日本原燃株式会社							
資料番号	耐震建物 03 R0						
提出年月日	令和3年1月26日						

設工認に係る補足説明資料

【地震応答解析における地盤モデル及び

地盤物性値の設定について】

		目	次	
1.	概	要		
2.	再	処理事業所の敷地の概要		
3.	地	盤モデルの概要		
4.	支	持地盤の地盤物性値の設定		
4	. 1	鷹架層		
5.	表	層地盤の地盤物性値の設定		
5	. 1	埋戻し土		
5	. 2	造成盛土		
5	. 3	六ヶ所層	•••••	

別紙 燃料加工建屋の地震応答解析に用いる地盤モデルの設定について

1. 概要

本資料は,建物・構築物の地震応答解析における,建物の入力地震動の算定及び側面地 盤ばねの算定に用いる地盤モデル及び地盤物性値の設定について補足説明するものである。 建物・構築物の地震応答解析に用いる地盤物性値については,事業変更許可申請書に記 載の値を採用しており,支持地盤である鷹架層の地盤物性のばらつきを考慮した地盤物性 値については,ボーリング調査孔のPS 検層結果に基づき設定している。

本資料は以下の資料の補足説明をするものである。

- ・再処理施設の設工認申請書のうち,添付書類「Ⅳ-1-1-2 地盤の支持性能に係る基本 方針」
- ・MOX燃料加工施設の設工認申請書のうち,添付書類「Ⅲ-1-1-2 地盤の支持性能に 係る基本方針」

2. 再処理事業所の敷地の概要

再処理施設の敷地は、第2.-1 図に示すとおり、f-1 断層及び f-2 断層を境界とした3領域で地質構造に相違が見られる。

支持地盤である鷹架層は第2.-2 図に示す地質図のとおり, f-1 断層及び f-2 断層を境界 とした3領域それぞれで水平方向に一様に分布している。また,鷹架層より浅い部分については,表層地盤が分布している。

第2.-1図 各地盤と建物・構築物の位置関係

第2.-2図 敷地の地質図 (2/2)

3. 地盤モデルの概要

地盤モデルは, 解放基盤表面 (T.M.S.L.-70m) ~ 地表面 (T.M.S.L.55m) について設定する。

解放基盤表面~基礎底面においては,f-1 断層及びf-2 断層を境界とした3 領域それぞれの地質構造との整合性を考慮し,下記に示す3つの鷹架層の水平成層地盤モデルを設定している。また,基礎底面~地表面においては,建物・構築物の埋込み効果を考慮するため,表層地盤(埋戻し土,造成盛土及び六ヶ所層)を設定している。第3.-1 図に建物・構築物とf-1 断層及びf-2 断層の位置関係を示す。

- (1) f-1 断層及び f-2 断層間の水平成層地盤モデル(以下,「中央地盤」という。)
- (2) f-2 断層より西側の水平成層地盤モデル(以下,「西側地盤」という。)
- (3) f-1 断層より東側の水平成層地盤モデル(以下,「東側地盤」という。)

なお,今回申請の燃料加工建屋の地盤モデルは,,表層地盤として造成盛土と六ヶ所層を 考慮しており,その詳細については別紙に示す。

第3.-1図 建物・構築物と f-1 断層及び f-2 断層の位置関係

- 4. 支持地盤の地盤物性値の設定
- 4.1 鷹架層

鷹架層の地盤物性値の設定にあたっては、敷地内のボーリング調査結果に基づき、中央 地盤,西側地盤及び東側地盤のそれぞれについて設定している。第4.1-1 図に地盤物性値 の設定に用いているボーリング調査孔の位置を示す。

基本ケースの地盤物性値のうち、S波速度及びP波速度については、ボーリング調査孔 の PS 検層結果を、S波速度及びP波速度の傾向から設定した層区分ごとに平均することに より設定している。単位体積重量については、ボーリング調査孔から採取した試料による 湿潤密度試験結果を層区分ごとに平均することにより設定している。なお、地盤物性のば らつきを考慮したケースの地盤物性値は、S波速度及びP波速度について、基本ケースの 値に対する標準偏差(±1σ)を設定している。

各地盤の基本ケースの地盤物性値を第4.1-1表に,地盤物性のばらつきを考慮した地盤 物性値を第4.1-2表に示す。また,第4.1-2図~第4.1-4図に各地盤の地盤物性値とPS 検層結果の比較を示す。

なお,地盤の減衰定数hは「原子力発電所耐震設計技術指針 JEAG4601-2008((社)日本 電気協会)」を参考に3%としている。

第4.1-1図 鷹架層の地盤物性値の設定に用いているボーリング調査孔位置図

			•••		
標高 T.M.S.L. (m)		単位体積重量 γ _t (kN/m ³)	S波速度 V _s (m/s)	P波速度 V _p (m/s)	減衰定数 h (%)
▽地表面	55.0-				
	42.0	18.1	660	1840	
	42.0	18.2	760	1910	
	22.0-	18.2	800	1950	3.0
▽解放基盤表面	4.0	17.8	820	1950	
	-70.0-	17.0	820	1950	

第4.1-1表 基本ケースの地盤物性値 (a) 中央地盤

注記:再処理施設の事業変更許可申請書 第6.6-24表に示したモデル

標高 T.M.S.L. (m)		単位体積重量 γ _t (kN/m ³)	S波速度 V _s (m/s)	P波速度 V _p (m/s)	減衰定数 h (%)
▽地表面	55.0-				
	41.0	14.8	410	1610	
	41.0	15.9	570	1720	
	17.0-	15.6	580	1680	
	-22.0-	16.4	590	1690	3.0
▽解放基盤表面	-50.0-	17.0	730	1860	
	-70.0-	15.9	780	1940	

(b) 西側地盤

注記:再処理施設の事業変更許可申請書 第6.6-24表に示したモデル

(c) 東側地盤

標高 T.M.S.L. (m)		単位体積重量 γ _t (kN/m ³)	S波速度 V _s (m/s)	P波速度 V _p (m/s)	減衰定数 h (%)
▽地表面	55.0				
		15.7	580	1710	
	23.0-	15.3	740	1870	
▽解放基盤表面	-18.0-	17.4	890	2030	3.0
	-70.0-	18.1	930	2050	

注記:再処理施設の事業変更許可申請書 第6.6-24 表及びMOX燃料加工 施設の事業変更許可申請書 添3-ニ第31表に示したモデル

(a) 中央地盤										
標高		基	本	標準	偏差	+	σ	-σ		
		Vs	Vp	Vs	Vp	Vs	Vp	Vs	Vp	
T.M.S.L. (m)		(m/s)								
▽地表面	55.0									
	42 0-	660	1840	140	280	800	2120	520	1560	
	42. 0 22. 0	760	1910	90	140	850	2050	670	1770	
22.0-	4.0-	800	1950	40	40	840	1990	760	1910	
▽解放基盤表面	-70.0	820	1950	50	40	870	1990	770	1910	
	10.0	820	1950	50	40	870	1990	770	1910	

第4.1-2表 地盤物性のばらつきを考慮した地盤物性値

(b) 西側地盤

1									
標高		基本		標準	偏差	+ <i>o</i>		-σ	
		Vs	Vp	Vs	Vp	Vs	Vp	Vs	Vp
T.M.S.L. (m)		(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)
▽地表面	55.0-								
	41.0	410	1610	100	70	510	1680	310	1540
	41.0	570	1720	30	110	600	1830	540	1610
	17.0	580	1680	20	20	600	1700	560	1660
	-22.0	590	1690	30	30	620	1720	560	1660
▽解放基盤表面	-50.0	730	1860	80	100	810	1960	650	1760
	-70.0	780	1940	40	60	820	2000	740	1880

(c) 東側地盤

標高		基	本	標準偏差		+ <i>o</i>		- σ	
		Vs	Vp	Vs	Vp	Vs	Vp	Vs	Vp
T.M.S.L. (m)	1	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)
▽地表面	55 0-								
	22.0	580	1710	120	230	700	1940	460	1480
23.0-	740	1870	90	100	830	1970	650	1770	
▽解放基盤表面	-13.0	890	2030	100	110	990	2140	790	1920
	-70.0	930	2050	100	80	1030	2130	830	1970

第4.1-2図 鷹架層の地盤物性値とPS検層結果の比較(中央地盤)

第4.1-3図 鷹架層の地盤物性値とPS検層結果の比較(西側地盤)

第4.1-4図 鷹架層の地盤物性値とPS検層結果の比較(東側地盤)

- 5. 表層地盤の地盤物性値の設定
- 5.1 埋戻し土

埋戻し土の地盤物性値については,敷地内のボーリング調査結果に基づき設定している。 地盤物性値の設定に用いているボーリング調査孔の位置を第5.1-1図に示す。

基本ケースの地盤物性値のうち、単位体積重量については、ボーリング調査孔から採取 した試料による湿潤密度試験結果より深さ方向の回帰式を算出して設定している。初期せ ん断剛性については、湿潤密度とボーリング調査孔の PS 検層結果に基づく S 波速度より深 さ方向の回帰式を算出して設定している。なお、地盤物性のばらつきを考慮したケースの 地盤物性値は、単位体積重量及び初期せん断剛性について、基本ケースの回帰式に対する 標準偏差($\pm 1\sigma$)を設定している。第5.1-2 図に埋戻し土の湿潤密度及び初期せん断剛性 の回帰式と標準偏差($\pm 1\sigma$)を、第5.1-1 表に基本ケース及び地盤物性のばらつきを考慮 したケースに用いる地盤物性値を示す。

また,埋戻し土に関しては,基準地震動 Ss 及び弾性設計用地震動 Sd に対して剛性低下 が生じることを考慮し,繰返し三軸試験の結果よりひずみ依存特性(G/G₀-γ,h-γ)を設 定している。第5.1-3 図に埋戻し土のひずみ依存特性を示す。

第5.1-1図 埋戻し土の地盤物性値の設定に用いているボーリング調査孔の位置図

(a) 湿潤密度

(b) 初期せん断剛性

注記:再処理施設の事業変更許可申請書 第 4.5-7 図及び第 4.5-16 図並びにMOX燃料加 工施設の事業変更許可申請書 添 3-ロ(ホ)第7 図及び添 3-ロ(ホ)第16 図に加筆

第5.1-2図 湿潤密度及び初期せん断剛性の回帰式と標準偏差

第5.1-1表 埋戻し土の基本ケース及び地盤物性のばらつきを考慮したケースの地盤物性値

		単位体積重量γ _t	初期せん断剛性 G ₀		
		(kN/m^3)	(kN/m^2)		
基本ケース		17.8 + 0.0274Dp	60700 + 8200 Dp		
標準偏差		0.817	47600		
地盤物性のばらつきを	+1 σ	18.617 + 0.0274Dp	108300 + 8200Dp		
考慮したケース	-1 σ	16.983 + 0.0274Dp	13100 + 8200Dp		

注記:Dp は地表面からの深さ(m)を示す。

埋戻し土の速度構造 V_s , V_p は初期せん断剛性 G_0 , 剛性低下率 $G/G_0 = 1/(1+12.7 \gamma^{0.914})$ 及び湿潤密度 ρ_t に基づく単位体積重量 $\gamma_t = \rho_t \times g$ から,下式にて設定する。

 $V_s = \sqrt{(G/\gamma_t) \times g}$, $V_p = \sqrt{(G/\gamma_t) \times g \times 2(1-\nu)/(1-2\nu)}$

ここで, γは埋戻し土のせん断ひずみを示す。

また, νは埋戻し土のポアソン比を示し, ν=0.39である。

(b) 減衰特性

注記:再処理施設の事業変更許可申請書 第4.5-13 図及びMOX燃料加工施設の事業変更 許可申請書 添3-ロ(ホ)第13 図より引用

第5.1-3図 埋戻し土のひずみ依存特性

5.2 造成盛土

造成盛土の地盤物性値については,敷地内のボーリング調査結果に基づき設定している。 地盤物性値の設定に用いたボーリング調査孔の位置を第5.2-1 図に示す。

基本ケースの地盤物性値のうち、単位体積重量については、ボーリング調査孔から採取 した試料による湿潤密度試験結果より深さ方向の回帰式を算出して設定している。初期せ ん断剛性については、湿潤密度とボーリング調査孔の PS 検層結果に基づく S 波速度より深 さ方向の回帰式を算出して設定している。なお、地盤物性のばらつきを考慮したケースの 地盤物性値は、単位体積重量及び初期せん断剛性について、基本ケースの回帰式に対する 標準偏差(±1σ)を設定している。第5.2-2 図に湿潤密度及び初期せん断剛性の回帰式と 標準偏差を、第5.2-1 表に基本ケース及び地盤物性のばらつきを考慮したケースに用いる 地盤物性値を示す。

また,造成盛土に関しては,基準地震動 Ss 及び弾性設計用地震動 Sd に対して剛性低下 が生じることを考慮し,繰返し三軸試験の結果よりひずみ依存特性(G/G₀-γ,h-γ)を設 定している。第5.2-3 図に造成盛土のひずみ依存特性を示す。

第5.2-1 図 造成盛土の地盤物性値の設定に用いているボーリング調査孔の位置図

(a) 湿润密度
(b) 初期でんめ剛性
注記:再処理施設の事業変更許可申請書 第4.5-7図及び第4.5-16図並びにMOX燃料加工施設の事業変更許可申請書 添3-ロ(ホ)第7図及び添3-ロ(ホ)第16図に加筆

第5.2-2図 湿潤密度及び初期せん断剛性の回帰式と標準偏差

第5.2-1表 造成盛土の基本ケース及び地盤物性のばらつきを考慮したケースの地盤物性値

		単位体積重量γ _t	初期せん断剛性 G ₀
		(kN/m^3)	(kN/m^2)
基本ケース		16.3 + 0.0324Dp	32400 + 4020Dp
標準偏差		0.883	20800
地盤物性のばらつきを	$+ 1 \sigma$	17.183 + 0.0324Dp	53200 + 4020Dp
考慮したケース	-1 σ	15.417 + 0.0324Dp	11600 + 4020Dp

注記:Dp は地表面からの深さ(m)を示す。

造成盛土の速度構造 V_s , V_p は初期せん断剛性 G_0 , 剛性低下 $G/G_0 = 1/(1+9.27 \gamma^{0.992})$ 及び湿潤密度 ρ_t に基づく単位体積重量 $\gamma_t = \rho_t \times g$ から,下式にて設定する。

 $V_{s} = \sqrt{(G/\gamma_{t}) \times g}$, $V_{p} = \sqrt{(G/\gamma_{t}) \times g \times 2(1-\nu)/(1-2\nu)}$

ここで,γは造成盛土のせん断ひずみを示す。

また、νは造成盛土のポアソン比を示し、ν=0.42である。

注記:再処理施設の事業変更許可申請書 第4.5-13 図及びMOX燃料加工施設の事業変更 許可申請書 添3-ロ(ホ)第13 図より引用

第5.2-3図 造成盛土のひずみ依存特性

5.3 六ヶ所層

六ヶ所層の地盤物性値については,敷地内のボーリング調査結果に基づき設定している。 地盤物性の設定に用いたボーリング調査孔の位置を第5.3-1 図に示す。

基本ケースの地盤物性値のうち、単位体積重量については、ボーリング調査孔から採取 した試料による湿潤密度試験結果の平均値を用いている。初期せん断剛性については、湿 潤密度とボーリング調査孔のPS検層結果のS波速度に基づき算出した値の平均値を用いて いる。なお、地盤物性のばらつきを考慮したケースの地盤物性値は、単位体積重量及び初 期せん断剛性について、基本ケースの平均値に対する標準偏差(±1σ)を設定している。 第5.3-2 図に湿潤密度及び初期せん断剛性の平均値と標準偏差を、第5.3-1表に基本ケー ス及び地盤物性のばらつきを考慮したケースに用いる地盤物性値を示す。

また,六ヶ所層に関しては,基準地震動 Ss 及び弾性設計用地震動 Sd に対して剛性低下 が生じることを考慮し,繰返し三軸試験及び繰返し単純せん断試験の結果よりひずみ依存 特性(G/G₀-γ,h-γ)を設定している。第5.3-3 図に六ヶ所層のひずみ依存特性を示す。

第5.3-1図 六ヶ所層の地盤物性値の設定に用いているボーリング調査孔の位置図

注記:再処理施設の事業変更許可申請書 第4.5-7図及び第4.5-16図並びにMOX燃料加 工施設の事業変更許可申請書 添3-ロ(ホ)第7図及び添3-ロ(ホ)第16図に加筆

第5.3-2図 湿潤密度及び初期せん断剛性の平均式と標準偏差

		単位体積重量γ _t	初期せん断剛性 G ₀		
		(kN/m^3)	(kN/m^2)		
基本ケース		17.0	303000		
標準偏差		1.3	217000		
地盤物性のばらつきを	+1 σ	18.3	520000		
考慮したケース	-1 σ	15.7	86000		

第5.3-1表 六ヶ所層の基本ケース及び地盤物性のばらつきを考慮したケースの地盤物性値

注記: 六ヶ所層の速度構造 V_s, V_pは初期せん断剛性 G₀, 剛性低下 G/G₀=1/(1+5.91 γ^{0.758}) 及び湿潤密度 ρ_tに基づく単位体積重量 γ_t = ρ_t×g から, 下式にて設定する。

 $V_{s} = \sqrt{(G/\gamma_{t}) \times g}$, $V_{p} = \sqrt{(G/\gamma_{t}) \times g \times 2(1-\nu)/(1-2\nu)}$

ここで, γは六ヶ所層のせん断ひずみを示す。

また, νは六ヶ所層のポアソン比を示し, ν= 0.41 である。

注記:再処理施設の事業変更許可申請書 第4.5-13 図及びMOX燃料加工施設の事業変更 許可申請書 添3-ロ(ホ)第13 図より引用

第5.3-3図 六ヶ所層のひずみ依存特性

別紙

燃料加工建屋の地盤モデルにおける

表層地盤の層境界の設定について

		目	次	
1.	概要			別紙-1
2.	今回設工認における地盤モデル・・・・			別紙-1
2	.1 層境界の設定について・・・・・			別紙−3

1. 概要

本資料は,燃料加工建屋の地盤モデルにおける造成盛土と六ヶ所層の層境界の設定 方法について説明するものである。

2. 今回設工認における地盤モデル

今回設工認の燃料加工建屋の地震応答解析に用いている地盤モデルを第 2.-1 表に 示す。(添付書類「Ⅲ-3-1-1-1 燃料加工建屋の地震応答計算書」抜粋)

標高 T.M.S.L. ((m)	単位体積重量 γ _t (kN/m ³)	S波速度 V _S (m/s)	P波速度 V _P (m/s)	減衰定数 h
造成盛土	49. C	*1	* 2	* 2	*3
六ヶ所層	48.0	17.0	*4	*4	*5
▽基礎スフフ	31. 53 —	15.7	500	1710	
	23 0	15. (580	1710	
鷹架層	_19_0	15. 3	740	1870	
▽解放基盤表面	-18.0	17.4	890	2030	0. 03
	-70.0	18.1	930	2050	

第2.-1表 燃料加工建屋の地震応答解析に用いている地盤モデル(今回設工認)

*1:造成盛土の単位体積重量 γ_tはγ_t=16.3+0.0324Dp (kN/m³)から設定する。
ここで、Dp は地表面からの深さ(m)を示す。

*2:造成盛土の速度構造 V_s, V_pは初期せん断剛性 G₀ = 32400+4020Dp (kN/m²) 及び剛性

低下率 G/G₀ = 1/(1+9.27 y^{0.992})から、下式にて設定する。

 $V_{s} = \sqrt{(G/\gamma_{t}) \times g}$, $V_{p} = \sqrt{(G/\gamma_{t}) \times g \times 2(1-\nu)/(1-2\nu)}$

ここで, γは造成盛土のせん断ひずみを示す。

また、vは造成盛土のポアソン比を示し、v=0.42である。

*3:造成盛土の減衰定数はひずみ依存特性を考慮し、下式にて設定する。

 $h = \gamma / (0.0438 \gamma + 0.0150) + 1.74$

ここで, γは造成盛土のせん断ひずみを示す。

*4: 六ヶ所層の速度構造 V_s, V_pは初期せん断剛性 G₀ = 303000 (kN/m²) 及び剛性低下率

G/G₀=1/(1+5.91 γ^{0.758})から,下式にて設定する。

$$V_{s} = \sqrt{(G/\gamma_{t}) \times g} , \quad V_{p} = \sqrt{(G/\gamma_{t}) \times g \times 2(1-\nu)/(1-2\nu)}$$

ここで, γは六ヶ所層のせん断ひずみを示す。

また、vは六ヶ所層のポアソン比を示し、v=0.41である。

*5: 六ヶ所層の減衰定数はひずみ依存特性を考慮し、下式にて設定する。

h = $\gamma / (0.0829 \gamma + 0.00582) + 1.18$

ここで, γは六ヶ所層のせん断ひずみを示す。

2.1 層境界の設定について

今回設工認における地盤モデルのうち,造成盛土と六ヶ所層の層境界については, 第2.1-1 図及び第2.1-2 図に示す地質図を基に,燃料加工建屋掘削面における六ヶ所 層の上面レベル4点を平均し設定している。

造成盛土と六ヶ所層の層境界レベル

 $= (51. 6m(N) + 46. 0m(S) + 45. 3m(E) + 51. 3m(W)) \neq 4$ = 48. 55 \Rightarrow 48. 6m

第2.1-1図 燃料加工建屋の地質図(NS 方向)

第2.1-2図 燃料加工建屋の地質図(EW方向)