条線観察結果 ボーリングH-5.7孔[深度13.20m](上盤側)②

第788回審査会合 机上配布資料1 P.2.5-1-154 再掲

条線観察結果 ボーリングH-5.7孔[深度13.20m](上盤側)③

第788回審査会合 机上配布資料1 P.2.5-1-155 再掲

観察面写真

5.2-12-70

条線観察結果 ボーリングH-5.7孔[深度13.20m](上盤側)④

第788回審査会合 机上配布資料1 P.2.5-1-156 再掲

観察面写真

拡大写真範囲

30mm

5.2-12-71 ・条線のレイクは45°R(下盤側換算),変位センスは右横ずれ逆断層センス

(2)-6 S-8の条線観察結果

<u>S-8の条線観察結果</u>

試料名		走向/傾斜 (走向は真北)	条線のレイク ^{※1}	変位センス
ボーリングF-6.9-1孔 [深度14.65m]	上盤側	N3° W/51° SW	74° R	(不明)

※1 上盤側で確認したレイクは下盤側に換算して示す。

5.2-12-73

条線観察結果 ボーリングF-6.9-1孔[深度14.65m](上盤側)

第788回審査会合 机上配布資料1 P.2.5-1-162 再掲

・条線のレイクは74°R(下盤側換算),変位センスは不明 5.2-12-74

(2)-7 K-14の条線観察結果

K-14の条線観察結果

試料名		走向/傾斜 (走向は真北)	条線の レイク	変位センス
ボーリングH0.3-80孔 [深度31.57m]	下盤側	N5° E/68° NW	107°R	(不明)
			87°R	(不明)

5.2-12-76

条線観察結果 ボーリングH--0.3-80孔[深度31.57m](下盤側)

第849回審査会合 机上配布資料1 P.2.5-1-260 再掲

100 心口 ※走向は真北で示す。

観察面写真

観察面拡大写真

細観察範囲

詳細観察写真

・条線①のレイクは107°R,変位センスは不明 ・条線②のレイクは87°R,変位センスは不明

(2)-8 K-18の条線観察結果

K-18の条線観察結果

試料名		走向/傾斜 (走向は真北)	条線の レイク	変位センス
ボーリングH-0.2-75孔 [深度116.75m]	下盤側	N2° E/81° SE	34°R	(不明)
			64° R	(不明)

11

5.2-12-79

条線観察結果 ボーリングH-0.2-75孔[深度116.75m](下盤側)

条線方向① Ł, 34°

観察面拡大写真

詳細観察写真

(3) コア写真

第875回審査会合 机上配布資料1 P.5.2-11-45 再掲

コア写真 -H-6.5-2孔(S-1)-

■S-1想定深度付近(深度65~80m)のコア写真を以下に示す。

コア写真 -H-6.6-1孔(S-1)-

■S-1想定深度付近(深度52~61m)のコア写真を以下に示す。

コア写真 -H-6.7孔(S-1)-

■S-1想定深度付近(深度30~42m)のコア写真を以下に示す。

コア写真 -K-10.3SW孔(S-1)-

■S-1想定深度付近(深度25~34m)のコア写真を以下に示す。

コア写真 -F-8.5'孔(S-2·S-6)-

■S-2・S-6想定深度付近(深度3~15m)のコア写真を以下に示す。

■S-2·S-6想定深度付近(深度3~12m)のコア写真を以下に示す。

コア写真 - E-8.50'''(S-4)-

■S-4想定深度付近(深度108~117m)のコア写真を以下に示す。

コア写真 -E-8.60孔(S-4)-

■S-4想定深度付近(深度99~108m)のコア写真を以下に示す。

■S-4想定深度付近(深度0~3m)のコア写真を以下に示す。

コア写真 -H-5.4-1E孔(S-7)-

■S-7想定深度付近(深度18~30m)のコア写真を以下に示す。

5.2-12-91

コア写真 -H-5.7'孔(S-7)-

■S-7想定深度付近(深度9~18m)のコア写真を以下に示す。

コア写真 -F-6.75孔(S-8)-

■S-8想定深度付近(深度21~33m)のコア写真を以下に示す。

コア写真 -H'--1.3孔(K-14)-

■K-14想定深度付近(深度120~132m)のコア写真を以下に示す。

H'-1.3孔(掘進長140.00m, 鉛直)

補足資料5.3-1

上載地層法に用いる地層に関する調査結果

(1) 地質調査結果

(1)-1 中位段丘 I 面 敷地北方ピット

中位段丘 I 面 敷地北方ピット

第875回審査会合 机上配布資料1 P.5.3-1-4 再掲

【 敷地北方ピット地点 調査位置 】

調査位置図

5.3-1-5

・MI段丘堆積物の石英粒子の含有に関する調査結果は次頁を参照。 ・火山灰分析結果については、P.5.3-1-72を参照。

(1)-2 中位段丘 I 面 安部屋表土はぎ

【 安部屋表土はぎ地点 調査位置 】

凡 例
高位段丘 I 面
中位段丘 I 面
砂丘
砂丘
ジジジジ 段丘面内の凹み
1_1' 断面線

・火山灰分析結果については、P.5.3-1-73,74を参照。

5.3-1-10
MI段丘堆積物(砂層)

層理が認められる

層理

層理が認められる

M I 段丘堆積物(砂礫層)

亜円~円礫を主体とする

礫の表面に穿孔貝の穿孔痕が認められる

粒径0.1~0.2mm主体 の石英粒子を含む。

粒径0.1~0.2mm主体 の石英粒子を含む。

実体顕微鏡写真 ∠ 石英粒子の例

・XRD分析用試料は60℃で乾燥後、メノウ乳鉢で粉砕し、粉末法により右記の条件で分析

Counts 20000 -Qz:石英 XRDチャート(不定方位法) Qz 10000 Qz 20 30 Position [*2Theta] (鋼 (Cu)) 装置名:スペクトリス(株)社(PANalytical)製 PW3040 X線管球:Cu、波長:CuKα, 1.54178Å 電圧・電流:40kV・50mA 測定角度·測定速度:2~40°,2°/分

スリット条件:DS:AS:RS=15 mm:15 mm:0.2mm

※DS(発散スリット), AS(散乱防止スリット), RS(受光スリット)

サンプリング幅:0.02°

CM :粘土鉱物 Kfs :カリ長石 Pl :斜長石

【安部屋表土はぎ 砂粒子の鉱物組成】

・前頁で石英粒子を確認するために採取した試料の残りを用いて、実体顕微鏡観察及びXRD分析により砂粒子の 鉱物組成の確認を行った。

実体顕微鏡写真(安部屋表土はぎ) Qtz:石英 Fls(Fsp):長石(長石グループ) Opx:斜方輝石 Alt:風化粒子

(1)-3 現海岸

敷地北方の礫浜・敷地前面海岸・敷地南方の砂浜

敷地北方の礫浜①(地獄島) 写真 ・礫の円磨が進み,円~亜角礫が主体である。 ・扁平な礫が海側に傾斜する

敷地前面の海底① 写真 ・礫の円磨が進み,円~亜角礫が主体である。

敷地北方の礫浜②(巌門) 写真(左右反転) ・礫の円磨が進み,円~亜角礫が主体である。 ・扁平な礫が海側に傾斜する

敷地前面の海底② 写真 ・礫の円磨が進み,円〜亜角礫が主体である

敷地前面海岸(D地点)

敷地前面海岸(C地点) ←W E→

敷地前面海岸(B地点)

第875回審査会合 机上配布資料1 P.5.3-1-16 再掲

敷地前面海岸(B地点)

敷地前面海岸(C地点)

敷地前面海岸(D地点)

敷地前面海岸(B地点) 礫形調査位置 ・亜円~亜角礫主体で円礫も混じる

敷地前面海岸(C地点) 礫形調査位置 ・亜円~亜角礫主体で円礫も混じる

敷地前面海岸(D地点) 礫形調査位置 ・円~亜円礫主体

【敷地前面海岸 砂粒子の鉱物組成】

左写真の青丸の位置で礫を取り除いた後に試料を採取

Hem :赤鉄鉱 PI :斜長石 Px :輝石類 Qtz :石英

試料採取位置(敷地前面海岸C地点)

実体顕微鏡写真(敷地前面海岸C地点) Qtz:石英 Opx:斜方輝石 Alt:風化粒子

現海岸 敷地南方の砂浜

÷	
1	・未乾燥試料約20gを供試
i	・乳鉢で軽くほぐした試料に蒸留水を加え, パンニング(わん掛け法)しながら細粒分を少しずつ除去し, 粗粒分(ほぼ細粒砂以上)を分離
ł	・パンニングの途中で上澄みがほぼ透明になるまで超音波洗浄(30秒, 20kHz)を繰り返し実施
ł	・細粒分の除去が終了後, スミアスライド用試料とXRD分析用試料に区分
1	・作成したスミアスライドは実体顕微鏡で観察し, 写真を撮影
į	・XRD分析用試料は60℃で乾燥後、メノウ乳鉢で粉砕し、粉末法により右記の条件で分析
_	

CM :粘土鉱物 Hbl :角閃石

【敷地南方の砂浜 砂粒子の鉱物組成】

・前頁で石英粒子を確認するために採取した試料の残りを用いて、実体顕微鏡観察及びXRD分析により砂粒子の 鉱物組成の確認を行った。

実体顕微鏡写真(敷地南方の砂浜) Qtz:石英 Fls(Fsp):長石(長石グループ) Opx:斜方輝石 Alt:風化粒子

X線回折チャート(敷地南方の砂浜)

(1)-4 古期扇状地 生神南部

古期扇状地 生神南部

赤色立体地図(服部ほか, 2014に加筆)

・ほとんどの礫は硬質であり、ナイフで傷がつく程度である。

CM :粘土鉱物

Mi :雲母鉱物 PI :斜長石

Qtz :石英

CM:柏工鉱物 Crs:クリストバライト Hem:赤鉄鉱 Kfs:カリ長石

【生神南部 砂粒子の鉱物組成】

Qtz:石英 Fls (Fsp):長石(長石グループ) Opx:斜方輝石 Oth:その他

(1)-5 開析谷 事務本館前トレンチ

【事務本館前トレンチ 調査位置】

【事務本館前トレンチ 調査結果】

(1)-6 開析谷 S-2·S-6 No.1トレンチ

開析谷 S-2・S-6 No.1トレンチ

【S-2·S-6 No.1トレンチ 調査位置】

トレンチ全景写真(西側から撮影)

小段

スケッチ(展開図)

【S-2·S-6 No.1トレンチ 砂粒子の鉱物組成】

試料採取位置(No.1トレンチ 北面)

実体顕微鏡写真(No.1トレンチ)

Qtz:石英 Fls (Fsp):長石(長石グループ) Opx:斜方輝石 Opq:不透明鉱物 Alt:風化粒子

X線回折チャート(No.1トレンチ)

(1)-7 現河床 神川本流・支流・小浦川

【神川本流•支流 調查位置•調查結果】

最高位段丘面群

高位段丘V面 高位段丘IV面 高位段丘Ⅲ面

高位段丘II而 高位段丘1面 中位段丘1面 砂丘 古期扇状地面

国土地理院地形図

赤色立体地図(拡大)

近景写真 角~亜角礫主体。径5~10cm台のものが多い。

遠景写真

近景写真 角礫主体。径5~10cm台のものが多い。

神川(支流)

位置図

2km

Ha7:7Å型ハロイサイト

【神川本流 砂粒子の鉱物組成】

試料採取位置(神川本流)

実体顕微鏡写真(神川本流) Qtz:石英 Fls (Fsp):長石(長石グループ) Opx:斜方輝石 Cpx:単斜輝石 Oth:その他

Ha7:7Å型ハロイサイト

【神川支流 砂粒子の鉱物組成】

試料採取位置(神川支流)

実体顕微鏡写真(神川支流) Qtz:石英 Fls(Fsp):長石(長石グループ) Cpx:単斜輝石 Oth:その他

表面の礫を取り 除いた後の砂を 採取。

現河床 小浦川

第875回審査会合 机上配布資料1 P.5.3-1-36 再掲

【小浦川 調查位置•調查結果】

【小浦川 砂粒子の鉱物組成】

採取。

試料採取位置(小浦川)

実体顕微鏡写真(小浦川) Qtz:石英 Fls (Fsp):長石(長石グループ) Opx:斜方輝石 Oth:その他

(1)-8 中位段丘 I 面 S-2·S-6 No.2トレンチ

第875回審査会合 机上配布資料1 P.5.3-1-39 再掲

【 S-2・S-6 No.2トレンチ 調査位置】

調査位置図

【 S-2・S-6 No.2トレンチ 調査結果】

テフラの年代(町田・新井, 2011) K-Tz:9.5万年前

←N

小段

【S-2•S-6 No.2トレンチ 北面 拡大写真】

【S-2・S-6 No.2トレンチ 南面 拡大写真】

拡大写真(C) 0<u>40</u>cm 亜円~亜角礫主体

拡大写真(E) 層理が認められる 拡大写真(D) 層理が認められる

【S-2·S-6 No.2トレンチ 薄片観察】

^{*}その他の薄片観察写真については、補足資料5.3-1(3)

拡大写真

【S-2•S-6 No.2トレンチ EPMA分析】

(EPMA分析結果)

EPMA分析の結果,顕微鏡下(直交ニコル)において基質中に白く見える粒子は, 石英を主体とし、その他の鉱物としてカリ長石や斜長石を含むことが定量的に確 認され, 顕微鏡下の薄片による観察結果と整合する。

EPMA分析結果(50粒子/1試料)

EPMA分析結果 試料a(100%ノーマライズデータ)	
-----------------------------	--

EPMA分析結果 試料b(100%ノーマライズデータ)

山物石	SiO ₂	AI_2O_3	SO₃	FeO	MgO	CaO	BaO	Na ₂ O	K₂O	total
Qz	100.00	-	-	-	-	-	-	-	-	100.00
PI	69.41	19.19	-	-	-	-	-	11.40	-	100.00
PI	68.52	19.92	-	-	-	0.57	-	10.99	-	100.00
Kf	63.84	17.91	-	-	-	-	-	0.62	17.63	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Kf	63.62	17.97	-	-	-	-	-	0.20	18.21	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Kf	63.97	17.90	-	-	-	-	-	0.74	17.40	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Kf	63.58	18.11	-	-	-	-	-	0.64	17.67	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Kf	63 85	18 05	-	-	-	-	-	0.71	1739	100.00
Qz	99.43	0.57	-	-	-	-	-	-	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
07	100.00	-	-	-	-	-	-	-	-	100.00
Kf	63.87	17.87	-	-	-	-	-	0.50	1777	100.00
07	100.00	-	-	-	-	-	-	-	-	100.00
07	100.00	-	-	-	-	-	-	-	-	100.00
07	100.00	-	-	-	-	-	-	-	-	100.00
07	100.00	-	-	-	-	-	-	-	-	100.00
07	100.00	-	-	-	-	-	-	-	-	100.00
01Z	60.00	10.20	_	_	_	_	_	1117	0 50	100.00
Kt.	00.00	10.05	_	_	-	-	_	0.70	17.10	100.00
07	100.00	18.20	-	-	-	-	-	0.78	17.19	100.00
QZ	62.06	-	-	-	-	-	-	-	-	100.00
	100.00	18.02	-	-	-	-	-	0.90	17.15	100.00
QZ	100.00	-	-	-	-	-	-	-	-	100.00
QZ	100.00	-	-	-	-	-	-	-	-	100.00
QZ	100.00	-	-	-	-	-	-	-	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
QZ	100.00	-	-	-	-	-	-	-	-	100.00
	69.16	19.45	-	-	-	-	-	11.39	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Kt	63.59	18.03	-	-	-	-	-	0.68	17.71	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
PI	68.74	19.65	-	-	-	0.29	-	11.31	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Kf	63.65	17.78	-	-	-	-	-	0.51	18.05	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Kf	65.43	18.76	-	-	-	-	-	3.12	12.69	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
Qz	100.00	-	-	-	-	-	-	-	-	100.00
0-	100.00	-	-	-	-	-	-	-	-	100.00

鉱物名	(wt.%)										
	SiO ₂	AI_2O_3	SO3	FeO	MgO	CaO	BaO	Na ₂ O	K₂O	total	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	96.84	2.20	-	-	-	-	-	-	0.96	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	98.47	0.81	-	0.72	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Kf	63.58	18.12	-	-	-	-	-	0.74	17.56	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
07	100.00	-	-	-	-	-	-	-	-	100.00	
07	100.00	-	-	-	-	-	-	-	-	100.00	
07	100.00	-	-	-	-	-	-	-	-	100.00	
07	100.00	-	-	-	-	-	-	-	_	100.00	
07	100.00	-	-	<u> </u>		-	<u> </u>	<u> </u>		100.00	
Q/Z	62.00	17.00	-	<u> </u>	<u> </u>	-	<u> </u>	-	-	100.00	
NT	63.99	17.99	-	-	-	-	-	0.84	17.18	100.00	
KT 0	63.71	17.97	-	-	-	-	-	0.44	17.88	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Kf	63.70	18.27	-	-	-	-	-	0.59	17.44	100.00	
Kf	63.95	17.67	-	-	-	-	-	0.60	17.78	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	99.48	0.52	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Kf	65.62	18.22	-	-	-	-	-	3.67	12.49	100.00	
Qz	99.75	0.25	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
PI	62.43	23.50	-	-	-	5.58	-	8.21	0.29	100.00	
Kf	63.54	17.85	-	-	-	-	-	0.29	18.32	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Q7	100.00	-	-	-	-	-	-	-	-	100.00	
07	100.00	-	-	-	-	-	-	-	_	100.00	
07	100.00	-	-	-	-	-	-	-	_	100.00	
PI	60.29	10.26	-	-	-	-	-	11.26	-	100.00	
07	100.00	19.30	-	-	_	_	_		_	100.00	
0-	100.00		-	<u> </u>		-	-		-	100.00	
QZ	100.00	-	-	-	-	-	-	-	-	100.00	
QZ	100.00	-	-	-	-	-	-	-	-	100.00	
QZ	100.00	-	-	-	-	-	-	-	-	100.00	
Kt	63.87	1 /.69	-	-	-	-	-	0.36	18.07	100.00	
Qz	100.00	-	-	-	-	-	-	-	-	100.00	
Kf	63.08	18.26	-	-	-	-	1.08	0.73	16.85	100.00	

Qz:石英, PI:斜長石, Kf:カリ長石

(1)-9 高位段丘 I a面 35m盤トレンチ