実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料26〕

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
添付資料27	添付資料 21	添付資料 2.6	
防潮堤及び貯留堰における津波荷重の設定方針について	防潮堤における津波波力の設定方針について	防波壁及び防波扉における津波荷重の設定方針について	
的前是及UNI 曲包(-431) 立手返向重。	例前是iC4017.37年iXiX/J32/XX工/J业iTC 24	的议至又U的政府(C491) 公产议的至少权人为证(C 9)	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6 版)	島根原子力発電所 2号炉	備考
目次		目次	
1. 津波荷重の算定式		1. 津波荷重の算定式	
(1)津波波圧算定式に関する文献の記載		(1) 津波波圧算定式に関する文献の記載	
		2. 検討方針	・記載方針の相違
			【東海第二,女川2】
			記載方針の相違によ
			る記載内容の相違
2. 東海第二発電所のサイト特性を反映した防潮堤に作用する津		3. ソリトン分裂波及び砕波の発生,並びに津波波圧への影響	
<u>波波圧の把握について</u>			
(1)分裂波発生に関する検討		(1) 平面二次元津波シミュレーションによる検討	・設計方針の相違
(2)水理模型実験		(2) 水理模型実験及び断面二次元津波シミュレーションの条件整理	
			設計方針の相違によ
			る記載内容の相違
(3)水理模型実験結果の検証(再現性検討)		(3) 水理模型実験による検討	
<u>(4)まとめ</u>		(4) 断面二次元津波シミュレーションによる検討	
		(5) 三次元津波シミュレーションによる検討	
			=0.31 -1.01 -0.10.74
3. 津波波圧算定式適用に対する考え方		4. 既往の津波波圧算定式との比較	・設計方針の相違
(1) 防潮堤及び防潮扉		(1) 検討概要	【東海第二,女川2】
<u>(2) 貯留堰</u>		(2) 津波波圧検討フロー	設計方針の相違によ
		(3) 朝倉式による津波波圧算定 (4) 沖沖井下の山井 駅舎士 (#/ Uk 克 N I)	る記載内容の相違
		(4) 津波波圧の比較 朝倉式 (敷地高以上)	
		(5) 谷本式による津波波圧算定	
		(6) 津波波圧の比較 谷本式 (敷地高以深)	
		<u>(7) まとめ</u> こ かまで来度よる海池地区の記点	
		5. 設計で考慮する津波波圧の設定	

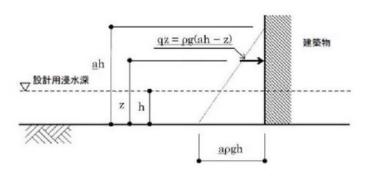
1. 津波荷重の算定式

津波防護施設の津波荷重の算定式は、朝倉ら(2000)の研究を元にした「港湾の津波避難施設の設計ガイドライン(国土交通省港湾局、平成25年10月)」や「防波堤の耐津波設計ガイドライン(平成27年12月一部改訂)等を参考に設定する。以下に、参考にした文献の津波荷重算定式の考え方と津波防護施設への適用を示す。

(1) 津波波圧算定式に関する文献の記載

a. 東日本大震災における津波による建築物被害を踏まえた津 波避難ビル等の構造上の要件に係る暫定指針(平成23年)

構造設計用の進行方向の津波波圧は、次式により算定する


構造設計用の進行方向の津波波圧 $q Z = \rho g (a h - Z)$ (第1図)

h:設計用浸水深

Z: 当該部分の地盤面からの高さ $(0 \le Z \le a h)$

a :水深係数

ρg:海水の単位体積重量

第1図 津波波圧算定図

b.港湾の津波避難施設の設計ガイドライン(平成25年10月) 文献 a に基づく。ただし、津波が生じる方向に施設や他 の建築物がある場合や、海岸等から500m以上離れている 場合において、水深係数は3以下にできるとしている。

1. 津波荷重の算定式

津波防護施設の津波荷重の算定式は、朝倉ら(2000)の研究を元にした「港湾の津波避難施設の設計ガイドライン(国土交通省港湾局、平成25年10月)」や「防波堤の耐津波設計ガイドライン(平成27年12月一部改訂)」等を参考に設定する。以下に、参考にした文献の津波波圧算定式の考え方と津波防護施設への適用を示す。

(1) 津波波圧算定式に関する文献の記載

a. 東日本大震災における津波による建築物被害を踏まえた津 波避難ビル等の構造上の要件に係る暫定指針(平成23年)

構造設計用の進行方向の津波波圧は,次式により算定する。

 $qz = \rho g \text{ (ah-z) } (\boxtimes 1)$

ρg:海水の単位体積重量

h : 設計用浸水深

z : 当該部分の地盤面からの高さ $(0 \le z \le ah)$

a : 水深係数。3 とする。

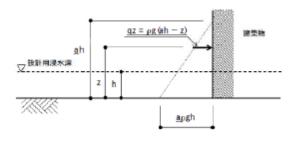


図1 津波波圧算定図

b. 港湾の津波避難施設の設計ガイドライン (平成25年10月) 文献 a. に基づく。ただし、津波が生じる方向に施設や他の 建築物がある場合や、海岸等から500m以上離れている場合 において、水深係数は3以下にできるとしている。

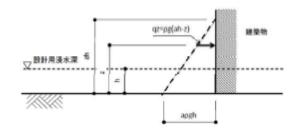
1. 津波荷重の算定式

津波防護施設の津波荷重の算定式は、朝倉ら(2000)の研究を元にした「港湾の津波避難施設の設計ガイドライン(国土交通省港湾局、平成25年10月)」や「防波堤の耐津波設計ガイドライン(平成27年12月一部改訂)」等を参考に設定する。以下に、参考にした文献の津波荷重算定式の考え方と津波防護施設への適用を示す。

(1) 津波波圧算定式に関する文献の記載

a. 東日本大震災における津波による建築物被害を踏まえた津波 避難ビル等の構造上の要件に係る暫定指針(平成23年)

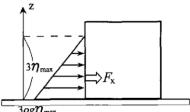
構造設計用の進行方向の津波波圧は、次式により算定する。


構造設計用の進行方向の津波波圧 $qz = \rho g$ (a h -z) (第1図)

h:設計用浸水深

z: 当該部分の地盤面からの高さ $(0 \le z \le a h)$

a :水深係数


ρg:海水の単位体積重量

第1図 津波波圧算定図

b. 港湾の津波避難施設の設計ガイドライン (平成25年10月) 文献a. に基づく。ただし、津波が生じる方向に施設や他の 建築物がある場合や、海岸等から500m以上離れている場合に おいて、水深係数は3以下にできるとしている。 c. 朝倉ら(2000):護岸を越流した津波による波圧に関する実験的研究,海岸工学論文集,第47巻,土木学会,911-915 直立護岸を越流した津波の遡上特性から護岸背後の陸上 構造物に作用する津波波圧について実験水路を用いて検討 している。

その結果,非分裂波の場合,フルード数が 1.5 以上では構造物前面に作用する津波波圧分布を規定する水平波圧指標(遡上水深に相当する静水圧分布の倍率) α は最大で 3.0 となるとしている。一方,ソリトン分裂波の場合は,構造物前面に働く津波波圧は,構造物底面近傍で非分裂波の α を 1.8 倍した値となるとしている(第 2 図及び第 3 図)。

津波水平波圧

第2図 非分裂波の場合の 第3図

 0.45α

第3図 分裂波の無次元最大 波圧分布

ソリトン分裂による波圧の増加分

d. NRA技術報告「防潮堤に作用する津波波圧評価に用いる 水深係数について」(平成28年12月)

持続波圧を対象としてフルード数が 1 を超える場合の防 潮堤に対する作用波圧の評価方法を明確にするため、水理 試験及び解析を実施した結果、従来の評価手法でフルード 数が 1 以下になることが確認できれば、水深係数は 3 を適 用できるとされている。

e. 防波堤の耐津波設計ガイドライン (平成 27 年 12 月一部改 訂)

防波堤の津波波圧の適用の考え方として,ソリトン分裂 波が発生する場合は修正谷本式を,そうでない場合におい て津波が防波堤を越流する場合には静水圧差による算定式 c. 朝倉ら(2000):護岸を越流した津波による波圧に関する実験的研究,海岸工学論文集,第47巻,土木学会,pp.911-915. 直立護岸を越流した津波の遡上特性から護岸背後の陸上構造物に作用する津波波圧について実験水路を用いて検討している。その結果,非分裂波の場合,フルード数が1.5以上では構造物前面に作用する津波波圧分布を規定する水平波圧指標(遡上水深に相当する静水圧分布の倍率)αは最大で3.0となるとしている(図2)。

一方、ソリトン分裂波の場合は、構造物前面に働く津波波圧は、構造物底面近傍で非分裂波の α を 1.8 倍した値となるとしている(図 3)。

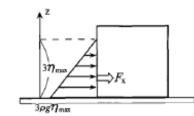


図2 非分裂波の場合の 津波水平波圧

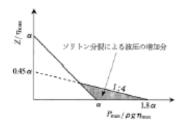
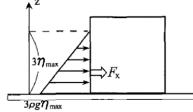
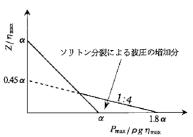



図3 分裂波の無次元最大波

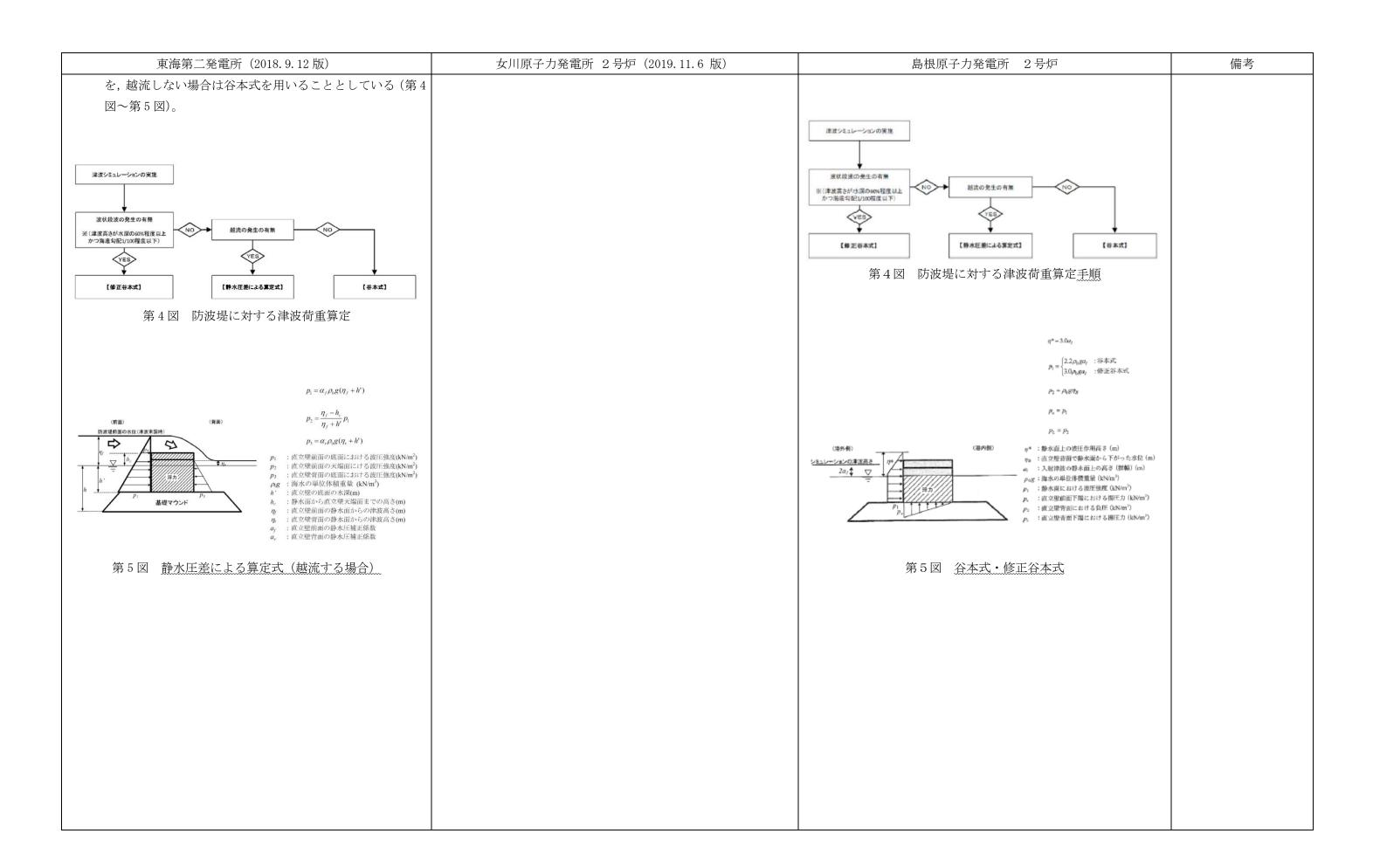

第2図 非分裂波の場合の 津波水平波圧

c. 朝倉ら(2000):護岸を越流した津波による波力に関する実験的研究,海岸工学論文集,第47巻,土木学会,911-915直立護岸を越流した津波の遡上特性から護岸背後の陸上構造物に作用する津波波圧について実験水路を用いて検討している。

その結果,非分裂波の場合,フルード数が 1.5 以上では構造物前面に作用する津波波圧分布を規定する水平波圧指標(遡上水深に相当する静水圧分布の倍率) α は最大で 3.0 となるとしている。一方,ソリトン分裂波の場合は,構造物前面に働く津波波圧は,構造物底面近傍で非分裂波の α を 1.8 倍した値となるとしている(第2図及び第3図)。

合の 第

第3図 分裂波の無次元最大 波圧分布


d. NRA 技術報告「防潮堤に作用する津波波圧評価に用いる水 深係数について」(平成28年12月)

圧分布

持続波圧を対象としてフルード数が1を超える場合の防潮 堤に対する作用波圧の評価方法を明確にするため、水理試験 及び解析を実施した結果、従来の評価手法でフルード数が1 以下になることが確認できれば、水深係数は3を適用できる とされている。 d. NRA技術報告「防潮堤に作用する津波波圧評価に用いる水 深係数について」(平成28年12月)

持続波圧を対象としてフルード数が1を超える場合の防潮 堤に対する作用波圧の評価方法を明確にするため、水理試験及 び解析を実施した結果、従来の評価手法でフルード数が1以下 になることが確認できれば、水深係数は3を適用できるとされ ている。

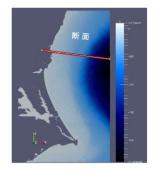
e. 防波堤の耐津波設計ガイドライン(平成27年12月一部改訂) 防波堤の津波波圧の適用の考え方として,ソリトン分裂波が 発生する場合は修正谷本式を,そうでない場合において津波が 防波堤を越流する場合には静水圧差による算定式を,越流しな い場合は谷本式を用いることとしている。(第4図~第5図)。

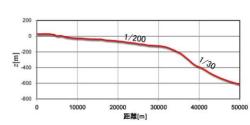
東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		2. 検討方針	・設計方針の相違
		島根原子力発電所の防波壁等*の設計で考慮する津波荷重は,	【東海第二,女川2】
		「水理模型実験及び津波シミュレーションによる津波波圧」と「既	設計方針の相違によ
		往の津波波圧算定式による津波波圧」を比較・検証することで設定	る記載内容の相違
		<u>する。</u>	
		既往の津波波圧算定式は,ソリトン分裂波や砕波の発生有無によ	
		り、算定式の適用性が異なる。そのため、島根原子力発電所におけ	
		る基準津波の特性及び沿岸の陸海域の地形を考慮した科学的根拠	
		に基づく,水理模型実験及び断面二次元津波シミュレーションを実	
		施し、ソリトン分裂波及び砕波の有無を確認する。	
		また,島根原子力発電所は輪谷湾を中心とした半円状の複雑な地	
		形である。そのため、三次元津波シミュレーションにより、複雑な	
		地形特性を考慮した三次元的な流況による津波波圧への影響を確	
		認し,水理模型実験及び断面二次元津波シミュレーションによる津	
		波波圧の妥当性を確認する。第6図に検討フローを,第1表に検討	
		項目及び検討内容を示す。	
		※防波壁, 防波壁通路防波扉及び1号放水連絡通路防波扉を「防	
		波壁等」という。	
		3. ソルトン分裂波及び砕波の発生,並びに津波波圧への影響	
		(1) 平面二次元津波シミュレーションによる検討	
		目的:「防波堤の耐津波設計ガイドライン」に基づくソリトン分裂波の発生確認 (2) 水理模型実験及び断面二次元津波シミュレーションの条件整理	
		(2) 小主体主人歌及の町田二八八年級ノニレンコンの米けませ 目的:地形特性及び津波特性の観点から津波波圧に影響するサイト特性を整理し、不確かさを考慮した検討条件を整理	
		(3) 水理模型実験による検討 目的:津波波形の検証によるソリトン分裂波・砕波の発生確認及び津波波圧の算定	
		(4) 断面二次元津波シミュレーションによる検討目的:水理模型実験の再現性の確認、津波波形の検証によるソリトン分裂波・砕波の発生確認及び津波波圧の算定	
		(5) 三次元津波シミュレーションによる妥当性確認 目的:島根原子力発電所の複雑な地形や三次元的な流況による津波波圧への影響を確認し,3.(3)章及び3.(4)章により算定される津波波圧の妥当性確認	
		→ 4. 既往の津波波圧算定式との比較 目的: 水理模型実験及び津波シミュレーションと既往の津波波圧算定式の津波波圧を比較	
		→ 5. 設計で考慮する津波波圧の設定	
		After a local loca	
		<u>第6図 検討フロー</u>	

	検討項目 3. ソリトン分裂波及び砕波の発生,並びに津波波月 (1) 平面二次元津波シミュレーション (こ) 水理模型実験及び断面二次元津波 シミュレーションの条件整理 (3) 水理模型実験による検討 (4) 断面二次元津波シミュレーション による検討 (5) 三次元津波シミュレーション による検討 4. 既往の津波波圧算定式との比較 5. 設計で考慮する津波波圧の設定	接討巧目目及び検討内容 校討内容 (検討内容 平面二次元津波シミュレーション結果及び海底勾配を用いて、「防波堤の耐津波段計がイトラインに基づき、ソリトン分裂波の発生有無を確認する。 水理模型実験及び断面二次元津波シミュレーションの追加実施に当たって、地形特性及び津波特性の観点から津波波圧に影響するサイト特性を整理し、不確かさを考慮した検討条件を設定する。 流体の挙動を直接確認でき、サイト特性に応じた評価が可能となる水理模型実験を追加実施し、水位の時刻歴波形かシリトン分裂波及び砕波の発生有無を確認するとともに、防波壁及び施設機学位置における津波波圧を算定する。 水理模型実験結果について、ソリトン分裂波及び砕波を表現可能な断面二次元津波シミュレーション(CADMAS-SURF(Ver.5.1))を追加実施し、再現性を確認するとともに、防波壁及び施設機学位置における津波波圧を算定する。 複雑な地形特性及び津波特性に応じた評価が可能である三次元津波シミュレーション(CADMAS-SURF(Ver.5.1))を追加実施し、再現性を確認するとともに、防波壁及び施設機学位置における津波波圧を算定する。 敷地高以上の構造物については、津波シミュレーション及び水理模型実験により防波壁に作用する温を立て空当性を確認する。 敷地高以よの構造物については、津波シミュレーション及び水理模型実験により敷波をに作用する運波液圧と比較する。 敷地高以深の構造物については、津波シミュレーション及び水理模型実験により敷速に同作用する連波液圧と比較する。 防波壁等について保守的な設計を行う観点から、上記の検討結果を踏まえた設計用津波波圧を設定する。	・設計方針の相違 【東海第二,女川2】 設計方針の相違によ る記載内容の相違
	3. ソリトン分裂波及び砕波の発生,並びに津波波圧 (1) 平面二次元津波シミュレーション による検討 (2) 水理模型実験及び断面二次元津波 シミュレーションの条件整理 (3) 水理模型実験による検討 (4) 断面二次元津波シミュレーション による検討 (5) 三次元津波シミュレーションによる検討 による妥当性確認 4. 既往の津波波圧算定式との比較 5. 設計で考慮する津波波圧の設定	正人の影響 平面二次元津波シミュレーション結果及び海底勾配を用いて、「防波堤の耐津波股計ガイドラインに基づき、ソリトン分裂波の発生有無を確認する。 水理模型実験及び断面二次元津波シミュレーションの追加実施に当たって、地形特性及び津波特性の観点かが津波波圧に影響するサイト特性を整理し、不確かさを考慮した検討条件を設定する。 流体の学動を直接確認でき、サイト特性に応じた評価が可能となる水理模型実験を追加実施し、水位の時刻歴波形からソリトン分裂波及び砕波の発生有無を確認するともに、防波壁及び施設護岸位置における津波波圧を算定する。 水理模型実験結果について、ソリトン分裂波及び砕波を現可能な断面二次元津波シミュレーション(CADMAS-SURF(Ver.5.1))を追加実施し、再現性を確認するともに、防波壁及び施設護岸位置における津波波圧を算定する。 複雑な地形特性及び津波特性に応じた評価が可能である三次元津波シミュレーションCADMAS-SURF/3D(Ver.1.5)を追加実施し、3、(3)章及び3、(4)章による津波波圧と比較する。とした。「対策することで受当性を確認する。 敷地高以上の構造物については、津波シミュレーション及び水理模型実験により防波壁に作用する海皮を直接算定し、陸上構造物に作用する津波波圧が変速により敷地高以深の構造物については、津波シミュレーション及び水理模型実験により敷地高以深の構造物については、津波シミュレーション及び水理模型実験により敷地高以深の構造物については、津波シミュレーション及び水理模型実験により敷地高以深の構造物については、津波シミュレーション及び水理模型実験により敷地高以深の構造物について保守的な設計を行う観点から、上記の検討結果を踏まえた設計用津波波圧を設定する。 防波壁等について保守的な設計を行う観点から、上記の検討結果を踏まえた設計用津波波圧を設定する。	設計方針の相違による記載内容の相違
	(1) 平面二次元津波シミュレーション による検討 (2) 水理模型実験及び断面二次元津波 シミュレーションの条件整理 (3) 水理模型実験による検討 (4) 断面二次元津波シミュレーション による検討 (5) 三次元津波シミュレーションによる検討 による妥当性確認 4. 既往の津波波圧算定式との比較 5. 設計で考慮する津波波圧の設定	平面二次元津波シミュレーション結果及び海底勾配を用いて、「防波堤の耐津波設計ガイドライン」に基づき、ソリトン分裂波の発生有無を確認する。 水理模型実験及び断面二次元津波シミュレーションの追加実施に当たって、地形特性及び海波特性の観点から津波波圧に影響するサイト特性を整理し、不確かさを考慮した検討条件を設定する。 流体の挙動を直接確認でき、サイト特性に応じた評価が可能となる水理模型実験を追加実施し、水位の時刻歴波形からリトン分裂波及び砕波の発生有無を確認するともに、防波壁及び施設護岸位置における津波波圧を算定する。 水理模型実験結果について、ソリトン分裂波及び砕波を現可能な断面二次元津波シミュレーション(CADMAS-SURF(Ver.5.1))を追加実施し、再現性を確認するともに、防波壁及び施設護岸位置における津波波圧を算定する。 複雑な地形特性及び津波特性に応じた評価が可能である三次元津波シミュレーションCADMAS-SURF/3D(Ver.1.5)を追加実施し、3、(3)草及び3、(4)草による津波波圧と比較することを当性を確認する。 数地高以上の構造物については、津波シミュレーション及び水理模型実験により防波壁に作用する海圧を直接算定し、陸上構造物に作用する津波波圧資定式、(朝倉式)により算定した津波波圧と比較する。 数地高以深の構造物については、津波シミュレーション及び水理模型実験により敷地高以深の構造物については、津波シミュレーション及び水理模型実験により敷地高以深の構造物に作用する波圧と比較する。 数地高以深の構造物に作用する波圧と直接算定し、海中構造物に作用する津波波圧自定式(谷本式)により算定した津波波圧と比較する。 防波壁等について保守的な設計を行う観点から、上記の検討結果を踏まえた設計用津波波圧を設定する。	る記載内容の相違
	(2) 水理模型実験及び断面二次元津波 シミュレーションの条件整理 (3) 水理模型実験による検討 (4) 断面二次元津波シミュレーション による検討 (5) 三次元津波シミュレーションによる検討 による妥当性確認 4. 既往の津波波圧算定式との比較 5. 設計で考慮する津波波圧の設定	水理模型実験及び断面二次元津波シミュレーションの追加実施に当たって、地形特性及び津波特性の観点から津波波圧に影響するサイト特性を整理し、不確かさを考慮した検討条件を設定する。 流体の挙動を直接確認でき、サイト特性に応じた評価が可能となる水理模型実験を追加実施し、水位の特別歴波形かシリトン分裂波及び砕波の発生有無を確認するとともに、防波壁及び施設護岸位置における津波波圧を算定する。 水理模型実験結果について、ソリトン分裂波及び砂波を表現可能な断面二次元津波シミュレーション(CADMAS-SURF(Ver.5.1))を追加実施し、再現を確認するとともに、防波壁及び施設護岸位置における津波波圧を算定する。 複雑な地形特性及び津波特性に応じた評価が可能である三次元津波シミュレーションCADMAS-SURF/3D(Ver.1.5)を追加実施し、3.(3)草及び3.(4)草による津波波圧と比較することで妥当性を確認する。 数地高以上の構造物については、津波シミュレーション及び水理模型実験により防波壁に作用する速圧を直接算定し、陸上構造物に作用する津波波圧算定式(朝倉式)により算定した津波波圧と比較する。 数地高以深の構造物については、津波シミュレーション及び水理模型実験により敷地高以深の構造物については、津波シミュレーション及び水理模型実験により敷地高以深の構造物に作用する湿度上を直接算定し、海中構造物に作用する津波波圧算定式(谷本式)により算定した津波波圧と比較する。 防波壁等について保守的な設計を行う観点から、上記の検討結果を踏まえた設計用津波波圧を設定する。	
	(3) 水理模型実験による検討 (4) 断面二次元津波シミュレーションによる検討 (5) 三次元津波シミュレーションによる検討による妥当性確認 4. 既往の津波波圧算定式との比較 5. 設計で考慮する津波波圧の設定	流体の挙動を直接確認でき、サイト特性に応じた評価が可能となる水理模型実験を追加実施し、水位の時刻歴波形からツルトン分裂波及び砂砂の発生有無を確認するともに、防波壁及び施設護岸位置における津波波圧を算定する。 水理模型実験結果について、ソリトン分裂波及び砂砂を算可を算でする。 水理模型実験結果について、ソリトン分裂波及び砂液を表現可能な断面二次元津波シミュレーション(CADMAS-SURF(Ver.5.1))を追加実施し、再現性を確認するとともに、防波壁及び施設護岸位置における津波波圧を算定する。 複雑な地形特性及び津波特性に応じた評価が可能である三次元津波シミュレーションCADMAS-SURF/3D(Ver.1.5)を追加実施し、3.(3)草及び3.(4)草による津波波圧と比較することで妥当性を確認ションので、2000年に表達が原じた。 敷地高以上の構造物については、津波シミュレーション及び水理模型実験により防波壁に作用する溶皮を直接算定し、陸上構造物に作用する津波波圧算定式、(納倉式)により算定した津波波圧と比較する。 敷地高以深の構造物にしては、津波シミュレーション及び水理模型実験により敷地高以深の構造物に作用する液圧を直接算定し、海中構造物に作用する津波波圧算定式(谷本式)により算定した津波波圧と比較する。 防波壁等について保守的な設計を行う観点から、上記の検討結果を踏まえた設計用津波波圧を設定する。	
	による検討 (5) 三次元津波シミュレーションによる検討による妥当性確認 4. 既往の津波波圧算定式との比較 5. 設計で考慮する津波波圧の設定	津波シミュレーション(CADMAS-SURF(Ver.5.1))を追加実施し、再現性を確認するともに、防波壁及び施設護岸位置における津波波圧を算定する。 複雑な地形特性及び津波特性に応じた評価が可能である二次元津波シミュレーションCADMAS-SURF(3D (Ver.1.5) を追加実施し、3.(3)章及び3.(4)章による津波波圧と比較することで妥当性を確認する。 敷地高以上の構造物については、津波シミュレーション及び水理模型実験により防波壁に作用する波圧を直接算定し、陸上構造物に作用する津波波圧算定式(納倉式)により算定した津波波圧と比較する。 敷地高以深の構造物については、津波シミュレーション及び水理模型実験により敷地高以深の構造物にでしては、津波シミュレーション及び水理模型実験により敷地高以深の構造物に作用する波圧を直接算定し、海中構造物に作用する津波波圧算定式(谷本式)により算定した津波波圧と比較する。 防波壁等について保守的な設計を行う観点から、上記の検討結果を踏まえた設計用津波波圧を設定する。	
	による妥当性確認 4. 既往の津波波圧算定式との比較 5. 設計で考慮する津波波圧の設定	ンCADMAS-SURF/3D (Ver.1.5) を追加実施し, 3.(3)章及び3.(4)章による津波波圧と比較することで妥当性を確認する。 敷地高以上の構造物については、津波シミュレーション及び水理模型実験により防波壁に作用する波圧を直接算定し、陸上構造物に作用する津波波圧算定式(朝倉式)により算定した津波波圧と比較する。 敷地高以深の構造物については、津波シミュレーション及び水理模型実験により敷地高以深の構造物については、津波シミュレーション及び水理模型実験により敷地高以深の構造物に作用する湿圧を直接算定し、海中構造物に作用する津波波圧算定式(谷本式)により算定した津波波圧と比較する。 防波壁等について保守的な設計を行う観点から、上記の検討結果を踏まえた設計用津波波圧を設定する。	
	5. 設計で考慮する津波波圧の設定	波壁に作用する波圧を直接算定し、陸上構造物に作用する津波波圧算定式 (朝 倉式)により算定した津波波圧と比較する。 敷地高以深の構造物については、津波シミュレーション及び水理模型実験により敷 地高以深の構造物に作用する波圧を直接算定し、海中構造物に作用する津波波 圧算定式 (谷本式)により算定した津波波圧と比較する。 防波壁等について保守的な設計を行う観点から、上記の検討結果を踏まえた設計 用津波波圧を設定する。	
		用津波波圧を設定する。	
	津波シミュレーション	及び水理構刑宝験の長正, 毎正な敕理した	
	> > + + 10 F - 1 - 10 F -		
		所におけるソリトン分裂波及び砕波の発生	
	確認、津波波圧の確認に	係る検討内容を第2表に示す。_	
	第2表 津波シミュレー	ション解析及び水理模型実験の長所・短所	
	解析手法 ・広範囲にわたる地形のモデル化が	短所 長所・短所を踏まえた検討内容	
		・ソルトン分裂波及び砕液の発生有無の確認が困難・ ・津波波圧の直接評価が不可能・ ・建波波圧の直接評価が不可能・ ・建次波圧の直接評価が不可能・ ・建次波圧の直接評価が不可能・ ・建次波圧の直接評価が不可能・ ・ 「防波堤の耐津波設計ガイドライン」に ・ 基ゴベソルトン分裂波の発生確認	
	水理模型実験 認が可能 ・津波波圧を直接評価可能 ・審査における実績がある	無の確 ・複雑な地形や構造物のモデル化が困難 ・科学的根拠に基づくリリトン分裂波及 ・ 複雑な不規則波形の再現が困難 ・ 三次元的な流況の再現が不可能 ・ 実験に時間を要する ・ 津波波圧の確認 ・ 津波波圧の確認	
	・複雑な不規則逐形の再現が可能・ソリトン分裂波及び砕波の発生有 断面二次元 津波ジミュレーション・ ・解析時間が見い・ ・審査における実績がある	無の確 ・複雑な地形や構造物のモデル化が困難 ・複雑な地形や構造物のモデル化が困難 ・三次元的な流況の再現が不可能 ・三次元的な流況の再現が不可能 ・津波波圧の確認	
	・複雑な地形や構造物のモデル化力 ・複雑な不規則波形及び三次元的 ・海波シミュレーション ・複雑な地形及び三次元的な流況 まえた津波波圧を直接評価可能	的な流況。計算機能力を踏まえて解析範囲に限界が ある。 表ではような様がない。 本のでは、1943年の様がない。 ある。 本のでは、1943年の様がない。	
	ソリトン分裂波は津波	その伝播過程で複数の波に分裂し,波高が	
	増幅する現象である。ま	た,砕波は波が浅海域を進行する際に,	
	波高が高くなると波が砕	け,波高が急激に小さくなる現象である。	
	いずれも構造物へ衝撃的	な波圧を作用させる可能性がある現象で	
	ある。第7図にソリトン	分裂波及び非分裂波の概要を示す。	
	非分裂波の場合の構造	宣物に作用する津波波圧分布は、津波高さ	
		さる。一方、ソリトン分裂波が生じた場合	
		は非分裂波を 1.8 倍した波圧が作用し、	
		べて約20%大きくなる可能性がある。	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6 版)	島根原子力発電所 2号炉	備考
		* *	・設計方針の相違
			【東海第二,女川2】
		$\eta_{ m max}$	設計方針の相違によ
		なります。 というない。 は、 というない。 は、 は、 というない。 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	る記載内容の相違
		デα α ソリトン分裂による酸圧の増加分	
		$3\eta_{\text{max}}$ F_{x} 0.45α	
		α 1.8 α $P_{\text{max}}/\rho g \eta_{\text{min}}$	
		非分裂波の場合の波圧分布 ソリトン分裂波の場合の波圧分布	
		第7図 ソリトン分裂波及び非分裂波	
		護岸を越流した津波による波力に関する実験的研究, 朝倉ほか	
		(2000)より引用	
		<u>※ η max</u> 後の水位の上昇は反射波を示す。	

東海第二発電所(2018.9.12版)


2. 東海第二発電所のサイト特性を反映した防潮堤に作用する津波波圧の把握について


(1) 分裂波発生に関する検討

沖合から伝播してくる津波が、サイト前面においてソリトン分裂波を伴うか否かの判定に当たっては、「防波堤の耐津波設計ガイドライン」において以下の2つの条件に合致する場合、ソリトン分裂波が発生するとされている。

- ①おおむね入射津波高さが水深の30%以上(津波数値解析 等による津波高さが水深の60%以上)
- ②海底勾配が 1/100 以下程度の遠浅

東海第二発電所前面の海底地形は約1/200 勾配で遠浅であり、入射波津波高さと水深の関係も入射津波高さが水深の30%以上であることから、両方の条件に合致する(第6図及び表1)。そこで、沖合におけるソリトン分裂波及び砕波の発生の有無や陸上へ遡上する過程での減衰の状況と防潮堤が受ける津波波圧への有意な影響の有無を定量的に確認するため、東海第二発電所のサイト特性を考慮した水理模型実験を行い、防潮堤が受ける波圧分布等を測定した。

第6図 海底地形断面位置図及び海底地形断面図

第1表 津波高さと水深の関係

地点	(1)水深	(2)入射津波高さ*	(2)/(1)
東海第二発電所前面	7.5m	4.7m	62%

※津波数値解析による津波高さの 1/2 を入射津波高さと定義(防潮堤の耐津波ガイドライン

女川原子力発電所 2号炉 (2019.11.6 版)

2. 女川原子力発電所のサイト特性を反映した防潮堤に作用する 津波波圧の把握

(1)分裂波発生に関する概略検討

沖合から伝播してくる津波が、サイト前面においてソリトン 分裂波を伴うか否かの判定に当たっては、「防波堤の耐津波設計 ガイドライン」において以下の2つの条件に合致する場合、ソ リトン分裂波が発生するとされている。

- ① おおむね入射津波高さが水深の30%以上(津波数値解析等 による津波高さが水深の60%以上)
- ② 海底勾配が 1/100 以下程度の遠浅

女川原子力発電所では防潮堤前面に盛土法面があることから, 入射津波高さを精緻に評価することは難しいが,一般的には入射 津波高さは水深の 50%程度であり,津波が盛土法面により堰上げ される効果も考えると入射津波高さと水深の関係は少なくとも 30%以上となる。

また,女川原子力発電所前面の海底地形を図4及び図5に示す。 前面の沖合地形の概要は、沖合2km付近まで急峻な勾配で、その 後沖合6km付近までは緩やかな地形が続き、その後、再び急峻な 勾配が続いている。沖合10km付近までの平均勾配はおよそ1/100 となっている。

よって、①及び②の条件に合致し、ソリトン分裂波が発生する 可能性があることから、ソリトン分裂波の発生有無と防潮堤が受 ける津波波圧への影響を定量的に確認するため、女川原子力発電 所のサイト特性を考慮した数値流体解析及び水理模型実験を行 い、防潮堤が受ける波圧分布等を詳細検討する。 3. ソリトン分裂波及び砕波の発生,並びに津波波圧への影響

島根原子力発電所 2号炉

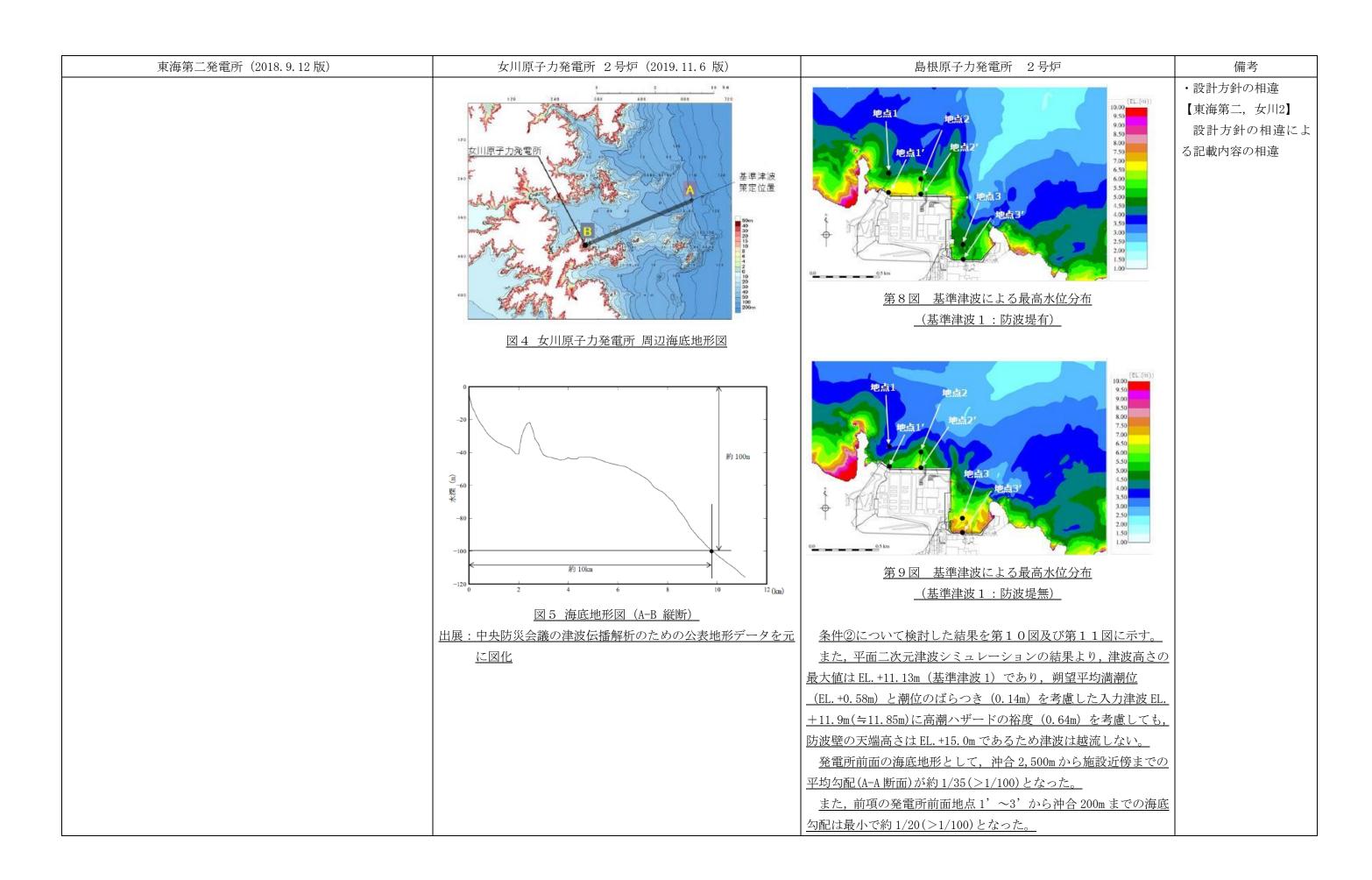
(1) 平面二次元津波シミュレーションによる検討

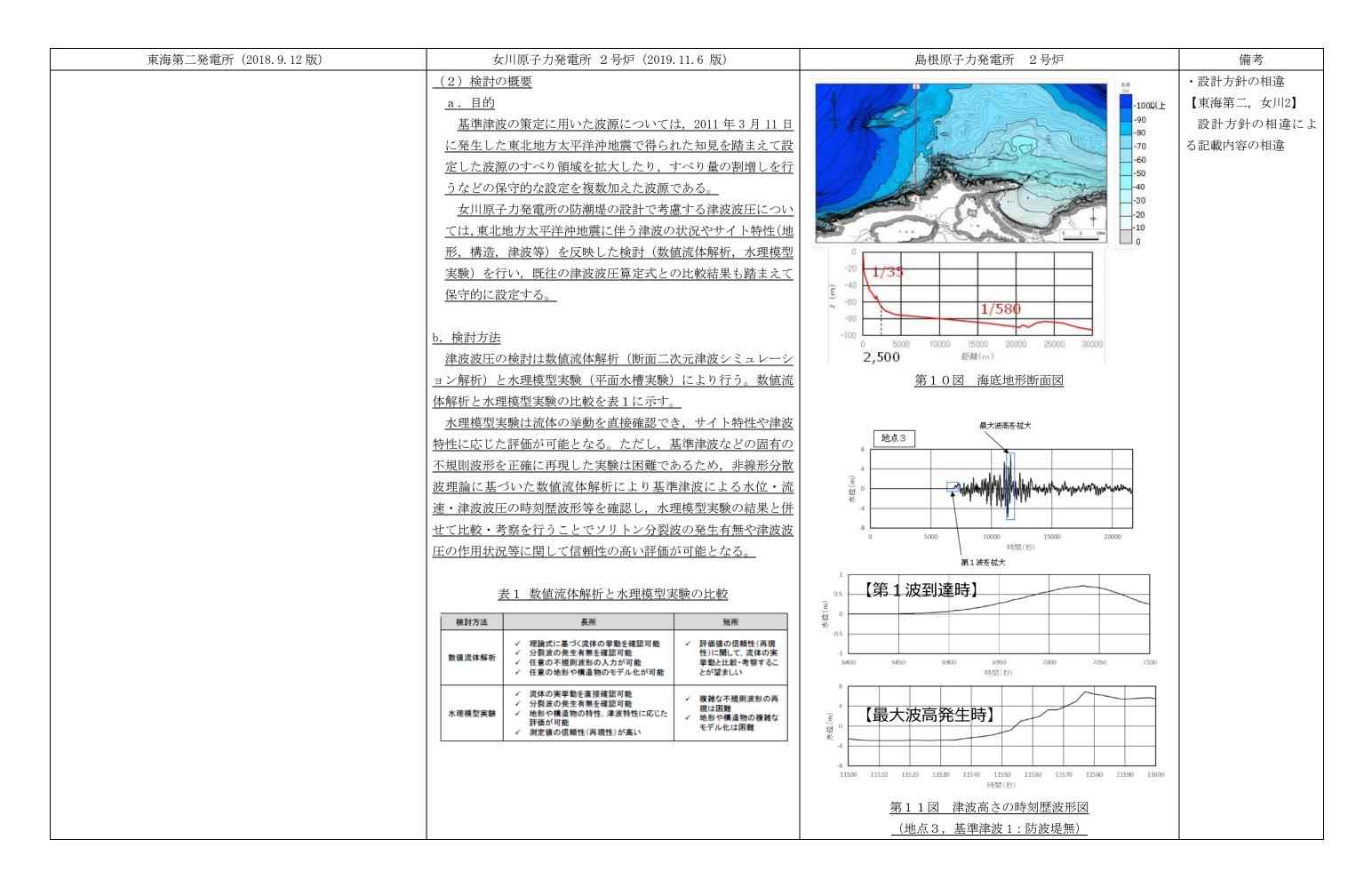
沖合から伝播してくる津波が、サイト前面においてソリトン分裂波を伴うか否かの判定に当たっては、「防波堤の耐津波設計ガイドライン」において、以下に示す①かつ②の条件に合致する場合、ソリトン分裂波が発生するとされている。

条件①:津波高さが水深の60%程度以上

条件②:海底勾配 1/100 程度以下

条件①について検討した結果を第3表,第8図及び第9図に示す。地点1~3では津波高さは水深の60%以下となるが,水深が10mよりも浅い地点1'~3'では護岸の反射波の影響により津波高さが水深の60%以上となる。

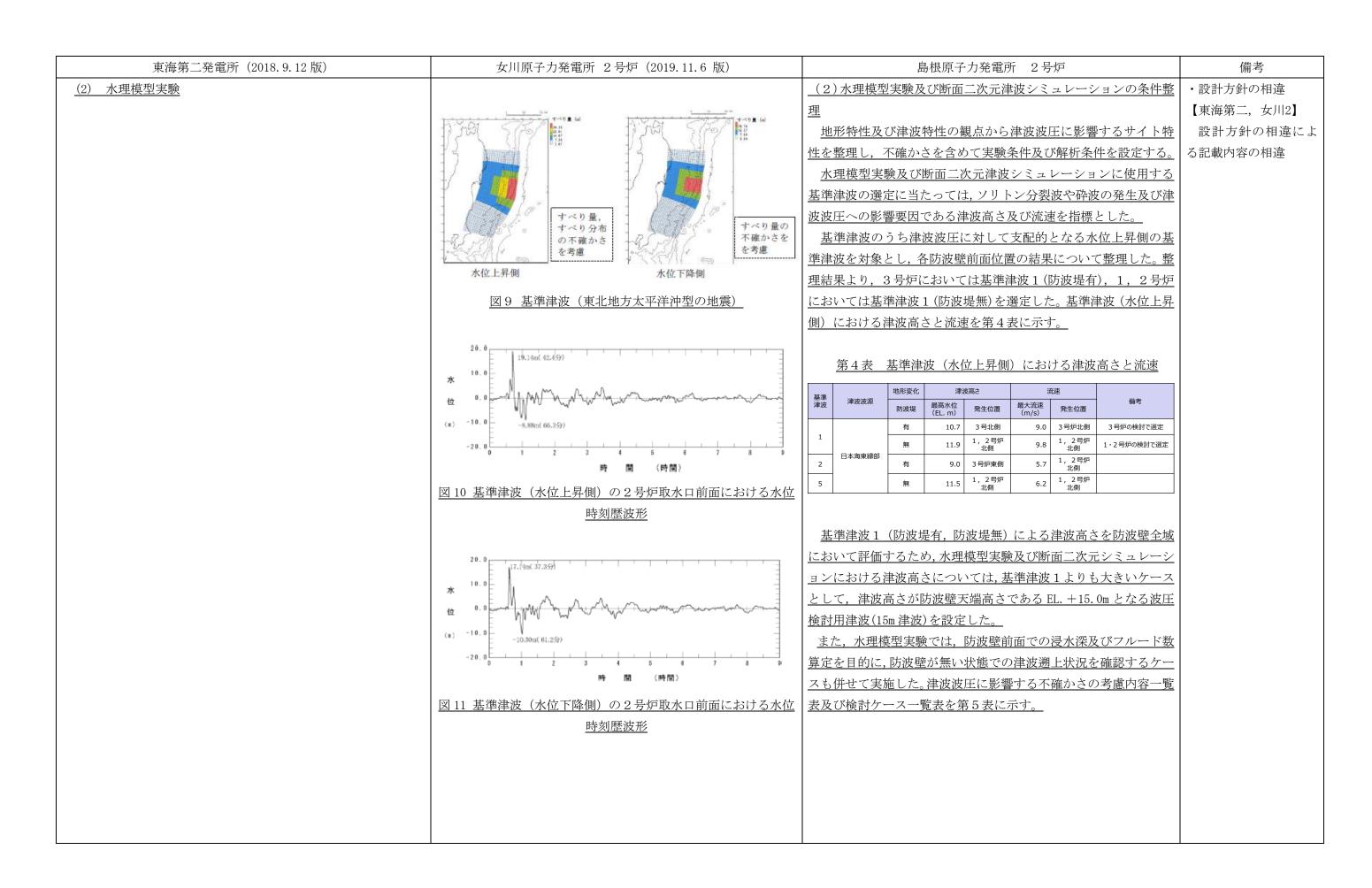

第3表 津波高さと水深の割合

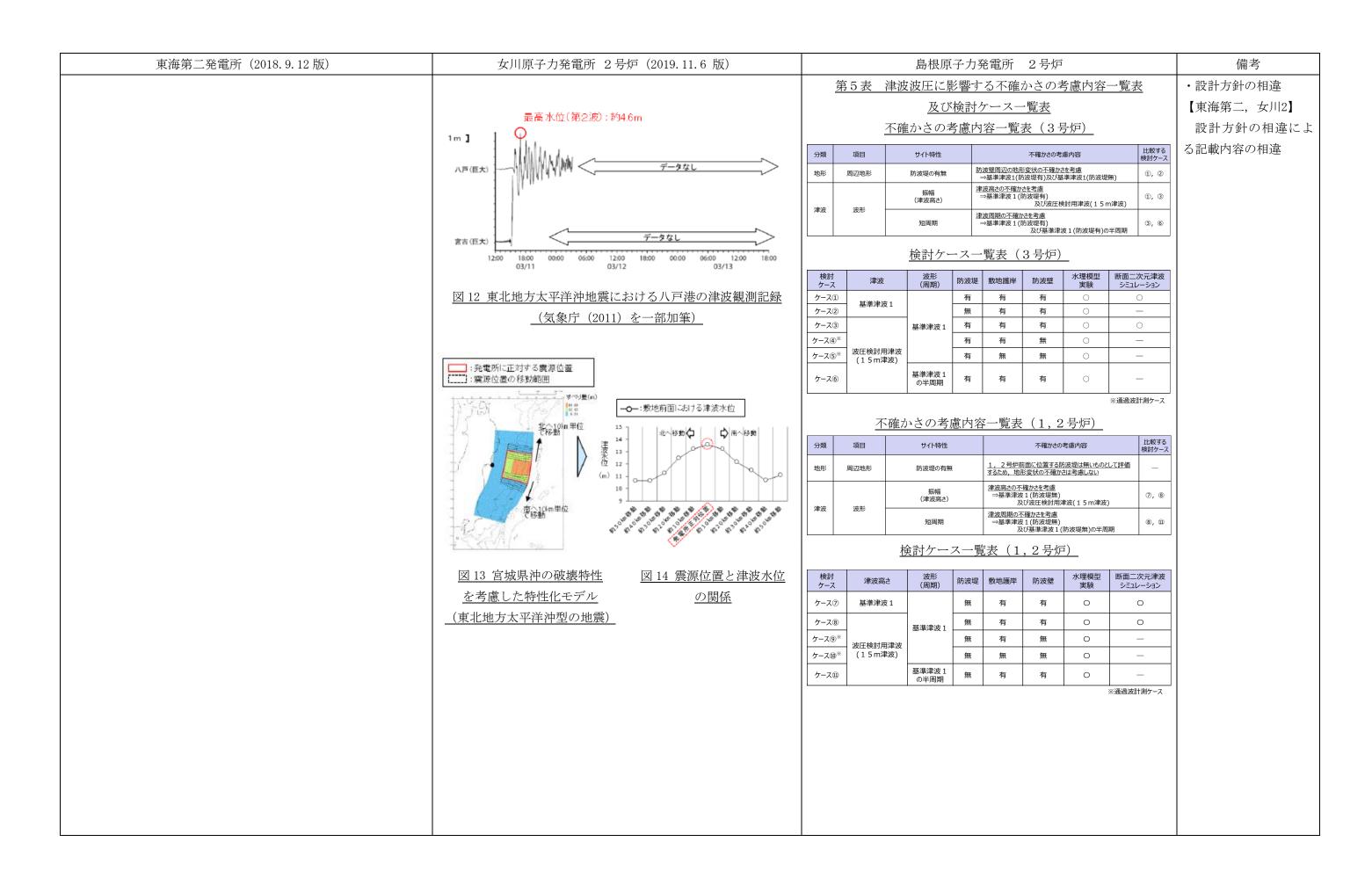

地点 (1)水深		(2)津波高さ※1		(2)/(1)	
地無		防波堤有	防波堤無	防波堤有	防波堤無
地点1	16m	5.0m	4.0m	31.3%	25.0%
地点2	16m	6.0m	6.0m	37.5%	37.5%
地点3	17m	5.0m	7.0m	29.4%	41.2%

地点※2	(1)水深	(2)津沥	支高さ ^{※1}	(2),	/(1)
		防波堤有	防波堤無	防波堤有	防波堤無
地点1'	4.0m	7.5m	6.0m	187.5%	150.0%
地点2′	6.0m	6.0m	6.0m	100.0%	100.0%
地点3′	5.0m	6.0m	8.0m	120.0%	160.0%

- ※1 平面二次元津波シミュレーションによる津波高さを保守的に評価した値
- ※2 地点1~3の南方向における護岸前面位置

・記載方針の相違 【東海第二,女川2】 記載方針の相違によ る記載内容の相違





東海第二発電所(2018. 9. 12 版)	5	太川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2 号炉	備考
	c. 検討項目		「防波堤の耐津波設計ガイドライン」の条件①かつ条件②の条件	・設計方針の相違
	数值流体的	解析及び水理模型実験による検討項目を表2に示す。	に合致しないため、ソリトン分裂波が発生しないと考えられるが、	【東海第二,女川2】
	数值流体解析	折では基準津波を対象とし、水理模型実験では津波の	砕波発生有無の確認を含めて,科学的根拠に基づいた確認を行うた	設計方針の相違によ
	波形特性(周	周期,波高)を変化させた複数の模擬津波を対象とし,	めに,水理模型実験及び断面二次元津波シミュレーションを追加実	る記載内容の相違
	それぞれ検討	<u>討を行う。</u>	<u>施する。</u>	
		<u>表 2 検討項目</u>		
	検討項目	確認内容		
	津波波圧の 確認	 √ 非線形分散波理論に基づいた解析と、実流体を対象とした実験により、サイト 特性を踏まえた津波波圧を確認する。		
	ソリトン分裂の有無	✓ 防潮堤近傍でソリトン分裂が発生する場合には、横造物底面近傍の水深係 数が大きくなることから、非分裂波かソリトン分裂波かを確認する。		
	水深係数の 整理	✓ 朝倉式では水深係数として3が使用されているが、平成28年12月NRA技 術報告において水深係数3の適用範囲をフルード数が1以下としていること を踏まえ、防潮堤前面位置でのフルード数を確認する。		
	並往	✓ 防潮堤に作用する波圧分布を無次元化し、水深係数として整理することで、 朝倉式の水深係数3と比較する。		
	d. 検討概要			
	検討概要	- を図6に示す。最初に基準津波や東北地方太平洋沖地		
	震による津流	皮の特性に関して、周辺地形等の影響も踏まえて確認		
	し、津波の	第1波が後続波と比較して極端に大きくなること,数		
	<u>値流体解析</u>	及び水理模型実験による検討では津波の第1波を評価		
	対象とする。	ことを示す。次に数値流体解析による検討結果に関し		
	て, 基準津流	皮に伴うソリトン分裂の有無や津波波圧の発生状況等		
	(おおむね	静水圧の波圧分布)を示す。次に水理模型実験による		
	検討結果に	ついて,模擬津波(波形特性の不確かさを考慮)に伴		
	<u>ラソリトン</u>	分裂の有無や津波波圧の発生状況等(波圧分布は静水		
	圧型)を示	す。次に数値流体解析及び水理模型実験の検討結果を		
	既往の津波	皮圧算定式と比較し,水深係数として整理した結果が		
	朝倉式に包含	含されることを示す。最後に設計で考慮する津波波圧		
	の設定方法は	こ関して,保守性を確保する観点から朝倉式を参照す		
	ることを示っ	<u> </u>		

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6 版)	B根原子力発電所 2 号炉	備考
			・設計方針の相違
	② 甘油油等条件 6 1992 (B 73 44 24 45 6 2 48 1991)		【東海第二,女川2】
	① 基準津波等の特性の確認(周辺地形等の影響確認)		設計方針の相違によ
	津波の第1波が後続波と比較して極端に大きい		る記載内容の相違
	② 数値流体解析による検討(基準津波に伴う津波波圧の確認)		
	おおむね静水圧の波圧分布		
	③ 水理模型実験による検討(波形特性の不確かさを考慮した津波波圧の確認)		
	波圧分布は静水圧型(直線分布)		
	④ 既往の津波波圧算定式との比較(解析及び実験の保守性の確認)		
	実験と解析の結果は朝倉式に包含		
	(5) 設計で考慮する津波波圧の設定(設計荷重の保守性を確保)		
	図 6 検討概要		
	(3) 基準津波・東北地方太平洋沖地震による津波の特性の確認		
	女川原子力発電所の基準津波はプレート間地震(東北地方太		
	平洋沖型の地震)による津波であり, 策定位置は沖合約 10km		
	となっている。基準津波の第1波は複数の波の重なり合いによ		
	る二段型波形となっており、第1波全体としての半周期は約10		
	~20分, 二段型波形のうちの個別波部分の半周期は約5分とな		
	っている。数値流体解析及び水理模型実験により津波波圧の検		
	対を行うにあたり、基準津波及び東北地方太平洋沖地震による		
	津波の特性の確認を行った。		
	a. 第1波と後続波の関係		
	<u>基準津波及び東北地方太平洋沖地震による津波の第1波は二段</u>		
	型波形が特徴となっている。また、津波は指向性を有しているこ		
	とから、一般に震源付近の津波水位が高く、第1波が支配的とな		
	<u>る(図7及び図8)。</u>		
	女川原子力発電所は、湾や入り江形状を呈する地形が多数存在		
	するリアス式海岸の南部に位置し、後続波(周辺地形からの反射		
	波)の重なり合い等による津波水位の増幅が見られる可能性があ		
	ることから、基準津波(水位上昇側)、基準津波(水位下降側)を		
	対象とした平面二次元津波シミュレーション解析により、2号炉		
	取水口前面における水位時刻歴波形を確認を行った結果、各津波		
	ともに後続波は減衰傾向を示しており、第1波の水位が後続波と		
	比較して極端に大きくなることを確認した(図9~図 11)。		

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6 版)	島根原子力発電所 2号炉	備考
	また、東北地方太平洋沖地震において、震源から離れた八戸港		・設計方針の相違
	では、周辺地形からの反射波の影響が含まれた第2波で最高水位		【東海第二,女川2】
	を生じているが、その津波水位は約 4.6mと小さいことを確認し		設計方針の相違によ
	<u>た (図 12)。</u>		る記載内容の相違
	なお, 女川原子力発電所の基準津波の検討において, 震源位置		
	(大すべり域) を移動させた場合の津波水位に与える影響につい		
	ても検討しており、発電所に正対する位置に震源(大すべり域)		
	がある場合、最も津波水位が高く、発電所から離れるにつれてそ		
	の影響は小さくなることを確認している (図 13 及び図 14)。		
	以上の結果から、震源から離れた位置では後続波で最高水位を		
	生じる可能性があるが、女川の基準津波は発電所に正対する位置		
	に震源を設定することで第1波で最高水位を生じることになり、		
	後続波が減衰傾向を示すことと併せて、第1波の影響が支配的と		
	なることを確認した。		

	図7 基準津波の時刻歴波形 (水位上昇側) 16.0 最高水位: O.P.+13.78m(15:29) 10.0 8.0 10.0 8.0 10.0 8.0 10.0 8.0 8		

女川原子力発電所 2号炉(2019.11.6版)

島根原子力発電所 2号炉

備考

<u>a. 目的</u>

基準津波の策定に用いた波源については,2011 年東北 地方太平洋沖地震で得られた知見を踏まえて設定した波 源のすべり領域を拡大したり,すべり量の割増しを行う などの保守的な設定を複数加えた波源である。

水理模型実験は、ソリトン分裂波が生じない沖合 5.0km における津波波形を入力し、ソリトン分裂波や砕波の発生の有無及び陸上へ遡上する過程での減衰状況と防潮堤が受ける津波波圧への有意な影響の有無並びにフルード数の把握を目的に実施した。

b. 周辺地形の影響

女川原子力発電所の敷地周辺は複雑に入り組んだ湾構造になっているため、敷地に到達する津波は周辺地形からの回り込みの影響もある。この影響を確認するため、基準津波の第1波の敷地への到達に関して、平面二次元津波シミュレーション解析と、後述する断面二次元津波シミュレーション解析(非線形分散波理論を考慮)の波形比較を行った。

基準津波策定位置において、平面二次元津波シミュレーション解析の出力波形を断面二次元津波シミュレーション解析に入力して検討した結果、敷地近傍(港口部、2号炉取水口前面)での両者の第1波の出力波形はおおむね一致した(図15)。

断面二次元津波シミュレーション解析においては周辺地形からの回り込みの影響を考慮していないため、出力波形の一致は平面二次元津波シミュレーション解析においても、第1波到達における周辺地形の影響がほとんどないことを示しており、基準津波の第1波は周辺地形の影響をほとんど受けずに策定位置から直線的に到達することを確認した。

また、断面二次元津波シミュレーション解析では周辺地形からの回り込みの影響を考慮できないこと、解析境界からの反射波の影響が平面二次元津波シミュレーション解析と断面二次元津波シミュレーション解析で異なることから、津波の第1波を評価対象(後続波は評価対象外)とし、非線形分散波理論に基づいた断面二次元津波シミュレーション解析により、分裂波の発生有無及び分裂波の影響も考慮した津波波圧の評価が可能となる。

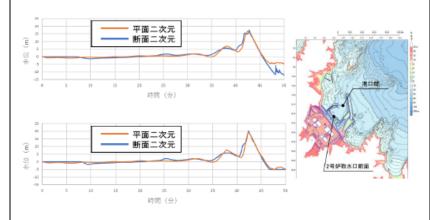
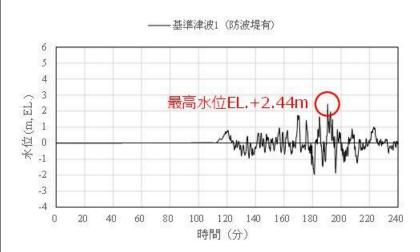


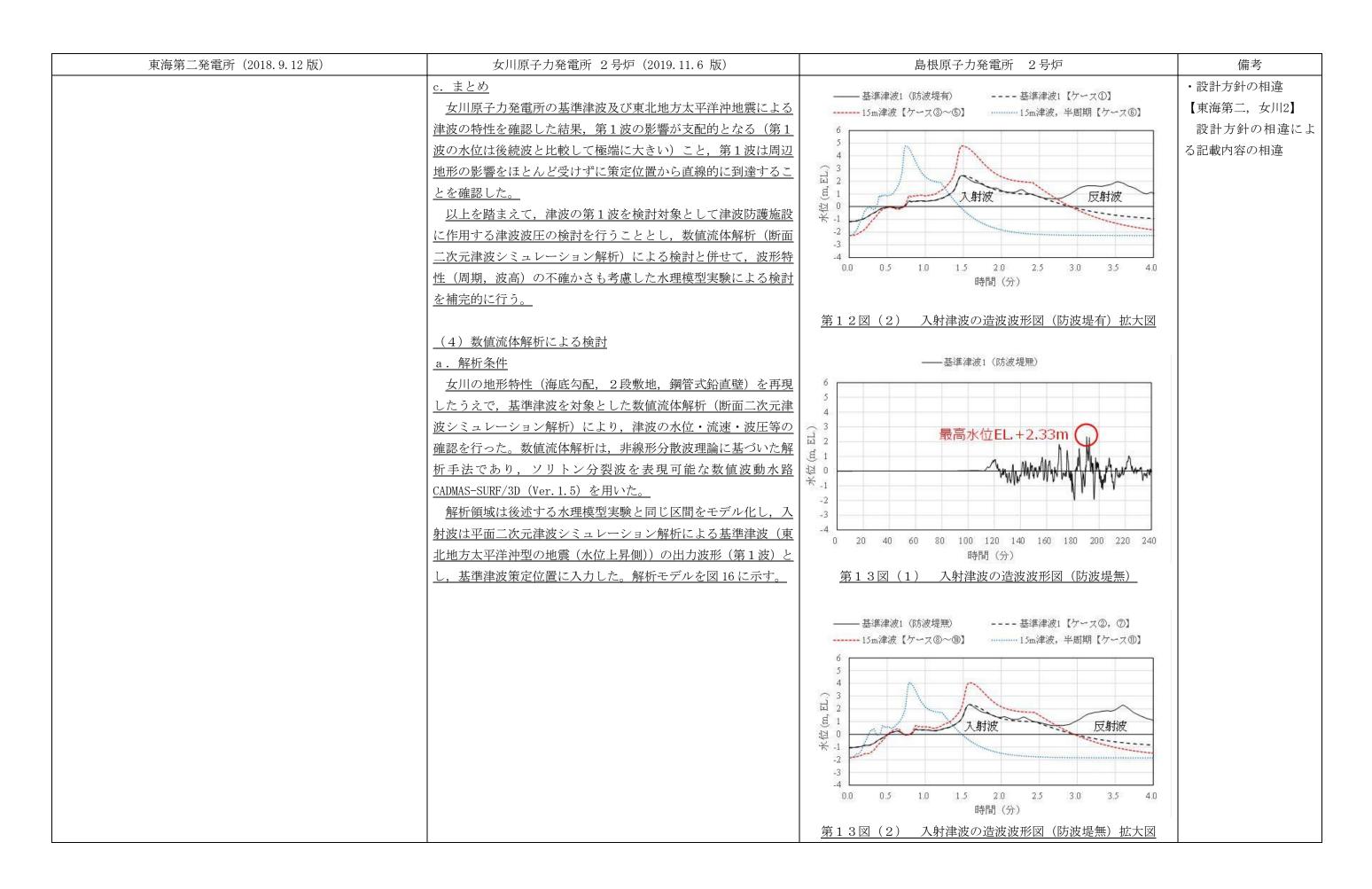
図 15 水位時刻歴波形の比較(上段:港口部,下段:2号炉取水口前面)

【目的及び入射津波の造波】


水理模型実験は,ソリトン分裂波や砕波の発生の有無及び防波壁 が受ける津波波圧への有意な影響の有無,並びにフルード数の把握 を目的に実施する。

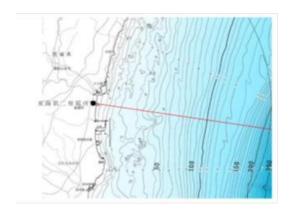
水理模型実験における再現範囲は施設護岸から離れた沖合約 2.5kmの位置とし、入力津波高さが最大となる基準津波1(防波堤 有・無)の平面二次元津波シミュレーションから求めた同地点にお ける津波波形(最大押し波1波)を入力する。

実験における入射津波は、同地点の水位と流速を用いて入射波成分と反射波成分に分離し、入射波成分を造波する。

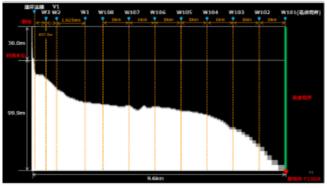

入射津波高さについては、基準津波1(防波堤有・無)と、不確かさを考慮した波圧検討用津波(15m津波)を設定する。波圧検討用津波(15m津波)は、基準津波1(防波堤有・無)と同周期として防波壁前面における反射波を含む遡上高がEL.+15mとなるよう振幅を調整する。なお、本波圧検討用津波(15m津波)は、防波壁等の設計用津波波圧として用いるものではない。

周期については、基準津波1(防波堤有・無)の周期と、不確かさを考慮した基準津波1(防波堤有・無)の半周期を設定する。入射津波の造波波形図を第12図及び第13図に示す。

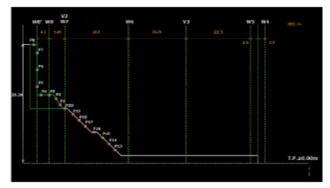
第12図(1) 入射津波の造波波形図(防波堤有)


・設計方針の相違 【東海第二,女川2】 設計方針の相違によ る記載内容の相違

東海第二発電所 (2018.9.12版)


b. 検討断面

東海第二発電所前面の海底地形は概ね一様の地形となっていることから、本実験では、津波水位が最大となる地点を基に、津波の伝播特性を踏まえ、等深線図に直交する断面を選定した(第7図)。



第7図 検討断面位置図

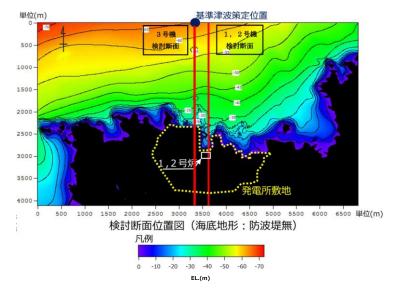
女川原子力発電所 2号炉 (2019.11.6 版)

(基準津波策定位置~敷地)

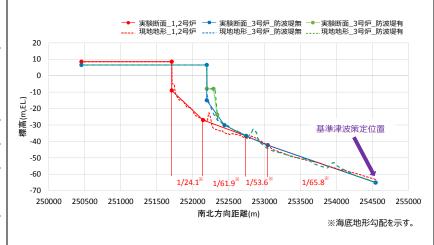
(0. P. +2. 5m~防潮堤)

図 16 解析モデル

b. 通過波解析


構造物がない状態での津波状況把握を目的に、防潮堤がないモデルで通過波解析を行い、水位・流速・フルード数の確認を行った。波形を図 17 に示す。

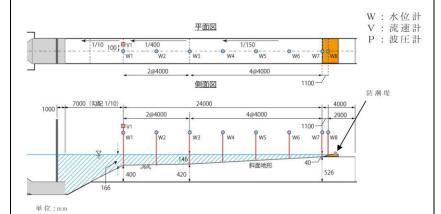
防潮堤の近傍において津波の第1波の水位波形は滑らかになっており、ソリトン分裂は発生しておらず、水位が緩やかに上昇するような水位変動型の津波が発生した。また、防潮堤前面位置でのフルード数は0.38で1.0を下回った。津波の水平流速の小ささ(周期の長さ)や2段敷地の盛土法面の影響等によって津波が減勢し、防潮堤前面位置では常流(Fr<1.0)となった可能性が考えられる。


島根原子力発電所 2号炉 (3)水理模型実験による検討

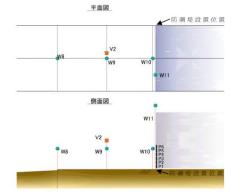
a. 検討断面

島根原子力発電所前面の海底地形及び津波の伝播特性を踏まえ、 本実験の検討断面は、防波壁の延長方向に直交し、海底地形を示す 等水深線ともほぼ直交する南北方向とする。水理模型実験における 検討断面位置を第14図及び第15図に示す。

第14図 検討断面位置図(海底地形:防波堤無)


第15図 検討断面図

・設計方針の相違 【東海第二,女川2】 設計方針の相違によ る記載内容の相違


東海第二発電所(2018.9.12版)

c. 実験条件

断面二次元実験施設の水路は,長さ60m×幅1.2m(貯水部は1.8m)×高さ1.5mとし,沖合5kmから陸側の範囲を再現するために,実験縮尺(幾何縮尺)は=1/200とした(第8図)。

第8図(1) 計測位置図

第8図(2) 防潮堤位置拡大図

第8図(3) 実験施設写真

d. 入射津波の造波

水理模型実験における再現範囲の最沖地点はソリトン分裂波が発生しない沖合 5.0km の位置とし、基準津波の波源モデルを用いた数値解析から求めた同地点における津波波形を入力した。また、この津波波形を防潮堤位置で平面二次元津波シミュレーション解析結果と同様の高さになるよう振幅を調整した(第9図)。

女川原子力発電所 2号炉(2019.11.6版)

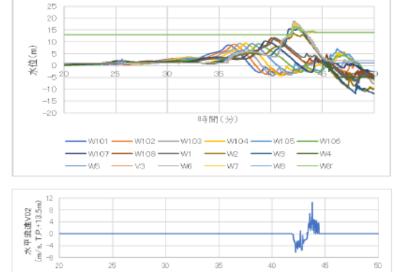


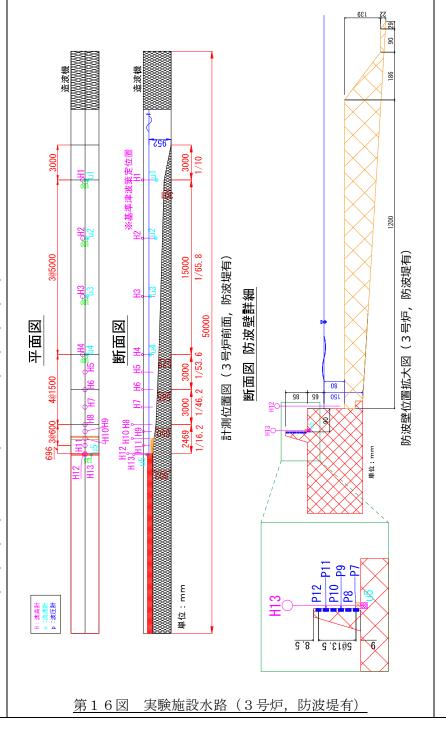
図 17 水位・流速の時系列波形 (通過波解析)

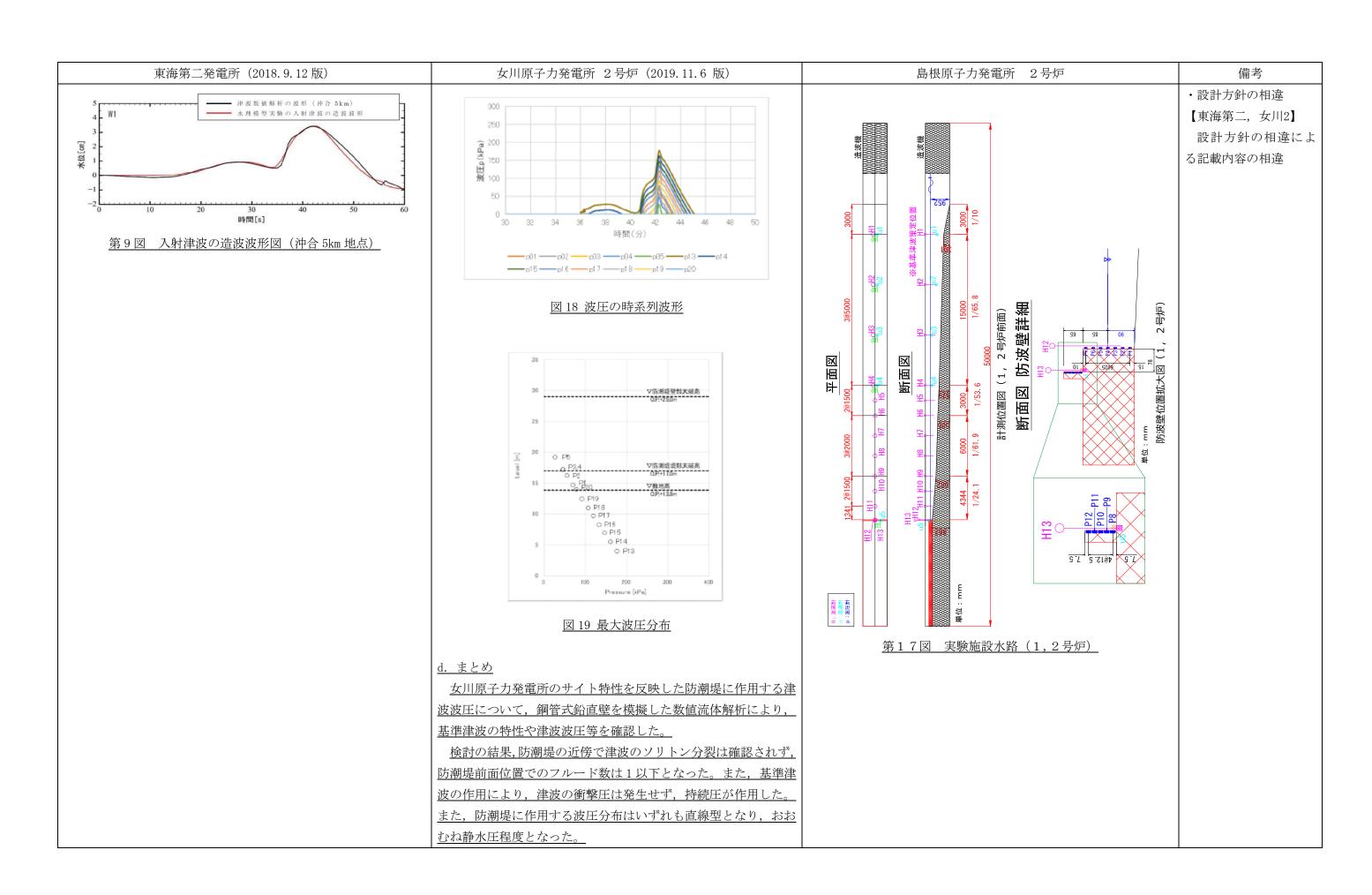
時間 (分)

c. 津波荷重解析

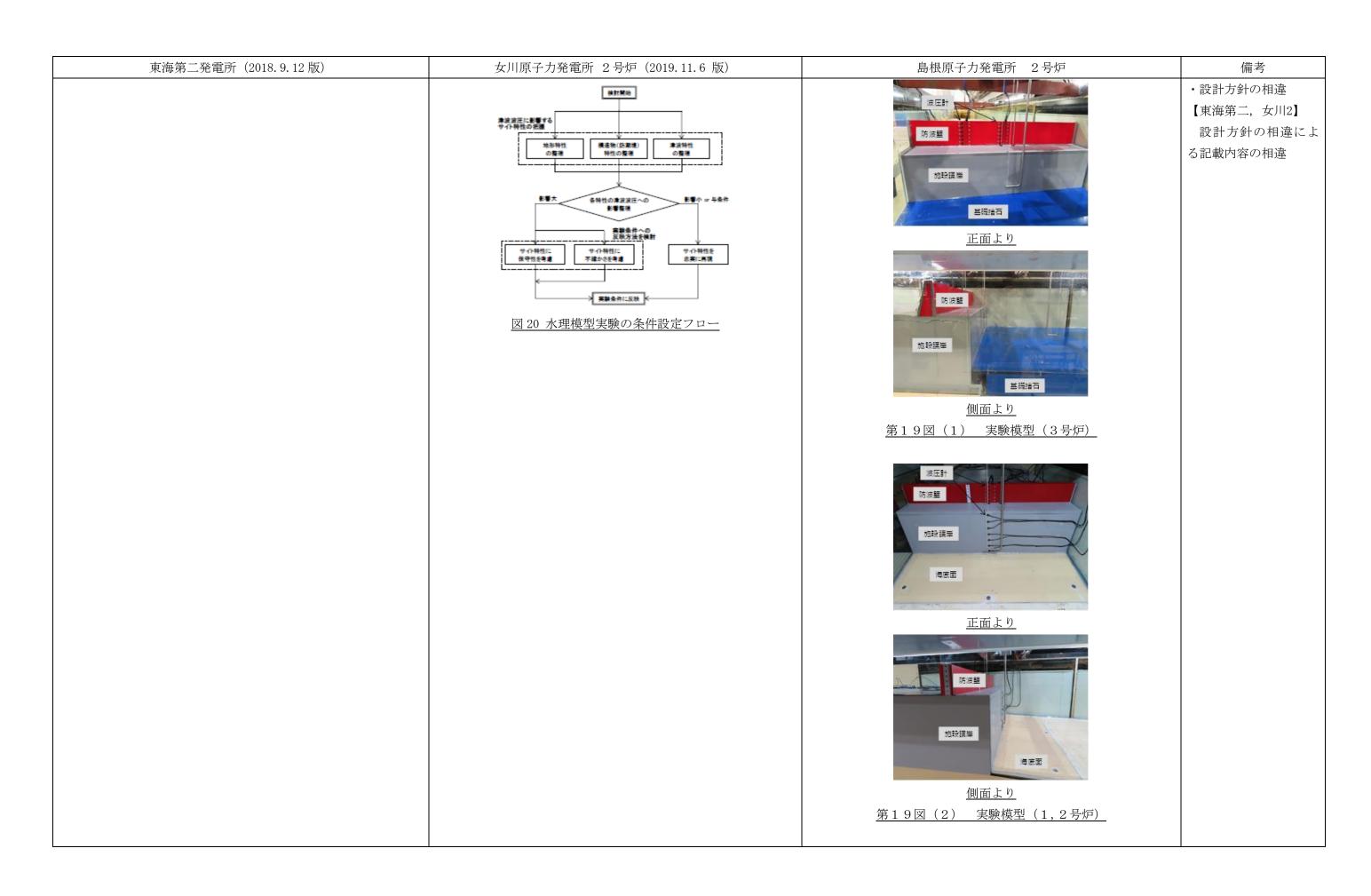
構造物がある状態での津波状況把握を目的に、防潮堤ありモデルで津波荷重解析を行い、防潮堤に作用する波圧の確認を行った。 防潮堤前面位置における波圧の時系列波形を図 18 に示す。津波の第1波の波圧波形は滑らかになっており、津波の衝撃圧は発生しておらず、持続圧が主体となった。通過波解析の結果も踏まえると、防潮堤前面位置では津波が常流化しており、潮汐的挙動による水位変動型の津波が作用したものと考えられる。

防潮堤に作用する最大波圧分布を図 19 に示す。防潮堤壁部(鋼管式鉛直壁)と下部の盛土法面も含めて波圧分布はおおむね連続 しており、静水圧型の分布形状(直線分布)となった。


これは、防潮堤前面の盛土の存在で減勢・滑らかな遡上での防 潮堤への作用となったことと合わせ、既往研究で水深係数がフル ード数の関数となるとの知見を考え合わせると、通過波解析でフ ルード数が小さく常流作用であることも考慮し、盛土・防潮堤前 面波圧とも、おおむね、堰上げ前面水位による静水圧分布となっ たと考えられる。


島根原子力発電所 2号炉

b. 実験条件


実験施設の水路は、長さ 50m×幅 0.6m×高さ 1.2m とし、沖合約 2.5km から陸側の範囲を再現するために、実験縮尺(幾何縮尺)は 1/100 とする。 3 号炉側の実験モデル図を第16図に、1、2号炉側の実験モデル図を第17図に示す。

・設計方針の相違 【東海第二,女川2】 設計方針の相違によ る記載内容の相違

備考 東海第二発電所 (2018.9.12版) 女川原子力発電所 2号炉(2019.11.6版) 島根原子力発電所 2号炉 水理模型実験の実験装置例の写真を第18図及び第19図に示 (5) 水理模型実験による検討 ・設計方針の相違 【東海第二,女川2】 a . 実験条件 水理模型実験の条件設定フローを図20に示す。発電所の地形特 設計方針の相違によ 性, 構造物 (防潮堤) 特性, 津波特性 (基準津波, 東北地方太平 る記載内容の相違 洋沖地震による津波) の観点から津波波圧に影響するサイト特性 を整理し、保守的な結果が得られる条件を設定する。 津波波圧に影響するサイト特性の整理と水理模型実験条件への <u>反映結果を表3に示す。</u>地形特性,構造物特性及び津波特性の観 点から津波波圧に影響するサイト特性を整理し、保守的になるよ う実験条件を設定するとともに、津波の波形特性としての周期(継 続時間)及び波高の不確かさを考慮した。 津波の波形特性(周期、波高)の不確かさが津波波圧等に与え 第18図(1) 実験施設写真(3号炉) る影響を確認するため、津波の周期を2種類、波高を6種類で変 化させた計12種類の津波波形(1波形あたり3回)による水理模 型実験を行った(表4)。なお、二段型津波の波形信号は、半周期 20分のガウス分布に半周期5分の同じ津波高さのガウス分布を重 ね合わせた (図 21)。 実験装置は、長さ60m×幅20m(内幅18m)×高さ15mの平 面水槽を用い、実験縮尺(幾何縮尺)は1/125とした。また、目 標最大水位 0. P. +37. 5m となる高水位の津波を増波するため, 増波 装置の能力や水槽内の貯留可能水量を考慮し、沖合部に津波水位 を高くするための収斂壁(幅18mより4mに絞る)を設置し、下 第18図(2) 実験施設写真(1,2号炉) 流側に幅 4m水路, 陸上模型 (護岸・盛土・敷地) 及び防潮堤模 型を構築した。実験装置及び実験模型の概要を図 22, 図 23 及び 写真1に示す。

東海第二発電所 (2018.9.12版)

女川原子力発電所 2号炉(2019.11.6版)

備考

設計方針の相違によ

・設計方針の相違 【東海第二,女川2】

る記載内容の相違

<u>e</u>... 水理模型実験の結果

(a) 水理模型実験におけるソリトン分裂波の確認

平面二次元津波シミュレーション解析に即した津波波形を造波し、水理模型実験を行った。水理模型実験における時刻歴図を第10図に示す。その結果、目視観察と波高計による計測により、沖合約220m地点(W7)においてソリトン分裂波が生じることを確認した。ただし、陸上に遡上する過程で分裂波は減衰しており、防潮堤位置での有意な波圧分布への影響は認められない。また、防潮堤前面位置(W10)で砕波は生じず、防潮堤位置での有意な波圧分布への影響は認められない。

表3 津波波圧に影響するサイト特性の整理と水理模型実験条件 への反映結果

分類	項目	サイト特性	津波波圧への影響	実験条件への反映結果
	海底勾配	1/100 (平均勾配)	 海底勾配が 1/100 以下程度の 適浅で、かつ津波高さが水深の 30%以上であると、ソリトン分裂波 が発生する可能性がある 	サイト特性を再現(与条件) ¹¹ ※:津波高さの違いがソリトン分裂 波の有無に影響するため、津 波高さの項目で反映
地形	防波堤	防波堤あり	防波堤の有無は防滞堤に対する津波の流向に影響する(防潮堤に対して沿波になるか否か)	保守性を考慮(防波堤なしでモデ ル化) ・防波堤なしの場合に津波は直接 防瀬堤に作用すること、基準津 波の最高水位が防波堤よりも十 分高く波長も長いことから、津波 波圧への影響検討として防波堤 なしが保守的と考えられる** ※: 女川の水位評値としては防波 堤ありの方が保守的となるが、 実験では水位条件ごとの波圧 計測を目的とするので防波堤な しでの条件設定は妥当
	前面地形 (防潮堤海側)	2段敷地	 防潮堤海側の敷地法面は、防潮 堤に作用する津波波圧を減勢する効果をきたす可能性がある 	サイト特性を再現(与条件)
	設置位置	法面上部 (法肩)	 汀線から離れるほど津波が減勢 し、津波波圧は小さくなる 	サイト特性を再現(与条件)
	防潮堤高さ	O.P.+29m	影響なし	サイト特性を再現(与条件)
構造物 (防潮堤)		・鋼管式鉛直壁(直立構造)と比較して、盛土堤防は津波遡上に 伴う減勢効果があり、津波波圧 が小さくなる可能性がある ・構造物設置は高く海側地形の標 高)が高い方が構造物に作用す る津波の水深が小さくなる(津波 波圧は小さくなる)	保守性を考慮(鋼管式鉛直壁(一 般部)でモデル化) ・鋼管式鉛直壁は壁土堤防よりも 津波選上に伴う減勢効果は小さ いと考えられる ・鋼管式鉛直壁の岩盤部は一般 部よりも海側地形の標高が高く、 津波波圧は小さい	
津波 (基準津波 東北地方太 平洋沖地震 による津波)	波形	二段型波形	 津波の圏期は、防潮堤に作用する津波の波長、流速の大小に影響する 	不確かさを考慮(半周期5分,20 分の2ケース) ・基準津波の第1波の半周期が約 10~20分,二段型波形のうちの 個別波部分の半周期が約5分 であることを考慮して設定
	津波高さ	O.P.+24.4m (入力津波高さ)	 津波高さが高い方が、流速も含めた津波のエネルギーが大きく、津波波圧は大きくなる 	不確かさを考慮(0.P.+17.0m~ 0.P.+37.5m の6ケース) ・ 鋼管式鉛直壁(一般部)の直立 壁部分に作用する規模の津波 高さとして越波の可能性まで考 慮して設定

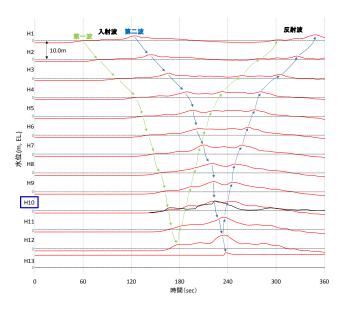
c. 水理模型実験の結果

(a) ソリトン分裂波及び砕波の確認【ケース①】

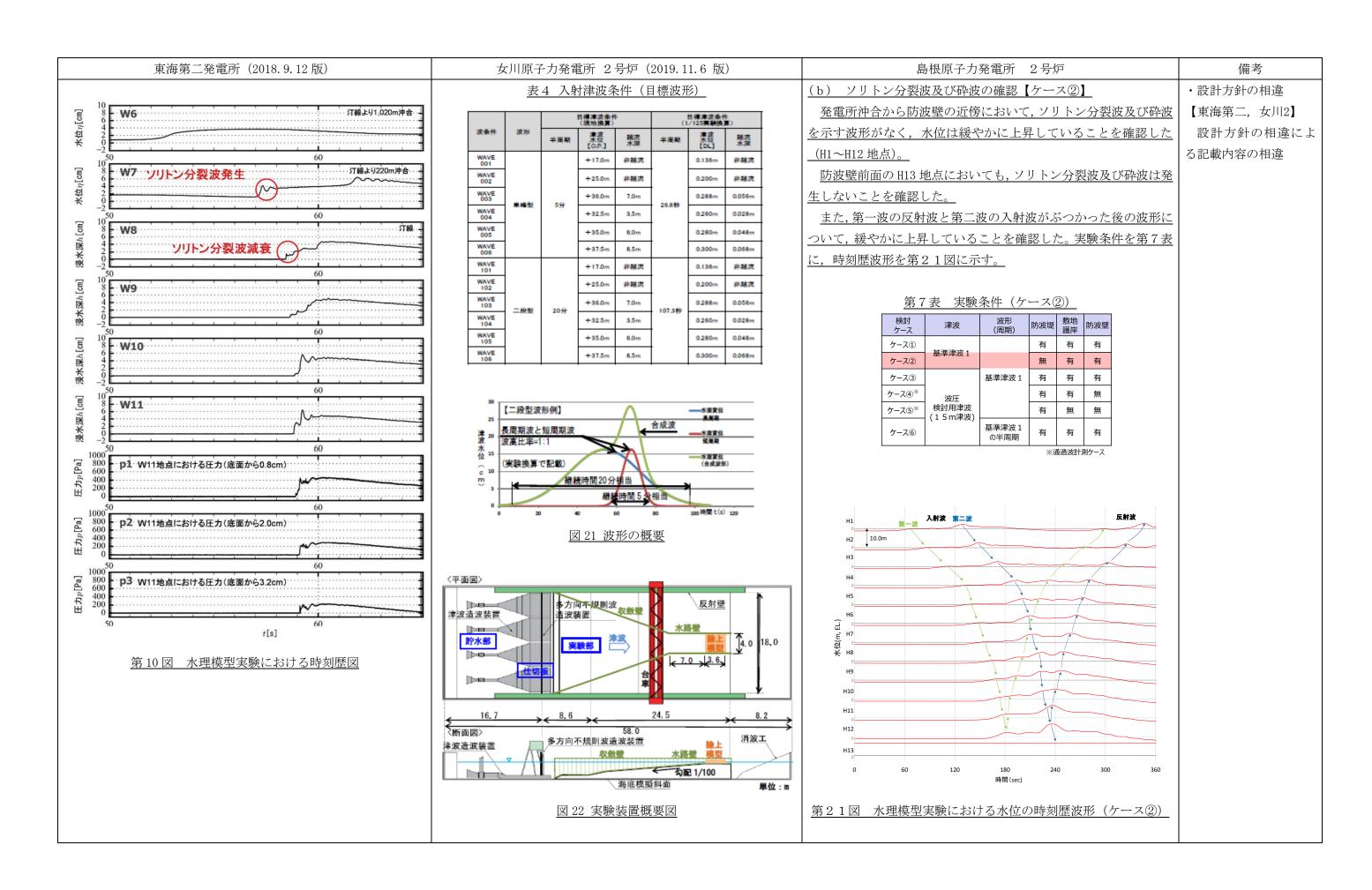
発電所沖合から防波壁の近傍において,ソリトン分裂波及び砕波を示す波形がなく,水位は緩やかに上昇していることを確認した (H1~H12 地点)。また,水理模型実験(H10 地点)と同等な水深における平面二次元津波シミュレーション(地点1)の時刻歴波形を比較した結果,同等の津波を再現できていることを確認した。

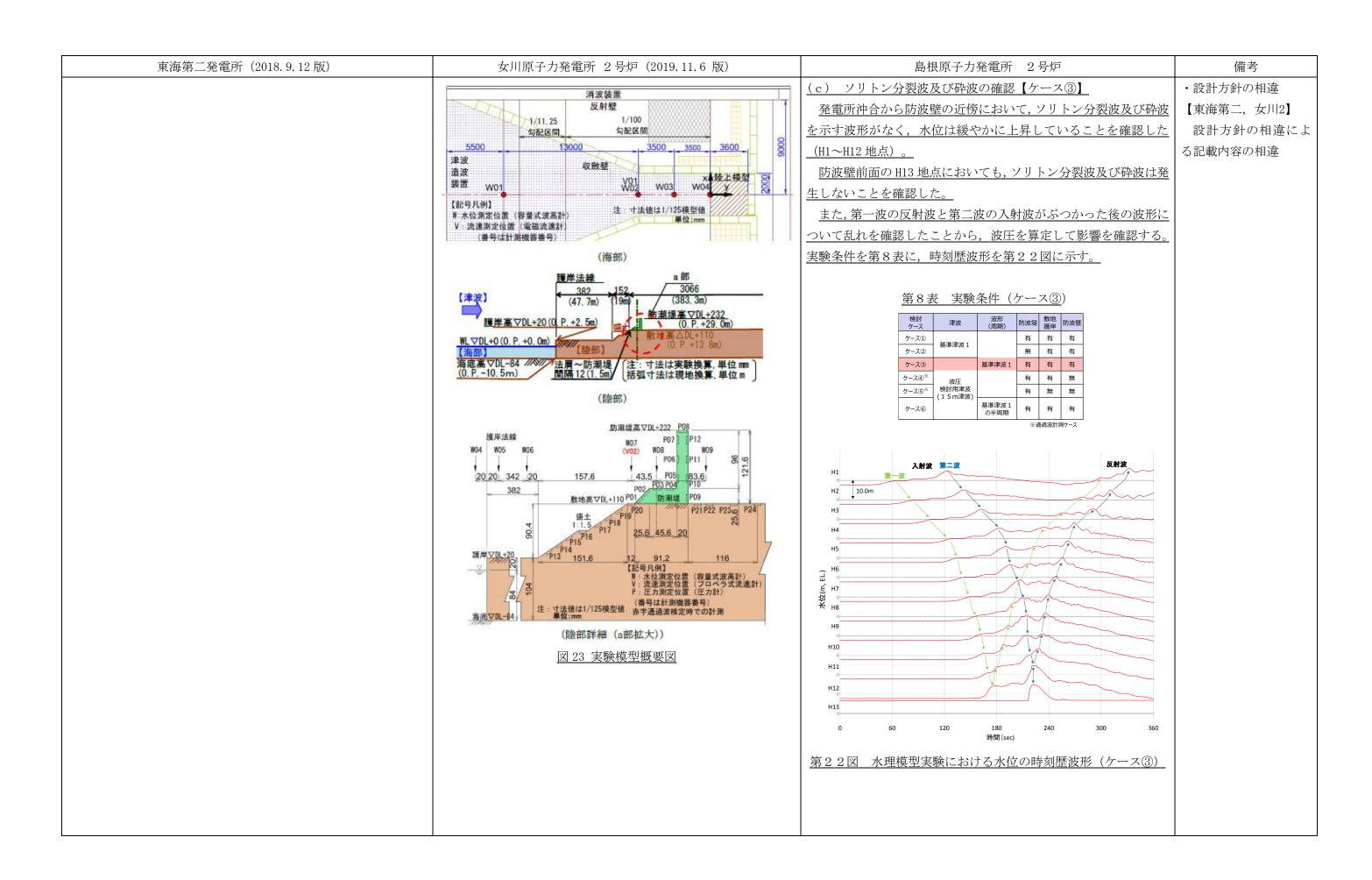
島根原子力発電所 2号炉

防波壁前面の H13 地点においても, ソリトン分裂波及び砕波は発生しないことを確認した。


また,第一波の反射波と第二波の入射波がぶつかった後の波形に ついて,緩やかに上昇していることを確認した。実験条件を第6表 に,時刻歴波形を第20図に示す。

第6表 実験条件(ケース①)


検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース①	基準津波 1		有	有	有
ケース②	叁华洋 次 Ⅰ		無	有	有
ケース③		基準津波1	有	有	有
ケース④**	波圧		有	有	無
ケース⑤**	検討用津波 (15m津波)		有	無	無
ケース⑥	(1 JIII/=/X)	基準津波 1 の半周期	有	有	有
	•	•	*i	過波計測	リケース

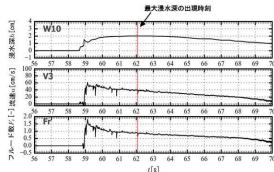

——:水理模型実験結果

---: 平面二次元津波シミュレーション解析結果(地点1)

第20図 水理模型実験における水位の時刻歴波形 (ケース①)

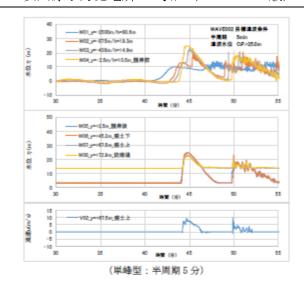
東海第二発電所 (2018.9.12版) 女川原子力発電所 2号炉(2019.11.6版) 島根原子力発電所 2号炉 備考 (d) ソリトン分裂波及び砕波の確認【ケース④】 ・設計方針の相違 防波壁が無い状態での津波遡上状況の把握を目的に,通過波実験 【東海第二,女川2】 を行い、水位・フルード数の確認を行った。 設計方針の相違によ 発電所沖合から防波壁の近傍において, ソリトン分裂波及び砕波 る記載内容の相違 を示す波形がなく、水位は緩やかに上昇していることを確認した (H1~H12 地点)。 防波壁前面の H13 地点においても, ソリトン分裂波及び砕波は発 陸上模型·防潮堤模型 収斂壁 生しないことを確認した。 また,第一波の反射波と第二波の入射波がぶつかった後の波形に ついて乱れを確認した。実験条件を第9表に、時刻歴波形を第23 図に示す。 第9表 実験条件 (ケース④) 防潮堤模型断面 波圧計設置(盛土・防潮堤前面) 防波堤 敷地 防波壁 有有有有 ケース① 写真1 実験装置 基準津波1 ケース② 有 基準津波1 有 有有 有 無 ケース④** b. 通過波実験 無無 ケース⑤** (15m津波) 構造物がない状態での津波状況把握を目的に, 防潮堤がないモ 基準津波 1 有 ケース⑥ デルで通過波実験を行い、水位・流速・フルード数の確認を行っ ※通過波計測ケース た。波形の一例を図24に示す。 第一波 入射波 第二波 反射波 防潮堤の近傍において津波の第1波の水位波形は滑らかになっ ており、ソリトン分裂は発生しておらず、水位が緩やかに上昇す H2 10.0m るような水位変動型の津波が発生した。なお、単峰型津波の沖合 部 (WAVE002: W01~W03) で後続波の水位波形に乱れが確認でき 平面水槽実験による収斂壁による水流の漸縮・水位上昇や側壁か らの反射の影響が含まれているものと考えられるが、主たる確認 対象である陸上模型位置(W04~W08)の第1波は安定した波形と なっている。 各ケースでの通過波実験(防潮堤なし)における津波の水理諸 量を表5に示す。また、防潮堤前面位置でのフルード数は単峰型 で 0.8 程度, 二段型で 0.6 程度となり, 最大でも 0.843 で 1.0 を 下回った。津波の水平流速の小ささ(周期の長さ)や2段敷地の 盛土法面の影響等によって津波が減勢し、防潮堤前面位置では常 流 (Fr < 1.0) となった可能性が考えられる。 第23図 水理模型実験における水位の時刻歴波形 (ケース④)

東海第二発電所(2018.9.12版)


(b) フルード数

防潮堤がないモデルで,防潮堤位置の最大浸水深を計測 し,同時刻における流速からフルード数を算定した。

その結果,通過波のフルード数は平均で 0.8 (<1.0) であったことから,水深係数 3 で津波波圧分布を評価し,防潮堤の設計に適用できることを確認した(第2表及び第11図)。


第2表 通過波検定結果表

	フルード数 (最大浸水深時)								
1 回目	0.9								
2 回 目	0.9								
3 回目	0.6								
4 回目	0.8								
5 回目	0.7								
6 回 目	0.9								
平均值	0.8								

第11図 持続波領域における最大浸水深・流速・フルード数の 時系列図

女川原子力発電所 2号炉(2019.11.6版)

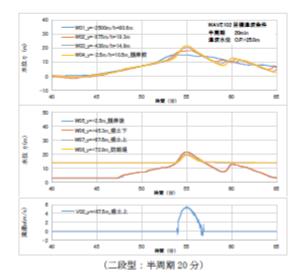


図 24 水位・流速の時系列波形 (通過波実験:目標津波水位 0. P. +25. 0m)

島根原子力発電所 2号炉

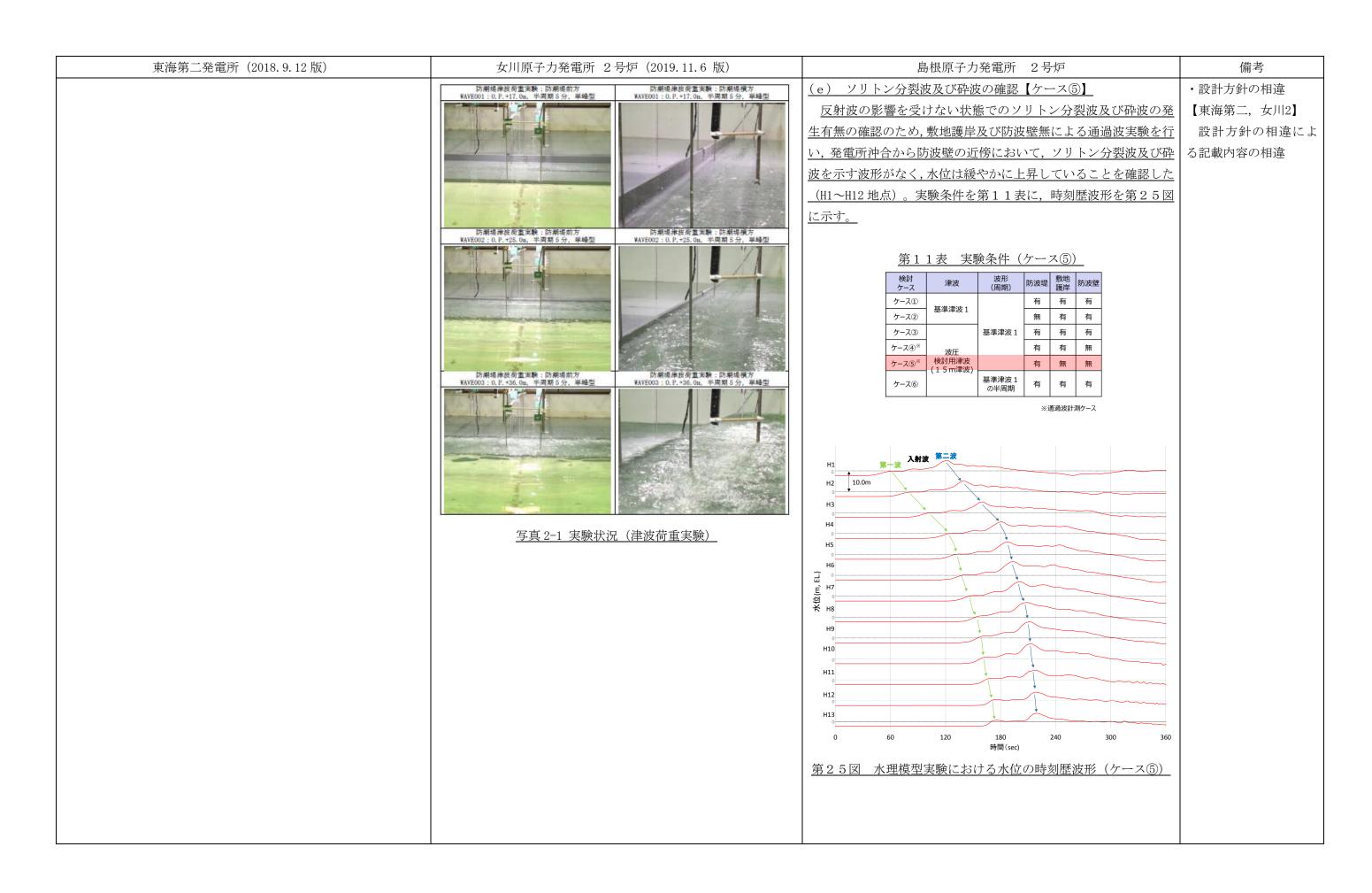
防波壁位置における浸水深及び同時刻におけるフルード数の時刻を波形を確認した。その結果、越流開始直後の浸水深が浅い時間帯においてはフルード数が大きいが、最大浸水深と同時刻におけるフルード数は1以上となることを確認した。最大浸水深及び同時刻におけるフルード数を第10表及び第24図に示す。

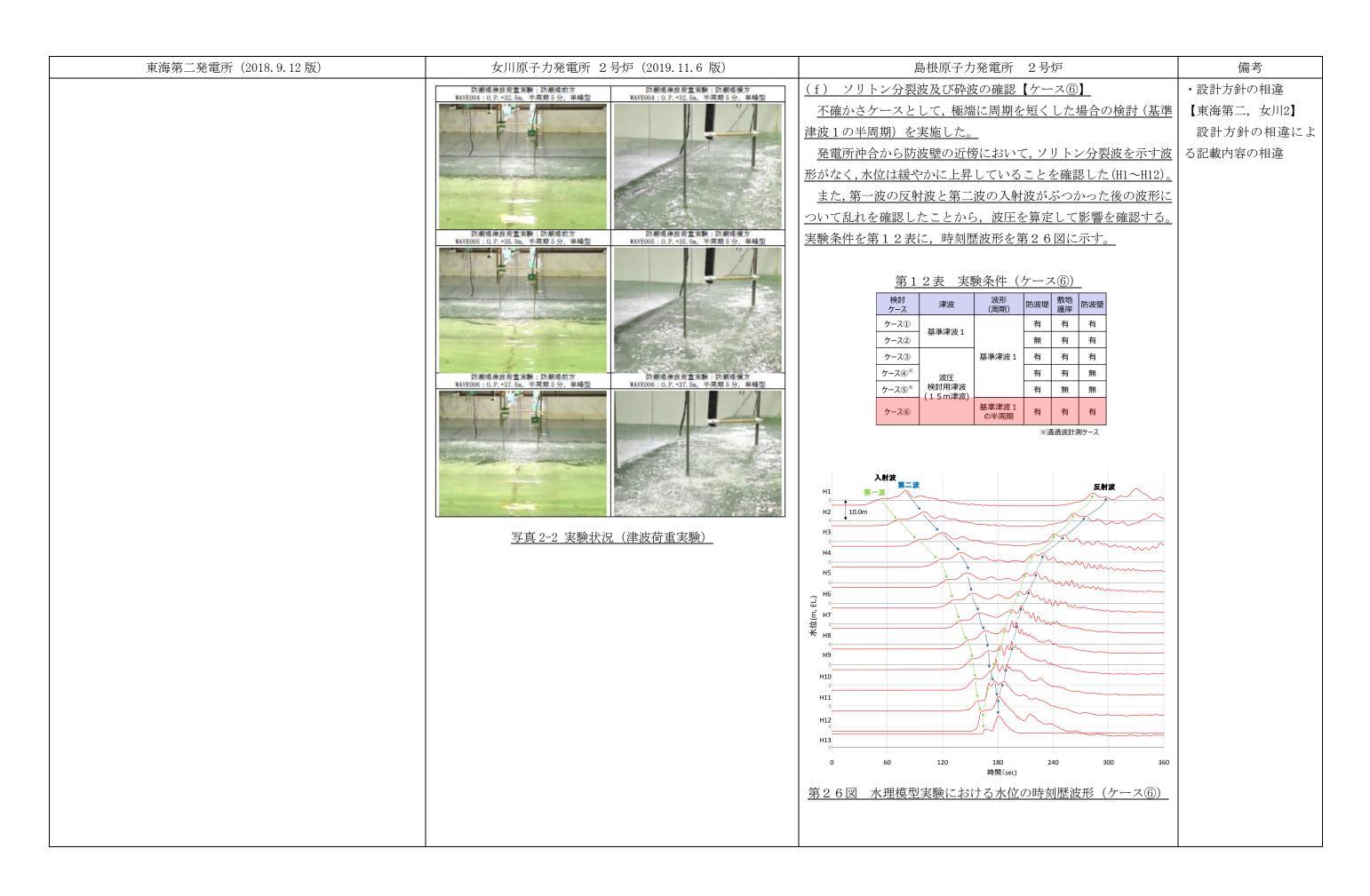
朝倉らの研究*によると,津波波圧算定で使用する水深係数(水 平波圧指標)について,以下のとおり記載されている。

・非分裂波の場合,フルード数が 1.5以上では陸上構造物前面に 作用する津波波圧分布を規定する水平波圧指標(遡上水深に相 当する静水圧分布の倍率) は最大で 3.0 となる。

今回,最大浸水深と同時刻におけるフルード数は1以上であることから,津波波圧算定で使用する水深係数を3.0とする。

※朝倉ら(2000):護岸を越流した津波による波圧に関する実験的研究,海岸工学論文集,第47巻,土木学会,PP.911-915

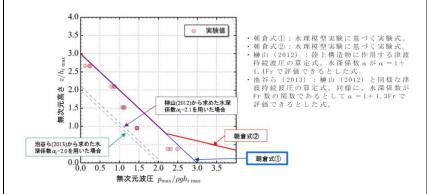

第10表 最大浸水深と同時刻におけるフルード数


	フルード数 (最大浸水深時)
1回目	1.175
2回目	1.175
3回目	1.178

・設計方針の相違 【東海第二,女川2】 設計方針の相違によ

る記載内容の相違

東海第二発電所(2018. 9. 12 版)	女川	川原子力	発電所 2号炉	i (2019. 1	1.6 版)				島根	原子力発電展	近 2号	炉		備考
	表 5 浸水深最大時の水理諸量 (通過波実験:W07 (V02) 位置)							·		·			・設計方針の相違	
										0			0	【東海第二,女川2】
	波条件 波	波形	標水位 [※] 最大水位 【O.P.】 【O.P.】	漫水深	流速	フルード数				360			360	設計方針の相違に
	WAVE001	-	+17.0m +17.0m	3.2m	4,7m/s	0.839		_			F_1回目 F_2回目			る記載内容の相違
	WAVE002	1440	+25.0m +23.0m	9.2m	8.0m/s	0.843		.H13			17.7	ב יי		る記載内谷の相違
	WAVE003	u m +a	+36.0m +30.8m	17.0m	7.9m/s	0.612						Ţ.		
		5分	+32.5m +26.2m +35.0m +28.3m	12.4m 14.5m	9.1m/s 9.3m/s	0.826								
	WAVE006		+37.5m +30.2m	16.4m	9,2m/s	0.726				300			300	
	WAVE101	-	+17.0m +14.6m	0.8m	0,2m/s	0.071								
	WAVE102	- 段型	+25.0m +19.8m	6.0m	5.4m/s	0.704								
	WAVE103		+36.0m +25.8m	12,0m	8.0m/s	0.738					175	178	3	
	20	20分	+32.5m +25.9m	12.1m	4.9m/s	0.450					1回目:1.175	1 III	1	
	WAVE105 WAVE106		+35.0m +28.2m +37.5m +30.0m	14.4m 16.2m	7.4m/s 7.6m/s	0.623 0.603			٤			Ĭ		
	※津波荷重実験(防潮が			10.211	7,0117	0.000	蓝		3.591m	240	世	1 (7)	240	
							关		w /		大漫 大淵 光湖 出		522	
							大			(4)	K			
	c. 津波荷重実	 実験					展				岷			
			での津波状況把	握を目的に	こ,防潮場	ありモデ				(C)			(sec)	
	ルで津波荷重等					-	過 不深 一			180 時間(sec)	ネ 数		180 時間(sec)	
	実験状況を4	・写真 2に	ニ示す。防潮堤	前面位置に	こおける波	圧の時系	顺				7		**	
	列波形の一例	を図 25	に示す。単峰型	」,二段型。	ともに津波	の第1波								
	の波圧波形は	:滑らかに	こなっており,	衝撃圧は	巻生してお	らず, 持								
	続圧が主体と	なった。	通過波実験の	結果も踏る	まえると,	防潮堤前				120			120	
	面位置では津流	波が常流	忙しており,	潮汐的挙動	動による水	位変動型								
	の津波が作用	したもの)と考えられる	0										
	防潮堤に作り	用する最	と大波圧分布を	図 26 に示	す。防潮均	是壁部 (鋼								
	管式鉛直壁)	と下部の)盛土法面の境	界付近に	吉干の段差	が見られ							09	
	<u> るものの、波</u>	圧分布と	こしてはおおむ	ね連続して	ており,䴖	水圧型の		紫		09			9	
	分布形状(直流	線分布)	となった。					液壁污						
								瓦						
								D						
										0	4 E	7	0 0	
							18		9 9 8 0	γγ	7 (1)	(-)۲ ٦	. 0	
								(m) 3	聚水 €					
							第 2	4図	最大浸	水深及び同時	時刻にお	けるフ	'ルード数	
							<u> </u>	, —		「波成分)の				
											را مندرو، بر و	-/.1/		



東海第二発電所 (2018.9.12版)

(c) 防潮堤壁面におけるソリトン分裂波の最大津波波圧

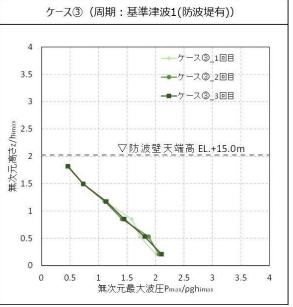
防潮堤壁面における津波波圧計測結果を通過波の最大 浸水深で除して無次元化した結果を以下に示す。

東海第二発電所前面海域の地形を模擬した水理模型実験で計測した防潮堤壁面の最大津波波圧は、朝倉式①及び朝倉式②による算定値よりも小さい値となり、朝倉式②のような波圧分布は認められず、朝倉式①と整合する結果となった(朝倉式①の方が津波波圧分布の再現性がよいことを確認した。)(第12図)。水理模型実験において、ソリトン分裂波及び砕波の防潮堤に対する波圧分布への有意な影響はなく、単直線型の朝倉式①に包含されることを確認した。

第12図 既往の津波波圧算定式との比較 (無次元最大津波波圧分布図)

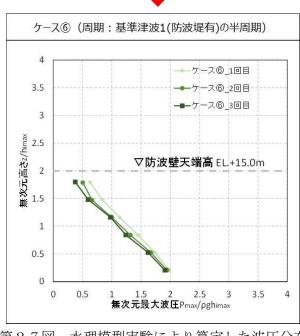
女川原子力発電所 2号炉(2019.11.6版)

写真 2-3 実験状況 (津波荷重実験)

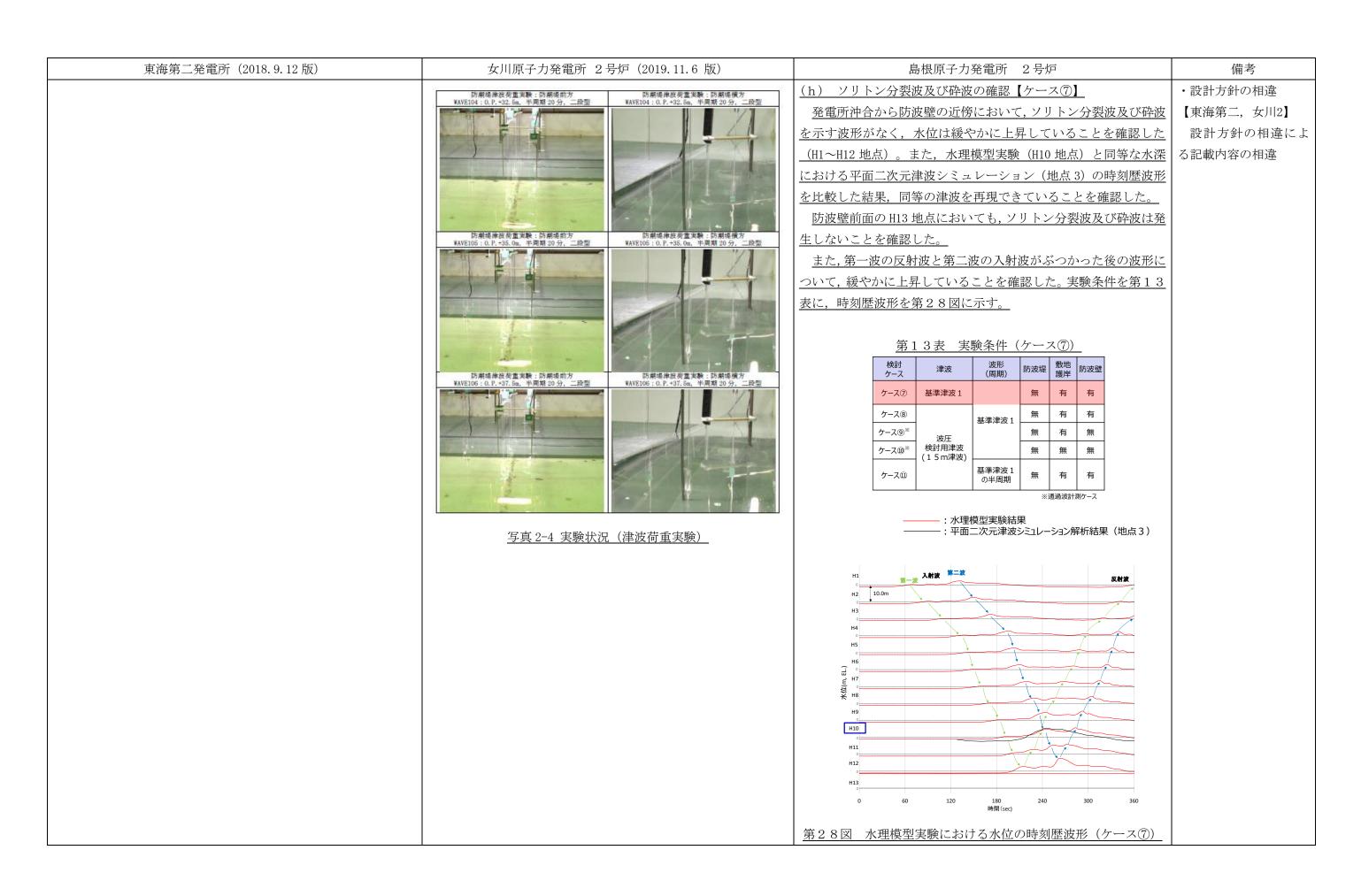

島根原子力発電所 2号炉

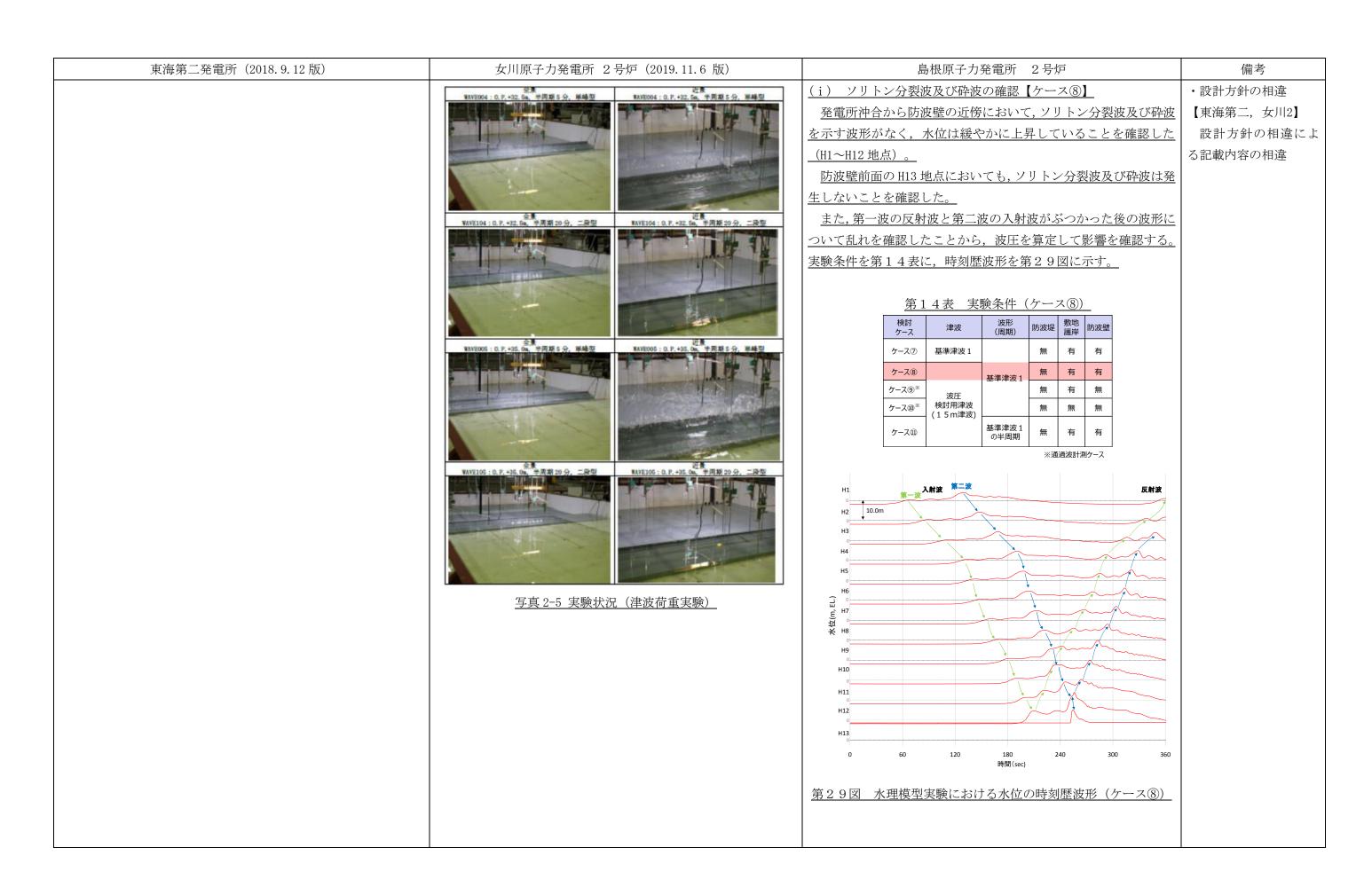
(g) 波圧の算定結果

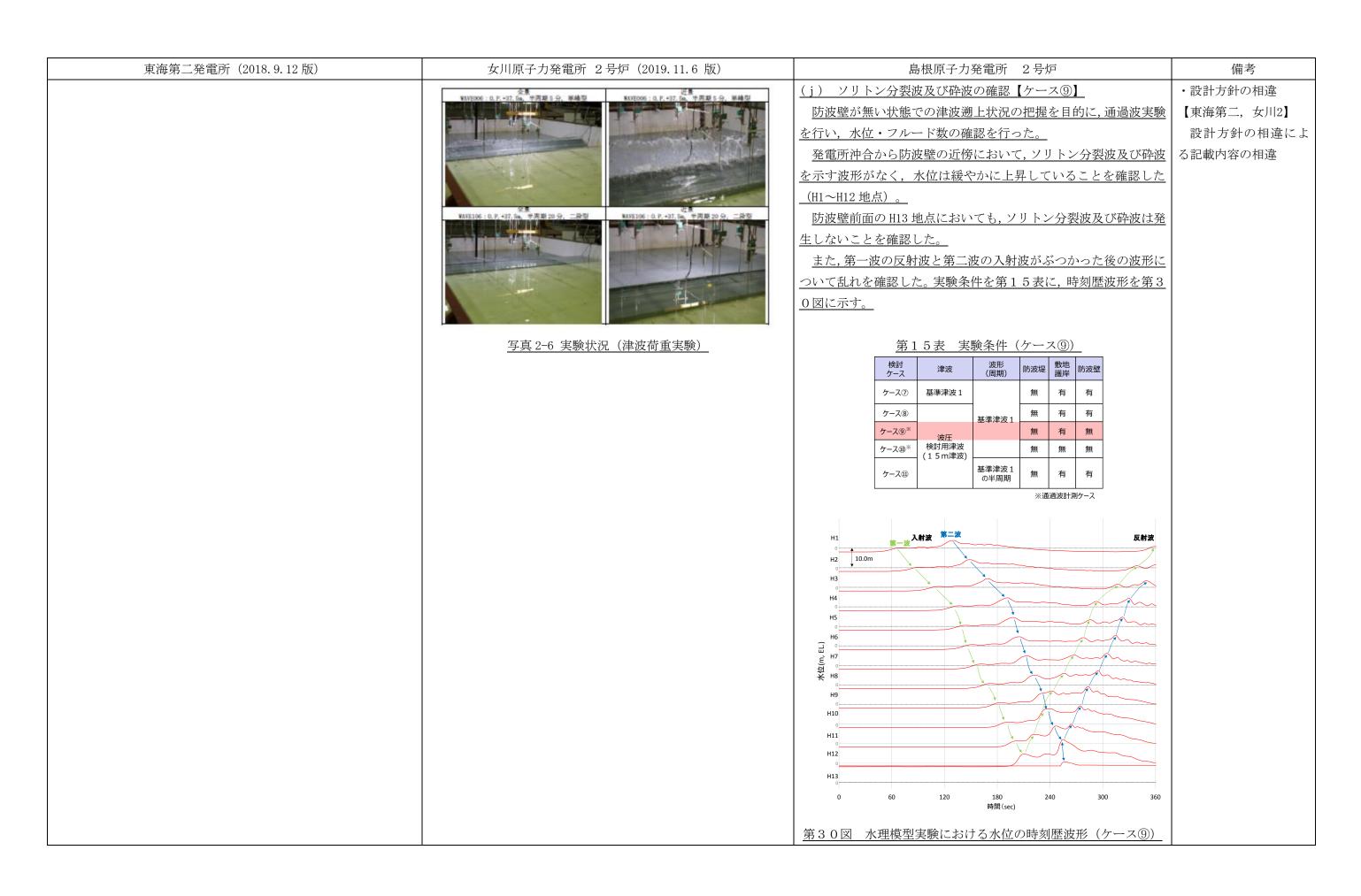
水理模型実験において計測した防波壁に作用する波圧分布を第27図に示す。なお,第27図は横軸の波圧と縦軸の標高を津波による浸水深で無次元化を図った。水理模型実験により算定した3号炉前面の防波壁における波圧分布は直線型となり、ソリトン分裂波や砕波発生時にみられる波圧の増加がみられないため、ソリトン分裂波や砕波による津波波圧への有意な影響はないことを確認した。

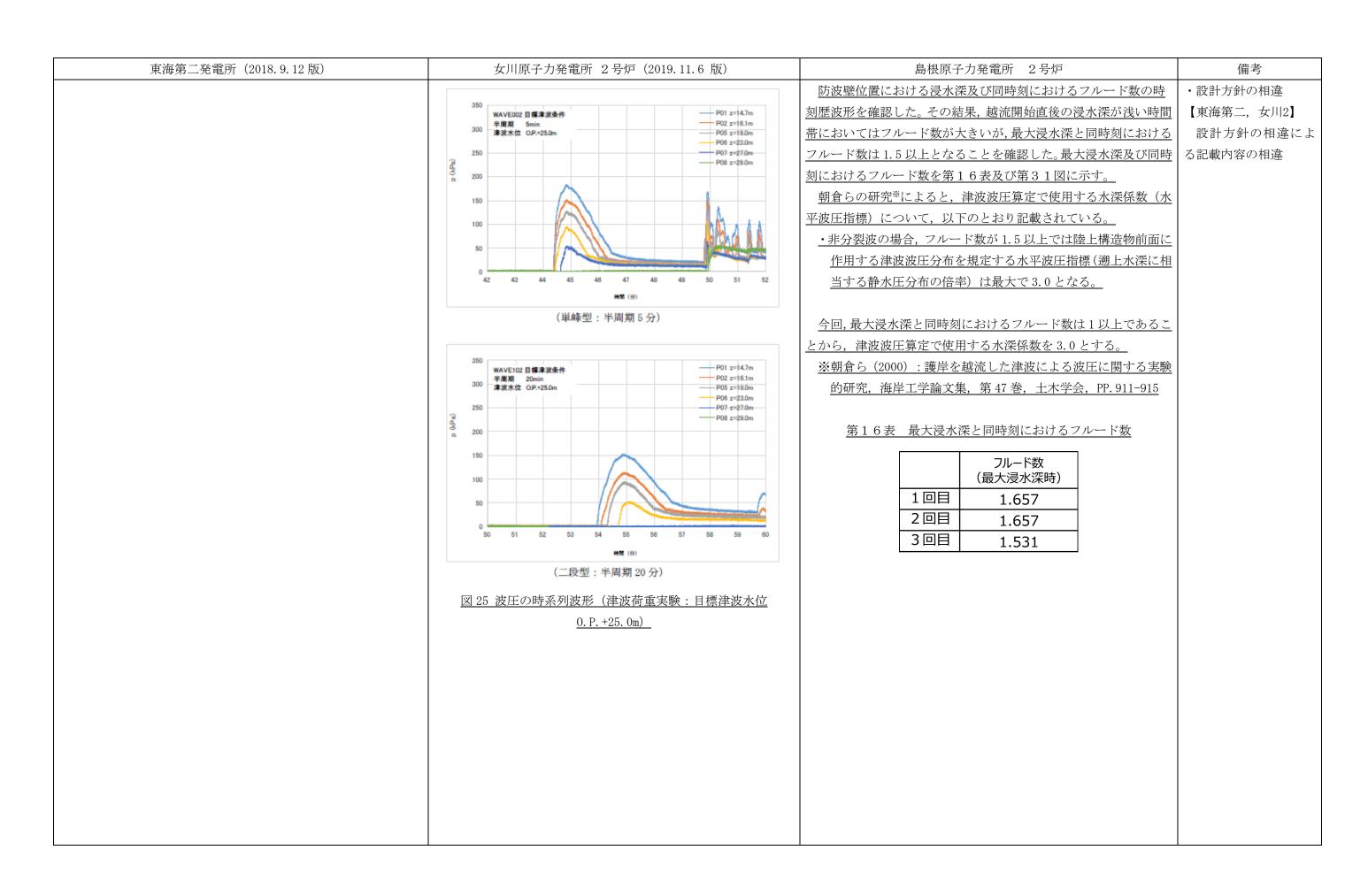

・設計方針の相違 【東海第二,女川2】 設計方針の相違によ る記載内容の相違

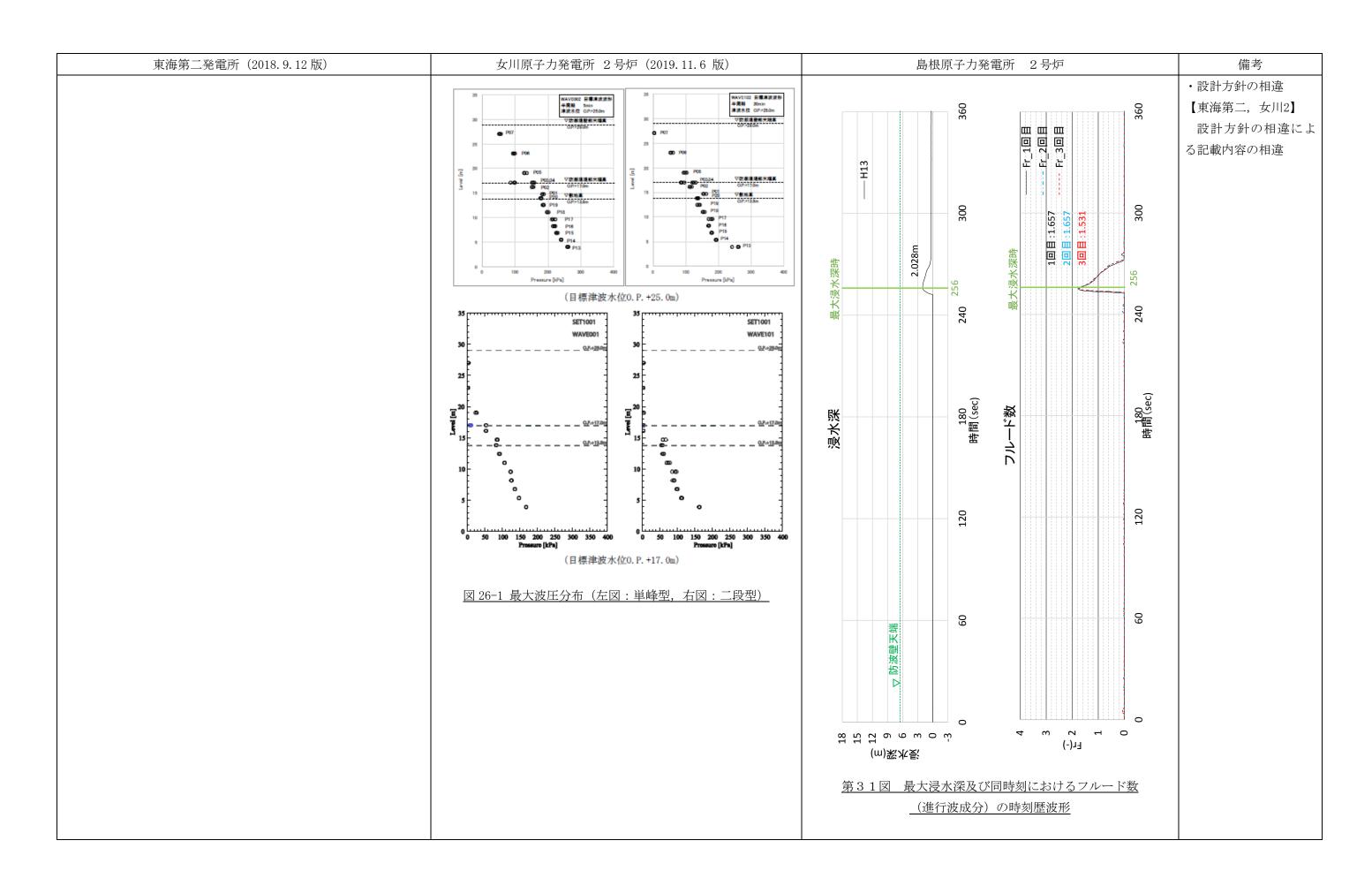
備考

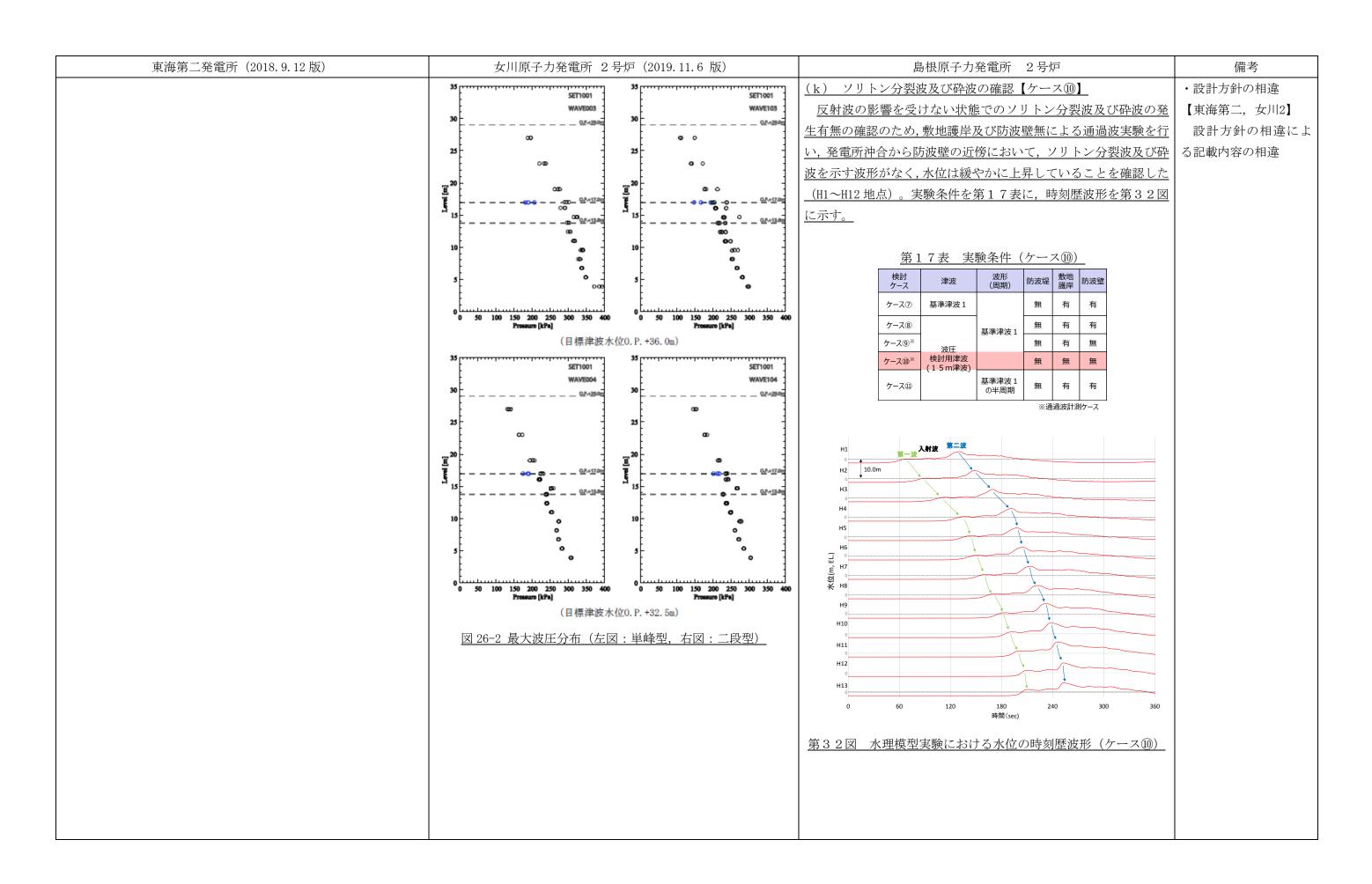


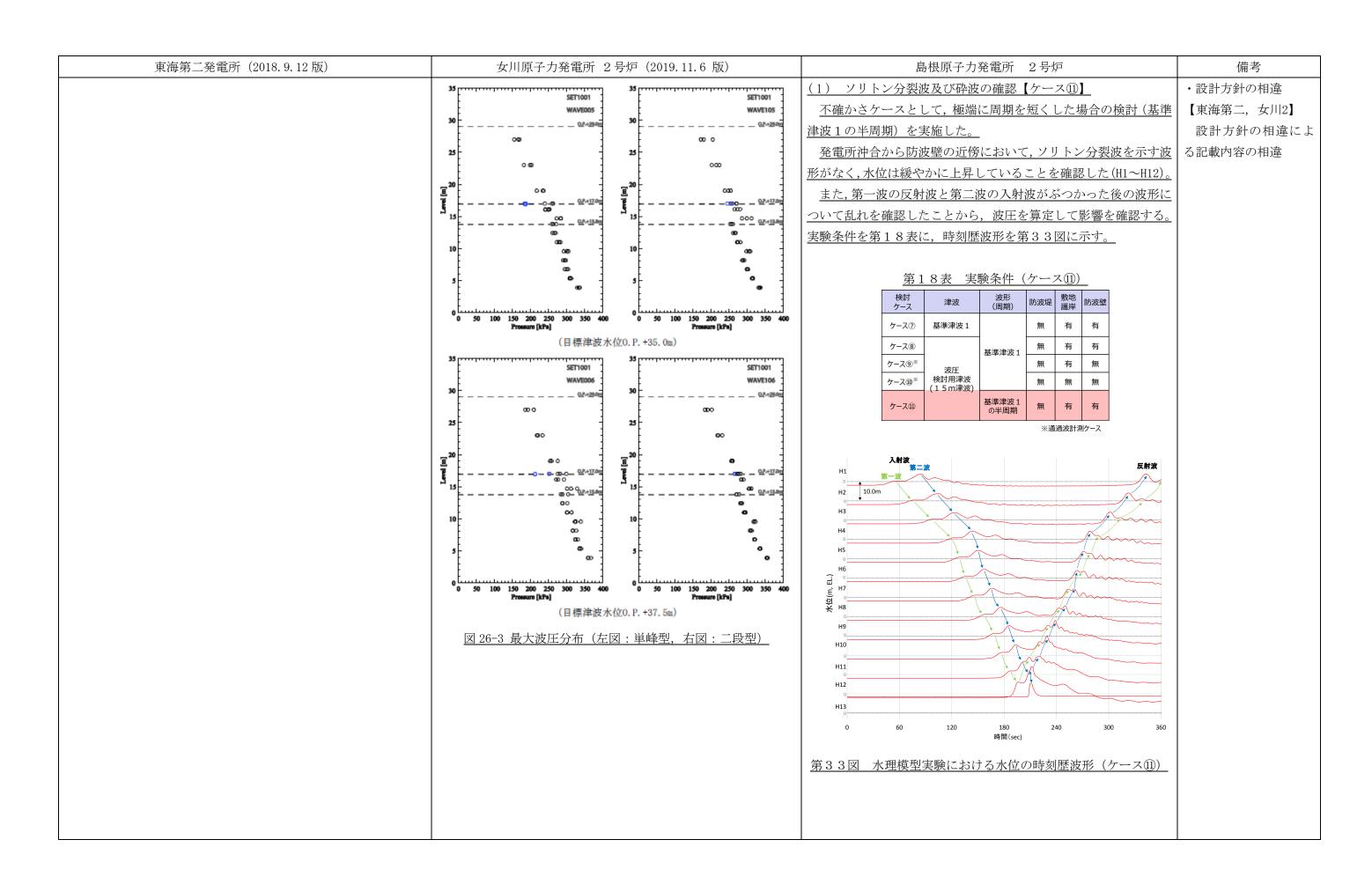

1


周期の不確かさ

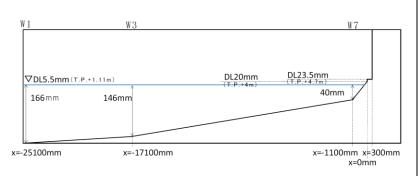



第27図 水理模型実験により算定した波圧分布





まとめ 女川原子力発電所のサイト特性を反映した防潮堤に作用する津 皮圧について、鋼管式鉛直壁を模擬した水理模型実験により、 確かさとして津波の波形特性(周期、波高)の違いが津波波圧 こ与える影響を確認した。 食討の結果,防潮堤の近傍で津波のソリトン分裂は確認されず、	(m) 波圧の算定結果 水理模型実験において計測した防波壁に作用する波圧分布を第 3 4 図に示す。水理模型実験により算定した1,2 号炉前面の防波壁における波圧分布は、直線型の波圧分布となりソリトン分裂波や砕波発生時にみられる波圧増加がみられないため、ソリトン分裂波	・設計方針の相違 【東海第二,女川2】 設計方針の相違によ
皮圧について,鋼管式鉛直壁を模擬した水理模型実験により, 確かさとして津波の波形特性(周期,波高)の違いが津波波圧 こ与える影響を確認した。	34図に示す。水理模型実験により算定した1,2号炉前面の防波壁における波圧分布は,直線型の波圧分布となりソリトン分裂波や	
確かさとして津波の波形特性(周期,波高)の違いが津波波圧 こ与える影響を確認した。	壁における波圧分布は、直線型の波圧分布となりソリトン分裂波や	設計方針の相違によ
こ与える影響を確認した。		
-	砂波発生時にみられる波圧増加がみられないため、ソリトン分型波	る記載内容の相違
★計の結果、防潮場の近傍で津波のソリトン分裂は確認されず、	件放光上的にかられる放上相加がかられる。 イング, ノ ノ トン <u>力 表放</u>	
241.4	や砕波による津波波圧への有意な影響はないことを確認した。	
朝堤前面位置でのフルード数は1以下となった。また、津波の		
杉特性(周期,波高)の違いに関わらず,津波の衝撃圧は発生	ケース® (周期: 基準津波1(防波堤無))	
ず,持続圧が作用した。また,防潮堤に作用する波圧分布はい	, y to t six t 2 t t met(asmittemy)	
れも直線型となった。	4 3.5 3 4 7-ス® J回目 - ケース® July July July July July July July July	
ず,	,持続圧が作用した。また,防潮堤に作用する波圧分布はい	持続圧が作用した。また、防潮堤に作用する波圧分布はい も直線型となった。


東海第二発電所 (2018.9.12版)

(3) 水理模型実験結果の検証(再現性検討)

水理模型実験結果について、断面二次元津波シミュレーション解析を実施し、防潮堤位置での津波波圧算定式が朝倉式①で妥当であることを検証した。断面二次元津波シミュレーション解析は、分散波理論に基づいた解析手法であり、ソリトン分裂波を表現可能な数値波動水路 CADMAS-SURF/2D (Ver. 5. 1) を用いた。

a. 水理模型実験結果の再現性

水理模型実験でモデル化した区間と同じ区間を解析領域としてモデル化した(第 13 図)。また,入射波は水理模型実験の入力波形に合わせて作成した。

第13図 解析モデル図

断面二次元津波シミュレーション解析の結果を第 14 図(1) ~(2) に示す。水理模型実験結果と同様、沖合約 220m 地点(W 7) においてソリトン分裂波を確認した。ただし、陸上に遡上する過程で分裂波は減衰しており、防潮堤位置での有意な波圧分布への影響は認められない。また、防潮堤位置(W10) で砕波は生じず、防潮堤位置での有意な波圧分布への影響は認められない。

防潮堤壁面に作用する津波波圧は実験値とほぼ同等のもの となり、朝倉式①による波圧分布を下回るとともに、朝倉式 ②のような波圧分布は認められず、朝倉式①と整合する結果 となった。

断面二次元津波シミュレーションにおいても、ソリトン分 裂波及び砕波の防潮堤に対する波圧分布への有意な影響はな く、単直線型の朝倉式①に包含されることを確認した。 女川原子力発電所 2号炉(2019.11.6版)

(6) 津波波圧評価に影響を与える不確かさの考慮方法

女川原子力発電所の防潮堤に作用する津波波圧について、数値流体解析及び水理模型実験による検討を行っているが、津波波圧評価に影響を与える項目を網羅的に抽出・整理(表3)した上で、影響の大きい項目に対して不確かさを考慮した検討を行っている。津波波圧に影響する不確かさの考慮方法を表6に示す。

津波波圧の検討においては、水理模型実験で周期と波高の不 確かさを考慮しているが、数値流体解析で考慮する不確かさの 検討結果を以下に示す。

表6 津波波圧評価に影響する不確かさの考慮方法

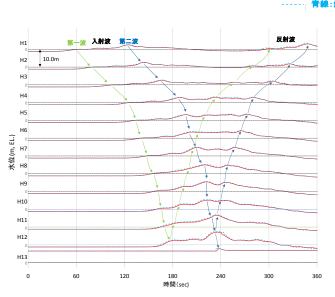
分類	項目	サイト特性	不確かさの	D考慮方法
27 531	項目	711 11 11	水理模型実験(表3の要約)	数值流体解析
	海底勾配	1/100 (平均勾配)	— (与条件)	— (与条件)
地形	防波堤	防波堤あり	― 【防波堤なしで代表】	― 【防波堤なしで代表】
	前面地形 (防潮堤海側)	2段敷地		敷地法面が津波波圧の減勢 効果を有するかを確認するた め、法面の形状変化を仮定し た態度解析を実施
	設置位置	法面上部 (法肩)	— (与条件)	— (与条件)
構造物	高さ	O.P.+29m	— (与条件)	— (与条件)
(防潮堤)	形状	鋼管式鉛直 壁(一般部、 岩盤部)と盛 土堤防の併 用	 【鋼管式鉛直壁(一般部)で 代表】	 【鋼管式鉛直壁(一般部)で 代表】
津波 (基準津波 東北地方2		二段型波形	周期の不確かさを考慮(模擬 津波) (半周期約 20 分と約 5 分の 2 ケース)	基準津波(水位上昇側)と波 形特性の異なる津波として,
来北地方/ 平洋沖地震 による津波	R	O.P.+24.4m (入力津波 高さ)	津波高さの不確かさを考慮 (模擬津波) (O.P.+17.0m~O.P.+37.5m までの6ケース)	基準津波(水位下降側)の補 足検討を実施

島根原子力発電所 2号炉

(4) 断面二次元津波シミュレーションによる検討 水理模型実験と同じ条件(ケース①,③,⑦及び⑧)について,

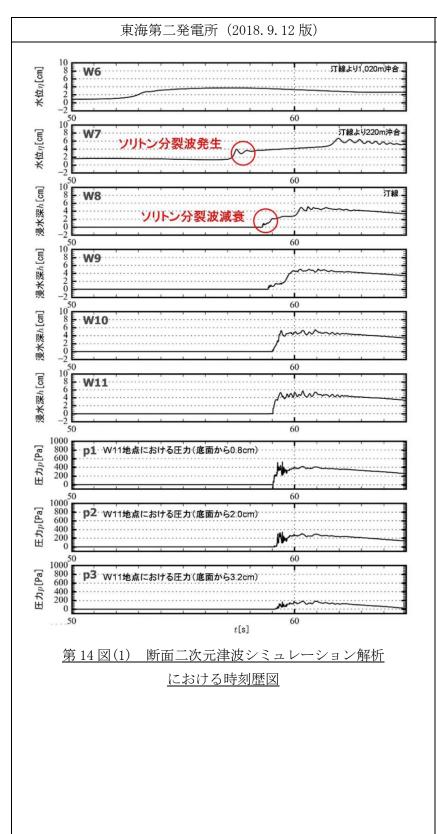
断面二次元津波シミュレーションを実施した。

(a) ソリトン分裂波及び砕波の確認【ケース①】


ケース①の解析結果は、以下のとおり、水理模型実験と同等の津 波を再現できていることを確認した(H1~H13 地点)。

- ・発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波形がなく、水位は緩やかに上昇している(H1~H12地点)。
- ・防波壁前面の H13 地点においても, ソリトン分裂波及び砕波は 発生しない。
- ·第一波の反射波と第二波の入射波がぶつかった後の波形について,緩やかに上昇している。

解析条件を第19表に、時刻歴波形を第35図に示す。


第19表 解析条件 (ケース①)

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース①	基準津波 1		有	有	有
ケース②			無	有	有
ケース③		基準津波 1	有	有	有
ケース④**	波圧		有	有	無
ケース⑤**	検討用津波 (15m津波)		有	無	無
ケース⑥	(1 5 m/=//x)	基準津波 1 の半周期	有	有	有
※通過波計測ケース					

第35図 断面二次元津波シミュレーションにおける水位の 時刻歴波形 (ケース①)

備考針の料

女川原子力発電所 2号炉(2019.11.6版)

a. 敷地法面の形状を変化させた検討

防潮堤海側の盛土法面は、地震による液状化等による変状の可能性があること、津波波圧を減勢させる効果がある可能性があることを踏まえ、基準津波(水位上昇側)を対象に、法面形状を変化させた数値流体解析(断面二次元津波シミュレーション解析)を実施した。防潮堤の構造概要及び検討ケースを図 27 及び図 28に示す。

ケース1は法面の形状変更を考慮しない基本ケース,ケース2 は法面の盛土・旧表土部分を仮想的に考慮しないケース,ケース 3は置換コンクリート及びセメント改良土を含めた法面全体を仮 想的に考慮しないケース(直立構造の防潮堤への津波作用を仮想 したケース)としているが,各ケースの最大波圧分布は同程度と なっており,法面形状の違いによる有意な差異は確認されなかっ た(図 29)。

このことから、防潮堤海側の盛土法面による津波波圧の減勢効果はほとんどないと考えらえる。本要因について、図30に示すように基準津波(水位上昇側)の第1波は波の重なり合いによる二段型波形が特徴であり、半周期が約10~20分と長いため、法面形状に関係なく、防潮堤(敷地法面)に作用する津波波圧がおおむね静水圧と小さくなった影響によるものと考えらえる。

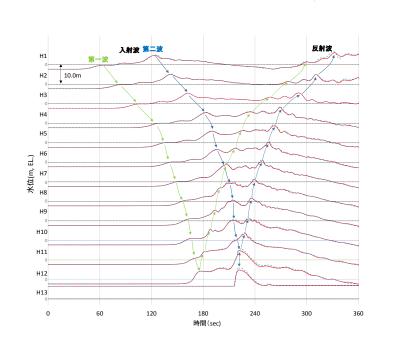
図 27 防潮堤の構造概要:鋼管式鉛直壁(一般部)

島根原子力発電所 2号炉

(b) ソリトン分裂波及び砕波の確認【ケース③】

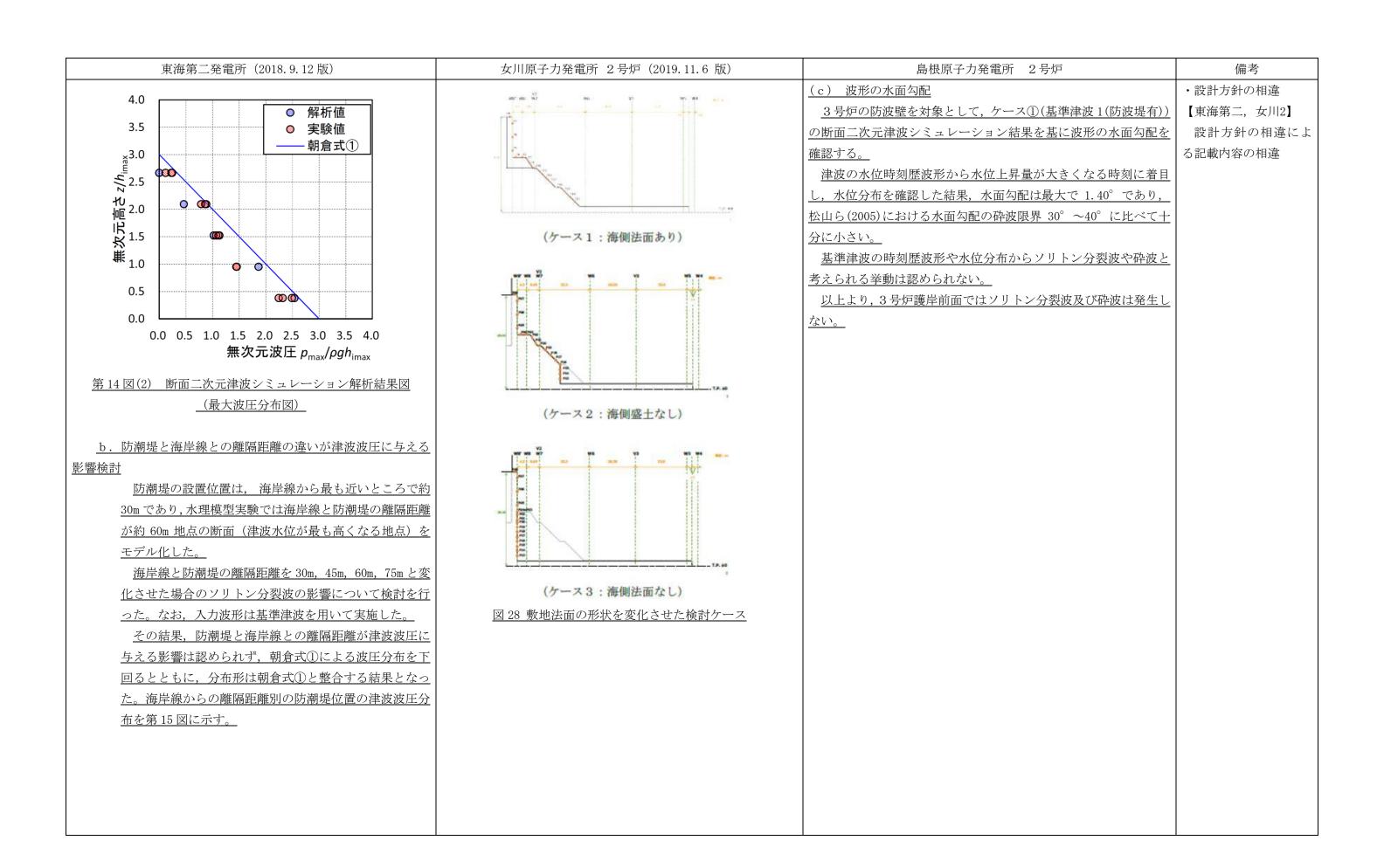
ケース③の解析結果は、以下のとおり、水理模型実験と同等の津波を再現できていることを確認した(H1~H13 地点)。

- ・発電所沖合から防波壁の近傍において, ソリトン分裂波及び砕波を示す波形がなく, 水位は緩やかに上昇している(H1~H12)。
- ・防波壁前面の H13 においても, ソリトン分裂波及び砕波は発生 しない。
- <u>・第一波の反射波と第二波の入射波がぶつかった後の波形について乱れが確認できる。</u>


解析条件を第20表に、時刻歴波形を第36図に示す。

第20表 解析条件 (ケース③)

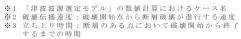
検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース①	基準津波 1		有	有	有
ケース②			無	有	有
ケース③		基準津波1	有	有	有
ケース④ [※]	波圧		有	有	無
ケース⑤ [※]	検討用津波 (15m津波)		有	無	無
ケース⑥	(1 5 111/年/以)	基準津波 1 の半周期	有	有	有

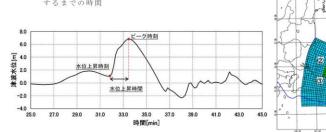

※通過波計測ケース


─ 赤線:実験結果 --- 青線:解析結果

第36図 断面二次元津波シミュレーションにおける水位の 時刻歴波形 (ケース③)

備考




5条-別添1-添付26-44

東海第二発電所(2018.9.12版)

第3表 防潮堤位置の最大水位上昇量の上位10波

ケース*1	津波遡上高さ	水位上昇時間	破壊伝播速度*1	破壊	立ち上り時間*
	(T.P. (m))	[min]	[km/s]	開始点	[s]
1	17.2	1.5	3.0	6	30.0
2	17.0	1.5	2.5	6	30.0
3	16.8	1.5	3.0	6	60.0
4	16.2	1.7	2.0	6	30.0
5	16.1	1.5	3.0	4	30.0
6	15.9	1.7	3.0	3	30.0
7	15.8	1.7	3.0	5	30.0
8	15.6	1.7	2.5	4	30.0
9	15.5	1.8	1.5	6	30.0
10	15.5	1.7	3.0	(I)	30.0

第16図 水位上昇時間の定義図 第17図 破壊開始点位置図

断面二次元津波シミュレーション解析の結果を第18図に示す。いずれのケースにおいても、津波はソリトン分裂波を生じるものの、陸上に遡上する過程で分裂波が減衰しており、防潮堤壁面における最大波圧分布は、朝倉式①による波圧分布を下回る結果となった。

津波は、周期が短いほど分裂波(段波)が発生しやすくなるとともに、分裂波が成長し易くなるとされている。 上位10波において最も周期が短いものはケース1(基準 津波)であることから、基準津波が最もソリトン分裂波 の影響を受けると考えられるが、いずれのケースにおい ても、朝倉式①による波圧分布を下回るとともに、分布 形は朝倉式①と整合する結果となった。

女川原子力発電所 2号炉(2019.11.6版)

b. 基準津波(水位下降側)の検討

基準津波(水位上昇側)と波形特性が異なる津波の影響を確認するため、基準津波(水位下降側)を対象に非線形分散波理論に基づいた数値流体解析(断面二次元津波シミュレーション解析)を実施し、解析結果の比較を行った。基準津波(水位下降側)の波形は、基準津波(上昇側)と同様に第1波が二段型波形となっているが、基準津波(水位上昇側)とは異なり一段目の波形が二段目の波形よりも高くなる特徴がある。

基準津波(水位下降側)は、基準津波(水位上昇側)と比較して津波高さが低いため、津波波圧は小さくなることを確認した(図31)。また、基準津波(水位上昇側)と同様に、津波波圧は静水圧型の分布形状となることを確認した。さらに、基準津波(水位上昇側)と同様に、基準津波(水位上昇側)と同様に、基準津波(水位下降側)もソリトン分裂は発生しないことを確認した(図32)。

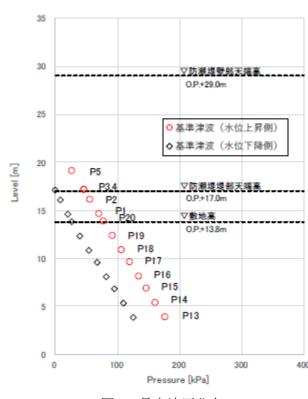
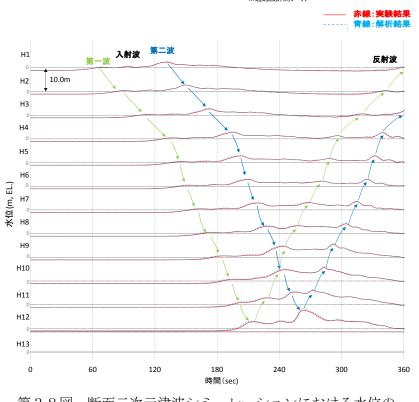


図 31 最大波圧分布

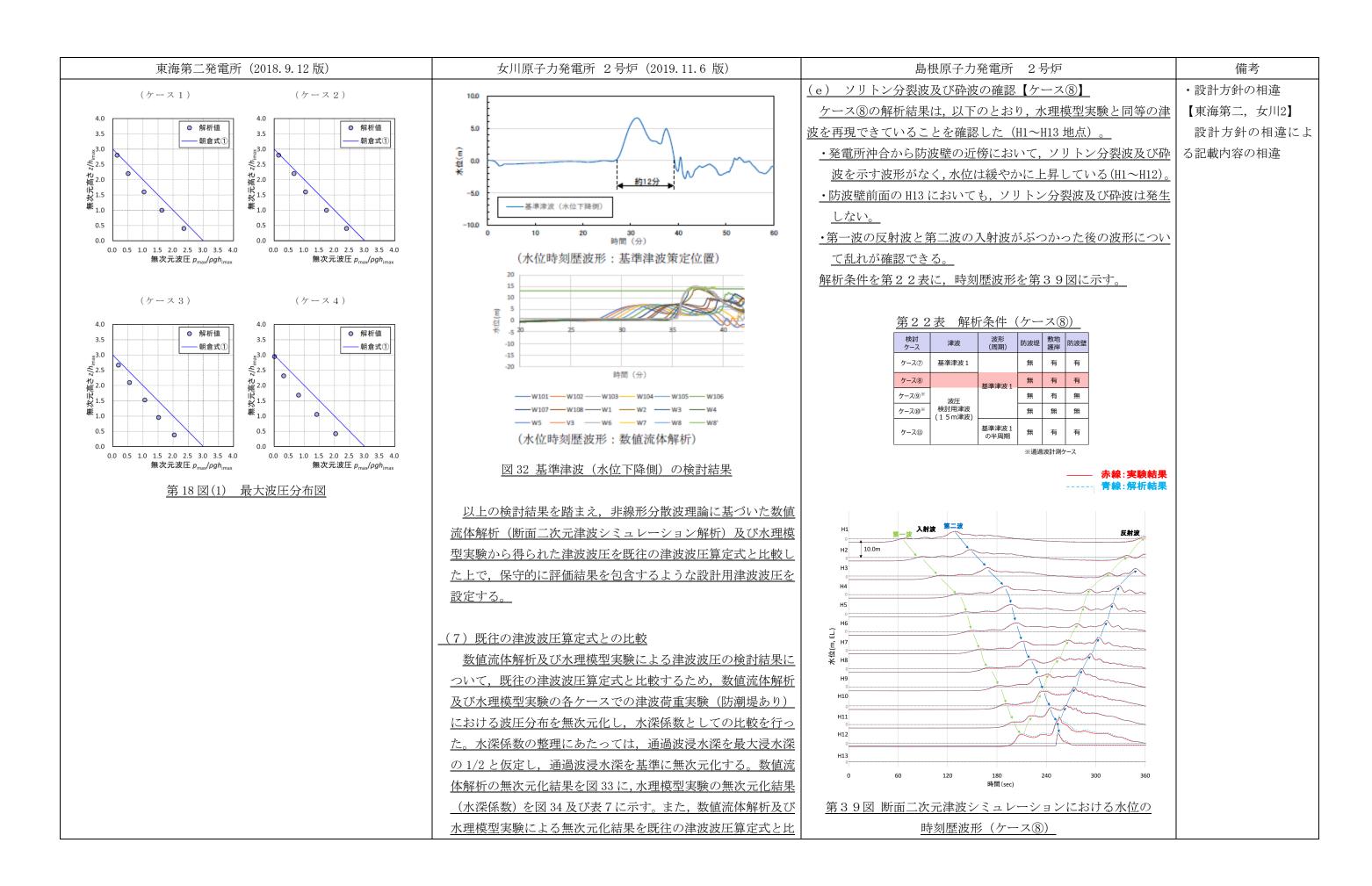
島根原子力発電所 2号炉

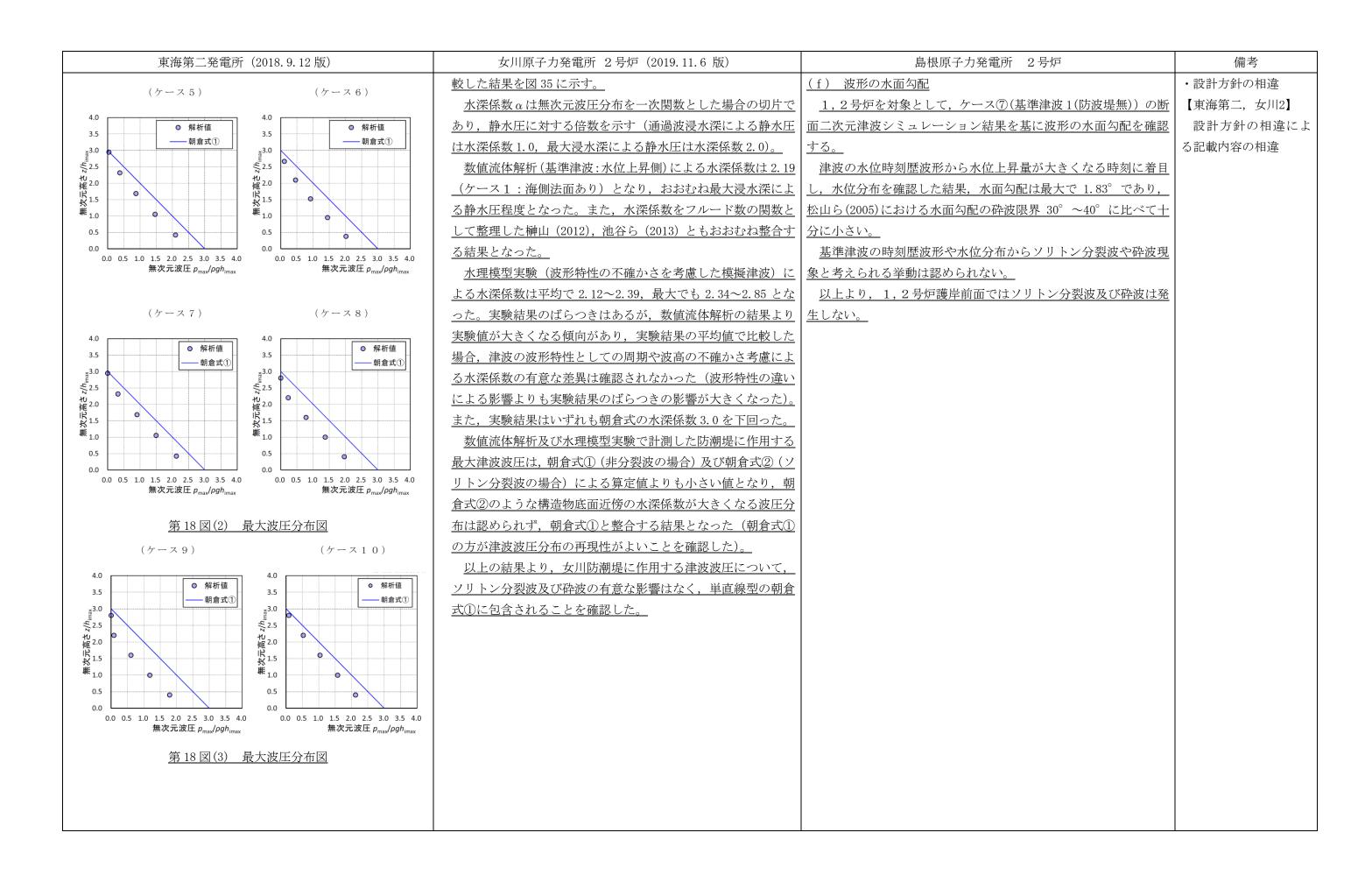
(d) ソリトン分裂波及び砕波の確認【ケース⑦】


ケース⑦の解析結果は、以下のとおり、水理模型実験と同等の津波を再現できていることを確認した(H1~H13 地点)。

- ・発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕 波を示す波形がなく、水位は緩やかに上昇している(H1~H12 地点)。
- ・防波壁前面の H13 地点においても, ソリトン分裂波及び砕波は 発生しない。
- ·第一波の反射波と第二波の入射波がぶつかった後の波形について、緩やかに上昇している。

解析条件を第21表に、時刻歴波形を第38図に示す。


第21表 解析条件 (ケース⑦)


検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース⑦	基準津波1		無	有	有
ケース⑧		基準津波 1	無	有	有
ケース⑨**	波圧 検討用津波 (15m津波)	Z+/+//X 1	無	有	無
ケース⑩*			無	無	無
ケース⑪	(13.11)+11()	基準津波 1 の半周期	無	有	有

第38図 断面二次元津波シミュレーションにおける水位の 時刻歴波形 (ケース⑦)

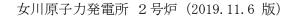
備考

東海第二発電所 (2018.9.12版)

(4) まとめ

水理模型実験結果から、東海第二発電所の敷地前面においては、津波はソリトン分裂波を生じるものの、陸上に遡上する過程で分裂波が減衰し、防潮堤前面位置で砕波も生じないことを確認した。

また、伝播する津波による防潮堤壁面の津波波圧は、持続波による津波波圧式(朝倉式①、朝倉式②)から求められる津波波圧よりも小さく、朝倉式①での再現性が最もよいことを確認した。また、フルード数は1.0を下回ることを確認した。ソリトン分裂波及び砕波の防潮堤に対する波圧分布への有意な影響はなく、単直線型の朝倉式①に包含されることを確認した。


数値波動水路 CADMAS-SURF/2D を用いた水理模型実験の検証結果においても、津波はソリトン分裂波を生じるものの、陸上に遡上する過程で分裂波が減衰し、防潮堤前面位置で砕波も生じないことを確認した。防潮堤壁面における津波波圧は、朝倉式①による波圧分布を下回るとともに、朝倉式①と整合する結果となった。

ソリトン分裂波及び砕波の防潮堤に対する波圧分布への有意な影響はなく、単直線型の朝倉式①に包含されることを確認した。

更に,防潮堤と海岸線との離隔距離を変えたケースにおいても同様に,防潮堤壁面の津波波圧は朝倉式①による波圧分布を下回るとともに,分布形は朝倉式①と整合する結果となった。

これら水理模型実験結果及び分散波理論に基づく断面二次元津波シミュレーション解析結果のいずれにおいても、防潮堤壁面での最大波圧は朝倉式①による波圧を下回るとともに、分布形は朝倉式①と整合し、ソリトン分裂波及び砕波の防潮堤に対する波圧分布への有意な影響はなく、単直線型の朝倉式①に包含されるこ5条添付27-28とを確認した。 防潮堤壁面における最大波圧分布を図19に示す。

<u>以上のことから、設計用津波波圧の算定においては、朝倉</u> 式①より算定することとする。

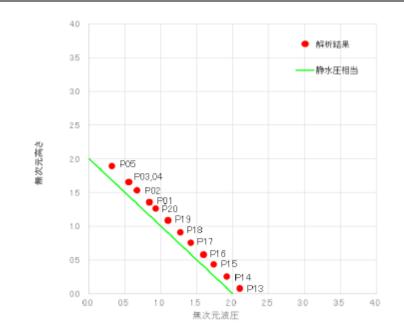
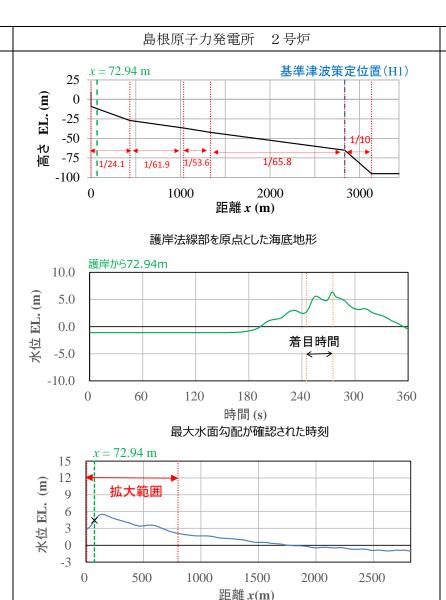



図 33 無次元波圧分布 (数値流体解析:水深係数 α = 2.19)

最大水面勾配が確認された時刻(t = 254.4s)の水位分布

水面勾配 1.83°

400

距離 x(m) 水位分布の拡大図(t =254.4s)

第40図 最大水面勾配確認結果(1,2号炉)

600

800

x = 72.94 m

200

15

12

9

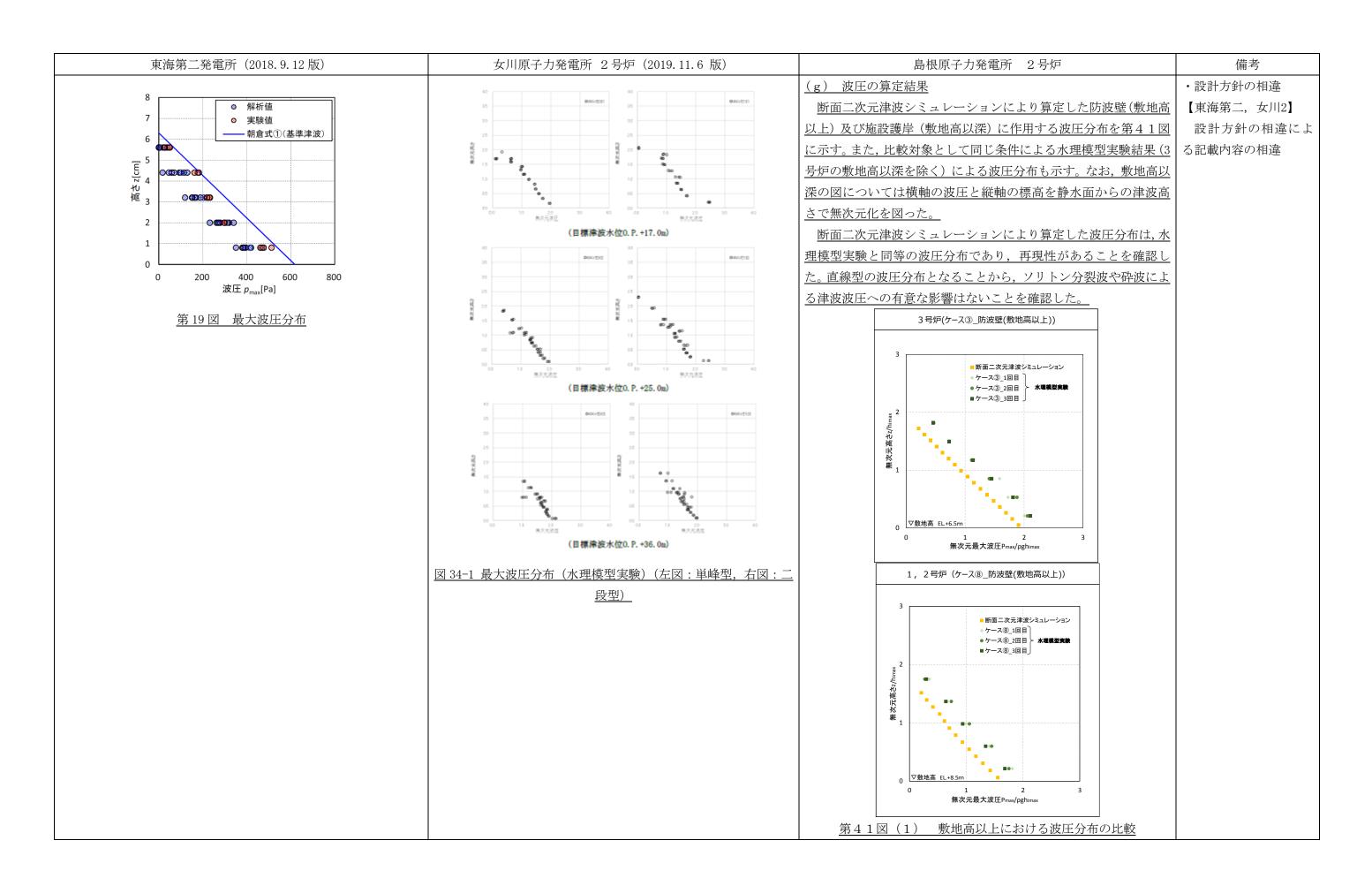
6

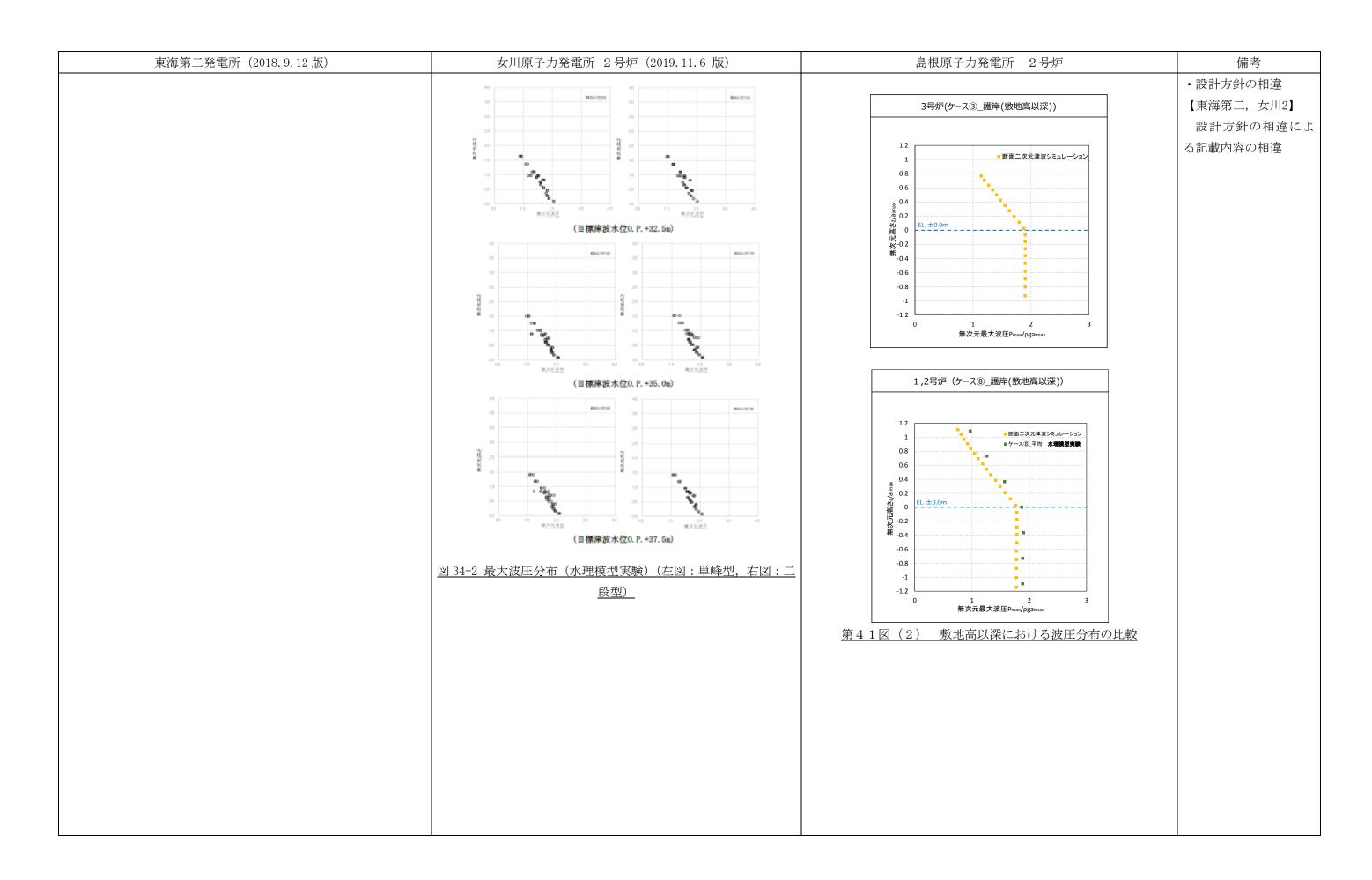
3

0 -3

 \cap

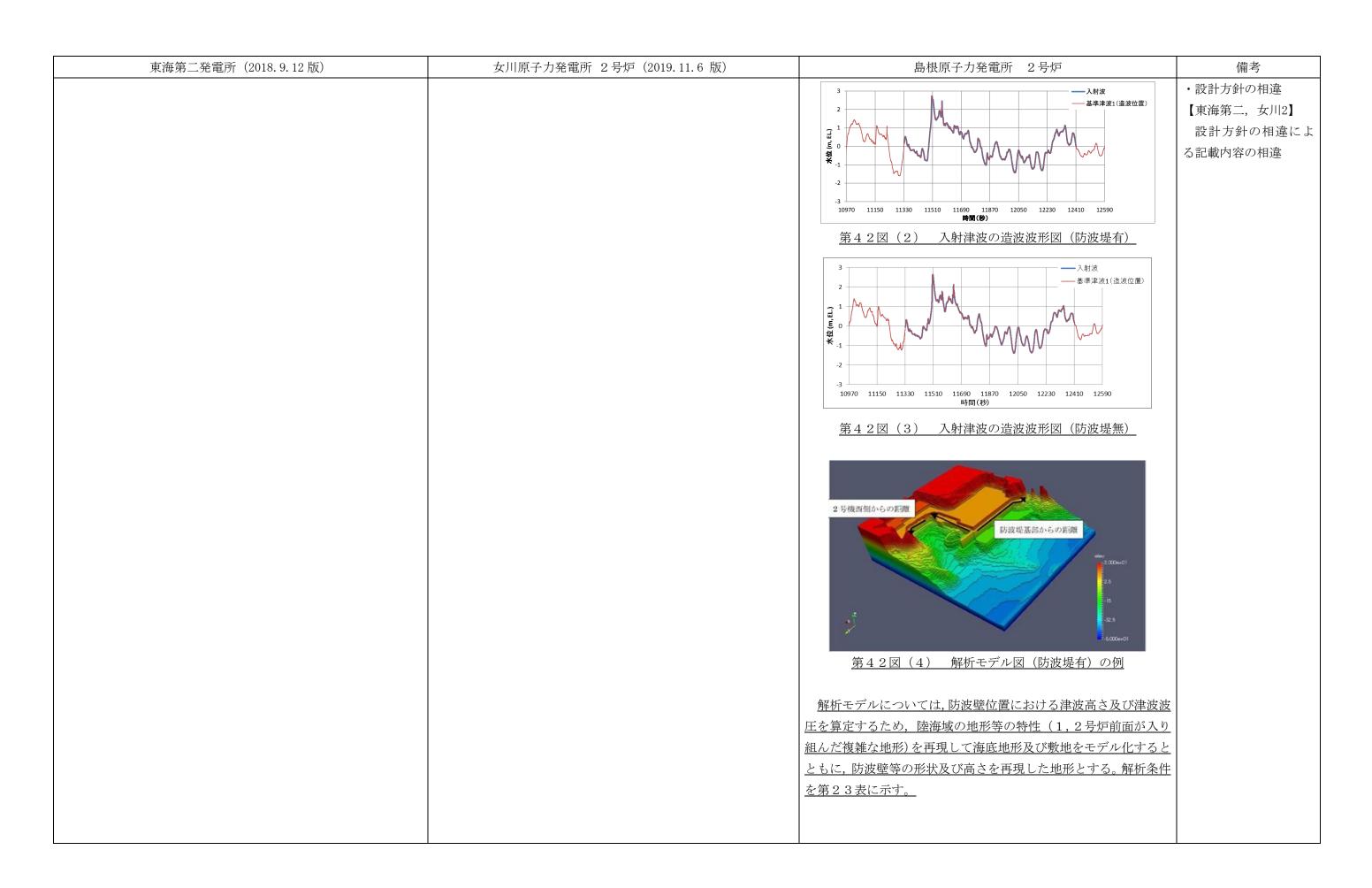
水位 EL. (m)

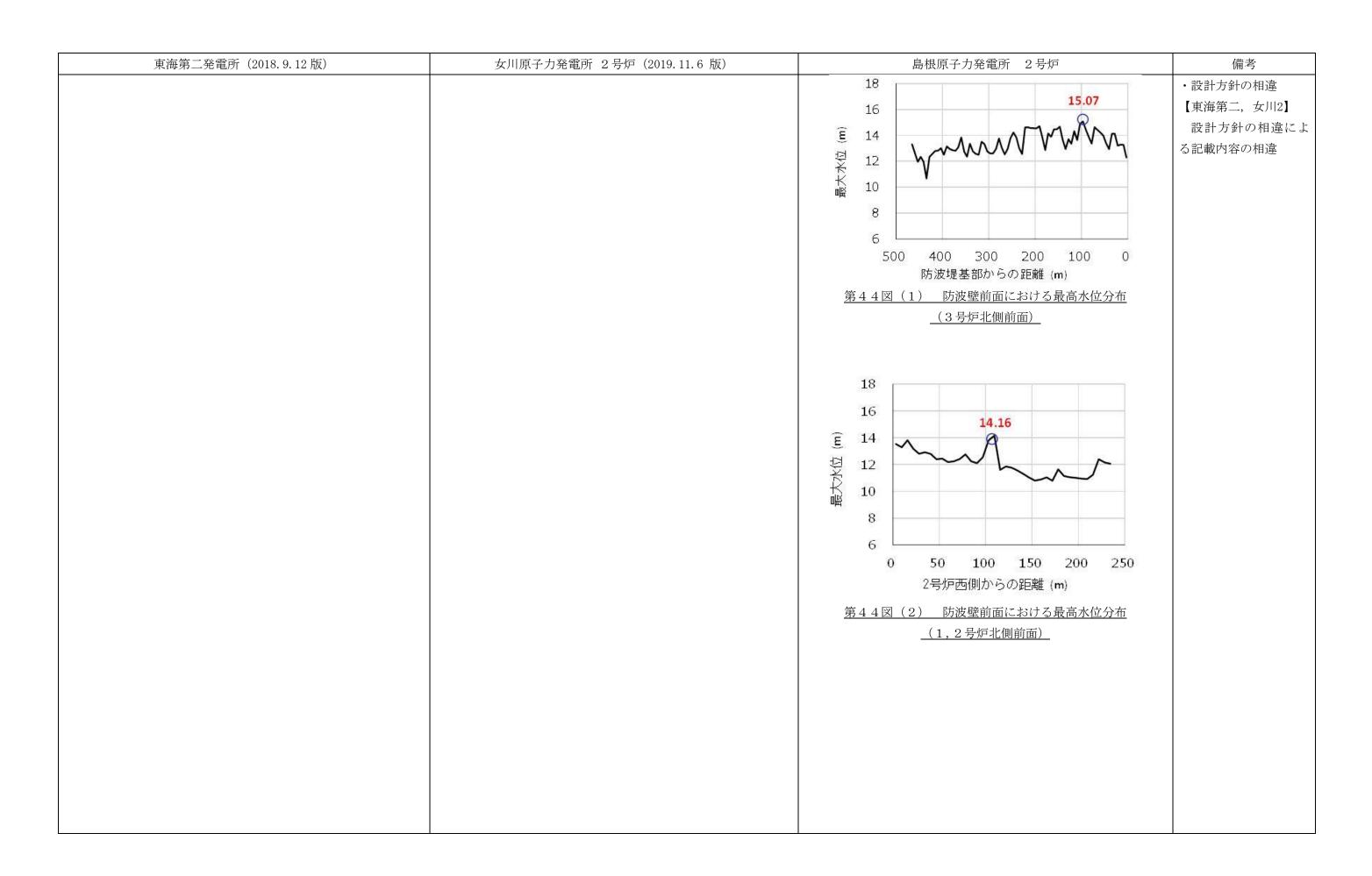

備考

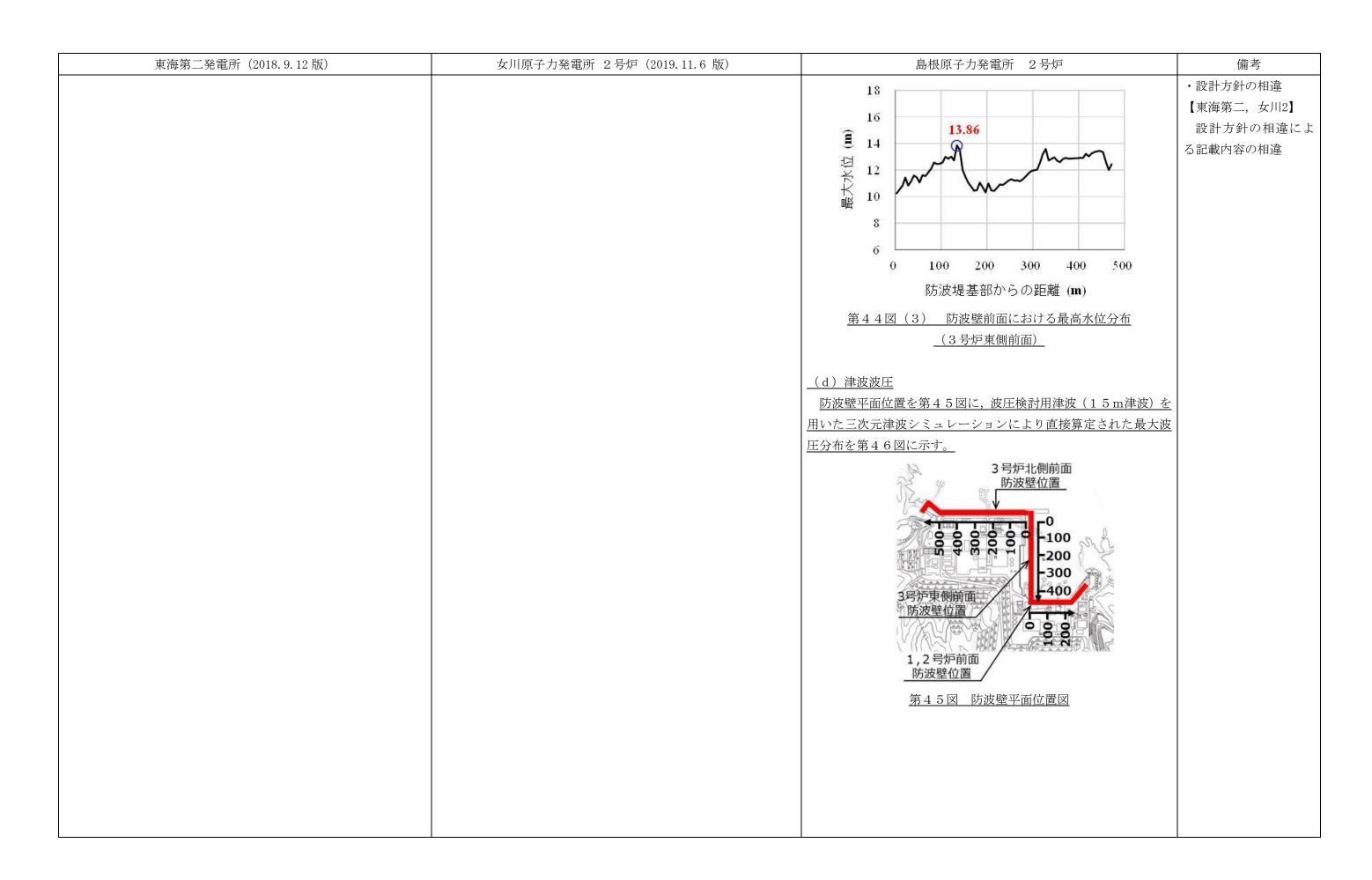

・設計方針の相違

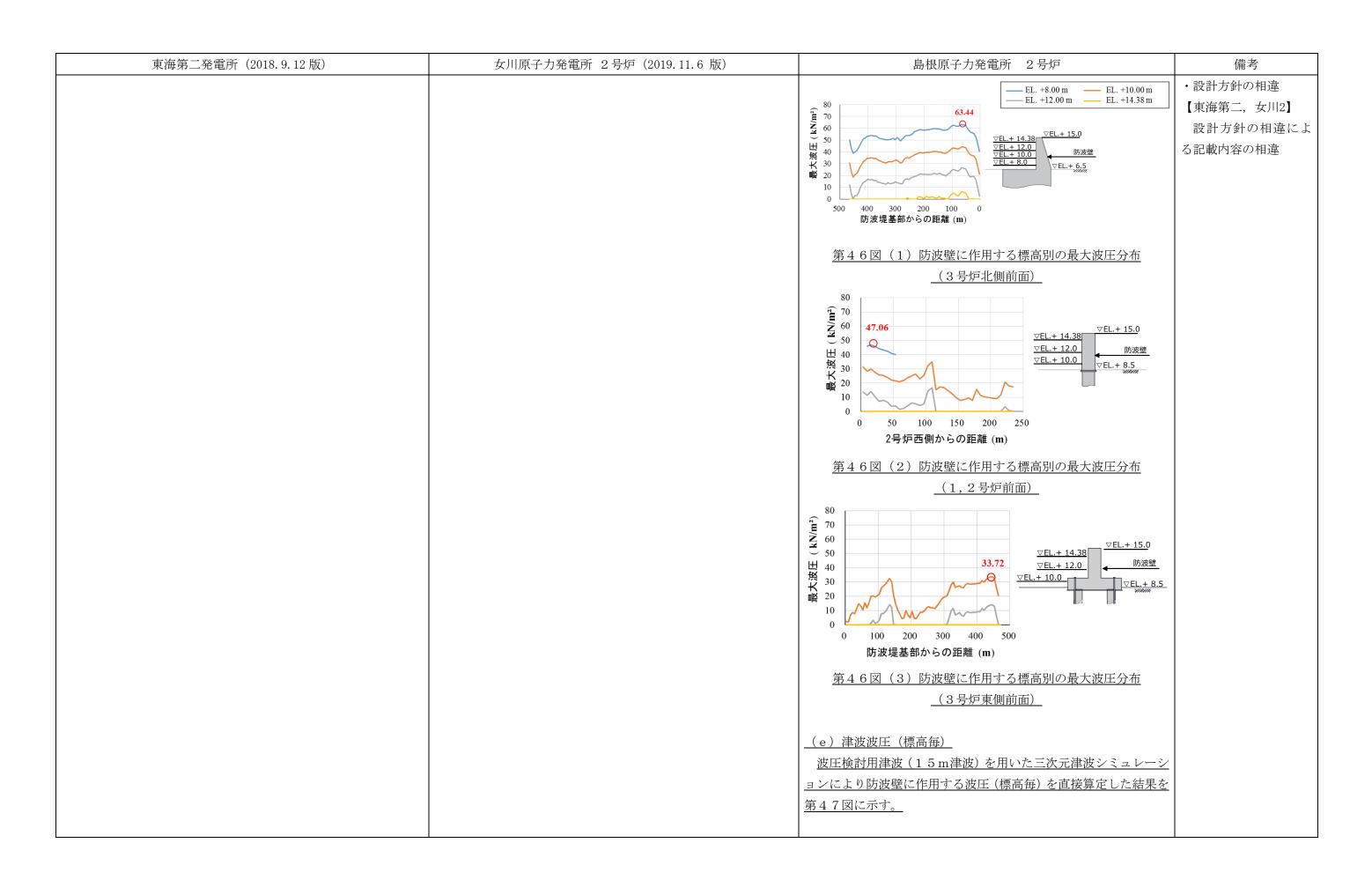
る記載内容の相違

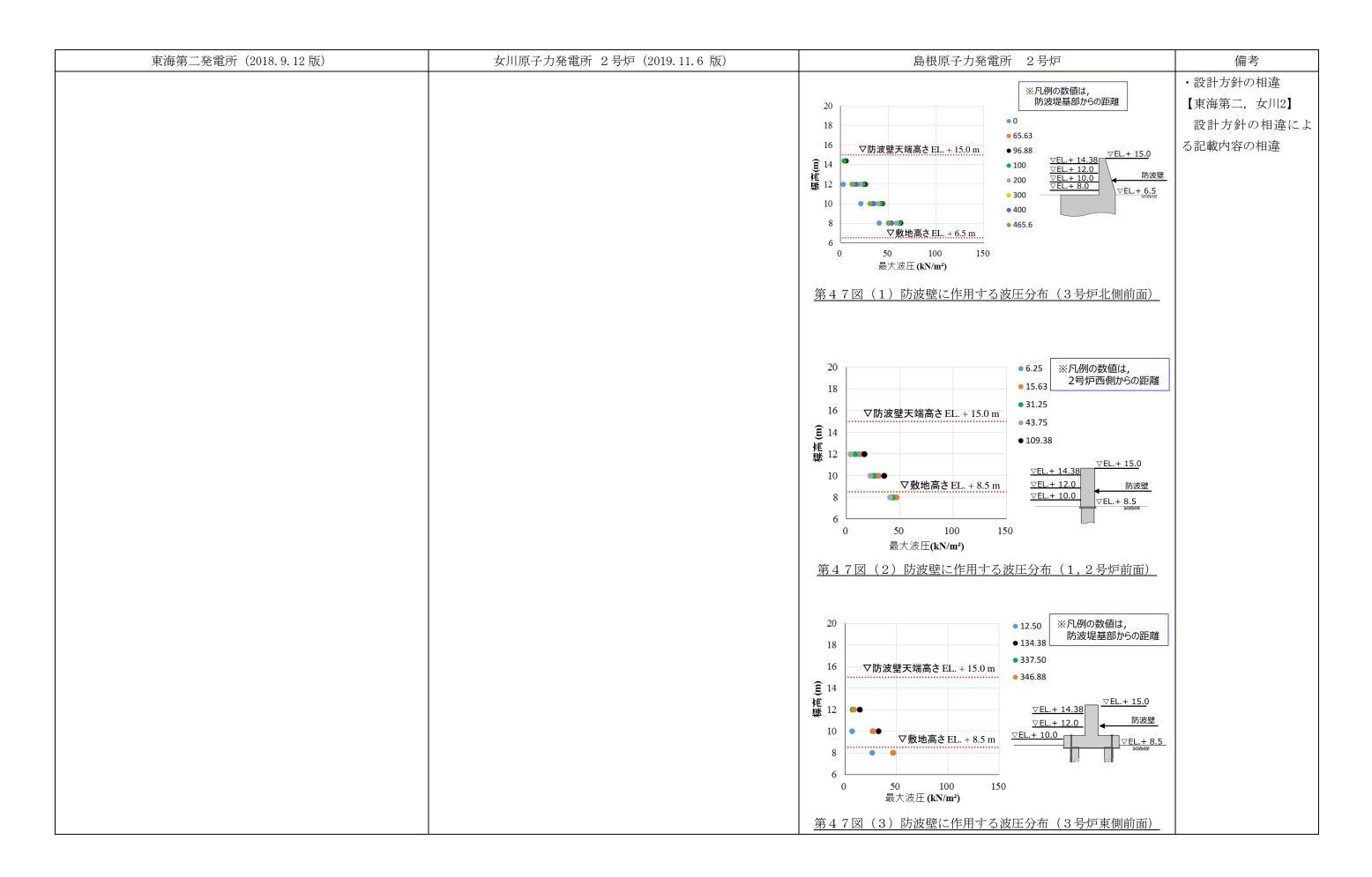
【東海第二,女川2】


設計方針の相違によ




東海第二発電所(2018. 9. 12 版)	女)	原子力発電	直所 2号炉	(2019. 11	.6版)		島根原	子力発電所 2号炉	備考
		表 7 水深停	系数一覧(オ	く理模型実	験)_				・設計方針の相違
				水深係数α					【東海第二,女川2】
	波条	井 波形	最大値	平均值	標準偏差				設計方針の相違によ
	WAVE	01	2.44	2.18	0.15				る記載内容の相違
	WAVE	—	2.34	2.12	0.13				
	WAVE	03	2.46	2.24	0.16				
	WAVE	904 半周期 5分	2.57	2.31	0.16				
	WAVE		2.54	2.27	0.16				
	WAVE	06	2.62	2.31	0.16				
	WAVE	01	2.85	2.39	0.23				
	WAVE		2.68	2.33	0.17				
	WAVE		2.62	2.22	0.17				
	WAVE	94 20分	2.67	2.34	0.20				
	WAVE		2.78	2.37	0.20				
	WAVE	06	2.60	2.31	0.16				
		(全体)	2.85	2.28	0.18				
	2.5 1.5 1.0 0.0 0.0	1.0 1.5 2.0	- 朝倉式2 - 静山 (2 - 木原併数 - 木原併数 ※ 本原): 木理模型実験に基): 木理模型実験に基)12): 陸上構造物にf (αがα=1+1, 4Frで影 (2013): 繰山 (2012)	づく実験式。 作用する津波持続波圧 手価できるとした式。 と同様な津波持続波 手価できるとした式。	圧の算定式。			
	図 35 既往の資		三式との比較	炎 (無次元	最大津波波	(圧分布)			


東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		(5) 三次元津波シミュレーションによる検討	・設計方針の相違
		<u>(a) 検討概要</u>	【東海第二,女川2】
		前項で行った水理模型実験及び断面二次元津波シミュレーショ	設計方針の相違によ
		ンでは,島根原子力発電所の代表断面について検討した。島根原子	る記載内容の相違
		力発電所は輪谷湾を中心とした半円状の複雑な地形であるため,三	
		次元津波シミュレーションを実施して,複雑な地形や三次元的な流	
		況による津波波圧への影響を確認し,水理模型実験及び断面二次元	
		津波シミュレーションによる津波波圧の妥当性を確認する。	
		入射津波については、基準津波1(防波堤有、防波堤無)の場合、	
		敷地への浸水が局所的であり,防波壁等への津波波圧の影響の確認	
		ができないことから、波圧検討用津波(15m津波)を設定する。	
		なお,波圧検討用津波(15m津波)により算定した波圧は,防波	
		壁等の設計用津波波圧として用いるものではない。	
		解析モデルについては、島根原子力発電所の陸海域の地形特性を	
		再現したモデルとする。	
		(b)解析条件等	
		三次元津波シミュレーション概要図を第42図に示す。	
		単位(m)	



東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		第23表 解析条件	・設計方針の相違
		モデル化領域 南北方向:2,175m, 東西方向:1,125m	【東海第二,女川2】
		格子間隔 Δx=6.25m, Δy=6.25m, Δz=1.0~2.0m	設計方針の相違によ
		解析時間 1079秒 (基準津波1の押し波最大波)	る記載内容の相違
		_(c) 津波水位	
		波圧検討用津波(15m津波)を用いた三次元津波シミュレーシ	
		ョンにより抽出された防波壁前面における最高水位位置を第43	
		図に、最高水位分布を第44図に示す。なお、代表として防波堤有	
		の結果を示す。	
		第43図 三次元津波シミュレーションにおける断面位置 及び最高水位位置	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		(参考) 三次元津波シミュレーションによる津波の作用状況	・設計方針の相違
		三次元津波シミュレーションによる最大波到達時刻の津波の作	【東海第二,女川2】
		用状況を第48図に示す。	設計方針の相違によ
		208.00 s Height: -1.000	る記載内容の相違
		第48図(1)津波の作用状況(3号炉北側前面最大波到達時刻)	
		248.00 s Hsight: -1 000 [m]	
		第48図(2)津波の作用状況(1,2号炉前面最大波到達時刻)	
		265.00 s Height: -1.000 [m]	
		第48図(3)津波の作用状況(3号炉北側前面最大波到達時刻)	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6 版)	島根原子力発	電所 2号炉	備考
		(f)津波波圧比較		・設計方針の相違
		3号炉北側前面及び1,2号炉前面	面の敷地高以上及び敷地高以深に	【東海第二,女川2】
		おける, 三次元津波シミュレーシ	ョン,断面二次元津波シミュレー	設計方針の相違によ
		ション及び水理模型実験(3 号炉	北側前面の敷地高以深を除く)に	る記載内容の相違
		より算定した波圧分布の比較結果	を第49図に示す。	
		複雑な地形を考慮した三次元的	方な流況を評価できる三次元津波	
		シミュレーションの結果を踏まえ	ても,水理模型実験及び断面二次	
		元津波シミュレーションによる津	建波波圧と同等又は包絡されるこ	
		とを確認した。これらの結果より,	,島根原子力発電所の複雑な地形	
		や三次元的な流況による影響は認	められないため、水理模型実験及	
		び断面二次元津波シミュレーショ	ンによる敷地高以上の津波波圧	
		は妥当であると判断した。		
		3号炉北側前面(敷地高以上) 波圧分布	1,2号炉前面(敷地高以上) 波圧分布	
			 ■一三次元 〈計算值〉(最大水位位置:21.30m) ■断面二次元 (実験の平均値) ■断面二次元 (計算值) 	
		3.0	3.0	
		2.5	2.5	
		120 10	20 20 10 max	
		超15	10 1.5	
		0.5	0.5	
		0.0	0.0	
		0.0 0.5 1.0 1.5 2.0 2.5 3.0 無次元最大波圧 p_{max} p₅tr _{max}	0.0 0.5 1.0 1.5 2.0 2.5 3.0 無次元最大皮圧 $p_{\max} \rho s h_{\max}$	
		3号炉北側前面(敷地高以深) 波圧分布	1,2号炉前面(敷地高以深) 波圧分布	
		●新面二次元津波シミュレーション ●三次元津波シミュレーション(最大水(何位度・65.8m)	●断面二次元津減シミュレーション●三次元津減シミュレーション(最大水位位置2188m)	
		12	■	
		0.8	0.8	
		0.4 = 0.2	0.6 0.4	
		00 0 EL.±0.0m	表 0.2 分 0.0 値	
		能 _{-0.4}	5-0.2 € -0.4 -0.6	
		-0.8	-0.8	
		0 1 2 3	-1.0 -1.2 0.0 1.0 2.0 3.0	
		無次元最大波圧Pmay/pgmax	無次元最大波圧Pms/pgalmax	
		第49図 敷地高以上及び敷地	B同以保にわりる波圧分巾比較	

東海第二発電所(2018.9.12版)

3. 津波波圧算定式適用に対する考え方

(1) 防潮堤及び防潮扉

防潮堤及び防潮扉位置図を第20図に示す。

防潮堤がないモデルで実施した水理模型実験においては, 防潮堤通過位置におけるフルード数が 1.0 を下回っており, 水理模型実験結果及び分散波理論に基づく断面二次元津波 シミュレーション解析結果から,設計用津波波圧は朝倉式① に基づき算定する。

朝倉式①に用いる η (設計浸水深) については、水理模型 実験結果、断面二次元津波シミュレーション解析結果、平面 二次元津波シミュレーション解析から求められた浸水深及 び入力津波高さと地盤高さとの差の 1/2 を用いて朝倉式① により算出した波圧分布を比較した。第 21 図及び第 22 図に 津波荷重の作用イメージ図を、第 23 図に最大波圧分布の比 較を示す。

比較の結果、朝倉式①に用いる η (設計浸水深) については、入力津波高さと地盤高さとの差の1/2 を用いるものとする。

第20図 防潮堤及び防潮扉位置図

女川原子力発電所 2号炉 (2019.11.6 版)

3. 津波波圧算定式適用に対する考え方

(1) 津波波圧の確認結果と考察

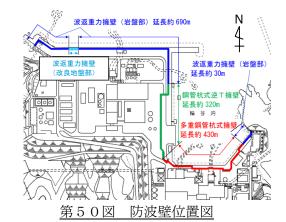
女川原子力発電所の防潮堤の設計で考慮する津波波圧に関して、非線形分散波理論に基づいた数値流体解析(断面二次元津波シミュレーション解析)及び水理模型実験により検討を行った。確認結果の概要及び考察を表8~表10に示す。

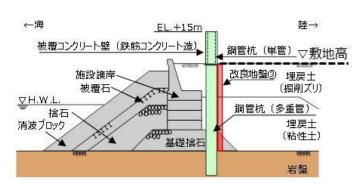
基準津波の発生に伴い、女川防潮堤には水位上昇型の津波が作用し、波圧分布としてはおおむね静水圧程度となることを確認した。また、津波波圧評価における不確かさとして、敷地法面の形状変化の影響、基準津波(水位上昇側)と異なる特性の津波の影響、周期の異なる津波の影響、波高の異なる津波の影響を考慮して検討した結果、いずれのケースにおいても分裂波や衝撃圧が発生せず、津波波圧への影響が小さいことを確認した。

女川原子力発電所の基準津波の第1波は、周辺地形からの回り込みや反射の影響をほとんど受けずに策定位置から直線的に到達し、波の重なり合いによる二段型波形が特徴(図30)となっている。基準津波を対象とした数値流体解析結果の考察として、二段型波形全体としての津波の半周期は約10~20分と長いことに起因し、水面全体が緩やかに上昇するような津波が作用し、分裂波や衝撃圧が発生せずに、防潮堤に作用する津波波圧がおおむね静水圧と小さくなったことが要因と考えられる(図17~図19)。

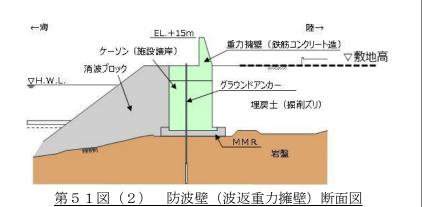
また,模擬津波を対象とした水理模型実験結果の考察として, 二段型津波(半周期 20 分)と単峰型津波(半周期 5 分)の結果 を比較(表 9)すると,実験結果のばらつきはあるが,周期(波 長)の短い単峰型津波の方が流速及びフルード数が大きくなる 傾向が確認できる。一般的には流速が大きくなると津波波圧へ の影響が大きくなるが,女川サイトの特徴として防潮堤を高台 上に設置していることから,防潮堤に作用する津波としては浸 水深(水位)の大きい条件となるため,浸水深の大きさによっ てフルード数の上昇が抑えられ,流速の大きい単峰型津波を含 めた全てのケースでフルード数が1以下の穏やかな流れ(常流) となり,分裂波や衝撃圧が発生せずに,防潮堤に作用する津波 波圧がおおむね静水圧と小さくなったと考えられる。

また, 津波水位の大きさで比較した場合, 水位条件の大小に


島根原子力発電所 2号炉

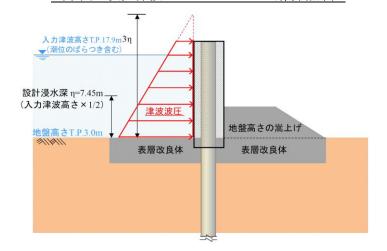

4. 既往の津波波圧算定式との比較

(1) 検討概要


既往の津波波圧算定式の妥当性を確認するため、水理模型実験、 断面二次元及び三次元津波シミュレーションによる波圧と比較検 討する。なお、津波波圧の算定に当たっては、波圧検討用津波(1 5 m津波)を用いる。

島根原子力発電所の防波壁の位置図を第50図に, 断面図を第5 1図に示す。

第51図(1) 防波壁(多重鋼管杭式擁壁)断面図



・設計方針の相違 【東海第二,女川2】 設計方針の相違によ る記載内容の相違

備考

東海第二発電所 (2018.9.12版) 設計浸水深 η=6.96m (潮位のばらつき、地盤変状含む) 津波波圧 地盤高さの嵩上げ 地盤高さT.P.3.0m 表層改良体 表層改良体

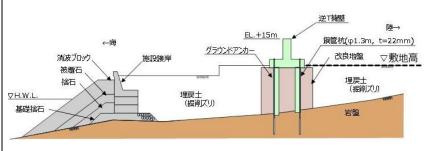
第21図 津波荷重の作用イメージ (平面二次元津波シミュレーション解析結果)

第22図 津波荷重の作用イメージ図 (入力津波×1/2)

女川原子力発電所 2号炉(2019.11.6版)

よって流速及びフルード数が大きく変動するような傾向は確認 されない。上記と同様、全てのケースでフルード数が1以下の 穏やかな流れ(常流)となったことに起因して、分裂波や衝撃 圧が発生せずに, 防潮堤に作用する津波がおおむね静水圧と小 さくなったと考えられる。

以上の結果を踏まえ、ソリトン分裂波による津波波圧への有 意な影響がないこと, フルード数が1以下となること, 津波波 圧の水深係数が3以下となることから、波形特性の不確かさを 考慮しても防潮堤に作用する津波波圧は朝倉式①に包含される ことを確認した。なお、盛土堤防を模擬したモデルでの解析は 行っていないが、鋼管式鉛直壁よりも津波遡上に伴う減勢効果 が大きくなることから、盛土堤防においても水深係数は3以下 となると考えられる。

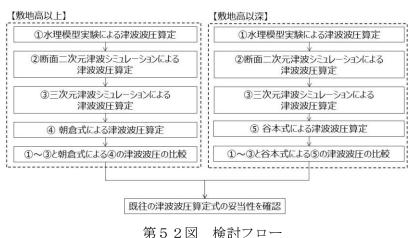

表8 津波波圧の確認結果

確認方法	確認結果
数值流体解析	✓ 女川防瀬堤(銅管式鉛値壁)を接髪した数値流体解析により、基準津波の特性や津波波圧等を確認した。 防瀬堤の近傍で津波のソリトン分裂は確認されず。防瀬堤両面位置でのフルード数は1以下となった。 基準津波の作用により、津波の衝撃圧は発生せず、持続圧が作用した。また、防瀬堤に作用する波圧分布は単直 緩受となり、おおむね静水圧となった。 選岸からの番通波漫水深を基準に軽次元化した場合の水深係数は3以下となった。なお、壁土場防を模擬したモデルでの解析は行っていないが、顕管式鉛画型よりも津波適上に件う減勢効果が大きくなることから、盛土堤防においても水深係数は3以下となると考えられる。 ✓ 防瀬堤に作用する滞波波圧は頼寒式①に包含されることを確認した。
水理模型実験	女川防瀬理(銅管式鉛値壁)を模擬した水理模型実験により、津波の波彩特性(周期、波高)の違いが津波波圧等に与える影響を確認した。 防瀬堤の近傍で津波のソリトン分裂は確認されず、防瀬堤和面位置でのフルード数は1以下となった。 津波の波彩特性(周期、波高)の違いに関わらず、津波の衝撃圧は発生せず、持続圧が作用した。また、防瀬堤に作用する返圧分布はいずれも単直線型となった。 護岸から適適減液外突を基準に乗るの未で係数は3以下となった。なお、塗土堤防を模擬したモデルでの実験に行っていないが、倒撃式約量整よりも津波適上に伴う滅勢効果が大きくなることから、盛土堤防においても水深係数は3以下となると考えられる。 防瀬堤に作用する津波波圧は頼着式①に包含されることを確認した。 防瀬堤に作用する津波波圧は頼着式①に包含されることを確認した。 おりまれる。 まりまれる。 まりまれる。

表 9 水理模型実験による流速・フルード数の整理

波条件	目標津波水位 【O.P.】	二段型津波 (半周期 20 分)		単峰型津波 (半周期 5 分)	
		流速	フルード数 Fr=v/√(g·h)	流速	フルード数 Fr=v/√(g·h)
WAVE001, WAVE101	+17.0m	0.2m/s	0.071	4.7m/s	0.839
WAVE002, WAVE102	+25.0m	5.4m/s	0.704	8.0m/s	0.843
WAVE004, WAVE104	+32.5m	4.9m/s	0.450	9.1m/s	0.826
WAVE005, WAVE105	+35.0m	7.4m/s	0.623	9.3m/s	0.780
WAVE003, WAVE103	+36.0m	8.0m/s	0.738	7.9m/s	0.612
WAVE006, WAVE106	+37.5m	7.6m/s	0.603	9.2m/s	0.726

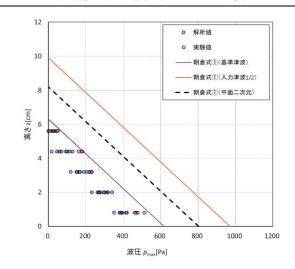
島根原子力発電所 2号炉



第51図(3) 防波壁(鋼管杭式逆T擁壁)断面図

(2) 津波波圧検討フロー

既往の津波波圧算定式は,第52図に示すフローにて妥当性を確 認する。


水理模型実験, 断面二次元及び三次元津波シミュレーションによ り防波壁及び施設護岸に作用する波圧を直接算定し、朝倉式(敷地 高以上)及び谷本式(敷地高以深)により算定した津波波圧と比較 する。

・設計方針の相違 【東海第二,女川2】 設計方針の相違によ る記載内容の相違

備考

東海第二発電所(2018.9.12版)

第23図 最大波圧分布の比較

(2) 貯留堰

a. 貯留堰に適用する津波波圧算定式

貯留堰の鳥瞰図を第24図に, 断面図を第25図に示す。 貯留堰は, 鋼管矢板を連結した構造であり, 引き波時に 海底面から突出した鋼管矢板頂部 (T. P. -4.9m) におい て海水を貯留する。

このため、貯留堰に有意な津波波力が作用するのは、 引き波により海水貯留堰が海面から露出し、その後、押 し波が貯留堰に作用してから越流するまでの間に限定される。

「防波堤の耐津波設計ガイドライン(国土交通省港湾局)」(平成27年12月一部改訂)によると、津波が構造物を越流する場合の津波荷重の算定については、若干越流している状態に静水圧差による算定式を適用する場合は、それより水位の低い越流直前の状態の方が高い波力となる可能性があるので、両者を比較して高い方を採用する必要があるとしている。

このため、貯留堰における津波波力としては、越流直前の波力及び越流時の静水圧差のうち保守的なものを適用することとする。

女川原子力発電所 2号炉(2019.11.6版)

表 10 津波波圧確認結果の全体概要と考察

検討ケース	不確かき 物理の目的	機計方法	分数波の 発生	養草圧の 発生	政正分布の 単性	非説説圧の 水源保敷	**
(水田上原教)	_ [##7-X]	***	発音(-ない (非分数)	美術しない	静水塔型 (単直線分布)	2.19	準決の平度間が約10〜の分と扱い力 此、光度を保が値やかに上昇するような達 まが作用。分数後や数単圧が無ちせず に、数単接に作用する単鉄油圧があかむも 数水圧とかきくなったものと考えられる。
基等清潔 (水位上素素)	動物議関の 制材変化の影響 議職(現材化等 による変材の可 動物を考慮)	多集次许繁 化	無意しない (非分類)	養泉(森) (神鏡音)	静水流型 (単直線分布)	7-21:219 7-22:217 7-23:220	津港の平満国が約10〜20分と多いた。 れ、本国金銭は「種やかに上昇するような業 連が作列。 国立構造とした場合でも分裂 中機能はが発えなりた。 東港港の大部分でも発表する。 本で、海洋をおいたの数であったくなった。 たで、海洋を対した。 ない、カントルのと考えられる。
基準素素 (水位下隔離)	基本ケースと異なる場所の意識などを確認していません。	********	無余しない (余分数)	発生しない	静水还整 (車運搬分布)	2.Н	準減の半週間が約11分と基いのか、本 開金性が適やかに上昇すると力な準減が6 間に、基本ケースと異なりに脱性がかっま あった場合が三型を対象・地域があっま かったの概念や重単圧が発生せずに、設置 は1つ用する単端第三学はおり出表がある。 できたなり、実施性性の変化の影響が定とん で進んなかったから考えられる。 ではなったからかと考えられる。
供販車 法 (平度助 5 分, 20 分)	展示の異なる法 会の影響機能 (基準を認め第 1次の展明特性 を考慮)	水温模型原始	無金(ない)	無余しない (神様正)	静水流整 (東直線分布)	5分:113~133 30分:123~139 (実験結果の 平均値で整理)	展展の報、機構整理会の方が改進及び ルード展が大きぐなる機能が確認されたが、 客会との原理地や用きる業績といては本 自の大きい場合となるのか、いずれの開業 競響でもフルード表す。以下の場所を がは、別解説と作用する課題が正が出かっ では、別解説と作用する課題が正が出かり 自動を正かから位のはものと考えられる。 また、別等等の条件の高いを実施を がありまります。 が多様の影響を含まれているが、水源器 が影響を提供が必要をなると、使計か理解的 が高いと考えると、使計か理解的 が高いと考えると。
模型查測 (章度基金: G.P.+17.0m~ G.P.+21.5m)	波楽の長なる非 実の参摩機能 (防薬療経済の 可能性より発展 利に有着)	水温模型茶油	発生しない (余分数)	更生(点)。 (海蘭亚)	静水征整 (寿運輸分布)	17.0m;218~239 25.0m;237~239 25.0m;237~239 25.0m;227~237 35.0m;237~231 (実験結果の 平均値で整理)	OP-1720-か一次ではばらつきが失れい が、会体化して注意と乗手の大小によってT 選及びアルード書が大きて選挙するような理 ありたみ一下書がまります。 ルード書がまりまでの様々から成れては対し なり、の意思や電影回が失きなずに、別選 当に作用する事故が出かわれ書を正かから (なのからめた様となるで、はが、実際制 があった事を考えまたで、はが、実際制 があったを関係すると、便計の復業性 変なったことを開催すると、便計の復業性 が高い、となった。と、使計の復業性 が高い、となった。と、使計の復業性 が高い、となった。と、を記し、と、を記し、と、を記し、と、を記し、と、を記し、と、を記し、と、を記し、と、を記し、と、を記し、と、を記し、と、を記し、と、を記し、と、を記し、と、を記し、と、を記し、と、と、と、と、と、と、と、と、と、と、と、と、と、と、と、と、と、と、と

島根原子力発電所 2号炉

(3) 朝倉式による津波波圧算定

朝倉式は、津波の通過波の浸水深に応じて波圧を算定する式であり、「通過波の浸水深」を最大浸水深(入力津波高さ一敷地標高)の 1/2 と保守的に仮定して**津波波圧を算定する。

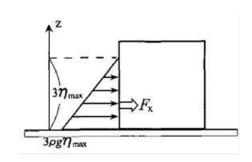
朝倉式の概念図を第53図に,朝倉式における津波波圧の考え方を第54図に示す。

朝倉式

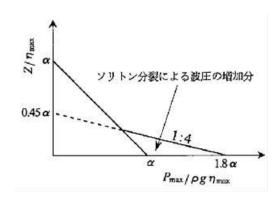
 $q_Z = \rho g (a \eta - z)$

ここに,

q z:津波波圧 (kN/m²)


η : 浸水深 (通過波の浸水深=最大浸水深の 1/2) (m)

z : 当該部分の地盤面からの高さ(m)


 $(0 \le z \le a h)$

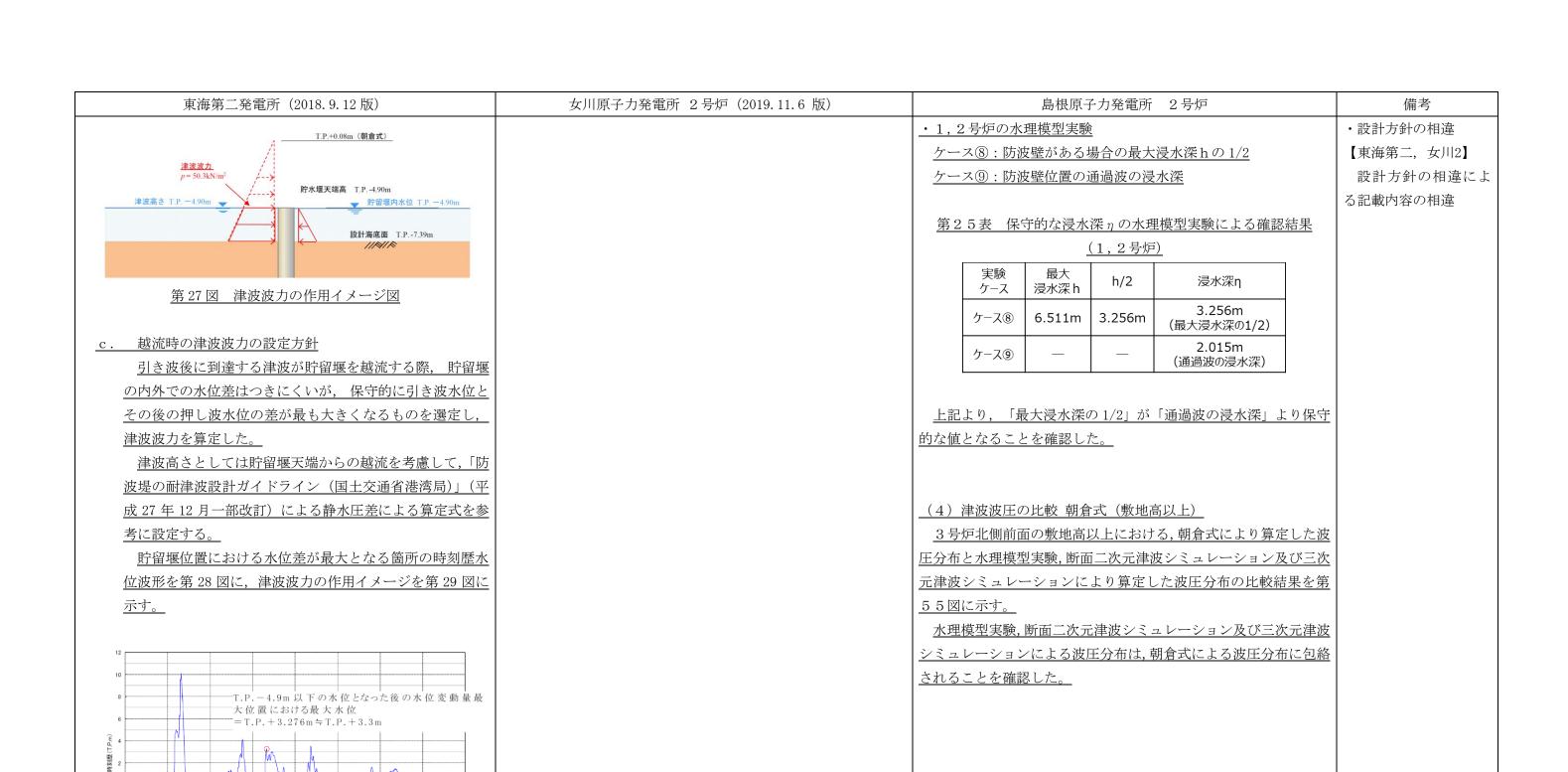
a : 水深係数 (最大:3)

ρg:海水の単位体積重量(kN/m³)

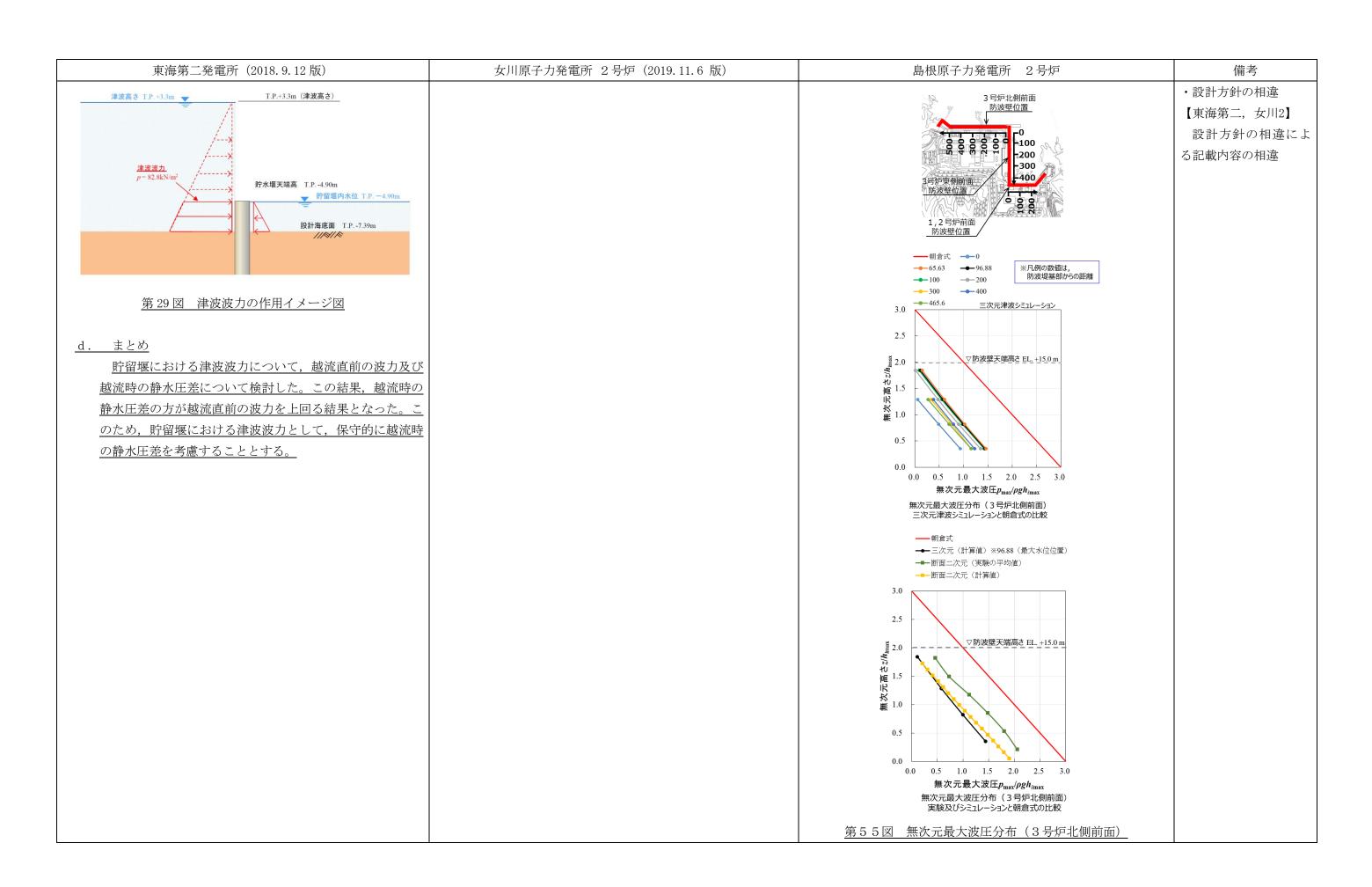
非分裂波の場合の津波水平波圧

分裂波の無次元最大波圧分布 第53図 朝倉式の概念図

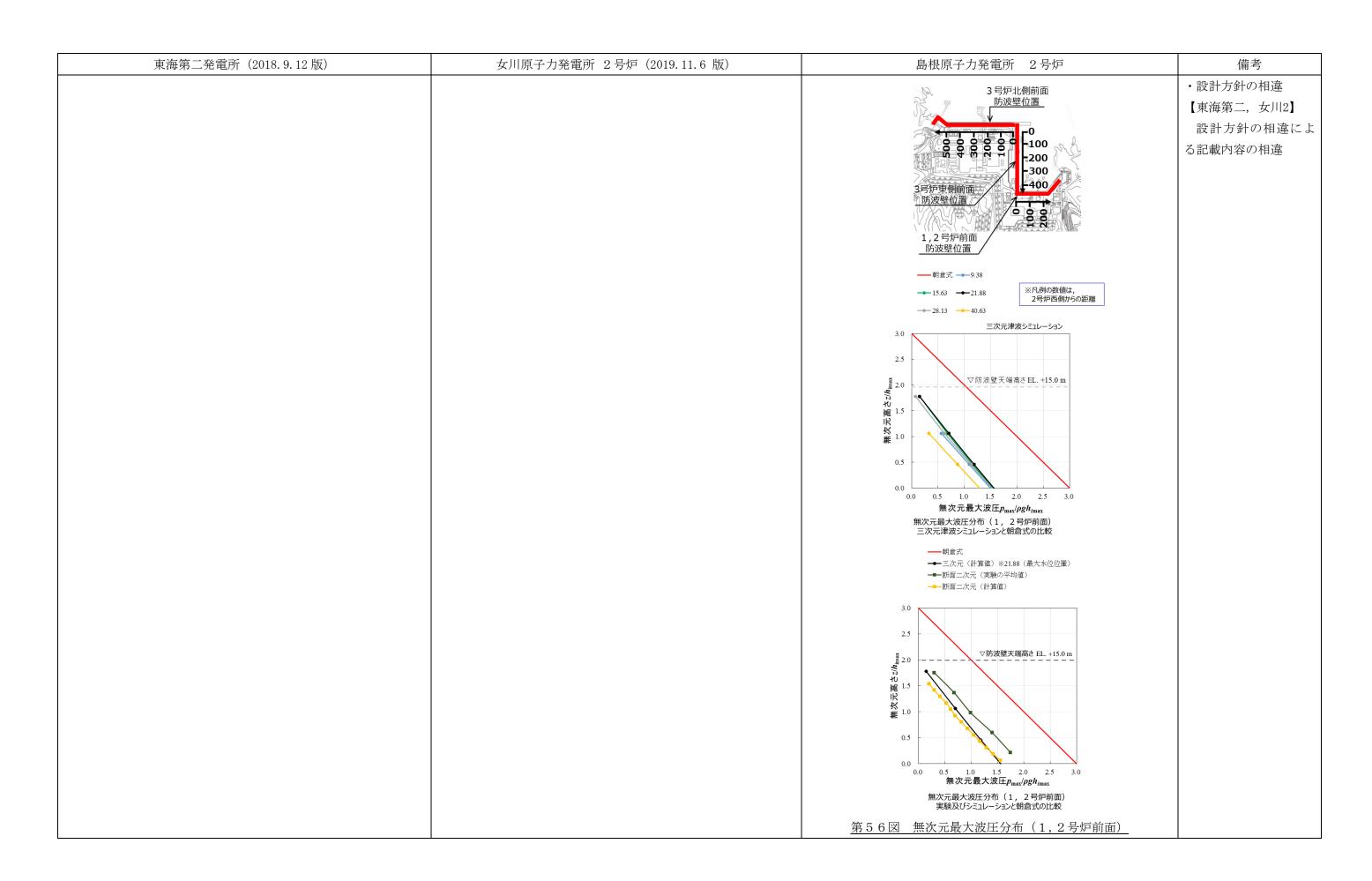
備考



第26図 貯留堰周りにおける引き波水位の時刻歴図


 実験 ケース
 最大 浸水深 h
 h/2
 浸水深 n

 ケース③
 8.397m
 4.199m
 4.199m (最大浸水深の1/2)


 ケース④
 —
 —
 3.643m (通過波の浸水深)

第28図 貯留堰の内外の水位差が最大となる時刻歴水位波形図

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6 版)	島根原子力発電所 2号炉	備考
		1,2号炉前面の敷地高以上における、朝倉式により算定した波	・設計方針の相違
		圧分布と水理模型実験,断面二次元津波シミュレーション及び三次	【東海第二,女川2】
		元津波シミュレーションにより算定した波圧分布の比較結果を第	設計方針の相違によ
		<u>56図に示す。</u>	る記載内容の相違
		水理模型実験, 断面二次元津波シミュレーション及び三次元津波	
		シミュレーションによる波圧分布は、朝倉式による波圧分布に包絡	
		されることを確認した。	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6 版)	島根原子力発電所 2号炉	備考
		3号炉東側前面の敷地高以上における,朝倉式により算定した波	・設計方針の相違
		圧分布と三次元津波シミュレーションにより算定した波圧分布の	【東海第二,女川2】
		比較結果を第57図に参考として示す。	設計方針の相違によ
		三次元津波シミュレーションによる波圧分布は, 朝倉式による波	る記載内容の相違
		圧分布に包絡されることを確認した。	
		3号炉北側前面 防波壁位置 000000000000000000000000000000000000	
		## 1.0 (1.5 に) (1.5	
		第57図 無次元最大波圧分布(3号炉東側前面)	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6 版)	島根原子力発電所 2号炉	備考
		(5) 谷本式による津波波圧算定	・設計方針の相違
		谷本式は、構造物前面の津波高さ(津波シミュレーション)に応	【東海第二,女川2】
		じて波圧を算定する式である。谷本式を以下に示す。	設計方針の相違によ
		なお、谷本式で使用する入射津波の静水面上の高さ(2 a ₁) は、	る記載内容の相違
		各津波シミュレーションにより抽出された護岸前面の最高水位を	
		使用する。谷本式による波圧分布を第58図に示す。	
		【谷本式】	
		η *=3.0 a $_{\scriptscriptstyle \rm I}$	
		$P_1 = 2.2 \rho_0 g a_1$	
		$Pu = P_1$	
		= = \(\tau_{\text{.}}\)	
		η* :静水面上の波圧作用高さ (m)	
		a ₁ :入射津波の静水面上の高さ(振幅) (m)	
		ροg :海水の単位体積重量(kN/m³)	
		Pu : 直立壁前面下端における揚圧力* (kN/m²)	
		※島根原子力発電所の防波壁は、岩盤又は改良地盤により支持され	
		ており十分に止水性があるため揚圧力は考慮しない。	
		(港外側)	
		シミュレーションの津波高さ カ*	
		$2a_1$ ∇	
		=	
		p_1	
		p_u	
		第58図 谷本式による波圧分布	
		(背面水位が押し波時に静水面より下がらない場合)	
		・島根原子力発電所の防波壁背後は敷地であるため、港湾外の波圧	
		を算定した図を引用した。	
		・なお、「背面水位が押し波時に静水面より下がる場合」でも港外	
		側に作用する津波波圧は同じである。	
		M1-11/14 / WIT MANAGE 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1	

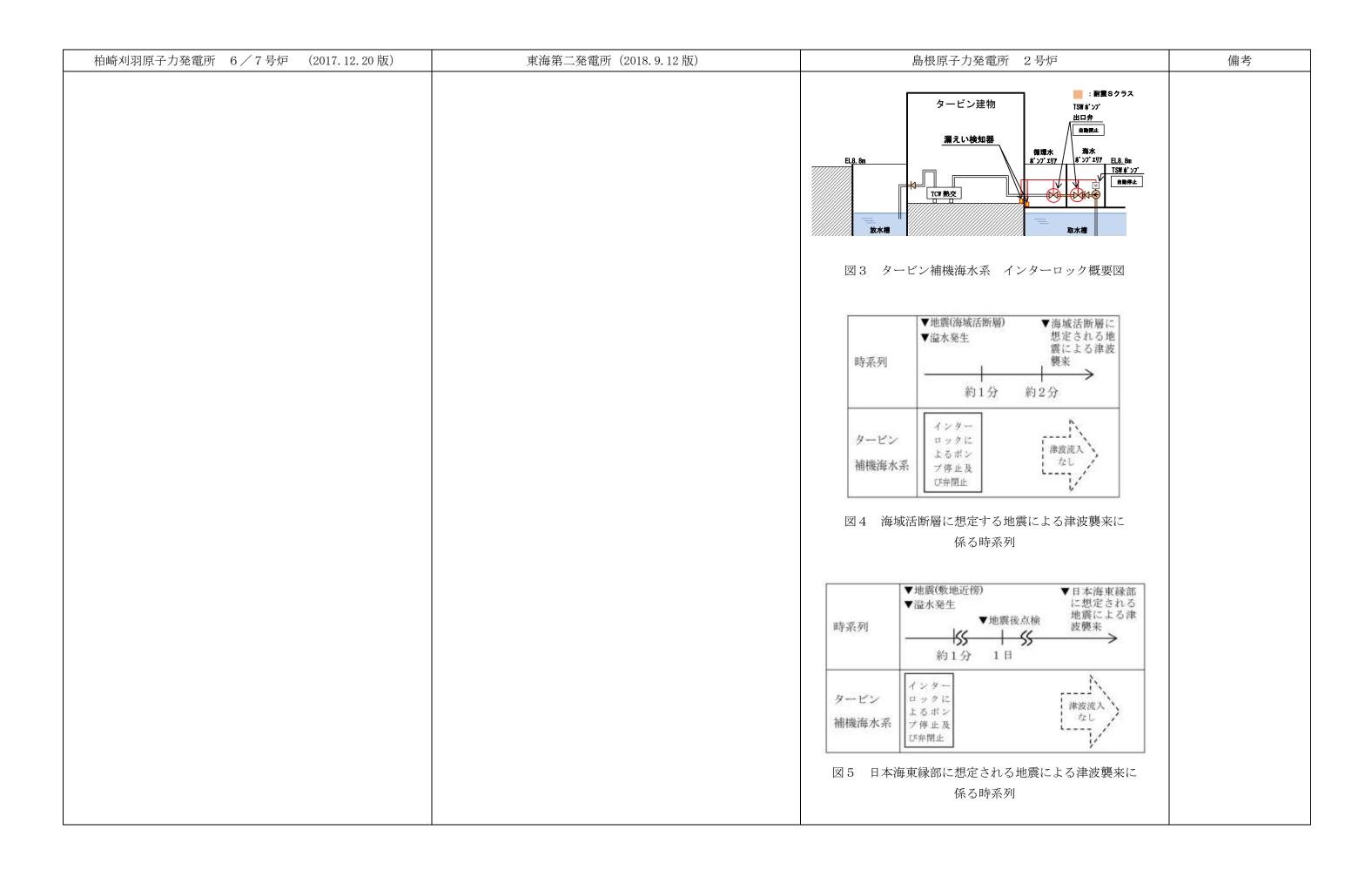
東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6 版)	島根原子力発電所 2号炉	備考
		(6) 津波波圧の比較 谷本式 (敷地高以深)	・設計方針の相違
		敷地高以深における断面二次元津波シミュレーション, 三次元津	【東海第二,女川2】
		波シミュレーション,水理模型実験(1,2号炉),既往の算定式(谷	設計方針の相違によ
		本式)により算定した波圧分布を第59図に示す。	る記載内容の相違
		3号炉及び1,2号炉の波圧分布の比較結果より,谷本式による	
		波圧分布が全ての波圧を包絡することを確認できたため,敷地高以	
		深の津波波圧算定には谷本式を用いる。	
		3号炉波圧分布(ケース③)	
		· - 谷本式 ■ 断面二次元津波シミュレーション ■ 三次元津波シミュレーション	
		1.2 1 0.8 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.6 -0.8 -1 -1.2 0 1 2 3 無次元最大波圧Pmax/pgaimax	
		1,2号炉波圧分布(ケース®)	
		・・・谷本式 ■ 断面二次元津波シミュレーション	
		■ 三次元津波シミュレーション ■ ケース® 平均 1.2 1 0.8 0.6 0.4	
		第59図 断面二次元津波シミュレーション,三次元津波シミュレ	
		ーション,水理模型実験(1,2号炉),既往の算定式(谷本式)	
		により算定した波圧分布	

女川原子力発電所 2号炉 (2019.11.6 版)	島根原子力発電所 2号炉	備考
	<u>(7) まとめ</u>	・設計方針の相違
	津波は波浪に比べて周期が長いことから,その波力は水位の上昇	【東海第二,女川2】
	による静水圧として評価される場合が多い。しかし、実際には流れ	設計方針の相違によ
	に伴う動的な影響や作用の継続時間による影響が考えられ,精度よ	る記載内容の相違
	く波力を評価するためには、水理模型実験等を行うことが望ましい	
	ため, 水理模型実験, 断面二次元津波シミュレーション及び三次元	
	津波シミュレーションを実施した。	
	敷地高以上(防波壁前面)においては、敷地標高や遡上水深等に	
	より津波波圧への影響が大きいことから,朝倉式に用いる通過波の	
	浸水深において、最大浸水深(津波高さ-敷地高さ)×1/2を用い	
	ることで,水理模型実験,断面二次元津波シミュレーション及び三	
	次元津波シミュレーションにより算定される波圧に対して保守性	
	を確保している。	
	敷地高以深(護岸前面)においては、水理模型実験、断面二次元	
	津波シミュレーション及び三次元津波シミュレーションの結果,い	
	ずれもばらつきの小さい線形の波圧分布となり,これらの実験や解	
	析手法の差異による波圧分布に有意な差異はない。また、3号炉の	
	水理模型実験では、敷地高以深の波圧を測定できていないが、護岸	
	前面で緩やかな水位上昇を示しており、1、2号炉の津波シミュレ	
	<u>ーション及び水理模型実験と同様な波圧分布になると考えられる</u>	
	ことから, いずれも谷本式により算定される波圧分布に包絡される	
	と判断した。以上のことから、津波波圧を谷本式で評価することの	
	保守性を確認した。	
	女川原子力発電所 2号炉 (2019.11.6 版)	(7) まとめ 津波は波浪に比べて周期が長いことから、その波力は水位の上昇による静水圧として評価される場合が多い。しかし、実際には流れに伴う動的な影響や作用の継続時間による影響が考えられ、精度よく波力を評価するためには、水理模型実験等を行うことが望ましいため、水理模型実験、断面二次元津波シミュレーション及び三次元津波シミュレーションと表施した。 敷地高以上(防波壁前面)においては、敷地標高や遡上水深等により津波波圧への影響が大きいことから、朝倉式に用いる通過波の浸水深において、最大浸水深(津波高さ一敷地高さ)×1/2を用いることで、水理模型実験、断面二次元津波シミュレーション及び三次元津波シミュレーション及び三次元津波シミュレーション及び三次元津波シミュレーション及び三次元津波シミュレーションの結果、いずれもばらつきの小さい線形の波圧分布となり、これらの実験や解析手法の差異による波圧分布に有意な差異はない。また、3号炉の水理模型実験では、敷地高以深の波圧を測定できていないが、護岸前面で緩やかな水位上昇を示しており、1、2号炉の津波シミュレーション及び水理模型実験と同様な波圧分前になると考えられることから、いずれも谷本式により算定される波圧分布に包絡されると判断した。以上のことから、津波波圧を浴本式で評価することのと判断した。以上のことから、津波波圧分布に包絡されると判断した。以上のことから、神波波圧を浴本式で評価することの

東海第二発電所(2018.9.12版) 備考 女川原子力発電所 2号炉(2019.11.6版) 島根原子力発電所 2号炉 ・設計方針の相違 (2) 防潮堤の設計で考慮する津波波圧の設定 5. 設計で考慮する津波波圧の設定 基準津波を対象とした津波波圧の確認結果及び不確かさを考 水理模型実験の結果, 科学的根拠に基づきソリトン分裂波や砕波 【東海第二,女川2】 慮した検討結果を踏まえ、保守的な設計を行う観点から、図36 ↑が発生しないことを確認した。また、津波波圧については、敷地高 設計方針の相違によ のとおり朝倉式①を参照して防潮堤の設計波圧として設定す 以上の波圧分布は直線型となり,敷地高以深の波圧分布については る記載内容の相違 る。なお、朝倉式は津波の通過波の浸水深に応じて波圧を算定 |海水位までは直線型,静水面以深では一定となり,津波波圧への有 する式であり、通過波の浸水深を入力津波水深(最大浸水深) 意な影響がないことを確認した。 の1/2と仮定して津波波圧を算定する。 断面二次元津波シミュレーション解析の結果,水理模型実験を再 現でき, 時刻歴波形, 水位分布及び水面勾配からソリトン分裂波や $p = \rho \cdot g \cdot (\alpha \cdot \eta - z)$ 砕波が発生しないことを確認した。また、波圧分布についても水理 ここで, 模型実験と同様に津波波圧への有意な影響はないことを確認した。 p : 津波波圧(kN/m²) ρ :海水の密度 (=1.03 t/m³) 三次元津波シミュレーション解析の結果,水理模型実験及び断面 g : 重力加速度 (=9.80665 m/s²) 二次元津波シミュレーションによる波圧分布と同等, 又は包絡され α :水深係数 (=3) ることを確認した。この結果より、島根原子力発電所の複雑な地形 η :浸水深(通過波の浸水深=入力津波水深の 1/2) や三次元的な流況による影響は認められないため,水理模型実験及 び断面二次元津波シミュレーションによる津波波圧は妥当である z : 陸上地面を基準とした上向の正の座標 (m) と判断した。 水理模型実験及び津波シミュレーション結果による津波波圧は、 既往の津波波圧算定式による津波波圧に包絡されることを確認し ▼ 入力津波高さ O.P.+25.0 m 海側| 山側 背面補強工 $2 \eta = 22.5 m$ 上記検討結果を踏まえ,防波壁等の設計で考慮する津波波圧を以 ▽ O.P.+1.43m(朔望平均満潮位) 下のとおり設定する。 図 36 津波波圧設定の考え方(鋼管式鉛直式の断面図) ・敷地高以上については、平面二次元津波シミュレーション解析 で設定した入力津波高さに基づき,朝倉式により津波波圧を設 【参考文献】 定し、敷地高以深については、平面二次元津波シミュレーショ 1) 朝倉良介・岩瀬浩二・池谷 毅・高尾 誠・金戸俊道・藤井直樹・ ン解析で設定した入力津波高さに基づき, 谷本式により津波波 大森政則(2000): 護岸を越流した津波による波力に関する実験 圧を設定する。 的研究,海岸工学論文集,第47 巻,pp. 911 - 915. ・設計用津波波圧の算定に用いる津波高さは、平面二次元シミュ 2) 石田暢生・森谷暢生・東喜三郎・鳥山拓也・中村英孝(2016): レーション結果より「EL.+12.6m」を用いる。 防潮堤に作用する津波波圧評価に用いる水深係数について、NRA 津波波圧設定フローを第60図に、波圧算定イメージ(3号炉前 技術報告, NTEC-2016-4001. 3) 気象庁(2011): 災害時地震・津波凍報 平成 23 年(2011 年) 面)を第61図に示す。 東北地方太平洋沖地震,災害時自然現象報告書2011年第1号. 4) 榊山 勉 (2012): 陸上遡上津波の伝播と構造物に作用する津波 波圧に関する研究、十木学会論文集 B2(海岸工学)、Vol. 68, No. 2, pp. 771 - 775.

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6 版)	島根原子力発電所 2号炉	備考
	5) 池谷毅・秋山義信・岩前伸幸(2013): 陸上構造物に作用する		・設計方針の相違
	津波持続波圧に関する水理学的考察, 土木学会論文集 B2(海岸工		【東海第二,女川2】
	学), Vol. 69, No. 2, pp. 816 - 820.		設計方針の相違によ
		平面二次元津波シミュレーション 防波壁等の設計に用いる津波高さ	る記載内容の相違
		【敷地高以上】 【敷地高以深】	
		第60図 津波波圧設定フロー 数計に用いる津波湾さ でEL.+12.6m 敷地高以上: 朝倉式により津波波圧算定 敷地高以来: 会本式により津波波圧算定	
		第61図 波圧算定イメージ(3号炉前面)	

波線・・記載表現、設備名称の相違(実質的な相違なし)


まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料27〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	備考
	添付資料 27	
	津波流入防止対策について	・評価条件の相違
		【柏崎 6/7,東海第二】
	1. 概要	島根2号炉は,浸水防
	内郭防護においては、海域と接続する低耐震クラス(浸水	護重点化範囲内に海域
	防止機能を除く)の機器及び配管が地震により損傷して保有	と接続する低耐震クラ
	水が溢水するとともに、損傷箇所を介して津波が流入する事	スの機器及び配管を設
	象を想定する。	置することによる流入
	ここでは、地震による配管損傷後に津波が襲来した場合の	防止対策を説明
	浸水防護重点化範囲への直接的な津波の流入に対する対策に	
	ついて説明する。	
	2. 海域と接続する配管	
	海域と接続する低耐震クラスの機器及び配管が設置される	
	浸水防護重点化範囲としてタービン建物(耐震Sクラスの設	
	備を設置するエリア), 取水槽循環水ポンプエリア及び取水槽	
	海水ポンプエリアがある。	
	浸水防護重点化範囲であるタービン建物(耐震Sクラスの	
	設備を設置するエリア), 取水槽循環水ポンプエリア及び取水	
	槽海水ポンプエリアに設置される海域と接続する低耐震クラ	
	スの機器及び配管を表 1, 図 1 に示す。なお, 海域と接続す	
	る機器及び配管については、外郭防護1の「取水路・放水路	
	等の経路からの津波の流入防止」において耐震Sクラスの機	
	器及び配管も含め特定しており、それらの機器及び配管と同	
	じである。	
	これらの機器及び配管については、地震により損傷した場	
	合には、その後襲来する津波が、損傷箇所を介し浸水防護重	
	点化範囲内に直接流入することから, 基準地震動 Ss による地	
	震力に対してバウンダリ機能を保持する等の設計とする。	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子	子力発電所 2号炉		備考
		表 1 海域と接続する基準 ンダリ機能を保持す	地震動Ssによる地震力に トる等の設計とする機器及で		
		海域と接続する低耐震クラス の機器及び配管を設置する浸 水防護重点化範囲	左記に設置する低耐震クラス の機器及び配管	耐震 クラス*	
			タービン補機海水系配管	Cクラス	
		タービン建物 (耐震Sクラスの設備を設置	原子炉補機海水系配管 (放水配管)	Cクラス	
		するエリア)	高圧炉心スプレイ補機海水系 配管(放水配管)	Cクラス	
			液体廃棄物処理系配管	Cクラス	
		取水槽循環水	循環水ポンプ及び配管	Cクラス	
		ポンプエリア	タービン補機海水系配管 タービン補機海水ポンプ及び	Cクラス	
		取水槽海水	配管	Cクラス	
		ポンプエリア	除じんポンプ及び配管	Cクラス	
		原子炉建物 原子炉建物 原子炉建物 原子炉建物 原子炉速池 のアークル	(R例) (R例) (R例) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R	雲Sクラス) ラスス) (耐震Cクラス)) は埋設配管を示す)	
		ラスの機器 3. 津波流入防止対策	器及び配管の設置概要		
			震動Ssによる地震力に対	してバウン	
		ダリ機能を保持する設	計とし,津波の流入を防止	:する。	
		タービン補機海水系	は, インターロックにより	ポンプ出口	
		弁を閉止するとともに、	,出口側配管の逆止弁によ	り津波の流	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		入を防止する (図3参照)。海域活断層に想定される地震によ	
		る津波襲来に係る時系列を図4に、日本海東縁部に想定され	
		る地震による津波襲来に係る時系列を図5に示す。	
		また、インターロックによるポンプ出口弁の閉止について	
		は、津波襲来前に確実に閉止するため、多重化・多様化を図	
		る。	
		液体廃棄物処理系については、出口側配管の逆止弁により	
		津波の流入を防止する。	
		原子炉補機海水系配管(放水配管)及び高圧炉心スプレイ	
		補機海水系配管(放水配管)については,基準地震動Ssに	
		よる地震力に対してバウンダリ機能を保持する設計とし、津	
		波の流入を防止する。	
		除じん系については, 基準地震動 S s による地震力に対し	
		てバウンダリ機能を保持する設計とし、津波の流入を防止す	
		る。	
		この結果、浸水防護重点化範囲であるタービン建物(耐震	
		Sクラスの設備を設置するエリア), 取水槽循環水ポンプエリ	
		ア, 取水槽海水ポンプエリアにおいて, 循環水系, 原子炉補	
		機海水系,高圧炉心スプレイ補機海水系及び除じん系の機器	
		及び配管は地震により破損することなく、タービン補機海水	
		系、液体廃棄物処理系については、地震により配管が損傷し	
		た後に、津波が襲来した場合でも、タービン建物(耐震Sク	
		ラスの設備を設置するエリア), 取水槽循環水ポンプエリア及	
		び取水槽海水ポンプエリアに流入しない。対策及び取・放水	
		路からの流入防止結果を表2に、対策概要図を図2に示す。	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	備考
相崎刈羽原子力発電所 6/7 7 5分 (2017.12.20 版)	# (2018. 9.12 版)	備考

波線・・記載表現、設備名称の相違(実質的な相違なし)

まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料28〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		添付資料 28	
		タービン建物 (耐震 S クラスの設備を設置するエリア) 及び取水	・設備の配置条件の相違
		槽循環水ポンプエリアに設置する耐震 S クラスの設備に対する浸	【柏崎 6/7,東海第二】
		水影響について	島根2号炉はタービ
			ン建物等に非常用海水
		1. 概要	系配管等の津波防護対
		耐震 S クラスの設備を内包する建物及び区画として、原子炉建	象設備を設置している
		物, タービン建物 (耐震Sクラスの設備を設置するエリア), 廃棄	ことによる影響評価を
		物処理建物 (耐震Sクラスの設備を設置するエリア),制御室建物	実施
		(耐震Sクラスの設備を設置するエリア), 取水槽海水ポンプエリ	
		ア,取水槽循環水ポンプエリア及び屋外配管ダクト (ディーゼル	
		燃料貯蔵タンク~原子炉建物、タービン建物~排気筒、タービン	
		建物~放水槽)並びに非常用ディーゼル燃料設備及び排気筒を敷	
		設する区画があり、これらの範囲を浸水防護重点化範囲と設定し	
		ている。	
		このうち、タービン建物(耐震Sクラスの設備を設置するエリ	
		ア)及び取水槽循環水ポンプエリアについては、海域と接続する	
		低耐震クラスの機器及び配管であるタービン補機海水系等を設置	
		しており, 地震時には配管等の破損による保有水の溢水及び破損	
		箇所を介した津波の流入を想定する範囲となる。	
		そのため、タービン建物(耐震Sクラスの設備を設置するエリ	
		ア)及び取水槽循環水ポンプエリアに設置する耐震 S クラスの設	
		備について, 地震・津波時の浸水状況を考慮した浸水に対して,	
		同区画に設置される津波防護対象設備の浸水による機能喪失要因	
		の網羅的な抽出を踏まえ,浸水による影響がないことを確認する。	
		タービン建物(耐震Sクラスの設備を設置するエリア)及び取水	
		槽循環水ポンプエリアに設置する耐震Sクラスの設備を表1に,	
		その配置を図1に示す。	
		なお、タービン建物(耐震Sクラスの設備を設置するエリア)	
		及び取水槽循環水ポンプエリアに設置する耐震Sクラスの配管	
		に、電動弁等の浸水により機能喪失する設備は設置していない。	
		The second secon	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)		島根原子力発電所 2号炉		備考
		表 1 タービン	建物(耐震Sクラスの設備を設	(置するエリア)及	
		び取水槽循環水	ポンプエリアに設置する耐震S	クラスの設備	
		設置区画	設備		
			原子炉補機海水系	配管・手動弁	
				ケーブル	
		タービン建	高圧炉心スプレイ補機海水系	配管・手動弁	
		物(耐震Sクラ スの設備を設		ケーブル	
		置するエリア)	非常用ディーゼル発電機系	配管・手動弁	
			高圧炉心スプレイ系ディーゼ ル発電機系	配管・手動弁	
				ケーブル	
			非常用ガス処理系	配管・手動弁	
			原子炉補機海水系	配管・手動弁(ス トレーナ含む)	
		取水槽循環	731 3 77 IIII VAIDA/31 / II	ケーブル	
		水ポンプエリ ア		配管・手動弁(ス	
			高圧炉心スプレイ補機海水系	トレーナ含む)	
				ケーブル	
		取水情商水ポンフェリア 取水情商水ポンフェリア	: 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1	:置するエリア) 及	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)		ı	島根原子力発電所	2 号炉		備考
		2. 耐震	Sクラスの記	設備に対する浸水に	こよる機能喪	是失要因	
		抽出る	された耐震S	クラスの設備の浸	水による影	響有無を評価す	
		るため,	機能喪失要	区を抽出した。			
		タート	ごン建物(耐	対震Sクラスの設備	を設置する	エリア)及び取	
		水槽循环	環水ポンプエ	リアにおける地震	・津波時の	浸水状況を踏ま	
		えた範囲	国に設置する	耐震Sクラスの設	備に対する	浸水による機能	
		喪失要因	団を表2に示	ます。津波流入によ	り生じる漂	流物による配管	
		等の損傷	傷の可能性に	こついては、ターヒ	ン建物(耐	震Sクラスの設	
		備を設置	置するエリア) 及び取水槽循環	水ポンプエ	リアに津波を流	
		入させた	ない対策(添作	付資料 27 参照) を第	実施すること	から,当該エリ	
		アに津渡	皮の流入はな	く、漂流物は生じ	ない。		
		表?	耐電Sカラ	スの設備に対する	浸水による	機能喪失要因	
			10172077		1	喪失要因	
		設備	設置区画	系統	水圧による損傷	電気接続部の没水	
				原子炉補機海水系	_		
			タービン建物	高圧炉心スプレイ 補機海水系			
			(耐震Sクラスの設備を設	が用用が大陸生が	地震・津波時		
		配管・引動弁	ろの設備を設 置するエリ ア)	発電機系	る水頭圧 (外		
		(ストレー ナ含む)	-	高圧炉心スプレイ系 ディーゼル発電機系	配管の構造 的損傷の可	_	
			Fig14. 1#	原子炉補機海水系	能性がある。		
		取水槽 循環水ポンプ エリア	高圧炉心スプレイ	_			
			£ 9 7	補機海水系			
			タービン建物	原子炉補機海水系			
			(耐震Sクラスの設備を設置するエリ	高圧炉心スプレイ 補機海水系	地震・津波時 の浸水による	地震・津波時の 浸水が電気接続 部に接することで、機能喪失す る可能性があ る。	
		ケーブル		高圧炉心スプレイ系 ディーゼル発電機	- 水頭圧(外圧) により,ケー	で 機能率生士	
				ディーゼル発電機	ブルの構造的 損傷の可能性	る可能性があ	
			取水槽 循環水ポンプ	7,7 ° 77 111 1521 1373 1571	がある。		
			エリア	高圧炉心スプレイ 補機海水系			
		マ 大総合5	喪失要因に対	対する証価			
				水りの計画	抽出された:		
			・ 年仮時の侵 平価を実施し		лшЩ С 4 0 / С/		
		XJ 9 のi	TШで 天旭 し	//_0			

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		(1) 水圧による損傷に対する評価及びケーブルの電気接続部の	
		没水に対する評価	
		タービン建物(耐震Sクラスの設備を設置するエリア)に設	
		置される耐震Sクラスの設備の水圧による損傷に対する評価及	
		びケーブルの電気接続部に対する評価については,「第9条 溢	
		水による損傷の防止等 9.3 タービン建物に設置されている	
		防護対象設備について」において説明しており、地震・津波時	
		の浸水による水圧に対して機能喪失しないこと,また電気接続	
		部がないことを確認している。同様に、取水槽循環水ポンプエ	
		リアに設置される耐震Sクラスの設備の水圧による損傷に対す	
		る評価については、「第9条 溢水による損傷の防止等 添付資	
		料1 機能喪失判定の考え方と選定された溢水防護対象設備に	
		ついて」において説明しており、地震・津波時の浸水による水	
		圧に対して機能喪失しないことを確認している。具体的な内容	
		を図2、図3に示す。	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版) 東海第二発電所(2018. 9. 12 版) ,	島根原子力発電所 2号炉	炉	備考
(2) 配管及びか	ーブルの溢水影響について ついて 9.2 項の評価より、タービン建物にまする水頭圧を外圧条件とした。 「AEに対する健全性評価の例を表9-20に こめるため、配管の評価に包含される。 こちる許容圧力を算出し、没水時の外圧に はシース(難燃性特殊耐熱ビニル)で覆 機能変失しない。また、海水に対する外 機能変失しない。また、海水に対する外 機能変失しない。また、海水に対する外でであるから、外 にする接続部(端子部)がないことを確じ。 タービン建物に敷設される配管の外圧 高圧が心スティーを関帯・エールのでである。 の タービン建物に敷設される配管の外圧 高足管 に対している。 なお、没水するケーブ にする接続部(端子部)がないことを確じ。 タービン建物に敷設される配管の外圧 高足管 に対している。 200 年間 でである。 の 207.4 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5	に示す。なお、弁は配管。配管の製造最小厚さかに対する酸全性を確認し 覆った構造であり、非常は一般があるため、没水時 る影響については、海豚等 がルについては避水によ 液形した。 *EEに対する許容圧力 *原圧の心スプレイ系でよー *理系配管 *60.5 406.4 5.5 9.5 4.81 8.31 110 34 *STP*12 STP*12 0.06 0.06 11.6 0.92 ○ 2007) ② 2007) ② 2007) ② 2007)	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		2.3 版水影響評価の対象外とする理由 (1)「①酸水により機能を喪失しない」による対象外	建全性を までの階
		「発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007」 き算出した機器の外圧に対する許容圧力が設水水位による外圧を上回 健全性を維持できる。なお、弁は配管に比べ内厚であるため、配管の計 含される。 表 2-5 配管の資本時の外圧による影響評価結果(代表例)	に基づ るため、
			Cr. de data
			反水槽
			A-RSW-2A
			711.2
			9,5
			8. 5
		付録材料回 表 Part7 に より定まる値 B 15.9 89.5	16. 6
			794.44.27
			SM41C
			0, 15
		木頭圧[JPa] 0.08 0.07 許容圧力>木頭圧判定 ○ ○	0.10
		章1 評価を実施するにあたり、各連権の対象配管のうち、保守的に外径(bo)/根原(t)から配管を代表として決定した。なお、評価では内圧は大気圧とした。 ②2 「発龍用原子力設備規格、設計・建設規格(JSMES NC1-2006/2007) PVC-3411 直管 圧を受ける直管」を押用した以下の式を用い、製造上身小導きから評算圧力を算定 $t_S = \frac{3P_eD_0}{4B}$	・ 般大とな 計
		9 条-別約 1-級付-34	
		図3 取水槽循環水ポンプエリアに設置される耐震 5	Sクラスの
		設備の水圧による損傷に対する評価	

波線・・記載表現、設備名称の相違(実質的な相違なし)

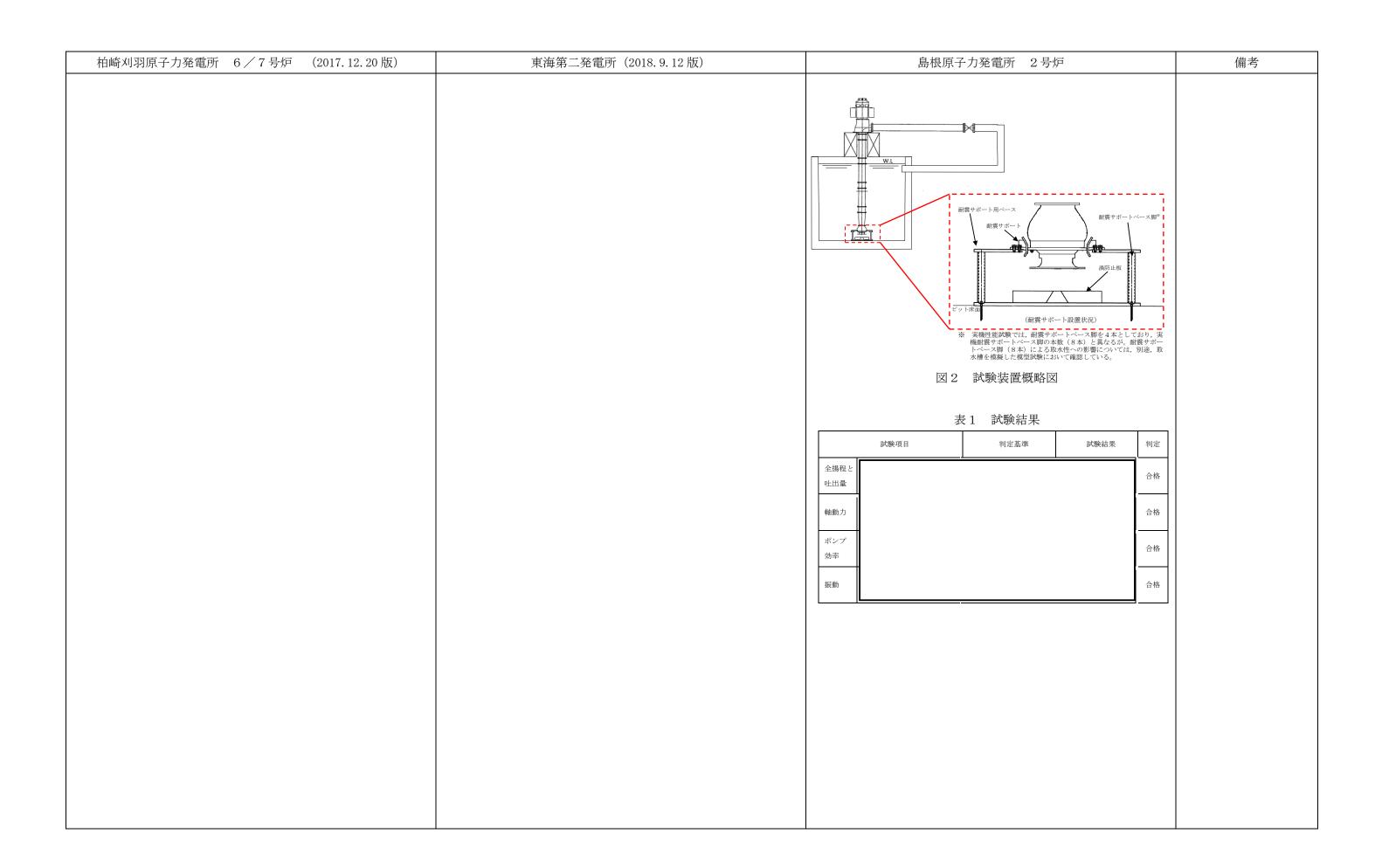
まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料31〕

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		添付資料 31	
		施設護岸の漂流物評価における遡上域の範囲及び流速について	・資料構成の相違
			【柏崎6/7,東海第二】
		1. 概要	島根2号炉は荷揚場
		非常用冷却海水系の海水ポンプの取水性へ影響を及ぼす可能性	にある設備等の漂流評
		については、施設護岸の設備等が漂流物となる可能性を踏まえ評	価のため、遡上域の範囲
		価している。ここでは、施設護岸の設備等が漂流物となる可能性	及び流速について示し
		の評価のうち滑動評価に用いる流速を確認する。	ている
		2. 検討内容	
		遡上域の範囲(最大水位上昇量分布)を保守的に評価するため,	
		地震による荷揚場周辺の沈下及び初期潮位を考慮した津波解析を	
		実施した。解析に当たっては、荷揚場付近の水位上昇量が大きい	
		基準津波1 (防波堤有無)を対象とした。解析条件を以下に示す。	
		・荷揚場周辺の沈下については、防波壁前面を一律1m沈下	
		させたケースを用いる。	
		・初期潮位については,朔望平均満潮位+0.58m に潮位のばら	
		つき +0.14m を考慮する。	
		基準津波1 (防波堤有無) における荷揚場付近の最大水位上昇	
		量分布(拡大図)を図1に示す。図1より、防波堤有りに比べ、	
		防波堤無しの方が最大水位上昇量は大きく、遡上範囲が広いこと	
		から、防波堤無しの流速を評価する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉 10-10-10-10-10-10-10-10-10-10-10-10-10-1	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		3. 確認結果 遡上域における流速分布を図2に、主な荷揚場漂流物の配置を図3に示す。 流速の抽出にあたっては、荷揚場漂流物の配置を踏まえ、遡上 域である荷揚場周辺の12 地点(図4参照)を選定し各地点の最大 流速を抽出した。 図2に示すとおり、遡上域における流速は概ね8.0m/s以下であるが、遡上域の一部において8.0m/sを超える流速が確認できる。 各地点における最大流速抽出結果を表1に示す。 表1に示すとおり、東西方向の流速は荷揚場へ押し波として遡上する西方向(取水口反対方向)の流速が速く支配的であることがわかる。一方、東方向(取水口方向)の流れとなる引き波では、地点10に示す4.8m/sが最大流速となるが、漂流物評価に用いる 流速は、最大流速(11.9m/s)とする。最大流速を示す地点7及び 取水口方向への最大流速を示す地点10について、浸水深・流速の 時刻歴波形及び各地点における最大流速発生時の水位分布・流速 ベクトルをそれぞれ図5、図6に示す。 なお、図5に示すとおり、最大流速(11.9m/s)を示す地点における8.0m/sを超える時間は極めて短い(1秒以下である)。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		図3 主な荷揚場漂流物の配置	
		(m/s) (m/s) (a) (a) (a) (b) (b) (a) (c) (c) (d) (d) (d) (d) (d) (e) (e) (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	

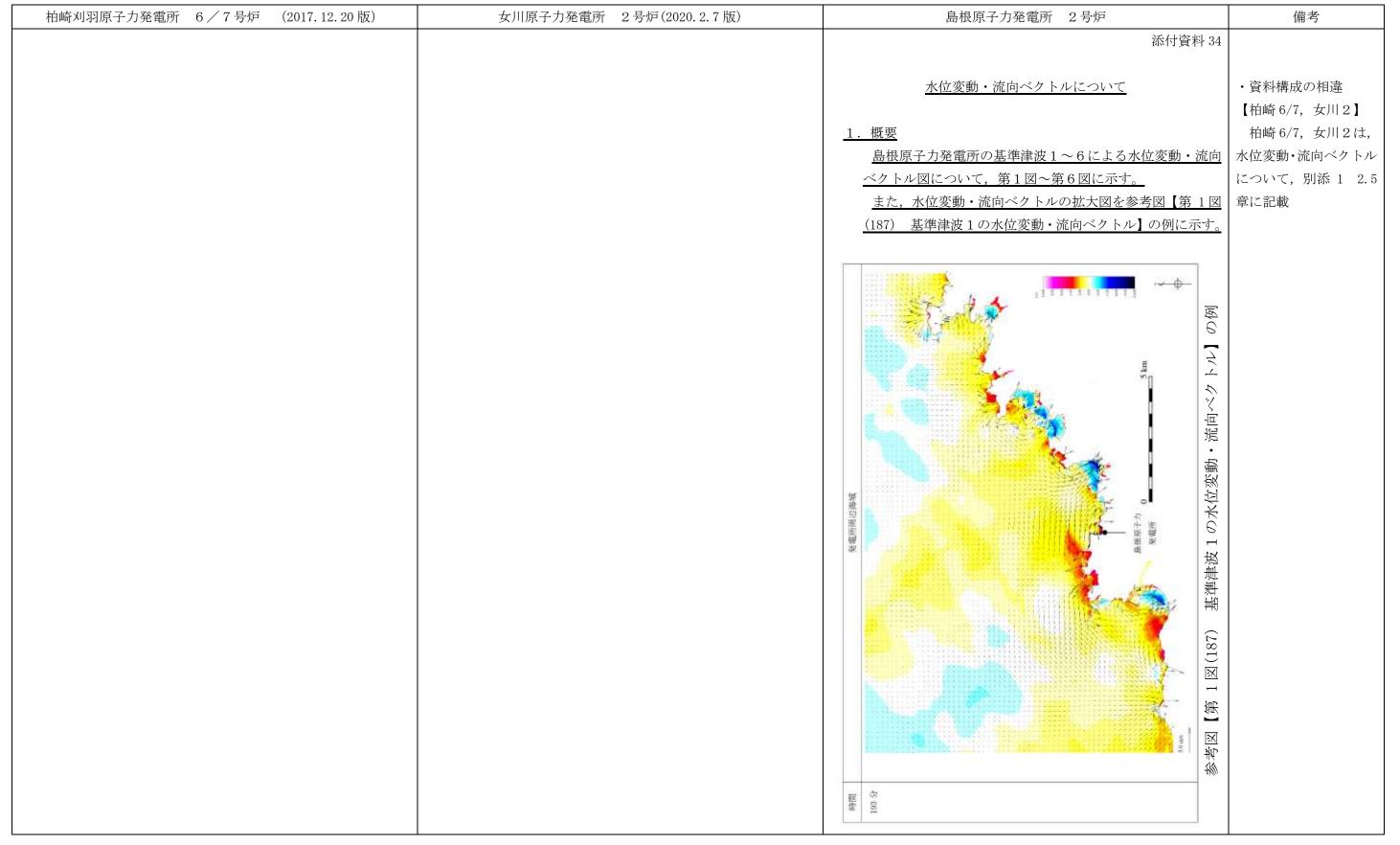

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)			島根原	子力発電所	2 号炉		備考
				表1 名	各地点の流;	東評価結果	Į.	
			\/v#	方向 Vy方向		全方向最大流	速(m/s)	
			地点 Uxプ 地点 最大 (m/	流速 最大流速 /s) (m/s)		Vy方向 流速	全方向流速 (√Vx²+Vy²)	
			1 -4	.2 2.1	-4.2	1.9	4.6	
		I	2 -4		-4.0	1.4	4.2	
			3 -6. 4 -3.		-6.7 -3.2	-0.8 3.4	6.8 4.6	
		<u> </u>	5 -3.	.6 3.8	-3.6	3.7	5.1	
		_	6 -5. 7 -11		-5.5	2.7	6.1	
		I	7 -11 8 -5		-11.8 -5.3	1.1	11.9 5.4	
			9 -5		-5.9	1.6	6.1	
			10 4.		4.8	-7.6	9.0	
		_	11 -8 12 -2		-8.9 -1.4	-1.2 5.1	9.0	
		_		<u>.</u>				
							- 5a	
		3 -					0-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10	
		2 -				1	9.5	
		(1) (1) (2)		1 1	9	1/4	2 10	
		- A		-				
				1	M			
		180		184 186 18		194		
		4 =		時間(19)			l H a lm	
		2			──東西方向高速(m/s)			
		9.9			m	V		
		1 4 -				+		
		4					13311	
		-30		100				
		12 +- 180	182	184 186 18	a 190 190	294		
					- 南北方向流道(min)			
		2		A M	MACAIN ALBERTON			
		3 4					A LEV	
		8 4 8 .					U L ₁	
		4					(最大流速発生時刻(約190分)における水 位分布・流速ベクトル)	
		30						
		190	182	184 186 18	(最大流速発生時刻(約	190 分))		
		図 5	地点7	(最大流速を	を示す地点)	における	浸水深・流速時刻	
		歷波	皮形及び最	大流速発生	時刻におけ	る水位分を	布・流速ベクトル	

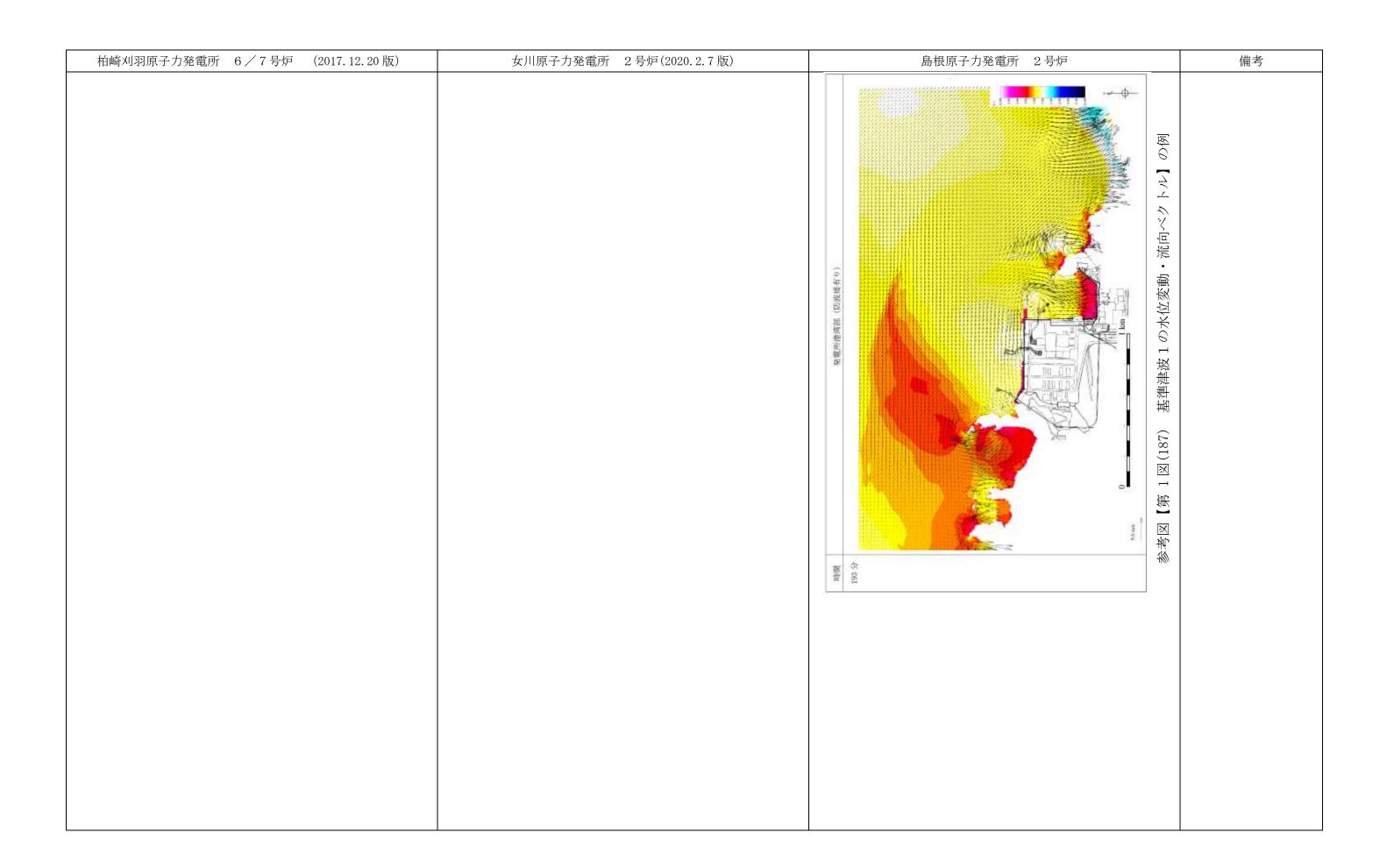
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		図 6 地点 10 (取水口方向への最大流速を示す地点) における 浸水深・流速時刻歴波形及び最大流速発生時刻における水位分 布・流速ベクトル	

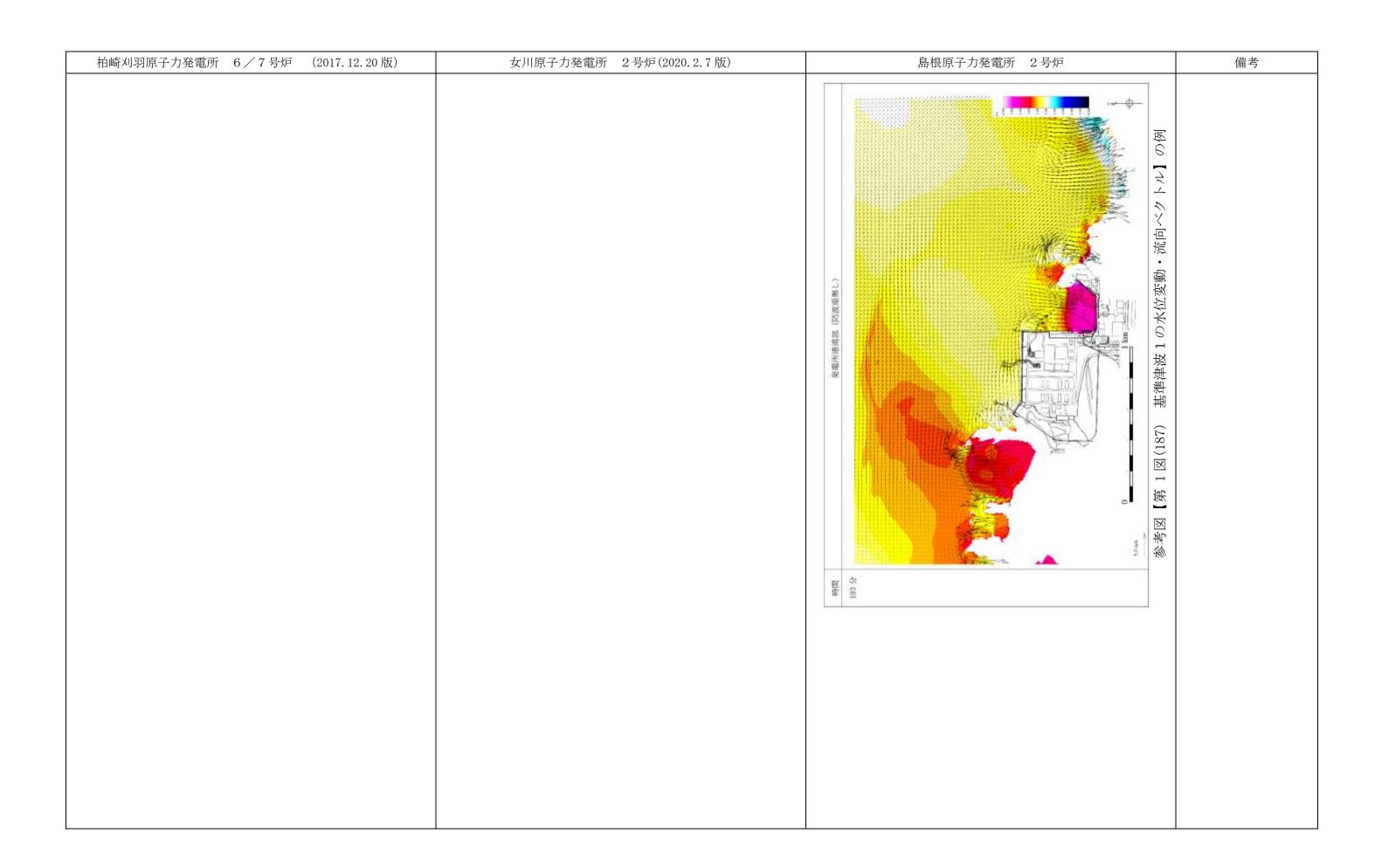
波線・・記載表現、設備名称の相違(実質的な相違なし)

まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料32〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		添付資料 32	
		海水ポンプの実機性能試験について 1. はじめに ポンプ長尺化に伴うベルマウス下端への耐震サポート設置による影響については、実機性能試験によりポンプ性能に影響を及ぼさないことを確認した。以下にその内容を示す。 2. 耐震サポートについて 耐震サポートは海水ポンプ長尺化に伴う耐震性確保のために、ベルマウス部に取付けるものである。耐震サポートの構造を図1に示す。	・設備の相違 【柏崎 6/7, 東海第二】 島根 2 号炉は海水ポンプの長尺化による影響評価を実施
		図 1 耐震サポート構造図 (RSW ポンプの例) 3. 実機性能試験について 実機ポンプを、耐震サポートを設置した状態でピットに設置	
		し、ポンプ性能(全揚程と吐出量、軸動力、ポンプ効率、振動)が、判定基準を満足していること及びポンプが安定した運転状態であることを確認した。試験装置の概略図と試験時における耐震サポート設置状況を図2に、確認結果を表1に示す。	


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		参考	
		原子炉補機海水ポンプの取水性能試験	
		1. 概要	
		原子炉補機海水ポンプ(RSWポンプ)の取水性能を確認す	
		るため、実機RSWポンプを用いた試験を実施した。実機RS	
		Wポンプ取水性能試験では、基準津波襲来による引き波を摸擬	
		した水位低下時の取水可能水位を確認した。	
		その結果、水位低下中においても連続渦は確認されず、RS	
		Wポンプベルマウス下端(EL-9.3m)付近まで取水が可能である	
		ことを確認した。	
		ここでは、その試験内容を示す。	
		2. 原子炉補機海水ポンプ(RSWポンプ)の取水試験につい	
		a. 試験内容	
		基準津波襲来による引き波を摸擬した取水槽における時系列	
		を想定し、模擬試験水槽の水位を徐々に低下させ、RSWポン	
		プの運転パラメータ等を確認した。津波を摸擬した試験水槽の	
		水位変化とRSWポンプの試験確認項目を表1に示す。	
		表 1 津波を摸擬した試験水槽の水位変化とRSWポンプの試	
		験確認項目	
		津波時の2号取水槽の想定時系列	
		取水槽水位 取水槽の状態 試験水槽の状態 試験確認項目	
		【引き波】	
		【引き波】 ・RSW ポンプによる ・RSW ポンプと水位調整 ・RSW ポンプの取水可能水位	
		取水槽取水管下端水 取水槽貯留構造部の ポンプにより試験水槽 (取水停止水位) 位(EL-7.3m)~ 水位低下 ・RSW ポンプ流量、電流等ポンプ運転パラメータ	
		水位	


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	B根原子力発電所 2号炉 b. 試験結果 図1に示す試験装置を用い、ポンプ取水性能試験を行った。 試験時の状態を図2に、試験中のポンプ流量と水位の関係を 図3に示す。RSWポンプは、RSWポンプベルマウス下端 (EL-9.3m) 付近まで定格流量を取水し、その後、再冠水して も、定格流量が取水可能であった。また、その他の運転パラメータについても、水位低下中に連続渦などは確認されず、 運転試験後に実施したポンプ開放点検による外観点検でも部品に異常は確認されなかった。	備考
		図 2 試験時の状態	


柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
			_
		図3 試験中のポンプ流量と水位変化	_

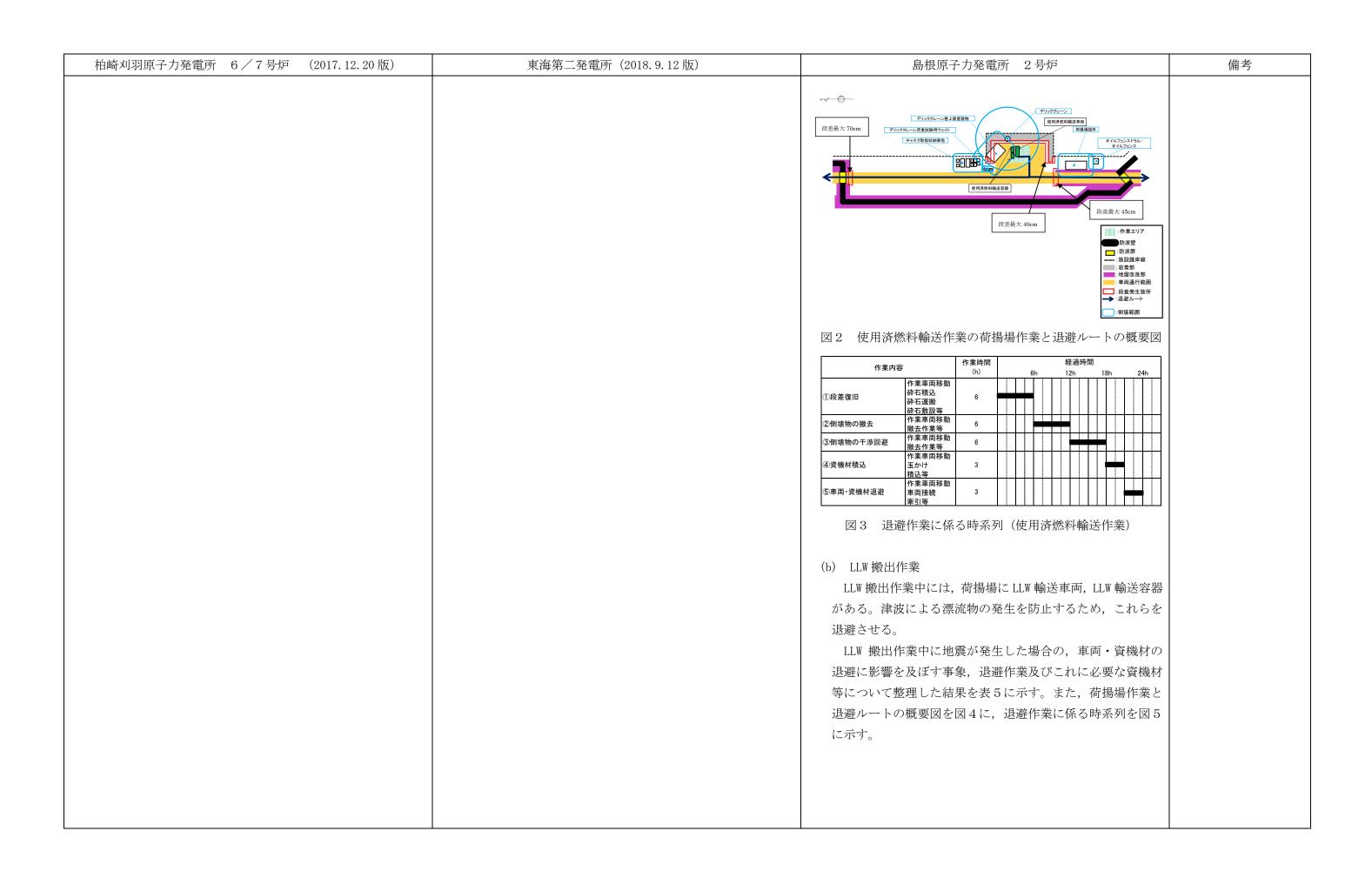
波線・・記載表現, 設備名称の相違(実質的な相違なし)

まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料34〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
		第1図(1) 基準津波1の水位変動・流向ベクトル	(以降,同様な図であり記載を省略する。)

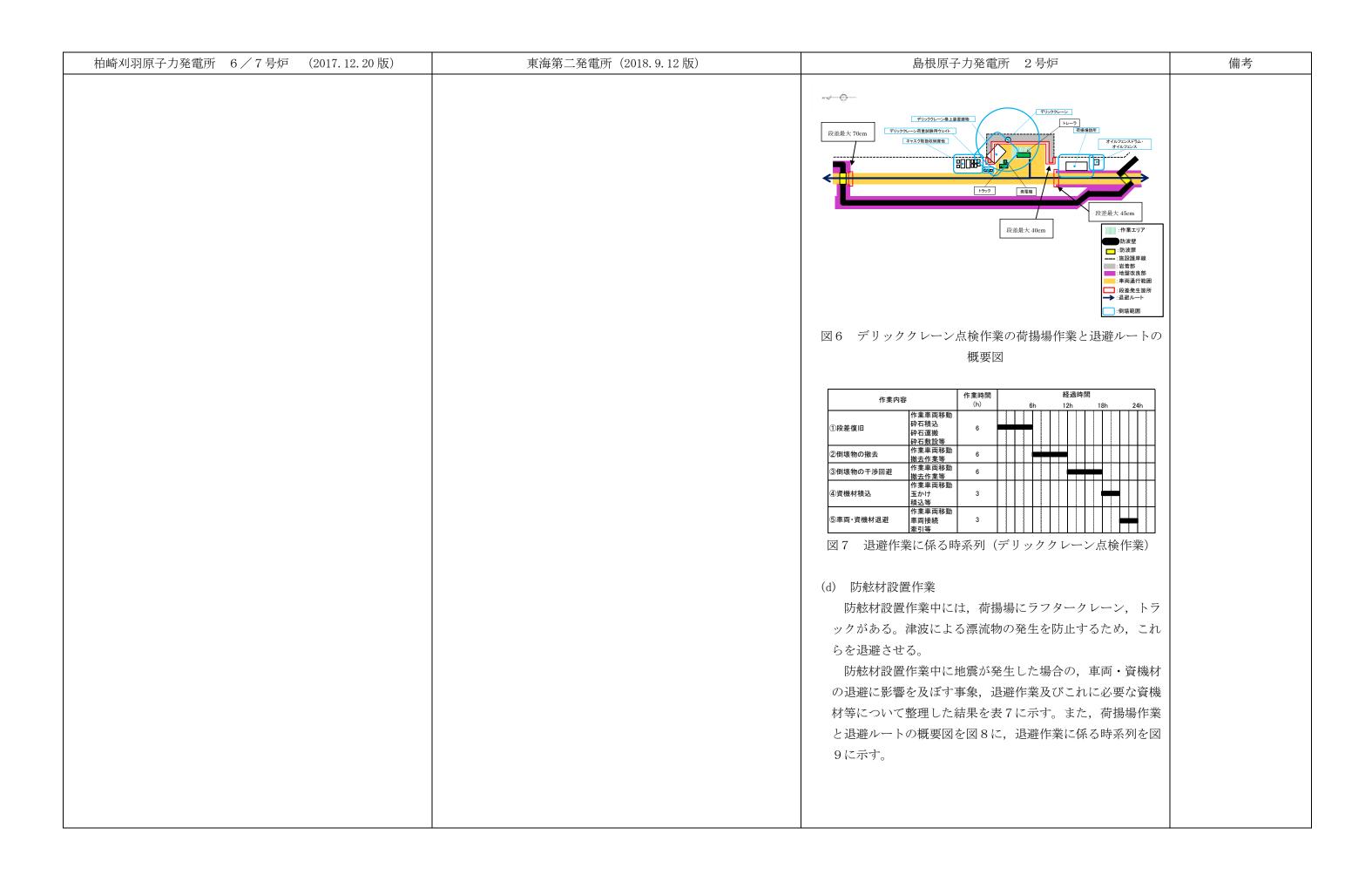
波線・・記載表現、設備名称の相違(実質的な相違なし)

まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料35〕


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		添付資料 35	
		荷揚場作業に係る車両・資機材の漂流物評価について	・資料構成の相違
			【柏崎 6/7, 東海第二】
		1. 概要	島根2号炉は荷揚場
		荷揚場では、使用済燃料輸送に係る作業や低レベル放射性廃	作業に係る車両・資機材
		棄物 (LLW) の輸送に係る作業等を定期的に実施することから,	の漂流物評価について
		荷揚場作業中の地震または津波の発生を想定し、荷揚場作業に	資料を作成
		用いる車両・資機材が津波により漂流物となるか評価する。	
		2. 評価する基準津波と地震影響	
		島根原子力発電所において想定する基準津波のうち、海域活	
		断層から想定される地震による津波は荷揚場に遡上しないこと	
		から、日本海東縁部に想定される地震による津波に対して評価	
		を実施する。	
		評価にあたっては、日本海東縁部に想定される地震による津	
		波については、波源が敷地から離れており地震による敷地への	
		影響はないが、敷地近傍の震源による地震が発生した後に、独	
		立した事象として日本海東縁部に想定される地震による津波が	
		発生し、襲来することも想定し、「(1) 荷揚場作業中に津波が	
		発生する場合」と「(2) 地震が発生し、その後独立事象として	
		津波が発生する場合」を評価する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		3. 荷揚場作業に係る車両・資機材	
		定期的に実施する荷揚場作業に係る車両・資機材を表1に示	
		す。	
		表 1 荷揚場作業に係る車両・資機材	
		作業項目 作業頻度 種類 名称 個数 質量	
		①使用済燃料輸送作 2回/年 車両 輸送車両 2 約 32t 業 程度 資機材 使用済燃料キャスク 2 約 93t	
		②LIW(低レベル放射 2回/年 車両 輸送車両 4 約11t	
		性廃棄物) 搬出作業 程度 車両 フォークリフト 2 約 17t 性廃棄物) 搬出作業 程度 資機材 LLW 輸送容器 10* 約 1t	
		車両 トラック 1 約 5t	
		③デリッククレーン 1回/年 車両 ラフタークレーン 1 約 39t 点検作業 程度 車両 トレーラー 1 約 21t	
		資機材 発電機 1 約8t	
		④防舷材設置作業 大型船舶入 準両 ラフタークレーン 2 約 25t 港の都度 車両 トラック 1 約 5t	
		※うち8個は輸送車両に積載	
		4. 評価内容	
		(1) 荷揚場作業中に津波が発生する場合	
		荷揚場作業中に、日本海東縁部に想定される地震による津波が	
		発生した場合、地震発生後に発電所へ津波が到達するまでの時間	
		は約 110 分である。この間に、荷揚場作業に用いている車両・資	
		機材が荷揚場から防波壁内に退避可能か評価する。	
		各荷揚場作業において、荷揚場に仮置きする資機材とその個数	
		及び車両等への積載時間を以下に、また退避に要する時間を表2	
		に示す。各荷揚場作業における、仮置き資機材の車両等への積載	
		時間, 車両退避時間(約10分), 防波扉の開放・閉止時間(開放・	
		閉止各約10分(電動))から求まる退避時間は、津波到達時間(地	
		震発生後約110分(電動))がおれる返避時間は、洋波到達時間(地震発生後約110分)より短く、車両・資機材の退避は可能である。	
		展元工队が110分)より並く、平岡 貝城内の超越は当能である。	
		① 使用済燃料輸送作業	
		荷揚場に仮置きする使用済燃料キャスクは、デリッククレ	
		ーンを用い使用済燃料輸送車両に積載して退避する手順とし	
		ている。	
		【仮置き資機材と積載時間】	
		使用済燃料キャスク個数:2個	
		輸送車両への積載時間:15分/個	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		② LLW 荷役作業	
		荷揚場に仮置きする LLW 輸送容器は、輸送船のクレーンを	
		用い、輸送船に積載し退避する手順としている。	
		【仮置き資機材と積載時間】	
		LLW 輸送容器個数: 2個	
		輸送船への積載時間:5分/2個**	
		※: LLW 輸送容器は2個ずつ輸送船へ積載	
		③ デリッククレーン点検作業	
		荷揚場に仮置きする発電機は,ラフタークレーンを用いト	
		ラックに積載して退避する手順としている。	
		【仮置き資機材と積載時間】	
		発電機個数:1個	
		トラックへの積載時間:10 分/個	
		④ 防舷材設置作業	
		防舷材については,「2.5 水位変動に伴う取水性低下による	
		重要な安全機能への影響防止」において、漂流物として抽出	
		し取水性へ影響を与えないことを確認している。また、作業	
		に伴う車両については、退避する手順としている。	
		表 2 退避に要する時間	
		作業項目 防皮原開 資機材の 東南遊 防疫原閉 合計 評価結果	
		① 使用 洛傑 料 輸 洋作	
		新 30 分 約 50 分 ②LLX (低レベル放射	
		(佐庭東称) 機出作業 約10分 ⁸¹ 約5分 ⁸¹ 約10分 約10分 約20分 (約110分 までに返避	
		③デリッケクシーン 点輪作業 約10分 約30分 可能)	
		(正防舷材設置作業 — 約20分	
		※1 資機材の積載、車両逃避と同時に防波運の標作業を実施するため、合計には含まない。 ※2 輸送船へ積載するため、合計には含まない。	
		(2) 荷揚場作業中に地震が発生し、その後独立事象として津波	
		が発生する場合	
		敷地近傍の震源による地震が発生した後に、独立した事象とし	
		て日本海東縁部に想定される地震による津波が発生することを想	
		定する。	
		荷揚場作業中に、敷地近傍の震源による地震が発生した場合、	
		門物物に未生に、放地型防り長你による地長が発生した場合。	


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		荷揚場の沈下や車両の故障等が想定されるが、地震により荷揚場	
		の沈下や車両の故障等が生じた場合においても、荷揚場の復旧や	
		車両の牽引等により、津波襲来までに車両・資機材が荷揚場から	
		防波壁内に退避可能か評価する。	
		a. 地震による影響	
		荷揚場作業中に地震が発生する場合の車両・資機材の退避への	
		影響及びこれらへの対応のための退避作業について整理した結果	
		を、表3に示す。	
		表3 地震による車両・資機材の退避への影響と退避作業	
		#無による情傷場への影響 車両・資機材の過程への影響 過避作業	
		④資機材の車両積込 (④資機材の車両積込作業により, 資機材の 退避を可能とする。 ⑤車両退避作業により, 車両及び資機材	
		⑤車両退避 の単両退避作業により、単両及び負機付 の退避を実施する。 作業完了	
		図 1 荷揚場からの車両・資機材の退避作業手順	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)			島根原子力発	電所 2号炉		備考
		(a) 使用済燃料輸送作業 使用済燃料輸送作業中には、荷揚場に使用済燃料輸送車両、使 用済燃料輸送容器がある。津波による漂流物の発生を防止するた め、これらを退避させる。 使用済燃料輸送作業中に地震が発生した場合の、車両・資機材 の退避への影響、退避作業及びこれに必要な資機材等について整 理した結果を表4に示す。また、荷揚場作業と退避ルートの概要 図を図2に、退避作業に係る時系列を図3に示す。					
		表 4	地震によ	てる車両・資機材 (使用落燃	すの退避への影 [§] 料輸送作業)	響と退避作業	
		荷揚場込 避ルート への影響 登機材へ の影響	の転倒による干 渉 荷楊楊常被設備 の転倒による資 機材への干渉 資機材の転倒 荷楊楊常被設備 の転倒による車	送避への影響 段	逃避作業の内容 ・	 トラック ・ホイールローダ ・ホイールローダ ・クレーン ・玉かけ資機材 ・溶析器 ・トラック ・クレーン ・広かけ資機材 ・使用済燃料輸送車両または代替可能な連鎖車両 ・クレーン ・エかけ資機材 ・溶析器 	
			車両の鼓隊	できない可能性がある。 油瀬和竿で自走不可になる可能性がある。 ⑤	る。 ・ 金引により追離を実験する。	・トラック ・使用済燃料輸送車両または代 替可能な牽引車両 ・牽引管機材	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		表 5 地震による荷揚場からの退避への影響と退避作業 (LLW 搬出作業)	
		地震による荷場場への影響 退避作業の内容 退避作業に必要な資機材等 一般	
		透しまする。 次施する。 次加揚場常設設備の撤 ・クレーン 大田野 新述 大田野	
		可能性がある。	
		車両の赦障 油漏れ等で自走不可にな ・率引により逃避を実 ・率引車両 ・率引資機材 ・ 本引資機材 ・ 本引益機材 ・ 本引益体 ・ 本引益体 ・ 本引益機材 ・ 本引益機材 ・ 本引益体 ・ 本引益機材 ・ 本引益権材 ・ 本引益機材 ・ 本引益権材 ・ 本引益権利 ・ 本引益権利 ・ 本	
		(日本) 1979 (1970 - 19 世) 1979 (1970 - 1970	
		 段差最大 40cm 防波壁 防波壁 防波厚 施設護岸線 岩着部 地盤改良部 車商通行範囲 段差発生箇所 」。 過避ルート (付装範囲 	
		図4 LLW 搬出作業の荷揚場作業と退避ルートの概要図	

			. 	Ι	gree to
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)		色電所 2号炉		備考
		作業内容 作業時間 (h)	経過B 6h 12h	寺間 18h 24h	
		作業車両移動 作業車両移動 中石積込 6			
		碎石運搬 碎石敷設等	000000000000000000000000000000000000000		
		②倒壊物の撤去 作業車両移動 撤去作業等 6			
		③倒壊物の干渉回避 作業車両移動	-		
		作業車両移動 ④資機材積込 玉かけ 3 積込等	000000000		
		(⑤車両・資機材退避 車両接続 3 牽引等			
		図 5 退避作業に係	る時系列(LLW搬	出作業)	
		(c) デリッククレーン点検(三業		
		デリッククレーン点検作		基に発電機 トラー	
		-			
		ック、ラフタークレーンが		3保派物の発生を	
		防止するため、これらを退			
		デリッククレーン点検作	業中に地震が発生	生した場合の、車	
		両・資機材の退避に影響を	及ぼす事象,退済	壁作業及びこれに	
		必要な資機材等について整	理した結果を表	6に示す。また、	
		荷揚場作業と退避ルートの	概要図を図6に,	退避作業に係る	
		時系列を図7に示す。			
		771070 1 1 7 7 0			
		表 6 地震による荷揚場	いたの追踪への暑	※郷レ油牌作業	
			レーン点検作業		
		地震による荷揚場への影響 退避への影響	退避作業の内容	退避作業に必要な資機材等	
		荷揚場退 荷揚場沈降 段差が発生することによ			
			① 行可能な勾配になるよう	・トラック	
		- への影響		・ホイールローダ	
		への影響 能性がある。 荷揚場常設設備 荷揚場常設設備が転倒	段差を復旧する。	・ホイールローダ	
		荷揚場常設設備 荷揚場常設設備が転倒の転倒による干 し、退避ルートに干渉す	・倒壊物の撤去作業を実 ②		
		荷揚場常設設備 荷揚場常設設備が転倒 の転倒による干 歩 ることで、車両が通行で	・倒壊物の撤去作業を実 ②		
		荷揚場常設設備 荷揚場常設設備が転倒の転倒による干 し、退避ルートに干渉す	・倒壊物の撤去作業を実 ② 施する。	・ホイールローダ	
		荷揚場常設設備 荷揚場常設設備が転倒の転倒による干 し、退避ルートに干渉することで、車両が通行できない可能性がある。 資機材へ 荷揚場常設設備 荷揚場常設設備が倒壊の影響 の転倒による資 し、発電機に干渉するこ	② ・倒壊物の撤去作業を実施する。 ・荷揚場常設設備の撤去 (切断,撤去等)により、	・ホイールローダ ・クレーン ・玉かけ資機材	
		荷揚場常設設備 荷揚場常設設備が転倒の転倒による干 し、退避ルートに干渉することで、車両が通行できない可能性がある。 資機材へ 荷揚場常設設備 荷揚場常設設備が倒壊の影響 の転倒による資 機材への下渉 とで、車両への積込を阻	② ・倒壊物の撤去作業を実施する。 ・ 荷揚場常設設備の撤去 (切断,撤去等)により、 発電機への王かけ作業を	ホイールローダクレーン五かけ資機材溶断器	
		荷揚場常設設備 荷揚場常設設備が転倒の転倒による干 し、退避ルートに干渉することで、車両が通行できない可能性がある。 資機材へ 荷揚場常設設備 荷揚場常設設備が倒壊の影響 の転倒による資 し、発電機に干渉するこ	② ・倒壊物の撤去作業を実施する。 ・ 何揚場常設設備の撤去 (切断、撤去等)により、 発電機への王かけ作業を 可能とする。	 ホイールローダ ・クレーン ・玉かけ資機材 ・溶断器 ・トラック 	
		荷揚場常設設備 荷揚場常設設備が転倒の転倒による干 法	② ・倒壊物の撤去作業を実施する。 ・ 何揚場常設設備の撤去 (切断、撤去等)により、 発電機への王かけ作業を 可能とする。	 ホイールローダ ・クレーン ・玉かけ資機材 ・溶断器 ・トラック 	
		荷揚場常設設備 荷揚場常設設備が転倒 の転倒による干 は し、退避ルートに干渉することで、車両が通行できない可能性がある。	② ・ 倒壊物の撤去作業を実施する。 ・	 ホイールローダ クレーン 玉かけ資機材 溶断器 トラック クレーン 玉かけ資機材 トラック 	
		荷揚場常設設備 荷揚場常設設備が転倒の転倒による干	② ・倒壊物の撤去作業を実施する。 ・ 荷揚場常設設備の撤去(切断,撤去等)により,発電機への玉かけ作業を可能とする。 ・トラックに積込み過避を実施する。 ・ 荷揚場常設設備の撤去	 ホイールローダ クレーン 玉かけ資機材 溶断器 トラック クレーン 玉かけ資機材 トラック クレーン カック クレーン 	
		 荷揚場常設設備 荷揚場常設設備が転倒の転倒による干	② ・倒壊物の撤去作業を実施する。 ・ 何揚場常設設備の撤去(切断,撤去等)により,発電機への玉かけ作業を可能とする。 ・ トラックに積込み過避を実施する。 ・ 荷揚場常設設備の撤去(切断,撤去等)により,	 ホイールローダ クレーン 玉かけ資機材 溶断器 トラック クレーン 玉かけ資機材 トラック クレーン 下かけ資機材 トラック ・アンク ・アンク ・アンク ・アンク ・アント 	
		荷揚場常設設備 荷揚場常設設備が転倒の転倒による干渉・ ることで、車両が通行できない可能性がある。	② ・倒壊物の撤去作業を実施する。 ・ 荷揚場常設設備の撤去(切断, 撤去等)により, 発電機への玉かけ作業を可能とする。 ・ トラックに積込み退避を実施する。 ・ 荷揚場常設設備の撤去(切断, 撤去等)により, トラック, ラフタークレーンの率引作業を可能と	・ホイールローダ ・クレーン ・ 玉かけ資機材 ・ 溶断器 ・ トラック ・ クレーン ・ 玉かけ資機材 ・ トラック ・ クレーン ・ 玉かけ資機材 ・ トラック ・ クレーン ・ 下かけ資機材	
		 荷揚場常設設備 荷揚場常設設備が転倒の転倒による干 法 ることで、車両が通行できない可能性がある。 資機材へ 荷揚場常設設備 荷揚場常設設備が倒壊 の転倒による資 し、発電機に干渉することで、車両への積込を阻害する可能性がある。 資機材の転倒 常電機が転倒する可能性がある。 車両への 荷揚場常設設備 荷揚場常設設備が倒壊 がある。 車両への 荷揚場常設設備 荷揚場常設設備が倒壊 がある。 	② ・倒壊物の撤去作業を実施する。 ・ 荷揚場常設設備の撤去(切断, 撤去等)により, 発電機への玉かけ作業を可能とする。 ・ トラックに積込み退避を実施する。 ・ 荷揚場常設設備の撤去(切断, 撤去等)により, トラック, ラフタークレ	 ホイールローダ クレーン 玉かけ資機材 溶断器 トラック クレーン 玉かけ資機材 トラック クレーン 下かけ資機材 冷断器 トラック 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		表7 地震による荷揚場からの退避への影響と退避作業 (防舷材設置作業)	
		地震による荷楊場への影響	
		商揚場退 商揚場沈降 政治が発生することにより車両通行可 ・設当ベルカー 避ルートへの影響 ・協生がある。 ・協な勾配になるよう段差ををもまる。 ・トラック・ホイールローダ	
		荷揚場常設設備 荷揚場常設設備の転倒範	
		車両への 荷揚場常設設備 荷揚場常設設備が倒壊 ・荷揚場常設設備の撤去(切 ・クレーン	
		で、米引できない可能性 作業を可能とする。 ・トラック がある。 車両の放棄 油漏れ等で自定不可にな (4) ・本引により退避を実施す ・本引車両	
		る可能性がある。 る。 ・牽引資機材 デリッククレーン	
		デリッククレーンを上装置建物 フラフラーフレーン トラック ・	
		検差最大 40cm	
		図8 防舷材設置作業の荷揚場作業と退避ルートの概要図	
		作業内容	
		①段差復旧 辞石積込 6 辞石運搬 碎石敷設等	
		②倒壊物の撤去 作業車両移動	
		4)車両・資機材退避 車両接続 3 牽引等	
		図 9 退避作業に係る時系列(防舷材設置作業)	
		c. 地震発生後の車両・資機材の退避の実現性	
		各荷揚場作業において退避に要する時間は、いずれも24時	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		間程度であり、必要資機材の手配に1週間を要すると仮定す	
		ると、荷揚場作業に係る車両・資機材は10日間程度で退避可	
		能である。従って、荷揚場作業中に、敷地近傍の震源による	
		地震が発生した場合、荷揚場の沈下や車両の故障等が想定さ	
		れるが、独立事象である日本海東縁部に想定される地震によ	
		る津波が襲来するまでの間に, 荷揚場の復旧や車両の牽引等	
		による退避が可能である。なお、更なる地震発生後の車両・	
		資機材の退避の実現性を高める対策として、地震による段差	
		が生じないよう荷揚場作業エリアと退避ルートに鉄筋コンク	
		リート床版による段差対策を講じる(図 10 参照)。	
		商揚場作業 確保範囲 (鉄筋コンタリート床版) (鉄筋コンタリート床版) (鉄筋コンタリート床版) (鉄筋コンタリート床版) (大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	
		図 10 段差対策範囲	
		5. まとめ	
		荷揚場作業中に、日本海東縁部に想定される地震による津波	
		が発生する場合は、津波が到達するまでに荷揚場作業に係る車	
		両・資機材の退避が可能である。また,荷揚場作業中に,敷地	
		近傍の震源による地震が発生する場合は、独立事象である日本	
		海東縁部に想定される地震による津波が襲来するまでに、荷揚	
		場作業に係る車両・資機材の退避が可能である。	
		荷揚場作業を実施する場合には、その都度、作業に必要な車	
		両・資機材が、津波または地震が発生する場合に退避可能であ	
		るか確認することから、荷揚場作業に用いる車両・資機材が津	
		波により漂流物となることはない。	
		なお、仮にこれらの車両・資機材が漂流物となった場合にお	
		いても、水面上を漂流するものは深層取水方式の取水口に到達	
		することはなく, 港湾内に沈むものは海底面から 5.5m の高さが	
		ある取水口に到達することはなく、取水口の通水性への影響を	
		及ぼすことはない。	

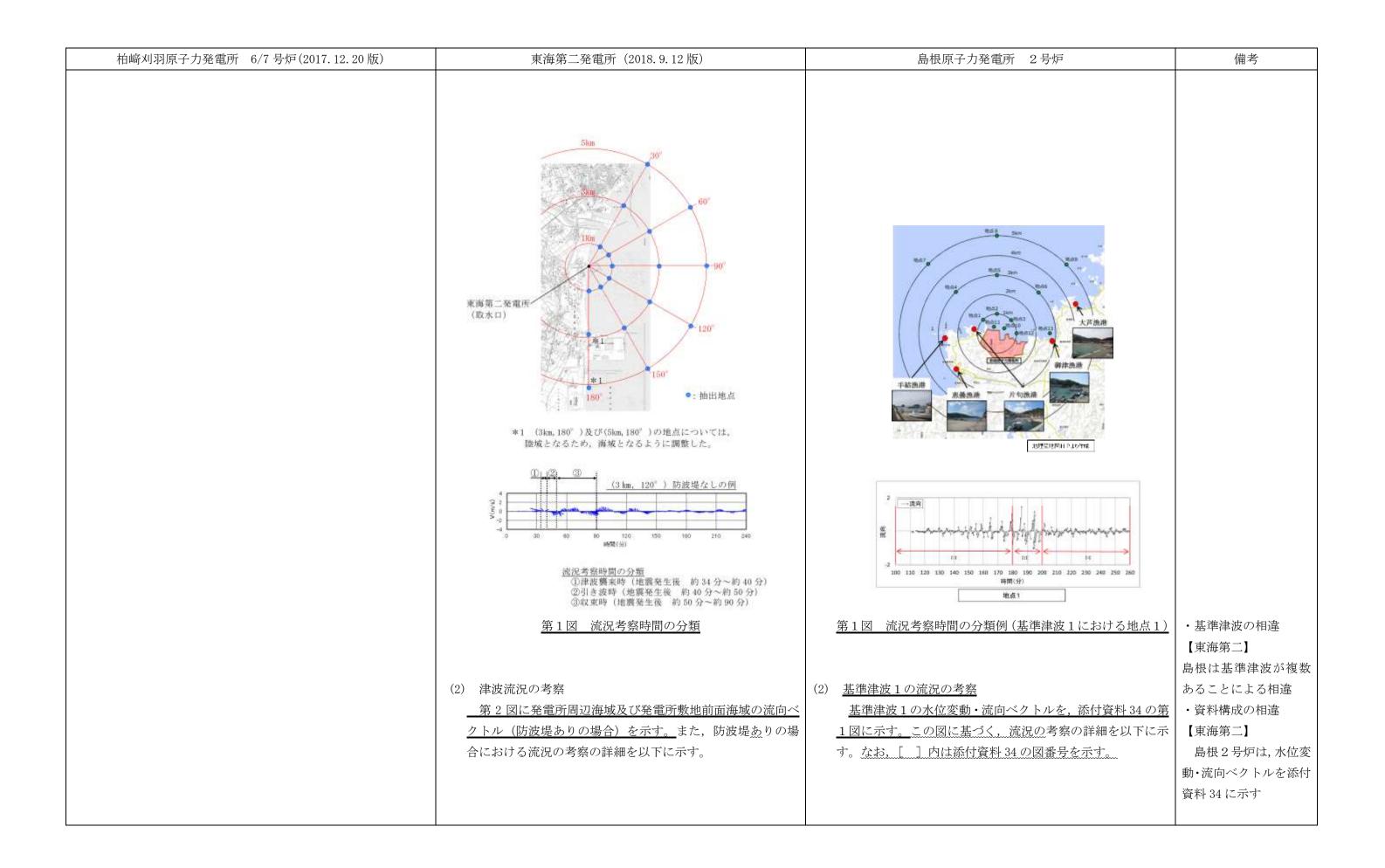
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		別紙1	
		地震による荷揚場への影響と復旧作業について	
		1. 概要	
		地震による荷揚場への影響として、荷揚場沈下に伴う段差が発	
		生する。地震による段差復旧については、「「実用発電用原子炉に	
		係る発電用原子炉設置者の重大事故の発生及び拡大の防止に必要	
		な措置を実施するために必要な技術的能力に係る審査基準」への	
		適合状況について」のうち「添付資料 1.0.2 可搬型重大事故等対	
		処設備保管場所及びアクセスルートについて」において試験を実	
		施している。地震により段差が発生した場合でも同様な復旧作業	
		が可能であり、ここでは、地震による荷揚場への影響と復旧作業	
		について示す。	
		2. 地震による荷揚場への影響について	
		荷揚場は海側の施設護岸下部を岩着構造としており、沈下しな	
		い範囲もあるが、その西側や荷揚場道路付近は埋戻土 (掘削ズリ)	
		により敷地造成していることから,地中埋設構造物(施設護岸)	
		及び地盤改良部との境界部に不等沈下に伴う段差が発生する可能	
		性がある。ここで、荷揚場付近で段差が発生する可能性がある箇	
		所を図1に示す。	
		ここで、埋戻土(掘削ズリ)の沈下量を計算した結果、荷揚場	
		付近の沈下しない範囲との段差は北側通路付近で最大約 70cm, 南	
		側通路付近で最大約 45cm, 荷揚場付近で最大約 40cm となる。	
		大きな 大き	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		3. 段差高の計算方法について	
		埋戻土(掘削ズリ)の沈下量については、液状化及び揺すり込	
		みに伴う沈下量として、保守的にばらつきを考慮した相対密度か	
		ら求まる沈下率 (3.5%) を用い, 埋戻土 (掘削ズリ) の層厚×3.5%	
		で算出する。	
		段差高は,道路部における埋戻土(掘削ズリ)の層厚から地中	
		埋設構造物 (施設護岸) 及び地盤改良部の層厚を引いた差に 3.5%	
		を乗じて算出する。	
		表1 各断面における埋戻土層厚および段差評価一覧表	
		境界部における 段差高さ(cm) 評価値 世戻土の層厚差 =埋戻土層厚 (cm) ×3.5%	
		北側通路付近 18.2 64 70	
		南側通路付近 11.4 40 45	
		荷揚場付近 10.0 35 40	
		防波壁	
		道路部 段差計算箇所 地表面 日本語 2	
		地盤改良部と全層埋戻土部の境界における 埋戻土部の層厚差=18.7m-0.5m	
		図2 北側通路付近断面図(A-A 断面)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	 備考
		セルラーブロック部と全層埋戻土部の境界における 埋戻土部の層厚差=15.0m-5.0m 段差計算箇所 地表面 図3 南側通路付近断面図(B-B 断面)	
		地盤改良部と全層埋戻土部 の境界における埋戻土部の 層厚差=13.4m-2.0m 図 4 荷揚場付近断面図(C-C 断面)	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018, 9.12版)	4. 段差復旧作業について 地震により段差が発生した場合でも、砕石の敷設により段差復 旧が可能である。 段差復旧作業について、「添付資料 1.0.2 可搬型重大事故等対 処設備保管場所及びアクセスルートについて」のうち「別紙(9) 構内道路補修作業の検証について」の内容を抜粋して示す。 (2) 段差復田 a. 概要 島根原すりを電所に「段差復日」用として配備している砕石を用いて ホイールローダにより、第 4 図、第 5 図、第 6 図のとおり、砕石を用い て、1 直所 30mの段差を復日した際の作業時間を作業員人、B及びCそれぞれ 1 回計測した。 凡例: 図型 砕石 「放発り金畑 ・ お 4 図 段差解消平面図 (概要) 東 5 面 を 5 図 段差解消断面図 (概要) 第 6 図 段差解消断面図 (概要) 第 6 図 段差解消断面図 (概要)	備考
		・作業員A:19分44秒 ・作業員C:18分33秒 ・作業員C:18分33秒 【評価値】20分(上り、下り 計2箇所)	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		·	
		測定結果より、段差緩和対策を行うものの。万一、段差が発生した場合に	
		おいても、約10分/箇所で作業を実施できることを確認した。	
		1, 0, 2–233 242	


実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料36〕

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	添付資料 1.7.	添付資料 3.6	
		<u>構外海域の</u> 漂流物が施設護岸及び取水口へ到達する可能性につい	
	達可能性評価について		
	1. はじめに	1. はじめに	
	「2.5 水位変動に伴う取水性低下による重要な安全機能への		
	影響防止」における評価のひとつとして、基準津波に伴う漂流	及び取水口に到達する可能性について,第2.5-18図に示す漂流	
	物が津波防護施設等の健全性及び非常用海水ポンプの取水性に	物の選定・影響確認フローに基づき,津波の流況を踏まえて評	
	及ぼす影響を確認するために、漂流物となる可能性のある施	価する。	
	設・設備を「第2.5-11図 漂流物評価フロー」に基づき評価し		
	<u></u>		
	漂流物評価フローにおいて示される「津波防護施設等,取水		
	機能を有する安全設備等に対する漂流物となる可能性」の具体		
	的な考え方について、以下に示す。		
	2. 「津波防護施設等,取水機能を有する安全設備等に対する漂		
	流物となる可能性」について		
	津波防護施設等、取水機能を有する安全設備等に対する漂流		
	物となる可能性について、津波の流況を踏まえて、東海第二発		
	電所の津波防護施設等及び取水口に対する漂流物の動向を確認		
	することにより評価する。		
	2.1 津波流況の考察	2. 津波流況の考察	
	(1) 流況考察時間の分類	(1) 流況考察時間の分類	
	東海第二発電所敷地内及び敷地外における津波襲来時の流	島根原子力発電所構内及び構外における津波襲来時の流況	
	況について整理した。津波流向の時刻歴を確認した結果, 津	について考察した。 考察に当たっては、流況考察時間を最大	・基準津波の相違
	波が襲来する時間帯(以下流況の評価においては「津波襲来	水位・流速を示す時間帯とその前後の3区分に分類する。	【東海第二】
	時」という。) である地震発生後約34分~約40分及び引き波	日本海東縁部に想定される地震による津波(基準津波1)	島根2号炉は基準津
	の時間帯(以下流況の評価においては「引き波時」という。)	は、最大水位・流速を示す時間帯が地震発生後約180分~200	波の特性として,津波周 期が何く敷地周辺及び
	である地震発生後約 40 分~約 50 分に大きな速度を有する一 定方向の流向が継続しており、引き波後は継続的でない流向	分であり、海域活断層から想定される地震による津波(基準 津波4)は、最大水位・海海なデオ時間帯が地震発生後約5	期が短く敷地周辺及び港湾内の流向が短時間
	<u>た方向の流向が継続しており、引き波後は継続的でない流向</u> を示す傾向にあった。漂流物の動向に影響を与える流況とし	津波4)は、最大水位・流速を示す時間帯が地震発生後約5 分~7分であるため、各々以下のとおり分類した。第1図に	
	ては、大きな速度を有する継続的な一定方向の流向が支配的	流況考察時間の分類例を示す。	大流速・水位を示す時間
		<u> </u>	ノンカルベニ ハリエでハ カ 1寸目

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	であると考えられるが、ここでは保守的に引き波後の流況に	日本海東縁部に想定される地震による津波(基準津波1)	帯とそれ以外に分類
	ついても把握することを目的とし、津波による流況が収束し	【1】最大水位・流速を示す時間帯以前(地震発生後約 100 分~	
	つつある時間帯(以下流況の評価においては「収束時」とい	180 分)	
	う。)である地震発生後約50分~約90分についても整理した。	【2】最大水位・流速を示す時間帯(地震発生後約 180 分~200	
	第1図に流況考察時間の分類を示す。	<u>分)</u>	
		【3】最大水位・流速を示す時間帯以降(地震発生後約 200 分~	
		360 分)	
		海域活断層に想定する地震による津波(基準津波4)	
		【1】最大水位・流速を示す時間帯以前(地震発生後約0分~5	
		<u>分)</u>	
		【2】最大水位・流速を示す時間帯(地震発生後約5分~7分)	
		【3】最大水位・流速を示す時間帯以降(地震発生後約7分~30	
		<u>分)</u>	

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	a. 防波堤あり	a. 防波堤有り	
	(a) 津波襲来時(地震発生後 約34分~約40分)	(a) 最大水位・流速を示す時間帯以前(地震発生後約 100	・基準津波の相違
		分~180 分) [第1図(1)~(160)]	【東海第二】 基準津波の違いに。
	i) 発電所敷地エリア	<u>i) 構外海域</u>	る考察結果の相違(リ
	東方より北西向きの流向を主流として襲来し、地震発	<u>約 109 分では、津波の第 1 波が敷地の東側から沿岸を</u>	下,同様)
	生から約35分後に敷地前面に到達する。地震発生から	沿うように襲来する [第1図(19)]。また,約 113分 30	
	約37分後には敷地への遡上が始まり,第2図(4/11)	秒では、敷地の北西側から津波が襲来する[第1図(28)]。	
	の地震発生から 38 分後における発電所敷地エリア拡大	構外海域において流速は小さく,水位変動も 1m 程度であ	
	図のように、取水口以北では防潮堤の敷地前面東側から	る。その後、約180分まで主に敷地の北西側からの押し	
	敷地側面北側に沿うように遡上し, 取水口以南では防潮	波,引き波により,短い周期で北西方向と南東方向の流	
	堤の敷地前面東側から敷地側面南側に沿うように遡上	れを繰返す。いずれの時間帯においても流速は 1m/s 未満	
	する。地震発生から約40分後には引き波となる。	である。	
	ii) 発電所北側エリア	ii) 構內海域(輪谷湾)	
	東方より北西向きの流向を主流として襲来し, 地震発	約116分30秒では,津波の第1波が輪谷湾に到達する。	
	生から約35分後に発電所北側エリア前面の海域に到達	水位が 1m 程度上昇し、0.5m/s 程度の流速が防波堤付近	
	する。地震発生から約37分後には北西向きの流向を主	で発生する[第1図(34)]。その後,約180分まで,短い	
	流として発電所北側エリアの陸域及び久慈川へ遡上し,	周期で輪谷湾内と湾外への流れを繰返す。水位変動は最	
	第2図 (5/11) の地震発生から 40 分後における発電所	大でも 3m 程度で, 流速は最大でも 3m/s 程度である[第1	
	周辺広域図のように,発電所敷地エリアでは引き波へと	図 $(157) \sim (160)$]。	
	転じる地震発生から約 40 分後においても,発電所北側	流れの特徴としては、押し波時、引き波時とも防波堤	
	エリアの陸域及び久慈川では津波の遡上が続く(地震発	を回り込む流れが生じ、港湾内のうち防波堤を回り込む	
	生から約43分後まで遡上が継続する)。	流れによる流速が比較的速い。	
	iii) 発電所南側エリア		
	東方より北西向きの流向を主流として襲来し, 地震発		
	生から約 34 分後に発電所南側エリア前面の海域に到達		
	する。前面海域に到達した津波は常陸那珂港区沖防波堤		
	の影響により,常陸那珂火力発電所敷地へは直接遡上せ		
	ず,沖防波堤の北側に回り込む。地震発生から約36分		
	後には常陸那珂港区沖防波堤の北側に回り込んだ津波		
	が常陸那珂火力発電所敷地の北側から遡上を始める。第		
	2 図 (3/11) の地震発生から 37.5 分後における発電所		

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
	周辺広域図のように、常陸那珂火力発電所敷地の北側か		
	らは南向きの流向を主流とした津波が陸域へ遡上し、常		
	陸那珂火力発電所敷地の南側からは北向きの流向を主		
	流とした津波が陸域へ遡上するが、地震発生から約 40		
	分後には引き波となる。国立研究開発法人日本原子力研		
	究開発機構敷地では地震発生から約 37 分後に西向きの		
	流向を主流とした津波が陸域へ遡上するが, 地震発生か		
	ら約 39 分後には引き波となる。		
	(b) 引き波時(地震発生後 約 40 分~約 50 分)	(b) 最大水位・流速を示す時間帯(地震発生後約 180 分~	
		200 分) [第1図(161)~(201)]	
	i) 発電所敷地エリア	i) 構外海域	
	地震発生から約 40 分後に引き波へと転じ,敷地前面	約 180 分では,敷地の北西側から引き波が襲来する。	
	東側から外海へ向かう流況となる。引き波時は津波襲来	引き波の影響により北西方向の流れとなり 1m/s 程度の	
	時のように防潮堤に沿うような流況は示さず, 第2図(5	流れが確認できる[第1図(161)]。約183分では、敷地の	
	╱11)の地震発生から 40 分後における発電所敷地エリ	北西側から押し波が襲来し、押し波の影響により南東方	
	ア拡大図のように,敷地前面東側の一部を除き,直接外	向の流れとなり、引き波の流速と同様 1m/s 流れが確認で	
	海へ向かう流況となっている。また, 第2図 (7/11)	きる[第1図(166)]。	
	の地震発生から 43 分後における発電所敷地エリア拡大	約 187 分では,敷地の北西側から引き波が襲来し[第	
	図のように,防波堤の間隔が狭いため,引き波方向に大	1図(175)],約191分では,水位変動が3m程度の大きい	
	きな流速が出ていることが確認される。引き波の流況は	押し波が襲来し 2m/s 程度の流れが確認できる[第 1 図	
	地震発生から約50分後まで継続する。	(183)]。その後も,敷地の北西側から押し波,引き波が	
		約 200 分まで交互に襲来する。	
	ii) 発電所北側エリア		
	地震発生から約 40 分後以降においても久慈川及び久	ii) 構内海域(輪谷湾)	
	<u>慈川周辺陸域については遡上を続けるが、地震発生から</u>	約 184 分では、敷地の北西側から押し波が襲来し、流	
	約 43 分後には引き波へ転じ始め,陸域から外海へ向か	速 5m/s 程度の防波堤を回り込む流れが発生する[第1図	
	う流向を主流とした流況となる。この流況は地震発生か	(169)]。約 184 分 30 秒では,輪谷湾内水位が 5m 程度上	
	ら約 50 分後以降も継続する。なお,防波堤より敷地側	昇し、構外海域では押し波傾向であるが、輪谷湾水位が	
	の海域では比較的穏やかな流況となる(防波堤より敷地	高いため, 輪谷湾内への流れは 2m/s 程度となる[第 1 図	
	側の海域では穏やかな流況が地震発生から 90 分後まで		
	続く)。また, 第2図 (6/11) の地震発生から41.5分	1 図(171)]。約 192 分 30 秒では、輪谷湾の水位が低い状	
	後における発電所周辺広域図のように、日立港区沖防波	態において、敷地の北西側から押し波が襲来する。最大	
	堤の北側又は南側に回り込みながら波が引いていく流	流速が発生する時間帯であり, 防波堤を回り込む 5m/s 程	
	況となる。さらに, 第2図 (8/11) の地震発生から 45	度の流れが発生する[第1図(186)]。その1分後の約193	
	分後における発電所周辺広域図のように、日立港区東防	分30秒では、構外海域は押し波傾向であるが、輪谷湾水	
	波堤及び南防波堤の間隔が狭いため、引き波方向に大き	位が高いため、輪谷湾に向かう流れはない[第 1 図	

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	な流速が出ていることが確認される。発電所北側エリア	(188)]。その後,約 200 分まで,短い周期で輪谷湾内と	
	の前面海域については地震発生から約 40 分後には引き	輪谷湾外への流れを繰返す。	
	波へと転じ、外海へ向かう流況となる。この流況は地震		
	発生から約43分後まで継続する。		
	iii) 発電所南側エリア		
	発電所南側エリアの常陸那珂火力発電所敷地では,地		
	震発生の約 40 分後から約 45 分後にかけて引き波とな		
	<u>る。第2図(6/11)の地震発生から42分後における発</u>		
	電所周辺広域図のように,常陸那珂港区沖防波堤の北側		
	に回り込みながら波が引いていく流況を示し,第2図(7		
	<u>/11)の地震発生から 43 分後における発電所周辺広域</u>		
	図のように、旋回する流況が確認される。旋回する流況		
	は地震発生後約 55 分まで継続する。国立研究開発法人		
	日本原子力研究開発機構敷地前面海域では地震発生の		
	約40分後から約50分後にかけて引き波となり、外海へ		
	向う流向を主流とした流況となる。		
	(c) 収束時(地震発生後 約50分~約90分)	(c) 最大水位・流速を示す時間帯以降(地震発生後約 200	
		分~360 分)) [第1図(202)~(281)]	
	i) 発電所敷地エリア	i) 構外海域	
	敷地前面海域において,第2図(9/11)の地震発生	約 201 分では、南東方向の流れとなり、流速は 1m/s 程	
	から 55 分後における発電所周辺広域図のように、旋回	度である [第1図(203)]。約204分では,流れは逆向き	
	する流況が確認される (旋回する流況は地震発生後約	となる[第1図(209)]。その後,敷地北西側からの押し波,	
	75 分まで継続する)。また,第 2 図 (9/11) の地震発	引き波により短い周期で北西方向と南東方向の流れを繰	
	生から 60 分後における発電所敷地エリア拡大図のよう	返す。また,流速は速くても 1m/s 程度である。	
	に、東海港の防波堤付近にて旋回する流況となるが、継		
	続的な流況とはならない。地震発生の約 65 分後から約		
	75 分後にかけては一部旋回する流況となるものの, 穏		
	<u>やかな流況が継続する。第2図(11/11)の地震発生か</u>		
	ら80分後における発電所敷地エリア拡大図のように,		
	地震発生から約 80 分後に西向きの流向で津波が襲来		
	し、物揚岸壁及び敷地前面東側の一部に津波が遡上する		
	が、この流況が継続することはなく、地震発生から約		
	85 分後には引き波へと転じ、地震発生から約90分後に		
	は一部で引き波及び旋回する流況が確認されるものの		
	比較的穏やかな流況となる。		

柏崎刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所 (2018. 9.12 版) ii) 発電所北側エリア 地震発生から約 55 分後までは陸域から外海へ向かう 流向を主流とした流況が継続する。地震発生の約 65 分 後から約 80 分後にかけては穏やかな流況が継続する。 地震発生の約 85 分後から約 90 分後では引き波となり、 外海へ向う流向を主流とした流況となる。 iii) 発電所南側エリア 地震発生の約 60 分後から約 80 分後にかけては穏やかな流況が継続する。地震発生から約 85 分後に引き波へと転じ、地震発生から約 90 分後には再び穏やかな流況となる。	高根原子力発電所 2号炉 約201分では、輸谷湾外への流れとなり、流速は1m/s程度である[第1図(203)]。約205分では、押し波が襲来し、輸谷湾内への流れとなり、流速は1m/s程度となる[第1図(211)]。流れの特徴としては、押し波時、引き波時とも防波堤を回り込む流れが生じ、港湾内の流速のうち防波堤を回り込む流れによる流速が比較的速い。	備考

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
柏崎刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所 (2018.9.12 版) - 東海南北川 ア 東海南北 ア 東海南北 ア 東海南 田田	島根原子力発電所 2号炉	
	第2図 発電所周辺海域及び発電所敷地前面海域の流向ベクトル		・資料構成の相違 【東海第二】
	<u>第2図 発電所局辺碑域及び発電所敷地削面碑域の流向ペクトル</u> (防波堤ありの場合)(1/11)		最根2号炉は, 軌跡解析の傾向も踏まえ, 第3
	第3図に発電所周辺海域及び発電所敷地前面海域の流向ベクトル(防波堤なしの場合)を示す。また、防波堤なしの場合 合における流況の考察の詳細を以下に示す。		図に記載

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	<u>b. 防波堤なし</u>	<u>b. 防波堤無し</u>	
	() 油油镀本吐(地震攻升效,约 94 八,约 40 八)		
	(a) 津波襲来時(地震発生後 約34分~約40分)	(a) 最大水位・流速を示す時間帯以前(地震発生後 100 分 ~180 分) [第1図(1)~(160)]	
	i) 発電所敷地エリア	i) 構外海域	
	東方より北西向きの流向を主流として襲来し、地震発	<u>「a. 防波堤有り」に記載した内容と同じ。</u>	
	生から約35分後に敷地前面に到達する。地震発生から	· d. PAIX DE FI J TELLEN CALLETTE FOR	
	約37分後には敷地への遡上が始まり,第3図(4/11)		
	の地震発生から38分後における発電所敷地エリア拡大		
	図のように, 取水口以北では防潮堤の敷地前面東側から		
	敷地側面北側に沿うように遡上し, 取水口以南では防潮		
	堤の敷地前面東側から敷地側面南側に沿うように遡上		
	する。地震発生から約40分後には引き波となる。		
	ii) 発電所敷地エリア	ii) 構內海域(輪谷湾)	
	東方より北西向きの流向を主流として襲来し, 地震発	約116分30秒では,津波の第1波が輪谷湾に到達する。	
	生から約 35 分後に発電所北側エリア前面の海域に到達	水位が 1m 程度上昇するが,流速の変化は小さい [第1図	
	する。地震発生から約 37 分後には北西向きの流向を主	(34)]。その後、約180分まで、短い周期で輪谷湾内と輪	
	流として発電所北側エリアの陸域及び久慈川へ遡上し,	谷湾外への流れを繰返す。水位変動は最大でも 3m 程度	
	第3図(5/11)の地震発生から40分後における発電所	で, 流速は最大でも 3m/s 程度である [第 1 図(151)~	
	周辺広域図のように,発電所敷地エリアでは引き波へと	<u>(160)]。</u>	
	転じる地震発生から約 40 分後においても,発電所北側		
	エリアの陸域及び久慈川では津波の遡上が続く(地震発		
	生から約43分後まで遡上が継続する)。		
	iii) 発電所南側エリア		
	東方より北西向きの流向を主流として襲来し, 地震発		
	生から約34分後に発電所南側エリア前面の海域に到達		
	する。地震発生から約35分後には北西向きの流向を主		
	流として常陸那珂火力発電所敷地へ遡上し始め,第3図		
	<u>(3/11) の地震発生から 37.5 分後における発電所周辺</u>		
	広域図のように、常陸那珂火力発電所敷地の北側からは		
	南西向きの流向を主流とした津波が陸域へ遡上し、常陸		
	那珂火力発電所敷地の南側からは北西向きの流向を主		
	流とした津波が陸域へ遡上するが、地震発生から約 40		
	分後には引き波となる。国立研究開発法人日本原子力研 2017年 201		
	<u> 究開発機構敷地では地震発生から約37分後に西向きの</u>		

東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
流向を主流とした津波が陸域へ遡上するが, 地震発生か		
<u>ら約39分後には引き波となる。</u>		
(b) 引き波時(地震発生後 約40分~約50分)	(b) 最大水位・流速を示す時間帯(地震発生後約 180 分~	
(6) JICKM (2018) 10 JJ #1 00 JJ		
i) 発電所敷地エリア		
地震発生から約 40 分後に引き波へと転じ,敷地前面		
東側から外海へ向かう流況となる。引き波時は津波襲来		
時のように防潮堤に沿うような流況は示さず, 第3図(5		
/11)の地震発生から 40 分後における発電所敷地エリ		
ア拡大図のように,敷地前面東側の一部を除き,直接外		
海へ向かう流況となっている。この流況は地震発生から		
約 50 分後まで継続する。		
ii) 発電所敷地エリア	ii) 構內海域(輪谷湾)	
地震発生から約 40 分後以降においても久慈川及び久	約183分30秒では、敷地の北西側から押し波が襲来し、	
<u>慈川周辺陸域については遡上を続けるが、地震発生から</u>	輪谷湾内における流速は 3m/s 程度である [第1図(168)]。	
約43分後には引き波へ転じ始め,陸域から外海へ向か	約 184 分 30 秒では,輪谷湾内水位が 6m 程度上昇し,構外	
う流向を主流とした流況となる。この流況は地震発生か	海域では押し波傾向であるが、輪谷湾水位が高いため、輪	
ら約 50 分後以降も継続する。発電所北側エリアの前面	<u>谷湾内への流れはない [第1図(170)]。その直後には輪谷</u>	
海域については地震発生から約 40 分後には引き波へと	湾外へ向かう流れとなる [第1図(171)]。約192分30秒で	
転じ、外海へ向かう流況となる。この流況は地震発生か	は、輪谷湾の水位が低い状態において、敷地の北西側から	
	_	
	<u>れを繰返す。</u>	
	流向を主流とした津波が陸域へ遡上するが、地震発生から約39分後には引き波となる。 (b) 引き波時(地震発生後 約40分~約50分) i) 発電所敷地エリア 地震発生から約40分後に引き波へと転じ、敷地前面東側から外海へ向かう流況となる。引き波時は津波襲来時のように防潮堤に沿うような流況は示さず、第3図(5/11)の地震発生から40分後における発電所敷地エリア拡大図のように、敷地前面東側の一部を除き、直接外海へ向かう流況となっている。この流況は地震発生から約50分後まで継続する。 ii) 発電所敷地エリア 地震発生から約40分後以降においても久慈川及び久慈川周辺陸域については遡上を続けるが、地震発生から約43分後には引き波へ転じ始め、陸域から外海へ向かう流向を主流とした流況となる。この流況は地震発生から約50分後以降も継続する。発電所北側エリアの前面海域については地震発生から約40分後には引き波へと	(b) 引き返時(地震発生後 約40分~約50分) (b) 引き返時(地震発生後 約40分~約50分) (b) 引き返時(地震発生後 約40分~約50分) (b) 引き返時(地震発生後 約40分~約50分) (b) 最大水位・透遠を示す時間等(地震発生後約180分~200分)第1図(161)~(201)] (c) 最大水位・透遠を示す時間等(地震発生後約180分~200分)第1図(161)~(201)] (d) 最大水位・透遠を示す時間等(地震発生後約180分~200分)第1図(161)~(201)] (e) 最大水位・透遠を示す時間等(地震発生後約180分~200分)第1図(161)~(201)] (e) 最大水位・透遠を示す時間等(地震発生後約180分~200分)第1図(161)~(201)] (e) 最大水位・透遠を示す時間等(地震発生後約180分~200分)第1図(161)~(201)] (e) 最大水位・透遠を示す時間等(地震発生後約180分~200分)第1図(161)] (e) 最大水位・透遠を示す時間等(地震発生後約180分~200分)第1図(161)] (e) 最大水位・透遠を示す中間等(地震発生を約180分~200分)第1図(161)] (e) 最大水位・透遠を示すり回じ。 (e) 最大水位・透遠を示す中間等(地震発生後約180分~200分)第1図(161)] (e) 最大水位・透遠を示すしまままままままままままままままままままままままままままままままままままま

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	(c) 収束時(地震発生後 約50分~約90分)	(c) 最大水位・流速を示す時間帯以降(地震発生後約 200	
		<u>分~360 分)[第 1 図 (202) ~ (281)]</u>	
	<u>i) 発電所敷地エリア</u>	<u>i) 構外海域</u>	
	敷地前面海域において,地震発生から約 55 分後には	「a. 防波堤有り」に記載した内容と同じ。	
	南向きの流況となり、地震発生から約65分後には北向		
	きの流況となるが、いずれも継続的な流況とはならず、		
	地震発生の約65分後から約75分後にかけては穏やかな		
	<u>流</u> 況が継続する。第 3 図(11/11)の地震発生から 80		
	分後における発電所敷地エリア拡大図のように, 地震発		
	生から約80分後に西向きの流向で津波が襲来し、物揚		
	岸壁及び敷地前面東側の一部に津波が遡上するが,この		
	流況が継続することはなく、地震発生から約85分後に		
	は引き波へと転じ、地震発生から約90分後には一部で		
	引き津波が継続するものの比較的穏やかな流況となる。		
	ii) 発電所敷地エリア	ii) 構內海域(輪谷湾)	
	地震発生から約 55 分後までは陸域から外海へ向かう	約 201 分では、輪谷湾外への流れとなり、流速は 1m/s	
	流向を主流とした流況が継続する。地震発生から約 60	程度である[第1図(203)]。約205分では、押し波が襲来	
	分後には北西へ向かう流向を主流とした流況となるが,	し,輪谷湾内への流れとなり,流速は 1m/s 程度となる [第	
	継続的な流況とはならず、地震発生の約 65 分後から約	1図(211)]。	
	80 分後にかけては穏やかな流況が継続する。地震発生		
	の約85分後から約90分後では引き波となり、外海へ向		
	う流向を主流とした流況となる。		
	iii) 発電所南側エリア		
	地震発生から約 55 分後にて西向きの流向を主流とし		
	- た流況となるが、継続的な流況とはならず、地震発生の		
	約60分後から約80分後にかけては穏やかな流況が継続		
	する。地震発生から約85分後に引き波へと転じ、地震		
	発生から約90分後には再び穏やかな流況となる。		
		(3) 基準津波4の流況の考察	
		基準津波 4 の水位変動・流向ベクトルを, 添付資料 34 の第 4	
		図に示す。この図に基づく、流況の考察の詳細を以下に示す。	
		なお, [] 内は添付資料 34 の図番号を示す。	
		a. 防波堤有り	
		(a) 最大水位・流速を示す時間帯以前(地震発生後約0分	
		<u>~ 5 分)[第 4 図(1) ~ (11)]</u>	

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		<u>i</u>) 構外海域	
		約2分では、津波の第1波が敷地の北西側から押し波	
		として襲来する。水位も低く流速の変化は小さい [第 4	
		図(5)]。約4分では、北西側への大きい引き波により、	
		北西方向の流れとなる [第 4 図(9)] が, いずれも 1m/s	
		以上の流速は確認されない。_	
		ii) 構内海域(輪谷湾)	
		約3分では、津波の第1波が輪谷湾に押し波として襲来	
		する。水位も低く流速の変化は小さい [第 4 図(7)]。	
		(b) 最大水位・流速を示す時間帯(地震発生後約5分~7	
		分) [第4図(12)~(15)]	
		i) 構外海域	
		約5分では、敷地の北西側への大きい引き波により北西	
		方向の流れが継続する [第 4 図(11)] <u>。</u>	
		ii) 構內海域 (輪谷湾)	
		約6分では、大きい引き波により輪谷湾外への流れとな	
		り, 3m/s 程度の流速となる [第4図(13)]。	
		7, 5点を行うを (初年区(107)。	
		(c) 最大水位・流速を示す時間帯以降(地震発生後約7分	
		~30 分) [第 4 図 (16) ~ (61)]	
		i) 構外海域	
		約7分では、敷地の北西側への引き波が継続しており、	
		北西方向の流れが継続する [第4図(15)]。約9分では、	
		敷地北西側から押し波が襲来し、南東方向の流れとなる	
		<u> </u>	
		<u>以降も、1m/s を超える流速はない。</u>	
		<u>ii) 構内海域(輪谷湾)</u>	
		約7分では、輪谷湾内への、約9分では、輪谷湾外へ	
		<u>の流れとなる [第 4 図(15), (19)]。湾内のうち防波堤を</u>	
		回り込む流速が比較的速く 2m/s 程度の流速が確認でき	
		る [第4図(17)]。以降,輪谷湾内と輪谷湾外への流向が	
		短い周期で変化するが,流速は 1m/s 程度である。	
		<u>b. 防波堤無し</u>	
		(a) 最大水位・流速を示す時間帯以前(地震発生後約0分)	

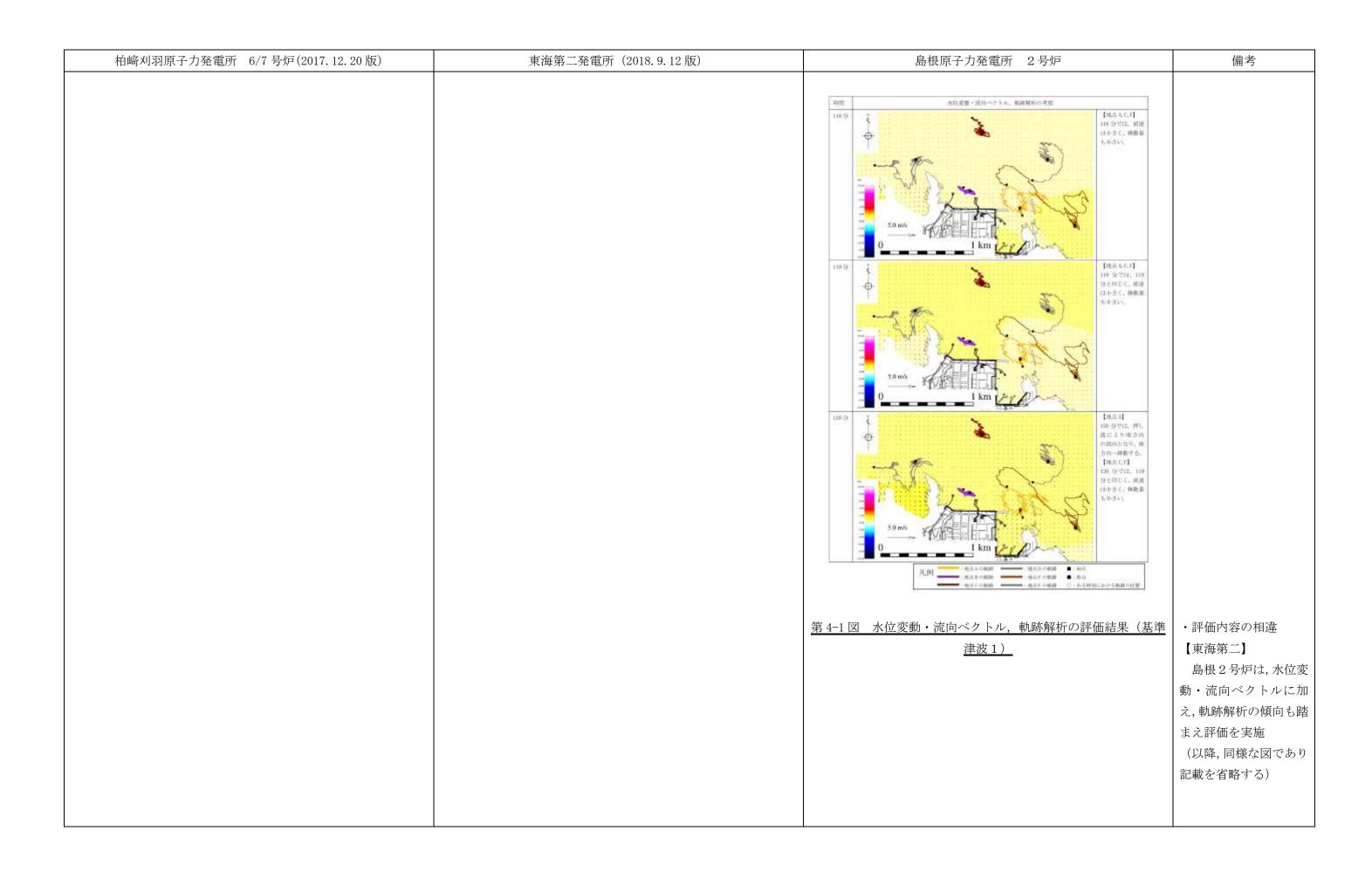
柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		~5分)[第4図(1)~(11)]	
		i) 構外海域	
		ji) 構內海域(輪谷湾)	
		<u>る。水位も低く流速の変化は小さい[第4図(7)]。</u>	
		(b) 最大水位・流速を示す時間帯(地震発生後約5分~7	
	時間 ⁺ 発電所周辺広域 発電所敷地エリア拡大	分)[第4図(12)~(15)]	
	(分)	i) 構外海域	
	発電医社様エリア 短型所載地エリア 希面所用脚エリア	「a. 防波堤有り」に記載した内容と同じ。	
		ii) 構內海域(輪谷湾)	
	33.5	約6分では、大きい引き波により輪谷湾外への流れとなり、	
	-Xws River	3m/s 程度の流速となる [第 4 図(13)]。約 7 分では、輪谷湾	
	失。但因 有效期间次力量用均衡地 30mm 医10mm 因立刻实现是此人	内への流向となり、2m/s 程度の流速となる [第4図(15)]。	
	東海第二等電荷 日本終子力研究海樂機構暫建	(c) 最大水位・流速を示す時間帯以降(地震発生後約7分	
	青龍本河火力発電用製地面 御倉塚に進売が別曲する。	~30分)[第4図(16)~(61)]	
		i) 構外海域	
		- 1/ - 11/11日 1/2 1 1 1 1 1 1 1 1 1	
	34.0	- a. 例及を A / 」 TC IL 4 及 0 / C I / A C IN 0。	
		ii) 構内海域(輪谷湾)	
		<u> </u>	
		分では、輪谷湾外への流れとなるが、流速は 2m/s 程度である	
	_ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(第4図(19)]。以降,輪谷湾内への流れ,輪谷湾外への流れ	
		が短い周期で変化するが、流速は 1m/s 程度である。	
	34.5	がたい。同別で交回するが、他とは1回されたくのか。	
	The state of the s		
	※:津波の原因となる地震発生後の経過時間		次则排出力扣告
			・資料構成の相違
	第3図 発電所周辺海域及び発電所敷地前面海域の流向ベクトル		【東海第二】
	<u>(防波堤なしの場合)(1/11)</u>		島根2号炉は、軌跡解
			析の傾向も踏まえ,第3
			図に記載

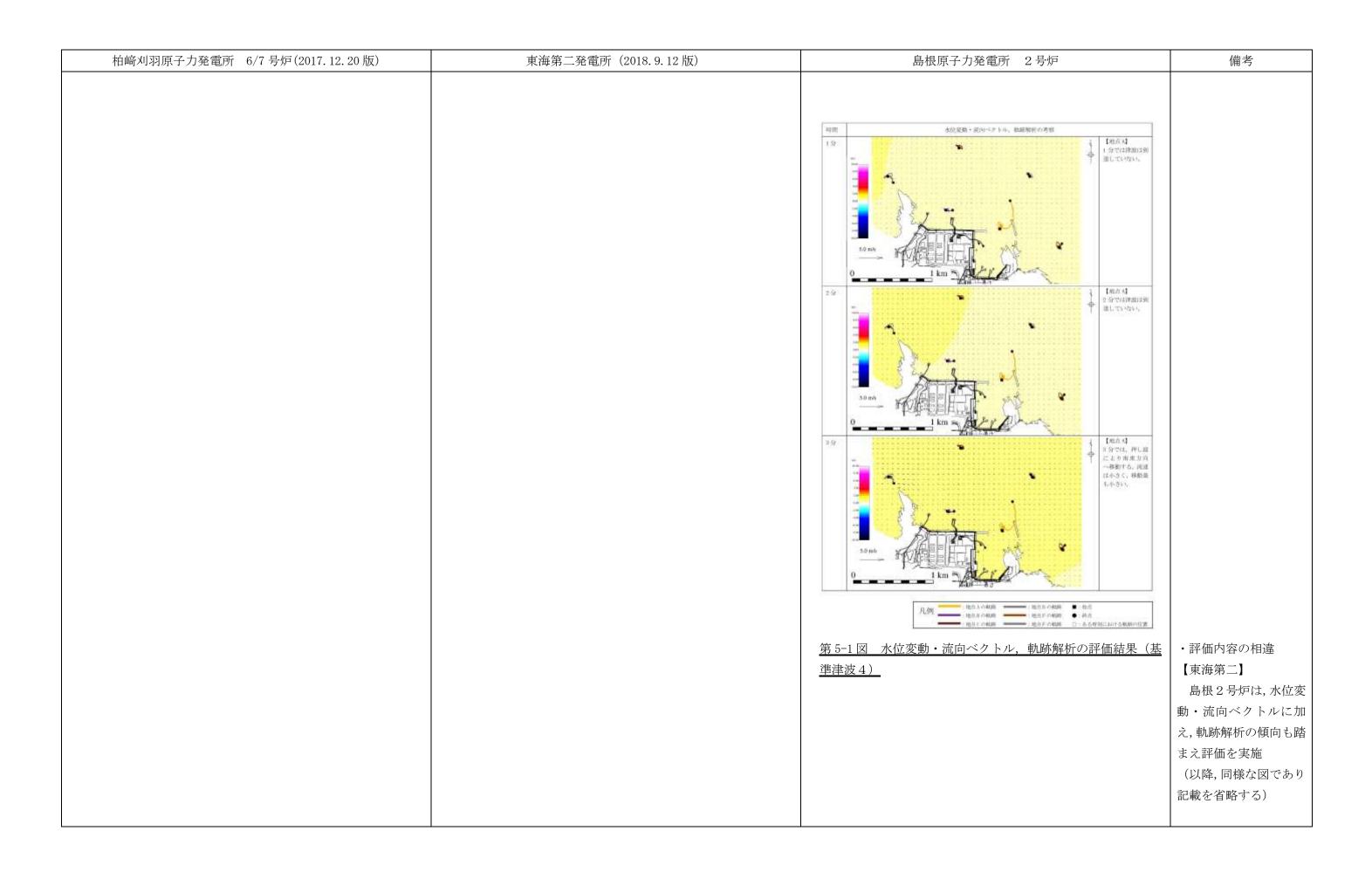
柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
	2.2 漂流物の津波防護施設等及び取水口への到達可能性評価	2.2 構外海域の漂流物の施設護岸及び取水口への到達可能性評	
		価	
	津波流況の考察より,以下のとおり時間分類毎に漂流物の津	日本海東縁部に想定される地震による津波(基準津波1)と	 ・評価方法及び資料構成
	波防護施設等及び取水口への到達可能性について評価を実施	海域活断層から想定される地震による津波(基準津波4)の流	の相違
		況の考察結果から、発電所方向への継続的な流向がないことが	【東海第二】
		確認された。	島根2号炉は,流況の
	(1) 津波襲来時(地震発生後 約34分~約40分)	このため, 施設護岸及び取水口への到達可能性評価に当たっ	考察に加え軌跡解析の
	発電所敷地エリアについては、津波襲来時の流況から、	ては、漂流物となる可能性のある施設・設備のうち、発電所沿	結果も踏まえ評価を
	取水口以北の漂流物は敷地前面東側から敷地側面北側へ防	岸にある漁船に着目して評価を行う。到達可能性評価は、津波	施
	潮堤に沿うように移動し、取水口以南の漂流物は敷地前面	流況の考察結果に加え仮想的な浮遊物の動きを把握する方法	
	東側から敷地側面南側へ防潮堤に沿うように移動すると考	として有効な軌跡解析の結果も踏まえて行う。	
	<u>えられる。</u>	発電所沿岸の漁港,漁船の操業エリア及び軌跡解析の初期位	・基準津波の相違
	発電所北側エリアについては、津波襲来時の流況から、	置を第2図に示す。発電所沿岸部では、3号北側施設護岸付近	【東海第二】
	当該エリアの漂流物は北西方向へ移動すると考えられ、発	及び輪谷湾でサザエ網・カナギ漁の漁船、発電所北東施設護岸	基準津波の特性の
	<u>電所敷地エリアでは引き波へと転じる時間においても当該</u>	付近でかご漁及びカナギ漁・採貝藻漁の漁船、施設護岸から北	
	エリアの漂流物は津波の遡上方向である北西へ移動すると	側 500m 付近で一本釣り漁の漁船, 施設護岸から北西 600m 付近	違(以下,同様)
	考えられる。	でイカ釣り漁及びわかめ養殖の漁船が操業する。	
	発電所南側エリアのうち常陸那珂火力発電所敷地につい	軌跡解析の初期位置としては、輪谷湾入口付近に1点(地点	
	ては、津波襲来時の流況から、常陸那珂火力発電所の敷地	A), サザエ網・カナギ漁の操業エリア内の3号炉北岸付近に1	
	における漂流物のうち北側に存在するものは南方向へ移動	点(地点 B), サザエ網・採貝藻漁及びかご漁の操業エリア付	
	し、南側にあるものは北方向へ移動すると考えられる。国	近に1点(地点 C), 一本釣り漁エリア内に2点(地点 D, E),	
	立研究開発法人日本原子力研究開発機構敷地については、	わかめ養殖場,イカ釣り漁の操業エリア付近1点(地点 F),	
	津波襲来時の流況から、国立研究開発法人日本原子力研究	御津漁港近傍に1点(地点 G),計7地点設定した。軌跡解析	
	開発機構敷地に存在する施設・設備は津波の遡上方向であ る西へ移動すると考えられる。しかしながら、発電所南側	結果を第3図に示す。また、流向・流速ベクトル及び軌跡解析の表象は思な第4、5回に示す。 海京・海京・海京・海京・海京・海京・海京・海京・海京・海京・海京・海京・海京・海	
	<u>る四个移動すると考えられる。しかしなから、発電所開側</u> エリアの一部については東海第二発電所の敷地に隣接して	の考察結果を第4,5図に示す。流向・流速ベクトル及び軌跡 解析の考察結果より,構外海域にある漂流物には以下の移動傾	
	いることから、漂流物が津波防護施設である防潮堤の敷地	一向が確認された。	
	前面東側及び敷地側面南側、取水口へ向かうことを否定で	HJ パイ甲毛中心 C 4 し/こ。	
	きない。	【漂流物の移動傾向】	
	<u>C '&V 0</u>	・最大水位・流速を示す時間帯以前、以降においては、流速	
		が小さく、移動量も小さい	
		・いずれの時間帯も主に北西・南東方向の移動を繰返す傾向	
		がある。	
	以上より、漂流物の津波防護施設等及び取水口への到達		
	可能性について以下のとおり整理した。	日本海東縁部に想定される地震による津波と海域活断層から 	

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		<u>想定される地震による津波による漂流物の施設護岸及び取水口</u>	
	<u>a. 津波防護施設等への到達可能性評価</u>	への到達可能性評価を,各々以下に示す。日本海東縁部に想定	
	発電所敷地エリアについては漂流物が津波防護施設	される地震による津波は、発電所到達まで110分程度あり、沖	
	である防潮堤の敷地前面東側、敷地側面北側及び敷地	<u>合等への退避が可能であると考えられるが、航行不能となるこ</u>	
	側面南側へ向かう可能性があるため、津波防護施設等	とも考慮し、操業エリアで津波が襲来すると想定して、評価を	
	<u>へ向かう可能性があるものと評価した。なお、漂流物</u>	行う。また,海域活断層から想定される地震による津波は,発	
	の衝突力が大きいと考えられる津波襲来時の流況とし	電所到達まで3分程度であり、操業エリアで津波が襲来すると	
	て,敷地前面東側においては防潮堤の軸直交方向に津	想定して評価を行う。	
	波が襲来し、敷地側面北側及び敷地側面南側において		
	は防潮堤に沿うように軸方向に津波が襲来することか	(1) 日本海東縁部に想定される地震による津波	
	ら、漂流物の衝突による影響が大きくなるのは敷地前	日本海東縁部に想定される地震による津波について, 添付資	
	<u>面東側であると考えられる。</u>	料 34 第1図に示す基準津波1の流向・流速・軌跡の特徴を評	
	発電所南側エリアについては漂流物が津波防護施設	価した結果を以下に示す。なお,[]内は添付資料 34 の図番	
	である防潮堤の敷地前面東側及び敷地側面南側へ向か	<u>号を示す。</u>	
	う可能性があるため、津波防護施設等へ向かう可能性	a. 施設護岸への到達可能性評価	
	があるものと評価した。	i) 施設護岸から 500m 以遠で操業する漁船	
	発電所北側エリアについては漂流物が津波の遡上方	敷地護岸から 500m 以遠で操業する漁船としては, 敷地護岸	
	向である北西へ移動すると考えられることから津波防	から北西約 600m においてイカ釣り漁及びわかめ養殖の漁船	
	護施設等へ向かわないと評価した。	がある。これらの漁船に対し、施設護岸及び輪谷湾への到達	
		可能性を評価した。	
	b. 取水口への到達可能性評価	(a) 最大水位・流速を示す時間帯以前(地震発生後約 100 分~	
	発電所南側エリアについては漂流物が取水口へ向か	180分)[第1図(1)~(160)]	
	う可能性があるものと評価した。	約 180 分までは,全体的に流速が約 1m/s 未満と小さい。ま	
	その他のエリアにおける漂流物は陸域側又は久慈川	た,流向は主に北西・南東方向に変化しており,漂流物は北西,	
	上流へ移動すると考えられることから, 取水口へ向か	南東方向に移動すると考えられ、発電所に対する連続的な流れ	
	わないと評価した。	もないため,施設護岸から 500m 以遠で操業する漁船は施設護	
		岸及び輪谷湾に到達しないと考えられる。	
	(2) 引き波時(地震発生後 約40分~約50分)	(b) 最大水位・流速を示す時間帯 (地震発生後約 180 分~200	
	発電所敷地エリアについては、引き波時の流況から、漂	<u>分)[第 1 図(161)~(201)]</u>	
	流物が津波襲来時に敷地側面北側及び敷地側面南側へ移動	発電所北西の半島沿岸において,約 183 分で,流速 5m/s 程	
	した後に外海方向へ移動すると考えられるが、津波襲来時	度の半島を回り込み発電所に向かうような流れが確認される	
	に敷地前面東側に漂流物が留まった場合、引き波時におい	[第1図(167)]が,流向は短い間隔で主に北西・南東方向に	
	て漂流物が貯留堰、取水口へ向かうことを否定できない。	変化しており,発電所に対する連続的な流れもないため,施	
	発電所北側エリアについては、引き波時の流況から、漂		
	流物が外海方向へ移動すると考えられる。		

			
柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	発電所南側エリアのうち常陸那珂火力発電所敷地につい	発電所に対する連続的な流れもないため、施設護岸及び輪谷	
	ては、引き波時の流況から、漂流物が外海へ移動すると考	湾に到達しないと考えられる。	
	えられる。国立研究開発法人日本原子力研究開発機構敷地		
	については、引き波時の流況から、漂流物が外海へ移動す	(c) 最大水位・流速を示す時間帯以降(地震発生後約200分~360	
	ると考えられる。	分) [第1図(202)~(281)]	
	以上より、漂流物の津波防護施設等及び取水口への到達	約 200 分以降は,全体的に流速が小さい。また,流向は主	
	可能性について以下のとおり整理した。	に北西・南東方向に変化しており、漂流物は北西、南東方向	
	a. 津波防護施設等への到達可能性評価	に移動すると考えられる。 流速が小さく発電所に対する連続	
	発電所敷地エリアについては, 津波襲来時に防潮堤	的な流れもないため,施設護岸から 500m 以遠で操業する漁船	
	の敷地側面北側及び敷地側面南側へ到達した漂流物	は施設護岸及び輪谷湾に到達しないと考えられる。	
	が、引き波時に津波防護施設である貯留堰へ向かう可		
	能性があるため、津波防護施設等へ向かう可能性があ	(a)~(c)より, 施設護岸から 500m 以遠を操業する漁船につ	
	<u>るものと評価した。</u>	いては、流向が短い間隔で主に北西・南東方向に変化してお	
	その他のエリアにおける漂流物は継続的に外海方向	り,発電所に対する連続的な流れもないため,施設護岸及び	
	へ移動すると考えられることから津波防護施設等へ向	輪谷湾に到達しないと考えられる。また、イカ釣り漁及びわ	
	かわないと評価した。	かめ養殖場の操業エリアの近傍である地点 F における軌跡解	
		析の結果からも、軌跡は発電所から遠ざかる方向に移動して	
		おり,施設護岸及び輪谷湾に到達しないと考えられる(第4-1	
		<u>~27 図)。</u>	
		ii) 敷地護岸から 500m 以内で操業する漁船	
	b. 取水口への到達可能性評価	施設護岸から約 500m 以内で操業する漁船としては, 3 号北側	
	発電所敷地エリアについては漂流物が取水口へ向か	沿岸部において,サザエ網漁及びカナギ漁の漁船,発電所北東沿	
	う可能性がある。	岸部においてかご漁,カナギ漁及び採貝藻漁の漁船,発電所北側	
	その他のエリアにおける漂流物は継続的に外海方向	500m 程度のエリアで一本釣り漁の漁船がある。これらの漁船に	
	へ移動すると考えられることから, 取水口へ向かわな	対し、施設護岸及び輪谷湾への到達可能性を評価した。	
	いと評価した。_		
		(a) 最大水位・流速を示す時間帯以前(地震発生後約 100 分~	
	(3) 収束時(地震発生後 約50分~約90分)	180 分) [第 1 図(1)~(160)]	
	発電所敷地エリアについては、収束時の流況から、発電	約 180 分までは,全体的に流速が小さい。また,流向は主	
	<u> </u>	に北西・南東方向に変化しており、漂流物は北西、南東方向	
	るが、比較的穏やかな流況が継続することから、漂流物は	に移動すると考えられる。 流速は 2m/s 程度 [第 1 図(155)]	
	大きな移動を伴わないと考えられる。	であり、発電所に対する連続的な流れもないため、敷地護岸	
	発電所北側エリアについては、収束時の流況から、当該	から 500m 以内で操業する漁船は施設護岸及び輪谷湾に到達	
	エリアの漂流物は一時的に外海へ移動すると考えられる	しないと考えられる。	
	が、比較的穏やかな流況が継続することから、漂流物は大		
	<u>~ , とロサストリフル (^ なり回りしゃ 神監内に) る こ こ ゃ つ , 所他物でな人</u>		

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	きな移動を伴わないと考えられる。	(b) 最大水位・流速を示す時間帯 (地震発生後約 180 分~200	
	発電所南側エリアについては、収束時の流況から、当該	分)[第1図(161)~(201)]	
	エリアの漂流物は一時的に外海へ移動すると考えられる	(a)と同様に,流向は短い間隔で主に北西・南東方向に変化	
	が、比較的穏やかな流況が継続することから、漂流物は大	しており、発電所に対する連続的な流れもないため、敷地護	
	きな移動を伴わないと考えられる。	岸から 500m 以内で操業する漁船は施設護岸及び輪谷湾に到	
	以上より,漂流物の津波防護施設等及び取水口への到達	達しないと考えられるが、3 号北側防波壁及び 1 号放水連絡	
	可能性について以下のとおり整理した。	通路防波扉から約 50m 以内の水深が約 20m の浅い位置におい	
	a. 津波防護施設等への到達可能性評価	て, 5m/s 以上の流速が確認される [第1図(164), (187)] こ	
	各エリアにおける漂流物は大きな移動を伴わないと	とから,敷地護岸から 500m 以内で操業する漁船は,当該位置	
	考えられることから、津波防護施設等へは向かわない	に接近することを考慮し、施設護岸に到達する可能性がある	
	<u>と評価した。</u>	<u>と評価した。</u>	
	b. 取水口への到達可能性評価	(c) 最大水位・流速を示す時間帯以降(地震発生後約 200 分~	
	- 各エリアにおける漂流物は大きな移動を伴わないと考えら	360 分) [第1図(202)~(281)]	
	れることから、取水口へ向かわないと評価した。	約 200 分以降は,流速が小さい。また,流向は主に北西・	
		南東方向に変化しており、漂流物は北西、南東方向に移動す	
		ると考えられる。 流速が小さく発電所に対する連続的な流れ	
		もないため,敷地護岸から 500m 以内で操業する漁船は施設護	
		岸及び輪谷湾に到達しないと考えられる。	
		(a)~(c)より,最大水位・流速を示す時間帯において,3	
		号北側防波壁及び 1 号放水連絡通路防波扉から約 50m 以内の	
		水深が約 20m の浅い位置で,5m/s 以上の流速が確認された。	
		<u>一</u> 方,上記以外の範囲においては,流向が短い間隔で主に	
		北西・南東方向に変化しており、発電所に対する連続的な流	
		れもない。また、サザエ網、カナギ漁及び一本釣り漁の操業	
		エリアの近傍の地点 B における軌跡解析の結果からも, 軌跡	
		は北西方向と南東方向に移動を繰り返している(第 4-1~27	
		図)。	
		以上より、敷地護岸から 500m 以内で操業する漁船について	
		は、3 号北側防波壁及び 1 号放水連絡通路防波扉から約 50m	
		以内の水深が約 20m の浅い位置に接近することを考慮し,施	
		設護岸に到達する可能性があると評価した。	
		b. 取水口への到達可能性評価	
		a. i), ii)より,発電所沿岸部で操業する漁船は漂流物と	


柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		なった場合においても輪谷湾に到達しないと評価したが、構	
		内海域(輪谷湾)の流況から到達の可能性を評価した。	
		(a) 最大水位・流速を示す時間帯以前(地震発生後約 100 分~	
		180 分) [第1図(1)~(160)]	
		構内海域(輪谷湾)においては,約 180 分までは,流速が	
		小さく移動量は小さい。また、港湾部はその形状から、押し	
		波後はすぐに引き波に転じることから、構内海域(輪谷湾)	
		に漂流物は到達しないと考えられる。	
		(b) 最大水位・流速を示す時間帯(地震発生後約 100 分~180	
		分)[第1図(161)~(201)]	
		は最大 9m/s 程度と速いが、港湾部はその形状から、押し波後	
		はすぐに引き波に転じることから、構内海域(輪谷湾)に漂	
		流物は到達しないと考えられる <u>。</u>	
		(c) 最大水位・流速を示す時間帯以降(地震発生後約 200 分~	
		360 分)[第 1 図 (202)~(281)]	
		構内海域(輪谷湾)においては,約 200 分以降は,流速が	
		遅く移動量は小さい。また、港湾部はその形状から、押し波	
		後はすぐに引き波に転じることから、構内海域(輪谷湾)に	
		漂流物は到達しないと考えられる。	
		(a)~(c)より,最大水位・流速を示す時間帯において,最	
		大 9m/s 程度の速い流速が確認されたが, 港湾部はその形状か	
		ら,押し波後はすぐに引き波に転じることから,構内海域(輪	
		谷湾) に漂流物は到達しないと考えられる。また,輪谷湾近	
		傍の地点 A の軌跡解析の結果から、軌跡は北西方向と南東方	
		向に移動を繰り返しており、輪谷湾に到達しないと考えられ	
		る。(第 4-1~27 図)	
		(2)海域活断層から想定される地震による津波	
		海域活断層から想定される地震による津波について、添付 資料34第4図に示す基準津波4の流向・流速・軌跡の特徴を	
		評価した結果を以下に示す。	


柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		a. 施設護岸への到達可能性	
		i) 敷地護岸から 500m 以遠で操業する漁船	
		(a) 最大水位·流速を示す時間帯以前(地震発生後約0分~5	
		分)[第4図(1)~(11)]	
		約 <u>0</u> 分から約5分まで流速は約1m/s 未満と小さく, 流向は	
		短い間隔で変化することから、敷地護岸から 500m 以遠で操業	
		する漁船は施設護岸に到達しないと考えられる。	
		(b) 最大水位・流速を示す時間帯(地震発生後約5分~7分)	
		[第4図(12)~(15)]	
		流速は速くても 1m/s 程度 (第 4 図 (15)] であり,流向は	
		短い間隔で変化することから,敷地護岸から 500m 以遠で操業	
		する漁船は施設護岸及び輪谷湾に到達しないと考えられる。	
		(c) 最大水位・流速を示す時間帯以降(地震発生後約7分~	
		30 分)[第 4 図(16)~(61)]	
		7 分以降も流速は約 1m/s 未満と小さく,流向は短い間隔で	
		変化することから,敷地護岸から 500m 以遠で操業する漁船は	
		施設護岸及び輪谷湾に到達しないと考えられる。	
		$\underline{(a)}\sim(c)$ より、 いずれの時間帯も流速が小さく、かつ、最	
		大水位・流速を示す時間帯も2分(地震発生後5分~7分)	
		と短いことから、施設護岸に到達しないと評価した。また、	
		軌跡解析の結果より、施設護岸から 500m 以遠の地点 (C~F)	
		において、初期位置から移動していないことから、漂流物は ************************************	
		施設護岸及び輪谷湾に到達しないと考えられる(第 5-1~10	
		<u>図)。</u>	
		ii) 施設護岸から 500m 以内で操業する漁船	
		(a) 最大水位・流速を示す時間帯以前(地震発生後約0分~	
		5分)[第4図(1)~(11)]	
		約0分から約5分まで流速は約1m/s未満と小さく,流向は	
		短い間隔で変化することから,敷地護岸から 500m 以内で操業	
		する漁船は施設護岸及び輪谷湾に到達しないと考えられる。	

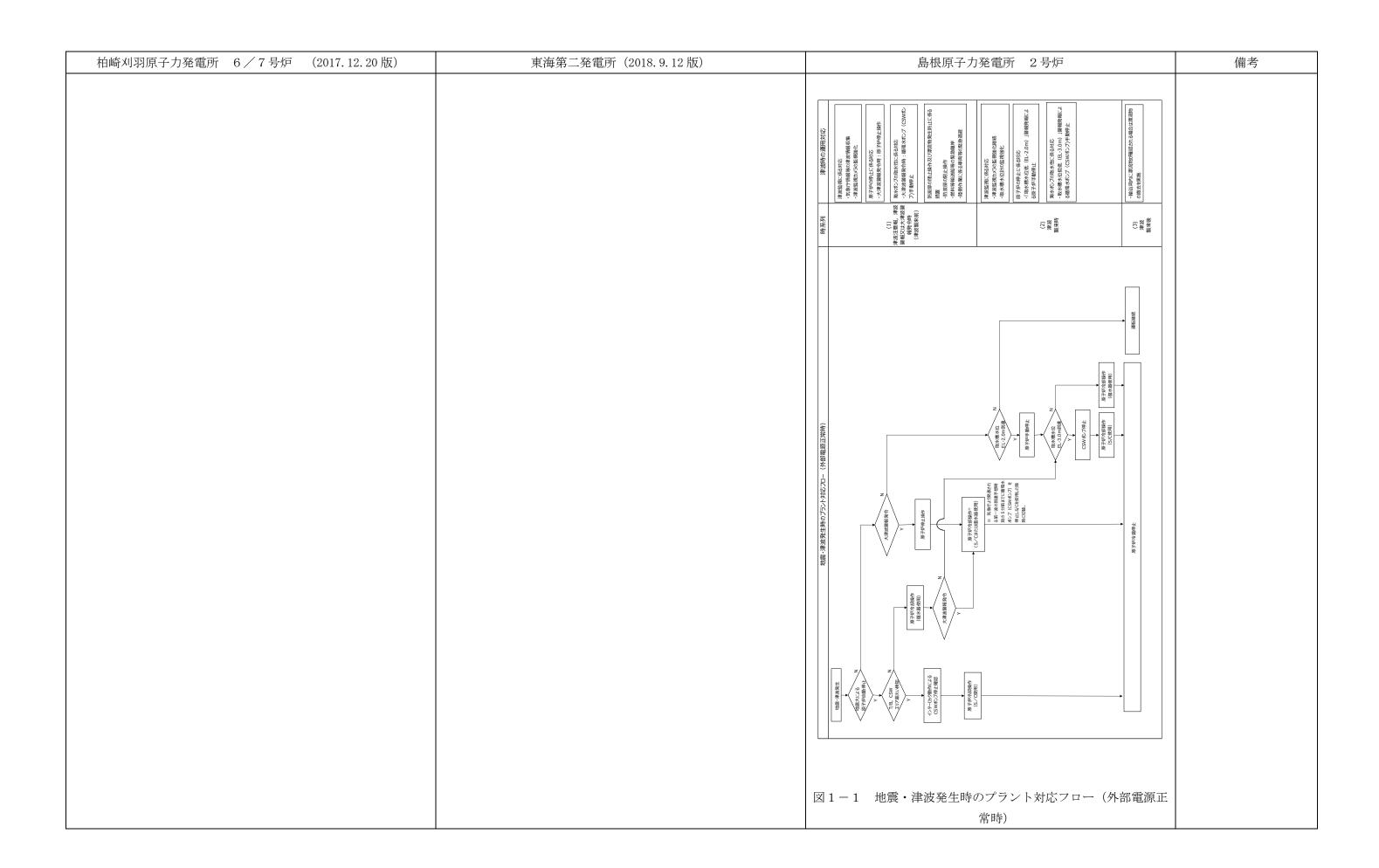
柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		(b) 最大水位・流速を示す時間帯(地震発生後約5分~7分)	
		[第4図(12)~(15)]	
		(a)と同様に、流向は短い間隔で変化することから、漂流物	
		は施設護岸及び輪谷湾に到達しないと考えられるが、3 号北	
		側防波壁から約50m以内の水深が約20mの浅い位置において,	
		2m/s 程度の流速が確認される [第 4 図(13)]。当該位置で漁	
		船が航行不能であった場合には、施設護岸に到達する可能性	
		があると考えられる。	
		(c) 最大水位・流速を示す時間帯以降(地震発生後約7分~	
		30分)[第4図(16)~(61)]	
		7 分以降も流速は約 1m/s 未満と小さく,流向は短い間隔で	
		変化することから, 敷地護岸から 500m 以内で操業する漁船は	
		施設護岸及び輪谷湾に到達しないと考えられる。	
		(a)~(c)より,流向は短い間隔で変化することから,漂流	
		物は施設護岸及び輪谷湾に到達しないと考えられる。また、	
		サザエ網、カナギ漁及び一本釣り漁の操業エリアの近傍の地	
		点 B における軌跡解析の結果からも、軌跡はほとんど移動し	
		ていないことから、漂流物は施設護岸及び輪谷湾に到達しな	
		いと考えられる (第 5-1~10 図)。一方, 3 号北側防波壁から	
		約 50m 以内の水深が約 20m の浅い位置において, 2m/s 程度の	
		流速が確認されることから、当該位置で漁船が航行不能であ	
		った場合は、施設護岸に到達する可能性があると評価した。	
		b. 取水口への到達可能性評価	
		a. i), ii)より,発電所沿岸部で操業する漁船は漂流物	
		となった場合においても輪谷湾に到達しないと評価したが,	
		構内海域(輪谷湾)の流況から到達の可能性を評価した。	
		(a) 最大水位・流速を示す時間帯以前(地震発生後約0分~5	
		分)[第4図(1)~(11)]	
		0分から5分まで流速は約1m/s 未満と小さく, 流向は短い	
		間隔で変化することから、構内海域(輪谷湾)に漂流物は到	
		達しないと考えられる。	
		E 0.84 C. 1/10 0/40 0/0	

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		(b) 最大水位・流速を示す時間帯(地震発生後約5分~7分)	
		<u>[第4図(12)~(15)]</u>	
		流速は速くて 3m/s 程度であるが, 輪谷湾外へ向かう流向で	
		あり[第4図(13)],輪谷湾に向かう流速は小さい[第4図(11)]	
		ことから,構内海域(輪谷湾)に漂流物は到達しないと考え	
		<u>5113.</u>	
		(c) 最大水位・流速を示す時間帯以降(地震発生後約7分~30	
		<u>分)[第 4 図 (16) ~ (61)]</u>	
		7 分以降も流速は約 1m/s 未満と小さく,流向は短い間隔で	
		変化することから、構内海域(輪谷湾)に漂流物は到達しな	
		いと考えられる。	
		(a)~(c)より、いずれの時間帯も流速が小さく、かつ、最	
		大水位・流速を示す時間帯も2分(地震発生後5分~7分)	
		と短いことから、輪谷湾に到達しないと評価した。また、輪	
		谷湾近傍の地点 A の軌跡解析の結果から,軌跡は輪谷湾から	
		離れる方向に移動しており、輪谷湾に到達しないと考えられ	
		る (第 5-1~10 図)。	
		2km - 本約り漁	
		第2図 発電所沿岸の漁港,漁船の操業エリア及び軌跡解析の初 期位置	

柏﨑刈羽原子力発電所 6/7 号炉(2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		株成 が成 終点 かん 株点	・資料構成の相違 【東海第二】 島根2号炉は,本資料 に軌跡解析結果を記載 (以降,同様な図であり 記載を省略する)

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)


まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料37〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		添付資料 37	
		海冲が仕味の実用社内について	次似株代の扣告
		津波発生時の運用対応について	・資料構成の相違 【柏崎 6/7, 東海第二】
		1. 概要	島根2号炉は津波発
		1. 帆安 設置許可基準規則第5条「津波による損傷の防止」に基づき,	生時の運用対応につい
		敷地等への浸水防止として防波壁通路防波扉及び1号放水連絡	て資料を作成
		通路防波扉(以下「防波扉」という。)の設置、襲来する津波を	CRT CII M
		監視するため津波監視設備を設置している。ここでは、上記設	
		備に係る運用に加え、大津波警報発令時の原子炉停止操作及び	
		循環水ポンプの停止等の津波発生時のプラント操作に係る対応	
		を示す。	
		2. 津波発生時の対応について	
		津波発生時の対応については、表1に示すとおり、気象庁が	
		発令する「島根県 出雲・石見」区域の津波注意報,津波警報	
		又は大津波警報及び津波の襲来状況に基づき実施することと	
		し、以下に示す(1)~(3)に区分し、それぞれの対応につ	
		いて示す。また,地震・津波発生時に想定されるプラント対応	
		フローを図1に示す。	
		(1) 津波注意報, 津波警報又は大津波警報発令時(津波襲来	
		前)	
		(2) 津波襲来時	
		(3) 津波襲来後	

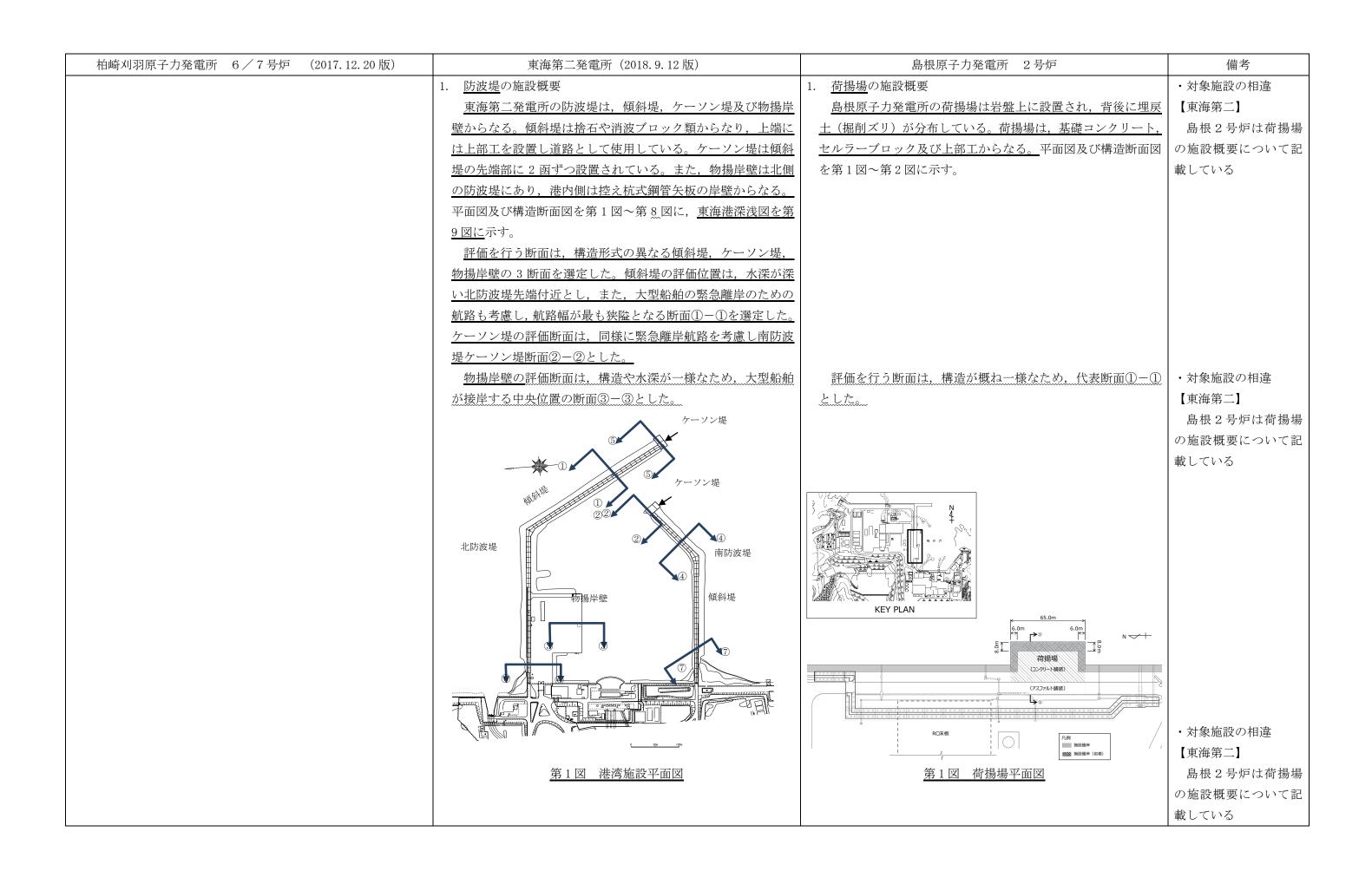
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所	2 号炉	備考
		表 1 気象庁	から発令される津波警報・	注意報の種類と津波高さの	
			関係		
		種類	津波予想高さ	発令警報	
			津波高さ10m超	津波の高さ 10m 超	
		大津波警報	津波高さ 5m 超~10m 以下	津波の高さ 10m	
			津波高さ 3m 超~5m 以下	津波の高さ 5m	
		津波警報	津波高さ 1m 超~3m 以下	津波の高さ3m	
		津波注意報	津波高さ 0.2m 以上~1m 以下	津波の高さ 1m	
		(1)津波海	主意報,津波警報又は大津	皮警報発令時(津波襲来前)	
		地震発生	生後,津波注意報,津波警	報又は大津波警報が発令さ	
		れた場合に	は、速やかに湾岸及び取水	槽廻りから待避するよう所	
		内通信連約	絡設備(警報装置を含む。)	により発電所内に周知し,	
		所員は高る	台 (EL11.9m 以上) に待避る	を行う運用としている。た	
		だし、漂流	流物発生防止に係る対応を	実施する場合は、対応実施	
				る情報(津波到達予想時刻,	
		· ·		波の状況等)を確認し作業	
				取水槽廻りでの作業は実施	
			ととしている。	A 15 #6 5 15 6 1 2 7 5 5 5	
		·		急時警戒体制を発令し、緊	
				より、速やかに重大事故等	
			きる体制を整える。	類(津波注意報,津波警報	
				類 (年級任息報, 年級書報) する対応を以下のとおり実	
		施する。		7 3 7 元 2 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
		a. 津波貝	監視に係る対応		
				も含め、津波に関する情報	
				メラによる津波襲来状況の	
			強化する。		
		1、 百.7.↓	戸の停止に係る対応		
				, 原子炉の停止操作及び冷	
				により原子炉が自動停止す	
		る場合を		N-8 //N 1 N 'N '日 知 T L 'Y	
		2 40 E	÷ 1/41 ✓ 0		

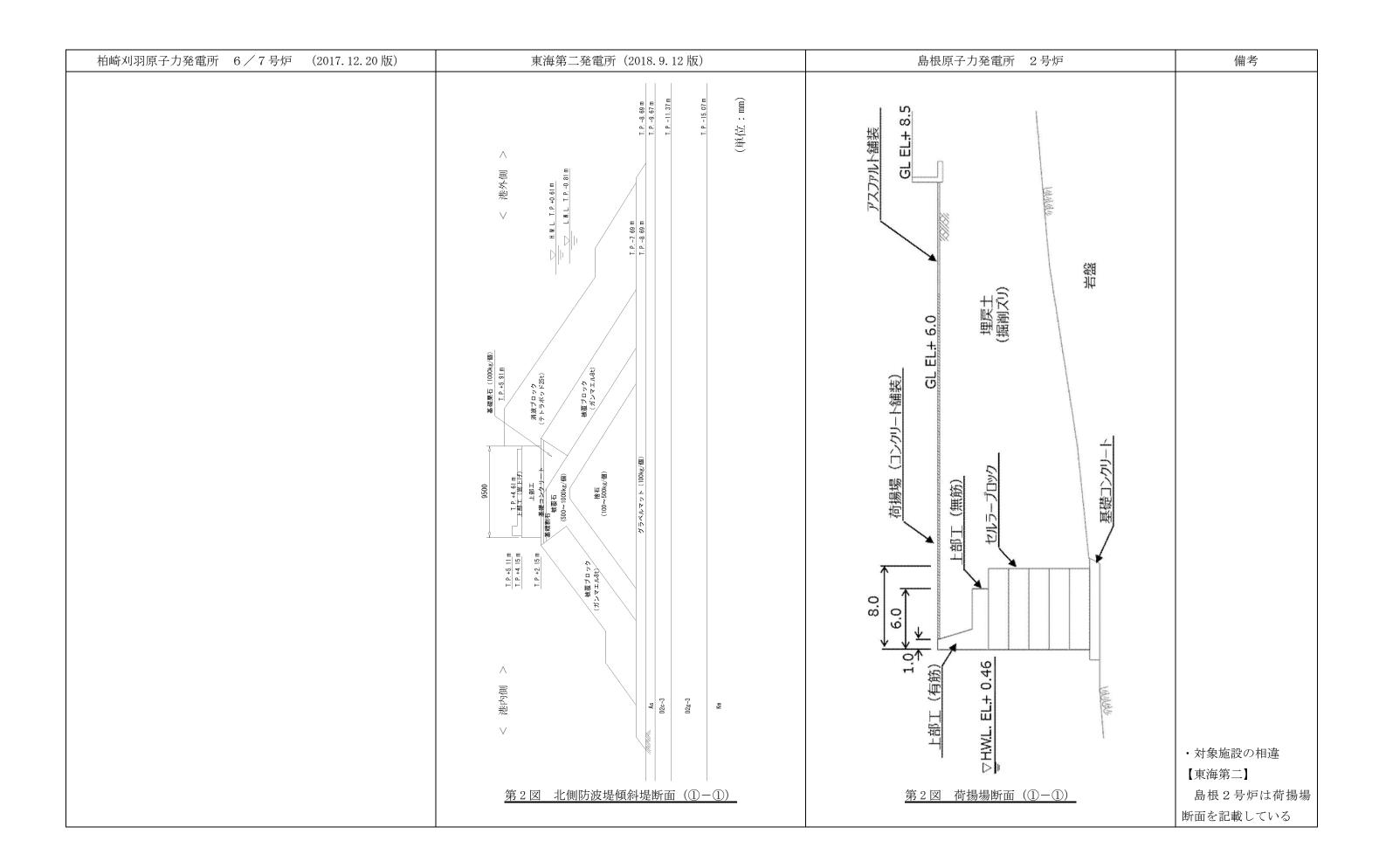
東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	c. 海水ポンプの取水性に係る対応	
	大津波警報が発令された場合は,原則として*1,津波到達	
	前に気象庁より発表される第一波の到達予想時刻の5分前ま	
	でに循環水ポンプを停止する。海水ポンプの取水性に係る循	
	環水ポンプの停止運用の妥当性について、別紙に示す。	
	※1 大津波警報が発令された場合は、循環水ポンプ停止操	
	作を実施するが、海域活断層から想定される地震による	
	津波は敷地に到達するまでの時間が短く、循環水ポンプ	
	停止前に襲来する可能性がある。なお、海域活断層から	
	想定される地震による津波に対しては、循環水ポンプ運	
	転時においても取水槽水位が非常用海水冷却系の海水	
	ポンプの取水可能水位を下回らないことを確認してい	
	る。	
	d. 防波扉の閉止操作及び漂流物発生防止に係る対応	
	防波扉は、常時閉運用としており、開放時には現場ブザー	
	音により注意喚起されること及び中央制御室にて開閉状態が	
	確認できる。作業等で開放する場合においても,速やかに閉	
	止できるよう, あらかじめ人員を確保することとしている(添	
	付資料 39 参照)。	
	一方, 荷揚場(防波壁外)で作業を実施している場合は,	
	作業を中断し,原則として*2,燃料等輸送船の緊急離岸及び	
	陸側作業に係る車両等の緊急退避を実施し、防波扉の閉止操	
	作を実施する。	
	※2 燃料等輸送船の緊急離岸や陸側作業に係る車両等の緊	
	急退避については,作業完了までに津波が到達する可能	
	性がある場合は実施しない。防波扉については, 人員の	
	安全を優先し、可能な範囲で扉の閉止操作を実施する。	
	なお,海域活断層から想定される地震による津波は荷揚	
	場に遡上することなく,陸側作業に係る車両等は漂流物	
	になることはない。また,燃料等輸送船は荷揚場に係留	
	されており漂流物となることはない。	
	(2) 津波襲来時	
	a. 津波の監視に係る対応	
	津波監視カメラによる津波襲来状況の監視を継続するとと	
	東海第二発電所 (2018. 9. 12 版)	

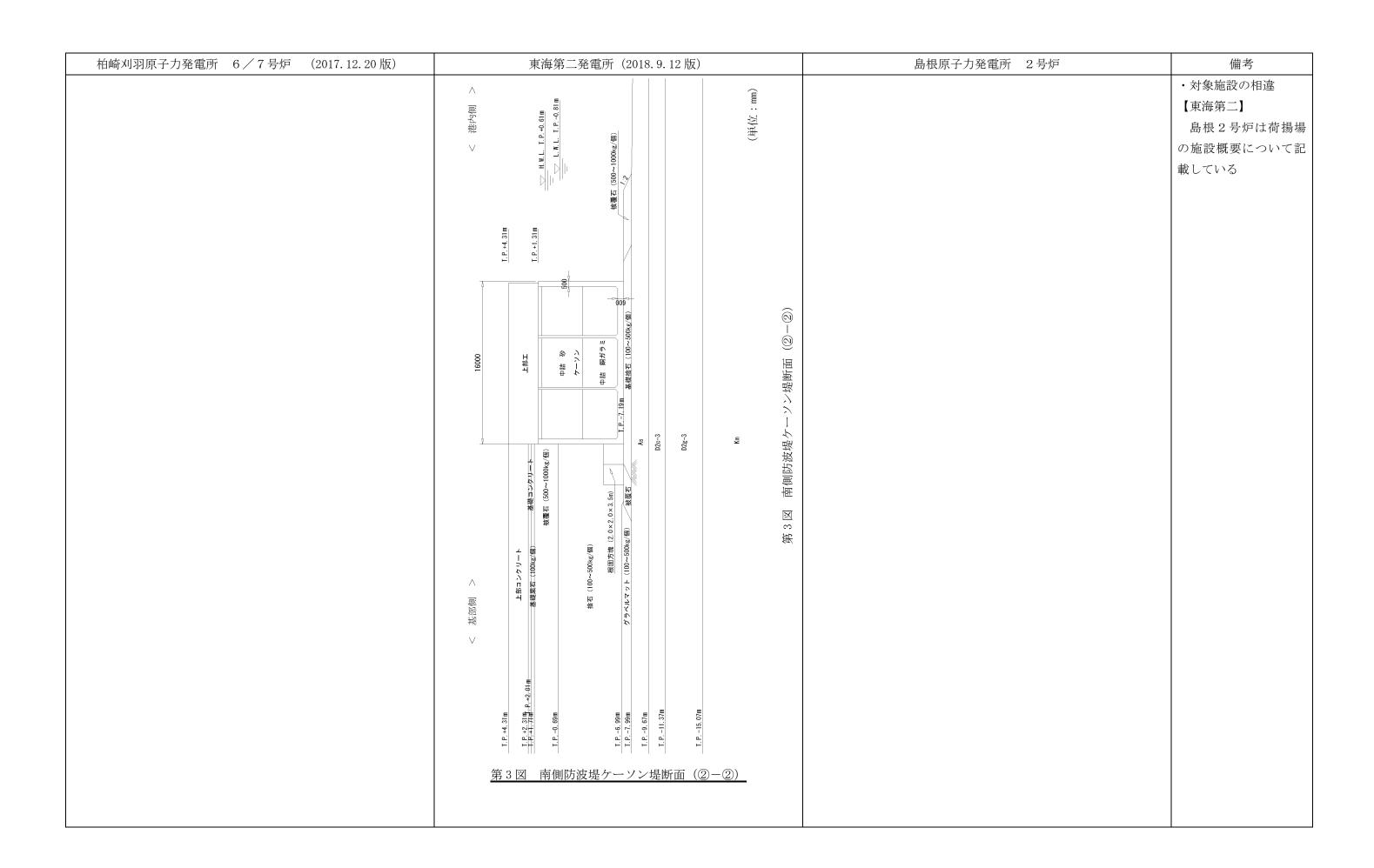
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		もに、取水槽水位計による取水槽水位の監視を強化する。	
		b. 原子炉の停止に係る対応	
		取水槽水位が「取水槽水位低」(EL-2.0m) まで低下した場合なる エモ なんだい 原 ス にっぷん せいせい にさ 思わな カス	
		合は、原子炉を手動停止し、原子炉の冷却操作を開始する。	
		c. 海水ポンプの取水性に係る対応	
		取水槽水位が「取水槽水位低低」(EL-3.0m) まで低下した	
		場合は、循環水ポンプを停止する。	
		d. 大型送水ポンプ車の取水性に係る対応	
		重大事故時に海水を取水する大型送水ポンプ車は、基準津	
		波により想定される引き波最大水位に対しても取水可能であ	
		ることを確認している。	
		(3) 津波襲来後	
		津波注意報、津波警報又は大津波警報解除後、巡視点検等に	
		より取水口を設置する輪谷湾内に漂流物が確認される場合に	
		は、必要に応じて漂流物を撤去する。	

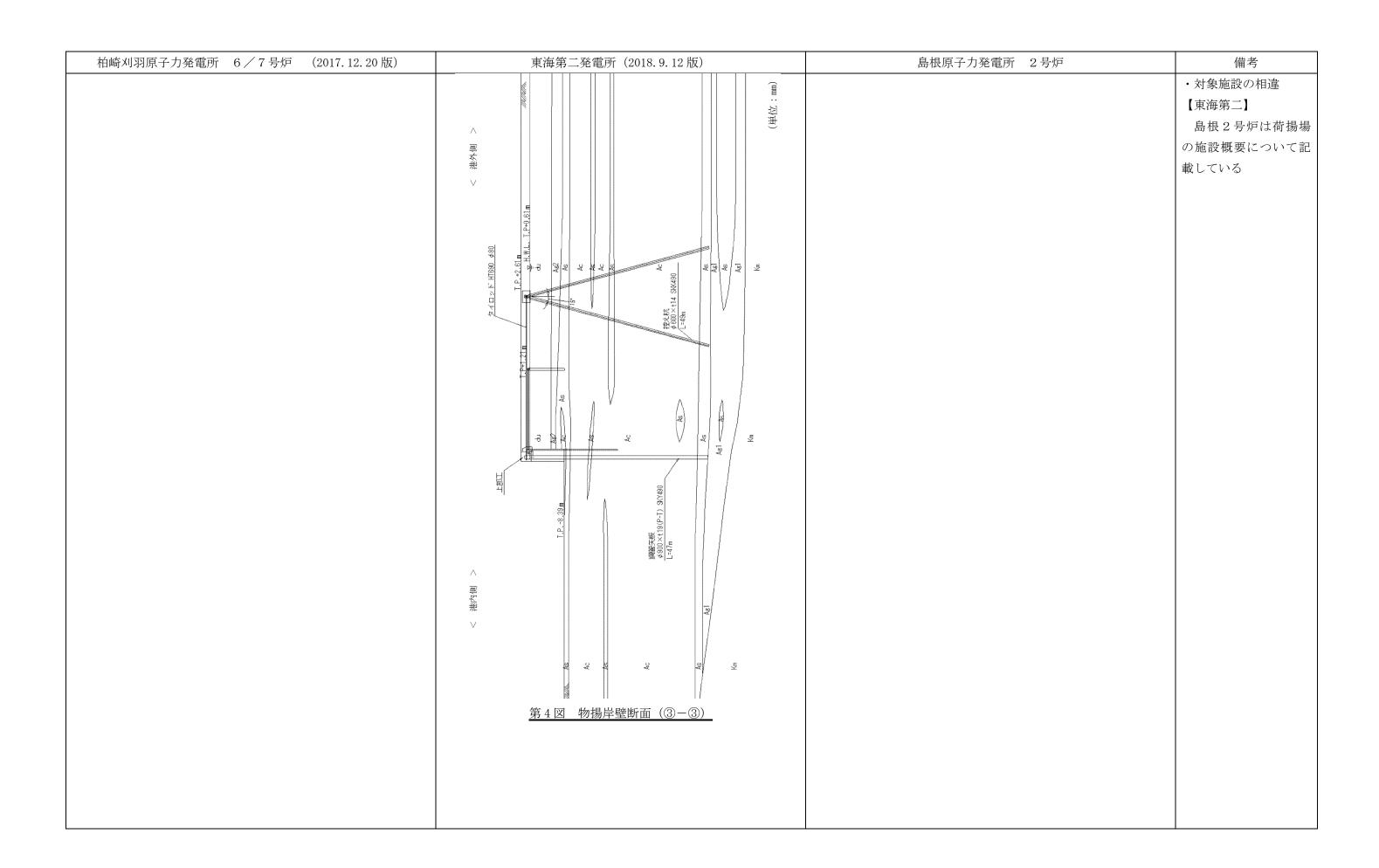
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	 島根原子力発電所 2 号炉	
	(1)	
	Total Color Total Color	

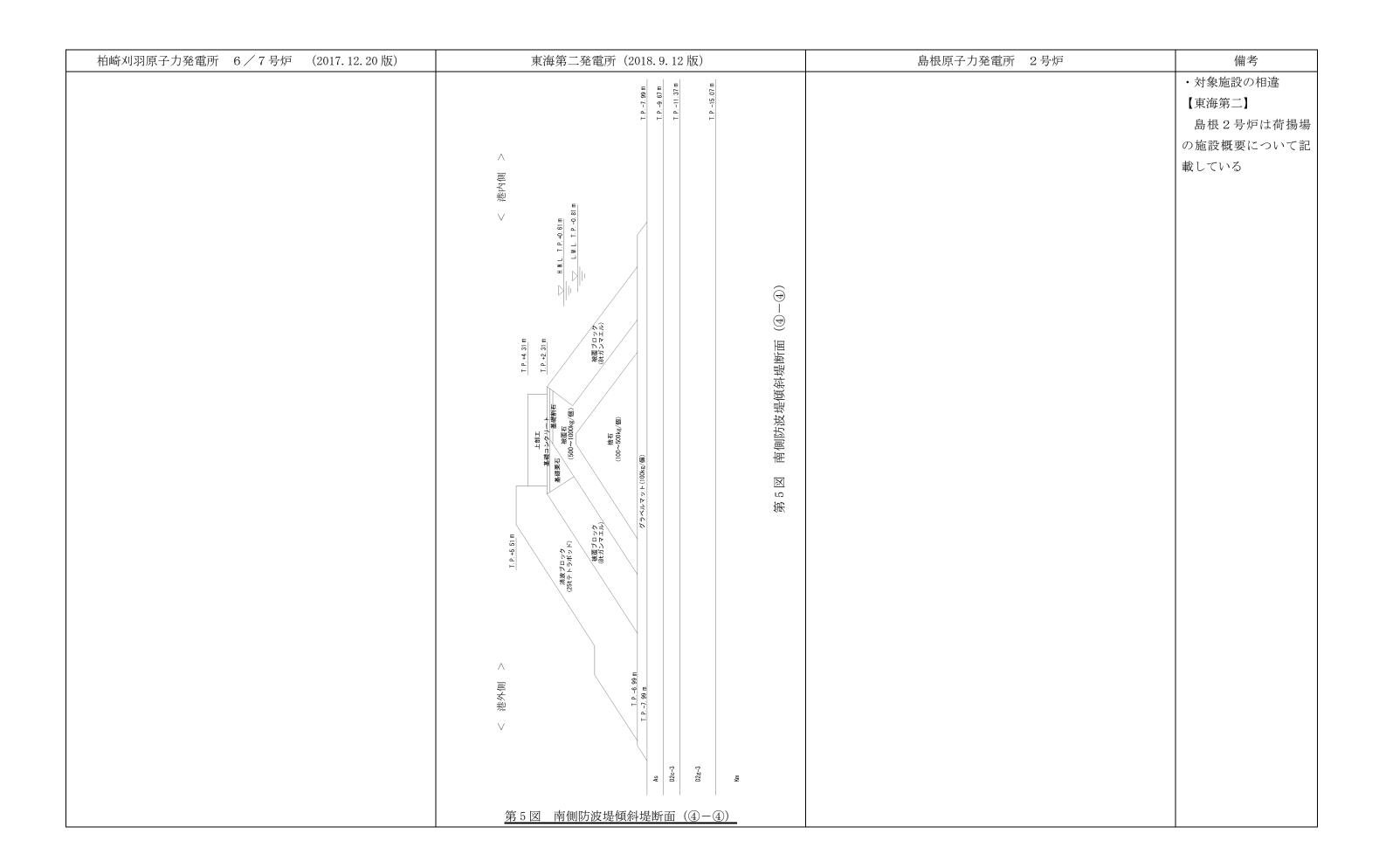
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		(別紙)	
		海水ポンプの取水性に係る循環水ポンプの停止運用の妥当性	
		大津波警報発令に伴う循環水ポンプ停止運用は、図1に示す通	
		り、日本海東縁部に想定される地震による津波の取水槽最低水位	
		が海水ポンプの取水可能水位に対して余裕がないことから設計に	
		係る運用事項として位置付けたものである。	
		大津波警報が発令された場合、以下を踏まえ、気象庁より発表	
		される第一波の到達予想時刻の5分前までに循環水ポンプを停止	
		する。原子炉の冷却方法の切替及び循環水ポンプの停止操作は表	
		1に示す通りであり、循環水ポンプ停止を判断した時点から数分	
		あれば循環水ポンプによる海水取水を停止することができる。	
		・原子炉の冷却方法としては、常用系である循環水系を用いた復	
		水器による冷却と非常用系である残留熱除去系による冷却があ	
		るが、復水器による冷却が可能な場合、復水器による原子炉冷	
		却を用いた方が、冷却方法の多様性が確保され、より原子炉冷	
		却機能の信頼性が高い状態である。	
		・日本海東縁部に想定される地震による津波では,2号炉取水槽	
		における水位変動は地震発生後約120分以降から始まるが、水	
		位変動が大きくなる(4m を超える)時間はその約 30 分以降で	
		あり, 非常用海水冷却系の海水ポンプの取水可能水位	
		(EL-8.32m) 付近まで水位が低下する時間はその約 60 分以降で	
		ある (図1)。	
		(m) 17.1	
		※最大水位下降量-7.97m-地殼変動量 0.34m≒ E L8.4m(E	
		L8.31m)	
		(入力津波6,防波堤無し)	
		図1 日本海東縁部に想定される地震による津波の取水槽水位	

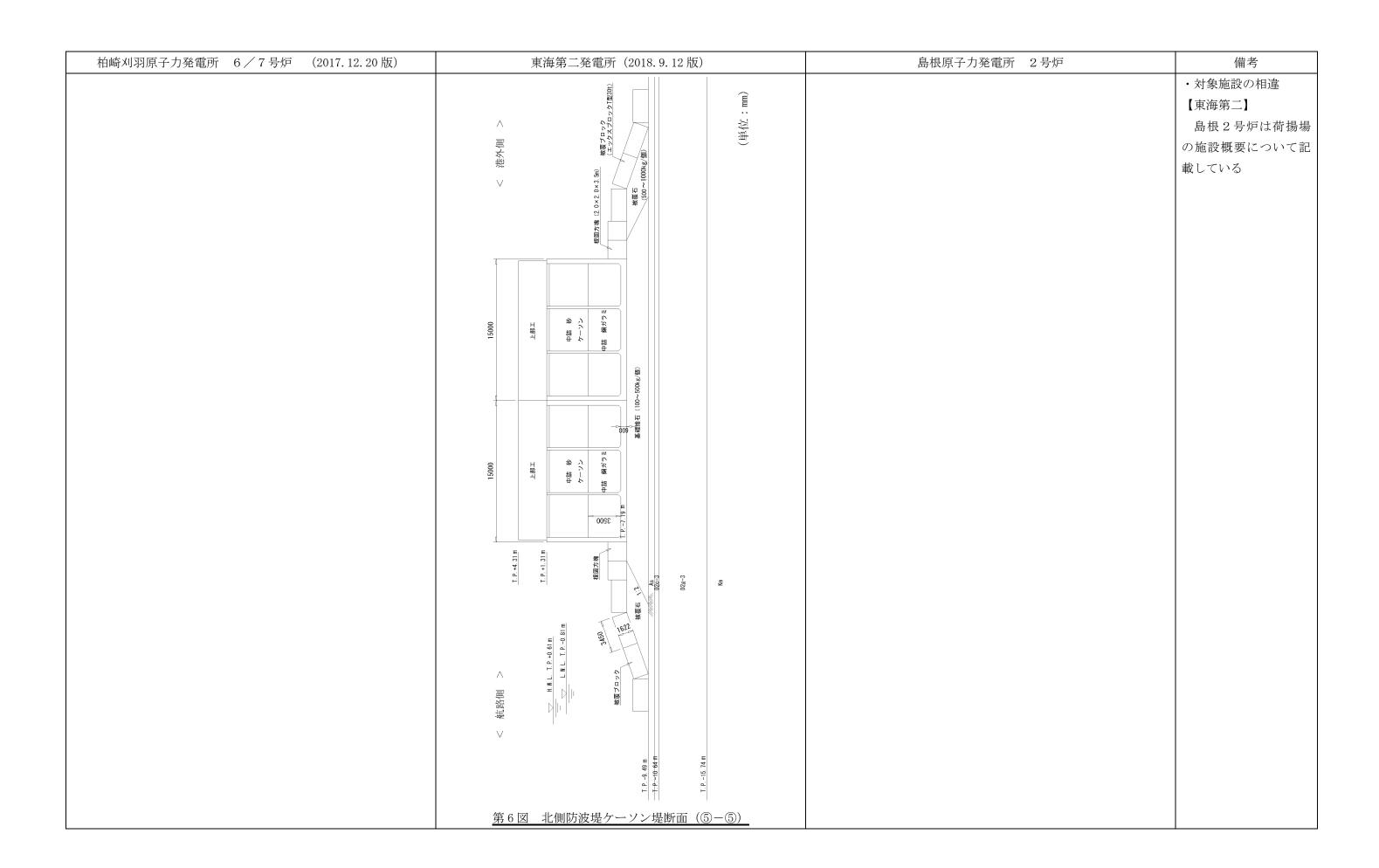

表1 原子学の割方法の知告及び帰域水水ンブの停止技作
(サプレッション・プール冷却) (原子炉注水) 図2 プラント停止後のサプレッション・プール冷却と原子炉注 水の概要

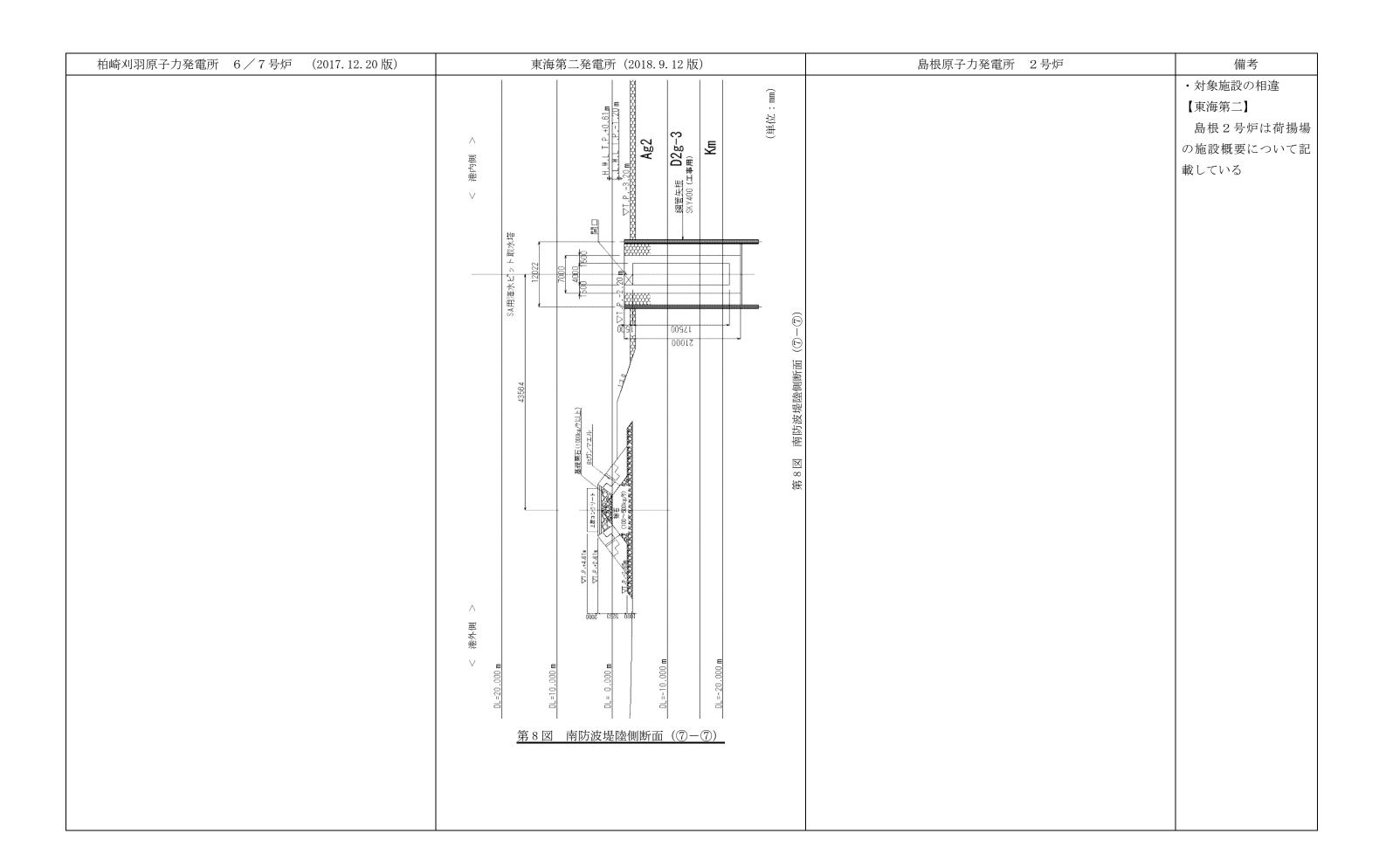

実線・・設備運用又は体制等の相違(設計方針の相違)


波線・・記載表現、設備名称の相違(実質的な相違なし)


まとめ資料比較表 〔第5条 津波による損傷の防止 別添1添付資料38〕


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉		備考
	添付資料	18	添付資料 38	
	地震後の <u>防波堤</u> の津波による影響評価について	地震後の <u>荷揚場</u> の津波による影響評値		対象施設の相違
				拍崎 6/7, 東海第二】
	日			島根2号炉は荷揚場 ついて記載している
	<u>目 次</u> 1. 防波堤の施設概要	発電所の構内(港湾内)にある港湾施設とし		フィ・C 記載 し てく・公
	2. 防波堤の漂流物化に係る検討方針	の西方に荷揚場があり、この他に、発電所港湾		
	3. 地震時評価	防波堤がある。	<u> </u>	
	(1) 解析方法	防波堤については、耐震性を有していない。	ことから漂流物評価	
	(2) 荷重及び荷重の組合せ	としているため、本資料では地震後の荷揚場の)津波による影響評	
	(3) 入力地震動	価について検討する。		
	(4) 解析モデル			
	(5) 使用材料及び材料の物性値			
	(6) 評価結果 (7) 其準地震動の によるは沈坦。の影響並伝のよりか			
	(7) 基準地震動S_sによる防波堤への影響評価のまとめ4. 津波時評価			
	(1) 評価方法			
	(2) 傾斜堤の津波時安定性			
	(3) ケーソン堤の津波時安定性			
	(4) 防波堤漂流物の重要施設への到達の可能性評価			
	(5) 取水施設における取水機能の成立性			
	(6) 津波による防波堤損壊の影響評価のまとめ			





柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉 備考
		 対象施設の相違 【東海第二】 島根2号炉は荷揚場の施設概要について記載している
	1	
	2 2 2 2 2 2 2 2 2 2	
	第7図 物揚岸壁進入路断面(⑥—⑥)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	H. P. — (a) 1. P. — (b) 0. 89 1. 89		・対象施設の相違 【東海第二】 島根2号炉は荷揚場 の施設概要について記載している
	The state of the s		
	第9図 東海港深浅図(2016年12月12日測量)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

東海第二発電所(2018.9.12版)

2. 防波堤の漂流物化に係る検討方針

基準地震動S_S及び基準津波により損傷した防波堤が漂流物化した場合、取水施設である取水口<u>及びSA用海水ピット取水塔の取水機能並びに貯留堰の海水貯留機能</u>に波及的影響を及ぼすこととなる。

このため、 $<u>防波堤</u>の基準地震動<math>S_s$ 及び基準津波による耐性を確認するとともに、<u>防波堤</u>を構成する部材の漂流物化の可能性、取水施設への到着の有無について評価を行う。

その結果、取水施設への到達が否定できない場合、漂流物化 した<u>防波堤</u>の構成部材に対して、取水施設に期待される機能へ の影響を確認する。

防波堤の漂流物化に伴う波及的影響検討対象施設と想定される損傷モードについて第1表に、防波堤の漂流物化に係る波及的影響検討対象施設図を第10図に、波及的影響検討フローを第11図に示す。

第1表 波及的影響検討対象施設と損傷モード一覧表

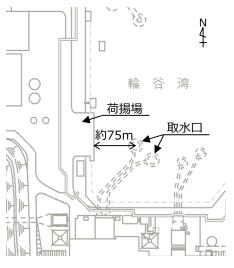
波及的影響検討対象施設	損傷モード
1. 取水口	・漂流物による閉塞
	・漂流物の堆積による取水量の減少
2. 貯留堰	・漂流物の衝突による損傷
	・漂流物の堆積による貯留容量の減少
3. SA用海水ピット取水	・漂流物の衝突による損傷
塔	・漂流物による閉塞
	・漂流物の堆積による取水量の減少

第10回 波及的影響検討対象施設図

2. 荷揚場の漂流物化に係る検討方針

基準地震動 S s 及び基準津波により損傷した<u>荷揚場</u>が漂流物化した場合,取水施設である取水口に波及的影響を及ぼすこととなる。

島根原子力発電所 2号炉


このため、荷揚場の基準地震動Ss及び基準津波による耐性を確認するとともに、荷揚場を構成する部材の漂流物化の可能性、取水施設への到着の有無について評価を行う。

その結果,取水施設への到達が否定できない場合,漂流物化 した<u>荷揚場</u>の構成部材に対して,取水施設に期待される機能へ の影響を確認する。

荷揚場の漂流物化に伴う波及的影響検討対象施設と想定される損傷モードについて第1表に、荷揚場の漂流物化に係る波及的影響検討対象施設図を第3.図に、波及的影響検討フローを第4図に示す。

第1表 波及的影響検討対象施設と損傷モード一覧表

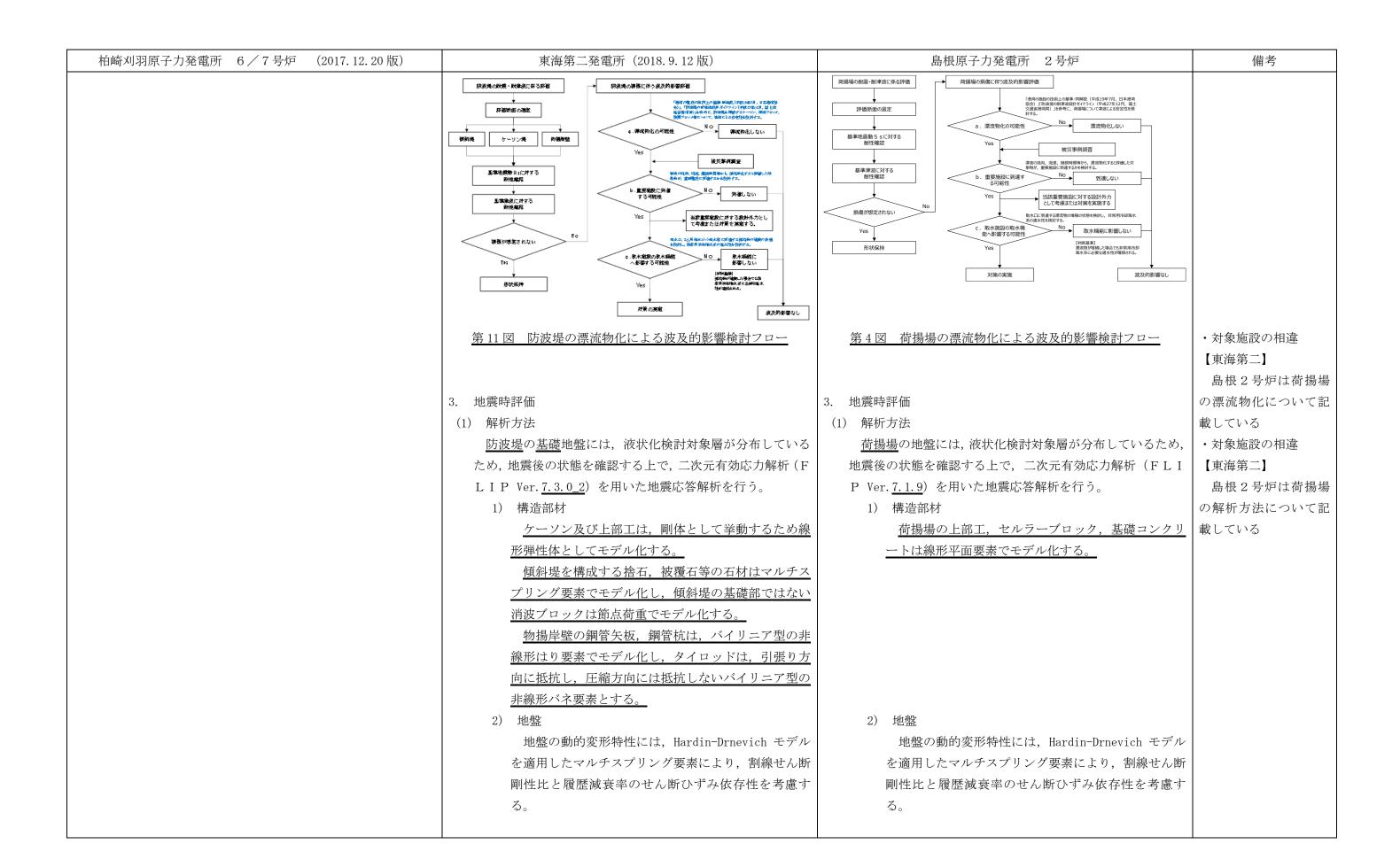
波及的影響検討対象施設	損傷モード
1. 取水口	・漂流物による閉塞・漂流物の堆積による取水量の減少

第3回 波及的影響検討対象施設図

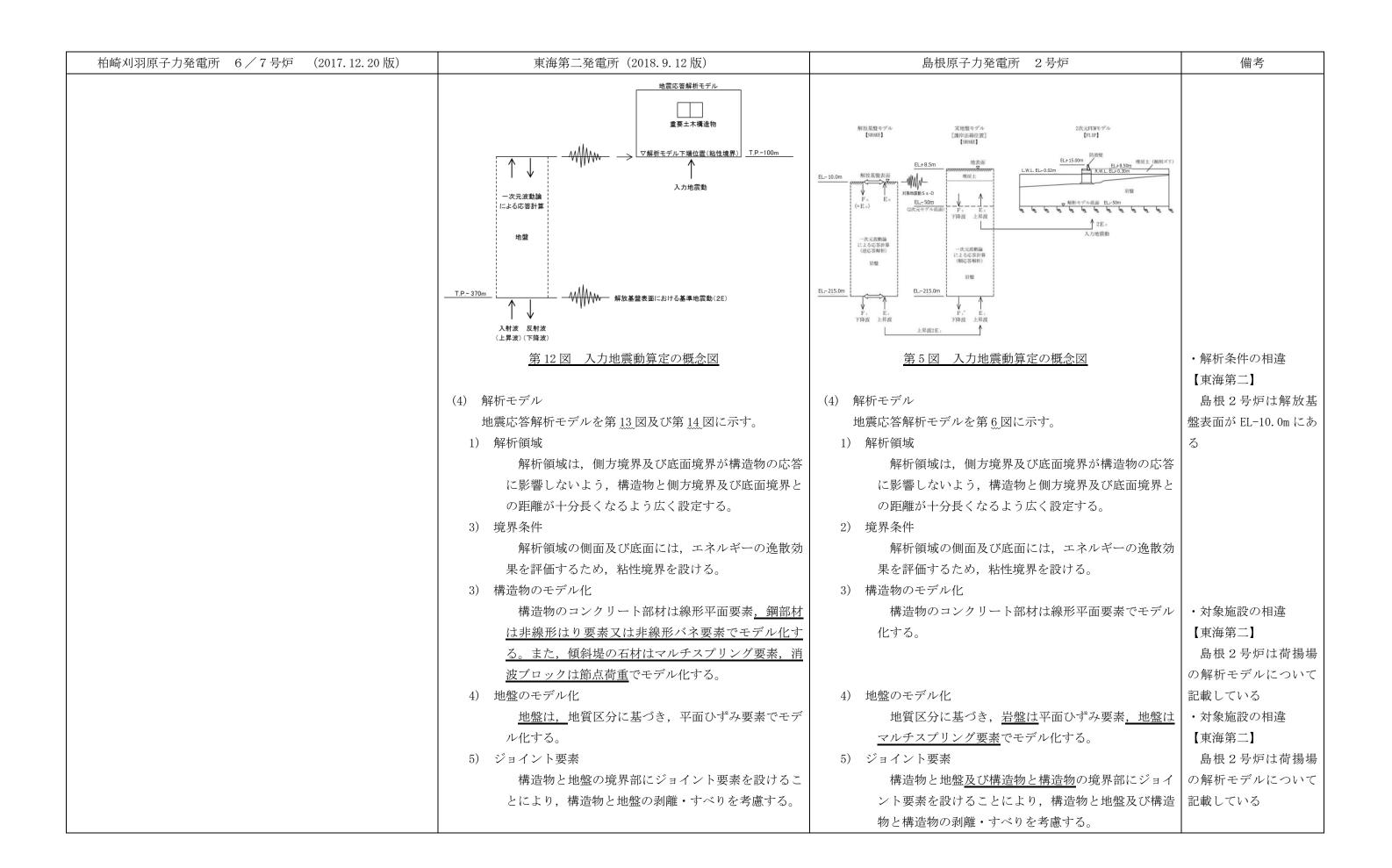
備考 ・対象施設の相違

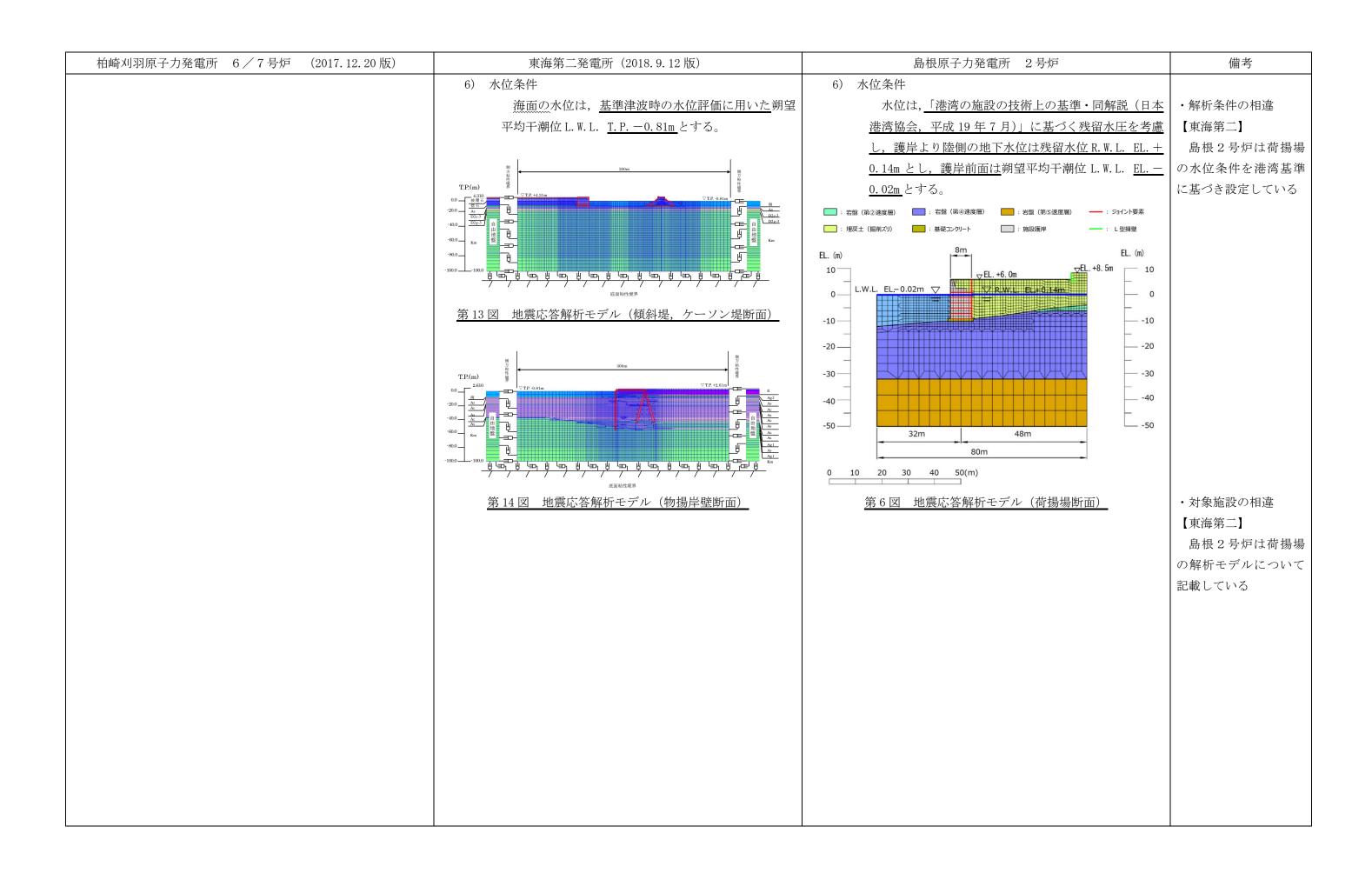
【東海第二】

島根2号炉は荷揚場 の漂流物化について記 載している

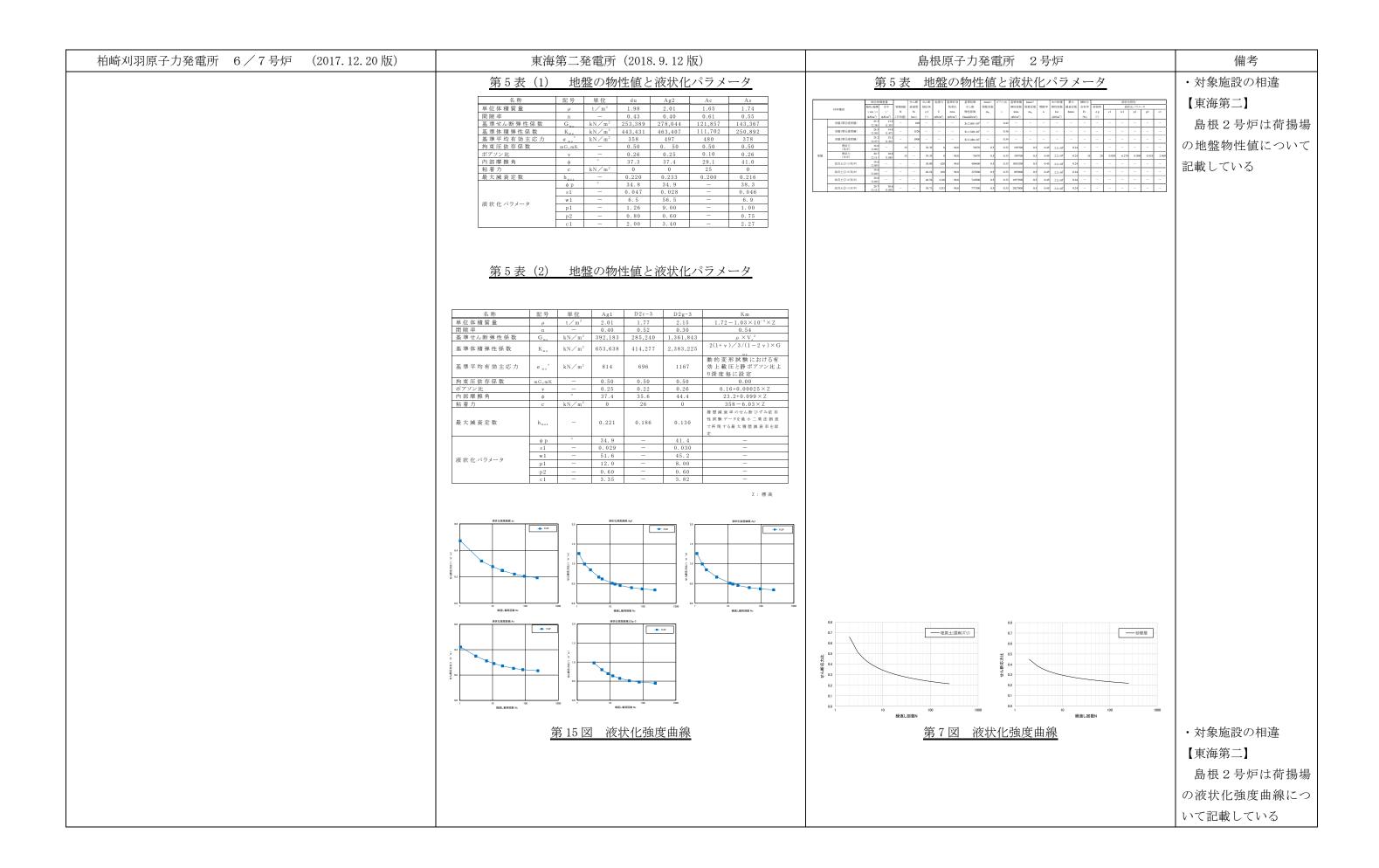

・対象施設の相違 【東海第二】

島根2号炉は取水口 を波及的影響検討対象 施設としている

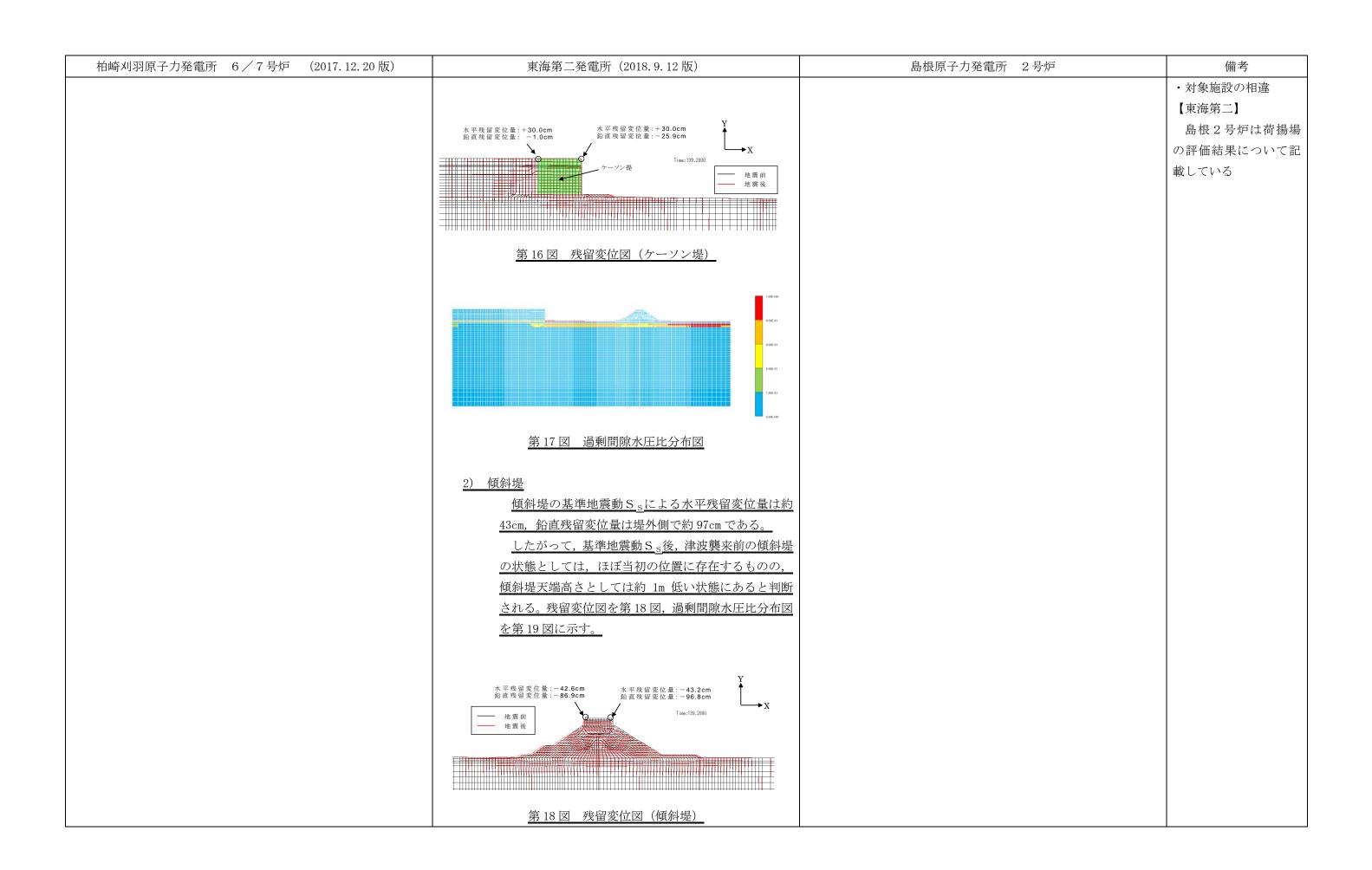

・対象施設の相違

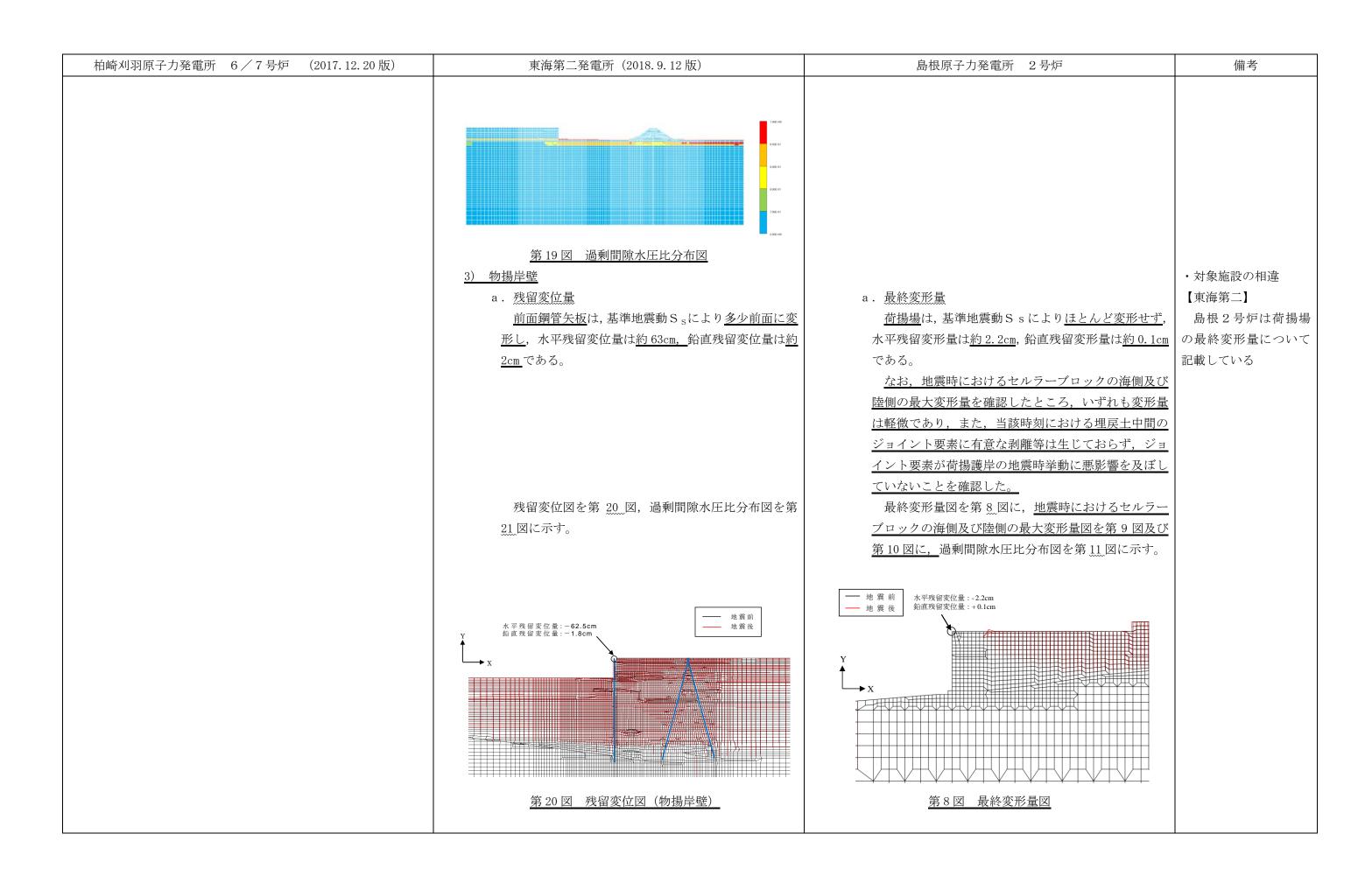

【東海第二】

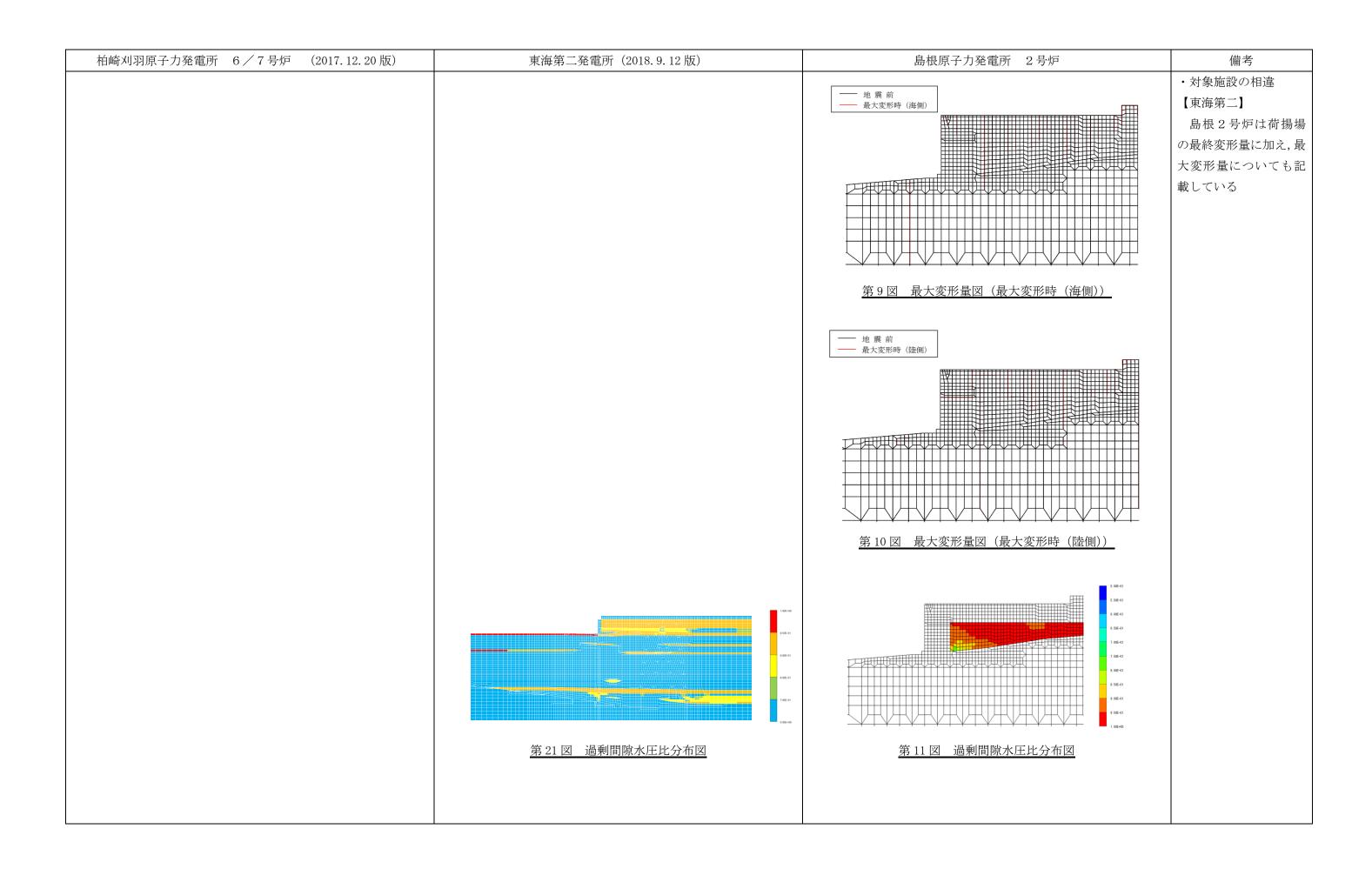
島根2号炉は荷揚場 の漂流物化について記 載している

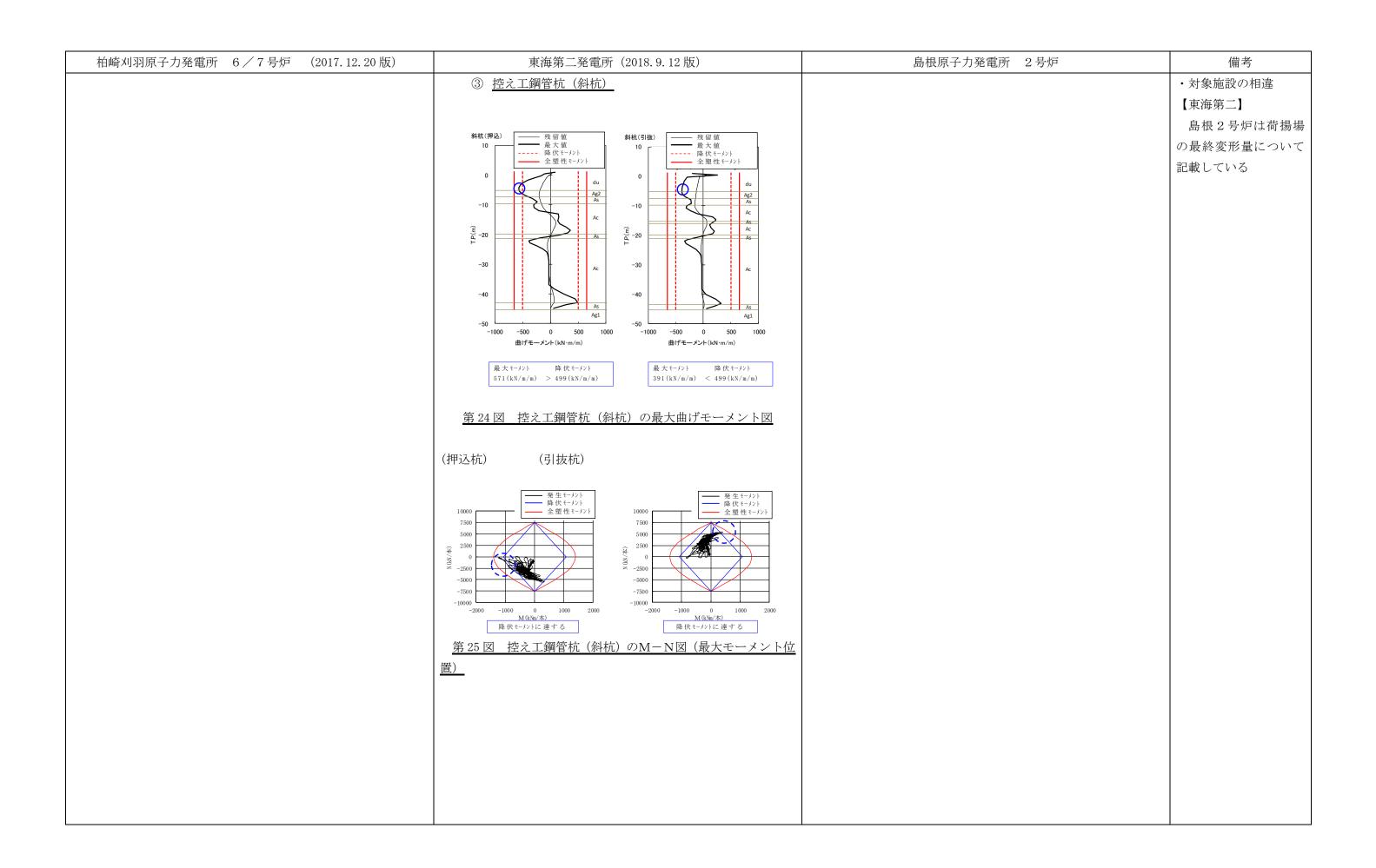


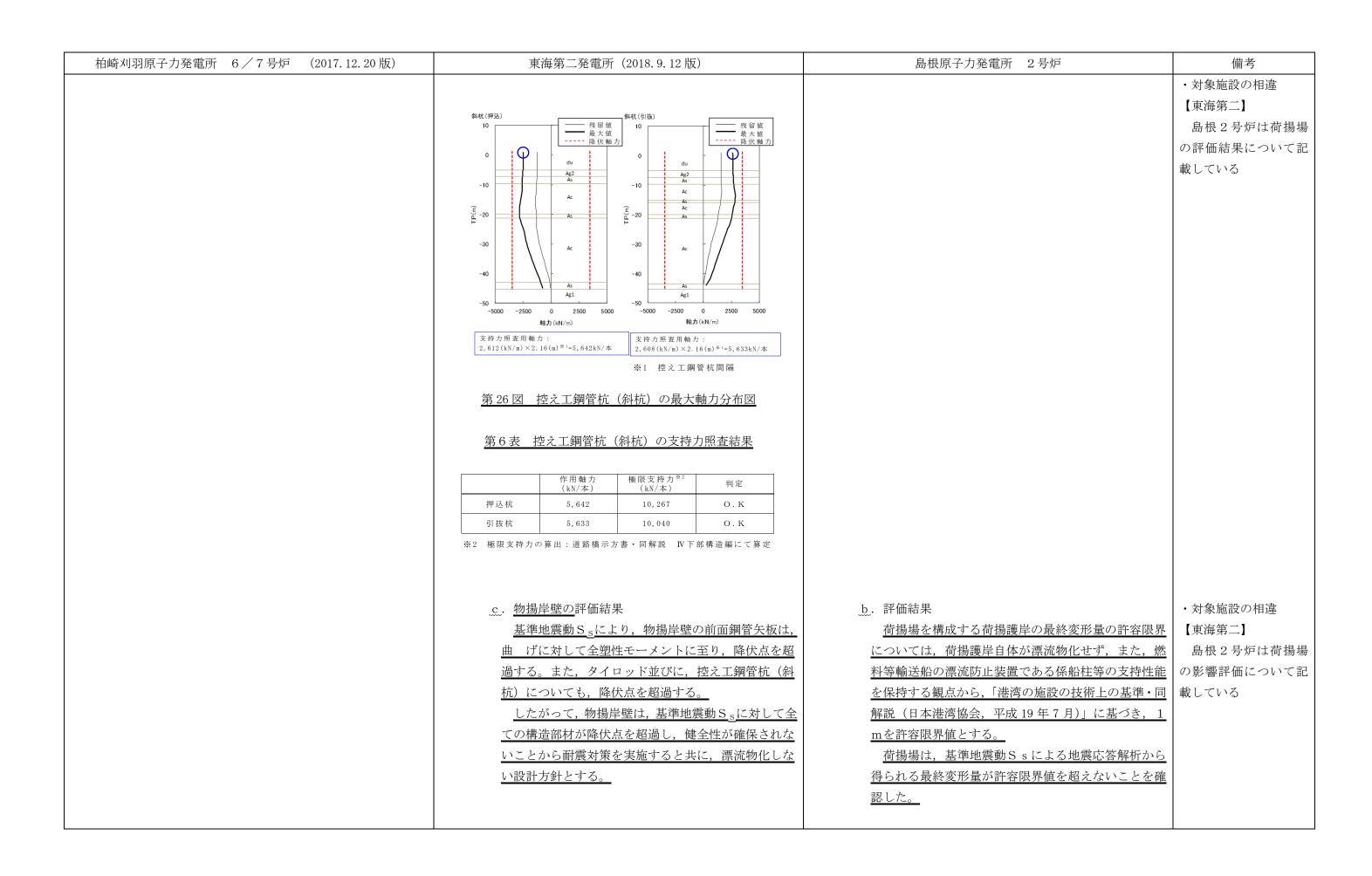
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	3) 減衰定数	3) 減衰定数	
	減衰特性は,数値計算の安定のための Rayleigh 減衰	減衰特性は,数値計算の安定のための Rayleigh 減衰	
	と, 地盤の履歴減衰を考慮する。	と, 地盤の履歴減衰を考慮する。	
	(2) 荷重及び荷重の組合せ	(2) 荷重及び荷重の組合せ	
	荷重及び荷重の組合せは、以下の通り設定する。	荷重及び荷重の組合せは、以下の通り設定する。	
	1) 荷重	1) 荷重	
	地震応答解析において考慮する荷重を以下に示す。	地震応答解析において考慮する荷重を以下に示す。	
	a. 常時荷重	a. 常時荷重	
	常時荷重として, 構造物及び海水の自重を考慮する。	 常時荷重として, 構造物及び海水の自重を考慮する。	
	物揚岸壁については、「港湾の施設の技術上の基準・		 ・解析条件の相違
	同解説(日本港湾協会,平成19年7月)」に準じて,		【東海第二】
	上載荷重(15kN/m²)を考慮する。		島根2号炉では上載
	b. 地震荷重	b. 地震荷重	荷重を考慮していない
	地震荷重として、基準地震動S _S による地震力を考慮	地震荷重として、基準地震動Ssによる地震力を考	Name of the state
	する。	慮する。	
	9 ℃	MER 7 'SO	
	2) 荷重の組合せ	2) 荷重の組合せ	
	荷重の組合せを第2表に示す。	荷重の組合せを第2表に示す。	
	第2表 荷重の組合せ	第2表 荷重の組合せ	
	外力の状態 荷重の組合せ	外力の状態 荷重の組合せ	
	地震時 (S _s) a + b	地震時(S s)	
	(3) 入力地震動	(3) 入力地震動	
	地震応答解析に用いる入力地震動は、解放基盤表面で定義	地震応答解析に用いる入力地震動は、解放基盤表面で定義	
	される基準地震動Ssを一次元波動論によって地震応答解析	される基準地震動Ssを一次元波動論によって地震応答解析	
	モデルの下端位置で評価した地震波を用いる。	モデルの下端位置で評価した地震波を用いる。	
	入力地震動算定の概念図を第 12 図に示す。	入力地震動算定の概念図を第5.図に示す。	



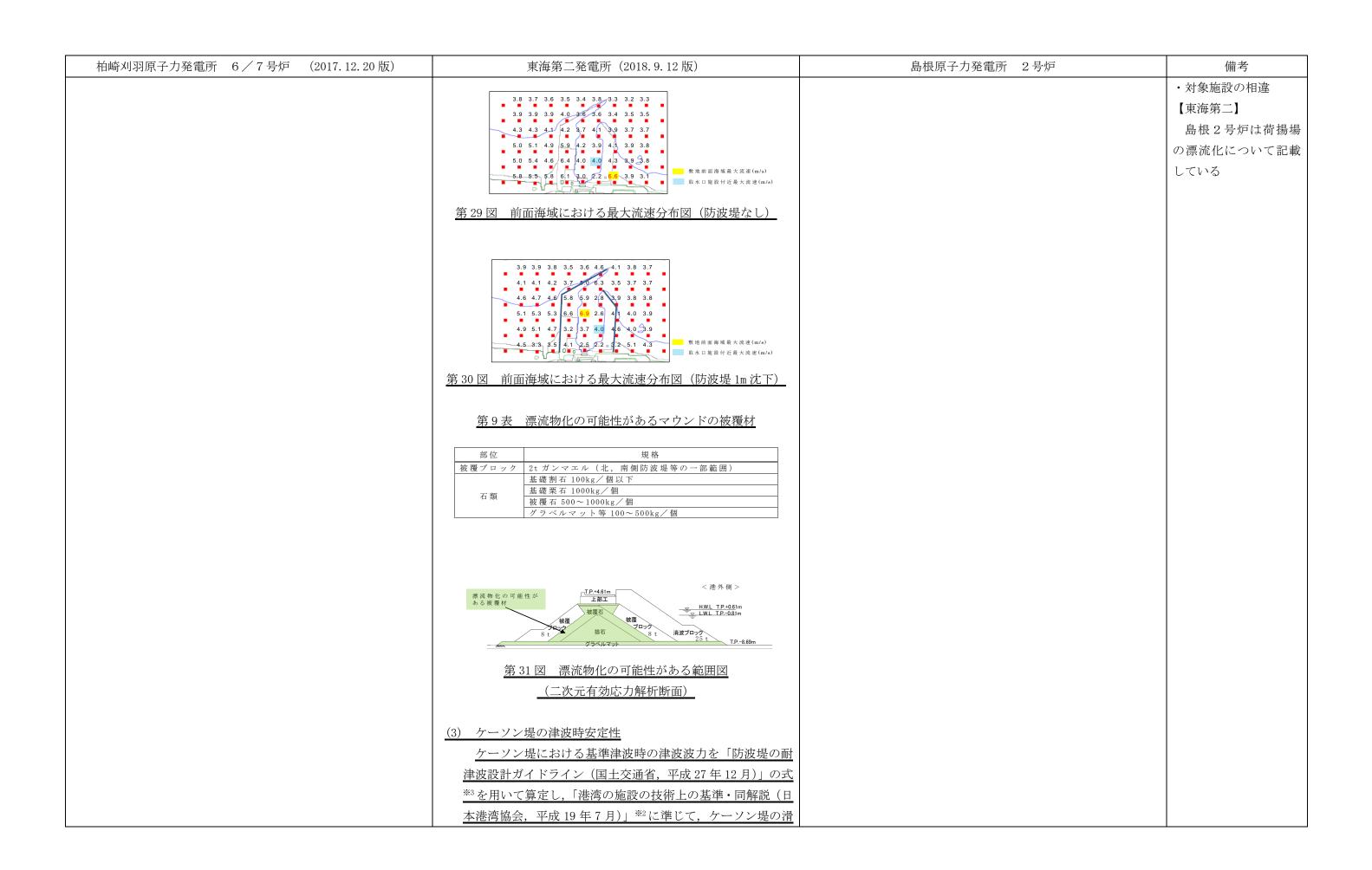



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)		島根原子力発電所 2号炉	ī	備考
	(5) 使用材料及び材料の物性値	(5) 使	用材料及び材料の物性値		
	1) 構造物の物性値	1)	構造物の物性値		
	使用材料を第3表に、材料の物性値を第4表に示す。		使用材料を第3表に,材料の物性	性値を第4表に示す。	
	<u>第 3 表 使用材料</u>		第3表 使用材料		・解析条件の相違
	材料 部位 諸元 上部工 設計基準強度 24.0N/mm²	材料	部位	諸元	【東海第二】
	コンク 基礎 設計基準強度 18.0N/mm ²		上部工(有筋)	設計基準強度 20.6N/mm ²	島根2号炉は荷揚場
	リートケーソン (気中)設計基準強度24.0N/mm²ケーソン (海中)設計基準強度24.0N/mm²		上部工(無筋)	設計基準強度 14.7N/mm ²	の使用材料の物性値を
	鋼管 矢板, 控え工鋼管 杭 SKY490, SKK490 Pイロッド HT690	コンクリート		設計基準強度 20.6N/mm ²	記載している
			セルラーブロック 水中	設計基準強度 20.6N/mm ²	
			基礎コンクリート	20.0N/IIIII- 設計基準強度 14.7N/mm ²	
	第4表 材料の物性値		第4表 材料の物性値		
	材料 部位 単位体積重量 ヤング係数 ハラ ソン 比 比	材料	部位 単位体積重量(kN/m³) 飽和,湿潤 水中	ヤング係数 (kN/mm²) ポアソン比	
	上部工 24.0 25 0.2 基礎 22.6 22 0.2		上部工(有筋) 24.0 –	23.3 0.2	
	リート		上部工 (無筋) 22.6 - セルラーブロック 23.0 12.0	20.4 0.2	
	根固方塊 22.6 22 0.2 鋼材 鋼管矢板,控え工鋼管杭 77.0 200 0.3 タイロッド - 200 -	コンクリート	(コンクリート詰) 25.0 12.9	23.3 0.2	
	200		(栗石詰) 22.0 11.9 基礎コンクリート 22.6 12.5	23.3 0.2	
			£425777 EETO 1210	2011	
	2) 地盤の物性値	2)	地盤の物性値		
	解析に用いる地盤の物性値と液状化パラメータを第		解析に用いる地盤の物性値と液準		
	5 表に示す。 <u>液状化検討対象層である du 層,Ag2 層,</u>		5表に示す。 <u>地盤の物性値は,「島</u>		・対象施設の相違
	As 層, Ag1 層及び D2g-3 層について液状化強度特性を		炉 地震による損傷の防止 別紙-		【東海第二】
	設定する。液状化パラメータについては、液状化強度		検討方針について」の検討方針に		島根2号炉は荷揚場
	試験結果より設定する。		状化の評価対象として取り扱う埋痕		の地盤物性値について
	試験結果から設定した解析上の液状化強度曲線を第		び砂礫層の有効応力解析に用いる剤		記載している
	15 図に示す。なお、液状化強度特性が保守的に評価さ		は、液状化試験結果(繰返し非排え		
	れるように、液状化強度試験値の平均-1σ の液状化		に基づき、地盤のばらつき等を考し		
	強度特性を再現するように設定する。		設定法により設定した。設定した液	<u>牧状化強度曲線を第7</u>	
			<u>図に示す。</u>		


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	3) ジョイント要素	3) ジョイント要素	
	構造物と地盤の境界部にジョイント要素を設けるこ	構造物と地盤及び構造物と構造物の境界部にジョイ	・対象施設の相違
	とを基本とし、境界部での剥離・すべりを考慮する。	ント要素を設けることを基本とし、境界部での剥離・	【東海第二】
	ジョイント要素の特性は法線方向、接線方向に分けて	すべりを考慮する。ジョイント要素の特性は法線方向,	島根2号炉は荷揚場
	設定する。法線方向では、引張応力が生じた場合、剛	接線方向に分けて設定する。法線方向では、引張応力	の解析条件について記
	性及び応力をゼロとして剥離を考慮する。接線方向で	が生じた場合,剛性及び応力をゼロとして剥離を考慮	載している
	は、構造物と地盤の境界部のせん断抵抗力以上のせん	する。接線方向では、構造物と地盤の境界部のせん断	
	断応力が発生した場合、剛性をゼロとし、すべりを考	抵抗力以上のせん断応力が発生した場合,剛性をゼロ	
	慮する。静止摩擦力τ _f は Mohr-Coulomb 式により規定	とし、すべりを考慮する。静止摩擦力τξは	
	する。	Mohr-Coulomb 式により規定する。	
	4) 荷重の入力方法	4) 荷重の入力方法	
	a. 常時荷重	a. 常時荷重	
	常時荷重である自重は、鉄筋コンクリートや鋼管矢	常時荷重である自重は、 <u>コンクリート</u> の単位体積重	・対象施設の相違
	板等の単位体積重量を踏まえ、構造物の断面の大きさ	量を踏まえ,構造物の断面の大きさに応じて算定する。	【東海第二】
	に応じて算定する。		島根2号炉は荷揚場
			の荷重条件について記
	b. 地震荷重	b. 地震荷重	載している
	地震荷重は,解放基盤表面で定義される基準地震動	地震荷重は、解放基盤表面で定義される基準地震動	
	Ssを,一次元波動論によって地震応答解析モデルの下	Ssを、一次元波動論によって地震応答解析モデルの	
	端位置で評価した地震波を用いて算定する。	下端位置で評価した地震波を用いて算定する。	
	(6) 評価結果	(6) 評価結果	
	現状の <u>ケーソン堤,傾斜堤,物揚岸壁</u> に対する評価結果を	現状の <u>荷揚場</u> に対する評価結果を示す。	・対象施設の相違
	示す。		【東海第二】
	<u>1) ケーソン堤</u>		島根2号炉は荷揚場
	ケーソン堤は基準地震動 S_s 後に多少傾斜し、水平残		の評価結果について記
	留変位量は約30cm,鉛直残留変位量は約26cmである。		載している
	したがって、基準地震動 S_s 後、津波襲来前のケーソ		
	ン堤の状態としては、ほぼ当初の位置、高さを確保して		
	いるものと判断される。残留変位図を第16図、過剰間隙		
	水圧比分布図を第 17 図に示す。		



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	b. 照査結果		・対象施設の相違
	前面鋼管矢板の最大曲げモーメント分布図を第 22		【東海第二】
	図,タイロッドの軸方向伸び量時刻歴図を第23図,控		島根2号炉は荷揚場
	え工鋼管杭(斜杭)の最大曲げモーメント図を第24図,		の最終変形量について
	控え工鋼管杭(斜杭)の最大曲げモーメント位置にお		記載している
	ける軸力を考慮した合成照査図 (M-N図)を第25図,		
	控え工鋼管杭(斜杭)の最大軸力分布図を第 26 図,支		
	持力の照査結果を第6表に示す。		
	前面鋼管矢板は、曲げに対して海底面付近で降伏モ		
	<u>ーメントを超過する。また、前面鋼管矢板を支えるタ</u>		
	イロッドは、降伏時の伸びを超過する。さらに、控え		
	工鋼管杭(斜杭)は、作用軸力が地盤の極限支持力以		
	下であるが、最大曲げモーメント位置における軸力を		
	考慮した合成照査において,降伏モーメントを超過す		
	<u>3。</u>		
	① 前面鋼管矢板		
	前面鋼管矢板 最大値 降伏モーメント 全型性モーメント 4,302(kN/m/m) > 3,130(kN/m/m) 第 22 図 前面鋼管矢板の最大曲げモーメント分布図		
	② <u>タイロッド</u>		
	0.200 (200 (30.150 (40.05		
	第23図 タイロッドの軸方向伸び量時刻歴図		

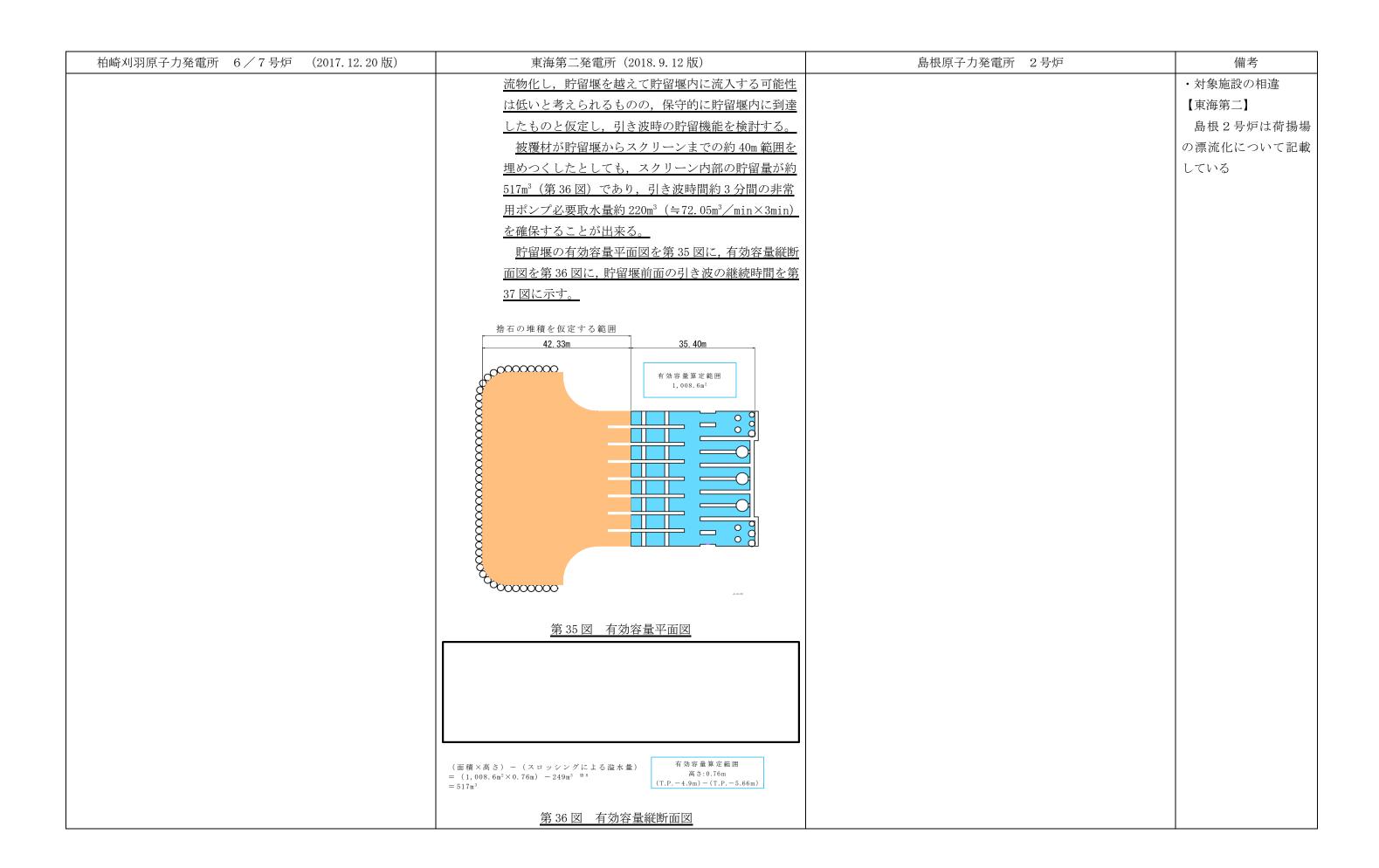

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
相畸对别原子刀轮电所 6/7号炉 (2017.12.20版)	展開第一発電所 (2018.9.12 版) d. 物揚岸壁対策の方針 物揚岸壁においては、前面鋼管矢板、タイロッド、並びに控え工鋼管杭の発生断面力を低減させるために、地盤改良、控え工の増設等による対策を検討し、基準地震動S。後においても、物揚岸壁が健全な状態を維持するように設計する。 また、津波襲来時の越流による前面鋼管矢板背後地盤の洗掘防止に対しては、表層改良等により、津波襲来時の土砂流出等を防止する方針とする。物揚岸壁の対策エイメージを第 27 図に示す。 第 27 図 物揚岸壁の対策エイメージ図 (7) 基準地震動S。による防波堤への影響評価のまとめ基準地震動S。が防波堤に及ぼす影響としては、主に傾斜堤の沈下であるが、地震後の残留変位量の評価結果から、大規模な損傷には至らないと考えられる。したがって、基準地震動S。後に航路への影響はないものと考えられる。また、物揚岸壁の健全性を維持することから、基準地震動S。による大型船の緊急離岸に関しては、影響はないものと判断される。	(7) 基準地震動 S s による荷揚場への影響評価のまとめ 基準地震動 S s が<u>荷揚場</u>に及ぼす影響としては、主に<u>荷揚</u>	・対象施設の相違 【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	4. 津波時評価	4. 津波時評価	
	(1) 評価方法		・対象施設の相違
	津波に対する防波堤の安定性を評価するにあたっては,防		【東海第二】
	波堤を構成する各部材の重量や形状に対して、津波の水位や		島根2号炉は荷揚り
	流速,波圧データに基づき評価を行う。		の漂流化について記
	1) 傾斜堤(被覆材・ブロック類)		している
	傾斜堤の被覆材やブロック類の安定性検討として		
	は、「港湾の施設の技術上の基準・同解説(日本港湾協		
	会,平成19年7月)」に準じて,イスバッシュ式 ^{*1} を		
	用いて評価する。この式は米国の海岸工学研究センタ		
	一が潮流による洗掘を防止するための捨石質量として		
	示したものであり、水の流れに対する被覆材の安定質		
	量を求めるものである。		
	※1 「港湾の施設の技術上の基準・同解説(日本港湾協会,		
	平成 19 年 7 月)」のイスバッシュ式		
	$M_d = \frac{\pi \rho_r U_d^6}{1 + 2 \sigma^2}$		
	$M_d = \frac{n_{Pr} \sigma_d}{48g^3 (y_d)^6 (S_r - 1)^3 (\cos \theta - \sin \theta)^3}$		
	M : 捨石等の安定質量(t) ρr: 捨石等の密度(t/m³)		
	U: 捨石等の上面における水の流れの速度 (m/s)		
	g : 重力加速度 (m/s^2) y : イスバッシュ (Isbash) の定数		
	y . イスパックュ (Tsbash) の定数 (埋込まれた石は 1.20, 露出した石は 0.86)		
	Sr: 捨石等の水に対する比重		
	θ : 水路床の軸方向の斜面の勾配(°)		
	なお、上式に用いるイスバッシュ係数は、各検討状		
	態において設定するものとし、基準津波襲来時におい		
	ては、マウンド被覆材が露出した状態として 0.86 とす		
	る。また、基準津波襲来後の状態においては、海底表		
	層の液状化による緩い状態の地盤面に落下し埋もれる		
	ことから、イスバッシュ係数は 1.20 と設定する。		
	2) ケーソン堤		
	<u>ケーソン堤については、「港湾の施設の技術上の基</u>		
	準・同解説(日本港湾協会,平成19年7月)」の滑動,		
	転倒 ^{※2} に基づく安定性の評価並びにイスバッシュ式に		
	·		
	よる漂流物化の評価を行う。なお、津波波力は、「防波 堤の耐津波設計ガイドライン(国土交通省、平成 27 年		
	·		
	<u>12月)」の式*3を用いる。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	※2 「港湾の施設の技術上の基準・同解説(日本港湾協会,		対象施設の相違
	平成19年7月)」の滑動,転倒照査式		【東海第二】
			島根2号炉は荷揚場
	○堤体の滑動照査式		の漂流化について記載
	$f_d \left(W_d - P_{B_d} - P_{U_d} \right) \ge \gamma_a P_{H_d}$		している
	f:壁体底面と基礎との摩擦係数		
	W: 堤体の重量(kN/m)		
	P _B : 浮力 (kN/m)		
	P _U :津波の揚圧力(kN/m)		
	P _H : 津波の水平波力(kN/m)		
	ν a: 構造解析係数		
	○堤体の転倒照査式		
	$a_1 W_d - a_2 P_{B_d} - a_3 P_{U_d} \ge \gamma_a a_4 P_{H_d}$		
	₩: 堤体の重量(kN/m)		
	P _B : 浮力 (kN/m)		
	P _U : 津波の揚圧力(kN/m)		
	P _H : 津波の水平波力(kN/m)		
	$a_{I} \sim a_{4}$: 各作用のアーム長 (m)		
	γ _a : 構造解析係数		
	※3「防波堤の耐津波設計ガイドライン(国土交通省,平成		
	27 年 12 月)」の津波波力算定式		
	$\eta * = 3.0a_I$		
	$p_1 = 3.0 \rho_0 g a_1$		
	$p_u = p_1$		
	η*:静水面上の波圧作用高さ (m)		
	a _I : 入射津波の静水面上の高さ(振幅)(m)		
	ρ ₀ g:海水の単位体積重量(kN/m³)		
	p ₁ : 静水面における波圧強度 (kN/m²)		
	p_u : 直立壁前面下端における揚圧力(kN/m^2)		

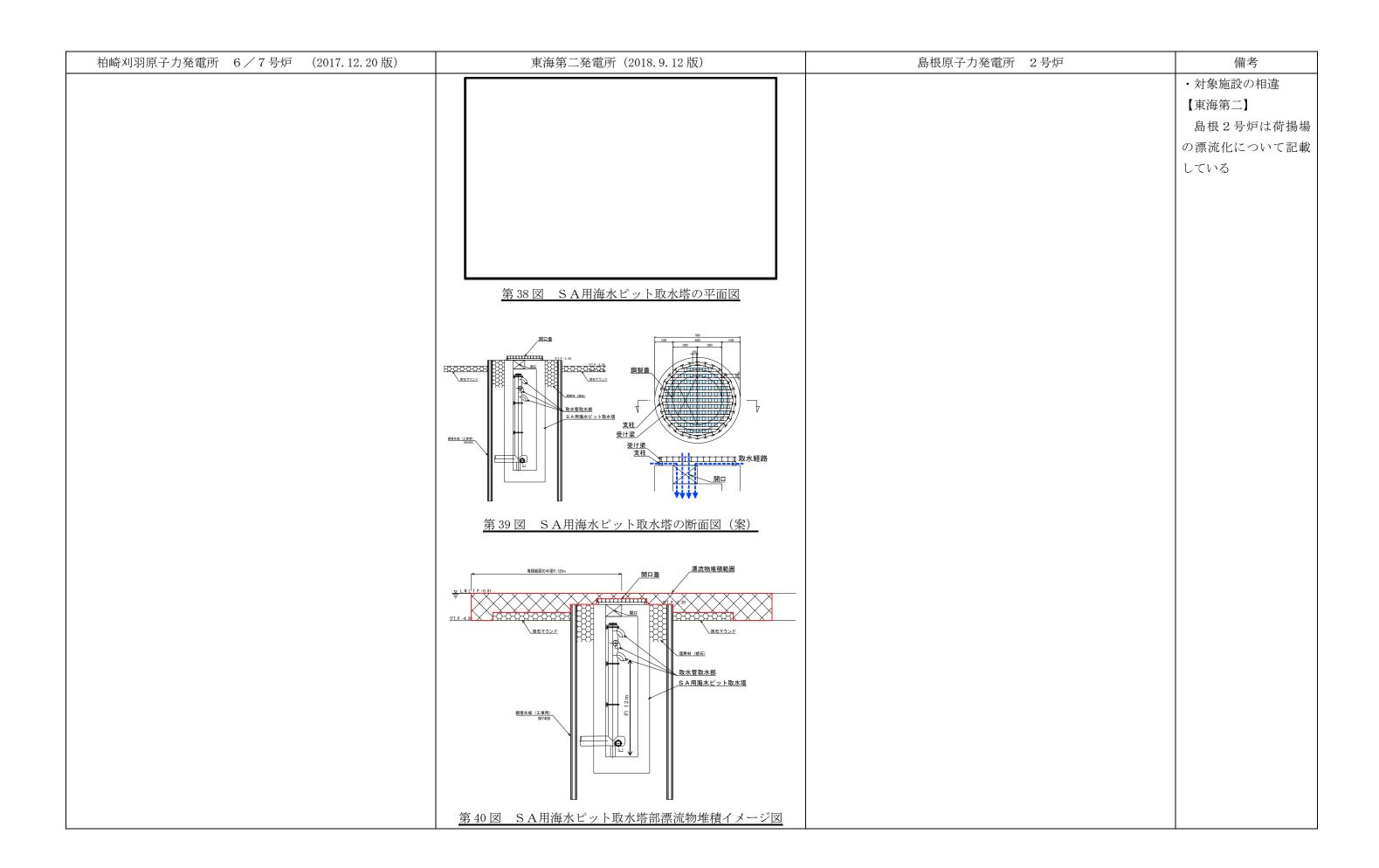
帕崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	シミュレーションの津波高さ カ* (港外側) フォート アート アート アー アー アー		・対象施設の相違 【東海第二】 島根2号炉は荷揚 の漂流化について記 している
	(2) 傾斜堤の津波時安定性 1) 基準津波襲来時(1波目)での限界流速 イスバッシュ式を適用する防波堤マウンドの被覆材 等の種類とその重量及び算定した限界流速について第 7 表に示す。なお、基準津波襲来時においては、マウンド被覆材が露出した状態としてイスバッシュ係数は、0.86とする。 第7表 被覆材等の安定性に係る限界流速(1)		
	部位 規格 (スパ*プシュ式より算定) ケーソン 5,000t/基 (防波堤堤頭部) 16.3m/s 上部工 600t/基 (傾斜堤部) 12.0m/s 32t 根固め方塊ブロック 7.2m/s 30t 被覆ブロック 5.5m/s 核覆ブロック 8t ガンマエル 2.5m/s 5t ガンマエル 2.3m/s 2t ガンマエル 2.0m/s ij波ブロック 16t テトラボット 3.7m/s 25t テトラボット 3.7m/s 基礎割石 100kg/個以下 1.1m/s 基礎架石 1000kg/個 1.9m/s 被覆石 500~1000kg/個 1.7m/s グラベルマット等 100~500kg/個 1.3m/s		
	イスバッシュ式を適用する防波堤マウンドの被覆材等の種類とその重量及び算定した限界流速について第8表に示す。なお、基準津波襲来後の状態においては、海底表層の液状化による緩い状態の地盤面に落下し埋むれることから、イスバッシュ係数は、1.20とする。第8表被覆材等の安定性に係る限界流速(2)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	部位 規格 (犬スパッシュ式より算定) ケーソン 5,000t/基(防波堤堤頭部) 22.7m/s 上部工 600t/基(傾斜堤部) 16.8m/s 32t 根固め方塊ブロック 10.1m/s 30t 被覆ブロック 10.0m/s *** *** *** *** *** *** *** *** *** **		・対象施設の相違 【東海第二】 島根2号炉は荷揚場 の漂流化について記載 している
	3) 敷地前面海域の流速 基準津波に対して、防波堤がある場合とない場合及び耐震評価結果から保守的に防波堤を1m沈下させた場合の3つのケースで津波シミュレーションを実施し流速を確認した。その結果、防波堤範囲における最大流速は、防波堤がある場合の約7.0m/sであることから、基準津波襲来時(1波目)においては、30t被覆ブロック以下の重量の被覆材については、安定性が確保されずに漂流物化する。一方、基準津波襲来後(2波目以降)においては、海底表層の液状化による緩い状態の地盤面に落下し埋もれることから、限界流速が増加するため、2t被覆ブロック以下の重量のマウンドの被覆材については、安定性が確保されずに漂流物化するものと考える。 敷地前面海域における最大流速分布図を第28図~第30図、漂流物化の可能性があるマウンドの被覆材に		
	ついて第9表及び第31図に示す。 3.9 3.9 3.8 3.5 3.6 4.5 4.5 3.9 3.8 4.1 4.2 4.3 3.8 2.6 3 3.6 3.7 3.8 4.6 4.8 4.6 5.7 5.8 2.6 3.7 3.9 3.9 5.2 5.4 5.2 5.9 7.1 1.7 4.4 4.1 4.0 5.0 5.2 4.7 2.2 3.5 3.8 47 4.3 4.0 最初的面海域最大流速(m/s) 取水口施設付近最大流速(m/s) 取水口施設付近最大流速(m/s)		



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	動,転倒照査を行った。		・対象施設の相違
	ケーソン堤位置の最大津波高さは,南防波堤で T.P. +13m		【東海第二】
	程度であり、滑動、転倒照査の結果、安定性は確保されない		島根2号炉は荷揚
	結果となった。ケーソン堤照査図を第32図に示す。		の漂流化について記
			している
	 (結路側 > (接路側 > (接路間 > (接路側 > (接路間) (接路間)		
	第32図 ケーソン堤照査図 また、イスバッシュ式による安定性の評価は、第7表、第		
	8表に示す通り、限界流速が最大流速を上回ることから、ケ ーソンは漂流物化しないものと判断される。		
	※2: 添付 18-32 ページで示した式。 ※3: 添付 18-33 ページで示した式。		
	(4) 防波堤漂流物の重要施設への到達の可能性評価		
	1) 傾斜堤		
	個斜堤においては、基準津波襲来後(2 波目以降) なったま屋の流化化ストスペンル鉄の地部子に落工		
	に,海底表層の液状化による緩い状態の地盤面に落下 し埋もれることから,限界流速が増加するため,2t被		
	で達むれることがら、限外加速が増加するため、2t 被 覆ブロック以下の重量のマウンドの被覆材について		
	は、安定性が確保されずに漂流物化するものと考える。		
	しかし、取水施設付近での最大流速は概ね 4m/s 程度		
	であり限界流速を下回ることから、マウンドの被覆材		
	が漂流物化したとしても、これらの施設へ到達する可		
	能性は低いと考えられるが、保守的に漂流物化する可		
	能性があるものとして取り扱う。		
	2) ケーソン堤		
	海域の沖合に 4 函設置されているケーソン堤は,取		
	水施設から直線距離にして 350m~550m 程度の離隔距		
	離がある。ケーソン堤に関する既往の津波被災事例*4		
	を調査した結果,津波による強い流れによって防波堤		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	のマウンドが大きく洗掘・流出し、かつ津波による強		・対象施設の相違
	い水平力が原因でケーソン堤が転倒し,場合によって		【東海第二】
	は回転しながらの移動が推定されるとされている。ま		島根2号炉は荷揚場
	た,津波によるケーソン堤の移動距離は,最大 150m 程		の漂流化について記載
	度の事例(東北地方太平洋沖地震,田老漁港,1,000t		している
	級ケーソン)が報告されている。		
	東海第二発電所のケーソン堤は, 5,000t級の重量構		
	造物であり、取水施設まで十分な離隔距離があること		
	及びイスバッシュ式による評価では限界流速が最大津		
	波流速を上回っているため、漂流物として取水施設ま		
	での到達を考慮しない。第33図に取水設備からの離隔		
	距離図を示す。		
	第33図 取水設備からの離隔距離図 ※4 水産総合研究センター 震災復興に向けた活動報告集1, 平成24年3月,東日本大震災による漁港施設の地震・津 波被害に関する調査報告(第1報),独立行政法人 水産総合研究センター 3) 物揚岸壁 物揚岸壁は、耐震性を確保する対策工及び岸壁背後	入力津波が荷揚場に及ぼす影響としては、荷揚場の漂流物化	・対象施設の相違 【東海第二】
	地の洗掘防止対策工を実施することから、物揚岸壁構 造部材並びに背後地の土砂の漂流物化はないものと考 える。	が考えられる。 荷揚場は、前述のとおり、基準地震動Ss後でも、ほぼ当初 の位置及び高さを確保しており、荷揚場背後地はコンクリート 舗装等の洗掘防止対策工を実施することから、荷揚場構造部材	島根2号炉は荷揚りの漂流化について記載している
		並びに背後地の土砂の漂流物化はないものと考える。	


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	(5) 取水施設における取水機能の成立性		・対象施設の相違
	1) 取水口		【東海第二】
	取水口周りの概念図を第34図に示す。		島根2号炉は荷揚場
	取水口の吞口は8口あり,幅42.8m,高さ10.35m(1		の漂流化について記載
	口当たりの内部寸法は幅 4.1m, 高さ 8.35m) である。		している
	また, 呑口下端高さは T.P6.04m, 呑口前面海底面		
	高さは T.P6.89m であり、取水口前面 (カーテンウ		
	<u>オール外側)には,天端高さ T.P.−4.9m の貯留堰を設</u>		
	<u>置する。</u>		
	仮にマウンドの被覆材が漂流物化し、取水口周りに		
	到達したとしても貯留堰やカーテンウォールの鋼管杭		
	等の存在, 吞口前面海底面高さ (T.P6.89m) と吞口		
	下端高さ (T.P6.04m) に約85cmの段差があること		
	から、漂流物が取水口前面又は固定バースクリーンへ		
	<u>到達し難いことは明らかであるが、保守的にマウンド</u>		
	の被覆材が漂流物化し、取水口前面に堆積した場合の		
	取水機能を検討する。		
	マウンドの被覆材が貯留堰から固定式バースクリー		
	ンまで堆積したと仮定し,マウンドの被覆材(100kg		
	<u>/</u> 個の捨石程度)の透水係数を 10 ² cm/s ^{※5} として算出		
	される通水量は約 $14m^3/s^{\%}$ となる。ここで、マウンド		
	の被覆材の石材は砂利より間隙が大きく、透水性は高		
	いと考えられるが、保守側に砂利相当の透水係数を用		
	いた。		
	また,非常用ポンプ7台の必要取水量は,1.2m3/s※		
	であり、被覆材の堆積を仮定した場合の通水量が上回		
	ることから、取水機能が失われることはない。		
	春口前面海底面高さ T.P·6.89m フォール スクリーン 香口下端高さ T.P·6.04m 環岸		
	貯留堰 (天帰高さ T.P-4.9m)		
	第34図 取水口周りの概念図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	<u>※5 マウンドの被覆材の透水係数:</u> 「水理公式集(土木学会) P375 表 1.1」より		・対象施設の相違 【東海第二】 島根2号炉は荷揚場 の漂流化について記載
	表 1.1 透水係数の概略値と決定法 ^{3.6} k (cm/s) 10 ² 1.0 10 ⁻² 10 ⁻⁴ 10 ⁻⁶ 10 ⁻⁸ 土砂の種類 きれいな砂利 まじりの砂 まじりの砂 細砂、シルト、 砂とシルトの混合砂 粒 難透水性土 数とシルトの混合砂 粒 土 決定法 揚水試験法、定水位法、実験公式 変水位法		している
	 ※6 捨石の堆積箇所における通水量: 「水理公式集 (土木学会) P383 表 1.5」より ・集水暗きょの取水量公式 ※左式は水路両面からの流入量のため、算出は 1/2 倍とする 		
	1/2 倍とする。 1/2 倍とする。 ・ 捨石の透水係数 k=1×10²cm/s ・ 指面に、		
	※7 非常用ポンプ必要取水量: ポンプ名称 定格流量 (m³/h) 運転台数 (台) 取水量合計 (m³/h) (m³/min) 残留熱除去系海水系ポンプ 886 4 3,544 59.07 非常用ディーゼル発電機用海水ポンプ 273 2 546 9.10 画圧炉ムスプレイ系ディーゼル発電機用海水ポンプ 233 1 233 3.88 合計 4,323 72.05		
	必要取水量:72.05m³/min=1.2m³/s 2) 貯留堰		
	貯留堰は、取水口の前面に設置されており、50tの 漂流物の衝突荷重を考慮した設計としている。仮に最 大重量の漂流物である 2t 被覆ブロックが衝突したと しても、損壊はしない。また、マウンドの被覆材が漂		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
			・対象施設の相違
	※8 スロッシングによる溢水量:		【東海第二】
	「貯留堰の設置位置及び天端高さの決定の考え方」から引		島根2号炉は荷揚場
	<u>用</u>		の漂流化について記載
			している
	120 100 80 60 90 90 150 180 210 240 一名の 180 210 240 一名の 180 210 240 一名の 180 210 240 一名の 180 210 240 一名の 20 150 180 210 240 一名の 20 150 180 210 240 一名の 20 30 20 30 30 30 30 30 30 30 30 30 3		
	第37図 引き波の継続時間		
	3) SA用海水ピット取水塔		
	SA用海水ピット取水塔の平面図を第 38 図, 断面図		
	を第39図に示す。SA用海水ピット取水塔は,海底面		
	からRC構造の立坑が1m程度突出した構造であり、立		
	坑内には鋼製の通水管を設置している。		
	当該取水塔は,50tの漂流物の衝突荷重を考慮した		
	設計としている。仮に最大重量の漂流物である 2t 被覆		
	ブロックが衝突したとしても,損壊しない。		
	水塔上面には、漂流物の流入防止として取水塔の側		
	壁上部に沿って円周上に約 60cm 間隔で設置する幅約		
	30cm, 高さ約 30cm の支柱の上部に約 30cm 角の格子状		
	の鋼材により開口を設けた蓋を設置するため、漂流物		
	化した防波堤のマウンド被覆材のうち,100kg/個(形		
	<u>状:立方体1辺 約32cm~35cm) のものに対しても,</u>		
	進入を防止出来る。		
	また、立坑内に設置する通水管の取水部は、ピット		
	底部から約 12m 上方に,複数個設置し,その開口は下		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	<u>向きとすることでピット上部の格子蓋を通過した漂流</u>		・対象施設の相違
	物の直接的な侵入及び堆積物の進入を抑止している。		【東海第二】
	更に, 漂流物化するマウンド被覆材が, SA用海水		島根2号炉は荷揚場
	ピット取水塔周辺を覆いつくしたとして, SA用海水		の漂流化について記載
	ピットの取水機能を検討する。		している
	漂流物化したマウンドの被覆材が、SA用海水ピッ		
	ト取水塔を中心に円形に堆積したと仮定し、マウンド		
	の被覆材(100kg/個の捨石程度)の透水係数を 10 ² cm		
	<u>/s^{※5}として算出される通水量は約1.5m³/s^{※9}となる。</u>		
	ここで、マウンドの被覆材の石材は砂利より間隙が大		
	きく,透水性は高いと考えられるが,保守側に砂利相		
	当の透水係数を用いた。また、SA用海水ピット取水		
	塔の必要取水量は 0.75m³/s※のであり、マウンドの被覆		
	材の堆積を仮定した場合の通水量が上回ることから,		
	取水機能が失われることはない。SA用海水ピット取		
	水塔部の漂流物堆積イメージ図を第40図に示す。		
	※9 捨石の堆積箇所における通水量:		
	「水理公式集 (土木学会) P378 表 1.3」より		
	・通常井戸の取水量公式		
	$Q = \frac{\pi k (H^2 - h_0^2)}{2.3 \log \log (R/r_0)}$ (解説) 本表A欄の解説を参照 で で で で で で で で で で で で で で で で で で で		
	・堆積範囲の半径 R= 129m ※マウンドの被覆材が SA 用海水ピット取水塔を中心に円形に堆積した状態を想定・取水口の半径 r_0 = 2.85m(防護蓋の支柱の内側の半径) $Q = \frac{\pi \times k \times \left(H^2 - h_0^2\right)}{2.3 \times \log_{10}(R/r_0)} = \frac{\pi \times 1 \times 10^2 \times 10^{-2} \times \left(1.39^2 - 0^2\right)}{2.3 \times \log_{10}(129/2.85)} = 1.593 \mathrm{m}^3/\mathrm{s}$		
	※10 SA用海水ピット取水塔の必要取水量: 2,680m³/h=0.75m³/s		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	(6) 津波による防波堤損壊の影響評価のまとめ		・対象施設の相違
	基準津波が防波堤に及ぼす影響としては, 防波堤のマウン		【東海第二】
	ドの被覆材の漂流物化が考えられるが, 取水施設周辺の流速		島根2号炉は荷揚り
	が小さいことから取水施設へ到達する可能性は低いものと考		の漂流化について記載
	<u>えられる。</u>		している
	防波堤損壊により漂流物化したマウンドの被覆材が取水施		
	設に到達したとしても,各取水施設は漂流物の衝突に対して		
	十分な耐力を確保している。また, 仮にマウンドの被覆材が		
	取水施設の周辺に堆積したとしても、マウンドの被覆材の透		
	水性能が高いことから、取水施設は取水機能を満足する。し		
	たがって、防波堤損壊により取水施設が取水機能を失うこと		
	はないものと判断する。		
	漂流物による各取水施設への影響評価結果を以下に示す。		
	・取水口において,堆積したマウンド被覆材の通水量約 14m³		
	/s が, 非常用ポンプ 7 台の必要取水量 1.2m3/s を上回る		
	ため、取水口の取水機能を満足する。		
	・貯留堰において、貯留堰からスクリーンまでの範囲をマウ		
	ンド被覆材が埋めつくしたとしても, スクリーン内部の貯		
	留量約 517m³ により、引き波時間約 3 分間の非常用ポンプ		
	必要取水量約 220m³を確保しており、引き波時の取水機能		
	<u>を満足する。</u>		
	・SA用海水ピット取水塔において、堆積したマウンド被覆		
	材の通水量約 1.5m3/s が、SA用海水ピット取水塔の必要		
	取水量 0.75m³/s を上回るため、SA用海水ピット取水塔		
	の取水機能を満足する。なお、SA用海水ピット取水塔内		
	に堆積する砂については、定期的な点検を実施し、必要に		
	<u>応じて排砂することとする。</u>		
		5. 地震後の荷揚場の津波による影響評価のまとめ	・資料構成の相違
		以上のことから, 荷揚場は基準地震動Ss並びに入力津波に	【東海第二】
		対する耐性を有しており、荷揚場の損傷が想定されないことか	島根2号炉は荷揚
		ら、取水施設である取水口に波及的影響を及ぼす可能性は低い	の影響評価について
		ものと判断する。	とめを記載している