添付資料 26

防波壁及び防波扉における津波荷重の設定方針について

- 1. 津波荷重の算定式
- (1) 津波波圧算定式に関する文献の記載
- 2. 検討方針
- 3. ソリトン分裂波及び砕波の発生,並びに津波波圧への影響
- (1) 平面二次元津波シミュレーションによる検討
- (2) 水理模型実験及び断面二次元津波シミュレーションの条件整理
- (3) 水理模型実験による検討
- (4) 断面二次元津波シミュレーションによる検討
- (5) 三次元津波シミュレーションによる検討
- 4. 既往の津波波圧算定式との比較
- (1) 検討概要
- (2) 津波波圧検討フロー
- (3) 朝倉式による津波波圧算定
- (4) 津波波圧の比較 朝倉式 (敷地高以上)
- (5) 谷本式による津波波圧算定
- (6) 津波波圧の比較 谷本式 (敷地高以深)
- (7)まとめ
- 5. 設計で考慮する津波波圧の設定

1. 津波荷重の算定式

津波防護施設の津波荷重の算定式は,朝倉ら(2000)の研究を元にした「港 湾の津波避難施設の設計ガイドライン(国土交通省港湾局,平成25年10月)」 や「防波堤の耐津波設計ガイドライン(平成27年12月一部改訂)」等を参考 に設定する。以下に,参考にした文献の津波荷重算定式の考え方と津波防護 施設への適用を示す。

- (1) 津波波圧算定式に関する文献の記載
- a.東日本大震災における津波による建築物被害を踏まえた津波避難ビル等の 構造上の要件に係る暫定指針(平成23年) 構造設計用の進行方向の津波波圧は、次式により算定する。

構造設計用の進行方向の津波波圧 $qz = \rho g$ (a h - z) (第1図)

- h:設計用浸水深
- z:当該部分の地盤面からの高さ(0≤z≤ah)
- a:水深係数
- ρg:海水の単位体積重量

b. 港湾の津波避難施設の設計ガイドライン(平成 25 年 10 月)

文献 a. に基づく。ただし、津波が生じる方向に施設や他の建築物がある 場合や、海岸等から 500m以上離れている場合において、水深係数は 3 以下 にできるとしている。

c.朝倉ら(2000):護岸を越流した津波による波力に関する実験的研究,海岸 工学論文集,第47巻,土木学会,911-915 直立護岸を越流した津波の遡上特性から護岸背後の陸上構造物に作用す る津波波圧について実験水路を用いて検討している。

その結果,非分裂波の場合,フルード数が1.5以上では構造物前面に作用 する津波波圧分布を規定する水平波圧指標(遡上水深に相当する静水圧分 布の倍率)αは最大で3.0となるとしている。一方,ソリトン分裂波の場 合は,構造物前面に働く津波波圧は,構造物底面近傍で非分裂波のαを1.8 倍した値となるとしている(第2図及び第3図)。

第2図 非分裂波の場合の津波水平波圧

d.NRA技術報告「防潮堤に作用する津波波圧評価に用いる水深係数について」(平成28年12月)

持続波圧を対象としてフルード数が1を超える場合の防潮堤に対する作 用波圧の評価方法を明確にするため、水理試験及び解析を実施した結果、従 来の評価手法でフルード数が1以下になることが確認できれば、水深係数は 3を適用できるとされている。

e.防波堤の耐津波設計ガイドライン(平成27年12月一部改訂)

防波堤の津波波圧の適用の考え方として、ソリトン分裂波が発生する場合 は修正谷本式を、そうでない場合において津波が防波堤を越流する場合には 静水圧差による算定式を、越流しない場合は谷本式を用いることとしている。 (第4図~第5図)。

第4図 防波堤に対する津波荷重算定手順

 $\eta^* = 3.0 a_J$

 $p_1 = \begin{cases} 2.2 \rho_0 g a_I & : 谷本式 \\ 3.0 \rho_0 g a_I & : 修正谷本式 \end{cases}$

 $p_2 = \rho_0 g \eta_B$

 $p_u = p_1$

 $p_L = p_2$

2. 検討方針

島根原子力発電所の防波壁等*の設計で考慮する津波荷重は、「水理模型実験及び津波シミュレーションによる津波波圧」と「既往の津波波圧算定式による津波波圧」を比較・検証することで設定する。

既往の津波波圧算定式は,ソリトン分裂波や砕波の発生有無により,算定 式の適用性が異なる。そのため,島根原子力発電所における基準津波の特性 及び沿岸の陸海域の地形を考慮した科学的根拠に基づく,水理模型実験及び 断面二次元津波シミュレーションを実施し,ソリトン分裂波及び砕波の有無 を確認する。

また,島根原子力発電所は輪谷湾を中心とした半円状の複雑な地形である。 そのため,三次元津波シミュレーションにより,複雑な地形特性を考慮した 三次元的な流況による津波波圧への影響を確認し,水理模型実験及び断面二 次元津波シミュレーションによる津波波圧の妥当性を確認する。第6回に検 討フローを,第1表に検討項目及び検討内容を示す。

※防波壁,防波壁通路防波扉及び1号放水連絡通路防波扉を「防波壁等」という。

3. ソリトン分裂波及び砕波の発生,並びに津波波圧への影響
(1) 平面二次元津波シミュレーションによる検討 目的:「防波堤の耐津波設計ガイドライン」に基づくソリトン分裂波の発生確認
(2)水理模型実験及び断面二次元津波シミュレーションの条件整理 目的:地形特性及び津波特性の観点から津波波圧に影響するサイト特性を整理し,不確かさを考慮した検討条件を整理
(3)水理模型実験による検討 目的:津波波形の検証によるソリトン分裂波・砕波の発生確認及び津波波圧の算定
(4) 断面二次元津波シミュレーションによる検討 目的:水理模型実験の再現性の確認,津波波形の検証によるソリトン分裂波・砕波の発生確認及び津波波圧の算定
(5) 三次元津波シミュレーションによる妥当性確認 目的:島根原子力発電所の複雑な地形や三次元的な流況による津波波圧への影響を確認し、3.(3)章及び3.(4)章により算定 される津波波圧の妥当性確認
4. 成社の実液液は昇展していての比較 目的:水理模型実験及び津波シミュレーションと既往の津波波圧算定式の津波波圧を比較
\checkmark
5. 設計で考慮する津波波圧の設定

第6図 検討フロー

	検討項目	検討内容				
3. ソリトン分裂波及び砕	診波の発生, 並びに津波波圧への影	響				
(1) 平面二次元 による検討	津波シミュレーション	平面二次元津波シミュレーション結果及び海底勾配を用いて,「防波堤の耐津波設 計ガイドライン」に基づき,ソリトン分裂波の発生有無を確認する。				
(2) 水理模型実 シミュレーショ	験及び断面二次元津波 ス ンの条件整理 そ	水理模型実験及び断面二次元津波シミュレーションの追加実施に当たって,地形 特性及び津波特性の観点から津波波圧に影響するサイト特性を整理し,不確かさ を考慮した検討条件を設定する。				
(3) 水理模型実	影 験による検討 さ 3	充体の挙動を直接確認でき、サイト特性に応じた評価が可能となる水理模型実験 を追加実施し、水位の時刻歴波形からソリトン分裂波及び砕波の発生有無を確認 するとともに、防波壁及び施設護岸位置における津波波圧を算定する。				
(4) 断面二次元 による検討	津波シミュレーション ス え え	水理模型実験結果について,ソリトン分裂波及び砕波を表現可能な断面二次元 聿波シミュレーション(CADMAS-SURF(Ver.5.1))を追加実施し,再現性を確認す るとともに,防波壁及び施設護岸位置における津波波圧を算定する。				
(5) 三次元津波 による妥当性	シミュレーションによる検討 2 4 4 5 4 5 6 6 6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	复雑な地形特性及び津波特性に応じた評価が可能である三次元津波シミュレーショ ンCADMAS-SURF/3D(Ver.1.5)を追加実施し,3.(3)章及び3.(4)章によ 3津波波圧と比較することで妥当性を確認する。				
4. 既往の津波波圧算定式との比較		数地高以上の構造物については、津波シミュレーション及び水理模型実験により防 皮壁に作用する波圧を直接算定し、陸上構造物に作用する津波波圧算定式(朝 含式)により算定した津波波圧と比較する。 数地高以深の構造物については、津波シミュレーション及び水理模型実験により敷 也高以深の構造物に作用する波圧を直接算定し、海中構造物に作用する津波波 王算定式(谷本式)により算定した津波波圧と比較する。				
5.設計で考慮する津波	波圧の設定	防波壁等について保守的な設計を行う観点から,上記の検討結果を踏まえた設計 用津波波圧を設定する。				

第1表 検討項目及び検討内容

津波シミュレーション及び水理模型実験の長所・短所を整理したうえで, 島根原子力発電所におけるソリトン分裂波及び砕波の発生確認,津波波圧の 確認に係る検討内容を第2表に示す。

第2表 津波シミュレーション解析及び水理模型実験の長所・短所

解析手法	長所	短所	長所・短所を踏まえた検討内容
平面二次元 津波シミュレーション	 広範囲にわたる地形のモデル化が可能 複雑な不規則波形及び平面的な流況の 再現が可能 解析時間が短い 審査における実績がある 	・ソリトン分裂波及び砕波の発生有無の確認が困難 ・津波波圧の直接評価が不可能	・基準津波の策定 (入力津波高さ・流速) ・「防波堤の耐津波設計ガイドライン」に 基づくソリトン分裂波の発生確認
水理模型実験	・ソリトン分裂波及び砕波の発生有無の確認が可能 ・津波波圧を直接評価可能 ・審査における実績がある	・複雑な地形や構造物のモデル化が困難 ・複雑な不規則波形の再現が困難 ・三次元的な流況の再現が不可能 ・実験に時間を要する	・科学的根拠に基づくソリトン分裂波及 び砕波の発生確認 ・津波波圧の確認
断面二次元 津波シミュレーション	・複雑な不規則波形の再現が可能 ・ソリトン分裂波及び砕波の発生有無の確 認が可能 ・津波波圧を直接評価可能 ・解析時間が短い ・審査における実績がある	・複雑な地形や構造物のモデル化が困難 ・三次元的な流況の再現が不可能	 ・水理模型実験の再現性確認 ・科学的根拠に基づくソリトン分裂波及び砕波の発生確認 ・津波波圧の確認
三次元 津波シミュレーション	・複雑な地形や構造物のモデル化が可能 ・複雑な不規則波形及び三次元的な流況 の再現が可能 ・複雑な地形及び三次元的な流況等を踏 まえた津波波圧を直接評価可能	・解析に時間を要する ・計算機能力を踏まえて解析範囲に限界が ある ・審査における実績がない	・複雑な地形特性及び津波特性を踏 まえた津波波圧の確認

ソリトン分裂波は津波の伝播過程で複数の波に分裂し,波高が増幅する現象 である。また,砕波は波が浅海域を進行する際に,波高が高くなると波が砕け, 波高が急激に小さくなる現象である。いずれも構造物へ衝撃的な波圧を作用さ せる可能性がある現象である。第7図にソリトン分裂波及び非分裂波の概要を 示す。

非分裂波の場合の構造物に作用する津波波圧分布は、津波高さに依存した 直線形状となる。一方、ソリトン分裂波が生じた場合は、構造物の底面近傍 では非分裂波を 1.8 倍した波圧が作用し、水平波力は非分裂波に比べて約 20%大きくなる可能性がある。

第7図 ソリトン分裂波及び非分裂波

護岸を越流した津波による波力に関する実験的研究,朝倉ほか(2000)より引用 ※ n_{max}後の水位の上昇は反射波を示す。

- 3. ソリトン分裂波及び砕波の発生,並びに津波波圧への影響
- (1) 平面二次元津波シミュレーションによる検討

沖合から伝播してくる津波が,サイト前面においてソリトン分裂波を伴う か否かの判定に当たっては,「防波堤の耐津波設計ガイドライン」において, 以下に示す①かつ②の条件に合致する場合,ソリトン分裂波が発生するとさ れている。

条件①:津波高さが水深の60%程度以上

条件②:海底勾配 1/100 程度以下

条件①について検討した結果を第3表,第8図及び第9図に示す。地点1 ~3では津波高さは水深の60%以下となるが,水深が10mよりも浅い地点1' ~3'では護岸の反射波の影響により津波高さが水深の60%以上となる。

抽店	(1)水涩	(2)津波	Z高さ ^{※1}	(2)/(1)		
地黑	(1)/小木	防波堤有	防波堤無	防波堤有	防波堤無	
地点1	16m	5.0m	4.0m	31.3%	25.0%	
地点2	16m	6.0m	6.0m	37.5%	37.5%	
地点3	17m	5.0m	7.0m	29.4%	41.2%	
	(1)-123元					
抽占※2	(1)水涩	(2)津沥	皮高さ ^{※1}	(2)	/(1)	
地点*2	(1)水深	(2)津浙 防波堤有	皮高さ ^{※1} 防波堤無	(2) 防波堤有	/(1) 防波堤無	
地点 ^{※2} 地点1'	(1)水深 4.0m	(2)津沥 防波堤有 7.5m	技高さ ^{※1} 防波堤無 6.0m	(2) 防波堤有 187.5%	/(1) 防波堤無 150.0%	
地点 ^{×2} 地点1' 地点2'	(1)水深 4.0m 6.0m	(2)津派 防波堤有 7.5m 6.0m	皮高さ ^{※1} 防波堤無 6.0m 6.0m	(2) 防波堤有 187.5% 100.0%	/(1) 防波堤無 150.0% 100.0%	

第3表 津波高さと水深の割合

※1 平面二次元津波シミュレーションによる津波高さを保守的に評価した値

※2 地点1~3の南方向における護岸前面位置

第8図 基準津波による最高水位分布(基準津波1:防波堤有)

第9図 基準津波による最高水位分布(基準津波1:防波堤無)

条件②について検討した結果を第10図及び第11図に示す。

また,平面二次元津波シミュレーションの結果より,津波高さの最大値は EL.+11.13m(基準津波1)であり,朔望平均満潮位(EL.+0.58m)と潮位のば らつき(0.14m)を考慮した入力津波 EL.+11.9m(≒11.85m)に高潮ハザードの 裕度(0.64m)を考慮しても,防波壁の天端高さは EL.+15.0m であるため津波 は越流しない。

発電所前面の海底地形として,沖合 2,500m から施設近傍までの平均勾配 (A-A 断面)が約 1/35(>1/100)となった。

また,前項の発電所前面地点1'~3'から沖合200mまでの海底勾配は最小で約1/20(>1/100)となった。

「防波堤の耐津波設計ガイドライン」の条件①かつ条件②の条件に合致し ないため、ソリトン分裂波が発生しないと考えられるが、砕波発生有無の確 認を含めて、科学的根拠に基づいた確認を行うために、水理模型実験及び断 面二次元津波シミュレーションを追加実施する。

(2) 水理模型実験及び断面二次元津波シミュレーションの条件整理

地形特性及び津波特性の観点から津波波圧に影響するサイト特性を整理し, 不確かさを含めて実験条件及び解析条件を設定する。

水理模型実験及び断面二次元津波シミュレーションに使用する基準津波の 選定に当たっては、ソリトン分裂波や砕波の発生及び津波波圧への影響要因 である津波高さ及び流速を指標とした。

基準津波のうち津波波圧に対して支配的となる水位上昇側の基準津波を対象とし、各防波壁前面位置の結果について整理した。整理結果より、3号炉においては基準津波1(防波堤有)、1,2号炉においては基準津波1(防波堤無)を選定した。基準津波(水位上昇側)における津波高さと流速を第4表に示す。

	基進		地形変化	津波高さ		流速		
津波	津波波源	防波堤	最高水位 (EL. m)	発生位置	最大流速 (m/s)	発生位置	備考	
			有	10.7	3号北側	9.0	3号炉北側	3号炉の検討で選定
	1	- 日本海東縁部	無	11.9	1 , 2 号炉 北側	9.8	1, 2号炉 北側	1・2号炉の検討で選定
	2		有	9.0	3号炉東側	5.7	1, 2号炉 北側	
	5		無	11.5	1, 2号炉 北側	6.2	1, 2号炉 北側	

第4表 基準津波(水位上昇側)における津波高さと流速

基準津波1(防波堤有,防波堤無)による津波高さを防波壁全域において 評価するため,水理模型実験及び断面二次元津波シミュレーションにおける 津波高さについては,基準津波1よりも大きいケースとして,津波高さが防 波壁天端高さであるEL.+15.0mとなる波圧検討用津波(15m津波)を設定し た。

また、水理模型実験では、防波壁前面での浸水深及びフルード数算定を目 的に、防波壁が無い状態での津波遡上状況を確認するケースも併せて実施し た。津波波圧に影響する不確かさの考慮内容一覧表及び検討ケース一覧表を 第5表に示す。

第5表 津波波圧に影響する不確かさの考慮内容一覧表及び検討ケース一覧表 不確かさの考慮内容一覧表(3号炉)

分類	項目	サイト特性	不確かさの考慮内容	比較する 検討ケース
地形	周辺地形	防波堤の有無	<u>防波壁周辺の地形変状の不確かさを考慮</u> ⇒基準津波1(防波堤有)及び基準津波1(防波堤無)	1, 2
****	7 波形 (振幅 (津波高さ)	津波高さの不確かさを考慮 ⇒基準津波1(防波堤有) 及び波圧検討用津波(15m津波)	1, 3
洋波		短周期	 津波周期の不確かさを考慮 ⇒基準津波1(防波堤有) 及び基準津波1(防波堤有)の半周期 	3, 6

検討ケース一覧表(3号炉)

検討 ケース	津波	波形 (周期)	防波堤	敷地護岸	防波壁	水理模型 実験	断面二次元津波 シミュレーション
ケース①	甘准净次 1		有	有	有	0	0
ケース②	▲ 举 华 / 丰 / 仪 Ⅰ		無	有	有	0	
ケース③		基準津波1	有	有	有	0	0
ケース④※			有	有	無	0	10 <u></u>
ケース⑤※	波圧検討用津波 (15m津波)		有	無	無	0	
ケース⑥	(15m津波)	基準津波 1 の半周期	有	有	有	0	

※通過波計測ケース

不確かさの考慮内容一覧表(1,2号炉)

分類	項目	サイト特性	不確かさの考慮内容	比較する 検討ケース
地形	周辺地形	防波堤の有無	1,2号炉前面に位置する防波堤は無いものとして評価 するため、地形変状の不確かさは考慮しない	_
		振幅 (津波高さ)	<u>津波高さの不確かさを考慮</u> ⇒基準津波1(防波堤無) 及び波圧検討用津波(15m津波)	7,8
津波	波形	短周期	津波周期の不確かさを考慮 ⇒基準津波1(防波堤無) 及び基準津波1(防波堤無)の半周期	8, 11

検討ケース一覧表(1,2号炉)

検討 ケース	津波高さ	波形 (周期)	防波堤	敷地護岸	防波壁	水理模型 実験	断面二次元津波 シミュレーション
ケース⑦	基準津波1	皮1		有	有	0	0
ケース⑧		基準津波1 5m津波)	無	有	有	0	0
ケース⑨*	波压检討田津波		無	有	無	0	—
ケース⑩*	波庄快討用洋波 (15m津波)		無	無	無	0	
ケース⑪		基準津波 1 の半周期	無	有	有	0	-

※通過波計測ケース

【目的及び入射津波の造波】

水理模型実験は、ソリトン分裂波や砕波の発生の有無及び防波壁が受ける 津波波圧への有意な影響の有無,並びにフルード数の把握を目的に実施する。

水理模型実験における再現範囲は施設護岸から離れた沖合約 2.5km の位置 とし、入力津波高さが最大となる基準津波1(防波堤有・無)の平面二次元津 波シミュレーションから求めた同地点における津波波形(最大押し波1波) を入力する。

実験における入射津波は、同地点の水位と流速を用いて入射波成分と反射 波成分に分離し、入射波成分を造波する。

入射津波高さについては、基準津波1(防波堤有・無)と、不確かさを考慮 した波圧検討用津波(15m津波)を設定する。波圧検討用津波(15m津 波)は、基準津波1(防波堤有・無)と同周期として防波壁前面における反射 波を含む遡上高が EL.+15m となるよう振幅を調整する。なお、本波圧検討用 津波(15m津波)は、防波壁等の設計用津波波圧として用いるものではな い。

周期については、基準津波1(防波堤有・無)の周期と、不確かさを考慮した基準津波1(防波堤有・無)の半周期を設定する。入射津波の造波波形図を 第12図及び第13図に示す。

第12図(1) 入射津波の造波波形図(防波堤有)

第12図(2) 入射津波の造波波形図(防波堤有)拡大図

第13図(1) 入射津波の造波波形図(防波堤無)

第13図(2) 入射津波の造波波形図(防波堤無)拡大図

- (3) 水理模型実験による検討
- a. 検討断面

島根原子力発電所前面の海底地形及び津波の伝播特性を踏まえ、本実験の 検討断面は、防波壁の延長方向に直交し、海底地形を示す等水深線ともほぼ 直交する南北方向とする。水理模型実験における検討断面位置を第14図及 び第15図に示す。

第14図 検討断面位置図(海底地形:防波堤無)

第15図 検討断面図

b. 実験条件

実験施設の水路は、長さ50m×幅0.6m×高さ1.2mとし、沖合約2.5kmから 陸側の範囲を再現するために、実験縮尺(幾何縮尺)は1/100とする。3号 炉側の実験モデル図を第16図に、1,2号炉側の実験モデル図を第17図に 示す。

水理模型実験の実験装置例の写真を第18図及び第19図に示す。

第18図(1) 実験施設写真(3号炉)

第18図(2) 実験施設写真(1,2号炉)

正面より

側面より第19図(1) 実験模型(3号炉)

正面より

側面より 第19図(2) 実験模型(1,2号炉)

- c. 水理模型実験の結果
- (a) ソリトン分裂波及び砕波の確認【ケース①】

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12 地点)。ま た、水理模型実験(H10 地点)と同等な水深における平面二次元津波シミュレ ーション(地点1)の時刻歴波形を比較した結果、同等の津波を再現できて いることを確認した。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。

また,第一波の反射波と第二波の入射波がぶつかった後の波形について, 緩やかに上昇していることを確認した。実験条件を第6表に,時刻歴波形を 第20図に示す。

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁	
ケース①	甘油油		有	有	有	
ケース②	基準津波1		無	有	有	
ケース③	波圧	基準津波1	有	有	有	
ケース④※			有	有	無	
ケース⑤*	検討用津波 (15m津波)		有	無	無	
ケース⑥	(1311/ = //X)	基準津波 1 の半周期	有	有	有	

第6表 実験条件 (ケース①)

第20図 水理模型実験における水位の時刻歴波形 (ケース①)

(b) ソリトン分裂波及び砕波の確認【ケース②】

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。

また,第一波の反射波と第二波の入射波がぶつかった後の波形について, 緩やかに上昇していることを確認した。実験条件を第7表に,時刻歴波形を 第21図に示す。

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁	
ケース①	甘港油油 1		有	有	有	
ケース②	举华/丰/Q 1		無	有	有	
ケース③		基準津波1	有	有	有	
ケース④※	波圧		有	有	無	
ケース⑤*	検討用津波		有	無	無	
ケース⑥	(1311/#//X)	基準津波1 の半周期	有	有	有	

第7表 実験条件 (ケース②)

第21図 水理模型実験における水位の時刻歴波形 (ケース②)

(c) ソリトン分裂波及び砕波の確認【ケース③】

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。

また,第一波の反射波と第二波の入射波がぶつかった後の波形について乱 れを確認したことから,波圧を算定して影響を確認する。実験条件を第8表 に,時刻歴波形を第22図に示す。

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁	
ケース①	甘油油油1		有	有	有	
ケース②	举华/丰/Q 1		無	有	有	
ケース③		基準津波1	有	有	有	
ケース④*	波圧		有	有	無	
ケース⑤※	検討用津波 (15m津波)		有	無	無	
ケース⑥	(13m/=//x)	基準津波 1 の半周期	有	有	有	

第8表 実験条件(ケース③)

第22図 水理模型実験における水位の時刻歴波形 (ケース③)

(d) ソリトン分裂波及び砕波の確認【ケース④】

防波壁が無い状態での津波遡上状況の把握を目的に,通過波実験を行い, 水位・フルード数の確認を行った。

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12 地点)。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。

また,第一波の反射波と第二波の入射波がぶつかった後の波形について乱 れを確認した。実験条件を第9表に,時刻歴波形を第23図に示す。

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース①	甘洪寺池1		有	有	有
ケース②	荃华/丰波Ⅰ		無	有	有
ケース③		基準津波1	有	有	有
ケース④*	波圧		有	有	無
ケース⑤*	検討用津波 (15m津波)		有	無	無
ケース⑥	(1311/#//x)	基準津波 1 の半周期	有	有	有
※通過波計測ケース					

第9表 実験条件 (ケース④)

第23図 水理模型実験における水位の時刻歴波形 (ケース④)

防波壁位置における浸水深及び同時刻におけるフルード数の時刻歴波形を 確認した。その結果,越流開始直後の浸水深が浅い時間帯においてはフルー ド数が大きいが,最大浸水深と同時刻におけるフルード数は1以上となるこ とを確認した。最大浸水深及び同時刻におけるフルード数を第10表及び第 24図に示す。

朝倉らの研究*によると,津波波圧算定で使用する水深係数(水平波圧指標) について,以下のとおり記載されている。

・非分裂波の場合,フルード数が1.5以上では陸上構造物前面に作用する津 波波圧分布を規定する水平波圧指標(遡上水深に相当する静水圧分布の倍 率)は最大で3.0となる。

今回,最大浸水深と同時刻におけるフルード数は1以上であることから, 津波波圧算定で使用する水深係数を3.0とする。

※朝倉ら(2000):護岸を越流した津波による波圧に関する実験的研究,海 岸工学論文集,第47巻,土木学会,PP.911-915

	フルード数 (最大浸水深時)
1回目	1.175
2回目	1.175
3回目	1.178

第10表 最大浸水深と同時刻におけるフルード数

第24図 最大浸水深及び同時刻におけるフルード数 (進行波成分)の時刻歴波形

(e) ソリトン分裂波及び砕波の確認【ケース⑤】

反射波の影響を受けない状態でのソリトン分裂波及び砕波の発生有無の確認のため、敷地護岸及び防波壁無による通過波実験を行い、発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。実験条件を第11表に、時刻歴波形を第25図に示す。

第1	1表	実験条件	(ケー	-ス⑤)
//* -		2 4 9 4 1 4 1 1	· · ·	\sim /

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース①	甘油油山		有	有	有
ケース②	× 本年/手/↓ ↓		無	有	有
ケース③		基準津波1	有	有	有
ケース④**	波圧		有	有	無
ケース⑤ [※]	検討用津波 (15m津波)		有	無	無
ケース⑥	(1311/#/X)	基準津波1 の半周期	有	有	有

※通過波計測ケース

第25図 水理模型実験における水位の時刻歴波形 (ケース⑤)

(f) ソリトン分裂波及び砕波の確認【ケース⑥】

不確かさケースとして,極端に周期を短くした場合の検討(基準津波1の 半周期)を実施した。

発電所沖合から防波壁の近傍において、ソリトン分裂波を示す波形がなく、 水位は緩やかに上昇していることを確認した(H1~H12)。

また,第一波の反射波と第二波の入射波がぶつかった後の波形について乱 れを確認したことから,波圧を算定して影響を確認する。実験条件を第12 表に,時刻歴波形を第26図に示す。

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース①	甘淮油油 1		有	有	有
ケース②	基华洋波 I		無	有	有
ケース③		基準津波1	有	有	有
ケース④ [※]	波圧 検討用津波		有	有	無
ケース⑤※			有	無	無
ケース⑥	(1311/#//X)	基準津波 1 の半周期	有	有	有
※通過波計測ケーフ					

第26図 水理模型実験における水位の時刻歴波形 (ケース⑥)

(g) 波圧の算定結果

水理模型実験において計測した防波壁に作用する波圧分布を第27図に示 す。なお、第27図は横軸の波圧と縦軸の標高を津波による浸水深で無次元 化を図った。水理模型実験により算定した3号炉前面の防波壁における波圧 分布は直線型となり、ソリトン分裂波や砕波発生時にみられる波圧の増加が みられないため、ソリトン分裂波や砕波による津波波圧への有意な影響はな いことを確認した。

第27図 水理模型実験により算定した波圧分布

(h) ソリトン分裂波及び砕波の確認【ケース⑦】

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12 地点)。ま た、水理模型実験(H10 地点)と同等な水深における平面二次元津波シミュレ ーション(地点 3)の時刻歴波形を比較した結果、同等の津波を再現できてい ることを確認した。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。また、第一波の反射波と第二波の入射波がぶつかった後の 波形について、緩やかに上昇していることを確認した。実験条件を第13表 に、時刻歴波形を第28回に示す。

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース⑦	基準津波1		無	有	有
ケース⑧		基進津波 1	無	有	有
ケース⑨*	波圧 検討用津波 (15m津波)	2-7/7/02	無	有	無
ケース⑩*			無	無	無
ケース⑪		基準津波1 の半周期	無	有	有
※通過波計測ケース				則ケース	

第13表 実験条件 (ケース⑦)

第28図 水理模型実験における水位の時刻歴波形 (ケース⑦)

(i) ソリトン分裂波及び砕波の確認【ケース⑧】

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。また、第一波の反射波と第二波の入射波がぶつかった後の 波形について乱れを確認したことから、波圧を算定して影響を確認する。実 験条件を第14表に、時刻歴波形を第29図に示す。

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース⑦	基準津波1		無	有	有
ケース⑧		基進津波 1	無	有	有
ケース⑨ [※]	波圧		無	有	無
ケース ¹⁰⁰ *	ん 検討用津波 (15m津波)		無	無	無
ケース⑪	(1 3 11/+//x)	基準津波1 の半周期	無	有	有

第14表 実験条件 (ケース⑧)

第29図 水理模型実験における水位の時刻歴波形 (ケース⑧)

(j) ソリトン分裂波及び砕波の確認【ケース⑨】

防波壁が無い状態での津波遡上状況の把握を目的に,通過波実験を行い, 水位・フルード数の確認を行った。

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。また、第一波の反射波と第二波の入射波がぶつかった後の 波形について乱れを確認した。実験条件を第15表に、時刻歴波形を第30 図に示す。

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース⑦	基準津波1		無	有	有
ケース⑧		基進津波 1	無	有	有
ケース⑨*	波圧		無	有	無
ケース ¹⁰ *	検討用津波 (15m津波)		無	無	無
ケース⑪	(基準津波1 の半周期	無	有	有
※通過波計測ケース				ー ー ー ス	

第15表 実験条件 (ケース⑨)

第30図 水理模型実験における水位の時刻歴波形 (ケース⑨)

防波壁位置における浸水深及び同時刻におけるフルード数の時刻歴波形を 確認した。その結果,越流開始直後の浸水深が浅い時間帯においてはフルー ド数が大きいが,最大浸水深と同時刻におけるフルード数は1.5以上となる ことを確認した。最大浸水深及び同時刻におけるフルード数を第16表及び 第31図に示す。

朝倉らの研究*によると,津波波圧算定で使用する水深係数(水平波圧指標) について,以下のとおり記載されている。

・非分裂波の場合,フルード数が1.5以上では陸上構造物前面に作用する津 波波圧分布を規定する水平波圧指標(遡上水深に相当する静水圧分布の倍 率)は最大で3.0となる。

今回,最大浸水深と同時刻におけるフルード数は1以上であることから, 津波波圧算定で使用する水深係数を3.0とする。

※朝倉ら(2000):護岸を越流した津波による波圧に関する実験的研究,海 岸工学論文集,第47巻,土木学会,PP.911-915

	フルード数 (最大浸水深時)
1回目	1.657
2回目	1.657
3回目	1.531

第16表 最大浸水深と同時刻におけるフルード数

第31図 最大浸水深及び同時刻におけるフルード数 (進行波成分)の時刻歴波形
(k) ソリトン分裂波及び砕波の確認【ケース⑪】

反射波の影響を受けない状態でのソリトン分裂波及び砕波の発生有無の確認のため、敷地護岸及び防波壁無による通過波実験を行い、発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。実験条件を第17表に、時刻歴波形を第32図に示す。

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース⑦	基準津波1		無	有	有
ケース⑧			無	有	有
ケース⑨*	波圧		無	有	無
ケース⑩*	ん 検討用津波 (15m津波)		無	無	無
ケース⑪	(101111+112)	基準津波1 の半周期	無	有	有

第17表 実験条件 (ケース10)

第32図 水理模型実験における水位の時刻歴波形 (ケース⑩)

_波入射波 ^{第二波} Η1 笛-0 10.0m H2 H3 Н4 H5 Н6 水位(m, EL.) 8H 00 8H Н9 H10 H11 H12 H13 0 60 120 240 300 180 360 時間(sec)

(1) ソリトン分裂波及び砕波の確認【ケース①】

不確かさケースとして,極端に周期を短くした場合の検討(基準津波1の 半周期)を実施した。

発電所沖合から防波壁の近傍において、ソリトン分裂波を示す波形がなく、 水位は緩やかに上昇していることを確認した(H1~H12)。

また,第一波の反射波と第二波の入射波がぶつかった後の波形について乱 れを確認したことから,波圧を算定して影響を確認する。実験条件を第18 表に,時刻歴波形を第33図に示す。

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース⑦	基準津波1		無	有	有
ケース⑧	波圧 検討用津波 (15m津波)	基進建波 1	無	有	有
ケース⑨*			無	有	無
ケース⑩*			無	無	無
ケース⑪		基準津波1 の半周期	無	有	有

第18表 実験条件 (ケース⑪)

※通過波計測ケース

第33図 水理模型実験における水位の時刻歴波形 (ケース⑪)

(m) 波圧の算定結果

水理模型実験において計測した防波壁に作用する波圧分布を第34図に示 す。水理模型実験により算定した1,2号炉前面の防波壁における波圧分布は、 直線型の波圧分布となりソリトン分裂波や砕波発生時にみられる波圧増加が みられないため、ソリトン分裂波や砕波による津波波圧への有意な影響はな いことを確認した。

周期の不確かさ

第34図 水理模型実験により算定した波圧分布

(4) 断面二次元津波シミュレーションによる検討

水理模型実験と同じ条件(ケース①,③,⑦及び⑧)について,断面二次 元津波シミュレーションを実施した。

- (a) ソリトン分裂波及び砕波の確認【ケース①】 ケース①の解析結果は、以下のとおり、水理模型実験と同等の津波を再現 できていることを確認した(H1~H13 地点)。
 - ・発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇している(H1~H12地点)。
 - ・防波壁前面のH13地点においても、ソリトン分裂波及び砕波は発生しない。
 - ・第一波の反射波と第二波の入射波がぶつかった後の波形について,緩やか に上昇している。

解析条件を第19表に、時刻歴波形を第35図に示す。

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース①	甘洗油油		有	有	有
ケース②	基準律波Ⅰ		無	有	有
ケース③		基準津波1	有	有	有
ケース④ [※]	波圧 検討用津波 - (15m津波)		有	有	無
ケース⑤※			有	無	無
ケース⑥		基準津波 1 の半周期	有	有	有
※落海沖計測を フ					

—— 赤線:実験結果 ------ 青線:解析結果

第35図 断面二次元津波シミュレーションにおける 水位の時刻歴波形 (ケース①)

- (b) ソリトン分裂波及び砕波の確認【ケース③】 ケース③の解析結果は、以下のとおり、水理模型実験と同等の津波を再現 できていることを確認した(H1~H13 地点)。
 - ・発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇している(H1~H12)。
 - ・防波壁前面のH13においても、ソリトン分裂波及び砕波は発生しない。
 - ・第一波の反射波と第二波の入射波がぶつかった後の波形について乱れが確認できる。

解析条件を第20表に、時刻歴波形を第36図に示す。

検討 ケース	津波	波形 (周期)	防波堤	敷地 護岸	防波壁
ケース①	甘洪沖冲1		有	有	有
ケース②	基準津波1		無	有	有
ケース③		基準津波1	有	有	有
ケース④※	波圧		有	有	無
ケース⑤ [※]	検討用津波 (15m津波)		有	無	無
ケース⑥	(1 J III/=//x)	基準津波 1 の半周期	有	有	有

※通過波計測ケース

 赤線:実験結果
 青線:解析結果

第36図 断面二次元津波シミュレーションにおける 水位の時刻歴波形 (ケース③)

(c) 波形の水面勾配

3号炉の防波壁を対象として、ケース①(基準津波1(防波堤有))の断面二 次元津波シミュレーション結果を基に波形の水面勾配を確認する。

津波の水位時刻歴波形から水位上昇量が大きくなる時刻に着目し、水位分 布を確認した結果、水面勾配は最大で1.40°であり、松山ら(2005)における 水面勾配の砕波限界30°~40°に比べて十分に小さい。

基準津波の時刻歴波形や水位分布からソリトン分裂波や砕波と考えられる 挙動は認められない。

以上より,3号炉護岸前面ではソリトン分裂波及び砕波は発生しない。

第37図 最大水面勾配確認結果(3号炉)

(d) ソリトン分裂波及び砕波の確認【ケース⑦】

ケース⑦の解析結果は、以下のとおり、水理模型実験と同等の津波を再現できていることを確認した(H1~H13地点)。

・発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇している(H1~H12地点)。

・防波壁前面のH13地点においても、ソリトン分裂波及び砕波は発生しない。

・第一波の反射波と第二波の入射波がぶつかった後の波形について,緩やか に上昇している。

解析条件を第21表に、時刻歴波形を第38図に示す。

波形 (周期) 検討 敷地 防波壁 津波 防波堤 ケース 謹崖 有 ケース⑦ 基準津波1 無 有 ケース⑧ 無 有 有 基準津波1 ケース⑨* 無 毎 右 波圧 検討用津波 ケース10* 無 無 無 (15m津波) 基準津波1 ケース⑪ 册 有 有 の半周期 ※通過波計測ケース

第21表 解析条件 (ケース⑦)

—— 赤線:実験結果 ------ 青線:解析結果

- (e) ソリトン分裂波及び砕波の確認【ケース⑧】 ケース⑧の解析結果は、以下のとおり、水理模型実験と同等の津波を再現 できていることを確認した(H1~H13 地点)。
 - ・発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇している(H1~H12)。
 - ・防波壁前面のH13においても、ソリトン分裂波及び砕波は発生しない。
 - 第一波の反射波と第二波の入射波がぶつかった後の波形について乱れが確認できる。

解析条件を第22表に、時刻歴波形を第39図に示す。

第22表 解析条件 (ケース⑧)

(f) 波形の水面勾配

1,2号炉を対象として、ケース⑦(基準津波1(防波堤無))の断面二次元津 波シミュレーション結果を基に波形の水面勾配を確認する。

津波の水位時刻歴波形から水位上昇量が大きくなる時刻に着目し、水位分 布を確認した結果、水面勾配は最大で1.83°であり、松山ら(2005)における 水面勾配の砕波限界 30°~40°に比べて十分に小さい。

基準津波の時刻歴波形や水位分布からソリトン分裂波や砕波現象と考えら れる挙動は認められない。

以上より、1,2号炉護岸前面ではソリトン分裂波及び砕波は発生しない。

第40図 最大水面勾配確認結果(1,2号炉)

(g) 波圧の算定結果

断面二次元津波シミュレーションにより算定した防波壁(敷地高以上)及 び施設護岸(敷地高以深)に作用する波圧分布を第41図に示す。また、比 較対象として同じ条件による水理模型実験結果(3号炉の敷地高以深を除く) による波圧分布も示す。なお、敷地高以深の図については横軸の波圧と縦軸 の標高を静水面からの津波高さで無次元化を図った。

断面二次元津波シミュレーションにより算定した波圧分布は,水理模型実 験と同等の波圧分布であり,再現性があることを確認した。

直線型の波圧分布となることから,ソリトン分裂波や砕波による津波波圧 への有意な影響はないことを確認した。

第41図(1) 敷地高以上における波圧分布の比較

第41図(2) 敷地高以深における波圧分布の比較

- (5) 三次元津波シミュレーションによる検討
 - (a) 検討概要

前項で行った水理模型実験及び断面二次元津波シミュレーションでは,島 根原子力発電所の代表断面について検討した。島根原子力発電所は輪谷湾を 中心とした半円状の複雑な地形であるため,三次元津波シミュレーションを 実施して,複雑な地形や三次元的な流況による津波波圧への影響を確認し, 水理模型実験及び断面二次元津波シミュレーションによる津波波圧の妥当性 を確認する。

入射津波については,基準津波1(防波堤有,防波堤無)の場合,敷地への 浸水が局所的であり,防波壁等への津波波圧の影響の確認ができないことか ら,波圧検討用津波(15m津波)を設定する。なお,波圧検討用津波(1 5m津波)により算定した波圧は,防波壁等の設計用津波波圧として用いる ものではない。

解析モデルについては、島根原子力発電所の陸海域の地形特性を再現した モデルとする。

(b) 解析条件等

三次元津波シミュレーション概要図を第42図に示す。

第42図(1) 発電所前面の海底地形

第42図(3) 入射津波の造波波形図(防波堤無)

第42図(4) 解析モデル図(防波堤有)の例

解析モデルについては、防波壁位置における津波高さ及び津波波圧を算定 するため、陸海域の地形等の特性(1,2号炉前面が入り組んだ複雑な地形) を再現して海底地形及び敷地をモデル化するとともに、防波壁等の形状及び 高さを再現した地形とする。解析条件を第23表に示す。

第23表 解析条件

モデル化領域	南北方向:2,175m, 東西方向:1,125m
格子間隔 Δx=6.25m, Δy=6.25m , Δz=1.0~2.0r	
解析時間 1079秒(基準津波1の押し波最大波)	

(c) 津波水位

波圧検討用津波(15m津波)を用いた三次元津波シミュレーションにより抽出された防波壁前面における最高水位位置を第43図に,最高水位分布 を第44図に示す。なお,代表として防波堤有の結果を示す。

第43図 三次元津波シミュレーションにおける断面位置及び最高水位位置

第44図(1) 防波壁前面における最高水位分布(3号炉北側前面)

第44図(2) 防波壁前面における最高水位分布(1,2号炉前面)

第44図(3) 防波壁前面における最高水位分布(3号炉東側前面)

(d) 津波波圧

防波壁平面位置を第45図に,波圧検討用津波(15m津波)を用いた三次元津波シミュレーションにより直接算定された最大波圧分布を第46図に示す。

第46図(3) 防波壁に作用する標高別の最大波圧分布(3号炉東側前面)

(e) 津波波圧(標高毎)

波圧検討用津波(15m津波)を用いた三次元津波シミュレーションにより防波壁に作用する波圧(標高毎)を直接算定した結果を第47図に示す。

第47図(1) 防波壁に作用する波圧分布(3号炉北側前面)

第47図(2) 防波壁に作用する波圧分布(1,2号炉北側前面)

第47図(3) 防波壁に作用する波圧分布(3号炉東側前面)

(参考) 三次元津波シミュレーションによる津波の作用状況

三次元津波シミュレーションによる最大波到達時刻の津波の作用状況を第48図に示す。

第48図(1)津波の作用状況(3号炉北側前面最大波到達時刻)

第48図(2)津波の作用状況(1,2号炉前面最大波到達時刻)

第48図(3)津波の作用状況(3号炉北側前面最大波到達時刻)

(f) 津波波圧比較

3号炉北側前面及び1,2号炉前面の敷地高以上及び敷地高以深における,三 次元津波シミュレーション,断面二次元津波シミュレーション及び水理模型 実験(3号炉北側前面の敷地高以深を除く)により算定した波圧分布の比較結 果を第49図に示す。

複雑な地形を考慮した三次元的な流況を評価できる三次元津波シミュレー ションの結果を踏まえても、水理模型実験及び断面二次元津波シミュレーシ ョンによる津波波圧と同等又は包絡されることを確認した。これらの結果よ り、島根原子力発電所の複雑な地形や三次元的な流況による影響は認められ ないため、水理模型実験及び断面二次元津波シミュレーションによる敷地高 以上の津波波圧は妥当であると判断した。

第49図 敷地高以上及び敷地高以深における波圧分布比較

- 4. 既往の津波波圧算定式との比較
- (1) 検討概要

既往の津波波圧算定式の妥当性を確認するため、水理模型実験、断面二次 元及び三次元津波シミュレーションによる波圧と比較検討する。なお、津波 波圧の算定に当たっては、波圧検討用津波(15m津波)を用いる。島根原子 力発電所の防波壁の位置図を第50図に、断面図を第51図に示す。

第51図(1) 防波壁(多重鋼管杭式擁壁)断面図

第51図(3) 防波壁(鋼管杭式逆T擁壁)断面図

(2) 津波波圧検討フロー

既往の津波波圧算定式は,第52図に示すフローにて妥当性を確認する。 水理模型実験,断面二次元及び三次元津波シミュレーションにより防波壁 及び施設護岸に作用する波圧を直接算定し,朝倉式(敷地高以上)及び谷本 式(敷地高以深)により算定した津波波圧と比較する。

(3) 朝倉式による津波波圧算定

朝倉式は、津波の通過波の浸水深に応じて波圧を算定する式であり、「通 過波の浸水深」を最大浸水深(入力津波高さ-敷地標高)の 1/2 と保守的に 仮定して*津波波圧を算定する。

朝倉式の概念図を第53図に,朝倉式における津波波圧の考え方を第54 図に示す。

朝倉式

 $q_{z} = \rho g (a \eta - z)$ ここに, q_{z} :津波波圧 (kN/m²) η : 浸水深 (通過波の浸水深=最大浸水深の 1/2) (m) z : 当該部分の地盤面からの高さ(m) (0 $\leq z \leq a h$) a : 水深係数 (最大:3) ρg :海水の単位体積重量 (kN/m³)

非分裂波の場合の津波水平波圧

第54図 朝倉式における津波波圧の考え方

※朝倉式による津波波圧算定(参考)

朝倉式で用いる「通過波の浸水深」と、入力津波高さから敷地標高を引いた「最大浸水深の1/2」について、水理模型実験から比較した結果を第24表及び第25表に示す。

・3号炉の水理模型実験

ケース③:防波壁がある場合の最大浸水深hの1/2 ケース④:防波壁位置の通過波の浸水深

第24表	保守的な浸水深r	の水理模型実験によ	る確認結果	(3 号炉)

実験 ケース	最大 浸水深 h	h/2	浸水深η
ケース③	8.397m	4.199m	4.199m (最大浸水深の1/2)
ケース④			3.643m (通過波の浸水深)

・1,2号炉の水理模型実験

ケース⑧:防波壁がある場合の最大浸水深hの1/2

ケース⑨:防波壁位置の通過波の浸水深

第25表 保守的な浸水深ηの水理模型実験による確認結果(1,2号炉)

実験 ケース	最大 浸水深 h	h/2	浸水深η
ケース⑧	6.511m	3.256m	3.256m (最大浸水深の1/2)
ケース⑨			2.015m (通過波の浸水深)

上記より、「最大浸水深の1/2」が「通過波の浸水深」より保守的な値となることを確認した。

(4) 津波波圧の比較 朝倉式 (敷地高以上)

3 号炉北側前面の敷地高以上における,朝倉式により算定した波圧分布と 水理模型実験,断面二次元津波シミュレーション及び三次元津波シミュレー ションにより算定した波圧分布の比較結果を第55図に示す。

水理模型実験,断面二次元津波シミュレーション及び三次元津波シミュレ ーションによる波圧分布は,朝倉式による波圧分布に包絡されることを確認 した。

第55図 無次元最大波圧分布(3号炉北側前面)

1,2号炉前面の敷地高以上における,朝倉式により算定した波圧分布と水 理模型実験,断面二次元津波シミュレーション及び三次元津波シミュレーシ ョンにより算定した波圧分布の比較結果を第56図に示す。

水理模型実験,断面二次元津波シミュレーション及び三次元津波シミュレ ーションによる波圧分布は,朝倉式による波圧分布に包絡されることを確認 した。

第56図 無次元最大波圧分布(1,2号炉前面)

3号炉東側前面の敷地高以上における,朝倉式により算定した波圧分布と 三次元津波シミュレーションにより算定した波圧分布の比較結果を第57図 に参考として示す。

三次元津波シミュレーションによる波圧分布は,朝倉式による波圧分布に 包絡されることを確認した。

第57図 無次元最大波圧分布(3号炉東側前面)

(5) 谷本式による津波波圧算定

谷本式は,構造物前面の津波高さ(津波シミュレーション)に応じて波圧 を算定する式である。谷本式を以下に示す。

なお,谷本式で使用する入射津波の静水面上の高さ(2 a₁)は,各津波シ ミュレーションにより抽出された護岸前面の最高水位を使用する。谷本式に よる波圧分布を第58図に示す。

【谷本式】

 $\eta^{*}=3.0 a_{I}$ $P_{1}=2.2\rho_{0}g a_{I}$ $Pu=P_{1}$ ここに、 η^{*} :静水面上の波圧作用高さ(m) a_{I} :入射津波の静水面上の高さ(振幅)(m) $\rho_{0}g$:海水の単位体積重量(kN/m³) Pu:直立壁前面下端における揚圧力^{**}(kN/m²)

※島根原子力発電所の防波壁は、岩盤又は改良地盤により支持されており十分 に止水性があるため揚圧力は考慮しない。

第58図 谷本式による波圧分布 (背面水位が押し波時に静水面より下がらない場合)

- ・島根原子力発電所の防波壁背後は敷地であるため,港湾外の波圧を算定した 図を引用した。
- ・なお、「背面水位が押し波時に静水面より下がる場合」でも港外側に作用す る津波波圧は同じである。

(6) 津波波圧の比較 谷本式 (敷地高以深)

敷地高以深における断面二次元津波シミュレーション,三次元津波シミュ レーション,水理模型実験(1,2号炉),既往の算定式(谷本式)により算定 した波圧分布を第59図に示す。

3号炉及び1,2号炉の波圧分布の比較結果より,谷本式による波圧分布が 全ての波圧を包絡することを確認できたため,敷地高以深の津波波圧算定に は谷本式を用いる。

第59図 断面二次元津波シミュレーション,三次元津波シミュレーション, 水理模型実験(1,2号炉),既往の算定式(谷本式)により算定した波圧分布

(7) まとめ

津波は波浪に比べて周期が長いことから、その波力は水位の上昇による静水圧として評価される場合が多い。しかし、実際には流れに伴う動的な影響 や作用の継続時間による影響が考えられ、精度よく波力を評価するためには、 水理模型実験等を行うことが望ましいため、水理模型実験、断面二次元津波 シミュレーション及び三次元津波シミュレーションを実施した。

敷地高以上(防波壁前面)においては,敷地標高や遡上水深等により津波 波圧への影響が大きいことから,朝倉式に用いる通過波の浸水深において, 最大浸水深(津波高さ一敷地高さ)×1/2を用いることで,水理模型実験,断 面二次元津波シミュレーション及び三次元津波シミュレーションにより算定 される波圧に対して保守性を確保している。

敷地高以深(護岸前面)においては,水理模型実験,断面二次元津波シミ ュレーション及び三次元津波シミュレーションの結果,いずれもばらつきの 小さい線形の波圧分布となり,これらの実験や解析手法の差異による波圧分 布に有意な差異はない。また、3号炉の水理模型実験では,敷地高以深の波 圧を測定できていないが,護岸前面で緩やかな水位上昇を示しており、1, 2号炉の津波シミュレーション及び水理模型実験と同様な波圧分布になると 考えられることから,いずれも谷本式により算定される波圧分布に包絡され ると判断した。以上のことから,津波波圧を谷本式で評価することの保守性 を確認した。 5. 設計で考慮する津波波圧の設定

水理模型実験の結果,科学的根拠に基づきソリトン分裂波や砕波が発生し ないことを確認した。また,津波波圧については,敷地高以上の波圧分布は 直線型となり,敷地高以深の波圧分布については海水位までは直線型,静水 面以深では一定となり,津波波圧への有意な影響がないことを確認した。

断面二次元津波シミュレーション解析の結果,水理模型実験を再現でき, 時刻歴波形,水位分布及び水面勾配からソリトン分裂波や砕波が発生しない ことを確認した。また,波圧分布についても水理模型実験と同様に津波波圧 への有意な影響はないことを確認した。

三次元津波シミュレーション解析の結果,水理模型実験及び断面二次元津 波シミュレーションによる波圧分布と同等,又は包絡されることを確認した。 この結果より,島根原子力発電所の複雑な地形や三次元的な流況による影響 は認められないため,水理模型実験及び断面二次元津波シミュレーションに よる津波波圧は妥当であると判断した。

水理模型実験及び津波シミュレーション結果による津波波圧は,既往の津 波波圧算定式による津波波圧に包絡されることを確認した。

上記検討結果を踏まえ,防波壁等の設計で考慮する津波波圧を以下のとお り設定する。

- ・敷地高以上については、平面二次元津波シミュレーション解析で設定した入力津波高さに基づき、朝倉式により津波波圧を設定し、敷地高以深については、平面二次元津波シミュレーション解析で設定した入力津波高さに基づき、谷本式により津波波圧を設定する。
- ・設計用津波波圧の算定に用いる津波高さは,平面二次元津波シミュレーション結果より「EL.+12.6m」を用いる。

津波波圧設定フローを第60図に,波圧算定イメージ(3号炉前面)を第 61図に示す。

第60図 津波波圧設定フロー

津波流入防止対策について

1. 概要

内郭防護においては,海域と接続する低耐震クラス(浸水防止機能を除く)の機器及び配管が地震により損傷して保有水が溢水するとともに,損傷箇所 を介して津波が流入する事象を想定する。

ここでは、地震による配管損傷後に津波が襲来した場合の浸水防護重点化 範囲への直接的な津波の流入に対する対策について説明する。

2. 海域と接続する配管

海域と接続する低耐震クラスの機器及び配管が設置される浸水防護重点 化範囲としてタービン建物(耐震Sクラスの設備を設置するエリア),取水 槽循環水ポンプエリア及び取水槽海水ポンプエリアがある。

浸水防護重点化範囲であるタービン建物(耐震Sクラスの設備を設置する エリア),取水槽循環水ポンプエリア及び取水槽海水ポンプエリアに設置さ れる海域と接続する低耐震クラスの機器及び配管を表1,図1に示す。なお, 海域と接続する機器及び配管については,外郭防護1の「取水路・放水路等 の経路からの津波の流入防止」において耐震Sクラスの機器・配管も含め特 定しており,それらの機器及び配管と同じである。

これらの機器及び配管については、地震により損傷した場合には、その後 襲来する津波が、損傷箇所を介し浸水防護重点化範囲内に直接流入すること から、基準地震動Ssによる地震力に対してバウンダリ機能を保持する等の 設計とする。
海域と接続する低耐震クラス の機器及び配管を設置する浸 水防護重点化範囲	左記に設置する低耐震クラス の機器及び配管	耐震 クラス [*]
	タービン補機海水系配管	Cクラス
タービン建物 (耐震 S クラスの設備を設置 するエリア)	原子炉補機海水系配管 (放水配管)	Cクラス
	高圧炉心スプレイ補機海水系 配管(放水配管)	Cクラス
	液体廃棄物処理系配管	Cクラス
取水槽循環水	循環水ポンプ及び配管	Cクラス
ポンプエリア	タービン補機海水系配管	Cクラス
取水槽海水	タービン補機海水ポンプ及び 配管	Cクラス
ホンフエリア	除じんポンプ及び配管	Cクラス

表1 海域と接続する基準地震動Ssによる地震力に対して バウンダリ機能を保持する等の設計とする機器及び配管

※ 浸水防止機能を除く

3. 津波流入防止対策

循環水系は,基準地震動Ssによる地震力に対してバウンダリ機能を保持する設計とし、津波の流入を防止する。

タービン補機海水系は、インターロックによりポンプ出口弁を閉止するとと もに、出口側配管の逆止弁により津波の流入を防止する(図3参照)。海域活 断層に想定される地震による津波襲来に係る時系列を図4に、日本海東縁部に 想定される地震による津波襲来に係る時系列を図5に示す。

また,インターロックによるポンプ出口弁の閉止については,津波襲来前に 確実に閉止するため,多重化・多様化を図る。

液体廃棄物処理系については,出口側配管の逆止弁により津波の流入を防止する。

原子炉補機海水系配管(放水配管)及び高圧炉心スプレイ補機海水系配管(放水配管)については,基準地震動Ssによる地震力に対してバウンダリ機能を 保持する設計とし,津波の流入を防止する。

除じん系については,基準地震動Ssによる地震力に対してバウンダリ機能 を保持する設計とし、津波の流入を防止する。

この結果,浸水防護重点化範囲であるタービン建物(耐震Sクラス施設を設 置するエリア),取水槽循環水ポンプエリア,取水槽海水ポンプエリアにおい て,循環水系,原子炉補機海水系,高圧炉心スプレイ補機海水系及び除じん系 の機器及び配管は地震により破損することなく,タービン補機海水系,液体廃 棄物処理系については,地震により配管が損傷した後に,津波が襲来した場合 でも,タービン建物(耐震Sクラスの設備を設置するエリア),取水槽循環水 ポンプエリア及び取水槽海水ポンプエリアに流入しない。対策及び取・放水路 からの流入防止結果を表2に,対策概要図を図2に示す。

表2 海域と接続する基準地震動Ssによる地震力に対して バウンダリ機能を保持する等の設計とする配管に対する対策

浸水防護重点化			流入防止結果		
範囲	機奋• 距官	刈束	取水路	放水路	
	タービン補機海水 系配管	・インターロックによる 電動弁閉止 ・逆止弁閉止	〇 (インターロックに よる隔離)	○ (逆止弁による 隔離)	
タービン建物 (耐震Sクラスの設備を設置す	液体廃棄物処理系 配管	• 逆止弁閉止	_ (接続なし)	○ (逆止弁による 隔離)	
の設備を改直9 るエリア)	原子炉補機海水系 配管(放水配管)	・基準地震動 Ss による地 震力に対してバウンダリ 機能を保持	○ (バウンダリ機能を 保持)	○ (バウンダリ機能を 保持)	
	高圧炉心スプレイ 補機海水系配管(放 水配管)	・基準地震動 Ss による地 震力に対してバウンダリ 機能を保持	○ (バウンダリ機能保 持)	○ (バウンダリ機能を 保持)	
取水槽循環水	循環水ポンプ及び 配管	・基準地震動 Ss による地 震力に対してバウンダリ 機能を保持	○ (バウンダリ機能を 保持)	○ (バウンダリ機能を 保持)	
ポンプエリア タービン補機海水 系配管		 ・インターロックによる 電動弁閉止 ・逆止弁閉止 	〇 (インターロックに よる隔離)	○ (逆止弁による 隔離)	
取水槽海水	タービン補機海水 ポンプ及び配管	 ・基準地震動 Ss による地 震力に対してバウンダリ 機能を保持 ・逆止弁閉止 	○ (バウンダリ機能を 保持)	○ (逆止弁による 隔離)	
<i>小マノエリノ</i>	〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜	・基準地震動 Ss による地 震力に対してバウンダリ 機能を保持	 (バウンダリ機能を 保持)	 (接続なし)	

浸水防護重点化範囲内に設置する海域と接続する低耐震クラスの機器及び配管への対策概要図 <u>ک</u>

図3 タービン補機海水系 インターロック概要図

時系列	 ▼地震(海域活断層) ▼溢水発生 約1分 	 ▼海域活断層に 想定される地 震による津波 襲来 約2分 	時系列	 ▼地震(敷地近傍) ▼溢水発生 ▼地震後点検 ↓S 約1分 1日 	▼日本海東縁部 に想定される 地震による津 波襲来
タービン 補機海水系	インター ロックに よるポン プ停止及 び弁閉止	津波流入 なし	タービン 補機海水系	インター ロックに よるポン プ停止及 び弁閉止	 津波流入 なし

図4 海域活断層に想定さ れる地震による津波襲来に 係る時系列 図5 日本海東縁部に想定 される地震による津波襲来 に係る時系列 タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽循環水ポン プエリアに設置する耐震Sクラスの設備に対する浸水影響について

1. 概要

耐震Sクラスの設備を内包する建物及び区画として,原子炉建物,タービン 建物(耐震Sクラスの設備を設置するエリア),廃棄物処理建物(耐震Sクラス の設備を設置するエリア),制御室建物(耐震Sクラスの設備を設置するエリア), 取水槽海水ポンプエリア,取水槽循環水ポンプエリア及び屋外配管ダクト(デ ィーゼル燃料貯蔵タンク~原子炉建物,タービン建物~排気筒,タービン建物 ~放水槽)並びに非常用ディーゼル燃料設備及び排気筒を敷設する区画があり, これらの範囲を浸水防護重点化範囲と設定している。

このうち、タービン建物(耐震Sクラスの設備を設置するエリア)、取水槽循 環水ポンプエリアについては、海域と接続する低耐震クラスの機器及び配管で あるタービン補機海水系等を設置しており、地震時には配管等の破損による保 有水の溢水及び破損箇所を介した津波の流入を想定する範囲となる。

そのため、タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽 循環水ポンプエリアに設置する耐震Sクラスの設備について、地震・津波時の 浸水状況を考慮した浸水に対して、同区画に設置される津波防護対象設備の浸 水による機能喪失要因の網羅的な抽出を踏まえ、浸水による影響がないことを 確認する。タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽 循環水ポンプエリアに設置する耐震Sクラスの設備を表1に、その配置を図1 に示す。

なお、タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽循 環水ポンプエリアに設置する耐震Sクラスの配管に、電動弁等の浸水により機 能喪失する設備は設置していない。

表1 タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽循環 水ポンプエリアに設置する耐震Sクラスの設備

設置区画	設備			
	百乙后诸继流水조	配管・手動弁		
	凉丁炉 袖城	ケーブル		
	「「「「「「」」」」」「「」」」」」」」」」」」」」」」」」」」」」」」」」	配管・手動弁		
タービン建物 (耐震Sクラ	同圧が心ハノレイ補液海小ボ	ケーブル		
スの設備を設 置するエリア)	非常用ディーゼル発電機系	配管・手動弁		
	高圧炉心スプレイ系ディーゼ	配管・手動弁		
	ル発電機系	ケーブル		
	非常用ガス処理系	配管・手動弁		
	原子炉補機海水系	配管・手動弁 (ストレーナ含む)		
取水槽循環水 ポンプエリア		ケーブル		
	高圧炉心スプレイ補機海水系	配管・手動弁 (ストレーナ含む)		
		ケーブル		

図1 タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽循 環水ポンプエリアに設置する耐震Sクラスの設備の配置

5条-別添1-添付28-2

2. 耐震 S クラスの設備に対する浸水による機能喪失要因

抽出された耐震Sクラスの設備の浸水による影響有無を評価するため、機能 喪失要因を抽出した。

タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽循環水ポ ンプエリアにおける地震・津波時の浸水状況を踏まえた範囲に設置する耐震S クラスの設備に対する浸水による機能喪失要因を表2に示す。津波流入により 生じる漂流物による配管等の損傷の可能性については、タービン建物(耐震S クラスの設備を設置するエリア)及び取水槽循環水ポンプエリアに津波を流入 させない対策(添付資料27参照)を実施することから、当該エリアに津波の流入 はなく、漂流物は生じない。

			機能要	喪失要因	
設備	設備 設置区画 系統		水圧による 損傷	電気接続部の 没水	
		原子炉補機海水系			
	タービン建物	高圧炉心スプレイ 補機海水系			
	(耐震Sクラ スの設備を設	非常用ガス処理系	地震・津波時		
配管・手 動弁	置するエリ ア)	非常用ディーゼル 発電機系	の浸水による水頭圧(外		
(ストレー ナ含む) 取水槽 循環水ポンプ エリア	高圧炉心スプレイ系 ディーゼル発電機系	圧)により, 配管の構造 的損傷の可			
	原子炉補機海水系	能性かある。			
	エリア	高圧炉心スプレイ 補機海水系			
	タービン建物	原子炉補機海水系			
ケーブル	(耐震 S クラ スの設備を設 置するエリ ア)	高圧炉心スプレイ 補機海水系	地震・津波時 の浸水による 水頭圧 (外圧) により,ケー ブルの構造的 損傷の可能性	地震・津波時の 浸水が電気接続 部に接すること で,機能喪失す る可能性があ	
		高圧炉心スプレイ系 ディーゼル発電機			
	取水槽	原子炉補機海水系	がある。	る。	
低示情 循環水ポンプ エリア		高圧炉心スプレイ 補機海水系			

表2 耐震Sクラスの設備に対する浸水による機能喪失要因

3. 機能喪失要因に対する評価

地震・津波時の浸水状況を踏まえ,抽出された機能喪失要因に対する評価を 実施した。

(1) 水圧による損傷に対する評価及びケーブルの電気接続部の没水に対する 評価

タービン建物(耐震Sクラスの設備を設置するエリア)に設置される耐震S クラスの設備の水圧による損傷に対する評価及びケーブルの電気接続部に対 する評価については、「第9条 溢水による損傷の防止等 9.3 タービン建物 に設置されている防護対象設備について」において説明しており、地震・津波 時の浸水による水圧に対して機能喪失しないこと、また電気接続部がないこと を確認している。同様に、取水槽循環水ポンプエリアに設置される耐震Sクラ スの設備の水圧による損傷に対する評価については、「第9条 溢水による損 傷の防止等 添付資料1 機能喪失判定の考え方と選定された溢水防護対象 設備について」において説明しており、地震・津波時の浸水による水圧に対し て機能喪失しないことを確認している。具体的な内容を図2、図3に示す。

(2) 配管及びケーブルの溢水影響について

a. 評価条件について

9.1 項及び 9.2 項の評価より、タービン建物における最大の溢水水位 EL5.9mに相当する水頭圧を外圧条件とした。

b. 評価結果

(a) 配管

た。

没水時の外圧に対する健全性評価の例を表 9-20 に示す。なお、弁は配管 に比べ肉厚であるため、配管の評価に包含される。配管の製造最小厚さか ら外圧に対する許容圧力を算出し、没水時の外圧に対する健全性を確認し

(b) ケーブル

ケーブルはシース(難燃性特殊耐熱ビニル)で覆った構造であり,非常 時の環境条件(静水圧換算:18m以上)を考慮した設計であるため,没水時 の外圧により機能喪失しない。また,海水に対する影響については,海水 による浸水試験(試験時間:200時間)を実施し,外観及び絶縁抵抗に影響 がないことを確認している。なお,没水するケーブルについては溢水によ り機能を喪失する接続部(端子部)がないことを確認した。

系統	原子炉補機海 水系配管	高圧炉心スプ レイ補機海水 系配管	非常用ディー ゼル発電機系 配管	高圧炉心スプ レイ系ディー ゼル発電機系 配管	非常用ガス処 理系配管
外径 Do[mm]	711.2	267.4	60.5	60.5	406.4
板厚 t[mm]	9.5	9. 3	5.5	5.5	9.5
製造上最小厚 さ ts[mm]	8.5	8.13	4.81	4.81	8.31
付録材料図 表 Part7 により 定まる値 B	9.7	55	110	110	34
材質	SM41C	STPT42	STPT42	STPT42	STPT42
水頭圧[MPa]	0.06	0.06	0.06	0.06	0.06
許 容 圧 力 [MPa] [*]	0.15	2.22	11.6	11.6	0.92
許容圧力>水 頭圧判定	0	0	0	0	0
※ 「発	電用原子力設備規構	格 設計・建設規格	(JSME S NC1-200	5/2007)」	
ГРF	PC-3411 直管(2)	外圧を受ける直管」	を準用した以下の	式を用い, 製造上の	0最小厚さから許
容圧力を算定した値					
$t_s = rac{3P_e D_0}{4B}$ $Pe: 許容圧力 [MPa]$ な:製造上の最小厚さ [mm] $D_0: 管の外径 [mm]$ $B: 付録材料図 表 Part7 により定まる値$					
9 条-別添 1-9-21					

表 9-20 タービン建物に敷設される配管の外圧に対する許容圧力

図2 タービン建物(耐震Sクラスの設備を設置するエリア)に設置される耐 震Sクラスの設備の水圧による損傷に対する評価及びケーブルの電気接続部 に対する評価

5条-別添1-添付28-5

2.3 溢水影響評価の対象外とする理由

(1)「①溢水により機能を喪失しない」による対象外

溢水により機能を喪失しないとした防護対象設備について,没水時の健全性を 評価した。表 2-4 に示すように,各建物の最大階高(当該床から上階床までの階 高さのうち最大となる値)に相当する水頭圧を外圧条件とした。

表 2-4 各建物の外圧条件

建物	水頭圧[m]	最大階高
原子炉建物	8	3 階~4 階
廃棄物処理建物	7	2 階~3 階
取水槽	10	床~防水壁天端

a. 配管及び弁

配管及び弁の没水時の外圧に対する健全性評価の例を表 2-5 に示す。 「発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007」に基づ き算出した機器の外圧に対する許容圧力が溢水水位による外圧を上回るため, 健全性を維持できる。なお,弁は配管に比べ肉厚であるため,配管の評価に包 含される。

表 2-5 配管の没水時の外圧による影響評価結果(代表例)

5条-別添1-添付28-6

施設護岸の漂流物評価における遡上域の範囲及び流速について

1. 概要

非常用冷却海水系の海水ポンプの取水性へ影響を及ぼす可能性については, 施設護岸の設備等が漂流物となる可能性を踏まえ評価している。ここでは,施 設護岸の設備等が漂流物となる可能性の評価のうち滑動評価に用いる流速を確 認する。

2. 検討内容

遡上域の範囲(最大水位上昇量分布)を保守的に評価するため,地震による 荷揚場周辺の沈下及び初期潮位を考慮した津波解析を実施した。解析に当たっ ては,荷揚場付近の水位上昇量が大きい基準津波1(防波堤有無)を対象とし た。解析条件を以下に示す。

- ・荷揚場周辺の沈下については、防波壁前面を一律1m沈下させたケースを 用いる。
- ・初期潮位については, 朔望平均満潮位+0.58m に潮位のばらつき+0.14m を 考慮する。

基準津波1(防波堤有無)における施設護岸の最大水位上昇量分布(拡大図) を図1に示す。図1より,防波堤有りに比べ,防波堤無しの方が最大水位上昇 量は大きく,遡上範囲が広いことから,防波堤無しの流速を評価する。

5条-別添1-添付31-2

3. 確認結果

遡上域における流速分布を図2に、主な荷揚場漂流物の配置を図3に示す。 流速の抽出にあたっては、荷揚場漂流物の配置を踏まえ、遡上域である荷揚 場周辺の12地点(図4参照)を選定し各地点の最大流速を抽出した。

図2に示すとおり, 遡上域における流速は概ね8.0m/s以下であるが, 遡上域の一部において8.0m/sを超える流速が確認できる。各地点における最大流速抽出結果を表1に示す。

表1に示すとおり、東西方向の流速は荷揚場へ押し波として遡上する西方向 (取水口反対方向)の流速が速く支配的であることがわかる。一方、東方向(取 水口方向)の流れとなる引き波では、地点10に示す4.8m/sが最大流速となる が、漂流物評価に用いる流速は、最大流速(11.9m/s)とする。

最大流速を示す地点7及び取水口方向への最大流速を示す地点10について, 浸水深・流速の時刻歴波形及び各地点における最大流速発生時の水位分布・流 速ベクトルをそれぞれ図5,図6に示す。

なお,図5に示すとおり,最大流速(11.9m/s)を示す地点における8.0m/sを 超える時間は極めて短い(1秒以下である)。

5条-別添1-添付31-3

図4 流速抽出地点

5条-別添1-添付31-4

	Vx方向	Vy方向		全方向最大流逝	速(m/s)
地点	最大流速 (m/s)	最大流速 (m/s)	Vx方向 流速	Vy方向 流速	全方向流速 (√Vx²+Vy²)
1	-4.2	2.1	-4.2	1.9	4.6
2	-4.0	2.5	-4.0	1.4	4.2
3	-6.7	2.1	-6.7	-0.8	6.8
4	-3.6	3.7	-3.2	3.4	4.6
5	-3.6	3.8	-3.6	3.7	5.1
6	-5.5	4.1	-5.5	2.7	6.1
7	-11.8	3.4	-11.8	1.1	11.9
8	-5.3	1.5	-5.3	1.3	5.4
9	-5.9	1.9	-5.9	1.6	6.1
10	4.8	-7.6	4.8	-7.6	9.0
11	-8.9	2.5	-8.9	-1.2	9.0
12	-2.7	5.1	-1.4	5.1	5.3

表1 各地点の流速評価結果

図5 地点7(最大流速を示す地点)における浸水深・流速時刻歴波形及び最 大流速発生時刻における水位分布・流速ベクトル

図6 地点10(取水口方向への最大流速を示す地点)における浸水深・流速時 刻歴波形及び最大流速発生時刻における水位分布・流速ベクトル

添付資料 32

海水ポンプの実機性能試験について

1. はじめに

ポンプ長尺化に伴うベルマウス下端への耐震サポート設置による影響については,実機性能試験によりポンプ性能に影響を及ぼさないことを確認した。 以下にその内容を示す。

 耐震サポートについて 耐震サポートは海水ポンプ長尺化に伴う耐震性確保のために、ベルマウス部 に取付けるものである。耐震サポートの構造を図1に示す。

図1 耐震サポート構造図(RSW ポンプの例)

3. 実機性能試験について

実機ポンプを,耐震サポートを設置した状態でピットに設置し,ポンプ性能(全揚程と吐出量,軸動力,ポンプ効率,振動)が,判定基準を満足していること及びポンプが安定した運転状態であることを確認した。試験装置の

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

概略図と試験時における耐震サポート設置状況を図2に,確認結果を表1に示す。

図2 試験装置概略図

	試験項目	判定基準	試験結果	判定
全揚程と 吐出量				合格
軸動力				合格
ポンプ 効率				合格
振動				合格

表1 試験結果

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

原子炉補機海水ポンプの取水性能試験

1. 概要

原子炉補機海水ポンプ(RSWポンプ)の取水性能を確認するため、実機R SWポンプを用いた試験を実施した。実機RSWポンプ取水性能試験では、基 準津波襲来による引き波を摸擬した水位低下時の取水可能水位を確認した。

その結果,水位低下中においても連続渦は確認されず,RSWポンプベルマウス下端(EL-9.3m)付近まで取水が可能であることを確認した。

ここでは、その試験内容を示す。

- 2. 原子炉補機海水ポンプ(RSWポンプ)の取水試験について
 - a. 試験内容

基準津波襲来による引き波を摸擬した取水槽における時系列を想定し,模 擬試験水槽の水位を徐々に低下させ,RSWポンプの運転パラメータ等を確 認した。津波を摸擬した試験水槽の水位変化とRSWポンプの試験確認項目 を表1に示す。

津波時の2号取水槽の想定時系列		津波模擬試験水槽		
取水槽水位	取水槽の状態	試験水槽の状態	試験確認項目	
【引き波】	・引き波による取水	 RSW ポンプと水位調整 	・RSW ポンプ流量,電流等	
通常水位~	槽水位低下	ポンプにより試験水槽	ポンプ運転パラメータ	
取水槽取水管下端		水位低下		
水位(EL-7.3m)				
【引き波】	・RSW ポンプによる	 RSW ポンプと水位調整 	・RSW ポンプの取水可能水	
取水槽取水管下端	取水槽貯留構造部	ポンプにより試験水槽	位(取水停止水位)	
水位(EL-7.3m)~	の水位低下	水位低下	・RSW ポンプ流量,電流等	
RSW ポンプ取水可能			ポンプ運転パラメータ	
水位				

表1 津波を摸擬した試験水槽の水位変化とRSWポンプの試験確認項目

b. 試験結果

図1に示す試験装置を用い、ポンプ取水性能試験を行った。試験時の状態 を図2に,試験中のポンプ流量と水位の関係を図3に示す。RSWポンプは、 RSWポンプベルマウス下端(EL-9.3m)付近まで定格流量を取水し、その 後,再冠水しても、定格流量が取水可能であった。また、その他の運転パラ メータについても、水位低下中に連続渦などは確認されず、運転試験後に実 施したポンプ開放点検による外観点検でも部品に異常は確認されなかった。

図1 ポンプ取水性能試験装置

図2 試験時の状態

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

図3 試験中のポンプ流量と水位変化

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

水位変動・流向ベクトルについて

1. 概要

島根原子力発電所の基準津波1~6による水位変動・流向ベクトル図について、第1図~第6図に示す。

また、水位変動・流向ベクトルの拡大図を参考図【第1図(187) 基準津波1 の水位変動・流向ベクトル】の例に示す。

参考図【第1図(187) 基準津波1の水位変動・流向ベクトル】の例

基準津波1の水位変動・流向ベクトル】の例 参考図【第1図(187)

参考図【第1図(187)

5条-別添1-添付34-5

5条-別添1-添付34-6

5条-別添1-添付34-7

5条-別添1-添付34-8

5条-別添1-添付34-9

5条-別添1-添付34-10

5条-別添1-添付34-11

5条-別添1-添付34-12

5条-別添1-添付34-13

5条-別添1-添付34-14

5条-別添1-添付34-15

5条-別添1-添付34-16

5条-別添1-添付34-17

5条-別添1-添付34-18

5条-別添1-添付34-19

5条-別添1-添付34-20

5条-別添1-添付34-21

5条-別添1-添付34-22

5条-別添1-添付34-23

5条-別添1-添付34-24

5条-別添1-添付34-25

5条-別添1-添付34-26

5条-別添1-添付34-27

5条-別添1-添付34-28

5条-別添1-添付34-29

5条-別添1-添付34-30

5条-別添1-添付34-31

5条-別添1-添付34-32

5条-別添1-添付34-33

5条-別添1-添付34-34

5条-別添1-添付34-35

5条-別添1-添付34-36

5条-別添1-添付34-37

5条-別添1-添付34-38

5条-別添1-添付34-39

5条-別添1-添付34-40

5条-別添1-添付34-41

5条-別添1-添付34-42

5条-別添1-添付34-43

5条-別添1-添付34-44

5条-別添1-添付34-45

5条-別添1-添付34-46

5条-別添1-添付34-47

5条-別添1-添付34-48

5条-別添1-添付34-49

5条-別添1-添付34-50

5条-別添1-添付34-51

5条-別添1-添付34-52

5条-別添1-添付34-53

5条-別添1-添付34-54

5条-別添1-添付34-55

5条-別添1-添付34-56

5条-別添1-添付34-57

5条-別添1-添付34-58

5条-別添1-添付34-59

5条-別添1-添付34-60

5条-別添1-添付34-61

5条-別添1-添付34-62

5条-別添1-添付34-63

5条-別添1-添付34-64

5条-別添1-添付34-65

5条-別添1-添付34-66

5条-別添1-添付34-67

5条-別添1-添付34-68

5条-別添1-添付34-69

5条-別添1-添付34-70

5条-別添1-添付34-71

5条-別添1-添付34-72

5条-別添1-添付34-73

5条-別添1-添付34-74

5条-別添1-添付34-75

5条-別添1-添付34-76

5条-別添1-添付34-77

5条-別添1-添付34-78

5条-別添1-添付34-79

5条-別添1-添付34-80

5条-別添1-添付34-81

5条-別添1-添付34-82

5条-別添1-添付34-83