000	
		49 事務所1号館ガラス恋 50 事務所3号館シャッター 図2 二次飛来物になり得る施設の写真(7/20)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		51 ##ğr 3 θ@t 2 # g# 3 9@t J 9 x@ 52 #g# 3 9@t J 9 x@ 53 #g# J 9 x@ 54 #g# 3 0 x@ 55 #g# 3 0 x@ 56 #g# 3 0 x@ 57 #g# 3 0 x@ 57 #g# 3 0 x@ 57 #g# 3 0 x@ 58 #g# 3 0 x@ 59 #g# 3 0 x@ 59 #g# 3 0 x@ 50 #g# 3 0 x@ 51 #g# 3 0 x@	
		53 純水処理建物給気用格子       54 補助ボイラー宝北側シャッター (1)	
		55 補助ポイラー室北側シャッター(2) 58 3 号倉庫東側シャッター, ガラス窓	
		図2 <u>一</u> (水飛米物になり侍る施設の与具(8/20)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		59 3 号倉庫北側シャッター,ガラス窓       60 2 号倉庫西側シャッター,ガラス窓         「「「「」」」」」」」」」」         「「」」」」」」」」」         「」」」」」」         「」」」」」」         「」」」」」」」         「」」」」」」         「」」」」」」         「」」」」」」         「」」」」」         「」」」」」」         「」」」」」」」         「」」」」」」」         「」」」」」」」         「」」」」」」」         「」」」」」         「」」」」」         「」」」」」         「」」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」         「」」」」         「」」」         「」」」         「」」」」         「」」」         「」」」         「」」」         「」」」         <td colspan="2</th> <th></th>	
		61 2万日単円 田田 レヤタク ー カウス記       62 2万日単用 見聞 レヤタク ー         02 2万日単 日 見 田 レヤタク ー         02 2万日単 日 日 田 レヤタク ー	
		図2 二次飛来物になり得る施設の写真(9/20)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		65 サイトバンカ建物南側シャッター       66 サイトバンカ建物南側シャッター         「「「「「」」」」」」」」         「「」」」」」」」         「「」」」」」」         「「」」」」」」         「「」」」」」」         「「」」」」」」         「「」」」」」」         「」」」」」         「「」」」」」         「」」」」」         「」」」」」         「」」」」」         「」」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」         「」」」	
		68 サイトバンカ建物ガラス窓(1)       69 サイトバンカ建物ガラス窓(2)         「「「」」」」       69 サイトバンカ建物ガラス窓(2)	
		70 危険物屋内貯蔵所東側シャッター 71 ブロワ室ガラス窓 図2 二次飛来物になり得る施設の写真(10/20)	

柏崎刈羽原子力発電所 6/7号炉 (20	017.12.20版) 東海第二発電所	(2018. 9. 18 版)	島根原子力発	電所 2号炉	備考
			72 汚水処理施設ガラス窓	73 固体廃棄物貯蔵庫A棟西側シャッター	
			74 空コンテナ保管庫西側に面するシャッター	75 技術訓練棟 1 号館ガラス窓	
			76 技術訓練棟1号館北側シャッター,ガラス窓	77 技術訓練棟 2 号館西側シャッター, ガラス窓	
			因2 二伏飛米初になり侍	る施設の今具(11/20)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		87 固体廃棄物貯蔵庫B棟南西側シャッター(2) 89 5 号倉庫給気用格子,ガラス憲 図2 二次飛来物になり得る施設の写真(12/20)	

柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			90 5号倉庫南側シャッター     91 5号倉庫西側シャッター	
			92 4 4 m版事務所東側シャッター 93 固体廃東物貯蔵庫C棟西側シャッター 93 回体廃東物貯蔵庫C棟西側シャッター	
			94 1号開閉所ガラス窓     95 1号開閉所西側シャッター       図2     二次飛来物になり得る施設の写真(13/20)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		97 2号開閉所ガラス窓	
		98 2号炉T/B北側車務所西側シャッター、ガラス密       99 鉄イオン貯蔵建物南側シャッター         100 エスカレータ画像シャッター(AAme)       99 鉄イオン貯蔵建物南側シャッター	
		図2 二次飛来物になり得る施設の写真(14/20)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		105 資材倉庫シャッター       107 危険物屋内貯蔵建物給気用格子         レビレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレレ	
		108	
		114 出入管理棟南側ガラス窓 116 S/B 西側ガラス窓	
		図2 二次飛来物になり得る施設の写真(15/20)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		122 D棟南西側シャッター       123 固体廃栗物貯蔵所D棟付属塗物西側ガラス窓         正       東側にも         「様のシャッター         「「様のカ*ラス窓」	
		125 倉庫西, 東側シャッター 126 倉庫北, 南側ガラス窓	
		図2 二次飛来物になり得る施設の写真(16/20)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		南側にも 同様のシャヮター     北       「「「」」」     東       「」」」     「」」」       「」」」     「」」」	
		127 除じん機メンテナンス建物北,南側シャッター       128 除じん機建物東,西側ガラス窓         市間にも       北         東       正         東       「         129 補機海水系ボンブメンテナンス建物北,東,南側シャ       130 補機海水系ボンブメンテナンス建物東,西側ガラス窓	
		13 第3 危険物倉庫東側シャッター	
		図2 二次飛来物になり得る施設の写真(17/20)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		<ul> <li>北側にも 同様のガラス窓</li> <li>南</li> <li>南</li> <li>(中)</li> <li>(h)</li> <li>(h</li></ul>	
		135 ボーリングコア倉庫南, 北側ガラス窓 138 給水設備建物東側シャッター 136 位	
		139 給水設備建物東,北側ガラス窓       140 給水設備建物西側ガラス窓         140 給水設備建物西側ガラス窓       140 絵水設備建物西側ガラス窓         141 14 2 号炉放水路モニタ室東,南側に面するガラス窓       144 2 号炉放水路モニタ室東,南側に面するガラス窓	
		図2 二次飛来物になり得る施設の写真(18/20)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	<image/> 島根原子力発電所 2 号炉	備考
		<image/> <image/> <image/> <image/> <image/> <image/> <image/>	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			<image/> Area control c	
			with a state of the stat	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			(島根2号炉は「添付資料
			3.2 竜巻影響評価及び竜巻
			対策の概要」で記載)
し 福 休 なまの 一部			
てき て 黄淵語 る は 施設 きっちょう			
ない 通 へ 通 く 通 く			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
かした (図)の (図) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2			
イン・ 降る 様子 小子 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小 小			
「おいな」で、「おって、「おうな」、 して、 第4 ない、 しつ、 して、 して、 して、 して、 しょうく しょう ひょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し			
の難を立場である。			
○ 飞 後 後 後 第 第                                                                                                                                                                                                                                                                                                                                            			
(1) (1) (1) (1) (1) (1) (1) (1)			
台 必 證 各 罷 求 √ ⑤ 氮 證 来 ★ ↓ ○ 示 場 来 参 認			
「「「」」で、「」」で、「」」で、「」」で、「」」で、「」」で、「」」で、「」			
高のを設けてある。			
あっした可は 初高・総法 黄 さ仮 処 準書			
発き。 設達の 1 米 信 どう な黒			
初 定 と 設 。 増しし じ ()) ■ 高 た て 到 図			
末 法 側 対 施 物 え 高 条 す の 説 さ 施 る			
に 差 物 ・等 、 る の 評 を 飛 踏 初 価 実			
すのをのはる高飛う国際低米も線			
を 施 の 飛 と 実 設 斎 木 る 通 と さ 称 又			
散価、載羅課課 一部分長 と いうほう かう かん し いうちょう し いうしょう し いうしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう			
縮 所 の 二 設の と うで とう うう で た む ち む う う う う う う う う う う む い う む し う う む う む う む う む ち む ち む ち む ち む ち む ち			
来 懲 期 お 対物 物置 高, 象			
あるは			
図1 各代表飛来物の設置場所を踏まえた初期高さ			
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電	所(2018. 9. 18 版)	島根原子力	発電所 2号炉	備考
	1	添付資料 10		別紙-4	
別紙 3					
音光中に発生するひょうの影響について	音光時に惑せする	ひょうの影響について	音光時に惑せする。	ひょうの影響について	
电谷时に光生するひょうの影響について	电谷时に光工りる	いようの影音について	电合时に光生りる		
竜巻時はひょうを伴うこともあるため、ひょうに関する文献を	 竜巻においてはひょうを伴う	うことがあるため、ひょうの影響に	竜巻時はひょうを伴うこと	:もあるため,ひょうに関する文献	
参考にひょうの影響について検討を行った。	ついて検討を行った。		を参考にひょうの影響につい	て検討を行った。	
ひょうはあられが大きく成長したもので, 直径5mm 以上の氷の	ひょうはあられが大きく成長	そしたもので,直径 5mm 以上の氷の	ひょうはあられが大きく成	長したもので, 直径 5mm 以上の氷	
粒子である。ひょうの大きさは,通常は直径が5~50mm である ^{※1} 。	粒子である。ひょうの粒径の」	<u>-限は, 文献 ⁽¹⁾ によれば通常は</u> 直	の粒子である。ひょうの大き	さは,通常は直径が 5~50mm であ	
このことから,直径50mmのひょうを対象に影響評価を行う。なお,	径が 5mm~50mm とされているか	、ひょうの粒径の変化に対する影	る ^{**1} 。このことから,直径 50	Dmmのひょうを対象に影響評価を行	
ひょうの大きさの変化に対する影響度を確認するため、比較対象	響度を確認するため、別の文権	⁽²⁾ に記載のひょうのうち最大の	Žuen		
として,参考文献 ^{※2} に記載の雹で最大である10cm のひょうにて評	10cmのひょうまでを想定した	平価を実施した。			
価を実施したとしても設計飛来物に包含されることも確認した。					
空気中を落下する物体は空気抵抗を受けるので、時間を経れば	空気中を落下する物体は空気	〔抵抗を受けるので,時間が経てば	空気中を落下する物体は空	2気抵抗を受けるので、時間が経て	
空気抵抗と重力が釣り合い等速運動となり、一定の速度(終端速	空気抵抗と重力とが釣り合い等	ទ速運動となり、一定の速度(終端)	ば空気抵抗と重力が釣り合い	等速運動(終端速度)となる。空	
度)となる。空気中を落下するひょうもこの終端速度で落下する。	速度)となる。空気中を落下するひょうもこの終端速度で落下す		気中を落下するひょうもこの終端速度で落下する。ひょうの粒		
ひょうの粒径ごとの終端速度を表1 に示す。	る。ひょうの粒径ごとの終端速度を <u>第1-1表</u> に示す。		径毎の終端速度を表1 に示す。		
表 1 ひょうの粒径ごとの終端速度**2	第1-1表 ひょうの	)粒径ごとの終端速度 ⁽²⁾	表 1 ひょうの料	立径毎の終端速度*2	
粒径 (cm) 終端速度 (m/s)	粒径(cm)	終端速度(m/s)	粒径 (cm)	終端速度 (m/s)	
1 9	1	9	1	9	
2 16	2	16	2	16	
5 33	5	33	5	33	
10 59	10	59	10	59	
 ここで、ひょうの影響を評価するため、運動エネルギー、貫通	ここで、ひょうの影響を評価す	るため,運動エネルギ,貫通力(貫	ひょうの大きさの変化に対	†する影響度を確認するため, 比較	
のしやすさを評価した結果を設計飛来物(鋼製材)と比較し表2 に	通限界厚さ)を評価した結果を	設計飛来物(鋼製材)と比較し第1	対象として,参考文献*2に記	載のある最大 10cm のひょうに対し	
示す。ひょうの影響は設計飛来物(鋼製材)に包含できると言え	-2.表に示す。		て運動エネルギ、貫通のしや	っすさの評価を実施し,設計飛来物	
3	その結果、ひょうの影響は設調	+飛来物(鋼製材)に十分包絡でき	(鋼製材) との比較した結果	を表2に示す。ひょうの影響は設	
	ると言える。		計飛来物(鋼製材)に包含で	<u>きる。</u>	

柏崎	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版)				島根原	<b>〔</b> 子力発電所	2 号炉		備考					
			<u>第1-2表 粒径 5cm 及び 10cm ひょうの影響評価</u>				<u>表 2 粒径 5cm 及び 10cm ひょうの影響評価</u>				・設計飛来物の相違			
	<u>表 2 粒径 5cm</u>	<u> </u> 及び 10cm	n ひょうのț	影響評価	及び設計飛来物との比較結果				粒径5cm ひょう	粒径10cm てN F う	設計飛来物 (綱制材)	【柏崎 6/7】		
		粒径 5cm	粒径 10cm	設計飛来物(鋼製材)			貫通限界厚さ	(鉛直)		カエネルギ	0.04kJ	0.91kJ	176kJ	
(軍重	カエネルギー	ひょう 0.04kI	ひょう 0.91 kI	3 kI	評価対象	運動エネルギ	コンクリート			コンクリー				
貫通限界厚さ	ミニコンクリート	0.8cm	2.7cm	Acm			$(F_c = 225 kgf/cm)$	鋼板	頁通限界   厚さ	Fc=330kgf/c	0.8cm	2.7cm	27cm	
(鉛直)	Fc=330kgf/cm ² 編版	0. 80m	0.7mm				2)		(鉛直)	m ²				
	30911X	0. 200	0.71111	211111	粒径 5cm ひょう	0.04kJ	0.8cm	0.2mm		鋼板	0.2mm	0.8 mm	34mm	
					粒径 10cm ひょう	0.85kJ	2.9cm	0.8mm						
					設計飛来物(鋼製 材)	79kJ	18.8cm	19mm						
					<参考文献>									
※1 :白ス	<b>卞正規,百万人</b>	の天気教室	至,成山堂書	書店	(1) 白木正規,	百万人の天気教	室,成山堂書店		※1 : 白オ	マ正規, 百万人の	の天気教室,	成山堂書居		
₩2 :小1	拿義光, 一般象	〔象学,東〕	京大学出版	<b>A</b>	(2) 小倉義光,	一般気象学,東	京大学出版会		※2 :小倉	<b>〕</b> 義光, 一般気	、象学,東京	大学出版会		
					1									1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 9-2	<u>別紙-5</u>	
空力パラメータについて物品の飛散解析に用いる空力パラメータは「竜巻影響評価ガイ ド」の参考文献 ⁽¹⁾ 及び米国NRCの竜巻設計のための飛来物特性 を与えるNUREG-0800 (1996) ⁽²⁾ に引用されている文献 ⁽³⁾ を参照し,下式により算出する。物体の気 ド」の参考 ド」の参考 ド」の参考 「下式によ」	<u>空力パラメータについて</u> <u>本の飛散解析に用いる空力パラメータは「竜巻影響評価ガイ</u> 参考文献 ⁽¹⁾ 及び米国 NRC の竜巻設計のための飛来物特性を <u>5 NUREG-0800 (1996)⁽²⁾に引用されている文献⁽³⁾を参照し,</u> <u>こより算出する。</u>	<ul> <li>・記載方針の相違</li> <li>【柏崎 6/7】</li> <li>島根2号炉は空力パラ</li> <li>メータについて記載</li> </ul>
$\begin{array}{c} \frac{C_{D}A}{m} = e^{\frac{C_{D}A}{m} + C_{D}A_{D}} \\ = 1 = \nabla, \\ \frac{C_{D}A}{m} = \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}{2$	$ \frac{C_{D}A}{m} = c \frac{(C_{D1}A_{1} + C_{D2}A_{2} + C_{D3}A_{3})}{m} $ ここで、 $ \frac{C_{D}A}{m} : 空力パラメータ (m2/kg)  m : 物体の質量 (kg)  c : 係数 (0.33)  C_{D1}, C_{D2}, C_{D3} : 直交 3 方向における物体の抗力係数(表1より選定)  A_{1}, A_{2}, A_{3} : C_{D1} ~ C_{D3} を定義した各方向に対する見附面積 (m2) $	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	別表 2−1 空力パラメータ算出のための抗力係数	表1 空力パラメータ算出のための抗力係数	
	物体の形状 C _{D1} C _{D2} C _{D3}	物体の形状         C _{D1} C _{D2} C _{D3}	
	塊状 2.0 2.0 2.0	塊状 2.0 2.0 2.0	
	板状 1.2 1.2 2.0	板状 1.2 1.2 2.0	
	棒状         2.0         0.7 (円形断面)         0.7 (円形断面)           1.2 (矩形断面)         1.2 (矩形断面)         1.2 (矩形断面)	棒状         2.0         0.7 (円形断面)         0.7 (円形断面)           1.2 (炉形断面)         1.2 (炉形断面)         1.2 (炉形断面)	
	C _{D2} :2.0         C _{D2} :1.2         C _{D2} :0.7 (円形断面)           :1.2         :1.2         :1.2	1.2 (деле в) ш)         1.2 (деле в) ш)           C _{D2} :1.2         C _{D2} :0.7 (П形断面)	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A2     A3     CD3:     A2     A3     CD3:     CD	
	<ul> <li>・A₃&gt;A₂, A₁</li> <li>・円形断面の場合, A₂, A₃は 「見付面積(直径×長さ)」</li> </ul>	C _{D1} :2.0     C _{D1} :1.2     C _{D1} :2.0     ・円形断面の場合, A ₂ , A ₃ は       ・A ₃ >A ₂ , A ₁ 「見附面積(直径×長さ)」       博壮物体     板北物体	
	<u>塊状物体</u> 板状物体		
	<参考文献> <ol> <li>東京工芸大学(2011):平成21~22年度原子力安全基盤調査研究(平成22年度) 竜巻による原子力施設への影響に関する調査研究,独立行政法人原子力安全基盤機構</li> <li>US-NRC: "3.5.1.4 MISSILE GENERATED BY NATURAL PHENOMENA," StandardReview Plan, NUREG-0800, 1996.</li> <li>E. Simiu, M. Cordes: "Tornado-Borne Missile Speeds," NBSIR76-1050, National Bureau of Standards, Washington</li> </ol>	<参考文献> <ol> <li>(1) 東京工芸大学(2011): 平成 21~22 年度原子力安全基盤調査 研究(平成 22 年度) 竜巻による原子力施設への影響に関す る調査研究,独立行政法人原子力安全基盤機構</li> <li>(2) US-NRC: "3.5.1.4 MISSILE GENERATED BY NATURAL PHENOMENA," StandardReview Plan, NUREG-0800, 1996.</li> <li>(3) E. Simiu, M. Cordes: "Tornado-Borne Missile Speeds," NBSIR76-1050, National Bureau of Standards, Washington</li> </ol>	
	D. C. , 1976.	D. C. , 1976.	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	別紙 9-3	<u> 別紙-6</u>	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版) 別紙 9-3 フジタモデル採用時に「竜巻影響評価ガイド」の鋼製材を 設計飛来物とすることの妥当性について 発電所の竜巻影響評価に用いる設計飛来物である鋼製材は,「竜 巻影響評価ガイド」に示されている数値を採用しているが,その 最大水平速度(51m/s)は非定常乱流渦モデルによるシミュレーション(LES)にて導出されている。 一方,発電所の竜巻影響評価における物品の飛散解析にはフジタモデルを適用する方針としており,フジタモデルでは風速が地表からの高さによって変化するため,飛来物源の地表面からの初期高さにより飛散時の挙動が異なる。 このため,任意の初期高さにある鋼製材をフジタモデルで飛散させた場合でも,その最大水平速度が51m/sを超えることがないことを確認した。結果を別図3-1に示す。また,別図3-1には参考としてランキン渦モデルによる最大水平速度も記す。	島根原子力発電所 2号炉 <u>別紙-6</u> <u>設計飛来物の最大水平速度の妥当性について</u> 発電所の竜巻影響評価に用いる設計飛来物である鋼製材は, 「竜巻影響評価ガイド」に示されている数値を採用しているが, その最大水平速度(51m/s)は非定常乱流渦モデルによるシミュ レーション(LES)にて導出されている。 一方,発電所の竜巻影響評価における物体の飛散解析にはフ ジタモデルを適用する方針としており,フジタモデルでは風速 が地上からの高さによって変化するため,飛来物源の地上から の初期高さにより飛散時の挙動が異なる。 このため,任意の地上からの初期高さにある鋼製材をフジタ モデルで飛散させた場合でも,その最大水平速度が 51m/s を超 えることがないことを確認した。結果を図1に示す。また,図 1には参考としてランキン渦モデルによる最大水平速度も記 す。	備考 <ul> <li>・記載方針の相違 <ul> <li>【柏崎 6/7】</li> <li>島根2号炉はフジタモデル採用時に「竜巻影響 評価ガイド」の鋼製材を 設計飛来物とすることの妥当性について記載</li> </ul> </li> </ul>
	$\int_{0}^{0} \int_{0}^{0} \int_{0}^{0} f_{x, t}(2, 2, 2, 3); \frac{1}{2} 3} \frac{46m/s}{2}$ $\int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \int_{0}^{1} \frac{1}{2} \int_{0}^{2} \frac{1}{2$	図1から、いずれの地上からの初期高さから飛散した場合で も、その最大水平速度は51m/sを上回ることはないことが分か る。よって、フジタモデルを採用する場合においても、設計飛 来物の最大水平速度には「竜巻影響評価ガイド」の数値である 51m/sを用いることは問題なく、かつ保守性を有すると判断し ている。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
		60       最大値(労イド(LES)):51m/s [設計課来物として)         50       40         30       アジタモデル(風)         30       アジタモデル(風)         20       ガイド(LES),風速         9       10         0       10         20       30         10       20         0       10         21       各風速場モデルにおける鋼製杯         (鋼製材: 300mm×200mm×4, 200         2. 砂利の最大水平速度の妥当性について         「竜巻影響評価ガイド」に記載のない         の速度については、フジタモデルを適用         付近の不確定性を考慮し、地上からの初         泉大値:約54m/s [設計操来物として後         50         50         第         60         50         51         62         52         63         53         54         55         55         50         51         52         53         54         55         55         55         50         51         52         53         54         55         50



柏崎刈羽原子力発電所 6/7号炉	「 (2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			<u>補足1</u>	
			フジタモデルによる飛散解析の特徴について	・記載方針の相違
				【東海第二】
			1. <u>はじめに</u>	島根2号炉は、フジタモ
			フジタモデルを用いた飛散解析では、物体の地上からの初期	デルを用いた飛散解析の
			高さが飛散速度や飛散距離に影響する。ここでは、フジタモデ	特徴について記載してい
			ルの風速場の概要及びフジタモデルを用いた飛散解析の特徴に	3
			ついて,設計飛来物 (鋼製材) に対する飛散解析結果を例に説	
			<u>明する。</u>	
			2. ノンタモナルの風速場のモナル化 (1) 国 声明の振声	
			(1) 風迷場の (4) (1) 風迷場の (4) (1) 風迷場の (4) (1) 風迷場の (4) (1) 四世 (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
			ば)で構成され、鉛直方向け流入層と非流入層で構成されス	
			流入層では竜巻中心方向に向かう強い流れ(流入風)があり.	
			この空気の流れ込みが外部コア内での上昇風となる。流入風の	
			最大風速は流入層の上限で発生するようにモデル化されてお	
			り,地表面に近づくにつれて連続的に減衰する。水平風速は,	
			周方向の風速と流入風の風速を合成することで得られ、最大水	
			平方向風速は最大周方向風速に竜巻の移動速度を足したものと	
			<u>一致する。フジタモデルの風速場における最大水平風速と地上</u>	
			からの高さの関係を図2に示す。	
			フジタモデルにおける最大水平風速は,地表面(0m)から流	
			入層高さ(15m)までは大きく上昇し,流入層高さにおいて最	
			大風速が発生する。流入層高さを超えると、地上からの高さが	
			高くなるにつれて最大水平風速は緩やかに減少するモデルとな	
			<u>っている。</u>	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電	,所(2018. 9. 18 版)		島村	<b>≹原子力発</b>	電所 2号
							竜巻	中心軸
					Æ 流 へ 層	コア半径R _m 「 Vr <u>図1 フ</u>	ジタモデ.	<b>V</b> 一 で 面 ルの風速場
					60 50 [ <b>Ⅲ</b> 水單の公袋子 報 10			
						0 20 竜着 ジタモデルの	40 の <b>最大水</b> 風速場に:	60 <b>、平風速[m/</b> おける最大 <del>/</del>
					<ol> <li>(2)地面弦</li> <li>地表面作</li> <li>効果)を力</li> <li>物体高さ0</li> <li>(別添 2-</li> </ol>	<u>)果の影響</u> †近の物体に コえている。 2 3 倍までの 2 5. 参照)	<u>高さの関</u> <u>ついては,</u> <u>揚力は空</u> ; <u>範囲で連</u>	係 <u>(r=1)</u> 物体の形: カパラメー 続的に減衰



柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			3. フジタモデルによる飛散解析の特徴について	
			フジタモデルによる飛散解析の特徴的な傾向として、地上から	
			の初期高さが増加するに従い,約 10m までは飛来物の水平速度が	
			大きく増加し、その後の変化は緩やかとなる。(図3参照)	
			①地上からの初期高さが増加するに従い(約 10m までの範囲(図	
			<u>中の①))</u> ,風速場に滞空する時間が長くなり,飛来物の水平	
			速度は増加する傾向となる。	
			②地上からの初期高さが高い場合(約 10m 以上の範囲(図3中の	
			②))は、図2に示す通り、地上からの初期高さが高くなるに	
			つれて竜巻の水平風速は緩やかに減少していくモデルとなって	
			いることから、飛来物の水平速度も同様に低下していく。	
			0 10 20 30 40 50 60	
			地上からの初期局さ [m]	
			   図3 フジタモデルを用いた飛散解析における地上からの初期高	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	別紙 9-4	別紙-7	
	車両の飛散範囲について	<u>飛来物発生防止対策エリアの設定について</u>	・対象車両の相違
			【東海第二】
	車向管理エリアの設定に必要な離隔距離等を考慮するための車	飛来物発生防止対策エリアは、ウォークタウン等で確認された	島根2号炉は、資機
	<u>  両の飛散範囲(飛散距離及び浮上高さ)については、以下の方針</u>	一般散した場合の影響が設計飛米物を超える「貸機材・車両」及び 「お見し刑機性は、の恋性知じは思しい可定していた。恋性知じい。	材・車両の飛来物発生
	に基づさノンタモアルを用いて昇出した。	<u>「軽重大型機材」の飛散解析結果より設定しており、飛散解析は</u>	防止対策エリアを資
		以下の方針に基づさノンタモナルを用いて美施した。	機材・車両のうち最も
		<u>なわ、「軽単人空機材」は、ノレハノ小座、コンノノホックス</u> 笠の恐動しめすい傾向になる軽量で大刑の物里とし 「姿渉せ・	************************************
		→の派散してりく、傾向にめる軽重で入空の初面とし、「貞機材・ 車両」は 「軽畳+刑機材」以外の物品とする	用車の飛散距離から
		<u>半岡」は、「柱里八王協的」以下の初回とする。</u>	設定している(別添
	<ul><li>(1) 車両の飛散解析条件</li></ul>	(1) 飛散解析冬件	2-1 你们資科 3.2
	a. 飛散し易い形状を考慮し、代表的な寸法及び重量 [※] を選定		の和=2)
	する。		【柏崎 6/7】
			島根2号炉は飛来物
	し易いことから、以下の車種を代表として選定した。		発生防止対策エリア
	・トラック(大型~小型のバン及び平型)		の設定過程について
	・バス (大型~マイクロバス)		記載している
	<ul> <li>・軽自動車(最大高(面積大),最軽量)</li> </ul>		
	<u>・軽トラック</u>		
	<ul> <li>・SUV (パトロール車想定)</li> </ul>		
	b. 車両は地表面に位置する(地面からの初期高さ0)と見	<u>a.</u> 物品は地表面(地上からの初期高さ0m)に配置されてい	
	tentrom.	<u>ることとする。</u>	
		なお、フジタモデルの地表面付近の風速場の不確定性を	・解析条件の相違
		考慮し、地表面に設置された物品の飛散解析の妥当性を	【東海第二】
		確認するために、フジタモデルの風速場で約90m/sの風速	島根 2 号炉はフジタ
		となる局さである地上からの初期局さを5mとした場合の	モデルの地表面付近
		<u>飛散解析も実施する。(ソンタモナルの地表面付近の風</u> ま想の天地空地に低く天下の東空却生体については、叫	の風速場の不確定性
		<u>速場の不確定性に係る主近の研究報告等については、別</u> 新2 2 2 2 2 2	を考慮し、地上からの
	。	<u> 術江-2 学用。)</u> ト 音巻の基大国連は 設計音巻の基大国連02m/aを設学せて	初期高さを5mとした
		<ol> <li>         ・电台の取入風座は,成目电台の取入風座92回/Sで設定9つ。          ・ 一番散解析において考慮する動地の宣任主は一切りた設置         ・     </li> </ol>	場合の飛散解析を実
	全裕をもって設定した		他している
		(EL8.5,15m)を考慮し、表1のとおり余裕をもって設定	
			<u> </u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20	)版)	東海第二発電所(2018.	9.18版)	島根原	原子力発電所 2号烷	Ē	備考
		別表4-1 出発点と到達	点の高低差	表1 飛散解析	において考慮する敷	:地の高低差	
	対象施設	原子炉建屋,タービン建屋, 排気筒,海水ポンプ室内設備 [※] ,	緊急時対策所建屋	物品を設置する敷地高さ (発電所の敷地高さ)	EL8. 5~15m	EL45~50m	
	高低差	20m	Om	(EL8.5, 15m) との高低差	Om	41.5m	
	根拠	対象施設の配置高さ(3m盤, 8m 盤)と敷地内の車両通行箇所の高 低差に余裕を見た値	緊急時対策所建屋と周辺の車 両通行箇所の高低差に余裕を 見た値				
	※ 以	下の評価対象施設を示す	0				
		留熱除去系海水系ポンプ					
	非	常用ディーゼル発電機(	- 高圧炉心スプレイ系ディー				
	ゼ	ル発電機を含む。)用海	水ポンプ				
	残	留熱除去系海水系ストレ	ーナ				
	非	常用ディーゼル発電機(	高圧炉心スプレイ系ディー				
	<u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	ル発電機を含む。)用海	水ストレーナ				
				(2) 飛散解析結果及び飛	来物発生防止対策工	リアの設定	
	別表4	-2に, 車両の寸法, 重量	<u> </u>	<u>表2に、ウォークダ</u>	ウン等で確認された	<u>飛来物となり得る物</u>	
	浮上高。	さ及び上記の2種類の高低	差に対する最大飛散距離	品の形状(棒状、板状	,塊状),寸法,質	量、空力パラメータ	
	を示す。	-		<u> 及び表1に記載してい</u>	る2種類の飛散解析	において考慮する敷	
				地の高低差に対する地	<u>上からの初期高さを</u>	Omとした場合の飛散	
				<u>解析結果(最大飛散距</u>	<u>離,最大水半速度,</u>	<u>最大飛散局さ等)を</u>	
	<u>この</u> 者	古朱より, 単両の最大浮」 2 1 まここね。また 高低者	と局さはおおむね20m木満				
		こと考えられ、まに尚低差	E20m及い0mの最大飛散距離	<u>衣2の結末より、「</u> 孤立物発生性止対策で	<u> 貫機材・単画」及い</u> リマな 「次地社・	「軽重人空機材」の	
	<u>から, 生</u> ごわ 990	単一百理エリノの設止にF m 100m k した	日いる必要離隔距離をてれ	<u>ポ米物先生的正対東</u> 工 刑機材」のうた恐労死	リノを、「貫機材・ 離が是士しわス「垂		
	<u>~ 10230</u> 孤勤後	<u>m, 190mとした。</u> 変振においてけ上記の宣仰	チギの曲にも視空的な市场	2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10)	離が取入こなる「米」	: <u> </u>	
	しいがたこ	なっており、と記との同時	<u> なたの他にも床り的な収扱</u> 早午性を有したものとたっ	キた 地上からの初	<u>り、因1,202わ</u> 期高さを5mとした場	今の飛散解析結果を	
	ていろ			表3に示す。表2、3	<u> </u>	ジタモデルの地表面	
		-		付近の風速場の不確定	性を考慮しても飛来	物発生防止対策エリ	
				アの設定に影響はない	ことを確認した。		
				<ul> <li>・</li> <li>・</li> <li>飛散した場合の影</li> </ul>	響が設計飛来物を超	える物品は、地上か	
				<u>らの初期高さを5m</u>	とした場合において	も,飛来物発生防止	
				対策エリアの設定	に用いた最大飛散距	離を超えない	
				<ul> <li>・</li> <li>・</li> <li>飛散した場合の影</li> </ul>	響が設計飛来物以下	の物品は、地上から	
				の初期高さを5mと	した場合においても	,設計飛来物の影響	
				以下である			
				・飛散しない物品は	,地上からの初期高	さを5mとした場合に	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		おいても、飛散しない(初期位置から浮上しない)	
		<u>地上からの初期高さを5mとしたことで作用する初期風速が増</u>	
		加し、飛散距離が増加した物品もあるが、飛来物発生防止対策	
		エリアの設定に用いた「乗用車」や「プレハブ小屋」について	
		は、地上からの初期高さを0mとした方が飛散距離が大きくなっ	
		た。これは、「資機材・車両」や「軽量大型機材」に分類され	
		るような表面積及び物品高さが大きい物品は、地面効果による	
		<u> 揚力の影響により高く浮上すること及び地上からの初期高さを</u>	
		Omとした方が地上からの初期高さを5mとした場合より長時間設	
		計竜巻の最大風速程度の強い風を受けたことが要因と考えられ	
		<u>a.</u>	
		「資機材・車両」及び「軽量大型機材」のうち,飛散距離が	
		最大となる「乗用車」及び「プレハブ小屋」の、地上からの初	
		期高さを0m及び5mとした場合における飛跡(飛散距離と飛散高	
		さの関係)を図3~6に示す。「乗用車」及び「プレハブ小屋」	
		共に、地上からの初期高さを0mとした方が地上からの初期高さ	
		を5mとした場合より、初期位置からの飛散高さは高くなってお	
		り,飛散距離が大きくなっている。地上からの初期高さを0mと	
		した場合の最大飛散高さは,「乗用車」は約8m,「プレハブ小	
		屋」は約30mとなっており,地上からの高さ8m以上では,90m/s	
		程度の強い風を受けることになる。	
		以上より、飛来物発生防止対策エリアの設定に対して、地表	
		面付近の風速場の不確定性の影響は小さく,地表面に設置した 	
		物品に対する飛散解析結果を用いることは妥当であると考え	
		<u>る。</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
	別表 4-2 車両の飛散距離 <u>表 2 想定飛来物の飛散解析結果(地上からの初期高さ 0m)(1/7)</u>	
	(河)上市 ふ (四) (四) (四) (四) (四) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
	#(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二)(小二) <td></td>	
	海(振光)(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	
	授力人名 (m²/kg)           CpA/m (m²/kg)           0.0052           0.0057           0.0057           0.0057           0.0057           0.0057           0.0057           0.0057           0.0057           0.0057           0.0057           0.0057           0.0057           0.0057           0.0053           0.0054           0.0054           0.0054           0.0054           0.0054           0.0074           0.0074           0.0041           0.0041           0.0041           0.0041           0.0041           0.0041           0.0041           0.0041           0.0041           0.0041           0.0041           0.0041           0.0041           0.0041           0.0041           0.0041           0.0042           0.0041           0.0041           0.0041           0.0041           0.0041           0.0041 <tr< th=""><th></th></tr<>	
	(kg) (kg) (10900 10900 9310 9310 9310 9310 9310 9310 9310 9310 9310 9310 9310 10900 10190 10310 10190 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 10320 1	
	(而) 十法 (三) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
	C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C つ     C の     C の     C の     C の     C の     C の     C の     C の     C の     C の     C の     C の     C	
	中国     中国     市     市     市     市     市     市     市     市     市     市     市     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・	
	本 本 (251) (251) (251)	
	既の 来羅 参約 参数	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
	別表 4-2 車両の飛散距離 表2 想定飛来物の飛散解析結果(地上からの初期高さ 0m)(2/7)	
	現大学上高く (m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m) <td< td=""><td></td></td<>	
	通難(m)           可能(m)           113           113           128           128           128           129           121           128           129           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           122           123           124           125           126           127           128           129           121           130           130           130           130           130           130           130           130           130           130           130           130           130           130           130 <td></td>	
	長大 秋 秋 田          長大 秋 秋 田           前 (170)         170           170         170           170         170           170         170           170         181           170         181           170         181           171         181           181         181           181         181           173         123           173         173           173         173           173         173           173         173           173         173           173         173           173         173           173         173           173         173           173         173           173         173           173         173           173         173           173         173           173         173           173         173           173         173           173         1113           183         1113           194         1113           1114         1114	
	$ \begin{array}{                                    $	
	(kg) C _D A (kg) C _D A 7100 C _D A 7100 C _D A 7100 C _D A 7100 C _D A 8330 4190	
	山(1)       8.9900       8.9900       8.9900       6.995       7.730       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395       3.395	
	その (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III、 (III)) (III、 (III、 (III)) (III、 (III、 (III)) (III、 (III)) (III、 (III)) (III、 (III)) (III、 (III)) (III、 (III)) (III) (III) (III)) (III) (III) (III) (III)) (III) (III) (III) (III) (III)) (III) (III) (III)) (III) (III)) (III) (III)) (III) (III)) (III) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (III)) (I	
	中型バス ③       マイクロバス ③       マイクロバス ③       マイクロバス ③       マイクロバス ③       マイクロバス ③       中型市 (市売売長大レベル)       一一       中間市 (市売売長大レベル)       一一       中間市 (市売売長大レベル)       一一       中間市 (市売売長大レベル)       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       一       日       一       こ       こ       こ       こ       こ       こ       こ       こ       こ       こ       こ       こ       こ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	<: Weithin Light Link Sort メージ>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉 <u>表2 想定飛来物の飛散解析結果(地上からの初期高さ0m)(4/7)</u> $ \frac{1}{1}$ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	備考
		成サッシュ メーシッシュ 東大市 東大市         東大市 東大市         新市         新市         新市         市         1           (4/16)         カト         オ         米市         米市         米市         米市         オ         オ           (4/16)         カト         1         ソ         米         米市         第         第         第         第         第         第         第         第         第         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	
		代表用来物 (快速用来物 (小使用来物)         長さ         備         高六         資量           「小使用来物 (小使用来物         市         「         「         」         」         」           「「一一」         第         「         「         「         」         」         」           「「一」         第         「         「         「         「         」         」         」           「「一」         第         1         「         「         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         」         <	
		<u> </u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		表2 想定飛来物の飛散解析結果(地上からの初期高さ 0m)(5/7)	
		●         ●           ○         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □	
		第 34 1. 5n 大大 大大 マンション 11 10 10 10 10 10 10 10 10 10 10 10 10	
		<ul> <li>・</li> <li>・<td></td></li></ul>	
		● 単本の 単本の 本価で 本価で (1) 1 1 1 1 1 1 1 1 1 1 1 1 1	
		第次前前 前心が通信です。 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		▲ 業務:(元法) キ*(元式) キ(二法) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) (人工) ((人工) () ((人工)) ((人工) () (() () (() () () (() () ()	
		Kernel Apple Ap	
		····································	
		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	
		15 単単 19 目前 10 目前 10 10 1	
		高 (m) (m) (m) (m) (m) (m) (m) (m)	
		<ul> <li>東点</li> <li>上</li> <li>L</li> <li>L</li> <li>L</li> <li>L</li> <li>L</li> <li>State</li> <li>State&lt;</li></ul>	
		形 現 題 種 種 種 種 種 種 極 種 極 種 極 種 極 種 植 植 板 載 號 號 號 離 種 種 種 極 種 極 極 極 極 極 極 寬 寬 寬 號 號 然 状 状 状 状 状 状 状 状 状 状 状 状 状 状 状 状 状	
		(決議業) コンクリートブロック」 コンクリートブロック」 コンクリートブロック」 「「ジーマン」 「ジーンクリート海護 「ジーン」」 「ジーン」」 「ジーン」」 「ジーン」」 「ジーン」」 「「洗」」 「「洗」」 「「洗」」 「「洗」」 「「洗」」」 「「洗」」」 「「洗」」」 「「洗」」」 「「洗」」」 「「洗」」」 「「洗」」」 「「洗」」」 「「洗」」」 「「洗」」」 「「、」」」 「「、」」」 「「、」」」 「「、」」」」 「「、」」」」 「「、」」」」 「「、」」」」 「「、」」」」 「「、」」」」	
		飛 の 飛 の 来 値 数 値 数 値 数 値 数 値 数 値	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
--------------------------------	---------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----
		表2 想定飛来物の飛散解析結果(地上からの初期高さ 0m)(6/7)	
		(本) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
		田 	
		● With Weight Add Add Add Add Add Add Add Add Add Ad	
		※ 第二、第二、第二、第二、第二、第二、第二、第二、第二、第二、第二、第二、第二、第	
		(k)	
		前点 (mm) (mm) (mm) 2090 2100 2100 2100 2100 125 2000 2000 2000 2000 2000 2000 2000 125 200 2000 100 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 20	
		<ul> <li>4個</li> <li>第</li> <li>第</li> <li>第</li> <li>(mm)</li> <li>(1100</li> <li>1226</li> <li>1226</li> <li>1226</li> <li>2800</li> <li>297</li> <li>200</li> <li>2600</li> <li>2600</li> <li>2600</li> <li>1500</li> <li>1500</li> <li>1500</li> <li>1500</li> <li>1500</li> <li>1500</li> <li>2490</li> <li>5380</li> <li>5380</li> <li>5490</li> <li>5500</li> <li>5500<td></td></li></ul>	
		東立 1 1 1 1 1 1 1 1 1 1 1 1 1	
		1000000000000000000000000000000000000	
		(決決未参) (決決未参) (大学 クリフト (3+1) フタークリフト (3+1) フタークリフト (3+1) フタークリント (3) (大学)(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
		RC 来編 参館 レ レ シ シ シ シ か 本 本 有 有 形 形 第 編 編 編 天 第 大 第 十 年 電 描語	

柏崎刈羽原子力発電所 6/7	号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			表2 想定飛来物の飛散解析結果(地上からの初期高さ 0m)(7/7)	
				,

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
				図1 資機材・車両の飛来物発生防止対策エリア	
				図2 軽量大型機材の飛来物発生防止対策エリア	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(1/7)	
		(fum) (mm)) 一 (nm)) 2 2 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		<ul> <li>パネシー 範 (ドギギ))</li> <li>ブ))</li> <li>ブ))</li> <li>4.118</li> <li>4.114</li> <li>4.114</li> <li>4.114</li> <li>4.114</li> <li>4.115</li> <li>4.115</li> <li>4.115</li> <li>4.115</li> <li>4.115</li> <li>4.115</li> <li>4.115</li> <li>4.115</li> <li>4.115</li> <li>5.59</li> <li>904</li> <li>5.59</li> <li>904</li> <li>5.59</li> <li>1.156</li> <li>904</li> <li>5.59</li> <li>1.156</li> <li>904</li> <li>5.59</li> <li>904</li> <li>5.59</li> <li>904</li> <li>5.59</li> <li>904</li> <li>5.59</li> <li>5.59</li> <li>904</li> <li>5.59</li> <li>904</li> <li>5.59</li> <li>904</li> <li>5.59</li> <li>5</li></ul>	
		橋 	
		<ul> <li>海大潟県</li> <li>海大潟県</li> <li>1</li> <li>560</li> <li>2554</li> <li>2554</li> <li>2554</li> <li>2554</li> <li>2554</li> <li>2554</li> <li>2545</li> <li>2546</li> <li>2546</li> <li>2547</li> <li>2547</li> <li>2546</li> <li>2547</li> <li>2</li></ul>	
		● 単本 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		4年 (11) 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115	
		(1)         (人)           (人)         (L)           (L)         (L)           (L)	
		<ul> <li>大波特</li> <li>市</li> <li>市</li> <li>1</li> <li>(m)</li> <li>(m)</li> <li>(m)</li> <li>205</li>     &lt;</ul>	
		火焼市市(1) (1) (1) (1) (1) (1) (1) (1)	
		<ul> <li>ペック</li> <li>(**)</li> <l< th=""><th></th></l<></ul>	
		1000000000000000000000000000000000000	
		<ul> <li>演員</li> <li>(kg)</li> <li>(kg)</li> <li>(kg)</li> <li>(kg)</li> <li>(kg)</li> <li>(kg)</li> <li>(kg)</li> <li>(1000</li> <li>(1000<td></td></li></ul>	
		<ul> <li>第点</li> <li>1</li> <li>(mu)</li> <li>(mu)</li> <li>(mu)</li> <li>(mu)</li> <li>2400</li> <li>2400</li> <li>2500</li> <li>25</li></ul>	
		<ul> <li>●</li> <li>●<td></td></li></ul>	
		<ul> <li>東売</li> <li>上</li> <li>L</li> <li>(mm)</li> <li>7200</li> <li>7200</li> <li>800</li> <li>800</li> <li>800</li> <li>800</li> <li>900</li> <li>900</li></ul>	
		※ 総理 2015年1月11日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日	
		* * * * * * * * * * * * * *	
		大 大 大 光 オ 人 大 六 大 大 光 オ 人 大 大 水 オ 人 イ 大 子 オ ノ イ イ ナ オ ト 子 オ ト ト 田 四 昭 昭 昭 昭 昭 四 1 1 1 1 1 1 1 1 1 1 1 1 1	
		学校の11 11 11 11 11 11 11 11 11 11 11 11 11	
		我の 来植 軽貴大型貨物材 生き 物類	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(2/7)	
		法         通貨店           11)         通貨店           11)         1           11         1           12         232           235         (mm)           2365         7           2361         7           2362         7           2361         7           2361         7           2361         7           3610         5           3611         7           3621         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7           3631         7	
		規模 構成 (加) (加) (加) (加) (加) (加) (加) (加)	
		第一条 未満 市 市 (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	
		(1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)     (1)	
		未売         金売港           市         1           (m)         106           1         105           1         10           1         72           1         72           1         72           1         72           1         72           1         72           1         72           1         72           1         72           1         72           1         72           1         72           1         73           1         73           1         73           1         749           1         749           1         749           1         749           1         749           1         749           1         749           1         749           1         749           1         749           1         749           1         749           1         740           1         740           1         740	
		Radiustriculuity         Radiustriculuity           A, A, A, A, A, A, A, A,	
		<ul> <li>第合</li> <li>第合</li> <li>第合</li> <li>第合</li> <li>1</li> <li>1</li></ul>	
		東点         備           L         第           (mm)         (mm)           (mm)	
		代表現来的 該美述、ブレビット転 自参展売後(小) たリック(41)1 テレック(41)2 にレック(41)2 高振天 テレック(41)2 高振天 を用用り 一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、	
		株の 水衡 参照 2011 2011 2011 2011 2011 2011 2011 201	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(3/7)	
		海 廠 指	
		確     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]     [1]	
		R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R	
		(mu) (mu) (mu) (mu)	
		繊維 (水子) (k1) (k1)	
		海大海 大瀬 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		***         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·	
		2014年1月11日1日11日11日11日11日11日11日11日11日11日11日11日	
		離離 市 1975 5010 5010 5010 50145 5045 5045 5045 50	
		助 示 1 1 1 1 1 1 1 1 1 1 1 1 1	
		(minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (minu) (min	
		<ul> <li>売点</li> <li>上</li> <li>上</li> <li>1430</li> <li>1430</li> <li>5500</li> <li>5500</li></ul>	
		彩 电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电电	
		(1380秒) (1380秒) (1380秒) (1380秒) (1380秒) (1380秒) (1380秒)	
		<ul> <li>(35.0%)</li> <li>(25.0%)</li> <li>(25.0%)</li> <li>(25.0%)</li> <li>(25.0%)</li> <li>(11.5%)</li> <li>(11.5%)</li></ul>	
		型(1)中米)統中圧イ水ン統シマド居実量搬運用1)分量器、学業、1)計量本がポールで水ン統シード度実量搬運用1(分量器)等業、1)計量化 「一、電ン電力」を開きた電気(装飾車(1)・1)、電ン電力、電力 電力 電子 一本に用き調 本宅用き 第、2)・1	
		※強 物理 たのか、 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
		₩ Ĉ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(4/7)	
		田田市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	
		R 一 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
		第24 年 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1	
		単数 米値 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二	
		職 初 加 加 加 1 1 1 1 1 1 1	
		Abn         Abn           第一次         第一次           第一次         第一次           第一次         1170           1170         1147           1170         1163           1170         1163           1170         1163           1170         1163           1170         1163           1170         1103           1170         1103           110         1           11         1           11         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1	
		<ul> <li>         ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ul>	
		火焼(山)(1) 焼小川(1) 焼小川(1) (1) (1) (1) (1) (1) (1)	
		R. ビン・ペッシュ (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
		離離 a a (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg)	
		南点 1 (mu) (mu) (mu) 3035 3035 3030 11100 11100 11100 500 500 500 5	
		<ul> <li>「「」</li> <li>「「」</li> <li>「「」</li> <li>「」</li> <li>「」</li></ul>	
		<ul> <li>東点</li> <li>上</li> <li>L</li> <li>(mm)</li> <li>2250</li> <li>(mm)</li> <li>2250</li> <li>12000</li> <li>12000</li></ul>	
		彩         現現地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地	
		(*決税法の ホイーンローダー1 オイーンローダー1 大型法米:ソノ4単 ドッシム市 一次の一方 小型目動11重度 小型に動量11重度 小型にの「一般 の面」 (2011年11 (2011年11 (2011年11 (2011年11 (2011年11 (2011年11 (2011年11 (2011年11 (2011年11 (2011年11 (2011年11 (2011年11 (2011年11) (2011年11 (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11) (2011年11)	
		飛の ・車両 設計飛来物の影響を超えない物品 「 * *類 管機 整体が 「 *	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(5/7)	
		新規模型   新規模型   第   第   第   第   第   第   第   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 </td <td></td>	
		田田 10 - 10 - 10 - 10 - 10 - 10 - 10	
		Ku (a)     Ku	
		第 (mage and find a	
		第二     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0<	
		<ul> <li>ハ・・ション・ション・ション・ション・ション・ション・ション・ション・ション・ショ</li></ul>	
		<ul> <li>第点</li> <li>1)</li> <li>(mn)</li> <li></li></ul>	
		長さ         福           L         第           L         第           (mm)         (mm)           200         197           390         197           380         2100           380         2100           500         4200           500         4200           500         4200           500         2200           500         100           550         100           550         100           550         100           550         100           550         100           550         100           550         100           550         100           550         100           550         100           550         100           550         100           550         2300           550         2300           550         100           550         2300           550         2500           550         2500           550         2500           550         2500           550<	
		形         風 勘 審 審 審 審 審 常 所 離 招 照 照 图 點 書 書 書 書 書 整 整 服 服 服 服 配 點 點 點 於 於 於 於 於 於 於 於 於 於 於 於 於 於 於 於	
		(小県県米参 コンクリートブロック1 コンクリートブロック2 田ンクリートブロック2 市ンシリートブロック2 海環地にイブ1 コンクリート通識 海環バイブ1 ビンゴン「ビント通識(人) マンボンベ マンボンベ マンボンベ マンボンベ マンボンベ マンボンベ 「ビンジ」」2000クレート 1300クレートが (人) 1300クレートが (人) 1300クレートが (人) 1300クレートが (人) 1300クレートが (人) 1300クレートが (人) 1300クレートが 1300クレートが (人) 1300クレートが 1300クレートが (人) 1300クレートが 1300クレートが 1300クレートが 1300クレートが 1300クレートが 1300クレートが 1300クレート 1300クレートが 1300クレート 1300クレートが 1300クレート 1300クレート 1300クレート 1100クロート 11000 1100 1100 1100 1100 1100 1100 1	
		飛 の 来獲 設計売末物の影響を超えない物品   * 物類	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(6/7)	
		第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	
		■ ■ ■ (1) (1) ■ (1) (1) (1) (1) (1) (1) (1) (1)	
		街 中 	
		低端に「□□」	
		K端 ジ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		(max) (max) (max) (max)	
		展開にネル (水平)) (水平)) (よ」)	
		K (2)     K (2)     K (2)     K (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)	
		<ul> <li>●</li> <li>●<td></td></li></ul>	
		● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
		$\begin{array}{c} \frac{\partial p}{\partial x} J r \wedge \delta \rightarrow \\ \not \times - \beta \rightarrow \\ (m2/kk) \\ (m2/kk) \\ 0.0023 \\ 0.0017 \\ 0.0017 \\ 0.0017 \\ 0.0017 \\ 0.0017 \\ 0.0018 \\ 0.0024 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0023 \\ 0.0$	
		市 市 市 市 市 市 1 1 1 1 1 1 1 1 1 1 1 1 2 6 6 7 1 1 2 8 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 1 4 1 4 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
		南 点 市 点 1 D 1 D 1 D 2090 2000 2100 2300 2300 2000 1125 200 2000 1000 1150 200 200 200 200 200 200 200 2	
		<ul> <li>第</li> <li>第</li> <li>第</li> <li>第</li> <li>第</li> <li>11255</li> <li>11256</li> <li>122800</li> <li>2820</li> <li>2820</li> <li>5500</li> <li>5500<td></td></li></ul>	
		<ul> <li>東点</li> <li>上</li> <li>L</li> <li>L</li> <li>L</li> <li>S175</li> <li>S175</li> <li>S175</li> <li>S175</li> <li>S175</li> <li>S1760</li> <li>S18000</li> <li>E1800</li> <li>E180</li> <li>E100</li> <li>E100</li> <li>E100</li> <li>S2000</li> <li>S2000</li> <li>S2000</li> <li>S2000</li> <li>S2000</li> <li>E100</li> <li>S2000</li> <li>E100</li> <li>S2000</li> <li>E100</li> <li>S2000</li> <li>S2000</li> <li>Liby強くが楽づく</li> </ul>	
		彩 寬寬寬寬寬寬寬續續續續續續續續續續續續續接接接接接接接接接接接接接接到總國寬寬。(2	
		1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		インシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシ	
		来雑 設計飛来物の影響を超えない物品 ー *	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		表3 想定飛来物の飛散解析結果(地上からの初期高さ5m)(7/7)	
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所 (2018.9.18版)	<section-header></section-header>	備考

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
				9       8       7         7       6       5         8       7       6         9       8       7         6       5       7         6       5       7         6       5       7         1       0       20       40       60       80       100         2       1       0       20       40       60       80       100         2       1       0       20       40       60       80       100         2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td
				(東用車の諸元:長さ1,900mm 幅 5,200 <u>質量1,890kg</u> 最大風速:92m/s,地上からの初期             35 <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>7             <u>6</u> <u>7             <u>6</u> <u>7             <u>7           <td< u=""></td<></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>
				図4 プレハブ小屋(軽量大型機 (プレハブ小屋の諸元:長さ7,200mm 幅27 <u>質量7,500kg</u> <u>最大風速:92m/s</u> ,地上からの初其



柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
				9       8         7       1         1       1         0       20       40       60       80       100         20       40       60       80       100         1       1       1       1       1         0       20       40       60       80       100         1       1       1       1       1       1         0       20       40       60       80       100         10       10       10       100       100       100         1       1       1       1       1       1         1       1       1       1       1       1         1       1       1       1       1       1         1       1       1       1       1       1         1       1       1       1       1       1       1         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1



柏崎刈羽原子力発電所 6 / 7 号炉 (2017.1	2.20版) 東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		飛散距離に対する地上からの初期高さの感度解析について	・資料構成の相違
			【柏崎 6/7,東海第二】
		添付資料3.3 別紙−7 表2, 3では, 地上からの初期高さを0m及	島根2号炉は,地上か
		び5mとした場合の飛散距離を示したが,ここでは,地上からの	らの初期高さが飛散
		初期高さが飛散距離に及ぼす影響を確認するために、地上から	距離に及ぼす影響を
		の初期高さ(0~5m)の感度解析を実施する。	確認するために,地上
		(1) 感度解析範囲	からの初期高さの感
		解析範囲は、フジタモデルの風速場で約90m/sの風速となる高	度解析を実施してい
		さである地上からの初期高さ5mまでの範囲とする。	る
		<ul><li>(2)対象物品について</li></ul>	
		感度解析を実施する対象物品については,3種類の物品形状	
		(板状,棒状,塊状)のうち,それぞれ地上からの初期高さを	
		0mとした場合の飛散距離が最大となるプレハブ小屋(塊状),	
		仮設足場(板状),鋼製材(棒状)を選定する。	
		(3) 感度解析結果	
		感度解析結果を図1に示す。	
		プレハブ小屋(塊状)については、地上からの初期高さが増	
		加するに従い,飛散距離が減少している。	
		地上からの初期高さが増加するに従い物品に作用する初期風	
		速も増加するが、地面効果による揚力の減少の影響のほうが大	
		きいため飛散距離が減少したと考えられる。地上からの初期高	
		さ 0m で飛散距離が最大となったのは,地面効果による揚力の影	
		響により、物品が高く浮上し、長時間設計竜巻の最大風速程度	
		の強い風を受けたためと考えられる。	
		仮設足場(板状)については,地上からの初期高さ約0.1mま	
		では、地上からの初期高さの増加に伴い飛散距離が減少し、地	
		上からの初期高さ約 0.1m 以上では,地上からの初期高さの増加	
		に伴い飛散距離は増加している。	
		地上からの初期高さ約0.1mまでで地上からの初期高さの増加	
		に伴い飛散距離が減少したのは、プレハブ小屋(塊状)と同様	
		に、物品の地上からの初期高さの増加に伴い地面効果による揚	
		力が減少したためと考えられる。	
		一方で,地上からの初期高さ約0.1m以上で地上からの初期高	
		さの増加に伴い飛散距離が増加したのは、地上からの初期高さ	I

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		0.12m以上で地面効果による揚力は消滅するため,物品の地上か	
		らの初期高さの増加に伴い物品に作用する初期風速が増加する	
		ためと考えられる。	
		鋼製材(棒状)については、地上からの初期高さの増加に伴	
		い,飛散距離が徐々に増加している。	
		これは、鋼製材(棒状)は物品高さが低く地面効果による揚	
		力の影響を受けにくいこと, 空力パラメータがプレハブ小屋 (塊	
		状)や仮設足場(板状)に比べて小さく竜巻風速により加速さ	
		れにくいことが理由と考えられる。	
		なお、仮設足場(板状)及び鋼製材(棒状)は地上からの初	
		期高さの増加に伴い飛散距離も大きくなる傾向が確認された	
		が、これらを含め構内の現地調査等で確認された板状、棒状の	
		物品は、飛散した場合の影響(運動エネルギ、貫通力)が設計	
		飛来物以下であることを確認しており、飛来物発生防止対策エ	
		リアの設定に影響しない。	
		250       (ワレハブ小配)         200       (ロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロ	
		図1 プレハブ小屋(塊状),仮設足場(板状),鋼製材(棒状)	
		の地上からの初期高さと飛散距離の関係	
		(プレハブ小屋の諸元:長さ7,200mm 幅27,000mm 高さ3,400mm,	
		質量 7,500kg, 空力パラメータ 0.0277m²/kg,	
		仮設足場の諸元:長さ250mm 幅4,000mm 高さ40mm, 質量14kg,	
		空力パラメータ 0.0557 m²/kg,	
		鋼製材の諸元:長さ300mm 幅4,200mm 高さ200mm, 質量135kg,	
		空力パラメータ 0.0066 m ² /kg, 最大風速:92m/s)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	別紙 9-5	別紙-8	
	東海発電所	<u> </u>	・資料構成の相違
	廃止措直作業の概要及び解体・撤去物品の管理について	廃止措置における解体撤去作業の概要及び解体・撤去物品の管理	【柏崎 6/7】
		について	島根2号炉は島根1
	■ 東海発電所の廃止措置工事の概要は、以下に示す3つに区分す		号炉の廃止措置時の
	ることができ、それぞれの段階での解体撤去作業の内容を示す。	<u> 島根県十刀発電所1号炉の廃止指直は、4つに区分すること</u>	物品の官埋力法を記
	別図 5-1 図には、各段階での東海発電所の状態とその作業概要を	かでき、以下にてれてれの反陷での解体撤去作業の内容を示す。	- 単人
	·····································		
	(1) 原子炉領域以外の解体撤去 【屋内作業】	(1) 解体工事準備期間【屋外・屋内作業】	
	原子炉領域の解体撤去にて発生する解体撤去物の搬出ルー	供用を終了した設備のうち,管理区域外の設備の解体撤去を	
	ト確保, 放射性廃棄物保管エリア確保等のため, 原子炉領域	<u>行う。</u>	
	以外の設備を解体撤去。		
	(2) 原子炉領域解体撤去 【屋内作業】	(2) 原子炉本体周辺設備等解体撤去期間【屋外・屋内作業】	
	原子炉領域は放射能を減衰させるため、安全貯蔵状態とし、	供用を終了した設備のうち,管理区域内にある放射性物質に	
	放射能を減衰させた後、原子炉領域の解体撤去。	より汚染された設備(原子炉本体除く)等の解体撤去を行う。	
	(3) 建国等解係撤去 【国外作業のり】	(3) 原子炉本体等解体撤去期間 【屋外・屋内作業】	
	原士が現場の時体脈去後、台建全寺は15条を除去し官理区 城を解除して解体樹土	放射能レベルの比較的高い原子炉本体等の解体撤去を行う。	
	AN CHERTON CHERTING A.	(4) 建物等解体撤去期間【屋外・屋内作業】	
		供用を終了する放射性廃棄物の廃棄施設、換気設備、その他	
		一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	
		また 久晩��での良相百乙力発電症1 号にの世能しるの佐業	
	また,別図 5-1 において,東海発電所の廃止措置の上記の各段階	また,	
	での解体、撤去作業の各段階での物品の管理方法を示す。	の物品の管理方法を図1に示す。	
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	備考
		○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
添付資料3.4	添付資料 11		
3.4 竜巻随伴事象の抽出について	竜巻随伴事象の抽出について 1. 概要		(島根2号炉は「別添 2-1 3.5. 竜巻随伴事 象に対する評価」で記
過去の竜巻被害を参考に竜巻の随伴事象を検討し、柏崎刈羽原	過去の竜巻被害事例及び発電所の施設の配置から想定される竜		載)
子力発電所のプラント配置から考慮する必要がある事象として、	巻の随伴事象を検討し、発電所において考慮する必要がある事象		
火災、溢水及び外部電源喪失事象を抽出した。	として、火災、溢水及び外部電源喪失を抽出した。		
(1)過去の竜巻被害について、1990年以降の主な竜巻による被害概要を調査した文献から検討を行った。竜巻の被害の状況写真から日本国内での竜巻被害では、風圧力及び飛来物の衝突により発生している建築物、電柱、電線等の損傷がみられ、竜巻の随伴事象としては、電柱や電線の損傷による停電事象が発生している。(図3.4.1,3.4.2)	<ul> <li>2. 過去の竜巻被害について</li> <li>1990年以降の主な竜巻による被害概要を調査した文献から検討を行った。第 2-1表に、1990年以降に日本で発生した最大級の竜巻であるF 3 クラスの竜巻を示す。</li> <li>第 2-1表 1990年以降のF 3 クラス竜巻</li> <li>1900年10月7日北海道佐呂間町 F 3 0 31 7 7</li> <li>1999年10月1日 子葉出度版市 F 3 1 37 76 158</li> <li>1990年12月11日 子葉出度版市 F 3 1 77 82 161</li> <li>1990年12月11日 子葉出度版市 F 3 1 77 82 161</li> <li>1990年12月11日 子葉出度版市 F 3 1 77 82 161</li> <li>1900年12月11日 子葉出度版市 F 3 1 77 82 161</li> </ul>		

$(2 \oplus 0 \cdot b \oplus b)$	
全壊した家屋飛来物により被害を受けた住宅等	
$ \left  \begin{array}{c} \hline \\ \hline $	
$ \begin{bmatrix} \widehat{a}_{k,0} & \widehat{a}_{k,0} \\ \widehat{a}_{k,0} \end{bmatrix} $ $ \begin{bmatrix} \widehat{a}_{k,0} & \widehat{a}_{k,0} \\ \widehat{a}_{k,0} \end{bmatrix} $ $ \begin{bmatrix} \widehat{a}_{k,0} & \widehat{a}_{k,0} \end{bmatrix} $	
御壊した道路標識支柱       道路側へ倒壊した電柱	
第 2-2 図 2006 年 11 月 7 日北海道にて発生したF3 竜巻 による被害 ⁽²⁾⁽³⁾	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
<image/> <image/> <image/> <image/> <image/>	<image/> <image/> <image/> <image/> <image/> <image/>		
	横転したバス 曲がった鉄筋(工事現場)		
<text><image/><image/><image/></text>	第 2-3 図 1990 年 12 月 11 日千葉県にて発生したF3 竜巻 による被害 ⁽⁴⁾		
図 3. 4. 2 2006 年に北海道佐呂間町にて発生した F3 竜巻による被 害状況 ⁽²⁾⁽³⁾			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(2)柏崎刈羽原子力発電所のプラント配置を参考にした竜巻随伴	3. 発電所にて考慮すべき竜巻随伴事象		
事象について			
(1)の過去の竜巻による被害状況から, 柏崎刈羽原子力発電所に	上述の過去の竜巻による被害事例及び第 3-1 図に示す発電		
おいては送電線等が竜巻	所の施設の配置から判断すると、発電所においては送電線等が竜		
による被害を受けることにより、外部電源喪失事象の発生が考え	巻による被害を受けることにより、外部電源喪失の発生が考えら		
られる。	れる。さらに、屋外に油タンク及び水タンクが配備されているこ		
さらに,柏崎刈羽原子力発電所のプラント配置から,屋外に軽	とから、飛来物の衝突により火災及び溢水が発生する可能性があ		
油タンク、水タンクが配	る。		
備されていることから、飛来物の衝突により火災事象及び溢水事			
象が発生する可能性があ			
る。 (図3.4.3)			
以上から、竜巻随伴事象として火災、溢水、外部電源喪失事象	以上のことから,発電所における竜巻随伴事象として,火災,		
を抽出する。	溢水及び外部電源喪失を抽出する。		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
<form></form>	第 3-1 図 発電所の評価対象施設のうち屋外施設及び竜参随件事象の検討対象施設の配置		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
参考文献	<参考文献>		
(1)「平成24 年(2012 年)5 月6 日に茨城県つくば市で発生した建	(1) (財)消防科学総合センター,平成24年(2012年)5月6日		
築物等の竜巻被害状況調査報告」(ISSN1346-7328 国総研資料 第	茨城県つくば市竜巻災害写真報告,2012		
703 号 ISSN 0286-4630 建築研究資料 第141 号 平成25 年1 月)	(2) (財)消防科学総合センター,平成18年11月7日北海道		
(2)2006 年佐呂間町竜巻被害調査報告(2006 年11 月21 日)	佐呂間町竜巻災害写真報告, 2006		
(3) 佐呂間竜巻災害の記録―若佐地区―	(3) (社) 土木学会 北海道佐呂間町竜巻緊急災害調査団, 平成		
	18年11月北海道佐呂間町竜巻緊急災害調査,2007年4月		
	(4) 千葉県総務部消防地震防災課,防災誌「風水害との闘い」		
	第3章 90m 超えの突風に街が飛ばされた! - 茂原で最大スケール		
	の竜巻が発生-,平成22年3月		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
別 添 2-2	別添資料2	
<u> 柏崎刈羽原子力発電所6号及び7</u> <u> </u>	東海第二発電所	島根原子力発電所
<u> 竜巻影響評価における</u> フジタモデルの適用について	<u> 竜巻影響評価における</u> フジタモデルの適用について	竜巻影響評価にま フジタモデルの適用

と行	備老
///	・木次約はつジタエデル
	の東京社の訪明次判
	の女ヨ性の読明真科
则 沃 2-2	このり、相呵 0/1、果
	御弟」と説明内谷に
	相遅はないことから、
	以下の波線は省略
2	
おける	
について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
目次	目 次	目次	
2. 各風速場モデルの概要	2 各風速場モデルの概要 4	2. 各風速場モデルの概要	
2.1.フジタモデル	2.1 フジタモデル 4	2.1.フジタモデル	
2.2. ランキン渦モデル	2.2 ランキン渦モデル 7	2.2. ランキン渦モデル	
2.3. 非定常乱流渦モデル (LES による数値解析)	2.3 非定常乱流渦モデル(LESによる数値解析) 8	2.3. 非定常乱流渦モデル(LES による数値解析)	
3. 各風速場モデルの比較	3. 各風速場モデルの比較 10	3. 各風速場モデルの比較	
4. 米国におけるフジタモデルの取扱い	4. 米国におけるフジタモデルの取扱い 12	4. 米国におけるフジタモデルの取扱い	
4.1.フジタモデルの利用実績	4.1 フジタモデルの利用実績 12	4.1.フジタモデルの利用実績	
4.2. NRC ガイドでの取扱い	4.2 NRCガイドでの取扱い 14	4.2. NRC ガイドでの取扱い	
5. 飛来物評価における不確定性の考慮	5. 飛散解析における保守性の考慮 15	5. 飛来物評価	
5.1. 物体の浮上・飛来モデルにおける不確定性の考慮	5.1 物体の浮上,飛散モデルにおける保守性の考慮 15	5.1. 物体の浮上・飛来モデルにおける不確定性の考慮	
5.2. 竜巻が物体に与える速度に関する不確定性の考慮	5.2 物体が受ける風速における保守性の考慮 31	5.2. 竜巻が物体に与える速度に関する不確定性の考慮	
		5.3.フジタモデルの地表面付近の風速場に関する不確定性の考慮	・記載方針の相違
5.3. 飛来物評価法のまとめ	5.3 飛散解析手法まとめ 35	5.4. 飛来物評価法のまとめ	【柏崎 6/7, 東海第二】
6. 実際の飛散状況に対する検証	<ol> <li>実際の飛散状況に対する検証 37</li> </ol>	6. 実際の飛散状況に対する検証	島根 2 号炉はフジタモ
6.1. フジタスケールとの比較	6.1 フジタスケールとの比較 37	6.1.フジタスケールとの比較	デルの地表面付近の風
6.2.米国 Grand Gulf 原子力発電所への竜巻来襲事例	6.2 米国 Grand Gulf 原子力発電所への竜巻来襲事例との比較 38	6.2.米国 Grand Gulf 原子力発電所への竜巻来襲事例	速場に関する不確定性
6.3. 佐呂間竜巻での車両飛散事例	6.3 佐呂間竜巻での車両飛散事例との比較 40	6.3. 佐呂間竜巻での車両飛散事例	について記載している
7. 飛散以外の挙動に対する考慮	7. 飛散以外の挙動に対する考慮 48	7. 飛散以外の挙動に対する考慮	
8. まとめ	8. まとめ 50	8. まとめ	
9. 参考文献	<参考文献> 52	9. 参考文献	
   別紙1 「フジタモデル」及び「ランキン渦モデル」並びに「それ	   別紙1「フジタモデル」及び「ランキン渦モデル」並びに「それぞ	   別紙1 「フジタモデル」及び「ランキン渦モデル」並びに「それ	
ぞれの風速場モデルを用いた際の飛来物評価手法」の比	   れの風速場モデルを用いた際の飛散解析手法」の比較	ぞれの風速場モデルを用いた際の飛来物評価手法」の比	
較		較	
		別紙2 フジタモデルのパラメータ設定等について	
	  別紙2 発電所における竜巻風速場モデルの適用方針	別紙3 竜巻影響評価と竜巻モデルの関係	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1. はじめに	1. はじめに	1. はじめに	
「原子力発電所の竜巻影響評価ガイド」 ⁽¹⁾ (以下「ガイド」と	「竜巻影響評価ガイド」に従い竜巻影響評価を行う上で,飛来	「原子力発電所の竜巻影響評価ガイド」 ⁽¹⁾ (以下「ガイド」と	
いう。)に従い竜巻影響評価を行う上で、設計飛来物の飛来速度を	物の挙動(飛散速度,飛散距離等)を評価するための竜巻風速場	いう。)に従い竜巻影響評価を行う上で、設計飛来物の飛来速度を	
設定するための風速場モデルを選定する必要がある。これまでの	モデルを選定する必要がある。これまでの竜巻飛来物評価におい	設定するための風速場モデルを選定する必要がある。これまでの	
竜巻飛来物評価において用いられている風速場モデルとして、米	て用いられている風速場モデルとしては、米国NRCの基準類に	竜巻飛来物評価において用いられている風速場モデルとして、米	
国 NRC の基準類に記載されている「ランキン渦モデル ⁽²⁾⁽³⁾ 」,原子	記載されている「ランキン渦モデル ⁽ⁱ⁾⁽ⁱ⁾ 」及び原子力安全基盤機	国 NRC の基準類に記載されている「ランキン渦モデル ⁽²⁾⁽³⁾ 」,原子	
力安全基盤機構の調査研究報告書に記載されている	構の「竜巻による原子力施設への影響に関する調査研究」の報告	力安全基盤機構の調査研究報告書に記載されている	
「LES(Large-eddy simulation)」の数値解析 ⁽⁴⁾ があるが, 当社の	書に記載されている「非定常乱流渦モデル(LES:Large Eddy	「LES(Large-eddy simulation)」の数値解析 ⁽⁴⁾ があるが, 当社の	
竜巻影響評価においては,地面に置かれた物体への影響をよく表	Simulation)」の数値解析 ⁽ⁱⁱⁱ⁾ があるが、今回の評価においては、地	竜巻影響評価においては、地面に置かれた物体への影響をよく表	
現できている風速場モデルにより、評価対象施設の影響評価・防	面に置かれた物体への影響をより良く表現できている風速場モデ	現できている風速場モデルにより、評価対象施設の影響評価・防	
護対策を実施するため、風速場モデルとしてフジタの竜巻工学モ	ルとして、藤田哲也シカゴ大学名誉教授が考案した竜巻工学モデ	護対策を実施するため、風速場モデルとしてフジタの竜巻工学モ	
デルDBT-77(DBT: Design Basis Tornado) ⁽⁵⁾ を選定する。	ルDBT-77 (DBT: Design Basis Tornado) ^(iv) (以下「フジタ	デルDBT-77(DBT: Design Basis Tornado) ⁽⁵⁾ を選定する。	
第1 図に風速場モデルの選定及び飛来物評価方法に関する検討	モデル」という。)を選定した。	図 1 に風速場モデルの選定及び飛来物評価方法に関する検討フ	
フローを示す。また、第2 図に竜巻影響評価フローとフジタモデ	第1-1図に、風速場モデルの選定及び飛散解析手法に関する検	ローを示す。また、図2に竜巻影響評価フローとフジタモデルの	
ルの関連箇所を示す。	討フローを示す。また、第1-2図に、竜巻影響評価の基本フロー	関連箇所を示す。	
次節以降にてフジタモデルの詳細や、フジタモデルを適用した	とフジタモデルを適用する箇所を示す。	次節以降にてフジタモデルの詳細や、フジタモデルを適用した	
理由等を説明する。	次節以降にて、フジタモデルの詳細やフジタモデルを適用した	理由等を説明する。	
<ul> <li>各風速場モデルに関する調査・検討 <ul> <li>各風速場モデルの概要・比較(2, 3.)</li> <li>米国におけるフジタモデルの利用実績を確認(4.)</li> </ul> </li> <li>風速場モデルの選定 <ul> <li>地面に置かれた物体へ影響を与える風速場をよく表現できている <ul> <li>フジタモデルの入力パラメータ(竜巻の移動速度Vr,最大接線風速Vra,最大接線風速半径 Ra)について、適用性を確認の上、適切な値を設定</li> </ul> </li> <li>物体の浮上・飛来モデルに関する検討(5.1) <ul> <li>場力係数の適用性(風の受け方や高度依存性)の確認(3),(4))</li> <li>地面効果による場力を考慮した飛来物の運動方程式(5),(6)</li> </ul> </li> <li>着参が物体に与える速度に関する検討(5.2) <ul> <li>奄巻に対する物体の場所依存性を考慮し、多点数配置された物体の飛来速度の中から、最大となる飛来速度を設定</li> <li>物体を強制的に高速域に配置し、物体が瞬時に最大風速を受けるよう設定</li> </ul> </li> <li>第1区風速場モデルの選定及び飛来物評価方法に関する検討</li> </ul></li></ul>	理由 寺 を 読いり う る 。 <b>A風速場モデルに関する顔を・検討</b> <ul> <li>・米国におけるフジタモデルの利用実績 </li> <li>・米国におけるフジタモデルの利用実績</li> <li>・米国におけるフジタモデルの利用実績</li> <li>・地面に置かれた物体へ影響を与える風速場を良く表現できている   <b>「フジタモデル」を遠定 ハノバラメータの設定</b>   ・地面に置かれた物体へ影響を与える風速場を良く表現できている   <b>「フジタモデル」を遺定 ハクパラメータの改定</b>   ・フジタモデルの入力パラメータ (竜巻の移動速度V, 最大接線風速   <b>火</b>_m, 最大接線風速半径R_m) について、適用性を確認の上適切な値 を設定   <b>約体の浮上, 飛散モデルに関する検討</b>   ・増力係数の適用性(風の受け方や高度依存性)の確認   ・地面効果による揚力を考慮した飛来物の運動方程式   <b>約体が受ける風速に関する検討</b>   ・竜巻内の風速の不均一性を考慮し、物体を多点配置   (物体を強制的に高速域に配置し、物体が最大風速を受けるよう設定)   <b>次の飛散事例に対する検証</b>   ・ブジタモデルを用いた評価が、事例におおむね合致することを確認</li></ul>	<ul> <li>各風速場モデルに関する調査・検討         <ul> <li>各風速場モデルの概要・比較(2, 3.)</li> <li>米国におけるフジタモデルの利用実績を確認(4.)</li> </ul> </li> <li>風速場モデルの覆定         <ul> <li>地面に置かれた物体へ影響を与える風速場をよく表現できている             <li>フジタモデルの入力パラメータ(電巻の移動速度V,最大接線風速Vm。最大接線風速半径 R.) について、適用性を確認の上、適切な値を設定</li> </li></ul> </li> <li>物体の浮上・飛来モデルに関する検討(5.1)         <ul> <li>撮力係数の適用性(風の受け方や高度依存性)の確認((3),(4))</li> <li>地面効果による撮力を考慮した飛来物の運動方程式((5),(6))</li> <li>電巻に対する物体の場所依存性を考慮し、多点数配置された物体の飛来速度の中から、最大となる飛来速度を設定             <ul> <li>物体を強制的に高速域に配置し、物体が瞬時に最大風速を受けるよう設定</li> <li>学校の飛牧事例に対する検証(6.)</li> <li>フジタモデルの風速場を用いた評価が集例におおむね合数することを確認</li> <li>シンステン渦モデルの開価では、過度に保守的な結果となることを確認</li> <li>フンタモデルの開価では、過度に保守的な結果となることを確認</li> <li>図 1 風速場モデルの選定及び飛来物評価方法に関する</li> </ul> </li> </ul></li></ul>	
フロー (括弧内の数字は,本資料の節番号)	<ul> <li>・上記の飛散解析手法を用いた評価が、保守的な結果となることを確認         <ul> <li>(・ランキン渦モデルの評価では、過度に保守的な結果となることを確認)</li> <li>第1−1図 風速場モデルの選定及び飛散解析手法に関する検討フロー</li> </ul> </li> </ul>	検討フロー (括弧内の数字は,本資料の節番号)	



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2. 各風速場モデルの概要	2 各風速場モデルの概要	2. 各風速場モデルの概要	
2.1 フジタモデル	2.1 フジタモデル	2.1 フジタモデル	
フジタモデルは、米国 NRC の実際の竜巻風速場をモデル化した	フジタモデルは、米国NRCの実際の竜巻風速場をモデル化し	フジタモデルは、米国 NRC の実際の竜巻風速場をモデル化した	
いという要望により,藤田博士が1978年に竜巻観測記録をもとに	たいという要望により,藤田名誉教授が1978年に竜巻観測記録を	いという要望により,藤田博士が1978年に竜巻観測記録をもとに	
考案した工学モデルである。モデル作成に当たっては, 1974 年8	基に考案した工学モデルである。モデル作成に当たっては、1974	考案した工学モデルである。モデル作成に当たっては,1974 年8	
月に米国カンザス州 Ash Valley 等で発生した竜巻(第3図)の	年8月に米国カンザス州 Ash Valley 等で発生した竜巻(第2.1-1	月に米国カンザス州 Ash Valley 等で発生した竜巻(図3)の記録	
記録ビデオ画像の写真図化分析を行い、竜巻の地上痕跡調査、被	図)のビデオ画像の写真図化分析を行い、竜巻の地上痕跡調査及	ビデオ画像の写真図化分析を行い、竜巻の地上痕跡調査、被災状	
災状況調査結果と照合することで風速ベクトルを作成し、そのベ	び被災状況調査結果と照合することで風速ベクトルを作成し、そ	況調査結果と照合することで風速ベクトルを作成し、そのベクト	
クトル図をもとに作成した流線モデルから、竜巻風速場を代数式	のベクトル図を基に作成した流線モデルから、竜巻風速場を代数	ル図をもとに作成した流線モデルから、竜巻風速場を代数式で表	
で表現している(第4図)。	式で表現している。(第2.1-2図)	現している (図 4)。	
フジタモデルの特徴は、地表面付近における竜巻中心に向かう	フジタモデルの特徴は、地表面付近における竜巻中心に向かう	フジタモデルの特徴は、地表面付近における竜巻中心に向かう	
強い水平方向流れ、及び外部コアにおける上昇流といった、実際	強い水平方向流れ及び外部コアにおける上昇流といった、実際の	強い水平方向流れ、及び外部コアにおける上昇流といった、実際	
の竜巻風速場を良く表現している点にある。	竜巻風速場を良く表現している点にある。	の竜巻風速場を良く表現している点にある。	
第 3 図 Ash Valley 竜巻 (1974. 8.30) のビデオ画像	第 2. 1-1 図       Ash Valley 竜巻(1974. 8. 30)のビデオ画像	<ul> <li>図 3 Ash Valley 竜巻 (1974.8.30) のビデオ画像</li> </ul>	
	第2.1-2図風速ベクトルの分析図(左)とフジタモデルの流線 (右) ⁽⁴⁾	METRILES <td></td>	
ノンクモノルの風迷場は第3 凶に不 9 よりに干住力回に3 つの 簡は(内部コマーカ部コマー県が短ば)で携止され、内部コマト	ノンクモアルの風速場は、弗 2.1-3 凶に不りよりに干住力回に	ノンクモアルの風速場は図 5-1 に示りよりに干住方向に3 つの 毎歳(内如コマーム如コマー県が焼け)で携点され、内如コマー	
項	3つの項感(内部コノ,外部コノ及の最外領域)で構成され、内部	限戦(内部コノ,外部コノ, 東外領域)で構成され, 内部コノと	
外部コアの接線(周)万回風速 $V_{\theta}$ は半径に比例し、その外側の東	コアと外部コアの接線(周)万回風速 $V_{\theta}$ は丰住に比例し、その外	外部コアの接線(周)万回風速 $V_{\theta}$ は干全に比例し、その外側の東	
ット 唄域 じは 向 力 回 風速 は 干 往 に 反 比 例 ず る モ ナ ル と な っ て い る。	期の取外視域では向力回風速は半往に反比例するモアルとなって	外限域では向力回風速は半往に反比例するモデルとなっている。 中部ーマには「目見まれ、キャンタナム見まれ、ハナナ、トンド・4	
いかコノには上升風速 $V_2$ や半径力回風速 $V_r$ は仔仕しないが、外	$いる。 いる。 内部コノには上昇風速V_Zや半径方同風速V_rは存在しない、ののの、、、、、、、、$		
部コアには存在する。局さ方回には地面から局さ H までを流入層	か、外部コアには存住する。高さ方向には地面から高さ日。までを	部コアには存在する。高さ方向には地上からの高さH _i までを流入	
しとしてモデル化しており、 竜巻中心方向に向かう半径方向風速 $V_r$	流人層としてモテル化しており, 竜巻中心方向に向かう半径方向	層としてモテル化しており, 竜巻中心方向に向かう半径方向風速	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
があり、この空気の流れ込みが外部コア内での上昇流となる。流	風速 V _r があり、この空気の流れ込みが外部コア内での上昇流と	V _r があり、この空気の流れ込みが外部コア内での上昇流となる。	
入層より上部では外向きの半径方向風速が存在し、各風速成分は	なる。流入層より上部では外向きの半径方向風速が存在し、各風	流入層より上部では外向きの半径方向風速が存在し、各風速成分	
高さとともに減衰する流れとなっている。フジタモデルは、流体	速成分は上部に向かうにつれて減衰する。フジタモデルは、流体	は地上からの高さとともに減衰する流れとなっている。フジタモ	
の連続式を満たす形で定式化されており、力学的に根拠のある風	力学の連続の式を満たす形で定式化されており、力学的に根拠の	デルは、流体の連続式を満たす形で定式化されており、力学的に	
速場となっている。	ある風速場となっている。	根拠のある風速場となっている。 <u>フジタモデルの風速場における</u>	・記載方針の相違
		最大水平風速と地上からの高さの関係を図 5-2 に示す。	【柏崎 6/7, 東海第二】
フジタモデル DBT-77 における接線風速等の関係式については,	フジタモデル(DBT-77)における接線風速等の関係式につい	フジタモデル DBT-77 における接線風速等の関係式については,	島根 2 号炉はフジタモ
Fujita Work Book ⁽⁵⁾ の Chapter6 に下記のとおり記載されている。	ては, Fujita Work Book ⁽⁴⁾ の第6章に, 第2.1-3図のとおり記載	Fujita Work Book ⁽⁵⁾ の Chapter6 に下記のとおり記載されている。	デルの風速場における
(Chapter6 では, 単一渦型のモデルであるフジタモデル DBT-77	されている。	(Chapter6 では, 単一渦型のモデルであるフジタモデル DBT-77	最大水平風速と地上か
を引用しているが、多重渦型のモデルであるフジタモデル DBT-78		を引用しているが、多重渦型のモデルであるフジタモデル DBT-78	らの高さの関係を示し
は引用されていない。)	無次元座標 $r = R/R_m$ , $z = Z/H_i$ 竜巻中心軸	は引用されていない。)	ている
無次元座標 $r = R/R_{m}$ , $z = Z/H$ , 電巻中心軸	接線風速 $V_s = F_r(r)F_s(z)V_s$	無次元座標 $r = R/R_{m}$ , $z = Z/H$ , ^{竜巻中心軸}	
接線風速 $V_{\nu} = F_{\nu}(r)F_{\nu}(z)V_{u}$ $r = V_{\nu}r^{-1}$	$F_r(r) = \begin{cases} r & (r < 1) \\ 1/r & (r \ge 1) \end{cases} F_h(z) = \begin{cases} z^{k_h} & (z < 1) \\ \exp(-k(z - 1)) & (z \ge 1) \end{cases}$	接線風速 $V_{\rho} = F_{r}(r)F_{b}(z)V_{m}$ $r = V \dots r^{-1}$	
$F_r(r) = \begin{cases} r & (r<1) \\ 1/r & (r\ge1) \end{cases} F_h(z) = \begin{cases} z^{k_0} & (z<1) \\ \exp(-k(z-1)) & (z\ge1) \end{cases}$	半径方向風速 $\begin{bmatrix} 0 & (r \le \nu) \\ V_r \tan a_0 \left( r + \nu^2 \right) & (r_r \le \nu) \end{bmatrix}$	$F_r(r) = \begin{cases} r & (r<1) \\ 1/r & (r\geq1) \end{cases} F_h(z) = \begin{cases} z^{k_0} & (z<1) \\ \exp(-k(z-1)) & (z\geq1) \end{cases}$	
	$V_{r} = \begin{pmatrix} 1 - v^{2} & (1 - r^{2}) \\ V_{g} \tan \alpha_{0} & (r \ge 1) \end{pmatrix}$		
$V_r = \begin{cases} \frac{V_c \tan \alpha_0}{1 - v^2} \left( 1 - \frac{v^2}{r^2} \right) & (v < r < 1) \end{cases}$	$\tan \alpha_{ij} = \begin{cases} -A(1-z^{15}) & (z<1) \\ B(1-\exp(-k(z-1))) & (z\geq1) \\ \end{bmatrix} = \boxed{7}$	$V_r = \begin{cases} \frac{V_c \tan \alpha_c}{1 - v^2} \left( 1 - \frac{v^*}{r^2} \right) & (v < r < 1) \end{cases}$	
$\tan \alpha_{c} = \begin{cases} -A(1-z^{1.5}) & (z<1) \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	LFR $\underline{z}$ $\begin{bmatrix} \frac{3}{2} \frac{nV_n}{r} A(16z^2 - 7z^{\frac{1}{2}}) & (z < 1) \\ (z < 1) \\ \lambda \end{bmatrix}$	$ \begin{array}{cccc} ( & r_{\rho} \tan \alpha_{\rho} & (r \geq 1) \\ \tan \alpha_{r} = \begin{cases} -A(1-z^{1.5}) & (z < 1) \\ \end{cases} & \begin{array}{ccccc}  & \sigma \\  & \sigma \\ \end{array} & \begin{array}{cccccc}  & \sigma \\  & \sigma \\  & \sigma \\ \end{array} $	
$ \begin{array}{c} B\{1-\exp(-k(z-1))\} & (z\geq 1) \\ L \neq \mathbb{R} \\ \mathbb{R} $	$V_{z} = \begin{cases} 281 - v^{r} \\ \eta V_{m} B \exp(-k(z-1)) \\ k(1-v^{2}) \end{cases} (2 - \exp(-k(z-1))) (z \ge 1) \end{cases}$	$B\{1-\exp(-k(z-1))\}$ (z $\geq 1$ ) 上昇風速	
$V = \begin{bmatrix} \frac{3}{28} \frac{\eta V_{m}}{1 - v^{2}} \mathcal{A}(16z^{\frac{2}{n}} - 7z^{\frac{8}{3}}) & (z < 1) \\ R \end{bmatrix} \xrightarrow{\text{for } I_{1}} \sqrt{r}  e^{-\frac{z^{2}}{1 - v^{2}}} \qquad for all the second sec$	$k_{\theta}, k, v, \eta, A, B は 定数$	$V = \begin{cases} \frac{3}{28} \frac{\eta V_{w}}{1 - v^{2}} \mathcal{A}(16z^{\frac{2}{n}} - 7z^{\frac{8}{3}}) & (z < 1) \end{cases} \xrightarrow{\mathbb{R}^{n}} v^{r} e^{-\frac{z}{1 - v^{2}}} \mathcal{A}(16z^{\frac{2}{n}} - 7z^{\frac{8}{3}}) & (z < 1) \end{cases}$	
$\frac{\eta V_{s} B \exp(-k(z-1))}{k(1-v^{2})} \{2 - \exp(-k(z-1))\}  (z \ge 1)$ 第5図 フジタモデルの概要		$\frac{\eta V_s B \exp(-k(z-1))}{k(1-v^2)} \{2 - \exp(-k(z-1))\}  (z \ge 1)$ 図 5-1 フジタモデルの概要	
$k_0, k, v, \eta, A, B dz \overline{z} \underline{z} \underline{v} $ $V_0  \underline{k} \underline{k} (B) \overline{z} \overline{n} \underline{z} \underline{z} \underline{v} \underline{v} \underline{v} \underline{z} \underline{z} \underline{z} \underline{z} \underline{z} \underline{z} \underline{z} z$	$c \equiv \frac{1}{R} \frac{\partial V_{\theta}}{\partial r} + \frac{1}{R} \frac{\partial (rV_{r})}{\partial r} + \frac{1}{H} \frac{\partial V_{z}}{\partial z} = 0 \qquad V_{m} \qquad \text{Bxkkala}$	$k_0, k, v, \eta, A, B(tz g v)$ $V_0  \exists k (B) f c h g z $	
連続の式: $c \equiv \frac{1}{R_m r} \frac{\partial r_{\theta}}{\partial \theta} + \frac{1}{R_m r} \frac{\partial (r_r)}{\partial r} + \frac{1}{H_i} \frac{\partial r_z}{\partial z} = 0$ レス 上昇風速 レス 最大接線回速	$R_m$ , $\delta \delta$ $R_l$ $\delta$ $R_m$ 外部コア半径 第9.1_2 ⑦ つジタエデルの概画	連続の式: $c \equiv \frac{1}{R_m r} \frac{\partial r_{\theta}}{\partial \theta} + \frac{1}{R_m r} \frac{\partial (r_r)}{\partial r} + \frac{1}{H_i} \frac{\partial r_z}{\partial z} = 0$ $\frac{\nabla_r}{\nabla_z} \pm f R_m z$	
フジタモデルでは $c=0$ となり <u>連続の式を満たす</u> 。 $R_m$ 外部コア半径	用 2.1-3 因 ノジタモケルの概要	フジタモデルでは $c=0$ となり <u>連続の式を満たす</u> 。 $R_m$ 外部コア半径	
		50	
		$\frac{E}{20}$ 40	
		북 10	
			・記載方針の相違
		0 20 40 60 80 100	【柏崎 6/7, 東海第二】
		竜巻の最大水平風速[m/s]	同上
		図 5-2 フジタモデルの風速場における最大水平風速と地上か	
		らの高さの関係 (r=1)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
内部コアの半径 Ah と外部コアの半径 R _m の比 ν = R _n / R _m について	ここで、内部コアの半径 $R_{\nu}$ と外部コアの半径 $R_{m}$ の比 $\nu$ (= $R_{\nu}$ /	内部コアの半径 $R_n$ と外部コアの半径 $R_m$ の比 $\nu = R_n / R_m$ について	
は、Fujita ⁽⁵⁾ が以下の経験式を提案しているので、これを用いる。	$R_m$ ) については, Fujita $^{(4)}$ が以下の経験式を提案しているので,	は,Fujita ⁽⁵⁾ が以下の経験式を提案しているので,これを用いる。	
$\nu = 0.9 - 0.7 \exp(-0.005 R_m)$	これを用いた。	$\nu = 0.9 - 0.7 \exp(-0.005 R_m)$	
(1)	$v = 0.9 - 0.7 exp(-0.005R_m)$ (1)	(1)	
また、流入層は、地面との摩擦により低下した遠心力と圧力分	また、流入層は、地面との摩擦により低下した遠心力と圧力分	また、流入層は、地面との摩擦により低下した遠心力と圧力分	
布のバランスが崩れ、流体が竜巻中心方向の低圧部に引き込まれ	布のバランスが崩れ、流体が竜巻中心方向の低圧部に引き込まれ	布のバランスが崩れ、流体が竜巻中心方向の低圧部に引き込まれ	
ることにより形成されることから、摩擦の影響が及ぶ範囲のみで	ることにより形成されることから、摩擦の影響が及ぶ範囲のみで	ることにより形成されることから、摩擦の影響が及ぶ範囲のみで	
形成される。Fujita ⁽⁵⁾ は、流入層高さH _i を竜巻中心の低圧部の大	形成される。Fujita ⁽⁴⁾ は、流入層高さH _i を竜巻中心の低圧部の	形成される。Fujita ⁽⁵⁾ は,流入層高さ H _i を竜巻中心の低圧部の大	
きさ(外部コア半径) R _m に比例するものとして,以下の経験式を	大きさ(外部コア半径) R _m に比例するものとして,以下の経験式	きさ(外部コア半径)R _m に比例するものとして,以下の経験式を	
提案しており、これを用いる。	を提案しており、これを用いた。	提案しており、これを用いる。	
$H_i = \eta R_m$	H = nP	$H_i = \eta R_m$	
(2)	$m_i - \eta \alpha_m$	(2)	
ここで、 $\eta$ は1以下の正の値であり、Fujita Work Book ⁽⁵⁾ の(6.4)	ここで、ηは1以下の正の値であり、下式で定義される。	ここで、 $\eta$ は1以下の正の値であり、Fujita Work Book ⁽⁵⁾ の(6.4)	
式より $\eta = 0.55(1 - \nu^2)$ で定義される。	$\eta = 0.55 \left( 1 - v^2 \right)$	式よりη = 0.55(1-ν ² )で定義される。	
上記式において、外部コア半径 $R_m$ =30(m)の場合、 $\eta$ = 0.501( $H_i$	上式において、外部コア半径 $R_m$ = 30mの場合、 $\eta$ = 0.50 ( $H_i$ =	上記式において,外部コア半径 $R_m$ =30 (m)の場合, $\eta$ = 0.501 ( $H_i$	
=15(m))となり,原子力安全基盤機構の調査研究報告書 ⁽⁴⁾ の図	15m)となり,独立行政法人原子力安全基盤機構が東京工芸大学に	=15(m))となり、原子力安全基盤機構の調査研究報告書 ⁽⁴⁾ の図	
2.2.3.10 における流入層高さと竜巻半径の比 (η=0.4 程度) や,	委託した研究「竜巻による原子力施設への影響に関する調査研究」	2.2.3.10 における流入層高さと竜巻半径の比 (η=0.4 程度) や,	
Kosiba ⁽⁶⁾ により示されている流入層高さ (H _i =10~14(m)以下) と	(3)の図 2.2.3.10 における流入層高さと竜巻半径の比(η=0.4 程	Kosiba ⁽⁶⁾ により示されている流入層高さ(H _i =10~14(m)以下)と	
おおむね同じである。	度) や, Kosiba ^(v) により示されている流入層高さ(H _i =10m~14m 以下)とおおむね同じである。	おおむね同じである。	
なお,その他の定数についても,Fujita ⁽⁵⁾ の提案している値と	なお,その他の定数についても,Fujita ⁽⁴⁾ の提案している値と	なお,その他の定数についても,Fujita ⁽⁵⁾ の提案している値と	
して, k ₀ = 1/6, k = 0.03, A = 0.75, B = 0.217 を用いる。	して, $k_0 = 1/6$ , $k$ = 0.03, A= 0.75, B= 0.0217を用いた。	して, k ₀ = 1/6, k = 0.03, A = 0.75, B = 0.217 を用いる。	
2.2 ランキン渦モデル	2.2 ランキン渦モデル	2.2 ランキン渦モデル	
ランキン渦モデルは,米国 NRC ガイドでも採用されており,設	ランキン渦モデルは米国NRCガイドでも採用されており、設	ランキン渦モデルは,米国 NRC ガイドでも採用されており,設	
計竜巻の特性値を設定する際に用いられている。しかし、米国で	計竜巻の特性値を設定する際に用いられている。しかし,第2.2	計竜巻の特性値を設定する際に用いられている。しかし、米国で	
開発された飛来物速度評価用のランキン渦モデル ⁽³⁾ は、竜巻中心	-1図(b)に示す飛散解析用のモデル ⁽²⁾ では、竜巻中心に向かう半	開発された飛来物速度評価用のランキン渦モデル ⁽³⁾ は, 竜巻中心	
に向かう半径方向風速 V _r と上昇風速 V _z を特別に付加している	径方向風速V _r と上昇風速V _z を特別に付加しているため、流体力	に向かう半径方向風速 $V_r$ と上昇風速 $V_z$ を特別に付加している	
(第6図)。そのため、流れの連続の式(質量保存式)を満たして	学の連続の式を満たしておらず,第2.2-2図の様な地面から吹き	(図 6)。そのため,流れの連続の式(質量保存式)を満たしておら	
おらず,第7図に示すように地面から吹き出しが生じるような流	出しが生じる流れとなっており、地上からの物体の浮上、飛散を	ず,図7に示すように地面から吹き出しが生じるような流れとな	
れとなっており、地上からの物体の浮上・飛散を現実的に模擬す	現実的に模擬することができない。ランキン渦モデルを用いて飛	っており、地上からの物体の浮上・飛散を現実的に模擬すること	
ることができない。ランキン渦モデルを用いて飛散評価を行う場	散解析を行う場合、地上の物体であっても空中浮遊状態を仮定し	ができない。ランキン渦モデルを用いて飛散評価を行う場合、地	
合,地上の物体であっても空中浮遊状態を仮定して評価すること	て評価することになる。	上の物体であっても空中浮遊状態を仮定して評価することにな	



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	$\frac{\partial U_1}{\partial x_1} + \frac{\partial U_2}{\partial x_2} + \frac{\partial U_3}{\partial x_3} = 0 $ (5)	$\frac{\partial U_1}{\partial x_1} + \frac{\partial U_2}{\partial x_2} + \frac{\partial U_3}{\partial x_3} = 0 \qquad (4)$	
ここで, U _i 及び P は, i 方向の流速ベクトル及び圧力を表し,	ここで,Ui及びPは,i方向の流速ベクトル及び圧力を表し,	ここで,U _i 及びPは,i方向の流速ベクトル及び圧力を表し,	
$\nu$ は動粘性係数を, $f_i$ は i 方向の外力加速度を表す。また, $x_i$ は	$v$ は動粘性係数を, $f_i$ はi方向の外力加速度を表す。また, $x_i$ は	$ u $ は動粘性係数を, $f_i$ は i 方向の外力加速度を表す。また, $x_i$ は	
i 方向の座標を表す。	i 方向の座標を表す。	i 方向の座標を表す。	
ー 一方, Smagorinsky モデルの渦粘性係数 v 。は以下のように定	一方, Smagorinsky モデルの渦粘性係数 ν _s は以下のように定義さ	一方, Smagorinsky モデルの渦粘性係数ν。は以下のように定	
義される。	れる。	義される。	
$\nu_{s} = (C_{s}h)^{2} \sqrt{\sum_{i,j=1}^{3} 2S_{ij}^{2}} $ (5)	$\nu_{s} = (C_{s}h)^{2} \sqrt{\sum_{i,j=1}^{3} 2S_{ij}^{2}} $ (6)	$\nu_{s} = (C_{s}h)^{2} \sqrt{\sum_{i,j=1}^{3} 2S_{ij}^{2}} $ (5)	
ここで, h は解像スケール(メッシュ幅相当), C _s は Smagorinsky	ここで、h は解像スケール (メッシュ幅相当), Cs は Smagorinsky	ここで,h は解像スケール(メッシュ幅相当),C _s は Smagorinsky	
定数を表し,ひずみ速度テンソル S _{ij} は	定数を表し、ひずみ速度テンソル S _{ij} は	定数を表し,ひずみ速度テンソル S _{ij} は	
$S_{ij}$ =0.5( $\partial U_i / \partial x_j + \partial U_j / \partial x_i$ )で定義される。	$S_{ij}=0.5(\partial U_i / \partial x_j + \partial U_j / \partial x_i)$ で定義される。	$S_{ij}=0.5(\partial U_i / \partial x_j + \partial U_j / \partial x_i)$ で定義される。	
以上のとおり、LES は風速の時間的な変動(乱流)を考慮でき	以上のとおり、LESは風速の時間的な変動(乱流)を考慮で	以上のとおり、LES は風速の時間的な変動(乱流)を考慮でき	
る点が特長となっている。	きる点が特長となっている。	る点が特長となっている。	
wbit         1.2m           wbit         1.2m           wbit         wbit           wbit         Baba           wbit         Baba	収束域         ・         ・         自由流入出境界           収束域         ・         ・         風速を与える           滑りなし境界         ・         第 2.3-1 図         LES計算領域内での竜巻状の渦の作成状況 ^(vi)	w2xh         w2xh           w2xh         Baba           w2xh<	
以上が一般的な LES の説明となる。LES の手法自体は、広く活	LESの手法自体は広く活用されているものであるが、実スケ	以上が一般的な LES の説明となる。LES の手法自体は,広く活	
用されているものであるが、実スケールでの精緻な評価を行うた	ールでの精緻な評価を行うためには、必要なメッシュ解像度の確	用されているものであるが、実スケールでの精緻な評価を行うた	
めには、必要なメッシュ解像度の確保に膨大な計算機資源が必要	保に膨大な計算機資源が必要となる。また、「竜巻影響評価ガイド」	めには、必要なメッシュ解像度の確保に膨大な計算機資源が必要	
となる。	で例示されているLESによる数値解析については、条件設定等	となる。	
また,ガイドで例示されている LES による数値解析については,	に関して下記のような問題点がある。	また,ガイドで例示されている LES による数値解析については,	
条件設定等に関して下記のような問題点がある。	<ul> <li>・「竜巻影響評価ガイド」で例示されているLESによる解析では、</li> </ul>	条件設定等に関して下記のような問題点がある。	
ガイドで例示されている LES による解析では,境界条件(側面	境界条件(側面からの流入風速の分布等)や解析領域の形状(流	ガイドで例示されている LES による解析では,境界条件(側面	
からの流入風速の分布等)や解析領域の形状(流入箇所を局所的	入箇所を局所的に配置等)を調整して人為的な乱れを与え、竜巻	からの流入風速の分布等)や解析領域の形状(流入箇所を局所的	
に配置等)を調整して人為的な乱れを与え, 竜巻状の渦を生成し	状の渦を生成しているが、渦の生成に当たって以下のような条件	に配置等)を調整して人為的な乱れを与え、竜巻状の渦を生成し	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
ている。渦の生成に当たって、以下のような条件を仮定している	を仮定していることから、実スケールでの評価を実施するには課	ている。渦の生成に当たって、以下のような条件を仮定している	
ことから、実スケールでの評価を実施するには課題があるものと	題があるものと考えられる。	ことから、実スケールでの評価を実施するには課題があるものと	
考えられる。		考えられる。	
・人為的な流入境界条件(流入風速分布や流入箇所の局所的配	人為的な流入境界条件(流入風速分布や流入箇所の局所的	・人為的な流入境界条件(流入風速分布や流入箇所の局所的配	
置等)を設定していることから,流入境界条件の影響を受け	配置等)を設定していることから、流入境界条件の影響を	置等)を設定していることから、流入境界条件の影響を受け	
る地表面付近の実際の竜巻風速場の再現はできていないもの	受ける地表面付近の実際の竜巻風速場の再現はできてい	る地表面付近の実際の竜巻風速場の再現はできていないもの	
と考えられる。	ないものと考えられる。	と考えられる。	
<ul> <li>小規模な計算領域によるシミュレーションであり、実スケー</li> </ul>	小規模な計算領域によるシミュレーションであり、実スケ	<ul> <li>・小規模な計算領域によるシミュレーションであり、実スケー</li> </ul>	
ルへの適用(飛来物評価)の際には単純に速度を規格化して	ールへの適用(飛散解析)の際には単純に速度を規格化し	ルへの適用(飛来物評価)の際には単純に速度を規格化して	
飛来物評価に適用している。	て適用している。	飛来物評価に適用している。	
⇒風速の規格化の際には、時間平均の最大風速を100m/s(風速	⇒ 風速の規格化の際には,時間平均の最大風速を100m/s(風速	⇒風速の規格化の際には,時間平均の最大風速を100m/s(風速	
+移動速度)に設定している。Maruyama ⁽⁷⁾ によれば,瞬間的	+移 動速度)に設定している。Maruyama ^(vii) によれば,瞬間的な	+移動速度)に設定している。Maruyama ⁽⁷⁾ によれば,瞬間的	
な周方向風速は 1.7 倍程度まで大きくなる場合があり,移動	周方向風速は1.7倍程度まで大きくなる場合があり、移動速度と	な周方向風速は 1.7 倍程度まで大きくなる場合があり,移動	
速度と合わせると最大 160m/s 程度まで達するため, 飛来物評	合わせると最大160m/s程度まで達するため、飛散解析の際に非	速度と合わせると最大 160m/s 程度まで達するため, 飛来物評	
価の際に非常に保守的な結果が算出されることが考えられ	常に保守的な結果が算出されることが考えられる。	価の際に非常に保守的な結果が算出されることが考えられ	
る。		る。	
⇒流速が早い場合には粘性の影響は小さくなる傾向となるが,	⇒ 流速が早い場合には粘性の影響は小さくなる傾向となるが,	⇒流速が早い場合には粘性の影響は小さくなる傾向となるが,	
その影響については考慮していないことから、特に地表面付	その影響については考慮していないことから、特に地表面付近に	その影響については考慮していないことから、特に地表面付	
近については実際の風速場の再現はできていないものと考え	ついては実際の風速場の再現はできていないものと考えられる。	近については実際の風速場の再現はできていないものと考え	
られる。		られる。	
(参考:フジタモデルを適用した場合の飛来物の飛跡)		(参考:フジタモデルを適用した場合の物体の飛跡)	・記載方針の相違
第9 図にフジタモデルを適用した場合におけるコンテナの飛散		図9にフジタモデルを適用した場合におけるコンテナの飛散解	【東海第二】
解析(長さ6m×幅2.4m×高さ2.6m, 2300kg, CD _A /m=0.0105, 最大風		<u> 析(諸元:長さ6m×幅2.4m×高さ2.6m,2300kg,CD₄/m=0.0105,最</u>	島根 2 号炉は流入層
速 100m/s)における飛跡を示す。			高さの感度解析につい
また,フジタモデルの流入層高さH _i は,外部コア半径 R _m =30(m)		<u>また,フジタモデルの流入層高さ H</u> , は,外部コア半径 R _m =30(m)	て記載している
の場合, $H_i = 15(m)$ であり、2.1 に記載のとおり他の文献 ⁽⁴⁾⁽⁶⁾ とも		の場合, $H_i = 15(m)$ であり,2.1 に記載のとおり他の文献 ⁽⁴⁾⁽⁶⁾ とも	
おおむね整合しているが、ここでは、その不確実性を考慮し、流		おおむね整合しているが、ここでは、その不確実性を考慮し、流	
入層高さH _i を±10%変化させた場合の飛跡も示す。		入層高さ H _i を±10%変化させた場合の飛跡も示す。	
H _i =15(m)の際のコンテナの最大飛散距離 189.4(m)に対し,流		<u>H_i=15(m)の際のコンテナの最大飛散距離 189.4(m)に対し,流</u>	
入層高さ H _i を±10%変化させた場合の最大飛散距離は		入層高さ H _i を±10%変化させた場合の最大飛散距離は	
183.4(m) (-3.2%), 194.7(m) (+2.8%)となり, 流入層高さH _i に対す		<u>183.4(m)(-3.2%),194.7(m)(+2.8%)となり,流入層高さH</u> i に対す	
る最大飛散距離の感度は小さいことが分かる。		る最大飛散距離の感度は小さいことが分かる。	



## 3. 各風速場モデルの比較

各風速場モデルの特徴の比較を第1表に示す。また、フジタモ 竜巻風速場に即した形で表現されており、地上からの物体の浮 上・飛散解析が可能となっていることがフジタモデルの大きなメ リットとなっている。

それに対し、ランキン渦モデルは上空での水平方向風速の観点 からは比較的よく表現できると言えるものの、地上付近では実現 い。ガイドで例示されている LES で生成した風速場も、2.3 の通 から、地上付近での風速場が実現象と乖離していると考えられる「考えられる。 ため、地上からの飛散挙動を解析するには適切でない。また、他 のモデルと比較して、フジタモデルは特に問題となるような点も ないことから, 竜巻影響評価に用いる風速場モデルとしてフジタ モデルを選定することは妥当であると考えられる。

## 3. 各風速場モデルの比較

上述の各風速場モデルの特徴の比較を第3-1表に示す。また、 デルとランキン渦モデルの風速場構造の比較を第10図に示す。フレフジタモデルとランキン渦モデルの風速場構造の比較を第3-1図レルとランキン渦モデルの風速場構造の比較・ ジタモデルの風速場構造の流線は、地面付近を含め、より実際の「に示す。フジタモデルの風速場構造の流線は、地面付近を含めよ り実際の風速場に即した形で表現されており、これがフジタモデ ルの大きなメリットとなっている。

それに対し、ランキン渦モデルは上空での水平方向風速の観点 からは比較的よく表現できると言えるものの、地上付近では実現 象と乖離しており、地上からの飛散挙動は解析するには適切でな↓象と乖離している。LESも同様に地上付近での風速場が実現象 と乖離している。また、他のモデルと比較して、フジタモデルは り人為的な境界条件を設定していることや、小規模領域での計算 | 特に問題となるような点も無いことから、竜巻影響評価に用いる 結果を定数倍して実スケールサイズの値に変換している⁽⁴⁾⁽⁷⁾こと | 風速場モデルとしてフジタモデルを選定することは妥当であると

3. 各風速場モデルの比較

各風速場モデルの特徴の比較を表1に示 モデルの風速場構造の流線は、地面付近を 風速場に即した形で表現されており、地上 散解析が可能となっていることがフジタモ となっている。

それに対し、ランキン渦モデルは上空で からは比較的よく表現できると言えるものの 象と乖離しており、地上からの飛散挙動は い。ガイドで例示されている LES で生成し り人為的な境界条件を設定していることや, 結果を定数倍して実スケールサイズの値に から, 地上付近での風速場が実現象と乖離 ため、地上からの飛散挙動を解析するには のモデルと比較して、フジタモデルは特に ないことから、 竜巻影響評価に用いる風速: モデルを選定することは妥当であると考え

计炉	備考
HI=13.5 HI=15.0 HI=15.0 200 250 ンテナの飛跡(最大風速	
す。また,フジタモデ を図 10 に示す。フジタ 含め,より実際の竜巻 からの物体の浮上・飛 デルの大きなメリット	
の水平方向風速の観点 の,地上付近では実現 解析するには適切でな た風速場も,2.3 の通 ,小規模領域での計算 変換している ⁽⁴⁾⁽⁷⁾ こと していると考えられる 適切でない。また,他 問題となるような点も 場モデルとしてフジタ られる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
第1表各風速場モデルの特徴の比較	第3-1表 各風速場モデルの特徴の比較	表1 各風速場モデルの特徴の比較	
風速場モデル         使用実結         特長         問題点           - 電老飛来物設計速度、飛散高さに閉 する米国DOE要実施設の設計基準作 成に利用されている         ・第観測に基づいて考案されたモデル であり、実際に近い風速場構造を設め している。         ・特になし         ・特になし           フジタモデル         - 「「スキスネ物設計速度、飛散高さに閉 さん料用されている イナ州)、Savannah River Site (サウスカロラ イナ州)         ・北款的簡易な代数式により風速場を 表現できる         ・特になし         ・ラムが経営になるが、計算機能力の向上、お よび評価ツールの高度化により問題とならな い)         ・「ないころが、計算機能力の向上、お よび評価ツールの高度化により問題とならな い)           ランキン渦モデル         ・米国NRC Regulatory Guide 1.76で採 刊を注意での水平方向の温速         ・「園ま埋実に高度依存性がなく上昇流が全領 域に存在する(地面から地交き出しがある)た ・法体の連続式を満たしていない         ・「風速場に高度依存性がなく上昇流が全領 域に存在する(地面から地交き出しがある)た ・法体の連続式を満たしていない	風速場 モデル         使用実績         特徴           フジタ モデル         ・竜巻飛来物設計速度及び飛散 高さに関する、米国DOE 重 要施設の設計基準作成に利用 されている。(「4 米国にお けるフジタモデルの取扱い」         ・実観測に基づいて考案されたモデルであり、実際に近い 風速場構造を表現している。           マジタ モデル         ・さんている。(「4 米国にお けるフジタモデルの取扱い」         ・ジャン満モデルよりは複雑だが、計算機能力の向上 及び評価ツールの高度化により実用可能となった)           ・米国NRCの R.G 1.76 に採用 されている。         ・簡易な式により風速場を表現できる。           ・米国NRCの R.G 1.76 に採用 されている。         ・簡易な式により風速場を表現できる。           ・地域的商支化は少したがなく、上昇流が全領域に存在し、 地本近後の回避日を体験していかい	風速場モデル         使用実績         特長         問題点           ・電差現末物設計速度、飛散高さに関 する米国DOE重要施設の設計基準作 はこれのであり、実際に近い風速場構造を表現 している         ・素観測に基づいて考索されたモデル であり、実際に近い風速場構造を表現 している *は数約前易な代数式により風速場を 表現できる         ・特になし           フジタモデル         「対象施設の例】 Partex Plant (テキサス州)) Oak Ridge(X-10, K-25,Y-12)(テキシー 代ナ州)         ・地数約前易な代数式により風速場を 表現できる         ・特になし           フジキン調モデル         「対象施設の例】 Partex Plant (テキサス州)) Oak Ridge(X-10, K-25,Y-12)(テキシー 代ナ州)         ・加速加速の方気素物 のよりな型を変化できる         ・加速加速の方式をしている *式体の連続式を満たす定式化         ・加速加速の方気素物 の変動を変化できる         ・加速加速の方気素物 の変動を変化できる           フンキン調モデル         ・米国NRC Regulatory Quide 1.76で採 明されている *ブメド(設計電差の特性値の設定)で Mich avail (2)         ・加速のの高速 場を表現できる         ・風速場に高度依存性がなく、上昇流が全領 地方のできる         ・風速場に高度依存性がなく、上昇流が全領 地方のも吹き出しがある)た	
	モデル         巻の特性値の設定)において 例示されている。         ・流体の連続式を満足しない。           ・流体の連続式を満足しない。         ・流体の連続式を満足しない。           ・流体の連続式を満足しない。         ・流体の連続式を満足しない。           ・二         ・電差影響評価ガイド」において、 いて、飛来物の飛散速度等の 評価例が示されている。         ・風速の時間的な変動や乱れを、ある程度模擬できる。           ・         ・         ・           非定常乱流 満モデル (LES)         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・           ・         ・         ・	加工加工のの状態を知道を報じるします           加工加工のの状態を知道を報じるします           加工加工のの状態を知道を構成するしたので           ガイドに個示されているLESで生成した温速 場で表別解わる行う場合、以下の問題があ る。           ホーパ規模領域での計算結果を、要スケールサ イズに提格にするため、粘性の影響が実現 度の設定例に使用されている           ・風速の時間的な変動、乱れをある程 度根型できる           ・風速の時間的な変動、乱れをある程 度相に考えっかしに対体して非合かある(調問的な放大値は 100m/sとなるため、現来物評価が非常に 線子的な速量を発酵する)、地面や 境界近傍で実現象と準確 が100m/sとなるため、現来物評価が非常に 場合がある(調問的な放大値は 100m/sを提定)           ・血・たらの飛散業動を提析するには道 切てない           ・実スケールに切れたが、           ・加工の解析は、膨大な計算機資 調が必要になるため、現実的ではない	
第10 図 フジタモデル (左) とランキン渦モデル (右) の風速 場構造の比較	第3-1図 フジタモデル(左)とランキン渦モデル(右)の風速 場の構造	図 10 フジタモデル(左)とランキン渦モデル(右)の風速場構 造の比較	
<ol> <li>4. 米国におけるフジタモデルの取扱い</li> <li>4.1 フジタモデルの利用実績</li> </ol>	<ol> <li>4. 米国におけるフジタモデルの取扱い</li> <li>4.1 フジタモデルの利用実績</li> </ol>	4. 米国におけるフジタモデルの取扱い 4.1 フジタモデルの利用実績	
米国エネルギー省 (DOE:Department of Energy) が管理するエ	米国エネルギー省DOE(Department of Energy)が管理する	米国エネルギー省 (DOE:Department of Energy) が管理するエ	
ネルギー関連施設等に適用する基準 ⁽⁸⁾ において, 竜巻飛来物速度,	エネルギー関連施設等に適用する基準(100)において, 竜巻飛来物速	ネルギー関連施設等に適用する基準 ⁽⁸⁾ において, 竜巻飛来物速度,	
飛散高さの設定にフジタモデルを用いた計算結果が使用されてい	度,飛散高さの設定にフジタモデルを用いた計算結果が使用され	飛散高さの設定にフジタモデルを用いた計算結果が使用されてい	
る ⁽⁹⁾⁽¹⁰⁾ (文献(8)のD.4 節:Windbornemissilecriteriaspecified	ている ^{(ix)(x)} (文献 ⁽⁸⁾ の D.4節:Windborne missile criteria	る ⁽⁹⁾⁽¹⁰⁾ (文献(8)の D.4 節:Windborne missile criteriaspecified	
herein are based on windstorm damage documentation and	specified herein are based on windstorm damage documentation	herein are based on windstorm damage documentation and	
computer simulation of missiles observed in the field. $\cdot$ $\cdot$ $\cdot$ .	and <u>computer simulation of missiles</u> observed in the	computer simulation of missiles observed in the field. $\cdot$ $\cdot$ $\cdot$ .	
Computer simulation of tornado missiles is accomplished using	field. • • •. Computer simulation of tornado missiles is	Computer simulation of tornado missiles is accomplished using	
a methodology developed at Texas Tech University.) $_{\circ}$	accomplished using a methodology developed at Texas Tech	a methodology developed at Texas Tech University.).	
	<u>University</u> .) _°		1
この基準では、施設に要求される性能ごとにカテゴリ 0 から 4	この基準では、施設に要求される性能ごとにカテゴリ0から4	この基準では、施設に要求される性能ごとにカテゴリ 0 から 4	1
まで分類し、カテゴリ0~2 は一般的な建築物、カテゴリ3、4 は	まで分類し、カテゴリ0から2は一般的な建築物、カテゴリ3及	まで分類し,カテゴリ0~2 は一般的な建築物,カテゴリ3,4 は	1
核物質や危険物質を取り扱う施設に適用される。カテゴリ3,4 に	び4は核物質や危険物質を取り扱う施設に適用される。カテゴリ	核物質や危険物質を取り扱う施設に適用される。カテゴリ3,4 に	1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
該当する施設として, Pantex Plant, Oak Ridge (X-10, K-25, Y-12),	3及び4に該当する施設として, Pantex Plant, Oak Ridge(X-10,	該当する施設として, Pantex Plant, Oak Ridge (X-10, K-25, Y-12),	
Savannah River Site が挙げられている。	K-25,Y-12), Savannah River Site が挙げられている。	Savannah River Site が挙げられている。	
フジタモデルの技術的な妥当性の検証については,米国 DOE 管	フジタモデルの技術的な妥当性の検証については、米国DOE	フジタモデルの技術的な妥当性の検証については,米国 DOE 管	
轄のローレンス・リバモア国立研究所報告書(11)にてまとめられて	管轄のローレンス・リバモア国立研究所報告書 ^(xi) にてまとめら	轄のローレンス・リバモア国立研究所報告書(11)にてまとめられて	
いる。この報告書では,フジタモデル DBT-77 を他の風速場モデル	れている。この報告書では、フジタモデルDBT-77を他の風速場	いる。この報告書では,フジタモデル DBT-77 を他の風速場モデル	
と比較検討しており、流体力学の連続の式を満足する(Fluid	モデルと比較検討しており、「流体力学の連続の式を満足する	と比較検討しており,流体力学の連続の式を満足する (Fluid	
mechanics equations of continuity are satisfied) こと, モデ	(Fluid mechanics equations of continuity are satisfied)]	mechanics equations of continuity are satisfied) こと, モデ	
ル流況は、竜巻の映像分析で得られる流れの空間分布と整合する	こと、「モデル流況は、竜巻の映像分析で得られる流れの空間分布	ル流況は、竜巻の映像分析で得られる流れの空間分布と整合する	
(Flow patterns are consistent with the spatial distribution	と整合する(Flow patterns are consistent with the spatial	(Flow patterns are consistent with the spatial distribution	
of flow observed in photogrammetric analysis of tornado	distribution of flow observed in photogrammetric analysis of	of flow observed in photogrammetric analysis of tornado	
movies)こと等を利点として挙げている。	tornado movies)」こと等を利点として挙げている。	movies)こと等を利点として挙げている。	
また、実際の事例に対するフジタモデルの検証としては、1978	また,実際の事例に対するフジタモデルの検証としては,1978	また,実際の事例に対するフジタモデルの検証としては,1978	
年 12 月 3 日に米国ルイジアナ州 Bossier 市で発生した F4 竜巻	年 12 月 3 日に米国ルイジアナ州 Bossier 市で発生した F4 竜巻に	年 12 月 3 日に米国ルイジアナ州 Bossier 市で発生した F4 竜巻	
による鋼製材の飛来について,フジタモデルDBT-77 で再現した事	よる鋼製材の飛散について,フジタモデルDBT-77で再現した事	による鋼製材の飛来について,フジタモデルDBT-77 で再現した事	
例 ⁽⁹⁾ がローレンス・リバモア国立研究所報告書 ⁽¹¹⁾ 及び米国気象学	例 ⁽⁹⁾ がローレンス・リバモア国立研究所報告書 ⁽¹¹⁾ 及び米国気象	例 ⁽⁹⁾ がローレンス・リバモア国立研究所報告書 ⁽¹¹⁾ 及び米国気象学	
会論文集(12)に掲載されている。	学会論文集 ^(x ii) に掲載されている。	会論文集 ⁽¹²⁾ に掲載されている。	
なお, 米国 LES (Louisiana Energy Services)の濃縮施設 (NEF :	なお,米国LES(Louisiana Energy Services)の濃縮施設N	なお, 米国 LES (Louisiana Energy Services)の濃縮施設 (NEF :	
National Enrichment Facility) では, 上記の DOE 施設の基準に	EF (National Enrichment Facility) では, 上記のDOE施設	National Enrichment Facility)では, 上記の DOE 施設の基準に	
基づき竜巻飛来物(鋼鉄パイプや木材の板等)を設定しており、	の基準に基づき竜巻飛来物(鋼製パイプや木材の板等)を設定し	基づき竜巻飛来物(鋼鉄パイプや木材の板等)を設定しており、	
米国 NRC は当該施設に対する安全評価報告書 (NUREG-1827) ⁽¹³⁾	ており、米国NRCは当該施設に対する安全評価報告書(NUR	米国 NRC は当該施設に対する安全評価報告書 (NUREG-1827) ⁽¹³⁾	
の中で竜巻飛来物に対する LES の竜巻設計を是認している。	EG-1827) ^(x iii) の中で竜巻飛来物に対するLESの設計を是認し	の中で竜巻飛来物に対する LES の竜巻設計を是認している。	
	ている。		
(Based on the review of the information concerning tornados	("Based on the review of the information concerning tornados	(Based on the review of the information concerning tornados	
and tornado-generated missiles, NRC concludes: (i) the	and tornado-generated missiles, NRC concludes: (i) the	and tornado-generated missiles,NRC concludes: (i) the	
information is accurate and is from reliable sources; and	information is accurate and is from reliable sources; and (ii)	information is accurate and is from reliable sources; and	
(ii)the design bases tornado-generated missiles are	the design bases tornado-generated missiles are acceptable	(ii)the design bases tornado-generated missiles are	
acceptable because they were determined based on an	because they were determined based on an appropriate DOE	acceptable because they were determined based on an	
appropriate DOE standard. The use of a DOE standard is an	standard. The use of a DOE standard is an acceptable approach	appropriate DOE standard. The use of a DOE standard is an	
acceptable approach to NRC staff.)	to NRC staff.")	acceptable approach to NRC staff.)	
4.2 NRC ガイドでの取扱い	4.2 NRCガイドでの取扱い	4.2 NRC ガイドでの取扱い	
2.1 でも述べたとおり、フジタモデルは実際の竜巻風速場をモ	2.1節でも述べた通り、フジタモデルは実際の竜巻風速場をモデ	2.1 でも述べたとおり、フジタモデルは実際の竜巻風速場をモ	
デル化したいという米国 NRC の要請を受けて考案されたものであ	ル化したいという米国NRCの要請を受けて考案されたものであ	デル化したいという米国 NRC の要請を受けて考案されたものであ	
るが, 米国 NRC Regulatory Guide 1.76 ⁽²⁾ では, フジタモデルにつ	るが,米国NRCのRegulatory Guide 1.76 ⁽¹⁾ では,フジタモデ	るが,米国 NRC Regulatory Guide 1.76 ⁽²⁾ では,フジタモデルにつ	
VT "The NRC staff chose the Rankine combined vortex model	ルについて "The NRC staff chose the Rankine combined vortex	いて "The NRC staff chose the Rankine combined vortex model	
for its simplicity, as compared to the model developed by T.	model for its simplicity, as compared to the model developed	for its simplicity, as compared to the model developed by T.	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
Fujita (Ref. 7)."と述べられており、単に数式の簡易さを理由	by T. Fujita."と述べられており,数式の簡易さを理由にランキ	Fujita (Ref. 7)."と述べられており、単に数式の簡易さを理由	
にランキン渦モデルが選定されている。また, NRC スタッフ自身	ン渦モデルが選定されている。また、NRCスタッフ自身で水平	にランキン渦モデルが選定されている。また, NRC スタッフ自身で	
で水平方向の飛来物速度(Simiu らの運動方程式 ⁽³⁾ )を計算する	方向の飛散速度(Simiuらの運動方程式 ⁽²⁾ )を計算するプログラ	水平方向の飛来物速度(Simiu らの運動方程式 ⁽³⁾ )を計算するプ	
プログラムを開発している(The NRC staff developed a computer	ムを開発している("The NRC staff developed a computer program	ログラムを開発している(The NRC staff developed a computer	
program to calculate the maximum horizontal missile speeds by	to calculate the maximum horizontal missile speeds by solving	program to calculate the maximum horizontal missile speeds by	
solving these equations.)ことが明記されている。	these equations.")ことが明記されている。	solving these equations.)ことが明記されている。	
したがって,米国 NRC ガイドでランキン渦モデルが採用されて	したがって、米国NRCガイドでランキン渦モデルが採用され	したがって,米国 NRC ガイドでランキン渦モデルが採用されて	
いるのは、フジタモデルより簡易であるという理由が主であり、	ているのは、フジタモデルより簡易であるという理由が主であり、	いるのは、フジタモデルより簡易であるという理由が主であり、	
竜巻風速場としての優劣を指摘されたものではない。	竜巻風速場としての優劣を指摘されたものではない。	竜巻風速場としての優劣を指摘されたものではない。	
(参考)米国におけるランキン渦モデル以外の風速場モデルの	(参考)米国におけるランキン渦モデル以外の風速場モデルの利	(参考)米国におけるランキン渦モデル以外の風速場モデルの利	
利用実績	用実績	用実績	
米国 NRC では、竜巻防護対策の追加を検討しているプラントに	米国NRCでは、竜巻防護対策の追加を検討しているプラント	米国 NRC では、竜巻防護対策の追加を検討しているプラントに	
対し,確率論的竜巻飛来物評価手法 TORMIS の利用を承認してい	に対し、確率論的竜巻飛来物評価手法TORMISの利用を承認	対し,確率論的竜巻飛来物評価手法 TORMIS の利用を承認してい	
る。	している。	る。	
TORMIS は,米国の EPRI で開発され,原子力発電所の構造物・	TORMISは、米国のEPRIで開発された原子力発電所の	TORMIS は, 米国の EPRI で開発され, 原子力発電所の構造物・	
機器への竜巻飛来物の衝突・損傷確率を予測する計算コードであ	構造物、機器への竜巻飛来物の衝突及び損傷確率を予測する計算	機器への竜巻飛来物の衝突・損傷確率を予測する計算コードであ	
り、同コードでは、ランキン渦モデル以外の風速場モデル(統合	コードであり、同コードでは、ランキン渦モデル以外の風速場モ	り、同コードでは、ランキン渦モデル以外の風速場モデル(統合	
風速場モデル)が利用されていることから,米国NRC においても,	デル(統合風速場モデル)が利用されている。(米国NRCにおい	風速場モデル)が利用されていることから,米国NRC においても,	
ランキン渦モデル以外の風速場モデルが認められていないわけで	ても、ランキン渦モデル以外の風速場モデルが認められていない	ランキン渦モデル以外の風速場モデルが認められていないわけで	
はない。	わけではない)	はない。	
5. 飛来物評価における不確定性の考慮	5. 飛散解析における保守性の考慮	5. 飛来物評価	
前節まででは、フジタモデルの風速場を適用することの妥当性	前節までに述べてきたとおり、フジタモデルの風速場を適用す	前節まででは、フジタモデルの風速場を適用することの妥当性	
について述べてきた。フジタモデルの風速場を適用することで、	ることで、より現実的な竜巻影響評価を行うことが可能と考えら	について述べてきた。フジタモデルの風速場を適用することで、	
より現実的な竜巻影響評価を行うことが可能と考えられるが、一	れるが、一方で、実際の竜巻による物体の飛散挙動の保守性につ	より現実的な竜巻影響評価を行うことが可能と考えられるが、一	
方で、実際の竜巻による物体の飛散挙動の不確定性についても考	いても考慮する必要がある。	方で,実際の竜巻による <u>風速場や</u> 物体の飛散挙動の不確定性につ	・記載方針の相違
慮する必要がある。		いても考慮する必要がある。	【柏崎 6/7, 東海第二】
本節では、フジタモデルの特長である地上からの飛散挙動に関	本節では、フジタモデルを用いた地上からの飛散挙動解析に関	本節では, <u>地表面付近の風速場,</u> フジタモデルの特長である地	島根 2 号炉はフジタ
する不確定性や, 竜巻が物体と衝突する際の竜巻風速に関する不	する保守性や、物体が竜巻に晒される際の風速に関する不確定性	上からの飛散挙動及び竜巻が物体と衝突する際の竜巻風速に関す	モデルの地表面付近の
確定性等について、飛来物評価の中でどのように考慮しているか	等について、飛散解析の中でどのように考慮しているかについて	る不確定性等について、飛来物評価の中でどのように考慮してい	風速場に関する不確定
を説明する。	説明する。	るかを説明する。	性についても記載して
			いる
5.1 物体の浮上・飛来モデルにおける不確定性の考慮	5.1 物体の浮上,飛散モデルにおける保守性の考慮	5.1 物体の浮上・飛来モデルにおける不確定性の考慮	
本評価における物体の浮上・飛来モデルの考え方と, その中で	本評価における物体の浮上・飛散モデルの考え方と、その中で	本評価における物体の浮上・飛来モデルの考え方と, その中で	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
--------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------	----
保守性の観点から評価上考慮している点について説明する。	保守性の観点から考慮している点について説明する。	保守性の観点から評価上考慮している点について説明する。	
(1)物体の揚力の計算式	<ol> <li>(1) 物体の揚力の計算式</li> </ol>	(1)物体の揚力の計算式	
物体が空中にある場合、物体に作用する力は、ガイドの飛来物	物体が空中にある場合,物体に作用する力は,「竜巻影響評価ガ	物体が空中にある場合、物体に作用する力は、ガイドの飛来物	
運動モデル ⁽³⁾⁽⁴⁾ と同様に, 飛来物は第 11-1 図のようにランダムに	イド」の飛来物運動モデル ⁽²⁾⁽³⁾ と同様に,飛来物は第5.1-1図	運動モデル ⁽³⁾⁽⁴⁾ と同様に,物体は図11-1のようにランダムに回転	
回転しているものとし、平均的な抗力(流れの速度方向に平行な	(a)のようにランダムに回転しているものとし,平均的な抗力(流	しているものとし,平均的な抗力(流れの速度方向に平行な力)F _D	
力)F _D と重力のみが作用する飛行モデルを採用している。	れの速度方向に平行な力) F _D と重力のみが作用する飛行モデルを	と重力のみが作用する飛行モデルを採用している。	
	採用している。		
一方、物体が地面に置かれている場合や地面に近い場合は、地	一方、物体が地面に置かれている場合や地面に近い場合は、地	一方、物体が地面に置かれている場合や地面に近い場合は、地	
面効果による揚力(次頁参照)を考慮している(14)。具体的には、	面効果による揚力を考慮している ^(x iv) 。具体的には,物体の形状	面効果による揚力(次頁参照)を考慮している(14)。具体的には,	
物体の形状が流れ方向の軸に関して対称であっても,第11-2 図に	が流れ方向の軸に関して対称であっても,第5.1-1図(b)に示す	物体の形状が流れ方向の軸に関して対称であっても,図11-2に示	
示すように地面の存在により流れが非対称になり、物体上部の圧	ように地面の存在により流れが非対称になり、物体上部の圧力が	すように地面の存在により流れが非対称になり、物体上部の圧力	
力が低くなることで物体を浮上させる駆動力が生じることから、	低くなることで物体を浮上させる駆動力が生じることから、これ	が低くなることで物体を浮上させる駆動力が生じることから、こ	
これを揚力 $F_L$ として考慮する。	を揚力F _L として考慮する。	れを揚力 F _L として考慮する。	
$V_w$ 对称流 $F_D$ $F_D$ $V_w$ $F_D$ $F_D$ $F_D$ $F_D$		$V_w$ 对称流 $F_D$ 非対称流 $F_L$ $V_w$ $F_D$	
第 11-1 図 空中で飛来物へ 第 11-2 図 地面付近で飛来物へ	(a)空中 (b)地表付近	図 11-1 空中で物体へ 図 11-2 地面付近で物体へ	
作用する力作用する力	第 5.1-1 図 物体へ作用する力	作用する力 作用する力	
このような揚力 F _L は地面での揚力係数 C _L , 地上での物体の見附	このような揚力F _L は、地表付近での揚力係数C _L 及び物体の見付	このような揚力 F _L は地面での揚力係数 C _L , 地上での物体の見附	
面積(風向方向から見た投影面積) a を用いて,以下のように表	面積(風向方向から見た投影面積)aを用いて,以下のように表さ	面積(風向方向から見た投影面積)a を用いて,以下のように表	
される ⁽¹⁵⁾ 。	れる。	される (15)。	
$F_{L} = \frac{1}{2} \rho C_{L} a \left  \mathbf{V}_{w} - \mathbf{V}_{M} \right _{x,y}^{2} $ (6)	$F_{L} = \frac{1}{2} \rho C_{L} a \left  \mathbf{V}_{\mathbf{W}} - \mathbf{V}_{\mathbf{M}} \right _{x,y}^{2} $ (7)	$F_{L} = \frac{1}{2} \rho C_{L} a  \mathbf{V}_{\mathbf{W}} - \mathbf{V}_{\mathbf{M}} _{x,y}^{2} $ (6)	
ただし, ρ は空気密度, V _M は飛来物の速度ベクトル, V _w は風	ここで、 $ρ$ は空気密度、 $V_M$ は飛来物の速度ベクトル、 $V_w$ は風	ただし、 $ ho$ は空気密度、 $V_{M}$ は物体の速度ベクトル、 $V_{w}$ は風速	
速ベクトル,  * x,y は*の x,y 成分(水平成分)の大きさを表	速ベクトル, $ \alpha _{x,y}$ はベクトル $\alpha$ のx, y 成分(水平成分)の大き	ベクトル,  * x,y は*のx,y 成分 (水平成分)の大きさを表す。	
す。	さを表す。		
(参考)地上の物体における地面効果による揚力について	(参考)地上の物体における地面効果による揚力について	(参考)地上の物体における地面効果による揚力について	
物体や地面は完全な滑面ではなく、凹凸を有しているため、完	物体や地面は完全な滑面ではなく凹凸を有しているため、完全	物体や地面は完全な滑面ではなく、凹凸を有しているため、完	
全接触と非接触の領域に区別される。物体の地面への投影面積をA	接触と非接触の領域に区別される。物体の地面への投影面積をA	全接触と非接触の領域に区別される。物体の地面への投影面積をA	
とし、物体と地面の完全接触面積をsとした場合、無風時(第12	とし、物体と地面の完全接触面積をsとした場合、無風時(第5.1	とし、物体と地面の完全接触面積を s とした場合、無風時(図 12	
図の左)は物体が流体に接する全表面で圧力は一定(p ₀ )とみな	−2図の(a))は物体が流体に接する全表面で圧力は一定(p ₀ )	の左)は物体が流体に接する全表面で圧力は一定(p ₀ )とみなせ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
せるため,鉛直方向(上向き)に作用する揚力 F _{L0} は,以下で与	と見なせるため、鉛直方向(上向きを正とする)に作用する揚力	るため, 鉛直方向(上向き)に作用する揚力 F _{L0} は, 以下で与え	
えられる。	F _{LO} は以下で与えられる。	られる。	
$F_{Lo} = -p_o A + p_o (A - s) = -p_o s \tag{7}$	$F_{L0} = -p_0 A + p_0 (A - s) = -p_0 s \tag{8}$	$F_{L0} = -p_0 A + p_0 (A - s) = -p_0 s \tag{7}$	
	ここじ、 $0 < s \ge A$ じめることから、 $F_{L0}$ は負の他となり、傷力は 怒生しないことが公共ス		
吸般の上うに完全に地面に密着している場合け s=A とたろた	発生しないことが分かる。	吸般の上うに完全に地面に変差していろ場合け s=A となろた	
め、大気圧 $p_a$ に投影面積 A を乗じた力が下向きに作用し、物体		め、大気圧 $p_o$ に投影面積 A を乗じた力が下向きに作用し、物体	
と地面の間に僅かに空隙が生じる場合には、大気圧 po に完全接触		と地面の間に僅かに空隙が生じる場合には、大気圧 po に完全接触	
面積 s を乗じた力が下向きに作用することになるため、いずれの		面積 s を乗じた力が下向きに作用することになるため、いずれの	
場合においても揚力は発生しないことが分かる。		場合においても揚力は発生しないことが分かる。	
一方, 竜巻通過時(第12図の右)の物体に圧力差に伴う流体力	一方, 竜巻通過時(第5.1-2図の(b))の物体に圧力差に伴う	一方, 竜巻通過時(図 12 の右)の物体に圧力差に伴う流体力が	
が作用(簡単のため上面での圧力 p ₁ ,下面での圧力 p ₂ と仮定)す	流体力が作用(簡単のため上面での圧力をp ₁ ,下面での圧力をp	作用(簡単のため上面での圧力 p1,下面での圧力 p2 と仮定)する	
る場合,鉛直方向の流体力 F _L は,以下で与えられる(圧力分布が	₂ と仮定) する場合, 鉛直方向の流体力 F _L は以下で与えられる (圧	場合,鉛直方向の流体力 F _L は,以下で与えられる(圧力分布があ	
ある任意形状の物体についても圧力の表面積分を用いれば同様に	力分布がある任意形状の物体についても、圧力の表面積分を用い	る任意形状の物体についても圧力の表面積分を用いれば同様に計	
計算は可能)。	れば同様に計算可能)。	算は可能)。	
	$F_{L} = -p_{1}A + p_{2}(A - s) \tag{9}$	$F_{r} = -nA + n(A - s)$	
$F_{L} = -p_1 A + p_2 (A - s) \tag{8}$		$L = P_1 + P_2 (1 - 5) \tag{8}$	
吸盤のように完全に地面に密着している場合は s=A となるた	吸盤の様に完全に地面に密着している場合は s=A となるため,	吸盤のように完全に地面に密着している場合は s=A となるた	
め、上面の圧力 $p_1$ に投影面積 A を乗じた力が下向きに作用する	上面の圧力 p ₁ に投影 面積Aを 乗じた力が ト 同きに 作用するが 、物	め,上面の圧力 p ₁ に投影面積 A を乗じた力がト同きに作用する	
が、物体と地面の間に僅かに空隙が生じる場合には、地面と物体	体と地面の間に僅かに空隙が生じる場合には、地面と物体の接触	が、物体と地面の間に僅かに空隙が生じる場合には、地面と物体	
の接触状態によっては上向きの力が発生することがある。実際に	状態によっては上回きの力が発生することがある。	の接触状態によっては上同きの力が発生することがある。実際に	
は、地面と物体の接触状態を確認することは難しいことから、本	美際には、地面と物体の接触状態を確認することは難しいこと	は、地面と物体の接触状態を確認することは難しいことから、本	
評価においては、保守的に地上における物体に揚刀か作用するこ	から、本評価においては、保守的に地上における物体に揚刀が作	評価においては、保守的に地上における物体に揚刀か作用するこ	
ととしている。	用することとしている。	ととしている。	
$V_{D}=0$ $F_{L0}$ $F_{D0}$	(a) 無風時 (b) 強風時	$V_{D}=0 \xrightarrow{F_{L0}} F_{D0} \xrightarrow{V_{D}} \xrightarrow{p=p_{1}} \xrightarrow{r_{L}} F_{D0} \xrightarrow{p_{2}p_{2}} \xrightarrow{r_{D}} F_{D}$	
第12 図 部分的に地面に接する物体に作用する力	第5.1-2図 部分的に地面に接する物体に作用する力	図 12 部分的に地面に接する物体に作用する力	
(左:無風時,右:強風時,R ₀ ,R:無風時,強風時における垂 直抗力)		(左:無風時,右:強風時, R ₀ , R:無風時, 強風時における垂 直抗力)	
(2) 揚力係数の設定	<ul><li>(2) 揚力係数の設定</li></ul>	(2) 揚力係数の設定	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(6)式の C _L a は風洞実験から求められる値であるが,実験条件	(7)式のC _L aは風洞実験から求められる値であるが,実験条件	(6)式の C _L a は風洞実験から求められる値であるが,実験条件	
(風を受ける方向等)により様々な値を取り得るため、それを包	(風を受ける方向等)により様々な値を取り得るため、それを包	(風を受ける方向等)により様々な値を取り得るため、それを包	
含するような係数を設定することが望ましい。	含するような係数を設定することが望ましい。本評価では、条件	含するような係数を設定することが望ましい。	
本評価では,条件によらず保守性を確保できるよう,C _L a に代	によらず保守性を確保できるよう、C _L aに代わり、以下で定義さ	本評価では,条件によらず保守性を確保できるよう,C _L a に代	
わり以下で定義される抗力係数と見附面積の積の平均値 C _D A を用	れる抗力係数と見付面積の積の平均値C _D Aを用いることとする。	わり以下で定義される抗力係数と見附面積の積の平均値 C _D A を用	
いることとする。	$C_{D}A = \frac{1}{C} (C_{D}A + C_{D}A + C_{D}A)$	いることとする。	
$C_D A = \frac{1}{3} \left( C_{Dx} A_x + C_{Dy} A_y + C_{Dz} A_z \right) \tag{9}$	$3^{(-)} \frac{1}{2} \frac{1}$	$C_{D}A = \frac{1}{3} \Big( C_{Dx}A_{x} + C_{Dy}A_{y} + C_{Dz}A_{z} \Big) $ (9)	
ここで,C _{Dx} は空中での x 軸方向流れに対する抗力係数,A _x は	ここで、C _{Di} は空中での i 軸方向流れに対する抗力係数、A _i は	ここで、 $C_{Dx}$ は空中での x 軸方向流れに対する抗力係数、 $A_x$ は	
x 軸方向流れに対する見附面積であり、その他も同様である。	i 軸方向流れに対する見付面積を示す。	x 軸方向流れに対する見附面積であり、その他も同様である。	
飛来物の運動モデルを第13図に示す。上記(9)式の考え方は,	物体の運動モデルを第5.1-3図に示す。上述のC _L aをC _D Aで	物体の運動モデルを図 13 に示す。上記(9)式の考え方は,図 13	
第13図に当てはめ整理すると以下のとおり。	代用する考え方を本図に基づき整理すると、以下のとおりとなる。	に当てはめ整理すると以下のとおり。	
・物体がある程度浮き上がった後の状態(第13図の状態B)で	・物体がある程度浮き上がった後の状態(B)であれば,物体はラ	・物体がある程度浮き上がった後の状態(図 13 の状態 B)であ	
あれば、物体はランダム回転し、物体各面に均等に風を受け	ンダムに回転し、物体各面に均等に風を受けるものと考えられ	れば、物体はランダム回転し、物体各面に均等に風を受ける	
るものと考えられること。	る。	ものと考えられること。	
・物体が地面に置かれた状態(第13図の状態A)から,実際に	・物体が地面に置かれた状態(A)から浮き上がる場合,実際には	・物体が地面に置かれた状態(図13の状態A)から,実際に浮	
浮き上がる際には、物体の上面や下面での圧力が均一ではな	物体の上面や下面での圧力が均一ではなく、傾きながら浮き上	き上がる際には、物体の上面や下面での圧力が均一ではなく、	
く、傾きながら浮き上がるようなことも考えられるが、この	がるようなことも考えられるが、このような挙動を理論的に評	傾きながら浮き上がるようなことも考えられるが、このよう	
ような挙動を理論的に評価することは難しい。そのため、こ	価することは難しい。そのため、これに準ずる方法として、地	な挙動を理論的に評価することは難しい。そのため、これに	
れに準ずる方法として、評価に用いる係数は、地面から浮か	面から浮かせた状態で実測されたC _L aのうち、物体が地面に置	準ずる方法として、評価に用いる係数は、地面から浮かせた	
せた状態で実測された C _L a のうち,物体が地面に置かれた状	かれた状態(A)にできる限り近い場合の値よりも大きな係数C	状態で実測された C _L a のうち, 物体が地面に置かれた状態(図	
態(第13図の状態A)にできる限り近い場合の値よりも大き	_D Aを用いることで,保守性は確保できると考えられる(「C _D	13 の状態 A)にできる限り近い場合の値よりも大きな係数を	
な係数を用いることで、保守性は確保できると考えられるこ	A>C _L a」となることの説明は後述)。	用いることで、保守性は確保できると考えられること。	
と。			
・物体が地面に置かれた状態(第13 図の状態A)と物体がある	・物体が地面に置かれた状態(A)と物体がある程度浮き上がった	・物体が地面に置かれた状態(図13の状態A)と物体がある程	
程度浮き上がった状態(第13図の状態B)での評価にて,共	状態(B)での評価にて共通の係数を用いることは、地上からの物	度浮き上がった状態(図 13 の状態 B)での評価にて,共通の	
通の係数を用いることは、地上からの物体浮上・飛散評価に	体浮上及び飛散解析における実用性の観点からも望ましい。	係数を用いることは、地上からの物体浮上・飛散評価におけ	
おける実用性の観点からも望ましいこと。	物体の飛散解析におけるモデル化の基本的な考え方は、地面に	る実用性の観点からも望ましいこと。	
	おける揚力係数 $C_L$ 見付面積 $a$ の積 $C_L a$ をより大きな値で置き換		
	えて、浮上現象を保守的に評価できるようにすることであり、こ		
	の保守的な代用値としてC _D Aの利用が適切であることを以下に		
	説明する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
C V _v 本 加加 加加 な 大 3d	「物体成面の高度と34」 の取成 「物体成面の高度と34」 の取成 (1:物件の高さ) の取成 (1:物件の高さ) の取成 (1:物件の高さ) (1:物件の高さ) (1:物件の高さ) (1:物件の高さ) (1:物件の高さ) (1:物件の高さ) (1:物件の高さ) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m)) (1:小(1:m))	C V W 地面効果による撮力 $F_L$ B 地面効果による撮力 $F_L$ 地面効果による撮力 $F_L$ 地面効果による撮力 $F_L$ 国	
第13 図 飛来物の運動モデルの模式図	第 5.1-3 図 物体の運動モデルの模式図	図 13 物体の運動モデルの模式図	
(A:地面上, B:Z<3d の高度範囲, C:Z>3d の高度範囲,	第5.1-3図 物体の運動モデルの模式図	(A:地面上, B:Z<3d の高さの範囲, C:Z>3d の高さの範	
ただし, Z=z-d/2, d:物体高さ)		囲, ただし, Z=z-d/2, d:物体高さ)	
	物体が風速Uを受ける場合の揚力係数C _L は,一般にその定義に		
	より揚力F _L と以下の関係にある。		
	$F_L = \frac{1}{2}\rho U^2 C_L a$		
物体の飛散解析におけるモデル化の基本的な考え方は、地面に		物体の飛散解析におけるモデル化の基本的な考え方は、地面に	
おける揚力係数 $C_L$ と見附面積 a の積 $C_L$ をより大きな値で置き		おける揚力係数 $C_L$ と見附面積 a の積 $C_L$ a をより大きな値で置き	
換えて、浮上現象を保守的に評価できるようにすることであり、		換えて、浮上現象を保守的に評価できるようにすることであり、	
この保守的な代用値として飛行定数 C _D A/m と同類の C _D A の利用		この保守的な代用値として飛行定数 C _D A/m と同類の C _D A の利用	
が適切であることを以下で説明する。		が適切であることを以下で説明する。	
物体が風速 U を受ける場合の揚力係数 C _L は,一般にその定義		物体が風速 U を受ける場合の揚力係数 C _L は,一般にその定義	
により揚力 F _L と以下の関係にある。		により揚力 F _L と以下の関係にある。	
$F_L = \frac{1}{2} \rho U^2 C_L a \tag{10}$		$F_L = \frac{1}{2}\rho U^2 C_L a \tag{10}$	
これを変形すると、 $C_1 a=2F_1/\rho U^2$ となり、風速、風向及び物体		これを変形すると、 $C_1 a=2F_1/\rho U^2$ となり、風速、風向及び物体	
の向きが一定であれば, 揚力 FL 及び速度圧 q=1/2ρU ² は見附面		の向きが一定であれば, 揚力 FL 及び速度圧 q=1/2ρU ² は見附面	
│ 積 a の取り方には無関係の物理量であるので、C ₁ a も見附面積 a		│ 積 a の取り方には無関係の物理量であるので、C _t a も見附面積 a	
の取り方(風向投影面積や揚力方向投影面積)に依存しないこと		の取り方(風向投影面積や揚力方向投影面積)に依存しないこと	
が分かる。		が分かる。	
ー方,同じ風速Uが同じ物体に作用する場合であっても,地面		一方,同じ風速 U が同じ物体に作用する場合であっても,地面	
に置かれた物体の向きと風向の関係によって積 C _L a は変化する。		に置かれた物体の向きと風向の関係によって積 C _L a は変化する。	
(例えば,円柱の長手方向と風向が平行な場合の揚力は小さい		(例えば、円柱の長手方向と風向が平行な場合の揚力は小さい	
が, 直角の場合には最大となる)		が、直角の場合には最大となる)	
そこで、典型的な塊状物体・柱状物体・板状物体が地面に置か	ここで、典型的な塊状物体、柱状物体及び板状物体が地面に置	そこで、典型的な塊状物体・柱状物体・板状物体が地面に置か	
れた場合の C _L a の最大値(又は,それに近い値)の実測結果と物	かれた場合のC _L aの最大値(又はそれに近い値)の実測結果と,	れた場合の C _L a の最大値(又は,それに近い値)の実測結果と物	
体の幾何学形状のみで決定される C _D A の値を比較する。(第2表)	物体の幾何学形状のみで決定されるC _D Aの値を比較した。(第5.1	体の幾何学形状のみで決定される C _D A の値を比較する。(表 2)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
第2表より, C _D A>C _L a の関係が成立しており, C _L a の代用とし	-1表)	表 2 より, C _D A>C _L a の関係が成立しており, C _L a の代用として	
て C _p A の利用が適切であることが確認できる。なお, C _p A は各方	同表より、「 $C_DA > C_L a$ 」の関係が成立しており、揚力の評価	C _p A の利用が適切であることが確認できる。なお, C _p A は各方向	
向の抗力係数と見附面積の積の平均値であり,例えば,一辺 d の	モデルとして $C_L a$ の代わりに $C_D A$ を用いることで保守性は確保	の抗力係数と見附面積の積の平均値であり, 例えば, 一辺 d の立	
立方体では $C_pA=2d^2$ , 一辺 d の平板では $C_pA=0.66d^2$ となる。両者	できる。	方体では C _D A=2d ² ,一辺 d の平板では C _D A=0.66d ² となる。両者に	
には約 3 倍の違いがあるが, いずれの場合も実際の C _L a 値より		は約 3 倍の違いがあるが, いずれの場合も実際の C _L a 値よりも	
も大きな値であり,揚力の評価モデルとして C _L a 値の代わりに		大きな値であり,揚力の評価モデルとして C _L a 値の代わりに C _D A	
C _D A を用いることで保守性は確保できる。		を用いることで保守性は確保できる。	
また,以上の揚力のモデル化の説明は浮上時(第 13 図の状態	また,以上の揚力のモデル化の説明は浮上時(第5.1-3図A)	また,以上の揚力のモデル化の説明は浮上時(図 13 の状態 A)	
A) に対するものであるが,この揚力が物体高さの3 倍までの飛	に対するものであるが、この揚力が物体高さの3倍までの飛散高	に対するものであるが,この揚力が物体高さの3 倍までの高さの	
散高度の範囲で連続的に低減するように作用するようにモデル	度の範囲で連続的に低減するように作用するようにモデル化して	範囲で連続的に低減するように作用するようにモデル化してお	
化しており,第13図の状態A,B,Cの全領域で揚力の連続性が	おり、第5.1-3図の状態A,B及びCの全領域で揚力の連続性が	り,図13の状態A,B,Cの全領域で揚力の連続性が確保されて	
確保されている。	確保されている。	いる。	

柏崎刈羽原子力	り発電所 6/	/7号炉	(2017.12.20版) 東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉						備考													
第2表 主な物体	体の C _D A と地	面に置かれ	に置かれた物体の C _L a(実測値			に置かれた物体の C _L a(実測値)				) v (m+ )				<u>ил</u> пт		-#	表 2 主な物体の C _D A と地面に置かれた物体の C _L a (実測値)の					
	の大小	関係(1/2)	1				) ~ (	) ( を 計 ( の 計 の	ן ק (	おける	) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) 第 (二) [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [	画	柱の車					比較				
C ₁ a (実測値)に係る試験条件等 気洞試験 ⁽¹⁶⁾ (風速 22~31m/s, Re=2.8×10 ⁶ ~4.0×10 ⁶ ) La が最大となる流入角での値を C ₁ a (実測値)として記載 気洞試験 ⁽²²⁾ (風速 0~150m/s, Re=0~3.0×10 ⁶ ) 1 つのタイヤに作用する地面からの反力のうち、少なくとも	<ul> <li>一がゼロとなった時点の風速 Uから C_la 値を計算</li> <li>C_la が最大となる流入角での値を C_la (実測値)として記載</li> <li>Sa が最大となる流入角での値を C_la (実測値)として記載</li> <li>Sa が最大となる流入角での値を C_la (実測値)として記載</li> <li>SA 方向と立方体面の一面が垂直になる配置における値を C_la</li> </ul>	(実))(1) こして記載) (実))(1) として記載) 風洞試験(10) (Re=1.3×10 ⁶ ) 乱人方向と円柱の軸直角方向が垂直になる配置(円柱の軸方 引は地面と平行)における値を C ₁ a (実測値)として記載 司記地転 (1)	A.酒品廠(Re=3.5×10 [*] ~1.2×10 [*] ) 能入方向と円柱の軸直角方向が垂直になる配置(円柱の軸方 司は地面と平行)における値を C _L a(実測値)として記載(電 り中央研究所風洞実験)	K路試験( ¹⁷⁾ (Re=8.0×10 ³ ~2.8×10 ⁴ ) 能入方向と角柱の軸方向が垂直となる配置(角柱の軸方向は 1面と平行)における値を C _l a(実測値)として記載	私神試験(Re=3.8×10 ⁴ ) 低入方向と角柱の軸方向が垂直になる配置(角柱の軸方向は地 面と平行) 長方形断面(アスペクト比 4:3)の角柱は地面から 0.167D 以 三離れると揚力は負となる(電力中央研究所風洞実験)	ビ地面に置かれた物体のC _L a(実測値) (1/2)	OLd (大田)         OLd (大田)         OLd (大田)         OLd (大田)           ・風洞試験 ⁽¹⁵⁾ (風速22m/s~31m/s, Re=2.8×1         4×10 ⁶ )         4×10 ⁶ )         4×10 ⁶ 48.7ft. ² ・C ₁ a が最大となる流入角での値をC ₁ a (実測         ・C ₁ a が最大となる流入角での値をC ₁ a (実測	<ul> <li>7.76m²</li> <li>・風洞討験^(1 6) (風速 0~150m/s, Re=0~3×10⁽)</li> <li>・4 つのタイヤに作用する地面からの反力のうち, とも 1 つが 0 となった時点の風速 U からC_La⁽)</li> </ul>	(C _L a ^{=2mi} ×/ ρU ² ) - C _L a が最大となる流入角での値をC _L a (実測 で記載	<ul> <li>・水路試験⁽¹⁷⁾ (Re-8, 000~28, 000)</li> <li>・流入方向と立方体面の一面が垂直になる配置は 値をC₁a(実測値)として記載</li> </ul>	<ul> <li>・風洞試験⁽¹⁵⁾(Re-1.3×10⁶)</li> <li>・流入方向と円柱の軸直角方向が垂直になる配置</li> <li>・流入方向と円柱の軸直角方向が垂直になる配置</li> <li>の軸方向は地面と平行)における値をC₁a(3</li> <li>・流入方向と円柱の軸直角方向が垂直になる配置</li> <li>・流入方向と円柱の軸直角方向が垂直になる配置</li> <li>・流入方向と円柱の軸直角方向が垂直になる配置</li> </ul>	<ul> <li>として記載</li> <li>として記載</li> <li>・水路試験⁽¹⁷⁾ (Re-8, 000~28, 000)</li> <li>・水路試験⁽¹⁷⁾ (Re-8, 000~28, 000)</li> <li>・長光断面 (アスペクト比 4:3) の角柱は地</li> <li>長二方町 (アスペクト比 4:3) の角柱は</li> <li>(167D 以上離れると揚力は負となる(電中の 験)</li> <li>・流入方向と角柱の軸方向が垂直となる配置(有 方向は地面と平行)における値をC₁a(実測 方言書</li> </ul>	<ul> <li>① (地面との隙間が ・流入方向と角柱の軸方向が垂直になる配置(∮ 167D 以上の場合)</li> <li>方向は地面と平行)</li> </ul>	<i>い。</i> (主測値)」7.仮ス計略冬祉英	<ul> <li>・ 文献(16) の風洞試験(風速 22~31m/s, Re=2 8x10⁶~4x10⁶)</li> <li>・ C_La が最大となる流入角での値を C_La (実測値) として記載</li> </ul>	<ul> <li>・ 文献(17) の水路試験(Re=8000~28000)</li> <li>・流入方向と立方体面の一面が垂直になる配置における値を C₁a(実測値)として記載</li> </ul>	<ul> <li>・ 文献(16)の風洞試験(Re=1.3x10⁶)</li> <li>・ 流入方向と円柱の軸直角方向がる垂直になる配置(円柱の 軸方向は地面と平行)における値を C_ia (実測値)として 記載</li> </ul>	<ul> <li>・ 文献(17) の水路試験(Re=8000~28000)</li> <li>・ 長方形断面(アスペクト比4:3)の角柱は地面から0.167D</li> <li>以上離れると揚力は負となる(電中研風洞実験)</li> <li>・ 流入方向と角柱の軸方向が垂直となる配置(角柱の軸方向は地面と平行)における値をC.a(実測値)として記載</li> </ul>	<ul> <li>・ 文献(18)の風洞試験(幅 B に基づく Re=2x10⁵)</li> <li>・ 流入方向と平板の長さ方向が垂直になる配置(平板は地面 と平行)における値を C_La(実測値)として記載</li> </ul>	<ul> <li>・ 文献(19) の水路試験(Re=5x10⁴程度)</li> <li>・ 流入方向と平板状プロックの長さ方向が垂直になる配置 (平板状プロックは地面と平行)における値を C₁a(実測 値)として記載</li> </ul>		
	· · · ·		•••	••		C _D A						0	₩°.	, 1/C-a	1	围		$\sim 1.6$				
训值)			23DA	ZDX	面との 0.167D 合)	9体の	ft. ²	07m ²	58m ²	)2	μγ	Dλ λ)*2	+B) λ	C ²	2.65	10 程	2.35	1.14	16.5	6.6		
C _L a(実 後.7ft. ² 7.76m ²	7.89m ² 0.2D ² 程度	0.2DA	0.05Dλ~0.	0.5Dλ~0. 程度	負値(地回 隙間が( 以上の場(	1表 主な物	a 1294	^{2m} , 12. (	12 69 14. E	21	0.47	0.8	の 0.4(D- 、て記載	(主게値)	(wd 5.5ft. ² )	2程度	č	<b>λ∼0.7</b> Dλ	丘い値 ^{面から} 離れた位 :04Bれ)	、程度	せる場合	
						5.1-	art 7ft., .3ft.)	た 4.85 た 1.45	馬馬 (a) (a) (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		_	0 R – ۲	), 幅 B 产無視 L	<u> </u>	1.865 (=40	0.2D ²	0.2D)	0.5D) 程度	0 にえ (地団 0.25B 置で C _L a=0	0.1B2	24 t2 1	
C _D A ^{#1} 129ft. ² 12.07m ²	14.58m ² 2D ²		0.4/DV	0.8Dλ (1.3Dλ) ^{#2}	0.4(D+B)λ	新 新	山和 実物の Dodge D (長さ 16.7 5.8ft., 高さ4	1/6縮尺模型 (セダン:長 幅 1.79m,高 質量 1633kg)	1/6 縮尺模型 (ミニバン:J m,幅1.94m, m,質量 2086k	一辺の長さD	長さん,直径D	長さん, 断面が 正方形	長さん, 高さ D 長方形断面 坂状では微小項 なせる場合	*****	d+ds)/3			*		·+D(B+λ))**	**:塊状と	
3ft. 、 函配 、	2m, 9m,			6	の長	44m f+-	1	動車		方体	日在	角	= - : 状 と 見 ノ		2(sw+w =129ft	$D^{2}$	.47Dλ	.8DA 1.3DA)	).66Bλ	.66Bλ ).66(Bλ	載	
eart 幅 5. 4.85m 1.42m	1.5 1.6 1.6			- 12 D	四 四 日	4	<	 		-171	_	*	光 ※ ※ ※		L:)雪	7	0	 	0	00	でし	
( 	を い の の の の で で し の で で で し の の で で で で で し の の で で で 一 で 一 で 一 で 一 で 一 一 一 一 一 一 一 一 一 一 一 一 一		句 D	画が	ち そ し し	TY VH		影				柱			nrt 1. , 1=4.3 f			D O	な D 5mm, 湯合)	D tu	無法	
実物の Do (長さ 16 (長さ 12) (た女ン (セダン 1.79m,	<u>車 1633</u> <u>1/</u> 6	ないである。	友 さん, 直	長さA,断 正方形	長さん, _帚 方形断面									仕 様	Dodge Da s=16.7f t., 声さ d	長さ D	直径 D	断面が一	幅 B,厚 20mm, D= 000mm の封	重 B, 重	は微小項を	
物体	1.55体		₩ T		角柱									-	実物の (長ら w=5.8fi	0 Й —	長さん,	長さ <b>ん</b> , 正 方 形	長さん, (B=2( 入=10	たなど、	び平板で()	
影			-	柱状	~									物休	自動車	立方体	日柱	角柱	極減い	平板 、 ロ ッ	: 柱状及;	
														法	i i	<u>考</u> (1)		柱 状	平核		*	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
第2表 主な物体の $C_{DA}$ と地面に置かれた物体の $C_{La}$ (実測値)			
の大小関係(2/2)	「 「 板蔵」 (2) に 「 る つ 」 (2) 「 (2) 「 (2) 「 (2) 「 (2) 」 (2) 「 (2) 」		
<ul> <li>「a (実測値)に係る試験条件等</li> <li>「a (実測値)に係る試験条件等</li> <li>「B に基づく Re=2.0×10⁵)</li> <li>「反の長さ方向が垂直になる配置(平板は地面と)値を C₁a (実測値)として記載</li> <li>「自 (参考文献(20)ではで)に基づく Re=2.2×</li> <li>「自 (参考文献(20)ではで)に基づく Re=2.2×</li> <li>「自 (参考文献(20)ではで)によっく Re=2.2×</li> <li>「10)(程度)</li> <li>「e=5.0×10⁴程度)</li> <li>「たけの(程度)</li> <li>「たけの(程度)</li> <li>「たいての(前面)」とし(実測値)とし</li> </ul>	La (実測値) (2/2)         La (実測値) (2/2)         C _L a (実測値) に係る試験条件等         La(実測値) に係る試験条件等         人方向と平板の長さ方向が垂直になる配置 (平林 前と平行) における値をC _L a (実測値) として記 何試験 ⁽¹⁹⁾ (幅 B (参考文献(19)では c) に基 人方向と翼の長さ方向が垂直になる配置 (翼面) と平行)         2.2×10 ⁵ )         人方向と翼の長さ方向が垂直になる配置 (翼面) と下行)         2.2×10 ⁵ )         人方向と翼の長さ方向が垂直になる配置 (翼面) と平行)         (中枢状プロックの長さ方向が垂直になる 常試験 ⁽²⁰⁾ (Re=5×10 ⁴ 程度)         人方向と平板状プロックの長さ方向が垂直になる (平板状プロックは地面と平行) における値をC (平板太プロックは地面と平行) における値をC         (東板状プロックは地面と平行) における値をC		
- - - - - - - - - -	A C C E に R に R に R に R に R に R に R に R に R に R に R に の に の の の の の の の の の の の の の		
・・・・・・・・・・・・・・・・・・・・・ 酒流平 風流子 風口流行 水流板て洞へ行 洞のへ) 路人状記試方() 試 方 試方ブ載前に) 験 向 籔向日	が 北 で が が ( 前 ) ( 前 ) ( 前 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ) ( ) ( ) ) ( ) ) ( ) ) ( ) ) ( ) ) ( ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ( ) ) ) ) ( ) ) ) ) ) ) ) ( ) ) ) ) ) ) ) ) ) ) ) ) )		
C _I a (実測値)       0 に近い値 (地面から (地面から 0.25B 離れた位 置で       0.25A 離れた位 置で       0.28 λ 程度       0.18 λ 程度	DAと地面に置 CLa(実) CLa(実) のに近い 位置でCLa=0.2 位置でCLa=0.1 0.1BA 0.1BA 0.1BA		
C _D d ^{**1} 0.66Bλ 0.66Bλ 0.66(Bλ+D(B+λ))*2 0.66(Bλ+D(B+λ))*2	表 主な物体のC C _D A ^{%1} 0.66Bえ 0.66Bえ カ)) ^{%2}		
住様 長さみ,幅B,厚さD (B=200mm,D=5mm, ス=1000mm,D=5mm, 大さろ,幅B,厚さD (B=100mm,D=15mm, ス=300mm)(参考文献 (20)ではBの代わりに こで表記) 長さみ,幅B,厚さD 長さみ,幅B,厚さD 長さみ,幅B,厚さD	第5.1-1: 第5.1-1: 長さえ,幅B,厚さD (A=1000 mm, B=200 mm し=5 mmの場合) し=5 mmの場合) し=15 mmの場合) 長さえ,幅B,厚さD (A=300 mm, B=100 mm D=15 mmの場合) 長さえ,幅B,厚さD 見させる場合		
	形 ※ × × × × × ×		

<ul> <li>(1) 次にした方が違いの時代しの語び</li> <li>(2) 次にした方が違いの時代しの語び</li> <li>(3) 次にした方が違いの時代しの語び</li> <li>(4) 次にしたうか違いの時代しの語び</li> <li>(4) 次にしたうか違いの目的とないので、前き などいいろ。</li> <li>(4) 次にしたうか違いの目的とないので、前き などいいろ。</li> <li>(4) 次にしたうか違いの目的とないので、かて、レインス次いの見かいてきかっとないのたいの目がかいて、レインス次の見違いのた</li> <li>(4) 次にしたいろく、ないの見かいてきかった。</li> <li>(4) 次にしたいろくないのしたいの意味がにないる。</li> <li>(4) 次にしたいろくないのしたいろくないのことのないので、たいのしたいの意味がにないる。</li> <li>(4) 次にしたいろくないのしたいろくないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないのことのないの</li></ul>	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
Lucical/Add/regic (Lucical/Add/regic (Lucical/Add/reg	(3)設定した揚力係数の適用性の確認	(3) 設定した揚力係数の適用性の確認	(3)設定した揚力係数の適用性の確認	
$ \begin{aligned} C_{AA} & z B p (x)_{A} & (x) B (x)_{A} & (x) A z z z z z z z z z z z z z z z z z z $	地面における揚力係数 $C_L$ と見附面積 a の積 $C_L$ a が,飛行定数	第 5.1-1 表における C _L a (実測値) が竜巻における物体の飛散	地面における揚力係数 C _L と見附面積 a の積 C _L a が,飛行定数	
Ga ( qmll) $\Delta c = hard c = hard$	C _D A/m と同類の C _D A で代用できることについて,第2 表における	解析に適用可能であることについて、レイノルズ数の観点から確	C _D A/m と同類のC _D A で代用できることについて,表2におけるC _L a	
5.1 Er over, 1.4 / $J$ /2.4 weight object over, 1.4 / $J$ /2.4 weight object over, 1.4 / $J$ /2.4 weight over, 2.4 weight over,	C _L a(実測値)が竜巻における飛来物の飛散解析に適用可能であ	認を行った。	(実測値) が竜巻における物体の飛散解析に適用可能であること	
<ul> <li>高度の含えな()の実験でのレイノムズ葉はしば用きの信頼()</li> <li>高し11度の含えな()の実験ではなしてんべ葉菜()</li> <li>高し11度の含えな()の実験ではなしてんべ葉菜()</li> <li>ここで、実験の自動車()の点()、()、()、()、()、()、()、()、()、()、()、()、()、(</li></ul>	ることについて、レイノルズ数の観点から確認を行う。		について、レイノルズ数の観点から確認を行う。	
につくせたり、10 から10 のオ・グ・ドあら、価格価格価格につくついのかけ、グ・ため、ここの、実物の目離市 0.642 Bart (日本) 10 ~ 10 0.642 Bart (長本) 10 0.642 Bart (日本) 10 0.642 Bart (10 0.644 Bart (10	第2 表の各文献中の実験でのレイノルズ数Re は同表の備考欄	第5.1-1表の各文献中の実験におけるレイノルズ数は、同表の	表2の各文献中の実験でのレイノルズ数Re は同表の備考欄に	
ここで、素助の自転用のないためにたきしたフレースなるたし、 高くないまし、ては気酸なの面白し面のしたらしたフレースなるために、 高くないまし、ては気酸なの面白し面のしたらした。 高くないまし、ては気酸なの面白し面のした。 高くないまし、ては気酸なの面白し面のした。 高くないまし、ては気酸なの面白し面のした。 ないたいためであり、このような物ななれている。 本数におして業者な料解かないことが確認されている。 本数におして業者な料解かないことが確認されている。 本数におして業者な料解かないことが確認されている。 本数にないためであり、このような物ななれている。 本数にないためであり、このような物ななれている。 本数にないためであり、このような物ななれている。 本数にないためであり、このような物ななれている。 本数にないためであり、このような物ななれている。 本数にないためできから、このような物ななれている。 本数にないためできから、このような物ななれている。 本数にないためできから、このような物ななれている。 本がなないためできから、このような物ななれている。 本なななれていたいためできか。 たいたいためでもか。 たいためでから、このような物ななれていたいためでもか。 本がなないためでから、 たいためでからか、このような物ななれていたいためできか。 本がなないためでから、 本がなないためできから、このような物ななれていたいためでもか。 本がなないためでから、 本がなないためできか。 たいためでから、 たいためでから、 たいためでから、 本がなないためでから。 本がなないためでから、 本がなないためでから。 本がなないためでから、 本がなないためでから。 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないためでから、 本がなないたかたかでか。 本がなないたかでかた。 本がなないためでから、 本がなないたかでかた。 本がなないたかでから、 本がなないたかでかた。 本がなないたかでから、 本がなないたかでかた。 本がなないたかでかたか。 本がなないたかでかた。 本がなないたかでかたいでか。 本がなないたかでから、 本がなないたかでかたかでか。 本がないたかでから、 本がなないたかでかたかでか。 本がないたかでかたかでかたかでか。 本がないたかでかたかでかたかでか。 本がななれていたかでかたかから、 本がなないたかでかたかから、 本いでかたかでかたかでか。 本いでかたかでかたかでかたかでからかいでかたかでかたいでかたかでかたかでかたかでかたかです。 本いででかたかでかたかかでかたかでかたかでかたかでかたかでかたかでかたかでかたかで	に示すとおり, 10 ⁴ から 10 ⁶ のオーダーにある。	備考欄に示すとおり、10 ⁴ ~10 ⁶ の範囲にある。	示すとおり, 10 ⁴ から 10 ⁶ のオーダーにある。	
<ul> <li>              カン・ストナーでは現金を300mh(10m/2) かっし200 mp(10m/2) おうし20             で成立たち、ひては現金を300mh(10m/2) についたした。              マロン・スタン・スタン・スタン・スタン・スタン・スタン・スタン・スタン・スタン・スタ</li></ul>	ここで, 実物の自動車 (Dodge Dart:長さ 16.7 ft. ,幅 5.8 ft.,	ここで,実物の自動車(Dodge Dart : 長さ 16.7ft.,幅 5.8ft.,	ここで, 実物の自動車 (Dodge Dartの諸元 : 長さ16.7 ft. ,	
<ul> <li>注文変化をセレイノルス数の影響を悪くな壊壊、回転出を塗り、「変化をせてレイノルズ数の影響を調べたは壊、回想な多な月谷</li> <li>自該なが自じて繁美な影響がないことが確認されている「□」、</li> <li>認知が加速者が完全にないためであり、このような無いをもないなる。</li> <li>一方、円井周りの説化のように認識式が重加にためる場合についてない</li> <li>「カ、円井周りの説化のように認識式が重加にためる場合については、資生は用にすったが知られている。</li> <li>一方、円井周のの説化のように認識式が重加にためる場合については、資生は用にすったが知られている。</li> <li>一方、円井周のの説化のように認識式が重加にためる場合については、資生は用にすったが知られている。</li> <li>二方、円井周のの説化のように認識式が重加にためる場合については、資生は用にすったが知られている。</li> <li>二方、円井周のの説化のように認識式が重加にためる場合については、資生は用にすったななどのためであり、このような無いを考示する立方が知られている。</li> <li>一方、円井周のの説化のように認識式が重加にためる場合については、資生は用にすったかないる。</li> <li>二方のビナは10月日の説化のまたがないると考えられる。</li> <li>一方、円井周のの説化のようにないると考えられる。</li> <li>一方、円井周のの説化のように認識式が重加にためる場合については、資生は10月日の説化のまたがないる。</li> <li>二方のビナは10月日の説化のまたがないるとさかないろいろ。</li> <li>二方のビナは10月日の説化のまかないろ。</li> <li>二方のビナは10月日の説化のまたがないる。</li> <li>二方のビナは10月日の説化のまかないろいままま</li> <li>二方のビナは10月日の説化のまかないろ。</li> <li>二方のビナは10月日の説化のまかないろいろ。</li> <li>二方のビナは10月日の説化のまかないろいろ。</li> <li>二方のビナは10月日の説化のまかないろいまま</li> <li>二方のビナは10月日の説化のまかないろいまま</li> <li>二方のビナは10月日の説化のまかないろいまま</li> <li>二方のビナビナム2とが知られている。</li> <li>二方のビナム2日のパイランマイルズ数は10日のドナム20日のパイブルになる100日</li> <li>二日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルののに</li> <li>二日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのな数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日のパイブルのマス数は10日の(10日)</li> <li>二日の「イブルのマス30日(10日)</li> <li>二日の「イブルのマス30日(10日)</li> <li>二日の「イブルのマス30日(10日)</li> <li>二日の(10日)</li> <li>二日の(10日)</li> <li>二日の(10日)</li> <li>二日の(10日)</li> <li>二日の(10日)</li> <li>二日の(10日)</li> <li>二日の(10日)</li> <li>二日の(10日)</li> <li>二日の(10日)</li> <li>二日の(10日)</li></ul>	高さ4.3 ft.) では風速を30 mph(13m/s)から120 mph(54m/s)	高さ4.3ft.) では風速を30mph(13m/s)~120mph(54m/s)ま	幅5.8 ft., 高さ4.3 ft.) では風速を30 mph (13m/s) から120	
(象に対して類音が響致ないことが確認されている ¹⁹⁹ 、これ 点になせ、「類面点が物体角帯等に固定されてレイノルズ数にほとんど依示 ないためであり、このような物体を有する立方体等について もレイルズ数依存性はないものと考えられる。 一方、円柱用りの液化のように刻風が物面上にある場合につ マノルズ数依存性はないものと考えられる。 一方、円柱用りの液化のように刻風が病面上にある場合につ マノルズ数依存性はないものと考えられる。 一方、円柱用りの液化のように刻風が病面上にある場合につ マノルズ数依存性はないものと考えられる。 一方、円柱用りの液化のように刻風が病面上にある場合につ マノルズ数依存性はないものと考えられる。 一方、円柱用りの液化のように刻風が病面上にある場合につ マノルズ数依存性はないものと考えられる。 一方、円柱用りの液化のように刻風が病面上にある場合につ マノルズ数依存性はないものと考えられる。 一方、円柱用りの液化のように刻風が病面上にある場合につ マノルズ数依存性はないものと考えられる。 一方、円柱用りの液化のように刻風が病面上にある場合につ マノルズ数なが中かしたのと考えられる。 一方、円柱用りの液化のように刻風が病面上にある場合につ マンは、素よし、相に示すようにマイノルズ数 (あ)、方気体(考)、(本) ないためであり、これに、到面」が伸出しためで使した。(本) 定は、素は、(本)、(本)、(本)、(本)、(本)、(本)、(本)、(**********	まで変化させてレイノルズ数の影響を調べた結果, 風速は各空力	で変化させてレイノルズ数の影響を調べた結果、風速は各空力係	mph(54m/s)まで変化させてレイノルズ数の影響を調べた結果,	
は、創催点が始後含音楽に関語されてレイノルズ数ににとしなど、 存しないためであり、このような特性を有すな立方体等に向すされてレイノルズ数 作しないためであり、このような特性を有すな立方体等についても、 かためであり、このような特性を有する立方体等についても、 クレベルズ数な存住はないためと考えられる、 一方、円柱周りの成れのように創肥が知道にしたる場合については、 市ち、一日起きのの就たなまたとならた。 いては、着はまた示すようにレイノルズ数な存住はないためと考えられる、 一方、円柱周ものがはたなったう。 本が移動し、机力常数率が変化することがいたれてのと考えられる、 一方、円柱周ものがはたなったう。 本のが生たがたいても、 本のが生たがたいても、 本のが生たがたいても、 本のが生たがたいても、 本のが生たがたいても、 本のが生たがたいても、 本のが生たがたいても、 本のが生たがたいても、 本のが生たがたいても、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のがたいでも、 本のが生たがたいでも、 本のが生たがたいでも、 本のがたいでも、 本のが生たがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のがたいでも、 本のかいたいでも、 本のかいでも、 本のかいでも、 本のがたいでも、 本のかいたいでも、 本のかいでも、 本のかいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでたいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいでたいたいたいでも、 本のかいたいでも、 本のかいたいでも、 本のかいたいたいたいでも、 本のかいたいでも、 本のかい	係数に対して顕著な影響がないことが確認されている(16)。これ	数に対して顕著な影響がないことが確認されている(15)。これは,	風速は各空力係数に対して顕著な影響がないことが確認されて	
<ul> <li>         éLoxiv.sov.boj. 20.3 うた料性を有するで方体等について bu イノルズ数数存性はないものと考えられる。        </li></ul>	は, 剥離点が物体角部等に固定されてレイノルズ数にほとんど依	剥離点が物体角部等に固定されてレイノルズ数にほとんど依存し	いる(16)。これは, 剥離点が物体角部等に固定されてレイノルズ数	
5.レイルベス数な存住はないものと考えられる。イルベス数な存住はないものと考えられる。体等についてもレイルへ次数な存住されいものと考えられる。一方、円柱周りの意味のようび通識なが自体にある場合についてあ、クレイルベス数な存住されている。のよう、円柱周りの意味のようにと利用へな数な存住されている。ー方、円柱周りの意味のようび通識なが自体にある場合についてあ、なり、用体用のしていた。ー方、円柱周りの意味のようび通識なが自体によるる場合についてあ、なりたり、一方、円柱周りの意味のように、通識なが自体にないていた。2. 点の DFM の用住の実得よ気にレイルベス数 & が変化することが知られている。第ビバス 第21 に一個に示すようにレイルベス数な存住されている。第ビス教養化で得られたものであり、電管中の円柱次見来は熟ま!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	存しないためであり、このような特性を有する立方体等について	ないためであり、このような特性を有する立方体等についてもレ	にほとんど依存しないためであり,このような特性を有する立方	
一方、甲杆則のの就れのとうに利用はが用面上にある場合についたけ、用料助りの激化のとうに利用はが用面上にある場合についたけ、第 14 図に示すようにレイノルズ数 ko が変化すると、 が変化すると、が知られている。第ー方、甲杆則のの就れのとうに利用はが用面上にある場合についたけ、第 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、 (本)、	もレイノルズ数依存性はないものと考えられる。	イノルズ数依存性はないものと考えられる。	体等についてもレイノルズ数依存性はないものと考えられる。	
いては、第 14 図に示すようにレイノルズ数 Re が変化すると、 料解点が移動し、抗力係数等が変化することが知られている。会 和解点が移動し、抗力係数等が変化することが知られている。会 和解点が移動し、抗力係数等が変化することが知られている。会 和解点が移動し、抗力係数等が変化することが知られている。会 本が移動し、抗力係数等が変化することが知られている。会 本が移動し、抗力係数等が変化することが知られている。会 本が移動し、抗力係数等が変化することが知られている。会 本が移動し、抗力係数等が変化することが知られている。会 本が移動し、抗力係数等が変化することが知られている。会 なるであったいたい。 なりたいの気気をして、 ないたいの気が、 ないたいの気気をして、 ないたいの気力レイノルズ数は Reed、0.x10 ⁶ 後 セイノルズ数値 Reed、0.x10 ⁶ 後 セイノルズ数値 Reed、0.x10 ⁶ 後 セロッチ研究所分成子型に行めの吹出式開放型風洞(吹 セージェンス数条件で得られたものと考えられる(例えば、相対風速 なの面谷 0.1m のバイブのレイノルズ数は Reed、0.x10 ⁶ 後 セロッチ研究所分成子型に行めの吹出式開放型風洞(吹 セージェース 電力中央研究所教養子型に内の吹出式開放型風洞(吹 セージェース 電力中央研究所教養子型に内の吹出式開放型風洞(吹 セージェース 電力中央研究所教養子型に内の吹出式開放型風洞(吹 セージェース 電力中央研究所教養子型に内の吹出式開放型風洞(吹出ージェース 電力・単気研究所の気候は、4000mm×検型し、000mm それたりでないる。 田口の黒洞球験と電力中央研究所の風洞球験には、レイノル 本数条件に大きな違いがあるが、第 15 図に示すとおり風洞球験 で得られた日本語/ASMに顕著な相応は認められない。 以上より、地面における各物体のあ方、第 15 図に示すとおり風洞球験 ご報が行われている。 EPAT の風洞球験と電力中央研究所の風洞球験には、レイノル 本数条件に大きな違いがあるが、第 51 図に示すとおり風洞球験 ご報が行わたている。 EPAT の風洞球験と電力中央研究所の風洞球験にはかるるがのあるが、第 51 1-5 図に示すとおり、風洞 な数条件に大きな違いがあるが、第 51 回転者がない。 以上より、地面における各物体の最力係数に、と見用面積ia on Q c にレイノルズ数にほとんど依存せず、第 2 式に示す風洞試験 清味能量づくモデル化は要当であると考えられる。	一方, 円柱周りの流れのように剥離点が曲面上にある場合につ	一方、円柱周りの流れのように剥離点が曲面上にある場合につ	一方, 円柱周りの流れのように剥離点が曲面上にある場合につ	
新羅点が移動し、抗力係数等が変化することが知られている。第 2 素の ERI の目性の見漏試験造業 ^{(1)の} は Re-1.3×10 ⁽⁰ の高レ ノルズ数条件で得られたちのであり、竜者中の目性状の承珠物のレイノルズ数 第42かる数余件で得られたちのであり、竜者中の目性状の承珠物のレイノルズ数 (2)かな数条件で得られたちのであり、竜者中の目性状の承珠物のレイノルズ数 (2)かな数条件で得られたちのであり、竜者中の目性状の承珠物のレイノルズ数 (2)かな数条件で得られたちのであり、竜者中の目性状の承珠物のレイノルズ数 (2)かな数条件で得られたちのであり、竜者中の目性状のみ珠物のレイノルズ数 (2)かな数条件で得られたちのであり、竜者中の目性状のみ珠物のレイノルズ数 (2)かな数条件で得られたちのであり、竜者中の目性状のみ珠物のレイノルズ数 (2)かな数条件で得られたちのであり、竜者中の目性状のみ珠物のレイノルズ数 (2)かな数条件で得られたちのであり、竜者中の目性状のみ珠物のレイノルズ数 (2)かな数条件で得られたちのであり、竜者中の目性状のみ珠物の (2)かく力ルズ数(2)かな数 (2)かかのたちかでのまり、竜者中の目性状のみ状物のかれ、(2)かんのな珠 (2)かなかれ、(2)かな数 (2)かなの世俗のかいに気間が数型風洞(秋) (2)かくすの世イノルズ数(2)かられ(2)(1)かなの (2)かな数条件で得られたちのであり、竜者中の明性状のみ珠物 (2)かく力ルズ数(2)かな数 (2)かく力ルズ数(2)かる(2)か(2)か(2)かかのみ、(2)か(2)か(2)か(2)か(2)か(2)か(2)か(2)か(2)か(2)か	いては, 第 14 図に示すようにレイノルズ数 Re が変化すると,	いては,第5.1-4図に示すように,レイノルズ数が変化すると剥	いては, 図 14 に示すようにレイノルズ数 Re が変化すると, 剥離	
2 素の URL の用抗の風洞試験結果 ¹⁰⁰ は Re=1.3×10 ⁶ の高レイ ノルズ数条件で得られたものであり、電差中の円柱状の残未物 レイノルズ数条件で得られたものであり、電差中の円柱状の残未物 レイノルズ数条件で得られたものであり、電差中の円柱状の残未物 レイノルズ数条件で得られたものであり、電差中の円柱状の残未物 レイノルズ数条件で得られたものであり、電差中の円柱状の残未物 レイノルズ数条件で得られたものであり、電差中の円柱状の残未物 レイノルズ数条件で得られたものであり、電差中の円柱状の残未物 レイノルズ数条件で得られたものであり、電差中の円柱状の残未物 レイノルズ数条件で得られたものであり、電差中の円柱状の残未物 レイノルズ数条件で得られたものであり、電差中の円柱状の残未物 レイノルズ数、相容 (加くすかしイノルズ数、18 cm(.0×10 ⁶ 和封風速 2015)ー1表のEPRIの円柱の風洞試験結果 ¹⁰⁰ はRe=1.3×10 ⁶ の高レ イノルズ数条件で得られたものであり、電差中の円柱状の残未物 レイノルズ数、14 cm(.0×10 ⁶ 和封風速 2015)URL の用柱の風洞試験結果 ¹⁰⁰ はRe=1.3×10 ⁶ の高レ ストー ストーズ数 ストーズ数条件で得られたものであり、電差中の円柱状の残未物 ストーズ数 ストーズ ストーズ数 第1 cm(.1×10 ¹⁰ 和封風速 2015)ー1表のEPRI の用木の風洞試験結果 ¹⁰⁰ はRe=1.3×10 ⁶ の高レ ストーズ数 ストーズ数 ストーズ ストーズ数 ストーズ ストーズ数 ストーズ ストーズ数 ストーズ ストーズ数 ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース ストース <td>剥離点が移動し, 抗力係数等が変化することが知られている。第</td> <td>離点が移動し, 抗力係数等が変化することが知られている。第5.1</td> <td>点が移動し、抗力係数等が変化することが知られている。表2の</td> <td></td>	剥離点が移動し, 抗力係数等が変化することが知られている。第	離点が移動し, 抗力係数等が変化することが知られている。第5.1	点が移動し、抗力係数等が変化することが知られている。表2の	
	2 表の EPRI の円柱の風洞試験結果 ⁽¹⁶⁾ は Re=1.3×10 ⁶ の高レイ	-1表のEPRIの円柱の風洞試験結果 ⁽¹⁵⁾ はRe=1.3×10 ⁶ の高レ	EPRI の円柱の風洞試験結果 ⁽¹⁶⁾ は Re=1.3×10 ⁶ の高レイノルズ数	
レイノルズ数範囲に入るものと考えられる(例えば、相対風速 92m/s の直径 0.1m のバイブのレイノルズ数範囲に入るものと考えられる(例えば、相対風速 92m/s の直径 0.1m のバイブのレイノルズ数は6×0.0×10* 29m/s の直径 0.1m のバイブのレイノルズ数は6×10°程度)。また、 電力中央研究所我孫子地区内の吹出式開放型風洞(欧田コ)法:高さ 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~16.5m/s 2.5m×福 1.6m、風速:3.0m/s~10.5m/s 2.5m×福 1.6m、風速:3.0m/s~10.5m/s 2.5m×福 1.6m、風速:3.0m/s~10.5m/s 2.5m×福 1.6m、風速:3.0m/s~10.5m/s 2.5m×福 1.6m、風速:3.0m/s~10.5m/s 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×福 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.5m×G 2.	ノルズ数条件で得られたものであり, 竜巻中の円柱状の飛来物の	イノルズ数条件で得られたものであり、竜巻中の円柱状の飛来物	条件で得られたものであり、竜巻中の円柱状の飛来物のレイノル	
92m/s の直径 0.1m のバイブのレイノルズ数は Re=6.0×10 ⁵ 程 度)。また、電力中央研究所我孫子地区内の吹出式開放型風洞(吹) 出口寸法:高さ2.5m×幅 1.6m、風速:3.0~16.5m/s)において 出口寸法:高さ2.5m×幅 1.6m、風速:3.0~16.5m/s)において 5.0m/低 1.6m、風速:3.0~16.5m/s)においても、 定(地面)近くに設置した円柱 (直径 100mm×模型長 1000mm)を対象として、Re=3.0×10 ⁴ 色和と用な 7.0m/1×10 ⁵ 程度までの場力係数の測定試験が行われている。 FRI の風測試験に置力中央研究所の風洞試験には、レイノル ズ数条件に大きな違いがあるが、第 15 回に示すとおり風洞試験 で得られた円柱揚力係数に顕著な相遠は認められない。 以上より、地面における各物体の揚力係数で」と見付面積:aの 積 c,a はレイノルズ数にほとんど依存せず、第 2.5m×価 1.6m、風速:3.0~16.5m/s)においても、 EVRI の風測試験と電力中央研究所の風洞試験には、レイノル ズ数条件に大きな違いがあるが、第 5.1~5回に示すとおり、風洞 試験結果に基づくモデル化は妥当であると考えられる。 400 201 201 201 201 201 201 201 2	レイノルズ数範囲に入るものと考えられる(例えば、相対風速	のレイノルズ数範囲に入るものと考えられる(例えば、相対風速	ズ数範囲に入るものと考えられる (例えば, 相対風速 92m/s の直	
度)。また、電力中央研究所我孫子地区内の吹出式開放型風洞(吹 出口寸法:高さ2.5m×幅1.6m、風速:3.0~16.5m/s)において も、壁(地面)近くに設置した円柱(値径100mm×模型長1000mm) を対象として、Re=3.0×10 ⁶ から1.0×10 ⁵ 程度までの場方係数 の測定試験が行われている。電力中央研究所我孫子地区内の吹出式開放型風洞(吹出口寸法: 高さ2.5m×幅1.6m、風速:3.0~16.5m/s)においても、壁(地 面)近くに設置した円柱(値径100mm×模型長1000mm)を対象として、Re=3 いかから1.0×10 ⁵ 程度までの場方係数 いかっ1.0×10 ⁵ 程度までの場方係数 で得られた円柱場力係数に顕著な相違は認められない。 以上より、地面における各物体の場力係数 $C_1$ と見附面積 a の 積 $C_1$ はレイノルズ数にほとんど依存せず,第 2 表に示す風洞試験結果に基づくモデル化は妥当であると考えられる。電力中央研究所我孫子地区内の吹出式開放型風洞(吹出口寸法: 高さ2.5m×幅1.6m、風速:3.0~05,5m/s)においても、壁(地 面)近くに設置した円柱(値径100mm×模型長1000mm)を対象と して、Re=3.0×10 ⁶ から1.0×10 ⁵ 程度までの場方係数の測定試 験が行われている。EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル ズ数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞 試験で得られた円柱場力係数に近著な相違は認められない。 以上より、地面における各物体の場力係数 $C_1$ と見付面積 a の 積 $C_1$ はレイノルズ数にほとんど依存せず,第 2 表に示す風洞試験 調議線編果に基づくモデル化は妥当であると考えられる。電力中央研究所我系子地区内の吹出式開放型風洞(吹出口寸法: 高さ2.5m×幅 1.6m、風速:3.0~06,5m/s)においても、壁(地 面)近くに設置した円柱(値径100mm×模型長1000mm)を対象と して、Re=3.0×10 ⁶ から1.0×10 ⁵ 程度までの場力係数の測定試 数が行われている。EPRI の風洞試験には、レイノル ズ数条件に大きな違いがあるが、第 5.1-5 図に示すとおり風洞試験にはレイノル ズ数条件に大きな違いがあるが、第 5.1-5 図に示すとおり風洞試験にはレイノル ス数条件に大きな違いがあるが、第 5.1-1表に示す風洞試験 試験結果に基づくモデル化は妥当であると考えられる。EPRI の風洞試験に置いつえる の人前の教の(2.2.2.見)中面積 a の 積 $C_1$ はレイノルズ数にほとんど依存せず,第 2 に示す風洞試験 結果に基づくモデル化は妥当であると考えられる。第 本日本は法ろ各物体の場力係数 $C_1$ 、2.2.Pim面積 a の 積 $R_1$ はレイノルズ数にほとんど依存せず, 表 2.1.Cm→Lm」 説職 記	92m/s の直径 0.1m のパイプのレイノルズ数は Re=6.0×10 ⁵ 程	92m/sの直径0.1mのパイプのレイノルズ数は6×10 ⁵ 程度)。また,	径 0.1m のパイプのレイノルズ数は Re=6.0×10 ⁵ 程度)。また,	
出口 寸法: 高さ 2.5m×輻 1.6m, 風速: 3.0~16.5m/s) において 1.6m, 風速: 3.0m/s~16.5m/s) においても, 壁(地面) 近くに 2.5m×幅 1.6m, 風速: 3.0~16.5m/s) において 4. 壁(地面) 近くに 2.5m×幅 1.6m, 風速: 3.0~16.5m/s) に 5mm 24mm 24mm 24mm 24mm 24mm 24mm 24mm	度)。また、電力中央研究所我孫子地区内の吹出式開放型風洞(吹	電力中央研究所の吹出式開放型風洞(吹出ロ寸法:高さ 2.5m×幅	電力中央研究所我孫子地区内の吹出式開放型風洞(吹出口寸法:	
も、壁(地面)近くに設置した円柱(直径 100mm×模型長 1000mu) を対象として、Re=3.0×10 ⁴ から 1.0×10 ⁵ 程度までの場力係数 の測定試験が行われている。 EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル ズ数条件に大きな違いがあるが、第 15 図に示すとおり風洞試験 で得られた円柱揚力係数に顕著な相違は認められない。 以上より、地面における各物体の揚力係数 C_ と見附面積 a の 積 C ₁ a はレイノルズ数にほとんど依存せず、第 2 表に示す風洞 試験結果に基づくモデル化は妥当であると考えられる。 他工作の低洞試験にはレイノルズ数にほどんど依存せず、素 2 たいです風洞 試験結果に基づくモデル化は妥当であると考えられる。 他工作の低洞試験にはレイノルズ数にほどんど依存せず、素 2 たいです風洞 ご供加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加	出口寸法:高さ 2.5m×幅 1.6m, 風速:3.0~16.5m/s) において	1.6m, 風速:3.0m/s~16.5m/s)においても, 壁(地面) 近くに	高さ 2.5m×幅 1.6m, 風速 : 3.0~16.5m/s)においても, 壁(地	
を対象として、Re=3.0×10 ⁴ から 1.0×10 ⁵ 程度までの揚力係数 の測定試験が行われている。×10 ⁴ ~1×10 ⁵ 程度までの揚力係数の測定試験が行われている。して、Re=3.0×10 ⁴ から 1.0×10 ⁵ 程度までの揚力係数の測定試 験が行われている。EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル ズ数条件に大きな違いがあるが、第 15 図に示すとおり風洞試験 で得られた円柱揚力係数に顕著な相違は認められない。 以上より、地面における各物体の揚力係数 C_ と見附面積 a の 積 C ₁ a はレイノルズ数にほとんど依存せず、第 2 表に示す風洞 詞試験結果に基づくモデル化は妥当であると考えられる。E PR I の風洞試験と電力中央研究所の風洞試験には、レイノル ズ数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞 試験で得られた円柱揚力係数に顕著な相違は認められない。 以上より、地面における各物体の揚力係数 C_ と見附面積 a の 程 C ₁ aはレイノルズ数にほとんど依存せず、第 2 表に示す風洞試験 詞試験結果に基づくモデル化は妥当であると考えられる。Uて、Re=3.0×10 ⁴ から 1.0×10 ⁵ 程度までの揚力係数の測定試 験が行われている。EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル ズ数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞 試験で得られた円柱揚力係数に顕著な相違は認められない。 以上より、地面における各物体の揚力係数 C_ と見附面積 a の 代 a はレイノルズ数にほとんど依存せず、第 2 表に示す風洞 詞試験結果に基づくモデル化は妥当であると考えられる。EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル ズ数条件に大きな違いがあるが、図 15 に示すとおり風洞試験で 得られた円柱揚力係数に顕著な相違は認められない。 以上より、地面における各物体の揚力係数 C_ と見附面積 a の 者 C ₁ a はレイノルズ数にほとんど依存せず、第 2 表に示す風 洞試験結果に基づくモデル化は妥当であると考えられる。以上なり、地面における各物体の湯力係数 C_ と見付面積 a の 者 2 に示す風洞試験 結果に基づくモデル化は妥当であると考えられる。	も, 壁 (地面) 近くに設置した円柱 (直径 100mm×模型長 1000mm)	設置した円柱(直径100mm×模型長1000mm)を対象として, Re=3	面)近くに設置した円柱(直径 100mm×模型長 1000mm)を対象と	
の測定試験が行われている。験が行われている。EPRI の風洞試験と電力中央研究所の風洞試験には、レイノルEPRI の風洞試験と電力中央研究所の風洞試験には、レイノルズ数条件に大きな違いがあるが、第15 図に示すとおり風洞試験ズ数条件に大きな違いがあるが、第5.1-5 図に示すとおり、風洞び得られた円柱揚力係数に顕著な相違は認められない。ご験で得られた円柱揚力係数に顕著な相違は認められない。以上より、地面における各物体の揚力係数CLと見附面積aの以上より、地面における各物体の揚力係数CLと見付面積aの積 C ₁ a はレイノルズ数にほとんど依存せず、第2表に示す風洞記験結果に基づくモデル化は妥当であると考えられる。減験結果に基づくモデル化は妥当であると考えられる。洞試験結果に基づくモデル化は妥当であると考えられる。	を対象として, Re=3.0×104 から 1.0×105 程度までの揚力係数	×10 ⁴ ~1×10 ⁵ 程度までの揚力係数の測定試験が行われている。	して, Re=3.0×10 ⁴ から 1.0×10 ⁵ 程度までの揚力係数の測定試	
EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル ズ数条件に大きな違いがあるが、第 15 図に示すとおり風洞試験 で得られた円柱揚力係数に顕著な相違は認められない。 以上より、地面における各物体の揚力係数 $C_L$ と見附面積 a の 積 $C_La$ はレイノルズ数にほとんど依存せず、第 2 表に示す風洞 試験結果に基づくモデル化は妥当であると考えられる。EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル ズ数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞 、数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞 、数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞 、数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞 、数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞 、数条件に大きな違いがあるが、第 5.1-5 図に示すとおり、風洞 、数条件に大きな違いがあるが、図 15 に示すとおり風洞試験で (4られた円柱揚力係数に顕著な相違は認められない。 以上より、地面における各物体の揚力係数 $C_L$ と見附面積 a の 積 $C_La$ はレイノルズ数にほとんど依存せず、第 5.1-1 表に示す風洞試験 結果に基づくモデル化は妥当であると考えられる。EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル ズ数条件に大きな違いがあるが、図 15 に示すとおり風洞試験で (4られた円柱揚力係数に顕著な相違は認められない。 以上より、地面における各物体の揚力係数 $C_L$ と見附面積 a の 積 $C_La$ はレイノルズ数にほとんど依存せず、第 2.1-1 表に示す風洞試験 結果に基づくモデル化は妥当であると考えられる。	の測定試験が行われている。		験が行われている。	
ズ数条件に大きな違いがあるが、第15 図に示すとおり風洞試験 で得られた円柱揚力係数に顕著な相違は認められない。 以上より、地面における各物体の揚力係数 C_ と見附面積 a の 積 C_a はレイノルズ数にほとんど依存せず、第 2 表に示す風洞 試験結果に基づくモデル化は妥当であると考えられる。ズ数条件に大きな違いがあるが、図 15 に示すとおり風洞試験で 得られた円柱揚力係数に顕著な相違は認められない。 以上より、地面における各物体の揚力係数 C_ と見附面積 a の て La はレイノルズ数にほとんど依存せず、第 5.1-1 表に示す風 洞試験結果に基づくモデル化は妥当であると考えられる。ズ数条件に大きな違いがあるが、図 15 に示すとおり風洞試験で 得られた円柱揚力係数に顕著な相違は認められない。 以上より、地面における各物体の揚力係数 C_ と見附面積 a の 積 C_a はレイノルズ数にほとんど依存せず、表 2 に示す風洞試験 結果に基づくモデル化は妥当であると考えられる。	EPRI の風洞試験と電力中央研究所の風洞試験には、レイノル	EPRIの風洞試験と電力中央研究所の風洞試験にはレイノル	EPRI の風洞試験と電力中央研究所の風洞試験には, レイノル	
で得られた円柱揚力係数に顕著な相違は認められない。 以上より,地面における各物体の揚力係数 C _L と見附面積 a の 積 C _L a はレイノルズ数にほとんど依存せず,第 2 表に示す風洞 試験結果に基づくモデル化は妥当であると考えられる。	ズ数条件に大きな違いがあるが, 第15 図に示すとおり風洞試験	ズ数条件に大きな違いがあるが、第5.1-5図に示すとおり、風洞	ズ数条件に大きな違いがあるが,図15に示すとおり風洞試験で	
以上より,地面における各物体の揚力係数 C _L と見附面積 a の 積 C _L a はレイノルズ数にほとんど依存せず,第 2 表に示す風洞 試験結果に基づくモデル化は妥当であると考えられる。  以上より,地面における各物体の揚力係数 C _L と見附面積 a の て _L a はレイノルズ数にほとんど依存せず,第 5.1-1 表に示す風 洞試験結果に基づくモデル化は妥当であると考えられる。  以上より,地面における各物体の揚力係数 C _L と見附面積 a の 積 C _L a はレイノルズ数にほとんど依存せず,表 2 に示す風洞試験 結果に基づくモデル化は妥当であると考えられる。	で得られた円柱揚力係数に顕著な相違は認められない。	試験で得られた円柱揚力係数に顕著な相違は認められない。	得られた円柱揚力係数に顕著な相違は認められない。	
積 C _L a はレイノルズ数にほとんど依存せず,第2表に示す風洞 C _L aはレイノルズ数にほとんど依存せず,第5.1-1表に示す風 積 C _L a はレイノルズ数にほとんど依存せず,表2に示す風洞試験 減験結果に基づくモデル化は妥当であると考えられる。	以上より,地面における各物体の揚力係数 C _L と見附面積 a の	以上より,地面における各物体の揚力係数C _L と見付面積 a の積	以上より,地面における各物体の揚力係数 C _L と見附面積 a の	
試験結果に基づくモデル化は妥当であると考えられる。 洞試験結果に基づくモデル化は妥当であると考えられる。 結果に基づくモデル化は妥当であると考えられる。	積 C _L a はレイノルズ数にほとんど依存せず, 第 2 表に示す風洞	C _L aはレイノルズ数にほとんど依存せず,第5.1-1表に示す風	積 C _L a はレイノルズ数にほとんど依存せず,表2に示す風洞試験	
	試験結果に基づくモデル化は妥当であると考えられる。	洞試験結果に基づくモデル化は妥当であると考えられる。	結果に基づくモデル化は妥当であると考えられる。	



炉	備考
<ul><li>の流れ</li></ul>	
$= 2.0 \times 10^{\circ}$	
CH Rep - 1.30 x 10 ⁶ L/d - 14.12 CH mm ² h 2.0 h/d	
験 の風洞試験 ⁽¹⁶⁾ (Re=1.3 力係数	
減衰するので, 既往の さ d の物体にかかる揚 った時に消滅すると仮	
にある物体に作用する └る。(Z:物体底面の高	
(11) 果 ^{(16) (22)} を参考に,以下	
$Z \le 3d $ (12)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	$Z = \begin{bmatrix} z - (d/2) \\ 0 \end{bmatrix} \begin{cases} (d/2 \le z \le 7d/2) \\ (7d/2 \le z) \end{cases} $ (13)		
また,以下において,塊状物体(自動車),柱状物体(角柱,円	また、以下において、塊状物体(自動車)、柱状物体(角柱及び	また,以下において,塊状物体(自動車),柱状物体(角柱,円	
柱),板状物体(平板)の風洞試験結果を踏まえ,物体高さdの	円柱)及び板状物体(平板)の風洞試験結果を踏まえ、「高さ寸法	柱),板状物体(平板)の風洞試験結果を踏まえ,物体高さdの	
物体にかかる揚力は、物体底面が地面から 3d の高度で消滅する	dの物体に働く揚力は,物体底面の高度が地面から3dとなった時	物体にかかる揚力は、物体底面が地面から 3d の高さで消滅する	
とした仮定が適切であることを確認する。	に消滅する」とした設定が適切であることを確認する。	とした仮定が適切であることを確認する。	
<ol> <li>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ol>	a. 塊状物体(自動車)の揚力の高さ依存性 自動車の揚力係数は, EPRIの風洞試験 ⁽¹⁵⁾ にて,地面及び 風洞中央(h/d≒3.5)に設置した場合にて計測されており,第5.1 -6図に, EPRIの風洞試験によって得られた揚力係数と本モデ ルにて代用した揚力係数の関係を示す。EPRIの風洞試験では 空中での自動車の姿勢は地面設置と同じ姿勢に保たれているた め,空中においても揚力係数が0とはならないが,実際に飛散す る自動車の姿勢はランダムに変化することから,平均的な揚力係 数は本モデルでの代用揚力係数に近いものと考えられる。	a. 塊状物体(自動車)の揚力の高さ依存性 自動車の揚力係数は,EPRIの風洞試験 ⁽¹⁶⁾ にて,地面及び風洞 中央(h/d≒3.5)に設置した場合にて計測されており,図 16-1 に示すように流入角(0°は正面,90°は側面に風を受ける角度) に依存した揚力係数が得られている。 また,図 16-2 にて,EPRIの風洞試験によって得られた揚力係 数と本モデルにて代用した揚力係数の関係を示す。EPRIの風洞 試験では空中での自動車の姿勢は地面設置と同じ姿勢に保たれ ているため,空中においても揚力係数がゼロとはならないが,実 際に飛来する自動車の姿勢はランダムに変化することから,平均 的な揚力係数は本モデルでの代用した揚力係数に近いものと考 えられる。	
************************************	<ul> <li> [●] 空中での揚力係数(実測値,後方支持)          </li> <li> [●] 空中での揚力係数(実測値,後方支持)         </li> <li> [●] 空中での揚力係数(実測値,後方支持)         </li> <li> [●] 空中での揚力係数(実測値,後方支持)         </li> <li> [●] 空中での揚力係数(実測値,後方支持)         </li> <li> [●] 空中での揚力係数(実測値,後方支持)         </li> <li> [●] 空中での揚力係数(実測値,後方支持)         </li> <li> [●] 空中での揚力係数(実測値,後方支持)         </li> <li> [●] 空中での揚力係数         </li> <li> [●] (15) たま 其に 作 中 本 (15)         </li> </ul>		
刀係数の流入角依存性 モテルで代用した 思力係数の間係	(又献いのを基に作成及び代用揚刀係数を加筆)	刀係数の流入角依存性 モテルで代用した 増力係数の調係	
<ul> <li>②柱状物体(角柱・円柱)の揚力の高さ依存性</li> <li>角柱の揚力係数は,電力中央研究所我孫子地区内の吹出式開放</li> <li>型風洞(吹出口寸法:高さ2.5m×幅1.6m,風速:3.0~16.5m/s)</li> <li>にて測定しており,第17 図にその結果を示す。角柱の場合,地面</li> </ul>	<ul> <li>b. 柱状物体(角柱及び円柱)の揚力の高さ依存性</li> <li>角柱の揚力係数は,電力中央研究所の吹出式開放型風洞(吹出</li> <li>ロ寸法:高さ2.5m×幅1.6m,風速:3.0m/s~16.5m/s)にて測</li> <li>定しており,第5.1-7図に示すように,地面から0.167D以上離</li> </ul>	b. 柱状物体(角柱・円柱)の揚力の高さ依存性 角柱の揚力係数は,電力中央研究所我孫子地区内の吹出式開放 型風洞(吹出口寸法:高さ2.5m×幅1.6m,風速:3.0~16.5m/s) にて測定しており,図17にその結果を示す。角柱の場合,地面か	
から 0.167D 以上離れると揚力は負となるので,正の揚力を与える	れると揚力は負となるので、正の揚力を与える本モデルの代用揚	ら 0.167D 以上離れると揚力は負となるので,正の揚力を与える本	



·炉	備考
保守的な結果となって	
こて測定しており、図	
数(図18の赤線)は実	
人さな値となうている	
本モデルで代用した揚	
×模型長 1000mm)	
何武破右来に $C_{DA} f(Z/a)/a$ プロット)	
Af(Z/d)/a=0.5f(Z/d)	
$2^{2} + 0.7 \times 14.1d^{2} + 2.0 \times 0.25\pi d^{2})/2$	
+0.7 ~ 14.10 +2.0 ~ 0.257a )/5	
d (長さ/直径=14.1より)	
本モデルで代用した揚	
習(山在 0° )の封殿	
乗 (些内 0 ) の試験 用した揚力係数(図 19	
······································	



炉	備考
揚力係数よりもおおむ	
奥行方向が長い形状で	
実際の平板に比べて揚	
の平板の揚力係数は更	
$\frac{y}{p_1}$ $\frac{c}{p_2}$ $\frac{p_3}{p_4}$ $\frac{p_5}{p_5}$	
P12 P11 P10 P9 P8 P7 h	
Fig. 2. Locations of pressure tappings.	
デルで代田した掲力区	
	・記載方針の相違
数は、風洞試験により	【柏崎 6/7, 東海第二】
なっており,物体高さd	島根2号炉は,揚力の高
5 3d の高さで消滅する	さ依存性の確認結果を
<u> </u>	記載
:向きの単位ベクトル k	
ように記述される。	
$(g-L)\mathbf{k}$	
(13)	
計質にけ阻礙法 (一字	
前鼻には陽胖伝 ( ) 足	
$\tau + \Lambda \tau$	
、 ー・ める。ただし、 $\mathbf{A}(\tau)$ は	
における加速度ベクト	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
$\mathbf{V}_{M}(\tau + \Delta \tau) = \mathbf{V}_{M}(\tau) + \mathbf{A}(\tau)\Delta \tau $ (14)	$\mathbf{X}_{\mathbf{M}}(\tau + \Delta \tau) = \mathbf{X}_{\mathbf{M}}(\tau) + \mathbf{V}_{\mathbf{M}}(\tau) \Delta \tau + \frac{\mathbf{A}(\tau) \Delta \tau^{2}}{2} $ (16)	$\mathbf{X}_{\mathbf{M}}(\tau + \Delta \tau) = \mathbf{X}_{\mathbf{M}}(\tau) + \mathbf{V}_{\mathbf{M}}(\tau) \Delta \tau + \frac{\mathbf{A}(\tau) \Delta \tau^{2}}{2} $ (15)	
$\mathbf{X}_{M}(\tau + \Delta \tau) = \mathbf{X}_{M}(\tau) + \mathbf{V}_{M}(\tau)\Delta \tau + \frac{\mathbf{A}(\tau)\Delta \tau^{2}}{2} $ (15)			
$A(\tau)$ の計算には、時刻 t= $\tau$ における風速場も必要であるが、初	$\mathbf{A}(\tau)$ の計算には、時刻 t= $\tau$ における風速場も必要であるが、初	$\mathbf{A}(\tau)$ の計算には、時刻 t= $\tau$ における風速場も必要であるが、初	
期に原点に位置する竜巻の中心が x 軸上を移動速度 V _t で移動す	期に原点に位置する竜巻の中心が x 軸上を移動速度 V _{tr} で移動す	期に原点に位置する竜巻の中心が x 軸上を移動速度 V _t で移動す	
ることを仮定しており、任意の時刻での風速場を陽的に求められ	ることを仮定しており、任意の時刻での風速場を陽的に求められ	ることを仮定しており、任意の時刻での風速場を陽的に求められ	
るため,飛来物速度τ位置を算出することができる。	るため、物体の速度及び位置を算出することができる。	るため、物体の速度τ位置を算出することができる。	
(6) 飛来物の運動方程式((13)式)に関する考察	(6) 物体の運動方程式((14)式)に関する考察	(6) 物体の運動方程式 ((13)式) に関する考察	
地上面の物体(第13図の状態A)が浮上するには、地面からの	地上面の物体(第5.1-3図A)が浮上するには、地面からの反	地面上の物体(図13の状態A)が浮上するには、地面からの反	
反力が消滅(R<0,つまりmg <fl)する条件で浮上し,浮上後は,< td=""><td>力が消滅する (R &lt; 0, つまり mg &lt; F_L)条件で浮上し,浮上後は</td><td>力が消滅 (R&lt;0, つまり mg<fl) (13)<="" td="" する条件で浮上し,="" 浮上後は,=""><td></td></fl)></td></fl)する条件で浮上し,浮上後は,<>	力が消滅する (R < 0, つまり mg < F _L )条件で浮上し,浮上後は	力が消滅 (R<0, つまり mg <fl) (13)<="" td="" する条件で浮上し,="" 浮上後は,=""><td></td></fl)>	
(13)式を成分表示した以下の飛来物の運動方程式に従って飛散す	(14)式を成分表示した以下の運動方程式に従って飛散する。	式を成分表示した以下の運動方程式に従って飛散する。	
る。 	$\frac{dV_{M,x}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{\left(V_{w,x} - V_{M,x}\right)^2 + \left(V_{w,y} - V_{M,y}\right)^2 + \left(V_{w,z} - V_{M,z}\right)^2} \times \left(V_{w,x} - V_{M,x}\right)$	$\frac{dV_{M,x}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{\left(V_{w,x} - V_{M,x}\right)^2 + \left(V_{w,y} - V_{M,y}\right)^2 + \left(V_{w,z} - V_{M,z}\right)^2} \times \left(V_{w,x} - V_{M,x}\right)$	
$\frac{dV_{M,x}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{\left(V_{w,x} - V_{M,x}\right)^2 + \left(V_{w,y} - V_{M,y}\right)^2 + \left(V_{w,z} - V_{M,z}\right)^2 \left(V_{w,x} - V_{M,x}\right)} $ (16)	(17)	(16)	
$\frac{dV_{M,y}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{(V_{w,x} - V_{M,x})^2 + (V_{w,y} - V_{M,y})^2 + (V_{w,z} - V_{M,z})^2} (V_{w,y} - V_{M,y}) $ (17)	$dV_{M_{y}} = I - C_{D}A \left[ \frac{1}{(y_{L} - y_{L})^{2}} + \frac$	$dV_{M,y} = I - C_D A \sqrt{(y_1 - y_2)^2 + (y_2 - y_2)^2 + (y_1 - y_2)^2} (y_1 - y_2)$	
$\frac{dV_{M,z}}{dV_{M,z}} = \frac{1}{2} \frac{q}{C_D A} \frac{V_{M,z}}{V_{M,z} + V_{M,z} +$	$\frac{1}{dt} = \frac{1}{2}\rho \frac{1}{m} \sqrt{(V_{w,x} - V_{M,x}) + (V_{w,y} - V_{M,y}) + (V_{w,z} - V_{M,z})} \times (V_{w,y} - V_{M,y})$	$\frac{1}{dt} = \frac{1}{2}\rho \frac{1}{m} \sqrt{(V_{w,x} - V_{M,x}) + (V_{w,y} - V_{M,y}) + (V_{w,z} - V_{M,z}) \times (V_{w,y} - V_{M,y})}$	
$dt = 2^{p} m \sqrt{v_{w,x} + M_{x}x} + (v_{w,y} + M_{y}y) + (v_{w,z} + M_{z}x) + (v_{w,z} + M_{z}y) + 2 (10)$	(18)	(17)	
	$\frac{dV_{M,z}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{(V_{w,x} - V_{M,x})^2 + (V_{w,y} - V_{M,y})^2 + (V_{w,z} - V_{M,z})^2} \times (V_{w,z} - V_{M,z}) - g + L$	$\frac{dV_{M,z}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{\left(V_{w,x} - V_{M,x}\right)^2 + \left(V_{w,y} - V_{M,y}\right)^2 + \left(V_{w,z} - V_{M,z}\right)^2} \times \left(V_{w,z} - V_{M,z}\right) - g + L$	
		(18)	
	(19)		
ここで, 飛来物速度 V _M =(V _M , x, V _M , y, V _M , z), 竜巻風速	ここで、物体速度 $V_{M}$ =( $V_{M,v}, V_{M,v}, V_{M,z}$ )、竜巻風速 $V_{w}$ =( $V_{W}$	ここで, 物体の速度 V _M =(V _M , x, V _M , y, V _M , z), 竜巻風速	
$V_{w} = (V_{w,x}, V_{w,y}, V_{w,z})$ であり,右辺第1項が流体抗力 $F_{D}$ の加速度を表	x, $V_{W,v}$ , $V_{W,z}$ )であり,右辺第1項が流体抗力 $F_{D}$ による加速度	▼ _w =(V _{w,x} , V _{w,y} , V _{w,z} )であり,右辺第1項が流体抗力 F _D の加速度を表	
しており,(18)式の右辺第3項が地面効果による揚力FLの加速度	を,(19)式の右辺第3項が地面効果による揚力FLによる加速度を	しており,(18)式の右辺第3項が地面効果による揚力F _L の加速度	
を表している。上記の式で、物体が静止している状態(上記の式	表している。上記の式で、物体が静止している状態((17)式~(19)	を表している。上記の式で、物体が静止している状態(上記の式	
(16)~(18)で飛来物速度 $V_{M}$ を 0)を仮定すると、以下の式となる。	式で物体速度 $V_{M}=0$ )を仮定すると,以下の式となる。	(16) ~(18) で物体の速度 $V_{M}$ を 0) を仮定すると, 以下の式となる。	
$\frac{dV_{M,x}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,x} $ (16')	$\frac{dV_{M,x}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,x} $ (17, )	$\frac{dV_{M,x}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,x} $ (16')	
$\frac{dV_{M,y}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,y} $ (17')	$\frac{dV_{M,y}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,y}$	$\frac{dV_{M,y}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,y}$	
$\frac{dV_{M,z}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,z} - g + L $ (18')	$\frac{a}{dV} = \frac{1}{C} A \qquad (18')$	dV = 1  C  A  (17')	
	$\frac{dv_{M,z}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,z} - g + L $ (19')	$\frac{dv_{M,z}}{dt} = \frac{1}{2}\rho \frac{C_D A}{m} \sqrt{V_{w,x}^2 + V_{w,y}^2 + V_{w,z}^2} \times V_{w,z} - g + L $ (18')	
フジタモデルでは,物体が地面上にある場合(第13図の状態A)	フジタモデルでは,物体が地面近傍にある場合(第5.1-3図A)	フジタモデルでは、物体が地面上にある場合(図13の状態A)	
では上昇速度はゼロに近く、地面で静止している飛来物が受ける	では鉛直方向の風速 V _{w, z} はゼロに近いため,式(19')の右辺第1	では上昇速度はゼロに近く、地面で静止している物体が受ける上	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
上昇速度はほぼゼロであるため,式(18')の右辺第1項は右辺第	項は右辺第2項及び第3項に比べてはるかに小さな量となり,以	昇速度はほぼゼロであるため,式(18')の右辺第1項は右辺第2,	
2, 第3項に比べてはるかに小さな量となり,以下のとおり物理的	下のとおり物理的に合理的な関係式が成立する。	第3項に比べてはるかに小さな量となり、以下のとおり物理的に	
に合理的な関係式が成立する。	$\frac{dV_{M,z}}{dt} \approx -g + L$	合理的な関係式が成立する。	
$\frac{dV_{M,z}}{dt} \approx -g + L \tag{19}$	dt  (20)	$\frac{dV_{M,z}}{dt} \approx -g + L \tag{19}$	
例として, 竜巻コア半径 30m, 設計竜巻の最大風速 92m/s の竜	例として, 竜巻コア半径 30m, 最大風速 100m/sの竜巻が原点に	例として, 竜巻コア半径 30m, 設計竜巻の最大風速 92m/s の竜	
巻が原点に位置しx 方向に 14m/s で移動する場合,点(0,-30m)に	位置し, x 方向に 15m/s で移動する場合, 点(0,-30m)における式	巻が原点に位置しx 方向に14m/s で移動する場合,点(0,-30m)に	
おける式(18')の右辺第1項の値(z 方向抗力(流体抗力)によ	(19')の右辺第1項の値(z方向抗力(流体抗力)による加速度)	おける式(18')の右辺第1項の値(z 方向抗力(流体抗力)によ	
る加速度) と第3項の値(地面効果による揚力加速度)を第20図	と第3項の値(地面効果による揚力加速度)を第5.1-10図に示	る加速度)と第3項の値(地面効果による揚力加速度)を図20	
に示す。	す。	に示す。	
第 20 図より,地面上(z=0)においては, z 方向抗力による加	同図より,地面上(z=0)近傍においては,z方向の抗力による	図 20 より,地面上(z=0)においては, z 方向抗力による加速	
   速度は十分小さく、地面効果による揚力加速度の影響が大きいこ	加速度は十分小さく、地面効果による揚力加速度の影響が大きい	度は十分小さく、地面効果による揚力加速度の影響が大きいこと	
とが分かる。	ことが分かる。	が分かる。	
$f = \frac{1}{2}$ 第 20 図 地面近傍の飛来物に作用する z 方向の加速度 (飛来物の特性: 0.5 $\rho$ C _p A/m=0.004 [m ⁻¹ ], d=1.31[m])	$f(1/2) \rho C_D A/m=0.004m^{-1}, d=1.31m)$	f = -z方向の抗力加速度         「地面効果による湯力         加速度         「地面効果による湯力         加速度         「         「         」         」	
なお、高さ方向の依存性が考慮されていないランキン渦の場合	なお、高さ方向の依存性が考慮されていないランキン渦(飛散	なお、高さ方向の依存性が考慮されていないランキン渦の場合	
は、上昇風速が水平風速の約60%にも達するため、地面から非現実	解析用)の場合は、地面から水平風速の約60%にも達する上昇流	は、上昇風速が水平風速の約60%にも達するため、地面から非現実	
的な風の噴出が発生する。地面効果は地面の存在によって水平な	の噴出を設定する。地面効果は地面の存在によって水平な風が物	的な風の噴出が発生する。地面効果は地面の存在によって水平な	
風が物体付近で湾曲・剥離することによって生じるものであるが,	体付近で湾曲、剥離することによって生じるものであるが、ラン	風が物体付近で湾曲・剥離することによって生じるものであるが、	
ランキン渦の風速場では地面の有無によって物体周りの流況が大	キン渦の風速場では地面の有無によって物体周りの流況が大きく	ランキン渦の風速場では地面の有無によって物体周りの流況が大	
きく変化せず、地面効果は物理的に発現しにくいため、ランキン	変化せず、地面効果は物理的に発現しにくいため、ランキン渦モ	きく変化せず、地面効果は物理的に発現しにくいため、ランキン	
渦モデルを用いた解析においては鉛直方向による揚力 L を付加し	デルを用いた解析においては鉛直方向の揚力Lを付加していない。	渦モデルを用いた解析においては鉛直方向による揚力 L を付加し	
ていない (第 21 図)。	(第 5.1-11 図)	ていない (図 21)。	



### 5.2 竜巻が物体に与える速度に関する不確定性の考慮 5.2 物

竜巻によって飛散する物体の飛来速度や飛散距離は、同じ竜巻 内であっても物体の受ける風速(物体がある位置の竜巻風速)に よって大きく変動する。その影響度合いを確認するため、米国 NRC ガイド⁽²⁾に記載されている方法(物体の1点配置)と、物体を多 点数配置した場合の飛来速度の違いを比較する。配置の違いにつ いて、第22 図に示す。

 1 点配置の場合は、特定位置(竜巻進行方向の竜巻半径の位置 (x,y)=(R_m,0))に物体1個を設置する。また多点数配置の場合 は、竜巻半径の4倍の正方形状の領域に51×51個の物体を配置す る。その上で飛散させた物体のうち、最も速度が大きくなったものをその物体の飛来速度とする。





竜巻によって飛散する物体の飛散速度や飛散距離は,同じ竜巻 内であっても物体が受ける風速(物体がある位置の竜巻風速)に よって大きく変動する。その影響度合いを確認するため,米国N RCガイド⁽¹⁾に記載されている方法(物体の1点配置)と,物体 を多点配置した場合の飛散速度の違いを比較した。配置の違いに ついて,第5.2-1図に示す。

1 点配置の場合は,特定の位置(竜巻進行方向の最大接線風速半径の位置(x,y)=(R_m,0))に物体1個を設置する。また多点配置の場合は,竜巻半径の4倍の辺長の正方形領域に51×51個の物体を配置する。その上で飛散させた物体のうち,最も速度が大きくなったものをその物体の飛散速度とする。



点配置した場合の飛来速度の違いを比較す て,図 22 に示す。

ガイド⁽²⁾ に記載されている方法(物体の1

 1 点配置の場合は、特定位置(竜巻進行)
 (x, y) = (R_m, 0))に物体1 個を設置する。ま 竜巻半径の4 倍の正方形状の領域に51×51 その上で飛散させた物体のうち、最も速度だ その物体の飛来速度とする。





炉	備考
$F_D$	
n ^{FD}	
C14	
動モデルの模式図	
催定性の考慮	
る位置の竜巻風速)に	
崔認するため,米国 NRC	
点配置)と、物体を多	
る。配置の違いについ	
方向の竜巻半径の位置	
また多点配置の場合は,	
個の物体を配置する。	
が大きくなったものを	
x	
NRCガイド(1点配置) のたけ知道の業	
07初件初始世世	
勿体の位置関係	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
評価条件として, 竜巻の最大風速を 92m/s とし, フジタモデル	評価条件として, 竜巻の最大風速を 100m/s とし, フジタモデ	評価条件として, 竜巻の最大風速を 92m/s とし, フジタモデル	
の風速場を用いて地上から飛散させるものとする。また、ガイド	ルの風速場を用いて地上から飛散させるものとする。また、「竜巻	の風速場を用いて地上から飛散させるものとする。また、ガイド	
の記載より竜巻の移動速度 $V_t$ を14m/s,竜巻コア半径 $R_m$ を30mと	影響評価ガイド」の記載より竜巻の移動速度V _{tr} を15m/s, 竜巻	の記載より竜巻の移動速度 $V_t$ を15m/s,竜巻コア半径 $R_m$ を30mと	
する。飛散させる物体のパラメータとして、原子力安全基盤機構	コア半径R _m を30mとする。飛散させる物体としては、「竜巻によ	する。飛散させる物体のパラメータとして,原子力安全基盤機構	
の調査研究報告書 ⁽⁴⁾ に掲載されている物体の飛行定数(5.1 の C _p A	る原子力施設への影響に関する調査研究」 ⁽³⁾ に掲載されている物	の調査研究報告書 ⁽⁴⁾ に掲載されている物体の飛行定数(5.1 の C _D A	
を質量で割った値:C _D A/m(m ² /kg))を用いる。第23 図に比較結果	体を用いた。第5.2-2図に比較結果を示す。	を質量で割った値:C _D A/m(m ² /kg))を用いる。図 23 に比較結果を	
を示す。		示す。	
米国 NRC で用いられている1点配置の手法と比較し,多点数配	米国NRCで用いられている1点配置の手法と比較し、多点配	米国 NRC で用いられている1点配置の手法と比較し,多点配置	
置の手法では,飛行定数の大きい物体の多くが1点配置に比べて	置の手法では1点配置に比べて大きな飛散速度となった。多点配	の手法では、飛行定数の大きい物体の多くが1点配置に比べて大	
大きな飛来速度となる。多点数配置することで、その竜巻風速場	置することで、その竜巻風速場における最大風速(最大接線風速	きな飛来速度となる。多点配置することで、その竜巻風速場にお	
における最大風速(最大接線風速と半径方向風速のベクトル和が	と半径方向風速のベクトル和が竜巻移動方向と重なる点)を受け	ける最大風速(最大接線風速と半径方向風速のベクトル和が竜巻	
竜巻移動方向と重なる点)を受ける物体が出てくるため、このよ	る物体が出てくるため、このような結果になったと考えられる。	移動方向と重なる点)を受ける物体が出てくるため、このような	
うな結果となったと考えられる。		結果となったと考えられる。	
したがって、物体を多点数配置することは、竜巻から受ける風	したがって、物体を多点配置することは、竜巻から受ける風速	したがって、物体を多点配置することは、竜巻から受ける風速	
速に関する不確定性を考慮できるものと考えられるため、本検討	に関する不確定性を考慮できるものと考えられるため、本検討に	に関する不確定性を考慮できるものと考えられるため、本検討に	
における方法として適用することとする。	おける方法として適用することとする。	おける方法として適用することとする。	
i (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	物品前 (m)他の寸法 (m) $C_0A/m}{(m^2/kg)}$ BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB <th< td=""><td>y y y y y y y y</td><td></td></th<>	y y y y y y y y	
前頁の第22 図に示す物体の多点数配置(竜巻半径の4倍の正 方形状の領域に51×51個の物体を配置)を初期状態として適用し たが,この手法は、物体の直上に竜巻を発生させており、竜巻発 生地点の不確定性についても考慮した設定となる。 第24 図に遠方から物体に接近する竜巻と、物体直上に発生する 竜巻による飛散の比較イメージ図を示す。実際の竜巻に遭遇する	第5.2-3図に,遠方から物体に接近する竜巻と物体直上に発生 する竜巻による飛散の比較イメージ図を示す。実際の竜巻に遭遇	前頁の図 22 に示す物体の多点配置(竜巻半径の4 倍の正方形状 の領域に 51×51 個の物体を配置)を初期状態として適用したが, この手法は,物体の直上に竜巻を発生させており,竜巻発生地点 の不確定性についても考慮した設定となる。 図 24 に遠方から物体に接近する竜巻と,物体直上に発生する竜 巻による飛散の比較イメージ図を示す。実際の竜巻に遭遇する状	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
状況(海上で竜巻が発生して上陸する場合等)を考慮すると、竜	する状況(海上で竜巻が発生して上陸する場合など)を考慮する	況(海上で竜巻が発生して上陸する場合等)を考慮すると、竜巻	
巻は遠方から物体に近づくため,最大風速より低い風速に曝され,	と、竜巻は遠方から物体に近づくため、最大風速より低い風速に	は遠方から物体に近づくため,最大風速より低い風速に曝され,	
飛散することになる。しかし、物体の直上に竜巻を発生させる設	曝された時点で飛散する可能性がある。しかし、物体の直上に竜	飛散することになる。しかし、物体の直上に竜巻を発生させる設	
定とすることで、実際の竜巻による飛散と比較して、より厳しい	巻を発生させることで、実際の竜巻による飛散と比較して、より	定とすることで、実際の竜巻による飛散と比較して、より厳しい	
結果を与えることになる。	厳しい結果を与えることになる。	結果を与えることになる。	
	また、この多点配置を初期状態として適用する手法は、物体の		
	直上に竜巻を発生させており、竜巻発生地点の不確定性について		
	も考慮した設定となっている。この物体を多点配置する方法と,		
	竜巻を直上に発生させる方法を組み合わせることにより、必ずそ		
	の竜巻の最大風速に曝される物体が発生するため、竜巻が物体に		
	与える速度の不確定性を考慮した上で包絡できると考えられる。		
	<実際の竜巻(遠方から接近)による物体の飛散イメージ> #外線螺 外部コア アドロア 展大風速 最大風速 していたいの様体が限載してしまう可能性がある(物体の飛び場さに依る)		
・物体の直上に瞬時に竜巻が発生し、飛散し始める。           ・           物体直上に発生する竜巻による物体の飛散イメージ	<本評価の竜巻(物体直上に発生)による物体の飛散イメージ> 第33 第3	・物体の直上に瞬時に竜巻が 発生し、飛散し始める。           ・規大風速に曝され飛散する 物体が存在する。	
   第24 図 物体に接近する竜巻と物体直上に発生する竜巻の比較	   第5.2-3図 物体に接近する竜巻と物体直上に発生する竜巻のイ	図 24 物体に接近する竜巻と物体直上に発生する竜巻の比較イ	
イメージ図	メージ	メージ図	
この物体を多点数配置する方法と、竜春を直上に発生させる方		この物体を多点配置する方法と、竜春を直上に発生させる方法	
法を組み合わせることにより、必ずその竜巻による最大風速に曝		を組み合わせることにより、必ずその竜巷による最大風速に曝さ	
される物体か発生するため、竜巻か物体に与える速度の个確定性		れる物体が発生するため、竜巻が物体に与える速度の个確定性を	
を考慮することかでさると考えられる。		考慮することかでさると考えられる。	
	よに用 5.2-2 図の結果から、多点配直は1点配直より全体的に		
	入さな味寸性を与えると考えられ、よってフジタモアルの風速場		
	に関する个確実性についても、その保守性で包絡出来ていると考		
	えられる。		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二季	発電所(201	8.9.18版)			島根原子力発電所 2号炉	備考
		フジタモデルの風速場に	ニ関する不確	産実性として,	フジタ	モデル		
		の特徴的なパラメータであ	っる流入層高	「さH _i の影響	『を検証し	った。 外		
		部コア半径R _m =30mの場合	モデルでは	$H_i = 15m \ge$	なり,こオ	いは 2.1		
		に記載のとおり他の文献 ⁽³	³⁾⁽⁵⁾ ともおお	おむね整合し	ているか	5,不確		
		実性を考慮し、流入層高さ	ĔĦ _i を±109	%変化させた	場合にコ	ンテナ		
		(長さ6m×幅2.4m×高さ2	2.6m,質量 2	2,300kg, C ₁	_A/m=0	. 0105)		
		の最大飛散距離、最大飛散	女距離及び飛	&散高さがど	の様に変	化する		
		かを確認した。						
		コンテナの1点配置及び多	ら点配置時の	)飛散距離等	も含めた	評価結		
		果を第5.2-1表に示す。	流入層高さI	H _i に対する	これらの	感度は		
		小さく, 多点評価の保守性	Eに包絡され	いることが分;	かる。			
		第 5.2-1 表 流入層高さる	を変化させた場	合のコンテナの	飛跡			
		パラメータ	飛散特性           最大         最;	の変化率           大         最大	備考			
		及び変化学 水 流入層高さ -10%	平速度 飛散	距離 浮上高さ 2% -4.9%	<u> </u>	_		
		Hi +10% -	-0.6% 2.8	270         4.97           3%         5.1%		_		
		多点配置 (1点配置からの変化率) 4	20% 1411	1% 957%	_			
							「 2 ついれてゴルの地まごけんの国法相に明ナスで破空性の考慮	司掛ナ組の担告
							5.3 ノンタモナルの地衣面竹垣の風迷場に関する个唯正性の考慮 (1) 至近の研究報告	・記載力町の相逢
							(1) 主虹の研究報告 音巻の地志西付近の周連公布に関する研究として Kogiba and	【 相呵 0/ 1, 果 伊 男 二 】
							电合の地衣面内近の風迷力和に関する切元として、 $Rosiba and$ Wurman $2013$ ⁽⁶⁾ け 図 25 に示すとおり地とからの真さ約 5m におけ	田位 2 5 がはノンク モデルの地表面付近の
							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	国連場に関する不確定
							れたことが報告されている。	性について記載してい
							ただし、地上から高さ3m程度は観測していないこと等を踏まえ	3
							て、本研究の結論としては、「地表面付近の竜巻特性として一般化	4
							するには、種々の渦構造・強度の竜巻について更なる観察が必要	
							である」としている。よって、現状では、フジタモデルの風速分	
							布に直接関連付けられるものではないが、地表面付近の風速場の	
							不確定性を踏まえて保守性を確保することとする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		45	
		図 25 地上からの高さと風速(ドップラー速度)分布 ⁽⁶⁾	
		 (2) 設計飛来物設定における保守性 フジタモデルを用いた飛散解析においては、物体の地上からの 初期高さを高く設定したほうが地表面から解析した場合に比べて 最大水平速度は高くなり、最大水平速度に依存するパラメータで ある運動エネルギ及び貫通力も大きくなる。 設計飛来物の設定においては、任意の地上からの高さにある鋼 製材をフジタモデルを用いて飛散解析をした結果を包絡するガイ ド記載の鋼製材を設定しており、フジタモデルの地上付近の風速 場の不確定性は考慮できている。(添付資料 3.3 別紙-6 参照。) 	
		(3) 飛来物評価における保守性	
		物体の飛散距離,飛散高さ及び飛散速度についても, 5.2,5.3	
		に示す保守性を考慮することで実際の被災事例に対し,保守的な	
		結果が得られることも確認している。(6.3 参照。)	
		(4) 地表面付近の風速場の不確定性について フジタモデルは高さ方向に風速が変化し,地上からの高さ 0m で	
		は風速が 0m/s となるモデルである。地表面付近の風速場には不確	
		<u> 定性かあることから、物体の地上からの初期高さを変化させた感</u> 度解析を実施し、地表面に設置された物体の飛散解析の妥当性を	
		<u>確認する。</u>	
		a. 物体の地上からの初期高さの感度解析 物体の地上からの初期高さの感度解析条件を(a), (b)に示す。 (a) 地上からの初期高さの解析範囲 地上からの初期高さの解析範囲は、フジタエデルの回声場で最	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		大水平風速の 97.7% (89.9m/s)の風速となる地上高さ 5m までの範	
		囲とする。(図 5-2 参照。)	
		<u>(b) 対象飛来物について</u>	
		<u>資機材・車両及び軽量大型機材の飛来物発生防止対策エリアの</u>	
		<u>設定に用いている「乗用車」及び「プレハブ小屋」を対象とする。</u>	
		(c) 感度解析結果	
		最大飛散距離と地上からの初期高さの関係を図 26 に示す。図 26	
		より、乗用車、フレハフ小屋ともに、地上からの初期高さが高く	
		なるに使い、最大飛散距離が係々に減少する傾向にある。地上が	
		<u>らの初期局さか増加りるに促い物品に作用する初期風速も増加す</u> スが、地西効用による現力の減少の影響のほうが大きいため恋野	
		るが、地面効素による物力の減少の影響のはりか入さいため飛取 野離が減少したと考えられる「リトトね」 孤本物発生防止対策す	
		正確が減少したと考えられる。以上より、水木物先生的正対水子	
		さく 地表面に設置した物品に対する飛散解析結果を用いること	
		は妥当であると考える。	
		× 100	
		50 ————————————————————————————————————	
		0	
		0 1 2 3 4 5	
		図26 最大飛散距離と地上からの初期高さの関係	
		(最大風速 92m/s,敷地の高低差:0m,飛来物:乗用車(5.2m×1.9m)	
		<u>×2.3m,1,890kg</u>), プレハブ小屋 (27.0m×7.2m×3.4m,7,500kg))	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
5.3 飛来物評価法のまとめ	5.3 飛散解析手法まとめ	5.4 飛来物評価法のまとめ	
飛来物の浮上 ・飛散モデルにおいて、実際の実験結果よりも浮	物体の浮上及び飛散モデルにおいて、実際の実験結果よりも浮	物体の浮上・飛散モデルにおいて、実際の実験結果よりも浮上	
上しやすい係数を設定することで、浮上に関する不確定性を考慮	上しやすい係数を設定することで、浮上に関する保守性を考慮で	しやすい係数を設定することで、浮上に関する不確定性を考慮で	
できるような設定とする。	きるような設定とした。	きるような設定とする。	
また、物体を多点数配置し、その物体直上で竜巻が発生すると	また、物体を多点配置し、その物体直上で竜巻が発生するとい	また、物体を多点配置し、その物体直上で竜巻が発生するとい	
いう設定を組み合わせることにより、竜巻風速場内で物体が受け	う設定を組み合わせることにより、竜巻風速場内での物体が受け	う設定を組み合わせることにより、竜巻風速場内で物体が受ける	
る風速の不確定性を考慮し、その竜巻において最大となる飛来速	る風速の不確定性を考慮し、その竜巻において最大となる飛散速	風速の不確定性を考慮し、その竜巻において最大となる飛来速度	
度が評価できるような設定とする。	度が評価できるような設定とした。	が評価できるような設定とする。	
		<u>当社が実施するフジタモデルの風速場を用いた飛散評価手法で</u>	・記載方針の相違
		は、地表面付近の風速場の不確定性を踏まえ、設計飛来物設定に	【柏崎 6/7, 東海第二】
		おける保守性や飛来物評価における保守性を確保している。	同上
以上により、フジタモデルを用いて飛来物の飛散速度評価を行	以上により、フジタモデルを用いて物体の飛散解析を行う場合	以上により、フジタモデルを用いて物体の飛散速度評価を行う	
う場合でも、竜巻による物体飛散の不確定性を考慮した評価結果	でも、保守性や不確定性を考慮した評価結果が得られると考えら	場合でも、竜巻による物体飛散の不確定性を考慮した評価結果が	
が得られるものと考えられる。	れる。	得られるものと考えられる。	
なお、参考として第25 図に本検討の条件設定による、物体の飛	なお、参考として、第5.3-1図に本条件設定によるトラックの	なお、参考として図27に本検討の条件設定による、物体の飛散	
散イメージを示す。同じ物体でも,受ける風速によって大きく飛	飛散イメージを示す。同じ物体でも、受ける風速によって大きく	イメージを示す。同じ物体でも、受ける風速によって大きく飛散	
散状況が変わる様子が分かる。	飛散状況が変わる様子が分かる。	状況が変わる様子が分かる。	
0 0	$ \hat{F}$ 5. 3-1 図 竜巻によるトラックの飛散イメージ ^(x vi) (第 6. 3-5 表 (後述)の条件による)	0 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考	
6. 実際の飛散状況に対する検証	6. 実際の飛散状況に対する検証	6. 実際の飛散状況に対する検証		
前節までは、フジタモデルの風速場を用いる優位性や、飛来物	前節までで、フジタモデルの風速場を用いる利点や、飛散解構	前節までは、フジタモデルの風速場を用いる優位性や、飛来物		
評価を行う上で考慮している事項等についての説明である。	を行う上で考慮している事項等について説明した。	評価を行う上で考慮している事項等についての説明である。		
本節では、フジタモデルの風速場や、前節の飛来物評価法を適	本節では、フジタモデルの風速場や前節の飛散解析手法を適用	本節では、フジタモデルの風速場や、前節の飛来物評価法を適		
用した場合、実際の事例等に比べて妥当な結果となるかどうかの	した場合、実際の事例等に比べて妥当な結果となるかどうかの構	6 用した場合,実際の事例等に比べて妥当な結果となるかどうかの		
検証を行う。	証を行った。	検証を行う。		
6.1 フジタスケールとの比較	6.1 フジタスケールとの比較	6.1 フジタスケールとの比較		
フジタスケールは、竜巻等の突風により発生した建築物や車両	フジタスケールは、竜巻等の突風により発生した建築物や車両	う フジタスケールは、竜巻等の突風により発生した建築物や車両		
等の被害状況から、当時の竜巻風速を推定するために考案された	等の被害状況から竜巻風速を推定するために考案された指標であ	等の被害状況から、当時の竜巻風速を推定するために考案された		
指標である。このフジタスケールで示されている自動車の被災状	る。フジタスケールで示されている自動車の被災状況を第6.1-	1 指標である。このフジタスケールで示されている自動車の被災状		
況を第3表に示す。	表に示す。	況を表3に示す。		
ここで,各スケールに対応する最大風速(69m/s,92m/s,116m/s)	ここで,各スケールに対応する最大風速 (69m/s,92m/s,11	m ここで,各スケールに対応する最大風速(69m/s,92m/s,116m/s)		
を用いて、フジタモデルによる自動車飛散解析を行う。その結果	/s)を用いて,フジタモデルによる自動車飛散解析を行った結	果 を用いて,フジタモデルによる自動車飛散解析を行う。その結果		
を第4表に示す。	を第6.1-2表に示す。	を表4に示す。		
フジタモデルによる自動車飛散解析の結果は、各スケールに対	フジタモデルによる自動車飛散解析の結果は、各スケールに対	フジタモデルによる自動車飛散解析の結果は、各スケールに対		
応する自動車の被災状況とおおむね合致していると考えられる。	応する自動車の被災状況とおおむね合致していると考えられる。	応する自動車の被災状況とおおむね合致していると考えられる。		
なお, ランキン渦モデルを用いた場合は, F2 相当の風速(69m/s)	なお, ランキン渦モデルを用いた場合は, F2相当の風速(69m	/ なお, ランキン渦モデルを用いた場合は, F2 相当の風速 (69m/s)		
で評価しても大きく飛散することになり、フジタスケールの定義	s)でも大きく飛散することになり、フジタスケールの定義との	七 で評価しても大きく飛散することになり、フジタスケールの定義		
の観点からは過度に保守的な結果となる。	較からは過度に保守的な結果となる。	の観点からは過度に保守的な結果となる。		
第3表 フジタスケールで示されている自動車の飛散状況	第6.1-1表 フジタスケールによる自動車の被災分類 ⁽²⁴⁾	表3フジタスケールで示されている自動車の飛散状況		
フジタス 風速 自動車の被災状況 ケール [m/s] 自動車の被災状況	フジタ 風速 自動車の被災状況 スケール (m/s)	フジタス 風速 自動車の被災状況 ケール [m/s] 自動車の被災状況		
F2 50-69 cars blown off highway (自動車が道路からそれる)	F 2 50~69 cars blown off highway (自動車が道路から逸れる。)	F2 50-69 cars blown off highway (自動車が道路からそれる)		
F3 70-92 cars lifted off the ground (自動車が地面から返上する)	F3 70~92 cars lifted off the ground (自動車が地面から浮上す る。)	F3 70-92 cars lifted off the ground (自動車が地面から返上する)		
F4 $93-116$ cars thrown some distances or rolled considerable distances (distances of the start	cars thrown some distances or rolled considerable	F4 93-116 cars thrown some distances or rolled considerable distances (2 ± 1)		
(日動車がめる距離を飛ばされる、又は、かなりの距離を転かる)	F 4 93~116 distances (自動車がある距離を飛ばされる又はかなりの距	(日動車がある距離を飛ばされる、入は、かよりの距離を転かる)		
		キルマジタアゴルストス点科本の恋地知じけ用		
用4 衣 ノンタモアルによる日動単の飛散解析結果 (自動車の特徴、目を5.1 ×短1.77、×言さ1.91、 歴界	第6.1-2表 フシダモアルによる目動単 (C _D A/m=0.0052m*/kg)の			
(日期車の特性: 長さ 5. 1m×幅 1. 77m×高さ 1. 31m, 負重	飛്数の 産業の 産業の 単管結果 単管結果	(日期単の特性: 長さ 5.1m×幅 1.77m×高さ 1.31m, 賀重		
1814. 4kg, C _D A/m-0. 0006 m ⁻ /kg)	フジタ 最大水平風速 接線風速 移動速度 最大水平速度 飛散距離 飛散高さ	1814. 4kg, C _D A/m=0. 0006 m ⁻ /kg)		
フジタ 最大 竜巻 竜巻 スケール 水平風速 接線速度 移動速度 諸算結果 しの対応 $[x(a)]$ $[x(a)]$ $[x(a)]$	(m/s) (m/s) (m/s) (m/s) (m/s) F 2 69 59 10 1.0 1,4 0	フジタ スケール つジタ 最大水平風速 竜巻 竜巻 計算結果 最大水平風速 接線風速 移動速度 最大水平速度 飛散距離 飛散高さ		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	F 3 92 79 13 23 34 1.1 F 4 116 99 17 42 59 3.1	との対応 (m/s) (m/s) (m/s) (m) (m) F2 69 59 10 8.9 4.4 0.1		
F3 92 79 13 30 35 1.8 F4 116 99 17 51 95 4.3		F 3 92 79 13 30 35 1.8 D 4 10 0.0 17 0.1 0.1 0.1		
		r 4 110 99 17 51 95 4.3		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
6.2 米国 Grand Gulf 原子力発電所への竜巻来襲事例	6.2 米国 Grand Gulf 原子力発電所への竜巻来襲事例との比較	6.2 米国 Grand Gulf 原子力発電所への竜巻来襲事例	
1978 年 4 月 17 日に米国のミシシッピー州にて建設中の Grand	1978 年 4 月 17 日に,米国のミシシッピー州にて建設中の Grand	1978 年 4 月 17 日に米国のミシシッピー州にて建設中の Grand	
Gulf 原子力発電所にF3 の竜巻が来襲した ⁽²⁴⁾ 。主な被害として,	Gulf 原子力発電所にF3の竜巻が来襲した。主な被害として、建	Gulf 原子力発電所にF3 の竜巻が来襲した ⁽²³⁾ 。主な被害として,	
建設中の冷却塔内部に設置されていたコンクリート流し込み用の	設中の冷却塔内部に設置されていたクレーンが倒壊し、冷却塔の	建設中の冷却塔内部に設置されていたコンクリート流し込み用の	
クレーンが倒壊し、冷却塔の一部が破損したことが挙げられる。	一部が破損したことが挙げられる。また、竜巻によりトレーラー	クレーンが倒壊し、冷却塔の一部が破損したことが挙げられる。	
また、竜巻によりトレーラーが台から剥がれ移動したことや、直	ハウスが荷台から剥がれ移動したことや,直径8から10インチの	また、竜巻によりトレーラーが台から剥がれ移動したことや、直	
径 8~10 インチの木が折れた事例等も確認されており, 第 26 図	木が折れた事例等も確認されている。	径 8~10 インチの木が折れた事例等も確認されており,図 28 は,	
は、竜巻による飛来物の飛散状況が定量的に分かる事例として、	第6.2-1 図は, 竜巻による飛来物の飛散状況が定量的に分かる	竜巻による飛来物の飛散状況が定量的に分かる事例として、資材	
資材置き場のパイプの飛散状況を示したものである。なお、通過	事例として、資材置場のパイプの飛散状況を示したものである。	置き場のパイプの飛散状況を示したものである。なお、通過時の	
時の竜巻規模はF2 であったと考えられている。このパイプはコン	なお,資材置場通過時の竜巻規模はF2であったと考えられてい	竜巻規模はF2 であったと考えられている。このパイプはコンクリ	
クリート・石綿製で、長さは8フィート、直径(内径)は8イン	る。このパイプはコンクリート・石綿製で、長さは8フィート、	ート・石綿製で,長さは8フィート,直径(内径)は8インチで	
チであった。このパイプの飛散状況に対して、フジタモデルある	直径(内径)は8インチであった。このパイプの飛散状況に対し	あった。このパイプの飛散状況に対して、フジタモデルあるいは	
いはランキン渦モデルを風速場として用いた飛来解析を行った。	て、フジタモデル及びランキン渦モデルを風速場として用いた飛	ランキン渦モデルを風速場として用いた飛来解析を行った。その	
その計算条件は過去の記録に基づき第5表のとおりとする。	散解析を行った ⁽²⁵⁾ 。解析条件は,過去の記録に基づき第6.2-1	計算条件は過去の記録に基づき表5のとおりとする。	
	表のとおりとした。		
"Courtesy of HathiTrust" http://babel.hathitrust.org/cgi/pt?id=mdp.39015037472209#view=tup:seq=65 (**) 第 26 図 Grand Gulf 原子力発電所資材置き場におけるパイプの 散乱状況		"Courtesy of HathiTrust" http://babel.hathitrust.org/cgi/pt?id=mdp.39015037472209#view=lupsseq-ef5 (*) 図 28 Grand Gulf 原子力発電所資材置き場におけるパイプの散乱 状況 被害状況 ・パイブを収納した木箱 (一部は二段重ね) は浮上せずに転倒し,パイ プが周辺 Tm~9m に散乱。 (Pieces of pipe were scattered over the area, but none traveled more than 25-30 ft. The pipe joints are 8 in. dia x 8 ft long. ⁽²⁴⁾)	

柏崎刈	羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版) 島根原子力発電所				
第5表Gra	nd Gulf 原子力	発電所の竜巻に	こよるパイプ飛散の再現	第 6.2	2-1 表 Gland Gulf 原子力発電	所のパイプ飛散解析条件(25)	表 5 Grand G	ulf 原子力発電所の竜巻による
	をする	上での計算条	件	竜巻条件	竜巻の最大風速	67 m/s		る上での計算条件
竜巻条件	設計竜巻風速	67m,	/s		最大接線風速	53.6 m⁄s	竜巻条件	竜巻の最大風速
	最大接線風速	53. (õm/s		移動速度	13.4 m⁄s		最大接線風速
	移動速度	13.	1m/s		コア半径	45.7 m		我 动 油座
	コア半径	45. '	7m	飛来物条件	直径 (外径)	0.2286 m (=9 in.)		1799) 述及
飛来物条件	直径(外径)	9 ii	nch (0.2286m)		物体高さ	0.229 m		コア半径
	物体高さ	0. 25	29m		密度	1700 kg/m ³	飛来物条件	直径(外径)
	密度	1700	0kg/m ³			$0.0080 \text{ m}^2/4\sigma$		物品高さ
	飛行定数 C _D A/m	0.00	080 m ² /kg	271440 201 525				密度
初期配置	・物体個数 51×51 個	, 竜巻半径の4倍を	≥一辺とする正方形内(<i>x, y</i> =	初期配直	・物体個数:51×51 本を, 策	大接線風速干住の4倍を1辺とす		飛行定数 (C_A/m)
	$\begin{bmatrix} [-2R_m, +2R_m] \end{pmatrix}$ に等 、 犯異言さ 1 … (パイ	间隔配直 「ずが原始キャア」、	と大体がり晩香わで町里されて		る止方形内(x, y=[-2R _m , +2F	(m))に等间隔配直。	初期配置	
	 ・ ・ び	ノが収納されてい	こ本相か2段里ねで配直されて		Ⅰ・設置高さ:1 m(パイプ収納	箱が2段重ねされた状況を想定)	初期配置	
	「「たれれる認定。」							うる正方形内(x, y=[-2R _m , +2R _m])
								・設置高さ:1m(パイブ収納箱が2)
計算結果	を第6表に示す。	フシタモデル	を風速場とした場合は,	解析結果を	と第 6.2-2 表に示す。 ス	アシタモアルを風速場とした場	テ 計算結果 ?	を表もに示す。フジタモデルを

われる状況とおおむね合致している。

なお、参考としてランキン渦モデルで評価した場合、飛散距離 や最大水平速度に大きな違いがあり、実際の報告と比較して過度 に保守的な評価結果となる。

パイプがほとんど飛散せず、木箱が倒れた影響で散らばったと思
合は、パイプがほとんど飛散せず、収納箱が倒れた影響で散乱した と思われる状況とおおむね合致している。

> なお、ランキン渦モデルで評価した場合は、飛散距離や最大水 | 平速度に実際の報告と大きな違いがあり、過度に保守的な評価結 果となる。

第6表 Grand Gulf 原子力発電所のパイプの飛散計算結果

周連提エデル	初期物体	計算結果		
風速場モアル	高さ	飛散距離	飛散高さ**2	最大水平速度
フジタモデル	1 m	1.2 m	0.0 m	4.9 m/s
ランキン渦モデル	$1 \text{ m}^{\#1}$	42.6 m	0.34 m	30.7 m/s
ランキン渦モデル	40 m	227 m	0.34 m	40.9 m/s

※1:ランキン渦モデルでは地上付近の風速場を模擬できていないが、フジタモデルの 計算結果(飛散距離)と比較をするため、フジタモデルと同条件とする。 ※2:初期物体高さからの飛散高さ。

6.3 佐呂間竜巻での車両飛散事例

2006 年 11 月 7 日に北海道網走支庁佐呂間町に発生した竜巻 動したことが報告されている(25)。被災状況を第27図に示す。こ トラックの初期位置と移動位置が分かっている(第27 図左上画像 像の③と⑥)について、初期位置と被災後の移動位置が分かって が分かっている。このように竜巻被災前後で車両等の位置が明確

第6.2-2表 Gland Gulf 原子力発電所のパイプ飛散解析結果⁽²⁵⁾

国産油と思い	初期	計算結果			
風速場モナル	物体高さ	飛散距離	飛散高さ*2	最大水平速度	
フジタモデル	1 m (地上)	1.2 m	0.0 m	4.9 m⁄s	
リントン室として	$1 \text{ m}^{\%1}$	42.6 m	0.94	30.7 m∕s	
フンキン間モナル	40 m	227 m	0.34 m	40.9 m⁄s	

※1 比較のため、フジタモデルと同条件とした。 ※2 初期物体高さからの飛散(浮上)高さ。

6.3 佐呂間竜巻での車両飛散事例との比較

	島根原子力発電所 2号炉				備考
表 5 Grand Gi	ılf 原子力発電F	所の竜巻にし	トるパイプ飛	散の再現をつ	F
			//L		,
	る上	での計算条	牛		
竜巻条件	竜巻の最大風速		67 m⁄s		
	最大接線風速		53.6 m⁄s		
	移動速度		13.4 m⁄s		
	コア半径		45.7 m		
飛来物条件	直径(外径)		0.2286 m (=9 in.)	
	物品高さ		0.229 m	2	
	密度	· .	1700 kg/m		
如期配置	飛行足数(C _D A/ ・ 物体個粉・51×5	m) 1 木を 長士塔	0.0080 m ⁻ , 4.9.10 油半谷の	/ Kg 4 位 た 1 辺 レ	
初期配置	・初体値数:51×5 オス正方形内(y y	1 平 2 , 取 八 19 = 「- 9 R + 9 R	(禄風堡十住の)) に笑問隔雨	4 倍を 1 辺 C 置	
	・設置高さ:1m(パ	イプ収納箱が	2 段重ねされた	」。 、状況を想定)	
		~~~~~	チョンチョン		0
計算結果を	と表もに示す。フ	シタモアル	を風速場と	した場合は,ノ	
イプがほとん	しど飛散せず,オ	に箱が倒れた	影響で散ら	ばったと思れ	2
1る状況と‡	おおむね合致して	いる。			
なお. 参え	客としてランキン	/渦モデルて	「評価した場	合.飛散距离	催
	またにしょうます				
? 最大水平1	困度に大さな遅V	いかめり,美	に いってん しょう	比較して適度	<del>王</del> 王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王
こ保守的な話	平価結果となる。				
±c c	nond Culf 百乙	日政電正の	パイプの花曲	4.計算法用	
<u> </u>	Frand Gull 原子	<b>万光电内の</b>		X司 异 布 木	1
風速場モデ	ル地上からの		計算結果	日日日本市	4
コッシャーブ	初期尚さ	飛散距離	飛散高さ***	最大水平速度	4
ノンタモリ	ル Im (地上) 1 m ^{※1}	1.2 m	0.0 m	4.9 m/s	-
ランキン渦モ	デル 40 m	42.0 m 227 m	0.34 m	40.9 m/s	-
<ul><li>※1 比較の†</li><li>※2 初期物位</li></ul>	とめ,フジタモデルと 本高さからの飛散(浮	: 同条件とした 译上) 高さ。	0		-
63佐呂	罰竜巻での車両部	\$散車例			
		·····································		マシムレンテン	4
2006年1	1月7日に北海	11 11 11 11 11 11 11 11 11 11 11 11 11	「佐呂間町に	発生した竜君	
(以下「佐日	台間竜巻」という	。) により,	4t トラッ	クが約 40m 種	多
動したことな	が報告されている	, ⁽²⁴⁾ 。被災状	況を図 29 に	こ示す。この聖	手
列では被災間	寺に 4t トラック	に乗員2名	が乗車して	おり,4t トラ	7
ックの初期値	立置と移動位置が	「分かってい	ふ (図 29 左	上画像の②)	0
また,4t ト	ラックの他に2.	台の自動車	(図 29 左上)	画像の③と⑥	)
こついて, 褚	初期位置と被災後	t l			

2006年11月7日に北海道網走支庁佐呂間町に発生した竜巻(以 (以下「佐呂間竜巻」という。)により、4t トラックが約 40m 移 下「佐呂間竜巻」という。)により、4t トラックが約 40m 移動した ことが報告^(x ix)されている。被災状況を第6.3-1図に示す。この の事例では被災時に4tトラックに乗員2名が乗車しており、4t 事例では被災時に4tトラックに乗員2名が乗車しており、4tトラ ックの初期位置と移動位置が分かっている(②)。また、4t トラッ の②)。また、4t トラックの他に2 台の自動車(第 27 図左上画 クの他に、2 台の自動車(③と⑥)の初期位置と被災後の移動位置

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
いる。このように竜巻被災前後で車両等の位置が明確になってい	になっている事例は極めて稀である。なお、竜巻による飛散物の	うに竜巻被災前後で車両等の位置が明確になっている事例は極め	
る事例は極めてまれである。なお、竜巻飛来物の再現計算は、竜	再現計算は, 竜巻が頻発する米国でもほとんど実施されていない。	てまれである。なお、竜巻飛来物の再現計算は、竜巻が頻発する	
巻が頻発する米国でもほとんど実施されていない。この理由とし	この理由としては、来襲した実際の竜巻特性を精度良く計測、推	米国でもほとんど実施されていない。この理由としては、来襲し	
ては、来襲した実際の竜巻特性を精度よく計測・推測することが	測することが困難であることや、自動車等の移動前後の位置が不	た実際の竜巻特性を精度よく計測・推測することが困難であるこ	
困難であることや自動車等の移動前後の位置が不明確な場合が多	明確な場合が多いことが挙げられる。	とや自動車等の移動前後の位置が不明確な場合が多いことが挙げ	
いことが挙げられる。		られる。	
Image: State Stat	A(k)       テック         乗用車(赤)       工事用重優         工事用重優       テリレげた要用車         A       工事事務所         B       A         D       合         A       工事事務所         B       A         A       日         T       中         A       工事事務所         B       A         A       T事事務所         B       A         A       T事事務所         B       A         A       T事事務所         B       A         A       T事事務所         B       A	Image: state in the state	
第 27 図 佐呂間竜巻 (2006.11.7) による被災状況 (工事事務所	第6.3-1図 佐呂間竜巻による被災状況(工事事務所敷地内の車	図 29 佐呂間竜巻(2006.11.7)による被災状況(工事事務所敷	
敷地内の車両被災) (25)	両被災)	地内の車両被災) (24)	
(文献(25)で示されている竜巻被害の方向を 📫で加筆)	(文献 ⁽²⁷⁾ の写真に竜巻被害の方向を加筆)	(文献(24)で示されている竜巻被害の方向を 📫 で加筆)	
ここでは、フジタモデルを風速場として用いた車両(4t トラック,乗用車)の飛散評価を行い、実際の被害状況と比べて妥当な結果となるかどうかの確認を行う。方法としては、下記の2 通りとする。	ここでは、フジタモデルを風速場として用いた車両(4tトラック及び乗用車)の飛散解析を行い、実際の被害状況と比べて妥当な結果となるかどうかの確認を行った。方法としては、下記の2とおりとした。	ここでは、フジタモデルを風速場として用いた車両(4t トラック,乗用車)の飛散評価を行い、実際の被害状況と比べて妥当な 結果となるかどうかの確認を行う。方法としては、下記の2 通り とする。	
(a) 竜巻特性や飛来物(4t トラック, 乗用車)の状況を現実的	・ 竜巻特性や飛来物(4t トラック及び乗用車)の状況を現実的	(a) 竜巻特性や飛来物(4t トラック,乗用車)の状況を現実的	
に設定した場合の再現解析	に設定した場合の再現解析	に設定した場合の再現解析	
(b) 柏崎刈羽原子力発電所に適用する飛来物評価法による検証	<ul> <li>今回の飛散解析手法による検証</li> </ul>	(b) 今回の飛散解析手法による検証	
<ul> <li>(a) 竜巻特性や飛来物の状況を現実的に設定した場合の再現解析</li> <li>(i) 4t トラックの飛散解析</li> </ul>	<ul> <li>(1) 竜巻特性や飛来物(4tトラック及び乗用車)の状況を現実的</li> <li>に設定した場合の再現解析</li> <li>a.4tトラックの飛散解析</li> </ul>	<ul> <li>(a) 竜巻特性や飛来物の状況を現実的に設定した場合の再現解析</li> <li>(i) 4t トラックの飛散解析</li> </ul>	
■ 110 - ノノノンション (ADT 1) 再 11 解析の 冬 化 レー て 入 千 可 能 か デ ー タ ⁽²⁵⁾ ⁽²⁶⁾ / 「 甘 べ キ △ 四		■ 再租曜折の冬佐として 入手可能かデータ ⁽²⁴⁾⁽²⁵⁾ に其べき △ 四	
	$\pi_{\rm T}$ (二番)で、「「「「Haray」」」) (二番)で、「二年前で 老々られる 音 券 特 性 冬 供 と 孫 本 物 (4+ トラック)の 冬 供 を 第 6 9	サ元所切の木什として、八十可能な $/ - 2$ に基づき、行理 的と考えられる音差性歴冬州と孤立物 $(4+$ とういカ)の冬州たま	
HJC なんり4 しる电谷村住木什 C 爪木物(4 レトノック)の米什を 7 志の上うに設定する 初期配置の冬州 しして 配置佃粉 いし 1 佃	-1 表のとおり設定した 初期配置の条件として 配置数け1台と	HJC ちんりんの电台付任本什と形本物(4L トノック)の米什を衣 7 のとうに設定する 知期配置の冬休しして 配置佃粉は1 佃し」	
スツよノに取たする。初知能良の木什として、能良陋数は1個		「シェノに取たする。初朔正直の木竹として、正直回数は1回とし、	
こし、电谷が速力から近つく 仏伝放走としている。また、風速 60m/s	し、电音が逐力がら近レン(小(加)成とこしている。また、風速 $0000$ /。い下でけぶとしたい設定(16)とした。このして、音光しの明確	电台が逐力がら近つく仏伝政たとしている。また、風速 60m/s 以	
以下では仔上しない設定となつている。その上で、 电巻との距離 た		下ては存上しない設定となつている。その上で、电容との距離を	
を	でロ 生印な 靶西 く 灸 化 さ ゼ , 性 白 间 电 合 切 母 苑 性 を 唯 応 し だ 。	百理的な範囲で変化させ、佐西间电苍の丹現性を確認する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
車両と竜巻中心との距離を 18 m, 20 m, 22 m とした場合の解析	車両と竜巻中心との距離を 18m, 20m, 22m とした場合の解析結	車両と竜巻中心との距離を 18 m, 20 m,
結果を第8表及び第28図に示す。車両の軌跡は竜巻中心との相	果を第6.3-2表及び第6.3-2図に示す。車両の軌跡は竜巻中心	結果を表8及び図30に示す。車両の軌跡は
対位置関係に敏感であるが、各ケースとも飛散方向が実際の移動	との相対位置関係に敏感であるが、各ケースとも飛散方向が実際	関係に敏感であるが、各ケースとも飛散方
方向とおおむね合致しており,特に車両と竜巻中心との距離を20m	の移動方向とおおむね合致しており、特に車両と竜巻中心との距	おおむね合致しており、特に車両と竜巻中
としたケース2 では飛散距離もほぼ正確に再現されている。この	離を 20m としたケース 2 では飛散距離もほぼ正確に再現されてい	たケース2 では飛散距離もほぼ正確に再現
ように、フジタモデルを風速場とした飛散解析で、飛来物が地上	る。このように、フジタモデルを風速場とした飛散解析で、物体	に、フジタモデルを風速場とした飛散解析
に設置された状況からの飛散挙動が再現できることが確認でき	が地上に設置された状況からの飛散挙動が再現できることが確認	された状況からの飛散挙動が再現できるこ
る。	できた。	
	第6.3-1表 佐呂間竜巻による4tトラックの飛散解析条件 ⁽²⁵⁾	表7 佐呂間竜巻の4t トラック

第7表 佐呂間竜巻の4t トラックの計算条件

+ - + - + - + - +	계치 초 쓰 묘 거		
竜巻条件	設計竜巻風速		92m/s
	最大接線風速		70m/s
	移動速度		22m/s
	コア半径		20m
飛来物条件	車種不明のため、三菱	車両長さ	8.1m
	ふそう PA-FK71D の仕	車両幅	2.24m
	様を採用 車両高さ 車両質量		2. 5m
			4000kg
	飛行定数 $C_DA/m$		0.0056 m ² /kg
初期配置	<ul> <li>・物体個数1個</li> </ul>		
	・ 竜巻は遠方から物体は	こ近づくが,	風速 60m/s 以下では浮上しない
	・設置高さ0m		

## 第8表 佐呂間竜巻での4t トラックの飛散計算結果

解析	車両と竜巻中心と	計算結果(フジタモデル)		
ケース	の距離	飛散距離	飛散高さ	最大水平速度
1	22m	45.4 m	2.8m	25.8 m/s
2	20m	35.5 m	2. 3m	22.2 m/s
3	18m	25.9 m	1.7m	18.8 m/s

竜巻条件	竜巻の最大風速	92 m∕s ^{‰1}		
	最大接線風速	70 m/s		
	移動速度	22 m/s		
	コア半径	20 m		
飛来物条件	車両長さ**2	8.1 m		
	車両幅**	2.24 m		
	車両高さ**	2.5 m		
	車両重量	4000 kg		
	飛行定数 (C _D A/m)	0.0056 m²⁄kg		
初期配置等	<ul> <li>物体個数:1台</li> </ul>			
	<ul> <li>・設置高さ:0m(地上)</li> </ul>			
	<ul> <li>「竜巻は遠方から物体に近づくが、」</li> </ul>	風速 60m/s 以下では浮上		
	しない」ことを条件として付加			

※1 佐呂間竜巻のフジタスケール (F3)に基づく。 ※2 車種不明のため,三菱ふそう PA-FK71D を仮定。

第6.3-2表 佐呂間竜巻による4tトラックの飛散解析結果

L 7	車両と竜巻中心との		計算結果	
7-2	距離	飛散距離	飛散高さ	最大水平速度
1	22 m	45.4 m	2.8 m	25.8 m⁄s
2	20 m	35.5 m	2.3 m	22.2 m⁄s
3	18 m	25.9 m	1.7 m	18.8 m⁄s

	島根原子ナ	J発電所	2号炉		備考
車両と竜着	*************************************	18 m, 20	m, 22 m 2	とした場合の解析	
果を表8及	をび図 30 に示す。	中心との相対位置			
(なに) 気に) 気に) 気に	であろが 冬ケー	国際の移動方向と			
		大とし派	あって しょう		
わむね合要	してわり、特に	単凹と电2	香中心との	)距離を 20m とし	
ケース 2~	では飛散距離もほ	ぼ正確に	再現されて	ている。このよう	
,フジタモ	=デルを風速場と	した飛散	解析で,*	か体が地上に設置	
れた状況カ	らの飛散挙動が	再現でき	ることが確	認できる。	
	表7 佐모間 音卷(	カ4+ トラ	ラックの計	管冬件	
ala Mr. Ar. Ist				<del>外</del> 木口	
竜巻条件	設計最大風速 最大接線風速		92 m/s	3	
	移動速度		22 m/s	5	
	コア半径		20 m		
飛来物条件	車種不明のため, 三菱	長さ	8.1 m		
	ふそう PA-FK71D の仕	幅	2.24 m		
	様を採用	高さ	2.5 m		
		重量	4000 ka	5	
	飛行定数 (C _D A/m	)	0.0056	m ² /kg	
	<ul> <li>・ 竜巻は遠方から物体</li> <li>・ 地上からの初期高さ</li> </ul>	に近づくが, 0 m	風速 60m/s↓	以下では浮上しない	
表 {	3 佐呂間竜巻での	4t トラ	ックの飛龍	如計算結果	
解析ケース	車両と竜巻中心と	計算	算結果(フジタ ┃ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	マモデル)	
1	22m	45.4 m	761X同己 2.8m	取八八十座及 25.8 m/s	
2	20m	35.5 m	2. 3m	22.2 m/s	
3	18m	25.9 m	1.7m	18.8 m/s	
	0				
	C	111	S. 10		
		11			
	State of the second	HA			
		ケージ			
	San and a second	0/2	电点		
		ケースの着地	2 1占		
	bum	5-72			
	a a a a a a a a a a a a a a a a a a a	の着地点	ā		
	100°	1			
		1			
	12 -	1			
		:24	60		
		142	oom		
<u></u> 100 (VI	フジタエデルトト	ストラー	カ孤勘の	再相磁炉料用	
凶 30	ノンクモノルによ	る下ノツ	ンバ取り	时如胜彻和不	

	島根原子	力発電所	2号炉		備考
車両と音え	巻中心との距離を	18 m 20	m 22 m	トーた場合の解	析
音果を表 8 /	及び図 30 に示す。	直			
周係に敏感	であるが,各ケー	スとも飛	散方向が多	<b>ミ際の移動方向</b>	2
おむね合う	<b>敢しており、特に</b>	車両と竜	巻中心との	)距離を 20m と	L
シケースク	では報勤距離もに	ぼ正確に	<b>雨</b> 祖 さわ~	ていろ このと	ň
こ、ワシター	モアルを風速場と	した形散	<b>解</b> 析で, 第	の体か地上に設	直
された状況フ	からの飛散挙動が	再現でき	ることが確	認できる。	
	<b>志</b> 7 佐모問音巻	の1+ ト=	テックの計	首冬仳	
				<u> </u>	
竜巻条件	設計最大風速		92 m/s	3	
	最大按線風速 致動油産		70 m/s	3	
			22 m/ s	6	
飛来物条件	車種不明のため,三菱	長さ	8.1 m		
	ふそう PA-FK71D の仕	: 幅	2.24 m		
	様を採用	高さ	2.5 m		
		重量	4000 kg	2	
4m 440 310 BW	飛行定数(C _D A/m	1)	0.0056	m ² /kg	
初期配直	<ul> <li>・物体値数1値</li> <li>・音巻け遠方から物が</li> </ul>	マに近づくが	■速 60m/s l	リ下でけ浮上したい	
	<ul> <li>・地上からの初期高</li> </ul>	\$0 m	24 <u>25</u> 00 m / 3 §		
					1
表	8 佐呂間 竜巻での	)4t トラ	ックの飛龍	女計算結果	
解析	車両と竜巻中心と	計	算結果(フジタ	(モデル)	
ケース	の距離	飛散距離	飛散高さ	最大水平速度	
1	22m	45.4 m	2.8m	25.8 m/s	
2	20m	35.5 m	2. 3m	22.2 m/s	
3	18m	25.9 m	1.7m	18.8 m/s	
	and the second se		10.0		
	C				
	C	111	1000		
	200	11			
	State State	HA			
		ケー			
	S.	07音	地点		
		ケース の差世	.2 h占		
	burnet	5-72	5/11		
		の着地点	ħ.		
	a st	1			
		1			
	P	1			
		:3/2	60.00		
		142	00111		
<b>國</b> 00	コンクエデルト	ースレニー	カ孤歩の	百田佃仁汁田	
凶 30	ノングモデルに。	トロトフツ	ク飛取の	时奶胜树稻禾	



-71 着地。 の着地点 -73 の着地点 約60m

第28 図 フジタモデルによるトラック飛散の再現解析結果



第6.3-2図 フジタモデルによる4tトラックの飛散解析結果 (文献⁽²⁷⁾の写真に軌跡を加筆)

# 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所(2018.9.18版)

# (ii) 乗用車の飛散解析

白い乗用車(第27図の⑥)の被災事例を対象として、物体を1 点初期配置した条件で最大水平速度等を計算する。

白い乗用車の計算条件について、第9表に示す。

第9表 佐呂間竜巻の白い乗用車の計算条件

竜巻条件	第7表と同様		
	白い乗用車	車両長さ	4. 40m
孤立脑冬出	トヨタカローラ	車両幅	1.70m
飛木物米件		車両高さ	1.50m
	飛行定数 $C_DA/m$		0.0097 m ² /kg
初期配置	<ul> <li>・物体個数1個</li> <li>・竜巻は遠方から物体に近づくが、風速60m/s以下では浮上しない</li> <li>・設置高さ0m</li> </ul>		

白い乗用車と竜巻中心との距離を, 18m, 20m, 22m とした場合 の解析結果を第10表及び第29図に示す。飛散距離についてはケ 析結果を,第6.3-4表及び第6.3-3図に示す。飛散距離につい ース1 でおおむね合致している。

飛散方向については、飛び出し方向はおおむね合致しているも のの、最終的な着地点には多少のずれが生じている。これは乗用 車(白)が建物に近接して駐車していたため、この建物の倒壊の 影響を受けて飛散方向のずれが生じたものと推定される。

なお、赤い乗用車(第27図の③)について評価した場合は、竜 巻中心との距離が大きいため飛散しない解析結果となる。ただし, 造2階建て,第27図のA)の直ぐ下流側に駐車しており、その瓦 造2階建,第 6.3-1図のA)のすぐ下流側に駐車しており、 礫の影響を受けて一緒に移動したものと考えられる。

第10表 佐呂間竜巻での白い乗用車の飛散計算結果

ケース     中心との距離     飛散距離     飛散高さ     最大水平速度       1     22m     51.9 m     3.6m     28.9 m/s       2     20m     43.5 m     3.4m     24.7 m/s	解析	白い乗用車と竜巻	計算結果(フジタモデル)				
1         22m         51.9 m         3.6m         28.9 m/s           2         20m         43.5 m         3.4m         24.7 m/s	ケース	中心との距離	飛散距離	飛散高さ	最大水平速度		
2 20m 43.5 m 3.4m 24.7 m/s	1	22m	51.9 m	3.6m	28.9 m/s		
	2	20m	43.5 m	3.4m	24.7 m/s		
3 18m 34.7m 2.9m 21.1m/s	3	18m	34.7 m	2.9m	21.1 m/s		

b. 乗用車の飛散解析

白い乗用車(第6.3-1図の⑥)の被災事例を対象として、物体 を1点初期配置した条件で最大水平速度等を計算した。 乗用車の計算条件について、第6.3-3表に示す。

第6.3-3表 佐呂間竜巻による乗用車の飛散解析条件

竜巻条件	トラック(第6.3-1表)に同じ				
飛来物条件	車両長さ**2	4.4 m			
	車両幅**	1.7 m			
	車両高さ**	1.5 m			
	飛行定数 (C _D A/m)	0.0097 m²⁄kg			
初期配置等	<ul> <li>・物体個数:1台</li> </ul>				
<ul> <li>・設置高さ:0 m (地上)</li> </ul>					
・「竜巻は遠方から物体に近づくが,風速 60m/s 以下では浮上					
しない」ことを条件として付加					
※1 佐呂間竜	巻のフジタスケール (F3) に基づく。				

※2 車種不明のため、トヨタカローラを仮定。

乗用車と竜巻中心との距離を 18m, 20m 及び 22m とした場合の解 ては、ケース1でおおむね合致している。

飛散方向については、飛び出し方向はおおむね合致しているも のの、最終的な着地点には多少のずれが生じている。これは乗用 車(白)が建物(A棟)に近接して駐車していたため、この建物 の倒壊の影響を受けて飛散方向のずれが生じたものと推定され る。

なお,赤い乗用車 (第6.3-1 図の③) について評価した場合は, 竜巻中心との距離が大きいため飛散しない結果となった。ただし, 実際には、赤い乗用車は全壊・飛散したプレハブ建物(軽量鉄骨 | 実際には、赤い乗用車は全壊、飛散したプレハブ建物(軽量鉄骨 そのがれきの影響を受けて一緒に移動したものと考えられる。

第6.3-4表 佐呂間竜巻による乗用車の飛散解析結果

車両と竜巻中心との		計算結果				
クース	距離	飛散距離	飛散高さ	最大水平速度		
1	22 m	51.9 m	3.6 m	28.9 m⁄s		
2	20 m	43.5 m	3.4 m	24.7 m⁄s		
3	18 m	34.7 m	2.9 m	21.1 m⁄s		

	島根原子	力発電所	2号炉			備考
(ⅲ)乗	用車の飛散解析					
白い乗用	車 (図 29 の⑥)	点				
初期配置し	ト冬件で最大水国					
山が東田	古の計算を供ける					
日い来用	単の計鼻余件に*		9亿779。			
	表9 佐呂間竜	巻の白い乗	用車の計算	算条件		
竜巻条件	表7と同様					
形米物条件	長さ**1		4.4 1	0	_	
	「曲 高さ ^{※1}		1. 7 1	n		
	飛行定数(C _D A/	m)	0.009	97 m²∕kg		
初期配置等	<ul> <li>・物体個数:1台</li> </ul>					
	<ul> <li>・地上からの初期</li> <li>・「竜巻は遠方から!</li> </ul>	局さ:0 m(地 物体に近づくカ	上) ^š , 風速 60m/	´s 以下では浮上しフ	r	
	い」ことを条件と	<u>: して付加</u>				
※1 単俚个!	明のため、トヨダガロ	ーフを仮足。				
ム、千田			10 00		1 ^	
日い茉用	単と電を中心と(	り距離を,	18m, 20m,	22m とした疡	合	
の解析結果	を表 10 及び図 31	しに示す。飛	散距離に	ついてはケーン	ス1	
でおおむね	合致している。					
飛散方向	については,飛び	び出し方向	はおおむね	2合致している	5	
のの、最終	的な着地点には〟	多少のずれ	が生じてい	いる。これは乗	用	
<b>宙</b> (白)が	建物に近接して	注重してい	たため	の建物の倒博	Eの	
早(ロ)ル	2初に 2000			こう定わり回る	ç • >	
影響を受けて飛散方向のずれが生じたものと推定される。						
なお,赤	い乗用車(図 29	の③) につ	いて評価	した場合は、竜	諉	
中心との距離が大きいため飛散しない解析結果となる。ただし、						
実際には、赤い乗用車は全壊・飛散したプレハブ建物(軽量鉄骨						
へいには、 $ $						
垣 Z 隋建 (, 図 29 の A) の 但 く 下 流 側 に 駐車 し て お り , そ の 丸 礫						
の影響を受	けて一緒に移動し	したものと>	考えられる	D •		
表	10 佐呂間竜巻で	での白い乗り	目車の飛背	<b>      t</b> 計算結果		
解析	白い乗用車と竜巻	計算	算結果(フジタ	(モデル)	1	
ケース	中心との距離	飛散距離	飛散高さ	最大水平速度		
1	22m	51.9 m	3.6m	28.9 m/s		
2	20m	43.5 m	3.4m	24.7 m/s		
3	18m	34.7 m	2.9m	21.1 m/s		

	島根原子	力発電所	2号炉		備考
(ii)乗戶	用車の飛散解析				
白い乗用耳	車(図 29 の⑥)の	の被災事例	を対象と	して,物体を1点	
期配置しナ	を条件で最大水平				
白い乗用国	車の計算条件に~	いて、表	9に示す。		
	<b>夷 0</b> 仕 兄 問 奇 封	巻の白い垂	田甫の斗符	当冬州	
音券条件	表7と同様		□中○□		1
飛来物条件	長さ ^{*1}		4.4 r	1	
	幅**1		1.7 r	1	
	高さ**1		1.5 m	1	
如田町 里林	飛行定数 $(C_DA/$	m)	0.009	97 m²∕kg	
<u> 初</u> 朔 配 直 寺	<ul> <li>・物体値数:1 合</li> <li>・地上からの初期</li> <li>・「竜巻は遠方から物</li> <li>い」ことを条件と</li> </ul>	高さ:0m(地) 勿体に近づくか ・して付加	上) ^x , 風速 60m/	´s 以下では浮上しな	
※1 車種不明	月のため、トヨタカロ	ーラを仮定。			
白い乗用耳	車と竜巻中心との	)距離を,	18m, 20m,	22m とした場合	1
解析結果。	を表 10 及び図 31	に示す。飛	散距離に	ついてはケース	1
おおむね合	合致している。				
飛散方向に	こついては,飛び	ド出し方向は	はおおむれ	a合致しているも	)
の,最終的	的な着地点には参	多少のずれ	が生じてい	いる。これは乗月	月
(白)が疑	書物に近接して騙	主車してい	たため、こ	この建物の倒壊の	
響を受けて	て飛散方向のずれ	ぃが生じた	ものと推定	<b>Eされる</b> 。	
なお,赤い	・乗用車(図 29 (	の③) につ	いて評価	した場合は、竜着	Ś.
心との距离	雛が大きいため飛	を散しない	解析結果。	となる。ただし,	
際には、え	赤い乗用車は全域	<b>夢・</b> 飛散し	たプレハフ	ブ建物(軽量鉄骨	7
2 階建て	図 29 の A)のī	すぐ下流側	に駐車し	ており その瓦薩	
影郷な画は	ナイー	たものとき	生うられる		
が音で又の		/ 0 0 / 2 4	ライ・ワイレる	) ₀	
表	10 佐呂間竜巻て 	この日い乗り	<b>书車の</b> 飛龍	x計算結果	
解析	白い乗用車と竜巻	計算	算結果(フジタ	マモデル)	
ゲース	中心との距離	飛散距離	飛散高さ	最大水平速度	
1	22m	51.9 m	3.6m	28.9 m/s	
3	18m	34.7 m	2. 9m	24.1 m/s	
_					

柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)		島	退原子力発電所 2号	炉	備考
				表	11 多点配置時の計算	条件	
			竜巻条件	表7と同様			
			飛来物条件	表7と同様			
			初期配置等	<ul><li>・物体個数:</li></ul>	51×51 台を,最大接線風速	半径の4倍を1辺とする正	
				方形内(x	x,y=[−2Rm,+2Rm]) に等間隔晒	己置。	
				・地上からの	⊃初期高さ:0m(地上)		
			表 12 実	際の被災状	況と多点配置等を考慮	<u> 意した場合の飛散解析</u>	
					手法の結果の比較		
				飛散距離	飛散高さ	最大水平速度	
			計算結果 (TONBOS)	86.5 m	5.3 m	39.9 m/s (約 144 km/hr)	
			実際の被災 状況	約 40 m	トラックの運転席に乗 車していた乗員2名が 幸いにも存命で救出さ れ,搬送先の病院で聞 き取り調査に応じてお り,被災したトラック が地面から5.3m以上 の高所から落下したと は考えにくい。	被災後もほぼ元の外形 を留めていることが示 されており,実際の飛 来物速度は本解析で得 られた最大飛来物速度 (約144 km/hr)を遙か に下回るものと推察で きる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2
		5.3m 6 6 7 10 10 10 10 10 10 10 10 10 10
		(a)物体の軌跡(水平移動距離と飛散高さの関係)(b) (フジタモデル,地上)
		50 40 40 40 40 40 40 40 40 40 4
		<ul> <li>(a)物体の軌跡(水平移動距離と飛散高さの関係)(b)</li> <li>(参考:ランキン渦モデル,地_</li> <li>図 32 多点配置等を考慮した場合の飛散解</li> </ul>
(b) 柏崎刈羽原子力発電所に適用する飛来物評価法による検証 (27)	(2) 今回の飛散解析手法による検証	(b) 今回の飛散解析手法による検証 ⁽²⁶⁾
ここでは、柏崎刈羽原子力発電所に適用する飛来物評価法の竜 巻条件・物体初期配置条件で前述の佐呂間竜巻における4tトラッ ク及び白い乗用車の被災事例を評価し、佐呂間竜巻での実際の被	ここでは、今回の飛散解析手法で、前述の佐呂間竜巻における 4t トラック及び乗用車の被災事例を評価し、実際の被災状況(飛 散距離等)と比較する。	ここでは、今回の飛散解析手法で、前述 4t トラック及び白い乗用車の被災事例を 実際の被災状況(移動距離等)との結果を
<ul> <li>         へい(元)(移動単融寺) との結末を比較する。         <ul> <li>(i)4tトラックの飛散解析</li> <li>計算条件について第11表に示す。竜巻条件としては、設計竜巻の最大風速を92m/sとし、その他の特性量については、ガイドに</li> </ul> </li> </ul>	<ul> <li>a.4tトラックの飛散解析</li> <li>解析条件について第6.3-5表に示す。竜巻条件としては、最大</li> <li>風速を92m/sとし、その他の特性量については、竜巻影響評価ガ</li> </ul>	(i)4t トラックの飛散解析 計算条件について表13に示す。竜巻条( 最大風速を92m/sとし,その他の特性量)



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
例示されている方法に従い,移動速度 Vt を 14 m/s (最大風速の	イドに例示されている方法に従い,移動速度V _{tr} を14m/s(最大	示されている方法に従い,移動速度 V _t を 14 m/s (最大風速の 15%),	
15%), 竜巻コア半径 R _m を 30 m とする。	風速の15%), 竜巻コア半径R _m を30mとした。	竜巻コア半径 R _m を 30 m とする。	
第11 表 柏崎刈羽原子力発電所に適用する飛来物評価法の計算	第6.3-5表 今回の飛散解析手法に基づく計算条件	表 13 島根原子力発電所に適用する飛来物評価法の計算条件	
条件		竜巻条件 設計竜巻風速 92 m∕s	
	最大接線風速 78 m/s	最大接線風速 78 m/s	
最大接線風速 78m/s 移動速度 14m/c	移動速度 コア半径 30 m	移動速度 14 m/s	
移動速度     14m/s       コア半径     30m	一     一     0.0 m       一     飛来物条件     トラック(第6.3-1表)に同じ	コア半径 <u>30 m</u> 	
	初期配置 ・物体個数:51×51 台を,最大接線風速半径の4倍を1辺	ボボ初来件 & 「こ回様     初期配置 ・物体個数:51×51 台を、最大接線風速半径の4倍を1	
初期配置 ・物体 個数 $51 \times 51$ 個, 電 巻 半 径 の 4 倍 を 一 辺 と す る 止 方 形 内 $(x, y = [-2Rm, +2Rm])$ に 等 間 隔配置	とする正方形内(x, y=[-2R _m , +2R _m ]) に等間隔配置。	辺とする正方形内(x, y=[-2 R _m , +2 R _m ]) に等間隔配	
<ul> <li>・設置高さ 0m</li> </ul>	└────────────────────────────────────	置。	
		<ul> <li>・地上からの初期高さ:0 m(地上)</li> </ul>	
第12表に実際の被災状況と,柏崎刈羽原子力発電所に適用する	第6.3-6表に実際の被災状況と、今回の飛散解析手法による結	表14に実際の被災状況と、今回の飛散解析手法による結果の比	
飛来物評価法の結果の比較を示す。また,第30 図に被災後の4t ト	果との比較を示す。また,第6.3-4図に被災後の4tトラックの	較を示す。また,図 33 に被災後の 4t トラックの状況を示す。	
ラックの状況を示す。	状況を示す。		
フジタモデルによる飛散評価結果として、4t トラックの最大飛	フジタモデルによる評価結果として、4t トラックの最大飛散速	フジタモデルによる飛散評価結果として、4t トラックの最大飛	
来物速度は 36 m/s, 最大飛散高さは 3.6 m, 最大飛散距離は 63.4 m	度は 36m/s, 最大飛散高さは 3.6m, 最大飛散距離は 63.4m とな	来物速度は36m/s,最大飛散高さは3.6m,最大飛散距離は63.4m	
となる。	った。	となる。	
実際の 4t トラック飛散距離は約 40m であり, フジタモデルに	実際の4t トラック飛散距離は約40m であり、フジタモデルによ	実際の 4t トラック飛散距離は約 40m であり, フジタモデルに	
よる飛散距離の評価結果はこれを上回る。また、飛散高さや最大	る評価結果はこれを上回った。また、飛散高さや最大水平速度に	よる飛散距離の評価結果はこれを上回る。また、飛散高さや最大	
水平速度については,直接の比較はできないものの,4t トラック	ついては,直接の比較は出来ないものの,4tトラックの乗員2名	水平速度については, 直接の比較はできないものの, 4t トラック	
の乗員2名が存命であったこと,被災後の4tトラックがほぼ元	が存命であったこと,被災後の4tトラックがほぼ元の外形をとど	の乗員2名が存命であったこと,被災後の4tトラックがほぼ元	
の外形をとどめていること等から、柏崎刈羽原子力発電所に適用	めていることなどから、今回の飛散解析手法で評価をした場合で	の外形をとどめていること等から、今回の飛散解析手法で評価を	
する飛来物評価法で飛散解析をした場合でも、実際の被災状況と	も、実際の被災状況と比較して妥当な結果となるものと考えられ	した場合でも、実際の被災状況と比較して妥当な結果となるもの	
比較して妥当な結果となるものと考えられる。	る。	と考えられる。	
なお、参考として同様の検証をランキン渦モデルでも実施して	なお,参考として同様の検証をランキン渦モデルでも実施した。	なお、参考として同様の検証をランキン渦モデルでも実施して	
おり、ランキン渦モデルによる評価では、最大飛散高さ、最大飛	ランキン渦モデルによる評価では、最大飛散高さ、最大飛散距離	おり、ランキン渦モデルによる評価では、最大飛散高さ、最大飛	
散距離ともに実際の被災状況と比較して非常に保守性が大きい結	ともに実際の被災状況と比較して非常に保守的な結果となってい	散距離ともに実際の被災状況と比較して非常に保守性が大きい結	
果となっていることが分かる。	ることが分かる。	果となっていることが分かる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20	)版)	東海第二発電所(2018.9.18版)		島根原子力発電所 2	寻灯
第12表 実際の被災状況と「柏崎刈羽原子力発電所の	の飛来物評 第6.3-6表	実際の被災状況と今回の飛散解析手法による評価	結 表	14 実際の被災状況と今回の飛散解析	手

価法」との結果の比較(4t トラックの場合)

飛散高さ**2 風速場モデル 飛散距離 最大水平速度 フジタモデル 36.0m/s 63.4m 3.6m (地上) (毎時 130 km) ランキン渦モデル 193.7m 11.7m  $43.9 \mathrm{m/s}$ (地上*1) ランキン渦モデル 254.9m 11.7m 43.9m/s (40m)4t トラックの運転席に 被災後もほぼ元の外 乗車していた乗員 2 名 形をとどめているこ が幸いにも存命で救出とが示されており され, 搬送先の病院で間 (25), 実際の飛来物速 実際の被災状況 約40 m | き取り調査に応じてお | 度は本解析で得られ り⁽²⁵⁾, 被災した 4t ト た最大飛来物速度 ラックが地面からは (約130 km/h)を遙 3.6m 以上の高所から落 かに下回るものと推 下したとは考えにくい。察できる。

※1:ランキン渦モデルでは地上付近の風速場を模擬できていないが、フジタモデルの 計算結果(飛散距離)と比較をするため、フジタモデルと同条件とする。

※2:初期物体高さからの飛散高さ。

果 (4t トラック)

国産相テビル	初期	計算結果				
風速場モナル	物体高さ	飛散距離	飛散高さ**2	最大水平速度		
フジタモデル	0 m (地上)	63.4 m	3.6 m	36.0 m⁄s		
ランキン渦モデル	ンキン渦モデル 0 m (地上*1) 193.7		11.7 m 43.9 m/s			
[参与]	40 m	254.9 m				
実際の被災状況	0 m (地上)	約 40 m	乗でまな 病り調ったこと か存聞可 にて ⁽²⁷⁾ ,3.6m をした とした と した と した と 難い	トラックはお おむね外形を とどめている ことから,36m /s (約130km/h) を超える飛散 速度であった とは考え難い。		

※1 比較のため、フジタモデルと同条件とした。 ※2 初期物体高さからの飛散(浮上)高さ。

島根原子力発電所 2号炉				備考
表 14 実際の	>被災状況	と今回の飛散解析	手法による評価結果の	
	比較	(4t トラックの場合	<u>}</u> )	
風速場モデル	飛散距離	飛散高さ**2	最大水平速度	
フジタモデル (地上)	63.4 m	3.6 m	36.0 m/s (約 130 km/hr)	
ランキン渦モデル (地上 ^{*1} )	193.7 m	11.7 m	43.9 m/s	
ランキン渦モデル (40 m)	254.9 m	11.7 m	43.9 m/s	
実際の被災状況	約 40 m	トラックの運転席に乗車 していた乗員2名が幸い にも存命で救出され,搬送 先の病院で聞き取り調査 に応じており ⁽²⁴⁾ ,被災し たトラックが地面から 3.6m以上の高所から落下 したとは考えにくい。	被災後もほぼ元の外形を留 めていることが示されてお り ⁽²⁴⁾ ,実際の飛来物速度は 本解析で得られた最大飛来 物速度(約 130 km/hr)を 遙かに下回るものと推察で きる。	
※1:ランキン渦=	モデルでは地	上付近の風速場を模擬できて	[いないが, フジタモデルの計	
算結果(飛青	改距離) と比輔	咬をするため,フジタモデル ニュ	と同条件とする。	
※2:初期物体尚	さからの飛散	6 合		
図 33 青	竜巻による	る被災後の4t トラ	ックの様子 ^{(24) (25)}	
( ii )乗用車 4t トラック( 飛散解析を行	E (白) の の場合と[ テった場合	9飛散解析 司様に, 今回の飛散 ♪の結果を表 15 に示	解析手法で白い乗用車 す。	

	島根	原子力発電所 2号	-炉	備考
表 14 実際の	>被災状況	と今回の飛散解析	手法による評価結果の	
	比較	(4t トラックの場合	<u>}</u> )	
風速場モデル	飛散距離	飛散高さ*2	最大水平速度	
フジタモデル (地上)	63.4 m	3.6 m	36.0 m/s (約 130 km/br)	
(地上 ^{×1} )	193.7 m	11.7 m	43.9 m/s	
ランキン渦モデル (40 m)	254.9 m	11.7 m	43.9 m/s	
実際の被災状況	約 40 m	トラックの運転席に乗車 していた乗員2名が幸い にも存命で救出され,搬送 先の病院で聞き取り調査 に応じており ⁽²⁴⁾ ,被災し たトラックが地面から 3.6m以上の高所から落下 したとは考えにくい。	被災後もほぼ元の外形を留 めていることが示されてお り ⁽²⁴⁾ ,実際の飛来物速度は 本解析で得られた最大飛来 物速度(約 130 km/hr)を 遙かに下回るものと推察で きる。	
※1 : ランキン渦	モデルでは地	上付近の風速場を模擬できて	こいないが, フジタモデルの計	
算結果(飛龍	故距離)と比	較をするため,フジタモデル	と同条件とする。	
※2:初期物体高	さからの飛散	高さ		
図 33 ī	<b>竜春によ</b> ん	る 被 災 後 の 4t トフ	ックの様子(24)(25)	
(ii)乗用車 4t トラック O飛散解析を行	E (白) の の場合と  fった場合	9飛散解析 司様に, 今回の飛散 への結果を表 15 に示	解析手法で白い乗用車 す。	



第30図 竜巻による被災後の4t トラックの様子(25)(26)

(ii) 乗用車(白)の飛散解析

4t トラックの場合と同様に、柏崎刈羽原子力発電所に適用する 飛来物評価条件で白い乗用車の飛散解析を行った場合の結果を第 | 価を行った結果を第 6.3-7 表に示す。 13 表に示す。



第6.3-4図 竜巻による被災後の4tトラックの様子^{(x x)(x x i)}

b. 乗用車(白)の飛散解析

4t トラックの場合と同様に、今回の飛散解析手法で乗用車の評

乗用車の場合も、フジタモデルによる評価が、実際の被災状況 を包含する結果となっている。



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
第13表実際の被災状況と「柏崎刈羽原子力発電所の飛来物評	第6.3-7表 実際の被災状況と今回の飛散解析手法による評価結	表 15 実際の被災状況と今回の飛散解析手法による評価結果の	
価法」との結果の比較(白い乗用車の場合)	果 (乗用車)	比較(白い乗用車の場合)	
風速場モデル 飛散距離 飛散高さ ^{※2} 最大水平速度	初期計算結果	風速場モデル 飛散距離 飛散高さ ^{※2} 最大水平速度	
フジタモデル (地上)         82.3m         4.2m         44.1m/s	風速場モデル         助知 物体高さ         前共和京           一         教体高さ         飛散距離         飛散高さ ^{*2} 最大水平速度	フジタモデル (地上)         82.3m         4.2m         44.1m/s	
ランキン渦モデル (地上 ^{歩)} 269.6m 39.4m 49.6m/s	フジタモデル         0 m (地上)         82.3 m         4.2 m         44.1 m/s	ランキン渦モデル (地上 ^{幸1)} 269.6m 39.4m 49.6m/s	
フシキン酒モアル (40m) 305.8m 39.4m 49.6m/s	ランキン渦モデル (地上 ^{※1} ) 269.6 m 39.4 m 49.6 m/s	フンキン渦モケル (40m) 305.8m 39.4m 49.6m/s	
実際の被災状況         約 50m         ー         ー		実際の被災状況 約 50m	
<ul> <li>※1:ランキン渦モデルでは地上付近の風速場を模擬できていないが、フジタモデルの 計算結果(飛散距離)と比較をするため、フジタモデルと同条件とする。</li> <li>※2:初期物体高さからの飛散高さ。</li> </ul>	王房の彼及状況   0 m (地上)   約 30 m   −   −   −   −   −   −   −   −   −	<ul> <li>※1:ランキン渦モデルでは地上付近の風速場を模擬できていないが、フジタモデルの 計算結果(飛散距離)と比較をするため、フジタモデルと同条件とする。</li> <li>※2:初期物体高さからの飛散高さ。</li> </ul>	
7. 飛散以外の挙動に対する考慮	7. 飛散以外の挙動に対する考慮	7. 飛散以外の挙動に対する考慮	
前節までで、飛来物の竜巻による挙動のうち、飛散に関する評	   前節までで,飛来物の竜巻による挙動のうち,飛散に関する評	前節までで、飛来物の竜巻による挙動のうち、飛散に関する評	
価手法について説明をした。実際の竜巻による飛来物の挙動とし	価手法について説明をしたが,実際の竜巻による飛来物の挙動と	価手法について説明をした。実際の竜巻による飛来物の挙動とし	
ては、飛散だけではなく、横滑りや転がりによる挙動が発生する	しては、飛散だけではなく横滑りや転がりが発生することも考え	ては、飛散だけではなく、横滑りや転がりによる挙動が発生する	
ことも考えられるため、本節では、これらの飛来物の挙動につい	られる。	ことも考えられるため、本節では、これらの飛来物の挙動につい	
て,下記の2点に分けて考察する。	本節では、横滑りや転がりの影響について、以下2点に分けて	て,下記の2点に分けて考察する。	
	考察する。		
(a) 飛散する物体における横滑りや転がりの影響	<ul> <li>・ 飛散する物体における横滑りや転がりの影響</li> </ul>	(a) 飛散する物体における横滑りや転がりの影響	
(b)飛散しない物体における横滑りや転がりの影響	<ul> <li>・ 飛散しない物体における横滑りや転がりの影響</li> </ul>	(b) 飛散しない物体における横滑りや転がりの影響	
(a)飛散する物体における横滑りや転がりの影響	 (1) 飛散する物体における横滑りや転がりの影響	(a)飛散する物体における横滑りや転がりの影響	
「5.2 竜巻が物体に与える速度に関する不確定性の考慮」に記	「5.2 物体が受ける風速における保守性の考慮」に記載のとお	「5.2 竜巻が物体に与える速度に関する不確定性の考慮」に記	
載のとおり、本検討においては、竜巻を直上に発生させる方法を	り、本検討においては、竜巻を直上に発生させる方法を採用して	載のとおり、本検討においては、竜巻を直上に発生させる方法を	
採用していることから、実際には横滑りや転がりを伴い移動する	いることから、実際には横滑りや転がりを伴い移動する物体も強	採用していることから、実際には横滑りや転がりを伴い移動する	
物体も強制的に高速域に配置され、浮上をして飛散することにな	制的に高速域に配置され、浮上をして飛散することになる。	物体も強制的に高速域に配置され、浮上をして飛散することにな	
る。		る。	
この場合、空中では地面の摩擦力を受けないため、実際に比べ	この場合,空中では地面の摩擦力を受けないため,実際に比べ	この場合,空中では地面の摩擦力を受けないため,実際に比べ	
て大きな水平速度が得られることになる。	て大きな水平速度が得られることになる。	て大きな水平速度が得られることになる。	
また、浮上後に地面に衝突する場合は、運動エネルギの大部分	また、浮上後に地面に衝突する場合は、運動エネルギの大部分	また、浮上後に地面に衝突する場合は、運動エネルギの大部分	
は物体や地面の変形・破損等で消費されることから、落下後の横	は物体や地面の変形、破損等で消費されることから、落下後の横	は物体や地面の変形・破損等で消費されることから、落下後の横	
滑りや転がりによる移動距離は実際には小さいものと考えられ	滑りや転がりによる移動距離は実際には小さいものと考えられ	滑りや転がりによる移動距離は実際には小さいものと考えられ	
る。	る。	る。	
「6.3 佐呂間竜巻での車両飛散事例」における飛散した4t トラ	「6.3 佐呂間竜巻での車両飛散事例との比較」における飛散し	「6.3 佐呂間竜巻での車両飛散事例」における飛散した 4t トラ	
ックや乗用車は、実際には飛散だけではなく、横滑りや転がりを	た4tトラックや乗用車は、実際には飛散だけではなく横滑りや転	ックや乗用車は、実際には飛散だけではなく、横滑りや転がりを	
伴ったものと考えられるが、飛散解析より得られた飛散距離や最	がりを伴ったものと考えられるが、飛散解析より得られた飛散距	伴ったものと考えられるが、飛散解析より得られた飛散距離や最	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
大水平速度は、実際の被災状況よりも保守的な評価となっている	離や最大水平速度は、実際の被災状況よりも保守的な評価となっ	大水平速度は、実際の被災状況よりも保守的な評価となっている	
ことから,飛散過程における不確実性を裕度として包含している。	ていることから、飛散過程における不確実性を裕度として包含し	ことから、飛散過程における不確実性を裕度として包含している。	
	ている。		
(b)飛散しない物体における横滑りや転がりの影響	(2) 飛散しない物体における横滑りや転がりの影響	(b) 飛散しない物体における横滑りや転がりの影響	
飛散しない物体においても, 竜巻による風荷重が静止摩擦力よ	飛散しない物体においても、竜巻による風荷重が静止摩擦力よ	飛散しない物体においても、竜巻による風荷重が静止摩擦力よ	
り大きい場合には、横滑りをする。また、横滑りをしない場合で	り大きい場合には、横滑りをする。また、横滑りをしない場合で	り大きい場合には、横滑りをする。また、横滑りをしない場合で	
も、風荷重によるモーメントが自重のモーメントよりも大きい場	も、風荷重によるモーメントが自重のモーメントよりも大きい場	も、風荷重によるモーメントが自重のモーメントよりも大きい場	
合には転がることになる。このように、竜巻により横滑りや転が	合には転がることになる。このように、竜巻により横滑りや転が	合には転がることになる。このように、竜巻により横滑りや転が	
る場合には、地面での摩擦力の影響を受けながら移動することか	りが生じる場合には、地面での摩擦力の影響を受けながら移動す	る場合には、地面での摩擦力の影響を受けながら移動することか	
ら、移動距離や水平速度は十分に小さいものと考えられる。	ることから、移動距離や水平速度は十分に小さいものと考えられ	ら、移動距離や水平速度は十分に小さいものと考えられる。	
	る。		
また、物体と外部事象防護対象施設の間に、障害物となるフェ	また、物体と評価対象施設等の間に障害物となるフェンス等が	また、物体と外部事象防護対象施設の間に、障害物となるフェ	
ンス等がある場合には、横滑りや転がった物体が外部事象防護対	ある場合には、横滑りや転がった物体が評価対象施設等に到達す	ンス等がある場合には、横滑りや転がった物体が外部事象防護対	
象施設に到達することは阻止される。	ることは阻止される。	象施設に到達することは阻止される。	
以上より、飛散しない物体が横滑りや転がりにより、障害物の	以上より、飛散しない物体が、障害物の影響を受けずに、横滑	以上より、飛散しない物体が横滑りや転がりにより、障害物の	
影響を受けず、外部事象防護対象施設と衝突することが想定され	りや転がりによって評価対象施設等と衝突することが想定される	影響を受けず、外部事象防護対象施設と衝突することが想定され	
る場合については、横滑りや転がった物体の影響が設計飛来物の	場合については、横滑りや転がった物体の影響が設計飛来物の影	る場合については、横滑りや転がった物体の影響が設計飛来物の	
影響に包含されることを確認し、包含されない場合には固縛等の	響に包含されることを確認し、包含されない場合には固縛等の措	影響に包含されることを確認し、包含されない場合には固縛等の	
措置を実施する。固縛等の措置に当たっては、フジタモデルの風	置を実施する。固縛等の措置に当たっては、フジタモデルの風速	措置を実施する。固縛等の措置に当たっては、フジタモデルの風	
速場より求まる風荷重に,地面での摩擦力を適切に考慮した上で,	場より求まる風荷重や地面での摩擦力を適切に考慮した上で、設	速場より求まる風荷重に,地面での摩擦力を適切に考慮した上で,	
設計用荷重を設定する。	計用荷重を設定する。	設計用荷重を設定する。	
8. まとめ	8. まとめ	8. まとめ	
フジタモデルは、米国 NRC による要望で実際の竜巻観測記録を	フジタモデルは、米国NRCの要望により実際の竜巻観測記録	フジタモデルは、米国 NRC による要望で実際の竜巻観測記録を	
もとに考案された風速場モデルであり、米国 DOE の重要施設に対	を基に考案された風速場モデルであり、米国DOEの重要施設に	もとに考案された風速場モデルであり、米国 DOE の重要施設に対	
する設計基準の作成の際にも用いられている。フジタモデルは,	対する設計基準の作成の際にも用いられている。 フジタモデルは,	する設計基準の作成の際にも用いられている。フジタモデルは,	
他のモデルではできなかった地上からの物体の浮上を現実的に評	他のモデルではできなかった地上からの物体の浮上を現実的に評	他のモデルではできなかった地上からの物体の浮上を現実的に評	
価することができる点が大きなメリットである。	価することができる点が大きなメリットである。これは、「6.3 佐	価することができる点が大きなメリットである。	
これは、「6.3 佐呂間竜巻での車両飛散事例」の「(a)竜巻特性	呂間竜巻での車両飛散事例との比較」の「(1) 竜巻特性や飛来物(4t	これは、「6.3 佐呂間竜巻での車両飛散事例」の「(a)竜巻特性	
や飛来物の状況を現実的に設定した場合の再現解析」において,	トラック及び乗用車)の状況を現実的に設定した場合の再現解析」	や飛来物の状況を現実的に設定した場合の再現解析」において、	
フジタモデルを風速場とした飛散解析結果が実際の飛散状況とお	において、フジタモデルを風速場とした飛散解析結果が実際の飛	フジタモデルを風速場とした飛散解析結果が実際の飛散状況とお	
おむね合致していることからも、確認することができる。	散状況とおおむね合致していることからも確認できる。	おむね合致していることからも、確認することができる。	
また、フジタモデルにより算出される風速(Vw)は、飛来物の	また、フジタモデルにより算出される風速(Vw)は、飛来物の	また、フジタモデルにより算出される風速(V _w )は、飛来物の	
飛散評価のインプットとして用いるものであり,設計竜巻の最大	飛散評価のインプットとして用いるものであり、設計竜巻の最大	飛散評価のインプットとして用いるものであり,設計竜巻の最大	
風速の算出に当たっては保守性を確保した上で、「5. 飛来物評価	風速の算出に当たっては保守性を確保したうえで、「5. 飛散解析	風速の算出に当たっては保守性を確保した上で,「5. 飛来物評価	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
における不確定性の考慮」のとおり、竜巻を多数の物体の直上に	における保守性の考慮」のとおり、竜巻を多数の物体の直上に瞬	における不確定性の考慮」のとおり、竜巻を多数の物体の直上に	
瞬時に発生させて物体が最大風速を受けるような初期条件を用い	時に発生させて物体が最大風速を受けるような初期条件を用いる	瞬時に発生させて物体が最大風速を受けるような初期条件を用い	
る等の評価手法により、不確実性も含めて飛来物速度等を保守的	等の評価手法により、不確実性も含めて飛来物速度等を保守的に	る等の評価手法により、不確実性も含めて飛来物速度等を保守的	
に評価できるようにしている。	評価できるようにしている。	に評価できるようにしている。	
これにより、「6.3 佐呂間竜巻での車両飛散事例」の「(b)柏崎	これにより、「6.3 佐呂間竜巻での車両飛散事例との比較」の	これにより、「6.3 佐呂間竜巻での車両飛散事例」の「(b) 今回	
刈羽原子力発電所に適用する飛来物評価法による検証」では,本	「(2)今回の飛散解析手法による検証」では、本評価手法を用いる	の飛散解析手法による検証」では、本評価手法を用いることでフ	
評価手法を用いることでフジタモデルにおいても実際の飛散状況	ことで、フジタモデルにおいても実際の飛散状況に対し保守性を	ジタモデルにおいても実際の飛散状況に対して、保守性を有した	
に対して,保守性を有した妥当な結果となることを確認している。	有した妥当な結果となることを確認している。	妥当な結果となることを確認している。	
地上からの浮上・飛散評価を行うことのメリットは、発電所敷	地上からの浮上,飛散評価を行うことのメリットは,発電所敷	地上からの浮上・飛散評価を行うことのメリットは、発電所敷	
地内に数多く存在する物の中から、竜巻による飛来物化の影響度	地内に数多く存在する物品の中から、竜巻による飛来物化の影響	地内に数多く存在する物の中から、竜巻による飛来物化の影響度	
合いを、浮上の有無の観点を含め、より正確に把握できることで	度合いを、浮上の有無の観点を含めより正確に把握できることで	合いを、浮上の有無の観点を含め、より正確に把握できることで	
ある。竜巻飛来物の影響(浮上の有無,飛散高さ,飛散距離,最	ある。竜巻飛来物の影響(浮上の有無,飛散高さ,飛散距離,最	ある。竜巻飛来物の影響(浮上の有無,飛散高さ,飛散距離,最	
大速度等)を正確に捉えることにより,飛来物の発生防止対策や	大速度等)を正確に捉えることにより、飛来物発生防止対策や評	大速度等)を正確に捉えることにより、飛来物の発生防止対策や	
評価対象施設の防護対策の範囲や強度について、適切な保守性を	価対象施設等の防護対策の範囲や強度について、適切な保守性を	評価対象施設の防護対策の範囲や強度について、適切な保守性を	
確保した上で実効性の高い竜巻防護対策を実施することが可能と	確保した上で実効性の高い竜巻防護対策を実施することが可能に	確保した上で実効性の高い竜巻防護対策を実施することが可能と	
なると考えられる。	なると考えられる。	なると考えられる。	
評価全体として一定の保守性を確保しつつ、適切な竜巻対策に	評価全体として一定の保守性を確保しつつ、適切な竜巻対策に	評価全体として一定の保守性を確保しつつ、適切な竜巻対策に	
よりプラント全体の安全性を向上させるため、当社の竜巻影響評	よりプラント全体の安全性を向上させるため、竜巻影響評価にお	よりプラント全体の安全性を向上させるため、当社の竜巻影響評	
価については、フジタモデルを適用することとする。	ける物体の浮上,飛散評価については、フジタモデルを適用する	価については、フジタモデルを適用することとする。	
	こととする。		
	1	1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
9. 参考文献	<参考文献>	9. 参考文献	
(1) 原子力規制委員会,2013:原子力発電所の竜巻影響評価ガ	(1) U.S. Nuclear Regulatory Commission, Regulatory Guide	(1) 原子力規制委員会, 2013: 原子力発電所の竜巻影響評価ガ	
イドの制定について,原規技発第 13061911 号,平成 25 年 6 月	1.76: Design-Basis Tornado and Tornado Missiles for Nuclear	イドの制定について,原規技発第 13061911 号,平成 25 年 6 月	
19 日制定, 平成 26 年 9 月一部改正.	Power Plants, Revision 1, March 2007.	19 日制定, 平成 26 年 9 月一部改正.	
(2) U.S. NUCLEAR REGULATORY COMMISSION: REGULATORY GUIDE		(2) U.S. NUCLEAR REGULATORY COMMISSION: REGULATORY GUIDE	
1.76, 2007: Design-BasisTornado and Tornado Missiles for		1.76, 2007: Design-Basis Tornado and Tornado Missiles for	
Nuclear Power Plant, Revision 1.		Nuclear Power Plant, Revision 1.	
(3) Simiu, E. and Cordes, M., Tornado-Borne Missile Speeds,	(2) Simiu, E. and Cordes, M., Tornado-Borne Missile Speeds,	(3) Simiu, E. and Cordes, M., Tornado-Borne Missile Speeds,	
NBSIR 76-1050, 1976.	NBSIR 76-1050, 1976.	NBSIR 76-1050, 1976.	
(4) 東京工芸大学(2011):平成 21~22 年度原子力安全基盤調	(3) 東京工芸大学 (2011): 平成 21~22 年度原子力安全基盤調査	(4) 東京工芸大学(2011):平成 21~22 年度原子力安全基盤調	
査研究(平成 22 年度)竜巻による原子力施設への影響に関する調	研究(平成22年度) 竜巻による原子力施設への影響に関する調査	査研究(平成 22 年度)竜巻による原子力施設への影響に関する調	
查研究,独立行政法人原子力安全基盤機構.	研究,独立行政法人原子力安全基盤機構	查研究, 独立行政法人原子力安全基盤機構.	
(5) Fujita, T. T. (1978) Workbook of tornadoes and high winds	(4) Fujita, T. T., Workbook of tornadoes and high winds for	(5) Fujita, T. T. (1978) Workbook of tornadoes and high winds	
for engineering applications. SMRP Research Paper 165,	engineering applications, U. Chicago, 1978.	for engineering applications. SMRP Research Paper 165,	
Department of Geophysical Sciences, University of Chicago,		Department of Geophysical Sciences, University of Chicago,	
142pp.		142pp.	
(6) Karen A. Kosiba and Joshua Wurman, 2013: The	(5) Karen A. Kosiba and Joshua Wurman, 2013: The	(6) Karen A. Kosiba and Joshua Wurman, 2013: The	
Three-Dimensional Structure and Evolution of a Tornado	Three-Dimensional Structure and Evolution of a Tornado	Three-Dimensional Structure and Evolution of a Tornado	
Boundary Layer. Wea. Forecasting, 28, 1552–1561.	Boundary Layer. Wea. Forecasting, 28, 1552–1561.	Boundary Layer. Wea. Forecasting, 28, 1552–1561.	
	(6) 数値的に生成された竜巻状の渦の性質, 平成21年度京都大		
	学防災研究所研究発表要		
(7) Maruyama, T. (2011) Simulation of flying debris using	(7) Maruyama, T., Simulation of flying debris using a	(7) Maruyama, T. (2011) Simulation of flying debris using	
a numerically generated tornado-like vortex. J. Wind Eng. Ind.	numerically generated tornado-like vortex. Journal of Wind	a numerically generated tornado-like vortex. J. Wind Eng. Ind.	
Aerodyn., 99, 249-256.	Engineering and Industrial Aerodynamics, vol.99(4),	Aerodyn., 99, 249-256.	
	pp. 249–256, 2011.		
(8) U.S. Department of Energy, Natural Phenomena Hazards	(8) U.S. Department of Energy, Natural Phenomena Hazards	(8) U.S. Department of Energy, Natural Phenomena Hazards	
Design and Evaluation Criteria for Department of Energy	Design and Evaluation Criteria for Department of Energy	Design and Evaluation Criteria for Department of Energy	
Facilities, DOE-STD-1020-2002, 2002.	Facilities, 0E-STD-1020-2002, 2002.	Facilities, DOE-STD-1020-2002, 2002.	
(https://www.standards.doe.gov/standards-documents/1000/	(http://pbadupws.nrc.gov/docs/ML0302/ML030220224.pdf)	(https://www.standards.doe.gov/standards-documents/1000/	
1020-astd-2002/@@images/file)		1020-astd-2002/@@images/file)	
(9) Malaeb, D. A., Simulation of tornado-generated missiles.	(9) Malaeb, D. A., Simulation of tornado-generated	(9) Malaeb, D. A., Simulation of tornado-generated missiles.	
M.S. thesis, TexasTech University, 1980.	missiles. M.S. thesis, Texas Tech University, 1980	M.S. thesis, Texas Tech University, 1980.	
(10) PH. Luan, Estimates of Missile Speeds in Tornadoes,	(10) PH. Luan, Estimates of Missile Speeds in Tornadoes,	(10) PH. Luan, Estimates of Missile Speeds in Tornadoes,	
M.S. thesis, Texas Tech University, 1987.	M.S. thesis, Texas Tech University, 1987.	M.S. thesis, Texas Tech University, 1987.	
(11) J. R. McDonald, Rationale for Wind-Borne Missile	(11) J. R. McDonald, Rationale for Wind-Borne Missile	(11) J. R. McDonald, Rationale for Wind-Borne Missile	
Criteria for DOE facilities, UCRL-CR-135687, Lawrence	Criteria for DOE facilities, UCRL-CR-135687, Lawrence	Criteria for DOE facilities, UCRL-CR-135687, Lawrence	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
----------------------------------------------------------------	----------------------------------------------------------------	---------------------------------------------------------------	----
Livermore National Laboratory, 1999.	Livermore National Laboratory, 1999.	Livermore National Laboratory, 1999.	
(https://e-reports-ext.llnl.gov/pdf/236459.pdf)	(https://e-reports-ext.llnl.gov/pdf/236459.pdf)	(https://e-reports-ext.llnl.gov/pdf/236459.pdf)	
(12) McDonald, J. R., T. Theodore Fujita: His contribution	(12) McDonald, J. R., T. Theodore Fujita: His contribution	(12) McDonald, J. R., T. Theodore Fujita: His contribution	
to tornado knowledgethrough damage documentation and the	to tornado knowledge through damage documentation and the	to tornado knowledge through damage documentation and the	
Fujita scale. Bull. Amer. Meteor. Soc., 82, pp. 63-72, 2001.	Fujita scale. Bull. Amer. Meteor. Soc., 82, pp. 63-72, 2001	Fujita scale. Bull. Amer. Meteor. Soc., 82, pp. 63-72, 2001.	
(13) NUREG-1827 Safety Evaluation Report for the National	(13) NUREG-1827 Safety Evaluation Report for the National	(13) NUREG-1827 Safety Evaluation Report for the National	
Enrichment Facility in Lea County, New Mexico(Docket	Enrichment Facility in Lea County, New Mexico(Docket	Enrichment Facility in Lea County, New Mexico(Docket	
No. 70–3103)	No. 70–3103)	No. 70–3103)	
(14) 江口譲, 杉本聡一郎, 服部康男, 平口博丸, 竜巻による物	(14) 江口譲, 杉本聡一郎, 服部康男, 平口博丸, 竜巻による物	(14) 江口譲, 杉本聡一郎, 服部康男, 平口博丸, 竜巻による物	
体の浮上・飛来解析コード TONBOS の開発, 電力中央研究所 研究	体の浮上・飛来解析コード TONBOS の開発,電力中央研究所研究	体の浮上・飛来解析コード TONBOS の開発, 電力中央研究所 研究	
報告 N14002, 2014. (15) 日本鋼構造協会,構造物の耐風工学, p82	報告 N14002, 2014.	報告 N14002 , 2014.	
(16) EPRI, Wind field and trajectory models for tornado-	(15) EPRI, Wind field and trajectory models for tornado-	(15)日本鋼構造協会,構造物の耐風工学, p82	
propelled objects, Report NP-748, 1978.	propelled objects, report NP-2898, 1978.	(16) EPRI, Wind field and trajectory models for tornado-	
(17) 林建二郎・大井邦昭・前田稔・斉藤良,開水路中に水没設	(16) Schmidlin, T., B. Hammer, P. King, Y. Ono, L. S. Miller,	propelled objects, Report NP-748, 1978.	
置された立方体および桟粗度の流体力,土木学会論文集 B1(水工	and G. Thumann, 2002: Unsafe at any (wind)speed Testing the	(17) 林建二郎・大井邦昭・前田稔・斉藤良,開水路中に水没設	
学) Vol.67, No.4, I_1141-I_1146, 2011.	stability of motor vehicles in severe winds. Bull. Amer.	置された立方体および桟粗度の流体力,土木学会論文集 B1(水工	
(18) 松宮央登, 中岡宏一, 西原 崇, 木村吉郎:太陽光発電パ	Meteor. Soc., 83,1821-1830.	学) Vol.67, No.4, I_1141-I_1146, 2011.	
ネルに作用する空気力の地面効果に関する風洞実験、構造工学論	(17) 林建二郎・大井邦昭・前田稔・斉藤良,開水路中に水没設	(18) 松宮央登, 中岡宏一, 西原 崇, 木村吉郎 : 太陽光発電パ	
文集, Vol.60A, pp.446-454, 2014.	置された立方体及び桟粗度の流体力,土木学会論文集 B1(水工	ネルに作用する空気力の地面効果に関する風洞実験、構造工学論	
(19) 山本晃一,林建二郎, 関根正人, 藤田光一, 田村正秀, 西	学)Vol.67, No.4, I_1141-I_1146, 2011.	文集, Vol.60A, pp.446-454, 2014.	
村晋, 浜口憲一郎, 護岸ブロックの抗力・揚力係数、および相当	(18) 松宮央登,中岡宏一,西原 崇,木村吉郎:太陽光発電パ	(19) 山本晃一,林建二郎, 関根正人,藤田光一,田村正秀,西	
粗度の計測方法について,水工学論文集,第44巻,pp1053~1058,	ネルに作用する空気力の地面効果に関する風洞実験、構造工学論	村晋, 浜口憲一郎, 護岸ブロックの抗力・揚力係数、および相当	
2000.	文集, Vol.60A, pp.446-454, 2014.	粗度の計測方法について,水工学論文集,第44巻,pp1053~1058,	
(20) 江口 譲, 西原 崇, 水流動試験による電線の風荷重低減化	(19) M.R. Ahmed, S.D. Sharma, An investigation on the	2000.	
のメカニズム解明, 電力中央研究所 研究報告 U96050, 1997.	aerodynamics of a symmetrical airfoil in ground effect,	(20) 江口 譲, 西原 崇, 水流動試験による電線の風荷重低減化	
(21) M.R. Ahmed, S.D. Sharma, An investigation on the	Experimental Thermal and Fluid Science, 29, pp. 633-647, 2005.	のメカニズム解明, 電力中央研究所 研究報告 U96050, 1997.	
aerodynamics of a symmetrical airfoil in ground effect,	(20) 山本晃一,林建二郎, 関根正人,藤田光一,田村正秀,西		
Experimental Thermal and Fluid Science, 29, pp. 633-647, 2005.	村晋, 浜口憲一郎, 護岸ブロックの抗力・揚力係数, 及び相当粗		
(22) Schmidlin, T., Hammer, B., King, P., Ono, Y., Miller, L.	度の計測方法について,水工学論文集,第44巻,pp1053~1058,	(21) Schmidlin, T., Hammer, B., King, P., Ono, Y., Miller, L.	
S. and Thumann, G., Unsafe at any (wind) speed? -Testing the	2000.	S. and Thumann, G., Unsafe at any (wind) speed? -Testing the	
stability of motor vehicles in severewinds-, Vol.83, No.12,	(21) 江口 譲, 西原 崇, 水流動試験による電線の風荷重低減化	stability of motor vehicles in severe winds-, Vol.83, No.12,	
pp. 1821–1830, 2002.	のメカニズム解明, 電力中央研究所 研究報告 U96050, 1997.	pp. 1821–1830, 2002.	
(23) Lei, C., Cheng, L. and Kavanagh, K., Re-examination of	(22) Lei, C., Cheng, L. and Kavanagh, K., Re-examination of	(22) Lei, C., Cheng, L. and Kavanagh, K., Re-examination of	
the effect of a planeboundary on force and vortex shedding of	the effect of a plane boundary on force and vortex shedding	the effect of a plane boundary on force and vortex shedding	
a circular cylinder, J. Wind Eng. Ind.Aerodyn., Vol.80,	of a circular cylinder, J. of Wind Engineering and Industrial	of a circular cylinder, J. Wind Eng. Ind. Aerodyn., Vol.80,	
pp. 263–286, 1999.	Aerodynamics, Vol. 80, pp. 263-286, 1999.	pp. 263–286, 1999.	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(24) Fujita, T. T., and J. R. McDonald, Tornado damage at	(23) 江口譲, 杉本聡一郎, 服部康男, 平口博丸, 原子力発電所	(23) Fujita, T. T., and J. R. McDonald, Tornado damage at	
the Grand Gulf, Mississippi nuclear power plant site: Aerial	での竜巻飛来物速度の合理的評価法(Fujita の竜巻モデルを用い	the Grand Gulf, Mississippi nuclear power plant site: Aerial	
and ground surveys, U.S. NuclearRegulatory Commission	た数値解析コードの妥当性確認),	and ground surveys, U.S. Nuclear Regulatory Commission	
NUREG/CR-0383, 1978.	(24) Fujita, T. T., 1971: Proposed characterization of	NUREG/CR-0383, 1978.	
(25) 札幌管区気象台: 平成18 年11 月7 日から9 日に北海道	tornadoes and hurricanes by area and intensity. SMRP Research	(24) 札幌管区気象台: 平成18 年11 月7 日から9 日に北海道	
(佐呂間町他) で発生した竜巻等の突風. 災害時気象調査報告,	Paper 91, University of Chicago, Chicago, IL, 42 pp	(佐呂間町他) で発生した竜巻等の突風. 災害時気象調査報告,	
災害時自然現象報告書, 2006 年第1 号,2006.	(25) 日本保全学会 原子力規制関連事項検討会, 2015:軽水	災害時自然現象報告書, 2006 年第1 号,2006.	
(http://www.jma-net.go.jp/sapporo/tenki/yohou/saigai/sa	型原子力発電所の竜巻影響評価における設計竜巻風速および飛来	(http://www.jma-net.go.jp/sapporo/tenki/yohou/saigai/sa	
roma/saroma.html にて閲覧可能。)	物速度の設定に関するガイドライン(JSM-NRE-009)	roma/saroma.html にて閲覧可能。)	
(26)奥田泰雄, 喜々津仁密, 村上知徳, 2006 年佐呂間町竜巻	(26) Fujita, T. T., and J. R. McDonald, Tornado damage at	(25)奥田泰雄, 喜々津仁密, 村上知徳, 2006 年佐呂間町竜巻	
被害調查報告. 建築研究所災害調查, 49, 2006.	the Grand Gulf, Mississippi nuclear power plant site: Aerial	被害調查報告. 建築研究所災害調查, 49, 2006.	
(http://www.kenken.go.jp/japanese/contents/activities/o	and ground surveys, U.S. Nuclear Regulatory Commission	(http://www.kenken.go.jp/japanese/contents/activities/o	
ther/other.html)	NUREG/CR-0383, 1978.	ther/other.html)	
(27)江口譲,杉本聡一郎,服部康男,平口博丸,原子力発電所	(27) 札幌管区気象台:平成18年11月7日から9日に北海道(佐	(26) 江口讓, 杉本聡一郎, 服部康男, 平口博丸, 原子力発電所	
での竜巻飛来物速度の合理的評価法 (Fujita の竜巻モデルを用	呂間町他)で発生した竜巻等の突風. 災害時気象調査報告, 災害	での竜巻飛来物速度の合理的評価法 (Fujita の竜巻モデルを用	
いた数値解析コードの妥当性確認),日本機械学会論文集, Vol. 81,	時自然現象報告書, 2006 年第1号, 2006.	いた数値解析コードの妥当性確認),日本機械学会論文集, Vol. 81,	
No. 823, 2015.	(28) 奥田泰雄, 喜々津仁密, 村上知徳, 2006 年佐呂間町竜巻被害	No. 823, 2015.	
	調査報告.建築研究所災害調査, 46, 2006.		
	(29) 土木学会 平成18年11月北海道佐呂間町竜巻緊急災害調		
	查報告書		
			1
			1
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	<section-header></section-header>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20	版) 東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		別紙 2	
		フジタモデルのパラメータ設定等について	
		<ol> <li>適用するフジタモデルについて</li> <li>フジタモデルのパラメータ設定については、フジタワークブック</li> </ol>	
		(文献(1))において、単一渦型のDBT-77モデル(文献(1)第6章)	
		と複数の小さな吸込渦 (suction vortices) を有する多重渦型の	
		DBT-78 モデル (文献(1)第7章) について記載されている (図1参	
		照)。	
		DBT-77 DBT-78	
		i The second state of a scale tornado with its funnel 図 1 フジタモデル「DBT-77」と「DBT-78」のモデル図(文	
		献(1))	
		米国エネルギー省の管理するエネルギー施設(DOE 施設)に対 する竜巻飛来物の検証を行ったローレンス・リバモア国立研究所	
		報告書(文献(2))においては,「多重渦型のDBT-78 モデルで考慮	
		されている吸込渦はすぐに減衰するので、大多数の専門家は竜巻	
		被災の重要因子ではないと考えている」と述べており、単一渦型	
		のフジタモデルDBT-77を飛来物評価の竜巻風速場として選定して	
		いる。以上のことから、今回の竜巻影響評価においても DBT-77 モ	
		デルを用いている。(なお,文献(1)において,DBT-78 モデルは,	
		最大風速や発生率がモデル化されているのみであり、飛散解析に	
		必要となる風速場に関する数式が明確となっていない。)	
		また,米国 REG 1.76 (文献(3))は DBT-78 モデルの竜巻半径を	
		採用した場合は, 改訂前(2007年以前)から米国 REG 1.76で採用	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		されている竜巻半径(45.7m)よりも大きな半径となり,圧力の時	
		間変化率は半径に反比例して大きくなるため、改訂前の半径	
		(45.7m)のままするとの記述があるが、今回の竜巻影響評価では	
		外部コア半径を 30m としているため,米国 REG 1.76 よりも圧力の	
		時間変化率を保守的に評価している。	
		最大風速が同じ場合, DBT-78 モデルは DBT-77 モデルに比べ竜巻	
		半径は大きくなるが, 高速域の大きさは DBT-77 モデルの方が	
		DBT-78 モデルに比べ大きくなるため物体は加速されやすく, 飛散	
		解析においては保守的であることから、当社の竜巻影響評価にお	
		いては,単一渦型の DBT-77 モデルを適用している。	
		2 入力パラメータの設定について	
		大接線風速 $V_{-}$ 外部コア半径 R 及び移動速度 $V_{-}$ の3つであり	
		これらの入力値の制約に係る記載はなく一番券影響評価ガイドに	
		基づき $V_{\rm s} = 85 \text{m/s}$ R = 30m $V_{\rm s} = 15 \text{m/s}$ を設定していろ.	
		観測された被害幅から最大接線風速半径 R を推定している。 竜巻	
		によって被害が生じる風速 V.とした場合、R を超えた範囲では、	
		風速 $V=V_{n}$ ・(R/r_a)と表せるため、 $V_{a}$ と、被害幅 r_a、及び最大接線	
		風速 V. が分かれば最大接線風速半径 R. を得ることができる。(図	
		フジタモデルでは、ランキン渦モデルと異なり高さによって風	
		速が変化するが、ある任意の高さの風速分布はランキン渦モデル	
		と同様となる(図2と同じ)ため、ランキン渦を仮定して設定し	
		た外部コア半径を用いても問題ないと考える。	
		例えば,東京工芸大報告書 ⁽⁴⁾ p. 163 の仮定2より,F3 あるいは	
		F3 に近い F2 竜巻(最大風速 V ₌ =70m/s)の被害幅 250m を基にラン	
		キン渦モデルを仮定する場合, 竜巻半径の外側では V=V_R_/r が成	
		立するので,Vに被害をもたらす風速である17m/sを,rに被害幅	
		(250m)に接する円の半径である 125m を代入すると R_=30m を得る。	
		一方,フジタモデルの水平風速Vは接線風速と径方向風速を合	
		成したものであるので、外部コア半径の外側では水平風速 V は以	
		下で与えられる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		$V = \sqrt{V_o^2 + V_r^2}$	
		$- E(r)E(z)V \sqrt{1 + \tan^2 \alpha}$	
		$= \Gamma_r(r)\Gamma_h(z)v_m\sqrt{1+\tan^2\alpha_0}$	
		$- \dots R \qquad F(z) \qquad \qquad$	
		$F_r(r) = -\frac{m}{r} \qquad F_h(z) = \begin{cases} \exp(-k(z-1)) & (z \ge 1) \end{cases}$	
		$\tan \alpha = \int -A(1-z^{1.5}) \qquad (z<1)$	
		$\tan \alpha_0 = B\{1 - \exp(-k(z-1))\} \qquad (z \ge 1)$	
		フジタモデルでは、ランキン渦モデルと異なり高さによって風	
		速が変化するが、外部コア半径の内側ではrに比例して風速が大	
		きくなり,外部コア半径の外側ではrに反比例して小さくなる点	
		ではランキン渦モデルと同様であり, 竜巻半径と風速の関係は図2	
		の通りとなる。	
		また,接線風速Vが最大となる流入層の上端(z=1)では,F _h (z)=1,	
		$\tan \alpha_0 = 0$ となり、竜巻外部コア半径の外側ではランキン渦モデル	
		と同様に V=V _m R _m /r が近似的に成立する。従って, ランキン渦と同	
		じ竜巻半径を用いることができると考えられる。	
		流入層高さ H _i は,外部コア半径 R _m =30m の場合, H _i =15m(i=0.501)	
		となり, 文献(4)の図 2.2.3.10 における流入層高さと竜巻半径の	
		比 (i=0.4 程度) や, Kosiba ⁽⁵⁾ により示されている流入層高さ (H _i =10	
		~14m以下)と概ね同じである。	
		Vmax	
		V=ar	
		V=b/r	
		$r_c$	
		$r_c$ $r_0$	
		→ → → → → → → → → → → → → → → → → → →	
		(未知)(観測値)	
		図2 ランキン渦の風速分布と竜巻スケールの関係	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		文献(1)Fujita, T. T., Workbook of tornadoes and high winds for	
		engineering applications (1978), U. Chicago.	
		文献(2)Rationale for Wind-Borne Missile Criteria for DOE	
		facilities, UCRL-CR-135687, Lawrence Livermore	
		National Laboratory, 1999	
		文献(3)U.S. Nuclear Regulatory Commission, Design-basis	
		tornado and tornado missiles for nuclear power plants,	
		Regulatory Guide 1.76, Revision 1 (2007).	
		文献(4) 東京工芸大学, 平成 21~22 年度原子力安全基盤調査研	
		究(平成 22 年度) 竜巻による原子力施設への影響に関す	
		る調査研究,独立行政法人原子力安全基盤機構委託研究 成	
		果報告書, 2011.	
		文献(5) Karen A. Kosiba Joshua WurmanThe three-dimensional	
		structure and evolution of a tornado boundary layer	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	別紙-2	別紙 3	
	発電所における竜巻風速場モデルの適用方針	竜巻影響評価と竜巻モデルの関係	
	<ul> <li>発電所の竜巻影響評価における竜巻風速場モデルの適用状況を、 先行審査ブラントの状況と合わせ、別表 2-1 のとおり整理した。 これより、竜巻影響評価における設計荷重(風圧力による荷重Ww、 気圧差による荷重Wp及び設計飛来物による衝撃荷重WM)の設定 においては、</li> <li>・Ww:竜巻風速場モデルを選択する必要がある ことが分かるが、Wp、WMの設定においては、以下のとおりモデ ルを適用した。</li> <li>1. Wp, WMの設定に用いる竜巻風速場モデルの選定の考え方 1.1 Wpについて</li> <li>「竜巻影響評価ガイド」に示される、ランキン渦モデルに基づく 評価式を採用した。</li> <li>1.2 WMについて</li> <li>発電所は敷地近傍に一般道や隣接事業所の施設等があり、こ れらの場所からの物品の飛来を完全に管理することは難しいこと から、その影響を現実的に評価することとし、多数の飛来物源が 想定される地表付近の物品の飛散挙動を、より実現象に近く評価 できるという特徴を踏まえ、フジタモデルを採用した。 なお、フジタモデルを用いた飛散評価についても、別添資料2 「竜巻影響評価におけるフジタモデルの適用についても、別添資料2 「竜巻影響評価におけるフジタモデルの適用についても、別添資料2</li> <li>2. 設計竜巻による複合荷重WT1、WT2の設定の考え方 竜巻影響評価に用いる設計竜巻荷重は、設計竜巻による風圧 力による荷重(WM)、気圧差による荷重(Wp)、及び設計飛来物 による衝撃荷重(WM)を組み合わせた複合荷重とし、以下の式に よって算出する。 WT1=Wp</li> </ul>	<complex-block></complex-block>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	$W_{T2} = W_W + 0.5W_P + W_M$		
	W _{T1} , W _{T2} :設計竜巻による複合荷重		
	Ww:設計竜巻の風圧力による荷重		
	W _P :設計竜巻の気圧差による荷重		
	W _M :設計飛来物による衝撃荷重		
	なお、複合荷重W _{T2} の算出は、W _W 、W _P 及びW _M の作用方向		
	が同一となる様に扱うこととしており、ランキン渦モデルベース		
	のW _P を用いることは、複合荷重としても保守側になる		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	店 同 記 で で で で で で で で で で で で で		
	<ul> <li>の適用状況</li> <li>(基準」として,設計者が任意に設い 「基準」として,設計者が任意に設い でプジタモデルは風速分布が高さ 変化するため,設置高さを個別に る。</li> <li>・ブジタモデルは風速分布が高さ があって、米国基準等を し すて設定</li> <li>・ブジタモデルの風速場の形を決め ノーキで設定</li> <li>・ブジター「飲なので,米国基準等を 「ジンキン過はV_{Rin}, R_mだけで改 (ランキン過はV_{Rin}, R_mだけで改</li> <li>*) を用いた。</li> </ul>		
	<ul> <li>における竜巻風速場モデル</li> <li>モデルの適用</li> <li>モデルの適用</li> <li>ニッシャン満モデル)</li> <li>大威3/4,高浜1~4, 美浜3,伊方3, 川内1/2, 玄海3/4</li> <li>「前小5</li> <li>「前小5</li> <li>15m/5</li> <li>85m/5</li> <li>85m/5</li> <li>85m/5</li> <li>85m/5</li> <li>6巻影響評価ガイドに 例示の「鋼製材」</li> <li>(各社の設定値)</li> <li>(各社の設定値)</li> </ul>		
	85億所と先行審査プラント 85面/5 東海第二 東海第二 東海第二 15面/5 30面 30面 85面/5 15面/5 30面 85面/5 15面 45hPa ^{*1} 45hPa ^{*1} 0.3 0.3 15面 15面 15面 55, 設備影響評価には用いない。		
	第 三 版 M M M M M M M M M M M M M M M M M M		
	★ Na		
	参 2-1 本 本 派 (約 53 35		
	別引 設計商重設定要素 三風速場モデルの影響あり - : 風速場モデルの影響あり 最大稜線風速 Y Rm 		
	「「」「「「「「」」「「」」「」」「「」」「」」「」」「」」「」」」「」」」		



炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
	別添資料3	5
	東海第二発電所	島根原子力発電所
	運用,手順能力説明資料 外部からの衝撃による損傷の 防止 (竜巻)	<u> 運用, 手順能力説</u> <u> 外部からの衝撃によ </u> <u> 防止</u> ( 竜巻)

导炉	備考		
	・資料構成の相違		
別 添 2-3	【柏崎 6/7】		
	島根2号炉は運用,手		
	順説明資料を記載		
う是個			
的資料			
こる損傷の			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	(第6条) 変全施設は、想定される自然現象(地震及び律波を除く。法項について同じ。)が発生した場合においても 変全施設に作用する衝撃及び設計基準事故に生する広力を適切に考慮したものでなければならない。 要安全施設に作用する衝撃及び設計基準事故に上する広力を適切に考慮したものでなければならない。 要全施設は、想定される自然現象(地震及び 被を除く。決項において同じ。)が発生した場合 においても安全機能を損なわないものでなけれ 成本らない。 定ならない。 ばならない。	(方6条) 高谷) な全施設は、想定される自然現象(地環及び津波を除く。次項について同じ。)が発生した場合においても 安全施設に、規定される自然現象(地環及び津波を除く。次項について同じ。)が発生した場合においても 空運変全施設に、用する新学及び読計進準事故に生する応力を適切に考慮したものでなければならない。 変全施設は、想定される自然現象(地震及び読 変全施設は、想定される自然現象(地震及び読 なを除く。次項において同じ。)が発生した場合においても な全施設は、想定される自然現象(地震及び読 なを除く。次項において同じ。)が発生したものでなければならない。 定ならない。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
	<pre>tent is the state is the s</pre>	



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20	版) 東海第二発電所(2018.9.18版)	島根原子力発電所 2号
	Image: sector	



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 18 版)	島根原子力発電所 2号炉	備考
	運用対策等 運外の飛散するおそれのある資機材、車両等については、 飛来時の運動エネルギ等を評価し、評価対象施設等への影響の有無を確認する。評価対象施設等への影響の有無を確認する。評価対象施設等への影材、車両等については、固縛、固定、評価対象施設等への影力、重備業、建屋内収納又は撤去の飛来物発生防止対策につい で手順等を定める。	13 単本21 の計画の広ナ県人の計画和本の青年 担当室による保守・点検の体制 日常点検 遺傷時の補修 運用・手順,体制,保守・点検に関する教育	<ul> <li>         邇用対策等</li> <li>         爾外の飛散するおそれのある資機材、車両等については、</li> <li>         飛来時の運動エネルボ等を評価し、外部事象防護対象施設</li> <li>         への影響の有無を確認する。外部事象防護対象施設     </li> <li>         への影響の有無を確認する。外部事象防護対象施設     </li> <li>         への影響の有無を確認する。外部事象防護対象施設へ影響     </li> <li>         を及ぼす資機材、車両等については、固縛、固定、評価対象施設等からの隔離、建物内収納又は撤去の飛来物発生防     </li> <li>         魚補設等からの隔離、運物内収約又は撤去の飛来物発生防     </li> <li>         魚補設第からの隔離、運動内(約)又は撤去の飛来物発生防     </li> <li>         魚板, 車両等については、固縛、固定、発動発生防     </li> <li>         第一次第一条防護対象施設からの隔離、連物内     </li> <li>         取入は撤去)の評価方法手順及び評価結果の管理     </li> <li>         日常点検     </li> <li>         目常点検     </li> <li>         通知:本小人共等による飛来物発生防     </li> <li>         面前, 小洗, 形状から算出した飛来の希望     </li> <li>         1回線, 小洗, の本前、形状から算出した飛来の     </li> <li>         1回線, 小洗, の本市     </li> <li>         1回線, 「本市の運動, 小洗, の本     </li> <li>         1回線, 小洗, 小洗, 小洗, 小洗, 小洗, 小洗, 小洗, 小洗, 小洗, 小洗</li></ul>	
	<ul> <li>国</li> <li>三</li> <li>三<td>林 様 様 様</td><td>区         田         奈         帝         李         市         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》</td><td></td></li></ul>	林 様 様 様	区         田         奈         帝         李         市         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         ※         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》         》	
	対象項目 資機材、車両等管理 貸機材、車両等の飛来物発 生防止対策(固縛,固定, 評価対象施設等からの隔 離,建屋内収納又は撤去)		対象項田 資機材,車両等項田 資機材,車両等で選 住防止対策(固準,面で, 外部事象防護対象施設か のの隔離,建物内収勢又は 酸力) 、建物内収勢又は	
	設置許可基準対象条文第6条条体第6条 外部からの衝撃による損傷の防止		設置計 回報 第6条 を が で の の 部 が の の の に に る	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	<ul> <li>         通用対策等         <ul> <li>通用対策等</li> <li>一面老の農来が予想される場合及び竜巻農未後において、評価対象施設等を防護するための操作・確認,補修等が必要となる事項について手備等を定める。</li> <li>「操作・確認事項]</li> <li>・竜巻に関する情報入手後の対応 (情報の入手,周知,体制判断,実施方法と手順)</li> <li>・竜巻に関する道律の次手がされる場合の使用中の資機打つ回義等)</li> <li>・高巻農米が予想される場合の使用中の資機打つ回義等)</li> <li>・高巻農米が予想される場合の使用中の資機打つ回義等)</li> <li>・高巻農米が予想される場合の使用中の資機打つ回義等)</li> <li>・高巻農米が予想される場合の使用中の資格打つ回義等)</li> <li>・高音農米が予想される場合の使用中の資格打つ回義等)</li> <li>・高巻農米が予想される場合の使用中の資格打つ回義等)</li> <li>・高音農米が予想される場合の使用中の資格打つ回義等)</li> <li>・市価</li> <li>・水密環「原子戸草島級器搬入口水密扉」及び防護扉「原 子戸草島では「高信子」の場合の使用中の資格力の回義等)</li> <li>・市価</li> <li>・水密環「原子戸草島級器搬入口水密扉」及び防護扉「原 一部部合の回義等)</li> <li>・市価</li> <li>・市価</li> <li>・市価</li> <li>・水器電「原子戸草島級器搬入口水密扉」及び防護扉「原 子戸草島に見って「市会市」</li> <li>・市価</li> <li>・加修算</li> <li>・加修算</li> <li>・加修</li> <li>・加</li> <li>・加</li></ul></li></ul>	<ul> <li>運用対策等</li> <li>一、電管の襲来が予想される場合及び竜巻襲来後において、評価対象施設等と防護するための操作・確認、補修等が必要となる事気にといて主順等を定める。</li> <li>「「操作・確認事項」</li> <li>「「「「「「「「」」」」」」」」」</li> <li>「「「「「「」」」」」」」」」」</li> <li>「「「「「「」」」」」」」」」</li> <li>「「「「「」」」」」」」」」</li> <li>「「「「「」」」」」」」」」</li> <li>「「「「」」」」」」」」</li> <li>「「「「」」」」」」」</li> <li>「「「」」」」」」」</li> <li>「「「」」」」」」」</li> <li>「「」」」」」」</li> <li>「「」」」」」</li> <li>「「」」」」」</li> <li>「「」」」」」</li> <li>「「」」」」」</li> <li>「」」」</li> <li>「」」」</li> <li>「」」」</li> <li>「」」」</li> <li>「」」」</li> <li>「」」</li> <li>「」」」</li> <li>「」」</li> <li>「」」」</li> <li>「」」</li> <li>「」」</li> <li>「」」</li> <li>「」」</li> <li>「」」</li> <li>「」」」</li> <li>「」」</li> <li>「」」」</li> <li>「」」</li> <li>「」」」</li> <li>「」」</li> <li>「」</li> <li>「」」</li> <li>「」</li> <li>「」</li></ul>	
	画         味 数           风         田         各         作           文         ・         ・         ・           公         ・         ・         ・           心         ・         ・         ・	■ 田 区 ・ か 市 を を を を を を を を を を を を を	
	ビー     ジャ     ジャ	→ 「 一 一 一 一 二 二 一 二 二 二 二 二 二 二 二 二 二 二 二 二	