柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
添付資料	添付資料	添付資料	
<u>添付資料-1.</u> 重大事故シーケンスにおける主要な重大事故等対処	1. 重大事故シーケンスにおける主要な重大事故等対処施設	1. 重大事故シーケンスにおける主要な重大事故等対処施設	
施設			
添付資料-2. 地震動の年超過確率	2. 地震動の超過確率	2. 地震動の年超過確率	
<u> 添付資料-</u> 3. 事故時荷重の組合せの選定における検討の流れ	3. 事故時荷重の組合せの選定における検討の流れ	3. 事故時荷重の組合せの選定における検討の流れ	
<u>添付資料-</u> 4. 建物・構築物のSA施設としての設計の考え方	4. 建物・構築物のSA 施設としての設計の考え方	4. 建物・構築物のSA施設としての設計の考え方	
<u> 添付資料-5.</u> 対象設備,事故シーケンス,荷重条件の網羅性につ	5. 対象設備,事故シーケンス,荷重条件の網羅性	5. 対象設備,事故シーケンス,荷重条件の網羅性について	
いて			
<u> 添付資料-6.</u> 継続時間の検討における対象荷重の網羅性について	6. 継続時間の検討における対象荷重の網羅性について	6. 継続時間の検討における対象荷重の網羅性について	
添付資料-7. 荷重の組合せ表	7. 荷重の組合せ表	7. 荷重の組合せ表	
<u> 添付資料-</u> 8. 重大事故時の荷重条件の妥当性について	8. 重大事故時の荷重条件の妥当性について	8. 重大事故時の荷重条件等の妥当性について	
<u>添付資料-9. ABWR</u> における運転状態V(LL)の適切性について	9. <u>東海第二発電所</u> における運転状態V(LL)の適切性について	9. <u>島根原子力発電所2号炉</u> における運転状態V(LL)の適切	
		性について	
<u>添付資料-10.</u> 荷重条件として <u>組合せる</u> シナリオの選定及びその	10. 荷重条件として組み合わせるシナリオの選定及びその荷重条	10. 荷重条件として組み合わせるシナリオの選定及びその荷重	
荷重条件の保守性について	件の保守性について	条件の保守性について	
	参考資料		
	〔参考1〕設置許可基準規則第39条及び解釈(抜粋)		
	〔参考2〕設置許可基準規則第4 条及び解釈 7		
	〔参考3〕設置許可基準規則第4 条解釈の別記2 (抜粋)		
	〔参考4〕 耐震設計に係る工認審査ガイド (抜粋)		
	〔参考 5〕 JEAG4601(抜粋)		
	〔参考6〕原子炉格納容器 評価温度・圧力負荷後の耐震性		
	〔参考7〕「重大事故に至るおそれがある事故」に関する補足説明		
	〔参考8〕重大事故等発生後の長期安定冷却手段について		

柏崎刈	羽原子力発電	所 6/7号炉	(2017.12.20版)		東海第二発電	所(2018.9.1	8版)		島根原	子力発電所	2号炉	備考
							添付資料-1				添付資料1	~
添付資料-	<u>-1.</u> <u>重大事故</u>	シーケンスにおけ	る主要な重大事故等対	重大事故	マシーケンスにお	ける主要な重	大事故等対処施設	<u>重大事</u>	故シーケンスに	おける主要な	全重大事故等対処施設	・設備構成の相違
		処施設		防護対象	重大事故シーケンス	主要な	重大事故等対処施設	17-28-41-27-	ate la ste lata a la sa su	主	要な重大事故等対処施設	【柏崎 6/7,東海第二】
防護対象	重大事故シーケンス	主要な重 原子炉格納容器内	大事故等対処施設 原子炉格納容器外	格納容器	雰囲気圧力・温度に	格納容器内 -	格納容器外 常設低圧代替注水系ポンプ	防護対象	重大事故シーケンス	原子炉格納容器内	原子炉格納容器外	
原子炉格納容器	雰囲気圧力・温度に よる静的負荷(格納 容器過圧・過温破損) 代数額費冷却系を値	-	復水移送ポンプ 復水貯蔵槽 軽油タンク 直流 195V 装置油 Δ		よる静的負荷(格納 容器過圧・過温破 ^国)		代替淡水貯槽 代替循環冷却系ポンプ	DR 1 8 1100141-00	る静的負荷(格納容器 過圧・過温破損)残留		低圧原子炉代替注水槽 残留熱代替除去系	
	用する場合		直流 125V 蓄電池 A-2 AM 用直流 125V 蓄電池 直流 125V 充電器 A		水素燃焼		残留熱除去系熱交換器 緊急用海水ボンプ		熱代替除去系を使用す る場合		常設代替交流電源設備 ガスタービン発電機用軽油タンク	
			 直流 125V 充電器 A-2 AM 用直流 125V 充電器 第一ガスタービン発電機 第一ガスタービン発電機 				格納容器圧力逃がし装置 可搬型窒素供給装置		水素燃燒		所內常設蓄電式直流電源設備 可搬式窒素供給装置	
					高 温 浴 쮒 初 放 出 / 格 納 容 器 雰 囲 気 直 接 加 熱	述かし安全开 コリウムシール ド	常 設 低 圧 代 替 注 水 糸 ホ シ フ 代 替 淡 水 貯 槽 代 替 循 還 冷 却 系 ポ ン プ		雰囲気圧力・温度によ る静的負荷(格納容器		低圧原子炉代替注水系(常設) 低圧原子炉代替注水槽	
	雰囲気圧力・温度に よる静的負荷(格納)	_	復水移送ポンプ フィルタ装置		原子 炉 圧 力 容 器 外 の 溶 融 燃 料 ー 冷 却 材 相		サブレッション・チェンパ 残留熱除去系熱交換器		過圧・過温破損)残留 熱代替除去系を使用し		格納容器フィルタベント系 常設代替交流電源設備	
	容器過圧・適温破損) 代替循環冷却系を使 用しない場合		よ) 素フィルタ ラプチャーディスク ドレン移送ポンプ ドレンタンク		互作用 溶融炉心・コンクリ		緊急用海水ボンブ 可搬型窒素供給装置		ない場合		ガスタービン発電機用軽油タンク 所内常設蓄電式直流電源設備	
			応じ シンシンシン 遠隔手動弁操作設備 フィルタベント遮蔽壁 配管遮蔽 約1000000000000000000000000000000000000	原子炉圧力容器	 一下相互反応 高圧・低圧注水機能 喪失 	-	常設低圧代替注水系ポンプ 代替淡水貯槽		高圧溶融物放出/格納容器雰囲気直接加熱	逃がし安全弁 コリウムシールド	残留熱代替除去系 常設代替交流電源設備 ガスタービン発電機用軽油タンク	
			(Q 水町)級帽 軽油タンク 直流 125V 蓄電池 A 直流 125V 蓄電池 A-2		高 圧 注 水 · 減 圧 機 能		格納容器圧力逃がし装置 残留熱除去系ポンプ 低圧振みスプレイをポンプ		原子炉圧力容器外の溶 融燃料-冷却材相互作		所內常設蓄電式直流電源設備 常設代替直流電源設備	
			AM 用直流 125V 蓄電池 直流 125V 充電器 A 直流 125V 充電器 A-2		K 大		サプレッション・チェンパ 残留熱除去系熱交換器		用		可搬式窒素供給装置	
			AM 用直流 125V 充電器 第一ガスタービン発電機 第一ガスタービン発電機用燃料タ ンク		全交流動力電源喪失	_	残留熱除去系海水ボンプ 原子炉隔離時冷却系ポンプ		溶融炉心・コンクリー ト相互作用			
			第一ガスタービン発電機用燃料移 送ポンプ		(長期TB)		サプレッション・チェンバ 西側淡水貯水設備 残留熱除ま系ポンプ				1	1
	高圧溶融物放出/格 納容器雰囲気直接加 熱	逃がし安全弁 逃がし弁機能用アキュムレータ 自動減圧機能用アキュムレータ	復水移送ボンプ 復水貯蔵槽 軽油タンク				残留熱除去系熱交換器 残留熱除去系海水系ポンプ					
	原子炉圧力容器外の 溶融燃料-冷却材相 560円	コリウムシールド			全交流動力電源喪失	_	可搬型代替注水中型ポンプ 常設高圧代替注水系ポンプ					
	ユ				(TBD, TBU)		サプレッション・チェンバ 西側淡水貯水設備					
							残留熱除去系 ホンノ 残留熱除去系熱交換器 魂の熱除去系流 を モンプ					
							可搬型代替注水中型ポンプ					
						1						

	-	柏崎刈羽]原子力発電	所 6/7号炉	(2017.12.20版)		東海第二発電用	所(2018.9.1	.8版)			島根原	子力発電所	2号炉	備考
Disk 面子中低物容器内 原子伊格納容器内 原子伊格納容器内 原子伊格納容器内 正大事故シーケンス 小田 近日天中低的容易の 近日天中低的容易の 面子中格納容器内 原子伊格納容器内 原子伊尼加 印刷 原子伊格納容器内 原子伊格加 印刷 印刷 印刷 印刷 印刷 印刷 印刷 日本 日本 日本 日本 日本 日本 日本	IV-1:	<u>推升</u> 6	5十支 センフ	主要な重大事	事故等対処施設			ション	丧去事状做女相性乳	1	r				 ・設備構成の相違
<b< td=""><td>原子炉</td><td>週刈家 里 正力容器 音</td><td>重八事故シークンス 高圧・低圧注水機能</td><td>原子炉格納容器内 逃がし安全弁</td><td>原子炉格納容器外 復水移送ポンプ</td><td>防護対象</td><td>重大事故シーケンス</td><td>主要な</td><td>主大事故等对処施設 格納容器外</td><td></td><td>防護対象</td><td>重大事故シーケンス</td><td>主</td><td>要な重大事故等対処施設</td><td>【柏崎 6/7 甫海第一】</td></b<>	原子炉	週刈家 里 正力容器 音	重八事故シークンス 高圧・低圧注水機能	原子炉格納容器内 逃がし安全弁	原子炉格納容器外 復水移送ポンプ	防護対象	重大事故シーケンス	主要な	主大事故等对処施設 格納容器外		防護対象	重大事故シーケンス	主	要な重大事故等対処施設	【柏崎 6/7 甫海第一】
ラブチャーディスク ドレン移送ポンプ ドレン移送ポンプ ドレンタンク (TBP) サブレッション・チェンバ 西側淡水貯水設備 変留熱除去系ポンプ 西側淡水貯水設備 没留熱除去系北ンプ 佐田原子炉代替注水槽 方パタベント連載壁 ガスタービン発電機用軽油タンク 酸管遮蔽 後留熱除去系海水系ポンプ 後留熱除去系海水系ポンプ 施防日本 後留熱除去系海水系ポンプ 施防日本 後留熱除去系海水系ポンプ 施防日本		喪	喪失	逃がし弁機能用アキュムレータ 自動減圧機能用アキュムレータ	フィルタ装置 よう素フィルタ	原子炉圧力容器	全交流動力電源喪失		原子炉隔離時冷却系ポンプ		原子炉圧力容器	高圧・低圧注水機能喪	原子炉格納谷部内 逃がし安全弁	原于另始和谷裕外 低圧原子炉代替注水系(常設)	
ドレンタンク ご隔手動弁操作設備 没留熱除去系ポンプ 常設代替交流電源設備 フィルタベント遮蔽壁 残留熱除去系熱交換器 ガスタービン発電機用軽油タンク 配管遮蔽 残留熱除去系海水系ポンプ 格納容器フィルタベント系 後、貯蔵増 アクロシーク アローのサイント					ラプチャーディスク ドレン移送ポンプ		(TBP)		サプレッション・チェンバ		011.1 () (may 1 H	失	2, 0, 2, 2, 1	低圧原子炉代替注水槽	
辺崎・野川塚市な冊 ブスタービン発電機用軽油タンク ブスタービン発電機用軽油タンク 配管遮蔽 復水貯蔵槽 後留熱除去系熱交換器 改留熱除去系熱交流器 改留熱除去系熱交流器 度留熱除去系熱水系ボンプ 箇所注水・練圧機能應 適所注水・練圧機能應 適所注水・検圧機能應					ドレンタンク				西側淡水 貯水設備 残留執除去系ポンプ			Service of		常設代替交流電源設備	
配管準厳 残留熱除去系海水系ボンブ 格納容器フィルタベント系 復水貯蔵槽 アクリング					遠隔手動升傑作設備 フィルタベント遮蔽壁				残留熱除去系熱交換器					ガスタービン発電機用軽油タンク	
「京焼頭(小蒜注)」「「「「「「「「「「「「」」」」」「「「」」」」「「「」」」」「「「」」」」」					配管遮蔽 復水貯蔵槽				残留熱除去系海水系ボンプ			ateret Martin Advertision	- A - L - 191-	格納容器フィルタベント系	
□ 高圧注水・減圧機能 遂がし安全弁 代替自動減圧ロジック(代替自動 日本 10 10 10 10 10 10 10 10 10 10 10 10 10		直	高圧注水・減圧機能	述がし安全弁	軽油タンク 代替自動減圧ロジック(代替自動		出成教险士继续亦生		可搬型代替注水中型ポンプ	-		尚止汪水・減止機能畏 生	述かし安全开	代替目動減圧機能	
喪失 逃びし弁機能用アキュムレータ 減圧機能) 開業熟尿去機能喪失 一 原子炉隔離時常却系ホンノ へ 自動減圧機能用アキュムレータ (取水機能が喪失し サプレッション・チェンバ 全交流動力電源喪失 逃がし安全弁 所内常設蓄電式直流電源設備		喪	要失	述がし弁機能用アキュムレータ 自動減圧機能用アキュムレータ	減圧機能)		期 壊 熱 际 去 機 能 喪 矢 (取 水 機 能 が 喪 失 し	_	原于炉噌離時冷却糸ホンノサプレッション・チェンバ			へ 全交流動力電源喪失	述がし安全弁	所内常設蓄電式直流電源設備	
全交流動力電源喪失 逃がし安全弁 復水移送ポンプ た場合) 常設低圧代替注水系ポンプ (外部電源喪失+DG 常設低圧代替注水系ポンプ		全	全交流動力電源喪失 (外 郭 雷 酒 車 牛 +	迷がし安全弁 迷がし 会様 能田 アキュムレータ	復水移送ポンプ		た場合)		常設低圧代替注水系ポンプ			(外部電源喪失+DG		常設代替直流電源設備	
()下部電源長大「 ()下部電源長大「 ()「市電源長大」 ()「市電源長大」 DG 喪失) 自動減圧機能用デキュムレータ よう素フィルタ ニブチャーディスク ニブチャーディスク		D	()「前電源長久」)G 喪失)	自動減圧機能用アキュムレータ	よう素フィルタ				代替淡水貯槽			失敗) + H P C S 失敗		ガスタービン発電機用軽油タンク	
ランテャーティスタ ドレン移送ボンプ 歴史の教院去系新ンプ 全交流動力電源喪失 逃がし安全弁 高圧原子炉代替注水系					テノテャーティスクドレン移送ポンプ				残留熱除去系ボンブ 残留熱除去系熱交換器			全交流動力電源喪失	逃がし安全弁	高压原子炉代替注水系	
ドレンダング (外部電源喪失+DG 所内常設蓄電式直流電源設備 遠隔手動弁操作設備 緊急用海水ボンブ 1000000000000000000000000000000000000					ドレンタンク 遠隔手動弁操作設備				緊急用海水ボンプ			(外部電源喪失+DG		所内常設蓄電式直流電源設備	
フィルタベント遮蔽壁 崩壊熱除去機能喪失 ー 原子炉隔離時冷却系ポンプ 失敗)+高圧炉心冷却 mix14目は加え時以端 配管遮蔽 ・ 原子炉隔離時冷却系ポンプ 4 ガスタービン発電機用軽油タンク					フィルタベント遮蔽壁 配管遮蔽		崩壞熱除去機能喪失	_	原子炉隔離時冷却系ポンプ			失敗) + 高圧炉心浴却 生敗		ガスタービン発電機用軽油タンク	
復水貯蔵槽 (残留熱除去系が故 高圧炉心スプレイ系ポンプ 人気 軽油タンク 時」た根へ) サブレッジャンムチェング 全交流動力電源喪失 逃がし安全弁					復水貯蔵槽 軽油タンク		(残留熱除去系が故 暁」た場合)		高圧炉心スプレイ系ポンプ			全交流動力電源喪失	逃がし安全弁	高圧原子炉代替注水系	
直流125V 蓄電池 A 南した場合) リノレッション・デェンパ 中した場合) 南流125V 蓄電池 A-2 常設低圧代替注水系ポンプ (外部電源喪失+DG 常設代替直流電源設備					直流 125V 蓄電池 A 直流 125V 蒸電池 A-2		厚した場合)		9 クレッション・テェンハ 常設低圧代替注水系ポンプ			(外部電源喪失+DG		常設代替直流電源設備	
AM 用直流 125V 蓄電池 ガスタービン発電機用軽油タンク イ、替淡水 貯槽 失敗) +直流電源喪失					AM 用直流 125V 蓄電池 直流 195V 衣雪器 A				代替淡水貯槽			失敗) +直流電源喪失		ガスタービン発電機用軽油タンク	
直流 125V 充電器 A:2 店 125V 充電器 A:2 AN 用 元 = 105V 元電器 A:2 日 二 4 日 4 日 4 日 5 日 5 日 5 日 5 日 5 日 5 日 5 日					直流 125V 元電器 A-2				格納容器圧力逃がし装置	-		全交流動力電源喪失	逃がし安全弁	所内常設蓄電式直流電源設備	
AM /// 10.00 // 20					AM 用直流 125V 元電器 第一ガスタービン発電機		原子炉停止機能喪失	_	ほう酸水注入ボンブ ほう酸水 貯蔵タンク			(外部電源喪失+DG		常設代替直流電源設備 ガスタービン発電機用軽油タンク	
第一カスタービン発電機用燃料ダ ンク 高圧炉心スプレイ系ポンプ					第一カスタービン発電機用燃料タンク				高圧炉心スプレイ系ポンプ			失敗) + SRV再閉失 助士UPCS生敗			
第一ガスタービン発電機用燃料移 送ポンプ 遊がし安全弁 常設代替交流電源設備					第一ガスタービン発電機用燃料移 送ポンプ				原子炉隔離時冷却系ポンプ			崩壊熱除去機能喪失	逃がし安全弁	常設代替交流電源設備	-
中ブレッション・チェンバ ウブレッション・チェンバ 全交流動力電源喪失 逃がし安全弁 高圧代替注水系ボンプ 加水機能が喪失した		全	全交流動力電源喪失	述がし安全弁	高圧代替注水系ポンプ				サプレッション・チェンバ 建四熱除土조ポンプ			(取水機能が喪失した		ガスタービン発電機用軽油タンク	
(外部電源喪失+ 逃びし弁機能用アキュムレータ 復水移送ボンプ DG 喪失) +RCIC 失 自動減圧機能用アキュムレータ フィルタ装置 場合) 所内常設蓄電式直流電源設備		D	(外部電源喪失+)G喪失)+RCIC失	述がし弁機能用アキュムレータ 自動減圧機能用アキュムレータ	復水移送ポンプ フィルタ装置				残留熱除去系熱交換器			場合)		所内常設蓄電式直流電源設備	
敗 よう素フィルタ 残留熟除去系海水系ポンプ 崩壊熱除去機能喪失 逃がし安全弁 低圧原子炉代替注水系(常設) ラブチャーディスク		戝	攵		よう素フィルタ ラプチャーディスク				残留熱除去系海水系ポンプ			崩壞熱除去機能喪失	逃がし安全弁	低圧原子炉代替注水系(常設)	
ドレン移送ポンプ LOCA時注水機能 常設低圧代替注水系ポンプ (残留熱除去系が故障 低止原子炉代替注水槽 ドレンタンク また また (決計水力比) (決計水力比) (注意)					ドレン移送ポンプ		L O C A 時 注 水 機 能 = t	—	常設低圧代替注水系ポンプ			(残留熱除去系が故障		做 上原子 炉 代 替 汪 水 槽 堂 設 代 基 卒 法 雪 酒 設 備	
遠隔手動弁操作設備 近米が町宿 した場合) 前はくてんのにあれば細 オスタービン発電機用軽油タンク					遠隔手動弁操作設備 フィルタベント連応時		夜 大		格納容器圧力逃がし装置			した場合)		ガスタービン発電機用軽油タンク	
① 常志厳 ① 常志 ⑥ ①					アイルタベント巡散室 配管遮蔽		格納容器バイパス	_	原子炉隔離時冷却系ポンプ					格納容器フィルタベント系	
復久町破宿 軽油タンク 軽油タンク					復不貯廠悟 軽油タンク		(インターフェイス		低圧炉心スプレイ系ボンプ						
直流 125V 蓄電池 A・2 システム L O C A) サブ レ ジ ジ ヨン・ チェンパ 直流 125V 蓄電池 A・2 残 留熟除去系ボンプ					直流 125V 蓄電池 A 直流 125V 蓄電池 A-2		VATALOCA)		サラレッション・テェンハ 残留熱除去系ポンプ						
AM 用直流 125V 審電池 直流 125V 充電器 A 残 留 熱 除 去 系 熱 交 換 器					AM 用直流 125V 蓄電池 直流 125V 充電器 A				残留熱除去系熱交換器						
直流 125V 充電器 A・2 AM 用直流 125V 充電器					直流 125V 充電器 A-2 AM 用直流 125V 充電器				残留熱除去系海水系ポンプ						
第一ガスタービン発電機 第 ご が に 代 替 注 ボ 糸 ボ シ フ 第 一ガスタービン発電機用燃料タ 代 替 淡 水 貯 槽					第一ガスタービン発電機 第一ガスタービン発電機用燃料タ				R 設 低 圧 代 替 注 水 糸 ホ ン フ 代 替 淡 水 貯 槽						
ンク 第一ガスタービン発電機用燃料移					ンク 第一ガスタービン発電機用燃料移										
送ポンプ					送ポンプ										

柏崎刈	羽原子力発電	訴 6/7号炉	(2017.12.20版)		東海第二発電	所(2018.9.	18版)		島根原	子力発電所	2号
		十里と手士				主要	な重大事故等対処施設				- - 一 一 赤 赤 - - - - - - - - - - - - -
防護対象	重大事故シーケンス	王要な重ス 原子炉格納容器内	原子炉格納容器外	防護対象	重大事故シーケンス	格納容器内	格納容器外	防護対象	重大事故シーケンス		土安な里入
原子炉圧力容器	全交流動力電源喪失 (外部電源喪失+ DG喪失)+直流電源 喪失)	述がし安全弁 述がし弁機能用アキュムレータ 自動減圧機能用アキュムレータ	高圧代替注水系ポンプ 復水移送ポンプ フィルタ装置 よう素フィルタ ラプチャーディスク ドレン移送ポンプ ドレン移送ポンプ	原子炉圧力容器	津 波 浸 水 に よ る 最 終 ヒ ー ト シンク 喪 失	_	原子炉隔離時冷却系ポンプ サプレッション・チェンバ 西側淡水貯水設備 残留熱除去系ポンプ 検辺熱除去系教を検察	原子炉圧力容器	原子炉停止機能喪失	原子炉格納容器体逃がし安全弁	 代替房 自動湯 代替自 ほう酢
			遠隔手動弁操作設備 フィルタペント連載壁 配管連載 復水貯蔵槽 軽油タンク AM 用直流 125V 蓄電池 AM 用直流 125V 苦電池 第一ガスタービン発電機 第一ガスタービン発電機用燃料タ ンク 第一ガスタービン発電機用燃料移		運転停止中の原子炉 における崩壊熟除去 機能喪失(残留熱除 去系の故障による停 止時冷却機能喪失)	_	 ※ ※ 急用海水ボンプ 可搬型代替注水中型ポンプ 残留熱除去系ポンプ 残留熱除去系熱交換器 残留熱除去系海水系ポンプ 		LOCA 時注水機能喪失 格納容器バイバス (インターフェイスシ	逃がし安全弁 逃がし安全弁	低圧房 低圧房 常設代 ガスタ 格納室 原子炉
			送ポンプ		運転停止中の原子炉における原子炉冷却			は田澤が生デール	ステムLOCA) 相空声サ1		
	全交流動力電源喪失 (外部電源喪失+	逃がし安全弁 逃がし弁機能用アキュムレータ	フィルタ装置 よう素フィルタ		材の流出			使用の旅行ノール	想定事故 2	_	
	DG 喪失)+SRV 再 閉失敗	自動減圧機能用アキュムレータ	ラブチャーディスク ドレン移送ポンプ ドレンタシク 遠隔手動弁操作設備 フィルタベント達蔽壁		運転停止中の原子炉 における全交流動力 電源喪失	-	常設低圧代替注水系ポンプ 代替淡水貯槽 残留熟除去系ポンプ 残留熟除去系熱交換器	原子炉圧力容器	 远足中国2 運転停止中 崩壊熱除去機能喪失 運転停止中 	逃がし安全弁 逃がし安全弁	低圧馬
			福 日本 復 水貯蔵槽 軽油タンク 直流 125V 蓄電池 A 直流 125V 蓄電池 A-2 AM 用直流 125V 蓄電池 直流 125V 素電池		運転停止中の原子炉 における反応度の誤 投入	-	残留熟除去系海水系ボンプ -原子炉周期(ペリオド短) 原子炉スクラム		全交流動力電源喪失		低 ば
			直流 125V 充電器 A-2 AM 用直流 125V 充電器 第一ガスタービン発電構						運転停止中	—	
			第一ガスタービン発電機用燃料タ						原于炉行3400元山 運転停止中		_
			 第一ガスタービン発電機用燃料移 送ポンプ 						反応度の誤投入		
	(取不機能が改失し た場合)	述かし升機能用アキュムレータ 自動減圧機能用アキュムレータ	 (広下町)廠得 直流 125V 蓄電池 A 直流 125V 蓄電池 A-2 AM 用直流 125V 蓄電池 直流 125V 充電器 A 直流 125V 充電器 A 2AM 用直流 125V 充電器 A 第一ガスタービン発電機 幣ーガスタービン発電機用燃料タンク 第一ガスタービン発電機用燃料 第二ガスタービン発電機用燃料 								

	備考				
大事故等対処施設	・設備構成の相違				
原子炉格納容器外	【 柏崎 6 /7 南海				
原子炉再循環ポンプトリップ機能 減圧起動阻止スイッチ 自動減圧起動阻止スイッチ 酸水注入系	【竹呵 0/7, 宋/毋弗一】				
原子炉代替注水系(常設) 原子炉代替注水槽 代替交流電源設備 タービン発雷機用軽油タンク					
容器フィルタベント系					
炉建物ブローアウトパネル					
_					
_					
-					
原子炉代替注水系(常設)					
原子炉代替注水槽					
代替交流電源設備					
ラービン死电機用 軽加 ランク 常設 萎電式 直流電源設備					
代替直流電源設備					
_					
-					

柏崎刈羽原子	子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
防護対象 重大事故	故シーケンス	主要な重大	事故等对処施設			・設備構成の相違
原子炉圧力容器 崩壊熱除 (残留熱	余去機能喪失 逃がし 執除去系が故 逃がし	原子炉格納容器内 安全弁 -弁機能用アキュムレータ	原子炉格納容器外 復水移送ポンプ フィルタ装置			【柏崎 6/7】
障した場	易合) 自動減	正機能用アキュムレータ	よう素フィルタ ラプチャーディスク			
			ドレン移送ボンプ ドレンタンク 遠隔毛動金操作設備			
			スペナ動力球目の面 フィルタベント遮蔽壁 配管遮蔽			
			復水貯蔵槽 軽油タンク			
原子炉停	 亭止機能喪失 逃がし 逃がし 	安全弁 弁機能用アキュムレータ	ほう酸水注入系ポンプ ほう酸水注入系貯蔵タンク			
	自動減	圧機能用アキュムレータ	復水貯蔵槽 ATWS 緩和設備(代替冷却材再循			
			環ボンブ・トリップ機能) 自動減圧系の起動阻止スイッチ			
LOCA 時 失	時注水機能喪 逃がし 逃がし	安全弁 弁機能用アキュムレータ	復水移送ポンプ フィルタ装置			
	自動減	2E機能用アキュムレータ	よう素フィルタ ラプチャーディスク ドレンXX送ポンプ			
			ドレンタンク 遠隔手動弁操作設備			
			フィルタベント遮蔽壁 配管遮蔽 海本哈萨博			
			軽油タンク			
格納 容器 (インタ	器バイパス 逃がし ターフェイス 逃がし トレCA) 白動減	安全弁 弁機能用アキュムレータ 正様能用アキュムレータ	復水貯蔵槽 原子炉建屋ブローアウトパネル			
使用済燃料プー ル ル	文 1 文 1	-	常設スプレイヘッダ 軽油タンク			
想定事故	女 2	_	常設スプレイヘッダ			
		ナ東が金十万				
防護対象 重大事故 原子炉圧力容器 崩壊熱除	数シーケンス 余去機能喪失 逃がし	正安 ^{很重大。} 原子炉格納容器内 安全弁	原子炉格納容器外			
	逃がし自動減	弁機能用アキュムレータ 注F機能用アキュムレータ				
全交流動	助力電源喪失 逃がし 逃がし	安全弁 弁機能用アキュムレータ	復水移送ポンプ 復水貯蔵槽			
	自動減	圧機能用アキュムレータ	軽油タンク 直流 125V 蓄電池 A 声法 195V 著電池 A-9			
			直流 125V 蓄電池 A 2 AM 用直流 125V 蓄電池 直流 125V 充電器 A			
			直流 125V 充電器 A-2 AM 用直流 125V 充電器			
			第一カスタービン発電機用燃料タ シク			
			第一ガスタービン発電機用燃料移 送ポンプ			
原子炉冷	合却材の流出	-	-			
反応度の	D誤投入	-	-			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	添付資料—2	添付資料 2	
<u>添付資料-2</u> . 地震動の年超過確率	地震動の超過確率	地震動の年超過確率	
Э 4 000 - 100 100 100 100 100 100 100 100 1	a f f f f f f f f f f	$\frac{2}{9} \pm \overline{u} + \overline{u} + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $	

计位	備考
¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	 ・地震動の相違 【柏崎 6/7,東海第二】 立地地点における地 震ハザードの相違及び プラント毎の基準地震 動等の相違
1 1<	

予炉	備考
10 000 000 000 000 000 000 000 000 000	 ・地震動の相違 【柏崎 6/7,東海第二】 立地地点における地震 ハザードの相違及びプ ラント毎の基準地震動 等の相違
¹⁰⁰ ¹⁰⁰	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	f = - t = t = t = t = t = t = t = t = t =		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	単10 ⁻⁴ 単10 ⁻³	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
相時刈り羽原子刀発電所 6/7号炉 (2017.12.20版)	東海男一名電助「(2018.9.18 成) 1000000000000000000000000000000000000	局极原子刀 经 电 所 2	/ / / / / / / / / / / / / / / / / / /

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		<figure></figure>		
		#ハザードスペクトル #ハザードスペクトル 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18 版) 100 000 000 000 000 000 000 000 000 000	島根原子力発電所 2 号炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	$\frac{1}{2}$ (стотеци) $\frac{1}{2}$ (стотеци) $\frac{1}{2$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	添付資料-4	添付資料4	
<u>添付資料-4.</u> 建物・構築物のSA 施設としての設計の考え方	建物・構築物のSA施設としての設計の考え方	建物・構築物のSA施設としての設計の考え方	
4項(2)では建物・構築物を全般施設に分類しており、全般施設	4 項(2)では建物・構築物を全般施設に分類しており、全般施設	4 項(2)では建物・構築物を全般施設に分類しており、全般施設	
はSA条件を考慮した設計荷重とSsによる地震力を組み合わせるこ	はSA条件を考慮した設計荷重とSsによる地震力を組み合わせ	はSA条件を考慮した設計荷重とSsによる地震力を組み合わせ	
ととしている。これは、建物・構築物のDB施設としての設計の考	ることとしている。これは、建物・構築物のDB施設としての設	ることとしている。これは、建物・構築物のDB施設としての設	
え方が,機器・配管系のそれと同じであり, SA施設としての設計	計の考え方が、機器・配管系のそれと同じであり、 SA施設とし	計の考え方が、機器・配管系のそれと同じであり、 SA施設とし	
については、建物・構築物、機器・配管系ともにDB施設としての	ての設計については、建物・構築物、機器・配管系ともにDB施	ての設計については、建物・構築物、機器・配管系ともにDB施	
設計の考え方を踏まえることを基本方針としているからである。	設としての設計の考え方を踏まえることを基本方針としているか	設としての設計の考え方を踏まえることを基本方針としているか	
	らである。	らである。	
以下では、建物・構築物のSA施設としての設計の考え方につい	以下では、建物・構築物のSA施設としての設計の考え方につ	以下では、建物・構築物のSA施設としての設計の考え方につ	
て、DB施設としての設計の考え方も踏まえ、本文の各項ごとに説	いて、DB施設としての設計の考え方も踏まえ、本文の各項毎に	いて, DB施設としての設計の考え方も踏まえ,本文の各項無に	
明する。	説明する。	説明する。	
(1) 対象施設とその施設分類(3項(1)に対する考え方)	(1) 対象施設とその施設分類(3項(1)に対する考え方)	(1) 対象施設とその施設分類(3 項(1)に対する考え方)	
『重大事故等対象設備について(補足説明資料) 「39条 地震	『重大事故等対象設備について(補足説明資料)「39 条地震に	『重大事故等対象設備について(補足説明資料)「39 条地震に	
による損傷の防止 添付資料-1重大事故等対処施設の網羅的な	よる損傷の防止添付資料-1 重大事故等対処施設の網羅的な整理	よる損傷の防止添付資料-1 重大事故等対処施設の網羅的な整理	
整理について」』より抽出したSA施設の建物・構築物を表1に示す。	について」』より抽出したSA施設の建物・構築物を表1 に示す。	について」』より抽出したSA施設の建物・構築物を表1 に示す。	
補機冷却用海水取水路及び補機冷却用海水取水槽を除く12施設	<u>これら 13 施設</u> は, <u>基準地震動</u> Ssによる地震力に対して機能維	<u>これら10施設</u> は, <u>S.s.</u> による地震力に対して機能維持が求められ	・施設構成の相違
は, 基準地震動による地震力に対して機能維持が求められている	持が求められている「常設耐震重要重大事故防止設備」,「常設重	ている「常設耐震重要重大事故防止設備」、「常設重大事故緩和設	【柏崎 6/7,東海第二】
「常設耐震重要重大事故防止設備」、「常設重大事故緩和設備」の	大事故緩和設備」のいずれかに該当するため、荷重の組合せ検討	備」のいずれかに該当するため、荷重の組合せ検討の対象施設で	島根2は柏崎 6/7 及
いずれかに該当するため、荷重の組合せ検討の対象施設である。	の対象施設である。	ある。	び東海第二と施設構成
			が異なる
なお、「常設重大事故防止設備(設計基準拡張)」兼「常設重大事			・施設構成の相違
故緩和設備(設計基準拡張)」である補機冷却用海水取水路及び補			【柏崎 6/7】
機冷却用海水取水槽についても, Ss機能維持設計であることから,			島根2は柏崎 6/7 と
「常設耐震重要重大事故防止設備」及び「常設重大事故緩和設備」			施設構成が異なる
と同等のものとして取り扱う。			

柏崎刈羽原子力発	-力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版) 島根原子力発電所 2号炉						三発電所(2018.9.18版)			備考		
表1 SA施設(建物・構築物)の施設分類				表1	SA施設(建物	・構築物)の施設	设分類	表1 SA施設(建物・構築物)の施設分類				
SA 施設	常設耐震重要	常設耐震重要重大事故 防止設備以外の常設重	常設重大事故	SA施設 (建築 構築版)	常設耐震重要	常設耐震重要重大事 故防止設備以外の常	常設重大事故					
(建物・構築物)復水貯蔵槽	重大事故防止設備 ○	大事故防止設備	緩和設備 〇	 (建物・構築物) 使用済燃料プール 	■大事政防止設備 ○	設重大事故防止設備 一	緩和設備 〇	S A 拖到	尚設計電手再	常設耐震重要	尚	
フィルタベント遮蔽壁 使用済燃料プール	0		0	緊急用海水ポンプピ ット	_	0	0	(建物・構築物)	重大事故防止設備	単八争00000000 以外の常設重大	市 成 重 八 爭 旼 緩 和 設 備	・施設構成の相違
中央制御室遮蔽 中央制御室待避室遮蔽	0		0	SA用海水ピット取 水塔	_	0	0			事故防止設備		【柏崎 6/7,東海第二】
5 号炉原子炉建屋内緊急時対策所 (対策本部)遮蔽	0	-	0	海水引込み管 SA用海水ピット	_	0	0	燃料プール	0		0	島根2は柏崎 6/7 及
5 号炉原子炉建屋内緊急時対策所 (待機場所)遮蔽	0	-	0	貯留堰 取水路	0	 0	0	水槽	0	—	0	び東海第二と施設構成
海水貯留堰 スクリーン室	0	 0	0	フィルタ装置遮蔽 二次隔離弁操作室遮			0	中央制御室遮蔽	0		0	が異なる
取水路 補機冷却用海水取水路	-	0	0	一般 中央制御室遮蔽	0	-	0	緊急時対策所遮蔽	—		0	
補機冷却用海水取水槽 主排気筒(内筒)	-		-	中央制御室退避室遮蔽	_	_	0	取水槽 取水管		0	0	
原子炉建屋原子炉区域	_	-	0	緊急時対策所遮蔽 代替淡水貯槽	 O	-	0	取水口		0	0	
								原子炉建物原子炉 棟	_	_	0	
								非常用ガス処理系 用排気筒	_	_	0	
								緊急時対策所用燃 料地下タンク	0		0	

(2) DB施設としての設計の考え方(2) D B施設としての設計の考え方(2) D B施設としての設計の考え方	
(a)新規制基準における要求事項(a)新規制基準における要求事項(a)新規制基準における要求事項	
「実用発電用原子炉及びその附属施設の位置,構造及び設備の 「実用発電用原子炉及びその附属施設の位置,構造及び設備の 「実用発電用原子炉及びその附属施設の位置,構造及び設備の	
基準に関する規則」の第4条(地震による損傷の防止)には,建物・基準に関する規則」の第4条(地震による損傷の防止)には,建基準に関する規則」の第4条(地震による損傷の防止)には,建物・	
構築物,機器・配管系の区分なく,次の事項が規定されている。 物・構築物,機器・配管系の区分なく,次の事項が規定されてい 構築物,機器・配管系の区分なく,次の事項が規定されている。	
る。	
 ・設計基準対象施設は、地震力に十分に耐えることができるもの ・設計基準対象施設は、地震力に十分に耐えることができるもの ・設計基準対象施設は、地震力に十分に耐えることができるもの 	
でなければならない。 でなければならない。 でなければならない。	
 ・耐震重要施設は、その供用中に当該耐震重要施設に大きな影響 ・耐震重要施設に大きな影響 ・耐震重要施設は、その供用中に当該耐震重要施設に大きな影響 	
震力(以下「基準地震動による地震力」という。)に対して安 力(以下「基準地震動による地震力」という。)に対して安全機 力(以下「基準地震動による地震力」という。)に対して安全機	
全機能が損なわれるおそれがないものでなければならない。 能が損なわれるおそれがないものでなければならない。 能が損なわれるおそれがないものでなければならない。	
(b) JEAG4601の記載内容(2.3項に対する考え方) b. JEAG4601の規定内容(2.3 項に対する考え方) (b) JEAG4601の記載内容(2.3 項に対する考え方) (b) JEAG4601の規定内容(2.3 項に対する考え方)	
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	
物に関する荷重の組合せと許容限界については、以下のように記 築物に関する荷重の組合せと許容限界については、以下のように 建物・構築物に関する荷重の組合せと許容限界については、以下	
載されている。	
【荷重の組合せ】 【荷重の組合せ】 【荷重の組合せ】	
・ 地震力と常時作用している荷重, 運転時(通常運転時, 運転時 ・地震力と常時作用している荷重, 運転時(通常運転時, 運転時 ・地震力と常時作用している荷重及び運転時(通常運転時, 運転時	
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	
 ・常時作用している荷重、及び事故時の状態で施設に作用する荷 ・常時作用している荷重、及び事故時の状態で施設に作用する荷 	
重のうち長時間その作用が続く荷重と基準地震動S,による荷重すのうち長時間その作用が続く荷重と基準地震動S,による荷のうち長時間その作用が続く荷重と基準地震動S,による荷重	
重を組み合わせる。	
【許容限界】 【許容限界】 【許容限界】	
・ 基準地震動S ₁ による地震力との組合せに対する許容限界 ・基準地震動S ₁ による地震力との組合せに対する許容限界 ・基準地震動S ₁ による地震力との組合せに対する許容限界	
安全上適切と認められる規格及び基準による許容応力度を許 安全上適切と認められる規格及び基準による許容応力度を許容 安全上適切と認められる規格及び基準による許容応力度を許容	
容限界とする。ただし、事故時の荷重と組み合わせる場合には、 限界とする。ただし、事故時の荷重と組合せる場合には、次項 限界とする。ただし、事故時の荷重と組み合わせる場合には、	
次項による許容限界を適用する。	
・ 基準地震動S2による地震力との組合せに対する許容限界 ・基準地震動S2による地震力との組合せに対する許容限界 ・基準地震動S2による地震力との組合せに対する許容限界	
建物・構築物が構造物全体として十分変形能力(ねばり)の余 建物・構築物が構造物全体として十分変形能力(ねばり)の余 建物・構築物が構造物全体として十分変形能力(ねばり)の余裕	
裕を有し、終局耐力に対して安全余裕をもたせることとする。 裕を有し、終局耐力に対して安全余裕をもたせることとする。 を有し、終局耐力に対して安全余裕をもたせることとする。	
ここで, JEAG4601-1987における建物・構築物の荷重の組合せは, ここで, JEAG4601-1987 における建物・構築物の荷重の組合せ ここで, JEAG4601-1987 における建物・構築物の荷重	
2.3項に示す機器・配管系の荷重の組合せと同じ考え方に基づいて は,2.3 項に示す機器・配管系の荷重の組合せと同じ考え方に基 の組合せは、2.3 項に示す機器・配管系の荷重の組合せと同じ考	
 設定された結果として記載されているものである。	
る。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
なお, JEAG4601-1987において, 機器・配管系では運転状態が定	なお, JEAG4601-1987 において, 機器・配管系では運転状態が	なお, JEAG4601-1987 において, 機器・配管系では運	
義されているが、建物・構築物については、細かな運転状態を設	定義されているが、建物・構築物については、細かな運転状態を	転状態が定義されているが、建物・構築物については、細かな運	
定する必要がないため、運転状態は定義されていない。	設定する必要がないため、運転状態は定義されていない。	転状態を設定する必要がないため,運転状態は定義されていない。	
(3) SA 施設の荷重の組合せと許容限界の設定方針 (3.(3)(4)項に	(3) SA施設の荷重の組合せと許容限界の設定方針(3.(3)(4)項	(3) SA施設の荷重の組合せと許容限界の設定方針(3.(3)(4)項	
対する考え方)	に対する考え方)	に対する考え方)	
SA施設の建物・構築物における荷重の組合せと許容限界の設定	SA施設の建物・構築物における荷重の組合せと許容限界の設	SA施設の建物・構築物における荷重の組合せと許容限界の設	
方針は,機器・配管系と同様,JEAG4601-1987のDB施設に対する記	定方針は,機器・配管系と同様, JEAG4601-1987 のDB施設に対	定方針は、機器・配管系と同様、JEAG4601-1987のDB	
戴内容を踏まえ、以下のとおりとする(建物・構築物では、運転	する規定内容を踏まえ,以下のとおりとする(建物・構築物では,	施設に対する規定内容を踏まえ、以下のとおりとする(建物・構	
状態及びそれに対応した許容応力状態が定義されていないことか	運転状態及びそれに対応した許容応力状態が定義されていないこ	築物では、運転状態及びそれに対応した許容応力状態が定義され	
ら,機器・配管系とは下線部が異なる)。	とから,機器・配管系とは下線部が異なる)。	ていないことから,機器・配管系とは下線部が異なる)。	
【SA施設(建物・構築物)における設定方針】	【SA施設(建物・構築物)における設定方針】	【SA施設(建物・構築物)における設定方針】	
• Ss, Sdと運転状態の組合せを考慮する。	 S s , S d と運転状態の組合せを考慮する。 	 Ss, Sdと運転状態の組合せを考慮する。 	
 ・ 地震の従属事象については、地震との組合せを実施する。ここ 	・地震の従属事象については、地震との組合せを実施する。ここ	 ・地震の従属事象については、地震との組合せを実施する。ここ 	
で, 耐震Sクラス施設はSsによる地震力に対して, その安全機能	で、耐震Sクラス施設はSsによる地震力に対して、その安全	で, Sクラス施設はSsによる地震力に対して, その安全機能	
が保持できるよう設計されていることから,地震の従属事象と	機能が保持できるよう設計されていることから,地震の従属事	が保持できるよう設計されていることから、地震の従属事象と	
してのSAは発生しないこととなる。したがってSAは地震の独立	象としてのSAは発生しないこととなる。したがって、SAは	してのSAは発生しないこととなる。したがってSAは地震の	
事象として取り扱う。	地震の独立事象として取り扱う。	独立事象として取り扱う。	
・ 地震の独立事象については、事象の発生確率、継続時間及びSs	・地震の独立事象については、事象の発生確率、継続時間及びS	・地震の独立事象については、事象の発生確率、継続時間及びS	
若しくはSdの年超過確率の積等も考慮し、工学的、総合的に組	s 若しくは S d の超過確率の積等も考慮し,工学的,総合的に	s 若しくはSdの年超過確率の積等も考慮し、工学的、総合的	
み合わせるかを判断する。	組み合わせるかを判断する。	に組み合わせるかを判断する。	
組み合わせるか否かの判断は,国内外の基準等でスクリーニン	組み合わせるか否かの判断は、国内外の基準等でスクリーニン	組み合わせるか否かの判断は、国内外の基準等でスクリーニン	
グ基準として参照されている値、炉心損傷頻度及び格納容器機	グ基準として参照されている値、炉心損傷頻度及び格納容器機	グ基準として参照されている値、炉心損傷頻度及び格納容器機	
能喪失頻度の性能目標値に保守性をもたせた値を目安とし、事	能喪失頻度の性能目標値に保守性をもたせた値を目安とし、事	能喪失頻度の性能目標値に保守性をもたせた値を目安とし、事	
象の発生確率、継続時間及びSs若しくはSdの年超過確率の積と	象の発生確率,継続時間及びSs若しくはSdの超過確率の積	象の発生確率,継続時間及びSs若しくはSdの <u>年超過確率</u> の	
比較等により判断する。	と比較等により判断する。	積との比較等により判断する。	
・ また, 上記により組合せ不要と判断された場合においても, 事	 ・また、上記により組合せ不要と判断された場合においても、事 	・また、上記により組合せ不要と判断された場合においても、事	
故後長期間継続する荷重とSdによる地震力と組み合わせる。	故後長期間継続する荷重とSdによる地震力と組み合わせる。	故後長期間継続する荷重とSdによる地震力とを組み合わせ	
		る。	
• 許容限界として,DB施設のSsに対する許容限界に加えて,SA	 ・許容限界として、DB施設のSsに対する許容限界に加えて、 	・許容限界として、DB施設のSsに対する許容限界に加えて、	
荷重と地震力との組合せに対する許容限界(機器・配管系の許	SA荷重と地震力との組合せに対する許容限界(機器・配管系	SA荷重と地震力との組合せに対する許容限界(機器・配管系の	
容応力状態VASに相当するもの)を設定する。ここで, <u>柏崎刈</u>	の許容応力状態V _A S に相当するもの)を設定する。ここで,東	許容応力状態VAS に相当するもの)を設定する。ここで, <u>島根</u>	
<u>羽6号及び7号炉</u> では、SA荷重と地震力との組合せに対する許容	<u>海第二発電所</u> では、SA荷重と地震力との組合せに対する許容	<u>2号炉</u> では、SA荷重と地震力との組合せに対する許容限界は、	
限界はDB施設のSsに対する許容限界(建物・構築物が構造物全	限界はDB施設のSsに対する許容限界(建物・構築物が構造	DB施設のSsに対する許容限界(建物・構築物が構造物全体と	
体として十分変形能力(ねばり)の余裕を有し、終局耐力に対	物全体として十分変形能力(ねばり)の余裕を有し、終局耐力	して十分変形能力(ねばり)の余裕を有し,終局耐力に対して安	
して安全余裕をもたせることとする)と同じとする。	に対して安全余裕をもたせることとする)と同じとする。	全余裕をもたせることとする)と同じとする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(4) 荷重の組合せと許容限界の検討結果(5.2.1項に対する考え	(4) 荷重の組合せと許容限界の検討結果(5.2.1 項に対する考え	(4) 荷重の組合せと許容限界の検討結果(5.2.1 項に対する考え	
方)	方)	方)	
5.2.1項の全般施設の検討は、建物・構築物に対しても同様に適	5.2.1 項の全般施設の検討は、建物・構築物に対しても同様に	5.2.1 項の全般施設の検討は、建物・構築物に対しても同様に	
用される。すなわち、各項目に対する考え方は以下のとおりとな	適用される。すなわち、各項目に対する考え方は以下のとおりと	適用される。すなわち、各項目に対する考え方は以下のとおりと	
る。	なる。	なる。	
SAの発生確率 炉心損傷頻度の性能目標値(10 ⁻⁴ /炉	SAの発生確率 炉心損傷頻度の性能目標値(10 ⁻⁴ /炉年)を	SAの発生確率・・・・・・炉心損傷頻度の性能目標値(10 ⁻⁴ /炉	
年)を設定	設定	年)を設定	
継続時間 事故発生時を基点として, 10 ⁻² 年まで	継続時間 事象発生時を起点として、10-2年までの期間	継続時間・・・・・・・事故発生時を基点として、10 ⁻² 年ま	
の期間を地震荷重との組合せが不要	を地震荷重との組合せが不要な短期(運転状	での期間を地震荷重との組合せが不	
な短期(運転状態V(S)),弾性設計用	態V(S)),弾性設計用地震動Sdとの組合せ	要な短期(運転状態V(S)), Sdと	
<u>地震動</u> Sdとの組合せが必要な10 ⁻² ~	が必要な 10 ⁻² から_2×10 ⁻¹ 年を長期(L) (運	の組合せが必要な 10^{-2} $\sim 2 imes 10^{-1}$	
2×10 ⁻¹ 年を長期(L) (運転状態V(L)),	転状態V(L)),基準地震動Ssとの組合せが	年を長期(L) (運転状態V(L)), S s	
<u>基準地震動</u> Ssとの組合せが必要な	必要な期間 2×10⁻1年以降を長期(LL)(運転	との組合せが必要な2×10 ⁻¹ 年以	
期間2×10 ⁻¹ 年以降を長期(LL) (運転状	状態V(LL)) とする。	降を長期(LL)(運転状態V(LL))と	
態V(LL)) とする。		する。	
(建物・構築物について, SA時の荷重	(建物・構築物について、SA時の荷重条件を	(建物・構築物について, SA時の荷	
条件を踏まえ5.2.1項(2)b.の分類を	踏まえ, 施設ごとに検討した結果を添付 4 補	重条件を踏まえ <u>5.2.1 項(2)b.の分</u>	
設備ごとに検討した結果を添付資料	足資料-1に示す。)	類を設備ごとに検討した結果を添付	
<u></u> 4 補足資料-1に示す。)		4 補足資料-1に示す。)	
地震動の年超過確率 JEAG4601の地震動の発生確率 (Ss:	地震動の超過確率 JEAG4601 の地震動の発生確率(Ss:5×	地震動の年超過確率・・・・JEAG4601の地震動の発生確	
5×10 ⁻⁴ /年以下,Sd:10 ⁻² /年以下)	10 ⁻⁴ /年以下, Sd:10 ⁻² /年以下)を設	率(Ss:5×10 ⁻⁴ /年以下, Sd:	
を設定	定	10 ⁻² /年以下)を設定	
以上から,機器・配管系と同様, SAの発生確率,継続時間,地	以上から,機器・配管系と同様,SAの発生確率,継続時間,	以上から,機器・配管系と同様, SAの発生確率,継続時間,	
震動の年超過確率の積等を考慮した工学的,総合的な判断として,	地震動の超過確率の積等を考慮した工学的,総合的な判断として,	地震動の年超過確率の積等を考慮した工学的、総合的な判断とし	
建物・構築物についても, SA荷重とSsによる地震力を組み合わせ	建物・構築物についても、SA荷重とSsによる地震力を組み合	て,建物・構築物についても,SA荷重とSsによる地震力を組	
ることとする。	わせることとする。	み合わせることとする。	
(5) SAと地震の組合せに対する許容限界の考え方(6.1項に対する	(5) SAと地震の組合せに対する許容限界の考え方(6.1 項に対	(5) SAと地震の組合せに対する許容限界の考え方(6.1 項に対	
考え方)	する考え方)	する考え方)	
(3)の荷重の組合せ方針から,SA施設(建物・構築物)の各組合	(3)の荷重の組合せ方針から、SA施設(建物・構築物)の各組	(3)の荷重の組合せ方針から、SA施設(建物・構築物)の各組合	
せ条件に対する許容応力状態をDB施設(建物・構築物)と比較し	合せ条件に対する許容応力状態をDB施設(建物・構築物)と比	せ条件に対する許容応力状態をDB施設(建物・構築物)と比較し	
て表2に示す。なお、表2に示す荷重の組合せケースのうち、他の	較して表2に示す。なお,表2に示す荷重の組合せケースのうち,	て表2に示す。なお、表2に示す荷重の組合せケースのうち、他	
組合せケースと同一となる場合、又は他の組合せケースに包絡さ	他の組合せケースと同一となる場合、又は他の組合せケースに包	の組合せケースと同一となる場合、又は他の組合せケースに包絡	
れる場合は評価を省略することになる。	絡される場合は評価を省略することになる。	される場合は評価を省略することになる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
表2 荷重の組合せと許容限界	表2 荷重の組合せと許容限界 表2 荷重の組合せと許容限界	
辺転状態 DB 施設 SA 施設 備考 運転状態 Sd Ss Sd Ss	D B 施設 S A 施設 備考 D B 施設 S A 施設 備考	
運転時 許容 終局 ^{※2} - 終局 ^{※2} DB と同じ許容限界とする。	運転時 許容応力度 ^{※1} 終局 ^{※2} ー 終局 ^{※2} DBと同じ許容限界とす	
DB 事故時 (長期) 終局 ^{※2} - 終局 ^{※2} - DB と同じ許容限界とする。	DB事故時 (長期)終局 $^{※2}$ -終局 $^{※2}$ -DBと同じ許容限界とす る。DB事故時 (長期)終局 $^{※2}$ -DBと同じ許容限界とする。	
SA 事故時 注2:SA 荷重と地震力との 相合せに対する許容限界 として、柏崎刈羽6号及 び7号炉では、終局*2 とする。	SA事故時 - - - ※局 ^{*2} SA荷重と地震力との組合せに対する許容限界として、島 して、東海第二発電所で は、終局 ^{*2} とする。 SA事故時 - - A SA荷重と地震力との組合せに対する許容限界として、島 根2号炉では、終局 ^{*2} とする。	
 ※1:許容応力度:安全上適切と認められる規格及び基準による。 容応力度 ※2:終局:構造物全体として十分変形能力(ねばり)の全裕を 	 ※1:許容応力度:安全上適切と認められる規格及び基準による 許容応力度 ※1:許容応力度:安全上適切と認められる規格及び基準による 許容応力度 ※2:終局:構造物全体として十分変形能力(わばり)の全裕を ※2:終局:構造物全体として十分変形能力(わばり)の全裕を 	
し、終局耐力に対して安全余裕を持たせていること	有し,終局耐力に対して <u></u> 安全余裕を持たせている こと	
添付資料-4 補足資料-2に、 <u>Ssによる</u> 地震力と組み合わせる利 重を <u></u> ,施設ごとに示す。 使用済燃料プールを除く施設は、DB事故時(長期)の荷重は、 結果的に運転時と同じとなり、表2における「DB事故時(長期)・ Sd」は地震力が大きい「運転時+Ss」に包絡されることになる。 使用済み燃料プールについては、「SA事故時+Ss」の条件をDB設置 条件で包絡出来ないことから、「SA事故時+Ss」の組合せを実施す ることとする。 以上より、建物・構築物は、PCV、RPV以外の機器・配管系と同様に扱うことが可能であり、全般施設に分類することができる。	添付4 補足資料-2に、Ssによる地震力と組み合わせる荷電 を 	 ・荷重条件の相違 【柏崎 6/7】 柏崎 6/7 の使用済燃 料プールはRCCVと 一体構造であり,島根2 号炉の燃料プールと荷 重条件が異なる ・同上

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			東	海第二発電	所(2018. 9. 18版)		備考		
		添付資料—4 補足資料-1			添付4補足資料-1			添付4 補足資料-1	
<u>SA施設(建物・</u> 構	集築物)のSAB	寺の条件を踏まえた分類	<u>SA施設(建物</u>	か・構築物)	のSA時の条件を踏まえた分類	SA施設(建物	・構築物)	のSA時の条件を踏まえた分類	・施設構成の相違
SA 施設 (建物・構築物)	5.2.1 継続時間	分類の根拠	SA施設 (建物・構築物)	荷重状態* の分類	分類の根拠	C ∧ 抗定利	古手中能		【柏崎 6/7, 東海第二】 鳥根2は柏崎 6/7 及
復水貯蔵槽	設定の分類**	DB 設計では,常時作用している荷重 (固定荷重,積載荷重,水圧)及び運 転時の温度荷重を考慮している。SA 時においても,荷重条件は変わらない ため,DB 条件を上回る荷重はない。 DB 設計では,常時作用している荷	使用済燃料プール	a (b)	DB設計では、常時作用している荷重(固定荷 重,積載荷重,水圧)及び運転時においては通 常時荷重(圧力,温度荷重,機器・配管系から 作用する荷重),異常時荷重(圧力,温度荷 重,機器・配管系から作用する荷重)を考慮し ている。SA時にはDB条件とは異なる異常時	(建物・構築物) (燃料 プール	何重八感 の分類 [※] a(b)	分類の根拠 DB設計では、常時作用している荷重(固 定荷重、積載荷重、水圧)及び運転時にお いては通常時荷重(温度荷重)、異常時荷重 (温度荷重)を考慮している。SA時には、	び東海第二と施設構成が異なる
使用済燃料プール	a(b)	重(固定荷重,積載荷重,木圧),通 常時においては運転時荷重(圧力,温 度荷重,機器・配管系から作用する荷 重),異常時荷重(圧力,温度荷重,機 器・配管系から作用する荷重)を考慮 している。SA時には,DB条件とは	緊急用海水ポンプピッ ト SA用海水ピット取水 塔 海水引込み管 SA用海水ピット	с	国立がFF用する。 緊急用海水ポンプピット,SA用海水ピット取 水塔,海水引込み管及びSA用海水ピットにつ いてはDB施設ではない	低圧原子炉代替注 水槽 原子炉建物原子炉	c	 DB条件とは異なる異常時荷重(温度荷重) が作用する。 低圧原子炉代替注水槽については、DB施 設ではない。 DB設計では、常時作用している荷重(固) 	
原子炉建屋原子炉区域 中央制御室遮蔽	b	異なる異常時何重か作用する。 DB 設計では、常時作用している荷 重(固定荷重,積載荷重)を考慮し ている。SA 時においても、荷重条 件は変わらないため、DB 条件を上 回る遺重けない	貯留堰 取水路	b	DB設計では、地盤内に埋設されている構造物 として、常時作用している荷重(固定荷重、積 載荷重、土圧、水圧)を考慮している。SA時 においても、地盤内でDB条件を上回るような 事象は発生しないため、DB条件を上回る荷重	棟 中央制御室遮蔽	b	定荷重,積載荷重)を考慮している。SA 時においても,荷重条件は変わらないため, DB条件を上回る荷重はない。	
中央制御室待避室遮蔽 フィルタベント遮蔽壁 5 号炉原子炉建屋内緊急時 対策所(対策本部)遮蔽 5 号炉原子炉建屋内緊急時	с	中央制御室待避室遮蔽,フィルタ ベント遮蔽壁,5号炉原子炉建屋内 緊急時対策所(対策本部)遮蔽,5 号炉原子炉建屋内緊急時対策所(待 機場所)遮蔽についてはDB 施設で	フィルタ装置遮蔽 二次隔離弁操作室遮蔽 中央制御室遮蔽	c b	はない。 フィルタ装置遮蔽及び二次隔離弁操作室遮蔽に ついてはDB施設ではない。 DB設計では,常時作用している荷重(固定荷 重,積載荷重)を考慮している。SA時におい ても、荷重条件は変わらないため、DB条件を	緊急時対策所遮蔽	с	緊急時対策所遮蔽については, DB施設で はない。 DB設計では, 地盤内に埋設されている構 造物として, 常時作用している荷重(固定	
海水貯留堰 スクリーン室 取水路 補機冷却用海水取水路	b	DB 設計では、地盤内に埋設され ている構造物として、常時作用して いる荷重(固定荷重,積載荷重,土 圧,水圧)を考慮している。SA 時 においても、地盤内で、DB 条件を 上回るような事象は発生しないた め DB 条件を上回る差重はない	中央制御室退避室遮蔽 緊急時対策所遮蔽 代替淡水貯槽	c	上回る荷重はない。 中央制御室退避室遮蔽,緊急時対策所遮蔽及び 代替淡水貯槽についてはDB施設ではない	取水管 取水口 非常用ガス処理系 田排気筒	b	荷重,積載荷重,土圧,水圧)を考慮して いる。SA時においても,地盤内でDB条 件を上回るような事象は発生しないため, DB条件を上回る荷重はない。 DB設計では,常時作用している荷重(固 定荷重)を考慮している。SA時において も、荷重条件は変わらないため、DB条件	
補機冷却用海水取水槽	b	(b), DB 第中で生」回る何重はない。 DB 設計では,常時作用している 荷重(固定荷重,積載荷重,水圧) を考慮している。SA時において も,荷重条件は変わらないため,DB 条件を上回る荷重はない。				緊急時対策所用燃 料地下タンク	с	を上回る荷重はない。 緊急時対策所用燃料地下タンクについては、DB施設ではない。	
主排気筒(内筒)	a(b)	DB 設計では、常時作用している 荷重(固定荷重)を考慮している。 SA 時においては、SA 時温度荷重を 考慮するため、DB 条件を上回る荷 重が作用する。							
※ 5.2.1項 継続時間該	定の分類		※荷重状態の分類			 ※ 荷重状態の分類			
<u>a.</u> SA条件がDB条件を超える既設施設			a. SA条件がDB	条件を超える	る施設	<u>a</u> :SA条件がDB	条件を超え	える既設施設	
(a) 新設のSA施設の運転によって,DB条件を超える既設施設			(a) 新設のSA施設	との運転によ	って, DB条件を超える施設	(a)新設のSA施設の運転によって、DB条件を超える既設施設			
(b) SAによる荷重・温度の影響によってDB条件を超える既設施設			(b) SAによる荷重	重・温度条件の	の影響によってDB条件を超える施設	(b) SAによる荷重施設	・温度の	影響によってDB条件を超える既設	
 b:SA条件がDB条件に包絡される既設施設 c:DB施設を兼ねないSA施設 			b. SA条件がDB条件に包絡される施設 c. DB施設を兼ねないSA施設			<u>b</u> .: SA条件がDB c.: DB施設を兼ね;	条件に包約 ないSA萠	各される <u>既設</u> 施設 施設	

柏崎刈羽	原子力発電所	6/7長	号炉 (2017.1	12.20版)		東海第二	二発電所(201	8.9.18版)				島根原子力発電	፪所 2号;	
			添付資料-	_4 補足資料-2				添付4	補足資料-2					
建物・構築	物においてSs	による地震	虞力と組み合 れ	っせる荷重は補	즃	建物・構築物において	C <u>Ssによる</u> 地	地震力と組み合	わせる荷重は	建物	か・構築物にま	ふいて地震力と;	組み合わせ	
足表2-1のとお	おりとなる。				補短	足表 2-1 のとおりと	なる。			のとま	おりとなる。			
	SA描訳 (建版	• 構筑版)	において##国	ミカレ幻ひ合わ		捕兄主 9_1 S∧ 広⇒	1. (建物,楼袋	(物) において	地震力レ幻び	壮	兄事 9_1 ♀ 4	、協 <u>职</u> (建版,考	ま筑版)にた	
<u> </u>	SA旭政(建初	• 悟案初)	にわくて地方	シリン胆のロシ	1	佣化衣 Z-1 SA 胞前	又(建物・博衆		地辰月と祖の	<u>1111</u>	EAZ [−] I SP	加成(建物・神	早発初月にお	
	せ	る荷重(1/	/2)			合わせる荷重					わせる荷重			
		運転時	DB 事故 (長期)	SA 事故時			運転時	D B 事故 (長期)	SA事故時			運転時	DB事故 (巨期)	
組み合わせる地震	ђ	\mathbf{Ss}	Sd	\mathbf{Ss}	組	み合わせる地震力	S _s	S _d	S s	<u>糸日 2</u>	今わせる地震力	S c	(民州) S d	
許容限界		終局	終局	終局	計	·谷限界 使用溶燃料プール	終 局 下 荷 重	終 局 下 荷 重	 固定荷重	社の	マ限界			
	1	固定荷重 潰載荷重	固定荷重 積載荷重	固定荷重 積載荷重			積載荷重 水圧 通常陸運転荷重	積載荷重 水圧 DB長期荷重	積載荷重 水圧 SA時荷重	FI T		固定荷重	固定荷	
復水貯蔵槽	运 省	水圧	水圧 DR 長期温度費重	水圧		緊急用海水ポンプピット	固定荷重 積載荷重	固定荷重 積載荷重	固定荷重 積載荷重		燃料プール	積載何 里 水圧	植戰何. 水圧	
	進花	时偏度何里	DB 长期温度何里	SA 时偏度何里			土圧・水圧	土圧・水圧	土圧・水圧			通常時温度荷重	DB長期温	
使用済燃料に	プール	回正何里 濱載荷重	回 定 何 里 積 載 荷 重	回 正何 里 積載荷重		SA用海水ピット取水塔	固定荷重 積載荷重 土圧・水圧	固定荷重 積載荷重 土圧・水圧	固定荷重 積載荷重 土圧・水圧		低圧原子炉代	固定荷重 積載荷重	固定荷 積載荷	

替注水槽

 S
 原子炉建物原

 施
 子炉棟

中央制御室遮

非常用ガス処

緊急時対策所

用燃料地下タ

理系用排気筒

 (建)
 中央制御室遮

 蔽

取水管

取水口

ンク

土圧・水圧

固定荷重

積載荷重

固定荷重

積載荷重

固定荷重

積載荷重

土圧・水圧

固定荷重

固定荷重

積載荷重

土圧

使用済燃料プール 水圧 水圧 水圧 運転時荷重 DB 長期荷重 SA 時荷重 固定荷重 固定荷重 原子炉建屋原子炉区域 固定荷重 中央制御室遮蔽 積載荷重 積載荷重 積載荷重 固定荷重 固定荷重 固定荷重

積載荷重

固定荷重

積載荷重

固定荷重

積載荷重

積載荷重

固定荷重

積載荷重

SA 時温度荷重

固定荷重

積載荷重

積載荷重

固定荷重

積載荷重

固定荷重

積載荷重

S

A施設(建物・構築物)

蔽

蔽

中央制御室待避室遮蔽

フィルタベント遮蔽壁

5 号炉原子炉建屋内緊急

時対策所(対策本部)遮

5 号炉原子炉建屋内緊急

時対策所 (待機場所) 遮

		合わせる荷	重	
		運転時	D B 事故 (長期)	SA事故時
組み	合わせる地震力	S s	S _d	S _s
許容	限界	終局	終局	終局
	使用済燃料プール	固定荷重 積載荷重 水圧 通常時運転費重	固定荷重 積載荷重 水圧 D.P.E.期芸重	固定荷重 積載荷重 水圧
	緊急用海水ポンプピット	固定荷重 積載荷重 土圧・水圧	<u>固定荷重</u> 積載荷重 土圧・水圧	固定荷重 積載荷重 土圧・水圧
	SA用海水ピット取水塔	固定荷重 積載荷重 土圧・水圧	固定荷重 積載荷重 土圧・水圧	固定荷重 積載荷重 土圧・水圧
0	海水引込み管	固定荷重 積載荷重 土圧・水圧	固定荷重 積載荷重 土圧・水圧	固定荷重 積載荷重 土圧・水圧
S A 施設	SA用海水ピット	固定荷重 積載荷重 土圧・水圧	固定荷重 積載荷重 土圧・水圧	固定荷重 積載荷重 土圧・水圧
(建物 ・	貯留堰	固定荷重 積載荷重 水圧	固定荷重 積載荷重 水圧	固定荷重 積載荷重 水圧
構築物)	取水路	固定荷重 積載荷重 土圧・水圧	固定荷重 積載荷重 土圧・水圧	固定荷重 積載荷重 土圧・水圧
	フィルタ装置遮蔽	固定荷重 積載荷重	固定荷重 積載荷重	固定荷重 積載荷重
	二次隔離弁操作室遮蔽	固定荷重 積載荷重	固定荷重 積載荷重	固定荷重 積載荷重
	中央制御室遮蔽	固定荷重 積載荷重	固定荷重 積載荷重	固定荷重 積載荷重
	中央制御室退避室遮蔽	固定荷重 積載荷重	固定荷重 積載荷重	固定荷重 積載荷重
	緊急時対策所遮蔽	固定荷重 積載荷重	固定荷重 積載荷重	固定荷重 積載荷重
	11、晉淡水貯槽	 固定何重 積載荷重 土圧・水圧 	固正 何 重 積載 荷 重 土 圧 ・ 水 圧	 固定何重 積載荷重 土圧・水圧

2 号炉		備考
添付。	4 補足資料-2	
「おわせる何」	■に佣足表 2-1	
物)においても	相害力レ組ひ入	・
1/1/1/401/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/		
		【柏崎 6/7,東海第二】
DP東掛時		島根2は柏崎 6/7 及
DDサ0吋 (長期)	SA事故時	び東海第二と施設構成
S d	S s	
	終局	が異なる
固定荷重	固定荷重	
固定向重 積載荷重	固之 向 重 積載 荷 臿	
水圧	水圧	
B長期温度荷重	SA時温度荷重	
固定荷重	固定荷重	
積載荷重	積載荷重	
土圧・水圧	土圧・水圧	
固定荷重	固定荷重	
積載荷重	積載荷重	
固定荷重	固定荷重	
積載荷重	積載荷重	
固定荷重	固定荷重	
積載荷重	積載荷重	
土圧・水圧	土圧・水圧	
固定荷重	固定荷重	
固定荷重	固定荷重	
積載荷重	積載荷重	
土圧	土圧	

柏崎刈羽原子力発	電所 6/7号	号炉 (2017	. 12. 20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
補足表2-1 SA施設(建物・構築物)において地震力と組み合わせ			力と組み合わせ			
	る荷重(2/	(2)				
	1		1			
	運転時	DB 事故 (長期)	SA 事故時			
組み合わせる地震力	Ss	Sd	Ss			
許容限界	終局	終局	終局			
捕縦や却田流水雨水捕	固定荷重	固定荷重	固定荷重			
	水圧	水圧	水圧			
□ 22 22 23 24 24 24 25 25 25 25 25 25 25 25 25 25	固定荷重	固定荷重	固定荷重			
			SA 時温度荷重			
構 本	固定荷重	固定荷重	固定荷重			
物 取水路	積載荷重	積載荷重	積載荷重			
補機冷却用海水取水路						
	勅己士の招い					
JEAG4601-1987 C/L,	熱応力の扱い	として、終点	」次態では「熱心	JEAG4601-1987 では、熱応力の扱いとして、終局状態では「熱	JEAG4601-1987 では、熱心力の扱いとして、終向状態	
力は考慮しない」と記	!載されており,	原子炉格納	容器底部でない	応力は考慮しない」と記載されており, 原子炉格納容器底部でな	では「熱応力は考慮しない」と記載されており, 原子炉格納容器	
基礎マットや使用済燃	料プールの解	析例において	も, 地震時荷重	い基礎マットや使用済燃料プールの解析例においても、地震時荷	底部でない基礎マットや燃料プールの解析例においても、地震時	
と温度荷重は組み合わ	されていない	(参考資料〔	参考5〕参照)。	重と温度荷重は組み合わされていない(参考資料〔参考5〕参照)。	荷重と温度荷重は組み合わされていない(参考資料[参考5]参照)。	
これを踏まえ, 補足表	2-1から温度荷	重を消去する	と <u>使用済燃料プ</u>	これを踏まえ、補足表 2-1 から温度荷重を消去すると全ての荷重	これを踏まえ、補足表 2-1 から温度荷重を消去すると全ての荷重	・荷重条件の相違
ールを除いた全ての荷	重組合せケーン	スにおいて、	地震力と組み合	 組合せケースにおいて、地震力と組み合わせる荷重は常時作用し	組合せケースにおいて、地震力と組み合わせる荷重は常時作用し	【柏崎 6/7】
わせる荷重け堂時作用	「している荷香	(固定荷重 利	時載荷香 十下	ている荷重(固定荷重 積載荷重 十圧 水圧)のみとたろため	ている荷重(固定荷重)積載荷重 十圧 水圧)のみとたろため	柏崎 6/7 の使用落燃
シビジ肉重は市内作用		(固た同里,イ		しいまでは生、食気肉生、上上、水上、シットになったの。		11時の1つ尺川内が
水圧)のみとなるため)、DD争议时(3) は運転时 (55			
との組合せ)に包絡さ	れ,SA事故時	は運転時と同	ーとなる。	絡され、SA事故時は運転時と同一となる。	れ, SA事故時は運転時と同一となる。	一体構造であり, 島根2
						号炉の燃料プールと荷
						重条件が異なる
一方, 使用済燃料ブ	ールについてに	t, DB 設計条	件とは異なる異			・同上
常時荷重を考慮する必	、要があり,DB	条件では包絡	できない荷重条			
件となるため、SA事故	時(Ssとの組合	今せ) によろ材	金討を実施する。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	添付資料-5	添付資料 5	
<u>添付資料-5.</u> 対象設備,事故シーケンス,荷重条件の網羅性につ	対象設備,事故シーケンス,荷重条件の網羅性	対象設備,事故シーケンス,荷重条件の網羅性について	
いて			
SA荷重の組合せの検討においては、全ての対象設備、事故シ	SA荷重の組合せの検討においては、全ての対象設備、事故シ	SA荷重の組合せの検討においては、全ての対象設備、事故シ	
ーケンス、荷重条件等を網羅的に検討している。以下では、それ	ーケンス,荷重条件等を網羅的に検討している。以下では,それ	ーケンス、荷重条件等を網羅的に検討している。以下では、それ	
ぞれについて、その考え方を説明する。	ぞれについて、その考え方を説明する。	ぞれについて、その考え方を説明する。	
今回のSA倚重の組合せの検討においては, 常設耐震重要重大	今回のSA荷車の組合せの検討においては, 常設耐震車要重大	今回のSA荷重の組合せの検討においては、常設耐震重要重大	
事故防止設備、常設重大事故緩和設備を対象とし、全ての対象施	事故防止設備、常設重大事故緩和設備を対象とし、全ての対象施	事故防止設備、常設重大事故緩和設備を対象とし、全ての対象施	
設を全般施設、原子炉格納谷器パワンタリを構成する設備(以下	設を全般施設、格納容器パワンタリを構成する設備(以下「PC	設を全般施設,原子炉格納容器パワンタリを構成する設備(以下	
「PCVパワンダリ」という。),原子炉冷却材圧刀パワンダリを	Vパワンダリ」という。)、原子炉冷却材圧刀パワンダリを構成す ス部件(NTT「PPPT」という。)、原子炉冷却材圧刀パワンダリを構成す	「PCVパワンダリ」という。),原子炉冷却材圧刀パワンダリを	
構成する設備(以下「RPVハワンダリ」という。)のいすれかに	る設備(以下「RPVハワンタリ」という。)のいすれかに分類し	構成する設備(以下「RPVハワンダリ」という。)のいすれかに	
分類している。		分類している。	
	設置許可基準規劃 施設の扱い DS施設における 設置許可基準規則 近点4601(123ける) 今回の意味 第39条 日 設置許可基準規則 放置許可基準規則 近点460(123ける) 空間の意味 常設の確認 日 日 設備市 単同の意味 ごたがらの類 機器・配筆系の設備分類 における分類 常設の用いては 正 日 設備では 金融25.51/5 (15.51/5		
常設置大事故 振動設備 まA確認 ・ ・ と記記(外の ・ よA確認 ・ ・ ・ 設置計可基準 ・ 焼動設備 ・ ・ ・ 読り 読り条 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	常設重大事故 緩和設備 ● SA設備 ● SA設備 ・ 第5条 ・ 第5条 ・ 第5条 ・ 第5条 ・ 一 ・ 二 記 の ・ の の ・ の の の ・ の の の ・ の ・ の の ・ の ・ の ・ の ・ の ・ の ・ の ・ の の の の の の の の の の の の の	記念派大事故	
		272MC82 (PCV/0297)	
(CRV7277) →(CRV707) →(CRV707) →(CRV707) (CRV707)		 クラス123個 クラス123個 (R PVバウンダブ) 	
(2) 事故シーケンス	(2) 事故シーケンス	(2) 事故シーケンス	
重大事故等対策の有効性を評価する事故シーケンスグループ等	重大事故等対策の有効性を評価する事故シーケンスグループ等		
は、本発電用原子炉施設を対象としたPRAの結果を踏まえて.	は、東海第二発電所を対象としたPRAの結果を踏まえて、以下	は、本発電用原子炉施設を対象としたPRAの結果を踏まえて、	
以下のとおり選定されている。ここには「運転中の原子炉におけ	のとおり選定されている。ここには「運転中の原子炉における重	以下のとおり選定されている。ここには「運転中の原子炉におけ	
る重大事故に至るおそれがある事故」及び「運転中の原子炉にお	大事故に至るおそれがある事故」及び「運転停止中の原子炉にお	る重大事故に至るおそれがある事故」及び「運転中の原子炉にお	
ける重大事故」、並びに「運転停止中の原子炉における重大事故に	ける重大事故に至るおそれがある事故」を挙げており、考慮すべ	ける重大事故」、並びに「運転停止中の原子炉における重大事故に	
至るおそれがある事故」を挙げており、考慮すべき全ての事故シ	き全ての事故シーケンスグループ等を挙げている。	至るおそれがある事故」を挙げており、考慮すべき全ての事故シ	
ーケンスグループ等を挙げている。		ーケンスグループ等を挙げている。	
継続時間の検討に当たっては以下の全ての事故シーケンスグル	継続時間の検討に当たっては以下の全ての事故シーケンスグル	継続時間の検討に当たっては以下の全ての事故シーケンスグル	
ープ等から、DB条件を超える事故シーケンスグループ等を抽出	ープ等から, DB条件を超える事故シーケンスグループ等を抽出	ープ等から、DB条件を超える事故シーケンスグループ等を抽出	
し、その条件を超える時間を継続時間として設定している。	し、その条件を超える時間を継続時間として設定している。	し、その条件を超える時間を継続時間として設定している。	
また、地震と組み合わせるSA荷重としては、全ての事故シー	また、地震と組み合わせるSA荷重としては、全ての事故シー	また、地震と組み合わせるSA荷重としては、全ての事故シー	
ケンスグループ等における条件を包絡するよう設定している。	ケンスグループ等における条件を包絡するよう設定している。	ケンスグループ等における条件を包絡するよう設定している。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
■ ホシートンフガループ学	事故シーケンスグループ等	事故シーケンスグループ等	・事故シーケンスグルー
************************************	「運転中の原子炉における重大事故に至るおそれがある事故」に係る事故シーケンス グループ	「運転中の原子炉における重大事故に至るおそれがある事故」に係る事故シーケン	プ等の名称の相違(実
高圧・低圧注水機能喪失	高圧・低圧注水機能喪失	スクループ	(広告た) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
高圧注水・滷圧燃能車生	高圧注水・減圧機能喪失	同圧・以圧化小阪化改大 真圧注水・減圧爆能車牛	員的な相選なし
	全交流電源喪失	全交流動力雷源喪失	【柏崎 6/7,東海第二】
主义処別力电原交入	全交流動力電源喪失(長期TB)	全交流動力電源喪失(外部電源喪失+DG失敗)+HPCS失敗	
	全父流動力電源喪失(TBD, TBU) 会な読動力電源重生(TPP)	全交流動力電源喪失(外部電源喪失+DG失敗)+高圧炉心冷却失敗	
全交流動力電源喪失(外部電源喪失+DG 喪失) + RCLC 失敗	主交, 加切力电源; (TDF) 崩壊執除夫機能喪失	全交流動力電源喪失(外部電源喪失+DG失敗)+直流電源喪失	
全交流動力電源喪失(外部電源喪失+DG喪失)+直流電源喪失	取水機能が喪失した場合	全交流動力電源喪失(外部電源喪失+DG失敗)+SRV再閉失敗	
全交流動力電源喪失(外部電源喪失+DG 喪失) +SRV 再閉失敗	残留熱除去系が故障した場合	+HPCS失敗	
崩壞熱除去機能喪失	原子炉停止機能喪失	崩壞熱除去機能喪失	
取水機能が喪失した場合	LOCA時注水機能喪失	取水機能が喪失した場合	
残留熱除去系が故障した場合	格納容器バイパス(インターフェイスシステムLOCA)	残留熱除去糸が故障した場合	
原子炉停止機能喪失	 	県十炉停止機能喪失 L OCA時決水機能調告	
LOCA時注水機能喪失	「運転中の原丁がにおける重入争取に主るおてれかめる争取」に体る俗和谷益取損で ード	LOCA時往小陵能設大 故姉宏聖バイパス (インターフェイスシステムLOCA)	
格納容器バイパス(インターフェイスシステムLOCA)	雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	福和谷益ハイハス(インターノエイスシスノムLOCA) 「運転中の原子恒における重大事故」に係るな納容哭破損チード	
「運転中の原子炉における重大事故」に係る格納容器破損モード	代替循環冷却系を使用する場合	「定載すびがすがにおける重大事故」にからお前着部級人です。 索囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	
空田 デージャー・パー・デー・デー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー	代替循環冷却系を使用できない場合	残留熱代替除去系を使用する場合	
が回入したが 画文による 新田子英国 (山市社会社の憲正) 通通地区区	高圧溶融物放出/格納容器雰囲気直接加熱	残留熱代替除去系を使用しない場合	
1、官用朱田冲示を使用) シックロー	原子炉圧力容器外の溶融燃料ー冷却材相互作用	高圧溶融物放出/格納容器雰囲気直接加熱	
代替旗策行功素を使用しない場合		原子炉圧力容器外の溶融燃料ー冷却材相互作用	
高比溶融物放出/格納容器雰囲気直接加熱	水素燃焼	水素燃焼	
原子炉圧力容器外の溶融燃料ー冷却材相互作用	谷融炉心・コンクリート相互作用	溶融炉心・コンクリート相互作用	
水素燃焼	「運転停止下の床」がにおける重入手取に主なおてれためる手取」に床る手取シーク ンスグループ	「運転停止中の原子炉における重大事故に至るおそれがある事故」に係る事故シー	
溶融炉心・コンクリート相互作用	崩壞熱除去機能喪失	ケンスグループ	
	全交流動力電源喪失	朋联系际去陵能喪失	
「運転停止中の原子炉における重大事故に至るおそれがある事故」に係る事故シーケンスグループ	原子炉冷却材の流出	主义派動力电泳表入 厚子炉冷却材の流出	
崩壞熱除去機能喪失	反応度の誤投入	反応度の誤投入	
全交流動力電源喪失			
原子炉冷却材の流出			
反応度の誤投入			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(3) 設計条件	(3) 設計条件	(3) 設計条件	
耐震評価における考慮すべき荷重条件と組合せはJEAG4601・補	耐震評価における考慮すべき荷重条件と組合せは JEAG4601・補	耐震評価における考慮すべき荷重条件と組合せは J E A G 4 6	
-1984より、下表のとおり整理されており、地震荷重以外では、以	-1984 より、下表のとおり整理されており、地震荷重以外では、	01・補-1984 より、下表のとおり整理されており、地震荷重以	
下の荷重を考慮することとされている。	以下の荷重を考慮することとされている。	外では、以下の荷重を考慮することとされている。	
・自重(D)	・自重 (D)	・自重(D)	
・圧力による荷重(P)	・圧力による荷重(P)	・圧力による荷重(P)	
・機械的荷重(自重,地震による荷重を除く。)(M)	・機械的荷重(自重,地震による荷重を除く。)(M)	・機械的荷重(自重, 地震による荷重を除く。)(M)	
SA施設における上記の荷重と地震荷重の組合せを、下表のと	SA施設における上記の荷重と地震荷重の組合せを、下表のと	SA施設における上記の荷重と地震荷重の組合せを、下表のと	
おり整理する。DB施設で考慮する荷重(自重,圧力による荷重,	おり整理する。DB施設で考慮する荷重(自重,圧力による荷重,	おり整理する。DB施設で考慮する荷重(自重,圧力による荷重,	
機械的荷重)は全て考慮している。	機械的荷重)は全て考慮している。	機械的荷重)は全て考慮している。	
施設分類 RPV PCV Antern	施設分類 RPV PCV	施設分類 RPV PCV Automatic	
パウンダリ 全戦施設 (SA) 重大事放箋クラス2設備 炉心支持	バウング*リ 主叙地記 炉心 (SA) 重大事故等クラス2設備 支持構	(SA) パウンゲリ 全取施設 (DR) 重大車が等クラス2段価 炉心支持	
(DB) クラス クラス クラス クラス その他	DB) クラス クラス クラス クラス クラス グラス グラス </td <td>オフラス クラス クラス クラス クラス その他 構造物</td> <td></td>	オフラス クラス クラス クラス クラス その他 構造物	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D B 荷重 D+P+M+S _d Ⅲ _h S Ⅲ _h S — — — — — — Ⅲ _k S Ⅲ _h S Ⅲ _h S	何重の組合せ 1 設備 MC設備 2 設備 3 設備 4 配管 D+P+M+S d ⅢAS 一 - - - - ⅢAS	
D B 荷重 D + P _D + M _D + S d - - III AS III AS III AS -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c } \hline D \\ \hline H \\ \hline \hline H \\ \hline \hline H \hline \hline H \\ \hline \hline H \\ \hline \hline H \hline \hline H$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c }\hline D + P_0 + M_0 + S & s & - & - & IV_{AS} & IV_{AS} & - & IV_{AS} & - & \\\hline D + P_{max} + M + S & d & V_{AS}^{\#_2} & - & - & - & - & - & - & - & - & - & $	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c} S \\ \hline D + P_{BARL} + M + S & V_A S^{\# 2} \\ \hline \end{array} \begin{array}{c} - & - & - \\ - & - & - \\ \hline \end{array} $	
$SA \tilde{\pi} \pm \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$0 aldet \qquad \qquad$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
※1・DB施設を兼ねるSA施設について考慮する。	※1 DB施設を善わるSA施設についても考慮する	※1.0B施設を兼ねるSA施設について考慮する。	
	※1 $D D R R C R R S O H R R C C C O R F S $	※2:V.S の許容限界は、 $W.S$ と同じものを適用する。	
	*3 PCVについてけ 2×10^{-1} 年以降の状能 RPVについ		
	Tけ 10^{-2} 年以降の世能け S を組み合わせて 許宏広		
	大い。10 十次件の小版は、 $S_S > 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$		
	Land and the second secon		
【記号の説明】	【記号の説明】	【記号の説明】	
D・自重 (IEAG4601・補−1984では「死荷重」と記載)	D · 自重 (IEAG4601・補-1984 では「死荷重」と記載)	D·自重(IEAG4601・補一1984 では「死荷重」と記載)	
P・地震と組み合わすべき圧力荷重 マは最高使用圧力等	P ・ 地震と組み合わせるべき圧力荷重 マは最高使用圧力等	P・地震と組み合わせるべき圧力荷重 マけ最高使用圧力等	
M・ 地震 自 街 以外で 地震と 組み合わせるべき 継ば 的 荷香 ▽け設	M ・ 地震	M・ 地震 自 重 以外で 地震 シ 組 み 合 わ せ ろ べき 継 横 的 荷 重 マ け	
	24. ・2010年、江原王が江て250日で2日42日30、61城10月里、入は 設計機械荷重等		
P・IOCA 直径を除いてその後に生じる国力 帯 P・IOCA 直径を除いてその後に生じる国力 帯	 	 	
IL. LOCA直接を除いてその後に上じる圧力伸重 M. IOCA直後を除いてその後に上じる白舌及が地電共手には	I_L · LOCA 国家を除いてこの後に工しる上川何里 M · LOCA 古後を除いてその後に生じる正川何里	1	
	ML LOCA 直後を体いてての後に生しる <u>死刑</u> 黒及の地震何里	NIL. LOCA 直後を除いてての後に生しる <u>日</u> 里及の地展何里以外	
の機械的何里	以外の機械何里	の機械則何里	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
P. : 地震と組み合わすべきプラントの運転状態 I 及び II (運転状	P _D :地震と組み合わすべきプラントの運転状態 I 及びⅡ(運転	P _D : 地震と組み合わすべきプラントの運転状態 I 及び II (運転状	
態Ⅲがある場合にはこれを含む),又は当該設備に設計上定め	状態Ⅲがある場合にはこれを含む),又は当該設備に設計上	態Ⅲがある場合にはこれを含む),又は当該設備に設計上定め	
られた最高使用圧力による荷重	定められた最高使用圧力による荷重	られた最高使用圧力による荷重	
M _D : 地震と組み合わすべきプラントの運転状態Ⅰ及びⅡ(運転状	M _D :地震と組み合わすべきプラントの運転状態Ⅰ及びⅡ(運転	M _D : 地震と組み合わすべきプラントの運転状態 I 及びⅡ(運転状	
態Ⅲがある場合にはこれを含む)又は当該設備に設計上定め	状態Ⅲがある場合にはこれを含む),又は当該設備に設計上	態Ⅲがある場合にはこれを含む),…又は当該設備に設計上定	
られた機械的荷重	定められた機械的荷重	められた機械的荷重	
P _{PSA} :原子炉格納容器の重大事故発生後の最大圧力荷重		P. _{PSA} :原子炉格納容器の重大事故発生後の最大圧力荷重	
	P _{PSA(L)} :格納容器の重大事故における長期的(長期(L))な圧力荷重		
P _{PSA(LL)} :原子炉格納容器の重大事故における長期的な(長期(L	P _{PSA(LL)} : 格納容器の重大事故における長期的(長期(LL)) な圧力荷	P _{PSA(LL)} :原子炉格納容器の重大事故における長期的な(長期(LL))	
L))圧力荷重	重	圧力荷重	
P _{RSA(L)} :原子炉冷却材圧力バウンダリの重大事故における長期	P _{RSA(L)} :原子炉冷却材圧力バウンダリの重大事故における長期的	P _{RSA(L)} :原子炉冷却材圧力バウンダリの重大事故における長期的	
的な(長期(L)) 圧力荷重	(長期(L)) <u>な</u> 圧力荷重	<u>な</u> (長期(L)) 圧力荷重	
P _{RSA(LL)} :原子炉冷却材圧力バウンダリの重大事故における長期	P _{RSA(LL)} :原子炉冷却材圧力バウンダリの重大事故における長期的	P _{RSA(LL)} :原子炉冷却材圧力バウンダリの重大事故における長期的	
的な(長期(LL))圧力荷重	(長期(LL))な圧力荷重	<u>な</u> (長期(LL)) 圧力荷重	
P _{sA} :重大事故における運転状態を考慮して設定した設計圧力に	P _{SA} : 重大事故における運転状態を考慮して設定した設計圧力に	P _{Sa} :重大事故における運転状態を考慮して設定した設計圧力によ	
よる荷重	よる荷重	る荷重	
Sd:弾性設計用地震動Sdにより定まる地震力,又は静的地震	Sd :弾性設計用地震動Sdにより定まる地震力又は静的地震力	Sd:弾性設計用地震動Sdにより定まる地震力,…又は静的地震	
力		力	
Ss:基準地震動Ssにより定まる地震力	Ss:基準地震動Ssにより定まる地震力	Ss:基準地震動Ssにより定まる地震力	
IV _A S:JSME S NC1の供用状態D相当の許容応力を基準として、それ	$IV_{A}S$: JSME S NC1 の供用状態D相当の許容応力を基準として,	IV₄S:JSME S NC1 の供用状態D相当の許容応力を基準として,そ	
に地震により生じる応力に対する特別な応力制限を加えた	それに地震により生じる応力に対する特別な応力制限を加	れに地震により生じる応力に対する特別な応力制限を加え	
許容応力状態	えた許容応力状態	た許容応力状態	
V _A S:運転状態V相当の応力評価を行う許容応力を基本として,	V _A S :運転状態V相当の応力評価を行う許容応力を基本として,	V _A S:運転状態V相当の応力評価を行う許容応力を基本として,	
それに地震により生じる応力に対する特別な応力制限を加	それに地震により生じる応力に対する特別な応力制限を加	それに地震により生じる応力に対する特別な応力制限を加	
えた許容応力状態	えた許容応力状態	えた許容応力状態	
【JEAG4601・補-1984における記載からの読み替え】	【JEAG4601・補-1984 における記載からの読み替え】	【JEAG4601・補-1984 における記載からの読み替え】	
耐震クラスAs,	耐震クラスAs, ⇒耐震クラスS	耐震クラスAs ⇒耐震クラスS	
第1種 ⇒クラス1	第1種 ⇒クラス1	第1種 ⇒クラス1	
第2種 ⇒クラスMC	第2種 ⇒クラスMC	第2種 ⇒クラスMC	
第3種 ⇒クラス2	第3種 ⇒クラス2	第3種 ⇒クラス2	
第4種 ⇒クラス3	第4種 ⇒クラス3	第4種 ⇒クラス3	
第5種 ⇒クラス4	第5種 ⇒クラス4	第5種 ⇒クラス4	
$S_1 \Rightarrow S d$	$S_1 \Rightarrow S d$	$S_1 \Rightarrow S d$	
$S_2 \Rightarrow S_s$	$S_2 \Rightarrow S_s$	$S_2 \Rightarrow S_s$	
		1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	添付資料—6	添付資料6	
<u>添付資料-6.</u> 継続時間の検討における対象荷重の網羅性につい	継続時間の検討における対象荷重の網羅性について	継続時間の検討における対象荷重の網羅性について	
τ			
SA施設は、SA施設としての機能要求を考慮した荷重条件に	SA施設は、SA施設としての機能要求を考慮した荷重条件に	SA施設は、SA施設としての機能要求を考慮した荷重条件に	
より設計する。また、温度条件についても許容値の数値に影響を	より設計する。また、温度条件についても許容値の数値に影響を	より設計する。また、温度条件についても許容値の数値に影響を	
与える(温度が高くなると許容値が小さくなる場合がある)ことか	与える(温度が高くなると許容値が小さくなる場合がある)こと	与える(温度が高くなると許容値が小さくなる場合がある)ことか	
ら、SA施設としての温度条件を設定する。	から、SA施設としての温度条件を設定する。	ら、SA施設としての温度条件を設定する。	
SA施設のうち、DB施設を兼ねるものについては、DB条件	SA施設のうち,DB施設を兼ねるものについては,DB条件	SA施設のうち、DB施設を兼ねるものについては、DB条件	
とSA条件の包絡関係により、実際の設計では、以下のように扱	とSA条件の包絡関係により、実際の設計では、以下のように扱	とSA条件の包絡関係により、実際の設計では、以下のように扱	
うこととしている。	うこととしている。	うこととしている。	
・SA時の荷重,温度がDB設計条件を上回る場合	・SA時の荷重,温度がDB設計条件を上回る場合	・SA時の荷重,温度がDB設計条件を上回る場合	
DB設計条件とは別に、SA設計条件を設ける。	DB設計条件とは別に、SA設計条件を設ける。	DB設計条件とは別に, SA設計条件を設ける。	
・SA時の荷重,温度がDB設計条件に包絡される場合(※)	・SA時の荷重,温度がDB設計条件に包絡される場合(※)	・SA時の荷重,温度がDB設計条件に包絡される場合(※)	
SA設計条件はDB設計条件で代表させる。	SA設計条件はDB設計条件で代表させる。	SA設計条件はDB設計条件で代表させる。	
※「SA時の荷重,温度がDB設計条件に包絡される」とは、耐	※「SA時の荷重,温度がDB設計条件に包絡される」とは、耐	※「SA時の荷重,温度がDB設計条件に包絡される」とは,耐	
震設計において考慮する全ての荷重及び温度について、SAを考	震設計において考慮する全ての荷重及び温度について、SAを考	震設計において考慮する全ての荷重 <mark>及び</mark> 温度について, SAを考	
慮した条件がDB設計条件に包絡される場合を指す	慮した条件がDB設計条件に包絡される場合を指す	慮した条件がDB設計条件に包絡される場合を指す _®	
以下では、DB施設を兼ねるSA施設を対象に、SA荷重と地	以下では、DB施設を兼ねるSA施設を対象に、SA荷重と地	以下では、DB施設を兼ねるSA施設を対象に、SA荷重と地	
震荷重の組合せ検討において、検討対象とすべき荷重が網羅され	震荷重の組合せ検討において、検討対象とすべき荷重が網羅され	震荷重の組合せ検討において、検討対象とすべき荷重が網羅され	
ていることを施設分類(全般施設, PCV, RPV)ごとに示す。	ていることを施設分類(全般施設, PCV, RPV)ごとに示す。	ていることを施設分類(全般施設,原子炉格納容器バウンダリを構	
		成する設備,原子炉冷却材圧力バウンダリを構成する設備)毎に示	
		す。	
(2)継続時間の検討で対象とする条件(荷重・温度)の網羅性	(2)継続時間の検討で対象とする条件(荷重・温度)の網維性	(2) 継続時間の検討で対象とする条件(荷重・温度)の網羅性	
a. 全般施設	a. 全般施設	a. 全般施設	
【DB設計条件とSA設計条件の整理】	【DB設計条件とSA設計条件の整理】	【DB設計条件とSA設計条件の整理】	
全般施設は <u>RPV</u> (現クラス1機器(JEAG4601においては, 第1種機	全般施設は <u>RPV</u> (現クラス1機器 (JEAG4601 においては, 第	全般施設は原子炉冷却材圧力バウンダリを構成する設備(現ク	
器)) と <u>PCV</u> (現クラスMC容器(JEAG4601においては, 第2種	1 種機器))と <u>PCV</u> (現クラスMC機器(JEAG4601 においては,	ラス1機器(JEAG4601においては, 第1種機器))と原子炉	
容器)) 以外の施設となることから, DB施設としての設計では	第2種機器)) 以外の施設となることから, DB施設としての設計	格納容器バウンダリを構成する設備(現クラスMC容器(JEAG	
JEAG4601に記載の「クラス2,3,4(JEAG4601においては第3,4,5種)」	では JEAG4601 に記載の「クラス 2,3,4(JEAG4601 においては第	4601においては、第2種容器))以外の施設となることから、	
及び「その他」の組合せに基づくことになる。したがって全般施	3,4,5種)」及び「その他」の組合せに基づくことになる。したが	DB施設としての設計ではJEAG4601に記載の「クラス2,	
設は運転状態Ⅰ~Ⅲ ^{※1} を考慮して設定した設計用荷重P _D ,M _D (以下	って全般施設は運転状態Ⅰ~Ⅲ ^{※1} を考慮して設定した設計用荷	3,4(JEAG4601においては第3,4,5種)」及び「そ	
「DB設計荷重」という。)及び温度条件と "Ss とを組み合わせ	重 P _D , M _D (以下「DB設計荷重」という。)及び温度条件と "Ss	の他」の組合せに基づくことになる。したがって、全般施設は運	
ている。	とを組み合わせている。	転状態 I ~Ⅲ ^{※1} を考慮して設定した設計用荷重 P _D , M _D (以下「D	
		B設計荷重」という。)及び温度条件とSsを組み合わせている。	
このことから、SA施設としての設計においては、SA時の荷	このことから、SA施設としての設計においては、SA時の荷	このことから、SA施設としての設計においては、SA時の荷	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
重がDB設計荷重を超える場合は、SA時の荷重をもとに新たに	重がDB設計荷重を超える場合は、SA時の荷重を元に新たに設	重がDB設計荷重を超える場合は、SA時の荷重をもとに新たに	
設定した設計荷重(以下「SA設計荷重」という。)とSsを組み	定した設計荷重(以下「SA設計荷重」という。)とSsを組合せ	設定した設計荷重(以下「SA設計荷重」という。)とSsを組み	
合わせる。また、SA時の荷重がDB設計荷重以下の場合は、D	る。また、SA時の荷重がDB設計荷重以下の場合は、DB設計	合わせる。また、SA時の荷重がDB設計荷重以下の場合は、D	
B設計荷重とSsとの組合せの評価で代表させる。温度条件につ	荷重とSsとの組合せの評価で代表させる。温度条件についても	B設計荷重とSsとの組合せの評価で代表させる。温度条件につ	
いても同様に扱う。	同様に扱う。	いても同様に扱う。	
※1: ECCS等については運転状態IV(L)も含む。その理由は以	※1: ECCS等については運転状態IV(L)も含む。その理由は	※1: ECCS等については運転状態IV(L)も含む。その理由は以	
下のとおり。	以下のとおり。	下のとおり。	
ECCS等については、JEAG4601・補-1984において、運転状態	ECCS等については, JEAG4601・補-1984 において, 運転状	ECCS等については,JEAG4601・補-1984 において,	
$IV(L)$ に対する許容応力状態が I_A *と定められており、 I_A *の定義	態IV(L)に対する許容応力状態が I _A *と定められており, I _A *の定義	運転状態IV(L)に対する許容応力状態が I_A *と定められており、 I_A	
としては、「ECCS等のように運転状態IV(L)が設計条件となっ	としては、「ECCS等のように運転状態IV(L)が設計条件となっ	*の定義としては、「ECCS等のように運転状態IV(L)が設計条件	
ているものに対する許容応力状態で許容応力状態I _A に準ずる。」	ているものに対する許容応力状態で許容応力状態 I _A に準ずる。」	となっているものに対する許容応力状態で許容応力状態 I _A に準	
とされている。	とされている。	ずる。」とされている。	
つまり、ECCS等については、運転状態Ⅰ~Ⅲだけでなく、	つまり, ECCS等については, 運転状態 I ~Ⅲだけでなく,	つまり、ECCS等については、運転状態Ⅰ~Ⅲだけでなく、	
運転状態IV(L)も設計条件となっており,運転状態 I ~IV(L)を考	運転状態 $IV(L)$ も設計条件となっており、運転状態 $I \sim IV(L)$ を考	運転状態IV(L)も設計条件となっており,運転状態 I ~IV(L)を考	
慮してDB設計条件(荷重・温度)を設定している。	慮してDB設計条件(荷重・温度)を設定している。	慮してDB設計条件(荷重・温度)を設定している。	
なお, JEAG4601においては荷重の組合せの考え方は, 運転状態	なお, JEAG4601 においては荷重の組合せの考え方は,運転状態	なお、JEAG4601においては荷重の組合せの考え方は、	
$I \sim III と S_2 \varepsilon$,運転状態 $IV(L) と S_1 \varepsilon$ 組み合わせることとなっ	$I \sim III と S_s \varepsilon$, 運転状態 $IV(L) $ とS_d と組み合わせることとなっ	運転状態 I ~III と \underline{S}_2 を, 運転状態IV (L) と \underline{S}_1 を組み合わせること	
ているが,実設計においては,設計用荷重であるP _D ,M _D を用いて設	ているが、実設計においては、設計用荷重である P _D , M _D を用いて	となっているが,実設計においては,設計用荷重である P D, M Dを	
計を行うことから、運転状態 I ~IV(L)を包絡するようにP _D , M _D を	設計を行うことから、運転状態 I ~IV(L)を包絡するように <u>た</u> 設定	用いて設計を行うことから,運転状態 I ~Ⅳ(L)を包絡するように	
設定し、それらとSsを組み合わせている。	し、それらとSsを組み合わせている。	P _D , M _D を設定し、それらとSsを組み合わせている。	
ここで, 旧指針においては, <u>耐震</u> As, A, B, Cクラスとい	ここで,旧指針においては, 耐震As, A, B, Cクラスとい	ここで, 旧指針においては, As, A, B, Cクラスというク	
うクラス分類がなされていたことから、耐震Aクラスの設備にお	うクラス分類がなされていることから, <u>耐震</u> Aクラスの設備にお	ラス分類がなされていたことから, Aクラスの設備においては,	
いては、 S_2 との組合せは実施せず、 S_1 との組合せにより設計が	いては、 S_sとの組合せは実施せず、 S1との組合せにより設計が	\underline{S}_{2} との組合せは実施せず、 S_{1} との組合せにより設計がなされて	
なされていた。一方,現在の規制基準においては,耐震A・As	なされていた。一方,現在の規制基準においては, 耐震As, Aク	いた。一方,現在の規制基準においては, <u>A.s.,A</u> クラスを統合	
クラスを統合して, 耐震Sクラスとし, Ss, Sd双方との組合	ラスを統合して、 耐震 S クラスとし、 S s, S d 双方との組合せ	して、Sクラスとし、Ss、Sd双方との組合せで設計すること	
せで設計することとなっていることから,上述のとおり,P _D ,M _D	で設計することとなっていることから,上述のとおり,P _D ,M _D と	となっていることから,上述のとおり, P_{D} , M_{D} と S s の組合せ	
とSsの組合せを実施することになる。	Ssの組合せを実施することになる。	を実施することになる。	
【継続時間の検討における対象条件の網羅性】	【継続時間の検討における対象条件と網羅性】	【継続時間の検討における対象条件の網羅性】	
DB設計においてSs, Sd との組合せを行う荷重,温度条件は,	DB設計においてSs, Sdとの組合せを行う荷重,温度条件	DB設計においてSs, Sdとの組合せを行う荷重,温度条件	
「DB設計荷重・温度」の一種類であるため、継続時間としてこ	は、「DB設計荷重・温度」の一種類であるため、継続時間として	は、「DB設計荷重・温度」の一種類であるため、継続時間として	
の条件を超える時間を検討している。	この条件を超える時間を検討している。	この条件を超える時間を検討している。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版) 島根原子力発電所 2号炉 備者	本ラ
添付6.1表 全般施設の荷重組合せで用いる地震以外の荷重と温度 添付 6-1 表 全般施設の荷重組合せで用いる地震以外の荷重と 添付 6-1表 全般施設の荷重組合せで用いる地震以外の荷重と	
条件 温度条件 温度条件	
Ss Sd Ss Sd Sd	
DB荷重・温度 DB設計荷重・温度 DB設計荷重・温度 DB 荷重・温度 DB 荷重・温度 DB 荷重・温度 S A荷重・温度 (DB設計荷重・温度 - - - - -	
の場合) - (DB設計荷重・温度 <sa時荷重の場合)< td=""> - SA・短期荷重・温度、SA長期荷重・温度の厳し - (DB設計荷重・温度、SA長期荷重・温度の場合)</sa時荷重の場合)<>	
SA・短期尚重・温度 SAを規制尚重・温度 の厳しい方 N方	
(DB設計荷重・温度≥SA時荷重・温度≥SA時荷重・温度≥SA時荷重・温度≥SA時荷重・温度≥SA時荷重・温度≥SA時荷重・温度	
(DBR) (DBR)	
DB設計荷重・温度	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
b. <u>PCV</u>	b. <u>PCV</u>	b. 原子炉格納容器バウンダリを構成する設備	
【DB設計条件とSA設計条件の整理】	【DB設計条件とSA設計条件の整理】	【DB設計条件とSA設計条件の整理】	
DB設計での組合せではJEAG4601に記載のとおり,運転状態 I	DB設計での組合せでは、JEAG4601に記載のとおり、運転状態	DB設計での組合せでは、JEAG4601に記載のとおり、	
~Ⅲの荷重はSsと組み合わせ、また運転状態IV(L)の荷重はSd	I~Ⅲの荷重はSsと組み合わせ、また運転状態IV(L)の荷重はS	運転状態Ⅰ~Ⅲの荷重はSsと組み合わせ、また運転状態IV(L)	
と組み合わせている。	dと組み合わせている。	の荷重はSdと組み合わせている。	
ここで、PCVの運転状態Ⅰ~Ⅲの荷重・温度は通常運転状態	ここで、PCVの運転状態 I ~Ⅲの荷重・温度は通常運転状態	ここで、PCVの運転状態 I ~Ⅲの荷重・温度は通常運転状態	
と同じ,また,運転状態IV(L)(LOCA後長期間経過した状態)	と同じ,また,運転状態IV(L)(LOCA後長期間経過した状態)	と同じ,また,運転状態IV(L)(LOCA後長期間経過した状態)	
の荷重・温度は、運転状態I~Ⅲの条件よりも厳しい条件となって	の荷重・温度は、運転状態 I ~Ⅲの条件よりも厳しい条件となっ	の荷重・温度は、運転状態 I ~Ⅲの条件よりも厳しい条件となっ	
いることから、DB設計で考慮している荷重条件は次の2種類とな	ているこいとから、DB設計で考慮している荷重条件は次の2種	ていることから, DB設計で考慮している荷重条件は次の2種類	
る。	類となる。	となる。	
・運転状態Ⅰ~Ⅲを踏まえて設定した条件 : 通常運転時圧力・温	・運転状態Ⅰ~Ⅲを踏まえて設定した条件:通常運転時圧力・温	・運転状態 I ~Ⅲを踏まえて設定した条件 : 通常運転時圧力・温	
度	度	度	
・運転状態IV(L)を踏まえて設定した条件 :LOCA後の最大内	・運転状態IV(L)を踏まえて設定した条件:LOCA後の最大内	・運転状態IV(L)を踏まえて設定した条件:LOCA後の最大内	
圧・温度	圧・温度	圧・温度	
以上を踏まえ、PCVのSA施設としての設計においては、組	以上を踏まえ、PCVのSA施設としての設計においては、組	以上を踏まえ、PCVのSA施設としての設計においては、組	
合せを検討する条件として、以下の2種類を設定し、それぞれの継	合せを検討する条件として,以下の2種類を設定し,それぞれの	合せを検討する条件として、以下の2種類を設定し、それぞれの	
続時間を考慮して実際の組合せを設定している。	継続時間を考慮して実際の組合せを設定している。	継続時間を考慮して実際の組合せを設定している。	
・SA発生後の最大荷重・温度	・SA後の長期(L)における荷重・温度	・SA発生後の最大荷重・温度	
・SA後の長期(LL)における荷重・温度	・SA後の長期(LL)における荷重・温度	・SA後の長期(LL)における荷重・温度	
【継続時間の検討における対象条件の網羅性】	【継続時間の検討における対象条件の網羅性】	【継続時間の検討における対象条件の網羅性】	
DBにおいては、以下の組合せに対する設計を行っている。	DBにおいては、以下の組合せに対する設計を行っている。	DBにおいては、以下の組合せに対する設計を行っている。	
 通常運転時圧力+S s 	・通常運転圧力+Ss	・通常運転時圧力+S s	
 LOCA後の最大内圧+Sd 	・ LOCA後の最大圧力+Sd	・ LOCA後の最大内圧+Sd	
SAにおける設計条件(組合せ)は、このDB設計条件への包絡	SAにおける設計条件(組合せ)は、このDB設計条件への包絡	SAにおける設計条件(組合せ)は、このDB設計条件への包絡性	
性を踏まえ	性を踏まえ,	を踏まえ	
① A後の長期(LL)荷重+S s	① SA後の長期(LL)荷重+Ss	①S A後の長期(LL)荷重+S s	
→Ssには,継続時間を考慮して長期(LL)荷重(2×10 ⁻¹ 年以降)	→Ssには,継続時間を考慮して長期(LL)荷重(2×10 ⁻¹ 年以降)	→Ssには,継続時間を考慮して長期(LL)荷重(2×10 ⁻¹ 年以降)	
を組み合わせる。	を組み合わせる。	を組み合わせる。	
②SA発生後の最大荷重(有効性評価結果の最高圧力・最高温度)	② <u>SA後の長期(L)荷重(SA後の最高圧力・温度)</u> +Sd	② <u>SA発生後の最大荷重(有効性評価結果の最高圧力・最高温</u>	
+ S d		度 <u>)</u> +Sd	
→Sdには、継続時間を考慮して最大となる荷重(有効性評価結	→Sdには,継続時間を考慮して長期(L)荷重(10 ⁻² ~2×10 ⁻¹ 年)	→Sdには、継続時間を考慮して <u>最大となる荷重(有効性評価結</u>	
果の最高圧力・最高温度)を組み合わせる。	を組み合わせる。	果の最高圧力・最高温度)を組み合わせる。	

柏崎刈羽原	〔子力発電所 6/7号	6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版)			島根原子力発電所 2号炉 備考				
添付6.2表 PCVの荷重組合せで用いる地震以外の荷重と温度		添付 6-2 表 PCVの荷重組合せで用いる地震以外の荷重と温度条		添付 6 <u></u> 2表 PCVの荷重組合せで用いる地震以外の荷重と温					
				件			度条件		
	S s	S d		S _s	S _d		S s	S d	
DB荷重・温度	通常運転時圧力・温度	LOCA後の最大内圧・温度	DB荷重・温度	通常運転時圧力・温度	LOCA後の最大内圧・温度	DB荷重・温度	通常運転時圧力・温度	LOCA後の最大内圧・温度	
SA荷重・温度	SA後の長期(LL)圧力・温度	SA発生後最大荷重 (有効性評価結果の最高圧力・ 最高温度)	SA荷重・温度	SA後の長期(LL)圧力・温度	S A 後の長期(L) 圧力・温度	SA荷重・温度	SA後の長期(LL)圧力・温度	SA発生後最大荷重 (有効性評価結果の最高圧 力・最高温度)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
c. <u>RPV</u>	c. <u>RPV</u>	c. 原子炉冷却材圧力バウンダリを構成する設備	
【DB設計条件とSA設計条件の整理】	【DB設計条件とSA設計条件の整理】	【DB設計条件とSA設計条件の整理】	
DB設計での組合せではJEAG4601に記載のとおり,運転状態 I	DB設計での組合せでは、JEAG4601に記載のとおり、運転状態I	DB設計での組合せではJEAG4601に記載のとおり,運	
~Ⅲの荷重はSsと組合せ、また運転状態Ⅳ(L)の荷重はSdと組	~Ⅲの荷重はSsと組み合わせ、また運転状態Ⅳ(L)の荷重はSd	転状態 I ~Ⅲの荷重はSsと組合せ,また運転状態IV(L)の荷重は	
み合わせている。	と組み合わせている。	Sdと組み合わせている。	
ここで, RPVの運転状態 I ~Ⅲを踏まえて設定される圧力・	ここで、 R P V の運転状態 I ~Ⅲを踏まえて設定される圧力・温	ここで, RPVの運転状態 I ~Ⅲを踏まえて設定される圧力・	
温度は運転状態Ⅱ(給水流量の全喪失又はタービントリップ)で	度は運転状態Ⅱ(全給水流量喪失又はタービントリップ)であり,	温度は運転状態Ⅱ(全給水流量喪失又はタービントリップ)であ	
あり、これは運転状態IV(L)(LOCA後長期間経過した状態)の	これは運転状態IV(L)(LOCA後長期間経過した状態)の圧力・	り、これは運転状態IV(L)(LOCA後長期間経過した状態)の圧	
圧力・温度より高いため,実際の評価では「 <u>給水流量の全喪失</u> 又	温度より高いため、実際の評価では、「全給水流量喪失又はタービ	力・温度より高いため,実際の評価では「 <u>全給水流量喪失</u> 又はタ	
はタービントリップ」による圧力・温度とSs, Sdを組み合わ	ントリップ」による圧力・温度とSs, Sdを組み合わせて評価	ービントリップ」による圧力・温度とSs, Sdを組み合わせて	
せて評価している。	している。	評価している。	
以上を踏まえ、RPVのSA施設としての設計においては、組	以上を踏まえ、RPVのSA施設としての設計においては、組	以上を踏まえ、RPVのSA施設としての設計においては、組	
合せを検討する荷重として, SA後長期(L)荷重・温度を設定する。	合せを検討する荷重として、SA後の長期(L)荷重・温度を設定す	合せを検討する荷重として,SA後長期(L)荷重・温度を設定する。	
SAにおける設計条件(組合せ)は、このDB設計条件への包絡	る。SAにおける設計条件(組合せ)は、このDB設計条件への	SAにおける設計条件(組合せ)は、このDB設計条件への包絡	
性を踏まえSA後の長期(LL)荷重とSs,SA後の長期(L)荷重と	包絡性を踏まえSA後の長期(LL)荷重とSs, SA後の長期(L)	性を踏まえSA後の長期(LL)荷重とSs,SA後の長期(L)荷重と	
Sdを組み合わせる方針とする。	荷重とSdを組み合わせる方針とする。	Sdを組み合わせる方針とする。	
【継続時間の検討における対象条件の網羅性】	【継続時間の検討における対象条件の網羅性】	【継続時間の検討における対象条件の網羅性】	
DBにおいては,以下の組合せに対する設計を行っている。	DBにおいては、以下の組合せに対する設計を行っている。	DBにおいては、以下の組合せに対する設計を行っている。	
・ <u>給水流量の全喪失</u> 又はタービントリップ+Ss	・全給水流量喪失又はタービントリップ+Ss	・ <u>全給水流量喪失</u> 又はタービントリップ+S s	
・ <u>給水流量の全喪失</u> 又はタービントリップ+Sd	・全給水流量喪失又はタービントリップ+Sd	・全給水流量喪失又はタービントリップ+S d	
SAにおける設計条件(組合せ)は、このDB設計条件への包絡	SAにおける設計条件(組合せ)は、このDB設計条件への包絡	SAにおける設計条件(組合せ)は、このDB設計条件への包絡性	
性を踏まえ	性を踏まえ,	を踏まえ	
 A後の長期(LL)荷重+S s 	 SA後の長期(LL)荷重+Ss 	 SA後の長期(LL)荷重+Ss 	
→Ssには,継続時間を考慮して長期(LL)荷重 (2×10 ⁻¹ 年以降)	→Ssには,継続時間を考慮して長期(LL)荷重(2×10 ⁻¹ 年以降)	→Ssには,継続時間を考慮して長期(LL)荷重(2×10 ⁻¹ 年以降)	
を組み合わせる。	を組み合わせる。	を組み合わせる。	
③ A後の長期(L)荷重(SA後の最高圧力・温度) + S d	 SA後の長期(L)荷重(SA後の最高圧力・温度)+Sd 	 SA後の長期(L)荷重(SA後の最高圧力・温度)+Sd 	
→Sdには,継続時間を考慮して長期(L)荷重(10 ⁻² ~2×10 ⁻¹ 年)	→Sdには,継続時間を考慮して長期(L)荷重(10 ⁻² ~2×10 ⁻¹ 年)	→Sdには,継続時間を考慮して長期(L)荷重(10 ⁻² ~2×10 ⁻¹ 年)	
を組み合わせる。	を組み合わせる。	を組み合わせる。	
添付6.3表 RPVの荷重組合せで用いる地震以外の荷重と温度条	添付 6-3 表 R P V の荷重組合せで用いる地震以外の荷重と温	添付 6-3 表 RPVの荷重組合せで用いる地震以外の荷重と温	
件	度条件	度条件	
S s S d	S s S d	S s S d	
	DB荷重・温度 「全給水流量喪失又はタービン 「全給水流量喪失又はタービン	DB 荷重・温度 「全給水流量喪失又はタービ 「全給水流量喪失又はタービ	
DB何里・温度 ントリップ」による圧力・温度 ントリップ」による圧力・温度	トリップ」による圧力・温度 トリップ」による圧力・温度	ントリップ」による圧力・温度 ントリップ」による圧力・温度	
SA荷重・温度 SA後の長期(LL)圧力・温度 SA後の長期(L)圧力・温度	SA荷重・温度 SA後の長期(LL)圧力・温度 SA後の長期(L)圧力・温度	SA荷重・温度 SA後の長期(LL)圧力・温度 SA後長期(L)圧力・温度	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(3)JEAG4601のアプローチを用いた検討	(3) JEAG4601 のアプローチを用いた検討	(3) JEAG4601のアプローチを用いた検討	
本項では, DB設備における荷重の組合せ(JEAG4601)と今回	本項では、DB設備における荷重の組合せ(JEAG4601)と今回の	本項では、DB設備における荷重の組合せ(JEAG4601)	
の検討にて用いたSA荷重の組合せの考え方を整理する。	検討にて用いたSA荷重の組合せの考え方を整理する。	と今回の検討にて用いたSA荷重の組合せの考え方を整理する。	
a. JEAG4601における荷重の組合せ検討のアプローチ	a. JEAG4601 における荷重の組合せ検討のアプローチ	a. JEAG4601における荷重の組合せ検討のアプローチ	
①運転状態の発生確率を設定	① 運転状態の発生確率を設定	 運転状態の発生確率を設定 	
②地震の発生確率を設定	② 地震の発生確率を設定	 地震の発生確率を設定 	
③「運転状態の発生確率」、「地震の発生確率」、「継続時間」の積	③「運転状態の発生確率」,「地震の発生確率」,「継続時間」の積	③「運転状態の発生確率」、「地震の発生確率」、「継続時間」の積	
が10 ⁻⁷ /炉年になる継続時間を設定	が 10 ⁻⁷ / 炉年になる継続時間を設定	が 10-7/炉年になる継続時間を設定	
④10-7/炉年となる継続時間における荷重を、地震と組み合わせる	④ 10 ⁻⁷ /炉年となる継続時間における荷重を、地震と組み合わ	④ 10 ⁻⁷ /炉年となる継続時間における荷重を, 地震と組み合わせる	
条件とする	せる条件とする。	条件とする _{em}	
b. 今回の検討に用いたSA荷重の組合せ検討のアプローチ	b. 今回の検討に用いたSA荷重の組合せ検討のアプローチ	b. 今回の検討に用いたSA荷重の組合せ検討のアプローチ	
①SA事象の発生確率を設定	 SA事象の発生確率を設定 	 SA事象の発生確率を設定 	
②地震の発生確率を設定	② 地震の発生確率を設定	② 地震の発生確率を設定	
③「SA事象の発生確率」、「地震の発生確率」、「継続時間」の積	③「SA事象の発生確率」,「地震の発生確率」,「継続時間」の積	③「SA事象の発生確率」、「地震の発生確率」、「継続時間」の積	
が10 ⁻⁸ /炉年になる継続時間を設定	が 10 ⁻⁸ /炉年になる継続時間を設定	が 10 ⁻⁸ /炉年になる継続時間を設定	
④10 ⁻⁸ /炉年となる継続時間における荷重を、地震と組み合わせる	④ 10 ⁻⁸ /炉年となる継続時間における荷重を、地震と組み合わ	④ 10 ⁻⁸ /炉年となる継続時間における荷重を, 地震と組み合わせる	
条件とする	せる条件とする。	条件とする _{&m}	
以上より、③、④で用いた組合せの判定基準は、今回のSA荷	以上より、③、④で用いた組合せの判定基準は、今回のSA荷	以上より,③,④で用いた組合せの判定基準は,今回のSA荷	
重の組合せの検討(10 ⁻⁸ /炉年)の方が,JEAG4601における荷重の	重の組合せの検討(10 ⁻⁸ /炉年)の方が, JEAG4601 における荷重	重の組合せの検討(10 ⁻⁸ /炉年)の方が, JEAG4601におけ	
組合せ検討(10-7/炉年)のアプローチよりも、保守的な条件とな	の組合せ検討(10 ⁻⁷ /炉年)のアプローチよりも、保守的な条件	る荷重の組合せ検討(10-7/炉年)のアプローチよりも、保守的な	
っている。	となっている。	条件となっている。	
(4) まとめ	(4) まとめ	(4) まとめ	
以上のとおり,各施設のSA荷重と組合せの検討では,Ss,	以上のとおり,各施設のSA荷重と組合せの検討では, Ss,	以上のとおり,各施設のSA荷重と組合せの検討では,Ss,	
SdとSA荷重を適切に考慮しており、JEAG4601における検討ア	SdとSA荷重を適切に考慮しており、JEAG4601における検討ア	SdとSA荷重を適切に考慮しており、JEAG4601におけ	
プローチよりも保守的な条件となっている。	プローチよりも保守的な条件となっている。	る検討アプローチよりも保守的な条件となっている。	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
---	--	---	----
	添付資料—7	添付資料 7	
添付資料-7. 荷重の組合せ表	荷重の組合せ表	荷重の組合せ表	
(1) 記号の説明	(1)記号の説明	(1) 記号の説明	
D : 自重	D: <u>死荷重</u>	D: <u>自重(JEAG4601・補-1984</u> では「死荷重」と記載)	
P _D : 地震と組み合わ <u>す</u> べきプラントの運転状態Ⅰ及びⅡ(運転状	P _D : 地震と組合 <u>す</u> べきプラントの運転状態Ⅰ及びⅡ(運転状態Ⅲ	P _D : 地震と組み合わ <u>せる</u> べきプラントの運転状態 I 及び II (運転	
態Ⅲがある場合にはこれを含む),又は当該設備に設計上定め	がある場合にはこれを含む),又は当該設備に設計上定められ	状態Ⅲがある場合にはこれを含む),又は当該設備に設計上定	
られた最高使用圧力による荷重	た最高使用圧力による荷重	められた最高使用圧力による荷重	
P _{PSA} :原子炉格納容器の重大事故発生後の最大圧力荷重		P. _{PSA} :原子炉格納容器の重大事故発生後の最大圧力荷重	
	P _{PSA(L)} : 格納容器の重大事故における長期圧力(長期(L))	P. _{PSA(L)} :原子炉格納容器の重大事故における長期圧力(長期(L))	
P _{PSA(LL)} :原子炉格納容器の重大事故における長期圧力荷重(長期	P _{PSA(LL)} : 格納容器の重大事故における長期圧力(長期(LL))	P _{PSA(LL)} : <u>原子炉格納容器</u> の重大事故における長期圧力 <u>荷重</u> (長期	
(LL))		(LL))	
P _{RSA(L)} :原子炉冷却材圧力バウンダリの重大事故における長期圧	P _{RSA(L)} :原子炉冷却材圧力バウンダリの重大事故における長期圧力	P _{RSA(L)} :原子炉冷却材圧力バウンダリの重大事故における長期圧	
力荷重(長期(L))	(長期(L))	力 <u>荷重</u> (長期(L))	
P _{RSA(LL)} :原子炉冷却材圧力バウンダリの重大事故における長期圧	P _{RSA(LL)} :原子炉冷却材圧力バウンダリの重大事故における長期圧力	P _{RSA(LL)} :原子炉冷却材圧力バウンダリの重大事故における長期圧	
力荷重(長期(LL))	(長期(LL))	力 <u>荷重</u> (長期(LL))	
P _{sa} :重大事故における運転状態を考慮して設定した設計圧力に	P _{SA} :重大事故における運転状態を考慮して設定した設計圧力	P _{sa} : 重大事故における運転状態を考慮して設定した設計圧力 <u>によ</u>	
よる荷重		る荷重	
M:地震及び死荷重以外で地震と組み合わすべきプラントの運転	M: 地震及び死荷重以外で地震と組合 <u>す</u> べきプラントの運転状態	M:地震及び死荷重以外で地震と組み合わせるべきプラントの運	
状態(冷却材喪失事故後の状態は除く)で設備に作用している	(冷却材喪失事故後の状態は除く) で設備に作用している機械	転状態(冷却材喪失事故後の状態は除く)で設備に作用してい	
機械的荷重(各運転状態におけるP及びMについては、安全側に	的荷重(各運転状態における P 及び M については,安全側に設	る機械的荷重(各運転状態におけるP及びMについては,安全	
設定された値(最高使用圧力,設計機械荷重等)を用いてもよ	定された値(最高使用圧力,設計機械荷重等)を用いてもよい。)	側に設定された値(最高使用圧力,設計機械荷重等)を用いて	
ν _°)		もよい。)	
M _D : 地震と組み合わすべきプラントの運転状態 I 及び II (運転状	M _D : 地震と <u>組合す</u> べきプラントの運転状態Ⅰ及びⅡ(運転状態Ⅲ)	M _D : 地震と組み合わすべきプラントの運転状態 I 及びⅡ(運転状	
態Ⅲがある場合にはこれを含む),又は当該設備に設計上定め	がある場合にはこれを含む),又は当該設備に設計上定められ	態Ⅲがある場合にはこれを含む),又は当核設備に設計上定め	
られた機械的荷重	た機械的荷重	られた機械的荷重	
T _D :設計基準対象施設の耐震設計上の設計温度	T _D :設計基準対象施設の耐震設計上の温度	T _D :設計基準対象施設の耐震設計上の設計温度	
T _{PSA} :原子炉格納容器の重大事故発生後の最大温度(最高使用温	T _{PSA} : 格納容器の重大事故における長期温度(最高使用温度を用い	T _{PSA} : 原子炉格納容器の重大事故発生後の最大温度(最高使用温度	
度を用いてもよい。)	てもよい。)	を用いてもよい。)	
T _{PSA(LL)} :原子炉格納容器の重大事故における長期温度(最高使用		<u>T_PSA(LL)</u> :原子炉格納容器の重大事故における長期温度(最高使用温	
温度を用いてもよい。)(長期(LL))		<u>度を用いてもよい。)(長期(LL))</u>	
T _{RSA(L)} :原子炉冷却材圧力バウンダリの重大事故における長期温	T _{RSA(L)} :原子炉冷却材圧力バウンダリの重大事故における長期温度	T _{RSA(L)} :原子炉冷却材圧力バウンダリの重大事故における長期温	
度(最高使用温度を用いてもよい。)(長期(L))	(最高使用温度を用いてもよい。	度(最高使用温度を用いてもよい。) (長期(L))	
T _{RSA(LL)} :原子炉冷却材圧力バウンダリの重大事故における長期温		<u>T_{RSA(LL)}:原子炉冷却材圧力バウンダリの重大事故における長期温</u>	
度(最高使用温度を用いてもよい。)(長期(LL))		度(最高使用温度を用いてもよい。)(長期(LL))	
T _{sa} :重大事故における運転状態を考慮して設定した設計温度	T _{sa} :重大事故における運転状態を考慮して設定した設計温度	T _{SA} :重大事故における運転状態を考慮して設定した設計温度	
T _a :重大事故における施設本体の温度, 及び施設周囲の雰囲気温	T _D :重大事故における施設本体の温度, 及び施設周辺の雰囲気温	T _a : 重大事故における施設本体の温度及び施設周囲の雰囲気温	
度を考慮して設定した温度	度を考慮して設定した温度	度を考慮して設定した温度	
Sd :弾性設計用地震動Sdにより定まる地震力又は静的地震力	Sd:弾性設計用地震動S _d により定まる地震力又は静的地震力	Sd:弾性設計用地震動Sdにより定まる地震力, 又は静的地震	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) Ss: 基準地震動Ssにより定まる地震力 IV_AS: JSME S NC1の供用状態D相当の許容応力を基準として、それに地震により生じる応力に対する特別な応力制限を加えた許容応力状態 V_aS: 運転状態V相当の応力評価を行う許容応力を基本として、それに地震により生じる応力に対する特別な応力制限を加えた許容応力状態 	東海第二発電所(2018.9.18版) Ss:基準地震動S ₃ により定まる地震力 IV _A S:JSME S NC1 の供用状態 D 相当の許容応力を基準として、そ れに地震により生じる応力に対する特別な応力制限を加えた 許容応力状態 V _A S:運転状態 V 相当の応力評価を行う許容応力を基本として、 それに地震により生じる応力に対する特別な応力制限を加 えた許容応力状態	島根原子力発電所 2号炉 力 S s:基準地震動 S sにより定まる地震力 IV,S: JSME S NC1 の供用状態D相当の許容応力を基準として、それに地震により生じる応力に対する特別な応力制限を加え た許容応力状態 V,S:運転状態V相当の応力評価を行う許容応力を基本として、 それに地震により生じる応力に対する特別な応力制限を加えた許 容応力状態	備考

柏峰	奇刈羽原子)	力発電所	6/7号	炉 (2	017.12.2	0版)	東海第二発電所(2018.9.18版)				島根原子力発電所 2号炉					備考						
(2)荷	重の組合せ	表					(2)荷重	の組合せ	表					(2)	荷重	重の組合せ	表					
原子炉格着	施設区分 内容器バウンダリミ	と構成する設備	荷重の組合せ D+P _{PSA} +M+S d	温度条件 T _{PSA}	許容応力状態 V _A S ^{※2}	 <!--</td--><td></td><td>施設区分</td><td></td><td>荷重の組合せ</td><td>温度条件</td><td>許容応力 状態</td><td>備考</td><td></td><td></td><td>施設区分</td><td></td><td>荷重の組合せ Di-Brack Mules</td><td>温度条件</td><td>許容応力 状態</td><td>備考</td><td></td>		施設区分		荷重の組合せ	温度条件	許容応力 状態	備考			施設区分		荷重の組合せ Di-Brack Mules	温度条件	許容応力 状態	備考	
(PCVバ	ウンダリ)		D+P _{PSA(LL)} +M+ Ss	TPSA (LL)	V ^S ^{₩2}	6.2	格納容器/ (PCVバ	、ウンダリを相 ウンダリ)	構成する設備	$\frac{D + P_{PSA(L)} + M + Sd}{D + P_{PSA(LL)} + M + Sd}$	T _{PSA(L)} T _{PSA(LL)}	V AS V AS	検 討 項 目 6.2	原子力	り格納%	容器バウンダリ	を構成する設	D+P _{PSA} +M+S d	T PSA	V _A S ^{₩2}	検討項目	
	原子炉冷却材	施設本体	$\frac{D+P_{RSA(L)}+M+}{Sd}$	T _{RSA(L)}	V ^S*2	検討項目 6.3	格 納 容 器 内 の S A	原子炉冷却 材圧力バウ	施設本体	$\frac{D+P_{RSA(L)}+M+Sd}{D+P_{RSA(LL)}+M+Sd}$	$T_{RSA(L)}$ $T_{RSA(LL)}$	V _Λ S V _Λ S	検討項目 6.3	備(P	CVバ	(ウンダリ)		$D + P_{PSA(LL)} + M$ + S s	T PSA (LL)	$V_{\text{A}}S^{\Re 2}$	6.2	
	 圧力バウンダ リを構成する 設備(RPVバ) 		$\frac{S + RSA(LL) + M}{S + RSA(LL) + M}$	T _{RSA} (LL)	V _A S ^{#2}		施設	ンダリを構 成する設備	支 持 構 造 物	$\frac{D+P_{RSA(L)}+M+Sd}{D+P_{RSA(LL)}+M+Sd}$	Ta Ta	V AS V AS	検討項目 6.4					$D + P_{RSA(L)} + M +$ S d	T RSA(L)	V ∧S ^{₩2}	検討項目	
原子炉格 納容器内	ウンダリ)	支持構造物	Sd D+P _{RSA(LL)} +M+ Ss	T _a	V 4S ^{₩2}	検討項目 6.1		(RPVバ ウンダリ)								原子炉冷却材 圧力バウンダ	施設本体	$D + P_{RSA(LL)} + M$	T RSA(LL)	V AS ^{₩2}	6.3	
の S A 施 設		施設本体	D+(P _D ^{*1} 又は P _{SA} の厳しい ち)+M+S s	T _D ^{*1} 又は T _{SA} の厳し	V _A S ^{₩2}	検討項目 6.1		全般施設	施設本体	D+(P _D ^{※1} 又は P _{SA} の厳しい 方)+M _D +Ss	T _D ^{※1} 又は T _{SA} の厳し い方	V AS	検 討 項 目 6.1	原子,	炉格	リを構成する 設備(RPV	-i- Lt. LW M. d.	D+P _{RSA} (L)+M+ S d	T a	V _A S ^{∰2}	検討項目	
	全般施設	支持構造物	D+(P _D ^{※1} 又は P _{SA} の厳しい	T _a	V _A S ^{₩2}	検討項目 6.4			支 持 構 造 物	D+(P _D ^{※1} 又は P _{Sà} の厳しい	Ta	V AS	検討項目 6.4	納容者のS	器内 A 施	~9299)	文符博道初	$D + P_{RSA(LL)} + M$ + S s	Ta	V AS ^{₩2}	6.4	
		施設本体	方)+M _D +Ss D+(P _D ^{※1} 又は P _{SA} の厳しい 方)+M ₂ +Ss	T _D ^{#1} 又は T _{SA}	V _A S ^{₩2}	検討項目6.1	格納容器外	の全般施設	施設本体	f_{D})+M _D +Ss D+(P _D ^{※1} 又は P _{SA} の厳しい 方)+M _P +Ss	T _D ^{※1} 又は T _{SA} の厳し	T _{PSA}	検 討 項 目 6.1	設		今 朝 你 恐	施設本体	D+(P ^{j*1} 又は P _{SA} の厳しい 方)+M ^{D+} S s	T D ^{**1} 又 は T SA の 厳しい方	V 4S ^{₩2}	検討項目 6.1	
設	州容器外の全般施	支持構造物	D+(P _D ^{※1} 又は P _{SA} の厳しい 方)+M ₅ +S _S	Та	$V_{\hbar}S^{\#_2}$	検討項目 6.4			支 持 構 造 物	D+(P _D ^{×1} 又は P _{SA} の厳しい 声)+M ₂ +S ₅	Ta	TPSA	検 討 項 目 6.1			王邦文地主义	支持構造物	D+(P ^{D^{※1}} 又は P _{SA} の厳しい 方)+M ^{p+} S _S	Ta	V _A S ^{₩2}	検討項目 6.4	
					1				1	Д/ тыр тоа	1	1	1	原子炉	■格納	容器外の全般	施設本体	D+(P ^{3×1} 又は P sA の厳しい 方)+MD+S s	T D ^{※1} 又 は T sa の 厳しい方	V _A S ^{#2}	検討項目 6.1	
														施設			支持構造物	D+(P ^{b^{※1}} 又は P s _A の厳しい 方)+M ^{b+} S s	Ta	V _A S ^{₩2}	検討項目 6.4	
※1 D※2 V_A	B 施設を兼 Sの許容限り	ねるSAカ 界は,IV _A i	施設につい Sと同じもの	て考慮す Dを適用	-る。 する。		₩1 : D ₩2 : V)B施設を イ _A Sの許	·兼ねる S 容限界は	らA施設につ ,IV _A Sと同	かいても考	意する。 を適用す	3.	×11 ×2	D B V _A S	施設を兼結	ねるSAカ 界は,Ⅳ	奄設について ₄S と同じもの	考慮する。 Dを適用す	。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	添付資料—8	添付資料 8	
添付資料-8. 重大事故時の荷重条件の妥当性について	重大事故時の荷重条件の妥当性について	重大事故時の荷重条件等の妥当性について	
(1) はじめに	(1) はじめに	(1) はじめに	
重大事故時の耐震評価においては、地震力と重大事故時の原子	重大事故時の耐震評価においては、地震力と重大事故時の原子	重大事故時の耐震評価においては、地震力と重大事故時の原子	
炉冷却材圧力バウンダリ(RPV)及び原子炉格納容器(PCV)に	炉冷却材圧力バウンダリ及び格納容器にかかる圧力・温度を組み	炉冷却材圧力バウンダリ <u>(RPV)</u> 及び原子炉格納容器 <u>(PCV)</u>	
かかる圧力・温度を組み合わせる場合、耐震評価に用いる圧力・	合わせる場合, 耐震評価に用いる圧力・温度は高い方が評価結果	にかかる荷重を組み合わせる場合、耐震評価に用いる圧力・温度	
温度は高い方が評価結果は厳しくなる。したがって、重大事故時	は厳しくなる。したがって、重大事故時の耐震評価における地震	は高い方が評価結果は厳しくなる。したがって、重大事故時の耐	
の耐震評価における地震力と組み合わせる圧力・温度条件として	力と組み合わせる圧力・温度条件としては、有効性評価結果の中	震評価における地震力と組み合わせる <u>荷重</u> 条件としては、有効性	
は、有効性評価結果の中から事象発生時のRPV及びPCVにか	から事象発生時の原子炉冷却材圧力バウンダリ及び格納容器にか	評価結果の中から事象発生時の <u>RPV</u> 及び <u>PCV</u> にかかる最高圧	
かる最高圧力及び最高温度を選定することとし、全ての事故シー	かる最高圧力及び最高温度を選定することとし、全ての事故シー	力及び最高温度を選定することとし、全ての事故シーケンスグル	
ケンスグループ等のうち, RPV及びPCVの圧力・温度が最も	ケンスグループ等のうち,原子炉冷却材圧力バウンダリ及び格納	ープ等のうち, <u>RPV</u> 及び <u>PCV</u> の <u>荷重</u> が最も厳しくなるものを	
厳しくなるものを選定することとした。	容器の圧力・温度が最も厳しくなるものを選定することとした。	選定することとした。	
選定した事故シーケンスグループ等の有効性評価では、不確か	選定した事故シーケンスグループ等の有効性評価では、不確か	選定した事故シーケンスグループ等の有効性評価では、不確か	
さの影響評価(別紙1参照)を行っており,解析コードにおける重	さの影響評価(別紙1参照)を行っており,解析コードにおける	さの影響評価(別紙1参照)を行っており,解析コードにおける	
要物理現象及び解析条件(初期条件、事故条件、機器条件)に対	重要物理現象及び解析条件(初期条件、事故条件、機器条件)に	重要物理現象及び解析条件(初期条件、事故条件、機器条件)に	
して、評価項目となるパラメータに与える不確かさの影響につい	対して、評価項目となるパラメータに与える不確かさの影響につ	対して、評価項目となるパラメータに与える不確かさの影響につ	
て評価している。	いて評価している。	いて評価している。	
有効性評価における解析条件設定は、解析条件及び解析コード	有効性評価における解析条件設定は、解析条件及び解析コード	有効性評価における解析条件設定は、解析条件及び解析コード	
の不確かさを考慮して、現実的な条件を基本としつつ、原則、評	の不確かさを考慮して、設計値を用いるか又は評価項目となるパ	の不確かさを考慮して、現実的な条件を基本としつつ、原則、評	
価項目となるパラメータに対して余裕が小さくなるような設定と	ラメータに対して余裕が小さくなるような設定とすることとして	価項目となるパラメータに対して余裕が小さくなるような設定と	
することとしており(別紙2~別紙4参照),耐震評価に用いるRP	おり(別紙2から別紙4参照), 解析コード及び解析条件の不確か	することとしており、(別紙2 … 別紙4 参照)、耐震評価に用いる	
V及びPCV <u>圧力・温度</u> 条件として,有効性評価結果から得られ	さについて確認した結果,評価項目となるパラメータに与える影	<u>RPV</u> 及び <u>PCVの荷重</u> 条件として,有効性評価結果から得られ	
る最高圧力・温度を用いることとした。	響は小さいことを確認していることから、耐震評価に用いる原子	る最高圧力・温度を用いることとした。	
	<u>炉冷却材圧力バウンダリ</u> 及び <u>格納容器の圧力・温度</u> 条件として,		
	不確かさは考慮せず、有効性評価結果から得られる最高圧力・温		
	度に基づいた保守的な圧力・温度を用いることとした。		
		<u>また,重大事故時の耐震評価において考慮する水位条件等につ</u>	・記載方針の相違
		いても有効性評価結果を踏まえて設定する。	【柏崎 6/7,東海第二】
耐震評価に用いる重大事故時の地震力と組み合わせるRPV及	耐震評価に用いる重大事故時の地震力と組み合わせる原子炉冷	重大事故時の耐震評価に用いる荷重条件等について、次項以降	Mark-I型原子炉格納
びPCVの具体的な圧力・温度条件について、次項以降に示す。	却材圧力バウンダリ及び格納容器の具体的な圧力・温度条件につ	に示す。	容器の耐震評価には,
	いて次項以降に示す。		原子炉格納容器の水
			位も影響することか
(2) 耐震評価で用いるRPVの圧力・温度について	(2) 耐震評価で用いる原子炉冷却材圧力バウンダリの圧力・温	(2) 耐震評価で用いる<u>RPV</u>の<u>荷重</u>について	ら,島根2号炉では水
	度について		位条件等の設定を説
R P V の圧力・温度が最高となる事故シーケンスは、有効性評	原子炉冷却材圧力バウンダリにかかる圧力及び温度が最高とな	<u>RPVの</u> 圧力…温度が最高となる事故シーケンスは、有効性評	明(以下,①の相違)
価で考慮する全ての事故シーケンスグループ等のうち、「原子炉停	る事故シーケンスは、有効性評価で考慮する全ての事故シーケン	価で考慮する全ての事故シーケンスグループ等のうち、「原子炉停	
止機能喪失」であり、ATWSで考慮する運転中の異常な過渡変	スグループ等のうち,「原子炉停止機能喪失」であり, ATWSで	止機能喪失」であり、ATWSで考慮する運転中の異常な過渡変	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
化のうち、過渡事象として主蒸気隔離弁の誤閉止の発生を仮定す	考慮する運転時の異常な過渡変化のうち、過渡事象として主蒸気	化のうち、過渡事象として主蒸気隔離弁の誤閉止の発生を仮定す	
るとともに、原子炉自動停止機能が喪失する事象であり、緩和措	隔離弁の誤閉止の発生を仮定するとともに、原子炉自動停止機能	るとともに、原子炉自動停止機能が喪失する事象であり、緩和措	
置がとられない場合には、原子炉出力が維持されるため、原子炉	が喪失する事象であり、緩和措置がとられない場合には、原子炉	置がとられない場合には、原子炉出力が維持されるため、原子炉	
圧力容器が高温・高圧状態となる。	出力が維持されるため,原子炉圧力容器が高温・高圧状態となる。	圧力容器が高温・高圧状態となる。スクラムを前提とした他の事	柏崎 6/7 号炉及び東海
		故シーケンスグループ等と比較し、最も早く原子炉圧力が上昇す	第二の(2)項内に同一記
		る事象である。	載あり(差異なし)
「原子炉停止機能喪失」の炉心損傷防止対策は、主として当該事	「原子炉停止機能喪失」の炉心損傷防止対策は、主として当該	「原子炉停止機能喪失」の炉心損傷防止対策は、主として当該	
故の発生防止のために代替制御棒挿入機能(ARI)を備えてお	事故の発生防止のために代替制御棒挿入機能(以下「ARI」と	事故の発生防止のために代替制御棒挿入機能(ARI)を備えて	
り、プラント過渡事象が発生し、通常のスクラム機能が、電気的	いう。)を備えており、プラント過渡事象が発生し、通常のスクラ	おり、プラント過渡事象が発生し、通常のスクラム機能が、電気	
な故障により喪失した場合に,後備の手段としてARIを作動させる	ム機能が、電気的な故障により喪失した場合に、後備の手段とし	的な故障により喪失した場合に、後備の手段としてARIを作動	
ことにより原子炉停止機能を確保することとなる。有効性評価	てARIを作動させることにより原子炉停止機能を確保すること	させることにより原子炉停止機能を確保することとなる。有効性	
では、このARIの機能に期待せず、最も厳しい過渡事象として主蒸	となる。有効性評価では、このARIの機能に期待せず、最も厳	評価では、このARIの機能に期待せず、最も厳しい過渡事象と	
気隔離弁の閉止を条件とし、これによる原子炉圧力上昇による反	しい過渡事象として主蒸気隔離弁の閉止を条件とし、これによる	して主蒸気隔離弁の閉止を条件とし、これによる原子炉圧力上昇	
応度投入、また、主蒸気隔離弁の閉止に伴う給水過熱喪失による	原子炉圧力上昇による反応度投入、また、主蒸気隔離弁の閉止に	による反応度投入、また、主蒸気隔離弁の閉止に伴う給水過熱喪	
反応度投入を評価している。これに対し、原子炉出力を抑制する	伴う給水加熱喪失による反応度投入を評価している。これに対し、	失による反応度投入を評価している。これに対し、原子炉出力を	
ための代替冷却材再循環ポンプ・トリップ機能,運転員による原	原子炉出力を抑制するためのATWS緩和設備(代替原子炉再循	抑制するための代替原子炉再循環ポンプトリップ機能,運転員に	
子炉水位維持操作(自動減圧系の自動起動阻止含む)及びほう酸	環ポンプトリップ機能),運転員による原子炉水位維持操作(自動	よる原子炉水位維持操作(自動減圧系の自動起動阻止含む)及び	
水注入系による原子炉未臨界操作により原子炉を未臨界へ移行さ	減圧系の自動起動阻止含む)及びほう酸水注入系による原子炉未	ほう酸水注入系による原子炉未臨界操作により原子炉を未臨界へ	
せることとなる。	臨界操作により原子炉を未臨界へ移行させることとなる。	移行させることとなる。 重大事故時において, RPVの耐震評価	柏崎 6/7 号炉の添付 8.3
		で考慮する事故シーケンス選定の考え方を添付8.1表に示す。	表及び東海第二の添付
			8-3 表に対応
この事故シーケンスにおけるSA発生後の原子炉圧力の最高	この事故シーケンスにおけるSA発生後の原子炉圧力の最高		島根 2 号炉における(2)
値,原子炉冷却材温度の最高値を添付8.1表に示す。スクラムを前	値,原子炉冷却材温度の最高値を添付8-1表に示す。スクラムを		項内に同一記載あり(差
提とした他の事故シーケンスグループ等と比較し、最も早く原子	前提とした他の事故シーケンスグループ等と比較し、最も早く原		異なし)
炉圧力が上昇する事象である。	子炉圧力が上昇する事象である。		
添付8.1表に示す原子炉停止機能喪失の有効性評価における解	<u>添付8-1</u> 表に示す「原子炉停止機能喪失」の有効性評価におけ		
析条件設定は,解析条件及び解析コードの不確かさを考慮して,	る解析条件設定は、解析条件及び解析コードの不確かさを考慮し		
現実的な条件を基本としつつ、原則、評価項目となるパラメータ	て、設計値を用いるか又は評価項目となるパラメータに対して余		
に対して余裕が小さくなるような設定とすることとしている。ま	裕が小さくなるような設定とすることとしている。また、不確か		
た,不確かさの影響評価を行っており,添付8.1表に示す評価結果	さの影響評価を行っており, その結果として, 解析コード及び解		
より高くなる。しかしながら、短期荷重の継続時間として考慮す	析条件の不確かさについて操作への影響を含めて確認した結果,		
る時間設定として、事象発生後に低温停止状態に至る時間を包絡	評価項目となるパラメータに与える影響は小さいことを確認して		
するものとしているため、結果として不確かさの重畳の影響はな	いることから、ここでは不確かさは考慮しない。		
<i>۷</i> ۰.			
「原子炉停止機能喪失」の過渡応答図を添付8.1図~8.2図に示	「原子炉停止機能喪失」の過渡応答図を添付8-1図及び添付8	選定した事故シーケンス「原子炉停止機能喪失」の過渡応答図	
す。原子炉圧力は10秒以内に代替治却材再循環ポンプ・トリップ	-2図に示す。原子炉圧力は10秒以内にATWS緩和設備(代替	を添付8.1 図~8.2 図に示す。原子炉圧力は10 秒以内に代替原	
機能による原子炉出力の低下により、耐震設計上の設計圧力であ	再循環系ポンプトリップ機能)による原子炉出力の低下により,	子炉再循環ポンプトリップ機能による原子炉出力の低下により,	・設計値の相違
る <u>8.38MPa[gage]</u> を下回っている。また,冷却材温度も,原子炉圧	耐震設計上の設計圧力である約 <u>8.14MPa[gage]</u> を下回っている。	耐震設計上の設計圧力である <u>8.28MPa[gage]</u> を下回っている。	【柏崎 6/7,東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2	2018. 9. 18 版)	島	根原子力発電所 2号	予炉	備考	
力の上昇に伴う飽和蒸気温度の上昇により、耐震設計上の設計温	また、冷却材温度も、原子炉圧力の	の上昇に伴う飽和蒸気温度が上	また,冷却材温度も,				
度をわずかに超過するが、原子炉圧力の低下に伴い、同様に低下	昇するが,耐震設計上の設計温度	である 301℃を下回っている。	昇により, 耐震設計」	この設計温度 <u>をわずか</u>	に超過するが,原子炉	・解析結果の相違	
する傾向となる。長期的な観点では、事象発生後10秒以降、逃が	長期的な観点では,事象発生後10	<u>圧力の低下に伴い、同様に低下する傾向となる</u> 。長期的な観点で			【東海第二】		
し安全弁による原子炉圧力制御が行われ、原子炉圧力はほぼ一定	<u>弁機能</u>)による原子炉圧力制御が行	<u>弁機能)</u> による原子炉圧力制御が行われ,原子炉圧力はほぼ一定			は、事象発生後10秒以降、逃がし安全弁による原子炉圧力制御		
で推移する。	で推移する。		が行われ,原子炉圧力はほぼ一定で推移する。			温度が, DB 条件をわ	
						ずかに上回る。	
事象発生後11分で運転員がほう酸注入系によるほう酸水の注入	運転員がほう酸注入系を起動し,	_事象発生後 <u>9 分 30 秒</u> にほう酸	事象発生後 11.6 分	で運転員がほう酸水液	主入系によるほう酸水	・解析結果の相違	
を開始することにより、原子炉出力は崩壊熱レベルまで速やかに	水の注入が開始 <u>される</u> ことにより,	原子炉出力は崩壊熱レベルま	の注入を開始すること	こより,原子炉出力	は崩壊熱レベルまで速	【柏崎 6/7,東海第二】	
低下する。その後、運転員が原子炉の減圧、除熱及び残留熱除去	で速やかに低下する。その後、運	転員が原子炉の減圧,除熱及び	やかに低下する。その	つ後、運転員が原子炉	の減圧,除熱及び残留		
系による炉心冷却を行うことにより、低温停止状態に至る。	残留熱除去系による炉心冷却を行	うことにより,低温停止状態に	熱除去系による炉心液	冷却を行うことにより	,低温停止状態に至る。		
	至る。		この事故シーケンスに	こおけるSA発生後の	原子炉の最高圧力,原	柏崎 6/7 号炉及び東海	
			子炉冷却材の最高温度	度を添付 8.2 表に示す	0	第二における(2)項内に	
			原子炉停止機能喪失	トの有効性評価におけ	る解析条件設定は、解	同一記載あり(差異な	
			析条件及び解析コー	ドの不確かさを考慮し	て、現実的な条件を基	し)	
			本としつつ,原則,言	平価項目となるパラメ	ータに対して余裕が小		
			さくなるような設定と	とすることとしている	。また、不確かさの影		
			響評価を行っており,	その場合の圧力・温	度は添付 8.2 表に示す		
			評価結果より高くなる	る。しかしながら,短	期荷重の継続時間とし		
			て考慮する時間設定。	<u>- して,事象発生後に</u>	低温停止状態に至る時		
			間を包絡するものとし	しているため,結果と	して不確かさの重畳の		
			影響はない。				
以上より、事象発生直後の圧力上昇以降、RPVの圧力・温度	以上より、事象発生直後の圧力」	上昇以降,原子炉冷却材圧力バ	以上より、事象発生				
 は, DB施設の耐震設計上の設計圧力・温度を十分に下回る。	 ウンダリの圧力・温度は, DB施詞	役の耐震設計上の設計圧力・温	は、DB施設の耐震調				
	 度を十分に下回る。						
			<u>添付8.1表 RPV</u>	の耐震評価で考慮する	事故シーケンス選定の	・解析条件の相違	
				<u>考え方</u>		【東海第二】	
			事故シーケンスと選定の考え方	条件設定	定の考え方	(東海第二の添付 8-3	
			原子炉停止機能喪失 (全事故シーケンスのうち。	原子炉熱出力,原子炉圧力,紫を使用するが,本事故シーケン	戸心流量,給水温度は,最確条件 /スの事象進展に最も影響の大き	表に対応) 有効性評価	
			原子炉の荷重が最も厳しくなる事故シーケンスを選定)	い,主蒸気隔離弁の誤閉止を過 核データ(動的ボイド係数・	過渡事象として選定するとともに 動的ドップラ係数)を反応度印加	で用いる解析条件の	
				割合が大きくなるような保守	的な条件として設定している。	保守性の取り方によ	
						る相違	
 添付8.1表 原子炉冷却材圧力バウンダリのSA時の圧力・温度(有	添付8-1表 原子炉冷却材バウ	ワンダリのSA時の圧力・温 <u>度</u>	添付 8.2 表 R P V	のSA時の圧力・温厚	<u> (有効性評価結果)</u>	・解析結果及び設計値の	
<u>効性評価結果)</u>	(有効性評位	西結果)				相違	
原子炉停止機能喪失 DB条件	原子炉停止機能到	e失 DB条件		原子炉停止機能喪失	DB条件	【柏崎 6/7,東海第二】	
最高圧力 約 8.92MPa[gage] 8.38MPa[gage]	最高圧力 約 & 40MPa「gagg	」 約8.14MPa [σэσο]	最高圧力	約 8.98MPa[gage]	8.28MPa[gage]		
最高温度 約 304℃ 299℃			最高温度	約 304℃	298°C		
	「	301°C					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(3) 耐震評価で用いるPCVの圧力・温度について	(3) 耐震評価で用いる <u>格納容器の圧力・温度</u> について	(3) 耐震評価で用いる<u>PCV</u>の<u>荷重</u>について	
原子炉格納容器の圧力・温度条件が最も厳しくなるという点で、	<u>格納容器の圧力・温度</u> 条件が最も厳しくなるという点で,最高	原子炉格納容器の荷重条件が最も厳しくなるという点で、最高	
最高使用圧力・温度を超え,さらに継続期間の長い事故シーケン	使用圧力・温度を超え、さらに継続期間の長い事故シーケンスグ	使用圧力・温度を超え、さらに継続期間の長い事故シーケンスグ	
スグループ等を抽出することを目的に、事故発生後10 ⁻² 年(約3日	ループ等を抽出することを目的に,事故発生後10 ⁻² 年(約3日後)	ループ等を抽出することを目的に、事故発生後10 ⁻² 年(約3.5日	
後)以内及び事象発生後10-2年(約3日後)の圧力・温度が最も高い事	以内及び <u>事故</u> 発生後10 ⁻² 年(約3日後)の圧力・温度が最も高い	後)以内及び事象発生後10-2年(約3.5日後)の圧力・温度が最	
故シーケンスグループ等を抽出した結果,以下の事故シーケンス	事故シーケンスグループ等を抽出した結果、以下の事故シーケン	も高い事故シーケンスグループ等を抽出した結果、以下の事故シ	
が挙げられる。	スが挙げられる。	ーケンスが挙げられる。	
・雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代	・雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	・雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	
<u> 替循環冷却系</u> を使用する場合)	(代替循環冷却系を使用する場合)	(残留熱代替除去系を使用する場合)	
・雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	・雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	・雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	
(代替循環冷却系を使用しない場合)	(代替循環冷却系を使用できない場合)	(残留熱代替除去系を使用しない場合)	
なお、有効性評価においては、いずれの事故シーケンスグルー	上記のいずれの事故シーケンスにおいても,事象発生後 10 ⁻² 年	なお,有効性評価においては,いずれの事故シーケンスグルー	
プ等において,事象発生後10 ⁻² 年(約3日後)後前までに原子炉格納	(約3日後)前までに格納容器圧力逃がし装置又は緊急用海水系	プ等においても,事象発生後 10 ⁻² 年(約 3.5 日後)までに格納容	
容器圧力逃がし装置又は代替原子炉補機冷却系による除熱機能が	を用いた代替循環冷却系等による除熱機能が確保され、最高使用	器フィルタベント系又は原子炉補機代替冷却系を用いた残留熱代	
確保され, 10 ⁻² 年(約3日後)以降の原子炉格納容器圧力及び温度は	圧力・温度以下に維持される。10 ⁻² 年(約3日後)以降の格納容	<u> 替除去系</u> による除熱機能が確保され <u>,格納容器の圧力・温度条件</u>	・解析結果の相違
低下傾向が維持されることから、10 ⁻² 年(約3日後)までの圧力・温	器圧力については、格納容器内の水素燃焼を防止する観点から格	は最高使用圧力・温度以下に維持される。10-2年(約 3.5 日後)	【柏崎 6/7】
<u>度に基づき、</u> 事故シーケンスグループ等を選定することは妥当で	納容器内への窒素注入を実施する運用としていることから、一時	以降の格納容器圧力については、格納容器内の水素燃焼を防止す	島根2号炉は水素燃
ある。	的に格納容器圧力が最高使用圧力以下の範囲で圧力上昇する期間	る観点から原子炉格納容器内への窒素注入を実施する運用として	焼を防止する観点か
	が生じるが、上記の除熱機能により、最高使用圧力以下に抑えら	いることから、一時的に格納容器圧力が最高使用圧力以下の範囲	ら,格納容器の最高使
	れる。	で圧力上昇する期間が生じるが、上記の除熱機能により、最高使	用圧力到達までは窒
		用圧力以下に抑えられる。	素注入を実施する運
	したがって、10 ⁻² 年(約3日後)以内の温度及び最高使用圧力	したがって, 10 ⁻² 年(約3.5日後)以内の温度及び最高使用圧	用としており,格納容
	に基づき、事故シーケンスグループ等を選定することは妥当であ	力に基づき,事故シーケンスグループ等を選定することは妥当で	器圧力が最大となる
	る。	ある。	のは 10 ⁻² 年以降(以
なお、「高圧溶融物放出/格納容器雰囲気直接加熱」、「原子炉圧力	なお、「高圧溶融物放出/格納容器雰囲気直接加熱」、「原子炉圧力	なお、「高圧溶融物放出/格納容器雰囲気直接加熱」、「原子炉圧	下, ②の相違)
容器外の溶融燃料ー冷却材相互作用」及び「溶融炉心・コンクリ	容器外の溶融燃料ー冷却材相互作用」及び「溶融炉心・コンクリ	力容器外の溶融燃料ー冷却材相互作用」及び「溶融炉心・コンク	
ート相互作用」は同じ事故シーケンスにより	ート相互作用」は同じ事故シーケンスにより	リート相互作用」は同じ事故シーケンスにより格納容器破損モー	
ドの評価を行っている。これら格納容器破損モードを評価する際	ドの評価を行っている。これら格納容器破損モードを評価する際	ドの評価を行っている。これら格納容器破損モードを評価する際	
には、原子炉圧力容器破損に至るまで炉心損傷を進展させ、その	には、原子炉圧力容器破損に至るまで炉心損傷を進展させ、その	には、原子炉圧力容器破損に至るまで炉心損傷を進展させ、その	
後に生じうる格納容器破損モードに対する有効性を確認する必要	後に生じうる格納容器破損モードに対する有効性を確認する必要	後に生じうる格納容器破損モードに対する有効性を確認する必要	
があるため、解析の前提として、重大事故等対処設備として整備	があるため、解析の前提として、重大事故等対策設備として整備	があるため、解析の前提として、重大事故等対処設備として整備	
した原子炉への注水機能は使用しないとの前提で評価すること	した原子炉への注水機能は使用しないとの前提で評価すること	した原子炉への注水機能は使用しないとの前提で評価すること	
で、各々の格納容器破損モードに対して厳しい条件となるよう保	で、各々の格納容器破損モードに対して厳しい条件となるよう保	で、各々の格納容器破損モードに対して厳しい条件となるよう保	
守的な条件設定を行っており、他の事故シーケンス等と比較して	守的な条件設定を行っており、他の事故シーケンス等と比較して	守的な条件設定を行っており、他の事故シーケンス等と比較して	
前提条件が異なる(本来は、高圧代替注水系により炉心損傷回避	前提条件が異なる(本来は、高圧代替注水系により炉心損傷回避	前提条件が異なる(本来は、高圧原子炉代替注水系により炉心損	
が可能な事故シーケンス)。一方,原子炉格納容器に対する静的な	が可能な事故シーケンスである)。一方、格納容器に対する静的な	傷回避が可能な事故シーケンス)。一方, 原子炉格納容器に対する	
過圧・過温に対する長期の頑健性を確認する上では、原子炉格納	過圧・過温に対する長期の頑健性を確認する上では、 <u>格納</u> 容器圧	静的な過圧・過温に対する長期の頑健性を確認する上では、原子	
容器圧力及び温度は原子炉停止後の崩壊熱と除熱能力の関係が支	 力及び温度は原子炉停止後の崩壊熱と除熱能力の関係が支配的な		
	1		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
配的な要素であることから、「運転中の原子炉における重大事故」	要素であることから、「運転中の原子炉における重大事故」に係る	係が支配的な要素であることから、「運転中の原子炉における重大	
に係る格納容器破損モードとして参照する事故シナリオとして,	格納容器破損モードとして参照する事故シナリオとして、雰囲気	事故」に係る格納容器破損モードとして参照する事故シナリオと	
雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)を	圧力・温度による静的負荷(格納容器過圧・過温破損)を代表シ	して、雰囲気圧力・温度による静的負荷(格納容器過圧・過温破	
代表シナリオとすることは、原子炉圧力容器破損後のシナリオも	ナリオとすることは、原子炉圧力容器破損後のシナリオも考慮し	損)を代表シナリオとすることは、原子炉圧力容器破損後のシナ	
考慮していることと等しい。	ていることと等しい。	リオも考慮していることと等しい。	
格納容器破損モード「雰囲気圧力・温度による静的負荷(格納容	格納容器破損モード「雰囲気圧力・温度による静的負荷(格納	格納容器破損モード「雰囲気圧力・温度による静的負荷(格納	
器過圧・過温破損)(代替循環冷却系を使用する場合)」及び「雰	容器過圧・過温破損)(代替循環治却系を使用する場合)」及び「雰	容器過圧・過温破損)(残留熱代替除去系を使用する場合)」及び	
囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替	囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替	「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	
<u>循環治却系</u> を使用しない場合)」は、大破断LOCAが発生し、流	循環治却系を使用できない場合)」は、大破断LOCAが発生し、	(残留熱代替除去系を使用しない場合)」では、大破断LOCAが	
出した原子炉冷却材及び溶融炉心の崩壊熱等の熱によって発生し	流出した原子炉冷却材及び溶融炉心の崩壊熱等の熱によって発生	発生し、流出した原子炉冷却材及び溶融炉心の崩壊熱等の熱によ	
た水蒸気、炉心損傷に伴うジルコニウムー水反応によって発生し	した水蒸気、炉心損傷を伴うジルコニウムー水反応によって発生	って発生した水蒸気、炉心損傷に伴うジルコニウムー水反応によ	
た非凝縮性ガスなどの蓄積により、原子炉格納容器の雰囲気圧	した非凝縮性ガスなどの蓄積により、格納容器の雰囲気圧力・温	って発生した非凝縮性ガスなどの蓄積により、原子炉格納容器の	
力・温度が上昇することになる。	度が上昇することになる。	雰囲気圧力・温度が上昇することになる。重大事故時において、	柏崎 6/7 号炉の添付 8.3
		<u>PCVの耐震評価で考慮する事故シーケンス選定の考え方を添付</u>	表及び東海第二の添付
		8.3表に示す。	8-3 表に対応
		選定した2つの事故シーケンスグループ等について、格納容器	
		圧力及び温度の解析結果を <u>添付 8.3 図~8.10 図</u> に示す。 <u>SA</u> 発生	
		後 10 ⁻² 年(約 3.5 日後)までに,原子炉格納容器の圧力及び温度	
		はそれぞれ最高圧力及び最高温度となり、10 ⁻² 年(約3.5日後)	
		以降は, 格納容器フィルタベント系又は原子炉補機代替治却系を	
		用いた残留熱代替除去系による除熱機能が確保され、最高使用圧	・解析結果の相違
		力・温度以下に維持される。残留熱代替除去系を使用する場合に	【柏崎 6/7】
		おける 10 ⁻² 年(約3.5日後)以降の格納容器圧力については,格	 ②の相違
		納容器内の水素燃焼の防止のため格納容器内への窒素封入を実施	
		する運用としていることから,一時的に上昇する期間があるが,	
上記2つの事故シーケンスグループ等について,事故発生後のP	上記2つの事故シーケンスグループ等について,事故発生後の	上記の除熱機能により最高使用圧力以下に抑えられる。上記2つ	
CVの最高圧力及び最高温度を添付8.2表に示す。 <u>添付8.2表に</u> 示	格納容器の最高圧力及び最高温度(壁面温度)を添付8-2表に示	の事故シーケンスグループ等における, SA発生後のPCVの圧	・解析結果の相違
<u>すとおり、最高圧力及び最高温度はほぼ同等であり、</u> これら2つの	す。 添付 8.2 表に示すとおり, 最高圧力及び温度(壁面温度)は	力及び温度を添付 8.4 表に示す。	【柏崎 6/7,東海第二】
事故シーケンスグループでの最高圧力・温度を、耐震評価におけ	ほぼ同等であり, これら2つの事故シーケンスグループでの最高		島根2号炉は,格納容
る重大事故時の地震力と組み合わせるPCVの圧力・温度条件と	圧力・温度(壁面温度)を,耐震評価における重大事故時の地震		器圧力は同等となら
する。	力と組み合わせる格納容器の圧力・温度条件とする。		ない (前者のシーケン
なお、上記の2つの事故シーケンスグループ等の有効性評価で	なお、上記の2つの事故シーケンスグループ等の有効性評価で	なお、上記の2つの事故シーケンスグループ等の有効性評価で	スにおいて残留熱代
は、不確かさの影響評価を行っており、解析コードにおける重要	は、不確かさの影響評価を行っており、解析コードにおける重要	は、不確かさの影響評価を行っており、解析コードにおける重要	替除去系のインサー
物理現象及び解析条件(初期条件、事故条件、機器条件)に対し	物理現象及び解析条件(初期条件、事故条件、機器条件)に対し	物理現象及び解析条件(初期条件、事故条件、機器条件)に対し	ビスが早く格納容器
て、評価項目となるパラメータに与える不確かさの影響について	て、評価項目となるパラメータに与える不確かさの影響について	て、評価項目となるパラメータに与える不確かさの影響について	圧力の上昇が抑制さ
評価している。	評価している。	評価している。	れるため)
有効性評価における解析条件設定は、解析条件及び解析コード	有効性評価における解析条件設定は、解析条件及び解析コード	有効性評価における解析条件設定は、解析条件及び解析コード	
の不確かさを考慮して、現実的な条件を基本としつつ、原則、評	の不確かさを考慮して、設計値を用いるか又は評価項目となるパ	の不確かさを考慮して、現実的な条件を基本としつつ、原則、評	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
価項目となるパラメータに対して余裕が小さくなるような設定と	ラメータに対して余裕が小さくなるような設定とすることとして	価項目となるパラメータに対して余裕が小さくなるような設定と	
することとしており、また、解析条件や解析コードの不確かさに	おり, また, 不確かさの影響評価を行っており, その結果として,	することとしており,また,解析条件や解析コードの不確かさに	
ついては、極端な条件設定とすることは現実的ではないと考えら	解析コード及び解析条件の不確かさについて操作への影響を含め	ついては、極端な条件設定とすることは現実的ではないと考えら	
れる。しかしながら、耐震評価に用いるPCVの圧力・温度条件	て確認した結果、評価項目となるパラメータに与える影響は小さ	れる。しかしながら、格納容器過圧・過温破損(残留熱代替除去	
には、格納容器過圧・過温破損(代替循環冷却系を使用しない場	いことを確認している。しかしながら, PCVバウンダリは, S	系を使用しない場合)において、格納容器圧力の上昇の速度が遅	
合)において,格納容器圧力の上昇の速度が遅く, 格納容器スプ	A発生時における最終障壁となることから,その重要性を考慮し,	く格納容器スプレイ流量が抑制できるなど、格納容器フィルタベ	
レイ流量が抑制できるなど、格納容器圧力逃がし装置の使用タイ	SA発生後 10 ⁻² 年以降_2×10 ⁻¹ 年未満の期間として組み合わせ	ント系の使用タイミングが遅くなる可能性があることや、格納容	
ミングが遅くなる可能性があることから、SA発生後10-2年以上2	<u>る</u> 荷重は, <u>保守的に</u> 事象発生 <u>以降</u> の最大 <u>となる荷重(</u> 有効性評価	器過圧・過温破損(残留熱代替除去系を使用する場合)において,	
×10 ⁻¹ 年未満の期間として組み合わせる荷重は、添付8.2表の事象	結果の最高圧力・最高温度 (壁面温度)) を S d と組み合わせる。	重大事故が発生して10時間後から残留熱代替除去系を使用する	
発生後以降の最大となる荷重(有効性評価結果の最高圧力・最高		ことを想定しているが、準備時間の遅れ等により残留熱代替除去	
温度)をSdと組み合わせる。		系の使用開始が遅くなり PCV 圧力が上昇する可能性がある等,	
		<u>SA発生後10⁻²年以上2×10⁻¹年未満の期間にPCVの耐震評</u>	
		価と組み合わせる荷重には不確かさが想定される。	
		<u>上記を踏まえると</u> , SA発生後 10 ⁻² <u>年</u> 以上 2×10 ⁻¹ 年未満の期	
		間における荷重は、事象進展に応じて変動する可能性があること	
		から,包絡的な荷重条件を耐震評価に用いるため,添付8.4表に	
		おいて事象発生後の最大値である,,有効性評価結果の最高圧力・	
		最高温度をSdと組み合わせる。	
上記の2つの事故シーケンスグループ等について、格納容器圧	上記の2つの事故シーケンスグループ等について、格納容器圧		
力・温度の解析結果を添付 8.3 図~8.6 図に示す。 添付 8.3 図~	力・雰囲気温度の解析結果を添付 8-3 図から 8-6 図に示す。 添		
<u>8.6 図より、SA発生後 10⁻²年(約3日後)前</u> までに,原子炉格納	<u>付8-3図から8-6図より,重大事故発生後10⁻²年(約3日後</u>)		
容器の最高圧力及び最高温度となり、10 ⁻² 年(約3日後)以降は、	前までに、格納容器圧力逃がし装置又は緊急用海水系を用いた代		
原子炉格納容器圧力逃がし装置又は代替原子炉補機冷却系による	替循環冷却系による除熱機能が確保され,最高使用圧力・温度以		
除熱機能の効果により、格納容器圧力及び温度は低下傾向が維持	下に維持される。代替循環冷却系を使用する場合における10-2年		
されていることが確認できる。	(約3日後)以降の格納容器圧力については、格納容器内の水素		
	燃焼の防止のため格納容器内への窒素封入を実施する運用として		
	いることから、一時的に上昇する期間があるが、上記の除熱機能		
	により最高使用圧力以下に抑えられる。		
		<u>添付 8.4 表の 2×10⁻¹年後におけるPCV圧力は、格納容器過</u>	・記載方針の相違
		圧・過温破損(残留熱代替除去系を使用する場合)の方が高く,	【柏崎 6/7,東海第二】
		温度は,格納容器過圧・過温破損(残留熱代替除去系を使用しない	島根2号炉は, S s と
		場合)の方が高い結果となっており、いずれの事故シーケンスも荷	組み合わせる荷重と
		重条件として厳しい側面を持っている。ただし、除熱機能の確保	して,格納容器過圧・
		は、SA設備である残留熱代替除去系の確保を優先に行うことか	過温破損 (残留熱代替
		ら,格納容器過圧・過温破損(残留熱代替除去系を使用しない場合)	除去系を使用する場
		においても、ベントの停止判断基準が整えば、格納容器除熱手段	合)における最高圧
		を切り替えることでPCV温度を低下させることが可能である。	力・最高温度を用いる
		これに加えて、その他の格納容器除熱手段に期待することができ	ことを記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	1	島根原子力発電所 2号炉	備考
			る。一例として,格納容器過圧・過温破損(残留熱代替除去系を使	
			用しない場合)において,事象発生から約30日後に可搬型格納容	
			器除熱系に切り替えた場合のPCV温度の推移を添付 8.11 図に	
			示す。可搬型格納容器除熱系に切り替えた以降は、PCV温度は	
			緩やかに低下し、低下傾向が継続する。このように、2×10 ⁻¹ 年後	
			におけるPCV温度は,格納容器過圧・過温破損(残留熱代替除去	
			系を使用しない場合)においても,格納容器除熱手段を切り替える	
			ことで,格納容器過圧・過温破損(残留熱代替除去系を使用する場	
			<u>合)と同様の傾向となる。</u>	
			<u>以上のことから、SA発生後2×10⁻¹年以降の期間において組み</u>	
			合わせる荷重としては,格納容器過圧・過温破損(残留熱代替除去	
			<u>系を使用する場合)の2×10⁻¹年以降の最高圧力・最高温度をSs</u>	
			と組み合わせる。	
				・解析条件の相違
			<u>添付8.3表 PCVの耐震評価で考慮する事故シーケンス選定の</u>	【東海第二】
			<u>考え方</u>	(東海第二の添付 8-3
			事故シーケンスと 条件設定の考え方 選定の考え方 条件設定の考え方	表に対応)有効性評価
			格納容器過圧・過温破損 格納容器空間部容積は設計値を,サプレッション・プ (令事故シーケンスのう ール水位 和期格納容器温度け 鼻確条件を使用する	で用いる解析条件の
			ち、格納容器の荷重が最もが、格納容器圧力・温度に対して見も影響の大きい条	保守性の取り方によ
			敵しくなる事故シークン「件である朋級烈及び外部水源の温度については、保守 スを選定) 的な条件として設定している。	る作達
添付8 2表 原子恒格納容器のSA時の圧力・温度(有効性評価結)	添付 8-2 寿 格納容器のSA時の	正力 •温度	沃什 & / 事 DC Vの S A 時の正力・ 泪 産 (右劫州 証価は用)	 ・ 解析結果の相違
里)	(右効性評価結果)		<u>部刊 6.4 表 PCVの3A時の圧力・温度(有効性計価結末)</u>	【柏崎 6/7 黄海第二】
			格納容器過圧・過温破損 格納容器過圧・過温破損	
格納容器過圧・過温破損(代替循環 格納容器過圧・過温破損(代替循 冷却系を使用する場合) 環冷却系を使用しない場合)	格納谷益週圧・週温吸損 格納名 (代替循環冷却系を使用 (代表	客 福 元 ・ 画 温 破 損 替 循 環 冷 却 系 を 使 用	(残留熱代替除去系を使用する場合) (残留熱代替除去系を使用しない場合)	
最高圧力 約 0. 60MPa[gage] 約 0. 62MPa[gage]	する場合) できた 単立広力 約 210kBo[reage]	ない場合)	圧力 温度 圧力 温度	
最高温度 約 165°C*1 約 168°C*2 圧力(10 ² 年) 約 0.36MPa[gage] 約 0.25MPa[gage]	取同圧力 ^{※9,910Kra[gage]} [※] 最高温度 ^{※9,100°}	* 157°C	SA事象発生 後の最大値 約 427kPa[gage] 約 181℃ ^{*1} 約 659kPa[gage] 約 181℃ ^{*1}	
温度 (10 ² 年) 約 164℃ ^{※3} 約 139℃	(壁面温度) (壁面温度)	#9 157 C	10 ⁻² 年後 約 317kPa[gage] 約 131℃ ^{*2} 約 109kPa[gage] 約 144℃ ^{*3}	
	圧力(10 ⁻² 年後) 約 310kPa[gage]以下 約 4 退産(膳産退産)	65kPa[gage] 以下	$2 \times 10^{-1} \pi$ $(\% 1272) Po [arcm]$ $(\% 169) C^{2/2}$ $(\% 126) Po [arcm]$ $(\% 112) C^{2/3}$	
※1:原子炉格納容器バウンダリにかかる温度(壁面温度)	(10 ⁻² 年後) 約 139℃以下	約 157℃以下		
※2:原子炉格納容器バウンダリにかかる温度(壁面温度)は165℃				
であるが、保守的に最高温度は0.62MPa[gage]の飽和温度とす			※2:サフレッション・ナェンハの温度 ※3.ドライウェル気相退産	
る				
※3:サプレッション・チェンバの最高温度				

39-205

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
			米(四羽二)光电/川 (2010.9.10 //以)	函依原丁刀定电灯 2年

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	
柏崎刈羽原子力発電所	6 / 7 号炉	(2017. 12. 20 版)	東海第二発電所 (2018. 9. 18 版)	島根原子力発電所 2.5 1000 </td

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		300	
 (4) <u>SA時の耐震評価で用いるRPV及びPCVの圧力・温度</u> 条件について 	 (4) <u>重大事故等時の耐震評価で用いる原子炉冷却材圧力バウン</u> ダリ及び格納容器の圧力・温度評価のための解析条件につ 	<u>の格納容器温度の推移</u> (4) <u>地震応答解析モデルの水位条件等について</u>	 ・記載方針の相違 【柏崎 6/7,東海第二】 島根2号炉は,長期間の解析図についても 記載
	<u>17</u>	重大事故時の耐震評価において考慮する,地震応答解析モデル の水位条件等の考え方を以下に示す。 <u>RPVでは,耐震評価上,重心位置が高い方が地震時の荷重が</u> 大きくなる傾向があることから,重大事故時における原子炉圧力 容器の水位及び燃料状態としては,冷却材喪失や燃料破損等の状 能を考慮せず、DR時の地震応答解析モデルに考慮されている課	・記載方針の相違 【柏崎 6/7,東海第二】 PCV の水位条件等の 設定方針を記載
		<u>元を適用する。</u> <u>PCVでは、耐震評価上、水位が高い方が地震時の荷重が大き</u> くなる傾向があることから、SA発生後10 ⁻² 年以上2×10 ⁻¹ 年未 満の期間に組み合わせる水位条件としては、事象初期の不確かさ 等を考慮して、有効性評価結果の最大値を包絡するサプレッショ	
		 シ・ノール水位(約 5.05m)を用いる。また、SA発生後,外部 水源を用いた注水等によりサプレッション・プール水位が一度上 昇すると、長期的にも水位が低下しない可能性があることから、 SA発生後 2×10⁻¹年以降において組み合わせるサプレッショ ン・プール水位としても上記の水位(約 5.05m)を用いる。 原子炉建物の剛性については、コンクリート温度が 100℃を超 える高温環境になった場合、コンクリート水分逸散による剛性低 	
		<u>下が考えられるため、重大事故時の格納容器温度を考慮し、原子</u> 炉建物の剛性を低下させた場合の影響を検討する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
前述のとおり、重大事故等対処施設の耐震評価で用いるRPV	前述のとおり、重大事故等対処施設の耐震評価で用いる原子炉		
及びPCVの圧力・温度は高い方が耐震評価は厳しくなる。この	冷却材圧力バウンダリ及び格納容器の圧力・温度は高い方が耐震		
ため、耐震評価における重大事故時の地震力と組み合わせるRP	評価は厳しくなる。このため、耐震評価における重大事故時の地		
V及びPCVの圧力・温度条件については、有効性評価で考慮す	震力と組み合わせる原子炉冷却材圧力バウンダリ及び格納容器の		
る全ての事故シーケンスのうち、最も厳しくなる事故シーケンス	圧力・温度条件については、有効性評価で考慮する全ての事故シ		
の圧力及び温度を選定することとした。	ーケンスのうち、最も厳しくなる事故シーケンスの圧力及び温度		
	(壁面温度)を選定することとした。		
耐震評価に用いる重大事故時の地震力と組み合わせるRPV及	耐震評価に用いる重大事故時の地震力と組み合わせる原子炉冷		
びPCVの圧力・温度条件の考え方を添付8.3表に示す。	却材圧力バウンダリ及び格納容器の圧力・温度評価のための解析		
	条件の考え方を添付8.3 表に示す。		
		「重大事故時を考慮した地震応答解析モデルにおける水位条件等」	・記載方針の相違
		の考え方を添付8.5表に示す。また、重大事故時のサプレッショ	【柏崎 6/7. 東海第二】
		ン・プールの水位と耐震評価に用いろ水位との関係を添付812図	島根2号炉でけ RP
			N 及びPCVの水位
			条件を記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
添付8.3表 重大事故等対処施設の耐震評価で用いる圧力及び温度	<u>添付 8-3 表</u> 重大事故等対処施設の耐震評価で用いる圧力及び		・解析条件の相違
条件の考え方	温度条件の考え方		【東海第二】
11150000 国内大学体に執行サイトにも認知でした。 条件の考え方 条件設定の考え方 歴史の考え方 原子学体に執進度失 温度の考え方、 RPV 圧力 原子学体に執進度失 方法の第一次シスの事務違真に成も影響の大きい、 アンスの事務違真に成も影響の大きい、 ニッケンスの事務違真に成も影響の大きい、 アンスを選定) 市大学院生、 市大学校上坊、本事故シー ーケンスの事務違真に成も影響の大きい、 アンスを選定) 市大学校上坊、 市大学校上坊、 PCV 圧力 格納容器道圧・ 海道線 (企事故シーケンスの 力、未都許容器道力・ 「たち、 経営・ 度が最も厳しくなる事故 点をが最も厳しくなる事故 展示学ーク・ 日本大学・ 度が最も厳しくなる事故 「たち、 日本大学・ 度が最も厳しくなる事故 日本大学・ 日本学のない (な事故シーケンスを選定) ローカンスを選定) ローカンスを認定			【東海第二】 (島根 2 号炉の添付 8.1 表及び添付 8.3 表 に対応) 有効性評価で 用いる解析条件の保 守性の取り方による 相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		添付 8.5 表 重大事故時を考慮した地震応答解析モデルの水位条	・記載方針の相違
		<u>件等の考え方</u>	【柏崎 6/7,東海第二】
		条件 事故シーケンスと 選定の考え方 条件設定の考え方	①の相違
		R P V 水位 (質量) 全事故シーケンス (重心位置が高くなる ように水位等を選定) 重大事故時の原子炉圧力容器のモデル化におい ては、耐震評価上、重心位置が高い方が地震時 の荷重が大きくなる傾向があることから、重大 事故時における原子炉圧力容器の水位及び燃料 状態としては、冷却材喪失や燃料破損等の状態 を考慮せず、DB時の地震応答解析モデルに考 慮されている諸元を適用する。	
		PCV 水位 (質量) 格納容器過圧・過温破 損 (全事故シーケンスの うち,格納容器水位が 最も厳しくなる事故シ ーケンスを選定) 重大事故時の原子炉格納容器のモデル化におい ては、耐震評価上、水位が高い方が地震時の荷 重が大きくなる傾向があることから、重大事故 時におけるサブレッション・ブール水位として は、以下の事故シーケンスを考慮し、ダウンカ マ取付け部下端位置(約5.05m)を用いる。 ・格納容器過圧・過温破損(残留熱代替除去 系を使用しない場合) (2Pd に到達する までに操作を実施しなかった場合(大破断 LOCA発生時))で約5.03m 重大事故時におけるドライウェルの水位として は、ドライウェル床面+約1m(ベント開口下端	
		位置)の水位が形成されることの影響を検討す る。 原子炉 建物 (原子 炉本体 の基礎 む) 剛性 格納容器過圧・過温破 損 (全事故シーケンスの うち,格納容器温度が 最も厳しくなる事故シ ーケンスを選定) コンクリート温度が 100℃を超える高温環境に なった場合,コンクリート水分逸散による剛性 低下が考えられるため,重大事故時の格納容器 温度を考慮し,原子炉建物の剛性を低下させた 場合の影響を検討する。 なう。 ロンクリート温度が 100℃を超える高温環境に なった場合,コンクリート水分逸散による剛性 低下が考えられるため,重大事故時の格納容器 温度を考慮し,原子炉建物の剛性を低下させた 場合の影響を検討する。 なう。 ロンクリート水分逸散による剛性 低下が考えられるため,重大事故時の格納容器 温度を考慮し,原子炉建物の剛性を低下させる。 む) ロンクリートが弱板 で覆われているため,影響が小さいと考えられ るが, 念のため、格納容器温度を考慮し,原子	
		<u>添付 8.12 図 重大事故時のサプレッション・プール水位と耐震評</u> <u>価に用いる水位との関係</u>	

予炉	備考
別紙1	
)影響評価フロー	
> 訓練実績等	
 操作の不確かさの要因を以下の 6因子に分解して運転員等操作時間に 与える影響を分析 認知 要員配置 移動 操作所要時間 他の並列操作有無 操作の確実さ 	
した 壁	
型 定性的な考察により 影響を確認する 学 解析結果等を用いて、 影響の程度を確認する	
 解析条性(操作条件)の不確かさの場合 ① 解析上の操作時間の余裕があるもの ⇒定性的に影響が無いことを確認 ▲ ▲ ● ● 解析上の操作時間 	
機器 H 値 実際の操作時間 (2) 解析上の操作時間の余裕がないもの ⇒定量的に影響を確認 又は感度解析にて影響を確認 支際の操作時間 解析上の操作時間 解析上の操作時間	

柞	白崎刈	羽洞	亰子フ	力発	電尼	ŕ	6,	/ 7	7 長	計	ī	(20	17.	. 12	. 2	0 }	坂)							 東海	毎第	5二	.発育	電戸	沂	(20	018.	. 9.	. 18	版))												島	根厉	(子)	力発	電視	歽	2 5	予炉	i								備	洘			
																			別	紙2																			兄	別糸	氏2																		別	川紙	2	• :	解析	条件	の框	違		
能喪失)(1/5)	条件設定の考え方	I	子炉熱出力として設定	ナが圧力として政府	戦時の原ナア小仏として政ル	心流重として設定 蒸気流量として設定	☆☆☆☆~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57℃まで低下し、その後は 57℃一定に設定	※ (A型)と9×9 燃料(B型)の熱水力的な特性はほぼ同等	ことから, 代表的に 9×9 燃料 (A型)を設定	ル末期の方がサイクル初期に比べてボイド反応度印加割合が	、保守的な評価となることから、サイクル末期として設定	ウェル内体積の設計値(全体積から内部機器及び構造物の体積)	た値)	トウェル内体積の設計値(内部機器及び構造物の体積を除いた		転時のサプレッション・チェンバ・プール水温の上限値として		転時の格納容器圧力として設定	繊槽水温の実績値を踏まえて保守的に設定	機能喪失)(1/6)		条件設定の考え方		 :帝原士护惑山力として政止	格原子炉圧力として設定	常運転時の原子炉水位として設定	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	(すが)生命ロノルヤロン 豚伽里として政定	格主蒸気流量として設定	J期温度約 216℃から主蒸気隔離弁閉止に伴う給水加熱喪失の後, 電動駆動	水ポンプ停止時点で約 84℃まで低下 > 0 縁約(4 回) トロ> 0 晩約(D 町) の数 * 七的や時界には7回発でも	× 9 燃料(A望)と9× 9 燃料(B望)の熱水刀的な特性ははは両等でめ)、ことから、代表的に9× 9 燃料(A型)を設定		イクル木類の力がサイクルの期に広へて水イト区応度中加割官が入さく、「学的な評価となることから、サイクル末期として設定		計値	e計値(通常運転時のサプレッション・プール水位の下限値として設定)	1常運転時のサプレッション・プール水温度の上限値として設定		1名連転時の格納容器圧力を包含する値		& 能 喪失)(1/ 5)	条件設定の考え方	1	定格原子炉熱出力として設定	定格原子炉圧力として設定	정 바 100 년 10 년 10 10 10 10 10 10 10 10 10 10 10 10 10	通用活用作品では「「「「「」」」ではない。	「在がら流車くしへ取た」 伊枝十載魚源車と「人能作	た旧工がべいましつ、いなた 初期温度 214℃から主蒸気隔離弁閉止に伴う給水加熱喪失後	230 秒程度で約 55℃まで低下し、その後は 55℃一定に設定 8 体を装		8 中2歳 圧力上昇によるボイドの減少により印加される正の反応度を - 02 倍し 厳しく評価するため, 絶対値の大きい 9×9	8 体を装 びMOX燃料228 体を装荷した平衡サイクル末期を設定	9 倍した	ドライウェル内体積の設計値 (内部機器及び構造物の体積を除 いた値) を設定	サイレシンコンチェンバ内体積の設計値(内部機器及び構造はの体化・レンシンコン・チェンバウト	物の14頃を除いてし、を設た 通常運転時のサプレッション・プール水温度の上限値として設	所は後期まであるものです。」と思わ	通常連転時の格納容器圧力として設定		柏詳効載「「「「」」。	6/7,な相 証	東 此 東 王 大	海 容 表	:二】 た, 有 に 記	
主要解析条件(原子炉停止機能	主要解析条件	プラント動特性 : REDV	3,926MWt 定格原 7.02Mm 「 2.22」 2.46回	1.01mralgage」 - 0.0mralgage」 通常運転水位(セパレータス - 7.3.2.2.2	カート下端から+119cm) ^{通告理}	52.2×10°t/h 一在格炉 7.64×10 ³ +/h 定核中:		219 C 程度ぐ	9×9 燃料(A 型)(単一炉 9×9 燃	心) である	サイクル末期の値の1.25倍 サイク,	サイクル末期の値の 0.9 倍 大きく,	7 350m ³ ドライ	1, 000ml を除い	空間部: 2, 960m ³ ウェッ	液相部:3,580m ³ 値)	35°C 通常運	20.0 設定	5. 2kPa[gage] 通常運	32℃	主要解析条件(原子炉停止	-	主要解析条件	アルント単格本・RFDV	3, 293MW	6.93MPa[gage]	通常運転水位(セパレータ 	- ×ガート Γ 漏がら + 1.26 cm) 約 41.06×10 ³ t /h	(85%)	6,420t/h	241 91 c.m.	約 210 C の く 0 縁 約1 (v 新d) 0	- A S 数 (A 型) - A 3 (A 型) - B 4 - 恒 心	→ ⁻	- 2 - 5 体数) 工術++ イクル末期の値の0.9 位 保		7 エノレ) 5,700m ³ 説	ィンジョ 空間部: 4, 100m。 液相部: 3, 300m ³ 酸	() 32°C 通	j	5kPa[gage]	「「近」」と、「ちょう」」	王要膟竹杀件(原于炉停止你	主要解析条件	ブラント 動特性:REDY	2, 436MW	6.93MPa[gage]	通常水位	(気水分離器下端から+83 cm) 。c ~ / v3a c	00: 0 × 10 1/1 1 10		-114 C - 114 C	荷した平衡がい の、 の 一種類 (A 単)、 エイズ・C 27	 9×9 窓枠(A型)及0MUA 窓枠22 数) 荷した平衡サイクル末期時点を1.25×1 ** 	ご順 9×9 燃料(A型)及びMOX 燃料22	系数) 荷した平衡サイクル末期時点を0.9×0.9 値	7.77 7, 900m ³	レッ 空間部:4,700m ³ ※44m:0:0003			5 kPalgage]							
	項目	解析コード	原子炉熱出力	原于护住刀	所于7-741	伊心院重士務会議書		給水温度			条核データ(動的ボイド係数)	件 核データ (動的ドップラ係数)	救納応界交譜 (ドライウェル)		格納容器容積(ウエットウエ	(1/)	サプレッション・チェンバ・プ	ール水温	格納容器圧力	復水貯蔵槽水温			· · · · · · · · · · · · · · · · · · ·		原子が熟白ノービューに、	原 エ か E L の (圧 力 容器 ド ー ム 部)	原子炉水位			主蒸気流量	世 町 平 ヤ7	初	期一般料及び炉心	件 核データ (動的ボイド)	林データ (動的) シンプ		格納容器体積(ドライ)	格納容能体領(サフ 1 ン・チェンパ)	サプレッション・プー/ →当年	水道度	格赖容恭压力			項目		原子炉熱出力	原子炉圧力			//-/L-/ULI 	上述 不叫 重		初 燃料及び炉心 増	条 検データ (動的ボイド係		核データ (動的ドップラ)	格納容器空間容積 (ドラ エル)			使せるなどの	格納容器圧力							

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(2/5) 条件設定の考え方 原心への反応度印加の観点で厳しい過渡事象として 設定 イクアップも含めた全ての制御棒挿入機能の喪失 そックアップも含めた全ての制御棒挿入機能の喪失 イクル初期に比べてボイド反応度印加割合が大き サイクル初期に比べてボイド反応度印加割合が大き く,保守的な評価となることを考慮して設定 同時にトリップせず,原子が出力が高く維持される てとから、燃み破撃管圧力及(ママン)・チェング・1000000000000000000000000000000000000	(2人6) 条件設定の考え方 急点で厳しい過渡事象として設定 金ての制御棒挿入機能の喪失を設定 示イド反応度印加割合が大きく,保守的な評価となる 事象発生と同時に給彼水系及び再循環系ボンプがトリ が高く維持されることから,燃料被履管温度,格納容 定一、プール水温度の上昇の観点で事象進展が厳しく	(5) 条件設定の考え方 条件設定の考え方 (応度印加の観点で厳しい過渡事象として設定 (応度印加の観点で厳しい過渡事象として設定) 切に比べてボイド反応度印加割合が大きく,保守的 (約5.2とを考慮して設定 (約5.5とを考慮して設定 (1.4年四力は高く維持されることから,燃料破覆管温 (1.4年四力に高く維持されることから,燃料破覆管温 (1.4年四力に高く維持されることから,燃料破覆管温 (1.40億(最も短い時間)として設定 一 (1.40億)(化替原子炉再循環ボンプトリップ機能)の (1.7般定) (1.40億))(化替原子炉再循環ボンプトリップ機能)の (1.7般定 (1.40億))(1.4%能の設計値として設定 (1.40億))(1.4%能の設計値として設定	 ・解析条件の相違 【柏崎 6/7,東海第二】 詳細な相違内容は,有 効性評価比較表に記 載
東大) (東大) (((<t< td=""><td>喪寒 を にてる子ブ慮氏 一般 な にてる子ブ慮い 合 比較を しょう かいし 御 め たきおかし (人) 加 め た て ちょうて うかう た て う おう た う かう きょう</td><td> ○ シンド部部センド・ ○ シンド部部センド・ ○ シントを運輸する ○ シントシン(第一次) ○ シン(第一次) ○ シン(第一次)</td><td></td></t<>	喪寒 を にてる子ブ慮氏 一般 な にてる子ブ慮い 合 比較を しょう かいし 御 め たきおかし (人) 加 め た て ちょうて うかう た て う おう た う かう きょう	 ○ シンド部部センド・ ○ シンド部部センド・ ○ シントを運輸する ○ シントシン(第一次) ○ シン(第一次) ○ シン(第一次)	
主要解析条件(原子炉停止機能喪 主要解析条件(原子炉停止機能喪 主蒸気隔離弁の全弁誤阻止 原子炉停止機能、手動での原子炉スクラム及 制御棒挿入機能の喪失 平衡炉心のサイクル末期 外部電源あり 外部電源あり 外部電源あり 小部電源のり 「見れ時間の2秒))で4台,原子炉水位 (見れ時間の2秒))で4台,原子炉水位 (見れ時間の2秒))で4台,原子炉水位 (見れ時間の2秒))で4台,原子炉水位 (見れ時間の2秒))で4台,原子炉水位 (見れ時間の2秒))で4台,原子炉水位 (見れ時間の2秒))で4台,原子炉水位 (見れ時間の2秒))で4台,原子炉水位 (見れ時間の2秒))で4台,原子炉水位 (見れ時間の2秒)の6台がトリップ 高速空転モード 高速空気(1個,365/f/M個 7.55)WPalgage]×4個,377,f/M個 7.55)WPalgage]×4個,380,f/M 7.72)MPalfage]×10,00,f/M 7.72)MPalfage]×10,00,f/M 7.72)MPalfage]×10,300,f/M 7.75)MPalfage]×10,3	主要解析条件 (原子炉停止機能 主要解析条件 主要解析条件 重要解析条件 新気隔離弁の全弁誤問止 有心への反応 有心心の反応 大子の作問御棒挿入機能の喪 がックアップ 大学のの反応 前 前 前 市 大田 一 の 一 市 大 一 一 一 一 一 一 一 一 一 一 一 一 一	解析条件 (原子/炉停止機能喪失) 主蒸気隔離弁の誤問止 市子炉停止機能喪失 市動での原子炉スクラム失敗 オー動での原子デスクラム失敗 オー動大敗 オー動大敗 (作動失敗 1.58m2(1)	
項日 起因事象 安全機能等の喪失に対する仮定 評価対象とする炉心の状態 外部電源 外部電源 外部電源 外部電源 外部電源 外部電源 外部電源 外部電源 小型 大替や却材再循環ポンプ・トリッ ブ機能 原子炉スクラム信号 正要する時間 ですっ 大替や加材再循環ポンプ・トリッ ブ機能 膨子炉子グラム信号 正素気隔離弁の別止に要する時間 でする時間	項 日 項 日 超因事象 注 安全機能の喪失に対する仮定 売 評価対象とする巧心の状態 平4 外部電源 平4	直目 上要 超因事象 項目 放金機能等の喪失に対する仮定 評価対象とする炉心の状態 外部電源 外部電源 外部電源 外部電源 外部電源 外部電源 ハコックトリップ機能) 逃がし安全弁	
事故条件 重大事故等対策に関連する機器条件	事故条件	事故条件重大事故等対策に関連する機器条件	

柏崎刈羽原	子力発電所 6/7	号炉 (2017.12.2	20版)			東海第二	二発電所(2018.9.18	版)		É	品根原子力発電所	2 号炉		備考
<u> 実失) (3/5)</u> 条件設定の考え方 電動駆動給水ポンプの設計値として設定	原子垣隔離時治却系の設計値として設定 「 「 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 」 「 」 」 「 」 」 「 」 」 」 「 」 」 」 」 」 」 」 一 」 「 」 一 」 一 」 一 」 一 」 一 一 一 一 一 一 一 一 一 一 一 一 一	高圧炉心注水系の設計値として設定 高圧炉心注水 ポンプ1台 による注水特性	ほう酸水注入系の設計値として設定 残留熱除去系の設計値として設定	夏失) (3/6)	条件設定の考え方	殺計値の下限(最も短い時間)として設定 再循環系のインターロックとして設定	原子炉圧力が低めに維持される方が、原子炉圧力に依存す る高圧炉心スプレイ系の注水流量が大きくなり、原子炉水 位が高めに維持されることで、原子炉出力の観点で厳しい 設定となることから、逃がし弁機能を設定 逃がし安全弁の自動減圧機能の設計値として設定	電動駆動給水ポンプの設計値として設定) (3/5)	条件設定の考え方 動機駆動給水ポンプの設計値として設定	子炉隔離時谷却系の設計値として設定	田炉心スプレイ系の設計値として設定	う酸水注入系の設計値として設定 留熱除去系の設計値として設定	 ・解析条件の相違 【柏崎 6/7,東海第二】 詳細な相違内容は,有 効性評価比較表に記載
主要解析条件(原子炉停止機能 主要解析条件 ・ 主蒸気隔離弁の閉止によりタービン駆動給水ボン ガがトリップした後、電動駆動給水ボンブが自動 他動するものとする。	- 彼水奋ホッテレッナル かたの K に いっり 毛 W W W W A 水ボンブがトリップ 信号(13. 7kPa [gage])によって自動起動 - 注水達れ時間 30 秒 - 注水流量 182㎡/h(8. 12~1. 03MPa[dif]において)	- 原子炉木位低(レベル 1. 5)又はドライウェル圧力 高信号(13. 7kPa[gage])によって自動起動 ・注水遅れ時間 24 秒(設計値の 37 秒から非常用デ ィーゼル発電機の起動遅れ 13 秒を除いた値) ・注水流量 182~727㎡/h(8. 12~0. 69MPa [dif]にお いて)	・注水流量 1901/min - ほう酸濃度 13. 4wt% 奥交換器 1 基あたり約 8MW(サブレッション・チェン *	主要解析条件(原子炉停止機能更	主要解析条件	 3秒 3秒 再循環系ボンブが,原子炉圧力高(7.39MPa[gage] (退れ時間0.2秒))で2台全でがトリップ 	述がし弁機能 述がし弁機能 7.37MPa[gage]×2個、354.6t/h (1個当たり) 7.37MPa[gage]×4個、357.8t/h (1個当たり) 7.51MPa[gage]×4個、357.8t/h (1個当たり) 7.55MPa[gage]×4個、361.1t/h (1個当たり) 7.55MPa[gage]×4個、364.3t/h (1個当たり) 7.65MPa[gage]×4個、365.6t/h (1個当たり) 1.65MPa[gage]×4個、365.6t/h (1個当たり) 7.65MPa[gage]×4個、365.6t/h (1個当たり) 月動減圧系により逃がし安全弁(自動減圧系)に よる原子炉急速減圧 作動減圧系により逃がし安全弁(自動減圧系)に よる原子炉急速減圧	 主蒸気隔離弁の閉止によりタービン駆動給水ボ ンプが停止した後、電動駆動給水ボンプが自動 起動するものとする。 復水器ホットウェル水位の低下により電動駆動 給水ボンプがトリップ 	主要解析条件(原子炉停止機能喪失	主要解析条件 ・主蒸気隔離弁の閉止によりタービン駆動給水 ポンプがトリップした後,電動機駆動給水ボ ンプが自動起動するものとする。 ・復水器ホットウェル水位の低下により電動機 駆動給水ポンプがトリップ	原 ・原子炉水位低 (レベル2) 信号によって自動 起動 ・注水遅れ時間 30 秒 ・注水流量 91m ³ /h (8.21~0.74)Pa[dif]におい て)、サブレッション・ブール水温度 100°C 到達後は停止	 「原子炉水位低(レベル1H)又は格納容器圧 力高(13.7kPa [gage])信号によって自動起動 ・注水遅れ時間17秒(設計値の30秒からD/ Gの起動遅れ13秒を除いた値) ・注水流量318 ~1,050m⁴/h (8.14~1.38MPa[dif]]において) 	 ・注水流量 1621/分 ・注う酸濃度 13.4ut% ・注う酸濃度 13.4ut% ・注う酸濃度 13.4ut% * ジャプール水温度 52°C、海水温度 30°Cにおい 残て) 	
項目 項目 「 ・ 「 ・ 「 ・ 「 ・	●	に関連する機器条件	ほう酸水注入系 ・ 残留熱除去系(サプレ 熟 シジョン・チェンバ・ ジ		μ	主然気隔離弁の閉止に要する 時間 ATWS線和設備 (代替再宿鍍系ポンプ	重大事故等対策に関連する機器を 「1000///0 が思い。	件 電動感動給水ボンプ		項目 項目 電動機駆動給水ボンプ	唐 大方隔離時冷地系 7 第	1関連する繊諾条件	 ほう酸水注入系 残留熱除去系(サプレッション・ プール水冷却モード) 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
	主要解析条件 (肌子和停止機能喪失) (人6) 三要解析条件 (肌子和停止機能喪失) (人6) 三要解析条件 (肌子和停止機能喪失) (人6) 三年种校氏兩強性 といてが 前子研究開始後加工 2011 「「「中小衣」」「「「中小衣」」「「「「「「「」」」」」」」」」「「」」」」」」」」「「」」」」」」」」	 ・解析条件の相違 【柏崎 6/7,東海第二】 詳細な相違内容は,有 効性評価比較表に記載
	画 画 点 第 点 第 点 第 点 点 二 点 二 点 二 点 二 点 二 点 二 点 二 二 二 二 二 二 二 二 <tr td=""></tr>	

柏崎刈羽原	子力発電所	6/7号炉	(2017.12.	20版)		-	東海第二	発電所(2018.	9. 18 版	į)		島	根原子力	発電所	2号炉	備考
条件設定の考え方	原子炉急速減圧による大量の冷水注入による 反応度上昇防止を踏まえ,自動減圧系起動信 号発生後,逃がし安全弁の開放までの30秒の 間に自動減圧系の自動起動阻止操作を設定	原子炉スクラムの失敗を確認した後から,運 転員の操作余裕として 10 分を考慮した値	サプレッション・チェンバ・プール水温の高 警報設定値(49℃)到達から、運転員の操作 余裕として 10 分を考慮した値			条件設定の考え方	入流量はほう酸水注入系の設計値として設定 う酸水濃度は単位時間当たりに投入される負の反応度が さくなるよう管理範囲の下限値として設定	留熱除去系の設計値として設定	子炉停止機能喪失の確認及び自動減圧系等の起動阻止に する時間を考慮して設定	動減圧系等の起動阻止操作後に実施するため,自動減圧 等の起動阻止操作が完了する事象発生の4分後からほう酸 主入系の起動操作に要する時間を考慮して設定	兄の確認及び操作に要する時間を考慮して設定		条件設定の考え方	止機能喪失の確認及び自動減圧系等の起動阻止に要する 慮した値	クラムの失敗を確認した後から、運転員の操作余裕とし と考慮した値	ション・プール水温度高(49℃)到達から,運転員の操 して 10 分を考慮した値	 ・解析条件の相違 【柏崎 6/7,東海第二】 詳細な相違内容は,有 効性評価比較表に記載
主要解析条件(原子炉停止機能喪失)(4/5) 主要解析条件	自動減圧系の自動起動阻止操作に成功するも のとし、自動減圧系は動作しない	原子炉スクラムの失敗を確認した後から 10 分後に起動	サプレッション・チェンバ・プール水温が 49℃に到達した後から 10 分後に起動		解析条件(原子炉停止機能喪失)(5/6)	主要解析条件	注入流量 163L/min - 注う酸水濃度 13. 4wt % 小さ	熱交換器1 基当たり約 530W (サプレッション・プール水温度 100℃, 海水温 残 度 27. 2℃において)	事象発生 4 分後 要 7	自 事 事 象発生 6 分後 水 さ 水 さ	事象発生 17 分後	:要解析条件(原子炉停止機能喪失)(4/5)	主要解析条件	「原子炉停」	■ 事象発生 11.6 分後 て 10 分を	 ・ ・	
項日	重 大 事 故 等	対 策 に 関 連	や 操 孫留熱除去系(サプレッション・チ 作 エンバ・プール水冷却モード)運転 幹 禅 作		主要(通目	関重 連大 る故 あ故	繊等 器対 発 強 (サプレッジョ 令) (サパ (サプレッジョ (中)) (中))	関 重 二 二 二 二 二 二 二 二 二 一 一 一 一 一 一 一 一 一 一 一 一 一	世 事 る 故 ほう酸水注入系の起動操作 操 等	作 対 条 策 作 に か・プール冷却系) による格 約容器除熱操作		項目	重 大 自動減圧系の自動起動阻止操作 事 bx	操 等 作 対 余 策 件 に 件 に	関連 残留熱除去系(サプレッション す プール水冷却モード(2系統)) る 転操作	

柏崎刈羽原子力発	電所	6 /	~7 号	炉	(201	7.12.20版)		東海鉤	第二発電	電所(2	2018.9.1	8版)				Ē	高根原-	子力発電	所	2号	炉	備考
条件設定の考え方	1	設計限界値として設定	設計限界値として設定	1 1		(9)	条件設定の考え方	1	通常運転時の熱的制限値として設定	通常運転時の熱的制限値として設定	1				条件設定の考え方		9 燃料(A 型),9×9 燃料(B 型),MO X 燃料の熱水力特まぼ同等であることから,代表的に9×9 燃料(A 型)を設	軽転時(MOX燃料を装荷したサイクル以降におけるサイク 朝から、サイクル末期よりさかのぼって炉心平均燃焼度で Wud/t 手前までの期間)の熱的制限値を設定	重転時の熱的制限値を設定	1	1 1	 ・解析条件の相違 【柏崎 6/7,東海第二】 詳細な相違内容は,有 効性評価比較表に記 載
主要解析条件(原子炉停止機能喪失)(5/5) 主要解析条件・相関式	ホットバンドル解析:SCAT	1.22	44. OkW/m	GEXL 相関式 修正 Douisall-Robsenow 式	IETT DOUGAIL NOISEILOW シー 学会標準における相関式2	主要解析条件(原子炉停止機能喪失)(6	主要解析条件	ホットバンドル解析:SCAT	1. 24	44. 0kW/m	GEXL相関式	修正 Dougall-Rohsenow 式	日本原子力学会標準「BWRにおける過渡的な沸騰 遷移後の燃料健全性評価基準:2003」における相関 式2	主要解析条件(原子炉停止機能喪失)(5/5	主要解析条件	ホットバンドル解析:SCAT	9×6 9×9燃料(A型) 性は18 定	 1.25 1.25 2,000 	44. 0kW/m 通常道	GEXL 相関式 (//	修止 Dougal1-Konsenow ユ 日本原子力学会標準「BWRにおける過 渡的な沸騰遷移後の燃料健全性評価基 準:2003」における相関式2	
項日	解析コード 	创 最小限界出力比 (MCPR)	件 最大線出力密度(MLHGR)	BT 判定(時刻) RT 後の軟料権表面執伝達係数	DI 1& OZWATTPA XI II XI IA E IN XX リウェット相関式		通	解析コード	初最小限界出力比期	条	沸騰遷移の判定	沸騰遷移後の熱伝達相関式	リウェット相関式		項目	解析コード		期 条 最小限界出力比 (MCPR)	燃料棒最大線出力密度(MLHGR)	BT 判定(時刻) 	BI 後の被復官衣面熱体達率 リウェット相関式	

柏	临刈	羽	亰子	力	発電	酛	6	/ '	7号	炉	(201	7.1	2.2	20 閲	反)				東	〔海贫	<u>5</u> _2	発電	所((201	18.9). 18	版)								Ē		原子	力発電展	斤	2 号/	炉							備考	
																別紙3															別紙:	3													5	引紙	3	・解析条	件の相違	14
(代替循環冷却系を使用する場合) (1/4)	条件設定の考え方		定格県子炉熱出力として設定 少林店フ店ドキトレノ地会	圧格原十児圧力として設定	国市理時中の原ナアか山こうへ取た) た 中 m m m m m m m m m m m m m m m m m m	サイクル末期の燃焼度のばらつきを考慮し、10%の	(米寸性を考慮) ドライクシェル内体積の設計値(全体積から内部機器 サマルはかたのたなきかいますに)	及い時に初い件頃ではいた。 ウェットウェル内体積の設計値(内部機器及び構造	物の体積を除いた値)	・ 真空破壊装置の設定値	- 通常運転時のサプレッション・チェンバ・プール水 位として設定	通常運転時のサプレッション・チェンバ・プール水 温の上隔値として設定	<u>い</u>	通常運転時の格納容器温度として設定	復水移送ポンプ吐出温度を参考に設定	負荷(格納容器過圧・過温破損)) る場合) (1/4)	条件設定の考え方	コン設定	いた設定	戸水位として設定		- 一 (13 ヶ月) に調整運転期間(約1 ヶ月) を考慮した運転	焼度を設定		寺のサプレッション・プール水位の下限値に基づき設定)	定値	ノッション・ブール水位の下限値として設定 ノッション・ブール水温度の上限値として設定	マフノヨンティーノーが10世代的としていたた 学器圧力を包含する値	容器雰囲気温度(ドライウェル内ガス冷却装置の設計温度)	Lを包含する高めの水温を設定 イウェル部)には通常運転時からブール水が存在するが、格 着与することから、格納容器雰囲気温度の挙動を厳しく評価 ペデスタル(ドライウェル部)のプール水を考慮しない	(格納容器過圧・過温破損))	$\frac{1}{2}$) $(1/4)$	条件設定の考え方		rPP熟出力として設定 予炉圧力として設定	誌時の原子炉水位として設定	5流量として設定	然幹 (A型),9×9巻巻(B型) は熟水万的な特性は同等であり, 亀は熊幹棒最大線出力密度の保守性に包絡されること,また,9 早の方がMOX 総料よりも崩壊熱が大きく,然料被覆管温度上昇 く厳しいため, MOX 燃料の評価には3×9 然粋(A型)の評価に スケンを差慮! 在まれに9×9枚約(A型)の評価に	マットロールで、1.454.1~20~2~2~2~2~2~2~2~2~2~2~2~2~2~2~2~2~2~2	ウェル内体積の設計値(内部機器及び構造物の体積を除いた値)	ッション・チェンバ内体積の設計値(内部機器及び構造物の体積	です。 です。 していたいたい にしていたい では、 していたい では、 していたい では、 していたい してい していたい してい していたい していたい してい してい してい してい してい してい してい して	奏装置の設定値 Terrers 1	E時のサブレッション・ブール水位として設定 E時のサブレッション・ブール水温度の上限値として設定	転時の格納容器圧力として設定 転時の格納容器温度として設定	k槽の水源温度として実測値及び夏季の外気温度を踏まえて設定 	【柏崎 6, 詳細な 効 載	/7,東海相違内容	第二】 ぶは, 有 表に記
格納容器過圧・過温破損))	主要解析条件	MAAP	3, 926MWt	7. 0/MPalgage] 通常運転水位(セパレータスカー	下端から+119cm) 53 3004 /h	92, 2001/11 ロンロ(外生) (A 丹d)	6261-1 -2-SWA/ISWA	燃焼度 33GWd/t 7.350m ³	空間部: 5,960m ³ 定由者: 5,200m ³	液相哥/: 3, 580m ⁵ 3. 43kPa	(ドライウェルーサプレッション・ チェンバ間差圧)	在 7.05m (通常運転水位)	昰 35℃	5. 2kPa[gage]	57°C	50℃ (事象開始12時間以降は45℃, 事象開始24時間以降は40℃)	*囲気圧力・温度による静的 (代替循環冷却系を使用す)	解析条件	定格原子炉熱出力と] 定格原子炉圧力とし	(セパレータ 13 C + 196 cm) 通常運転時の原子が	····································	1型) -1979 1 サイクルの運転費	1/t) 期間に対応する燃修 11.41 加盟に対応する燃修		m ³ 款計値(通常運転m m ³	イウェルーサプレ =ンバ間差圧)	重転範囲の下限値) 通常運転時のサプ は 通常運転時のサプ に 通常運転時のサプ に	価市産齢が2000 通常運転時の格納 指	通常運転時の格納3 として設定	 年間の気象条件変化 ペデスタル (ドラ・ 納容器の熱容量にう する設定として、、 	圧力・温度による静的負荷	熱代替除去系を使用する場合	主要解析条件	MAAP –	2,436MW 定格原子 6.93MPa[gage] 定格原子	通常水位 (気水分離器下端から+83 cm) 通常運転	35.6×10 ³ t/h 定格炉心	9×9% その相違 その相違 その相違 その相違 その相違 その の相違 また の も 来 の も 本 の も 本 の も た の 相 に や の 一 の 一 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 記 た の 日 い の た の 日 記 た の 日 記 た の 日 い た の 日 い の た の 日 い の し 、 の の い の 日 の の の い の の の の の の し 、 の の の の し の の の の し の の の の の の の の の の の の の	ANSI/ANS-5.1-1979 サイクハ (鉄雄市 33CW4/+) 定	7,900m ³ ドライウ	空間部:4.700 ^{m3} サプレッ	並用部:2,800m ³ を除いた	3.43kPa(ドライウェル-サプ)真空破壊 レッション・チェンバ間差圧) ユニュ (mm、)	35°C 通常運転 35°C 通常運転	5 kPa [gage] 通常運転 57℃ 通常運転	35℃			
主要解析条件(雰囲気圧力・温度による静的負荷(枚	項目	解析コード		原子炉上刀	「京子が永山」	<u> </u>	/////////////////////////////////////	*************************************	初 	A HAM PETERFER X / / / / / / / / / / / / / / / / / /	LL 真空破壊装置 	サプレッション・チェンバ・プール水位	サプレッション・チェンバ・プール水温	格納容器圧力	格納容器温度	外部水源の温度	主要解析条件(雰	道日		原子炉圧力 (圧力容器ドーム部) 6.93MPa [gage]	原子炉水位 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	<u>「「「」」 「「」」」 「「」」」」</u> 「」」」	※ 朴 9×9 ※ 1 (A3 1 年 4 1 年 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>かいかけているでは、</u> (熟焼度330md/ 格納容器体積 「 100-3	$(\vec{k} \vec{\gamma} \cdot \vec{\gamma} + \vec{\mu} \cdot \vec{\nu}) = 0, (1000^{\circ})$	期 格納容器体積 空間部:4,100m ³ 条 (サブレッション・チェンバ) 液相部:3,300m ³	件 真空破壊装置 シンヨン・チェン	サブレッション・ブール水位 6.983m(通常運転 サプレッション・ブール水源度 3.92C	<u>ップレンプラインプロンプロンプロンプロンプロンプロンプロンプロンプロンプロンプロンプロンプロン</u>	格納容器雰囲気温度 57℃	 外部水源の温度 35℃ ペデスタル(ドライウェル部) 考慮しない のプール水 	主要解析条件(雰囲気圧	(残留熱	項目		<u> 原子学熟出力 原子学年力 6</u>	原子炉水位	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		初 期 原子炉停止後の崩壊熟	条 条 7	格納容器空間体種(サプレッション・		<u>真空破壊装置</u> ニーパ、	サブレッション・ブール水位 3 サブレッション・ブール水位 3	格納容器圧力 E 格納容器温度 5	外部水源の温度 3 3 3 3 3 3 3 3 3 3 3 3 3			

		項目		主要解析多	4件	条件設定の考え方	崎刈羽原
		扫田市		大破断 LOCA		原子炉圧力容器内の保有水量が厳しい箇所として	子力
	÷	^{陸凶 ずみ} 安全機能の喪失に対	する仮定	<u>検留熱除去系の吸込配</u> 全交流動力電源喪失 高圧注水機能及び低圧	管の破断 注水機能喪失	設定 全ての非常用ディーゼル発電機の機能喪失を想定 し、設定 高圧注水機能として原子炉隔離時冷却系及び高圧 炉心注水系の機能喪失を、低圧注水機能として低	発電所 6/7号
	*故条件	外部電源		外部電源なし		圧注水系の機能喪失を設定 過圧及び過温への対策の有効性を総合的に判断す る観点から、プラント損傷状態である LOCA に全 交流動力電源喪失を重畳することから、外部電源	炉 (2017.12)
		水素ガスの発生		ジルコニウムー水反応	を考慮	かたべりのもいとしてはた 水の放射線分解等による水素ガス発生について は、格納容器圧力及び温度に対する影響が軽微で あることから考慮していない	. 20版)
		主要略	·析条件(雰囲気) (代)	王力・温度による静的 替循環冷却系を使用す	<u>り負荷(格納</u> 窄 する場合) (2/	S 器 過 正 ・ 過 温 破 損)) (4)	1
		項目	主要	解析条件		条件設定の考え方	
	起因事象		大破断LOCA 再循環系配管(出	ロノズル)の破断	原子炉圧力容器/ 器内の圧力上昇J 容器バウンダリ((出口ノズル) (いら格納容器への冷却材流出を大きく見積もり,格納容 &び温度上昇の観点から厳しい設定として,原子炉圧力 2接続する配管のうち,口径が最大である再循環系配管 zおける両端破断を設定	東海第二
—————————————————————————————————————	安全機能	の喪失に対する仮定	全交流動力電源喪	失 及び低圧注水機能喪失	非常用ディーゼ/ 高圧注水機能として 強水機能として列機能喪失し	P発電機等の機能喪失を想定し,設定 レて原子炉隔離時冷却系及び高圧炉心スプレイ系,低圧 見留熱除去系(低圧注水系)及び低圧炉心スプレイ系の	二発電所(
张廷	外部電源		外部電源なし		過圧及び過温への 損傷状態である1 部電源が喪失する ただし、原子炉 件として、機器	D対策の有効性を総合的に判断する観点から、プラント - O C A に全交流動力電源喪失を重畳することから、外 5ものとして設定 ペクラムについては、外部電源ありの場合を包括する条 条件に示すとおり設定	(2018. 9. 18 片
	水素の発	生	ジルコニウムー水、	反応を考慮	水の放射線分解等 温度に与える影響	章による水素発生については、格納容器圧力及び雰囲気 季が軽微であることから考慮していない	反)
	L	主要解析条件	(雰囲気圧力・温 (残留熱代替除	度による静的負荷(オ 去系を使用する場合)	各納容器過圧 (2 / 4)	· 過温破損))	
		通		主要解析条件	[道子]	条件設定の考え方 戸圧力容器から原子炉格納容器への冷却材流量を大きく見	
		起因事象		大破断LOCA 再循環配管(出ロノズル)	- の 破 時 - - - - - - - - - -	9, 原子炉格納容器内の圧力上昇及び温度上昇の観点から厳 安定として, 原子炉圧力容器バウンダリに接続する配管のう 1径が最大である再循環配管 (出ロノズル) の両端破断を設	島根原
		事 	対する仮定	高圧注水機能喪失 低圧注水機能喪失 全交流動力電源喪失	す高系留	ての非常用ディーゼル発電機等の機能喪失を想定し、設定 注水機能として原子炉隔離時冷却系及び高圧炉心スプレイ 幾能喪失を,低圧注水機能として低圧炉心スプレイ系及び残 除去系(低圧注水モード)の機能喪失を設定	子力発電所
		外部電源		外部電源なし	過ラうる	及び過温への対策の有効性を総合的に判断する観点から、プト損傷状態であるLOCAに全交流動力電源喪失を重畳すとから、外部電源が喪失するものとして設定	2号炉
		水素ガスの発生		ジルコニウムー水反応をま	う慮 及び う 成 の う 成 の う の う の う の う の う の う の う の	放射線分解等による水素ガス発生については、格納容器圧力 晶度に与える影響が軽微であることから考慮していない	
						【柏崎 6/7,東海第二】 詳細な相違内容は,有 効性評価比較表に記 載	備考

柏崎	別羽	原子)	力発電所	6/7号炉	(2017	7.12.20	0版)			東	海第二	论電所	ŕ (20	18. 9. 1	8版)						島村	限原子力発電所 2	号炉			備考
弋替循環冷却系を使用する場合) (3/4)	条件設定の考え方	事象発生と同時に原子炉スクラムするものとして 設定	設計値に注入配管の流路圧損を考慮した値として 設定 "	(加水化) (加水化) (加水化) (加水化化) (加水化化 (加水化化 (加水化化 (加水化化) (加水化化 (加水化化) (加水化) (加水) (加水) (加水) (加水化) (加水) (加水) (加水) (加水) (加水) (加水) (加水) (加水) (加水) (加水) (加水) (加水) (加水) (加) (加水) (((((((((((((格納容器温度及び圧力抑制に必要なスプレイ流量 を考慮し、設定	可搬型代替注水ポンプ(A-2級)による注水を想定 設備の設計を踏まえて設定	代替循環冷却系の設計値として設定	格納容器過圧・過温破損)) () (3/4)	条件設定の考え方	るが原子炉熱出力が維持される厳しい設定として、外部電源喪失 >蒸気加減弁急閉及び原子炉保護系電源喪失による原子炉スタラ ま保守的に考慮せず、原子炉水位低(レベル3)信号にてスクラ として設定	るが主蒸気が格納容器内に維持される厳しい設定として、原子炉 奥失及び原子炉水位異常低下(レベル2)信号による主蒸気隔離 いては保守的に考慮せず、事象発生と同時に主蒸気隔離弁が閉止 した部	またのであることから、全交流動力電源喪失によるボ ちえる影響は軽微であることから、全交流動力電源喪失によるボ 皆まえて訳定 #在にいっ部わぶ串レリアで認っ	#テティームン突イルル.m.c レヽωた 断気温度及び圧力抑制に必要なスプレイ流量を考慮し、設定	田気温度の挙動を厳しく評価するため、初期条件としてペデスタ <i>ウェル</i> 部)のプール水を考慮していないことから、常設低圧代替 プを用いた格納容器下部注水系(常設)によるペデスタル(ドラ ★付の確保趣在についてもえ書したい	維持に必要な流量、格納容器圧力及び雰囲気温度の抑制に必要な 量を考慮して設定	設計性能に基づき,代替循環冷却系の除熱性能を厳しくする観点 実績を包含する高めの海水温度を設定	本格納容器内の酸素濃度上昇抑制に必要な流量として設定 重は純度 99vo1%を考慮して残り全てを酸素として設定 気象条件を考慮して設む	各納容器過圧・過温破損)) (3 / 4)	条件設定の考え方	司時に原子炉スクラムするものとして設定	専卒器内に保持される厳しい条件として設定 電源喪失によるポンプ停止を踏まえて設定 ************************************		余去系の設計値として設定	大替冷却系の設計値として設定	ま格納容器内の酸素濃度の上昇抑制に必要な流量として設定 畫は純度 99.9%を考慮して残り全てを酸素として設定	 ・解析条件の相違 【柏崎 6/7,東海第二】 詳細な相違内容は,有 効性評価比較表に記 載
損)) ((7 A		はかし <i>を</i>	ちくスプ		っとし、 容器スプ 問	<u>)負荷(</u> -る場合		(時間である) 手のタービン いたついて行いするの8	回時間 (1995) (1997) (1997) (1997) (1997) (1997) (1997) (1997)	1 一 の 御田 で 一 の 田 の 田 の 四 の	415日1月11日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日	ぬ物語 発明・(ドラー (ドレー (アート) イト (アート) トレート (アート) トレート (加) オート (加) オート (加) オート (加) オート)	言い治地の**	浅交換器の 高大の う 、 過去の う	8注入流量0 8素注入流量 ブス温度は9	真荷(格 5場合)		象発生と同	·蒸気が格線 ·交流動力 		留熱代替隊	子炉補機付	注入流量(2 注入流量(2 注入流量	> 入温度(1) (1) (1)
i(格納容器過圧・過温破	主要解析条件	事象発生と同時に原子炉スク		★× 300m/h で注水, その後 冠水維持可能な注水量に制御) 140m ³ /h にて原子炉格納容器H レイ	90m³/h で注水	循環流量は、全体で約190m ³ / 原子炉注水へ約 90m ³ /h、格緑 レイへ約 100m ³ /h に流量を分	囲気圧力・温度による静的 (代替循環冷却系を使用す	主要解析条件	第 法位低 (レベル3) 信号 1	角 位と同時に閉止 4	(生と同時に停止) 14(1-1-1-1) 14(1-1-1-1) 14(1-1-1-1) 14(1-1-1-1)		林 法慮しない が パ	流量:250m ³ /h 容器スプレイ:150m ³ /h 炉注水:100m ³ /h	環治型糸から緊急用海水米への伝 ::約14MW ドッション・プーレ水温度 100℃ - 1 温声 32℃において)	新興: 200m ³ ~h 198m ³ ~h 2m ³ ~h 成: 30℃	気圧力・温度による静的 留熱代替除去系を使用す。	主要解析条件	2発生と同時に原子炉スクラム 事	決発生と同時に閉止 注発生と同時に停止 金	a m³/h (1.00MPa[gage]において)で くその後は炉心を冠水維持可能な く量に制御	≹流量は、全体で120m³/hとし、原 1注化へ 30m³/h、格納容器スプレ 残 ~150m³/h、広量を分配	- <u>1.20m / 11.1.0m a 0.7 m</u> 雪熱代替除去表から原子炉補機代 う却系への伝熱容量:約7.MW トプレッジョン・ブール水温度: 原	C、海水温度 30℃において) E入流量:100 ^{m3} /h 意素:99.9 ^{m1} /h 酸 酸 酸	< <p>《温度:35°C 12</p>
静的負荷					迎系(常設)	2 殺)		件(雰囲		道子垣	事象発	事後発	ローズが	解析上	※ ・・ 御 を 原 子	代勲()著が水橋	・ ・ が 注室酸 ド・ガンズ 素 藤 混	⊨ (雰囲) (残)		事	中 中 秋 秋	"遗"。 200 ¹ 分子	循子イ環炉へ	【	1000 1000 1000 1000 1000 1000 1000	ЖХ Л
ミカ・温度による	項目	子炉スクラム信号		E代替注水系 (常設)	替格納容器スプレイ治 ±	般型代替注水ポンプ (A	孝循環冷却系	主要解析条	項目	原子炉スクラム信号	主蒸気隔離弁	■ 大 再 備 環系ポンプ 正 中 歴 一 一 一 一 一 一 一 一 一 一 一 一 一	枚 (本 本 (本 本 (本 本 本 (本 本 (本 本 (本 本 (本 (2 周 格納容器下部注水系 重 (常設)	80 器 代替循環冷却系 44	緊急用海水系	可搬型窒素供給装置		通	原子炉スクラム信号 	主蒸気隔離弁 再循環ポンプ	低圧原子炉代替注水系 (}	残留熱代替除去系	原子炉補機代替冷却系	可搬式窒素供給装置	
围氛囲		道		倒	₩¥	=	代4					(m) / h), -			✓ 450 0/1	-						重大事故等対策に関連	する機器	₩ 4		
主要解析条件(雰			μ T	可"+化/φ/+X (X (2) (至),		<i>₽117.4</i>																				

キャンシュー	柏崎刈る	羽原	子力発電所 6	/7号炉	(2017.12	. 20版)		東海	第二発電所(20	18.9.18版)				島根原子	子力発電所	2 号炉	備考
 1. (統約時間前(統約容器適圧・過温破損) 一 二 二 一 二 一 一 一 二 二 一 二 	(代替循環冷却系を使用する場合) (4/4)	条件設定の考え方	全交流動力電源喪失時の訓練実績を踏まえて設 定	原子炉格納容器の限界温度到達防止を踏まえて 設定	代替原子炉補機冷却系の準備期間を考慮して設 定	代替原子炉補機冷却系の準備時間を考慮して設定	(格納容器過圧・過温破損)) 注)(4/4)	条件設定の考え方	制御室における常設代替高圧電源装置, 代替格納容器スプレイ 系(常設) 及び低圧代替注水系(常設) の準備時間を考慮して	制御室における緊急用海水系及び代替循環冷却系の準備時間を して設定	容器内酸素濃度がベント基準である 4. 3vo1%(ドライ条件) を防止する観点で設定	帰過圧・過温破損)) 4)	条件設定の考え方	「設代替交流電源設備の起動、受電及び低圧原子炉代替注水系 (常設)の準備時間を考慮して設定	〔子炉補機代替冷却系の準備時間を考慮して設定	〔子炉補機代替冷却系の準備完了後の可搬式窒素供給装置の準 時間を考慮して設定	 ・解析条件の相違 【柏崎 6/7,東海第二】 詳細な相違内容は,有 効性評価比較表に記載
パージーを 能 差 無 差 約 パージーを 第 第 第 第 第	静的負荷(格納容器過圧・過温破損))	主要解析条件	事象発生 70 分後	原子炉水位が破断口高さまで水位回復 後,格納容器温度が約 190℃到達時	事象発生 20 時間後	事象発生約 22.5時間後	会件(雰囲気圧力・温度による静的負荷 (代替循環冷却系を使用する場合)	主要解析条件	中央 発発生から 25 分後 設定	象発生から 90 分後 考慮	納容器内酸素濃度が 4.0vo1%(ドライ条 格納)に到達時	町 気圧力・温度による静的負荷(格納容 実留熱代替除去系を使用する場合)(4∠	主要解析条件	る原 事象発生から 30 分後	替除 事象発生から 10 時間後	格約 事象発生から12 時間後 備	
 ・注援機構、 ・注援機構、 ・ ・ ・	主要解析条件(雰囲気圧力・温度による	項目	常設代替交流電源設備からの受電及び 低圧代替注水系(常設)による原子炉 注水操作	代替格納容器スプレイ冷却系(常設) による原子炉格納容器冷却操作	代替原子炉補機冷却杀運転操作	代替循環冷却系による原子炉格納容器 除熱操作	主要解析务	項目	常設代替高圧電源装置による 緊急用母線の受電操作並びに 長 代替格納容器スプレイ冷却系 す (常設)による格納容器冷却 故 操作及び低圧代替注水系(常 対 対 対	 第 緊急用海水系による冷却水(調 海水)確保操作並びに代替循 事 中 操作 	作 条 可搬型窒素供給装置による格 格 納容器内への窒素注入操作 件	主要解析条件 (雰囲	項目	重 (1) 重 (1) (1) (1) (1) (1) (1) (1) (1)	等 対 策 原子炉補機代替冷却系及び残留熱代 に 去系による原子炉格納容器除熱操作 連	マ 協 横 「 御 武 電 派 二 御 二 御 二 御 御 御 御 御 御 御 御 御 御 御 御 御	
重大事故等対策に関連する操作条件			重大事故	等対策に関	通する操作	作条件											

柏崎	刈羽	原-	子大	J発	電月	斤	6	/	7 +	号灯	F	((20)	17.	12	. 20	版)							東	〔海	第_	二系	管電	所	(20	018.	9.	18	版)												島村	艮原	子フ	力発	電所	ŕ ź	2 号	炉									備	考			
																		別	脈	Ł																			別約	紙4																		別	刂紙	4	・解	析条	件の	○相	違		
循環冷却系を使用しない場合)(1/4)	条件設定の考え方	一定務原子伊熱出力として設定	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	通常運転時の原子炉水位として設定	定格流量として設定	1	サイクル末期の燃焼度のばらつきを考慮し、10%の 母守林を考慮	ドライウェルの体積の設計値(全体積から内部機器	及び構造物の体積を除いた値] ウェットウェル内体積の設計値(内部機器及び構造	物の体積を除いた値) 物の体積を除いた値)	直空破壊装置の設定値		通常運転時のサプレッション・チョン、プーク水	业として政圧	通常運転時のサプレッション・チェンバ・プール水 ヨ ヘ funder こ と起金		通常連転時の格納容器圧力として設定 活め国主曲であみる回知面にして進む	通常連転時の格納谷裕温度さして政正	復水移送ポンプ吐出温度を参考に設定		<u> </u>	/ /1/ 1/ 冬仲認定の考えた		没定	Ŀц;	- L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۲×۲۰ ۲	1	3ヶ月) に調整運転期間(約1ヶ月)を考慮した運転	没定		プレッション・プール水位の下限値に基づき設定)			ョン・プール水位の下限値として設定 ョン・プール水温度の上限値として設定	コン・ノーバル皿にシンエ吟曲としていた。 りを包含する値	囲気温度(ドライウェル内ガス冷却装置の設計温度)	含する高めの水温を設定	ル部)には通常運転時からプール水が存在するが,格 ることから,格納容器雰囲気温度の挙動を厳しく評価	タル(ドライウェル計)のブール水を考慮しない		衫納容器過圧・過温破損))	(1/4)	条件設定の考え方		1カとして設定 いとして設定	7-0~1815年 第24日本位として設定	units and unit		▶ 体最大線出力密度の保守性に包絡されること、また、9 ▲MOX燃料よりも崩壊熱が大きく、燃料被覆管温度上昇	いため, MOX燃料の評価は9×9燃料(A型)の評価に とを考慮し、代表的に9×9燃料(A型)を設定	0燃焼度のばらつきを考慮し、10%の保守性を考慮して設	1体積の設計値(内部機器及び構造物の体積を除いた値)	1474 とまたまで、日常な子)が14月の時代です。 アン・	・シェントノンド当今頃の以前三国(いう司物語文の当時自初の一条頃)設定値	トプレッション・プール水位として設定	▶プレッション・プール水温度の上限値として設定 &紬※翌正セッ! ヶ部会	1月11日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日	、源温度として実測値及び夏季の外気温度を踏まえて設定	【柏詳 効 載	崎 6 6 細な 性言	/7, 112	東内乾	毎容を	二】 よ, 存 に言	
温破損))(代替	要解析条件			(セパレータスカート下		<u>[</u>]	1979		n3	n3	ーキプレッション・チ		転水位)						a 12 時間返産は 49 C, 間以降は 40 C)		<u>る静的貝何(格</u> '田たきたい祖会			格原子炉熱出力として	格原子炉圧力として設け	党浦郡臣の百子右永位	長年世に一才皆む	格流重として設定	サイクルの運転期間(1	間に対応する燃焼度を言	計値	計値(通常運転時のサ		空破壊装置の設定値	常運転時のサプレッショ 営運転時のサプレッショ	間運転時の格納容器圧	常運転時の格納容器雰 して設定	。、 間の気象条件変化を包	デスタル (ドライウェ. 容器の熱容量に寄与す	る設定として、ペデス、		こる静的負荷(柊	使用しない場合)		1	定格原子炉熟出 定格原子何圧1	「「「」「「」」「」「」」「」」「「」」」	83 (三)	W + 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	その相違は燃料 × 9 燃料の方が	の観点で厳しい何能されること	サイクル末期の 定	ドライウェルは	1 - 2	ッ / / シ / シ / 3 / を除いた値)	 ーサプ 重空破壊装置の 	1 (()) () () () () () () () () () () () () () () ()) ()) ()) ()) ())) ())) ()))) ()))))))))))))	通常運転時の支援を定め	国内市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	屋外貯水槽のカ							
各納容器過圧・過	TT	3. 926MWt	7. 07MPa[gage]	通常運転水位	52, 200t/h	9×9 燃料(A 型	ANSI/ANS-2.1-〕 軟陆臣 33GW4/+	7. 350m ³	空間部:5.960	液相部:3,580	3. 43kPa (ドライウェル	エンバ間差圧)	ール水 7.05m (通常運		-ル木 35°C		5.2kPalgage]	57℃	30 C (<u>私出力・温度によ</u> & 維晋 冷却			定		(セパレータ 通	(中国) (126cm) (126cm) (125cm)	A型) A型)	-1979 1 3	1/t) 期	部	m ³ 武3	イセーナプレ	マンバ間差圧) マンバ間差圧) 真	亜転範囲の下限値) 通		囲 へ) 中	Ŷ 案	<u>+</u>		気圧力・温度によ	熱代替除去系を	主要解析条件	MAAP	2, 436MW 6_93MPa[gage]	o. John algage] 通常水位	(気水分離器下端から+8 35.6×10 ³ t/h		9×9燃料 (A型)		ANSI/ANS-5.1-1979 (姚焼度 33GWd/t)	7, 900m ³	- 100-3	至同即:4, 00回 液相部:2, 800回 ³	3.43kPa(ドライウェル) レ…シュン・チェンジ語	レッション・テェンハ順 3.61m(NWL)	35°C 5 tPo[]	J MralgageJ	35°C							
よる静的負荷(柊	項目	脾性ユート 既用力	王力 王力	水位	1		亭止後の崩壊熱	器索繕 (ドライウェル)		器容積(ウエットウエル)	寒纮晋		ッション・チェンバ・プー		ッション・チェンバ・プー	1	器圧力 出温度	昂温度	原の温度		<u> </u>		MAAP	3, 293MW	6.93MPa [gage]	通常運転水位	スカート下端か		ANSI/ANS-5.1-	(燃焼度 33GWd	5, 700m ³	空間部:4,100	///) 秋阳即:3, 2001 3 45kPa (ドラ,		水位 6.983m(通常道 水温度 32℃	5kPa [gage]	57°C	35°C	ル部) 考慮しない			医解析条件(雰囲 う	(残留	項目	ドコード							の崩壊熱	本積 (ドライウェル)	王雄(中子)	4頃(シノアシノコノ・		ン・プール水位	ン・プール水温度		英							
■気圧力・温度に		「直子信養」		原子炉力	炉心流	燃料	原子炉	格納容品		初 格納容器	条 直空破战	44	キプレ	位	キプレジ	頭	格納容品	位利谷石	外部水池		王瑗	田田	「ユード	原子炉熱出力	原子炉圧力 (圧力容器ドーム部)	百子后水位		中心流量 然 料	※ 11 西ノ后伯 正然のは唐雄	5.1.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	谷網谷諾体積 (ドライウェル)	各納容器体積 (++プ・・・・・・・・・・・	(サノレジンヨノ・ナエ	真空破壞装置作動差圧	サプレッション・プール	<u>* * * * * * * * * * * * * * * * * * * </u>	络納容器雰囲気温度	外部水源の温度	ペデスタル(ドライウェ)	のブール水	ļ,	土费			一	原子炉熱出力 面子垣圧力	※1 を 20	「「「「「」」」		然料		初 原子炉停止後0	条件格納容器空間(7日日	(作物)を辞注[1]/(チェンバ)	真空破壊装置	サプレッション	サプレッション 教祖後昭氏士	他們在船江/J 格納容器温度	外部水源の温							
主要解析条件(雰B																																<u>小</u> 初 一 十		11	<u> </u>		*																														

柏崎刈	羽原	子力発電	⑥所 6 ∕ 7 号炉	(2017.12.2	20版)			東海第二	発電所(2	2018.9.18版)			島根原	子力発電所	2号炉		備考
	条件設定の考え方	原子炉圧力容器内の保有水量が厳しい箇所として 設定	全ての非常用ディーゼル発電機の機能喪失を想定 し、設定 高圧注水機能として原子炉隔離時冷却系及び高圧 炉心注水系の機能喪失を、低圧注水機能として低 圧注水系の機能喪失を設定	過圧及び過温への対策の有効性を総合的に判断する観点から、プラント損傷状態である LOCA に全交流動力電源喪失を重畳することから、外部電源が喪失するものとして設定	水の放射線分解等による水素ガス発生について は、格納容器圧力及び温度に対する影響が軽微で あることから考慮していない。	(格納容器過圧・過温破損)) 易合) (2/4)	条件設定の考え方	器から格納容器への冷却材流出を大きく見積もり,格納容昇及び温度上昇の観点から厳しい設定として,原子炉圧力リに接続する配管のうち,口径が最大である再循環系配管)したおける両端砕断を設定	ゼル発電機等の確認である。 ゼル発電機等の機能喪失を想定し、設定 として原子炉隔離時冷却系及び高圧炉心スプレイ系、低圧 で残留熱除去系(低圧注水系)及び低圧炉心スプレイ系の 定	への対策の有効性を総合的に判断する観点から、プラント るLOCAに全交流動力電源喪失を重畳することから、外 するものとして設定 昭スクラムについては、外部電源ありの場合を包括する条 器条件に示すとおり設定 解等による水素発生については、格納容器圧力及び雰囲気	圧・過温破損)))	条件設定の考え方	原子炉圧力容器から原子炉格納容器への冷却材流量を大きく見 積もり,原子炉格納容器内の圧力上昇及び温度上昇の観点から厳 しい設定として,原子炉圧力容器バウンダリに接続する配管のう ち,口径が最大である再循環配管(出口ノズル)の両端破断を設 定	すべての非常用ディーゼル発電機等の機能喪失を想定し, 設定 高圧注水機能として原子炉隔離時冷却系及び高圧炉心スプレイ 系の機能喪失を, 低圧注水機能として低圧炉心スプレイ系及び残 留熟除去系(低圧注水モード)の機能喪失を設定	過圧及び過温への対策の有効性を総合的に判断する観点から、プ ラント損傷状態であるLOCAに全交流動力電源喪失を重量す ることから、外部電源が喪失するものとして設定	水の放射線分解等による水素ガス発生については, 格納容器圧力 及び温度に与える影響が軽微であることから考慮していない	 ・解析条件の相違 【柏崎 6/7,東海第二】 詳細な相違内容は,有 効性評価比較表に記載
	王要解析条件	大破断 LOCA 残留熱除去系の吸込配管の破断	全交流動力電源喪失 高圧注水機能及び低圧注水機能喪失	外部電源なし	ジルコニウムー水反応を考慮	(雰囲気圧力・温度による静的負荷 (代替循環冷却系を使用できない場	主要解析条件	原子炉圧力容 ス そ (出ロノズル)の破断 (出ロノズル) (出ロノズル)	<u>非常用ディー</u>	 ・ 「「「」」」 ・ 「「」」」 ・ 「」」 ・ 「」」 ・ 「」」 ・ 「」」 ・ 「」、 ・ ・ ・ ・ ・ 	・温度による静的負荷(格納容器過) ^{素除去系を} 使用しない場合)(2/4)	主要解析条件	大破断LOCA 再循環配管(出口ノズル)の破断	高圧注水機能喪失 低圧注水機能喪失 全交流動力電源喪失	外部電源なし	ジルコニウムー水反応を考慮	
	項目	事象	機能の喪失に対する仮定	電源	ガスの発生	主要解析条件	項目	大破断LOC 再循環系配管)喪失に対する仮定 高圧注水機能	外部電源なし、	主要解析条件(雰囲気圧力 (残留熱代養	項目	起因事象		外部電源	水素ガスの発生	
		起因	ま な 手	を思え	~ *			已因事象	そ全機能の	ト部電源 ト部電源 へ素の発生							
			11111111111111111111111111111111111111	名化					■ 事 本 *	条件 タ ゼ							

	柏崎	刈羽原-	子力発電所 6/7号炉	(201	7.12.20版)			Ţ	東海第二	二発	電所(201	.8.9	. 18 版	<u>(</u>)					Ē	晶根质	原子力発電所 2号
代替循環冷却系を使用しない場合) (3/4)	条件設定の考え方	事象発生と同時に原子炉スクラムするものとして 設定	設計値に注入配管の流路圧損を考慮した値として 設定 ¹⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰	格納容器温度及び圧力抑制に必要なスプレイ流量 を考慮し, 設定	格納容器圧力逃がし装置の設定値を考慮して,格 納容器圧力及び温度を低下させる排出流量を確保 可能な弁開度として設定	苛(格納容器過圧・過温破損)) い場合) (3/4)	条件設定の考え方	「熱出力が維持される厳しい設定として、外部電源喪失時のター なび原子炉保護系電源喪失による原子炉スクラムについては保守 F本位低(レベル3)信号にてスクラムするものとして設定	気が格納容器内に維持される厳しい設定として、原子炉保護系電 と異常低下(レベル2)信号による主蒸気隔離弁閉止については ま象発生と同時に主蒸気隔離弁が閉止するものとして設定 取時感やたることから、 全交が曲れ電源車中にトスボンプ停止	針は粧飯とめるしてフォナウ,土文弛期ノノ电陈茂犬によるかくノ存止	ぎな流量として設定	t び圧力抑制に必要なスプレイ流量を考慮し、設定	-ル水位の上昇が早くなり,格納容器圧力逃がし装置による格納 製作時間余裕の観点で厳しい条件として,運転手順の流量調整範	(h) における上限を設定)挙動を厳しく評価するため、初期条件としてペデスタル(ドラ)水を考慮していないことから、常設低圧代替注水系ポンプを用 <系(常設)によるペデスタル(ドライウェル部)水位の確保操 ない	_菅 都の設計値を考慮して,格納容器圧力及び雰囲気温度を低下さ 龍量として設定	王 · 過温破損))	条件設定の考え方	ヒと同時に原子炉スクラムするものとして設定	が原子炉格納容器内に保持される厳しい条件として設定	助力電源喪失によるポンプ停止を踏まえて設定	P炉代替注水系(常設)の設計値として設定 ************************************
)負荷(格納容器過圧・過温破損))({	王要解析条件	事象発生と同時に原子炉スクラム	最大 300㎡/h で注水,その後は炉心を 冠水維持可能な注水量に制御	 140m³/h にて原子炉格納容器内へスプレイ 	格納容器圧力が 0.62MPa[gage]におけ る最大排出流量 31.6kg/s に対して, 原子炉格納容器二次隔離弁の中間開操 作(流路面積約 50%開) にて原子炉格 納容器除熱	件(雰囲気圧力・温度による静的負子) (代替循環冷却系を使用できなし)	主要解析条件	- 近水位低(レベル3)信号 - 近水位低(レベル3)信号 - ビン蒸気加減弁急閉込 - 的に考慮せず,原子が	短時間であるが主蒸5 短時間であるが主蒸5 渡喪失及び原子炉水化 保守的に考慮せず、 車金油にビュスの影	発生と同時に停止	(初期の原子炉注水実施時: n ³ /h (一定) 一定水位L0到達判断後: 「熱による蒸発を補う注水量 たち0m ³ /h)に制御	₹初期の原了炉注水実施時: 格納容器雰囲気温度〕 n ³ / h (一定)	+ プレンシンョン・プ- 3容器圧力制御: 容器除熱操作までの# n ³ /h (一定) 囲	(102m ³ /1~130m ³ / 格納容器雰囲気温度の 格納容器雰囲気温度の イウェル部)のプー/ いた格納容器下部注7 作についても考慮し	1 容器圧力が 0.310/fPa[gage]に Fる排出流量 13.4kg/s(た対し 格納容器圧力逃がし 第二弁を全開にて格納容器除 せるのに必要な排出が	フ・温度による静的負荷(格納容器過 替除去系を使用しない場合)(3/4	主要解析条件	事象発生と同時に原子炉スクラム 事象発生	事象発生と同時に閉止	事象発生と同時に停止 全交流	低圧原- 200m ³ /h (1. 00MPa[gage]において) ぐ 注水,その後は炉心を冠水維持可能な 注水量に制御
斤条件(雰囲気圧力・温度による静的	項目	原子炉スクラム信号	重大事故等対策に関連 (低話大茶、(記書)	す る 機 代替格納容器スプレイ冷却系(常 器	条件格納容器圧力逃がし装置	主要解析条	項目	原子炉スクラム信号 原子	主蒸気隔離弁	再循環系ポンプ 事	大 転 転 転 (市 (市 (市 (市 (市 (市 (市 (市 (市 (市 (市 (市 (市 (市 (一 ()) () ())) () ()) () ()) () () () () () () () () () () () () () () () ()) ()) () ()) () ()) ()) ()) ()) ())) ())) ())) ())) ())))) ()))))))))))))	に 当300	 小 代替格約容器スプレ る イ治均米(常設) 格参 第30 	紧件 格納容器下部注水系 (常設)	格納格納容器圧力逃がし 格約 装置 ス・	主要解析条件 (雰囲気圧力 (残留熱代	重	原子炉スクラム信号	主蒸気隔離弁	再循環ポンプ	車 体体 が 対 に 原 圧原子炉代替注水系(常設)
主要解																					

异炉				備考
		ful		・解析条件の相違
		。 設坑		【柏崎 6/7,東海第二】
		慮し		詳細な相違内容は,有
	- 69	ある		効性評価比較表に記
		■影	当	載
	30	77	で で し い	
	(U/ <i>i</i> ^a)	t2 7.	して	
	近 13	心要	設計	
	100	制に	を考	
		三力拘	\sim	
		A UNE	141	
ê î	o'	温度 》	77)	
		容器	容	
		格納	格納	
		Ķ	さ約時	
		器内~	おて、東子を	
		納容!	age][と対し にて]	
		炉格	kPa[g/s/g/s/ g/s/ 操作	
		通子	427] 9.8k 全開	
		114	圧流弁熱力量を	
		л ³ /h	容排隔器	
		120 7 L	格最容納	
		[型)		
		(可携	NTC	
		¥	<u>迷</u> 	
		2	いごち	
		替スプ	11	
		器代	器ノ	
		物容	物容	
する機	酸器条	(年 	¥	

柏崎>	山羽原子力発電所	6/7号炉	□ (2017. 12. 20)版)		東	海第二発電所(201	18.9.18版)				島根原	子力発電所	2 号炉	備考
(代替循環冷却系を使用しない場合)(4/4)	条件設近の考え万 全交流動力電源喪失時の訓練実績を踏まえて設 定	原子炉格納容器の限界温度到達防止を踏まえて 設定	原子炉格納容器の限界圧力到達防止を踏まえて 設定		納容器過圧・過温破損)) (4/4)	条件設定の考え方	□央制御室における常設代替高圧電源装置,代替格納容器スプレ 1 冷却系(常設)及び低圧代替注水系(常設)の準備時間を考慮 ノて設定	各納容器圧力の抑制効果を踏まえて設定	各納容器の限界圧力到達防止を踏まえて設定	器過圧・過温破損)) /4)	条件設定の考え方	常設代替交流電源設備の起動,受電及び低圧原子炉代替注水系 (常設)の準備時間を考慮して設定	京子炉格納容器の限界圧力到達防止を踏まえて設定	乳子炉格納容器の限界圧力到達防止を踏まえて設定	 ・解析条件の相違 【柏崎 6/7,東海第二】 詳細な相違内容は,有 効性評価比較表に記載
る静的負荷(格納容器過圧・過温破損))	土 要	原子炉水位が破断口高さまで水位回復後,格納容器温度が約190℃到達時	格納容器圧力が 0.62MPa[gage]接近時		(雰囲気圧力・温度による静的負荷(格) (代替循環冷却系を使用できない場合)	主要解析条件	日本 111111111111111111111111111111111111	「納容器圧力が 0.465MPa [gage] に到達した 合に開始 「納容器圧力が 0.400MPa [gage] 以下となっ 「時点で停止」	- プレッション・プール水位が通常水位+ 5m 到達から5分後	<u> 囲気圧力・温度による静的負荷(格納容</u> 診留熱代替除去系を使用しない場合)(4	主要解析条件	: る原 事象発生から 30 分後	たよる 格納容器圧力 640kPa[gage]到達時 [∬] 640~588kPa[gage]の範囲で維持	・原子 サプレッション・プール水位が通常水 版 +約 1.3m 到達から 10 分後	
主要解析条件(雰囲気圧力・温度による	項目 常設代替交流電源設備からの受電及び 低圧代替注水系(常設)による原子炉 注水操作	代替格納容器スプレイ冷却系(常設) による原子炉格納容器冷却操作	格納容器圧力逃がし装置による原子炉格納容器除熱操作		主要解析条件	項目	常設代替高圧電源装置による 緊急用母線の受電操作並びに 大 代替格納容器スプレイ冷却系 「常設」による格納容器冷却 操作及び低圧代替注水系(常 設)による原子炉注水操作 総	 () <li< td=""><td>作 条 格納容器圧力逃がし装置によ サ る格納容器除熱操作 6.</td><th>主要解析条件(雰)</th><td>項目</td><td>重 低圧原子炉代替注水系(常設)によ 大 子炉注水操作 故</td><td>等 対 策 格納容器代替スプレイ系 (可搬型) に 同 同 正 正 正 一 振型) に 一 振型) に 一 振型) に 一 振型) に 一 振型) に 一 振型) に 一 一 振型) に 一 一 一 一 一 一 一 一 一 一 一 一 一</td><td>3 操 作 格納容器フィルタベント系による 条 行 存 和納容器除熟操作</td><td></td></li<>	作 条 格納容器圧力逃がし装置によ サ る格納容器除熱操作 6.	主要解析条件(雰)	項目	重 低圧原子炉代替注水系(常設)によ 大 子炉注水操作 故	等 対 策 格納容器代替スプレイ系 (可搬型) に 同 同 正 正 正 一 振型) に 一 振型) に 一 振型) に 一 振型) に 一 振型) に 一 振型) に 一 一 振型) に 一 一 一 一 一 一 一 一 一 一 一 一 一	3 操 作 格納容器フィルタベント系による 条 行 存 和納容器除熟操作	
	重大事故等	対策に関連	▼る操作条件												

柏崎刈羽原子力発電所 6/7号炉 (2017.12.	. 20版)	東	〔海第二発電所((2018. 9. 18 版)			島根原子力	発電所 2号炉		備考
					添付資料-9				添付資料 9	
<u>添付資料-9. ABWR</u> における運転状態V(LL)の適切	辺性について	東海第二発電	所における運転状	犬態V(LL)の適切	」性について	島根原子力発電	<u> 富所2号炉</u> におけ	「る運転状態V(I	LL)の適切性につ	
						いて				
(1) はしめに ・ 4 佐辺け ロロな初点 ・ 5 4 が発生した担合に立	7両わ世景た			が改生した担合け	に议画わ世景な	(1) はしめに	DPち切う S	▲が惑生した担	今に以西わ世景な	
SA旭成は、DDを超え、SAが死生した場合に必 講じるための施設であることから 運転状態として忿		まじるための協調	「日を超ん、SA、	海転出能とし、	に必要な相直を て従本の $I \sim W$	3 A 旭政は,	DDを起え, 3	Aが発生した場合 にある。 運転世能と	ロに必要な相直を して従本の I 〜W	
構しるための絶している状態として運転状態となる	を新たに定義	は加え ちょの発	生している状態	, 連転状態とし	て レ を 新 た に 定 義		回転にあることが	*6、運転状態と	能Vを新たに定義	
していろ、さらに重大事故等の状態として運転状態で	を招える更に	している、さらに	重大事故等の状態	能が設計基準事	★を招えろ更に	していろ、さん	った重大事故等の	設てして建築の	事故を招えろ更に	
厳しい状態であることを踏まえ、事象発生直後の短期	期的に荷重が	厳しい状態である	ことを踏まえ,	事象発生直後の	短期的に荷重が	厳しい状態であ	あることを踏まえ	,事象発生直後(の短期的に荷重が	
作用している状態を運転状態V(S)とし、一連の過渡:	状態を除き,	作用している状態	を運転状態V(S))とし,一連の過	渡状態を除き,	作用しているお	犬態を運転状態V	Y (S) とし, 一連の	D過渡状態を除き,	
ある程度落ち着いた状態を長期的に荷重が作用してい	いる状態とし	ある程度落ち着い	た状態を長期的	に荷重が作用し	ている状態とし	ある程度落ち着	昏いた状態を長期	的に荷重が作用	している状態とし	
て運転状態V(L),V(L)より更に長期的に荷重が作用	用している状	て運転状態V(L),	V(L)より更に:	長期的に荷重が	作用している状	て運転状態V	(L), V (L) より)更に長期的に荷	重が作用している	
態を運転状態V(LL)として定義している。ここでは,	ABWRK	態を運転状態V(I	L)として定義し	ている。ここでは	は, 東海第二発	状態を運転状態	隻V(LL)として	定義している。	ここでは, <u>島根原</u>	
おいて新たに定義した運転状態V(LL)の適切性につい	いて示す。	重所において新た	に定義した運転	状態V(LL)の適	切性について示	子力発電所2号	景炉において新た	に定義した運転	状態V(LL)の適	
		す。				切性について表	示す。			
(2) <u>ABWR</u> における格納容器除熱評価		(2) 東海第二発	電所における格線	納容器除熱評価		(2) <u>島根原子</u> フ	り発電所2号炉に	おける格納容器	除熱評価	
添付9.1表に格納容器過圧・過温破損シナリオ(代替)	盾環冷却系を	添付 9-1 表に雰囲	囲気圧力・温度に	こよる静的負荷(格納容器過圧·	添付 9.1 表に	雰囲気圧力・温度	度による静的負荷	(格納容器過圧・	
使用する場合)における格納容器圧力・温度の推移を	を示す。添付	過温破損) (代替)	重環冷却系を使用	できない場合)	における格納容	過温破損)(残	留熱代替除去系有	を使用する場合)	における格納容器	
9.1表に示すとおり、事故後長期においても格納容器	王力は炉心損	器圧力・温度の推	移を示す。添付	9-1.表に示す事	象発生後 2×10	圧力・温度の推	進移を示す。添付	19.1 表に示すと	おり、事故後長期	
傷に伴い発生した非凝縮性ガスによる影響が支配的と	となる格納容	-1年(73日後)の	2格納容器圧力及	び温度のとおり	,事故後長期に	においても格約	内容器圧力は炉心	損傷に伴い発生	した非凝縮性ガス	
器圧力まで低下可能であるものの、格納容器温度は後	後述(3)に	おいても格納容器	圧力及び温度は	安定した状態を終	進持する。	による影響がう	反配的となる格納	容器圧力まで低	下可能であるもの	
示す <u>ABWR</u> の格納容器の特性により,海水温度を設	計温度であ					の,格納容器	温度は後述(3)に	示 す BWR の 格 約	内容器の特性によ	
る30℃とした場合には、格納容器温度はDB耐震条件	‡35℃(通常					り, 海水温度を	と設計温度である	30℃とした場合	には、格納谷器温	
連転状態)まで低下しない。						度はDB町産業	R1午35℃(週常進	1111日本で1月1日に1月1日に1月1日に1月1日に1月1日に1月1日に1月1日に1月1日	TUTING	
 添付9.1表 格納容器過圧・過温破損シナリオ(代替循	盾環冷却系を	│ │添付 9−1 表 雰	囲気圧力・温度に	こよる静的負荷(格納容器過圧・	添付 9.1 表 象	雰囲気圧力・温度	Eによる静的負荷	(格納容器過圧・	・解析結果の相違
使用する場合)における格納容器圧力・温	温度の推移	過注	显破損)(代替循	環冷却系を使用 [、]	できない場合)	過温破損)(残	留熱代替除去系を	を使用する場合)	における格納容器	【柏崎 6/7,東海第二】
	ち ち ざ 赤 タ 小	に	おける格納容器圧	E力・温度の推移	• •		圧力・	温度の推移		設備, 運用, 解析条件
項目 10 ⁻² 年後(3日後) 2×10 ⁻¹ 年後(60日後)	D B 耐 震 条 件 (S s)	項目	10 ⁻² 年後 (2日然)	2×10 ⁻¹ 年後 (72 日後)	D B 耐震条件 (S =)	項目	10 ⁻² 年後(約3.5日後)	2×10 ⁻¹ 年後(約 70 日後)	D B 耐震条件 (S s)	等の違いによる相違
ドライウェル圧力 約0.36MPa[gage] 約0.15MPa[gage]	大気圧相当	ドライウェル圧力	(3 口 夜) 約 166kPa[gage]	約 92kPa[gage]	(3 s) 大気圧相当	ドライウェル圧力	約 317kPa[gage]	約 372kPa[gage]	大気圧相当	
サプレッション・ チェンバ圧力 約 0.36MPa[gage] 約 0.14MPa[gage]	(+14kPa)	サプレッション・ チェンバ圧力	約 63kPa[gage]	約 4kPa[gage]	(約 14kPa)	チェンバ圧力	₩J 300 Kra[gage]	жлээо кга[gage]	(+14kPa)	
ドライウェル温度 約 128℃ 約 54℃ 5	57°C	ドライウェル温度 サプレッション・	約 152℃ 約 122℃	約 137°C 約 109°C	57°C	ドライウェル気相 温度	約 110℃	約 48℃	57°C	
サプレッション・ チェンバ気相温度 約 164℃ 約 74℃		チェンバ気相温度 サプレッション・ チュンゴのプ	110°C	100°C	35℃	サプレッション・ チェンバ気相温度	約 131℃	約 62℃		
サプレッション・ 約149°C 約68°C	35°C	ナェンハのフール 水温度	新 116 C	#J 102 C		サプレッション・ チェンバホ泪座	約 127℃	約 57℃	- 35℃	
プール水温度 ポリ1450 ポリ000 サプレッション・ 約11.4m 約10.9m	HWL (7.1m)	チェンバのプール水位	約 14.8m	約 13.4m	HWL (約 7.1m)	サプレッション・	約 3.9m	約 3.8m	HW (3.66m)	
プール水位 パリロロー パリロロー <t< td=""><td>)℃を条件とする)</td><td></td><td></td><td></td><td></td><td>チェンバ水位</td><td>山利泊広ベナフィ</td><td>00+皮(1)上7</td><td></td><td></td></t<>)℃を条件とする)					チェンバ水位	山利泊広ベナフィ	00+皮(1)上7		
						(海水温度は記	支計温度である 3	00を余件とする)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考				
 (3) <u>ABWR</u>の格納容器の特性について 	(3) BWRの格納容器の特性について	(3) <u>BWR</u>の格納容器の特性について					
(2)において,事故後長期においても <u>ABWR</u> の格納容器温度	(2)において,事故後長期においても格納容器温度は通常運転温	(2)において,事故後長期においても <u>BWRの</u> 格納容器温度は通					
は通常運転温度まで低下しないことを示したが、これはABWR	度まで低下しないことを示したが、これはBWRの格納容器の特	常温度まで低下しないことを示したが、これは <u>BWR</u> の格納容器					
の格納容器の特性に起因するものである。以下にPWRと比較し	性に起因するものである。以下にPWRと比較したBWRの格納	の特性に起因するものである。以下にPWRと比較した <u>BWR</u> の					
た当社ABWRの格納容器の特性を示す。	容器の特性を示す。	格納容器の特性を示す。					
・ABWRでは格納容器下部ドライウェルに熱の蓄積場所として	 BWRでは格納容器底部に熱の蓄積場所としてのサプレッショ 	・ <u>BWRの格納容器には、</u> 熱の蓄積場所としてサプレッション・	l				
<u>の</u> サプレッション・プールが存在しており,その水温はPCV評	ン・プールが存在しており,その水温は格納容器の挙動評価に	プールが存在しており,その水温はPCV評価において考慮さ					
価において考慮されている。このような大規模なプールがない	おいて考慮されている。このような大規模なプールがないPW	れている。このような大規模なプールがないPWRとは状況が					
PWRとは状況が異なる	Rとは状況が異なる	異なる _e					
・ABWRではECCSが機能喪失する前提では、原子炉への注	・BWR <u>において、</u> ECCSが機能喪失する前提では、原子炉へ	・BWRではECCSが機能喪失する前提では、原子炉への注水					
水及び格納容器スプレイに外部水源(<u>復水貯蔵槽</u>)を使用する。	の注水及び格納容器スプレイに外部水源(<u>代替淡水貯槽</u>)を使用	及び格納容器スプレイに外部水源(低圧原子炉代替注水槽等)	・設備の相違				
これにより通常運転時よりサプレッション・プール水位が高く	する。これにより通常運転時よりサプレッション・プール水位	を使用する。これにより通常運転時よりサプレッション・チェ	【柏崎 6/7,東海第二】				
なることから、これを荷重条件として考慮した場合の影響を確	が高くなることから、これを荷重条件として考慮した場合の影	ンバ水位が高くなることから、これを荷重条件として考慮した					
認する必要がある	響を確認する必要がある	場合の影響を確認する必要がある _{&m}					
上記より, ABWRでは格納容器の特徴を踏まえ, PWR(伊方	上記より, 東海第二発電所ではその特徴を踏まえ, PWR(伊方	上記より, BWRでは格納容器の特徴を踏まえ, PWRとは異					
<u>3号)</u> とは異なり運転状態V(LL)のような更に長期的に荷重が作	<u>3号)</u> とは異なり運転状態V(LL)のような更に長期的に荷重が作	なり運転状態V(LL)のような更に長期的に荷重が作用している					
用している状態を定義し、格納容器内の条件(温度、圧力、水位		状態を定義し、格納容器内の条件(温度、圧力、水位)による影					
上昇)による影響を確認する必要がある。	昇)による影響を確認する必要がある。	響を確認する必要がある。					
 なお,長期安定状態におけるABWRとPWR(伊方3号)の格	なお,長期安定状態における東海第二発電所とPWR(伊方3	なお,長期安定状態における島根原子力発電所2号炉とPWR					
納容器除熱手段は、添付9.2表であり、同等の除熱設備を有してい		(伊方3号炉)の格納容器除熱手段は、添付9.2表であり、同等					
る。	を有している。	の除熱設備を有している。					
添付9.2表 長期安定状態におけるABWRとPWR(伊方3号)	添付 9−2 表 長期安定状態における東海第二発電所と PWR (伊	添付 9.2表 長期安定状態における BWR と PWR (伊方 3 号炉)	・設備の相違				
の格納容器除熱手段		の格納容器除熱手段	【柏崎 6/7,東海第二】				
産の執险主ズ 次軸交界ペント	市の植体士で	残留熱除去系					
ABWR (KK6 残留熱除去系 (代替原子炉補機冷却系) (格納容器圧力逃がし)	東海第二発 飛留熟除去系 (緊急用海水 格納容器ベント	BWR (島根 2 号 (原子炉補機ペ封系) 残留熟除去系 (原子炉補機代替冷却系) 格納容器フィルタ 残留熟代替除去系					
(原子炉補機冷却系) (代替循環冷却系 (代替循子/抑補機冷却系)	電所 (残留熱除去系熱交換器) (代替循環冷却系 (弊 急 用 海 水 (格納容器圧力逃 がし装置)	(原子炉補機代替冷却系)					
▲ 格納容器スプレイ 仮設格納容器スプレイ再循 格納容器再循環ユニッ	系) 格納容器スプ 仮設格納容器ス	PWR 余熱除去系 格納容器スプレ 仮設格納容器スプレイ再循 格納容器再循環ユ 環					
PWR 示然時公示 再循環 環 トによる自然循環冷却 (伊方3) (余熱除去冷 (格納容累スプレ (全熱除去冷却器) 使用済	PWR (伊方3) 余熱除去系 レイ再循環 プレイ再循環 格納容器再循環ユ (余熱除去 (各納容器ス (余熱除去冷却 ニットによる自然	(伊方3号 (余熱除去 (格納容器スプ (除熱除去冷却器,使用済燃 ニットによる自然 (炉) 冷却器) レイ冷却器) 料ビット冷却器) 猫環冷却					
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(し)))) 冷却器) ブレイ 冷 却 器,使用済燃料 循環冷却系 器) ビット冷却器)						
(4)現実的な格納容器除熱評価			・評価方針の相違				
			【柏崎 6/7】				
り海水温度を設計値である30℃として評価した場合には、格納容			現実的な格納容器除				
			熱評価については、海				
は難しいが、実測値に基づく海水温度を用いた場合の格納容器圧			水温度を実測値に基				
力・温度の推移を添付9.3表に示す。添付9.3表に示すとおり、事			づき感度評価を実施				
柏崎刈羽原	京子力発電所 6	6/7号炉 (2	017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所	2号炉	備考
----------------------	----------------------	---------------------------------------	----------------------	---------------------	----------	-------	---------
象開始後7日後	からRHR1系列に	よる格納容器除	熱を追加し, 実測(し,格納容	『器温度をDB
に基づく海水油	LL度を用いた場合	合には,格納容器	器温度をDB耐震	<u>x</u>		条件相当	まで低下させ
件35℃(通常道	重転状態)まで低	低下させることス	が可能となる。し			ることが	可能かどうか
しながら,通常	常運転時よりサス	プレッション・フ	プール水位が高く	<u>2</u>		を評価し	たものであり,
ることから, 安	そ生確保の観点	いらこれを荷重	直条件として考慮し	<u>,</u>		荷重条件	が緩和される
荷重組合せに	運転状態V(LL)	の考え方を適用	月して影響を確認~			評価結果	となり,荷重条
る。						件への影	響はないこと
						から,島根	₹2号炉は記載
添付9.3表 実	測値に基づく海	水温度を用いた	場合の格納容器圧			していない	()
	力・江	温度の推移					
項目	格納容器過圧・過温破	抜損シナリオ(代替循環) 10 ⁻² 年後(3日後)	冷却系を使用する場合)				
	海水温度 17℃*1	海水温度 3℃*1	海水温度 33℃*1				
ドライウェル圧力	約 0.31MPa[gage]	約 0.26MPa[gage]	約 0.38MPa[gage]				
サプレッション・ チェンバ圧力	約 0.31MPa[gage]	約 0.26MPa[gage]	約 0.38MPa[gage]				
ドライウェル温度	約 118℃	約 106℃	約 130℃				
サプレッション・ チェンバ気相温度	約 157℃	約 150℃	約 164°C				
サプレッション・ プール水温度	約 143℃	約 136℃	約 151℃				
サプレッション・ プール水位	約 11.3m	約 11.2m	約 11.4m				
項目	格納容器過圧・過温破	は損シナリオ(代替循環	冷却系を使用する場合)				
	7日夜	2×10 ⁻¹ 年後(60日後)	東行却永				
	海水温度 17°C**	海水温度 3°C**	海水温度 33 C***				
ドライウェル圧力	約0.12MPa[gage]	彩J 0. 11MPa[gage]	彩 0.13MPa[gage]				
チェンバ圧力	約 0.10MPa[gage]	約 0.09MPa[gage]	約 0.12MPa[gage]				
ドライウェル温度	約 30℃	約 27℃	約 45°C				
チェンバ気相温度	約 40°C ^{※2}	約 28℃ ^{**2}	約 54°C ^{※2}				
サプレッション・ プール水温度	約 30℃	約 16℃	約 45°C				
サフレッション・ プール水位	約 10.6m	約 10.9m	約 10.6m				
<u>※1 : 海水温度</u>	は10年間の観測	記録の平均値で	ある約17℃, 最小(
である約	3℃,最大値でお	らる約33℃を用い	いて評価している。	_			
<u>※2:有効性評</u>	価ではRHR系によ	にるサプレッシ ョ	ョン・チェンバへの	<u>)</u>			
スプレイ	を模擬していな	いため,サプレ	ッション・チェン	<u> </u>			
気相温度	はサプレッショ	ン・プール水温」	度より低下してい				
いが,現	実的な操作では	, サプレッショ	ン・チェンバへの	<u> </u>			
プレイに	て,サプレッシ	ョン・プール水注	温度付近まで低下				
るものと考え	<u>られる。</u>						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(<u>5</u>) まとめ	(4)まとめ	(4) まとめ	
<u>ABWR</u> はその格納容器の特徴を踏まえ、PWR(伊方3号)と	<u>東海第二発電所</u> はその格納容器の特徴を踏まえ、PWR(伊方 3	<u>島根原子力発電所2号炉</u> はその格納容器の特徴を踏まえ, PW	
は異なる運転状態V(LL)のような更に長期的に荷重が作用してい	号)とは異なる運転状態V(LL)のような更に長期的に荷重が作用	R (伊方3号炉)とは異なる運転状態V (LL)のような更に長期	
る状態を定義する必要があり、SA時の運転状態V(LL)の格納容	している状態を定義する必要があり、SA時の運転状態V(LL)の	的に荷重が作用している状態を定義する必要があり、SA時の運	
器内の条件(温度,圧力,水位上昇)による影響を確認すること	格納容器内の条件(温度、圧力、水位上昇)による影響を確認す	転状態V(LL)の格納容器内の条件(温度,圧力,水位上昇)に	
が適切であると考える。	ることが適切であると考える。	よる影響を確認することが適切であると考える。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	添付資料—10	添付資料10	
添付資料-10.荷重条件として組み合わせるシナリオの選定及び	荷重条件として組み合わせるシナリオの選定及び	荷重条件として組み合わせるシナリオの選定及びその荷重条件の	
その荷重条件の保守性について	その荷重条件の保守性について	保守性について	
(1) はじめに	(1) はじめに	(1) はじめに	
「原子炉格納容器バウンダリを構成する設備」について、格納	「原子炉格納容器バウンダリを構成する設備」について、雰囲	「原子炉格納容器バウンダリを構成する設備」について、雰囲	
容器過圧・過温破損シナリオ「大破断LOCA+ECCS機能喪失	気圧力・温度による静的負荷(格納容器過圧・過温破損)シナリ	気圧力・温度による静的負荷(格納容器過圧・過温破損)シナリ	
+SBO」を荷重条件として組み合わせるシナリオとして選定し、	オ「大破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗」を	オ「冷却材喪失(大破断LOCA)+ECCS注水機能喪失+全	
荷重条件を設定している。	荷重条件として組み合わせるシナリオとして選定し,荷重条件を	交流動力電源喪失」を荷重条件として組み合わせるシナリオとし	
	設定している。	て選定し、荷重条件を設定している。	
ここでは、当該シナリオを荷重条件として組み合わせることの	ここでは、当該シナリオを荷重条件として組み合わせることの	ここでは、当該シナリオを荷重条件として組み合わせることの	
適切性及びその荷重条件の保守性について示す。	適切性及びその荷重条件の保守性について示す。	適切性及びその荷重条件の保守性について示す。	
(2)荷重条件として組み合わせるシナリオの選定について	(2) 荷重条件として組み合わせるシナリオの選定について	(2) 荷重条件として組み合わせるシナリオの選定について	
「原子炉格納容器バウンダリを構成する設備」に対して、荷重	「原子炉格納容器バウンダリを構成する設備」に対して、荷重	「原子炉格納容器バウンダリを構成する設備」に対して、荷重	
条件は以下の二つのシナリオのうち,①格納容器過圧・過温破損シ	条件は以下の二つのシナリオのうち,①雰囲気圧力・温度による静	条件は以下の2つのシナリオのうち、①雰囲気圧力・温度による	
ナリオ「大破断LOCA+ECCS機能喪失+SBO」を荷重条件	的負荷(格納容器過圧・過温破損)シナリオ「大破断LOCA+	静的負荷(格納容器過圧・過温破損)シナリオ「冷却材喪失(大	
として組み合わせるシナリオとして選定している。	高圧炉心冷却失敗+低圧炉心冷却失敗」を荷重条件として組み合	破断LOCA)+ECCS注水機能喪失+全交流動力電源喪失」	
	わせるシナリオとして選定している。	を荷重条件として組み合わせるシナリオとして選定している。	
① 格納容器過圧・過温破損シナリオ:「大破断LOCA+ECCS	①雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	① 格納容器過圧・過温破損シナリオ:「冷却材喪失(大破断LO	
機能喪失+SBO」	「大破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗」	<u>CA)+ECCS注水機能喪失+全交流動力電源喪失」</u>	
② RPV破損後の格納容器破損モードの評価シナリオ:「過渡事	② RPV破損後の格納容器破損モードの評価シナリオ	② RPV破損後の格納容器破損モードの評価シナリオ:「過渡事	
象+ECCS機能喪失+ (SA炉心注水無し)」	「過渡事象+高圧炉心冷却失敗+低圧炉心冷却失敗+損	象+高圧炉心冷却失敗+原子炉減圧失敗+炉心損傷後の原子炉	
	傷炉心冷却失敗」	減圧失敗+原子炉注水失敗+DCH発生」	
②のシナリオは、RPV破損後の格納容器破損モードを評価す	②のシナリオは, R P V破損後の格納容器破損モードを評価す	②のシナリオは, RPV破損後の格納容器破損モードを評価す	
るため、重大事故等防止対策による原子炉注水は実施しないもの	るため、重大事故等対処設備による原子炉注水は実施しない想定	るため、重大事故等対処設備による原子炉注水は実施しないもの	
として評価しており,本来は高圧代替注水系又は低圧代替注水系	として評価しており、本来は高圧代替注水系又は低圧代替注水系	として評価しており、本来は高圧原子炉代替注水系又は低圧原子	
による原子炉注水により炉心損傷の回避が可能なシナリオであ	(常設)による原子炉注水により炉心損傷の回避が可能なシナリ	<u> 炉代替注水系(常設)</u> による原子炉注水により炉心損傷の回避が	
る。また、原子炉注水の失敗によって炉心損傷までは事象が進展	オである。なお、原子炉注水の失敗によって炉心損傷までは事象	可能なシナリオである。また、原子炉注水の失敗によって炉心損	
する前提とし、これに①のシナリオ(格納容器過圧・過温破損シ	が進展する前提とした場合においても、事象発生から2時間まで	傷までは事象が進展する前提とした場合においても、事象発生か	・解析結果の相違
ナリオ)同様に、SBOが重畳するものとした場合においても、事	に低圧代替注水系(常設)による原子炉注水を開始することで,	ら 60 分までに電源復旧及び低圧原子炉代替注水系(常設)によ	【柏崎 6/7,東海第二】
象発生から70分までに電源復旧及び低圧代替注水系による原子炉	下部プレナムへのリロケーションを回避可能である。	る原子炉注水を開始することで、下部プレナムへのリロケーショ	リロケーション防止
注水を開始することで、下部プレナムへのリロケーション*1を回		ン ^{※1} を回避可能である。	可能な操作開始時間
避可能である。			を設定しており、設
			備,運用の差異により
			異なる

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
また, 炉心損傷頻度及び低圧代替注水系による下部プレナムへ	また, 炉心損傷頻度及び低圧代替注水系(常設)による下部プレ	また、炉心損傷頻度及び低圧原子炉代替注水系による下部プレ	
の炉心のリロケーション回避の失敗確率と、荷重の組合せにおい	ナムへの炉心のリロケーション回避の失敗確率と,荷重の組合せ	ナムへの炉心のリロケーション回避の失敗確率と,荷重の組合せ	
て用いた考え方を適用すると、添付10.1表に示すとおり保守性を	において用いた考え方を適用すると、添付 10-1 表に示すとおり	において用いた考え方を適用すると、派付 10.1 表に示すとおり	
考慮しても10-8/炉年未満となり,荷重の組合せの判断目安を下回	10-8/炉年未満となり,荷重の組合せの判断目安を下回る。	保守性を考慮しても10-8/炉年未満となり、荷重の組合せの判断目	
る。		安を下回る。	
上記より、「原子炉格納容器バウンダリを構成する設備」に対し	上記より、「原子炉格納容器バウンダリを構成する設備」に対し	上記より、「原子炉格納容器バウンダリを構成する設備」に対し	
て,荷重条件は格納容器過圧・過温破損シナリオ「大破断LOC	て,荷重条件は雰囲気圧力・温度による静的負荷(格納容器過圧・	て,荷重条件は格納容器過圧・過温破損シナリオ「冷却材喪失(大	
<u>A+ECCS機能喪失+SBO</u> 」を選定することが適切である。	過温破損) シナリオ 「大破断LOCA+高圧炉心冷却失敗+低圧	<u>破断LOCA)+ECCS注水機能喪失+全交流動力電源喪失」</u>	
	<u>炉心冷却失敗」</u> を選定することが適切である。	を選定することが適切である。	
※1: 内部事象レベル1. 5PRAにおいて設定しているIVR失敗確率は,		※1:内部事象レベル 1.5PRAにおいて <u>も</u> , 炉心損傷後の原子	・解析条件の相違
炉心が下部プレナムへ移行した後からの原子炉注水による		<u> 炉注水によって下部プレナムへのリロケーションを回避可</u>	【柏崎 6/7】
IVRに失敗する確率として設定したもの。		能な事故シーケンスを評価している。	島根2号炉は,レベル
※// ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ			1.5 P R A で溶融炉心が
添付10.1表 RPV 破損発生と地震動か 単量する 頻度	旅行 10-1 表 RPV 破損発生と地震動か 車畳する頻度	旅付10.1表 RPV 破損発生と地震動か 単量する 頻度	下部プレナムへ移行し
事故 RPV 破損の発生頻度 × 地震動の RPV 破損発生と シーケンス RPV 破損の発生頻度 × 地震動の = 地震動が重畳	事故シー ケンス RPV破損の発生頻度 × 地震動の 発生を地震 総統 発生と地震 予生と地震 がが重量す る頻度 ろ頻度 ろ頻度 5 1	事故 シーケンス RPV 破損の発生頻度 * 地震動の 発生確率 ※ 離続 時間 RPV 破損発生 と地震動が重畳 する頻度	た後の IVR に期待して いない
10 ⁻² 未満 ^{※2} 10 ⁻² /年 ^{※3}	10 ⁻² /炉年未満 ⁶² 10 ⁻² /炉年 ⁶³ 1年未満 ⁶⁴	過渡事象+高 圧炉心冷却失 10 ⁻² 未満 ^{*2} 10 ⁻² /炉年 ^{*3} 1年未満 ^{*4}	
過渡事象 10 ⁴ /炉年 ^{第1} (低圧代替注水系の) 対力にとる下頭 地震動 Sd	過渡事象 + $/$ $/$ $/$ $/$ $/$ $/$ $/$ $/$ $/$ $/$	敗+原子炉減 $10^{-4}/炉年^{\pm 1}$ 低低圧原子炉代替 弾性設計用 進戦第8 d 離戦動8 d 離戦動8 d 離戦動8 d ×	
	機能喪失	損傷後の原子 頻度) ナムへの炉心の 5×10 ⁻⁴ /炉年率3 20 年未満 ^{第4} 炉減圧失敗+ 回路の生地産素 5×10 ⁻⁴ /炉年率3 20 年未満 ^{第4}	
注水無し) (1999年2011) 「日本地震動」 (基準地震動)	心注水無 回遊の失敗確率 × 基準地震動 × 雜統 し)	□ 原子炉注水矢 取+DCH発	
(Internet of Ss)		<u>±</u>	
※1:原子力安全委員会「発電用軽水型原子炉施設の性能目標につ	※1:原子力安全委員会「発電用軽水型原子炉施設の性能目標に	※1:原子力安全委員会「発電用軽水型原子炉施設の性能目標に	
いて」に記載されている炉心損傷頻度の性能目標値を踏まえ、	ついて」に記載されている炉心損傷頻度の性能目標値を踏	ついて」に記載されている炉心損傷頻度の性能目標値を踏ま	
重大事故等の発生確率として10 ⁻⁴ /炉年とした。柏崎刈羽原子	まえ,重大事故等の発生確率として10-4/炉年とした。東	え,重大事故等の発生確率として 10 ⁻⁴ / 炉年とした。 <u>島根原</u>	
力発電所6号及び7号炉の炉心損傷頻度は10-4/炉年よりも十分	<u>海第二発電所</u> の炉心損傷頻度は 10 ⁻⁴ / 炉年よりも十分に	<u>子力発電所2号炉</u> の炉心損傷頻度は10 ⁻⁴ /炉年よりも十分に	
に小さいものと評価しており、この値の使用は保守的と考え	小さいものと評価しており、この値の使用は保守的と考え	小さいものと評価しており、この値の使用は保守的と考え	
る。	る。	る。	
※2:事象発生後,低圧代替注水系により下部プレナムへの炉心の	※2:事象発生後,低圧代替注水系(常設)により下部プレナム	※2:事象発生後,低圧原子炉代替注水系により下部プレナムへ	
リロケーションを回避可能な時間余裕のうちに,低圧代替注	への炉心のリロケーションを回避可能な時間余裕のうち	の炉心のリロケーションを回避可能な時間余裕のうちに, 低	
水系による原子炉注水の開始に失敗する確率。原子炉減圧,	に,低圧代替注水系(常設)による原子炉注水の開始に失	<u> 圧原子炉代替注水系</u> による原子炉注水の開始に失敗する確	
電源復旧、低圧代替注水系運転等の失敗確率を組み合わせて	敗する確率。原子炉減圧,電源復旧,低圧代替注水系(常	率。原子炉減圧,電源復旧,低圧原子炉代替注水系運転等の	
算出。	<u>設</u>) 運転等の失敗確率を組み合わせて算出。	失敗確率を組み合わせて算出。	
※3:JEAG4601-1984に記載されている地震動の発生確率S ₂ ,S ₁ の発	※3: JEAG4601-1984 に記載されている地震動の発生確率S ₂ , S	※3:JEAG4601 <u>・</u> 補-1984 に記載されている地震動の発	
生確率をSs, Sdに読み換えた。	₁ の発生確率をS _s , S _d に読み替えた。	生確率 S ₂ , S ₁ の発生確率を S s , S d に読み替えた。	
	※4:弾性設計用地震動S _d を考慮する場合,荷重の組合せの対象	※4:弾性設計用地震動S _d を考慮する場合,荷重の組合せの対象	
	期間は事象発生1年以降であり、その時点では格納容器圧	期間は事象発生 1 年以降であり、その時点では格納容器圧	
	力・温度は十分低下している。 基準地震動 S _s を考慮する場	力・温度は十分低下している。基準地震動Ssを考慮する場	
	合は、荷重の組合せの対象期間は20年以降とさらに長期と	合は、荷重の組合せの対象期間は 20 年以降とさらに長期と	
	なる。	なる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(3)荷重条件の保守性について		(3) 荷重条件の保守性について	
運転状態V(L), V(LL)に用いる荷重条件は, 本文5.2.2(4) a.		運転状態V (L), V (LL) に用いる荷重条件は, 本文 5.2.2(4)a.	
に示すように格納容器過圧・過温破損シナリオ「 <u>大破断LOCA+</u>		に示すように格納容器過圧・過温破損シナリオ「 <u>冷却材喪失(大</u>	
<u>ECCS機能喪失+SBO</u> 」の有効性評価結果を用いることとして		破断LOCA)+ECCS注水機能喪失+全交流動力電源喪失」	
いる。		の有効性評価結果を用いることとしている。	
運転状態V(L)に用いる荷重条件は,本文5.2.2(4)b.に示すよ		運転状態V(L)に用いる荷重条件は,本文 5.2.2(4)b.に示す	
うに格納容器過圧・過温破損(代替循環冷却系を使用しない場合)		ように格納容器過圧・過温破損(残留熱代替除去系を使用しない	
において、格納容器圧力の上昇の速度が遅く、格納容器スプレイ		場合)において、格納容器圧力の上昇の速度が遅く、格納容器ス	
流量が抑制できるなど,格納容器圧力逃がし装置の使用タイミン		プレイ流量が抑制できるなど、格納容器フィルタベント系の使用	
グが遅くなる可能性があることから、事象発生後以降の最大とな		タイミングが遅くなる可能性があることから、事象発生後以降の	
る荷重(有効性評価結果の最高圧力 <u>約0.62MPa</u> ・最高温度 <u>約168℃</u>)		最大となる荷重(有効性評価結果の最高圧力 <u>約 659kPa</u> ,最高温度	・解析結果の相違
をSdと組み合わせることとしており,保守性を確保している。な		<u>181</u> ℃)をSdと組み合わせることとしており,保守性を確保して	【柏崎 6/7】
お,この荷重は <u>CUWボトムドレン配管破断シナリオ (約0.45MPa)</u>		いる。なお,この荷重はRPV破損後のシナリオ(<u>約 362kPa</u>)の	設備, 運用, 解析条件
及びRPV破損後のシナリオ (<u>約0.48MPa</u>)の <u>3日後(10⁻²年後)</u> に		<u>10⁻² 年後(約 3.5 日後)</u> における荷重を包絡している。	等の違いによる相違
おける荷重を包絡している。			
運転状態V(LL)に用いる荷重条件は,本文5.2.2(4)b.に示すよ		運転状態V(LL)に用いる荷重条件は,本文 5.2.2(4)b.に示す	
うに除熱能力の観点から格納容器過圧・過温破損(代替循環冷却		ように除熱能力の観点から格納容器過圧・過温破損(残留熱代替	
系を使用する場合)を参照している。さらに有効性評価では、格納		<u>除去系</u> を使用する場合)を参照している。さらに有効性評価では,	
容器圧力に対して厳しい条件となるよう,格納容器漏えい率は考		格納容器圧力に対して厳しい条件となるよう、格納容器漏えい率	
慮しておらず, <u>添付10.2表に示すとおり</u> 運転状態V(LL)のような		は考慮しておらず、運転状態V(LL)のような長期間の圧力・温	
長期間の圧力・温度挙動では、この格納容器漏えい率の考慮の有無		度挙動では,この格納容器漏えい率の考慮の有無の影響は大きく,	
の影響は大きく、十分な保守性を確保している。		十分な保守性を確保している。	
長期的に安定状態を維持するにあたり、原子炉格納容器が隔離			・記載方針の相違
されている又は隔離した場合,水-放射線分解により発生する可燃			【柏崎 6/7】
性ガスの濃度制御が必要となる。この濃度制御は、事故後7日以降			島根2号炉は,有効性
において、可燃性ガス濃度制御系の復旧により、格納容器内の酸			評価のベースケース
素/水素を再結合することにより、可燃限界濃度に到達すること			において窒素を注入
なく長期安定停止状態を維持することが可能となる。仮に可燃性			する解析としている
ガス濃度制御系の復旧に期待できない場合、原子炉格納容器内の			ため、記載していな
酸素濃度監視により,酸素濃度が5%に至る前に排気(ベント)す			$\langle v_{\circ} \rangle$
る運用としている。このとき、ベント弁の開度を調整することに			
より、徐々に格納容器圧力を低下させ、かつ、原子炉格納容器が			
<u>負圧となることを防止するための措置として,窒素注入を継続し,</u>			
長期的な安定状態を維持する。この長期解析について、格納容器			
圧力及び格納容器温度の推移について、添付10.1図及び添付10.2			
図に示す。2×10 ⁻¹ 年後(60日後)の運転状態V(LL)に用いる荷重			
条件と排気(ベント)した場合の格納容器圧力・温度の比較にお			
いては、添付10.3表に示すとおり、運転状態V(LL)に用いる荷重			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
条件は上述の運用を考慮した場合においても、十分な保守性を確			
保している。なお、格納容器温度については、代替循環冷却系 [排			
気(ベント)した場合〕はドライウェル温度が約78℃と、僅かな			
がら排気(ベント)しない場合に比べて高いことから、この増分			
を荷重条件の保守性として見込むこととする。			
ー - サブレッション・チェンパ 2Pd			
-			
0.4 時的圧力上昇及び排気 (ベント)による圧力 低下			
^粪 0.2			
事故後の時間			
添付10.1図 格納容器過圧・過温破損シナリオにおける長期解析			
格納容器圧力推移			
(代替循環冷却系を使用する場合 [排気(ベント)した場合])			
300ドライウェル			
ーー - サブレッション・チェンバ 限界温度			
· 200			
U サブレッション・チェンバからの排気 (ベ 関 ント) に上ス温度所下			
羅 蝉 100			
、 格納容器スプレイ停止による温度上昇			
0 240 480 720 960 1200 1440 1680 1920 2160 2400			
事故後の時間			
<u> 添付10.2図 格納容器過圧・過温破損シナリオにおける長期解析</u>			
格納容器温度推移			
(代暦循境伶却糸を使用する場合 [排気(ベント) した場合])			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
添付10.2表 格納容器からの漏洩の有無による格納容器圧力・温度			
の差異			
格納容器過圧・過温破損 格納容器過圧・過温破損 (代替循環冷却系を使用する場合) (代替循環冷却系を使用する場合) [格納容器漏えい率考慮無し] [格納容器漏えい率考慮有り] 格納容器正力 約 0. 15MPa[gage] (2×10 ⁻¹ 年後) 約 74℃ ^{×1} 格納容器温度 約 74℃ ^{×1}			
(2×10 ¹ 年後)			
※1:サプレッション・チェンバの温度			
添付10.3 表 運転状態V(LL)に用いる荷重条件と 排気(ベント)した場合の格納容器圧力・温度の差異非気(ベント)した場合の格納容器圧力・温度の差異 $(2 \times 10^{-1} 年後)$ (60 日後) [排気(ベント)した場合]格納容器圧力 (2 \times 10^{-1} 年後)約0.15MPa[gage] (2 \times 10^{-1} 年後)約74°C*1 約78°C*2			
※1:サプレッション・チェンバの温度			
※2:ドライウェルの温度			
(4)まとめ 上記(2),(3)より「原子炉格納容器バウンダリを構成する設備」について、格納容器過圧・過温破損シナリオ「大破断LOC A+ECCS機能喪失+SBO」を荷重条件として組み合わせるシ ナリオとして選定することは適切であり、また、その荷重条件つい ては保守性が確保されている。		(4) まとめ 上記(2),(3)より「原子炉格納容器バウンダリを構成する設備」 について,格納容器過圧・過温破損シナリオ「 <u>冷却材喪失(大破</u> 断LOCA)+ECCS注水機能喪失+全交流動力電源喪失」を 荷重条件として組み合わせるシナリオとして選定することは適切 であり,また,その荷重条件については保守性が確保されている。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
参考資料	参考資料	参考資料	
〔参考1〕設置許可基準規則第39条及び解釈(抜粋)	〔参考1〕設置許可基準規則第39条及び解釈(抜粋)	〔参考1〕設置許可基準規則第39条及び解釈(抜粋)	
〔参考2〕設置許可基準規則第4条及び解釈	〔参考2〕設置許可基準規則第4 条及び解釈 7	〔参考2〕設置許可基準規則第4条及び解釈	
〔参考3〕設置許可基準規則第4条解釈の別記2(抜粋)	〔参考3〕設置許可基準規則第4 条解釈の別記2(抜粋)	〔参考3〕設置許可基準規則第4条解釈の別記2(抜粋)	
〔参考4〕耐震設計に係る工認審査ガイド(抜粋)	〔参考4〕耐震設計に係る工認審査ガイド(抜粋)	〔参考4〕耐震設計に係る工認審査ガイド(抜粋)	
〔参考5〕 JEAG4601(抜粋)	〔参考5〕 JEAG4601(抜粋)	〔参考5〕 J E A G 4 6 0 1 (抜粋)	
〔参考6〕 鉄筋コンクリート製原子炉格納容器 評価温度・圧力負	〔参考6〕原子炉格納容器 評価温度・圧力負荷後の耐震性	〔参考6〕 原子炉格納容器 評価温度・圧力負荷後の耐震性	・構造・仕様の相違
荷後の耐震性			【柏崎 6/7】
〔参考7〕DB施設を兼ねる主なSA施設等のDBAとSAの荷		〔参考7〕 D B 施設を兼ねる主な S A 施設等の D B A と S A の荷	柏崎 6/7 : 鉄筋コンク
重条件の比較		重条件の比較	リート製,島根2号
〔参考8〕「重大事故に至るおそれがある事故」に関する補足説明	〔参考71〕「重大事故に至るおそれがある事故」に関する補足説明	〔参考80〕「重大事故に至るおそれがある事故」に関する補足説明	炉:鋼製
〔参考9〕重大事故等時の長期安定冷却手段について	〔参考8〕重大事故等発生後の長期安定冷却手段について	〔参考.9.〕 重大事故等時の長期安定冷却手段について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		<u>参考1</u> <u>〔</u> 参考1〕 設置許可基準規則第 39 条及び解釈(抜粋)	
 (抜粋) 案開発電用医子声及びその間面能的の位面、構造及び設備の基準に関する規則の解釈 第89条(抽慮に上てお信心のに止) 1 第39条の適用に当たっては、本規程別記2に準子るものとす 5。 2 第1項第2号に規定する「第4条第2項の規定により算たする 地震力」とは、本規程別記2第4条第2項の規定により算だする 2 第1項第2号に規定する「第4条第2項の規定により算だする 8 第1項第4号に規定する「第4条第2項の規定により算だする。 3 第1項第4号に規定する「第4条第2項の規定により算だする 8 第1項第4号に規定する「第4条第2項の規定により算定する 4 第1項第4号に規定する「特定重大事故等対処施設」に「基準 地震動による地震力に対してその重大事故等対処施設」に「基準 	 (抗枠) (抗枠) (東港電用原子板及びその附属施設の位置、構造及び設備の基準に関する規則の需要 第3.9条(地震に上る損傷の防止) 1 第3.9条(地震に上る損傷の防止) 1 第3.9条(地震に上る損傷の防止) 1 第3.9条(の適用に当たっては、本規程別記2に準ずるものとす 5。 2 第1.項第2.号に規定する「第4条第2.項の規定により算定する 他震力」とは、本規程別記2.第4条第2.項の規定により算定する 1 項第4.号に規定する「第4条第2.項の規定により算定する。 3 第1.項第4.号に規定する「第4条第2.項の規定により算定する。 3 第1.項第4.号に規定する「第4条第2.項の規定により算定する。 4 第1.項第4.号に規定する「特定重大事故等対処施設」に「基準 地震動による地震力と同等のものとする。 	 其用金属用原子序及14-0附属施設の位置、構造及16段續の基準に関する規则の解釈 第3 9条(地震による損傷の防止) 第3 9条(地震による損傷の防止) 第3 9条の適用に当たっては、本規程別記2に準ずるものとす る。 第1 項第2 号に規定する「第4条第2項の規定により算定する 地震力」とは、本規程別記2 第4条第2項の規定により算定する 地震力」とは、本規程別記2 第4条第2項の規定により算定する 地震力」とは、本規程別記2 第4条第2項の規定により算定する 地震力」とは、本規程別記2 第4条第2項の規定により算定する 地震力」とは、本規程別記2 第4条第2項の規定により算定する 地震力」とは、本規程別記2 第4条第2項の規定により算定する。 3 第1 項第4 号に規定する「第4条第2項の規定により算定する。 3 第1 項第4 号に規定する「第4条第2項の規定により算定する。 3 第1 項第4 号に規定する「第4条第2項の規定により算にする。 3 第1 項第4 号に規定する「第4条第2項の規定により算定する。 4 第1 項第4 号に規定する「特定重大事故等対処施設」に「基準 地震動による地震力に対してその重大事故等に対処するために必 要な機能が損なわれるおそれがないもの」を適用する場合、基準 	
 (参考1)設置許可基準規則第39条及び解釈(運用整備服子承及460時階階級の位置、構造及10時報約() (地震による損傷の防止) 第二十九条 重大事故等地地能設法,次に掲げる施設の区分に応 (地震による損傷の防止) 第二十九条 重大事故時に書ものでなけわればたらない、 一 常被問意重要重大事故的地能設を除く。) 基準地震動によ るために必要な機能が損なたわるまれだないものでなりければたらない、 一 常校師房重要重大事故的上腔備以外の常置大事故市地設 備が設置される重大事故等功処態設(特定重大事故時比較) 一 常校師房重要重大事故的上腔備以外の常置美術であるさと 二 常校館が損なたわるまたれがないものであること。 二 常校師房重要重大事故的地能設(特定重大事故等功処態股(特 上市美大事故等功処態股(特定重大事故等功処態股(特 上市美大事が考切処ちたるために必要な投始能設(特定重大事故等力によう に耐えることができるものであること。 二 常校通知の施設(法国条第二項の規定により算定 する北部人いに分いに向するために必要な投船が設定おかたとお たたまかであるのであること。 2 重人事故等功処態設(法国条第三項の地震のによって生 するおおたれがあっも同員線に対して重大事故等に対処するために必要な触能が 過なたわたるおをたわざないものであること。 2 重人事故等対処態(法国条第三項の地震の) 	(参考1)、設置許可基準規則第39条及び解決 無用金帽師子をひその開意能の心能、構造又(絵曲の基重に関する規則 (他震による相信の防止) (他震による相信の防止) (他震による相信の防止) (他震による相信の防止) 第三十九条 近火事故がに認識を近くが 前に大事故でいかいたいたいです。 (本たきなたれがなかれるまそれがある事故に対処す も必能で、特定症をすれがなかれるまですがないかものであるこ こ、それがないして重大事故で解放的施設を許た。 前に限置される症大事故が知道能を許た、第二年報節に対応ないたのであるこ こ 。 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	 奥用餐業用展子学及び4の時間的のに置、構造及び除傷の基準に関する週間 (地震による損傷の形に) 第二十九条 直大事故等な地面設計する値の区分に応 し、それぞれがの意識を除く)」を取用意意意大事な的に面が設置される重大事な等なが必須 に、者して重大事故のも確認が設計とのでなかけれなららない、 一 常設置大事故的に最高が設置される重大事な時の区分に応 に対して重大事故等な地面影で除く)」 1 第四素第二項の規定により算法するために必要 な機能が損なわれるおそれがないものであること。 1 第四素第二項の規定の目の確認のによる地震かによる地震からいた に たかできるものであること。 1 第四素第二項の規定の自然にあれたするために必要 からいためできること。 2 重大事故等の地面設を除く、) 1 非常能素のによる加震が低低が からいためできるとしてもあること。 2 重大事故で等ががもある「から、基準地震動による地震 からいため 2 重大事故で等が地ですることができ、から、基準地震動による地震 からいため 2 重大事故等の地震のは、第四条第三項の地震の発生によって生 するおそれがある前面の削壊に対して重大事故等に対処するため 	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018.9.182版)	島根原子力発電所 2号炉	備考
		<u>参考2</u> 〔参考2〕設置許可基準規則第4条及び解釈	・最新の規則及び解釈反 映による相違
(参考2) 設置許可基準規則第4条及び解決 展用機構用す存などその開催的の施品、構造なび強何の確定にある例 (2000)による時間の防止) (2000)による時間の防止) (2000)による時間の防止) 第4条(地震による時間の防止) 第4条(地震による時間の防止) 第4条(地震による時間の防止) 第4条(地震による時間の防止) 第4条(地震による時間の防止) 2. 前項の必要がによる企業からも 2. 前項の必要がによる企業からも 2. 前項の必要がによる企業からも 2. 前項の必要がによる企業からも 2. 前項の必要がによる企業からも 2. 前項の必要がによる企業からも 2. 前項の必要がたいものでなければならない。 3. 前面の規模に対しているまされがないものでなければならない。 3. 前面の規模に対してでな金融間が損なわれるまされがないものでなければならない。 3. 前のの観にがしてでな金融間が損なわれるまされがないものでな 1. いばならない。	(参考2) 設置許可基準規則第4条及び解充 実用電価原子をおどその順低額のはは、構造など結構の基本に断する例料 医用電価原子をおどそのMIKIEDOLEL、構造などの個面のには、 (00歳による相信の防止) 100歳による相信の防止) 第54条(10歳による相信の防止) 100%などによって生するおそれがある設計構 単本体験がになった。 100%の可能には、可能可能によった性力をのため 100%のに応してて前にしたければたらない。 100%の可能には、可能可能による公理の必要なも 100%のに応してで前にしたければたらない。 100%の可能には、可能可能にならか、 100%の可能には、この時間中に当該耐能成変化によって生するおそれがある意計構 第54条を引がある意計構 100%のに応したでな社能が発行した。 100%のに応してでな危能能が用なわれるおそれがないものでな 目ればたらない。	 年用金電用係手序込むその附属施設の広園、構造点の設備の防止) (地理に、よる相偽の防止)	【竹呵 0/ 1, 束御弗一】

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(参考 3) 訳置許可基準規則第 4 条解釈の別記2 (抜粋) (1/2) こと記念の職業を特定すて基本職動として実法された基準地震動の妥当性については、申請時における最新の科学的・技術的知見 を該まえて個別に確認すること。その際には、地表に明瞭な威胁を示さない概要が開ー起因する震振的や地震動について、基準論的 な評価等、各種の不強かさを考慮した評価を参考とすること。 な評価等、各種の不強かさを考慮した評価を参考とすること。 ことによって、調査結果とので酸素といつでは、自的に応じた酸重等本を進定するときに、調査手法の適用条件及び構成等に記慮す ことによって、調査結果とので酸素して実定する地震動」及び「震調を特定せず策定する地震動」の地震動評価においては、通用する ことにとって、調査結果とので酸素してデザオを地震動」及び「震調を特定せず策定する地震動」の地震動評価においては、通用する ことにによって、調査結果として読むすること。 また、上記の「夢地ごとに驚調を注意するとともに、地震差徴のご言が可なも 第60何時、前層及び物理病進を評価すること。なお、評価の通程において、地下検索が成晶から知覚と認られる場合能除 ころ元がむ地下構造により検討すること。なお、評価の通程において、地下検索が成晶から知覚と認められる場合を除 ころ元がむ地下構造により検討すること。なお、評価の通程において、地下検索が成晶から知覚と感的における他 度の傾斜、前層及び物理病道を発展すること。なお、評価の通程において、地市検索が成晶から知覚と認い ころ元がむ地下構造により検討すること。なお、評価の通程において、地市検索が成晶から回答との ころ元がのがおから配置のの範疇でになってのまで成性がなること。 ②と起このの評価の実施してたっての意定が必須加加回の調査については、地相や強いでは、それデがが分なする 地震報酬記録の分析、地質調査、ボーリング調査並ばびに二次元では、地境特性及び既性文権の調査、防死すでは必要であ たれ、上記の「敷地にとに震調を非定してて定定する地震動」及び「電調者作用するかを把握すること。 なお、上記の「敷地にとに震調を非定してて定定する地震動」及び「電調者を解決するた」。	 6 第4条第3項に規定する「安全機能が損なわれるおそれがないものでなければならない」ことを満たすために、基準地震動に対する設計 基準対象施設の設計に当たっては、以下の方針によること。 一 耐震軍要施設のうち、二以外のもの ・ 基準地震動による地震力に対して、その安全機能が保持できること。 ・ 基準地震動による地震力に対してい、その安全機能が保持できること。 ・ 建物・構築物が構造物全体としての変形能力(終局耐力時の変形)について十分な余裕を有し、連物・構築物の終局耐力に対し妥当な安全余裕を有していること。 	 (参考3)」設置許可払い利用(第4条(約9,0)別記2(抗粋))(1/2) (参考3)」設置許可払いは、地気に開始してな定された基本地に認めな当社については、申請時における最新の科学的・技術的知見を請求するという。その際には、地気に開始を示さない定義新層にお回する認知時の科学的・技術的知見を請求する際の「非地気」のの「離子などの」では、中国時における最新の科学的・技術的知見を請求する際の「非地気」、自分に広いては、自力に広いたは、申請時における最新の科学的・技術的知見を請求すること。その際には、地気に開始の会話をするすること、この部金については、自力に広いた面子を含むすること、この部金については、自力に広いた面子を含むすること、この部金については、自力に広いた面子を含むたいで、「「「「」」」) (1/2) (2) 本たいためで、高者はディングになどのために、地震が使用したのでは都多くすること。 (2) 本たいための「「「「」」」」」 (3) 本たいための「「「「」」」」」 (4) 本たいための「「「「」」」」 (5) 本たいための「「「」」」」 (5) 本たいための「「「」」」」 (5) 本ための「「「」」」」」」 (5) 本たいための「「」」」」 (5) 本ための「「」」」」 (5) 本ための「「」」」」 (5) 本ための「「」」」」 (5) 本ための「「」」」 (5) 本ための「「」」」 (5) 本ための「」」 (5) 本ための「」」 (5) 本ための「「」」」 (5) 本ための「」」 (6) 本ための「」」 (7) 本ための「」、 (7) 本ための「」」 (7) 本ための「」」 (7) 本ための「」」 (7) 本ための「」」 (7) 本ための「」」 (7) 本ための「」」 (8) 本ための「」」 (7) 本ための「」」 (7) 本ための「」」 (7) 本ための「」」 (7) 本ための「」」 (7) 本ための「」 (7) 本ための「」」 (7) 本はのの「」」 (7) 本はのの」 <l< td=""><td> (業業3) (本市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市</td><td></td></l<>	 (業業3) (本市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		参考3]_設置許可基準規則第4条解釈の別記2(抜粋)(2/2)	
(参す3) 設置許可基準(4)(2/2)(2/2) (参す3) 設置許可基準(4)(1)(第 4 条(年)(0)(第12 (大)(2)(2))(2/2) (4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)((参考3)、設置許可抵準規則第4条解釈の別記2(抗粋)(2/2) (参考3)、設置許可抵準規則第4条解釈の別記2(抗粋)(2/2) (後書・最俗系については、通常運転の無常な過載的になったない、上により求められる確認に等ながなは、 の者合わせた商業保護して、その話的に考えれる確認を保持すること、なお、上により求められる確認に等なないな る場合であっても、それ、他的協議者については、通常理想でし、その話記に要求される確認に要求なれる確認に要求なれる確認に要求なれる確認に要求を知る に、また、他的協議者については、通常理想でし、その話記に要求される確認に要求なれる確認に要求なれる確認に要求なれる をいこと。考古、他的協議者については、通貨理想にようでな認識であっても、いたん事故が発生した場合、具体的には、実 である、上記の「実施的協議者については、美生地設御しよるの話が当じて、その設備に要求される確認に要求を知る 事業によって作用する必要力がには、それそれの施設な必確に要求すること。」目体的には、実 なる、上記の「素解的協議」を行いたは確認的によって引き起これるおそれのかる 事業によって作用する必要力について、それそれの施設な必確に要求する。他们、このいては、地類によって引き起こされるおそれのある 事業によって作用する必要力に対して、それたたいの経営なの認識なするかでも、いたん事故が発生した場合、長期的目標が されたようです。ここの意識の保護者であったこと、「お客が見確認によっては、予約のは確認するも であるによりので認識の目前でいうして、それたたいの認識なの認識なのかの語を認定する。これの いれれてきるとこう。 - 定め「素がの時」においてごうきれていて、「お客が見確認に、「こいては、小類によったいのから 」のので認識のはこのがないに確認かな認識でおよれた通知、「素が的には、素がない」であった。 のないでは、「ない」な知識の保護者であったこと、 またの「確認定の定のがない」に認知の認識でないことでであった」のの認知が認識に作用する何者と たいて、小なない」などの認知の認識でないことのでない。「ない」のない」のの認知の認識なの認識でない」、うい のないですっていたかなの認識の保護者であったこと、 これたのの意味でない。「意思定の定の」におよれた通知、「実施的」にない」のでい、いういでかない」、 これたのの意味でない」、「こいでない」、本語のの意味でない」、こいでもの定るの意かで、本語ので特徴にない」ので認知の定のでない、これのない」のでない、 これののできなない」のの認定ながたまたが、他们、「おおのの意がない」でない、こうにないするここ いためのに要求がもの確認ったが、「意思重要認なが可能」におい、なる可能では、ここころので、本語ので特徴を確認ったれない これのの意となない、「認定重要認なが可能」ののの認知のであって、本意記でない、こうにないすること いたかので書をおいたか。「認定重要認なが可能」ののの認知知のであって、本意記でない、こうにないするではない なる、上記ののの意味でない、これののの認知でない、これののでない、当びの必要認のでは、 これののできなない、ここのの認認のでない、これののない、これののののでない、こうにないするではない これののできなない、「認定重要なが可能」ののの認認が可能ですって、そののの認認なない、こうにない なったいでするで、これで、これのでない、これのでない、これののではない、 これののでするで、これで、これののでない、これののでない、ここにない、これのので、 これののでするでは、これのでない、これのでない、これののではない、こここと、 これののでするではない、これのでない、これのでない、これののではない、こここれので、 これのでするではない、これのでない、これのでない、これのでない、これのでない、これのでない、 これのでするではない、これのでない、これのでない、これのでない、これのでない、これのでない、 これのでするではない、これのでない、これのでない、これのでない、 これののでない、これのでない、これのでない、これのでない、これのでない、 これののでない、これのでない、これのでない、これのでない、 これのでない、これのでない、これのでない、これのでない、 これののでない、これのでない、これのでない、これのでない、 これののでない、これのでない、これのでない、 これののでない、これのでない、これのでない、 これののでない、これのでない、 これののでない、 これのでない、 これののでない、 これののでない、 これののでない、 これのででないでいていていていない、 これののでない、 これののでない、 これののでない、 これののでない、 こ	 ・ 提前・構築物については、K時作同している重度の資産時に作用する資産と高年地震和による地影力との給会せに対して、当該所 物・機能地体減金金をしていること。 ・ 接触・防薬の(()) ・ () () ()	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		参考4	
〔参考4〕耐震設計に係る工認審査ガイド(抜粋) (1/3)	<u>(参考4)</u> 耐震設計に係る工認審査ガイド(抜粋)(<u>1/3</u>)	<u>〔参考4〕</u> 耐震設計に係る工認審査ガイド(抜粋)(<u>1/2</u>)	
建物・構築物に関する項目 3.1 使用材料及び材料定数」及び「5. 土木構造物に関する項目 5.1 使用材料及び材料定数」のとおり 材料のばらつきによる定数の変動幅が適切に設定されていること <u>。</u>	建物・構築物に関する項目 3.1 使用材料及び材料定数」及び「5. 土木構造物に関する項目 5.1 使用材料及び材料定数」のとおり 材料のばらつきによる定数の変動幅が適切に設定されていること	建物・構築物に関する項目 3.1 使用材料及び材料定数」及び「5. 土木構造物に関する項目 5.1 使用材料及び材料定数」のとおり 材料のばらつきによる定数の変動幅が適切に設定されていること <u>。</u>	
 4.2 荷重及び荷重の組合せ 【審査における確認事項】 機器・配管系の耐震設計においては、施設に作用する地震力と地震 力以外の荷重を適切に組み合わせていることを確認する。 	4.2 荷重及び荷重の組合せ 【審査における確認事項】 機器・配管系の耐震設計においては、施設に作用する地震力と地震 力以外の荷重を適切に組み合わせていることを確認する。	 4.2 荷重及び荷重の組合せ 【審査における確認事項】 機器・配管系の耐震設計においては、施設に作用する地震力と地震 カ以外の荷重を適切に組み合わせていることを確認する。 	
【確認内容】 荷重及び荷重の組合せについては以下を確認する。 (1) 地震力以外の荷重 施設に作用する地震力以外の荷重は、規制基準の要求事項に留 意して、以下に示す規格及び基準等を参考に、運転状態ごとに生	【確認内容】 荷重及び荷重の組合せについては以下を確認する。 (1) 地震力以外の荷重 施設に作用する地震力以外の荷重は、規制基準の要求事項に留 意して、以下に示す規格及び基準等を参考に、運転状態ごとに生	【確認内容】 荷重及び荷重の組合せについては以下を確認する。 (1) 地震力以外の荷重 施設に作用する地震力以外の荷重は、規制基準の要求事項に留 意して、以下に示す規格及び基準等を参考に、運転状態ごとに生	
じる荷重を考慮していること。 ・ JEAG4601 ・発電用原子力設備規格 設計・建設規格((社)日本機械学会, 2005/2007)	じる荷重を考慮していること。 ・ JEAG4601 ・発電用原子力設備規格 設計・建設規格((社)日本機械学会, 2005/2007)	じる荷重を考慮していること。 ・ JEAG4601 ・発電用原子力設備規格 設計・建設規格 ((社)日本機械学会, 2005/2007)	
(2) 荷重の組合せ ① Sクラスの機器・配管系について、基準地震動 Ss による地震 カに対し安全機能が保持できるように耐震設計する際、及び弾性 設計用地震動 Sd による地震力又は静的地震力のいずれか大きい 方に対して耐えるように耐震設計する際は、規制基準の要求事項 に留意して、JEAG4601の規定を参考に、地震力と上記(1)の荷重	(2) 荷重の組合せ Sクラスの機器・配管系について、基準地震動 Ss による地震 カに対し安全機能が保持できるように耐震設計する際、及び弾性 設計用地震動 Sd による地震カ又は静的地震力のいずれか大きい 方に対して耐えるように耐震設計する際は、規制基準の要求事項 に留意して、JEAG4601の規定を参考に、地震力と上記(1)の荷重 	(2) 荷重の組合せ ① Sクラスの機器・配管系について、基準地震動 Ss による地震 力に対し安全機能が保持できるように耐震設計する際、及び弾性 設計用地震動 Sd による地震力又は静的地震力のいずれか大きい 方に対して耐えるように耐震設計する際は、規制基準の要求事項 に留意して、JEAG4601 の規定を参考に、地震力と上記(1)の荷重	
とを組み合わせていること。 ② Bクラス、Cクラスの機器・配管系について、静的地震力及び 動的地震力(Bクラスの共振影響検討に係るもの)に対して耐え るように耐震設計する際は、規制基準の要求事項に留意して、 JEAG4601の規定を参考に、地震力と上記(1)の荷重とを組み合わ せていること。なお、Bクラスの共振影響検討における動的地震 カは、水平2方向及び鈴声方向の地震力を考慮していること	とを組み合わせていること。 ② Bクラス、Cクラスの機器・配管系について、静的地震力及び 動的地震力(Bクラスの共振影響検討に係るもの)に対して耐え るように耐震設計する際は、規制基準の要求事項に留意して、 JEAG4601の規定を参考に、地震力と上記(1)の荷重とを組み合わ せていること。なお、Bクラスの共振影響検討における動的地震 力は、水平2方向及び鉛直方向の地震力を考慮していること。	 とを組み合わせていること。 ② Bクラス、Cクラスの機器・配管系について、静的地震力及び 動的地震力(Bクラスの共振影響検討に係るもの)に対して耐え るように耐震設計する際は、規制基準の要求事項に留意して、 JEAG4601の規定を参考に、地震力と上記(1)の荷重とを組み合わ せていること。なお、Bクラスの共振影響検討における動的地震 力は、水平2方向及び鉛直方向の地震力を考慮していること。 	
4.3 許容限界 【審査における確認事項】 機器・配管系の耐震設計においては、安全上適切と認められる規格 及び基準等に基づき許容限界を設定していることを確認する。	4.3 許容限界 【審査における確認事項】 機器・配管系の耐震設計においては、安全上適切と認められる規格 及び基準等に基づき許容限界を設定していることを確認する。	4.3 許容限界 【審査における確認事項】 機器・配管系の耐震設計においては、安全上適切と認められる規格 及び基準等に基づき許容限界を設定していることを確認する。	
22			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
〔参考4〕耐震設計に係る工認審査ガイド(抜粋) (2/3)	<u>(</u> 参考4) 耐震設計に係る工認審査ガイド(抜粋)(2/3)	参考4〕_耐震設計に係る工認審査ガイド(抜粋)(<u>2/2</u>)	
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header><text><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></text></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header><section-header><text><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></text></section-header></section-header></section-header></section-header></section-header></section-header>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
〔参考4〕耐震設計に係る工認審査ガイド(抜粋)(3/3)	(参考4)耐震設計に係る工認審査ガイド(抜粋)(3/3)		・記載方針の相違
 4.2 荷重及び荷重の組合せ 【審査における確認事項】 概要、配管系の創意設計においては、施設に作用する地震力と地震力以外の荷重を適切に組み合わせていることを確認する。 【確認内容】 荷重及び荷重の組合せについては以下を確認する。 (1) 地震力以外の荷重は、規制基準の要求事項に留 意して、以下に示す規格及び基準等を参考に、運転状態ごとに生 じる荷重を考慮していること。 ・JEA64601 ・発電用原子力設備規格 設計・建設規格((社)日本機械学会、2005/2007) (2) 荷重の組合せ (1) S クラスの機器・配管系について、基準地震動 Ss による地震力に対して耐えるように耐震設計する際は、規制基準の要求事項 に留定して、JEA64601の規定を参考に、地震力と上配(1)の荷重 とを組み合わせていること。 (2) Bクラス、Cクラスの機器・配管系について、静的地震力及び動的地震力(日クラスの共振影響検討に係るもの)に対して耐え るように耐震設計する際は、規制基準の要求事項に留意して、JEA64601の規定を参考に、地震力と上配(1)の荷重 とを組み合わせていること。 (2) Bクラス、Cクラスの機器・配管系について、静的地震力及び 動的地震力(日クラスの共振影響検討における動的地震力は、水平2方向及び船直方向の地震力を考慮していること。) 	 (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)		【柏崎 6/7, 東海第二】 4.2(2)の記載範囲につ いては再掲となるた め,島根2号炉では記 載していない。

柏崎刈羽	习原子力	発電所	6/7号炉	(201	17.12.20版)		東海鎮	第二発電所	(201	8.9.18版))				島	根原子力	発電	新 2 5 炉	î			備考
			,					-							T				、 <i>, , ,</i>	.		参考5	
考5〕JE	EAG4601	(抜粋)(1	/7)(JEA	G4601 •	補−1984 P.	44, 45) (参考	55)_JEA	G4601 (抜粋)(1/	7)	(JEAG4601	•補1	1984 P44, <u>P</u> 45)		考5 <u>↓</u> J		4601 5)	、抜料	*) (1/7) (JEA	AG460	
昭和 55 年	表1.	-3-1 第2種3	客器の運転状態の分 	類 (BWR)	Ф	1	man as be	表	[-3-1 第2種	容器の運	転状態の分類(H	BWR)	·····	1 • 1	甪1984	ł P <u>.</u> 44,4	5)						
通産省告示 第 501 号	<u>å</u>	æ .	地波と特象の組得 独立事象とした	ste を 撮合 家と ての	あし 備 考		昭和 55 年 通産省告示 第 501 号	谁	象	地震独立	と事象の組合せを 【事象とした場合	地裏の 従属事	備考		昭和 55 年	表 [-	3-1 第2種容	器の運動	x状態の分類(BW 	(R) 地震の			
分類	項目	説 明 	週用の 着 ∰	明. 無	19		分類	項目	前 説 明	適用の 有 無	説. 明	用の有 無			通産省告示 第 501 号	#	象	独立 適用の	事象とした場合	促調事 象とし 夏の有	備	考	
	超動	通常運転までの温 度,圧力の変動荷 重。	S ₁ △ 第象の維約 S ₂ △ 時間のオー	時間は -ダー。 -	運転状態Iの出力 運転で代表される。		1.1	起重	動 通常運転までの語 度,圧力の変動得	$S_1 \bigtriangleup$ $S_2 \bigtriangleup$	事象の継続時間に 時間のオーダー。	* ×	運転状態 I の出力 運転で代表される。		分類	項目	説 明 原子炉停止時から 不告運転までの温	有無	説 明 事象の継続時間は	無	運転状態〕	「の出力	
	停止	上記の道の事象が 生じる。	S. A 同	± ×	F L				上記の逆の事象が	s S₁ △		×	a F			起 動	超常建設までの温 度,圧力の変動荷 重。	$S_2 \triangle$	時間のオーダー。	×	運転で代表	長される。	
運転状態—1	山力湖転		5 ₁ O			-	運転状態-I		 生じる。 通常出力運転中の 	S ₂ \triangle			10) L		100	停止	上記の逆の事象が 生じる。	$\begin{array}{c} S_1 \bigtriangleup \\ S_2 \bigtriangleup \end{array}$	同上	×	同	Ŀ	
A-1		たり、 国民、 被似 的荷重。 第2種容器に対し	S ₂ O		STAR LAUL		A – 1	出力運車	五 圧力,温度,機械 的荷重。	S ₂ O		×			運転状態-I A-1	出力運転	通常出力運転中の 圧力,温度,機械			×			
	高温待機	ては, 上記と同じ 荷重。	$S_1 \bigtriangleup$ $S_2 \bigtriangleup$	×	運転で代表される。	-		高温待核	第2種容器に対し ては、上記と同じ 荷重。	$S_1 \bigtriangleup S_2 \bigtriangleup$		×	運転状態 I の出力 運転で代表される。			TT 30 45 44	的荷重。 第2種容器に対し ては し に し に し に し	$S_1 \bigtriangleup$		×	運転状態	Iの出力	
	燃料交換		$S_1 \bigtriangleup$ $S_2 \bigtriangleup$	×	運転状態Iの出力 運転における設計 条件で代表される。			燃料交排	ę –			×	運転状態Iの出力 運転における設計			jaj (m. 1-1-53).	荷重。	S ₂ \triangle			運転で代: 運転状態	表される。 I の出力	
जिसी हर क						-	脱和 55 年	1		02 4	LITTERCATE	油はの	条件で代表される。			燃料交換	A F Alberta	$S_2 \triangle$		×	運転にお 条件で代	ける設計 表される。	
通産省告示 第 501 号	.8	象	地震と事象の組 独立事象とし;	合せを 地震 た場合 泉と	1の (事))逝 備 考		通産省告示 第 501 号	巿	¢۷.	地震独立	と印象の組合せを 事象とした場合	総属事し 一 ての適	備 考		昭和 55 年 通産省生子	#	G	地震	と事象の組合せを	地震の 従属車			
分類	項:目	説明	適用の 有 4年 説	明田田	府		分類	項目	説 明	適用の有無	説 明	用の有無	運転状態Ⅱの主蒸		第 501 号 分 類	9 日	· 説 明	独立 適用の	事象とした場合説 明	象としての適用の有	備	考	
	外部電源 喪 失		$S_1 \bigtriangleup$ $S_2 \times$		連転状態Ⅱの主蒸 気隔離弁の閉鎖で 代表される。			外部電調 喪 失		$S_1 \triangle S_2 \times$	91		気隔離弁の閉鎖で 代表される。			外部電源		11		## {	運転状態 気隔離弁(Ⅱの主蒸 の閉鎖で	
	負荷の喪失		$S_1 \triangle$ $S_2 \times$	۵	in F			負荷の喪失		$S_1 \triangle S_2 \times$			同上			段 矢		S ₂ ×			代表され	5°	
	加速度		S10 事象後305			-i		南京燕主		S ₁ O	事象後30分程度に					負荷の喪失		$S_1 \Delta S_2 \times$		Δ	同	上 	
	弁の閉鎖	これらの事象が	S ₂ × 升作助。					弁の閉鎖	これらの事象が	S ₂ ×	弁作動。		TTLATTAT			主蒸気隔離 弁の閉鎖		$\begin{array}{c} S_1 \bigcirc \\ S_2 \times \end{array}$	事象後30分程度に わたる逃がし安全 弁作動。	0			
運転状態-Ⅱ	超水制御系 の故障	起これば,原子 炉圧力が上昇し 逃がし安全弁が	$S_1 \Delta$ $S_2 \times$	Δ			運転状態-Ⅱ	給水制御菜 の故障	 起これば、原子 炉圧力が上昇し 逃がし安全弁が 	$S_1 \bigtriangleup$ $S_2 \times$			風雨離弁の閉鎖で 代表される。			給水制御系の地障	これらの事象が 起これば,原子 毎日力が上見し	$S_1 \triangle$		Δ	運転状態) 気隔離弁6	Ⅱの主蒸 の閉鎖で	
A-2	圧力制御装 置の故障	〉 作動する。 この場合第2種 容器に空気泡振	$S_1 \bigtriangleup S_2 \times$	۵	同上	~	A - 2	圧力制御装 留の故障	 ・ 作動する。 この場合第2種 容器に空気泡振 	$S_1 \triangle$ $S_2 \times$			同上		運転状態-Ⅱ A-2	正力制御装	 述がし安全弁が 作動する。 この場合第2種 	S ₁ \triangle			代表され、	5 o	
	▲ 全給水流還 喪 失	いいによる何重が 作用する。	s. A					全給水流量	<u>動による荷重が</u> 作用する。							置の故障	容器に空気泡振 動による荷重が 作用する。	$S_2 \times$		Δ	[1]	E.	
	(給水ポン ブ停止)		\$2 ×		同上			授 (給水ポン プ停止)		$S_1 \Delta$ $S_2 \times$			同上			 		$\begin{array}{c} S_1 \bigtriangleup \\ S_2 \times \end{array}$		Δ	đ	Ŀ	
	タービントリップ		$S_1 \triangle S_2 \times$. D L			タービントリップ		$S_1 \triangle$ So X	-		同上			タービン		$S_1 \bigtriangleup$		_	e		
-	逃がし安全 弁誤作動		$S_1 \bigtriangleup$	×			- 4	逃がし安全	-	S, A						ト リ ッ プ 逃が L 安全		S ₂ ×		12	10]	-1-	
運転状態	(1個) 原子炉圧力	」 逃がし安全弁作動	S. X Z DIE	alle dok note				升設作動 (1個)		$S_2 \times$		×				弁誤作動 (1個)	J	$S_1 \bigtriangleup$ $S_2 \times$		×	同	Ŀ	
A3	容器の過大 圧力	による空気泡振動 が作用する。	S ₂ × 間は1分以	·#©#00-97 ×			運転状態-Ⅲ A-3	原子炉圧力 容器の過大 圧力	通がし安全并作動 による空気泡振動 が作用する。	$\begin{array}{c} S_1 \times \\ S_2 \times \end{array}$	この事象の継続時 間は1分以内。	×			運転状態-Ⅲ A-3	原子炉圧力 容器の過大 圧力	逃がし安全弁作動 による空気泡振動 が作用する。	$\begin{array}{c} \mathrm{S}_1 \times \ \mathrm{S}_2 \times \end{array}$	この事象の継続時 間は1分以内。	×			
					長時間* 作用する 圧力,温度は基準 地震動 S. と組合			-					長時間*作用する 圧力,温度は基準								長時間* f 圧力,温度	乍用する 建は基準	
運転状態−Ⅳ	冷却材要失	•	510 長時間* 継	続する	せるものとする。 また冷却材養失郡 故時に短時間働く	F .			le .		Malana & Malana -		地展明 S1 と租合 せるものとする。 また冷却材喪失事		Naga gan J fa dan sama						地震動 S ₁ せるもの また冷却	と組合 とする。 対喪失事	
A-4	事 故		S ₂ × (* 10 ⁻¹ 4	ERF) X	圧力,温度以外に, ブール水揺動によ る衒撃力があるが,		· 運転状態−IV A - 4	冷却材喪失 事 故		$S_1 \bigcirc S_2 \times$	☆時間 [*] 継続する もの。 (* 10 ⁻¹ 年以上)	×	政時に短時間働く 圧力,温度以外に、 ブール水揺動によ		理転状態−IV A−4	冷却材喪失 事 故		$\begin{array}{c} S_1 \bigcirc \\ S_2 \times \end{array}$	長時間*継続する もの。 (* 10 ⁻¹ 年以上)	×	故時に短8 圧力,温8 プール水将	寺間働く 変以外に, 留動によ	
					これは告示24条の ジェット荷重と同 等に扱う。								る町華刀があるが、 これは告示24条の ジェット荷重と同								る衝撃力が これは告示 ジェットを	いあるが, 示24条の 寄重と同	
					(*10*年以上)								等に扱う。 (* 10 ⁻¹ 年以上)								寺に扱う。 (* 10 ⁻¹ :	年以上)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
〔参考5〕 JEAG4601(抜粋)(4/7)(JEAG4601・補-1984 P.49)	参考5)JEAG4601(抜粋)(4/7)(JEAG4601・補 1984 P49)	参考5]JEAG4601 (抜粋) (4/7) (JEAG460	
 【記号の説明】 P : 地理と組合かすべきブラフトの運転状態(体紅材技大事法後の状態は除く)における広力准備 M : 地理ズの学習度以外でき渡っシーの運転状態(体紅材技大事法後の状態は除く)における広力准備 (各国大学校会社) こういては、安全側に設定された症(たとえば最高使用圧力、設计数構) P1 : 冷却材提大事故道象を除き、その後に生じている正方滑置 M : や却対型大事故道象を除き、その後に生じている正方滑置 M : 地理と組合力すべきブラントの運転状態」反び1 (運転状態国がある場合にはこれを含む)、スは 当該設備に設計上定かられた機械的滑運 P3 : 地理と組合力すべきブラントの運転状態」反び1 (国际状態国がある場合にはこれを含む)、スは 当該設備に設計上定かられた機械的滑運 P4 : 当該設備に設計上定かられた機械的増重 P5 : 新聞に設計上定かられた機械的増重 P5 : ご用用用ライネックラントの運転状態」以び1 (国际状態」がある場合にはこれを含む)、スは 当該設備に設計上定かられた機械的増重 P5 : 新聞に設力するが増加速力による荷重 M : 当該設備に設計上定かられた機械的増重 P5 : 新聞に設力する必須定力による荷重 M : 当該設備に設計上定かられた機械的増重 P5 : 新聞用意たるた機械的増重 P6 : 新聞に設力するが増加速力による荷重 M : 当該設備に設計上定かられた機械的増重 P5 : 新聞と力クスの設備に通用される加速動かにま力定さる地震力ズは物地成力 R : 予約用な構成を加えた許認ら力に載力で見て、それに地震により生じる応力に対 する特別な制限を加えた許認ら力状態 P6 : 謝屋とクラスの設備の増加さた対応 P6 : 副屋とクラスの設備の増加さた対応 P7 : 制度とクラスの設備の増加さた診断に設力 P6 : 副屋を含み(1)の電転状態 単相当の許容広力を基準として、それに地震により生じる応力に対 する特別な制限を加えた許認ら力状態 P6 : 副屋とクラスの設備の増加さた状態 P6 : 副屋とクラスの設備の増加さた許認の方状態 P6 : 副屋と方した許認広力状態 P6 : 副屋とクラスの提供の増加支の対応 P6 : 副屋でクラス酸増の増加らた力状態 P7 : 副屋とクラス酸増の増加さ力状態 P7 : 副屋とクラス酸増の増加さ力状態 P7 : 副屋を含えて、合きな力状態 P7 : 副屋とクラス酸増の増加支の大能 P7 : 副屋とクラス酸化力増加る(1) P7 : 副体合が、10 - 1084「国子力増低所の新設設計技術活計一許容応力 (増) による。 	 [CR-90.WH] P. : 死海軍 P. : 法理上総合わすべきプラントの運転状態(冷却財徳失事故決の状態は除く)における圧力抑重 M. : 地震以及び死消電以外で地震と進合わすべきプラントの運転状態で(冷却財徳失事故決めび悪は除く) (2) と、冷却財徳大等な運転というては、安全規に反比された進 (たたえば最高使用圧力、反計機構) 別を用いてもたい。 P. : 冷却財徳大等は直接を除き、その後に生じている圧が預置 M. : 冷却好徳大等は直接を除き、その後に生じている圧が預置 M. : 冷却好徳大等は直接を除き、その後に生じている圧が預置 M. : 治理したわちから小型、治理人気になる市場と同じたれる本等温 M. : 治理したわちから小型、治理人気になる市場 M. : 法理論に設計上だかられた最高級財産工具な目 (2) に登場につ助された最高級財産工具な目的で加速の構成) (2) に登場したの合われた最高数時になりたいなる構成) M. : 出版時候に設計上だかられた最高級財産になりたる構成 M. : 出版時候に設計上だかられた最高級財産工具な目的で加速の構成) (3) 正確な場合での設備で通知される原準の地震力 (4) に取る時に、ためたまる必要素の (4) に関ロタラスの設備に通用される特別能力) (5) 正確な形式の支援の通知目的に参加する非常な力が認識 (5) 正確な影響の認識に通知される原準の比較な超らして、それに地震により生じる広力に対する特別な規模を加えた許容広力状態 M. : : : : : : : : : : : : : : : : : : :	 1 ・相一,1984 P.49) (皮研究期) ○ ※ 必用 ※ 地震と出るすべんざマラントの運転状態 (冷却)持要失事故決めび地は除く) における圧力何重 M ※ 地震と低かってきて、安全低に設定された塩 (たとえば都高現川正力,設計機(金) (これける正力何重 (本) な数に(中川」ていく意味的内重 (本) な数に(中川」ていく意味的内重 (本) な数に(中川」ていく意味的内重 (本) な数に(中川」ていく意味が内重 (本) かり付き(大きな) などの(本) にている正力の(本) (本) かり付き(大きな) などの(本) にている正力の(本) (本) かり付き(大きな) などの(本) にている正力の(本) (本) かり付き(大きな) たい、(本) (などの(本)) (などの(a)) (x) (a)) (x) (a) (a) (a) (a) (a) (a)) (a)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
〔参考5〕JEAG4601(抜粋)(5/7)(JEAG4601・補-1984 P. 78, 79)	参考 5)_JEAG4601(抜粋)(5 / 7)(JEAG4601・補 1984 P78, P79)	参考5〕JEAG4601 (抜粋) (5/7) (JEAG460	
【参考ちJJEAG4601(抜大粋)(5/7)(JEAG4601・補一1984 P.78,79) 1.2 基本的考え方 1.1 新聞人及びタウス施設について 届に状態と地震的の話合き、これに対応する許容応力状態及び具体的許容応力を次の原則 czeb心。 1.3 基準地震動5(による背質を運転状態1と組合せた状態で、原則として弾性状態にある よう許容応力を定めた。さらにBCCS等のように運転状態取び1)が必定設備の能計条件 となっているものについては基準地震動5(による者質を運転状態1及び/又は運転状態 取(1)により生する構造と低合せた状態でも原則として弾性状態にあるよう許容応力を定 めた。 すなわち、運転状態国に対する許容応力状態風、を基本としてさらに地震背質に対する 特別の制限を加えた許容応力状態風、Sを視覚とする。	(参考ち), JEAG4601(抜粋)(5/7)(JEAG4601・補1984 P78, P79)	(参考ち)」JEAG4601 (抜粋) (5/7) (JEAG460 1・補1984 P_78,79) 12 基本的考え方 12.1 新聞 4.友びA クラス描版について 運転状態と地震動の組合せ、これに対応する許容応力状態変び具体的許容応力を次の原則 で変かた。 3.1 運作地震動5. 二 運作地震動5. 二 単学物能力力を定めた。さらにECCS ちのような運転状態 I 及び / 又は 温祉状態 IV(L)により生する負担と当社大戦空でも原則として弾性状態にあるよう許容応力を定 めた。 文なわち、運転状態圏に対する許容広力状態風、を基本としてさらに地震殺 童に対する 執柄の制限を加えた許容広力状態風、Sを相定とする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
〔参考5〕 JEAG4601(抜粋)(6/7)(JEAG4601-1987 P.377~	参考 5)_JEAG4601 (抜粋) (6 / 7) (JEAG4601 · 補 1984 P377, P378)	参考5〕JEAG4601(抜粋)(6/7)(JEAG460	
378)		1 <u>— 1987</u> P. 377 <u>~</u> 378)	
(e) 熱応力の扱い S1地震応力と熱応力の組合せは、図5.3.2-2に示されるフローに沿って行われる。 熱伝導解析により求められる温度荷重を用い、弾性剛性に基づいた応力解析を行 う。この場合、熱応力がコンクリートのひびわれ等による部材の剛性低下に伴い減 少することに着目し熱応力を低減するが、その低減は、表5.3.2-5に示す手法が用 いられる。詳細については、設計法、関連実験及び関連規準を参考とされたい。 また、熱応力との組合せによる応力に対しては、このほかひびわれ断面法を用い 鉄筋等の応力度を算出しチェックすることもある。	(c) 熱応力の扱い S1地震応力と熱応力の組合せは、図5.3.2-2に示されるフローに沿って行われる。 熱伝導解析により求められる温度荷重を用い、弾性剛性に基づいた応力解析を行 う。この場合、熱応力がコンクリートのひびわれ等による部材の剛性低下に伴い滅 少することに着目し熱応力を低減するが、その低減は、表5.3.2-5に示す手法が用 いられる。詳細については、設計法、関連実験及び関連規準を参考とされたい。 また、熱応力との組合せによる応力に対しては、このほかひびわれ断面法を用い 鉄筋等の応力度を算出しチェックすることもある。	(e) 熱応力の扱い S1地震応力と熱応力の組合せは、図5.3.2-2に示されるフローに沿って行われる。 熱伝導解析により求められる温度荷重を用い、弾性剛性に基づいた応力解析を行う。この場合、熱応力がコンクリートのひびわれ等による部材の剛性低下に伴い減 少することに着目し熱応力を低減するが、その低減は、表5.3.2-5に示す手法が用いられる。詳細については、設計法、関連実験及び関連規準を参考とされたい。 また、熱応力との組合せによる応力に対しては、このほかひびわれ断面法を用い 鉄筋等の応力度を算出しチェックすることもある。	
kf. f. f			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考	
〔参考5〕JEAG4601(抜粋)(7/7)(JEAG4601-1987 P.427) ま5.5.1-6 荷面の組合せ(基礎マット)	参考5)JEAG4601(抜粋)(7/7)(JEAG4601. · 補 1984 P427)	〔参考5〕_JEAG4601(抜粋)(7/7)(JEAG460 1−1987 P.427)		
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20版) 【参考5] JEAG4601 (抜粋) (7 / 7) (JEAG4601-1987 P.427) 麦5.5.1-6 有重の組合せ(基礎マット) 荷重の組合せ 許容応力度 (1) D+O 反 期 (2) D+O+L (3) D+O+L (4) D+O+S1* (5) D+O+S2 機能維持の検討 (6) D+O+L+S1* (6) D+O+L+S1* (7) (5) (6) D+O+L+S1* (6) D+O+L+S1* (7) (5) (6)の組合せは、原子炉格納容器底部鉄筋=ンクリートマットの設計の際に考慮する。 D :死荷重(自重及び機器支持荷重, サブレッションブール水重量等) O :通常運転時荷重(機器に加わる活荷重, 逃がし安全弁作動時空気泡圧力 による荷重等) L* :事故時内圧荷重(冷却材喪失事故時長大座力荷重) L :事故時内重(冷却材喪失事故時長大座) S1 :基準地襲動 S1又社酔的地震力による地震荷重 S2 :基準地襲動 S2による地震荷重	東海第二発電所 (2018.9.18 版) (参考5)_JEAG4601(抜枠)(7/7)(JEAG4601・補 1984 P427) 麦5.5.1-6 荷重の組合せ(基礎マット)	島根原子力発電所 2号炉 【参考5】」JEAG4601(抜枠)(7/7)(JEAG460 1-1987 P.427) 麦5.5.1-6 荷重の組合せ(基礎マット) 「有重の組合せ」許容応力度 (1) D+0 (2) D+0+L* (3) D+0+L (4) D+0+L* (5) D+0+L (6) D+0+L+S1* (5) D+0+L (6) D+0+L+S1* (5) D+0+L (6) D+0+L+S1* (6) D+0+L+S1* (7) D (7) D (7) D (7) D (7) D (1) D+0 (2) D+0+L* (4) D+0+L (5) D+0+L (6) D+0+L+L+S1* (6) D+0+L+L+S1* (7) C (8) D (9) D (1) D (2) D (1) E <t< td=""><td colspan="2"></td></t<>		
22 · 左平地設動 32 による地設内 担				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		参考6	
〔参考6〕鉄筋コンクリート製原子炉格納容器 評価温度・圧力負	(参考 6) 原子炉格納容器 評価温度・圧力負荷後の耐震性	参考6〕原子炉格納容器 評価温度・圧力負荷後の耐震性	・島根2号炉は,鋼製原
荷後の耐震性			子炉格納容器である
			ため, 鉄筋コンクリー
1. 検討方針	1. 検討方針	1. 検討方針	ト製格納容器との比
5.2.3 において, PCVバウンダリに対する重大事故と地震の	評価対象の各部位に対し, 評価温度・圧力 (200℃ , 2Pd)	評価対象の各部位に対し, 評価温度・圧力(200℃,2 P d)	較は行わず,東海第二
荷重条件についてSA後長期(LL)に生じる荷重とSsによる地震	負荷時に部材が弾性域又は塑性域のいずれにあるか、また、除荷	負荷時に部材が弾性域又は塑性域のいずれにあるか、また、除荷	のみと比較する。
力, SA後長期(L)に生じる荷重とSdによる地震力と組み合わせ	後に残留ひずみが生じるかを確認するとともに, 除荷後の挙動に	後の残留ひずみの有無及び除荷後の挙動の確認により耐震性への	
ることとしているが、ここでは、鉄筋コンクリート製原子炉格納	より,…耐震性への影響を評価する。	影響を評価する。	
容器(以下「RCCV」という。)に対して保守的な条件として限			
界温度・圧力 (200℃, 0.62MPa) 負荷によるRCCVへの影響を			
確認するとともに、除荷後のRCCVの挙動を検討し、耐震性安			
全性への影響を評価する。			
2.1 RUUV 躯体の耐震性に与える影響 	残留いすみの有無及い耐震性への影響有無については、一次心 + の2 花点 h 2 初生し、 ホーニル 亡士さ 花点 h 2 初生に ハルニル	残留いすみの有無及い耐晨性への影響有無については、 一次応 + の2 花点 トス 初生し、 ホーニル 亡士 さ 花点 トス 初生に ハルイル	
評価温度・圧力(200℃, 0.62MPa) 負荷の影響を確認すると共	刀のみ考慮する部位と一次+ <u></u> 次応刀を考慮する部位に分けて次	刀のみ考慮する部位と一次十二次応刀を考慮する部位に分けて次	
に、その影響を踏まえた原子炉建屋の地震応答解析を実施し、評	のとおり判断する。	のとおり判断する。	
価温度・圧力負荷によるRCCVの耐震安全性への影響を確認す	評価温度・圧力負荷時に周囲の部材の変形の影響を受けす二次	評価温度・圧力負荷時に周囲の部材の変形の影響を受けす二次	
	応力を考慮する必要がない場合は、一次応力が Sy を超えるか否	応力を考慮する必要がない場合は、一次応力がSyを超えるか合	
評価温度・圧力(200℃, 0.62MPa)負荷時の影響検討の結果に	かで残留ひずみの有無を確認する。この場合,一次応力がSy以	かで残留ひずみの有無を確認する。この場合、一次応力がSy以	
よれは、RCCVを構成する鉄筋コンクリート部材(鉄筋及びコ	トの場合は、除荷後に残留ひすみは生じない(図1, $0 \rightarrow a \rightarrow 0$)。	トの場合は、除荷後に残留ひすみは生じない(図 1,0 \rightarrow a \rightarrow 0)。	
ンクリート)について、局所的な要素を除いて降伏ひずみをト回	Sy を超える場合は, 除荷後に残留ひすみが生じる (図1, 0→ a	Syを超える場合は、除荷後に残留ひすみが生じる(図 1,0 \rightarrow a	
っており、構造全体としては弾性範囲となっている。したかって、	$\rightarrow b \rightarrow c)$	$\rightarrow b \rightarrow c$).	
温度及び圧力が抜けた段階では、はは元の状態に戻るものと考え	一次応力は与えられた荷重に対して決定する応力であるため、	一次応力は与えられた荷重に対して決定する応力であるため、	
られる。	同じ倚重が作用した場合の発生応力は除荷後も同等であり、評価	同じ荷重が作用した場合の発生応力は除荷後も同等であり、評価	
一万, コンクリートには, 温度依存性があることから, RCC	温度・圧力負荷前と同じ弾性的挙動を示す(図1, $c \rightarrow b$)。また、	温度・圧力負荷前と同じ弾性的挙動を示す(図 1, $c \rightarrow b$)。また,	
V内が高温境境となる影響について考慮する必要がある。以下で い一次に加速していた。 メージーのでは、 などので、 メージーので、 、 、 、 、 、 、 、 、 、 、 、 、 、	設計・建設規格の計容値は荷重を変形前の断面積で割った公称応	設計・建設規格の計容値は荷重を変形前の断面積で割った公称応	
は 高温 境境を 経験する こと が 耐震 安全 性評 価に 与える 影響 につい	力を基に設定されているため(図2),設計・建設規格の計容値	力を基に設定されているため(図 2), 設計・建設規格の計容値	
て検討する。	内であれは発生応力を算出する際に変形前の断面積を用いること	内であれは発生応力を算出する際に変形前の断面積を用いること	
RCCV内部の温度を200℃定常状態として,RCCV一般部	に問題ない。	に問題ない。	
の鉄筋コンクリート躯体温度の断面平均を評価すると、おおむね	なお、材料に予めひずみが作用した場合について、作用した予	なお、材料に予めひずみが作用した場合について、作用した予	
110℃となる。その状態における、RCCV一般部の躯体のコンク	ひずみ(~約19%)だけ応力-ひずみ曲線をシフトしたものと,	ひずみ(~約19%)だけ応力-ひずみ曲線をシフトしたものと,	
リートの強度・剛性について, Eurocode2[1]に基づき評価した結	予ひずみが作用しない材料の応力- ひずみ曲線がほぼ一致する	予ひずみが作用しない材料の応力-ひずみ曲線がほぼ一致すると	
果を参考 6.1 表に示す。これより、コンクリートの強度低下は無	という知見[1]が得られており、 十分小さな残留ひずみであれば	いう知見[1]が得られており、 十分小さな残留ひずみであれば発	
視することができ、コンクリートの剛性低下のみを考慮すればよ	発生応力に与える影響はないと言える。	生応力に与える影響はないと言える。	
いことが分かる。	地震(許容応力状態W _A S) の一次応力の許容応力は,供用状	地震(許容応力状態IV _A S)の一次応力の許容応力は,供用状態	
	態Dの許容応力の制限内で同等であり、さらに評価温度・圧力負	Dの許容応力の制限内で同等であり、さらに評価温度・圧力負荷	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
参考6.1 表 高温環境時のコンクリートの強度・剛性	荷前と同様の挙動を示すことから、耐震性に影響はないと判断で	前と同様の挙動を示すことから、耐震性に影響はないと判断でき	
110℃ 解析	きる。	る。	
温度 20℃ 100℃ 200℃ 相当 設定値			
コンクリ ヤング係数比 1.0 0.63 0.43 0.61 0.6	[1] 日本溶接協会「建築鉄骨の地震被害と鋼材セミナー(第12回	[1] 日本溶接協会「建築鉄骨の地震被害と鋼材セミナー(第 12 回	
ート 圧縮強度比 1.0 1.0 0.95 0.995 1.0	溶接構造用鋼材に関する研究成果発表会)」JWES-IS-9701, (1997)	溶接構造用鋼材に関する研究成果発表会)」JWES-IS-9701,(1997)	
ー コンクリートの剛性低下は,高温環境で内部の水分が逸散する			
- ことに起因しており、温度が低下したあともその影響は継続する	1 回日の 荷 重 F 応 力 による 挙 動	1回目の荷重Fによる挙動	
	供用 状態 D の 制 限	供用状態 D の制限	
 考6.1表での評価結果を踏まえて0.6倍とし、RCCVの剛性低下	SF Sy arr Ab Cひずみ増加時:0→a→b ひずひ速ひ時:b→c	S_{F} の S_{V} の A O A A O A A A O A A A O A A O A O A A O A O A O A O A O A O A O A O A O A	
 を考慮した地震応答解析を実施する。なお、本検討における地震		カ 2 回目以降の荷重 F ひずみ減少時: $b \rightarrow c$	
応答解析は,基準地震動Ss-1のNS方向を代表として実施する		// ((M) ((C) (A) (C) (A) (A) (C) (A) (C) (A) (C) (A) (C) (A) (C) (A) (C) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	
	4 ぞう 3 0	$0 \frac{\epsilon}{\epsilon} \nabla f^{2} \mathcal{A}$	
低下を考慮したものとする。	図1 降伏点を越える場合のひずみ履歴イメージ(一次応力)	図1 降伏点を越える場合のひずみ履歴イメージ(一次応力)	
 基準地震動Ss-1に対するNS方向の地震応答解析結果を参考			
 6.1~6.4図に示す。なお、剛性低下の影響を確認するために基本	応力 真応力 (共産丸が形中の所可能で刺った体)	▶ 真応力	
ケース(剛性低下を考慮しないケース)の結果についても併せて	真応力での引張強さ	真応力での引張強さ (荷重を変形中の断面積で割った値)	
図に示している。	供用状態Dの制限 Su の形式力	(供用状態 D の制限) S _u	
	Sy Sy Sy Sy Sy Sy Sy Sy Sy Sy	応 S _y	
R/B		カ = 設計・建設規格の許容値	
	0 간별과	0 ^v → J [*] →	
	図2 公称効力と真応力について	図2 公称応力と真応力について	
38.20 1176 1269 TeCCV (G60)			
21.70 T.M.S.L.(m) RCCV 1061 1086 1091 1086	 次に,評価温度・圧力負荷時に周囲の部材の変形の影響を受ける	次に、評価温度・圧力負荷時に周囲の部材の変形の影響を受け	
23.50 23.50 892 952 892 952	ため、局部的に発生する二次応力を考慮する必要がある場合は、	るため、局部的に発生する二次応力を考慮する必要がある場合は、	
18.10 845 894 845 894 12.30 12.30 808 766 808 766	構造不連続部に発生する二次応力も考慮して、 一次+ 二次応力	構造不連続部に発生する二次応力も考慮して、一次+二次応力で	
480 480 677 601 677 601	で残留ひずみの有無を確認する。一次十二次応力が Sv を超える	残留ひずみの有無を確認する。一次+二次応力がSvを超えると	
1.70	と塑性域に入るが (図3 (解説 PVB-3112) , $0 \rightarrow A \rightarrow B$)	塑性域に入るが (図 3 (解説 PVB-3112). 0 \rightarrow A \rightarrow B). 2 S v	
-8.208.20 0 1000 2000 3000 583 574 583 574	2S v 以下の場合は除荷時にひずみが減少し、除荷後に残留ひず	以下の場合は除荷時にひずみが減少し、除荷後に残留ひずみは生	
-13.70 0 1000 2000 3000 (Gai) 626 626	みは生じない(図3(解説 PV B-3112)、B→C)。また、そ	じない (図 3 (解説 PVB-3112), $B \rightarrow C$)。また、その後の挙動	
参考6.1図 最大応答加速度の比較	の後の挙動は図3のB-C上の弾性的挙動を示し、これは評価温	は図3のB-C上の弾性的挙動を示し、これは評価温度・圧力負	
	度・圧力負荷前と同じである。	荷前と同じである。	
	地震(許容応力状態Ⅳ ₄ S)の一次+二次応力の許容応力は.	地震(許容応力状態IVAS) の一次+二次応力の許容応力は. 今	
	今回の一次+ 二次応力の許容応力と同等であることから. 地震	回の一次+二次応力の許容応力と同等であることから、地震によ	
	による外力が加わったとしても一次+ 二次応力の許容応力の制	る外力が加わったとしても一次+二次応力の許容応力の制限内で	
	限内であり、さらに評価温度・圧力負荷前と同様の挙動を示すこ	あり、さらに評価温度・圧力負荷前と同様の挙動を示すことから、	
	とから、耐震性に影響はないと判断できる。	耐震性に影響はないと判断できる。	
	なお, 一次応力が S y を超える部位については, 残留ひずみ	なお,一次応力がSyを超える部位については,残留ひずみ有	

炉	備考
1ば発生応力に与える	
加時:0→A→B 少時:B→C に残留ひずみ無) 挙動:C→B	
2	
)	
み履歴イメージ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
これより、最大応答加速度については大きな差がないことが確			
認出来る。また、RCCVに生じる最大応答せん断力及び最大応			
答曲げモーメントは剛性低下ケースで基本ケース(剛性低下非考			
慮)の80%程度に低減されることから、RCCV躯体に作用する地			
震荷重は基本ケースよりも低減されることが確認出来る。一方,			
外壁に生じるせん断力及びモーメント、せん断ひずみは剛性低下			
ケース時に総じて大きくなるものの、最大応答せん断ひずみは許			
容値である2000μに対して十分余裕のある結果となっている。			
以上より,評価温度・圧力負荷後の耐震性への影響として,R			
CCVのコンクリート剛性の低下が想定されるものの, RCCV			
に作用する地震荷重は基本ケースよりも低減されることから、耐			
震安全性に与える影響は小さいと考えられる。			
3.参考文献			
[1]European Committee for Standardization : "Eurocode 2:			
Design of concretestructures", European Committee for			
Standardization, 2004 年			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
〔参考6-補足1〕			
コンクリートの高温特性の考え方			
(1) はじめに			
コンクリートの高温特性や鉄筋コンクリート構造の耐火性に関			
して、1970~80年代にまとめられた文献の情報やその後の研究結			
果を体系的に取りまとめられた資料として, European Committee			
for StandardizationによるEurocode 2 ^[1] や, 日本建築学会によ			
る2009年度版「構造材料の耐火性ガイドブック」 ^[2] (以下「AIJ			
ガイドブック」という。)や、それらを取りまとめた日本コンク			
リート工学会による「コンクリートの高温特性とコンクリート構			
造物の耐火性能に関する研究委員会 報告書」 ^[3] (以下「JCI報告			
書」という。)などがある。			
これらの参考図書の内容をコンクリートの機械的性質(圧縮強			
度、ヤング係数)ごとに下記に整理する。			
また、最新の高温コンクリートに関する知見として、国家プロ			
ジェクト「鋼板コンクリート構造のBWR格納容器への適用性評価」			
における成果として公表されている文献を参照する。			
JCI報告書いたおいてまとめられている、Eurocode 2 いによる			
設計用推奨値业のに参考としてAIJガイトワック による高温時			
のコンクリート圧縮強度の提条値を以下に示す(表1,図1)。 高温 味のコンクリートに縮強度の (π) はず (1) 上的答点す			
時のコンクリートの圧縮強度FC(I)は式(I)より昇圧する。			
$F_{C}(T) = F_{C} \times_{kc}(T) $ ^[3]			
ここで,FCは設計基準強度 (N/mm ²) である。また,式(1) に			
関しては,Tは高温時のコンクリート温度(℃), _{kc} (T)は表-1に示			
す高温時のコンクリートの圧縮強度残存比である。			
Eurocode 2 ^[1] では,骨材種類を考慮に含めており,石灰質骨材			
コンクリートについては、珪質骨材コンクリートより圧縮強度残			
存比を大きめに設定している。参考として, AIJガイドブック ^[2]			
では、高温時のコンクリートの圧縮強度残存比 _{kc} (T)をコンクリー			
トの水結合材比W/B に応じた値としている。			
図-1より, Eurocode2 ^[1] では,実験データ上限と下限の間に位			
置していることが分かる。			
以上, Eurocode2 ^[1] に規定されている高温時の圧縮強度残存比			
は、既往の実験データの上下限の領域に入っていることが確認で			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
すいのすいれ床ナノカ王电灯 0 / 1 5 / 1 5 / 1 (2014.12.20 hg) きる。 ま-1 圧縮強度残存比の提案値 ^[3] 「いつ」、「いの」 100 100 100 100 100 100 100 100 100 100 100 100 100 0.05 0.05 0.05 0.05 0.05 0.05 0.060 0.45 0.45 0.45 0.43 0.44 0.00 0.15 0.15 0.15 0.44 0.40 0.40 0.40 0.41 0.41 0.41 0.41 0.41 0.41 <td< td=""><td>来(体売</td><td> </td><td>加方</td></td<>	来(体売		加方
 (3) ヤング係数 Eurocode 2^[1]においては, Popovicsによる提案式である式(2) に高温時の圧縮強度(高温時の強度残存率)と高温時における圧縮強度時ひずみを与えて,高温時のコンクリートの応力—ひずみ 曲線を示している。Eurocode 2^[1]では,式(3)においてnを一定 値とし,普通コンクリートではn=3を与え,軽量コンクリートで はn=2.5を与えている。Eurocode 2^[1]による圧縮強度時ひずみ と温度の関係並びに各温度における応力—ひずみ曲線を図-2に示 す。 			

炉	備考

柏崎刈羽原子力発電所 6/7号烷	戸 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
$E(T) = E(20) \times k_{e}(T)$	(3) [3]			
	係数			
E(20) : 温度20℃(常温)時のヤ	ング係数			
ke(T):高温時のヤング係数残	存比			
表-2 ヤング係数残存比	との提案値			
ニンクリート温度 Eurocode 2 ^[1]	AIT ガイ ドブック ^[2]			
T 応力一ひずみ曲線よ	り 高温時提案値 ke (T)			
求まる計算値 ke (T)			
	0.80			
200 0.43	0.68			
300 0.30	0.57			
400 0.19	0.45			
500 0.10	0.35			
600 0.05	0.25			
700 0.03	0.15			
800 0.02	0.075			
900 0.01	0			
 (4)最新知見を踏まえた考察 最新の高温コンクリートに関する知見 ト「鋼板コンクリート構造のBWR格納容 る成果として公表されている文献[4][5 	見として,国家プロジェク 器への適用性評価」におけ]を参照する。当該の文献			
」 は,BWR格納容器を構成する材料(コン	クリート,鉄筋等)を対象			
として、事故時高温下における力学特性	生及び熱特性を実験により			
取得したものである。				
実験にあたっては,原子力関連施設の	Dコンクリート構造物で一			
- 般的に使用されている材料を選定した_	Lで,試験体が作成されて			
おり、電気炉を用いて加熱試験が実施さ	されている。コンクリート			
試験体への加熱温度及び期間についてに	は,DBA及びSA事故を想定し			
たものとなっている。加熱温度及び期間	間をその他の変数と併せて			
表-3に示す。また,試験の結果のうち,	図-4に圧縮強度残存比を,			
 図−5にヤング係数残存比を示す。これ」	より,「圧縮強度残存比は,			
 既往知見と同様に加熱温度が高くなる!	まど小さくなっている」と			
しており、「その低下の傾向は、AIJお	よびEurocodeと概ね対応し			
ている」としている。また、「ヤング住	系数残存比の加熱温度に応			
じた低下の傾向は, AIJとEurocodeの中	間的な値を示した」として			
いる。なお、ここでいうAIJとは前述の	AIJガイドブックを示して			

柏崎刈羽原	子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
いる。				
表-3 実験変数	(力学特性試験・コンクリート)([4]より引用)			
A 0 八帆及外				
項 目	設定			
	20°C、105°C、150°C、200°C、			
加熱溫度	300°C、500°C、700°C			
加熱期間	1 日 ^{**1} 、2 日 ^{**1} 、3 日 ^{**1} 、7 日、14 日 ^{**1} 、35 日、 2 カ月 ^{**2} 、3 カ月 ^{**2} 、7 カ月 ^{**2}			
水結合比	45%、55%			
結合材	普通ボルトランドセメント、中庸熱ポルトランドセメント、			
	晋迪4 ハトラント セメント+ ノライフラシュ			
×1:105°C	C. 150°C、200°C、300°Cのみ、※2:105°Cのみ			
以上で示した	とおり、事故を想定した上で加熱温度・期間をパ			
ラメータとして	行われた実験においても, Eurocode2 ^[1] による評			
価結果が圧縮強	度残存比についてはおおむね実験の範囲内であ			
り、ヤング係数	残存比については試験の下限値を示すことが確認			
できる。				
1.2 1.0 1.0 0.8 0.8 0.6 0.4 0.2 0.0 0 図-4 圧縮強度列	the second s			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1.2 1.0 ご 読い 0.8 0.6 0.4 0.2 0.0 200 400 600 800 加熱温度(°C) 図-5 ヤング係数残存比と加熱温度の関係([5]より引用,一部加 筆)			
(5) Eurocode2 の妥当性に関する考察 コンクリートの圧縮強度について, Eurocode 2 ^[1] の残存比と, 既往の実験データや国家プロジェクト「鋼板コンクリート構造の BWR格納容器への適用性評価」の実験データを比較し, Eurocode2 ^[1] による評価結果が実験データの範囲内にあることを確認した。 コンクリートのヤング係数について, Eurocode 2 ^[1] の応力一ひ ずみ曲線により定まる高温時のヤング係数残存比と, 既往の実験 データや国家プロジェクト「鋼板コンクリート構造のBWR格納容器 への適用性評価」の実験データを比較し, Eurocode2 ^[1] が実験デ ータのおおむね下限値を示すことを確認した。 Eurocode2 ^[1] は,先行審査における高温環境時のコンクリート のヤング係数残存比の評価に適用実績のあるAIJガイドブックと 比較して,ヤング係数を低めに評価するという傾向の違いはある ものの,剛性低下を大きく評価することからひずみの評価に対し ては保守的な設定となると考えられる。 以上より,鉄筋コンクリート製原子炉格納容器の高温環境時の 影響評価に用いる資料として,Eurocode2 ^[1] を用いることは妥当 であると考えられる。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(6)参考文献			
[1]European Committee for Standardization: "Eurocode 2:			
Design ofconcrete structures", European Committee for			
Standardization, 2004 年			
[2]日本建築学会:"構造材料の耐火性ガイドブック",2版,2009			
年			
[3]日本コンクリート工学会: "コンクリートの高温特性とコンク			
リート構造物の耐火性能に関する研究委員会 報告書", 2012			
[4] 平子ほか : 鋼板コンクリート構造のBWR 格納容器への適用性評			
価(2)材料試験(計画),日本建築学会大会学術講演梗概集,2016			
[5]抱ほか:鋼板コンクリート構造のBWR 格納容器への適用性評価			
(3) 材料試験(試験結果), 日本建築学会大会学術講演梗概			
集,2016			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
〔参考6一補足2〕			
200℃, 0.62MPa 条件時のRCCV躯体平均温度の考え方について			
1. はじめに			
参考6の200℃, 0.62MPa の温度圧力履歴を受けた後のRCCV			
の耐震性評価において, 200℃, 0.62MPa 時のRCCV躯体の平均			
温度を110℃と評価して検討を実施している。以下では躯体平均温			
度設定の考え方について示す。			
2. 想定する条件			
原子炉建屋の地震応答解析で考慮する耐震要素としては、外壁			
軸とRCCV軸に分かれるが、RCCV軸を対象として躯体平均			
温度を設定する。			
考慮した温度条件としては、RCCV内部は200℃とし、RCC			
V外側の温度条件としては、原子炉建屋設計時の条件(冬季・通常			
運転時)を考慮している。原子炉建屋設計時の条件(冬季・通常運			
転時)では, RCCV外側の温度を14.5℃ (地下階) 及び17.5℃ (地			
上階)として評価しており、今回の躯体温度設定においてはその			
温度を準用することとした。			
3. 定常状態と非定常状態の関係について			
定常状態と非定常状態の概念図を図-1に示す。時間経過により			
非定常状態の温度分布は定常状態に近づくこととなる。定常状態			
を仮定した場合は、温度の勾配が一定となることから、躯体の平			
均温度はシェル壁外側の温度とRCCV内部の温度の平均値とな			
る。今回はRCCV外側の室内の温度を14.5℃若しくは17.5℃と			
想定しており,その際の平均温度は107.25℃若しくは108.75℃と			
なるため,一律110℃と設定している。			
なお、SA後にRCCV内部がピーク温度となる時間はDBと比べ			
て比較的長時間ではあるものの、定常状態には至らないと考えら			
れることから、今回の解析において、RCCV内部をピーク温度			
として定常状態を想定することは、躯体の温度を保守的に高めに			
見積もっていることとなるものと考えている。			
また,参考6で実施したパラメータスタディにおいては,上記の			
通りRCCV外側の室内の温度を設計時の冬期の温度条件を参考			
としたが、仮にSA時におけるRCCV外側の室内の最高温度			
(66℃)を想定した場合の影響についても考察する。この温度に			
対して定常状態を仮定すると躯体平均温度は133℃となり,			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
Eurocode2に基づきヤング係数残存比を評価すると0.56となる。参			
考6の検討で考慮したヤング係数残存比は0.60であり、その差異は			
小さく,仮にヤング係数残存比を0.56として評価を実施した場合			
も現状の評価により得られた見通しへの影響は無いものと考えら			
れる。			
AUGO			

柏山	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版) 島根原子力発電所 2号炉							備考						
参考7														
〔参考	7〕 <u>DB施設</u>	を兼ねる主な	SA施設等	のDBAと	SAの衣	〔参考7〕] <u>D</u> [3施設を兼	ねる主な	<u>SA施設等</u>	のDBAと	<u>: S A の荷</u>	・設計値及び解析結果の	
		<u>車条件の</u>	比較						<u> 重条件の</u>	比較			相違 【地岐 c/7】	
施設名	DI	B条件	<u></u> 王力	S A条件	備老	施設名称	地震	DB 圧力(MPa)	条件 温度(℃)	SA 圧力(MPa)	条件 温度(℃)	備考	【1111町10/1】	
称	圧力(MPa)	温度(℃)	(MPa)	温度 (℃)		面乙居民力索馬	動 Bel Sd	8. 28	298	8.28	298	DB 条件が SA		
原子炉 圧力容	Sd: 8.37	S d : 299	S d : 8.37	S d : 299	DB 条 件 が SA 条	原于炉庄刀吞著	Ss	8.28	298	8.28	298	条件を包絡 原子 恒 圧 力		
器	Ss:8.37	S s : 299	Ss: 8.37	Ss:299	件 を 包絡	原子炉圧力容	器 器	_	298	_	298	容器下鏡からの入熱を		
原子炉 圧力容 器支持	_	S d : 171 (雰囲気温度)	-	S d : 168 (雰囲気温度)		又行スカート	Ss	_	298	_	298	考慮した温 度		
スカート	_	Ss:57 (雰囲気温度)	_	Ss:78 (雰囲気温度)	-	原子炉圧力容	器 Sd	_	【通常時】57 【LOCA 後】171	_	181			
原子炉 圧力容	_	S d : 171 (雰囲気温度)	_	S d : 168 (雰囲気温度)		基礎ボルト	Ss	_	57	_	62			
帝 基礎 ボルト	—	S s : 57 (雰囲気温度)	_	Ss:78 (雰囲気温度)	-		Sd	[D/W] 0.327 [S/C] 0.209	【D/W】 171 【S/C】 104	0.659	181			
原子炉 圧力容 器スタ	_	Sd:171 (雰囲気温度)	_	S d : 168 (雰囲気温度)		原子炉格納容器	器 	(LOCA 条件) -0.014	(LOCA 条件) 【D/W】171 【S/C】104	0.372	62			
ビライ ザ	- S.d.: 0.250	Ss:57 (雰囲気温度) Sd:171	-	Ss:78 (雰囲気温度)				(通常運転) 【D/W】0.327	(通常運転) 【D/W】171	0.012				
	(ドライウェル), 0.180	(ドライウェル), 104	S d : 0.62	S d : 168		原子炉格納容	Sd 器	【S/C】 0. 209 (LOCA 条件)	【S/C】104 (LOCA 条件)	0.659	181			
原子炉	(サフレッショ ン・チェンバ) (LOCA条件)	(サワレッション・ チェンバ) (LOCA条件)				配省買迪部	Ss	-0.014 (通常運転)	【D/W】171 【S/C】104 (通常運転)	0.372	62			
格納容器		Ss: 171 (ドライウェル)					Sd	[D/W] 0.327 [S/C] 0.209	(D/W) 171 (S/C) 104	0.659	181			
	S s : −0.014 (通常運転)	(サプレッション・ (サプレッション・	S s : 0.15	Ss:78		原子炉格納容器電気配線貫通音	器 部	(LOCA 条件) -0.014	(LOCA 条件) 【D/W】171					
	8 4 . 0 250	ナェンハ) (通常運転) Sd:					Ss	(通常運転)	【S/C】104 (通常運転)	0. 372	62			
	5 a : 0.250 (ドライウェル) 0.180	171 (ドライウェル) 104	Sd:0.62	S.d. 168		高圧炉心スプ イポンプ	∠ ^{Sd}	_	66*2 100*1	-	110*1	_		
原子炉格納容	(サプレッショ ン・チェンバ) (LOCA条件)	(サプレッション・ チェンバ)	54.0.02	54.100			Ss	_	66*2 100*1		66*2			
器配管 貫通部		(LOCA条件) Ss: 171 (ドライウェ			-	低圧炉心スプ イポンプ	Ss Ss		66*2 100*1		116*1	-		
	S s : −0.014 (通常運転)	ル) 104(サプレッショ ン・チェンバ)	S s : 0.15	Ss:78					66.2		100*2			
		(通常運転)												
柏	崎刈羽原子力	発電所 6/7	号炉 (2017. 12. 20 版)	坂)			島根原	〔子力発電〕	所 2号炉	ī		備考
------------------------	--------------------------------	--	----------	------------------------------------	----	----------------------	------------------	---------------------	------------------	--------------------------------------	------------------	----------	----	----
	D	B条件	5	SA条件				地	DB á	条件	SA 3	条件		
施設名称		温度 (℃)	圧力	温度 (℃)	備考	施設名利	名称	震 動 ^圧	E力(MPa)	温度(℃)	圧力(MPa)	温度(℃)	備考	
	S d : 0.250	S d : 171	(MPa)			残留熱除去	余去ポン	Sd	_	66*2 185*1	-			
	(ドライウェル) 0.180 (サプレッジィコ	(ドライウェル) 104	Sd: 0.62	S d : 168				Ss	_	66*2 85*1	-	100*2		
原子炉格納容	(リノレッショ ン・チェンバ) (LOCA条件)	(リノレッション・ チェンバ) (LOCA条件)				原子炉補機 水ポンプ	甫機冷却 プ	Sd	_	55*2 85*1	_	100*1		
器電気 配線貫		Ss: 171						55	1.27	55* ² 85* ³				
通部	Ss:-0.014 (通常運転)	(ドライワェル) 104 (サプレッション・	Ss:0.15	S s : 78		原子炉補機 系熱交換器	甫機冷却 與器	Su	1. 37	50*2 85*3	1.07	85*1		
		チェンバ) (通常運転)						55	1. 37	50*2	1.37	50*2		
		Sd:100 (ポンプ取付ボルト,				原子炉補機	甫機海水	Sd	_	50* ^{1,2}	-	_		
高圧炉	_	原動機合取付ホルト), 66 (基礎ボルト,	_	_				Ss	-	50* ^{1,2}	-	50*1,2		
心 注 水 系 ポン		原動機取付ボルト) S s : 100		S s : 120		*1:ボンプ *2:基礎ボ	ンプ取付ホル 巻ボルト,『	ルト, 原動 原動機取作	が機台取付オ すボルトの面	ジルトの耐震評価 討震評価に使用し	に使用している1 ている値	<u>自</u>		
ブ	_	 (ボンプ取付ボルト, 原動機台取付ボルト), 	_	(ポンプ取付ボルト, 原動機台取付ボルト),		*3:胴板,)	反,脚の耐霜	震評価に使	吏用している	o値				
		(基礎ボルト, 原動機取付ボルト)		(基礎ボルト, 原動機取付ボルト)										
		Sd:182 (ポンプ取付ボルト,												
	-	原動機台取付ボルト) 66	_	-										
残留熱 除去系		 (基礎ボルト, 原動機取付ボルト) 		0 100										
ポンプ		Ss:182 (ポンプ取付ボルト, 回動機会取付ボルト)		Ss:182 (ポンプ取付ボルト, 回動爆会取付ボルト)										
		66 (基礎ボルト,	_	100 (基礎ボルト,										
		原動機取付ボルト) Sd:70		原動機取付ボルト)										
原子炉	_	(ポンプ取付ボルト) 50(基礎ボルト, 原動機取付ボルト)	_	_										
却水系ポンプ	_	Ss:70 (ポンプ取付ボルト)	_	Ss:70 (ポンプ取付ボルト) 50										
		(基礎ボルト, 原動機取付ボルト)		(基礎ボルト, 原動機取付ボルト)										
	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1											

柏	崎刈羽原子力	発電所 6/7	7 号炉	(2017.12.20)	版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
旅設名	D	B条件	;	S A条件				
称	圧力(MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	備考			
原子炉 補機冷 却水系	S d : 1.37	S d : 70	-	-				
熱交換器	S s : 1.37	S s : 70	Ss:1.37	S s : 70				
原子炉補機冷	_	Sd:50 (ポンプ取付ボルト, 原動機台取付ボルト, 基礎ボルト, 原動機取付ボルト)	_	-				
却海水 ポンプ	_	Ss:50 (ポンプ取付ボルト, 原動機台取付ボルト, 基礎ボルト, 原動機取付ボルト)	_	Ss:50 (ポンプ取付ボルト, 原動機台取付ボルト, 基礎ボルト, 原動機取付ボルト)				
<補足	事項>							
・本表は	において耐震	評価に用いる淵	温度,圧力	りを記載。ただ	ぎし, 5	SA		
条件に:	おいて原子炉	格納容器雰囲気	気を記載し	している場合に	tDB条(件		
におい	ても原子炉格	納容器雰囲気は	こおける条	条件を記載。				
・原子	炉圧力容器は	,胴板を代表し	して記載。					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		参考8	
〔参考8〕「重大事故に至るおそれがある事故」 に関する補足説明	〔参考7〕「重大事故に至るおそれがある事故」に関する補足説明	〔参考8]「重大事故に至るおそれがある事故」に関する補足説明	
1.「重大事故に至るおそれがある事故」とは	1. 「重大事故に至るおそれがある事故」とは	1. [重大事故に至るおそれがある事故」とは	
「重大事故に至るおそれがある事故」とは,運転時の異常な過	「重大事故に至るおそれがある事故」とは、運転時の異常な過	「重大事故に至るおそれがある事故」とは、運転時の異常な過	
渡変化及び設計基準事故に対して原子炉の安全性を損なうことが	渡変化及び設計基準事故に対して原子炉の安全性を損なうことが	渡変化及び設計基準事故に対して原子炉の安全性を損なうことが	
ないよう設計することを求められる構築物,系統及び機器(=耐	ないよう設計することを求められる構築物,系統及び機器(=耐	ないよう設計することを求められる構築物,系統及び機器(=Sク	
震Sクラス施設)がその安全機能を喪失した場合であって、炉心	震Sクラス施設)がその安全機能を喪失した場合であって、炉心	ラス施設)がその安全機能を喪失した場合であって, 炉心の著しい	
の著しい損傷に至る可能性があると想定する事象である。	の著しい損傷に至る可能性があると想定する事象である。	損傷に至る可能性があると想定する事象である。	
2. 耐震重要度分類の考え方	2. 耐震重要度分類の考え方	2. 耐震重要度分類の考え方	
耐震クラスは以下のように定義されており、安全上重要な施設	耐震クラスは以下のように定義されており、安全上重要な施設	耐震クラスは以下のように定義されており、安全上重要な施設	
はSクラスに分類される。耐震B, Cクラス施設は, その機能が	はSクラスに分類される。耐震B, Cクラス施設は, その機能が	はSクラスに分類される。B, Cクラス施設は、その機能が喪失	
喪失したとしても、炉心の健全性に影響を及ぼすおそれがないも	喪失したとしても、炉心の健全性に影響を及ぼすおそれがないも	したとしても、炉心の健全性に影響を及ぼすおそれがないものと	
のとなる。	のとなる。	なる。	
そのため <u>耐震</u> B, Cクラス施設のみが損傷した状態では, 重大	そのため <u>耐震</u> B, Cクラス施設のみが損傷した状態では, 重大	そのためB、Cクラス施設のみが損傷した状態では、重大事故	
事故に至るおそれがある事故ではなく DBA である。	事故に至るおそれがある事故ではなくDBAである。	に至るおそれがある事故ではなくDBAである。	
Sクラス:地震により発生するおそれがある事象に対して,原子	Sクラス:地震により発生するおそれがある事象に対して,原子	Sクラス:地震により発生するおそれがある事象に対して,原子	
炉を停止し,炉心を冷却するために必要な機能を持つ	炉を停止し、炉心を冷却するために必要な機能を持つ	炉を停止し、炉心を冷却するために必要な機能を持つ	
施設,自ら放射性物質を内蔵している施設,当該施設	施設,自ら放射性物質を内蔵している施設,当該施設	施設,自ら放射性物質を内蔵している施設,当該施設	
に直接関係しておりその機能喪失により放射性物質を	に直接関係しておりその機能喪失により放射性物質を	に直接関係しておりその機能喪失により放射性物質を	
外部に拡散する可能性のある施設,これらの施設の機	外部に拡散する可能性のある施設、これらの施設の機	外部に拡散する可能性のある施設、これらの施設の機	
能喪失により事故に至った場合の影響を緩和し、放射	能喪失により事故に至った場合の影響を緩和し、放射	能喪失により事故に至った場合の影響を緩和し、放射	
線による公衆への影響を軽減するために必要な機能を	線による公衆への影響を軽減するために必要な機能を	線による公衆への影響を軽減するために必要な機能を	
持つ施設及びこれらの重要な安全機能を支援するため	持つ施設及びこれらの重要な安全機能を支援するため	持つ施設及びこれらの重要な安全機能を支援するため	
に必要となる施設,並びに地震に伴って発生するおそ	に必要となる施設,並びに地震に伴って発生するおそ	に必要となる施設、並びに地震に伴って発生するおそ	
れがある津波による安全機能の喪失を防止するために	れがある津波による安全機能の喪失を防止するために	れがある津波による安全機能の喪失を防止するために	
必要となる施設であって、その影響が大きいもの	必要となる施設であって、その影響が大きいもの	必要となる施設であって、その影響が大きいもの	
B クラス:安全機能を有する施設のうち,機能喪失した場合の影	Bクラス:安全機能を有する施設のうち,機能喪失した場合の影	Bクラス:安全機能を有する施設のうち,機能喪失した場合の影	
響がSクラス施設と比べ小さい施設	響がSクラス施設と比べ小さい施設	響がSクラス施設と比べ小さい施設	
C クラス:Sクラスに属する施設及びBクラスに属する施設以外	Cクラス:Sクラスに属する施設及びBクラスに属する施設以外	Cクラス:Sクラスに属する施設及びBクラスに属する施設以外	
の一般産業施設又は公共施設と同等の安全性が要求さ	の一般産業施設又は公共施設と同等の安全性が要求さ	の一般産業施設又は公共施設と同等の安全性が要求さ	
れる施設	れる施設	れる施設	
3. 耐震B, Cクラス施設の破損による影響について	3. 耐震B, Cクラス施設の破損による影響について	3. B, Cクラス施設の破損による影響について	
(1) 地震PRAにおける耐震B, Cクラス施設損傷の考慮につ	(1) 地震PRAにおける耐震B, Cクラス施設損傷の考慮につい	(1) 地震 P R A における B, C クラス施設損傷の考慮について	
いて	て		
地震 P R A では, 耐震 B, C クラス施設損傷による過渡事象と	地震 P R A では、 耐震 B 、 C ク ラ ス 施設 損傷 による 過渡 事象 と	地震 P R A では、 B, C クラス施設損傷による過渡事象として	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
して「外部電源喪失」を考慮している。また, 耐震B, Cクラス	して「外部電源喪失」を考慮している。また, <u>耐震</u> B, Cクラス	「外部電源喪失」を考慮している。また、B、Cクラス施設の損	
施設の損傷による安全機能への間接的影響を確認するとともに,	施設の損傷による安全機能への間接的影響を確認するとともに,	傷による安全機能への間接的影響を確認するとともに、さらにプ	
さらにプラント・ウォークダウンにおいて重点的に確認する項目	さらにプラント・ウォークダウンにおいて重点的に確認する項目	ラント・ウォークダウンにおいて重点的に確認する項目の一つと	
の一つとして、問題のないことを確認することとする。	の一つとして確認しており、問題のないことを確認している。	して <u>確認しており</u> ,問題のないことを確認 <u>することとする</u> 。	
(2) 設計用荷重への影響	(2) 設計用荷重への影響	(2)設計用荷重への影響	
耐震B, Cクラス施設が破損した場合であっても, 耐震Sクラ	<u>耐震</u> B, Cクラス施設が破損した場合であっても, <u>耐震</u> Sクラ	B, Cクラス施設が破損した場合であっても、Sクラス施設で	
ス施設である緩和系が健全であれば、 炉心損傷に至ることはない。	ス施設である緩和系が健全であれば, 炉心損傷に至ることはない。	ある緩和系が健全であれば、炉心損傷に至ることはない。 J E A	
JEAG4601・補-1984 では、 <u>耐震S</u> クラス施設破損により発生する	JEAG4601・補-1984 では、 <u>耐震</u> B, Cクラス施設破損により発生	G4601・補-1984では、 <u>B、C</u> クラス施設破損により発生す	
事象を地震従属事象として整理し、地震との組合せを記載してい	する事象を地震従属事象として整理し、地震との組合せを規定し	る事象を地震従属事象として整理し、地震との組合せを規定して	
る。この中で, <u>耐震</u> B, Cクラス施設破損によるDBAで考慮す	ている。この中で, <u>耐震</u> BCクラス施設破損によるDBAで考慮	いる。この中で, B, Cクラス施設破損によるDBAで考慮すべ	
べき荷重の影響は、「 <u>給水流量の全喪失</u> 」「タービントリップ」	すべき荷重の影響は、「全給水流量喪失」及び「タービントリップ」	き荷重の影響は、「 <u>全給水流量喪失</u> 」「タービントリップ」で代表	
で代表できるとして整理されている。なお,タービントリップは	で代表できるとして整理されている。	できるとして整理されている。	
主蒸気止め弁が閉鎖する事象であり、負荷の喪失事象におけるタ	B, Cクラス施設損傷による過渡における荷重は, タービン側	<u>B, Cクラス施設損傷による過渡における荷重は, タービン側</u>	
ービン蒸気加減弁閉鎖と同様事象であり、本プラントにおける過	破損による主蒸気流量及び給水流量の喪失,電源,制御系故障に	破損による主蒸気流量及び給水流量の喪失、電源、制御系故障に	
渡解析で評価している事象は「負荷の喪失」である。	よる原子炉給水ポンプの停止等が外乱となり発生する。耐震B,	よる原子炉給水ポンプの停止等が外乱となり発生する。耐震B,	
	Cクラス施設が破損することによる荷重に対する耐震Sクラスへ	<u>Cクラス施設が破損することによる荷重に対する耐震Sクラスへ</u>	
	の影響は, JEAG4601・補-1984 を踏まえて東海第二発電所として,	の影響は, JEAG4601・補-1984 を踏まえて島根2号炉として,「全	
	「全給水流量喪失」及び「タービントリップ」をもとに設定した	給水流量喪失」及び「タービントリップ」をもとに設定した設計	
	設計過渡条件にて評価を行い構造上問題ないことを確認してい	過渡条件にて評価を行い構造上問題ないことを確認している。	
	る。		
4. 「重大事故に至るおそれがある事故」が地震独立事象である	4. 「重大事故に至るおそれがある事故」が地震独立事象であるこ	4.「重大事故に至るおそれがある事故」が地震独立事象であるこ	
ことについての考察	とについての考察	とについての考察	
耐震Sクラス施設が健全であれば安全機能の喪失は起きず, 炉	<u>耐震</u> Sクラス施設が健全であれば安全機能の喪失は起きず,炉	Sクラス施設が健全であれば安全機能の喪失は起きず,炉心の	
心の著しい損傷に至ることはないので、何らかの要因で耐震Sク	心の著しい損傷に至ることはないので、何らかの要因で耐震Sク	著しい損傷に至ることはないので、何らかの要因でSクラス施設	
ラス施設(重大事故等対処設備含む)が損傷した場合に「重大事	ラス施設(重大事故等対処設備含む)が損傷した場合に「重大事	(重大事故等対処設備含む)が損傷した場合に「重大事故に至る	
故に至るおそれがある事故」が発生することとなる。ここで、確	故に至るおそれがある事故」が発生することとなる。ここで、確	おそれがある事故」が発生することとなる。ここで、確定論的に	
定論的には, 耐震Sクラス施設(重大事故等対処設備含む)はSs	定論的には、耐震Sクラス施設(重大事故等対処設備含む)はSs	は、 S クラス施設(重大事故等対処設備含む)は S s によって機	
によって機能喪失することはないことから、「重大事故に至るお	によって機能喪失することはないことから、「重大事故に至るおそ	能喪失することはないことから、「重大事故に至るおそれがある事	
それがある事故」はSsとの独立事象となる。また、確定論的な扱	れがある事故」はSs との独立事象となる。また,確定論的な扱	故」はSsとの独立事象となる。また,確定論的な扱いとは異な	
いとは異なり、確率論的な考察では、耐震SクラスであるDB施設	いとは異なり,確率論的な考察では,耐震SクラスであるDB施	り、確率論的な考察では、SクラスであるDB施設又はSs機能	
又はSs機能維持である重大事故対処設備であっても、フラジリテ	設又はSs 機能維持である重大事故対処設備であっても、フラジ	維持である重大事故対処設備であっても、フラジリティという考	
イーという考え方に基づけば, Ss以下の地震により機能喪失に至	リティという考え方に基づけば、 Ss 以下の地震により機能喪失	え方に基づけば, Ss以下の地震により機能喪失に至る確率は存	
る確率は少なからず存在する。このSs以下の地震によって安全機	に至る確率は少なからず存在する。このSs以下の地震によって	在する。このSs以下の地震によって安全機能が喪失し,「重大事	
能が喪失し、「重大事故に至るおそれがある事故」に至る頻度は	安全機能が喪失し、「重大事故に至るおそれがある事故」に至る頻	故に至るおそれがある事故」に至る頻度は極めて小さく, S s 規	
極めて小さく、Ss規模の地震の発生と「重大事故に至るおそれが	度は極めて小さく、Ss 規模の地震の発生と「重大事故に至るお	模の地震の発生と「重大事故に至るおそれがある事故」の重畳を	
ある事故」の重畳を考慮する必要はないと判断できる。	それがある事故」の重畳を考慮する必要はないと判断できる。	考慮する必要はないと判断できる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(補足) 耐震B, Cクラス施設破損による荷重の影響			
B, Cクラス施設損傷による過渡における荷重に対する影響は,			
外部電源喪失による影響を含め,タービン側破損による主蒸気流			
<u>量のしゃ断,給水流量の喪失,若しくは,電源系の機能喪失によ</u>			
る原子炉給水ポンプ及び原子炉冷却材再循環ポンプの停止が外乱			
となる。設計基準における「運転時の異常な過渡変化」は、これ			
らの機能が喪失又は誤動作するということを前提に評価を行って			
おり, 耐震B, Cクラス施設破損による荷重の影響は, 「運転時			
の異常な過渡変化」のうち「炉心内の熱発生又は熱除去の異常な			
変化」及び「原子炉冷却材圧力又は原子炉冷却材保有量の異常な			
変化」による荷重に包絡される。			
このうち、以下の理由によりタービン側破損に伴う外乱は「負			
荷の喪失」で、給水ポンプの停止に伴う外乱は「給水流量の全喪			
失」で、電源系の機能喪失に伴う外乱は「外部電源喪失」で代表			
させることができる。			
–「負荷の喪失」の過渡解析では、蒸気加減弁の急速閉鎖による			
圧力上昇に加えて,タービンバイパス弁の不作動を仮定してい			
る。このため、過渡解析における荷重に対するタービン側破損			
による外乱としては、厳しい組合せを想定していると言える。			
一「給水流量の全喪失」の過渡解析では、給水ポンプ停止による			
全ての給水流量の喪失を仮定している。			
一「外部電源喪失」の過渡解析では、外部電源の喪失に伴う給水			
流量の喪失や炉心流量の低下を仮定している。			
- 「負荷の喪失」と「給水流量の全喪失」及び「外部電源喪失」			
が同時に発生することを考慮した場合,「給水流量の全喪失」			
は「外部電源喪失」で発生する事象であることから、「負荷の			
喪失」と「外部電源喪失」が同時に発生することを考慮すれば			
よい。この場合,タービン蒸気加減弁の閉鎖により原子炉がス			
クラムすること及び給水流量の喪失や炉心流量の低下が生じる			
ことにより原子炉圧力の観点で「負荷の喪失」より厳しくなら			
ない。したがって、「負荷の喪失」「給水流量の全喪失」「外			
部電源喪失」の荷重で包絡できる。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		参考9	
〔参考9〕重大事故等時の長期安定冷却手段について	〔参考8〕重大事故等発生後の長期安定冷却手段について	〔参考.9.〕 重大事故等時の長期安定冷却手段について	
重大事故等時の原子炉格納容器除熱としては,原子炉格納容器	重大事故等時の原子炉格納容器除熱としては, 原子炉格納容器	重大事故等時の原子炉格納容器除熱としては、原子炉格納容器	
を最高使用温度以下に除熱することを基本としている。炉心損傷	を最高使用温度以下に除熱することを基本としている。重大事故	を最高使用温度以下に除熱することを基本としている。炉心損傷	
に至る重大事故等時、代替循環冷却系により格納容器内温度は緩	等時、代替循環冷却系を使用することにより原子炉格納容器内温	に至る重大事故等時,残留熱代替除去系により格納容器内温度は	
やかに低下し <u>約15 日後</u> には, <u>サプレッション・チェンバ・プール</u>	度を100℃未満に低下させることができる。	緩やかに低下し <u>約177時間後</u> には, <u>サプレッション・チェンバ水温</u>	・解析結果の相違
水温度が最高使用温度の104℃を下回る(「重大事故等対策の有効		度が最高使用温度の104℃を下回る(「重大事故等対策の有効性評	【柏崎 6/7】
性評価について「2.1 高圧・低圧注水機能喪失」(別紙1)安定		価について「2.1 高圧・低圧注水機能喪失」(別紙1)安定状態	設備, 運用, 解析条件
状態の維持について」参照)。		の維持について」参照)。	等の違いによる相違(有
			圧・過温破損(残留熱代
			替除去系を使用する場
			合)」)
しかし,残留熱除去系熱交換器が使用できない場合は,代替循	しかし、残留熱除去系熱交換器が使用できない場合は、代替循	しかし、残留熱除去系熱交換器が使用できない場合は、残留熱	
環冷却系が使用できないため格納容器ベントにより格納容器の除	環冷却系も使用できなくなるが、この場合には格納容器ベントを	代替除去系が使用できないため格納容器フィルタベント系により	
熱を行う。格納容器ベントによる除熱では、格納容器圧力の低下	行うことにより原子炉格納容器除熱を行う。格納容器ベントによ	格納容器の除熱を行う。格納容器フィルタベント系による除熱で	
は早いものの,格納容器温度の低下は代替循環冷却系より遅く,	る除熱では、 サプレッション・プール水温が飽和状態で維持され	は,格納容器圧力の低下は早いものの,格納容器温度の低下は残	
サプレッション・チェンバ・プール水温度が最高使用温度の104℃	ることとなるため、 サプレッション・プール水温を 100℃未満に	<u>留熱代替除去系</u> より遅く, <u>サプレッション・チェンバ水温度</u> が最	
を下回るのは約35 日後となる(「重大事故等対策の有効性評価に	できず、サプレッション・プール最高使用温度近くで長期間推移	高使用温度の104℃を下回るのは <u>約587時間後</u> となる(「重大事故等	・解析結果の相違
	することとなる。	対策の有効性評価について「2.1 高圧・低圧注水機能喪失」(別	【柏崎 6/7】
持について」参照)。		紙1)安定状態の維持について」参照)。	設備, 運用, 解析条件
			等の違いによる相違(有
			圧・過温破損 (残留熱代
			替除去系を使用しない
			場合)」)
そのため、格納容器内温度低減対策として残留熱除去系熱交換	そのため、原子炉格納容器温度低減対策として残留熱除去系熱	そのため、格納容器内温度低減対策として残留熱除去系熱交換	
器が使用できない場合の除熱手段を検討した。検討にあたっては	交換器が使用できない場合の除熱手段を検討した。検討に当たっ	器が使用できない場合の除熱手段を検討した。検討にあたっては	
事故発生30 日後の崩壊熱が除熱可能であることを目標とした。	ては事故発生 30 日後の崩壊熱が除去可能であることを目標とし	事故発生約30日後の崩壊熱が除熱可能であることを目標とした。	
	た。		
重大事故等時において、格納容器ベントによる格納容器除熱を	重大事故等時, 格納容器ベントによる原子炉格納容器除熱を実	重大事故等時において, <u>格納容器フィルタベント系</u> による格納	
実施している場合、残留熱除去系の補修による原子炉格納容器の	施している場合,残留熱除去系を補修により復旧し,原子炉格納	容器除熱を実施している場合、残留熱除去系の補修による原子炉	
除熱復旧を実施する。また、残留熱除去系の機能回復が長期間実	容器の除熱を実施するが、残留熱除去系の機能回復が困難な場合	格納容器の除熱機能を復旧する。また、残留熱除去系の機能回復	
施できない場合、可搬ポンプ及び可搬熱交換器を用いた除熱手段	<u>を想定し</u> ,可搬ポンプ及び可搬型熱交換器を用いた除熱手段であ	が長期間実施できない場合、可搬ポンプ及び可搬熱交換器を用い	
である「1. 可搬型格納容器除熱系による格納容器除熱」を構築	る「可搬型原子炉格納容器除熱系統による原子炉格納容器除熱」	た除熱手段である「1. 可搬型格納容器除熱系による格納容器除	
する。既設設備である残留熱除去系の使用を優先するが、復旧が	を構築する。	熱」を構築する。既設設備である残留熱除去系の使用を優先する	
困難な場合はこの可搬型格納容器除熱系による除熱を実施する。		が、復旧が困難な場合はこの可搬型格納容器除熱系による除熱を	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号	予炉	備考
本書では、それらの実現可能性と実施した場合の効果について確		実施する。本書では、それらの実現可能性	と実施した場合の効果	
認している。これに加え、「2. 可搬熱交換器によるサプレッシ		について確認している。		・設備の相違
<u>ョンプール浄化系(以下,SPCUという)を用いた除熱」を構</u>				【柏崎 6/7】
楽し、それらの実現可能性と実施した場合の効果について確認し				島根2号炉は SPCU 無
ている。				L
なお、これらに加え格納容器を直接除熱することはできないが		なお、これらに加え原子炉格納容器を直接	接除熱することはでき	
原子炉圧力容器を除熱することにより間接的に格納容器を除熱す		ないが原子炉圧力容器を除熱することによ	り間接的に原子炉格納	
る「代替原子炉補機冷却系を用いた原子炉冷却材浄化系(以下、		容器を除熱する「原子炉補機代替冷却系を用	用いた原子炉浄化系(以	
CUWという)による原子炉除熱」を構築する。CUW系による		下, CUWという) による原子炉除熱」を ²	構築する。 CUW系に	
原子炉除熱については「参考9-補足1」に示す。		よる原子炉除熱については「参考9ー補足	1〕に示す。	
参考1 表 重大事故等時における格納容器除熱手段		参考1表 重大事故等時における	格納容器除熱	・設備の相違
除熱手段 備考		除熱手段	備考	【柏崎 6/7】
代替循環冷却系による除熱		残留熱代替除去系による除熱		島根2号炉は SPCU 無
格納谷器ペントによる际熱 残留熱除夫系の補修による除熱復旧		格納容器フィルタベント系による除熱		L
可搬型格納容器除熱系による格納容器除熱 本資料1. で成立性を示す		7次軍系派安示の補修による派然復旧 可搬型格納容器除熱系による格納容器除熱 本	資料1. で成立性を示す	
<u>可搬熱交換器によるSPCUを用いた格納容器除熱</u> 本資料2. で成立性を示す		原子炉補機代替冷却系を用いたCUWによる原子炉除熱 補	〕 足1で成立性を示す	
		本表け事故時における除執手段の配備状況。	を示すものであり 除	
◆女は李成の1における時点でためも開催化したが、10× くのう、時点でたべき広切性にとかり10× くはない。		本 2 ほう 0 前 1 200 3 所示 1 200 に 備 八 に 執 手 凸 の 傷 失 順 位 を 示 す む の で け か い		
1 可施刑物始宏明险劫づけたて物研究明险劫	ゴ柳町西フ尼牧姉家明隆勅ずたトズ西フ尼牧姉家明隆教		△ 龙 カ	
1. 可搬空給納谷奋味熱光による格納谷奋味熱	可服空原士炉恰納谷菇味熟治による原士炉恰納谷菇味熟	1. 可版空給約谷商法款金による格約谷商例	大然	
<実現可能性>	<実現可能性>	<実現可能性>		
重大事故等時において、格納容器ベントによる格納容器除熱を	重大事故等時,格納容器ベントによる原子炉格納容器除熱を実	重大事故等時において、格納容器ベント	による格納容器除熱を	
実施している場合、残留熱除去系の補修によるサプレッション・	施している場合,残留熱除去系を復旧し,サプレッション・プー	実施している場合,残留熱除去系の補修に	よるサプレッション・	
チェンバ・プール水冷却モードの復旧を実施する。また,残留熱	ル水の冷却を実施する。また、残留熱除去系の復旧が困難な場合	プール水冷却モードの復旧を実施する。ま	た,残留熱除去系の復	
除去系の復旧が困難な場合に可搬設備等により構成される可搬型	に <u>は</u> ,可搬設備等により構成される <u>可搬型原子炉格納容器除熱系</u>	旧が困難な場合に可搬設備等により構成され	れる可搬型格納容器除	
格納容器除熱系による格納容器除熱を構築する。可搬型格納容器	統による原子炉格納容器除熱を構築する。	熱系による格納容器除熱を構築する。可搬	型格納容器除熱系は,	
除熱系は, 高圧炉心注水系(以下, HPCFという) 配管から耐		高圧炉心スプレイ系(以下, HPCSとい	う)配管から耐熱ホー	
熱ホース・可搬ポンプを用いて可搬熱交換器に <u>サプレッション・</u>		ス・可搬ポンプを用いて可搬熱交換器に北	プレッション・チェン	
チェンバ・プール水を供給し、そこで除熱した水を残留熱除去系		バのプール水を供給し、そこで除熱した水	を <u>低圧原子炉代替注水</u>	・設備の相違
の原子炉注水ラインで原子炉圧力容器に注水するライン構成であ		系の原子炉注水ラインで原子炉圧力容器に	注水するライン構成で	【柏崎 6/7】
り、可搬設備を運搬・設置する等の作業があるが、長納期品につ	この対応には、可搬型設備を運搬・設置する等の作業を伴うが、	— あり,可搬設備を運搬・設置する等の作業;	があるが,長納期品に	系統構成の相違
いては事前に準備しておくことにより、1ヵ月程度で系統を構築	事前に可搬型設備等を準備しておくことにより、1ヵ月程度で系	ついては事前に準備しておくことにより.	 1ヵ月程度で系統を構 	
することが可能であると考えられる。	「旅を構築することが可能であると考えられる			
するここ、「加てのるこうたられるる。 また 可搬ポンプを用いた可搬刑枚納容哭险執系に加う 党設				・ 設備の相違
				₩₩*/10) 【拍亾6/7】
<u>用いた味熱」の手段を登加する。詳細は「2. 可搬熱父換器によ</u>				局 恨 Z 方 炉 は SPUU 無
<u> </u>				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 18版)	島根原子力発電所 2号炉	備考
	可搬型原子炉格納容器除熱系統のうち、可搬ポンプの吸込み箇	可搬型格納容器除熱系について,可搬ポンプの吸込み箇所は,	
可搬型格納容器除熱系について,可搬ポンプの吸込み箇所は,	所は、原子炉隔離時冷却系ポンプ入口逆止弁とし、耐熱ホースで	<u>HPCSポンプ</u> の吸込配管にある「 <u>HPCSポンプ復水貯蔵タン</u>	・設備の相違
<u>HPCFポンプ</u> の吸込配管にある「 <u>HPCF復水貯蔵槽側吸込逆</u>	接続する構成とする。	<u>ク水入口逆止弁</u> 」とし、耐熱ホースで接続する構成とする。	【柏崎 6/7,東海第二】
<u>止弁(B)</u> 」とし、耐熱ホースで接続する構成とする。			系統構成の相違
可搬ポンプの吐出については、耐熱ホースを用いて原子炉建屋	可搬ポンプの吐出については、耐熱ホースを用いて原子炉建屋	可搬ポンプの吐出については、耐熱ホースを用いて原子炉建物	
大物搬入口に設置する可搬熱交換器と接続する構成とし、可搬熱	原子炉棟大物搬入口に設置する可搬型熱交換器と接続する構成と	大物搬入口に設置する可搬熱交換器と接続する構成とし、可搬熱	
交換器の出口側については残留熱除去系の原子炉注水配管にある	<u>する。</u> 可搬型熱交換器の出口側については <u>低圧代替注水系(可搬</u>	交換器の出口側については低圧原子炉代替注水系の原子炉注水配	・設備の相違
「 <u>残留熱除去系注入ライン洗浄水入口逆止弁(B)</u> 」と耐熱ホース	型)の逆止弁と耐熱ホースで接続する構成とする。可搬型熱交換	管にある <u>「FLSR可搬式設備A-注水ライン逆止弁」</u> と耐熱ホ	【柏崎 6/7,東海第二】
で連結する構成とする。これらの構成で、可搬ポンプによりサプ	器の二次系については、可搬型代替注水大型ポンプにより海水を	ースで連結する構成とする。これらの構成で、可搬ポンプにより	系統構成の相違
レッション・チェンバ・プール水を可搬熱交換器に送水し、そこ	通水できる構成とする。	サプレッション・チェンバのプール水を可搬熱交換器に送水し,	
で除熱した水を原子炉圧力容器に注水する系統を構築する。なお、		そこで除熱した水を原子炉圧力容器に注水する系統を構築する。	
可搬熱交換器の二次系については、大容量送水車により海水を通		なお、可搬熱交換器の二次系については、大型送水ポンプ車によ	
水できる構成とする。		り海水を通水できる構成とする。	
	,		
	原子炉ウェルへ 原子炉速屋原子炉棟		
		低圧原子炉	
	100-100-100-100-100-100-100-100-100-100		
		接続□ I→+ C→- A-残留熱 除去系より Mo 圧 工	
	低 圧 炉 ドライウェル 原子炉圧力容器へ		
原子炉建量			
御意知(Herri 創設オース研究 日本語 コンパレイ・ステダ 「日本語 コンパレイ・ステダ 「日本語 コンパレイ・ステダ 「日本語 コンパレイ・ステダ 「日本語 コンパレイ・ステダ 「日本語 コンパレイ・ステダ			
	可能型熱交換器 純水系から →→		
	パープスの通知の ステレビ アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・ア		
	可搬ポンプ 「原子炉隔離時冷却系ポンプ		
		大型送水 ボンプ車 可搬ポンプ	
	SA用海水ビット 可範型代替注水大型ポンプ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
老老1図 可拠刑故劾宏聖除鄰でのでな概要回		会表1回 司拠刑故姉家聖院教でのでな歴政回	・設備の知達
<u> 参与1凶 明</u> 加密 昭和 谷	<u>凶1 町</u> 城空床丁炉 俗稻 谷	<u> 参与1因 明瞭空俗和谷福味款茶の茶和焼哈凶</u>	・ 収加の伸進
			↓ 11呵 0/1, 果御弗二】

柏崎刈羽原子力発電所 6/	7 号炉 (2017.12.20 版)	東海第二発電所(2018.9.1	18版)	島根原子力発電所 2号	-炉	備考
参考2表 可搬型格納容器	除熱系構築に必要な作業	表1 可搬型原子炉格納容器除熱系統の	構築に必要な作業	参考2表 可搬型格納容器除熱系構築	・設備の相違	
作業	所要期間	作業	所要期間	作業	所用時間	【柏崎 6/7,東海第二】
HPCFポンプ吸込ラインの逆止弁と残留		原子炉隔離時冷却系ポンプ入口逆止弁と低圧代替		HPCSポンプ吸込みラインの逆止弁と低圧原子炉代替注水		
熱除去系洗浄水ラインの逆止弁の上蓋等取	これとの佐娄け 1ヵ日毎で準備司能し	注水系(可搬刑) 道止弁の上萎笑取外」 耐熱ホー		※注水フインの逆止并の上 症取り外し、耐熱ホース取付 可搬ポンプ 準備	これらの作業は, 1ヵ月程度	
可搬ポンプ準備	これらの作来は、エカ月柱度で準備可能と 考えている。	(二小木(「加生) ジェテジエニマ収/ドし、 間系が		可搬熱交換器準備	で準備可能と考えている。	
可搬熱交換器準備		× 取付	これらの作業は, 1ヵ月 程度で準備可能と考え	通水試験等		
通水試験等		可搬ポンプ ^準 備	ている。			
		可搬型熱交換器準備				
		通水試験等				
<効果>		<効果>		<効果>		
「雰囲気圧力・温度による静的	負荷(格納容器過圧・過温破損)」	可搬型原子炉格納容器除熱系統における	除熱効果を確認するた	「雰囲気圧力・温度による静的負荷(格納	容器過圧・過温破損)」	
において事象発生後約1ヵ月まで	ご 格納容器ベントによる除熱を行	め、「雰囲気圧力・温度による静的負荷(格	納容器過圧・過温破損)	において事象発生後約1ヵ月まで格納容器	<u>フィルタベント系</u> によ	
った後、可搬型格納容器除熱系に	こよる除熱とした場合の格納容器	(代替循環冷却系を使用できない場合)」に	おいて,事象発生30日	る除熱を行った後、可搬型格納容器除熱系に	こよる除熱とした場合	
パラメータ推移を評価した。ここ	こで可搬型格納容器除熱系の流量	 後まで格納容器ベントによる除熱を行った	後,格納容器ベントを	の格納容器パラメータ推移を評価した。ここ	こで可搬型格納容器除	・運用の相違
 は、事故発生30 日後の崩壊熱を、	上回る160m ³ /h とし,格納容器圧	 停止し,可搬型原子炉格納容器除熱系統に	よる除熱を実施した場	熱系の流量は、事故発生30日後の崩壊熱を」	上回る 「 m ³ /hとし,	【東海第二】
力逃がし装置は微開(流路面積3	%開)とするとともに不活性ガス	 合の原子炉格納容器パラメータ推移を評価	した。ここで可搬型原	格納容器フィルタベント系は微開(流路面積3%開)とするとと		島根2号炉は,可燃性
系より窒素ガスを600m ³ /h 注入す	-2°	▲ 子炉格納容器除熱系統の流量は,事故発生 30 日後の崩壊熱除去		もに可搬式窒素供給装置により窒素ガスを100m ³ /h注入する。		ガスの蓄積を防止する
		相当以上の流量として 100m ³ ∕h とし、伊	、 氏圧代替注水系(常設)			ために、格納容器ベント
		等による原子炉注水及び格納容器ベントを	・停止するとともに、原			を停止せず、微開にする
		子炉格納容器内が負圧とかろことを防止及	び原子炉格納容器内の			運用としていろ
		不活性化のために、可搬型窒素供給装置に	よりドライウェル及び			・設備の相違
		サプレッション・チェンバ内へ窒素を注入	(総注入流量 400m ³ /h)			【柏崎 6/7. 東海第二】
		+Z				安素ガス注入量
参考2~4 図に格納容器圧力 オ	ぬ納容器気相部温度 サプレッシ	 / 3。 図 2~4 に原子炉格納容器圧力 原子炉 	「格納容器気相部温度	★考え~4図に格納容器圧力 格納容器	言相部温度 サプレッ	王宗》八江八重
コン・チェンバ・プール水温の推	移态示于 关考3 团乃代关考4 团	サプレッション・プール水泪の堆移を示す		ション・チェンバ水泪の堆移を示す。参考		
	チャープレッション・チェンバ・	となり 可拠刑百工后枚納宏聖除教るによ			ノコン・チェンバ水泪	
	z, junior and a set z		(小)、「小」「小」「「「「「「「」」」」「「「」」」「「「」」」「「「「」」」「「「」」」「「」」」「「」」「「」」」「「」」」「「」」」「」」「」」「」」「」」「」」「」」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」」「」」「」」」「」」」「」」「」」」「」」」「」」「」」」「」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」「」」「」」」「」」」「」」「」」」「」」「」」」「」」「」」」「」」」「」」「」」」「」」「」」」「」」」「」」「」」」「」」」「」」」「」」」「」」」「」」」」	9 こわり、 佃村谷田 X(旧印) 皿反, リノーレン		
ノール水価を低減させることがで	280.		114個でせることかでき	を低減させることができる。		
われ 大河体のトニア 板研究	四日山洋学・五年二日	る。 われ、大証体のとらた、故伽穴中にもい	(が) 壮果にトロ妆師会	われ 大証何のとられ 彼如宏明マ・リン	ロベントズレートの地分	
なわ、本計価のように、	協生力逃加し装直により 格納谷森	なわ、本評価のように、	かし装直により格納谷	なわ、本評価のように、恰利谷益ノイルク	リント 水により俗納	
圧力が低下している状態では、 ~	シト美施時に原于炉格納谷器内	る圧力が低下している状態では、格納容器 はない ついている状態では、格納容器	ネント実施時に原子炉	谷器圧力が低下している状態では、	品ペント美施時に原子 エスには44-0円-1020日	
の非疑縮性カスは排出され、原子	一炉格納容器内は崩壊熱により発	格納容器内の非疑縮性ガスは排出され、原	子炉格納谷器内は崩壊	炉格納容器内の非凝縮性ガスが排出され、原子炉格納容器内は崩		
生する蒸気で満たされる状態とな	る。こうした状況において除熱	熱により発生する蒸気で満たされる状態と	なる。こうした状況に	壊熱により発生する蒸気で満たされる状態と	となる。こうした状況	
糸(可搬型格納容器除熱系)の通	基転を開始する場合, <u>サプレッシ</u>	おいて除熱系(可搬型原子炉格納容器除熱	除統)の運転を開始す	において除熱系(可搬型格納容器除熱系)の)運転を開始する場合,	
ヨン・チェンバ・プール水温が10	00℃を下回ると、飽和蒸気圧に従	る場合,サプレッション・プール水温が	100℃を下回ると, 飽和	サプレッション・チェンバ水温が100℃を下	回ると, 飽和蒸気圧に	
い格納容器圧力は負圧となる可能	と性がある。よって,可搬型格納容	蒸気圧に従い原子炉格納容器圧力は負圧と	なる可能性がある。よ	↓従い格納容器圧力は負圧となる可能性がある	る。よって,可搬型格	
器除熱系の運転を開始する際には	は,格納容器圧力逃がし装置は微	って, 可搬型原子炉格納容器除熱系統の運	『転を開始する煎には,	<u>納容器除熱系</u> の運転を開始する際には、 <u>格線</u>	h容器フィルタベント	・運用の相違
開とした上で, 不活性ガス系より	窒素ガスを注入し,格納容器圧力	原子炉格納容器内が負圧となることを防止	及び原子炉格納容器内	系は微開とした上で,可搬式窒素供給装置よ	り窒素ガスを注入し、	【東海第二】
が負圧とならないよう制御する運	匪用とする。	の不活性化のために、原子炉格納容器内へ	窒素を注入する。	格納容器圧力が負圧とならないよう制御する	る運用とする。	島根2号炉は,可燃性

ガスの蓄積を防止する ために,格納容器ベント を停止せず,微開にする 原子炉格納容器の限界圧力 853kPa[gage - ドライウェル --- サプレッション・チェンバ 可搬型格納容器除熱系の運転を事象発生 730 時間後 に開始することによる,格納容器圧力の低下 0 1,200 1,440 1,680 1,920 2,160 2,400 事故後の時間(時) る) --- サプレッション・チェンバ 原子炉格納容器の限界温度 200℃ 可搬型格納容器除熱系の運転を事象発生 730 時間後 -----960 1,200 1,440 1,680 1,920 2,160 2,400

運用としている。 ・解析結果の相違 【柏崎 6/7】 ①島根2号炉は,可搬 型格納容器除熱系の開 始以降,設備容量等の違 いにより,蒸気凝縮によ る急激な圧力低下が生 じる。 【東海第二】 ①島根2号炉は、ベン ト微開とするため,可燃 性ガスは蓄積しない。 (東海第二では,ベント 閉止するため,可燃性ガ ス濃度の上昇により再 度ベントをしており,格 納容器圧力の増減があ ・解析結果の相違 【柏崎 6/7, 東海第二】 ①島根2号炉は,可搬 型格納容器除熱系の開 始前に,窒素を注入する ことによる格納容器の 圧力上昇により一時的 に格納容器温度が上昇 する。

備考

<系統成立性評価>

可搬型原子炉格納容器除熱系統は、事故発生 30 日後の崩壊熱 相当(約 5.7MW)を除熱できる設計とし、本章ではその系統成立 性評価を示す。評価に当たっては「①可搬ポンプの NPSH (Net Positive Suction Head) 評価」で原子炉建屋原子炉棟地下 2 階 に設置する可搬ポンプの必要 NPSH が,系統圧力損失を考慮して 有効 NPSH を満足することを確認する。次に「②流量評価」で系 統圧力損失を考慮して,本系統で確保可能な系統流量を評価し, その流量で可搬熱交器による除熱可能な除熱量を「③除熱量評価」 で示し、本系統が事故発生30日後の崩壊熱相当(約5.7MW)を除 熱できることを確認し、系統成立性を示す。

ポンプの NPSH 評価

ポンプがキャビテーションを起こさず正常に動作するために は、流体圧力や吸込配管圧力損失等により求められる「有効 NPSH」 が、ポンプの「必要 NPSH」と同等かそれ以上であること(有効 NPSH ≧必要 NPSH)を満足する必要がある。 このため、本評価では図5の系統構成を想定し、原子炉格納容 器内圧力 (サプレッション・チェンバ), サプレッション・プール

水位と可搬ポンプ軸レベル間の水頭差,吸込配管(原子炉隔離時 冷却系配管及び耐熱ホース) 圧力損失により求められる有効 NPSH と、可搬ポンプの必要 NPSH を比較することで、ポンプの成立性 を確認する。

有効 NPSH の評価式は以下のとおりであり,評価結果は表2に NPSHの評価式は以下の通りであり、評 示すとおり、ポンプのNPSH 評価は成立する。 す通り、ポンプのNPSH評価は成立する。

<系統成立性評価>

可搬型格納容器除熱系は、事故発生30日後の崩壊熱相当(約 6.5MW)を除熱できる設計とし、本章ではその系統成立性評価を示 す。評価にあたっては「①可搬ポンプのNPSH(Net Positive Suction Head)評価」で原子炉建屋地下3階に設置する可搬ポンプの必要 NPSHが系統圧力損失を考慮して有効NPSHを満足することを確認す る。次に「②流量評価」で系統圧力損失を考慮して、本系統で確 保可能な系統流量を評価し、その流量で可搬熱交換器による除熱 可能な除熱量を「③除熱量評価」で示し、本系統が事故発生30日 後の崩壊熱相当(約6.5MW)を除熱できることを確認し,系統成立 性を示す。

① ポンプのNPSH評価

ポンプがキャビテーションを起こさず正常に動作するためには, 流体圧力や吸込配管圧力損失等により求められる「有効NPSH」が、 ポンプの「必要NPSH」と同等かそれ以上であること(有効NPSH≧ 必要NPSH)を満足する必要があり、有効NPSHと必要NPSHを比較す るNPSH評価によりポンプの成立性を確認する。本評価では参考5 図の系統構成を想定し、格納容器内圧力(S/C)、サプレッシ ョン・チェンバ・プール水位と可搬ポンプ軸レベル間の水頭差, 吸込配管(HPCF常設配管及び耐熱ホース)圧力損失により求めら れる有効NPSHと、可搬ポンプの必要NPSHを比較することで評価す る。有効NPSHの評価式は以下の通りであり、評価結果は参考3表に 示す通り、6号炉及び7号炉ともにポンプのNPSH評価は成立する。

島根原子力発電所 2号炉	備考
$\frac{1}{2}$ (c)	・解析結果の相違 【柏崎 6/7,東海第二】 ①島根2号炉は,可搬 型格納容器除熱系の開 始前に,窒素を注入する ことによる格納容器の 圧力上昇により一時的 にサプレッション・チェ ンバ水温が上昇する。
<系統成立性評価> 可搬型格納容器除熱系は,事故発生30日後の崩壊熱相当(約 3.9MW)を除熱できる設計とし,本章ではその系統成立性評価を示 す。評価にあたっては「①可搬ポンプのNPSH(Net Positive Suction Head)評価」で原子炉建物地下2階に設置する可搬ポンプ の必要NPSHが系統圧力損失を考慮して有効NPSHを満足す ることを確認する。次に「②流量評価」で系統圧力損失を考慮し て,本系統で確保可能な系統流量を評価し,その流量で可搬熱交 換器による除熱可能な除熱量を「③除熱量評価」で示し,本系統 が事故発生30日後の崩壊熱相当(約3.9MW)を除熱できることを確 認し,系統成立性を示す。	 ・設備の相違 【柏崎 6/7,東海第二】 崩壊熱の相違 ・設備の相違 【柏崎 6/7,東海第二】
 認し、系統成立性を示す。 ポンプのNPSH評価 ポンプがキャビテーションを起こさず正常に動作するために は、流体圧力や吸込配管圧力損失等により求められる「有効NP SH」が、ポンプの「必要NPSH」と同等かそれ以上であること(有効NPSH≧必要NPSH)を満足する必要があり、有効 NPSHと必要NPSHを比較するNPSH評価によりポンプの 成立性を確認する。本評価では参考5図の系統構成を想定し、格 納容器内圧力(S/C)、サプレッション・チェンバのプール水 位と可搬ポンプ吸込ロレベル間の水頭差、吸込配管(HPCS常 設配管及び耐熱ホース)圧力損失により求められる有効NPSH と、可搬ポンプの必要NPSHを比較することで評価する。有効 NPSHの評価式は以下の通りであり、評価結果は参考3表に示 	【 相崎 6/7, 東海第二】 崩壊熱の相違 ・設備の相違 【 柏崎 6/7, 東海第二】 系統構成の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	$ f \overline{\partial} NPSH = Pa - Pv + H - \Delta H $		
	Pa : 水源気相部の圧力 [m]		
	Pv : ポンプ入口温度での飽和蒸気圧力 [m]		
	<u>H</u> :静水頭(水源水位〜ポンプ)[m]		
	<u>ΔH:ポンプ吸込ラインの圧力損失 [m]</u>		
<text><text><text><text><text><text><section-header></section-header></text></text></text></text></text></text>	<complex-block><section-header></section-header></complex-block>	Image: A state of the stat	 ・設備の相違 【柏崎 6/7,東海第二】 ・設備の相違 【柏崎 6/7,東海第二】

39-278

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2 流量評価	② 流量評価	② 流量評価	
可搬ポンプ及び可搬熱交換器を用いた可搬型格納容器除熱系の	可搬ポンプ及び可搬型熱交換器を用いた可搬型原子炉格納容器	可搬ポンプ及び可搬熱交換器を用いた可搬型格納容器除熱系	
系統流量は、後述する評価により6号炉ではm ³ /h以上、7号炉	<u>除熱系統</u> の系統流量は、後述する評価により 100m ³ /h 以上確保	の系統流量は、後述する評価により m ³ /h以上確保可能である	
ではm ³ /h以上確保可能であることを確認している。本章では,	可能であることを確認している。本章では、その評価結果につい	ことを確認している。本章では、その評価結果について示す。流	
その評価結果について示す。流量確認方法としては、可搬ポンプ	て示す。	量確認方法としては、可搬ポンプの「性能曲線」(揚程と流量の	
の「性能曲線」(揚程と流量の関係図)と参考1図の系統構成を想	流量確認方法としては、可搬ポンプの「性能曲線」(揚程と流量	関係図)と <u>参考1図</u> の系統構成を想定した場合の「システム抵抗	
定した場合の「システム抵抗曲線」との交点がポンプの動作点と	の関係図)と図1…の系統構成を想定した場合の「システム抵抗曲	曲線」との交点がポンプの動作点となるため、ポンプの動作点の	
なるため、ポンプの動作点の流量を確認する。その結果は参考6	線」との交点が、ポンプの動作点となるため、そのポンプの動作	流量を確認する。その結果は参考6図に示す通り, m ³ /h以上	
図及び参考7図に示す通り、6号炉では m ³ /h以上、7号炉では	点の流量を確認する。	確保可能であることを確認した。参考として,系統流量 m ³ /h	
m ³ /h以上確保可能であることを確認した。参考として、6号炉の系	その結果は図6.に示すとおり、100m ³ /h 以上確保可能である	時の圧力損失を参考4表に示す。	
統流量 m ³ /h時,7号炉の系統流量 m ³ /h時の圧力損失を参考	ことを確認した。参考として,系統流量100m ³ /h時の圧力損失		
	を表3に示す。		
	200		
	180全揭程(m)		
	」 に 140 - システム抵抗(m)		
	5 80 -		
	■ 60 - 響 40 -		
	20 -		
	0 20 40 60 80 100 120		
	流量(m³/h)		
参考6 図 可搬型格納容器除熱糸の流量評価結果(6 号炉)	<u>図6 可搬型原子炉格納容器除熱糸統の流量評価結果</u>	<u>参考6図 可搬型格納容器除熱糸の流量評価結果</u>	
			【柏崎 6/7,東海第二】
参考7 図 可搬型格納容器除熱系の流量評価結果(7 号炉)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			東海第二発電所(2018.9.18版)		島根原子力発電所 2号				
参考4表 圧力損失内訳				表3 圧力損失内訳			参考4表 圧力損失内語		
除熱手段(評価ルート)	6 号炉	7 号炉	流量		100m ³ /h	除熱手段(評価	テレート)	
流量 配管・弁類圧力損失	常設ライン 耐熱ホース 可搬熱交換器			配管·弁類圧力損失	常設ライン 耐熱ホース 可搬型熱交換器		流重 記管・弁類圧力損失 	常設ライン 耐圧ホース 可搬熱交換器	-
静水頭	水源 注水先	T.M.S.L1200 (通常最低水位)	T.M.S.L1200 (通常最低水位)	静水頭	水源	EL.2.9m (通常最低水位)	静水頭	水源 注入先	(安全解析にお)P水位)
圧力差	水源 注水先	0.014MPa 0.12MPa	0. 014MPa 0. 12MPa		注水先		正力差	水源 注入先	
システム抵抗(圧力損	失)	11.3m	11.3m	圧力差	水源 注水先	0. 465MPa 0. 920MPa 約 46. 4m	システム抵抗(J	王力損失)	
				システム抵抗(圧力損	失)				

③ 除熱量評価

上述②の評価結果の通り,可搬型格納容器除熱系の流量は6号炉 では m³/h以上, 7号炉では m³/h以上が確保可能であるこ とから、その時の系統の除熱量を評価した。

評価条件は参考5表に示す通りであり,可搬熱交換器の性能及び 大容量送水車による海水側の条件を踏まえて本系統の除熱量を評 価したところ,事故発生30日後の崩壊熱相当(約6.5MW)を除熱で きることを確認した。

③ 除熱量評価

②の評価結果のとおり、可搬型原子炉格納容器除熱系統の流量 は100m³/h以上確保可能であることから,そのときの系統の除熱 m³/h以上が確保可能であることから,その時 量を評価した。

評価条件は表4 に示すとおりであり、可搬型熱交換器の性能及 び可搬型代替注水大型ポンプによる海水側の条件を踏まえて本系 統の除熱量を評価したところ,事故発生30日後の崩壊熱相当(約) 5.7MW)を除熱できることを確認した。

③ 除熱量評価

上述②の評価結果の通り,可搬型格納容器 価した。

評価条件は参考5表に示す通りであり,可 び大型送水ポンプ車による海水側の条件を踏 量を評価したところ、事故発生30日後の崩壊 除熱できることを確認した。

参考5表 可搬熱交換器の除熱量評価条件

可搬熱交換器	淡水系	1次側入口温度	105°C
		1次側流量	m³/h(6 号炉)
			m³/h (7 号炉)
	海水系	海水温度	30°C
		海水流量	900m³/h

表4 可搬型熱交換器の除熱量評価条件

	WK THE T	1次側入口温度	100°C
司枷刑劫去協职	灰小禾	1次側流量	$100 \text{m}^3 \text{/} \text{h}$
可嚴至熱父換益	海水亚	海水温度	32°C
	海水糸	海水流量	300m³∕h

参考5表 可搬熱交換器の除熱量

可搬熱交換器	淡水系	1次側入口温度
		1 次側流量
	海水系	海水温度
		海水流量

炉	備考
1	 ・設備の相違
2 号炉	【柏崎 6/7,東海第二】
EL.5778 †る事故発生30日後のS/	
1. 4m	
2. 9m	
1.5m	
<u>議 熟系の流量は</u> の系統の除熱量を評 丁搬熱交換器の性能及 皆まえて本系統の除熱 熱相当(<u>約3.9MW</u>)を	・設備の相違
	【柏崎 6/7,東海第二】
	崩壊熱の相違
評価条件	・設備の相違
105°C m³/h 30°C 180m³/h	【柏崎 6/7,東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
可搬ポンプ ■ m ³ /h (6号炉) m ³ /h (7号炉) 海水 105 ℃ → 本本 S/P → 大容量送水車 900 m ³ /h	300m ³ /h 海水 ソフレツ 32°C マ搬型代替注水大型ポンプ 可搬型熱交換器 100°C 100°C 100m ³ /h 可搬ポンプ	可搬ポンプ 105°C 可搬熱交換器 30°C 「 180m ³ /h	
参考8図 可搬型格納容器除熱系の除熱量評価図	図8 可搬型原子炉格納容器除熱系統の除熱量評価図	参考7図 可搬型格納容器除熱系の除熱量評価図	・設備の相違 【柏崎 6/7,東海第二】
以上の「①ホンノのNPSn計価」、「②加重計価」、「③尿熱量 評価」の結果から、可搬型格納容器除熱系は事故発生30日後の崩	「「「「「「」」」」」」「「「」」」」」「「」」」」「「」」」」」」」「「」」」」	以上の「①ホンノのNPSn計恤」, 「②侃重計恤」, 「③保 熱量評価」の結果から、可搬型格納容器除熱系は事故発生30日後	 ・設備の相違
壊熱相当(約6.5MW)を除熱するための系統流量が確保可能なシステムであることを確認した。	日後の崩壊熱相当(<u>約 5.7MW</u>)を除熱するための系統流量が確保 可能なシステムであることを確認した。	の崩壊熱相当(約3.9MW)を除熱するための系統流量が確保可能な システムであることを確認した。	【柏崎 6/7,東海第二】 崩壊熱の相違
<具体的な手順の概要> (1)可搬型格納容器除熱系の概要 可搬ポンプ,可搬熱交換器を用いた可搬型格納容器除熱系の概 要を以下に示す。 <u>HPCFポンプB室(T.M.S.L8200)のHPCF復水貯蔵槽側</u> 吸込逆止弁(B)の上蓋及び弁体を取り外し,上蓋フランジに耐熱	<具体的な手順の概要> (1)可搬型原子炉格納容器除熱系統の概要 可搬ポンプ,可搬型熱交換器を用いた可搬型原子炉格納容器除 熱系統の概要を以下に示す。 原子炉隔離時冷却系ポンプ室(EL4.0m)の原子炉隔離時冷却 系ポンプの入口逆止弁の上蓋及び弁体を取り外し,上蓋フランジ	<具体的な手順の概要> (1)可搬型格納容器除熱系の概要 可搬ポンプ,可搬熱交換器を用いた可搬型格納容器除熱系の概 要を以下に示す。 <u>HPCSポンプ室(EL.1300)のHPCSポンプ復水貯蔵タンク</u> 水入口逆止弁の上蓋を取り外し,上蓋フランジに耐熱ホースが接	・設備の相違 【柏崎 6/7,東海第二】
ホースが接続できる仮蓋を取り付け,その仮蓋に耐熱ホースを接続する。	に耐熱ホースが接続できる仮蓋を取り付け,その仮蓋に耐熱ホー スを接続する。	続できる仮蓋を取り付け,その仮蓋に耐熱ホースを接続する。	系統構成の相違。ま た,島根2号炉の本系統 は逆止弁に対して逆流 方向から流れるため,逆 止弁の弁体は閉状態で 流路が形成されること から,弁体の取り外しは 不要
HPCF復水貯蔵槽側吸込逆止弁(B)に取り付けた耐熱ホース を,HPCFポンプB室前通路に設置した可搬ポンプの吸込側フ ランジに連結し,可搬ポンプ吐出側フランジに取り付けた耐熱ホ ースを <u>原子炉建屋1階大物搬入口(T.M.S.L.12300)</u> に設置した可	<u>原子炉隔離時冷却系ポンプの入口逆止弁</u> に取り付けた耐熱ホースを, <u>原子炉隔離時冷却系ポンプ室</u> に設置した可搬ポンプの吸込 側フランジに連結し,可搬ポンプ吐出側フランジに取り付けた耐 熱ホースを <u>原子炉建屋原子炉棟1階大物搬入口(EL.8.2m)</u> に設	<u>HPCSポンプ復水貯蔵タンク水入口逆止弁</u> に取り付けた耐熱 ホースを, <u>HPCSポンプ室</u> に設置した可搬ポンプの吸込側フラ ンジに連結し,可搬ポンプ吐出側フランジに取り付けた耐熱ホー スを <u>原子炉建物1階大物搬入口(EL.15300)</u> に設置した可搬熱交	・設備の相違 【柏崎 6/7,東海第二】 系統構成の相違
搬熱交換器入口側フランジに連結する。また、B <u>系弁室</u>	置した可搬型熱交換器入口側フランジに連結する。また、低圧代	換器の入口側フランジに連結する。また、原子炉建物1階	・設備の相違
(T. M. S. L. 12300)の残留熱除去系注入ライン洗浄水入口逆止弁	<u> 替注水系(可搬型)の低圧代替注水系逆止弁(EL.20m)</u> の上蓋及	(EL. 15300)の <u>FLSR可搬式設備A-注水ライン逆止弁</u> の上蓋	【柏崎 6/7,東海第二】
(<u>B)</u> の上蓋 <u>及び</u> () (<u>B)</u> の上蓋 <u>次</u> () () () () () () () () () ()	<u>い开体</u> を取り外し、上蓋フフンジに耐熱ホースが接続できる仮蓋 を取り付け。その仮蓋に耐熱ホースを接続し、可搬刑執応換哭出	を取り外し、上盡フフンシに耐熱ホースが接続できる仮蓋を取り 付け その仮萎に耐熱ホースを接続 可搬執な換哭出口側フラ	 糸 統 構 成 の 相 違。ま た 鳥根 9 号 恒 の 木 조 統
「「「「「「「「」」」、「「」」、「「」」、「「」」、「「」」、「「」」、「	で 44 フ 円 り , て の 阪 益 に 町 然 か 二 へ を 1 女 祝 し , 門 撖 窪 然 父 撰 奋 田	円り, ての阪童に剛然の二个を1女配し, 門伽然父孫奋山日側ノノ	12, 四個 4 万沢 107 平 术 航

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
熱交換器出口側フランジに連結する。このように系統を構成する	ロ側フランジに連結する。	ンジに連結する。このように系統を構成することで、サプレッシ	は逆止弁に対して逆流
ことで, <u>サプレッション・チェンバ・プール水</u> を可搬ポンプ及び	このように系統を構成することで、サプレッション・プール水	<u>ヨン・チェンバのプール水</u> を可搬ポンプ及び可搬熱交換器を用い	方向から流れるため, 逆
可搬熱交換器を用いて原子炉圧力容器に注水することが可能とな	を可搬ポンプ及び可搬型熱交換器を用いて原子炉圧力容器に注水	て原子炉圧力容器に注水することが可能となる。可搬型格納容器	止弁の弁体は閉状態で
る。可搬型格納容器除熱系を構成する耐熱ホース等は,作業時の	することが可能となる。可搬型原子炉格納容器除熱系統を構成す	除熱系を構成する耐熱ホース等は、作業時の被ばく線量を考慮し	流路が形成されること
被ばく線量を考慮した配置に設置する。	る耐熱ホース等は、作業時の被ばく線量を考慮した配置に設置す	た配置に設置する。	から, 弁体の取り外しは
	る。		不要
なお, 可搬型格納容器除熱系の使用にあたっては, サプレッシ	なお,可搬型原子炉格納容器除熱系統の使用に当たっては,汚	なお, <u>可搬型格納容器除熱系</u> の使用にあたっては, <u>サプレッシ</u>	
<u>ヨン・チェンバ・プール水</u> からの汚染水を通水する前に <u>復水移送</u>	染したサプレッション・プール水を通水する前に,可搬型代替注	<u>ョン・チェンバのプール水からの汚染水</u> を通水する前に <u>復水輸送</u>	
ポンプで非汚染水による水張りを実施し、可搬部位の健全性確認	<u>水大型ポンプを用いて</u> 非汚染水による水張りを実施し,可搬部位	ポンプで非汚染水による水張りを実施し、可搬部位の健全性確認	
を行う。 <u>参考9図</u> に系統水張りの概要図を示す。	の健全性確認を行う。図9.に系統水張りの概要図を示す。	を行う。参考8図に系統水張りの概要図を示す。	
また, 可搬熱交換器の二次系については, 屋外に <u>大容量送水車</u>	また、可搬型熱交換器の二次系については、屋外に可搬型代替	また,可搬熱交換器の二次系については,屋外に大型送水ポン	
とホースを配備して連結し、大容量送水車を起動することで海水	<u>注水大型ポンプとホースを配備して連結し、可搬型代替注水大型</u>	<u>プ車とホースを配備して連結し、大型送水ポンプ車</u> を起動するこ	
を通水する。	ポンプを起動することで海水を通水する。	とで海水を通水する。	
系統水張りによる健全性確認が完了した後, <u>HPCFサプレッ</u>	系統水張りによる健全性確認が完了した後、原子炉隔離時冷却	系統水張りによる健全性確認が完了した後, <u>HPCSポンプト</u>	・設備の相違
<u>ションプール側吸込隔離弁(B)</u> を開操作し, <u>残留熱除去系</u> から原	<u>系ポンプのサプレッション・チェンバ側入口弁</u> を開操作し, <u>低圧</u>	<u>ーラス水入口弁</u> を開操作し, <u>低圧原子炉代替注水系</u> から原子炉圧	【柏崎 6/7,東海第二】
子炉圧力容器へ注水し循環することにより除熱する。	代替注水系(可搬型)から原子炉圧力容器へ注水し循環すること	力容器へ注水し循環することにより除熱する。	系統構成の相違
可搬ポンプ,可搬熱交換器を用いた可搬型格納容器除熱系の除	により除熱する。	可搬ポンプ,可搬熱交換器を用いた可搬型格納容器除熱系の除	
熱可能量は、事故発生30日後の崩壊熱「 <u>6.5MW</u> 」を上回る系統設計		熱可能量は,事故発生30日後の崩壊熱「約 <u>3.9MW」を上回る系統設</u>	・設備の相違
とする。		計とする。	【柏崎 6/7】
系統を構成する機器の配置イメージを以下に示す。また,系統	系統を構成する機器の配置イメージを図_10_に示す。また、系	系統を構成する機器の配置イメージを以下に示す。また,系統	崩壊熱の相違
を構成する機器の仕様等は参考6表の通りである。	統を構成する機器の仕様等は表5_のとおりである。	を構成する機器の仕様等は参考6表の通りである。	
	原子炉ウェルへ 原子炉違星原子炉棟	原子伊顿纳定器	
	原子が建設 東側接続ロ 2日 原子が格納容器 下部へ		
	可願型代替在木大型ボンブ 低圧代替注木系 原 逆止弁 デー		
原子伊速屋		日本に 約次時 約次時 10年 11日 11日 11日 11日 11日 11日 11日 11	
	レ サブレッション・チェンパ マー		
86945289 A			
	可無空想交換器であかいって、原子伊爾羅時冷却系ポンプ人口逆止并	₩#27	
	可搬ポンプ 原子伊陽線時冷却系ポンプ		
	SA用海木ビット 可範型代替注木大型ポンプ		
参考9図 復水補給水系を用いた系統水碼り概要図	図 9 可搬型代替注水大型ポンプを用いた系統水準の概要図	参考8図 復水輸送系を用いた系統水準の概要図	 ・設備の相違
			【柏崎 6/7 寅海堂一】
	•	•	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
参考10 図 原子炉建屋地下3階 機器配置図(7号炉の例)	図 10-1 機器配置図 (1/5)	参考9図 原子炉建物地下2階 機器配置図	
参考11 図 原子炉建屋地上1 階 機器配置図 (7号炉の例)	図 10-2 機器配置図 (2/5)	参考2019 原子炉建物1 階 機器配置図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
	図 10-3 機器配置図 (3/5)	
	図 10-4 機器配置図 (4/5)	

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	図 10-5 機器配置図 (5∕5)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20片	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
参考6表 可搬型格納容器除熱系の機器仕様	表5 可搬型格納容器除熱系の機器仕様	参考6表 可搬型格納容器除熱系の機器仕様	・設備の相違
参考6表 可搬型格納容器除熱系の機器仕様 構成機器 仕様等 備考 可搬機器 一 一 耐熱ホース (フ レキシブルメタ ハホース) 口径 150A 日子 日子 ※弁接続部の仮 蓋含む 回搬ポンプ 日径 350℃ 日子 日子 可搬ポンプ 容量 約90m ³ /h 全揚程 約85m 日子 日子 日子	上 株式機器 仕様等 備考 可搬機器 仕様等 備考 可搬機器 一 一 耐熱ホース (フレ レ レ キシブルメタルホ 口径 150A ース) 正力 2.1MPa 以上 ※弁接続部の仮蓋 温度 110℃ ー 可搬ボンプ ー ー	構成機器 仕様等 備考 可搬機器 一 備考 可搬機器 一 一 耐熱ホース(フ) 口径 150A レキシブルメタ レホース) 温度 450°C ンク水入口逆止 ※弁接続部の仮 二 一 富含む 口径 100A 日径 100A 圧力 1.7MPa 100A: 可搬ポンプ まで 100A: 可搬ポンプ マF L S R 可搬 可搬ポンプ 容量 約60m³/h 子 可搬ポンプ 容量 約86m 「	・設備の相違 【柏崎 6/7,東海第二】
可撥熱交換器 除熱量 ・ ・ ・ ・ 方容量送水車 容量 900m³/h ・ ・ ・ 上出圧力 1.25MPa ・ ・ ・	容量約100m ³ /h - 全揚程約135m - 可搬型熱交換器 除熱量 5.7MW以上	可搬熱交換器 除熱量 可搬熱交換器 除熱量 3.9MW以上 「「」」」 大型送水ポンプ 容量 1,800m³/h 市 中川田石	
	可搬型代替注水大	世田庄刀 1.4MPa	
復水移送ポンプ 容量 125m³/h 復水補給水 空揚程 85m - ※機器図は一般例を示すものである。	型ポンプ 容量 約 1, 380m ³ /h 全拐程 約 135m ー	既設機器 資水輸送ポンプ 容量 85m³/h 全揚程 70m - 復水輸送系	
※詳細設計に伴い機器仕様の変更が必要な場合は, 仕様を変更する。	 ※機器図は一般例を示すものである。 ※詳細設計に伴い機器仕様の変更が必要な場合は、仕様を変更る。 	※機器図は一般例を示すものである。更す※詳細設計に伴い機器仕様の変更が必要な場合は、仕様を変更する。	
(2)作業に伴う被ばく線量 <u>炉心損傷により発生する汚染水はサプレッション・チェ</u> <u>プール内にあるが、HPCFポンプBおよびHPCF復水</u> <u>側吸込逆止弁(B)はサプレッションプール側隔離弁により</u> <u>離されているため直接汚染水に接することはない。</u>	 (2)作業に伴う被ばく線量 ゲ心損傷で発生した汚染水はサプレッション・プール水中 6が,原子炉隔離時冷却系については、サプレッション・チ バ側のポンプ入口弁が通常時開となっているため、原子炉隔 冷却系ポンプ入口逆止弁にはサプレッション・プール水が流 ていることが考えられる。ただし、原子炉隔離時冷却系につ は 運転している場合には炉心損傷を防止でき 運転が停止 	 (2)作業に伴う被ばく線量 「炉心損傷で発生した汚染水はサプレッション・プール水中にあるが,高圧炉心スプレイ系については、サプレッション・チェン ご離時 バ側のポンプ入口弁が通常時開となっているため、HPCSポン ご入し ご入し プ復水貯蔵タンク水入口逆止弁にはサプレッション・プール水が流入していることが考えられる。ただし、高圧炉心スプレイ系に したついては、運転している場合には炉心損傷を防止でき、運転が停 	 ・設備の相違 【柏崎 6/7】 高圧注水系の第一水 源が島根2号炉はサプ レッション・チェンバで
	後に炉心損傷に至ることが考えられる。このため,炉心損傷 ってサプレッション・プール水が汚染する段階では,原子炉	によ 止した後に炉心損傷に至ることが考えられる。このため、炉心損 隔離 傷によってサプレッション・プール水が汚染する段階では、高圧	あるため, サプレッショ ン・チェンバ側の入口弁

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
また, <u>残留熱除去系注入ライン洗浄水入口逆止弁(B)</u> は復水貯	時冷却系の系統内は流動がない状態であり,汚染したサプレッション・プール水が作業エリアに敷設されている配管系まで流入しないことも考えられる。 また,低圧代替注水系(可搬型)は,代替淡水貯槽等を水源と	炉心スプレイ系の系統内は流動がない状態であり,汚染したサプ レッション・プール水が作業エリアに敷設されている配管系まで 流入しないことも考えられる。	は開 【柏崎 6/7,東海第二】 系統構成の相違 ・設備の相違
蔵槽を水源とする復水補給水系(以下MUWCという)で満たさ れているため直接汚染水に接することはない。	<u>する系統であり、低圧代替注水系逆止弁</u> が直接汚染水に接するこ とはない。		【柏崎 6/7,東海第二】 系統構成の相違
<u>HPCFポンプB室内(T.M.S.L8200)</u> における <u>HPCF復水</u> <u>貯蔵槽側吸込逆止弁(B)</u> 付近の雰囲気線量は,格納容器からの漏 えいに起因する室内の空間線量率及び線源配管からの直接線によ る線量率により <u>約26.1mSv/h</u> となる。〔参考9-補足2〕	<u>原子炉隔離時冷却系ポンプ室内(EL4.0m)</u> における <u>原子炉隔</u> <u>離時冷却系ポンプ入口逆止弁</u> 付近の雰囲気線量は,原子炉格納容 器からの漏えいに起因する室内の空間線量率及び線源配管からの 直接線による線量率により約 20mSv/h となる。(参考 8-補足 1 参照)	また, <u>FLSR可搬式設備A-注水ライン逆止弁</u> は低圧原子炉 代替注水槽を水源とする低圧原子炉代替注水系で満たされている ため直接汚染水に接することはない。 <u>HPCSポンプ室内(EL.1300)</u> における <u>HPCSポンプ復水貯</u> 蔵タンク水入口逆止弁付近の雰囲気線量は,格納容器からの漏え いに起因する室内の空間線量率及び線源配管からの直接線による 線量率により約12.8mSv/h となる。〔参考9-補足2〕	 ・設備の相違 【柏崎 6/7,東海第二】 系統構成の相違 ・評価結果の相違 【柏崎 6/7】 作業場所の線量率の 相違
<u>HPCF復水貯蔵槽側吸込逆止弁(B)</u> への耐熱ホース接続作業 については、準備作業、後片付けを含めて作業時間は約10時間程 度(5人1班で作業)と想定しており、遮蔽等の対策を行い、作 業員の交代要員を確保し、交代体制を整えることで実施可能であ る。		HPCSポンプ復水貯蔵タンク水入口逆止弁への耐熱ホース接 続作業については、準備作業、後片付けを含めて作業時間は約10 時間程度(5人1班で作業)と想定しており、遮蔽等の対策を行 い、作業員の交代要員を確保し、交代体制を整えることで実施可 能である。	 ・資料構成の相違 【東海第二】 本項最終段落に記載 ・設備の相違 【柏崎 6/7】 系統構成の相違
<u>B系弁室(T.M.S.L.12300)</u> 内における <u>残留熱除去系注入ライン</u> 洗浄水入口逆止弁(B)付近の雰囲気線量は,格納容器からの漏え いに起因する室内の空間線量率により <u>約12.8mSv/h</u> となる。〔参考 9 - 補足 2〕	低圧代替注水系(可搬型)の低圧代替注水系逆止弁(EL.20m) 付近の雰囲気線量は,原子炉格納容器からの漏えいに起因する室 内の空間線量率及び線源配管からの直接線による線量率により約 20mSv/h となる。(参考8-補足1参照)	<u>原子炉建物1階(EL.15300)</u> における <u>FLSR可搬式設備A-</u> <u>注水ライン逆止弁</u> 付近の雰囲気線量は,格納容器からの漏えいに 起因する室内の空間線量率により <u>約3.3mSv/h</u> となる。 <u>〔参考9-</u> 捕足2〕	 ・設備の相違 【柏崎 6/7,東海第二】 系統構成の相違 ・評価結果の相違 【柏崎 6/7,東海第二】 作業場所の線量率の 相違
<u>残留熱除去系注入ライン洗浄水入口逆止弁(B)</u> への耐熱ホース 接続作業については,準備作業,後片付けを含めて作業時間は約 10時間程度(5人1班で作業)と想定しており,遮蔽等の対策を 行い,作業員の交代要員を確保し,交代体制を整えることで実施 可能である。		<u>FLSR可搬式設備A-注水ライン逆止弁への耐熱ホース接続</u> 作業については,準備作業,後片付けを含めて作業時間は約10時 間程度(5人1班で作業)と想定しており,遮蔽等の対策を行い, 作業員の交代要員を確保し,交代体制を整えることで実施可能で ある。	 ・資料構成の相違 【東海第二】 本項最終段落に記載 ・設備の相違 【柏崎 6/7,東海第二】 系統構成の相違
原子炉建屋大物搬入口における可搬熱交換器配備箇所の雰囲気	原子炉建屋原子炉棟の大物搬入口における可搬型熱交換器設置	原子炉建物大物搬入口における可搬熱交換器配備箇所の雰囲気	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
線量は、格納容器からの漏えいに起因する室内の空間線量率によ	箇所(EL.8.2m)の雰囲気線量は、原子炉格納容器からの漏えいに	線量は、格納容器からの漏えいに起因する室内の空間線量率によ	
り <u>約21.7mSv/h</u> となる。〔参考9-補足2〕	起因する室内の空間線量率及び線源配管からの直接線による線量	り <u>約5.2mSv/h</u> となる。 <u>〔参考9-補足2〕</u>	・評価結果の相違
	率により <u>約13mSv/h</u> となる。 <u>(参考8-補足1参照)</u>		【柏崎 6/7,東海第二】
			作業場所の線量率の
			相違
可搬熱交換器への耐熱ホース接続作業については,準備作業,	これらの作業については、準備作業、後片付けを含めて作業時	可搬熱交換器への耐熱ホース接続作業については,準備作業,	
後片付けを含めて作業時間は約10時間程度(5人1班で作業)と	間は, <u>約13時間</u> 程度(<u>6人1班</u> で作業)と想定しており, <u>必要</u>	後片付けを含めて作業時間は約10時間程度(5人1班で作業)と	・運用の相違
想定しており, 遮蔽等の対策を行い, 作業員の交代要員を確保し,	に応じて遮蔽等の対策を行い,作業員の交代要員を確保し,交代	想定しており, 遮蔽等の対策を行い, 作業員の交代要員を確保し,	【東海第二】
交代体制を整えることで実施可能である。	体制を整えることで実施可能である。	交代体制を整えることで実施可能である。	作業時間,作業人数の
			相違
(3)フランジ部からの漏えい発生時の対応	(3)フランジ部からの漏えい発生時の対応	(3)フランジ部からの漏えい発生時の対応	
系統のフランジ部からの漏えい発生等の異常を検知した場合	系統のフランジ部からの漏えい発生等の異常を検知した場合	系統のフランジ部からの漏えい発生等の異常を検知した場合	
は、直ちに可搬ポンプを停止し復水移送ポンプからの非汚染水に	は、直ちに可搬ボンプを停止し、可搬型代替注水大型ボンプから	は、直ちに可搬ポンプを停止し復水輸送ポンプからの非汚染水に	
よりフラッシングを実施する。	の非汚染水によりフラッシングを実施する。	よりフラッシングを実施する。	
フラッシングにより現場へのアクセスが可能になった後、増し	フラッシングにより現場へのアクセスが可能になった後、増し	フラッシングにより現場へのアクセスが可能になった後、増し	
総め等の補修作業を実施する。	総め等の補修作業を実施する。	総め等の補修作業を実施する。	
非汚染水によるフラッシングの系統イメージを以下に示す。	非汚染水によるフラッシングの系統イメージを <u>図11</u> に示す。	非汚染水によるフラッシングの系統イメージを以下に示す。	
Image: Sector of the sector	Image: series of the		
参考12図 復水補給水系からの洗浄水ラインを使用したフラッシ	図 11 可搬型代替注水大型ポンプを用いたフラッシング	参考11図 復水補給水系からの洗浄水ラインを使用したフラッシ	・設備の相違
<u>ング</u>		<u>ング</u>	【柏崎 6/7,東海第二】
I. 残留熱除去系Bの循環運転で使用した弁を全て全閉とする。	 I. 可搬型原子炉格納容器除熱系統による循環運転で使用した弁 を全て全閉する。 	I. <u>可搬型格納容器除熱系</u> の循環運転で使用した弁を全て全閉 とする	
Ⅱ. <u> 残留熱除去系Bの洗浄水弁</u> を開操作し,洗浄水逆止弁接続の	Ⅱ. 低圧代替注水系(可搬型)の注水ラインの弁を開操作し、低	Ⅱ. <u>高圧炉心スプレイ系の洗浄水弁,FLSR注水隔離弁,A</u> -	・設備の相違
耐熱ホース及び可搬ポンプ <u>を逆流し,HPCFポンプB最小流量</u>		<u>RHR注水弁</u> を開操作し, <u>復水輸送系の水が</u> 耐熱ホース,	【柏崎 6/7,東海第二】
バイパス弁を開操作することで、サプレッション・チェン	し、原子炉隔離時冷却系ミニフロー弁を開操作することで、	可搬ポンプ及び可搬熱交換器を経由し、原子炉圧力容器へ	フラッシング系統の

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
<u>バ・プール</u> へ流入 <u>し</u> , 系統をフラッシングする		<u>サプレッション・チェンバ</u> へ流入し,系統をフラッシングす	流入することで、系統をフラッシングする	相違
		Z _{2m}		
Ⅲ. <u>サプレッション・チェンバ・プール水位</u> に影響しない範囲で,	Ⅲ.	サプレッション・プール水位が格納容器ベントライン水没レ	Ⅲ. <u>サプレッション・チェンバのプール水位</u> に影響しない範囲	
空間線量が下がるまでフラッシングを実施する		<u>ベルに達</u> しない範囲で,空間線量が下がるまでフラッシング	で、空間線量が下がるまでフラッシングを実施する	
		を実施する _e		
Ⅳ. フラッシングにより漏えいフランジ近辺の空間線量が十分	IV.	フラッシングにより漏えいフランジ近辺の空間線量が十分低	W.フラッシングにより漏えいフランジ近辺の空間線量が十分	
低下した場合,漏えいフランジ部にアクセスする		下した場合,漏えいフランジ部にアクセスする _{em}	低下した場合,漏えいフランジ部にアクセスする	
V. 漏えいフランジの増し締めを行い, 系統を復旧する	ν.	漏えいフランジの増し締めを行い,系統を復旧する _{em}	V. 漏えいフランジの増し締めを行い, 系統を復旧する	
2. 可搬熱交換器によるSPCUを用いた格納容器除熱				・設備の相違 【柏崎 6/7】
<実現可能性>				島根 2 号炉は SPCU 無
格納容器ベントによる格納容器除熱を実施している場合、残留				L
熱除去系による格納容器除熱機能の回復を実施する。残留熱除去				
系の機能回復が長期間実施できない場合、可搬設備を用いた可搬				
型格納容器除熱系を構築する。				
また,可搬型格納容器除熱系に加え,サプレッション・チェン				
バ・プールを水源として運転可能なSPCUポンプを使用する除				
熱系を構築する。除熱設備として可搬熱交換器を使用し、残留熱				
除去系から原子炉圧力容器へ注水し循環することにより除熱す				
る。				
「SPCUポンプ吐出弁」に耐熱ホースを接続し,原子炉建屋				
搬入口に設置する可搬熱交換器と接続する構成とする。可搬熱交				
換器の出口側については残留熱除去系の原子炉注水配管にある				
「残留熱除去系注入ライン洗浄水入口逆止弁(B)」と耐熱ホース				
で連結する構成とする。これらの構成で、SPCUポンプにより				
サプレッション・チェンバ・プール水を可搬熱交換器に送水し,				
そこで除熱した水を原子炉圧力容器に注水する系統を構築する。				
なお、可搬熱交換器の二次系については、大容量送水車により海				
水を通水できる構成とする。				
SPCU系はサプレッション・チェンバ・プール水を浄化する				
ことが目的であり、通常運転時及び事故時には停止状態で待機し				
ている。さらに、待機時は復水貯蔵槽を水源とした系統構成とな				
っているため、サプレッションプール内の汚染水が流入する可能				
性は無い。				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
RTP/R&R RESULTION REPORT RESULTION REPORT RES			
参考13 図 SPCU による格納容器除熱系の系統概要図 参考7 表 SPCU による格納容器除熱系構築に必要な作業			
作業 所要期間 SPCUポンプの吐出弁と残留熱除去系洗 海水ラインの逆止弁の上蓋等取外し、耐熱ホ ース取付 これらの作業は、1ヵ月程度で準備可能と 可搬熱交換器準備 通水試験等			
> 30ボイ 除執書は事故発生30日後の崩壊執「6.5MW」を上回ることか。			
高小田市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市			
5 10 引服主任相互権的系統による任何自体的系法 00 参与2 4 区			
> 示抗成立は計画/ > POLICEとる故幼宏聖除熱交け、事故発生20日後の最振動相			
SrCUによる俗和谷谷际然示は、争取先生30日後の朋塚然怕 坐(約650W)な除麹できる記卦とし、大音ではそので結成立世証			
$ = (\pi 50.5 \text{ MW}) を 体 然 (co 5 k f c c c 5 k f c c c 5 k f c c c 5 k f c 5 k f $			
Positive Suction Head) 評価」で百子恒建屋地下3階に設置され			
TUAS PCIIポンプの必要NPSH が系統圧力損生を考慮」て有			
ないなる1 COホンノの必要N Sh かれた力損人を考慮して有 効NPSH を満足することを確認する 次に「の流量評価」で系統圧			
カ指生を考慮して 木 玉 紘 で 確保可能 か 玉 紘 法 景 を 評価 し その			
万頃人を与感して, 本示処て確保可能な示処処重を計画し, ての 広長で可拠効な施恕による除熱可能な除効長を「③除効長証価」			
加重で可预然又換給による际然可能な际然重を「③际然重計Ⅲ」 で示し 本系統が重要発生20 日後の崩撞執相当(約6 5MW)を除			
ないた、本示税が事政先生30 日後の朋塚怒怕当(床70.5MW)を床 執 できることな確認し の ななは立姓 な マ オ			
怒してることで確認し、示机成立性を小り。			
① SPCUホンノのNPSn 評価			
ホンノかキャビデーションを起こさず正常に動作するために			
は、流体圧力や吸込配管圧力損失等により求められる「有効NPSH」			
が、ボンブの「必要NPSH」と同等かそれ以上であること(有効NPSH≧			
必要NPSH)を満足する必要があり、有効NPSH と必要NPSH を比較			
する			
NPSH 評価によりポンプの成立性を確認する。本評価では参考14			
図の系統構成を想定し,格納容器内圧力(S/C),サプレッシ			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
ョン・チェンバ・プール水位とSPCUポンプ軸レベル間の水頭			
差,吸込配管圧力損失により求められる有効NPSH と,SPCUポ			
ンプの必要NPSHを比較することで評価する。有効NPSH の評価式は			
以下の通りであり、評価結果は参考8表に示す通り、6号炉及び7			
号炉ともにポンプのNPSH 評価は成立する。			
有効 NPSH = Pa - Pv + H - ΔH Pa: 水源気相部の圧力[m] Pv: ポンプ入口温度での飽和蒸気圧力[m] H:静水頭 (水源水位~ポンプ) [m] ΔH: ポンプ吸込ラインの圧力損失[m]			
参考14 図 S P C U による格納容器除熱系のNPSH 評価			
参考8 表 NPSH 評価結果			
項目 6号炉 7号炉 設定根拠 Pa サブレッション・チェンバ圧力 (水頭換算値) 10.3m 10.3m 保守的に大気圧 (OMPa[gage])とする			
Pv SPCU ボンプ入口温度 での飽和蒸気圧(水頭 換算値) 12.9m 12.9m 安全解析における事故発生 30 日後の S/P 水温 105℃での飽和蒸気圧			
H S/P 水位と SPCU ポン 13.2m 13.2m 5/P 水位(T. M. S. L. 6000)とし、SPCU ポ ブ軸レベル間の水頭 ジブ軸レベルは原子炉建屋地下 3 階床 上 1m を想定し T. M. S. L7200 とす			
ΔH 吸込配管圧損 (SPCU 配管) SPCU ストレーナ圧損 Gat ロm ³ /h 時の SPCU ストレーナ~SPCU ボンブ間の配管圧損 ロm ³ /h 時の SPCU ストレーナの圧損 に余裕を見込んだ圧損 合計 有効 NPSH 必要 NPSH SPCU ポンプの必要 NPSH			
成立性評価 〇 〇 有効 NPSH > 必要 NPSH (解題) T M S L : 東京湾亚均海西			
(略語) T. M. S. L : 東京湾平均海面 ② 流量評価			
SPCU ポンプ及び可搬熱交換器を用いたSPCU ポンプによる格納			
容器除熱系の系統流量は,後述する評価により m ³ /h 以上確保			
可能であることを確認している。本章では、その評価結果につい			
て示す。			
流量確認方法としては, SPCU ポンプの「性能曲線」(揚程と流			
量の関係図)と参考13 図の系統構成を想定した場合の「システム			
抵抗曲線」との交点がポンプの動作点となるため、ポンプの動作			
点の流量を確認する。その結果は参考15 図及び参考16 図に示す			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
通りであり,m ³ /h 以上確保可能であることを確認した。参考			
として,6 号炉及び7 号炉の系統流量m³/h 時の圧力損失を参			
考9 表に示す。			
参考15 図 SPCUによる格納容器除熱系の流量評価結果(6 号			
炉)			
参考16 図 SPCUによる格納容器除熱系の流量評価結果(7 号			
炉)			

柏崎刈羽原子之	り発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	参考9 表 圧力損失内訳			
除熱手段(評価ルート)	6 号炉 7 号炉			
流量 配管・弁類圧力損失	堂設ライン			
	耐熱ホース			
	可搬熱交換器			
静水頭	水源 T. M. S. L. 6000 T. M. S. L. 6000			
	(安全解析における)(安全解析における			
	事故発生30日後の 事故発生30日後の S/P 水位) S/P 水位)			
	注水先			
压力差	水源 0.014MPa 0.014MPa			
	注水先 0.12MPa 0.12MPa			
システム抵抗	11. 3m 11. 3m			
③除熱量評価				
上述②の評価結果	Rの通り, SPCU による格納容器除熱糸の流量			
は,6 号炉及び7 +	テ炉ともに			
m ³ /h 以上が確	保可能であることから, m³/h 時の系統の			
除熱量を評価した。	評価条件は参考10表に示す通りであり,可搬			
熱交換器の性能及び	バ大容量送水車による海水側の条件を踏まえて			
本系統の除熱量を調	平価したところ, 事故発生30 日後の崩壊熱相当			
(約6.5MW)を除熱	できることを確認した。			
参考10	表 可搬熱交換器の除熱量評価条件			
可搬熱交換器 淡	水系 1 次側入口温度 105℃			
	1 次側流量 m ³ /h			
海	水系 海水温度 30℃			
	海水流量 900m³/h			
SPCUポンプ	m ³ /h			
105	℃			
(S/P)				
	1 30°C			
/ 可搬索	900 m³/h 快交換器			
去去17 図 CD	CII による枚納容界除執るの除執鼻証価団			
シウロ 図 の				
めエット リホイノの				
1回」の 応未から、 2	ruu による俗称谷谷际熱米は争议先生30 日依			
の朋環熱相当(約6	.bMW) を际然するための糸統流重か帷保可能な			
ンステムであるこ。	とを確認した。		<u> </u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
<具体的な手順の概要>			
(1) 可搬熱交換器によるSPCUを用いた格納容器除熱系概要			
可搬熱交換器によるSPCUを用いた格納容器除熱手順の概要			
を以下に示す。			
S P C U ポンプ室(T.M.S.L8200) 内のS P C U ポ			
ンプ吐出弁及びB 系弁室(T.M.S.L.12300)内の残留熱除去系注			
入ライン洗浄水入口逆止弁(B)のボンネット及び弁体を取り外			
し、ボンネットフランジに耐熱ホースが接続できる仮蓋を取り付			
け、その仮蓋に耐熱ホースを接続する。それぞれの箇所から、原			
子炉建屋1階大物搬入口(T.M.S.L.12300)に配置した可搬熱交換			
器出入口側フランジに連結する。このように系統を構成すること			
で、サプレッション・チェンバ・プール水をSPCUポンプ及び			
可搬熱交換器を用いて原子炉圧力容器に注水することが可能とな			
る。可搬設備を連結する耐圧ホース等は、作業時の被ばく線量を			
考慮した配置に設置する。			
なお,本系統の使用にあたっては,サプレッション・チェンバ・			
プール水からの汚染水を通水する前に復水移送ポンプで非汚染水			
による水張りを実施し,可搬部位の健全性確認を行う。参考18 図			
に系統水張りの概要図を示す。			
また、可搬熱交換器の二次系については、屋外に大容量送水車			
とホースを配備して連結し、大容量送水車を起動することで海水			
を通水する。			
系統水張りによる健全性確認が完了した後、SPCUサプレッ			
ションプール側吸込第一,第二隔離弁を開操作し,残留熱除去系			
から原子炉圧力容器へ注水し循環することにより除熱する。			
可搬熱交換器を用いたSPCUポンプによる除熱可能量は、事			
故発生30 日後の崩壊熱「6.5MW」を上回る。			
系統を構成する機器の配置イメージを以下に示す。また、系統			
を構成する機器の仕様等は参考11 表のとおりである。			
原子知建量			
原子炉格和容器			
参与10 凶 復小価福小米を用いた米祝小振り焼安凶			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
参考19 図 原子炉建屋地下3階 機器配置図(7 号炉の例)			
参考20 図 原子に建良地ト1 階 機器配置図 (7 号にの例)			
多与20 因 床] 於建座地工 I 陷 滅奋乱直因(I 5 於 9 例)			

柏崎刈羽	羽原子力発電所	斤 6/7号炉 (2017.	12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
参考]	l1 表 SPCU に	よる格納容器除熱系の構	幾器仕様			
構成機哭	仕 槎笑		備去			
可搬機器	17 197 47		UTD 1 J			
耐熱ホース(フ		a a				
レキシブルメタ	口径 150A					
ルホース) ※弁接続部の仮	圧力 IMPa 以上 温度 350℃		-			
蓋含む	ullutivezine	1 H H				
可搬熱交換器						
	除熱量	E				
	6.5MW以上	8				
		€				
大容量送水車	容量	~				
	900m ³ /h					
	吐出圧力					
	1.25MPa	9				
既設機器		1				
SPCUポンプ	宏县 050- ³ /4		サプレッションプー			
	容量 250m7n 全揚程 90m		ルイオイレ オ、			
復水移送ポンプ	宏县 195m ³ /b	_	復水補給水系			
	全揚程 85m	577.45				
※機器図は一般修 ※詳細設計に伴い	列を示すものである い機器仕様の変更が	。 必要な場合は、仕様を変更する。				
		5 B				
(2) 作業に	-伴り彼はく慈					
炉心損傷に	こより発生する	5汚染水はサフレッション	ン・チェンバ・			
ブール内にあ	らるが、SPС	こUポンプおよびSPCU	Uポンプ吐出弁			
はサプレッシ	/ョンプール俱	い隔離弁2個により隔離る	されているため			
直接汚染水に	生接することに	はない。				
また,残留	冒熱除去系注入	くライン洗浄水入口逆止;	弁(B)は復水貯			
蔵槽を水源と	するMUWC	こ系の水で満たされている	るため直接汚染			
水に接するこ	ことはない。					
SPCUオ	ペンプ室内(T.	M.S.L8200) における	SPCUポンプ			
吐出弁付近の	>雰囲気線量に	は、格納容器からの漏えい	いに起因する室			
内の空間線量	量率及び線源画	2 管からの直接線による約	線量率により約			
22.8 mSv/h	となる。〔参	考9-補足2〕				
SPCUオ	ペンプ吐出弁~	への耐熱ホース接続作業に	こついては, 準			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
備作業,後片付けを含めて作業時間は約10時間程度(5人1班で			
作業)と想定しており、遮蔽等の対策を行い、作業員の交代要員			
を確保し、交代体制を整えることで実施可能である。			
B系弁室 (T.M.S.L.12300) 内における残留熱除去系注入ライン			
洗浄水入口逆止弁(B)付近の雰囲気線量は,格納容器からの漏え			
いに起因する室内の空間線量率により約12.8mSv/h となる。〔参			
考9一補足2〕			
残留熱除去系注入ライン洗浄水入口逆止弁(B)への耐熱ホース			
接続作業については、準備作業、後片付けを含めて作業時間は約			
10 時間程度(5人1班で作業)と想定しており, 遮蔽等の対策を			
行い、作業員の交代要員を確保し、交代体制を整えることで実施			
可能である。			
原子炉建屋大物搬入口における可搬熱交換器配備箇所の雰囲気			
線量は、格納容器からの漏えいに起因する室内の空間線量率によ			
り約21.7 mSv/h となる。〔参考9-補足2〕			
可搬熱交換器への耐熱ホース接続作業については, 準備作業,			
後片付けを含めて作業時間は約10時間程度(5人1班で作業)と			
想定しており、遮蔽等の対策を行い、作業員の交代要員を確保し、			
交代体制を整えることで実施可能である。			
(3)フランジ部からの漏えい発生時の対応			
系統のフランジ部からの漏えい発生等の異常を検知した場合			
は,直ちに SPC Uポンプを停止し復水移送ポンプからの非汚染			
水によりフラッシングを実施する。			
フラッシングにより現場へのアクセスが可能になった後、増し			
締め等の補修作業を実施する。			
非汚染水によるフラッシングの系統イメージを以下に示す			
原子炉建筑			
参考21 図 復水 佣給水 糸 からの 洗 伊水 フインを 使用 した フフッシ			
ンク			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
I. 残留熱除去系Bの循環運転で使用した弁を全て全閉とす			
る。			
II. 残留熱除去系Bの洗浄水弁及びSPCUサプレッションプ			
ール戻り弁を開操作し、洗浄水逆止弁接続の耐熱ホース及			
びSPCUポンプの吐出ラインからサプレッション・チェ			
ンバ・プールに流入することで系統をフラッシングする			
III. サプレッション・チェンバ・プール水位に影響しない範囲			
で、空間線量が下がるまでフラッシングを実施する			
IV. フラッシングにより漏えいフランジ近辺の空間線量が十分			
低下した場合,漏えいフランジ部にアクセスする			
V. 漏えいフランジの増し締めを行い,系統を復旧する			
〔参考9-補足1〕長期安定性の維持のためにFPCと <u>CUW熱</u>		〔参考9-補足1〕長期安定性の維持のためにFPCと <u>CUW補</u>	・設備の相違
交換器使用の可能性について		助熱交換器使用の可能性について	【東海第二】
			東海第二は,長期安定
			冷却手段として,可搬型
			除熱系統を説明
			【柏崎 6/7】
			系統構成の相違
長期安定性の維持のためにFPC熱交換器又は <u>CUW熱交換器</u>		長期安定性の維持のためにFPC熱交換器又は <u>CUW補助熱交</u>	・設備の相違
による格納容器除熱が可能であるかの検討を行った。ただし, F		<u>換器</u> による格納容器除熱が可能であるかの検討を行った。ただし,	【柏崎 6/7】
P C 熱交換器については、これを用いて格納容器除熱を実施する		FPC熱交換器については、これを用いて格納容器除熱を実施す	系統構成の相違
ラインを構成することで使用済燃料プールの冷却が行えなくなる		るラインを構成することで燃料プールの冷却が行えなくなるた	
ため,格納容器除熱としては使用しないこととする。なお, FP		め、格納容器除熱としては使用しないこととする。なお、FPC	
C 熱交換器を用いてサプレッション・チェンバ・プール水を除熱		熱交換器を用いてサプレッション・チェンバのプール水を除熱す	
するためには、FPCポンプを使用する必要があるが、FPCポ		るためには、FPCポンプを使用する必要があるが、FPCポン	
ンプは原子炉建屋地上2.階に設置されており、水源であるサプレ		プは原子炉建物中2階に設置されており、水源であるサプレッシ	
<u> ッション・チェンバ・プール</u> とのレベル差が大きく,ポンプNPSH		<u>ヨン・チェンバ</u> とのレベル差が大きく,ポンプNPSH評価が成	
評価が成立しないため、使用は困難と考えている。一方で、 <u>CU</u>		立しないため、使用は困難と考えている。一方で、 <u>CUW補助熱</u>	・設備の相違
<u>W熱交換器</u> による格納容器除熱手段については系統成立性が確認		<u>交換器</u> による格納容器除熱手段については系統成立性が確認でき	【柏崎 6/7】
できたため使用可能と判断した。詳細の成立性評価について以下		たため使用可能と判断した。詳細の成立性評価について以下に示	系統構成の相違
に示す。		す。 <u>なお、CUW非再生熱交換器は原子炉補機冷却系の常用負荷</u>	・設備の相違
		に接続されているため、より実現可能性の高い格納容器除熱系と	【柏崎 6/7】
		して非常用負荷に接続されているCUW補助熱交換器を用いた系	系統構成の相違
		統を検討する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(1)代替原子炉補機冷却系を用いたCUW系による原子炉除熱		(1) 原子炉補機代替冷却系を用いたCUW系による原子炉除熱	
〈実現可能性〉		〈実現可能性〉	
CUW系は通常運転中に原子炉冷却材の浄化を行う系統であ		CUW系は通常運転中に原子炉冷却材の浄化を行う系統であ	
り,重大事故等時に原子炉水位の低下(レベル2)により隔離状		り、重大事故等時に原子炉水位の低下 (レベル3) により隔離状	
態になる。		態になる。	
また,通常は原子炉補機冷却系を冷却水として用いているが,		また,通常は原子炉補機冷却系を冷却水として用いているが,	
本除熱手段では代替原子炉補機冷却系を用いることで冷却水を確		本除熱手段では原子炉補機代替冷却系を用いることで冷却水を確	
保する。		保する。	
耐熱ホース等はCUW系では使用する必要が無く, <u>手動弁</u> によ		耐熱ホース等はCUW系では使用する必要がなく, <u>弁操作</u> によ	・設備の相違
る系統構成のみで運転可能である。		る系統構成のみで運転可能である。	【柏崎 6/7】
			島根2号炉の CUW 系
			による原子炉除熱系の
			弁は,手動弁,電動弁及
			び空気作動弁で構成さ
			れる
CUW糸は原子炉圧力容器が水源であり、 <u>CUWホンクの吸込</u>		CUW糸は原于炉圧刀谷器が水源であり、 <u>CUW補助ホンクは</u>	
<u>み圧力を確保するため原子炉水位が吸込配官である原子炉停止時</u>		原于炉圧力が低圧時にも冷却材の循環を行うことか可能である	
<u> </u>		<u>か</u> , 大しOCA事家のように原子炉水位を十分に確保でさない場	島根2 旁炉は原于炉
<u>ペル3」以上を目安とするか、原子炉圧力が低下している場合は</u>		谷は連転することかでさない。	低上時にも循環連転り
原子炉水位「NWL」以上としている)に十分に確保されている			能なししW補助ホンプ
<u>ことか必要である。そのため、</u> 大しOCA事象のように原于炉水 たたしいになりてたかい思クいまたたることができたい。			を設置している。ホンプ
位を十分に確保でさない場合は連転することかでさない。			部とモータ部をカッフ
さらに、CUWホンフは電動機とホンフか一体型のキャンドモ			リンクで連結するホン
<u>ータホンプであるため、通常連転中は制御俸駆動糸から電動機に</u> またれ、これた供給していた。この原スに必執法には見ばに			フであり,ハーン水は不
<u>清浄なハーン水を供給しており、この原子炉除熱連転時も回様に</u>			安
前御俸駆動糸からのハーン水か必要となる。前御俸駆動糸からの			
<u>ハーン水供給が不可能な場合は、補給水糸等による代替ハーン水</u> た供給力スエ印た教主ステレストルのUUUズにたる原スに除動す			
<u> を</u> 供給する手段を整えることによりししW系による原于炉际熱を			
実施することかできる。			
これらの条件を満たした上で、代替原子炉補機行却系を用いた		<u>CUW糸による原子炉除熱</u> の条件を満たした上で, <u>原子炉補機</u>	
CUW糸による 际熱 可能 軍は 事故 発生30 日後 の 崩壊 熱 「 <u>6.5MW</u> 」 を		<u>代替治却糸</u> を用いたCUW糸による除熱可能量は事政発生30日後	
上回る。		の崩壊熱「 <u>約3.9MW</u> 」を上回る。	
			崩壊熱の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 25
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 18 版)	島根原子力発電所 25 「「「「「「」」」」」」 「「」」」 「」」「」」 「」」「」」 「」」「」」 「」」「」」 「」」「」」 「」」「」」 「」」「」」 「」」「」」 「」」「」」 「」」「」」 「」」「」」 「」」「」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」」 「」」」 「」」」 「」 「」 「」

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
Image: state in the state		
図2 代替原子炉補機冷却系(CUW除熱ライン)系統概要図(7 号		図2 原子炉補機代替冷却系(CUW除熱
<u>炉の例)</u>		
<効果>		<効果>
除熱量は事故発生30日後の崩壊熱「 <u>6.5MW</u> 」を上回ることから		除熱量は事故発生30日後の崩壊熱「約3.
「1. 可搬型格納容器除熱系による格納容器除熱」の参考2~4図		「1. 可搬型格納容器除熱系による格納容
にて示した同等の除熱効果が得られる。		図にて示した同等の除熱効果が得られる。
<系統成立性評価>		<系統成立性評価>
<u>代替原子炉補機冷却系</u> を用いたCUW系による原子炉除熱は,		原子炉補機代替治却系を用いたCUW系
事故発生30日後の崩壊熱相当(約6.5MW)を除熱できることとし,		事故発生30日後の崩壊熱相当(<u>約3.9MW</u>)を
本章ではその系統成立性評価を示す。評価にあたっては「① <u>CU</u>		本章ではその系統成立性評価を示す。評価
<u>Wポンプ</u> のNPSH(Net Positive Suction Head)評価」で原子炉建屋		<u>W補助ポンプ</u> のNPSH(Net Positive Su
地下3階に設置されている <u>CUWポンプ</u> の必要NPSHが系統圧力損		子炉建物地下1階に設置されているCUW
失を考慮して有効NPSHを満足することを確認する。次に「②流量		SHが系統圧力損失を考慮して有効NPS
評価」で系統圧力損失を考慮して、本系統で確保可能な系統流量		認する。次に「②流量評価」で系統圧力損
を評価する。このとき, <u>CUWポンプ流量</u> については基本的に通		で確保可能な系統流量を評価する。このと
常運転時と使用条件が変わらないため定格流量は確保可能であ		については基本的に通常運転時と使用条件
り、改めて評価する必要はない。一方で、従来流路として考慮し		流量は確保可能であり、改めて評価する必
ていなかった常用系ラインを通水することとなる代替原子炉補機		来流路として考慮していなかった常用系ラ
<u>冷却水ポンプ</u> については流量評価を行い,その流量で <u>代替原子炉</u>		なる原子炉補機代替冷却水ポンプについて
補機 治却系による除熱可能な除熱量を「③除熱量評価」で示し,		の流量で原子炉補機代替冷却系による除熱
本系統が事故発生30日後の崩壊熱相当(<u>約6.5MW</u>)を除熱できるこ		熱量評価」で示し、本系統が事故発生30日
とを確認し、系統成立性を示す。		3.9MW)を除熱できることを確認し,系統成
(1) <u>CUWボンプ</u> のNPSH評価		① <u>CUW補助ポンプ</u> のNPSH評価
ポンプがキャビテーションを起こさず正常に動作するために		ポンプがキャビテーションを起こさず正

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
は,流体圧力や吸込配管圧力損失等により求められる「有効NPSH		は,流体圧力や吸込配管圧力損失等により求められる「有効NH	・ 系統構成の相違
が,ポンプの「必要NPSH」と同等かそれ以上であること(有効NPSH≧	≧	SH」が、ポンプの「必要NPSH」と同等かそれ以上であるこ	_
必要NPSH)を満足する必要があり、有効NPSHと必要NPSHを比較す	-	と(有効NPSH≧必要NPSH)を満足する必要があり、有刻	Ь
るNPSH評価によりポンプの成立性を確認する。本評価では図3の系		NPSHと必要NPSHを比較するNPSH評価によりポンプの	
統構成を想定し,原子炉圧力,原子炉水位と <u>CUWポンプ</u> 軸レベ		成立性を確認する。本評価では図3の系統構成を想定し,原子炉	・設備の相違
ル間の水頭差,吸込配管圧力損失により求められる有効NPSHと,		圧力,原子炉水位と <u>CUW補助ポンプ</u> 軸レベル間の水頭差,吸返	【柏崎 6/7】
<u>CUWポンプ</u> の必要NPSHを比較することで評価する。有効NPSHの		配管圧力損失により求められる有効NPSHと、 <u>CUW補助ポン</u>	系統構成の相違
評価式は以下の通りであり、評価結果は表1に示す通り、6号炉及		<u>プ</u> の必要NPSHを比較することで評価する。有効NPSHの割	Ź
び7号炉ともにポンプのNPSH評価は成立する。		価式は以下の通りであり、評価結果は表1に示す通り、ポンプの)
		NPSH評価は成立する。	
f効 NPSH = Pa - Pv + H - ΔH Pa: 水源気相節の圧力[m] Pv: ポンプ入口温度での飽和蒸気圧力[m] H: 静水頭 (水源水位~ポンプ) [m] ΔH: ポンプ吸込ラインの圧力損失[m] 図3 CUW系による原子炉除熱のNPSH 評価		有効 NPSH=Pa-Pv+H-AH Pa: 水源気相部の圧力[m] Pv: ポンプ入口温度での飽和蒸気圧力[m] AH: ポンプ吸込ラインの圧力損失[m] M: ポンプ吸込ラインの圧力損失[m] 図 3 CUW系による原子炉除熱のNPSH評価	・設備の相違 【柏崎 6/7】
表1 NPSH評価結果		表 <u>1 NPSH評価結果</u>	 ・設備の相違 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
項 目 6号炉 7号炉 設定根拠		項目 2号炉 設定根拠 Pa 原乙恒圧力 12.2m 安全解析における事故務件2	【柏崎 6/7】
Pa 原子炉圧力 44.9m 44.9m 原子炉減圧後の圧力(0.34MPa)の水頭 換算値		Fa 原目が見か Fa 反生産所における事成完全5 0日後の原子炉圧力(0.028MP	
Pv CUWポンプ入口温 2.7m 2.7m		a)の水頭圧換算値	
度での飽和蒸気圧(水 66 [°] Cとした場合の飽和蒸気圧		PV COW 相助ホンノ入口温 12.0m 安全所付におりる事故発生 度での飽和蒸気圧力(水 30日後の原子炉冷却材温度	
日 原子炉水位とCUW 原子炉水位は「原子炉水位低(レベル		頭圧換算) (105℃)の飽和蒸気圧	
ポンプ軸レベル間の 3) (T. M. S. L. 17800)とし, CUW ポンプ		H 原子炉水位とCUW補助 原子炉水位は「原子炉水位は ポンプ軸レベル間の水頭 (レベル3)(FL 29840)」	
水頭差 軸レベルは6号炉はT.M.S.L. とし、7号炉はT.M.S.L. とす		差 とし、ポンプ軸レベルはEL.	
\$		AH 吸込配管圧損(CUW配) 定格流量228m ³ /b時のポンプ	
ΔH 吸込配管圧損 定格流量 77m³/h 時のポンプ吸込配管 (CUW配管) 圧損		管) 吸込配管圧損	
		有効NPSH Pa-Pv+H-ΔH	
		必要NPSH CUW補助ポンプの必要N PSH PSH	
有効 NPSH Pa−Pv+H−Δ H 必要 NPSH C UWポンプの必要 NPSH		成立性評価 〇 有効NPSH>必要NPS	
成立性評価 〇 〇 有効 NPSH > 必要 NPSH		Н	
(略語) T. M. S. L. :東京湾平均海面			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
---	---------------------	---	----
② 流量評価		2 流量評価	
代替原子炉補機冷却系を用いたCUW系による原子炉除熱の,代替		<u>原子炉補機代替治却系</u> を用いたCUW系による原子炉除熱の,	
原子炉補機冷却系の系統流量は、後述する評価により6号炉では		原子炉補機代替冷却系の系統流量は、後述する評価により	
m ³ /h以上,7号炉では m ³ /h以上確保可能であることを確認して		m ³ /h以上確保可能であることを確認している。本章では、その評	
いる。本章では、その評価結果について示す。		価結果について示す。	
流量確認方法としては、代替原子炉補機冷却水ポンプの「性能		流量確認方法としては、原子炉補機代替冷却水ポンプの「性能	
曲線」(揚程と流量の関係図)と図2の系統構成を想定した場合の		曲線」(揚程と流量の関係図)と図2の系統構成を想定した場合の	
「システム抵抗曲線」との交点がポンプの動作点となるため、ポ		「システム抵抗曲線」との交点がポンプの動作点となるため、ポ	
レンプの動作点の流量を確認する。その結果は図4及び図5に示す通		ンプの動作点の流量を確認する。その結果は図4に示す通り、ポ	
り,ポンプ動作点が6号炉では m³/h,7号炉では m³/hであ		ンプ動作点が m³/h以上であることから,本系統流量は	
		m³/h以上確保可能であることを確認した。	
m ³ /h以上確保可能であることを確認した。		参考として,系統流量 m³/h時の圧力損失を表2に示す。	
参考として,6号炉における系統流量 m ³ /h時,7号炉におけ			
る系統流量 m ³ /h時の圧力損失を表2に示す。			
図4 CIWISによる原之后除熱 代麸原之后補機必知る 医統法导致		図4 CIIWISによる原子恒陸執 原子恒雄雌代株没却気 気結法	
(6 - 上版) (6 - 上版)		日本 こし W 示による示」 が 医乳 が 開放 (10) で 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	
Ш柏木 (0 5 //)		里叶Ш柏木	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
図5 CUW 系による原子炉除熱 代替原子炉補機冷却系 系統流量評 価結果 (7 号炉)		
表2 圧力損失内訳	表 2 圧力損失内訳	
除熱手段(評価ルート) 6 号炉 7 号炉 流量	除熱手段(評価ルート) 2号炉 流量	
配管・弁類上力損失 常設ライン 淡水ホース 代替熱交換器	配官・开規圧力損失 R設フイン	
静水頭 水源 - -	静水頭 水源 -	
0 (閉ルーク) 0 (閉ルーク) 圧力差 水源 - 注水先 - 0 (四北 ゴ) 0 (四北 ゴ)	の(閉ループ) 圧力差 水源 注入先 -	
・ ・<	0 (閉ループ) システム抵抗 (圧力損失)	
 ③ 除熱量評価 	③ 除熱量評価	
上述②の評価結果の通り、CUWによる原子炉除熱の、代替原子 恒補機 冷却系系統流量は、6号炬では流量 m^3/h 、7号炬では	上述②の評価結果の通り, CUWによる原子炉除熱の, 原子炉補 機代萃冷却系系統流量は m ³ /hが確保可能であることから、系	
m ³ /hが確保可能であることから, それぞれの流量における系統の	統の除熱量を評価した。	
除熱量を評価した。	証 体及他は主のに二十済的でもの。 CLINU指明教式協興及び投	、乳供の相当
辞伽采件は表3に小り通りであり、 <u>COW非再生熱交換器</u> 及び <u>1</u> 替熱交換器車の性能,大容量送水車による海水側の条件を踏まえ	計画采件は表3に示り通りであり、 <u>COW補助蒸交換器</u> 及び逐 動式代替熱交換設備の性能、大型送水ポンプ車による海水側の条	・設備の相選 【柏崎 6/7】
て本系統の除熱量を評価したところ、事故発生30日後の崩壊熱相	件を踏まえて本系統の除熱量を評価したところ、事故発生30日後	系統構成の相違
当(<u>約6.5MW</u>)を除熱できることを確認した。	の崩壊熱相当(約3.9MW)を除熱できることを確認した。	・設備の相違
		【柏崎 6/7】
		朋境烈の相遅

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表3 代替熱交換器車の除熱量評価条件		表3 移動式熱交換設備の除熱量評価条件	・設備の相違
代替熱交換器車 淡水系 淡水側入口温度 約 ℃ (6 号炉) 淡水側流量 約 m³/h (6 号炉) 液水 滴/h (7 号炉) 海水系 海水流量 30℃ 海水流量 900m³/h		移動式代替熱交換設備 淡水系 淡水側入口温度 ℃ 液水側流量 m³/h 海水系 海水温度 30℃ 海水流量 780m³/h	【柏崎 6/7】
C(6号炉) m³/h (6号炉) C(7号炉) m³/h (7号炉) Wir再生Hx m³/h (7号炉) CUW非再生Hx m³/h (7号炉) CUW補機類 m³/h (7号炉) K替熱交換器車 900 m³/h K替熱交換器車 (K替熱文技器車) K替風子炉補機冷却水ポンプで循環)		○ ○ ○ m³/h 海水 ○ ○ ○ 80m式 ○ ○ 80m式 水ンプ車 105℃ 30℃ 780m³/h	
図6 CUW系による原子炉除熱の除熱量評価図		図 5 CUW系による原子炉除熱の除熱量評価図	・設備の相違 【柏崎 6/7】
以上の「①ポンプのNPSH評価」,「②流量評価」,「③除熱量		以上の「①ポンプのNPSH評価」,「②流量評価」,「③除熱量	
評価」の結果から、代替原子炉補機冷却系を用いたCUW系による原		評価」の結果から,原子炉補機代替冷却系を用いたCUW系によ	
子炉除熱は事故発生30日後の崩壊熱相当(約6.5MW)を除熱するた		る原子炉除熱は事故発生30日後の崩壊熱相当(約3.9MW)を除熱す	・設備の相違
めの系統流量が確保可能なシステムであることを確認した。		るための系統流量が確保可能なシステムであることを確認した。	【柏崎 6/7】 崩壊熱の相違
〔参考9-補足2〕作業エリアの線量評価について	<u>参考 8-補足 1</u> 作業エリアの線量評価について	<u>〔参考9-補足2〕</u> 作業エリアの線量評価について	
各作業エリアにおける線量評価は「格納容器からの漏えいに起	各作業エリアにおける線量評価は「原子炉格納容器からの漏え	各作業エリアにおける線量評価は「格納容器からの漏えいに起	
因する室内の線量率」と「線源配管からの直接線による線量率」	いに起因する室内の線量率」と「線源配管からの直接線による線	因する室内の線量率」と「線源配管からの直接線による線量率」	
の寄与を合わせて評価するものとする。	量率」の寄与を合わせて評価するものとする。	の寄与を合わせて評価するものとする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1.評価の方法 1	1.評価の方法	1.評価の方法	
(1)格納容器から漏えいに起因する線量率 ((1) 原子炉格納容器から漏えいに起因する線量率	(1) 格納容器からの漏えいに起因する線量率	
原子炉区域内の線量率は、「雰囲気圧力・温度による静的負荷	原子炉建屋原子炉棟内の区域の線量率は、「雰囲気圧力・温度に	原子炉棟内の線量率は、「雰囲気圧力・温度による静的負荷(格	
(格納容器過圧・過温)」において、格納容器ベントを実施した よ	よる静的負荷(格納容器過圧・過温)」において,格納容器ベント	納容器過圧・過温)」において、格納容器ベントを実施した場合	
場合の事故発生30 日後の原子炉建屋内の放射能量を考慮し,サブ を	を実施した場合の事故発生 30 日後の原子炉建屋原子炉棟内の放	の事故発生30 日後の原子炉建物内の放射能量を考慮し,サブマー	
マージョンモデルにより計算する。格納容器から漏えいした放射 射	村能量を考慮し,サブマージョンモデルにより計算する。原子炉	ジョンモデルにより計算する。格納容器から漏えいした放射性物	
性物質は <u>原子炉区域内</u> に一様に分散しているものとし, <u>原子炉区</u> 格	各納容器から漏えいした放射性物質は <u>原子炉建屋原子炉棟内</u> に一	質は <u>原子炉棟内</u> に一様に分散しているものとし, <u>原子炉棟内</u> から	
域内から環境中への漏えいはないものとして計算した。表1に各 様	第に分散しているものとし、原子炉建屋原子炉棟内から環境中へ	環境中への漏えいはないものとして計算した。表1に各作業エリ	
作業エリア空間容積を示す。の	の漏えいはないものとして計算した。表1に各作業エリア空間容	ア空間容積を示す。	
積	責を示す。		
$D = 6.2 \times 10^{-14} \cdot \frac{Q_Y}{v_{R/B}} E_Y \{ 1 - e^{-\mu \cdot R} \} \cdot 3600$	$P_{\gamma} = (2 \times 10^{-14} \text{eV}_{\gamma} = (1 \text{eV}_{\text{B}}) 2000$	Q_{γ}	
ここで, D ・ 故触線長率 (Cu/b) 和	$D = 6.2 \times 10^{-11} \cdot \frac{V_{R/B}}{V_{R/B}} E_{\gamma} \cdot (1 - e^{-\gamma} \cdot 1) \cdot 3600$	$D = 6.2 \times 10^{-14} \cdot \frac{1}{V} \cdot E_{\gamma} \cdot (1 - e^{-\mu \cdot K}) \cdot 3600$	
 B 1 (y) (y) (y) (y) (y) (y) (y) (y) (y) (y)	ここで、	ここで、	
6.2×10^{-14} : サブマージョンモデルによる換算係数 $\left(rac{dism^3 Gy}{Met^Bqs} ight)$	D :放射線量率 (Gy/h)	D :外部被ばくによる <mark>放射</mark> 線量率(Gy/h) ^{*1}	
 Q_y : 格納容器から原子炉区域内に漏えいした放射性物質による放射能量 (Bq: γ 線実効エネルギ 0.5MeV 換算値) 	6.2×10 ⁻¹⁴ :サブマージョンモデルによる換算係数	※1 Gy から Sv への換算係数は1とする。	
V _{R/B} : 原子炉区域内気相部容積(86000m ³) (di	′dis·m ³ ·Gy	(2×10^{-14})	
E_{γ} : y 線エネルキ (0.5MeV/d1s) μ : 空気に対する γ 線のエネルギ吸収係数 (3.9×10 ³ /m)	MeV·Bq·s)	0.2×10 ···································	
R :評価対象部屋の空間容積と等価な半球の半径(m) 30 30	Qγ :原子炉建屋内放射能量	$\mathbf{Q}_{\gamma}:$ 原子炉建物内の存在量(Bq:ガンマ線実効エネルギ 0.5MeV	
V _{OF} :評価対象エリアの谷槓(m ^o)	(Bq:γ線実効エネルギ0.5MeV 換算値)	換算値)	
$K = \sqrt{\frac{-c_D}{2\pi}}$	V _{R/B} :原子炉建屋原子炉棟内の区域の気相部容積(85,000m	V:原子炉建物内の空間容積(101,000m ³)	
	3)	E_{γ} : γ線エネルギ (0.5MeV/dis)	
	E γ : γ線エネルギ (0.5MeV/dis)	μ : 空気に対するγ線のエネルギ吸収係数 (3.9×10 ⁻³ /m)	
	μ : 空気に対する γ 線のエネルギ吸収係数(3.9×10 ⁻³	R:評価対象エリアの空間と等価な半球の半径 (m)	
	/m)	$V_{ m F}$:評価対象エリアの空間容積 (m ³)	
	R :評価対象エリアの空間容積と等価な半球の半径(m)		
	V _{OF} :評価対象エリアの容積		
		$R = \frac{3}{3 \cdot V_F}$	
	$R = \frac{3}{3 \cdot V_{OF}}$	$\sqrt{2\pi}$	
	$R = \sqrt[3]{\frac{3 \cdot V_{OF}}{2 \cdot \pi}}$	$\sqrt{2\pi}$	

	柏崎刈羽原子力発電所 6	/7号炉 (2017.12.20版)	東海第二発電所	島根原子力発	電所 2号	
表1 各作業エリア空間容積		表1 各作業エリア空間容積		表1 各作業コ	ニリア空間容	
	作業エリア	作業エリアの空間容積(V _{OF})	作業エリア	作業エリアの空間容積 (V _{OF})	作業エリア	作業エリア
	HPCF ポンプ(B)室	600 m ³	 原子炉隔離時冷却系ポンプ室内	5. 100m ³	HPCSポンプ室	1F * ~))
	SPCU ポンプ室	300 m ³			大物搬入口	
	大物搬入口	1500 m^3	┃	10, 000m ⁻³	原子炉建物1階(FLSR可搬式設備 操作対象弁付近)	
	B系弁室	300 m ³	大物搬入口	3, 500m ³		
	大物搬入口 B系弁室	1500 m ³ 300 m ³	低圧代替注水系逆止弁付近 大物搬入口	10, 000m ³ 3, 500m ³	原子炉建物1階(FLSR可搬式設備 操作対象弁付近)	

(2)線源配管からの直接線による線量率

図1に示すとおり、炉心損傷により発生する汚染水は、格納容 器貫通部とサプレッションプール側一次隔離弁までの配管に存在 することになるため、当該配管は線源となる。線源配管からの直 接線による線量率は,必要な遮蔽対策を実施することによって, 約10mSv/h 以下に低減させる。線量率はQADコードを用いて図 1中の評価モデルの体系により評価を実施した。表2に線源配管 からの直接線の寄与を10mSv/h 以下とするために必要な鉛遮蔽の 厚さを示す。

(2)線源配管からの直接線による線量率

図1 に示すとおり、炉心損傷により発生する汚染水は、原子炉 格納容器貫通部とサプレッション・プール側一次隔離弁までの配 管に存在することになるため、当該配管は線源となる。線源配管 からの直接線による線量率は、必要な遮蔽対策を実施することに よって、約 10mSv/h 以下に低減させる。線量率はQADコード を用いて図1中の評価モデルの体系により評価を実施した。表2 に線源配管からの直接線の寄与を 10mSv/h 以下とするために必 要な鉛遮蔽の厚さを示す。

鉛遮蔽

(詳細検討中)

線源から評価点までの距離

線源から評価点までの距離

図1 線量評価概念図

作業対象

逆止弁

評価点

評価点

<作業対象,評価点,線源配管の配置概要図>

隔離弁

鉛遮蔽

線源

原子炉格納容器

サプレッション

・プール

<評価モデル図>

線源

(2)線源配管からの直接線による線量率 図1に示すとおり、 炉心損傷により発生 器貫通部とサプレッション・プール側一次| 在することになるため、当該配管は線源と 直接線による線量率は,必要な遮蔽対策を実 約 10mSv/h 以下に低減させる。線量率はQ 1中の評価モデルの体系により評価を実施 からの直接線の寄与を 10mSv/h 以下とする 厚さを示す。

<作業対象,評価点,線源配管の配置機要図>

炉	備	考
容積	・設備の相違	圭
	【柏崎 6/7,	東海第二】
アの空間容積 V_F (m ³)		
3800		
1000		
オス汚洗水け、故如宓		
9 377 朱小は, 俗利谷		
内御井よくの配官に行 なる。 線須配管からの		
この。 「「「「日日」」「つの」		
ADコードを用いて図		
した。表2に線源配管		
ために必要な鉛遮蔽の		
作業対象 逆止弁		
 評価点 操作対象箇所から作業		
エリアの余裕を考えた 場所を評価点とする		
とする必要な厚さを計算		
審切に遮蔽出来る前提とする ついては配管内の冷却材(汚染水でな 意蔽により低下させることは可能である		

柏崎刈羽	原子力発電所 6/	7号炉 (2017.	12.20版)		東海第二発電所	(2018.9.18版)		島根原子力発電所 2号炉				備考
表 2	線量率評価条件及	び必要な鉛遮蔽体	本厚さ	表2 線量率評価条件			表2	表2 線量率評価条件及び必要な鉛遮蔽体厚さ				
作業エリア HPCF ボンプ(B)室	線源 線源か (S/P~隔離弁ま 点まで での配管長さ) 約3.99 約2.5m 約3.99	ら評価 線源配管から(の距離 量率を約 10mS めに必要な鉛) n 約 9cm	の直接線による線 v/h 以下にするた 遮蔽厚さ	作業エリア	線源 (サプレッション・プ ~隔離弁までの配管長	ール 参源から評価点 さ) の距離	 線源配管からの 直接線による線 量率を約 10mSv /h以下にする ために必要な鉛 	作業エリア	線源 (S/P~隔 離弁までの配管長 さ)	線源から評価点ま での距離	線源配管からの直 接線による線量率 を10mSv/h以下に するために必要な	の相違 【柏崎 6/7,東海第二】
SPCU ボンプ室	約 2.1m 約 5.7	n ¥J8cm		原子炉隔離時冷	約 10m ^{※ 1}	約 1m	約 10cm	HPCSポンプ室	約3.3m	約2.9m	<u>鉛遮蔽厚さ</u> 約8cm	
				→ ^{☆☆→ンク} 至 ※1:実際は3n	n 程度だが保守的		山には物価の					
				また,低庄八 器圧力逃がし装 に示す。	置の入口配管が有	<u>う辺, 人物搬入口</u> 存在する。線量率	<u>い辺には恰納谷</u> 評価条件を表3					
					表3 線量≥	率評価条件						
				作業エリア	線源長さ	線源から	評価点までの距離					
				┃ 低圧代替注水系 逆止弁付近	系 約 10m ^{**1}		約 7.6m					
				大物搬入口	約 10m ^{※1}		約 14m					
2. 評価結果				2. 評価結果				2.評価結果				
「1.評価	方法」に基づき,各	作業エリアにおけ	ける線量率を評	「1. 評価方法	去」に基づき, 各付	乍業エリアにおけ	る線量率を評価	「1.評価方	法」に基づき,	各作業エリアにお	さける線量率を評	
価した。表3	に各作業エリアにお	ける線量率を示す	F.	した。表4に各	作業エリアにおけ	ける線量率を示す	0	価した。表3に	各作業エリアに	おける線量率を示	ミす 。	
	表3 各作業エリア	、における線量率			表4 各作業エリ	アにおける線量率	<u>Z</u>		表3 各作業エリ	アにおける線量	<u>率</u>	・評価対象及び評価結果
作業エリア	格納容器から漏えいに起 因する線量率	線源配管からの直接 線による線量率	合計線量率	作業エリア	原子炉格納容器から漏 えいに起因する線量率	線源配管からの直接 線による線量率	合計線量率	作業エリア	格納容器からの 漏えいに起因す	線源配管からの直 接線による線量率	合計線量率	の相違 【柏崎 6/7 東海第二】
HPCF ポンプ(B)室	約 16.1mSv/h	約 10mSv/h	約 26.1mSv/h	却系ポンプ室内	約 1.3×10 ¹ mSv/h	約 7.4mSv/h	約 2.0×10 ¹ mSv/h		る線量率 約2.8mSv/h	約10mSv/h	約12.8mSv/h	
SPCU ボンプ室 大物搬入口	約 12.8mSv/h 約 21.7mSv/h	約 10mSv/h ※1 - ※2	約 22.8mSv/h*1 約 21.7mSv/h	低庄代督庄示系 逆止弁付近	約 1.6×10 ¹ mSv/h	約 4.1mSv/h	約 2.0×10 ¹ mSv/h	大物搬入口	約5.2mSv/h	-*1	約5.2mSv/h	
 B 系弁室 ※1 K6 では作うの直接線に 	約 12.8mSv/h 業エリアが R/B 地下 2 階(SP こよる線量率を考慮不要	 - ※2 CU ポンプ室外) であるた 	約 12.8mSv/h こめ,線源配管から	大物搬入口	約 1.1×10 ¹ mSv/h	約 1.3mSv/h	約 1.3×10 ¹ mSv/h	原子炉建物1階(F LSR可搬式設備 操作対象弁付近)	約3.3mSv/h	- * 1	約3.3mSv/h	
※2 線源配管>	が存在しないため,考慮不要							※1 線源配管	が存在しないた	め,考慮不要		
〔参考9-補	足3〕不活性ガス系	系統概要図						〔参考9-補足	 3〕窒素ガス制 	御系 系統概要図		
可搬型格納	容器除熱系をインサ	ービスする場合に	は、格納容器べ					可搬型格納容	器除熱系をイン	サービスする場合	さは,格納容器べ	
ントを停止し、不活性ガス系の窒素ガス供給装置あるいは可搬型							ントを微開とし	, 窒素ガス制御	系の窒素ガス供給	含装置あるいは可		
の窒素供給装置により窒素ガスを注入し格納容器除熱による格納							搬式の窒素供給	装置により窒素	ガスを注入し格紙	対容器除熱による		
容器圧力低下	を抑制する。図1 に	不活性ガス系の窒	훝素ガス供給装					格納容器圧力低	下を抑制する。	図1に窒素ガス制	<u> 御系</u> の窒素ガス	
置により窒素	ガスを格納容器に注	入する系統の例を	を示す。					供給装置により	窒素ガスを格納	容器に注入する系	系統の例を示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
		原子炉格納容器 原子炉 序 炉 圧 力 容 器 ド ライウェル
図1 不活性ガス系 系統概要図(6号炉の例)		図1 窒素ガス制御系 系約 (図1) (2010)

