4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 (1)地すべり地形の抽出 陸上地すべりの判読及び地表地質踏査の方法 第575回審査会合 資料1-3 P236 再掲

地表地質踏査における主な留意点,着目点

項日	留音占• 善告日占
地形	・亀裂, 段差等の微地形の有無 ・遷緩線, 遷急線の有無 ・支沢の発達状況 ・旧地形
地質	・岩種及び岩相 ・地質構造(流れ盤,破砕帯の有無等) ・風化の程度 ・節理間隔,ゆるみの有無
水文	・表流水及び表流跡の有無 ・湧水地点の位置及び状況
構造物	・クラックの有無 - クラックの有無

凸状尾根形地形

多丘形凹状台地状地形

凸状台地状地形

単丘状凹状台地状地形

凹状緩斜面地形

地すべり地形の微地形

渡・小橋(1987)より引用

4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 (1)地すべり地形の抽出 当社判読結果と防災科学技術研究所(2005, 2006)に示される地すべり地形の比較

■ <u>空中写真判読</u>

第575回審査会合 資料1-3 P237 再掲

・当社による空中写真判読結果は,防災科学技術研究所(2005⁽⁶³⁾, 2006⁽⁶⁴⁾)に示されている地すべり地形と概ね整合している。

・岩盤崩壊箇所についての記載が無い。

4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 (2)津波高の概略検討 Huber and Hager(1997)のパラメータ設定根拠

P245 再揭

•Huber and Hager(1997)⁽⁶⁷⁾のパラメータの設定根拠について以下に記す。

パラメータ	設定根拠	説明頁
長さ	平面図より読み取った平面長さ,及び最高標高・最 低標高より算出した高さから,幾何学的に算出した 斜距離を設定 [※]	P246
幅	平面図より平均的な幅を設定	P246
厚さ	高速道路調査会(1985) ⁽⁶⁸⁾ に示される幅と厚さの関係 より,安全側の評価となるように設定 [※]	P246
すべり面の 傾斜角	平面長さ及び高さから幾何学的にすべり面の傾斜角 を設定 [※]	P246
進行角	すべり方向と地すべり地点から見た発電所の方向が なす角度で、すべり方向を起点とし時計回りが正	_
突入水深	臼杵ほか(2005) ⁽⁶⁹⁾ を参考に, 平面長さの半分の距離 を地すべり到達位置とし, その位置における水深を 設定	P247~254
発電所水深	発電所海底地形図より、島根原子力発電所2号炉前 面に位置する輪谷湾中心付近の水深20mと設定	P255
発電所まで の距離	平面図より直線距離で設定	_

※ 隠岐諸島における陸上地すべりのうち地表地質踏査を実施した箇所については, 断面図より設定した。

4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 (2)津波高の概略検討 Huber and Hager(1997)のパラメータ設定根拠(長さ・幅・厚さ・すべり面の傾斜角) P246 再掲

【長さ】

 ・平面図より読み取った平面長さ、及び最高標高・最低標高より算出した高さから、幾何学的に算出した斜距離を 設定した。

【幅】

・平面図より地すべりの平均的な幅を設定した。

【厚さ】

- ・高速道路調査会(1985)に示される幅と厚さの関係より、安全側の評価となるように設定した。
- 【すべり面の傾斜角】

・平面長さ及び高さから幾何学的にすべり面の傾斜角を設定した。

4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 (2)津波高の概略検討 Huber and Hager(1997)のパラメータ設定根拠(突入水深) 第575回審査会合 資料1-3 P247 再掲

■ <u>臼杵ほか(2005)</u>

- ・臼杵ほか(2005)では,地すべり土塊の移動距離の指標として,移動距離(L2)と地すべり長さ(L1)の比を移動係 数Tr (L2/L1)と定義し,完全流動(地すべり土塊全体が著しく攪乱され元地形のほとんどをとどめていない地す べり)の地すべりの場合Tr≧0.5であること,及び不完全流動の移動係数Trは完全流動の移動係数より小さいとし ている。
- ・本調査で確認した地すべりは、地形判読等で確認できる地形の形状から、地すべり地形の多くは、比較的原地形をとどめていることから、臼杵ほか(2005)に示されるような完全流動を示す地すべりでないと判断されるため、地すべりの到達位置を地すべり先端から平面長さの半分(Tr=0.5)の距離とする。
 ・地すべりの到達位置における水深を突入水深とする。※1,2

※1 突入水深の設定結果をP248,249に示す。

※2 突入水深の妥当性の確認をP250~252に示す。

■ <u>突入水深の設定結果</u>

・敷地周辺の陸上地すべりについては、以下に示す海底地形図を基に突入水深を設定した。

4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 (2)津波高の概略検討 Huber and Hager(1997)のパラメータ設定根拠(突入水深) 第575回審査会合 資料1-3 P249 再掲

4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 (2) 津波高の概略検討

Huber and Hager(1997)のパラメータ設定根拠(突入水深)

■ <u>突入水深の妥当性の確認</u>

- ・以下のとおり突入水深の妥当性を確認した。
- ・Huber and Hager(1997)の予測式による津波高が比較的高い地点において地表地質踏査を実施し、地すべり形態を確認した結果、一 部の地すべりは崖錐すべりであるが、地すべりの多くは岩盤すべりであり、臼杵ほか(2005)に示されるような完全流動を示す地すべり でない。※
- ・仮に、崖錐すべり及び地すべり形態が不明な地すべりについて、移動係数Tr=1.0としてHuber and Hager(1997)の予測式により津波高 を検討しても. 敷地周辺の陸上地すべりLs7・Ls26の津波高を下回ることを確認している。

※ 地表地質踏査結果の一例をP253, 254に示す。

地すべり (図中の 番号)	長さ L (m)	響 Þ Ê	厚さ t (m)	土量 Vs (m ³)	すべり面 の傾斜角 α (°)	進行角 Υ (°)	突入 水深 d ₁ (m)	部 電深 d ₂ (m)	新 電での 距離 r(km)	発電所での 津波高さ (全振幅) H ₂ (m)	地すべり 形態	(参考) 発電所での 津波高さ (全振幅) (Tr=1.0とした 場合)H ₂ (m)
Ls1	478	430	43	8,838,220	20	+75	10	20	11	0.37	岩盤すべり	
Ls2	180	140	20	504,000	34	+80	5	20	11	0.12	_	0.12
Ls3	490	400	40	7,840,000	20	+70	10	20	10	0.43	岩盤すべり	
Ls4	240	160	23	883,200	17	+90	5	20	10	0.06	_	0.11
Ls5	250	110	16	440,000	16	+95	5	20	10	0.04	_	0.07
Ls6	370	160	23	1,361,600	19	+100	10	20	10	0.09	_	0.13
Ls7	402	190	28	2,138,640	27	+35	15	20	9	1.20	岩盤すべり	
Ls8	242	100	20	484,000	30	+85	5	20	9	0.12		0.22
Ls9	106	120	18	228,960	41	+100	5	20	8	0.06		0.06
Ls10	272	260	38	2,687,360	23	+95	5	20	8	0.10	_	0.26
Ls11	112	190	28	595,840	27	+95	5	20	8	0.06	_	0.06
Ls12	130	100	20	260,000	23	+150	5	20	8	0.01	_	0.01
											: 現地踏杳	実施箇所

第575回審査会合 資料1-3 P250 再揭

4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 (2)津波高の概略検討

Huber and Hager(1997)のパラメータ設定根拠(突入水深)

第575回審査会會	合 資料1-3
P251	再揭

25

地すべり (図中の 番号)	長 L (m)	響 Þ Ê	厚さ t (m)	土量 Vs (m ³)	すべり面 の傾斜角 α (°)	進行角 ¥ ([°])	突入 水深 d ₁ (m)	発電 深 水深 d ₂ (m)	発電所 までの 距離 r(km)	発電所での 津波高さ (全振幅) H ₂ (m)	地すべり 形態	(参考) 発電所での 津波高さ (全振幅) (Tr=1.0とした 場合)H ₂ (m)
Ls13	231	340	34	2,670,360	18	+55	5	20	7	0.23	岩盤すべり	
Ls14	158	140	20	442,400	18	+105	5	20	6	0.03	—	0.03
Ls15	100	150	22	330,000	37	+40	5	20	6	0.32	崖錐すべり	0.32
Ls16	136	90	18	220,320	17	+135	5	20	5	0.00	—	0.00
Ls17	112	110	16	197,120	27	+120	5	20	5	0.01	—	0.01
Ls18	121	120	18	261,360	24	+80	5	20	5	0.11	—	0.11
Ls19	371	120	18	801,360	14	+110	10	20	5	0.05	—	0.08
Ls20	72	80	16	92,160	34	+50	5	20	5	0.22	岩盤すべり	
Ls21	71	90	18	115,020	45	+25	5	20	5	0.38	崖錐すべり	0.38
Ls22	170	100	20	340,000	28	+65	5	20	4	0.27	崖錐すべり	0.27
Ls23	125	170	25	531,250	29	+110	10	20	1	0.20	岩盤すべり	
Ls24	172	80	16	220,160	22	-130	5	20	0.5	0.01	岩盤すべり	

:現地踏査実施箇所

4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 (2)津波高の概略検討

Huber and Hager(1997)のパラメータ設定根拠(突入水深)

第575回審査会	合	資料1-3
P252	再	名

252

地すべり (図中の 番号)	長さ L (m)	響 Þ (E	厚さ t (m)	土量 Vs (m ³)	すべり面 の傾斜角 α (°)	進行角 Υ (°)	突入 水深 d ₁ (m)	・ ● 一 ● 不 の ● (m)	発 電 での 距離 r(km)	発電所での 津波高さ (全振幅) H ₂ (m)	地すべり 形態	(参考) 発電所での 津波高さ (全振幅) (Tr=1.0とした 場合)H ₂ (m)
Ls25	265	140	20	742,000	19	-125	10	20	0.5	0.05	岩盤すべり	
Ls26	289	290	42	3,520,020	14	-105	10	20	0.5	0.44	岩盤すべり	
Ls27	328	110	16	577,280	12	-90	5	20	1	0.18	崖錐すべり	0.18
Ls28	155	140	20	434,000	15	-85	5	20	1	0.21	岩盤すべり	
Ls29	318	130	19	785,460	13	-105	5	20	1	0.10	_	0.10
Ls30	47	140	20	131,600	32	-170	5	20	2	0.08	_	0.08
Ls31	286	150	22	943,800	12	-115	5	20	1	0.05		0.08
Ls32	573	220	32	4,033,920	12	-110	10	20	2	0.13		0.13
Ls33	196	200	29	1,136,800	15	-145	5	20	4	0.01		0.01
Ls34	724	400	40	11,584,000	11	-100	10	20	4	0.18	_	0.26
Ls35	843	470	47	18,621,870	10	-100	5	20	5	0.09	—	0.09
Ls36	310	170	25	1,317,500	21	-65	5	20	6	0.24	岩盤すべり	
Ls37	313	500	50	7,825,000	17	-115	5	20	6	0.03		0.06

:現地踏査実施箇所

ブロック上部の流紋岩質火砕岩の露頭

・発電所海底地形図より,島根原子力発電所2号炉前面に位置する輪谷湾中心付近の水深が約 20mであることから,発電所水深を20mと設定した。

0.0 0.2 km

4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 (3)詳細数値シミュレーション Ls26及びLs27の同時崩壊に係る検討 第575回審査会合 資料1-3 P256 加筆・修正

- Ls26とLs27は、急斜面で境しており、相対的な高低差があること、すべり方向が異なること及び地すべりの性状が 異なる(Ls26:風化岩を移動体とした流れ盤型の層すべり、Ls27:土砂を移動体とした浅い崖錐すべり)ことから、 個別の地すべりとしている。
- ・しかし、同じ尾根沿いに位置する等、地形的に近接していることから、仮にこれらが同時に崩壊すると想定し、二層 流モデルによる数値シミュレーションを実施した。

・Ls26とLs27の同時崩壊の津波高さは、Ls26の津波高さとほぼ同等であることを確認した。

4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 Ls28及びLs29の同時崩壊に係る検討

第575回審査会合 資料1-3 P257 再掲

(3)詳細数値シミュレーション

a. 地すべり全景

北北西に傾斜する斜面を北西から望む

c. 地すべり中央部の平坦部

257

明瞭な傾斜変換線が存在する

d. 尾根先端部

Ls28の尾根先端部に黒色頁岩が露出していること、及び明瞭な傾斜変換線が認められることから、Ls28は範囲が狭い地すべりと考えられる。
 従って、Ls28は脆弱化~土砂化した強風化岩を移動体とした浅いすべりと考えられる。

- Ls29についても、Ls28の近傍に位置するため、
 Ls28と同様に浅い地すべりと考え、範囲を設定した。
- ・Ls28とLs29は同じ山体に位置するが、地表地 質踏査結果を踏まえた両地すべりは浅い地す べりと考えられ、それらの間は十分に離れてい ることから、個別の地すべりとして取り扱った。

地すべりの中央部には平坦面が形成 され、岩盤の露頭は認められない

尾根先端部に黒色頁岩の岩盤が露出 する

4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 (3)詳細数値シミュレーション Ls28及びLs29の同時崩壊に係る検討 第575回審査会合 資料1-3 P258 再掲

- ・Ls28とLs29は同じ山体に位置するが,地表地質踏査結果を踏まえた両地すべりは浅い地すべりであり,それらの間は十分に離れていることから,個別の地すべりとしている。
- ・しかし、同じ尾根沿いに位置する等、地形的に近接していることから、仮にこれらが同時に崩壊すると想定し、二層 流モデルによる数値シミュレーションを実施した。

・Ls28とLs29の同時崩壊の津波高さは、Ls26の津波高さとほぼ同等であることを確認した。

※初期水位は、潮位及び取水による損失水頭を考慮した水位
4.地震以外の要因による津波の想定 4-2 陸上地すべりに起因する津波の検討 津波水位評価地点における水位の時刻歴波形

4.地震以外の要因による津波の想定 4-3 岩盤崩壊に起因する津波の検討 岩盤崩壊に係る文献調査(島根県)

・島根県の岩盤崩壊について文献調査を実施した。

区分	文献	内容
島根県におけ る既往岩盤崩 壊事例に係る 文献	岩盤力学委員会 (1999) ⁽⁷⁰⁾	1996年以前の岩盤崩壊または落石と考えられる事例が抽出されているが, いずれも内 陸の事例であり, <u>敷地に影響を与える岩盤崩壊事例は記載されていない。</u>
	岩盤斜面崩壊検討 小委員会(2015) ⁽⁷¹⁾	1997年から2013年までの岩盤崩壊または落石と考えられる事例が抽出されているが, いずれも内陸の事例であり, <u>敷地に影響を与える岩盤崩壊事例は記載されていない。</u>
	横田ほか(2012) ⁽⁷²⁾	タフォニと呼ばれる凹みが岩盤崩落を引き起こす原因となることが指摘されているが、 個別地点におけるタフォニに起因する岩盤崩壊の範囲は記載されていない。また、文 献中に示されるタフォニの幅は最大10mであることから、タフォニに起因する岩盤崩壊 の規模は、 <u>当社が評価している岩盤崩壊の規模を下回ると考えられる。</u>
島根県におけ る岩盤崩壊の	井詰•横田(2012) ⁽⁷³⁾	当社が陸上地すべり・岩盤崩壊の評価範囲としている発電所から半径10km程度の島 根半島の小伊津漁港における岩盤斜面を対象として、その地点の地質構造に基づいた 斜面ハザードマップが試作されているが、 <u>岩盤崩壊の範囲は記載されていない。</u>
文献	彌富•横田(2015) ⁽⁷⁴⁾	島根半島の桂島について安山岩溶岩中の節理面方向,柱状ブロックの形状を調査し, 節理方向と溶岩ドームとの関係,及びそれらがつくる多様な斜面構造におけるブロック 不安定性等について検討されている。桂島地点における想定される岩盤崩壊の規模は 文献で明確にされていないが,文献で示される崩落跡の例から, <u>数m程度の規模と想</u> <u>定される。</u> また,同様な地質構造が見られる他地点についても,同様な岩盤崩壊の発 生が懸念されるが,文献中で示される崩落跡の事例からは,数m程度の小規模な岩盤 崩壊に止まると想定され, <u>当社が評価している岩盤崩壊の規模を下回ると考えられる。</u>

 ・岩盤崩壊事例, 岩盤崩壊を引き起こす要因等について記載されているが, 当社が評価している岩盤 崩壊の規模を下回ると考えられる。

4.地震以外の要因による津波の想定 4-3 岩盤崩壊に起因する津波の検討 Huber and Hager(1997)のパラメータ設定根拠

・Huber and Hager(1997)の予測式のパラメータの設定根拠について以下に記す。

パラメータ	設定根拠	説明頁
長さ	断面図より斜距離を設定	P275,276
幅	平面図より平均的な幅を設定	P275,276
厚さ	陸上地すべりと同様に高速道路調査会(1985)に 示される幅と厚さの関係より設定するが、その際、 断面図のすべり面の形状が合理的になるよう留 意する。	P275,276
すべり面の 傾斜角	断面図に示されるすべり面の角度を設定	P275,276
進行角	すべり方向と地すべり地点から見た発電所の方 向がなす角度で、すべり方向を起点とし時計回り が正	_
突入水深	臼杵ほか(2005)を参考に、平面長さの半分の距 離を地すべり到達位置とし、その位置における水 深を設定	P277
発電所水深	発電所海底地形図より,島根原子力発電所2号 炉前面に位置する輪谷湾中心付近の水深20mと 設定	
発電所までの 距離	平面図より直線距離で設定	

4.地震以外の要因による津波の想定 4-3 岩盤崩壊に起因する津波の検討

Huber and Hager(1997)のパラメータ設定根拠(長さ・幅・厚さ・すべり面の傾斜角)

4.地震以外の要因による津波の想定 4-3 岩盤崩壊に起因する津波の検討 Huber and Hager(1997)のパラメータ設定根拠(長さ・幅・厚さ・すべり面の傾斜角)

地すべり (図中の 番号)	長さ L (m)	幅 b (m)	厚さ t (m)	すべり面 の傾斜角 α (°)
Rf-4	66	40	8	76
Rf-5	89	70	14	50

T.P.(m)

Rf-4

4.地震以外の要因による津波の想定 4-3 岩盤崩壊に起因する津波の検討 Huber and Hager(1997)のパラメータ設定根拠(突入水深) 第575回審査会合 資料1-3 P277 再揭

隠岐諸島の位置

・隠岐諸島は島前と島後からなり,島前は敷地から約60kmに,島後は敷地から約80kmに位置する。
・敷地からは遠いが,陸上地すべり・岩盤崩壊が分布するため,隠岐諸島に分布する陸上地すべり・岩盤崩壊についても検討する。

※防災科学技術研究所(2005)による地すべり地形と当社判読による地すべり地形との比較をP281に示す。

・隠岐島前のうち敷地に影響が考えられる南側の沿岸域について,空中写真及び航空レーザー測量結 果に基づく判読により地すべり地形を13箇所抽出した。※

※防災科学技術研究所(2005)による地すべり地形と当社判読による地すべり地形との比較はP282に示す。

: 地形判読対象範囲

・当社による空中写真判読結果は、防災科学技術研究所(2005)に示されている地すべり地形と概ね 整合している。

・当社による空中写真判読結果は、防災科学技術研究所(2005)に示されている地すべり地形と概ね 整合している。

4.地震以外の要因による津波の想定 4-6 隠岐諸島における陸上地すべり及び岩盤崩壊 Huber and Hager(1997)の突入水深の考え方(隠岐島後) ^{第575[}

第575回審査会合 資料1-3 P283 再揭 283

・隠岐島後の陸上地すべり・岩盤崩壊については、以下に示す海底地形図を基に突入水深を設定した。

地すべり (図中の番 号) [※]	突入 水深 d ₁ (m)	地すべり (図中の番 号)*	突入 水深 d ₁ (m)
LsO-1(陸)	20	LsO-6(陸)	4
LsO-2(陸)	5	LsO-7(岩)	10
LsO-3(陸)	8	LsO-8(岩)	5
LsO-4(陸)	5	LsO-9(陸)	5
LsO-5(岩)	5	LsO-10(陸)	10

※(陸)は陸上地すべり、(岩)は岩盤崩壊である。

突入水深の設定図(海上保安庁(1987)(75)に加筆)

Huber and Hager(1997)の突入水深の考え方(隠岐島後)

第575回審査会合 資料1-3 P284 再掲

地すべり到達距離

地すべり地形

崩落方向

小數子山

4.地震以外の要因による津波の想定 4-6 隠岐諸島における陸上地すべり及び岩盤崩壊 285 Huber and Hager(1997)の突入水深の考え方(隠岐島前) 第575回審査会合 資料1-3 P285 再掲 1.25 2.5km ・隠岐島前の陸上地すべり・岩盤崩壊については、 下に示す海底地形図を基に突入水深を設定した。 地すべり 突入 地すべり 突入 水深 水深 (図中の番 (図中の番 号)※ 号)※ LsO-31(陸) LsO-35(陸) 20 15 LsO-32(陸) LsO-36(陸) 15 30 LsO-37(陸) LsO-33(陸) 5 10 LsO-34(陸) 10

突入水深の設定図(海上保安庁(1990)⁽⁷⁶⁾に加筆)

 4.地震以外の要因による津波の想定 4-6 隠岐諸島における陸上地すべり及び岩盤崩壊
Huber and Hager(1997)の突入水深の考え方(隠岐島前)
第575回審査会合 資料1-3 P286 再掲

突入水深の設定図(海上保安庁(1990)に加筆)

286)

陸上地すべり:津波高の概略検討結果(まとめ)

第575回審査会合 資料1-3 P287 再掲

・抽出した全40地点を対象に、Huber and Hager(1997)の予測式により、敷地における津波高さ(全振幅)を検討した。^{※1}

・検討の結果、全振幅が大きな上位3地点は下表のとおりとなる。※2

位置	地すべり (図中の 番号)	長さ L (m)	幅 b (m)	厚さ t (m)	土量 Vs (m ³)	すべり面 の傾斜角 α (°)	進行角 Y ([°])	突入 水深 d ₁ (m)	発電所 水深 d ₂ (m)	発電所 までの 距離 r (km)	発電所での 津波高さ (全振幅) H ₂ (m)
	LsO-36	262	330	33	2,853,180	18	-15	30	20	59	0.45
隠岐諸島	LsO-31	226	170	25	960,500	13	+5	20	20	56	0.20
	LsO−39 ^{※3}	265	210	25	1,391,250	20	-20	10	20	57	0.16
(参考)	Ls7	402	190	28	2,138,640	27	+35	15	20	9	1.20
敷地周辺	Ls26	289	290	42	3,520,020	14	-105	10	20	0.5	0.44

※1 パラメータの設定方法をP278~286に示す。

※2 Huber and Hager(1997)の予測式と全地点の結果はP292~295に示す。

※3 地表地質踏査結果を踏まえ諸元を設定している。地表地質踏査結果はP290に示す。

・隠岐諸島に分布する陸上地すべりの津波高さ(全振幅)は,敷地周辺に分布する陸上地すべりの津波高さ(全振幅)と同等以下であることから,隠岐諸島に分布する陸上地すべりに起因する津波の敷地への影響は小さいと考えられる。

4.地震以外の要因による津波の想定 4-6 隠岐諸島における陸上地すべり及び岩盤崩壊

岩盤崩壊:岩盤崩壊地点の選定

第575回審査会合 資料1-3

288

4.地震以外の要因による津波の想定 4-6 隠岐諸島における陸上地すべり及び岩盤崩壊 岩盤崩壊:津波高の概略検討結果(まとめ) 第575回審査会合 資料1-3

・抽出した全7地点を対象に, Huber and Hager(1997)の予測式により, 敷地における津波高さ(全振幅)を検討した。※1 ・検討の結果, 全振幅が大きな上位3地点は下表のとおりとなる。※2

位置	地すべり (図中の 番号)	長さ L (m)	幅 b (m)	厚さ t (m)	土量 Vs (m ³)	すべり面 の傾斜角 α (°)	進行角 Υ (°)	突入水深 d ₁ (m)	発電所 水深 d ₂ (m)	発電所 までの 距離 r (km)	発電所での 津波高さ (全振幅) H ₂ (m)
	LsO-44 ^{※3}	259	490	33	4,188,030	63	-45	10	20	52	0.40
隠岐諸島	LsO-5	212	680	68	9,802,880	37	+15	5	20	75	0.19
	LsO-40 ^{%3}	189	490	33	3,056,130	53	-70	10	20	56	0.18
(参考)	Ls7	402	190	28	2,138,640	27	+35	15	20	9	1.20
敷地周辺	Ls26	289	290	42	3,520,020	14	-105	10	20	0.5	0.44

* ※1 パラメータの設定方法をP278~286に示す。

※2 Huber and Hager(1997)の予測式と全地点の結果はP292~295に示す。

※3 地表地質踏査結果を踏まえ諸元を設定している。一例として、LsO-44の地表地質踏査結果をP291に示す。

・隠岐諸島に分布する岩盤崩壊の津波高さ(全振幅)は,敷地周辺に分布する陸上地すべりの津波高さ(全振幅) を下回ることから,隠岐諸島に分布する岩盤崩壊に起因する津波の敷地への影響は小さいと考えられる。

・航空レーザー測量結果では陸上地すべり規模が不明瞭であったLsO-39における地表地質踏査結果を記載する。

a. 地すべり全景

南南西に傾斜する斜面を東側から望む 地形勾配の変換部が地すべり土塊の上 端を示す

b. ブロック中央部の平坦面

地すべりの中央部は平坦面が形成 され、岩盤の露頭は認められない

d. ブロック頭部上方

塊状の非常に堅硬な粗面玄武岩が 分布する

海岸沿いには高さ95m~105mの海 食崖が連続して分布する

4.地震以外の要因による津波の想定 4-6 隠岐諸島における陸上地すべり及び岩盤崩壊 岩盤崩壊:地表地質踏査結果(LsO-44) 第575回審査会合 資料1-3 P291 再掲

・航空レーザー測量結果では陸上地すべり規模が不明瞭であったLsO-44における地表地質踏査結果を記載する。

4.地震以外の要因による津波の想定 4-6 隠岐諸島における陸上地すべり及び岩盤崩壊 Huber and Hager(1997)の予測式による津波高の概略検討結果 第575回審査会合 資料1-3 P292 再掲

・以下のとおり突入水深の妥当性を確認した。

- Huber and Hager(1997)の予測式による津波高が比較的高い地点において地表地質踏査を実施し、地すべり形態を確認した結果、一部の地すべりは崖錐すべりであるが、地すべりの多くは岩盤すべりであり、臼杵ほか(2005)に示されるような完全流動を示す地すべりでない。※
- ・仮に、崖錐すべり及び地すべり形態が不明な地すべりについて、移動係数Tr=1.0としてHuber and Hager(1997)の予測式により津波高 を検討しても、敷地周辺の陸上地すべりLs7・Ls26の津波高と同等以下であることを確認している。

<u>隠岐諸島(LsO-1~LsO-12)</u>

地すべり (図中の 番号)※	た L (m)	幅 b (m)	厚さ t (m)	土量 Vs (m ³)	すべり面 の傾斜角 α (°)	進行角 Υ ([°])	突入 水深 d ₁ (m)	発電所 水深 d ₂ (m)	発 電 所 距 離 r(km)	発電所での 津波高さ (全振幅) H ₂ (m)	地 す べり 形態	(参考) Tr=1.0とした発 電所での津波 高さ(全振幅) H ₂ (m)
LsO-1(陸)	857	840	84	60,469,920	11	-85	20	20	79	0.14	—	0.20
LsO-2(陸)	295	470	47	6,516,550	28	-110	5	20	78	0.02	_	0.04
LsO−3(陸)	345	500	50	8,625,000	22	+35	8	20	77	0.17	_	0.24
LsO-4(陸)	443	300	30	3,987,000	18	+35	5	20	77	0.08	_	0.08
LsO-5(岩)	212	680	68	9,802,880	37	+15	5	20	75	0.19		
LsO-6(陸)	468	450	45	9,477,000	16	+10	4	20	75	0.09	_	0.13
LsO-7(岩)	148	680	46	4,629,440	24	+60	10	20	73	0.10		
LsO-8(岩)	138	250	36	1,242,000	30	+20	5	20	74	0.09		
LsO-9(陸)	219	150	22	722,700	24	+140	5	20	74	0.01	_	0.01
LsO-10(陸)	177	120	18	382,320	16	+140	10	20	74	0.01	_	0.01
LsO-11(陸)	422	200	29	2,447,600	14	+10	15	20	76	0.19	_	0.36
LsO-12(陸)	479	860	86	35,426,840	11	-175	10	20	78	0.04		0.04

Huber and Hager(1997)の予測式による津波高の概略検討結果

第575回審査会合 資料1-3 P293 再掲

■ <u>隠岐諸島(LsO-13~LsO-24)</u>

地すべり (図中の 番号)※	長 L (m)	響 b (m	さ t (m)	土量 Vs (m³)	すべり面 の傾斜角 α (°)	進行角 Υ ([°])	突入 突水 d ₁ (m)	発電所 水深 d ₂ (m)	発 電 所 の 距 a r(km)	発電所での 津波高さ (全振幅) H ₂ (m)	地すべり 形態	(参考) Tr=1.0とした発 電所での津波 高さ(全振幅) H ₂ (m)
LsO-13(陸)	102	120	18	220,320	11	180	5	20	80	0.01	—	0.01
LsO-14(陸)	306	190	28	1,627,920	11	-90	10	20	81	0.03	—	0.03
LsO-15(陸)	414	290	29	3,481,740	8	-65	10	20	81	0.04	—	0.08
LsO-16(陸)	377	510	51	9,805,770	22	+115	10	20	82	0.02	—	0.03
LsO-17(陸)	406	230	33	3,081,540	10	+115	5	20	82	0.01	—	0.01
LsO-18(陸)	844	280	28	6,616,960	5	+100	25	20	82	0.03	—	0.04
LsO-19(陸)	803	240	35	6,745,200	5	+90	10	20	82	0.02	—	0.05
LsO-20(陸)	707	390	39	10,753,470	8	+30	5	20	83	0.05	—	0.05
LsO-21(陸)	285	160	23	1,048,800	18	+55	5	20	83	0.04	—	0.11
LsO-22(陸)	767	370	37	10,500,230	12	+135	30	20	84	0.00		0.00
LsO-23(陸)	1,014	300	30	9,126,000	9	+115	33	20	84	0.02		0.03
LsO-24(陸)	942	240	35	7,912,800	9	+120	31	20	84	0.02	_	0.02

Huber and Hager(1997)の予測式による津波高の概略検討結果

第575回審査会合 資料1-3 P294 再掲

■ <u>隠岐諸島(LsO-25~LsO-36)</u>

地すべり (図中の 番号) [※]	た」) 岷」(m	幅 b (m)	厚さ t (m)	土量 Vs (m³)	すべり面 の傾斜角 α (°)	進行角 Υ ([°])	入深 突水 d ₁)	所 電深 d ₂ (m)	新 の 発 ま 距 r(km)	発電所での 津波高さ (全振幅) H ₂ (m)	地 す べ り 形 態	(参考) Tr=1.0とした発 電所での津波 高さ(全振幅) H ₂ (m)
LsO-25(陸)	232	140	20	649,600	7	+155	5	20	85	0.01	—	0.01
LsO-26(陸)	279	190	28	1,484,280	15	+140	10	20	85	0.01	_	0.01
LsO-27(陸)	136	80	16	174,080	17	+115	5	20	85	0.01		0.01
LsO-28(陸)	165	110	16	290,400	14	+110	5	20	85	0.01	_	0.01
LsO-29(陸)	284	90	18	460,080	10	+95	10	20	85	0.02	_	0.02
LsO-30(陸)	297	400	40	4,752,000	20	+90	10	20	86	0.05	_	0.12
LsO-31(陸)	226	170	25	960,500	13	+5	20	20	56	0.20	—	0.28
LsO-32(陸)	238	290	29	2,001,580	15	+165	15	20	56	0.03	_	0.03
LsO-33(陸)	168	120	18	362,880	17	+105	5	20	56	0.01		0.01
LsO-34(陸)	228	280	28	1,787,520	15	+95	10	20	56	0.03	_	0.03
LsO-35(陸)	196	330	33	2,134,440	15	-10	15	20	57	0.18	_	0.18
LsO-36(陸)	262	330	33	2,853,180	18	-15	30	20	59	0.45	—	0.45

Huber and Hager(1997)の予測式による津波高の概略検討結果

第575回審査会合 資料1-3 P295 再掲

Ⅰ <u>隠岐諸島(LsO-37~LsO-47)</u>

地すべり (図中の 番号)※	長 L (m)	幅 b(m)	厚さ t (m)	土量 Vs (m³)	すべり面 の傾斜角 α (°)	進行角 Υ ([°])	突入 次 深 d ₁ (m)	発電所 水深 d ₂ (m)	発電所 までの 距離 r(km)	発電所での 津波高さ (全振幅) H ₂ (m)	地すべり 形態	(参考) Tr=1.0とした発 電所での津波 高さ(全振幅) H ₂ (m)
LsO-37(陸)	388	380	38	5,602,720	12	+50	10	20	57	0.11	_	0.11
LsO-38(陸)	651	310	31	6,256,110	11	-10	5	20	58	0.09	_	0.16
LsO-39(陸)	265	210	25	1,391,250	20	-20	10	20	57	0.16	岩盤すべり	
LsO-40(岩)	189	490	33	3,056,130	53	-70	10	20	56	0.18		
LsO-41(陸)	342	220	30	2,257,200	10	-50	25	20	54	0.18	岩盤すべり	
LsO-42(陸)	195	90	15	263,250	15	-50	5	20	53	0.04	岩盤すべり	
LsO-43(岩)	409	170	83	5,770,990	31	-140	20	20	53	0.01		
LsO-44(岩)	259	490	33	4,188,030	63	-45	10	20	52	0.40		
LsO-45(陸)	296	280	28	2,320,640	12	0	15	20	51	0.18	—	0.39
LsO-46(陸)	399	330	33	4,345,110	18	+40	5	20	52	0.10	—	0.28
LsO-47(岩)	114	240	24	656,640	45	+10	5	20	52	0.13		
(参考)Ls7	402	190	28	2,138,640	27	+35	15	20	9	1.20	岩盤すべり	
(参考)Ls26	289	290	42	3,520,020	14	-105	10	20	0.5	0.44	岩盤すべり	

:現地踏査実施箇所

1.全体概要 2.既往津波の検討 3.地震による津波の想定 4. 地震以外の要因による津波の想定 5.津波起因事象の重畳による津波想定 5-1 評価対象の選定 5-3 海域活断層と陸上地すべりの重畳 6.基準津波の策定 7.防波堤の影響検討 8.津波堆積物調查 9.津波の伝播特性 10.取水性の確保 11.年超過確率の参照 12.基準津波に対する安全性(砂移動評価)

・海域活断層と地すべりの位置関係から、海域活断層から想定される地震により地すべりが励起される可能性を考慮し、津波起因事象を考慮するケースを選定する。

5.津波起因事象の重畳による津波想定 5-1 評価対象の選定 **津波起因事象の重畳を考慮する組合せの選定(その1)** 9318 再掲 298

・敷地の東方海域においては、海域活断層と地すべりの位置関係から、「鳥取沖東部断層〜鳥取沖西部断層」から想定される地震により、地すべり①〜③に起因する津波、または陸上地すべりLs7・Ls26に起因する津波が励起される可能性があることから、これらの組合せを津波起因事象の重畳を考慮する組合せとして選定する。

・敷地の前面海域においては、海域活断層と地すべりの位置関係から、「F-Ⅲ~F-V断層」、「K-4~K-7撓曲」、「Fk-1断層」及び「K-1撓曲+K-2撓曲+F_{ko}断層」から想定される地震により、地すべり④に起因する津波、または陸上地 すべりLs7・Ls26に起因する津波が励起される可能性があることから、これらの組合せを津波起因事象の重畳を考慮 する組合せとして選定する。

・敷地の西方海域においては、海域活断層と地すべりの位置関係から、「大田沖断層」、「F57断層」及び「見島北方沖 西部断層」から想定される地震により、地すべり④に起因する津波、または陸上地すべりLs7・Ls26に起因する津波 が励起される可能性があることから、これらの組合せを津波起因事象の重畳を考慮する組合せとして選定する。

5.津波起因事象の重畳による津波想定 5-1 評価対象の選定 第771回審査会合 資料1-3 P321 再掲 評価対象のスクリーニング(最大水位上昇量の足し合わせ)

水位上昇側

•海域活断層と海底地すべり•陸と地すべりの位
直関係より選定した津波起因事家の重量を考
慮する組合せ26ケースについて,以下のとおり
スクリーニングを実施した。
【上昇側】

- ・選定した26ケースについて、海域活断層から想 定される地震による津波の最大水位上昇量と 地すべりに起因する津波による最大水位上昇 量の足し合わせを行った。*1
- ・足し合わせた水位が,最大水位上昇量3.44m (F-Ⅲ~F-Ⅴ断層)を上回る場合,重畳により 敷地への影響が大きくなる可能性があるケース として選定した。

※1 海域活断層のパラメータはP303に示す。

※2 海底地すべりに起因する津波の最大水位上昇量は Watts et al.(2005)の方法による数値シミュレーション結果, 陸上地すべりに起因する津波の最大水位上昇量は 二層流モデルによる数値シミュレーション結果である。

海域活断	層	- 地す	でくり	重畳による水位
	①最大水位		②最大水位上	の足し合わせ
断層名	上昇量(m)	地すべり名	昇量(m)※2	(1+2) (m)
	施設護岸		施設護岸	施設護岸
		地すべり①	1. 51	1.87
自取动声动屹民。		地すべり②	0. 67	1.03
局取冲 果 即断唐~ 自取油玉如紫屋	0.36	地すべり③	0. 51	0. 87
局取冲四 即断唐		Ls7	0. 30	0.66
		Ls26	0. 71	1.07
		地すべり④	0. 27	3. 71
F-Ⅲ~F-Ⅴ断層	3. 44	Ls7	0. 30	3. 74
		Ls26	0. 71	4. 15
		地すべり④	0. 27	2. 22
K-4~K-7撓曲	1.95	Ls7	0. 30	2. 25
		Ls26	0. 71	2.66
		地すべり④	0. 27	1. 88
Fk−1断層	1.61	Ls7	0. 30	1.91
		Ls26	0. 71	2. 32
Ҝ_1'掛曲ュҜ_2'時曲		地すべり④	0. 27	0.99
	0. 72	Ls7	0. 30	1.02
TF _{ko} 函门音		Ls26	0. 71	1. 43
		地すべり④	0. 27	0. 58
大田沖断層	0. 31	Ls7	0. 30	0. 61
		Ls26	0. 71	1.02
		地すべり④	0. 27	0. 97
F57断層	0. 70	Ls7	0. 30	1.00
		Ls26	0. 71	1.41
		地すべり④	0. 27	0. 50
見島北方沖西部断層	0. 23	Ls7	0. 30	0. 53
		Ls26	0. 71	0. 94

30

5.津波起因事象の重畳による津波想定 5-1 評価対象の選定 第771回審査会合 資料1-3 P322 再掲 評価対象のスクリーニング(最大水位下降量の足し合わせ)

【下降側】

- ・選定した26ケースについて、海域活断層から想定される地震による津波の最大水位下降量と地すべりに起因する津波による最大水位下降量の足し合わせを行った。^{※1}
- ・足し合わせた水位が,最大水位下降量-3.51m(F-Ⅲ~F-Ⅴ断層)を下回る場合,重畳により敷地への影響が大きくなる可能性がある ケースとして選定した。

水位ト降側			<u></u>						
海道	域活断層			地すべり	重畳による水位の				
	①最大水位	ī下降量(m)		②最大水位	下降量(m)※2	足し合わせ	(<u>1</u> + <u>2</u>) (m)		
断層名	2号炉取水口	2号炉取水口	地すべり名	2号炉取水口	2号炉取水口	2 号炉取水口	2 号炉取水口		
	(東)	(西)		(東)	(西)	(東)	(西)		
			地すべり①	-1.13	-1.12	-1.54	-1.53		
自取动声动新国。			地すべり②	-0. 42	-0. 42	-0. 83	-0. 83		
鳥取沖東部断層~ 鳥取沖西部断層	-0. 41	-0. 41	地すべり③	-0. 50	-0. 50	-0. 91	-0. 91		
			Ls7	-0.10	-0.10	-0. 51	-0. 51		
			Ls26	-0. 45	-0. 45	-0.86	-0.86		
			地すべり④	-0. 38	-0.38	-3.89	-3.83		
F-Ⅲ~F-Ⅴ断層	-3. 51	-3. 45	Ls7	-0.10	-0.10	-3. 61	-3. 55		
			Ls26	-0. 45	-0. 45	-3.69	-3.90		
			地すべり④	-0. 38	-0.38	-1.87	-1.86		
K-4~K-7撓曲	-1.49	-1.48	Ls7	-0.10	-0.10	-1.59	-1.58		
			Ls26	-0. 45	-0. 45	-1.94	-1.93		
			地すべり④	-0. 38	-0.38	-1.79	-1.73		
Fk-1断層	-1.41	-1.35	Ls7	-0.10	-0.10	-1.51	-1.45		
			Ls26	-0. 45	-0. 45	-1.86	-1.80		
K-1			地すべり④	-0. 38	-0. 38	-0. 69	-0. 68		
	-0. 31	-0.30	Ls7	-0.10	-0.10	-0. 41	-0. 40		
「 _{ko} 畇口)盲			Ls26	-0. 45	-0. 45	-0. 76	-0. 75		
				-0. 38	-0.38	-0. 54	-0. 54		
┃ 大田沖断層	-0.16	-0.16	Ls7	-0.10	-0.10	-0. 26	-0. 26		
			Ls26	-0. 45	-0. 45	-0. 61	-0. 61		
			地すべり④	-0.38	-0.38	-0.91	-0.89		
F57断層	-0. 53	-0. 51	Ls7	-0.10	-0.10	-0.63	-0.61		
			Ls26	-0.45	-0.45	-0. 98	-0.96		
			地すべり④	-0.38	-0.38	-0. 50	-0. 49		
┃見島北方沖西部断層	-0.12	-0.11	Ls7	-0.10	-0.10	-0. 22	-0. 21		
			Ls26	-0. 45	-0. 45	-0. 57	-0. 56		

※2 海底地すべりに起因する津波の最大水位下降量はWatts et al.(2005)の方法による数値シミュレーション結果, 陸上地すべりに起因する津波の最大水位下降量は二層流モデルによる数値シミュレーション結果である。

5.津波起因事象の重畳による津波想定 5-1 評価対象の選定 断層パラメータ

・以下のパラメータに基づき津波解析を実施した。

	断層 長さ (km)	モーメン ト マグニ チュード Mw	すべり 量 (m)	傾斜角 (°)	主応力 軸 ([°])	すべり 角 ([°])	上縁 深さ (km)		最大水位上昇量(m)		
断層								個剑古	上昇側	下降側	
								向	施設護岸 又は防波壁	2 号炉取水 口(東)	2 号炉取水 口(西)
鳥取沖東部断層~ 鳥取沖西部断層	98	7. 68	5. 77	45	120	170	0	北傾斜	+0. 36	-0. 41	-0. 41
F-Ⅲ~F-V	40.0	7.07	4.01	90	110	130, 180	0	南傾斜	+3.44	-2.87	-2. 81
断層 48.0	1.21	4. 01	90	120	115, 180	0	南傾斜	+3.00	-3. 51	-3. 45	
K-4~K-7撓曲 19	10	9 6.68	1. 58	90	120	115, 130	0	北傾斜	+1.95	-0.55	-0. 54
	19		1. 58	90	120	115, 130	0	南傾斜	+0.68	-1.49	-1.48
Fk-1断層 19	10	6. 68	1. 58	90	120	155	0	北傾斜	+1.61	-0. 52	-0. 53
	19		1. 58	90	120	155	0	南傾斜	+1.12	-1.41	-1.35
K-1撓曲+K-2撓曲	撓曲+K−2撓曲 +F _{ko} 断層 36	7. 10	3.00	90	120	140, 180	0	北傾斜	+0. 72	-0. 25	-0. 25
+F _{ko} 断層			3.00	90	120	140, 180	0	南傾斜	+0.34	-0. 31	-0. 30
大田沖断層	53	7.33	4. 43	90	120	180	0	北傾斜	+0. 31	-0.16	-0.16
F57断層	108	7. 74	8. 98	90	120	180, 120	0	北傾斜	+0.66	-0.36	-0.34
			8.98	90	120	180, 120	0	南傾斜	+0. 70	-0.53	-0. 51
見島北方沖西部 断層	38	7.13	3.16	90	120	155	0	北傾斜	+0. 23	-0. 12	-0.11
			3.16	90	120	155	0	南傾斜	+0. 18	-0.09	-0.09

5.津波起因事象の重畳による津波想定 5-3 海域活断層と陸上地すべりの重畳 第771回審査会合 資料1-3 津波水位評価地点における水位の時刻歴波形 P325 再掲

評価水位最高ケース(水位上昇側) F-II-V断層 + Ls26 (時間差16秒)

(304)

5.津波起因事象の重畳による津波想定 5-3 海域活断層と陸上地すべりの重畳 津波水位評価地点における水位の時刻歴波形

2号炉取水口(東) (最大水位下降量-3.33m+朔望平均干潮位T.P.-0.02m 一地盤変動量0.34m≒T.P.-3.7m)

2号炉取水口(東) (最大水位下降量-3.33m+朔望平均干潮位T.P.-0.02m 一地盤変動量0.34m≒T.P.-3.7m) 2号炉取水口(西) (最大水位下降量-3.27m+朔望平均干潮位T.P.-0.02m 一地盤変動量0.34m≒T.P.-3.7m)

第771回審査会合 資料1-3

P326 再揭

1.全体概要 2.既往津波の検討 3.地震による津波の想定 4.地震以外の要因による津波の想定 5.津波起因事象の重畳による津波想定 6.基準津波の策定 7.防波堤の影響検討 8.津波堆積物調査 9.津波の伝播特性 10.取水性の確保 11.年超過確率の参照 12.基準津波に対する安全性(砂移動評価)

^{6.基準津波の策定} 設置変更許可申請時(H25.12.25)の基準津波

・鳥取県(2012)が日本海東縁部に想定した地震による津 波を基準津波として選定した。

		上昇側	下降側		
検討ケ	ース	防波壁	2 号炉 取水口 (東)	2 号炉 取水口 (西)	
評価水位 (T.P. m)	基準津波	+9.5	-5.8	-5.8	

地震調査研究推進本部(2003)に加筆

1.全体概要 2.既往津波の検討 3.地震による津波の想定 4. 地震以外の要因による津波の想定 5.津波起因事象の重畳による津波想定 6.基準津波の策定 7.防波堤の影響検討 7-1基準津波1の防波堤の有無に関する影響検討 7-2基準津波2,3の防波堤の有無に関する影響検討 8.津波堆積物調杳 9.津波の伝播特性 10.取水性の確保 11.年超過確率の参照 12.基準津波に対する安全性(砂移動評価)

7.防波堤の影響検討 7-1 基準津波1の防波堤の有無に関する影響検討 消波ブロックをモデル化した場合の検討 第771回審査会合 資料1-3 P330 加筆·修正

・消波ブロックをモデル化した場合の津波への影響を検討するため,施設護岸又は防波壁で最大水位上昇量を示した基準津波1を対象に実施する。実施に当たっては、東防波堤のT.P.-4.9m~T.P.+1.8m区間の消波ブロックをモデル化し、消波ブロックの透過率を施工実績より算出し50%と設定した。

308

・その結果,消波ブロックをモデル化した場合,消波ブロックをモデル化しない場合と比較し,津波の敷地への影響は小さいことから,これまでの消波ブロックをモデル化しない津波解析は安全側の評価となることを確認した。

検討ケース	消波ブロックのモデル化	上昇側	劉子	洚側	備老
		施設護岸 又は防波壁	2号炉取水口(東)	2号炉取水口(西)	
基準津波 1	消波ブロックをモデル化	+10. 4	-4.8	-4.8	
(烏取県 (2012))	馬取県 012)) 消波ブロックをモデル化しない		-5.0	-5.0	防波堤有りケース

位直*		万问	位置	施設護岸 又は防波壁	2 <i>号炉</i> 取水口 (東)	2 <i>号炉</i> 取水口 (西)
			ΙΠ	+4.5	-3.0	-3.0
			ШШ	+4.3	-2.8	-2.8
		亩	ΠV	+8.6	-3.0	-2.9
(1)		傾	IV V	+6.8	-3.4	-3.4
			V VI	+5.8	-4.1	-4.1
			VIVI	+5.8	-3.4	-3.3
	60°		VIIVII	+4. 5	-2.8	-2.8
	100		ΙΠ	+3.7	-2.3	-2.3
			ШШ	+4. 2	-2.5	-2.5
			ШIV	+6.1	-3.0	-3.0
(2)		傾	IV V	+7.3	-3.8	-3.8
		斜	IV VI	+6.9	-3.6	-3.5
			VIVI	+6.1	-3.0	-3.0
			VIIVIII	+3.6	-2.6	-2.5

				評価水位 (T.P. m)			
			+ + * 11	上昇側	下降	锋 側	
東西 2置 [※]	傾斜角	傾斜 方向	入9へり 域 位置	施設護岸 又は防波壁	2 号炉 取水口 (東)	2 号炉 取水口 (西)	
			ΙΠ	+3.5	-2.6	-2.6	
			ШШ	+4.8	-2.6	-2.5	
		峀	ΠV	+5.8	-3.3	-3.3	
(3)		采 傾斜	IV V	+9.4	-3.9	-3.9	
			V VI	+8. 1	-4. 2	-4.2	
			VIVII	+6.5	-4.4	-4.3	
	60°		VIIVII	+4.4	-3.0	-3.0	
	00	DU 西 傾 斜	ΙΠ	+3. 1	-2.5	-2.5	
			ШП	+3.3	-2.4	-2.4	
			ШV	+3.9	-2.3	-2.3	
(4)			IV V	+5.8	-3.5	-3.4	
			V VI	+6. 7	-4.3	-4.3	
			VIVI	+5.8	-4.0	-3.9	
			VIIVII	+4. 0	-2.3	-2.3	

※ 断層の東西位置の番号は本資料P110を参照

				又は防波壁	(東)	(西)
			ΙΠ	+4. 2	-2.8	-2.8
			ШШ	+4.0	-2.4	-2.4
		宙	ΠV	+7.9	-2.8	-2.7
(1)		傾刻	IV V	+6.4	-3.3	-3.2
		까 1	V VI	+5.0	-4.0	-3.9
		45°	VIVI	+4. 6	-3.2	-3.2
	15°		VIIVIII	+4. 2	-2.9	-2.8
	4 5		ΙΠ	+3.3	-2.1	-2.1
			ШШ	+3.9	-2.3	-2.2
			ΠV	+5.7	-2.7	-2.6
(2)		傾刻	IV V	+6.8	-3.9	-3.9
		카 	V VI	+6.8	-3.7	-3.6
			VIVI	+5.1	-2.7	-2.6
			VIIVIII	+3.5	-2.4	-2.3

				上昇側	下降	夆側	
更西 置 [※] 傾斜角		傾斜 方向	大すへり 域 位置	施設護岸 又は防波壁	2 号炉 取水口 (東)	2 号炉 取水口 (西)	
			ΙΠ	+3.3	-2.4	-2.4	
			ШП	+4. 1	-2.3	-2.3	
		古	ΠN	+5.1	-2. 7	-2.7	
3)		采 傾 斜	IV V	+7.7	-3.4	-3.3	
			V VI	+7.6	-3.7	-3.6	
			VIVI	+6.0	-3.9	-3.9	
	15°		VIIVIII	+4. 3	-2.9	-2.9	
	40	-	ΙΠ	+2.9	-2.5	-2.5	
			ШП	+3.1	-2.3	-2.3	
			ΠN	+3.4	-2.3	-2.3	
(4)		傾	IV V	+5.1	-3. 1	-3.0	
		科	V VI	+6.5	-3.9	-3.9	
			VIVI	+4. 9	-3.6	-3.6	
			VIIVIII	+3.4	-2.2	-2. 2	

※ 断層の東西位置の番号は本資料P110を参照

在置※	傾斜角	國 方向	域位置	施設護岸 又は防波壁	2 号炉 取水口 (東)	2 号炉 取水口 (西)
			ΙΠ	+3.5	-2.5	-2.5
			ШШ	+3.7	-2.0	-2.0
		亩	ΠV	+6. 7	-2.6	-2.5
(1)		傾刻	IV V	+5.0	-2.7	-2.7
		# 1	V VI	+4. 2	-3.6	-3.6
			VIVI	+4. 5	-3.1	-3.1
	20°		VIIVIII	+3.5	-2.6	-2.6
			ΙΠ	+2.9	-2.0	-2.0
			ШШ	+3.5	-1.9	-1.9
			ΠV	+4. 7	-2.2	-2.2
(2)		傾	IV V	+5.6	-3.0	-3.0
		科	IV VI	+5.6	-3.0	-3.0
			VIVI	+4.4	-3.0	-3.0
			VIIVIII	+3.7	-2.4	-2.4

				評価水位 (T.P. m)			
			+ + ~ 1	上昇側	下降	锋 側	
東西 2置※ 傾斜角	傾斜 方向	入すへり 域 位置	施設護岸 又は防波壁	2 号炉 取水口 (東)	2 号炉 取水口 (西)		
			ΙΠ	+2.9	-2. 1	-2.1	
			ШШ	+3.6	-2. 1	-2.1	
		市	ШV	+4. 2	-2.3	-2.3	
(3)		×傾斜	IV V	+5. 7	-2.9	-2.9	
			V VI	+5.4	-3. 2	-3.2	
			VIVI	+4. 3	-3.8	-3.7	
	200		VIIVIII	+3.3	-2.8	-2.8	
	30	西傾斜	ΙΠ	+3.0	-2.3	-2.3	
			ШШ	+3.2	-2.4	-2.4	
			ШV	+3.3	-2.6	-2.6	
(4)			IV V	+4. 1	-2.3	-2. 2	
			V VI	+4. 6	-3.0	-2.9	
			VIVI	+3.9	-2.9	-2.9	
			VIIVIII	+3.0	-2.2	-2.1	

※ 断層の東西位置の番号は本資料P110を参照

1.全体概要 2.既往津波の検討 3.地震による津波の想定 4.地震以外の要因による津波の想定 5.津波起因事象の重畳による津波想定 6.基準津波の策定 7.防波堤の影響検討 > 津波地 時物調本

8.津波堆積物調査

8-1 敷地周辺における津波堆積物調査
8-2 山陰地方における津波堆積物調査
(1)津波堆積物に関する文献調査
(3)基準津波との比較
9.津波の伝播特性
10.取水性の確保
11.年超過確率の参照
12.基準津波に対する安全性(砂移動評価)

8.津波堆積物調査 8-1 敷地周辺における津波堆積物調査 敷地周辺における津波堆積物調査(評価フロー)

採取したコアより異質層を抽出し、異質層及び上下の堆積層を対象とした、室内分析を実施し、異質層の成因を 考察する。

山陰地方の海水準変動は、約6,000年前が縄文海進のピークであり、約6,000年前~約4,000年前にかけて海水準が低下しており、約4,000年前以降は概ね現在と同程度の海水準であることから、約4,000年前以降の海水準安定期の地層を対象に、評価を実施した。

過去1万年間の日本各地の海水準変化曲線

伊藤・幡谷(1995)⁽⁷⁷⁾を引用・加筆

(315)

316

調査概要

- ・調査地点は島根原子力発電所の南西約2kmの地点に位置する。
- ・調査地点北側には佐陀川が東から西に流下しており,調査地点西側の河口付近には,湾頭砂州や砂丘堆積物が分 布している。
- ・ボーリング調査は佐陀川沿いの標高約1.0mの水田で実施した。また、定方位試料採取位置は、堆積物の面的広がりを把握するため、ボーリング調査位置の周辺(標高0.8~1.4m)において、汀線に直交及び平行方向に配置した。

調査地点	ボーリング調査	定方位試料採取
佐陀本郷地点	1本 (岩着まで)	5本 (地表面から4~5m程度)

8.津波堆積物調査 8-1 敷地周辺における津波堆積物調査 敷地周辺における津波堆積物調査:佐陀本郷地点(異質層の抽出)

第771回審査会合 資料1-3 P347 再揭

(317

ボーリングコアの肉眼観察の結果,異質層を3箇所抽出した。

異質層	異質層の深度 (GL-m)	年代値 (Cal BP)	異質層の特徴
SB-1-①	−1.75m ~ −1.96m	620	以深の粘性土よりも砂分を含む。下位境界に乱れが認められる。

【コア写真(拡大)】

 $SB-1-(1)(-1.80 \sim -2.00m)$

敷地周辺における津波堆積物調査:佐陀本郷地点(異質層の抽出)

第771回審査会合 資料1-3 P348 再掲

(318)

【コア写真(拡大)】

 $SB-1-(2)(-2.00 \sim -2.20m)$

敷地周辺における津波堆積物調査:佐陀本郷地点(異質層の抽出)

第771回審査会合 資料1-3 P349 再掲

(319)

異質層	異質層の深度 (GL−m)	年代値 (Cal BP)	異質層の特徴
SB-1-3	−2.23m ~ −2.53m	1,650~1,630	腐植物や炭質物を多く含む粘性土層
	2		SB-1-3

【コア写真(拡大)】

敷地周辺における津波堆積物調査:佐陀本郷地点(異質層の抽出)

第771回審査会合 資料1-3 P350 再掲

320

【コア写真(拡大)】

 $SB-1-4(-2.60 \sim -2.80 m)$

8.津波堆積物調査 8-1 敷地周辺における津波堆積物調査 敷地周辺における津波堆積物調査:佐陀本郷地点(異質層の抽出)

(321

定方位試料採取によるコアの肉眼観察の結果,異質層を5箇所抽出した。

敷地周辺における津波堆積物調査:佐陀本郷地点(異質層の抽出)

第771回審査会合 資料1-3 P352 再揭

異質層	異質層の深度 (GL-m)	年代値 (Cal BP)	異質層の特徴
SS-2-①	−1.65m ~ −2.17m	590∼modern	以深の粘性土よりも砂分を含む。下位境界に乱れが認められる。
		下位境界に乱れ	<u>SS-2-①</u> h

SS-2-(1)(-2.17m)

敷地周辺における津波堆積物調査:佐陀本郷地点(異質層の抽出)

第771回審査会合 資料1-3 P353 再揭

(323

異質層	異質層の深度 (GL-m)	年代値 (Cal BP)	異質層の特徴
SS-3-①	−1.45m ~ −2.07m	600	以深の粘性土よりも砂分を含む。下位境界に乱れが認められる。
		 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	SS-8-① CS-8-① <pcs-8-①< p=""> CS-8-① <pcs-8-①< p=""> <pcs-8-①< p=""> CS-8-② <pcs-8-②< p=""> <pcs-8-②<< td=""></pcs-8-②<<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-②<></pcs-8-①<></pcs-8-①<></pcs-8-①<>

 $SS-3-(1)(-2.0 \sim -2.2m)$

8.津波堆積物調査 8-1 敷地周辺における津波堆積物調査 敷地周辺における津波堆積物調査:佐陀本郷地点(異質層の抽出)

第771回審査会合 資料1-3 P354 再揭

 $SS-4-(1)(-2.8 \sim -3.0 m)$

 $SS-4-(1)(-3.0\sim-3.2m)$

敷地周辺における津波堆積物調査:佐陀本郷地点(異質層の抽出)

第771回審査会合 資料1-3 P355 再掲

 $SS-5-(1)(-2.2 \sim -2.4m)$

8.津波堆積物調査 8-1 敷地周辺における津波堆積物調査 敷地周辺における津波堆積物調査:佐陀本郷地点(概略

詳細分析を実施

抽出した異質層について, 微化石分析(珪藻), 年代測定(¹⁴C), 帯磁率測定を実施し, 津波堆積物の可能性があるものについて, 以下に示す。

【異質層SS-3-①】

- ・異質層において上下の年代測定値に逆転が認められた。
- 【異質層SS-4-①】
- ・微化石分析の結果、海水生の珪藻が検出された。
- ⇒・概略分析の結果を踏まえ,異質層SS-3-①及び異質層SS-4-①について,津波堆積物の可能性が残る異質 層と評価し,詳細な検討を行った。
 - ・なお,その他の異質層については,①微化石分析結果より海水生珪藻の割合が低いこと,②年代測定の結 果より上下層との年代関係に逆転が認められないこと,③帯磁率分析結果より帯磁率の変化傾向に特異性 が無いことから,津波由来を示す積極的な証拠は無いと判断した。

異質層	異質層の深度	微化石(珪藻) 年代測定(¹⁴ C)		帯磁率分析
	(GL-m)	海水生珪藻が占める割合 上下層との年代関係		帯磁率の 変化傾向の把握
SB-1-①	-1.75m ~ -1.96m	× ×		×
SB-1-2	-2.03m ~ -2.08m	×	_	×
SB-1-3	−2.23m ~ −2.53m	×	×	×
SB-1-④	-2.61m ~ -2.80m	×	×	×
SS-1-①	-1.60m ~ -2.14m	(×)	×	×
SS-2-①	-1.65m ~ -2.17m	(×)	×	×
SS-3-①	−1.45m ~ −2.07m	×	0	×
SS-4-①	-2.83m ~ -3.14m	0	×	×
SS-5-①	-2.22m ~ -2.30m	(×)	×	×
	備考	 ○:10%以上 ×:10%未満 ():微化石検出少 	 ○:逆転有 ×:逆転無 -:不明 	 ○:特異性有(変化有) ★:特異性無(変化無)

敷地周辺における津波堆積物調査:佐陀本郷地点(概略分析:微化石

第771回審査会合 資料1-3 P357 再揭

(327

※ 微化石(珪藻)の検出数が100以上で, 微化石(珪藻)の出現率に信頼性が十分にある場合, 出現率のグラフを示している。

敷地周辺における津波堆積物調査:佐陀本郷地点(概略分析:年代測定・帯磁率分析)

△ 微化石分析で珪藻が 検出されなかった試料

第771回審査会合 資料1-3

P358 再掲

敷地周辺における津波堆積物調査:佐陀本郷地点(詳細分析:SS-3-①)

【詳細分析:SS-3-①】

異質層SS-3-①について、軟X線観察により堆積環境の検討を行った。

【異質層SS-3-①】

・SS-3-①について軟X線観察により確認した結果,特異な堆積構造は認められなかったことから, SS-3-①の同 一層準であるSS-1の地層について軟X線観察を実施した。

第771回審査会合 資料1-3 P359 再掲

- ・SS-1の地層について軟X線観察により確認した結果,下位境界が攪乱されており,礫の長軸方向が水平面に対して直交していることから, SS-1の地層は人工改変によるものと評価する。
- ・SS-1の地層はSS-3-①の同一層準であるため、SS-3-①についても人工改変によるものと評価する。
- ・なお、コア観察により、プラスチック製のネットが上位境界をなしていることが確認された。

⇒人工改変によるものと評価した。

敷地周辺における津波堆積物調査:佐陀本郷地点(詳細分析:SS-4-①)

【詳細分析:SS-4-①】

- SS-4-①について,砂質粘性土に含まれる貝殻片や付近の砂層に着目した堆積環境の検討を行った。 【異質層SS-4-①】
- ・異質層SS-4-①の上位に分布する砂は,淘汰が良く,全体に微細貝殻片が含まれ,西側(海側)には砂丘が 広く分布していることから,砂丘砂と考えられる。
- ・異質層は粘性土層(下位層)と砂丘砂層(上位層)に挟まれており、下位層から上位層に向かって年代が若くなる。従って、異質層、粘性土層(下位層)及び砂丘砂層(上位層)は、SS-4地点付近に成長してきた砂丘の影響を受けて形成された堆積物(粘性土層→砂質粘性土層→砂丘砂層)と考えられる。
- ・また,異質層の下位層及び上位層との境界に乱れが認められない。
- ⇒微化石分析の結果で認められた海水生の珪藻は,砂丘形成時に海域からの飛沫により混入した可能性が 高いと評価した。

8.津波堆積物調査 8-1 当社の津波堆積物調査 当社による津波堆積物調査(千酌地点)

<u>千酌地点</u>

地形概要

- ・調査地点は島根原子力発電所の東北東約13kmの地点に位置する。
- ・調査地は谷底平野であり,平野の北側に出畑川,南側に千酌川がそれぞれ西から東に流下しており,海岸付近には 砂州堆積物が分布している。
- ・ボーリング調査は砂州後背の標高約3.9mの低地で実施した。また、定方位試料採取位置は、堆積物の面的広がりを 把握するため、ボーリング調査位置の周辺(標高3.6~3.9m)において、汀線に直交及び平行方向に配置した。

第771回審査会合 資料1-3

P361 再掲

33

調査地点	ボーリング調査	定方位試料採取
千酌地点	1本 (岩着まで)	4本 (地表面から4m程度)

8.津波堆積物調査 8-1 当社の津波堆積物調査 当社による津波堆積物調査:千酌地点(異質層の抽出) ^{第771回審査会合 資料1-3} ^{9362 再掲}

ボーリングコアの肉眼観察の結果,異質層を1箇所抽出した。

異質層	異質層の深度 (GL-m)	年代値 (Cal BP)	異質層の特徴	
СВ-1-①	-2.46m ~ -2.88m	3,900~2,410	粘性土層中に挟在する砂層。	

33

定方位試料採取によるコアの肉眼観察の結果,異質層を2箇所抽出した。

CS - 2 - (1)(-2.2 - 2.4m)

粘性土層

=:異質層

に乱れ

粘性土層

2

CS - 3 - (1)(-2.1m)

8.津波堆積物調査 8-1 当社の津波堆積物調査 当社による津波堆積物調査:千酌地点(概略分析)

抽出した異質層について、微化石分析(珪藻)、年代測定(¹℃)、帯磁率測定を実施し、津波堆積物の可能性があるものについて、以下に示す。
【異質層CB-1-①】
・異質層において上下の年代測定値に逆転が認められた。
・帯磁率の変化傾向に特異性が認められた。
【異質層CS-2-①】
・帯磁率の変化傾向に特異性が認められた。
【異質層CS-3-①】
・微化石分析の結果、無化石の状態であった。
・帯磁率の変化傾向に特異性が認められた。

⇒ 概略分析の結果を踏まえ, 抽出した全異質層について, 津波堆積物の可能性が残る異質層と評価し, 詳細な 検討を行った。

異質層	異質層の深度 (GL−m)	微化石(珪藻) 年代測定(14C)		帯磁率分析
		海水生珪藻が占める割合	上下層との年代関係	帯磁率の 変化傾向の把握
СВ-1-①	-2.46m ~ -2.88m	(×)	0	0
CS-2-①	-2.28m	×	×	0
CS-3-(1)	-1.86m ~ -2.10m	-	×	0
備考		 ○:10%以上 ×:10%未満 ():微化石 検出量少 -:微化石 無 	<mark>○</mark> :逆転有 ×:逆転無	 ○:特異性有(変化有) ★:特異性無(変化有)

8.津波堆積物調査 8-1 当社の津波堆積物調査 当社による津波堆積物調査:千酌地点(概略分析)

第771回審査会合 資料1-3 P366 再掲

8.津波堆積物調査 8-1 当社の津波堆積物調査 当社による津波堆積物調査:千酌地点(詳細分析)

【詳細分析(CNS分析)】

・抽出した異質層についてCNS分析を実施した。

 ・亀井ほか(2002)⁽⁷⁸⁾の有機炭素/全窒素比(C/N比),有機炭素/全硫黄比(C/S比)の指標によると,異質層 CB-1-①, CS-2-①, CS-3-①に含まれる有機物は,陸成有機物が支配的と考えられる。また,全硫黄(TS)と有 機炭素(TOC)の関係図に, CB-1-①, CS-2-①, CS-3-①のCNS分析結果をプロットした結果,それらは淡水 成の領域に区分される。

第771回審査会合 資料1-3

P367 再掲

⇒河川からの洪水堆積物と砂丘の砂が混在した可能性がある。

【調査結果】

・千酌地点で認められた異質層は、津波由来を示す積極的な証拠は無いと判断した。

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査 (1)津波堆積物に関する文献調査 339 文献番号①:安本(2013), 酒井(2014a)及び酒井(2014b) 第771回審査会合 資料1-3

P369 再掲

2. 調査結果

・2012年度の予備調査にて確認された砂層は、津波由来か、高潮由来かを厳密に判断しきれなかったとされている。

 ・2013年度は米子空港周辺^{※1}及び県内の低地5箇所において津波堆積物調査を実施した結果、米子空港周辺、北栄町大谷、北栄町瀬戸 及び鳥取市気高町日光の4地点において、津波由来の可能性のある堆積物を確認したとされている。

【米子空港周辺】

- ・1km程度内陸まで続く可能性のある砂層が確認されている。西暦1800年前後に堆積したと想定されるイベント層より海生珪藻を検出し、 その下位層からは検出されなかったことから、海からの堆積物の流れ込みと考えられている。これは1833年の山形・庄内沖地震による津 波により堆積したとして矛盾はない※2と評価されている。
- ・1833年当時と比べ. 現在は海岸線が沖側にあり. 盛土により標高も1m以上高いことから. 同じ規模の津波が押し寄せたとしても. 同じよ うな浸水は生じない可能性が高いと評価されている。

【北栄町大谷】

- ・紀元前3600年頃と想定されるイベント層では、上下層に比べ海生珪藻が増えており、近くに大きな川もないことから、海から運搬された可 能性が高く、津波由来の可能性のある堆積物と評価されている。
- 【北栄町瀬戸】
- ・2000年前頃と想定されるイベント層では、上下のラグーン堆積物よりも粗粒であり、海岸や砂州堆積物に見られる砂粒子が含まれている ことから、海から運搬された可能性が高く、津波由来の可能性のある堆積物と評価されている。

【鳥取市気高町日光】

・盛土中に深度1.1m付近に挟まれる厚さ9cmのイベント堆積物が、西暦1833年の津波由来である可能性を否定できないとされている。

※1 2012年度の調査地点である米子空港東を含む

※2 下線部は1833年山形・庄内沖地震による津波に関する記載

酒井(2014a)より引用・加筆(青色が加筆箇所)

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査 (1)津波堆積物に関する文献調査

| 文献番号②: 西口ほか(2014)

第771回審査会合 資料1-3 P372 再揭

- 1. 調査概要
- 調査時期:2013年度
- 調査地点:米子空港東
- 調査概要:ハンディジオスライサーにより約70cmのコア試料採取(米子空港周辺)
 - 砂試料採取(約600mごとに地表面下10cm地点の砂を,約1.2kmごとに地表面下50cm地点の砂を採取)
 - 分析: OSL年代測定(コア試料), TL測定(砂試料)
- 2. 調査結果
- ・<u>米子空港東のコア試料の砂質堆積物を分析し、地表面から98~105cmの深さ(T.P.+0.9m付近)の層厚7cmが下層に</u> <u>比べて粒径もOSL年代も大きいことから、これが津波により短時間で輸送された津波由来の可能性のある堆積物で</u> あるとし、このOSL年代は1833年の山形・庄内沖地震による津波と整合的な値が得られたとされている。

コア試料採取位置 西口ほか(2014)を引用・加筆(青色が加筆箇所)

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査 (1) 津波堆積物に関する文献調査 文献番号③:入月ほか(2014)

第771回審査会合 資料1-3 P373 再揭

入月ほか(2014)⁽⁸⁵⁾に従い、島根大学による津波堆積物調査の概要を記す。

過去に幾度か津波が来襲したことが明らかになっている隠岐諸島において津波堆積物調査を実施したとされている。

調査時期: 2012年度, 2013年度

- 調杳地点:隠岐諸島 重栖湾
- 調查概要:2012年度:不明

2013年度:押し込み式コアラーにより水深5.3m地点から95cmのコア試料採取

- 分析:: 粒度分析·甲殻類貝形虫分析·炭素14年代測定等
- 2. 調査結果

1. 調査概要

・顕著な砂層は認められなかったものの、炭素14年代測定等から、1833年山形県沖地震による津波により運搬された可能性がある木材 層を挟んでいたとされている。採取したコア試料の下部層と中部層の境界(層厚5cm)に木材を挟在しており、これを境界とした貝形虫群集 の急激な変化や、木材層の上位の中部層と上部層で貝形虫個体数と粒度(砂の含有率)の繰り返しが認められたとされている。※1 (木材 挟在層は海面下5.8mに位置する。※2)

※1 下線部は1833年山形・庄内沖地震による津波に関する記載 ※2 文献から読み取り

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査 (1)津波堆積物に関する文献調査

文献番号④:文部科学省(2016)

第771回審査会合 資料1-3 P374 再揭

・文部科学省(2016)⁽⁸⁶⁾に従い、「日本海地震・津波調査プロジェクト」による津波堆積物調査の概要を記す。

1. 調査概要 調査時期:2015年度 調査地点 : 島根県大田市久手町, 島根県海士町諏訪湾, 鳥取県北栄町西園 調査概要:オールコアボーリングによりコア試料(深度10~20m程度まで)を採取 分析: : 粒度分析・貝化石の分析, 微化石分析, 年代分析等 2. 調査結果 各地点における調査結果は以下のとおりとされている。 【島根県大田市久手町】 ・イベントの可能性のある化石の挟在や濃集が認められた。 【島根県海士町諏訪湾】 ・湾奥の4地点において、ボーリング調査を行った結果、約180年前(EV1)にイベント堆積 物の可能性の高い砂や貝化石の挟在・濃集が認められた。※1湾内の2地点では、明瞭 調査位置図 なイベント堆積物は認められなかった。(SW2孔のEV1は,標高:海面下2.4m(孔口標高 T.P.+1.00m. 深度-3.4m). 層厚3cmである。※2) 【鳥取県北栄町西園】 Reclaimed ・イベント堆積物の可能性のある砂層は認定できた。 ※1 下線部は1833年山形・庄内沖地震 による津波に関する記載 ※2 孔口標高は藤原ほか(2016)(87)から

文部科学省(2016)を引用,加筆(青色が加筆箇所)

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査 (1)津波堆積物に関する文献調査

文献番号⑤:酒井ほか(2016)

第771回審査会合 資料1-3 P375 再揭

・酒井ほか(2016)⁽⁸⁸⁾に従い、島根大学による津波堆積物調査の概要を記す。

- 1. 調査概要
- 調査時期:不明
- 調査地点:隠岐諸島(海士町諏訪湾・隠岐の島町重栖湾),

鳥取県(米子市大篠津町,北栄町,鳥取市気高町日光地区)

- 調査概要:ボーリングによりコア試料を採取
- 分析 : 粒度分析・貝化石の分析, 年代分析等
- 2. 調査結果
- 山陰地域における調査により、これまでに津波堆積物と断定できる堆積物は見つかっていないが、検出された津波由 来の可能性の高い堆積物は、非常に薄く、微化石や化学分析を実施しない限り検出は困難であるとされている。各地 点における調査結果は以下の通りとされている。
- 【隠岐諸島(海士町諏訪湾・隠岐の島町重栖湾)】
- ・明瞭な流れイベント層は見られなかったものの,<u>粒径のわずかな増加,含まれる貝形虫化石の変化から,1833年山</u> 形・庄内沖地震津波の影響を受けた可能性のある層準が認められる。
- ・諏訪湾の湾奥部におけるボーリングからは、何層かのイベント層が検出されている。
- 【鳥取県米子市大篠津町(米子空港東)】
- ・OSL年代測定により、堆積物は1833年山形・庄内沖地震津波に由来する可能性が高いことが認められる。
- 【鳥取県北栄町,鳥取市気高町日光地区】
- ・およそ2000年前,4000年前の地層より津波由来の可能性の高い堆積物が検出されている。さらに北栄町ではおよそ 5700年前の層準からも,津波由来の可能性の高い堆積物が検出されている。

※ 下線部は1833年山形・庄内沖地震による津波に関する記載

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査

(1)津波堆積物に関する文献調査

文献番号⑥:宮本・玉井(2014)

第771回審査会合 資料1-3 P376 再揭

・宮本・玉井(2014)⁽⁸⁹⁾に従い、当社による津波堆積物調査の概要を記す。

1. 調査時期

2013年4月~2014年3月

- 2. 調査位置
- 以下の2点を考慮し、松江市鹿島町佐陀本郷地点、及び松江市美保関町千酌地点を調査位置として選定した。 ①海岸に砂州堆積物や砂丘堆積物が認められ津波堆積物が保存されやすい地形である。
- ②内陸に平野が広がり、津波の遡上範囲・高さの追跡が可能である。
- 3. 調查·評価方法
- ・ボーリング調査(岩着まで:掘進長20m程度)及び定方位試料採取(地表面から4~5m程度)によりコア採取を実施した。 ・肉眼観察によりイベント堆積物の可能性のある地層(以下,異質層という)を抽出した。
- ・現海水準と同じ海水準であった時代以降(約4,000年前以降)に形成されたと考えられる異質層を検討対象とした。
- ・検討対象とした異質層に対して、年代測定、微化石分析(珪藻)、CNS分析等を実施し、異質層の成因を考察した。
 ・調査にあたっては、専門家の指導の下、実施した。

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査 (1)津波堆積物に関する文献調査

文献番号⑥:宮本・玉井(2014)

第771回審査会合 資料1-3 P377 再揭

34

・佐陀本郷地点及び千酌地点について、津波由来を示す積極的な証拠は見出せなかった。

【共通】

・複数の異質層が認められたが、大半は、①微化石分析結果より海水生珪藻の割合が低いこと、②年代測定結果より 上下層との年代関係に逆転が認められないこと、③帯磁率分析結果より帯磁率の変化傾向に特異性が無いことから、 津波由来を示す積極的な証拠は無いと判断した。津波由来を否定できない異質層については、以下のとおり検討・評 価した。

【佐陀本郷地点】

・①軟X線観察結果より人工改変によるもの、②鉱物鑑定結果より砂丘形成時の飛沫により海水生の珪藻が混入した 可能性が高いものと判断し、津波由来を示す積極的な証拠は無いと判断した。

【千酌地点】

・CNS分析結果より淡水成に区分されるものと評価されることから、津波由来を示す積極的な証拠は無いと判断した。

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査 (1)津波堆積物に関する文献調査

各地点における堆積物調査結果 1/2

第771回審査会合 資料1-3 P378 再揭

・山陰地方における津波堆積物の文献調査の結果について、各地点におけるイベント堆積物の有無等を整理し、基準津波への反映を検討した。

地点	調査	イベント堆積 物の有無	イベントの時代	標高※	層厚※	関連文献	基準津波への反映	
大田市久手町	ボーリング2本	有り	2000年前	T.P5.6m	5cm	4	対応する歴史地震の記録がないこと, イベント堆積物の標高がT.P5.6mと低 いことから, 評価対象外とする。	
松江市鹿島町佐陀本郷	ボーリング1本(約20m) 定方位試料採取5本	無し	—	_	—	⑥(当社実施)	津波由来を示す積極的な証拠はないと されていることから、評価対象外とする。	
松江市美保関町千酌	ボーリング1本(約20m) 定方位試料採取4本	無し	—	_	—	⑥(当社実施)		
島前海士町諏訪湾	ボーリング4本	有り	約180年前, 約600年前, 約 2000年前, 約5000~6000年前	海面下2.4m	3cm	4,5	イベント堆積物の標高が海面下である ことから, 評価対象外とする。	
島後隠岐の島町重栖湾	コア2本(64cm, 95cm)	有り	西暦1833年	海面下5.8m	5cm	1-4, 3, 5		
米子空港周辺	ハンディジオスライサー調査3本 ジオスライサー調査3本	有り	西暦1833年	T.P.+0.5m	23cm	①−1, ①−3	層厚の厚いイベント堆積物は津波の規 模を反映したものではないと考えられ、 米子空港周辺のイベント堆積物の層厚 としては10cm程度と評価する。(P63参 照)	
	コア12本(2m以下)	有り	西暦1833年	T.P.+0.5~2.3m	8~70cm	(1-2, (1-3, (1) -4, (1-5, (5)		
	ハンディジオスライサー調査(約70cm)	有り	西暦1833年	T.P.+0.9m	7cm	2		
米子市淀江町	コア8本(2m以下)	無し		_	—	①−2, ①−4	津波由来を示す積極的な証拠はないと されていることから、評価対象外とする。	
北栄町大谷	コア1本	有り	約5700年前	T.P.+3.5m	12cm	(1-2, (1-4, (4), 5	対応する歴史地震の記録がないこと等 から, 評価対象外とする。	
北栄町由良宿	コア2本	無し	_	—	—	①−2, ①−4		
北栄町瀬戸	コア4本(約2~10m)	有り	約2000年前	T.P3.2m	20cm	(1)-1, (1)-3, (1) -4, (4), (5)		
湯梨浜町	コア5本(2m以下)	無し	—	_	—	①−2, ①−4	津波由来を示す積極的な証拠はないと されていることから、評価対象外とする。	
鳥取市気高町日光	コア2本(10m)	有り	西暦1833年	海面下0.8m	9cm	1-2, 1-4, 5	イベント堆積物の標高が海面下である ことから, 評価対象外とする。	
岩美町	コア19本(2m以下) コア1本(10m)	有り	西暦1200年以降~1600年頃	T.P.0m	21cm	①−2, ①−4	対応する歴史地震の記録がないこと, イベント堆積物の標高がT.P.0m以下と 低いことから,評価対象外とする。	

※ 文献に数値の記載がない場合,図より読み取った値を記載。複数のイベント層がある場合は最大値を記載。

第771回審査会合 資料1-3 P379 再揭

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査 (3)基準津波との比較 1833年当時の七類湾周辺地形のモデル化 第771回報

第771回審査会合 資料1-3 P380 再揭

境港周辺の地形の変遷:地形図及び空中写真の同じ位置を同縮尺で表示 1947年の空中写真 現在の地形図

以上より, 1833年当時の七類港周辺の地形を次のようにモデル化した。 ・1833年から1947年の間に防波堤や埋立地は造られていないことから, これら全てを取り除いたモデルとした。 ・七類市街地東側の海岸線は, 現在の新道付近が旧海岸線に概ね一致することから, この位置を海岸線とするモデルとした。

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査 (3)基準津波との比較 1833年当時の境港周辺地形のモデル化 <u>第771回審査会合 資料1-3 P381 再掲</u>

境港周辺の地形の変遷:地形図の同じ位置を同縮尺で表示 1806年の地形図(伊能図)

国土地理院古地図コレクション伊能図HPより引用

地理院地図HPより引用,加筆

▲北前船入港明治時代前半(「境実業鑑」より)

境港市(1996)より引用,加筆

1833年当時の境港周辺の地形をモデル化するために、地形図及び文献に基づき検討した。

- •1806年と現在の地形図を比べると、昭和町と竹内団地の埋立地が造成 されている。境港市(1997)⁽⁹¹⁾によれば、昭和町は1967年に、竹内団地 は1986年に埋立が竣工したとされている。
- ・境港市(1996)⁽⁹²⁾は、明治時代前半の境港に入港する北前船の写真を示している(左図)。この写真によれば、明治時代前半において護岸が無かった様子が認められる。なお、小泉(1915)⁽⁹³⁾によれば、明治37年(1904年)に境町御台場から堀川間の海岸に、幅四間、東西延長七百二十間(幅約7m,延長約1300m)の海岸物揚場が完成したとされている。

以上より、1833年当時の境港周辺の地形を次のようにモデル化した。 ・昭和町と竹内団地の埋立地の箇所を海域とし、この範囲の海底地形は 周辺の海底面を参考に作成した。次頁にモデル化した海底地形を示す。 ・1833年当時、境水道沿いは護岸がないことから、海岸線(標高T.P.Om) から緩やかに標高が上がるモデル形状とした。

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査 (3)基準津波との比較 1833年当時の境港周辺地形のモデル化:埋立地周辺

境港周辺の海底地形のモデルを図に示す。

・昭和町と竹内団地はなかったことから、この範囲の海底地形は周辺の海底面を参考に作成した。

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査 (3)基準津波との比較 1833年当時の米子空港周辺地形のモデル化 第771回審

第771回審査会合 資料1-3 P383 再揭

米子空港周辺の地形の変遷:空中写真及び地形図の同じ位置を同縮尺で表示

1947年の空中写真

以上より、1833年当時の米子空港周辺の川を次のようにモデル化した。

・1947年の川尻川の流路を基本とした。

・<u>河川遡上の浸水高を求めるため, 酒井・入月(2014)のHGS14地点のイベント堆積物の分布標高T.P.1.0m(P340参照)を河床と考え, 河</u> 川の上流端の河道の高さをT.P.1.0mとした。河口の高さがT.P.0mであり, これら2地点間の勾配が一定となるよう設定した。

・解析モデルでは、河道に沿ってメッシュが途切れないように溝状の低地を配置した。河道外の地形は、当時の地形情報がないことから、 現在の地形情報を用いてモデルを作成した。

第605回審査会合以降,変更した内容を下線で示す。

8.津波堆積物調査 8-2 山陰地方における津波堆積物調査(3)基準津波との比較

津波痕跡高と基準津波の比較

第771回審査会合 資料1-3 P385 再揭

354

・基準津波1(鳥取県(2012)が日本海東縁部に想定した地震による津波)の水位が,1983年日本海中部地震津波,1993年北海道南西沖地震津波の 津波痕跡高※を上回ることを確認した。

1.全体概要 2.既往津波の検討 3.地震による津波の想定 4.地震以外の要因による津波の想定 5.津波起因事象の重畳による津波想定 6.基準津波の策定 7.防波堤の影響検討 8.津波堆積物調查 9.津波の伝播特性 10.取水性の確保 11.年超過確率の参照 12.基準津波に対する安全性(砂移動評価)

10.津波の伝播特性

356

・敷地前面海域(基準津波策定位置)を中心に半径2kmの範囲に一律に10mの初期水位を与え,津波計算を実施した。

・水深による津波振幅への影響を軽減するため、「グリーンの式」を用いて最大水位上昇量を 補正した。(波源位置の水深 h_0 ,沖合の水深を h_1 とし、最大水位上昇量を(h_0/h_1)^{1/4}で除した。)

■ <u>解析結果(最大水位上昇量)</u>

・放射状に伝播しており、明瞭な傾向は認められない。

10.津波の伝播特性

10.津波の伝播特性

■ <u>解析結果(津波伝播:180~240分)</u>

1.全体概要 2.既往津波の検討 3.地震による津波の想定 4. 地震以外の要因に起因する津波の想定 5.重畳起因事象の重畳による津波想定 6.基準津波の策定 7.防波堤の影響検討 8.津波堆積物調查 9.津波の伝播特性 10.取水性の確保 11.年超過確率の参照 12.基準津波に対する安全性(砂移動評価)

10.取水性の確保 2号炉取水施設の評価位置について

- ・2号炉取水施設の断面図に、取水口の呑口位置及び取水槽に設置している原子炉補機海水ポンプ設計取水可能水位の位置を示す。
 ・基準津波の選定において実施した各検討において、取水口、取水管下端、取水槽位置の各地点での評価水位が下回っていないことを確認している。また、取水槽のポンプ運転時及び停止時は、2号炉循環水ポンプの状態を示しており、原子炉補機海水ポンプから取水可能であることを確認している。
- ・下記に一例として,基準津波の選定において最も取水槽の評価水位が低下しているケース(基準津波6(地震発生領域の連動を考慮した 検討による津波,防波堤無しケース))の管路計算結果を示す。

1.全体概要

- 2.既往津波の検討
- 3.地震による津波の想定
- 4. 地震以外の要因に起因する津波の想定
- 5.重畳起因事象の重畳による津波想定
- 6.基準津波の策定
- 7.防波堤の影響検討
- 8.津波堆積物調查
- 9.津波の伝播特性
- 10.取水性の確保

11.年超過確率の参照

- 11-1 連動領域の地震発生モデル及び津波高さ推定モデル
- 11-2 海域活断層のから想定される地震による津波
- 11-3 領域震源(背景的地震)と敷地周辺の主な海域活断層の位置関係
- 11-4 フラクタイル曲線
- 11-5 施設護岸又は防波壁,2号炉取水口及び2号炉取水槽における津波ハザード評価結果
- 11-6 防波堤の影響検討

12.基準津波に対する安全性(砂移動評価)

11.年超過確率の参照 11-1 連動領域の地震発生モデル及び津波高さ推定モデル 地震発生領域の連動を考慮した波源モデル(1/2)

・連動領域の波源として、科学的想像力を発揮し、不確かさとして地震発生領域の連動を考慮した以下の波源モデルを考慮する。次頁に検討ケースの詳細を示す。

項目		諸元		主な設定根拠
長さ L (km)	350km			地震調査研究推進本部(2003)に示さ れる「青森県西方沖」の領域から「佐 渡島北方沖」の領域
走向 θ(°)	可西	€傾斜8.9°, ā傾斜188.9°		地震調査研究推進本部(2003)の領域 を踏まえ設定
傾斜角 δ(°)	60°	45°	30°	土木学会(2016)に示される変動範囲 30~60°
幅 W(km)	23.1	23.1 28.3 40.0		地震発生層厚さ20km(固定), 傾斜角 より設定
すべり角 λ(°)	90°			土木学会(2016)に基づき安全側とな る90°固定とする,
すべり量 D(m)	大すべり域:12m 背景領域:4m 平均:6m			国土交通省・内閣府・文部科学省 (2014)及び根本ほか(2009)等に基づき 設定
剛性率 µ(N/m²)	3.5 × 10 ¹⁰			土木学会(2016)に基づき設定
地震 モーメント Mo(N・m)	1.70 × 10 ²¹	$.70 \times 10^{21}$ 2.08 × 10 ²¹ 2.94 × 10 ²¹		M ₀ =µ LWD
モーメント マク [*] ニチュート [*] Mw	8.09	8.15	8.25	Mw=(logM ₀ -9.1)/1.5

■発生頻度

・波源位置としては、土木学会(2011)のE1-3領域(発生頻度:1個/500-1,400年)及びE3領域(発生頻度:1個/500-1,000年)の全体同時破壊に相当する。土木学会(2011)の発生頻度に基づき、E3領域の全体同時破壊が3回に1回発生、その中でさらに2回に1回、E1-3領域との同時破壊が発生すると考え、発生頻度は1個/3,000-6,000年とする。

11.年超過確率の参照 11-1 連動領域の地震発生モデル及び津波高さ推定モデル 地震発生領域の連動を考慮した波源モデル(2/2)

・検討ケースの波源モデルは下表のとおり設定する。※

パラン	メータ	設定方法	設定値
 ①大すべり域 位置 		根本ほか(2009)を参考に波源モデルを8等 分したセグメントについて, 隣り合う2つの セグメントを大すべり域として設定する。	ІП,ПШ,ШІV,IVV, VVI,VIVII,VIIVII
② 波 源 モ	東西 位置	地震調査研究推進本部(2003)の領域を網 羅するよう設定する。	領域内で東西に移動させ る。(両端,中央)
デ ル 位 置	傾斜 方向	土木学会(2016)に示される東・西傾斜より 設定する。	東·西傾斜
③傾	斜角	土木学会(2016)に示される変動範囲30~ 60°の上限値・中央値・下限値を設定す る。	30°, 45°, 60°
断層上縁深さ		土木学会(2016)に示される既往津波の痕 跡高を再現できる波源モデルの変動範囲0 ~5kmより0kmに固定して設定する。	0km
走向		地震調査研究推進本部(2003)の領域を踏 まえ設定する。	8.9°
すべ	り角	土木学会(2016)に示される90°より設定 する。	90°

※検討ケース数は84ケース(①×②×③)である。

第671回審査会合 資料3

P54 再掲

色付き箇所がパラメータスタディ箇所

11.年超過確率の参照 11-1 連動領域の地震発生モデル及び津波高さ推定モデル 鳥取県(2012)

・連動領域の波源として、鳥取県(2012)が日本海東縁部に想定した波源モデルを考慮する。以下に波源モデルを示す。

■発生頻度

- ・佐渡島北方沖(パターン1)の波源位置としては、土木学会(2011)のE3領域(発生頻度:1個/500-1,000年)に相当することから、発生 頻度は1個/500-1,000年とする。
- ・佐渡島北方沖(パターン2)の波源位置としては、土木学会(2011)のE3領域(発生頻度:1個/500-1,000年)の全体同時破壊に相当する。土木学会(2011)の発生頻度に基づき、E3領域の同時破壊が3回に1回発生すると考え、発生頻度は1個/1,500-3,000年とする。

11.年超過確率の参照 11-1 連動領域の地震発生モデル及び津波高さ推定モデル 秋田県(2013)

・連動領域の波源として、秋田県(2013)が日本海東縁部に想定した波源モデルを考慮する。以下に波源モデルを示す。

■発生頻度

- ・海域Aの波源位置としては、土木学会(2011)のE1-3領域(発生頻度:1個/500-1,400年)に相当することから、発生頻度はE1-3領域の1個/500-1,400年とする。
 ・海域Bの波源位置としては、土木学会(2011)のE3領域(発生頻度:1個/500-1,000年)に相当することから、発生頻度はE3領域の1個/500-1,000年とする。
 ・海域A+海域Bの波源位置としては、土木学会(2011)のE1-3領域(発生頻度:1個/500-1,400年)及びE3領域(発生頻度:1個/500-1,000年)に相当する。土木学会(2011)の発生頻度に基づき、2回に1回、E1-3領域とE3領域の同時破壊が発生すると考え、発生頻度は1個/1,000-2,000年とする。
 ・海域B+海域Cの波源位置としては、土木学会(2011)のE3領域(発生頻度:1個/500-1,000年)の全体同時破壊に相当する。土木学会(2011)の発生頻度に基づき、E3領域の同時破壊が3回に1回発生すると考え、発生頻度は1個/1,500-3,000年とする。
 ・海域A+海域B+海域Cの波源位置としては、土木学会(2011)のE1-3領域(発生頻度:1個/1,500-3,000年とする。
- 時破壊に相当する。土木学会(2011)の発生頻度に基づき,E3領域の同時破壊が3回に1回発生,その中でさらに2回に1回,E1-3領域との同時破壊が発生す ると考え,発生頻度は1個/3,000-6,000年とする。

11.年超過確率の参照 11-1 連動領域の地震発生モデル及び津波高さ推定モデル 石川県(2012)

・連動領域の波源として、石川県(2012)が想定した波源モデルのうち、日本海東縁部に位置する波源モデルを考慮 する。以下に波源モデルを示す。

■発生頻度

・波源位置としては、土木学会(2011)のE3領域(発生頻度:1個/500-1,000年)の全体同時破壊に相当する。土木学会(2011)の発生頻度に基づき、E3領域の同時破壊が3回に1回発生すると考え、発生頻度は1個/1,500-3,000年とする。

11.年超過確率の参照 11-1 連動領域の地震発生モデル及び津波高さ推定モデル 福井県(2012)

・連動領域の波源として,福井県(2012)が想定した波源モデルのうち,日本海東縁部に位置する波源モデル(佐渡島 北方沖断層)を考慮する。以下に波源モデルを示す。

■発生頻度

・波源位置としては、土木学会(2011)のE3領域(発生頻度:1個/500-1,000年)の全体同時破壊に相当する。土木学会(2011)の発生頻度に基づき、E3領域の同時破壊が3回に1回発生すると考え、発生頻度は1個/1,500-3,000年とする。

11.年超過確率の参照 11-1 連動領域の地震発生モデル及び津波高さ推定モデル 島根県(2012)

・連動領域の波源として,島根県(2012)が想定した波源モデルのうち,日本海東縁部に位置する波源モデルを考慮する。 以下に波源モデルを示す。

■発生頻度

- ・佐渡北方沖(M7.85)の波源位置としては、土木学会(2011)のE3領域(発生頻度:1個/500-1,000)に相当することから、発生頻度は1個/500-1,000年とする。
- ・佐渡北方沖(M8.01)の波源位置としては,土木学会(2011)のE3領域(発生頻度:1個/500-1,000年)の全体同時破壊に相当する。土木学会(2011)の発生頻度に基づき,E3領域の同時破壊が3回に1回発生すると考え,発生頻度は1個/1,500-3,000年とする。

11.年超過確率の参照 11-1 連動領域の地震発生モデル及び津波高さ推定モデル 山口県(2012)

・連動領域の波源として、山口県(2012)⁽⁹⁵⁾が想定した波源モデルのうち、日本海東縁部に位置する波源モデルを考慮する。以下に波源モデルを示す。

■発生頻度

・佐渡島北方沖の地震の波源位置としては、土木学会(2011)のE3領域(発生頻度:1個/500-1,000)に相当すること から、発生頻度は1個/500-1,000年とする。

11.年超過確率の参照 11-2 海域活断層のから想定される地震による津波 海域活断層毎の最大水位上昇量及び下降量

(37

・敷地周辺の主な海域活断層毎の最大水位上昇量及び下降量を下表に示す。また、各断層において実施した検討ケースについて、次頁に示す。

水位上昇側(施設護岸)

※1 地盤変動量, 朔望平均満潮位を考慮した値

断層	長さ (km)	モーメントマク [・] ニチュート [・] Mw	すべり量 (m)	傾斜角 ([°])	主応力軸 (°)	すべり角 (゜)	上縁深さ (km)	すべり方向	最大水位上昇量 H(m) ^{※1}
F-Ⅲ~F-Ⅴ断層(①+②+③)	48.0	7.27	4.01	90	110	130, 180	0	南上がり	3.6
鳥取沖東部断層~鳥取沖西部断層(④+5)	98	7.68	5.77	45	120	170	0	南上がり	0.8
F57断層(⑥)	108	7.74	8.98	90	120	180, 120	0	南上がり	1.2
K-4~K-7撓曲(⑦+⑧+⑨)	19.0	6.68	1.58	90	120	115, 130	0	北上がり	2.5
大田沖断層(⑩)	53	7.33	4.43	90	120	180	0	右横ずれ	0.8
K-1撓曲+K-2撓曲+F _{ко} 断層(⑪+⑫+⑬)	36	7.10	3.00	90	120	140, 180	0	北上がり	1.2
F _k 一1断層(⑭)	19.0	6.68	1.58	90	120	155	0	北上がり	2.1
隠岐北西方北部断層(⑮)	36	7.10	3.00	90	90	55	0	西上がり	1.2
見島北方沖西部断層(⑯)	38	7.13	3.16	90	120	155	0	北上がり	0.7

水位下降側(2号炉取水槽)

※2 地盤変動量, 朔望平均干潮位を考慮した値

断層	長さ (km)	モーメントマグニチュート Mw	すべり量 (m)	傾斜角 ([°])	主応力軸 (°)	すべり角 (゜)	上縁深さ (km)	すべり方向	最大水位下降量 H(m) ^{※2}
F-Ⅲ~F-Ⅴ断層(①+②+③)	48.0	7.27	4.01	90	120	115, 180	0	南上がり	-5.9
鳥取沖東部断層~鳥取沖西部断層(④+⑤)	98	7.68	5.77	45	120	170	0	南上がり	-1.0
F57断層(⑥)	108	7.74	8.98	90	120	180, 120	0	南上がり	-1.1
K-4~K-7撓曲(⑦+⑧+⑨)	19.0	6.68	1.58	90	120	115, 130	0	南上がり	-2.7
大田沖断層(⑩)	53	7.33	4.43	90	120	180	0	右横ずれ	-0.7
K-1撓曲+K-2撓曲+F _{K0} 断層(⑪+⑫+⑬)	36	7.10	3.00	90	120	140, 180	0	南上がり	-0.9
F _k -1断層(⑭)	19.0	6.68	1.58	90	120	155	0	南上がり	-2.4
隱岐北西方北部断層(⑮)	36	7.10	3.00	90	90	55	0	西上がり	-1.1
見島北方沖西部断層(⑯)	38	7.13	3.16	90	120	155	0	北上がり	-0.6

11.年超過確率の参照 11-2 海域活断層のから想定される地震による津波 海域活断層の検討ケースの考え方

第671回審査会合 資料3 P62 加筆·修正

・敷地周辺の主な海域活断層の数値シミュレーションについては、阿部(1989)⁽⁹⁶⁾の簡易予測式により算定した津波の予測高を踏まえ、予 測高が大きくなるものについては、詳細に検討を行った。検討ケースの考え方を下表に示す。

		-	阿部(19	89)による予測	川高	
→ 海域活 → 海域活	● → → → → → → → → → → → → → → → → → → →	断層(図中の番号)	断層長さ L(km)	津波の伝播 距離∆ (km)	モーメントマク゛ニ チュート゛Mw	阿部(1989)による予 測高 H (m)
		F-Ⅲ~F-Ⅴ断層 (①+②+③)	48.0	24	7.3	3.6
B China C		鳥取沖東部断層~ 鳥取沖西部断層(④+5)	98	84	7.7	2.7
	4	F57断層(⑥)	108	103	7.7	2.2
	夏子力発電所	K-4~K-7撓曲 (⑦+⑧+⑨)	19.0	12.9	6.7	1.8
(2) U	, m	大田沖断層(⑪)	53	67	7.3	1.4
		K-1撓曲+K-2撓曲 +F _{K0} 断層(⑪+⑫+⑬)	36	50	7.1	1.2
		F _k -1断層(14)	19.0	28.4	6.7	0.8
		隠岐北西方北部断層(⑮)	36	149	7.1	0.4
		見島北方沖西部断層(16)	38	201	7.1	0.3

____ : 阿部(1989)による予測高が大きくなる断層

検討ケースの考え方

断層(図中の番号)	数値シミュレーションの検討ケース
F一Ⅲ~F-Ⅴ断層 (①+②+③)	・阿部(1989)による予測高が最大となったことから,傾斜角及びすべり角を不確かさとして概略パラメータスタディを実施し,それ らを補間するよう傾斜角,すべり角及び断層上縁深さを不確かさとした詳細パラメータスタディを実施(本編P54,56参照)(84 ケース)
鳥取沖東部断層~ 鳥取沖西部断層(④+⑤)	・阿部(1989)による予測高が比較的大きくなったことから, 傾斜角(45°,60°,75°,90°), すべり角(170°,180°)及びすべり方 向を不確かさとしてパラメータスタディを実施(10ケース)
大田沖断層(⑪)	・阿部(1989)による予測高が小さいことから、最大水位を示すと考えられる傾斜角90°と固定(1ケース)
その他の断層	・阿部(1989)による予測高が小さいことから,最大水位を示すと考えられる傾斜角90°と固定し,すべり方向のみを不確かさとし てパラメータスタディを実施(2ケース)

11.年超過確率の参照 11-2 海域活断層のから想定される地震による津波

 $F-\Pi \sim F-V$ 断層のパラメータ(1/4)

第671回審査会合 資料3 P69 再掲

■ Mw・傾斜角

[Mw]

・断層長さ48.0kmから,武村(1998)のスケーリング則に基づき設定した。

【傾斜角】

- ・土木学会では、気象庁地震月報に記載されている1973年から1998年8月に近畿〜九州の西南日本内陸部で発生した気象庁マグニチュード5.0以上、震源深さ20km以下の地震34例について、発震機構解を用い、内陸地震の傾斜角について45~90°を目安としている。
- ・気象庁地震月報に記載されている初動発震機構解(1973年から2007年のデータ)より,西南日本で発生したM5.0以上,深さ30km以浅の地震79例の傾斜角に関するデータから,傾斜角の重みは45°:60°:75°:90°=0.1:0.3:0.3
 :0.3とした。

気象庁地震月報のデータより算出

11.年超過確率の参照 11-2 海域活断層のから想定される地震による津波 F-Ⅲ~F-V断層のパラメータ(2/4) 第671回審査会合 資料3 P70 再掲

■ <u>スケーリング則</u>

 ・土木学会(2011)では、海域活断層のスケーリング則について、「津波評価技術」の式(武村(1998)の式)と「強震動レシピ」の式(入倉・三宅(2001)の式)のいずれ かのスケーリング則を適用することとされている。当社は、それらのスケーリング則のうち「津波評価技術」の式を適用している。
 ・スケーリング則の適用の考え方について、全体ハザード(算術平均ハザード)への寄与度の観点から検討した。

基準津波策定位置におけるハザード曲線

スケーリング 則 毎のす	べり量の比較
--------------	--------

F-Ⅲ~F-Ⅴ断層の	运会在/ ° \		すべり量(m)			
断層長さ(km)	1頃料用()	町喧幅(KM)	「津波評価技術」の式	「強震動レシピ」の式		
	45	21.2	2.84	1.62		
48.0	60	17.3	3.48	1.33		
	75	15.5	3.88	1.19		
	90	15	4.01	1.15		

・基準津波策定位置における全体ハザード(算術平均ハザード)に対する海域活断層の寄与度は低いことを確認した(上図)。

・津波水位に対して支配的なパラメータであるすべり量を「津波評価技術」の式と「強震動レシピ」の式により算出し比較すると、「強震動レシピ」の式より算出したすべり量は、「津波評価技術」の式より算出したすべり量より小さくなり、仮に「強震動レシピ」の式を適用した場合も、全体ハザード(算術平均ハザード)への寄与度は低いと考えられる(上表)。

・以上より、「強震動レシピ」の式を適用することによる全体ハザード(算術平均ハザード)への寄与度は低いため、海域活断層については、「津波評価技術」の式 をスケーリング則として適用する。 11.年超過確率の参照 11-2 海域活断層のから想定される地震による津波

 $F-\Pi \sim F-V$ 断層のパラメータ(3/4)

第671回審査会合 資料3 P71 再掲

■ <u>地震発生層深さ・断層上縁深さ</u>

【地震発生層深さ】

・敷地及び敷地周辺における地下構造調査等及び既往研究成果を踏まえて15kmと設定する。

【断層上縁深さ】

・土木学会に示される変動範囲0~5km,及び敷地及び敷地周辺における地下構造調査等から推定される断層上縁 深さ2kmに基づき,断層上縁深さの変動範囲を0km,2km及び5kmと設定した。

項目	検討内容	上限深さ	下限深さ
他機関の検討	地震調査研究推進本部(2017)による地震発生層の設定値	2km	15km
	原子力安全基盤機構(2004)による中国地方のD10, D90	6.4km	13.1km
震源鉛直分布	気象庁一元化データによる敷地周辺(100km以内)のD10, D90	約5km	約13km
	片尾・吉井(2002)による2000年鳥取県西部地震(余震)の震源鉛直分布	約3km	約12km
地下構造調査	敷地及び敷地周辺における微動アレイ探査結果	約2km	_
	岩田・関口(2002)による2000年鳥取県西部地震の波形インバージョン解析で用いられた速度構造	2km	_
その他の 研究成里	Shibutani et al.(2005)による2000年鳥取県西部地震のトモグラフィー解析	約2~4km	_
9776793不	岩崎・佐藤(2009)による鳥取県沖の地殻構造探査	_	約12km
	地震発生層の上限・下限深さの設定値	2km	15km

11.年超過確率の参照 11-2 海域活断層のから想定される地震による津波

 $F-\Pi \sim F-V$ 断層のパラメータ(4/4)

第671回審査会合 資料3 P72 再掲

■ <u>主応力軸</u>

・既往地震の発震機構解の分析及び日本各地の広域応力場を示した既往研究例を参考に,敷地周辺における主応 力軸の範囲は90°~120°と考えられることから,90°,105°及び120°と設定した。

ハーバードCMTによる発震機構解と主応力軸の向き

【既往研究に基づく推定】

発震機構解より推定した主応力軸の向き

塚原・小林(1991)より引用・加筆

11.年超過確率の参照

第671回審査会合 資料3 P73 加筆・修正

11-3 領域震源(背景的地震)と敷地周辺の主な海域活断層の位置関係について(1/2)

・垣見ほか(2003)⁽⁹⁷⁾に示される発電所から100km以内に位置する領域震源と敷地周辺の主な海域活断層の位置関係を確認する。

発電所から100km以内に位置する領域震源とその規模

発電所から100km以内に 位置する領域震源	最大Mw(Mj)
10D1	6.8 (7)
10D2	6.6 (6 _{3/4})
10C4	7.2 (7 _{1/2})
10C5	7.2 (7 _{1/2})

敷地周辺の主な海域活断層とその規模

番号	断層	Mw
1+2+3	F─Ⅲ~F−Ⅴ断層	7.3
(4)+(5)	鳥取沖東部断層 ~鳥取沖西部断層	7.7
6	F57断層	7.7
7+8+9	K-4~K-7撓曲	6.7
10	大田沖断層	7.3
1)+12+13	K−1撓曲+K−2撓曲 +F _{кo} 断層	7.1
14	F _K −1断層	6.7
15	隠岐北西方北部断層	7.1
16	見島北方沖西部断層	7.1

・発電所から100km以内に位置する領域震源のうち,敷地前面に位置する領域震源「10D1」「10D2」においては、それを上回る規模の海域 活断層が存在しているが、領域震源「10C4」「10C5」には海域活断層との比較により評価できない範囲が認められることから、阿部 (1989)の簡易予測式を用いて津波の予測高を算定し、土木学会(2011)に示されるスクリーニングを実施した(本編「10-2 ロジックツリー 設定」参照)。

11.年超過確率の参照

11-3 領域震源(背景的地震)と敷地周辺の主な海域活断層の位置関係について(2/2)

・萩原(1991)⁽⁹⁸⁾に示される発電所から100km以内に位置する領域震源と敷地周辺の主な海域活断層の位置関係を確認する。

発電所から100km以内に位置する領域震源とその規模

発電所から100km以内に 位置する領域震源	最大Mw(Mj)
Μ	6.8 (7)
L_2	7.0 (7.3)

敷地周辺の主な海域活断層とその規模

番号	断層	Mw
1+2+3	F─Ⅲ~F−Ⅴ断層	7.3
(4)+(5)	鳥取沖東部断層 ~鳥取沖西部断層	7.7
6	F57断層	7.7
7+8+9	K-4 ~ K-7撓曲	6.7
10	大田沖断層	7.3
1)+12+13	K−1撓曲+K−2撓曲 +F _{ĸo} 断層	7.1
14)	F _K −1断層	6.7
(15)	隠岐北西方北部断層	7.1
(16)	見島北方沖西部断層	7.1

・発電所から100km以内に位置する領域震源のうち,敷地前面に位置する領域震源「M」においては,それを上回る規模の海域活断層が存 在しているが,領域震源「L₂」には海域活断層との比較により評価できない範囲が認められることから,阿部(1989)の簡易予測式を用い て津波の予測高を算定し,土木学会(2011)に示されるスクリーニングを実施した(本編「10-2 ロジックツリー設定」参照)。 11.年超過確率の参照 11-4 フラクタイル曲線 作成方法

フラクタイル曲線の作成は、以下の手順で実施する。

- ①波源毎に作成したハザード曲線を合成する。ハザード曲線を合成する際には、波源毎に計算した全分岐に対するハザード曲線を組み 合わせるとハザード曲線の数が膨大となるため、土木学会(2016)に示されるモンテカルロ手法を適用し、1000本のハザード曲線を作 成した。なお、土木学会(2011)には、モンテカルロ手法によるサンプル数に関する検討事例として、サンプル数が1000本の結果と全分 岐処理した結果に差異がないことが示されている。
- ②合成されたハザード曲線に対し、潮位の確率分布を考慮する。潮位を考慮する手順及び潮位の確率分布は次頁に示す。
 ③潮位を考慮したハザード曲線を用いてフラクタイル曲線を作成する。

11.年超過確率の参照 11-4 フラクタイル曲線 モンテカルロ手法 サンプル数の感度解析

38

- ・今回作成した津波ハザード評価におけるロジックツリーに関して,モンテカルロ手法においてサンプル数の多少による年超過確率の値 に対する感度解析を行い,サンプル数の妥当性について検討する。
- ・感度解析では、サンプル数を200から10000まで変化させた時の算術平均ハザード曲線を作成し、比較を行う。

・感度解析の結果,年超過確率はサンプル数1000以上で有意な差がないことを確認した。 ・上記結果より,今回作成したロジックツリーに関して,年超過確率はサンプル数1000以上で全分岐と同等の値に達すると考えられること から,モンテカルロ手法のサンプル数は1000で妥当と考える。

11.年超過確率の参照 11-4 フラクタイル曲線 朝位の考慮

・ハザード曲線で考慮する潮位は、島根原子力発電所における1995年9月から2010年3月までの観測記録に基づき、以下に示す確率分布を適用する。

・潮位は土木学会(2011)に基づき,以下に示す手順で考慮する。

11.年超過確率の参照 11-5 施設護岸又は防波壁,2号炉取水口及び2号炉取水槽における津波ハザード評価結果

年超過確率の参照(水位上昇側)

第671回審査会合 資料3 P78 再掲 382

・施設護岸又は防波壁※におけるハザード曲線を以下に示す。

・ハザード曲線は、施設護岸位置又は防波壁における全計算格子それぞれのハザード曲線を包絡し、作成した。
 ・施設護岸又は防波壁における基準津波水位に対する年超過確率は、水位上昇側で10⁻⁴~10⁻⁵程度である。

※ 施設護岸を超える場合には防波壁位置での水位を考慮

■水位上昇側:施設護岸又は防波壁

位置図

	施設護岸又は防波壁 における基準津波水位		
基準津波1 (水位上昇側)	+10.5m		
基準津波2 (水位上昇側)	+8.7m		

11.年超過確率の参照 11-5 施設護岸又は防波壁, 2号炉取水口及び2号炉取水槽における津波ハザード評価結果 年超過確率の参照(水位下降側) 第671回審査会合 資料3 P79 再掲 P79 再掲

・2号炉取水口における基準津波水位に対する年超過確率は水位下降側で10⁻³~10⁻⁵程度,2号炉取水槽における基準津波水位に対する年超過確率は水位下降側で10⁻⁴程度である。

■水位下降側:2号炉取水口

年超過確率

■水位下降側:2号炉取水槽

	2号炉取水口における 基準津波水位
基準津波1 (水位下降側)	-5.0m
基準津波3 (水位下降側)	-4.5m
基準津波4 (水位下降側)	-3.9m

	2号炉取水槽における 基準津波水位
基準津波1 (水位下降側)	−5.9m
基準津波3 (水位下降側)	-5.9m
基準津波4 (水位下降側)	-5.9m

 11.年超過確率の参照
 11-5 施設護岸又は防波壁, 2号炉取水口及び2号炉取水槽における津波ハザード評価結果

 年超過確率の参照(フラクタイル曲線)
 第671回審査会合 資料3

 P80 再掲
 980 再掲

・施設護岸又は防波壁※における水位上昇側,2号炉取水口及び2号炉取水槽における水位下降側のフラクタイル曲線を以下に示す。

※ 施設護岸を超える場合には防波壁位置での水位を考慮

■水位上昇側

施設護岸又は防波壁

■水位下降側

2号炉取水口

2号炉取水槽

11.年超過確率の参照 11-5 施設護岸又は防波壁,2号炉取水口及び2号炉取水槽における津波ハザード評価結果 第671回審査会合 資料3

(参考)申請時と今回の算術平均ハザード比較

■水位上昇側

施設護岸又は防波壁※

※ 施設護岸を超える場合には防波壁位置での水位を考慮

■水位下降側 2号炉取水口

2号炉取水槽

P81 再掲

11.年超過確率の参照 11-6 防波堤の影響検討 防波堤の有無に関する津波ハザード評価の考え方

386

【津波ハザード評価の考え方】

・日本原子力学会(2012)⁽⁹⁹⁾では、地震と津波を同時に被る状態でのリスク評価については、地震と津波の相互作用によるリスク評価技術を段階的に開発していくとしており、現時点では地震そのものによる安全機能等への影響の考慮は適用範囲外としている。

一方で、基準津波の策定において、防波堤無しによる基準津波が選定されたことを踏まえ、防波堤の有無による影響を考慮した津波
 ハザード評価の影響検討を参考として実施する。

【重みの設定の考え方】

・防波堤の有無に関する重みについては、土木学会(2016)に基づき、下記のとおり設定する。

1. 日本海東縁部に想定される地震

震源域は、島根原子力発電所から十分遠方に位置することから、当該地震域での地震活動に伴い防波堤が損傷することは極めて考えにくいことから、防波堤の有無に関する重みを「防波堤有り:防波堤無し=0.9:0.1」と設定する。

2. 海域活断層から想定される地震

当該震源域での地震活動に伴い防波堤の損傷程度が判断できないことから,重み付けの判断が困難とし,防波堤の有無に関する重みを「防波堤有り:防波堤無し=0.5:0.5」と設定する。

重みの配分 (分岐が2つの場合)	前提条件
0.5:0.5	現時点の知見で重み付けの判断が困難な場合
0.3:0.7	関連情報に基づけば片方の重みが高いと考えられる場合
0.1:0.9	関連情報に基づけば分岐を設ける必要が無いと考えられるが,分岐として成立す る可能性を考慮する場合

アンケートに基づかない場合の重みの配分例

土木学会(2016)より引用

11.年超過確率の参照 11-6 防波堤の影響検討 年超過確率の参照(水位上昇側)

(388)

・防波堤の有無を考慮した基準津波の策定位置における基準津波水位に対する年超過確率は、水位上昇側で 10⁻³~10⁻⁵程度である。

位置図

	基準津波の策定位置における 基準津波水位
基準津波1 (水位上昇側)	+2.44m
基準津波2 (水位上昇側)	+1.21m
基準津波5 (水位上昇側)	+1.25m

11.年超過確率の参照 11-6 防波堤の影響検討 年超過確率の参照(水位下降側)

(389)

・防波堤の有無を考慮した基準津波の策定位置における基準津波水位に対する年超過確率は、水位下降側で 10⁻³~10⁻⁵程度である。

位置図

	基準津波の策定位置における 基準津波水位
基準津波1 (水位下降側)	-1.96m
基準津波3 (水位下降側)	-1.07m
基準津波4 (水位下降側)	-1.05m
基準津波6 (水位下降側)	-1.35m

11.年超過確率の参照 11-6 防波堤の影響検討 年超過確率の参照(フラクタイル曲線)

・防波堤の有無を考慮した基準津波の策定位置におけるフラクタイル曲線を以下に示す。

■水位上昇側

第671回審査会合 資料3

P86 再揭

11.年超過確率の参照 11-6 防波堤の影響検討 年超過確率の参照(水位上昇側)

(**39**⁻

- ・施設護岸又は防波壁※におけるハザード曲線を以下に示す。
- ・ハザード曲線は、施設護岸位置又は防波壁における全計算格子それぞれのハザード曲線を包絡し、作成した。
- ・防波堤の有無を考慮した施設護岸又は防波壁における基準津波水位に対する年超過確率は、水位上昇側で 10⁻⁴~10⁻⁶程度である。
- ※ 施設護岸を超える場合には防波壁位置での水位を考慮
- ■水位上昇側:施設護岸又は防波壁

位置図

	施設護岸又は防波壁 における基準津波水位
基準津波1 (水位上昇側)	+11.6m
基準津波2 (水位上昇側)	+8.7m
基準津波5 (水位上昇側)	+11.2m

11.年超過確率の参照 11-6 防波堤の影響検討 年超過確率の参照(水位下降側)

392

・防波堤の有無を考慮した2号炉取水口における基準津波水位に対する年超過確率は水位下降側で10⁻³~ 10⁻⁵程度, 2号炉取水槽における基準津波水位に対する年超過確率は水位下降側で10⁻³~10⁻⁵程度である。

(算術平均ハザード)

日本海東縁部

海域活断層

■水位下降側:2号炉取水口

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

-25

-20

-15

水位(m)

-10

-5

年超過確率

■水位下降側:2号炉取水槽

	2号炉取水口における 基準津波水位
基準津波1 (水位下降側)	-5.9m
基準津波3 (水位下降側)	−4.5m
基準津波4 (水位下降側)	-4.1m
基準津波6 (水位下降側)	-6.0m

	2号炉取水槽における 基準津波水位
基準津波1 (水位下降側)	-7.5m
基準津波3 (水位下降側)	-5.9m
基準津波4 (水位下降側)	-6.3m
基準津波6 (水位下降側)	-7.8m

11.年超過確率の参照 11-6 防波堤の影響検討 年超過確率の参照(フラクタイル曲線)

393

・防波堤の有無を考慮した施設護岸又は防波壁※における水位上昇側,2号炉取水口及び2号炉取水槽における 水位下降側のフラクタイル曲線を以下に示す。

※ 施設護岸を超える場合には防波壁位置での水位を考慮

■水位上昇側

■水位下降側

施設護岸又は防波壁

2号炉取水口

[・]防波堤有りのみ考慮した年超過確率と防波堤の有無を考慮した年超過確率を比較した結果,各評価地点において同等となることを確認した。

■水位上昇側

施設護岸又は防波壁※

※ 施設護岸を超える場合には防波壁位置での水位を考慮

2号炉取水槽

1.全体概要 2.既往津波の検討 3.地震による津波の想定 4. 地震以外の要因に起因する津波の想定 5.重畳起因事象の重畳による津波想定 6.基準津波の策定 7.防波堤の影響検討 8.津波堆積物調杳 9.津波の伝播特性 10.取水性の確保 11.年超過確率の参照 12.基準津波に対する安全性(砂移動評価)

12-1 申請時との比較

12-2 高橋ほか(1999)の手法における浮遊砂上限濃度の影響評価

12.基準津波に対する安全性(砂移動評価) 12-1 申請時との比較

砂の堆積厚さ

第662回審査会合 資料2-1 P87 再揭

・設置変更許可申請時及び今回の基準津波による取水口における堆積厚さ、堆積浸食分布(最終地形)及び取水口における堆積厚さの時刻歴波形を下表に示す。

12.基準津波に対する安全性(砂移動評価) 12-1 申請時との比較 最大水位上昇量分布及び流速

- ・各評価時における最大水位上昇量分布図及び取水口における流速を下表に示す。
- ・申請以降に計算格子サイズの細分化を実施した(P15~17参照)ことにより、基準津波では施設護岸の最大水位は大きくなった一方、取水 ロ周辺において砂の堆積開始する時刻(最大流速を示す時刻)以降では申請時に比べ流速が小さくなっていることから、取水口周辺にお ける堆積厚さが小さくなったと考えられる(下表参照)。

評価結果 まとめ(取水口周辺)

P89 加筆·修正

398

・高橋ほか(1999)⁽¹⁰⁰⁾の手法における浮遊砂上限濃度が評価結果に及ぼす影響確認として,浮遊砂濃度の上限 値を3%にしたケースについて影響評価を実施した。

	波源 防波堤の 砂移動モデル 浮遊砂 有無 砂移動モデル 上限濃度	고사 1성 주니 구도 구한 내	浮游砂	取水口前面堆積層厚さ(m) ^{※1}		評価結果図	
<i>冹</i> 源		2号炉取水口 (東)	2号炉取水口 (西)	堆積浸食 分布図等	時刻歴 波形		
其淮津冲1	有			0.02	0.01	P399	P403
卒牛牛瓜	無		3%	0.00	0.00	P399	P404
基準津波2	有	- - - - - - - - - - - - - - - - - - -		0.01	0.00	P400	P405
基準津波3	有			0.00	0.00	P400	P406
	有	同1向1み/ブ(1999)		0.00	0.00	P401	P407
奉华洋波4	無			0.00	0.00	P401	P408
基準津波5	無			0.00	0.00	P402	P409
基準津波6	無			0.00	0.00	P402	P410

※1 計算結果は小数第3位で切り上げて示す。

・2号炉取水口位置における最大堆積厚さは、高橋ほか(1999)の浮遊砂濃度1%と同様に、基準津波1で0.02mであり、海底面から取水口呑口下端までの高さ(5.50m)^{※2}に対して十分に小さく、取水への影響はないことを確認した。

※2 海底面:T.P.-18.00m, 取水口吞口下端:T.P.-12.50m(P6参照)

12.基準津波に対する安全性(砂移動評価) 12-2 高橋ほか(1999)の手法における浮遊砂上限濃度の影響評価 評価結果 堆積浸食分布図(最終地形) 基準津波1 P90 再掲

・高橋ほか(1999)の手法による浮遊砂上限濃度3%とした場合の基準津波1(防波堤有)及び(防波堤無)による 堆積浸食分布(最終地形)及び最大堆積厚分布を以下に示す。

<u>399</u>

12.基準津波に対する安全性(砂移動評価) 12-2 高橋ほか(1999)の手法における浮遊砂上限濃度の影響評価 評価結果 堆積浸食分布図(最終地形) 基準津波2及び3 ^{第662回審査会合 資料2-1} P91 再掲

・高橋ほか(1999)の手法による浮遊砂上限濃度3%とした場合の基準津波2及び基準津波3による堆積浸食分布 (最終地形)及び最大堆積厚分布を以下に示す。

12.基準津波に対する安全性(砂移動評価) 12-2 高橋ほか(1999)の手法における浮遊砂上限濃度の影響評価 評価結果 堆積浸食分布図(最終地形) 基準津波4 P92 再掲

・高橋ほか(1999)の手法による浮遊砂上限濃度3%とした場合の基準津波4(防波堤有)及び(防波堤無)による 堆積浸食分布(最終地形)及び最大堆積厚分布を以下に示す。

12.基準津波に対する安全性(砂移動評価) 12-2 高橋ほか(1999)の手法における浮遊砂上限濃度の影響評価 評価結果 堆積浸食分布図(最終地形) 基準津波5及び6 第662回審査会合 資料2-1 P93 再掲

・高橋ほか(1999)の手法による浮遊砂上限濃度3%とした場合の基準津波5及び基準津波6による堆積浸食分布 (最終地形)及び最大堆積厚分布を以下に示す。

評価結果 取水口における水位,堆積厚さ及び浮遊砂濃度の時刻歴<u>波形 基準津波1(防波堤有り)</u>

第662回審査会合 資料2−1 P94 再掲

・高橋ほか(1999)の手法による浮遊砂上限濃度3%とした場合の基準津波1(防波堤有)による水位, 堆積厚さ及び 浮遊砂濃度の時刻歴波形を以下に示す。

評価結果 取水口における水位, 堆積厚さ及び浮遊砂濃度の時刻歴<u>波形 基準津波1(防波堤無し)</u>

第662回審査会合 資料2−1 P95 再掲

・高橋ほか(1999)の手法による浮遊砂上限濃度3%とした場合の基準津波1(防波堤無)による水位, 堆積厚さ及び 浮遊砂濃度の時刻歴波形を以下に示す。

評価結果 取水口における水位, 堆積厚さ及び浮遊砂濃度の時刻歴波形 基準津波2

第662回審査会合 資料2-1 P96 再掲

・高橋ほか(1999)の手法による浮遊砂上限濃度3%とした場合の基準津波2による水位, 堆積厚さ及び浮遊砂濃度 の時刻歴波形を以下に示す。

評価結果 取水口における水位, 堆積厚さ及び浮遊砂濃度の時刻歴波形 基準津波3

第662回審査会合 資料2-1 P97 再掲

・高橋ほか(1999)の手法による浮遊砂上限濃度3%とした場合の基準津波3による水位, 堆積厚さ及び浮遊砂濃度 の時刻歴波形を以下に示す。

評価結果 取水口における水位, 堆積厚さ及び浮遊砂濃度の時刻歴<u>波形 基準津波4(防波堤有り)</u>

第662回審査会合 資料2−1 P98 再掲

・高橋ほか(1999)の手法による浮遊砂上限濃度3%とした場合の基準津波4(防波堤有)による水位, 堆積厚さ及び 浮遊砂濃度の時刻歴波形を以下に示す。

評価結果 取水口における水位, 堆積厚さ及び浮遊砂濃度の時刻歴<u>波形 基準津波4(防波堤無し)</u>

第662回審査会合 資料2−1 P99 再掲

・高橋ほか(1999)の手法による浮遊砂上限濃度3%とした場合の基準津波4(防波堤無)による水位, 堆積厚さ及び 浮遊砂濃度の時刻歴波形を以下に示す。

評価結果 取水口における水位, 堆積厚さ及び浮遊砂濃度の時刻歴波形 基準津波5

第662回審査会合 資料2-1 P100 再掲

・高橋ほか(1999)の手法による浮遊砂上限濃度3%とした場合の基準津波5による水位, 堆積厚さ及び浮遊砂濃度 の時刻歴波形を以下に示す。

評価結果 取水口における水位, 堆積厚さ及び浮遊砂濃度の時刻歴波形 基準津波6

第662回審査会合 資料2-1 P101 再掲

・高橋ほか(1999)の手法による浮遊砂上限濃度3%とした場合の基準津波6による水位, 堆積厚さ及び浮遊砂濃度の時刻歴波形を以下に示す。

12.基準津波に対する安全性(砂移動評価) 12-2 高橋ほか(1999)の手法における浮遊砂上限濃度の影響評価 評価結果 取水口における水位・浮遊砂濃度の分布図 第662回審査会合 資料2-1 P102 再掲 P102 再掲

12.基準津波に対する安全性(砂移動評価) 12-2 高橋ほか(1999)の手法における浮遊砂上限濃度の影響評価 評価結果(取水槽) 第662回審査会合 資料2-1 P103 加筆・修正

・取水口位置において堆積厚さが最大となった基準津波1(防波堤有)を対象として,高橋ほか(1999)の手法に基づき数値シミュレーションを実施し,浮遊砂上限濃度3%とした場合の取水槽における砂の堆積厚さを算定した。

波源 上	上昇側·下降側	防波堤の 有無	ポンプ 運転状況	砂移動モデル	浮遊砂 上限濃度	取水槽における 砂の堆積厚さ(m) ^{※1}	評価結果図
							時刻歴波形
	上見側		運転			0.02[0.0143]	P413
基準津波1 ·	工并例	有	停止	高橋ほか (1999)	寄ほか 999) 3%	0.00	P413
	下降側		運転			0.02[0.0144]	P414
			停止			0.00	P414

※1計算結果は小数第3位で切り上げて示す。

・取水槽における最大堆積厚さは、高橋ほか(1999)の浮遊砂濃度1%と同様に0.02mであり、取水槽底面から補機海水ポンプ下端までの高さ(0.50m)^{※2}に対して十分に小さく、取水への影響はないことを確認した。

※2 取水槽底面高さ:T.P.-9.80m, 補機海水ポンプ下端:T.P.-9.30m(本編P390参照)

 12.基準津波に対する安全性(砂移動評価)
 12-2
 高橋ほか(1999)の手法における浮遊砂上限濃度の影響評価

 評価結果(取水槽における水位時刻歴波形)(1/2)
 第662回審査会合 資料2-1

 P104 再掲

・基準津波1(上昇側)による取水槽の水位,堆積厚及び浮遊砂濃度の時刻歴を示す。

(413)

 12.基準津波に対する安全性(砂移動評価)
 12-2
 高橋ほか(1999)の手法における浮遊砂上限濃度の影響評価

 評価結果(取水槽における水位時刻歴波形)(2/2)
 第662回審査会合 資料2-1

 P105 再掲

・基準津波1(下降側)による取水槽の水位,堆積厚及び浮遊砂濃度の時刻歴を示す。

