

3. 島根半島の海岸地形の形成要因に関する検討

3. 島根半島の海岸地形の形成要因に関する検討 (1)検討概要

検討概要(1/2)

- ・日本海に面する島根半島北岸は、主に岩石海岸から成り、潮間帯やそれよりも高い位置に形成された 波食棚(ベンチ)が認められる。
- ・空中写真判読により海岸地形の分類を行い、ベンチ等の地形の抽出を行った。
- ・敷地周辺の地質・地質構造を踏まえ、島根半島の海岸地形(ベンチ)の形成要因に関する検討を行った。 ・島根半島の海岸地形と地震性隆起地域の海岸地形との比較検討を行った。

検討項目(目次)	検討内容及び検討結果		
(2)島根半島の海岸地 形調査	 ・空中写真判読により海岸地形の分類を行い、ベンチ等の地形の抽出を行った。 ・ベンチの発達程度(分布)に地域的な偏りが認められ、潮間帯より上位に発達するベンチの形成高度も様々なものが存在し、定高性や系統的な高度変化などの規則性は確認されない。 		
(3)敷地周辺の断層	・敷地周辺陸域及び海域において、震源として考慮する活断層を評価した。 ・日本海に面する島根半島北岸において、震源として考慮する活断層は認め られない。		
(4)島根半島の地質構 造発達史	・島根半島周辺における応力場は、後期中新世では「南北圧縮」であるが、鮮新世~更新世では「東西圧縮」であるとされている。 ・東西方向の断層・褶曲(宍道褶曲帯)は中期中新世頃~後期中新世に形成したとされている。		
(5)島根半島の隆起要 因に関する検討	・ <u>島根半島周辺の地殻変動は第四紀後期には安定または若干の沈降傾向に</u> あると考えられる。		

3. 島根半島の海岸地形の形成要因に関する検討 (1)検討概要

検討概要(2/2)

検討項目(目次)	調査・検討項目及び検討結果		
(6)島根半島の海岸地 形(ベンチ)の形成 要因に関する検討	 ・敷地近傍において認められる海岸地形(ベンチ)の形成要因を検討するため、 倉内湾、沖島付近、桂島付近、潜戸付近において、詳細な地形データを取 得する空中写真測量、岩種・岩相の確認等を行う地表地質踏査を実施した。 ・確認されたベンチには、<u>潮間帯に位置しているものと潮間帯より上位に位置 しているものが存在するが、いずれのベンチも高波浪時には波が到達する</u> 範囲にあり、明らかに離水したベンチは認められない。また、ベンチは、広が りや連続性に乏しい。 ・ベンチの高度差は、岩種・岩相の侵食抵抗差や波浪の影響度合を反映して いると考えられる。 ・以上のことから、<u>島根半島沿岸に様々な高度で発達するベンチは、現在を</u> 含む波浪等の影響を受ける過程で、岩種・岩相の侵食抵抗差を反映して形 成されたと考えられる。 		
(7)地震性隆起地域の	 ・地震性隆起が示唆される浜田市畳ヶ浦海岸付近の海岸地形の現地確認を 行い、島根半島の海岸地形と比較し、特徴の差異を確認した。 		
海岸地形との比較 検討	・ <u>島根半島の海岸地形は、地震性隆起が示唆される地域の海岸地形の特徴</u> と大きく異なることを確認した。		

・島根半島沿岸に様々な高度で発達するベンチは,現在を含む波浪等の影響を受ける過程で,岩種・岩相の侵食抵抗 差を反映して形成されたと考えられる。

- 3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査
- ・空中写真判読により海岸地形の分類を行い、ベンチ等の地形の抽出を行った。
- ・ベンチは「潮間帯ベンチ」と「潮間帯より上位のベンチ」に区分した。
- ・抽出されたベンチを対象に, 航空レーザー測量により作成した2mDEM及び国土地理院が公開している基盤地図情報の航空レーザー測 量及び空中写真測量による5mDEMを用いて高度分布図を作成した(次頁参照)。なお, 潮間帯ベンチについては, 海面下より取得された 精度の劣るデータが含まれるため, ベンチ高度分布図の最下段にベンチの分布のみを表示した。また, 海岸地形高度の評価にあたって は, 後述する境験潮所(気象庁)の観測値を島根半島周辺の潮位として代表させた。

島根半島沿岸域全域のベンチ発達状況

- ・空中写真判読の結果, 西端の出雲市十六島から東端の地蔵崎にかけて, 潮間帯及び潮間帯より上位に発達するベンチが確認される。 ベンチの幅は, 数m~数十m程度のものが大半である。
- ・ベンチの平面的な分布については、島根半島沿岸域全域に発達せず、数十kmスケールあるいは数kmスケールでみると、発達程度の地域的な偏りが認められることから、ベンチの発達程度(分布密度)より、1a)出雲市十六島~釡浦、1b)出雲市塩津~小伊津、2a)松江市恵曇~潜戸、2b)松江市多古~千酌、3)松江市北浦~地蔵崎の5地域に区分した。ベンチの発達程度による地域区分は、島根半島を構成する数kmオーダーの山地・丘陵や海岸線の出入りなどの地形単元と概ね調和的である。なお、1b)及び2a)の間の小伊津~恵曇には、ベンチは全く発達していない。

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査

・区分されたいずれの地域にも、「潮間帯ベンチ」と「潮間帯より上位のベンチ」がともに発達しているが、潮間帯より上位のベンチは、標高2.5m以下の多様な高度で平坦面が形成され、定高性や系統的な高度変化などの規則性は認められない。

・1a), 1b)及び3)地域では, 2a)及び2b)地域と比較し, 潮間帯より上位のベンチ高度が高くなる傾向が認められる。

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査

・より詳細な空中写真判読結果を縮尺1/25,000地形図に示す。

・海岸地形高度の評価にあたっては、後述する境験潮所(気象庁)の観測値を島根半島周辺の潮位として代表させる。

99

3.島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 (参考)海岸地形調査(標高計測の例)

- ・島根半島沿岸のベンチは、ほとんどの場合海岸線と直交方向の長さが、数十m程度の小規模なものであり、縮尺1/5,000等高線図では細かな高度変化を読み取ることができない。このため、DEMデータ、陰影図、潮間帯より上位のベンチのポリゴンを PC上で同時に重合表示させ、1つのベンチに対して複数の地形断面を作成し、現地状況を表現している地形断面を採用した。
- ・採用した地形断面より標高を読み取りベンチの発達高度としたが、ベンチが傾斜する場合や凹凸がある場合には、その最大値 と最小値を読み取った。いくつかの模式的な読み取り例を下図に示す。
- ・発電所を0kmとするN78°E方向(島根半島の大局的な配列方向)の投影線を横軸,標高を縦軸とするグラフに,読み取った標高をプロットしてベンチ高度分布図を作成した。なお,発電所からの距離は,発電所から東を+,西を一で表示した。高度分布図には、ベンチ標高の最大値および最小値を縦線で表示し、ベンチを代表する高度である最大値に×を付した。
- ・なお、潮間帯ベンチについては、海面下より取得された精度の劣るデータが含まれるため、ベンチ高度分布図の最下段にベン チの分布のみを青太線で表示した。

標高計測の例

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[1])

地理院地図を用いて作成

500 1000 1500

[1]

2000m

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[1])

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[2])

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[2])

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[3])

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[3])

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[4])

1/25,000ベンチ分布図 図郭

2mDEM (航空レーザー測量) 範囲

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[4])

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[5])

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[5])

図郭の範囲

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[6])

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[6])

図郭の範囲

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[7])

3. 島根半島の海岸地形の形成要因に関する検討 (2)島根半島の海岸地形調査 海岸地形調査(図郭[7])

図郭の範囲

ベンチ標高の最大値

DEM5B 国土地理院5mDEM(空中写真測量)による読み取り

3.島根半島の海岸地形の形成要因に関する検討 (3)敷地周辺の断層 敷地周辺陸域の断層活動性評価

番号	断層名	評価長さ (🥕)
1~9	しんじ 宍道断層	約39km
(16)	たいしゃしょうじょう 大社衝上断層	約28km
(13)	た 田の戸断層	約5km
14)	おおふなやまひがし 大船山東断層	約4km
1	ひがしきまち しんたばた 東来待-新田畑断層	約11km
18	ぶっきょうざんきた 仏経山北断層	約5km
19	^{みとやきた} 三刀屋北断層	約7km
21)	はんばいしはら 半場一石原断層	約5km
22)	^{ふ ベ} 布部断層	約8km
23)	^{ひがしいんべ} 東忌部断層	約3km
24)	やない 柳井断層	約2km
25)	さんのうじ山王寺断層	約3km
26)	ままい 大井断層	約5km

an j			
	番号	断層名	評価結果 (一一)
	10	^{ふるとん} 古殿[北][南]断層	
	1	^{かき、うちきたがわ} 垣の内北側断層	6 - 6 - 1
	12	やまなかふきん 山中付近断層) 組織 し 地形
	15	^{まんだ ふきん} 万田付近断層	
	20	^{きすきみなみ} 木次南断層	

115)

3.島根半島の海岸地形の形成要因に関する検討 (3)敷地周辺の断層 敷地前面海域の断層活動性評価

凡例

断屑	督名	評価長さ	
F一Ⅲ断層			
F-R	7断層	約48.0km (3連動を考慮)	
F-V	7断層		
F _K -1断層	F一VII断層	約 10 0km	
	K-3撓曲	<u></u> ምን⊺9.0km	
K-4	ŀ撓曲		
K-6撓曲		約19.0km (の連動た書素)	
K-7撓曲		(3連期を考慮)	
K-1	撓曲	敷地周辺海域の断層(F _{Ko} 断	
К-2撓曲		層)との連動を考慮(評価長さ は,約36km)	

断層名	評価結果	
F-I断層	B _{2E} 層(中部更新統)に変位や変形	
F一Ⅱ断層	を与えていない。	
F一VI断層	C層(鮮新統~下部更新統)に変 位や変形を与えていない。	
K-5撓曲	B _{2E} 層(中部更新統)に変位や変形 を与えていない。	
F一①断層	後期更新世以降の断層活動を示	
F一②断層	咳りる変位で変形は認められな い。	

・日本海に面する島根半島北岸において、震源として考慮する活断層は認められない。

3. 島根半島の海岸地形の形成要因に関する検討 (4)島根半島の地質構造発達史 山陰地域における応力場の変遷(新第三紀中新世~第四紀)

伊藤・荒戸(1999)より引用・加筆

・伊藤・荒戸(1999)⁽²¹⁾によると、山陰沖海域における応力場は、後期中新世では「南北圧縮」であるが、鮮新世〜更新 世では「東西圧縮」であるとされている。 ・東西方向の断層・褶曲(宍道褶曲帯)は中期中新世頃〜後期中新世に形成されたとしている。

3. 島根半島の海岸地形の形成要因に関する検討 (4)島根半島の地質構造発達史 山陰地域における応力場の変遷(新第三紀中新世~第四紀)

第271回審査会合 資料1-1 P147 加筆·修正

山陰地域における応力場の変遷(新第三紀中新世〜第四紀)

・鹿野ほか(1994)等によると、中期中新世頃(14~15Ma頃)から後期中新世頃まで主応力(σ_{Hmax})の方向はNS方向であり、宍道褶曲帯(東西ないし東北東-西南西方向の軸を有する褶曲構造と同方向の逆断層)が形成されたとしている。
 ・多井(1973)、鹿野ほか(1994)等によると、宍道褶曲帯を形成した運動は、和久羅山安山岩噴出(後期中新世末期、5~6Ma頃)前に終了したと考えられているとしている。
 ・なお、前期中新世頃から中期中新世初頭までの構造運動として、東西方向の正断層運動と堆積盆の

形成があったとされている。

鹿野ほか(1994)に一部加筆

3. 島根半島の海岸地形の形成要因に関する検討 (4)島根半島の地質構造発達史 山陰地域の広域応力場

(119)

第309回審査会合 資料2-2 P8 再掲

【新第三紀中新世】

伊藤・荒戸(1999), 鹿野・吉田(1985), 鹿野ほか(1994)等によると, 中期~後期中新世の時代 は南北圧縮応力場で形成された<u>東西ないし東北東-西南西方向の軸を有する褶曲構造と宍道断</u> <u>層に代表される同方向の逆断層</u>が形成された時期であり, このような構造運動は<u>少なくとも5~6</u> <u>Ma頃</u>にはほぼ完成されたとされている。

【新第三紀鮮新世末期~前期更新世~現在】

伊藤・荒戸(1999), 鎌田(1999)⁽²²⁾等によると, フィリピン海プレートが約6 Malに北北西方向に沈 み込み運動を開始し, 2 ~1.5 Ma頃に西北西方向へ沈み込み方向を変えたとし, この頃に西南日 本におけるテクトニクスの大きな転換があったとされている。

そのため, 宍道断層に代表される概ね東西方向の断層の一部は, <u>2 ~1.5 Ma頃から現在まで続</u> <u>く東西圧縮応力場のもとで, 主として右横ずれの断層活動</u>を始めたと推察される。

3. 島根半島の海岸地形の形成要因に関する検討 (5)島根半島の隆起要因に関する検討 文献調査(島根半島の隆起速度)

(121)

・藤原ほか(2005)⁽²³⁾は、全国を対象に最近約10万年間の隆起速度を検討している。海岸部ではMIS5e段丘、平野から河川中流部ではTT法(最終氷期(MIS2)と一つ前の氷期(MIS6)に形成された河岸段丘の比高から隆起速度を算出する方法)を用いて隆起速度を推定し、これらの地形学的方法によるデータを統合して、隆起量分布図を作成している。
 ・藤原ほか(2005)によると、島根半島周辺の最近約10万年間の隆起速度は「~0.0m/千年」であり、隆起域に属さないとされている。

Fig. 2 Regional distribution of uplift rates during the last 100,000 years in Japan

藤原ほか(2005)より引用・加筆

3. 島根半島の海岸地形の形成要因に関する検討 (5)島根半島の隆起要因に関する検討 文献調査(島根半島の隆起速度)

・小池・町田編(2001)⁽²⁴⁾は、MIS5に形成された海成段丘の旧汀線高度から求めた平均変位速度と変形の波長や振幅 に基づき、さらに主な海岸平野の沈降速度の資料を加味して、日本列島の海岸地域を6タイプに分類している。

・小池・町田編(2001)によると、<u>島根半島周辺は、「長波長、小振幅で隆起速度0.1m/千年以下の安定かやや沈降傾向</u>にある地域」とされている。

3.島根半島の海岸地形の形成要因に関する検討 (5)島根半島の隆起要因に関する検討 地形調査及び地表地質踏査(島根半島の段丘面分布)

123

 ・地形調査結果及び地表地質踏査結果によると、敷地周辺では段丘地形の発達が悪く、段丘堆積物の 分布は極めて断片的であるが、宍道湖・中海低地帯の南岸沿いでは、何段かの段丘面を形成している。
 ・<u>島根半島沿岸において、隆起運動を示唆する海成段丘は認められない</u>。なお、敷地周辺30km以遠に 位置する日御碕周辺のみ海成段丘が認められる。

島根半島周辺の段丘面分布図

・島根半島周辺の地殻変動は第四紀後期には安定または若干の沈降傾向にあると考えられる。

3. 島根半島の海岸地形の形成要因に関する検討(6)島根半島の海岸地形(ベンチ)の形成要因に関する検討

a. 文献調査(海岸地形(ベンチ)の形成要因)

- ・三位(1963)⁽²⁵⁾は、岩石海岸の野外観察及び岩石の風化実験から、潮間帯内では乾湿繰り返しなどにより風化した岩石が波によって侵食除去され平坦なベンチが残されるとし、この過程を海水面風化と名付けた。また、三位(1963)によると、外洋海岸や岬では高位まで波によって水没され、海水面風化を受ける機会が多く、そのため内湾海岸における潮間帯と同様な性質が高位にまで達する結果、外洋や岬では比較的高位にベンチが形成されるとしている。
- ・豊島(1967)⁽²⁶⁾は、海食台(常に海面下にある、やや平滑な岩床面)上には漂礫や円礫・砂などの堆積物がのっているが、ベンチ(主として潮間帯にある平滑な岩床面)には堆積物を原則として欠いていることから、海食台を形成する主な営力は砂礫による削磨作用、ベンチの主な営力は風化作用であると推定した。また、山陰の各岩石地域におけるベンチの高度分布から、湾奥から湾口に向かって、ベンチ内縁の高度が増大することを認め、波高が湾奥から湾口に向かって増大する度合いと一致していることを示し、海岸地形の発達過程を下図のように類型化した。

3. 島根半島の海岸地形の形成要因に関する検討(6)島根半島の海岸地形(ベンチ)の形成要因に関する検討

a. 文献調査(海岸地形(ベンチ)の形成要因)

- ・高橋(1972)⁽²⁷⁾は,九州平戸島海岸におけるベンチの地形を,潮間帯波食棚・高潮位波食棚・暴風波波食棚の3つの 類型に区分し,以下の特徴を見出した。
- ①潮間帯波食棚は、海岸の湾入部に存在し、海岸の突出部に近づくにつれて、高潮位波食棚に漸移する。波食棚面には水磨された礫がのっている。
- ②高潮位波食棚は、海岸の突出部に発達し、波食棚面上には水磨された礫はほとんど認められないが、風化した岩 屑がのっていることがある。
- ③暴風波波食棚は,海岸の突出部に存在し,暴風波時に波しぶきを受ける高さに形成される。構成岩石の節理等の 条件に支配された形態となる。
- ・高橋(1972)によると、ベンチは岬から内湾にかけて下図に示すような形態で変化するとされ、「潮間帯波食棚の形成には、海水面風化だけでなく、波食を重視しなければならないと考える。海水面風化と波食の比重は、湾入部の湾奥から岬にかけて次第に変化し、波食の比重が減じ、海水面風化の比重が増し、潮間帯波食棚から、高潮位波食棚へと中間形態をとりながら、漸移していくと推論する。」としている。

岬から内湾にかけての波食棚の変化の模式図

高橋(1972)より引用

・現世のベンチは、波の静穏な内湾の奥部では波食作用が優勢で比較的低位に形成されるが、波高の高くなる外洋に 向かって乾湿繰り返し等による風化部の削剥が著しくなり、高位に形成される傾向にあると考えられる。

3. 島根半島の海岸地形の形成要因に関する検討(6)島根半島の海岸地形(ベンチ)の形成要因に関する検討

a. 文献調査(完新世の海水準変動)(参考)

番号	遺跡名	海水面(汀線) 標高	時 代	内容	文献名
1	をだ話ざ貝塚	0m~+1.0m	縄文時代前期	貝塚層の標高	島根県鹿島町教育委員会編(1997) ⁽²⁸⁾
و	② 島根大学構内遺跡 (橋縄手地区)	+0.9m	縄文時代中期	塩水湿地性泥層の上限標高	島根大学埋蔵文化財調査研究センター 編(1997) ⁽²⁹⁾
2		+1.4m以上	4580±80yBP	海成シルト層の上限標高(含自然材 の ¹⁴ C年代)	島根大学埋蔵文化財調査研究センター 編(2002) ⁽³⁰⁾
3	サルガ鼻灯台洞窟 遺跡	+1.5m以下	縄文時代(時代未詳)	海食洞床の標高(基盤は未確認)	竹広ほか(1996) ⁽³¹⁾
4	^{ばんゆき} 鷭貫遺跡	+1.4m以下	縄文時代晩期以前	海成砂層の上限標高	建設省松江国道工事事務所·島根県教 育委員会編(1997) ⁽³²⁾
5	岩屋遺跡	+0.7m	弥生時代後期以前	旧波食棚の標高	水口ほか(1998) ⁽³³⁾

3. 島根半島の海岸地形の形成要因に関する検討(6)島根半島の海岸地形(ベンチ)の形成要因に関する検討

a. 文献調査(完新世の海水準変動)(参考)

・中村(2006)⁽³⁴⁾は,松江平野の低湿地遺跡群におけるK-Ah降灰前後から1,200年前頃にかけての汀線付近の堆積物の観察結果と,周辺の遺跡との関係から,山陰中部地域の海面変化について検討している。

・中村(2006)によると、本地域ではK-Ah降灰時の海水面高度は標高-0.5m付近にあり、5,000年前頃に標高1m程度の 最高面に達した後、海面高度は-0.4~1mの範囲で推移したとしている。

図 8 山陰中部地域における完新統海面変化曲線 K-Ah 降灰時の海面は標高-0.5m 付近にあり,5,000 年 前頃に標高 1m 前後の最高海面に達した.4,000 年前頃, 1,500 年前頃には若干の海面低下があった.図中の三角 は古海面高度を示す証拠の高さと年代を示す.1. 宍道湖 の中海層基底の¹⁴C年代,2.目久美遺跡の¹⁴C年代,3.K-Ah の産状,4.島根大学構内遺跡の塩水湿地堆積層上限 高度,5.西川津遺跡の河川堆積層,6.西安原遺跡の木 列状遺構,7.原の前遺跡の河川堆積層.

山陰中部地域における完新統海水準変化曲線

中村(2006)より引用

・縄文海進期(約6,000年前)の島根半島周辺の海面高度は、概ね0~1.5m程度の範囲にあると考えられる。

3. 島根半島の海岸地形の形成要因に関する検討(6)島根半島の海岸地形(ベンチ)の形成要因に関する検討

b. 潮位及び波浪

- ・島根半島周辺の潮位として,境験潮所(気象庁)及び島根原子力発電所のデータを整理した。境験潮所(気象庁)にお ける2015年から過去5年間の月毎の朔望潮位及び最高・最低潮位の変化を次頁に示す。
- ・境験潮所(気象庁)及び島根原子力発電所の観測潮位はほぼ同等の値を示し,<u>島根半島周辺の潮間帯は「T.P.+0.5m</u>
 <u>~T.P.+0.0m」である</u>。なお,海岸地形高度の評価に当たっては,境験潮所(気象庁)の観測値を島根半島周辺の潮位として代表させ,潮間帯をT.P.+0.51m~T.P.+0.05m(平均値T.P.+0.28m),最高潮位をT.P.+0.99mとする。

地理院地図より引用・加筆

潮位観測点の位置図

境験潮所(気象庁)及び島根原子力発電所の潮位

潮位	境験潮所(気象庁)	島根原子力発電所
最高潮位	T.P.+0.99m	T.P.+1.03m
朔望満潮位	T.P.+0.51m	T.P.+0.55m
朔望干潮位	T.P.+0.05m	T.P.+0.08m
平均潮位	T.P.+0.28m	T.P.+0.31m
備考	5年間 (2011~2015年)	5年間 (2011年1月~2015年12月))
- 3. 島根半島の海岸地形の形成要因に関する検討(6)島根半島の海岸地形(ベンチ)の形成要因に関する検討
- b. 潮位及び波浪

5年間(2011~2015年)の各月の朔望最高・最低潮位(境験潮所(気象庁))

3. 島根半島の海岸地形の形成要因に関する検討(6)島根半島の海岸地形(ベンチ)の形成要因に関する検討

b. 潮位及び波浪

- ・島根半島周辺の波浪として、鹿島波浪観測地点(気象庁)のデータを整理した。
- ・23年間(1984~2007年)の有義波高出現率(%)によると、5月~8月は0.5m以下 の波高が卓越し、9月~4月は0.5m以上の波高が卓越する。また、最大波高出 現率(%)によると、5月~8月は1.0m以下の最大波高が卓越し、9月~4月は 1.0m以上の最大波高が卓越する。
- ・潮位に有義波高(H_{1/3})を考慮した高度まで波は到達し,その発生頻度は以下 のとおりである。
 - 潮位+(H_{1/3}=0.5m以上)の発生頻度:70%
 - 潮位+(H_{1/3}=1.0m以上)の発生頻度:39%
 - 潮位+(H_{1/3}=1.5m以上)の発生頻度:22%

鹿島波浪観測地点(気象庁)の有義波高出現率(%) ――― 波高出現率50%の境界														
有義波高(m)	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	比率	累計
0.00~0.49	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	30.0	100.0
0.50~0.99	96.6	93.4	84.6	64.7	44.0	39.4	48.3	48.6	68.6	75.3	82.8	93.2	31.2	69.9
1.00~1.49	78.6	69.4	51.6	29.2	13.8	9.6	6.9	10.7	28.3	39.3	53.7	73.9	16.6	38.7
1.50~1.99	57.0	42.9	27.9	13.0	3.6	2.6	0.9	3.2	11.4	18.8	34.7	49.3	9.5	22.1
2.00~2.49	36.5	25.9	14.3	5.8	1.3	0.9	0.1	0.9	5.5	9.0	20.1	30.7	5.7	12.5
2.50~2.99	21.4	14.9	6.9	2.5	0.4	0.2	0.0	0.5	2.8	4.3	10.8	17.6	3.3	6.8
3.00~3.49	11.9	8.1	3.3	1.0	0.1	0.1	0.0	0.3	1.0	1.9	5.1	10.0	1.8	3.5
3.50~3.99	6.1	4.8	1.4	0.2	0.0	0.0	0.0	0.1	0.4	0.8	2.0	5.5	0.9	1.7
4.00以上	2.8	2.6	0.5	0.1	0.0	0.0	0.0	0.0	0.2	0.4	0.7	2.9	0.8	0.8

鹿島波浪観測地点(気象庁)の最大波高出現率(%)

最大波高(m)	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	比率	累計
0.00~0.99	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	37.1	100.0
1.00~1.99	94.4	89.9	77.8	57.1	38.5	31.2	35.1	36.5	58.9	66.1	78.1	91.2	31.0	62.9
2.00~2.99	71.3	59.2	42.4	21.9	9.5	6.6	3.9	6.8	19.6	30.5	47.0	64.5	16.2	31.8
3.00~3.99	43.9	31.6	18.6	7.9	2.0	1.4	0.4	1.6	7.4	12.3	25.2	36.7	7.9	15.7
4.00~4.99	24.0	16.6	8.0	3.2	0.5	0.3	0.0	0.5	3.0	5.3	12.8	19.7	4.3	7.7
5.00~5.99	11.7	8.3	3.3	0.9	0.1	0.1	0.0	0.2	1.0	2.0	5.6	9.6	2.1	3.5
6.00~6.99	4.9	3.9	1.1	0.2	0.0	0.0	0.0	0.0	0.3	0.8	1.9	4.4	0.9	1.4
7.00~7.99	1.8	2.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.6	1.8	0.4	0.5
8.00以上	0.6	0.6	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.6	0.1	0.1

※階級出現率の総和か100%となるよう局出現率の階級の値を靖数調整した

気象庁HPより引用・加筆

3. 島根半島の海岸地形の形成要因に関する検討(6)島根半島の海岸地形(ベンチ)の形成要因に関する検討

c. 空中写真測量及び地表地質踏査(調査位置図)

32

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ①桂島付近(地形・地質概要)

鹿野・吉田(1985)より引用・加筆

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ①桂島付近(地形・地質概要)

桂島西側の海岸 (安山岩溶岩が塊状を呈している)

安山岩溶岩塊状部 (拡大写真)

櫛島西側の海岸 (安山岩溶岩が自破砕状を呈している)

安山岩溶岩自破砕部 (拡大写真)

3. 島根半島の海岸地形の形成要因に関する検討(6) с. 空中写真測量及び地表地質踏査 ①桂島付近(空中写真測量(オルソ等高線図)及び地表地質踏査)

①桂島付近(地表地質踏査)

・ベンチは、ほぼ潮間帯付近に高度を有する相対的に低いものと、高潮 位付近に高度を有する相対的に高いものの2面が認められる。
・相対的に低いベンチは、ベンチ上面が平滑であるが、相対的に高いベ ンチ上面は、節理面に規制された侵食を受け、起伏に富んでいる。
・彌富・横田(2015)⁽³⁵⁾は、島根半島の桂島の柱状節理と斜面の構造を 整理し、波浪が誘因として急崖裾部でのオーバーハングと岩盤の緩み を生じ、柱状節理斜面を不安定な状態にしていることも考え得ること、ま た、節理面がつくる斜面表層の緩んだ岩盤部分において多数のブロッ クがトップリングしていくことで急崖斜面が後退するとしている。(次頁参 照)

桂島北端に発達する2面のベンチ

3. 島根半島の海岸地形の形成要因に関する検討(6) c. 空中写真測量及び地表地質踏査 ①桂島付近(文献調査(海岸地形(ベンチ)の形成要因))

第1図 烏根半烏の桂烏の位置,および対岸も含めた広域の地形図,地形図は1/25,000 「加賀」に基づいた。

第15図 溶岩ドームの構造に調和した急岸斜而におけるトップリング発生と斜而後退の概念図(上)と、それらを含めた溶岩ドーム形成から浸食・削剥をへて組織地形としての小丘出現にいたる概念図(下)。

彌富・横田(2015)より引用・加筆

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ①桂島付近(生物遺骸調査)

生物遺骸確認場所(平成28年9月15日 16時)

- ・桂島の北側の岬状に突出した箇所において、やや高いベンチ上でヤッコカンザシ及びキクザルガイの生物遺骸群集が確認された。
- ・遺骸は、ベンチ上面の小さな窪みに付着している。

①桂島付近(生物遺骸調査)

- ・生物遺骸が確認された場所は、満潮時に水没するベンチ上である。簡 易GPS測量の結果、生物遺骸群集の付着標高は、T.P.+0.47mであり、 朔望平均満潮位にほぼ対応する。なお、現地確認時(下記写真)の境 験潮所の潮位は、T.P.+0.55mであり、ベンチが水没している状況が確 認される。
- ・ヤッコカンザシの¹⁴C年代測定を実施した結果、「Modern」となり、現生の遺骸であることを確認した。また、桂島西岸の先端付近及び櫛島東岸のやや高いベンチ上の潮溜りで確認されており、これらの生息標高もT.P.+0.5m程度であった。

現地確認結果(平成28年9月16日 13時,境験潮所の潮位:T.P.+0.55m)

	生物遺骸確認場所 (T.P.+0.47m)			
				A. C.
		-		であるのでは
←N			S-	

②倉内湾(地形·地質概要)

湾入部(西側)の柱状節理と縞状構造の発達状況(遠望)

【地形】

- ・倉内湾は、敷地西方約2kmに位置する。倉内湾は、日本海に面する海岸線が大きく南に向けて湾入し、大局的には底幅の広い壺型の海岸線形状を示す。
 ・海岸線背後には、神堀山(標高約125m)を最高峰とする標高100m前後の山体を抱え、海岸までの斜面は急峻であり、湾内を取り巻くように断続的に海食崖・ベンチが形成されている。
- ・倉内湾の両側の湾入部には、最大高さ40~50mの海 食崖が発達し、海食崖前面に幅の狭いベンチが形成 されている。また、湾奥部の東西両端は、海岸線が 陸側に後退した入江で、礫浜が発達している。一方、 東西両端の入江を結ぶ海岸線は、出入りの激しい複 雑な形状を示すが、全体としてはやや海側に突出し、 起伏に富む岩場が形成されている。

【地質】

 ・構成する地質は、新第三紀の貫入岩(ドレライト)が 主体であり、湾入部の東側の先端付近にわずかに成 相寺層の凝灰岩・火山角礫岩が分布している。
 ・貫入岩(ドレライト)は、粗粒・塊状の硬質な岩質を呈 し、比較的高角度で北に傾斜する柱状節理のほか、 それに直交する縞状構造が発達している。

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ②倉内湾(空中写真測量(オルソ等高線図)及び地表地質踏査)

9

②倉内湾(地表地質踏査)

【湾入部(西側)】

・潮間帯よりもやや高い標高0.7m程度にベンチが形成されているが、高波浪時には波が到達する範囲内にある。形成されたベンチの幅は概して狭く、節理面に規制された 波食溝が発達し、起伏に富んでいる(写真①)。なお、固結・密着した白色脈に沿って 海食洞が2箇所で確認されたが、離水を示唆するノッチは確認されていない。

【湾奥部の突出部】

- ・湾奥突出部の海岸には、切立った海食崖は形成されていないが、海岸線が入り組み 起伏の著しい岩場が発達している。岩場の前面にベンチが形成されているが、発達 の程度は低く、幅が狭く起伏に富んでいる。
- ・岩場前面には、幅の狭いベンチが潮間帯よりもやや高い標高1.0m前後に形成されるが、ベンチ上に潮溜りが広がっており、高波浪時には波が十分に到達できる範囲にあると考えられる(写真②)。なお、岩場前面のベンチは、上面がコンクリート構造物で覆われているため一見平滑に見えるが、湾入部(西側)のベンチと同様に起伏に富んでいる。

湾入部(西側)の地形状況

湾奥部の地形状況

②倉内湾(地表地質踏査)

【湾奥部東端の入江】

- ・入江最奥部には礫浜が発達するが、西側の入江に比べ小規模で、礫径も
 0.1m程度と小型である。礫浜の海側には、ほぼ潮間帯付近に低いベンチが形成されている。ベンチ上面は平滑で、一部でごく薄い砂に覆われている(写真
 ③)。
- ・入江の両側は、海岸線が突出し小規模な岬状の海岸線をなし、海食崖が形成される。海食崖前面には、幅の狭いベンチが形成されている。このうち北側のベンチは、入江最奥部でほぼ朔望平均満潮位(標高0.5m程度)付近の高さで表面は平滑であるが、岬先端に向けて高さを増し、表面の起伏も著しくなる傾向が認められる(写真④)。
- ・貫入岩(ドレライト)中には、規則的な節理面が発達し、大局的には節理間隔が小さい場合(写真③)は潮間帯付近にベンチが形成され、節理間隔が大きい場合(写真④)は朔望平均満潮位(標高0.5m程度)付近にベンチが形成される。

湾奥部の地形状況

湾奥部の地形状況

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ②倉内湾(空中写真測量(段彩図))

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ②倉内湾(空中写真測量(地形断面図))

- ・硬質な貫入岩(ドレライト)で構成されベンチ標高は全般に高い傾向にある。
- ・湾入部に位置するKR1, KR5地点では、ベンチ標高は、朔望平均満潮位を超えている。
- 一方,湾奥部の東西端の入江付近のベンチ標高は、ほぼ潮間帯にあり、湾入部から湾奥部に向かってベンチ標高が 減少する傾向が認められる。特に、KR2地点では、入江の湾口部から湾奥部に向かってベンチ標高が漸移的に減少す る傾向が明瞭である。
- ・湾奥部のKR3地点は,標高1.5m程度の高い平坦面が形成されているが,周辺に同標高の平坦面が認められず分布範囲は局所的である。

3. 島根半島の海岸地形の形成要因に関する検討(6) c. 空中写真測量及び地表地質踏査 ② 倉内湾(文献調査(海岸地形(ベンチ)の形成要因))

- ・井詰・横田(2012)⁽³⁶⁾は,島根半島の小伊津海岸の砂岩・泥岩互層斜面にて斜面と層理面の幾何学的関係に基づく不安定化を評価している。 ・井詰・横田(2012)によると,<u>凸斜面の裾部では波食棚が残存し,凹斜面の裾部では波食棚が侵食によって欠如していることが多い</u>とされて いる。
- ・倉内湾において,湾入部では相対的に高いベンチが発達し,湾奥部の入江では,礫浜が広がり,低いベンチが形成されていることと整合する。

井詰・横田(2012)より引用・加筆

第4図 海岸と山体を横断する NW-SE 方向の地形・地質断面図(A-A', B-B'断面). 断面線の位置は第3図参照.

3. 島根半島の海岸地形の形成要因に関する検討(6) c. 空中写真測量及び地表地質踏査 ② 倉内湾(文献調査(海岸地形(ベンチ)の形成要因))

安山岩溶岩等の堆積

(高渋山層)

第1回 烏根半烏の桂烏の位置,および対岸も含めた広域の地形図,地形図は1/25,000 「加賀」に基づいた。

第巻ドームの構造に調和した急岸斜面におけるトップリング発生と斜面後退の概念図(上)と、それらを含めた溶岩ドーム形成から浸食・削剥をへて組織地形と

傾動+陸化+浸食·削剥

地表

浸食·削剥

しての小丘出現にいたる概念図(下).

彌富・横田(2015)より引用・加筆

溶岩部分の浸食・削剥

浸食·削剥

ドーム構造に沿った

小斤の出現(組織地形)

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ③沖島付近(地形・地質概要)

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ③沖島付近(空中写真測量(オルソ等高線図)及び地表地質踏査)

③沖島付近(地表地質踏査)

【湾東側湾口部】

- ・海食崖前面に潮間帯よりも明らかに高い標高0.5~1m前後に幅の狭い ベンチが連続的に形成されているが、岬先端に向かって高度が増す傾 向が認められる。ただし、高度は高波浪時には波が到達する範囲内にあ る(写真①)。
- ・分布する地質は、硬質な貫入岩で、高角度の規則的な柱状節理と、緩やかに山側に傾斜する縞状構造が発達している。ベンチ上面は、節理面に沿って波食溝が形成され、起伏に富んでいる。また、柱状節理等に規制された侵食を被り、ベンチは山側に緩く傾斜している(写真②)。

湾東側湾口部の地形状況

貫入岩に形成されたベンチ

③沖島付近(地表地質踏査)

【湾奥部】

- ・湾奥部の海岸線には、礫浜が連続し海食崖は形成されていないが、幅広のベンチが 発達している(写真③)。
- ・ベンチは洗濯板状を呈し、スレーキングにより侵食を受けやすい泥岩部は、海面下に 水没し、硬質な砂岩部は海面から突出したやや高い平坦面が形成されている。

【湾西側岬】

- ・岬を取り囲むようにベンチが発達している。ただし、内海に面した岬東側では、礫浜 が発達しベンチの形成は断続的である。一方、外海に面した西側では、海食崖が形 成され幅広のベンチが発達しているが、海食崖の裾部には、海成の砂礫が広範囲に 認められるほか、径1m以上の貫入岩の崩落岩塊が分布している。
- ・砂岩・泥岩互層からなるベンチは、湾奥部と同様に洗濯板状を呈しているが、砂岩が 卓越するほどベンチの高度が高く幅広く沖合まで突出して形成される傾向が認められ、ベンチの形成が岩石の侵食抵抗の度合いに規制されていることを明瞭に示して いる(写真④)。また、海面上に突出する砂岩の高さは、砂岩が厚いほど高くなる傾 向が認められる。

湾西側岬(東側)の地形状況

湾奥部の地形状況

③沖島付近(地表地質踏査)

【湾西側岬の先端付近】

- ・豊島(1978)⁽³⁷⁾は、島根半島沖の島において、砂岩上面の高度から0.4m面、0.7m面、 2.0m面の3面を認定している(次頁参照)。さらに、これらの面のうち2.0m面は、縄文 海進時に長期間にわたって2~2.5m程度の海水準期が続いたため形成された離水 ベンチであると推定している。豊島(1978)が作成した縦断面の詳細な位置は明らかで はないが、文献の記述と地表地質踏査の結果から、湾西側岬の先端付近と推察さ れる(写真⑤)。
- ・境験潮所の潮位観測結果と現地調査時の海面を基準とした計測の結果,砂岩上面の高度が約0.4m,1.1m,2.0mの3面認められ、このうち中位の面は豊島(1978)よりもやや高い。0.4m面は突出した砂岩の上面高度であり、一方、この面に相当する泥岩の上面高度は海水面に位置し、現成のベンチとみなせる。1.1m面は、薄い泥岩を挟む砂岩で構成され硬質な岩相を示している。また、2.0m面は、厚い砂岩からなり、陸に向かって高度が徐々に増している部分であること、同層準が分布している内海側に同様の面が認められないことからベンチとしては認定しがたい(写真⑥)。

湾西側岬の地形状況

湾西側岬2.0m面の地形状況

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ③(参考)沖島付近(文献調査(豊島(1978)))

・豊島(1978)は,島根半島沖の島において,砂岩上面の高度から0.4m面,0.7m面,2.0m面の3面を認定している。また, 平均海面上約2mの離水した波食棚は,縄文海進時に,長期間にわたって2~2.5m程度の海水準期が続き,形成され たものと推定している。

山陰地域の代表的な波食棚の縦断面図 豊島(1978)より引用・加筆

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ③沖島付近(空中写真測量(段彩図))

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ③沖島付近(空中写真測量(地形断面図))

56)

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ④ 潜戸付近(地形・地質概要)

(157

潜戸鼻北側

(東方向を望む)

潜戸鼻西側 (北方向を望む)

3. 島根半島の海岸地形の形成要因に関する検討(6) c. 空中写真測量及び地表地質踏査 ④潜戸付近(空中写真測量(オルソ等高線図)及び地表地質踏査)

④潜戸付近(地表地質踏査)

【北側】

- ・海岸線は、北西向きで外海に直接面しており、出入りが少なくほぼ直線状の形状を示している。ベンチの高度は調査範囲南側より相対的に高い。ベンチの海側には、高度が約0.2m程度低い平坦部が縁取っている(写真①)。
- ・北端の海食洞(新潜戸)壁面に、2段のノッチ状の窪みが形成されている(写真②)。このうち上位の窪みは、海食洞に向かって左側で最も窪んだ箇所(リトリートポイント)の標高が約7m、底面付近で約4mであり、 豊島(1978)の4mノッチに相当する高度である。しかし、海食洞の両側で標高が異なり、地質の傾斜に規制された侵食と考えられる。なお、 下段の窪みも、海面よりもやや高いが、高度的には周辺に広く形成された潮間帯より上位のベンチに相当するノッチと考えられる。

潜戸北側の海岸 (ベンチ縁辺の相対的に低い平坦部)

潜戸北側の海岸 (海食洞に形成された窪み)

④潜戸付近(地表地質踏查)

【西側】

- ・概ね西向きの海岸線で、陸側に湾入し入江が形成されている。北側よりも相対的に低いベンチやノッチが形成され、広範囲に潮溜りが確認される(写真③)。
- ・硬質な溶岩が分布する部分では、起伏に富んだ岩礁状の岩場となっているが、軟質な部分では海面よりもやや高いベンチが形成されている(写真④)

潜戸西側の海岸

潜戸西側の海岸 (地質の硬軟によるベンチの発達状況)

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ④潜戸付近(空中写真測量(段彩図))

61

3. 島根半島の海岸地形の形成要因に関する検討(6)c. 空中写真測量及び地表地質踏査 ④潜戸付近(空中写真測量(地形断面図))

※縦横比1:5

※地形断面線の海域側端部は、水域で標高データが取得されないため、オルソ画像や現地状況を参考としながら破線で表示した。

- ・外海に直接面する北側のベンチ標高は、最高潮位付近の標高1.0m前後であり、朔望平均満潮位よりも高い位置にある。
- ・入江状の内湾を形成する西側(南側)のベンチ標高は、北側よりも高度を減じ、標高0.7~0.8m程度で、一部で朔望平 均満潮位の標高0.5m程度の部分も認められる。外海に面する北側のベンチと比べやや起伏に富んでいる。
- ・ベンチの北側から西側(南側)への高度変化は漸移的で,離水ベンチ特有の多段化した特徴は認められない。

3. 島根半島の海岸地形の形成要因に関する検討(6)島根半島の海岸地形(ベンチ)の形成要因に関する検討(

(163)

d. ベンチの形成要因に関する検討結果(まとめ)

- 1. (参考)文献調査(完新世の海水準変動)
- ・ 文献調査の結果,縄文海進期(約6,000年前)の島根半島周辺の海面高度は,概ね0~1.5m程度の範囲にあると考えられる。
- 2. 波浪及び潮位
- 島根半島周辺の潮間帯は「T.P.+0.5m~T.P.+0.0m」である。
- 潮位に有義波高(H_{1/3})を考慮した高度まで波は到達し、その発生頻度は以下のとおりである。
 潮位+(H_{1/3}=0.5m以上)の発生頻度:70%
 潮位+(H_{1/3}=1.0m以上)の発生頻度:39%
 潮位+(H_{1/3}=1.5m以上)の発生頻度:22%
- 3. 空中写真測量及び地表地質踏査
- 敷地近傍において認められる海岸地形(ベンチ)の形成要因を検討するため、①桂島付近、②倉内湾、
 ③沖島付近、④潜戸付近において、詳細な地形データを取得する空中写真測量、岩種・岩相の確認等
 を行う地表地質踏査を実施した。
- 確認されたベンチには、潮間帯に位置しているものと潮間帯より上位に位置しているものが存在し、 潮間帯より上位に発達するベンチは、いずれも高波浪時には波が到達する範囲にあり、多様な高度で 平坦面が形成されている。また、これらのベンチは、広がりや連続性に乏しく、定高性や系統的な高度 変化などの規則性も認められなかった。
- ・ 地表地質踏査の結果、ベンチの高度差は、岩種・岩相の侵食抵抗差や波浪等の影響度合を反映していると考えられる。

・以上のことから、島根半島沿岸に様々な高度で発達するベンチは、現在を含む波浪等の影響を受ける 過程で、岩種・岩相の侵食抵抗差を反映して形成されたと考えられる。

3. 島根半島の海岸地形の形成要因に関する検討 (7)地震性隆起地域の海岸地形との比較検討 調査概要(畳ヶ浦海岸付近)

・今村(1913)⁽³⁸⁾,藤森ほか(1990)⁽³⁹⁾等によると、島根県浜田市の光ヶ浦海岸付近は、1872年の浜田地震によりに隆起し、広範囲にわたって離水ベンチが形成されたとされている。

65

・地震性隆起が示唆される浜田市畳ヶ浦海岸付近の海岸地形に関する文献調査及び地表地質踏査を行い、①ベンチの規模、②ベンチの多段化・高度、③海成段丘の分布、④離水化石の有無、⑤地震性隆起域・沈降域の有無に着目し、島根半島の海岸地形と比較した。

3. 島根半島の海岸地形の形成要因に関する検討 (7) 地震性隆起地域の海岸地形との比較検討

畳ヶ浦海岸付近(地形・地質概要)

【地形】

・畳ヶ浦海岸付近は、敷地南西方約105km,浜田市街地の 北西方約6kmに位置する。畳ヶ浦海岸は、日本海に突出 する岩石海岸で、複雑に入り組んだ海岸線を呈し、海食 崖やベンチが連続している。ベンチの広がりは広範囲で あり、その面積は約58,000m²に及ぶ。その北東側及び南 西側には、陸側に緩やかに湾入する砂浜海岸が形成さ れている。

66

・畳ヶ浦背後の山体は、標高50m程度の比較的標高の揃った丘陵地で、鮮新世・更新世の海成段丘面とされている。

【地質】

・構成する地質は、中条ほか(1993)⁽⁴⁰⁾によると、新生代以前の三郡変成岩類、古第三紀始新世~漸新世の国府火山岩類を基盤として、新第三紀中期中新世の唐鐘累層が分布している。唐鐘累層は、鮮新世~更新世の都野津層及び更新世の国分層により不整合で覆われている。また、海岸線や河川沿いには沖積層が堆積している。
・畳ヶ浦の海岸線には、唐鐘累層のうち金周布礫岩砂岩部層及び畳ヶ浦砂岩部層が分布している。地質構造は、北東-南西方向の走向で西に緩く傾いている。金周布礫岩砂岩部層は、礫岩・砂岩からなる比較的粒径の粗い砕屑物からなり、赤鼻から金周布にかけて分布する。一方、畳ヶ浦砂岩部層は、シルト分を混える細粒~中粒砂岩からなり、畳ヶ浦周辺に広く分布している。

3. 島根半島の海岸地形の形成要因に関する検討 (7)地震性隆起地域の海岸地形との比較検討 置ヶ浦海岸付近(文献調査(浜田地震による変動地形の概要))

【文献調査(浜田地震による変動地形の概要)】

(1)今村(1913)

今村(1913)によると、浜田地震時の隆起地域は、赤鼻・畳ヶ浦周辺と浜田市街地南部の2地域、沈降地域は、生湯・瀬戸ケ島周辺、長浜周辺及び周布西部周辺の3地域とされている。また、隆起量は、赤鼻で4~5尺(1.2~1.5m)、畳ヶ浦で3~4尺(0.9~1.2m)、唐鐘で5~6尺(1.5~1.8m)、浜田市街地南部で1~2尺(0.3~0.6m)、沈降量は、生湯で1.5尺(0.45m)、瀬戸ケ島で3尺(0.9m)、長浜で3尺(0.9m)としている。また、浜田地震に伴う地殻変動は、隆起と沈降が狭い範囲で交互に繰り返されているという特徴があるとしている。

(2)藤森ほか(1990)

藤森ほか(1990)は,浜田周辺の海岸地域の地形調査を行い,浜田地震での隆起を含めて少なくとも 完新世における2つの高海水準の記録,2段の更新世海成段丘及び7本の活断層の可能性の高いリニ アメントを認めている。

畳ヶ浦地点では、赤鼻で高度1.4~1.6m及び3.2mの2面の波食棚が認められ、このうち上位の高度 3.2mの面は、浜田地震による離水ではなく、それ以前の相対的高海面期を示す地形であるとしている。 また、畳ヶ浦では高度0.7mと1.2mに波食棚を認め、このうち上位の1.2m面を浜田地震時の汀線高度と している。

また,浜田地震時の隆起・沈降地域の分布とリニアメントから推定される活断層の分布との対応関係から,横ずれ断層であったと推定している。

3. 島根半島の海岸地形の形成要因に関する検討 (7)地震性隆起地域の海岸地形との比較検討 置ヶ浦海岸付近(文献調査(浜田地震による変動地形の概要))

3. 島根半島の海岸地形の形成要因に関する検討 (7) 地震性隆起地域の海岸地形との比較検討 畳ヶ浦海岸付近(地表地質踏査)

【赤鼻】

・赤鼻の北端は、北側に突出した岬で、岬東側は ほぼ東西方向に延びる砂浜と接している。 ・岬の西側は、ほぼ北東一南西方向に延びる複 雑に入り組んだ海岸線で,急峻な海食崖とその 前面に切立った岩礁が形成され、ベンチの発達 は悪い。

【畳ヶ浦】

 ・畳ヶ浦のほぼ中央付近には、馬の背と呼ばれる 岩礁が突出している。これを境に、北東側と南西 側で海岸地形が異なっている。

 北東側では、北東-南西方向に延びる海岸線 背後の斜面は海食崖の発達が悪い。斜面前面に は、多段化したベンチが形成されるが、その幅は 南西側ほど広くはない。

 一方, 南西側では, 海岸線背後の斜面はほぼ 南北に延び、やはり海食崖の発達は悪いが、斜 面前面には広範囲にベンチが広がって、日本海 に突出している。

・なお、畳ヶ浦の北端と南端には、海食洞が形成 されており、いずれの海食洞も両出口がつながっ たトンネル状の形状をしている。

> 凡 例 ベンチ上の段差

地質境界

SC 海食洞

基図は、国土地理院の簡易オルソ画像と地理院 地図を重合した画像地図を使用

・畳ヶ浦のベンチ1面あたりの面積は約58,000m2である。

・一方,敷地近傍において認められるベンチのうち,比較的広いベンチを形成する潜戸付近(潜戸鼻)の1面あたりの面積は,約7,000m²である。

畳ヶ浦より北側の馬の背を望む

3. 島根半島の海岸地形の形成要因に関する検討 (7)地震性隆起地域の海岸地形との比較検討 置ヶ浦海岸付近との比較(②ベンチの多段化・高度)

・地表地質踏査の結果, 畳ケ浦北側では, 微小な崖を境にベンチが多段化し, 上位のベンチほど侵食により起伏が激しくなっている。なお, T.P.+1.2mのベンチは, 藤森ほか(1990)による浜田地震の離水ベンチに相当する(写真①)。
 ・また, 赤鼻付近の複数箇所においてベンチの多段化が認められる(写真②)、写真③)。

赤鼻付近(最上位の面は植生有)

3. 島根半島の海岸地形の形成要因に関する検討 (7) 地震性隆起地域の海岸地形との比較検討 ・置ヶ浦海岸付近との比較(②ベンチの多段化・高度)

7/7

- ・地表地質踏査の結果、赤鼻付近において藤森ほか(1990)に示される2段の波食棚(ベンチ)が認められる。 ・藤森ほか(1990)によると、赤鼻付近(Loc.2)の2段の波食棚(ベンチ)の高度は、1.4~1.6m及び3.2mであり、上位のベ ンチ上にノッチが認められるとされている。
- 一方、島根半島の海岸地形に明瞭な多段化は認められない。また、敷地近傍において認められるベンチのうち、潮間 帯より上位のベンチを形成する潜戸付近(潜戸鼻)の高度は、T.P.+0.5m~1.0m程度である。

離水波食棚と完新世段丘の縦断面図 藤森ほか(1990)より引用・加筆

赤鼻付近(藤森ほか(1990)のLoc.2に相当)

- ・藤森ほか(1990)によると、地震性隆起が示唆される下府付近(畳ヶ浦海岸付近)では、海成段丘が発達し、2段の更新世海成段丘面(I面、Ⅱ面)及びその上位の上位面群(地代未詳)が分布するとされている。
- ・島根半島沿岸では、更新世以降の隆起運動を示唆する 海成段丘は認められない(日御碕周辺を除く)。

国府付近(標高約50m付近の砂丘砂) (藤森ほか(1990)の海成段丘 I 面(Loc.23に相当)を覆う)

図 5 下府付近の海成段丘の分布図 1. 上位面群(高位), 2. 上位面群(中位), 3. 上位 面群(下位), 4. I面, 5. II面, 6. 離水波食棚, 7. 地滑り, 8. 地点位置と番号, 9. 旧汀線, 10. 推定断層

図 6 海成段丘堆積物のスケッチ 国分付近 Loc. 23 (図 2, 5) における I 面の 海成段丘堆積物

1. 土壌, 2. 砂, 3. 礫, 4. 基盤 海成段丘分布図及びスケッチ

藤森ほか(1990)より引用・加筆

3. 島根半島の海岸地形の形成要因に関する検討 (7)地震性隆起地域の海岸地形との比較検討 置ヶ浦海岸付近との比較(④離水化石の有無)

200

・地表地質踏査の結果、畳ヶ浦南側の海食洞の壁面において藤森ほか(1990)に示される生物遺骸が認められ、その上限高度はT.P.約+1.4m程度であり、離水した高度に分布する。なお、藤森ほか(1990)によると、生物遺骸群の上限高度は、1.7mとされている。
 ・島根半島沿岸域では、明らかな離水を示す生物遺骸化石は確認されていない。

図 4 畳ヶ浦海食洞 (Loc. 6) 北壁 (A), 小島海食洞 (Loc. 13) 内 (B) のスケッチ 帯状の白色部は化石帯を示す。

離水化石の分布状況(海食洞内) 藤森ほか(1990)より引用・加筆

3. 島根半島の海岸地形の形成要因に関する検討 (7)地震性隆起地域の海岸地形との比較検討 置ヶ浦海岸付近との比較(④離水化石の有無)

 ・地表地質踏査の結果, 畳ヶ浦北側の海 食洞の壁面において生物遺骸が2段で 配列し, 上位は, 離水した位置に分布す る。また, 上位の生物遺骸群には, 旧汀 線高度を示すと考えられるヤッコカンザ シの遺骸が認められる。

3. 島根半島の海岸地形の形成要因に関する検討 (7)地震性隆起地域の海岸地形との比較検討 置ヶ浦海岸付近との比較(⑤地震性隆起域・沈降域の有無)

- ・今村(1913)及び藤森ほか(1990)は、浜田地震時において隆起したとされる地域(下府地域)と沈降したとされる地域(生湯地域)を示している。
- ・文献調査及び地表地質踏査の結果,沈降したとされる地域(生湯地域)のベンチの発達は比較的不良 である。
- ・島根半島沿岸の潮間帯より上位に発達するベンチは、広がりや連続性に乏しく、定高性や系統的な高度変化などの規則性は認められない。

浜田地震時の隆起・沈降域

藤森ほか(1990)より引用・加筆

3. 島根半島の海岸地形の形成要因に関する検討 (7)地震性隆起地域の海岸地形との比較検討 置ヶ浦海岸付近との比較(まとめ)

比較内容	置ヶ浦海岸付近	島根半島沿岸
①ベンチの規模	・畳ヶ浦のベンチ1面あたりの面積は、約 58,000m ² である。	・敷地近傍において認められるベンチのうち, 比較的広いベンチを形成する潜戸付近(潜 戸鼻)の1面あたりの面積は,約7,000m ² であ る。
②ベンチの多段化・ 高度	・2~3段のベンチが認められる。 ・赤鼻付近の2段の波食棚(ベンチ)の高度は, 1.4~1.6m及び3.2mであり,上位のベンチ上 にノッチが認められる。	・明瞭な多段化は認められない。 ・敷地近傍において認められるベンチのうち, 潮間帯より上位のベンチを形成する潜戸付 近(潜戸鼻)の高度は, T.P.+0.5m~1.0m程 度である。
③海成段丘の分布	・地震性隆起地域とされる下府付近(畳ヶ浦海 岸付近)では、海成段丘が発達する。	・海成段丘は認められない(日御碕周辺を除 く)。
④離水化石の有無	・海食洞の壁面において離水化石が認められ る。	・明らかな離水を示す生物遺骸化石は確認さ れていない。
⑤地震性隆起域・ 沈降域の有無	 ・浜田地震時において隆起したとされる地域 (下府地域)と沈降したとされる地域(生湯地域)が示されている(文献調査)。 ・沈降したとされる地域(生湯地域)のベンチの発達は比較的不良である。 	 潮間帯より上位に発達するベンチは、広がり や連続性に乏しく、定高性や系統的な高度 変化などの規則性は認められない。

・島根半島の海岸地形は、地震性隆起が示唆される地域の海岸地形の特徴と大きく異なることを確認した。

参考文献

- (1)多井義郎(1973):いわゆる宍道褶曲帯について,地質学論集 第9号
- (2)通商産業省(1969):昭和42年度 広域調査報告書-北島根地域
- (3)通商産業省(1970):昭和43年度 広域調査報告書-北島根地域
- (4)通商産業省(1971):昭和45年度 広域調査報告書-北島根地域
- (5)活断層研究会編(1991):[新編]日本の活断層-分布図と資料,東京大学出版会
- (6)橋本友昌・星野一男・加藤碩一(1980):島根県東部-鳥取県西部地域の活断層について,地質調査所月報 第31巻 第2号 (7)活断層研究会編(1980):日本の活断層-分布図と資料,東京大学出版会
- (8)今泉俊文・宮内崇裕・堤浩之・中田高 編(2018):活断層詳細デジタルマップ 新編, 東京大学出版会
- (9) 佃栄吉・寒川旭・水野清秀(1985):50万分の1活構造図「岡山」, 地質調査所
- (10) 鹿野和彦・竹内圭史・大島和雄・豊遙秋(1989): 大社地域の地質. 地域地質研究報告(5万分の1地質図幅), 地質調査所
- (11)村田泰章・駒澤正夫・牧野雅彦・佐藤秀幸・名和一成・上嶋正人・岸本清行・大熊茂雄・志知龍一・小室裕明・西村敬一・赤松純 平(2009):岡山地域重力図(ブーゲー異常)1:200,000
- (12)Ludwig et al.(1970): Seismic refraction., Maxwell, A.ed.: The sea, 4. Wiley Interscience
- (13)中田高·今泉俊文·岡田篤正·千田昇·金田平太郎·佐藤高行·高沢信司(2002):1:25,000都市圏活断層図「松江」,国土地理院 技術資料D·1-No.396
- (14)中田高·今泉俊文·岡田篤正·千田昇·金田平太郎·佐藤高行·高沢信司(2008):1:25,000都市圏活断層図「松江」第2版,国土 地理院技術資料D·1-No.502
- (15) 鹿野和彦・吉田史郎(1985): 境港地域の地質. 地域地質研究報告(5万分の1地質図幅), 地質調査所
- (16) 鹿野和彦・中野俊(1986): 恵曇地域の地質. 地域地質研究報告(5万分の1地質図幅), 地質調査所
- (17) 鹿野和彦・竹内圭史・松浦浩久(1991): 今市地域の地質. 地域地質研究報告(5万分の1地質図幅), 地質調査所
- (18)松浦浩久・鹿野和彦・石塚吉浩・高木哲一(2005):木次地域の地質.地域地質研究報告(5万分の1地質図幅),地質調査総合 センター
- (19)地震調査委員会(2013):山崎断層帯の長期評価について,地震調査研究推進本部 地震調査委員会
- (20) 鹿野和彦・山内靖喜・高安克己・松浦浩久・豊遙秋(1994): 松江地域の地質,地域地質研究報告(5万分の1地質図幅),地質調 査所

参考文献

- (21)伊藤康人・荒戸裕之(1999):九州西方-山陰・北陸海域日本海南部における鮮新世以降の応力場変遷,地質ニュース 第541号
- (22)鎌田浩毅(1999):西南日本弧と琉球弧の会合部に見られる6Maと2Maの広域テクトニクス転換の重要性,月刊地球 Vol.21 No.10
- (23)藤原治・柳田誠・三箇智二・守屋俊文(2005):地層処分からみた日本列島の隆起・侵食に関する研究,原子カバックエンド研究, Vol.11, No.2, pp.113-124
- (24)小池一之・町田洋編(2001):日本の海成段丘アトラス,東京大学出版会
- (25)三位秀夫(1963):海蝕と海水準の関係について,海洋地質, Vol.2, No.1, pp. 8-16
- (26)豊島吉則(1967):山陰海岸における海蝕地形に関する研究,鳥取大学教育学部研究報告,18,pp.64-98
- (27)高橋達郎(1972):九州平戸島海岸における波蝕棚の地形,岡山大学教育学部研究集録, 33, pp.83-99
- (28)島根県鹿島町教育委員会編(1997):佐太講武貝塚 主要地方道松江美保関線関係交通安全設備工事に伴う調査, pp.37-43
- (29)島根大学埋蔵文化財調査研究センター編(1997):島根大学構内遺跡第1次調査(橋縄手地区1)-宍道湖北東岸における「縄文海進」期低 湿地遺跡の調査-, pp.122-129
- (30)島根大学埋蔵文化財調査研究センター編(2002):島根大学構内遺跡第11次調査(橋縄手地区2)-宍道湖北東岸における「縄文海進」期低 湿地遺跡の調査-, pp.119-123
- (31)竹広文明・渡辺貞幸・会下和宏・内田律雄(1996):島根半島洞窟遺跡の研究ー島根県八束郡美保関町サルガ鼻洞窟遺跡の試掘調査ー, pp.117-126
- (32)建設省松江国道工事事務所・島根県教育委員会編(1997):島田池・鷭貫遺跡,一般国道9号安来道路建設予定地内埋蔵文化財発掘調査 報告書 西地区Ⅷ, pp.275-278
- (33)水口晶郎・大塚充・中村唯史・徳岡隆夫(1998):安来市岩屋遺跡および小汐手遺跡で発見された縄文~弥生時代の旧海岸地形,山陰地域 研究(自然環境),第14号, pp.7-14
- (34)中村唯史(2006):山陰中部地域における完新世の海面変化と古地理変遷, 第四紀研究, 45巻, 5号, pp.407-420
- (35)彌富涼子·橫田修一郎(2015):島根半島,桂島の柱状節理と斜面の構造,島根大学地球資源環境学研究報告,33,pp.89-100
- (36)井詰達也・横田修一郎(2012):島根半島,小伊津海岸における岩盤斜面の構造とそれに基づいた斜面ハザードマップの試作,島根大学地 球資源環境学研究報告,31,pp.69-79
- (37)豊島吉則(1978):山陰海岸における完新世海面変化,地理学評論,51巻,2号,pp.147-157
- (38)今村明恒(1913):明治五年ノ濱田地震,震災予防調査会報告,77,pp.43-77
- (39)藤森孝俊・蒔苗耕司・山口勝・川口隆・太田陽子(1990):島根県浜田地震(1872年)の地形学的検討,地学雑誌,99巻,2号,pp.44-59 (40)中条武司・中西健史・前島渉(1993):島根県浜田北方の中期中新世唐鐘累層,地球科学,47巻,6号,pp.473-484