柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料-3	添付資料-3	添付資料-3	
石油コンビナート笙の火災・爆発について	石油コンビナート笙の火災・爆発について	石油コンビナート笙の火災・爆発について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. はじめに	1. 且的	1. <u>ILUDE</u>	
本評価は,発電所敷地外で発生する石油コンビナート等の火	発電所敷地外で発生する石油コンビナート等の火災やガス爆	本評価は, 発電所敷地外で発生する石油コンビナート等の火災	
災やガス爆発に対してより一層の安全性向上の観点から、その	発により, 安全機能を有する構築物, 系統及び機器を内包する	やガス爆発に対してより一層の安全性向上の観点から、その火災	
火災やガス爆発が <u>柏崎刈羽</u> 原子力発電所に隣接する地域で起	発電用原子炉施設に影響を及ぼさないことについて、「原子力発	やガス爆発が島根原子力発電所に隣接する地域で起こったとして	
こったとしても発電用原子炉施設に影響を及ぼさないことを	電所の外部火災影響評価ガイド 附属書B 石油コンビナート等	も発電用原子炉施設に影響を及ぼさないことを評価するものであ	
評価するものである。	火災・爆発の原子力発電所への影響評価について」(以下「評価	- Jane	
	ガイド」という。)に基づき, 評価を実施する。		
	2. 危険物貯蔵施設等の抽出の考え方		
	発電所周辺 10km 以内の石油コンビナートの有無を確認した。		
	また、石油コンビナート以外の危険物貯蔵施設及び高圧ガス貯		
	蔵施設については,周辺自治体に資料開示請求を行い,必要に		
	応じてこれらの施設を有する事業者への聞き取り調査を行い確		
	認し、ガスパイプラインについては周辺事業者への聞き取り調		
	査を行い確認した。		
2. 石油コンビナート等の火災・爆発影響評価	3. 石油コンビナート等に対する評価	2. 石油コンビナート等の火災・爆発影響評価	
発電用原于炉施設の周りには周辺監視区域かめり、敷地境界		発電用原于炉施設の向りには向辺監視区域かめり, 敷地項券と の間にはいたくしき約500 の部項事業が確保されていて、「により	
		の間には少なくとも約500mの離隣距離が唯保されている。仮に火	
仮に火災・爆発が発生した場合に影響が入さいと考えられるも のしして、爆発物や化学物質な土島に扱うて油コンビナーしな		次・爆発が発生した場合に影響が入さいと考えられるものとしし、 爆変物の化労物所たた見に扱うて油コンバナー」なについて評価	
のとして、爆発物や化子物質を入重に扱う石油コンビリート等		爆発物や化子物質を入重に扱う石油コンヒリート等について評価	
について計画を美施する。		を夫旭りる。	
(1) 評価対象範囲	3.1 評価対象範囲	(1) 評価対象範囲	
評価対象は. 発電所敷地外の半径 10km 圏内に存在する石	評価対象は. 発電所敷地外の半径 10km 圏内に存在する石油コ	評価対象は,発電所敷地外の半径 10km 圏内に存在する石油	
油コンビナート等とする。なお、石油コンビナート等とは、	ンビナート等とする。	コンビナート等とする。なお、石油コンビナート等とは、石	
石油コンビナート等災害防止法で規制される特別防災区域	茨城県内において石油コンビナート等災害防止法により石油	油コンビナート等災害防止法で規制される特別防災区域内の	
内の特定事業所及びコンビナート等保安規則で規制される	コンビナート等特別防災区域に指定されているのは以下の区域	特定事業所及びコンビナート等保安規則で規制される特定製	
特定製造事業所とする。	である。	造事業所とする。	
	石油コンビナート等特別防災区域を指定する政令【別表抜粋】		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	 十三 鹿島臨海地区 イ 茨城県鹿嶋市大字国末字北浜山,字南浜山及び字海岸砂地,大字泉川字 北浜山,字南浜山,字浜屋敷及び字沢東,大字新浜並びに大字粟生字海 岸の区域 同市大字光字光並びに大字粟生字東山及び字浜の区域のう ち主務大臣の定める区域 これらの区域に介在する道路の区域 ロ 茨城県神栖市光,居切字海岸砂地並びに深芝字海辺,字藤豊及び字原芝 の区域 同市北浜,奥野谷字浜野及び字東和田,東和田並びに東深芝の 区域のうち主務大臣の定める区域 		
(2) 評価結果	32 評価結果	(2) 評価結果	
石油コンビナート等災害防止法で規制される <u>新潟県内</u> の	第3.2-1 図に示すとおり,茨城県内において石油コンビナー	石油コンビナート等災害防止法で規制される島根県内の特	
特別防災区域は「直江津地区」「新潟西港地区」「新潟東港地	ト等災害防止法により石油コンビナート等特別防災区域に指定	別防災区域は存在しない。また、島根原子力発電所から最寄	・条件の相違
区」の三カ所存在するが、これらは、それぞれ柏崎刈羽原子	されている鹿島臨海地区は東海第二発電所から約 50km 離れて	の特別防災区域である「福山・笠岡地区」,「水島臨海地区」	【柏崎 6/7,東海第二】
<u>力発電所から約 39km, 約 72km 及び約 84km であり, </u> いず	おり,評価対象範囲の10km以上離れていることから,評価対象	<u>まではそれぞれ約 120km であり、いずれも島根原子力発電所</u>	地域特性を踏まえた条
れも <u>柏崎刈羽</u> 原子力発電所から 10km 以遠である(第 2-1	となる石油コンビナートは存在しないことを確認した。	から10km以遠である(第2-1図)。	件の相違
図)。また,コンビナート等保安規則で規制される特定製造			
事業所が評価対象範囲に存在しないことを新潟県防災局に			
確認した。」以上より,評価対象範囲内に石油コンビナート等		以上より、評価対象範囲内に石油コンビナート等は存在せ	
は存在せず、発電用原子炉施設に影響を及ぼすことはない。		ず,発電用原子炉施設に影響を及ぼすことはない。	
image: state st	<image/>	<image/> <caption></caption>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	4. 石油コンビナート以外の危険物貯蔵施設に対する評価		
	発電所から10km以内に位置する危険物貯蔵施設のうち,評価		
	対象施設に影響を及ぼすおそれのある施設を抽出し、その火災		
	影響又は爆発影響を評価した。		
3. 石油コンビナート等以外の火災・爆発影響評価	<u>4.1 危険物貯蔵施設</u>	3. 石油コンビナート等以外の火災・爆発影響評価	
<u>柏崎刈羽</u> 原子力発電所から 10km 圏内に位置する危険物	<u>4.1.1 評価対象施設の抽出</u>	<u>島根原子力</u> 発電所から10km <u>圏内</u> に位置する危険物施設(<u>危険</u>	
施設(危険物貯蔵施設,高圧ガス貯蔵施設,ガスパイプライ	発電所から10km以内(敷地内を除く)に,第一類から第六類	物貯蔵施設,高圧ガス貯蔵施設,ガスパイプライン)を抽出し,	
ン)を抽出し、柏崎刈羽原子力発電所から最も近い施設及び	の危険物貯蔵施設(屋内貯蔵及び少量のものは除く)が約500	島根原子力発電所から最も近い施設及び島根原子力発電所から	
<u>柏崎刈羽</u> 原子力発電所から 10km 圏内の施設における最大	カ所存在することを自治体への聞き取り調査から確認した。	10km圏内の施設における最大数量をそれぞれ抽出する。なお,	
数量をそれぞれ抽出する。なお,危険物貯蔵施設については	第一類から第六類の危険物のうち,周辺での取扱量が多く,	危険物貯蔵施設及び高圧ガス貯蔵施設については松江市消防本	
柏崎市消防本部並びに長岡市消防本部,高圧ガス貯蔵施設に	引火性液体であるため広範囲に漏えいし大規模火災発生の可能	部に確認した。(平成30年6月に開示請求を実施)	
ついては新潟県防災局, ガスパイプラインについては天然ガ	性がある第四類危険物貯蔵施設を火災源と想定する。ここで、	確認した結果,島根原子力発電所から10km圏内には,高圧ガ	・条件の相違
ス鉱業会に確認した。	発電所10km以内には多数の第四類危険物貯蔵施設が存在する	ス貯蔵施設及びガスパイプラインは確認されていない。	【柏崎 6/7,東海第二】
	ため、影響評価を行う第四類危険物貯蔵施設の絞り込みを以下	また,LNG基地及び石油備蓄基地は存在しないことを確認して	島根 2 号炉は, LNG 基地
	の方法で行った。	<u>いる。</u>	及び石油備蓄基地が存
	i) 発電所敷地外半径 10km 以内に石油コンビナートはない		在せず, 評価対象外
<u>柏崎刈羽</u> 原子力発電所から 10㎞ 圏内の危険物施設を第	ことから、半径10km以内に存在する危険物貯蔵施設の貯	島根原子力発電所から10km圏内の危険物施設を第3-1図及び	
3-1 図及び第 3-1~3 表に示す。	蔵容量は最大でも石油コンビナート相当の10万kL*1とし	第 3-1 表に示す。	
	た。ここで、第四類危険物のうち、最も輻射発散度が高い		
	<u>n-ヘキサン**2が10万 kL 貯蔵された危険物貯蔵施設を想</u>		
	定し,その危険距離を算出した結果1,329m ^{※2} となった。		
	※1 「石油コンビナート等災害防止法施行令」(昭和		
	51 年 5 月 31 日政令 129 号)の第 2 条で規定する		
	基準総貯蔵量		
	※2 算出方法は別紙 3.1 参照		
	ii) i)項の結果と別紙 3.1 の評価結果を踏まえ, 発電所から		
	1.4km以遠には発電所に影響を及ぼす危険物貯蔵施設は存		
	在しないと判断し,発電所から1.4km以内に存在する第四		
	類危険物貯蔵施設に対して影響評価を行う。発電所周辺に		
	存在する第四類危険物貯蔵施設を第4.1.1-1表に,発電所		
	との位置関係を第4.1.1-1図に示す。		
第 3-1 図 柏崎刈羽原子力発電所から10km 圏内に位置する危		第 3-1 図 島根原子力発電所から 10km 圏内に位置する	
険物施設		危険物施設	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2 長
第 3-1 表 拍崎刈羽原子力発電所から 10km 圏内に位置する危	第4.1.1-1表 発電所周辺(東海村全域及び日立市の一部)に	第3-1表 <u>島根</u> 原子力発電所から10km圏内
険物施設【危険物貯蔵施設】(1/3)	存在する第四類危険物貯蔵施設	【危険物施設】(
	施設区分 No. 事業所名 消極 数量(L) 位置が1.4km以内 〇:1.4km以内 × 1.1 km343歳	
	品外タンク貯御所 又は屋外宇衛所	
	前行相同 化化	
	第4.1.1-1表の1.4km以内に存在する危険物貯蔵施設のうち,	
	<u> たついて</u> 影響評価を実施した た	
	<u>下貯蔵であるため,評価対象外とした。</u>	
	第4.1.1-1図 発電所周辺(東海村全域及び日立市の一部)に	
	位置する危険物貯蔵施設	

炉	備考
に位置する危険物施設	
1/8)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3-1 表 <u>柏崎刈羽</u> 原子力発電所から 10km 圏内に位置する危		第3-1表 島根原子力発電所から10km圏内に位置する危険物施設	
険物施設【危険物貯蔵施設(2/3)		【危険物施設】(2/8)	
ــــــا			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3-1 表 <u>柏崎刈羽</u> 原子力発電所から 10km 圏内に位置する危険物施設【危険物 <u>貯蔵</u> 施設】(3/3)		第3-1表 <u>島根</u> 原子力発電所から10km圏内に位置する危険物施設 【危険物施設】(3/8)	
※1:柏崎刈羽原子力発電所から最短の危険物貯蔵施設までの距 離である			
※2:柏崎刈羽原子力発電所から 10km 圏内に位置する最大貯蔵 量の危険物貯蔵施設である			
第 3-2 表 柏崎刈羽原子力発電所から 10km 圏内に位置する危 険物施設【高圧ガス貯蔵施設】(1/2)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3-2 表 柏崎刈羽原子力発電所から 10km 圏内に位置する危		第3-1表 島根原子力発電所から10km圏内に位置する危険物施設	
険物施設【高圧ガス貯蔵施設】(2/2)		【危険物施設】(4/8)	
※1: 柏崎州羽原丁刀発电別からIOKm 圏内に位直9 る取入灯廠里 の真正ガス貯蔵施設である			
の同口の不可慮地設てのる ※2・柏崎刈羽百子力発電所から最短の真圧ガス貯蔵施設までの			
新藤であろ 「「「「「「「「「」」」「「「「」」」「「「」」「「「」」「「」」「「」」「			
 第 3-3 表 柏崎刈羽原子力発電所から10km圏内に位置する危険			
物施設【ガスパイプライン】			
※1:柏崎刈羽原子力発電所からの最短のガスパイプライン(バ			
ルブ施設)までの距離である。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		第3-1表 島根原子力発電所から10km圏内に位置する危険物施設	
		【危険物施設】(5/8)	
		·	

柏崎刈羽原子力発電所 6/	7号炉 (2017.12	2.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
				第3-1表 島根	根原子力発電所から10km圏内に位置する危険物施設	
					【危険物施設】(6/8)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		第3-1表 島根原子力発電所から10km圏内に位置する危険物施設	
		【危険物施設】(7/8)	
		·	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		第3-1表 島根原子力発電所から10km圏内に位置する危険物施設 【危険物施設】(8/8)	
		 ※1:島根原子力発電所から最短の危険物貯蔵施設まで距離である。 ※2:島根原子力発電所から10km 圏内に位置する最大貯蔵量の危険 貯蔵施設である。 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3.1 危険物貯蔵施設	<u>4.1.2</u> 火災の影響評価	3.1 危険物施設	
<u>柏崎刈羽</u> 原子力発電所から 10km 圏内(敷地内を除く)にお	4.1.2.1 評価条件	<u>島根</u> 原子力発電所から10㎞圏内(敷地内を除く)における危	
ける危険物貯蔵施設の最大貯蔵量は, であり, 柏崎刈羽	危険物貯蔵施設の火災の想定は以下のとおりとした。	険物貯蔵施設の最大貯蔵量は, であり, 島根原子力発電	
原子力発電所 <u>から最短の危険物貯蔵施設までの距離は約</u>	(1) 想定の条件	所敷地内 <u>にある重油タンク (No. 1, 2, 3) の貯蔵量2, 700kLよりも</u>	・条件の相違
<u>2.3kmである(第 3.1-1 図)。</u>	a. 評価対象とする危険物貯蔵施設は 4.1.1 で抽出した	少ない。	【柏崎 6/7,東海第二】
仮に最短距離の危険物貯蔵施設に最大貯蔵量 が有っ		また,発電所に最も近い石油類貯蔵施設との離隔距離は約	島根 2 号炉は,発電所
たと仮定し,熱影響評価を実施したところ,危険距離は約 56m	を想定した。	1.5kmであり、仮に最短距離の危険物貯蔵施設に最大貯蔵量	敷地外で最も燃料保有
であり, 柏崎刈羽原子力発電所との距離約2.3kmよりも小さい	b. 評価対象とする危険物貯蔵施設の燃料は満載した状態を	が有ったと仮定した場合でも、燃料保有量が敷地内	量が多い施設が、発電
ことを確認した。	<u>想定した。</u>	危険物の最大貯蔵量に比べ少ないことから、危険距離は重油タ	所敷地内の危険物施設
	c.離隔距離は,評価上厳しくなるよう, a. で想定した危	ンク (No. 1, 2, 3) による火災の評価結果に包絡される。(第3. 1-1	(重油タンク)に比べ
よって,発電所敷地外の危険物貯蔵施設において火災が発生	険物貯蔵施設位置から評価対象施設までの直線距離とし	図)	燃料保有量が少ないた
した場合においても <u>柏崎刈羽</u> 原子力発電所への影響はない。	<u>t.</u>	よって,発電所敷地外の危険物貯蔵施設において火災が発生	め,発電所敷地内の危
	d. 危険物貯蔵施設の破損等により危険物が流出しても,防	した場合においても島根原子力発電所への影響はないことを確	険物施設 (重油タンク)
	油堤内に留まるものとする。	認した。	にて代表的に評価を実
	e. 気象条件は無風状態とした。		施
第 3.1-1 表 10km 圏内における最大の危険物貯蔵施設の貯	f. 火災は円筒火炎モデルとし、火炎の高さは燃焼半径の3	第3.1-1表 10km圏内における最大の危険物貯蔵施設の貯蔵量	
蔵量	倍とした。	11日本 11日本 11日本 11日本 11日本 11日本 11日本 11日本	
種類 貯蔵量[kl]	g. 火災の形態はタンク内及び防油堤内の全面火災とした。		
原油	(2) 輻射強度の算定		
メチルアルコール	<u>油の液面火災において任意の位置にある輻射強度(熱)を</u>		
合計	計算により求めるため,半径が1.5m以上の場合で火炎の高さ		
	(輻射体)を半径の3倍にした円筒火炎モデルを採用した。	台計	
	4.1.2.2 共通データの算出		
	各外壁,主排気筒,非常用ディーゼル発電機(高圧炉心スプ		
	レイ系ディーゼル発電機を含む。),残留熱除去系海水系ポン		
	<u>プ,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル</u>		
	発電機を含む。)用海水ポンプ及び放水路ゲートに対する危険距		
	離評価に必要となる共通データを算出する。		
	(1) 危険物貯蔵施設及び燃料に係るデータ		
	示す。		
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
 第 3.1-1 図 最大貯蔵量の危険物貯蔵施設と最短距離の危険物貯蔵施設と最短距離の危険物貯蔵施設 (1) 評価条件 以下に示すとおり,輻射発散度は原油の方が大きいことから,原油の輻射発散度を用いる。また,燃焼継続時間は原油 とメタノールが同じ防油堤の中に設置されていることから, 原油とメタノールの燃焼継続時間を加算した値を用いて評 価を実施する。 		 第3.1-1図 最短距離の危険物貯蔵施設 (1) 評価条件 島根原子力発電所から 10km 圏内(敷地内を除く)におけ ろ危険物貯蔵施設において貯蔵量が最大な油種は重油であ ろことから、発電所敷地内に設置している、より貯蔵量の 大きい重油タンク(No.1,2,3)により評価を実施する。 	 ・条件の相違 【柏崎 6/7,東海第二】 島根 2 号炉は,発電所 敷地外で最も燃料保有 量が多い施設が,発電
第 3.1-2 表原油とメタノールの評価条件燃料の種類原油メタノール燃料量[k1]防油堤面積[m²]輻射発散度[W/m²] ¹⁾ 41×10³9.8×10³質量低下速度[kg/m²·s] ²⁾ 0.022~0.0450.017燃料密度[kg/m³] ²⁾ 830~880796燃焼速度[m/s] ³⁾ 2.5~5.4×10 ⁻⁵ 2.135×10 ⁻⁵ 1) 評価ガイド付属書Bより3) NUREG-1805より3)3) 燃焼速度=質量低下速度 ÷燃料密度	第4.1.2.2-1表 危険物貯蔵施設及び燃料に係るデータ 想定火災源 燃料の 種類 燃料量 (m ³) 幅射発散度 (kW/m ²) ^{±1} 質量低下速度 (kg/m ² /s) ^{±2} 燃料密度 (kg/m ³) ^{±3} 防油堤面積 (m ²) **1 評価ガイド 記載値 **2 NUREG-1805 記載値 **3 MSDS(製品安全データシート) 記載値	第3.1-2 表重油の評価条件燃料の種類重油燃料量[kL]900防油堤面積[m²]491.7輻射発散度[W/m²]*123×10³質量低下速度[kg/m²·s]*20.035燃料密度[kg/m²]*21,000燃焼速度[m/s]*33.5×10⁻5※1:評価ガイド附属書Bより※2:NUREG-1805より※3:燃焼速度=質量低下速度÷燃料密度	所敷地内の危険物施設 (重油タンク)に比べ 燃料保有量が少ないた め,発電所敷地内の危 険物施設(重油タンク) にて代表的に評価を実 施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2) 燃焼半径の算出	(2) 燃焼半径の算出	(2) 燃焼半径の算出	
燃焼面積は,防油堤面積に等しいものとする。したがって,	円筒火炎モデルとして評価を実施するため,燃焼半径は防	燃焼面積は、防油堤面積に等しいものとする。したがって、	
燃焼半径 R[m]の防油堤面積を円筒の底面と仮定し算出する。	油堤面積を円筒の底面と仮定して以下のとおり算出した。算	燃焼半径 <u>R[m]の防油堤面積を円筒の底面と仮定し算出する。</u>	
R = $(S \neq \pi)^{-0.5}$	出結果を第4.1.2.2-2 表に示す。	R = $(S \neq \pi)^{-0.5}$	
S: 防油堤面積(火炎円筒の底面積) =		S:防油堤面積(<u>火炎の円筒の底面積</u>)=491.7[m ²]	
R =	$R = \sqrt{\frac{S}{\pi}}$	$R = (491.7 / \pi)^{0.5} = 12.51 [m]$	
	R <u>:燃焼半径(m),</u> S:防油堤面積(<u>三燃焼面積)(m²)</u>		
	第4.1.2.2-2表 危険物貯蔵施設の燃焼半径		
	防油堤面積 燃焼半径		
	想定火災源 S R (m ²) (m)		
(3) 燃焼継続時間の算出	(3) 燃焼継続時間の算出	(3) 燃焼継続時間の算出	
燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値	
値になる。	になる。算出結果を第 4.1.2.2-3 表に示す。	になる。	
$t = \frac{V}{\pi R^2 \times v}$	V	$t = \frac{V}{2}, v = \frac{M}{2} \ddagger \psi, t = \frac{V \times \rho}{2}$	
t:燃焼継続時間[s],V:燃料量[m ³],R:燃焼半径[m],v:燃焼速度[m/s]	$t = \frac{1}{\pi P^2 \times V}$	$\pi R^2 \times v$ ρ $\pi R^2 \times M$	
M:質量低下速度[kg/m ² ·s], ρ :密度[kg/m ³], m:質量[kg]		t:燃焼継続時間[s], V:燃料量[m ³], R:燃焼半径[m],	
$_{x_{g_{j-n}}}$ =2.135×10 ⁻⁵ [m/s]として, 燃焼継続時間を求めると,	t : 燃焼継続時間(s), V : 燃料量(m ³)	v:燃焼速度[m/s], M:質量低下速度[kg/(m ² ・s)],	
t==35740[s]	R:燃焼半径(m), v:燃焼速度=M/ ρ (m/s)	ρ:密度[kg/m ³],	
0. 02[h]	M:質量低下速度(kg/m ² /s), ρ :燃料密度(kg/m ³)	t = 52297[s]	
	筆4122-3表 合除物貯蔵施設の燃焼継結時間	-14. 55[11]	
	想定 NM(H) (MA) (MA) (MA) (MA) (MA) (MA) (MA) (MA		
	4.1.2.3 外壁に対する危険距離評価		
	(1)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
	評価対象施設の外壁について, 危険物貯蔵	施設の火災を想		
	定して評価を実施した。			
	(2) 想止火灰原から計価対象他設までの離開時	鹿と兎		
	4.1.2.3-1 x 1-2.			
	第4.1.2.3-1表 想定火災源から評価対象施設	までの離隔距離		
	想定火災源 「原子炉建屋」 (m) タービン建屋 (m)	使用済燃料 乾式貯蔵建屋(m)		
	1,100 1,200	800		
(4) 厄陝輻射强度の鼻田			(4)	
	<u>a. 計分価</u> 及	担合において		
	への時におりる歴労価及上升でも悪した コンクリート 王統論度が維持される保守的	が見にない。 1な温度 200°C以		
	テレオス			
a 外辟面の合降輻射強度	·····································		a 外辟面の合降輻射強度	
火災が発生した時間から燃料が燃え尽きるまでの間。一	火災が発生した時間から燃料が燃え尽き	るまでの間。一		
定の輻射強度で発電用原子炉施設外壁が昇温されるものと	定の輻射強度で外壁が昇温されるものとして、式1の一次		定の輻射強度で発電用原子炉施設外壁が昇温されるものと	
して、下記の一次元非定常熱伝導方程式の解の式より、コ	元非定常熱伝導方程式の一般解の式より外壁表面(x=0)の		して、下記の一次元非定常熱伝導方程式の解の式より、コ	
ンクリートの表面温度が 200℃となる危険輻射強度を求め	温度が 200℃となる <u>輻射強度(=</u> 危険輻射強度)を算出する。		ンクリートの表面温度が 200℃となる危険輻射強度を求め	
る。)]	る。	
$T = T + \frac{1}{1}$	$T = T_{0} + \frac{2E\sqrt{\alpha t}}{\lambda} \left \frac{1}{\sqrt{\pi}} \exp\left(-\frac{x^{2}}{4 \alpha t}\right) - \frac{x}{2\sqrt{\alpha t}} \operatorname{erfc} \left(-\frac{x^{2}}{4 \alpha t} - \frac{x^{2}}{2\sqrt{\alpha t}} \right) \right _{\lambda}$	$\frac{\mathbf{x}}{2\left(\alpha,t\right)}$ (式1)	$\tau - \tau$, 1	
$\left(\frac{\sqrt{k_{\rho}c}}{1.18h\sqrt{t}}+1\right)\frac{h}{\varepsilon E}$			$I = I_0 + \frac{\sqrt{k\rho c}}{\left(\frac{\sqrt{k\rho c}}{1 + c^2} + 1\right) \frac{h}{c^2}}$	
出典:原田和典,建築火災のメカニズムと火災安全設計,日本建築センター	(出典: 伝熱工学, 勇	夏京大学出版会)	$(1.18h\sqrt{t}) \mathcal{E}$	
T ₀ :初期温度[50℃],E:輻射強度[W/m ²],ε:コンクリート表面の放射率(0.95) * h・コンクリート表面熱伝達率[34.9W/m ² K]* k・コンクリート執伝道率	<u>T:許容温度(200℃),T₀:,初期温度(50%</u>	<u></u>	出典:原田和典,建築火災のメカニズムと火災安全設計,	
[1.6W/mK] *, ρ:コンクリート密度[2200kg/m ³] *, c:コンクリート比熱	<u>E:輻射強度 (W/m²)</u>		財団法人 日本建築センター	
[879J/kgK] *, t:燃焼継続時間[s] ※:建築設計竣工図書 原子炉建屋構造計算書	κ : コンクリート温度伝導率 (= $\lambda / \rho C_p$) (7.7×1	$0^{-7} m^2 / s)$	<u>T₀:初期温度[50℃],E:輻射強度[W/m²],ε:コンクリ</u>	
	<u>ρ: コンクリート密度(2,400kg/m³),</u>		ートの表面の放射率[0.94] ^{**1} , h: コンクリート表面熱伝	
	C_p::コンクリート比熱 (880J/kg/K)		達率[23.3W/m ² K] ^{*2} , k:コンクリート熱伝導率[1.6W/mK]	
	λ:=>//リート熱伝導率(1.63W/m/K),t:燃焼継	売時間(28,701s)	** ² , ρ: コンクリート密度[2,200kg/m ³]** ² , c: コンクリ	
	x:温度評価の対象となる深さ位置(外壁表面	1 : Om)	<u>一下比烈[879]/kgK]^{**2},t:燃焼継続時間[s]</u>	
	※ 水戸地万気家台で観測された過去最高気 (株ませまいませ)	温 38.4℃に保守	※1:伝熱上字質料, ※2:原子炉建物 構造計算書	
	11.2.1月后至后围			
				1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$E = 6762 [W/m^2]$		$E=4,761[W/m^2]$	
$E = 67.62 [W/m^2]$ b. <u>軽油タンク</u> の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間, 一 定の輻射強度で <u>軽油タンク</u> が昇温されるものとして, 下記 の式より <u>軽油</u> の温度が <u>225℃</u> となる危険 輻射強度を求め る。 $T = \frac{\varepsilon ES_1 + hS_2T_{air}}{hS_2} - \left(\frac{\varepsilon ES_1 + hS_2T_{air}}{hS_2} - T_0\right)e^{\left(\frac{hS_2}{C}\right)t}$ T_0: 初期温度[38℃], E: 輻射強度[W/m ²], ε : 軽油タンク 素面の放射率 (0.9)*1, h: 軽油タンク表面熱伝達率 [17W/m ² K]*2, S_1=S_2: 軽油タンク受熱・放熱面積[m ²], C: 軽油タンク及び軽油の熱容量[8.72×10 ⁶ J/K], t: 燃焼継続 時間 [s], T_air: 外気温度[℃] ※1: 伝熱工学資料, ※2: 空気調和・衛生工学便覧		E= <u>4, 7611W/m²J</u>	 ・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉では,軽油 タンク及び燃料移送ポ ンプは,地下構造のた め影響評価対象外 また,放水路ゲートに ついても,設置してい ないため影響評価対象 外 なお,島根 2 号炉では, 海水ポンプは,屋外設 置のため影響評価を実 施
$E = 24460 [W/m^2]$			
c. <u>燃料移送ポンプ(防護板(鋼板))</u> の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一 定の輻射強度で <u>燃料移送ポンプの周囲に設置されている防</u> <u>護板(鋼板)</u> が昇温されるものとして,下記の式より <u>燃料</u> <u>移送ポンプ(防護板(鋼板))</u> の温度が <u>100</u> Cとなる危険輻 射強度を求める。 $E_{max} = \frac{2}{\varepsilon S} \left(\frac{hS(T - T_{air})}{1 - e^{(-\frac{hS}{C})t}} \right)$		b. <u>海水ポンプ</u> の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一 定の輻射強度で <u>海水ポンプの冷却空気</u> が昇温されるものと して,下記の式より <u>海水ポンプ</u> の <u>冷却空気</u> 温度が <u>55</u> Cとな る危険輻射強度を求める。 $T = T_0 + \frac{E \times A_T}{G \times C_p}$	
ε:防護板(鋼板)外面の放射率(0.9)*1, S:防護板(鋼板)受熱面積[16.2m2], h:防護板(鋼板)表面熱伝達率[17W/m2K]*2, C:防護板(鋼板)の熱容量[2.41×106J/K], t:燃焼継続時間[s], T:許容温度[100°C], Tair:外気温度(初期温度)[55°C]		<u>T₀:通常運転時の上昇温度[22℃],E:輻射強度[W/m²],</u> A <u>⊥:受熱面積[10.93m²],G:重量流量[1.96kg/s],</u> C _p :空気比熱[1007J/(kg・K)] ^{※1}	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>※1:伝熱工学資料,※2:空気調和·衛生工学便覧</u>		※1:伝熱工学資料	
E = 1700 [W / 2]			
$E = \underline{1700 [W/m^2]}$		E= <u>5,948[W/m⁻]</u>	
d. <u>主排気筒</u> の危険輻射強度		c. <u>排気筒</u> の危険輻射強度	
火災が発生した時間から燃料が燃え尽きるまでの間, 一		火災が発生した時間から燃料が燃え尽きるまでの間、一	
定の輻射強度で <u>主排気筒</u> が昇温されるものとして、下記の		定の輻射強度で排気筒が昇温されるものとして、下記の式	
式より <u>主排気筒</u> の温度が 325℃となる危険輻射強度を求め		より <u>排気筒の表面</u> 温度が 325℃となる危険輻射強度を求め	
る。		る。	
$T = T_0 + \frac{\varepsilon E}{2L}$		$T = T_0 + \frac{\varepsilon E}{\varepsilon}$	
2 <i>h</i>		2h	
T · 初期沮庶[50℃] F · 輻射論度[W/m ²] 。 · 主排気筒表面		T ・ 如期泪 座 [50℃] F ・ 軭 財 踚 座 [W/m²] 。 ・ 排 与 竺 表	
0.10 加加加度[300],1.1轴和强度[10 /m],2.1 亚亚亚加加加		Γ_0 · 仍刻溫及[30 C], L. 福初强及[17 m], E. 好风间衣 面の放射率[0 9] ^{×1} h·排気筒表面埶伝達率[17 W/m ² K] ^{×2}	
※1: 伝熱工学資料. ※2: 空気調和·衛生工学便覧		※1:伝勢工学資料、※2:空気調和・衛生工学便覧	
$E = 10388 [W/m^2]$		E=10,388[W/m ²]	
(5) 形態係数の算出	式1で求めた危険輻射強度Eとなる形態係数Φを,式2	(5) 形態係数の算出	
火炎から任意の位置にある点(受熱点)の輻射強度は,	より算出する。	火炎から任意の位置にある点(受熱点)の輻射強度は、輻	
輻射発散度に形態係数をかけた値となる。危険輻射強度と	$\underline{\mathbf{E}} = \mathbf{R} \cdot \mathbf{f} \cdot \mathbf{\Phi} \tag{(\pounds 2)}$	射発散度に形態係数をかけた値となる。危険輻射強度となる	
なる形態係数を算出する。	<u>E:輻射強度(W/m²), Rf:輻射発散度(W/m²),</u>	形態係数を算出する。	
	$\Phi: 形態係数$		
Emax = Rf × ϕ		$\operatorname{Emax} = \operatorname{RT} \times \phi$	
Emax:厄陝輻射強度, KI :輻射発散度, φ :形態係数	ナロボナみた形能な粉みしたて在吟に離せた。 ナロト ル	Emax:厄陝輻射強度,RI:輻射発散度,	
	式2で水のた形態係数 Ψ となる危険距離しを、式3より 管出する	φ : 形態係数	
	Att Hand Same		
第 3.1-3 表 形態係数の算出結果	$\Phi = \frac{1}{2} \tan^{-1} \left(\frac{m}{2} \right) + \frac{m}{2} \left\{ \frac{(A-2n)}{2} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{2}} - \frac{1}{2} \tan^{-1} \left[\sqrt{\frac{(n-1)}{2}} \right] \right\} (\vec{x}, 3)$	第3.1-3表 形能係数の算出結果	
建屋 軽油タンク 燃料移送ポンプ 主排気筒	$\pi n \qquad \left(\sqrt{n^2 - 1} \right) \pi \left(n \sqrt{A B} \qquad \left[\sqrt{B(n+1)} \right] n \qquad \left[\sqrt{(n+1)} \right] \right)$	建物 海水ポンプ 排気筒	
(防護板(鋼板)) 危険輻射強度[W/m²] 6762 24460 1700 10388		危険輻射強度[W/m ²] 4,761 5,948 10,388 顧証務歴(m/m ²] 22×10 ³	
輻射発散度[W/m ²] 41×10 ³	ただし $m = \frac{\pi}{R} = 3$, $n = \frac{\pi}{R}$, $A = (1+n)^{+} + m^{-}$, $B = (1-n)^{-} + m^{-}$	町田オリカモ和大度 [n/] m] 23×10 ⁻ 形態係数 6.90×10 ⁻² 8.60×10 ⁻² 1.50×10 ⁻¹	
	<u>Φ:形態係数, L:離隔距離 (m), H:炎の高さ (m),</u>		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考		
	上記のとおり危険距離を算出し、当該危険物貯蔵施設から評価				
	対象施設までの離隔距離を下回るか評価を実施した。なお、天井				
	スラブは以下の理由により、外壁の評価に包絡されるため実施し				
	ない。建屋外壁の評価概念図を第4.1.2.3-1図に示す。				
	・火炎長が天井より短い場合、天井に輻射熱を与えないことか				
	ら熱影響はない。				
	・火炎長が天井より長い場合,天井に輻射熱を与えるが,その				
	輻射熱は外壁に与える輻射熱より小さい。天井スラブの評価				
	概念図を第4.1.2.3-2図に示す。				
	 ・火炎からの距離が等しい場合,垂直面(外壁)と水 				
	平面(天井)の形態係数は、垂直面の方が大きいこ				
	とから, 天井の熱影響は外壁に比べて小さい。				
	 				
	第4.1.2.3-1 図 建屋外壁の評価概念図				
	<th <th="" colspa="2" colspa<="" colspan="2" th=""><th></th><th></th></th>	<th></th> <th></th>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2	018. 9. 12 版)		島根原子ク	力発電所 2号
(6) 危険距離の算出 火炎から任意の位置にある点(受熱点)の形態係数は以 下の式から求まる。次の式から危険距離を算出する。	<u> </u>	L度が 200℃となる危険問 i設の危険距離が離隔距 結果を第 4. 1. 2. 3-2 表に	(6) 危険 E <u>離を</u> 火り 難 <u>以下</u> の式だ ニ示す。	距離の算出 そから任意の位置に いら求まる。次の式	ある点(受熱点 から危険距離を
$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$	第4.1.2.3-2表 外壁への危険物	7貯蔵施設火災影響評価;	結果 $\phi = \frac{1}{\pi n} \tan^{-1}$	$\left(\frac{m}{\sqrt{n^2 - 1}}\right) + \frac{m}{\pi} \begin{cases} (A - 2) \\ n\sqrt{A} \end{cases}$	$\frac{2n}{B}$ tan ⁻¹ $\left[\sqrt{\frac{A(n-1)}{B(n+1)}}\right]$
	評価対象施設 危	:険距離 離隔距離 (m) (m)	ただし,	$m=\frac{H}{R}\cong 3, n=\frac{L}{R},$	$A = (1+n)^2 + 1$
ただし, $m = \frac{H}{n} \cong 3, n = \frac{L}{n}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$	原子炉建屋	1,100		\$係数, L: 離隔距离	惟[m], H:火炎の
K K a・形能係数 L・告険距離[m]、H・火炎高さ[m]、R・燃焼半径[m]	タービン建屋	41 1,200	—————————————————————————————————————	半径[m]	
	使用済燃料乾式貯蔵建屋	800			
<u>第3.1-4表 危険距離の算出結果</u>				第3.1-4表	危険距離の算出
建屋 軽油タンク 燃料移送ポンプ 主排気筒			TTC 415 157 ¥J-	建物	海水ポンプ
(1) (1) <th(1)< th=""> <th(1)< th=""> <th(1)< th=""></th(1)<></th(1)<></th(1)<>			形態係数 燃燒半径[r	0.90×10°	12. 51
燃烧半径[m] 0.10000011 0.10000011			危険距離[r	n] 63	56
危険距離[m] 約56 約20 約134 約39				·	,

(7) 火災による熱影響の有無の評価

<u>最大貯蔵量の危険物貯蔵施設</u>における危険距離は最大で も約134mであり,離隔距離が危険距離を上回っていることを 確認した。よって,発電所敷地外の危険物貯蔵施設におい て火災が発生した場合においても<u>柏崎刈羽</u>原子力発電所へ の影響はない。 (7) 火炎による熱影響の有無の評価

<u>重油タンク(No. 1, 2, 3)</u>における 約 78m であり,離隔距離が危険距離を 認した。よって,発電所敷地外の危険報 災が発生した場合においても<u>島根</u>原子フ い。

2号炉	備考
受熱点)の形態係数は以下	
距離を算出する。	
$ \left[\frac{A(n-1)}{B(n+1)} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right] $ $n)^{2} + m^{2}, B = (1-n)^{2} + m^{2}$ 火炎の高さ[m],	
の算出結果 ポンプ 排気筒 0×10 ⁻² 1.50×10 ⁻¹ 2.51 56 38	
まける危険距離は最大でも 9離を上回っていることを確 9危険物貯蔵施設において火 2原子力発電所への影響はな	 ・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉では,軽油 タンク及び燃料移送ポンプは,地下構造のため影響評価対象外 また,放水路ゲートについても,設置していないため影響評価対象 外なお,島根 2 号炉では, 海水ポンプは,屋外設 置のため影響評価を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	4.1.2.4 主排気筒に対する危険距離評価		
	(1) 影響評価対象範囲		
	主排気筒について、危険物貯蔵施設の火災を想定して評価		
	を実施した。		
	なお、主排気筒の評価に当たっては、保守性を考慮して、		
	筒身よりも離隔距離の短くなる鉄塔について評価した。		
	(2) 評価対象施設の仕様		
	主排気筒仕様を第4.1.2.4-1表に,主排気筒外形図を第		
	4.1.2.4-1 図に示す。		
	第4.1.2.4-1表 評価対象施設の仕様		
	n		
	名称 主排気筒		
	種類 鉄塔支持型		
	内径 4.5m		
	主要寸法 ##書言 * 140m		
	材料 鉄塔 SS400, STK400		
	個数 1		
	第4.1.2.4-1 図 評価対象施設の外形図		
	(3) 評価対象施設までの離隔距離		
	想定火災源から評価対象施設までの離隔距離を第		
	4.1.2.4-2表に示す。		
	第4.1.2.4-2表 想定火災源から評価対象施設までの離隔距離		
	相定水災酒 主排与答 (m)		
	1,200		
	(4) 判断の考え方		
	主排気筒鉄塔 (SS400, STK400) の許容温度は, 火災時に		
	おける短期温度上昇を考慮した場合において、鋼材の強度		
	が維持される保守的な温度325℃以下とする。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	b評価方法		
	一定の輻射強度で主排気筒鉄塔が昇温されるものとして,		
	表面での輻射による入熱量と対流熱伝達による外部への放熱		
	量が釣り合うことを表した式1により主排気筒鉄塔表面の温		
	度が 325℃となる輻射強度(=危険輻射強度)を求める。		
	$T = T_0 + \frac{E}{2h} \qquad (\vec{\pi} \ 1)$		
	(出典:建築火災のメカニズムと火災安全設計,		
	財団法人日本建築センター)		
	<u>T:許容温度(325℃), T₀:初期温度(50℃)^{※1}</u>		
	<u>E:輻射強度 (W/m²), h:熱伝達率 (17W/m²/K) *²</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃に		
	保守性を持たせた値		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は,受		
	熱面の形状や周囲の環境条件を受け変化するが、一		
	般的な値として垂直外壁面,屋根面及び上げ裏面の		
	夏季,冬季の値が示されている。評価上放熱が少な		
	い方が保守的であることから、これらのうち最も小		
	<u>さい値である17W/m²/Kを用いる。</u>		
	式1で求めた危険輻射強度Eとなる形態係数Фを,式2		
	より算出する。		
	$\underline{\mathbf{E}} = \mathbf{R} \mathbf{f} \cdot \mathbf{\Phi} \tag{\textbf{I}} \mathbf{I} \mathbf{I}$		
	<u>E:輻射強度 (W/m²), Rf:輻射発散度 (W/m²),</u>		
	<u>Φ:形態係数</u>		
	(出典:評価ガイド)		
	式2で求めた形態係数 Φ となる危険距離しを、式3より		
	見出す。 の ·		
	$\Phi = \frac{1}{\pi n} \tan^{-1}\left(\frac{m}{\sqrt{n^2 - 1}}\right) + \frac{m}{\pi} \left\{\frac{(A - 2n)}{n\sqrt{A B}} \tan^{-1}\left[\sqrt{\frac{A(n - 1)}{B(n + 1)}}\right] - \frac{1}{n} \tan^{-1}\left[\sqrt{\frac{(n - 1)}{(n + 1)}}\right]\right\} (\vec{x}, 3)$		
	ただし $m = \frac{H}{R} \doteq 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u> Φ : 形態係数, L : 離隔距離 (m), H : 炎の高さ (m),</u>		
	<u>R:燃焼半径(m)</u>		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9	9.12版)	島根原子力発電所 2号炉	備考
			(出典:評価ガイド)		
		上記のとおり危険距離を算出し	,当該危険物貯蔵施設か		
		ら評価対象施設までの離隔距離を	下回るか評価を実施し		
		た。なお、評価に当たって主排気	筒は鉄塔と筒身で構成さ		
		れているが、筒身よりも鉄塔が危	険物貯蔵施設との距離が		
		近いこと, 材質も鉄塔はSS400, 9	STK400, 筒身では SS400		
		であり、物性値が鉄塔、同身とも	に戦調で同一であること		
		115, 武冶の計価を美施りること	<u>て同身の詳価は已給され</u>		
		公。土排入同约計Ш稅必因を第4.	. <u>1.2.4-2 ⊠1(_/, 9.</u>		
		対流による放熱 円筒火炎 町筒火炎 輻射強度: E 第 4.1.2.4-2 図 主排気筒 第 4.1.2.4-2 図 主排気筒 正 注振気筒鉄塔の表面温度が 325 した結果,主排気筒までの危険距 ことを確認した。評価結果を第 4.1000000000000000000000000000000000000	主排気筒 ・		
		第4.1.2.4-3表 主排気筒への危険物貯	藏施設火災影響評価結果		
		評価対象施設 危険距離 (m)	推 離隔距離 (m)		
		主排気筒 10	1,200		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	4.1.2.5 非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼ		・設備の相違
	ル発電機を含む。)に対する危険距離評価		【柏崎 6/7,東海第二】
	(1) 評価対象範囲		島根 2 号炉では,軽油
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル		タンク及び燃料移送ポ
	発電機を含む。)の流入空気温度について,危険物貯蔵施設の		ンプは、地下構造のた
	火災を想定して評価を実施した。		め影響評価対象外
	(2) 評価対象施設の仕様		また、放水路ゲートに
	空気の流入口となり熱影響を受ける非常用ディーゼル発電		ついても,設置してい
	機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の		ないため影響評価対象
	仕様を第4.1.2.5-1表に,外形図を第4.1.2.5-1図に示す。		外
			なお, 島根2号炉では,
	第4.1.2.5-1表 評価対象施設の仕様		海水ポンプは、屋外設
			置のため影響評価を実
	非常用ディーゼル発電機(高圧炉		施
	主要寸法 円筒高さ: 2.46m		
	第4.1.2.5-1 図 評価対象施設の外形図		
	(3) 評価対象施設までの離隔距離		
	想定火災源から評価対象施設までの離隔距離を第		
	4.1.2.5-2表に示す。		
	第4.1.2.5-2表 想定火災源から評価対象施設までの離隔距離		
	北渋田ジ, お水変豪機(宣圧伝) パレ		
	想定火災源 想定火災源 $4 \pi \pi \pi \pi^{-\nu} \nu \mathcal{R}$ 電機を含む。)(m)		
	1, 100		
	(4) 判断の考え方		
	<u>許容温度</u>		
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ		
	ル発電機を含む。)の流入空気の許容温度は、火災時におけ		
	· · · · · · · · · · · · · · · · · · ·		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	る温度上昇を考慮した場合において、非常用ディーゼル発		
	<u>電機(高圧炉心スプレイ系ディーゼル発電機を含む。)の性</u>		
	能維持に必要な温度 53℃以下※とする。		
	※ 非常用ディーゼル発電機(高圧炉心スプレイ系ディ		
	ーゼル発電機を含む。)の流入空気温度が上昇する		
	と、空気冷却出口温度が上昇し、シリンダへの必要		
	空気量が確保できなくなる。		
	<u>b.</u> 評価方法		
	火災が発生した時間から燃料が燃え尽きるまでの間、一		
	定の輻射強度による入熱が非常用ディーゼル発電機(高圧		
	炉心スプレイ系ディーゼル発電機を含む。)に流入する空気		
	の温度上昇に寄与することを表した式1により,流入する		
	空気の温度が 53℃となる輻射強度(=危険輻射強度)を求		
	M.J.		
	$T = T_0 + \frac{E \cdot A}{G \cdot C_p} + \Delta T \qquad (\not \exists 1)$		
	<u>T:許容温度(53℃), T₀:初期温度(39℃)*1</u> ,		
	<u>E:輻射強度 (W/m²)</u>		
	<u>G:重量流量(4kg/s)^{*2},A:輻射を受ける面積(7.8m²)</u>		
	<u>C_p:空気比熱(1,007J/kg/K)*3</u> ,		
	<u>ΔT</u> :構造物を介した温度上昇(5℃) ^{※4}		
	※1 水戸地方気象台で観測された過去最高気温 38.4°Cに		
	保守性を持たせた値		
	※2 ディーゼル発電機の内,給気流量が少ない高圧炉心		
	スプレイ系を評価対象とする。		
	ディーゼル発電機吸気流量(228m ³ /min)×		
	空気密度 (1.17kg/m ³) ÷60		
	※3 日本機械学会 伝熱工学資料		
	※4 最高到達温度を想定した場合の温度上昇		
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2		
	より算出する。		
	$\underline{\mathbf{E}} = \mathbf{R} \cdot \mathbf{f} \cdot \mathbf{\Phi} \tag{\textbf{\pounds2}}$		
	<u>E:輻射強度 (W/m²), Rf:輻射発散度 (W/m²),</u>		
	●:形態係数		
	(出典:評価ガイド)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	式2で求めた形態係数Φとなる危険距離Lを,式3より 算出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad (\overrightarrow{\pi} 3)$		
	ただし $m = \frac{H}{R} \doteq 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u>Φ:形態係数,L:離隔距離(m),H:炎の高さ(m)</u> ,		
	<u>R:燃焼半径(m)</u> (出典:評価ガイド)		
	ト記のとおり合岡距離を質出し、当該合岡物貯蔵施設から評価		
	対象施設までの離隔距離を下回るか評価を実施した。空気の流入		
	ロとなり熱影響を受ける非常用ディーゼル発電機(高圧炉心スプ		
	レイ系ディーゼル発電機を含む。)吸気口の評価概念図を第		
	4.1.2.5-2 図に示す。		
	非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。) 吸気口		
	「 輻射強度:E		
	: 受熱面		
	第 4. 1. 2. 5–2 図 非常用ディーゼル発電機(高圧炉心スプレイ		
	系ディーゼル発電機を含む。)吸気口の評価概念図		
	<u>c</u> 評価結果		
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ		
	ル発電機を含む。)吸気口を通して流入する空気の温度が		
	53℃となる危険距離を算出した結果,危険距離が離隔距離		
	以下であることを確認した。評価結果を第4.1.2.5-3表に		
	示ten		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2013	8.9.12版)		島根原子力発電所 2号炉	備考
	第4.1.2.5-3表 非常用ディーゼル発	電機(高圧炉)	レスプレイ系		
	ディーゼル発電機を含む。) への危険物	貯蔵施設火災	影響評価結果		
		危険距離	離隔距離		
	評恤対象施設 ————————————————————————————————————	(m)	(m)		
	非常用ディーゼル発電機(高圧炉心スプレイ	17	1,100		
	ボ/ 1 ⁻ に ル光电機を 凸 ひ。)				
	4.1.2.6 残留熱除去系海水系ポンプ	及び非常用ディ	ーゼル発電		・設備の相違
	機(高圧炉心スプレイ系デ)	ィーゼル発電機	を含む。) 用		【柏崎 6/7, 東海第二】
	海水ポンプに対する危険距離	難評価			島根2号炉では,軽油
	(1) 評価対象範囲				タンク及び燃料移送ポ
	残留熱除去系海水系ポンプ電動	機及び非常用ラ	ディーゼル発		ンプは、地下構造のた
	電機(高圧炉心スプレイ系ディー	ゼル発電機を含	む。)用海水		め影響評価対象外
	ポンプ電動機は、海水ポンプ電動	機高さより高い	い海水ポンプ		また、放水路ゲートに
	室の壁で囲まれており、側面から	直接火災の影響	響を受けるこ		ついても、設置してい
	とはないが、上面は熱影響を受け	る可能性がある	5. 評価にお		ないため影響評価対象
	いては,海水ポンプ室の壁による	遮熱効果を考慮	重せず、側面		外
	から直接火災の影響を受けること	を想定する。	また,残留熱		なお,島根2号炉では,
	除去系海水系ポンプ電動機及び非	常用ディーゼノ	レ発電機(高		海水ポンプは、屋外設
	圧炉心スプレイ系ディーゼル発電	機を含む。)用液	海水ポンプ電		置のため影響評価を実
	動機は、電動機本体を全閉構造と	した全閉外扇刑	形の冷却方式		施
	であり、外部火災の影響を受けた	場合には、周囲	用空気の温度		
	上昇により、冷却機能への影響が	懸念されること	とから、冷却		
	空気の温度を評価対象とする。火	災発生位置と消	毎水ポンプの		
	位置関係を第4.1.2.6-1 図に示す	- 			
	電動機内部の空気冷却対象は固	定子巻線及び乗	油受であり,		
	そのうち許容温度が低い軸受温度	の機能維持によ	必要となる冷		
	<u> 利空気の温度が, 許容温度以下と</u>	なることを確認	必丁乙om		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	・・: 火災からの輻射熱 海水ポンプ室の上面は開放のため 一部熱が当たる可能性あり 海水ポンプ室 アログロ 第本ポンプ室 第本ポンプ室 第4.1.2.6-1 図 火災発生位置と海水ポンプの位置関係		
	(2) 評価対象施設の仕様 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン ブの海水ポンプ室内の配置図を第4.1.2.6-2 図、外形図を第 4.1.2.6-3 図に示す。仕様を第4.1.2.6-1 表に示す。 第4.1.2.6-2 図 海水ポンプの配置図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.1.2.6-3 図 海水ポンプの外形図		
	第4.1.2.6-1表 評価対象施設の仕様		
	- 非常用ティーセル発電機 		
	電動機 ーゼル発電機を含む。)用 海水ポンプ電動機		
	主要寸法 全 幅: 1.9 m 全 幅: 0.51m 直 さ: 2.73m 高 さ: 0.98m		
	材 料 SS400, SUS304 SS400		
	基数 4 3		
	 (3) 評価対象施設までの離隔距離 		
	<u> 残留熱除去系海水系ボンプ及び非常用ディーゼル発電機</u>		
	(高圧炉心スノレイ ボディー モル 発電機を 含む。) 用	~	
	4.1.2.6-2表に示す。		
	第4.1.2.6-2表 評価対象施設から火災源までの離隔距離		
	評価対象施設 海水ポンプ室		
	離隔距離 1,300		
	(小)山地の本之十		
	<u>14</u> , <u>19</u> ,		
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
	発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用		
		··]	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	海水ポンプ電動機の冷却空気の許容温度は、上部及び下部		
	軸受のうち,運転時の温度上昇が高い下部軸受の上昇温度		
	を考慮し、軸受の機能維持に必要な冷却空気の許容温度を		
	第4.1.2.6-3表に示す。		
	第4.1.2.6-3表 下部軸受の機能維持に必要な冷却空気の		
	許容温度		
	名称 残留熱除去系海水系 ポンプ電動機 ポンプ電動機 非常用ディーゼル発電機(高圧炉心 スプレイ系ディーゼル発電機を含 オト) 用海水ボンプ電動機		
	軸受の機能維持に必要な 冷却空気の許容温度 70℃ ^{*1} 60℃ ^{*2} 60℃ ^{*2}		
	 ※1 ボンブ運転により,下部軸受は最大で約10℃上昇することから,軸受の機能を維持するため電気規格調査会標準規格 JEC-2137-2000「誘導機」で定める自由対流式軸受の表面で測定するときの温度限度 80℃から 10℃を差し引いた 70℃を冷却空気の許容温度に設定 ※2 ボンブ運転により,下部軸受は最大で約35℃上昇することから,軸受の機能を維持するため電気規格調査会標準規格 JEC-2137-2000「誘導機」で定める耐熱性の良好なグリースを使用する場合の温度限度 95℃から 35℃を差し引いた 60℃を冷却空気の許容温度に設定 		
	<u>b. 評価方法</u>		
	火災が発生した時間から燃料が燃え尽きるまでの間,残		
	留熱除去系海水系ポンプ電動機及び非常用ディーゼル発電		
	機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水		
	ポンプ電動機が受ける輻射熱によって上昇する冷却空気温		
	度を求め, 第4.3.2.5-3表に示す許容温度を下回るかを熱		
	エネルギの式より求まる下式で評価を実施した。評価に用		
	いた諸元を第4.1.2.6-4 表に, 評価概念図を第4.1.2.6-4		
	図に示す。		
	$T = T_0 + \frac{E \cdot A}{G \cdot C_p} + \Delta T \qquad (\vec{x} \downarrow 1)$		
	<u>T</u> :評価温度 (°C), T ₀ :初期温度 (39°C) ^{※1,}		
	<u> E:輻射強度 (W/m²),</u>		
	<u>G:重量流量(kg/s),A:輻射を受ける面積(m²)</u>		
	<u>C_p:空気比熱(1,007J/kg/K),</u>		
	<u> Δ T : 構造物を介した温度上昇(5℃)**2</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値		
	※2 航空機火災による構造物を介した冷却空気の温度		
	<u>上昇(Δ T b=2.2℃)を包絡する 5℃に設定</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.1.2.6-4表 評価に用いた諸元		
	残留熱除去系 海水系ポップで 電動機 非常用ディーゼル 発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)用 海水ポップで電動機 G:重量流量(kg/s) 2.6 0.72		
	A:輻射を受ける面積(m ²) 12 1.6		
	電動機 電動機 端子箱 輻射強度:E		
	: 受熱面		
	第4.1.2.6-4 図 評価概念図		
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2 より算出する。 <u>E = R f · Φ</u> (式2) <u>E : 輻射強度 (W/m²), R f : 輻射発散度 (W/m²),</u> <u>Φ : 形態係数</u> (出典 : 評価ガイド)		
	式2で求めた形態係数Φとなる危険距離Lを,式3より 算出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad ($		
	ただし m= $\frac{H}{R}$ =3, n= $\frac{L}{R}$, A=(1+n) ² +m ² , B=(1-n) ² +m ²		
	<u> Φ : 形態係数, L : 離隔距離 (m), H : 炎の高さ (m),</u> <u> R : 燃焼半径 (m)</u> <u> (出典 : 評価ガイド)</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018	8. 9. 12 版)		島根原子力発電所 2号
	上記のとおり危険距離を算出し、当該危険物貯蔵施設か			
	ら評価対象施設までの離隔距離を下回るか評価を実施し			
	tem.			
	<u>.c評価結果</u>			
	輻射熱によって上昇する冷却	空気の到達温	度を算出した	
	結果, 許容温度以下であること	を確認した。	評価結果を第	
	4.1.2.6-5表に示す。			
	第4.1.2.6-5表 危険物貯蔵施	i設火災影響 評	P価結果	
	評価対象施設	危険距離 (m)	離隔距離 (m)	
	残留熱除去系海水系ポンプ	16	1,300	
	非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)用海水ポンプ	12	1,300	
	4.1.2.7 放水路ゲートに対する危険部 (1) 評価対象範囲 放水路ゲートについて、危険物 評価を実施した。 (2) 評価対象施設の仕様 放水路ゲート駆動装置の外殻と 外殻の仕様を第4.3.2.7-1 表に、 示す。 第4.1.2.7-1表 評価対 案前高さ 下.P.+11.0m 外殻材料 炭素鋼 個数 3	<u>E離評価</u> 貯蔵施設の火 なる放水路ク 外形図を第4 象施設の仕相	※ <u>災を想定して</u> ★ 一ト駆動装置 .1.2.7−1 図に	
	<u>第4.1.2.7-1 図</u> 評価対1	象施設の外形	X	
				1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(3) 評価対象施設までの離隔距離		
	想定火災源から評価対象施設までの離隔距離を第		
	4.1.2.7-2 表に示す。		
	<u>第4.1.2.7-2表</u> 想定火災源から評価対象施設までの離隔距離		
	湿足外灰原 放水暗7 下(m)		
	1,600		
	<u>は、町谷</u> 畑及 故水敗ゲート駆動壮置外熱の <u></u> 15次月度け、火災時にたけ		
	及小時////小学期表售///放り前台通及は, 八次時にわり/ ろ毎期温度上見を考慮した提合において 鋼材の強度が維		
	与公初画及上井を分慮した湯日(143)、て, 駒内の)国及が推 持される保守的な温度 325℃以下とする		
	b. 評価方法		
	一定の輻射強度で放水路ゲート駆動装置外殻が昇温され		
	るものとして、表面での輻射による入熱量と対流熱伝達に		
	よる外部への放熱量が釣り合うことを表した式1により外		
	殻表面の温度が 325℃となる輻射強度(=危険輻射強度)を		
	<u>求める。</u>		
	$T - T + E$ (± 1)		
	$1 - 1_0 + \frac{1}{2h} \tag{f}(1)$		
	(出典:建築火災のメカ=ズムと火災安全設計,		
	<u>財団法人日本建築センター)</u>		
	<u>T:許容温度(325℃), T₀:初期温度(50℃)^{*1}</u>		
	<u>E:輻射強度(W/m²), h:熱伝達率(17W/m²/K)^{*2}</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は,		
	受熱面の形状や周囲の環境条件を受け変化する		
	が、一般的な値として垂直外壁面、屋根面及び上		
	げ裏面の夏季,冬季の値が示されている。評価上		
	放熱が少ない方が保守的であることから、これら		
	<u>のうち最も小さい値である17W/m²/Kを用いる。)</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2 より算出する。 E=Rf・Φ (式2) E:輻射強度 (W/m ²), Rf:輻射発散度 (W/m ²), Φ:形態係数 (出典:評価ガイド) 式2で求めた形態係数Φとなる危険距離Lを,式3より 算出する。 $\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A-2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{B(n+1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right] \right\}$ (式3) ただし $m = \frac{H}{R} \approx 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	Φ: 形態係数, L: 離隔距離 (m), H: 炎の高さ (m), R: 燃焼半径 (m)		
	放水路ゲート駆動装置外設 輻射強度:E		
	: 受熱面 第.4.1.2.7-2 図 放水路ゲートの評価概念図 c. 評価結果 放水路ゲート駆動装置外殻の表面温度が 325℃となる危		
	<u>険距離を算出した結果,放水路ゲートまでの危険距離が離</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)				島相	眼原子力発電所	2号	
	隔距離以下であることを確認した。評価結果を第4.1.2.7-3		. 1. 2. 7-3					
	TA	長に示す。						
	第4.1.2.7-3表 放水路ゲートへの危険物貯蔵施設		設					
	火災影響評価結果							
		亚価対象施設	危険距離	離隔距離				
		可回为多地权	(m)	(m)	_			
		放水路ゲート	10	1,600				
3.9 真正ガス貯蔵施設	49 查	圧ガス貯蔵施設						
<u>5.2 同江スパ() 敵虐政</u> 柏崎刈羽原子力発電所から10km圏内(動地内を除く)に	<u>1.2 f]</u>							
おける高圧ガス貯蔵施設の最大貯蔵量は、であ								
り, 柏崎刈羽原子力発電所から最短の高圧ガス貯蔵 施設								
までの距離は約5kmであった(第3.2-1図)								
仮に最短距離の高圧ガス貯蔵施設に最大貯蔵量								
が有ったと仮定し、熱影響評価及び爆風圧に								
よる影響評価を実施したところ,危険距離は約 30m,危								
険限界距離は								
となり, 柏崎刈羽原子力発電所との距離約5km								
よりも小さいことを確認した。また、飛来物の影響につ								
いて評価を実施し、飛来物の最大飛散 距離は								
となり、相崎刈羽原子刀発電所との距離約 5k								
<u> </u>								
※・爆発が発生した場合に おいても柏崎別羽原子力発								
電所への影響はない。								
第3.2-1表 10㎞圏内における最大の高圧ガスの貯蔵量								
種類 貯蔵量[t]								
液化石油ガス 液化石油ガス								

炉	備考		
	 ・設備の相違 【柏崎 6/7,東海第二】 地域特性を踏まえた評 価条件の相違 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第3.2-1図 最大貯蔵量の高圧ガス貯蔵施設と最短距離			
の高圧ガス貯蔵施設			
3.2.1 熱影響評価			
第3.2.1-1表 プロパンの評価条件			
転射発散 $p[W/m^2]^{1)}$ 74×10 ³			
「福知月20日次度[m] m] 「日本(10) 留量低下速度[kg/m ² ・s] ²⁾ 0.099			
1) 評価ガイド付属書 B より			
2) NUREG-1805 より			
(2) 燃焼半径の算出			
燃焼面積は,防油堤面積に等しいものとする。したがって,			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--	---------------------	--------------	----
燃焼半径R[m]の防油堤面積を円筒の底面と仮定し算出する。			
$P_{1} = (2, 4, 1) = 0, 5$			
$R = (S \neq \pi)^{-1}$			
S:防油堤面積(火炎円筒の底面積)=			
R =			
<u>(3) 燃焼継続時間の算出</u>			
燃焼継続時間は,燃料量を燃焼面積と燃焼速度で割った値			
になる。			
$t = \frac{V}{\pi R^2 \times v}, v = \frac{M}{\rho} \qquad \ \ \ \ \ \ \ \ \ \ \ \ \$			
t:燃焼継続時間[s], V:燃料量[m³], R:燃焼半径[m], v:燃焼速度[m/s]			
M:質量低下速度[kg/m ² ・s], ρ:密度[kg/m ³], m:質量[kg] ここで、 M=0.099[kg/m ² ・s]として、燃焼継続時間を求め			
ると,			
t= =2419[s]=0.671[h]			
(4) 危険輻射強度の算出			
a. 外壁面の危険輻射強度			
火災が発生した時間から燃料が燃え尽きるまでの間,			
一定の輻射強度で発電用原子炉施設外壁が昇温される			
ものとして、下記の一次元非定常熱伝導方程式の解の			
式よりコンクリートの表面温度が200℃となる危険輻射			
$T_s = T_0 + \frac{1}{\left(\frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} + 1\right)\frac{h}{\varepsilon E}}$			
出典:原田和典,建築火災のメカニズムと火災安全設計,日本建築センター			
1₀: 初期温度[50 C], Ŀ:輻射強度[W/m ²], ε : コンクリート表面の放射率 (0.95) *, h : コンクリート表面熱伝達率[34.9W/m ² K]*, k : コンクリート熱伝導率			
[1.6W/mK] *, ρ:コンクリート密度[2200kg/m ³] *, c:コンクリート比熱 [8791/kσK] * t・燃焼継続時間[s]			
※:建築設計竣工図書 原子炉建屋構造計算書			
$E = 10333 [W/m^2]$			
<u>b. 軽油タンクの危険輻射強度</u>			
<u>火災が発生した時間から燃料が燃え尽きるまでの間,</u>			
一定の輻射強度で軽油 タンクが昇温されるものとし			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
て,下記の式より軽油の温度が 225℃となる危険 輻射			
強度を求める。			
$= \varepsilon E S_1 + h S_2 T_{air} (\varepsilon E S_1 + h S_2 T_{air} =) (h S_2)_t$			
$T = \frac{1}{hS_2} - \left(\frac{1}{hS_2} - T_0\right)e^{(1-C_1)^2}$			
T_0 : 初期温度[38°C], E: 輻射強度[W/m^2], ϵ : 軽油タンク表面の放射率 (0.9)			
, m. 軽加ノシノ&面蒸伝達+[10/mk], 51-52. 転加ノシノ&派 放蒸面 積[m²], C:軽油タンク及び軽油の熱容量[8.72×10 ⁸ J/K], t:燃焼継続時間[s],			
T _{air} :外気温度[℃] ※1:伝熱工学資料, ※2:空気調和・衛生工学便覧			
C. 然科侈运小ノノ(防護板(鋼板)の厄陝輻射強度 火災が発生した時間から燃料が燃き尽きるまでの			
- <u>一</u> 定の輻射強度で燃料移送ポンプの周囲に設置され			
ている防護板(鋼板)が昇温されるものとして、下記の			
式より燃料移送ポンプ(防護板(鋼板)の温度が100℃と			
なる危険輻射 強度を求める。			
$T = 2 \left(hS(T - T_{air}) \right)$			
$E_{max} = \frac{1}{\varepsilon S} \left(\frac{1}{1 - e^{(-\frac{hs}{C})t}} \right)$			
ε:防護板 (鋼板) 外面の放射率 (0.9) ^{※1} , S:防護板 (鋼板) 受熱面積[32.4m ²],			
1. [6]愛敬(劉敬)衣面然因是半 $[170/mk]$, [5]6]愛敬(劉敬)の然谷重[2.4]× 10^6 J/K], t:燃燒継続時間[s], T:許容温度[100° C], T_{air} : 外気温度(初期温			
度) [55℃] ※1:仁勅工党资料 ※2. 次复理和 . 海井工党通覧			
※1. 仏然上子員科, ※2. 至风调和"期王上子厌見			
$E = 4001 [W/m^2]$			
d. 主排気筒の危険輻射強度			
<u></u>			
間、一定の輻射強度で主排気筒が昇温されるものとし			
て,下記の式より主排気筒の温度が 325℃となる危険輻			
射強度を求める。			
$T = T_0 + \frac{\varepsilon E}{2h}$			
$T_0: 初期温度[50°C], E: 輻射強度[W/m²], \epsilon: 主排気筒表面の放射率 (0.9)$			
, h:王排気筒表面熱伝達率[17W/m [*] K]*			
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$E = 10299 [W/m^2]$			
<u>E-10388 [w/m]</u>			
<u>(5) 形態係数の算出</u>			
火炎から任意の位置にある点(受熱点)の輻射強度は, 転転率性のに形体に特			
<u> 輻射発散度に形態係数</u> をかけた値となる。 危険輻射強度と			
なる形態係数を算出する。			
$_{\rm max} = {\rm Rf} \times \phi$			
Emax:危険輻射強度,Rf:輻射発散度, ϕ :形態係数			
第3.2.1-2表 形態係数の算出結果			
建屋 軽油タンク 燃料移送ポンプ 主排気筒			
(防護板(鋼板)) 危険輻射強度[W/m²] 10333 336369 4001 10388			
輻射発散度[W/m ²] 74×10 ³ 形態係数 0.1396392 4.5455275 0.0540748 0.1403903			
(6) 危険距離の算出			
火炎から任意の位置にある点(受熱点)の形態係数は以			
下の丸から氷まる。次の丸から池陝距離を昇出する。			
$\phi = \frac{1}{m} \tan^{-1} \left(\frac{m}{\sqrt{2}} \right) + \frac{m}{m} \left\{ \frac{(A-2n)}{\sqrt{2}} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{B(n+1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right] \right\}$			
$\int M \left(\sqrt{n^2 - 1} \right) = n \left(n\sqrt{AB} \left[\sqrt{B(n+1)} \right] = n \left[\sqrt{(n+1)} \right] \right)$			
ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$			
φ : 形態係数, L : 危険距離[m], H : 火炎高さ[m], R : 燃焼半径[m]			
第291-2末 合除野難の質屮結果			
第3:2:1:03 酒房山田市 建屋 軽油タンク 燃料移送ポンプ 主排気筒			
(防護板(鋼板)) 形態係数 0.1396392 4.5455275 0.0540748 0.1403903			
燃焼半径[m] 約 30 約 10 約 54 約 30			
10 MJ 37 MJ 30			
(7) 火災による熱影響の有無の評価			
最大貯蔵量の高圧ガス貯蔵施設における危険距離は最大			
でも約54mであり,離隔距離が危険距離を上回っていること			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
を確認した。よって、発電所敷地外の高圧ガス貯蔵施設にお			
いて火災が発生した場合においても柏崎刈羽原子力発電所			
へ影響はない。			
<u>3.2.2 爆風圧の影響評価</u>	<u>4.2.1 爆風圧の影響評価</u>		
評価ガイドの付属書 B に基づき爆風圧の評価を行った	(1) 評価対象施設の抽出及び評価に係るデータ		
ところ、評価上必要とされる危険限界距離(爆風圧が	東海第二発電所から10km以内(敷地内を除く)には高圧ガ		
0.01MPa 以下となる距離)に対し,柏崎刈羽原子力発電	ス貯蔵施設が多数存在することから、以下のとおり抽出範囲		
所までの離隔距離が危険限界距離以上あることを確認す	を絞り込み、評価対象施設の抽出を行った。		
<u>る。</u>	<u>i</u>) 発電所から約 1,500m の位置に,10km 以内(敷地内を		
	除く) で最大の高圧ガス貯蔵施設が稼働中であるため,		
	この高圧ガス貯蔵施設(東京ガス株式会社が所有する日		
	立LNG基地のLNGタンク及びLPGタンク)を選定		
	した。位置関係を第4.2.1-1図に示す。		
	ii) 当該LNG基地に設置されるLNGタンク及びLPG		
	タンクについて危険限界距離を算出し、この危険限界距		
	離の範囲内に位置する高圧ガス貯蔵施設を評価対象とし		
	て抽出した。評価条件を第4.2.1-1表に示す。		
	рубли Higher Hi		
	第4.2.1-1図 発電所と日立LNG基地の位置関係		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)			島根原子力発電所
<u>第3.2.2-1表 高圧ガス爆発の評価条件</u>	第4.2.1-1表	爆風圧影響評価で想	定した評価条件	
評価条件		日立LN	G基地*1	
貯蔵ガス 液化石油ガス		LNGタンク	LPGタンク	
貯蔵カスK値 888×1000 (フロバン)		遊化玉鉄ガス	遊化石油ガス	
処理設備の₩値	貯蔵ガス	(メタン)	(プロパン)	
爆発形態 高圧ガスの漏えい後、引火によりガス爆発が発生	貯蔵量(m ³)	230, 000	50,000	
	貯蔵量(t)	97, 704	31,000	
	密度(t/m³)	0. 4248 ^{× 2}	0.62 ^{**3}	
	貯蔵ガスK値**4	714	888	
	貯蔵設備Wt 值 ^{※5}	358.	. 753	
	 ※3 JISK 224 ※4 コンビナート ※5 合計貯蔵量が 	0-2013 記載値 尊保安規則第 5 条別表第 1t 以上となるため,合計	二記載値 +貯蔵量の平方根の数値	
危険限界距離の算出方法	日立LNG基地	にはLNGタンク及び	びLPGタンクの2種	
評価ガイドに基づき, 危険限界距離を以下の式から算出す	類が設置されるた	め,評価ガイドに基-	づき,以下のとおり危	
<u> </u>	険限界距離を算出	した。		
$X = 0.04\lambda \cdot \sqrt[3]{K \times W}$				
v ,在吟阳田旺做[]),始笃旺做14 4[]. $^{-1/3}$] v ,大	原子力発電所の	外部火災影響評価ガイ	、ド【一部抜粋】	
X: 厄陝限乔距離[m], X: 換鼻距離14.4[m·kg], K: 石 油類の定数, W: 設備定数	貯蔵設備内に2つ以上のガス 計量の平方根の数値にそれぞれ ぞれのガスに係るKを乗じて将 内に2以上のガスがある場合に 合計により、危険限界距離を9	(がある場合においては、それぞれの) のガスの量の当該合計量に対する割 た数値の合計により、危険限界距離 においては、それぞれのガスについて) ぼ出する。	ガスの量(単位 トン)の合 合を乗じて得た数値に、それ を算出する。また、処理数備 K・Wを算出し、その数値の	
となり, 危険限界距離X となる。	次の式から危険限界距離を と原子に応設の間に必要が離	算出する。ここで算出した危険限界 原距離とたろ	距離が石油コンビナート等	
よって,柏崎刈羽原子力発電所との離隔距離は5kmある ことから,爆風圧による柏崎刈羽原子力発電所への影響は ない。	2.所了が過度の面に2.3公式m X:危険限界距離[m]、λ:机	K = 0.04 λ <mark>《 K x W</mark> 為算距離 14.4[m·kg ^{-1/3}]、K:石油類。	の定数[-]、¥:設備定数[-]	
	上記のとおり、ガス量	の当該合計量に対す	る割合は,	
	LNGタンク	: $A = 97, 704 \div (97)$, 704 + 31, 000) = 0. 759	
	<u> LPGタンク:B</u> =3	$1.000 \div (97,704+31)$. 000) = 0. 241	
	Wt =	$\sqrt{97,704+31,000}=358$	8.753	

2 号炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.2.1-1 表の評価条件より		
	X=0.04×14.4 $\sqrt[3]{(714×1,000×A×Wt)+(888×1,000×B×Wt)}=373$		
	以上より,危険限界距離は373mとなる。発電所から最も近		
	い位置にある高圧ガス貯蔵施設は,発電所から 900m の位置に		
	<u>53</u>		
	<u>であり,</u>		
	発電所敷地から400m以内に,高圧ガス貯蔵施設が存在しない		
	<u>ことを確認した。これにより発電所より 10km 以内において,</u>		
	日立LNG基地の爆発影響を超える高圧ガス貯蔵施設はない		
	ことを確認した。		
	発電所に最も近いパイプラインは,日立LNG基地内のパ		
	イプラインであり,日立LNG基地内のパイプラインの影響		
	はタンクの影響に包絡される。また,日立LNG基地構外へ		
	延びるパイプラインは埋設され,発電所から遠ざかるため影		
	響はない。		
	<u>(2)</u> 爆風圧の影響評価結果		
	抽出した高圧ガス貯蔵施設の爆発における危険限界距離は		
	373m であり,敷地境界までの危険限界距離が離隔距離以下で		
	あることを確認した。評価結果を第4.2.1-2表に,位置関係		
	を第4.2.1-2図に示す。		
	第4.2.1-2表 抽出した高圧ガス貯蔵施設の爆風圧影響評価結果		
	相空爆發源 书 4 容量 危険限界距離 離隔距離*		
	恐足爆免你 从入種類 (t) (m) (m)		
	LNGタンク メタン 97,704 373 1,500		
	LPGタンク プロパン 31,000		
	※ 激地現外までの距離		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.2.1-2 図 発電所敷地から最も近い位置にある高圧ガス 貯蔵施設		
	<u>×1) PX //EHX</u>		
<u>3.2.3</u> 飛来物の影響評価	4.2.2 爆発飛来物の影響評価		
「石油コンビナートの防災アセスメント指針」(平成25			
<u>年3月 消防庁特殊炎 善至)*に基つさ,飛米物の最大飛散</u> 距離の評価を行ったところ 評価上必要と される距離に			
対し、柏崎刈羽原子力発電所までの離隔距離が評価上必			
要となる距離以上あることを確認する。			
※:石油コンビナート等特別防災区域を有する都道府			
県が防災計画を作成す るに当たって,災害の想			
<u>定をできるだけ客観的かつ現実的に行うための</u> 証価手はなテレた性化			
計価子伝を小した指針			
第3.2.3-1表 飛来物の評価条件			
評価条件			
貯蔵ガス 液化石油ガス			
町廠重 爆発形態 高圧ガスの漏えい後,引火によりガス爆発が発生し,飛来物が発生			
飛来物の最大飛散距離の算出方法			
「石油コンビナートの防災アセスメント指針」に基づき、			
容器の破損による破 片の飛散範囲を以下の式にて算出す			
<u> </u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$L = 465 M^{0.10}$			
L:破片の最大飛散範囲[m],M:破裂時の貯蔵物質量[kg]			
となり, 飛来物の最大飛散距離Lは と			
のることから、飛米物による相呵利初原士刀先电別への影響はない。 以下に石油コンビナートの防災アセスメント			
<u>音はない。 以下に有価ユンモノー下の例及アビスアン下</u> 指針の抜粋を示す			
	(1) 評価対象施設の抽出		
	高圧ガス貯蔵タンクの大規模な爆発火災事象(BLEV		
	 E :Boiling Liquid Expanding Vapor Explosion(沸騰液膨		
	るタンクが、加熱されることによってタンク内の圧力が上昇		
	し、タンクの一部破損により起こる液体の急激な気化に伴い		
	<u>発生するため、ガスを加圧し貯蔵している加圧貯蔵型のタン</u>		
	クについて爆発時に発生する飛来物への影響評価を実施し		
	t.		
	また、大気圧に近い低圧・低温で貯蔵されている低温貯蔵		
	タンクは内部が保冷層で覆われ外部から熱が入り難く, BO		
	G圧縮機*1等でタンク内圧を一定に制御しているため、加圧		
	<u> 貯蔵タンクと比較して内圧が上昇し難く、BLEVEは発生</u>		
	し難いが※2, BLEVE以外の爆発形態を想定し, 発電所か		
	ら1,500m 先にある日立LNG基地の低温貯蔵型タンクにつ		
	いて、爆発時に発生りる飛来物への影響評価を実施した。		
	<u>※1 クラクから先生するホイルオフルへを再換化し、クラク</u> 内圧を一定に制御する		
	<u>アカエセールに同時する。</u> ※2 出典「Environmental Assessment for the Sabine Pass		
	Liquefaction Project		
	<u> </u>		
	(2) 爆発飛来物の影響評価結果		
	「石油コンビナートの防災アセスメント指針」(平成 25 年		
	3月 消防庁特殊災害室)に基づき,抽出した高圧ガス貯蔵		
	施設の爆発による破片の飛散範囲を以下の式にて算出した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.1	2.20版)	東海第二発電	所(2018. 9. 12 版)		島根原子力	発電所 2号
		$L = 90 M^{0.333}$	(容積 5m ³ 未満の容器))		
		<u>L=465M^{0.10}</u>	(容積 5m ³ 以上の容器)			
		<u>L:破片の最大飛青</u>	教範囲、M:破裂時の	貯蔵物質量		
		●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	出した結果 番散距離)	け離隔距離り		
		下であることを確認した。	<u>コビル相来, 水散距離</u> 評価結果を第4.2.2-	<u>な確隔ជ確め</u> -2 表に示す。		
		また、低温貯蔵型タンク	<u> </u>	の大規模な低		
		温貯蔵型タンクを想定して	ても、想定飛散距離は	約 570m であ		
		り、発電所から最も近い位	立置にある高圧ガス貯	蔵施設までの		
		離隔距離 900m を下回るこ	とから, 低温貯蔵型タ	ンク爆発によ		
		る飛来物の影響はないと言	平価できる。 (別紙 3.3	3)		
		<u>第 4.2.2-2 表 爆到</u>	発飛来物の影響評価結	· <u>果</u>		
		施設名称	貯蔵量 飛散距離 (kg) (m)	離隔距離* (m)		
	*	敷地境界までの距離				
		以下に 「石油コンビー	ートの防災アセスメン	/ト指針 の坊		
		<u>以下に、「石油ニンヒ)</u> 粋を示す。				

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
 (1) 研究 (1) 保護 (1) には満熟物に関するいくつかの推定式が示されているが、 (以下さメントのような事前評価において、これらの競換条件を考慮して評価を行うことは事実 上席履といえる。ただし、LPG 容易の BLEVE に作う破片の無数範囲に関しては、次のような傷息 なが示されている II. (二) (二) (2010	(6) 泉陽砂 密思の機能による成片の残散範囲は、破裂エネルギーのはか、破片の数、重量や形 机。供加格度を行うことは事実上防難というな事前評価はいいて、これらの現故 条件を考慮して評価を行うことは事実上防難というな事前評価はいいて、これらの現故 条件を考慮して評価を行うことは事実上防難というな事前評価はいいて、これらの現故 第一個5Mの・100 (容積 5m2以上の容器) (式 31) ただし、1:破片の最大衆散範囲(m) M:破裂ゆら町環境管量(kg) この定を東日本大震災のしPC 爆発大災(M=300,000kg)に適用すると次のようにな 5. L=465×250000 ⁰⁻¹⁰⁻¹⁰ 1640 この事故では、タンク酸ドが最大約1.300m、既らし合わせる なまれず、この事なの情がであり、湯力によって違力まで達したものと考えられる。 ー方、タンク本体の戦やや作成電量物が限散した場合には、帯・新会による法と効 なきれるが、この事なの内の機能で進めて、場志の事成事例などをもとに確定する と、式 31 により大まかな推定は可能と考えられる。たれ、ブラントの緊密反応に伴う 容器破壊に関しては式 31 は適用できないため、過去の事故事例などをもとに確定する ことになる。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 3.1		
	仮想危険物貯蔵施設の危険距離の算出について		・評価対象の相違
			【東海第二】
	1. 評価条件		島根2号炉は調査結果
			に基づき,10kmの範囲
	a. 評価対象とする危険物貯蔵施設は熱影響が最大となる仮 相先吸始時等状態(()) たりいた10 天日 時等) た相点		内の最大貯蔵量の危険
	<u>想厄陝物貯廠施設(n-ヘキサンを 10 万 kL 貯廠)を想正</u>		物施設か最も発電所に
			近い厄陝物施設の場所
	D. 計価対象と9 3 氾厥初則敵地設の然料は個戦した状態を 相定した		にめらたと仮足して計
	<u>心足した。</u> c 離隔距離け 評価上厳しくたろよう a で想定した合		国で大地
	険物貯蔵施設位置から評価対象施設までの直線距離とし		
	t_{o}		
	を想定した。		
	e. 気象条件は無風状態とした。		
	f. 火災は円筒火炎モデルとし、火炎の高さは燃焼半径の3		
	倍とした。		
	<u>(2)</u> 輻射強度の算定		
	<u>油の液面火災において任意の位置にある輻射強度(熱)を</u>		
	計算により求めるため、半径が1.5m以上の場合で火炎の高さ		
	(輻射体)を半径の3倍にした円筒火炎モデルを採用した。		
	(3) 危険物貯蔵施設及び燃料に係るデータ		
	<u>危険物貯蔵施設及び燃料に係るテータを第1表に示す。</u>		
	ダ1 末 在吟畅啦苦坊乱丑び燃出に仮え ゴ カ		
	<u>第1衣</u> 池映初前敵地設及い旅村に依るアーク		
	想定火災源 燃料の 新類 V Rf M P 101 5		
	$\frac{(m^3) (kW/m^2) \times 1}{(kg/m^2/s) \times 2} (kg/m^3) \times 2 (m^2)}$		
	100,000 危険物貯蔵施設 nーへキサン 100,000 85 0.074 650 80,000		
	※1 評価ガイド記載値 ※2 NUREG-1805記載値		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電	電所(2018.9.12	版)	島根原子力発電所 2号炉	備考
	2. 評価結果				
	<u>(1) 燃焼半径の算出</u>				
	円筒火炎モデルとして	(評価を実施する	ため、燃焼半径は防		
	加堤面積を円筒の底面と	2仮定して以下の) とおり算出した。算		
	<u>山柏米を弗 2 衣に小 9。</u>	-			
	B S				
	$K = \sqrt{\frac{\pi}{\pi}}$				
	R : 燃焼半径(m), S	:防油堤面積(:	=燃焼面積)(m ²)		
	<u>第2表</u> 危険	物貯蔵施設の燃	焼半径		
		防油堤面積	燃焼半径		
	想定火災源	${\displaystyle \mathop{\mathrm{S}}_{(\mathrm{m}^{2})}}$	R (m)		
	仮想危険物貯蔵施設	80,000	160		
	(2) 燃焼継続時間の算出				
	燃焼継続時間は、燃料	斗量を燃焼面積と	燃焼速度で割った値		
	<u>になる。算出結果を第3</u>	3表に示す <u>。</u>			
	V + - V				
	$t = \frac{1}{\pi R^2 \times V}$				
	+ · / 伏 佐 継 続 時 問 (。)	V. 燃料昰 (m ⁻	3)		
	R:燃焼半径(m)、v	, 、 : 然 年 重 (m : 燃 焼 速 度 = M /	/ o (m/s)		
	M:質量低下速度(kg	$/m^2/s$, ρ :	燃料密度(kg/m ³)		
	<u>第3表</u> 危険物	貯蔵施設の燃焼	継続時間 <u></u>		
	想定 燃料量 燃焼半径 水災源 V R	質量低下速度 燃 M	%料密度 燃焼継続時間 ρ t		
	大灰砾 (m ³) (m) 仮想 (m) (m)	(kg/m²/s) (1	(g/m^3) (s)		
	66険物 100,000 160 タンク	0.074	650 10, 984		
		-			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(3) 危険距離の算出		
	火災が発生した時間から燃料が燃え尽きるまでの間、一定		
	の輻射強度で外壁が昇温されるものとして、下記の一次元非		
	定常熱伝導方程式の一般解の式より求まるコンクリート表面		
	の温度が 200℃となる輻射強度(=危険輻射強度)を,評価ガ		
	イドに基づく形態係数の算出式に代入し、危険距離について		
	解くと結果は 1,329m となるため,保守的に 1.4km を抽出範囲		
	とした。		
	なお、外壁以外の評価対象施設は以下の理由により、外壁		
	の評価に包絡される。評価結果を第4表に示す。		
	・主排気筒は鋼材、外壁はコンクリートであるが、危険距		
	離が長い外壁の方が評価上厳しい。		
	・非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼ		
	ル発電機を含む。),残留熱除去系海水系ポンプ及び非常		
	用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発		
	電機を含む。)用海水ポンプ内の空気は流れており、熱		
	が蓄積される効果が小さいため、外壁の方が評価上厳し		
	<u>V</u>		
	$T = T_0 + \frac{2 E \sqrt{\alpha t}}{\lambda} \left[\frac{1}{\sqrt{\pi}} \exp\left(-\frac{x^2}{4 \alpha t}\right) - \frac{x}{2 \sqrt{\alpha t}} \operatorname{erfc}\left(\frac{x}{2 \sqrt{\alpha t}}\right) \right]$		
	T:許容温度(200℃), T。:初期温度(50℃),		
	E:輻射強度 (W/m ²)		
	κ :コンクリート温度伝導率 (= $\lambda \angle \rho C_n$)		
	$(7.7 \times 10^{-7} \text{m}^2/\text{s})$		
	ρ:コンクリート密度 (2,400kg/m ³),		
	C _n :コンクリート比熱 (880.J/kg/K)		
	λ :コンクリート熱伝導率 (1.63W/m/K),		
	t : 燃焼継続時間 (10,984s)		
	x:コンクリート壁表面深さ(0m)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4表 外壁への危険物貯蔵施設火災影響評価結果		
	想定火災源 危険距離 (m)		
	仮想危険物貯蔵施設 1,329		
	(4) 想定した防油堤面積の保守性について		
	下図に示すとおり、防油堤面積は大きいほど外壁表面の到		
	<u>達温度が上昇することから、消防法で定める最大の防油堤面</u>		
	<u>積を評価で用いることは保守的である。</u>		
	200 200		
	理 150		
	整 50		
	防油堤面積(m ²)		
	第1図 防油堤面積と外壁表面の到達温度の関係		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 3.2		
	主排気筒の評価結果 10m の妥当性について		・条件の相違
	主排気筒の許容温度 325℃に到達すろ告険輻射強度け以下のと		↓ 水伊第二↓ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	おりとなる。		価対象の相違
	$E = 2 h (T - T_0) = 2 \times 17 \times (325 - 50) = 9,350$		
	 T:許容温度(325℃), T₀:初期温度(50℃)*1 h:熱伝達率(17W/m²/K)*2, E:輻射強度(W/m²) ※1 水戸地方気象台で観測された過去最高気温 38.4℃に 保守性を持たせた値 ※2 空気調和・衛生工学便覧(外表面の熱伝達率は,受 熱面の形状や周囲の環境条件を受け変化するが,一 般的な値として垂直外壁面,屋根面及び上げ裏面の 夏季,冬季の値が示されている。評価上放熱が少な い方が保守的であることから,これらのうち最も小 さい値である 17W/m²/Kを用いる。) 上記で算出した輻射強度は に対するものであるた め,評価ガイドに基づく算出式より,この火災の形態係数は以 下の通り算出される。 		
	$E = R f \times \Phi \implies \Phi = R f \div E = \Box \div 9,350$ =0.00245989 <u>評価ガイドには形態係数の算出式は下式のとおりとあり、こ</u> <u>の式に形態係数を代入し、離隔距離Lを逆算する。</u> $\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$ ただし $m = \frac{H}{R} \approx 3$, $n = \frac{L}{R}$, $A = (1 + n)^2 + m^2$, $B = (1 - n)^2 + m^2$ $\Phi : 形態係数, L : 離隔距離 (m), H : 炎の高さ (m),$ R : 燃焼半径 (m)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
	この結果より離隔距離は 10m となり, 評価ガイドに基づき算出	
	されている。また,軽油等の他の燃料と比較すると は	
	同じ離隔距離での輻射強度が低い。比較結果を下図に示す。	
	「「一」」が「同日本」における中の目が	
	区・施幣距離と軸が取及り利率	

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 3.3		
	地上設置の低温貯蔵タンク爆発による飛来物影響評価について		・条件の相違
	<u>1. 評価の概要</u>		地域特性を踏まえた評
	<u>添付3の4.2で示した低温貯蔵タンクの爆発により発生する</u> 飛来物の最高速度を評価し、この最高速度を初速度とした場合		価対象の相違
	の最大飛散距離を評価した。この最大飛散距離が爆発地点から		
	<u>発電用原子炉施設までの離隔距離より短いことを確認し、評価</u> 対象施設への影響はないことを示す。		
	 <u>評価結果</u> <u>容量が大きいタンクほど飛来物の最大飛散距離は長くなる。</u> 		
	このため,発電用原子炉施設の近くに位置する貯蔵タンクのう		
	<u>ら、谷里が取入となるものを評価対象候補として抽出した。抽</u> 出した対象は第1表のとおり。		
	<u>第1表</u> 添付3の4.2で抽出した評価対象候補		
	タンクの種類 内容物 貯蔵容量 (m ³) 発電用原子炉施設からの 離隔距離(m)		
	LNG貯蔵タンク LNG 230,000 1,500		
	LPG貯蔵タンク LPG 50,000 1,500		
	9.1 タンク爆発により発生する飛車物の是真声度の質出		
	<u>低温貯蔵タンクの評価では、「Methods for the Calculation of</u>		
	Physical Effects (TNO Yellow Book, CPR14E(Part 1), 3rd edn)」 に基づき 孫本物の速度を爆発エネルギから求めた 以下に抜		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
	(1) 評価対象タンクのデータ 評価対象タンクのデータは第2表のとおり。なお、タンク 材重量については、保守的に評価を行うため、各タンクを球 状タンクと仮定して算出した。 $V = \frac{4}{3} \pi r^{3} \Rightarrow r = \left(\frac{3 V}{4 \pi}\right)^{\frac{1}{3}}$ $S = 4 \pi r^{2}$ $M = St \rho$		
	V:タンクの体積 (m ³), S:タンクの表面積 (m ²) r:球状タンクと仮定した場合のタンクの半径 (m) M:タンクの質量 (kg), t:タンク外層の厚さ (m) ρ:タンク材密度 (kg/m ³)		
	第2表 評価対象タンクのデータ		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(2) 飛来物の最高速度の算出 爆発により発生するエネルギが、ある割合で飛来物に移行 すると仮定して最高速度を算出した。算出に用いた式は以下、		
	評価結果は第3表のとおり。		
	$\mathbf{E} = \frac{\left(\rho_1 - \rho_2\right)\mathbf{V}}{\gamma - 1}$		
	$v = \sqrt{\frac{2 A E}{M}}$		
	v:飛来物の最高速度(m/s)		
	M:タンクの資重 (kg), E:タンク爆発により発生するエネルギ (J)		
	ρ ₁ :タンク内の圧力(0.2MPa ^{※1}),ρ ₂ :大気圧力(0.1MPa)		
	V:タンクの体積 (m ³), γ:比熱比 (-)		
	A:爆発エネルギの飛来物への移行係数(0.2 ^{*2})		
	※1 代表とした日立LNG基地のLNG貯蔵タンク		
	* 2 Methods for the Calculation of Physical		
	Effects (INO Yellow Book, CPK14E(Part I),		
	Sid edil), van den bosch, C. J. h. & weter mgs		
	第3表 飛来物の最高速度の評価結果		
	タンクの種類 爆発エネルギ 飛来物の最高速度 発電用原子炉施設までの 離隔距離(m)		
	LNG貯蔵タンク 8.2×10 ¹⁰ 66 1,500		
	L P G 貯蔵タンク 5.3×10 ¹⁰ 89 1,500		
	<u>飛来物の最高速度の評価結果より、発電用原子炉施設まで</u> の難厚距離が同じでたわば、具直速度が速いほど差くまで恋		
	の離開起離が回してのれば、東高速度が速いはと遠くまて飛		
	麻力。このにの,回し配摘定配にのるアンラのプラ取同座 度が速い。LPG貯蔵タンクを対象に以下で島大番散距離の		
	算出を実施する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>2.2</u> 最大飛散距離の算出		
	大気圧に近い低圧・低温で貯蔵されている低温貯蔵タンクで		
	は大規模な爆発は発生し難いが,小規模な爆発は発生するおそ		
	れがあるため評価を行った。		
	<u>飛来物の想定に当たり、日立LNG基地のLNGタンク構造</u>		
	図を参考とした。飛来物化することが想定される爆風の影響を		
	直接受ける可能性がある部位を選定したところ、タンク本体及		
	び配管(鋼製パイプ)を抽出した。ステージなどタンク屋根部に		
	位置する部品は、鋼板で構成されており、その大きさからタン		
	ク本体の評価に包絡される。抽出した飛来物に対して,第1図		
	のとおりの日立LNG基地のLNGタンクより推定したLPG		
	タンク構造図を基に、「原子力発電所の竜巻影響評価ガイド」に		
	例示の飛来物から、包絡的な飛来物を設定した。なお、低温貯		
	蔵型のタンクは、低圧貯蔵であるため破裂エネルギが小さいこ		
	とから飛散距離は短く、また、外部事象防護対象施設等に衝突		
	する水平方向の飛散角度は数度程度の範囲に限られるため、飛		
	来物が外部事象防護対象施設等に衝突する可能性は低い。		
	タンク高さは 13m 程度である。棒状の物体は長くなるほど飛		
	距離が長くなる傾向にあることから、保守的な評価として配管		
	(鋼製パイプ)についてはタンク高さの 13m での評価を実施す		
	る。また、タンク本体の破片としてはタンク側面部分の破損を		
	想定し13m×22m程度が最大と考えられ,平板状の物体は幅,長		
	さが長くなるほど、飛距離が長くなる傾向にあることから、保		
	守的な評価としてタンク屋根部分を包絡する破片を想定する。		
	厚さについては、LNGタンクの構造から 0.01m とする。LP		
	Gタンク概要図を第1図に示す。		
	<u>空中では物体はランダムに回転すると仮定し、外力としては</u>		
	重力及び平均抗力(各方向に平均化した抗力係数と投影面積の		
	<u>積に比例して定義されるもの)を受けるものとし、放出角は感</u>		
	度解析の結果、最も遠くまで到達する角度とした。		
	水平方向:m $\frac{dv_x}{dt}$ =F $\frac{v_x}{V(t)}$		
	鉛直方向:m $\frac{dv_y}{dt}$ =F $\frac{v_y}{V(t)}$ -mg		
	$\mathbf{F} = -\frac{1}{2} \mathbf{C}_{\mathrm{D}} \mathbf{A} \ \rho \ \mathbf{V} \ (\mathbf{t})^{2}$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海	第二発電所(2018	3. 9. 12 版)	島根原子力発電所 2号炉	備考
	V (t)= $\sqrt{v_x^2+v}$	$\frac{1}{y^2}$			
	m:飛来物の質量	 (kg), F : 空気	気抵抗による外力(−)		
	g :重力加速度	$(m \swarrow s^2)$, C_D : $\overline{\sigma}$	流体抗力係数(-)		
	A:飛来物の速	度方向に対する投	影面積(m ²)		
	V:飛来物の速度	度 (m/s), ρ:空	ੲ気密度(kg∕m³)		
	想定飛来物の諸美	元及び飛散距離の	計算結果を第4表に示す。		
	<u>離隔距離 1,500m</u> に	、最大飛散距離~	である鋼製パイプの 557m を		
	上回ることから、	飛来物が発電用原	子炉施設に到達することは		
	なく,影響はない。				
	以上より、地上記	設置の低温貯蔵タ	ンク爆発飛来物が発電所に		
	到達することはない				
		22m	J		
	13m	タンク本	配管 体		
	図	1図 LPGタン	ク概要図		
	<u>第4表</u>	想定飛来物の諸	元・飛散距離		
	飛来物の種類	鋼製パイプ (配管)	コンクリート板 (タンク本体)		
	サイズ (m)	長さ×直径 (13×1)	長さ×幅×厚さ (13×22×0.01)		
	質量 (t)	5*1	22 ^{×× 2}		
	放出角(°)	40	35		
	飛散距離 (m)	557	244		
	離隔距離 (m)	(日立LNG基地から	1,500 ら発電所敷地境界までの距離)		
	 ※1 鋼製パイプの質量は, ※2 実際のLNGタンクオ	厚さ15.9mmの配管を参考 2参考に設定した。	に設定した。		
	M2 APROLING/07/6				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料-4	添付資料4	添付資料-4	
燃料輸送車両の水災・爆発について	燃料輸送車両の火災・爆発について	歴 判較送東西のた然,帰発について	
然料軸运車両の八次 ・漆光について	燃料軸送車画の久灰・漆光について	燃料軸送車両の久灰・漆光について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. はじめに	1. 且的	1. はじめに	
本評価は、発電所敷地外で発生する燃料輸送車両の火災やガ	発電所敷地外で発生する燃料輸送車両の火災やガス爆発によ	本評価は, 発電所敷地外で発生する燃料輸送車両の火災やガ	
ス爆発に対してより一層の安全性向上の観点から、その火災や	り,安全機能を有する構築物,系統及び機器を内包する発電用	ス爆発に対してより一層の安全性向上の観点から、その火災や	
ガス爆発が <u>柏崎刈羽</u> 原子力発電所に隣接する地域で起こったと	原子炉施設に影響を及ぼさないことについて、「原子力発電所の	ガス爆発が島根原子力発電所に隣接する地域で起こったとして	
しても発電用原子炉施設に影響を及ぼさないことを評価するも	外部火災影響評価ガイド 附属書B 石油コンビナート等火災・	も発電用原子炉施設に影響を及ぼさないことを評価するもので	
のである。	爆発の原子力発電所への影響評価について」(以下「評価ガイド」	<u>\$53</u> .	
	<u>という。)に基づき、評価を実施する。</u>		
2. 燃料輸送車両の火災影響評価	2. 燃料輸送車両の火災影響評価	2. 燃料輸送車両の火災影響評価	
(1) 燃料輸送車両の火災の想定の条件		(1) 燃料輸送車両の火災の想定の条件	
・発電所敷地外 10km 以内の施設において液化石油ガス輸送	発電所敷地外の公道上での燃料輸送車両の火災を想定し,	<u>…</u> 非常用ディーゼル発電機の燃料を運搬するタンクローリが	・条件の相違
車両が許可申請されていることから、最大規模の液化石油	価対象施設に対する影響評価を行った。	火災を起こした場合を想定する。	【柏崎 6/7,東海第二】
ガス輸送車両が発電所敷地周辺道路で火災・爆発を起こし			島根2号炉は,発電所
た場合を想定する。	燃料輸送車両は、消防法令(危険物の規則に関する政令第15	・燃料積載量は消防法令(危険物の規制に関する政令第15条	敷地周辺の道路状況
・燃料積載量は液化石油ガス輸送車両の中で最大クラスのも	条第1項三号)において、移動タンク貯蔵所の上限量が定めら	<u>第1項三号)に定められている移動タンク貯蔵所(タンク</u>	や運用状況を踏まえ,
<u>の(16t※)</u> とする。	れており、公道を通行可能な上限量(=30m ³)のガソリンが積	ローリ)の上限量 (30kL) とする。	軽油を輸送している
・燃料輸送車両は燃料を満載した状態を想定する。	載された状況を想定した。	・燃料輸送車両は燃料を満載した状態を想定する。	車両について影響評
・輸送燃料は液化石油ガス(プロパン)とする。	また,火災発生場所としては,発電所敷地外の近隣の国道2	・輸送燃料は軽油とする。	価を実施
・発電所敷地境界の道路での燃料輸送車両の全面火災を想定	45号線上の評価対象施設に最も近い場所を想定した。	・発電所出入口ゲートでの燃料輸送車両の全面火災を想定す	
する。			
・気象条件は無風状態とする。		・気象条件は無風状態とする。	
・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の3		・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の3	
倍とする。		倍とする。	
<u>※:LP ガスタンクローリ製造会社,LP ガスプラント協会への</u>			
聞き取り及びJX日鉱日石エネルギー石油便覧より。なお,			
家庭業務用では容器(主として 10~50kg 容器)で、中・大			
規模工場ではバルク容器(1~1,000 kg型)やタンクローリ			
(主として 8~11t 積み)のものが使われている。			
(2) 評価手法の概要		(2) 評価手法の概要	
本評価は、 <u>柏崎刈羽</u> 原子力発電所に対する燃料輸送車両の火		本評価は、 <u>島根</u> 原子力発電所に対する燃料輸送車両の火災影	
災影響の有無の評価を目的としている。具体的な評価指標とそ		響の有無の評価を目的としている。具体的な評価指標とその内	
の内容を以下に示す。		容を以下に示す。	

第 2-1 表 評価指標及びその内容 評価指標 内容 輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度 形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数 燃焼半径[m] 燃料輸送車両の投影面積より求めた燃焼半径 危険距離[m] 火災による輻射熱により許容限界温度になる距離 上記の評価指標は,受熱面が輻射体の底部と同一平面上にあ ると仮定して評価する。油の液面火災では,火炎面積の半径が	
評価指標 内容 輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度 形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数 燃焼半径[m] 燃料輸送車両の投影面積より求めた燃焼半径 危険距離[m] 火災による輻射熱により許容限界温度になる距離 上記の評価指標は、受熱面が輻射体の底部と同一平面上にあると仮定して評価する。油の液面火災では、火炎面積の半径が	
上記の評価指標は,受熱面が輻射体の底部と同一平面上にあ ると仮定して評価する。油の液面火災では,火炎面積の半径が	
3m を超えると空気供給不足により大量の黒煙が発生し輻射発 散度が低減するが、本評価では保守的な判断を行うために、火 災規模による輻射発散度の低減がないものとする。 輻射熱に対する設備の危険輻射強度を調査し、輻射強度がそ の設備の危険輻射強度以下になるように発電用原子炉施設は危	
険距離(離隔距離)を確保するものとする。 (3) 評価対象範囲 評価対象範囲は, <u>発電所出入ロゲートで出火するタンクロー</u> <u>リ(30kL)とする</u> (第 2-1 図)。	 ・条件の相違 【柏崎 6/7】 島根2号炉は,発電所 敷地周辺の道路状況
第2-1 図 燃料輸送車両の離隔距離	や運用状況を踏まえ, 軽油を輸送している 車両について影響評 価を実施
	ると仮定して評価する。油の液面火災では、火炎面積の半径が 3m を超えると空気供給不足により大量の無速が発生し輻射発 散度が低減するが、本評価では保守的な判断を行うために、火 災規模による輻射発散度の低減がないものとする。 輻射熱に対する設備の危険輻射強度と調査し、幅射強度がそ の設備の危険輻射強度以下になるように発電用原子炉施設は危 険距離(雕幅距離)を確保するものとする。 (3) 評価対象範囲 評価対象範囲は、発電所出入ロゲートで出火するタンクロー り (30kL) とする (第 2-1 図)。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(4) 必要データ	2.1 共通データの算出	(4) 必要データ	
	各外壁, 主排気筒及び非常用ディーゼル発電機(高圧炉心ス		
	プレイ系ディーゼル発電機を含む。),残留熱除去系海水系ポン		
	プ,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル		
	発電機を含む。)用海水ポンプ及び放水路ゲートに対する影響評		
	価に必要となる共通データを算出する。		
	(1) 燃料輸送車両及び燃料に係るデータ		
評価に必要なデータを以下に示す。	燃料輸送車両及び燃料に係るデータを第2.1-1表に示す。	評価に必要なデータを以下に示す。	
第 2-2 表 プロパンの評価条件	第2.1-1表 燃料輸送車両及び燃料に係るデータ	第2-2表 軽油の評価条件	
燃料の種類 プロパン	相定水災源 燃料の 燃料量 輻射発散度 質量低下速度 燃料密度 燃焼面積	燃料の種類 軽油	
燃料量[ton] 16	種類 (m ³) (kW/m ²) ^{※1} (kg/m ² /s) ^{※2} (kg/m ³) ^{※3} (m ²)	燃料量[m ³] 30	
輻射発散度[W/m ²] ¹⁾ 74×10 ³	燃料輸送車両 カッ リン 30 58 0.055 783 28.8	輻射発散度[W/m ²] ¹⁾ 42×10 ³	
質量低下速度[kg/m ² ·s] ²⁾ 0.099	 ※1 評価ガイド 記載値 ※2 NUREG-1805 記載値 	質量低下速度[kg/m ² ・s] ²⁾ 0.044	
燃料輸送車両投影面積[m ²] ³⁾ 16.5×2.5	※3 MSDS(製品データ安全シート)	燃料タンク投影面積[m ²] 10.17×2.45	
1)評価ガイド付属書Bより		1)評価ガイド附属書Bより	
2) NUREG-1805 より		2) NUREG-1805	
3) 車両長 16.5[m]: 車両制限令 第三条		3) 車両長10.17[m]	
車両幅 2.5[m] :道路運送車両の保安基準 第二条		車両幅2.45[m]	
燃料輸送単阿の火災においては様々な燃焼範囲の形態が想	円同火炎モデルとして評価を実施するため、燃焼半径は延	燃料輸送単両の火災においては様々な燃焼範囲の形態が想定	
	歴面積を円同の底面と仮定して以下のとおり昇出した。 昇出	されるか、円同火炎を生するものとする。ここでの燃焼面積は、	
積は、燃料輸送単阿の投影面積に等しいものとする。 したか 、 燃は火気 p[])と燃料数学表示の把影子様を開始の存去	<u> 結果を現2.1-2.表に示す。</u>	燃料輸送単両の投影面積に等しいものとする。したかって、燃	
って、燃焼半径 R[m]は燃料輸达単両の投影面積を円同の底面	l s	焼半全 <u>Klm</u> は <u>燃料輸送単回の投影</u> 面積を円同の底面と仮定し昇	
	$R = \sqrt{\frac{\pi}{\pi}}$		
$R = (S/\pi)^{0.0}$			
5: 燃料輸达単阿の投影面積(火灸円同の低面積)=41.25	R : <u>燃焼手径 (m)</u> , S : <u>燃焼</u> 面積 (m [*])	S: <u>燃料輸送単向の投影</u> 面積 <u>(火炎円間の底面積) = 24.91 [m²]</u>	
	你。」。 君、佛州松兴古王。佛体水汉	$R = (24.91/\pi)^{0.0} = 2.82 \text{ [m]}$	
$R = (41.25 / \pi)^{-0.0} = 3.62 \text{ [m]}$	<u>男2.1-2 衣 燃料制法単両の燃焼手住</u>		
	想定火災源 S R (-2) (-)		
	│ 燃料期达里阿 28.8 [∞] 3.029		
	※ 28kL ダンクローリのトレーフ全長(11.57m)と全幅(2.49m)の積		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(6) 燃焼継続時間の算出	(3) 燃焼継続時間の算出	(6) 燃焼継続時間の算出	
燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値に	
になる。	になる。算出結果を第2.1-3表に示す。	なる。	
$t = \frac{V}{\pi R^2 \times v}, v = \frac{M}{\rho} \& \forall), t = \frac{m}{\pi R^2 \times M}$	$t = \frac{V}{\pi R^2 \times v}$	$t = \frac{V}{\pi R^2 \times \nu}, v = \frac{M}{\rho} \& \emptyset, t = \frac{V \times \rho}{\pi R^2 \times M}$	
t:燃焼継続時間[s], V:燃料量[m³], R:燃焼半径[m],	t : 燃燒継続時間(s), V : 燃料量(m ³)	t:燃焼継続時間[s], V:燃料量[m ³], R:燃焼半径[m],	
v:燃焼速度[m/s]M:質量低下速度[kg/m ² ·s],	R:燃焼半径(m), v:燃焼速度= M / ρ (m/s)	v:燃焼速度[m/s],M:質量低下速度[kg/m ² s],ρ:密度[kg/m ³]	
ρ :密度[kg/m ³], <u>m:質量[kg]</u>	M:質量低下速度(kg/m ² /s), ρ :燃料密度(kg/m ³)		
ここで、 $m = \rho V = 16000 [kg], M = 0.099 [kg/m2·s] として、燃$		ここで, ρ=918[kg/m ³], M=0.044[kg/m ² ・s]として, 燃焼継	
焼継続時間を求めると,	第2.1-3表 燃料輸送車両火災の燃焼継続時間	続時間を求めると,	
$t = 16000 / (41.25 \times 0.099) = 3918[s] = 1.08[h]$	想完止災瀕 燃料量 燃燒半径 質量低下速度 燃料密度 燃烧継続時間	$v = 0.044 / 918 = 4.79 \times 10^{-5}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$t = 30 / (24.91 \times 4.79 \times 10^{-5}) = 25148[s] = 6.99[h]$	
	燃料輸送車両 30 3.029 0.055 783 14,826		
(7) 危険輻射強度の算出	2.2	(7) 危険輻射強度の算出	
	2.2.1 外壁に対する危険距離評価		
	評価対象施設の外壁について,燃料輸送車両の火災を想定		
	して評価を実施した。		
	(2) 想定火災源から評価対象施設までの離隔距離を第 2.2.1-1		
	表に,位置関係を第2.2.1-1図に示す。		
	第2.2.1-1表 想定火災源から評価対象施設までの離隔距離		
	想定火災源 原子炉建屋 タービン建屋 使用済燃料乾式		
	(m) (m) 貯蔵建屋(m)		
	燃料輸送車両 510 450 520		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u> </u>		
	用 2.2.1-1 図 火灰 光 生 場所 と 計 恤 対 家 施 設 の 1 位 直		
	(3) 判断の考え方		
	a. 許容温度		
	火災時における短期温度上昇を考慮した場合において、		
	下とする。		
a. 外壁面の危険輻射強度	b評価方法	a. 外壁面の危険輻射強度	
火災が発生した時間から燃料が燃え尽きるまでの間,一定	火災が発生した時間から燃料が燃え尽きるまでの間、一	火災が発生した時間から燃料が燃え尽きるまでの間、一定の	
の輻射強度で発電用原子炉施設外壁が昇温されるものとし	定の輻射強度で外壁が昇温されるものとして, <u>式1</u> の一次	輻射強度で発電用原子炉施設外壁が昇温されるものとして, 下	
て、下記の一次元非定常熱伝導方程式の解の式より、コンク	元非定常熱伝導方程式の一般解の式より外壁表面(x=0)の	記の一次元非定常熱伝導方程式の解の式より, コンクリートの	
リートの表面の温度上昇が 200℃となる危険輻射強度を求め	温度が 200℃となる <u>輻射強度(=</u> 危険輻射強度)を算出する。	表面温度が 200℃となる危険輻射強度を求める。	
る。	$T = T + \frac{2E\sqrt{\alpha t}}{1} \left[1 \exp\left(-\frac{x^2}{2}\right) - \frac{x}{2} \exp\left(-\frac{x}{2}\right) \right] (\pm 1)$	T - T , 1	
$T = T_{0} + \frac{1}{(1 + 1)^{2}}$	$1 - 1_0 + \frac{\lambda}{\lambda} \left[\sqrt{\pi} \exp\left(-\frac{1}{4\alpha t}\right) - \frac{1}{2\sqrt{\alpha t}} \exp\left(-\frac{1}{2\sqrt{\alpha t}}\right) \right] (1 < 1)$	$I = I_0 + \frac{1}{\left(\frac{\sqrt{k\rho c}}{\sqrt{k\rho c}} + 1\right) \frac{h}{e^{\frac{1}{2}}}}$	
$\int_{a}^{b} \left(\frac{\sqrt{k\rho c}}{1 + 10 \sqrt{b}} + 1 \right) \frac{h}{cE}$	(出典:伝熱工学,東京大学出版会)	$(1.18h\sqrt{t})^{\varepsilon L}$	
$(1.18h\sqrt{t})$ EL	T: <u>$\exists \nu j j = b$ 許容温度</u> (200℃) T ₀ : 初期温度 (50℃) $\underline{\times}$ 1		
出典:原田和典,建築火災のメカニズムと火災安全設計,日	<u>a</u> ::熱伝達率(<u>17</u> W/m²/K) ^{※2}	出典:原田和典,建築火災のメカニズムと火災安全設計,	
本建築センター	<u> κ : コンクリート温度伝達率 (= $\lambda / \rho C_p$) (7.7×10⁻⁷m²/s)</u>	財団法人 日本建築センター	
T_s :外表面温度[200℃], T_0 :初期温度[50℃],E:輻射強度	ρ: コンクリート密度 (2,400kg/m ³)	T: <u>外表面温度</u> [200℃], T ₀ :初期温度[50℃], E:輻射強度	
$[W/m^2]$,	C_p : コンクリート比熱(880J/kg/K)	LW/m ² 」, ε: コンクリート表面の放射率[0.94]* ¹ , h: コンク	
ϵ : コン クリート表面の放射率 (0.95) *, h: コンクリー	<u> ん</u> :コンクリート熱伝導率 (<u>1.63</u> W/m/k), E:輻射強度 (W/m ²)	<u>リート表面</u> 熱伝達率[23.3W/m ² K] ^{*2} , k: コンクリート熱伝導	
ト表面熱伝達率[<u>34.9</u> W/m²K]*, k : コンクリート熱伝導	t : 燃焼継続時間(<u>14,826</u> s)	率[1.6W/mK] ^{**2} , ρ:コンクリート密度[<u>2,200</u> kg/m ³] ^{*2} ,	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
率[1.6W/mK] ^{**} , ρ:コンクリート密度[2200kg/m ³] ^{**} , c:	x:温度評価の対象となる深さ位置(外壁表面:0m)	c:コンクリート比熱[<u>879</u> J/kgK] ^{*2} , t:燃焼継続時間[s]	
コンクリート比熱[879J/kgK]*, t:燃焼継続時間[s]	※1 水戸地方気象台で観測された過去最高気温 38.4℃に保守性		
※:建築設計竣工図書 原子炉建屋構造計算書	を持たせた値	※1:伝熱工学資料, ※2:原子炉建物 構造計算書	
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は、受熱面の		
	形状や周囲の環境条件を受け変化するが、一般的な値として垂直		
$E = 9295 [W/m^2]$	外壁面, 屋根面及び上げ裏面の夏季, 冬季の値が示されている。	$E=5,224[W/m^2]$	
	評価上放熱が少ない方が保守的であることから、これらのうち最		
	も小さい値である17W/m²/Kを用いる。)		
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2よ		
	り算出する。		
	$\underline{\mathbf{E}} = \mathbf{R} \cdot \mathbf{f} \cdot \mathbf{\Phi} \tag{\textbf{I}}$		
	<u>E:輻射強度(W/m²), Rf:輻射発散度(W/m²),</u>		
	<u>•</u> :形態係数		
	<u>(出典:評価ガイド)</u>		
	式2で求めた形態係数 Фとなる 危険距離 Lを、式3より算		
	出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (\vec{x} 3)$		
	ただし $m = \frac{H}{R} \approx 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u> Φ : 形態係数, L : 離隔距離 (m), H : 炎の高さ (m),</u>		
	<u>R:燃焼半径(m)</u>		
	(出典::評価ガイド)		
	上記のとおり危険距離を算出し、当該燃料輸送車両から各		
	評価対象施設までの離隔距離を下回るか評価を実施した。な		
	お、天井スラブは以下の理由により、外壁の評価に包絡され		
	るため実施しない。		
	・火炎長が天井より短い場合、天井に輻射熱を与えない		
	ことから熱影響はない。		
	 ・火炎長が天井より長い場合,天井に輻射熱を与えるが, 		
	その輻射熱は外壁に与える輻射熱より小さい。		
	・火炎からの距離が等しい場合,垂直面(外壁)と水平		
	面(天井)の形態係数は, 垂直面の方が大きいことか		

柏崎刈羽原子力発電所 6/7号炉 (2	2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		ら, 天井の熱影響は外壁に比べて小さい。		
		建屋外壁の評価概念図を第2.2.1-2 図に, 天井スラブの		
		評価概念図を第2.2.1-3図に示す。		
		対流による放熱		
		天井スラブ 外壁 屋内		
		初期温度:50℃		
		第2.2.1-2 図 建屋外壁の評価概念図		
		F井スラブに輻射熱を与える範囲 外壁に輻射熱を与える範囲 F井スラブ ケ <td></td> <td></td>		
		<u>c</u> 評価結果		
		評価対象施設の外壁表面温度が 200℃となる危険距離を		
		算出した結果、各評価対象施設の危険距離が離隔距離以下		
		であることを確認した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12片	反)	島根原子力発電所 2号炉	備考
	第2.2.1-2表 外壁への燃料	¥輸送車両火	災影響評価結果		
	評価対象施設	危険距離 (m)	離隔距離 (m)		
	原子炉建屋		510		
	タービン建屋	23	450		
	使用済燃料乾式貯蔵建屋		520		
h 軽油タンクの合降輻射強度					 ・設備の相違
火災が発生した時間から燃料が燃え尽きるまでの間、一定					【柏崎 6/7,東海第二】
の輻射強度で <u>軽油タンク</u> が昇温されるものとして,下記の式					島根2号炉では,軽油
より <u>軽油</u> の温度が <u>225℃</u> となる危険輻射強度を求める。					タンク,燃料移送ポン
					プ,非常用ディーゼル
$T = \frac{\varepsilon E S_1 + h S_2 T_{air}}{k c} - \left(\frac{\varepsilon E S_1 + h S_2 T_{air}}{k c} - T_0\right) e^{\left(\frac{-h S_2}{c}\right)t}$					発電機は,地下構造等
nS_2 (nS_2)					の屋内設備のため影
					響評価対象外
I_0 : 初期価度[<u>38</u> 0], E: 輻射強度[W/m^2], E: <u>駐曲クシク</u> 衣 面の放射率 (0.9) ^{×1} b. 軽油タンク表面執伝達率[17 W/m^2 K]					また、放水路クートについても、設置してい
³² S=S₀·軽油タンク受熱・放熱面積[m ²].					ないため影響評価対
C:軽油タンク及び軽油の熱容量[8.72×10 ⁸ J/K],t:燃焼継続					象外
時間 [s], T _{air} :外気温度[℃]					なお, 島根 2 号炉で
※1:伝熱工学資料,※2:空気調和·衛生工学便覧					は, 海水ポンプは, 屋
					外設置のため影響評
$E = 208372 [W/m^2]$					価を実施
c. 燃料移送ポンプ(防護板(鋼板))の危険輻射強度				b. <u>海水ポンプ</u> の危険輻射強度	
火災が発生した時間から燃料が燃え尽きるまでの間,一定				 火災が発生した時間から燃料が燃え尽きるまでの間,一定の	
の輻射強度で <u>燃料移送ポンプの周囲に設置されている防護板</u>				輻射強度で <u>海水ポンプの冷却空気</u> が昇温されるものとして、下	
<u>(鋼板)</u> が昇温されるものとして,下記の式より <u>燃料移送ポ</u>				記の式より <u>海水ポンプの冷却空気</u> 温度が 55℃となる危険輻射強	
<u>ンプ(防護板(鋼板))</u> の温度が <u>100℃</u> となる危険輻射強度を				度を求める。	
求める。					
					1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
$E_{max} = \frac{2}{\varepsilon S} \left(\frac{hS(T - T_{air})}{1 - e^{(\frac{-hS}{C})t}} \right)$	$T = T_0 + \frac{E \times A_T}{G \times C_p}$	
ε :防護板(鋼板)外面の放射率(0.9) ^{*1} ,S:防護板(鋼板)受熱面積[16.2m ²],h:防護板(鋼板)表面熱伝達率[17W/m ² K] * ² ,C:防護板(鋼板)の熱容量[2.41×10 ⁶ J/K],t:燃焼継続時間[s],T:許容温度[100 [°] C],T _{air} :外気温度(初期温度) [55 [°] C]	T ₀ :通常運転時の上昇温度[22℃],E:輻射強度[W/m ²], A _T :受熱面積[10.93m ²],G:重量流量[1.96kg/s], C _p :空気比熱[1007J/(kg・K)] ^{*1}	
※1:伝熱丄字資料,※2:空気調和·衛生丄字便覧	※1:伝熱上字資料	
$E = \underline{2873 [W/m^2]}$	E= <u>5,948[W/m²]</u>	
 d. <u>主排気筒</u>の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一定 の輻射強度で<u>主排気筒</u>が昇温されるものとして,下記の式よ り<u>主排気筒</u>の温度が 325℃となる危険輻射強度を求める。 T=T₀ + <u>& E</u> <u>2h</u> T₀: 初期温度[50℃], E: 輻射強度[W/m²], ε: <u>主排気筒</u>表面 の放射率 (0.9) ^{*1}, h: <u>主排気筒</u>表面熱伝達率[17W/m²K]^{*2} *1: 伝熱工学資料, *2: 空気調和・衛生工学便覧 	c. <u>排気筒</u> の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一定の 輻射強度で <u>排気筒</u> が昇温されるものとして,下記の式より, 排 気筒の温度が 325℃となる危険輻射強度を求める。 $T = T_0 + \frac{\varepsilon E}{2h}$ T ₀ : 初期温度[50℃], E: 輻射強度[W/m²], $\varepsilon : 排気筒表面の放射率[0.9]^{*1},$ h: 排気筒表面熱伝達率[17W/m²K] ^{**2} ※1: 伝熱工学資料, ※2:空気調和・衛生工学便覧	
$E = 10388 [W/m^2]$	E=10,388[W/m ²]	
 (8) 形態係数の算出 火炎から任意の位置にある点(受熱点)の輻射強度は,輻射発散度に形態係数をかけた値となる。危険輻射強度となる 形態係数を算出する。 Emax=Rf×φ Emax: 危険輻射強度, Rf: 輻射発散度, φ:形態係数 	 (8) 形態係数の算出 火炎から<u>の</u>任意の位置にある点(受熱点)の輻射強度は, 輻射発散度に形態係数をかけた値となる。危険輻射強度とな る形態係数を算出する。 Emax=Rf×φ Emax: 危険輻射強度, Rf: 輻射発散度, φ:形態係数 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-3 表 形態係数の算出結果		第2-3表 形態係数の算出結果	
建屋 軽油タンク 燃料移送ポンプ 主排気筒		原子炉建物 海水ポンプ 排気筒	
(防護板(鋼板)) 危険輻射強度[W/m²] 9295 208372 2873 10388		危険輻射強度 5,224 5,948 10,388	
輻射発散度[W/m ²] 74×10 ³ 形能係数 0.1256088 2.8158438 0.0388239 0.1403903		輻射発散度 「m / ²] 42×10 ³	
		$LW/m'J$ 形態係数 1.23×10^{-1} 1.41×10^{-1} 2.47×10^{-1}	
(9) 危険距離の算出		(9) 危険距離の算出	
次の式から危険距離を算出する。		次の式から危険距離を算出する。	
$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$		$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$	
ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$		$t \ge t \ge 1, m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$	
φ :形態係数, L:危険距離[m], H:火炎高さ[m],		φ :形態係数, L : 危険距離[m], H : 火炎高さ[m],	
R:燃焼半径[m]		R:燃焼半径[m]	
第_2-4_表危険距離の算出結果		第2-4表 危険距離の算出結果	
建屋 軽油タンク 燃料移送ポンプ 主排気筒 (防護板 (鋼板)) () (() () () () ()) ()) () </td <td></td> <td>原子炉建物 海水ポンプ 排気筒 形能係数 1.23×10⁻¹ 1.41×10⁻¹ 2.47×10⁻¹</td> <td></td>		原子炉建物 海水ポンプ 排気筒 形能係数 1.23×10 ⁻¹ 1.41×10 ⁻¹ 2.47×10 ⁻¹	
形態係数 0.1256088 2.8158438 0.0388239 0.1403903 燃焼半径[m] 3.62		加速振频 1.23×10 1.41×10 2.41×10 燃焼半径[m] 2.82	
危険距離[m] 約13 約4 約26 約12		危険距離[m] 10 9 6	
(10) 火災による熱影響の有無の評価		(10) 火災による熱影響の有無の評価	
以上の結果から、燃料輸送車両において火災が発生した場		以上の結果から、燃料輸送車両において火災が発生した場	
合を想定したとしても,離隔距離(約 811m)が危険距離(最大		合を想定したとしても,離隔距離(約 890m)が危険距離(最	
約 <u>26m</u>)以上であることから,発電用原子炉施設に熱影響をお		大 10m) 以上であることから,発電用原子炉施設に熱影響を	
上ほすことはないと評価する。		及任すことはないと評価する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>2.2.2 主排気筒に対する危険距離評価</u>		
	(1)評価対象範囲		
	主排気筒について、燃料輸送車両の火災を想定して評価を		
	実施した。		
	なお、主排気筒の評価にあたっては、保守性を考慮して、		
	筒身よりも離隔距離の短くなる鉄塔について評価した。		
	<u>(2)</u> 評価対象施設の仕様		
	主排気筒仕様を第 2.2.2-1 表に, 主排気筒外形図を第		
	2.2.2-1図に示す。		
	第2.2.2-1表 評価対象施設の仕様		
	種類 鉄塔支持型		
	内径 4.5m		
	主要寸法 地表高さ140m		
	材料 筒身 SS400		
	鉄塔 SS400, STK400		
	第2.2.2-1図 評価対象施設の外形図		
	(3) 評価対象施設までの離隔距離		
	想定火災源から評価対象施設までの離隔距離を第2.2.2-2表		
	<u>に</u> 示す。		
	第2.2.2-2 衣 想定火災原から評価対象施設よでの離隔距離		
	想定火災源主排気筒		
	(m)		
	燃料輸送車両 610		
	(4) 判断の考え方		
	a.許容温度		
	おける短期温度上昇を考慮した場合において. 鋼材の強度		
	が維持される保守的な温度 325℃以下とする。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>b. 評価方法</u>		
	一定の輻射強度で主排気筒鉄塔が昇温されるものとし		
	て、表面での輻射による入熱量と対流熱伝達による外部へ		
	の放熱量が釣り合うことを表した式1により主排気筒鉄塔		
	表面の温度が 325℃となる輻射強度(=危険輻射強度)を求		
	M.S.a.		
	$T = T_0 + \frac{E}{2h} \tag{₹1}$		
	(出典:建築火災のメカ=ズムと火災安全設計,		
	財団法人日本建築センター)		
	<u>T:許容温度(325℃), T₀:初期温度(50℃)*1</u>		
	<u>E:輻射強度(W/m²), h:熱伝達率(17W/m²/K)^{*2}</u>		
	※1 水戸地方気象台で観測された過去最高気温		
	<u>38.4℃に保守性を持たせた値</u>		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は,		
	受熱面の形状や周囲の環境条件を受け変化する		
	が、一般的な値として垂直外壁面、屋根面及び		
	上げ裏面の夏季,冬季の値が示されている。評		
	価上放熱が少ない方が保守的であることから、		
	これらのうち最も小さい値である 17W/m²/K		
	を用いる。)		
	式1で求めた合除輻射強度Fとなる形能係数Φを 式9		
	上り筧出する		
	$E = R f \cdot \Phi \qquad (\exists 2)$		
	 Φ:形態係数 		
	式2で求めた形態係数Φとなる危険距離Lを,式3より 算出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (\vec{x} \leq 3)$		
	ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>Φ:形態係数,L:離隔距離(m),H:炎の高さ(m)</u> ,		
	<u>R:燃焼半径(m)</u>		
	(出典: 評価ガイド)		
	上記のとおり危険距離を算出し、当該燃料輸送車両から		
	評価対象施設までの離隔距離を下回るか評価を実施した。		
	なお,評価に当たって主排気筒は鉄塔と筒身で構成されて		
	いるが、筒身よりも鉄塔が燃料輸送車両との距離が近いこ		
	と,材質も鉄塔はSS400,STK400,筒身ではSS400であり,		
	物性値が鉄塔、筒身ともに軟鋼で同一であることから、鉄		
	塔の評価を実施することで筒身の評価は包絡される。		
	主排気筒の評価概念図を第2.2.2-2 図に示す。		
	対流による放熱		
	主排気筒		
	円筒火炎		
	辐射強度:E		
	■:受熱面※		
	■:放熱面		
	 ※ 会方面から放動するのに対1. 		
	受熱面はその半分となる。		
	第2.2.2-2 図 主排気筒の評価概念図		
	<u>c評価結果</u>		
	主排気筒鉄塔の表面温度が 325℃となる危険距離を算出		
	した結果、主排気筒の危険距離が離隔距離以下であること		
	を確認した。評価結果を第2.2.2-3表に示す。		
	第2.2.2-3表 主排気筒への燃料輸送車両火災影響評価結果		
	評価対象施設		
	→ 北 気 倍 10 610		
	1		I

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	2.2.3 非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼル		・設備の相違
	発電機を含む。)に対する危険距離評価		【柏崎 6/7,東海第二】
			島根2号炉では,軽油
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル		タンク,燃料移送ポン
	発電機を含む。)の流入空気温度について、燃料輸送車両の火		プ,非常用ディーゼル
	災を想定して評価を実施した。		発電機は,地下構造等
	(2) 空気の流入口となり熱影響を受ける非常用ディーゼル発電		の屋内設備のため影
	機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の		響評価対象外
	仕様を第2.2.3-1表に,外形図を第2.2.3-1図に示す。		また, 放水路ゲートに
			ついても, 設置してい
	第2.2.3-1表 評価対象施設の仕様		ないため影響評価対
			象外
	非常用ディーセル発電機(高圧炉)		なお, 島根 2 号炉で
			は, 海水ポンプは, 屋
	種類 円筒縦形 字目		外設置のため影響評
	主要寸法 外径 :1.54m 円筒高さ:2.46m		価を実施
	第2.2.3-1 図 評価対象施設の外形図		
	(3) 評価対象施設までの離隔距離		
	想定火災源から評価対象施設までの離隔距離を第 2.2.3-2		
	表に示す。		
	なりりります相合し、災害よう証何時免状況よるの難原明難		
	第2.2.3-2 衣 湿足穴灰原がら計画対象施設までの離隔距離		
	想定火災源 非常用ディーゼル発電機(高圧炉心スプレ ィ系ディーゼル発電機を含む。)(m)		
	燃料輸送車両 510		
	(4) 判断の考え方		
	北前田ブィーモル 発電機 (尚上 炉心人) レイ 糸 ブィーセル		
	<u> 金属機で百む。」の 孤人会気の 計谷温度に、 火火時における温</u>		
	皮上升を与慮しに場合にわいし,非吊用アイーセル		
	<u> 庄炉心人ノレ1 糸 て イー て ル 発 寛 彼 を </u>		
柏崎刈羽原子力発電所 6/7号炉 (201	7.12.20版) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
-----------------------	--	--------------	----
	要な温度 53℃以下**とする。		
	※ 非常用ディーゼル発電機(高圧炉心スプレイ系ディー		
	ゼル発電機を含む。)の流入空気温度が上昇すると、空気		
	冷却出口温度が上昇し、シリンダへの必要空気量が確保		
	できなくなる。		
	b. 評価方法		
	火災が発生した時間から燃料が燃え尽きるまでの間,一		
	定の輻射強度による入熱が非常用ディーゼル発電機(高圧		
	炉心スプレイ系ディーゼル発電機を含む。)に流入する空気		
	の温度上昇に寄与することを表した式1により流入する空		
	気の温度が 53℃となる輻射強度(=危険輻射強度)を求め		
	Zen -		
	$T = T_0 + \frac{E \cdot A}{G \cdot C_p} + \Delta T \qquad (\vec{x} 1)$		
	<u>T</u> :許容温度(53℃), T ₀ :初期温度(39℃) ^{*1} ,		
	<u>E:輻射強度(W/m²),</u>		
	$\underline{G}: 重量流量(4kg/s)^{*2}, \underline{A}: 輻射を受ける面積(7.8m^2)$		
	<u>Cp:空気比熱(1,007J/kg/K)*3</u> ,		
	<u>ΔT:構造物を介した温度上昇(5°C)*4</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値		
	※2 ディーゼル発電機機関の内,給気流量が少ない高		
	圧炉心スプレイ系を評価対象とする。ディーゼル		
	発電機機関吸気流量(228m ³ /min)×空気密度		
	$(1.17 \text{kg/m}^3) \div 60$		
	※3 日本機械学会 伝熱工学資料		
	※4 最高到達温度を想定した場合の温度上昇		
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2		
	より見出する。		
	$\mathbf{E} = \mathbf{R} \mathbf{i} \cdot \mathbf{\Phi} \qquad (\mathbf{\overline{\chi}} 2)$		
	上:		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	式2で求めた形態係数Φとなる危険距離Lを,式3より 算出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (\vec{\pi}, 3)$		
	ただし $m = \frac{H}{R} \approx 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	$\Phi: 形態係数, L:離隔距離(m), H:炎の高さ(m),$		
	<u>R: 燃焼 手 (m)</u> (出典: 評価ガイド)		
	上記のとおり危険距離を算出し,当該燃料輸送車両から評価対象施設までの離隔距離を下回るか評価を実施した。空気の流入口となり熱影響を受ける非常用ディーゼル発電機(高 圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の評価概 念図を第2.2.3-2 図に示す。		
	非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。) 吸気ロ		
	 ・受熱面 第2.2.3-2図 非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)吸気口の評価概念図 た.評価結果 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)に流入する空気の温度が 53℃となる危険距 離を算出した結果,危険距離が離隔距離以下であることを確 認した。評価結果を第2.2.3-3表に示す。 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	 東海第二発電所(2018.9.12版) 第2.2.3-3表 非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)への燃料輸送車両火災影響評価結果 評価対象施設 加速の単常常用ディーゼル発電機(高圧炉心ズブレ (系ディーゼル発電機(高圧炉心ズブレ (系ディーゼル発電機を含む。) 14 510 2.2.4 残留熱除去系海水系ボンブ及び非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ボ ンプに対する危険距離評価 (1)評価対象範囲 残留熱除去系海水系ボンブ電動機及び非常用ディーゼル発 電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ボ ンプに対する危険距離評価 (1)評価対象範囲 残留熱除去系海水系ボンブ電動機及び非常用ディーゼル発 電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ボンブ電動機は、海水ポンプ電動機高さより高い海水ポンプ 室の壁で囲まれており、側面から直接火災の影響を受けることはないが、上面は熱影響を受ける可能性がある。評価においては、海水ポンプ室の壁による遮熱効果を考慮せず、側面から直接火災の影響を受けることを想定する。また、残留熱除去系海水系ボンプ電動機及び非常用ディーゼル発電機(高 圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプ電 動機は、電動機本体を全閉構造とした全閉外扇形の冷却方式であり、外部火災の影響を受けた場合には、周囲空気の温度 上昇により、冷却機能への影響が懸念されることから、冷却 空気の温度を評価対象とする。火災発生位置と海水ボンブの 位置関係を第2.2.4-1図に示す。 電動機内部の空気冷却対象は固定子巻線及び軸受であり、 そのうち許容温度が低い軸受温度の機能維持に必要となる冷 	島根原子力発電所 2号炉	備考 ・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉では,軽油 タンク,燃料移送ポン プ,非常用ディーゼル 発電機は,地下構造等 の屋内設備のため影 響評価対象外 また,放水路ゲートに ついても,設置してい ないため影響評価対 象外 なお,島根 2 号炉で は,海水ポンプは,屋 外設置のため影響評 価を実施
	そのうち許容温度が低い軸受温度の機能維持に必要となる冷 却空気の温度が,許容温度以下となることを確認する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第2.2.4-1 図 火災発生位置と海水ポンプの位置関係		
	(2) 評価対象施設の仕様		
	残留熱除去系海水系ポンプ及び非常用ディーゼル発電機(高		
	圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプの海		
	水ポンプ室内の配置図を第2.2.4-2 図,外形図を第2.2.4-3 図		
	<u>に示す。仕様を第2.2.4-1表に示す。</u>		
	第2.2.4-2図 海水ポンプの配置図		
	第2.2.4-3 図 海水ポンプの外形図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)			島根原子力発電所 2号炉	備考
	第2.2.4-1表 評価対象施設の仕様		象施設の仕様		
	名称	残留熱除去系海水系ポンプ 電動機	非常用ディーゼル発電機 (高圧炉心スプレイ系ディ ーゼル発電機を含む。)用 海水ポンプ電動機		
	主要寸法	全 幅:1.9 m 高 さ:2.73m	全 幅:0.51m 高 さ:0.98m		
	材 料	SS400, SUS304	SS400		
	基数	4	3		
	 (3) 評価 残留熱 圧炉心ご 包する液 に示す。 	対象施設までの離隔距離 熱除去系海水系ポンプ及び スプレイ系ディーゼル発電機 毎水ポンプ室から火災源まて ~	<u> 常用ディーゼル発電機(高</u> <u>&を含む。)用海水ポンプを内</u> ごの離隔距離を第 2.2.4–2 表		
	第2.2.4	4-2表 想定火災源から評価			
		想定火災源 海	水ポンプ室		
	炵	然料輸送車両	760		
	(4) 判断	の考え方			
	<u>a.</u>	午容温度			
	万	<u> 長留熱除去系海水系ポンプ</u> 電	<u> 重動機及び非常用ディーゼル</u>		
	発電	<u> 『機(高圧炉心スプレイ系テ</u>	「ィーゼル発電機を含む。)用		
	海江	kポンプ電動機の冷却空気の	D許容温度は,上部及び下部		
	軸受	<u>そのうち,運転時の温度上昇</u>	昇が高い下部軸受の上昇温度		
	をま	<u> 考慮し、軸受の機能維持に</u> 4	必要な冷却空気の許容温度を		
	第二	2.2.4-3表に示す。			
	第2.2.4-3	3表 下部軸受の機能維持に	- 必要な冷却空気の許容温度		
	名	務 残留熱除去系海水系 ポンプ電動機	非常用ディーセル発電機(高圧炉心 スプレイ系ディーゼル発電機を含 む。)用海水ボンプ電動機		
	軸受の機能; 冷却空気	維持に必要な の許容温度 70℃*1	60°C ^{∞ 2}		
	※1 ボン め電 定す ※2 ポン め電	プ運転により、下部軸受は最大で約10℃上 気規格調査会標準規格 JEC-2137-2000「誘 るときの温度限度 80℃から10℃を差し引い プ運転により、下部軸受は最大で約35℃上 気規格調査会標準規格 JEC-2137-2000「誘	-昇することから、軸受の機能を維持するた 導機」で定める自由対流式軸受の表面で測 いた70℃を冷却空気の許容温度に設定 -昇することから、軸受の機能を維持するた 導機」で定める耐熱性の良好なグリースを		
	使用	する場合の温度限度 95℃から 35℃を差し	月いた 60℃を冷却空気の許容温度に設定		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>b評価方法</u>		
	火災が発生した時間から燃料が燃え尽きるまでの間,残留熱		
	除去系海水系ポンプ電動機及び非常用ディーゼル発電機(高圧		
	炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプ電動機		
	が受ける輻射熱によって上昇する冷却空気温度を求め、第		
	2.2.4-3表に示す許容温度を下回るかを熱エネルギーの式より		
	求まる下式で評価を実施した。評価に用いた諸元を第2.2.4-4		
	表に, 評価概念図を第2.2.4-4 図に示す。		
	$T = T_{0} + \frac{E \cdot A}{G \cdot C_{p}} + \Delta T \qquad (\vec{z}, 1)$		
	<u>T:評価温度(℃), T₀:初期温度(39℃)^{※1},</u>		
	<u>E:輻射強度(W/m²),</u>		
	<u>G:重量流量(kg/s),A:輻射を受ける面積(m²)</u>		
	<u>Cp:空気比熱(1,007J/kg/K),</u>		
	<u> ΔT:構造物を介した温度上昇(5°C)*2</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4°Cに保		
	守性を持たせた値		
	※2 航空機火災による構造物を介した冷却空気の温度上昇		
	<u>(ΔT</u> <u>b</u> =2.2℃)を包絡する 5℃に設定		
	第2.2.4-4 表 評価に用いた諸元		
	残留熱除去系 非常用ディーゼル		
	海水系ボンブ 発電機(高圧炉心ズ) レイ糸 電動機 ディーゼル発電機を含む。) 用		
	電動が及 海水ボンプ<		
	A: = = h + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +		
	電動機		
	福射強度:E 端子箱		
	:受熱面		
	第2.2.4-4 図 評価概念図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2より		
	算出する。		
	$\underline{\mathbf{E}} = \mathbf{R} \mathbf{f} \cdot \mathbf{\Phi} \tag{式2}$		
	$E:輻射強度(W/m^2), Rf:輻射発散度(W/m^2),$		
	Φ :形態係数		
	(出典:評価ガイド)		
	式2で求めた形態係数 Φ となる危険距離Lを,式3より算出		
	t 3em		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{B(n+1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right] \right\} \qquad (\vec{\pi} 3)$		
	ただし m= $\frac{H}{R}$ =3, n= $\frac{L}{R}$, A=(1+n) ² +m ² , B=(1-n) ² +m ²		
	<u> Φ : 形態係数, L : 離隔距離 (m), H : 炎の高さ (m),</u>		
	<u>R:燃焼半径(m)</u>		
	<u>(出典:評価ガイド)</u>		
	上記のとおり危険距離を算出し、当該燃料輸送車両から評価		
	対象施設までの離隔距離を下回るか評価を実施した。		
	<u>c評価結果</u>		
	輻射熱によって上昇する冷却空気の到達温度を算出した		
	結果,許容温度以下であることを確認した。評価結果を第		
	2.2.4-5表に示す。		
	評価対象施設		
	残留熱除去系海水系ポンプ 13 760		
	非常用ディーゼル発電機(高圧炉心スプレイ系ディ 11 760		
	<u>2.2.5 放水路ゲートに対する危険距離評価</u>		 ・設備の相違
	(1) 評価対象範囲		【柏崎 6/7,東海第二】
	<u>放水路ゲートについて,燃料輸送車両の火災を想定して評</u>		島根2号炉では,軽油
	仙を実施した。		タンク,燃料移送ポン

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>(2)</u> 評価対象施設の仕様		プ,非常用ディーゼル
	放水路ゲート駆動装置の外殻となる放水路ゲート駆動装置		発電機は,地下構造等
	外殻の仕様を第2.2.5-1表に,外形図を第2.2.5-1図に示す。		の屋内設備のため影
			響評価対象外
	第2.2.5-1表 評価対象施設の仕様		また, 放水路ゲートに
			ついても,設置してい
			ないため影響評価対
	名称 放水路ケート駆動装直		象外
	床面高さ T.P.+11.0m		なお, 島根 2 号炉で
			は, 海水ポンプは, 屋
			外設置のため影響評
			価を実施
	1 (Manual Andread		
	第2.2.5-1 図 評価対象施設の外形図		
	(3) 評価対象施設までの離隔距離		
	想定火災源から評価対象施設までの離隔距離を第2.2.5-2表		
	<u>LCTTIF</u>		
	第995-9素 相定水災酒から評価対象施設までの離隔距離		
	想定火災源 <u>放水路ゲート</u> (m)		
	燃料輛达里问 600		
	(4) 判断の考え方		
	<u>a. 許容温度</u>		
	放水路ゲート駆動装置外殻の許容温度は、火災時におけ		
	る短期温度上昇を考慮した場合において、鋼材の強度が維		
	持される保守的な温度 325℃以下とする。		
	<u>b. 評価方法</u>		
	一定の輻射強度で放水路ゲート駆動装置外殻が昇温され		
	るものとして、表面での輻射による入熱量と対流熱伝達に		
	よる外部への放熱量が釣り合うことを表した式1により外		
	殻表面の温度が 325℃となる輻射強度(=危険輻射強度)を		
	求める。		1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$T = T_0 + \frac{E}{T} $ (式 1)		
	2 h		
	(出典:建築火災のメカ=ズムと火災安全設計,		
	时团法人日本建築センター)		
	T:許容温度(325°C), T ₀ :初期温度(50°C) ^{**1}		
	$E: 輻射强度(W/m^2), h: 烈伝達率(17W/m^2/K)*2$		
	※1 水戸地方気家台で観測された過去最高気温38.4℃に保		
	※2 全丸祠和・衛生上子使見(外衣曲の熱伝達半は、反熱曲の形性の周囲の環境条件な受け亦化するが、一般的な		
	の形状で同曲の環境未住を受け変化するが、一板的な		
	<u> 個として至良が室間</u> , 産間風及び上り表面の夏子, 会 季の値が云されている。 評価上お熱が少ない古が保守		
	サッピルへになしている。 町回工版がパークないの本本		
	$17W/m^2/K \times H h \lambda S$		
	式1で求めた危険輻射強度Eとなる形態係数Φを、式2より		
	第出する。		
	$E = R f \cdot \Phi \qquad (\exists 2)$		
	$\Phi: 形態係数$		
	<u>(出典:評価ガイド)</u>		
	式2で求めた形態係数 Φ となる危険距離Lを,式3より算出		
	I Jam		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{2}} \right) + \frac{m}{\pi} \left\{ \frac{(A-2n)}{\sqrt{2}} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{B(n+1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right] \right\} (\vec{x}, 3)$		
	$\left(\sqrt{n} - 1\right) \left(\frac{n}{\sqrt{A}}\right) \left[\sqrt{N}\right] \left[\sqrt{N}\right] \left[\sqrt{N}\right]$		
	たたし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u> Φ : 形態係数, L : 離隔距離 (m), H : 炎の高さ (m),</u>		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		
	上記のとおり危険距離を算出し、当該燃料輸送車両から評価		
	対象施設までの離隔距離を下回るか評価を実施した。放水路ゲ		
	<u>ートの評価概念図を第2.2.5-2 図に示す。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	放水路ゲート駆動装置外殻		
	: 受熱面 第2.2.5-2 図 放水路ゲートの評価概念図		
	 <u>c. 評価結果</u> 放水路ゲート駆動装置外殻の表面温度が 325℃となる危険距 離を算出した結果,放水路ゲートまでの危険距離が離隔距離以 下であることを確認した。評価結果を第2.2.5-3表に示す。 第2.2.5-3表 放水路ゲートへの燃料輸送車面水災影響評価結果 		
	第2.2.5-3 衣 放水路グート 10 (0) 離隔距離 (m) 評価対象施設 危険距離 (m) 離隔距離 (m) 放水路ゲート 9 600		
 3. 燃料輸送車両の爆発影響評価 (1) 燃料輸送車両の火災の想定の条件 ・発電所敷地外 10km 以内の施設において液化石油ガス輸送 車両が許可申請されていることから,最大規模の液化石油 ガス輸送車両が発電所敷地周辺道路で火災・爆発を起こし た場合を想定する。 	 3. 燃料輸送車両の爆発影響評価 (1) 燃料輸送車両及び燃料に係るデータ 発電所敷地外の公道上での燃料輸送車両の爆発を想定し, 評価対象施設に対する影響評価を行った。 	 3. 燃料輸送車両の爆発影響評価 (1) 燃料輸送車両の爆発の想定条件 <u>LPガスボンベを運搬する車両が発電所出入口ゲートで</u> 爆発を起こした場合を想定する。 	 ・設備の相違 【柏崎 6/7,東海第二】 島根2号炉は,発電所 敷地周辺の道路状況
 ・ 燃料積載量は液化石油ガス輸送車両の中で最大クラスのもの(16t)とする。 ・ 燃料輸送車両は燃料を満載した状態を想定する。 ・ 輸送燃料は液化石油ガス(プロパン)とする。 ・ 発電所敷地境界の道路での高圧ガス漏えい,引火による燃料輸送車両の爆発を想定する。 ・ 気象条件は無風状態とする。 	可燃性ガスを輸送する燃料輸送車両は, <u>最大クラスの燃料</u> 輸送車両(積載量:15.1t)に液化天然ガス(LNG)及び液 化石油ガス(LPG)が積載された状況を想定した。評価条 件を第3-1表に示す。 また,爆発発生場所としては,発電所敷地外の近隣の国道 245号線上の評価対象施設に最も近い場所を想定した。	 ・燃料輸送車両は<u>運用上の最大値(0.5 トン)を積載した</u> <u>状態とする。</u> ・輸送燃料は<u>LPガス</u>(プロパン)とする。 ・<u>発電所出入ロゲート</u>での高圧ガス漏えい,引火による燃 料輸送車両の爆発を想定する。 ・気象条件は無風状態とする。 	や運用状況を踏まえ, プロパンガスボンベ を輸送している車両 について影響評価を 実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第	第二発電所(2018.9.1	2版)		島根原子力発電所 2号炉	備考
(2) 評価手法の概要				(2) 評価手法	(2) 評価手法の概要	
本評価は、 <u>柏崎刈羽</u> 原子力発電所に対する燃料輸送車両のカ				本評価に	t, <u>島根</u> 原子力発電所に対する燃料輸送車両のガス	
ス爆発による影響の有無の評価を目的としている。具体的な評				爆発による	影響の有無の評価を目的としている。具体的な評	
価指標とその内容を以下に示す。				価指標とそ	の内容を以下に示す。	
第 3-1 表 評価指標及びその内容					第 3-1 表 評価指標及びその内容	
評価指標 内容				評価指標	内容	
[危険限界距離[m]] ガス爆発の爆風圧が 0.01MPa 以下になる距離				危険限界距離[m] ガス爆発の爆風圧が 0.01MPa 以下になる距離	
(3) 評価対象範囲				(3) 評価対象	範囲	
評価対象範囲は、発電所敷地境界の道路で出火する燃料輸送				評価対象	電筋囲は,発電所 <u>出入口ゲート</u> で出火する燃料輸送	・条件の相違
車両とする。				車両とする	0.0	【柏崎 6/7】
						地域特性を踏まえた
(4) 必要データ				(4) 必要デー	9	評価対象及び評価条
評価に必要なデータを以下に示す。				評価に必	、要なデータを以下に示す。	件の相違
第 3-2 表 高圧ガス爆発の評価条件	第 3-1 表 煌	暴風圧影響評価で想定	した評価条件		第 3-2 表 高圧ガス爆発の評価条件	
データ種類 内容				データ種類	内容	
□ンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値)		燃料輪	送車両	て油の火体	コンビナート等保安規則第5条別表第二に掲げる数値 K-999000(プロパンの常用の温度 10 以上 40 古港の K 体 299	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応		燃料 輸 液化 天然 ガス)送車両 液化石油ガス	石油の K 値	コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度10以上40未満のK値328 に1,000を乗じた値)	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備・液化ガスの貯蔵設備にあってけ貯蔵能力(単位:トン)	貯蔵ガス	燃料輪 液化天然ガス (メタン)	送車両 液化石油ガス (プロパン)	石油の K 値	コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度10以上40未満のK値328 に1,000を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:トン)の数値の平方根の数値(貯蔵能力がートン未満のものにあっては,	貯蔵ガス 貯蔵量(t)	燃料輪 液化天然ガス (メタン) 15.1	送車両 液化石油ガス (プロパン) 15.1	石油の K 値	 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度 10 以上 40 未満の K 値 328 に 1,000 を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:ト 	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:トン)の数値の平方根の数値(貯蔵能力が一トン未満のものにあっては, 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては	貯蔵ガス 貯蔵量(t) 貯蔵ガスK値 ^{**1}	燃料輪 液化天然ガス (メタン) 15.1 714	送車両 液化石油ガス (プロパン) 15.1 888	石油の K 値	コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度 10 以上 40 未満の K 値 328 に 1,000 を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分 に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:ト ン)の数値の平方根の数値(貯蔵能力が一トン未満のものにあ っては、貯蔵洗力(単位:トン)の数値) 匹統式スの貯蔵洗	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備マは処理設備の平方根の数値(貯蔵能力がートン未満のものにあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:シン)の数値),圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値),圧縮ガスの常蔵設備にあっては 貯蔵能力(単位:トン)の数値),圧縮ガスの常蔵設備にあっては 貯蔵能力(単位:シン)の数値),圧縮ガスの常本 におけるガスの質量(単位:トン)に換算して得られた数値の平方	 貯蔵ガス 貯蔵量(t) 貯蔵ガスK値^{*1} 貯蔵設備W値^{*2} 	燃料輪 液化天然ガス (メタン) 15.1 714 4	送車両 液化石油ガス (プロパン) 15.1 888 4	石油のК値	 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度 10 以上 40 未満の K 値 328 に 1,000 を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:トン)の数値の平方根の数値(貯蔵能力が一トン未満のものにあっては,貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては貯蔵能力(単位:トン)の数値),圧縮ガスの常 	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備又は処理設備の平方根の数値(貯蔵能力が一トン未満のものにあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 ド蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 ド蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 ロシビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値(貯蔵ガス 貯蔵量(t) 貯蔵ガスK値*1 貯蔵設備W値*2 ※1 評価ガイド 請 	燃料輪 液化天然ガス (メタン) 15.1 714 4 己載値	送車両 液化石油ガス (プロパン) 15.1 888 4	石油の K 値 貯蔵設備又は 処理設備の W 値	 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度 10 以上 40 未満の K 値 328 に 1,000 を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:トン)の数値の平方根の数値(貯蔵能力がートン未満のものにあっては,貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては貯蔵能力(単位:立方メートル)を当該ガスの常用の温度及び圧力におけるガスの質量(単位:トン)に換算して得られた数値が一志 	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備又は処理設備のW値 貯蔵設備のW値 貯蔵能力(単位:トン)の数値(貯蔵能力がートン未満のものにあっては, 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値) におけるガスの質量(単位:トン)に換算して得られた数値の平方 根の数値(換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値	 貯蔵ガス 貯蔵量(t) 貯蔵ガスK値^{**1} 貯蔵設備W値^{*2} ※1 評価ガイド a ※2 貯蔵量は 1t 5 	燃料輸 液化天然ガス (メタン) 15.1 714 4 記載値 以上となるため,貯蔵量	送車両 液化石油ガス (プロパン) 15.1 888 4 4 の平方根の数値	石油の K 値 貯蔵設備又は 処理設備の W 値	 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度 10 以上 40 未満の K 値 328 に 1,000 を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:トン)の数値の平方根の数値(貯蔵能力が一トン未満のものにあっては,貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては貯蔵能力(単位:シン)の数値),圧縮ガスの常 用の温度及び圧力におけるガスの質量(単位:トン)に換算して得られた数値の平方根の数値(換算して得られた数値が一未満のものにあっては,当該換算して得られた数値) 	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備又は処理設備の平方根の数値(貯蔵能力がートン未満のものにあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値) レロシートル)を当該ガスの常用の温度及び圧力 におけるガスの質量(単位:トン)に換算して得られた数値の平方 根の数値(換算して得られた数値が一未満のものにあっては、当 該換算して得られた数値) 処理設備」 W=16 ^{1/2} =4 発電所敷地境界の道路から発電用原子炉施設までの距離	 貯蔵ガス 貯蔵量(t) 貯蔵ガスK値*1 貯蔵設備W値*2 ※1 評価ガイド 調 ※2 貯蔵量は1t 以 	燃料輪 液化天然ガス (メタン) 15.1 714 4 記載値 以上となるため,貯蔵量	送車両 液化石油ガス (プロパン) 15.1 888 4 4	石油の K 値 貯蔵設備又は 処理設備の W 値	 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度 10 以上 40 未満の K 値 328 に 1,000 を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:トン)の数値の平方根の数値(貯蔵能力が一トン未満のものにあっては,貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては貯蔵能力(単位:シン)の数値),圧縮ガスの常 備にあっては貯蔵能力(単位:シン)の数値),圧縮ガスの常 備にあっては貯蔵能力(単位:シン)の数値),圧縮ガスの常 町の温度及び圧力におけるガスの質量(単位:トン)に換算して得られた数値の平方根の数値(換算して得られた数値が一未満のものにあっては,当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備又は処理設備のW値 貯蔵設備のW値 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの常用の温度及び圧力 におけるガスの質量(単位:トン)に換算して得られた数値の平方 根の数値(換算して得られた数値が一未満のものにあっては、当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=16 ^{1/2} =4 離隔距離[m] 発電所敷地境界の道路から発電用原子炉施設までの距離 約811[m]	 貯蔵ガス 貯蔵量(t) 貯蔵ガスK値*1 貯蔵設備W値*2 ※1 評価ガイド 書 ※2 貯蔵量は 1t 以 	燃料輪 液化天然ガス (メタン) 15.1 714 4 記載値 以上となるため,貯蔵量	送車両 液化石油ガス (プロパン) 15.1 888 4 4	石油のK値 貯蔵設備又は 処理設備のW値	 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度 10 以上 40 未満の K 値 328 に 1,000 を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:トン)の数値の平方根の数値(貯蔵能力が一トン未満のものにあっては,貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては貯蔵能力(単位:シン)の数値),圧縮ガスの常置 備にあっては貯蔵能力(単位:立方メートル)を当該ガスの常用の温度及び圧力におけるガスの質量(単位:トン)に換算して得られた数値が一未満のものにあっては,当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=0.5 発電所出入口ゲートから発電用原子炉施設までの距離 	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備又は処理設備の平方根の数値(貯蔵能力がートン未満のものにあっては, 貯蔵設備のW値 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値),圧縮ガスの常用の温度及び圧力 におけるガスの質量(単位:トン)に換算して得られた数値の平方 根の数値(換算して得られた数値が一未満のものにあっては,当 該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=16 ^{1/2} =4 離隔距離[m] 発電所敷地境界の道路から発電用原子炉施設までの距離 約811[m]	 貯蔵ガス 貯蔵量(t) 貯蔵ガスK値*1 貯蔵設備W値*2 ※1 評価ガイド 書 ※2 貯蔵量は 1t 以 	燃料輪 液化天然ガス (メタン) 15.1 714 4 記載値 以上となるため,貯蔵量	送車両 液化石油ガス (プロパン) 15.1 888 4 4	石油の K 値 貯蔵設備 又は 処理設備の W 値 離隔距離 [m]	コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度10以上40未満のK値328 に1,000を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分 に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:ト ン)の数値の平方根の数値(貯蔵能力が一トン未満のものにあ っては,貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設 備にあっては貯蔵能力(単位:立方メートル)を当該ガスの常 用の温度及び圧力におけるガスの質量(単位:トン)に換算し て得られた数値の平方根の数値(換算して得られた数値が一未 満のものにあっては,当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=0.5 発電所出入口ゲートから発電用原子炉施設までの距離 約890m	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備又は処理設備のW値 貯蔵能加(単位:トン)の数値(貯蔵能力がートン未満のものにあっては, 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては, 貯蔵能力(単位:トン)の数値),圧縮ガスの常雨の温度及び圧力 におけるガスの質量(単位:トン)に換算して得られた数値の平方 根の数値(換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=16 ^{1/2} =4 離隔距離[m] 発電所敷地境界の道路から発電用原子炉施設までの距離 約 811[m]	 貯蔵ガス 貯蔵量(t) 貯蔵ガスK値**1 貯蔵設備W値*2 ※1 評価ガイド言 ※2 貯蔵量は1t り 	燃料輸 液化天然ガス (メタン) 15.1 714 4 記載値 以上となるため,貯蔵量	送車両 液化石油ガス (プロパン) 15.1 888 4 なの平方根の数値	石油のK値 貯蔵設備又は 処理設備のW値 離隔距離[m]	コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度10以上40未満のK値328 に1,000を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分 に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:ト ン)の数値の平方根の数値(貯蔵能力がートン未満のものにあ っては,貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設 備にあっては貯蔵能力(単位:立方メートル)を当該ガスの常 用の温度及び圧力におけるガスの質量(単位:トン)に換算し て得られた数値の平方根の数値(換算して得られた数値が一未 満のものにあっては,当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=0.5 発電所出入口ゲートから発電用原子炉施設までの距離 約890m	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロバンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備又は処理設備のW値 貯蔵設備のW値 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの常用の温度及び圧力 におけるガスの質量(単位:トン)に換算して得られた数値の平方 根の数値(換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=16 ^{1/2} =4 離隔距離[m] 発電所敷地境界の道路から発電用原子炉施設までの距離 約 811[m] (5) W 値の算出	 貯蔵ガス 貯蔵量(t) 貯蔵ガスK値^{**1} 貯蔵設備W値^{*2} ※1 評価ガイド = ※2 貯蔵量は 1t 以 	燃料輪 液化天然ガス (メタン) 15.1 714 4 記載値 以上となるため,貯蔵量	送車両 液化石油ガス (プロパン) 15.1 888 4 4	 石油のK値 貯蔵設備又は 処理設備のW値 離隔距離[m] (5) W値の算 	コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度 10 以上 40 未満の K 値 328 に 1,000 を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分 に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:ト ン)の数値の平方根の数値(貯蔵能力が一トン未満のものにあ っては,貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設 備にあっては貯蔵能力(単位:立方メートル)を当該ガスの常 用の温度及び圧力におけるガスの質量(単位:トン)に換算し て得られた数値の平方根の数値(換算して得られた数値が一未 満のものにあっては,当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=0.5 発電所出入口ゲートから発電用原子炉施設までの距離 約890m	
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロバンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備スは処理設備が、 貯蔵設備スは処理設備のW値 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの常用の温度及び圧力におけるガスの質量(単位:トン)に換算して得られた数値の平方根の数値(換算して得られた数値が一未満のものにあっては、当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=16 ^{1/2} =4 離隔距離[m] 発電所敷地境界の道路から発電用原子炉施設までの距離約 約 811[m] (5) W値の算出 最大規模の燃料輸送車両の積載量を貯蔵能力とし、W値を	 貯蔵ガス 貯蔵量(t) 貯蔵ガスK値*1 貯蔵設備W値*2 ※1 評価ガイド言 ※2 貯蔵量は1t 助 	燃料戦 液化天然ガス (メタン) 15.1 714 4 記載値 以上となるため,貯蔵量	送車両 液化石油ガス (プロパン) 15.1 888 4 4	石油のK値 貯蔵設備又は 処理設備のW値 離隔距離[m] (5) W値の算 貯蔵能力	コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度 10 以上 40 未満の K 値 328 に 1,000 を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分 に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:ト ン)の数値の平方根の数値(貯蔵能力が一トン未満のものにあ っては,貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設 備にあっては貯蔵能力(単位:立方メートル)を当該ガスの常 用の温度及び圧力におけるガスの質量(単位:トン)に換算し て得られた数値の平方根の数値(換算して得られた数値が一未 満のものにあっては,当該換算して得られた数値が一未 満のものにあっては,当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=0.5 発電所出入口ゲートから発電用原子炉施設までの距離 約890m	・条件の相違
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備又は処 コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備又は処 野蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値(貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値(貯蔵能力(単位:トン)の数値(貯蔵能力(単位:トン)に換算して得られた数値の平方根の数値(換算して得られた数値が一未満のものにあっては、当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=16 ^{1/2} =4 離隔距離[m] 発電所敷地境界の道路から発電用原子炉施設までの距離約811[m] (5) W 値の算出 最大規模の燃料輸送車両の積載量を貯蔵能力とし、W 値を 算出する。 W	貯蔵ガス 貯蔵量(t) 貯蔵ガスK値*1 貯蔵設備W値*2 ※1 評価ガイド言 ※2 貯蔵量は1t以	燃料輪 液化天然ガス (メタン) 15.1 714 4 記載値 以上となるため,貯蔵量	送車両 液化石油ガス (プロパン) 15.1 888 4 4 むの平方根の数値	石油のK値 貯蔵設備又は 処理設備のW値 離隔距離[m] (5) W値の算 貯蔵能力 の数値とす	コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度 10 以上 40 未満の K 値 328 に 1,000 を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分 に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:ト ン)の数値の平方根の数値(貯蔵能力がートン未満のものにあ っては,貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設 備にあっては貯蔵能力(単位:立方メートル)を当該ガスの常 用の温度及び圧力におけるガスの質量(単位:トン)に換算し て得られた数値の平方根の数値(換算して得られた数値が一未 満のものにあっては,当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=0.5 発電所出入ロゲートから発電用原子炉施設までの距離 約 890m	 ・条件の相違 【柏崎 6/7】
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条別歳第二に掲げる数値 じて次に掲げる数値 貯蔵設備スは処 理設備のW値 貯蔵能力(単位:トン)の数値), 圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値), 圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値), 圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:トン)の数値), 圧縮ガスの貯蔵設備にあっては、 貯蔵能力(単位:トン)の数値), 圧縮ガスの貯蔵設備のW面 (換算して得られた数値) レ理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=16 ^{1/2} =4 離隔距離[m] 発電所敷地境界の道路から発電用原子炉施設までの距離 約 811[m] (5) W 値の算出 最大規模の燃料輸送車両の積載量を貯蔵能力とし, W 値を 算出する。 積載量(貯蔵能力)=16[t]	貯蔵ガス 貯蔵量(t) 貯蔵ガスK値*1 貯蔵設備W値*2 ※1 評価ガイド言 ※2 貯蔵量は1t 切	燃料戦 液化天然ガス (メタン) 15.1 714 4 記載値 以上となるため,貯蔵量	送車両 液化石油ガス (プロパン) 15.1 888 4 4 むの平方根の数値	石油のK値 貯蔵設備又は 処理設備のW値 離隔距離[m] (5) W値の算 貯蔵能力 の数値とす 積載量	コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度 10 以上 40 未満の K 値 328 に 1,000 を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分 に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:ト ン)の数値の平方根の数値(貯蔵能力がートン未満のものにあ っては,貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設 備にあっては貯蔵能力(単位:立方メートル)を当該ガスの常 用の温度及び圧力におけるガスの質量(単位:トン)に換算し て得られた数値の平方根の数値(換算して得られた数値が一未 満のものにあっては,当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=0.5 発電所出入口ゲートから発電用原子炉施設までの距離 約 890m	 ・条件の相違 【柏崎 6/7】 地域特性を踏まえた
石油のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備又は処 理設備のW値 貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては貯蔵能力(単位:トン)の数値の平方根の数値(貯蔵能力がートン未満のものにあっては、貯蔵能力(単位:トン)の数値),圧縮ガスの常用の温度及び圧力におけるガスの質量(単位:トン)に換算して得られた数値の平方根の数値(換算して得られた数値が一未満のものにあっては、当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=16 ^{1/2} =4 離隔距離[m] 発電所敷地境界の道路から発電用原子炉施設までの距離約11[m] (5) W 値の算出 最大規模の燃料輸送車両の積載量を貯蔵能力とし、W 値を算出する。 積載量(貯蔵能力)=16[t] W=16 ^{1/2} =4	貯蔵ガス 貯蔵量(t) 貯蔵ガスK値**1 貯蔵設備W値*2 ※1 評価ガイド言 ※2 貯蔵量は1t堤	燃料戦 液化天然ガス (メタン) 15.1 714 4 記載値 以上となるため,貯蔵量	送車両 液化石油ガス (プロパン) 15.1 888 4 4 むの平方根の数値	石油のK値 貯蔵設備又は 処理設備のW値 離隔距離[m] (5) W値の算, 貯蔵能力 の数値とす 積載量 W=0.5	コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの常用の温度 10 以上 40 未満の K 値 328 に1,000 を乗じた値) コンビナート等保安規則第5条貯蔵設備又は処理設備の区分 に応じて次に掲げる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:ト ン)の数値の平方根の数値(貯蔵能力がートン未満のものにあ っては,貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設 備にあっては貯蔵能力(単位:立方メートル)を当該ガスの常 用の温度及び圧力におけるガスの質量(単位:トン)に換算し て得られた数値の平方根の数値(換算して得られた数値が一未 満のものにあっては,当該換算して得られた数値が一未 満のものにあっては,当該換算して得られた数値) 処理設備:処理設備内にあるガスの質量(単位:トン)の数値 W=0.5 発電所出入口ゲートから発電用原子炉施設までの距離 約890m	 ・条件の相違 【柏崎 6/7】 地域特性を踏まえた 評価条件の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(6) 危険限界距離の算出 次の式から危険限界距離を算出する。ここで算出した危険限 界距離が燃料輸送車両と発電用原子炉施設の間に必要な離隔	(2) 危険限界距離の算出 <u>評価ガイドに基づき,下式より</u> 危険限界距離を算出した結果, 危険限界距離が離隔距離以下であることを確認した。評価結果	(6) 危険限界距離の算出 次の式から危険限界距離を算出する。ここで算出した危険 限界距離が燃料輸送車両と発電用原子炉施設の間に必要な離	
距離となる。 $X = 0.04\lambda \cdot \sqrt[3]{K \times W}$	を第 3-2 表に示す X=0.04×14.4 $\sqrt[3]{(K×1,000×W)}$	隔距離 <u>となる。</u> X = 0.04 $\lambda \cdot \sqrt[3]{K \times W}$	
X:危険限界距離[m], λ:換算距離 14.4[m·kg ^{-1/3}], K:石油 類の定数, W:設備定数 K=888000, W= <u>4</u> として,危険限界距離を求める。 X= <u>約 88[m]</u>	X:危険限界距離(m),K:石油類の定数(-),W:設備定数(-) 第3-2表外壁への燃料輸送車両爆発影響評価結果 想定爆発源 ガス種類 容量 (m) 燃料輸送車両 メタン 15.1 88 450 ※ 防護対象施設のなかで国道245号線から最も離隔距離が短いタービン建屋 までの距離	X:危険限界距離[m], <u>λ:換算距離14.4[m·kg^{-1/3}]</u> , K:石油類の定数,W:設備定数, <u>K=888,000,W=0.5として,危険限界距離を求める。</u> <u>X=約44[m]</u>	
 (7) 爆発による影響評価結果 以上の結果から,燃料輸送車両において爆発が発生した場合 を想定したとしても,離隔距離(約 811m)が危険限界距離(約 88m)以上であることから,発電用原子炉施設に爆風圧による影響はないと評価する。 		(7) 爆発による影響評価結果 以上の結果から,燃料輸送車両において爆発が発生した場 合を想定したとしても,離隔距離(約890m)が危険限界距離 (約44m)以上であることから,発電用原子炉施設に爆風圧 による影響はないと評価する。	
 4. 燃料輸送車両の飛来物の影響評価 「石油コンビナートの防災アセスメント指針」(平成 25 年 3 月 消防庁特殊災害室) *に基づき,飛来物の最大飛散距離の 評価を行ったところ,最大飛散距離に対し拍崎刈羽原子力発 電所までの離隔距離が評価上必要となる距離<u>以下</u>であった。 このため,飛来物を想定した上での詳細な評価を実施した ところ,飛来物は発電用原子炉施設に衝突することはない。 	4. 燃料輸送車両の <u>爆発</u> 飛来物影響評価	 4. 燃料輸送車両の飛来物の影響評価 「石油コンビナートの防災アセスメント指針」(平成25年3月 消防庁特殊災害室)*に基づき,飛来物の最大飛散距離の 評価を行ったところ,最大飛散距離に対し,島根原子力発電 所までの離隔距離が評価上必要となる距離以上であった。 このため,飛来物は発電用原子炉施設に衝突することはない。 ※:石油コンビナート等特別防災区域を有する都道府県が防 	 ・評価結果の相違 【柏崎 6/7】 条件の相違に伴う評 価結果の相違
※:石油コンビナート等特別防災区域を有する都道府県が防 災計画を作成するに <u>当</u> たって,災害の想定をできるだけ客 観的かつ現実的に行うための評価手法 を示した指針		災計画を作成するに <u>あ</u> たって,災害の想定をできるだけ 客観的かつ現実的に行うための評価手法を示した指針	
第4-1 表 飛来物の評価条件 評価条件 貯蔵力ス 液化石油ガス 貯蔵量 16t 爆発形態 高圧ガスの漏えい後、引火によりガス爆発が発生し、飛来物が発生		第4-1表 飛来物の評価条件 戸蔵ガス LPガス 評価条件 貯蔵量 0.5トン 爆発形態 高圧ガスの漏えい後、引火によりガス爆発が発生し、飛来物が発生	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(1) 飛来物の最大飛散距離の算出方法	4.1 飛来物の最大飛散距離の簡易評価	(1) 飛来物の最大飛散距離の算出方法	
「石油コンビナートの防災アセスメント指針」に基づき,	国道245号線を通る加圧貯蔵の燃料輸送車両について、「石	「石油コンビナートの防災アセスメント指針」に基づき,	
容器の破損による 破片の飛散範囲を以下の式にて算出する。	油コンビナートの防災アセスメント指針」(平成 25 年 3 月 消	容器の破損による破片の飛散範囲を以下の式にて算出する。	
	防庁特殊災害室)に基づき、下式よりタンクの破損による破片		
	の飛散範囲を算出した。		
$L = 465M^{0.10}$	$L = 465 M^{0.10}$ (容積 5m ³ 以上の容器)	$\underline{L}=90M^{0.333}$	
L:破片の最大飛散範囲[m], M:破裂時の貯蔵物質量[kg]	L:破片の最大飛散範囲, M:破裂時の貯蔵物質量	L:破片の最大飛散範囲[m], M:破裂時の貯蔵物質量[kg]	
$L = 465 \times (16000)^{0.10} = 122423$		$L = 90 \times 500^{0.333} = 712.85$	
		となり,飛来物の最大飛散距離Lは約713mとなる。	
となり,飛来物の最大飛散距離 L は約 <u>1,225m</u> となる。			
	算出したタンク破片の飛散距離は 1,218m であり発電所敷地		・評価結果の相違
	に到達することを確認した。このため、より現実的な飛来物形		【柏崎 6/7,東海第二】
	<u>状等の想定を踏まえた詳細評価を実施することとした。</u>		条件の相違に伴う評
			価結果の相違
(2) 飛来物の最大飛散距離の詳細な評価	4.2 飛来物の最大飛散距離の詳細評価		
上記「石油コンビナート防災アセスメント指針」に基づく	上記「石油コンビナートの防災アセスメント指針」に基づく		
<u> 飛散範囲の推定式によると、飛来物が発電用原子炉施設に到</u>	飛散範囲の推定式によると,飛来物が発電用原子炉施設に到達		
達するおそれがあることから,燃料輸送車両(第 4-1 図参照)	<u>するおそれがあることから,燃料輸送車両(第4.2.2-1図参照)</u>		
から発生すると考えられる飛来物を想定した上での評価を行	から発生すると考えられる飛来物を想定した上での評価を行っ		
<u>った。</u>	<u>teo</u>		
飛来物の想定にあたり,BLEVE 現象 ^{※1} を引き起こす可能性	<u>飛来物の想定に当たり、BLEVEを引き起こす可能性があ</u>		
がある液化石油ガス輸送車両のうち積載量が国内最大クラス	る加圧貯蔵の燃料輸送車両のうち積載量が国内最大クラスの構		
ものの構造図をもとに、飛来物化することが想定される爆風	<u>造図を基に、飛来物化することが想定される爆風の影響を直接</u>		
の影響を直接受ける可能性がある部位を選定したところ、タ	受ける可能性がある部位を選定したところ、タンク本体(鋼板)		
<u>ンク本体・はしご・バンパー部が抽出された。台車部等タン</u>	<u>及びはしご(鋼製パイプ)を抽出した。</u>		
<u>ク下部に位置する部品は、爆発力の方向をふまえると、発電</u>	台車部などタンク下部に位置する部品は,爆発力の方向を踏		
用原子炉施設に到達せず, また横 転した場合を考えても, 下	<u>まえると,発電用原子炉施設に到達せず,また横転した場合を</u>		
部の部品の飛散方向は発電所周辺道路の地形の高まりや森林	考えても、タンク下部の部品の飛散方向は発電所周辺道路の地		
の樹木に干渉し発電用原子炉施設に到達しないことから影響	形の高まりや森林の樹木に干渉し発電用原子炉施設に到達しな		
はない。トレーラーについては、鋼板で構成されており、そ	いことから影響はない。		
の大きさからタンク本体の評価に包絡される。	抽出した飛来物に対して, 第 4.2.2-1 図のとおり燃料輸送車		
抽出した飛来物に対して,第 4-2 表のとおり液化石油ガス	両の構造図,車両制限令に定められる限界値,「原子力発電所の		
輸送車両の構造図,車両制限令に定められる限界値,「原子力	<u> 竜巻影響評価ガイド」に例示の飛来物から、包絡的な飛来物を</u>		
発電所の竜巻影響評価ガイド」に例示の飛来物から、包絡的	設定した。なお、現実的には以下に示す車両の部品は存在しな		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
な飛来物を設定する。	いが、飛散距離を保守的に評価するため、存在すると仮定して		
はしご及び, バンパーの長さはともに 2.5m 程度である。	評価を実施する。		
棒状の物体は長さが大きくなると飛距離が大きくなる傾向に	トラクターについては、鋼板で構成されており、その大きさ		
あることから、保守的な評価として鋼製パイプ及び鋼製材に	からタンク本体の評価に包絡される。		
ついては車両制限令に定められる車両長さの最大限度の	はしご (鋼製パイプ)の長さは2.5m程度である。棒状の物体		
16.5m での評価を実施する。	は長くなるほど飛散距離が長くなる傾向にあることから、保守		
また、タンク板の破片としては鏡板部分の破損を想定し	的な評価としてはしご(鋼製パイプ)については車両制限令に		
<u>2.5m×2.5m 程度が最大と考えられるが,平板は幅,長さが大</u>	定められる車両長さの最大限度の17.0mでの評価を実施する。		
<u>きくなるほど,飛距離が大きくなる傾向にあることから,保</u>	また、タンク本体(鋼板)の破片としては鏡板部分の破損を		
守的な評価としてタンクの半分が破片となる想定をする。幅	想定し2.5m×2.5m程度が最大と考えられるが、平板状の物体は		
は車両制限令に定められる車両の幅の最大限度の 2.5m,長さ	幅,長さが長くなるほど,飛散距離が長くなる傾向にあること		
を車両制限令に定められる車両長さの最大限度の16.5mの平	から、保守的な評価としてタンクの半分が破片となる想定をす		
板について評価を実施する。厚さについては,構造図から	る。幅は車両制限令に定められる車両の幅の最大限度の 2.5m,		
0.01mとする。	長さを車両制限令に定められる車両長さの最大限度の 17.0mの		
竜巻飛来物の飛行解析モデル(Simiu and Cordes, 1976)	平板での評価を実施する。厚さについては,構造図*から0.01m		
(東京工芸大, 2011)(江口ら, 2014 及び 2015)と同じモデ	とする。		
ルを使用し、空中では物体はランダムに回転すると仮定し、	※ 高圧ガスタンクローリーの事故防止について(高圧ガス)		
外力としては重力及び平均抗力(各方向に平均化した抗力係	保安協会)		
数と投影面積の積に比例して定義されるもの)を受けるもの			
とする。	4.2.1 タンク爆発により発生する飛来物の最高速度の算出		
「BLEVE 時の破片最大速度は 150-200m/s」(Handbook of	タンク爆発により発生する飛来物の最高速度の算出は、別紙		
Hazardous Materials Spills Technology の 22.4.4 節)で	3.3と同様に「Methods for the Calculation of Physical Effects		
あることから、初期条件として地上にあるタンクローリ破片	(TNO Yellow Book, CPR14E(Part 1),3rd edn)」に基づき求めた。		
の初期速度を 200m/s とする。また,感度解析の結果より,	以下に抜粋を示す。		
もっとも遠くまで到達する放出角を鋼製パイプ及び鋼製材は	Step 3a2 Calculate the liberated energy, E_{av}		
<u>31°, 鋼板は 30°とする。</u>	Calculate the liberated energy in accordance with the method for blast effects, see		
想定飛来物の諸元及び,飛散距離の計算結果を第 4-2 表に	paragraph 7.5.2.		
示す。離隔距離 811m は,最大飛散距離である鋼製パイプの	Step 3a3 Calculate initial velocity, v _i		
550m を上回ることから,飛来物が発電用原子炉施設に到達す	This initial velocity of a fragment can be calculated by using of the following equation:		
ることはなく、影響はない。	$v_i = \sqrt{\frac{2 \times A_{ke} \times E_{av}}{M}} $ (m/s) (7.15)		
※1:BLEVE 現象(沸騰液膨張蒸気爆発):液化ガスを貯蔵 するタンク火災等で、タンクが破損した場合に急激に 液化ガスが気化することに伴う爆発現象。	where E_{av} = liberated energy [J] M_v = total mass of empty vessel [kg] A_{ke} is the fraction of the liberated energy that goes into kinetic energy of the fragments. It depends on the situation. Upper limit $A_{ke} = 0.6$ Rough estimate $A_{ke} = 0.2$ BLEVE $A_{ke} = 0.04$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第	写二発電所(2018.9.12版))	島根原子力発電所 2号炉	備考
	<u>なお, タンク材重</u>	量については、タンク体種	責が最大の 33m ³ と		
	なる円筒型のタンク	7形状を想定して算出した	た。評価条件を第		
	4.2.1-1 表に示す。				
	$V = \pi r^2 L \Rightarrow 1$	$L = \frac{V}{2}$			
▲ ▲ 約		π r 2			
	$M = 2 \pi r L t$	$\rho + 2\pi r t \rho$	、 、		
	V:タンクの体積	(33m ³), L:タンク長さ() 広天 a x k 保 (たってい) 1	m)		
		低面の半径(1.25m) ^{*1}	ずよ (0_01_) ※2		
レーラー。 /10/200 連結部。 収納箱。	M:ダンクの貨重	(kg), t : ダンク外層の厚 (7 950kg /m ³) ※ ³	2 (0.01m) ~ 2		
	 ρ:タンク材密度 ※1 車両制限 	(7,830Kg/m ⁻) ⁽¹⁾ 今 (請 載物)	両の枳字其滩(東		
<u> </u>	<u>※1 単岡嗣限</u> 両) に ト	17 (積載初), 道路運送単 り制限される最大幅 9 5m	応じ 休女 奉卓 (単) か 直径 と 相定 した		
第 4-2 表 想定飛来物の諸元・飛散距離	<u> </u>	2 (19) (19) (19) (19) (19) (19) (19) (19)			
	<u>※</u> 2 高圧ガス	<u>ー</u> タンクローリーの事故防	止について(高圧		
飛来物の強迫 調要ハイン 調要約 調吸 (はしご) (バンパー) (タンク本体)	ガス保安	協会)に記載のタンク厚	さ (0.012m) を参		
サイズ (m) 長さ×直径 長さ×幅×奥行 長さ×幅×厚さ 16 $5^{\ast1} \times 0.05^{\ast2}$ 16 $5^{\ast1} \times 0.2^{\ast3} \times 0.2^{\ast3}$ 16 $5^{\ast1} \times 2.5^{\ast1} \times 0.01^{\ast4}$	考に,漢	いほど評価上保守的にな	なるため,厚さを		
留量 (kg) 69.3 ^{※2} 530.4 ^{※3} 3238.1	0.01m に	設定			
飛散距離(m) 550 505 404 離隔距離(m) 811	※3 合金鋼の	密度			
※1:車両制限令に定められる車両の幅2.5m,長さ16.5m(高速自動車国道を通行す					
るモミトレーフ連結単)の最大限度。 ※2:鋼製パイプの直径及び質量については、「原子力発電所の竜巻影響評価ガイド」	第 4.2.1-1	表 評価対象タンクの評	価条件		
を参考に設定した。直径 0.05m は,構造図上のはしごの直径約 0.04m を包絡す		貯蔵容量 タンク体積※1	タンクの質量*2		
※3:鋼製材の幅,奥行及び質量は,「原子力発電所の竜巻影響評価ガイド」を参考に	タンクの種類 内容物	(m^3) (m^3)	M (kg)		
設定した。構造図上のバンパー部の幅約 0.3m, 奥行約 0.2m と同程度である。 ※4:積載 16t 液化石油ガスタンクローリの構造図よりタンク板厚 10mm			(18)		
	燃料輸送車両 LPG	30 33	4. 9×10^{3}		
	※1 消防法に基づ ※2 タンク体積力	 ジき空間容積を 10%として算出 ³ 33m ³ となる円筒形状タンクを相定			
1) Simiu, E. and Cordes, M., NBSIR 76-1050 fornado-Borne					
MISSILE Speeds (1970). 2) 東京工云八子, 平成 21~22 平	爆発に上り発生す	スェネルギボ ある割合	で孤立物に移行す		
反応1万女主盗盗祠査研九(十成 22 中反) 电をによう応う 力施設への影響に関する調査研究 独立行政注人原子力安全	<u> 禄先により先主</u> ろと仮定して最高速	<u>「「「「」」」」で、「」」のです。</u> 「」」でありました。 「自己に用	いた式け以下一評		
基盤機構委託研究成果報告書(2011)	<u>していたいで、 価結果は第4.2.1-2</u>	<u>表のとおり。</u>			
3) 江口譲, 杉本聡一郎, 服部康男, 平口博丸, 竜巻による物体の					
浮上・飛来解析コード TONBOS の開発, 電力中央研究所 研究	$\mathbf{E} = \frac{\left(\rho_1 - \rho_2\right)}{\left(\rho_1 - \rho_2\right)}$	V			
報告 N14002 (2014).	$\gamma = 1$				
4) 江口譲, 杉本聡一郎, 服部康男, 平口博丸,原子力発電所での					
竜巻飛来物速度の合理的評価法 (Fujita の竜巻モデルを用い	$v = \left \frac{2 A E}{M} \right $				
た数値解析コードの妥当性確認),日本機械学会論文集,	V M				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
Vol. 81, No. 823, [DOI: 10.1299/transjsme.14-00478]	v : 飛来物の最高速度 (m/s), M : タンクの質量(kg)		
(2015).	E:タンク爆発により発生するエネルギ(J)		
5) J. Casal, J. Arnaldos, H. Montiel, E. Planas-Cuchi, and J.	ρ1:タンク内の圧力(3.4MPa ^{※1}),ρ2:大気圧力(0.1MPa)		
A. Vı lchez,	V:タンクの体積 (33m ³), γ:比熱比 (1.1)		
Modeling and Understanding BLEVEs, in Handbook of	A:爆発エネルギの飛来物への移行係数(0.04 ^{*2})		
Hazardous Materials Spills Technology (ed.:M. Fingas),	※1 高圧ガス例示基準を参考とし,安全弁設定圧力×1.2		
chapter 22 (2002)	と設定		
	st 2 Methods for the Calculation of Physical Effects		
	(TNO Yellow Book, CPR14E(Part 1),3rd edn), van den		
	Bosch, C. J. H. & Weterings		
	第4.2.1-2表 飛来物の最高速度の評価結果		
	爆発エネルギ 飛来物の最高速度		
	<u>4.2.2</u> 最大飛散距離の算出		
	空中では物体はランダムに回転すると仮定し、外力としては		
	重力及び、平均抗力(各方向に平均化した抗力係数と投影面積		
	の積に比例して定義されるもの)を受けるものとし、放出角は		
	<u>感度解析の結果,最も遠くまで到達する角度とした。</u>		
	水平方向:m $\frac{dv_x}{dt}$ =F $\frac{v_x}{V(t)}$		
	鉛直方问: $m - \frac{1}{dt} = F - \frac{1}{V(t)} - m g$		
	$F = -\frac{1}{2} C_{D} A \rho V (t)^{2}$		
	$V(t) = \sqrt{v_x^2 + v_y^2}$		
	m・飛來物の質量(kg) F・空気抵抗にトス外力(-)		
	σ · 新力加速度(9.8m $/ e^2$) CD· 法休益力 经数 (-)		
	 A · 飛来物の速度方向に対する投影面積 (m²) 		
	V: 飛来物の速度(m/s). の・空気密度(1.2kg/m ³)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.	9.12版)	島根原子力発電所	2号炉	備考
	燃料輸送車両概要図を第 4.2.2-1 [図に,想定飛来物の諸元及			
	び,飛散距離の計算結果を第4.2.2-1	l 表に示す。			
	17m タンク本体 (はし) 2.5m 年4-2-1 図 (燃料論) (まし)				
	<u>第 4. 2. 2-1 表</u> 想定飛来物の	諸元・飛散距離			
	飛来物の種類 鋼製パイプ (はしご)	鋼板 (タンク本体)			
	サイズ (m) 長さ×直径 $(17.0^{*1} \times 0.05^{*2})$	長さ×幅×厚さ (17.0 ^{*1} ×2.5 ^{*1} ×0.01 ^{*4})			
	質量 (kg) 71 ^{※2}	3, 336 ^{** 3}			
	飛散距離 (m) 435	330			
	離隔距離(m) (国道245号線から最も近い発電用	450 原子炉施設(タービン建屋)までの距離)			
	 ※1 車両制限令第3条3項及び通達で定められた指定道 大限度(長さ17.0m,幅2.5m) ※2 鋼製バイプの直径及び,質量については、「原子力 設定した。直径0.05mは,構造図上のはしごの直径 ※3 鋼板の質量については、「原子力発電所の竜巻影響 ※4 「高圧ガスタンクローリーの事故防止について」(板厚0.01mと設定した。 	路を通行できるセミトレーラー車両の最 発電所の竜巻影響評価ガイド」を参考に 約0.04mを包絡する。 評価ガイド」を参考に設定した。 高圧ガス保安協会)の構造図よりタンク			
(3) 飛来物影響評価結果			(2) 飛来物影響評価結果		
燃料輸送車両からの飛来物を想定した上での評価を実施し	鋼製パイプの評価結果である最大利	後散距離 435m は,離隔距離	燃料輸送車両からの飛来物を想定	ミしたうえでの評価を実施	
たところ,離隔距離(約 <u>811m</u>)が最大飛散距離(約 <u>550m</u>)	450mを下回ることから,燃料輸送車	両の爆発飛来物により評価	したところ,離隔距離(約890m)カ	於最大飛散距離(約713m)	
を上回る結果となった。したがって、発電所周辺道路で燃料	対象施設の安全機能を喪失することに	ttru.	を上回る結果となった。したがって	、,発電所の敷地境界(発	
輸送車両が事故等により爆発し、なおかつその飛来物が発電			電所出入口ゲート)で燃料輸送車両	前が事故等により爆発し,	
用原子炉施設に衝突することはなく,影響はない。			なおかつその飛来物が発電用原子炉	「施設に衝突することはな	
			く影響はない。		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		参考資料 4-1			
燃料	物性値について	-			・設備の相違
		-			【柏崎 6/7】
燃料輸送車両の火災影響	評価では、爆発	による影響が大きいこ			島根2号炉は、発電所
とを考慮し 最大クラスの	液化石油ガス輸	送車両が火災・爆発を			敷地周辺の道路状況や
起こした場合を想定してい	ろ、液化石油ガ	スはガソリンに対して			運用状況を踏まえ プ
<u>ににしていため合いたとして</u>	度も大きくたろ	ため保守的であろが			ロパンガスボンベを輸
<u>電子が速度が速く</u> 燃焼時	<u>良い穴に、なっ</u> 問が短い この	ため、燃料積載量が大			送している東面につい
きいガソリンを搭載したタ	<u> ハクローリと比</u>	· 較し 相定の妥当性に			て影響評価を実施
ついて評価する					てが昔时間と天心
証価に以亜ねデータない	下にデナ				
計価に必要なノークを以					
	°\/ 1. + 1\ 1\ \/	の証価を供			
<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
燃料の種類 	プロパン 16	$\frac{\pi}{23} \frac{4}{30} \frac{30}{100}$			
[[[w/m ²] ¹⁾	74×10^{3}	58×10^{3}			
質量低下速度[kg/m ² ·s] ²⁾	0.099	0.055			
燃料輸送車両投影面積[m²]	$41.25^{3)}$	$41.25^{3)}$			
1) 評価ガイド付属書 B より					
2) NUREG-1805 より	A Mr - A				
3) 単両長 16.5[m] : 単両制限 ³ 車両幅 2.5[m] : 道路運送	〒	二条			
水災に上ス執影響(倍陥	品距離) け 9 (5	うから(9)と同様に管出			
大人によう旅行者(他)		がりのと同様に并且			
笠 0 丰。	を除死敵の管山	1 注 田			
<u> </u>	10	而大			
	プロパン	ガソリン			
_ 危険距離[m]*	約 32m	約 28m			
※:最大値(燃料移送ボンブの場	合)を記載				
以上の結果から、プロパ	ンとガソリンの	燃料物性値の相違によ			
る評価結果への影響はない。	。なお,離隔距	離(約 811m)が危険距離			
以上であることから、発電	用原子炉施設に	熱影響をおよぼすこと			
はないと評価できる。					
					<u> </u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
参考資料 4-2			
燃料輸送車両の飛来物による影響評価について			・設備の相違
			【柏崎 6/7】
<u>1. はじめに</u>			島根2号炉は,発電所
柏崎刈羽原子力発電所では、燃料輸送車両の爆発時の飛来物の			敷地周辺の道路状況や
影響について、離隔距離が十分であることから影響はないとして			運用状況を踏まえ,プ
いる。一方,「石油コンビナート防災アセスメント指針」に基づく			ロパンガスボンベを輸
評価によると,離隔距離(811m)が,最大飛散距離(1,225m)以下			送している車両につい
であることから、参考として、頻度及び影響度の観点からリスク			て影響評価を実施
について評価する。			
2. 燃料輸送車両の飛来物による影響がないことについて			
(1) 発電所周辺道路の交通状況			
発電所周辺道路としては国道 352 号線があるが,発電所付近			
は工業地域を走行する道路ではなく、より高規格で直線的な線			
形の道路である国道116号線に加え、国道8号線や高速自動車			
国道が並走しているため、新潟市(新潟東港地区・新潟西港地			
区)-(刈羽村・柏崎市)-上越市(直江津地区)等のコンビ			
<u>ナート間の通過交通に積極的に使用される道路ではない。また,</u>			
発電所周辺 10km 以内において液化石油ガスの許可申請を実施			
している 15 事業所に聞き取りを実施したところ, 回答を得ら			
れた 12 事業所のうち, 定常的に敷地付近の主要な道路である国			
352 号線の発電所付近を通過するタンクローリを取扱い,受け			
入れするのは 1 事業所のみであり, 繁忙期においても週1回程			
度の低頻度である。			
(2) 爆発時の発電用原子炉施設への影響			
燃料輸送車両は, 高圧ガス保安法等の規制のもと製造・維持・			
管理されており、信頼性が確保されているが、万が一燃料輸送			
<u>車両の爆発により飛来物が発生したとしても、周辺道路からの</u>			
<u>離隔距離は 811m 以上であり, BLEVE 現象^{※1} により容器が破損</u>			
した場合の最大飛散範囲 1,225m に及ばないものの一定の離隔			
距離が確保されており影響は緩和される。発電用原子炉施設に			
衝突するものは多くても数個程度,また重量も小さいものであ			
<u>ると考えられ、建屋が一定の頑健性を持っていることを踏まえ</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
ると、同時に複数の設備に影響を与えることは考え難い。した		
がって, 広範な影響を及ぼす可能性のある地震, 津波を初めと		
する自然現象・人為事象に比べ、影響が小さいと言える。		
また、次項に述べるような確率論的な考察によっても、リス		
クが小さいと言える。		
以上のように、発電所周辺においては燃料輸送車両の交通が少		
ないことに加え、最大飛距離には及ばないものの一定の離隔が		
あること、また事象が生じた際の影響が小さく一部設備にとど		
まることから、燃料輸送車両の爆発に伴う飛来物による発電用		
原子炉施設への影響はないと判断できる。		
※1:BLEVE 現象 (沸騰液膨張蒸気爆発):液化ガスを貯蔵する		
タンク火災等で、タンクが破損した場合に急激に液化ガス		
が気化することに伴う爆発現象。		
3. 燃料輸送車両の飛来物による影響の確率論的考察について		
前項で述べたとおり、燃料輸送車両が爆発した際の影響は小さ		
く無視できると考えられるが、本項では、過去の事故発生頻度を		
用いて燃料輸送車両の爆発飛来物が発電用原子炉施設へ損傷を与		
える可能性がある確率を算出しても極めて低い値となることを確		
認する。		
(1) 評価条件		
 ・評価対象は原子炉建屋・コントロール建屋・廃棄物処理建屋・ 		
海水熱交換器区域・軽油タンクとする。		
・敷地付近の主要道路である国道 352 号線を通行する燃料輸		
送車両の火災を想定する。		
・積載物としては, BLEVE 現象を引き起こす, 液化石油ガスを		
想定する。		
・燃料積載量は、液化石油ガス輸送車両の中で最大クラスの		
<u>16t を想定する。</u>		
(2) 評価方法		
評価に使用する各パラメータについて第 1 表に示す。		
a. 新潟県内での燃料輸送車両の爆発事故発生頻度		
発電用原子炉施設に影響を及ぼすような爆発を想定する		
車両として, BLEVE 現象を引きおこすおそれがある, 可燃		

号炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
性の高圧ガスを積載した車を考える。新潟県内では平成 16			
年から平成 26 年までの 10 年間で 3 件の, 可燃性の高圧			
ガスを積載したタンクローリに関する事故が発生してい			
る。これらは、いずれも漏えい等に留まり爆発事故には至			
っていないが、保守的な値として新潟県内において燃料輸			
送車両の爆発事故が発生する頻度を次のように求める。			
3 / 10 = 0.3[件/年]			
b. 周辺道路での燃料輸送車両の爆発事故発生頻度			
「石油コンビナートの防災アセスメント指針」に基づく,			
容器の破損による破片の飛散範囲 L は以下のとおり約			
<u>1.3km である。</u>			
$L = 465 \times (16,000)^{0.10} = 1,224.23 \text{ [m]}$			
したがって、爆発事故が発生した際に、飛来物が発電用原			
子炉施設に影響を与え得る道路延長は第1図のとおり、約			
<u>2.3km である。</u>			
周辺道路での燃料輸送車両の爆発事故発生頻度は、県内の			
燃料輸送車両の事故が, すべて新潟県内の高速自動車国道 (実			
延長 379.5km)あるいは一般国道(実延長 1781.9km)で発生			
したと仮定し算出する。高速自動車国道及び一般国 道の実延			
長は 379.5 + 1781.9 = 2161.4 km から 2000km, 周辺道路の			
長さは約 2.3km から 3km とそれぞれ保守的に設定する。			
周辺道路での燃料輸送車両の爆発事故発生頻度は次のよう			
になる。			
b.3 <u>×3 / 2000 = 4.5×10⁻⁴ [件/年]</u>			
<u>c. 飛来物の発電用原子炉施設衝突確率</u>			
燃料輸送車両の爆発時に飛来物が発電用原子炉施設に到			
達する確率は、燃料輸送車両を中心とする半径が最大飛距			
離 1,225m の円内に飛来物が等しい確率で落下すると仮定			
し算出する。評価対象施設の合計面積は, 11843.5m ² である			
から飛来物の発電用原子炉施設衝突確率は 11843.5 / (π			
×1225 ²) = 2.51×10 ⁻³ となる。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(3) 評価結果			
以上を踏まえると、燃料輸送車両による爆発により発電用			
原子炉設備に影響を与える確率は,			
<u>4.5×10⁻⁴×2.5×10⁻³ = 1.1 ×10⁻⁶ 程度と算出される。</u>			
(4) 結論			
燃料輸送車両が爆発しその飛来物が、発電用原子炉施設に			
<u>落下する確率は1.1×10⁻⁶ と極めて小さく,稀にしかおこら</u>			
ない。また建屋による防護にも期待できることから影響は無			
視できる。			
原子炉建屋 コントロール建屋 マントロール建屋			
廃棄物処理建産産 本素美機器区域 軽油タンク			
ký 1. ško			
道路延長約 2.3km			
(トンネル部除く)			
第 1 図 敷地内概要図			

柏崎刈羽原子力発電所	6/7長	·炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 1	表 各種入	力条件			
		備考			
燃料輸送車兩爆發頻度	ク 0.2 [/年]				
※杆轴达中间泰光强度	0.3 [/+]	中成10年9年成20年6月10年			
		前に新福泉子での前上の八損 載車両の爆発事故発生回数3回			
		戦平内の2線光争政先上回数3回 上り設定			
		出典・平成 26 年度高圧ガス事			
		故事例データベース(経済産業)			
		省・高圧ガス保安協会)			
到達距離	1225 [m]	「石油コンビナートの防災ア			
	2.2	セスメント指針 掲載の式より			
		設定			
原子炉建屋へ影響を与え得る	3 [km]	飛来物が発電用原子炉施設に			
範囲の道路延長		到達する可能性がある道路延			
		長約 2.3km より保守的に設定			
		(第1図)			
新潟県内 国道総延長	2000 [km]	一般国道:1781.9km			
		高速自動車国道:379.5km			
		(道路統計年報 2014)			
		合計 2161.4km より保守的に設			
		定			
標的面積	11843.5	原子炉建屋・コントロール建			
	[m ²]	屋・廃棄物処理建屋・海水熱交			
		換器区域・軽油タンクの合計面			
		植			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料-5	添付資料-5	添付資料-5	
漂流船舶の火災・爆発について	漂流船舶の火災・爆発について	漂流船舶の火災・爆発について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. はじめに	1. 且的	1. <u>はじめに</u>	
本評価は、発電所敷地外で発生する漂流船舶の火災やガス爆	発電所敷地外で発生する漂流船舶の火災やガス爆発により,	本評価は, 発電所敷地外で発生する漂流船舶の火災やガス爆	
発に対してより一層の安全性向上の観点から、その火災やガス	安全機能を有する構築物、系統及び機器を内包する発電用原子	発に対してより一層の安全性向上の観点から、その火災やガス	
爆発が拍崎刈羽原子力発電所に隣接する地域で起こったとし	炉施設に影響を及ぼさないことについて、「原子力発電所の外部	爆発が島根原子力発電所に隣接する地域で起こったとしても外	
ても外部事象防護対象施設を内包する発電用原子炉施設に影	火災影響評価ガイド 附属書B 石油コンビナート等火災・爆発	部事象防護対象施設を内包する発電用原子炉施設に影響を及ぼ	
響を及ぼさないことを評価するものである。	の原子力発電所への影響評価について」(以下「評価ガイド」と	さないことを評価するものである。	
	いう。)に基づき,評価を実施する。		
2. 漂流船舶の火災・爆発の影響評価について	2. 漂流船舶の火災影響評価	2. 漂流船舶の火災・爆発の影響評価について	
本評価は漂流船舶の火災に対する防護の有効性を確認する	発電所敷地周辺に漂流物を想定した軌跡解析を実施した結	本評価は漂流船舶の火災に対する防護の有効性を確認するこ	・条件の相違
ことが目的であるため,敷地周辺において現実的に想定される	果,いずれの評価点においても最初の地点の近辺に留まるか,	とが目的であるため,敷地周辺において現実的に想定される船	【東海第二】
船舶 <u>に比べ</u> ,火災影響が厳しくなる保守的な船舶の規模とし	発電所から離れていく結果となったことから、発電所敷地外で	<u>舶のうち、火災影響が厳しくなる保守的な船舶の規模として、</u>	島根2号炉は,喫水位
て,入港可能な最大の船舶が敷地へ到達することを仮定した評	発生する漂流物は発電所へ接近してくることはないが,本評価	入港可能な最大の船舶が敷地へ到達することを仮定した評価を	置によらず港湾内へ
価を実施する。	では保守的に対象船舶の喫水位置から火災発生位置を特定し評	<u>実施する。</u>	船舶が漂流するとし
	<u>価することとした。</u>		て評価を実施
(1) 想定の条件	a. 発電所から約1,500mの位置にある高圧ガス貯蔵施設(東	<u>(1) 想定の条件</u>	
・漂流船舶は新潟県内で輸送実績が多く,発電所前面の海域に	京ガス株式会社が所有する日立LNG基地のLNGタン	・漂流船舶は, 島根原子力発電所前面の海域に船舶の主要	・条件の相違
<u>航路がある液化石油ガス輸送</u> 船舶を想定する。	ク及びLPGタンク)にLNG及びLPGを輸送する輸	な航路がないことから、港湾内へ入港する船舶を想定す	【柏崎 6/7,東海第二】
	送船(以下「LNG輸送船」及び「LPG輸送船」とい	<u>Zan</u>	島根2号炉は,発電所
・漂流船舶は港湾内に入港可能な大きさで実際に存在する最	う。)、内航船及び発電所港湾内に定期的に入港する燃料	・漂流船舶は、入港する船舶の中で燃料保管量が最大の重	近傍に液化石油ガス
<u>大の船舶(積載量 1021t)</u> を想定する。	等輸送船(以下「定期船」という。)の火災を想定し、評	油運搬船(保管容量:1,246kL)を想定する。	の輸送船舶が航行す
・漂流船舶は燃料を満載した状態を想定する。	価対象施設に対する影響評価を行った。	 …漂流船舶は、燃料を満載した状態を想定する。 	ることはないため, 発
・港湾内での漂流船舶の全面火災を想定する。	b. 輸送船の喫水は であり, である発電所	・港湾内での漂流船舶の全面火災を想定する。	電所港湾内の運用状
・気象条件は無風状態とする。	岸壁からの位置までしか近づけないことから,	・気象条件は、無風状態とする。	況を踏まえ, 入港する
・火災は円筒火炎をモデルとし,火炎の高さは燃焼半径の 3	のポイントから評価対象施設までの離隔距離が	 ・火災は、円筒火炎をモデルとし、火炎の高さは燃焼半径 	最大規模の船舶であ
倍とする。	最も短くなる地点での火災を想定した。	の3倍とする。	る重油運搬船につい
	c. 内航船及び定期船のうち火災影響が最大となる船舶の火		て影響評価を実施
	災を想定し、評価対象施設に対する影響評価を行った。		
	内航船及び定期船は満載時でも喫水が と浅く,		
	発電所岸壁まで接近可能であるため、発電所岸壁から評		
	価対象施設までの離隔距離が最も短くなる地点での火災		
	を想定した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2) 評価手法の概要	2.1 共通データの算出	<u>(2)</u> 評価手法の概要	
本評価は、 <u>柏崎刈羽</u> 原子力発電所に対する漂流船舶の火災	各外壁,主排気筒及び非常用ディーゼル発電機(高圧炉心ス	本評価は、島根原子力発電所に対する漂流船舶の火災影響	
影響の有無の評価を目的としている。具体的な評価指標とそ	プレイ系ディーゼル発電機を含む。),非常用ディーゼル発電機	の有無の評価を目的としている。具体的な評価指標とその内	
の内容を以下に示す。	(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプ	容を以下に示す。	
	及び放水路ゲートに対する影響評価に必要となる共通データを		
	第出する。		
	<u>(1) 船舶及び燃料に係るデータ</u>		
	船舶及び燃料に係るデータを第2.1-1表に,各対象との位		
	置関係を第2.1-1図, 第2.1-2図に示す。		
第 2-1 表 評価指標及びその内容	第2.1-1表 船舶及び燃料に係るデータ	第2-1表 評価指標及びその内容	
評価指標 内容	想定火災源 燃料の (m^3) (w/m^2)*1($(kg/m^2/s)^{*2}$ (kg/m^3)*3 (m^2) (m^2)	評価指標 内容	
輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度		輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱面)の輻射強度	
が恋味気に」 パジと支系面との相対位置肉体によりて足よる味気 燃焼半径[m] 船舶の投影面積より求めた燃焼半径			
危険距離[m] 火災による輻射熱により許容限界温度になる距離		危険距離[m] 火災による輻射熱により許容限界温度になる距離	
	※1 評価ガイド 記載値		
上記の評価指標は, 受熱面が輻射体の底部と同一平面上に	 ※ 2 NUREG-1805 記載値 ※ 3 MSDS(製品データ安全シート) 	上記の評価指標は、受熱面が輻射体の底部と同一平面上に	
あると仮定して評価する。油の液面火災では、火炎面積の半	※4 LPG輸送船は燃料の種類が同じであることから,燃料量が多いLNG 輸送船に包絡されるため評価対象外とした。	あると仮定して評価する。油の液面火災では、火炎面積の半	
径が 3m を超えると空気供給不足により大量の黒煙が発生	※5 内航船は燃料の種類が同じであることから、燃料量が多い定期船に包絡 されるため評価対象外とした。	径が3mを超えると空気供給不足により大量の黒煙が発生し	
し輻射発散度が低減するが、本評価では保守的な判断を行う		輻射発散度が低減するが、本評価では保守的な判断を行うた	
ために、火災規模による輻射発散度の低減がないものとす		めに,火災規模による輻射発散度の低減がないものとする。	
る。			
輻射熱に対する設備の危険輻射強度を調査し、輻射強度が		輻射熱に対する設備の危険輻射強度を調査し、輻射強度が	
その設備の危険輻射強度以下になるように発電用原子炉施		その設備の危険輻射強度以下になるように発電用原子炉施設	
設は危険距離(離隔距離)を確保するものとする。		は危険距離(離隔距離)を確保するものとする。	
(3) 評価対象範囲		(3) 評価対象範囲	
評価対象範囲は、発電所港湾内で出火する漂流船舶とす		評価対象範囲は,発電所港湾内で出火する漂流船舶とする。	
る。なお、以前は船舶にて構内の重油タンクへの重油の補給		なお,評価に用いる離隔距離は,喫水深さ等を考慮せず保守	・条件の相違
を行っていたが,現在は重油タンクの運用を廃止しており,		的に港湾内で発電用原子炉施設に対し最も接近する位置(護	【柏崎 6/7】
発電所構内に入港する危険物輸送船舶は存在しないことか		岸の境)から出火した場合を想定する。 (第 2-1 図)	島根2号炉は,喫水位
ら,発電所前面の海域で航行中の船舶が漂流し,港湾内に進			置によらず港湾内へ
入し,出火した場合を想定する。			船舶が漂流するとし
仮に、津波による船舶の漂流を想定したとしても、カーテ			て評価を実施
<u>ン・ウォールの高さ (T.M.S.L+3.2m), 基準津波による最大</u>			
水位の高さ(T.M.S.L+7.2m), 想定している船舶の喫水(5.7m)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
の関係*から、船舶がカーテン・ウォールを乗り越えて発電			
用原子炉施設に接近することはない(第 2-1 図)。			
※:水面はカーテン・ウォールより 4.0m 高い位置となるが,			
船舶の水面から船底の最深部までの垂直深さが 5.7m で			
あり、水面がさらに上昇しなければ乗り越えることはな			
い。なお、カーテン・ウォールが地震・津波により損傷し			
<u>た場合,敷地内の海側で低いエリア (T.M.S.L+3.0m)及び</u>			
基準津波の検討における大湊側遡上域の最大水位(7.5m)			
より上陸可能な船舶の喫水は4.5m以下である。			
取水口エリア近傍の法面高さが約 12m (T.M.S.L+12.0m)			
となっており、これ以上、発電用原子炉施設に接近するこ			
とはない。よって、この位置における発電用原子炉施設と			
の離隔距離(約 178m)が積載量最大の船舶にて評価した			
危険距離(最大約 148m)以上であることに加え,喫水 4.5m			
程度の船舶の積載量(960ton 程度)が最大積載量			
(1021ton)未満であることから,想定している船舶の評			
価に包絡される。			
	第2.1-1 図 LNG輸送船火災と評価対象施設の位置関係		
		00	
10.5%			
		約47m 約47m	
		海水ポンプエリア	
第 2-1 図 漂流船舶の離隔距離	第2.1-2 図 定期船火災と評価対象施設の位置関係	第2-1図 対象施設と重油運搬船の位置関係	

	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(4)	必要データ		(4) 必要データ	
	評価に必要なデータを以下に示す。		評価に必要なデータを以下に示す。	
	第 2-2 表 プロパンの評価条件		第2-2表 重油の評価条件	
	燃料の種類 プロパン		燃料の種類重加	
	燃料量[ton] ³⁾ 1021		燃料量[kL] ^{**3} 1,246	
	輻射発散度[W/m ²] ¹⁾ 74×10 ³		幅射発散度[W/m ²] ^{*1} 23×10 ³	
	質量低下速度[kg/m ² ·s] ²⁾ 0.099		質量低下速度[kg/m ² ・s] ^{**2} 0.035	
	[漂流船舶投影面積[m [*]] ³⁷ 67.77×13 1) 証価ガイド付属書 P と b		漂流船舶投影面積[m ²] ^{**3} 678	
	1) 計画ガイト的属音 B より 2) NURFG-1805 より		※1:評価ガイド附属書Bより	
	3) 内航船舶明細の LPG 船舶の中で容積が最大の船舶の値		※2:NUREG-1805 より	
			※3:入港する船舶の中で容積が最大の船舶の値	
(5)	燃焼半径の筒出	(2) 燃焼半径の算出	(5)	
(0)	酒流船舶の水災においてけ様々た燃焼範囲の形能が相定	田筒水炎モデルとして評価を実施するため、燃焼半径け燃		
	されるが、田笛火炎を生ぜるものとする。ここでの燃焼面積		れるが 田筒火炎を生ずるものとする ここでの燃焼面積け	
	は 河流駅前の提影面積に笑しいたのとする。ここでの燃売面積		酒法叭帕の提緊面積に笑しいたのとする。したがって、燃焼	
		体 五種け 創始の 今月 し 創垣 と り 四 色 平 し し て い て		
		洗 <u> </u> 加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加	十住工町は倧伽船舶の反影面積を自同の底面と仮たし昇山。	
		<u>泉田稻米を用2.1-2 衣に小り。</u>	Den (D. () 0.5	
		S	$\mathbf{R} = (\mathbf{S} / \pi)^{\circ \circ}$	
	S: 漂流船舶の投影面積(火炎円筒の低面積) = 881 m^2	$R = \sqrt{\frac{S}{\pi}}$	S:漂流船舶の投影面積(火炎円筒の底面積) =678[m ²]	
	$R = (881 / \pi)^{0.5} = 16.74 \text{ m}$		$R = (678 / \pi)^{-0.5} = 14.69 \text{ m}$	
		<u>R:燃焼半径(m),S:燃焼面積(m²)</u>		
		第2.1-2表 船舶の燃焼半径		
		燃 使 而 積 燃 焼 半 径		
		想定火災源 S R		
		(m ²) (m)		
(6)	燃焼継続時間の算出	<u>(3)</u> 燃焼継続時間の算出	<u>(6)</u> 燃焼継続時間の算出	
	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値	
にた	23。	になる。 算出結果を第 2.1-3 表に示す。	になる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$t = \frac{V}{\pi R^2 \times v}, v = \frac{M}{\rho} \& \forall \ , t = \frac{V \times \rho}{\pi R^2 \times M},$	$t = \frac{V}{\pi R^2 \times v}$	$t = \frac{V}{\pi R^2 \times v}, v = \frac{M}{\rho} \& \emptyset, t = \frac{V \times \rho}{\pi R^2 \times M}$	
t:燃焼継続時間[s], V:燃料量[m ³], R:燃焼半径[m], v:燃焼速度[m/s]M:質量低下速度[kg/m ² ·s], ρ:密度[kg/m ³], <u>m:質量[kg]</u> ここで, <u>m=ρV=1,021,000[kg],M=0.099[kg/m²·s]</u> として, 燃焼継続時間を求めると, t=1,021,000/(881×0.099)=11,706[s]=3.25[h]	t:燃焼継続時間(s),V:燃料量(m ³) R:燃焼半径(m),v:燃焼速度=M/ ρ (m/s) M:質量低下速度(kg/m ² /s), ρ :燃料密度(kg/m ³) <u>第2.1-3表</u> 船舶火災の燃焼継続時間 	t:燃焼継続時間[s], V:燃料量[m ³], R:燃焼半径[m], v:燃焼速度[m/s], M:質量低下速度[kg/m ² ・s], ρ:密度[kg/m ³] ここで, ρ=1000[kg/m ³], M=0.035[kg/m ² ・s]として, 燃 焼継続時間を求めると, v=0.035/1000=3.5×10 ⁻⁵ t=1246/(678×3.5×10 ⁻⁵)=52477[s]=14.58[h]	
(7) 危険輻射強度の算出	2.2 外壁に対する危険距離評価 (1) 評価対象範囲 評価対象施設の外壁について,船舶の火災を想定して評価 を実施した。 (2) 想定火災源から評価対象施設までの離隔距離を第2.2-1表 に示す。 第2.2-1表 想定火災源 原子炉建屋 タービン建屋 (m) 1,100 1,100 1,300 300 280	<u>(7)</u> 危険輻射強度の算出	
 a. 外壁面の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一定の輻射強度で発電用原子炉施設外壁が昇温されるものとして,下記の一次元非定常熱伝導方程式の解の式より,コンク 	 (3) 判断の考え方 a. 許容温度	 a. 外壁面の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一定の輻射強度で発電用原子炉施設外壁が昇温されるものとして,下記の一次元非定常熱伝導方程式の解の式より,ユ 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
リートの表面の温度上昇が 200℃となる危険輻射強度を求	温度が 200℃となる輻射強度 (=危険輻射強度) を算出する。	<u>ンクリートの表面温度</u> が 200℃となる危険輻射強度を求め	
める。	$2 E \left[a t \left[1 \left(x^2 \right) \right] \right]$	る。	
$T_s = T_0 + \frac{1}{\sqrt{1-1}}$	$T = T_0 + \frac{N}{\lambda} \left[\frac{1}{\sqrt{\pi}} \exp\left(-\frac{x}{4 \alpha t}\right) - \frac{x}{2\sqrt{\alpha t}} \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right) \right] \qquad (\vec{x} \ 1)$	$T = T_0 + \frac{1}{\sqrt{1-1}}$	
$\left(\frac{\sqrt{k\rho c}}{1.18h\sqrt{t}}+1\right)\frac{h}{\epsilon F}$	(出典:伝熱工学,東京大学出版会)	$\left(\frac{\sqrt{k\rho c}}{1.18h\sqrt{t}}+1\right)\frac{h}{\epsilon E}$	
		(1.10hVt)	
出曲・ 原田和曲 建築水災のメカニズムと水災安全設計	T · 表面から v (m) の位置の温度 (℃)	出曲・原田和曲 建築水災のメカニズムと水災安全設計	
日本建築センター	$T_{\circ}: 初期温度(50°C) ×$	財団法人 日本建築センター	
T _a :外表面温度[200℃],T _a :初期温度[50℃],E:輻射強度[W/m ²],	α : コンクリート温度伝導率 (= $\lambda \angle \rho C_n$) (7.7×10 ⁻⁷ m ² /s)	T:外表面温度[200℃],T ₀ :初期温度[50℃],E:輻射強	
ε : コンクリート表面の放射率 (0.95) ^{**} , h : コンクリート	ρ : コンクリート密度 (2,400kg/m ³),	度 $[W/m^2]$, ϵ :コンクリートの表面放射率 $[0.94]^{*1}$, h:	
表面熱伝達率[<u>34.9</u> W/m ² K]*, k : コンクリート熱伝導率	C_p:コンクリート比熱 (880J/kg/K)	コンクリート表面熱伝達率[23.3W/m ² K] ^{※2} , k:コンクリ	
[<u>1.6</u> W/mK] ^{**} , ρ:コンクリート密度[<u>2200</u> kg/m ³] ^{**} ,	<u>λ: コンクリート熱伝導率(1.63W/m/K), E:輻射強度(W/m²)</u>	<u>ート熱伝導率[1.6W/mK] ^{*2}</u> , ρ:コンクリート密度	
c : コンクリート比熱[<u>879</u> J/kgK] [*] , t : 燃焼継続時間[s]	t : 燃焼継続時間 (s)	<u>[2,200kg/m³]^{※2},c</u> :コンクリート比熱 <u>[879J/kgK]^{※2}</u> ,t:	
	x:温度評価の対象となる深さ位置(外壁表面:0m)	燃焼継続時間[s]	
※:建築設計竣工図書 原子炉建屋構造計算書	※ 水戸地方気象台で観測された過去最高気温 38.4°Cに	※1:伝熱工学資料, ※2:原子炉建物 構造計算書	
	保守性を持たせた値		
$\underline{E} = 7701 [W/m^2]$	式1で求めた危険輻射強度Eとなる形態係数 Φ を, 式2より	<u>E=4,759[W/m²]</u>	
	<u>第出する。</u>		
	$\underline{\mathbf{E}} = \mathbf{R} \cdot \mathbf{f} \cdot \mathbf{\Phi}$		
	上:		
	<u>・・北京</u> 広数 (出曲・評価ガイド)		
	式2で求めた形態係数 Φ となる危険距離Lを,式3より算出		
	t3.		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (\vec{\pi} \subset 3)$		
	ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u> Φ : 形態係数, L : 離隔距離 (m), H : 炎の高さ (m),</u>		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	上記のとおり危険距離を算出し、当該船舶から評価対象施		
	設までの離隔距離を下回るか評価を実施した。なお、天井ス		
	ラブは以下の理由により、外壁の評価に包絡されるため実施		
	L'ALVIE.		
	・火炎長が天井より短い場合、天井に輻射熱を与えないこ		
	とから熱影響はない。		
	 ・火炎長が天井より長い場合,天井に輻射熱を与えるが, 		
	その輻射熱は外壁に与える輻射熱より小さい。		
	・火炎からの離隔距離が等しい場合,垂直面(外壁)と水		
	平面 (天井) の形態係数は, 垂直面の方が大きいことか		
	ら, 天井の熱影響は外壁に比べて小さい。		
	建屋外壁の評価概念図を第2.2-1 図に, 天井スラブの評価		
	概念図を第2.2-2図に示す。		
	+1 $+1$ $+1$ $+1$ $+1$ $+1$ $+1$		
	メガルによる放然 天井スラブ 外壁 屋内 単 単 単 単 単 単 単 単 単 単 単 単 単		
	初期温度:50℃		
	欸。。 」回一进民从陕东河伊斯会回		
	用 2.2-1 区 建座外壁の計価概念区		
	F井スラブに輻射熱を与える範囲 外壁に輻射熱を与える範囲 東内 査内 第 2. 2-2 図 天井スラブの評価概念図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
	<u>.c評価結果</u>			
	評価対象施設の外壁表面温度が 200℃となる	5 危険距離を		
	算出した結果、各評価対象施設の危険距離が	離隔距離以下		
	であることを確認した。			
	なお, LNG輸送船について積載量が 0m ³ の	り場合の喫水		
	を考慮しても最短の離隔距離は 1,100m(原子	炉建屋)であ		
	り危険距離以上であるため、積載量が少ない	易合の火災位		
	置を想定しても危険距離が離隔距離を上回る	ことはない。		
	評価結果を第2.2-2表に示す。			
	第2.2-2表 外壁への船舶火災影響評価編	課		
	想定火災源 評価対象施設 危険距離 (m)	離隔距離 (m)		
	原子炉建屋	1,100		
	タービン建屋 263	1,100		
	使用済燃料乾式貯蔵建屋	1,300		
	原子炉建屋 85	280		
	使用済燃料乾式貯蔵建屋	530		
火災か発生した時間から燃料が燃え尽さるよでの間,一定				【相畸 6/7, 果海弗二】
の輻射強度で <u>軽油ダンク</u> か昇温されるものとして、下記の式				島根2
より <u>軽油</u> の温度か <u>225</u> となる危険輻射強度を水める。				タンク,燃料移达ホン
				ノ,非吊用アイーセル
$T = \frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - \left(\frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - T_0\right) e^{\left(\frac{h S_2}{C}\right)t}$				発電機は、地下博道寺 の目中部件のため影
				の産内設備のため家
T . 如期泪座[20%] . E. お社卒庫[w / 2]				管計1回刈家外 また、サルロビーレア
$I_0: $ 初期值及 $[\underline{30}C], E: $ 轴射强度 $[w/m], E: $ <u>胜祖久</u> $2/2$ 衣 五の故財率(0,0) ※1 ト. 政油なンな志五劫仁法率[17 $w/2^2$ K]				また, 成小的ケートに
面の放射平 $(0.9)^{}$, $n: 輕加/2/2 衣面然伝達平 [1/w/m]$				ついても設置してい
$, 5_1 - 5_2 \cdot 胜佃 / / \sqrt{2} / 2$				ないため影響計価約
				秋/F わお 自想 9 早后で
ュュr・/「ヘヘ៶皿/ス」)」 ※1・伝執工学盗約 ※9・空気調和・海圧工学価階				
M1·四ポエナ貝们, ボ4·エス				は,14小小イノは,)) (よ))) (よ))) (よ))) (よ))) (よ)) (よ)) (よ
$\mathbf{F} = 70030 \left[W/m^2 \right]$				「「
				叫 こ ズルビ

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
c. <u>燃料移送ポンプ(防護板(鋼板))</u> の危険輻射強度		b. <u>海水ポンプ</u> の危険輻射強度	・設備の相違
火災が発生した時間から燃料が燃え尽きるまでの間,一定		火災が発生した時間から燃料が燃え尽きるまでの間,一	【柏崎 6/7,東海第二】
の輻射強度で <u>燃料移送ポンプの周囲に設置されている防護</u>		定の輻射強度で <u>海水ポンプの冷却空気</u> が昇温されるものと	島根 2 号炉では, 軽油
<u>板(鋼板)</u> が昇温されるものとして,下記の式より <u>燃料移送</u>		して,下記の式より <u>海水ポンプ</u> の <u>冷却空気</u> 温度が <u>55℃</u> とな	タンク,燃料移送ポン
<u>ポンプ(防護板(鋼板))</u> の温度が <u>100℃</u> となる危険輻射強		る危険輻射強度を求める。	プ,非常用ディーゼル
度を求める。			発電機は,地下構造等
$2\left(hc(T,T)\right)$		$T - T + \frac{E \times A_T}{E}$	の屋内設備のため影
$E_{max} = \frac{2}{\varepsilon S} \left(\frac{hS(I - I_{air})}{\varepsilon^{hS_{br}}} \right)$		$I = I_0 + \frac{1}{G \times C_p}$	響評価対象外
$1 - e^{(-c)t}$			また, 放水路ゲートに
<u>ε</u> :防護板(鋼板)外面の放射率(0.9) ^{※1} , S:防護板(鋼板)		T₀:通常運転時の上昇温度[22℃],E:輻射強度[W/m²],	ついても設置してい
受熱面積[16.2m²], h:防護板 (鋼板) 表面熱伝達率[17W/m²K]		A _r :受熱面積[10.93m ²],G:重量流量[1.96kg/s],	ないため影響評価対
^{※2} , C:防護板(鋼板)の熱容量[2.41×10 ⁶ J/K], t:燃焼継続時		C _p :空気比熱[1007J/(kg・K)] ^{*1}	象外
間[s],T:許容温度[100℃],T _{air} :外気温度(初期 温度)[55℃]			なお, 島根 2 号炉で
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧		※1:伝熱工学資料	は, 海水ポンプは, 屋
			外設置のため影響評
$E = \underline{1825[W/m^2]}$		$E=5,948[W/m^2]$	価を実施
d. 主排気筒の危険輻射強度		c. 排気筒の危険輻射強度	
火災が発生した時間から燃料が燃え尽きるまでの間、一定		火災が発生した時間から燃料が燃え尽きるまでの間、一	
の輻射強度で主排気筒が昇温されるものとして、下記の式よ		定の輻射強度で排気筒が昇温されるものとして、下記の式	
り主排気筒の温度が325℃となる危険輻射強度を求める。		より、排気筒の温度が 325℃となる危険輻射強度を求める。	
		cF	
$T = T_0 + \frac{1}{2h}$		$T = T_0 + \frac{c_1}{2h}$	
T₀:初期温度[50℃],E:輻射強度[W/m²],ε:主排気筒表		T₀:初期温度[50℃], E:輻射強度[W/m²], ε:排気筒表	
面の放射率(0.9) ^{※1} , h:主排気筒表面熱伝達率[17W/m ² K]		面の放射率[0.9] ^{*1} ,h:排気筒表面熱伝達率[17W/m ² K] ^{*2}	
*2		※1:伝熱工学資料, ※2:空気調和・衛生工学便覧	
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧			
$E = 10388 [W/m^2]$		E=10,388[W/m ²]	
(8) 形態係数の昇出			
火炎から仕恵の位直にめる点(受熱点)の輻射強度は、輻射		火沢からの仕恵の位直にめる点(受熱点)の輻射強度は、 転転変換産に必能を料えたいたけしたスームの転転になった。	
射発取度に形態係数をかけた値となる。症険輻射強度となる 必要に発き、クロートス		転射発散度に形態係数をかけた値となる。 危険輻射強度となる。	
形態術剱を昇出する。		る形態係数を昇出する。	
$Emax = KI \times \phi$		$\operatorname{Emax} = \operatorname{Ki} \times \phi$	
Emax :厄陝輻射强度, Rt :輻射発散度, ϕ :形態係数		Emax:厄険輻射强度,KI:輻射発散度, ϕ :形態係数	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-3 表 形態係数の算出結果		第2-3表 形態係数の算出の結果	
建屋 軽油タンク 燃料移送ポンプ 主排気筒 (防護板(綱板)) (防護板(綱板)) (協振)		タービン建物 海水ポンプ 排気筒	
危険輻射強度[W/m²] 7.70 70.9 1.82 10.3 超射発数度[W/m²] 7.4×10 ³ 74×10 ³ 74×10 ³		池陝輻射強度 4,759 5,948 10,388 [W/m ²] 4,759 5,948 10,388	
和375-KK及LW/III] 74×10 形態係数 0.1040675 0.9585140 0.0246699 0.1403903		■輻射発散度 [W/m ²] 23×10 ³	
		形態係数 2.06×10 ⁻¹ 2.58×10 ⁻¹ 4.51×10 ⁻¹	
(9) 危険距離の算出		(9) 危険距離の算出	
次の式から危険距離を算出する。		次の式から危険距離を算出する。	
		$\phi = \frac{1}{2} \tan^{-1} \left(\frac{m}{2} \right) + \frac{m}{2} \left\{ \frac{(A-2n)}{2} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{2}} \right] - \frac{1}{2} \tan^{-1} \left[\sqrt{\frac{(n-1)}{2}} \right] \right\}$	
$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$		$ \int \int \frac{1}{\pi n} \frac{1}{n} \left[\sqrt{n^2 - 1} \right] \frac{1}{\pi} \left[n\sqrt{AB} \right] \frac{1}{n} \left[\sqrt{B(n+1)} \right] \frac{1}{n} \frac{1}{n} \frac{1}{n} \left[\sqrt{(n+1)} \right] $	
$H_{L} = \frac{L}{L} + \frac{L}{L$		だだし, $m = \frac{H}{2} \cong 3, n = \frac{L}{2}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$	
$T = T = C$, $m = \frac{1}{R} \cong S, n = \frac{1}{R}, A = (1+n)^{2} + m^{2}, B = (1-n)^{2} + m^{2}$		R R	
φ : 形態係数, L : <u>危険</u> 距離[m], H : 火炎高さ[m],		φ:形態係数, L: <u>離隔</u> 距離[m], H:火炎高さ[m],	
R:燃焼半径[m]		R:燃焼半径[m]	
第 2-4 表 危険距離の算出結果		第2-4表 危険距離の算出結果	
建屋 軽油タンク 燃料移送ポンプ 主排気筒		タービン建物 海水ポンプ 排気筒 アビザビザ 0.00000000000000000000000000000000000	
(防護板(鋼板)) 形態係数 0.1040675 0.9585140 0.0246699 0.1403903		形態係数 2.06×10 ⁺ 2.58×10 ⁺ 4.51×10 ⁺ 燃焼半径[m] 14.69	
燃烧半径[m] 16.7		危険距離[m] 35 28 17	
危険距離[m] 約 66 約 17 約 148 約 53		_ 離隔距離 Lm 」 68 47 75	
(10) 火災による熱影響の有無の評価		(10) 火災による執影響の有無の評価	
以上の結果から、漂流船舶において火災が発生した場合を		以上の結果から、漂流船舶において火災が発生した場合を	
想定したとしても,離隔距離(約 273m)が危険距離(最大約		想定したとしても,各発電用原子炉施設の離隔距離が危険距	
		離以上であることから,外部事象防護対象施設を内包する発	
る発電用原子炉施設に熱影響をおよぼすことはないと評価		電用原子炉施設に熱影響をおよぼすことはないと評価でき	
できる。		る。	
<u>なお,発電所港湾内に入港する船舶火災の影響評価につい</u>		なお,隠岐諸島と島根半島(七類港等)を結ぶ定期船(フ	・条件の相違
ては,発電所港湾内に入港する危険物輸送船舶がないことを		ェリー等)については,発電所付近を航行しておらず,漂流	【柏崎 6/7】
踏まえると, 入港船舶の燃料積載量は運航に必要な程度であ		等の影響はないと考えるが, 仮に漂流し, 発電所周辺に到達	地域特性を踏まえた
<u>り,</u> その熱影響は漂流船舶における火災影響評価において想		した場合であっても, 燃料積載量(フェリー : 約 180kL)か	対象の相違
定した液化石油ガス輸送船舶のものより小さく, 漂流船舶の		ら,重油運搬船の評価結果に包絡される。(第 2-2 図)	
火災影響評価に包絡される。			

▶ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	品根原于刀充電所 2 5 炉	備考
東藤東二発電所(2018.9.12 kg) 2.3 主排気筒に対する危険距離評価 (1) 評価対象範囲 主排気筒について,船舶の火災を想定して評価を実施した。 なお、主排気筒の評価に当たっては、保守性を考慮して、 節身よりも離隔距離の短くなる鉄塔について評価した。 (2) 評価対象施設の仕様 主排気筒仕様を第2.3-1表に、主排気筒外形図を第2.3-1 図に示す。 第2.3-1表 評価対象施設の仕様 重要寸法 地表高さ140m 材料 施生気管型 重要寸法 地表高さ140m 水形 55400.5TK400 イ料 施生 55400.5TK400 重要寸法 地表高さ140m 料 施生 55400.5TK400 単気筒力象施設までの離隔距離 想定火災源から評価対象施設までの離隔距離を第2.3-2素	<image/>	備考 ・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉では,軽湖 タンク,燃料移送ポン プ,非常用ディーゼル 発電機は,地下構造等 の屋内設備のため影 響評価対象外 また,放水路ゲートに ついても設置してい ないため影響評価対 象外 なお,島根 2 号炉で は,海水ポンプは,屋 外設置のため影響評 価を実施
たたいのです。 に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第2.3-2表 想定火災源から評価対象施設までの離隔距離		
	想定火災源 生排気間 (m)		
	250		
	(4) 判断の考え方		
	<u>a許容温度</u>		
	主排気筒鉄塔(SS400, STK400)の許容温度は,火災時に		
	おける短期温度上昇を考慮した場合において,鋼材の強度		
	が維持される保守的な温度 325℃以下とする。		
	<u>b評価方法</u>		
	一定の輻射強度で主排気筒鉄塔が昇温されるものとし		
	て、表面での輻射による入熱量と対流熱伝達による外部へ		
	の放熱量が釣り合うことを表した式1により主排気筒鉄塔		
	表面の温度が 325℃となる輻射強度(=危険輻射強度)を求		
	₩Z.		
	$T = T_0 + \frac{E}{2h} $ (式 1)		
	(出典:建築火災のメカ=ズムと火災安全設計,		
	財団法人日本建築センター)		
	<u>T</u> :許容温度(325℃), T ₀ :初期温度(50℃) ^{*1}		
	<u>E:輻射強度(W/m²), h:熱伝達率(17W/m²/K)^{*2}</u>		
	※1 水戸地方気象台で観測された過去最高気温		
	<u>38.4℃に保守性を持たせた値</u>		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は,		
	受熱面の形状や周囲の環境条件を受け変化する		
	が,一般的な値として垂直外壁面,屋根面及び		
	上げ裏面の夏季,冬季の値が示されている。評		
	価上放熱が少ない方が保守的であることから、		
	これらのうち最も小さい値である 17W/m²/K		
	<u>を用いる。)</u>		
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2		
	より算出する。		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------	--	--------------	----
	$\mathbf{E} = \mathbf{R} \cdot \mathbf{f} \cdot \mathbf{\Phi} \tag{(\vec{\mathbf{\chi}} 2)}$		
	<u>E:輻射強度(W/m²), Rf:輻射発散度(W/m²),</u>		
	<u> ● : 形態係数</u>		
	ずりでまみた形能位粉みしたて在除明確した。ずり とり		
	第出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} $ (\$\vec{x}\$ 3)		
	ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u>Φ:形態係数, L:離隔距離 (m), H:炎の高さ (m),</u>		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		
	上記のとおり危険距離を算出し、当該船舶から評価対象		
	施設までの離隔距離を下回るか評価を実施した。なお、評		
	価に当たって土伊ス同は鉄塔と同身で構成されているか,		
	問えよりも気管が当該加加との圧陥が近いこと、 / / 員も気		
	塔、筒身ともに軟鋼で同一であることから、鉄塔の評価を		
	実施することで筒身の評価は包絡される。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	好流による放熱 日筒火炎 輻射強度:E 幅射強度:E ・ 受熱面 ・ 放熱面 ・ 防熱面 ・ 防熱面 ・ 防熱面 ・ 飲熱面 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ ・ ・ ・		
	受熱面はその半分となる。		
	第2.3-2図 主排気筒の評価概念図		
	 c. 評価結果 主排気筒鉄塔の表面温度が 325℃となる危険距離を算出 した結果,主排気筒の危険距離が離隔距離以下であること を確認した。なお、LNG輸送船について積載量が 0m³の 場合の喫水を考慮しても最短の離隔距離は 850m であり危 険距離以上であるため,積載量が少ない場合の火災位置を 想定しても危険距離が離隔距離を上回ることはない。評価 結果を第 2.3-3 表に示す。 第 2.3-3 表 主排気筒への船舶火災影響評価結果 100 100 100 20 250 		
	 2.4 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)に対する危険距離評価 (1) 評価対象範囲 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)の流入空気温度について,船舶の火災を想定して評価を実施した。 (2) 評価対象施設の仕様 		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	空気の流入口となり熱影響を受ける非常用ディーゼル発電		
	機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の		
	仕様を第2.4-1表に,外形図を第2.4-1図に示す。		
	第2.4-1表 評価対象施設の仕様		
	名称 非常用ディーゼル発電機(高圧炉 心スプレイ系ディーゼル発電機を含 む。)吸気ロ 種類 円筒縦形 主要寸法 外径 : 1.54m 円筒高さ: 2.46m 材料 SS400 個数 6		
	第 2.4-1 図 評価対象施設の外形図		
	 (3) 評価対象施設までの離隔距離 想定火災源から評価対象施設までの離隔距離を第2.4-2表 に示す。 第2.4-2表 想定火災源から評価対象施設までの離隔距離 		
	想定火災源 非常用ディーゼル発電機(高圧炉心スプレ ィ系ディーゼル発電機を含む。)(m)		
	1,100		
	(4) 判断の考え方 a. 許容温度 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ ル発電機を含む。)の流入空気の許容温度は、火災時におけ る温度上昇を考慮した場合において、非常用ディーゼル発		
	電機(高圧炉心スプレイ系ディーゼル発電機を含む。)の性		
	能維持に必要な温度53℃以下**とする。		
	※ 非吊用アイーセル発電機(局圧炉心スフレイ糸ティーボル発電機た合た。)の法1空気温度がします。		
	ービル光电域を凸む。) の孤八空风偏度が上升する		
	<u> </u>		
	二 X 集 N Y 地 R K L C C に よ ん S S C C C C C C C C C C C C C		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>b評価方法</u>		
	火災が発生した時間から燃料が燃え尽きるまでの間,一		
	定の輻射強度による入熱が非常用ディーゼル発電機(高圧		
	炉心スプレイ系ディーゼル発電機を含む。)に流入する空気		
	の温度上昇に寄与することを表した式1により,流入する		
	空気の温度が 53℃となる輻射強度(=危険輻射強度)を求		
	M.J.a.		
	$T = T_0 + \frac{E \cdot A}{G \cdot C_p} + \Delta T \qquad (\vec{z}, 1)$		
	<u>T:許容温度(53℃), T₀:初期温度(39℃)*1</u> ,		
	<u>E:輻射強度(W/m²),</u>		
	<u>G:重量流量(4kg/s)^{*2},A:輻射を受ける面積(7.8m²)</u>		
	<u>C</u> _p :空気比熱(1,007J/kg/K) ^{※3} ,		
	<u> ΔT:構造物を介した温度上昇(5℃)^{※4}</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値		
	※2 ディーゼル発電機機関の内,給気流量が少ない高圧		
	炉心スプレイ系を評価対象とする。		
	<u>ディーゼル発電機機関吸気流量(228m³/min)×</u>		
	空気密度(1.17kg/m ³)÷60		
	※3 日本機械学会 伝熱工学資料		
	※4 最高到達温度を想定した場合の温度上昇		
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2		
	より算出する。		
	$\mathbf{E} = \mathbf{R} \mathbf{f} \cdot \mathbf{\Phi} \tag{\textbf{t}} 2 \mathbf{)}$		
	$\Phi:$ 形態係数		
	<u>(出典:評価ガイド)</u>		
	式2で求めた形態係数 Фとなる危険距離 Lを、式3より		
	算出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad ($		
	ただし $m = \frac{H}{R} \doteq 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>Φ</u> :形態係数,L:離隔距離 (m),H:炎の高さ (m),		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		
	上記のとおり危険距離を算出し、当該船舶から評価対象		
	施設までの離隔距離を下回るか評価を実施した。空気の流		
	入口となり熱影響を受ける非常用ディーゼル発電機(高圧		
	<u> 炉心スプレイ系ディーゼル発電機を含む。) 吸気口の評価概</u>		
	念図を第2.4-2図に示す。		
	非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)吸気口		
	編射強度:E		
	: 受熱面		
	第 2. 4-2 図 非常用ディーゼル発電機(高圧炉心スプレイ系		
	ディーゼル発電機を含む。)吸気口の評価概念図		
	<u>c. 評価結果</u>		
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ		
	ル発電機を含む。)に流入する空気の温度が 53℃となる危		
	<u>険距離を算出した結果,危険距離が離隔距離以下であるこ</u>		
	とを確認した。評価結果を第2.4-3表に示す。		
	第2.4-3表 非常用ディーゼル発電機(高圧炉心スプレイ系		
	ディーゼル発電機を含む。)への船舶火災影響評価結果		
	相完止災酒 危険距離 離隔距離		
	志足入及(赤 (m) (m)		
	153 1,100		
	50 330		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	2.5 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機(高		・設備の相違
	圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプに対す		【柏崎 6/7,東海第二】
	る危険距離評価		島根2号炉では,軽油
			タンク,燃料移送ポン
	残留熱除去系海水系ポンプ電動機及び非常用ディーゼル発		プ,非常用ディーゼル
	電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水		発電機は,地下構造等
	ポンプ電動機は、海水ポンプ電動機高さより高い海水ポンプ		の屋内設備のため影
	室の壁で囲まれており、側面から直接火災の影響を受けるこ		響評価対象外
	とはないが,上面は熱影響を受ける可能性がある。評価にお		また, 放水路ゲートに
	いては,海水ポンプ室の壁による遮熱効果を考慮せず,側面		ついても設置してい
	から直接火災の影響を受けることを想定する。また、残留熱		ないため影響評価対
	除去系海水系ポンプ電動機及び非常用ディーゼル発電機(高		象外
	<u> 圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプ電</u>		なお, 島根 2 号炉で
	動機は、電動機本体を全閉構造とした全閉外扇形の冷却方式		は, 海水ポンプは, 屋
	であり、外部火災の影響を受けた場合には、周囲空気の温度		外設置のため影響評
	上昇により、冷却機能への影響が懸念されることから、冷却		価を実施
	空気の温度を評価対象とする。火災発生位置と海水ポンプの		
	位置関係を第2.5-1図に示す。		
	<u>電動機内部の空気冷却対象は固定子巻線及び軸受であり,</u>		
	そのうち許容温度が低い軸受温度の機能維持に必要となる冷		
	却空気の温度が、許容温度以下となることを確認する。		
	第2.5-1 図 火災発生位置と海水ポンプの位置関係		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
	(2) 評価対象施設の仕様	
	残留熱除去系海水系ポンプ及び非常用ディーゼル発電機	
	(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン	
	プの海水ポンプ室内の配置図を第2.5-2図,外形図を第2.5-3	
	図に示す。仕様を第2.5-1表に示す。	
	第2.5-2図 海水ポンプの配置図	
	第9.5-2 図 海水ポンプの外形図	
	为2.3.3.4.10/1/1/2/2/02/2/1/2/2	

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.1	2版) 島根原子力発電所	2 号炉 備考	
	第 2.5-1 表 評価対象施設	第2.5-1表 評価対象施設の仕様		
	名称 残留熱除去系海水系ポンプ 非常 名称 残留熱除去系海水系ポンプ (高 電動機 ーゼ	5用ディーゼル発電機 圧炉心スプレイ系ディ ル発電機を含む。)用 海水ポンプ電動機		
	主要寸法 全 幅:1.9 m 高 さ:2.73m	全 幅:0.51m 高 さ:0.98m		
	材料 SS400, SUS304	SS400		
	基数 4	3		
	(3) 評価対象施設までの離隔距離 残留熱除去系海水系ポンプ及び非常 (高圧炉心スプレイ系ディーゼル発電 プを内包する海水ポンプ室から各火災 2.5-2表に示す。 第2.5-2表 想定火災源から評価対象が 想定火災源 海水オ (3) 第水オ (3) 第水オ (13) (14)	用ディーゼル発電機 機を含む。)用海水ポン 源までの離隔距離を第 電設までの離隔距離 ペンプ室 10 70		
	 (4) 判断の考え方 a. 許容温度 残留熱除去系海水系ポンプ電動機 発電機(高圧炉心スプレイ系ディー・ 海水ポンプ電動機の冷却空気の許容 軸受のうち,運転時の温度上昇が高 を考慮し,軸受の機能維持に必要な 第2.5-3表に示す。 	及び非常用ディーゼル ゼル発電機を含む。)用 温度は、上部及び下部 い下部軸受の上昇温度 冷却空気の許容温度を		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.	12版)	島根原子力発電所 2号炉	備考
	第2.5-3表 下部軸受の機能維持に必要	な冷却空気の許容温度		
	名称 残留熱除去系海水系 ポンプ電動機 非常	「用ディーゼル発電機(高圧炉心 プレイ系ディーゼル発電機を含		
	軸受の機能維持に必要な 冷却空気の許容温度 70℃ ^{*1}	60℃ ^{※2}		
	※1 ポンプ運転により、下部軸受は最大で約10℃上昇する め電気規格調査会標準規格 JEC-2137-2000「誘導機」	ことから,軸受の機能を維持するた で定める自由対流式軸受の表面で測		
	定するときの温度限度 80℃から 10℃を差し引いた 70℃ ※2 ポンプ運転により、下部軸受は最大で約 35℃上昇する	Cを冷却空気の許容温度に設定 ことから、軸受の機能を維持するた		
	め電気規格調査会標準規格 JEC-2137-2000「誘導機」つ 使用する場合の温度限度 95℃から 35℃を差し引いた 6	で定める耐熱性の良好なグリースを 0℃を冷却空気の許容温度に設定		
	<u>b. 評価方法</u>			
	火災が発生した時間から燃料が燃	え尽きるまでの間,残		
	留熱除去系海水系ポンプ電動機及び	「非常用ディーゼル発電		
	機(高圧炉心スプレイ系ディーゼル	発電機を含む。)用海水		
	ポンプ電動機が受ける輻射熱によっ	て上昇する冷却空気温		
	度を求め, 第2.5-3表に示す許容温	度を下回るかを熱エネ		
	ルギーの式より求まる下式で評価を	実施した。評価に用い		
	た諸元を第2.5-4表に,評価概念図	1を第2.5-4回に示す。		
	$T = T_0 + \frac{E \cdot A}{G \cdot C_p} + \Delta T$			
	<u>T</u> :評価温度(℃), T ₀ :初期温度	<u>(39°C) % 1</u> ,		
	<u>E:輻射強度(W/m²)</u> ,			
	<u>G:重量流量(kg/s),A:輻射を</u>	受ける面積(m ²)		
	<u>C_p:空気比熱(1,007J/kg/K),</u>			
	<u>ΔT:構造物を介した温度上昇(5</u>	<u>°C) *2</u>		
	※1 水戸地方気象台で観測され	た過去最高気温 38.4℃		
	に保守性を持たせた値			
	※2 航空機火災による構造物を	介した冷却空気の温度		
	上昇 (<u>Δ T_b=2.2°C)</u> を包	絡する5℃に設定		
	空っこ (主) 河(河)に田)	-→===±		
	第2.3-4 次 計圖に用V、			
	残留熱除去系 海水でギップ	非常用す イーセル 発電機(高圧炉心スプレイ系		
	電動機	ディーゼル発電機を含む。)用 海水ポンプ電動機		
	G:重量流量 (kg/s) 2.6	0.72		
	A:輻射を受ける面積(m ²) 12	1.6		
	1			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	電動機 輻射強度:E		
	: 受熱面		
	第2.5-4 図 評価概念図		
	式1で求めた危険輻射強度Eとなる形態係数Φを、式2 より算出する。 E=Rf・Φ (式2) E:輻射強度(W/m ²), Rf:輻射発散度(W/m ²), Φ:用 態係数 (出典:評価ガイド) 式2で求めた形態係数Φとなる危険距離Lを、式3より 算出する。 $\Phi = \frac{1}{\pi^{n}} \tan^{-1} \left(\frac{m}{\sqrt{n^{2}-1}} \right) + \frac{m}{\pi} \left\{ \frac{(A-2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{B(n+1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right] \right\}$ (式3) ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^{2} + m^{2}$, $B = (1-n)^{2} + m^{2}$ Φ : 形態係数, L: 離隔距離 (m), H: 炎の高さ (m), R: 燃焼半径 (m)		
	上記のとおり危険距離を算出し,当該船舶から評価対象 施設までの離隔距離を下回るか評価を実施した。		
	 c. 評価結果 輻射熱によって上昇する冷却空気の到達温度を算出した 結果,許容温度以下であることを確認した。評価結果を第 2.5-5表に示す。 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20片	反) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第2.5-5表 船舶火災影響評価結果		
	想定火災源 想定火災源 危険距離 離隔距離 (m) (m) (m)		
	残留熱除去系海水系ポンプ 142		
	非常用ディーゼル発電機(高圧炉心 スプレイ系ディーゼル発電機を含む。) 111 用海水ポンプ		
	残留熱除去系海水系ポンプ 47		
	非常用ディーゼル発電機(高圧炉心 スプレイ系ディーゼル発電機を含む。) 37 用海水ポンフ [*]		
	2.6 放水路ゲートに対する危険距離評価		・設備の相違
	(1) 評価対象範囲		【柏崎 6/7,東海第二】
	放水路ゲートについて,船舶の火災を想定して評価を実施		島根2号炉では,軽油
	<u>L. re</u>		タンク,燃料移送ポン
	<u>(2)</u> 評価対象施設の仕様		プ,非常用ディーゼル
	放水路ゲート駆動装置の外殻となる放水路ゲート駆動装置		発電機は,地下構造等
	外殻の仕様を第2.6-1表に,外形図を第2.6-1図に示す。		の屋内設備のため影
			響評価対象外
	第2.6-1表 評価対象施設の仕様		また, 放水路ゲートに
			ついても設置してい
	タ称 放水路ゲート駆動装置		ないため影響評価対
			象外
	床面高さ T.P. +11.0m		なお、島根 2 号炉で
	の 割 対 利 片 妻 御 「		は、 海水ホンワは、 産
			外
			画を大心
	第2.6-1図 評価対象施設の外形図		
	(3) 評価対象施設までの離隔距離		
	想定火災源から評価対象施設までの離隔距離を第2.6-2表		
	に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所	(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
第2.6-2表 想定火災源から	評価対象施設までの離隔距離		
想定火災源	放水路ゲート (m) 1,050 220		
(4) 判断の考え万			
a計谷温度 	「却った穴り広」」「巛」はいた		
	12版の計谷温度は、火火時にわり		
会歴期価度上升を有慮して	一場合にわいて、動材の強度が推		
たこれの気体が見りな価度 323 し 証価方法	<u></u>		
一定の輻射強度で放水路	&ゲート駆動装置外殻が昇温され		
るものとして、表面での輻	晶射による入熱量と対流熱伝達に		
よる外部への放熱量が釣り)合うことを表した式1により外		
	:る輻射強度(=危険輻射強度)を		
求める。			
$T = T_0 + \frac{E}{2h}$			
(式 1)			
	<u> 終火災のメカ=ズムと火災安全設計,</u>		
	財団法人日本建築センター)		
<u>T:許容温度(325℃), T₀</u>	<u>:初期温度(50℃)*1</u>		
<u>E:輻射強度(W/m²), h</u>	:熱伝達率(17W/m ² /K) ^{※2}		
※1 水戸地方気象台で	〝観測された過去最高気温 38.4℃		
に保守性を持たせ	<u>」た値</u>		
※2 空気調和·衛生工	学便覧(外表面の熱伝達率は,受		
熱面の形状や周囲	1の環境条件を受け変化するが,		
	「垂直外壁面,屋根面及び上げ裏		
)値が示されている。評価上放熱		
が少ない方が保全	rm(rboscenb, cnb0)		
ち最も小さい個で	<u>:のつ1(W/m~/ k を用いる。)</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2		
	より算出する。		
	$E = R \cdot f \cdot \Phi \qquad (\exists 2)$		
	<u>E:輻射強度(W/m²), Rf:輻射発散度(W/m²),</u>		
	$\Phi:$ 形態係数		
	<u>(出典:評価ガイド)</u>		
	式2で求めた形態係数 Φ となる危険距離Lを,式3より		
	<u>第出する。</u>		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad (\vec{\pi} \cdot 3)$		
	ただし $m = \frac{H}{R} \approx 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u>Φ</u> :形態係数, L:離隔距離 (m), H:炎の高さ (m),		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		
	上記のとおり危険距離を算出し、当該船舶から評価対象		
	施設までの離隔距離を下回るか評価を実施した。放水路ゲ		
	<u>ートの評価概念図を第2.6-2 図に示す。</u>		
	放水路ゲート駆動装置外殻		
	福射強度:E		
	: 受熱面		
	第2.6-2図 放水路ゲートの評価概念図		
	<u>c評価結果</u>		
	放水路ゲート駆動装置外殻の表面温度が 325℃となる危		
	険距離を算出した結果、放水路ゲートまでの危険距離が離		
	隔距離以下であることを確認した。評価結果を第2.6-3表		
	に示す		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017-12-20 版)	東海第 ^一 举雷所(2018 9 12 版)	鳥根原子力発電所 2号炉	備老
	第2.6-3表 放水路ゲートへの船舶火災影響評価結果		
	想定火災源 危険距離 (m) 離隔距離 (m) 87 1,050		
	29 220		
 3. 漂流船舶の爆発の想定 (1) 想定の条件 	 3. 漂流船舶の爆発影響評価 (1) 評価対象船舶の抽出 発電所から約1,500mの位置にある高圧ガス貯蔵施設(東京 ガス株式会社が所有する日立LNG基地)にLNG及びLP Gを輸送する輸送船(内航船含む)の爆発を想定し,評価対 象施設に対する影響評価を行った。 爆発地点は、火災発生と同じ場所を想定した。評価条件を 第 3-1 表に、各対象との位置関係を第 3-1 図、第 3-2 図に示 す。 第 3-1 表 爆風圧影響評価で想定した評価条件	3. 漂流船舶の爆発想定 港湾内へ入港する最大規模の漂流船舶である重油運搬船については、重油が爆発する危険性はないことから、影響が無いことを確認している。 なお、爆発の危険性がある液化石油ガス輸送船舶が発電所に入港した実績が無いことを確認している。	・設備の相違 【柏崎 6/7,東海第二】 島根2号炉は,発電所 港湾内に入港する最 大規模の船舶である 重油運搬船を想定し ており,重油は爆発の 危険性はないため,影 響評価対象外
(2) 評価手法の概要 本評価は,柏崎刈羽原子力発電所に対する漂流船舶のガス爆 発による影響の有無の評価を目的としている。具体的な評価指 標とその内容を以下に示す。 第 3-1 表 評価指標及びその内容 評価指標 内容 危険限界距離[n] ガス爆発の爆風圧が 0.01MPa 以下になる距離	 貯蔵ガス 貯蔵量(m³) 貯蔵量(t) 密度(t/m³) 喫水(m) 貯蔵ガスK値*³ 貯蔵設備W値*4 ※1 伝熱工学資料第5版記載値 ※2 JIS K2240-2013 記載値 		
(3) 評価対象範囲 評価対象範囲は,発電所港湾内で出火する漂流船舶とする。 なお,以前は船舶にて構内の重油タンクへの重油の補給を行っ ていたが,現在は重油タンクの運用を廃止しており,発電所構 内に入港する危険物輸送船舶は存在しないことから,発電所前 面の海域で航行中の船舶が漂流し,港湾内に進入し,出火した 場合を想定する。	 ※3 評価ガイド記載値 ※4 貯蔵量は1t以上となるため,貯蔵量の平方根の数値 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>(4)</u> 必要データ			
評価に必要なデータを以下に示す。			
<u>第 3-2 表 高圧ガス爆発の評価条件</u>			
データ種類 内容			
コンビナート等保安規則第5条別表第二に掲げる数値 石油のK値 K=889000 (プロパンの是土値)			
応じて次に掲げる数値			
の数値の平方根の数値(貯蔵能力が一トン未満のものにあって			
は、貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっ 貯蔵設備又は処			
理設備の №値 び圧力におけるガスの質量(単位:トン)に換算して得られた数	<u>第3-1図 発電所とLNG,LPG輸送船の位置関係</u>		
値の平方根の数値(換算して得られた数値が一未満のものにあっ ては、当該掩算して得られた数値)			
処理設備:処理設備内にあるガスの質量(単位:トン)の数値			
₩=1021 ^{1/2} =31.95 ※雪町港湾岸時から発雪田頂乙痘施設までの距離			
離隔距離[m] 光电所得序型が5光电用床子炉施設よて50距離 約 273[m]			
<u> を 昇山 り る。</u>			
1021[t] W-10211/2-21 05			
$\frac{W-10211/2-31.95}{W-10211/2-31.95}$			
	第2-2回 発雲正と内航駅の位置間径		
	<u> </u>		
(6) 危険限界距離の算出	(2) 危険限界距離の算出		
ここで算出した危険限界距離が漂流船舶と発電用原子炉施	- 果, 危険限界距離が離隔距離以下であることを確認した。		
設の間に必要な離隔距離となる。	なお,それぞれの輸送船について積載量が 0m ³ の場合の喫		
$V = 0.042^{-3} \sqrt{K - W}$	水を考慮しても最短の離隔距離は、LNG輸送船で 680m、L		
$X = 0.04\lambda \cdot \sqrt[3]{K \times W}$	PG輸送船で 560m となり危険距離以上となるため、積載量が		
<u>X:危険限界距離[m], λ:換算距離 14.4[m·kg^{-1/3}],</u>	少ない場合の爆発位置を想定しても危険限界距離が離隔距離		
<u>K</u> :石油類の定数, W:設備定数K=888000, W=31.95 として,	を上回ることはない。評価結果を第3-2表に示す。		

<u>危険限界距離を求める。</u> $X=0.04\times14.4\sqrt[3]{(K\times1,000\times W)}$	
<u>X=約 176[m]</u> X:危険限界距離(m), K:石油類の定数(-), W:設備定	
数 (-)	
(7) 爆発による影響評価結果 第 3-2 表 船舶の爆風圧影響評価結果	
以上の結果から,漂流船舶において爆発が発生した場合を想	
定したとしても,離隔距離(約 273m)が危険限界距離(約 176m)	
以上であることから,発電用原子炉施設に影響をおよぼすこと	
340 1,100 X エ	
<u>165</u> <u>390 以上</u> ※ 海水ポンプ家の真さけ防御県真さ上りも低く 直接爆風圧の影響を受けることけた	
へ 145 パンプ 至い 前とは (おんぼう) と 1 と (15 年 15	
4 酒流船舶の飛来物の影響評価 4 酒流船舶の爆発飛来物影響評価	
1 保加加加の深元水のの影響前面 「石油コンビナートの防災アセスメント指針」(平成 25 年 3) 発電所周辺を航行する船舶として 日立 LNC 基地に出入り	
$\frac{1}{2} (二日本) (二人) (二人) (二人) (二人) (二人) (二人) (二人) (二人$	
2 + 3 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	
x· 1 $m = 2$ C r · 守行別の次区域を有りる印道州东州的次 計画を作成するに当たって、災害の相定をできるだけ安知的 本協が発電前に影響を及ぼすことけない	
<u>前回を</u> 作成するに当たって、灾害の心足をてきるたけ各観的 かの理実的に行きための証価手法、なテレた指針	
加切現美的に行うための評価手法を示した指針	
答 4.1 末 一	
計価未件 貯蔵ガス 液化石油ガス	
貯蔵量 1021t	
爆発形態 高圧ガスの漏えい後、引火によりガス爆発が発生し、飛来物が発生	
(1) 飛来物の最大飛散距離の算出方法	
「石油コンビナートの防災アセスメント指針」に基づき、容	
<u>器の破損による破片の飛散範囲を以下の式にて算出する。</u>	
$L = 465M^{0.10}$	
<u>L:破片の最大飛散範囲[m], M:破裂時の貯蔵物質量[kg]</u>	
$L = 465 \times (1, 021, 000) 0.10 = 1,855.04$	
<u>となり, 飛来物の最大飛散距離 L は約 1,855m となる。</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2) 飛来物影響評価結果			
飛来物による影響については,離隔距離(約 273m)が最大			
<u>飛散距離(約 1,855m)以下であるが,発電所遠方で漂流した船</u>			
舶が飛散距離である 1,855m 以内に流れ着いた後に爆発し,な			
おかつその飛来物が発電用原子炉施設に衝突する可能性は非			
常に低いことから, 想定した漂流船舶の飛来物の柏崎刈羽原子			
力発電所への影響はない。			
<u>また,柏崎刈羽原子力発電所付近には石油コンビナートが無</u>			
<u>く,発電所付近の航路を調査した結果,最も距離の近い航路で</u>			
<u>も 30km の離隔距離があることを確認した(第 4-1 図)。よっ</u>			
て,漂流した船舶が発電所周辺まで流れてくる可能性は低く,			
それに加えて飛来物が発電用原子炉施設に衝突する可能性は			
<u>非常に低い。</u>			
なお, (1)で用いた「石油コンビナートの防災アセスメント			
指針」の計算式は,大規模な爆発を伴う LPG 容器の BLEVE 現			
象を取り扱うものであるが, 発電所港湾内に入港する LPG 輸			
送船舶等の危険物輸送船舶はなく,発電所港湾内に入港する船			
<u> 舶火災に伴う著しい飛来物の発生は想定されない。</u>			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
第 4-1 図 発電所周辺の主要航路			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 5-1			
漂流船舶の選定について			・設備の相違
			【柏崎 6/7】
船舶には外航船(国外航路を航行する船舶)及び内航船(国内			島根2号炉は,発電所
航路を航行する船 舶)がある。これらの船舶が漂流してきた場			近傍に液化石油ガス
合を想定しても外航船の喫水 (水面から船底の最深部までの <u>垂直</u>			の輸送船舶が航行す
深さ)は 11m程度であり,発電所港湾内まで進入することがで			ることはないため, 発
きない。よって、発電所港湾内まで進入可能な内航船が、漂流し			電所港湾内の運用状
港湾内に進 入し火災・爆発した場合を想定する。			況を踏まえ, 入港する
発電所港湾内に進入可能な内航船にも様々な種類の燃料を積			最大規模の船舶であ
載する船舶が存在するが、火災・爆発を想定することから液化ガ			る重油運搬船につい
ス輸送船舶を対象とし、その中でも船舶数が多く 1)、発電所前			て影響評価を実施
面の海域に航路が存在する 2)液化石油ガス輸送船舶を対象とし			
た。液化石油ガスは、家庭業務用、一般工業用、発電用等がある			
が,最も使用量の多い家庭業務用のプロパンガス 3,4,5)とした。			
発電所港湾内に進入可能な内航船の積載燃料別隻数割合を第 1			
図に示す。			
船舶の規模は,100t 以上の内航船をすべて収録した内航船舶			
<u>明細書に記載の液化石油ガス船舶の中で、最大の容積のものと</u>			
し,評価に使用する入力値を以下に示す。			
容積 V:2010.28[m ³] ⁶ 全長 L:67.77[m] ⁶			
<u>全幅 H:13[m]⁶ 密度ρ:0.5076[t/m³]⁷</u> 投影面積 S=L×H:			
<u>881 [m²]</u>			
積載量 $M = \rho \times V : 1021[t]$			
18%			
■液化石油ガス			
1% ■液化天然ガス			
10/0 □ 重油			
しての他の(軽加、カノリン、灯油等の同時積載)			
38%			
第 1 回 抗欧川羽百乙力変量元に准ユ司やた市社のの建築地の			
第 1 凶 怕呵ハリオイル示丁/J 光电内に延八り能な内机船の損戦燃料 即体粉索は△			
別受剱刮合			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1) 平成 13 年度 危険物の海上輸送時の事故対応策の研究報告書			
(その1), H14.3, 社団法人日本海難防止協会			
2) 平成 23 年度 新潟港統計年報, H24. 12, 新潟県新潟地域振興			
局新潟港湾事務局			
3)日本LPガス協会統計資料 LP ガス需給の推移			
4)液化石油ガスの保安の確保及び取引の適正化に関する法律施			
行規則第十二条			
5)経済産業省 LPガスの規格			
http://www.lpgpro.go.jp/guest/learning/basic/01_03.html			
6)内航船舶明細書の LPG 船舶の中で容積が最大の船舶の値			
7)日本 LP ガス協会 物性一覧			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
参考資料 5-1		参考 5-1	
漂流船舶(火災)の二次的影響について	5. 漂流船舶の二次的影響	オイルフェンスの設置について	
	発電所港湾内で漂流船舶が出火し油が流出したとしても、港		
発電所港湾内で漂流船舶が出火し重油が流出したとしても、港	湾内の取水口にはカーテンウォールが設置されており、深層取	重油連搬船の受け入れ時等に、輪谷湾(海上)に油が流出した	
湾内の取水口にはカーテンウォールが設置されており、深層取水	水していることから発電用原子炉施設(海水ボンブ)への影響	場合には、公設消防に連絡するとともに、オイルフェンス設置に	
していることから発電用原子炉施設(海水糸ホンフ)への影響は	15th Man	よる拡散防止等の油流出災害の拡大防止措置を講じている。	
	という ボデブサオ ほうかん マサンテロント ほんいう せったり	また、深層取水していることから発電用原子炉施設(海水ホン	
また、相崎刈羽原子力発電所から主要航路までの距離は約	なお、発電所港湾外で船舶の油が流出した場合は、油の流出	フ)への影響はない。	
30km である。過去に発生したタンカーからの大規模油流出事故	を確認し次第、速やかにオイルフェンスを設置し、発電用原子	なお、重油連搬船の受け入れ時には、作業開始前にオイルフェ	
より推定すると、24時間程度*1で油がサイトに到達する可能性	炉施設への影響がないよう対応する。	ンスを設置する連用を行っているため、重油流出時において緊急	
があるが、海上保安庁より漂流船舶に関する連絡を受けた場合、		でオイルフェンスを設置する必要はない。	
オイルフェンスの設置に要する時間は11時間程度*** であるこ			
とから,油の到達時間内にオイルノェンスを設置することかでさ			
よって、産貨内への油の流入を妨けることが可能であると評価		オイルフェンス展張	
- Lunden			
×1・亚式 0 年 1 日 2 日 自根県隠村島の北北市約 110km の			
ニーナル・デート ロシア 国籍 タンカー「ナホトカ号」の重油流			
出東地が発生、流出島としては当時過去 2 乗日とたる重油			
約 6240k1 (推定) が流出 流出」た重油は 2 日間で 60 数		> ひ オイルフェンス	
My 02 HOAT (IEAL) 20 100日 0701年1013, 2011日 000000000000000000000000000000000			
№2・作業員の参集に 3 時間程度 オイルフェンスけ作業開始か			
ら 7~8 時間程度で設置が可能 設置手順としてけ オイル		重油運搬船	
フェンス等の資機材を保管エリアから渉湾まで移動(その間			
に作業船が柏崎洪上り移動し、オイルフェンスを接続後、作			

スを設置するための資機材はコンテナに収納し、防火帯内側			
の資材食庫エリアにて保管していろ			
		第1図 オイルフェンス設置範囲	
	1		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料-6	添付資料-6	添付資料-6	
敷地内における危険物タンクの火災について	敷地内における <u>危険物貯蔵施設等</u> の火災・爆発について	敷地内における危険物タンクの火災について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. はじめに	1. 且的	1. はじめに	
本評価は、発電所敷地内の危険物タンクの火災に対してより	東海第二発電所敷地内の危険物貯蔵設備の火災・爆発が、安	本評価は、発電所敷地内の危険物タンクの火災に対してより	
一層の安全性向上の観点から,その火災が起こったとしても発	全機能を有する構築物,系統及び機器を内包する発電用原子炉施	一層の安全性向上の観点から、その火災が起こったとしても発	
電用原子炉施設に影響を及ぼさないことを評価するものであ	設に影響を及ぼさないことについて,「原子力発電所の外部火災影	電用原子炉施設に影響を及ぼさないことを評価するものであ	
る。	響評価ガイド附属書B石油コンビナート火災・爆発の原子力発電	る。	
	所への影響評価について」及び、「附属書C「原子力発電所の敷地		
	内への航空機墜落による火災の影響評価について」(ともに以下		
	「評価ガイド」という。)に基づき、評価を実施する。		
2. 構内危険物タンクの火災影響評価		2. 構内危険物タンクの火災影響評価	
(1) 構内危険物タンクの火災の想定		(1) 構内危険物タンクの火災の想定	
・構内危険物タンクは発電用原子炉施設周辺に設置されて		・構内危険物タンクは発電用原子炉施設周辺に設置されて	
おり、発電用原子炉施設までの距離が近く貯蔵量の多い各		おり、発電用原子炉施設までの距離が近く貯蔵量の多い	
<u> </u>		ガスタービン発電機用軽油タンク及び貯蔵量の多い重油	
基隣接して設置しているが, 耐震 S クラス設備であり地		<u>タンク</u> とする。なお、隣接して設置している危険物タン	・条件の相違
震随伴事象としても 2 基同時火災の想定はしにくいこ		クについては、同時に火災が発生することを想定する。	【柏崎 6/7】
と, 隣接軽油タンク火災時にもう一方の軽油タンクの温度			島根2号炉は,隣接し
は発火点まで上昇しないため 2 基同時出火することはな			て設置している危険
いことから,発電用原子炉施設に近い軽油タンク 1 基の			物タンクについては,
<u> 火災</u> を想定する。			同時に火災が発生す
 ・構内危険物タンクは危険物を満載した状態を想定する。 		・構内危険物タンクは危険物を満載した状態を想定する。	ることを想定
 ・構内危険物タンクの損傷等による防油堤内での全面火災 		・構内危険物タンクの損傷等による防油堤内での全面火災	
を想定する。		を想定する。	
・泡消火設備の消火機能には期待しない。		・泡消火設備の消火機能には期待しない。	
・気象条件は無風状態とする。		・気象条件は無風状態とする。	
・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の3		・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の	
倍とする。		3倍とする。	
(2) 評価手法の概要		(2) 評価手法の概要	
本評価は、 <u>柏崎刈羽</u> 原子力発電所に対する構内危険物タン		本評価は、 <u>島根</u> 原子力発電所に対する構内危険物タンクの	
クの火災影響の有無の評価を目的としている。具体的な評価		火災影響の有無の評価を目的としている。具体的な評価指標	
指標とその内容を以下に示す。		とその内容を以下に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-1 表 評価指標及びその内容		第2-1表 評価指標及びその内容	
評価指標 内容		評価指標 内容	
輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度		輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度	
形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数		形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数	
		燃焼半径[m] 防油境規模より水のた燃焼半径 燃焼継続時間[s] 水災が終了するまでの時間	
離隔距離[m] 危険物タンクから発電用原子炉施設までの直線距離		旅祝祖祖がい前に3 八次が旅りするよくの時間 離隔距離[m] 危険物タンクから発電用原子炉施設までの直線距離	
熱許容限界値[-] 建屋の外壁, 天井スラブが想定火災の熱影響に対して許容限 界以下になる値		熱許容限界値[-] 建物の外壁,天井スラブが想定火災の熱影響に対して許容 限界以下になる値	
上記の評価指標は、受熱面が輻射体の底部と同一平面上にあ		上記の評価指標は、受熱面が輻射体の底部と同一平面上に	
ると仮定して評価する。油の液面火災では、火炎面積の半径が		あると仮定して評価する。油の液面火災では、火炎面積の半	
3m を超えると空気供給不足により大量の黒煙が発生し輻射発		径が3mを超えると空気供給不足により大量の黒煙が発生し	
散度が低減するが、本評価では保守的な判断を行うために、火		輻射発散度が低減するが、本評価では保守的な判断を行うた	
災規模による輻射発散度の低減がないものとする。		めに、火災規模による輻射発散度の低減がないものとする。	
輻射熱に対する設備の温度上昇を評価し、温度上昇がその設		輻射熱に対する設備の温度上昇を評価し、温度上昇がその	
備の熱許容限界値以下になるように発電用原子炉施設は離隔		設備の熱許容限界値以下になるように発電用原子炉施設は離	
距離を確保するものとする。		隔距離を確保するものとする。	
	2. 火災源又は爆発源となる設備の影響評価		
(3) 評価対象範囲	2.1 評価対象の考え方	(3) 評価対象範囲	
評価ガイドに基づき,発電所敷地内に存在する石油類やヒ	評価ガイドに基づき、発電所敷地内の火災源又は爆発源とな	評価ガイドに基づき、発電所敷地内に存在する石油類やヒ	
ドラジン等の危険物タンク火災の影響評価を実施する。消防	<u>る石油類等の危険物貯蔵設備について</u> ,火災・爆発の影響評価	<u>ドラジン等の危険物タンク</u> 火災の影響評価を実施する。消防	
法又は <u>柏崎市火災予防条例</u> に基づく届出対象施設(第	を実施する。第2.1-1図のフローに基づき評価対象を抽出した。	法又は松江市火災予防条例に基づく届出対象施設(第2-2表)	
2- <u>2(a)(b)(c)</u> 表)より,評価対象とする危険物タンク等を抽	火災源の抽出結果を第2.1-1表に,爆発源の抽出結果を第2.1-2	より,評価対象とする危険物タンク等を抽出する(第 2-1 図	
出する(第 2-1 図のフロー図)。発電所敷地内の発火源とな	表に示す。	のフロー図)。発電所敷地内の発火源となる施設のうち、建	
る施設のうち, 建屋内に設置している設備及び地下貯蔵タン	・屋内貯蔵所は評価対象外とした。	物内に設置している設備及び地下貯蔵タンクは外部への火災	
クは外部への火災が発生する可能性が低いことから除外し,	・地下タンク貯蔵所については、地表面で火災が発生する可能	が発生する可能性が低いことから除外し、危険物を貯蔵し屋	
危険物を貯蔵し屋外に設置しているタンク等を想定発火源	性は低いことから、評価対象外とした。	外に設置しているタンク等を想定発火源とする。発電所敷地	
とする。発電所敷地内における危険物施設等の位置を第 2-2	・常時「空」状態で運用する設備については、評価対象外とし	内における危険物施設等の位置を第2-2図に示す。	
図に示す。	1		
	・貯蔵燃料の種類が同じ場合、貯蔵量が少なくかつ評価対象施		
	設までの離隔距離が長い設備は、貯蔵量が多くかつ評価対象		
	施設までの離隔距離が短い他設備に包絡されるため、評価対		
	象外とした。		
	・火災源となる設備から評価対象施設を直接臨まないものにつ		
	いては、当該危険物貯蔵設備において火災・爆発が発生して		
	も、その影響が及ばないため、評価対象外とした。		
	 ・発電所構外より入所してくるタンクローリについては、燃料 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	補給時は監視人が立会を実施し、万が一の火災発生時は速や		
	かに消火活動が可能であることから、評価対象外とした。		
	敷地内の火災源及び爆発源となる設備及び評価対象施設の位		
	置を第 2.1-2 図に示す。		
【抜粋】外部火災影響評価ガイド		【抜粋】外部火災影響評価ガイド	
4.1 考慮すべき発電所敷地外の火災		4 1 老庸すべき発電所動地外の火災	
(2) 近隣の産業施設の火災・爆発		(2) 近隣の産業施設の火災・爆発	
近隣の産業施設で発生した火災・爆発により、原子炉施設		近隣の産業施設で発生した火災・爆発に上り 原子炉施	
が、その影響を受けないよう適切な防護措置が施されてお		設が その影響を受けたいようた適切た防護措置が施され	
り、その二次的な影響も含めて、原子炉施設の安全性を損な		ており その一次的な影響も含めて 原子炉施設の安全性	
うことのない設計とする。なお,発電所敷地外の 10km 以内		を損なうことのない設計とする。なお、発電所敷地外の	
を発火点とし,森林等に延焼することによって発電所に迫る		10km以内を発火点とし、森林等に延焼することによって発	
場合は(1)の森林火災として評価する。(ただし,発電所敷地		電所に迫る場合は(1)の森林火災として評価する。(た	
内に存在する石油類やヒドラジンなどの危険物タンク火災		だし、発電所敷地内に存在する石油類やヒドラジンなどの	
については、(3)の航空機墜落と同様に原子炉施設への熱影		危険物タンク火災については、(3)の航空機墜落と同様	
<u>響評価等を行う。</u>)		に原子炉施設への熱影響評価等を行う。)	
発電所構内には、危険物施設のほかにタンクローリ(990L		<u>固化材タンクの火災による熱影響を考慮し,固化材を可燃</u>	・設備の相違
<u>×2 台, 4kL×4 台, 16kL×1 台)を配備している。990L タ</u>		性の「不飽和ポリエステル樹脂」から「セメント」に変更す	【柏崎 6/7】
ンクローリのうち 1 台には指定数量以下の軽油を貯蔵し,		ることから、2 号炉運転中において使用する予定はなく、「空」	評価対象物の抽出結
訓練後の電源車や消防車等への燃料補給に使用するが, それ		の状態で運用するため、評価対象から除外する。	果の相違
以外のタンクローリは通常時「空」の状態で運用している。		同様にタンクローリについても、通常時「空」の状態で運	
<u>通常時「空」の状態であるタンクローリは発火の可能性はな</u>		用しており、発火の可能性はないことから評価対象から除外	
いことから評価対象から除外する。同様に、発電所構内には		する。	
<u>重油タンクがあるが、現在は当該タンクの重油を抜き危険物</u>		また,島根3号炉原子炉設置変更許可(平成17年4月26	
<u> 貯蔵所として廃止届出をしており,重油タンク内の重油は</u>		日付け 平成 15・12・18 原第 3 号)を踏まえて設置した「3	
「空」であることから、評価対象から除外する。		<u> 号炉非常用ディーゼル発電設備軽油タンク」については、平</u>	
<u>以上より,評価対象は,各号炉の軽油タンク,危険物を貯</u>		成 27 年 11 月 13 日付けで「危険物貯蔵所 廃止届出書」を所	
蔵する車両 (タンク ローリ), 指定数量以下の危険物を貯蔵		<u> 轄消防に提出し、危険物貯蔵所としての使用を廃止し、軽油</u>	
<u>する倉庫(K3/4 少量危険物倉庫)及びガスタービン車他燃</u>		を貯蔵しない運用としていることから評価対象から除外す	
料供給設備(一般取扱所)となる。		<u> </u>	
<u>ここで、指定数量以下の危険物を貯蔵する車両等(タンク</u>		<u>以上より,評価対象は,ガスタービン発電機用軽油タンク,</u>	
<u>ローリ)は、貯蔵量が少なく周辺監視区域外に設置・保管さ</u>		<u>重油タンク、補助ボイラ等となる。</u>	
れており,評価対象とした軽油タンク火災の評価に包絡され		ここで,補助ボイラ等は,評価対象としたガスタービン発	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉				
第 2-2(a)表 危険物製造所等許可施設一覧	第2.1-1表 敷地内	内の火災源となる設備一覧	第2-2表 危険物製造所等許可施設一覧(1/5)		
号炉 施設名 製造所の別 危険物 数量 詳細評価要	設備名 製造所等区分	設置 塩所 危険物の類 品名 (¹³) (〇:対象, X:対象所)	(2019年7月時点	_	
五年 類 品名 五年 3444 ○(※1) 日本 3444 ○(※1)		第四類 第一石油類 ガンリン 0.90 × (屋内設置 → A)	号炉 施設名 製造所の別 危険物 評価 類 品名 数量 評価		
1号炉 軽油タンク(B) 屋外タンク貯蔵所 4 第2石油類 軽油 344kL ○(※1)	油倉庫 星內貯蔵所	第四類 第二石曲類 軽曲・灯油 2.20 (星内設置 → A) 星内 第四類 第三石曲類 絶縁曲 18.20 (日内設置 → A)	1 ディーゼル地下タンク 地下タンク 4 第2石油類 軽油 46kL ×		
1号炉 非常用ディーゼル発電 一般取扱所 1 第2石油類 軽油 20kL × (屋内設置)		第四類 第四石油類 潤滑油 21.00 × (屋内設置 → A)	(A) 貯蔵所 地下	_	
機(A) 1 第 1 石油類 潤滑油 6.5kL × (屋内設置)		第四類 アルコール類 アルコール類 0.20 × (屋内設置 \rightarrow A)	1 $\begin{pmatrix} \overline{\gamma}_{4} & -\overline{\nu}_{1} & \overline{\nu}_{2} & \overline{\overline{\nu}_{2} & \overline{\nu}_{2} & \overline{\overline{\nu}_{2} $		
1号炉 非常用ディーゼル発電 一般取扱所 4 第2石油類 軽油 20kL × (屋内設置	重油貯蔵タンク 地下タンク貯蔵所	所 地下 第四類 第三石油類 重油 500.00 × (地下式 → B)	ディーゼル発電機	-	
機(B) 1 第 1 石油類 潤滑油 6.5kL × (屋内設置	非常用ディーゼル発電機用タンク 地下タンク貯蔵所	所 地下 第四類 第二石油類 軽油 800.00 × (地下式 → B)	1 潤滑油サンプタンク 一般取扱所 4 第4石油類 潤滑油 2kL×2 × (A P) (A (A (A (A) (A)		
1号炉 非常用ディーセル発電 一般取扱所 4 第2石油類 軽油 14kL × (屋内設置	原子炉建垦 一般取扱所	第四類 第二石油類 軽油 33.20 × 屋内 (星内設置 → A) (日政設置 → A) (日本)	(A, D) ディーゼル発電機 細正 F エ オ か 4001 × 0 ×	-	
機(HPCS) 4 勇 4 石油類 酒宿油 6. 5kL × (屋内設直 1.日后 MCキュー 二 4 第 4 石油類 酒宿油 6. 5kL × (屋内設直		第四類 第四右論類 潤清油 16.50	1 燃料小出槽(A, B) 一般取扱所 4 第2石油類 軽油 490L×2 屋内		
1分炉 MGモット室 一板取扱所 4 男子石油類 第名油 12kL × (座内設置) 1.4.6 4		第四類 第一台画類 軽細 0.36 (屋内設置 → A) 第四類 第三台画類 葉油 1.00 ×	再循環ポンプMGセッ 一般取扱所 4 第4石油類 潤滑油 10.92kL ×		
1 5 / 2 - こ ノ 設備 一板 取 仮 方 1 - 第 1 4 田 須 (7) 1 - 10 KL × (座 / 3) ((座 / 3) (座 / 3) ((座 / 3) (座 / 3) ((座 / 3) (座 / 3) ((座 / 3) ((座 / 3) ((座 / 3) ((座 / 3) (((座 / 3) ((((座 / 3) ((((((((((((((((((タービン建屋 一般取扱所	第四頭 第一日前線 里曲 1.90 (屋内設置 → A) 室内街 第四石油町 潤澄油 185.23 × ×	ト流体継手室(A, B) ^{座内}	_	
1 号 1 4 御親 7/ 酸ペパパ 3KL へ (逆ど)試過 1 号 6 加 にいい時諾タンク 局内タンク時諾託 4 第 2 式油新 広油 10.76201 又 (局内発展		第月1396 All Field 100-200 (星内設置 → A) 第四類 第3月200 7.93 × 第四類 第3月200 7.93 ×	1 メービン主油タンク × 1 (A B) 油港海維 一船町船町 4 第4万油灯 週湯油		
北田 潤浸油合歯		μ <td>(A, D) 面信行機 取取扱例 4 第4石油類 酒宿曲 55.7kL ××</td> <td>_</td>	(A, D) 面信行機 取取扱例 4 第4石油類 酒宿曲 55.7kL ××	_	
	溶融炉灯油タンク 屋外タンク貯蔵所	所 屋外 第四類 第二石油類 灯油 10.00 ○	■ 「		
	可搬型設備用軽油タンク 地下タンク貯蔵所	所 地下 第四類 第二石油類 軽油 210.00 × (地下式 → B)	2 No. 2 重油タンク 1 第 3 石油類 重油 900kL 〇		
	ディーゼル発電機用燃料タンク 少量危険物貯蔵取扱所	近所 屋外 第四類 第二石油類 軽油 0.78 (他評価に包給 → D)	屋外タンク がっていて それ つつい つ		
2 号炉 非常用ディーゼル発電 一般取扱所 1 第2 石油類 経油 20kL×(屋内設置		第四類 第一石油類 ラッカー等 0.10 × (屋内設置 → A) (((A) (2 No.3 重油ダング 日		
楼 (A) 4 第4 石油類 潤滑油 6.6kL × (屋内設置	No.1 保修用油倉庫 屋内貯蔵所	屋内 第四類 第二石油類 軽油 4.00 × (屋内設置 → A)	A系-ディーゼル機関 地下タンク 4 第2万沖類 郵沖 170kl ×		
2 号炉 非常用ディーゼル発電 一般取扱所 4 第2 石油類 経油 20kL × (屋内設置)		第四類 第四石油類 潤清油 90.00 × (屋内設置 → A) (((A)	2 燃料貯蔵タンク 貯蔵所 4 知2411100 半部 11000 地下		
機(B) 4 第4石油類 通常油 6.6kL × (屋内設置	No.2 保修用油倉庫 屋内貯蔵所	屋内 第四類 第四石油類 清清油 100.00 × (屋内設置 → A) (((A) (A2 系-ディーゼル機関 地下タンク 4 第 2 石油類 軽油 170kL ×		
2 号炉 MGセット室(A)(B) 一般取扱所 4 第4石油類 潤滑油 12kL×(屋内設置	緊急時対策室建屋 一般取极所	屋内 第四類 第三石油類 重油 5.76 × (屋内設置 → A) (屋内設置 → A) (((((A) ((((((((((((((((((() () () ()	燃料貯蔵タンク	_	
2号炉 非常用ディーゼル発電 一般取扱所 4 第2石油類 軽油 14kL × (屋内設置	緊急時対策室建屋地下タンク 地下タンク貯蔵所	所 地下 第四類 第三石油類 重油 20.00 × (地下式 → B)	2 HPCS 糸-ディーセル 地下ダンク 推開燃料 http:// 170kL × 地下ダンク 4 第2石油類 軽油 170kL × 地下		
機(HPCS) 4 第4石油類 潤滑油 3.9kL × (屋内設置	絶縁油保管タンク 屋外タンク貯蔵所	所 屋外 第四類 第三石油類 絶縁油 200.00 × (常時「穿」→C)	(茂) 例ぶやf(灯)((な)シンク (灯)(((の)))	-	
2 号炉 軽油タンク(A) 屋外タンク貯蔵所 4 第2石油類 軽油 344kL ○(※1)		第四類 第二石油類 軽油 5.97 × (他評価に包絡 → D) (((((((((() () () <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
2 号炉 軽油タンク (B) 屋外タンク貯蔵所 4 第 2 石油類 軽油 341kL ○(※1)	常設代容高圧電源装置直場 一般取扱所	歴外 第四類 第四石油類 潤清油 0.94 (他評価に包絡 → D)	版取扱所 4 第3石油類 重油 65kL		
3号炉 非常用ディーゼル発電 一般取扱所 4 第2石油類 軽油 20kL × (屋内設置)	緊急時安全対策用地下タンク 地下タンク貯蔵所	所 地下 第四類 第二石油類 軽油 90.00 × (地下式 → B)		_	
機(A) 1 第1石油類 潤滑油 6.6kL × (屋内設置	構内服洗濯用タンク 少量危険物貯蔵取扱所	短所 屋外 第四類 第三石油類 重油 1.82 × (他評価に包絡 → D)	2 4号所内ボイラ サービスタンク ×*		
3 号炉 非常用ディーゼル発電 一般取扱所 1 第 2 石油類 軽油 20kL × (屋内設置)	廃棄物処理建屋廃油タンク 少量危険物貯蔵取扱所	5所 屋内 第四類 第三石油類 廃油 1.90 × × (屋内設置 → A)		-	
機(B) 1 第 1 石油類 潤滑油 6.6kL × (屋内設置)	雑固体減容処理設備用バーナ 少量危険物貯蔵取扱所	预所 屋内 第四類 第二石油類 灯油 0.93 (屋内設置 → A)	2 4 号所内ボイラ ×*		
3 号炉 非常用ディーゼル発電 一般取扱所 4 第 2 石油類 軽油 14kL × (屋内設置)	緊急用エンジン発電機燃料タンク 少量危険物貯蔵取扱所	坂所 屋外 第四類 第二石油類 軽油 0.80 (常時「空」→C) ×	2 タービン設備 一般取扱所 4 第4石油類 タービン 71kL ×		
機(HPCS) 4 第 4 石油類 潤滑油 3.9kL × (屋内設置	緊急時対策所用発電機燃料油貯蔵タンク 地下タンク貯蔵所	所 地下 第四類 第二石油類 軽油 150.00 (地下式 → B)		_	
	オイルサービスタンク 少重10版初木酒 が正思田屋从语レゼンプ田様料ないカ 少量を除熱的部長地子	項 近介 第四頭 第二百調菓 里甜 0.39 (他評価に包絡 → D) 一面 日本 第二百調菓 単二 本 10.39 (他評価に包絡 → D) ※	2		
	スパニの7/12年ノビヨノスパマンノ11/22年アンマン 2 加ノビデマ9/51 第4428671	(他評価に包絡 → D)	■ MUCUPF ※・代表タンクの評価に知終される		
		網掛け箇所:評価対象となる設備			

柏崎刈羽原子	力発電所 (6/7号炉 (2017	7.12.2	20版)	東海第二発電所(2018.9.12版)		島根	· 原子力発	電所	f 2号均	F			備考
第 2-2(b)	表 危険	食物製造所等許可施	設一	覧			第2-2表 危険物	物製造所等	許	可施設一	覧(2	<u> </u>		
E He Heat	制法式の同	危険物	×4. E.	के के प्राकृत के स्थान के जिसके के प्राकृत कर		号炉	= 施設名	製造所の別	107	危険物		数量	評価	
万分" 爬取石	派垣内の加	類 品名	奴里	i于和时"[III;安古					現 4	前石 笛9石油類	軽油	16H	<u>安</u> 百 ×	
3 号炉 タービン設備	一般取扱所	4 第4石油類 潤滑油	106k	L × (屋内設置)		2	A 米=非常用アイーセル 発電設備	一般取扱所		ゲィア油海	AND AD AN	7.0511	屋内 ×	
		4 第4石油類 難燃性作動油	3. 8k	L × (屋内設置)			元电队用		4	第4石油類	潤滑油	7.65kL	屋内	
3 号炉 軽油タンク(A)	屋外タンク貯蔵所	4 第2 石油類 軽油 4 第 2 石油類 軽油	344k	L (%1)		2	B 系−非常用ディーゼル	一般的场所	4	第2石油類	軽油	16kL	× 屋内	
3 5分 軽価クンク(b) 4 号伝 非常田ディーゼル務索	産アトランク 灯蔵別 一般 助 扨 所	4 第2 石油類 軽油	20k	L U(梁I) L X (最内設置)			発電設備	/1X4X3/X/7	4	第4石油類	潤滑油	7.65kL	× 屋内	
	//X4X1/X///	4 第4石油類 潤滑油	6, 6k	L × (屋内設置)					4	第2石油類	軽油	9kL	×	
4 号炉 非常用ディーゼル発電	一般取扱所	4 第2石油類 軽油	20k	L × (屋内設置)		2	HPCS 系非常用ディーゼル	一般取扱所		答 4 7 3 4 85	388 3.6. 34	7 5011	屋内 ×	
機 (B)		4 第4石油類 潤滑油	6. 6k	L × (屋内設置)					4	弗4 石 佃 親	個領油	7. 00KL	屋内	
1号炉 非常用ディーゼル発電	一般取扱所	4 第2石油類 軽油	14k	L × (屋内設置)		2	国化林タンク			策の石油精	小胞和ボ	21 6M	×	
機(HPCS)		4 第4石油類 潤滑油	3, 9k	L × (屋内設置)			回に内ノマノ			л7 2 °н 10 жя	ル樹脂	21. OKL	空運用	
4 号炉 タービン設備	一般取扱所	4 第4石油類 潤滑油	106k	L × (屋内設置)				An an ar	\vdash		ナフテン			
		4 第4石油類 難燃性作動油	4k	L × (屋内設置)		2	促進材タンク	一般取扱所	4	第2石油類	酸コバル	87. 1L	× 屋内	
4号炉 軽油タンク(A)	屋外タンク貯蔵所	4 第2石油類 軽油	344k	L ⊖ (≫1)				-			F			
4 号炉 軽油タンク(B)	屋外タンク貯蔵所	4 第2石油類 軽油	344k	L () (※1)		2	開始材タンク		5	第二種自己	ケトン系	267. 5kg	×	
5 号炉 タービン設備	一般取扱所	4 第4石油類 潤滑油	106k	L × (屋内設置)			9号ガスタービン			反応性物質	道酸化物		2251.9	
5 品石 非常田ディーゼル務電	一般市场正	4 弟 4 右油類 リン酸エステル 4 第 9 石油類 ルシャ	3k	L × (屋内設置)			2 写 パバラ こう 発電機							
55分子 非常用 ティーセル 光電 機 (A)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 第27曲風 軽価 4 第4万油箱 潤湯油	20k	L ~ (崖内設置)		2	2号ガスタービン	一般取扱所	4	第2石油類	軽油	52.68kL	×*	
5 号炉 非常用ディーゼル発電	一般取扱所	4 第2石油類 軽油	20k	L X (屋内設置)			発電機用サービスタンク							
機 (B)	1000000000	4 第4石油類 潤滑油	6. 6k	L × (屋内設置)		3	No.1 重油タンク	屋外タンク	4	第3石油類	重油	900kL	0	
5 号炉 MGセット室(A)	一般取扱所	 第1石油類 潤滑油 	10.5k	L × (屋内設置)				貯蔵所	-	N7 0 1 H 1 H 75R	里田	JOOKE		
5号炉 MGセット室(B)	一般取扱所	 第1石油類 潤滑油 	10.5k	L × (屋内設置)		3	補助ボイラ(サービスタ	一般取扱所	4	第3石油類	重油	109kL	×*	
5号炉 軽油タンク(A)	屋外タンク貯蔵所	4 第2石油類 軽油	344k	L ()(*1)			シクを古む)			Anter a como Sala Maret			×	
5号炉 軽油タンク(B)	屋外タンク貯蔵所	4 第2石油類 軽油	344k	L ()(%1)					4	弗 Ⅰ 石沺類		6.4KL	屋内	
5 号炉 非常用ディーゼル発電	一般取扱所	4 第2石油類 軽油	14k	L × (屋内設置)					4	第2石油類		1.2kL	× 屋内	
機 (HPCS)		4 第1石油類 潤滑油	3. 9k	L × (屋内設置)		3	第3危険物倉庫	屋内貯蔵所 4	第3石油類	潤滑油他	1. 4kL	×		
6 号炉 タービン設備	一般取扱所	4 第4石油類 潤滑油	98k	L × (屋内設置)						JU O HIHAR		1. 1112	屋内 ×	
	An	4 第4石油類 難燃性作動油	4k	L × (屋内設置)					4	第4石油類		40kL	屋内	
 b 号炉 非常用ディーセル発電 (A) 	一般取扱所	4 第2 石油類 軽油 4 第 4 石油類 潤温油	18k	L × (屋内設直)					4	第2石油類	軽油	34. 3kL	× 屋内	
6号/G 非常田ディーゼル発電	一般而扬所	4 第 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	э. эк 18b	L × (屋内設置)		3	A-ディーゼル発電機	一般取扱所	4	第4石油類	潤滑油	7.1kL	×	
(B) 機 (B)	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	4 第4石油類 潤滑油	3. 9k	L × (屋内設置)			 ・ ・ ・	(h Z		ЛТННА	11111111	1. IND	屋内	
		* 20 * E 19 24 15 117 19	0101			/								

柏崎刈羽原子力発電所	6/7号炉 (20)	17.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
第 2-2(c)表 危	険物製造所等許可加	施設一覧	第2-2表。危険物製造所等許可施設一覧(3/5)	
号炉 施設名 製造所の別	危険物 類 品名	数量 詳細評価要否	号炉施設名製造所の別危険物要番評価類品名品名	
 6号炉 4 4 4 5 4 4 5 4 5 4 5 5 6 5 6 7 7<td>1 第2石油類 軽油 4 第4石油類 潤滑油</td><td>18kL ×(屋内設置) 3.9kL ×(屋内設置)</td><td>3 B-ディーゼル発電機 -般取扱所 4 第 2 石油類 軽油 34.3kL ※ 屋内 4 第 4 石油類 潤滑油 7.1kL ※</td><td>ļ</td>	1 第2石油類 軽油 4 第4石油類 潤滑油	18kL ×(屋内設置) 3.9kL ×(屋内設置)	3 B-ディーゼル発電機 -般取扱所 4 第 2 石油類 軽油 34.3kL ※ 屋内 4 第 4 石油類 潤滑油 7.1kL ※	ļ
6号炉 軽油タンク(A) 屋外タンク貯蔵門 6号炉 軽油タンク(B) 屋外タンク貯蔵門	1 第2石油類 軽油 1 第2石油類 軽油	565kL () (%1) 565kL () (%1)	3 C-ディーゼル発電機 一般取扱所 4 第2石油類 軽油 34.3kL × 屋内	
7号炉 タービン設備 一般取扱所	1 第 4 石油類 潤滑油 1 第 4 石油類 難燃性作動油	98kL × (屋内設置) 3.8kL × (屋内設置)	3 再循環ポンプMG 一般取扱所 4 第4石油類 酒宿油 (1.1kL) 屋内	
花安か 非常用サイーセル発電 一般取扱所 機(A)	4 第 2 石油類 堅固 4 第 4 石油類 潤滑油	18kL × (室内設置) 3.9kL × (屋内設置)	モット (A, B) ロージン設備 一般取扱所 4 第4石油類 潤滑油 100kL × 医内	
7号炉 非常用ディーゼル発電 一般取扱所機(B)	4 第2石油類 軽油 1 第4石油類 潤滑油	18kL × (屋内設置) 3.9kL × (屋内設置)	4 第一石油類 非水溶性液体 1,300 × 屋内	
7 号炉 非常用ディーゼル発電 一般取扱所 (C)	1 第2石油類 軽油 4 第4石油類 運漫油	18kL × (屋内設置)	水溶性液体 600L	
7号炉 軽油タンク(A) 屋外タンク貯蔵所	4 第44 曲須 個宿油 千 4 第2石油類 軽油	565kL ○(※1)	4 アルユール項 アルユール項 600L _{屋内} 非水溶性液体 19.000L ************************************	
7号炉 軽油タンク(B) 屋外タンク貯蔵用 第一ガスタービン及業 地下タンク貯蔵用	f 4 第2石油類 軽油 5 4 第2石油類 軽油	565kL 〇(※1)	共通 第1危険物倉庫 屋内貯蔵所 4 第2石油類 近日 原内 水溶性液体 200L 人家	
共用 機用燃料タンク 一般取扱所	1 第2石油類 軽油 1 第2石油類 軽油	71. 84k1 (12)	1 第 次溶性液体 3,000L 米 屋内	
共用 ガスタービン車他燃料 地下タンク貯蔵所 地下タンク貯蔵所	千 1 第2石油類 軽油	144kL × (地下式)	4 第 3 石 油與 水溶性液体 400L × 屋内 </td <td></td>	
サイルマンボー ガスタービン車他燃料 共用 ガスタービン車他燃料 供給設備	1 第2石油類 軽油	35.52kL × (※ 2)	4 第4石油類 第4石油類 36,000L × 上 上 上 非水溶性液体 2,000L ×	
共用 ガスタービン車他燃料 供給設備 一般取扱所	4 第2石油類 軽油	18kL × (※2)	4 第1石油類 (洗浄液) 3,000 屋内 水溶性液体 800L ×	ļ
共用 No.1 重油タンク 屋外タンク貯蔵所	f 4 第3石油類 重油	3000kL × (%3)	(現像液) (現像液) (現像液) (現像液) (日本) (日本) (日本) (日本) (日本) (日本)	ļ
共用 No.2 重油タンク 屋外タンク貯蔵門 ※1・白号にの軽油タンクル%にたる熱影	1 第3石油類 重油	320 kL \times ($\%3$)	4 アルコール規 アルコール規 200L 屋内 非水溶性液体 ×	
※1: 百分がの軽福クラク外炎による熱影響評価に	音叶画を美起する。 包絡される。		共通 第2危険物倉庫 屋内貯蔵所 4 第2石油類 (洗い油) 1,000L 屋内	ļ
※3:廃止届出済みであり,現在は重油を	抜きタンク内に重油は存在	しない。	水溶性液体 200L × 屋内	
			4 第 3 石油類 (浸透液) ×	
			水溶性液体 400L × 屋内	ļ
			4 第4石油類 第4石油類 第4石油類 24,000L ×	
			※:代表タンクの評価に包絡される。	ļ
				ļ
				ļ
				ļ
				ļ
				ļ
				ļ

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉						備考
		第 2-2 表 危険	物製造所	等許可施設-	-覧(4	<u> </u>		
		炉 施設名	製造所の別	た (た) (た) (た) (た) (た) (た) (た) (た	勿 名	数量	評価 要否	
	共	ガスタービン発電機用軽 油タンク	屋外タンク 貯蔵所	4 第2石油類	軽油	560kL	0	
	共	通 タンクローリ(1号車)	移動タンク 貯蔵所	4 第2石油類	灯油・軽油	3, 000L	× 空運用	
	——————————————————————————————————————	通 タンクローリ (2 号車)	移動タンク	4 第2石油類	灯油・軽油	3, 000L	× 空運用	
		通 タンクローリ (3 号車)	移動タンク	4 第2石油類	灯油・軽油	3,000L	× 空運用	
		免震重要棟ガスタービン	東丁周以月1	Adds on most 5-1 street	der >L		×	
		通 発電装直 2基 燃料小出槽(490L) 2基	一般取扱所	4 弗2石油類	11111111111111111111111111111111111111	12, 048L	屋内	
		A-ガスタービン燃料 地下タンク	地下タンク貯蔵所	4 第2石油類	軽油	45,000L	× 地下	
	<u></u>	B-ガスタービン燃料 地下タンク	地下タンク 貯蔵所	4 第2石油類	軽油	45, 000L	× 地下	
		 予備―ガスタービン 発電機 		4 第9 天油類	a⊠);h	59 6914	~*	
	*	^通 予備―ガスタービン 発電機用サービスタンク		4 第2 石田規	#王 (四	52. 00KL		
	22 (第	 B1-ディーゼル燃料貯蔵 タンク 	地下タンク 貯蔵所	4 第2石油類	軽油	100kL	× 地下	
	22(第	 B2-ディーゼル燃料貯蔵 タンク 	地下タンク 貯蔵所	4 第2石油類	軽油	100kL	× 地下	
	2(新	2 B3-ディーゼル燃料貯蔵 設) タンク	地下タンク 貯蔵所	4 第2石油類	軽油	100kL	× 地下	
		 3 非常用ディーゼル発電設 iii) 備軽油タンク(A) 	屋外タンク 貯蔵所	4 第2石油類	軽油	560kL	× 廃止	
		 3 非常用ディーゼル発電設 iii) 備軽油タンク(B) 	屋外タンク	4 第2石油類	軽油	560kL	× 廃止	
		※:代表タンクの評価に包絡	される。					
					mta (-			
		第 2-2 表 危険	物製造所	等許可施設-	一覧(5			
	号灯	戸 施設名	製造所の別	危険物 類 品:	ற 名	数量	評価 要否	
				4 第1石油類	第1石油類	440L	× 屋内	
				4 アルコール類	エチル アルコール	2L	× 屋内	
	共通	<u>危険物倉庫</u>	屋内貯蔵所	4 第2石油類	第2石油類	4,700L	× 屋内	
				4 第3石油類	エンジン オイル	200L	× 屋内	
				4 第4石油類	潤滑油	400L	× 屋内	
	并进	危険物倉庫	屋内貯蔵所	4 第1石油類	第1石油類	3,280L	× 屋内	
				4 第2石油類	第2石油類	3,500L	× 屋内	
	共通	8m 盤一般停電用発電機	発変電設備	4 第2石油類	軽油	490L	×*	
	共通	44m 盤爭務所 一般停電用発電機	発変電設備	4 第2石油類	軽油	490L	×*	
		※:代表タンクの評価に包絡	される。					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東	〔海第二発電	電所(2018. 9. 12	版)		島根原子力発電所 2号炉	備考
第 2-3 表 指定数量以下の危険物	第2.1-5	2表 敷地	内の爆	<u> 発源とな</u>	る設備一	覧		
号炉 施設名 製造所の別 危険物 数量 詳細評価要否	製造女	内容版	本数	1 太光をり宏导	公会号	詳細評価要否		
類 品名 キル田 タンクローリ 移動タンク貯蔵所 4 第2.7.油潤 軽油 9901 ×(※1)	 政哺石	内谷物	(本)	1本ヨたり谷重	松谷里	(○:対象,×:対象外)		
大用 タンクローリ 移動タンク貯蔵所 4 第2石油類 軽油 990L ×(常時空)	H ₂ , CO ₂ ボンベ庫	水素	20	7 m ³	140 m^3	× (屋内配置→A)		
共用 タンクローリ 移動タンク貯蔵所 1 第2石油類 軽油 1kL ×(常時空)	水素貯槽	水素	-	—	6.7 m ³	0		
共用 タンクローリ 移動タンク貯蔵所 4 第2 石油類 軽油 4kL × (常時空)	予備ボンベ庫①	水麦	40	7 m ³	290 m ³	×		
共用 タンクローリ 移動タンク貯蔵所 1 第2石油類 軽油 4kL ×(常時空)	1 開始ない神田	אדר אני	40	/ m	200 11	(屋内配置→A)		
共用 タンクローリ 移動タンク貯蔵所 1 第2石油類 軽油 1kL ×(常時空)	予備ボンベ庫②	水素	20	7 m^3	140 m^3	× (层内配置→A)		
共用 タンクローリ 移動タンク貯蔵所 4 第2石油類 軽油 16kL ×(常時空)	74.877							
共用 K3/4 少量危険物倉庫 - 4 第1 石油類 - 1001. × (※1)	所内ホイ ラー プロパンボンベ庫	プロパン	4	50 kg	200 kg	× (屋内配置→A)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	焼却炉用		_	500.1	2500 1	×		
※1:軽油タンク火災による熱影響評価に包絡される。	プロパンボンベ庫	9079	Б	500 kg	2500 kg	(屋内配置→A)		
	サービス建屋 ボンベ庫	アセチレン	3	7 kg	21 kg	× (屋内配置→A)		
	廃棄物処理建屋	アセチレン	1	7 kg	7 kg	× (長内配置→ A)		
	16子刃切用ホン・、庫	メタン+アルコ・ン	4	7 m ³	28 m 3			
	食堂用プロパンボンベ庫	プロパン	18	50 kg	900 kg	~ (屋内配置→A)		
				網掛け箇所	:評価対象	象となる設備		
第 2-2 図 危険物タンク及び危険物保存庫の位置(発電所全体)	第 2.1-2 図 火災派	原及び爆発	原とな	る設備及び	評価対象	・施設の位置	第 2-2 図 危険物タンクの位置(発電所全体)	
	2.2 <u>光電</u> 所敷地P	习危険物貯	咸設備	前の熱影響調	半曲			
	2.2.1 火災源とな	なる設備の	火災の)想定				
	火災源とたス	設備の水災	くの相当	定け以下の	レおりレ	-1.t-		
		ealui						
	山恐定条件							
	<u>a. 火災源と</u>	なる設備に	<u>t 2.1</u>	で抽出した	溶融炉灯	「油タンクと		
	1.7-							

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	b. 火災源となる設備の燃料は満載した状態を想定した。		
	<u>c.離隔距離は, 評価上厳しくなるよう, a. で想定した火災</u>		
	源となる設備位置から評価対象施設までの直線距離とし		
	1		
	<u>d. 火災源となる設備の破損等による防油堤内の全面火災を</u>		
	想定した。		
	e. 気象条件は無風状態とした。		
	f. 火災は円筒火炎モデルとし、火炎の高さは燃焼半径の3		
	倍とした。		
	(2) 評価対象施設		
	原子炉建屋、タービン建屋、海水ポンプ室(非常用ディー		
	ゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)		
	用海水ポンプ)、主排気筒を評価対象施設とし、直接臨まない		
	使用済燃料乾式貯蔵建屋,非常用ディーゼル発電機(高圧炉		
	心スプレイ系ディーゼル発電機を含む。)及び放水路ゲートは		
	対象外とする。		
	0.0.0 井澤ゴ カの際山		
評価に必要なノークを以下に示す。	<u> 台利家地区の外室及び主排入同に対する</u> が影響計画に必要と なる 世通データ な管出する		
	小いのための取用及び燃料に係るデータを筆りり 2-1 素に		
	示す		
	第 2. 2. 2-1 表 火災源となる設備及び燃料に係るデータ		
	想定火災源 概律の 超度 火災源 構築 の 加速 加速 加速 加速 加速 加速 加速 加速 加速 加速		
	溶融炉 灯油 10 50 0.039 830 19.36		
	灯油ダンク ※1 評価ガイド財録日 記載値 ※2 NUPEC-1905記載値		
	※2 NORES 16000000000000000000000000000000000000		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-4 表 軽油タンク火災影響評価に必要なデータ		第2-3表 危険物タンク火災影響評価に必要なデータ	
データ種類 内容		データ種類 内容	
輻射発散度[W/m²]燃焼する可燃物によって決まる定数 42.0×10 ³ [W/m²] (軽油)		編射発散度[W/m ²] (重油) 23×10 ³ [W/m ²] (重油) 23×10 ³ [W/m ²] (重加) 23×10 ³ [W/m ²] (重加) 23×10 ³ [W/m ²]	
防油堤面積[m ²] 防油堤の面積 17×17=289[m ²]		(軽油) 42×10 ³ [W/m ²] 防油堤面積	
建屋に近い軽油タンク防油堤の中心から建屋までの距離 46[m]		防油堤面積[m²] (重油タンク) 491.7m² (ガスタービン発電機用軽油タンク) 302.7m²	
 隣接軽油タンクまでの距離 12[m] 燃料移送ボンブの防護板(断熱)に近い軽油タンク防油堤の中 心から防護板(断熱)までの距離 11[m] 主排気筒に近い軽油タンク防油堤の中心から主排気筒までの 距離 77[m] 		(重油タンク) 建物:568~606[m] 海水ポンプ:587~626[m] 排気筒:526~564[m] (ガスタービン発電機用軽油タンク) 建物:329[m] 海水ポンプ:472[m] 排気筒:434[m]	
 (5) 燃焼半径の算出 防油堤には貯槽その他不燃障害物が存在し、火災面積はその 面積分だけ小さくなるが、防油堤全面火災のような大規模な火災の場合は、多少の障害物も無視できる。したがって、本評価では、防油堤面積と等しい円筒火炎を生ずるものと想定し、次の式から燃焼半径 R[m]を算出する。 R= (S/π)^{0.5} S:防油堤面積(火炎円筒の底面積) =289 [m²] R= (289/π)^{0.5}=9.59 [m] 	 (2) 燃焼半径の算出 円筒火炎モデルとして評価を実施するため,燃焼半径は防 油堤面積を円筒の底面と仮定して以下のとおり算出した。算 出結果を第2.2.2-2表に示す。 R=√S/π R:燃焼半径(m),S:防油堤面積(=燃焼面積)(m²) 	(5) 燃焼半径の算出 防油堤には貯槽その他の不燃障害物が存在し、火災面積は その面積分だけ小さくなるが、防油堤全面火災のような大規 模な火災の場合は、多少の障害物も無視できる。したがって、 本評価では、防油堤面積と等しい円筒火炎を生ずるものと想 定し、次の式から燃焼半径 R[m]を算出する。 (重油タンク) R= $(S / \pi)^{0.5}$ S:防油堤面積(円筒火炎の底面積) =491.7[m ²] R= $(491.7 / \pi)^{0.5}$ =12.51[m]	
	第2.2.2-2表 火災源の燃焼半径 想定火災源 防油堤面積 S (m ²) 燃焼半径 R (m) 溶融炉 灯油タンク 19.36 2.483	(ガスタービン発電機用軽油タンク) R= $(S/\pi)^{0.5}$ S:防油堤面積(円筒火炎の底面積)=302.7[m ²] R= $(302.7/\pi)^{0.5}=9.82[m]$	
(6) 形態係数の算出 次の式から形態係数を算出する。		(6) 形態係数の算出次の式から形態係数を算出する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$		$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$	
ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$		ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$	
φ : 形態係数, L : 離隔距離, H : 火炎高さ, R : 燃焼半径		φ : 形態係数, L : 離隔距離, H : 火炎高さ, R : 燃焼半径	
第 2-5 表 形態係数の算出結果		第 2-4-1 表 重油タンク No. 1, 2, 3 の形態係数算出結果	
評価対象 建屋 軽油タンク 燃料移送ポンプ 主排気筒		評価対象 建物 海水ポンプ 排気筒	
(防護板(断熱))	-	燃焼半径[m] 12.51	
燃焼半径[m] 9.59 	-	離隔距離[m] 568~606 587~626 526~564	
■ 「離開報止離」」 40 12 11 77 形能係数[-] 0.0727229 0.3863990 0.7760717 0.029596	-	形態係数 No. 1 9.40×10 ⁻⁴ 8.80×10 ⁻⁴ 1.10×10 ⁻³ 0.77×10 ⁻⁴ 0.00×10 ⁻⁴ 1.00×10 ⁻³	
		$\begin{bmatrix} - \end{bmatrix} \boxed{\text{No. } 2} \boxed{8. 77 \times 10^{-4}} \boxed{8. 23 \times 10^{-4}} \boxed{1. 02 \times 10^{-4}} \\ \boxed{8. 23 \times 10^{-4}} \boxed{9. 54 \times 10^{-4}} \boxed{1. 02 \times 10^{-4}} \\ \boxed{8. 23 \times 10^{-4}} \boxed{1. 02 \times 10^{-4}} 1. $	
		第 2-4-2 表 ガスタービン発電機用軽油タンクの 形態係数算出結果 評価対象 建物 海水ポンプ 排気筒 燃焼半径[m] 9.82 離隔距離[m] 329 472 形態係数[-] 1.73×10 ⁻³ 8.38×10 ⁻⁴ 9.92×10 ⁻⁴	
(7) 輻射強度の算出		(7) 輻射強度の算出	
火災の火炎から任意の位置にある点(受熱点)の輻射強度		火災の火炎から任意の位置にある点(受熱点)の輻射強度	
は、輻射発散度に形態係数をかけた値となる。次式から輻射		は、輻射発散度に形態係数をかけた値となる。次式から輻射	
		始度を質出す ろ	
E:輻射強度,KI:輻射発散度, φ:形態係数		E:輻射强度, Rt:輻射発散度, φ :形態係数	
<u>第 2-6 表 輻射強度の算出結果</u>		第2-5-1表 重油タンクNo. 1, 2, 3の輻射強度算出結果	
評価対象 建屋 軽油タンク 燃料移送ポンプ 主排気筒		評価対象 建物 海水ポンプ 排気筒	
[-	輻射発散度[W/m ²] 23×10 ³	
1 1 42.0×10 ⁻ 形能係数[-] 0.0727229 0.3863990 0.7760717 0.0295960		形能係数 No. 1 9.40×10 ⁻⁴ 8.80×10 ⁻⁴ 1.10×10 ⁻³	
[輻射強度[W/m ²] 3.05×10 ³ 16.2×10 ³ 32.5×10 ³ 1.2×10 ³		$\begin{bmatrix} - \end{bmatrix} \text{No. 2} 8.77 \times 10^{-4} 8.23 \times 10^{-4} 1.02 \times 10^{-3} \\ \hline \end{bmatrix}$	
		No. 3 8.25×10^{-4} 7.73×10^{-4} 9.54×10^{-4} No. 4 9.54×10^{-4} 9.54×10^{-4} 9.54×10^{-4}	
		輻射強度 No. 1 21.7 20.3 25.3	
		[W/m²] No. 2 20. 2 19. 0 23. 5	
		No. 3 19. 0 17. 8 22. 0	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		第2-5-2表 ガスタービン発電機用軽油タンクの 輻射強度算出結果 評価対象 建物 海水ポンプ 排気筒 輻射発散度[W/m²] 42×10 ³ 形態係数[-] 1.73×10 ⁻³ 8.38×10 ⁻⁴ 9.92×10 ⁻⁴ 輻射強度[W/m²] 72.8 35.2 41.7	
(8) 燃焼継続時間の算出 燃焼継続時間は, 燃料量を燃焼面積と燃焼速度で割った値に なる。 $t = \frac{V}{\pi R^2 \times v}, v = \frac{M}{\rho}$ より, $t = \frac{V \times \rho}{\pi R^2 \times M}$ t:燃焼継続時間[s], V:燃料量[m ³], R:燃焼半径[m], v:燃焼速度[m/s], M:質量低下速度[kg/m ² ·s], ρ :密度[kg/m ³]	 (3) 燃焼継続時間の算出 燃焼継続時間は,燃料量を燃焼面積と燃焼速度で割った値 になる。算出結果を第2.2.2-3 表に示す。 t = V _{π R² × v} t:燃焼継続時間(s), V:燃料量(m³) R:燃焼半径(m), v:燃焼速度=M/ρ(m/s) M:質量低下速度(kg/m²/s), ρ:燃料密度(kg/m³) 	(8) 燃焼継続時間の算出 燃焼継続時間は,燃料量を燃焼面積と燃焼速度で割った値 になる。 $t = \frac{V}{\pi R^2 \times \nu}, v = \frac{M}{\rho}$ より, $t = \frac{V \times \rho}{\pi R^2 \times M}$ t:燃焼継続時間[s], V:燃料量[m ³], R:燃焼半径[m], v:燃焼速度[m/s], M:質量低下速度[kg/m ² ・s], ρ :密度[kg/m ³]	
ここで、 <u>V=565[m³]、M=0.044[kg/m²·s]</u> 、 $\rho = 918[kg/m3]$ として、燃焼継続時間を求めると、 v= <u>0.044/918=4.793×10⁻⁵ [m/s]</u> t= <u>565/ (289×4.793×10⁻⁵) =40788[s]=11.3[h]</u> (出典) 質量低下速度、密度:NUREG-1805	第 2.2.2-3 表 燃料量 燃焼半径 質量低下速度 燃料密度 燃焼継続時間	(重油タンクNo.1,2,3) ここで、V=900[m ³]、 ρ =1000[kg/m ³]、M=0.035[kg/m ² ・ <u>s</u>]として、燃焼継続時間を求めると、 v=0.035/1000=3.50×10 ⁻⁵ [m/s] t=900/(491.7×3.50×10 ⁻⁵)=14.53[h] (ガスタービン発電機用軽油タンク) ここで、V=560[m ³]、 ρ =918[kg/m ³]、M=0.044[kg/m ² ・	
	想定火災源 V (m ³) R (m) M (kg/m ² /s) ρ (kg/m ³) t (s) 溶融炉 灯油タンク 10 2.483 0.039 830 11,008	s」として、燃焼継続時間を求めると、 $v=0.044/918=4.79\times10^{-5}$ $t=560/(302.7\times4.79\times10^{-5})=10.73[h]$ (出典)質量低下速度、密度:NUREG-1805	
 (9) 評価結果 a. 建屋外壁の温度評価 		 (9) 評価結果 a.建物外壁の温度評価	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(b)耐火性能の評価結果		(b) 耐火性能の評価結果	
		<u>ア. 重油タンク(No. 1, 2, 3)</u>	
火災が発生した時間から燃料が燃え尽きるまでの間, 一定		火災が発生した時間から燃料が燃え尽きるまでの	
の輻射強度で発電用原子炉施設外壁が昇温されるものとし		間,一定の輻射強度で発電用原子炉施設外壁が昇温さ	
て、下記の一次元非定常熱伝導方程式の解の式より、コンク		れるものとして,下記の一次元非定常熱伝導方程式の	
リートの表面の温度上昇を求め, コンクリートの表面温度が		解の式より, コンクリートの表面の温度上昇を求め,	
許容温度以下であるか評価を実施した。その結果,発電用原		コンクリートの表面温度が許容温度以下であるか評	
子炉施設外壁の表面温度は <u>約 119℃</u> となり, 許容温度を下回		価を実施した。その結果,発電用原子炉施設外壁の表	
る <u>こと</u> を確認した(第 2-3 図)。		面温度は <u>約52℃</u> となり,許容温度を下回ることを確	
m m 1		認した。(第 2-3 図)	
$T_s = T_0 + \frac{\sqrt{k\rho c}}{\sqrt{k\rho c}}$		$T - T + \frac{1}{1}$	
$\left(\frac{\sqrt{t+2}}{1.18h\sqrt{t}}+1\right)\frac{\pi}{\varepsilon E}$		$I = I_0 + \frac{\sqrt{k\rho c}}{\left(\sqrt{k\rho c} + 1\right)h}$	
		$\left(\overline{1.18h\sqrt{t}}^{+1}\right)\overline{\varepsilon E}$	
出典:原田和典,建築火災のメカニズムと火災安全設計,日		出典:原田和典,建築火災のメカニズムと火災安全	
本建築センター		設計,財団法人 日本建築センター	
T ₀ :初期温度[50℃],E:輻射強度[W/m²], ε:コンクリート		T _o :初期温度[50℃],E:輻射強度[W/m ²], ε:コンクリ	
表面の放射率(<u>0.95</u>)*, h:コンクリート表面熱伝達率		ートの表面の放射率[<u>0.94</u>] ^{*1} , h: コンクリート表面熱伝	
[<u>34.9</u> W/m ² K] [*] , k:コンクリ ート熱伝導率[1.6W/mK] [*] ,		達率[<u>23.3</u> W/m ² K] ^{※2} , k:コンクリート熱伝導率[1.6W/mK]	
ρ:コンクリート密度[2200kg/m³]*, c:コ ンクリート比		^{※2} , ρ:コンクリート密度[2,200kg/m ³] ^{※2} , c:コンクリ	
熱[879J/kgK] [*] , t:燃焼継続時間[s]		ート比熱[879J/kgK] ^{※2} , t:燃焼継続時間[s]	
※:建築設計竣工図書 原子炉建屋構造計算書		※1:伝熱工学資料, ※2:原子炉建物 構造計算書	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
柏鹼刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12 版)	島根原子力発電所 2号

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
			2.2.3 外壁に対する熱影響評価 (1) 評価対象施設の外壁について、溶融炉灯油タンクの火災を 想定して評価を実施した。. (2) 火災源となる設備と評価対象施設までの離隔距離 火災源となる設備と評価対象施設までの離隔距離 火災源となる設備と評価対象施設までの離隔距離 変融炉 力:2.3-1表 (a) 「原子炉建量」タービン建量」使用済燃料 乾式貯蔵建量 客融炉 力:2.3-1表 火災源となる設備と評価対象施設までの離隔距離 「協力」 (a) 「原子炉建量」タービン建量」使用済燃料 乾式貯蔵建量 「加力」 * 直接臨まないため評価対象外とした。 (3) 形態係数の算出 以下の式から形態係数を算出した。算出結果を第2.2.3-2 表に示す。 $\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{\pi}{\pi} \left(\frac{(A-2n)}{n\sqrt{AB}} \tan^{-1} \left(\sqrt{A(n-1)} - \frac{1}{n} \tan^{-1} \left(\sqrt{(n-1)} \right) \right)$	200 100 10.729[h].52.22 [°C] 50 6 6 50 6 6 第2-4図 原子炉建物外壁面の

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	斤(2018. 9. 12版)	島根原子力発電所 2号炉	備考
	<u>ttl</u>			
	$m = \frac{H}{R} \doteq 3$, $n = \frac{L}{R}$, $A = (1 + \frac{L}{R})$	$(+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u>Φ:形態係数, L:離隔距離(m), H:</u>	炎の高さ(m), R:燃焼半径(m)		
	第2.2.3-2表 火災	原となる設備の形態係数		
	離隔距離 想定火災源 (m)	燃焼半径 形態係数 R Φ (m) (-)		
	45 (原子炉建屋)	2. 483 5. 9639×10 ⁻³		
	灯油タンク (タービン建屋)	2. 483 2. 0248×10 ⁻³		
	(4) 輻射強度の算出			
	火炎から任意の位置にあ	る点(受熱点)の輻射強度は,	輻	
	射発散度に形態係数を掛け	た値になる。算出結果を第2.2.	3-3	
	表に示す。			
	$E = R f \cdot \Phi$			
	<u>E:輻射強度(W/m²), Rf:</u> 軋	$a射発散度(W/m^2), \Phi: 形態係数$		
	第 2. 2. 3-3 表 火災	原となる設備の輻射強度		
	離隔距離	輻射発散度 形態係数 輻射強度		
	想定火災源 種類 L (m)	$ \begin{array}{ c c c } R f & \Phi & E \\ (k \mathbb{W} / m^2) & (-) & (\mathbb{W} / m^2) \end{array} $		
	45 (原子炉建屋)	5. 9639×10 ⁻³ 298. 2	0	
	灯油タンク ^{7.1 (田} 77 (タービン建屋)	2.0248×10^{-3} 101.2	4	
	<u>a.</u> 許容温度			
	火災時における短期温度	上昇を考慮した場合において、		
	ンクリート圧縮強度が維持	される保守的な温度 200℃以下		
	t.J.			
	<u>b.</u> 評価結果			
	火災が発生した時間から	燃料が燃え尽きるまでの間, -		
	の輻射強度による入熱と対	流による放熱を考慮した,下記		
	一次元非定常熱伝導方程式	の一般解の式よりコンクリート	表	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	面の温度上昇を求め、コンクリート表面の温度が許容温度以		
	下であるか評価した。		
	なお、天井スラブは以下の理由により、外壁の評価に包絡		
	されるため実施しない。建屋外壁の評価概念図を第2.2.3-1		
	図に示す。		
	 ・火炎長が天井スラブより短い場合,天井スラブに輻射熱 		
	を与えないことから熱影響はない。		
	 ・火炎長が天井スラブより長い場合,天井スラブに輻射熱 		
	を与えるが、その輻射熱は外壁に与える輻射熱より小さ		
	い。天井スラブの評価概念図を第2.2.3-2図に示す。		
	 ・火炎からの離隔距離が等しい場合,垂直面(外壁)と水 		
	平面(天井スラブ)の形態係数は、垂直面の方が大きい		
	ことから、天井スラブの熱影響は外壁に比べて小さい。		
	$2 E \left(\frac{\alpha t}{1} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{x^2}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(1$		
	$T = T_0 + \frac{\sqrt{1-\alpha}}{\lambda} \left[\sqrt{\frac{1-\alpha}{\sqrt{1-\alpha}}} \exp\left(-\frac{\pi}{4\alpha t}\right) - \frac{\pi}{2\sqrt{\alpha t}} \operatorname{erfc}\left(\frac{\pi}{2\sqrt{\alpha t}}\right) \right]$		
	<u>T:表面から x (m)の位置の温度(℃), T。:初期温度(50℃)*</u>		
	<u>κ:コンクリート温度伝導率(=$\lambda / \rho C_p$)(7.7×10⁻⁷m²/s)</u>		
	<u>ρ:コンクリート密度(2,400kg/m³)</u>		
	<u>C_p:コンクリート比熱(880J/kg/K)</u>		
	$\lambda:$ コンクリート熱伝導率(1.63W/m/K),E:輻射強度(W/m ²)		
	t : 燃焼継続時間(11,008s), x : コンクリート壁表面深さ(0m)		
	※ 水戸地方気象台で観測された過去最高気温 38.4℃に保守性		
	を持たせた値		
	対流による放熱		
	天井スラブ 外壁 屋内		
	初期温度:50℃		
	第2.2.3-1 図 建屋外壁の評価概念図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	天井スラブに輻射熱を与える範囲 外壁に輻射熱を与える範囲 大井スラブ 歴 外壁 医内 第 2. 2. 3-2 図 天井スラブへの輻射熱の影響		
	コンクリート表面の温度上昇を評価した結果,許容温度200℃		
	以下であることを確認した。評価結果を第2.2.3-4表,第		
	2.2.3-4図に示す。		
	第2:2:3-4表外壁に対する熱影響評価結果		
	想定火災源 評価対象施設 評価温度 計谷温度 (℃) (℃)		
	溶融炉灯油タンク原子炉建量70タービン建量57		
	200 -原子炉建屋(火災源:溶融炉灯油タンク) 100 -タービン建屋(火災源:溶融炉灯油タンク) 100 -0 100 -0 00 -0		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
b. <u>軽油タンク</u> の温度評価			・設備の相違
(a)許容限界值(許容限界温度)			【柏崎 6/7,東海第二】
本評価で用いる許容限界値(許容限界温度)については、			島根2号炉では,軽油
軽油の発火点225℃とする。			タンク, 燃料移送ポン
			プ,非常用ディーゼル
(b)耐火性能の評価結果			発電機は,地下構造等
			の屋内設備のため影
火災が発生した時間から燃料が燃え尽きるまでの間,一定			響評価対象外
の輻射強度で <u>軽油及び軽油タンク</u> が昇温されるものとして,			島根2号炉では,海水
下記の式より, 軽油の温度上昇を求め, 軽油の温度が許容温			ポンプは, 屋外設置の
度以下であるか評価を実施した。その結果, <u>軽油</u> の温度は約			ため影響評価を実施
<u>178℃</u> となり,許容温度を下回ることを確認した。			
$T = \frac{\varepsilon E S_1 + h S_2 T_{air}}{\varepsilon E S_1 + h S_2 T_{air}} - \left(\frac{\varepsilon E S_1 + h S_2 T_{air}}{\varepsilon} - T_0\right) e^{\left(\frac{h S_2}{c}\right)t}$			
hS_2 (hS_2)			
T ₀ :初期温度[<u>38</u> ℃],E:輻射強度[W/m²], ε: <u>軽油タンク</u> 表			
面の放射率(0.9) ^{※1} , h: <u>軽油タンク</u> 表面熱伝達率[17W/m ² K]			
^{※2} , S ₁ =S ₂ : <u>軽油タンク</u> 受熱・放熱面積[m ²], C: <u>軽油タンク</u>			
及び軽油の熱容量[8.72×10^8 J/K],t: 燃焼継続時間[s],			
T _{air} :外気温度[℃]			
※1: 伝熱工学資料, ※2: 空気調和·衛生工学便覧			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
c. <u>燃料移送ポンプ</u> の温度評価		b . <u>海水ポンプ</u> の温度評価	・設備の相違
<u>燃料移送ポンプは,軽油タンクの近傍に設置されており,</u>			【柏崎 6/7,東海第二】
当該タンクにて火災が発生した場合,その輻射による熱影響			島根2号炉では,軽油
を受ける。このため、燃料移送ポンプを熱影響から防護する			タンク,燃料移送ポン
ための防護板(断熱)をその周囲に設置する。第 2-4 図に			プ,非常用ディーゼル
防護板(断熱)設置範囲の例を示す。			発電機は,地下構造等
<u>以下,防護板(断熱)の設置を考慮した場合の熱影響評価</u>			の屋内設備のため影
を実施する。			響評価対象外
			島根2号炉では,海水
(a) 許容限界值(許容限界温度)		(a) 許容限界值(許容限界温度)	ポンプは, 屋外設置の
本評価で用いる許容限界値(許容限界温度)については,		本評価で用いる許容限界値(許容限界温度)について	ため影響評価を実施
端子ボックスパッキンの耐熱温度 100℃とする。パッキンの		は, <u>海水ポンプ電動機の下部軸受の許容温度55℃とする。</u>	
耐熱温度は, JIS 規格に基づく耐熱性を決定するための試験			
温度であり、この温度以下であれば、発火することなく、パ			
ッキンとしての性能が維持できることから,燃料移送ポンプ			
の機能に影響はない。			
(b)評価条件			
(4) 必要データから(8) 燃焼継続時間に, 以下の条件を加			
えて評価する。			
・第 2-4 図における①及び②の位置に設置する防護板(断			
熱)は、防油堤により全ての面に輻射は当たらないが、全			
面に輻射が当たる上面(③)の防護板(断熱)も含め,保			
守的に、火炎から最短距離にて算出した最も厳しい条件の			
輻射が①~③の全ての面に当たるものとする。なお、①~			
③の防護板(断熱)に対する熱影響が支配的であることか			
ら、これらについては評価上考慮するが、それ以外の面に			
ついては、燃料移送ポンプエリアに接する面が小さく、コ			
ンクリート製の防油堤もあること から評価上考慮しな			
・輻射が当たる面は、防護板(断熱)のみとして評価した防			
護板(断熱)と燃料移送ポンプ間に防油堤が設置されてい			
る箇所①については、防油堤による伝熱の低減は考慮しな			
・輻射を受けない面は、保守的に断熱とする。			

: 防護板 (断熱) 設置	
軽油タンク 移送ポンプ エリア	
<u>第 2-4 図 防護板(断熱)の設置概要と設置範囲の例</u>	
<u>(b)</u> 耐火性能の評価 ア. 重油タンク (No. 1, 2, 3))
火災が発生した時間から燃料が燃え尽きるまでの間,一定 火災が発生した時間が	
の輻射強度で燃料移送ポンプエリアに設置している防護板間,一定の輻射強度で海道	<u>水ポンプの</u> ?
(断熱)が昇温されるものとして、下記により、 <u>燃料移送ポ</u> れるものとして、下記の ンプ国団の長士温度(燃料移送ポンプの長士温度)を求め、「「「「「」」」	式より <u>海水ス</u> 下でたてかま
<u> - ノ 内田の取八価度(旅程停込ホノノの取八価度)</u> を示め、	「このつかす 令却空気温度
<u>以下に概念図を示す。</u> <u>許容温度を下回ることを</u>	<u>確認した。</u>
$T = T_0 + \frac{E \times A_T}{G \times C_p}$	
<u>To:通常運転時の上昇温度</u>	<u>[22℃], E:</u>
$A_{\underline{r}}$:受熱面積[10.93m ²],(:重量流量[
<u>Cp</u> :空気比熱[1007J/(kg・)	<u>[] *1</u>

宁 炉	備考
⁴ が燃え尽きるまでの <u>プの冷却空気</u> が昇温さ <u>海水ポンプの冷却空気</u> るか評価を実施した。 <u>気温度は約23℃となり,</u> た。 <u>, E:輻射強度[W/m²],</u> 流量[1.96kg/s],	 ・設備の相違 【柏崎 6/7,東海第二】 評価対象物の抽出結 果の相違

柏崎刈羽原子力発	電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	鋼砍		イ. ガスタービン発電機用軽油タンク	
屋外	耐火材 断熱材 / 燃料移送ポンプエリア		水災が発生した時間から燃料が燃え尽きろすでの	
外気との熱伝達 Quan				
	内気温度 T _{room}		間、一足の輻射強度で海水ホンノの行却空気が升温さ	
同田//0/轴列 Qr, out	熱伝導 Q _{c, out}		<u>れるものとして、下記の式より海水ポンプの冷却空気</u>	
	→ → → → → → → → → → → → → → → → → → →		温度を求め、許容温度以下であるか評価を実施した。	
	熱伝得 Qe, in PYX(この熱伝)主 Qv, in 時期100 光子		その結果、海水ポンプの冷却空気温度は約23℃となり、	
火炎からの輻射 E	燃料移送ホンプ			
	防護板		計谷価度を下回ることを唯認した。	
<u>第</u> 2-	<u>5 図 伝熱の概念図</u>		$T - T + E \times A_T$	
			$I = I_0 + \frac{1}{G \times C_p}$	
証価に必要なが	ペラメータを以下に示す			
			▼ 、 送供)実だは ~ L 目 沢 座 [00%] - P - おもは 座 [m / 9]	
			<u>1₀: 週吊連転時の上升温度[22℃], E: 輻射强度[W/m²],</u>	
			<u>A_T:受熱面積[10.93m²],G:重量流量[1.96kg/s],</u>	
第 2-7 表	燃料移送ポンプエリア温度算出時の		<u>C</u> ":空気比熱[1007J/(kg・K)] ^{※1}	
	入力パラメータ		- ※1:伝熱工学資料	
項目	パラメータ 備考			
外気温度[℃]	55 日射の影響を考慮した相当外気温(切) 55 n トビ			
ポンプエリア初期温度[℃]	38 げた温度(防護板(断熱)の裏面であ			
	り、日射の影響はない)			
厚さ[mm]	100			
熱伝導率[₩/mK]				
耐 火 比熱[1/(kg・K)]				
材 最高使用温度[℃]				
材質				
防 厚さ[mm]	150			
護 熱伝導率[W/mK] 渡 庶 [1 /3]				
板 断 <u>密度[kg/m]</u> 熱 比勢[1/(kg・K)]				
材 最高使用温度[℃]				
材質				
~~ 5				
厚さ[mm]				
鋼 熱伝導率[W/mK] 板 密度[kg/m ³]	51.6< 軟鋼 300Kの値** 7860 軟鋼 300Kの値**			
出及[Kg/m] 比熱[J/(kg·K)]	473 軟鋼 300Kの値※			
※:日本機械学会,"伝熱工	学資料 改訂第5版," 2009年5月20日			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
以下の式に示す一次元非定常熱伝導方程式を用いて,防護			
板(断熱)の内面並びに燃料移送ポンプエリア温度を求める。			
$\frac{dT}{dt} = \alpha \frac{d^2T}{dt^2}$			
$dt dx^2$			
T・泪度 + ・時刻 ▼ ・防灌板(断熱)からの距離 ~・			
1.1 面反, t .时刻, A . 例 变似 (
防護板(断熱)及び防護板(断熱)内面温度上昇に伴う熱			
<u>負荷は次式で計算される。</u>			
O = h A(T - T)			
$\mathcal{L}_{v,in} = \mathcal{P}_{in} \mathcal{L}_{in} + \mathcal{P}_{room}$			
<u>h_{in}:防護板(断熱)内面熱伝達率,A:防護板(断熱)内</u>			
面の表面積,			
<u>T_{in}: 防護板(断熱)内面温度, T_{room}: 燃料移送ポンプエ</u>			
燃料移送ポンプエリア温度は、軽油タンク火災による防護			
板 (断執) 内面温度上昇に伴う執負荷がエリア内に蓄執され			
ストレを考慮し 次式で求める			
$\Delta T_{room} = \frac{\mathcal{Z}_{\nu,in}}{\rho C V}$			
<u>ρ:空気密度, い空気比熱, V:ホンノエリア体積</u>			
(d)耐火性能の評価結果			
<u>軽油タンク火災における燃料移送ポンプの評価結果を以下</u>			
に示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
600			
 第 2-6 図 防護板(断熱)各部温度並びに燃料移送ポンプエリ			
\hat{g}_{00}^{0} $\hat{g}_{00}^$			

柏崎刈羽原子力発電所	6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-8 表 燃	料移送ポンプ影響評価結果			
項目	軽油タンク火災			
輻射強度[W/m ²]	32.5×10^3			
燃燒継続時間[h]	11.3			
防護板(断熱)外面温度[℃]	555			
防護板(断熱)内面温度[℃]	41			
ポンプエリア温度[℃]	41			
許容温度[℃]	100^{*1}			
※1:燃料移送ポンプ端子ボッ	クスパッキンの耐熱温度			
評価の結果,ポンプエ	リア(燃料移送ポンプ)の温度は約			
<u>41℃となり,許容温度を下</u>	回ることを確認した。			
d 主排気筒の温度評価				
	月 泊 庄)			
			(a) 矸谷胶介胆(矸谷胶介温皮)	
本評価で用いる計谷限	界値(計谷限界温度)については、		本評価で用いる計谷限界値(計谷限界温度)について	
主排気筒鋼材の許容温度	325℃とする。		は, 排気筒鋼材の許容温度325℃とする。	
(b)耐火性能の評価結果			(b) 耐火性能の評価結果	
			<u>ア. 重油タンク(No. 1, 2, 3)</u>	
火災が発生した時間か	ら燃料が燃え尽きるまでの間, 一定		火災が発生した時間から燃料が燃え尽きるまでの	
の輻射強度で主排気筒が	昇温されるものとして、下記の式よ		 間、一定の輻射強度で排気筒が昇温されるものとして、	
り主排気筒の最大温度を	· 求め 許容温度以下であろか評価を		下記の式上り、排気筒の最大温度を求め、許容温度以	
宇族したこの対理・主				
天旭した。ての和木, <u>土</u> 安温広さてロストしませ	明天前の価度は新 <u>630</u> となり、計			
谷温度を下回ることを確	語 し 7 こ。		は約 <u>52℃</u> となり、計谷温度を下回ることを確認した。	
$T = T_0 + \frac{\varepsilon E}{\varepsilon T}$			$T = T_{o} + \frac{\varepsilon E}{\varepsilon}$	
$^{\circ}$ 2h			1 = 10 + 2h	
T₀:初期温度[50℃],E:	輻射強度[W/m ²], ε:主排気筒表面		T_0 :初期温度[50℃], E:輻射強度[W/m^2], ε:排気筒表	
の放射率(0.9) ^{※1} ,h:	主排気筒表面熱伝達率[17W/m²K]*2		面の放射率[0.9] ^{※1} ,h:排気筒表面熱伝達率[17W/m ² K] ^{※2}	
※1:伝熱工学資料,※2	2:空気調和·衛生工学便覧		※1:伝熱工学資料, ※2:空気調和・衛生工学便覧	
			イ ガスタービン発雪烨田枢油タンク	
			火災が発生した時間から燃料が燃え尽さるまでの	
			間,一定の輻射強度で排気筒が昇温されるものとして,	
			下記の式より、排気筒の最大温度を求め、許容温度以	
			下であるか評価を実施した。その結果,排気筒の温度	
			は約52℃となり,許容温度を下回ることを確認した。	

柏崎刈羽原子力発	電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
				T T εE	
				$I = I_0 + \frac{1}{2h}$	
				T_0 :初期温度[50°C], E:輻射強度[W/m^2], ε :排気筒表	
				面の放射率「0.9] ^{*1} ,h:排気筒表面熱伝達率「17W/m ² K] ^{*2}	
				 ※1・伝執工学資料 ※2.空気調和・衛生工学便覧 	
。タービン建民非常	皆田雪与日玄の泪宙証	価			・設備の知道
<u>e.</u> <u>·</u>	の 駆 油 な い カ は 山 個 に	<u>一</u> あり タービン建民			【柏崎 6/7】
<u>0 月及0 1 月か</u> の け海側にあることか	24日アンフ は田 風に	ことけない 5 是恒			6 号及び 7 号恒に上
の軽油タンクけ海相	1にあり転射熱を受け	<u>ここにない。5 月炉</u> ステレから執影響証			のマジーカゲによ
価を実施する(筆う	<u>12899福州系を文的</u> 2-8 図) 5 号恒軽油/	タンク水災時の6号恒			ノて町画内家が一位建
タービン建屋の執髪	<u>「の因」。 の内別在</u> 「響証価を実施するに	あたり毎日オスパラ			
ノータを出下に示す	を計画を <u>実施</u> りるに また (0)で執影郷封	(価を実施) ていろ 6			
<u>ノーノを以下に小り</u> 号信軽油タンカル災	。また、(5) て恋影音町	での執影響評価には			
<u>月炉軽価ブンノ八</u> 夾 田1たパラメータを	一時のの方が床」が建造				
用したハノノークを					
<u>が軽曲クラクバ火の</u>					
	女いことがら,3 万州	<u>一軽曲ダング火火时の</u>			
<u>6 芳炉ダービン建産</u> 郷芸伝にわぬとしる		原于炉建産での熱影			
響評価に包絡される	<u>。よって、5</u> 5 分別 軽油	タンク火災時には、6			
<u> 号炉タービン建屋へ</u>	の熱影響はない。なお	3,5 号炉軽油タンク			
から 7 号炉のター	ビン建屋までの距離は	、,6 号炉までの距離			
<u>より離 れていること</u>	とから同様に熱影響は	ない。			
第 2-9 表	各建屋に対する軽油タ	アンク火災の影響			
	5 号炉軽油タンク火災	6 号炉軽油タンク火災			
	タービン建屋への影響	原子炉建屋への影響 280			
部隔距離[m]	91	46			
燃料貯蔵量[k1]	344	565			
質量低下速度[kg/m ² ·s] ¹⁾	0. (044			
密度[kg/m ³] ¹⁾	93	18			
燃焼速度[m/s] ²⁾	4. 79	×10 ⁻⁵			
燃焼継続時間[hour]	10.7	11.3			
1) NUREG-1805 より	_b, y _s /etc.).				
2) 評価ガイドより、以下の	式から昇出				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$t = \frac{V}{S \times v}, v = \frac{M}{\rho}$			
t:燃焼継続時間[s],V:燃料量[m³],S:防油堤面積[m²],			
v:燃焼速度[m/s]			
M:質量低下速度[kg/m ² ·s], ρ:密度[kg/m ³]			
第 2-8 図 非常用電気品室と危険物タンクまでの距離			
(10) 火災による熱影響の有無の評価		(10) 火災による熱影響の有無の評価	
以上の結果から、 <u>軽油タンク</u> において欠災が発生した場合を 想定したとしても、許容限界温度を超えないことから、発電用		以上の結果がら、 <u>単油タンク及びカスタービン発電機用</u> 整 油タンクにおいて火災が発生した場合を想定したとしても、	
原子炉施設に熱影響をおよぼすことはないと評価する。		許容限界温度を超えないことから、発電用原子炉施設に熱影	
		響を及ぼすことはないと評価する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	2.2.4 主排気筒に対する熱影響評価 (1) 評価対象範囲 主排気筒について,溶融炉灯油タンクの火災を想定して評 価を実施した。 なお,主排気筒の評価に当たっては,保守性を考慮して, 筒身よりも離隔距離の短くなる鉄塔について評価した。 (2) 評価対象施設の仕様 主排気筒仕様を第2.2.4-1表に,主排気筒外形図を第	西瓜水175元电/1 275%	с~ нц
	1.2.2.4-1 図に示す。. 第2.2.4-1 表 評価対象施設の仕様 第2.2.4-1 表 評価対象施設の仕様 		
	第2.2.4-2 表 火災源となる設備から主排気筒までの離隔距離 想定火災源 L (m) 溶融炉灯油タンク 21		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.	9.12版)	島根原子力発電所 2号炉	備考
	<u>(4) 形態係数の算出</u>			
	以下の式から形態係数を算出した。算出緑	5果を第 2. 2. 4−3 表に示す。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A}{B}} \right] \right\}$	$\left[\frac{n-1}{n+1}\right] - \frac{1}{n} \tan^{-1}\left[\sqrt{\frac{(n-1)}{(n+1)}}\right]$		
	ただし m= $\frac{H}{R}$ =3 , n= $\frac{L}{R}$, A=(1+n) ² +	m^{2} , $B = (1 - n)^{2} + m^{2}$		
	Φ ∶形態係数, L∶離隔距離(m), H∶炎の高さ(r	n), R:燃焼半径(m)		
	第2.2.4-3表 火災源となる	設備の形態係数		
	離隔距離 燃焼 想定火災源 L F (m) (n	半径 形態係数 ス Φ h) (-)		
	溶融炉 灯油タンク212.4	2.6826×10^{-2}		
	<u>(5) 輻射強度の評価</u>			
	火災の火炎から任意の位置にある	う点(受熱点)の輻射強度		
	は、輻射発散度に形態係数を掛けた	<u>に値になる。算出結果を第</u>		
	2.2.4-4表に示す。			
	$E = R f \cdot \Phi$			
	<u>E : 輻射強度(₩/m²), R f : 輻射発散度</u>	(W∕m ²), Φ :形態係数		
	第224-4表 水災源とたろ	設備の輻射強度		
		形態係数 幅射強度		
	想定火災源 燃料の種類 R f (kW/m ²)	$ \begin{array}{c} \Phi & E \\ (-) & (\mathbb{W}/\mathbb{m}^2) \end{array} $		
	溶融炉 灯油 50 灯油タンク	2. 6826×10^{-2} 1343. 13		
	<u>(6) 判断の考え方</u>			
	<u>a. 許容温度</u>			
	主排気筒鉄塔(SS400, STK400)。	の許容温度は、火災時にお		
	ける短期温度上昇を考慮した場合に	こおいて、鋼材の強度が維		
	持される保守的な温度 325℃以下と	<u>+3.</u>		
	.b評価結果			
	一定の輻射強度で主排気筒鉄塔か	「昇温されるものとして,		
	輻射による入熱量と対流による放熱	や量が釣り合うことを表し		
	た下記の温度評価式により主排気管	前鉄塔表面の温度上昇を求		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	め、表面温度が許容温度以下であるか評価した。		
	なお、評価に当たって主排気筒は鉄塔と筒身で構成されて		
	いるが、筒身よりも鉄塔が火災源との距離が近いこと、材質		
	も鉄塔はSS400, STK400, 筒身ではSS400 であり,物性値が		
	鉄塔,筒身ともに軟鋼で同一であることから,鉄塔の評価を		
	実施することで筒身の評価は包絡される。主排気筒の評価概		
	念図を第2.2.4-2図に示す。		
	$T = T_0 + \frac{E}{2h}$		
	<u>T:許容温度(325℃), T₀:初期温度(50℃)*1</u>		
	<u>E:輻射強度(W/m²), h:熱伝達率(17W/m²/K)^{*2}</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃に保守性を持たせた値		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は、受熱面の形状や周囲の環		
	境条件を受け変化するが、一般的な値として垂直外壁面、屋根面及び上げ裏		
	面の夏季,冬季の値が示されている。評価上放熱が少ない方が保守的である		
	<u>ことから、これらのうち最も小さい値である17W/m²/Kを用いる。)</u>		
	Y前による放熱 ● ● ●		
	<u>325℃以下であることを確認した。評価結果を第2.2.4-5表に</u> ニナ		
	ZT. g.e.		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第2.2.4-5表 評価対象施設に対する熱影響評価結果		
	評価対象施設 評価温度 許容温度 (℃) (℃)		
	主排気筒 90 <325		
	2.2.5 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機		
	(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプに 対する熱影響評価		
	(1) 評価対象範囲		
	機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン		
	プ電動機は、海水ポンプ電動機高さより高い海水ポンプ室の壁		
	で囲まれており、側面から直接火災の影響を受けることはない		
	<u>が,上面は熱影響を受ける可能性がある。評価においては,海</u>		
	水ポンプ室の壁による遮熱効果を考慮せず,側面から直接火災		
	の影響を受けることを想定する。また、残留熱除去系海水系ポ		
	ンプ電動機及び非常用ディーゼル発電機(高圧炉心スプレイ系		
	ディーゼル発電機を含む。)用海水ポンプ電動機は, 電動機本体		
	を全閉構造とした全閉外扇形の冷却方式であり、外部火災の影		
	響を受けた場合には、周囲空気の温度上昇により、冷却機能へ		
	の影響が懸念されることから、冷却空気の温度を評価対象とす		
	<u>る。火災発生位置と海水ポンプの位置関係を第2.2.5-1 図に示</u>		
	I. I		
	電動機内部の空気冷却対象は固定子巻線及び軸受であり、そ		
	のうち許容温度が低い軸受温度の機能維持に必要となる冷却空		
	気の温度が、許容温度以下となることを確認する。		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
		(2) 評価対象施設の仕様 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機(高 圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプの海 水ポンプ室内の配置図を第2.2.5-2 図,外形図を第2.2.5-3 図 に示す。仕様を第2.2.5-1 表に示す。		
		第2.2.5-2 図 海水ポンプの配置図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)			島根原子力発電所 2号炉	備考
		笛22 5−3 図 海水ポ 、	ノプの外形図		
		第2.2.5-1表 評価対	象施設の仕様		
	名称	残留熱除去系海水系ポンプ 電動機	非常用ディーゼル発電機 (高圧炉心スプレイ系ディ ーゼル発電機を含む。)用 海水ポンプ電動機		
	主要寸法	全 幅:1.9 m 高 さ:2.73m	全 幅:0.51m 高 さ:0.98m		
	材 料	SS400, SUS304	SS400		
	基数	4	3		
	(3) 火約 残留熱 圧炉心ン 包する液 に示す。	後源となる設備から主排気筒 ないないです ないでは、アレイ系ディーゼル発電機 ま水ポンプ室から火災源まて マーム ホポンプをする ないないです ないないです ないないです ないないです ないないです ないないないです ないないないないないないないないないないないないないないないないないな	iまでの離隔距離 ≅常用ディーゼル発電機(高 を含む。)用海水ポンプを内 5の離隔距離を第 2. 2. 5−2 表		
	第2.2.	5-2表 火災源となる設備	から海水ポンプ室までの		
		離隔距離			
		想定火災源 溶融炉灯油タンク	離隔距離 L (m) 185		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
	<u>(4) 形態係数の算出</u>			
	以下の式から形態係数を算出した。算出結果	長を第2.2.5-3表		
	<u>に示す。</u>			
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{m^2}{n^2} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right]$	$-\frac{1}{n} \tan^{-1}\left[\sqrt{\frac{(n-1)}{(n+1)}}\right]$		
	ただし $m = \frac{H}{R} \approx 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, H	$B = (1-n)^2 + m^2$		
	Φ :形態係数, L:離隔距離(m), H:炎の高さ(m), R: β	燃焼半径(m)		
	第2.2.5-3表 火災源となる設備の形	態係数		
	離隔距離 燃焼半径	形態係数		
	想定火災源 L R (m) (m) (m)	Ф (-)		
	溶融炉 185 2.483	3.473×10^{-4}		
	灯油タンク 100 2.400	0. 110 / 10		
	(5) 輻射強度の評価			
		<u>、点)の輻射強度</u>		
	は、輻射発散度に形態係数を掛けた値になる	る。算出結果を第		
	2.2.5-4表に示す。			
	$E = R f \cdot \Phi$			
	$E:輻射強度(W/m^2), Rf:輻射発散度(W/m^2),$	<u>,:形態係数</u>		
	第2.2.5-4 表 火災源となる設備の輻射	射強度		
	相会上"您怎一样想你我想。"福射発散度 形態係数			
	恋此火炭源	E (₩∕m ²)		
	谷融炉 灯油タンク 灯油 50 3.473×10	17.37		
	(6) 判断の考え方			
	<u>a許容温度</u>			
	残留熱除去系海水系ポンプ電動機及び非常	5月ディーゼル発		
	電機(高圧炉心スプレイ系ディーゼル発電機	を含む。)用海水		
	ポンプ電動機の冷却空気の許容温度は、上部	12及び下部軸受の		
	うち、運転時の温度上昇が高い下部軸受の上	昇温度を考慮し、		
	軸受の機能維持に必要な冷却空気の許容温度	<u>₹を第2.2.5-5表</u>		
	に 示 丁 。 …			

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)			島根原子力発電所 2号炉	備考
	第2.2.5-5表 下部軸受の機能	能維持に必要	夏な冷却空気の許容温度		
	名称 残留熱除ま ポンプ	示系海水系 非常 電動機 ス	常用ディーゼル発電機(高圧炉心 プレイ系ディーゼル発電機を含 む。)用海水ポンプ電動機		
	軸受の機能維持に必要な 冷却空気の許容温度 70℃	J#1	60°C ^{ж₂}		
	※1 ポンプ運転により、下部軸受は最大 め電気規格調査会標準規格 JEC-213 定するときの温度限度 80℃から10	、で約 10℃上昇する 37-2000「誘導機」 ℃を差し引いた 70℃	ことから、軸受の機能を維持するた で定める自由対流式軸受の表面で測 Cを冷却空気の許容温度に設定		
	※2 ホンク運転により、「市軸型スは取 め電気規格調査会標準規格 JEC-213 使用する場合の温度限度 95℃から	37-2000「誘導機」 35℃を差し引いた 6	ことから,軸交の機能を維持するに で定める耐熱性の良好なグリースを 30℃を冷却空気の許容温度に設定		
	<u>b.</u> 評価結果				
	火災が発生した時間	から燃料が燃	*え尽きるまでの間,残		
	留熱除去系海水系ポン	プ電動機及び	「非常用ディーゼル発電		
	機(高圧炉心スプレイ系	系ディーゼル	発電機を含む。)用海水		
	ポンプ電動機が受ける	輻射熱によ っ	て上昇する冷却空気温		
	度を求め, 第2.2.5-5	表に示す許容	「温度を下回るかを熱工		
	ネルギの式より求まる	下式で評価を	*実施した。評価に用い		
	た諸元を第2.2.5-6表	こ, 評価概念	図を第2.2.5-4 図に示		
	t.				
	$T = T_0 + \frac{E \cdot A}{G \cdot C}$	$\frac{\Delta}{D} + \Delta T$	(式1)		
	<u> T : 評価温度(℃), T _0 : 初期</u>	温度(39℃) ^{*1}	<u>, E:輻射強度(W/m²),</u>		
	<u>G:重量流量(kg/s), A:輻</u>	射を受ける面積	漬(m ²)		
	<u>C: 空気比熱(1,007J/kg/</u>	<u>K), ΔT:構造</u>	5物を介した温度上昇(5℃)		
	<u>*2</u>				
	※1 水戸地方気象台で観測	された過去最高	高気温 38.4℃に保守性を持		
	たせた値				
	※2 航空機火災による構造	物を介した冷去	副空気の温度上昇(<u>Δ T</u> <u></u> =		
	2.2℃)を包絡する 5℃に	設定			
	第2.2.5-6表	評価に用い	た諸元		
		残留熱除去系 海水系ポンプ 電動機	非常用ディーゼル 発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)用 海水ポンブ電動機		
	G:重量流量 (kg/s)	2.6	0.72		
	A:輻射を受ける面積(m ²)	12	1.6		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考	
	₩ ■ ■ 射強度:E		電動機端子箱		
	第 9 9 5-4 図 萩(■「」.			
	<u> </u>				
	輻射熱によって上昇する冷却空	気の到達温度	を算出した結		
	果,許容温度以下であることを確	認した。評価	町結果を第		
	2.2.5-7表に示す。				
	第2.2.5-7表 評価対象施設に対	対する熱影響	評価結果		
	評価対象施設	評価温度 (℃)	許容温度 (℃)		
	残留熱除去系海水系ポンプ	45	< 70		
	非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)用海水ポンプ	45	< 60		
	 2.3 爆風圧影響評価 2.3.1 想定事象 (1) 評価対象とする爆発源となる設 貯槽とした。 (2) 水素貯槽は、ガスを満載した状 2.3.2 爆発源となる設備及びガスに係る 爆発源となる設備及びガスに係る す。 	備は2.1で 態を想定した 系るデータ データを第2	<u>抽出した,水素</u> <u></u> 2. 3. 2-1 表に示		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
	第2.3.2-1表 爆発源となる	設備及びガスに係るデータ		
		水素貯榑		
	中の花がっ			
	貯蔵量(m ³)	6.7		
	密度(kg/m ³)	0.08988 ^{# 1}		
	貯蔵ガスK値 ^{※2}	2,860		
	貯蔵設備W値	0.0006		
	※1 一般社団法人 水素エ	ネルギー協会 記載値 1字第5条則表第二記載値		
	※2 - 2 C) 下寺床女房	北定第5本所仅第一記戦世		
	2.3.3 危険限界距離の算出			
	評価ガイドに基づき、下式よ	り危険限界距離を算出した結果,		
	危険限界距離が離隔距離以下で	あることを確認した。評価結果		
	を第2.3.3-1表に示す。			
	3			
	$X=0.04 \times 14.4\sqrt[3]{(K \times 1,000 \times 10^{-3})}$			
	<u>X:危険限界距離(m), K:石</u> 油	<u> 類の定数(-), W:設備定数(-)</u>		
	 第 2, 3, 3-1 表 爆発源となる設備	と評価対象施設までの離隔距離		
		限界距離 離隔距離※		
	評価対象施設 2000			
	タービン建屋	7 35		
	※ 評価対象施設のなかで水素貯槽から最	も離隔距離が短いタービン建屋までの距離		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3. 構内危険物タンク以外の設備の火災影響評価	3. 敷地内貯蔵設備以外の影響評価	3. 構内危険物タンク以外の設備の火災影響評価	
評価対象範囲	3.1 評価対象範囲	(1) 評価対象範囲	
消防法又は <u>柏崎市火災予防条例</u> に基づく届出対象 <u>施設</u> では		消防法又は <u>松江市火災予防条例</u> に基づく届出対象設備では	
ない施設について、火災影響評価を実施する。評価対象とする		ない施設について、火災影響評価を実施する、評価対象とす	
設備を危険物タンクと同様に第 3-1 図のフローに基づき抽出		る設備を危険物タンクと同様に第3-1図のフローに基づき抽	
する (第 3-1 表)。危険物を貯蔵し屋外に設置している設備を		出する(第3-1表)。危険物を貯蔵し屋外に設置している設備	
想定発火源(主変圧器,水素ガストレーラー)とする。		を想定発火源(主変圧器、水素ガストレーラ)とする。	
なお, 薬品を取り扱う設備は輻射熱を受けない屋内設置であ		なお、薬品を取り扱う設備は輻射熱を受けない屋内設置で	
ること、外部への火災が発生する可能性が低いことから、評価		あること、外部への火災が発生する可能性が低いことから、	
対象から除外する <u>(第 3-2 表)</u> 。		評価対象から除外する。	
	敷地内貯蔵設備以外の火災源又は爆発源となる設備を、第		
	3.1-1 図のフローに基づき抽出した。抽出結果を第3.1-1表に		
	示すen		
	・貯蔵燃料の種類が同じ場合、貯蔵量が少なくかつ評価対象		
	施設までの離隔距離が長い設備は、貯蔵量が多くかつ評価		
	対象施設までの離隔距離が短い他設備に包絡されるため,		
	評価対象外とした。可搬型重大事故等対処設備及び自主設		
	備(第3.1-2表)についても、同じフローに基づき評価対		
	象を抽出した。		
	敷地内貯蔵設備以外の火災源又は爆発源となる設備及び評価		
	対象施設の位置を第3.1-2図に,可搬型重大事故等対処設備及		
	び自主設備の保管位置を第3.1-3図に示す。		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.2	20版)	東海	東海第二発電所(2018.9.12版)						島根原子力発電所 2号炉				備考		
第 3-1(a)表	その他の危	ī険物		第 3.1-1 表 數均	也内貯蔵	設備」	以外の	火災源	又は	爆発源となる			第 3-1 表	その他の危	<u> </u>		
号炉 設備名	危険物の種類	数量	詳細評価要否			設備	一覧						1		1	(2019年7月時点)	
1 号炉 主変圧器	1種2号 鉱油	193. 00kL	○ (※1)	75.444.44	設置	4.00	all of Mart	n te	最大数量	詳細評価更否		号炉	設備名	危険物の種類	数量	評価 要否	
2 号炉 主変圧器	1種2号 鉱油	198, 00kL	○ (※1)	設備名	場所	厄陝	「物の類	品名	(m ³)	(〇:対象,×:対象外)		1	起動変圧器	絶縁油	46kL	× (※1)	
3 号炉 主変圧器 4 号炬 主変圧器	1種2号 鉱油 1種2号 鉱油	193.00kL	\bigcirc ($\%$ 1)	主要変圧器	屋外	第四類	第三石油類	絶縁油	136	0		1	予備変圧器	絶縁油	10kL	× (※1)	
1.5% 工業工業 5号炉 主変圧器	1種2号 鉱油	190. 00kL	O (%1)	所内変圧器 2 A	屋外	第四類	第三石油類	絶縁油	21.00	0		1	44m 盤高圧ガス貯蔵所	水素	1155m ³	× (屋内)	
6 号炉 主変圧器 2 日 - 主変圧器	1種2号 鉱油	200. 00kL	○ (※1)	所内変圧器 2 B	屋外	第四類	第三石油類	絶縁油	21.00	× (他評価に包絡 → D)		2	主変圧器	絶縁油	77kL	0	
7号炉 王変圧器 1号炉 所内変圧器 1A, 1B	1種2号 鉱油	214. 00kL 18. 40kL	○ (※1) × (※2)	起動変圧器 2 A	屋外	第四類	第三石油類	絶縁油	45.95	(他評価に包装 D)	_	2	所内変圧器 (A, B)	絶縁油	20kL	× (※1)	
2号炉 所內変圧器 2A, 2B	1種2号 鉱油	17.20kL	× (**2)	起動変圧器 2B	屋外	第四類	第三石油類	絶縁油	46, 75			2	起動変圧器	絶縁油	24kL	× (※1)	
3 号炉 所内変圧器 3A 3 号炉 所内変圧器 3B	1種2号 鉱油 1種2号 鉱油	17.20KL	× (%2)	る進かに思	EF /d	勿回病	第三方油和	244.534 into	25.00	×	-	2	水素ガストレーラ	水素	12086m ³	0	
4号炉 所内変圧器 4A, 4B	1種2号 鉱油	18.10kL	× (**2) × (**2)	丁加发工器	座7下	弗匹琪	第二日但規	和巴利水山	35.90	(他評価に包絡 → D) ×	-	2	発電用水素ガスボンベ保管庫	水素	140m ³	× (屋内)	
5号炉 所内変圧器 5A,5B	1種2号 鉱油	18.10kL	× (**2)	1号エステート変圧器	屋外	第四類	第三石油類	絶縁油	1.10	 (他評価に包絡 → D) 	_	3	王炎上器	絶縁油	141kL	× (※1)	
6号炉 所內変圧器 6A 6号炉 所內変圧器 6B	1種2号 鉱油	20.50kL 21.00kL	× (*2) × (*2)	2号エステート変圧器	屋外	第四類	第三石油類	絶縁油	1.10	× (他評価に包絡 → D)		3	所内変圧奋	《田秋家 /田	21KL 27hJ	× (%1)	
7号炉 所内変圧器 7A, 7B	1種2号 鉱油	19.20kL	× (<u>*</u> 2)	66kV非常用変電所	屋外	第四類	第三石油類	絶縁油	6.60	× (他評価に包絡 → D)		3	補助及圧益	水麦	1477 5m ³	× (祭1) × (屋内)	
共用 NO.1 高起動変圧器 共用 NO.2 高起動変圧器	1種2号 鉱油 1種2号 鉱油	78.30kL 70.00kl	× (¥2)	中央制御室計器用エンジン発電機	屋外	第四類	第二石油類	軽油	0.026	× (常時「空」 \rightarrow C)		× 1	<u> ² 電機用水系のスペシス休音庫</u> ・ 2 号の主変圧器水災に上ろ数	<u>小</u> ボ 山影纓評価に句会	 されろ	× ()至F1)	
共用 NO. 3 高起動変圧器	1種2号 鉱油	70.00kL	× (*2) × (*2)			1 1	I	I				/•\ 1			C 4 0 0 0		
1号炉 低起動変圧器 1SA, 1SB	1種2号 鉱油	25, 90kL	× (% 2)														
3 号炉 低起動変圧器 3 S A, 3 S B 5 号炉 低起動変圧器 5 S A, 5 S B	1種2号 鉱油	25, 20kL 17, 05kL	× (¥2) × (¥2)								1						
6号炉 低起動変圧器 6SA, 6SB	1種2号 鉱油	24.60kL	× (*2)														
1号炉 励磁変圧器	1種2号 鉱油	13.20kL	× (※ 2)														
2 号炉 励磁変圧器 3 号炉 励磁変圧器	1 種 2 号 鉱油 1 種 2 号 鉱油	13.50kL 13.50kL	× (*2)														
4 号炉 励磁変圧器	1種2号 鉱油	9. 50kL	× (%2)														
5 号炉 励磁変圧器	1種2号 鉱油	9. 50kL	× (<u>*</u> 2)														
共用 NO. 2 工事用変圧器	1種2号 鉱油	0. 585KL 11. 50kL	× (*2) × (*2)														
共用 補助ボイラー用変圧器 3A	1種2号 鉱油	31.80kL	× (%2)														
共用 補助ボイラー用変圧器 4A 共用 補助ボイラー用変圧器 4B	1種2号 鉱油 1種2号 鉱油	9. 10kL 9. 10kL	× (%2)														
共用 補助ボイラー用変圧器 4C	1種2号 鉱油	9. 10kL	\times (\times 2) \times (\times 2)														
共用 高圧ボンベ倉庫 (NO. 1~3)	水素ガス(ボンベ) 濃度:99.9%	2, 520m ³	× (屋内設置)														
1 号炉 屋外ボンベ室(K1)	水素ガス(ボンベ) 濃度:99.99%	196m ³	×(屋内設置)														
1号炉 屋外(K1) (水素ガストレーラー)	水素ガス (ボンベ) 濃度・00,00%	13,987m ³	0														
	100.02 . 55.55%																
				第31-2 図 火災	源とたる	<u>家</u> 庄	罢及7	※評価を	+象描	静の設置位置	1						
						/ <u>X</u> /11.		и пал.	1 2/02		-						

柏崎刈羽原子力発電所 6	017.12.20版)	東海第二発電所(2018.9.12版)					版)		島根原子力発電所 2号炉	備考	
第 3-1(b)表	その他の危険	倹物	第3.1-2表可	搬型重力	大事故	x等対效	の設備及	をび自主	設備一覧		
号炉 設備名	危険物の種類	数量 詳細評価要否	設備名	数量 危険	物の類	品名(燃料量[L]	配備位置	詳細評価要否		
2 号炉 屋外ボンベ室 (K2)	水素ガス (ボンベ) 濃度: 99, 99%	196m ³ × (屋内設置)				2	1 奴重のにり/	南側保管場所	((), x; x; x (x) (x; 7)) X	4	
3 号炉 屋外ボンベ室(K3)	水素ガス (ボンベ) 濃度 99 99%	196m ³ × (屋内設置)	可振型代替注水大型ホンプ****	7台 第四類	第二行 調類	軽油 9	00 (* 27)	四側保管場所 予備機置場 まかの2000	(他評価に包絡 →D)	-	
4 号炉 屋外ボンベ室 (K4)	水素ガス (ボンベ) 濃度・00 00%	196m ³ × (屋内設置)	可搬型代替低圧電源車 ^{※1 查 3}	5台 第四類	第二石油類	軽油	250	用 倒保 管 場 所 西 側 保 管 場 所 予 備 様 置 場	× (他評価に包絡 →D)		
5 号炉 屋外ボンベ室 (K5)	水素ガス (ボンベ) 濃度・00,00%	196m ³ × (屋内設置)	タンクローリ ^{※1※3}	5台 第四類	第二石油類	軽油 (100 (車 両)	南側保管場所 西側保管場所	× (施范征(5句绪 - 15)		
6 号炉 屋外ボンベ室 (K6)	水素ガス (ボンベ) 濃度・00,00%	210m ³ × (屋内設置)		- 1. 10 mm	All control and	*2 \L	155	予備機置場 南側保管場所	(IE#TIMICEM# → D)	-	
7 号炉 屋外ボンベ室(K7)	(ボンベ) 濃度:00,00%	210m ³ × (屋内設置)	ホイールローター・・	0台 第四編		1111 1111 1111	177 300 (東面)	四側係官場所 予備機置場 南側保管場所	(他評価に包絡 →D) ×	-	
共用 予備変圧器	1種2号 鉱油	33.50kL × (※2)	窒素供給装置 ^{2 2 3}	4台 第四類 9台 第四類	第二石油加	軽油 3	380 (装置)	西側保管場所 南側保管場所	(他評価に包絡 →D) ×		
共用 補助ボイラー用変圧器 5 A	1種2号 鉱油	30.80kL × (※2)	並来供和表世用電励単 油圧ショベル ^{※2}	1台 第四類	第二石油類	軽油	65	<u>西側保管場所</u> 南側保管場所	(他評価に包絡 →D) ×	-	
共用 補助ボイラー用変圧器 5 B	1種2号 鉱油	30.80kL × (※2)	プルドーザ ^{来2}	1台 第四類	第二石油類	軽油	470	南側保管場所	(他評価に包給 →D) × (他評価に包絡 →D)		
3号炉 PLR-TNV(A)入力変圧器	1種2号 鉱油	8.20kL (※1)	ホース展張車 ^{※2}	10台 第四類	第二石油類	軽油	130	南側保管場所 西側保管場所	(他評価(C包約 D) × (他評価(C包約 →D)		
3 号炉 PLR-INV(B)入力変圧器	1種2号 鉱油	8. 20kL (%1)	 可搬型ケーブル運搬車^{※2} 	2台 第四類	第二石油類	軽油	100	予備機置場 南側保管場所 再創保管場所		-	
4 号炉 PLR-INV(A)入力変圧器	1種2号 鉱油	9.70kL (※1)	可搬型整流器運搬車※2	2台 第四類	第二石油類	軽油	70	四侧保宣場 <u>所</u> 予備機置場	(他評価に包給 →D) × (袖評価に包絡 →D)	-	
4 号炉 PLR-INV (B) 入力変圧器	1種2号 鉱油	9.70kL (※1)	放水砲/泡消火薬剤運搬車 ^{※2}	2台 第四類	第二石油類	軽油	300	南側保管場所 西側保管場所	× (他評価に包絡 →D)		
6号炉 原于炉帘动材并循環小シノ可愛商波数電 源装置(A-1)入力変圧器	1種2号 鉱油	3.61kL () (※1)	汚濁防止膜運搬車 ^{※2}	2台 第四類	第二石油類	軽油	300	南側保管場所 西側保管場所	× (他評価に包絡 →D)		
6号炉 源装置(A-2)入力変圧器	1種2号 鉱油	13.70kL 🔿 (※1)	小型船舶運搬車※2	2台 第四频	第二石油類	軽油	300	南側保管場所 西側保管場所 南側保管場所	× (他評価に包絡 →D)	-	
6号炉 原子炉冷却材再循環ポンプ可変周波数電 源装置(B-1)入力変圧器	1種2号 鉱油	3.61kL 🔿 (※1)	可搬型代替注水中型ポンプ ^{*1※2※3}	6台 第四類	第二石油類	軽油 ² 1	100(車 両) 125(ボンブ)	而側保管場所 予備機置場	× (他評価に包絡 →D)		
6号炉 原子炉冷却材再循環ポンプ可変周波数電 源装置(B-2)入力変圧器	1種2号 鉱油	13.70kL (※1)	ホース展張車(消火用)*2	1台 第四類	第二石油類	軽油	130	西側保管場所	× (他評価に包絡 →D)		
7号炉 原子炉冷却材再循環ポンプ可変周波数電 源装置(A-1)入力変圧器	1種2号 鉱油	3.70kL (%1)	水槽付消防ボンブ自動車 ^{※2}	2台 第四類	第二石油類	軽油 2 1	200(車 両) .00(ボン7) 200(車 両)	西側保管場所 監視所付近 西側保管場所	× (他評価に包絡 →D) ×	-	
7 号炉 原子炉冷却材再循環ポンプ可変周波数電 7 号炉 原法置(4-2)入力変圧要	1種2号 鉱油	9.50kL (※1)	化学消防自動車※2	2台 第四類	第二石油類	軽油 1	00 (\$`\7`)	監視所付近	(他評価に包絡 →D) ×	-	
7号炉 原子炉冷却材再循環ポンプ可変周波数電	1種2号 鉱油	3. 70kL (%1)	予備電動機変換用クレーン ^{※2}	1台 第四類	第二石油類	軽油 5	500 (車両)	西側保管場所	(他評価に包絡 →D) ×	-	
7号炉 源井澤のコオ市新屋市ンプ可変周波数電	1種2号 鉱油	9. 50kL (※1)	可搬型高圧窒素供給装置(小型) ^{※2}	1台 第四類	第二石油類	軽油 3	300 (90-2) 300 (車両) 350 (海躍)	予備機置場	(他評価に包給 →D) × (舶評価に勾絡 →D)		
	第2石油類 軽油	330L × (屋内設置)	放射能観測車 ^{※2}	1台 第四類	第二石油類	軽油	70	予備機置場	(他評価に包絡 →D) (他評価に包絡 →D)		
共用 給水建屋	第2石油類 軽油	100L × (屋内設置)	※1 可搬型重大事故等対処設備 ※2 自主設備								
1号炉 荒浜側焼却建屋プロパン庫	LPガス	4000kg × (屋内設置)	※3 予備								
5号炉 大湊側焼却建屋プロパン庫	LPガス	4000kg × (屋内設置)									
※1:自号炉の変圧器火災による熱影響	評価を実施する。										
※2:自号炉の主変圧器火災による熱影響	響評価に包絡される	0									
※3:燃料タンクは「空」であることか	ら,評価対象から除	外する。									
			第3.1-3 図 可搬費	型重大事	故等対	対処設	備及び	自主設備	莆保管場所の		
					边里	品合墨					
					叹旦	山工圓					

柏崎刈羽原子力発電所 6	5/7号炉 (2017.12.	20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炮
第_3-2_	表莱品類				
号炉 設備名	薬品の種類	数量	備考		
1 号炉 CWP建屋 (K1)	過酸化水素 濃度:35.0%	600L	× (屋内設置)		
2 号炉 CWP建屋 (K2)	過酸化水素 濃度:35.0%	600L	×(屋内設置)		
共用 大湊側 補助ボイラー	希硫酸 濃度:35%	250L	× (屋内設置)		
共用 大湊側 補助ボイラー	水加ヒドラジン 濃度:60%	20L	× (屋内設置)		
共用 大湊側 補助ボイラー	水加ヒドラジン 濃度:1%	700L	× (屋内設置)		
共用 水処理建屋	塩酸 濃度:35%	5. 9m ³	× (屋内設置)		
共用 水処理建屋	苛性ソーダ 濃度:25%	5m³	× (屋内設置)		
共用 水処理建屋	重亜硫酸ソーダ 濃度:35%	240L	× (屋内設置)		
上の観点から,その火災が起 に影響を及ぼさないことを評 3.1.1 評価対象変圧器 評価対象は,5~7 号炉周 置してある変圧器を対象と 3.1.1-1 図,保有油量を第 (5ヶヶ小内変圧器 75ヶヶ小内変圧器 (5ヶヶ小内変圧器 (5ヶヶ小の変圧器をす) (5ヶヶ小内変圧器 (5ヶヶ小の変圧器) (5ヶヶ小の変圧器 (5ヶヶ小の変圧器) (5ヶヶ小の変) (5ヶヶ小の変圧器) (5ヶヶ小の変圧器) (5ヶヶ小の変圧器) (5ヶヶ小の変圧器) (5ヶヶ小の変圧器) (5ヶヶ小の変圧器) (5ヶヶ小の変圧器) (5ヶヶ小の変圧器) (5ヶヶ小の変) (5ヶヶ小の変圧器) (5ヶヶ小の変圧器) (5ヶヶ小の変圧器) (5ヶヶ小の変圧器) (5ヶヶ小の変圧器) (5ヶヶ小の変) (5ヶヶ小の変圧器) (5ヶヶ小の変圧器) (5ヶヶ小の変) (5ヶヶ小の変) (5ヶヶ小の変圧器) (5ヶヶ小の変) (5ヶヶ小の変) (5ヶヶ小の変) (5ヶヶ小の変) (5ヶヶ小の変) (5ヶヶ小の変) (5ヶヶ小の変) (5ヶヶ小の変) (5ヶヶ小の変) (5ヶヶ小の変) (5 ヶ小の変) (5 ヶ小の) (5 ヶ小の) (5 ヶ小の (こったとして 平価 するもので 辺の屋外 <u>(建</u> する。各変圧 3.1.1-1 表にう 本本 、本 、本 、本 、 、 、 、 、 、 、 、 、 、 、 、 、		原子炉施設 含む) に 設 第		上の観点から、その火災が起こったとしてに影響を及ぼさないことを評価するもので 3.1.1 評価対象変圧器 評価対象は、2号炉周辺の屋外に設 対象とする。各変圧器の設置場所を第 量を第 3.1.1-1表に示す。 第 3.1.1-1 図 変圧器の位

柏崎刈羽原子力発電所 6/	7号炉 (2017.	. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所	2 号炉		備考
第 3.1.1-1 表	変圧器保有油量			第 3.1.1-1 表 変圧器	保有油量		
計准々	日夕	尼方油量		設備名	品名	保有油量	
	n	下有 但重 190_00kI		2号炉主変圧器	絶縁油	77kL	
6号炉主変圧器	1種2号鉱油	200.00kL		2号炉所内変圧器 (A, B)	絶縁油	20kL	
7号炉主变压器	1種2号鉱油	214. 00kL		2号炉起動変圧器	絶縁油	24kL	
低起動変圧器 5SA, 5SB	1種2号鉱油	17.05kL					
低起動変圧器 6SA, 6SB	1種2号鉱油	24. 60kL					
所内変圧器 5A, 5B	1種2号鉱油	18.10kL					
所内変圧器 6A	1種2号鉱油	20. 50kL					
所内変圧器 6B	1種2号鉱油	21.00kL					
所内変圧器 7A, 7B	1種2号鉱油	19. 20kL					
5 号炉励磁変圧器	1種2号鉱油	9. 50kL					
6 号炉原子炉冷却材再循環ポンプ可変周	1 種 0 月始油	2.6114					
波数電源装置(A-1),(B-1)入力変圧器	1 俚 2 亏 弧 佃	3. 61KL					
6 号炉原子炉冷却材再循環ポンプ可変周	1 	13 70kI					
波数電源装置(A-2),(B-2)入力変圧器	11重279或相	10. TORE					
7 号炉原子炉冷却材再循環ポンプ可変周	1 種 2 号鉱油	3. 70kL					
波数電源装置(A-1),(B-1)入力変圧器	- 111 - • • • • • • • • • • • •						
7 号炉原子炉冷却材再循環ボンブ可変周	1 種 2 号鉱油	9.50kL					
3.1.2 発電用原子炉施設(外壁	面)及び屋外施	設の影響評価	<u>3.2 熱</u> 影響評価	3.1.2 発電用原子炉施設(外壁面)及	び屋外施設の	影響評価	
			·············			Č	
			<u> 変圧器火災の想定は以下のとおりとした。</u>				
(1) 変圧器の火災の想定			(1) <u>想定条件</u>	(1) 変圧器の火災の想定			
・ 発電 用 原 子 炉 施 設 周 辺 に 設計	置されており 孝	経電用原子炉 施	a 評価対象とする火災源は31で抽出した主要変圧器 所	・ 発電用原子 炉 施設 周辺 に 設置 :	されており 3	釜電用原子炉	
		のない之本に明		たみよって時代にく、中方し		中のない之恋	
設までの距離が近く、内包し	」 (いる絶縁油の	の多い主変圧奋	<u>内変圧希2A及び起動変圧希2Bとした。</u> なわ, 解接す	施設までの距離が近く、内包		田の多い主変	
を対象とする。なお、主変日	E器の周辺に所成	内変圧器等も設	る変圧器間には耐火壁があるため、隣接変圧器への延焼	<u>圧器を対象とする。</u> なお, <u>主</u> 系	を圧器の周辺し	こ所内変圧器	
置しているが,防火壁を設置	置していることな	から,隣接変圧	は考慮しない。	等も設置しているが、防火壁る	を設置してい	ることから,	
器への延焼は考慮しない。			<u>b</u> . 変圧器の防火設備の消火機能等 [※] には期待しない。	隣接変圧器への延焼は考慮した	えい。		
・変圧器の損傷等による変圧器	その全面火災を想	見定する。	c.離隔距離は、評価上厳しくなるよう。a.で想定した変圧	・変圧器の損傷等による変圧器の	D全面火災をな	想定する。	
						v v o	
・変圧希 <u>的</u> 災設 <u>偏</u> (防火水 <u></u>	度直」の	E寺には 期待し	<u> </u>	・変圧番消火設幅の消火機能等に	こは期待しない		
ない。			d. 変圧器の <u>破損</u> 等による変圧器の全面火災を想定した。	・気象条件は無風状態とする。			
・気象条件は無風状能とする			e. 気象条件は無風状態とした。	・火災は円筒火炎をモデルとし	火炎の高さは	は燃焼半径の	
	しゃのさい	上陸広立なって					
・火災は円同火炎をモアルと	ン、火炎の局さば	よ 燃焼 半径の 3	I. 火災は円同火炎セアルとし、火炎の局さは燃焼半径の3	3倍とする。			
倍とする。			倍とした。				
			 ※ 変圧器の防火対策として、水噴霧の自動消火設備を設置している 				
			<u> ことに加え、町屋性미上対東を打つている。(別紙 6.4)</u>				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
 (2) 評価手法の概要 本評価は、<u>柏崎刈羽</u>原子力発電所に対する変圧器の火災影響の有無の評価を目的としている。具体的な評価指標とその 内容を以下に示す。 	(2) 輻射強度の算定 油火災において任意の位置にある輻射強度(熱)を計算に より求めるため、火炎の高さ(輻射体)を半径の3倍にした 円筒火炎モデルを採用した。	 (2) 評価手法の概要 本評価は、<u>島根</u>原子力発電所に対する変圧器の火災影響の 有無の評価を目的としている。具体的な評価指標とその内容 を以下に示す。 	
第 3.1.2-1 表 評価指標及びその内容 評価指標 内容 輻射強度[W/m ²]** 火災の炎から任意の位置にある点(受熱点)の輻射強度 形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数 燃焼半径[m] 変圧器規模より求めた燃焼半径 燃焼継続時間[s] 火災が終了するまでの時間 離隔距離[m] 変圧器から発電用原子炉施設までの直線距離 熱許容限界値[-] 建屋の外壁,軽油タンク,主排気筒が想定火災の熱影響に対し て許容限界以下になる値 上記の評価指標は,受熱面が輻射体の底部と同一平面上に あると仮定して評価する	3.2.2 共通データの算出 各対象施設の外壁に対する熱影響評価に必要となる共通デー 夕を算出する。 (1) 変圧器及び燃料に係るデータ 変圧器及び燃料に係るデータを第3.2.2-1表に示す。 第3.2.2-1表 火災源 油の種類 V R f M ρ (m ³) (kw/m ²)*1 (kg/m ² /s)*2 (kg/m ³)*2 主要変圧器 136.00 所内変圧器2A 絶縁油 21.00 23 0.035 ※1 絶縁油は重調と同じ第3石油類であるため、重調の評価ガイド附録B記載値を採用 **2 NUREG-1805記載値	第3.1.2-1表 評価指標 内容 「新価指標 内容 新新強度[W/m ²]* 火災の炎から任意の位置にある点(受熱点)の輻射強度 形態係数[-3] 火炎と受熱面との相対位置関係によって定まる係数 燃焼半径[m] 変圧器規模より求めた燃焼半径 燃焼継続時間[s] 火災が終了するまでの時間 離隔距離[m] 変圧器から発電用原子炉施設までの直線距離 熱許容限界値[-3] 建物の外壁,海水ボンブ,排気筒が想定火災の熱影響に対して許容限界以下になる値 上記の評価指標は、受熱面が輻射体の底部と同一平面上にある	
 あると仮定して評価する。 ※:油の液面火災では、火炎面積の半径が 3m を超えると 空気供給不足により大量の黒煙が発生し輻射発散度 が低減するが、本評価では保守的な判断を行うため に、火災規模による輻射発散度の低減がないものとす る。 (3)評価対象範囲 <u>5~7 号炉周辺</u>の屋外には、主変圧器、所内変圧器、起動 変圧器、励磁変圧器が存在するが、貯蔵量の多い主変圧器を 評価対象とする。 		 と仮定して評価する。 ※:油の液面火災では、火炎面積の半径が3mを超えると空気 供給不足により大量の黒煙が発生し輻射発散度が低減する が、本評価では保守的な判断を行うために、火災規模によ る輻射発散度の低減がないものとする。 (3) 評価対象範囲 2号炉周辺の屋外には、主変圧器、所内変圧器、起動変圧 器が存在するが、貯蔵量の多い主変圧器を評価対象とする。 	
]			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.9.12版)	島根	原子力発電所 2号炉	備考
(4) 必要データ			(4) 必要データ		
評価に必要なデータを	と以下に示す。		評価に必要なデー	ータを以下に示す。	
第 3.1.2-2 表	変圧器火災影響評価に必要なデータ		第3.1.2-2表 主	変圧器火災影響評価に必要なデータ	
データ種類	内容				
輻射発散度[W/m ²]	燃焼する可燃物によって決まる定数 22.0×10 ³ 「Ψω ² 」(重油) *1		データ種類	内容	
主変圧器の投影面積[m ²] ^{※2}	23.0×10 [w/m] (重加) 6 号炉:14.5×10.3 (150[m²]) 7.日本伝、14.6×10.6 (155[-2])		輻射発散度[W/m ²]	燃焼する可燃物によって決まる係数 23×10 ³ [W/m ²] (重油) ^{*1}	
	 7 5か:14.0×10.0 (135[m]) 建屋に近い主変圧器の中心から建屋までの距離 		主変圧器の投影面積[m ²] ^{※2}	4.2×8.5=35.7[m ²]	
	13[m] ^{**4}			主変圧益の中心からタービン建物までの離隔距離 8[m]	
	軽油タンクに近い主変圧器の中心から軽油タンクま での距離 67「m]*5		離隔距離[m]	主変圧器の中心から海水ポンプまでの離隔距離	
离隹[隔 距巨离隹[m] **3	燃料移送ポンプに近い主変圧器の中心から燃料移送			18[m] ナ亦正男の中心から批复算までの難厚距離 89[…]	
	ポンプ(防護板(鋼板)までの距離 62[m]*5		 	王复圧器の中心から排気間までの離隔距離 oo[lii] の元素成分に関する規格がないため、絶縁油の輻射発	
	主排気筒に近い主変圧器の中心から主排気筒までの 距離 23 [m] ^{※5}		散度は物性の近い重油の	り値を使用する。	
×1:変圧器用の絶縁油はその	-		※2:第3.1.2-1図に変圧器の	投影面積を示す。	
度は物性の近い重油の値	重を使用する。				
※2:第3.1.2-1図に変圧器の ※2:6号及び7号にの主変圧器	投影面積を示す。 Blt油量がほぼ同業であることから、務営田原子炉施設。				
2000年後の主要に新 との距離がより近い主変	にて 新学校 1000 - 2000 E				
※4:6号及び7号炉コントロー	ール建屋と6号炉主変圧器との距離				
※5:7号炉軽油タンク,7号炉 2日に主恋に出しの時間	同燃料移送ポンプ(防護板(鋼板)),7号炉主排気筒と				
(万炉土変圧器との距離					
			想定する燃	焼面積	
	変圧器投影面積				
				愛圧器	
	変圧器			本正照其(株)	
				<u>愛</u> 江	
	566 III				
i // / i			Ŏ		
	変圧器基礎				
第 3.1.2	-1 図 変圧器の投影面積		第 3.1.2	-1図 主変圧器の投影面積	
(5) 燃焼半径の算出		(2) 燃焼半径の算出	(5) 燃焼半径の算出		
変圧器周りの防済	油堤には玉砂利が敷き詰められているこ	変圧器周りの防油堤には玉砂利が敷き詰められていること	変圧器周りの防	油堤には玉砂利が敷き詰められているこ	
と,及び漏えいした	:油を回収する防災地下タンクを設置して	及び漏えいした油を回収する地下タンクを設置していること	と,及び漏えいし	と油は、装置下の防油堤内に滴下すること	
いろことから防油性	この全面火災が生じることけ考えてくい	から防油堤の全面水災が生じることけたいしたがって	から防油堤の全面	と災が生じることけ老うにくい よって	
		が「聖太休の今声ル巛ケトり田湾ル水大中ドマトし」	ホニ聖木仕のムエ		
よって、後江奋争性	**7王国八火により自同八次を生しること	友圧 荷平 伊 切 王 国 八 火 に よ り 円 同 八 沢 を 生 し る こ と と し ,	変圧 福平 平 の 王 国 シ	へ火により17回八次を生しることとし, 燃	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
とし、燃焼面積は変圧器の投影面積に等しいものとする。し	焼面積は変圧器の投影面積に等しいものとして燃焼半径を算	焼面積は変圧器の投影面積に等しいものとする。したがって、	
たがって, 燃焼半径は変圧器の投影面積を円筒の底面と仮定	<u>出する。</u> 変圧器の投影面積を第 3.2.2-1 図に,算出結果を第	燃焼半径は変圧器の投影面積を円筒の底面と仮定し算出す	
し算出する。6. 号炉主変圧器について示す。()内は 7	3.2.2-2 表に示す。	る。	
<u> </u>	$\mathbf{p} = \mathbf{s}$		
R = $(S \neq \pi) \ 0.5$	$R = \sqrt{\frac{\pi}{\pi}}$	R = $(S \neq \pi)^{-0.5}$	
S:投影面積(火炎円筒の底面積)= <u>150 [m²](155[m²])</u>		S:投影面積(<u>火炎円筒の底面積</u>)= <u>35.7[m²]</u>	
<u>R= $(150 \neq \pi)$ 0.5=6.91 [m] (7.03[m])</u>	R:燃焼半径(m),S:防油堤面積(=燃焼面積)(m ²)	$R = (35.7 / \pi)^{-0.5} = 3.37 [m]$	
(6) 形態係数の算出		(6) 形態係数の算出	
次の式から形態係数を算出する。	相定する燃焼面積	次の式から形態係数を算出する。	
		$\phi = \frac{1}{2} \tan^{-1} \left(\frac{m}{2} \right) + \frac{m}{2} \left\{ \frac{(A-2n)}{2} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{2}} \right] - \frac{1}{2} \tan^{-1} \left[\sqrt{\frac{(n-1)}{2}} \right] \right\}$	
1 (m) $m\left[\left(4,2n\right),\left[\frac{4(n-1)}{2}\right],\left[\frac{1}{2},\left[\frac{1}{2}\right]\right]\right]$		$\varphi = \pi n \operatorname{curr} \left(\sqrt{n^2 - 1} \right)^{-1} \pi \left(n \sqrt{AB} \operatorname{curr} \left[\sqrt{B(n+1)} \right] n \operatorname{curr} \left[\sqrt{(n+1)} \right] \right)$	
$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left(\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right) - \frac{1}{n} \tan^{-1} \left(\sqrt{\frac{(n - 1)}{(n + 1)}} \right) \right\}$		$f = f = \frac{1}{2} - \frac{1}{2$	
$ \begin{array}{c} nn \\ (n - 1) \\ nn \\ (n + 1) \\ (n $	放熱器	$\begin{array}{c} R \\ R $	
$\hbar t \gtrsim 0$, $m = \frac{H}{m} \cong 3, n = \frac{L}{m}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$	了一一一一次正器本体。 一	φ : 形態係数, L : 離隔距離, H: 火炎高さ, R : 燃焼半径	
R R R r r r			
φ : 形態係数, L : 離隔距離, H : 火炎高さ, R : 燃焼半径			
	● 絶縁油		
	第3.2.2-1 図 変圧器の投影面積		
第 3.1.2-3 表 形態係数の算出結果	第 3. 2. 2-2 表 火災源の燃焼半径	第3.1.2-3表 形態係数の算出結果	
評価対象 建屋 軽油タンク 燃料移送ポンプ 主排気筒	燃烧五菇 燃烧半汉	評価対象 建物 海水ポンプ 排気筒	
燃焼半径[m] 6.91 7.03 7.03 7.03	想定火災源 S R	燃焼半径[m] 3.37	
離隔距離[m] 13 67 62 23	(m ²) (m)	離隔距離[m] 8 18 88 形態係数[-] 1.85×10^{-1} 6.01×10^{-2} 2.82×10^{-3}	
形態係数[-] 0.2619634 0.0213565 0.0248130 0.1341728	主要変圧器 97.00 5.557		
	所内変圧器 2 A 22.45 2.674		
	起動変圧器 2 B 58.91 4.331		
(7) 輻射強度の算出		(7) 輻射強度の算出	
火災の火炎から任意の位置にある点(受熱点)の輻射強度		火災の火炎から任意の位置にある点(受熱点)の輻射強度	
は、輻射発散度に形態係数をかけた値となる。次式から輻射		は、輻射発散度に形態係数をかけた値となる。次式から輻射	
強度を算出する。		強度を算出する。	
$E = Rf \times \phi$		$E = Rf \times \phi$	
E:輻射強度, Rf:輻射発散度, φ:形態係数		E:輻射強度,Rf:輻射発散度,φ:形態係数	

柏崎刈	羽原子力発電	訴 6/75	2.20版)	東海第二発電所(2018.9.12版)				島根原子力発電所 2号炉			備考					
	第 3.1.2-4	表 輻射引	鱼度の算出結果									第3.1.2-4表	輻射強度の	算出結果		
評価対象	建屋	軽油タンク	燃料移送ポンプ	主排気筒							評価対象	建物	海水ポン	ンプ	排気筒	
輻射発散度		23.	(防護板(鋼板)) . 0×10 ³								輻射発散度 [W/m ²]		23×1	0^{3}		
[W/m ²] 形能係数[-]	0.2619634	0.0213565	0 0248130	0 1341728							形態係数[-]	1.85×10^{-1}	6.01×	10 ⁻²	2.82 $\times 10^{-3}$	
火炎面積の	13. 8	14.0	14.0	14.0							火炎面積の直径[m]		6.74	1		
直径 [m] 輻射強度	6.02×10^{3}	0.49×10^{3}	0.57×10^{3}	3.08×10^{3}							輻射強度[W/m ²]	4. 26×10^3	1.39×	10 ³	6. 49×10^{1}	
[W/m ²]																
(8) 燃焼継続時間の算出					(3) 燃焼継ぎ	読時間の	算出				(8) 燃焼継続	時間の算出				
燃焼	継続時間は燃	**料量を燃焼	面積と燃焼速度	そで割った値	燃焼継	読時間は	、燃料量	を燃焼面積	と燃焼速	度で割った値	燃焼継続	同時間は燃料量を	を燃焼面積と	と燃焼速度	度で割った値に	
になる	。6. 号炉主変	圧器について	て示す。() 内は 7	になる。	算出結果	を第3.2	.2-3表に示	timen		なる。					
<u> </u>	、					V										
t = -	$\frac{V}{2}$, $v =$	$=\frac{M}{M}$			t =	$2 \times \mathbf{v}$					$t = \frac{V}{-2}$	$-, v = \frac{M}{L}$ \downarrow	ϑ , $t = \frac{V}{V}$	$\times \rho$		
	$\pi R^2 \times v$	ρ			<i>n</i> n	~ v					$\pi R^2 \times v$	$\pi R^2 \times v$ ρ $\pi R^2 \times M$				
t:炸	然焼継続時間[_s」,V:燃料	▶量[m³],R:燃烤	牦半径[m], っ	t : 燃焼継続時間(s), V : 燃料量(m ³)						t:燃焼約	継続時間[s],V 士克「 /] ×	:燃料量[m	ı³」,R:燃	烧半径[m],	
v:发	然焼速度[m/s] 変	,M:賀童1	氐下速度[kg/m²・;	s],	R:燃焼半径(m), v:燃焼速度=M/ ρ (m/s)						v:燃焼1	V:				
ρ: ~~	密度[kg/m°] ズ V−200[m	3] (914[m3])	M = 0.025 [lm]	/m²	M:質量低下速度(kg/m²/s), ρ :燃料密度(kg/m³)						ρ:密度	$\left[\frac{1}{10} \frac{1}{10$	0.025[1.0]/m	m ² • a]	-1000[lra/m3]	
960 [ka	$(, \sqrt{-200})$		7, M-0.035[Kg/ 問を求めると	<u>μ</u> ·sj, <u>ρ</u> -	第222章 太 亦正哭の憐憐继续時間						として、燃焼継続時間を求めると、					
	0.035 / 960 = 3	3. 645×10 ⁻⁵	国を水のるこ, [m/s]				一 雄雄平汉	<u> 所具</u> 任工		ジーンの主要	$v=0.035/1000=3.50\times10^{-5}$					
t =	200 / (150	$\times 3.645 \times 10$	™] = 10.1[h]	想定火災源	水平里 V	R	員重低下速度 M		7/(3)近和生物10日寸 [日] t	t = 77/0	$(35.7 \times 3.50 \times 1)$	10^{-5} =17.1	l2[h]		
(10.4	[h])	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	主要恋厅哭	(m°)	(m)	(Kg/m ⁻ /s)	(Kg/m ⁻)	(5)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
(出典)質量低下速	夏度,密度:N	WREG-1805		正安交压证	21.00	9.674	0.025	000	24,004	(出典)	質量低下速度,	密度:NUR	EG-1805		
					所内发止奋2A	21.00	2.074	0.035	900	24,094						
					起動发圧器2B	46.75	4. 331			20, 447						
(9) 評価結	果										(9) 評価結果					
a. 建	屋外壁の温度 詞	評価									a. 建物夕	ト壁の温度評価				
(a)許約	容限界値(許約	容限界温度)									(a) 許容	限界值(許容阻	【界温度) 「開田住」(1			
本計	他で用いる許	でで限界値(語	計谷限界温度)	こついては,							本計	4価で用いる許約 りェーン・トリ	ら限界値(言 し の 社 広、	計谷温度)	については、	
一般的	ルニコンクリー	- トの強度に	影響かないとさ	オレタ 200℃								リにコンクリー レナス	トの強度	に影響が	ないとされる	
とする	0										200 C a	とりる。				
(h) 耐	と性能の評価 編	法果									(b) 耐水	性能の評価結果	Ļ			
大災	が発生した時	間から燃料が	が燃え尽きるまつ	での間, 一定							大災	が発生した時間	- 引から燃料z	が燃え尽き	きるまでの間,	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
の輻射強度で発電用原子炉施設外壁が昇温されるものとし		一定の輻射強度で発電用原子炉施設外壁が昇温されるも	
て、下記の一次元非定常熱伝導方程式の解の式より、コンク		のとして、下記の一次元非定常熱伝導方程式の解の式よ	
リートの表面の温度上昇を求め, コンクリートの表面温度が		り、コンクリートの表面の温度上昇を求め、コンクリー	
許容温度以下であるか評価を実施した。その結果,発電用原		トの表面温度が許容温度以下であるか評価を実施した。	
子炉施設外壁の表面温度は約184℃となり、許容温度を下回		その結果,発電用原子炉施設外壁の表面温度は約 187℃	
ることを確認した。		となり、許容温度を下回ることを確認した。	
ることを確認した。 $f_s = T_0 + \frac{1}{\left(\frac{\sqrt{k}\kappa}{1.18h\sqrt{t}} + 1\right)\frac{h}{\epsilon E}}$ 出典:原田和典,建築火災のメカニズムと火災安全設計, 日本建築センター $T_0:初期温度[50^{\circ}C], E:輻射強度[W/m^2], \epsilon:コンクリー ト表面の放射率 (0.95) *, h:コンクリート表面熱伝達 率[34.9W/m2K]*, k:コンクリート熱伝導率[1.6W/mK]*, \rho: = 2 \cdot 2$	3.2.3 外壁に対する熱影響評価 (1) 評価対象範囲 評価対象施設の外壁について、主要変圧器、所内変圧器2 A及び起動変圧器2Bの火災を想定して評価を実施した。 (2) 変圧器と評価対象施設までの離隔距離	となり,許容温度を下回ることを確認した。 $T = T_0 + \frac{1}{\left(\frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} + 1\right)\frac{h}{\varepsilon E}}$ 出典:原田和典,建築火災のメカニズムと火災安全設計, 財団法人 日本建築センター $T_0:初期温度[50°C], E:輻射強度[W/m2], \varepsilon: コンクリ ートの表面の放射率[0.94]×1, h: コンクリート表面熱伝 達率[23.3W/m2K]×2, k: コンクリート熱伝導率[1.6W/mK] *2, \rho: \exists ン / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, c: \exists ン / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, c: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \boxtimes B \in [2, 200 kg/m3]^{×2$	
	<u>愛生命と計価対象施設までの離開距離を用3.2.3-1 衣に示</u> す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第	二発電所(2018.9.12	版)	島根原子力発電所 2号炉	備考
	第3.2.3-1表各	変圧器と評価対象施設	までの離隔距離		
	想定火災源	影響対象	離隔距離 (m)		
	主要変圧器	タービン建屋	22		
	所内変圧器 2 A	タービン建屋	8		
	起動変圧器2B	タービン建屋	13		
	(3) 形態係数の算出 以下の式から形的 表に示す。 $\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right)$ ただし $m = \frac{H}{R} \Rightarrow 3$, n Φ :形態係数, L:離隔距	<u>に</u> <u>m</u> $\left\{\frac{(A-2n)}{n\sqrt{AB}} \tan^{-1}\right[\sqrt{\frac{A(n-1)}{B(n-1)}}$ = $\frac{L}{R}$, $A = (1+n)^2 + m^2$ 離(m), H:炎の高さ(m),	$\frac{1}{2} = \frac{1}{n} \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{n-1}{n+1}} \right]^{-\frac{1}{n}} \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{n-1}{n+1}} \right]^{-\frac{1}{2}}$, B=(1-n) ² +m R:燃焼半径(m)		
	第 3.2.3	-2表 各変圧器の形	態係数		
	建定火災源 離隔日 加速火災源 L (m	巨離 燃焼半径 R (m)	形態係数		
	主要変圧器 22 (タービン	- 建屋) 5.557	1.0160×10^{-1}		
	所内変圧器2A 8 (タービン	~建屋) 2.674	1.5128×10 ⁻¹		
	起動変圧器2B 13 (タービン	/建屋) 4.331	1.5063×10^{-1}		
	 (4) 輻射強度の評価 火炎から任意の(射発散度に形態係数 表に示す。 E = R f ・ Φ E : 輻射強度(W) Φ:形態係数 	立置にある点(受熱点 数を掛けた値になる。 ^{/m²), Rf:輻射発}	5)の輻射強度は, 算出結果を第 3. 2 散度 (W/m ²),		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)				島根原子力発電所 2号炉	備考
	第3.2.3-3表 各変圧器の輻射強度					
	輻射発散度 形態係数 輻射強度			輻射強度		
	想定火災源燃料の種類	R f (k₩∕m²)	ф (-)	E (₩∕m²)		
	主要変圧器 絶縁油		1.0160×10 ⁻¹	2, 336. 84		
	所内変圧器 2 A 絶縁油	23	1.5128×10^{-1}	3, 479. 47		
	起動変圧器 2 B 絶縁油		$1.5063 imes 10^{-1}$	3, 464. 49		
	 (5) 判断の考え方 a. 許容温度 火災時における短期温度上昇を考慮した場合において、コンクリート圧縮強度が維持される保守的な温度 200℃を許容 					
	温度とする。					
	b評価結果					
	火災が発生した時間から燃料が燃え尽きるまでの間,一定					
	の輻射強度で外壁が昇温されるものとして、下記の一次元非					
	定常熱伝導方程式の一般解の式よりコンクリート表面の温度					
	上昇を求め、コンクリート表面の温度が許容温度以下である					
	か評価した。建屋外壁の評価概念図を第3.2.3-1 図に示す。					
	・火炎長が天井スラブより短い場合、天井スラブに輻射熱を					
	与えないことから熱影響はない。					
	・火炎長が天井スラブより長い場合、天井スラブに輻射熱を					
	与えるが、その輻射熱は外壁に与える輻射熱より小さい。					
	 大井スラブの評価概念図を第3.2.3-2 図に示す。 ・火炎からの離隔距離が等しい場合,垂直面(外壁)と水平 面(天井スラブ)の形態係数は,垂直面の方が大きいこと から,天井スラブの熱影響は外壁に比べて小さい。 					
	$T = T_0 + \frac{2 E \sqrt{\alpha t}}{\lambda} \frac{1}{\sqrt{\pi}}$	$\exp\left(-\frac{ \mathbf{x} ^2}{4 \alpha \mathbf{t} }\right)$	$-\frac{x}{2\sqrt{\alpha t}} \operatorname{erfc} \left(\right)$	$\left(\frac{x}{2\sqrt{\alpha t}}\right)$		
	T:表面から x(m)の位置の温度(℃), T ₀ :初期温度(50℃) ^{*1} κ: コンクリート温度伝導率(= $\lambda / \rho C_p$)(7.7×10 ⁻⁷ m ² /s) ρ : コンクリート密度(2,400kg/m ³) C _p : コンクリート比熱(880J/kg/K) λ : コンクリート熱伝導率(1.63W/m/K), E:輻射強度(W/m ²)					
	<u>t</u> :燃焼継続時間(s), x: コンクリート壁表面深さ(0m)					
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考			
--------------------------------	---	--------------	----			
	※1 水戸地方気象台で観測された過去最高気温 38.4℃に					
	保守性を持たせた値					
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は, 受熱					
	面の形状や周囲の環境条件を受け変化するが、一般					
	的な値として垂直外壁面,屋根面及び上げ裏面の夏					
	季, 冬季の値が示されている。評価上放熱が少ない					
	方が保守的であることから、これらのうち最も小さ					
	<u>い値である 17W/m²/K を用いる。)</u>					
	対流による放熱					
	天井スラブ 外壁 屋内 輻射強度:E 初期温度:50℃					
	第3.2.3-1 図 建屋外壁の評価概念図					
	天井スラブに輻射熱を与える 外壁に輻射熱を与える範囲 天井スラブ 外壁 医内 第 3. 2. 3-2 図 天井スラブの評価概念図					
	ただし、上式で算出した建屋表面温度が許容温度である 200°C を超える場合には、周囲への放熱を考慮した次式を用いて算出す る。なお、現実的に起こり得る放熱量を上回ることがないよう、 放熱量が低くなる保守的な条件を設定した。 $T = T_0 + \frac{E}{h} \left[1 - \exp\left(\frac{h^2}{\lambda \rho C_p} t\right) \operatorname{erfc}\left(\sqrt{\frac{h^2 t}{\lambda \rho C_p}}\right) \right]$					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>T:表面からx(m)の位置の温度(℃),T_0:初期温度(50℃)^{※1}</u>		
	<u>h:熱伝達率(17W/m²/K)*2</u>		
	<u>ρ:コンクリート密度(2,400kg/m³)</u>		
	<u>C_p:コンクリート比熱(880J/kg/K)</u>		
	<u>λ:コンクリート熱伝導率(1.63W/m/K),E:輻射強度(W/m²)</u>		
	t : 燃焼継続時間(11,008s), x:コンクリート壁表面深さ(0m)		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃に保		
	守性を持たせた値		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は, 受熱面		
	の形状や周囲の環境条件を受け変化するが、一般的な値		
	として垂直外壁面,屋根面及び上げ裏面の夏季,冬季の		
	値が示されている。評価上放熱が少ない方が保守的であ		
	ることから,これらのうち最も小さい値である17W/m ²		
	<u>/Kを用いる。)</u>		
	コンクリート表面の温度上昇を評価した結果,許容温度		
	200℃以下であることを確認した。評価結果を第3.2.3-4表に		
	<u>示</u> す。		
	第3.2.3-4 外壁に対する熱影響評価結果		
	相定火災酒 誕 年刘象施設 評価温度 [※] 許容温度		
	王安変圧部 149 149 2000		
	所内変圧益2A クービン建産 167 ~200		
	※ 放熱なしの条件では計谷温度を上回るため, 放熱を考慮して評価を実施		・設備の相違
			【柏崎 6/7,東海第二】
b. <u>軽油タンク</u> の温度評価			島根2号炉では,軽油
(a)許容限界値(許容限界温度)			タンク,燃料移送ポン
本評価で用いる許容限界値(許容限界温度)については,			プ,非常用ディーゼル
<u>軽油の発火点225℃</u> とする。			発電機は,地下構造等
			の屋内設備のため影
(b)耐火性能の評価結果			響評価対象外
火災が発生した時間から燃料が燃え尽きるまでの間,一			島根2号炉では,海水
定の輻射強度で <u>軽油及び軽油タンク</u> が昇温されるものとし			ポンプは,屋外設置の
て,下記の式より, <u>軽油</u> の温度上昇を求め, <u>軽油</u> の温度が許			ため影響評価を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
容温度以下であるか評価を実施した。その結果, <u>軽油</u> の温度			
は約 <u>42℃</u> となり,許容温度を下回ることを確認した。			
$T = \frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - \left(\frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - T_0\right) e^{\left(\frac{-h S_2}{C}\right)t}$			
$T_0: 初期温度[38°C], E: 輻射強度[W/m2], \epsilon : \underline{略油タンク}表面の放射率 (0.9)*1, h: 軽油タンク表面熱伝達率[17W/m2K]*2, S_1 = S_2: \underline{略} \underline{in} g \rightarrow 2 g 受熱・放熱面積[m2], C: 軽油タンク及び軽油の熱容量[8.72×108J/K], t: 燃焼継続時間[s],T_{air}: 外気温度[°C]*1: 伝熱工学資料, *2: 空気調和・衛生工学便覧$			
c. 燃料移送ポンプの温度評価		b . <u>海水ポンプ</u> の温度評価	・設備の相違
(a)許容限界値(許容限界温度)		(a) 許容限界值(許容限界温度)	【柏崎 6/7,東海第二】
燃料移送ポンプの許容限界値(許容限界温度)が端子ボッ		本評価で用いる許容限界値(許容限界温度)について	島根2号炉では,軽油
<u>クスパッキンの耐熱温度100℃であることを踏まえ、燃料移</u>		は,海水ポンプ電動機の下部軸受の許容温度 55℃とする。	タンク,燃料移送ポン
送ポンプの周囲に設置されている防護板(鋼板)の許容温度			プ,非常用ディーゼル
を当該ポンプの許容限界温度と同様の 100℃とする。		(b) 耐火性能の評価結果	発電機は,地下構造等
(b)耐火性能の評価結果		火災が発生した時間から燃料が燃え尽きるまでの間,	の屋内設備のため影
火災が発生した時間から燃料が燃え尽きるまでの間,一定		一定の輻射強度で <u>海水ポンプの冷却空気</u> が昇温されるも	響評価対象外
の輻射強度で <u>燃料移送ポンプの防護板 (鋼板)</u> が昇温される		のとして,下記の <u>式より海水ポンプ</u> の <u>冷却空気</u> 温度を求	島根 2 号炉では, 海水
ものとして、下記の一次元非定常熱伝導方程式の解の式より		め,許容温度以下であるか評価を実施した。その結果,	ポンプは, 屋外設置の
防護板(鋼板)の最大温度を求め、防護板(鋼板)の温度が		<u>海水ポンプの冷却空気</u> 温度は約 <u>30℃</u> となり,許容温度を	ため影響評価を実施
許容温度以下であるか評価を実施した。その結果, <u>燃料移送</u>		下回ることを確認した。	
<u>ポンプ</u> の温度は <u>71℃</u> となり,許容温度を下回ることを確認			
した。			
$T = \frac{\varepsilon E_2^S + hST_{air}}{hS} - \left(\frac{\varepsilon E_2^S + hST_{air}}{hS} - T_o\right) e^{\left(-\frac{hS}{C}\right)t}$		$T = T_0 + \frac{E \times A_T}{G \times C_p}$	
T₀:初期温度[55℃],E:輻射強度[W/m²],ε:防護板(鋼		T₀:通常運転時の上昇温度[22℃],E:輻射強度[W/m²].	
		A _r :受熱面積[10.93m ²],G:重量流量[1.96kg/s],	
達率[17W/m ² K] ^{**2} ,S:防護板(鋼板)放熱面積[32.4m ²](S/2:		 C _n :空気比熱[1007J/(kg・K)] ^{*1}	
受熱面積は外面のみ)、C:防護板(鋼板)の熱容量「2.41		<u></u>	
×10 ⁶ J/K], t:燃焼継続時間[s], T _{sin} :外気温度[55℃]			
※1: 伝熱工学資料. ※2: 空気調和·衛生工学便覧			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
d. <u>主排気筒</u> の温度評価		c. <u>排気筒</u> の温度評価	
(a)許容限界值(許容限界温度)		(a) 許容限界值(許容限界温度)	
本評価で用いる許容限界値 (許容限界温度) については,		本評価で用いる許容限界値(許容限界温度)について	
主排気筒鋼材の許容温度325℃とする。		は,排気筒鋼材の許容温度 325℃とする。	
(b)耐火性能の評価結果		(b) 耐火性能の評価結果	
火災が発生した時間から燃料が燃え尽きるまでの間, 一		火災が発生した時間から燃料が燃え尽きるまでの間,	
定の輻射強度で <u>主排気筒</u> が昇温されるものとして,下記の		一定の輻射強度で <u>排気筒</u> が昇温されるものとして,下記	
式より <u>主排気筒</u> の最大温度を求め,許容温度以下であるか		の式より,排気筒の最大温度を求め,許容温度以下であ	
評価を実施した。その結果,主排気筒の温度は約 <u>132℃</u> と		るか評価を実施した。その結果,排気筒の温度は約52℃	
なり、許容温度を下回ることを確認した。		となり、許容温度を下回ることを確認した。	
$T = T_0 + \frac{\varepsilon E}{2h}$		$T = T_0 + \frac{\varepsilon E}{2h}$	
T ₀ :初期温度[50℃],E:輻射強度[W/m ²],		T _o :初期温度[50℃],E:輻射強度[W/m ²],ε:排気筒表	
ε : 主排気筒表面の放射率(0.9) ^{*1} ,		面の放射率[0.9] ^{*1} , h: <u>排気筒</u> 表面熱伝達率[17W/m ² K] ^{*2}	
h: <u>主排気筒</u> 表面熱伝達率[17W/m ² K] ^{*2}		※1:伝熱工学資料, ※2:空気調和・衛生工学便覧	
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧			
(10) 火災による熱影響の有無の評価		(10) 火災による熱影響の有無の評価	
以上の結果から, 変圧器において火災が発生した場合を想		以上の結果から、変圧器において火災が発生した場合を想	
定したとしても、許容限界温度を超えないことから、発電用		定したとしても、許容限界温度を超えないことから、発電用	
原子炉施設に熱影響をおよぼすことはないと評価する。		原子炉施設に熱影響を及ぼすことはないと評価する。	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			<u>3.2.4</u> 放水路ゲートに対する熱影響評価		・評価対象の相違
			(1) 評価対象範囲		【東海第二】
			<u>放水路ゲートについて主要変圧器及び所内変圧器2Aの火</u>		島根2号炉は,評価対
			災を想定して評価を実施した。		象となる津波防護施
			(2) 評価対象施設の仕様		設はない
			放水路ゲート駆動装置の外殻となる放水路ゲート駆動装置		
			機械室の仕様を第 3. 2. 4-1 表に,外形図を第 3. 2. 4-1 図に示		
			<u>†.</u>		
			第 3.2.4-1 表 評価対象施設の仕様		
			名称 放水路ゲート駆動装置		
			床面高さ T.P.+11.0m		
			外殻材料 炭素鋼 個数 3		
			e.		
			第3.2.4-1 図 評価対象施設の外形図		
			(3) 火災源となる設備から放水路ゲートまでの離隔距離		
			火災源となる設備から放水路ゲートまでの離隔距離を第		
			3.2.4-2表に示す。		
			<u>第3.2.4-2表 火災源となる設備から放水路ゲートま</u> での		
			離隔距離		
			山田 (福田) (福田) (福田) (福田) (福田) (福田) (福田) (福田		
			想定火災源 L		
			(m)		
			王 異変圧器 270 所内変圧器 2 A 270		
			<u>(4)</u> 形態係数の算出		
			<u>以下の</u> 式から 形態 係 数 を 算出 した。 算出 結果 を 第 3.2.4-3		
			<u>表に不す。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二列	¥電所(2018	8. 9. 12 版)		島根原子力発電所 2号炉	備考
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{1}{\sqrt{n}} \right)$	$\frac{\mathrm{m}}{\mathrm{m}^2 - 1} + \frac{\mathrm{m}}{\pi} \left\{ \frac{\mathrm{m}}{\mathrm{m}^2 - 1} \right\}$	$\frac{(A-2n)}{n\sqrt{AB}} \tan^{-1} \left[\right]$	$\sqrt{\frac{A(n-1)}{B(n+1)}} - \frac{1}{n}$	$\operatorname{an}^{-1}\left[\sqrt{\frac{(n-1)}{(n+1)}}\right]$		
	ただし m= <u>H</u> ≒	$=3$, $n=\frac{L}{R}$, $A = (1+n)$	$)^{2} + m^{2}$, B =	$(1-n)^2 + m^2$		
	Φ :形態係数, L:離隔距離(m), H:炎の高さ(m), R:燃焼半径(m)				连半径(m)		
	第 3. 2. 4-3 表 火災源となる設備の形態係数			る設備の形態	系数		
	想定火災源	離隔距离 L (m)	雌燃	焼半径 R (m)	形態係数		
	主要変圧器	270	Ę	5. 557	3. 202×10^{-4}		
	所内変圧器 2 A	270	2	2. 674	1.887×10^{-4}		
	 (5) 輻射強度の評価 火災の火炎から任意の位置にある点(受熱点)の輻射強度 は,輻射発散度に形態係数を掛けた値になる。算出結果を第 3.2.4-4 表に示す。 E = R f ・ Φ E : 輻射強度(W/m²), R f : 輻射発散度(W/m²), Φ:形態係数 				<u>)の輻射強度</u> 算出結果を第 ⁽ W/m ²),		
	<u>第 3.2</u>	. 4-4 表	火災源となる	る設備の輻射	<u> </u>		
	想定火災源	*************************************	輻射発散度 Rf (kW/m ²)	形態係数	輻射強度 E (W∕m ²)		
	主要変圧器	絶縁油	23	8.202×10 ⁻⁴	19		
	所内変圧器 2 A	絶縁油	23	1.887 $\times 10^{-4}$	4		
	<u>(6) 判断の考</u> <u>a.許容温度</u>	<u>え方</u>					
	<u>放水路ゲート駆動装置機械室外殻の許容温度は、火災時に</u> おける短期温度上昇を考慮した場合において、鋼材の強度が						
	維持される	保守的な温	【度 325℃以	下とする。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>b. 評価結果</u>		
	一定の輻射強度で放水路ゲート駆動装置機械室外殻が昇温		
	されるものとして,輻射による入熱量と対流による放熱量が		
	<u>釣り合うことを表した下記の温度評価式により放水路ゲート</u>		
	駆動装置機械室外殻表面の温度上昇を求め、表面温度が許容		
	温度以下であるか評価した。放水路ゲートの評価概念図を第		
	3.2.4-2 図に示す。		
	$T - T \perp E$		
	$1 - 1_0 + \frac{1}{2h}$		
	<u>T</u> :許容温度(325℃), T ₀ :初期温度(50℃) ^{※1}		
	<u>E:輻射強度(W/m²), h:熱伝達率(17W/m²/K)^{*2}</u>		
	※1 水戸地方気象台で観測された過去最高気温		
	<u>38.4℃に保守性を持たせた値</u>		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は,		
	受熱面の形状や周囲の環境条件を受け変化する		
	が,一般的な値として垂直外壁面,屋根面及び		
	上げ裏面の夏季、冬季の値が示されている。評		
	価上放熱が少ない方が保守的であることから,		
	これらのうち最も小さい値である 17W/m ² /K		
	<u>を用いる。)</u>		
	放水路ゲート駆動装置外殻		
	輻射強度:E		
	:受熱而		
	<u>第 3. 2. 4-2 図 放水路ゲートの評価概念図</u>		
	放水路ゲート駆動装置外殻表面の温度上昇を評価した結		
	果,許容温度325℃以下であることを確認した。評価結果を		
	<u>第3.2.4-5表に示す。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)				島根原子力発電所 2号炉	備考
	第3.2.4-5表 評価対象施設に対する熱影響評価結果			評価結果		
			評価温度			
	想定火災源	評価対象施設	(°C)	(°C)		
	主要変圧器	あ水欧ゲート	51	< 325		
	所内変圧器 2 A		51	< 525		
		•				
						夕 (山 云 垣) 李
3.1.3						
<u>コントロール建産の産上に設直している原ナ炉行却材井値</u> 電ポンプ可応用沈粉電源提業入力亦正思に対してけ (1)。(2)						【 相 町 り/ 1】
						品恨 2 万炉は, 建初座 上に亦 広 男 笑 の 証 価
						土に炙圧協寺の計画 対象を設置していた
(1) 火災の発生防止						対象を設置していな
変圧器は基準地震動に対して絶縁油が漏えいしない設計						
としていることから、地震の際に漏えい・火災発生のおそれ						
はない (別紙 6-1 参照)。中越沖地震以前の主変圧器等の						
設置状況とは異なり,変圧器・ブッシング等がコントロール						
建屋屋上に設置されており,同一の躯体上にあることから相						
対変位を生じることはなく、地盤沈下に伴うブッシング部の						
破損による漏えいや火災発生はない。						
また中越沖地震後の点検においても異常は確認されてい						
ない。定期的な点検や絶縁油分析を行い、信頼性を確保して						
いる。なお、更なる安全性向上の観点から、万が一絶縁油が						
漏えいした場合であっても, 他号炉側の原子炉冷却材再循環						
ポンプ可変周波数電源装置入力変圧器へ絶縁油が流出する						
<u>ことを防止するため防油堰を設ける。(第 3.1.3-1 図)</u>						
変圧器のエリアは中央制御室より ITV による状況の確認						
<u>かり能でめる。また、祖欠次に対応した入空祖欠益を設直し</u> ていて、わた、更ねて安全向上の知らかく、咸知思の決異な						
くいる。なわ、文なる女王円上の観点から、恋知辞の故 <u>直を</u> 行い、早期の絵知、消水が可能や恐計レオス						
<u>11、, 〒初2/15/0, 1日八//・1日は取日とりる。</u> 「合哈物の規制に関すス相則」(昭和 94 年終理府会第 55						
日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日						
こと」と定めており、変圧器絶縁油(第4類 第3石油類非水						
溶性)の指定数量が 2,0000であることをふまえると所要単						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
位は3.1単位となる。変圧器近傍には油火災用 B-20 (20 単			
位)の能力を持った消火器を各号炉 1 台備え付けており所			
要能力を満たしている。			
なお,同様の考え方から,JEAG 5002「変電所等における			
防火対策指針」では、「消火器具の所要能力単位は、全主要			
変圧器内に貯蔵された絶縁油量を20,0000で除した値以上」			
と定めており、当該エリアでは同じく 3.1 単位が必要な能			
力値となる。			
(3) 火災の影響軽減			
コントロール建屋の屋上面や,周辺建屋はその外壁の厚さ			
により,変圧器火災の影響を受けない設計としている。			
(3.1.3.2 変圧器の火災による発電用原子炉施設(屋上)へ			
の影響参照)			
以上のように, 原子炉冷却材再循環ポンプ可変周波数電源			
装置入力変圧器に対しては, 火災防護上の対策がなされてい			
ることから、安全施設への影響はないと考えられるが、以下			
では万が一火災が生じた場合の影響評価を実施する。			
単なる漏えいでは周囲に火源がないことから、火災には至			
らない。したがって、火災としては、地絡、短絡等電気事故			
に伴うものが考えられるが、事故時には保護継電器が作動し			
事故電流を遮断し、仮に過熱により内圧が上昇した場合でも			
変圧器上部に設置した放圧装置により放圧する構造である			
ため、タンクは損傷には至らず、変圧器上部での火災となる。			
放圧する場合でも変圧器内は窒素ガスが封入されており変			
圧器上部には窒素ガスの層があることと、受け容器へ導かれ			
ることから油が吹き出すことはない。燃焼する位置は、酸素			
供給の観点から放圧装置等が設置されている上部が考えら			
れ、この場合、タンクの貫通部である放熱器フランジについ			
ては、液位が高い間には絶縁油の液相部に浸っており火炎に			
<u>さらされないことから,者しい漏えいは生じない。(第</u>			
以上を踏まえ、変圧器は設計基準地震動に対して漏えいし			
ない設計としており、複数台の同時火災は想定されないた			
め, 変圧器1台の投影面積での火災を想定し評価する。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3.1.3−1 図 変圧器・防油堰配			
室素ガス層 加圧装置 電気事故による 変圧器内部の火災 放熱器 タンク部 絶縁油 フランジ部			
<u>第 3.1.3-2 図 変圧器火災の概要図</u>			
<u>3.1.3.1変圧器の火災における延焼の危険性</u>			
原子炉冷却材再循環ボンプ可変周波数電源装置入力変圧器 において、火災が起こったとしても周囲の変圧器に影響を及ぼ さないことを評価するものである。			
(1) 変圧器の火災の想定の条件 ・周囲への熱影響を考慮し,保有油量が最大である 6 号炉 原子炉冷却材再循環ポンプ可変周波数電源装置(B-2)入力			
・配置上,油量が最大である 6 号炉原子炉冷却材再循環ポ			
ンプ可変周波数電源装置(B-2)入力変圧器と向かい合い,			
油量が少なく最も接近している7号炉原子炉冷却材再循環			
ポンプ可変周波数電源装置(A-1)入力変圧器が輻射熱を受			
ける状態を想定する。受熱面は下面と裏面を除く全ての面			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉
とし、表面以外の面は発熱源に最も近い表面と同等の輻射		
熱を受けるものとする。また、輻射熱を受けない面は保守		
的に断熱とし、大気への放熱は輻射を受ける面(下面と裏		
<u>面を除く全ての面)からのみなされるものとする。(第</u>		
3.1.3.1-1 図)		
・発熱側・受熱側とも絶縁油を満載した状態を想定する。		
 ・変圧器の近傍に配備している大型消火器による消火には 		
期待しない。		
・気象条件は無風状態とする。		
・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の3		
倍とする。		
裏面,下面は, 変圧器 変圧器		
しないとする 変圧器基礎		
屋上床躯体		
第 3.1.3.1-1 図 変圧器輻射影響範囲の概要図		
(2) 亚伍社争範囲		
(2) 計画対象範囲は コントロール建屋の屋上に設置している		
一一一一八家範囲は、コントロール定座の座上に取直している。 全ての変圧哭及び発電機とする。 登執側け油量が最も多く燃		
生くの愛口部及り元電機とする。元派隊は面重が取り多く旅 佐時間が長い 6 号 「		
m(B-2)入力変圧器 受勢側は油量が少なく最も接近		
していろ 7 号炉原子炉冷却材再循環ポンプ可変周波数電源		
装置(A-1) 入力変圧器とすることにより、他の変圧器等は本		
<u>評価に</u> 包絡される。		
(3) 必要データ 評価に必要なデータを以下に示す。		

 戸	備考

柏崎刈羽原子力発電	;所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3.1.3.1-1 表 刻	変圧器火災影響評価に必要なデータ			
データの種類	内容			
輻射発散度[W/m ²]	燃焼する可燃物によって決まる定数			
	23.0×10 ³ [W/m ²] **1 (重油) **2			
6 号炉原子炉冷却材冉循環 ポンプ可変周波数電源装置	5. $15 \times 4.64 = 23.9 \text{ [m²]}$			
(B-2)入力変圧器の投影面積				
[m ²]				
離隔距離[m]	変圧器間の最短距離 4.1[m]			
※1:評価ルイト竹属者Bより ※2:変圧器用の絶縁油はその5	元素成分に関する規格がないため、輻射発散度は物性			
の近い重油の値を使用する	0			
(4) 燃焼半径の箟出				
<u>6</u> 早后百子后必=	却材更循環ポンプ可亦国波粉雲酒装置			
	本の生面火炎により円周火炎を生しるこ			
<u>ととし、</u> 燃焼面積は	公 此器の投影面積に等しいものとする。			
したがって, 燃焼半	径は変圧器の投影面積を円筒の底面と仮			
定し算出する。				
$\underline{R} = (S \neq \pi) \ 0.55$	5:投影面積(火炎円筒の底面積)=23.9			
$[m^2]$				
$R = (23.9 \neq \pi)$ (0.5=2.75 [m]			
(5) 厥橈継続時間の管	<u>і</u> щ			
做座继结时間22	- <u>円</u> 料畳な燃焼西巷と燃焼浦鹿で割った <i>値に</i>			
<u>窓院</u> 和小市市町は、窓	科重を然焼面積と燃焼速度で割りた値に			
7よろ。				
$t = \frac{V}{V}$, $v = \frac{1}{2}$	<u>M</u>			
$\pi R^2 \times v^2$	ρ			
t:燃焼継続時間[s]	, V:燃料量[m³], R:燃焼半径[m], v:			
燃焼速度[m/s]				
<u>M:質量低下速度[kg</u>	g/m²·s], ρ:密度[kg/m³], m:質量[kg]			
ここで、V=13.7[m ³]. M=0.035[kg/m ² ·s] . $\rho = 960[kg/m^3]$			
として				
	$15 \times 10^{-5} [m/a]$			
$\sqrt{-0.033/900-3.04}$	$10 \times 10 \text{ [m/s]}$			
$t = 13.1 / (23.9 \times 3)$	$5.045 \times 10^{\circ}$ = 15708[s] = 4.36[h]		ļ	
(6) 危険輻射強度の算	[<u>出</u>		ļ	
6 号炉原子炉冷;	却材再循環ポンプ可変周波数電源装置		ļ	
<u>(B-2)入力変圧器の</u>	<u> 火災が発生した時間から燃料が燃え尽き</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
るまでの間,一定の輻射強度で 7 号炉原子炉冷却材再循環			
ポンプ可変周波数電源装置(A-1)入力変圧器が昇温されるも			
のとする。輻射による入熱量と対流熱伝達による放熱量の差			
が変圧器の温度上昇に寄与することを表した下記の式から,			
<u>重油の温度 T が 200℃^{*1}となる危険輻射強度を求める。</u>			
$C\frac{\mathrm{d}T}{\mathrm{d}t} = \varepsilon ES_1 - h(T - T_{air})S_2$			
<u>T₀:変圧器初期温度[55℃],T_{air}:外気温度 38[℃],E:輻射</u>			
 强度[W/m ²],			
<u>ε</u> :7号炉原子炉冷却材再循環ポンプ可変周波数電源装置			
(A−1)入力変圧器表面の放射率(0.9) ^{※2} ,h:7号炉原子炉冷			
却材再循環ポンプ可変周波数電源装置(A-1)入力変圧器表面			
熱伝達率[17\/m²K]*³,S ₁ (=S ₂):7号炉原子炉冷却材再循環ポ			
ンプ可変周波数電源装置(A-1)入力変圧器受熱面積[m²], C:7			
号炉原子炉冷却材再循環ポンプ可変周波数電源装置(A-1)			
<u>入力変圧器及び重油の熱容量 [6.64× 10⁶J/K]^{※1}, t:燃焼継</u>			
続時間[s]			
※1:変圧器用の絶縁油はその元素成分に関する規格がない			
ため,物性値は重油の値を使用。絶縁油の品質記録に記載			
されている発火温度の最低値とする。			
※2:伝熱工学資料(変圧器の金属筐体は塗装仕上げされて			
いることから、表面の塗装に類似の塗装として「塗料(エ			
ナメル・白)」の値を用いる。非金属の放射率は金属より			
大きいため, 非金属である塗料の値で評価することは保守			
的である。)			
※3:空気調和・衛生工学便覧(外表面の熱伝達率は,受熱面			
の形状や周囲の環境条件を受け変化するが、一般的な値と			
して垂直外壁面(変圧器の側面部に相当),屋根面(変圧			
器の上面部に相当)の夏季,冬季の値が示されている <u>。</u> 評			
価上放熱が少ない方が保守的であることから, これらのう			
ち最も小さい値である 15kcal/m²h℃を SI 単位に換算し			
<u>た 17W/m²K を用いる。)</u>			
結果として,危険輻射強度は以下になる。			
$E=7947[W/m^2]$			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>(7) 形態係数の算出</u>			
<u>火炎から任意の位置にある点(受熱点)の輻射強度は, 輻射</u>			
発散度に形態係数をかけた値となる。危険輻射強度となる形態			
 係数を算出する。			
$E_{max} = Rf \times \phi$			
第 3.1.3.1−2 表 形態係数の算出結果			
7 号炉原子炉冷却材再循環ボンプ可変周波数電源装置			
(A-1)入力変圧器 危険輻射強度[W/m²] 7.94×10 ³			
輻射発散度[W/m ²] 23×10 ³ 形態係数 0.3455400			
(8) 危険距離の算出 次の式から危険距離を算出する。			
$\phi = \frac{1}{2} \tan^{-1} \left(\frac{m}{2} \right) + \frac{m}{2} \left\{ \frac{(A-2n)}{2} \tan^{-1} \right\} \left\{ \frac{A(n-1)}{2} - \frac{1}{2} \tan^{-1} \right\} \left\{ \frac{(n-1)}{2} \right\}$			
$\int \pi n \left(\sqrt{n^2 - 1} \right) \pi \left[n \sqrt{AB} \left[\sqrt{B(n+1)} \right] n \left[\sqrt{(n+1)} \right] \right]$			
7272 U, $m = \frac{1}{R} \cong 3, n = \frac{1}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$			
σ : 形態係数, L: 危険距離[m], H: 火炎高さ[m], R: 燃焼半			
第 3.1.3.1-3 表 危険距離の算出結果			
7 号炉原子炉冷却材再循環ポンプ可変周波数電源装置			
(A-1)入力変圧器 形態係数 0.3455400			
燃焼半径[m] 2.75 合啥距離[m] 約.4.0			
7GPOVILIPIE [m] 702 H V			
また			
250 許容値			
200			
Q 150			
型 100			
50 燃烧終了時間			
v i 2 3 i 3 時間[hour]			
<u>第 3.1.3.1-2 図 変圧器絶縁油温度の推移</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(9) 火災による熱影響の有無の評価			
以上の結果から, 6 号炉原子炉冷却材再循環ポンプ可変周			
波数電源装置(B-2)入力変圧器において火災が発生した場合			
<u>を想定したとしても,離隔距離(4.1m)が危険距離(約 4.0m)</u>			
<u>3.1.3.2変</u> 圧器の火災による発電用原子炉施設(屋上)への影響			
(1) 変圧器の基礎への熱影響 火災が発生した時間から絶縁油			
が燃え尽きるまでの間, 一定の火炎の熱で変圧器の基礎が昇			
温されるものとして、基礎への熱影響について評価する。以			
 下に概念図を示す。			
変圧器 量外			
変圧器基礎面			
変圧 超基礎 長上 店仕上げ			
屋上床躯体内の熱伝導			
屋上床躯体(下面)			
<u>第 3.1.3.2-1 図 変圧器基礎への熱影響</u>			
評価に必要なパラメータを示す。			
<u>第 3.1.3.2-1 表 変圧器火災影響評価に必要なパラメータ</u>			
項目 パラメータ 備考			
外気温度[℃]50日射の影響を考慮し設定			
基礎面熱伝達率[W/m ² K] 34.883 コンクリートの基礎面熱伝達率			
産上休躯体(ト面) コンクリートの産上休躯体(ト) 執伝達率「W/m²K] 3.4883			
基礎・躯体の熱伝導率			
[W/mK] 1.6279 コンクリートの熱伝導率			
基礎・躯体の熱拡散率 $[m^2/s]$ 8.42×10 ⁻⁷ コンクリートの熱拡散率 其体 躯体 5-5-2 1.10 其体 (0.50-2) 躯体 (0.50-2)			
<u>以下の式に示す一次元非定常熱伝導方程式を用いて, 基礎面</u>			
から屋上床躯体(下面)までの温度を求める。			
$dT = d^2T$			
$\frac{dt}{dt} = \alpha \frac{dt^2}{dr^2}$			
un un			
<u>T:温度, t :時刻, x :基礎面からの距離, α:熱拡散率 以</u>			
下に評価結果を示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
450 400 350 300 250 200 150 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 100 10			
<u>第3.1.3.2-2 図 基礎面・屋上床躯体(下面)の温度</u>			
July 140 一然焼開始から30時間後 120 100 一燃焼開始から64.85時間後 100 一般((0.50m)) 80 一般((0.50m)) 60 基礎((0.69m)) 0 0.2 0 0.4 0 0.6 0 0.2 100 基礎+駆体厚さ[m]			
<u>第 3.1.3.2-3 図 基礎・躯体内部の温度変化</u> <u>第 3.1.3.2-2 表 変圧器基礎面の温度評価結果</u>			
6号炉(変圧器基礎面) 項目 6号炉原子炉冷却材再循環ボンプ可変 周波数電源装置(B-2)入力変圧器 火炎温度[℃] 360 ^{\$*1} 燃焼継続時間[hour] 4.36 基礎面温度[℃] 360 ^{\$*2} (51) ^{\$*3}			
屋上床躯体(下面)温度[℃] 29 ^{\$*2} (33) ^{\$*3} 基礎・躯体境界温度[℃] 38 ^{\$*2} (45) ^{\$*3} 許容温度[℃] 200 ^{\$*4} ※1: 絶縁油の沸点(出典:機械工学便覧) ※2: 燃焼終了直後の温度 ※3: 屋上床躯体(下面)が最高温度に到達した時の温度(燃焼開始から約 64.8			
^{時間後)} ※4:コンクリートの許容限界温度 絶縁油の液面火災において,絶縁油(炎の直下の部分)の			
温度は沸点近傍で安定すると考えられることから、本評価で			
<u>は加熱温度として絶縁油の沸点を用いる。大規模石油タンク</u>			
の燃焼に関する研究報告書(平成 11 年, 自治省消防庁消防			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
研究所)には,直径 10m のタンクの原油を燃焼させる実験を			
行った際の原油の温度が掲載されている(第 3.1.3.2-4 図)。			
これによると, 最高温度は 350℃程度である。			
400			
€ 300 - (1 Fuel (2nd) -			
Time (s)			
第 3 1 3 9-4 図 原油の温度変化 (直径 10m のタンク)			
評価の結果 基礎の表面(変圧器の設置面) 上り約 0.12m			
キでコンクリートの許容限界温度を招えていろが 屋上床躯			
休 (下面) についてけ許容限界温度を超えたいことを確認し			
 (2)コントロール建屋の屋上への熱影響			
火災が発生した時間から絶縁油が燃え尽きるまでの間,一			
定の輻射強度でコントロール建屋の屋上面が昇温されるも			
のとして、屋上への熱影響について評価する。			
変圧器			
屋外 アプロ			
変圧器基礎 輻射熱 E 空気 との熱伝達			
屋上床躯体			
屋上床躯体(下面)			
第 3.1.3.2-5 図 建屋屋上への熱影響			
評価に必要なパラメータを示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3.1.3.2-3 表 変圧器火災影響評価に必要なパラメータ			
項目 パラメータ 備考			
外気温度[℃] 50 日射の影響を考慮し設定 屋上面執伝達率[W/m²K] 34.883 コンクリートの屋上面執伝達率			
星上 品 派 は 建 + (ハ l m l) の 1 0 0 1 0 0 1 0 0 1 0 0 2 1 0 0 0 2 1 0 0 0 0			
率[W/m²K] 面)熱伝達率 躯体の熱伝導率[W/mK] 1.6279			
躯体の熱拡散率[m ² /s] 8.42×10 ⁻⁷ コンクリートの熱拡散率			
以下の式に示す一次元非定常熱伝導方程式を用いて、屋上			
床住上けから屋上床躯体(下面)までの温度を求める。			
$\frac{dT}{dT} - \alpha \frac{d^2T}{dT}$			
$\frac{dt}{dt} = \frac{d^2}{dx^2}$			
T:温度.t.:時刻.x :基礎面からの距離.α:熱拡散率			
なお, 第 3.1.3.2-6 図のように, 受熱面が火炎底面と異			
なる高さにあることから、「石油コンビナートの防災アセス			
メント指針」より,下記の考え方に基づき形態係数を算出し			
輻射強度を求める。			
1 $\binom{m}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$			
$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left \sqrt{\frac{A(n - 1)}{B(n + 1)}} \right - \frac{1}{n} \tan^{-1} \left \sqrt{\frac{(n - 1)}{(n + 1)}} \right \right\}$			
ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$			
<u>φ</u> : 形態係数, L : 危険距離[m], H : 火炎高さ[m], R : 燃焼			
<u>半径[m]</u>			
火 炎			
(変圧器)。 01			
火炎底面 (亦压器			
基礎), 02			
└─────┴───└───┘───┘────────────────────			
第 3.1.3.2-6 図 受勢面の高さによろ形能係数			
以下に評価結果を示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
140 一屋上床仕上げ面温度(燃焼中) 120 躯体(下面)温度(燃焼中) 100 屋上仕上げ面温度(鎮火後) 100 屋上床躯体(下面)温度(鎮火後) 100 屋上床躯体(下面)が最高温 0 3 6 9 12 15 18 21 24 時間[hour] 日 日 日 日 10			
第 3.1.3.2-7 図 基礎面・屋上床躯体(下面)の温度			
$ \frac{140}{120} $ $ \frac{140}{120} $ $ \frac{140}{120} $ $ \frac{140}{120} $ $ \frac{100}{100} $ $ \frac{100}{10$			
第 3.1.3.2-4 表 屋上床仕上げ面の温度評価結果			
6号炉(屋上床仕上げ面) 項目 6号炉原子炉冷却材再循環ポンプ可変周 波数電源装置(B-2)入力変圧器 輻射強度[W/m²] 3.91×10 ³ 燃焼継続時間[hour] 4.36 屋上床仕上げ面温度[℃] 118 ^{※1} (51) ^{※2} 屋上床躯体(下面)温度[℃] 35 ^{※1} (40) ^{※2} 許容温度[℃] 200 ^{※3} ※1: 燃焼終了直後の温度 1			
※2:屋上床躯体(下面)が最高温度に到達した時の温度(燃焼開始から約 15.6 時間後)			
(同夜) *********************************			
評価の結果,屋上床躯体(下面)の温度は燃焼開始から約			
15.6 時間後に最高温度に到産しているが、コンクリートの許			
谷限界温度を超えないことを確認した。ただし、屋上床躯体			
(下面)の温度上升が確認されたことから、変圧器の下部に			
<u> 心直する甲央制御至換気空調機至について、内気の温度評価</u> またたまま、あた、本国世界である。またによるに			
<u>を実施する。なお、変比器基礎面からの入熱による内気の温</u>			

相喻利羽原于刀笼電所 6/ 7 亏炉 (2017.12.20 版)	備考
度上昇については、その面積が小さく内気への影響は限定的	
であることから、屋上床仕上げからの入熱による内気の温度	
<u>評価に包絡される。</u>	
(3) 屋上設置機器への影響	
コントロール建屋屋上階に設置する無線連絡設備及び衛	
<u>星電話設備のアンテナについては、原子炉冷却材再循環ポン</u>	
プ可変周波数電源装置入力変圧器に対して3.のとおり火災	
に対する各種対策が取られていることから熱影響を受ける	
おそれはない。また、万が一変圧器火災が発生し熱影響を受	
けた場合であっても、送受話器、電力保安通信用電話設備の	
有線系回線が使用可能であることから、必要な通信連絡の機	
能は維持される。	
<u>3.1.3.3</u> 変圧器の下部に位置している中央制御室換気空調機室	
<u>への影響</u>	
屋上床仕上げ面からの入熱による影響 変圧器の下部に位	
置している中央制御室換気空調機室内の機器等への影響に	
ついて評価する。	
<u>第 3.1.3.3-1 図に概念図を示す。</u>	
外壁及び内壁面温度上昇に伴う熱負荷(Q _{v, in})は次式で計	
$Q_{v,in} = h_{in} A (T_{in} - T_{room})$	
<u>h_{in}: 内壁面熱伝達率, A:内壁の表面積, 1_{in}: 内壁面温度, </u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
建屋外 英正器基礎 人交からの輻射 E 女欠からの輻射 E 外気との熱伝達 Qat 上床躯体 熱伝導 Qat 小気温度 Trow 内気との熱伝達 Qat 換気空調系給気温度 Ta 換気空調系給気温度 Ta 東京 第 3.1.3.3-1 図 伝熱の概念図 以下に評価結果を示す。			
第 3.1.3.3-1 表 建屋内気温度の評価結果 6号炉中央制御室換気空調機室評価(建屋内気温度) 項目 6号炉原子炉冷却材再循環ポンプ可変周波数 電源装置(B-2)入力変圧器(屋上面) 内気温度[℃] 38*1 許容温度[℃] 40*2 ※1: 燃焼終了後も含めた最高温度 ※2: 中央制御室換気空調機室の最高使用温度 評価の結果, 燃焼終了後の温度上昇を踏まえたとしても,			
 内気温度は最高で約 38℃となり,室内設備の最高使用温度 40℃を下回ることを確認した。 3.1.4 まとめ 			
以上の結果から、コントロール建屋の屋上に設置している 変圧器の火災を想定した場合、変圧器の基礎面は許容限界温 度を超えるものの、屋上床躯体については許容限界温度を下 回ることから、建屋の強度に対する熱影響はないと評価す る。			
<u>また,変圧器の下部に位置している中央制御室換気空調機</u> 室の内気温度は最高でも約 38℃であり,室内にある設備の 最高使用温度を下回ることから,熱影響はないと評価する。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3.2 水素トレーラの火災影響評価について		3.2 2号水素ガストレーラの火災影響評価について	
1. 号炉へ水素を供給する水素トレーラの火災に対して、より一		2号炉へ水素を供給する水素ガストレーラの火災に対して,	
層の安全性向上の観点から、その火災が起こったとしても発電用		より一層の安全性向上の観点から、その火災が起こったとして	
原子炉施設に影響を及ぼさないことを評価するものである(1号		も発電用原子炉施設に影響を及ぼさないことを評価するもので	
炉の運転中以外であれば、水素トレーラが発電所敷地内に配備さ		ある(2.号炉の運転中以外であれば、水素ガストレーラが発電	
れることはない)。		所敷地内に配備されることはない)。	
		なお,水素ガストレーラの火災では,水素ガストレーラ保管	
なお、水素トレーラの火災では、展望台等により、6.号及び7		<u>庫の壁等</u> により、2号炉の発電用原子炉施設は輻射熱を受けな	
<u> </u>		いことから爆発による影響評価のみとする。	
る影響評価のみとする(第 3.2-1 図)。			
離隔距離約 1,645m			
第 3.2-1 図 水素トレーラの離隔距離		第3.2-1図 水素ガストレーラと発電用原子炉施設の配置図	
(1) 想定の条件		(1) 想定の条件	
 ・水素トレーラ建屋内にて、水素トレーラが停車中に火災・ 		 ・水素ガストレーラ設置場所にて水素ガストレーラが停車 	
爆発を起こした場合を想定する。		中に爆発を起こした場合を想定する。	
・水素トレーラは水素ガスを満載した状態(最大積載量		・水素ガストレーラは水素ガスを満載した状態(最大積載	
		量12,086m ³)を想定する。	
 ・燃料は水素とする。 		・燃料は水素とする。	
 ・水素トレーラ建屋内での水素ガス漏えい。引火によろ水素 		・水素ガストレーラ設置場所での水素ガス漏えい。引火に	
トレーラの爆発を想定する		よろ水素ガストレーラの爆発を相定する	
・ 与 免 冬 此 け 毎 周 世 能 と 才 ろ		・ 気象冬代は毎周世能とする	
メネオITIなボ/AULL版C りる。		* 入家木戸(はボ/ふ(八忠とりる)。	
(2) 証価毛注の概要		(2) 証価毛注の概要	
(4) 町両丁仏ツ地女 木評価は 拍佐川羽百乙九惑電形に分子てルました。 この		(4) 町画す仏のが成女	
半計111は、加順川初尿丁川先電所に対する小茶下レーブの		半計111は、 <u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	
カス爆発による影響の有無の評価を目的としている。具体的		カス爆発による影響の有無の評価を目的としている。具体的	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
な評価指標とその内容を以下に示す。	な評価指標とその内容を以下に示す。	
第 3.2-1 表 評価指標及びその内容 評価指標 内容 危険限界距離[m] ガス爆発の爆風圧が 10kPa 以下になる距離	第3.2-1表 評価指標及びその内容 評価指標 内容 危険限界距離[m] ガス爆発の爆風圧が10kPa以下になる距離	
(3) 評価対象範囲 評価対象範囲は発電所構内で出火する <u>水素トレーラ</u> とする。	(3) 評価対象範囲 評価対象範囲は発電所構内で出火する <u>水素ガストレーラ</u> と する。	
(4) 必要データ評価に必要なデータを以下に示す。	(4) 必要データ 評価に必要なデータを以下に示す。	
第 3.2-2 表 水素爆発の評価条件 データ種類 内容 水素のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=2860000 コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備又は処 コンビナート等保安規則第5条貯蔵設備にあっては貯蔵能力(単位:トン)の数値の平方根の数値(貯蔵能力が一トン未満のものにあっては, 貯蔵能力(単位:トン)の数値), 圧縮ガスの貯蔵設備にあっては, 貯蔵能力(単位:トン)の数値), 圧縮ガスの貯蔵設備にあっては, 貯蔵能力(単位:シン)の数値), 圧縮ガスの常用の温度及び圧力におけるガスの質量(単位:トン)に換算して得られた数値の平方根の数値(換算して得られた数値が一未満のものにあっては, 当該換算して得られた数値が一未満のものにあっては, 当該換算して得られた数値 興設備: 処理設備内にあるガスの質量(単位:トン)の数値 W=1.25 ^{1/2} =1.12 水素トレーラから発電用原子炉施設までの距離	第3. 2-2表 小素爆発の評価条件 データ種類 内容 ボ素のK値 コンビナート等保安規則第5条別表第二に掲げる値 水素のK値 コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 野蕨設備マは処理 ご次ビオート等保安規則第5条貯蔵設備スは処理設備の区分に応じて次に掲げる数値 防蔵設備又は処理 コンビナート等保安規則第5条貯蔵設備では少すメートル) 空当該ガスの貯蔵設備にあっては貯蔵能力がートン未満のものにあっては貯蔵能力(単位 トン)の数値の平方根の数値(防御能力がートン未満のものにあっては貯蔵能力がートン未満のものにあっては、貯蔵して得られた数値の平方根の数値(換算して得られた数値) 空当該ガスの常用の温度及び圧力におけるガスの質量(単位 位 トン)に換算して得られた数値) 空理設備にあるガスの質量(単位 位 トン)の数値 処理設備: 処理設備内にあるガスの質量(単位 トン)の数値 W=1.042	
「「「」」「「」」」「」「」」「」「」」「」」「」」「」」「」」「」」「」」「	離隔距離[m] 約90[m]	
 (5) W 値の鼻出 水素トレーラの最大積載量を貯蔵能力とし,W 値を算出す る。 積載量(貯蔵能力) =13987[m³]=1.25[t] W=1.251/2=1.12 	 (5) W値の算出 水素ガストレーラの最大積載量を貯蔵能力とし、W値を算出 する。 積載量(貯蔵能力) =1.085t W=1.042 	
(6) 危険限界距離の算出 次の式から危険限界距離を算出する。ここで算出した危険 限界距離が水素トレーラと発電用原子炉施設の間に必要な 離隔距離となる。	 (6) 危険限界距離の算出 次の式から危険限界距離を算出する。ここで算出した危険 限界距離が水素ガストレーラと発電用原子炉施設の間に必要な離隔距離となる。 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$X = 0.04\lambda \cdot \sqrt[3]{K \times W}$		$X = 0.04\lambda \cdot \sqrt[3]{K \times W}$	
X:危険限界距離[m], λ :換算距離 14.4[m·kg ^{-1/3}],		X:危険限界距離[m], λ:換算距離14.4[m·kg ^{-1/3}],	
K:水素の定数,W:設備定数		K:水素の定数,W:設備定数	
K=2860000, ₩ <u>=1.12</u> として, 危険限界距離を求める。		K=2860000, W= <u>1.042</u> として, 危険限界距離を求める。	
$X = \frac{1}{2} \frac{85 \text{ m}}{2}$		X = 約 <u>83 [m]</u>	
(7) 爆発による影響評価結果		(7) 爆発による影響評価結果	
以上の結果から, 水素トレーラにおいて爆発が発生した場		以上の結果から,水素ガストレーラにおいて爆発が発生し	
合を想定したとしても,離隔距離(約 <u>1645m</u>)が危険限界距離		た場合を想定したとしても,離隔距離(約 <u>90m</u>)が危険限界	
(約 85m)以上であることから,外部事象防護対象施設を内包		距離(約 <u>83m</u>)以上であることから,外部事象防護対象施設	
する発電用原子炉施設に爆風圧による影響はないと判断す		を内包する発電用原子炉施設に爆風圧による影響はないと判	
る。		断する。	
4. 構内危険物タンク等における延焼の危険性について		4. 構内危険物タンク等における延焼の危険性について	
4.1 軽油タンクの火災		4.1 ガスタービン発電機用軽油タンク,重油タンクの火災	
軽油タンク近傍で危険物を保管している設備はなく、現場作		ガスタービン発電機用軽油タンク, <u>重油タンク</u> 近傍で危険物	
業に伴い「屋外の危険物保管」や「火気の使用」をする場合は、		を保管している設備はなく、現場作業に伴い「屋外の危険物保	
社内文書に基づき危険物や火気を管理した状態で取り扱って		管」や「火気の使用」をする場合は,社内文書に基づき危険物	
いる。また、防火の観点から定期的なパトロール等にて現場の		や火気を管理した状態で取り扱っている。また、防火の観点か	
状況を確認している。		ら定期的なパトロール等にて現場の状況を確認している。	
以上により,軽油タンクの火災を想定したとしても周囲の可		以上により、ガスタービン発電機用軽油タンク、 <u>重油タンク</u>	
燃物への引火の可能性は低いと評価する。		の火災を想定したとしても周囲の可燃物への引火の可能性は	
		低いと評価する。	
4.2 車両(可搬型重大事故等対処設備)等の火災		 4.2 車両(可搬型重大事故等対処設備)等の火災	
4.2.1 車両(可搬型重大事故等対処設備)等の延焼		4.2.1 車両(可搬型重大事故等対処設備)等の延焼	
可搬型重大事故等対処設備保管場所等(以下「保管所等」		可搬型重大事故等対処設備保管場所等(以下「保管場所等」	
という。)において、車両(可搬型重大事故等対処設備)の		という。)において、車両(可搬型重大事故等対処設備)の火	
火災が起こったとしても周囲の車両に影響を及ぼさないこ		災が起こったとしても周囲の車両に影響を及ぼさないことを	
とを評価するものである。		評価するものである。	
なお、保管所等の一部は防火帯に近接しているが、当該箇		なお、保管場所及びアクセスルートの一部は防火帯に近接し	
所における森林火災時の放射熱強度は火線強度が最大とな		ているが,事故対応時の影響緩和のため,防火帯(約21m)に	・条件の相違
ったケース2において最大でも 1.7kW/m ² **程度であり、車両		加え空地を設けることにより、当該箇所における森林火災時の	【柏崎 6/7】
が延焼するような輻射強度ではないことを確認して いる。		放射熱強度は火線強度が最大となったケース1において最大	島根2号炉は,保管場
		でも <u>1.6kW/m²以下となり</u> ,車両が延焼するような輻射強度では	所及びアクセスルー

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12 版) 島根原子力発電所 2 号炉	備考
	ないことを確認している。	トへの影響がないよ
なお,保管所近傍における森林火災の燃焼継続時間(約 14		うに,空地を設けてい
時間)のうち、保管所において、人が長時間さらされても苦		る
痛を感じない放射熱(輻射)強度である 1.6kW/m² を超えて		
いる時間は数十秒程度である。		
※:石油コンビナート等防災アセスメント指針では、人が	※:石油コンビナート等防災アセスメント指針では、人が長	
長時間さらされても苦痛を感じない放射熱強度を	時間さらされても苦痛を感じない放射熱強度を1.6kW/	
1.6 kW/m ² としている。	m ² としている。	
(1) 車両(可搬型重大事故等対処設備)等の火災の想定の条件	(1) 車両(可搬型重大事故等対処設備)等の火災の想定の条件	
・周囲への熱影響を考慮し,燃料積載量の大きい第一ガスタ	・周囲への熱影響を考慮し、燃料積載量の大きい大型送水	
ービン発電機車(GTG用燃料タンク)の火災を想定する。	ポンプ車(エンジン用燃料タンク)の火災を想定する。	
・燃焼する第一ガスタービン発電機車(GTG 用燃料タンク)	・燃焼する大型送水ポンプ車(エンジン用燃料タンク)か	
からの輻射熱を受けやすくするため, 第一ガスタービン発	らの輻射熱を受けやすくするため、タンクローリの走行	
電機車の走行用燃料タンクが向かい合う状態を想定する。	用燃料タンクが向かい合う状態を想定する。	
第一ガスタービン発電機車の走行用燃料タンクの受熱面	・ <u>タンクローリ</u> の走行用燃料タンクの受熱面は,裏面を除	
は裏面を除く全ての面とし,表面以外の面は発熱源に最も	くすべての面とし、表面以外の面は発熱源に最も近い表	
近い表面と同等の輻射熱を受けるものとする。	面と同等の輻射熱を受けるものとする。	
・発熱側となる第一ガスタービン発電機車は燃料を満載し,	・発熱側となる大型送水ポンプ車(エンジン用燃料タンク)	
受熱側となる第一ガスタービン発電機車は燃料量を 1/2	は燃料を満載し、受熱側となるタンクローリ(車両用燃	
とする(受熱側の熱容量を小さくすることにより、燃料の	料タンク)は燃料量を 1/2 とする(受熱側の熱容量を小	
温度が上昇しやすい状態とする)。	さくすることにより、燃料の温度が上昇しやすい状態と	
・車両に積載している燃料は軽油とする。	する。)	
・タンクローリと異なり大容量の燃料タンクではないこと	・車両に積載している燃料は軽油とする。	
から, 第一ガスタービン発電機車の GTG 用燃料タンクの	 ・タンクローリと異なり大容量の燃料タンクではないこと 	
全面火災を想定する。	から,大型送水ポンプ車のエンジン用燃料タンクの全面	
・第一ガスタービン発電機車は、2 基(同容量)の_GTG_用	火災を想定する。	
<u>燃料タンク</u> が近接した状態で配置されていることから,タ	・大型送水ポンプ車は、2 基(同容量)のエンジン用燃料	
ンクの同時火災を想定する。	<u>タンク</u> が近接した状態で配置されていることから、タン	
・気象条件は無風状態とする。	クの同時火災を想定する。	
・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の3	・気象条件は無風状態とする。	
倍とする。	 ・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の 	
	3倍とする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
(2) 評価対象範囲	(2) 評価対象範囲	
評価対象範囲は, 輻射熱の影響を考慮し燃料タンクが露出	評価対象範囲は,可搬型重大事故等対処設備の車両とする。	
している車両(第一ガスタービン発電機車,電源車)とする。	発熱側は燃料積載量の最も大きい大型送水ポンプ車(エンジ	
発熱側は燃料積載量の最も大きい <u>第一ガスタービン発電機</u>	ン用燃料タンク),受熱側は熱容量の最も小さいタンクローリ	
<u>車(GTG 用燃料タンク),</u> 受熱側は熱容量の最も小さい <u>第一</u>	(車両用燃料タンク)とすることにより、他の車両は本評価	
<u>ガスタービン発電機車(走行用燃料タンク)</u> とすることによ	に包絡される。	
り,他の車両は本評価に包絡される。 <u>なお,消防車等は,燃</u>		・条件の相違
料タンクが露出しておらず, 輻射熱の影響を受けないことか		【柏崎 6/7】
ら評価対象外とする。		島根2号炉は,消防車
		等も評価対象として
(3) 必要データ	(3) 必要データ	いる
評価に必要なデータを以下に示す。	評価に必要なデータを以下に示す。	
第 4.2.1-1 表 ガスタービン発電機車火災影響評価に必要な	第4.2.1-1表 大型送水ポンプ車及びタンクローリ火災影響評価	
データ	に必要なデータ	
データの種類 内容	データの種類 内容	
輻射発散度[W/m ²] ¹⁾ 燃焼する可燃物によって決まる定数 42×10 ³ [W/m ²] (軽油)	輻射発散度 $[W/m^2]^1$ 燃焼する可燃物によって決まる定数 $42 \times 10^3 [W/m^2]$ (軽油)1)	
燃料タンクの投影面積[m ²] 第一ガスタービン発電機車(GTG 用燃料タンク 2 基	燃料タンクの投影面積[m ²] 大型送水ポンプ車(エンジン用燃料タンク)2基分	
$\begin{array}{c} (77) \\ 0.84 \times 0.6 \times 2 = 1.0 [\text{m}^2] \end{array}$	0.34[m]×1.46[m]×2-1.6[m] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
【離隔距離[m] 第一ガスタービン発電機車間の最短距離 5[m] 1) 評価ガイド付属書Bより	クローリ(単両用燃料タンク)の最短距離 3[m] 1)評価ガイド附属書Bより	
(4) 燃焼半径の算出	(4) 燃焼半径の算出	
<u>第一ガスタービン発電機車</u> の火災においては様々な燃焼	大型送水ポンプ車の火災においては様々な燃焼範囲の形態	
範囲の形態が想定されるが、円筒火炎を生ずるものとする。	が想定されるが、円筒火炎を生ずるものとする。ここでの燃	
ここでの燃焼面積は, <u>GTG 用燃料タンク</u> (2基)の投影面積	焼面積は, エンジン用燃料タンク(2基)の投影面積に等し	
に等しいものとする。したがって,燃焼半径 R[m]は_GTG_用	いものとする。したがって, 燃焼半径 R[m]はエンジン用燃料	
燃料タンクの投影面積を円筒の底面と仮定し算出する。	タンク(2基)の投影面積を円筒の底面と仮定し算出する。	
$R = (S \swarrow \pi)^{-0.5}$	R= $(S/\pi)^{-0.5}$	
S: <u>発電用燃料タンク</u> の投影面積(火炎円筒の底面積)	S:エンジン用燃料タンクの投影面積(火炎円筒の底面積)	
=1.0 [m ²]	=1.6 [m ²]	
$R = (1.0 / \pi)^{0.5} = 0.56 [m]$	$R= (1.6/\pi)^{0.5} = 0.71 [m]$	
(5) 燃焼継続時間の算出	(5) 燃焼継続時間の筧出	
燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値	
になる。	になる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
$t = \frac{V}{T^2}$, $v = \frac{M}{T^2}$	$t = \frac{V}{2}, v = \frac{M}{2}$ $\sharp \psi, t = \frac{V \times \rho}{2}$	
$\pi R^2 \times v \qquad \rho$	$\pi R^2 imes u ho ho \pi R^2 imes M$	
t:燃焼継続時間[s], V:燃料量[m³], R:燃焼半径[m],	t:燃焼継続時間[s], V:燃料量[m ³], R:燃焼半径[m],	
v:燃焼速度[m/s], M:質量低下速度[kg/m²·s],	v:燃焼速度[m/s], M:質量低下速度[kg/m ² ・s],	
ρ:密度[kg/m ³], <u>m:質量[kg]</u>	ho : 密度[kg/m ³]	
ここで, <u>V=0.4[m³], M=0.044[kg/m²・s]</u> , $\rho = 918[kg/m3]$	ここで、 $V=0.99[m^3], \rho=918[kg/m^3], M=0.044[kg/m^2・$	
として, 燃焼継続時間を求めると,	s]として燃焼時間を求めると,	
$v = 0.044/918 = 4.793 \times 10^{-5} [m/s]$	$v = 0.044 / 918 = 4.79 \times 10^{-5} [m/s]$	
$t = 0.4 / (1.0 \times 4.793 \times 10^{-5}) = 8279[s] = 2.29[h]$	$t = 0.99 / (1.6 \times 4.79 \times 10^{-5}) = 3.60 [h]$	
(6)	(6) 6) 6)	
第一ガスタービン発雷機車(GTG 用燃料タンク)の火災が	大型送水ポンプ車(エンジン用燃料タンク)の火災が発生	
発生した時間から燃料が燃え尽きるまでの間. 一定の輻射強	した時間から燃料が燃え尽きるまでの間、一定の輻射強度で	
度で第一ガスタービン発電機車(走行用燃料タンク)が昇温	タンクローリ(東両用燃料タンク)が昇温されるものとして、	
されるものとして、下記の式より燃料である軽油の温度Tが	下記の式より、燃料である軽油の温度 T が 225℃となる危険	
225℃となる危険輻射強度を求める。	輻射強度を求める。	
eESt	$\begin{pmatrix} -hS_2 \\ h \end{pmatrix} t$ $\begin{pmatrix} -hS_2 \\ h \end{pmatrix} t$	
$T = T_0 + \frac{1}{C + hSt}$	$E_{max} = \frac{ThS_2 - hS_2T_{air} (1 - e^{(-C_{-})^2}) - hS_2T_0 e^{(-C_{-})^2}}{(-C_{-})^2}$	
	$\varepsilon S_1 \left(1 - e^{\left(-\frac{1-\varepsilon_2}{C} \right)t} \right)$	
T · 初期涅度[38℃] F·輻射強度[W/m²] 。· 去行田燃料タ	T · 初期涅度[50℃] T·許容限界涅度[℃] T · 外気	
ンク表面の放射索(0.96) ^{※1} h・走行用燃料タンク表面熱	1_0 · (万)加速(1_0 ·	
伝達率[17W/m ² K] ^{※2} S・走行田燃料タンク受熱面積[m ²]	面の放射率[0.96]※1 h・車両用燃料タンク表面執伝達率	
C: 走行田燃料タンク及び軽油の熱容量[8 92×10 ⁴ I/K]	[17W/m2K]2×2S. · 車両用燃料タンク受執面積 $[m2]$ S. · 車	
t · 恢炼継続時間[s]	両用燃料タンク放勢面積「m ²]。C: 車両用燃料タンク及び	
※1.· 伝熱工学資料。※2.· 空気調和·衛生工学便覧	軽油の教容量[8,39×10 ⁴ Ⅰ/K], t・ 燃焼継続時間[s]	
	※1· 伝教工学資料 ※2· 空気調和·衛生工学便暨	
$E=4948[W/m^2]$	$E=\underline{6,288} [W/m^2]$	

柏崎刈羽原	子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(7) 形態係数(の算出		(7) 形態係数の算出	
火炎から	任意の位置にある点(受熱点)の輻射強度は、輻		火炎からの任意の位置にある点(受熱点)の輻射強度は、	
射発散度に	形態係数をかけた値となる。危険輻射強度となる		輻射発散度に形態係数をかけた値となる。危険輻射強度とな	
形態係数を	算出する。		る形態係数を算出する。	
Emax=Rf	$\times \phi$		$Emax = Rf \times \phi$	
Emax:危[険輻射強度,Rf:輻射発散度,φ:形態係数		Emax: 危険輻射強度, Rf: 輻射発散度, ϕ : 形態係数	
第	4.2.1-2 表 形態係数の算出結果		第 4. 2. 1−2 表 形態係数の算出結果	
在 险起针改在「w/.2]	第一ガスタービン発電機車(走行用燃料タンク)		タンクローリ(車両用燃料タンク)	
□ 厄陝輻射强度 [W/m [*]] 輻射発散度 [W/m ²]	4.94×10^{-10} 42×10^{3}		危険輻射強度[W/m ²] 6.29×10 ³	
形態係数	0. 1178306		輻射発散度[W/m ²] 42×10 ³	
			形態係数[-] 1.45×10 ⁻¹	
(8) 危険距離 次の式からか $\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2}} + \frac{1}{R} \right)$ ただし, $m = \frac{H}{R}$ ϕ : 形態係 R: 燃焼半径	の算出 危険距離を算出する。 $\frac{1}{n-1} + \frac{m}{\pi} \left\{ \frac{(A-2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{B(n+1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right] \right\}$ $\frac{1}{n-2} = 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$ 数, L:危険距離[m], H: 火炎高さ[m],		(8) 危険距離の算出 次の式から危険距離を算出する。 $\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$ ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1 + n)^2 + m^2, B = (1 - n)^2 + m^2$ $\phi : 形態係数, L: 離隔距離[m], H: 火炎の高さ[m],$ R:燃焼半径[m]	
第	4.2.1-3 表 危険距離の算出結果		第4.2.1-3表 危険距離の算出結果	
	第一ガスタービン発雷機重(走行用燃料タンク)		タンクローリ(車両用燃料タンク)	
形態係数	0. 1178306		形態係数[-] 1.45×10 ⁻¹	
燃焼半径[m]	0.56		燃焼半径[m] 0.71	
_ 危険距離[m]	1.8		危険距離[m] 2.2	
(0)	て社民領でナーを行っていた			
(9) 火炭によ [、]				
以上の結	朱から, <u></u>		以上の結果から、大型迭水ホンフ車(エンシン用燃料タン	
料タンクに:	おいて火災が発生した場合を想定したとしても、		<u></u> において火災が発生した場合を想定したとしても,離隔	
離隔距離(51	<u>n</u>)が危険距離(<u>1.8m</u>)以上であることから, <u>向かい</u>		距離(<u>3m</u>)が危険距離(<u>2.2m</u>)以上であることから,周囲の車	
合う他の第	ーガスタービン発電機車に影響をおよぼすこと		両(可搬型重大事故等対処設備)に影響を <u>及ぼす</u> ことはない	
はないと評価	価できる。		と評価できる。	

柏崎刈羽原子	カ発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
また, 他の	車両についても離隔距離が 2m 以上あることか			
ら,周囲の車	両(可搬型重大事故等対処設備)に影響をおよ			
ぼすことはな	いと評価できる。			
<u>4.2.2 第</u> 一ガス	タービン発電機の火災			・設備の相違
 (1) 火災延焼の 	影響			【柏崎 6/7】
第一ガスタ	ーービン発電機の発電機車の GTG 用燃料タンク			評価対象物の抽出結
において火災	が発生した場合を想定したとしても、「4.2.1」			果の相違
と同様に危険				
ことから, 隣	接するガスタービン発電機への影響はない。			
(2) アクセスル	マートへの影響			
第一ガスタ	ービン発電機車はアクセスルートに近接して			
いるが,隣接	道路への離隔距離は 5m 以上確保する。第一ガ			
スタービン発	電機車の GTG 用燃料タンクの火災を想定した			
場合,離隔距	離 5m での輻射強度は 1.1kW/m ² *程度であり,			
車両等の通行	に影響を及ぼすことはない。評価条件及び結果			
について、次	表に示す。			
第 4.2.2-1 表	長 アクセスルートへの火災影響評価結果			
	第一ガスタービン発電機車近傍アクセスルート			
燃焼半径[m]	0.56			
離隔距離[m] 形能係数	5			
輻射発散度[W/m ²]	$\frac{1}{42 \times 10^3}$			
輻射強度[W/m ²]	1.04×10 ³			
※:石油コンビナート 感じない放射熱(の防災アセスメント指針では,人が長時間さらされても苦痛を 輻射)強度を 1.6kW/m²としている。			
(3) 7 号炉主変	「圧器火災の影響			
<u>(0) 「 り)」 工</u> タ	<u>ービン発電機</u> 車から離隔距離約 72m の場所に			
<u></u> 7 号恒主変圧	デージューマンス $(2 - \pi)$ (2 - π) (2 -			
<u> - </u>	ついて」における 7 号恒主変圧器の証価と同			
<u> 火影音叶画に</u> 様に				
1次に、分 ス				
<u>しにここり</u> , 証価冬研及				
可画末什及				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 4.2.2-2 表 7 号炉主変圧器への火災影響評価結果			
第一ガスタービン発雷機車			l
燃焼半径[m] 7.03			
離隔距離[m] 72			l
形態係数 0.0185608			
福射先散及[\\/\mu] 2.5×10 輻射強度[\\/\mu] 0.43×10 ³			l
※:石油コンビナートの防災アセスメント指針では、人が長時間さらされても苦痛を			l
感じない放射熱(輻射)強度を 1.6 kW/m²としている。			l
			l
5. 発電用原子炉施設の外壁に設置されている機器の火災影響評価		5. 発電用原子炉施設の外壁に設置されている機器の火災影響評価	
発電用原子炉施設の外壁に設置されている機器(防護扉等)に		発電用原子炉施設の外壁に設置されている機器(扉等)につ	
ついては、外部火災の熱影響を受けやすいことから、これらの機		いては、外部火災の熱影響を受けやすいことから、これらの機	l
器について、火災影響評価を実施する。		器について,火災影響評価を実施する <u>必要があるが,離隔距離</u> ,	l
		輻射強度等の関係から航空機墜落に伴う火災影響評価結果に包	l
		絡される。	l
			l
5.1			
			l
			l
のうら、外部火災の熱影響を受ける以下の機器をする。			l
•			l
・ルーバ(換気空調系の給・排気口)			l
・配管貫通部			l
・ブローアウトパネル			l
なお、複数設置されているこれらの機器のうち、最も熱影響			l
を受ける位置にあるもの(発熱源に近く、機器本体だけでなく			l
建屋内部へ熱影響が及ぶ可能性のあるもの)を評価することに			l
よって、その他の機器は本評価に包絡される。発熱源は、火災			l
時の輻射強度が大きい軽油タンク,変圧器,航空機とするが,			l
建屋内への熱影響が確認された場合は内気温度についても評			l
価する			l
			l
5.9 防難豆の火災影響評価について			l
			1
<u>5.2.1 防護罪の通度評価</u>			1
			1
防護扉のうち、軽油タンクに最も近く、輻射強度が最も大			1
きくなる 6 号炉非常用ディーゼル発電機 (C) 室の防護扉を			1
評価対象とする。			1

柏崎刈羽原子力発電所 6	/7号炉 (2017.1	12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2) 想定の条件					
・軽油タンクの火災につ	oいては, 添付資料-	-6「2.構内危			
険物タンクの火災影響	評価 と同様の想定	三とする。			
 防護扉は、保守的に、 	扉外面の最も熱影響	を受けやすい			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* (物質休) トオス				
正備で的曖昧の時間の		~~			
・火火が発生した時間が	ら,燃料が燃え尽さ	くるよでの间,			
一定の輻射強度を受け	-るものとする。				
以下に、概念図を示す。	~				
建屋外	防護扉(均質体)	建屋内			
外気との熱伝達 Q _{v aut}					
周囲への転射の		内気との熱伝達			
THIZE CONTRACT OF	熱伝導	1			
	→ 執伝道 0				
	AN 144 147 40, 10				
火炎からの輻射 E _r					
一次「011 図	に劫の抓入回				
<u> </u>	「「「「「「「」」」」				
<u>(3) 必要データ</u>					
評価に必要なデータを以下	に示す。				
第 5.2.1-1 表 軽油タンク	ク火災影響評価に必要	要なデータ			
ган	°ニュ、カ /共来				
	「フメータ」 「個名」 -				
外気温度[℃]	50 太陽輻射	甘を考慮			
内気温度[℃]	33.3 夏期換算	面			
外面熱伝達率[W/(m ² ・K)] 第 5.5	2.1-2 図参照   自然対流 (Baylay)	「熱伝達率     「     」     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、     、			
	(bayley) 自然対流	(約33) 統熱伝達率			
内面熱伝達率 [ W / (m ² ・K ) ] 第 5.1	2.1-2 図参照 (Bayley	の式)			
扉の熱伝導率[W/(m・K)]					
扉の厚さ[m]		- ~答书L			
内面放射率(吸收率)[-]	0.9         仏熱工子           0         輻射放熱	- 貝科			
扉の熱拡散率[m ² /s]					
シュテファン・ボルツマン定 5.	.67×10 ⁻⁸ 伝熱工学	と資料			
数[W/(m ² · K)]					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
Bayley の式			
$Nu \equiv h \cdot x / \lambda = 0.10 R a^{1/3}$			
$(2 \times 10^9 \le \text{Ra} \equiv \text{g} \cdot \beta(\text{T} - T_{out}) \cdot x^3 / v^2 \cdot \text{Pr} \le 10^{12})$			
より,自然対流熱伝達率 h は次式から求められる。			
$h = 0.10\lambda(g \cdot \beta(T - T_{out}) \cdot Pr/v^2)^{1/3}$			
$\lambda$ :空気の境膜平均温度(扉面温度 T と周囲流体温度 T _{out}			
<u>の平均値)での熱伝導率 [W/(m・K)], g:重力加速度[m/s²],</u>			
<u>β:空気の境膜平均温度での熱膨張率[1/K], Pr:空気の境膜</u>			
平均温度でのプラントル数[-], ν:空気の境膜平均温度で			
<u>の動 粘性率[m²/s]</u>			
8.0			
5.0			
· 3.0			
● 周囲温度33.3℃の場合			
1.0			
第 5.2.1-2 図 自然対流熱伝達(Bayley の式)			
(4) 防護扉の内外面温度と膨張量の算出			
以下の式に示す一次元非定常熱伝導方程式を用いて,防護			
扉外面及び内面温度を求める。			
$dT = d^2T$			
$\frac{1}{dt} = \alpha \frac{1}{dx^2}$			
<u>T:温度,t:時刻,x:防護扉における外面からの距離,α:</u>			
熱拡散率			
	1		1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
220         200           200         200           180         160           140         120           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100           100         100			
第 5.2.1-3 図 防護扉の外面及び内面温度			
<ul> <li>(5) 熱影響の有無の評価</li> <li>評価の結果,軽油タンク火災による防護扉の最高温度は, 扉外面 165.5℃,扉内面161.9℃となった。なお,建屋内の 防火扉は,耐火試験を実施しており,IS0834 規格に従い, 最終的に 1000℃を超える加熱に対して,3 時間の耐火性能* があることを確認している。これに対し,防護扉は建屋内の 防火扉よりも頑健性があり,同等以上の耐火性能を有してい ることから熱影響はないと評価する。</li> <li>※:非加熱面での 10 秒を超えて継続する火炎の噴出,発炎 及び隙間を生じないこと。</li> </ul>			
<u>5.2.2 6 号炉非常用ナイーセル発電機(C)室の内気温度評価</u> < 待機時 >			
防護扉の内面温度上昇を確認したため、6 号炉非常用ディー ゼル発電機(C)室(以下「評価対象室」という。)の内気温度 を算出し、室内に設置している機器等への影響について評価す る。なお、非常用ディーゼル発電機は待機状態とする。			
<ul> <li>(1) 評価条件 <ul> <li>・火災が発生した時間から,燃料が燃え尽きるまでの間, 扉内面温度161.9℃一定としたときの放熱量を評価対象 室への入熱とする。</li> <li>・より現実的な評価として,評価対象室に隣接する壁,床, 天井への放熱を考慮する。</li> <li>・隣接室については,隣接する壁,床,天井への放熱を考</li> </ul> </li> </ul>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
慮しないものとする。			
・隣接室の内気温度評価は、評価対象室の放熱面積と隣接			
室の室内負荷が最も大きい、評価対象室上階の非常用デ			
ィーゼル発電機(C)制御盤室を対象とすることで,他の隣			
接室内機器等への評価は包絡される。			
以下に, 6 号炉非常用ディーゼル発電機 (C) 室と軽油タ			
ンクの位置関係、及び伝熱の概念図を示す。			
<u>第 5.2.2-1 図 6 号炉非常用ディーゼル発電機(C) 室と軽油</u>			
タンクの位置関係			
建屋外 建屋壁 建屋内D/G(C)制御盤室(隣接室)			
按 然 至 前 示 和 死 加 及 1。 常 用 换 気 空 調 系			
▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●			
火炎からの輻射 内気温度 T _R 排気			
内気との熱伝達 Qo 換気空調系による除熱 Qv 工 常用換気空調系			
▲ (除熱あり)より			
防護扉(均質体) D/G(C)室(評価対象室)			
第599-2 回行執の概合図(非常田ディーゼル及電機・法機味)			
·····································			
(2) 建屋内の温度評価			
レイ 法法国法知题品加加 内気温度け 水災に上る防難雇内高温度上見に伴う数角帯			
<u>こまい22部界間後の地図美に工棚による団が注う場とれた</u> で求める			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$T_R' = T_R + \frac{Q_1 + Q_D - Q_{\nu} - Q_{HR}}{C_a} \cdot t$			
<u>T_ℝ:初期内気温度,Q₁:室内負荷,Q₀:防護扉内面温度上</u> <u>昇に伴う熱負荷 (内気との熱伝達),Q,:空調による除熱</u>			
量,Q _m :隣接室への放熱量,C _a :室内空気の熱容量,t:			
時刻隣接室の内気温度については、隣接室への放熱量と			
室内の熱負荷及び換気空調系による除熱を考慮し、次式			
より求める。			
$T_n = \frac{Q_2 + Q_{HR}}{m\rho C} + T_a$			
$Q_2$ :室内負荷, m:風量, $\rho$ :空気密度, C:空気比熱,			
<u>T_: 換気空調系給気温度</u>			
以下に評価結果を示す。			
第 5.2.2-1 表 建屋内の温度評価結果(待機時)			
6号炉非常用ディーゼル 6号炉非常用ディーゼル			
発電機(C)室 発電機(C)制御盤室			
(評価対象至) (隣接至) 内気温度「℃] 37 33 ^{※1}			
許容温度[℃]     31     33       許容温度[℃]     45 ^{×2} 40 ^{×3}			
※1:評価対象室より室内負荷が小さく、初期内気温度は28.5[℃]			
※2:室内の電気設備(非常用ディーゼル発電機)の最高使用温度			
※3:室内の電気設備(制御盤)の最高使用温度			
評価の結果,6 号炉非常用ディーゼル発電機(C)室は			
37℃,隣接室(非常用ディーゼル発電機制御盤室)の室温は			
33℃となり、それぞれ、許容温度を下回ることを確認した。			
(3) 火災による熱影響の有無の評価			
以上の結果から、軽油タンク火災よる防護扉の加熱を想定			
したとしても,建屋内の 6 号炉非常用ディーゼル発電機(C)			
室,及びその隣接室の内気温度が,ともに許容温度を超えな			
いことから,発電用原子炉施設の建屋内への熱影響はない。			
なお、防護扉のほかに外壁からの入熱もあるが、短期的には			
防護扉からの入熱が支配的であるため、この間の内気温度か			
ら室内への熱影響を評価できる(壁厚が厚い場合,外壁から			
の入熱は一時的に壁内に蓄えられ、一定時間経過後から長時			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考		
間に亘って建屋内に放熱されるが、単位時間当たりの放熱量					
は小さく換気空調系での除熱が可能)。					
5.2.3 6 号炉非常用ディーゼル発電機(C)室の内気温度評価<					
運転時>					
6 号炉非常用ディーゼル発電機 (C) へ燃料を供給している軽					
油タンクの火災を想定しているため,ここでは,建屋内に設置					
されているディタンクからの燃料供給により、非常用ディーゼ					
ル発電機を運転している状態とし、その時の内気温度を算出、					
室内に設置している機器等への影響について評価する。					
(1) 評価条件					
<ul> <li>・火災が発生した時間から、燃料が燃え尽きるまでの間、</li> </ul>					
扉内面温度 161.9℃一定としたときの放熱量を評価対象					
室への入熱とする。					
・評価対象室から隣接室への熱影響を評価するため、評価					
対象室から壁、床、天井への放熱を考慮する。					
・隣接室については,隣接する壁,床,天井への放熱を考					
慮しないものとする。					
・隣接室の内気温度評価は、評価対象室の放熱面積と隣接					
室の室内負荷が最も大きい,評価対象室上階の非常用デ					
ィーゼル発電機(C)制御盤室を対象とすることで,他の隣					
接室内機器等への評価は包絡される。					
・非常用ディーゼル発電機は,110%出力一定で運転してい					
るものとする。					
・隣接室内の負荷(電気品等)は非常用ディーゼル発電機					
の運転時のものとする。					
・非常時を想定し、非常用送風機は運転状態とするが、常					
用換気空調系による給気の除熱には期待しないものとす					
る(常用換気空調系の電源は非常用電源にも接続されて					
おり、送風機は非常時も運転可能)。					
なお, 伝熱の概念並びに建屋内の温度評価手法は, 5.2.2.6					
号炉非常用ディーゼル発電機(C)室の内気温度評価<待機時					
>と同様である。以下に、伝熱の概念図を示す。					
柏崎刈羽原子	子力発電所 6/7号	炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------	---------------------	--------------	----
建屋外 火炎からの輻射 していたの 防 に	建屋壁 建屋内 風 換気空調系給気 放熱量 Q _{HR} ( 角 内気との熱伝達 Q _b 換気空調系によこ ( 均質体) 第 5. 2. 3-1 図 伝素 非常用ディーゼル発電材	D/G(C)制御盤室(隣接室)			
以下に評価	両結果を示す。				
第 5.2.3-	1表 建屋内の温度	評価結果(運転時)			
6 3	5 号炉非常用ディーゼル 発電機(C)室 (評価対象室)	6 号炉非常用ディーゼル 発電機(C)制御盤室 (隣接室)			
内気温度[℃]	44.6	39. 7 ^{**1}			
許容温度[℃] ※1:常用換気空調系 伴い室内負荷も ※2:室内の電気設備 ※3:室内の電気設備	45 ^{**2} 系による給気の除熱がなく, 増加していることから,初期 着(非常用ディーゼル発電機) 着(制御盤)の最高使用温度	40 ^{**3} 非常用ディーゼル発電機の運転に 別内気温度は 38.1[℃]となる。 ) の最高使用温度			
(2) 火災による	る熱影響の有無の評価				
以上の結果		~ 災よる防護扉の加熱を想定			
したとしても	も,建屋内の 6 号炉非	常用ディーゼル発電機 (C)			
室,及びその	の隣接室の内気温度が,	ともに許容温度を超えな			
いことから,	発電用原子炉施設の	建屋内への熱影響はない。			
なお、内気液	温度については, (1)評	平価条件に加え、各部の温			
度に設計値で	を用いる等,保守的な	評価を行っていることか			
ら,実際の渦	<u> 温度上昇はさらに低く</u>	抑えられると評価する。			
また,建屋	<u> 屋内の給排気ダクトは,</u>	換気・冷却に有効な位置			
に設置し、シ	/ュートパスやホット>	スポットを生じないレイア			
ウトとしてい	いることから、室内の	温度分 布が不均一となる			
ことはない。	以下に、給排気ダク	トの配置例を示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(平面)       (平面)       (新面)         第 5.2.3-2 図 給排気ダクトの配置例			
53 ルーバの水災影響証価について			
(1) 評価対象			
ルーバのうち、6 号炉主変圧器に最も近く,輻射強度が最			
も大きくなる 6 号炉非常用ディーゼル発電機(B)の排気ル			
一バを対象とする。			
(2) 相定の冬代			
・変圧器の火災については、添付資料-6「3.1 変圧器の火			
災影響評価について」と同様の想定とする。			
・火災が発生してから燃え尽きるまでの間,一定の輻射強度			
でルーバが昇温されるものとする。			
以下に、ルーバへの受熱面を示す。			
ルーバ (断面) 受熱面 火炎からの輻射 が 第 5.3-1 図 ルーバの受熱面			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(3) 必要データ			
評価に必要なデータを以下に示す。			
第 5.3-1 表 変圧器火災影響評価に必要なデータ			
離隔距離[m] 16			
然焼半径[m] 6.91			
形態係数[-] 0.2051198			
輻射強度[W/m²]     4.71×10°			
[ 燃焼継続時間 [h] 10.1			
(4)ルーバ温度と膨張量			
変圧器の火災影響評価(1)から(7)と同様の算出方法により			
輻射強度を求めた結果、ルーバが受ける輻射強度は 4.71kW/m ²			
となり、この輻射強度にて一定でルーバが昇温されるものとし			
て、下記の式より対象ルーバの温度及び膨張量を算出する。			
なお、ルーバの材質は、アルミニウム合金(IIS: A6063)で			
<u>ある</u> -			
$h_{se} = h_r + h_{cv}$			
出曲: IIS 9501 2006 保温保冷丁事施丁樰淮			
h:ルーバの執伝達率 h · ルーバ表面の輻射執伝達率			
h · 小一八表面の対流執伝達家			
$\mathbf{q} = h_{se}(1 - I_0) \downarrow V$			
$T = \frac{q}{h_{cc}} + T_0$			
··se 山中·仁劫工 学次和			
$1 : \mathcal{V}^{-}$ 、溫度、 $1_0$ :问册温度, $(1 : \mathcal{K}$ 黑(辐射)强度)			
$I - L + \alpha (I - I_0)$			
$1.1/\nu - 1.1 \infty$ 展, L: $1/\nu - 1.1 \times C(1 \times 2/2)$ の $1.1 \times C(1 \times 2/2)$ の $1.1 \times C(1 \times 2/2)$ の $1.1 \times C(1 \times 2/2)$			
$C \subseteq C, h_{se} = 15.6 [W/m^2K], h_r = 9.48 [W/m^2K], 1_0 = 50 [C], L = 150 [C], L $			
1500[mm], $\alpha = 2.8 \times 10^{\circ} [1/K] \not\in \mathcal{F} \not\supset_{\alpha}$			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
以下に評価結果を示す。			
第 5.3-2 表 ルーバの熱影響評価結果			
ルーバ温度「℃] 168			
レーバ膨張量[mm] 5.4			
(5) 火災による熱影響の有無の評価			
ルーバ温度は 168℃となり、ルーバ長辺方向の熱膨張量は			
ルーバ長さ 1500mm に対して, 5.4mm となったことから, ル			
ーバの形状が大きく変形することはない。			
また、ルーバの変形の有無にかかわらず、安全上支障のな			
い期間に点検を行い、ルーバの使用に問題があると判断され			
る場合には、交換等の措置が可能である。			
なお、ルーバ内側には熱影響を受ける機器等かなく、変圧			
孟火災時は、熱気流を考慮し、給気温度を監視しつつ、状況     は     ホーム     ホーム			
に応して換気空調系の停止指直等を講しることから、建産内			
への款記習はたい。			
5 4			
※雪田原子恒施設の胎弱笛町の一つである配管貫通部につい			
て 水災影響評価を実施する			
(1) 評価対象			
配管貫通部のうち、6 号炉主変圧器に最も近く、輻射強度			
が最も大きくなる 6 号炉原子炉建屋南側外壁の外部注水接			
(2) 想定の条件			
主変圧器の火災については,添付資料-6「3.1 変圧器の			
火災影響評価について」と同様の想定とする。			
(3) 必要データ			
評価に必要なデータを以下に示す。			

柏崎刈羽原子力発電所	6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 5.4-1 表 変圧者	器火災影響評価に必要なデータ			
密KI寫 距 函K 「m ]	36.1			
燃燒半径[m]	6.91			
形態係数[-]	0.06460353			
	$1.48 \times 10^{3}$			
燃焼継続時間[h]	10.15			
(4) 火災による熱影響の有	無の評価			
変圧器の火災影響評価	ᠳ(1)から(7)と同様の算出方法(	こよ		
り輻射強度を求めた結果	見, 配管貫通部 (屋外配管)に対し	て受		
ける輻射強度は 1.48kW	/m ² となり,人が長時間さらされ、	Cb		
苦痛を感じない輻射強し	度である 1.6kW/m ² を下回るこ。	上力。		
<u>ら, 配管貫通部 (屋内</u> 面	2管と内気含む) への熱影響はな	Line.		
5.5ブローアウトパネルの火	災影響評価について			
<u>6 号及び 7 号炉のブロ</u>	ーアウトパネル(以下「B.P」という	<u>Dal</u>		
は、それぞれ原子炉建屋北	2側に 3 箇所, 南側に 1 箇所設			
れているが, 北側 B.P に	ついては、発熱源との配置より	<u>辐射</u>		
熱が届くことはなく、南側	<u>則 B.P についても, B.P 前に設</u>			
ている,非常用ディーゼ/	ル発電機のサイレンサ(排気口)			
り、輻射熱が届くことはな	い (第 5.5-1 図)。			
なお、サイレンサは最高	高使用温度が 500 度以上であり,			
変圧器からサイレンサま~	での距離とほぼ等しい位置にある	5主		
排気筒の温度評価(132℃)	と同程度と考えられることから、			
影響はない。				
また、航空機落下による	<u>水災を想定したとしても、サイ</u>			
サによって輻射が遮られ	る。仮に, 輻射を受けたとし	<u>C</u> b		
0.5kW/m ² 程度であり,輻射	強度は人が長時間さらされても	<u>苦痛</u>		
を感じないとされる 1.6k	W/m ² を下回っており, サイレン [、]			
の熱影響はない。				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
火炎         B. P           変圧器         サイレンサ           原子炉建屋			
第 5.5-1 図 <u>6 号炉 B.P と主変圧器火炎との位置関係</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 6-1			
6 号及び 7 号炉原子炉冷却材再循環ポンプ可変周波数電源装置			・条件の相違
入力変圧器の耐震性評価結果			【柏崎 6/7】
			島根2号炉は,建物屋
1. 評価範囲			上に変圧器等の評価
<u>6</u> 号及び7号炉原子炉冷却材再循環ポンプ可変周波数電源			対象を設置していな
装置入力変圧器は油入変圧器であり、本体部のタンクと放熱器			
内に絶縁油が内包されており、地震によりタンク若しくは放熱			
器か損傷した場合, 純縁油か漏えいする可能性か高い。 ないたましくはたち 思い思想をするため ストレマは以下の 8			
タンク右しくは放熱器が損傷するクースとしては以下の2			
<u>クースかろえられる。</u>			
(ケーフー1) タンクギレイけ故執哭白体が地震により損復す			
(ケース 2)変圧器本体と基礎を固定している基礎ボルト等の			
基礎固定部が地震により破断し、変圧器が滑動、			
転倒することでタンク若しくは放熱器が損傷す			
<u>る。</u>			
ケース 1 については,過去の油入変圧器の地震や輸送の損傷			
実績の中で,タンクや放熱器自体の損傷実績はないものの,タ			
<u>ンクと放熱器をつなぐ配管(以下「放熱器母管」という)根元</u>			
部について輸送時にクラックが入った実績があることから、本			
体部の最弱部位として放熱器母管根元部を選定し、基準地震動			
Ss を入力とした耐震性評価を実施する。(評価部位は第 1 図の			
<u>①の部位)</u>			
<u>$\gamma - \Delta 2$ については、「変电所寺にわける电気設備の耐良設</u> また針 (TEACE002_ 2010)」(以下「TEACE002」 しいる) にない			
<u>司 旧町 (JEAGDUUS-2010)] (以下 JEAGDUU3] という。) におい</u> て「亦正哭太休を其疎に田会子と甘漱ギルしが破座し大任が過			
、, 及工品平洋で 医逆に回足り る 医硫小 バレト が (収) し 平洋 が 信 動したいとう 其 感 ボルトの 論 度 を 十公に 確 促し 得 ス 旋 て との			
おしないよう、金融がアージュスセーカに確保し付る肥上上の 注音が必要である」と示されており、地震力の大きさにトって			
は基礎ボルト等の基礎固定部が破断する可能性があることか			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
価を実施する。(評価部位は第 1 図の②の部位)			
放熱器母管 、			
放熟器       ①本体部評価部位         タンク       ①本体部評価部位         基礎ボルト等       ②基礎固定部評価部位         (本体の最弱部位)       ②基礎固定部評価部位         (基礎ボルト等)       ③基礎固定部評価部位         (コンクリート部の評価)       ③基礎回定部評価部位			
<u>第1図変</u> 圧器評価の概念図			
<ul> <li>2. 評価内容         <ul> <li>(1)変圧器本体部の耐震性評価方法(ケース 1)</li> <li>6 号及び 7 号炉原子炉冷却材再循環ポンプ可変周波数電 源装置入力変圧器の放熱器母管の根元部については、基準地 震動 Ss を入力として、放熱器母管の根元に発生する曲げ応 力が許容応力以下であることを確認する。</li> </ul> </li> </ul>			
(2)変圧器基礎固定部の耐震性評価方法(ケース 2)			
6 号及び7 号炉原子炉冷却材再循環ホンフ可変周波数電			
源装置入力変圧器の基礎固定部について, 基準地震動 Ssを 入力とした以下の耐震性評価を実施する。			
a. 基礎固定部が損傷しないことの確認 ^{(※1) (※2)} 基礎固定部			
に発生する引張応力とせん断応力が許容応力以下である			
ことを確認する。			
b. 基礎固定部が基礎から引き抜けないことの確認 ^(※1) 基礎			
固定部に発生する引張とせん断の組み合わせ荷重が以下			
<u>に示すコンクリート部の引張荷重及びせん断荷重の組合</u>			
<u>せに対する許容値以下となることを確認する。</u>			
$\left(\frac{p}{pa}\right)^2 + \left(\frac{q}{qa}\right)^2 \leq 1  \cdots  \cdots  \cdots  \cdots  (1)$			
<u>p : 基礎ボルト1本当たりの引張荷重</u>			
pa:基礎ボルト1本当たりのコンクリート部の許容引張			
荷重			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)					2.20版	)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	q :基礎ボルト1	本当たりの	せん断荷	重					
	qa:基礎ボルト1	本当たりの	コンクリ・	ート部の	り許容も	せん断			
	荷重								
	※1:「原子力発電	前耐震設計	技術規程	L (JEAC4	4601-2	L(800			
	に準拠								
	※2:「変電所等	<b>痒における</b>	電気設備	備の耐倉	震設計	指針			
	(JEAG5003	8-2010)」に	準拠						
<u>3.</u> 評価	<u> 新結果</u>								
(1)	変圧器本体部の耐	「震性評価結	果(ケー	・ス 1)					
	6 号及び 7 号炉	原子炉冷却	才再循環>	ポンプ可	可変周波	皮数電			
源	装置入力変圧器本	本体部の耐震	性評価の	)結果は	第1ま	表のと			
お	りであり, 全ての	変圧器につ	いて発生	応力が割	午容応ス	力以下			
で	あることを確認し	た。							
第1ま	長 6 号及び7 号	异炉原子炉冷	·却材再循	「環ポンプ	プ可変	周波数			
	電源装置入力	変圧器本体音	部の耐震性	生評価結	課				
号炉	設備名	評価部位	評価項目	発生応力 (MPa)	許容応力 (MPa)	裕度 (※)			
	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-1),(B-1)	放熱器母管根元部	曲げ	134	279	2. 08			
6 号炉 -	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-2),(B-2)	放熱器母管根元部	曲げ	148	279	1.88			
	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-1),(B-1)	放熱器母管根元部	曲げ	119	279	2. 34			
7 号炉 -	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-2),(B-2)	放熱器母管根元部	曲げ	40	279	6. 97			
※:裕度	<b>は評価部位の発生応力とその</b>	の部位の許容応力のは	上率であり, 1	以上を裕度あ	ありとする	•			
(2)	変圧器基礎固定剖	3の耐震性評	価結果(	(ケース	2)				
9	6 号及び 7 号炉	原子炉冷却	材再循環	ポンプī	可変周	波数電			
源	装置入力変圧器基	一礎固定部の	耐震性評	価の結果	果は第	2表,			
第3表のとおりであり,全ての変圧器について発生応力が				につい	て発生	応力が			
許容応力以下であることを確認した。									

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				2017.12	2.20版	)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2	第2表 6号及び7号炉原子炉冷却材再循環ポンプ可変周波				⁄ プ可変	周波			
	数電源装置入力変	圧器基礎固	定部の耐窮	喪性評任	価結果				
号炉	設備名	評価部位	評価項目	発生応力 (MPa)	許容応力 (MPa)	裕度 (※)			
	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器	基礎固定部	引張	127	202	1.59			
6 号炉	(A-1), (B-1)	(基礎ボルト)	せん断	57	160	2.80			
	原于炉帘却材再循葉ホンワ可 変周波数電源装置入力変圧器 (A-2),(B-2)	基礎固定部 (基礎ボルト)	り張 	64	191	2, 50			
	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-1), (B-1)	基礎固定部 (溶接)	引張とせん断 の組合せ	154	160	1.03			
7 号炉	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-2),(B-2)	基礎固定部 (溶接)	引張とせん断 の組合せ	83	160	1.92			
※:裕	度は評価部位の発生応力とその	 部位の許容応力の	比率であり, 1	」 以上を裕度;	ありとする。				
第 3	表 6 号及び7 号	导原子炉冷去	和材再循環	ポンプ	,可変周	波数			
電話	原装置入力変圧器基	長礎コンクリ	リート部の	耐震性	:評価結	果			
	が(曲々	题体物历	现在市日	発生応力	許容応力	裕度			
51/2	設備名 原子炉冷却材再循環ポンプ可	評価部位 基礎コンクリート	評価項目	(**2)	(*2)	(※1)			
6 号炉	変周波数電源装置入力変圧器 (A-1),(B-1)	部	の組合せ	0.116	1	8. 62			
	原子炉帯却材再循環ボンブ可 変周波数電源装置入力変圧器 (A-2),(B-2)	基礎コンクリート 部	引張とせん断 の組合せ	0. 242	1	4. 13			
7 号炉	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-1), (B-1)	基礎コンクリート 部	引張とせん断 の組合せ	0. 263	1	3. 80			
	原子炉冷却材再循環ボンプ可 変周波数電源装置入力変圧器 (A-2), (B-2)	基礎コンクリート 部	引張とせん断 の組合せ	0. 133	1	7.51			
※1:裕 ※2 (	度は評価部位の発生応力とその 1) 式の左辺を発生値 右辺を	D部位の許容応力の 許容値とする	)比率であり, 1	以上を裕度	度ありとする	0			
<u> </u>	I) NOTE CELHE, ARE	山石順こ ) 少。							
4. 結	論								
<u>6</u> <del>5</del>	 け及び 7 号炉原子炉	戶冷却材再行	盾環ポンプ	プ可変履	周波数電	<u> </u>			
置入力	]変圧器においては	,各評価部	位について	て発生に	芯力が評	存容応			
力以下	「であることが確認	されたこと	から,基準	準地震重	動 Ss て	での地			
震時に	こおいても変圧器は	損傷するこ	と無く,変	変圧器P	内の絶縁	家油は			
漏えい	いしないことが確認	された。							
		<u> </u>				以上			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 6.1		
	軽油貯蔵タンク及び重油タンクの地下化について		
	<u>軽油貯蔵タンク及び重油タンクは、「危険物の規則に関する政</u>		
	令」第十三条第1項, 第二十条第3項及び「危険物の規制に関す		
	る規則」第三十五条第1項第1号に適合する地下タンク貯蔵所の		
	ため、地表面で火災が発生する可能性は低い。		
	また、タンク地上部のマンホールも含め、地上で発生する火炎		
	からの輻射熱の影響を受けない構造とする。		
	以上から、軽油貯蔵タンク及び重油タンクは、外部火災の火災		
	源の対象から除外する。		
	「危険物の規則に関する政令」及び「危険物の規制に関する規		
	則」の抜粋を以下に示す。		
	「危険物の規則に関する政令」【一部抜粋】		
	(地下タンク貯蔵所の基準)		
	第十三条 地下タンク虹酸所 (次項及び第三項に定めるものを除く。) の世直, 構造及び 設備の技術上の基準は, 次のとおりとする。		
	一 危険物を貯蔵し、又は取り扱う地下タンク(以下この条,第十七条及び第二十六条に おいて「地下貯蔵タンク」という。)は、地盤面下に設けられたタンク室に設置するこ		
	と。		
	— щ <u>х</u> —		
	第二十条 消火設備の技術上の基準は、次のとおりとする。 三 前二号の総務省令で定める製造所等以外の製造所等にあっては、総務省令で定めると		
	ころにより、別表第五に掲げる対象物について同表においてその消火に適応するものと される消火設備のうち、第五種の消火設備を設置すること。		
	— 略—		
	「危険物の規制に関する規則」【一部抜粋】		
	(その他の製造所等の消火設備) 第三十五条 会第二十条第一項第三号の用定により 第三十三条第一項及び前条第一項に		
	おニーエネ 「おニーネネ 気気」うの死足により、おニーースネ 気気の前未知 気に 掲げるもの以外の製造所等の消火設備の設置の設準は、次のとおりとする。		
	一 地下タンク貯蔵所にあっては、第五種の消火設備を二個以上設けること。		
	└ 一略一		
	また,軽油貯蔵タンク及び重油タンクの地下化イメージを第1		
	図及び第2図にします。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	マG.L ±0            ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 6.2		
	薬品タンクの影響評価について		・設備の相違
			【東海第二】
	<u>薬品タンクの影響評価については、森林火災発生時の消火活動</u>		島根2号炉では,屋外
	の成立性という観点で評価を実施している。		に可燃性の薬品を取
	森林火災発生時には、防火帯に沿った消火活動を実施すること		り扱う設備の設置は
	としている。一方で,敷地内の屋外薬品タンクにおいて,防火帯		ない
	付近には設置されていないため、森林火災の影響を受けて消火活		
	動に影響を及ぼすことはない。また、森林火災の影響を受けて薬		
	品がタンク外に漏れ出したとしても、タンク周辺には堰を設置し		
	ているため、薬品は堰内に収まり、消火活動中に劇薬の影響を受		
	けることもない。なお、一部の薬品タンクは移設予定であるが、		
	移設先は防火帯付近ではないことを確認している。		
	<u> 毒性ガスを発生する可能性のある屋外薬品タンクの位置を以下</u>		
	の図に示す。毒性ガスを発生する可能性のある屋外薬品タンクは		
	防火帯から離れているため、薬品が漏えいし、毒性ガスを拡散す		
	る可能性は低いと考えられる。仮に薬品が漏洩したとしても、薬		
	品を特定した後は防護具を着用し,安全を確保した上で通行及び		
	作業を行うこととしている。評価結果を下表に示す。		
	以上より,森林火災発生時の消火活動に支障を及ぼすことはな		
	図 屋外薬品タンクの位置		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)				島根原子力発電所 2号炉	備考
	表屋外	楽品タンクの火災時	の影響			
		専用の新潟	容量	火災時の		
	No. 産外楽品タンク	楽品の種類	(m ³ )	危険有害性		
	<ol> <li>         ① 硫酸貯蔵タンク      </li> <li>         ① 株地 い ドロササ トレード      </li> </ol>	硫酸	50.0	× 1		
	②         苛性ソータ貯蔵タンク           ③         -	前性ソータ	50.0	× 1 × 1		
	③ 産外硫酸タンク           ④ 応輸院補	「「「」」	2.0	× 1 × 1		
	<ul> <li>④ (航政)1倍</li> <li>⑤ (苛性ソーダ 貯塘)</li> </ul>		10.0	× 1 × 1		
	⑥         荷融         荷融         荷融         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         荷         前         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td></td> <td>1.2</td> <td>× 1 × 1</td> <td></td> <td></td>		1.2	× 1 × 1		
	⑦ 希硫酸槽	硫酸	0.4	× 1		
	⑧ PAC 貯槽	ポリ塩化アルミニウム	6.0	* 2		
	④ 基品混合槽	ポリ塩化アルミニウム	8.4	* 2		
		希釈硫酸		× 2		
		チンセニチ	1.0	* 3		
	①         (位置沢戸可性ノーダダンク)           ①         (価融電一紙注入タンク)	可たノーク	3.0	× 1		
	1         刺激性,腐食性又は毒性のガ	スを発生するおそれがある。	1.0	* 3		
	<ul> <li>※2 塩化水素ガスを発生するおそ</li> <li>※3 刺激性又は毒性のガスを発生</li> </ul>	れがある。 オスセンわがある				
	A 0 料版住入は毎日のメハモ光上	9 - D 40 C 4 0 07 - D - D - D - D - D - D - D - D - D -				

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		別紙 6.3		
		構内危険物タンク等における延焼の危険性について		
		1. 溶融炉灯油タンクの火災		
		溶融炉灯油タンク近傍で危険物を保管している設備はなく、		
		現場作業に伴い「屋外の危険物保管」や「火気の使用」をする		
		場合は, 社内規程に基づき危険物や火気を管理した状態で取り		
		扱っている。また,防火の観点から定期的なパトロール等にて		
		現場の状況を確認している。		
		以上により, 溶融炉灯油タンクの火災を想定したとしても周		
		囲の可燃物への延焼の可能性は低い。		
		2. 車両(可搬型重大事故等対処設備及び自主設備)の火災		
		2.1 車両(可搬型重大事故等対処設備及び自主設備)の延焼		
		可搬型重大事故等対処設備及び自主設備保管場所(以下「保		
		管場所」という。)において、可搬型重大事故等対処設備及び自		
		主設備(以下「車両」という。)の火災が起こったとしても周囲		
		の車両に影響を及ぼさないことを評価する。		
		なお,保管場所の一部は防火帯に近接しているが,当該箇所		
		における森林火災時の輻射強度が 1.6kw/m ² *以下となるよう		
		に離隔距離を確保するため、車両が延焼するようなことはない。		
		※ 人が長時間さらされても苦痛を感じない輻射強度		
		<u>(1)</u> 車両火災の想定条件		
		<u>a.</u> 周囲への熱影響を考慮し、コンテナにより燃料タンクが露		
		出している車両と隔離する大型ポンプを除いて、燃料積載		
		量が最大となる予備電動機用クレーンの走行用燃料タンク		
		(以下「クレーン燃料タンク」という。)の火災を想定した。		
		b. タンク内の燃料の温度上昇を評価するため、燃料が少ない		
		ほど温度上昇がし易く評価は保守的となることから、受熱		
		側として,燃料タンクが露出している車両のうち,燃料積		
		載量が最小となるユニック車を選定し, ユニック車底部に		
		設置されている直方体構造の燃料タンク(100L)(以下「ユ		
		ニック車燃料タンク」という。)が輻射熱を受ける状態を想		
		定した。燃料タンクは直方体構造であり、一方の面が受熱		

柏崎刈羽原子力発電所 6/7号炉 (2017.)	12.20版) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	した場合その反対面は影になるため、燃料タンクの受熱面		
	は表面積の半分とし、全ての受熱面が火災源に最も近い表		
	面と同等の輻射熱を受けるものとした。		
	c. 発熱側となるクレーン燃料タンクは全燃料分(500L)を想		
	定したon		
	<u>d. 積載している燃料は軽油とした。</u>		
	e. タンク内での全面火災を想定した。		
	<u>f. 気象条件は無風状態とした。</u>		
	g. 火災は円筒火炎モデルとし、火炎の高さは燃焼半径の3倍		
	Liten		
	(2) 評価対象範囲		
	評価対象範囲は、保管場所で出火する車両とする。		
	(3) 必要データ		
	危険距離評価に必要となるデータを第1表に示す。		
	第1表想定火災源及び燃料に係るデータ		
	想定火災源 燃料の 燃料量 輻射発散度 質量低下速度 燃料密度 燃焼面積 V R f M の S		
	$\frac{4}{4} \frac{4}{3} (m^3) (kW/m^2)^{\frac{1}{2}} (kg/m^2/s)^{\frac{1}{2}} (kg/m^3)^{\frac{1}{2}} (m^2)$		
	クレーン燃料     軽油     0.5     42     0.044     870     1.1		
	<ul> <li>※1 評価ガイド 記載値</li> <li>※2 NUREG-1805記載値</li> </ul>		
	※3 MSDS(製品安全データシート)記載値		
	円同火炎モデルとして評価を美施するため、クレーン燃料タ		
	シリの投影面積を円同の底面と仮定して以下のとおり昇出し		
	た。一見山杭朱を見之太に示す。		
	s		
	$R = \sqrt{\frac{\pi}{\pi}}$		
	<u>R:燃焼千拴(m/, S:燃焼ഥ損(三燃焼ഥ損)(m-)</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第2表 想定火災源の燃焼半径		
	燃焼面積         燃焼半径           想定火災源         S         R		
	(m ² ) (m)		
	クレーン燃料タンク     1.1     0.6		
	(5) 燃焼継続時間の算出		
	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割っ	た値	
	になる。算出結果を第3表に示す。		
	V		
	$t = \frac{1}{\pi B^2 \times v}$		
	$t$ : 燃焼桃杭时间(S), V: 燃料工( $m^{\circ}$ ) R: 燃焼半径( $m$ ) V: 燃焼凍産=M/a( $m$ /s)		
	M: 質量低下速度(kg/m ² /s). $\rho$ :燃料密度(kg/m ³ )		
	第3表 想定火災源の燃焼継続時間		
	想定火災源         燃料量         燃焼半径         質量低下速度         燃料密度         燃焼継続 $V$ R         M $\rho$ t $(m^3)$ $(m)$ $(kg/m^2/s)$ $(kg/m^3)$ $(s)$	時間	
	クレーン燃料タンク 0.5 0.6 0.044 870 8,754		
	<ul><li>(6) 危険距離の算出</li></ul>		
	<u>a.許容温度</u>		
	軽油の自然発火温度 240℃を許容温度とする。		
	<u>b評価結果</u>		
	火災が発生した時間から燃料が燃え尽きるまでの間,	<u>一定</u>	
	の輻射強度で昇温されるものとして、下記の温度評価式		
	リユニック単燃料タンク (100L) か内包する軽油の温度 940℃トなる転射強度 (一合除転射強度) なまみ クロ		
	料タンクからの熱影響がこの合除輻射強度とたろ離隔距	ینگینی a) (=	
	<u>危険距離)を算出した。</u>		
	Ε + Λ		
	$T - T_0 = \frac{E + A}{\rho - C - V + \rho - C - V}$		
	w pw w s ps s		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)			島根原子力発電所 2号炉	備考
<u>T:許容温度(240℃), T₀:初期温度(50℃)^{*1}</u> ,							
	$E: 輻射強度(W/m^2),$						
			t:燃焼継続時間	(8,754s), A:受熱面	ī積(0.8m ² )		
			<u>.ℓ.</u> .:受熱側燃料容	5 <u>度(870kg/m³)</u> ,			
			<u>C</u> :受熱側液体	比熱(1.700J/kg/K)	~		
			<u>V</u> .:受熱側液体体	<u>S積(0.1m³),</u>			
			<u> 0.s</u> :燃料タンク容	5 <u>度(7,860kg/m³)</u>			
			<u>C_{Ps}:燃料タンク</u>	比熱(473J/kg/K),	~		
			<u>V</u> : 燃料タンクタ	<u>运積(0.003m³)</u>			
			<u>※1 水戸地方</u>	気象台で観測された過	過去最高気温 38.4℃		
			保守性を	寺たせた値			
			軽油の温度が24	0℃となる危険距離を	算出した結果、危険		
			<u> 距離は2.4mである</u>	ことを確認した。算出	結果を第4表に示す		
			http://		н		
				<u>表 火火影響評価結</u>	悉		
			想定火災源	受熱対象	危険距離 (m)		
	クレーン燃料タンク ユニック車燃料タンク 2.4						
			   (7) 保管場所に保管	よろ東面の配置設計			
			クレーン燃料タ	ンクの火災を想定して	「も、車両同士の最低	Æ	
			離隔距離 2.5m が危	〕 険距離 2.4m を上回る	らことから、周囲の国	一 王	
			両に影響を及ぼす	ことはない。		~~	
			2.2 常設代替高圧電源	「装置の火災			
			常設代替高圧電源	<u>装置の駆動燃料は,</u>	レーラー上のコンラ	<u></u>	
			ナ内にあるため、隣	妾する 車両に影響を 及	をぼすことはない。		
			置を第1図に示す。	また, 第2図のとおり	)津波防護壁で四方を		
			取り囲んだ構造とな	っており,周囲の可燃	<u> 然物への延焼の可能性</u>	生	
	<u>ttrie</u>						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	常設代替高圧電源装置         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「         「		
	常設代替高圧電源装置       津波防護壁         第2図       津波防護壁と常設代替高圧電源装置の位置関係		