島根原子力発電所2号炉 審査資料		
資料番号	EP(E)-074(補)	
提出年月	令和3年2月17日	

島根原子力発電所 2号炉

津波評価について(補足説明)

令和3年2月17日 中国電力株式会社

目次

1.全体概要	P.2
2.既往津波の検討	P.9
3.地震による津波の想定	P.35
4.地震以外の要因に起因する津波の想定	P.162
5.重畳起因事象の重畳による津波想定	P.296
6.基準津波の策定	P.306
7.防波堤の影響検討	P.308
8.津波堆積物調査	P.313
9.津波の伝播特性	P.355
10.取水性の確保	P.360
11.年超過確率の参照	P.362
12.基準津波に対する安全性(砂移動評価)	P.395

1.全体概要

2.既往津波の検討
 3.地震による津波の想定
 4.地震以外の要因に起因する津波の想定
 5.重畳起因事象の重畳による津波想定
 6.基準津波の策定
 7.防波堤の影響検討
 8.津波堆積物調査
 9.津波の伝播特性
 10.取水性の確保
 11.年超過確率の参照
 12.基準津波に対する安全性(砂移動評価)

1.全体概要 防波壁及び防水壁の構造

第771回審査会合 資料1-3 P3 再掲

1.全体概要 防波壁及び防水壁の構造

4

1.全体概要 取水·放水施設 断面図(1号炉)

1号炉取水施設

1号炉放水施設

1.全体概要 取水·放水施設 断面図(2号炉)

6

2号炉取水施設

2号炉放水施設

1.全体概要 取水·放水施設 断面図(3号炉)

第771回審査会合 資料1-3 P7 再掲

7

3号炉取水施設

1.全体概要

屋外排水路逆止弁及び防波壁通路防波扉等の設置位置

第771回審査会合 資料1−3 P8 再掲 8

1.全体概要

2.既往津波の検討

- 2-1 文献調査等による既往津波に関する検討
- 2-2 数値シミュレーション手法等
- (1)数値シミュレーション手法
- (2)既往津波の再現性の検討

2-3 既往津波の敷地における水位の検討

3.地震による津波の想定
4.地震以外の要因に起因する津波の想定
5.津波起因事象の重畳による津波想定
6.基準津波の策定
7.防波堤の影響検討
8.津波堆積物調査
9.津波の伝播特性
10.取水性の確保
11.年超過確率の参照
12.基準津波に対する安全性(砂移動評価)

2.既往津波の検討 2-1 文献調査等による既往津波に関する検討 万寿津波に関する文献

第771回審査会合 資料1-3 P12 再掲

万寿津波について記載された主な文献を以下に引用し整理した。

文献名	歴史記録等の信頼性に関する記載	津波発生原因に関する記載	津波影響範囲・津波高さに関する記載
歴史地震の研究(2) 万寿3年5月23日(1026年 6月16日)の地震および津 波の災害について 飯田(1985) ⁽¹⁾	・日本の地震史や津波史ないしは災 害史にもその記事は見当らない。	・高津川・益田川の沖合に震源があったと 考えられる。震央を求めれば海岸から約 10kmくらい沖合で東経131.8度, 北緯34.8 度くらいになる。	 ・影響範囲の西は山口県阿武郡の須佐付近から 東は島根県那賀郡江津付近までの約120kmに 及んでいる。 ・津波の高さはその被害および浸入の範囲や現 地の陸地高距などから考えて大きなところが 6~10mと考えられる。
堆積物にみる万寿地震津 波の痕跡 箕浦(1994) ⁽²⁾	・当時の主だった歴史記録に津波に 関する明らかな記述はなく, この災 害が文献にあらわれたのはずっと後 世になってからである。	-	・平野を構成する堆積物の分布からは, 万寿の 津波は海岸からせいぜい数キロさかのぼったに すぎなかったと推定され, その規模はこれまでの 推定よりずっと小さかったと考えられる。
万寿石見津波の浸水高 の現地調査 都司・加藤(1995) ⁽³⁾	・地点の指定された伝承にかぎれば, それらが記録化されたのは,古くて 江戸時代の中期であることに注意し たい。 ・残念ながら,万寿津波の場合には 信頼性のおける確実な史料というも のがない。	 ・万寿津波という益田平野で高さ20mを越える ような大きな津波を伴う地震が山陰沖で起きて いたとしても別に不思議ではないといえるであ ろう。ただ、ではその地震の振動がどうして韓国 側、高麗王朝の記録に記載されていないのかと いう疑問が残る。 ・このとき京都では「小右記」の日記が書き続け られており、毎日の天候とともに有感地震も記 録されていた。そこには、万寿3年5月23日はた だ天気「晴れ」とかかれているだけで、有感地震 についてはなにも書かれていない。 	・益田市益田川, 高津川下流の平野部で, 万寿 津波の浸水先の伝承のある地点の津波の高さ を測ってみると, すべて, およそ20m以上と25m 以下の値が得られた。
日本被害地震総覧 宇佐美ほか(2013) ⁽⁴⁾	<u>・口碑および信憑性の低い史料によ</u> <u>る。</u>	・ロ碑・史料に「地震」という語は見出せな い。	・波は川沿いに16km上流に達したという。 ・ <u>被害は50km以上東の黒松(現江津市黒松町)にま</u> <u>で及んだ</u> 。
海溝型地震の予後:津波 痕跡による変動の評価 箕浦ほか(2014) ⁽⁵⁾	-	・大規模な斜面崩壊による海洋変動が津 波発生の原因 ・北北西約135kmの遥か沖に残された 800m近い落差を有する海底地滑り	・岩見(現在の島根県益田市)の海岸に巨大な津 波が襲来した。

・万寿津波については、津波影響範囲や津波高さについて記載はあるものの、ほとんどが信頼性の低い歴史記録によるものであり、信憑性に乏しいと考えられる。また、津波の襲来範囲は島根県の江津(ごうつ)までとされており、敷地への影響はなかったと考えられる。

※万寿津波の数値シミュレーションによる敷地への影響検討は、海底地すべりに起因する津波の検討により実施する。(P226~235参照)

2.既往津波の検討 2-1 文献調査等による既往津波に関する検討 (参考)万寿津波に関する文献(箕浦ほか(2014))

海溝型地震の予後:津波痕跡による変動の評価 <u>箕浦幸治(東北大学・院・理学研究科)</u>・菅原大助(東 北大学災害科学研)・山野井徹(山形大学名誉教授)・ 山田努(東北大学・院・理学研究科)

Aftereffects of subduction zone earthquakes: geological estimates on the basis of tsunami traces

Authors: <u>Minoura, K. (Tohoku Univ.)</u>, Sugawara, D. (Tohoku Univ.), Yamanoi, T. (Yamagata Univ.), Yamada, T. (Tohoku Univ.)

類聚国史百七十一にある貞観十一年年五月二十六日の記述は、大地震と 大津波に関わる記録で終始している。869年貞観地震とこれによる津波の 被害の様子はこの記述により今日に伝えられているが、1905年に吉田東 伍が現れるまで 1000年の永きに亘り歴史に埋もれていた。吉田の解釈と 提言は、顧みられることなく遺棄され、1986年仙台平野で貞観津波の痕 跡が見いだされるまで世に現れることはなかった。全く異なる試みにより 貞観地震津波の実体が明らかにされ、1000年±100年の周期をもって巨 大地震が三陸沖で発生する可能性が指摘された。その25年後に東北日本 太平洋沖地震が発生したのであるが、その時まで危険性の訴えは無関心の 奈落に抛棄されてきた。3年半が経過し震災の惨禍は記憶の風化に晒され ているが、巨大地震の予後を看過してはならない。

嘉祥3年10月16日(グレゴリオ暦850年11月27日)、大震動に継 いで海波が至り、庄内の海岸域に壊滅的な被害をもたらしたと史料(三代 実録)に記されている。嘉祥の震災である。津波溯上の痕跡が庄内砂丘に 残されており、層位的にこの津波による痕跡と考えられた(山野井ほか、 2014)。更に別の層準にもイベント堆積層が見いだされ、年代値から11 世紀に発生した津波による堆積層と判断した。歴史記録には地震の発生が 表われず、斜面崩壊に伴う海洋震動が原因と推察される。東日本太平洋沖 地震により東北日本弧は東西伸張の場におかれ、この影響は日本海側にも 及んでいる。貞観地震により同様の構造的背景に於かれた庄内沖で斜面が 崩落し、津波が発生した可能性がある。貞観地震の18年後の887年に南 海・東南海型の海溝地震が起きており、この 139 年後の万寿 3 年 5 月 23 日(グレゴリオ暦 1026 年 6 月 16 日)に岩見(現在の島根県益田市)の 海岸に巨大な津波が襲来した(Minoura and Nakata, 1994)。大規模な斜 面崩壊による海洋変動が津波発生の原因と結論された。その痕跡は、後年 に至って中田高により指摘され(私信、2012 年 4 月 22 日)、北北西約 135km の遥か沖に残された 800m 近い落差を有する海底地滑りである。

日本海東縁の北と南で同じ頃に大規模な海底地滑りが発生したことになり、 海溝型巨大地震により島弧の応力が解放され、日本海側で斜面が崩落し易 くなったのが原因と思われる。

我々は、海底地滑りをモデル化して数値的に評価し、津波堆積物の陸上 分布を制限条件として海底地滑りの最高適合を評価した。その結果,酒田 沖水深150~600mにおいて延長18km・幅20kmの範囲での崩落土砂に よる海底地盤上下変動量±30~40mの地滑りとして、庄内海岸では標高 20m 程度まで津波が到達する可能性を見いだした.この評価は海底地形に 認められる崩落の規模を反映しており、海溝型巨大地震の予後として日本 海側での斜面崩壊に伴う津波の危険性に注目すべきであると結論した。益 田沖の海底地滑りに関して同様に試算してみたところ、万寿3年5月23 日(グレゴリオ暦1026年6月16日)津波堆積物の分布を説明できた。 こうした海底地形は他にも散見され、日本海東縁での海底斜面崩壊に伴う 津波発生の危険性は、大地震の予後として認識されるべきであろう。

引用文献

Minoura, K. and Nakata, T., 1994, Discovery of an ancient tsunami deposit in coastal sequence of southwest Japan: Verification of a large historic tsunami. The Island Arc, 3, 66-72.

山野井徹・門叶冬樹・加藤和弘・今野進・箕浦幸治,2014,庄内砂丘中の 津波堆積物(既報).山形応用地質,印刷中.

・箕浦ほか(2014)によると、「万寿3年5月23日に岩見(現在の島根県益田市)の海岸に巨大な津波が襲来した。大規模な斜面崩 壊による海洋変動が津波発生の原因と結論された。その痕跡は、(中略)北北西約135kmの遥か沖に残された800m近い落差を有 する海底地滑りである。」、また、「益田沖の海底地滑りに関して同様に試算してみたところ、万寿3年5月23日(グレゴリオ暦 1026年6月16日)津波堆積物の分布を説明できた。」としている。

■ <u>韓国沿岸部</u>

(1)HTDB(2000)⁽⁶⁾^{×1}

- 「韓国(全地震)」として取りまとめた記録によると、韓半島東側 海域では、Ms6~7.6程度^{※2}の地震が発生したとされているが、
 「韓国(全津波)」として取りまとめた記録にそれらの地震に対応 する津波の記載はない。
- ・「韓国(全津波)」によると,韓半島東側海域では,1681年6月に Ms7.0程度の地震に伴う津波が発生したとされている。 (2)秋ほか(2005)⁽⁸⁾
- ・韓半島で発生した最大の地震は、1681年6月に発生した韓国東 海岸地震(M7.5)とされている。
- ・韓国東海岸地震(M7.5)について,朝鮮王朝実録の記載より,津 波の引き潮のために潮が平常の波打ち際から100mから200m退 き,海底が露出したと解釈できることから,5mかそれ以上の海水 位の低下があったものとされている。

第771回審査会合

資料1-3 P14 再掲

12

 ※1 現在, HPから削除されている。
 ※2 宇津(1999)⁽⁷⁾によると,「Ms>6.8ではモーメント マグニチュート MwとMsがよく一致する」とされて いる。

・韓国沿岸部においては、Ms6~7.6程度の地震が発生したとされているが、それらの地震に対応 する津波は韓国沿岸では観測されていない。

・秋ほか(2005)では1681年の韓国東海岸地震(M7.5)に伴う津波の記述があるが, 渡辺(1998)⁽⁹⁾ によると, その津波が日本へ到達した記述はない。

■ <u>ロシア沿岸部</u>

(1)HTDB(2000)

- ・「ロシア沿岸(全地震)」として取りまとめた記録 によると、沿岸部の海底地形の急変部付近に おいて、Ms7.0から7.8程度の地震が発生したと されているが、「ロシア沿岸(全津波)」として取 りまとめた記録に、それらの地震に対応する津 波の記載はない。
- ・「ロシア沿岸(全津波)」として取りまとめた記録 によると、Ms4.4程度の地震に伴う津波が観測 されている。

ロシア沿岸部においては、Ms7.0から7.8程度 の地震が過去に発生しているが、それらに対 応する津波が記載されてない。

第771回審査会合

資料1-3 P15 再掲

13

2.既往津波の検討 2-2 数値シミュレーション手法等(1)数値シミュレーション手法 管路計算方法

14

- ・取・放水口における水位の時刻歴波形を入力条件、取・放水槽におけるポンプ取・放水量(号機毎にポンプ運転時・停止時の取・放水量を設定)を境界条件として管路計算を実施する。
- ・取・放水経路は開水路区間と管路区間が混在するため、微小区間に分割した水路の各部分が、開水路状態か管路状態かを逐次判定し、管路区間はその上下流端の開水路区間の水位(自由水面の水位)を境界条件として流量計算を行う。開水路区間は、開水路の一次元不定流の式により流量・水位を計算する。

2.既往津波の検討 2-2 数値シミュレーション手法等 (1)数値シミュレーション手法 計算格子サイズの細分化【申請以降の見直し】

15

■ 日本海全域

既往津波の再現性検討の精度を更に向上させるため、津波の伝播経路、津波痕跡地点周辺の沿岸について計算格 子サイズを細分化した。

- ・日本海東縁部に想定される地震による津波の伝播経路上に位置する大和堆について、最大計算格子サイズを 3.200mから800mに細分化した。
- ・北海道~鳥取県沿岸の最大計算格子サイズを1,600mから200mに細分化した。

海底地形

1600m格子 800m格子 400m格子 日本 夏霍変更許可申請時(H25.12.25)

イズを400mから100mに細分化した。

・隠岐諸島~島根半島の海底地形を考慮し、最大計算格子サ

<u>島根半島周辺</u>

2.既往津波の検討 2-2 数値シミュレーション手法等 (1)数値シミュレーション手法 計算格子サイズの細分化

変更後

16)

■ <u>島根原子力発電所周辺</u>

・島根原子力発電所周辺においては、最小計 算格子サイズ6.25mの範囲を敷地周辺1km程 度から3km程度の範囲まで拡大した。

設置変更許可申請時(H25.12.25)

2.既往津波の検討 2-2 数値シミュレーション手法等 (1)数値シミュレーション手法 計算格子サイズの妥当性に係る検討

18

区分	土木 計算格子	輪谷湾内 の計算格	
	考え方	值	子サイズ
湾口~ 湾中央部	Lvの1/40 程度	55.9m	6.25m
湾奥	Loの1/100 以下	15.8m	6.25m

妥当性確認結果

		値	算定根拠
湾の奥行	a(m)	456.25	解析上の輪谷湾の奥行きの 長さ
湾内平均水深	h(m)	14	解析上の輪谷湾の平均水深
固有周期※	T(s)	156	$T = \frac{4a}{(2m-1)\sqrt{gh}}$
湾口幅	b(m)	325.00	解析上の輪谷湾口の幅
湾口補正係数	γ	1.297	$\gamma = \left\{ 1 + \frac{2b}{\pi a} \left(0 \cdot 9228 - \ln \frac{\pi b}{4a} \right) \right\}^{1/2}$
湾ロ補正した固 有周期	T '(s)	202	Τ'=Τγ
湾口水深	h'(m)	25	解析上の輪谷湾ロ付近の平 均水深
湾内平均波長	Lv(m)	2,236	$L_{v} = T' \left(\frac{gh'}{2}\right)^{1/2}$
湾中央部より奥 の平均波長	Lo(m)	1,581	$L_0 = T' \left(\frac{gh'}{4}\right)^{1/2}$

妥当性確認に要するパラメーター覧

※ 基本周期としm=1とする。

2.既往津波の検討 2-2 数値シミュレーション手法等(1)数値シミュレーション手法 気象庁潮位観測地点(境)の潮位データ

2.既往津波の検討 2-2 数値シミュレーション手法等(1)数値シミュレーション手法 至近5年間(2005年4月~2010年3月)の潮位データ

至近5年間
(2005.4~
2010.3)設置変更許
可申請記載
(1995.9~
1996.8)朔望平均満潮位T.P.+0.50mT.P.+0.46m朔望平均干潮位T.P.+0.01mT.P.-0.02m

第771回審査会合

資料1-3 P22 再掲

 ・評価水位の際に考慮している朔望平均 満潮・干潮位(1995.9~1996.8)は, 至近 5年間(2005.4~2010.3)の観測に基づく 朔望平均満・干潮位と比較してほぼ同 等である。

各月の朔望平均干潮位の推移

2.既往津波の検討 2-2 数値シミュレーション手法等 (1)数値シミュレーション手法 地震による地盤変動の考慮方法

21

・地震により敷地周辺が隆起する場合の地盤変動の考慮方法について以下に記す。

2.既往津波の検討 2-2 数値シミュレーション手法等 (1)数値シミュレーション手法 地震による地盤変動の考慮方法

22

 Manshinha and Smylie(1971)の方法により計算される海底地盤 変位が瞬時に生じるように設定する。

③朔望平均潮位及び地盤変動量の考慮

- ・上昇側評価:最大水位上昇量に朔望平均満潮位を考慮した水位から地盤変動量を引算する。(地盤変動量は負)
- 下降側評価:最大水位下降量に朔望平均干潮位を考慮した水位から地盤変動量を引算する。(地盤変動量は負)

②津波伝播計算
 ・上記により設定した海底地盤変位を考慮した海底地形により
 津波の伝播計算を行い、津波水位の評価地点における最大水位下降量を求める。

④水位の比較・検討

・評価水位と地震前の敷地・施設

等の標高とを比較・検討する。

評価水位

(朔望平均満・干潮位及び

地盤変動量を考慮)

地震前の敷地・施設等の

標高

└比較・検討

23

・既往津波の再現性検討時に対象とする津波痕跡地点の範囲を,設置変更許可申請時(H25.12.25)の「島根半島」から「北海道〜島根県」に拡大し,再現計算時に対象とする津波痕跡地点数を増やした。 ・津波痕跡地点は,設置変更許可申請時(H25.12.25)の土木学会データから,最新の知見である東北大学・原子力規制庁(2014)⁽¹⁴⁾の津波痕跡地点に変更し,そのうち信頼度の高いデータを使用した。

項目	設置変更許可申請時(H25.12.25)	変更後
対象範囲	島根半島のみ	北海道~島根県
出典	土木学会日本海中部地震震害調査委員会(1986) ⁽¹⁵⁾ 土木学会耐震工学委員会(1997) ⁽¹⁶⁾	東北大学・原子力規制庁(2014)
地点数	1983年 日本海中部地震津波 17地点 1993年 北海道南西沖地震津波 34地点	1983年 日本海中部地震津波 212地点 1993年 北海道南西沖地震津波 220地点

・野波地点の痕跡高について、東北大学・原子力規制庁(2014)に記載されている元文献(土木学会日本海中部地震震 害調査委員会(1986))を確認したところ、島根半島の津波高分布図に野波地点の痕跡高として2.8mと記載があるのみ で、詳細な位置が不明であることから、本痕跡データは信頼性に乏しいと考えられる。

東北大学・原子力規制庁(2014)における島根半島の津波痕跡地点位置(1993年北海道南西沖地震津波)

・東北大学・原子力規制庁(2014)に収録されている、1993年北海道南西沖地震津波の津波痕跡地点位置を示す。 ・信頼度に関係なく、敷地周辺の津波痕跡高が比較的高く記載されている地点として、「佐波3.4m(信頼度C)」がある。

第771回審査会合

資料1-3 P27 再掲

25

津波痕跡地点位置図(1993年北海道南西沖地震津波)

・佐波地点の痕跡高については、東北大学・原子力規制庁(2014)に記載されている元文献(都司ほか(1994)⁽¹⁷⁾)を確認 したところ、文献の表(島根県本土側の状況)に、佐波地点の痕跡高3.4m、平目養殖施設大被害床上浸水との状況の 記載はあるが、その詳細な位置が不明であることから、本痕跡データは信頼性に乏しいと考えられる。

2.既往津波の検討 2-2 数値シミュレーション手法等 (2)既往津波の再現性の検討 (参考)津波痕跡高と鳥取県(2012)に伴う解析結果の比較

26

・痕跡情報の信頼性が乏しい野波地点及び佐波地点について,敷地に与える影響の大きい鳥取県(2012)⁽¹⁸⁾が日本海東縁部に想定した地震による津波の解析結果が津波痕跡高を上回っていることを確認した。

2.既往津波の検討 2-2 数値シミュレーション手法等 (2)既往津波の再現性の検討 <u>第771回審査会合</u> 資料1-3 P29 再掲 **1993年北海道南西沖地震津波**) 27

・土木学会による再現性指標(目安)を満足しており,計算格子モデル,数値シミュレーションモデル及び計算手法は妥当であることを確認しているが,北海道南西沖地震津波については,敷地近傍の一部の津波痕跡地点において既往痕跡高と計算津波高に差異があることから,東北大学・原子力規制庁(2014)に収録されている痕跡地点(片句地点,御津地点及び大芦地点)について,出典の都司ほか(1994)を確認するとともに,現地確認を実施した。

2.既往津波の検討 2-2 数値シミュレーション手法等 (2)既往津波の再現性の検討 ^{第771回審査会合} 敷地近傍の津波痕跡地点の現地確認(1993年北海道南西沖地震津波:片句地点) 28

・東北大学・原子力規制庁(2014)に収録されている津波痕跡地点(片句地点)について,出典の都司ほか(1994)を確認するとともに,現地調査を実施した。

記都既往津渡	2 北海道南西沖地震津波	
戦 司 ほ 痕跡地点	(名 片句(かたく)	
か ① 信頼度 [※]	В	
9 9 地点名	大浜商店前	
	と 大浜商店前船揚げ斜面目地まで	
既往痕跡	卞高 1.7m	
計算津波高	1.40m	
現地調査結學	・片句漁港は,狭い湾内に防波堤が設置されており,湾口が非常に狭隘である(図1)。	● 津波痕跡地点 ● 津波痕跡地点 ← 撮影方向(図2) 図1 痕跡地点位置図
図2 痕跡地点周辺写真		※ 東北大学・原子力規制庁(2014)による記載

・片句地点の既往津波痕跡高は狭隘な湾口により生じた局所的な値である可能性が高いと考えられる。

2.既往津波の検討 2-2 数値シミュレーション手法等 (2)既往津波の再現性の検討 第771回審査会合 資料1-3 P31 再掲 動地近傍の津波痕跡地点の現地確認(1993年北海道南西沖地震津波:御津地点) (29

・東北大学・原子力規制庁(2014)に収録されている津波痕跡地点(御津地点)について,出典の都司ほか(1994)を確認するとともに,現地 調査を実施した。

・御津地点の既往痕跡高は複雑な港湾形状,建物内の反射等により生じた局所的な値である可能性が高いと考えられる。

2.既往津波の検討 2-2 数値シミュレーション手法等 (2)既往津波の再現性の検討 第771回審査会合 資料1-3 P32 再掲 敷地近傍の津波痕跡地点の現地確認(1993年北海道南西沖地震津波:大芦地点)

・東北大学・原子力規制庁(2014)に収録されている津波痕跡地点(大芦地点)について、出典の都司ほか(1994)を確認するとともに、現地 調査を実施した。

30

記都	既往津波	北海道南西沖地震津波	
	痕跡地点名	大芦(おあし)	
	信頼度※	В	
99	地点名	JFしまね大芦出張所荷捌所前	
4 の	観測状況	荷揚げ場前面で冠水30cm	
	既往痕跡高	2.2m	
탉	·算津波高	0.83m	凡例
現均	也調査結果	・荷揚げ場前面の護岸高さは図面(図3)によ ると1.00mである。	200 400m □ □ 津波痕跡地点 図1 痕跡地点位置図 ← 撮影方向(図2)
図2 痕跡地点周辺写真		Image: With the second seco	マ+1.00m 1000 1000 1000 100
			※ 東北大学・原子力規制庁(2014)による記載

・大芦地点の既往痕跡高は都司ほか(1994)によると2.2mであるが、図面により確認した荷揚げ場前面の護岸高さ1.00mに、30cmの冠水を考慮すると1.30mとなるため、大芦地点の既往痕跡高は1.30mと考えられる。

2.既往津波の検討 2-3 既往津波の敷地における水位の検討 津波水位評価地点における水位の時刻歴波形

■ <u>日本海中部地震津波</u>

上昇側評価

2号炉放水槽(循環水ポンプ停止時)

1号炉放水槽(循環水ポンプ停止時)

※初期水位は、潮位及び取水による損失水頭を考慮した水位

3号炉放水槽(循環水ポンプ停止時)

第771回審査会合

資料1-3 P34 再掲

31

32

下降側評価

2.既往津波の検討 2-3 既往津波の敷地における水位の検討 津波水位評価地点における水位の時刻歴波形

■ 北海道南西沖地震津波

上昇側評価

【循環水ポンプ運転時】

※初期水位は、潮位及び取水による損失水頭を考慮した水位

第771回審査会合

資料1-3 P33 再掲

33

34

下降側評価

35

1.全体概要

2.既往津波の検討

3.地震による津波の想定

- 3-1 地震による津波の検討方針
- 3-2 海域活断層から想定される地震による津波の検討
- (1) 土木学会に基づく検討
- (2) 国土交通省・内閣府・文部科学省(2014)に基づく検討
- (3) 国土交通省・内閣府・文部科学省(2014)の横ずれ断層に対するすべり角の知 見を踏まえた検討
- (4) 地方自治体独自の波源モデルを対象とした検討
- 3-3 日本海東縁部に想定される地震による津波の検討
- (1) 土木学会に基づく検討
- (2) 地震発生領域の連動を考慮した検討
- (3) 国土交通省・内閣府・文部科学省(2014)に基づく検討
- (4) 地方自治体独自の波源モデルに基づく検討
- (5) 波源設定の妥当性検討

3-4 地震による津波のまとめ

4.地震以外の要因に起因する津波の想定

- 5.津波起因事象の重畳による津波想定
- 6.基準津波の策定
- 7.防波堤の影響検討
- 8.津波堆積物調査
- 9.津波の伝播特性
- 10.取水性の確保
- 11.年超過確率の参照
- 12.基準津波に対する安全性(砂移動評価)

- ・敷地から200km以内の範囲で発生した内陸地殻内地震及び海洋プレート内地震の被害地震の震 央分布図を以下に示す。
- 海洋プレート内地震の震央分布と敷地の間に本州が位置していることから、海洋プレート内地震による津波は、敷地周辺の海域活断層から想定される地震による津波より、敷地に与える影響は小さいと考えられる。

第771回審査会合

資料1-3 P39 再掲

36

[地震諸元は宇佐美ほか(2013)⁽¹⁹⁾, 気象庁(2014)⁽²⁰⁾及び気象庁(2016)⁽²¹⁾による。]

■ <u>検討概要</u>

・日本海東縁部で発生した津波は、大和堆と呼ばれる浅瀬で屈折し、島根県沿岸部に向かう傾向があるため、この津波の伝播経路上に位置する海域活断層から想定される地震による津波の影響について検討する。

第771回審査会合

資料1-3 P40 再掲

37

文部科学省・国立研究開発法人海洋研究開発機構(2015)より引用・加筆

39

玉木ほか(1981)より引用・加筆

第771回審査会合 資料1-3 P43 再掲

■ <u>評価対象断層の選定</u>

・文献調査により大和堆周辺において以下のとおり断層を抽出した。
 ・海域活断層の断層長さ、走向及び傾斜方向を考慮し、評価対象活断層としてym-5, ym-D及びym-Eを選定した。

出典	断層名	断層長さ (km)	走向 (°) ^{※1}	傾斜 方向	評価 対象
	ym-1	82	35.8	不明	
文部科学	ym−2	84	51.2	不明	
省・国立	ym-3	47	16.0	不明	
研究開発	ym-4	45	12. 7	不明	
法人海洋	ym-5	57	6.5	不明	O ^{% 2}
研究開発	ym-6	42	17.1	不明	
機構	ym-7	98	37.8	不明	
(2015)	ym-8	37	17.6	不明	
	ym-9	56	66.6	不明	
	ym-A	79	42.0	南東	
	ym-B	65	42.0	北西	
地質	ym-C	53	57.8	南東	
調査所	ym-D	114	50.4	南東	O ^{‰ 3}
(1981)	ym-E	141	50.7	北西	O ^{×4}
	ym-F	85	49.4	北西	
	ym-G	35	6.8	東	

- ※1 上盤を断層の東側として走向を読み 取った。
- ※2 日本海東縁部に想定される地震による津波の伝播経路に対して走向が直交している断層のうち、最も断層長さが長いため評価対象として選定した。
- ※3 断層長さは2番目であるが,最も長い断層と傾斜方向が異なるため評価対象として選定した。
- ※4 断層長さが最も長いため評価対象と して選定した。

玉木ほか(1981)より引用・加筆

41

■ <u>パラメータの設定(まとめ)</u>

・大和堆周辺の海域活断層から想定され地震による津波におけるパラメータは、下表の考え方に基づき設定した。

パラメータ	設定方法	説明頁			
位置・走向・ 長さ	玉木ほか(1981)及び文部科学省・国立研究開発法人海洋研究開発機構(2015)の図面 から断層位置を読取り、走向・長さを算出し設定	—			
傾斜方向	玉木ほか(1981)に示される断層については、文献に示される傾斜方向を設定 文部科学省・国立研究開発法人海洋研究開発機構(2015)に示される断層については、 傾斜方向が不明であるため、両傾斜方向を設定				
Mw	断層長さから武村(1998) ⁽²⁴⁾ のスケーリング則に基づき設定	P42			
傾斜角	文献調査からは傾斜角が不明であるため, 傾斜角を安全側の評価になると考えられる 90°と設定	_			
地震発生層 深さ	文部科学省・国立研究開発法人海洋研究開発機構(2015)によると大和堆周辺については,地殻構造が大陸性地殻(地震発生層深さ15km)に区分されるため,地震発生層深 さを15kmと設定	P43			
断層上縁 深さ	文献調査からは断層上縁深さは不明であるため、安全側の評価になると考えられる 0kmと設定	_			
すべり角	文部科学省・国立研究開発法人海洋研究開発機構(2015)によると大和堆の断層は正 断層とされており、すべり角を推定できるデータが提供されていない場合、270°と設定 することとされていることから、270°と設定	P43			
すべり量	D = M ₀ /μLWから設定 D:すべり量, M ₀ :地震モーメント, μ:剛性率, L:長さ, W:幅				

42

■ <u>パラメータの設定(傾斜方向・Mw)</u>

【傾斜方向】

・玉木ほか(1981)に示される断層については,文献に示される傾斜方向を設定した。文部科学省・国立研究開発法 人海洋研究開発機構(2015)に示される断層については,傾斜方向が不明であるため,両傾斜方向を設定した。 【Mw】

・断層長さから、武村(1998)のスケーリング則に基づき設定した。

玉木ほか(1981)より引用・加筆

43

■ パラメータの設定(地震発生層深さ・すべり角)

【地震発生層深さ】

・文部科学省・国立研究開発法人海洋研究開発機構(2015)によると大和堆周辺については、地殻構造が大陸性地 殻(地震発生層深さ15km)に区分されるため、地震発生層深さを15kmと設定した。

【すべり角】

・文部科学省・国立研究開発法人海洋研究開発機構(2015)によると大和堆の断層は正断層とされており、すべり角 を推定できるデータが提供されていない場合、270°と設定することとされていることから、270°と設定した。

a)日本海の地殻構造の区分、)の日本海東部の地震発生層概念図。これらをもとに、日本海調 査検討会では、A. 海洋地殻=18 km、B.厚い海洋地殻=25 km、 C.背弧リフト=18 km、 D.大陸性 地殻=15 kmとしている。

文部科学省・国立研究開発法人海洋研究開発機構(2015)より引用

■ <u>評価結果</u>

・下に示す波源モデルに基づき数値シミュレーションを実施した。 ・なお, ym-5については傾斜方向が不明なため2ケース実施した。

		モーメ					上绿河大	評価水位(T.P.m)		
	断層長	ントマ	走向	個斜角	すべり すべり 量 角 (m) (°)	すべり		上昇側	下降	绛 側
検討ケース	さ	グニ		咳水子 户子 (°)		エ派/木で (km)	齿弧蕹岩	2号炉	2号炉	
	(km)	チュー				(°)		した 111111111111111111111111111111111111	取水口	取水口
		► Mw						入话的放生	(東)	(西)
ym-5	58.0	7.38	6.5	90	4.83	270	0	+3.0	-1.8	-1.8
ym-5'	58.0	7.38	186.5	90	4.83	270	0	+2.3	-2.4	-2.4
ym-D	114.0	7.77	50.6	90	9.48	270	0	+3.4	-1.6	-1.6
ym-E	141.0	7.89	231.0	90	11. 73	270	0	+2.9	-2.0	-1.8
(参考)日本海東縁部に 評価水位最	121 1	7 85	0	60	0 11	00	0	+7 2		
想定される地震に伴う津 <u>高ケース</u>	131.1	7.00	U	00	3.44	90	U	· /. Z		
波(土木学会に基づく検 評価水位最	131 1	7 85	20	60	9 11	90	2 5		-4 2	-4 1
おう しん しんしょう しんしん しんしん しんしん しんしん しんしん しんしん		7.05	20	00	J. 44	30	2.5		4. Z	

・最高評価水位は「施設護岸又は防波壁」においてT.P.+3.4m, 最低評価水位は2号炉取水槽においてT.P.-2.4mと なり, 日本海東縁部に想定される地震に伴う津波(土木学会に基づく検討)の最高評価水位を下回り, 最低評価水 位を上回っていることを確認した。

:評価水位が最大となるケースの評価水位

第771回審査会合 資料1-3 P47 再揭

第771回審査会合 資料1−3 P48 再掲

■ <u>津波の伝播状況 (ym-5, ym-5')</u>

<u>津波の伝播状況 (ym-D, ym-E)</u>

第771回審査会合 資料1-3 P49 再掲

46

土木学会(2016)の概要

47

- ・土木学会(2002)は,原子力発電所の設計津波水位の標準的な設定方法を提案したものである。
- ・土木学会(2016)は、土木学会(2002)の改訂版として、平成28年9月に発刊された。

・地震による津波において考慮している「海域活断層から想定される地震による津波」及び「日本海東縁部に想定される地震による津波」について、土木学会(2016)に示される主な知見を以下に整理した。

■ <u>海域活断層から想定される地震による津波</u>

パラ メータ	土木学会(2016)	当社津波検討方針		
長さ	・海上音波探査記録より設定(土木学会(2002)と同様) ・国土交通省・内閣府・文部科学省(2014) ⁽²⁵⁾ の断層を 事例として記載	・海上音波探査記録より設定 ・行政機関等が想定する波源モデルに基づく検討において,国 土交通省・内閣府・文部科学省(2014)の波源モデルのうち島根 県に影響が大きいとされる波源モデルについて評価		
Mw	・武村(1998)のスケーリング則より設定(土木学会 (2002)と同様),または入倉・三宅(2001) ⁽²⁶⁾ のスケーリ ング則より設定	・入倉・三宅(2001)のスケーリング則及び国土交通省・内閣府・ 文部科学省(2014)のスケーリング則と比べ, すべり量が大きくな		
	・国土交通省・内閣府・文部科学省(2014)のスケーリン グ則による設定を事例として記載	りタエ回の計画になると考えられる武利(1996)のスクーリンク 則より設定		
地震発生 層深さ	・15km(土木学会(2002)と同様) ・国土交通省・内閣府・文部科学省(2014)より15km~ 25kmを事例として記載	・すべり量が大きくなり, 安全側の評価になると考えられる15km を設定		
大すべり 域	・一様すべり(土木学会(2002)と同様) ・国土交通省・内閣府・文部科学省(2014)の大すべり域 の設定を事例として記載	・一様すべりにより設定 ・行政機関等が想定する波源モデルに基づく検討において,国 土交通省・内閣府・文部科学省(2014)の大すべり域の設定方法 に基づき評価		

土木学会(2016)の概要

■ <u>日本海東縁部に想定される地震による津波</u>

パラ メータ	土木学会(2016)	当社津波検討方針
長さ•Mw	事例として以下の2つが記載されている。 ①既往最大クラスのMwから武村(1998)のスケーリング則より長さを設定(土木学会(2002)と同様) ②国土交通省・内閣府・文部科学省(2014)の海底断層トレースに基づく長さ等から、国土交通省・内閣府・文部科学 省(2014)のスケーリング則よりMwを設定	 ①既往最大を上回るMw7.85から武村(1998)のスケーリング則より長さを設定(131.1km) ②行政機関等が想定する波源モデルに基づく検討において、国土交通省・内閣府・文部科学省(2014)の波源モデルのうち島根県に影響が大きいとされる波源モデル(最長153km,最大Mw7.9)について評価
地震発生層 深さ	事例として以下の2つが記載されている。 ①15km(土木学会(2002)と同様) ②国土交通省・内閣府・文部科学省(2014)より15km~ 25km	・すべり量が大きくなり,安全側の評価になると考えられ る15kmを設定
大すべり域	事例として以下の2つが記載されている。 ①一様すべり(土木学会(2002)と同様) ②国土交通省・内閣府・文部科学省(2014)の大すべり域の 設定	 ①一様すべりにより設定 ②行政機関等が想定する波源モデルに基づく検討において、国土交通省・内閣府・文部科学省(2014)の大すべり域の設定方法に基づき評価

3.地震による津波の想定 3-1 地震による津波の検討方針 検討方針

 ・海域活断層から想定される地震による津波の検討は、土木学会に基づき、パラメータスタディを実施している。
 ・主要なパラメータ「傾斜角」、「すべり角」及び「地震発生層(断層上縁深さ・断層下限深さ)」について、津波評価と 地震動評価の基本震源モデルのパラメータ設定値を比較した。

パラメータ		パラメー	タ設定値		
		津波評価	地震動評価	に戦結朱	
・45~90°(P69参照) ・70°(P54参照) 傾斜角 ・45~90°(P69参照)		・70 [°] (P54参照)	・津波評価では、地震動評価のパラメータ設定値を編 羅している。		
すべり角		・F-Ⅲ断層:115~180° ・F-Ⅳ~F-Ⅴ断層: 180°(P71~74参照)	•180°(P55参照)	・津波評価では, 地震動評価のパラメータ設定値を網 羅している。	
地震	断層上 縁深さ	・0~5km(P70参照)	•2km(P56参照)	・津波評価では, 地震動評価のパラメータ設定値を網 羅している。	
発 生 層	断層下 限深さ	・断層上縁深さによって 15~20km(P70参照)	•20km(P56参照)	・津波評価と地震動評価でパラメータ設定値が異なる。	

・上記より, 地震発生層については, 地震動評価と津波評価で設定値が異なることから, 地震動評価を踏まえた検討 を実施する。

3.地震による津波の想定 3-1 地震による津波の検討方針 津波解析結果(断層下限深さ20kmとした検討)

第771回審杳会合 資料1-3 P53 再掲

・土木学会に基づく検討の評価水位最高ケース及び評価水位最低ケースを対象に、地震動評価を踏まえて、断層下限 深さを20kmに変更した検討を実施した。なお、本検討では土木学会に基づく検討と同様に、断層上縁深さを0kmと設定 した。

評価水位(T.P. モーメント 下限深さ 断層長さ 傾斜角 すべり量 主応力軸 すべり角 上縁深さ 断層 マグニチュード (km)(km)(km)施設護岸又は防波壁 Mw +2.9評価水位最高ケース 90 3 01 110 130, 180 0 20 (断層下限深さ20km) (+0.27)7.27 48.0 (参考) +3.6 90 4.01 110 130.180 15 評価水位最高ケース 0 (+0, 32)(断層下限深さ15km)

※2 括弧内の数値は地盤変動量(m)

評価水位最低ケース(水位下降側)

断層	断層長さ (km)	モーメント マグニチュード Mw	傾斜角 (°)	すべり量 (m) ^{※1}	主応力軸 (゜)	すべり角 (°)	上縁深さ (km)	下限深さ (km)	<u>評価水位(</u> 2号炉 取水口 (東)	「.P. m) ^{※3} 2 号炉 取水口 (西)	
評価水位最高ケース (断層下限深さ20km)	48.0	 長高ケース	7 07	90	3. 01	120	115, 180	0	20	-3.0 (+0.29)	-3.0 (+0.30)
(参考) 評価水位最低ケース (断層下限深さ15km)			1.21	90	4. 01	120	115, 180	0	15	-3.9 (+0.34)	-3. 9 (+0. 34)

括弧内の数値は地盤変動量(m) X3

・断層下限深さを15kmから20kmとすると、津波の敷地への影響は小さくなることを確認した。

評価水位最高ケース(水位上昇側)

※1 すべり量の算定についてはP57参照

3.地震による津波の想定 3-1 地震による津波の検討方針

第771回審査会合 資料1-3 P54 再掲

51

評価水位最高ケース及び最低ケースの波源モデル(断層下限深さ20kmとした検討)

検討ケーフ	評価水位(T.P. m)※			
	施設護岸又は防波壁			
F-Ⅲ~F-Ⅴ断層 (断層下限深さ20km)	+2.9 (+0.27)			

※ 括弧内の数値は地盤変動量(m)

第771回審査会合 資料1−3 P55 再掲

52

	(東)	(西)
F-Ⅲ~F-Ⅴ断層	-3. 0	-3.0
(断層下限深さ20km)	(+0. 29)	(+0.30)

※ 括弧内の数値は地盤変動量(m)

第771回審査会合

資料1-3 P56 再掲

53

3.地震による津波の想定 3-1 地震による津波の検討方針 (参考)地震動評価における傾斜角の設定の考え方

2.4.2 F-Ⅲ~F-V断層による地震の地震動評価(巨視的断層パラメータの設定根拠) 3/8

(3) 断層傾斜角

断層傾斜角については、以下のレシピの考え方に基づき、①~③の順に、より信頼性の高い情報を考慮して設定する。

第771回審査会合

資料1-3 P57 再掲

54

120

◆

断層傾斜角の設定に関するレシピの考え方

①対象とする断層についての反射法探査結果等,断層の傾斜角を推定する資料がある場合にはそれを参照する。
 ②また,周辺にある同じタイプの断層から傾斜角が推定できる場合には,それを参照する。
 ③上記のような資料が得られない場合は、横ずれ断層の傾斜角は90°を基本とする。

<u>〇基本震源モデル</u>

基本震源モデルの断層傾斜角は、以下に基づき安全側に70°に設定し、その傾斜方向は敷地に近づく方向(南傾斜)に設定。

- ✓ ①として、B層(更新統)の明瞭な分布が確認できていないF-Ⅲ断層+F-Ⅳ断層+F-Ⅴ断層の深部においては、地質調査結果(122ページに記載)より、東北東一西南西走向の低角(南傾斜)逆断層が認められ、その傾斜角は、音波探査記録(280ページに記載)を参照すると、それぞれの区間で地質構造上の類似性が認められることから、断層全体を傾斜角の設定区間と考え、平均すると35°程度(123ページに記載)である。但し、当該断層は、更新世以降において、南側隆起(北側沈降)の逆断層運動を示唆するB層の堆積盆の形成は認められず、横ずれ運動を示唆する花弁構造や引きずり込み構造などの特徴的な反射パターンも認められないことから、後期更新世以降の活動様式は不明である〔詳細説明⑧敷地前面海域の地質構造発達史:263ページ〕。従って、本調査結果を基本震源モデルの断層傾斜角として採用することは適切でないと考える。
- ✓ 次に、②として、F-Ⅲ断層+F-Ⅳ断層+F-Ⅴ断層が、現在の東西圧縮応力場〔詳細説明③敷地周辺における現在の応力場:269ページ〕で活動する場合、主に横ずれの断層活動を示すと考えられることから、当該断層の周辺で発生したM7クラスの横ずれ断層による大規模地震及び主な中小地震の断層傾斜角を参照する。
 - <大規模地震:124ページに記載>

対象となる1943年鳥取地震(M7.2)及び2000年鳥取県西部地震(M7.3)は,佐藤ほか(1989)⁽⁷⁷⁾及び地震 調査委員会(2002)⁽²⁵⁾により,それぞれ「断層傾斜角90°」とされている。

<主な中小地震:125ページに記載>

対象となる中小地震の断層傾斜角は,平均的には80°程度であり,最も傾斜しているもので71°である。

すべり角を設定する上で根拠となる地質調査結果は得られておらず, F-Ⅲ断層+F-Ⅳ断層+F-Ⅴ断層 は宍道断層と同様の右横ずれ断層と推定されるが,縦ずれ成分を考慮し,宍道断層による地震のすべり角 の不確かさと同様に150°に設定。

3.地震による津波の想定 3-1 地震による津波の検討方針 (参考)地震動評価における地震発生層の設定の考え方

2. 敷地ごとに 2. 1 地震	こ震源を特定して策定する地震動 震発生層の設定(上限・下限深さ)		34			
 ▲ 敷地及び敷 ・地震発生原 ・地震発生原 ・地震発生原 ・地震発生原 ・地震発生原 ・地震発生原 ・地震発生原 を20kmに認 	電の設定にあたっては、下表に示す各種検討結果を踏まえ、総合的に判断して没 な地周辺の地震発生層の上限深さ 層の上限深さは、以下の表-1に示す地震発生層の設定に考慮した各種検討結果の中で最も な地周辺の地震発生層の下限深さ 層の下限深さは、以下の表-1に示す地震発生層の設定に考慮した各種検討結果の中で最も なも、以下の表-1に示す地震発生層の設定に考慮した各種検討結果の中で最も の表-2に示す各種検討結果(参考)をみると、「中国地域の長期評価(H28年7月) ⁽¹¹⁾ による いるしていてよりも深い下限深さ(20km)が示され、また、波形インバージョン解析 モデルにおいて最大18km程度の断層幅が示されていることから、地震動評価においては、それ 設定する。 表-1 地震発生層の設定に考慮した各種検討結果	欠のとおり設 減い2kmに設)深い15kmと考)90」及び「気 等による2000 いらを参考に安	定する。 定する。 たうれる。 京庁ー元化デー 年鳥取県西部地 全側に下限深る			
項目		上限深さ	下限深さ			
他機関の検討	全国地震動予測地図2017年版 ⁽¹²⁾ による地震発生層の設定値	2km	15km			
	原子力安全基盤機構(2004) ⁽¹³⁾ による中国地方のD10, D90	6.4km	13.1km			
震源鉛直分布	雲源鉛直分布 気象庁一元化データによる敷地周辺(100km以内)のD10, D90					
	片尾・吉井(2002)(14)による2000年鳥取県西部地震(余震)の震源鉛直分布	約3km	約12km			
地下構造調査	敷地及び敷地周辺における微動アレイ探査結果	約2km	_			
	岩田・関口(2002) (19) による2000年鳥取県西部地震の波形インバージョン解析で用いられた速度構造	2km	_			
その他の	Shibutani et al.(2005) ⁽²⁰⁾ による2000年鳥取県西部地震のトモグラフィー解析	約2~4km	_			
」	岩崎・佐藤(2009) ⁽²¹⁾ による鳥取県沖の地殻構造探査	_	約12km			
項目		上限深さ	下限深さ			
他機関の検討	中国地域の長期評価(H28年7月) ⁽¹¹⁾ による地震発生層の下限深さD90 ^{※1}	—	15 ~ 20km			
震源鉛直分布	気象庁ー元化データによる敷地周辺の震源鉛直分布※1.2	—	約20km			
	岩田・関口(2002)(19)による2000年鳥取県西部地震の震源モデル※3	断層幅:17	7~18km程度			
7.0/11.0	宮腰ほか(2003) ⁽²²⁾ による2000年鳥取県西部地震の震源モデル ^{※3}					
その他の ^元 の市田	Yagi and Kikuchi (2000) ⁽²³⁾ による2000年鳥取県西部地震の震源モデル ^{※3}	断層	偪:12km			
研究成果	池田ほか(2002) ⁽²⁴⁾ による2000年鳥取県西部地震の震源モデル ^{※3}	断層幅:16	6~17km程度			
	地震調査委員会(2002) ⁽²⁵⁾ による2000年鳥取県西部地震の震源モデル ^{※2.3}	2km	16km			

表-2の各種検討結果を(参考)としている理由は以下による

※1「中国地域の長期評価(H28年7月)⁽¹¹⁾によるD90」及び「気象庁一元化データによる震源鉛直分布」における下限深さは、敷地周辺よりも震源が深い南側の山陽 地域の影響により、中国地域全体として深く求まっていると考えられる。

※2上野ほか(2002)⁽²⁶⁾によると、震源決定に用いている速度構造(浅部の速度値を大きく設定)の影響で震源が深く求まっていると考えられる。 ※3地震調査委員会による2000年鳥取県西部地震の地震動評価(地震調査委員会(2002)⁽²⁵⁾)及び2005年福岡県西方沖の地震の地震動評価(地震調査委員会(2008)⁽²⁷⁾) では、波形インバージョン解析により得られる震源断層の領域を、断層長さの設定では考慮しているが、断層幅の設定では考慮せず、余震分布を参考に推定して

いることから、波形インバージョン解析等の断層幅についてのデータは参考とする。

(56)

第771回審査会合

資料1-3 P59 再掲

3.地震による津波の想定 3-1 地震による津波の検討方針 (参考)地震発生層とすべり量の関係

57

・土木学会に基づく検討においては、武村(1998)に基づきすべり量を算定している。
 ・武村(1998)によると、断層幅が小さくなるとすべり量は大きくなる。

───【武村(1998)のスケーリング則・すべり量】 ───	┐ 【(参考)地震調査研究推進本部(2016) ⁽²⁷⁾ 「レシピ」のS-M₀関係式】
ogL = 0.75Mw - 3.77	$M_0 = (S/2.23 \times 10^{15})^{3/2} \times 10^{-7}$ (Mw<6.5) Somerville et al. (1999) ⁽²⁸⁾ の式
ogM ₀ = 1.5Mw + 9.1	$M_0 = (S/4.24 \times 10^{11})^2 \times 10^{-7}$ (6.5 $\leq Mw \leq 7.4$) 入倉・三宅(2001)の式
D = M ₀ / μLW	$M_0 = S \times 10^{17}$ (7.4 $\leq Mw$) Murotani et al. (2015) ⁽²⁹⁾ の式
L:断層長さ(km) W:断層幅(km)	M ₀ :地震モーメント(N・m)
D:すべり量(m) <i>μ</i> :剛性率(N/m ²)	S(=LW):断層面積(km ²)
Mw:モーメントマグニチュード	L:断層長さ(km) W:断層幅(km)
M ₀ :地震モーメント(N・m)	

断層長さ (km)	断層上縁深さ (km)	断層下限深さ (km)	傾斜角 ([°])	断層幅 (km)	剛性率 (N/m ²)	すべり量 (m)
48. 0	0	20	00	20	$2 E \times 10^{10}$	3. 01
	0	15	90	15	3. 5 × 10 ¹⁰	4. 01

58

- ・土木学会に基づく検討において、断層上縁深さのパラメータスタディは、土木学会に示される変動範囲0~5kmの範囲 で以下の通り設定する。
- ・国土交通省・内閣府・文部科学省(2014)の知見を踏まえた検討においては、横ずれ断層に対するすべり角の知見に関して断層上縁深さ1kmの検討を行っていることから、海域活断層(横ずれ)による津波について断層上縁深さ1kmと設定する。なお、日本海東縁部に想定される地震は逆断層であるが、同様の検討を実施する。

項目		土木学会に基づく検討		国土交通省·内閣府·文部科	
		概略パラメータスタディ	詳細パラメータスタディ	学省(2014)の知見を踏まえた 検討	
海域活断層 (F-Ⅲ~F- Ⅴ断層)	設定 方法	土木学会に示される変動範 囲0~5kmより設定する。	土木学会に示される変動範 囲0~5kmの上限値・下限値 を設定するとともに、敷地及 び敷地周辺における地下構 造調査等を踏まえて推定し た断層上縁深さ2kmを設定 する。	国土交通省・内閣府・文部科 学省(2014)の横ずれ断層に ついての知見に関する検討を 踏まえて設定する。	
	設定値	0km	0, 2, 5km	1km	
日本海 東縁部	設定 方法	土木学会に示される既往津 波の痕跡高を再現できる波 源モデルの変動範囲0~ 5kmより設定する。	土木学会に示される既往津 波の痕跡高を再現できる波 源モデルの断層上縁深さ0 ~5kmを変動範囲とし、その 上限値・中央値・下限値を設 定する。	(参考) 国土交通省・内閣府・文部科 学省(2014)の横ずれ断層に ついての知見に関する検討を 踏まえて設定する。	
	設定値	0km	0, 2.5, 5km	1km	

3.地震による津波の想定 3-1 地震による津波の検討方針 地方自治体独自の波源モデルの見直し状況

第771回審査会合 資料1-3 P62 加筆·修正

59

・国土交通省・内閣府・文部科学省(2014)により日本海に想定される波源モデルが示されたことから、日本海側の 地方自治体が独自に設定していた波源モデルについて見直しが行われている。

自治体独自の 波源モデル	独自に設定した波源モデルの見直し状況(R3.2月)
秋田県(2013) ⁽³⁰⁾	・国土交通省・内閣府・文部科学省(2014)の断層モデルに加え,秋田県(2013)の波源モデルの影響についても加味するよう意見が出た。(秋田県津波浸水想定調査委員会(H27.7.29)) ・国土交通省・内閣府・文部科学省(2014)に示されていなかったとしながらも,秋田県が独自 に設定していた波源モデルについても,津波浸水想定結果を示した。(社会資本整備審議会 河川分科会(H28.6.2))
石川県(2012) ⁽³¹⁾	・国土交通省・内閣府・文部科学省(2014)の断層モデルによる津波について津波浸水想定を 実施。なお、石川県(2012)において設定した波源モデルの扱いについては記載されていな い。(H29.5.31)
福井県(2012) ⁽³²⁾	・現在のところ見直しの動きは確認されない。
島根県(2016) ⁽³³⁾	 ・国土交通省・内閣府・文部科学省(2014)の断層モデルに基づき津波浸水想定を実施する方 針が示された。(第1回 島根県地震津波防災対策検討委員会(H27.11.16)) ・再現性検討及び津波浸水解析を実施した。(第2~5回 島根県地震津波防災対策検討委員 会(H28.3.30, H28.9.14, H29.1.26, H29.8.30)) ・最終報告では、島根県(2012)⁽³⁴⁾で参考ケースとしていた佐渡島北方沖(Mw8.01)の地震は 含まれておらず、国土交通省・内閣府・文部科学省(2014)の波源モデル(F24断層(Mw7.9)によ り津波浸水想定を実施。(第6回 島根県地震津波防災対策検討委員会(H29.12.21)
鳥取県(2012)	 ・国土交通省・内閣府・文部科学省(2014)の断層モデルに基づき津波浸水想定を実施する方 針が確認された。(第1回 鳥取県津波浸水想定部会(H27.1.26)) ・津波浸水想定計算結果等が示されたが、現時点では、津波浸水想定に係る断層モデルは 明確になっていない。(第2,3回 鳥取県津波浸水想定部会(H27.3.24,H27.6.30)) ・国土交通省・内閣府・文部科学省(2014)の断層モデル及び鳥取県(2012)の断層モデルのう ち佐渡島北方沖の断層モデルに基づく津波浸水想定区域が公表された(H30.3.28)。

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討

F-Ⅲ~F-Ⅴ断層のパラメータ

第771回審査会合 資料1−3 P63 再掲

 ・F-Ⅲ~F-V断層から想定される地震による津波の概略・詳細パラメータスタディにおけるパラメータは、土木学会、 当社調査結果等に基づき設定した。

	概略パラメータスタディ	詳細パラメータスタディ		
ハフメーダ	設定方法	説明頁	設定方法	説明頁
剛性率	土木学会に基づき3.5×10 ¹⁰ N/m ² と設定(固定)	P61	同左	_
位置・走向・長さ	海上音波探査結果に基づき設定(固定)	P62	同左	
傾斜方向	海上音波探査結果に基づき南傾斜と設定(固定)	P62~65	同左	
Mw	断層長さ48.0kmから武村(1998)のスケーリング則 に基づきMw7.27と設定(固定)	P66	同左	
傾斜角	土木学会によると1973年~1998年8月に近畿~九 州の西南日本内陸部で発生した地震に対する発震 機構解の検討より45°~90°と設定(45°,60°, 75°,90°)	P66	概略パラメータスタディの評価水位最高・最低ケー スの傾斜角を基準として変動範囲を補間するように 設定(基準, ±7.5°, ±15°)	P66
地震発生層深さ	敷地周辺で発生した地震の震源鉛直分布等に基 づき,地震発生層深さを15kmと設定(固定)	P67	同左	_
断層上縁 深さ	土木学会に示される変動範囲0~5kmのうち0kmと 設定	P67	土木学会に示される変動範囲0~5km,及び敷地周 辺で発生した地震の震源鉛直分布等から推定され る断層上縁深さ2kmに基づき,断層上縁深さの変動 範囲を0km, 2km, 5kmと設定	P67
すべり角	ハーバードCMT発震機構解及び文献により主応力 軸の向きの範囲(90°,105°,120°)を推定し, 発震機構の原理に基づき,すべり角を主応力軸と 走向・傾斜から幾何学的に設定	P68, 69	概略パラメータスタディの評価水位最高・最低ケー スの主応力軸を基準として変動範囲を補間するよう に設定(基準, ±5°, ±10°)	
すべり量	$D = M_0 / \mu L W$ D:すべり量, M ₀ :地震モーメント, μ :剛性率, L:長さ, W:幅	_	同左	

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討 (1)土木学会に基づく検討

F-Ⅲ~F-Ⅴ断層のパラメータ

第771回審査会合 資料1-3 P64 再揭

剛性率

・土木学会では、P波速度の検討例、P波とS波の速度比の既往研究に基づき剛性率を設定している。 ・敷地周辺海域は「西南日本陸側プレート内」に該当するため、剛性率を3.5×10¹⁰N/m²と設定した。

E

土木学会より引用

(a) 東北日本周辺(吉井, 1977)

(b)東北日本周辺(武藤・大園, 2012)

(c)日向灘沖(宮町·後藤, 1999)

P波速度構造に関する既往検討例

震源付近の媒質の剛性率

海 域	根 拠	剛性率
 ・西南日本陸側プレート内 ・日本海東緑部 ・ブレート境界浅部(断層面全体が深さ 20km 以浅に存在する場合) 	Vp=6.0 km/s Vp/Vs=1.6~1.7 p=2.7~2.8 g/cm ³ とすれば、 µ=3.36×10 ¹⁰ ~3.94×10 ¹⁰ N/m ² となる。この中間的値とする。	3.5×10^{10} N/m ² $(3.5 \times 10^{11} \text{ dyne/cm}^2)$
 ・海洋ブレート内 ・プレート境界深部(断層面全 体が深さ 20km 以深に存在 する場合) 	$Vp=8.0 \sim 8.1 \text{ km/s}$ $Vp/Vs=1.75 \sim 1.80$ $\rho=3.2 \sim 3.5 \text{ g/cm^3}$ とすれば、 $\mu=6.31 \times 10^{10}$ $\sim 7.50 \times 10^{10} \text{ N/m^2}$ となる。この中間的値とする。	7.0×10 ¹⁰ N/m ² (7.0×10 ¹¹ dyne/cm ²)
 ・プレート境界中央部(断層面 が深さ 20km 以浅と以深に またがって存在する場合) 	浅部と深部の中間的値とする。	5.0×10^{10} N/m ² (5.0 × 10 ¹¹ dyne/cm ²)

土木学会より引用

61

土木学会より引用

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討

F-Ⅲ~F-Ⅴ断層のパラメータ

第771回審査会合 資料1-3 P65 再掲

62

■ <u>位置・走向・長さ・傾斜方向</u>

【位置・走向・長さ】

・位置, 走向及び長さは海上音波探査結果に基づき設定した。

- 【傾斜方向】
- ・音波探査結果に基づき南傾斜と設定した。
- ・次頁以降でF-Ⅲ~F-Ⅴ断層と交差する代表的な音波探査解析図を示す。

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 F-Ⅲ~F-Ⅴ断層のパラメータ 第771回審査会合 資料1-3 P66 再掲

第

껸 更新

新

第

Ξ

紀

世 紀

(直上)

63

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 F-Ⅲ~F-Ⅴ断層のパラメータ 第771回審査会合 資料1-3 P67 再掲

64)

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 F-Ⅲ~F-V断層のパラメータ 第771回審査会合 資料1-3 P68 再掲

F−Ⅲ~F_ҝ−2断層

上部更新統が確認された地点)

○採泥調査地点

 ・F_K-2断層のうちF-V断層は、D₁層に変形が認められ、B_x層が分 布していないことから、後期更新世以降の活動を評価する。
 ・F_K-2断層のうちK-8撓曲(既往評価)位置には、断層活動を示唆 する変位や変形は認められない。
 ・その南側の単独断層は、D₂層に変位が、C層に変形が認められる。

65

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討

66

F-Ⅲ~F-Ⅴ断層のパラメータ

第771回審査会合 資料1-3 P69 再掲

■ <u>Mw・傾斜角</u>

[Mw]

- ・断層長さ48.0kmから、武村(1998)のスケーリング則に基づき設定した。
- 【傾斜角】
- ・土木学会では、気象庁地震月報に記載されている1973年から1998年8月に近畿〜九州の西南日本内陸部で発生した気象庁マグニチュード5.0以上、震源深さ20km以下の地震34例について、発震機構解を用い、内陸地震の傾斜角について検討している。その結果、内陸地震の傾斜角は、概ね高角(45~90°)であることが分かった。
- ・以上より、概略パラメータスタディでは45°、60°、75°、90°で変動させ、詳細パラメータスタディでは概略パラメー タスタディの変動範囲を補間するように設定した。

傾斜角(°)の範囲

西南日本に発生した浅い内陸地震の傾斜角の頻度分布

土木学会より引用

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討 (1)土木学会に基づく検討

F-Ⅲ~F-Ⅴ断層のパラメータ

第771回審査会合 資料1-3 P70 再掲

67

■ <u>地震発生層深さ・断層上縁深さ</u>

【地震発生層深さ】

・敷地及び敷地周辺における地下構造調査等及び既往研究成果を踏まえて15kmと設定する。 【断層上縁深さ】

・概略パラメータスタディでは、土木学会に示される変動範囲0~5kmのうち0kmと設定する。

・詳細パラメータスタディでは、土木学会に示される変動範囲0~5km,及び敷地及び敷地周辺における地下構造調査 等から推定される断層上縁深さ2kmに基づき、断層上縁深さの変動範囲を0km, 2km, 5kmと設定した。

項目	検討内容	上限深さ	下限深さ
他機関の検討	地震調査研究推進本部(2017) ⁽³⁵⁾ による地震発生層の設定値	2km	15km
震源鉛直分布	原子力安全基盤機構(2004) ⁽³⁶⁾ による中国地方のD10, D90	6.4km	13.1km
	気象庁一元化データによる敷地周辺(100km以内)のD10, D90	約5km	約13km
	片尾・吉井(2002)(37)による2000年鳥取県西部地震(余震)の震源鉛直分布	約3km	約12km
地下構造調査	敷地及び敷地周辺における微動アレイ探査結果	約2km	_
その他の 研究成果	岩田・関口(2002)(38)による2000年鳥取県西部地震の波形インバージョン解析で用いられた速度構造	2km	_
	Shibutani et al.(2005) ⁽³⁹⁾ による2000年鳥取県西部地震のトモグラフィー解析	約2~4km	_
	岩崎・佐藤(2009) ⁽⁴⁰⁾ による鳥取県沖の地殻構造探査	—	約12km
	地震発生層の上限・下限深さの設定値	2km	15km

■ すべり角

・既往地震の発震機構解の分析及び日本各地の広域応力場を示した既往研究例を参考に、敷地周辺 における主応力軸の範囲を90°~120°とする。

発震機構解より推定した主応力軸の向き

塚原・小林(1991)(41)より引用・加筆

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討

F-Ⅲ~F-Ⅴ断層のパラメータ

第771回審査会合 資料1-3 P72 再掲

69

P軸:主応力軸, T軸:主張力軸 θ:走向, δ:傾斜角, λ:すべり角

応力軸と断層運動の関係の概念図

土木学会より引用

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討

F-Ⅲ~F-Ⅴ断層のパラメータ

第771回審査会合 資料1-3 P73 再揭

70

■ すべり角

すべり角とP軸・T軸の方位の関係(断層走向0°傾斜角67.5°の場合)

すべり角とP軸・T軸の方位の関係(断層走向0°傾斜角60°の場合)

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討 (1)土木学会に基づく検討

F-Ⅲ~F-Ⅴ断層のパラメータ

第771回審査会合 資料1-3 P74 再掲

71

すべり角とP軸・T軸の方位の関係(断層走向0°傾斜角45°の場合)
3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 第771回審査会合 資料1-3

概略パラメータスタディ結果(F-Ⅲ~F-Ⅴ断層)

■ 水位上昇側

:評価水位が最大となるケースの評価水位

P75 加筆·修正

72

断層	傾斜角 (°)	すべり量 (m)	主応力軸 (°)	すべり角 (゜)	上縁深さ (km)	評価水位(T.P.m) [※] 施設護岸 又は防波壁
	90	4. 01	90	180, 180	0	+1.2 (-0.06)
	90	4. 01	105	145, 180	0	+3.0 (+0.22)
	90	4. 01	120	115, 180	0	+3.1 (+0.39)
	75	3. 88	90	180, 180	0	+1.2 (-0.15)
	75	3. 88	105	150, 180	0	+2.4 (+0.19)
F−Ⅲ~F−Ⅴ断層	75	3. 88	120	120, 180	0	+3.3 (+0.46)
(1+2+3)	60	3. 48	90	180, 180	0	+1.3 (-0.24)
	60	3. 48	105	150, 180	0	+1.8 (+0.18)
	60	3. 48	120	125, 180	0	+3.0 (+0.47)
	45	2. 84	90	180, 180	0	+1.3 (-0.32)
	45	2. 84	105	150, 180	0	+1.3 (+0.13)
	45	2.84	120	125, 180	0	+1.8 (+0.46)

※ 括弧内の数値は地盤変動量(m)

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 概略パラメータスタディ結果(F-Ⅲ~F-Ⅴ断層) 第771回審査会合 資料1-3 P76 再掲

■ 水位下降側

73

:評価水位が最大となるケースの評価水位

	個斜角	頃斜角 すべり量 主応力軸 す		すべり角	ト緑涩さ	評価水位(T.P. m) [※]		
断層	惑行 (°)	(m)	中 (°)	(°)	<u>- (km</u>)	2 号炉取水口 (東)	2 号炉取水口 (西)	
	90	4. 01	90	180, 180	0	-0.2 (-0.06)	-0.2 (-0.06)	
	90	4. 01	105	145, 180	0	-2.2 (+0.18)	-2.2 (+0.18)	
	90	4. 01	120	115, 180	0	-3.9 (+0.34)	-3.9 (+0.34)	
	75	3. 88	90	180, 180	0	-0.2 (-0.14)	-0.2 (-0.14)	
	75	3. 88	105	150, 180	0	-1.8 (+0.15)	-1.7 (+0.15)	
F-Ⅲ~F-Ⅴ断層	75	3. 88	120	120, 180	0	-3.6 (+0.39)	-3.5 (+0.39)	
(1+2+3)	60	3. 48	90	180, 180	0	-0.3 (-0.23)	-0.3 (-0.23)	
	60	3. 48	105	150, 180	0	-1.4 (+0.13)	-1.3 (+0.13)	
	60	3. 48	120	125, 180	0	-2.9 (+0.39)	-2.8 (+0.40)	
	45	2. 84	90	180, 180	0	-0.3 (-0.31)	-0.3 (-0.31)	
	45	2.84	105	150, 180	0	-0.9 (+0.08)	-0.9 (+0.09)	
	45	2.84	120	125, 180	0	-2.0 (+0.38)	-2.0 (+0.39)	

※ 括弧内の数値は地盤変動量(m)

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 詳細パラメータスタディ結果(F-Ⅲ~F-Ⅴ断層) ^{第771回審査会合 資料1-3} _{P77 加筆・修正}

■ 水位上昇側

:評価水位が最大となるケースの評価水位

			· · · · ·			評価水位(T.P. m)※
断層	傾斜角 (°)	すべり量 (m)	王応力軸 (°)	すべり角 (°)	上縁深さ (km)	施設護岸 又は防波壁
	90	4. 01	120	115, 180	0	+3.1 (+0.39)
	90	4. 01	110	130, 180	0	+3.6 (+0.32)
	90	4. 01	115	125, 180	0	+3.5 (+0.35)
	82. 5	3. 99	120	120, 180	0	+3.3 (+0.42)
	82.5	3. 99	110	135, 180	0	+3.5 (+0.31)
	82. 5	3. 99	115	125, 180	0	+3.5 (+0.39)
	75	3. 88	120	120, 180	0	+3.3 (+0.46)
F-Ⅲ~F-Ⅴ断層 (①+②+③)	75	3. 88	110	140, 180	0	+3.0 (+0.29)
	75	3. 88	115	130, 180	0	+3.5 (+0.38)
	67.5	3. 72	120	125, 180	0	+3.3 (+0.45)
	67.5	3. 72	110	140, 180	0	+2.7 (+0.30)
	67.5	3. 72	115	130, 180	0	+3.2 (+0.40)
	60	3. 48	120	125, 180	0	+3.0 (+0.47)
	60	3. 48	110	140, 180	0	+2.3 (+0.30)
	60	3. 48	115	135, 180	0	+2.6 (+0.36)

※ 括弧内の数値は地盤変動量(m)

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 第771回審査会合 資料1-3 P78 加筆・修正

詳細パラメータスタディ結果(F-Ⅲ~F-Ⅴ断層)

水位上昇側

			· · · · ·			評価水位(T.P. m)※
断層	傾斜角 ([°])	すべり量 (m)	主応力軸 (°)	すべり角 (゜)	上縁深さ (km)	施設護岸 又は防波壁
	90	4. 01	120	115, 180	2	+1.0 (+0.33)
	90	4. 01	110	130, 180	2	+1.0 (+0.26)
	90	4. 01	115	125, 180	2	+1.0 (+0.28)
	82. 5	3. 99	120	120, 180	2	+1.0 (+0.33)
	82.5	3. 99	110	135, 180	2	+1.0 (+0.23)
	82.5	3. 99	115	125, 180	2	+1.0 (+0.30)
	75	3. 88	120	120, 180	2	+1.0 (+0.34)
F-Ⅲ~F-Ⅴ断層 (①+②+③)	75	3. 88	110	140, 180	2	+0.9 (+0.19)
	75	3. 88	115	130, 180	2	+1.0 (+0.27)
	67.5	3. 72	120	125, 180	2	+1.0 (+0.31)
	67.5	3. 72	110	140, 180	2	+0.9 (+0.18)
	67.5	3. 72	115	130, 180	2	+1.0 (+0.27)
	60	3. 48	120	125, 180	2	+0.9 (+0.30)
	60	3. 48	110	140, 180	2	+0.9 (+0.16)
	60	3. 48	115	135, 180	2	+0.9 (+0.21)

※ 括弧内の数値は地盤変動量(m)

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 第771回審査会合 資料1-3 P79 加筆•修正

詳細パラメータスタディ結果(F-Ⅲ~F-Ⅴ断層)

■ 水位上昇側

						評価水位(T.P. m)※
断層	傾斜角 (°)	すべり量 (m)	主応力軸 (°)	すべり角 (゜)	上縁深さ (km)	施設護岸 又は防波壁
	90	4. 01	120	115, 180	5	+0.6 (+0.30)
	90	4. 01	110	130, 180	5	+0.6 (+0.23)
	90	4. 01	115	125, 180	5	+0.6 (+0.25)
	82. 5	3. 99	120	120, 180	5	+0.6 (+0.29)
	82. 5	3. 99	110	135, 180	5	+0.6 (+0.20)
	82.5	3. 99	115	125, 180	5	+0.6 (+0.26)
	75	3. 88	120	120, 180	5	+0.6 (+0.29)
F-Ⅲ~F-Ⅴ断層 (①+②+③)	75	3. 88	110	140, 180	5	+0.6 (+0.16)
	75	3. 88	115	130, 180	5	+0.6 (+0.23)
	67.5	3. 72	120	125, 180	5	+0.6 (+0.25)
	67.5	3. 72	110	140, 180	5	+0.6 (+0.14)
	67.5	3. 72	115	130, 180	5	+0.6 (+0.21)
	60	3. 48	120	125, 180	5	+0.6 (+0.23)
	60	3. 48	110	140, 180	5	+0.7 (+0.11)
	60	3. 48	115	135, 180	5	+0.7 (+0.15)

※ 括弧内の数値は地盤変動量(m)

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 詳細パラメータスタディ結果(F-Ⅲ~F-Ⅴ断層) (第771回審査会合 資料1-3 P80 再掲

■ <u>水位下降側</u>

77

:評価水位が最大となるケースの評価水位

	個斜角	すべり量	·主応力軸	すべり鱼	自上縁深さ	評価水位	(T.P. m)*
断層	系 (°)	(m)	中(°)	(°)	ー (km)	2 号炉取水口 (東)	2 号炉取水口 (西)
	90	4. 01	120	115, 180	0	-3.9 (+0.34)	-3.9 (+0.34)
	90	4. 01	110	130, 180	0	-3.2 (+0.27)	-3.2 (+0.27)
	90	4. 01	115	125, 180	0	-3.5 (+0.29)	-3.4 (+0.30)
	82. 5	3.99	120	120, 180	0	-3.7 (+0.36)	-3.6 (+0.36)
F-Ⅲ~F-V断層 (①+②+③)	82. 5	3.99	110	135, 180	0	-2.9 (+0.26)	-2.9 (+0.27)
	82. 5	3.99	115	125, 180	0	-3.5 (+0.33)	-3.4 (+0.33)
	75	3. 88	120	120, 180	0	-3.6 (+0.39)	-3.5 (+0.39)
	75	3. 88	110	140, 180	0	-2.5 (+0.24)	-2.4 (+0.24)
	75	3. 88	115	130, 180	0	-3.1 (+0.32)	-3.0 (+0.32)

※ 括弧内の数値は地盤変動量(m)

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 詳細パラメータスタディ結果(F-Ⅲ~F-V断層) 第771回審査会合 資料1-3 P81 再掲

■ 水位下降側

	個斜角	すべり量	主応力軸	すべり角	ト緑涩さ	評価水位	(T.P. m)*
断層	系示(°)	(m)	ц°)	(°)	ー (km)	2 号炉取水口 (東)	2 号炉取水口 (西)
	90	4. 01	120	115, 180	2	-1.9 (+0.34)	-1.9 (+0.34)
	90	4. 01	110	130, 180	2	-1.5 (+0.26)	-1.5 (+0.27)
	90	4. 01	115	125, 180	2	-1.6 (+0.29)	-1.6 (+0.29)
	82.5	3. 99	120	120, 180	2	-1.8 (+0.34)	-1.8 (+0.34)
F-Ⅲ~F-V断層 (①+②+③)	82. 5	3. 99	110	135, 180	2	-1.3 (+0.24)	-1.3 (+0.25)
	82. 5	3. 99	115	125, 180	2	-1.6 (+0.31)	-1.6 (+0.31)
	75	3. 88	120	120, 180	2	-1.8 (+0.35)	-1.7 (+0.35)
	75	3. 88	110	140, 180	2	-1.1 (+0.20)	-1.1 (+0.20)
	75	3.88	115	130, 180	2	-1.5 (+0.28)	-1.5 (+0.28)

※ 括弧内の数値は地盤変動量(m)

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 詳細パラメータスタディ結果(F-Ⅲ~F-Ⅴ断層) 第771回審査会合 資料1-3 P82 再掲

■ 水位下降側

	個斜角	すべり量	主応力軸	すべり角	上縁深さ	評価水位	(T.P. m)*
断層	系 (°)	(m)	中 (°)	, °,) Г (°)	ー (km)	2 号炉取水口 (東)	2 号炉取水口 (西)
	90	4. 01	120	115, 180	5	-0.8 (+0.30)	-0.8 (+0.31)
	90	4. 01	110	130, 180	5	-0.6 (+0.23)	-0.6 (+0.24)
	90	4. 01	115	125, 180	5	-0.7 (+0.26)	-0.7 (+0.26)
	82.5	3.99	120	120, 180	5	-0.8 (+0.30)	-0.8 (+0.30)
F-Ⅲ~F-Ⅴ断層 (①+②+③)	82.5	3.99	110	135, 180	5	-0.6 (+0.21)	-0.6 (+0.21)
	82. 5	3.99	115	125, 180	5	-0.7 (+0.27)	-0.7 (+0.27)
	75	3. 88	120	120, 180	5	-0.8 (+0.30)	-0.8 (+0.30)
	75	3. 88	110	140, 180	5	-0.5 (+0.16)	-0.5 (+0.16)
	75	3. 88	115	130, 180	5	-0.6 (+0.23)	-0.6 (+0.24)

※ 括弧内の数値は地盤変動量(m)

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 津波水位評価地点における水位の時刻歴波形 第771回審査会合 資料1-3 P83 再掲

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(1)土木学会に基づく検討 津波水位評価地点における水位の時刻歴波形 第771回審査会合 資料1-3 P84 再掲

評価水位最高ケース(水位下降側) F-Ⅲ~F-Ⅴ断層

2号炉取水口(東) (最大水位下降量-3.51m+朔望平均干潮位T.P.-0.02m 一地盤変動量0.34m≒T.P.-3.9m) 2号炉取水口(西) (最大水位下降量-3.45m+朔望平均干潮位T.P.-0.02m 一地盤変動量0.34m≒T.P.-3.9m)

■ <u>F55断層の解析結果</u>

:評価水位が最大となるケースの評価水位

		評価水位(T.P. m)※					
油酒	大すべり域の	上昇側	上昇側下降				
<i>i</i> 汉 <i>i</i> 示	位置の設定	施設護岸	2号炉取水口	2号炉取水口			
		又は防波壁	(東)	(西)			
	大すべり域右側	+1.1(+0.01)	-0.8(+0.01)	-0.8(+0.01)			
	大すべり域中央	+0.9(+0.01)	-0.8(+0.01)	-0.8(+0.01)			
F55断層	大すべり域左側	+0.9(+0.01)	-0.7(+0.01)	-0.7(+0.01)			
	大すべり域隣接LRR	+1.1(+0.01)	-0.9(+0.01)	-0.9(+0.01)			
	大すべり域隣接LLR	+0.9(+0.01)	-0.8(+0.01)	-0.8(+0.01)			

※ 括弧内の数値は地盤変動量(m)

第771回審査会合

資料1-3 P85 加筆·修正

83

■ <u>F55断層の評価水位最高・最低ケースの波源モデル</u>

■ <u>F56断層の解析結果</u>

]:評価水位が最大となるケースの評価水位

		評価水位(T.P. m)※					
冲 阳	大すべり域の	上昇側	下题	下降側			
汉派	位置の設定	施設護岸	2 号炉取水口	2 号炉取水口			
		<u> 又は防波壁</u>	(東)	(西)			
	大すべり域右側	+1.8(+0.02)	-0.9(+0.02)	-0.9(+0.02)			
	大すべり域中央	+1.9(0.00)	-0.8(0.00)	-0.8(0.00)			
「30」」。	大すべり域左側	+1.9(-0.01)	-0.7(-0.01)	-0.7(-0.01)			
	大すべり 域隣接LR	+1.9(+0.01)	-1.0(+0.01)	-1.0(+0.01)			

※ 括弧内の数値は地盤変動量(m)

第771回審査会合

資料1-3 P87 加筆·修正

85)

■ <u>F56断層の評価水位最高・最低ケースの波源モデル</u>

■ <u>F57断層の解析結果</u>

:評価水位が最大となるケースの評価水位

		評価水位(T.P. m) ※						
्राक्त शक	大すべり域の	上昇側	下降側					
<i>次</i> 源	位置の設定	施設護岸 又は防波壁	2 号炉取水口(東)	2 号炉取水口(西)				
	大すべり域右側	+1.0(+0.02)	-0.7(+0.02)	-0.7(+0.02)				
ᄃᇊᆘᄄᇛ	大すべり域中央	+1.0(+0.01)	-0.7(+0.01)	-0.7(+0.01)				
「3/町厝	大すべり域左側	+1.1(+0.01)	-0.8(+0.01)	-0.8(+0.01)				
	大すべり 域隣接LR	+1.2(+0.01)	-0.7(+0.01)	-0.7(+0.01)				

※ 括弧内の数値は地盤変動量(m)

第771回審査会合

資料1-3 P89 加筆·修正

87

■ <u>F57断層の評価水位最高・最低ケースの波源モデル</u>

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(2)国土交通省・内閣府・文部科学省(2014)に基づく検討 津波水位評価地点における水位の時刻歴波形 第771回審査会合 資料1-3 P91 再掲

88

評価水位最高ケース(水位上昇側) F56断層 大すべり域中央

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討(2)国土交通省・内閣府・文部科学省(2014)に基づく検討 津波水位評価地点における水位の時刻歴波形 第771回審査会合 資料1-3 P92 再掲

評価水位最高ケース(水位下降側) F56断層 大すべり域隣接LR

2号炉取水口(東) (最大水位下降量-0.90m-地盤変動量0.01m≒T.P.-1.0m) (最

2号炉取水口(西) (最大水位下降量-0.89m-地盤変動量0.01m≒T.P.-1.0m)

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討 (3) 国土交通省・内閣府・文部科学省(2014)の横ずれ断層に対するすべり角の知見を踏まえた検討 津波水位評価地点における水位の時刻歴波形 第771回審査会合 資料1-3 P94 再掲

評価水位最高ケース(水位上昇側) 国土交通省・内閣府・文部科学省(2014)知見 ケース①・②

3.地震による津波の想定 3-2 海域活断層から想定される地震による津波の検討 (3) 国土交通省・内閣府・文部科学省(2014)の横ずれ断層に対するすべり角の知見を踏まえた検討 津波水位評価地点における水位の時刻歴波形 第771回審査会合 資料1-3 P95 再掲

評価水位最高ケース(水位下降側) 国土交通省・内閣府・文部科学省(2014)知見 ケース①・②

2号炉取水口(西) (最大水位下降量-3.38m一地盤変動量0.32m≒T.P.-3.8m)

140

2号炉取水口(東) (最大水位下降量-3.44m-地盤変動量0.32m≒T.P.-3.8m)

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (1)土木学会に基づく検討 日本海東縁部のパラメータ

92

第771回審査会合 資料1-3 P96 再揭

・日本海東縁部に想定される地震による津波の概略・詳細パラメータスタディにおけるパラメータは、土木学会等に基づき設定した。

	概略パラメータスタディ		詳細パラメータスタディ			
ハフメーダ	設定方法	説明頁	設定方法	説明頁		
剛性率	土木学会に基づき3.5×10 ¹⁰ N/m ² と設定(固定)		同左	_		
位置	土木学会及び地震調査研究推進本部(2003) ⁽⁴²⁾ を参考に南北・東西 方向に波源位置を変動	P93	概略パラメータスタディの評価水位最高・最 低ケースの位置を基準とし, 変動範囲を補 間するように, 南北・東西方向に移動	P93		
走向	土木学会及び地震調査研究推進本部(2003)を参考に設定	P93	概略パラメータスタディの評価水位最高・最 低ケースの走向を基準として変動(基準,基 準±10°)			
Mw・長さ	地震規模は既往最大の波源モデルを上回るMw7.85とし,武村 (1998)のスケーリング則に基づき長さを131.1kmと設定(固定)	P94	同左	_		
傾斜方向	土木学会によると既往津波の痕跡高を再現できる波源モデルの傾 斜方向は一定でないため, 東・西傾斜の双方を設定	P94	概略パラメータスタディの評価水位最高・最 低ケースの傾斜方向	_		
傾斜角	土木学会によると既往津波の痕跡高を再現できる波源モデルの傾 斜角は概ね30°~60°であるため、このうち60°と設定	P94	土木学会に基づき45°,52.5°,60°と設定	P94		
地震発生 層深さ	土木学会によると1976年1月~2000年1月に日本海東縁部において 発生したMw5.0以上, 深さ60km以下の地震を抽出すると, 地震の発 生深さは概ね15km~20kmであるため, すべり量が大きくなり, 安全 側の評価になると考えられる15kmと設定(固定)	P95	同左	_		
断層上縁 深さ	土木学会によると既往津波の波源モデルの断層上縁深さは概ね0 ~5kmであるため、このうち0kmと設定	P96	土木学会に基づき0km, 2.5km, 5kmと設定	P96		
すべり角	土木学会によると既往津波の波源モデルのすべり角は90°付近に 分布していることから、すべり角を安全側の評価になると考えられる 90°と設定(固定)	P96	同左	_		
すべり量	$D = M_0 / \mu$ LW D:すべり量, M_0 :地震モーメント, μ :剛性率, L:長さ, W:幅	_	同左	_		

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討

93

日本海東縁部のパラメータ

第771回審査会合 資料1-3 P97 再掲

■ 位置・走向

【位置】

- ・土木学会は、「日本海東縁部では、マグニチュード7.5クラス以上の地震は、南北に 連なる幅の狭い領域で発生している。」としている。
- ・地震調査研究推進本部(2003)は、将来Mw=7.5以上の大地震が発生する可能性がある海域を示した。
- ・上記2つの文献を参考に、波源位置の変動範囲を右図のように設定し、変動範囲 内で南北・東西方向に波源位置を変動させた。

【走向】

・土木学会及び地震調査研究推進本部(2003)を参考に設定した。

波源位置の変動範囲及び波源の変動方法

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討

日本海東縁部のパラメータ

第771回審査会合 資料1-3 P98 再掲

■ Mw・長さ・傾斜方向・傾斜角

【Mw·長さ】

 ・既往最大の1993年北海道南西沖地震津波を再現する波源モデルを上回る Mw=7.85とし,武村(1998)のスケーリング則に基づき断層長さを131.1kmと設 定した。

【傾斜方向】

・土木学会によると既往津波の痕跡高を再現できる波源モデルの傾斜方向は
一定でないため、東・西傾斜の双方を設定した。

【傾斜角】

・土木学会によると既往津波の痕跡高を再現できる波源モデルの傾斜角は概 ね30°~60°のため、概略パラメータスタディでは60°で固定とし、詳細パラ メータスタディでは傾斜角を45°、52.5°、60°と設定した。

日本海東縁部の既往津波の津波痕跡高を再現できる波源モデル

対象津波	モテル	面積 (km ²)	L (km)	W (km)	$\frac{D}{(m)}$	$\frac{d}{(\mathrm{km})}$	θ (°)	0 (°)	λ (°)	データ数	K	κ	備 考
1833年天保山形沖(Λ)	* 7.82	1250	50	25	6.4	0	10	60	90	27	1.04	1.42	本体系化原案
1833年天保山形沖(B)	7.76	1750 3960	70 132	25 30	$\frac{6.4}{4.0}$	0	$\frac{40}{208}$	60 45	$\frac{120}{90}$	27	1.17	1.28	(相田(1989)を修正;陸岸近く) 本体系化原案(沖合)
1940年積小沖	7.70	4050	135	30	3.2	0	347	40	90	20	1.02	1.42	本体系化原案 (Satake(1986)を修正)
1964年新潟	7.35	900	45	20	3.3	1	202	60	90	検潮		_	Noguera and Ku.Abe(1992)
		300	20	15	3.0	1	189	60	90	DATE			····g······,
The section of th	7.51	813	32.5	25	5.3	0	200	60	52	榆湖	_		加藤・安藤(1995)
	1.01	813	32.5	25	2.9	0	200	60	90	17(17)			/加速 又派(1556)
1000年日末海市郊	7 74	1200	40	-30	7.6	2	22	40	90	010	1 1 9	1 40	把田(1094) Madel-10
1903中日本海中部	1.14	1800	60	-30	3.05	3	355	25	80	210	1.12	1.40	作田(1964) Model-10
		2250	90	25	5.71	10	188	35	80				宣伝寺(1005)
1993年北海道南西沖	7.84	650	26	25	4.00	5	175	60	105	249	0.96	1.51	間間氏之ら(1993) DODO PCエディ
		458	30.5	15	12	5	150	60	105				DCKC-20-27 72

走傾向斜

角

傾斜方向

土木学会より引用・加筆

日本海東縁部の既往波源モデルの位置

土木学会より引用

94

【武村(1998)のスケーリング則】 $\log L = 0.75 M_w - 3.77$ L:断層長さ(km)

Mw:モーメントマグニチュード

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 日本海東縁部のパラメータ 第771回審査会合 資料1-3 P99 再掲

95

■ <u>地震発生層深さ</u>

・土木学会によると、1976年1月~2000年1月に日本海東縁部において発生したMw5.0以上、深さ 60km以下の地震を抽出すると、地震の発生深さは概ね15km~20kmであるため、すべり量が大き くなり、安全側の評価になると考えられる15kmと設定した。

ハーバードCMT解の深さ分布

土木学会より引用

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (1)土木学会に基づく検討

日本海東縁部のパラメータ

第771回審査会合 資料1-3 P100 再掲

■ 断層上縁深さ・すべり角

【断層上縁深さ】

- ・土木学会によると既往津波の波源モデルの断層上縁深さは概ね0~5kmである。
- ・概略パラメータスタディではOkmとし, 詳細パラメータスタディにおいてOkm, 2.5km, 5kmと設定した。 【すべり角】
- ・土木学会によると、既往津波の波源モデルのすべり角、及びハーバードCMT解のすべり角は90°付 近に分布していることから、すべり角を安全側の評価となると考えられる90°と設定した。

日本海東縁部の既往津波の津波痕跡高を説明できる波源モデル

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討

概略パラメータスタディ結果

第771回審査会合 資料1-3 P101 加筆·修正

■ E0, E1領域の結果

すべり量:9.44m, 傾斜角60°, すべり角90°上縁深さ0km

					評価水位(T.P.m))
	南北	東西	個斜	上昇側	শন	条 側
領域	位置	位置	方向	施設護岸	2号炉取水口	2号炉取水口
				又は防波壁	(東)	(西)
	1	(1)	東傾斜	+1.7	-1.3	-1.3
	1	(2)	西傾斜	+1.3	-1.0	-1.0
	1	(3)	東傾斜	+1.5	-0.7	-0.7
다. 다. 오. 오. 나라	1	(4)	西傾斜	+1.1	-0.8	-0.8
EU預坝	2	(1)	東傾斜	+1.9	-1.0	-1.0
	2	(2)	西傾斜	+1.2	-0.8	-0.8
	2	(3)	東傾斜	+1.3	-1.0	-1.0
	2	(4)	西傾斜	+1.2	-0.9	-0.9
					評価水位 (T.P. m)	
	南北	市 元	偱鈄	上昇側	<u>ا</u> م	条 側
領域	位置	位置	方向	施設護岸	2号炉取水口	2号炉取水口
				又は防波壁	(東)	(西)
	1	(1)	東傾斜	+1.4	-0.8	-0.8
	1	(2)	西傾斜	+1.5	-0.9	-0.9
	1	(3)	東傾斜	+1.4	-0.6	-0.6
	1	(4)	西傾斜	+1.7	-1.0	-1.0
	2	(1)	東傾斜	+1.9	-1.2	-1.2
C1 4점 + - 반	2	(2)	西傾斜	+1.8	-0.9	-0.9
口限以	2	(3)	東傾斜	+1.6	-0.9	-0.9
	2	(4)	西傾斜	+1.9	-1.1	-1.1
	3	(1)	東傾斜	+1.6	-0.9	-0.9
	3	(2)	西傾斜	+1.4	-0.9	-0.9
	3	(3)	東傾斜	+1.9	-1.1	-1.1
	3	(4)	西傾斜	+2.0	-1.5	-1.5

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 概略パラメータスタディ結果 第771回審査会合 資料1-3 P102 加筆・修正

■ <u>E1領域の結果</u>

すべり量:9.44m, 傾斜角60°, すべり角90°上縁深さ0km

:評価水位が最大となるケースの評価水位

98)

					_ 評価水位(T.P. m)	
소급 1 : *	南北	東西	傾斜	上昇側	下降	条 側
限坝	位置	位置	方向	施設護岸	っ日后雨水口(古)	っしてきょう。
				又は防波壁	2 方炉取小口(果)	乙方炉取小口 (四)
	4	(1)	東傾斜	+2.0	-1.2	-1.2
	4	(2)	西傾斜	+1.6	-0.9	-0.9
	4	(3)	東傾斜	+1.5	-1.0	-1.0
	4	(4)	西傾斜	+1.7	-1.4	-1.4
	5	(1)	東傾斜	+1.7	-1.1	-1.1
	5	(2)	西傾斜	+2.1	-1.4	-1.4
	5	(3)	東傾斜	+2.0	-1.3	-1.3
	5	(4)	西傾斜	+1.9	-1.2	-1.2
	6	(1)	東傾斜	+2.6	-1.6	-1.6
	6	(2)	西傾斜	+3.1	-2.9	-2.8
	6	(3)	東傾斜	+3.6	-2.4	-2.4
口谷井	6	(4)	西傾斜	+2.2	-1.9	-1.9
□□限哟	$\overline{\mathcal{O}}$	(1)	東傾斜	+2.7	-1.8	-1.8
	$\overline{\mathcal{O}}$	(2)	西傾斜	+3.5	-2.5	-2.5
	$\overline{\mathcal{O}}$	(3)	東傾斜	+3.8	-2.5	-2.4
	$\overline{\mathcal{O}}$	(4)	西傾斜	+2.7	-2.4	-2.3
	8	(1)	東傾斜	+3.0	-2.1	-2.0
	8	(2)	西傾斜	+3.7	-2.1	-2.0
	8	(3)	東傾斜	+4. 1	-2.2	-2.2
	8	(4)	西傾斜	+2.6	-2.4	-2.3
	9	(1)	東傾斜	+5.5	-3.0	-2.9
	9	(2)	西傾斜	+5.6	-3.0	-3.0
	9	(3)	東傾斜	+6.1	-3.1	-3.1
	(9)	(4)	西傾斜	+5.4	-3.2	-3.2

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討

99)

概略パラメータスタディ結果

第771回審査会合 資料1-3 P103 加筆·修正

■ <u>E2, E3領域の結果</u>

すべり量:9.44m, 傾斜角60°, すべり角90°上縁深さ0km

:評価水位が最大となるケースの評価水位

					評価水位 (T.P. m)	
	南北.	東西	傾斜	上昇側	下降	锋側
領域	位置	位置	方向	施設護岸	2 号炉取水口	2 号炉取水口
				又は防波壁	(東)	(西)
	1	(1)	東傾斜	+5.8	-4.1	-4.1
	1	(2)	西傾斜	+5.3	-3.0	-3.0
	1	(3)	東傾斜	+4.9	-3.2	-3.1
	1	(4)	西傾斜	+4. 6	-2.2	-2.1
	1	(5)	東傾斜	+3.5	-2.5	-2.4
	1	(6)	西傾斜	+3.0	-2.2	-2.2
	1	(7)	東傾斜	+3.0	-2.1	-2.0
	1	(8)	西傾斜	+2.4	-1.7	-1.6
	1	(9)	東傾斜	+2.6	-1.8	-1.8
EZ, E3 谷士士	1	(10)	西傾斜	+1.7	-1.1	-1.1
限坝	2	(1)	東傾斜	+4. 7	-2.1	-2.2
	2	(2)	西傾斜	+3.9	-2.6	-2.6
	2	(3)	東傾斜	+4. 7	-2.0	-1.9
	2	(4)	西傾斜	+3.4	-2.1	-2.1
	2	(5)	東傾斜	+2.3	-1.4	-1.4
	2	(6)	西傾斜	+2.2	-1.8	-1.8
	2	(7)	東傾斜	+2.7	-1.4	-1.4
	2	(8)	西傾斜	+2.6	-1.6	-1.6
	2	(9)	東傾斜	+2.9	-1.9	-1.9
	2	(10)	西傾斜	+1.7	-1.2	-1.2

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 概略パラメータスタディ結果 第771回審査会合 資料1-3 P104 加筆・修正

■ <u>E2, E3領域の結果</u>

すべり量:9.44m, 傾斜角60°, すべり角90°上縁深さ0km

					評価水位(T.P.m)	
	南北	東西	偱斜	上昇側	11	条 側
領域	位置	位置	方向	施設護岸 又は防波壁	2 号炉取水口 (東)	2 号炉取水口 (西)
	3	(1)	東傾斜	+4.4	-1.9	-1.9
	3	(2)	西傾斜	+3.5	-2.2	-2.2
	3	(3)	東傾斜	+4. 0	-2.3	-2.3
	3	(4)	西傾斜	+1.8	-1.3	-1.3
EZ, E3	3	(5)	東傾斜	+2.3	-1.5	-1.5
限坝	3	(6)	西傾斜	+1.8	-1.3	-1.3
	3	(7)	東傾斜	+2.2	-1.3	-1.3
	3	(8)	西傾斜	+1.9	-1.2	-1.2
	3	(9)	東傾斜	+1.9	-1.3	-1.3
	3	(10)	西傾斜	+1.5	-1.0	-1.0

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 **詳細パラメータスタディ結果(水位上昇側)** ^{第771回審査会合 資料1-3} _{P105 加筆・修正}

すべり量:9.44m, 傾斜角60°, すべり角90°, 東傾斜

:評価水位が最大となるケースの評価水位

領域	上縁 深さ (km)	南北 位置	東西位置	走向	評価水位(T.P.m) 施設護岸又は防波壁	領域	上縁 深さ (km)	南北位置	東西位置	走向	評価水位(T.P.m) 施設護岸又は防波壁
	0	北23.1	西12.5	-10°	+4.9		2.5	基準	西12.5	-10	+5.4
	0	北23.1	西12.5	基準	+5.8		2.5	基準	西12.5	基準	+6. 1
	0	北23.1	西12.5	+10°	+3.8		2.5	基準	西12.5	+10	+4.8
	0	北23.1	基準	-10°	+4. 2		2.5	基準	基準	-10	+3.8
	0	北23.1	基準	基準	+5.2		2.5	基準	基準	基準	+5.9
	0	北23.1	基準	+10°	+3. 1		2.5	基準	基準	+10	+4. 2
	0	北23.1	東12.5	-10°	+3.6		2.5	基準	東12.5	-10	+3.4
	0	北23.1	東12.5	基準	+5.5		2.5	基準	東12.5	基準	+6.9
	0	北23.1	東12.5	+10°	+3.8		2.5	基準	東12.5	+10	+4.6
	0	基準	西12.5	-10°	+5.5		5	北23.1	西12.5	-10°	+4. 0
	0	基準	西12.5	基準	+5.8		5	北23.1	西12.5	基準	+4.8
	0	基準	西12.5	+10°	+4. 6		5	北23.1	西12.5	+10°	+3.0
	0	基準	基準	-10°	+5. 1		5	北23.1	基準	-10°	+3.5
E1領域	0	基準	基準	基準	+6. 1	E1領域	5	北23.1	基準	基準	+3.7
	0	基準	基準	+10°	+4.4		5	北23.1	基準	+10°	+2.6
	0	基準	東12.5	-10°	+3.8		5	北23.1	東12.5	-10°	+2.9
	0	基準	東12.5	基準	+7.2		5	北23.1	東12.5	基準	+4. 1
	0	基準	東12.5	+10°	+4. 6		5	北23.1	東12.5	+10°	+2.8
	2.5	北23.1	西12.5	-10	+4. 7		5	基準	西12.5	-10°	+4.4
	2.5	北23.1	西12.5	基準	+5.7		5	基準	西12.5	基準	+5.9
	2.5	北23.1	西12.5	+10	+3.8		5	基準	西12.5	+10°	+4. 0
	2.5	北23.1	基準	-10	+4. 1		5	基準	基準	-10°	+3.0
	2.5	北23.1	基準	基準	+4.8		5	基準	基準	基準	+4. 7
	2.5	北23.1	基準	+10	+3.0		5	基準	基準	+10°	+3.5
	2.5	北23.1	東12.5	-10	+3.5		5	基準	東12.5	-10°	+2.9
	2.5	北23.1	東12.5	基準	+5.1		5	基準	東12.5	基準	+5.3
	2.5	北23.1	東12.5	+10	+3.5		5	基準	東12.5	+10°	+3.8

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 **詳細パラメータスタディ結果(水位上昇側)** ^{第771回審査会合 資料1-3} _{P106 加筆・修正}

すべり量:8.65m, 傾斜角52.5°, すべり角90°, 東傾斜

領域	上縁 深さ (km)	南北 位置	東西位置	走向	評価水位(T.P.m) 施設護岸又は防波壁	領域	上縁 深さ (km)	南北 位置	東西位置	走向	評価水位(T.P.m) 施設護岸又は防波壁
	0	北23.1	西12.5	-10°	+4. 5		2.5	基準	西12.5	-10°	+4. 7
	0	北23.1	西12.5	基準	+5.3		2.5	基準	西12.5	基準	+5.8
	0	北23.1	西12.5	+10°	+3.3		2.5	基準	西12.5	+10°	+4. 3
	0	北23.1	基準	-10°	+3.9		2.5	基準	基準	-10°	+3.4
	0	北23.1	基準	基準	+4. 4		2.5	基準	基準	基準	+4. 7
	0	北23.1	基準	+10°	+2.9		2.5	基準	基準	+10°	+3.8
	0	北23.1	東12.5	-10°	+3.6		2.5	基準	東12.5	-10°	+3.2
	0	北23.1	東12.5	基準	+4. 7		2.5	基準	東12.5	基準	+5.7
	0	北23.1	東12.5	+10°	+3.1		2.5	基準	東12.5	+10°	+4.1
	0	基準	西12.5	-10°	+4. 9		5	北23.1	西12.5	-10°	+3.9
	0	基準	西12.5	基準	+5.5		5	北23.1	西12.5	基準	+4.3
	0	基準	西12.5	+10°	+4. 2		5	北23.1	西12.5	+10°	+2.8
	0	基準	基準	-10°	+4. 2		5	北23.1	基準	-10°	+3.3
E1領域	0	基準	基準	基準	+5.0	E1領域	5	北23.1	基準	基準	+3.2
	0	基準	基準	+10°	+4. 0		5	北23.1	基準	+10°	+2.5
	0	基準	東12.5	-10°	+3.6		5	北23.1	東12.5	-10°	+2.7
	0	基準	東12.5	基準	+6.0		5	北23.1	東12.5	基準	+3.7
	0	基準	東12.5	+10°	+4. 1		5	北23.1	東12.5	+10°	+2.6
	2.5	北23.1	西12.5	-10°	+4. 4		5	基準	西12.5	-10°	+3.9
	2.5	北23.1	西12.5	基準	+5.0		5	基準	西12.5	基準	+5.0
	2.5	北23.1	西12.5	+10°	+3. 2		5	基準	西12.5	+10°	+3.6
	2.5	北23.1	基準	-10°	+3.8		5	基準	基準	-10°	+2.9
	2.5	北23.1	基準	基準	+4. 0		5	基準	基準	基準	+3.9
	2.5	北23.1	基準	+10°	+2. 8		5	基準	基準	+10°	+3.2
	2.5	北23. 1	東12.5	-10°	+3. 3		5	基準	東12.5	-10°	+2.7
	2.5	北23.1	東12.5	基準	+4. 5		5	基準	東12.5	基準	+4.5
	2.5	北23.1	東12.5	+10°	+3.1		5	基準	東12.5	+10°	+3.4

(102)

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 **詳細パラメータスタディ結果(水位上昇側)** ^{第771回審査会合 資料1-3} _{P107 加筆・修正}

すべり量:7.71m,傾斜角45°, すべり角90°, 東傾斜

					評価水位(T.P. m)						評価水位(T.P. m)
領域	上縁 深さ (km)	南北位置	東西位置	走向 -10°	う 施設護岸又は防波壁 +4.1		上縁 深さ (km)	南北位置	東西位置	走向	施設護岸又は防波壁
	0	北23.1	西12.5	-10°	+4. 1		2.5	基準	西12.5	-10°	+3.9
	0	北23.1	西12.5	基準	+4. 3		2.5	基準	西12.5	基準	+4. 7
	0	北23.1	西12.5	+10°	+3.0		2.5	基準	西12.5	+10°	+3.6
	0	北23.1	基準	-10°	+3.6		2.5	基準	基準	-10°	+3.1
	0	北23.1	基準	基準	+3.8		2.5	基準	基準	基準	+3.9
	0	北23.1	基準	+10°	+2.7		2.5	基準	基準	+10°	+3.5
	0	北23.1	東12.5	-10°	+3.3		2.5	基準	東12.5	-10°	+3.1
	0	北23.1	東12.5	基準	+3.9		2.5	基準	東12.5	基準	+4.4
	0	北23.1	東12.5	+10°	+2.7		2.5	基準	東12.5	+10°	+3.6
	0	基準	西12.5	-10°	+4. 1		5	北23.1	西12.5	-10	+3.7
	0	基準	西12.5	基準	+4. 7		5	北23.1	西12.5	基準	+3.7
	0	基準	西12.5	+10°	+3.6		5	北23.1	西12.5	+10	+2.5
	0	基準	基準	-10°	+3.6		5	北23.1	基準	-10	+3.1
E1領域	0	基準	基準	基準	+4. 0	E1領域	5	北23.1	基準	基準	+2.9
	0	基準	基準	+10°	+3.7		5	北23.1	基準	+10	+2.4
	0	基準	東12.5	-10°	+3.5		5	北23.1	東12.5	-10	+2.5
	0	基準	東12.5	基準	+4. 7		5	北23.1	東12.5	基準	+3.2
	0	基準	東12.5	+10°	+3.8		5	北23.1	東12.5	+10	+2.4
	2.5	北23.1	西12.5	-10°	+4.0		5	基準	西12.5	-10	+3.4
	2.5	北23.1	西12.5	基準	+4. 3		5	基準	西12.5	基準	+4. 2
	2.5	北23.1	西12.5	+10°	+2.9		5	基準	西12.5	+10	+3.4
	2.5	北23.1	基準	-10°	+3.5		5	基準	基準	-10	+2.6
	2.5	北23.1	基準	基準	+3.4		5	基準	基準	基準	+3.5
	2.5	北23.1	基準	+10°	+2.6		5	基準	基準	+10	+3.1
	2.5	北23.1	東12.5	-10°	+3.0		5	基準	東12.5	-10	+2.6
	2.5	北23.1	東12.5	基準	+3.7		5	基準	東12.5	基準	+3.9
	2.5	北23.1	東12.5	+10°	+2.7		5	基準	東12.5	+10	+3.1

(103)

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 **詳細パラメータスタディ結果(水位下降側)** ^{第771回審査会合 資料1-3} _{P113加筆・修正}

すべり量:9.44m, 傾斜角60°, すべり角90°, 東傾斜

:評価水位が最大となるケースの評価水位

					計価水位	(I.P. m)						計価水位	<u>(I.P.m)</u>
領域	上縁 深さ (km)	南北 位置	東西 位置	走向	2 号炉 取水口 (東)	2 号炉 取水口 (西)	領域	上縁 深さ (km)	南北位置	東西位置	走向	2 号炉 取水口 (東)	2 号炉 取水口 (西)
	0	基準	基準	-10°	-3.6	-3.5		5	基準	基準	-10°	-3.1	-3.1
	0	基準	基準	基準	-4.1	-4.0		5	基準	基準	基準	-3.8	-3.8
	0	基準	基準	+10°	-2.1	-2.0		5	基準	基準	+10°	-1.9	-1.8
	0	基準	東16.5	-10°	-3.2	-3.1		5	基準	東16.5	-10°	-2.7	-2.7
	0	基準	東16.5	基準	-3.9	-3.9		5	基準	東16.5	基準	-3.4	-3.4
	0	基準	東16.5	+10°	-2.2	-2.2	F2 3領域	5	基準	東16.5	+10°	-1.9	-1.9
	0	南17.2	基準	-10°	-3.2	-3.2		5	南17.2	基準	-10°	-2.8	-2.7
	0	南17.2	基準	基準	-3.1	-3.1		5	南17.2	基準	基準	-2.9	-2.9
	0	南17.2	基準	+10°	-2.2	-2.2		5	南17.2	基準	+10°	-2.1	-2.1
	0	南17.2	東16.5	-10°	-3.2	-3.1		5	南1/.2	東16.5	-10°	-2.6	-2.6
	0	南17.2	東16.5	基準	-2.8	-2.8		5	南17.2	<u>東16.5</u>	<u> </u>	-2.6	-2.6
	0	南17.2	東16.5	+10°	-2.0	-2.0		5		▶ 16.5	+10°	-1.8	-1.8
E2,3領域	2.5	基準	基準	-10°	-3.5	-3.4							
	2.5	基準	基準	基準	-4.2	-4.1							
	2.5	基準	基準	+10°	-2.0	-2.1							
	2.5	基準	東16.5	-10°	-3.1	-3.0							
	2.5	基準	東16.5	基準	-3.8	-3.8							
	2.5	基準	東16.5	+10°	-2.2	-2.2							
	2.5	南17.2	基準	-10°	-3.2	-3.1							
	2.5	南17.2	基準	基準	-3.2	-3.1							
	2.5	南17.2	基準	+10°	-2.3	-2.2							
	2.5	南17.2	東16.5	-10°	-3.1	-3.0							
	2.5	南17.2	東16.5	基準	-2.9	-2.8							
	2.5	南17.2	東16.5	+10°	-2.0	-2.0							

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 **詳細パラメータスタディ結果(水位下降側)** ^{第771回審査会合 資料1-3} _{P114加筆・修正}

(105)

すべり量:8.65m, 傾斜角52.5°, すべり角90°, 東傾斜

					評価水位	(T.P.m)						評価水位	(T.P.m)
領域	上縁 深さ (km)	南北 位置	東西 位置	走向	2 号炉 取水口 (東)	2 号炉 取水口 (西)	領域	上縁 深さ (km)	南北 位置	東西位置	走向	2 号炉 取水口 (東)	2 号炉 取水口 (西)
	0	基準	基準	-10°	-3.4	-3.3		5	基準	基準	-10°	-3.0	-2.9
	0	基準	基準	基準	-3.8	-3.7		5	基準	基準	基準	-3.5	-3.4
	0	基準	基準	+10°	-1.8	-1.7		5	基準	基準	+10°	-1.5	-1.5
	0	基準	東16.5	-10°	-3.0	-3.0		5	基準	東16.5	-10°	-2.6	-2.6
	0	基準	東16.5	基準	-3.6	-3.6		5	基準	東16.5	基準	-3.1	-3.1
	0	基準	東16.5	+10°	-1.9	-1.9	F2 3領域	5	基準	東16.5	+10°	-1.6	-1.6
	0	南17.2	基準	-10°	-3.0	-3.0		5	南17.2	基準	-10°	-2.6	-2.6
	0	南17.2	基準	基準	-2.8	-2.8		5	南17.2	基準	基準	-2.6	-2.6
	0	南17.2	基準	+10°	-2.1	-2.1		5	南17.2	基準	+10°	-1.8	-1.8
	0	南17.2	東16.5	-10°	-3.0	-2.9		5	<u>南17.2</u>	● 果10.5		-2.5	-2.5
	0	南17.2	東16.5	基準	-2.6	-2.5		5	<u> </u>	────────────────────────────────────	 	-2.3	-Z. 3
	0	南17.2	東16.5	+10°	-1.8	-1.7	L	5	□		+10	-1.0	-1.5
EZ, 3預坝	2.5	基準	基準	-10°	-3.3	-3.3							
	2.5	基準	基準	基準	-3.8	-3.8							
	2.5	基準	基準	+10°	-1.7	-1.7							
	2.5	基準	東16.5	-10°	-2.9	-2.9							
	2.5	基準	東16.5	基準	-3.5	-3.5							
	2.5	基準	東16.5	+10°	-1.9	-1.9							
	2.5	南17.2	基準	-10°	-3.0	-2.9							
	2.5	南17.2	基準	基準	-2.9	-2.8							
	2.5	南17.2	基準	+10°	-2.0	-2.0							
	2.5	南17.2	東16.5	-10°	-2.9	-2.9							
	2.5	南17.2	東16.5	基準	-2.6	-2.5							
	2.5	南17.2	東16.5	+10°	-1.7	-1.7							

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 **詳細パラメータスタディ結果(水位下降側)** ^{第771回審査会合 資料1-3} _{P115加筆・修正}

(106)

すべり量:7.71m, 傾斜角45°, すべり角90°, 東傾斜

					評価水位	(T.P.m)						評価水位	(T.P. m)
領域	上縁 深さ (km)	南北 位置	東西位置	走向	2 号炉 取水口 (東)	2 号炉 取水口 (西)	領域	上縁 深さ (km)	南北 位置	東西位置	走向	2 号炉 取水口 (東)	2 号炉 取水口 (西)
	0	基準	基準	-10°	-3.0	-3.0		5	基準	基準	-10°	-2.6	-2.6
	0	基準	基準	基準	-3.3	-3.3		5	基準	基準	基準	-3.0	-3.0
	0	基準	基準	+10°	-1.5	-1.5		5	基準	基準	+10°	-1.2	-1.2
	0	基準	東16.5	-10°	-2.7	-2.7		5	基準	東16.5	-10°	-2.4	-2.4
	0	基準	東16.5	基準	-3.2	-3.1		5	基準	東16.5	基準	-2.7	-2.7
	0	基準	東16.5	+10°	-1.5	-1.5	F2 3領域	5	基準	東16.5	+10°	-1.4	-1.4
	0	南17.2	基準	-10°	-2.7	-2.6		5	南17.2	基準	-10°	-2.3	-2.3
	0	南17.2	基準	基準	-2.4	-2.4		5	南17.2	基準	基準	-2.3	-2.3
	0	南17.2	基準	+10°	-1.9	-1.8		5	南17.2	基準	+10°	-1.5	-1.5
	0	南17.2	東16.5	-10°	-2.7	-2.6		5	<u>南17.2</u>	果10.5 主10.5		-2.3	-2.3
	0	南17.2	東16.5	基準	-2.2	-2.2		5	<u> </u>	果10.5 ====================================	 ↓10°	-Z. I	-Z. I
	0	南17.2	東16.5	+10°	-1.5	-1.5	L	5		泉10.3	+10	-1.3	-1.3
EZ, 3預坝	2.5	基準	基準	-10°	-3.0	-2.9							
	2.5	基準	基準	基準	-3.4	-3.3							
	2.5	基準	基準	+10°	-1.4	-1.3							
	2.5	基準	東16.5	-10°	-2.7	-2.6							
	2.5	基準	東16.5	基準	-3.1	-3.0							
	2.5	基準	東16.5	+10°	-1.6	-1.5							
	2.5	南17.2	基準	-10°	-2.6	-2.6							
	2.5	南17.2	基準	基準	-2.5	-2.4							
	2.5	南17.2	基準	+10°	-1.8	-1.7							
	2.5	南17.2	東16.5	-10°	-2.6	-2.6							
	2.5	南17.2	東16.5	基準	-2.2	-2.2							
	2.5	南17.2	東16.5	+10°	-1.5	-1.4							

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 津波水位評価地点における水位の時刻歴波形 第771回審査会合 資料1-3 P117 再掲

評価水位最高ケース(水位上昇側)

【循環水ポンプ運転時】

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 津波水位評価地点における水位の時刻歴波形 第771回審査会合 資料1-3 P118 再掲

評価水位最低ケース(水位下降側)

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 津波水位評価地点における水位の時刻歴波形(日本海東縁部の断層上縁深さ1kmの影響検討)

第563回審査会合 資料1 P45 再掲

評価水位最高ケース(水位上昇側) 断層上縁深さ1km

【循環水ポンプ運転時】

※初期水位は、潮位及び取水による損失水頭を考慮した水位

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 津波水位評価地点における水位の時刻歴波形(日本海東縁部の断層上縁深さ1kmの影響検討)

第771回審査会合 資料1-3 P121 再掲

評価水位最低ケース(水位下降側) 断層上縁深さ1km

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(1)土木学会に基づく検討 伝播経路(日本海東縁部の断層上縁深さ1kmの影響検討) 第771回審査会合 資料1-3 P122 再掲

> 評価水位最高ケース(水位上昇側) 断層上縁深さ1km 9.0 8.5 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 200 km 大和堆 島根原子力発電所 A PARTY OF

> > 最大水位上昇量分布図

評価水位最低ケース(水位下降側) 断層上縁深さ1km

最大水位上昇量分布図

パラメータスタディの詳細

第771回審査会合 資料1-3 P123 再掲

・日本海東縁部に想定される地震発生領域の連動を考慮した検討のパラメータスタディにおけるパラメータは、土木学会等に基づき設定した。

パニメータ	概略パラメータスタディ		詳細パラメータスタディ				
	設定方法	説明頁	設定方法	説明頁			
長さ	地震調査研究推進本部(2003)に示される「青森県西方沖」の領域と「佐渡島 北方沖」の領域の連動を考慮し、350kmと設定	本資料P106	同左	—			
位置	地震調査研究推進本部(2003)を参考に東西方向に波源位置を変動	本資料P109,110	概略パラメータスタディの評価水位最高・最低ケースの位置 を基準とし, 変動範囲を補間するように, 東西方向に移動	本資料 P112,116			
走向	地震調査研究推進本部(2003)を参考に設定	補足資料P113	地震調査研究推進本部(2003)を踏まえて設定した走向に対 して,走向一定,折曲に変化	本資料 P112,114			
傾斜方向	土木学会によると既往津波の痕跡高を再現できる波源モデルの傾斜方向は 一定でないため, 東・西傾斜の双方を設定	本資料P109,110	概略パラメータスタディの評価水位最高・最低ケースの傾斜 方向	_			
傾斜角	土木学会によると既往津波の痕跡高を再現できる波源モデルの傾斜角は概ね30°~60°であるため,30°,45°,60°と設定	本資料P109,110 補足資料P114	概略パラメータスタディの評価水位最高・最低ケースの傾斜 角	—			
断層下限深 さ	土木学会によると1976年1月~2000年1月に日本海東縁部において発生した Mw5.0以上, 深さ60km以下の地震を抽出すると, 地震の発生深さは概ね 15km~20kmであるため, 断層面積が広くなり, 安全側の評価になると考えら れる20kmと設定(固定)	補足資料P114	同左	_			
断層上縁深 さ	土木学会によると既往津波の波源モデルの断層上縁深さは概ね0~5kmであるため、このうち0kmを設定	本資料P109	これまでの検討から, 0km, 1km, 2.5km, 5kmと設定	本資料 P112,113			
すべり角	土木学会によると既往津波の波源モデルのすべり角は90°付近に分布して いることから、すべり角を安全側の評価になると考えられる90°と設定(固 定)	_	同左	_			
すべり量	土木学会に検討事例として記載されている国土交通省・内閣府・文部科学省 (2014)より最大すべり量を12m, 平均すべり量を6mと設定。また, 背景領域の すべり量は根本ほか(2009) ⁽⁴³⁾ に基づき4mとする。	補足資料 P115~119	同左	—			
剛性率	土木学会に基づき3.5×10 ¹⁰ N/m ² と設定(固定)	—	同左	—			
M ₀ , Mw	Kanamori(1977) ⁽⁴⁴⁾ により算出 ogM ₀ =1.5Mw+9.1 M ₀ =µ DS	_	同左				
大すべり域	根本ほか(2009)に基づき大すべり域(アスペリティ領域)と背景領域の面積比 を1:3とし,波源モデルを8等分したセグメントについて,隣り合う2つのセグメ ントを大すべり域として設定する。	本資料P107,109 補足資料P120	大すべり域が隣接しないケースを考慮し、設定する。	本資料 P112,115			

M₀:地震モーメント, Mw:モーメントマクニチュート, μ:剛性率, D:すべり量, S:面積

パラメータスタディの詳細(走向)

第771回審査会合 資料1−3 P124 再掲

【走向】

・土木学会(2002)^{※1}によると、ハーバードCMTによる発震機構解および既往の断層モデルから評価した走向ばらつきは標準偏差約10°であることから、地震調査研究推進本部(2003)の地震発生領域を踏まえ設定した走向8.9°^{※2}より、標準偏差10°を考慮し、-1.1°、18.9°(8.9°±10°)と設定する。
 ・また、本検討では、断層長さが350kmと長大であり、既往地震においても走向は必ずしも一定でないことを考慮して、地震調査研究推進本部(2003)に示される「青森県西方沖」の領域と「佐渡島北方沖」の領域の境界で南北に分割(L=131.25km, 218.75km)し、分割した断層がそれぞれ異なる走向を有しながら連動することを想定した。

 ^{※1} 土木学会(2016)に記載がないため土木学会(2002)を引用
 ※2 「青森県西方沖」領域の北西端と「佐渡島北方沖」領域の南西端を直線で結んだ
 走向を基準とする。

海域	流	むんマム	萩原マップ	解析対象	データ	走	:向(*)	すべり)方向(゚)	すへ	ジ角(゜)	傾	斗角(")
大区分	(गमः अ	成小区力	海域区分	データ	数	平均	標準同時	平均	標準麻洋	平均	標準応送	平均	標準応送
口本海港。	千烏海 溝南部	41 °N 以北	G1	プレート間	43	222,3	14.1	304.3	10.8			21.7	6.4
千島海溝	日本海 溝北部	38~41 ° N	G2	逆断層地震 のハーバー	29	185.4	12.1	295.0	7.7			16.0	5.7
VIII AP7	日本海 溝南部	35.3∼38°N	G3	ド解	14	204.2	13.5	292.3	12.2			21.1	5.1
日本海	北部	40 ° N 以北	F	「新聞を通った」	6(3)	-2.7	9.6			91.7	11.3	43.3	14.0
┃ 東縁部 ┃	南部	40°N以南 138 E以東			5(3)	25.2	6.3			96.0	13.4	57.0	6.7

既往断層パラメータのばらつきの評価結果

(注)・日本海溝および千島海溝(南部)沿い海域では、ハーバード CMT による発震機構解(1976年1月 ~2000年1月に発生した Mu6.0以上、深さ 60km 以下の地震)を解析対象とした。

・日本海東縁部では、発震機構解の節面の特定が困難であるため、津波の痕跡高を説明できる断層モ デルのパラメータを用いてばらつきを評価した。

- ・「すべり方向」は、スリップベクトルの水平投影が真北から時計回りになす角度である。
- ・日本海東縁部のデータ数のうち括弧内の値は、走向に対して適用した1 枚断層換算のモデル数である。
- ・日本海東縁部(南部)の新潟地震モデルには Noguera and Abe (1992)を採用している。天保山形 沖地震(1883)は沖合・沿岸近くの両モデルを採用している。

土木学会(2002)より引用・加筆

(114)

パラメータスタディの詳細(傾斜角・断層下限深さ)

第771回審査会合 資料1-3 P125 再揭

【傾斜角】

土木学会によると既往津波の痕跡高を再現できる波源モデルの傾斜角は概 ね30°~60°のため、概略パラメータスタディでは30°、45°、60°と設定する。

【断層下限深さ】

土木学会によると、1976年1月~2000年1月に日本海東縁部において発生したMw5.0以上、深さ60km以下の地震を抽出すると、地震の発生深さは概ね 15km~20kmであるため、断層面積が広くなり、安全側の評価になると考えられる20kmと設定する。

日本海東縁部の既往波源モデルの位置 土木学会より引用

日本海東縁部の既往津波の津波痕跡高を再現できる波源モデル

| モデル 面積 L W D d A δ λ データ

対象津波	M_{w}	(km^2)	(km)	(km)	(m)	(km)	(°)	(°)	(°)	数	K	к	備考		
1833年天保山形沖(A)	7.82	1250	50	25	6.4	0	10	60	90	27	1.04	1 42	本体系化原案		
	1.64	1750	70	25	6.4	0	40	60	120	_,	1.01	1.15	(相田(1989)を修正;陸岸近く		
1833年天保山形沖(B)	7.76	3960	132	30	4.0	0	208	45	90	27	1.17	1.28	本体系化原案(沖合)		
1940年積丹沖	7.70	4050	135	30	3.2	0	347	40	90	20	1.02	1.42	本体系化原案 (Satake(1986)を修正)		
1064年報題	7.25	900	45	20	3.3	1	202	60	90	检油			Maguara and Ku Aba(1992)		
1904年初间為	1.00	300	20	15	3.0	1	189	60	90	(央南)			Noguera and Ru.Abe(1992)		
回 L	7.51	813	32.5	25	5.3	0	200	60	52	检油	_		加蓝, 完藤(1005)		
	1.01	813	32.5	25	2.9	0	200	60	90	(央市)			/加藤 女藤(1953)		
1982年日末海山邨	7 74	1200	40	30	7.6	2	22	40	90	218	1 1 2	1.46	相田(1984) Model-10		
1903中口本博士即	1.14	1800	60	-30	3.05	3	355	25	80	210	1.12	1.40	1日田(1904) Model 10		
21		2250	90	25	5.71	10	188	35	80		8		宮橋武力ら(1995)		
1993年北海道南西沖	7.84	650	26	25	4.00	5	175	60	105	249	0.96	1.51	同1間以2-9(1999) DCDC-96エデル		
		458	30.5	15	12	5	150	60	105)5			Dene 20 C / W		
												1 11/	A		

傾斜角

土木学会より引用・加筆

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討 スケーリング則・すべり量の設定(武村(1998)) 第771回審査会合 資料1-3 P126 再掲

115

近年の長大断層に対するスケーリング則に関する検討 事例をもとに,波源モデル(L=350km)に適用するすべり 量を検討する。なお,土木学会に基づく検討において適 用している武村(1998)のスケーリング則については,準 拠している内陸地殻内地震のデータの最大長さが85km であり,それ以上の断層長さは外挿領域となっている。 Table 1. List of source parameters of Japanese intraplate earthquakes from 1885 to 1995. M, L, W, D, M_0 , and S show JMA magnitude, fault length, fault width, average slip, seismic moment, and fault area, respectively. In most cases, values of S were calculated by $L \times W$. δ indicates the dip angle of the fault plane. All the data, except for those of the 1995 Hyogo-Nanbu earthquake, are quoted from SATO (1989).

Earthquake (year/name)	М	Type∕ð (degree)	L (km)	W (km)	D (cm)	Mo (dyne・cm)	Remarks
1891 / Nobi	8. 0	ST / 90	85*'	15*'	380*1	1. 5E27*2	*1 Main Fault
							(S=1700 km ²)
1927 / Kita-Tango	7.3	ST / 64	33*1	19*1	370*1	4. 6E26*2	*1 Main Fault
							<pre>\$2 after Kanamo</pre>
							ri (1973)
	0.000						(S=460 km ²)
1930 / Kita-Izu	7.3	ST / 90	22	12	300	2.7E26	
1931 / Nishi-Saitama	6.9	ST / 80	20	10	100	6.8E25	
1934 / Minami-Izu	5.5	ST / 90	7	4	10	9. 5E23	
1935 / Shizuoka	6.4	ST / 70	11	6	100	2. 2E25	
1939 / Oga	6.8	ST / 30	16	12	200	1. 7E26	First Event
1943 / Tottori	7. 2	ST / 90	33	13	250	3. 6E26	
1945 / Mikawa	6.8	DP / 30	12	11	225	8. 7E25	
1948 / Fukui	7.1	ST / 90	30	13	200	3. 3E26	
1955 / Futatsui	5.9	DP / 64	15	4	20. 5	4. 1E24	1
1961 / Kita-Mino	7.0	0B / 60	12	10	250	9. 0E25	
1962 / Miyagi-Hokubu	6. 5	DP / 56	12	10	60	Z. 4E25	
1963 / Wakasa-Wan	6.9	ST / 68	20	8	60	3. 0E25	
1967 / Wakayama-Seibu	4. 2	OB / 68	2. 5	2	1.63	2. 7E22	
1968.3 / Wakayama-Seibu	5.0	ST / 82	8	4	1. 73	1. 9E23	
1968. 8 / Wakayama-Seibu	4.8	DP / 90	6	3	1. 58	9. 4E22	
1969. 3 / Wakayama-Selbu	4. 2	OB / 90	4	8	0. 22	2. 4EZZ	
1969.7 / Wakayama-Seibu	4.4	ST / 68	3	3	0. /1	2. TE22	
1969. 9 / Gilu-Chubu	0.0	ST / 90	18	10	0.76	3. 5825	
1970. I / Wakayama-Selbu	4.3	51 / 90	2	4	0.70	2. UE22	
1970. 10 / AKITA-Nantobu	b. Z	DP / 40	15		28	1. 4825	20
1970. 11 / wakayama-Selbu	3.8	OB / 54	4	5	0.10	1. 1E22	
1974. 5 / 120-Han10-UK1	0.9	ST / 80	18	0	120	5. 9E25	
1974. (/ Amagi 1975. / Oito Chubu	4.9	DD / 70	0. 0 10	20	22	3. 2023	2
1975 / Ulta-Chubu	D. 4	DF / 10	10	20	20	2. 2020	
1976 / Nawazu	5.4	SI / 82	9	3. 5	20	2. IE24	Main Daula
1978 / IZU-USRIma	1.0	ST / 80	14	10 7 5	100	7.0525*	Main rault
1980 / IZU-IONO-UK1	0. /	51 / 10	15	1. 0	110	1. UE25	+ Aller
				j. j.			(S=240, k=2)
1000 / Tetteri Chub-	6 9	ST / OF		c	50	4 5894*	(S=240 Km ²)
1983 / Tottori-Chubu	6. 2	51 / 85	5	D	50	4. 5E24	* $\mu = 3 \times 10^{-1}$ dyne
1004 E / Vemeeski E		ST / 00	2	E	0	2 9592	/cm is used
1964. 0 / Tamasaki-F	5. 0 c o	ST / 90	3	0	100	0. 2E20	
1964. 10 / Nagano-Selbu	0.8	51 / 85	12	0	220	2. 9829	(This Stude)
1999 / Hyogo-Manbu	1. 2	31 / 00	29	19	220	2. 36.20	(inis study)

ST:Strike Slip DP:Dip Slip OB:Oblique Slip

武村(1998)より引用・加筆

(参考)土木学会における武村(1998)の適用検証について

表 2.3.2-1 日	₹2.3.2−1 日本海東縁部の既往津波の痕跡高を説明できる断層モデル(土木学会, 2002)												
対象津波	モデル <i>M</i> w	面積 (km ²)	L (km)	W (km)	D (m)	d (km)	<i>θ</i> (度)	<i>δ</i> (度)	ん (度)	データ 数	K	κ	備考
1833年天保山形沖(A)	7.82	1250 1750	50 70	25 25	6.4 6.4	0	10 40	60 60	90 120	27	1.04	1.42	土木学会(2002) (相田(1989)を修正;陸岸近く)
1833年天保山形沖(B)	7.76	3960	132	30	4.0	0	208	45	90	27	1.17	1.28	土木学会(2002)(沖合)
1940年積丹沖	7.70	4050	135	30	3.2	0	347	40	90	20	1.02	1.42	土木学会(2002) (Satake(1986)を修正)
1964年新潟	7.35	900 300	45 20	20 15	3.3 3.0	1	202 189	60 60	90 90	検潮		_	Noguera and Ku.Abe(1992)
同上	7.51	813 813	32.5 32.5	25 25	5.3 2.9	0	200 200	60 60	52 90	検潮	-	_	加藤·安藤(1995)
1983年日本海中部	7.74	1200 1800	40 60	30 30	7.6 3.05	23	22 355	40 25	90 80	218	1.12	1.46	相田(1984) Model-10
1993年北海道南西沖	7.84	2250 650 458	90 26 30.5	25 25 15	5.71 4.00 12	10 5 5	188 175 150	35 60 60	80 105 105	249	0.96	1.51	高橋武之ら(1995) DCRC-26モデル

図2.3.2-3 日本海東縁部における既往津波の断層モデルのM_wと断層長さの関係

土木学会(2016)より引用

(116)

資料1-3 P127 再掲

・土木学会では、日本海東縁部の既往津波の痕跡高を説明できる断層モデル(Mw7.35~7.84、断層長さ65~146.5km)と武村 (1998)の関係に相関があることから、武村(1998)を日本海東縁部の検討に適用できるとしている。また、土木学会(2002)にお いては、土木学会に基づく検討モデル(Mw7.85、断層長さ131.1km、均質モデル)は、既往津波の痕跡高分布や既存断層モデ ルのシミュレーション結果を再現できるとしている。 3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討 スケーリング則・すべり量の設定(国土交通省・内閣府・文部科学省(2014))

第771回審査会合 資料1-3 P128 再掲

・国土交通省・内閣府・文部科学省(2014)は、日本海東縁部で発生した地震についての既存の解析結果をもとに、入倉・三宅(2001)を ベースとしたスケーリング則を提案し、Mw7.7以上で平均すべり量は4.5mで飽和するとしている。さらに、上記スケーリング則について、 既往断層モデルのすべり量のばらつき(σ = 1.5m)を考慮したスケーリング則についても提案しており、Mw7.7以上で平均すべり量は 6mで飽和するとしている。

・また、国土交通省・内閣府・文部科学省(2014)は、各セグメントに大すべり域を設定しており、そのすべり量は平均すべり量の2倍としている。

・波源モデル(350km)に適用した場合、マグニチュードはMw7.7以上であるため、国土交通省・内閣府・文部科学省 (2014)を踏まえると、すべりの不均質性を考慮し、平均すべり量を6m(飽和値)、最大すべり量を12mとなる。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討 スケーリング則・すべり量の設定 (Murotani et al. (2015)) 第771回審査会合 資料1-3 P129 再掲

・Murotani et al.(2015)は、世界の内陸で発生した長さ80kmを超える長大断層での地震及び近年発生した中規模地 震をもとに、断層面積Sが1.8×10³(km²)を超える断層についてのスケーリング則を提案している。 ・また、Murotani et al.(2015)は地震のすべりの不均質性を考慮し、地表で観測された最大変位量Dsurfと震源断層 での最大すべり量はほぼ等しいとした上で、Dsurfは震源断層長さがほぼ100kmで10mで飽和するとしている。なお、 Dsurfは震源断層での平均すべり量の概ね2~3倍としている。

・波源モデル(350km)に適用した場合、断層面積は最も狭くても8.0×10³(km²)であることから、Murotani et al.(2015)のスケーリング則を適用でき、すべりの不均質性を考慮し、平均すべり量は2.86mとなる。また、断層長さが100km以上であるため、最大すべり量は10mで飽和する。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討 スケーリング則・すべり量の設定(既往断層モデル・まとめ) ^{第771回審査会合} 資料1-3 P130 再掲

・日本海東縁部で発生した既往津波の津波痕跡高を再現できる波源モデルのうち,すべり量の最大値は,1993年北海道南西沖地震津波の再現モ デルの12mである。

		-						_	_				
対象津波	モデル	面積 (km ²)	L (km)	W (km)	D (m)	d (km)	θ	8	$\begin{pmatrix} \lambda \\ (^{\circ}) \end{pmatrix}$	データ数	K	κ	備考
	APA W	(KIII)	(RIII)	\nm/	(111)	(RIII)	()	()	11/	24			La Lland II and the
1922年王伊山形洲(A)	7 00	1250	50	25	6.4	0	10	60	90	97	1.04	1 49	本体糸化原案
1055年人际山内作(11)	1.02	1750	70	25	6.4	0	40	60	120	21	1.04	1.44	(相田(1989)を修正;陸岸近く)
1833年天保山形沖(B)	7.76	3960	132	30	4.0	0	208	45	90	27	1.17	1.28	本体系化原案(沖合)
		1050	105		0.0		0.15	10	0.0	0.0	1.00		本体系化原案
1940年積小冲	7.70	4050	135	30	3.2	0	347	40	90	20	1.02	1.42	(Satake(1986)を修正)
1064年49月	7 9 -	900	45	20	3.3	1	202	60	90	松油			Nemine and Kir Aba(1002)
1964年初(為	1.55	300	20	15	3.0	1	189	60	90	快倒			Noguera and Ku.Abe(1992)
E L	7 51	813	32.5	25	5.3	0	200	60	52	松油			加速,完速(1005)
向上	(.51	813	32.5	25	2.9	0	200	60	90	使的		_	川藤・安藤(1995)
1000年日大海中が	7 74	1200	40	30	7.6	2	22	40	90	010	1.10	1.40	H H (1004) M - 1-1 10
1903中日本1年中部	1.14	1800	60	- 30	3.05	3	355	25	80	210	1.12	1.40	作田(1984) Model-10
		2250	90	25	5.71	10	188	35	80				直播計之(1005)
1993年北海道南西沖	7.84	650	26	25	4.00	5	175	60	105	249	0.96	1.51	同間以とら(1995)
		458	30.5	15	12	5	150	60	105				DCRC-20-2770

日本海東縁部の既往津波の津波痕跡高を再現できる波源モデル

土木学会より引用・加筆

スケーリング則・すべり量の知見を踏まえて波源モデル(L=350km)のすべり量について検討した結果は以下のとおり。

- ・武村(1998)のスケーリング則については、準拠している内陸地殻内地震のデータの最大長さが85kmであり、それ 以上の断層長さは外挿領域となっていることから、適用外と考える。
- ・波源モデル(L=350km)のマグニチュードはMw7.7以上であることから、国土交通省・内閣府・文部科学省(2014)を 踏まえ、平均すべり量は6m(飽和値)、最大すべり量は平均すべり量の2倍の12mとする。
- ・波源モデル(L=350km)は断層長さ100km以上であることから、Murotani et al.(2015)によると、最大すべり量は10m
 で飽和する。
- ・日本海東縁部を対象とした既往モデルで設定している最大すべり量は12mである。

・国土交通省・内閣府・文部科学省(2014)によるスケーリング則を用い,最大すべり量12m,平均すべり量6mで実施 する。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討 根本ほか(2009)の大すべり域の設定 第771回審査会合 資料1-3 P131 再掲

・根本ほか(2009)は、日本海東縁部を対象としてアスペリティ(大すべり域)を考慮した津波波源モデ ルを提案している。

20

日本海東縁部の代表的な既往地震を再現するアスペリティモデル

・4つのセグメントのいずれかがアスペリティに相当するセグメントと考え,アスペリティ位置を変えた4ケースの計算 を行い,4ケースの計算による最大値が観測値(既往津波高)をほぼ包含することができる。

・断層面を4セグメントに分割して、そのうちの1セグメントをアスペリティ領域、残りの3セグメントを背景領域とする。 ・アスペリティ領域のすべり量は、平均すべり量の2倍とし、背景領域のすべり量は、平均すべり量の2/3倍である。

・根本ほか(2009)に基づき、アスペリティ領域と背景領域の面積比を1:3とする。

概略パラメータスタディ結果

第771回審査会合 資料1-3 P132加筆・修正

121

水位上昇側・下降側(その1)

:評価水位が最大となるケースの評価水位

		評価水位 (T. P. m)			評価水位	評価水位 (T.P. m)																								
			+ + ~ 1	上昇側	14	夈側					++ * 1	上昇側	下降	锋 側																
東西 位置 [※]	傾斜 角	傾斜 方向	入すへり 域 位置	施設護岸 又は防波壁	2 号炉 取水口 (東)	2 号炉 取水口 (西)		東西 位置 [※]	東西 傾斜 傾斜 位置 [※] 角 方向		大すへり 域 位置	施設護岸 又は防波壁	2 号炉 取水口 (東)	2 号炉 取水口 (西)																
			ΙΠ	+4. 1	-2.4	-2.4					ΙΠ	+3.4	-2.6	-2.5																
			ШШ	+3.6	-2.3	-2.3					ШШ	+4. 2	-2.4	-2.4																
		宙	ΠV	+7.0	-3.2	-3.1				亩	ΠV	+5.0	-3. 1	-3.0																
(1)		傾斜	IV V	+6.7	-3.6	-3.5		(3)		桶	IV V	+8.7	-4. 1	-4.1																
		亦1	V VI	+5.3	-3.5	-3.5				*	V VI	+6.7	-3.7	-3.7																
			VIVI	+5.0	-3.0	-3.0					VIVI	+6.7	-4. 1	-4.0	VI															
	60°		VIIVII	+3.8	-2.7	-2.7			60°		VIIVII	+4.4	-2. 7	-2.7	VI															
	00		ΙΠ	+3.0	-2.1	-2.1			00		ΙΠ	+2.6	-2.3	-2.3	IV															
			ШШ	+3.9	-2.4	-2.4					ШШ	+3. 1	-2. 2	-2.2	Ē															
		而	ΠV	+5.5	-2.8	-2.8				而	ΠV	+3.6	-2.0	-2.0	I															
(2)		傾刻	IV V	+6.9	-2.8	-2.8		(4)		傾刻	IV V	+5.4	-3.0	-2.9	大すべり域の															
		亦1	V VI	+6. 1	-2.7	-2.7				斜	V VI	+5.8	-3.6	-3.6	配置凶															
			VIVI	+5.1	-2.9	-2.9	11																			VIVI	+5.2	-3.8	-3.7	
			VIIVII	+2.9	-2.4	-2.4					VIIVII	+3.6	-2.3	-2.2																

※ 断層の東西位置の番号はP128を参照

概略パラメータスタディ結果

第771回審査会合 資料1-3 P133加筆・修正

122

■ <u>水位上昇側・下降側(その2)</u>

				評価水位	(T.P.m)] [評価水位	(T.P. m)													
			+ + * 11	上昇側	下阝	绛側						上昇側	下降	夈側												
東西 位置 [※]	傾斜角	傾斜 方向	入 9 へ 6 域 位置	施設護岸 又は防波壁	2 号炉 取水口 (東)	2 号炉 取水口 (西)		東西 位置 [※] ^{傾斜角} 方		傾斜 方向	大すべり 域 位置	施設護岸 又は防波壁	2 号炉 取水口 (東)	2 号炉 取水口 (西)												
			ΙΠ	+4. 0	-2.3	-2.2	ΙΓ				ΙΠ	+3.4	-2.4	-2.4												
			ШШ	+3.4	-2.3	-2.3					ШШ	+3.9	-2.1	-2.1												
		宙	ΠV	+6.4	-3.1	-3.0				+	ШV	+4.8	-2.6	-2.6												
(1)		傾	IV V	+6.5	-3.5	-3.4		(3)		界傾	IV V	+7.9	-3.4	-3.4												
		- 赤十	V VI	+4. 9	-3.4	-3.4				斜	V VI	+6.3	-3.6	-3.5												
			VIVII	+4. 7	-2.9	-2.9					VIVII	+5.9	-3.7	-3.7												
	15°		VIIVII	+3.6	-2.8	-2.8			450		VIIVIII	+4. 1	-2.7	-2.7	VI											
	40		ΙΠ	+2.6	-1.8	-1.8	ΙΓ		45		ΙΠ	+2.5	-2.3	-2.3												
			ШШ	+3.7	-2.2	-2.1					ШШ	+2.9	-2.3	-2.3	Ē											
		一元	ΠV	+5.1	-2.5	-2.5			西		Ŧ	而	—	一而	西・	西傾	西傾	- 西 傾 3	西傾	西傾斜	西傾	ШV	+3.5	-2.1	-2.1	
(2)		傾到	IV V	+6.5	-2.8	-2.8		(4)		四日			西傾	西								一西目的	西 傾	西 傾	山傾	IV V
		- 亦 1	V VI	+5.9	-2.9	-2.9				科	V VI	+5.5	-3.4	-3.3	配置図											
			VIVII	+4. 7	-2.7	-2.7					VIVII	+4. 8	-3.6	-3.5												
			VIIVII	+3.0	-2.3	-2.3					VIIVII	+3.0	-2.1	-2.1												

※ 断層の東西位置の番号はP128を参照

概略パラメータスタディ結果

第771回審査会合 資料1-3 P134加筆・修正

水位上昇側・下降側(その3)

			評価水位 (T. P. m)							評価水位	(T.P.m)				
			+ + * 11	上昇側	ሻ	绛側					+ + * 11	上昇側	下『	夈 側	
東西 位置 [※]	傾斜角	傾斜 方向	入9へり 域 位置	施設護岸 又は防波壁	2 号炉 取水口 (東)	2 号炉 取水口 (西)		東西 位置 [※]	東西 位置 [※] 傾斜角		大すへり 域 位置	施設護岸 又は防波壁	2 号炉 取水口 (東)	2 号炉 取水口 (西)	
			ΙΠ	+3.6	-2.2	-2.2					ΙΠ	+2. 7	-2.2	-2.2	
			ШШ	+3.5	-2.0	-2.0					ШП	+3.5	-2.0	-2.0	
		宙	ΠV	+5.1	-2.9	-2.8				古	ΠV	+3.9	-2.5	-2.5	
(1)		傾刻	IV V	+5.2	-3.0	-3.0		(3))	「傾」	IV V	+5.5	-3.0	-3.0	
		亦1	V VI	+4. 1	-3.2	-3.2				亦†	V VI	+5.3	-3.4	-3.4	
			VIVI	+4. 2	-2.9	-2.9					VIVI	+4.4	-3.6	-3.6	
	20°		VIIVII	+3.4	-2.5	-2.5			30°		VIIVII	+3.0	-2.7	-2.7	
	30		ΙΠ	+2.8	-2.1	-2.1			30		ΙΠ	+2.8	-2.3	-2.3	
			ШШ	+3.5	-2.0	-1.9					ШП	+3. 1	-2.4	-2.4	
		而	ШΝ	+4. 6	-2.2	-2.2				西 顶 ITV	╽ _╥ Ӷ	ΠV	+3. 1	-2.4	-2.4
(2)		傾	IV V	+5.5	-2.9	-2.8		(4)			IV V	+4. 1	-2.2	-2.1	
		차가	V VI	+5.1	-2.8	-2.7				 	IV VI	+4.0	-2.9	-2.9	
			VIVI	+4. 3	-3.3	-3.3				VIVII	+3.5	-3.2	-3. 2		
			VIIVII	+3.4	-2.6	-2.6					VIIVII	+2.5	-2.4	-2.4	

VI VI v IV Ш Π Ι 大すべり域の 配置図

VII

123

※1 断層の東西位置の番号はP128を参照

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討

津波水位評価地点における水位の時刻歴波形

第771回審査会合 資料1-3 P141 再掲

24

日本海東縁部に想定される地震発生領域の連動を考慮した検討

評価水位最高ケース(水位上昇側)

【循環水ポンプ運転時】

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討 津波水位評価地点における水位の時刻歴波形 第771回審査会合 資料1-3 P142 再掲

評価水位最低ケース(水位下降側)

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(2)地震発生領域の連動を考慮した検討

伝播経路

第771回審査会合 資料1-3 P143 再掲

■ 日本海東縁部に想定される地震発生領域の連動を考慮した検討

最大水位上昇量分布図

最大水位上昇量分布図

パラメータスタディの影響検討

第771回審査会合 資料1-3 P144加筆·修正 127

・日本海東縁部に想定される地震発生領域の連動を考慮した検討で実施したパラメータスタディについて、敷地への影響が最も大きくなるケースを検討していることを確認するため、概略パラメータスタディのの影響因子が津波水位に与える影響について検討を行う。

・影響の検討は、概略パラメータスタディが津波水位に対して影響が大きい因子(支配的因子)で行われていること、詳細パラメータスタディ①が津波水位に対して影響が小さい因子(従属的因子)で行われていることを水位の変動幅により確認することで実施する※。

※ 本検討は概略検討のため「1号放水口護岸又は1号放水連絡通路防波扉」の水位は含めず実施

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討 概略パラメータスタディの影響検討(大すべり域位置,波源モデル位置・傾斜方向)

第771回審査会合 資料1-3 P145 再揭

・概略パラメータスタディの各因子(大すべり域位置,波源モデル位置及び傾斜角)が評価水位に与える影響を検討し た。※

※水位上昇側の評価水位は施設護岸又は防波壁,水位下降側の評価水位は2号炉取水口の値

②波源モデル位置・傾斜方向の影響

①大すべり域位置の影響

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討 (概略パラメータスタディの影響検討(傾斜角) 第771回審査会合 資料1-3 P146 再掲

129

③傾斜角の影響

・概略パラメータスタディの各因子が評価水位に与える影響は,評価水位の変動幅によると上昇側,下降側ともに 大すべり域位置が大きい。 大すべり域位置の変動幅(上昇側:5.3m,下降側:1.7m) 波源モデル位置・傾斜方向の変動幅(上昇側:3.3m,下降側:1.3m) 傾斜角の変動幅(上昇側:3.2m,下降側:1.1m)

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討 詳細パラメータスタディ①の影響検討(断層上縁深さ) 第771回審査会合 資料1-3 P147 再掲

130

・詳細パラメータスタディの因子(断層上縁深さ)が評価水位に与える影響を検討した。※
 ・断層上縁深さを変化させたケースは概略ケース①及び②に比べ敷地の評価水位は概ね小さくなる。また,その水位の変動幅(上昇側:2.3m,下降側:1.2m)は概略パラメータスタディの変動幅(上昇側:5.3m,下降側:1.7m)に比べて小さい。

※水位上昇側の評価水位は施設護岸、水位下降側の評価水位は2号炉取水口の値

(水位上昇側) (水位下降側) 0.0 10.0 8.7 8.7 🗕 IV V 変動幅:2.3m 変動幅(ⅣV):1.2m 7.8 -1.0 TV IV ----8.0 6.4 評価水位(T.B(m)) 評価水位(I.F.(m)) -2.0 6.0 -2.9 2.3m 1.2m 4.0 -3.0 -3.6 -3.6 -4.0 0.5m 2.0 -4.0 📥 IV V -4.1 -4.0 0.0 -5.0 断層上縁深さ0km 断層上縁深さ0km 1km 2.5km 5km 1km 2.5km 5km 赤字:概略ケース①,青字:概略ケース②

詳細-1 断層上縁深さの影響

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討 詳細パラメータスタディ①の影響検討(走向) 第771回審査会合 資料1-3 P148 再掲

・詳細パラメータスタディ①の因子(走向)が評価水位に与える影響を検討した。※
 ・走向を変化させたケースの水位の変動幅(上昇側:3.3m,下降側:1.8m)は概略パラメータスタディの変動幅(上昇側:5.3m,下降側:1.7m)と比較すると、同等かそれ以下となる。

※水位上昇側の評価水位は施設護岸又は防波壁,水位下降側の評価水位は2号炉取水口の値

131

詳細-2 走向の影響

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討 詳細パラメータスタディ①の影響検討(大すべり域位置) 第771回審査会合 資料1-3 P149 再掲

・詳細パラメータスタディ①の因子(大すべり域位置(隣接しないケース))が評価水位に与える影響を検討した。※検討 にあたっては、上昇側及び下降側それぞれに影響のある大すべり域位置を対象に行った。 ・大すべり域位置(隣接しないケース)を変化させたケースの水位の変動幅(上昇側:4.3m,下降側:2.1m)は概略パラ メータスタディの変動幅(上昇側:5.3m,下降側:1.7m)と比較すると同等かそれ以下となった。

※水位上昇側の評価水位は施設護岸又は防波壁,水位下降側の評価水位は2号炉取水口の値

詳細-3 大すべり域位置の影響

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (2)地震発生領域の連動を考慮した検討 詳細パラメータスタディ①の影響検討(波源モデル位置(東西位置を補間))

第771回審査会合 資料1-3 P150 再掲

・詳細パラメータスタディ①の因子(波源モデル位置(東西位置を補間するように設定))が評価水位に与える影響を検討した。※

・波源モデル位置(東西位置を補間するように設定)を変化させたケースの水位の変動幅(上昇側:2.2m, 下降側:1.6m)は概略パラメータスタディの変動幅(上昇側:5.3m, 下降側:1.7m)に比べて小さい。

※水位上昇側の評価水位は施設護岸又は防波壁,水位下降側の評価水位は2号炉取水口の値

詳細-4 波源モデル位置(東西位置を補間するように設定)の影響

パラメータスタディの影響検討のまとめ

第771回審査会合 資料1-3 P151 再掲

・概略パラメータスタディ及び詳細パラメータスタディ①について水位変動幅を算定した結果は以下のとおり。
 ・水位上昇側については、概略パラメータスタディは詳細パラメータスタディ①と比較すると、水位変動幅が大きくなっており、影響が大きい因子(支配的因子)で行われていることを確認した。
 ・水位下降側については、影響因子と水位変動幅の相関が無いことを確認した。

(水位上	.昇側)
------	------

影響口で	水位変動幅									
影音凶士	概略パラメータスタディ	詳細パラメータスタディ①								
断層上縁深さ	-	2.3								
走向	-	3.3								
大すべり域位置	5.3	4.3								
波源モデル位置・傾斜方向	3.3	2.2								
傾斜角	3.2	_								

(水位下降側)

影響回っ	水位到	変動幅				
影 書 囚 士	概略パラメータスタディ	詳細パラメータスタディ①				
断層上縁深さ	-	1.2				
走向	-	1.8				
大すべり域位置	1.7	2.1				
波源モデル位置・傾斜方向	1.3	1.6				
傾斜角	1.1	_				

・上記検討より、水位下降側においては影響因子と水位変動幅に相関がないことから、水位上昇側及び下降側において追加のパラメータスタディとして影響因子を組み合わせた検討(詳細パラメータスタディ②)及び大すべり域位置を更に細かく移動する検討(詳細パラメータスタディ③)を実施した。
 ・以上の検討を踏まえると、敷地への影響が最も大きいケースを選定できていると考える。

(135)

■ <u>F17断層の解析結果</u>

:評価水位が最大となるケースの評価水位

	大すべり域の 位置の設定	評価水位(T.P.m)		
波源		上昇側	下降側	
		施設護岸又は防波壁	2 号炉取水口(東)	2 号炉取水口(西)
F17断層	大すべり域右側	+2.3	-1.2	-1.2
	大すべり域中央	+2. 1	-1.4	-1.4
	大すべり域左側	+2.0	-1.3	-1.3
	大すべり域隣接LLR	+2.0	-1.3	-1.3
	大すべり域隣接LRR	+2.2	-1.3	-1.3

136)

Ⅰ <u>F24断層の解析結果</u>

波源	大すべり域の 位置の設定	評価水位(T.P. m)		
		上昇側	下降側	
		施設護岸又は防波壁	2号炉取水口(東)	2号炉取水口(西)
F24断層	大すべり域右側	+3.2	-2.3	-2.3
	大すべり域中央	+3.3	-2.4	-2.4
	大すべり域左側	+2.9	-2. 1	-2.1
	大すべり域隣接LRRR	+3.3	-2.4	-2.3
	大すべり域隣接LRLR	+3.3	-2.3	-2.3
	大すべり域隣接LLRR	+3.4	-2.2	-2.2
	大すべり域隣接LLLR	+3.3	-2. 3	-2.3

138)

■ <u>F24断層の評価水位最高・最低ケースの波源モデル</u>

評価水位最高ケース		
断層長さ	132km	
断層幅	28. 2km	
平均すべり量	6.00m	
上縁深さ	1km	
走向	21°, 349°	
傾斜角	30°, 30°	
すべり角	74°, 80°	
Mw	7.9	
大すべり域の	大すべり域	
配置	隣接LLRR	

評価水位最低ケース		
断層長さ	132km	
断層幅	28.2km	
平均すべり量	6. 00m	
上縁深さ	1km	
走向	21°, 349°	
傾斜角	30°, 30°	
すべり角	74°, 80°	
Mw	7.9	
大すべり域の	大すべり域	
配置	中央	

地盤変動量分布図

※ []内の数値は評価水位の小数点第二位まで記載(m)

	大すべり域の 位置の設定	評価水位(T.P. m)※		
波源		上昇側	下降側	
		施設護岸又は防波壁	2 号炉取水口(東)	2 号炉取水口(西)
F28断層	大すべり域右側	+3.6 [3.565]	-1.9	-1.9
	大すべり域中央	+3.4	-1.6	-1.6
	大すべり域左側	+3.3	-1.6	-1.6
	大すべり域隣接LLR	+3.3	-1.6	-1.6
	大すべり域隣接LRR	+3.6 [3.568]	-1.8	-1.8

:評価水位が最大となるケースの評価水位

40

大すべり域隣接LLR

:評価水位が最大となるケースの評価水位

■ <u>F30断層の評価水位最高・最低ケースの波源モデル</u>

評価水位最高ケース		
断増長さ	153km	
断層幅	19.3km	
平均すべり量	6. 00m	
上縁深さ	1km	
走向	202°, 247°	
傾斜角	45°, 45°	
すべり角	98°, 120°	
Mw	7.8	
大すべり域の	大すべり域	
配置	隣接LRR	

評価水位最低ケース		
断層長さ	153km	
断層幅	19.3km	
平均すべり量	6.00m	
上縁深さ	1km	
走向	202°, 247°	
傾斜角	45°, 45°	
すべり角	98°, 120°	
Mw	7.8	
大すべり域の	大すべり域	
配置	隣接LLR	

地盤変動量分布図

評価水位最高ケース(水位上昇側) F28断層, 大すべり域隣接LRR

【循環水ポンプ運転時】

※初期水位は、潮位及び取水による損失水頭を考慮した水位
3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (3)国土交通省・内閣府・文部科学省(2014)に基づく検討

評価水位最低ケース(水位下降側) F24断層, 大すべり域中央

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(4)地方自治体独自の波源モデルに基づく検討

秋田県(2013)の波源モデルの概要

第771回審査会合 資料1-3 P162 再掲

145

・秋田県(2013)は,「想定外を作らない」という考え方に基づき,地震調査研究推進本部(2003)を参考に 震源を3つのブロック(海域A,海域B及び海域C)に分け,それらの単独地震及び連動地震を想定した波源を秋田県独自断層として設定している。なお,最新の科学的・技術的知見を踏まえると,本波源モデルによる津波が発生する可能性は極めて低いと考える(次頁参照)が,安全側の評価を実施する観点から,地方自治体独自の波源モデルに基づく検討を実施している。

秋田県(2013)が数値シミュレーションを実施した波源モデル位置図

・地方自治体独自の波源モデルに基づく検討では、秋田県(2013)が想定した波源モデルのうち、津波の敷地への影響が大きくなると考えられる「海域A+海域B+海域C」(Mw最大8.69)の波源モデルに基づき数値シミュレーションを実施しており、敷地に与える影響は、鳥取県(2012)と比べて小さいことを確認している。なお、秋田県(2016)⁽⁴⁵⁾においては、津波浸水想定を見直ししており、対象波源としては、秋田県(2013)に加え、現在の科学的知見を基に、国土交通省・内閣府・文部科学省(2014)が公表した4断層(F20断層(Mw7.8), F24断層(Mw7.86), F28断層(Mw7.67), F30断層(Mw7.79))を設定している。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(4)地方自治体独自の波源モデルに基づく検討

石川県(2012)の波源モデルの概要

第771回審査会合 資料1-3 P163 再掲

146)

・石川県(2012)が想定した波源モデルのうち、日本海東縁部に位置する波源モデルに基づき数値シミュレーションを 実施する。

石川県(2012)が数値シミュレーションを実施した 波源モデル位置図 __... 石川県(2012)が数値シミュレーションを実施した 波源モデルのパラメーター覧

断層名		1 日本海東縁部	2 能登半島 東方沖	3 能登半島 北方沖	4 石川県西方沖
想定 マグニチュード	Mw	7.99	7.58	7.66	7.44
気象庁 マグニチュード	Mj	8.54	8.03	8.13	7.85
気象庁 マグニチュード	Mj	8.54	8.02	8.13	7.85
断層長(km)	L	167	82	95	65
中畐 (km)	W	17.32	17.32	17.32	17.32
地震モーメント (N・m)	Мо	1.22E+21	2.95E+20	3.89E+20	1.82E+20
すべり量 (m)	D	12.01	5.94	6.76	4.62
上縁深さ(km)	d	0	0	0	C
傾斜角	δ	60	60	60	60
	2	90	90	90	90

検討対象波源モデル

石川県(2012)を引用

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(4)地方自治体独自の波源モデルに基づく検討 福井県(2012)の波源モデルの概要 第771回審査会合 資料1-3 P164 再掲

・福井県(2012)は, 海底地質調査により判明している活断層について, 地形状況等から, 複数の活断層が連動する 可能性を最大限考慮し, 4つの波源モデルを想定した。

・福井県(2012)が想定した波源モデルのうち、日本海東縁部に位置する波源モデルに基づき数値シミュレーションを 実施する。(石川県(2012)と同様の波源モデル)

福井県(2012)が数値シミュレーションを実施した 波源モデル位置図 _____

福井県(2012)を引用

福井県(2012)が数値シミュレーションを実施した 波源モデルのパラメーター覧

	マク゛ニチュート゛	地震により隆起する地盤					
選定波源	Μw	すべり量	長さ、	. 幅			
①野坂 β 及び大陸棚外縁断層	728	3 7 3 m	長さ49km	幅1732 km			
②越前堆列付近断層	7 4 4	4 6 2 m	長さ65km	幅1732 km			
③若狭海丘列付近断層	7 م 7	6 4 3 m	長さ90 km	幅1732 km			
④佐渡島北方沖断層	799	1201m	長さ167km	幅1732 km			

福井県(2012)を引用・加筆

検討対象波源モデル

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(4)地方自治体独自の波源モデルに基づく検討

島根県(2012)の波源モデルの概要

第771回審査会合 資料1-3 P165 再掲

・島根県(2012)では、佐渡島北方沖に中国電力が想定したMw7.85の地震に加え、参考ケースとして佐渡島北方沖の地 震空白域全体が破壊すると想定したMw8.01の地震を独自に想定していることから、地震規模が大きい「佐渡島北方沖 (M8.01)」の波源モデルに基づき、当社による数値シミュレーションを実施する。

・なお、島根県(2016)では、Mw8.01の地震を棄却し、日本海東縁部を波源とする津波として国土交通省・内閣府・文部 科学省(2014)の波源モデル(F24断層(Mw7.9))により津波浸水想定を実施している。

島根県(2012)が数値シミュレーションを実施した 波源モデルのパラメーター覧

				· · · · ·				9
想定地震	地震規模	深さ(km)	走向(度)	傾斜(度)	すべり角(度)	長さ(km)	幅(km)	すべり量(m)
出雲市沖合(断層北傾斜)	M7.5	3.0	267	45	90	38.4	17.0	3.2
出雲市沖合(断層南傾斜)	M7.5	3.0	87	45	90	38.4	17.0	3.2
浜田市沖合	M7.3	3.0	232	45	90	27.0	17.0	2.4
隠岐北西沖	M7.4	3.0	154	45	-90	36.0	17.0	2.8
佐渡島北方沖(M7.85)	M7.85	0.0	20	60	90	131.1	17.3	9.4
【参考】佐渡島北方沖(M8.01)	M8.01	0.0	20	60	90	222.7	17.3	9.5

島根県(2012)より引用・加筆

検討対象波源モデル

島根県(2012)より引用

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(4)地方自治体独自の波源モデルに基づく検討

鳥取県(2012)の波源モデルの概要

第771回審査会合 資料1-3 P166 再掲

149

- ・鳥取県(2012)が日本海東縁部に想定した波源モデルを以下に示す。
 - ・中国電力が想定しているMw7.85の波源モデル(佐渡北方沖(パターン1))
 - ・佐渡島北方沖の空白域全体が活動した場合の地震を想定し、空白域の最も沖合に設定した波源モデル(佐渡北 方沖(パターン2))
- ・鳥取県(2012)が日本海東縁部に想定した波源のうち、断層が長い佐渡北方沖(パターン2)について、津波の敷地 への影響が大きくなると考えられる傾斜角60°の波源モデルに基づき数値シミュレーションを実施する。 ・考慮する不確かさは、傾斜方向とする。

・震災後,鳥取県が独自に設定した鳥取県(2012)で津波浸水想定を実施していたが, 最新の科学的知見に基づいたものとして2014年に国土交通省・内閣府・文部科学 省(2014)の断層モデルが公表されたことに伴い,鳥取県(2015)⁽⁴⁶⁾として見直しされ ている。

・鳥取県(2015)では、日本海東縁部を波源とする津波として、鳥取県(2012)の波源に加え、国土交通省・内閣府・文部科学省(2014)の断層モデル(F17, F24, F28断層)により津波浸水想定を実施している。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(4)地方自治体独自の波源モデルに基づく検討

津波水位評価地点における水位の時刻歴波形

第771回審査会合 資料1-3 P168 再掲

150)

評価水位最高ケース(水位上昇側) 鳥取県(2012), 西傾斜 【循環水ポンプ運転時】

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討 (4)地方自治体独自の波源モデルに基づく検討

(151)

津波水位評価地点における水位の時刻歴波形

第771回審査会合 資料1-3 P169 再掲

評価水位最低ケース(水位下降側) 鳥取県(2012), 西傾斜

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(5)波源設定の妥当性検討 地震発生領域の連動を考慮した検討による津波のパラメータ比較

第771回審査会合 資料1-3 P170 再掲

・地震発生領域の連動を考慮した検討に伴う波源モデル(350km)について,地方自治体独自の波源モデルに基づく検討で実施した鳥取 県(2012)及び島根県(2012)の波源モデルと比較する。

	地震発生領域の連動を考慮した	地方自治体独自の波源モデルに基づく検討					
パラメータ	源モデル(350km)	鳥取県(2012)	-	島根県(2012) ^{※1}		
	根拠	設定値	根拠	設定値	根拠	設定値	
断層長さL・ 位置	地震調査研究推進本部(2003) に示される「青森県西方沖」の 領域と「佐渡島北方沖」の領域 の連動を考慮して設定	350km	佐渡島北方沖の空白域全 体が活動した場合の想定 地震。空白域の最も沖合 に設定	222. 2km	佐渡島北方沖について, 震源が 断層によらず, 対象領域全体に 及んだ場合を想定して設定	222. 7km	
地震モーメント M ₀	M ₀ =µ DS により算出	1.70×10²¹ (N∙m)	武村(1998)により算出 logM ₀ =2logL+16.64	2.16 × 10²¹ (N∙m)	Mo=µ DS により算出	1.28 × 10 ²¹ (N∙m)	
モーメントマク゛ニ チュート゛Mw	Kanamori(1977)により算出 Mw=(logM ₀ -9.1) /1.5	8.09 (傾斜角60° の場合)	Kanamori(1977)により算出 Mw=(logM ₀ -9.1) /1.5	8. 16	Kanamori(1977)により算出 Mw=(logM ₀ -9.1) /1.5	8. 01	
剛性率 レ	土木学会に基づき設定	3.5×10^{10} (N/m ²)	_	3.5×10^{10} (N/m ²)	_	3.5×10^{10} (N/m ²)	
傾斜角	土木学会に基づき設定	30°, 45°, 60°	_	45°, 60°	_	60°	
すべり角	土木学会に基づき安全側に設定	90°	津波高が最大となる値	90°	_	90°	
断層上縁深 さ	土木学会に基づき設定	0km, 1km, 2. 5km, 5km	_	Okm	_	Okm	
モデル	2011年東北地方太平洋沖地震 を踏まえ設定	不均質 モデル	_	均質 モデル	_	均質 モデル	
すべり量 D	長大断層であることから, 土木学 会に検討事例として記載されて いる国土交通省・内閣府・文部 科学省(2014)より設定 また, 背景領域のすべり量は根 本ほか(2009)に基づき設定 ^{※2}	大すべり域:12m 背景領域:4m 平均:6m	M₀=µ DSにより, すべり量 を算出 (ここで, S:断層面積)	16m	M7.85で設定した佐渡島北方沖 のすべり量9.4mを超えるように 設定	9. 5m	

※1 島根県(2016)において,島根県(2012)に想定した波源モデルを棄却し,国土交通省・内閣府・文部科学省(2014)の波源モデル(F24断層(Mw7.9))に より津波浸水想定を実施するよう見直しがなされている。(鳥取県(2012)の概要をP149に,島根県(2012)の概要をP148に示す。)

※2 すべり量の設定根拠については、P115~119を参照。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(5)波源設定の妥当性検討

検討方針

第771回審査会合 資料1-3 P171 再掲

153)

(1) 地震発生領域の連動を考慮した検討

・地震発生領域の連動を考慮した検討の波源モデル(350km)は不均質モデルとして最大すべり量12m, 平均すべり量6mと設定しているが、「①最大すべり量の比較検討」及び「②すべりの均質・不均質性の検 討」により、波源モデル設定の妥当性を検討する。併せて、鳥取県(2012)の波源モデル設定を地震発生 領域の連動を考慮した検討に採用するか否かを検討する。

①最大すべり量の比較検討

・日本海東縁部に想定される地震発生領域の連動を考慮した検討において設定した最大すべり量12mの保守性を確認するため、最大すべり量12mが他の長大断層に係るスケーリング則を用いて算出される 最大すべり量を上回ることを確認する。

- 1) 地震調査研究推進本部(2016)⁽⁴⁷⁾ の方法
- 2) 土木学会(2016) の方法
- ②すべりの均質・不均質性の検討
 - ・長大断層に関する最新の知見を踏まえ、すべりの均質・不均質性について検討を行う。

(2)鳥取県(2012)の検討の位置付け

・地方自治体独自の波源モデルである鳥取県(2012)の波源モデルについて,最新の科学的・技術的知見を踏まえ,検討の位置付けについて検討する。

(3)日本海東縁部に想定される地震による津波のパラメータ設定の考え方

・日本海東縁部の各検討(土木学会に基づく検討,地震発生領域の連動を考慮した検討及び地方自治体独自の波源モデルによる検討)におけるパラメータ設定の考え方を整理する。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(5)波源設定の妥当性検討 地震発生領域の連動を考慮した検討(①最大すべり量の比較検討)

第771回審査会合 資料1-3 P172 再掲

・日本海東縁部に想定される地震発生領域の連動を考慮した検討において設定した最大すべり量と以下に示す長大断層に関するその他のスケーリング則を用いて算出される最大すべり量及び鳥取県(2012)のすべり量とを比較した。
1)地震調査研究推進本部(2016)の方法
2)土木学会(2016)の方法

	近年の長大断層に対			
	日本海東縁部に想定される地震発生	他の地震規模に係るスク れる最	鳥取県(2012)の	
	領域の運動を考慮 した検討において 設定した最大すべ り量	地震調査研究推進本 部(2016)	すべり量	
大すべり域の すべり量	12m	5.72m ^{涨1}	9.0m ^{%2}	16m
				<1算出根拠をP159に示す。 <2算出根拠をP160に示す。

- ・日本海東縁部に想定される地震発生領域の連動を考慮した検討に用いる最大すべり量は、長大断層に関するその他のスケーリング則を用いて算出される最大すべり量を上回っていることを確認した。
- ・<u>鳥取県(2012)において採用している断層長さが約220kmの長大断層のすべり量16mは、以下に示す理由により</u> 地震発生領域の連動を考慮した検討には採用しない。
- ▶ 地震調査研究推進本部(2016)及び土木学会(2016)に示される近年の長大断層に対するスケーリング則を用
- いて算出される最大すべり量を大幅に上回る設定であること
- ▶ 鳥取県(2012)が採用している武村(1998)のスケーリング則が準拠している内陸地殻内地震のデータの最大 長さが85kmであり、それ以上の断層長さは外挿領域となっていること(P115参照)

第632回審査会合以降,加筆・修正した内容を下線で示す。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(5)波源設定の妥当性検討 地震発生領域の連動を考慮した検討(②すべりの均質・不均質性の検討)

第771回審査会合 資料1-3 P173 再掲

・長大断層に関するすべりの均質・不均質性については、以下に示す知見が得られている。
1) 2011年東北地方太平洋沖地震において、すべりの不均質性により大きなすべりが生じている(P161参照)。

2)国土交通省・内閣府・文部科学省(2014)及びMurotani et al.(2015)等の最新の知見(P117,118参照) においては、地震のすべりの不均質性を考慮したスケーリング則が提案されている。

- ・上記より、長大断層に関する最新の知見を踏まえると、長大断層の検討にあたってはすべりの不均 質性を考慮するのが適当と考える。
- ・<u>鳥取県(2012)において採用している断層長さ約220kmの長大断層に対して武村(1998)を適用し,かつ,</u> <u>そのすべり量を均質に設定する方法は、以下に示す理由により地震発生領域の連動を考慮した検討</u> <u>には採用しない。</u>
- ▶国土交通省・内閣府・文部科学省(2014)及びMurotani et al.(2015)等の最新の知見を踏まえると、す べりの不均質性を考慮することが適当であると考えられること

第632回審査会合以降,加筆・修正した内容を下線で示す。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(5)波源設定の妥当性検討 鳥取県(2012)の波源モデルによる検討の位置付け 第771回審査会合資料1-3 P174 再掲

・日本海東縁部に想定される地震による津波のうち,地方自治体独自の波源モデルである鳥取県(2012)の検討の位置付けを整理した。

	地方自治体独自の波源モデル (鳥取県(2012))
すべり量	16m
すべりの均質・不均質性	均質
波源モデルの妥当性 についての評価	・鳥取県(2012)のすべり量16mは, <u>地震調査研究推進本部(2016)及び土木学会(2016)に示される近年の長大断層に対するスケーリング則を用いて算出される最大すべり量を上回る設定</u> であること,また,すべりの均質・不均質性についても断層長さ約220kmの長大断層に対して武村(1998)を適用し,かつ,そのすべり量を均質に設定している <u>が,国土交通省・内閣府・文部科学省(2014)及びMurotani et al.(2015)等の最新の知見を踏まえると,すべりの不均質性を考慮することが適当であると考えられる。</u> (P117,118参照)
上記評価を踏まえた 検討の位置付け	・安全側の評価を実施する観点及び地方自治体による地域防災計画との整合を図る観点から、鳥取県が独自に設定している波源モデルに対して数値シミュレーションを実施する。しかしながら、これら波源は、地震調査研究推進本部(2016)及び国土交通省・内閣府・文部科学省(2014)等の長大断層に関する最新の科学的・技術的知見を踏まえた設定でないため、パラメータスタディによる不確かさの考慮は行わない。

第632回審査会合以降,加筆・修正した内容を下線で示す。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(5)波源設定の妥当性検討

(157)

鳥取県(2012)の波源モデルによる検討の位置付け(日本海東縁部に想定される地震による津波のパラメータ設定の考え方)

第771回審査会合 資料1-3 P175 再掲

・日本海東縁部に想定される地震による津波の各検討において考慮した波源モデルの設定の妥当性について確認することを目的に、主なパラメータについて以下のとおり整理した。

	上十世合に	地之	地震発生領域の			
	エネ子会に 基づく検討	石川県(2012)・ 福井県(2012)	島根県(2012)	鳥取県(2012)	秋田県(2013)	連動を考慮した 検討
断層長さ	131.1km	167km	222.7km	222.2km	350km (地震発生層深さ46km)	350km
Mw	7.85	7.99	8.01	8.16	8.69	8.09~8.25
すべり量	9.44m (傾斜角60 [°] の場合)	12.01m	9.5m	16m	8.11m (平均)	大すべり域:12m 背景領域:4m 平均:6m
すべりの均質・ 不均質性	均質	均質	均質	均質	不均質	不均質
すべり量を求め るためのスケー リング則	武村 (1998) (土木学会によりMw7.85) までのスケーリング則 の適用について検証済)	武村(1998)	Mw7.85のすべり量 9.44mを上回るよう 設定	武村(1998)	$\log D = 10^{-10.2}$ × (µ S) ^{0.5}	国土交通省・内閣 府・文部科学省 (2014)

・土木学会に基づく検討については、武村(1998)が準拠している内陸地殻内地震のデータの外挿領域の断層長さであるが、当該パラメータは土木学 会によりMw7.85までの適用について検証済みのパラメータ(P20参照)であり、パラメータの設定は妥当であると考える。

・地方自治体独自の波源モデルのうち石川県(2012)・福井県(2012)及び鳥取県(2012)については、土木学会で検証済み以上の地震規模に対して武村 (1998)を適用し、かつ、それを均質に設定している<u>こと</u>、また島根県(2012)については、土木学会で検証済み以上のすべり量を設定し、かつ、それを均 質に設定していること、秋田県(2013)については<u>地質構造の観点から想定できない地震発生層深さ46kmを設定していることから、国土交通省・内閣</u> 府・文部科学省(2014)及びMurotani et al.(2015)等の最新の知見を踏まえた設定でない。

・地震発生領域の連動を考慮した検討については、すべり量及びすべりの均質・不均質性について長大断層に関する最新の知見(P117,118参照)を踏まえて設定しており、パラメータ設定は妥当であると考える。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(5)波源設定の妥当性検討

まとめ

第771回審査会合 資料1-3 P176 再掲

158)

(1) 地震発生領域の連動を考慮した検討

①最大すべり量の比較検討

- ・日本海東縁部に想定される地震発生領域の連動を考慮した検討に用いる最大すべり量は、長大断層に関するその他のス ケーリング則を用いて算出される最大すべり量を上回っていることを確認した。
- ・<u>鳥取県(2012)において採用している断層長さが約220kmの長大断層のすべり量16mは</u>,以下に示す理由により地震発生領 域の連動を考慮した検討には採用しない。
- ▶ 地震調査研究推進本部(2016)及び土木学会(2016)に示される近年の長大断層に対するスケーリング則を用いて算出される最大すべり量を大幅に上回る設定であること
- ▶鳥取県(2012)が採用している武村(1998)のスケーリング則が準拠している内陸地設内地震のデータの最大長さが85kmであり、それ以上の断層長さは外挿領域となっていること(P115参照)

②すべりの均質・不均質性の検討

・長大断層に関する最新の知見を踏まえると、長大断層の検討にあたってはすべりの不均質性を考慮するのが適当と考える。
・鳥取県(2012)において採用している断層長さ約220kmの長大断層に対して武村(1998)を適用し、かつ、そのすべり量を均質
に設定する方法は、以下に示す理由により地震発生領域の連動を考慮した検討には採用しない。

▶国土交通省・内閣府・文部科学省(2014)及びMurotani et al.(2015)等の最新の知見を踏まえると、すべりの不均質性を考慮 することが適当であると考えられること

(2)鳥取県(2012)の検討の位置付け

・安全側の評価を実施する観点及び地方自治体による地域防災計画との整合を図る観点から,鳥取県が独自に設定している波源モデルに対して数値シミュレーションを実施する。しかしながら,これら波源は,<u>地震調査研究推進本部(2016)及び国</u> 土交通省・内閣府・文部科学省(2014)等の長大断層に関する最新の科学的・技術的知見を踏まえた設定でないため,パラ メータスタディによる不確かさの考慮は行わない。

(3)日本海東縁部に想定される地震による津波のパラメータ設定の考え方

・日本海東縁部の検討におけるパラメータ設定について,地方自治体独自の波源モデルによる検討においては,国土交通 <u>省・内閣府・文部科学省(2014)及びMurotani et al.(2015)等の最新の知見を踏まえた設定でないが,</u>土木学会に基づく検討及 び地震発生領域の連動を考慮した検討においては,土木学会及び最新の知見に基づき設定しているため,妥当であることが 確認できた。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(5)波源設定の妥当性検討 最大すべり量の比較検討(地震調査研究推進本部(2016)の方法)

第771回審査会合 資料1-3 P177 再掲

・地震調査研究推進本部(2016)では、活断層で発生する地震の地震規模(地震モーメントM₀(N·m))を震源断層の面 積S(km²)との経験的関係より算出するとし、地震の規模に応じて3段階でS-M₀関係式を使い分けることとしている。

【地震調査研究推進本部(2016)のS-M₀関係式】

$M_0 = (S/2.23 \times 10^{15})^{3/2} \times 10^{-7}$	Mw<6.5	Somerville et al.(1999)の式
$M_0 = (S/4.24 \times 10^{11})^2 \times 10^{-7}$	6.5≦Mw≦7.4	入倉・三宅(2001)の式
$M_0 = S \times 10^{17}$	7.4 <mw< td=""><td>Murotani et al.(2015)の式</td></mw<>	Murotani et al.(2015)の式
<i>Mw</i> :モーメントマグニチュード <i>M_o</i> :地)	震モーメント(N・m) S:港	新層面積(km²)

平均すべり量D(m) = M_0/μ S μ = 3.5 × 10¹⁰(N/m²)

・波源モデル(350km)はMw7.4以上であるため、上式より算定される平均すべり量は2.86mとなり、 <u>最大すべり量は5.72mとなる</u>。 3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(5)波源設定の妥当性検討

最大すべり量の比較検討(土木学会(2016)の方法)

第771回審査会合 資料1-3 P178 再掲

・土木学会(2016)では、国土交通省・内閣府・文部科学省(2014)を参照して、日本海東縁部の地震規模(地震モーメントM₀(N・m))を断層面積S(m²)との経験的関係式より算出するとし、地震の規模に応じて3段階でS-M₀関係式を使い分ける検討例を示している。

【土木学会(2016)のS-M₀関係式】

 $M_0 = (S/2.23 \times 10^9)^{3/2} \times 10^{-7}$ Mw < 6.5Somerville et al.(1999)の式 $M_0 = (S/4.24 \times 10^5)^2 \times 10^{-7}$ $6.5 \le Mw < 7.7$ 入倉・三宅(2001)の式 日本海東縁部の既往地震の平均すべり量4.5mで $M_o = 1.575 \times S \times 10^{11}$ $7.7 \leq M_W$ 頭打ちとなる関係式(剛性率µ:3.5×10¹⁰(N/m²)) *Mw*:モーメントマグニチュード M_{0} : 地震モーメント(N·m) S:断層面積(m²) $\mu = 3.5 \times 10^{10} (N/m^2)$ 平均すべり量D(m) = M₀/µ S ※世界の地殻内地震の地震規模と地殻厚さを検討した結果,地殻厚さが40km未満の領域ではMw8.0を超える地震が発生していないことを踏まえ, Mwの上限は8.0とされている。

・日本海東縁部に想定される地震発生領域の連動を考慮した検討の波源モデルはMw7.7以上である ため、上式より算定される平均すべり量は4.5mとなり、最大すべり量は9.0mとなる。

3.地震による津波の想定 3-3 日本海東縁部に想定される地震による津波の検討(5)波源設定の妥当性検討 161) すべりの均質・不均質性についての検討(地震調査研究推進本部(2012))

第771回審査会合 資料1-3 P179 再掲

・地震調査研究推進本部(2012) (48) に示されるすべり分布によると, 2011年東北地方太平洋沖地震に おいて、すべりの不均質性により大きなすべりが生じた領域が確認できる。

1.全体概要

2.既往津波の検討

3.地震による津波の想定

4.地震以外の要因に起因する津波の想定

- 4-1 海底地すべりに起因する津波の検討
- (1)評価対象地すべり地形の選定
- (2)評価対象地すべりによる敷地への影響検討
- (3) 数値シミュレーションの実施
- 4-2 陸上地すべりに起因する津波の検討
- (1)地すべり地形の抽出
- (2)津波高の概略検討
- (3)詳細数値シミュレーション
- 4-3 岩盤崩壊に起因する津波の検討
- 4-6 隠岐諸島における陸上地すべり及び岩盤崩壊
- 5.津波起因事象の重畳による津波想定
- 6.基準津波の策定
- 7.防波堤の影響検討
- 8.津波堆積物調査
- 9.津波の伝播特性
- 10.取水性の確保
- 11.年超過確率の参照
- 12.基準津波に対する安全性(砂移動評価)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討 (1)評価対象地すべり地形の選定 文献調査による地すべり地形抽出結果の妥当性

第771回審査会合 資料1-3 P181 再揭

・平石ほか(2000)⁽⁴⁹⁾によると、1998年7月17日のパプアニューギニアでの津波について、地震と海底地すべりの重 畳による津波として数値シミュレーションを実施すると、津波痕跡高の再現性が高いことから、 パプアニューギニ アでの津波を地震と海底地すべりの重畳による津波とされている。また、日本近海を対象とし、地震と海底地す べりが重畳した場合の数値シミュレーションを実施し、地震と海底地すべりが重畳した場合、津波水位が局所的 に高くなること等が明らかにされている。

- ・平石ほか(2000)によると、数値シミュレーションの対象とする日本近海を選定する際、海底地すべりが生じ易い海 底地形として以下の3点が挙げられている。
 - (1)プレート境界またはトラフの隣接海域
 - ②沖合に急勾配斜面が存在

③河川が流入し、軟弱堆積層が存在

富山湾における水深分布 (平石ほか(2000)より引用・加筆)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定結果(エリアA) 第771回審査会合資料1-3 P182 再掲

(164)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討 (1)評価対象地すべり地形の選定 海底地すべりの概略体積算定結果(エリアB) 第771回審査会合 資料1-3 P183 再掲

(参考)

平均概略

2.63

0.49

0.19

エリアBの地すべり地形

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定結果(エリアC) 第771回審査会合資料1-3 P184 再掲

地すべ り番号	投影面積 (km ²)	測線	厚さ (m) [※]	概略体積 (km ³)	(参考) 平均厚さ (m)	(参考) 平均概略体積 (km ³)
C-1	1.37	86T-G	30	0.04	30	0.04
		86T-G	10	0.12		
	12. 31	86T-11	180	2.22	68	0.84
C-2		86T-12	40	0.49		
		86T-F	70	0.86		
		86T-10	40	0.49		
0-2	2.25	86T-F	20	0.07	05	0.08
C-3	3.35	86T-8	30	0.10	25	
	凡例。	 赤字 :各地	すべりでは	▲積が最大と	なるもの	

※ 厚さの判読結果をP187~192に示す。

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討 (1)評価対象地すべり地形の選定

海底地すべりの概略体積算定結果(エリアD)

第771回審査会合 資料1-3 P185 再掲

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-X)

168)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-X)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-V-1)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-U-1)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-T-1)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討 (1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-S-1)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討 (1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-21B)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-22B)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-24)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-M-1)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-L-1)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-I-1)

1500m (2.0sec<u>)</u>

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-12)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討 (1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-13)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-15)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討 (1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-19A)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討 (1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-20A)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討 (1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-G)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-F)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-8)

189)

(2.0sec)

7:30

7:00

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-10)

190

1500m (2.0sec)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-11)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86T-12)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-T)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(772-16-1)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-S)

195)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-R)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-Q)

第771回審査会合 資料1-3 P215 再揭

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-P)

二 日 //入 / 木 上 10 57 (0011 1 / 第771回審査会合 資料1-3 P216 再揭

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-O)

第771回審査会合 資料1-3 P217 再揭

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-E-2)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討 (1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-D-2)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-C-2)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-B)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-1)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-3-1)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-4)

4.地震以外の要因による津波の想定 4-1海底地すべりに起因する津波の検討(1)評価対象地すべり地形の選定 海底地すべりの概略体積算定に用いた海上音波探査記録(86H-5)

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施

パラメータの設定(二層流モデル)

第771回審査会合 資料1−3 P226 再掲

・日本海側の知見であることを考慮し、下層の底面粗度係数についてはKawamata et al.(2005)⁽⁵³⁾に
基づき0.40(m^{-1/3}・s)と設定した。

下層の底面 粗度係数 n ₂ (m ^{-1/3} ・s)	設定根拠
0.12	Kawamata et al.(2005)および今村ほか(2001) ⁽⁵⁴⁾ の実験の再現計算での設定値
0.40	Kawamata et al.(2005)の1741年渡島大島火山津波の再現計算での設定値
0.08	Maeno and Imamura(2007) ⁽⁵⁵⁾ の鬼界カルデラ噴火時の解析での設定値

・崩壊物の密度が大きいほど、二層流モデルによる津波の評価水位は高くなると考えられることから、 崩壊物密度については松本ほか(1998)⁽⁵⁶⁾に基づき2.0(g/cm³)と設定した。

崩壊物密度 ρ ₂ (g/cm³)	設定根拠
1.25	Maeno and Imamura(2007)の鬼界カルデラ噴火時の設定値
2.0	松本ほか(1998)の1741年渡島大島火山津波の再現計算での設定値

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施 (209

土砂層厚の時系列推移

第771回審査会合 資料1-3 P227 再掲

復元地形(数値シミュレーションで使用)

解析上考慮する土塊範囲

・二層流モデルによる津波解析結果について、各時刻における土砂層厚の時系列推移を整理した。

任の地すへりと比へ、移動土塊は体積が大ざく、移動距離か 長いと考えられ、安全側の評価になっていることを確認した。

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施 海底地すべりの同時崩壊に係る検討 第771回審査会合資料1-3 P228 再掲

■検討概要

・山本ほか(1989)による「鳥取沖海底地質図」に示される地すべり地形A-3と周辺の他の地すべり地 形との同時崩壊について検討する。

※海上音波探査記録より判読される地すべり地形は次頁以降に示す。

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施 海底地すべりの同時崩壊に係る検討 (3)数値シミュレーションの実施 (21)

 ・地すべり地形A-3と周辺の他の地すべり地形の間には原地形が残存しているため、地すべり地形A-3は周辺の他の 地すべり地形と同時に崩壊していないと考えられる。

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施 海底地すべりの同時崩壊に係る検討 (3)数値シミュレーションの実施 (2)

 ・地すべり地形A-3と周辺の他の地すべり地形の間には原地形が残存しているため、地すべり地形A-3は周辺の他の 地すべり地形と同時に崩壊していないと考えられる。

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施 海底地すべりの同時崩壊に係る検討 (3)数値シミュレーションの実施 (21)

■地すべり①の復元地形及びすべり面の設定範囲

・地すべり地形A-3と周辺の他の地すべり地形の間には原地形が残存しているため、地すべり地形A-3は周辺の他の地すべり地形と同時に崩壊していないと考えられる。
・地すべり①を対象とした二層流モデルによる数値シミュレーションにおいては、等高線図から判読しうる最大限の範囲となるよう、地すべり地形A-3に加え、周辺の地すべり地形も含んだ土塊範囲を設定した。

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施 海底地すべりの同時崩壊に係る検討 (3)数値シミュレーションの実施 第771回審査会合 資料1-3 P232 再掲

■土塊範囲を拡大した場合の数値シミュレーション

・地すべり①の解析上考慮する土塊範囲は、安全側の評価となっているが、仮に地すべり①の解析 上考慮する土塊範囲を更に拡大し、二層流モデルによる数値シミュレーションをしても、評価水位は ほぼ同等であることを確認した。

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施 津波の伝播状況(二層流モデル(当初想定した土塊規模)) 第575回審査会合 資料1-3 P215 再掲

■ <u>地すべり① (二層流モデル) (0分~10分)</u>

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討(3)数値シミュレーションの実施 津波の伝播状況(二層流モデル(当初想定した土塊規模)) 第575回審査会合 資料1-3 P216 再掲

■ <u>地すべり① (二層流モデル) (12分~22分)</u>

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施 津波の伝播状況(二層流モデル(当初想定した土塊規模)) 第575回審査会合 資料1-3 P217 再掲

■ <u>地すべり① (二層流モデル) (24分~34分)</u>

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討(3)数値シミュレーションの実施 津波の伝播状況(二層流モデル(当初想定した土塊規模)) 第575回審査会合 資料1-3 P218 再掲

■ <u>地すべり① (二層流モデル) (36分~46分)</u>

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討(3)数値シミュレーションの実施 津波の伝播状況(二層流モデル(当初想定した土塊規模)) 第575回審査会合 資料1-3 P219 再掲

■ <u>地すべり① (二層流モデル) (48分~58分)</u>

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討(3)数値シミュレーションの実施 津波の伝播状況(二層流モデル(当初想定した土塊規模)) 第575回審査会合 資料1-3 P220 再掲

■ <u>地すべり① (二層流モデル) (60分~70分)</u>

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討(3)数値シミュレーションの実施 津波の伝播状況(二層流モデル(当初想定した土塊規模)) 第575回審査会合 資料1-3 P221 再掲

■ <u>地すべり① (二層流モデル) (72分~82分)</u>

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討(3)数値シミュレーションの実施 津波の伝播状況(二層流モデル(当初想定した土塊規模)) 第575回審査会合 資料1-3 P222 再掲

■ <u>地すべり① (二層流モデル) (84分~94分)</u>

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討(3)数値シミュレーションの実施 津波の伝播状況(二層流モデル(当初想定した土塊規模)) 第575回審査会合 資料1-3 P223 再掲

■ <u>地すべり① (二層流モデル) (96分~100分)</u>

※初期水位は、潮位及び取水による損失水頭を考慮した水位

2号炉取水口(東)

2号炉取水口(西)

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施 万寿津波の検討 海底地すべり地形の抽出(1) 第575回審査会合 資料1-3 P226 再掲

・過去に万寿津波を引き起こしたとされる文献もあることから、念のため、当海域で海底地すべり地形を想定 するとともに、数値シミュレーションにより津波の敷地への影響を検討する。

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討(3)数値シミュレーションの実施 万寿津波の検討 海底地すべり地形の抽出(2) 第575回審査会合 資料1-3 P227 再掲

【海底地すべりの想定方法】

- ・箕浦ほか(2014)に基づき当社が海底地すべりを想定した範囲を対象として,以下に示す海底地すべり地形の特徴に 着目し,地すべり地形を想定する。想定に当たっては,日本水路協会(2008b)⁽⁵⁸⁾を用いた。
 - (海底地すべり地形の特徴)
 - ①地すべり土塊が認定しにくいので滑落崖に着目する。
 - ②平面図上において,斜面下方へ開く馬蹄形,半円形,コの字型を示している。
- ③地すべりの境界部は平面的に連続しており,滑らかな形状を示している。

【海底地すべり地形の抽出】

・箕浦ほか(2014)に「800m近い落差を有する海底地すべり」と記載されていることを踏まえ、想定した海底地すべり地 形から、500m以上の落差を有し比較的規模の大きい評価対象海底地すべり地形M①~M④を抽出した。

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討(3)数値シミュレーションの実施 万寿津波の検討 海底地すべり規模の算定(1) 第575回審査会合 資料1-3 P228 再掲

・評価対象海底地すべり地形M①~M④の地すべりの規模(体積)を算定し、最大となる地すべり地形を選定する。 ・体積は、「投影面積」と「厚さ」を乗じることで算定する。

【投影面積の算定】

海底地形図に基づき想定した地すべり地形の両端を直線で結んだ範囲の面積を投影面積とする。

【厚さの算定】

・海底地形図から作成した断面図から,地すべり発生前の地形を復元し,復元地形と現在の海底面との距離が最も厚い箇所を地すべり厚さとする。

日本水路協会(2008b)より引用・加筆

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討(3)数値シミュレーションの実施 万寿津波の検討 海底地すべり規模の算定(2) 第575回審査会合 資料1-3 P229 再掲

日本水路協会(2008b)より引用・加筆

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討(3)数値シミュレーションの実施 万寿津波の検討 海底地すべり規模の算定(3) 第575回審査会合 資料1-3 P230 再掲

地すべり 番号	投影面積 (km ²)	厚さ(m)	体積(km ³)		
M1	27.97	79	2. 21		
M2	79.80	101	8.06		
M3	105. 55	93	9. 82		
M(4)	63.86	92	5.88		

・体積が最大となる地すべり地形は、地すべりM③である。 ・地すべりM③を対象に、Watts et al.(2005))⁽⁵⁹⁾の方法を 用いた数値シミュレーションを実施する。

日本水路協会(2008b)より引用・加筆

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討(3)数値シミュレーションの実施 万寿津波の検討 海底地すべり地形の形状設定 第575回審査会合 資料1-3 P231 再掲

Watts et al.(2005)の方法を用いた数値シミュレーションの実施にあたっては、地すべりM③の中心付近の幅を平面図 から、長さ及び厚さは海底地形図より作成した断面図から読み取った。

地すべり	長さ(m)	厚さ(m)	幅(m)
地すべり M③	13,549	93	8,300

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施 (23)

万寿津波の検討 Watts et al. (2005)の方法による検討結果

第575回審査会合 資料1-3 P232 加筆·修正

・Watts et al.(2005)の方法を用いた数値シミュレーションにより、敷地における津波高さを検討した。

地すべり	評価水位(T.P. m)				
	上昇側	下降側			
	施設護岸 又は防波壁	2号炉 取水口(東)	2号炉 取水口(西)		
地すべりM③ +2.0		-1.3	-1.3		
(参考)海底地すべ りに起因する津波 (地すべり①) (Watts et al.(2005) の方法)	+2. 7	-2.6	-2.6		

地すべりM③の数値シミュレーション結果

・地すべりM③による津波の敷地への影響は、海底地すべりに起因する津波の検討(地すべり①)と比較して小さいことを確認した。また、益田市以西で津波水位が比較的大きくなっており、文献の記載内容と整合することを確認した。

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施 万寿津波の検討 Watts et al.(2005)の方法で使用するパラメータ 第575回審査会合 資料1-3 P233 再掲

パラメータ設定

		設定値 地すべり M3	設定根拠		{			
Y	崩壊部比重	1.85	Watts et al.(2005)に示される値		1			
b(m)	崩壊部長さ	13, 549	復元地形から判読		ş			\Diamond
T(m)	崩壊部厚さ	93	復元地形から判読		C			S. S
w(m)	崩壊部幅	8, 300	地すべりブロック		1	0.5		島根原子力発電所
d(m)	初期の崩壊部 水深	707	崩壊部頂点の水深	and a second	N		-1.0 -1.5 -0.5	
θ (deg)	斜面勾配	3.1	崩壊部の傾斜勾配)] ~
C _d	抗力係数	1.0	Watts et al.(2005)に示される値	P				~ ~ Emar
C _m	付加質量係数	1.0	Watts et al.(2005)に示される値	ă b internet {				
Ψ	底面摩擦係数	0.0	Watts et al.(2005)に示される値					
u _t (m/s)	最終速度	97. 915	$u_t = \sqrt{gd} \sqrt{\frac{B\sin\theta}{d} \frac{\pi(\gamma - 1)}{2C_d} \left(1 - \frac{\tan\psi}{\tan\theta}\right)}$					
a ₀ (m²/s)	初期加速度	0. 158	$a_0 = g \sin \theta \left(\frac{\gamma - 1}{\gamma + C_m} \right) \left(1 - \frac{\tan \psi}{\tan \theta} \right)$					
t ₀ (sec)	特性時間	619.5	$t_0 = \frac{u_t}{a_0}$			波源振幅	の推定値	l
S ₀ (m)	特性距離	60, 655. 8	$s_0 = \frac{u^2}{a_0}$			η _{0,2D} (m)	地すべりM(3) 20.28	
λ ₀ (m)	特性津波波長	51, 563. 8	$\lambda_0 = t_0 \sqrt{gd}$			η _{0,3D} (m)	2. 81	

万寿津波の検討 当社の想定した津波高さと津波堆積物調査結果との比較

第575回審査会合 資料1-3 P234 再掲

10.0

9.5 9.0 8.5

8.0 7.5 7.0 6.5 6.0

5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

1.0

・箕浦ほか(2014)においては、試算により津波堆積物の分布を説明できたとされていることから、その津波堆積物の調査結果と当社が益田沖に想定した海底地すべり(地すべりM③)に対する数値シミュレーション結果を比較する。
・なお、比較にあたっては、箕浦ほか(2014)において試算結果の詳細が記載されていないことから、津波堆積物について記載されているMinoura and Nakata(1994)^{(60)※}による津波堆積物の調査結果を採用する。

※次頁にMinoura and Nakata(1994)における津波堆積物調査の概要を記載する。

【地すべりM③の数値シミュレーション結果(益田市沿岸)】

・地すべりM③の数値シミュレーションの結果、益田市沿岸での津波高さは標高5~6.5m程度であり、 Minoura and Nakata(1994)による津波堆積物調査結果(標高約0~0.5m)を上回ると考えられる。

4.地震以外の要因による津波の想定 4-1 海底地すべりに起因する津波の検討 (3)数値シミュレーションの実施

万寿津波の検討 万寿津波に関する文献(Minoura and Nakata(1994))

第575回審査会合 資料1-3 P235 再掲

・Minoura and Nakata (1994) によると、 益田川沿いで実施したボーリング及びトレンチ調査結果より、 海岸 から約500mの地点でのみ、 津波堆積物が確認されており、 津波堆積物が確認されたのは標高0~0.5mとされて いる。

