柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
35. <u>大LOCAシナリオ</u> 想定と異なる事象について	<u>添付資料 1.5.2</u> <u>有効性評価におけるLOCA時の破断位置及び破断面積設定の</u> <u>考え方について</u>	25. 大破断LOCAシナリオ想定と異なる事象について	
	 重大事故等対策の有効性評価においてLOCAを想定する事故 シーケンスの破断位置及び破断面積の設定の考え方は、以下のとおり。 1. 運転中の原子炉における重大事故に至るおそれがある事故 		・記載箇所の相違 【東海第二】 島根2号炉は,「LO
	 (1) LOCA時注水機能喪失 <u>a.破断位置</u> <u>燃料被覆管破裂が発生しない範囲の破断面積(約3.7cm</u> ²)を考慮し,気相部配管,シュラウド外の液相部配管及び 		 CA時注水機能喪失」に おける配管破断箇所の 選定及び破断面積等に 関して,添付資料 1.5.2
	シュラウド内の液相部配管の各配管(第1表)について, 流出量の観点からそれぞれ最も低い位置に存在する配管で 破断が発生した場合の感度解析を実施した。 その結果,第2表に示すとおり,気相部配管の破断を想		及び添付資料 2.6.1 に 記載している。
	定した場合は,シュラウド内外の液相部配管に破断を想定 した場合と比較して,燃料被覆管最高温度が低くなる。ま た,液相部配管についてはシュラウド内外で燃料被覆管温 度及び事象進展に有意な差はない。		
	したがって,「LOCA時注水機能喪失」で想定する破 断位置は,格納容器破損防止対策の有効性評価(雰囲気圧 力・温度による静的負荷(格納容器過圧・過温破損))での 想定との整合も考慮し,原子炉冷却材圧力バウンダリに接		
	<u>続する配管の中で最大口径である再循環系配管(出口ノズ</u> ル)を設定した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12	版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 第1表 代表的な原子	(2018.9.12 戸圧力容器に接	版) <u> 表続する配管</u>	島根原子力発電所 2号炉	備考 ・記載箇所の相違 【東海第二】 島根2号炉は,「LO CA時注水機能喪失」に おける配管破断箇所の 選定及び破断面積等に 関して,添付資料1.5.2 及び添付資料2.6.1 に 記載している。
	<u>第2表 破断位</u> 破断位置 ①主蒸気系配管(出ロノズル) (気相部配管) ②再循環系配管(出ロノズル) (シュラウド外の液相部配管) ③底部ドレン配管(出ロノズル)	<u>ご置の感度解析</u> 新 破断面積 約 3.7 cm ²	結果 燃料被覆管 最高温度 約 338℃ 約 616℃ 約 617℃		
	(シュラウド内の液相部配管)		#J 617 C		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
相畸刈羽原于刀充電所 6/7亏炉 (2017.12.20版)	東海勇一発電所 (2018.9.12 版) b.破断面積 炉心損傷防止対策の有効性を確認する上で,燃料被覆管 の破裂発生を防止可能な範囲で「LOCA時注水機能喪失」 の事象進展の特徴を代表できる破断面積約 3.7cm ²	局帐原于 <i>门</i> 笼黽所 2 亏炉	 「 備考 ・記載箇所の相違 【東海第二】 島根2号炉は、「LO CA時注水機能喪失」に
	<u>(0.004ft²)を設定した。</u> <u> </u>		おける配管破断箇所の
	また、弗 3 衣に小りとわり、彼倒面積の感及脾例を <u>実施</u> し 再循環系配管(シュラウド外の液相部配管)の破断に		速止及び吸例面積寺に 関して 沃付容料159
	ついて、破断面積約9.5cm ² までは燃料被覆管破裂が発生し		因び添付資料 2.6.1 に
	ないことを確認している。		記載している。
	<u></u>		
	被覆管の破裂を含む。)に至る場合については、「3.1 雰		
	囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」		
	にて確認する。		
	第3表 破断面積の感度解析結果		
	破断位置 破断面積 破裂の有無 再無需要和第(出口・ブル) 約9.5 cm ² 毎		
	(シュラウド外の液相部配管) 約 9.6 cm ² 有		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	2. 重大事故		
有効性評価「格納容器過圧・過温破損」シナリオにおいて	(1) 雰囲気圧力・温度による静的負荷(格納容器過圧・過温)	有効性評価「格納容器過圧・過温破損」シナリオにおいて	
想定する破断箇所は、原子炉圧力容器内の保有水量を厳しく	<u>a. 破断位置</u>	想定する破断箇所は、原子炉圧力容器内の保有水量を厳しく	
評価するため, <u>残留熱除去系の原子炉圧力容器側吸込配管</u> を	破断位置は以下の理由から再循環系配管(出口ノズル)	評価するため, <mark>再循環配管(出口ノズル)</mark> を想定している。	・解析条件の相違
想定している。	を想定している。(第1図参照)		【柏崎 6/7】
	(a) LOCA事象は,破断面積が大きいほど原子炉水位低		型式の相違により破
	下及び炉心溶融までの事故進展が早く、格納容器破損		断を想定する配管が異
	防止対策を講じるための余裕時間が厳しくなるため、		なる。
	配管面積が大きいものを選定する。(第1表参照)		
	なお、気相部配管の破断及び液相部配管(シュラウド		
	内及びシュラウド外)の破断を原子炉水位低下及び炉		
	心溶融までの時間で比較した場合、液相部配管の破断		
	の方が厳しいことから、配管位置が低く、配管面積が		
	大きい再循環系配管(出口ノズル)を想定する。		
この想定と異なる箇所が破断した場合、又は破断規模が異	(b) 再循環系配管(出口ノズル)以外の配管破断を想定し	この想定と異なる箇所が破断した場合、又は破断規模が異	・記載方針の相違
なった場合においても対応操作は変わることはない。また、	た場合の影響は以下のとおり。	なった場合においても対応操作は変わることはない。また、	【東海第二】
破断箇所の特定ができない場合でも同様に対応操作が変わる	① 再循環系配管(ジェットポンプノズル)での破断を想	破断箇所の特定ができない場合でも同様に対応操作が変わ	記載表現は異なるも
ことはない。	<u>定した場合、ジェットポンプノズルに比べて面積の大き</u>	ることはない。	のの,島根2号炉にお
しかし、対応操作は変わらないものの、以下の事象を想定	い再循環系配管(出口ノズル)から破断口に向かう流路	しかし、対応操作は変わらないものの、以下の事象を想定	いても,再循環配管(出
すると、解析評価通りに原子炉圧力容器内のパラメータが推	に圧力損失を生じさせる再循環系ポンプがあるため, <u>破</u>	すると,解析評価通りに原子炉圧力容器内のパラメータが推	ロノズル)と異なる箇
移しないことが考えられる。	断流量は再循環系配管(出口ノズル)より少なくなる。	移しないことが考えられる。	所が破断した場合の影
1. 原子炉圧力容器注水流量計の指示通りに注水されてい	原子炉圧力容器内の水温は出口ノズルとジェットポン	1. 原子炉圧力容器注水流量計の指示通りに注水されてい	響について、考察を記
ない場合	プノズルで差異はなく,また,再循環系ポンプを通過す	ない場合	載している。
2. 原子炉圧力容器下部ドレン配管からの漏えいが重畳し	る場合にはポンプ入熱により温度上昇するが、破断流量	2. 原子炉圧力容器下部ドレン配管からの漏えいが重畳し	
た場合	が低下する影響が大きいことから、ポンプ入熱を考慮し	た場合	
	ても格納容器内の圧力上昇及び温度上昇への影響は再		
「格納容器過圧・過温破損」シナリオにおいては、中央制	循環系配管(出口ノズル)よりも小さくなる。また、残	「格納容器過圧・過温破損」シナリオにおいては、中央制	
御室における流量指示計を基に原子炉圧力容器内の水位を推	留熱除去系配管(注水ノズル)等のその他のシュラウド	御室における流量指示計を基に原子炉圧力容器内の水位を	
定する手段を用いるため、原子炉への注水量が不足した場合	外液相配管については、再循環系配管(出口ノズル)よ	推定する手段を用いるため, 原子炉への注水量が不足した場	
や破断口からの蒸気による流出以外の漏えいが重畳した場合	り配管口径が小さく接続部高さも高いため、破断流量は	合や破断口からの蒸気による流出以外の漏えいが重畳した	
には、推定手段による対応が困難となる。	再循環系配管(出口ノズル)より少なくなり、格納容器	場合には、推定手段による対応が困難となる。	
	内の圧力上昇及び温度上昇への影響は再循環系配管(出		
	ロノズル)よりも小さくなる*。そのため、格納容器内		
	の圧力上昇及び温度上昇に対して厳しくなる再循環系		
	配管(出口ノズル)を想定する。		
	※ MAAP解析上,初期状態において残留熱除去		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2日
	系配管(注水ノズル)等が接続しているシュラウ	
	ド内領域は他の領域より10℃程度水温が高いが,	
	LOCA事象発生後初期の事象進展としては破	
	断流量が大きくなる再循環系配管(出口ノズル)	
	の方が厳しくなる。	
	② 大口径配管ではないが、再循環系配管(出口ノズル)	
	より下部にほう酸水注入系配管及び底部ドレン配管が	
	あり、炉心冠水後も継続して原子炉圧力容器から格納容	
	器内への流出が継続し、サプレッション・プールの水位	
	上昇を早めることとなる。本影響については、c. にお	外部電路
	いて述べる。	非常用ディーゼル 原子即格納容器 逃がし 発電機等 原子印 安全弁
8-70年84年2 非常用ディーゼル 外部電源		
	原子炉圧力容器	
	主蒸気配管	低圧原子炉 低圧原子炉 代替注水ボンブ
第二代株交流地路設備 (ガスタービン系電機)		
		▲·大田西 第二次田西 第二次田西 第二次田西 第二次田西 第二次田西 第二次田西 第二次田西 第二次田西 第二次田西 第二次田西 第二次田西 第二次 第二次 第二次 第二次 第二次 第二次 第二次 第二次
		①・図子切正力変現注水法毎年の指言通りに注水され ⑦・図子切正力
11日1日にあたノノ ①、原子信に十世界で参加したモノノ ①、原子信に十世界で参加した野空んとの事でいた世界」を進会		
3. 「はた成業量がの完成何に満たいかかく加速し、成業計構示遣りに原子炉圧力 容易に進水されない、中央制錬室での認知が困難であるため、増定通りに 原子炉上が容下する。中央制錬室での認知が困難であるため、増定通りに 原子炉水位は幾下さる。		示通りに原子炉上力容器に注示されない。中央病卵至 雨蒙熱相当以上 での認知が困難であるため、推定通りに原子炉水位は 維持されずに低下する
図 「格納容器過圧・過温破損」シナリオ解析上で想定し	第1図 再循環系配管(出口ノズル)破断の概要	図 「格納容器過圧・過温破損」シナリオ
ていない漏えい事象		漏えい事象
	<u>b. 破断面積</u>	
	破断面積を大きくすると、原子炉からの冷却材漏えい量	
	が多くなり、格納容器へのエネルギ放出量が多くなること	
	から,再循環系ポンプ吸込配管の両端破断(0.29m ²)を想	
	定する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
36. ADS 自動起動阻止操作の失敗による評価結果への影響(参考	15 ADS自動起動阻止操作の失敗による評価結果への影響(参	26. ADS自動起動阻止操作の失敗による評価結果への影響(参	
評価)	考評価)	考評価)	
1. はじめに	1. はじめに	1. はじめに	
自動減圧系は, <u>ドライウェル圧力高</u> (13.7 kPa)信号 <u>が発生</u>	自動減圧系は, <u>ドライウェル圧力高</u> (13.7kPa <u>[gage]</u>)信	自動減圧系は, <u>格納容器圧力高(13.7kPa[gage]</u>)信号 <u>及び原</u>	
し, 原子炉水位低(レベル1)信号が発生すると自動起動信号が	号及び原子炉水位異常低下(レベル1)信号の発信から120秒	<u>子炉水位低(レベル1)信号の発生から 120 秒の時間遅れ後に</u>	・設備設計の相違
発信され,発信から30秒の時間遅れの後,高圧炉心注水ポン	の時間遅れの後、低圧炉心スプレイ系又は残留熱除去系(低	作動する。	【柏崎 6/7,東海第二】
<u>プ又は低圧注水ポンプの吐出圧力が確立している場合に作動</u>	圧注水系)のポンプ吐出圧力が確立している場合に作動し、		島根2号炉は,ADS
する。	逃がし安全弁7個を開放することで原子炉を急速減圧する。		信号に低圧ECCSの
			スタンバイの条件は入
			っていない。
自動減圧系の作動によって急激に原子炉圧力容器が減圧さ	自動減圧系の作動によって原子炉が急速減圧された場合,	自動減圧系の作動によって急激に原子炉が減圧された場	
れた場合,高圧炉心注水系,低圧注水系によって,炉心に大	高圧炉心スプレイ系、低圧炉心スプレイ系及び残留熱除去系	合, <u>高圧炉心スプレイ系,低圧炉心スプレイ系及び残留熱除</u>	
<u>量の低温の水が注入される。</u> これは、制御棒等による未臨界	(低圧注水系) により, 炉心に大量の低温水が注入される。	<u>去系(低圧注水系)により、炉心に大量の低温水が注入され</u>	
が確保されていない原子炉に対しては、炉心のボイドの潰れ	これは、制御棒等による未臨界が確保されていない原子炉に	<u>る</u> …これは、制御棒等による未臨界が確保されていない原子	
に伴う急激な出力上昇をもたらす可能性がある。	対して、炉心のボイドの急激な潰れに伴う急激な出力上昇を	炉に対して <u>は</u> ,炉心のボイドの <u>急激な</u> 潰れに伴う急激な出力	
この急激な出力上昇を防ぐために,原子炉スクラム失敗時	もたらすこととなる。	上昇をもたらすこととなる。	
に自動減圧系の自動起動を阻止するための起動阻止スイッチ	この急激な出力上昇を防ぐために、原子炉スクラム失敗時	この急激な出力上昇を防ぐために,原子炉スクラム失敗時	
<u>を設けており</u> ,手順書 <u>の</u> 整備及び継続的な訓練を実施してい	には、自動減圧系の自動起動を阻止するためのスイッチを設	には自動減圧系の自動起動を阻止するためのスイッチを設け	
る。これを考慮し、「解析コード説明資料(TRACG)における今	けるとともに、手順書を整備し、継続的な訓練を実施してい	るとともに,,手順書を整備し,継続的な訓練を実施している。	
回の申請において示した解析ケース(以下「ベースケース」と	る。これを考慮し、「原子炉停止機能喪失」の有効性評価では、	これを考慮し,「原子炉停止機能喪失」の有効性評価では,運	
いう。)」において示した解析では運転員による自動減圧系の	運転員による自動減圧系の自動起動を阻止する操作に期待し	転員による自動減圧系の自動起動を阻止する操作に期待して	
自動起動を阻止する操作に期待している。	ている。	Mit and Andrew And	
ここでは自動減圧系の自動起動を阻止する操作に失敗した	ここでは,自動減圧系の自動起動を阻止する操作に失敗し	ここでは、自動減圧系の自動起動阻止操作に失敗した場合	
場合の影響を確認するため, TRACG (REDY/SCAT_では減圧挙動 [※]	た場合の影響を確認するため、TRACG(REDYでは減	の影響を確認するため、TRACG(REDYでは減圧挙動	
1を取り扱うことができないため)を用いて感度解析を実施し	圧挙動※を取り扱うことができないため)を用いて感度解析を	^{※1} を取り扱うことができないため)を用いて感度解析を実施	
た。なお, TRACG コードはREDY コードで取り扱うことができ	実施した。なお、TRACGコードはREDYコードで取り	した。なお、TRACGコードはREDYコードで取り扱う	
ない中性子束振動現象を評価し、評価結果を参照するために	扱うことができない中性子束振動現象を評価し、評価結果を	ことができない中性子束振動現象を評価し,評価結果を参照	
用いたコードである。本評価はこの目的に照らして実施した	参照するために用いたコードである。本評価はこの目的に照	するために用いたコードである。本評価はこの目的に照らし	
ものでは無いため、本評価はあくまで参考評価の位置付けで	らして実施したものではないため、本評価はあくまで参考評	て実施したものではないため、本評価はあくまで参考評価の	
ある。	価の位置付けである。	位置付けである。	
	※:低圧状態における修正Shumway相関式の適用性		
	TRACGに組み込まれているリウェット相関式であ		
	る,修正Shumway相関式は,試験データベースの圧力範		
	囲が0.4MPa~9MPaとされている (TRACG Model		
	<u>Description (NEDO-32176) 6.6.7章参照)。よっ</u>		
	て,修正Shumway相関式は,ADS自動起動阻止失敗時		
	に原子炉圧力が減圧された低圧状態(0.5MPa~0.6MPa		
	程度)においても適用可能であり、かつ最小安定膜沸		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	騰温度を保守側(低め)に予測する。		
2. 評価条件 <u>自動減圧系の自動起動を阻止する操作に失敗すること以外</u> <u>の条件はベースケースの評価条件</u> と同じである。	2. 評価条件 自動減圧系の自動起動を阻止する操作に失敗すること以外 は、ベースケースと同じ評価条件である。この場合、残留熱 除去系は原子炉注水に使用することから、残留熱除去系(サ プレッション・プール冷却系)には期待しないこととする。	2. 評価条件 <u>本評価における事象想定は,初期炉心流量を85%とするこ</u> <u>と,自動減圧系の自動起動阻止操作失敗を想定すること以外</u> <u>は,有効性評価</u> と同じである。	 ・解析条件の相違 【柏崎 6/7,東海第二】 島根2号炉は初期炉 心流量 85%,柏崎 6/7は 初期炉心流量 100%,東 海第二は初期炉心流量
3. 評価結果 評価結果を図1_から図7_に示す。評価結果のまとめを表1 に示す。また、参考までに「反応度投入事象に関する評価指 よ」に照らした評価結果を表2_に示す ²⁰ 事象発生後約440 秒で自動減圧系が作動することにより原 子炉圧力が徐々に低下し、高圧炉心注水系流量が増加すると なもに約610 秒から低圧炉心注水系により注水される。その 後、約650 秒で原子炉水位が1.8 に到達し、原子炉隔離時冷却 え及び高圧炉心注水系が停止する。 此れながら、低圧炉心注水系による注水は継続され、炉 心内のボイド率が低下し、正の反応度が投入されることによ り、約830 秒付近で出力上昇が発生する。 ただし、ボイド及びドップラフィードバックによる出力抑 制、原子炉圧力上昇による低圧炉心注水系の停止により出力 は低下する。このとき急激な出力増加により沸騰遷移が生じ、 燃料被覆管最高温度は約570℃まで上昇する結果となる。ま た、低圧炉心注水系による注水の際の全反応度の最大値は約 0.98%である。	3. 評価結果 評価結果を <u>第1図から第7図</u> に示す。評価結果のまとめを <u>第1</u> 素に示す。 事象発生後約400秒で自動減圧系が作動することにより原 子炉圧力が低下し、高圧炉心スプレイ系の注水流量が増加す るとともに約550秒から低圧炉心スプレイ系、約590秒から残 留熱除去系(低圧注水系)による注水が開始される。これに 伴い炉内のボイド率が低下することで、正の反応度が投入さ れ、約600秒、約1,000秒付近で原子炉出力が上昇する。その 後、ボイド及びドップラフィードバックによる負の反応度印 加及び原子炉圧力の上昇に伴う原子炉出力が上昇する。その 後、ボイド及びドップラフィードバックによる負の反応度印 加及び原子炉圧力の上昇に伴う原子炉出力が上昇する。 また、全反応度が最大となるのは約590秒時点で約1%である。 以降は、低圧炉心スプレイ系等の注水に伴う原子炉出力の 上昇及び原子炉圧力上昇により原子炉注水流量が減少するこ とに伴う原子炉出力の低下を繰り返すが、ほう酸水注入系に よる炉心へのほう酸水注入により徐々に原子炉出力が低下す る傾向となる。	3.評価結果 評価結果を図1から図7に示す。評価結果のまとめを表 1に示す。また、参考までに「反応度投入事象に関する評 価指針」に照らした評価結果を表2に示す。※2 事象発生から約8.4分後に原子炉水位が原子炉水位低(レ ベル1)に到達し、それから120秒後の事象発生から10.4分 後に自動減圧系が作動する。自動減圧系が作動することに より、高圧炉心スプレイ系流量が増加する。その後、更に 原子炉は減圧され、事象発生から約14.2分後に低圧炉心ス プレイ系、約15.0分後から低圧注水系による注水が始まる。 低圧炉心スプレイ系、低圧注水系による注水が始まる。 低圧炉心スプレイ系、低圧注水系による注水が始まる。 近りは、下し、正の反応度が投入されることにより原 方炉出力は上昇する。 しかしながら、ボイド及びドップラフィードバックによ る出力抑制、原子炉圧力上昇による低圧炉心スプレイ系、 低圧注水系停止により原子炉出力は低下する。このときの 急激な出力上昇により燃料被覆管温度は最大1,015℃まで 上昇する結果となる。また、この過程における全反応度の <u>最大値は約1.02</u> 、である。	 ・解析結果の相違 【柏崎 6/7,東海第二】 ・解析結果の相違 【柏崎 6/7,東海第二】
その後、原子炉圧力の再低下に伴い低圧炉心注水系により 再度注水され、約1330 秒付近から出力が増加するが、ボロン 注入により負の反応度投入が進んでいるため出力上昇は約 830 秒付近の出力上昇より抑えられる結果となる。 以上 ※1:低圧状態における修正Shumway相関式の適用性 TRACGに組み込まれているリウェット相関式である、修正 Shumway相関式は、試験データベースの圧力範囲が0.4~9		 ※1:低圧状態における修正Shumway相関式の適用性 TRACGに組み込まれているリウェット相関式であ る,修正Shumway相関式は,試験データベース 	

柏崎刈羽原子力発電	所 6/7号	炉 (2017.12.20版)	東海第二発電所(2018.9.	12版)		島根原子	力発電所 2	2 号炉	備考
MPaとされている(TR	ACG Model De	escription (NEDO-32176)				の圧力範囲が0.4~9	9MPaとされ	ている(TRACG M	
6.6.7章参照)。よっ	て, 修正Shum	way相関式は, ADS自動起				odel Desc	riptic	on (NEDO-32176)	
動阻止失敗時に原子	炉圧力が減圧	された低圧状態(0.5~				6.6.7章参照)。よっ	て,修正S1	n u m w a y 相関式は,	
0.6MPa程度)において	ても適用可能。	とされており, かつ, 最				ADS自動起動阻止	と失敗時に原	子炉圧力が減圧された	
小安定膜沸騰温度を	保守側(低め)	に予測する。				低圧状態(0.5~0.6M	WPa程度)にお	らいても適用可能とさ	
						れており, かつ, 最	最小安定膜沸	騰温度を保守側(低め)	
						に予測する。			
※2:「反応度投入事象	に関する評価	「指針」で示される判断基準			₩2:	「反応度投入事象に関	関する評価指	針」 で示される判断基	
(燃料エンタルピ)	は、室温・大	気圧・自然対流の冷却水中				準(燃料エンタルビ	?) は, 室温	・大気圧・自然対流の	
における単一の標準	燃料に対する	NSRR実験に基づくものであ	,			冷却水中における単	迫一の標準燃	料に対するNSRR実	
り、今回のような運	転中でかつ急	速な減圧に伴い反応度が投				験に基づくものであ	5り、今回の	ような運転中でかつ急	
入される事象とは想	定している事	象が大きく異なるが、投入				速な減圧に伴い反応	度が投入さ	れる事象とは想定して	
される反応度の大き	さを把握する	ために参考として示すもの				いる事象が大きく異	具なるが, 投	入される反応度の大き	
である。						さを把握するために	二参考として	示すものである。	
表1 ADS自動起動阻止操作	乍の失敗を考	慮した場合の判断基準への	第1表 ADS自動起動阻止操作の失	敗を考慮した場合の	<u>表1</u> A	ADS自動起動阻止操	操作の失敗を	考慮した場合の評価項目	・解析結果の相違
	影響		評価項目への影響				<u>への影響</u>		【柏崎 6/7,東海第二】
項目	解析結果 (TPACC)	判断基準	評価項目	解析結果 (TRACG参考解析)		項目	解析結果	判断基準	
自動減圧系の自動起動を	大敗	_	燃料被覆管温度(℃) 燃料被覆管の融化量(%)	約 590 - (評価 <i>せず</i>)		自動減圧系の自動起動を	(IKACG) 生助		
阻止する操作 燃料被磨笠是高温度(℃)	約 570	1.200℃ 87 万	原子炉冷却材バウンダリにかかる圧力(MPa[gage])	約 8.09		阻止する操作	X 9X		
がおけば夏日坂間10002(0)		前,20000001 酸化反応が著しくなる前の被覆	原子炉格納容器バウンダリにかかる圧力(MPalgage]) 原子炉格納容器バウンダリの温度	約 0. 37*1	<u></u>	燃料被覆管最高温度(℃)	約 1,015	1,200℃以下	
原子炉冷却材圧力バウンダリに	(評価せず)	管厚さの15%以下 10.34 MPa[gage](最高使用	(サプレッション・プール水温度(℃))	AU 131	大	燃料被覆管の酸化量(%)	(評価せず)	15%以下	
かかる圧力(MPa[gage]) 原子恒格納容器バウンダリに	約 8.52	圧力の1.2倍)を下回る 0.62 MPa[gage]	※1 1,500秒時点での値		原-	子炉冷却材圧力バウンダリに いる圧力の最大値 (MPa[gage])	約8.54	10.34MPa[gage](最高使用 圧力 1.2倍)未満	
かかる圧力(MPa[gage]) 原子炬格納容器バウンダリの温度	約0.30*1	(限界圧力)を下回る			原	ほ子炉格納容器バウンダリに ステキャー	約 161 ^{**3}	853kPa[gage] (限界圧力)	
(サプレッション・チェンバ・プ ール水温(℃))	約130 ^{※1}	200℃ (限界温度)を下回る			「原子	いる圧刀の最大値 (kPa[gage]) 子炉格納容器バウンダリにかか) 5>	未滴	
					3	温度の最大値(サプレッショ ン・プール水温度)(℃)	約 108 ^{※3}	200℃(限界温度)未満	
※1:1500秒時点での値	<u>i</u>								
					*3	3 : 1200 秒時点での値	<u>直</u>		
表2 「反応度投入事象に	関する評価指	<u>針」に照らした評価結果</u>			表 2	「反応度投入事象に	ニ関する評価	指針」に照らした評価結	・解析結果の相違
項目	解析結果 (TRACC)	判断基準					<u>果</u>		【柏崎 6/7】
燃料エンタルピ (cal/g・UO ₂)	約 109 ^{※1}	230 ^{3%2}				項目	解析結果 (TRACG)	判断基準	
※1・ADS 作動後のIDF	し注入にトス中	カト昇時の最大値			燃料エン	ンタルビ (cal/g・UO ₂)	115**4	230*5	
※2・燃料エンタルピの	····································	/// / // -/ //			** /	4 · ADS 作動後にお	いた出力ト	 昇時の最大値	
						・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)最大値	/	
							/ 412 / 11旦		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
 37. ドライウェルサンプへの溶融炉心流入防止対策に期待した 場合の溶融炉心・コンクリート相互作用の影響について 1. サンプに対する溶融炉心・コンクリート相互作用の考慮の必 亜性 			 27. ドライウェルサンプへの溶融炉心流入防止対策に期待した場合の溶融炉心・コンクリート相互作用の影響について 1. サンプに対する溶融炉心・コンクリート相互作用の考慮の必要性 	
<u>原子炉格納容器下部</u> の床面には, <u>格納容器内で発生した廃</u> 液の収集のために,図1-1,図1-2のとおり高電導度廃液サンプ (HCWサンプ)と低電導度廃液サンプ(LCWサンプ)が設置され ている。			原子炉格納容器内には,原子炉格納容器内で発生した廃液を 集水し,ポンプによって原子炉格納容器外へ移送するためにド ライウェル機器ドレンサンプおよびドライウェル床ドレンサン プ(以下「ドライウェルサンプ」という。)が図 1-1,図 1-2 のとおり配置されており,原子炉格納容器下部床とドライウェ ルサンプはドレン配管にて接続されている。	
溶融炉心の落下時及び落下後の挙動には不確かさが大きい と考えられるが、これまでの知見を参照し、基本的には速やか に床面に拡がり、一様な厚さで堆積するものとして取り扱うこ ととしている。 このように取り扱う場合、溶融炉心がサンプ内に流入する ことを考慮する必要があるが、サンプは底部と鋼製ライナまで の距離が約20cmと近く、原子炉格納容器下部床面を握り下げた 形状となっているため、原子炉格納容器下部床面よりも溶融炉 心が厚く堆積する可能性があることから、溶融炉心・コンクリ ート相互作用(以下「MCCI」という。)による原子炉格納容器 バウンダリ(鋼製ライナ)の損傷リスクが高くなると考えられ る。 これらの理由から、以下の2.のとおりにサンプにおける MCCI への対策を検討し、3.のとおり、コリウムシールドの設 置等によりサンプへの流入を防止することとした。また4.の とおり、コリウムシールドに期待する場合の原子炉格納容器下 部における MCCI の影響評価を実施した。			 溶融炉心が原子炉格納容器下部に落下する場合には、原子炉 格納容器下部注水により水位が形成されており、溶融炉心の冷 却が促進し粘性が増加することから、原子炉格納容器下部に落 下した溶融炉心がドレン配管を通じてドライウェルサンプに流 入する可能性は低いと考えられるものの、溶融炉心がドライウ ェルサンプ内に流入することを考慮すると、ドライウェルサン プ壁面と圧力容器ペデスタル(外側鋼板)との距離はコンクリ ートを介して であり、またドライウェルサンプ床面から 原子炉格納容器パウンダリである鋼製ライナまでの距離も と近いことから、溶融炉心・コンクリート相互作用(以下 「MCCI」という。)による原子炉圧力容器の支持機能及び 格納容器パウンダリの健全性が損なわれる恐れがある。 これらの理由から、以下の2.のとおりドライウェルサンプ におけるMCCIへの対策を検討し、3.のとおり、コリウム シールドの設置によりドライウェルサンプへの流入を防止する こととした。また4.のとおり、コリウムシールドに期待する 場合の原子炉格納容器下部におけるMCCIの影響評価を実施 した。 	 ・設備設計の相違 【柏崎 6/7】 ドライウェルサンプ 位置および構造の相違。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
図 1-1 格納容器の構造図(ABWR, RCCV 型格納容器)		<complex-block><complex-block></complex-block></complex-block>	
図1-2 ドライウェルサンプの配置(7 号炉の例)		<complex-block><complex-block></complex-block></complex-block>	
 サンプにおける MCCI 対策の必要性 サンプにおける MCCI 対策が必要と考える理由	【比較のため,「添付資料3.5.3」の一部を記載】 <u>東海第二発電所では、原子炉圧力容器(以下「RPV」という。)破損時にペデスタル(ドライウェル部)(以下「ペデスタ</u> ル」という。)に落下した溶融炉心が、ペデスタルに設置された 格納容器ドレンサンプの排水流路を通じてサプレッション・チ エンバへ移行することを防止するため、排水流路の形状を変更 することとしている。 RPV破損時には、ペデスタル内の水により格納容器ドレン	 2. サンプにおけるMCCI対策の必要性 サンプにおけるMCCI対策が必要と考える理由	 ・記載方針の相違 【柏崎 6/7】 島根 2 号炉および東 海第二では,溶融炉心 のドレン配管の流入の 可能性に対する考察を 記載。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
炉心が固化し, 空隙が生じて, 空隙から浸入した水によって除	サンプの排水流路は水で満たされていることから、溶融炉心が	初期水張りによって、ドレン配管は水で満たされていることか	
熱される等,緩和側に働く要因もいくつか考えられる。	排水流路に流入する際には、流路内から水や水蒸気の対向流が	ら,溶融炉心がドレン配管に流入する際には,流路内から水や	
	生じる。また、溶融炉心が格納容器ドレンサンプの排水口に到	水蒸気の対向流が生じる。また,溶融炉心がドライウェルサン	
	達するまでの温度低下及び粘性増加を考慮すると、現実的には	プの排水口に到達するまでの温度低下及び粘性増加を考慮する	
	溶融炉心の排水流路への流入はごく限定的と考えられる。	と、現実的には溶融炉心のドレン配管への流入はごく限定的と	
		考えられる。	
しかしながら、上記の緩和要因を定量的に見込むことは困	しかしながら、溶融炉心の落下時及び落下後の挙動は不確か	しかしながら、上記のような緩和要因を定量的に見込むこと	
難なため、保守的な評価体系でサンプ流入時の影響を評価す	さがあることから、溶融炉心の排水流路への流入を想定した場	は困難なため,溶融炉心のドレン配管内への流入を想定した場	・評価方針の相違
<u> 3.</u>	<u>合でも溶融炉心が横スリット内で凝固停止しサプレッション・</u>	<u>合のドレン配管内での溶融炉心の凝固距離について, MAAP</u>	【柏崎 6/7】
	<u>チェンバ側へ移行しないことを、MAAP計算結果を基に評価</u>	<u>結果をもとに評価し、ドライウェルサンプへの流入可能性につ</u>	島根2号炉および東
	し、スリット状排水流路の有効性を確認した。	いて評価した。	海第二では、溶融炉心
<u>a. 評価体系</u>			がドレン配管へ流入し
・ MAAP コードでは、サンプのような直方体の形状を模擬			た場合の凝固距離を評
できないため、床面積をサンプの床面積に合わせた円柱			価。一方, 柏崎 6/7 で
で模擬した。サンプの床面積は6 号炉と7 号炉を比較し			は,原子炉格納容器下
て、サンプへのデブリ流量に対して、サンプ床面積が小			部の床面にサンプが設
さく上面から水への除熱量が少なくなる7 号炉で代表			置されていることから,
させた。サンプ侵食量の評価体系を図 2-1 に示す。			溶融炉心のサンプ流入
• 溶融炉心の堆積厚さは,サンプ深さの1.4m に,下部ド			時の影響について, M
ライウェル床面に均一に拡がってサンプの溶融炉心の上			AAPコードを用いた
に堆積する高さ約 0.5 m を加えた約 1.9 m とした。			MCC I 評価を実施し
b. 評価条件			ている。
・ 評価ケース 2-1:有効性評価「溶融炉心・コンクリート			
相互作用」における溶融炉心落下時刻の崩壊熱(事象発生			
から約7時間後)及び格納容器圧力への依存性を考慮し			
た上面熱流束を用いた評価。			
 ・ 評価ケース 2-2:事象発生から6時間後の崩壊熱及び 			
800kW/m ² 一定の上面熱流束を用いた評価。			
<u>c. 評価結果</u>			
・ 評価ケース 2-1:図 2-2 に示すとおり,サンプの侵食量			
は約 0.13m であり, 鋼製ライナの損傷には至らないこと			
を確認した。			
・評価ケース 2-2 ではサンプの侵食量は床面で約0.78m で			
あり、鋼製ライナに到達することを確認した。			
<u>以上のとわり、朋環熱及い上面熱流来を保守的に考慮して</u> おり 溶融炉心の落下量 水中茨下後の送動にも不確かさがあ			
ると考えられる状態の評価結果であるが、鋼製ライナの損傷を			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所	2 号炉
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) <u>防止できない評価結果が得られたことを考慮し,サンプにおけ</u> <u>る MCCI 対策を講じることとした。</u>	東海第二発電所 (2018.9.12版) 1. 格納容器ドレンサンプ排水流路の形状変更を考慮した凝固 停止評価モデル 第1回に,格納容器ドレンサンプ排水流路の形状変更を考慮 した凝固停止評価モデルの概要図を示す。 各ドレンサンプからの排水流路は、ペデスタル床面に堆積す る溶融炉心による熱影響を抑制するコンクリート深さまで通じ る縦方向の流路 (縦スリット)と、流入した溶融炉心を凝固さ せる横方向の流路 (横スリット)と、流入した溶融炉心を凝固さ せる横方向の流路 (横スリット)を介し、既設の格納容器ドレ ンサンプ排水配管へ接続する構成とする。 また,縦スリット及び横スリットは薄い中空平板型 (幅 □ [内径],厚さ[](内径])の形状とし、周囲をSU S材とすることで、流入した溶融炉心の冷却及び凝固停止を 促進させる設計とする。	島根原子力発電所	2 号炉

備考

・記載方針の相違

【東海第二】

島根2号炉および柏 崎6/7では,2.(2)b. の「ドレン配管内での溶 融炉心の凝固距離につ いて」において凝固距離 の評価を記載。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12版)	島根原子力発電所 2号炉	備考
【比較のため, 3.2 (6)を記載】			
	 既往の試験結果に基づく評価 	(2) 溶融炉心の凝固評価	・記載方針の相違
EPRI(Electric Power Research Institute)及びFAI(FAUSKE	配管等の流路内における溶融炉心の流動・凝固挙動に係る試	a. EPRI/FAI試験の概要	【東海第二】
& ASSOCIATE, LLC)が、下部プレナムを模擬した試験体に模擬	験として、米国EPRI及びFAIにより実施された炉心溶融	EPRI(Electric Power Research Institute)及びFAI	東海第二ではEPR
溶融炉心(Al2O3)を流入させる試験を行っている。同試験の	時のRPV下部プレナム貫通部の挙動に係る試験がある。[1]こ	(FAUSKE & ASSOCIATE, LLC) が, 下部プレナムを模擬した試験	I 試験条件と東二の排
試験体系が,比較的, <u>7号炉</u> のドレン配管(80A)に近い体系と	の試験では, RPV下部プレナム及びドレン配管(内径 5cm)	体に模擬溶融炉心 $(A \mid_2 O_3)$ を流入させる試験を行っており、	水流路における条件を
なっていることから、その試験結果に基づき、ドレン配管内で	<u>を模擬した試験体に模擬コリウムとしてA12O3を流入させ、</u>	同試験の試験体系が,比較的, <u>島根2号炉</u> のドレン配管(80A)	比較し、溶融炉心が横
の溶融炉心の凝固距離について評価を行う。	その流動挙動を確認している。	に近い体系となっていることから、その試験結果に基づき、ド	スリットの範囲内で凝
		レン配管内での溶融炉心の凝固距離について評価を行う。	固停止することが示さ
a. EPRI/FAI試験の概要			れている。
図3-13に試験装置概要を示す。酸化鉄とアルミニウムによる	<u>第2図に試験装置の概要図を示す。</u>	<u>図2</u> に試験装置概要を示す。酸化鉄とアルミニウムによるテ	
テルミット反応により,模擬溶融炉心である溶融したAl203が		ルミット反応により,模擬溶融炉心である溶融したA12O3が	
生成される。 模擬溶融炉心はテルミットレシーバに流入し, 密		生成される。模擬溶融炉心はテルミットレシーバに流入し、密	
度差により鉄とAl203とで成層化が起こる。密度差からAl203は		度差により鉄とA12O3とで成層化が起こる。密度差からA1	
鉄より上層にあることにより、Al2O3によりセメント製のキャ		₂ O ₃ は鉄より上層にあることにより, A 1 ₂ O ₃ によりセメント	
ップが溶融し, Al2O3のみLower Chamberに移行する。このとき,		製のキャップが溶融し、Al ₂ O ₃ のみLower Chamb	
Lower Chamber及びドレン配管は水で満たされており, 溶融炉		erに移行する。このとき、Lower Chamber及びド	
心が原子炉格納容器下部へと落下してくる際の実機の条件と		レン配管は水で満たされており、溶融炉心が原子炉格納容器下	
類似している。試験の結果、模擬溶融炉心の流動距離(凝固距	<u>試験の結果,配管内でのA12の3の流動距離は最大でも79cm</u>	部へと落下してくる際の実機の条件と類似している。試験の結	
離)は0.79mであった。	程度となっており、配管の破断は生じていない。	果,模擬溶融炉心の流動距離(凝固距離)は0.79m であった。	
	<u>また,配管内での水平方向の流速は最大でも約0.2m/sと推</u>		
	<u>定されており、流路形状に基づきベルヌーイ則により計算され</u>		
	<u>る流速よりも 1/10 から 1/100 小さい結果となっている。これ</u>		
	は、模擬ドレン配管内における水の存在により、模擬コリウム		
	の流動が著しく抑制されたためと推定されている。		
	<u>第1表に、EPRI試験条件と東二の排水流路における条件</u>		
	の比較を示す。		
	<u>EPRI</u> 試験では,模擬コリウムとしてA1 ₂ 〇 ₃ を用いてお		
	り, その体積当たりの溶融潜熱は約 4.41×10 ⁹ J/m ³ と計算さ		
	れる。これに対して、東海第二発電所の溶融炉心の場合、溶融		
	潜熱に加えて液相線温度から固相線温度までの顕熱を考慮して		
	も、体積当たりの凝固までの放出熱量はと計算さ		
	<u>れ, A1₂O3と同等であることが分かる。</u>		
	<u>また,東海第二の溶融炉心の熱伝導率はA1₂O₃</u> に比べて大		
	<u>きいことに加え、格納容器ドレンサンプの排水流路はスリット</u>		
	形状とし周囲にSUS材を配置することから、実機条件の方が		
	溶融炉心の冷却が進みやすいと考えられる。		
	一方,東海第二の溶融炉心はA12O3に比べて動粘度が小さ		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>いことや堆積ヘッドが大きくなっていることから, EPRI</u> 試		
	験条件に対して流路内での流入速度が速くなることが考えられ		
	<u>る。しかし、流速が大きくなると、溶融炉心とSUS材間の対</u>		
	流熱伝達率が大きくなり溶融炉心の冷却率が大きくなることか		
	ら,流動距離は流速の増加に対して単純に線形には増加しない。		
	<u>以上より, EPRI試験条件と実機条件の差を勘案しても,</u>		
	総合的な流動距離への影響は同程度であることから, 東海第		
	<u>二のスリット条件でもEPRI試験結果の流動距離(約</u>		
	<u>79cm)を大きく上回ることは考えにくく, 溶融炉心は横スリ</u>		
	<u>ット長さ(</u>)の範囲内で凝固停止するものと考えられ		
	<u> </u>		
造扱デブリの法社		模擬デブリの流れ	
(機械デブリの流れ) (の (13 in) (Con	a) cm (23.6 in) Upper Chamber (Thermite Receiver) Cap with Refractory Cement Vent Tube Base Plate Base Plate Separator Tube 3.3 cm (1.31 in) Separator Tube Cap with (Current 1.25 in) Drain Line Water Base Plate 10.8 cm (4.25 in) Base Plate 7.6 cm (3 in) Residea.com 8.9 cm (3.5 in)	Box 2 cm (1/2 m) Your Your Y	
	Mollen Debris Vent Initial Water Flow Meter Element () Initial Water Initial Water Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" Image: Colspan="2"		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所	f (2018. 9. 12)	坂)		島根原子力発電所 2号炉	備考
							・記載方針の相違
					1		【東海第二】
							島根2号炉および柏
							崎 6/7 では, 2.(2) b.
							の「ドレン配管内での溶
							融炉心の凝固距離につ
	日本				1		いて」において凝固距離
		■ 融 ま。 炉 で		後、			の評価を記載している。
	三部の	程 浴 度思虑 "		0 1 t			
		はみ線)	を流に	面み			
	を思	熱敷固考量の相慮	が物流	略が壁進			
	に動	除潜らを	和融を	流却			
	世 ()	要浴度潜	51、75 72 72	₩ ₽			
	<i>※</i>	い 乳線 溶	0 かり い し い し し し し し し し し し し し し し し し し	形き			
	美	まー夜熱で。相と	心 件向ド	シがト			
) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	王 王 王 王 子 は 頭		し、「「」」	し値		
	▲ — — ●						
	よ) 世) M	破損		
	後 二 件	- <i></i> 之	~	「秋」を	ΡV		
	試 海 機 感 第 条	<u>軟</u> 一	004	~ S 枚	ъ К		
	- N - I - 一東 実	〈 旋	0.	S U S	t: 10		
	сц L			\smile	2		
	1112				メ (×]		
		0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) - 1		が シ ジ ゼ		
	第 2 条	$\begin{array}{c c} & 1 & 2 \\ \hline 1 & 2 & 0 \\ \hline 2 & 3 & 0 \\ \hline 6 & 3 & 0 \\ \hline 6 & 3 & 0 \\ \hline 6 & 3 & 0 \\ \hline \end{array}$	$\frac{7.5}{\times 10}$ $\frac{7.5}{\times 10}$ $\frac{1}{0.3}$ 0.3	配 部 5 cm			
	玉験	A 3 3 3 7 4	0 0 0		N C N		
	104				17 S U		
		、 単			E %		
		t g g)	□ I I K I I I K I I K I I K I I K I I K I I K I I I K I I I K I I I I I I I I I I I I I		4年10~2		
			(] (] () () () () () () () () () () () () ()	-	년 전 전 전		
	重		◎ ◎ ●	""	A A A T		
			出導係性堆 6		MM		
		※ 融 密比溶体	の熱粘動全まるを告告で	5 流 流 送 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 1		
		游 電 参 修 電 参 参	禾 件	流路条件] * *		
	1						
							 ・記載方針の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
b. ドレン配管内での溶融炉心の凝固距離について		b. ドレン配管内での溶融炉心の凝固距離について	【東海第二】
ドレン配管内の溶融炉心の溶融凝固特性は流入する溶融炉		ドレン配管内の溶融炉心の溶融凝固特性は流入する溶融炉心	東海第二では、格納
心の保有熱量と,配管外部への放熱量に依存するものと考えら		の保有熱量と、配管外部への放熱量に依存するものと考えられ	容器ドレンサンプ排水
れる。そこで,ドレン配管体系について,溶融炉心の物性の違		る。そこで、ドレン配管体系について、溶融炉心の物性の違い	流路における凝固停止
いも考慮して, 溶融炉心の保有熱量及び配管外への放熱量 (配		も考慮して、溶融炉心の保有熱量及び配管外への放熱量(配管	評価結果が1.に記載さ
管系に依存)の比率に基づき流動距離を推定する。		系に依存)の比率に基づき流動距離を推定する。	れている。
<u>表3-6</u> に評価に使用する溶融炉心とコンクリートの物性値を		<u>表1</u> に評価に使用する溶融炉心の物性値を示す。A1 ₂ O ₃ の	
示す。Al203の溶融潜熱(hfs=1.16×10 ⁶ J/kg)に密度		溶融潜熱(hfs=1.16×10 6 J/kg)に密度($ ho$ =3,800kg/m ³)を乗	
(ρ=3800kg/m ³)を乗じると,流動停止までの保有熱量は		じると、Al ₂ O ₃ の流動停止までの保有熱量は 4,408MJ/m ³ とな	
4408MJ/m ³ となる。一方,溶融炉心の流動停止までの保有熱量		る。一方、溶融炉心の流動停止までの保有熱量は顕熱と溶融潜	
は顕熱と溶融潜熱の和として次式で表される。		熱の和として次式で表される。	
$h_{db}= \{ (T_d-T_{sol})C_p + h_{fs} \}$		$h_{db}= \{(T_d-T_{sol})C_p+h_{fs}\}$	
ここで、hdb:溶融炉心の流動停止までの顕熱と溶融潜熱の		ここで、 hab:溶融炉心の流動停止までの顕熱と溶融潜熱の和	
和(J), Td:溶融炉心温度(℃), Tsol:溶融炉心固相線温度		(J/kg)	
(℃),Cp:溶融炉心比熱(J/kg℃),hfs:溶融炉心溶融潜熱(J/kg)		Ta:溶融炉心温度 (℃)	
である。		Tsol:溶融炉心固相線温度 (℃)	
		Cp:溶融炉心比熱(J/kg℃)	
		hfs:溶融炉心溶融潜熱(J/kg)	
		である。	・評価結果の相違
このとき、hdbは約となり、密度を乗じ、流動停止		このとき, habはとなり,密度を乗じ,流	【柏崎 6/7】
までの保有熱量とするととなり、Al203の約倍		動停止までの保有熱量とすると となり、 A12	評価に適用する溶融
となる。		O ₃ の 倍となる。	炉心物性等による差異。
また,ドレン配管 (80A) の配管直径(dr)を8cmと仮定すると,		また,ドレン配管(80A)の配管直径(df)を8 cm と仮定する	
EPRI/FAI試験のドレンラインdtes (5cm)より, 配管径の比は約		と, EPRI/FAI試験のドレンライン dtes(5cm)より,	
1.6倍である。配管径の比,保有熱量比を用いて,ドレン配管		配管径の比は約1.6倍である。配管径の比,保有熱量比を用い	
内の溶融炉心流動距離(凝固距離)を次の様に評価する。		て、ドレン配管内の溶融炉心流動距離(凝固距離)を次の様に	
		評価する。	
L = L _{tes} × d _f /d _{tes} × (h _{db} ρ d _b) / (h _{al} ρ a _l)		$L = L_{i} \times \frac{d_f}{d_f} \times \frac{h_{alb} \rho_{alb}}{h_{alb}}$	
ここで,L:ドレン配管内の溶融炉心流動距離(凝固距離),		$d_{tes} = h_{al} \rho_{al}$	
Ltes: EPRI/FAI試験の流動距離,		ここで, L:ドレン配官内の溶融炉心流動距離(疑固距離)	
tes:配管直径比,			
(h _{db} ρ _{db}) / (h _{al} ρ _{al}):流動停止までの保有熱量比		$\frac{J}{d_{us}}$: 配管直径比	
である。		$rac{h_{ab} ho_{ab}}{h_{ab}}$ ・流動停止までの保有執量比	
		$h_{al}\rho_{al}$	・評価結果の相違
		である。	【柏崎 6/7】
EPRI/FAI試験の流動距離0.79mを基に,上記式によってドレ		EPRI/FAI試験の流動距離 0.79m を基に,上記式によ	評価に適用する溶融
ン配管内の溶融炉心の凝固距離を評価すると、凝固距離は		ってドレン配管内の溶融炉心の凝固距離を評価すると、凝固距	炉心物性等による差異。
となる。		離はしとなる。	1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
機器ファンネルからドライウェルサンプまでのドレン配管			ファンネルからドライウェルサンプへと繋がるドレン配管長	・設備設計の相違
長は, 最短でも <u>約3.6m以上であることから, 機器ファンネルに</u>			は,最短でも 以上の配管長を有しており,かつ「b.ド	【柏崎 6/7】
<u>流入した溶融炉心は,ドレン配管内で凝固するため,ドライウ</u>			レン配管内での溶融炉心の凝固距離について」及び別紙-1に	ドレン配管長の差異。
ェルサンプ内に到達することはないと考えられる。			示すとおり,ドレン配管内の溶融炉心の凝固距離は最大でも	・評価結果の相違
			であり、ドライウェルサンプに溶融炉心が流入すること	【柏崎 6/7】
			はない。	MAAP解析におけ
表3-6 評価に使用する溶融炉心物性値及びコンクリート物性値*			表1 評価に使用する溶融炉心物性値※	る溶融物性値の差異。
			▲ ※融炉心物性値については、MAAP解析における、原子炉圧力容器破損直前	
※溶融炉心物性値については、MAAP解析における、原子炉圧力容器破損直前の下部			の下部プレナム内の物性値を使用した。	
格納容器のコンクリートの密度とし、また、既往の研究(NURREG/CR-2282)より				
融点及び溶融潜熱を引用した。				
【ここまで】				
				・設計方針の相違
(2) コリウムシールドの選定理由			(3) コリウムシールドの選定理由	【柏崎 6/7】
これまでは、サンプの位置や水中落下後の挙動の不確かさ、			(2)の評価結果では 原子炉格納容器下部注水によって溶	島根2号炉において
評価条件の保守性等を考慮し、当初は鋼製ライナの損傷に至る				も、溶融デブリの冷却
までの侵食がサンプにおいて生じる状態は想定していなかっ			は不確かさがあろと考えられることから「ドライウェルサンプ	性や凝固距離の不確か
たものの、現象の不確かさを踏まえ、サンプの防護のための自			への溶融炉心流入防止対策を講じることとした。	さを考慮して、コリウ
主対策としてコリウムシールドを設置していた。				ムシールドを対策とし
対策の検討に際しては、サンプ及びサンプポンプ等の既存			対策の検討に際しては、ドレン配管内におけろ冷却を促進し、	て選定しているが,設備
の設備の機能を阻害しない観点で検討を実施した。図 2-3 に			溶融炉心を早期に固化・停止させるために、溶融デブリ流速の	の相違により記載が異
サンプ内の構造を示す。サンプポンプの吸込みがサンプの底部			減速、流路径を縮小する等の対策も考えられたが、漏えい検知	なる。
から約 0.15m の高さにあり, ファンネルからの流入口がサン			機能といった既存の設備の機能を阻害しない観点及び施工性の	
プの底部から約 0.35m の位置にある等,サンプの底部付近に			観点で検討を実施し、ドレン配管入口までの流路を延長する対	
は様々な機器, 構造物があることを考慮し, サンプの防護のた			策としてコリウムシールドを選定した。	
めの対策としてコリウムシールドを選定した。				
機器,構造物の設置高さを見直し,サンプの底上げを行う				
能ではないと考えるが,既に設置しているコリウムシールドで				
あっても,サンプの防護の観点で十分な性能を有していると考				
え,コリウムシールドを重大事故等緩和設備に位置付けること				
とした。				
				1

·炉	備考
	・評価方針の相違
	【柏崎 6/7】
	柏崎 6/7 では, 溶融
	炉心のサンプ流入時の
	影響について、MAA
	Pコードを用いたMC
	C I 評価が実施されて
	いる。
	1 1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12版)	島根原子力発電所 2号炉	備考
3.1 設置目的			3.設備の概要	
炉心損傷後に原子炉圧力容器底部が破損し, 原子炉格納容器			3.1 設置目的	
下部ドライウェルへの溶融炉心の落下に至り,落下してきた溶			炉心損傷後に原子炉圧力容器底部が破損し, 原子炉格納容器	・設備設計の相違
融炉心が <u>ドライウェル高電導度廃液サンプ及びドライウェル</u>			<u>下部</u> への溶融炉心の落下に至り,落下してきた溶融炉心が <u>ドレ</u>	【柏崎 6/7】
低電導度廃液サンプ(以下,「ドライウェルサンプ」という。)			ン配管を通じ、ドライウェルサンプ内に流入する場合、サンプ	設備や格納容器構造
内に流入する場合,ドライウェルサンプ底面から原子炉格納容			ピット壁面は原子炉圧力容器支持のための外側鋼板が露出して	の相違により、想定さ
器バウンダリである鋼製ライナまでの距離が小さいことから,			おり、ドライウェルサンプ壁面と外側鋼板との距離も近く、ま	れる損傷箇所が異なる
サンプ底面コンクリートの侵食により溶融炉心が鋼製ライナ			たドライウェルサンプ床面から原子炉格納容器バウンダリであ	ため、記載が異なる。
に接触し,原子炉格納容器のバウンダリ機能が損なわれるおそ			る鋼製ライナまでの距離も近いことから、コンクリート侵食に	
<u>れがある。</u> ドライウェルサンプへの溶融炉心の流入を <u>防ぎ</u> , <u>か</u>			よって原子炉圧力容器の支持機能及び原子炉格納容器のバウン	
<u>つ原子炉格納容器下部注水設備と合わせて,サンプ底面のコン</u>			<u>ダリの健全性が損なわれる恐れがある。</u> ドライウェルサンプへ	
クリートの侵食を抑制し,溶融炉心が原子炉格納容器バウンダ			の溶融炉心の流入を抑制し、溶融炉心が原子炉格納容器バウン	
リに接触することを防止するために,原子炉格納容器下部にコ			ダリに接触することを防止するために、原子炉格納容器下部に	
リウムシールドを設置する。			コリウムシールドを設置する。	
図3-1 コリウムシールド外観(7 号炉) ま 3-1 コリウムシールド仕様			には、 では、 し、 には、 には、 には、 には、 には、 には、 には、 には	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
3.2 コリウムシールド構造			3.2 コリウムシールド構造	
(1)コリウムシールド設計条件			(1) コリウムシールド設計条件	
a. 想定する事故シナリオ			a. 想定する事故シナリオ	
コリウムシールドを設計するための前提条件となる事故シナ			コリウムシールドを設計するための前提条件となる事故シナ	
リオは以下のとおり。			リオは以下のとおり。	
・TQUV(過渡事象後の低圧での炉心冷却失敗)及び原子炉注水			・TQUV(過渡事象後の低圧での炉心冷却失敗)及び原子炉	
失敗を想定			注水失敗を想定	
(有効性評価におけるMCCIシナリオと同様)			(有効性評価におけるMCCIシナリオと同様)	・評価方針の相違
・原子炉圧力容器破損前の原子炉格納容器下部注水(水張高さ			・原子炉圧力容器破損前の <u>原子炉格納容器下部注水により1m</u>	【柏崎 6/7】
<u>2m) は成功,</u> その後も注水は継続実施			の水位が形成されているものとし, その後も注水は継続実施	島根2号炉のコリウ
				ムシールドの設計条件
				として,保守性を考慮
				し,初期の水張り高さを
				1mとしている。
MAAP 解析結果またシュラウド下部の構造から,溶融した炉心			MAAP解析結果またはシュラウド下部の構造から、溶融し	
は直下の炉心支持板を損傷し,下部プレナムに落下,それに伴			た炉心は直下の炉心支持板を損傷し、下部プレナムに落下、そ	
い原子炉圧力容器下鏡の中央部(炉底部)における熱的な損傷			れに伴い原子炉圧力容器下鏡の中央部(炉底部)における熱的	
が大きくなり,原子炉圧力容器が破損,溶融炉心が原子炉圧力			な損傷が大きくなり,原子炉圧力容器が破損,溶融炉心が原子	
容器外に流出(落下)すると想定される。原子炉圧力容器から			炉圧力容器外に流出(落下)すると想定される。原子炉圧力容	
落下した溶融炉心はそのほとんどが垂直に落下し原子炉格納容			器から落下した溶融炉心はそのほとんどが垂直に落下し原子炉	
<u>器下部</u> に到達。その後, <u>原子炉格納容器下部</u> 床面を水平方向に			格納容器下部床面に到達。その後、原子炉格納容器下部床面を	・設備設計の相違
拡散し, <u>ドライウェルサンプへ</u> 流入すると想定される。溶融炉			水平方向に拡散し、 <u>ファンネルに</u> 流入すると想定される。溶融	【柏崎 6/7】
心の総量はと想定。			炉心の総量はと想定。	
表 3-2 溶融炉心組成内訳			表3 溶融炉心組成内訳	
b. コリウムシールド設計要求事項			b コリウムシールド設計亜水車百	・解析結果の相違
・崩壊熱レベル:事故後約7時間後に原子炉圧力容器が破損す			・崩墟執レベル・事故後約5.4時間後に固之后に力効果が破場	【柏崎 6/7】
ることを考慮し、事故後6時間相当とする。			加茲ボレンレ・ 邦政後がし、地村間後に原丁州工力谷裔が吸頂	
(ジルコニウムー水反応熱も考慮)			りるここで有限し、争以後 <u>3時间</u> 作目とり ス (ジルコーウムール日内数:大多度)	・設計方針の相違
			(マルマーソム - 小区心然も与應)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
・床面積 : コリウムシールド設置による床面積減少分を		・床面積 : コリウムシールド設置後の原子炉格納容器	【柏崎 6/7】
<u>考慮し,74 m²とする。(7号炉の値。6号炉</u>		下部の溶融デブリ拡がり面積を可能な限	コリウムシールドの
<u>は60 m²)</u>		り減少させないように,原子炉格納容器下	形状の差異による記載
		部全体を覆う構造とし、とする。	の相違
・溶融炉心質量:原子炉圧力容器内の主要設備(表3-2に記載)		・溶融炉心質量 :原子炉圧力容器内の主要設備(表3に記載)	
の溶融を考慮し、とする。		の溶融を考慮し、とする。	
・溶融炉心初期温度:MAAP解析における,原子炉圧力容器が破		 ・溶融炉心初期温度:MAAP解析における,原子炉圧力容器が 	
損し、溶融炉心が原子炉格納容器下部に		破損し,溶融炉心が原子炉格納容器下部に	
落下した直後の温度,,,とする。		落下した直後の温度とする。	
・溶融炉心除熱量:有効性評価よりも保守的な, と		・溶融炉心除熱量 : 有効性評価よりも保守的な, と	
する。		する。	
・初期水張条件:原子炉圧力容器破損前から原子炉格納容器下		・初期水張条件 : 原子力圧力容器破損前から原子炉格納容器	・評価方針の相違
部に注水を行うことを考慮し, 高さ <u>2m</u> とする。		<u> 下部</u> に注水を行うことを考慮し, <u>MCC I</u>	【柏崎 6/7】
		の観点から保守性を持たせた高さ1mとす	島根2号炉は,コリウ
		る。	ムシールドの設計条件
			として、保守性を考慮
			し, 初期の水張り高さを
			1mとしている。
(2)コリウムシールド基本構造		(2) コリウムシールド基本構造	
コリウムシールドの外形及び基本構造を図3-2,図3-3に示		コリウムシールドの外形及び基本構造を図4に示す。コリ	
す。コリウムシールドは溶融炉心のドライウェルサンプへの流		ウムシールドは溶融炉心のドライウェルサンプへの流入を防	・設計方針の相違
入を防ぐため, <u>ドライウェルサンプを囲うように設置する。ま</u>		ぐため、原子炉格納容器下部床面全体を覆う構造とする。な	【柏崎 6/7】
た,コリウムシールドはドライウェルサンプへの溶融炉心流入		<u>お, コリウムシールドの下部には, 矩形流路(スリット)を</u>	コリウムシールドの
を防ぐための「堰」と原子炉格納容器下部床面コンクリート侵		設置する。	形状の差異による記載
<u>食を防ぐための「床防護部」,及び原子炉格納容器下部壁面コ</u>			の相違。
<u>ンクリート侵食を防ぐための「壁防護部」により構成され,耐</u>			
熱材を鋼製の補強フレームにて支持する構造とする。			
なお、耐熱材材質としては溶融炉心落下時に熱的に損傷しな		耐熱材材質としては溶融炉心落下時に熱的に損傷しないこ	
いことに加え, 溶融炉心による化学的侵食(共晶反応, 酸化還		とに加え、溶融炉心による化学侵食(共晶反応、酸化還元反	
元反応,合金化等)まで考慮し,ジルコニア(ZrO2)を選定し		応,合金化等)まで考慮し,ジルコニア(ZrO ₂)を選定し	
た。ジルコニア(Zr02)耐熱材については、国内外の鉄鋼業界		た。ジルコニア(Z r O 2) 耐熱材については,国内外の鉄鋼	
において十分な導入実績があり、かつ、既往の研究において、		業界において十分な導入実績があり、かつ、既往の研究にお	
ジルコニア(Zr02)耐熱材が高い耐熱性・耐侵食性を持つこと		いて、ジルコニア $(Z r O_2)$ 耐熱材が高い耐熱性・耐侵食性	
が確認されている <u>(別紙 - 1 参照)</u> 。		を持つことが確認されている <u>(別紙-3参照)</u> 。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
図 3-2 コリウムシールド外形(7 号炉)		図4 コリウムシールド外形及び基本構造	
図 3-3 コリウムシールド基本構造 (7 号恒)			
 (3) コリウムシールド各部寸法(7号炉) <u>a. 堰の高さについて</u> 原子炉格納容器下部に落下する溶融炉心の総量は <u>b</u> <u>b</u> <u>k</u>定しており,落下した溶融炉心がコリウムシールドを乗り越 えてドライウェルサンプに流入することがないよう,堰の高さ を決定する。溶融炉心の組成は表 3-2 のとおりであるが,原子 炉圧力容器の下部には制御棒駆動機構等の既設設備が存在し ており,溶融炉心が原子炉圧力容器から流出した際には,既設 設備の一部が溶融し,溶融炉心の総量が増加する可能性があ る。溶融炉心の堆積高さの算出式を以下に示す。 		(3) コリウムシールド各部寸法	 ・設計方針の相違 【柏崎 6/7】 島根 2 号炉のコリウ ムシールドは,原子炉格 納容器下部床面全体を 覆う構造であるため,堰 の高さについては記載 していない。
<u> (max//description/des</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12版)	島根原子力発電所 2号炉	備考
たペデスタル床面積[m²], Vs:溶融炉心に埋没する耐熱材容積			
<u>[m³]とする。</u>			
上記の式に各値を代入した結果を表3-3に示す。ただし,			
$md=$, $\rho d=$, $m_m=$, $\rho sus=$,			
<u>Apd=</u> , Vs=とする。			
表3-3より,制御棒駆動機構等,原子炉格納容器の下部に存			
在する主要設備が溶融した場合の、溶融炉心の堆積高さは、			
となる。			
なお,溶融炉心の粘性が非常に小さく,落下経路に存在す			
る原子炉圧力容器下部の既設設備に長時間接触する可能性は			
低いと考えられること, また, 原子炉格納容器下部には原子炉			
圧力容器破損前に水張りがされており,かつ継続的に注水され			
ていることにより, 落下した溶融炉心は冷却され, 原子炉格納			
容器の下部に存在する主要設備が全て溶融する可能性は低い			
<u>と考えられることから,コリウムシールドの堰の高さを</u>			
とする。			
表 3-3 溶融する構造物の量に対する溶融炉心堆積高さ [m]			
			・設計方針の相違
<u>b.</u> 床防護部寸法について			【柏崎 6/7】
溶融炉心が原子炉格納容器下部床コンクリートを侵食する			島根2号炉のコリウ
場合、コリウムシールドと床面との間に間隙が発生する。その			ムシールドは,原子炉格
間隙から、溶融炉心が補強フレームのアンカーボルトに接触し			納容器下部床面全体を
損傷させること、及びドライウェルサンプへの溶融炉心の流入			覆う構造であるため,床
を防止するため、コリウムシールドには床防護部を設ける。床			防護寸法については記
面の水平方向の侵食量は、MAAP解析による原子炉格納容器下部			載していない。
壁面の侵食量と同じく とする。従って、床防護部の寸			
法をコンクリート侵食量 に余裕をみて とす			
<u>3.</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
コリウムシールド 溶融炉心 床面 サンプ			
<u>図 3-4</u> 床面侵食イメージ図			
図 3-5 コンクリート侵食量評価結果			
<u>c.壁防護部寸法について</u> <u>原子炉格納容器下部壁面コンクリートについても,床面コン</u> <u>クリートと同様に溶融炉心により侵食され,溶融炉心のドライ</u> ウェルサンプへの流入経路となる可能性がある。よって,原子 <u>炉格納容器下部壁面コンクリート防護のためにコリウムシー</u> ルドに壁防護部を設ける。原子炉格納容器下部壁面の侵食量は であることから,壁防護部の寸法はコンクリート侵食量に余裕 をみて			 ・設計方針の相違 【柏崎 6/7】 島根 2 号炉のコリウムシールドは,原子炉格納容器下部床面全体を 覆う構造であるため,壁防護寸法については記載していない。
d. 耐熱材基本構成について <u>図3-3に示すとおり</u> 耐熱材は溶融炉心との接触に伴う熱衝撃 対策として二層構造(サンプ防護材:厚さ <u>+</u> +犠牲材: 厚さ <u>)</u> とし、ジルコニア製の耐熱モルタルにて互いを 接着する。サンプ防護材の厚さについては、耐熱材厚さ方向の 熱伝導評価により、溶融炉心と接触する部分の温度時間変化を 求め、最高温度が耐熱材材質であるジルコニアの融点を超えな い厚さとする。		a. 耐熱材基本構成について 耐熱材は溶融炉心との接触に伴う熱衝撃対策として二層構造 (サンプ防護材:厚さ + 犠牲材:厚さ)とし, にて互いに接着する。サンプ防護材 の厚さについては,耐熱材厚さ方向の熱伝導評価により,溶融 炉心と接触する部分の温度時間変化を求め,最高温度が耐熱材 材質であるジルコニアの融点を超えない厚さとする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.	3.9.12版)	島根原子力発電所 2号炉	備考
であるが、共晶反応及び酸化還元反応・合金化反応により融点			であるが、共晶反応及び酸化還元反応・合金化反応により融点	
が下がることを考慮し, 2100℃とした。一般にUO ₂ - ZrO ₂ の共			が下がることを考慮し, 2,100℃とした。一般にUO ₂ -ZrO	
晶温度は約2500℃であることが知られており, UO ₂ - ZrO ₂ の共			₂ の共晶温度は約 2,500℃であることが知られており, UO ₂ -	
晶温度を考慮しても十分に低い融点を設定している。また, 耐			ZrO ₂ の共晶温度を考慮しても十分に低い融点を設定してい	
熱材の熱伝導評価においては保守的に,図 <u>3-7</u> に示すとおり溶			る。また、耐熱材の熱伝導評価においては保守的に、図6に示	
融炉心と接触する耐熱材表面の温度として, 溶融炉心初期温度			すとおり溶融炉心と接触する耐熱材表面の温度として,溶融炉	
を上回るを初期条件として与えている。加えて,溶融			心初期温度を上回る を初期条件として与えている。加	
炉心の水への除熱量を,有効性評価にて用いている値			えて、溶融炉心の水への除熱量を、有効性評価にて用いている	
(800kW/m ²)よりも小さいとすることで,溶融炉心			値(800kW/m ² (<u>圧力依存あり</u>))よりも <u>保守的な値</u> と	
が高温である時間が長くなり,より侵食量が増える評価条件と			することで、溶融炉心が高温である時間が長くなり、より侵食	
している。			量が増える評価条件としている。	
なお,評価結果から耐熱材の侵食量は___以下である			なお,評価結果から耐熱材の侵食量は以下であるが,	
が, コリウムシールド設計においては耐熱材の厚さに十分な余			コリウムシールド設計においては耐熱材の厚さに十分な余裕**	
裕*を見込み,サンプ防護材の厚さはとする。			を見込み,サンプ防護材の厚さは	
※別紙-1 に示す過去の侵食試験時の試験時間と実機条件の相違も考慮した。			※別紙-3に示す過去の侵食試験時の試験時間と実機条件の相違も考慮した。	
謝熱材(ZrO ₂) T _{in} T ₁ T ₂ T _n T ₂₀ 温度境界条件(T _{in} (1)) 熱伝導 人 人 温度評価を行う/ード 図 3-6 解析モデル			耐熱材(ZrO2) Ta Ta Jagg現界条件(Tia(1)) Jagguage Xia Xia Yia Xia Yia	
図 3-7 溶融炉心温度変化(温度境界条件 Tin(t)) ※破線:MAAP 解析結果,実線:解析結果を包絡する評価用温度を表す			図6 溶融炉心温度変化(温度境界条件T _{in} (t)) ※実線:MAAP解析結果,破線:解析結果を包絡する評価用温度を表す	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	【比較のため,「添付資料3.5.1 別添3」の一部を記載】		
図 3-8 デブリと接触すろノードの温度変化	<u> 脾竹コートMAAPによる 気良 黒計価 では、 冷 醜 が 心 中の と エ に よろ ス r O 。 耐 熱 材の 還 元 反 応 を 老 慮 し 、 耐 熱 材 得 食 試 験 結 果 に</u>	図7 デブリと接触すろノードの温度変化	
	基づき侵食開始温度を保守的に 2,100℃と設定した上で, 溶融炉		
犠牲材については, あくまでも熱衝撃を吸収するためのもの	心によるコリウムシールドの侵食が生じないことを確認してい	犠牲材については、あくまでも熱衝撃を吸収するためのもの	
(熱衝撃による割れを許容するもの) であることから, 耐熱材	る。しかし、溶融炉心中には少量ながらその他の金属酸化物も含	(熱衝撃による割れを許容するもの) であることから, 耐熱材	
製造上の最小厚さ () とする。	まれており、これらの影響によってZrO。耐熱材が侵食される可	製造上の最小厚さ()とする。	
また、 <u>定期検査時の取外・取付を鑑み</u> ,耐熱材は鋼製のカバ ープレート(能性も考えられるため、関連する既任実験の知見を考慮した場合のコリウムシールドの得食量について検討する	また、耐熱材は鋼製のフイニンクフレート(にて悪う構造とした	
	<u>1. CIT実験について</u>		
なお, 模擬溶融炉心によるジルコニア耐熱材の侵食挙動に係	模擬溶融炉心による Z r O₂耐熱材の侵食挙動に係る実験と	なお、模擬溶融炉心によるジルコニア耐熱材の侵食挙動に係	
る実験として、欧州委員会のプロジェクトとして実施された	して、欧州委員会のプロジェクトとして実施されたCIT実験	る実験として、欧州委員会のプロジェクトとして実施されたC	
CII (Corium Interactions and Thermochemistry) 美願	······································	1 1 美験 (Corium Interactions and Thermochemistry)	
CIT実験において、溶融炉心中の酸化鉄含有量が大きい場合	CIT実験では、第1図に示すような試験装置によって、模	CIT実験において、溶融炉心中の酸化鉄含有量が大きい場	
に,酸化鉄とジルコニアとの共晶反応により,ジルコニアの融	擬溶融炉心と $Z r O_2$ 耐熱材を最長 10 時間程度接触させ、模擬	合に、酸化鉄とジルコニアとの共晶反応により、ジルコニアの	
点よりも低い温度でジルコニア耐熱材が溶融, 侵食されたこと	溶融炉心の表面温度(ZrO2耐熱材との界面温度)と侵食深さ	融点よりも低い温度でジルコニア耐熱材が溶融,侵食されたこ	
が報告されている。実機における溶融炉心中の酸化鉄の割合	の推移が測定された。そのうち, CIT-9 及び CIT-11 では実機の	とが報告されている。実機における溶融炉心中の酸化鉄の割合	・解析結果の相違
は, <u>3%程度*</u> と小さいことから,実機においてジルコニア耐熱	条件に近い組成の $Z r O_2$ 耐熱材が用いられている。	<u>は,4%程度*と小さいことから,実機においてジルコニア耐熱</u>	【柏崎 6/7】
材の融点が大幅に下がることはないと考えられるが, ここでは	CIT-9 における入力エネルギ及び模擬溶融炉心表面温度とZ	材の融点が大幅に下がることはないと考えられるが、ここでは	
CIT実験の各実験条件の中でも比較的実機に近い条件である	<u>rO</u> 2耐熱材の侵食深さの推移を第2図及び第3図に示す。耐熱	<u>CIT実験の各実験条件の中でも比較的実機に近い条件である</u>	
CIT-9実験(模擬溶融炉心中の酸化鉄の割合:30.5%)及び,更	材の最終的な侵食深さは 22.5mm, 最大の侵食速度は 0.18mm/	<u>CIT-9実験(模擬溶融炉心中の酸化鉄の割合:30.5%)及び</u> ,	
に模擬溶融炉心中の酸化鉄の割合が高く,より共晶反応の影響	min と報告されている。実験において, 模擬溶融炉心は誘導加	更に模擬溶融炉心中の酸化鉄の割合が高く、より共晶反応の影	
が大きいと考えられるCIT-11実験(模擬溶融炉心中の酸化鉄の	熱により 2,080℃から 2,474℃まで段階的に昇温されたが,出力	響が大きいと考えられるCIT-11 実験(模擬溶融炉心中の酸	
割合:81.0%)の結果を基に,侵食量を評価する。CIT-9実験で	を一定に維持し模擬溶融炉心の昇温を停止すると、耐熱材の侵	<u>化鉄の割合:81.0%)の結果を基に,侵食量を評価する。CI</u>	
は, 模擬溶融炉心を2080℃から2474℃まで段階的に昇温し, 各	食は一定の深さまで進んだ後に停止する挙動が確認されてい	T-9実験では, 模擬溶融炉心を 2,080℃から 2,474℃まで段階	
段階においてジルコニア耐熱材の侵食が確認されており,その	<u>る。また、CIT-11 における模擬溶融炉心表面温度とZrO2</u> 耐	的に昇温し、各段階においてジルコニア耐熱材の侵食が確認さ	
最大侵食速度は0.18mm/minであった。一方,CIT-11実験におい	熱材の侵食深さの推移を第4図に示す。最終的な侵食深さは	れており,その最大侵食速度は0.18mm/minであった。一方,C	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
て確認されたジルコニア耐熱材の侵食開始温度は1825℃であ	<u>39.5mm, 最大の侵食速度は 0.28mm/min と報告されており,</u>	IT-11 実験において確認されたジルコニア耐熱材の侵食開始	
った。	CIT-9 と同様に出力を一定に維持すると侵食が停止する挙動が	温度は1,825℃であった。	
	確認されている。		
	【ここまで】		
	【比較のため,「添付資料3.5.1 別添3」の一部を記載】		
	3. 実機における溶融炉心中の金属酸化物によるZrO2 耐熱材		
	<u>の侵食</u>		
	<u>CIT-9</u> 及びCIT-11実験は、ともに実機の酸化鉄の割合を大き		
	く上回っているが、ここでは実機の酸化鉄の割合により近い		
	<u>CIT-9 実験に基づき,溶融炉心中の金属酸化物によるZrO₂耐</u>		
	熱材の侵食量について考察する。		
	<u>実機のMAAP解析結果によれば、溶融炉心とコリウムシー</u>		
	<u>ルドの接触面の最高温度は約2,000℃となっている。CIT-9 実験</u>		
	<u>では, これを上回る 2,080℃において約 4mm の侵食が見られて</u>		
	いるが、その侵食量は時間とともに増加する傾向にはない結果		
	<u>となっている。ただし、この挙動は実験容器が外部から冷却さ</u>		
	<u>れていたことに起因することが示唆されており、外部冷却がな</u>		
	い場合には侵食が継続的に生じる可能性がある。		
侵食評価においては, 溶融炉心温度がCIT-11実験でのジルコ	仮に実機において溶融炉心中の金属酸化物による侵食が継続	侵食評価においては,溶融炉心温度がCIT-11 実験でのジ	
ニア耐熱材の侵食開始温度である1825℃より更に低い1800℃	的に生じる可能性を考慮し, RPV破損時点から溶融炉心とコ	ルコニア耐熱材の侵食開始温度である 1,825℃より更に低い	
となるまで,ジルコニア耐熱材が0.18mm/minの侵食速度で侵食	<u>リウムシールドの接触面温度が 1,800℃^{**3}を下回るまでの約 3</u>	1,800℃となるまで, ジルコニア耐熱材が 0.18mm/min の侵食速	・解析結果の相違
されると仮定する。 <u>図3-7より,溶融炉心温度が1800℃となる</u>	<u>時間, CIT-9 実験で確認された最大侵食速度である 0.18mm/min</u>	度で侵食されると仮定する。 図6より, 溶融炉心温度が 1,800℃	【柏崎 6/7,東海第二】
<u>までの時間は約3時間であることから,侵食量は約0.033mとな</u>	で侵食が進んだと仮定した場合でも,侵食量は約33mmとなる。	となるまでの時間は約3.7~7.8時間であることから,侵食量は	設備の構造や評価条
<u>a.</u>		約0.085mとなる。	件の差異により、
	※3 溶融炉心中の酸化鉄による侵食がより生じやすい条件		1,800℃となるまでの時
	<u>と考えられる CIT-11 実験にて, Z r O₂耐熱材の侵食が</u>		間および侵食量が異な
	<u>開始している温度(第4図)</u>		る。
したがって,溶融炉心中の酸化鉄が局所的に存在しジルコニ	したがって、万一溶融炉心中の酸化鉄が局所的に存在し耐熱	したがって、溶融炉心中の酸化鉄が局所的に存在しジルコニ	
ア耐熱材が侵食されたとしても、侵食量はコリウムシールドの	材が侵食されたとしても,侵食量はコリウムシールド厚さ15cm	ア耐熱材が侵食されたとしても、侵食量はコリウムシールドの	
耐熱材厚さ(サンプ防護材:)+犠牲材:)	を十分下回る。	耐熱材厚さ(サンプ防護材: <u>厚さ</u> +犠牲材: <u>厚さ</u>	
を十分に下回るため、コリウムシールドの機能に影響はない。		▲ 」)を十分に下回るため、コリウムシールドの機能に影響	
※RPV破損時点での溶融炉心中の酸化鉄割合(MAAP解析結果より)		はない。	
		※RPV破損時点での溶融炉心中の酸化鉄割合(MAAP解析結果より)	
			・設備設計の相違
	なお, コリウムシールドのZrO ₂ 耐熱材ブロック間やアンカ	なお、コリワムシールドのZrO2前熱材ブロック間やアンカ	
	ボルト周囲の隙間には、耐熱材ブロックと同成分の不定形耐火	ホルト周囲の隙間には、耐熱材ブロックと同成分の不定形耐火	局根2号炉および東 た (本)
	物とモルタルバインダ(主成分:ケイ酸ナトリウム)を混錬し	物とモルタルパインダ(王成分:ケイ酸ナトリウム)を混錬し	海弟では, コリウムシ

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	たモルタルを目地材として用いる (第5図)。このモルタルは,	たモルタルを目地材として用いる。このモルタルは、耐熱材ブ	ールドのZrO ₂ 耐熱
	耐熱材ブロックと同等のZrO ₂ 含有率を有するものを用いる	ロックと同等のZrO2含有率を有するものを用いるとともに,	材ブロック間やアンカ
	とともに、常温で固化し、固化後は周囲のZrO ₂ 耐熱材と結合	常温で固化し,固化後は周囲のZrO ₂ 耐熱材と結合して耐熱材	ボルト周囲の隙間のモ
	して耐熱材ブロックと同等の性能を発揮するため、溶融炉心に	ブロックと同等の性能を発揮するため、溶融炉心による選択的	ルタルに対する検討を
	よる選択的な侵食は生じない。また、仮にモルタルの溶融を想	な侵食は生じない。また,仮にモルタルの溶融を想定する場合	実施している。
	定する場合においても,モルタルの大半を占めるZrO2は溶融	においても, モルタルの大半を占める乙rO ₂ は溶融せず, モル	
	せず、モルタルバインダのみが溶融すると考えられるため、耐	タルバインダのみが溶融すると考えられるため、耐火材ブロッ	
	火材ブロックに生じる間隙は極めて僅かであること、及びコリ	クに生じる間隙は極めて僅かであること、及びコリウムシール	
	ウムシールドへの伝熱によって溶融炉心は表面がクラスト化し	ドへの伝熱によって溶融炉心は表面がクラスト化し流動性が低	
	流動性が低下することから、耐火材ブロックに生じる間隙へ選	下することから、耐火材ブロックに生じる間隙へ選択的に侵入	
	択的に侵入するとは考え難く、コリウムシールドの健全性に影	するとは考え難く、コリウムシールドの健全性に影響を与える	
	響を与えることはないと考える。	ことはないと考える。	
	【ここまで】		
e. スリット部の構造について		b. スリット部の構造について	・設備設計の相違
<u>ドライウェル高電導度廃液サンプの前に</u> 設置するコリウム		<u>原子炉格納容器下部床面に</u> 設置するコリウムシールドについ	【柏崎 6/7】
シールドについては, <u>ドライウェル高電導度廃液サンプ</u> の漏え		ては, <u>床ドレンサンプ</u> の漏えい検出機能を維持するため,コリ	
い検出機能を維持するため, コリウムシールド下部 (床面との		ウムシールド下部(床面との間)にスリットを設置する。スリ	
間) にスリットを設置する。 スリット寸法については, <u>ドライ</u>		ット寸法については,床ドレンサンプへの漏えい水の流入量が	
<u>ウェル高電導度廃液サンプ</u> への漏えい水の流入量が 1gpm		1 gpm (0.228m ³ /h) 以上となるように設定する。同時に, スリ	・記載方針の相違
(0.228m ³ /h) 以上となるように設定する。同時に, スリット		ット内の溶融炉心が構造物への伝熱によりドレン配管に流入す	【柏崎 6/7】
が溶融炉心のサンプへの有意な流入経路とならないことを確		る前に凝固し、水路を閉塞することを確認する。	
認する。			
(i)スリット内の溶融炉心凝固評価について		(i)スリット内の溶融炉心凝固評価について	
溶融炉心のスリット内凝固評価は実溶融炉心を用いた試験		溶融炉心のスリット内凝固評価は実溶融炉心を用いた試験	
による確認が困難であることから, 複数の評価モデルで凝固評		による確認が困難であることから、複数の評価モデルで凝固	
価を実施し,各々の結果を包絡するようにスリット長さを決定		評価を実施し、各々の結果を包絡するようにスリット長さを	
する。なお,凝固評価においては,事前注水成功によりスリッ		決定する。なお、凝固評価においては、事前注水成功により	
ト内に水が存在すると考えられるものの, スリット部が非常に		スリット内に水が存在すると考えられるものの、水は存在し	
狭隘であることから、水は存在しないものとして評価を行っ		ないものとして評価を行った。	
た。			
凝固評価に用いたモデルを表 <u>3-4</u> に,各モデルでの凝固評価		凝固評価に用いたモデルを <u>表4</u> に,各モデルでの凝固評価	
結果を表3-5に示す。モデルの違いにより溶融炉心の凝固評価		結果を表5.に示す。モデルの違いにより溶融炉心の凝固評価	・解析結果の相違
結果に多少の差異があるものの, <u>最大でも</u> あれば溶融		に多少の差異があるものの,高さ 🔽 のスリットであれば	【柏崎 6/7】
<u>炉心はスリット内で凝固する</u> ことから,溶融炉心の凝固距離に		溶融炉心の流動距離は最大でも であることから、溶	設備設計の違いによ
余裕を見込んで、スリット長さをとする。		融炉心の凝固距離に余裕を見込んで,スリット長さを 🥅 以	る溶融炉心の凝固距離
		上とする。	および必要となるスリ

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
表 3-4 デブリ凝固評価モデル比較		表4 デブリ凝固評価モデル比較	ット長さが異なる。
評価モデル 概要 適用実績 平行平板間で溶融デブリが凝固し流 路が閉塞することを想定したモデル ・米国 NRC に認可されたモデル 日管内での溶融デブリの流動距離を 評価するモデル ・MAP の RPY F部プレナムにおける検討装管等の 貫通部配管でのデブリの凝固評価に用いられている ア目管内での溶融デブリの流動距離を 評価するモデル ・水国 NRC に認可されたモデル 市話路周長全体を伝熱面とし、壁面へ の伝熱を評価するモデル ・海融デブリに対する凝固評価には使用実績なし ・海造分野で使用されている ・海造分野で使用されている		評価モデル 概要 適用実績 平行平板間の溶融デブリが ・米国 NRC に認可されたモデル 凝固し流路が平衡すること ・US-ABWR は本モデルに基づき標準設 計認証を取得 円管内での溶融デブリの流 ・MAAPのRPV下部プレナムにお ける核計装配管等の貫通部配管でのデ ブリ凝固評価に用いられている。 ・EPRIによって行われた模擬デブ リの凝固試験結果と、本モデルの評価 結果とが、おおよそ一致していること が確認されている。 流路周長全体を伝熱面と し、壁面への伝熱を評価す るモデル ・溶融デブリに対する凝固評価には使 用実績なし ・鋳造分野で使用されている。	
表 3-5 スリット内デブリ凝固評価結果 評価モデル 流動距離(凝固するまでの距離)		表5 スリット内デブリ凝固評価結果 評価モデル 流動距離(凝固するまでの距離)	
(ii)漏えい検出機能への影響について <u>原子炉格納容器下部床面には勾配が無く,床面全体に漏え</u> <u>い水が広がった時点で初めてドライウェル高電導度廃液サ</u> <u>ンプに流入し,漏えいが検出されることから,漏えい水の水</u> <u>位がスリット高さ未満であれば,スリット部通過に伴う圧損</u> <u>が発生せず,コリウムシールドの有無に関わらず</u> 漏えい検出 機能への影響けない		(ii)漏えい検出機能への影響について <u>コリウムシールドは原子炉格納容器下部床面全面に設置す</u> <u>ることから、1gpm の漏えい水がスリットを流れる際の損失</u> 水頭がコリウムシールド厚さ未満であれば、漏えい検出機能 への影響はない。	 ・設備設計の相違 【柏崎 6/7】 設備設計の違いによ る漏えい検出の評価モ デルの差異。
機能への影響はない。 従って、 <u>漏えい水の水位=スリット高さとなる場合</u> のスリ ット通過後の流量を求め、漏えい検出に必要となる流量との 比較を行う。		従って, <u>スリット通過時の損失水頭=コリウムシールド厚 さとなる場合</u> のスリット通過後の流量を求め,漏えい検出に 必要となる流量 <u>1 gpm (0.228m³/h)</u> との比較を行う。	
入口圧損(Δ hı), 流路圧損(Δ h2), 出口圧損(Δ h3) とするとスリット部全体の圧損(h)は以下の式で表される。		<u>スリット流路の</u> 圧損(Δh_1),出口圧損(Δh_2)とするとスリット部全体の圧損(h)は以下の式で表される。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
h h b) 7 7 5 μ² (2017.12.20 kg) h = Δhi+ Δh2+ Δh3 上式の各項を展開し、h= (スリット高さ),ま たスリット幅: とするとスリット通過後の流量(Q) は Q= (スリット1ヶ所あたり) となり、漏えい検出に必要となる流量(1gpm (0.228m3/h)) を上回る。 従って、ドライウェル高電導度廃液サンプの漏えい検出機 能に影響はない。 なお、スリット設置にあたっては、スリットが何らかの原因で閉塞することを鑑み、床面レベルに , 幅 , 長さ のスリットを ヶ所、更に床面から0.01mの高さに、高さ , 幅 , 長さ のスリットを ヶ所	東御弗二光电/J (2018. 9. 12/lx)	<u> <u> <u> <u> </u> <u></u></u></u></u>
設置する。 (4) <u>コリウムシールドと原子炉圧力容器との離隔距離</u> <u>炉心溶融事故発生時の原子炉圧力容器の破損個所として、</u> <u>原子炉圧力容器下鏡中央部が想定される。原子炉圧力容器の</u> <u>中心からコリウムシールドまでは約3.2m,ドライウェルサン</u> <u>プまでは約3.7m離れていることから原子炉圧力容器から流</u> <u>出した溶融炉心がドライウェルサンプに直接流入すること</u> <u>はないと考えている。</u>		図9 スリット部断面概略 (iii)原子炉格納容器下部壁面と水路(スリ 原子炉格納容器下部壁面にはコリウムシ ため,壁面からのコンクリート侵食が想定 容器下部壁面の侵食箇所がスリット流路内 流入経路とならないように、スリット部に る。壁からの離隔距離については、既存の での長さ を考慮した上で、林
図3-10 原子炉圧力容器中心からの離隔距離(7 号炉)		<u>において,できる限り壁面から離した配置</u>

号炉	備考
<u>コリウムシールド厚さ</u>), リット通過後の流量(Q)	
たり) (1gpm(0.228m ³ /h))を	
検出機能に影響はない。	
スリットが何らかの原因 幅,長さ以 ⁺ 。_	・設備設計の相違 【柏崎 6/7】
	設備設計の違いによ る記載方針の相違。
 	 ・設備設計の相違 【柏崎 6/7】 設備設計の違いによる離隔距離の考慮方法の差異。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12版)	島根原子力発電所 2号炉	備考
(5) コリウムシールド設置に伴う悪影響の有無			(4) コリウムシールド設置に伴う悪影響の有無	
			<u>コリウムシールドの設置により設計基準事故対処設備及び他</u>	
			の重大事故等対処設備に対し影響を及ぼす可能性があることか	
			<u>ら、コリウムシールドの設置による悪影響の有無について確認</u>	
			<u>を行った。</u>	・記載方針の相違
			a. 原子炉格納容器の閉じ込め機能への悪影響の有無	【柏崎 6/7】
			<u>コリウムシールド設置に伴う追加重量,圧力容器ペデスタル</u>	島根2号炉は、コリ
			基礎ボルトの発生荷重(モーメント)の増加率は小さく耐震性	ウムシールド設置に伴
			への影響は軽微であり、またコンクリート侵食及び非凝縮性ガ	う格納容器閉じ込め機
			スの発生を抑制することから、原子炉格納容器の閉じ込め機能	能への影響の考察を記
			への悪影響はない。	載。
a. 原子炉格納容器下部注水系への悪影響の有無			b. 原子炉格納容器下部注水系への悪影響の有無	・設備設計の相違
コリウムシールドが設置される原子炉格納容器下部には原			コリウムシールドが設置される原子炉格納容器下部には原子	【柏崎 6/7】
<u>子炉格納容器下部注水系</u> の注水口が設置されているが, <u>注水口</u>			<u>炉格納容器下部注水</u> の注水口が設置されているが, <u>コリウムシ</u>	島根2号炉は、コリ
とコリウムシールド設置位置とは水平距離で 離隔され			ールド設置による既存の床面からの底上げによる干渉影響はな	ウムシールドを原子炉
ていることから,原子炉格納容器下部注水系の機能を阻害する			く,原子炉格納容器下部注水の機能を阻害することはない。	格納容器下部床全面に
ことはない。				敷設しているため、注
なお,原子炉格納容器下部注水系の注水口は大量の溶融炉心が			なお、原子炉格納容器下部注水の注水口は大量の溶融デブリ	水口とコリウムシール
直接接触しない様に設置されていることから,溶融炉心により			が直接接触しない様に設置されていることから、溶融炉心によ	ドの水平距離は記載し
原子炉格納容器下部注水系の機能が喪失することはない。			り原子炉格納容器下部注水の機能が喪失することはない。	ていない。
図3-11 コリウムシールドと原子炉格納容器下部注水系注水口 との設置位置概要図				
				・設備設計の相違
(6) 機器ファンネルからサンプへの溶融炉心の流入について				【柏崎 6/7】
7 号炉原子炉格納容器下部床面には機器ファンネルが存在				■ 島根2号炉は, コリ
し、溶融炉心が原子炉格納容器下部床面に堆積した場合には、				ウムシールドを原子炉
溶離炉心の堆積局さか機器ファンネル高さを超えることから,				格納容器下部床全面に
機器ファンネルに溶融炉心が流入する。機器ファンネルの位置				敷設し,機器ファンネ
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炮		
--	----------------------	--------------		
及びドレン配管の敷設状況について図 3-12 に示す。				
機器ファンネルからドライウェルサンプへと繋がるドレン				
ドレン配管内での溶融炉心の凝固距離について」及び別紙 - 2				
に示すとおり、ドレン配管内の溶融炉心の凝固距離は最大でも				
約 2.7m と, ドライウェルサンプに溶融炉心が流入することは				
ない。しかしながら、ドレン配管内の溶融炉心の凝固挙動の不				
確かさを考慮し、ドライウェルサンプまでのドレン配管長が				
5m 以下の機器ファンネルについては,コンクリート等により				
<u>閉止を行う。</u>				
なお,6号炉原子炉格納容器下部床面には機器ファンネルが存				
在しない。				
図3-12 機器ファンネル配置及びドレン配管敷設状況(7 号炉)				
<u>EPRI(Electric Power Research Institute)及びFAI(FAUSKE</u>				
<u>& ASSOCIATE, LLC)が、下部プレナムを模擬した試験体に模擬</u>				
溶融炉心(Al2O3)を流入させる試験を行っている。同試験の				
試験体系が,比較的,7号炉のドレン配管(80A)に近い体系と				
なっていることから、その試験結果に基づき、ドレン配管内で				
の溶融炉心の凝固距離について評価を行う。				
a. EPRI/FAI試験の概要				
図3-13に試験装置概要を示す。酸化鉄とアルミニウムによる				
テルミット反応により,模擬溶融炉心である溶融したAl203が				
生成される。 模擬溶融炉心はテルミットレシーバに流入し, 密				
度差により鉄とAl203とで成層化が起こる。密度差からAl203は				
鉄より上層にあることにより, Al2O3によりセメント製のキャ				
ップが溶融し, Al2O3のみLower Chamberに移行する。このとき,				
Lower Chamber及びドレン配管は水で満たされており, 溶融炉				
心が原子炉格納容器下部へと落下してくる際の実機の条件と				

炉	備考
	ルからのサンプへの溶
	融炉心の流入を防止で
	きるため,本評価を実
	施していない。
	・記載策正の相違
	【柏崎 6/7】
	▲根9号恒について
	出版2.5% に JV で け FPRI/FAI試
	は, ET RT/ T TT IN 験の概要を 2 (2)a に
	記載している。
	1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12版)	島根原子力発電所 2号炮
類似している。試験の結果、模擬溶融炉心の流動距離(凝固距		
離)は0.79mであった。		
模擬デブリの流れ の cm title in) Cop with References Deflector Upper Chambles (Tharmite Receiver) Vent Tube Societ Partie Societ Partie Soc		
図3-13 EPRI 試験装置概要		
b. ドレン配管内での溶融炉心の凝固距離について		
ドレン配管内の溶融炉心の溶融凝固特性は流入する溶融炉		
心の保有熱量と,配管外部への放熱量に依存するものと考えら		
れる。そこで、ドレン配管体系について、溶融炉心の物性の違		
いも考慮して,溶融炉心の保有熱量及び配管外への放熱量(配		
管系に依存)の比率に基づき流動距離を推定する。		
表3-6に評価に使用する溶融炉心とコンクリートの物性値を		
<u>示す。Al203の溶融潜熱(hfs=1.16×10⁶J/kg)に密度</u>		
(ρ=3800kg/m ³)を乗じると、流動停止までの保有熱量は		
<u>4408MJ/m³となる。一方,溶融炉心の流動停止までの保有熱量</u>		
は顕熱と溶融潜熱の和として次式で表される。		
$\underline{h_{db}} = \{ (T_d - T_{sol}) C_p + h_{fs} \}$		
ここで、hdb:溶融炉心の流動停止までの顕熱と溶融潜熱の		
和(J), Td:溶融炉心温度(℃), Tsol:溶融炉心固相線温度		
$(℃), C_P$:溶融炉心比熱 $(J/kg ℃), h_{fs}$:溶融炉心溶融潜熱 (J/kg)		
である。		
このとき、hdbは約 となり、密度を乗じ、流動停止ま		
での保有熱量とすると となり, Al203の約 倍となる。		
 また,ドレン配管 (80A) の配管直径(df)を8cmと仮定すると,		
EPRI/FAI試験のドレンラインdtes(5cm)より,配管径の比は約		
1.6倍である。配管径の比,保有熱量比を用いて,ドレン配管		
内の溶融炉心流動距離(凝固距離)を次の様に評価する。		
$L = L_{tes} \times df/d_{tes} \times (h_{db} \rho_{db}) / (h_{al} \rho_{al})$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12版)	島根原子力発電所 2号炉	備考
ここで,L:ドレン配管内の溶融炉心流動距離(凝固距離),			
Ltes:EPRI/FAI試験の流動距離,df/dtes:配管直径比,(habρab)			
/ (hal p al):流動停止までの保有熱量比である。			
EPRI/FAI試験の流動距離0.79mを基に、上記式によってドレ			
ン配管内の溶融炉心の凝固距離を評価すると、凝固距離は			
となる。			
機器ファンネルからドライウェルサンプまでのドレン配管			
長は, 最短でも約3.6m以上であることから, 機器ファンネルに			
<u>流入した溶融炉心は, ドレン配管内で凝固するため, ドライウ</u>			
ェルサンプ内に到達することはないと考えられる。			
表3-6 評価に使用する溶融炉心物性値及びコンクリート物性値*			
※溶融炉心物性値については、MAAP解析における、原子炉圧力容器破損直前の下部			
<u>プレナム内の物性値を使用した。また、コンクリート物性値については、原子炉</u>			
格納容器のコンクリートの密度とし,また,既往の研究(NURREG/CR-2282)より			
融点及び溶融潜熱を引用した。			
			・申請号炉数の相違
(7) 6号炉コリウムシールドの構造について			【柏崎 6/7】
6号炉のコリウムシールドについても,上述の7号炉コリウム			島根2号炉は,単号炉
シールドと同様の設計方針に基づき,設計を行った。号炉間の			申請である。
既設設備の差異により,6号炉コリウムシールドと7号炉コリウ			
ムシールドとでは一部形状が異なる。なお、使用している耐熱			
材材質に変更はなし。6号炉コリウムシールド外形図を図3-14			
に示す。			
図3-14 コリワムシールド外形図(6 号炉)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
参考文献			
[1] D. Lopukh et al., "New Experimental Results On The Interaction Of Molten			
Corium With Core Catcher			
Material", ICONE-8179, (2000).			
[2] J.M.Seiler, K.Froment, "Material Effects On Multiphase Phenomena In			
Late Phases Of Severe Accidents Of			
Nuclear Reactors", Multiphase Science and technology, Vol.12, No.2,			
pp. 117–257, (2000).			
		1	1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 - 1			・記載箇所の相違
耐熱材と模擬溶融炉心との相互作用試験結果について			【柏崎 6/7】
			島根2号炉は,コリウ
原子炉の過酷事故において、放射性物質が環境へ放出するこ			ムシールド材料の選定
とを防ぐため、溶融炉心による格納容器の侵食を抑制する静的			について別紙-3 に記
デブリ冷却システムの開発に取り組んでいる。溶融炉心を受け			載。
止めて保持する役割を担う耐熱材は、高融点で且つ化学的安定			
性に優れていることが必要であることから、候補材としては、			
Zr02 等が挙げられる。模擬溶融炉心と上記耐熱材との侵食デー			
タを取ることを目的として、侵食試験を実施した。			
以下に溶融Zr 及び模擬溶融炉心(U02-ZrO ₂ -Zr)による耐熱材			
侵食試験の概要について			
示す。			
1. 溶融Zr による耐熱材侵食試験			
1-1. 試験方法			
耐熱材には ZrO ₂ の多孔質材料を用いた。模擬溶			
融炉心の金属成分をるつぼに入れ、るつぼ上部に耐熱材試験片			
をセットする(図別‐1)。これらを電気炉で加熱し, 2000℃			
~2200℃の所定温度にして金属を溶かす。溶融した金属中に耐			
熱材試験片を上部から挿入し、5 分間保持する。その後、試験			
片を初期位置へ戻してから炉冷する。各種試験片について、冷			
却後に外観及び試験片の残存状態を確認した。なお、溶融炉心			
の主な構成材料として, BWRで使用されるU02, Zr, ZrO ₂ , Fe 等			
が想定されるが, 試験においては, 金属成分は100mol%Zr とし			
た。			
1 治具を上下させて 武陵片を浸渍させる			
耐熱材試験片 20mm×60mm×10mm			
図別 - 1 試験体系			
1-2. 試験結果			
図別 - 2 に金属組成が100mo1%Zr における試験後の耐熱材試			
験片の断面写真を示す。いずれの耐熱材においても、金属組成			
のZr 量に応じて侵食量は増加した。また、金属組成によらず侵			
食量は>ZrO ₂ となり, ZrO ₂ ,,の順に耐			
侵食性に優れていることが確認できた。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
図別 - 2 試験後の断面写真			
2. 模擬溶融炉心による耐熱材侵食試験			
2-1. 試験方法			
高融点材料にて製作したるつぼ内に円柱状に加工したZr02耐			
熱材と模擬溶融炉心粒子を所定の重量分装荷した。模擬溶融炉			
心の組成はUO ₂ -ZrO ₂ -Zr: 30mo1%-30mo1%-40mo1%とした。			
同るつぼを試験装置の誘導コイル内に設置して、誘導加熱に			
より加熱を行った。試験中の模擬溶融炉心の温度は、放射温度			
計により計測した。試験時の温度は、放射温度計や熱電対にて			
計測している模擬溶融炉心の温度が,目標温度範囲(2000℃~			
2100℃)に入るように温度制御を行った。温度保持時間は10 分			
とした。試験体系を図別-3 に示す。			
図別 - 3 試験体系			
2-2. 試験結果			
試験温度の推移を図別‐4 に示す。試験においては2000℃~			
2050℃の範囲で,約10 分程度温度が保持されている事を確認し			
た。また,試験後のるつぼの断面写真を図別-5 に示す。ZrO ₂ 耐			
熱材の厚さが試験前から変わっていないことから、模擬溶融炉			
心によるZrO ₂ 耐熱材の有意な侵食が無いことが分かる。			
2200 210 21			
■■■ 図別 - 4 試験温度推移			
		1	I

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
図別 - 5 試験後の断面写真			
 3.耐熱材への模擬溶融炉心落下試験 3-1.試験方法 耐熱材に溶融炉心が接触した際の短期的な相互作用を確認するため、ZrO2 耐熱材の上に模擬溶融炉心を落下させ、耐熱材の 侵食深さの測定、耐熱材侵食性状や模擬溶融炉心の固化性状の分析などを実施した。模擬溶融炉心の固化性状の分析などを実施した。での2 耐熱材を内張りしたコンクリートトラップの上部に電気炉を設置し、電気炉により加熱した模擬溶融炉心をZrO2 耐熱材上に落下させ、コンクリートトラップに設置した熱電対によりZrO2 耐熱材の温度を測定した。試験装置を図別-6 に示す。			
マンクリート ドゥン ドゥン ドゥン ドゥン ・アクリート トゥップ ・アクリート トゥップ ・アクリート ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			
3-2. 試験結果 試験温度推移を図別-7 に示す。ZrO ₂ 耐熱材側面(模擬溶融 炉心側)の温度を測定する熱電対が模擬溶融炉心落下直後に最			
高温度約2450℃を観測したことから,落下してきた模擬溶融炉 心温度は2450℃以上であったと推測される。また,試験後のコ ンクリートトラップ断面写真を図別-8 に示す。模擬溶融炉心			
接触部から最大で約1cm が黒色化し,その周辺部が白色化して いることが確認されたものの,顕著な耐熱材の侵食及び,耐熱 材の割れは確認されなかった。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
2500 2000 1500 10000 10000 10000 10000 10000 100000 100000 1000000000			
図別 - 8 試験後の断面写真			
図別-9 耐熱材表面の成分分析結果			
一般に、ZrO ₂ には還元雰囲気で高温に曝露されると材料中に 酸素を掲が起こり			
蔵衆入損が起こり、愛とりる特性があることが知られている。 試験においては、計測された模擬溶融炉心の温度が2450℃以上			
と高温であり、かつ模擬溶融炉心中には金属Zr が存在すること			
から,模擬溶融炉心中の金属Zr によってZrO ₂ 耐熱材の表面で還			
元反応が起こり、酸素欠損が生じたと推測される。しかしなが			
ら,黒色部についてX線回折分析を行った結果,耐熱材表面の			
組成に有意な変化が確認されなかったことから、欠損した酸素			
の量は微量であり、 ZrO_2 耐熱材の耐熱性能に影響はないと考え			
られる(図別-9 参照)。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所((2018. 9. 12版)	島根原子力発電所 2号炉	備考
なお、事故時においては、格納容器下部に事前注水がなされ				
ているため,格納容器下部に落下してきた溶融炉心中に残存す				
る未酸化の金属Zr は,水との反応によって酸化されると想定さ				
れる。MAAP 解析の結果から,格納容器下部に落下してきた溶融				
炉心は,2000℃を超える高い温度でコリウムシールドと数十分				
接触する可能性があるが、上述のとおり、溶融炉心中の金属Zr				
は酸化されていると考えられることから、事故時に溶融炉心が				
コリウムシールドと接触したとしても、ZrO ₂ 耐熱材の表面が還				
元されることによる影響は軽微であると考えられる。				
4. まとめ				
以上により, ZrO_2 耐熱材が溶融炉心に対して高い耐性を有し				
ていることが分かった。				
なお,実際の事故状況においては上述のとおり,ZrO ₂ 耐熱材				
の表面が還元されにくく、還元による影響は軽微であると考え				
られる。また,本試験において黒色化が確認されたZrO2耐熱材は				
X線回折分析の結果から、その組成は大きく変化していないと				
考えられる。一方で、ZrO ₂ 耐熱材の機械的強度の変化の有無等				
については、本試験において十分なデータ採取がなされていな				
いことから、コリウムシールドの実設計においては、耐熱材構				
造をサンプ防護材(厚さ:)と、サンプ防護材に直接溶融				
炉心が接触することを防ぐ犠牲材(厚さ:)との二層構造				
としていることに加え,サンプ防護材の厚さは,解析により求				
めた侵食量 に十分な余裕を見込んだ厚さ とすること				
により、高温状態の溶融炉心とコリウムシールドとの接触に伴				
う悪影響を考慮した保守的な設計としている。				
以上				
本試験は、中部電力(株)、東北電力(株)、東京電力ホールディングス(株)、北陸電				
力(株),中国電力(株),日本原子力発電(株),電源開発(株),(一財)エネルギー総				
合工学研究所,(株)東芝,日立GE ニュークリア・エナジー(株)が実施した共同研究				
の成果の一部である。				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
4. コリウムシールドに期待した場合の評価		4. コリウムシールドに期待した場合の評価	
			・設備設計の相違
	【比較のため,「添付資料3.5.1」の一部を記載】		【柏崎 6/7】
	格納容器破損モード「溶融炉心・コンクリート相互作用」に対	コリウムシールドについて、解析コードにおける取扱いを示	島根2号炉および東
	<u>する重大事故等対処設備である</u> コリウムシールドについて,解析	すとともに,解析コード及び解析条件の不確かさの影響を確認	海第二では、MAAP
	コードにおける取扱いを示すとともに,解析コード及び解析条件	するため、原子炉格納容器下部におけるコリウムシールド及び	コードを用いてコリウ
	の不確かさの影響について整理する。	コンクリート侵食量を評価した。	ムシールドに期待した
			評価を実施しているこ
	1. 解析コードにおけるコリウムシールドの取扱いについて	(1)解析コードにおけるコリウムシールドの取扱いについて	とから、評価方法の概
	解析コードMAAPにおける, 溶融炉心・コンクリート相互	MAAPユードにおけるMCCI伝熱モデルでは、溶融炉心	要について記載。
	作用(以下「MCCI」という。) 伝熱モデルでは、溶融炉心-	-コンクリート間の伝熱,クラストの伝熱と厚さ,上部クラス	
	コンクリート間の伝熱、クラストの伝熱と厚さ、上部クラスト	ト-水プール間熱伝達が考慮されている。ここでは,コリウム	
	-水プール間熱伝達が考慮されている。ここでは、コリウムシ	シールド模擬に伴う設定の変更点及び評価モデルの適用性につ	
	ールド模擬に伴う設定の変更点及び評価モデルの適用性につい	いて示す。	
	て示す。		
	(1) コリウムシールドの模擬について	a. コリウムシールドの模擬について	
	<u>解析コードMAAPにおけるMCCI</u> 伝熱モデルの概念図	MAAP <u>ユード</u> におけるMCCI伝熱モデルの概念図を <u>図10</u>	
	を <u>第1図</u> に示す。 <u>解析コード</u> MAAPによる侵食量評価では,	に示す。MAAP <u>ユード</u> による侵食量評価では、本モデルのう	
	本モデルのうちコンクリートの物性値として設定されている	ち、コンクリートの物性値として設定されている以下のパラメ	
	以下のパラメータについてZrO ₂ の物性値を固定値で設定	ータについて、 $Z r O_2$ の物性値を固定値で設定し、コリウムシ	
	し、コリウムシールドを模擬している。なお、通常のコンク	ールドを模擬している。なお、通常のコンクリート評価モデル	
	リート評価モデルではコンクリート表面に存在するライナを	ではコンクリート表面に存在するライナを考慮しているが、コ	
	考慮しているが、コリウムシールドの模擬に当たってはライ	リウムシールドの模擬に当たってはライナの物性値についても	
	ナの物性値についてもコリウムシールド耐熱材のものを設定	コリウムシールド耐熱材のものを設定し、ライナを考慮しない	
	し、ライナを考慮しないモデルとしている。	モデルとしている。	
	・侵食開始温度	・侵食開始温度	
	 密度 	 ・密度 	
	 ・比熱 	 ・比熱 	
	・熱伝導率	・熱伝導率	
	 溶融潜熱 	・溶融潜熱	
	侵食開始温度については、化学反応等による侵食開始温度	侵食開始温度については、化学反応等による侵食開始温度低	
	低下を考慮した保守的な設定としている (別添1)。また、落	下を考慮した保守的な設定としている。また、落下した溶融炉	
	下した溶融炉心とコリウムシールド間の接触面温度は侵食開	心とコリウムシールド間の接触面温度は侵食開始温度未満であ	
	始温度未満であることから、コリウムシールドの侵食は発生	ることから、コリウムシールドの侵食は発生しない。なお、解	
	しない。なお、解析上はコリウムシールドの厚さを考慮し、	析上はコリウムシールド厚さを考慮し、コリウムシールド裏面	
	コリウムシールド裏面にはコンクリートが配置されたモデル	にはコンクリートが配置されたモデルとして評価を実施してい	
	*1として評価を実施しているが, コンクリート-コリウムシ	るが、コンクリートーコリウムシールド間の伝熱において接触	
	ールド間の伝熱において接触熱抵抗は考慮していない。	熱抵抗は考慮していない。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	以上のとおり, <u>解析コード</u> MAAPにおいてコリウムシー	以上のとおり, MAAP <u>コード</u> においてコリウムシールドを	
	ルドを適切に模擬している。	適切に模擬している。	・設備設計の相違
	※1 ペデスタル (ドライウェル部)壁面,床のコンクリートとドライウェル,サ		【東海第二】
	<u>プレッション・チェンバ雰囲気との伝熱についても考慮している。</u>		ペデスタル構造の相
			違。
	(2) 溶融炉心-コリウムシールド間の伝熱	b. 溶融炉心-コリウムシールド間の伝熱	
	溶融炉心-コリウムシールド間の伝熱は、溶融炉心-コン	溶融炉心-コリウムシールド間の伝熱は、溶融炉心-コンク	
	クリート間の伝熱と同様のモデルを用いている。溶融プール	リート間の伝熱と同様のモデルを用いている。溶融プールから	
	からクラスト、クラストから構造材への伝熱は以下の式で評	クラスト、クラストから構造材への伝熱は以下の式で評価され、	
	価され、(1)で示した構造材の物性値等による影響を受けずに	aで示した構造材の物性値等による影響を受けずにクラスト内	
	クラスト内の熱量が全て構造材に移行する扱いとなってお	の熱量が全て構造材に移行する扱いとなっており、壁面及び床	
	り、壁面及び床の材質に依存しないモデルとなっている。な	の材質に依存しないモデルとなっている。なお、伝熱を受けた	
	お、伝熱を受けた構造材の温度上昇は、構造材の熱伝導率等	構造材の温度上昇は、構造材の熱伝導率等の物性に基づき計算	
	の物性に基づき計算され、種々の実験により得られたコリウ	され、種々の実験により得られたコリウムシールド耐熱材の物	
	ムシールド耐熱材の物性値を適切に入力することで、適切に	性値を適切に入力することで、適切に計算される。	
	計算される。	<i>/</i>	
	床方向の熱流束 $q_d = h_d \left(T_f - T_{F,m}\right) + q_v \cdot X_{cd}$	床方向の熱流束 $q_d = h_d (T_f - T_{F,m}) + q_v \cdot X_{cd}$	
	$h_d = h_{d0}(1 - f_s)^n$	$h_d = h_{d0} (1 - f_s)^n$	
	壁方向の熱流束 $q_s = h_s \left(T_f - T_{F,m}\right) + q_v \cdot X_{cs}$	壁方向の熱流束 $q_s = h_s (T_f - T_{F,m}) + q_v \cdot X_{cs}$	
	$h_{\rm s} = h_{\rm so}(1-f_{\rm s})^n$	$h_s = h_{s0} (1 - f_s)^n$	
	ここで,	ここで,	
	q _d , q _s : 床方向及び側面方向の熱流束 [₩/m²]	q_{d} , q_{s} :床方面及び側面方向の熱流束 [W/m²]	
	h _d , h _s : 溶融プールからクラスト層への対流熱伝達係数	h_{d} , h_{s} :溶融プールからクラスト層への対流熱伝達係数	
	[₩∕m²K]	$[W/m^2K]$	
	 <i>h</i>_{d0}, <i>h</i>_{s0}: 溶融プールが完全な液相の場合の対流熱伝達 	$m{h}_{d0}$, $m{h}_{s0}$:溶融プールが完全な液相の場合の対流熱伝達	
	係数「W/m ² K]	係数 [W/m ² K]	
	f _a : 固化割合 [-]	f_s : 固化割合 $[-]$	
	n ・ 固化効果項の指数 [-]	n:固化効果項の指数 [-]	
	T_{i} : 溶融プールの温度 [K]	T_{f} :溶融プールの温度 [K]	
	T · · · · · · · · · · · · · · · · · · ·	, <i>T_r:デブリ融点</i> 「K]	
	$I_{F,m}$. $\mathcal{I} \mathcal{I} \mathcal{I}$ minimized in \mathcal{I}	a · 体積発埶率「 W/m^3]	
	q_v : 仰賴充然举 [W/m°]	Y Y · 庄市及び辟市のクラスト原文 [m]	
	X_{cd}, X_{cs} : 床面及び壁面のクラスト厚さ [m]	Acd, Acs·小叫次U"至叫V///ハ『序C [m]	
	(3) クラストの厚さ	c. クラストの厚さ	
	床面及び壁面のクラスト厚さ評価モデルでは、溶融プール	床面及び壁面のクラスト厚さ評価モデルでは、溶融プール	
	からの伝熱及び構造材への伝熱によりクラスト厚さの変化率	からの伝熱及び構造材への伝熱によりクラスト厚さの変化率	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	を計算しており、壁面及び床の材質に依存しないモデルとな	を計算しており、壁面及び床の材質に依存しないモデルとな	
	っているため、コリウムシールドにも適用可能である。なお、	っているため、コリウムシールドに適用可能である。なお、	
	クラストーコリウムシールド接触面温度は, (1)に記載のとお	クラストーコリウムシールド接触面温度は, aに記載のとお	
	り $\operatorname{Zr}\operatorname{O}_2$ の物性値を基に計算されることから、クラストの厚	りZrO2の物性値を基に計算されることから、クラストの厚	
	さを評価するにあたりZrO ₂ の物性値が考慮されている。	- さを評価するにあたり ZrO ₂ の物性値が考慮されている。	
	$q = 2\kappa_F (T_{F,m} - T_i)/x_c$	$q = 2k_F (T_{F,m} - T_i) / x_c$	
	ここで,	ここで,	
	q: 床方向又は側面方向の熱流束 [W/m ²]	q:床方面又は側面方向の熱流束 [W/m ²]	
	k_F : デブリ熱伝導率 [W/mK]	$k_{_{F}}:$ デブリ熱伝導率 [W/mK]	
	<i>T_{F,m}</i> : デブリ融点 [K]	$T_{F,m}$:デブリ融点 [K]	
	T_i : クラストーコリウムシールド接触面温度 ^{※2} [K]	T_i :クラストーコリウムシールド接触面温度 ^{*1} [K]	
	x _c : 床面又は壁面のクラスト厚さ [m]	$x_c: 床面又は壁面のクラスト厚さ [m]$	
	*2 コリリムシールトの表面温度と问個であり、クラストからの伝熱重及の入力	※1 コリウムシールドの表面温度と同値であり、クラストからの伝熱量及び入力し	
	したゴリリムシールトの初性順に基づいて適切に計算されている。	たコリウムシールドの物性値に基づいて適切に計算されている。	
	マールボ イロールボ イロールボ	Jール水 Image: Constrained by the state of th	
	第1図 <u>解析コードMAAPにおける</u> MCCI伝熱モデル	図10 MAAPコードのMCCI伝熱モデル	
			・設備設計の相違
	2. 解析コードにおける个確かさの影響	(2) 解析コードにおける个確かさの影響	【柏崎 6/7】
		(1) 个唯かさの登埋	島根2号炉および東
			海第二では、解析コー
	1 週性世の个唯かさ安囚を登埋する。 BWKノフント女主番 本次約「手上車投防地等の左対地部位に伝え、バママト、ご	回性世の个唯かさ安囚を登埋する。 BWKノフント女主番 査貸 「「手上車 地 気 対 気 の た 対 州 辺 に に ス 、 バ フ フ ト 、 ブ 、) 477	ドにおける不確かさ要
			因を整埋。
	ント時付ユートについし」において、MCUIは以下の適程 の0.0000に始めたフェルジニキやアンフジー・リカリント・	1/1 - トについし」においし、Mしし1は以下の適産で段階的	
	して (校) 的に 推 移 9 る こと か 示 さ れ し い る か , コ リ リ ム ン ー ル じた 老 虔 し て ま こ の) 母 に 広 む い は か 、	に推移することか示されているか、コリリムンールドを考慮し	
	トを考慮してもこの適産に変わりはない。	しもこの適産に変わりはない。	
	・原ナ炉圧刀谷奋下部ヘッド破損適柱	・ 県 ナ 炉 比 ノ 谷 奋 下 部 ヘ ッ ド w 損 週 程	

	甫海第二孫重正 (2018 0 12版)	自坦百乙力及雪正 9 只后	備老
11晌八羽床17万元电灯 07 7 75 (2011.12.20)以	- ※副物の変下・推荐過程	・ 恣 動物の 変 下 ・ 推	
	・MCCI進行と注水に上るデブリ冷却過程	・MCCI進行と注水に上るデブリ冷却過程	・ 評価方針の相違
	ただし、「MCCI進行と注水によるデブリ冷却過程」にお	MOOTERCEAS///)市郊過住	「面海第二】
	NTCC I 現象の影響因子として 次融行 ふからのコリ		●根2号恒け 格納容
	ウムシールドを介したコンクリートへの伝熱を考慮する必要		思構造の組占から コリ
			市内追い観点から、ニケ
	デオスことから、フリウムシールドを介した伝熱の咸産解析		執伝達の不確かさが枚
	パラメータとしてコリウムシールドの伝熱物性値の温度依		※凶星の半龍がどが相 納容器の機能の健全性
			~ 与うる影響け小さい
	<u> 行口が心たされる。 オン因にMCCTにおける小睡がさに肉</u> オス流れ図を示す		シ判断し コリウムシー
			レドの伝執に対する咸
			産解析け実施していた
			以前は突起していない。 い(島根2号炉の原子)
			「「「「「「「「「」」」」。
			ら格納容器ライナまで
			のコンクリート厚さは
	MCCI現象の影響因子より抽出された感度解析パラメー	MCCI現象の影響因子より抽出された感度解析パラメータ	約4m)
	タに対して、感度解析の要否を整理する。MCCI評価の不	に対して、感度解析の要否を整理する。MCCI評価の不確か	
	確かさに関する評価結果を第1表に示す。	さに関する評価結果を表6に示す。	
	エントレインメント係数について、感度解析より溶融炉心	エントレインメント係数について、感度解析より溶融炉心の	
	の細粒化割合がコンクリート侵食に与える感度は小さいこと	細粒化割合がコンクリート侵食に与える感度は小さいことを確	
	を確認している。また、このことは、エントレインメント係	認している。また、このことは、エントレインメント係数の不	
	数の不確かさにより溶融炉心の細粒化割合が変化した場合で	確かさにより溶融炉心の細粒化割合が変化した場合でも溶融炉	
	も溶融炉心の温度に対する感度は小さいことを示しており,	心の温度に対する感度は小さいことを示しており、コリウムシ	
	コリウムシールド侵食に与える感度についても同様に小さい	ールド侵食に与える感度についても同様に小さいと考えられる	
	と考えられることから、評価項目となるパラメータに与える	ことから、評価項目となるパラメータに与える影響は小さく、	
	影響は小さく、コリウムシールドを考慮した感度解析は不要	コリウムシールドを考慮した感度解析は不要である。	
	である。		
	溶融炉心の拡がりについて、溶融炉心の拡がりが抑制され	熔融炉心の拡がりについて,溶融炉心の拡がりが抑制される	
	ると想定した場合は、 種々の不均一な堆積形状を考慮しても、	と想定した場合は、種々の不均一な堆積形状を考慮しても、拡	
	拡がりが抑制されない <u>ペデスタル(ドライウェル部)</u> への均	がりが抑制されない原子炉格納容器下部への均一堆積形状の方	
	一堆積形状の方が溶融炉心と水の伝熱面積が大きくなり、溶	が溶融炉心と水の伝熱面積が大きくなり、溶融炉心が冷却され	
	融炉心が冷却される傾向となる。 <u>拡がりが抑制されない均一</u>	る傾向となる。 <u>原子炉格納容器下部に落下した溶融炉心につい</u>	・評価方針の相違
	堆積形状の場合、溶融炉心落下時点における溶融炉心とコリ	ては, 「3.5 溶融炉心・コンクリート相互作用」(以下「ベー	【東海第二】
	ウムシールドの接触面温度はコリウムシールドの侵食開始温	スケース」という)の有効性評価では、床面に一様に拡がる評	島根2号炉は,原子
	度を下回っており、また、溶融炉心への注水によって溶融炉	価モデルとして扱っているが、堆積形状の不確かさが想定され	炉格納容器下部に落下
	心は継続的に冷却されることから、溶融炉心の拡がりが抑制	るため、プラントの形状や事前水張りの深さを踏まえて、拡が	した溶融炉心の拡がり
	されると想定した場合においても、コリウムシールド及びコ	りが抑制された感度解析により、影響を確認する。	面積に対する感度解析

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	ンクリートの侵食への影響はなく、評価項目となるパラメー		を実施。
	タに与える影響はないことから、コリウムシールドを考慮し		
	た感度解析は不要である。		
	上面熱流束係数及び溶融プール-クラスト間の熱伝達係数	上面熱流束係数及び溶融プール-クラスト間の熱伝達係数に	
	について、溶融炉心・コンクリート相互作用への影響を確認	ついて,溶融炉心・コンクリート相互作用への影響を確認する	
	する観点で実施したエントレインメント係数,上面熱流束及	観点で実施したエントレインメント係数,上面熱流束及び溶融	
	び溶融プールからクラストへの熱伝達係数をパラメータとし	プールからクラストへの熱伝達係数をパラメータとした感度解	
	た感度解析を踏まえ,解析コードMAAPによりコリウムシ	析を踏まえ, MAAP <u>ユード</u> によりコリウムシールド及びコン	
	ールド及びコンクリート侵食量について支配的な溶融炉心か	クリート侵食量について支配的な溶融炉心からプールへの熱流	
	らプールへの熱流束を対象に感度解析を行い,影響を確認す	束を対象に感度解析を行い,影響を確認する。	
	る。【感度解析①】		
	また,侵食の異方性について,コンクリート侵食の異方性	また,侵食の異方性について,コンクリート侵食の異方性に	
	については溶融炉心からプール水への熱流束の感度に比べて	ついては溶融炉心からプール水への熱流束の感度に比べて影響	
	影響が小さいことが確認されており、コリウムシールドは侵	が小さいことが確認されており、コリウムシールドは侵食開始	
	食開始温度に到達していないことより同様に影響が小さいと	温度に到達していないことより同様に影響が小さいと考えられ	
	考えられるため、上記の溶融炉心からプールへの熱流束を対	るため、上記の溶融炉心からプールへの熱流束を対象にした感	
	象にした感度解析により、影響を確認する。【感度解析①】	度解析により、影響を確認する。	
	<u>コリウムシールドの伝熱物性値の温度依存性について,解</u>		
	<u> 析コードMAAPにおけるMCCI伝熱モデルでは,固定値</u>		・評価方針の相違
	<u>の物性を設定することから、不確かさが想定される。このた</u>		【東海第二】
	め、感度解析により伝熱物性値(熱伝導率、比熱)の温度依		島根2号炉では, コリ
	存性の影響を確認する。【感度解析②】		ウムシールドを介した
			熱伝達の不確かさが格
			納容器の機能の健全性
			ヘ与える影響は小さい
			と判断し, コリウムシー
			ルドの伝熱に対する感
			度解析は実施していな
			لا ^ب ه

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
【比較のため, 記載を並び替え】 (2) 格納容器下部床面の評価(溶融炉心が均一に拡がらない場合) 原子炉格納容器下部に落下した溶融炉心について,評価モデ ルでは床面に一様に拡がるものとして扱っているが,その挙動	(2) 感度解析	 (ii)感度解析 ベースケースの条件設定に対し、「(i)不確かさの整理」で 整理した不確かさ要因について、コリウムシールド及びコンク リート侵食量に対する感度を確認した。 a.溶融炉心の拡がりを抑制する場合の感度解析 	・評価方針の相違 【東海第二】 島根2号炉および柏 崎 6/7 では,原子炉格 納容器下部に落下した 溶融炉心の拡がり面積 に対する感度解析を実 施。
 には不確かさがあると考えられ、溶融炉心が均一に拡がらない 場合も考えられる。この場合のMCCIの影響を確認するため、以下のケースについて侵食量を評価した。 a. 評価体系 ・溶融炉心が拡がらないことを想定した最も極端なケースとして、水中に落下した溶融炉心は水中で拡がらず、初期水張り水深と同じ高さの円柱になるものとした。 ・溶融炉心が中心から外れた位置で円柱を形成した場合を想定し、溶融炉心の側面がコンクリートの壁で囲まれた体系を設定した。 ・評価体系(円柱)の高さは2m(初期水張り高さ)、底面積は約 22m²(原子炉格納容器下部床面積の約1/4)とし、評価体系(円柱)の上面から水によって除熱されるものとした。ただし、上面からの除熱量は評価体系(円柱)上面の面積に側面の面積を加えた値とした。これは、溶融炉心が拡がらない場合に仮に溶融炉心の一部が壁面に接触しても、側面の大部分は水に接触していると考えられるためである。 		 (a) 評価条件 ・溶融炉心が拡がらないことを想定した最も極端なケースとして、水中に落下した溶融炉心は水中で拡がらず、初期水張り水深と同じ高さの円柱になるものとした。 ・溶融炉心が中心から外れた位置で円柱を形成した場合を想定し、溶融炉心の側面がコンクリートの壁で囲まれた体系を設定した。 ・評価体系(円柱)の高さは2.4m(初期水張り高さ),底面積は約11m²(原子炉格納容器下部床面積の約2/5)とし、評価体系(円柱)の上面から水によって除熱されるものとした。ただし、円柱の側面部分も水に接していることを想定し、上面からの除熱量は円柱上面の面積に側面の面積を加えた値とした。 	・評価条件の相違 【柏崎 6/7】 島根 2 号炉における 初期水張高さ,原子炉 格納容器下部底面積, MAAP解析結果に基 づいて評価を実施。
 b. 評価条件 ・評価ケース4-3:有効性評価「溶融炉心・コンクリート相互 作用」における溶融炉心落下時刻の崩壊熱(事象発生から約7 時間後)及び格納容器圧力への依存性を考慮した上面熱流束 を用いた評価。 			
 c. 評価結果 ・評価ケース4-3:図4-3に示すとおり,原子炉格納容器下部床 面の侵食量は約0.01m,鋼製ライナの損傷には至ることは無 く,壁面の侵食量は約0.01mであり,外側鋼板の侵食に至る 		(b) 評価結果 評価結果を図 12 に示す。評価の結果,原子炉格納容器下部 のプール水中に落下した溶融炉心とコリウムシールドの接触	 ・評価結果の相違 【柏崎 6/7】 評価条件に基づく解 析結果の相違。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<u>ことは無く、原子炉格納容器</u> の支持機能を維持できることを		面温度は2,100℃未満であり、コリウムシールドを設置するこ	
確認した。		とにより、溶融炉心・コンクリート相互作用によるコンクリー	
【ここまで】		<u>トの侵食が生じない。このため、</u> 原子炉圧力容器の支持機能を	
		維持できることを確認した。	・評価方針の相違
(1) 格納容器下部床面の評価(溶融炉心が一様に広がる場合)			【柏崎 6/7】
コリウムシールドに期待する場合, コリウムシールドを考慮			島根2号炉は,溶融炉
しない場合に比べて溶融炉心が拡がる原子炉格納容器下部の			心が一様に拡がる場合
床面の面積が狭まることから,原子炉格納容器上部の面積も減			をベースケースで評価
<u>少する。このため,原子炉格納容器上部からの除熱量が減少し,</u>			しており,コリウムシー
原子炉格納容器下部の床面における侵食量が増加することが			ルドを原子炉格納容器
考えられることから,以下のケースについて侵食量を評価し			下部床全面に敷設して
<u>t.</u>			いるため,溶融炉心が一
			様に拡がる場合の拡が
<u>a. 評価体系</u>			り床面積には影響しな
・MAAPコードでは、コリウムシールド設置後のような複雑な床			<i>د</i> ن.
<u>面の形状を模擬できないため,原子炉格納容器下部の床面積</u>			
<u>全体からコリウムシールドで囲まれる部分の面積を除いた</u>			
<u>面積を底面積とした円柱で模擬した。</u>			
・評価体系(円柱)の底面積はコリウムシールドで囲まれる部分			
が広く,評価体系(円柱)の底面積が小さい6号炉で代表させ,			
<u>62.0m²とした。</u>			
b. 評価条件			
・評価ケース4-1:有効性評価「溶融炉心・コンクリート相互			
作用」における溶融炉心落下時刻の崩壊熱(事象発生から約7			
時間後)及び格納容器圧力への依存性を考慮した上面熱流束			
を用いた評価。			
・評価ケース4-2:事象発生から約7時間後の崩壊熱及び	<u>a. 溶融炉心上面熱流束の感度解析【感度解析①</u>	<u>b. 溶融炉心上面熱流束の感度解析</u>	
800kW/m ² 一定の上面熱流束を用いた評価。	<u>(a)解析条件</u>	(a)	
	解析条件を第2表に示す。溶融炉心から水プールへの熱	・原子炉格納容器下部に落下した後の上面熱流束をベースケー	
	流束ついては,上面熱流束の不確かさを考慮した 800kW/m	<u>スから変更し, 800kW/m² (一定) とする。これは, Kuta</u>	
	2(一定)とする。また、対象シーケンスは、事象進展が早	<u>teladze型の水平平板限界熱流束相関式において大気</u>	
	く,崩壊熱が大きくなり,侵食を厳しくする観点で「大破	正状態を想定した場合,溶融炉心からプール水への熱流束が	
	断LOCA時に損傷炉心冷却に失敗し、原子炉圧力容器が	800 kW/m ² 程度であることを考慮し,保守的に設定した値であ	
	破損するシーケンス」とする。	る。なお、ベースケースでは溶融炉心からプール水への熱流	
		東を 800 kW/m ² (圧力依存有り) としている。ベースケース	
		における原子炉圧力容器破損後の格納容器圧力は、約	
		0.2MPa[gage]以上で制御されていることから、ベースケース	
		における溶融炉心からプール水への熱流束は、約1,300kW/m ²	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		(格納容器圧力約 0. 2MPa[gage]において)以上となる。	
c. 評価結果	(b) <u>解析結果</u>	(b) <u>評価結果</u>	
・評価ケース4-1:図4-1に示すとおり,原子炉格納容器下部床			
面の侵食量は約0.01mであり,鋼製ライナの損傷には至るこ			
とは無く,原子炉格納容器下部壁面の侵食量は約0.01mであ			
り、外側鋼板の損傷に至ることは無いことを確認した。			・解析結果の相違
 ・ 評価ケース4-2:図4-2に示すとおり、原子炉格納容器下部 	評価結果を <u>第3表</u> に示す。 <u>ペデスタルのプール水中に落</u>	評価結果を図13に示す。評価の結果,原子炉格納容器下部の	【柏崎 6/7,東海第二】
床面の侵食量は約0.08mであり、鋼製ライナの損傷には至る	下した溶融炉心とコリウムシールドの接触面温度は	<u>プール水中に落下した溶融炉心とコリウムシールドの接触面温</u>	設備や評価条件等の
ことは無く,原子炉格納容器下部壁面の侵食量は約0.07mで	<u>2,100℃未満であり、コリウムシールドを設置することによ</u>	<u>度は2,100℃未満であり,コンクリート侵食量は床面で0m,壁</u>	違いによる解析結果の
あり,外側鋼板の損傷に至ることは無いことを確認した <u>。</u>	り,溶融炉心・コンクリート相互作用によるコンクリート	<u>面で約0.13mに抑えられており</u> ,原子炉圧力容器の支持機能を	相違。
	<u>の侵食が生じない。</u> このため,原子炉圧力容器の支持機能	維持できることを確認した。	
	を維持できる。		・記載箇所の相違
(2) 格納容器下部床面の評価(溶融炉心が均一に拡がらない			【柏崎 6/7】
場合)			島根2号炉では、溶
原子炉格納容器下部に落下した溶融炉心について, 評価モデ			融炉心の拡がり面積に
ルでは床面に一様に拡がるものとして扱っているが, その挙動			対する感度解析を4.
には不確かさがあると考えられ, 溶融炉心が均一に拡がらない			(3)a. に記載。
場合も考えられる。この場合のMCCIの影響を確認するため、以			
下のケースについて侵食量を評価した。			
a. 評価体系			
 溶融炉心が拡がらないことを想定した最も極端なケースとし 			
て、水中に落下した溶融炉心は水中で拡がらず、初期水張り			
水深と同じ高さの円柱になるものとした。			
・溶融炉心が中心から外れた位置で円柱を形成した場合を想定			
し、溶融炉心の側面がコンクリートの壁で囲まれた体系を設			
定した。			
・評価体系(円柱)の高さは2m(初期水張り高さ),底面積は約			
22m ² (原子炉格納容器下部床面積の約1/4)とし,評価体系(円			
柱)の上面から水によって除熱されるものとした。ただし,			
上面からの除熱量は評価体系(円柱)上面の面積に側面の面			
積を加えた値とした。これは、溶融炉心が拡がらない場合に			
仮に溶融炉心の一部が壁面に接触しても、側面の大部分は水			
に接触していると考えられるためである。			
b. 評価条件			
・評価ケース4-3:有効性評価「溶融炉心・コンクリート相互			
作用」における溶融炉心落下時刻の崩壊熱(事象発生から約7			
時間後)及び格納容器圧力への依存性を考慮した上面熱流束			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
を用いた評価。				
c. 評価結果				
・評価ケース4-3:図4-3に示すとおり、原子炉格納容器下部床				
面の侵食量は約0.01m, 鋼製ライナの損傷には至ることは無				
く,壁面の侵食量は約0.01mであり,外側鋼板の侵食に至る				
ことは無く、原子炉格納容器の支持機能を維持できることを				
確認した。				
				・設備設計の相違
(3) 溶融炉心の一部がコリウムシールドを越えて, サンプに流				【柏崎 6/7】
入する場合				島根2号炉のコリウ
原子炉格納容器下部に落下した溶融炉心はコリウムシール				ムシールドは,原子炉格
ドによってせき止められ, あるいはファンネルの途中で固化す				納容器下部床面全体を
ることにより、多量にサンプに流入することは無いと考える。				覆う構造であり,ここで
細粒化された溶融炉心が水中に浮遊することにより,僅かな量				は, 柏崎 6/7 の構造に依
がコリウムシールドの内側に移行することは考えられるが、細				存した評価が実施され
粒化された溶融炉心は周囲の水によって十分に冷却されてい				ている。
ると考えられることから,仮に僅かな量の細粒化された溶融炉				
心がサンプに移行しても,サンプ床面を有意に侵食するもので				
はないと考える。				
ただし, 溶融炉心に対し, ポロシティを見込んだ場合, 溶融				
炉心の一部がコリウムシールドを越えて, サンプに流入するこ				
とが考えられることから,以下のようにサンプ床面の侵食量を				
評価した。				
a. 評価体系				
・ MAAP コードでは,サンプのような直方体の形状を模擬でき				
ないため、床面積をサンプの床面積に合わせた円柱で模擬し				
た。				
 サンプへの流入量を考慮する上で必要となる格納容器下部 				
のモデル(コリウムシールド設置位置, コリウムシールド高				
さ, サンプの形状)は, 6 号炉と7 号炉を比較して, サンプ				
越流時の流入量が多く, サンプ床面積が小さく上面から水へ				
の除熱量が少なくなる7 号炉で代表させた。				
b. 評価条件				
・ ポロシティ評価範囲				
MAAP コードにおける不確かさの範囲と同様に、ポロシティを				
0.26(面心立方格子,最稠密),0.32(体心立方格子),0.4(MAAP				
標準値), 0.48(単純立方格子)の範囲を想定する。ポロシテ				
ィについては, 概ね0.3 以上と報告されているが, ポロシテ				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
ィに対する侵食量の感度を確認する観点から、ポロシティの			
最小値について,本評価では仮想的に0.26 を設定した。な			
お、粒子化割合の評価にはRicou-Spalding 相関式を用い,			
エントレインメント係数はMAAP 推奨値とした。こ			
の評価結果をもとに、本評価における粒子化割合は63%とし			
た。			
・崩壊熱及び上面熱流束			
事象発生から7 時間後の崩壊熱,ポロシティ及び格納容器			
圧力への依存性を考慮した上面熱流束を用いた評価を行う。			
上面熱流束は, 図4-4 のLipinski 0-D モデルを用いたドラ			
イアウト熱流束をもとに表4-1 のとおりに設定した。			
Lipinski 0-D モデルについては別紙4 に詳細を示す。			
・ 溶融炉心の堆積厚さの設定			
各ポロシティを用いた場合の下部ドライウェルでの溶融			
炉心の堆積高さ(コリウムシールドに囲まれた床面積を除い			
た場合)は表4-1 のとおりとなる。これを踏まえ,各ポロシ			
ティを用いた場合のサンプ内への溶融炉心の流入量を以下			
のとおりに考慮し,表4-1 のとおりにサンプ内での溶融炉心			
の堆積高さを設定した。			
(i) コリウムシールドの高さ以上に堆積し, コリウムシール			
ドの内側に流入するものと見なす溶融炉心の量がサン			
プの体積未満の場合			
ポロシティが0.26 のケースでは, コリウムシールドの			
高さ以上に堆積する溶融炉心の量がサンプ2 つ分の容量			
(サンプ床面積の小さい7 号炉で代表)未満であることか			
ら,二つのサンプに均一に溶融炉心が流入すると想定し,			
堆積厚さを約0.7mとした。			
(ii) コリウムシールドの高さ以上に堆積し, コリウムシー			
ルドの内側に流入するものと見なす溶融炉心の量がサ			
ンプの体積以上の場合			
ポロシティが0.32, 0.4 及び0.48 のケースでは, 溶融			
炉心の流入量がサンプ2つ分(サンプ床面積の小さい7 号			
炉で代表)の容量を大きく上回る。溶融炉心がコリウムシ			
ールドの内側のサンプ外の領域にも堆積するため, サンプ			
及びコリウムシールドの内側のサンプ外の領域に堆積し			
た場合の堆積高さを用いてサンプ床面の侵食量評価を行			
った。			
c. 評価結果			

	古海ケーズ電工 (2010 0 10年)	白相医乙力改豪武 自日后	(進来)
相畸利羽原于刀笼竜所 6/7号炉 (2017.12.20版)	東 冲 弗—	 局根原于刀笼黾所 2 亏炉	加巧
・ 表4-2 に示すとおり,サンフ床面の侵食量は最大約0.05m で			
あり、鋼製フイナの損傷には全ることは無く、サンプ壁面			
の侵食量は最大約0.05m であり,外側鋼板の損傷に至るこ			
とは無いことを確認した。			
			・設備設計の相違
(4) 溶融物の落下量を保守的に考慮する場合の影響			【柏崎 6/7】
原子炉格納容器下部に溶融炉心と共に落下し得る構造物に			島根2号炉のコリウ
ついては表3-3 に整理しており,原子炉圧力容器内の構造物			ムシールドは,原子炉格
のみならずCRD交換装置や原子炉圧力容器外の全てのCRDハウ			納容器下部床面全体を
ジング等を考慮しても,落下した溶融物のポロシティが0の			覆う構造であり,ここで
場合はコリウムシールドを越えない設計としている。			は, 柏崎 6/7 の構造に依
落下した溶融物の量を十分保守的に設定している前提では			存した評価が実施され
あるが、ここでポロシティを考慮する場合、溶融物の一部は			ている。
サンプの内側に流入すると考えられる。このため、溶融物の			
落下量に対するサンプ床面の侵食量の感度を確認する観点か			
ら,以下のようにサンプ床面の侵食量を評価した。			
a. 評価体系			
・ MAAP コードでは,サンプのような直方体の形状を模擬でき			
ないため、床面積をサンプの床面積に合わせた円柱で模擬し			
た。			
 サンプへの流入量を考慮する上で必要となる格納容器下部 			
のモデル(コリウムシールド設置位置, コリウムシールド高			
さ,サンプの形状)は,6 号炉と7 号炉を比較して,7 号炉			
のコンクリート侵食量の方が多いことを確認し,7 号炉で代			
表させた。			
b. 評価条件			
 本評価では落下した溶融物の量を保守的に設定するものと 			
し、他のパラメータについて、評価結果に与える影響の大			
きなパラメータについてはノミナル条件に近いと考える値			
とした。評価条件の設定の考え方を表4-3 に示す。			
・ ポロシティ評価範囲			
文献値等において、ポロシティは現実的には0.3 以上と報告			
されていることを踏まえ、0.32(体心立方格子の値)とした。			
なお、粒子化割合の評価にはRicou-Spalding 相関式を用い.			
エントレインメント係数はMAAP 推奨値 とした。こ			
の評価結果をもとに、本評価における粒子化割合は63%とし			
·。 ・ 崩壊執及び上面執流吏			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所	2 号炉	備考
事象発生から7 時間後の崩壊熱,ポロシティ及び格納容器圧					
カへの依存性を考慮した上面熱流束を用いた評価を行う。上					
面熱流束は, 図4-4 のLipinski 0-D モデルを用いたドライ					
アウト熱流束をもとに表4-3 のとおりに設定した。					
・ 溶融炉心の堆積厚さの設定					
表4-4 に示すとおり、ポロシティ及び落下物量の想定から、					
溶融炉心がコリウムシールド内を埋め,更に格納容器下部全					
体に堆積する高さ(格納容器下部床面から約0.66m(サンプ床					
面から約2.06m))とした。					
c. 評価結果					
• 表4-5 に示すとおり, サンプ床面の侵食量は約0.09m であ					
り、鋼製ライナの損傷に至ることは無く、サンプ壁面の侵					
食量は約0.09m であり,外側鋼板の損傷に至ることは無い					
ことを確認した。					
					・設備設計の相違
(5) 溶融炉心落下位置が原子炉圧力容器底部中心から径方向					【柏崎 6/7】
に偏る場合の想定					島根2号炉のコリウ
溶融炉心が圧力容器底部のどの位置から落下するかについ					ムシールドは,原子炉格
ては不確かさがあるが,基本的には圧力容器底部の中心及びそ					納容器下部床面全体を
の近傍に配置されており圧力容器底部を貫通する構造部材で					覆う構造であり,ここで
あるCRD ハウジングからの落下を想定している。原子炉圧力容					は, 柏崎 6/7 の構造に依
器破損後に原子炉格納容器下部に落下する溶融炉心が,原子炉					存した評価が実施され
格納容器下部のサンプに流入することを防止する目的でコリ					ている。
ウムシールドを設置しているが、その堰の設置位置は図4-5,					
図4-6 に示すとおり, CRD ハウジングの最外周の位置よりも格					
納容器下部の壁面寄りとしており, CRD ハウジングの最外周を					
溶融炉心の落下位置として想定しても,原子炉格納容器下部に					
落下した溶融炉心はコリウムシールドによってせき止められ					
るものと考える。					
溶融炉心の拡がりについては「解析コードMAAP 説明資料 添					
付3 溶融炉心とコンクリートの相互作用について 付録4 溶融					
物の拡がり実験」において参照した知見から、格納容器下部に					
落下した溶融炉心は数分程度で格納容器下部に拡がり,また,					
ANL の実験では、デブリベッドが均一化することに要した時間					
が2~3 分程度であったことも踏まえると、格納容器下部に落					
下した溶融炉心は短時間で格納容器下部に均一に拡がるもの					
と考える。					
しかしながら、コリウムシールド近傍に落下した場合、一時					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所	2 号炉
的に偏って高く堆積することにより,溶融炉心が格納容器下部			
に拡がる前にコリウムシールドを越えてサンプに流入する可			
能性が考えられる。			
偏って堆積する場合、堆積物の形状には不確かさがあり、モ			
デル化することは困難である。このため, 堆積物の形状の不確			
かさについては、ポロシティを極めて保守的に設定し、堆積物			
全体の堆積高さを高く評価した上で,多くの溶融炉心がコリウ			
ムシールドの内側に流入する評価で代表させるものとする。			
流入する溶融炉心の状態を考えると,水中に落下した溶融炉			
心は一部が細粒化して冷却され,細粒化された密度の低い溶融			
炉心は落下した溶融炉心の上部に集まるものと考えられる。こ			
のため,コリウムシールドを越えてサンプに流入すると考えら			
れる溶融炉心の状態は、細粒化され、冷却、固化された、ポロ			
シティが高く密度の低い状態と考えられる。			
表4-1 に示す, ポロシティを0.48 とした評価は, 格納容器			
下部での堆積高さが高く,多くの溶融炉心がコリウムシールド			
の内側に流入した結果, コリウムシールドの内外が同じ堆積高			
さとなっている。この場合であっても,表4-2 に示すとおり,			
床面及び壁面の侵食量は0m であることから, 堆積の形状の不			
確かさを包絡させる観点で多量の溶融炉心の流入を考慮して			
も、多量の溶融炉心がサンプに流入する場合には、ポロシティ			
の高い溶融炉心がサンプに流入するため、高い水への除熱量			
(上面熱流束)に期待できると考えられることから, サンプの損			
傷は防止できるものと考える。			
	b. 伝熱物性値温度依存性の感度解析 【感度解析②】		
	コリウムシールドの伝熱物性値の温度依存性の影響につい		
	ては、「4. コリウムシールドの侵食及び伝熱物性値の温度		
	依存性を考慮した感度解析」において、コリウムシールド		
	の侵食が生じた場合の影響と併せて確認する。なお、伝熱		
	物性値の温度依存性の取扱いが可能な汎用有限解析コード		
	添 2)。		

戶	備考
	・評価方針の相違
	【東海第二】
	島根25分では,コリ ウムシールドを介した
	熱伝達の不確かさが格
	納容器の機能の健全性
	と判断し,コリウムシー
	ルドの伝熱に対する感
	度解析は実施していな い。
	- 0

柏崎刈羽原子力発	管所 6/	/7号炉	(2017.12.	20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<u>表4-1 ポロシティ〜</u> <u>設</u>	-の依存性る 定と溶融炉	を考慮した 同心の堆積調	湯合の上面 <u>寄さ</u>	<u>熱流束の</u>			
ポロシティ	0.26	0.32	0.40	0.48			
上面熱流束(格納容器圧力 依存性を考慮)(kW/m ²)	800*2	図 4- 1300 ^{※2}	4 参照 2200*2	3300*2			
下部ドライウェル ^{※1} での ※副伝心の推荐真さ(m)	約 0.68	約 0.73	約 0.80	約 0.89			
	約 2.6	約 5.8	約 11	約 18			
サンプ床面からの 堆積高さ(m)	約 0.7	約 1.4	約 1.8	約 2.1			
※1 コリウムシールドに囲	 まれた床面積	を除き, コリ	ウムシールドの	ロ内側への流			
入を考慮しない場合の堆	積高さ						
※2(参考)格納容器圧力0.	4MPa[abs]には	おける値					
表4-2 溶融炉心が	サンプに流	入する場合	の侵食量調	平価結果			
ポロシティ	0.26	0.32	0.40	0.48			
サンプ床面侵食量(m)	約 0.05	約 0.03	約 0.01	0			
サンプ壁面侵食量(m)	約 0.05	約 0.03	約 0.01	0			
ボロシティ 0.26 ボロシティ 0.26 ボロシティ 0.40 ■ 粒子化 [®] せず,格納容器 ■ 粒子化 [®] した溶磁炉心		1.4m ポロンテ ポロンテ メロンテ メ	 イ 0.32 イ 0.32 イ 0.48 総子化割合の評価には Ricou Spalding 相関式 エントレインメンド係 MAAP 推奨値 この評価により、本評 ごの評価により、本評 の評価になり、本評 	:を用い, 抜とした。 価における さ			
ポロシティ	別のコリウムシールト	ド越流量のイメージ					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	 解析条件における不確かさの影響 解析コードMAAPにおけるMCCI評価では、コリウムシ ールドを考慮した機器条件として、以下の条件を設定している。 ・コリウムシールド耐熱材の種類 ・コリウムシールド耐熱材の侵食開始温度 ・ペデスタル(ドライウェル部)床面積 これらは全て最確条件と同様の設定であることから、不確か さの影響はない。解析コードMAAPの解析条件を第4表に示 す。 	(3)解析条件における不確かさの影響 解析コードMAAPにおけるMCCI評価では、コリウムシ ールドを考慮した機器条件として、以下の条件を設定している。 ・コリウムシールド耐熱材の種類 ・コリウムシールド耐熱材の侵食開始温度 ・原子炉格納容器下部床面積 これらは全て最確条件と同様の設定であることから、不確 かさの影響はない。解析コードMAAPの解析条件を表7に示 す。なお、MCCI伝熱モデルにおいて、コリウムシールド耐 熟材の二層構造(サンプ防護材+犠牲材)のうち、サンプ防護 材の厚さ部分に対してZrO ₂ の物性値を設定している。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		表7 解析コードMAAP解析条件	
		項目 解析条件 最確条件 コリウムシールド耐熱材 の種類 ジルコニア耐熱材 ジルコニア耐熱材 ポリウムシールド耐熱材 の侵食開始温度 2,100℃ *1 2,100℃ *1 原子炉格納容器下部床面積 コリウムシールド厚さ	
		※1 ZrO ₂ 耐熱材の100mo1%Zrによる侵食試験結果に基づき設定	・評価方針の相違
	 4. コリウムシールドの侵食及び伝熱物性値の温度依存性を考慮 した感度解析 溶融炉心中の金属酸化物によるジルコニア耐熱材の溶出により、コリウムシールドが侵食される可能性があるが、既往の実験にて確認された侵食速度を仮定した場合、コリウムシールドの侵食量は約 33mm となる(別添 3)。コリウムシールドの厚みが減少した場合、コリウムシールド外表面のペデスタル(ドライウェル部)のコンクリートへの伝熱量が大きくなることから、この影響を感度解析により確認する。また、前述のとおり、解析コードMAAPではZrO2の物性値を固定値で設定するモデルであることから、伝熱物性値の温度依存性の不確かさの影響についても併せて確認する。 (1) 解析条件 解析条件を第5表に示す。コリウムシールドの厚さは、コリウムシールドの設計値に対して、既往実験に基づく侵食量 	※1 2102101/021による反良码要指未に基づき取定	 ・評価方針の相違 【東海第二】 島根2号炉では、コリウムシールドを介した 熱伝達の不確かさが格納容器の機能の健全性 ヘ与える影響は小さい と判断し、コリウムシールドの伝熱に対する感 度解析は実施していない。
	 の約 33mm を考慮し,保守性を見込んだ値として 110mm を設定 する。なお、コリウムシールドの侵食によるペデスタル(ド ライウェル部)床面積の拡大は保守的に考慮しない。 また、解析コードMAAPにおけるコリウムシールドの伝 熱物性値の温度依存性の不確かさを考慮し、ペデスタル(ド ライウェル部)のコンクリートの温度を厳しく評価する観点 で、常温時のZrO2の伝熱物性値を設定する。 対象シーケンスは、事象進展が早く、崩壊熱が大きくなり、 ペデスタル(ドライウェル部)のコンクリート侵食を厳しく 評価する観点で「大破断LOCA時に損傷炉心冷却に失敗し、 原子炉圧力容器が破損するシーケンス」とする。 (2)解析結果 解析結果を第6表に示す。また、ベースケース及び感度解 析ケースのコリウムシールド温度の推移及びコンクリート温 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東淮	F第二発電所 (2018.	9.12版)	島根原子力発電所 2号炉	備考
	度の推移を第	3 図から第6図,クラ	スト厚さの推移(上下方		
	向)を第 7 図(こ示す。コリウムシー	ルド内表面温度の最高値		
	は約 1,860℃h	ことどまり, コリウム	シールドの侵食開始温度		
	である 2,100℃	Cを下回ることから,	コリウムシールドの侵食		
	は溶融炉心中の	の金属酸化物によるジ	ルコニア耐熱材の溶出で		
	生じた状態から	ら進行しない。また,	コリウムシールド外表面		
	と接するペデン	スタル(ドライウェル)	部)コンクリートの温度		
	の最高値は約	728℃にとどまり, コ	ンクリートの侵食開始温		
	度である約 1,	230℃を下回ることか	ら、コンクリートは侵食		
	されない。この	Dため, コリウムシー	ルドが溶融炉心中の金属		
	酸化物により	 食食された場合におい	ても、コリウムシールド		
	を介した伝熱の	つ不確かさが, 評価項	目となるパラメータに与		
	える影響は小さ	さい。			
	なお、本評価	西においては, コンク	リートの表面温度を厳し		
	く評価する観点	気から, コンクリート	ーコリウムシールド間の		
	接触熱抵抗はネ	考慮していない。接触	熱抵抗を考慮した場合に		
	は、溶融炉心な	いらペデスタル (ドラ	イウェル部)コンクリー		
	トへの熱通過	率が小さくなり, 溶融	炉心及びコリウムシール		
	ドの温度挙動に	こ影響を与えることが	考えられるが,溶融炉心		
	はペデスタル	(ドライウェル部)の	プール水に落下した直後		
	に 2,100℃未清	嵩となること,また,	溶融炉心から上面水へは		
	崩壊熱以上の降	余熱がされ溶融炉心の	温度は 2,100℃未満を維		
	持することから	5, コリウムシールド	の侵食は生じず、温度挙		
	動への影響は轉	経微であると考えられ	3.		
	第2表 解析第	<u>《件(溶融炉心上面熱》</u>	<u> </u>		
	項目	ベースケース	感度ケース		
	対象シーケンス	過渡事象時に損傷炉心冷却 に失敗し,原子炉圧力容器が 破損するシーケンス	大破断LOCA時に損傷炉 心冷却に失敗し,原子炉圧力 容器が破損するシーケンス		
	溶融炉心から水プール	800kW/m ² (圧力依存性なり)	800k₩∕m ² (→定 ^{∞1})		
	ペデスタル初期水位		lm		
	ペデスタル注水	RPV破損75	う後から 80m ³ /h		
	コリウムシールド厚さ	1	5cm		
	コリウムシールド侵食 開始温度	2, 10	0°C*2		
	RPV破損時の 溶融炉心温度	MAAP解材	「結果に基づく		
	 ※1 侵食の不均一性等 ※2 ZrO₂耐熱材の 	等の影響を考慮して設定 100mo1%Zrによる侵食試験約	吉果に基づき設定(別添 1)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二	発電所 (2018.9	9.12版)	島根原子力発電所 2 号	号り
	<u>第3表</u> 解析結果	(溶融炉心上面熱流	束)【感度解析①】		
	項目	ベースケース	、 感度ケース		
	コリウムシールド侵食 (壁面及び床面)	'量 侵食なし	侵食なし		
	ペデスタル (ドライウェ コンクリート侵食量 (暁面及び床面)	ル部) : 侵食なし	侵食なし		
	第4表角	「 [」] [「] 「 「 「 「 「 」 「 」	•解析条件		
	項目	解析条件	最確条件		
	コリウムシールド耐熱 の種類	材 ジルコニア耐火			
	機 コリウムシールド耐熱/ 器 の侵食開始温度	材 2,100℃	2, 100°C		
	ペデスタル (ドライウェル 床面積	(部) コリウムシール を考慮	·ド コリウムシールド を考慮		
	項目 対象シーケンス 過渡 コリウムシールド厚さ ゴリウムシールド コリウムシールド 株 コリウムシールド 人 セリウムシールド 人 会員開始温度 ペデスタル(ドラオウェ ペデスタル(ドラオウェ 小グ	<u>解析②</u> ベースケース 事象時に損傷炉心冷却 改し,原子炉圧力容器が 改損するシーケンス 15cm **2 2,100 27.0	感度ケース 大破断LOCA時に損傷炉 心冷却に失敗し,原子炉圧力 容器が破損するシーケンス 11cm *1 *3 *3 *3 *3 *3 *3 *3		
	ル部)床面積 ペデスタル初期水位 ※1 溶融炉心中の金属酸化物 ※2 ZrO2耐熱材の侵食開 ※3 ZrO2耐熱材の常温に ※4 ZrO2耐熱材の100mo	1 初による侵食を仮定した厚 始温度における伝熱物性 おける伝熱物性として設 1%Zrによる侵食試験結	m (さとして設定(別添3) として設定 定 :果に基づき設定(別添1)		
	第6表 解析結果(伝熱	物性値及びコリウ	ムシールド侵食) 【感度		
		解析②】			
	項目	ベースケー	ス 感度ケース		
	コリウムシールド侵食 (壁面及び床面)	量 侵食なし	侵食なし		
	ペデスタル (ドライウェ) コンクリート侵食量 (壁面及び床面)	レ部) 侵食なし	侵食なし		

炉	備考

·炉	備考
	・解析結果の相違
・原子炉格納容器下部床面の侵食量	【柏崎 6/7】
原子炉格納容器下部壁面の侵食量	島根2号炉は、柏崎
	6/7 に比べて、溶融炉
	心の拡がり面積(原子炉
	枚 納 宏 男 下 部 庄 西 待) が
フリートの混合物の温度が 相互作用が停止する。	俗利谷品「即不回視」が
	小さいため、壁面佼良
	重か大さくなる。
108 120 132 144 156 168	
コンクリート侵食量の	
)	
	・解析結果の相違
	【柏崎 6/7】
原子炉格納容器下部床面の侵食量	島根2号では,拡がり
原ナ炉格納谷畜ト部壁面の侵食重	を抑制した場合の方が
	溶融炉心と水との伝熱
	面積が大きくなり,除熱
	量が大きくなることで、
	コンクリート侵食は生
	じていない。
30 40	
コンクリート倶合景の	
	細七分田の相当
	・ 辨 が 結 未 の 相 遅
	【相嗬 6/7】
- 原子炉格納容器下部床面の侵食量 ・ 原子炉格納容器下部壁面の侵食量	ベースケースよりも,
	コンクリート侵食量が
クリートの混合物の	増加しており,島根2号
ート反応が停止する	炉と柏崎 6/7 で同様の
	傾向となっている。
复量:約0.13m	
30 40	
コンクリート侵食量の	
保守的に考慮する場合)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			・設備設計の相違
			【柏崎 6/7】
1×107			柏崎 6/7 では, 溶融
ポロシティ 0.48			炉心の一部がコリウム
ドラー ポロシティ 0.4			シールドを超えてサン
Т 7 7 1 X 100 1 X 100 1 X 100 1 X 100 1 X 100			プに流入する場合の評
か 熟 読 市 で 、 、 、 、 、 、 、 、 、 、 、 、 、			価が実施されており,
(W/m ²)			LipinskiO-D モデルに
保守的に粒子径は 3mm とした。			基づいてドライアウト
1×10^5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8			熱流束が設定されてい
压力 (MPa[abs])			る。
図4-4 Lipinski 0-D モデルを用いたドライアウト熱流束			
(a) 側面凶			
(U) 上回凶 図4-5 CRD ハウジング最外周とコリウムシールドの位置問係			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12版)	島根原子力発電所 2号炉	備考
(6 号炉)				
(a) 側面図				
(b) 上面図				
<u> 図4-6 CRD ハウジング最外周とコリウムシールドの位置関係</u>				
(7 号炉)				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版	(2018.9.12版) 東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	1 -4-17		
<u>図4-7 格納容器下部端のイメージ(格納容器底部床面から</u>			
2 (取家)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	5. まとめ	(4) まとめ	
	<u>解析コードMAAPではコリウムシールドを適切に模擬して</u>	MAAP <u>コード</u> ではコリウムシールドを適切に模擬してお	
	おり、溶融炉心-コリウムシールド間の伝熱モデルはコリウム	り,溶融炉心-コリウムシールド間の伝熱モデルはコリウムシ	
	シールドに適用可能である。	ールドに適用可能である。	
	コリウムシールドを考慮した解析コードの不確かさを踏まえ	コリウムシールドを考慮した解析コードの不確かさを踏まえ	
	た感度解析により、原子炉圧力容器の支持機能を維持でき、不	た感度解析により、原子炉圧力容器の支持機能を維持でき、不	
	確かさの影響は小さいことを確認した。また、コリウムシール	確かさの影響は小さいことを確認した。また、コリウムシール	
	ドを考慮した解析条件は最確条件と同様であり、不確かさはな	ドを考慮した解析条件は最確条件と同様であり、不確かさはな	
	لائ _ە	b_{o}	・評価方針の相違
	さらに,コリウムシールドが溶融炉心中の金属酸化物により		【東海第二】
	<u>侵食される可能性を考慮した感度解析により、コリウムシール</u>		島根2号炉では,コリ
	ド外表面と接するコンクリートは侵食されないことを確認し		ウムシールドを介した
	te.		熱伝達の不確かさが格
	【ここまで】		納容器の機能の健全性
			ヘ与える影響は小さい
			と判断し,コリウムシー
			ルドの侵食等の感度解
			析は実施していない。
5. まとめ		5. <i>まとめ</i>	・記載方針の相違
コリウムシールドの設置後の原子炉格納容器下部の床面の		コリウムシールドの設置 <u>によって、SA時に原子炉格納容器</u>	【柏崎 6/7】
<u>侵食量は僅かであり、格納容器の支持機能に影響しないことを</u>		下部に落下したデブリがスリット内でファンネルに到達する前	設備および評価方針
確認した。これにより、コリウムシールドは格納容器の支持機		に凝固することで、ドライウェルサンブへのデブリ流人を防止	の違いによるまとめの
能に影響を及ぼすことなくサンプでのMCC1のリスクを低減で		するとともに、原子炉格納容器下部床面及び壁面における侵食	相違。
きることを確認した。このため、コリウムシールドを重大事故		量が抑制されることで原子炉圧力容器の支持機能に影響を及ぼ	
等緩和設備に位置付けることとした。		すことなく、MCCIのリスクを低減できることを確認した。	
また、溶融炉心が原子炉格納容器下部床面において均一に拡			
がらない場合においても侵食量は僅かであることを確認した。			
以 上		[1] D.Lopukh et al., "New Experimental Results On The	
		Interaction Of Molten Corium With Core Catcher	
		<u>Material", ICONE-8179, (2000).</u>	
		<u>[2] J. M. Seiler, K. Froment, "Material Effects On Multiphase</u>	
		Phenomena In Late Phases Of Severe Accidents Of Nuclear	
		<u>Reactors</u> , Multiphase Science and technology, Vol.12,	
		<u>No. 2, pp. 117-257, (2000).</u>	
		以 上	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
別紙-2		別紙-1	
KK7下部D/Wドレン配管内の凝固評価に関するEPRI/FAI試験の適用		<u>NS2</u> 下部 D/W ドレン配管内の凝固評価に関するEPRI/FA	
性について		I 試験の適用性について	
1. EPRI/FAI試験と <u>KK7</u> のファンネルの体系の比較		1. EPRI/FAI試験と <u>NS2</u> のファンネルの体系の比較	
EPRI/FAI試験の適用性を検討するにあたり, <u>KK7</u> の下部D/W		EPRI/FAI試験の適用性を検討するにあたり, <u>NS2</u> の	
サンプと体系を比較するため、溶融物条件を表別2-1に、流路		下部D/Wサンプと体系を比較するため、溶融物条件を表別1-1	
構造を <u>表別2-2</u> に比較する。		に,流路構造を <u>表別1-2</u> に比較する。	
<u>表別2-1</u> のとおり, EPRI/FAI試験で用いたアルミナと, MAAP		<u>表別 1-1</u> のとおり, EPRI/FAI試験で用いたアルミナと,	
解析結果に基づく溶融デブリ(平均)の物性を比較すると、密		MAAP解析結果に基づく溶融デブリ(平均)の物性を比較する	
度 ・熱伝導率が異なるものの、 配管内での溶融物凝固 ・流動特		と、密度・熱伝導率が異なるものの、配管内での溶融物凝固・流	
性に影響する凝固までの蓄熱量,動粘性係数は近い値になって		動特性に影響する凝固までの蓄熱量、動粘度は近い値になってい	
いる。なお,溶融デブリ(<u>酸化物</u>),溶融デブリ(金属)はEPRI/FAI		る。なお,溶融デブリ(<u>平均</u>),溶融デブリ(金属)はEPRI	・評価結果の相違
試験との蓄熱量比が小さいことから,溶融デブリ(<u>平均</u>)につい		/FAI試験との蓄熱量比が小さいことから,溶融デブリ(<u>酸化</u>	【柏崎 6/7】
て流動距離を評価する。		<u>物</u>)について流動距離を評価する。	島根2号炉における
表別2-2に流路構造を比較する。EPRI/FAI試験の配管径50mm		<u>表別1-2</u> に流路構造を比較する。EPRI/FAI試験の配管	デブリ物性値等による
に対し, <u>KK7</u> のファンネルの口径は78mm(80A)であり, 配管断面		径 50mm に対し, <u>NS2</u> のファンネルロ径は 78mm (80A) であり,	相違。
積比は <u>KK7</u> の方が約2.44倍大きい。そのため,単位長さあたり		配管断面積比は <u>NS2</u> の方が約2.44倍大きい。そのため,単位長	
の凝固までの蓄熱量比は, 溶融デブリ(<u>平均</u>)のケースにおい		さあたりの凝固までの蓄熱量比は、溶融デブリ(酸化物)のケー	
て, 限界固相率1のとき <u>約2.63倍</u> , 限界固相率0.64のとき <u>約1.72</u>		スにおいて,限界固相率1のとき約2.04倍,限界固相率0.64の	
倍となる。一方で,配管径が大きくなると単位長さあたりの円		とき <u>約1.27倍</u> となる。一方で,配管径が大きくなると単位長さあ	
管への伝熱面積(表面積)も増加するため、単位長さあたりの		たりの円管への伝熱面積(表面積)も増加するため、単位長さあ	
伝熱面積は <u>KK7</u> の方が約1.56倍大きい。		たりの伝熱面積は <u>NS2</u> の方が約1.56 倍大きい。	
デブリの堆積高さは,EPRI/FAI試験で約0.18m(試験後の観察		デブリの堆積高さは、EPRI/FAI試験で約0.18m(試験	・評価結果の相違
結果)であり, <u>KK7</u> では <u>約0.56m</u> (MAAP結果)である。またEPRI/FAI		後の観察結果)であり、 <u>NS2</u> では <u>約1.04m</u> (MAAP結果)で	【柏崎 6/7】
試験においてベースプレートから配管水平部までの長さは約		ある。また、EPRI/FAI試験においてベースプレートから	
0.27m, <u>KK7</u> では <u>ペデスタル床面</u> からドレン配管水平部まで <u>が最</u>		配管水平部までの長さは約0.27m, NS2では耐熱材上面から配	
<u>も深いケースで約0.97m</u> である。従って配管水平部までの堆積		<u>管水平部まで約0.94m</u> である。従って配管水平部までの堆積高さ	
高さはEPRI/FAI試験で約0.45m, <u>KK7</u> で <u>約1.5m</u> である。このヘッ		はEPRI/FAI試験で約0.45m, <u>NS2</u> で <u>約2m</u> である。この	
ドに基づき、ベルヌーイの式で配管入口流速を評価すると、		ヘッドに基づき、ベルヌーイの式で配管入口流速を評価すると、	
EPRI/FAI試験で約3.0m/s, <u>KK7</u> で <u>約5.5m/s</u> となる。		EPRI/FAI試験で約3.0m/s, <u>NS2</u> で <u>約6.3m/s</u> となる。	
2. EPRI/FAI試験の適用性		2. EPRI/FAI試験の適用性	
EPRI/FAIの試験を <u>KK7</u> のファンネルの体系に適用するにあた		EPRI/FAIの試験を <u>NS2</u> のファンネルの体系に適用す	
り, Flemingsモデルの式を参考に, 両者の体系の違いから流動		るにあたり、Flemingsモデルの式を参考に、両者の体系	
距離を評価する。		の違いから流動距離を評価する。	
Flemingsモデルではデブリの流動距離はデブリの保有熱量,		Flemingsモデルではデブリの流動距離はデブリの保有	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
デブリからの除熱量、デブリの流速の関係から計算されてい			熱量、デブリからの除熱量、デブリの流速の関係から計算されて	
る。このため,これらの要素についてEPRI/FAIの試験条件とKK7			いる。このため、これらの要素についてEPRI/FAIの試験	
での評価条件の比をとり, EPRI/FAIの試験結果をKK7のファン			条件と <u>NS2</u> での評価条件の比をとり、EPRI/FAIの試験	
ネルに適用した場合の評価を行う。			結果をNS2のファンネルに適用した場合の評価を行う。	
この場合, <u>KK7</u> のファンネルでのデブリの流動距離(L <u>kr</u>)は次の			この場合, <u>NS2</u> のファンネルでのデブリの流動距離(L _{NS2})は	
式で表現できると考えられる。			次の式で表現できると考えられる。	
$L_{K7} = L_{FAI} \times \frac{d_{K7}}{d_{FAI}} \times \frac{h_{K7}\rho_{K7}}{h_{FAI}\rho_{FAI}} \times \frac{v_{K7}}{v_{FAI}}$			$L_{NS2} = L_{FAI} \times \frac{d_{NS2}}{d_{FAI}} \times \frac{h_{NS2}\rho_{NS2}}{h_{FAI}\rho_{FAI}} \times \frac{v_{NS2}}{v_{FAI}}$	
			ここで、	
$rac{d_{_{K7}}}{d_{_{FAI}}}$:配管直径比			$rac{d_{_{NS2}}}{d_{_{FAI}}}$:配管直径比	
$rac{h_{\scriptscriptstyle K7} ho_{\scriptscriptstyle K7}}{h_{\scriptscriptstyle FAI} ho_{\scriptscriptstyle FAI}}$:凝固までの蓄熱量比			$rac{h_{\scriptscriptstyle NS2} ho_{\scriptscriptstyle NS2}}{h_{\scriptscriptstyle FAI} ho_{\scriptscriptstyle FAI}}:$ 凝固までの蓄熱量比	
$rac{v_{K7}}{v_{FAI}}$:デブリの速度比 であり、上式に基づいてデブリの流動距離(L _{kI})を求めると、			$rac{v_{NS2}}{v_{FAI}}$:デブリの速度比	
$L_{\underline{K7}} = 0.79 \times 1.56 \times 1.08 \times 2$			であり,上式に基づいてデブリの流動距離(L ₁₈₂₂)を求めると,	・評価結果の相違
= 2.7 (m)			$L_{\underline{NS2}} = 0.79 \times 1.56 \times \times 2.1 $ $= (m) $	【柏崎 6/7】 島根 2 号炉における デブリ物性値等による
となる。ファンネル流入から停止までの時間が短いことから、			となる。ファンネル流入から停止までの時間が短いことから、本	相違。
本評価では流入中の崩壊熱は無視できるものとした。なお、こ			評価では流入中の崩壊熱は無視できるものとした。なお、この流	
の流動距離は流動限界固相率を1として評価している。固相率の			動距離は流動限界固相率を1として評価している。固相率の上昇	
上昇に伴い,粘性係数はある点で急激に上昇する傾向があり,			に伴い、粘性係数はある点で急激に上昇する傾向があり、固相率	
固相率0.64程度で粘性係数が初期値の1×105倍になる等,流動限			0.64 程度で粘性係数が初期値の1×10 ⁵ 倍になる等,流動限界固	
界固相率を考慮することで流動距離は更に低下するものと考え			相率を考慮することで流動距離は更に低下するものと考えられ	
られる。			る。	
EPRI/FAI試験と <u>KK7</u> で考慮した溶融物の条件では、溶融物の組			EPRI/FAI試験と <u>NS2</u> で考慮した溶融物の条件では,	
成がEPRI/FAI試験では単相, <u>KK7</u> では混合物であり,条件が異な			溶融物の組成がEPRI/FAI試験では単相, NS2では混合	
っている。凝固様式の違いとして、単相では凝固点まで温度が			物であり、条件が異なっている。凝固様式の違いとして、単相で	
低下し、溶融潜熱が奪われた段階で凝固し、混合組成の場合は			は凝固点まで温度が低下し,溶融潜熱が奪われた段階で凝固し,	
固相の割合が徐々に増加し,流動限界固相率が1の場合は固相線			混合組成の場合は固相の割合が徐々に増加し、流動限界固相率が	
温度まで温度が低下した時点で凝固する。なお、現実には流動			1の場合は固相線温度まで温度が低下した時点で凝固する。なお,	
限界固相率は1よりも小さな値と考えられるが、上記の評価では			現実には流動限界固相率は1よりも小さな値と考えられるが、上	
保守的に1としている。水中を流動する場合は、単相では溶融潜			記の評価では保守的に1としている。水中を流動する場合は、単	

熱が奪われるまし流動限界固相	までは凝固し	ないが. 湄	日本知己に日					
し流動限界固相		熱が奪われるまでは凝固しないが、混合組成は固相割合が増加				相では溶融潜熱が奪われるまでは凝固しないが、混合組成は固相		
し流動限界固相率で凝固するため,保有熱量(凝固までの蓄熱量			割合が増加し流動限界固相率で凝固するため、保有熱量(凝固ま)					
比)が同程度の場合、単相の方が流動距離は長くなる。よって、			 での蓄熱量比)が同程度の場合、単相の方が流動距離は長くなる。					
EPRI/FAT試験で	での単層試験	の結果得ら	れた流動距	離をKK7のス			よって、EPRI/FAI 試験での単層試験の結果得られた流動距離をN	
ケールに適用す	ナス評価け	流動距離を	長く目積も	る。保守的た			S2のスケールに適用する評価け 流動距離を長く見積もる 保	
切いとたるとま	医今ス						字的か扱いになると考える	
	ってる。 と荻在い+EDDI	「FAIの学殿	ホトデブル	の伊方効具				
レースリ キー デーリングの	ト計画(JCFK) 人動目 〜〜	./ FAI Vノ武族	マルらアノソ	の休日 杰里,			以上より、半計価は $EFKI/FAIの試験から/ノリの休有$	
テノリからの防	示熱重, アフ	リの流速を	そもとに流動	距離を氷める			熱重、デフリからの际熱重、アフリの流速をもとに流動距離を水	
際の最大値と考	夸える。						める際の最大値と考える。	
				以 上			以 上	
								・評価結果の相違
	表別2-1	溶融物条件	の比較				表別 1-1 溶融物条件の比較	【柏崎 6/7】
項目	EPRI 試験		K-7				項目 E P R I 試験 N S - 2	島根2号炉における
溶融物 過熱度(K)	アルミナ 100	溶融デブリ (平均) 39	溶融デブリ(酸化物) [※] -60	1 溶融デブリ (金属) ^{※2} 164			溶融物 アルミナ 溶融デブリ(平均) 溶融デブリ(酸化物)*1 溶融デブリ(金属)*2 過熱度(X)	デブリ物性値等による
融点 (°C)	2047	液相線 2200	液相線 2412	液相線 1482			融点(°C)	扣造
密度(kg/m ³)	3800	固相線 8082	固相線 2063 8162	固相線 1415 7723			密度 (kg/m) kt教 (1-1/1-x)	们是。
比熱(kJ/kgK)	1.3	0.54	0. 51	0.682			LLATA(NJ/NBA) 溶融潜熱(kJ/kg)	
溶融潜熱(kJ/kg) 動伝道売(#/-#)	1160	303	310	280			熟伝達準率 (W/mK) 転性係数 (Pa+s)	
熱伝導率(W/mk) 粘性係数(Pa・s)	0.003	0. 0033-0. 0076	0.0033-0.0076	0.004-0.0062			動粘性係数 (m²/s)	
動粘性係数(m ² /s)	7.89 \times 10 ⁻⁷ 4.	$08 \times 10^{-7} - 9.40 \times 10^{-7}$	4. $04 \times 10^{-7} - 9.31 \times 10^{-7}$	⁷ 5. 17×10 ⁻⁷ - 8. 02×10 ⁻⁷			凝固までの蓄熱量(MJ/m ²) (限界固相率=1.0)	
凝固までの蓄熱量(MJ/m ³) (限界固相率=1.0)	4902	5277	3734	3380			凝固までの蓄熱量 (MJ/m ²)	
凝固までの蓄熱量(MJ/m ³)	-	2428	2200	2474			(0次外面は年~0.04) 縦固までの 蓄熱量比 1	
(限界固相率=0.64)		3438	2299	2474			(限界固相率=1.0) 延用 + での 装執 帯 トッ	
確固までの蓄熱重比1 (限界固相率=1.0)	1	1.08	0.77	0. 69			(限界固相率=0.64)	
凝固までの蓄熱量比 2 (限界固相率=0.64)	1	0.71	0. 47	0.51			│ ※1 酸化物・UO。 Z r Z r O。 ※2 金属・SUS成分	
※1 酸化物:UO ₂ ,	, Zr, Zr0 ₂	※2 金属:	SUS 成分					
								・評価結果の相違
	表別2-2	流路構造の	比較				表別 1-2 流路構造の比較	【柏崎 6/7】
項目	EPRI 試験		K-7				項目 EPRI試験 NS-2	島根2号炉における
溶融物	アルミナ	溶融デブリ (平均)	溶融デブリ (酸化物)	溶融デブリ (金属)			溶離物 アルミナ 溶離アクリ(平均) 溶離アクリ(酸化物) 溶離アフリ(金属) 流路構造比較	
流路構造比較 流路内径(m)	0. 05 (50A)		月官 0.078(80A)				流路内径 (m)	設備形状等による相違。
107 107 PM 11.							断面積比	
単位長さあたりの	1		2.44				単位長さあたりの	
凝固までの蓄熱量比1 (四周日和第二1-0)	1	2, 63	1.86	1.69			(限界固相率=1.0)	
単位長さあたりの							単位長さあたりの 羅因主での惹熱量比 2	
凝固までの蓄熱量 2 (限界因相率=0 64)	1	1, 73	1.14	1.24			(限界固相率=0.64)	
単位長さあたりの伝熱面積比	1		1.56	1			単位長さあたりの伝熱面積比 床面から配管水平部までの深さ	
床面から配管水平部までの深さ(m)	ΰ 0, 273		0.972				(m)	
デブリ堆積高さ (m) ヘッドから計算される流速(m/s)	0.18		0.56				デブリ堆積高さ (m) ヘッドから計算される清凍 (m/s)	
流速の実測値(m/s)	0.03 (平均) ~0.19(最;	大)					流速の実測値 (m/s)	
デプリの流動距離(m)	~0. 79		2.7				デブリの流動距離 (m) ~0.79 -	
液連の実測値 (m/s)デブリの流動距離 (m)	0.03 (平均) ~0.19(最) ~0.79	大)	- 2.7				 流速の実測値 (m/s) デブリの流動距離 (m) ~0.79 - 	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	Ĺ	島根原子力発電所 2号炉	備考			
--	---------	--------------	---	--------------	------------			
<u>別紙3</u>								
					・設備設計の相違			
溶融炉心ファンネル流入後のドレン配管における管壁の侵食量評					【柏崎 6/7】			
価(7 号炉のみ)					島根2号炉は、コリ			
					ウムシールドを原子炉			
格納容器下部の床面にファンネルが設置されており,床下にドレ					格納容器下部床全面に			
ン配管が設置されている号炉は7 号炉のみである。このため,7 号					敷設し,機器ファンネ			
炉を想定して以下の評価を実施した。なお,6号炉では床面にファ					ルへの溶融炉心の侵入			
ンネルが無く、ドレンは格納容器下部壁面に設置された配管を通					を防止している。			
じてサンプにドレンが集められる構造となっていることから7 号								
炉と同様の評価は不要である。								
a. 評価体系								
・ ファンネル内に流入した溶融炉心を円柱で模擬し, 側面はコン								
クリートで囲まれているものとし、両端が水によって除熱され								
るものとした。								
b. 評価条件								
・ 溶融炉心の流動距離(円柱の高さ)は, 別紙2 の評価結果を踏ま								
え、ファンネルからサンプまでの長さが最短の配管に合わせて								
3.6m とした。								
・ 崩壊熱は事象発生から6 時間後の値とした。								
・ 水への熱流束は有効性評価における不確かさ評価において保守								
的な値として用いている800kW/m ² 一定とした。								
c. 評価結果								
・ 管壁の侵食量は約0.08m となった。ドレン配管から格納容器バ								
ウンダリであるライナまでの最短距離が約0.5m であることか								
ら, コンクリートの侵食がライナに到達することは無いことを確								
認した。(別図3-1 参照)								
d. 評価の保守性について								
本評価では,種々の不確かさを包絡する観点でb.の評価を実								
施したが,現実的には以下の効果に期待できるものと考えられ,								
b. の評価には保守性があるものと考える。なお, c. のとおり,								
b. の保守的な評価条件であっても, コンクリートの侵食がライ								
ナに到達することは無い。(別図3-2 参照)								
・ 流入量, 流入距離の観点								
流入量については別紙2 に示すとおり,保守的に流動限界固								
相率を1 とした場合の評価においても流動距離は約2.7m であ								
り,流動限界固相率を0.64(粘性係数が初期値の1×105倍になる								
値)として考慮すると流入量及び流入距離は更に低減されるも								

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
のと考える。(別図3-2 中③参照)				
・ 流入経路の影響				
原子炉圧力容器下部から落下した溶融炉心がファンネルに流				
入する際にはファンネルの蓋を溶融させる必要があるが,蓋の				
裏面には初期水張りによる水が張られており、蓋の表面からの				
熱伝達によって水が蒸発しても、蓋の裏面にはサンプ側から水				
が供給されることから、原子炉圧力容器下部からの溶融炉心の				
落下を仮定した上でも、ファンネルからの溶融炉心侵入の発生				
には不確かさがあるものと考える。(別図3-2 中①参照)				
ドレン配管は, ファンネル流入口から数10cm 程度垂直に落下				
した後、水平に曲がる構造となっており、さらに水平落下後も				
少なくとも数回屈曲していることから、配管の曲りによる抵抗				
により流入量,流入距離は低減されるものと考える。(図3-12,				
別図3-2 中②参照)				
 崩壊熱 				
崩壊熱については事象発生から6 時間後の崩壊熱を用いて				
評価したが、有効性評価のベースケースでの溶融炉心落下時刻				
は事象発生の7 時間後であり,保守的な想定になっているもの				
と考える。また、格納容器下部に落下した溶融炉心が格納容器				
下部の端に到達し、ファンネルの蓋を溶融させ、ドレン配管に				
流入するまでの時間を考えると、崩壊熱については更に低減さ				
れるものと考える。(別図3-2 中④参照)				
 除熱の形態 				
水への熱流束については,保守的に800k₩/m ² 一定としている				
が,現実的には圧力依存性に期待できるものと考える。(別図3-2				
中⑤参照)				
また、ドレン配管に浸入した溶融炉心の両端からの除熱にのみ				
期待しているが、侵食が進展した場合、水平な配管の上部には				
空隙の多い領域が生じるものと考えられ、その領域への水の浸				
入を考慮すると更に除熱量が増大する。ドレン配管のサンプ側				
からは初期水張り及び溶融炉心落下後の原子炉格納容器下部へ				
の注水によって水が供給され続けるため、水が枯渇する状況は				
考えにくい。ドレン配管内での溶融炉心・コンクリート相互作				
用による非凝縮性ガスの発生及びドレン配管内への流出によ				
り、空隙部に水が侵入できない可能性が考えられるが、その場				
合は非凝縮性ガスによる溶融炉心からの除熱に期待できるもの				
と考える。(別図3-2 中⑥参照)				
• 更なる感度解析の確認結果				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (20)	18.9.12版)	島根原子力発電所 2号炉	備考
格納容器下部床下に存在する最も長いファンネルからのドレ				
ン配管は約13.2m であるが,これが溶融炉心で満たされた,本				
評価よりも更に極端なモデルを仮定しても、管壁の侵食量は約				
0.25m に留まり, ライナまでの最短距離(約0.5m)には余裕があ				
ることを確認している。				
PCV ライナ				
別図3-1 下部ドライウェルファンネル配管評価のイメージ				
d. コンクリート侵食時に発生する非凝縮性ガスの挙動				
・ 管壁の侵食量が約0.08m となるまでに侵食されるコンクリー				
トの体積は, ドレン配管を3.6m とした場合,				
$3.6 \times (0.122 - 0.04^2) \times \pi = 0.14 \text{ m}^3$				
となる。この侵食によってコンクリートに含まれるCO2 が全て				
気体として放出されると仮定すると、				
質量 :0.14×2300×0.015 = 約5 kg				
体積 :5 / 44 ×22.4 = 約2.5Nm ³				
となる。また、上記の体積のコンクリートに対してMCCI が生				
じた場合,約3kgの水素が発生することとなる。管内に溶融炉				
心が流入した後は、管内の水による冷却や侵食に伴って空隙が				
発生すると考えると,発生した非凝縮性ガスは管壁に沿って排				
出されるものと考えられる。				
これらの非凝縮性ガスについては,有効性評価「3.5 溶融炉				
心・コンクリート相互作用」では、ジルコニウム-水反応によ				
って約1400kg の水素が発生することから、上記のコンクリー				
ト侵食の評価結果を踏まえて数kg 程度の非凝縮性ガスの発生				
を考慮しても、格納容器圧力及び格納容器内の気体組成に有意				
な影響を及ぼすものではないと考える。				
以上				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<text><text><text><text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></text></text></text></text></text>			 記載方針の相違 【柏崎 6/7】 柏崎 6/7 号では,溶 融炉心の一部がコリウムシールドを超えてサンプに流入する場合の評価が実施されており、 Lipinski0-D モデルに基づいてドライアウト熱流束が設定されている。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	【比較のため,「添付資料 3.5.3」の一部を記載】		
		別紙-2	
		<u>コリリムシールドスリット内での凝固停止評価について</u>	
		コリウムシールドスリット内におけろデブリ凝固評価結果を示	
		す。	
	3. 溶融金属の凝固モデルによる評価		
	3.1 溶融金属の流路内での凝固挙動	1. 溶融金属の流路内での凝固挙動	
	<u>第3図</u> に,流路内における溶融金属の凝固挙動の概念図を示	<u>図別 2-1</u> に,流路内における溶融金属の凝固挙動の概念図を	
	す。	示す。	
	純金属や共晶温度の合金では, <u>第3図(a)</u> のように流路の入口	純金属や共晶温度の合金では,図 <u>別 2-1(a)</u> のように流路の入	
	付近から固化クラストが成長し流路が閉塞することで、流動が	ロ付近から固化クラストが成長し流路が閉塞することで、流動	
	停止する。	が停止する。	
	一方、液相線温度と固相線温度に差がある合金では、第3図	一方、液相線温度と固相線温度に差がある合金では、図別	
	(b)のように溶融物の先端から温度低トとともに固相率が増加	2-1(b)のように溶融物の先端から温度低トとともに固相率が増加し、 法動四周四相素な知らたしたに 法動なのように ないために	
	し、 流動 限 称 回 相 半 を 超 え に と さ に 流動 を 停 止 り る 。 こ れ は 、 第 4 回 に 示 す た ら に 田 相 家 の 増 加 ト ト れ に 料	加し、流動脈が固相率を超えたとさに流動を停止する。これは、 図別 2-2 に示すように 国相率の増加ととれた料が増加する	
	あま込にかりように、回相学の増加とともに相性が増加りるに めである	区別2-2にかりように、回相半の増加とともに相任が増加りる ためである	
	※そのる。 溶融炉心については、液相線温度 に対して固相線温	※融炉心のスリット内凝固評価は、 実際融炉心を用いた試験	・評価方針の相違
		による確認が困難であることから、複数の評価モデルで凝固評	【東海第二】
	の凝固挙動を示すものと考えられる。		
	液相	液相	
	入口付近から凝固が開始	入口付近から凝固が開始 固相割合が徐々に増加	
	流路が閉塞し、流動停止 法動停止 法制度止		
	(a) 純金属 (b) 合金		
	第9回、法政内での法理を民の将田光動の概念回		
	界3因 (肌鉛内での俗蹠金属の疑固争動の概念因	因別2-1 机路内℃切谷隅金属切篼回李動切风态因	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	30 Alloy Ω C.R. Δ Sn-1.0%Pb 300 0.49 Sn-1.5% Pb 300 0.62 - Al-4.5% Cu 300 1.65 - Al-4.5% Cu 500 1.11 0 - Al-4.5% Cu 500 1.11 0 - Al-4.5% Cu 500 1.65 0 - Al-4.5% Cu 500 1.11 0 - Al-4.5% Cu 500 1.11 0 - Al-4.5% Cu 500 1.11 0 - C.R: Coolig Rate(°C/min) 0 - O.2 0 - O.2 0 - O.2 0 - O.2 0 - O.4 0 - O.2 0 - O.4 0 - O.4	30 George C.R. Q:500 rpm George C.R. Q:50	
	3.2 評価方法 溶融合金の流路内での流動距離を評価するモデルとして, Flemingのモデル ^[4] があり,このモデルを用いて溶融炉心の横 スリット内での流動距離の評価を行った。その内容を以下に示 す。 なお、本凝固評価モデルは流路内に水が存在しないドライ状 態を前提としていることから、実機条件に対して十分保守的な 評価となると考えられる。	2. 評価方法 純金属の流路内での凝固モデルとしては、US-ABWR DCDモデル, Epsteinモデル (MAAPの下部プレナ ム貫通部閉塞モデル)を使用し、合金の流路内での凝固モデル としては、Flemingsモデルを使用する。 なお、本凝固評価モデルは流路内に水が存在しないドライ状 態を前提としていることから、実機条件に対して十分保守的な 評価となると考えられる。	
	【比較のため,「(参考) その他の凝固モデルによる評価」を記載】 ○ <u>US-ABWR DCDモデルの概要^[1]</u> US-ABWR DCDモデルは, RPV下部のドライウェル サンプ周囲に設置されるコリウムシールドにおいて,ドレン水 が通るためのスリット流路を対象とした溶融炉心の凝固評価モ デルである。 本モデルは純金属の凝固挙動を想定し,流路の入口付近にお いて周辺の構造材への熱伝導によりクラストが成長し流路が閉 塞するものとしている。 DCDモデルの評価式を以下に示す。	2.1 純金属モデル a. US-ABWR DCDモデル ^[2] 本モデルは純金属の凝固挙動を想定し、流路の入口付近において周辺の構造材への熱伝導によりクラストが成長し流路が閉塞するものとしている。 DCDモデルの評価式を以下に示す。流動距離は流動停止までの平均速度と流動停止までの平均時間の積で求められる。	 ・記載方針の相違 【東海第二】 一部記載は異なるが、 内容は同等である。
	$L_{freeze} = \bar{v} (t_{freeze}) t_{freeze} $ (1) $\exists \exists \forall freeze} = \left[\frac{H_0 \rho_{cm} (h_{lh} + c_p \Delta T) \sqrt{\pi \alpha_w}}{4k_w (T_s - T_i)} \right]^2 $ (2)	$L_{freeze} = \overline{v} (t_{freeze}) t_{freeze} $ (1) $\Xi \equiv \overline{C},$ $t_{freeze} = \left[\frac{H_0 \rho_{cm} (h_{lh} + c_p \Delta T) \sqrt{\pi \alpha_w}}{4k_w (T_s - T_i)} \right]^2 $ (2)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
			US-ABWR DCDでは、入口流速は以下のように表わさ	
			れている。	
			$v_e(t) = \sqrt{\frac{2g\dot{m}_{ves}t}{\rho_{cm}A_{ld}}} $ (3)	
			しかしながら,原子炉格納容器下部床面よりも下部にスリットが設置されるため,縦スリット内のヘッド <i>h</i> ₀ を考慮し以下の	
			ようにする必要がある。	
			$v_{e}(t) = \sqrt{2g\left(\frac{\dot{m}_{ves}}{\rho_{cm}A_{ld}}t + h_{0}\right)} $ (4)	
			この場合、DCDモデルの評価で使用される平均流速におい	
			て、初期ヘッド h_0 による項が追加され、以下のように修正される。	
	$\bar{\nu} = \frac{\frac{2}{3}a_0\sqrt{t} - \frac{a_0b'}{H_0}t}{1 + \frac{4b'}{3H_0}\sqrt{t}}$	(3)	$v_{e}(t) = \frac{\frac{2}{3}a_{0}\sqrt{t} + \sqrt{2gh_{0}} - \frac{a_{0}b_{0}}{H_{0}}t - \frac{4b_{0}\sqrt{2gh_{0}}}{3H_{0}}\sqrt{t}}{\left(1 + \frac{4b_{0}}{3H_{0}}\sqrt{t}\right)} $ (5)	
			ここで,	
	$a_0 = \sqrt{\frac{2g\dot{m}_{ves}}{\rho_{cm}A_{ld}}}$	$b'_{0} = \frac{2k_w(T_s - T_i)}{\rho_{cm}(h_{lh} + c_p \Delta T)\sqrt{\pi t}}$	$\overline{\overline{\alpha_w}} \qquad a_0 = \sqrt{\frac{2g\dot{m}_{ves}}{\rho_{cm}A_{ld}}} \tag{6}$	
	(4)		$b_0 = \sqrt{\frac{2k_f \left(T_{f,m} - T_s\right)}{\rho_{cm} h_{lh}}} $ (7)	
			溶融炉心が過熱度を持つ場合, b_0 は以下の式を使用する。過	
			熱度がない場合、 $b_0 = b_0'$ となる。	
			$b_0' = \frac{2k_f (T_s - T_i)}{\rho_{cm} (h_{lh} + c_p \Delta T) \sqrt{\pi \alpha_w}} $ (8)	
	であり、各パラメータは以下の	のとおりである。	であり、各パラメータは以下のとおりである。	
	L _{freeze} :流動距離(m), <i>v</i> (t /s),t _{freeze} :凝固完了時間) :溶融炉心の流路内平均流速 引(s), <i>H</i> ₀ :スリット高さ(m),	(m L_{freeze} :流動距離 (m), $\bar{v}(t)$:平均流速 (m/s), t_{freeze} :凝固完 了時間 (s),	
	$ ho_{cm}$:溶融炉心密度(kg/m kg), C_p :溶融炉心比熱(J/	³), <i>h_{lh}</i> :溶融炉心溶融潜熱(J [´] kgK), ΔT:溶融炉心過熱度(B	$ \int \rho_{cm} : 溶融デブリ密度 (kg/m3), C_p : 溶融デブリ比熱 (J/kgK), \Delta T : 過熱度 (K), $	
	α_w :構造材熱拡散率 (m ² /s	s), k_w :構造材熱伝導率 (W/mF	$K^{()}$, H_0 :スリット高さ (m), h_0 :縦スリット部高さ (m), $lpha_w$:	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	T_s :接触面温度(K), T_i :構造材初期温度(K), g :重力加速	構造材熱拡散率 (m²/s),	
	度 (m/s ²), <i>ṁ_{ves}</i> : R P V からの溶融炉心落下率 (kg/s),	k _w ∶構造材熱伝達率(w/mK),k _f ∶デブリ熱伝導率(w/mK),	
	A_{ld} :下部ドライウェル床面積 (m ²)	T_s :接触面温度(K), T_i :構造材初期温度(K), $T_{f,m}$:溶融	
		デブリ温度 (K),	
		$g:$ 重力加速度(m/s ²), $\dot{m}_{ves}:$ RPVからのデブリ落下率(kg/s),	
		A_{ld} :下部ドライウェル床面積(m ²)	
	DCD ^[1] においては,過去に実施された関連試験に係る文		
	献を参照し、それらの試験結果よりDCDモデルによる評価の		
	適用性を確認している。		
	○Enctain エデルの押西 [2] [3]	h Ensteinモデル ^{[3][4]}	・記載古針の相違
	<u>Output term モデルは、MAAPコードのRPV下部プレナム</u> Enstein モデルは、MAAPコードのRPV下部プレナム貫	<u>Epsteinモデルは</u> , MAAPコードのRPV下部プレ	【東海第二】
	通部閉塞計算に使用されているモデルであり、DCDモデルと	- ナム貫通部閉塞計算に使用されているモデルであり, DCDモ	一部記載は異なるが,
	同様に流路の入口付近からの閉塞が想定されている。	デルと同様に流路の入口付近からの閉塞が想定されている。	内容は同等である。
	Epstein モデルの評価式を以下に示す。溶融炉心の総流動距	Epsteinモデルの評価式を以下に示す。溶融炉心の総	
	離は(5)式と(6)式の和で求められる。	流動距離は式(9)と式(10)の和で求められる。	
	・溶融炉心が過熱度を有する領域での流動距離	・溶融炉心が過熱度を有する領域での流動距離	
	$X^* = \frac{D}{2f} \ln \left(\frac{T_0 - T_{mp}}{T^* - T_{mp}} \right) \tag{5}$	$X = \frac{D}{2f} \ln \left(\frac{T_0 - T_{mp}}{T^{\times} - T_{mp}} \right) $ (9)	
	・溶融炉心の過熱度がない領域での流動距離	・溶融炉心が過熱度のない領域での流動距離	
	$x_s = 0.155 \text{Re}^{8/11} D \left[\frac{\text{Pr}}{B}\right]^{7/11}$ (6)	$X_{s} = 0.155 \operatorname{Re}^{8/11} D \left[\frac{\operatorname{Pr}}{B}\right]^{7/11} $ (10)	
	ここで,	ここで,	
	$B = \left[1 + \frac{2C_p(T_{mp} - T_w)}{\lambda}\right]^{1/2} - 1 \tag{7}$	$B = \left[1 + \frac{2C_p(T_{mp} - T_w)}{\lambda}\right]^{\gamma} - 1 $ (11)	
	であり、各パラメータは以下のとおりである。	であり、各パラメータは以下のとおりである。	
	X*, X _s :流動距離 (m), Re:レイノルズ数 (−), Pr:プラン	X :流動距離(m), Re :レイノルズ数, Pr :プラントル数,	
	トル数 (-),	D:水力等価直径(m),	
	D :水力等価直径 (m), λ :溶融炉心溶融潜熱 (J/kg),	え:溶融潜熱 (J/kg) C_p :溶融デブリ比熱 (J/kgK), T_0 : デ	
	C_p :溶融炉心比熱 (J $/$ kgK), T_0 :溶融炉心初期温度 (K),	ブリ初期温度(K), T 、 デブリー (K)、T 、 (株) たけ、 T 、 (本) (K)、 T 、 (ボ)、 (ボ)、 (ボ)、 (ボ)、 (ボ)、 (ボ)、 (ボ)、 (ボ	
	T_{mp} :溶融炉心融点(K), T_w :構造材初期温度(K),	I_{mp} : アノリ 離尽 (K), I_w : 博造材 初 期 温 度 (K), I^{\wedge} : アノ 川 凝 田 期 始 退 産 (雉 完 値) (\mathbf{V})	
	T^* : 溶融炉心凝固開始温度(推定值)(K), f : 摩擦係数(-)	f:摩擦係数(一)	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		なお, T [*] – T _{mp} はEPRIレポート ^[3] を基に 10K とする。	なお, T^{*} – $T_{_{mp}}$ はEPRIレポートを基に 10K とする。	
		EPRIは、第1図に示すRPV下部プレナムの核計装管を		
		模擬した試験体に溶融アルミナを流入させる試験を行い,		
		Epstein モデルによる流動距離評価結果との比較を実施してい		
		る。		
		その結果, 試験結果に対して Epstein モデルによる流動距離		
		は同等又は大きめの評価結果となっている。		
		Seci Toble Socie Troble Water RPV Water Abbrevioted Langth narrow and initial pressure discussed define pressure discusses in a major water water and the differential pressure discusses in the differential pressure due to pressure discusses in the differential pressure due to pressure due to provide the differential pressure due to pressure due to provide the differential pressure due to pressure for dependence to provide the differential pressure due to pressure for dependence to provide the differential pressure due to pressure for dependence to provide the differential pressure due to pressure for dependence to provide the differential pressure due to pressure for dependence to provide the differential pressure due to pressure for dependence to provide the differential pressure due to provide the diff		
		第1図 EPRI試験装置及び試験結果		
		—————————————————————————————————————		
		「1] GF-Hitachi Nuclear Energy Americas IIC ABWR Design		
		Control Document. United States Nuclear Regulatory		
		Commission, 2010		
		[2] M.Epstein et al., Freezing-Controlled Penetration of		
		aSaturated Liquid Into a Cold Tube, Journal of Heat		
		Transfer, Vol.99, 1977		
		[3] EPRI, Experiments to Address Lower Plenum Response Under		
		Severe Accident Conditions, Volume1, EPRI report		
		TR-103389, 1994		
		$\left[\sum z \neq \overline{c} \right]$		
			2.2 合金モデル	
		<u>(1) Flemings</u> モデルの評価式	<u>(1) Flemings</u> モデルの評価式 ^[5]	・記載方針の相違
		Flemings モデルは(1)式のように表され, 流路を流れる溶	Flemingsモデルは式(12)のように表され,流路を流	【東海第二】
		融物が保有するエネルギと周囲の構造材への除熱速度を基	れる溶融物が保有するエネルギと周囲の構造材への除熱速度を	一部記載は異なるが,
		に、溶融物が凝固するまでに必要なエネルギが除去されるま	もとに、溶融物が凝固するまでに必要なエネルギが除去される	内容は同等である。
		での流動距離を評価するモデルとなっている。	までの流動距離を評価できるモデルとなっている。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	$L_{freeze} = \frac{A\rho v (f_c H_f + C_p \Delta T)}{hS(T_d - T_w)} \left(1 + \frac{B}{2}\right) $ (1) $\Xi \equiv \overline{C},$ $B = \frac{h \sqrt{\pi \alpha_w \Delta X}}{k_w \sqrt{v}} $ (2)	$L_{freeze} = \frac{A\rho v (f_c H_f + C_p \Delta T)}{hS(T_d - T_w)} (1 + \frac{B}{2}) $ (12) $\Xi \equiv \overline{C},$ $B = \frac{h\sqrt{\pi \alpha_w \Delta X}}{k_w \sqrt{\nu}} $ (13)	
	 であり、各パラメータの内容は以下のとおりである。 L_{freeze}:流動距離(m), A:流路断面積(m²), ρ:溶融炉心密度(kg/m³), v:溶融炉心流速(m/s), f_c:流動限界固相率(-), H_f:溶融炉心溶融潜熱(J/kg), C_p:溶融炉心比熱(J/kgK), ΔT:初期温度と凝固温度の差(K), h:熱伝達率(W/m²K), S:流路周長(m), T_d:溶融炉 心温度(K), T_w:構造材温度(K), α_w:構造材熱拡散率(m²/s), ΔX:チョーキングレンジ[*](m) k_w:構造材熱伝導率(W/mK) 	であり、各パラメータの内容は以下のとおりである。 L_{freeze} :流動距離(m), A:流路断面積(m ²), ρ :溶融デブリ密度(kg/m ³), v:溶融デブリ流速(m/s), f_c :流動限界固相率(-), H_f :溶融デブリ溶融潜熱(J/kg), C_p :溶融デブリ比熱(J/kgK), ΔT :初期温度と凝固温度の 差(K), h:熱伝達率(W/m ² K), S:流路周長(m), T_d :溶 融デブリ温度(K), T_w :構造材温度(K), α_w :構造材熱拡散率(m ² /s), $\Delta X : \mathcal{F}_a = - \mathcal{F} \times \mathcal{I} \vee \mathcal{I}^{2}$ *(m) k :構造材熱伝達率(w/mK)	
	LA : アヨ 、 インタレンシ 、 (血), k_w : 構造材 深伝等単 (w) 血) ※ 溶融物先端でどの程度の長さが流動限界固相率を超え ると流動が停止するかを定義する定数 (2) 熱伝達係数の計算 溶融炉心とスリット構造材間の熱伝達係数hは, 溶融炉心の 熱伝導率k, 水力等価直径 d_e 及び Sleicher-Rouse の式 ^[5] よ り求まるヌセルト数 Nu を用いて,下式により算出する。 $h = \frac{k}{d_e}$ Nu (3) Sleicher-Rouse の式	XX.) ヨーイングレンジ (III), \mathbf{x}_{w} . (構造物 熱伝達率 (WMIK) ※: 溶融物先端でどの程度の長さが流動限界固相率を超えると 流動が停止するかを定義する定数 (2) 熱伝達係数の計算 溶融デブリとスリット構造材間の熱伝達係数 <i>h</i> は, 溶融デブ リの熱伝導率 <i>k</i> , 水力等価直径 d_e 及びSleicher-Ro useの式 ^[6] 又はGnielinskiの式 ^[5] より求まるヌ セルト数 <i>Nu</i> を用いて,下式により算出する。 $h = \frac{k}{d_e} Nu$ (14) Sleicher-Rouseの式	
	$\begin{split} \mathrm{Nu}_{\mathrm{m}} &= 5 + 0.015 \mathrm{Re}_{f}{}^{a} \mathrm{Pr}_{w}{}^{b} \\ & (10^{4} < \mathrm{Re} < 10^{6}, 0.1 < Pr < 10^{4}) (4) \\ & \left\{ \begin{aligned} a &= 0.88 - \frac{0.24}{4 + \mathrm{Pr}_{w}} \\ b &= \frac{1}{3} + 0.5 \mathrm{exp}(-0.6 \mathrm{Pr}_{w}) \end{aligned} \right. \\ & \left\{ \begin{aligned} & \mathrm{ke} = \frac{1}{3} + 0.5 \mathrm{exp}(-0.6 \mathrm{Pr}_{w}) \\ & \mathrm{ke} = \frac{1}{3} \mathrm{ke} + 0.5 \mathrm{exp}(-0.6 \mathrm{Pr}_{w}) \end{aligned} \right. \end{split} \end{split}$	$Nu = 5 + 0.015 \operatorname{Re}_{f}^{a} \operatorname{Pr}_{w}^{b}$ (10 ⁴ < Re < 10 ⁶ , 0.1 < Pr < 10 ⁴) (15) $a = 0.88 - \frac{0.24}{4 + \operatorname{Pr}_{w}}$ (16) (16) $b = \frac{1}{3} + 0.5 \exp(-0.6 \operatorname{Pr}_{w})$ (17) 添字はそれぞれ, $m : 混合平均温度, f : 膜温度, w : 壁温 における物性値を表す。ただし、本評価では、物性値は温度に よらず一定と仮定する。 また、レイノルズ数が 3000 < Re < 106, 0.5 < Pr < 2000 の範$	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			$Nu = \frac{(f/2)(\text{Re}-1000)\text{Pr}}{1+12.7\sqrt{f/2}(\text{Pr}^{2/3}-1)} $ (18)	
			ここで、 f は管摩擦係数であり、	
			$f = (3.64 \log_{10}(\text{Re}) - 3.28)^{-2} $ (19)	
			と与えられる。	
			Sleicher-Rouseの式, Gnielinski の式が共に適用範囲内となる場合は, ヌセルト数が小さい方を 採用する。	
		(3) 溶融炉心の温度低下の考慮 (1)式から直接的に流動距離を計算すると、流路内を進行する間の溶融炉心の温度低下が考慮されず、溶融炉心から構造材への熱伝達速度が過大評価されることにより、流動距離が短く評価されることが考えられる。 今回の評価では、Flemingsの評価式を基に、流動に伴う溶融炉心の温度低下を考慮した上で、溶融炉心先端が流動停止する固相率に至るまでの除熱時間を算出し、溶融炉心の流速との積により流動距離を計算した。評価の概要を第5図に示す。	(3)溶融デブリの温度低下の考慮 式 (12)から直接的に流動距離を計算すると,流路内を進行 する間のデブリの温度低下が考慮されず,溶融炉心から構造材 への熱伝達速度が過大評価されることにより,流動距離が短く 評価されることが考えられる。 今回の評価では,Flemingsの評価式をもとに,流動 に伴うデブリの温度低下を考慮した上で,溶融炉心先端が流動 停止する固相率に至るまでの除熱時間を算出し,溶融炉心の流 速との積により流動距離を計算した。 まず,初期にデブリが保有する流動停止までの熱量は,固相線 温度 T_{sol} を基準として $Q_0 = \{C_p(T_{d0} - T_{sol}) + H_f\}f_c m_d$ (20) となる。デブリが Δt の時間に Δx の距離流動したときの除熱量 は, $Q_m^p = hS\Delta x (T_d^p - T_w^p) (\frac{1}{1 + \frac{B}{2}}) \Delta t$ (21) であり, Δx 流動後のデブリの保有熱量及び温度は, $Q_d^{p+1} = Q_d^p - Q_m^p$ (22)	
			$T_{d}^{p+1} = \frac{\mathcal{Q}_{d}}{C_{f}m_{d}} + T_{sol}$ (23) となる。ここで、 C_{f} は溶融潜熱を考慮した溶融デブリの換算比 執であり、以下のように表わされる	
			ボミンのフリ、 ダー シュ ノビス イノ ご 4 しる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	第5図 溶融炉心流動距離の評価イメージ図 3.3 評価条件 横スリット内での溶融炉心凝固評価に用いた条件を <u>第2素</u> に示す。 溶融炉心の物性については、MAAP計算結果におけるRP V破損時の溶融炉心物性値を用いる。 <u>なお、流動距離が長くな</u> ろよう溶融炉心の保有エネルギを大きく設定する観点から、T QUVシーケンスの値を設定する。	$C_f = C_p + \frac{H_f}{T_{log} - T_{sol}}$ (24) 各バラメータの内容は以下のとおりである。 Q,: 流動停止するために除去が必要なエネルギ (J), T_{a0} : デ ブリ初期温度 (K), T_{sol} : デブリ固相線温度 (K), T_{log} : デブリ液相線温度 (K), m_d : デブリ質量 (kg), Q_m : タイムステップ毎の除熱量 (J), Δx : タイムステップ 毎の流動距離 (m), Δt : タイムステップ (s) 以上より, デブリの凝固までの保有エネルギ Q_d が0になるまで の時間が得られ, 溶融デブリの流速との積により, 溶融デブリの 流動距離が計算される。 3. 評価条件 <u>ヨリウムシールド内</u> での溶融 <u>デブリ</u> 凝固評価に用いた条件を表 <u>別2-1</u> に示す。 溶融炉心砌物性については, MAAPで使用されているRP V破損直前の下部プレナムの物性値を用いる。 <u>表別2-1</u> 評価条件 第202-1 評価案件 第202-1 評価条件 第35.8 度 SUS 比熱 SUS 生態 SUS 比熱 客種 SUS 比熱 客種 SUS 比熱 客種 第35.1 第35.1 第35.1 第35.1 第35.1 第35.1 第35.1 第36.1 ※ 格納容器設計圧力の2倍 (853kPa (gage)) における水の飽和温度 ※ 格納容器設計圧力の2倍 (853kPa (gage)) における水の飽和温度 子ブリ 熱潮浩熟 デブリ 私告報	 ・評価方針の相違 【東海第二】 島根2号炉は、大破断 LOCAケースも想定している。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 溶融炉心の流速については,溶融炉心全量に加えペデスタル 内構造物等がペデスタル内に堆積した場合の堆積高さしと, 横スリット下端までの高低差 の合計 をヘッドとして考 慮した場合,溶融炉心の流速は約 となる。これに対し, スリット内の冷却水の存在による溶融炉心の流速の低下とし て, EPRI試験の知見 (1/10 から 1/100) 及び実機溶融炉 心とEPRI試験の溶融アルミナの動粘度の差(約1.6倍)を 考慮し,保守的に1/2を考慮した を設定する。 流動限界固相率及びチョーキングレンジについては,既往の 溶融炉心拡がり試験においては固相率が 0.4~0.6 程度で粘性 が急激に増加するといった知見 ^[6] があるが,チョーキングレ ンジには明確な知見がないことから,溶融炉心先端が完全に凝 固するまで流動が続くものと仮定し,流動限界固相率を 1.0, チョーキングレンジを 0m と設定する。	島根原子力発電所 2号炉 流動限界固相率及びチョーキングレンジについては,既往の 溶融炉心拡がり試験においては固相率が 0.4~0.6 程度で粘性 が急激に増加するといった知見 ^[7] があるが,チョーキングレン ジには明確な知見がないことから,溶融炉心先端が完全に凝固 するまで流動が続くものと仮定し,流動限界固相率を 1.0,チ ョーキングレンジを 0 m と設定する。 <u>表別 2-2 Flemingsモデル固有の変数</u> <u>流動限界固相率(fc) 1.0</u> チョーキングレンジ(ΔX)(m) 0 <u>また,スリットの寸法を表別 2-3 に示す。</u> <u>表別 2-3 スリット形状</u> スリット高さ	備考 ・記載方針の相違 【東海第二】 島根2号炉は,F1e mingsモデル固有 の変数とスリット形状 についても記載。
	【比較のため, 記載を並び替え】 溶融炉心の流速については, 溶融炉心全量に加えペデスタル 内構造物等がペデスタル内に堆積した場合の堆積高さ」と, 横スリット下端までの高低差」の合計」をヘッドとして考 慮した場合, 溶融炉心の流速は約」となる。これに対し, スリット内の冷却水の存在による溶融炉心の流速の低下とし て, EPRI試験の知見 (1/10 から1/100) 及び実機溶融炉 心とEPRI試験の溶融アルミナの動粘度の差(約1.6 倍)を 考慮し, 保守的に1/2を考慮した」を設定する。	流路幅 表別 2-4 に流入速度関連パラメータを示す。 溶融炉心の流速については、溶融炉心全量に加え原子炉格納 容器下部の構造物等が原子炉格納容器下部に堆積した場合の堆 積高さ約1mと、コリウムシールド設置時の既存の床面からの 底上げ高さの合計 をヘッドとして考慮した場 合、溶融炉心の流速は となる。 これに対し、保守的 にこの値を切り上げて を設定する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	第2表 評価条件 報告 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	表別2-4 流入速度関連パラメータ デブリ落下率(kg/s) DCDモデル評価時の 初期ヘッド(m) デブリ流入速度(m/s)	
	 3.4 評価結果 3.3 に示した条件に基づく評価の結果,溶融炉心の流動距離 は約1.0mとなり,横スリットの長さ()の範囲内で凝固 停止することを確認した。<u>また,凝固に要する時間は</u>程 度であり,この間の溶融炉心の崩壊熱による影響は無視し得る。 なお,第2表の評価条件において,溶融炉心のレイノルズ数 及びプラントル数はそれぞれ Re≒1.3×10⁵及び Pr≑0.14 であ り,(4)式の Sleicher-Rouse の式の適用範囲内である。 	 4. 評価結果 Ic示した条件に基づく各モデルにおける評価結果を表別 2-5 ~表別2-7に示す。溶融炉心の流動距離は最大でも となり、スリット長さ の範囲内で凝固停止することを 確認した。主た、スリット内での上下面からの除熱(デブリから耐熱材への熱伝導)がデブリ体積発熱量よりも大幅に上回る ため、比較的短時間でデブリが凝固するスリット内の凝固においては、この間の溶融デブリの崩壊熱による影響は無視し得る。 表別 2-5 US − ABWR DCDモデル評価 デブリ落下率(kg/s) TQUVケース 大破断LOCAケース 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島村	表示了。 最原子力発電所 2号
		表別 2-6	Epsteinモ
		流入速度(kg/s)	流動距 TQUVケース
		表別 2-7	Flemingst
		流入速度(kg/s)	流動距 TQUVケース
	 3.5 評価における保守性について 本評価は、以下のような点で保守性を有すると考えられる。 ・本評価は流路内がドライな状態を前提としているが、実際にはスリット内は水で満たされた状態であり、溶融炉心から水への除熱等により流動距離はより短くなると考えられる。 ・流動距離の計算において、溶融炉心の流速は流動停止まで一定としており、縦スリット及び横スリット内での圧損や粘性増加に伴う速度低下を考慮していない。 ・横スリットへ流入する溶融炉心の初期温度は、RPV破損時の溶融炉心平均温度()に対し保守的に液相線温度()を設定しているが、溶融炉心がペデスタル床面を拡がる間や縦スリットを通過する間の除熱を考慮すると、実際にはより温度は低下し、またそれに伴い溶融炉心の粘性は増加すると考えられる。 ・流動限界固相率は1.0を設定しているが、既往の溶融炉心が、がり試験においては、固相率が0.4~0.6程度で粘性が急激に増加するといった知見^[6]がある。 	 5. 評価における保守 本評価は、以下の ・本評価は流路内が はスリット内は水 への除熱等により ・流動距離の計算に、 定を考していり、 下を考しているが の溶融にしているが がる間の上り、 を設定しているが がる間のより、 にはより にはより にはより 	性について ような点で保守性を ドライな状態を前提 で満動距離は短くなる おいて,溶融炉心の リット内での圧損や い。 する溶融炉心の初期 度に対し保守的に液 方を通過する間の除 下し,またそれに伴 る。 1.0を設定している は,固相率が 0.4~0. (知見 ^[7] がある。
	3.6 評価条件の不確かさによる影響について 第2まの評価条件において、溶融店への物性信条件について		
	<u> 弗 2 衣の評価条件において</u> , 溶融炉心の物性値条件について はMAAP計算結果における溶融炉心の組成平均値を用いてい		
	<u>る。</u> これに対して、スリットに流入する溶融炉心の物性は不確か		
	さを有すると考えられることから,評価条件の不確かさとして		
	MAAP計算結果のうち溶融炉心内の金属相及び酸化物相の物		
	性値を参照し、評価結果への影響を検討する。なお、第2表の		
	評価条件において,構造材物性値は不確かさが小さいと考えら		

分炉	備考
デル評価	
「 <i>離</i> (m)	
大破断LOCAケース	
デル評価	
· 解(m)	
大破断LOCAケース	
<u>+) - + > >) -</u>	
有すると考えられる。	
としているか,美除に	
のり、谷融炉心から水	
と与んりれる。	
流速は流動停止まで一	
粘性増加に伴う速度低	
温度は, R <u>P V 破損</u> 時	
相線温度()	
格納容器下部床面に拡	
熱を考慮すると、実際	
い溶融炉心の粘性は増	
が、既往の溶融炉心拡	
6程度で粘性が急激に	
	・評価方針の相違
	【東海第二】

	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
生を見込み遅なしていることから、鮮柏県ないまてのかかの 25 茶し、MAA PH装品法において福祉からの風気半彩。 多3 茶し、MAA PH装品法において福祉からの風気半彩。 金人用皮で等に燃けるこうのから、新柏県ないおいるの風気半彩。 金人用皮で等に燃けるこうのない、「新台県ないたのの生活をつけ、ためのの 10 かられる、10 年度したいの生活をつけ、ためのの 10 かられる、10 年度したいの生活をつけ、ためのといろの 10 かんのしまた。 11 かられる。 11 かんのしまた。 12 かられる、10 年度したいための生活をつけ、ためのといろの 12 かんのしまた。 12 かられる、10 年度したいろのとなるまましただあて 12 かんのしまた。 12 かられる、10 年度したいろのとなるまましただろいて、10 中国 12 かんのしまた。 12 かられる、10 中国 12 かんのしかしたのしまた。 12 かられる、10 中国 12 かんのしかしたのしまた。 12 かんのしかしたのしまたのしかしたのしかしたのしまたのしかしたのしまたのしまたのしかしたのしまたのしまたのしかしたの日本 12 かんのしかしたのしかしたの日本 12 かんのしかしたのしまたのしかしたのしまたのしまたのしかしたの日本 12 かんのしかしたの日本 12 かんのしかしたの日本 12 かんのしかしたの日本 12 かんのしかしたの日本 12 かんのしかしたの日本 12 かんのしかしたの日本 12 かんのしかしたの日本 12 かんの日本 12 かんのしかしたの日本 <td></td> <td>れること、構造材初期温度及び溶融炉心流動条件は十分な保守</td> <td></td> <td></td>		れること、構造材初期温度及び溶融炉心流動条件は十分な保守		
20世報ならにとするためな。 第312: MARA PERSIENDERS AND AND ALL LEVANON HERE EN CONTRACTOR AND ALL LEVANON LEVANON HERE EN CONTRACTOR AND ALL LEVANON LEVANON LEVANON HERE EN CONTRACTOR AND ALL LEVANON LEVANON LEVANON HERE EN CONTRACTOR AND ALL LEVANON		<u>性を見込み設定していることから、評価結果に対する不確かさ</u>		
在3.また、MAAPT/15/18/12/30 24/8/12/00/8/18/12/3 金属田屋で湾水を指したのとれぞくのかりません。 金属田屋で湾水を指したのとれぞくのかりません。 金属田屋で湾水を指したのとれぞくのかりません。 金属田屋で湾水を指した。 第2010/16/16/16/16/16/16/16/16/16/16/16/16/16/		の影響は小さいと考えられる。		
金屋市及ご客地で通知できない破壊するまでの心断型があるまたのないが、場合が地を大きく、含 2月10日の第回上での心断型加速があるまたのないから、 2月10日の第回上での心断型加速があることのなから、 2月10日の第回上での心断型加速があることのなから、 1. 方法のった、認知にのの物性性のためたないなからなる意味」と見なった。 1. 方法のった、認知にの物性性の比較 2日 2日 2日 の検索目のでの活動がないなからたないないないないないないないないないないないないないないないないないないない		<u>第 3 表に,MAAP計算結果における溶融炉心の組成平均,</u>		
主要な人の物理の小菜園のするまでのに目達している場合である。 出たいの福祉書でいて明止用油な合いた場合などある。 出たいの福祉書でいて明止用油な合いた場合などのあったというない。 上さかって、常知時の小物性性の日本のかくとなることが多か。 上さかって、常知時の小物性性の日本のかくとなることが多か。 上さかって、常知時の小物性性の日本のかくとなることが多か。 上さかって、常知時の小物性性の日本のかくとなることが多か。 上さかって、常知時の小物性性の日本のかくとなることが多か。 第3 支 消費がつの物性性の日本のかくための生活のかく 第4 支 消費がつの物性性の日本のからた。 第3 支 消費がつの物性性の日本のからた。 第4 支 消費がつの物性性の日本のからた。 第4 支 消費がつの物性性の日本のからた。 第5 支 2 支 2 支 2 支 2 支 2 支 2 支 2 支 2 支 2 j 2 j		金属相及び酸化物相のそれぞれの物性値を示す。各物性値から		
上載すると、温暖平均の物生塩金用いた温を含めた人で、深 離却のの残損しての残損しての残損していたしたして、が見けたいの利用にの不能のたるたき」が、完全で 1、活動したして、が見けたいの利用にの不能のたるたき」が、完全で 1、活動したは変スリットの長さ(」の範囲性で接接体 立すると考えられる。 第3ま 活動化の物性体の比較 第3ま 活動化の物性体の比較 「 「 「 「 「 「 「 「 「 「 「 「 「 「 」」 「 」」		計算される溶融炉心が凝固するまでの体積当たりの放出熱量を		
$@ c - 0.6 \ B + 0.5 \ $		比較すると、組成平均の物性値を用いた場合が最も大きく、溶		
$\frac{L c b' c c}{2 k 2 k 2 c b 2 k 4 2 c 2 k 4 2 c 2 k 2 k 2 c 2 k 4 2 c 2 k 2 k 2 c 2 k 2 c 2 k 2 k 2 c 2 k 2 k$		融炉心の凝固までの流動距離が最も長くなることが分かる。		
3. 溶酸症心は使スリットの長さ (1)の 物面内で濃固体 止てると考えられる。 第3.五 溶酸症心(2) 軟瘤(1)(2)(2) 物(1)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)		したがって、溶融炉心の物性値の不確かさを考慮した場合で		
止すると考えられる。 第3.次 溶磁炉心の物性値の比較 第3.次 溶磁炉心(m) 調整 (1) 調整 (1) 調整 (1) 調整 (1) 12.0 (1) 13.0 (1) 10.0 (1) 10.0 (1) 10.0 (1		<u>も,溶融炉心は横スリットの長さ(</u>)の範囲内で凝固停		
第3 案 深健炉心の物性値の比較 第4 単単単 第4 単単単 第4 単単単 10 10 <td></td> <td>止すると考えられる。</td> <td></td> <td></td>		止すると考えられる。		
$ \begin{array}{ c c c c c } \hline \hline & $		第3表 溶融炉心の物性値の比較		
		項目 組成平均 金属相 酸化物相 備考		
		液相線温度(℃) MAAP計算 固相線温度(℃) 社用		
学び 時の値の 単電話をつく知識 化 時の他の 単電話 時の他の 6. まとめ		溶融 $\frac{密度 (kg/m^3)}{k_{2}^{2}}$ (RPV 破損		
##10 5 0 904/83 #9位 **9位 *記載方針の相違 ()ノ・*) 6.まとめ 		炉心 溶廠潜熱(j/kg) 物性 (j/kg)		
(1/m) 6.まとめ ・記載方針の相違 溶融デブリのスリット内凝固評価を実施した。溶融デブリの (東海第二】 スリット内凝固評価は、実デブリを用いた試験による確認が困 難であるため、別法による確認として、純金属と合金のそれぞ れのモデルで評価を実施した。その結果、保守的な条件として 評価したとして、スリット幅、、スリット高き 点根2号炉は、まとめ すれば、溶融デブリの流動距離は であり、流路長き でたれば、スリットに流入した溶融デブリは十分に 凝固することを確認した。 ごを確認した。		体 積当たりの 疑固 までの 放出 熟量 計算値		
6. まとめ ・記載方針の相違 溶融デブリのスリット内凝固評価を実施した。溶融デブリの 【東海第二】 スリット内凝固評価は、実デブリを用いた試験による確認が困 通であるため、別法による確認として、純金属と合金のそれぞれのモデルで評価を実施した。その結果、保守的な条件として 評価したとして、スリット幅」、スリット高さ と すれば、溶融デブリの流動距離は」 であり、流路長さ であれば、スリットに流入した溶融デブリは十分に 凝固することを確認した。		(J/m ³)		
6. まとめ ・記載方針の相違 溶融デブリのスリット内凝固評価を実施した。溶融デブリの スリット内凝固評価は、実デブリを用いた試験による確認が困 難であるため、別法による確認として、純金属と合金のそれぞ れのモデルで評価を実施した。その結果、保守的な条件として 評価したとして、スリット幅 . スリット高さ すれば、溶融デブリの流動距離は であり、流路長さ であれば、スリットに流入した溶融デブリは十分に 凝固することを確認した。				
谷融デブリのスリット内凝固評価を実施した。容融デブリの 「東海第二】 ハリット内凝固評価は、実デブリを用いた試験による確認が困 難であるため、別法による確認として、純金属と合金のそれぞ れのモデルで評価を実施した。その結果、保守的な条件として 評価したとして、スリットに加入した溶融デブリロ法の は、アンリット高さしと すれば、溶融デブリの流動距離は、であり、流路長さ であれば、スリットに流入した溶融デブリは十分に 凝固することを確認した。			<u>6.まとめ</u>	・記載方針の相違
スリット内疑固評価は、実テブリを用いた試験による確認が困 難であるため、別法による確認として、純金属と合金のそれぞ れのモデルで評価を実施した。その結果、保守的な条件として 評価したとして、スリット幅、、スリット高さ」と すれば、溶融デブリの流動距離は、であり、流路長さ であれば、スリットに流入した溶融デブリは十分に 疑固することを確認した。			溶融デブリのスリット内凝固評価を実施した。溶融デブリの	【東海第二】
<u>難であるため、別法による確認として、純金属と各金のそれそ</u> れのモデルで評価を実施した。その結果,保守的な条件として <u>評価したとして、スリット幅</u> ,スリット高さ <u>と</u> <u>すれば、溶融デブリの流動距離は</u> であり、流路長さ <u>すれば、スリットに流入した溶融デブリは十分に</u> <u>凝固することを確認した</u> 。			<u>スリット内礙固評価は、実テブリを用いた試験による確認が困</u>	島根2号炉は,まとめ
れのモデルで評価を実施した。その結果,保守的な条件として 評価したとして,スリット幅,スリット高さ されば,溶融デブリの流動距離は であり,流路長さ であれば、スリットに流入した溶融デブリは十分に 凝固することを確認した。			難であるため、別法による確認として、純金属と合金のそれぞ	を記載。
評価したとして、スリット幅とし、、スリット高さしまとして、スリット幅として、スリット高さしまとして、スリット高さしまとして、スリット電子により、高さしまとして、スリット電子には、溶融デブリの流動距離はした。			れのモデルで評価を実施した。その結果、保守的な条件として	
<u>うれは、溶融テノリの流動距離は</u> であり、流路長さ であれば、スリットに流入した溶融デブリは十分に 擬固することを確認した。				
<u> 近日することを確認した</u> 。			うれは、浴融テノリの流動距離は であり、流路長さ	
			ビのれは、スリットに流入した俗融テノリは十分に	
			一般回りることを唯祕した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	 参考文献 [1] EPRI, Experiments to Address Lower Plenum Response Under Severe Accident Conditions, Volumel, EPRI report TR-103389, 1994 [2] L. J. Siefken et al., SCDAP/RELAP5/MOD3.3 Code Manual: MATPRO - A Library of Materials Properties for Light-Water-Reactor Accident Analysis, NUREG/CR-6150, Vol. 4 Rev. 2, 2001 [3] 渋谷 他, 固相・液相共存下における鉄および非鉄合金のみ かけの粘性の測定結果, 鉄と鋼, 第 66 年, 第 10 号, 1980 [4] M. C. Fleming et al., An Experimental and Quantitative Evaluation of the Fluidity of Aluminium Alloys", AFC Transactions, vol. 69, 1961 [5] 日本機械学会, 伝熱工学資料 第 4 版, 1986 [6] M. T. Farmer, Melt Spreading Code Assessment, Modifications, and Applications to the EPR Core Catcher Design, ANL-09/10, 2009 	 参考文献 渋谷 他, 固相,液相共存下における鉄および非鉄合金のみ かけの粘性の測定結果,鉄と鋼,第66年,第10号,1980 GE-Hitachi Nuclear Energy Americas LLC, ABWR Design Control Document, United States Nuclear Regulatory Commission, 2010 M.Epstein et al., Freezing-Controlled Penetration of a Saturated Liquid Into a Cold Tube, Journal of Heat Transfer, Vol.99, 1977 EPRI, Experiments to Address Lower Plenum Response Under Severe Accident Conditions, Volumel, EPRI report TR-103389, 1994 M. C. Fleming et al., An Experimental and Quantitative Evaluation of the Fluidity of Aluminium Alloys", AFC Transactions, vol.69, 1961 日本機械学会, 伝熱工学資料 第5版, 2009 M.T. Farmer, Melt Spreading Code Assessment, Modifications, and Applications to the EPR Core Catcher Design, ANL-09/10, 2009 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
【比較のため,「別紙‐1」を記載】	【比較のため,「添付資料 3.2.15」を記載】		
別紙 - 1		別紙-3	
耐熱材と模擬溶融炉心との相互作用試験結果について	コリウムシールド材料の選定について	コリウムシールド材料の選定について	
原子炉の過酷事故において、放射性物質が環境へ放出するこ	原子炉の過酷事故において、放射性物質が環境へ放出すること	原子炉の過酷事故において、放射性物質が環境へ放出すること	
とを防ぐため、溶融炉心による格納容器の侵食を抑制する静的	を防ぐため、溶融炉心による格納容器の侵食を抑制する静的デブ	を防ぐため、溶融炉心による格納容器の侵食を抑制する静的デブ	
デブリ冷却システムの開発に取り組んでいる。溶融炉心を受け	リ冷却システムの開発に取り組んでいる。溶融炉心を受け止めて	リ冷却システムの開発に取り組んでいる。溶融炉心を受け止めて	
止めて保持する役割を担う耐熱材は、高融点で且つ化学的安定	保持する役割を担う耐熱材は、高融点でかつ化学的安定性に優れ	保持する役割を担う耐熱材は、高融点でかつ化学的安定性に優れ	
性に優れていることが必要であることから,候補材としては,	ていることが必要であることから, 候補材としては,,,	ていることが必要であることから、候補材としては、	
ZrO ₂ 等が挙げられる。模擬溶融炉心と上記耐熱材	ZrO ₂ 等が挙げられる。模擬溶融炉心と上記耐熱材との侵食デー	, ZrO ₂ 等が挙げられる。模擬溶融炉心と上記耐熱材と	
との侵食データを取ることを目的として、侵食試験を実施した。	タを取ることを目的として、侵食試験を実施した。	の侵食データを取ることを目的として、侵食試験を実施した。	
以下に溶融Zr 及び模擬溶融炉心(U02-ZrO ₂ -Zr)による耐熱材	以下に溶融Zr及び模擬溶融炉心(UO ₂ -ZrO ₂ -Zr)に	以下に溶融Zr及び模擬溶融炉心(UO ₂ -ZrO ₂ -Zr)に	
侵食試験の概要について	よる耐熱材侵食試験の概要について示す。この結果より、コリウ	よる耐熱材侵食試験の概要について示す。この結果より、コリウ	
示す。	ムシールド材料としてZrO ₂ を選定した。	ムシールド材料としてΖ r Ο 2を選定した。	
1. 溶融Zr による耐熱材侵食試験	1. 溶融Zrによる耐熱材侵食試験	1. 溶融Zrによる耐熱材侵食試験	
1-1. 試験方法	1.1 試験方法	1.1 試験方法	
耐熱材には Zr02 の多孔質材料を用いた。模擬溶	耐熱材には,, ZrO2の多孔質材料を用いた。	耐熱材には $, ZrO_2 の多孔質材料を用い$	
融炉心の金属成分をるつぼに入れ、るつぼ上部に耐熱材試験片	模擬溶融炉心の金属成分をるつぼに入れ,るつぼ上部に耐熱材	た。模擬溶融炉心の金属成分をるつぼに入れ、るつぼ上部に耐	
をセットする(図別‐1)。これらを電気炉で加熱し,2000℃	試験片をセットする(第 1 図)。これらを電気炉で加熱し,	熱材試験片をセットする (図別 3-1)。これらを電気炉で加熱し,	
~2200℃の所定温度にして金属を溶かす。溶融した金属中に耐	2,000℃~2,200℃の所定温度にして金属を溶かす。溶融した金	2,000℃~2,200℃の所定温度にして金属を溶かす。溶融した金	
熱材試験片を上部から挿入し、5 分間保持する。その後、試験	属中に耐熱材試験片を上部から挿入し,5分間保持する。その	属中に耐熱材試験片を上部から挿入し、5分間保持する。その	
片を初期位置へ戻してから炉冷する。各種試験片について、冷	後、試験片を初期位置へ戻してから炉冷する。各種試験片につ	後、試験片を初期位置へ戻してから炉冷する。各種試験片につ	
却後に外観及び試験片の残存状態を確認した。なお、溶融炉心	いて、冷却後に外観及び試験片の残存状態を確認した。なお、	いて、冷却後に外観及び試験片の残存状態を確認した。なお、	
の主な構成材料として, BWRで使用されるU02, Zr, ZrO ₂ , Fe 等	溶融炉心の主な構成材料として, BWRで使用されるUO ₂ , Z	溶融炉心の主な構成材料として,BWRで使用されるUO ₂ ,Z	
が想定されるが, 試験においては, 金属成分は100mol%Zr とし	r,ZrO2,Fe等が想定されるが,試験においては,金属成	r,ZrO2,Fe等が想定されるが,試験においては,金属成	
₹E₀	分は 100mo1%Z r とした。	分は 100mo1%Z r とした。	
	第1図 試験体系		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
1-2. 試験結果	1.2 試験結果	1.2 試験結果
図別‐2 に金属組成が100mo1%Zr における試験後の耐熱材試	第2図に金属組成が100mo1%Zrにおける試験後の耐熱材試	図別 3-2 に金属組成が 100mo1%Z r に
験片の断面写真を示す。いずれの耐熱材においても、金属組成	験片の断面写真を示す。いずれの耐熱材においても、金属組成	試験片の断面写真を示す。いずれの耐熱
のZr 量に応じて侵食量は増加した。また, 金属組成によらず侵	のZr量に応じて侵食量は増加した。また,金属組成によらず	成のZr量に応じて侵食量は増加した。
食量は ≥ ZrO ₂ となり, ZrO ₂ , , の順に耐	侵食量は $> > Z r O_2 > z h o_2, $, $O_2, $	ず侵食量は > >ZrO ₂ と
侵食性に優れていることが確認できた。	順に耐侵食性に優れていることが確認できた。	の順に耐侵食性に優れてい
図別 - 2 試験後の断面写真 図別 - 2 試験後の断面写真 2. 模擬溶融炉心による耐熱材侵食試験 2-1. 試験方法 高融点材料にて製作したるつぼ内に円柱状に加工したZr0,耐 熱材と模擬溶融炉心粒子を所定の重量分装荷した。模擬溶融炉 心の組成はU0 ₂ -Zr0 ₂ -Zr: 30mo1%-40mo1%とした。 同るつぼを試験装置の誘導コイル内に設置して,誘導加熱に より加熱を行った。試験中の模擬溶融炉心の温度は,放射温度 計により計測した。試験時の温度は,放射温度計や熱電対にて 計測している模擬溶融炉心の温度が,目標温度範囲(2000℃~ 2100℃)に入るように温度制御を行った。温度保持時間は10 分 とした。試験体系を図別-3 に示す。	 第2図 試験後の断面写真 第2図 試験後の断面写真 2. 模擬溶融炉心による耐熱材侵食試験 2.1 試験方法 高融点材料にて製作したるつぼ内に円柱状に加工したZr 0.2耐熱材と模擬溶融炉心粒子を所定の重量分装荷した。模擬溶融炉心の組成はUO2-ZrO2-Zr:30m01%-30m01%-40m01%とした。 同るつぼを試験装置の誘導コイル内に設置して,誘導加熱により加熱を行った。試験中の模擬溶融炉心の温度は,放射温度計により計測した。試験時の温度は,放射温度計や熱電対にて計測している模擬溶融炉心の温度が,目標温度範囲(2,000℃~2,100℃)に入るように温度制御を行った。温度保持時間は10分とした。 	図別3-2 試験後の断面 2. 模擬溶融炉心による耐熱材侵食試験 2.1 試験方法 高融点材料にて製作したるつぼ内にF O ₂ 耐熱材と模擬溶融炉心粒子を所定の 溶 融 炉 心 の 組 成 は U O ₂ - Z 30mo1%-30mo1%-40mo1%とした。 同るつぼを試験装置の誘導コイル内に より加熱を行った。試験中の模擬溶融炉 計により計測した。試験中の視度溶,目 2,100℃)に入るように温度制御を行った とした。試験体系を図別3-3 に示す。

炉	備考
おける試験後の耐熱材 材においても,金属組 また,金属組成によら となり,ZrO ₂ , いることが確認できた。	
写真	
円柱状に加工した乙r 重量分装荷した。模擬 r O ₂ — Z r :	
設置して,誘導加熱に 心の温度は,放射温度 射温度計や熱電対にて 標温度範囲(2,000℃~ 。温度保持時間は10分	

2-2. 試験結果

試験温度の推移を図別 - 4 に示す。試験においては2000℃~ 2050℃の範囲で、約10 分程度温度が保持されている事を確認し た。また,試験後のるつぼの断面写真を図別-5 に示す。ZrO2 耐 熱材の厚さが試験前から変わっていないことから、模擬溶融炉 心によるZrO2 耐熱材の有意な侵食が無いことが分かる。

図別-4 試験温度推移

試験温度の推移を図別 3-4 に示す。試 ~2,050℃の範囲で,約10分程度温度が 確認した。また,試験後のるつぼの断面写 ZrO2耐熱材の厚さが試験前から変わっ 擬溶融炉心によるZrO2耐熱材の有意 かる。

炉	備考
 復振溶融炉心 ろつぼ 	
験においては 2,000℃ 保持されていることを 写真を図別 3-5 に示す。 っていないことから, 模 な侵食がないことが分	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
図別‐5 試験後の断面写真	第5図 試験後の断面写真	図別 3-5 試験後の断面

3. 耐熱材への模擬溶融炉心落下試験

3-1. 試験方法

耐熱材に溶融炉心が接触した際の短期的な相互作用を確認す るため、ZrO2 耐熱材の上に模擬溶融炉心を落下させ、耐熱材の 侵食深さの測定,耐熱材侵食性状や模擬溶融炉心の固化性状の 分析などを実施した。模擬溶融炉心の組成はUO₂-ZrO₂-Zr: 30mo1%-30mo1%-40mo1%とした。ZrO2 耐熱材を内張りしたコンク リートトラップの上部に電気炉を設置し、電気炉により加熱し た模擬溶融炉心をZrO2 耐熱材上に落下させ、コンクリートトラ ップに設置した熱電対によりZrO2 耐熱材の温度を測定した。試 験装置を図別-6 に示す。

するため、ZrO2耐熱材の上に模擬溶融炉心を落下させ, 熱材の侵食深さの測定,耐熱材侵食性状や模擬溶融炉心の固 性状の分析などを実施した。模擬溶融炉心の組成はUO。rO₂-Zr: 30mol%-30mol%-40mol%とした。ZrO 熱材を内張りしたコンクリートトラップの上部に電気炉を 置し、電気炉により加熱した模擬溶融炉心をZrO2耐熱を に落下させ、コンクリートトラップに設置した熱電対により rO₂耐熱材の温度を測定した。

図別-6 試験装置

3.2 試験結果

コンクリート	ZrO。耐熱材
トラップ イーーー	
1	

第6図 試験装置

3-2. 試験結果

試験温度推移を図別-7 に示す。Zr02 耐熱材側面(模擬溶融 炉心側)の温度を測定する熱電対が模擬溶融炉心落下直後に最

試験温度推移を第7図に示す。ZrO2耐熱材側面(模擬溶 炉心側)の温度を測定する熱電対が模擬溶融炉心落下直後に

	島根原子力発電所 2号炉	備考
	図別 3-5 試験後の断面写真	
筆 固 - 2 ご 才) 認 耐 化 Z 耐 設 上 Z	 3. 耐熱材への模擬溶融炉心落下試験 3.1 試験方法 耐熱材に溶融炉心が接触した際の短期的な相互作用を確認するため、ZrO₂耐熱材の上に模擬溶融炉心を落下させ、耐熱材の侵食深さの測定、耐熱材侵食性状や模擬溶融炉心の固化性状の分析などを実施した。模擬溶融炉心の組成はUO₂-ZrO₂-Zr:30mo1%-30mo1%-40mo1%とした。ZrO₂耐熱材を内張りしたコンクリートトラップの上部に電気炉を設置し、電気炉により加熱した模擬溶融炉心をZrO₂耐熱材上に落下させ、コンクリートトラップに設置した熱電対によりZrO₂耐熱材の温度を測定した。試験装置を図別3-6 に示す。	
	<complex-block><complex-block></complex-block></complex-block>	
	2.9. 計略社田	
福之	3.2 സ 駅和木 試験温度推移を図別 3-7 に示す 7 r ○ 耐熱材側面 (構擬 「 	
二最	融炉心側)の温度を測定する熱電対が模擬溶融炉心落下直後に	

· · · · · · · · · · · · · · · · · · ·	備考
,落下してきた模擬溶	
測される。また、試験	
別 3-8 に示す。 模擬溶	
し、その周辺部が白色	
著な耐熱材の侵食及び	
炉心側)の温度	
300 360	
多	
写真	
に見命それてしせどす	
に泰路されると材料中	
シーとル*ヌロ り46 € V 'る。 心の沮庶が 9 450℃ !!	
山 シ 1 画 反 ル・ 2,450 し 以 け 余 届 7 r が 左 左 古 ス	
s = m 2 r 0 耐熱材の	
じたと推測される。し	
析を行った結果、耐熱	
かったことから. 欠損	
材の耐熱性能に影響は	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
なお、事故時においては、格納容器下部に事前注水がなされ	なお、ペデスタル(ドライウェル部)には水プールが存在す	なお、原子炉格納容器下部には水プールが存在するため、原	
ているため、格納容器下部に落下してきた溶融炉心中に残存す	るため、ペデスタル(ドライウェル部)に落下してきた溶融炉	子炉格納容器下部に落下してきた溶融炉心中に残存する未酸化	
る未酸化の金属Zr は,水との反応によって酸化されると想定さ	心中に残存する未酸化の金属Zrは,水との反応によって酸化	の金属Zrは,水との反応によって酸化されると想定される。	
れる。MAAP 解析の結果から,格納容器下部に落下してきた溶融	されると想定される。 MAAP解析の結果から, ペデスタル (ド	MAAP解析の結果から、原子炉格納容器下部に落下してきた	
炉心は,2000℃を超える高い温度でコリウムシールドと数十分	ライウェル部)に落下してきた溶融炉心は, 2,000℃を超える高	溶融炉心は, 2,000℃を超える高い温度でコリウムシールドと数	
接触する可能性があるが,上述のとおり,溶融炉心中の金属Zr	い温度でコリウムシールドと数十分接触する可能性があるが、	十分接触する可能性があるが、上述のとおり、溶融炉心中の金	
は酸化されていると考えられることから、事故時に溶融炉心が	上述のとおり,溶融炉心中の金属乙rは酸化されていると考え	属Zrは酸化されていると考えられることから,事故時に溶融	
コリウムシールドと接触したとしても、ZrO ₂ 耐熱材の表面が還	られることから、事故時に溶融炉心がコリウムシールドと接触	炉心がコリウムシールドと接触したとしても, ZrO2耐熱材の	
元されることによる影響は軽微であると考えられる。	したとしても,ZrO2耐熱材の表面が還元されることによる影	表面が還元されることによる影響は軽微であると考えられる。	
	響は軽微であると考えられる。		
図別-9 耐熱材表面の成分分析結果	第9図 耐熱材表面の成分分析結果	図別 3-9 耐熱材表面の成分分析結果	
4. まとめ	4. まとめ	4. まとめ	
以上により、 ZrO_2 耐熱材が溶融炉心に対して高い耐性を有し	上記試験結果から、溶融炉心に対して高い耐性を有している	上記試験結果から、溶融炉心に対して高い耐性を有している	
ていることが分かった。	Z r O 2(ジルコニア)耐熱材を, コリウムシールドに用いる材	<u>ZrO₂(ジルコニア)耐熱材を,コリウムシールドに用いる材</u>	
なお,実際の事故状況においては上述のとおり,Zr0 ₂ 耐熱材	料として選定した。	料として選定した。	・記載方針の相違
の表面が還元されにくく、還元による影響は軽微であると考え			【柏崎 6/7】
られる。また、本試験において黒色化が確認されたZr0,耐熱材は			
X線回折分析の結果から、その組成は大きく変化していないと			
考えられる。一方で、Zr0。耐熱材の機械的強度の変化の有無等			
については、本試験において十分なデータ採取がなされていな			
いことから、コリウムシールドの実設計においては 耐熱材構			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
造をサンプ防護材(厚さ:)と、サンプ防護材に直接溶融			
炉心が接触することを防ぐ犠牲材(厚さ:)との二層構造			
<u>としていることに加え,サンプ防護材の厚さは,解析により求</u>			
めた侵食量 に十分な余裕を見込んだ厚さ とすること			
により,高温状態の溶融炉心とコリウムシールドとの接触に伴			
う悪影響を考慮した保守的な設計としている。			
以上			
本試験は,中部電力(株),東北電力(株),東京電力ホールディングス(株),北陸電	※ 本試験は、中部電力(株)、東北電力(株)、東京電力ホールディングス(株)、北陸電	※ 本試験は、中部電力(株)、東北電力(株)、東京電力ホールディングス(株)、北陸電	
力(株),中国電力(株),日本原子力発電(株),電源開発(株),(一財)エネルギー総	力(株),中国電力(株),日本原子力発電(株),電源開発(株),(一財)エネルギー総合	力(株), 中国電力(株), 日本原子力発電(株), 電源開発(株), (一財)エネルギー総合	
合工学研究所, (株)東芝, 日立GE ニュークリア・エナジー(株)が実施した共同研究	工学研究所,(株)東芝,日立 GE ニュークリア・エナジー(株)が実施した共同研究の	工学研究所,(株)東芝,日立 GE ニュークリア・エナジー(株)が実施した共同研究の	
の成果の一部である。	成果の一部である。	成果の一部である。	
【ここまで】	【ここまで】		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 3.2.2		
39. 原子炉圧力容器表面温度の設置箇所	原子炉圧力容器の破損判断について	28. 原子炉圧力容器表面温度の設置箇所	
原子炉压力容器温度(6号炉)			
No. 機器番号 植着名称 封建範囲 1 (121-TE012A 原子炉圧力容器上差表描述 0~300°C 2 (262-TE0128 原子炉压力容器上差表描述 0~300°C		No. 機器番号 機器名称 計測範囲 1 TF208-1A-1 圧力容異田筥胴児産 0~300℃	
3 821-TE0120 第子炉圧力容器上面ランジ温度 0~300℃ 4 821-TE0120 第子炉圧力容器上面ランジ温度 0~300℃ 5 822 - TE013A 第子炉圧力容器プンジスタンドポルト温度 0~300℃		1 11236 IA I 圧力容器目筒所通及 0 - 300 ℃ 2 TE298-1A-2 圧力容器円筒胴温度 0 ~ 300 ℃	
6 B21-TE0138 原子炉正力容器プランジスタッドボルト温度 0~300°C 7 B21-TE0144 原子炉正力容器原ランジ温度 0~300°C 8 B21-TE0144 原子炉正力容器のランジ温度 0~300°C		3 TE298-1A-3 圧力容器円筒胴温度 0~300℃	
9 回21-TED14C 原子炉丘力容器原フランジ温度 0~300℃ 10 D21-TED14A 原子炉丘力容器原フランジア整直度 0~300℃ 11 D21-TED15A 原子炉丘力容器原フランジア整直度 0~300℃ 11 D21-TED15A 原子炉丘力容器原フランジア整直度 0~300℃		4 TE298-1B-1 圧力容器 A 給水ノズルセイフェンド温度 0~300℃	
1 22172-170160 様子が広が発展のプランジで整点後 0-300°C 13222-170160 様子が広が発展のプランジで整点後 0-300°C 13222-170160 様本パズルVMG温度 0-300°C		5 TE298-1C-1 圧力容器 A 給水ノズル温度 0~300℃	
1 「BOL」「COLUME BACK/ANNOLE」とよりに載成。 0 - 300 で 15 [2021-TED165 能水/ズルNOLE」-スとが温度 0 - 300 で 16 [2021-TED163 能水/ズルNOLEースとが温度 0 - 300 で 17 [2021-TED163 能水/ズルNOLE」 0 - 500 で		6 TE298-1B-2 圧力容器 B 給水ノズルセイフェンド温度 0~300℃	
1 / 1221-112101 単子型圧力等者で統正準単位 0-300℃ 18 / 1221-112014 単子型圧力等者で統正準備度 0-300℃ 19 / 1321-12016K 子型圧力等者で統正準備度 0-300℃		7 TE298-1C-2 圧力容器 B 給水/ズル温度 0~300℃	
2018/211101101 時子が広力容容下級工作協画版 0-3001C 21182-11701141 時子が広力容容下級許容温度 0-3001C 221821-1701141 時子が広力容容下級許容温度 0-3001C		8 TE298-1B-3 圧力容器 C 給水ノズルセイフェンド温度 0~300℃	
231821-TED199 時子伊に力容被支持スカーと計画度 0~300°C 241021-TED198 時子伊に力容装支持スカーと計画度 0~300°C 251821-TED188 原子伊に力容器支持スカーと計画度 0~300°C		9 TE298-1C-3 圧力容器 C 給水/ズ が温度 0~300℃	
261821-TED161		10 16298-1B-4 圧力容益 D 結本/パーパーパート 温度 0~300 C 11 TE298-1C-4 圧力容器 D 絵本/パール目前 0~200°C	
29[821-TED16W		11 112296-10-4 圧力存留 D 和小/ // 評価及 0.~300 C 12 TF298-1D-1 圧力容器下籍公分加度 0 0.~300 C	
32 123-1-TEOB14 第千学外也計算總備(A)温度(資相部) 0~-309°C 33 192-1-TEOB2A 第千学外位計算總備(A)温度(資相部) 0~-309°C 34 192-1-TEOB3A 第千学外位計算總備(A)温度(資相部) 0~-359°C		12 112.36 ID 1 圧力容器下鏡、加温度 0~300℃ 13 TE298-1D-2 圧力容器下鏡、加温度 0~300℃	
35 D21-TE081B 原子炉水位計道編構(B)混定(気相部) 0~350°C 36 821-TE082B 原子炉水位計道編構(B)混定(気相部) 0~350°C 37 R29-TP083B 原子炉水位計道編構(B)混定(気相部) 0~350°C		14 TE298-1D-3 圧力容器下鏡 [∧] 𝑘汕度 0~300℃	
		15 TE298-1E-1 圧力容器支持スカート上部温度 0~300℃	
<u>原子伊任力容器温度(7号炉)</u> No 編発表明		16 TE298-1E-2 圧力容器支持スカート上部温度 0~300℃	
100. 便愛考了 使多少 ほうがし 17.00回 1021-TE012A		17 TE298-1E-3 圧力容器支持スカート上部温度 0~300℃	
31221/TED13A 単子型に力容量に差プンジ温度 0~300°C 4222/TED13A 単子型に力容量に差プンジ温度 0~300°C 5 821-TED14A 単子型に力容量プランジスタッドポルト温度 0~300°C		18 TE298-1F-1 圧力容器支持スカート下部温度 0~300℃	
61221-TE0148 医子学振力容響プジンスタットアル1+違数 0-300°C 7 2021 - TE015A 医子学振力容響アラジン連合 0-300°C 8 2021 - TE0158 原子学振力容響第フランジ連合 0-300°C		19 TE298-1F-2 圧力容器支持スカート下部温度 0~300℃	
9(22)-17E015 原子9年579巻第7ランジ進度 0-300°C 10(82)-17E014A 原子9年579巻第7ランジ王憲連 0~300°C 11(82)-17E014B 原子9年579巻第7ランジア憲連度 0~300°C		20 TE298-1F-3 圧力容器支持スカート下部温度 0~300℃	
12[821-TE0108 (第子炉丘力容数原力ランジア基準度 0-300°C 13[821-TE0178 結本パズルW80温度 0-300°C 14[821-TE0178 結本パズルW80温度 0-300°C		21 TE298-1G-1 原子炉圧力容器温度(SA) 0~500℃	
15月21-TED1170 総ポメズルM4の温度 0-300°C 16月221-TED180 総ポメズルM4のセーフエンド温度 0-300°C 17月221-TED184 限イダチリア3時実長オメカート上目温度 0-300°C		22 1E298-16-2 原于炉庄刀谷盔温度(SA) 0~500 C 23 TE208-16-2 压力穷坚下盛退度 0~200 C	
18月21-TE0198 (第子炉丘方容蔵支持スカートとお温度 0-300°C 19月221-TE0194 (第子炉丘方容蔵支持スカートとお温度 0-300°C 20月21-TE020A (第子炉丘方容蔵支持スカートとお温度 0-300°C		24 TE298-16-4 圧力容器下鏡底部温度 0~300℃	
21 超21-TE020B 原子炉圧力容器支持スカート中和温度 0~300°C 221 221 221 231<		25 TE298-2A-1 圧力容器上蓋温度 0~300℃	
24 回21-TE021日 原子炉丘力容器支持スカート下部温度 0~300℃ 25 回21-TE021日 原子炉丘力容器支持スカート下部温度 0~300℃ 26 回21-TE0221 原子炉丘力容器支持スカート下部温度 0~300℃		26 TE298-2A-2 圧力容器上蓋温度 0~300℃	
2019年11日2019年1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1		27 TE298-2B-1 圧力容器上蓋フランジ温度 0~300℃	
25日21-110233 用于中位人物制度的制度。0-300°C 313[221-110233 用于中位人物制度制度和基度 0-300°C 313[221-110233 用于中位人物制度制度制度度 0-300°C		28 TE298-2B-2 圧力容器上蓋フランジ温度 0~300℃	
3 2 E 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		29 TE298-3-1 圧力容器スタッドボルト温度 0~300℃	
35[221-TE-2000-1 周子学がな計業時代19温度(24間部) 0-3301C 36[221-TE-2000-2 周子が水放計業時代19温度(24間部) 0-3301C 37[221-TE-2000-3 周子炉水放計業時代19温度(計算時代) 0-3301C		30 TE298-3-2 圧力容器スタッドボルト温度 0~300℃	
重大事故等対処設備		31 TE298-4-1 圧力容器胴体フランジ温度 0~300℃	
重大事故等対処設備は外は、常用計器(耐耐性又は耐濃増性等はないが、監視可能であれば筋子炉施設の状態を把握することが可能な計器)		32 TE298-4-2 圧力容器胴体フランジ温度 0~300℃	
		33 TE298-4-3 上力容器胴体7729 温度 0~300℃	
		■:里天事故等対処設備 重士事故室対処設備以外は一常田計器(耐雪桃又は耐雪培桃室はないが)影視可	
		電八事 取 寺 刃 定 取 備 の 戸 は , 市 市 計 福 (崎 晨 圧 ス は 崎 衆 児 寺 は な い か , 温 虎 う 能 で あ れ ば 原 子 炉 施 設 の 状 熊 を 把 握 す る こ と が 可 能 な 計 器)	

炉	備考
<u>の設置箇所</u>	 ・設備設計の相違 【柏崎 6/7,東海第二】 設備設計の相違によ
	 る設置箇所の相違。 ・設備設計の相違 【柏崎 6/7,東海第二】 島根2号炉は,RPV 破損の徴候を検知する には下鏡部の温度で十 分と考え,下鏡部の2箇 所の温度計を重大事故 等対処設備としている。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 3.2.6		・記載箇所の相違 【東海第二】
42. 逃がし安全弁 <u>(SRV)</u> の耐環境性能の確認実績	高温環境下での逃がし安全弁の開保持機能維持について	29. 逃がし安全弁の耐環境性能の確認実績について	 東海第二では, 添付貸 料 3.2.6 の該当部分を 抜粋。なお, 島根2号炉
	2		の添付資料 3.2.1 の比
SRV_については、電力共同研究において設計基準事故時を想定	電力共同研究「安全上重要な機器の信頼性確認に関する研究」	逃がし安全弁(以下「SRV」という。)については,電力共同	較表にて、東海第二の
した環境試験を実施し、その信頼性を確認している。	において, 設計基準事故を包含する保守的な環境条件として,	研究「安全上重要な機器の信頼性確認に関する研究」において設	3.2.6 の比較表との比
	「171℃において 3 時間継続の後, 160℃において 3 時間継続し	計基準事故時を想定した環境試験を実施し、その信頼性を確認し	較を行っている。
	た状態」でのSRV機能維持について確認されている(以下「S	-This.	
試験条件を <u>図1</u> に示す。 <u>図1</u> の環境試験中、SRV が正常に動作	<u>RV環境試験」という。)。また,長期の機能維持の観点から,</u>	試験条件を図1に示す。図1の環境試験中,SRVが正常に動	
することを確認したことから、少なくとも図1.に包絡される環境	126℃において試験開始24時間後から15日後までの機能維持を	作することが確認されたことから、少なくとも図1に包絡される	
下ではSRV の機能は正常に維持されると考える。	確認している。第2図にSRV環境試験条件を示す。	環境下ではSRVの機能は正常に維持されると考える。	
図1 設計基準事故環境下における加速劣化試験の試験条件	第2図 SRV環境試験条件	図1 設計基準事故環境下における加速劣化試験の試験条件 ⁽¹⁾ 参考文献 (1) 電力共同研究「安全上重要な機器の信頼性確認に関する研究 平成7年度上半期(最終報告書)」	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
43. 原子炉減圧に関する各種対策及び逃がし安全弁(SRV)の耐環	資料なし	30. 原子炉減圧に関する各種対策及び逃がし安全弁(SRV)の耐	
境性能向上に向けた今後の取り組みについて		環境性能向上に向けた今後の取り組みについて	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
【資料1】		【資料1】	(資料1は「重大事故
「柏崎圳羽原子力發雲所6号及7ド7号恒重大			等対処設備について(補
事故等対処設備について(補足説明資料)」		島根原子力発電所2号炉	足説明資料) 46-10 その
(平成 29 年 1 月 27 日提出)抜粋		重大事故等対処設備について(補足説明資料)抜粋	他設備」の再掲であるた
			め,重大事故等対処設備
			の比較表において比較
			を行う。)
46 10		46 10 スの他乳供	
40-10 その仲設備		40-10 その他設備	
その月間設備			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
【資料2】		【資料2】	
SRVの耐環境性能向上に向けた取り組みについて		SRVの耐環境性能向上に向けた取り組みについて	
1. 概要		1. 概要	
SRVの耐環境性向上対策は、更なる安全性向上対策として設置を		SRVの耐環境性向上対策は,更なる安全性向上対策とし	
進めている <u>代替SRV駆動装置</u> に対して,SRV駆動源である高圧窒素		て設置を進めている逃がし安全弁窒素ガス代替供給設備に対し	
ガスの流路となる「SRV用電磁弁」及び「SRVシリンダ_」に対し		て、SRV駆動源である高圧窒素ガスの流路となる「SRV	
てシール材の改良を実施するものとする。		用電磁弁」及び「SRVシリンダ」に対してシール材の改良	
		を実施するものとする。	
<u>代替SRV駆動装置</u> は, <u>HPIN系(A/B)</u> と独立した窒素ガスボンベ,		逃がし安全弁窒素ガス代替供給設備は、逃がし安全弁窒素ガ	
自圧式切替弁及び配管・弁類から構成し、SRV用電磁弁の排気ポー		<u>ス供給系</u> と独立した窒素ガスボンベ,自圧式切替弁及び配	
トに <u>窒素ボンベ</u> の窒素ガスを供給することにより、電磁弁操作を		管・弁類から構成し,SRV用電磁弁の排気ポートに <u>窒素ガ</u>	
不要としたSRV開操作が可能な設計とする。		<u>スボンベ</u> の窒素ガスを供給することにより,電磁弁操作を不	
		要としたSRV開操作が可能な設計とする。	
ここで、自圧式切替弁 <u>は、</u> SRV用電磁弁の排気ポートと <u>代替SRV</u>		ここで,自圧式切替弁をSRV用電磁弁の排気ポートと逃	
駆動装置の接続部に設置し、以下の(1)通常運転時、(2) HPIN		がし安全弁窒素ガス代替供給設備供給設備の接続部に設置し,	
系によるSRV動作時,(3)代替SRV駆動装置によるSRV動作時に示		以下の(1)通常運転時,(2)逃がし安全弁窒素ガス供給	
すとおりの切替操作が可能な設計とする。		系によるSRV動作時,(3)逃がし安全弁窒素ガス代替供給	
		設備によるSRV動作時に示すとおりの切替操作が可能な	
		設計とする。	
(1)通常運転時(SRV待機時)		(1)通常運転時(SRV待機時)	
自圧式切替弁は,弁体が <u>代替SRV駆動装置の窒素ボンベ側</u> を		自圧式切替弁は、弁体が逃がし安全弁窒素ガス代替供給	
閉止し <u></u> ,排気ポート側を原子炉格納容器内に開放することで,		設備の <u>窒素ガスボンベ側</u> を閉止し排気ポート側を原子炉	
SRVピストンが閉操作するときの排気流路を確保する。		格納容器内に開放することで, SRV ピストンが閉動作	
		するときの排気流路を確保する。	
(2) <u>HPIN系</u> によるSRV動作時		(2) 逃がし安全弁窒素ガス供給系によるSRV動作時	
自圧式切替弁は、排気ポート側を <u>解放</u> しており、SRV閉動作		自圧式切替弁は,排気ポート側を <u>開放</u> しており,SR	
時のピストンからの排気を原子炉格納容器へ排気するための		V閉動作時のピストンからの排気を原子炉格納容器へ	
流路を確保する。		排気するための流路を確保する。	
(3) <u>代替SRV駆動装置</u> によるSRV動作時		(3) <u>逃がし安全弁窒素ガス代替供給設備</u> によるSRV動作時	
自圧式切替弁は、代替SRV駆動装置の窒素ボンベ圧力により		自圧式切替弁は,逃がし安全弁窒素ガス代替供給設備の	
バネ及び弁体を押し上げられることにより排気ポートを閉止		窒素ガスボンベ圧力によりバネ及び弁体を押し上げら	
し, <u>代替SRV駆動装置の窒素ボンベ</u> からSRVピストンまでの流		れることにより排気ポートを閉止し,逃がし安全弁窒素ガ	
路を確保する。		<u>ス代替供給設備の窒素ガスボンベ</u> からSRVピストンま での流路を確保する。	
また、自圧式切替弁の弁体シール部は全て、無機物である膨張		また,自圧式切替弁の弁体シール部は全て,無機物である	
黒鉛シートを使用しており、重大事故等時の高温蒸気や高放射線		膨張黒鉛シートを使用しており,重大事故等時の高温蒸気や	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
量の影響によりシール性が低下することがない設計としている。 本系統は、ADS機能 <u>なしの4個(B21-F001D, E, K, U)</u> へ、 <u>代替SRV</u> 駆動装置の窒素ガスボンベの窒素ガスの供給を行う設計する。 ここで、 <u>代替SRV駆動装置</u> の系統概要図を図1に、SRV本体に対す る電磁弁及び自圧式切替弁の配置図を図2に、自圧式切替弁の構造 図を図3に、自圧式切替弁及び電磁弁の動作概要図を図4に示す。		高放射線量の影響によりシール性が低下することがない設計としている。 本系統は、ADS機能 <u>がない2個</u> へ、逃がし安全弁窒素ガ ス代替供給設備の窒素ガスボンベの窒素ガスの供給を行う設 計とする。 ここで、逃がし安全弁窒素ガス代替供給設備の系統概要図を 図1に、SRV本体に対する電磁弁及び自圧式切替弁の配置 図を図2に、自圧式切替弁の構造図を図3に、自圧式切替弁 及び電磁弁の動作概要図を図4に示す。	 ・設備設計の相違 【柏崎 6/7】 減圧に必要な弁数の 相違。
<complex-block></complex-block>			
図1. 代替逃がし安全弁駆動装置の系統概要図		図1 逃がし安全弁窒素ガス代替供給設備 系統概要図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
図2. SRV本体に対する電磁弁及び自圧式切替弁の配置図		図2 SRV本体に対する電磁弁及び自圧式切替弁の配置図	
· · · · · · · · · · · · · · · · · · ·			
図3. 自圧式切替弁の構造図		図3 自圧式切替弁 構造図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
図4. 自圧式切替弁及び電磁弁の動作概要図		図4 自圧式切替弁及び電磁弁 動作概要図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
2.SRV用電磁弁の耐環境性能試験結果並びに今後の方針について		2. SRV用電磁弁の耐環境性能試験結果
		いて
(1) 試験目的		(1)試験目的
SRVの機能向上させるための更なる安全対策として, 高圧窒素		SRVの機能向上させるための更なる
ガス供給系及び代替SRV駆動装置により高圧窒素ガスを供給す		し安全弁窒素ガス供給系及び逃がし安全:
る際に流路となるバウンダリについて、電磁弁の作動性能に影		備により高圧窒素ガスを供給する際に流話
響を与えないシール部を、従来のフッ素ゴムより高温耐性が優		ついて,電磁弁の作動性能に影響を与え;
れた改良EPDM材に変更し、高温蒸気環境下におけるシール性能		のフッ素ゴムより高温耐性が優れた改良
を試験により確認する。		高温蒸気環境下におけるシール性能を試験
(2) 試験体概要		(2)試験体概要
試験体であるSRV用電磁弁の概要並びに改良EPDM材の採用箇		試験体であるSRV用電磁弁の概要並
所を図5に示す。		採用箇所を図5に示す。
図3 以及EPDM材を採用したSKV用电磁升概要因		図5 以長EPDMMを採用したSR

分炉	備考
並びに今後の方針につ	
安全対策として、逃が	
弁室素ガス代替供給設	
路となるバウンダリに	
ないシール部を、従来	
EPDM材に変更し,	
験により確認する。	
びに 改良 E P D M 材 の	
V用電磁弁概要図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
(3) 試験手順及び項目		(3) 試験手順及び項目
本試験で実施する試験項目を図6に示す。		本試験で実施する試験項目を図6に示
初期機能試験		初期機能試験
熱・放射線同時劣化処理		熱·放射線同時劣化処理
加庄劣化处理		加止务化观理
機械劣化処理		機械劣化処理
振動劣化処理		振動劣化処理
少化加理後の機能診験		
		劣化処理後の機能試験
事故時放射線照射処理		事故時放射線照射処理
↓		
蒸気曝露試験(シール性能確認※1)		蒸気曝露試験(シール性能確認等)
図6 試験手順及び項目		図6 試験手順及び項
※1シール性確認の判定基準		※1シール性確認の判定基準
・排気 (EXH) ポート側圧力に供給 (SUP) ポート側圧力の漏え		・排気(EXH)ポート側圧力に供給(SU
いが認められないこと。		えいが認められないこと。
・無励磁時の漏えい量は目標として以下であること。		・無励磁時の漏えい量は目標として
(4) 蒸気曝露試験装置概要及び蒸気曝露試験条件		(4) 蒸気曝露試験装置概要及び蒸気曝露
本試験で使用する蒸気曝露試験装置の概要を図7に示す。ま		本試験で使用する蒸気曝露試験装置の
た,重大事故環境試験条件を表1及び蒸気曝露試験条件を図8に		た,重大事故環境試験条件を表1及び蒸
示す。		に示す。
· · · · · · · · · · · · · · · · · · ·		
図7 蒸気曝露試験装置の概要		図7 蒸気曝露試験装置(

炉	備考						
ł							
9 °							
H							
P)ポート側圧力の漏							
以下であること。							
試験条件							
概要を <u>図7</u> に示す。ま							
気曝露試験条件を図8							
の概要							
柏崎刈羽原子力発電所 6	/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電	所 2号炉	備考
---------------------	----------------	--------------------------	---------------------	------------	-------------	------------	---------------
表1 重大事	故環境試験多	条件			表1 重大事故班	環境試験条件	
項目 条件		解析結果(参考)		項目		条件	
時間(経過) 0~168 時間	168~175 時間	Ⅰ 0~約7時間 ^{※2}		時間(経過)	0~168 時間	168~175 時間	
压力(kPa[gage]) 710	854	150kPa 以下** ³		圧力(kPa[gag	e]) 710	854	
温度(℃) 171	178	150℃以下**4		温度(℃)	171	178	
雰囲気 蒸気	蒸気	蒸気割合 12%以下**3		雰囲気	蒸気	蒸気	
放射線量(MGy)	× 1	0.1MGy 以下**3		放射線量(MG	y)	× 1	
※1:事象発生から7日間の累	累積放射線量	を示す。		※1:事業	象発生から7日間の累積	責放射線量を示す。	
※2:有効性評価「高圧溶融	她放出/格	納容器雰囲気直接加熱					・記載方針の相違
(DCH)」において,逃れ	がし安全弁(SRV)の機能に期待する					【柏崎 6/7】
(原子炉圧力容器破損)	に至る)期間	(事象発生から約7時間					全ての有効性評価シ
後まで)。							ナリオを包絡する条件
※3:有効性評価「DCH」にま	<u> さける※2の</u>	期間の値。放射線量に					で試験を行っているた
※2の期間の累積値。	~						め,代表的なシナリオ
※4:有効性評価「DCH」にま	3けるSRVの?	晶度評価(三次元熱流重	<u>b</u>				(DCH) の解析結果を掲
<u>解析)結果(PCVスプレ</u>	イ無し。)						載しない。
					-		
図8 蒸気	曝霰試驗条個	±			図8 蒸気曝電	袁試驗条件	
		I					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(5) 蒸気曝露試験並びに分解調査結果		(5) 蒸気曝露試験並びに分解調査結果	
蒸気曝露試験の結果,蒸気曝露試験中において漏えいが確認		蒸気曝露試験の結果、蒸気曝露試験中において漏えいが確認	
されることはなく、分解調査の結果、僅かな変形、軟化が確認		されることはなく、分解調査の結果、僅かな変形、軟化が確認	
されたものの、従来の設計基準事故環境下に比べ高温蒸気に対		されたものの、従来の設計基準事故環境下に比べ高温蒸気に対	
して,より長時間(<u>図8</u> 参照)にわたって,SRV駆動部(シリン		して,より長時間(図8参照)にわたって,SRV駆動部(シリ	
ダー)へ窒素ガスを供給する経路のシール性能が発揮され耐環		ンダ)へ窒素ガスを供給する経路のシール性能が発揮され耐環	
境性が向上していることを確認した。		境性が向上していることを確認した。	
蒸気曝露試験後のSRV用電磁弁を分解し,主弁,ピストン弁シ		蒸気曝露試験後のSRV用電磁弁を分解し、主弁、ピストン	
ート部及び主弁シート部Uパッキン(図 <u>5</u> 参照)シール部分につ		弁シート部及び主弁シート部Uパッキン(図 <u>5</u> 参照)シール部分	
いて,健全品との比較調査を行った。表2にシール部分の分解調		について,健全品との比較調査を行った。 <u>表2</u> にシール部分の	
査結果(主弁シート部シール部分及び主弁シート部Uパッキンシ		分解調査結果(主弁シート部シール部分及び主弁シート部Uパ	
ール部分)を示す。		ッキンシール部分)を示す。	
外観及び寸法確認の結果、主弁シート部シール部分について		外観及び寸法確認の結果、主弁シート部シール部分について	
は、シート部が軟化してシール部分の凹部の変形が確認された		は、シート部が軟化してシール部分の凹部の変形が確認された	
が僅かなものであった。また、従来のフッ素ゴム材を使用する		が僅かなものであった。また、従来のフッ素ゴム材を使用する	
主弁シート部Uパッキンについても変形が確認されたが僅かな		主弁シート部Uパッキンについても変形が確認されたが僅かな	
ものであった。		ものであった。	
表2 シール部分の分解調査結果		表2 シール部分の分解調査結果	
(主弁シート部シール部分及び主弁シート部Uパッキンシール部		(主弁シート部シール部分及び主弁シート部Uパッキンシール部	
分)		分)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(6) 今後の方針		(6) 今後の方針	
SRV駆動部 (シリンダ) へ窒素ガスを供給する経路のシール		SRV駆動部(シリンダ)へ窒素ガスを供給する経路のシー	
性能が発揮されていることが確認されたことから, SRVの機能向		ル性能が発揮されていることが確認されたことから、SRVの	
上させるための更なる安全性向上対策として,代替SRV駆動装置		機能向上させるための更なる安全性向上対策として, <u>全てのS</u>	・運用の相違
による駆動時の高圧窒素ガス流路となるSRV用電磁弁に対して		<u>RV</u> 用電磁弁について改良EPDM材を採用した電磁弁に交換	【柏崎 6/7】
改良EPDM材へ優先的に交換し,他のSRV用電磁弁についても計画		<u>する。</u>	島根2号炉は更なる
的に交換していく。			安全性向上対策として,
			再稼働までに SRV の全
			ての電磁弁を交換する。
3. SRVシリンダー改良の進捗及び今後の方針について		3. SRVシリンダ改良の進捗及び今後の方針について	
(1) 設計方針		(1) 設計方針	
SRV <u>シリンダー</u> のシール部においては, 熱によって損傷する恐		SRV <u>シリンダ</u> のシール部においては,熱によって損傷する	
れがあることから、高温蒸気環境下におけるシール性能を向上		恐れがあることから、高温蒸気環境下におけるシール性能を向	
させることを目的として,シリンダーピストンの作動に影響を		上させることを目的として, <u>シリンダ</u> ピストンの作動に影響を	
与えないシール部(シリンダ_0リング)を、従来のフッ素ゴム		与えないシール部(シリンダOリング)を,従来のフッ素ゴム	
より高温耐性が優れた改良EPDM材に変更する予定である。		より高温耐性が優れた改良EPDM材に変更する予定である。	
また、従来のフッ素ゴム材を使用するピストンの摺動部にお		また、従来のフッ素ゴム材を使用するピストンの摺動部にお	
いては、ピストン全開動作時に、フッ素ゴム材のシート部(ピ		いては,ピストン全開動作時に,フッ素ゴム材のシート部(ピ	
ストン0リング)の外側に改良EPDM材のシート部(バックシート		ストンOリング)の外側に改良EPDM材のシート部(バック	
0リング)を設置することにより、ピストン0リングが機能喪失		シートOリング)を設置することにより、ピストンOリングが	
した場合においてもバックシート <u>0リング</u> によりシール機能を		機能喪失した場合においてもバックシートによりシール機能を	・設備設計の相違
維持することが可能となる改良を実施する予定である。		維持することが可能となる改良を実施する予定である。	【柏崎 6/7】
ここで,既設 <u>SRV</u> の概要図を <u>図9</u> に,既設シリンダー及び改良		ここで,既設 <u>シリンダ</u> の概要図を図 <u>9</u> に,改良 <u>シリンダ</u> の概	設備仕様の相違。
<u>シリンダー</u> の概要図を図10に示す。		要図を図10に示す。	
なお,改良 <u>シリンダー</u> に対しては, <u>シリンダー</u> 単体試験,SRV		なお,改良 <u>シリンダ</u> に対しては, <u>シリンダ</u> 単体試験,SRV	
組合せ試験を実施するとともに、高温蒸気環境下におけるシリ		組合せ試験を実施するとともに、高温蒸気環境下におけるシリ	
ンダー漏えい試験を実施している。		ンダ漏えい試験を実施している。	

炉	備考
E	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉 図10 改良シリンダ 概要図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2)健全性確認試験		(2)健全性確認試験	
改良シリンダ …の健全性確認試験として、下記の表3に示すシ		改良シリンダの健全性確認試験として,放射線後	分化試驗後(放
リンダ一単体試験,SRV組合せ試験及び蒸気曝露試験(試験装		<u>射線量:約</u> MGy),下記の <u>表3</u> に示すシリンダ単体試験,	
置:図11,試験条件:図12参照)を実施し,SRV動作に対して影		SRV組合せ試験及び蒸気曝露試験を実施し、SRV動作に対	
響がないことの確認を実施した。		して影響がないことの確認を実施した。	
表3. 改良シリンダーの健全性確認試験内容		表3 改良シリンダの健全性確認試験内:	容
確認項目 試験条件 判定基準 結果		確認項目 判定基準 シリンダ 取動如作 口湯に作動する	
シリンダー 駆動部漏えい試験 漏えいがないこと 良 単体試験 駆動部作動試験 円滑に動作すること 良		単体試験 動試験	良
SRV 組合せ 最小作動圧確認試 全開操作可能なこと 良 ^{渉1}		駆動部漏 漏えいがないこ えい試験	
試験 驗			
アキュムレータ容量確認試験 全開操作可能なこ 良		SRV組 最小作動 全開操作可能な 合せ試験 圧確認試 (1) <td< td=""><td>こと 良**1</td></td<>	こと 良**1
作動試験 5回全開操作 ^{※2} 可 良 能なこと 6 6 6			
応答時間確認試験 応答時間確認試験 かり内参い 全間動		述かし弁 アキュムレータ 機能試験 (L) で全	谷重 開作動
ボラ県家 湿シい対応 作可能なこと ガラ県家 湿シい対応 点		すること	可能な
(シリンダー単体)		ロシカボドこと	良
		入力信号から 内 ^{*2} に全開動作	■ ● ジロ能な
		こと	
		蒸気曝露 開保持確 168 時間連続開作 試験 認 能なこと	呆持可 良 し
※1・最小作動圧力 MPaで動作可能たことを確認		※1:最小作動圧力 ■ MPa で動作可能たことを	
		※2:設計基準事故対処設備のECCS機能(ADS	機能)として
設計要求事項		の系統設計要求事項	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		図 11 蒸気曝露試験装置の概要	
図12 蒸気曝露試験条件			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
(3) 今後の方針	(3) 今後の対応	
①耐SA環境性の向上	SRVシリンダの改良は、DBA時のSRV動作に影響を	
代替SRV駆動装置においては、SRV用電磁弁が機能喪失した場	与える変更**1となることから、今後、信頼性確認試験*2を実	
合においても, SRV用電磁弁の排気ポートから窒素ガスを供給	施し,プラント運転に影響を与えないこと <u>及び200℃/</u>	・資料作成時点の試験進
することにより, SRV全開操作が可能な設計としていることか	<u>0.854MPa[gage]/168hr の環境下において開保持可能できる</u>	捗による相違
ら,改良シリンダ一の耐SA環境性の目標として図13に示すとお	ことを確認した。試験条件を図12(緑線)に示す。また、耐	【柏崎 6/7】
り、格納容器の限界温度・圧力を目指す設計とする。	環境性試験(200℃/0.854MPa[gage]/168hr)前後のシリン	
	ダピストン部の外観写真を図13に示す。	
	※1:改良シリンダは、SRV本体に接続するシリンダ摺動部	
	となるピストン寸法及び重量が増加する	
	※2:信頼性確認試験の項目は機械劣化試験,放射線劣化試験,	
	熱劣化試験,加振試験, 耐震試験, 水力学的動荷重試験,	
	事故時放射線試験,蒸気曝露環境試験及び作動試験等と	
	なる	
	今後は、更なる安全性向上のため改良シリンダを採用する	
	こととし、実機への導入準備が整い次第、至近のプラント停	
	止中に設置する。	
図13 耐SA環境性向上の設計条件		
②DB機能に対する影響評価		
SRVシリンダ_の改良は、DBA時のSRV動作に影響を与える変		
更*1となることから、今後、信頼性確認試験*2を実施し、プ		
ラント運転に影響を与えないことを確認する予定である。		
※1.ひ良シリンダーは SRV本体に接続するシリンダー摺動部		
とたるピストン寸法及び重量が増加する		
※2.信頼性確認試験の項目は機械劣化試験 放射線劣化試験		
教劣化試驗,加振試驗,耐震試驗,水力学的動荷重試驗,	図 12 試験条件	
事故時放射線試験、蒸気曝露環境試験及び作動試験等と		
23		
③スケジュール		
ひました 改良シリンダー導入の今後のスケジュールとしては、SRV本		
体及び試験治工具の製作がクリチカルとなり、下記のとおり約		
3年を目途に進めていく予定である。		
・200℃, 2Pdの耐環境試験:6ヶ月		
・信頼性確認試験:36か月(供試体製作(標準納期24ヶ月),	(a)耐環境試験前 (b)耐環境試験後	
試験(SRV開発時に行った項目を全て確	図 13 耐環境性試験前後のシリンダピストン部の外観写真	
認した場合:12ヶ月))		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
4. シール材の健全性について	4. シール材の健全性について	
SRV用電磁弁及びSRVシリンダ_のシール材をフッ素ゴムから	SRV用電磁弁及びSRVシリンダのシール材をフッ素ゴ	
改良EPDMへ変更することにより、シール機能の耐環境性向上に	ムから改良EPDMへ変更することにより、シール機能の耐	
ついて下記のとおり示す。	環境性向上について下記のとおり示す。	
① フッ素ゴム及び改良EPDM製シール材の圧縮永久ひずみ試験	①フッ素ゴム及び改良EPDM製シール材の圧縮永久ひずみ試	
について	験について	
フッ素ゴム及び改良EPDM製シール材の圧縮永久ひずみ試	フッ素ゴム及び改良EPDM製シール材の圧縮永久ひずみ	
験結果の比較を表4に示す。	試験結果の比較を表4に示す。	
表4の試験結果は、SRVが設置されている原子炉格納容器	表 <u>4</u> の試験結果は、SRVが設置されている原子炉格納容	
内における事故後7日間の累積放射線量を上回る800kGyを	器内における事故後7日間の累積放射線量を上回る 800kGy	
照射し,原子炉格納容器限界温度である200℃以上の環境に	を照射し,原子炉格納容器限界温度である 200℃以上の環境	
曝露した後,フッ素ゴム及び改良EPDM製シール材の圧縮永久	に曝露した後、フッ素ゴム及び改良EPDM製シール材の圧	
ひずみを測定した結果を示している。その結果,フッ素ゴム	縮永久ひずみを測定した結果を示している。その結果、フッ	
は800kGy, 乾熱, 200℃の環境に3日間(72h)曝露されるこ	素ゴムは 800kGy, 乾熱, 200℃の環境に 3 日間(72h) 曝露さ	
とで圧縮永久ひずみが に劣化することが予想され	れることで圧縮永久ひずみが に劣化することが	
るのに対して,改良EPDM製シール材は800kGy,乾熱/蒸気,	予想されるのに対して,改良EPDM製シール材は800kGy,	
200℃の環境に7日間(168h)曝露されても圧縮永久ひずみは	乾熱/蒸気, 200℃の環境に7日間(168h)曝露されても圧縮永	
最大 であることが確認できている。本結果が示す	久ひずみは最大 であることが確認できている。本	
とおり,改良EPDM製シール材はフッ素ゴムより耐環境性が十	結果が示すとおり、改良EPDM製シール材はフッ素ゴムよ	
分高いことが確認できるため,シール機能の耐環境性向上が	り耐環境性が十分高いことが確認できるため、シール機能の	
達成できると考えている。	耐環境性向上が達成できると考えている。	
表4 シール材の圧縮永久ひずみ試験結果	表4 シール材の圧縮永久ひずみ試験結果	
放射線 ガス性状 温度 圧縮永久ひずみ試験 [※] 支付照射量 ガス性状 温度 24h 72h 168h	放射線 圧縮永久ひずみ試験*	
フッ素ゴム 800kGy 乾熱 200℃ 改良 EPDM 800kGy 乾熱 200℃	材質 累積照射量 ガス性状 温度 24h 72h 168h	
改良 EPDM 800kGy 乾熱 250℃ 改良 EPDM 800kGy 蒸気 200℃	<u>フッ素ゴム</u> 800kGy 乾熱 200℃ <u>*ためにに、</u> ***********************************	
改良 EPDM 800kGy 蒸気 250℃		
	改良EPDM 800kGy 基本 200℃	
	改良EPDM 800kGy 蒸気 250℃	
※圧縮永久ひずみ試験とは、所定の圧縮率をかけ変形させた後、	※圧縮永久ひずみ試験とは,所定の圧縮率をかけ変形させた後,	
開放時の戻り量を評価するものである。完全に元の形状に戻	開放時の戻り量を評価するものである。完全に元の形状に戻	
った場合を0%、全く復元せずに完全に圧縮された状態のまま	った場合を0%,全く復元せず完全に圧縮された状態を100%	
である状態を100%としている。圧縮永久ひずみ試験結果が低	としている。圧縮永久ひずみ試験結果が低い程、シール材の	
い程、シール材の復元量が確保されていることを意味してお	復元量が確保されていることを意味しており、シール機能は	
りシール機能は健全であることを示している。	健全であることを示している。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
② 改良EPDM製シール材の性能確認試験について		②改良EPDM製シール材の性能確認試験について	
上記の①で示すシール材特性試験に加え,改良EPDM製シー		上記の①で示すシール材特性試験に加え、改良EPDM製	
ル材のシール機能を確認するために, 小型フランジ試験装置		シール材のシール機能を確認するために、小型フランジ試験	
を用いて事故環境下に曝露させ,性能確認試験を実施してい		装置を用いて事故環境下に曝露させ、性能確認試験を実施し	
る。本試験は,原子炉格納容器内における事故後7日間の累		ている。本試験は原子炉格納容器内における事故後7日間の	
積放射線量の目安である800kGy,格納容器限界温度である		累積放射線量の目安である 800kGy,格納容器限界温度である	
200℃と余裕を見た250℃の環境に7日間(168h)曝露した試		200℃と余裕を見た 250℃の環境に 7 日間(168h) 曝露した試験	
験体に対してHe気密性能確認試験を実施し,格納容器限界圧		体に対して He 気密性能確認試験を実施し, 格納容器限界圧力	
力2Pd <u>(0.62MPa)</u> を超える0.9MPa加圧時において漏えいがな		2Pd <u>(0.853MPa)</u> を超えるMPa加圧時において漏えいがな	・設備設計の違い
いことを確認した。		いことを確認した。	【柏崎 6/7】
			柏崎 6/7(ABWR)と島
なお,改良EPDM製シール材の試験の詳細を <u>別紙-1</u> 「改良EPDM		なお,改良EPDM製シール材の試験の詳細を <u>別紙-1</u> 「改	根2号炉(Mark-I改)
シール材の試験について(平成27年11月19日審査会合資料抜		良EPDMシール材の試験について」で示す。	の最高使用圧力の相違。
粋)」で示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
別紙-1	別紙-1	
改良EPDMシール材の試験について	改良EPDMシール材の試験について	
改良EPDMシール材について、耐高温性、耐蒸気性を確認するた		
めに、800kGyのカンマ緑照射を行った材料を用いて、高温曝露ス	るために,800kGyのカンマ緑照射を行った材料を用いて,高温曝 電力は英有唱画さな、さ後、有点な研究論論さなたして混合いのた	
は蒸気曝露を行った後、気密確認試験を実施して漏えいの有無を	露又は蒸気曝露を行った後、気密確認試験を実施して漏えいの有	
確認した。また、試験後の外観観祭、FT-IR分析及び硬さ測定を行	無を確認した。また、試験後の外観観祭, FT-TR分析及び硬	
い、曝露後のシール材の状況を確認した。本試験に使用した試験	さ測定を行い、曝露後のシール材の状況を確認した。本試験に使	
治具寸法を図1,外観を図2に示す。シール材の断面寸法は実機の	用した試験治具寸法を図1,外観を図2に示す。シール材の断面	
1/2とし、内側の段差1mmに加えて外側からも高温空気又は蒸気に	寸法は実機の1/2とし、内側の段差1mmに加えて外側からも高	
曝露されるため、実機条件と比較して保守的な条件となると想定	温空気又は蒸気に曝露されるため、実機条件と比較して保守的な	
される。試験の詳細と結果を以下に記載する。	条件となると想定される。試験の詳細と結果を以下に記載する。	
①高温曝露	①高温曝露	
熱処理炉を使用して200℃, 168hの高温曝露を実施した。	熱処理炉を使用して 200℃, 168h の高温曝露を実施した。	
②蒸気曝露	②蒸気曝露	
東京電力技術開発センター第二研究棟の蒸気用オートクレ	東京電力技術開発センター第二研究棟の蒸気用オートクレ	
ーブを使用して, 1MPa, 250℃の蒸気環境下で168時間曝露を	ーブを使用して, 1 MPa, 250℃の蒸気環境下で 168 時間曝露	
実施した。蒸気用オートクレーブの系統図を図3に、試験体設	を実施した。蒸気用オートクレーブの系統図を図3に、試験	
置状況を図4に示す。	体設置状況を図4に示す。	
③He気密確認試験	③He 機密確認試験	
高温曝露及び蒸気曝露後の試験体について、Heを用いて気	高温曝露及び蒸気曝露後の試験体について、He を用いて気	
密試験を実施した。負荷圧力は0.3MPa, 0.65MPa, 0.9MPaとし、	密試験を実施した。負荷圧力は 0.3MPa、 0.65MPa、 0.9MPa と	
スヌープでのリーク確認と、0.3MPaは保持時間10分、0.65MPa	し、スヌープでのリーク確認と、0.3MPa は保持時間 10 分、	
及び0.9MPaは保持時間30分で圧力隆下の有無を確認した。ま	0.65MPa 及び 0.9MPa は保持時間 30 分で圧力隆下の有無を確	
た.0.8mmの隙間ゲージを用いて開口変位を模擬した気密確認	認した。また、0.8mmの隙間ゲージを用いて開口変位を模擬	
試験も実施した(実機1.6mm相当の変位)。試験状況を図5.6	した機密確認試験も実施した(実機1.6mm 相当の変位)。試験	
に、試験結果を表1に示す。いずれの条件下でもリーク及び圧	状況を図5.6に、試験結果を表1に示す。いずれの条件下	
力降下は認められたかった。	でもリーク及び圧力降下は認められたかった	
④試驗後外組組察	④試驗後外組細察	
デジタルマイクロスコープを用いてIIの気容確認試験後のシ	デジタルマイクロスコープを用いてHo気密確認試験後の	
ール材表面を細察した 細察結果を図7に示す、シール材表面		
に割れ笠の顕茎な少化け認められなかった	ま面に割れ竿の頭茎な少化け認められたかった	
(に前4し守い)駅有な方口はむびりり4しなかうた。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
図1 試験治具寸法		図1 試験治具寸法
$ \hline r \\ \hline $		正部 下部 100-0000 100-0000 図2<
図3 蒸気用オートクレーブ系統図		図3 蒸気用オートクレーフ

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<image/> <caption></caption>		<image/> <caption></caption>	
<image/> <image/> <image/> <image/> <image/> <image/>		<image/> <image/> <complex-block><image/><image/><image/></complex-block>	
表1 He気密確認試験状況		表 1 He 気密試験確認状況	
No. ガンマ線 変位 0.3MPa 0.65MPa 0.9MPa		No. 曝露条件 y線照射 量 変位 0.3MPa 0.65MPa 0.9MPa	
照知風 無し 〇 1<		1 乾熱 200°C, 168h 800kGy 無し 〇 〇 第二 乾熱 200°C, 168h 800kGy 0.8mm 〇 〇	
2 蒸気 1MPa, 250°C, 168h 800kGy 無し 〇 〇		2 蒸気 IMPa, 250 C, 168h 800kGy 無し 〇 〇 蒸気 IMPa, 250 C, 紙し 〇 〇 〇	
3 $\overline{XS1}$ 1MPa, 250°C, 168h $800kGy$ \underline{mL} \bigcirc \bigcirc		3 168h 800kGy 10.8mm 〇 〇 〇 0:リーク及び圧力降下なし	
○:リーク及び圧力降下なし			
	補-321		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
^{曝露面} ^{曝露面} ^w ^w ^w ^w ^w ^w ^w ^w		wggm wgg	
⑤ FT-IR分析 試験後のシール材のFT-IR分析結果を図8,9に示す。FT-IR は赤外線が分子結合の振動や回転運動のエネルギーとして吸 収されることを利用して,試料に赤外線を照射して透過又は 反射した光量を測定することにより分子構造や官能基の情報 を取得可能である。高温曝露中に空気が直接接触する位置(曝 露面)では、ベースポリマーの骨格に対応するピークが消失 していたが、その他の分析位置、曝露条件では顕著な劣化は 認められなかった。		⑤FT-IR分析 試験後のシール材のFT-IR分析結果を図8,9に示す。 FT-IRは赤外線が分子結合の振動や回転運動のエネルギ ーとして吸収されることを利用して,試料に赤外線を照射し て透過又は反射した光量を測定することにより分子構造や官 能基の情報を取得可能である。高温曝露中に空気が直接接触 する位置(曝露面)では、ベースポリマーの骨格に対応する ピークが消失していたが、その他の分析位置、曝露条件では 顕著な劣化は認められなかった。	
図8 FT-IR分析結果 (曝露面)		図8 FT-IR分析結果 (曝露面)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
図9 FT-IR分析結果(シート面)		図9 FT-IR分析結果(シート面)	
⑥ 硬さ測定		⑥硬さ測定	
試験後のシール材の硬さ測定結果を図10に示す。曝露面,		試験後のシール材の硬さ測定結果を図10に示す。曝露面,	
ジー下面, 裏面, 断面の硬さを測定した。喙露面において, 乾熱200℃, 168h条件では酸化劣化によって硬さが顕著に上昇		シー下面, 裏面, 断面の硬さを例定した。曝路面において, 乾熱 200℃, 168h 条件では酸化劣化によって硬さが顕著に上	
していた。その他の部位,条件では,蒸気250℃,168h条件の 唱雲云で基本の執体が確認されたいね。 ほとけ知期は近傍で		昇していた。その他の部位,条件では,蒸気 250℃, 168h 条	
曝露面で右干の軟化が確認された以外,硬さは初期値辺傍で あり,顕著な劣化は確認されなかった。		件の曝露面で右十の軟化が確認された以外, 硬さは初期値近 傍であり, 顕著な劣化は確認されなかった。	
		★ ◆ 暴露麺 →	
● ⁻ → シー ト面 ● 裏面		■シート類 ▲ 実面	
		•	
		初期値 乾式200℃ 蒸気250℃	
初期値 乾熱 200℃ 蒸気 250℃ 168h 168h		168時間 168時間	
図10 硬さ測定結果		図 10 硬さ測定結果	
以上の試験結果から, 200℃, 2Pd, 168hの条件下では, 改良		以上の試験結果から,200℃,2Pd,168hの条件下では,改	
EPDMシール材を使用した場合は、圧力上昇時のフランジ部の開		良EPDMシール材を使用した場合は、圧力上昇時のフランジ	
ロを勘案しても原子炉格納容器フランジ部の気密性は保たれる と考えられる。		部の開口を勘案しても原子炉格納容器フランジ部の気密性は保たれると考えられる。	
以上			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
44. 非常用ガス処理系の使用を考慮した評価について	資料なし	31. 非常用ガス処理系の使用を考慮した評価について	
柏崎刈羽原子力発電所6号及び7号炉においては、重大事故時		<u>島根原子力発電所2号炉</u> においては、重大事故時における現場	
における現場作業の成立性を確かなものにするため、必要な対策		作業の成立性を確かなものにするため、必要な対策を実施の上、	
を実施の上,以下の運用を行うこととしている。		以下の運用を行うこととしている。	
・作業現場の放射線量の上昇の緩和のため,非常用ガス処理系		・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系	
を起動する		を起動する	
・全交流電源喪失時においても屋外作業を行わずに速やかに非		・全交流電源喪失時においても屋外作業を行わずに速やかに非	
常用ガス処理系を使用できるよう、ガスタービン発電機を中		常用ガス処理系を使用できるよう、ガスタービン発電機を中	
央制御室から遠隔操作により起動する		央制御室から遠隔操作により起動する	
ここでは、非常用ガス処理系の運転を考慮した場合の重大事		ここでは、非常用ガス処理系の運転を考慮した場合の重大事故	
故時における作業時の被ばく線量を確認した。		時における作業時の被ばく線量を確認した。	
なお、格納容器ベント実施に伴う現場作業の線量影響の評価		なお、格納容器ベント実施に伴う現場作業の線量影響の評価条	
条件及び評価結果の詳細は,「重大事故等対処設備について 別		件及び評価結果の詳細は,「重大事故等対処設備について 別添資	
添資料−1 原子炉格納容器の過圧破損を防止するための設備 (格		料-1 格納容器フィルタベント系について」の別紙8に示す。	
納容器圧力逃がし装置)について」の別紙33 に示す。			
また,中央制御室での被ばく線量については,「59 条 原子炉		また、中央制御室での被ばく線量については、「59条 運転員	
<u>制御室</u> (補足説明資料) 59-11 原子炉制御室の居住性に係る被		が原子炉制御室にとどまるための設備(補足説明資料)59-11原	
ばく評価について」に示す。		子炉制御室の居住性に係る被ばく評価について」に示す。	
1.現場の作業環境		 1.現場の作業環境 	
現場の作業環境の評価結果を表1に示す。評価の結果,被ば		現場の作業環境の評価結果を表1に示す。評価の結果、被ば	
く線量は最大でも <u>約87mSv</u> となった。このことから,各々の現場		く線量は最大でも <u>約 53mSv</u> となった。このことから,各々の現	・評価結果の相違
作業は作業可能であることを確認した。		場作業は作業可能であることを確認した。	【柏崎 6/7】
なお、作業の評価条件及び評価結果の詳細は別紙「給油等の		なお、作業の評価条件及び評価結果の詳細は別紙「給油等の	
現場作業の線量影響について」に示す。		現場作業の線量影響について」に示す。	

柏崎刈羽』	原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2-		備考
表1 有効性評	価(重大事故)で想定する主	<u>こな現場作業と放射線環</u>	表1 有効性評価(重大事故)で想定する	主な現場作業と放射線	・評価結果の相違
	現				【 相 崎 6/7】
作業項目	具体的な運転操作・作業内容	放射線環境	低圧原子炉代 ・大量送水車による輪谷	庁水槽か	
復水貯蔵槽への	・可搬型代替注水ポンプ (A-2 級) による	淡水貯水池 最大約63mSv	替注水槽への ら低圧原子炉代替注水	曹への補 約 23mSv	
竹田市口	・軽油タンクからタンクローリへの補給		補給準備 給		
各機器への給油	・可搬型代替注水ポンプ(A-2 級),電源	車,大容量 最大約87mSv [※]	・ガスタービン発電機用	経油タン	
常 现代表本海雪	送水車(熱交換器ユニット用)への燃	料給油作業	タ地田 の公 クからタンクローリー	り補給	
源設備からの受	(第一ガスタービン発電機)	1 mSv以下	谷機器 (0) 福 ・大量送水車,大型送水本	ペンプ車, 約 19mSv*	
電操作	・M/C 受電確認, MCC 受電		油 「 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	の燃料給	
代替原子炉補機 冷却系運転操作	·代替原子炉補機冷却系 準備操作,運	転状態監視 最大約54mSv	1 油作業		
※評価結果 への燃料	が最大となる「 <u>大容量送水車</u> 給油作業」の値を示す	<u>(熱交換器ユニット用)</u>	常設代替交流 ・常設代替交流電源設備 「な設代替交流 及び運転状態確認(ガン の受電操作 ・M/C受電操作,受電	単備操作 スタービ 約 41mSv 権認	
			原子炉補機代 替冷却系運転 操作	[፤] 備操作, 約 53mSv	
			※格納容器フィルタベント実施後に、タン	クローリから大量送水	
			車,可搬式窒素供給装置,大型送水ポン	プ車に順に給油すると	
			きの値を示す		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙		別紙	
給油等の現場作業の線量影響について		給油等の現場作業の線量影響について	
重大事故時における現場作業は放射線環境下での作業となる。		重大事政時における現場作業は放射線境境下での作業となる。 こここれ、 たけいます(そしまれ)、 て相応 トストか 現場(た業の)	
ここでは、有効性評価(重大事故)で想定する主な現場作業のう		ここでは、有効性評価(重大事故)で想定する主な現場作業のう	
ち、別紙表1 に示す作業について作業時の被はく線量の評価を行		ち、別紙表1に示す作業について作業時の被はく線量の評価を行	
った。作業の時間帯等を別紙表2に示す。また、各現場作業にお		った。作業の時間帯等を別紙表2に示す。また、各現場作業にお	
ける線量影響評価で採用した評価点を <u>別紙図1</u> から <u>別紙図4</u> に示		ける線量影響評価で採用した評価点を <u>別紙図1</u> から <u>別紙図3</u> に示	
す。		す。	
各作業の評価時間には作業場所への往復時間を含めた。なお、		各作業の評価時間には作業場所への往復時間を含めた。なお、	
移動中における線量率が作業中における線量率と異なることを考		移動中における線量率が作業中における線量率と異なることを考	
慮し、作業によっては、作業中と移動中で異なる場所を評価点と		慮し、作業によっては、作業中と移動中で異なる場所を評価点と	
設定し評価した。線源強度や大気拡散評価等の評価条件は、「重大		設定し評価した。線源強度や大気拡散評価等の評価条件は、「重大	
事故等対処設備について 別添資料-1 原子炉格納容器の過圧破損		事故等対処設備について 補足説明資料 59-11 原子炉制御室の	
を防止するための設備(格納容器圧力逃がし装置)について」の		居住性(炉心の著しい損傷)に係る被ばく評価について」と同じ	
別紙33 と同じとした。また,格納容器ベント実施後の作業は,7号		とした。また,格納容器ベント実施後の作業は,W/Wベントを	
炉にてW/W ベントを実施した場合を代表として評価した。評価結		実施した場合を代表として評価した。評価結果を <u>別紙表2</u> に示す。	
果を <u>別紙表2</u> に示す。			
評価の結果,被ばく線量は最大でも <u>約87mSv</u> となった。このこ		評価の結果,被ばく線量は最大でも <u>約53mSv</u> となった。このこ	・評価結果の相違
とから、各々の現場作業は作業可能であることを確認した。		とから、各々の現場作業は作業可能であることを確認した。	【柏崎 6/7】
<u>別紙表1 有効性評価(重大事故)で想定する主な現場作業</u>		別紙表1 有効性評価(重大事故)で想定する主な現場作業	・設備設計の相違
作業項目 具体的な運転操作・作業内容		作業項目 具体的な運転操作・作業内容	【柏崎 6/7】
復水貯蔵槽への補給 ・可搬型代替注水ポンプ(A-2 級)による淡水貯水池から復水貯蔵 槽への補給		低圧原子炉代 替注水槽への 給 ・大量送水車による輪谷貯水槽から低圧原子炉代替注水槽への補 給	
 ・軽油タンクからタンクローリへの補給 各機器への給油 ・可搬型代替注水ポンプ(A-2 級),電源車,大容量送水車(熱交換) 		補給準備 ・ガスタービン発電機用軽油タンクからタンクローリへの補給	
 器ユニット用)への燃料給油作業 ・ 常設代替交流電源設備準備操作及び運転状態確認(第一ガスター 		各機器への給 油 ・大量送水車,大型送水ポンプ車,可搬式窒素供給装置への燃料 給油作業	
常設代替交流電源設 備からの受電操作 ビン発電機)		常設代替交流・常設代替交流電源設備準備操作及び運転状態確認(ガスタービ	
・ M/C 受電確認, MCC 受電 (代替原子炉補機冷却)		電源設備から ン発電機) の受雷操作 ・M/C受雷操作、受雷確認	
·代替原子炉補機冷却系 準備操作,運転状態監視 系運転操作		原子炉補機代	
		 替冷却系運転 ・原子炉補機代替冷却系準備操作,運転状態監視 操作 	

柏	崎刈.	羽原-	子力発	電所 6/7号炉	(2017.12.	20版)	東海第二発電所	(2018. 9. 12 版)			島根	原子ナ	」発電所	2号炉			備考
0.000 PT - 11 - 210 - 200 - 211 - 210 - 200 - 211 - 210 - 200 - 211 - 210 - 200 - 21	www.co.tr.本 可搬型代替注水	ポンプへの給油 屋外	40 時間 45 分後 ^{%3}	移動 10 分 作業 10 分	桊ý 84mSv	すめ。 で た し た。				格納容器ベント実施 後の作業	各機器への給油*1	屋外	約 42.5 時間後	作業 69 分 移動 30 分	举勺 19mSv	1することを想定 1間、評価時間を設定	・設備設計,運用,評価 条件の相違 【柏崎 6/7】
湯作業に伴う被ばく	11.4014-00-1-22	~ の給油 屋外	40時間35分後 ^{※3}	移動 10 分 作業 20 分 ^{%5}	举约 87mSv	 「「「「「「「「」」」」を開きまたポンプへの給油」と同 2000			場作業に伴う被ばく		亮子炉補機代替 冷却系準備操作	屋外	2時間 30 分後	≓業 7 時間 30 分 移動 35 分	举匀 53mSv	ペンプ車に順に給油 よづき、移動開始時	
で想定する主な現 ***	* 代替原子炉補機	信却杀連転操作 屋外	11 時間後	1 班: 移動 190 分 香敷 120 分 電動 20 分 業 240 分	1 班:約 54mSv 2 班:約 49mSv	 た場合を想定する。 テマ代替循環治規系を用いて事 完了時間は保守的に「可搬型」 分を考慮した 20 分を想定する) で想定する主な現	ト実施前の作業	P炉代替	<u>۸</u>	3後	寺間 5 分 作 35 分	3mSv	装置、大型送水ボ 3表(一覧)」に基	
許価(重大事故)	4.4m.、「、、、」。2011-2011-2011-2011-2011-2011-2011-2011	屋外	6 時間 5 分後	移動 55 分 ^{%4} 作業 310 分	₩9 63mSv	を用いて事象収まに成功し WF ペント)に至り、6 号代 量送水車への給油」の作業 時間除く)に,時間余裕3.			生評価(重大事故)	格納容器ベン	東 東 低圧原子 作 一 准水槽への	围	20 7	作 ※ 参動	約 2:	可搬式窒素供給 J策の成立性確認	
別紙表2 有効性	常設代替交流電源	設備からの受電操作 屋内	10 分後	移動, 作業 60 分	¥5 0. 32mSv	、両号炉共に代替循環治却系 、可号炉で格納容器ペント(こう号炉で格納容器ペント(こうなるように設定。「大容 15分を含む。 にする給油作業時間 17分(移動			別紙表2 有効		常設代替交流電/ 没備からの受電操	屋内	20 分後	作業 70 分 移動 15 分	約 41mSv	いた量送水車, 1 重大事故等*	
			移動開始時間 (事象開始後)	評価時間	被ばく線量	 ※1 評価に当たってに ※2 評価に当たってに ※3 41時間後に在業5 ※4 高台での存業時間 ※5 技術的能力で増減 					1,111-2	<u> </u>	多動開始時間 ^{*2} (事象開始後)	■ 評価時間	被ばく線量	1 タンクローリた 2 「添付資料 1.3	
													<u> </u>			× ×	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
即巡回1 发表的基本			
加和区II 復小时做帽 ,207曲和		進備操作及び各機器への給油時の線量評価点	
N新図2 代基百子恒補機冷却系運転撮作(7 号恒対広時)			
		別紙図2 屋外移動中の評価点	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		_	
別紙図3 大谷量送水車への給油		別紙図3 常設代替交流電源設備からの受電操作の評価点	
別紙図4 可搬型代替注水ホンフへの給油			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 3.2.17		
45. 原子炉圧力容器の破損位置について	原子炉圧力容器の破損位置について	32. 原子炉圧力容器の破損位置について	
原子恒圧力変異の破損について MAAD でけ N下の破損エ			
	て以下のものが考慮されており 解析においてけこれらの中か	「ホードから判定された破損モードが適用される	
	ら判定された破損モードが適用される。		
a) 下部ヘッド貫通部への溶融物流入による破損	a)下部ヘッド貫通部への溶融物流入による破損	a) 下部ヘッド貫通部への溶融物流入による破損	
b)下部ヘッド貫通部の逸出	b)下部ヘッド貫通部の逸出	b) 下部ヘッド貫通部の逸出	
c) デブリジェットの衝突による下部ヘッドの局所破損	c)デブリジェットの衝突による下部ヘッドの局所破損	c)デブリジェットの衝突による下部ヘッドの局所破損	
d)金属層による原子炉圧力容器壁の破損	d)金属層による原子炉圧力容器壁の破損	d)金属層による原子炉圧力容器壁の破損	
e)原子炉圧力容器のクリープ破損	e)原子炉圧力容器のクリープ破損	e)原子炉圧力容器のクリープ破損	
原子炉圧力容器の下部ヘッドは径方向(5 ノード)及び厚さ	原子炉圧力容器の下部ヘッドは径方向(5 ノード)及び厚さ	原子炉圧力容器の下部ヘッドは径方向(5ノード)及び厚	
方向(5 ノード)に分割されており, ノードごとに破損に至っ	方向(5 ノード)に分割されており、ノードごとに破損に至っ	さ方向(5ノード)に分割されており、ノードごとに破損に	
ているかの判定が行われる。第1図に原子炉圧力容器下部ヘッ	ているかの判定が行われる。 <u>第1図</u> に原子炉圧力容器下部ヘッ	至っているかの判定が行われる。図1に原子炉圧力容器下部	
ドのノード分割の概念図を示す。	ドのノード分割の概念図を示す。	ヘッドのノード分割の概念図を示す。	
有効性評価(※1)においては,下部プレナムへ移行した溶	有効性評価のうち,3.2 高圧溶融物放出/格納容器雰囲気直	有効性評価(※1)においては、下部プレナムへ移行した	
融炉心の加熱により, 原子炉圧力容器下部の中心部ノードの温	接加熱にて対象としている事故シーケンス「過渡事象+高圧炉	溶融炉心の加熱により、原子炉圧力容器下部の中心部ノード	
度が最も高くなり, 制御棒駆動機構ハウジング溶接部のひずみ	心冷却失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧失敗	の温度が最も高くなり、制御棒駆動機構ハウジング溶接部の	
量がしきい値(0.1)に至る原子炉圧力容器破損(※2)が最初	(+DCH)」(「3.3 原子炉圧力容器外の溶融燃料-冷却材相	ひずみ量がしきい値(0.1)に至る原子炉圧力容器破損(※2)	
に発生する結果となっている。	互作用」及び「3.5 溶融炉心・コンクリート相互作用」の評価	が最初に <u>発生する</u> 結果となっている。	
	事故シーケンスへの対応及び事象進展と同じ)においては、下		
	部プレナムへ移行した溶融炉心からの加熱により,原子炉圧力		
	容器下部の中心部ノードの温度が最も高くなり,制御棒駆動機		
	構ハウジング溶接部のひずみ量がしきい値(0.1)に至ること		
	による原子炉圧力容器破損(「b)下部ヘッド貫通部の逸出」に		
	該当)が最初に判定される結果となっている。		
径方向のノードごとの制御棒駆動機構ハウジング溶接部の	径方向のノードごとの制御棒駆動機構ハウジング溶接部の	径方向のノードごとの制御棒駆動機構ハウジング溶接部の	
ひずみ量の推移を第2回に,原子炉圧力容器下部ヘッド温度の	ひずみ量の推移を第2図に,原子炉圧力容器下部ヘッド温度の	ひずみ量の推移を図2に、原子炉圧力容器下部ヘッド温度の	
推移を第3図に示す。第2図に示すとおり、原子炉圧力容器下	推移を第3図に示す。第2図に示すとおり、原子炉圧力容器下	推移を図3に示す。図2に示すとおり、原子炉圧力容器下部	
部の中心ノードに該当するノード1 のひずみ量がしきい値	部の中心ノードに該当するノード 1 のひずみ量がしきい値	の中心ノードに該当するノード1のひずみ量がしきい値	
(0.1)に達して原子炉圧力容器破損に至っている。また, 第3	(0.1)に達して原子炉圧力容器破損に至っている。また、第	(0.1)に達して原子炉圧力容器破損に至っている。また、図	
図に示すとおり、ノード1 が高温を長時間維持していることが オヨンレート	3. 図に示すとおり、ノード1が高温を長時間維持していること	3.に示すとおり、ノード1が高温を長時間維持していること	
催認された。	か確認された。	か確認された。	
※1・DCH、 炉外FCI 及びMCCI にて対象としている事故シーケ		※1·DCH、炉外FCI及びMCCIにて対象としていろ	
ンス		事故シーケンス	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
46. 逃がし安全弁 (SRV) 出口温度計による炉心損傷の検知性につ	3 逃がし安全弁出口温度による炉心損傷の検知性について	33. 逃がし安全弁 (SRV) 出口温度計による炉心損傷の検知性	
いて		について	
「「「「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」	「「「「「「「」」」「「」」「「」」「「」」「「」」「「」」「」」「「」」「	「「「「「「「「「」」」」」「「「」」」「「」」「「」」「「」」「「」」「「	
り行うが、逃がし安全弁(SRV)出口温度計による炉心損傷の検知	うが、 逃がし安全弁(以下「SRV」という。)出口温度(排気)	より行うが、逃がし安全弁(以下「SRV」という)出口温度計	
性については以下の通り。	<u>管温度</u>)による炉心損傷の検知性については以下のとおり。	による炉心損傷の検知性については以下のとおり。	
1. SRV 出口温度計の設備概要	1. <u>SRV排気管温度の計装</u> 設備概要	1. <u>SRV出口温度計</u> の設備概要	
SRV 出口温度計は,原子炉運転中にSRV からの漏えいを検出	<u>SRV排気管温度</u> は、原子炉運転中にSRVからの漏えいを	<u>SRV出口温度計</u> は,原子炉運転中にSRVからの漏えいを検	
するために,SRV の <u>吐出配管</u> に設けており,測定範囲は0~300℃	検出するために、SRVの <u>吐出配管</u> に設けており、測定範囲は	出するために、SRVの排出配管に設けており、測定範囲は0~	
である。温度検出器は,SRV 本体からの熱伝導による誤検出を	0℃~300℃である。温度検出器は、SRV本体からの熱伝導に	300℃である。温度検出器は、SRV本体からの熱伝導による誤検	
防ぐために、弁本体から十分離れた位置に取り付けている(図	よる誤検出を防ぐために、弁本体から十分離れた位置に取り付	出を防ぐために, 弁本体から十分離れた位置に取り付けている(図	
<u>1</u> 参照)。	けている。(<u>第1図</u> 参照)	<u>1</u> 参照)。	
9 百子恒水位低下時の百子恒圧力容哭内沮産の概略送動	9	2	
事故発生後 原子炉水位が低下する過程において 炉心が訝	事故発生後 原子炬水位が低下する過程において 炬心が冠	事故発生後 原子炉水位が低下する過程において 炉心が冠水	
水した状能では、炉心部及び原子炉圧力容器ドーム部の温度は	水した状態では、炉心部及び原子炉圧力容器ドーム部の温度は、	した状態では、 炉心部及び原子炉圧力容器ドーム部の温度は、 と	
ともに定格原子炉圧力 (7.07MPa [gage]) ないしはSRV 動作圧	ともに定格原子炉圧力(6.93MPa[gage])ないしはSRV動作圧	もに定格原子炉圧力(6.93MPa [gage])ないしはSRV動作圧力	・設備設計の相違
力(安全弁機能の最大8.20MPa [gage])に対応する飽和蒸気温	力(安全弁機能の最大 8.31MPa[gage])に対応する飽和蒸気温	(安全弁機能の最大 8.35MPa[gage])に対応する飽和蒸気温度近	【柏崎 6/7,東海第二】
度近傍(約287℃~約298℃)となる。	度近傍(約 286℃~約 299℃)となる。	傍(約 286℃~約 299℃)となる。	設備仕様の相違。
さらに原子炉水位が低下すると、炉心が露出した炉心部と原	さらに、原子炉水位が低下すると、炉心が露出した炉心部と	さらに原子炉水位が低下すると、炉心が露出した炉心部と原子	
子炉圧力容器ドーム部は過熱蒸気雰囲気となり、温度は飽和蒸	原子炉圧力容器ドーム部は過熱蒸気雰囲気となり、温度は飽和	炉圧力容器ドーム部は過熱蒸気雰囲気となり、温度は飽和蒸気温	
気温度を超えて上昇する。	蒸気温度を超えて上昇する。	度を超えて上昇する。	
3. SRV 出口温度計による炉心損傷の検知性 	3. <u>SRV排気官温度</u> による炉心損傷の検知性 素状変化後、 OPNUにたる対応され、 OPNU地気効果産	3. SRV出口温度計による炉心損傷の傾知性	
事政発生後, SKV による減圧を行うと, SKV 出口温度計は原 フロビカ空聖 いーノ如の温度に相当せて温度た将ニナスト考点	事政先生後, SKVによる減圧を行うと, SKV排入官温度 は国スににも常い、 1 如の温度に担当する温度な特定する。	事政先生後, SKVによる順圧を打りと, <u>SKV田日温度計</u> は 原乙に広ち空間に、「如の温度に相当する温度た指示する」ます。	
ナ炉圧刀谷器トーム部の温度に相当りる温度を指示りると考え たれる	は原于炉圧刀谷器トーム部の温度に相当りる温度を指示りると	原于炉圧刀谷器下一ム部の温度に相当りる温度を指示りると考え	
540公。 「百子后水位の低下に上り后心が露出」 「百子后正力交界ドー	ちんりれいる。 「百子に水位の低下に上りに心が露出」 百子に正力容器ドー	9413。 「百子恒水位の低下に上り恒心が露出」 「百子恒圧力容器ドーム	
小丁が小匹の低下によりが心が盛山し、赤丁が二刀谷福下 人部が過熱蒸気雲囲気とたっている状能でSRV を開放した場	ふ」が小匹の低ーによりが心が露山し, 赤」が二刀存留中 人部が過熱表気雲囲気となっている状能でSRVを開放した場	部が過熱表気雰囲気とたっている状能でSRVを開放した場合	
合 SRV 出口温度計の指示値は 的和蒸気温度近傍よりも高い	合 SRV排気管温度の指示値は 約和蒸気温度近傍上りも高	SRV出口温度計の指示値は 飽和蒸気温度近傍上りも高い温度	
温度を示し、さらに過熱度が大きいと温度計の測定範囲(300℃)	い温度を示し、更に過数度が大きいと温度計の測定範囲(300℃)		
を超えるため、指示値はオーバースケールになると考えられる。	を招えるため、指示値はオーバースケールになると考えられる。	えるため、指示値はオーバースケールになると考えられる。	
一方、炉心が露出した場合において、炉心は蒸気冷却等によ	一方, 炉心が露出した場合において. 炉心は蒸気冷却等によ	一方、炉心が露出した場合において、炉心は蒸気冷却等により	
り健全性を維持している場合と、損傷している場合が考えられ	り健全性を維持している場合と、損傷している場合が考えられ	健全性を維持している場合と、損傷している場合が考えられる。	
3.	3.		
したがって、不確実さはあるものの,SRV 出口温度計のオー	したがって、不確実さはあるものの、 <u>SRV排気管温度計</u> の	したがって、不確実さはあるものの、 <u>SRV出口温度計</u> のオー	
バースケールにより炉心損傷を検知できる可能性がある。	オーバースケールにより炉心損傷を検知できる可能性がある。	バースケールにより炉心損傷を検知できる可能性がある。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
4. SRV 出口温度計測と原子炉圧力容器温度計測	4. <u>SRV排気管温度計測</u> と原子炉圧力容器温度計測	4. <u>SRV出口温度計測</u> と原子炉圧力容器温度計測	
SRV 出口温度と原子炉圧力容器温度は中央制御室にて確認可	SRV排気管温度と原子炉圧力容器温度は中央制御室にて確	<u>SRV出口温度</u> と原子炉圧力容器温度は中央制御室にて確認	
能であるが,故障等により中央制御室で確認できない場合, <u>SRV</u>	認可能であるが, 故障等より中央制御室で確認できない場合,	可能であるが、故障等により中央制御室で確認できない場合、	
出口温度の可搬型計測器による測定は現場盤で実施する必要が	<u>中央制御室</u> において可搬型計測器による測定が可能である。可	<u>その他の建物内の補助盤室</u> において可搬型計測器による測定が	・設備設計の相違
あり、原子炉圧力容器温度は中央制御室で実施可能である。そ	搬型計測器による測定が必要になった場合は、炉心損傷確認の	可能である。可搬型計測器による測定が必要になった場合は、	【柏崎 6/7,東海第二】
のため、可搬型計測器による測定が必要になった場合は、炉心	精度が高い原子炉圧力容器温度の測定を優先する。	炉心損傷確認の精度が高い原子炉圧力容器温度の測定を優先す	可搬型計測器の接続
損傷確認の精度が高く、中央制御室で測定が可能な原子炉圧力		る。	場所の相違。
容器温度の測定を実施する。			
<image/>	<complex-block></complex-block>	<image/>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 3.1.2.10		
48. 炉心損傷前に発生する可能性がある水素の影響について	格納容器内に存在するアルミニウム/亜鉛の反応により 発生する水素の影響について	34. 炉心損傷前に発生する可能性がある水素の影響について	
BWR において、炉心損傷前に原子炉格納容器内で水素を発生させ得る現象としては、原子炉格納容器内のグレーチングに含まれる亜鉛と水蒸気の反応等が考えられる。 ここでは、柏崎刈羽原子力発電所6 号及び7 号炉において、炉 心損傷前に水素ガスが発生した場合の影響を考察する。	1. はじめに 格納容器内では配管の保温材等にアルミニウムを使用してお り、サプレッション・プール水pH制御装置により注入される 水酸化ナトリウムが格納容器内に存在するアルミニウムに被水 すると化学反応により水素が発生する。 また、格納容器内のグレーチングには亜鉛メッキが施されて おり、亜鉛も同様に水酸化ナトリウムと反応して水素が発生す る。 以上の化学反応が、格納容器内の水素発生量及び格納容器圧 力上昇に与える影響を評価する。なお、実際に水酸化ナトリウ ムと反応する金属は、格納容器スプレイの飛散範囲と考えられ るが、保守的に格納容器内全ての亜鉛とアルミニウムが反応し、 水素が発生するとして評価を行う。 A1 + NaOH + H ₂ 0 → NaAlO ₂ + $3/2H_2$ 式(a)	BWRにおいて、炉心損傷前に原子炉格納容器内で水素を発生 させ得る現象としては、原子炉格納容器内のグレーチングに含ま れる亜鉛と水蒸気の反応等が考えられる。 ここでは、 <u>島根原子力発電所2号炉</u> において、炉心損傷前に水 素ガスが発生した場合の影響を考察する。	
1. 発生し得る水素量について 有効性評価の添付資料3.1.2.4「原子炉格納容器内に存在する 鉛及びアルミニウムの反応により発生する水素ガスの影響につい て」において,上記の現象によって,原子炉格納容器内に存在す る亜鉛及びアルミニウムが全量反応した場合に,発生し得る水素 ガスの量を,表1_のとおりに評価している。	 2. 影響評価 (1) 格納容器内アルミニウム量及び亜鉛量 格納容器内でアルミニウムを使用している構造物は配管保 温材等であり,重量は約1,027kgである。 一方,格納容器内で亜鉛を使用している構造物はグレーチ ングの亜鉛メッキ等であり,重量は約4,244kgである。 	1. 発生し得る水素量について 有効性評価の添付資料 3.1.2.3「原子炉格納容器内に存在する 亜鉛及びアルミニウムの反応により発生する水素ガスの影響につ いて」において、上記の現象によって、原子炉格納容器内に存在 する亜鉛及びアルミニウムが全量反応した場合に、発生し得る水 素ガスの量を、表1のとおりに評価している。	
表1水素ガスの発生量金属発生する水素の量亜鉛約 77kg(約 850Nm³)アルミニウム約 162kg(約 1,800Nm³)	 (2) アルミニウム及び亜鉛と水酸化ナトリウムの化学反応による水素発生量 a. アルミニウムと水酸化ナトリウムの化学反応によって発生する水素量 式(a)より,アルミニウム 1mol に対して水素発生量は 1.5mol であり,アルミニウムの原子量が27,水素の原子量が2であるため,アルミニウム9kg に対して水素1kg が発 	表1 水素ガスの発生量金属発生する水素の量亜鉛約 73kg(約 803m³[normal])アルミニウム約 374kg(約 4, 156m³[normal])	・評価結果の相違 【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	0.8 I.O C A酸斯口からの蒸気漉出及び原子炉注木に伴って発生する過熱蒸気による格納容器圧力上昇を抑制するため、 (大棒格納容器 スブレイ冷却系(常設)による格納容器協力 ー・ドライウェル 0.6 ー・サブレッション・チェンバ (法参納容器) ー・サブレッション・チェンバ (格納容器の限界圧力0.62MPa[gage]) 0.6 イ 作様循環冷却系による格納容器除熱(90分) 型窒素供給装置による窒素注入を停止することで格納容器圧力止甲酸水糖となる、 に伴う格納容器圧力の上昇抑制 0.4 イ 化 格納容器酸素 復度(ドライ条件)4.0vol%到達 にて可報型窒素供給装置による格納容器内へ の窒素注入間始 0.2 4 72 96 120 14 168 第1回 格納容器に力に使動の時間(h) 第1回 格納容器に方の注射 168		
 (2)水素濃度への影響 燃料棒の健全性が損なわれず、よう素が冷却材中に放出されない条件(純水)*において、G 値は以下のとおりとなる^[1] ・沸騰条件 : 0.2 (H₂) /0.1 (0₂) ・非沸騰条件: 0 (H₂) /0 (0₂) 	4. 水素燃焼への影響について 水素及び酸素の可燃限界は、水素濃度 4vol%以上かつ酸素濃 度 5vol%以上である。BWRの格納容器内は窒素により不活性 化されており、本反応では酸素の発生はないことから、本反応 単独での水素の燃焼は発生しない。	 (2)水素濃度への影響 燃料棒の健全性が損なわれず、よう素が原子炉冷却材中に放出されない条件(純水)*において、G値は以下のとおりとなる^[1] ・沸騰条件 : 0.2 (H₂) /0.1 (0₂) ・非沸騰条件: 0 (H₂) /0 (0₂) 	
炉心損傷に至らない場合,燃料がヒートアップし,炉心内での 沸騰が長期間継続することはないと考えると,過渡的に短時間の 沸騰が生じる可能性はあるものの,G値はほぼゼロと考えられるこ とから,水素濃度が4vol%に至ることはないと考えられる。なお, 炉心損傷に至らない場合,燃料被覆管温度は低く維持されること から,ジルコニウム-水反応による水素も実質発生しないと考えら れる。 また,炉心損傷前の格納容器ベント時の気相部のモル分率にお いて,1.で示した水素を考慮した場合 <u>も</u> 水素のモル分率は <u>約0.03</u> であり,有意な影響はないと考えられる。		炉心損傷に至らない場合,燃料がヒートアップし,炉心内での 沸騰が長期間継続することはないと考えると,過渡的に短時間の 沸騰が生じる可能性はあるものの,G値はほぼゼロと考えられる ことから,水素濃度が4vo1%に至ることはないと考えられる。な お,炉心損傷に至らない場合,燃料被覆管温度は低く維持される ことから,ジルコニウム-水反応による水素も実質発生しないと考 えられる。 また,炉心損傷前の格納容器ベント時の気相部のモル分率にお いて,1.で示した水素を考慮した場合 <u>には</u> ,水素のモル分率は 約0.16であるが,BWRの原子炉格納容器内は窒素ガスにより不 活性化されており,亜鉛及びアルミニウムの反応では酸素ガスの 発生はないことから,本反応単独での水素ガスの燃焼は発生しな	・評価結果の相違 【柏崎 6/7】
(3)酸素濃度への影響 仮に,炉心内で沸騰状態が長期間継続し,水の放射線分解によ		いものと考える。 (3)酸素濃度への影響 炉心損傷に至らない場合,炉心内での沸騰が長期間継続するこ とはなく,水の放射線分解による酸素濃度の上昇はないものと考 えられるが,仮に,炉心内で沸騰状態が長期間継続し,水の放射	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
って炉内で発生した水素及び酸素がすべて原子炉格納容器内へ移		線分解によって炉内で発生した水素及び酸素がすべて原子炉格納	
行することを想定すると、初期酸素濃度 <u>3.5vol%</u> とした場合、酸素		容器内へ移行することを想定すると、初期酸素濃度 2.5vo1%とし	・評価条件の相違
濃度が5vo1%に至る時間は事象発生約20 日後(492 時間後) であ		た場合,酸素濃度が5vo1%に至る時間は事象発生約73.5日後	【柏崎 6/7】
り,十分な時間余裕がある。なお,仮に格納容器圧力 <u>0.31MPa[gage]</u>		<u>(1765 時間後)</u> であり,十分な時間余裕がある。なお,仮に <mark>炉心</mark>	・評価結果の相違
で格納容器ベントを行った場合は、格納容器ベントにより酸素濃		<u>損傷前に</u> 格納容器ベントを行った場合は、格納容器ベントにより	【柏崎 6/7】
度が低下する可能性があるが、これを考慮して、初期酸素濃度を		酸素濃度が低下する可能性があるが、これを考慮して、初期酸素	
1.5vol%とした場合は、酸素濃度が5vol%に至る時間は事象発生約		濃度を <u>1vol%</u> とした場合は、酸素濃度が5vol%に至る時間は事	・評価条件の相違
62 日後(1,490 時間後)となる。		象発生 <u>約 182 日後(4,371 時間後)</u> となる。	【柏崎 6/7】
			・評価結果の相違
			【柏崎 6/7】
したがって、有効性評価の炉心損傷防止シナリオにおいて、水		したがって、有効性評価の炉心損傷防止シナリオにおいて、水	
の放射線分解により発生する水素及び酸素は、有意な影響を及ぼ		の放射線分解により発生する水素及び酸素は、有意な影響を及ぼ	
さないと考えられる。		さないと考えられる。	
※よう素の追加放出の影響について		※よう素の追加放出の影響について	
炉心損傷前のシナリオでは,基本的に炉心は健全に維持されて		炉心損傷前のシナリオでは、基本的に炉心は健全に維持されて	
いるが、仮に、設計基準事故と同程度のよう素の追加放出が発生		いるが、仮に、設計基準事故と同程度のよう素の追加放出が発生	
した場合を想定する。		した場合を想定する。	
設計基準事故において、追加放出されるよう素は、炉内内蔵量		設計基準事故において、追加放出されるよう素は、炉内内蔵量	
の0.01%未満である。		の 0. 01%未満である。	
よう素濃度を変化させた場合の吸収線量と酸素濃度の変化量の		よう素濃度を変化させた場合の吸収線量と酸素濃度の変化量の	
関係を図1に示す。図1より、よう素の放出量が炉内内蔵量の約1%		関係を図1に示す。図1より、よう素の放出量が炉内内蔵量の約	
未満(よう素濃度:6×10 ⁻⁷ mol/L)であれば,よう素が冷却材中に		1 %未満(よう素濃度: 6×10 ⁻⁷ mol/L)であれば,よう素が原	
放出されない条件(純水)と同様にG値は、ほぼゼロと考えられる。		子炉冷却材中に放出されない条件(純水)と同様にG値は、ほぼ	
		ゼロと考えられる。	
このため、炉心損傷前の水素燃焼への影響を検討する観点で、		このため、炉心損傷前の水素燃焼への影響を検討する観点で、	
設計基準事故と同等のよう素の追加放出を考慮した場合も、非沸		設計基準事故と同等のよう素の追加放出を考慮した場合も、非沸	
騰状態におけるG値はゼロと考えられる。		騰状態におけるG値はゼロと考えられる。	

炉	備考
う素濃度が,炉内内蔵 の約1%未満であれ G値(グラフの傾き) ゼロと考えられる。	
水反忘割合 当 % 9%故山相当 非沸騰)	
う素濃度を変化させた	
器内に存在する亜鉛及 しても発生する水素量 格納容器圧力に有意な に炉心内で沸騰状態が も, <u>約73.5日間</u> ,可燃 線分解により発生する ないと考えられる。	・評価結果の相違 【柏崎 6/7,東海第二】
	 ・記載方針の相違 【東海第二】 島根2号炉は,当該の 文献を参照していない。
WR 電力共同研究 昭和	
以上	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
49. 溶融炉心落下位置が原子炉格納容器下部の中心軸から外れ、	22 溶融炉心が原子炉圧力容器下部の偏心位置より落下した場合	35. 溶融炉心落下位置が原子炉格納容器下部の中心軸から外れ,	
壁側に偏って落下した場合の影響評価	の影響評価	壁側に偏って落下した場合の影響評価	
1. 評価の目的	1. 評価目的	1. 評価の目的	
平成29 年2 月の1F2 原子炉格納容器下部の調査結果では,			・評価方針の相違
原子炉格納容器下部の中心軸から外れた位置のグレーチング			【柏崎 6/7】
の落下が確認されている。確認された範囲は原子炉格納容器下			島根2号炉および東
部の一部であり, 原子炉格納容器下部の中心等未確認の箇所が			海第二では現実的な評
<u>多く、グレーチングの落下理由についても現状不明であるが、</u>			価条件で水蒸気爆発評
グレーチングの落下理由の可能性の1 つとして, RPVから流出			価を実施。 柏崎 6/7 で
した溶融炉心が落下したことの影響が考えられる。			は、現実的および保守
			的な評価条件で水蒸気
			爆発評価が実施されて
			いる。
	実機において,水蒸気爆発 <u>(以下「SE」という。)</u> が発生	実機において,水蒸気爆発が発生する可能性は,これまで	
	する可能性は、これまでの知見からも極めて低いと考えられる	の知見からも極めて低いと考えられるが, <u>島根2号炉</u> では,	
	が, <u>東海第二発電所</u> では,事象の不確かさを踏まえ保守性を考	事象の不確かさを踏まえ保守性を考慮した入力条件による水	
	慮した入力条件による <u>SE評価</u> (以下「基本ケース」という。)	蒸気爆発評価(以下「基本ケース」という。)を実施し、万が	
	を実施し、万が一の <u>SE</u> の発生を想定した場合でも <u>格納容器</u> の	一の水蒸気爆発の発生を想定した場合でも原子炉格納容器の	
	健全性が損なわれないことを確認している。	健全性が損なわれないことを確認している。	
	有効性評価のMAAP解析では,下部プレナムへ移行した溶	有効性評価のMAAP解析では、下部プレナムへ移行した	
	融炉心 (以下「デブリ」という。) による過熱で原子炉圧力容	溶融炉心による過熱で原子炉圧力容器下部の中心部温度が最	
	器 (以下「RPV」という。) 下部の中心部温度が最も高くな	も高くなり、その位置の制御棒駆動機構ハウジング溶接部に	
	り,その位置の制御棒駆動機構 (以下「CRD」という。) ハ	生じるひずみによって原子炉圧力容器破損に至る結果となっ	
	ウジング溶接部に生じるひずみによって <u>RPV</u> 破損に至る結	ている。このため,基本ケースの入力条件のうち,溶融炉心	
	果となっている。このため,基本ケースの入力条件のうち, メ	の放出口については原子炉圧力容器下部の中心としている。	
	<u>ルト放出位置</u> については <u>RPV</u> 下部の中心としている。また,	また, 溶融炉心の放出口径については, 爆発規模が大きくな	
	メルト放出口径については, 爆発規模が大きくなる条件として	る条件として <u>制御棒駆動機構</u> ハウジングの逸出を想定したロ	
	<u>CRD</u> ハウジングの逸出を想定した口径を設定している。	径を想定している。	
	しかしながら、実際に重大事故が発生した場合においては、	しかしながら,実際に重大事故が発生した場合においては,	
	有効性評価上期待していない原子炉注水手段の復旧等, 想定と	有効性評価上期待していない原子炉注水手段の復旧等、想定	
	は異なる対応や事故進展の影響により, <u>RPV</u> 下部の中心から	とは異なる対応や事故進展の影響により、原子炉圧力容器下	
	外れた偏心位置での貫通部溶接破損によって生じたわずかな	部の中心から外れた偏心位置での貫通部溶接破損によって生	
	間隙からデブリ流出する等,基本ケースでの想定と異なる落下	じたわずかな間隙から溶融炉心が流出する等,基本ケースで	
	様態となることも考えられる。また,偏心位置で <u>SE</u> が発生し	の想定と異なる落下様態となることも考えられる。また、偏	
	た場合,爆発位置が基本ケースよりも側壁に近接するため,局	心位置で水蒸気爆発が発生した場合、爆発位置が基本ケース	
	部的に大きな動的荷重が作用する可能性がある。	よりも側壁に近接するため、局部的に大きな動的荷重が作用	
		する可能性がある。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>今回,確認されたグレーチングの落下位置がCRD ハウジング</u>	ここでは、偏心位置における現実的なデブリの落下様態を想	ここでは, 偏心位置における現実的な溶融炉心の落下様態	
の外周部近傍の下部であることを踏まえ,KK6/7 に対して溶融	定した <u>SE</u> の影響を評価し、 <u>格納容器</u> の健全性が損なわれない	を想定した <u>水蒸気爆発</u> の影響を評価し, <u>原子炉格納容器</u> の健	
炉心の落下位置がCRD ハウジングの外周部に溶融炉心が落下	ことを確認するとともに、基本ケースの評価の代表性を確認す	全性が損なわれないことを確認するとともに、基本ケースの	
し、水蒸気爆発の発生を仮定した場合の影響を確認した。	る。	代表性を確認する。	
2. 評価に用いた解析コード等	2. 評価方法	2. 評価方法	
水蒸気爆発の影響を評価するにあたっては、溶融燃料-冷却	(1) 評価条件	(1)評価条件	
材相互作用によって発生するエネルギー,発生エネルギーによ	解析コードは基本ケースと同様に, <u>SE</u> 解析コードJAS	解析コードは基本ケースと同様に,水蒸気爆発解析コード	
る圧力伝播挙動及び構造応答が重要な現象となる。よって、こ	MINE <u>及び汎用有限要素解析コードLS-DYNA</u> を用	JASMINE <u>…構造応答解析コードAUTODYN-2D</u>	・評価コードの相違
れらの現象を適切に評価することが可能である水蒸気爆発解	いて評価した。本評価における各コードの入力条件及び評価	を用いて評価した。本評価における各コードの入力条件及び	【東海第二】
<u> 析コードJASMINE, 構造応答解析コードAUTODYN-2D により圧力</u>	モデルの取扱いを以下に示す。	評価モデルの取扱いを以下に示す。	島根2号炉の原子炉
伝播挙動及び構造応答,格納容器圧力等の過渡応答を求める。			格納容器下部は,周方向
			に規則的な構造物であ
			るため, AUTODYN-2D を
			用いた。
3. 評価条件	a. JASMINE	a. JASMINE	
主要解析条件を表1 に示す。溶融炉心は原子炉圧力容器底部	第1素に主要入力条件を示す。本評価の入力条件及び評価モ	<u>表1</u> に主要入力条件を示す。本評価の入力条件及び評価モ	・評価条件の相違
のCRDハウジングの外周部直下に落下するものとし、溶融炉心	デルは基本ケースと同様とするが、以下については現実的な条	デルは基本ケースと同様とするが、以下については現実的な	【柏崎 6/7】
	件として適用する。	条件として適用する。	島根2号炉および東
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー			海第二では現実的な評
 位2m の水張りが実施されているものとした。また,原子炉格			価条件で水蒸気爆発評
			価を実施。基本ケースの
			評価は保守性を含んだ
場合の評価も実施した。構造応答解析コードAUTODYN-2D によ			条件設定となっており、
			溶融炉心が偏心位置に
ルを溶融炉心落下位置から格納容器下部壁面までの最短距離			落下した場合について、
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー			保守的な条件を重畳さ
る範囲が図1 に示す範囲よりも十分に小さいため, 円筒の半径			せた評価としていない。
の差異は溶融燃料-冷却材相互作用によって発生するエネル			
ギーに影響しないと考えられることから,水蒸気爆発解析コー			
ドJASMINE の評価モデルでは円筒の半径を狭めず実機に即し			
ネルギーを評価した。			
	(a) メルト放出口径	(a)溶融炉心落下量	
	<u>第1図及び第2図にCRDハウジングサポート構造を示す。C</u>	図1に制御棒駆動機構ハウジング支持金具構造を示す。	・記載方針の相違
	<u>RDハウジングサポートは、ペデスタル内側の鋼板に固定され</u>	制御棒駆動機構ハウジング支持金具は、原子炉本体の基礎	【東海第二】
	た上部サポートビームにハンガーロッド等を介してグリッド	の鋼板に固定されたサポートビームに吊り棒等を介してグ	記載方法は異なるが、
	プレートを接続した構造によりCRDハウジングの逸出を防	リッドプレートを接続した構造により制御棒駆動機構ハウ	島根2号炉と東海第二

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	止する設計としている。	ジングの溢出を防止する設計としている。	で同様の評価条件が想
	基本ケースでは、CRDハウジングの逸出を想定した口径	基本ケースでは、制御棒駆動機構ハウジング1本分	定されている。
	を考慮しているが, 上記のとおりCRDハウジングの外	(0.15m) に流出時の溶融炉心による口径の拡大分 (0.05m)	
	部サポートが設置されているため現実的には逸出は考えにく	を見込んだ口径のジェット(0.20m)を考慮しているが,上	
	い。このため、本評価ではCRDハウジングが保持された状態	記のとおり制御棒駆動機構ハウジングの支持金具が設置さ	
	を想定し、CRDハウジングとRPV下鏡板との間に生じる間	れているため現実的には制御棒駆動機構ハウジング1本が	
	隙からのメルト放出を考慮する。	瞬時に脱落することは考えにくく,溶接の薄い箇所等, <u>僅</u>	
		かな口径から流出した溶融炉心が構造材を伝い、あるいは	
		構造材によって分散され、細い径で徐々に落下する形態が	
		考えられる。このため、本評価では制御棒駆動機構ハウジ	
		ングと原子炉圧力容器の下鏡部との間に生じる間隙からの	
		溶融炉心の放出を考慮する。	
	<u>CRD</u> ハウジングと <u>RPV下鏡板</u> との間に生じる間隙の幅	<u>制御捧駆動機構ハウジングと原子炉圧力容器の下鏡部と</u>	
	は、サンディア国立研究所の <u>RPV</u> 下部ヘッド破損を模擬した	の間に生じる間隙の幅は,サンディア国立研究所の原子炉	
	LHF試験 ^[1] において,貫通部溶接の破損によって約4mmの間	圧力容器下部ヘッド破損を模擬したLHF試験[1]におい	
	隙が生じたことを踏まえ, これと同じ間隙幅を本評価において	て,貫通部溶接の破損によって約4mmの間隙が生じたこと	
	仮定する。	を踏まえ、これと同じ間隙幅を本評価において仮定する。	
	以上より想定したCRDハウジングとRPV下鏡板との間	<u>以上より制御棒駆動機構ハウジングと原子炉圧力容器の</u>	
	に生じる開口面積(約)と等価な口径である をメ	下鏡部との間に生じる隙間幅を4mmと想定し, 面積に換算	
	ルト放出口径として設定する。	<u>すると約 10cm²となる。この開口面積(約 10cm²)と等価な</u>	
		口径である 35.7mm を溶融炉心の放出口径として設定する。	
		なお,島根原子力発電所2号機の制御棒駆動機構ハウジ	
		ングと原子炉圧力容器の下鏡部の間の開口面積は最大でも	
		<u>約3cm²であり, 10cm²に包絡される。</u>	
		(b) <u>粗混合粒径</u>	
	既存のFCI試験ではサワター平均粒径として0~3mm程度	既存のFCI試験 (FARO, COTELS等) ではサ	
	と報告されていることから,基本ケースでは保守的に を設	ウター平均粒径として0~3mm 程度と報告されていること	
	定しているが、本評価では現実的な条件として既在の実験から	から、基本ケースでは保守的に4mmを設定しているが、本	
	得られている平均粒径の条件であるを設定する。	評価では現実的な条件として既在の実験から得られている	
		平均粒径の条件である3mmを設定する。	
	(c) トリガリングタイミング	(c) トリガリングタイミング	
	基本ケースでは、SEにより発生する運動エネルギが最も大	基本ケースでは、水蒸気爆発により発生する運動エネル	
	きくなると考えられる条件である知混合融体質量ピーク時点	ギが最も大きくなると考えられる条件である知混合融体質	
	としている。一方、実機条件では、高圧ガスや爆薬を用いた大	量ピーク時点としている。一方.実機条件では.高圧ガス	
	規模FCI実験のトリガ装置で発生させているような外部ト	や爆薬を用いた大規模FCI実験のトリガ装置で発生させ	
	リガが与えられる状況は考えにくく,また, <u>東海第二発電所</u> で	ているような外部トリガが与えられる状況は考えにくく、	

・レベル電味特から売からなななどの注意したこと、 たたし、思想にはたけようとからからなからななどの注意したたない。 たたし、思想にはたけなくたか。 したし、この200、本等時ではイルトジェントなど等から、このため、本等時で にたけした。 にたけした。 のためたかり、大学師では、「レンド」のなどのたいため、 こしたは、この200、本等時ではイルトジェントなど等から、このため、本等時で にたいたいため、このため、本等価では一般電味物なたたない。 こしたは、ないためにはごにはしてための中学が含くたいいための うないためにないため、このため、本等価では一般電味物なたたない。 うないため、このため、本等価では一般電味物なたたない。 うないため、このため、本等価では一般電味物なたたない。 うないため、このため、本等価では一般電味物なたたない。 うないため、ご知道でなたないたからから、このため、本等価 には、生またないための日本では、これたないたかの日本で うないため、このため、本等価では一般電味物なたたない。 うないため、このため、実施 のたいため、実施の正には「レ」ド部はなどだいいため、日本で にないため、実施の正には「レ」ド部はなどないたが、日本で いたが、本体にないため、日本で いたが、ためいためにはないたい。 このたいため、実施の正には「レ」ド部はなどないたい。 このたいため、実施の正には「レ」 ないため、実施の正には「レ」ド部はなどびでいいため、日本で いたが、本体にないため、このため、実施 のないたないたいで見たてごから、またいため、実施の正で にないたないたいたり、日本で いたで たいため、実施の正で いたで、たいため、日本で たいため、実施の正で いたで たいため、実施の正で いたで たいため、実施の正で いたで たいため、生まにないため、日本で いたで たいため、実施 のないたないたいで たいて たいため、このため、実施 のないたないたいで たいて たいため、実施 のないたないたいで たいたの たいたの たいたて たいための たいたて たいたの たいたの たいたて たいたの たいたの たいたの たいた	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		は重大事故時のペデスタル水位を <u>1mに制限する運用とするこ</u>	また, <u>島根2号炉</u> では重大事故時のペデスタル水位 <u>は</u> 2.4m	
・ 新加速器 ・ ・		とから,現実的にはメルトジェットがペデスタル床面に接触す	としていることから,現実的にはメルトジェットが原子炉	
6人式、30次60、水油酸10×20×10×30×40 メニルなる2000年11-702(30)(30)(30)(30)(30)(30)(30)(30)(30)(30)		る際の衝撃によりトリガリング発生する可能性が高いと考え	格納容器下部床面に接触する際の衝撃によりトリガリング	
・ (こしのとおり、本評価では一部度実的な人方条件を通じた が、実成での生いに対して入の場合性が良ましているのと考え、 ・ (こしのとおり、本評価では一部度実的な人方条件を通じた が、実成での生いに対して入の場合性が良ましているのと考え、 ・ (こしのとおり、本評価では一部度実的な人方条件を通じた が、実成での生いに対して入の場合性が良ましているのと考え、 ・ (こしのとおり、本評価では一部度実的な人方条件を通じた が、実成での生いに対して入の場合性が良ましているのと考え、 ・ (こしのとおり、本評価では一部度実的な人方条件を通じた が、実成での生いに対して、のの場合性が良ましているのと考え、 ・ (こしのとおり、本評価では一部度実的な人方条件を通じた ・ (この) 本評価では一部度実的な人方条件を通じた ・ (この) 本評価では一部度実的な人方条件を通じた ・ (この) 本評価では一部度実的な人方条件を通じた ・ (この) 本評価では一部度実的な人方条件を通じた ・ (この) 本評価では一部度実的な人方余年の ・ (この) 本評価では一部度実的な人方条件を通じた ・ (この) 本評価では、この) たり ・ (この) 本評価では、この) たり ・ (二の) 本(この) 本評価では、(この) たり ・ (二の) 本(二の) 本(二の) たり ・ (二の) 本(二の) た)		られる。このため、本評価ではメルトジェット先端が床面に到	が発生する可能性が高いと考えられる。このため、本評価	
・ ご曲なみ ・ ご曲なみ ・ ご曲なみ ・ このたくなり、本味価では、一般現実的な人り身体を書目いち、 の、実験での <u>と見</u> と知して次の化学中がきまれでいるものさみ、 ふみ、 家庭に見 <u>足として温料時</u> 物度度以次なっす。J A SMI NU では <u>したたかの</u> (1)から近き的にはつきていたみみ、 ないたみ、)、一般現で <u>の見たしたまれがい</u> れから近き的にはつきていたみ ないたみ、)、一般の <u>たたちまのたかでから、このため、実</u> 株 のっているが、実程の <u>の見たしてきいたが</u> は <u>した</u> <u>しかりつシックした</u> ないた <u>シングング、レーブン分</u> が変量されたい。 D J に 2 2 5 0 元 2 世長が登録したいであらの(1) 1 6 3 T には長 スペンシング、 <u>レーブン分</u> が変量されたい。 D J に 2 2 5 0 元 2 世長があり、 ないた ないた ないた <u>シングング、レーブン分</u> が変量を見たいた にないた <u>ジング、クレーブングラが変量になり、 ないたシックレをなったたき ないた のっているが、実程の<u>の見たでかか、たちまた</u> ないた<u>シングング、レーブン分</u>が変量を見たいた ないた<u>み、クレーアングラがな</u>電量がな ないた<u>タンクレージングのな</u>量ないたないた ないた<u>み、クレーアングラがな</u>電量がな 4 1 2 5 0 2 5 0 0 0 人 実 4 5 0 0 1 0 2 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>		達した時点を設定する。	ではメルトジェット先端が床面に到達した時点を設定す	
A. FMBRA			る。	
外、環境での返還に来して次の場合性が含まれていられらなさった。ころの必要な、20.000円式の場合したないとなった。ころの、20.00円式の ジス、20.00円式の ジス ジス<20.00円式の ジス ジス<20.00円式の ジス		以上のとおり,本評価では一部現実的な入力条件を適用する	以上のとおり、本評価では一部現実的な入力条件を適用す	
A.5. 2 ものと考える. 国家国は及ビン工具体機械用いった運動機械目的などのであり、JASMINE ではスシムンが燃けれいった運動機会がみたり、コンタトを成した工作にはない、 ロンパムビスタンが燃けれから運動機会がないたりで、 マンパンパスパイランジンパーシントを成した工作は、 ビスクシンパンパンパスパイランジンパーシントを成した工作は、 ビスクシンパンパンパスパイランジンパーシントを成した工作は 地方となうゲールーンプジンパージンジンパーシンジンパーシントを成した工作は 地方となうゲールーンプジンパージンジンパンパンパンパンパンパンパンパンパンパンパンパンパンパンパンパン		が、実機での <u>SE</u> に対して次の保守性が含まれているものと考	るが,実機での <u>水蒸気爆発</u> に対して次の保守性が含まれてい	
・ 評価時年 ・ ごう 一部の ・ ごう こう こう こう ごう ごう こう たいていたい こう いいてい こう こう いいてい こう こう いいてい こう こう いいてい こう こう こう ごう ごう こう ごう ごう こう ごう ごう こう ごう		える。	るものと考える。	
・ 評価共工 ・ 評価にないの構成時に自由業工に支援が大いたい MINEでも浸塗売が知口から高減的に自由業工に支援が大いたい MINEでも浸塗売が知口から高減的に自由業工に支援 ・ ごいると、実験のDEV工能にはCEDハクシング、通告 ・ べいんに投入する想送的な人わりジック上 ・ べいんに投入する想送のな人わりジックング ・ べいした、ないるが、実験の歴生工た設定で加いたは、 ・ べいした、ないるが、実験の歴生工た設定で加いたは、 ・ べいした、ないている、実施の歴生工た設定で加いたした設備 ・ べいした、 ・ べいした、このため、実験 ・ べいたいたけ、 ・ べいたいたいで加いたいたいで加いたいたい ・ べいたいたいたいで加いたいたいたい ・ べいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいた		第3図に <u>RPV下部</u> 構造物配置状況を示す。JASMINE	図2に <u>原子炉格納容器下部</u> 構造物配置状況を示す。JAS	
		ではメルトが放出口から直線的に自由落下し直接水プールに	MINEでは <u>溶融炉心</u> が放出口から直線的に自由落下し直接	
・ 評価結果 - ごでもあが、実験の良児と下部にはC良良ハクジング、た点社 数へクジング、たごと連び改革のたいり、更に下部には2月 をなみグレーチン学の構成の特徴ですが、このため、実験の真白によれご見場 をなみグレーチン学の構成の特徴ですが、このため、実験の真白によれご見場 をなみプレーキン学の構成の特徴ですが、このため、実験の真白によれご見場 を認知したジングの構造のがない、更して下部には2月 を認知したジングの構造のがないで、夏レーアに知らら、されていたが、実験の真力によれ、見した の構成では読まい、クロント部にないで、良レン下部から がれいたごごジルブを超らかざみ、トアルであた。たがって、実験の前にはないた考慮いたが、医生ご に立たいの構造的に接触に、分配するからど思され、反と文下部から がれいたごごジルブを超らかざみ、トアルであた。たがって、実験の近年がれたいでを考えるれる。 いたかって、実験の近年がにおいて優点になりている通信会社が含めたきまう。たかって、実験の近年が低いてご登場に等かす。 かれてもなとすることはないと考えられる。したがって、実験の近年が低いて登場に等かするため、 の近天市場においてご登点にならると考えられる。 たがって、実験の近年が低いてご登点でありてきたいでも の近くからくなったか、実験の近年が低いて登場に等かったるな。 ・デ価ニードの仲珍 してもの、多分で見たいる意味ですい なたかって、実験の近年が低いてご登点であり の出たをかくまご優先がすいたきないかななたか。 このたかって、実験の近年が低いてご登点でなったなった。 の出たがないたきないでなった。 たかれる。 ・デ価ニードの仲珍 してもの、多分できるがにもなないで なったかって、実験の近年が低いてご登録になった。 の出たたかでたまご優先であた。 たかれる。 ・デ価ニードの仲珍 してものの大学 ないれる。 こかって、実験の近年が低いてご登録になった。 の出たたかでたままご優先でかいる意味でかい なたかって、このないたきないでなった。 たかれる。 ・デ価ニードの仲珍 してものの近年ですいたまないでなった。 の出たたかでたままご優先のが見ていたいる意味ですい ないためで、このないのでは これたかった。 のないたまでないたまないでなった。 のまたがないためで、 したいたかでたままでではないかできた。 のまたがないためで、 のたかないためでです。 の出たかです。 とてていため、 このため、 の見 の特定でかたままでではないかできた。 のまたがないためで、 のたかれたいたるでの のたかれたいためで、 のたかれたいためで このため、 の見 のがままでかた。 のまたがないためで このため、 の見 のがないたかでです。 たかれる。 のまたかではためいためで このため、 のれたいたるで のたかれたかで このため、 のれたいためで このための のまでかたいためで このため、 のれたいたので このため、 のれたいたので このため、 のれたいためで たかれたためで たかれたためで たかれたいためで たかれたためで たかれたためで たかれたいためで たかれたためで たかれためで たかれためで ためれためで たかれたかで たかれたためで たかれたかで たかれためで たかれためで たかれためで たかれたかで たかれたためで たかれたためで たかれためで たかれたかで ためれたかで ためれたかで たかれたためで たかれためで たかれたかで たかれたかで たかれたかで たかれたかで たかれためで たかれためで たかれたかで たかれたためで たかれためで たかれためで たかれためで たかれたかで たかれたかで たかれためで たかれためで たかれたかためで たかれたかで たかれたかで たかれたかで たかれたかで たかれたかためで たかれためで たかれたかで たかれたかで たかれたかたかたかためで たかれたかで たかれたかで たかれたかで たかれためで たかれためで たかれたかで たかれたかで たかれたかで たかれたかで たかれたかたかたかたかたかたかたかたかためで たかれたかで たかれたかたかたかたかれたかで たかれたかたかたかたかたかたかたかたかたかで たかれたかたかれたか		侵入する理想的なメルトジェットを仮定した評価モデルとな	水プールに侵入する理想的なメルトジェットを仮定した評価	
東小グジング、ケーブル交好教養されており、更に下部には、 場となグレーチング学ら構造物が存在する、このため、我像 の高大事故において良上V下的から進出したデンジルにおり、 の古人事故にないて良上V下的から進出したデンジルにおり、 かけたなうか。このため、我像 の古人事故において良上V下的から進出したデンジルになったまの自然かった。 かれたなブル・チング学ら構造物が存在する、このため、我像 の古人事故にないて良上V下的から進出したデンジルになったまの自然かった。 かれたなうかと思想性のかジェット 事業がなどれいた気子型に力容感がが知道のなジェット 事業がなどれいた気を見てたまた自然水ブールに見入することはないと考えられる。 「部語コートの内護 になったいて見入することはないと考えられた。 ため、なたたまてはないすべいに見入することはないと考えられる。 「部語コートの「報告」」 ため、したがった、こまかの、おいたることはないをまう。 ため、なたまではなっていたり、「要の通人事業にあいて優知に寄す。 なられる、したがった、実現の血ノ学なにおいても優知に参いて優知に多いた。 なられる、したがった、こまかの、大調の上がないな優知に参いてもないたることす。 なられる、したがった、こまかの、現在にかいても思いている現在でいた。 ため、ほどの日ンマント ため、他を見よりも良にからまないいる現在でなった。 なられる、したがった、こま、現在の上が優知に参いてもないためでした。 のはな行きよりも良いたまなにないて優知に寄かった。 になったまではないたいで見いたのないたいでもないためでした。 なられる、したがったい、実現の自己をする。 「部語コートの内護 に気痛ず二」 通りたうなのでのないたかっな目前をたたかた。 ため、このたか、単位 これていたしたろでアメッル特達機会社が知らの判断を いた。このため、自想 こそのでする。 」 していたしたろでアメッル特達機会社が知らの判断を 、ためでのこのの生きないたいでないたか。 にないたいのでする。 」 いた、このため、自然 こそのでする。 」 した、このため、自然 こそのでする。 」 いたのたいたいで、これていたいで、これていたいでは、 これていたしたろでアメッル特達機会社が知らいの可能でなる。 」 このでする なる、 」 このでする なる、 」 していたいたいで、 「メール」 いたいたいで、 「スクレース」」 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、		っているが,実機の <u>RPV</u> 下部には <u>CRD</u> ハウジング, <u>炉内計</u>	モデルとなっているが,実機の <u>原子炉圧力容器</u> 下部には <u>制御</u>	
4. 評価結果 原子使給接發設下協にな位法の必要なわいたいでは、公式スタル構造機会性評価の判断性 差に広かって、実践の支入率なにおいて原人が正式の支付したうなのと思えたが、 なりたいたのの特徴物に検知し、分散するものと思えかは、成品としておいて、 うかに見入することはないと考えられる。したがって、実践 の重大事なにおいて感知に支付したる感知になるのと思えないと考えられる。 したいたのの特徴物に検知し、分散するものと思えないと考えられる。したがって、実践 の重大事なにおいて感知に支付したる感知になるいと考えられる。 したいたので、実践の互大事なにおいて感知に支付したる感知にないでも考えられる。 したいたので、実践の互大事なにおいて必要なであったす。 がおいたでする意味を知ている相混合体に質量よりも思いたえなかり、学校のたまま直接水ブールに見入することはないと考えられる。 したいたので、実践の互大事なにおいて必要なであった の最美麗な運んできなと考えられる。 		<u>装ハウジング,ケーブル等</u> が設置されており,更に下部には足	<u>棒駆動機構</u> ハウジングが設置されており,更に下部には足場	
・ 評価結果 原子使格構築認知認大学なの大概りが素整なたれている 0 重大学教において <u>R 上で</u> ご知道になごごびが電想的なジェット形状を保ったま車放き水、 スピンT 約50時間には酸し、分散するものと想定され。 ご知道力変強がに後触し、分散するものと想定され。 2 近三力変難「部から演出した語激励込が運想のなジェット が形た保ったま車放能大ブールに保入することにないと考え いたって、実験 の電大学教において爆発に書与する電温合種体質量より 5 更に少なく たれる。したがって、実験の電大学教において爆発に客与す の電大学教において爆発に書与する電温合種体質量より 5 更に少なく たれる。したがって、実験の電大学教において爆発に客与す の電子学校において爆発になると考えられる。 ・ ・ ア・のに保入することにないと考え いたる。したがって、実験 の電大学教において爆発に客与す ためる。 たたので、 ためる。したがって、実験の電大学教において爆発に客与す ためる。したがって、実験の電大学教なにおいて爆発に客与す ためる。したがって、実験の電大学教において爆発に客与す ためる。したがって、実験 の力を作力となると考え いたる。したがって、実験 の力を作力など電振さなると考え いたる。したがって、実験の電大学教において爆発にならま ためる。 ・ 『評価コードの相違 のコードの相違 なられる。 ・ し、LS - DYNA 服装置 しま - DYNACによるペゲスタル構造性会性評価の判断基 生き - DYNACによるペゲスタル構造性会性評価の判断基 生き - DYNACはたるペゲスタル構造性会性評価の判断基 なられる。 ・ の工作時本 のフンジング直下の位置とする。 ・ の工作りの検索部を認え、 のフングの直下の位置とする。 ・ の工作時本 のフンジング直下の位置とする。 ・ の工作時本 のフジング直下の位置とする。 ・ の工作時本 のフジング直下の位置とする。 ・ の工作時本 のフジング直下の位置とする。 ・ の工作時本 のフジング直下の位置とする。 ・ の工作りの のフレー の力を定めまする。 ・ の工作りの の の力を定める の の の対応を定つたが、 たるため の の の対応を定つたが、 たるため の の の関基 (1) して の の の の の の の の の の の の の の の の の の		場となるグレーチング等の構造物が存在する。このため、実機	となるグレーチング等の構造物が存在する。このため、実機	
●の構造特に接触し、分散するものと想定され、RPV下部から 放出したジブング和感的なジェット形状を保ったよき複速水 かったに良人することはないと考えられる。したかって、実験 の支工事故において認能言をすうる組合の融合賞量は)AS 品にこれらの構造物に接触し、分散するものと想定され、庭 灯理正方器製下師から放出した意識近心が建設的なジェット が先く保っさま直機水ブールに良人することはないと考え られる。したがらて、実験の正大事故において電影に忘れていることはないと考え るれる。とかぶって、実験の正大事故において電影になるときなどのでも これたうるの、実験の正大事故において電影になるときなどのでも、 るれ混合確体質量は)ASMINEで考慮されている知混合 融体質量は)ASMINEで考慮されている知混合 融体質量は)ASMINEで考慮されている知混合 加速算量になった。実験の正大事故において電影である。 ・評価コードの相違 に満たう にような。 b. LS=DYNA 第2支上優急 <u>期仕様かで、次になった。受加したたかです。本評価の</u> 人力先作及び評価モデルな浸水をカースと同様とするが、半径方 の少爆発展を通信使いていては、 <u>ペブスタル</u> 便能と見も近後する原子理正力容器で部の入力条件及び評価モデル ため、ためって、ご用様とするが、半径方 いの少変発展を通信でいては、 <u>ペブスタル</u> 便能と見も近後する原子型で出たする。デモグ方向の爆発度位置について は、 <u>私剤容器</u> 弾照症に最も近後する原子型で出た変異な は、 <u>私剤容器</u> 弾照症に最も近後する <u>原子理に定力容器</u> で部のなみ」 に <u>し、単体成業</u> でのたて に <u>し、単体成業</u> この <u>していたまででデスタル構造電生評価の判断法 重定量ペクース回転とする。 ・評価コードの相違 (1) ・評価コードの相違 (1) 4. 評価結果 原子が特徴容異で認たしたでで。 3. 評価結果 (1) 3. 評価結果 (1) 3. 評価結果 (1) 3. 評価結果 (1) 3. 評価結果 (1) 3. 評価結果 3. 評価は 3. 評価結果 3. 評価結果 3. 評価結果 3. 評価結果 3. 評価結果 3. 評価は 3. 評価結果 3. 評価結果 3. 評価結果 3. 評価結果 3. 評価 3. 評価結果 3. 評価結果 3. 評価は 3. 評価結果 </u>		の重大事故において <u>RPV</u> 下部から流出した <u>デブリ</u> はこれら	の重大事故において <u>原子炉圧力容器</u> 下部から流出した <u>溶融炉</u>	
新田した <u>デブリ</u> が理想的なジェット形状を保ったまま直接水 プールに復入することはないと考えられる。したがって、実機 の低大事故において爆発にあける温に含いたがって、実機 の低大事故において爆発にあける温に含いたがって、実機 の低大事故において爆発にありた認知のと考えられる。したがって、実機 の低大事故において爆発にありた認知のと考えられる。したがって、実機 の低大事故において爆発にありた認知のと考えられる。したがって、実機 の低大事故において爆発にありた認知のと考えられる。 <u></u>		の構造物に接触し、分散するものと想定され、 <u>RPV</u> 下部から	<u> 心</u> はこれらの構造物に接触し,分散するものと想定され, <u>原</u>	
リールに侵入することはないと考えられる。したがって、実機 の重入事故において爆発に寄与する粗混合融体質量より入露のしたがって、実機の重人率故において爆発に寄与す の面入事故において爆発に寄与する粗混合融体質量よりも度に少なえ なり、爆免現復は小さくなると考えられる。 形状で得入することはないと考え られる。したがって、実機の重人率故において爆発に寄与す る相混合融体質量より入SMINEで考慮されている粗混合 融体質量より入SMINEで考慮されている粗混合 融体質量より入SMINEで考慮されている粗混合 融体質量より入SMINEで考慮されている粗混合 融体質量より入SMINEで考慮されている粗混合 副体質量より入SMINEで考慮されている粗混合 副体質量より入SMINEで考慮されている粗混合 副体質量より入SMINEで考慮されている粗混合 副体質量より入SMINEで考慮されている粗混合 副体質量より入SMINEで考慮されている粗混合 副体質量よりたいたくなると考 えられる。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		流出した <u>デブリ</u> が理想的なジェット形状を保ったまま直接水	<u>子炉圧力容器</u> 下部から流出した <u>溶融炉心</u> が理想的なジェット	
の重大事検において爆発に寄らする粗混合離体質量はJAS MINEで考慮されている粗混合離体質量よりも更に少立く なり、爆発規模は小さくなると考えられる。 られる。したがって、実機の重大事検において爆発に寄らす る粗混合融体質量はJASMINEで考慮されている粗混合 離体質量よりも更に小支くなり、爆発規模は小さくなると考 えられる。 がれのこのも見合 離体質量よりも更に小支くなり、爆発規模は小さくなると考 えられる。 がです の単の振力集件及び評価モデルは基本ケースと同様とするが、半径方 向の爆発源位置については、ペデスタル/棚壁は最も近接する医 PV下部最外周のCRDへウジング値下の位置とする。 b. AUTODYN-2D 図3ご解析モデルを示す、本評価の入力条件及び評価モデル は基本ケースと同様とするが、半径方向の爆発源位置について は、 <u>核納容器</u> 所能量外周の <u>CRD</u> へウジング値下の位置とする。 ・評価コードの相違 【東海第二】 島根 2 号炉の原子炉 統容器下能は、周方向 に規則の体態型酸態機へウジング値下の位置とする。 ・評価コードの相違 【東海第二】 も根 2 号炉の原子炉 統容器下部は、周方向 に知りのな構造物でみ。 4. 評価純果 度子炉入れによるペデスタル構造健全性評価の判断基 5. Tester からジング値下の位置とする。 ・評価コードの相違 ままかつえどの意味でからジング値下の位置とする。 がの第二ののジング値下の位置とする。 ・デビーンのしてのしたとする。 がなきないのレバック・2 のようのとしたので、 なられるしていてする。 がの第二ののしてのしていて は、 がならびごかでのしてのしてのして のはまのである。 のの原子炉 なられる。 からジング値下の位置とする。 ののしたり、 のの原子炉 れのまのでの ののいた。 のの見合したのでのしたりまする。 ののしたの ののしたの。 ののしたのまでので がら、 ののしたの。 ののしたのまのでの ののしたり ののしの ののしたの。		プールに侵入することはないと考えられる。したがって、実機	形状を保ったまま直接水プールに侵入することはないと考え	
MINEで考慮されている根混合融体質量よりも更に少なく なり、爆発規模は小さくなると考えられる。 S相混合融体質量はJASMINEで考慮されている相混合 融体質量よりも更に小さくなり、爆発規模は小さくなると考 えられる。 SHEAD Participa (2000) Partipa (2000) Participa (2000) <thp< td=""><td></td><td>の重大事故において爆発に寄与する粗混合融体質量はJAS</td><td>られる。したがって、実機の重大事故において爆発に寄与す</td><td></td></thp<>		の重大事故において爆発に寄与する粗混合融体質量はJAS	られる。したがって、実機の重大事故において爆発に寄与す	
なり,爆発規模は小さくなると考えられる。 融体質量よりも更に小さくなり,爆発規模は小さくなると考えられる。		MINEで考慮されている粗混合融体質量よりも更に <u>少なく</u>	る粗混合融体質量はJASMINEで考慮されている粗混合	
小 評価結果 3. 評価 3. 評価 <td></td> <td>なり、爆発規模は小さくなると考えられる。</td> <td>融体質量よりも更に<u>小さく</u>なり,爆発規模は小さくなると考</td> <td></td>		なり、爆発規模は小さくなると考えられる。	融体質量よりも更に <u>小さく</u> なり,爆発規模は小さくなると考	
b. LS=DYNA 			えられる。	
b. LS-DYNA b. AUTODYN-2D 図3に解析モデルを示す。本評価の入力条件及び評価モデル 加) ・評価コードの相違 「東海第二] 第2表に爆発源仕様を、第4図に解析モデルを示す。本評価の 入力条件及び評価モデルは基本ケースと同様とするが、半径方向の爆発源位置については、ベデスタル 向の爆発源位置については、ベデスタル側壁に最も近接するR PV下部最外周のCRDハウジング直下の位置とする。 図3に解析モデルを示す。本評価の入力条件及び評価モデル は基本ケースと同様とするが、半径方向の爆発源位置について は、 <u>格納容器</u> 回壁に最も近接する <u>原子炉圧力容器</u> 下部最外周の 出創 18根2 号炉の原子炉 格納容器下部は、周方向 1. S-DYNAによるペデスタル構造健全性評価の判断基 進は基本ケース同様とする。 1. S-DYNAによるペデスタル構造健全性評価の判断基 進は基本ケース同様とする。 1. S-DYNAによるペデスタル構造健全性評価の判断基 進は基本ケース同様とする。 1. F価結果 1. S-DYNAによるペデスタル構造健全性評価の判断基 進は基本ケース同様とする。 1. S-DYNAによるペデスタル構造健全性評価の判断基 進し基本ケース同様とする。 1. S-DYNAによるペデスタル構造健全性評価の判断基 進し基本ケース同様とする。 1. S-DYNAによるペデスタル構造健全性評価の判断基 進し基本ケース同様とする。 1. S-DYNAによるペデスタル構造健全性評価の判断基 1. S-DYNAによるペデスタル構造健全性評価の判断基 1. S-DYNAによるペデスタル構造健全性評価の判断基 1. S-DYNA 2. S-DYNA <				
第2表に爆発源仕様を、第4図に解析モデルを示す。本評価の 図3に解析モデルを示す。本評価の入力条件及び評価モデルは 【東海第二】 入力条件及び評価モデルは基本ケースと同様とするが、半径方向の爆発源位置について 人力条件及び評価モデルは基本ケースと同様とするが、半径方向の爆発源位置について 1 内の爆発源位置については、ペデスタル パンクル 1 1 PV下部最外周のCRDハウジング直下の位置とする。 前御棒駆動機構ハウジング直下の位置とする。 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 第価結果 1		b. LS-DYNA	b. $AUTODYN-2D$	・評価コードの相違
A力条件及び評価モデルは基本ケースと同様とするが、半径方 向の爆発源位置については、ペデスタル側壁に最も近接する風 PV下部最外周のCRDハウジング直下の位置とする。 は基本ケースと同様とするが、半径方向の爆発源位置について は、 <u>格納容器</u> 側壁に最も近接する <u>原子炉圧力容器</u> 下部最外周の <u>制御棒駆動機構</u> ハウジング直下の位置とする。 島根 2 号炉の原子炉 格納容器下部は、周方向 に規則的な構造物であ るため、AUTODYN-2D を 用いた。このため、島根 2 号炉と東海第二でペ デスタル構造健全性評 価の判断基準も異なる。 4. 評価結果 3. 評価結果 3. 評価結果 3. 評価結果 3. 評価結果 1. I A SMI NE 本蒸気爆発に伴うエネルギ、原子炉格納容器下部内側及び ト		第2表に爆発源仕様を,第4図に解析モデルを示す。本評価の	<u>図3</u> に解析モデルを示す。本評価の入力条件及び評価モデル	【東海第二】
前の爆発源位置については、ベデスタル側壁に最も近接するR は、格納容器側壁に最も近接する原子炉圧力容器下部最外周の 格納容器下部は、周方向 PV下部最外周のCRDハウジング直下の位置とする。 制御椿駆動機構ハウジング直下の位置とする。 格納容器下部は、周方向 (2) 判断基準 LS - DYNAによるペデスタル構造健全性評価の判断基 単価格集 たのののののののののののののののののののののののののののののののののののの		入力条件及び評価モデルは基本ケースと同様とするが, 半径方	は基本ケースと同様とするが,半径方向の爆発源位置について	島根2号炉の原子炉
PV下部最外周のCRDハウジング直下の位置とする。 創御棒駆動機構ハウジング直下の位置とする。 に規則的な構造物であるため、AUTODYN-2Dを日かいた。このため、島根 (2) 判断基準 LS-DYNAによるペデスタル構造健全性評価の判断基準はなったのはごにはないため、ロークログログログログログログログログログログログログログログログログログログロ		向の爆発源位置については、 <u>ペデスタル</u> 側壁に最も近接する <u>R</u>	は, 格納容器側壁に最も近接する原子炉圧力容器下部最外周の	格納容器下部は,周方向
(2) 判断基準 LS-DYNAによるペデスタル構造健全性評価の判断基 るため、AUTODYN-2D を LS-DYNAによるペデスタル構造健全性評価の判断基 2号炉と東海第二でペ 準は基本ケース同様とする。 3. 評価結果 の判断基準 3. 評価結果 (1) LASMINE 3. 評価結果 (2) 小断基準 ************************************		<u>PV</u> 下部最外周の <u>CRD</u> ハウジング直下の位置とする。	<u>制御捧駆動機構</u> ハウジング直下の位置とする。	に規則的な構造物であ
(2) 判断基準 LS-DYNAによるペデスタル構造健全性評価の判断基 用いた。このため、島根 LS-DYNAによるペデスタル構造健全性評価の判断基 2号炉と東海第二でペ 弾は基本ケース同様とする。 デスタル構造健全性評価の判断基 4. 評価結果 3. 評価結果 原子炉格納容器下部に水位2m の水張りが実施されている場 (1) LASMINE				るため, AUTODYN-2D を
LS-DYNAによるペデスタル構造健全性評価の判断基 2 号炉と東海第二でペデスタル構造健全性評価の判断基準も異なる。 4. 評価結果 3. 評価結果 原子炉格納容器下部に水位2m の水張りが実施されている場 (1) LASMINE 1. IASMINE 水蒸気爆発に伴うエネルギ、原子炉格納容器下部内側及び		(2) 判断基準		用いた。このため、島根
連は基本ケース同様とする。 デスタル構造健全性評価の判断基準も異なる。 4. 評価結果 3. 評価結果 原子炉格納容器下部に水位2mの水張りが実施されている場(1) IASMINE 3. 評価結果		LS-DYNAによるペデスタル構造健全性評価の判断基		2号炉と東海第二でペ
4. 評価結果 3. 評価結果 3. 評価結果 3. 評価結果 3. 評価結果 3. 評価結果 3. 評価結果		準は基本ケース同様とする。		デスタル構造健全性評
4. 評価結果 3. 評価結果 3. 評価結果 3. 評価結果 原子炉格納容器下部に水位2m の水張りが実施されている場 (1) LASMINE 3. 評価結果				価の判断基準も異なる。
4. 評価結果 3. 評価結果 3. 評価結果 3. 評価結果 原子炉格納容器下部に水位2m の水張りが実施されている場 (1) IASMINE 3. 評価結果				
原子炉格納容器下部に水位2m の水張りが実施されている場(1) IASMINE 水蒸気爆発に伴うエネルギ. 原子炉格納容器下部内側及び	4. 評価結果	3. 評価結果	3. 評価結果	
	原子炉格納容器下部に水位2m の水張りが実施されている場	(1) JASMINE	水蒸気爆発に伴うエネルギ,原子炉格納容器下部内側及び	
<u>合における</u> 水蒸気爆発に伴うエネルギー,原子炉格納容器下部 第3表にJASMINE評価結果を示す。流体の運動エネル 外側鋼板の応力の推移を図4,図5及び図6に示す。水蒸気	<u>合における</u> 水蒸気爆発に伴うエネルギー, <u>原子炉格納容器下部</u>	第3表にJASMINE評価結果を示す。流体の運動エネル	外側鋼板の応力の推移を図4、図5及び図6に示す。水蒸気	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
内側及び外側鋼板の応力の推移を図2,図3_及び図4_に示す。	ギの最大値は <u>約1.1MJ</u> である。	爆発の発生を想定した場合に原子炉格納容器下部の水に伝達	・評価結果の相違
水蒸気爆発の発生を想定した場合に原子炉格納容器下部ドラ		される運動エネルギの最大値は, <u>約 0.6MJ</u> である。このエネ	【柏崎 6/7,東海第二】
<u>イウェル</u> の水に伝達される運動 <u>エネルギー</u> の最大値は, <u>約7MJ</u>	(2) $L S - D Y N A$	ルギを入力とし、原子炉格納容器下部内側及び外側鋼板にか	
である。この <u>エネルギー</u> を入力とし, <u>原子炉格納容器下部</u> 内側	<u>第4表にLS-DYNAによるペデスタル構造健全性評価結</u>	かる応力を解析した結果,原子炉格納容器下部の内側鋼板に	
及び外側鋼板にかかる応力を解析した結果, 原子炉格納容器下	果を,第5図にペデスタル変位時刻歴,第6図にコンクリート最	加わる応力は <u>約 53MPa</u> , 外側鋼板にかかる応力は <u>約 12MPa</u> と	
部の内側鋼板に加わる応力は <u>約98MPa</u> ,外側鋼板にかかる応力	小主ひずみ分布,第7図に鉄筋軸ひずみ分布及び第8図にコンク	なった。これは内側及び外側鋼板の降伏応力を大きく下回る	
は <u>約47MPa</u> となった。これは内側及び外側鋼板の降伏応力を大	リートせん断応力度を示す。LS-DYNAの解析結果はすべ	値であり、かつ、弾性範囲内にあることから、原子炉圧力容	
きく下回る値であり、かつ、弾性範囲内にあることから、原子	ての項目の判断基準を満足している。よって, 偏心位置でのS	器の支持に支障が生じるものではない。	
炉圧力容器の支持に支障が生じるものでは無い。	Eによってもペデスタルに要求される機能は維持され、格納容		
	器の健全性は損なわれることはない。		
	なお, 側壁及び床スラブの面外せん断応力度の検討範囲及び		
	<u>算定方法は基本ケースと同じである。</u>		
また,原子炉格納容器下部に水位7m の水張りが実施されて			・評価条件の相違
いる場合における水蒸気爆発に伴うエネルギー, 原子炉格納容			【柏崎 6/7】
器下部内側鋼板の相当塑性ひずみの推移及び外側鋼板の応力			島根2号炉および東
の推移を図5, 図6 及び図7 に示す。水蒸気爆発の発生を想定			海第二では,現実的な
した場合に原子炉格納容器下部ドライウェルの水に伝達され			水張り水位でのみの水
る運動エネルギーの最大値は,約16MJ である。このエネルギ			蒸気爆発評価を実施。
<u>ーを入力とし、原子炉格納容器下部内側及び外側鋼板にかかる</u>			
応力を解析した結果, 原子炉格納容器下部の内側鋼板にかかる			
応力は降伏応力を超えるものの,相当塑性ひずみは約0.13%,			
<u>外側鋼板にかかる応力は約326MPa となった。応力評価の対象</u>			
<u>としている内側及び外側鋼板(厚さ30mm)降伏応力は約490MPa</u>			
<u>である。外側鋼板にかかる応力は降伏応力を大きく下回る値で</u>			
あり、かつ、弾性範囲内にあることから、原子炉圧力容器の支			
持に支障が生じるものでは無い。			
なお,構造上,原子炉格納容器下部の内側鋼板にかかる応力		なお,構造上,原子炉格納容器下部の内側鋼板にかかる応	
の方が外側鋼板にかかる応力よりも大きくなる傾向があるが、		力の方が外側鋼板にかかる応力よりも大きくなる傾向がある	
原子炉圧力容器の支持機能については原子炉格納容器下部の		が,原子炉圧力容器の支持機能については原子炉格納容器下	
外側鋼板のみで維持可能である。		部の外側鋼板のみで維持可能である。	
以上の結果から, <u>水位2m 及び水位7m において,</u> 水蒸気爆発		以上の結果から, <u>現実的と考えられる評価条件において溶融</u>	・評価条件の相違
の発生を想定した場合であっても, 原子炉格納容器バウンダリ		<u>炉心が偏心位置に落下して</u> 水蒸気爆発の発生を想定した場合	【柏崎 6/7】
の機能を維持できることを確認した。		であっても,原子炉格納容器バウンダリの機能を維持できるこ	島根2号炉は,現実
		とを確認した。	的な水張り水位でのみ
			の水蒸気爆発評価を実
			施。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2 号炉	備考
5. 水蒸気爆発についての評価の保守性について			 ・記載方針の相違
上記の評価結果が示す通り,初期水張り水位7mの評価条件			【柏崎 6/7】
では内側鋼板が僅かに歪む結果となった。上記の結果であって			現状の水蒸気爆発評
			価が様々な保守性を含
考えるが,現状の水蒸気爆発の評価は様々な保守性を含んでい			んでいることを鑑みて,
ると考えており、溶融炉心落下時の溶融炉心の挙動や実機の状			水蒸気爆発評価の評価
			条件の保守性について
 える。以下ではRPV 破損時の溶融炉心のふるまいを考慮し, 本			の考察が記載されてい
			る。
(1) 溶融炉心の落下高さ			
JASMINE では, RPV 破損後, 溶融炉心はペデスタルに張ら			
れた初期水張りの水面まで自由落下し,プール内へ流入する			
評価モデルとなっている。しかしながら実機のRPV 下部には			
<u>CRD, 炉内計装ハウジング, ケーブルが設置されており, 更に</u>			
下部にはCRD 交換機や足場となるグレーチング等の構造物が			
存在している(図8, 図9 参照)。実機の構造上, RPV 底部から			
<u>流出した溶融炉心はこれらの構造物に接触し,分散すること</u>			
<u>が自然と考えられることから、溶融炉心が直接初期水張りの</u>			
水面まで落下することはないと考えられる。したがって、溶			
融炉心の落下を考慮する上では,少なくとも溶融炉心が一旦			
留まる可能性が高いCRD 交換機のターンテーブル高さ(ペデ			
スタル床上約5m)を考慮することが現実的と考えられる。			
水張り高さが5m 未満の場合は溶融炉心がCRD 交換機の高			
さで一旦停止した上で初期水張りの水面に落下することか			
<u>ら,溶融炉心の落下速度が遅くなり,これにより粗混合量が</u>			
減少することから, RPV 底部から直接初期水張りの水面に落			
<u>下する場合に比べて水蒸気爆発の規模が小さくなる。水張り</u>			
高さが5m 以上の場合は溶融炉心がグレーチング等の構造物			
に接触することでトリガリングを誘発する可能性が考えら			
れ,この場合,爆発発生の位置が高く,粗混合量が少ない状			
<u>態での爆発となることから、粗混合量のピークをとるまで沈</u>			
んでから爆発する場合に比べて水蒸気爆発の規模が小さくな			
<u> 3.</u>			
(2) 溶融炉心の放出速度			
溶融炉心の放出速度は破損口にかかる溶融炉心の堆積圧			
等からMAAP4 で計算されており, 8m/s が設定されている。 溶			
融炉心の堆積圧の計算では,燃料に加えて炉内構造物が考慮			
<u>されているものの,実際には燃料や構造材の一部が炉心位置</u>			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--	---------------------	--------------	----
に滞留することが考えられる。			
また,端部から落下する場合,RPV 底部が半球状になって			
いることから、堆積圧が低下し、放出速度が緩和される可能			
性が考えられる。			
(3) 溶融炉心落下量			
溶融炉心のRPV 破損口からの落下の形態については,現			
状,CRD ハウジング1 本分(0.15m)に流出時の溶融炉心による			
口径の拡大分(0.05m)を見込んだ口径のジェット(0.20m)を考			
慮しているが, 実際にはCRD ハウジング1 本が瞬時に脱落す			
ることは考えにくく、溶接の薄い箇所等、僅かな口径から流			
出した溶融炉心が構造材を伝い,あるいは構造材によって分			
散され、細い径で徐々に落下する形態が考えられる。現実的			
な流出箇所と流下の形態を想定する場合, 粗混合量はCRD ハ			
ウジング1 本分の口径のジェットを想定する場合に比べて少			
ないものと考えられることから、水蒸気爆発の規模が小さく			
なる。			
下部プレナムに溶融炉心が落下した後の流出経路に関す			
る知見としては,NUREG/CR-5582 に実験結果が示されている。			
<u>NUREG-5582</u> では,RPV 及びRPV 底部の貫通部を模擬した圧力			
容器に高温の溶融炉心の模擬物質を落下させた際の圧力容器			
の破損の挙動を調査しており、その結果、貫通部材の抜け落			
ちは確認されず、圧力容器と貫通部材の間の溶接部の貫通が			
確認されたと報告されている。また、貫通した箇所の隙間の			
<u>大きさは元々の大きさである0.2mm から約4mm まで増加した</u>			
と報告されている。			
柏崎刈羽原子力発電所6 号及び7 号炉のFMCRD とRPV の構			
<u>造に照らすと,RPV とCRDハウジングの隙間の大きさは0.25mm</u>			
であり, 面積に換算すると0.6cm2 となる。また, 仮に隙間の			
大きさが4mm まで増加した場合を想定すると,面積は約10cm2			
となる。この様にRPV とCRD ハウジングの隙間から溶融炉心			
が流出する場合を想定するとしても, RPV とCRD ハウジング			
の溶接面の全周が均一に溶融し、同時に貫通して溶融炉心が			
下部プレナムに一斉に流出することは考えにくく、実際には			
溶接面の一部から流出が開始するものと考えると、溶融炉心			
の流出の口径は更に狭まるものと考えられるため、上記の想			
定についても未だ保守性を有しているものと考えられる。			
<u>(4) 溶融炉心の温度</u>			
RPV から流出した溶融炉心は構造材を伝う間に構造材によ			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
って熱を奪われ、冷却される可能性が考えられる。この場合,			
溶融炉心はクエンチされ易くなることから、冷却効果を考慮			
しない場合に比べて爆発に寄与する溶融炉心の量が減少する			
可能性が考えられる。			
(5) トリガ位置およびタイミング			
(1)に記載の通り,初期水張り高さを5m以上とする場合,			
溶融炉心は5m 高さのグレーチング等に接触した際の衝撃で			
トリガリングが発生する可能性が考えられる。この場合、爆			
発発生の位置が高く、粗混合量が少ない状態での爆発となる			
ことから、粗混合量のピークをとるまで沈んでから爆発する			
場合に比べて水蒸気爆発の規模が小さくなる。			
初期水張り高さ7m を考える場合であっても, 2m の深さで			
水蒸気爆発が生じると考えれば,爆発の規模としては2m 水張			
りの場合と同程度の結果※と考えられる。			
<u>※ 水深7m で粗混合量のピークをとるまで沈んでから爆発</u>			
<u>する場合に発生するエネルギーは16MJ だが, 2m 水張りの場</u>			
<u>合は7MJ。</u>			
(6) 粗混合粒径			
既存のFCI 試験ではザウター平均粒径として0~3mm 程度			
と報告されていることからJASMINE 解析では保守的に4mm を			
設定してきた。このため、現実的な条件として既往の実験か			
ら得られている平均粒径の条件である3mm を設定することが			
<u>妥当と考える。これにより、溶融炉心はクエンチされ易くな</u>			
ることから, 粒径を4mm とする場合に比べて爆発に寄与する			
溶融炉心の量が減少する可能性が考えられる。			
(7) 格納容器下部の水温			
評価では格納容器下部の水温を50℃としているが,実際に			
は格納容器スプレイによってスプレイ時の水温50℃よりも高			
い温度の水が格納容器下部に流入する可能性が考えられる			
(有効性評価「炉外FCI」のベースケースのRPV 破損前のドラ			
イウェルの雰囲気温度は約80℃)他, サプレッション・チェン			
バ・プール水位が上昇しリターンラインから水が流入する場			
合には,有効性評価「炉外FCI」のベースケースのサプレッシ			
ョン・チェンバの水温が約100℃になっていることから, 50℃			
より高い水温の水で格納容器下部が満たされると考えられ			
<u>る。</u>			
溶融炉心がサブクールの低い水中(高温の水中)に落下する			
場合,落下し,分散した溶融炉心の近傍が高ボイド率となり,			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
衝撃力の伝播を抑制すると考えられることから、格納容器下			
部の水温が高い場合に水蒸気爆発に伴って発生するエネルギ			
一は,格納容器下部の水温が低い場合に比べて小さくなるも			
<u>のと考えられる。</u>			
なお,溶融炉心がサブクールの低い水中(高温の水中)に落			
<u>下する場合,トリガリングが発生しにくいという知見が得ら</u>			
れている。これはサブクールが高い水中(低温の水中)に落下			
した場合に比べて溶融炉心を覆う蒸気膜が安定なためと考え			
<u>られている。</u>			
6. 現実的と考えられる評価条件における影響評価			・記載方針の相違
上記5.の通り,現在の水蒸気爆発の評価条件は種々の保守			【柏崎 6/7】
性を有していると考えられることから,NUREG-5582 を参考に			前項の水蒸気爆発評
RPV 底部破損(溶融物流出)口径を見直す等, 大きな保守性を			価の評価条件の保守性
有していると考えられるパラメータについては評価条件を見			についての考察を踏ま
直し、水蒸気爆発による影響評価を実施した。			え、現実的な評価条件
<u>(1)</u> 評価条件(図1 及び表2 参照)			での水蒸気爆発解析が
・溶融炉心落下位置:CRD ハウジング最外周での溶融炉心			実施されている。
の落下を想定			
・RPV 底部破損(溶融物流出)口径:0.0357m(約10cm2)(RPV			
<u>とCRD ハウジングの隙間の面積0.6cm² に余裕を見込ん</u>			
<u>だ値)</u>			
・溶融物の放出速度:8m/s(ベースケースから変更なし。)			
・初期水張り水位:7m			
・トリガリング位置:格納容器下部床面から5m(グレーチン			
<u>グ高さ)</u>			
・粗混合粒子径3mm			
・初期水張り水温50℃(ベースケースから変更なし。)			
・構造応答解析コードAUTODYN-2D による評価モデル:溶融			
炉心落下位置から格納容器下部壁面までの最短距離を半			
径とする円筒			
(2) 評価結果			
・運動エネルギーの最大値:1.5MJ(図10 参照)			
・内側鋼板におけるミーゼス相当応力の最大値:70MPa(図			
11 参照)			
・外側鋼板におけるミーゼス相当応力の最大値:33MPa(図			
12 参照)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
7. 評価結果の比較	(3) 基本ケース解析との比較	4. 評価結果の比較	
初期水張り水位,溶融炉心落下位置,その他評価条件を変	第5表に基本ケース解析との比較を示す。評価対象とする項	<u>表2に基本ケース解析との比較を示す。</u> 現実的と考えられ	・評価結果の相違
<u>更して実施した評価結果の比較を表3 に示す。6.に示す,</u> 現	目のうち, 側壁下部の面外せん断応力度及び側壁鉄筋の引張ひ	る評価条件において溶融炉心が偏心位置に落下した場合の影	【柏崎 6/7,東海第二】
実的と考えられる評価条件において溶融炉心が偏心位置に落	ずみ以外は、基本ケース解析結果を下回るか、同様(変位、圧	響評価の結果,基本ケースよりも原子炉格納容器下部の内側	島根2号炉の基本ケ
下した場合の影響評価の結果, <u>ベースケース(初期水張り水位</u>	壊の範囲)である。	及び外側それぞれの鋼板に加わる応力が小さくなる結果とな	ースでは,保守的な評
2m の格納容器下部中心に溶融炉心が落下した場合について,	側壁下部の面外せん断応力度は基本ケースの解析結果を上	った。	価条件が適用されてお
保守的な評価条件で評価したケース)よりも格納容器下部の	回っているが、判断基準である終局面外せん断応力度に対して		り,現実的な評価条件
内側及び外側それぞれの鋼板に加わる応力が大きくなった。	十分な余裕がある。また、上部側壁に発生する面外せん断応力		を適用した偏心ケース
一方,ベースケースに対して初期水張り水位のみ7m に変更し	度は基本ケースの6割程度にとどまっている。		の評価結果を包絡する
た評価結果よりは、格納容器下部の内側及び外側それぞれの	側壁の鉄筋の引張ひずみも基本ケースの解析結果を上回っ		結果となっている。
鋼板に加わる応力が小さくなる結果となった。	ているが、判断基準の許容ひずみを十分に下回り、更に降伏応		
	<u>力345N/mm²に対して発生応力の最大値は約52N/mm²にとど</u>		
	まり、弾性限界に対しても十分な余裕がある。		
このことから,現実的と考えられる評価条件において溶融	<u>以上より, 偏心位置における現実的なデブリの落下様態を想</u>	このことから、現実的と考えられる評価条件において溶融	・記載方針の相違
炉心が偏心位置に落下した場合 <u>の影響評価の結果は,保守的</u>	<u>定したSEの影響は基本ケースに代表されるものと考えられ</u>	炉心が偏心位置に落下した場合 <u>に対しても,基本ケースの評</u>	【柏崎 6/7】
な評価条件において溶融炉心が中心位置に落下した場合の評	<u> 3.</u>	価は代表性を有していることを確認した。	島根2号炉および東
価結果に包絡されると扱うことができると考える。			海第二では現実的な評
			価条件で水蒸気爆発評
以上			価を実施。
		5. FCI発生時のエネルギ低減策について	・記載方針の相違
		<u>BWRにおける原子炉圧力容器外のFCIに関して,島根</u>	【柏崎 6/7,東海第二】
		2号炉の審査での整理は、以下のとおりである。	島根2号炉はFCI
		①これまでの代表的なFCIの実験で水蒸気爆発が観測さ	発生時のエネルギ低減
		れた例は,外部トリガがある条件又は溶融物温度が高い	策について記載。
		ものであり、実機条件ではこのようなトリガ装置で発生	
		させているような圧力外乱となる要因は考えられず,ま	
		た溶融物の過熱度は実験条件ほど高くならないと考えら	
		れることから、実機において大規模な水蒸気爆発が発生	
		する可能性は極めて小さいと考えられる。	
		②加えて, BWRの原子炉圧力容器下部は, 制御棒駆動機構	
		等の様々な構造物が存在するとともに、原子炉格納容器	
		下部床の上方にはグレーチング等の干渉物が存在し,発	
		生可能性を更に低減する又は仮に発生した場合のエネル	
		ギを小さくする要素となり得る。	
		③一方で,落下後の溶融炉心冷却の際の事前の水張りに際	
		しては, MCCIによる侵食を可能な限り低減しつつ, 仮	
		に水蒸気爆発が発生した場合のエネルギを増加させない	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		 措置として初期水張り高さは 2.4m にするなど,MCCI 対策とFCI対策のバランスを踏まえた対策としている。 ④仮にペデスタル水位が上昇した場合(約3.8m)や溶融炉心が偏心位置に落下した場合に水蒸気爆発が起きたと仮定した場合の感度解析として,水蒸気爆発解析コードJA SMINE,構造応答解析コードAUTODYN-2Dにより圧力伝播挙動等を求めた結果,原子炉圧力容器の支持に支障が生じるものではない。 	
		上述のとおり, BWRにおける水蒸気爆発の可能性は極め て低いこと,水蒸気爆発の発生を仮定した場合でも原子炉圧 力容器の支持に支障が生じるものではないことを確認してい るが,水蒸気爆発により格納容器破損に至るシナリオの重要 性を踏まえ,更なる安全性向上を目的として,FCI発生時 のエネルギ低減策について検討を進めることとする。	
	4. まとめ 偏心位置における現実的なデブリの落下様態を想定したS Eの影響を評価した。その結果、ペデスタル構造健全性評価の すべて判断基準を満足し、ペデスタルに要求される機能が損な われず、格納容器の健全性は維持されることを確認した。 また、基本ケースとの解析結果の比較を行い、偏心位置での 現実的なデブリの落下様態を想定したSEに対しても、基本ケ ースの評価は代表性を有していることを確認した。		
	参考文献 [1] T.Y.Chu, M.M.Pilch, J.H.Bentz, J.S.Ludwigsen, W-YLu and L.L.Humperies, "Lower Head Failure Experiment and Analyses," NUREG/CR-5582, SAND98-2047, 1999. [2] General Electric Systems Technology Manual Chapter 2.1 <u>Reactor Vessel System, USNRC HRTD, Rev 09/11</u>	参考文献 [1] T.Y.Chu, M.M.Pilch, J.H.Bentz, J.S.Ludwigsen, W-YLu and L.L.Humperies, "Lower Head Failure Experiment and Analyses," NUREG/CR-5582 , SAND98-2047,1999.	

·炉	備考
	・評価モデルの相違 【柏崎 6/7】 島根2号炉の原子炉 格納容器下部の構造お よび溶融炉心落下位置 を反映。
王力源.	
計算モデルの座標原点 (鉛直方向=X 径方向=V) X(対称軸) Y(径) YN-2Dコードの	

·炉	備考
	 ・評価条件の相違 【柏崎 6/7】 柏崎 6/7 は,保守的な 評価条件における水蒸 気爆発評価結果を示し ている。

炉	備考
	・評価条件の相違
	【柏崎 6/7】
	柏崎 6/7 は, 保守的な
	評価条件における水蒸
	気爆発評価結果を示し
	ている。

炉	備考
*支持金具	
E	
n 配置状況	

~炉	備考

·炉	備考
	・評価結果の相違
	【東海第二】
	島根2号炉は内側鋼
	板,外側鋼板,リブ鋼板
	からなる二重鋼板製ペ
	デスタルであるのに対
	し,東海第二はペデスタ
	ル側壁及び床スラブは
	鉄筋コンクリート製ペ
	デスタルであることか
	ら,構造の違いによりペ
	デスタル構造健全性評
	価の評価結果が異なる。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第8図 コンクリート面外せん断応力度		

**THAK-00-0人// 単棒駆動機構、ウジング1本の外径として設定 設行しーコンクリート相互作用による格納容器破損防止対策として、落下 ご裕融炉心を微粒子化し、十分な除熱量を確保するため、予め水張りを行 50として手順上定めている値 5ものとして設定 5本源の水温として設定	にかかる溶融炉心の堆積圧等から MAP4 で計算 戦齢結果におけるデブリ粒径分布をもとに設定 KROTOS 等の各種試験結果におけるデブリ粒径分布をもとに設定		 ・評価条件の相違 【柏崎 6/7】 保守的な水蒸(評価の評価条件。
*THAKE PACE ALA *THAKE PACE ALA #検駆動機構 ハウジング1本の外径として設定 破炉心ーコンクリート相互作用による格納容器破損防止対策として,落下 と溶融炉心を微粒子化し、十分な除熱量を確保するため、予め水張りを行 かのとして手順上定めている値 ちのとして決定 あのとして設定 ポ水源の水温として設定	にかかる溶融炉心の堆積圧等から MAP4 で計算 戦齢結果におけるデブリ粒径分布をもとに設定 KROTOS 等の各種試験結果におけるデブリ粒径分布をもとに設定	による解析結果をもとに設定	
制溶しう原い外調	破損口 FAR0意 FAR0,	JASMILLE	
а. 2 m 2 m 50°C	8m/s 4mm 50μm ペデスタル水深2mの 撮合・約7M1	ペデスタル水深 7m の 場合:約 16MJ	
項日 原子炉圧力容器の破損径 ペデスタル水深 「デデ邦格納容器下部への水 張りに用いる水の温度	溶融物の放出速度 粗混合粒子径 爆発計算時の微粒子径	ーオイン	
JASMINE		AUTODYN-2D	

柏嵋	所刈羽原	子力発電	 昏所 6	/7号/j	⊐ (20)	17. 12. 2	0版)	東海第二発電所(2018.9.12版)			島	根原子	-力発'	電所	2号	炉			備考
		ht																	 ・評価条件の相違 【柏崎 6/7】 ペデスタル水深, 7 りに用いる水の温度 造広答解析条件等点
条件設定の考え方	RPV と CRD ハウジングの隙間の面積 0. 6c㎡ に余裕を見込んだ値	原子炉格納容器下部にリターンラインまでの高さ(Tm)の水位が形成さ いるものとして設定	外部水源の水温として設定	破損口にかかる溶融炉心の堆積圧等から MAAP4 で計算	既往の実験から得られている平均粒径	FARO, KROTOS 等の各種試験結果におけるデブリ粒径分布をもとに設定	JASMINE による解析結果をもとに設定	中学校の評判の部での「「「「」」の目前の目前の目前の目前の目前の目前の目前の目前の目前の目前の目前の目前の目前の	~ 21 ひががかびです11回 (Win G10 1 / / / / / / / / / / / / / / / / / /	本11.55~5~5~5~5~5~5~5~5~5~5~5~5~5~5~5~5~5~	www.r-x/Hate June Purple 溶融炉心ーコンクリート相互作用による格納容器破損防止対 策として落下した溶融炉心を微粒子化し、十分な除熱量を確保 するため、あらかじめ水張りを行うものとして手順上定めてい ス値	◇ E 外部水源の水温として設定	破損口にかかる溶融炉心の堆積圧等から MAAP4 で計算	既往の実験から得られている平均粒径	FAR0, KR0T0S 等の各種試験結果におけるデブリ粒径分布をもと に設定	現実的条件には溶融物が原子炉格納容器下部床面に接触する際の衝撃によりトリガリングが発生する可能性が高いと考えられることから設定	JASMINE による解析結果をもとに設定	F 原子炉圧力容器下部の中心から外れた偏心位置からの溶融炉 心落下を想定して設定	µ□心谷胜彻朱仲寺0 違。
主要解析条件	0. 0357m (糸J 10cm ²)	7 m	50°C	8m/s	3mm	50 µ m	举9 1.5MJ			0. 0357m (<u>%</u> 110 ²)	2. 4m	35°C	8m/s	3mm	50 µ m	溶融物が床面に 到達した時点	彩 0.6MJ	最外周制御棒位置	
項目	原子炉圧力容器の破損径	ペデスタル水深	東子炉格納容器下部への水 長りに用いる水の温度	容融物の放出速度	租混合粒子径	素発計算時の微粒子径	容融炉心一冷却材相互作用 こよる発生エネルギー	なの数の数でのない。		原子炉圧力容器の破損径	ペデスタル水深	原子炉格納容器下部への 水張りに用いる水の温度	溶融物の放出速度	粗混合粒子径	爆発計算時の微粒子径	トリガリングタイミング	溶融炉心-冷却材相互作 用による発生エネルギ	爆発源の径方向位置	
解析コード		<u> </u>		JASMINE	*		AUTODYN-2D				JASMINE						AUTODYN-2D		
角							VI	中 中 中 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王		1	1								
	解析コード 項目 主要解析条件 条件設定の考え方 計	解析コード 項目 主要解析条件 条件設定の考え方 喇 0.0357m RPV と CRD ハウジングの隙間の面積 0.6cm ² に余裕を見込んだ値	相 通目 王要解析条件 来件設定の考え方 市 項目 王要解析条件 条件設定の考え方 市 原子炉圧力容器の破損後 (約 10cm ³) (10cm ³) (約 10cm ³) (約 10cm ³) RPV と CRD ハウジングの隙間の面積 0. 6cm ³ に余裕を見込んだ値 (約 10cm ³) (約 10cm ³) (約 10cm ³) ホッテスタル水深 ア (ア ひろものとして設定 いるものとして設定	解貯コード 項目 主要解析条件 項目 主要解析条件 条件設定の考え方 - 原子炉圧力容器の破損径 0.0357m RPV と CRD ハウジングの隙間の面積 0.6cm ³ に余裕を見込んだ値 (約 10cm ³) - 原子炉 (約 10cm ³) RPV と CRD ハウジングの隙間の面積 0.6cm ³ に余裕を見込んだ値 (約 10cm ³) ペデスタル水深 7m (約 10cm ³) RPV と CRD ハウジングの隙間の面積 0.6cm ³ に余裕を見込んだ値 パデスタル水深 7m いるものとして設定 いるものとして設定 原フ炉格納容器下部への水 50°C 外部水源の水温として設定	解析コード 項目 主要解析条件 無件設定の考え方 一 原子炉圧力容器の破損格 0.0357m RIV と CRD ハウジングの隙間の面積 0.6cm ² に余裕を見込んだ値 一 原子炉圧力容器の破損格 (約 10cm ³) RIV と CRD ハウジングの隙間の面積 0.6cm ² に余裕を見込んだ値 マデスタル水深 7.m 原子炉格納容器下部への水 (約 10cm ³) パラックシンクの隙間の面積 0.6cm ³ RIV と CRD ハウジングの隙間の面積 0.6cm ³ に余裕を見込んだ値 パラックシンクボード (約 10cm ³) RIV と CRD ハウジングの隙間の面積 0.6cm ³ に (約 10cm ³) パラックシンティンまでの高き (7m) の水位が形成されていた パラックが形成されていた パラックシンクボード (約 10cm ³) 原用 7.m パラ 10cm ³ パラ 10cm ³ 市 いるもののた 第0 株用ロにわいろがる溶離からの低損産 1ASMINE 8m/s 8m/s 8m/s	解除「コード 項目 主要解析条件 項目 主要解析条件 項目 主要解析条件 第6件設定の考え方 - 原子作用二力容器の破損後 0.0357m RFW と CRD ハ ウジングの隙間の面積 0.6cm ⁺ に余裕を JLiAA/20M (%) 10cm ⁻) - 「第7年5日の (%) 10cm ⁻) RFW と CRD ハ ウジングの隙間の面積 0.6cm ⁺ に余裕を JLiAA/20M (%) 10cm ⁻) - 「第1年5日の (%) 10cm ⁻) RFW と CRD ハ ウジングの隙間の面積 0.6cm ⁺ に余裕を JLiAA/20M (%) 10cm ⁻) - 「第1年5日の 「1 (%) 10cm ⁻) RF 中 特徴容易 (%) 10cm ⁻) - 「第1年5日の 「1 (%) 10cm ⁻) (%) 10cm ⁻) (%) 10cm ⁻) - 「1 「1 いるものとして設定 (%) 10cm ⁻) (%) 10cm ⁻) - 「1 いるものとして設定 「1 いるものとして設定 (%) 10cm ⁻) - 「1 いるものとして設定 「1 いるものとして設定 (%) 10cm ⁻) - 「1 「1 いるものとしてごだ (%) 10cm ⁻) (%) 10cm ⁻) - 「1 「1 いるものとしてごだ (%) 10cm ⁻) (%) 10cm ⁻) - 「1 「1 いるもの (%) 10cm ⁻)	解除コード 取用 主要報告条件 主要報告条件 未要報告条件 条件設定の考え方 - 第子が用土力装器の破損損化 (3.0357m RW と CR0 ハウジングの隙間の面積 0.6cm ¹ に余裕を見込んだ机 (約.100m ²) - 第子が指数の破損損化 (約.100m ²) RW と CR0 ハウジングの隙間の面積 0.6cm ¹ に余裕を見込んだ机 (約.100m ²) - 第子が指数の破損化 (約.100m ²) RW と CR0 ハウジングの隙間の面積 0.6cm ¹ に余裕を見んだい (約.100m ²) RW と CR0 ハウジングの隙間の面積 0.6cm ² に余裕を見んだい (約.100m ²) No. - - 第子が指執解答器下部への水 7m No.55.0 として設定 AmALAGE AmALAGE		中国時間 市 中国日のの日本 中国日の日本 中国日本 中国本 中国本 中国本 中国本 中国本 <td>市</td> <td>新聞の加速性・力強な強化 の し 上 株式の中から協調のの価格 の<!--/</td--><td>中田 中田 中田< 中田 中田</td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td></td>	市	新聞の加速性・力強な強化 の し 上 株式の中から協調のの価格 の /</td <td>中田 中田 中田< 中田 中田</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td>	中田 中田< 中田 中田			<u> </u>				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			東海	第二発	電所((2018. 9	9.12版	į)			島根原子力発電所 2号炉	備考
										1		 ・判断基準の相違 【東海第二】 島根2号炉は内側鋼 板,外側鋼板,リブ鋼板 からなる二重鋼板製ペ デュないであるのに対
	近/莊※1		0	0	0	0	0	0	0			テスタルであるのに対 し 車海第二けペデスタ
		-		0 0			-			-		ル側壁及び床スラブは
	m	ない	ない	N _ mm _ N		ない	じない	mm ²				鉄筋コンクリート製ペ
	本 本 日 本 一 本 二 本 二 本 二 本 二 本 二 本 二 、 二 本 二 、 、 、 、 、 、 、 、 、 、 、 、 、	増大し	「換け」	1 0. 52 1 0. 95	249 µ	増大し	「様に」	13N	101μ			デスタルであることか
	部 の 日 の	位は、	画版に	· · · · · · · · · · · · · · · · · · ·	绕	位は	日 スラブ	約 2.	绕			ら,構造の違いによりペ
	「「」」			判下		痰	枨					デスタル構造健全性評
	間に入	1		側壁		1						価の判断基準が異なる。
	第4表 ペデスタル構造健全性評価の評価結果(偏 6日 1000000000000000000000000000000000000	 グロ プロ・ローン 変位が増大せず、SE後の構造物の進行性の崩壊がない 	ひずみ 機能に影響を及ぼす範囲の圧壊(3,000 μ)が生じない	せん断 2.65N/mm ²) を超えない	いずみ 許容ひずみ (5,000 μ) を超えない	変位が増大せず、SE後の構造物の進行性の崩壊がない	いずみ 機能に影響を及ぼす範囲の圧壊(3,000μ)が生じない	せん断終局面外せん断応力度(3.55N/mm ²) ^{※2} を超えない	いずみ 許容ひずみ(5,000ヵ)を超えない	圳断基準を満足する 率Ⅰ.0にて算定した終局面外せん断応力度		
		※位	田	画	引張	<u> </u>	田縮	画外	引張	果が当時		
	立(元		ンクリー	<u>/-</u>	鉄筋	П	ンクリー	<u> </u>	鉄筋	4析結 更動		
	亚/亚		围	留			床ス	IN T		□」角 縮強		
	다. 상태 위해	2	지 다 >-	支持機能			デブリ保	水持機能		2:圧		
										* *		

7	柏崎刈	1羽原-	子力発	電所	6/7号炉	(2017.12.2	0版)				東	海第二	発電所	f (201	8.9.1	2版)			Ĺ	身根原子力発電所 2号炉	
		1	I	1		Ι	7												<u>-</u>	表 2 評価結果の比較 偏心落下時 (現実的な想定)	基本ケース
									No							4			内側鋼板にかかる圧力	約 53MPa	約 233MPa
				的な想定	I	ත් 70MPa ත් 33MPa			- スに対す	結果の比	I	I	: 約 0. 56 : 約 1. 23	j 1. 35	Ι	ースに対 囲が軽微)	j 0. 58	j 0. 28	外側鋼板にかかる圧力	約 12MPa	約 140MPa
				現実		内侧鋼板:約							上部 一 一 一	<u>ж</u>		(基本ケ)影響範	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*			
5ミーゼス相当応力)の比較	? 融炉心落下位置	CRD ハウジング最外周	価条件(溶融炉心落下量等)			(に加わる応力は降伏応力(490MPa) 2。相当塑性ひずみ約 0.13% ^{#6} a	らないと考える。	群との比較	も果	基本ケース (中心位置)	変位は増大しない	圧壊は側壁に生じない	上部: 彩 0. 93N/mm ² 下部: 約 0. 77N/mm ²	茶5 184 μ	変位は増大しない	圧壊は床スラブ上面の わずかな範囲にとどまる	約 3. 70N/mm ²	糸5 364 μ			
則外側鋼板に加わる	娛		その他の評	保守的な想定	内側鋼板:約 98MPa 外側鋼板:約 47MPa	内側鋼板:内側鋼板 を超える 外側鋼板:約 326MP	ー の支持機能の支障とはない	5表 基本ケース解	解析	本評価 晶心位置)	は増大しない	側壁に生じない	約 0. 52N/mm ² 約 0. 95N/mm ²	ά 249 μ	は増大しない	くラブに生じない	.13N/mm ²	φ 101 μ			
各納容器下部内側		钠容器下部中心位置			-スケース】 帳:約 32MPa 帳:約 25MPa	報反:約 278MPa 4板:約 168MPa	満であり,内側鋼板 (兼		(他	変位は	圧壊は個	上部:	÷	変位に		約2	*			
町結果(を		格			【 べ 冬 倒 参	为 侧	ー は 0. 2%未決		L M	通目	位	縮ひずみ	外せん断	張ひずみ	位	縮ひずみ	外せん断	張ひずみ			
長3 評値					2m	7m	ー 性ひずみ		7, 2	8位	л Ŵ	ンクリー		験 筋	л Ж	ン タ ラ - 王	恒 - <i>二</i>	幾額			
ЪШ					水服の	K位	大相当塑		14 14 14			側	聲			床ス	ラブ				
					板	R.	※9		-47 927	皺部		\mathbb{R} \mathbb{P} $>$ \ddagger	X持機能			デブリロ	床杼嶘郶	2			

炉

備考	

・評価結果の相違

【柏崎 6/7】

島根2号炉の基本ケー スでは、保守的な評価 条件が適用されており, 現実的な評価条件を適 用した偏心ケースの評 価結果を包絡する結果 となっている。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
51. 格納容器ベント時に使用するベントラインによる	23 格納容器ベント時に使用するベントラインによるCs-137	36. 使用する格納容器フィルタベント系の除去効果(DF)につ	
Cs-137の放出量の差の要因等について	の放出量の差の要因等について	いて	
「柏崎刈羽原子力発電所6 号及び7号炉の重大事故等対策	「東海第二発電所 重大事故等対策の有効性評価」の添付資	「島根原子力発電所2号炉の重大事故等対策の有効性評	
の有効性評価について」の <u>添付資料3.1.3.3</u> において, 雰囲気	<u>料3.1.3.4</u> において, 雰囲気圧力・温度による静的負荷(格納	価」の <u>添付資料3.1.3.3</u> において, 雰囲気圧力・温度による静	
圧力・温度による静的負荷(格納容器過圧・過温破損)時に	容器過圧・過温破損)時に <u>代替循環冷却系</u> を使用 <u>できない</u> 場	的負荷(格納容器過圧・過温破損)時において残留熱代替除	
おいて代替循環冷却系を使用しない場合における格納容器圧	合における <u>格納容器圧力逃がし装置</u> からのCs-137の放出	<u>去系</u> を使用しない場合における <u>格納容器フィルタベント系</u> か	
<u>力逃がし装置</u> からのCs-137の放出量について検討を行ってお	量について検討を行っており、サプレッション・チェンバの	らのC s -137の放出量について検討を行っており, サプレッ	
り,サプレッション・チェンバのラインを経由した場合の放出	ラインを経由した場合の放出量は <u>約1.2×10⁻⁴TBq</u> (7日間),	ション・チェンバのラインを経由した場合の放出量は <u>約</u>	
量は <u>約1.4×10⁻³TBq</u> (7 日間), ドライウェルのラインを経由	ドライウェルのラインを経由した場合の放出量は <u>約3. 7TBq</u> (7	<u>2.1×10⁻³TBq</u> (7日間),ドライウェルのラインを経由した場	・解析結果の相違
した場合の放出量は <u>約2.0TBq</u> (7 日間)と評価している。ま	日間)と評価している。また,評価に当たっては <u>,格納容器</u>	合の放出量は <u>約3.4TBq</u> (7日間)と評価している。また,評	【柏崎 6/7,東海第二】
た,評価に当たっては <u>格納容器圧力逃がし装置</u> の除去効果	<u>圧力逃がし装置</u> の除去効果(DF)を1,000としている。	価に当たっては <u>格納容器フィルタベント系</u> の除去効果(DF)	
(DF) を1000 としている。		を1,000としている。	
ここでは, 経由するベントラインによる放出量の差(<u>約</u>	ここでは,経由するベントラインによる放出量の差(<u>約</u>	ここでは, 格納容器フィルタベント系の除去効果(DF)	
<u>1400 倍 = 約2.0TBq/約1.4×10⁻³TBq</u>)の要因及び <u>格納容器</u>	<u>30,800倍=約3.7TBq/約1.2×10⁻⁴TBq</u>)の要因及び <u>格納容器</u>	として1,000を使用することについての妥当性について検討	
<u>圧力逃がし装置</u> の除去効果(DF)として1000 を使用すること	<u>圧力逃がし装置</u> の除去効果 (DF) として1,000を使用すること	を行った。	
についての妥当性について検討を行った。	についての妥当性について検討を行った。		
1. 経由するベントラインによる放出量の差について	1. 経由するベントラインによる放出量の差について		・解析結果の相違
ドライウェルのラインを経由した場合(以下, 「D/W ベン	ドライウェルのラインを経由した場合(以下「D/Wベン		【柏崎 6/7,東海第二】
<u> ト時」という。) とサプレッション・チェンバのラインを経</u>	<u>ト時」という。)とサプレッション・チェンバのラインを経由</u>		島根2号炉は,経由す
由した場合(以下,「W/W ベント時」という。)とでは,格	<u>した場合(以下「W/Wベント時」という。)とでは,格納容</u>		るベントラインによる
納容器ベント実施後の原子炉圧力容器及び原子炉格納容器内	<u>器ベント実施後の原子炉圧力容器及び格納容器内の温度,圧</u>		放出量の差としてはサ
の温度,圧力等が異なるため, 格納容器ベント後のCs-137 の	力等が異なるため,格納容器ベント後のCs-137の振る舞い		プレッション・プールで
振る舞いも異なるものとなる。このため, Cs-137 の環境中へ	<u>も異なるものとなる。このため、C s -137の環境中への放出</u>		の除去効果が主な要因
の放出量の差(約1400 倍)はサプレッション・プールでのス	<u>量の差(約30,800倍)はサプレッション・プールでのスクラ</u>		となっている。
クラビングによる除去効果の違いだけに起因するものではな	ビングによる除去効果の違いだけに起因するものではなく,		
く,「約1400」を直接サプレッション・プールでの除去効果	「約30, 800」を直接サプレッション・プールでの除去効果(DF)		
(DF) と見なすことはできないと考えられる。	と見なすことはできないと考えられる。		
Cs-137 の環境中への放出量の差を生む要因として, サプ	C s −137の環境中への放出量の差を生む要因として, サ		
レッション・プールでの除去効果の違い以外では、例えば原	<u>プレッション・プールでの除去効果の違い以外では,例えば</u>		
子炉圧力容器から原子炉格納容器へのセシウムの放出量の違	原子炉圧力容器から格納容器へのセシウムの放出量の違いが		
いが挙げられる。	挙げられる。		
D/W ベント時はW/W ベント時よりも水頭圧分だけ炉圧が	D/Wベント時はW/Wベント時よりも水頭圧分だけ炉		
低くなるため、炉内ガスの比熱容量が小さくなり、炉内ガス	圧が低くなるため,炉内ガスの比熱容量が小さくなり,炉内		
が温度上昇しやすくなる ^{※1} 。炉内ガス温度が高いと,構造材	ガスが温度上昇しやすくなる*1。炉内ガス温度が高いと,構		

E2を含したキシウムが気伸縮に終行しやすくなるため、原子 空路確認識への放出や多くなる ²⁰ 、このことが、DF ペント 陸のCo-137 の放出金の対量は果美を増加させている一周にな っていると考えられる。 遊林に洗着したキシウムが気伸縮に終行しやすくなるため、 器・御客誌への放出や多くなる ²⁰ 、このことが、DF ペント 陸のCo-137 の放出金の対量は果美を増加させている一周にな っていると考えられる。 遊林に洗着したキシウムが気伸縮に終行しやすくなるため、 器・御客誌への放出や多くなる ²⁰ 、このことが、DF ペント 陸のCo-137 の放出金の対量は多えたいです。 21 格納容器ペント実施後においては、原子グアエノを習め トップへッドンクシンジス、DF ペント時の方が厚め内 キャプへッドンクシンジス、DF ペント時の方が厚め内 たっていると考えられる。 ※1 格納容器ペント実施後においては、原子グアエノを認め トップへッドンクシンジス、DF ペント時の方が厚め内 シント時に比べるシャマいろ。 ※1 格納容器ペント実施後においては、原子グアエクを認め トップへッドンクシンジス、DF ペント時の方が厚め内 メント時に比べるシャマンジス、DF ペント時の方が厚め内 素 2 大破断LOC A時には、かわ内は このいろ、DF ペント時の方が厚め内 電子レビカな絵は容器にな出されると評価している。 ※2 大破断LOC A時には、かわ内は このいろ、DF ペント時の方が厚め内 電子レビカな絵は容器にな出されると評価している。 ※2 大破断LOC A時には、かわ内は このいろ、DF ペント時の方が厚め内 電子レビカなんとが容易にな出されると評価している。 2. 使用する経動容器に力法がと実置の除去効果 (OF) について て エアニアノルな子に対する体的容器に力成功しため にないて なっていためななどを認めためためで にないて なっていためなど にないためなどを認知られるとないため にないためなど にないためないためなど にないためなど にないためなど にないためなど にないためなど にないためなど にないためなど にないためなど にないためなど にないためなど にないためなど にないためなど にないためなど にないためなど にないたかなど にないためないためなど にないためてためてためなど にないためないためてためためためためた	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>brikkingS5-obgHivsetdesen<u>Dre <>></u><u>BingS5-obgHivsetdesen<u>BingS5-obgHivsetdesen<u>BingS5-obgHivsetdesen<math>britBingS5-obgHivsetdesenBingS5-obgHivsetdesenBingS5-obgHivsetdesenBingS5-obgHivsetdesen<math>britBingS5-obgHivsetdesenBingS5-obgHivsetdesenBingS5-obgHivsetdesenBingS5-obgHivsetdesen<math>britBingS5-obgHivsetdesenBingS5-obgHivsetdesenBingS5-obgHivsetdesenBingS5-obgHivsetdesen<math>britBingS5-obgHivsetdesen<t< math=""></t<></math></math></math></math></u></u></u></u>	に沈着したセシウムが気相部に移行しやすくなるため、原子	造材に沈着したセシウムが気相部に移行しやすくなるため,		
B <u>D</u> (S-137 D <u>M</u>)Ll B <u>O</u> (2 D [137 D <u>M</u>)Ll B <u>D</u> [137 D <u>M</u>]Ll B <u>D</u> [137 D]Ll B [137 D]Ll D [137 D]Ll B [137 D	炉格納容器への放出が多くなる ^{※2} 。このことが,D/W ベント	格納容器への放出が多くなる ^{※2} 。このことが, D/Wベント		
コていると考えられる。 なっていると考えられる。 ※1 格納容器ベント実施窓においては、原子炉円力容器の トップヘッドブランジは、D/M ベント時の方が9/0 ペ ント時に比べ20~40℃程度高くなっている。 ※1 格納容器ベント実施窓においては、原子炉円力容器の トップヘッドブランジは、D/W ベント時の方が9/0 ペ Wベント時に比べ見大で30℃程度高くなっている。 ※2 大磁明LOCA 時には、炉内内蔵量の約50%の20c が原子 空圧力容器から原子炉格満容器に広けされると評価 しているみ、DF ペント時の方が9/0 内蔵量の約50%の20c が原子 空圧力容器から原子炉格満容器に広けされると評価 しているみ、DF ペント時の方が9/0 内蔵量の約30% C3600 グループ:約0.20% ※2 大磁新LOCA時には、炉内内蔵量の約37%の2C sが 原子炉用力容器から原子線の25km などト時の方が9/0 内蔵量の約30% ※2 大磁新LOCA時には、炉内内蔵量の約37%の2C sが 原子炉用力容器から原子線の25km などト時の方が9/0 内蔵量の約30% ※3 体験の2 km の2 km 2. 使用する経納容器圧力速が上装置の除去効果 (DF) につい て 1. 使用する経納容器三ノネルクペント系の除去効果 (DF) につい て 1. 使用する経納容器三ノネルクペント系の除去効果 (DF) につい て ・設備成けの相応	時のCs-137 の放出量の評価結果を増加させている一因にな	時のC s-137の放出量の評価結果を増加させている一因に		
※1 格納容器ペント実施後においては、原子好圧力容器の トップヘッドフランジは、D/ ペント時の方がf/ ペ ント時に比べ20~40℃湿度高くなっている。 ※1 格納容器ペント実施後においては、原子好圧力容器の トップヘッドフランジは、D/ ペント時の方がf/ ペ Wベント時の方がW/ Wベント時の方がW ※2 大酸断LOCA時には、炉内内蔵量の約50%のCs が原子 炉圧力容器から原子炉給物容器に放出されると評価 しているが、D/ ペント時の方が炉内内度量の約0.3% (Coll グループ:約0.20%, Csl グループ:約0.20%) だけ多く放出されると評価している。 ※2 大酸断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価 しているが、D/ ペント時の方が炉内内度量の約0.3% (Coll グループ:約0.20%, Csl グループ:約0.20%) だけ多く放出されると評価している。 ※2 大酸断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価している。 ※2 大酸断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価している。 2. 使用する整約容器に力込むしま類の除去効果 (DF)について て アプログル粒子に対する修約容器圧力逃がしま短の除去 2. 使用する整約容器圧力逃がしま短の除去効果 (DF)について て 1. 使用する整約容器フィルタベント系のフィルタ支配は、大規権なせ ・設備取り相連	っていると考えられる。	<u>なっていると考えられる。</u>		
※1 格納容器ベント実施後においては,原子炉圧力容器の トップヘッドフランジは,D/X ベント時の方がW/Y ベ ント時に比べ20へ4072程度高くなっている。 ※1 格納容器ベント実施後においては,原子炉圧力容器の トップヘッドフランジは,D/X ベント時の方がW/Y ベ Wベント時に比べ急くと時の方がW/Y Wベント時の方がW/Y Wベント時の方がW/Y Wベント時の方がW/Y Wベント時の方がW/Y Wベント時に比べ最大で3072程度高くなっている。 ※2 大蔵断LOCA 時には、炉内内蔵量の約50%のCs が原子 炉圧力容器から原子炉格納容器に加されると評価 しているが、D/X ベント時の方が炉内内蔵量の約50%のCs が原子 (CsOH グルーブ:約0.20%) だけ多く放出されると評価している。 ※2 大蔵断LOCA時には、炉内内蔵量の約37%のC sが 原子炉圧力容器から格納容器に加されると評価してい いるが、D/W ベント時の方が炉内内蔵量の約0.0% く放出されると評価している。 ※2 大蔵断LOCA時には、炉内内蔵量の約37%のC sが 2. 使用する格納容器圧力透がし装置の除去効果 (DF) について て ※2 使用する格納容器圧力透がし装置の除去効果 (DF) について て 1. 使用する格納容器2.4.4.4.4.4.2.5.5.6.0.7.4.4.4.4.4.5.5.6.4.4.6.6.4.4.4.5.4.4.6.4.4.6.4.4.4.4				
$k \cdot y'' \sim y'' \vee y''' \vee y'' \vee y''' \vee y'''' \vee y''' \vee y'''' \vee y''''' \vee y'''' \vee y''''''''$	※1 格納容器ベント実施後においては,原子炉圧力容器の	※1 格納容器ベント実施後においては,原子炉圧力容器の		
シト時に比べ20~40℃程度高くなっている。 Wベント時に比べ最大で30℃程度高くなっている。 ※2 大破断LOCA 時には、炉内内蔵量の約50%のCs が原子 炉圧力容器から原子炉格納容器に放出されると評価 しているが、D/W ベント時の方が知内内蔵量の約0.3% (CsOH グループ:約0.2%) だけ多く放出されると評価している。 ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/W ベント時の方が知内内蔵量の約0.3% (CsOH グループ:約0.2%) だけ多く放出されると評価している。 ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/W ベント時の方が知内内蔵量の約0.3% (CsOH グループ:約0.2%) ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/W ベント時の方が知内内蔵量の約0.3% (CsOH グループ:約0.2%) ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/W ベント時の方が知内内蔵量の約5.3% (CsOH グループ:約0.2%) ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 原子炉圧力容器から格納容器に放出されると評価 いるが、D/W ベント時の方が知内内蔵量の約5.3% (CsOH グループ:約0.2%) ※2 使用する 施納容器に加入したいな。 ※2 使用する 施納容器で加入のペント素のの除去効果 (DF) について て 1. 使用する 施納容器でクルクベント系のフィルクベント系のフィルクベント系のフィルクズント系のフィルク支置は、大規模なさ いためでのプレクベントのパントのマント系の ・設備設計の相応 のいて エアログル教育で加入しためでのかしためにためできために、Machtoration 1.1 使用する 施納容器でクルクベント系のフィルクベント系のアレクベント系のの除去効果 (DF) について ・設備設計の相応 のいて	トップヘッドフランジは, D/W ベント時の方がW/W ベ	<u>トップヘッドフランジは,D/Wベント時の方がW/</u>		
※2 大破斯L0CA 時には、炉内内蔵量の約50%のCs が原子 ※2 大破断LOCA時には、炉内内蔵量の約50%のCs が原子 炉圧力容器から原子炉格納容器に放出されると評価 しているが、D/W ペント時の方が炉内内蔵量の約0.3% (CsOH グループ:約0.29%、CsI グループ:約0.29%) ※2 大破断LOCA時には、炉内内蔵量の約37%のC sが (CsOH グループ:約0.29%、CsI グループ:約0.29%) いるが、D/W ペント時の方が炉内内蔵量の約0.7%多 く放出されると評価している。 2. 使用する格納容器圧力速がし装置の除去効果 (DF) につい て 2. 使用する格納容器圧力速がし装置の除去効果 (DF) につい て エンロジル粒子に対する格納容器圧力速がし装置の除去 1. 使用する格納容器フィルタベント系の除去効果 (DF) に ついて エンロジル粒子に対する格納容器圧力速がし装置の除去 ・設備設計の相違	ント時に比べ20~40℃程度高くなっている。	Wベント時に比べ最大で30℃程度高くなっている。		
※2 大破断LOCA 時には、炉内内蔵量の約50%のCs が原子 ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 炉圧力容器から原子炉格納容器に放出されると評価 原子炉圧力容器から格納容器に放出されると評価している。 第37%のC s が しているが、D/W ベント時の方が炉内内蔵量の約0.3% (CSOII グルーブ:約0.29%) CSOII グルーブ:約0.29%) だけ多く放出されると評価している。 シンボーン シンボーン 2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について 2. 使用する <u>格納容器圧力逃がし装置の除去効果 (DF) について</u> 1. 使用する <u>格納容器に力水がに装置の除去効果 (DF) について</u> エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 b. おいのについて				
※2 大破断LOCA 時には、炉内内蔵量の約50%のCs が原子 ※2 大破断LOCA時には、炉内内蔵量の約50%のCs が原子 炉圧力容器から原子炉格納容器に放出されると評価 しているが、D/W ベント時の方が炉内内蔵量の約0.3% (CsOH グルーブ:約0.25%) (CsOH グルーブ:約0.29%, CsI グループ:約0.25%) Noが、D/Wベント時の方が炉内内蔵量の約0.7%多 だけ多く放出されると評価している。 (Statistic Statistic St				
※2 大破断LOCA 時には、炉内内蔵量の約50%のCs が原子 炉圧力容器から原子炉格納容器に放出されると評価 しているが、D/W ペント時の方が炉内内蔵量の約0.3% (CsOH グループ:約0.29%, CsI グループ:約0.25%) だけ多く放出されると評価している。 ※2 大破断LOCA時には、炉内内蔵量の約37%のCs が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/Wペント時の方が炉内内蔵量の約0.7%多 く放出されると評価している。 ※2 大破断LOCA時には、炉内内蔵量の約37%のCs が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/Wペント時の方が炉内内蔵量の約0.7%多 く放出されると評価している。 ※2 大破断LOCA時には、炉内内蔵量の約37%のCs が 原子炉圧力容器から格納容器に放出されると評価して いるが、D/Wペント時の方が炉内内蔵量の約0.7%多 く放出されると評価している。 ※2 大破断LOCA時には、炉内内蔵量の約37%のCs が 原子炉圧力容器から格納容器に放出されると評価して いる。 ※2 大破断LOCA時には、炉内内蔵量の約37%のCs が 原子炉厂力容器から格納容器に放出されると評価して いる。 ※2 大破断LocA時の容式のの約37%のCs が 原子炉厂力容器から格納容器に立つ容 のがのの のいて て て ついて ※2 大破断LocA時の路 原子炉厂力で 2. 使用する格納容器圧力逃がし装置の除去効果 (DF)につい て て エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 (DF)についで で もたのたり世界の格式のなどで た ためたるたがに ためためためためためためためためためためためためためためためためためためため				
※2 大破断LOCA 時には、炉内内蔵量の約50%のCs が原子 ※2 大破断LOCA時には、炉内内蔵量の約37%のC s が 炉圧力容器から原子炉格納容器に放出されると評価 原子炉圧力容器から格納容器に放出されると評価して しているが、D/W ベント時の方が炉内内蔵量の約0.3% (Cs0H グループ: 約0.29%, CsI グループ: 約0.25%) だけ多く放出されると評価している。 いるが、D/Wベント時の方が炉内内蔵量の約0.7%多 どけ多く放出されると評価している。 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去 ・設備設計の相違 ・設備設計の相違				
炉圧力容器から原子炉格納容器に放出されると評価 しているが、D/W ベント時の方が炉内内蔵量の約0.3% (CsOH グループ:約0.29%, CsI グループ:約0.25%) だけ多く放出されると評価している。 原子炉圧力容器から格納容器に放出されると評価して いるが、D/Wベント時の方が炉内内蔵量の約0.7%多 く放出されると評価している。 2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について 2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 1. 使用する <u>格納容器フィルタベント系</u> の除去効果 (DF) について マ エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 グレージ・パクレージ・パクレージ・パクリント系のですのです。 1. 使用する <u>格納容器フィルタベント系のでオルタベント系のでオルタベント系のでオルタベント系のでオルタベント系の除去効果</u> ・設備設計の相違	※2 大破断LOCA 時には, 炉内内蔵量の約50%のCs が原子	<u>※2</u> 大破断LOCA時には、炉内内蔵量の約37%のCsが		
しているが、D/W ベント時の方が炉内内蔵量の約0.3% いるが、D/Wベント時の方が炉内内蔵量の約0.7%多 (Cs0H グループ:約0.29%, CsI グループ:約0.25%) く放出されると評価している。 だけ多く放出されると評価している。 く放出されると評価している。 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 (DF) について	<u> 炉圧力容器から原子炉格納容器に放出されると評価</u>	原子炉圧力容器から格納容器に放出されると評価して		
(CsOH グループ: 約0.29%, CsI グループ: 約0.25%) く放出されると評価している。 だけ多く放出されると評価している。 く放出されると評価している。 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果	しているが, D/W ベント時の方が炉内内蔵量の約0.3%	いるが、D/Wベント時の方が炉内内蔵量の約0.7%多		
だけ多く放出されると評価している。 だけ多く放出されると評価している。 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について 2. 使用する格納容器圧力逃がし装置の除去効果 (DF) について 1. 使用する格納容器フィルタベント系の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 1. 使用する格納容器フィルタベント系のアイルタ装置は、大規模など ・設備設計の相違	(CsOH グループ:約0.29%, CsI グループ:約0.25%)	く放出されると評価している。		
2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について 2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果 (DF) について 1. 使用する <u>格納容器フィルタベント系</u> の除去効果 (DF) について エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 1. 使用する <u>格納容器フィルタベント系のマイルタベント系のマイルタビント系の定すの保護では、大規模なセ</u>	だけ多く放出されると評価している。			
2. 使用する格納容器圧力逃がし装置の除去効果(DF)について 2. 使用する格納容器圧力逃がし装置の除去効果(DF)につい 1. 使用する格納容器フィルタベント系の除去効果(DF)に エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 1. 使用する格納容器フィルタベント系の除去効果(DF)に				
2. 使用する <u>格納容器圧力逃がし装置</u> の除去効果(DF)について こ. 使用する <u>格納容器圧力逃がし装置の除去効果(DF)について</u> エアロゾル粒子に対する格納容器圧力逃がし装置の除去 <u>エアロゾル粒子に対する格納容器圧力逃がし装置の除去</u> <u>エアロゾル粒子に対する格納容器圧力逃がし装置の除去</u> <u>エアロゾル粒子に対する格納容器圧力逃がし装置の除去</u> <u>エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果</u> <u>エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果</u> <u>本アロゾル粒子に対する格納容器圧力逃がし装置の除去</u> <u>エアロゾル粒子に対する格納容器圧力逃がし</u> <u>エアロゾル粒子に対する格納容器圧力逃がし</u> <u>エアロゾル粒子に対する格納容器圧力逃がし</u> <u>また」またや、たた、たたや、たた、たたや、たた、たたや、たた、たたや、たた、たたや、たた、たた</u>				
エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去 エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果 格納容器フィルタベント系のフィルタ装置は、大規模なセ ・設備設計の相違	2. 使用する <u>格納谷益圧力逃かし装直</u> の除去効果(DF)について	2. 使用する <u>格納谷器圧力逃かし装直</u> の除去効果(DF)につい	1. 使用する <u>格納谷器フィルタペント糸</u> の除去効果(DF)に	
二アロソル粒子に対する格納容器圧力逃がし装直の除去 二アロソル粒子に対する格納容器圧力逃がし装直の除去 ・設備設計の相違 ・設備設計の相違				
	エアロソル私士に対する格納谷器圧力逃かし装直の际去	エアロソル粒子に対する格納谷器圧力逃かし装置の际去効果	格納谷茶ノイルタベント糸のノイルタ装直は、大規模なセ	
<u> </u>		については、性能検証試験(JAVA試験)により、格納谷希へン	クター試験装置を用いて美施された性能検証試験の試験余 他に知めまれてたる記述していて	【 相崎 6/1, 果 御 弗 一】
① 格納谷 福圧 力 逃 か し 装 直 ぐ 朔 付 ぐ さ る 际 云 刻 未 (DF) 下 夫 肥 中 に 忽 止 さ れ る 連 転 配 囲 に ね い く , DF 1,000以上 を 摘 足 り た 時 保 ご し に 定 貯 3,000以上 を 摘 足 り 件 に 包 裕 さ れ る よ う 設 計 し くい る 一 件 に 包 裕 さ れ る よ う 設 計 し くい る 一 本 性 公 検 試 計 除 ぶ は 実 性 の 相 字 更 角 に わ は て 種 ち の 計 除 タ	① 格納谷 品上 力 処 か し 装直 ご 男 侍 で さ る 味 云 効 朱 (DF)	下 夫 他 中 に 忠 た さ れ る 連 転 範 囲 に わ い く 、 DF 1 、 000 以 上 を 摘 足 g		
	<u> を 松 住 こ と に 夫 映 じ 唯 心 の っ っ い し な 壮 卑 に 法 し ナ て ェ ア ロ い い れ や て の や な ハ ナ</u>	<u>ることを唯能している。</u> われ、故地宏明にも兆がし壮思けざいチーリュクラバルバム	<u> 化 </u> 化 に 検	
	2 $77/29 表 lic ((), (), (), (), (), (), (), (), (), ()$	なわ, 俗柄谷奋圧力延かし装直はハンチュリスタノハ及び金	<u> 件(ハントカスの圧力・温度・加重及のエアロノル粒径・</u> 産業)な老虎した歴史はお話またに、 タタルにおいて発展	
$\underline{c}, \underline{MAAF}$ 册们に基づき計恤 $\underline{a}, \underline{c}, \underline{b}, \underline{c}, \underline$			<u>皮寺) とち思した住北快証訊練を打い, 谷米件にわいて光律</u> されて研究を強烈していて	
$ \frac{3}{3} 3$		<u>る。(「米伊弗二光电/」 重八争収守刈処設備について 5.7 床</u> 子后枚納容哭の過圧破損を防止するための設備【50条】の補足		
		1) が招利存留の週上吸損を防止するための設備【30 未】の補足	住肥便証料練相未がら、岡低2万かの使用未住を包括する 範囲においてDF1 000 ドトを満足することを確認してい	
	核納容器圧力逃がし装置に上る除去効果(DE-1000) けート		<u> 範囲においてDF1,000 以上を個定りることを確応してい</u> るため、ベントラインに流入するエアロゾルに対し、DF	
$\frac{4\pi}{4} \frac{3\pi}{6} \frac{3\pi}{6} \frac{3\pi}{7} \frac$	$\frac{11}{1000}$ は、1000000000000000000000000000000000000		るため, マンドノインに派八するエノロノルに対し、DT1 000 を適田することは巫当であると考えられる	
<u>ロンフルR くショーロルガロスに入って、 フノアノンコン ノーバン</u> スクラビングを経た後のエアロゾル粒子の粒径分布等を考慮 わた マクラバ交界はベンチョルマクラバレ会尾繊維フノル	<u> ロン・「「限くい」」 画加れたに入して、 リノレソンヨン・ノールの</u> スクラビングを経た後のエアロゾル粉子の粉保公在空た考慮		1,000 で週川1 るここは女ヨこのるこうんり40る。	
$\frac{(x,y)}{(x,y)} = \frac{(x,y)}{(x,y)} + \frac{(x,y)}{(x,y)} = \frac{(x,y)}{(x,y)} + \frac{(x,y)}{($	ハノノビノノを社に及び一ノビノル位丁の社住力加速で与歴 し、適用可能か値を設定しているものである。このため、ベ			
	し、通知可能な限を取たしているものでのる。このため、、 ントラインに流入するエアロゾル粒子に対しDF1000 を適田		べいチョリスクラバ単体でもDF100以上と評価している (「自	
	することは妥当であると考えられるかお、フィルタ装置け			
x = 2 = 1 = 2 = 1 = 1 = 1 = 1 = 2 = 1 = 1	水スクラバと金属フィルタの両方を合わせてDF=1000 を確保		格納容器フィルタベント系について」の別紙 34 を参昭)	
できる設計としており、水スクラバ単体での除去効果は大破	できる設計としており、水スクラバ単体での除去効果は大破			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
断LOCA(D/W ベント)時でDF=34~115 と評価している。			
(「柏崎刈羽原子力発電所6 号及び7 号炉 重大事故等対			
処設備について 別添資料-1原子炉格納容器の過圧破損を防			
止するための設備(格納容器圧力逃がし装置)について」の			
別紙30 を参照)			

「 炉	備考
	・解析結果の相違
	【柏崎 6/7】
	①島根2号炉,東海第二
	では,崩壊熱にジルコニ
	ウムー水反応の酸化発
	熱反応が加わりヒート
	アップが加速されるが,
الم الم	蒸気が炉心部へ供給さ
₩¥¥ ₩¥#雪	れることにより燃料温
- 1000 - 500 - 500	度の低下が確認できる。
位はシュ	
	②ジルコニウムー水反
*	応による反応熱の挙動
	が, 柏崎 6/7 と島根2
	号炉,東海第二で異なる
	が、これは減圧タイミ
	ングの差に起因すると
町	考えられる。
	島根2号炉は、燃料最
	高温度が 1,000℃を超
*11 ¹¹	えた付近でジルコニウ
	ムー水反応による反応
	熱が上昇しているが,原
	子炉減圧後であること
	から、水位低下に伴い
	※気発生重が低トし反 広想ジェニュ
0. 05+1 2. 0E+1 0. 0E+1	11 0/1 では燃料 最高
量烧	温度か 1,000 Cを超え たけにでは
	た何近では, 原子炉が
	减圧されていないため、
	逃かし安全开の開閉に (4)、 黄気は見いまれ
	伴い、烝気流量が変化
	し、反応烈が増減して
	いると推定される。

柏崎刈羽原子力発電所6/7号炉(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
資料なし	添付資料 4.1.13		
	使用済燃料プール水の沸騰状態継続時の鉄筋コンクリートへの熱 影響について	38. <u>燃料プール水</u> の沸騰状態継続時の鉄筋コンクリートへの熱影 響について	
	 はじめに 想定事故1及び想定事故2においては、事象発生後、可搬型 代替注水中型ボンブによる代替燃料ブール注水系(注水ライン) を使用した使用済燃料ブールへの注水によって、使用済燃料ブ ールの水位は回復・維持される。 その後、残留熟除去系等の使用済燃料ブールの冷却機能を復 旧することにより、使用済燃料ブールの水温は高温状態が継続する こととなるが、使用済燃料ブールの水温は高温状態が継続する こととなるが、使用済燃料ブールの水温は高温状態が継続する こととなるが、使用済燃料ブールの帯造材であるコンクリート 及び鉄筋は、一般的に温度の上昇と共に強度及び剛性が劣化す る傾向にあるとされている。 このため、使用済燃料ブール水の沸騰状態が長期間継続した 場合の鉄筋コンクリートへの影響について検討した。 使用済燃料ブールへの沸騰状態総統の影響について 使用済燃料ブールは、ステンレス鋼によりライニングされた 構造となっており、重大事故等時に使用済燃料ブール水が沸騰 状態となった場合でも、代替注水設備により使用済燃料ブールへの注水が行われるため、使用済燃料ブールはコンクリートか らの水分逸散のないシール状態が維持される。第1表に示す文 献によると、シール状態が維持されている場合は加熱温度 110℃で加熱期間3.5 年間(又は2 年間)の場合でも、圧縮強 度の低下傾向は認められないとされている。また、加熱による 剛性についても、シール状態が維持された状態において大きな 低下はないとされている。 また、鉄筋については、強度及び剛性はおおむね200℃から 300℃までは常温時の特性を保持するとされている。 以上より、使用済燃料ブール本の沸騰状態が3.5 年間継続 した場合にも、コンクリートの健全性は維持されるものと考え られる。 	 1.はじめに 想定事故1及び想定事故2においては、事象発生後、燃料ブ ールスブレイ系を使用した燃料ブールへの注水によって、燃料 ブールの水位は回復・維持される。 その後、残留熱除去系等の燃料ブールの冷却機能を復旧する ことにより、燃料ブール水温を低下させるが、それまでの間は、 燃料ブールの水温は高温状態が継続することとなるが、燃料ブ ールの構造材であるコンクリート及び鉄筋は、一般的に温度の 上昇と共に強度及び剛性が劣化する傾向にあるとされている。 このため、燃料ブール水の沸騰状態が長期間継続した場合の 鉄筋コンクリートへの影響について検討した。 2.燃料ブールへの沸騰状態継続の影響について 燃料ブールは、ステンレス鋼によりライニングされた構造と なっており、重大事故等時に燃料ブールへの注水が行われる ため、燃料ブールはコンクリートからの水分逸散のないシール 状態が維持される。表1に示す文献によると、シール状態が維 持されている場合は加熱温度110℃で加熱期間3.5年間(又は 2年間)の場合でも、圧縮強度の低下傾向は認められないとさ れている。また、加熱による剛性についても、シール状態が維 持された状態において大きな低下はないとされている。 また、鉄筋については、強度及び剛性はおおむね 200℃から 300℃までは常温時の特性を保持するとされている。 以上より、燃料ブール水の沸騰状態が3.5年間継続した場合 にも、コンクリートの健全性は維持されるものと考えられる。 	

柏崎刈羽原子力発電所6/7号炉(2017.12.20版)	東海第二発電所(2018.9.12 片		島根原子力	P発電所 2号炉		備考
	第1表 高温を受けたコンクリートの圧縮	強度に関する文献	表 1 高温を受けたコンクリ	ートの圧縮強度に関	する文献	
	文献名(出典) 試験条件 温度 期間	- 結果	文献名(出典)	試験条件	結果	
	熱影響場におけるコンクリートの劣化に関 する研究 (第 48 回セメント技術大会講演集 1994) 110℃ 1日~ 一定加熱*1 3.5年間*	シール状態の場合, 圧縮 強度, 剛性の低下は認め られない。 シール状態でない場合, 圧縮強度の低下は認め られないが, 剛性の低下 が認められる。	熱影響場におけるコンクリートの 劣化に関する研究 (第 48 回セメント技術大会講演集 1994)	温度 期间 110℃ 1日~ 一定加熱 ^{※1} 3.5 年間 ^{※1}	シール状態の場合, 圧縮強度,剛性の低 下は認められない。 シール状態でない場	
	長期間加熱を受けたコンクリートの物性変 化に関する実験的研究 (その1実験計画と結果概要) (日本建築学会大会学術講演梗概集(中国) 1999年9月) 長期間加熱を受けたコンクリートの物性変 化に関する実験的研究 (その2.美元ングリートの力学族性計論	シール状態の場合, 圧縮 強度, 剛性の低下は認め られない。	長期間加熱を受けたコンクリート		 合, 圧縮強度の低下 は認められないが, 剛性の低下が認めら れる。 	
	 結果) (日本建築学会大会学術講演梗概集(中国) 1999年9月) 長期周加熱を受けたコンクリートの物性変 化に関する実験的研究 (その3 耐熱コンクリートの力学特性試験 (日本建築学会大会学術講演梗概集(中国) 110C 1日~ 一定加熱*1 24 ヶ月*1 24 ヶ月*1 	シール状態でない場合, 圧縮強度の低下は認め られないが,剛性の低下 が認められる。	 の物性変化に関する実験的研究 (その1 実験計画と結果概要) (日本建築学会大会学術講演梗概 集(中国)1999年9月) 長期間加熱を受けたコンクリートの物性変化に関する実験的研究 		シール状態の場合, 圧縮強度,剛性の低	
	※1 文献ではこの他にも温度条件等を変え	た実験も実施している	 (その2 普通コンクリートの力 学特性試験結果) (日本建築学会大会学術講演梗概 集(中国)1999年9月) 長期間加熱を受けたコンクリートの物性変化に関する実験的研究 (その3 耐熱コンクリートの力 学特性試験結果) (日本建築学会大会学術講演梗概 集(中国)1999年9月) 	110℃ 1 日~ 一定加熱 ^{*1} 24ヶ月 ^{*1}	下は認められない。 シール状態でない場 合,圧縮強度の低下 は認められないが, 剛性の低下が認めら れる。	
			※1 文献ではこの他にも温度条件	4等を変えた実験も実施し	ている。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 1.3.1		
	有効性評価における機能喪失を仮定した設備一覧について	40. 有効性評価における機能喪失を仮定した設備一覧について	
	用 1 衣~ 用 4 衣に炉心損傷防止対束, 恰納谷奋陂損防止対束, 信用这牌割 プールの牌割提復性止発等及び実転信止中の牌割提復	弗 I 衣~弗 4 衣に炉心損傷防止対束, 格納谷 菇 破損防止対束, 燃料 プールの燃料 提復 はよ 対策 みび 実転 信止 中の 燃料 提復 は よ 対	
	<u> (次用消燃件)</u>	<u> 然村ノールの</u> 然村損傷的正対東及の運転停止中の 然村損傷的正対 東次の 運転停止中の 然村損傷的 正対 東次 、フ 等 に おいて 機能 南 生 な に	
	のエN 床の有効性計画の存重安争取シークシス等において機能表 生を仮定した設備の一覧を示す	泉の有効性計画の台重安争取ショクシス等において機能支大を恢 定した設備の一覧を示す	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
		 ・設備設計の相違 【東海第二】 残留熱代替除去系は炉 心損傷防止の設備として
	 · 「」、(1、3) 	()72()
	(こおける機能喪失を仮定した 安全機能の喪失に対する仮定等 日有心スプレイ系 日有心スプレイ系 日有心スプレイ系 日有心スプレイ系 日有心スプレイ系 日有心スプレイ系 前用ディーゼル発電機 日有心スプレイ系ディーゼル発電機 日有心スプレイ系ディーゼル発電機 日有心スプレイ系ディーゼル発電機 日有心スプレイ系 力レイ、サプレッション・ブール治規 日月有小日 一 前日有心スプレイ系 自動減日系 日 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	
	 損傷防止対策の有効性評価(重要事故シーケンス等 重要事故シーケンス等 正行心冷却失敗 一 二 二	
	第1表 近心 第1表 近心 1110000000000000000000000000000000000	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
	 第一覧 (2√3) 解析上考慮しない主なS A設備 (常設代替高圧電源装置による非常 用母線の受電(~24時間)) 一 一 (代替制御棒挿入機能) (12/3) (代替制御棒挿入機能) (代替制御棒挿入機能) (代替制御棒挿入機能) (代替制御棒挿入機能) (代替用酒店工具) (12/3) (11) (12/3) (11/4) (12/3) 	
	 面における機能喪失を仮定した設備 安全機能の喪失に対する仮定す 安全機能の喪失に対する仮定 歩 が が が が <	
	 「つ・損傷防止対策の有効性評 「重要事故シーケンス等 外部電源康夫 外部電源康夫 小部とし安全弁再閉鎖失敗 出PCS失敗 過渡事象(給水流量の全喪失) RHR失敗 高波事象(給水流量の全喪失) RHR失敗 「日アCS失敗 「二」 「二」<td></td>	
	 第1表式 第1表式 第1支払い 第1支払い 第1支 第1支 第1支 第1大 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	
	 備一覧 (2/3) 解析上考慮しない主なSA設備 (常設代替高店電源装置による非常 用母線の受電 (~24 時間)) (代替制御棒挿入機能) (代替制御棒挿入機能) (代替制御棒挿入機能) 「 「 「 「 (代替制御棒挿入機能) 「 「 (代替制御棒挿入機能) 	有効性評価に関する審査ガイド」を踏まえて設定
	 (面における機能喪失を仮定する仮治 (面における機能喪失を仮定する) 安全機能の喪失に対する仮治 (小子 (小子 (小子 (一))) 一 二 二<!--</td--><td>ムL インターフェイスシステムLO - CAが発生した側の残留熱除去 系の機能喪失 治水流量の全喪失 傷防止対策及び格納容器破損防止対策の</td>	ムL インターフェイスシステムLO - CAが発生した側の残留熱除去 系の機能喪失 治水流量の全喪失 傷防止対策及び格納容器破損防止対策の
	「「小損傷防止対策の有効性評 ● 「「小損傷防止対策の有効性評 ● 「「」」」の 「」」の 「」」の 「」」の 「」」の 「」」 「」」	 (インターフェ インターフェイスシステーCA) OCA I 実用発電用原子炉に係る炉心損貨
	第1年 第1年 第1年 第1年 ● <	格徴を発表 インジャンシス インション・フロー

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	第1表 行心損傷防止対策の有効性評価における機能喪失を仮定した設備一覧 (3/3) 事故シーケンスグループ 重要事校シーケンス等 安全機能の喪失に対する仮述等 解解上考慮しない主なS A設備 市民のシーケンスグループ 重要事校シーケンス参 安全機能の喪失に対する仮述等 解解上考慮しない主なS A設備 ・LOCA時注水高能長久 中級所LOCA 一 高店FR心活力反成 高店FR心活力の成立 市民の心治現失敗 商店FR心治力大式 商店FR心治力大子系 高店FR心ふさプレイ系 高店FR心ふさがた水系) 市 市産のシーケンス 市産の売却大敗 商品市会会社会社 高店FR小小 市 市産のシーケンイ系 市産のシーケンス 市 高店FR小小 市 市産のシーケンス 市産の売売がられる 市産の売売 市 市 市産のシスケレイ系 市 自動施止系 - - 各ーフェイスシステストム 1 50 CA AD 発電 株市務長米不希知 - - キャンシャム 市産の心える後載の 内部施能務先生系 -		 ・設備設計の相違 【東海第二】 残留熱代替除去系は炉 心損傷防止の設備として いない

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
		 ・記載方針の相違 【東海第二】 「安全機能の喪失に対する仮定等」には機能喪失するSA設備は記載しない
	 一た設備一覧 (1/2) 一 解析上考慮しない主なS 希約容容器下部注水系(消設) 格約容器下部注水系(消設) 影響はない 小谷山の機能澳大系(消設) 感留熱代替除古系 原用原子与代替注水系(消费) 感留熱代替除古系 原用原子与代替注水系(消费) 感留熱代替除古系(原子が系(消费) 感留熱代替除古系(原子が系(消费) 	
	 (面における機能の喪失に対する仮定等 安全機能の喪失に対する仮定等 安全機能の喪失に対する仮定等 正行やシスプレイ系 正行やシスプレイ系 (正行やシスプレイ系 (正行やシスプレイ系 (所用行水系)、*1 (加用行やスプレイ系 (加用行やスプレイ系 (加用行やスプレイ系 (加用行かっスプレイ系 (加用行水系)、*1 (加用行水系)、*1 (加用行かっスプレイ系 (加用行水系)、*1 (加用行かっスプレイ系 (加用行水系)、*1 (加用行かっスプレイ系 (加用行かっスプレイ系 (加用行水系)、*1 (加用行かっスプレイ系 (加用行水系)、*2 (加用行水系)、*2 (加用行水系)、*2 (加用行水系)、*2 (加用行水系)、*2 (加用行水系)、*2 (加用行水系)、*2 (加用行水系)、*2 (加用行水系)、 (加用行水系)、 (加用行水子)、 (加子炉橋橋等 (加子炉橋 (加子炉橋 (加子炉橋 (加子炉橋 (加子炉橋 (加子炉橋 (加子炉橋 (加子炉 (加子炉橋 (加子炉橋 (加子炉 (加子 (加子 (加子 (加子 (加子 (加子 (加子 (加子 (11) (11)	
	 破損防止対策の有効性評 重要素核シーケンス等 市 <l< td=""><td></td></l<>	
	第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	(備一覧 (2/2) 解析上考慮しない主なSA設備 高圧代替注水系 商圧代替注水系(常設) ^{※3} 低圧代替注水系(常設) ^{※3} 代替循環冷却系(原子炉注水) ^{※3} 代替循環冷却の機能喪失を仮定 響はない	 ・ ・ た	
	坊止対策の有効性評価における機能喪失を仮定した設 ジーケンス等 ケーケンス等 大敗 大敗 大敗 大敗 大敗 大敗 大敗 大敗 大敗 大敗	 は相防止対策の有効性評価によがする機能喪失を仮定し 	
	第2表格納容器破損モード 格納容器破損モード ・高圧溶融物放出/格納容 - 高正な心治却 - 原子が圧力容器外の溶融 燃料 - 治却材相互作用 ・ 協圧有心治却 - 一 相互作用 *1 残留熱除去系(低圧注水系)の機能費 ※3 原子炉圧力容器破損前 *3 原子炉圧力容器破損前	第2天 格約45時間 「大学校会社」 「 「 「 「 「 「 「 「 「 「 「 「 「	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			・設備設計の相違 【東海第二】
	失を仮定した設備一覧 (1/1) 解析上考慮しない主なSA設備 常設低圧代替注水系ポンプによる代替燃料 プール注水系 (注水ライン) 可搬型代替注水大型ポンプによる代替燃料 プール注水系 (可搬型スプレイノズル) 可搬型代替注水大型ポンプによる代替燃料 プール注水系 (可搬型スプレイノズル)	<u>専失 を 仮 定 した 設 備 一覧</u> 解析上考慮しない主な S A 設備 燃料ブールスプレイ系 (常設 ス プレイヘッダ使用) ガレイヘッダ使用) ガレイヘッダ使用)	
	 上対策の有効性評価における機能喪 安全機能の喪失に対する仮定等 残留熱除去系 燃料プール冷却浄化系 補給水系 補給水系 補給水系 補給水系 	 1止対策の有効性評価によび る機能 	
	燃料プールの燃料損傷防1 重要事故シーケンス等 治規機能喪失及び注水機 能喪失 治規機能喪失及び注水機 能喪失	<u> 株料プールの 様料プールの 様料 調査 市 市 市 市 市 市 市 市 市 市 市 市 市 </u>	
	第3表付用済 想定事故 想定事故 想定事故2	第3表 第54 1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉 Exh1-26 広浜市 地 ・・・・・・・・・・・・・・・・・・・・・・・・・	備考 ・設備設計の相違 【東海第二】
	 通転停止中の燃料損傷防止対策の有効性評価にお 	
	第4 後 第	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		実用発電用原子炉に係る炉心損傷防止対策及び格納容器	
		破損防止対策の有効性評価に関する審査ガイド(改正 平	
		成 29 年 11 月 29 日 原子力規制委員会決定) 抜粋	
		 実用発電用原子がにに於るが心損物の正対東及び俗称的各都 破損防止対策の有効性評価に関する審査ガイド(改正 平 成 29 年 11 月 29 日 原子力規制委員会決定) 抜粋 (b) 中小磁断10C4の時 創工要事故シーケンスの例 キー小磁断10C4の発生歳、「高圧法未機能及び低圧法未機能が喪失する場合」、又は「高 正法未機能及び原子が設定機能で考慮者の変新を想定する。 助主要解析条件(「223 有効性評価の氏過解好条件」に記載の項目を除く。) 主要解析条件(「223 有効性評価の氏過解好条件」に記載の項目を除く。) 正要解析条件(「223 有効性評価のた過解が条件」に記載の項目を除く。) 正常が売却ドバックングリの機断の目差のび酸新を想定する。 正子が売却ドバックングリの機断の目差のび酸新にないて新したをな行うために原子がの減圧 又は応圧法水系によるから冷却を必要とする範囲とする。 が増解 代替法未設備等時による原子がの減圧及び酸圧性水によってがも冷却機能を確保 (代替法未設備の動作に原子がの減圧が必要となる場合) 	

柏崎刈羽原子力発電所 6	ⅰ/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			添付資料 1.2.1		
			外圧支配事象における燃料被覆管の健全性について	45. 外圧支配事象における燃料被覆管の健全性について	
			事故シーケンスグループ「原子炉停止機能喪失」のような外圧	事故シーケンスグループ「原子炉停止機能喪失」のような外圧	
			支配事象において高温高圧状態が継続する場合の燃料被覆管の健	支配事象において高温高圧状態が継続する場合の燃料被覆管の健	
			全性について説明する。	全性について説明する。	
			1. 有効性評価結果	1. 有効性評価結果	
			原子炉停止機能喪失により燃料被覆管表面で沸騰遷移(ドライ	原子炉停止機能喪失により燃料被覆管表面で沸騰遷移(ドライ	
			アウト)が発生し、燃料被覆管温度及び燃料被覆管にかかる圧力	アウト)が発生し、燃料被覆管温度及び燃料被覆管にかかる圧力	
			が上昇しリウェットする場合,燃料被覆管表面最高温度 <u>約870℃</u> ,	が上昇しリウェットする場合,燃料被覆管表面最高温度 <u>約 818℃</u> ,	・解析結果の相違
			燃料被覆管外圧 <u>約 8.2MPa</u> (内外圧差: <u>約 6.4MPa</u>)の状態が <u>20 秒</u>	燃料被覆管外圧約 8.9MPa(内外圧差:約 7.1MPa)の状態が <u>4秒</u> 程	【東海第二】
			程度継続する解析評価結果を得ている。	度継続する解析評価結果を得ている。	
			2. 高温高圧時の燃料被覆管の健全性について	2. 高温高圧時の燃料被覆管の健全性について	
			(1) 出力 - 冷却不整合時の燃料健全性について	(1) 出力 - 冷却不整合時の燃料健全性について	
			出力-冷却不整合(以下「PCM」(Power Cooling Mismatch)	出力-冷却不整合(以下「PCM」(Power Cooling Mismatch)	
			という。)時の燃料のふるまいについて以下のとおり整理した。	という。)時の燃料のふるまいについて以下のとおり整理した。	
			PCMにより膜沸騰を開始した燃料被覆管は、燃料被覆管温度	PCMにより膜沸騰を開始した燃料被覆管は,燃料被覆管温度	
			の上昇により 900℃以上になると、ジルコニウム-水反応が進行	の上昇により 900℃以上になると、ジルコニウム-水反応が進行	
			し、燃料被覆管表面に酸化膜が生成され、酸化の進行に伴い燃料	し、燃料被覆管表面に酸化膜が生成され、酸化の進行に伴い燃料	
			被覆管の脆化が進行することが知られている。また、燃料被覆管	被覆管の脆化が進行することが知られている。また、燃料被覆管	
			温度の上昇により燃料被覆管の強度が低下し、外圧支配であるこ	温度の上昇により燃料被覆管の強度が低下し、外圧支配であるこ	
			とから燃料被覆管内側へのつぶれ変形が発生する可能性がある	とから燃料被覆管内側へのつぶれ変形が発生する可能性がある	
			[1] °	[1] °	
			PCM時の燃料破損は,沸騰遷移が生じ燃料被覆管が高温とな	PCM時の燃料破損は、沸騰遷移が生じ燃料被覆管が高温とな	
			り酸化脆化することが主な原因であり、沸騰遷移により高温を持	り酸化脆化することが主な原因であり、沸騰遷移により高温を持	
			続した場合の燃料健全性について以下に示す。	続した場合の燃料健全性について以下に示す。	
			一時的に沸騰遷移が発生しても速やかに原子炉出力が低下してリ	一時的に沸騰遷移が発生しても速やかに原子炉出力が低下してリ	
			ウェットする事象発生時の燃料健全性に関する炉内試験結果を第	ウェットする事象発生時の燃料健全性に関する炉内試験結果を第	
			1 図に示す[2]。	1図に示す[2]。	
			第1図より、本解析評価結果(燃料被覆管表面最高温度約	第1図より,本解析評価結果(燃料被覆管表面最高温度 <u>約818℃</u> ,	・解析結果の相違
			<u>870℃</u> ,持続時間 <u>20秒</u>)において,燃料被覆管は健全であると考	持続時間 <u>4秒</u>)において,燃料被覆管は健全であると考えられる。	【東海第二】
			えられる。このことは、後述の(3)のハルデン炉を用いた沸騰遷移	このことは、後述の(3)のハルデン炉を用いた沸騰遷移試験からも	
			試験からもわかる。	わかる。	
			なお,文献[2],[3]において,第1図の結果等を元に沸騰遷	なお,文献[2],[3]において,第1図の結果等を元に沸騰遷	
			移時の燃料健全性に関する整理及び適用の妥当性の検討が行われ	移時の燃料健全性に関する整理及び適用の妥当性の検討が行われ	
			ている。	ている。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	1800 0 <td< td=""><td>第1 図 沸騰遷移発生後の燃料健全性に関する炉内試験結果^[2]</td><td></td></td<>	第1 図 沸騰遷移発生後の燃料健全性に関する炉内試験結果 ^[2]	
	 (2) 化学量論的酸化量(以下「ECR」という。)について PCMの破損モードである酸化脆化に関し、本解析評価におけ るECRを評価した。原子炉停止機能喪失による燃料被覆管表面 での沸騰遷移の発生により燃料被覆管が高温維持された場合の9 ×9燃料(A型)被覆管の酸化割合について、Baker-Jus tの式^[4]に基づき評価した結果を、第2 図に示す。参考にCat h cartの式^[5]に基づく評価結果も示す。 燃料被覆管表面最高温度<u>約870℃</u>,持続時間<u>20秒</u>であれば、E CRは<u>約0.3%</u>であり、沸騰遷移期間中に燃料被覆管母材に取り 込まれる酸素の量は少なく、燃料被覆管の酸化による脆化が問題 になることはない。また、この温度及び持続時間では、ECRが LOCA時の燃料被覆管脆化破損の判断基準である15%に達する までに十分な余裕があるため、つぶれ変形が生じたとしても、燃 料被覆管の健全性は維持されると考えられる。 	 (2) 化学量論的酸化量(以下「ECR」という。)について PCMの破損モードである酸化脆化に関し、本解析評価におけ るECRを評価した。原子炉停止機能喪失による燃料被覆管表面 での沸騰遷移の発生により燃料被覆管が高温維持された場合の9 ×9燃料(A型)被覆管の酸化割合について、Baker-Jus tの式^[4]に基づき評価した結果を、第2図に示す。参考にCat h cartの式^[5]に基づく評価結果も示す。 燃料被覆管表面最高温度約818℃,持続時間<u>4秒</u>であれば、E CRは 0.1%以下であり、沸騰遷移期間中に燃料被覆管母材に取 り込まれる酸素の量は少なく、燃料被覆管の酸化による脆化が問 題になることはない。また、この温度及び持続時間では、ECR がLOCA時の燃料被覆管脆化破損の判断基準である15%に達す るまでに十分な余裕があるため、つぶれ変形が生じたとしても、 燃料被覆管の健全性は維持されると考えられる。 	・解析結果の相違 【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
	<figure><figure></figure></figure>	1200 0
	 (3) ハルデン炉を用いた沸騰遷移試験によるつぶれ変形について本解析評価に近い条件に基づく沸騰遷移試験における燃料の変化について参考に示す。 BWR燃料の未照射燃料棒及び照射燃料棒(燃料棒燃焼度は22GWd/t~40GWd/t)を用い,高温,外圧支配時の沸騰遷移試験を行った^[6]。 [照射条件] a.燃料被覆管表面最高温度:977℃以上(試験後のprior-β相形成より推定) b.沸騰遷移積算時間:約49秒*1 ※1 熱電対での燃料被覆管表面温度が断続的に600℃~720℃を記録した時間の合計。ただし,熱電対先端と溶接位置の関係から,燃料被覆管表面温度の過小評価が考えられ及 	 (3) ハルデン炉を用いた沸騰遷移試験によ本解析評価に近い条件に基づく沸騰遷移化について参考に示す。 BWR燃料の未照射燃料棒及び照射燃料 22GWd/t~40GWd/t)を用い、高温、外圧を行った^[6]。 〔照射条件〕 a.燃料被覆管表面最高温度:900℃以上形成より推定) b.沸騰遷移積算時間:約49秒*1 ※1熱電対での燃料被覆管表面温度が断た時間の合計。ただし、熱電対先端と燃料被覆管表面温度の過小評価が考
	 ω。 照射条件のa.及びb.を経験した試験燃料棒の燃料被覆 管外観写真と直径測定結果を第3図に示す。 この試験燃料棒のドライアウト領域(燃料棒上部)(燃料被 覆管外圧:約7MPa,内外圧差:約6.4MPa)では,燃料ペレッ ト間の局所的なつぶれ変形(燃料ペレット間(ペレット上下 端チャンファ)位置に沿った,燃料被覆管内側方向への約20 μm~約50μmの食い込み)があり,燃料被覆管表面酸化膜 	照射条件のa.及びb.を経験した 管外観写真と直径測定結果を第3図に この試験燃料棒のドライアウト領域 覆管外圧:約7MPa,内外圧差:約6. ット間の局所的なつぶれ変形(燃料ペ 下端チャンファ)位置に沿った,燃料 20µm~約50µmの食い込み)があり

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		厚さ及び水素吸収量の僅かな増加,燃料被覆管の脆化による	膜厚さ及び水素吸収量の僅かな増加、燃料被覆管の脆化によ	
		引張強度・延性の僅かな低下,燃料被覆管の酸化膜の剥離が	る引張強度・延性の僅かな低下、燃料被覆管の酸化膜の剥離	
		見られたものの、リウェット時の熱衝撃によっても燃料棒は	が見られたものの、リウェット時の熱衝撃によっても燃料棒	
		非破損であったとの結果が得られている。	は非破損であったとの結果が得られている。	
		and the second of the second o		
		12.8	12.8	
		12.7 Lower Upper	12.7 Lower Upper	
		E 12.6 § 12.6 May man man man man man	12.6 mananananananananananananananananananan	
		12.8 0 200 400 800 1000	12.3 0 200 400 600 800 1000	
		第3図 試験燃料棒の燃料被覆管外観写真と直径測定結果	第3図 試験燃料棒の燃料被覆管外観写真と直径測定結果	
		上記の試験に本解析評価条件は同等と考えられ、また、現	上記の試験に本解析評価条件は同等と考えられ、また、現	
		在使用している燃料棒(9×9燃料)は、より高密度のペレ	在使用している燃料棒(9×9燃料)は,より高密度のペレ	
		ット採用により焼きしまりが小さくなっており、軸方向の燃	ット採用により焼きしまりが小さくなっており、軸方向の燃	
		料ペレット間の大きな間隙が発生し難くなっているため,燃	料ペレット間の大きな間隙が発生し難くなっているため,燃	
		料被覆管のつぶれ変形によって貫通破損が生じる可能性は小	料被覆管のつぶれ変形によって貫通破損が生じる可能性は小	
		さいと考えられる。	さいと考えられる。	
			3 ペレットー被覆管相互作用(PCI)について	・記載方針の相違
			第4 図に原子炉停止機能喪失の評価における燃料被覆管温度の	【東海第二】
			1次ピーク発生位置での燃料棒温度の時間変化を示す。第4図に	島根2号炉は、PCI
			示すように,事象初期にペレット平均温度は約 520℃上昇してい	によって燃料が破損しな
			る。	い理由を記載している。
			第5図に UO2ペレットの熱膨張ひずみの温度依存性を示す。事	
			象初期のペレット平均温度の上昇約 520℃に対するペレットの熱	
			膨張ひずみの増加は、約 0.7%に相当する。したがって、ペレッ	
			トの熱膨張の増加による被覆管のひずみの増加は、ペレットー被	
			覆管機械的相互作用(PCMI)による破損に対する判断基準で	
			ある被覆管1%塑性ひずみより小さいと考えられる。	
			また、ペレットー被覆管化学的相互作用(PCCI)を考慮し	
			ても、出力が上昇している期間が15秒程度と短く、被覆管の応力	
			腐食割れ(SCC)の進展による破損も生じないと考えられる。	
			事象初期の出力上昇が収束した後は、ペレット平均温度は事象	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所	(2018. 9. 12 版)	島根原子力発電所 2号
				発生前の温度より低いため、PCIが生じ
				れる。
				2500
				2000
				Q.
				型 1500 3
				▲ 1000 ペレット中心温度
				500 ペレット外面温度
				· · · · · · · · · · · · · · · · · · ·
				0 100 事故後の時間(s)
				第4図 燃料棒温度の時間変化(1次)
				0.040 Model prediction
				o Data
				0.035
				0.030
				0.025
				周 問 0020
				0.015
				0.010
				0.005
				温度 (K)
				第5図 U0.ペレットの熱膨帯

 e. 出版市のサーマルウェックについて 出版市教会場下でいったなににの「日本教会教師」の「日本日の支援のなどで、 品格の教育教育会社会社」の「日本日の支援のなどで、 品格教育教育会社会社」の工作者教育教育会社会社。 品の教育教育会社会社」の工作者教育教育会社会社。 この教育教育会社会社」の工作者教育教育会社会社。 この教育教育会社会社」の工作者教育教育会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社	4.軸方向のサーマルショックについて 燃料の事故時健全性確認を目的に実施された、リウェット時の 軸方向拘束条件下での急冷破断試験 ^{[3][9][00][11]} の知見をもとに、 島根2号炉TCシーケンスにおける軸方向のサーマルショックに よる燃料破損の可能性を検討した。以下に急冷破断試験の概要を 示す。 < < (1) PWR ^[8] ・未照射で、FCRが約10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では、試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7を照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7を照)により動方向に大きな荷重	
 中心可能快速を加加しな利用しては、またしたり、リアレスなおから、リターント時か 物力の可要なが「日本のしてのないない」の「ローマルションの」に ここれでする利用していークンスにながく利用したいた。 これていためのではかい このではないためのしていための「日本の」ののの日本のから、「日本の のためのではかいための」である「日本の」ののの日本のから、「日本の日本のの日本のの日本のの日本のの日本のの日本のの日本のの日本のの日本のの	燃料の事故時健全性確認を目的に実施された、リウェット時の 軸方向拘束条件下での急冷破断試験 ^{[8][9][0][11]} の知見をもとに、 島根2号炉TCシーケンスにおける軸方向のサーマルショックに よる燃料破損の可能性を検討した。以下に急冷破断試験の概要を 示す。 <急冷破断試験の概要> (1) PWR ^[8] ・未照射で、ECRが約10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では、試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により燃料棒の軸方向 変位を完全に拘束し急や(図7参照)により動方向に大きな荷重	
はり、前原以金や「空空の大規構と発信」(1)11月10月のためによど、 読むさきないました。 読むさせていっついたいけうなしがのいい、いんだーの少し、 こも想料な気の可能性を接出した。以下に大会へ結果を決議の構築と 、、、、 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	軸方向拘束条件下での急冷破断試験 ^{[8][9][10][11]} の知見をもとに、 島根2号炉TCシーケンスにおける軸方向のサーマルショックに よる燃料破損の可能性を検討した。以下に急冷破断試験の概要を 示す。 	
 あゆえる林では、マシンスにおける私の様のシーマルとニックに よる為れな思うい能性大統にした。以下に会かな防治状況が改めた なた。 (1) PVR¹³ ・未知時で、たて名が前にかっなのクマス教育学が出いられた。 ・会件徴が見なたは、報知処理(201巻からにしかる料約の単方内 必定な安全に専用に合う(1000)ででありまたが利用した。 (2) B 2010101 ・スパス・ライブシックカ びにないてごかた現実すで的は、E000 * スパス・ライブシックカ びにないてごかた現実すでのは、E000 * スパス・ライブジョクカ いたいたいでありための * このためが可能にないないための * このための * このため * このため	島根2号炉TCシーケンスにおける軸方向のサーマルショックに よる燃料破損の可能性を検討した。以下に急冷破断試験の概要を 示す。 <2急冷破断試験の概要> (1) PWR ^[8] ・未照射で, ECRが約 10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では,試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により燃料棒の軸方向	
 たる熱味(g)の(金融・各情)した。(3)トド 気の((部の) (部を))、 く焼ん切び(気の)の(部へ)(50)の(FWR 低制中の)(1)、 (1) FWR 11 ・ 未見ない ここに Sがわしくの((部の) FWR 低制中の)(1)、 ・ 木 24 (1)、 ここに Sがわしくの((部の) FWR 低制中の)(1)、 ・ 木 24 (1)、 ここに Sがわしくの((市))、 ・ 木 24 (1)、 ここに S(1)、 ・ スイン・ 2 (1)、 2 (1)、 (1)、 ・ スクル((市))、 (1)、 (1)、 (1)、 ・ スクル((市))、 (1)、 (1)、 (1)、 ・ たい ・ たい	よる燃料破損の可能性を検討した。以下に急冷破断試験の概要を示す。 < < <	
 新史: 二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	示す。 <急冷破断試験の概要> (1) PWR ^[8] ・未照射で,ECRが約10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では,試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重	
 <a href="https://www.setup.se</th><th> <急冷破断試験の概要> (1) PWR^[8] 未照射で, ECRが約10~40%のPWR燃料棒が用いられた。 急冷破断試験では,試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重 </th><th></th>	 <急冷破断試験の概要> (1) PWR^[8] 未照射で, ECRが約10~40%のPWR燃料棒が用いられた。 急冷破断試験では,試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重 	
 (1) PWK^{IC} ・東京都市支援では、2005年後日により海洋地で加方内 水やごつた地市になか(図7条例)により海洋地であ方向 水やごつた地市にない(図7条例)により海洋地で高速検索で開始し、BF マインジェクジックが与えるわた。 (2) BWK^{IC} ・スインジェクジックトがにおいて高速検索で開始し、BF が10~2050 BWR機構想(1.2 R T I ~ I. Z R T I ~ Z R T R T ~ Z R T R T ~ Z R T	 (1) PWR^[8] ・未照射で, ECRが約 10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では,試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重 	
 ・ 東京はで、下く下が通りの一体のためて数な数料成が用いたなた。 ・ 治疗後期発気(加いためなた)、 ・ 治疗後期発気(加いためなた)、 ・ 治疗後期発気(加いためなた)、 ・ 治疗後期発気(加いためなた)、 ・ 治疗(加)・(1)・(1)・(1)・(1)・(1)・(1)・(1)・(1)・(1)・(1	 ・未照射で, ECRが約10~40%のPWR燃料棒が用いられた。 ・急冷破断試験では, 試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重 	
 ・ 合か使動発展では、教授医型(第6 季約)により他の特徴を知られた。 ・ 合か使動発展において高級技巧に対し、して、 を伴うり、マネシャックが与えられた。 ・ スイス・ライブシュタット間において高級技巧に関係し、DLR が 10-0000 UW 民族神経 (L Z K T 1 ~ L Z K T 4) が用い うわた。 ・ 令 冷漠動式酸では、武策技術(L Z K T 1 ~ L Z K T 4) が用い うわた。 ・ 令 冷漠動式酸では、武策技術(L Z K T 1 ~ L Z K T 4) が用い うわた。 ・ 令 冷漠動式酸では、武策技術(L Z K T 1 ~ L Z K T 4) が用い うわた。 ・ 令 冷漠動式酸では、武策技術(L Z K T 1 ~ L Z K T 4) が用い うわた。 ・ 令 冷漠動式には、 のの目前になった。 ・ 令 冷漠動式には、 のの目前になった。 ・ 令 冷漠動式には、 のの目前にないためたで、 のの目前にないためた。 ・ の のの目前にないためたで、 のの目前にないためためて、 のの目前にないためためて、 のの目前にないためためて、 のの目前にないためためて、 のの目前にないためた。 ・ 方向して、 方向して、 方向して、 方向して、 大きたびまま、 	・急冷破断試験では,試験装置(図6参照)により燃料棒の軸方向 変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重	
 変体を完全に拘束し急冷(は7を%形)により独方向に大きな含重 を伴うが、マルショックが与えられた。 (2) R NR ⁽²⁾(10) スイス・ケイブシュクットがにおいて高速施圧まで振見し、DR が 10~2000 DK K燃料棒 (LZ RT 1~LZ RT 4) が用い のれた。 命冷破紛発度では、放取装置 (図6 参照)により触対体の地方 向変位を恢复し急冷(図8 参照)により触対向に大きな背重を 伴うサーマルショックが与えられた。 (3) R NK 近日の (4) のでののののののののののののののののののののののののののののののののののの	変位を完全に拘束し急冷(図7参照)により軸方向に大きな荷重	
 を伴うや・マルショックが与えられた。 (2) BWR⁽¹⁾⁽¹⁰⁾ 010 (スイ、ジイアショクット時において高燃焼度まで発行し、DR が10~20503 BWR燃料等(LZRT1~LZRT4)が用い られた。 令が後期不験では、試験報道(図6 参照)により触ち向に大きな荷蓋を 作うサーマルショックが与えられた。 (3) 合が後期不動では、試験報道(図6 参照)により触ち向に大きな荷蓋を 作うサーマルショックが与えられた。 		
 (2) BWR⁽⁰⁾⁽⁰⁾⁽⁴⁾ スイス・ライブシュタット与において高速地定まで取射し、取用 が10-20050 HWR燃料棒(L2RT1~L2RT1)が用い られた。 合冷破防戦では、武敏速証(図6 参照)により燃料棒の地方 向速位を拘束し合わて(図8 参照)により執力向に大きな両面を 伸うサーマカショックが与えられた。 	を伴うサーマルショックが与えられた。	
 ・スイス・ライブシェクット炉(において高燃焼度まで焼射し、BQR が10~200のBWR燃料体(LZRT1~LZRT4)が用い らわた。 ・命冷破防決験では、決験装置(図6参現)により熱対向に大きな荷重を 作うジーマルショックが与えられた。 ・面容破防決験では、決験装置 ・面容破防決験では、実験装置 	(2) BWR ^{[9][10][11]}	
が10~20%のBWR機料種(1.2.RT1~1.2.RT4)が用い しれた。 ・急冷破財務項では、鉄酸装置(図6参照)により敷対陣の職方 向変位を何東し急冷(図8参照)により敷対陣に大きな荷重を 伴うサーマルショックが与えられた。	・スイス・ライプシュタット炉において高燃焼度まで照射し、ECR	
られた。 ・ 念介徴断決策では、試験装置(図 6 参照)により燃み特部の軸方 向変位を拘束し急谷(図 8 参照)により燃力向に大きな併重を 伴うサーマルジョックが与えられた。 「Game and load cell Suther Units and cell Suther Units and cell Suther Entered Suther Entered Maundo on secult Entered Maundo on secult Entered Maundo on secult	が 10~20%のBWR燃料棒(LZRT1~LZRT4)が用い	
 ・ 治冷叙時試験では、試験装置(図6 参照)により強力特に大きな責重を 市の変位を拘束に気着(図8 参照)により強力特に大きな責重を 伴うサーマルショックが与えられた。 ・ 「「「「「「」」」」」 ・ 「」」 ・ 「」」 ・ 「」」 ・ 「」」 ・ 「」 ・ 「」」 ・ 「」 ・ 「」」 ・ 「」 ・ ・ ・	られた。	
的変位を拘束し急冷(図 8 参照)により 軸方向に大きな荷重を 住うウーマルショックが 5 えられた。	・急冷破断試験では、試験装置(図6参照)により燃料棒の軸方	
伴うサーマルショックが与えられた。 (4) サーマルショックが与えられた。 (4) Grabing device Subject Subject	向変位を拘束し急冷(図8参照)により軸方向に大きな荷重を	
(a) Grabbing device aupply system Upper and pase upper system Upper s	伴うサーマルショックが与えられた。	
	(a) Grabbing device and load cell usupply system Usupply system	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号
				2000 Y 1600 1200 Support 1200 Cladding Quench rupture floodin water
				0 100 200 30 Time (s) 第7図 PWR燃料の温度履 ²⁰⁰⁰ ⁶⁰⁰ ⁵ 1200 ⁶⁰⁰ ⁶⁰⁰ ⁶⁰⁰ ⁶⁰⁰ ⁶⁰⁰ ⁶⁰⁰
				第8図 BWR燃料の温度履 <急冷破断試験結果> (1) PWR 急冷破断試験の結果を図9に示す。ECF は,完全拘束条件下で約600℃の急冷による 受けても健全であった。
				40 (d) Fully res 5 5 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7
				図9 PWR燃料棒の軸方向完全拘 急冷破断試験結果

柏崎刈羽原子力発電所	6/7号炉	(2017, 12, 20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
	-, -,				(2) BWR	
					急冷破断試験の結果を図10に示す。530Nの軸方向拘束力条件	
					下でECRを約10%~20%としても、被覆管の破断はなくサーマル	
					ショックを受けても燃料は健全であった。	
					注記:青枠で囲んだ試験がBWR燃料被援管の結果を示す。 50 日 #破断 日 #破断 日 #破断 日 #破断 日 #破断 日 #破断 日 #破断 日 # 0 1 1 100 1 1 100 1 10	
					初期水素濃度 (wppm)	
					第10図 BWR/PWR燃料棒の軸方向拘束条件下での	
					急冷破断試験結果試験装置	
					BWRでけ燃料棒の軸方向移動がスペーサたどで妨げられたい	
					ため 軸方向の大きた荷重 (拘束力) が発生する可能性け小さい	
					が島根2号炉のTCシーケンスにおいて一軸方向完全拘束条件	
					を想定し仮にサーマルショックを受けたとしても ECRは0 1%	
					以下(図2参照)であり、急冷による温度差はPWR急冷破断試	
					験よりも低い約 510℃(図 4 参照)であるため、燃料は健全であ	
					ると考えられる。	
			3. まとめ		5. まとめ	
			外圧支配条件の下,燃料被覆管:	表面最高温度約 870℃を 20 秒程	^	・解析結果の相違
			度継続しても、燃料は健全である	と考えられる。	度継続しても、燃料は健全であると考えられる。	【東海第二】
			4. 文献		6. 文献	
			[1] 軽水炉燃料のふるまい(平凡	成 25 年 3 月 公益財団法人原子	[1] 軽水炉燃料のふるまい(平成 25 年 3 月 公益財団法人原子	
			力安全研究協会)		力安全研究協会)	
			[2] 日本原子力学会標準「BWR	Rにおける過渡的な沸騰遷移後の	[2] 日本原子力学会標準「BWRにおける過渡的な沸騰遷移後の	
			燃料健全性評価基準:2003」		燃料健全性評価基準:2003」	
			[3] 沸騰遷移後燃料健全性評価会	分科会報告書(平成 18 年 6 月	[3] 沸騰遷移後燃料健全性評価分科会報告書(平成18年6月29	
			29 日 原子力安全委員会了承	<)	日 原子力安全委員会了承)	
			[4] L.Baker, Jr. and L. C. J	Just," Studies of Metal-Water	[4] L.Baker, Jr. and L. C. Just," Studies of Metal-Water	

5炉	備考
I. Experimental and	
m- Water Reaction",	
letal-Water Oxidation	
ORNL/NUREG-17, Aug.	
VR燃料のふるまい(日	
)3)	
1発電所 燃料の設計手	
<u>)53 訂2, 平成11年2月</u>	
e-hydrided Zircaloy-4	
litions", Journal of	
2], 209-218 (2005)	
avior of High Burn-up	
, Journal of Nuclear	
-769 (2009)	
等委託費(燃料等安全	
立研究開発法人日本原	
· 青,「原子刀施設等防	
家儿子美(半成28年度	
无用光懱悟女王听先	