島根原子力系	発電所2号炉 審査資料
資料番号	EP-015(補)改53(比)
提出年月日	令和2年4月3日

島根原子力発電所2号炉

重大事故等対策の有効性評価 成立性確認

補足説明資料

比較表

令和2年4月 中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

まとめ資料比較表 「有効性評価 補足説明資料〕

			/世 士
相畸刈羽原于刀発電所 6 / 7 号炉 (2017.12.20 版)	果海弗→発電所(2018.9.12 版)	局限原于刀轮電所 2 号炉	偏考
目次	目 次	目次	
1. 原子炉の減圧操作について		1. 発電用原子炉の減圧操作について	
2. 重要事故シーケンスの起因とする過渡事象の選定について		2. 重要事故シーケンスの起因とする過渡事象の選定について	
3. G 値について		3. G値について	
4. 格納容器内における気体のミキシングについて		4. 原子炉格納容器内における気体のミキシングについて	
5. 深層防護の考え方について		5. 深層防護の考え方について	
6. 原子炉圧力挙動の解析上の取扱いについて		6. 原子炉圧力挙動の解析上の取扱いについて	
7. 原子炉隔離時冷却系(RCIC)の運転継続及び原子炉減圧の判断		7. 原子炉隔離時冷却系(RCIC)の運転継続及び原子炉減圧	
について		の判断について	
8. 6/7 号炉 冷却材再循環ポンプからのリークの有無について		8. 原子炉再循環ポンプからのリークについて	
9. 崩壊熱除去機能喪失(取水機能が喪失した場合)における平均		9. 高圧・低圧注水機能喪失における平均出力燃料集合体での燃	
出力燃料集合体での燃料被覆管最高温度の代表性について		料被覆管最高温度の代表性について	
10. 非常用ディーゼル発電機が起動成功した場合の影響について		10. 取水機能喪失時の非常用ディーゼル発電設備が起動した場合	
(崩壊熱除去機能喪失(取水機能が喪失した場合))		の影響について	
11. 原子炉注水手段がない場合の原子炉減圧の考え方について		11. 原子炉注水手段がない場合の原子炉減圧の考え方について	
12. エントレインメントの影響について		12. エントレインメントの影響について	
13. 復水補給水系(MUWC)の機能分散について			 ・資料構成の相違
			【柏崎 6/7】
			島根2号炉は、低圧原
			子炉代替注水ポンプに
			よろ原子炉注水と格納
			容器スプレイを同時に
			使用する運用としてい
			ないことから 同様の補
			日 当 明 次 判 け 作 成 し て
			足配的員件は旧成して
14 井プレーン・ハーエーハックファニバンガにトファマロゾリ		10 単プローン・シーズ シンジのフカニバンガロトファマロゾル	V , , , , V , , °
14. サノレッション・デェンハのスクラビングによるエアロソル		13. サノレッション・チェンハのスクラビンクによるエアロソル	
捕集刘朱		捕渠刻未	
15. 冉循境流量制御糸の連転モードによる評価結果への影響			
			島根2号炉での評価
			結果は,事象発生約2.5
			秒で原子炉圧力高信号
			が発生し,再循環ポンプ
			がトリップする。運転モ
			ードが評価結果に及ぼ
			す影響はないため,同様
			<u> </u>

<u>実線</u>・・<u>設</u>備運用又は体制等の相違(設計方針の相違)

波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			の補足説明資料は作成
			していない。
16. ほう酸水注入系(SLC)起動後の炉心状態(冷却材保有量等)に	4. ほう酸水注入系起動後の炉心状態(冷却材保有量等)について	14. ほう素の容量について	【柏崎 6/7,東海第二】
<u>ついて</u>			島根2号炉と先行2
			社では記載のロジック
			が違うものの, 記載内容
			としては, ほう酸濃度設
			計値が残留熱除去系の
			希釈分を考慮しても未
			臨界に必要なほう酸水
			を確保できる点を説明
			しており同等である。
17. 給水ポンプのトリップ条件を復水器ホットウェル枯渇とした	14. 給水ポンプトリップ条件を復水器ホットウェル枯渇とした場	15. 給水ポンプトリップ条件を復水器ホットウェル枯渇とした場	
場合の評価結果への影響	合の評価結果への影響	合の評価結果への影響について	
18. 給水流量をランアウト流量(68%)で評価することの妥当性		16. 給水流量をランアウト流量(68%)で評価することの妥当性	
19. 実効 G 値に係る電力共同研究の追加実験について		<u>17</u> . 実効G値に係る電力共同研究の追加実験について	
20. 想定事故2 においてサイフォン現象を想定している理由につ		18. 想定事故2においてサイフォン現象を想定している理由につ	
いて		いて	
<u>21. 使用済燃料プール(SFP)</u> ゲートについて		<u>19. 燃料プール</u> ゲートについて	
22. サイフォン現象による SFP 水の漏えい停止操作について			【柏崎 6/7】
			島根2号炉は,想定事
			故2の評価において,静
			的サイフォンブレーカ
			の効果に期待し,漏えい
			箇所の隔離操作による
			漏えい停止に期待して
			いないため,同様の補足
			説明資料は作成してい
			ない。
23. 格納容器過圧・過温破損シナリオにおける原子炉冷却材再循			【柏崎 6/7】
環ポンプからのリークの有無について			島根2号炉は,原子炉
			再循環ポンプからの漏
			えいを想定しているが、
			格納容器構造の相違に
			より,D/W 雰囲気温度が
			漏えい評価に影響しな
			いことから,同様の補足
			説明資料は作成してい

	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
				ない。
<u>24</u> .	炉心損傷及び原子炉圧力容器破損後の注水及び除熱の考え方		20. 炉心損傷, 原子炉圧力容器破損後の注水及び除熱の考え方	
<u>25</u> .	常設重大事故等対処設備を可搬型設備に置き換えた場合の成	17. 常設重大事故等対処設備を可搬型設備に置き換えた場合の成	21. 常設重大事故等対処設備を可搬型設備に置き換えた場合の成	
	立性	立性	立性	
26.	高圧・低圧注水機能喪失及び LOCA 時注水機能喪失シナリオ			【柏崎 6/7】
	における原子炉圧力の最大値の差異について			柏崎 6/7 の解析結果
				に係る内容であり,島根
				2号炉は,当該シナリオ
				で原子炉の圧力差はな
				いため, 同様の補足説明
				資料は作成していない。
<u>27</u> .	有効性評価「水素燃焼」における、ドライウェル及びサプレ		22. 有効性評価「水素燃焼」における、ドライウェル及びサプレ	
	ッション・チェンバの気体組成の推移についての補足説明		ッション・チェンバの気体組成の推移についての補足説明	
<u>28</u> .	最長許容炉心露出時間及び水位不明判断曲線		23. 最長許容炉心露出時間及び原子炉水位不明時の対応について	
<u>29</u> .	原子炉水位及びインターロックの概要	1. 原子炉水位及びインターロックの概要	24. 原子炉水位及びインターロックの概要	
<u>30</u> .	格納容器下部(ペデスタル)外側鋼板の支持能力について		25. ペデスタル外側鋼板の支持能力について	
<u>31</u> .	格納容器下部ドライウェル(ペデスタル)に落下する溶融デブ		<u>26. ペデスタル</u> に落下する溶融デブリ評価条件と落下後の堆積に	
	リ評価条件と落下後の堆積に関する考慮		関する考慮	
32.	初期炉心流量90%としたケースにおける給水ポンプトリップ			【柏崎 6/7】
	後の流量低下について(原子炉停止機能喪失)			柏崎 6/7 の解析結果
				に係る内容であるため、
				同様の補足説明資料は
				作成していない。
<u>33</u> .	原子炉格納容器への窒素注入について			【柏崎 6/7】
				島根2号炉は、SA設
				備である可搬式窒素供
				総設備により,7日以内
				に窒素圧人を実施する
				連用としていることか
				ら, 同様の補足説明資料
				は作成していない。
<u>34</u> .	田崎刈羽原子刀発電所6 号及び7 号炉 格納容器下部水位調 曹売供の其上記またない。			
	登設师の基本設計力針について			局根2 号炉は,該当の
				設備を設置する万針で
				はないことから、同様の
				佣足説明資料は作成し インタン、
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
5. <u>大 LOCA シナリオ</u> 想定と異なる事象について		<u>27. 大破断LOCAシナリオ</u> 想定と異なる事象について	
6. ADS 自動起動阻止操作の失敗による評価結果への影響(参考)	15. ADS自動起動阻止操作の失敗による評価結果への影響	28. ADS自動起動阻止操作の失敗による評価結果への影響 (参	
評価)		考評価)	
7. ドライウェルサンプへの溶融炉心流入防止対策に期待した場		29. ドライウェルサンプへの溶融炉心流入防止対策に期待した場	
合の溶融炉心・コンクリート相互作用の影響について		合の溶融炉心・コンクリート相互作用の影響について	
3. TBP 対策の概要について			【柏崎 6/7】
			島根2号炉は,補足説
			明資料「48. TBP対策
			の概要について」に記載
			している。
2. 原子炉圧力容器表面温度の設置箇所		30. 原子炉圧力容器表面温度の設置箇所	
<ol> <li>重要事故シーケンス組合せにおける要員数評価</li> </ol>			【柏崎 6/7】
			柏崎 6/7 の同時被災
			における異なる事故シ
			ーケンスが発生した場
			合を想定した説明資料
			であり,島根2号炉は単
			独申請のため,同様の補
			足説明資料は作成して
			いない。
1. 原子炉格納容器の漏えい孔におけるエアロゾル粒子の捕集係			【柏崎 6/7】
数について			島根2号炉は「59 条
			補足説明資料 59-11
			原子炉制御室の居住性
			に係る被ばく評価につ
			いて」に記載している。
2. 逃がし安全弁 <u>(SRV)</u> の耐環境性能の確認実績		31. 逃がし安全弁の耐環境性能の確認実績について	
3. 原子炉減圧に関する各種対策及び逃がし安全弁(SRV)の耐環		32. 原子炉減圧に関する各種対策及び逃がし安全弁(SRV)の耐	
境性能向上に向けた今後の取り組みについて		環境性能向上に向けた今後の取り組みについて	
<ol> <li>非常用ガス処理系の使用を考慮した評価について</li> </ol>		33. 非常用ガス処理系の使用を考慮した評価について	
5. 原子炉圧力容器の破損位置について		34. 原子炉圧力容器の破損位置について	
5. 逃がし安全弁 (SRV) 出口温度計による炉心損傷の検知性につ	3逃がし安全弁出口温度による炉心損傷の検知性について	35. 逃がし安全弁(SRV)出口温度計による炉心損傷の検知性	
いて		について	
7. 崩壊熱除去機能喪失(取水機能が喪失した場合)における平			【柏崎 6/7】
均出力燃料集合体の水位について			柏崎 6/7 の解析結果
			に係る内容であり,島根
			2号炉は,高圧・低圧注

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			水機能喪失シナリオに
			おいて, 平均出力燃料集
			合体にて燃料被覆管の
			最高温度が発生してい
			るが,有効性評価の本文
			資料中に平均出力燃料
			集合体の水位を示して
			いるため,同様の補足説
			明資料は作成していな
			い。
48. 炉心損傷前に発生する可能性がある水素の影響について		36. 炉心損傷前に発生する可能性がある水素の影響について	
49. 溶融炉心落下位置が原子炉格納容器下部の中心軸から外れ、	22. 溶融炉心が原子炉圧力容器下部の偏心位置より落下した場合	37. 溶融炉心落下位置がペデスタルの中心軸から外れ,壁側に偏	
壁側に偏って落下した場合の影響評価	の影響評価	って落下した場合の影響評価	
50. 水蒸気爆発に伴う圧力上昇が真空破壊弁に及ぼす影響につい			【柏崎 6/7】
<u>T</u>			島根2号炉は Mark-
			I 改良型格納容器プラ
			ントであり,真空破壊弁
			は格納容器下部に設置
			されていないため, 水蒸
			気爆発による影響は小
			さいと考えられること
			から,同様の補足説明資
			料は作成していない。
51. 格納容器ベント時に使用するベントラインによる Cs-137 の	23. 格納容器ベント時に使用するベントラインによるC s -137	<u>38</u> . 使用する格納容器フィルタベント系の除去効果(DF)につ	
放出量の差の要因等について	の放出量の差の要因等について	いて	
52. ジルコニウム(Zr)-水反応時の炉心損傷状態について	24. ジルコニウム(Zr)-水反応時の炉心損傷状態について	39. ジルコニウム(Zr)-水反応時の炉心損傷状態について	
		40. 燃料プール水の沸騰状態継続時の鉄筋コンクリートへの熱影	【柏崎 6/7,東海第二】
		<u>響について</u>	島根2号炉は,燃料プ
			ールの沸騰継続時の鉄
			筋コンクリートへの影
			響を確認するため作成
			している (内容は東海第
			二 添付資料 4.1.13 と
			同様)。
	2. 炉心燃料格子について		【東海第二】
			各炉心燃料格子の特
			徴と適用プラント例等
			に関する一般的な内容

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			をまとめた資料である
			ため,同様の補足説明資
			料は作成していない。
	5. 原子炉停止機能喪失時の運転点について		【東海第二】
			原子炉停止機能喪失
			時のP-Fマップ上の
			推移を参考として示し
			た資料であるため, 同様
			の補足説明資料は作成
			していない。
	6. 非常用炉心冷却系等における系統圧力上昇時の対応操作につい		【東海第二】
	<u> </u>		有効性評価で想定し
			ている配管破断を伴う
			ISLOCA への対応につい
			ての説明資料であり,島
			根2号炉は,対応手順の
			概要 (第2.7.1-2図) に
			示しており,同様の補足
			説明資料は作成してい
			ない。
	7. 有効性評価における解析条件の変更等について	41. 有効性評価解析条件の見直し等について	
	8. SAFER における高圧炉心スプレイ系等の自動起動信号の模擬		【東海第二】
	<u>について</u>		SAFER における原子
			炉水位計装のモデル化
			に関して説明した資料
			であり,解析コードに関
			する知見をまとめた資
			料であるため,同様の補
			足説明資料は作成して
			いない。
	9. 緊急用海水系を用いた残留熱除去系による格納容器除熱		【東海第二】
			東海第二固有の設備
			である緊急用海水系を
			用いた場合の格納容器
			除熱効果を説明した資
			料であるため,同様の補
			足説明資料は作成して

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			いない。
	10. 米国等の知見に照らした原子炉停止機能喪失事象の解析条件		【東海第二】
	の妥当性		島根2号炉の評価条
			件は先行炉と同等であ
			り,米国等の評価条件と
			も大きな相違はないこ
			とから, 同様の補足説明
			資料は作成していない。
	11. 原子炉停止機能喪失時における給水流量低下操作の考え方と		【東海第二】
	給水ランバックの自動化を今後の課題とする理由		島根2号炉は,給水流
			量低下操作または給水
			ランバックを期待しな
			くても, 評価項目パラメ
			ータは判断項目を十分
			下回ることを確認して
			おり、給水流量低下操
			作, 給水ランバックの取
			り扱いが判断基準に影
			響を与えないことから,
			同様の補足説明資料は
			作成していない。
	12. 全制御棒挿入失敗の想定が部分制御棒挿入失敗により出力に		【東海第二】
	偏りが生じた場合を包絡しているかについて		不安定現象による燃
			料被覆管温度への影響
			は限定的であるあるこ
			とを, REDY コード説明
			資料で確認しているこ
			とから, 同様の補足説明
			資料は作成していない。
	13. 原子炉停止機能喪失の300 秒以降の燃料被覆管温度挙動につ		【東海第二】
	いて		島根2号炉の燃料被
			覆管温度は, 300 秒まで
			に最高値となることを
			確認していることから、
			同様の補足説明資料は
			作成していない。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	18. 原子炉冷却材浄化系吸込弁の閉止操作について		【東海第二】
			島根2号炉のLOC
			A時の隔離操作につい
			ては、対応手順の概要
			(第 3.1.2.1-2 図)に
			示していることから,同
			様の補足説明資料は作
			成していない。
	19. 格納容器圧力挙動について		【東海第二】
			格納容器破損モード
			「雰囲気圧力・温度によ
			る静的負荷(格納容器過
			圧・過温破損)」におけ
			る格納容器パラメータ
			の先行電力との比較を
			説明した資料であり,島
			根2号炉は、3連表によ
			り比較していることか
			ら,同様の補足説明資料
			は作成していない。
	<u>20.</u> 再循環系のランバック機能について		【東海第二】
			原子炉再循環ポンプ
			のランバック機能につ
			いて説明した資料であ
			るが,島根2号炉の有効
			性評価では, ランバック
			機能に期待していない
			ことから,同様の補足説
			明資料は作成していな
			<i>د</i> ر کې
	21. 東海第二の有効性評価解析に対する解析コード適用性につい		【東海第二】
	<u>T</u>		MARK-Ⅱ型格納容器に
			おける解析コードの検
			証及び妥当性確認を記
			載した資料であるため,
			同様の補足説明資料は
			作成していない。
	25. 残留熱除去系レグシールライン弁の閉止操作について		【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			残留熱除去系使用時
			の基本的な手順につい
			て説明した資料である
			ため,同様の補足説明資
			料は作成していない。
		42 有効性評価におけろ機能喪失を仮定した設備一覧について	
		43. 有効性評価における先行プラントとの主要な相違点について	
		44.         ベント実施までの格納容器スプレイの運用について	
		45. 原子炉満水操作の概要について	
		46.9×9燃料で評価することの代表性について	
		47. 自動減圧機能及び代替自動減圧機能の論理回路について	
		48. TBP対策の概要について	
		49. I-131の追加放出量の設定について	
		50. 原子炉隔離時冷却系の水源の違いによる解析結果への影響に	
		ついて	
		51. 逃がし安全弁吹出量の影響について	
		52. 島根2号炉の原子炉中性子計装系の設備概要について	
		53. 事故シーケンスグループの分類及び重要事故シーケンスの選	
		定に係る考え方の整理について	
		54. 崩壊熱除去機能喪失(取水機能が喪失した場合)における事	
		象発生10時間後までの格納容器圧力等の推移について	
	<u>16</u> . TRACGコードのATWS解析への適用例	<u>55</u> . TRACGコードのATWS解析への適用例	
		56. SCATコードの保守性について	
		57. 外圧支配事象における燃料被覆管の健全性について	
		58. 原子炉停止機能喪失における起因事象について	
		59. 崩壊熱除去機能喪失(取水機能が喪失した場合)における解	
		析上の除熱条件の設定について	
		60. 原子炉隔離時冷却系による注水時の原子炉圧力挙動について	
		61. 原子炉隔離時冷却系による原子炉水位維持における運用と解	
		<u> 析条件について</u>	
		62. 中小破断LOCAにおける対策の有効性について	
		63. 外部電源有無による評価結果への影響について	
		<u>64. LOUA</u> 時注水機能喪失における急速減圧時の开致による影	
		03. LOUA时住小陵肥茂大にわける怒科恢復官価度ノート间比	
		野           66         右効性評価における解析の条件設定について	
		00. 有別正計画における時初の本件成化について	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			67. SAFERにおける燃料集合体の出力分布の設定について	
			- 68. ISLOCA時における屋外への蒸気排出条件について	
			69. 燃料プールの監視について	【東海第二】
				島根2号炉は,通常時
				の燃料プールの関連パ
				ラメータについて監視
				対象,監視方法及び確認
				頻度を示すため作成し
				ている。(内容は東海第
				  二 添付資料 4.1.1 と同
			70. ISLOCA時の冷却水から気相への放射性物質の放出割合	様)
			について	
			71. 島根2号炉におけるプレコンディショニングの実施状況と非	
			常用ディーゼル発電機の故障率について	
			$\overline{\zeta}$	
			ついて	
			75. 高圧・低圧注水機能喪失における炉心下部プレナム部のボイ	
			LOCAを起因とした事故シーケンスについて	
			77. 炉心損傷防止TB及びTWシナリオにおける原子炉急速減圧	
			時の弁数の見直しについて	
			78. 原子炉隔離時冷却系及び高圧原子炉代替注水系における注水	
			時の原子炉圧力挙動の差異について	
			79. 放射線防護具類着用の判断について	
			80. 原子炉ウェル注水について	
			81. 共通要因故障を考慮した低圧原子炉代替注水系の実現性及び	
			コントロールセンタ切替手順について	
			82. サプレッション・チェンバ薬剤注入について	
			83. 格納容器ベント実施基準の変更に伴う希ガスによる被ばく評	
			価結果への影響について	
			84. 損傷炉心による炉心シュラウドへの影響について	
			85. 残留熱代替除去系の格納容器スプレイ流量について	
			86. 外部水源を用いた総注水量の制限値について	
			87. ペデスタル注水手順及び注水確認手段について	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海道	第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
					88. 格納容器スプレイによるペデスタルへの流入経路について	
					89. 溶融炉心の堆積高さの評価に関する考え方について	
					90. 水蒸気爆発実験と実プラントの水蒸気爆発評価におけるエネ	
					ルギー変換効率の比較について	
					91. ペデスタル <mark>/ドライウェル</mark> 水位の推移とペデスタル/ドライ	
					ウェル底部の状態について	
					92. ドライウェルクーラの使用を仮定した場合の格納容器除熱効	
					果について	
					93. デブリが炉外へ放出される場合と炉内に留まる場合の原子炉	
					格納容器内の気体組成と水素燃焼リスクへの影響	
					94. 有効性評価における格納容器内の水素及び酸素排出等につい	
					$\underline{\tau}$	
					95. コリウムシールドスリット内に溶融デブリが流入した場合の	
					熱伝導解析	
					96. 水の放射線分解におけるα線の影響について	
					97. 格納容器除熱に関する基準の変更について	
					98. 燃料プール水位(SA)の常時監視について	
					99. 格納容器ベント実施時のサプレッション・プール水位の不確	
					かさについて	
					100. ベントが2Pdまで遅延した場合のCs放出量への影響につ	
					<u>いて</u>	
					101. 格納容器ベント開始時間見直しに伴う操作の成立性への影響	
					について	
					102. 格納容器ベントに伴う一時待避中の給油作業中断が重大事故	
					時の対応に与える影響について	
					103. 復旧班要員による連続作業の成立性について	
					104. 原子炉注水手段がない場合の原子炉手動減圧タイミングと減	
					圧弁数の関係性について	
					105. 溶融炉心が原子炉圧力容器の偏心位置から落下し円錐状に堆	
					<u>積した場合の溶融炉心の冠水評価について</u>	
					106. ZrO ₂ 耐熱材の侵食開始温度の設定について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 3.2.1		
11. 原子炉注水手段がない場合の原子炉減圧の考え方について	原子炉圧力容器高圧破損防止のための原子炉手動減圧について	11. 原子炉注水手段がない場合の原子炉減圧の考え方について	
	原子炉への注水手段がなく原子炉圧力容器の破損に至るおそ	原子炉への注水手段がなく原子炉圧力容器の破損に至るおそ	
	れがある場合には,原子炉圧力容器高圧破損防止のための原子	れがある場合には、原子炉圧力容器高圧破損防止のための原子	
<u>炉心損傷後,原子炉へ注水できない場合には,</u> 蒸気冷却によ	炉手動減圧を実施する必要がある。この際,蒸気冷却による燃	<u>炉手動減圧を実施する必要がある。この際,</u> 蒸気冷却による燃	
る燃料の冷却効果に期待するために原子炉減圧を遅らせ,シュ	料の冷却効果に期待するために原子炉減圧を遅らせ,原子炉水	料の冷却効果に期待するために原子炉減圧を遅らせ、シュラウ	
ラウド内の原子炉水位計(燃料域水位計)で原子炉水位が「有効	位計(燃料域)で原子炉水位が「燃料有効長底部から燃料有効	ド内の原子炉水位計(燃料域)で原子炉水位が「燃料棒有効長	
<u>燃料棒底部(BAF)+燃料棒有効長さの</u> 10%高い位置」を下回った	長の 20%上の位置」(以下「BAF+20%」という。) <u>に到達</u>	<u>底部より燃料棒有効長の20%高い位置」(以下,「BAF+20%」</u>	・評価結果の相違
場合に逃がし安全弁 <u>(SRV)</u> 2 個で原子炉の減圧を実施する手順	した場合に,逃がし安全弁(自動減圧機能)2個で原子炉の減	<u>という)を下回った</u> 場合に <u>自動減圧機能付き</u> 逃がし安全弁2個	【柏崎 6/7】
としている。	圧を実施する手順としている。	で原子炉の減圧を実施する手順としている。	
<u>原子炉</u> 減圧を実施する水位および <u>弁数</u> は,以下の評価結果を	減圧を実施する水位及び弁の個数については,以下の評価結	減圧を実施する水位及び弁の個数については、以下の評価結	
もとに決定している。	果を基に決定している。	果を基に決定している。	
(1) 原子炉減圧のタイミングについて	(1) 原子炉手動減圧のタイミングについて	(1) 原子炉 <u>手動</u> 減圧のタイミングについて	
		格納容器破損モード「高圧溶融物放出/格納容器雰囲気直	
		接加熱」では、溶融炉心、水蒸気及び水素ガスの急速な放出	
		に伴い原子炉格納容器に熱的・機械的な負荷が加えられるこ	
		とを防止するため、原子炉圧力容器破損までに逃がし安全弁	
		の手動開操作により原子炉減圧を実施し、原子炉冷却材圧力	
		<u>を 2.0MPa[gage]以下に低減する必要がある。</u>	
		しかしながら、蒸気冷却による燃料の冷却効果に期待する	
		という観点で原子炉減圧を遅くする一方で、原子炉圧力容器	
		破損のタイミングが見通せない中で運転員による手動操作が	
		必要な状況下であることを踏まえると、到達予測が容易であ	
		る原子炉水位で判断することが妥当とした。なお、原子炉水	
		位が低下し燃料棒有効長底部(以下、「BAF」という)を下	
		回った以降,原子炉減圧を実施した場合には、SA事象進展	
		等に対して以下の悪影響が考えられる。	
		・原子炉水位計(燃料域)による水位確認が不可となる。	
		・燃料がヒートアップした後の減圧となるため、水素発生	
		量が増加する。	
		・水素発生量の増加により反応熱が増加し、原子炉圧力容	
		器破損タイミングが早くなる。	
		・減圧から原子炉圧力容器破損の時間が短く、高圧破損の	
		リスクが上昇する。	
		・水素発生量の増加および原子炉圧力容器破損の早期化に	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		より、原子炉格納容器過圧・過温破損を防止するための	
		マネジメントの時間余裕が短くなる。	
原子炉へ注水できない場合の原子炉減圧のタイミングを決定	原子炉への注水手段がない場合の原子炉手動減圧のタイミン	<u>これらを踏まえ,</u> 原子炉へ <u>の</u> 注水 <u>手段がない</u> 場合の原子炉	
するため、原子炉水位が「原子炉水位低(レベル1)」に <u>到達して</u>	グを <u>検討</u> するため,原子炉水位が「 <u>原子炉水位異常低下</u> (レベ	手動減圧のタイミングを検討するため,原子炉水位が「原子	
から10 分, 20 分, 30 分, 40 分, 50 分, 60 分後のそれぞれ	ル1)」(以下「L1」という。)に到達後 <u>10 分から 50 分</u> のそれ	<u> 炉水位低</u> (レベル1)」 <u>(以下「L1」という。)</u> に <u>到達後10</u>	・評価結果の相違
のタイミングで原子炉を減圧する場合の解析を実施し、水素の	ぞれのタイミングで減圧する場合の解析を実施し、水素の積算	<u>分から 60 分まで</u> のそれぞれのタイミングで減圧する場合の	【東海第二】
積算発生量を評価した。	発生量を評価した。減圧に用いる逃がし安全弁(自動減圧機能)	解析を実施し,水素の積算発生量 ^{*1} を評価した。 <u>減圧に用い</u>	
ここでの原子炉減圧は,SRV8 個(自動減圧機能付逃がし安全	の弁の個数は、 <u>7個(逃がし安全弁(自動減圧機能)全て)、2</u>	る自動減圧機能付き逃がし安全弁の弁の個数は, 6個(自動	・評価結果の相違
弁全弁)によって実施されるものとした。	<u>個及び1個のそれぞれ</u> で実施されるものとした。	<u>減圧機能付き逃がし安全弁全弁)</u> で実施されるものとした。	【東海第二】
評価結果を第1表に示す。水素の積算発生量については、50	評価結果を第1表に示す <u>とともに、それぞれの弁の個数で減</u>	評価結果を第1表 <u>,第1図及び第2図</u> に示す。水素の積算	
<u>分後</u> と <u>60 分後</u> の間に大きな差が表れた。	圧した場合の原子炉水位及び積算水素発生量の推移を, 第1図	発生量については, <u>L 1 到達後 40 分後</u> と <u>50 分後</u> の間に大き	・評価結果の相違
	から第6図に示す。これらの評価結果から,水素の積算発生量	な差が表れた。	【柏崎 6/7,東海第二】
	<u>については,おおむねL1到達後35分から50分</u> の間で大きな		
	差が現れた。		
この評価結果から,酸化反応(ジルコニウム-水反応)が活発	この評価結果から,酸化反応(ジルコニウム-水反応)が活	この評価結果から,酸化反応(ジルコニウム-水反応)が	
になる前の, <u>原子炉水位低(レベル1)から40 分後</u> までに <u>原子炉</u>	発になる前の, L 1 到達後 <u>35 分</u> までに減圧を実施することが望	活発になる前の, <u>L 1 到達後 40 分後</u> までに減圧を実施する <u>こ</u>	・評価結果の相違
減圧を実施する必要があると判断した。	ましいと判断した。	とが望ましいと判断した。	【柏崎 6/7,東海第二】
なお, <u>表1 のSRV8 個での10 分, 20 分, 30 分, 40 分のタイ</u>		なお、第1表の自動減圧機能付き逃がし安全弁6個での原	・評価結果の相違
ミングでの原子炉減圧の結果からは、原子炉減圧のタイミング		子炉減圧の結果及び第2表の自動減圧機能付き逃がし安全弁	【柏崎 6/7】
を遅くすることで水素発生量が減少している。しかしながら,		<u>2個及び1個での原子炉減圧の結果について,10分,20分,</u>	
<u>第2 表のSRV2 個及び1 個で原子炉減圧する場合を見ると,原子</u>		<u>30 分, 40 分のタイミングで多少の増減(ばらつき)を示してい</u>	
炉減圧のタイミングを遅くしても,水素発生量は減少せず,10		るものの, 50分後と60分後の間に大きな差が生じるのはこ	
<u>分, 20 分, 30 分, 40 分で増減(ばらつき)を示している。第2 表</u>		のばらつきの影響ではなく、炉心形状が維持されている段階	
のSRV2 個及び1 個で原子炉減圧する場合の評価結果を踏まえ		での炉心のヒートアップのタイミングに大量の蒸気が通過す	
ると, 第1 表のSRV8 個での評価結果もばらつきが表れた結果で		<u>ることによるものであると考えられる。このため、10分、20</u>	
<u>あり、顕著な傾向を示したものでは無いと考える。しかしなが</u>		分,30分,40分での水素発生量の多少のばらつきは本結論に	
<u>ら,</u> 50 分後と60 分後の間に大きな差が生じるのはこのばらつ		影響を与えるものではない。	
きの影響ではなく、炉心形状が維持されている段階での炉心の		※1 事象が安定した時点である事象発生から3時間後ま	
ヒートアップのタイミングに大量の蒸気が通過することによる		での積算量。なお,3時間以降の水素量の増加はな	
ものであると考えられる。このため、10 分、20 分、30 分、40		<i>د</i> ر کې د د د د د د د د د د د د د د د د د د	
分での水素発生量のばらつきは本結論に影響を与えるものでは			
ない。			
(2) 原子炉減圧の弁数について	(2) 原子炉手動減圧に用いる弁の個数について	(2) 原子炉手動減圧に用いる弁の個数について	
原子炉減圧の際に開放する弁数を決定するため、原子炉水位	第1表より、(1)で判断した原子炉手動減圧を実施するタイミ	第2表及び第7図から第10図より、(1)で判断した原子炉	
低(レベル1)到達から10~40 分後に, SRV1 個, 2 個, 8 個で原	ング(L1到達後 <u>35 分</u> )近辺の減圧タイミングに着目すると,	手動減圧を実施するタイミング(L1到達後40分)近辺の減	・評価結果の相違
子炉減圧した場合のそれぞれについて、水素発生量と燃料被覆	逃がし安全弁(自動減圧機能)1個の場合の水素発生量が大き	圧タイミングに着目すると、自動減圧機能付き逃がし安全弁	【柏崎 6/7】
管の荷重を評価した。	くなっている。また,減圧時の炉内蒸気流量の観点では,逃が	1個の場合の水素発生量が大きくなっている。また,減圧時	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
評価結果を第2表に示す。水素発生量は,逃がし安全弁1 個で	し安全弁(自動減圧機能)7個の場合よりも逃がし安全弁(自	の炉内蒸気流量の観点では、自動減圧機能付き逃がし安全弁	
原子炉減圧した場合以外は、ほぼ同等となった。原子炉減圧時	動減圧機能)2個の場合の方が,炉内蒸気流量が小さいことか	6個の場合よりも自動減圧機能付き逃がし安全弁2個の場合	
の炉内蒸気流量の観点では, SRV8 個で原子炉減圧した場合より	ら,被覆管に対する負荷が小さいものと考える。	の方が、炉内蒸気流量が小さいことから、燃料被覆管にかか	
も,逃がし安全弁2 個で原子炉減圧した場合の方が流量が少な		<u>る荷重が小さいものと考える。なお、低圧注水がある場合、</u>	
いことから、被覆管に対する負荷が小さいものと考える。		水位回復の観点から早めに減圧すべきであるが、低圧注水が	・評価結果の相違
		ない場合には、注水ができない状況であってもできるだけ燃	【柏崎 6/7】
		料破損を遅らせる観点から <mark>減圧に用いる弁数は少ない方が望</mark>	
		<u>ましい。</u>	
		水素発生量については、減圧が遅くなるほど蒸気量は小さ	
		くなるが炉心ヒートアップは進むこともあり、減圧時間が遅	
		<u>い方が水素発生量が多くなる傾向となっている。</u>	
		水素発生量 <mark>を抑えつつ</mark> ,燃料被覆管の荷重を低く抑える観	
		<u>点から、減圧時に開放する適切な弁数は2個と判断した。た</u>	
		<u>だし,仮に<mark>減圧操作が遅れ</mark>水素ガスが<mark>多く</mark>発生したとしても,</u>	
		450kg 程度であれば,原子炉過圧破損の観点から原子炉格納	
		容器圧力への影響は過大ではないと考える。	
<u>原子炉減</u> 圧完了までの時間については, <u>第1</u> 図に示す通り,	減圧完了までの時間については, 第1図, 第3図及び第5図	減圧完了までの時間については, 第3図から第6図に示す	
<u>弁数</u> が少ないほど長くなるが,いずれの場合も原子炉圧力容器	<u>の</u> とおり,弁の個数が少ないほど長くなるが,いずれの場合も	<u>とおり, 弁の個数</u> が少ないほど長くなるが, いずれの場合も	
破損までの時間に対しては十分な余裕があるため、原子炉圧力	原子炉圧力容器破損までの時間に対しては十分な余裕があるた	原子炉圧力容器内破損までの時間に対しては十分な余裕があ	
容器破損時の溶融炉心落下量など、原子炉圧力容器破損後の事	め,原子炉圧力容器破損時の溶融炉心落下量など,原子炉圧力	るため,原子炉圧力容器破損時の溶融炉心落下量など,原子	
象進展に与える影響は小さい。	容器破損後の事象進展に与える影響は小さい。	炉圧力容器破損後の事象進展に与える影響は小さい。	
以上から,原子炉減圧の際に開放する弁数は <u>SRV</u> 2 個とした。	以上から, 原子炉手動減圧の際に開放する弁の個数は逃がし	以上から, 原子炉手動減圧の際に開放する弁数は逃がし安	
	<u>安全弁(自動減圧機能)</u> 2個とした。	<u>全弁</u> 2個とした。	
(3) 原子炉減圧を実施する水位について	(3) 原子炉手動減圧を実施する <u>原子炉</u> 水位について	(3) 原子炉手動減圧を実施する水位について	
(1)の評価結果から,原子炉の減圧を原子炉水位低(レベル1)	上記評価結果より, 原子炉手動減圧をL1到達後 <u>35 分以降</u> に	上記評価結果より,原子炉手動減圧をL1到達後50分後以	・評価結果の相違
到達から50 分後以降に実施する場合に水素の積算発生量の顕	実施する場合に水素の積算発生量に顕著な増加が見られるこ	<u>降</u> に実施する場合に水素の積算発生量の顕著な増加が見られ	【東海第二】
著な増加が見られること及び,(2)の評価結果から,原子炉の減	と,また,減圧をL1到達後 <u>10分から35分</u> の間で実施する場	ること, <u>また</u> ,減圧を <u>L1</u> 到達後 <u>10分から40分の間で</u> 実施	
圧を原子炉水位低(レベル1)到達から10~40 分後に実施する場	合には水素の積算発生量に有意な傾向が確認されないことを踏	する場合には水素の積算発生量に有意な傾向が確認されない	
合には, 原子炉減圧実施時間に応じた水素の積算発生量に傾向	まえ、蒸気冷却による燃料の冷却効果に期待する観点から、減	ことを踏まえ、蒸気冷却による燃料の冷却効果に期待する観	
が確認されないことを踏まえ、蒸気冷却による燃料の冷却効果	圧はL1到達後 <u>35分で</u> 実施するものとし,判断基準としてはこ	点から,原子炉減圧はL1到達後40分で実施するものとし,	
に期待する観点から,原子炉減圧は水位低(レベル1)から40 分	のタイミングに相当する原子炉水位を用いることとした。	判断基準としてはこのタイミングに相当する原子炉水位を用	
後に実施するものとし、判断基準としてはこれに相当する原子		いることとした。原子炉水位低(レベル1)から 40 分後の原	・評価結果の相違
炉水位を用いることとした。原子炉水位低(レベル1)から40 分	<u>第3図より、L1到達後35分での</u> 原子炉水位はBAF+20%	<u>子炉水位を評価すると、</u> 原子炉水位はBAF+ <u>20%</u> 程度であ	【柏崎 6/7】
後の原子炉水位を評価すると,原子炉水位はBAF+ <u>10%</u> 程度である	程度であることから,これを <u>原子炉手動</u> 減圧実施の水位とした。	る <u>ことから</u> ,これを減圧実施の水位とした。 <u>仮に原子炉水位</u>	
ため、これを原子炉減圧実施の水位とした。		<u>がBAF+20%で減圧操作できなかった場合でもBAFに到</u>	
		達するまでに約30分間の時間余裕があり、また、原子炉急速	
		減圧操作は原子炉水位の低下傾向を監視しながらあらかじめ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		準備が可能であることから、操作の不確かさはない。	
なお、海外における同様の判断基準を調査した結果、米国の	なお、海外における同様の判断基準を調査した結果、米国の	なお、海外における同様の判断基準を調査した結果、米国	
緊急時操作ガイドライン(EPG) ^[1] の例では, 不測事態の蒸気冷却	緊急時操作ガイドライン(EPG) ^[1] の例では,不測事態の蒸	の緊急時操作ガイドライン(EPG) ^[1] の例では,不測事態	
の手順において,原子炉へ注水できない場合の原子炉減圧の判	気冷却の手順において,原子炉へ注水できない場合の原子炉減	の蒸気冷却の手順において,原子炉へ注水できない場合の原	
断基準をBAF+70%程度としていることを確認した。これは,	圧の判断基準をBAF+70%程度としていることを確認した。	子炉減圧の判断基準をBAF+70%程度としていることを確	
BAF+70%程度よりも原子炉水位が高い状況では、注水が無くかつ	これは、BAF+70%程度よりも原子炉水位が高い状況では、	認した。これはBAF+70%程度よりも原子炉水位が高い状	
原子炉減圧していない状態でも冠水部分の燃料から発生する蒸	注水がなくかつ原子炉減圧していない状態でも、冠水部分の燃	況では,注水が無くかつ原子炉減圧していない状態でも,…冠	
気により露出部分の燃料を冷却できると判断しているものと推	料から発生する蒸気により露出部分の燃料を冷却できると判断	水部分の燃料から発生する蒸気により露出部分の燃料を冷却	
定される。当社の判断基準は、米国の例との差異はあるものの、	しているものと推定される。当社の判断基準は、米国の例との	できると判断しているものと推定される。当社の判断基準は、	
上述の評価結果を踏まえ定めているものであり、妥当であると	差異はあるものの、上述の評価結果を踏まえ蒸気冷却効果、水	米国の例との差異はあるものの、上述の評価結果を踏まえ蒸	
考える。	素発生量及び被覆管に対する負荷の観点から定めているもので	気冷却効果、水素発生量及び被覆管に対する負荷の観点から	
	あり、妥当であると考える。	定めているものであり、妥当であると考える。	
(4) 国子病水位の強烈手段について	(小) 原乙烷水位の確認手段について		
	(4) 原丁炉小位の確認于核について	(4) 原丁炉小位の確認于核について	、記載書祖の知法
原丁炉水位は,原丁炉水位訂(燃料或 <u>水位計</u> )によって確認 $g$	原于炉小位は,原于炉小位司(燃料域)にようて確認する。 原乙病水位がRAEI200/に到達古ス時点(東角発生から約28	原于炉水位は原于炉水位計(燃料域)によって確認し、男	・記戦衣苑の相連
	原于炉水位かBAF +20%に封建りる时尽(事家先生から約 <u>38</u> 八%)では、原乙に日本空間中の気力が退産は約和退産な初う	11 凶に小り相正曲縁を用いて原于が圧力に対りつ相正を11い	
时间後」には、原于炉圧刀谷益内の気相部価度は起相価度を超え	<u>万</u> 俊) じは、原于炉圧刀谷器内の気相部価度は認相価度を超え ていてず。 じライウ 山内の気相部温度は 90% 毎度でなること	<u> <b>BAF</b></u> + 20%を刊劇りる。 高圧俗歴初放山/ 俗船谷益分囲刻 直接加熱において、原子に水位が BAF + 200/に利達する時	局限2万炉は, BAF
こいるか、トライリエル内の気相部温度は <u>約800</u> であることか	くいるか,トフィリエル内の気相部温度は <u>800程度</u> であること	<u>国接加熱において</u> ,原ナ炉水位かBAF+ <u>20%</u> に到達する時 た(東免発生た)の1 味問欲) では、原乙烷医士の出中の気	+20% 補止田稼ぐ判断
ら、原ナ炉水位計の疑縮槽内の水位は維持され、原ナ炉水位計	から、原士炉水位計の錠縮槽内の水位は維持され、原士炉水位	□ (事家発生から約 <u>1</u> 時間後)では、原十炉圧刀谷益内の気 相切り度は約50月度た初きているが、じたくたいたちの	うる手段を記載
による原子炉水位の確認は可能と考える。	計による原子炉水位の確認は可能と考える。	相部温度は飽和温度を超えているか、ドフイリェル内の気相	
			【 和崎 6/7, 東海第 _ 】
		水位不明領域に入っていないことから、原子炉水位計の凝縮	
		槽内の水位は維持され、原子炉水位計による原子炉水位の確	【 和崎 6/7, 東海第二】
		認は可能と考える。	局根2号炉は,水位个
			明でないことを水位不
			明曲線で判断する手段
			を記載
また、仮に水位不明となった場合は急速減圧を実施する手順	また,仮に水位不明となった場合は <u>炉心損傷を判断した時点</u>	また、仮に水位不明となった場合は急速減圧を実施する手	・運用の相違
となっており、同等の対応となることから、運転員の対応に影	<u>で</u> 急速減圧を実施する手順となっており,同等の対応となるこ	順となっており、同等の対応となることから、運転員の対応	【東海第二】
響はない。	とから、運転員の対応に影響はない。	に影響はない。	島根2号炉は,原子炉
			水位低(レベル1)到達
以上			以降,水位不明となった
			場合は原子炉水位低(レ
			ベル1) 到達から40分
			後に減圧する。
		なお,原子炉水位計の凝縮槽内の水位を確認する手段とし	・記載表現の相違
		て,凝縮槽表面の気相部と液相部に温度計を設置することと	【柏崎 6/7,東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		しており、気相部と液相部に温度差がある場合には、凝縮槽	島根2号炉は,凝縮槽
		内の水位が維持されており、また、気相部と液相部に温度差	に設置している温度計
		がない場合には、凝縮槽内の水が蒸発し、水位不明となって	による水位確認手段を
		いることを判断することが可能である。	記載。
		(5) 原子炉手動減圧に用いる逃がし安全弁の選定について	・記載表現の相違
		原子炉注水機能喪失時の原子炉手動減圧に用いる逃がし安	【柏崎 6/7,東海第二】
		全弁は,以下に示す条件を考慮し「B弁」及び「M弁」を選	島根2号炉は,原子炉
		定している。	手動減圧に用いる逃が
		・自動減圧機能及び代替自動減圧機能を有する弁とし、本	し安全弁の選定の考え
		機能が作動した場合に必要以上の逃がし安全弁が開とな	方を記載
		らないようにする。	
		・過熱蒸気による逃がし安全弁損傷防止の観点から、開放	
		する弁は可能な限り離隔させる。(第13図)	
		・残留熱除去系の機能喪失防止の観点から、開放する弁は	
		<u> 残留熱除去系ストレーナから可能な限り離隔させる。(第</u>	
		14 図)	
		・サプレッション・プール水温度の上昇を均一にするため、	
		可能な限り離れた排気管の位置の弁とする。(第14図)	
		第14図に示すとおり、「B弁」と「M弁」の排気ラインは	
		比較的近接しているが,サプレッション・プール水量(2800m ³ )	
		を勘案すると原子炉からの蒸気凝縮は十分可能である。サプ	
		レッション・プールへの熱影響の観点からは、「B弁」と「M	
		<u>弁」の排気ラインは比較的近接しているが,重大事故対応に</u>	
		おける悪影響を考慮し、その他の条件を全て満たす弁を選定	
		LTNZa	
[参考文献]		<u>「参考文献</u> ]	
[1] "ABWR design Control Document [Tier 2, Chapter 18 Human	[1] "ABWR Design Control Document [Tier2, Chapter18, Human	[1] "ABWR design Control Document[Tier 2, Chapter 18 Human	
Factors Engineering]", GE Nuclear Energy, Mar., 1997	Factors Engineering]", GE Nuclear Energy, Mar.1997.	Factors Engineering]",GE Nuclear Energy,Mar.,1997	

柏崎刈羽原子	力発電所	6/7	号炉 (2	2017.	. 12. 20 版)			東海第二発	8電所(2018	8.9.12版)			島根	原子力発電所	行 2号炉			備考
第1表 原	子炉減圧0	Dタイミ:	ングに関す	「る評	平価結果							第	し表 原子炉液	咸圧のタイミン	ングに関する	評価結	<u>果</u>	・評価結果の相違
	( <u>SRV8個で</u>	原子炉減	正した場	合)								(直重	加減圧機能付為	き逃がし安全	弁6個で減日	した場	盒)	【柏崎 6/7】
原子炉水位低(レベル) 到達後の時間遅れ	1) 10分	20 分	30分 40	0分	50分 60分							原子炉水位低 到達後の	(レベル1) 時間遅れ 10	分 20分	30分 40分	50分	60分	・記載方針の相違
水素発生量[kg]	370	270	220 1	80	270 820*							積算水素 (3時間後	発生量 まで)[kg]   7	0 70	70 80	350	310	【東海第二】
※原子炉水	立の低下に	- 伴う燃料	斗棒の過熱	いこよ	こり,原子炉水(	<u>т</u>												
低 (レベ)	レ1) 到達征	<u> </u>	過ぎたタ	イミ	ングで原子炉	17 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~												
減圧する	と, ジルコ	ニウムー	水反応に	よる	水素発生量が	<u>ا</u>												
しく増加す	する。(「3	.2高圧溶	<u> 孫融物放出</u>	/格	納容器雰囲気	<u>ا</u>												
接加熱」に	こおけるジ	ルコニウ	ノムー水反	応に	よる水素発生	1. In the second												
は約1400	(g)																	
第2表 /	原子炉減日	E時の弁教	数に関する	詞語	而結果		<u>第1</u>	表 原子炉	「手動減圧に	関する解析	行結果		<u>第</u> 2表	減圧弁数に関	する評価結	<u>果</u>		・評価結果の相違
原子炉減圧時の弁数	原子炉水位低	気(レベル1)	水素発生量	[kg]	被覆管への荷重**			1. TU+// -		hile THE Att	7				積算水素発生	量		【柏崎 6/7,東海第二】
	当達後の 10	時間遅れ 分	370	_	100		减上开数	L1 到達後の 時間遅れ[分]	水素発生量 [kg]	被覆管への 荷重*		減圧弁数	L1到達後の 時間遅れ[分]	原子炉水位 (燃料城)の日安	(3時間後まで	被裂 ご)	夏管への 赤香 *	
SRV8個	20	分	270		270			10	114	87			時间建402月」	(旅行或)の日女	[kg]	1	り里 *	
	40	<del>万</del> 分	180		220		<ul><li>逃がし安全</li><li>弁(自動減</li></ul>	20	111	78		自動減圧機	10	BAF+121%	70		130	
	10	分 分	360		90		王機能)	30	109	163	-	能付き逃が	20	BAF + 69%	70		110	
SRV2個	30	分 分	280		80			50	650	68	-	6個	30	BAF + 29%	80	_	150	
	40	分	400		70			10	272	40			40	DAF + 10 %	140		150	
SRV1個	20	<u>分</u>	640		60		<ul><li>逃がし安全</li><li>弁(自動減)</li></ul>	20	253	106	-	目動源圧機	20	BAF + 69%	130		70	
SH V I IEI	30	分 分	510 620		50 60		圧機能)	30	295	92 51	-	正内さ処がし安全弁	30	BAF + 29%	140		60	
	40	*	原子炉減圧時	「の最大	上			40	578	98	-	2個	40	BAF+18%	160		100	
							逃がし安全	10	403	80	-	白動減圧機	10	BAF+121%	200		60	
							弁(自動減 (百動減)	20	405	83	-	能付き逃が	20	BAF+69%	200		50	
							1個	40	469 599	103	-	し安全弁	30	BAF+29%	220		30	
										*減圧時の最大	」 炉内蒸気流量[kg/s]	1 個	40	BAF+18%	380		30	
						(減	圧時に燃料	被覆管が受	ける荷重と	しては、 燃	燃料被覆管内外の		· * 原子炉》		, 戶内蒸気流量	[kg/s]		
						 圧力	差による応	力等が考え	られ. 蒸気	流量の増加	ロとともに大きく		(減圧)	寺に燃料被覆管		香とし	ては、燃	
						カス	上によったわ	ステレかた	加わる茜	(加重の)(両)	して悲与法昌ち		*:1.2世界	男会内別の正-	日本にトスウ	・力空ぶ		
						なる	こ与んりれ	~ること/Pの ヽ	り、 カロ4ノる 1町	里切相保(	- して奈风孤重を		11121		り左による凡			
						<i> </i>	としている	)					Al, Z	※気流重の増)	川とともにス	<u> </u>	ると考え	
													<u>5</u> n2	ることから, 1	加わる荷重の	指標と	して蒸気	
													流量を	を参考としてい	いる。)			







100 0 0 0 0 0 0 1 1 5 時間(hr) 第8図 積算水素発生量の時 <u>(L1+20分で減圧)</u>



柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号
				600 500 400 小 朝朝 300 米 米 200 100 0 0 0 0 0 50	1 1 1 1 1 1 1 5 9 図 積算水素発生量の時 (L1+30分で減圧)
				600 500 400 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>1</u> 15 時間(hr) 10図 積算水素発生量の時 (L1+40分で減圧)



柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
				1500m 原于炉水位(燃料場)下服       -300m 原         1000m 原子炉水位(燃料場)下服       -900cm 原         1000m 原子炉水位(燃料場)下服       -900cm 原         1000m 原子炉水位(燃料場)下服       -900cm 原         第11 図       原子炉下水位(燃料域)及び原子炉         第12 図       水位不明判断



柏崎刈羽原子力発電所	6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
				$RV-IM$ $RV-IL$ $270^{\circ}$ $RV-IJ$ $270^{\circ}$ $RV-IJ$ $RV-IG$ $C-\pm Exs = 25$ $180^{\circ}$ $RV-IG$ $RV-IG$ $C-\pm Exs = 25$ $180^{\circ}$ $RV-IG$ $RV-IG$ $C-\pm Exs = 25$ $100^{\circ}$ $RV-IG$ $RV-IG$ $RV-IS$ </th <th><ul> <li>・記載表現の相違</li> <li>【柏崎 6/7,東海第二】</li> <li>島根2号炉は,原子炉</li> <li>手動減圧に用いる逃が</li> <li>し安全弁の選定の考え</li> <li>方を記載</li> </ul></th>	<ul> <li>・記載表現の相違</li> <li>【柏崎 6/7,東海第二】</li> <li>島根2号炉は,原子炉</li> <li>手動減圧に用いる逃が</li> <li>し安全弁の選定の考え</li> <li>方を記載</li> </ul>
				<section-header><complex-block></complex-block></section-header>	<ul> <li>・記載表現の相違</li> <li>【柏崎 6/7,東海第二】 島根2号炉は,原子炉</li> <li>手動減圧に用いる逃が</li> <li>し安全弁の選定の考え</li> <li>方を記載</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 3.1.3.6		
14. サプレッション・チェンバのスクラビングによるエアロゾル	格納容器内での除去効果について	13. サプレッション・チェンバのスクラビングによるエアロゾル	
捕集効果		捕集効果	
「添付資料3.1.3.3」で評価している"雰囲気圧力・温度による	<u>MAAPにおけるCs-137に対する格納容器内の除去効果と</u>	「添付資料 3.1.3.3」で評価している"雰囲気圧力・温度によ	・記載方針の相違
静的負荷(格納容器過圧・過温破損)時において代替循環冷却系	して、沈着、サプレッション・プールでのスクラビング及びドラ	る静的負荷(格納容器過圧・過温破損)時における格納容器フィル	【東海第二】
を使用しない場合における格納容器圧力逃がし装置からのCs-137	イウェルスプレイを考慮している。また、沈着については、重力	タベント系を用いた場合のCs - 137の放出量"は、サプレッシ	東海第二では, MAAP
放出量評価について"は、サプレッション・チェンバのスクラビ	<u>沈降, 拡散泳動, 熱泳動, 慣性衝突, FPガス凝縮/再蒸発で構成</u>	ョン・チェンバのスクラビングによるエアロゾル状の放射性物質	コードにおける FP 状態
ングによるエアロゾル状の放射性物質の捕集についても期待して	される。(「重大事故等対策の有効性評価に係るシビアアクシデン	の捕集についても期待しており、その捕集効果はMAAPコード	変化・輸送モデルの抜粋
おり、その捕集効果はMAAP コード内(SUPRA 評価式)で考慮して	<u>▶解析コードについて」の「第5部 MAAP」(抜粋)参照)</u>	内(SUPRA評価式)で考慮している。	を記載。
事故発生後サブレッション・ブール水は沸騰するが、沸騰時に	重大事故等対策の有効性評価に係るシビアアクシテント解析コ	事故発生後サブレッション・ブール水は沸騰するが、沸騰時に	
は気泡中の水蒸気凝縮に伴う除去効率の同上が見込めないため、	- F について」の「第5部 MAAP」(抜粋)	は気泡中の水蒸気凝縮に伴う除去効率の同上が見込めないため、	
捕集効果に影響を及ばす可能性かめる。		・ 補集効果に影響を及ばす可能性かめる。	
ここでは、サブレッション・ブール水の沸騰による捕集効果へ		ここでは、サブレッション・ブール水の沸騰による、捕集効果	
の影響について検討を行った。		への影響について検討を行った。	
	<ul><li>(2) FPの状態変化・輸送モデル</li></ul>		
	高温燃料から出た希ガス以外のFPは雰囲気の温度に依存して凝固し、エアロゾルへ変化する。気相及び液相中のFPの輸送においては、熱水力計算から求まる体		
	積流量からFP輸送量を計算する。FPがガス状とエアロゾル状の場合は、気体の		
	流れに乗って、原子炉圧力容器内と原子炉格納容器内の各部に輸送される。水プー		
	ル上に沈着したFPの場合は、区画内の水の領域間の移動に伴って輸送される。また、炉心あるいは溶融炉心中のFPの場合は、溶融炉心の移動量に基づいて輸送さ		
	れる。		
	FPの輸送モデルは上述の仮定に基づいており、炉心燃料から放出されてから原 スに物効の型に到ませる288 トレスは、かのトかりできる。燃料から原スにに力の		
	デデ格納存益に到達りる程格としては、次のとおりである。然料から原子炉圧力存 器内に放出されたFPは、原子炉圧力容器破損前にはLOCA破損口あるいは逃が		
	し安全弁から原子炉格納容器へ放出される。また、原子炉圧力容器破損後には原子		
	炉圧力容器破損口若しくは格納容器下部に落下した溶融炉心からFPが原子炉格納 容器へ放出される 速がし安全金を通じて放出されたFPはスクラビングによって		
	サプレッション・チェンバ液相部へ移行する。原子炉格納容器の気相部へ放出され		
	た F P は、気体の流れに伴って原子炉格納容器内を移行する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	原子炉圧力容器及び原子炉格納容器内での気体,エアロゾル及び構造物表面上(沈 着)の状態間の遷移を模擬している。原子炉格納容器内のFP輸送モデル概要を図 3.3-15 に示す。 エアロゾルの沈着の種類としては,重力沈降,拡散泳動,熱泳動,慣性衝突,F Pガス凝縮,FPガス再蒸発を模擬している。なお,沈着したエアロゾルの再浮遊 は考慮していない。 重力沈降は,Stokesの重力沈降式とSmoluchowski方程式(エアロゾルの粒径分布 に対する保存式)の解から得られる無次元相関式を用いて,浮遊するエアロゾル質 量濃度から沈着率を求める。なお,Smoluchowski方程式を無次元相関式としている のは解析時間短縮のためであり,この相関式を使用したMAAPのモデルは様々な 実験データと比較して検証が行われている。 拡散泳動による沈着は,水蒸気凝縮により生じるStefan 流(壁面へ向かう流体力 学的気流)のみを考慮して沈着率を求める。 熟泳動による沈着は,Epsteinのモデルを用い,沈着面での温度勾配による沈着速 度及び沈着率を求める。 慣性衝突による沈着は,原子炉格納容器内でのみ考慮され,流れの中にある構造 物に,流線から外れたエアロゾルが衝突するものと仮定し,沈着率は重力沈降の場 合と同様にSmoluchowski方程式の解から得られる無次元相関式を用いて求める。 FPガスの凝縮は,FPガスの構造物表面への凝縮であり,雰囲気中の気体状F P圧力がFP飽和蒸気圧を超えると構造物表面への凝縮を計算する。		<ul> <li>・記載方針の相違</li> <li>【東海第二】</li> <li>東海第二では,MAAP</li> <li>コードにおける FP 状態</li> <li>変化・輸送モデルの抜粋</li> <li>を記載。</li> </ul>
	5-66 F P ガスの再蒸発は、凝縮と逆であり、気体状 F P の 圧力が F P の 飽和蒸気圧を 下回ると、蒸発が起こると 仮定している。 エアロゾルの プール水によるスクラビング 現象による除去効果の取り 扱いに関し ては、スクラビング による除染係数 (D F) を設定し、エアロゾル除去効果が計算さ れる。D F の値は、クエンチャ、垂直ベント、水平ベントの3つの種類のスクラビ ング機器に対し、詳細コード SUPA( ¹⁰ )を用いて、圧力、ブール水深、キャリアガス 中の水蒸気質量割合、ブール水のサブクール度及びエアロゾル粒子径をパラメータ として評価した結果を内蔵しており、これらの データから求める。 また、格納容器スプレイによる F P 除去も模擬しており、スプレイ液滴とエアロ ゾルとの衝突による除去率を衝突効率、スプレイの液滴径、流量及び落下高さから 計算する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	1. 沈着及びドライウェルスプレイによる除去効果		・記載方針の相違
	沈着及びドライウェルスプレイによる除去効果を確認するた		【東海第二】
	め,感度解析を行った。解析結果を第1図に示す。なお,感度解		東海第二では、エア
	析では、以下の式により格納容器内の除去効果(除染係数(以下		ロゾルに対する格納容
	「DF」という。))を算出している。		器内の除去効果を示す
	格納容器内DF=格納容器内へのCsI放出割合/ベントライ		ため、感度解析結果を
	ンから大気へのC s I 放出割合		記載。
	S(C < ) / b		
	1.0E+07		
	1.0E+06		
	1.0E+05 -		
	1 10F+04		
	→ ベースケース 感度解析(10/Wスプレイなし)		
	I.UE+U2		
	1.0E+01 -		
	1.0E+00 0 5 10 15 20 25 30 35 40 45 50 事故後の時間(hr)		
	第1図 エアロゾルに対する格納容器内の除去効果(感度解析結		
	<u>第1図より、ベースケースにおけるDF (10°オーター) との比</u>		
	<u>戦から、重力沈降のDFは10°程度、トライリェルスノレイのD</u>		
	<u>F は 10~102 程度 じめることかわかる。これより、重力化降及い</u>		
	<u>トフィリエル人ノレイ両方によるDFは10~~10° 程度となるに</u> ゆ $0 = 107$ に対けて物価密明内の除土が用け、重力対路及び		
	下ノイリェルスノレイの影響が入さいと考える。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. スクラビング時のサプレッション・プール水の状態	2. サプレッション・プールでのスクラビングによる除去効果	1. スクラビング時のサプレッション・プール水の状態	
事故発生後,CsI 及びCsOH は原子炉圧力容器から原子炉格納容	(1) スクラビング効果について	事故発生後,CsI及びCsOHは原子炉圧力容器から原子炉	・記載方針の相違
器内気相部へ移行し、また、その大部分は原子炉格納容器内の液	スクラビングは、エアロゾルを含む気体がプール内に移行す	格納容器内気相部へ移行し、また、その大部分は原子炉格納容器	【東海第二】
相部に移行する。MAAP 解析により得られた原子炉格納容器内の液	る場合、気泡が分裂しながら上昇していく過程においてエアロ	内液相部に移行する。MAAP解析により得られた原子炉格納容	島根2号炉は, MA
相部中のCsI 及びCsOH の存在割合の時間推移を図1 に, サプレッ	ゾルが気泡界面に到達した時点で水に溶解して気体から除去さ	器内液相部中のC s I 及びC s OHの存在割合の時間推移を第1	AP解析により得られ
ション・プール水温の時間推移を図2 に示す。	れる現象である。スクラビングにおけるエアロゾル除去のメカ	図に、サプレッション・プール水温の時間推移を第2図に示す。	たCsI及びCsOH
図1より、原子炉格納容器の壁面等に沈着した核分裂生成物が	ニズムは、プールへの注入時の水との衝突や気泡がプール水中	<u>第1図</u> より,初期のブローダウンによるスクラビングの効果等	のサプレッション・プー
格納容器スプレイによって洗い流される効果や初期のブローダウ	を上昇していく過程における慣性衝突等が考えられる。	により, C s I 及びC s O H の大部分が初期の数時間で液相部へ	ルへの移行割合や水温
ンによるスクラビングの効果等により、CsI 及びCsOH の大部分が		と移行することが分かる。また、 <u>第2図</u> より、最初の数時間にお	を記載。
初期の数時間で液相部へと移行することが分かる。また、図2_よ		いては、サプレッション・プール水温は未飽和状態であり、沸騰	
り,最初の数時間においては,サプレッション・プール水温は未		は起きていないことがわかる。すなわち、サプレッション・プー	
飽和状態であり,沸騰は起きていないことがわかる。すなわち,		ルでスクラビングされる大分部のCsI及びCsOHは,最初の	
サプレッション・プールでスクラビングされる大部分のCsI及び		数時間で非沸騰状態下でのその効果を受け,残りの少量のCsI	
CsOH は、最初の数時間で非沸騰状態下でのその効果を受け、残り		及びC s OHが沸騰状態下でのスクラビングを受けることにな	
の少量のCsI 及びCsOHが沸騰状態下でのスクラビングを受けるこ		る。	
とになる。			
このことから、サプレッション・チェンバの総合的な捕集効果に		このことから、サプレッション・チェンバの総合的な捕集効果に	
対しては、沸騰条件下でのスクラビング効果の影響よりも、非沸		対しては、沸騰条件下でのスクラビング効果の影響よりも、非沸	
騰状態下でのスクラビング効果の影響の方が支配的になると考え		騰状態下でのスクラビング効果の影響の方が支配的になると考え	
られる。		られる。	



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
	<ul> <li>(3) SUPRAコードによる計算結果と実験結果の比較について、 SUPRAコードによる計算結果については、電力共同研究キ*1にて実験結果との比較検討が行われている。試験条件及び試験装置の概要を第1表及び第3図に示す。また、試験結果を第4図から第10図に示す。</li> <li>試験結果より、SUPRAコードによる計算結果と実験結果について、キャリアガス流量等のパラメータ値の増減によるDF値の傾向はおおむねー致していることを確認した。</li> <li>また、粒径 μm までの粒子について、SUPRAコードによる計算結果が実験結果より小さいDF値を示しており、保守的な評価であることを確認した。</li> <li>一方、粒径 μm の粒子について、SUPRAコードによる計算結果が実験結果より大きいDF値を示しているが、これは実験とSUPRAコードで用いている粒子の違い(実験:LATEX粒子(密度 g/cm³)、SUPRAコード</li> <li>ド:CsOH(密度 g/cm³)が影響しているためである。SUPRAコードの計算結果を密度補正*2した第7図及び第9図では、SUPRAコードによる計算結果は実験結果よりおおむね小さいDF値を示しことが確認できる。</li> <li>以上より、SUPRAコードによる計算結果は実験結果よりおおむね小さいDF値を示すことが確認できる。</li> <li>※1 共同研究報告書「放射能放出低減装置に関する開発研究」(PHASE2)最終報告書 平成5年3月</li> <li>※2 実験ではLATEX粒子を用いているため、その粒径は</li> </ul>	

-炉	備考
	・記載方針の相違 【東海第二】 東海第二では, SU PRAコードの検証結 果を記載。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第1表 試験条件         Parameter       Standard Value       Range         Geometric       injection nozzle diameter (cm)       15       1~15         property       scrubbing depth (meters)       2.7       0~3.8         Hydraulic       carrier gas temperature (°C)       80       20~110         Hydraulic       carrier gas temperature (°C)       150       20~300         property       steam fraction (vol.%)       50       0~80         oarrier gas flow rate       (L/min)       500       3002000         Aerosol       particle diameter (µm)       0.21~1.1       0.1~1.9         property       material       LATEX       LATEX.CSI		<ul> <li>・記載方針の相違</li> <li>【東海第二】</li> <li>東海第二では、SU</li> <li>PRAコードの検証結</li> <li>果を記載。</li> </ul>
	<image/>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4回 キャリアガス流量に対すスDFの比較		
	第5図 ブール水温に対するDFの比較		
	·	·	•

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第6回 水蒸気割合に対するDEの比較		
	第0回 小点X的口(C) / 5D1 0比較		
	第7図 水蒸気割合に対するDFの比較(密度補正)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第8図 スクラビング水深に対するDFの比較		
	第9図 スクラビング水深に対するDFの比較(密度補正)		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------	----------------------	--------------	----
	第 10 図 ガス温度に対するDFの比較		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
2. 沸騰時のスクラビング効果		2. 沸騰時のスクラビング効果	
		(1) スクラビング効果に関する試験	・記載方針の相違
沸騰後においても少量のエアロゾル粒子がサプレッション・プ		沸騰後においても少量のエアロゾル粒子がサプレッション・プ	【東海第二】
ールのスクラビングを受けるため、沸騰時のスクラビング効果が		ールのスクラビングを受けるため、沸騰時のスクラビング効果が	島根2号炉は、沸騰
極めて小さい場合は、サプレッション・チェンバの総合的な捕集		極めて小さい場合は、サプレッション・チェンバの総合的な捕集	時のスクラビング効果
効果に与える影響は大きくなる可能性がある。		効果に与える影響は大きくなる可能性がある。	について電力共同研究
沸騰時のスクラビング効果については、電力共同研究にて実験		沸騰時のスクラビング効果については、電力共同研究にて実験	にて実施した試験概要
が行われており、未飽和時のスクラビング効果との比較が行われ		が行われており、未飽和時のスクラビング効果との比較が行われ	をまとめている。
ている。試験の概要と試験結果を以下に示す。		ている。試験の概要と試験結果を以下に示す。	
(1)試験の概要		<b>a</b> . 試験の概要	
試験装置は直径約1m, 高さ5m の図3 に示す円筒状容器であり,		試験装置は直径約1m,高さ5mの <u>第3図</u> に示す円筒状容器で	
表1 に示す試験条件のもと、スクラバ水のスクラビング効果を測		あり, 第1表に示す試験条件のもと, スクラバ水のスクラビン	
定している。		グ効果を測定している。	
(2)試験結果		b. 試験結果	
スクラバ水が未飽和である場合と、沸騰している場合の試験結		スクラバ水が未飽和である場合と,沸騰している場合の試験	
果を図4 に示す。図4 では未飽和時の実験データを白丸,沸騰時		結果を <u>第4図</u> に示す。 <u>第4図</u> では未飽和時の実験データを白丸,	
の実験データを黒丸で示しており、スクラバ水の水深を実機と同		沸騰時の実験データを黒丸で示しており、スクラバ水の水深を	
程度(約3m)とした場合では、スクラビング効果は沸騰時と未飽		実機と同程度(約1m)とした場合では、スクラビング効果は沸	
和時で同等程度となっている。このことから、実機においても、		騰時と未飽和時で同等程度となっている。このことから、実機	
沸騰後にサプレッション・プールのスクラビング効果が全く無く		においても、沸騰後にサプレッション・プールのスクラビング	
なる (DF=1) ことにはならず,沸騰後のスクラビングがサプレッ		効果が全く無くなる(DF=1)ことにはならず,沸騰後のス	
ション・チェンバの総合的な捕集効果に与える影響は限定的とな		クラビングがサプレッション・チェンバの総合的な捕集効果に	
ると考えられる。		与える影響は限定的となると考えられる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
CARRIER GAS OUTLET CARRIER GAS OUTLET INLET INLET INJECTION NOZZLE HEATER FOR BOILING		CARRIER GAS OUTLET CARRIER GAS	<ul> <li>・記載方針の相違</li> <li>【東海第二】</li> <li>島根2号炉は,沸騰</li> <li>時のスクラビング効果</li> <li>について電力共同研究</li> <li>にて実施した試験概要</li> <li>をまとめている。</li> </ul>
表1 訊紙条件 Thruseter Furuseter Standard Bane Geometric injection nozile dismeter (cm) 15 Geometric injection nozile dismeter (cm) 15 pool mater temperature (cv) 180 20~300 Bydraulic cerrier gas temperature (cv) 180 20~300 property stems freeind (co.1.% 50 20~300 Arresol perticle dismeter (cm) 0.17-1.1 0.1-2.1 property saterial		第1表 就販染件 第1表 就販条件 Parameter Parameter Parameter Parameter Parameter Property acrubing depth property acrubing depth meter demerature property acrubing depth meter property acrubing depth meter property activity meter property activity meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter met	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
図4 エアロゾル粒子に対するスクラビング効果           出典:共同研究報告書「放射能放出低減装置に関する開発研究」 (PHASE2) 最終報告書 平成5 年3 月		第4図 エアロゾル粒子に対するスクラビング効果 出典:共同研究報告書「放射能放出低減装置に関する開発研究」 (PHASE2) 最終報告書 平成5年3月	<ul> <li>記載方針の相違</li> <li>【東海第二】</li> <li>島根2号炉は,沸騰</li> <li>時のスクラビング効果</li> <li>について電力共同研究</li> <li>にて実施した試験概要</li> <li>をまとめている。</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(4) 沸騰による除去効果への影響について	(2),沸騰による除去効果への影響について	
		スクラビングによる除去効果について、MAAP解析ではスク	
		ラビング計算プログラム (SUPRAコード) により計算された	
		DF値のデータテーブルに、プール水深、エアロゾルの粒子径、	
		キャリアガス中の水蒸気割合,格納容器圧力及びサプレッショ	
		ン・プールのサブクール度の条件を補間して求めている。	
	「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破	「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」	
	損)」の代替循環冷却系を使用できない場合では,第11図のと	の残留熱代替除去系を使用できない場合では、第5図のとおり、	
	おり、格納容器圧力逃がし装置による格納容器除熱(以下、「格	格納容器フィルタベント系による格納容器ベントの実施に伴いサ	
	納容器ベント」という。)の実施に伴いサプレッション・プール	プレッション・プールは飽和状態(沸騰状態)になるため、サプ	
	は飽和状態(沸騰状態)になるため、サプレッション・プール	レッション・プールの沸騰による除去効果への影響を確認した。	
	の沸騰による除去効果への影響を確認した。MAAP解析条件	MAAP評価条件及び評価を第2表及び第3表に示す。なお,	
	及び評価結果を第2表及び第3表に示す。なお,エアロゾルの	エアロゾルの粒径については、スクラビング前後でそれぞれ最も	
	粒径については、スクラビング前後でそれぞれ最も割合の多い	割合の多い粒径について除去効果への影響を確認した。その結果、	
	粒径について除去効果への影響を確認した。その結果、第3表	第3表のとおり沸騰時の除去効果は非沸騰時に比べて小さいこと	
	のとおり沸騰時の除去効果は非沸騰時に比べて小さいことを確	を確認した。	
	認した。		
	ただし、「雰囲気圧力・温度による静的負荷(格納容器過圧・		・記載箇所の相違
	過温破損)」の代替循環冷却系を使用できない場合では,第12		【東海第二】
	図のとおり,原子炉圧力容器内のCs-137は,大破断LOC		島根2号炉では,「1.
	<u>Aにより生じた破断口より格納容器内気相部へ移行し、その後</u>		スクラビング時のサプ
	<u>重力沈降等により、事象発生5時間程度で大部分が格納容器内</u>		レッション・プール水の
	<u>液相部へ移行するため、本評価においてサプレッション・プー</u>		状態」に記載している。
	<u>ルの沸騰による除去効果の減少の影響はほとんどないと考え</u>		
	<u> </u>		
	<u>なお, CsI, CsOHの沸点はそれぞれ1,280℃,272.3℃</u>		・記載方針の相違
	<u>以上※3であり,シビアアクシデント時に格納容器内でCsI</u> ,		【東海第二】
	<u>CsOHが揮発することは考えにくいが、サプレッション・プ</u>		東海第二では, 再揮発
	<u>ールの沸騰に伴い液相部中のCsI,CsOHの一部が気相部</u>		による影響を記載して
	<u>へ移行する可能性がある。ただし、その場合でも、ドライウェ</u>		いる。
	ルから格納容器圧力逃がし装置を介した場合のC s -137 放出		
	<u>量(事象発生7日間で約18TBq)に包絡されると考えられる。</u>		
	※3 化合物の辞典 髙本 進・稲本直樹・中原勝儼・山﨑 昶[編		
	集」 1997 年 11 月 20 日		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海領	第二発電所(2	018.9.12版)	島根原子力発電所 2号
		100 80 + $\tau$ $\gamma$ $\gamma$ $\lambda_{g}$ (C) 20 -20 0 -20 24 第 11 図 サプシンツ	容器スプレイ 冷却系(常設 ル度の低下 約容器圧力進がし装置による 約容器圧力低下により、サ: 48 72 事故後の ション・プ ⁰ 、	) による格納容器冷却(約3.9時間)に伴う 5格納容器除熟機作(約19時間)の実施に伴う プレッション・ブールは飽和状態となる。 96 120 144 168 時間 (b) ールのサブクール度の推移	100 $\frac{100}{80}$ $\frac{100}{10}$ $\frac{100}{80}$ $\frac{100}{10}$ $\frac{100}{80}$ $\frac{100}{10}$ $\frac{100}{80}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{$
			第2表 評	価条件	第2表 評価条件
		項目	評価条件*	選定理由	項目 評価条件※
		蒸気割合	<b>—</b> %	格納容器ベント実施前のドライ ウェルにおける蒸気割合(約	蒸気割合         M         格納容器ベン           蒸気割合         %         蒸気割合(約)
				55%)相当 救独容器《225案前の救独家	格納容器圧力 体納容器圧力 kPa[gage] kPa[gage]
		格納容器圧力	kPa [gage]	格納容器ペント実施前の格納容 器圧力(400kPa [gage]~465kPa	サプレッション・
		サプレッション・プール	<b>—</b>	[gage]) 相当 実機では水深 3m 以上のため,設	ブール水深     限値を採用       サブクール度     ℃
		水深		定上限値を採用 未飽和状態として設定(設定上	アワップル及     ℃     飽和状態とし       エアロゾルの粒径     μm     スクラビング
		サブクール度		限値) 約和世能として設定(設定下限	<ul> <li>(半径) μm スクラビング</li> <li>※ SUPRAコードに上り計算されたデータテーコ</li> </ul>
			C C		※ SUPKA3- Fics 9計昇されに/ - クノーノ
			$\mu$ m	スクラビング前において,最も 割合が多い粒径	
		エノロシルの粒径(手栓)	$\mu$ m	スクラビング後において,最も 割合が多い粒径	
		※ SUPRAコードによ	い計算されたデー	-タテーブルの設定値を採用	
			第3表 評	価結果	第3表 評価結果
					DF
		粒径	未飽和状態	DF 	
		(サ) (サ)	ブクール度	℃) (サブクール度 ℃)	(サブグール度 C) (・ μm
		μm			μ m



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	<figure></figure>	島根原子力発電所 2号炉	<ul> <li>備考</li> <li>・記載箇所の相違</li> <li>【東海第二】</li> <li>島根2号炉は、図1に</li> <li>記載している。</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 3.1.2.1		
24. 炉心損傷及び原子炉圧力容器破損後の注水及び除熱の考え方	炉心損傷及び原子炉圧力容器破損後の注水及び除熱の考え方につ	20. 炉心損傷, 原子炉圧力容器破損後の注水及び除熱の考え方	
	いて		
柏崎刈羽原子力発電所6 号及び7 号炉(以下「KK6/7」とい		<u>島根原子力発電所2号炉</u> では, 炉心損傷が生じた場合あるい	
う。」)では、炉心損傷が生じた場合あるいは事象が進展し、原		は事象が進展し,原子炉圧力容器(以下「RPV」という。)	
子炉圧力容器(以下「RPV」という。)破損に至った場合の緊急		破損に至った場合の緊急時対策本部による対応をアクシデン	
時対策本部のうち技術支援組織が使用する手順をアクシデン		<u>トマネジメントガイド(以下「AMG」という。)に,運転員に</u>	
トマネジメントの手引き(以下「AMG」という。)に, 運転員が		<u>よる対応</u> を, <u>事故時操作要領書</u> (シビアアクシデント)(以下「S	
使用する手順を事故時運転操作手順書(シビアアクシデント)		OP」という。)に <u>定めている</u> 。このため,有効性評価におけ	
(以下「SOP」という。)に <u>整備している</u> 。このため,有効性評		る	
価における重大事故時の運転員の対応はSOP に従ったものと		ものとなっている。	
なっている。			
SOP には, 炉心損傷後の状況に応じた対応が可能となるよう		SOPには, 炉心損傷後の状況に応じた対応が可能となるよ	
対応フローを定めており,対応の優先順位等についても定めて		う対応フローを定めており,対応の優先順位等についても定め	
いる。このため,想定される状況に対して網羅的に対応可能な		ている。このため、想定される状況に対して網羅的に対応可能	
手順になっていると考えるが、ここでは、炉心損傷後の格納容		な手順になっていると考えるが、ここでは、炉心損傷後の原子	
器内の状況を場合分けし,それらについてSOP による対応が可		炉格納容器内の状況を場合分けし, それらについてSOPによ	
能であることを確認する。SOP の対応フローを図1 に示す。ま		る対応が可能であることを確認する。SOPの対応フローを図	
た,格納容器の構造図を図2 に示す。		1に示す。また,原子炉格納容器の構造図を図2に示す。	
1. 各炉心損傷モードへの対応の網羅性		1. 各炉心損傷モードへの対応の網羅性	
炉心損傷モードのうち, 格納容器先行破損の炉心損傷モード		炉心損傷モードのうち, 格納容器先行破損の炉心損傷モード	
^{※1} を除くと, TQUV, TQUX, TB(長期TB, TBU, <u>TBP, TBD</u> ), LOCA が		^{※1} を除くと, TQUV, TQUX, TB(長期TB, TBU,	
抽出される。		<u>TBD, TBP</u> ), LOCAが抽出される。	
このうち, TQUV, TQUX, TB(長期TB, TBU, <u>TBP, TBD</u> )は, 炉		このうち, TQUV, TQUX, TB(長期TB, TBU,	
心損傷の時点でRPVが健全であり, RPV 内の <u>冷却材</u> はSRV を通		<u>TBD</u> , <u>TBP</u> )は、炉心損傷の時点でRPVが健全であり、	
じてサプレッション・チェンバ(以下「S/C」という。)に放出		R P V内の <u>原子炉冷却材</u> はS R Vを通じてサプレッション・チ	
されている点で,炉心損傷の時点でのRPV の健全性及び <u>格納容</u>		ェンバ(以下「S/C」という。)に放出されている点で, 炉	
器の冷却材の状況が同じ炉心損傷モードである。TQUV, TBP は		心損傷の時点でのRPVの健全性及び原子炉格納容器の原子	
炉心損傷の時点でRPV 内が減圧されていることに対し, TQUX,		炉冷却材の状況が同じ炉心損傷モードである。TQUV,TB	
長期TB, TBU, TBD では炉心損傷の時点でRPV 内が減圧されて		Pは炉心損傷の時点でRPV内が減圧されていることに対し,	
いないが, SOP において, 原子炉水位が <u>有効燃料棒底部から燃</u>		TQUX,長期TB,TBU,TBDでは炉心損傷の時点でR	・評価結果の相違
<u>料棒有効長さの10%高い位置</u> に到達した時点でRPV を減圧する		PV内が減圧されていないが, SOPにおいて, 原子炉水位が	【柏崎 6/7】
手順としていることから、その後は同じ対応となる。		燃料棒有効長底部より燃料棒有効長の20%高い位置でRPVを	
		減圧する手順としていることから、その後は同じ対応となる。	
一方LOCA(LOCA 後の注水失敗による炉心損傷)は,炉心損		一方LOCA(LOCA後の注水失敗による炉心損傷) は,	
傷の時点でRPV のバウンダリ機能を喪失しており,RPV 内の冷		炉心損傷の時点でRPVバウンダリ機能を喪失しており, RP	
却材が上部ドライウェル(以下「D/W」という。)に直接放出さ		V内の原子炉冷却材がドライウェル(以下「D/W」という)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
れる炉心損傷モードである。このため, 炉心損傷時点での <u>格納</u>		に直接放出される炉心損傷モードである。このため、炉心損傷	
容器の圧力,温度等のパラメータには他の炉心損傷モードとの		時点での原子炉格納容器の圧力,温度等のパラメータには他の	
違いが生じるが,各々のパラメータに応じた運転操作がSOP に		炉心損傷モードとの違いが生じるが, 各々のパラメータに応じ	
定められており、対応は可能である。		た運転操作がSOPに定められており、対応は可能である。	
また, LOCA が発生し, D/W に放出された <u>冷却材の多くは,</u>		また, LOCAが発生し, D/Wに放出された <u>原子炉冷却材</u>	
連通孔からその真下にあるベント管(垂直管)を通ってS/C に		<u>はペデスタルに流入し、ペデスタル</u> に水位が形成されると考え	・設備設計の相違
流入すると考えられるものの,連通孔とベント管(垂直管)は		られる。	【柏崎 6/7】
直結されておらず,その間には下部D/W に対して開放されてい			
る箇所があり, LOCA によって放出された冷却材の一部は格納			
<u>容器下部に流入すると考えられる。これにより、格納容器下部</u>			
に水位が形成される <u>可能性</u> が考えられる。			
		※1 格納容器先行破損の炉心損傷モードによって炉心損傷に至った	
合,炉心損傷の時点で原子炉格納容器が破損していることから,SOP に		場合、炉心損傷の時点で原子炉格納容器が破損していることから、	
想定する対応の可否についての不確かさが大きいと考え,ここでの考		SOPに想定する対応の可否についての不確かさが大きいと考え,	
察から除外した。しかしながら,現実的にはSOP に準じ,注水及び除		ここでの考察から除外した。しかしながら, 現実的にはSOP に	
熱を試みるものと考えられる。		準じ、注水及び除熱を試みるものと考えられる。	
炉心損傷後の手順として, RPV の破損及び <u>格納容器下部</u> への		炉心損傷後の手順として, R P Vの破損及びペデスタルへの	
溶融炉心落下に備えた <u>格納容器下部</u> への注水を定めており, <u>格</u>		溶融炉心落下に備えたペデスタルへの注水を定めており,ペデ	
<u>納容器下部</u> の水位 <u>が2m(注水量180m³ 相当)</u> に到達しているこ		<u>スタル</u> の水位が <u>2.4m (注水量 225m³)</u> に到達していることを確	・運用の相違
とを確認した後, 格納容器下部への注水を停止する。 先述の通		認した後, <u>ペデスタル</u> への注水を停止する。先述のとおり, L	【柏崎 6/7】
り, LOCA の場合にはあらかじめ水位が形成されている可能性		OCAの場合にはあらかじめ水位が形成されている可能性が	初期水張り深さの相
が考えられるが, この場合も同様に格納容器下部水位計にて水		考えられるものの、どの炉心損傷モードを経た場合であっても	違。
位 <u>2m</u> を確認した後, <u>格納容器下部</u> への注水を停止する。		<u>ペデスタル水位計にて水位 2.4m</u> を確認した後, <u>ペデスタルへ</u>	・運用の相違
		の注水を停止する。	【柏崎 6/7】
溶融炉心落下時の格納容器下部の水位は,原子炉圧力容器外		溶融炉心落下時のペデスタルの水位は,原子炉圧力容器外の	
の溶融燃料-冷却材相互作用(以下「炉外FCI」という。)及び		溶融燃料-冷却材相互作用(以下「炉外FCI」という。)及	
溶融炉心・コンクリート相互作用(以下「MCCI」という。)へ		び溶融炉心・コンクリート相互作用 (以下「MCCI」という。)	・運用及び解析条件の相
の対応を考慮し, <u>2m</u> 相当としている。しかしながら,仮に <u>格</u>		への対応を考慮し, <u>2.4m</u> 相当としている。しかしながら,仮	違
<u>納容器下部</u> の水位が <u>2m</u> より高い場合であっても, 炉外FCI や		に <u>ペデスタル水位が 2.4m</u> より高い場合であっても,炉外FC	【柏崎 6/7】
MCCI による <u>格納容器</u> の機能維持に問題は無いことを確認 ^{*2} し		I やMCCIによる原子炉格納容器の機能維持に問題ないこ	島根2号炉は,水位が
ている。		とを確認**2している。	高い場合の想定として,
以上より、いずれの炉心損傷モードを経た場合についても		以上より, いずれの炉心損傷モードを経た場合についてもS	ペデスタル開口部下端
SOP によって炉心損傷後の対応をとることが可能である。		OPによって炉心損傷後の対応をとることが可能である。	位置までの高さ(約
			3.8m)の水位が形成され
			ているものとした。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	【比較のため,「添付資料 3.1.2.1」の一部を記載】		
2. 注水及び除熱の考え方	2. 炉心損傷及び原子炉圧力容器破損前後の注水及び除熱の考え	2. 注水及び除熱の考え方	
炉心損傷後の注水及び除熱の考え方については, 徴候に応じ	方	炉心損傷後の注水及び除熱の考え方については, <u>RPVの破</u>	
て対応することとしている。		損の有無で大別している。	
先ず, RPVの破損に至る前の段階においては, RPV内の炉心の		まず, RPVの破損に至る前の段階においては, RPV内の	
状況によらずRPV への注水を優先する手順としている。		炉心の状況によらずRPVへの注水を優先する手順としてい	
		<u>る。</u>	
	(1) 常設低圧代替注水系ポンプを用いた系統		・記載方針の相違
	a. 炉心損傷後の対応について		【東海第二】
	炉心損傷を判断した後は、補機系が不要であり短時間で		島根2号炉は, RPVの
	<u>注水が可能な低圧代替注水系(常設)により原子炉へ注水</u>		破損に至る前の段階に
	する手順としている。また、原子炉注水ができない場合に		おいては, RPV 内の炉心
	おいても、注水手段の確保に努めることとしている。した		の状況によらず原子炉
	がって, 炉心損傷前後ともに原子炉注水を実施する対応方		注水を優先する手順と
	針に違いはないが,事象進展の違いによって以下の異なる		している。東海第二で
	手順となる。		は,炉心損傷後の対応に
	①LOCA時に炉心が損傷した場合は、ヒートアップした		ついて, 事象進展の違い
	炉心へ原子炉注水を実施することにより、炉内で発生す		により対応が異なるこ
	る過熱蒸気がドライウェルに直接放出されドライウェル		とから,その対応手順に
	圧力及び雰囲気温度が急上昇する。そこで、格納容器の		ついて記載している。
	健全性を確保するために、LOCAの判断(ドライウェ		
	ル圧力 13.7kPa[gage]以上)及び炉心損傷の判断(ドラ		
	イウェル又はサプレッション・チェンバ内のガンマ線線		
	量率が設計基準事故相当のガンマ線線量率の10倍以上)		
	により、低圧代替注水系(常設)による原子炉注水操作		
	と代替格納容器スプレイ冷却系(常設)による格納容器		
	冷却操作(ドライウェルスプレイ)を同時に実施する。		
	この場合,原子炉注水により過熱蒸気が発生することか		
	ら、先行して代替格納容器スプレイ冷却系(常設)によ		
	る格納容器冷却操作(ドライウェルスプレイ)を実施し,		
	その後、低圧代替注水系(常設)による原子炉注水操作		
	を実施することで、ドライウェルスプレイを実施してい		
	る状態で原子炉へ注水する手順とする。		
	②LOCA時に炉心が損傷して原子炉注水が実施できない		
	<u>場合は、いずれは溶融炉心の炉心下部プレナムへの移行</u>		
	に伴う原子炉圧力容器下部プレナム水との接触による発		
	<u>生蒸気がドライウェルに放出され、ドライウェル圧力及</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
その後, RPV を破損させることなく原子炉水位を安定させる ことに成功した場合はRPVへの注水及び必要に応じて <u>格納容器</u> からの除熱を並行して実施する手順としている。ただし, RPV 下鏡誑温度が300 ℃に到達し, RPV 下部プレナムへの溶融炉心 の落下が想定される場合はRPV への注水と並行して <u>格納容器</u> <u>下部</u> への注水(水位2.0 m(注水量180m ³ 相当))を実施する手順 としている。	<ul> <li>び雰囲気温度が急上昇することを踏まえて,代替格納容 器スプレイ冷却系(常設)による格納容器冷却操作(ド ライウェルスプレイ)を実施する手順とする。ただし、 実際の操作としては、代替格納容器スプレイ冷却系(常 設)による格納容器冷却操作(ドライウェルスプレイ) を実施後に低圧代替注水系(常設)による原子炉注水操 作を実施することから、炉心損傷の判断後にドライウェ ルスプレイをする手順は①と同様である。</li> <li><u>6.原子炉圧力容器破損前の対応について</u></li> <li>③通常運転時からペデスタル(ドライウェル部)水位を約 血に維持する構造としているが、炉心損傷判断後は、原 子炉圧力容器破損時の溶融炉心の冷却を考慮し、ペデス クル(ドライウェル部)水位を確実に約 Lm 確保するため に格納容器下部注水系(常設)によるペデスタル(ドラ イウェル部)水位の確保操作を実施する手順とする。</li> <li>(ジイウェル部)に存在する水との相互作用によ り、ドライウェル部)に存在する水との相互作用によ り、ドライウェルア力及び雰囲気温度が急上昇するため、 原子炉圧力容器破損を判断した場合は、代替格納容器ス プレイ冷却系(常設)による格納容器冷却操作(ドライ ウェルスプレイ)を実施する手順とする。</li> <li>(ジライウェルスプレイを開始した後は、ペデスタル(ド ライウェル部)に落下した溶融炉心の冷却維持のため、 格納容器下部注水系(常設)によるペデスタル(ドライ ウェル部)に落下した溶融炉心の冷却維持のため、 格納容器下部注水系(常設)によるペデスタル(ドライ ウェル部)注水操作を実施する手順とする。</li> </ul>	その後、RPVを破損させることなく原子炉水位を安定させ ることに成功した場合はRPVへの注水及び必要に応じて原 <u>子炉格納容器</u> からの除熱を並行して実施する手順としている。 ただし、RPV下鏡温度が 300 ℃に到達し、RPV下部プレ ナムへの溶融炉心の落下が想定される場合はRPVへの注水 と並行してペデスタルへの注水(水位2.4m(注水量225m))を 実施する手順としている。	・運用の相違 【東海第二】 島根2号炉は,事故時 に原第二】 島根2号炉は,事故時 によりペデスタ ルに水張りをする運用 としている。東第二で は,通常運転時からペデ スタル(ドライウェル 部)に約1mの水プール を形成している。 ・運用の相違 【東海第二】 島根2号炉は,原子炉 圧力容器破損判断にて 格納容器スプレイによ る格納容器冷却を実施 する手順としていない。
次に, RPVが破損した後は, <u>格納容器下部</u> に崩壊熱に <u>相当す</u> <u>る</u> 量の注水を実施する手順としている。SOP及びAMG に定める RPV 破損の判定方法に基づきRPV の破損を判定した後は, 格納 <u>容器下部</u> に直接崩壊熱 <u>相当</u> 量の注水を実施することとしてお り, その注水量は格納容器外の流量計にて確認する手順として		次に, RPVが破損した後は, <u>ペデスタル</u> に崩壊熱に <u>余裕を</u> <u>みた</u> 量の注水を実施する手順としている。SOP及びAMGに 定めるRPV破損の判定方法に基づきRPVの破損を判定し た後は, <u>ペデスタル</u> に直接崩壊熱 <u>に余裕をみた</u> 量の注水を実施 することとしており, その注水量は <u>ペデスタル水位及び原子炉</u>	・運用の相違 【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
いる。なお, <u>この</u> 流量計の先に <u>下部D/W 以外への分岐は無く,</u>		格納容器外の流量計にて確認する手順としている。なお、杰流	
確実に <u>下部D/W</u> への注水量を確認出来る設備構成となってい		量計の先にある <u>ペデスタル以外への分岐配管については, 逆止</u>	・設備設計の相違
る。また, 格納容器からの除熱が必要な場合は下部D/W への注		<u>弁または常時閉の手動弁があり、他系統へ流入することなく、</u>	【柏崎 6/7】
水と格納容器からの除熱とを並行して実施する手順としてい		確実にペデスタルへの注水量を確認できる設備構成となって	
る。		いる。また, 原子炉格納容器からの除熱が必要な場合はペデス	
		<u>タル</u> への注水と <u>原子炉格納容器</u> からの除熱とを並行して実施	
		する手順としている。	
※2 柏崎刈羽原子力発電所6号及び7号炉 重大事故等対策の有効性評価		※2 <u>島根原子力発電所2号炉</u> 重大事故等対策の有効性評価について	
について 「3.3 原子炉圧力容器外の容融燃料ー冷却材相互作用 添付		3.3 原子炉圧力容器外の溶融燃料-冷却材相互作用 添付資料	
資料3.3.3 格納容器下部の水張りの適切性」参照。格納容器下部水位		3.3.3 ペデスタルへの水張り実施の適切性」参照。ペデスタルの水	
の増加によって物理現象発生時の格納容器への負荷が高くなると考え		位が高い方が物理現象発生時の原子炉格納容器への負荷が高くな	・解析条件の相違
られる炉外FCI について, <u>格納容器下部水位が7.0 m(リターンライン</u>		ると考えられる炉外 FCI について, <u>溶融炉心がペデスタルに落下す</u>	【柏崎 6/7】
相当)の場合であっても,格納容器下部の内側鋼板の最大応力は <u>約278</u>		<u>る前に、ペデスタルにペデスタル開口部下端位置までの高さ(約</u>	
<u>MPa</u> であり,水位2mの場合の約32MPa と比べて約9倍に増加してい		3.8m)の水位が形成されているものとした。これ以上の水位を形成	
<u>るが,格納容器下部</u> の内側鋼板の降伏応力(490 MPa)を十分に下回って		させるためには、ドライウェル床面全面を満たしながら上昇させる	
おり,格納容器破損に至るおそれはないことを確認している。 格納容		必要があることから, 仮にペデスタル注水を入れすぎたとしても開	
器下部の水位上昇の要因がLOCA に起因する <u>冷却材である</u> 場合,サブク		口部下端位置以上の水位となることは考えにくい。また、ここでは	
ール度は低くなり炉外FCI 発生可能性そのものを小さくするととも		現実的な溶融炉心の落下様態を想定した条件を適用して評価した	
に,発生した場合でも発生する最大応力は小さくなるものと考える。		場合, ペデスタルの内側鋼板の最大応力は <u>14MPa であり, ペデスタ</u>	
		<u>ル</u> の内側鋼板の降伏応力(490MPa)を十分に下回っており,格納容	
		器破損に至る恐れはないことを確認している。 <u>ペデスタル</u> の水位上	
		昇の要因がLOCAに起因する <u>原子炉冷却材であった</u> 場合,サブク	
		ール度は低くなり炉外 FCI 発生可能性そのものを小さくするとと	
		もに,発生した場合でも発生する最大応力は小さくなるものと考え	
		る。	
	d. 本系統の停止及び一時的な運転について		・運用の相違
	⑥本系統は外部水源を用いた手段であり、本系統の運転継		【東海第二】
	続によりサプレッション・プール水位が上昇する。そこ		
	<u>で、格納容器ベントを遅延させる観点から、本系統によ</u>		
	る原子炉注水操作や格納容器冷却操作(ドライウェルス		
	プレイ)を停止し、代替循環冷却系による格納容器除熱		
	操作を実施する。		
	⑦ただし、代替循環冷却系による格納容器除熱操作を実施		
	する状態において格納容器圧力及び雰囲気温度が上昇す		
	る場合には、代替格納容器スプレイ冷却系(常設)によ		
	る格納容器冷却操作(ドライウェルスプレイ)を一時的		
	に実施する手順とする。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>(2)</u> 代替循環冷却系		
	⑧代替循環冷却系は残留熱除去系海水系又は緊急用海水系		
	等の補機系の起動後に期待できる系統であり、運転開始		
	<u>までに一定の時間を要するが、内部水源であるため本系</u>		
	統の運転継続によりサプレッション・プール水位は上昇		
	しない。したがって、起動が可能となった時点で本系統		
	を運転開始する手順とし,サプレッション・プール水位		
	の上昇を抑制しつつ、原子炉注水操作や格納容器冷却操		
	<u>作(ドライウェルスプレイ)を実施することで,損傷炉</u>		
	心の冷却や格納容器の冷却及び除熱を実施することとす		
	<u>る。</u>		
	<u>3. 各事象の対応の流れについて</u>		・運用の相違
	<u>炉心損傷に至る事象としては、起因事象がLOCAの場合と</u>		【東海第二】
	<u>過渡事象の場合で事象進展が異なることが考えられる。また,</u>		島根2号炉は,RPV
	初期に原子炉注水に成功する場合と成功しない場合において		が破損した後の注水及
	<u>も、事象進展が異なることが考えられる。以上の事象進展の違</u>		び除熱の運転操作につ
	いを踏まえ、事故対応の流れを第1図に示す。		いて, どの炉心損傷モー
しかしながら, RPV が破損した後は, RPV 内の溶融炉心の状		しかしながら、RPVが破損した後は、RPV内の溶融炉心	ドを経た場合であって
態,RPV 破損口の状態, <u>格納容器下部</u> への溶融炉心の落下量,		の状態,RPV破損口の状態, ペデスタルへの溶融炉心の落下	も同じ優先順位で実施
格納容器圧力及び温度等, <u>格納容器</u> 内の状態の不確かさが大き		量,格納容器圧力及び温度等,原子炉格納容器内の状態の不確	する。
く,また,注水又は除熱を実施可能な設備が限定され,注水又		かさが大きく,また,注水又は除熱を実施可能な設備が限定さ	
は除熱に使用できる流量が不足する場合を想定すると, 重大事		れ,注水又は除熱に使用できる流量が不足する場合を想定する	
故時に確実なアクシデントマネジメントを実施できるよう, 注		と, 重大事故時に確実なアクシデントマネジメントを実施でき	
水及び除熱の優先順位を明確化しておく必要がある。このた		るよう,注水及び除熱の優先順位を明確化しておく必要があ	
め,AMGではRPV破損判定後の運転操作の優先順位を次の様に定		る。このため、 <u>SOP及び</u> AMGではRPV破損判定後の運転	
めている。		操作の優先順位を次の様に定めている。	
優先順位1:D/W スプレイ		優先順位1:D/Wスプレイ	
・開始条件:格納容器圧力 <u>465kPa</u> (1.5Pd)以上又は格納容器		・開始条件:格納容器圧力 <u>640kPa</u> (1.5Pd)以上又は格納容	・設備設計の相違
温度190 ℃以上		器温度 190℃以上	【柏崎 6/7】
・停止条件:格納容器圧力 <u>390kPa</u> 以下		・停止条件:格納容器圧力 <u>588kPa</u> 以下 <u>又は格納容器温度</u>	・運用の相違
		<u>171℃以下</u>	【柏崎 6/7】
・流量: <u>140 m³/h</u> 以上		・流量: <u>120m³/h</u>	スプレイ停止基準の
			相違。
優先順位2:S/C スプレイ			・運用の相違
・開始条件,停止条件及び流量は優先順位1 と同じ			【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	備考
		島根2号炉では外部
		水源によるS/Cスプ
		レイには期待しない。
優先順位3: 格納容器下部注水	優先順位2: ペデスタル注水	
・流量:崩壊熱 <u>相当量(スクラム後5~10 時間:50 m³/h,</u>	<ul> <li>流量:崩壊熱に余裕をみた量(スクラム後~5時間:60m³</li> </ul>	・運用の相違
<u>10~20 時間:40 m³/h, 20時間以降:35 m³/h)</u> で注水	<u>∕h, 5~10</u> 時間:55m³∕h, 10~20時間:35m³∕h,	【柏崎 6/7】
	20 時間~40 時間: 30m ³ /h, 40 時間~80 時間: 20m ³	
	✓h, 80 時間~120 時間:15m³√h, 120 時間以降:	
	<u>12m³/h)</u> で注水	
優先順位4:RPV 破損後のRPV への注水	優先順位3:RPV破損後のRPVへの注水	
・流量 : <u>30 m³/h</u> (S/C 水源でECCS を運転できる場合は全量	<ul> <li>・流量:<u>15m³/h</u>(S/C水源でECCSを運転できる場合は</li> </ul>	・設備設計の相違
注水)	全量注水)	【柏崎 6/7】
これらは可能な限り並行して実施すべきものであるが. 中で	これらは可能な限り並行して実施すべきものであるが、中	
もスプレイを優先する理由は、D/W スプレイ又はS/C スプレイ	でも格納容器スプレイを優先する理由は、格納容器スプレイ	
を開始する状況は格納容器過圧又は過温破損の防止及び早期	を開始する状況は格納容器過圧又は過温破損の防止及び早	
の格納容器ベントを抑制するための運転操作が必要な状況で	期の格納容器ベントを抑制するための運転操作が必要な状	
あり、これに即応する必要があるためである。D/W スプレイと	況であり、これに即応する必要があるためである。D/Wス	
S/C スプレイでは、より広い空間にスプレイすること等によ	プレイとS/Cスプレイでは、より広い空間にスプレイする	
り、格納容器の圧力及び温度の抑制効果が高いと考えられる	こと等により、原子炉格納容器の圧力及び温度の抑制効果が	
D/W スプレイを優先することとしている。	高いと考えられるD/Wスプレイを実施することとしてい	
	る。 <u>また、D/Wにスプレイを実施することでペデスタルへ</u>	・設備設計の相違
	<u>冷却材が流入するため、ペデスタルの溶融炉心の冷却にも期</u>	【柏崎 6/7】
	待できる。	島根2号炉はD/W
		スプレイにより格納容
		器下部 (ペデスタル) へ
		冷却材が流入する。
格納容器下部の溶融炉心の冷却については RPV 破損前の注	ペデスタルの溶融炉心の冷却については RPV破損前の	
水により180 m ³ (スクラム後5~10 時間後の崩壊熱に換算する	注水によりペデスタル内には約 70m ³ (スクラム後5~10 時間	・運用の相違
と約3.6 時間分)の原子炉冷却材が確保されていること及びス	後の崩壊勢に換算すると約2時間分)の冷却材が確保されて	【柏崎 6/7】
プレイされた冷却材の流入によりS/C 水位が上昇した後は、リ	いること及びスプレイされた冷却材の流入によりD/W床	・設備設計の相違
ターンラインから格納容器下部への冷却材の流出による格納	面からの流出によるペデスタルへの注水にも期待できるこ	【柏崎 6/7】
容器下部への注水にも期待できる(通常運転水位からリターン	とを考慮し、D/Wスプレイに次ぐ優先順位としている。	ABWRはリターン
ラインまでの体積は約810 m ³ であり、流量140 m ³ /hで連続スプ		ラインがあることから.
レイする場合,スプレイ開始から約5.8 時間でS/C 水位がリタ		スプレイ水の格納容器
ーンラインに到達する。)ことを考慮し、スプレイに次ぐ優先		下部への冷却材の流出
順位としている。		による格納容器下部へ

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			の注水にも期待できる。
RPV 破損後のRPV への注水には,RPV 内に残存する溶融炉心		RPV破損後のRPVへの注水には、RPV内に残存する	
の冷却及びRPV 破損口から <u>冷却材</u> が流出することによる <u>格納</u>		溶融炉心の冷却及びRPV破損口から原子炉冷却材が流出	
<u>容器下部</u> の溶融炉心の冷却にも期待できると考えられるが,		することによるペデスタルの溶融炉心の冷却にも期待でき	
RPV 破損口からの <u>冷却材</u> の流出の状況を確実に把握すること		ると考えられるが、RPV破損口からの原子炉冷却材の流出	
は困難なことから, 格納容器下部注水に必要な流量を確保した		の状況を確実に把握することは困難なことから、 ペデスタル	
後の優先順位としている。		注水に必要な流量を確保した後の優先順位としている。	
しかしながら, RPV が破損した後の注水及び除熱の優先順位		しかしながら、RPVが破損した後の注水及び除熱の優先	
については,現在改めて検討を進めているところであり,検討		順位については, <u>今後の検討結果により</u> , 前述の優先順位は	
の結果によっては今後、前述の優先順位は変わりうるものと考		変わりうるものと考えている。	
えている。			
スプレイ又は注水により、S/C 水位が真空破壊弁高さまで到		<u>D/W</u> スプレイ <u>または</u> 注水により, <u>S/C水位が通常水位</u>	・運用及び設備設計の相
<u>達する時点でスプレイを停止し、格納容器ベントを実施する。</u>		+約 1.3m に到達する時点でスプレイを停止し, 格納容器べ	違
<u>S/C 水位がリターンラインを上回る場合等,状況に応じて格</u>		<u>ントを実施する。ベント開始後は,崩壊熱に余裕をみた量の</u>	【柏崎 6/7】
納容器下部への注水の流量を抑制する余地はあると考えられ		<u>注水を継続するとともに、ペデスタル水位計を監視し、水位</u>	
るものの,格納容器下部の溶融炉心を確実に冷却する観点か		を維持することによりペデスタルの溶融炉心の冷却を継続	
<u>ら,格納容器下部注水を停止する手順は定めておらず,崩壊熱</u>		<u>する。</u>	
相当量を注水し続ける手順としている。			
以上の通り,格納容器内の状態の不確かさを考慮しても,SOP		以上のとおり,原子炉格納容器内の状態の不確かさを考慮	
によって確実なアクシデントマネジメントを実施することが		しても,SOPによって確実なアクシデントマネジメントを	
可能である。		実施することが可能である。	
以上			



予炉	備考
図1 SOP の対応フロー(全体)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	л н л		
0 D 5 			
ω <u>-</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.2	20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	7			
	. (3/3			
	広			
	の 秋			
	SOP			
0 P - 3				
од				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
図2 格納容器の構造図 (ABWR, RCCY 型格納容器)		Image: 10 to	

(日世町 가다 작	原子力発電所 6/7号	一炉 (2017.12.20版)	東海第	二発電所(	(2018. 9. 12版)		島根原子力発行	電所 2号
29. 原子炉水	位及びインターロックの	概要	1 原子炉水位及びイン	(ターロック	7の概要	24. 原子炉水位	及びインターロ	ックの概要
			原子炉水位関連の主	要インター	ロックの概要を第1表に示す。	原子炉圧力容器	昂水位計装説明図	を図1に元
								子炉水位
							- L	• L2
							-40	0 +L1H
							炉心シュラウド	-
							基準水位:気水分 (原子)	離器下端レベル 炉圧力容器零レベル
			holes a				(注)水位は	気水分離器下端
			<u></u>		·····································		よりの	数値を示す。
原子炉水位 L-8:	<ul><li>圧力容器基準点(底部)からの水位</li><li>約13.9m</li></ul>	主なインターロック等 原子炉隔離時冷却系トリップ	原子炉水位	表 設定点 (原子炉圧力容 器底部から)	主要なインターロック	原子炬水位	よりの <u> ま</u> 準水位からの水位	数値を示す。 主な水位信号の
原子炉水位 L-8: 原子炉水位高(レー L-3:	圧力容器基準点(底部)からの水位       約13.9m	主なインターロック等       原子炉隔離時冷却系トリップ       原子炉スクラム	第1 原子炉水位 L8: 原子炉水位高(レベル8)	表 設定点 (原子炉圧力容 器底部から) +1,481cm		原子炉水位       L8(レベル8)	よりの 基準水位からの水位 132cm上	数値を示す。 主な水位信号の 原子炉隔離時/
原子炉水位 L-8: 原子炉水位高(レー L-3: 原子炉水位低(レー	圧力容器基準点(底部)からの水位       ル8)     約13.9m       ル3)     約12.9m	主なインターロック等 原子炉隔離時冷却系トリップ 原子炉スクラム RIP4 台トリップ	第1 原子炉水位 L8: 原子炉水位高(レベル8)	表 設定点 (原子炉圧力容 器底部から) +1,481cm	主要なインターロック       原子炉隔離時冷却系トリップ       高圧炉心スプレイ系注入弁閉止	原子炉水位       L8(レベル8)       L3(レベル3)	よりの) 基準水位からの水位 132cm上 16cm上	<ul> <li>         故値を示す。         </li> <li>         主な水位信号の         </li> <li>         原子炉隔離時科         原子炉スクラ         </li> <li>         主素気隔離弁         </li> </ul>
<ul> <li>原子炉水位</li> <li>L-8:</li> <li>原子炉水位高(レー</li> <li>L-3:</li> <li>原子炉水位低(レー</li> <li>L-2:</li> <li>原子炉水位低(レー</li> </ul>	圧力容器基準点(底部)からの水位       ル8)     約13.9m       ル3)     約12.9m       約11.7m	主なインターロック等         原子炉隔離時冷却系トリップ         原子炉スクラム         R I P4 台トリップ         原子炉隔離時冷却系自動起動(給水機能)         R I P6 台トリップ	<ul> <li>第二</li> <li>原子炉水位</li> <li>L8:</li> <li>原子炉水位高(レベル8)</li> <li>L3:</li> <li>原子炉水位低(レベル3)</li> </ul>	表 設定点 (原子炉圧力容 器底部から) +1,481cm +1,372 cm	主要なインターロック           原子炉隔離時冷却系トリップ           高圧炉心スプレイ系注入弁閉止           原子炉スクラム           非常用ガス処理系自動起動	原子炉水位       L8(レベル8)       L3(レベル3)       L2(レベル2)       L1H(レベル1H)	よりの) 基準水位からの水位 132cm上 16cm上 112cm下 261cm下	<ul> <li></li></ul>
<ul> <li>原子炉水位</li> <li>L-8:</li> <li>原子炉水位高(レー</li> <li>L-3:</li> <li>原子炉水位低(レー</li> <li>L-2:</li> <li>原子炉水位低(レー</li> <li>L-1.5:</li> <li>原子炉水位低(レー</li> </ul>	圧力容器基準点(底部)からの永位       ル8)     約13.9m       ル3)     約12.9m       ル2)     約11.7m       ル1.5)     約10.2m	主なインターロック等           原子炉隔離時冷却系トリップ           原子炉隔離時冷却系自動起動(給水機能)           RIP4台トリップ           原子炉隔離時冷却系自動起動(給水機能)           RIP6台トリップ           主蒸気隔離弁問 高圧炉心注水系自動起動 原子位隔離時冷却系自動起動(ECCS機能)	<ul> <li>第二</li> <li>原子炉水位</li> <li>L8:</li> <li>原子炉水位高(レベル8)</li> <li>L3:</li> <li>原子炉水位低(レベル3)</li> <li>L2:</li> <li>原子炉水位異常低下(レベル2)</li> </ul>	表 設定点 (原子炉圧力容 器底部から) +1,481cm +1,372 cm +1,243 cm	主要なインターロック           原子炉隔離時冷却系トリップ           高圧炉心スプレイ系注入弁閉止           原子炉隔離時冷却系自動起動           原子炉隔離時冷却系自動起動           直圧炉心スプレイ系自動起動           直圧炉心スプレイ系自動起動           直圧炉心スプレイ系自動起動	原子炉水位 L 8 (レベル8) L 3 (レベル3) L 2 (レベル2) L 1 H (レベル1H) L 1 (レベル1)	よりの 基準水位からの水位 132cm上 16cm上 112cm下 261cm下 381cm下	<ul> <li>         はを示す。         </li> <li>         主な水位信号の         原子炉隔離時科         原子炉スクラコ         </li> <li>         臣子炉隔離時科         原子炉隔離時科         </li> <li>         高圧炉心スプロ         </li> <li>         低圧炉心スプロ         </li> <li>         低圧注水系起動         </li> </ul>
原子炉水位         L-8:         原子炉水位高(レー         L-3:         原子炉水位低(レー         L-2:         原子炉水位低(レー         L-1.5:         原子炉水位低(レー         L-1:	圧力容器基準点(底部)からの水位       ル8)     約13.9m       ル3)     約12.9m       ル2)     約11.7m       ル1.5)     約10.2m       約9.4m	主なインターロック等         原子炉隔離時冷却系トリップ         原子炉隔離時冷却系自動起動(給水機能)         RIP4台トリップ         原子炉隔離時冷却系自動起動(給水機能)         RIP6台トリップ         主蒸気隔離弁閉         高圧炉心注水系自動起動(ECCS機能)         低圧注水系自動起動	<ul> <li>第二</li> <li>原子炉水位</li> <li>L8:</li> <li>原子炉水位高(レベル8)</li> <li>L3:</li> <li>原子炉水位低(レベル3)</li> <li>L2:</li> <li>原子炉水位異常低下(レベル2)</li> <li>L1:</li> </ul>	表 設定点 (原子炉圧力容 器底部から) +1,481cm +1,372 cm +1,243 cm	主要なインターロック       原子炉隔離時冷却系トリップ       高圧炉心スプレイ系注入弁閉止       原子炉隔離時冷却系自動起動       原子炉隔離時冷却系自動起動       高圧炉心スプレイ系自動起動       高圧炉心スプレイ系自動起動       高圧炉心スプレイ系自動起動       高圧炉心スプレイ系自動起動       高圧炉心スプレイ系自動起動       高圧炉心スプレイ系自動起動       高圧炉心スプレイ系自動起動       高圧炉心スプレイ系自動起動       主蒸気隔離弁閉止       再循環系ボンプ全台(2台)トリップ       残留熱除去系(低圧注水系)自動起動	原子炉水位 L 8 (レベル8) L 3 (レベル3) L 2 (レベル2) L 1 H (レベル1H) L 1 (レベル1) T A F	よりの) 基準水位からの水位 132cm上 16cm上 112cm下 261cm下 381cm下 427cm下	主な水位信号の           原子炉隔離時科           原子炉隔離時科           原子炉隔離時科           原子炉隔離時科           高圧炉心スプロ           低圧炉心スプロ           低圧炉心スプロ           低圧炉心スプロ           低圧炉水系起動           燃料棒有効長町
原子炉水位         L-8:         原子炉水位高(レー         L-3:         原子炉水位低(レー         L-2:         原子炉水位低(レー         L-1.5:         原子炉水位低(レー         L-1:         原子炉水位低(レー         L-1:         原子炉水位低(レー         L-1:         原子炉水位低(レー         TAF:         右外燃料は町部	正力容器基準点(底部)からの水位 か8) 約13.9m 約13.9m 約12.9m 約12.9m 約11.7m 約11.7m 約10.2m 約9.4m 約9m	主なインターロック等         原子炉隔離時冷却系トリップ         原子炉スクラム         RIP4台トリップ         原子炉隔離時冷却系自動起動(給水機能)         RIP6台トリップ         主蒸気隔離弁問         高圧炉心注水系自動起動(ECCCS機能)         低圧注水系自動起動         有効燃料棒頂部	原子炉水位       原子炉水位高(レベル8)       L3:       原子炉水位低(レベル3)       L2:       原子炉水位異常低下(レベル2)       L1:       原子炉水位異常低下(レベル1)       ※:ドライウェル圧力高(	表 設定点 (原子炉圧力容 器底部から) +1,481cm +1,372 cm +1,243 cm +961 cm 言号とのアンド	主要なインターロック         原子炉隔離時冷却系トリップ         高圧炉心スプレイ系注入弁閉止         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         高圧炉心スプレイ系自動起動         高圧炉心スプレイ系自動起動         直振行応スプレイ系自動起動         直振行応スプレイ系自動起動         直振行応スプレイ系自動起動         直振気隔離弁閉止         再循環系ポンプ全台(2台)トリップ         残留熱除去系(低圧注水系)自動起動         自動減圧系タイマー作動**         *<	原子炉水位 L 8 (レベル 8) L 3 (レベル 3) L 2 (レベル 2) L 1 H (レベル 1 H) L 1 (レベル 1) T A F	よりの 基準水位からの水位 132cm上 16cm上 112cm下 261cm下 381cm下 427cm下 <b>原子炉圧力容</b>	数値を示す。 主な水位信号の 原子炉隔離時 原子炉スクラン 主蒸気隔離弁 原子炉隔離時 高圧炉心スプロ 低圧炉心スプロ 低圧定小スプロ 低圧注水系起動 然料棒有効長可
原子炉水位         L-8:         原子炉水位高(レー         L-3:         原子炉水位低(レー         L-2:         原子炉水位低(レー         L-1:5:         原子炉水位低(レー         L-1:         原子炉水位低(レー         L-1:         原子炉水位低(レー         TAF:         有効燃料棒頂部		主なインターロック等         原子炉隔離時冷却系トリップ         原子炉スクラム         RIP4台トリップ         原子炉隔離時冷却系自動起動(給水機能)         RIP6台トリップ         主蒸気隔離弁閉         高圧炉心注水系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         低圧注水系自動起動         有効燃料棒頂部	原子炉水位         原子炉水位高(レベル8)         L3:         原子炉水位低(レベル3)         L2:         原子炉水位異常低下(レベル2)         L1:         原子炉水位異常低下(レベル1)         ※:ドライウェル圧力高付	表 設定点 (原子炉圧力容 器底部から) +1,481cm +1,372 cm +1,243 cm +961 cm 言号とのアンド	主要なインターロック       原子炉隔離時冷却系トリップ       原子炉スクラム       非常用ガス処理系自動起動       原子炉隔離時冷却系自動起動       原子炉隔離時冷却系自動起動       高圧炉心スプレイ系自動起動       主蒸気隔離弁閉止       再循環系ポンプ全台(2台)トリップ       残留熱除去系(低圧注水系)自動起動       自動減圧系タイマー作動*       *条件で作動	原子炉水位 L8(レベル8) L3(レベル3) L2(レベル2) L1H(レベル1H) L1(レベル1) TAF	よりの 基準水位からの水位 132cm上 16cm上 112cm下 261cm下 381cm下 427cm下 原子炉圧力容	数値を示す。 主な水位信号の 原子炉隔離時沿 原子炉隔離時沿 高子炉隔離時沿 高圧炉心スプロ 低圧炉心スプロ 低圧症水系起動 然料棒有効長I
原子炉水位         L-8:         原子炉水位高(レー         L-3:         原子炉水位低(レー         L-2:         原子炉水位低(レー         L-1:5:         原子炉水位低(レー         L-1:         原子炉水位低(レー         L-1:         原子炉水位低(レー         TAF:         有効燃料棒頂部	正力容器基準点(底部)からの水位 か8) 約13.9m   ル3) 約12.9m   ル1.5) 約11.7m   ル1.5) 約10.2m   ル1.1) 約9.4m	主なインターロック等         原子炉隔離時冷却系トリップ         原子炉スクラム         RIP4台トリップ         原子炉隔離時冷却系自動起動(給水機能)         RIP6台トリップ         主蒸気隔離弁閉         高圧炉心注水系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         年少時隔離時冷却系自動起動         年初感料棒頂部	原子炉水位         L8:         原子炉水位高(レベル8)         L3:         原子炉水位低(レベル3)         L2:         原子炉水位異常低下(レベル2)         L1:         原子炉水位異常低下(レベル1)         ※:ドライウェル圧力高付	表 設定点 (原子炉圧力容 器底部から) +1,481cm +1,372 cm +1,243 cm +961 cm 言号とのアンド	主要なインターロック           原子炉隔離時冷却系トリップ           高圧炉心スプレイ系注入弁閉止           原子炉スクラム           非常用ガス処理系自動起動           高圧炉心スプレイ系自動起動           高圧炉心スプレイ系自動起動           主蒸気隔離弁閉止           再循環系ボンプ全台(2台)トリップ           残留熱除去系(低圧注水系)自動起動           低圧炉心スプレイ系自動起動           自動減圧系タイマー作動**           *条件で作動	原子炉水位 L8(レベル8) L3(レベル3) L2(レベル2) L1H(レベル1H) L1(レベル1) TAF	よりの 基準水位からの水位 132cm上 16cm上 112cm下 261cm下 381cm下 427cm下 原子・炉圧力容	数値を示す。 主な水位信号の 原子炉隔離時沿 原子炉隔離時沿 高子炉隔離時沿 高圧炉心スプロ 低圧炉心スプロ 低圧定な系起動 然料棒有効長T
原子炉水位         L-8:         原子炉水位高(レー         L-3:         原子炉水位低(レー         L-2:         原子炉水位低(レー         L-1:         原子炉水位低(レー         L-1:         原子炉水位低(レー         L-1:         原子炉水位低(レー         TAF:         有効燃料棒頂部	正力容器基準点(底部)からの永位 れ8) 約13.9m   ル3) 約12.9m   ル1.5) 約10.2m   ル1.5) 約9.4m   約9m	主なインターロック等         原子炉隔離時冷却系トリップ         原子炉スクラム         RIP4台トリップ         原子炉隔離時冷却系自動起動(給水機能)         RIP6台トリップ         主蒸気隔離弁閉         高圧炉心注水系自動起動(ECCS機能)         低圧注水系自動起動         有効燃料棒頂部	原子炉水位         L8:         原子炉水位高(レベル8)         L3:         原子炉水位低(レベル3)         L2:         原子炉水位異常低下(レベル2)         L1:         原子炉水位異常低下(レベル1)         ※:ドライウェル圧力高付	表 設定点 (原子炉圧力容 器底部から) +1,481cm +1,372 cm +1,243 cm +961 cm 言号とのアンド	主要なインターロック           原子炉隔離時冷却系トリップ           高圧炉心スプレイ系注入弁閉止           原子炉スクラム           非常用ガス処理系自動起動           高圧炉心スプレイ系自動起動           高圧炉心スプレイ系自動起動           直素気隔離弁閉止           再循環系ボンプ全台(2台)トリップ           残留熱除去系(低圧注水系)自動起動           自動減圧系タイマー作動*           :条件で作動	原子炉水位 L8(レベル8) L3(レベル3) L2(レベル2) L1H(レベル1H) L1(レベル1) TAF	よりの 基準水位からの水位 132cm上 16cm上 112cm下 261cm下 381cm下 427cm下 原子・炉圧力容	数値を示す。 主な水位信号の 原子炉隔離時沿 原子炉隔離時沿 高圧炉心スプロ 低圧炉心スプロ 低圧炉心スプロ 低圧注水系起動 然料棒有効長T
原子炉水位         L-8:         原子炉水位高(レー         L-3:         原子炉水位低(レー         L-2:         原子炉水位低(レー         L-1:         原子炉水位低(レー         L-1:         原子炉水位低(レー         TAF:         有効燃料棒頂部	正力容器基準点(底部)からの永位 れ8) 約13.9m   ル3) 約12.9m   ル1.5) 約10.2m   ル1.5) 約9.4m   約9m	主なインターロック等         原子炉隔離時冷却系トリップ         原子炉隔離時冷却系自動起動(給水機能)         RIP4台トリップ         原子炉隔離時冷却系自動起動(給水機能)         RIP6台トリップ         主蒸気隔離弁開         高圧炉心注水系自動起動(ECCS機能)         低圧注水系自動起動         有効燃料棒頂部	原子炉水位         L8:         原子炉水位高(レベル8)         L3:         原子炉水位低(レベル3)         L2:         原子炉水位異常低下(レベル2)         L1:         原子炉水位異常低下(レベル1)         ※:ドライウェル圧力高付	表 設定点 (原子炉圧力容 器底部から) +1,481cm +1,372 cm +1,243 cm +961 cm 言号とのアンド	主要なインターロック           原子炉隔離時冷却系トリップ           高圧炉心スプレイ系注入弁閉止           原子炉スクラム           非常用ガス処理系自動起動           高圧炉心スプレイ系自動起動           高圧炉心スプレイ系自動起動           高圧炉心スプレイ系自動起動           直振気隔離弁閉止           再循環系ボンプ全台(2台)トリップ           残留熱除去系(低圧注水系)自動起動           自動減圧系タイマー作動**           *条件で作動	原子炉水位 L 8 (レベル8) L 3 (レベル3) L 2 (レベル2) L 1 H (レベル1H) L 1 (レベル1) TAF	よりの 基準水位からの水位 132cm 上 16cm 上 112cm 下 261cm 下 381cm 下 427cm 下 原子・炉圧力容	<ul> <li>              まな水位信号の             原子炉隔離時沿             原子炉隔離時沿             原子炉隔離時沿             高圧炉心スプリ             低圧炉心スプリ             低圧定応、スプリ               然料棒有効長丁      </li> </ul>
原子炉水位         L-8:         原子炉水位高(レー         L-3:         原子炉水位低(レー         L-2:         原子炉水位低(レー         L-1:         原子炉水位低(レー         L-1:         原子炉水位低(レー         TAF:         有効燃料棒頂部	正力容器基準点(底部)からの永位 れ8) 約13.9m   ル3) 約12.9m   ル1.5) 約10.2m   ル1.5) 約9.4m   約9m	主なインターロック等         原子炉隔離時冷却系トリップ         原子炉スクラム         RIP4台トリップ         原子炉隔離時冷却系自動起動(給水機能)         RIP6台トリップ         主蒸気隔離弁閉         高圧炉心注水系自動起動 原子炉隔離時冷却系自動起動(ECCS機能)         低圧注水系自動起動         有効燃料棒頂部	原子炉水位         L8:         原子炉水位高(レベル8)         L3:         原子炉水位低(レベル3)         L2:         原子炉水位異常低下(レベル2)         L1:         原子炉水位異常低下(レベル1)         ※:ドライウェル圧力高付	表 設定点 (原子炉圧力容 器底部から) +1,481cm +1,372 cm +1,243 cm +961 cm 言号とのアンド	主要なインターロック           原子炉隔離時冷却系トリップ           高圧炉心スプレイ系注入弁閉止           原子炉スクラム           非常用ガス処理系自動起動           高圧炉心スプレイ系自動起動           高圧炉心スプレイ系自動起動           高圧炉心スプレイ系自動起動           直振環系ボンブ全台(2台)トリップ           残留熱除去系(低圧注水系)自動起動           自動減圧系タイマー作動*           *条件で作動	原子炉水位 L8(レベル8) L3(レベル3) L2(レベル2) L1H(レベル1H) L1(レベル1) TAF	よりの 基準水位からの水位 132cm上 16cm上 112cm下 261cm下 381cm下 427cm下 【 原子・炉圧力容	<ul> <li>              まな水位信号の             原子炉隔離時沿             原子炉隔離時沿             原子炉隔離時沿             高圧炉心スプ1             低圧炉心スプ1             低圧炉心スプ1             低圧症法水系起動      </li> <li> <b>然料棒有効長I</b> </li> </ul>
原子炉水位         L-8:         原子炉水位高(レー         L-3:         原子炉水位低(レー         L-2:         原子炉水位低(レー         L-1.5:         原子炉水位低(レー         L-1:         原子炉水位低(レー         TAF:         有効燃料棒頂部	正力容器基準点(底部)からの水位 か8) 約13.9m か13.9m か13.9m 約12.9m か11.7m か11.7m か11.7m 約10.2m か1.5) 約9.4m か9.4m	主なインターロック等         原子炉隔離時冷却系トリップ         原子炉スクラム         RIP4台トリップ         原子炉隔離時冷却系自動起動(給水機能)         RIP6台トリップ         主蒸気隔離弁閉         高圧炉心注水系自動起動)         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         「有効燃料棒頂部	原子炉水位         L8:         原子炉水位高(レベル8)         L3:         原子炉水位低(レベル3)         L2:         原子炉水位異常低下(レベル2)         L1:         原子炉水位異常低下(レベル1)         ※:ドライウェル圧力高付	表 設定点 (原子炉圧力容 器底部から) +1,481cm +1,372 cm +1,243 cm +961 cm 言号とのアンド	主要なインターロック           原子炉隔離時冷却系トリップ           高圧炉心スプレイ系注入弁閉止           原子炉スクラム           非常用ガス処理系自動起動           高圧炉心スプレイ系自動起動           高圧炉心スプレイ系自動起動           主蒸気隔離舟閉止           再循環系ボンプ全台(2台)トリップ           残留熱除去系(低圧注水系)自動起動           自動減圧系タイマー作動*           *条件で作動	原子炉水位 L 8 (レベル8) L 3 (レベル3) L 2 (レベル2) L 1 H (レベル1H) L 1 (レベル1) T A F 図1	よりの 基準水位からの水位 132cm上 16cm上 112cm下 261cm下 381cm下 427cm下 <b>原子/炉圧力</b> 容	<ul> <li> <b>主</b>な水位信号の 原子炉隔離時沿 原子炉隔離時沿 京子炉隔離時沿 高圧炉心スプロ 低圧症な水系起動 然料棒有効長I         </li> <li> <del>器器水位計</del> </li> </ul>
原子炉水位         L-8:         原子炉水位高(レー         L-3:         原子炉水位低(レー         L-2:         原子炉水位低(レー         L-1:         原子炉水位低(レー         L-1:         原子炉水位低(レー         TAF:         有効燃料棒頂部	正力容器基準点(底部)からの水位 れ8) 約13.9m   ル3) 約12.9m   ル1.5) 約10.2m   ル1.5) 約9.4m   約9m	主なインターロック等         原子炉隔離時冷却系トリップ         原子炉スクラム         RIP4台トリップ         原子炉隔離時冷却系自動起動(給水機能)         RIP6台トリップ         主蒸気隔離弁開         高圧炉心注水系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         原子炉隔離時冷却系自動起動         「な功燃料棒頂部	原子炉水位         L8:         原子炉水位高(レベル8)         L3:         原子炉水位低(レベル3)         L2:         原子炉水位異常低下(レベル2)         L1:         原子炉水位異常低下(レベル1)         ※:ドライウェル圧力高付	表 設定点 (原子炉圧力容 器底部から) +1,481cm +1,372 cm +1,243 cm +961 cm 言号とのアンド	主要なインターロック           原子炉隔離時冷却系トリップ           高圧炉心スプレイ系注入弁閉止           原子炉スクラム           非常用ガス処理系自動起動           高圧炉心スプレイ系自動起動           高圧炉心スプレイ系自動起動           主蒸気隔離弁閉止           再循環系ボンプ全台(2台)トリップ           残留熱除去系(低圧注水系)自動起動           自動減圧系タイマー作動**           *条件で作動	原子炉水位 L 8 (レベル8) L 3 (レベル3) L 2 (レベル2) L 1 H (レベル1H) L 1 (レベル1) T A F 図1	まりの 基準水位からの水位 132cm上 16cm上 112cm下 261cm下 381cm下 427cm下 <b>原子炉圧力容</b>	<ul> <li> <b>主</b>な水位信号の         原子炉隔離時沿         原子炉隔離時沿         原子炉隔離時沿         高圧炉心スプロ         低圧炉心スプロ         低圧症は水系起動         然料棒有効長I         </li> <li> <b>器出水位計</b> </li> </ul>



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
31. 格納容器下部ドライウェル(ペデスタル)に落下する溶融デ		26. ペデスタルに落下する溶融デブリ評価条件と落下後の堆積	
ブリ評価条件と落下後の堆積に関する考慮		に関する考慮	
1. 溶融デブリの評価条件		1.溶融デブリの評価条件	
柏崎刈羽原子力発電所6 号及び7 号炉では, MCCI の評価に		島根2号炉では、MCCIの評価にMAAPコードを用いて	
MAAP コードを用いている。MCCI の評価においては, 全炉心に		いる。MCCIの評価においては、全炉心に相当する量が溶融	
相当する量が溶融炉心として <u>格納容器下部</u> に落下するものと		炉心としてペデスタルに落下するものとしており,この溶融炉	
しており、この溶融炉心には炉内構造物等を考慮している。溶		心には炉内構造物等を考慮している。溶融デブリの拡がりに関	
融炉心の拡がりに関する評価条件を表1に示す。		する評価条件を表1に示す。	
2. <u>柏崎刈羽原子力発電所6 号及び7 号炉</u> のMCCI の評価にお		2. <u>島根2号</u> 炉のMCCIの評価における溶融デブリの堆積高	
ける溶融炉心の堆積高さ		さ	
<u>柏崎刈羽原子力発電所6 号及び7 号炉のMCCI</u> の評価では,		<u>島根2号炉のMCCIの評価では、落下した溶融デブリが</u> ペ	
落下した溶融炉心が <u>格納容器下部</u> に一様に広がるものとして		<u>デスタル床上</u> に一様に拡がるものとしており,この場合 <mark>の</mark> 堆積	
おり,この場合堆積高さは <u>約0.68m</u> となる。 <u>格納容器下部</u> に落		高さは <u>約 1 m</u> となる。 <u>ペデスタル内</u> に落下した溶融デブリと	・解析結果の相違
下した溶融炉心と <u>格納容器下部</u> の構造の位置関係を図1_に示		<u>ペデスタル</u> の構造の位置関係を <u>図1</u> に示す。 <u>図1</u> に示すとお	【柏崎 6/7】
す。 図1 に示す通り, 格納容器下部の側面の開口部として最も		り, <u>ペデスタル</u> 側面の開口部として最も低い箇所にある <u>ペデス</u>	・設備設計の相違
低い箇所にある <u>機器搬出入用ハッチまでであっても</u> 4 m 以上		タル開口部までは約 3.8 mの高さがあることから,仮に溶融	【柏崎 6/7】
の高さがあることから、仮に溶融炉心が全量落下しても <u>格納容</u>		炉心が全量落下しても <u>ペデスタル</u> 以外に溶融デブリが拡がる恐	
<u>器下部</u> 以外に溶融炉心が拡がる恐れは無いと考える。		れは無いと考える。	
3. 溶融炉心の堆積高さの不確かさ		3. 溶融デブリの堆積高さの不確かさ	
(1) <u>格納容器下部</u> の構造物の影響		(1) ペデスタルの構造物等の影響	
<u>柏崎刈羽原子力発電所6 号及び7 号炉(ABWR)の格納容器下</u>		<u>島根2号炉のペデスタル内</u> の構造物としては <u>制御棒駆動機</u>	
<u>部内の主な</u> 構造物としては <u>制御棒駆動系(CRD)交換機等が挙げ</u>		構(CRD)交換装置(プラットホーム,旋回レール等含む)が	
られる。溶融炉心へのこれらの構造物の取り込みを考慮する		あり,原子炉圧力容器下部の構造物としてCRDハウジング,	
と,溶融炉心全体の温度を低下させ,MCCI を緩和する側に作		<u>中性子計装ハウジング等がある。</u> 溶融デブリへこれらペデスタ	
用すると考えられることから,現在の評価ではこれらの構造物		ル内の構造物が取り込まれたことを考慮すると, 溶融デブリ全	
を考慮していない。主な構造物の重量を表2_に示す。表2_の通		体の温度を低下させ、MCCIを緩和する側に作用すると考え	
り、これらの構造物は溶融炉心に対して小さいことから、これ		られることから,現在の評価ではこれらの構造物は考慮してい	
らの構造物を考慮しても溶融炉心が格納容器下部以外に拡が		ない。これらの構造物の重量は全体の溶融デブリ量	
る恐れは無いと考える。		に対して小さく,これらの構造物を <u>考慮した場合でも,溶融</u> デ	・解析結果の相違
		<u>ブリ堆積高さの増加分は約 0.17 m であることから,</u> 溶融デブ	【柏崎 6/7】
		リがペデスタル以外に拡がる恐れは無いと考える。	
	【比較のため,「添付資料 3.2.14」の一部を記載】		
(2) 溶融炉心の粒子化に伴う影響	3. デブリ冠水評価	<u>(2)溶融デブリ</u> の粒子化に伴う影響	・記載方針の相違
			【東海第二】

審集使もの経営審算に強になりするも、すめたののからい な気がする本作としていることから、成ものついついなかけ けくだいするものするとならな、ためい、次でして課題があ さなないと準備もなえられ、この外、外でした課題があ さなないと準備もなえられ、この外、外でした課題があ なるか、この外、外でしたするが、 りていため、 またしなすべきなもなしたいか。この外、外でしたするが、 などのなるのかたなかけ、 たいため、のはないかいたなたか。 かなたかなたからなられ、ごの外、外でしたする。 のなないたなからなたから、ためい、次でしたいなことから、成もプレジーのないた。 かいの意味がなるかれとないたなことから、成もプレジーのよいた。 かなたかなたからなられ、ごの外、パレントを構成がな かけなるのかたなかけ、 かなたかなたからないたかったがなたたから、 などしていためしたなかか、 などしたなからなたから、 などしていためしたなかか、 などしたなからないたかい、 などしたなからないないたか、 たなたかっななかけ、 かなたかなたから、 などしたなかかいたなたから、 などしたなかかいたなたから、 などしたなかいなことがら、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなたから、 などしたなかいたなたから、 などしたなかいたなたから、 などしたなからか。 などしたなたから、 などしたなたから、 などしたなからか。 などしたなたから、 などしたなたから、 などしたなから、 などしたなからか。 などしたなたから、 などしたなから、 などしたなからか。 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたなら、 などしたなたなら、 などしたなたから、 などしたなたなら、 などしたなたから、 などしたなたから、 などしたなたから、 などしたなたなら、 などしたなたから、 などしたなたから、 などしたなたなら。 などしたなたなら、 などしたなたなたから、 などしたなたなら、	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
確認やの料金濃濃や加に除ったのなり、ナウシュの水外の な実施する利用としたいるとさから、精錬の心の考慮水中で かどからなった地である。この時、ドマルした金融のの 物質のかいた地域高くならか。 たいてくなかしたなから、ためい、ドマルした金融のの かし、ため、地域画、シーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、レビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、地域画、ビーレーン (1)、ため、ビーレーン (1)、ため、レビーレーン (1)、ため、ビーレーン (1)、ため、ビーレーン (1)、ため、ビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、ビーレーン (1)、ため、ビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、ビーレーン (1)、ため、レビーレーン (1)、ため、ビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、ビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、ため、レビーレーン (1)、				記載方法は異なる が,島根2号炉と東海
期期中心が経営運動た3にますする場合、ナシシュのの成功の 空実性する方料をしていることから、運動がくの一たは大中で たまでするかとなえられる。この内、性子化した感染の少ののより、 に、ていたするかとなえられる。この内、性子化した感染の少ののより、 に、ていたするかとなえられる。この内、性子化した感染の少ののよう、 においたするかとなえられる。この内、性子化した感染の少ののよう、 においたするかとなえられる。この内、性子化した感染の少のの し、同ないたするかとなるの。 第二のシアングがも仕想知られるからない。 い、「マジングがなりが見た」のは、まず、 い、マジングがなりがなり、「たいた」の、 し、同ないたするかとなるの。 「コロンンフレンスの」」を、 ないたちがなりがするか。 ************************************				第二で同様の方法によ
激性や心臓性を豊富からすかない。         アグリの電気が使きましたが、このでライトを考えした。         第点中いたいでないので、         第点中いたいでないので、         ************************************				り、デブリ堆積高さを
<ul> <li>         ・強化の必要が容易を20に応する場合、の支払ので、数ののの変数 を実施する事業のとしていることから、高速がやの一般は水中で がどうの準確確認になった。ポポレーレーレーレーレーレーレーレーレーレーレーレーレーレーレーレーレーレーレ</li></ul>				評価している。
<ul> <li>ネス構成 4 年間としていることから、綺麗度の一般は水中で</li> <li>プジを継続考したしていることから、希望グジタの一部広火</li> <li>ビジャンスタンないたことので、物会やした客醸かの</li> <li>ジェンジンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシ</li></ul>	溶融炉心が格納容器下部に落下する場合,予め2mの水張り	デブリの堆積形状を第1図に示す。ポロシティを考慮したデ	溶融炉心がペデスタル内に落下する場合,予め <u>2.4m</u> の水張	・運用の相違
転子的でするものよきなためる。この時、低子化した新聞ゆるの 密度が強いと素化高さぶ高くなる。 1 $\mu_{hell}$ (火 (1 $- \mu_{ell}$ ) + ( $- \nu_{ell}$ $\lambda_{ell}$ ((1 $- \mu_{ell}$ ) ) + $\lambda_{ell}$ ((1 $- \mu_{ell}$ ) + $\lambda_{ell}$ $\lambda_{ell}$ $\lambda_{ell}$ $\lambda_{ell}$ ((1 $- \mu_{ell}$ ) + $\lambda_{ell}$ $\lambda_{ell}$ $\lambda_$	を実施する手順としていることから, 溶融炉心の一部は水中で	ブリ堆積高さ H _{debri} は式(1)で評価する。	りを実施する手順としていることから, 溶融デブリの一部は水	【柏崎 6/7】
<ul> <li>         まが低いと準備高さが広くなる。         <ul> <li> <ul></ul></li></ul></li></ul>	粒子化するものと考えられる。この時,粒子化した溶融炉心の	$H_{debri} = (V_{m} \times (1 - \Phi_{ent}) + V_{s} + V_{m} \times \Phi_{ent} \div (1 - P)) \div S_{fz} $ (1)	中で粒子化するものと考えられる。 この時,粒子化した溶融デ	初期水張り深さの相
$\frac{1}{2 \exp (1 + 2 \exp ($	密度が低いと堆積高さが高くなる。	$V_{m}$ :溶融物体積[約 36m ³ ]	ブリの密度が低いと堆積高さが高くなる。	違。
動えば、ボロシティが最も大きな塗むの実験決慮するよう。 細で大時半くして軟子が感覚も大な差していたり、加速した「おいた」の 加速気をなるが、市かしたし、加速した「おいた」の 加速気をなるが、市かしたし、加速した「おいた」 の加速気をはないたいない、 の加速気をはないたいない、 の加速気をはないたいたい、 の加速気をはないたいたい、 の加速気をはないたいたい、 の加速気をはないたいたい、 の加速気をはないため、 ないたいの の加速気をはないため、 ないたいの ないたいの ないたいの ないたいためでは、 たいたかでの かれたいたいで、 かれたいたいで、 の加速気 かれたいたいで、 かれたいたいで、 の加速気 かれたいたいで、 かれたいたいで、 の加速気 に いたいたいたい したたいたいで、 に したたいたいたい、 に したたいたいたい に いたいたいたい したたいたいたい に いたいたいたい したたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたいたい に いたいたい に いたいたい に いたいたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたいたい に いたいたいたい に いたいたい に いたいたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に に いたいたい に いたいたい に いたいたい に いたいたい に いたいたい に いたい に いたい に いたい に いたい に に いたい に いたい に に いたい に に に いたい に いたい に いたい に に に いたい に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に に <br< td=""><td></td><td>$V_{s}$: ハナスタル内構造物体槓[約 4 $m^{\circ}$] (別称 1 参照) $\Phi$ · P i a o u - S p o l d i p o 相関式に其づく粒子化</td><td>長を厳しい冬休として、デブリが粒子化制合 0.28 で粒子化</td><td></td></br<>		$V_{s}$ : ハナスタル内構造物体槓[約 4 $m^{\circ}$ ] (別称 1 参照) $\Phi$ · P i a o u - S p o l d i p o 相関式に其づく粒子化	長を厳しい冬休として、デブリが粒子化制合 0.28 で粒子化	
the off and the field of the field	例えば ポロシティが最も大きた粒子の充填状能である 単	$\Psi_{ent}$ . KTCOU Sparuling相関現代 $至 7 (201)$ 割合[0,173] (別添2 参昭)	取り取じて来行として、アノノリル松」に計画で、50 て松」に した際の堆積高さを評価する。例えば、ポロシティが最も大き	
①推摘会社最大のあか。前述の通辺、強濃設設正語 の期面の間口意までは十分な高ながあることから、較子化に作 う単積高さの増加を考慮しても <u>熱密容温</u> 下離以外に潜艇車の が転がる恐れ近無いと考える。         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	純立方格子として粒子が堆積する場合を仮定すると,溶融炉心	P:ポロシティ[0.5] 既往実験の知見から保守的に設定(別添	な粒子の充填状態である、単純立方格子(ポロシティ 0.48)	・解析条件の相違
の側面の側口急までは十分な高さがあることから、変イ化に体 う地域の含認れは無いと考える。         S _L : コリウムシールドの設置を考慮した来面領[約27,08m ² ]         さ <u>た</u> 約         さ <u>た</u> 約         当地点         当地点         当社         当地点         3 におした         3 におした <td>の堆積高さは最大0.85mとなるが、前述の通り、格納容器下部</td> <td>3 参照)</td> <td>として粒子が堆積する場合を想定すると, 溶融デブリの堆積高</td> <td>【柏崎 6/7,東海第二】</td>	の堆積高さは最大0.85mとなるが、前述の通り、格納容器下部	3 参照)	として粒子が堆積する場合を想定すると, 溶融デブリの堆積高	【柏崎 6/7,東海第二】
う単確高きの増加を考慮しても <u>務納容器で加以外に認識がか</u> が が広がる感知は無いと考える。 よた、校子化したデブリの関版に冷却水が浸入するため、デ ブリのご水準指導価の観点から粒子化したデブリの関版に冷却水が浸入するため、「 た水ブ・ル水実用 _{Soluti} について式(2)で詳価する、ここで、デ ブリ地理範囲より上の仮味にはコリウムシールドが散成されて いないものとする。 H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{soluti} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2) H _{solut} = (U _{box} = (V _k ×Φ _{att} + (1-P)×P+S _D ))×(S _D /S _b )(2)	の側面の開口部までは十分な高さがあることから, 粒子化に伴		さは約 1.4 m, 粒子化したデブリの範囲を除いた水プール水深	島根2号炉は,単純立
が並がる恐れは無いと考える。       また、粒平化したゲゾリの関隙に冷却水が浸入するため、デ ブリの洗水維持評価の現点なした化したブブリの範囲を抱い た水ブール水源 Humient Chul Chul Chul Chul Chul Chul Chul Chul	う堆積高さの増加を考慮しても <u>格納容器下部</u> 以外に溶融炉心		<u>は約2m</u> となるが、前述のとおり、ペデスタルの側面の開口部	方格子のポロシティで
ブリの短水維持評価の観点から約子化したデブリの範囲を除い た木ブール水深 $\mathbb{H}_{n,im}$ について気(2)で評価する。ここで、デ ブリ爆横範囲まり上の領域にはコリウムシールドが数設されていないものとする。       加を考慮しても <u>xペデスタル</u> 以外に溶酸がブリが延がる恐れは 無いと考える。       る。         第時結果の相違 いないものとする。       第時結果の相違       第時結果の相違 $\mathbb{H}_{seit} : = (\mathbb{H}_{ssol} - (\mathbb{V}_{k} \times \Phi_{stat} + (1-p) \times P + S_{tr})) \times (S_{tr}/S_{tr}) (2)       第しと考える。       第しと考える。       第時結果の相違         \mathbb{H}_{seit} : ^{-1} (\mathbb{V}_{k} \times \Phi_{stat} + (1-p) \times P + S_{tr})) \times (S_{tr}/S_{tr}) (2)       1       第した       第の       第の         \mathbb{H}_{seit} : ^{-1} (\mathbb{V}_{k} \times \Phi_{stat} + (1-p) \times P + S_{tr})) \times (S_{tr}/S_{tr}) (2)       1       第の       1       1         \mathbb{H}_{seit} : ^{-1} (\mathbb{V}_{k} \times \Phi_{stat} + (1-p) \times P + S_{tr})) \times (S_{tr}/S_{tr}) (2)       1       第の       1       1         \mathbb{H}_{seit} : ^{-1} (\mathbb{V}_{k} \times \Phi_{stat} + (1-p) \times P + S_{tr}) (2)       1       1       1       1         \mathbb{H}_{seit} : ^{-1} (\mathbb{V}_{k} \times \Phi_{stat} + (1-p) \times P + S_{tr}) (2)       1       1       1       1         \mathbb{H}_{seit} : ^{-1} (\mathbb{V}_{k} \times \Phi_{stat} + \mathbb{U}_{k} \times \mathbb{V}_{k} + \mathbb{U}_{k} + \mathbb{U}_{k} \times \mathbb{V}_{k} + \mathbb{U}_{k} \times \mathbb{V}_{k} + \mathbb{U}_{k} \times \mathbb{V}_{k} \times \mathbb{V}_{k} \times \mathbb{V}_{k} + \mathbb{U}_{k} \times \mathbb{V}_{k} \times V$	が拡がる恐れは無いと考える。	また、粒子化したデブリの間隙に冷却水が浸入するため、デ	までは十分な高さがあることから, 粒子化に伴う堆積高さの増	ある 0.48 を設定してい
た水ブール水深 $\mathbb{I}_{youtwat}$ について式(2) で評価する、ここで、デ       無いと考える。       ・解析結果の相違         ブリ堆積範囲、り 上の領域にはコリウムシールドが敷設されていないないもないも、       「中の二 ( $v_a \times \Phi_{wa} + (1-1) \times P + S_D$ ) × ( $S_D \times S_D$ ) (2)       「相向 6/7, 東海第二] $\mathbb{I}_{pol-wat} = (\mathbb{I}_{pol}] - (v_a \times \Phi_{wa} + (1-1) \times P + S_D) \times (S_D \times S_D)$ (2)       1       「相向 6/7, 東海第二] $\mathbb{I}_{pol-wat} = (\mathbb{I}_{pol}] - (v_a \times \Phi_{wa} + (1-1) \times P + S_D) \times (S_D \times S_D)$ (2)       1       「相向 6/7, 東海第二] $\mathbb{I}_{pol-wat} = (\mathbb{I}_{pol}] - (v_a \times \Phi_{wat} + (1-1) \times P + S_D) \times (S_D \times S_D)$ (2)       1       「相向 6/7, 東海第二] $\mathbb{I}_{pol-wat} = (\mathbb{I}_{pol}] - (v_a \times \Phi_{wat} + (1-1) \times P + S_D) \times (S_D \times Z_D)$ (S_D \times D + V \times		ブリの冠水維持評価の観点から粒子化したデブリの範囲を除い	加を考慮しても, ペデスタル以外に溶融デブリが拡がる恐れは	る。
$\vec{J}$ U #\$#\$#EL\$ D ±0@uwkc(t=U\$0.42- $\nu$ K)*\$\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$\vec{m}\$		た水プール水深 H _{pool-ent} について式(2)で評価する。ここで,デ	無いと考える。	・解析結果の相違
$ \begin{array}{c} H_{pol} = t = (H_{pol} - (V_{t} \times \Phi_{ext} \div (1 - P) \times P \div S_{tr})) \times (S_{tr} / S_{t}) (2) \\ H_{pol} : k \vec{\tau} - \mu \vec{\eta} \# k \ddot{w} [1n] \\ S_{t} : = J \ j \ \phi \ \Delta \psi - \mu \ l' \vec{h} \ddot{w} \ddot{w} \ddot{w} \ddot{w} \ddot{w} \ddot{w} \ddot{h} \dot{w} \dot{w} \ddot{h} \dot{w} \dot{w} \ddot{h} \ddot{w} \ddot{w} \ddot{h} \dot{w} \dot{h} \dot{h} \dot{h} \dot{h} \dot{h} \dot{h} \dot{h} h$		ブリ堆積範囲より上の領域にはコリウムシールドが敷設されて いないものとする。		【柏崎 6/7,東海第二】
H _{mail} : 水プール初期水深[1n]         S _f : コリウムシールドが設置されていない範囲の断面積[約         29.92m ² ]         式(1)から <u>デブリ堆積高さ H_{oter}は約 1.71m</u> となる。また,式         (2)から粒子化したデブリの範囲を除いた水ブール水漆 H _{pool-mit} は約 0.69m となる。         【ここまで】         たお, 溶融炉心の比重は8 程度であり,水と比べて非常に重         く, 粒子化した溶融デでリは水面に浮遊しないと想定される。         「記載力針の相違         「花轍方針の相違         「本谷水, 溶融炉心の比重は8 程度であり,水と比べて非常に重         「日崎 6/7, 東海第二]         品根 2 号炉は、粒子化した溶融炉のの洗面         「古能性に対する考察を		$H_{\text{pool-ent}} = (H_{\text{pool}} - (V_{\text{m}} \times \Phi_{\text{ent}} \div (1-P) \times P \div S_{\text{fz}})) \times (S_{\text{fz}} / S_{\text{f}}) $ (2)		
S _r : ニリウムシールドが設置されていない範囲の断面積[約 29.92m ² ]          式(1)からデブリ堆積高さ H_dari は約 1.71m (2)から粒子化したデブリの範囲を除いた水ブール水深 H _{pool-ent} は約 0.69m となる。          【ここまで】          (2)から粒子化したデブリの範囲を除いた水ブール水深 H _{pool-ent} は約 0.69m となる。          【ここまで】          (2)から粒子化したデブリの範囲を除いた水ブール水深 H _{pool-ent} は約 0.69m となる。          「ここまで」          「ここまで」          「なお,溶融炉心の比重は8程度であり,水と比べて非常に重 く、粒子化した溶融デブリは水面に浮遊しないと想定される。         「相崎 6/7,東海第二] B根2号炉は、粒子化 した溶融炉心のドライ ウェル床面への流出の 可能性におする考察を		H _{pool} :水プール初期水深[1m]		
式(1)からデブリ堆積高さ H_uhrt]は約 1.71m       となる。また、式         (2)から粒子化したデブリの範囲を除いた水プール水深 Hpool-ent は約 0.69m となる。       ・記載方針の相違         【ここまで】       なお、溶融炉心の比重は8程度であり、水と比べて非常に重 く、粒子化した溶融デブリは水面に浮遊しないと想定される。       ・記載方針の相違         「白崎 6/7、東海第二] 島根 2 号炉は、粒子化した溶融デブリは水面に浮遊しないと想定される。       ・記載方針の相違         「山市 6/7、東海第二]       「日崎 6/7、東海第二]         「日崎 6/7」       「日崎 6/7」         「日本 6/7」       「日本 6/7」         「日本 7」       「日本 6/7」         「日本 6/7」       「日本 6/7」         「日本 7」       「日本 7」         「日本 7」       「日本 7」 <t< td=""><td></td><td>S_f:コリウムシールドが設置されていない範囲の断面積[約 29.92m²]</td><td></td><td></td></t<>		S _f :コリウムシールドが設置されていない範囲の断面積[約 29.92m ² ]		
式(1)から <u>デブリ堆積高さ H_lebri</u> は約 1.71m となる。また,式       (2)から粒子化したデブリの範囲を除いた水プール水深 H _{pool-ent} (2)から粒子化したデブリの範囲を除いた水プール水深 H _{pool-ent} (2)から地子化したデブリの範囲を除いた水プール水深 H _{pool-ent} (2)から地子化したデブリの範囲を除いた水プール水深 H _{pool-ent} (2)から地子化したデブリの範囲を除いた水プール水深 H _{pool-ent} (2)から地子ビレンクロン       (2)から地子ビレン       (2)から地子ビレン         【ここまで】       【たこまで】       (2)から地子ビレン       (2)から地子ビレン       (2)から地子ビレン       (2)から地子ビレン       (2)から地子ビレン         【日崎 6/7,東海第二】       (2)から地子ビレン       (2)から地子ビレン       (2)からで)       (2)からで)       (2)からで)       (2)からで)       (2)からで)       (2)からで)       (2)かられた       (2)かん       (2)かん <td< td=""><td></td><td></td><td></td><td></td></td<>				
(2)から粒子化したデブリの範囲を除いた水プール水深 H _{pool-ent} は約 0. 69m となる。       ・記載方針の相違         【ここまで】       ・記載方針の相違         【柏崎 6/7,東海第二】       ・記載方針の相違         人、粒子化した溶融デブリは水面に浮遊しないと想定される。       ・記載方針の相違         した溶融炉心のドライ       ウェル床面への流出の         可能性に対する考察を       可能性に対する考察を		式(1)から <u>デブリ堆積高さ H_{debri}は約 1.71m</u> となる。また,式		
は約 0. 69m となる。       【ここまで】       ・記載方針の相違         【ここまで】       なお,溶融炉心の比重は8程度であり,水と比べて非常に重       「柏崎 6/7,東海第二】         く,粒子化した溶融デブリは水面に浮遊しないと想定される。       島根2号炉は、粒子化         した溶融炉心のドライ       ウェル床面への流出の         可能性に対する考察を       可能性に対する考察を		(2)から粒子化したデブリの範囲を除いた水プール水深 H _{pool-ent}		
【ここまで】       ・記載方針の相違            なお,溶融炉心の比重は8程度であり,水と比べて非常に重        ・記載方針の相違            く,粒子化した溶融デブリは水面に浮遊しないと想定される。        【柏崎 6/7,東海第二】             した溶融炉心のドライ           した溶融炉心のドライ             の水正面の流出の           面能性に対する考察を		は約 0.69m となる。		
<u>なお,溶融炉心の比重は8程度であり,水と比べて非常に重</u> <u>く,粒子化した溶融デブリ</u> は水面に浮遊しないと想定される。        ・記載方針の相違 <u>く,粒子化した溶融デブリ</u> は水面に浮遊しないと想定される。        【柏崎 6/7,東海第二】         島根2号炉は,粒子化         した溶融炉心のドライ         ウェル床面への流出の         可能性に対する考察を		【ここまで】		
なお,溶融炉心の比車は8程度であり,水と比べて非常に車       【相崎 6/7,東海第二】         く,粒子化した溶融デブリは水面に浮遊しないと想定される。       島根2号炉は,粒子化         した溶融炉心のドライ       ウェル床面への流出の         可能性に対する考察を			われ、波動にとればぞはり印度ペキャー トレロ・マールやいズ	・記載方針の相違
<u>へ、粒子化した俗融/ノソリは小面に存近しないと恋たされる。</u> 「高板2 写炉は、粒子化 した溶融炉心のドライ ウェル床面への流出の 可能性に対する考察を			<u>なわ、俗歌炉心の丸里は8程度でめり、水と比べて非常に里</u>	【111町 0/1, 果) 自根9 早后け 始之ル
ウェル床面への流出の可能性に対する考察を			<u>ヽ, た」「ししに俗に/ ノ ソ</u> は小面に仔姫しない、こぶたされる。	ー 両似 4 5 かは, 松丁化 した 溶融 に 小の ドライ
「能性に対する考察を				ウェル床面への流出の
				可能性に対する考察を

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			記載。
(3) 溶融炉心の落下の位置及び拡がりの影響		(3) 溶融炉心の落下の位置及び拡がりの影響	
原子炉圧力容器下部から格納容器下部への溶融炉心の落下		原子炉圧力容器下部からペデスタル内への溶融炉心の落下	
の経路 ^[1] については, <u>制御棒駆動機構ハウジング</u> の逸出に伴う		の経路[1]については、CRDハウジングの逸出に伴う開口部か	
開口部からの落下等が考えられる。原子炉圧力容器の構造から		らの落下等が考えられる。原子炉圧力容器の構造からは、溶融	
は、溶融炉心は原子炉圧力容器底部の中心に流れ込むと考えら		炉心は原子炉圧力容器底部の中心に流れ込むと考えられ, 原子	
れ、原子炉圧力容器底部の中心近傍に開口部が発生し、溶融炉		炉圧力容器底部の中心近傍に開口部が発生し,溶融炉心がペデ	
心が <u>格納容器下部</u> に落下する可能性が高いと推定されるが,開		スタル内に落下する可能性が高いと推定されるが,開口部の発	
口部の発生箇所については不確かさがあると考える。		生箇所については不確かさがあると考えられる。	
ここで仮に溶融炉心が偏って堆積し, <u>機器搬出入用ハッチの</u>		ここで仮に溶融 <mark>デブリ</mark> が偏って堆積し, <u>ペデスタル開口部高</u>	・設備設計の相違
<u>高さ(約4.5 m)</u> に到達する条件を考えると,溶融炉心が直径 <u>約</u>		<u>さ(約3.8m)</u> に到達する条件を考えると,溶融デブリが直径	【柏崎 6/7】
<u>3.5m</u> の円柱を形成する必要があるが,溶融炉心の厚さが均一		<u>約3 m</u> の円柱を形成する必要があるが, 溶融デブリの厚さが	
化するまでの時間が2~3 分程度であるという過去の知見 ^[2] を		均一化するまでの時間が2~3分程度であるという過去の知	
踏まえると、溶融炉心は落下と同時に <u>格納容器下部床面</u> を拡が		見 ^[2] を踏まえると、溶融炉心は落下と同時にペデスタル床面を	
り,堆積高さが均一化していくと考えられることから,溶融炉		拡がり、堆積高さが均一化していくと考えられることから、溶	
心が <u>機器搬出入用ハッチ</u> の高さまで堆積する状況は考え <u>難い</u> 。		融デブリがペデスタル開口部の高さまで堆積する状況は考え	
		125 Lino	・記載方針の相違
以上		また,溶融炉心の落下位置及び堆積形状に係る知見として,	【柏崎 6/7,東海第二】
		近年、以下のものがある(表3)。	島根2号炉は,近年の
1 平成27 年6 月9 日 第236 回原子力発電所の新規制基準適合性に係る		・東京電力福島第一原子力発電所2号炉における格納容器下	知見を踏まえた評価を
審査会合 配布資料1-5 重大事故等対策の有効性評価に係るシビアアク		部の調査結果により溶融炉心が圧力容器の中心位置から	実施。
シデント解析コードについて(第5 部 MAAP) 添付3 溶融炉心とコンク		偏って落下した可能性がある。	
リートの相互作用について		<u>・PULiMS 実験^[3]において確認された溶融<mark>デブリ</mark>の堆積高さ</u>	
2 J. D. Gabor, L. Baker, Jr., and J. C. Cassulo, (ANL), "Studies on		と拡がり距離のアスペクト比が確認されている。	
Heat Removal and Bed Leveling of Induction-heated Materials		これらの知見を踏まえ, 溶融炉心が原子炉圧力容器の中心位	
Simulating FuelDebris," SAND76-9008 (1976).		<u>置から偏って落下し、溶融デブリ</u> が円錐上に堆積するという仮	
		定で堆積高さを評価した場合においても, 溶融デブリ堆積の頂	
		<u>点位置における高さは約2.2mであり、ペデスタル開口部高さ</u>	
		(約 3.8 m)を下回る評価結果となった (図 3)。	
		よって,溶融炉心が圧力容器下部の偏心位置から落下し円錐	
		<u>上に堆積した場合においても、ペデスタル以外に溶融デブリが</u>	
		<u>拡がる恐れは無いと考える。</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
表1 溶融炉心に関する評価条件	【比較のため,「添付資料 3.2.14 別添 1」の一部を記載】	表1 溶融炉心に関する評価条件	
項目         設定値         設定根拠           溶融炉心落下割合         100%(340t)         保守的に全炉心相当量が 落下するものとして設定           溶融炉心の比重         8,092 kg/m³         -           溶融炉心の組成         図 2 参照         MAAP コードによる評価結果 (炉内構造物の組成・質量等を考慮)           格納容器下部床面積         75.7 m²         KK6/7 の設計値のうち,床面積の 小さい KK7 の設計値を使用	<u>デブリ堆積高さの計算においては、第1表及び第2表に示すペ</u> デスタル内構造物の総体積を保守的に4m ³ として考慮した。 第1表 デブリとして考慮したペデスタル内構造物(既設)	項目     設定値     設定根拠       溶融炉心落下割合     100%     保守的に全炉心相当量が落下するもの として設定       溶融デブリの組成     図2参照     MAAPコードによる評価結果 (炉内構造物の組成・質量等を考慮)       ペデスタル床面積     m ² 設計値	<ul> <li>・評価条件の相違</li> <li>【柏崎 6/7,東海第二】</li> <li>ペデスタルに落下す</li> <li>る溶融デブリについて,</li> <li>保守性として加味する</li> </ul>
************************************	第1表 デブリとして考慮したペデスタル内構造物(既設)         第二表 デブリとして考慮したペデスタル内構造物(既設)         第二本 デブリンクロージー         「「「「「「「「」」」」」」」」」」」」         「「」」」」」」」」」」」」」」」」」」」」」」」         「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	表2       ペデスタル内へ落下するコリウム重量及び体積         項目       重量/体積(=1)         (位)       炉心内全10,0重量         「「たい木ボックス/ ウォーターロッド/ スペーサ(Zr)       ゲレンネルボックス/ ウォーターロッド/ スペーサ(Zr)         CRD関係 (SUS)       CR CRDハウジング, C RDガイドチューブの合計         CR(6,C)       CRにおける BC の重量         炉心支持板 / 燃料支持金 具+下部タイブレート/ 上部タイブレート (SUS)       CR CRDハウジング, C RDガイドチューブの合計         CR(年の)       CRにおける BC の重量         炉心支持板 / 燃料支持金 具+下部タイブレート (SUS)       C C R C R C R C R C R C R C R C R C R C	保守性として加味する RPV 内外の構造物に違 いはあるが、3プラント とも MAAP 解析の結果に 基づき、保守的な条件で デブリ堆積高さを評価 していることに大差な い。
	【ここまで】	タルへの落下重量は となる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉         麦3 溶融デブリの堆積高さ評価に係る近年得られた知見について         項目       概要       今回評価上の扱い         溶融炉心の落下位置       中成子力発電所2号炉における       容融炉心が圧力容器下部の偏心位置から落下したことを考慮した場合、格納容器下部の調査結果により、 格納容器下のの心軸から外れた位置のグレーチングの落下が 高部戸市の調査結果により、 格納容器でのの違かし、たび、アレーチングの落下が 高部炉心が最外間の 制神棒駆動機構位置から着から流出した溶融炉心が中心位置から偏った位置に落下したことが考えられる。         堆積形状       PULIMS 実験に溶融物を水中に落 下した実験であり、溶融デブリの堆積形状として、1:14の 円堆積高さと拡がり距離のアスペ クト比としては1:18~1:14程度       溶酸デブリの堆積形状として、1:14の 円錐状に堆積すると仮定して、評価を行った。         となっている。       アクリー・ドライクェル車       ドライクェル車ドレンやンブ         マノウェル車       エリウムシールド       ドライクェル車ドレンやンブ         図1       溶融デブリとペデスタルの構造の位置関係	備考
		図1 溶融デブリとペデスタルの構造の位置関係	・設備設計の相違 【柏崎 6/7】 ・解析結果の相違
			【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		アガリ堆積高さ (約 2. 2m)       アガリ堆積高さとペデスタル開口部までの高さ (約 3. 8m)         図 3 デブリ堆積高さとペデスタル開口部の高さ関係	
【比較のため, 再掲】 1. 平成27 年6 月9 日 第236 回原子力発電所の新規制基準適合 性に係る審査会合 配布資料1-5 重大事故等対策の有効性評 価に係るシビアアクシデント解析コードについて(第5 部 MAAP) 添付3 溶融炉心とコンクリートの相互作用について 2 J. D. Gabor, L. Baker, Jr., and J. C. Cassulo, (ANL), "Studies on Heat Removal and Bed Leveling of Induction-heated Materials Simulating FuelDebris," SAND76-9008 (1976). 【ここまで】		<ul> <li>参考文献 <ol> <li>「沸騰水型原子力発電所 重大事故等対策の有効性評価に係るシビアアクシデント解析コード(MAAP)について」、 東芝エネルギーシステムズ株式会社、TLR-094、日立GEニ ユークリア・エナジー株式会社、HIR-123、平成30年5月</li> <li>J. D. Gabor, L. Baker, Jr., and J. C. Cassulo, (ANL), "Studies on Heat Removal and Bed Leveling of. Induction-heated Materials Simulating FuelDebris," SAND76-9008 (1976).</li> </ol> </li> <li>A. Konovalenko et al., Experimental Results on Pouring and Underwater Liquid Melt Spreading and Energetic Melt-coolant Interaction, NUTHOS-9, Kaohsiung, Taiwan, September 9-13, 2012.</li> </ul>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		別紙	
		デブリが原子炉圧力容器の偏心位置から落下し	
		円錐状に堆積した場合のデブリ堆積高さの計算方法について	
		仮に、溶融炉心が原子炉圧力容器の中心軸から偏心した位置か	
		ら落下し、粒子化して円錐状に堆積した場合のデブリ堆積高さの	
		計算方法を以下に示す。	
		今回評価ケースの評価条件を以下に示す。	
		・円錐状テノリ頃息からヘデスタル内壁面までの水平距離:約 m	
		 (最外周の制御棒駆動機構位置からペデスタル内壁面までの水	
		平距離)	
		・円錐状デブリのアスペクト比: 高さ:直径 = 1:14	
		(PULiMS の実験にて確認されているアスペクト比1:14~1:	
		18 のうち,保守的に設定)	
		・ペデスタル内の構造物等(CRD 交換装置等)が溶融した場合	
		のデブリ増加を考慮したデブリ堆積高さ:m	
		・粒子化割合:0.38	
		・粒子化状デブリのポロシティ:0.50	
		(PUL i MS実験の知見 (0.29~0.37) 及びMAAPコー	
		ド説明書のデブリ除熱量検討で想定している範囲(0.26~	
		0.48)から保守的に設定)	
		2. 評価方法	
		<ul><li>(1) デブリ全体の体積</li></ul>	
		ペデスタル内構造物等が溶融し、デブリが粒子化割合[0.38]	
		で粒子化すると仮定した場合,粒子化したデブリ体積Vは以	
		下の式で求められる。	
		$V = h \times A_p \times \left( \Phi_{ent} \div (1 - P) + (1 - \Phi_{ent}) \right)  (1)$	
		A _p :ペデスタル内床面積 [m ³ ]	
		h :ペデスタル内の構造物等が溶融した場合のデブリ増加を	
		考慮したデブリ堆積高さ [m]	
		$\Phi_{ent}$ :粒子化割合 $0.38[-]$	
		<i>P</i> : ポロシティ 0.50 [−]	

柏崎刈羽原子力発電所 6/7号	炉 (2017.12.20版) 東海第二	L発電所 (2018. 9. 12 版)	島根原子力発電所 2号炉	備考
			(2)円錐部分(別図1 緑部分)         円錐状デブリのアスペクト比を,高さ:直径=1:14(高さ:         半径=1:7)と想定すると,その堆積高さは式(2)により計算できる。 $H_{len} = \frac{R}{7}$ (2) $H_{len}$ : 円錐部分の高さ[m] $R$ : 円錐部分の高さ[m] $R$ : 円錐部分の高さ[m]         (ペデスタル床面直径)-(円錐状デブリ頂点から内壁までの距離) $= \Box - \Box = \Box$ )         (3)円柱部分(別図1 赤部分)         円柱部分の高さの計算に当たっては、同部分の体積を求める必要がある。この体積は、全体の体積から円錐部分の体積を除くことで得られるため、まずは円錐部分の体積を計算する。         ①         (1) 円錐部分の体積の計算別図1のように、円錐部分(緑部分)を上下に分割する	
			ことを考える。 このとき、下部分は、ペデスタル床を底面積とする高さ Mの円柱を斜めに二等分した形状となるため、その体積 は式(3)により計算できる。 $V_{Blcn} = A_p \times M \div 2$ (3)	
			V _{Blen} :円錐部分の下側の体積[m³]         A _p :ペデスタル内底面積         M:円錐部分の下側の高さ[m]         ((2)で求めた円錐高さ,円錐頂点からペデスタル内壁面までの水平距離及び円錐のアスペクト比より計算)	
			また、上部分は、半径 $R$ 、高さ $H_{lcn}$ の円錐を、高さ $M$ の 位置から反対側へ斜めに切り取った形状となり、その体積 は、式(4)により計算できる。 $V_{tlm} = \frac{\pi}{3} \times R^2 \times H_{lcn} \times \left\{ \frac{k-m}{\sqrt{k^2 - m^2}} \right\}^3$ (4)	

柏崎刈羽原子力発電所 6/7号	·炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12版)	島根原子力発電所 2号炉	備考
				$V_{tlm}$ :円錐部分の上側の体積 $[m^3]$	
				R : 円錐部分の半径 [m]	
				$H_{lcn}$ :円錐部分の高さ $[m]$	
				M : 円錐部分の下側の高さ[m]	
				L:ペデスタル内の直径 [m]	
				② 円柱部分の体積の計算	
				円柱部分 (別図1 赤部分)の体積は, デブリ全体体積V	
				から、①で求めた円錐部分の体積を差し引いたものとな	
				り,式(5)により計算できる。	
				$V_{lcy} = V - \left(V_{Blcn} + V_{tlm}\right)  (5)$	
				V _{lcy} :円柱部分の体積[m ³ ]	
				<b>V</b> : デブリ全体体積[m ³ ]	
				$V_{\scriptscriptstyle Blcn}$ :円錐部分の下側の体積[m³]	
				$V_{tlm}$ :円錐部分の上側の体積 $[m^3]$	
				① 田井如八の宣さの封管	
				① 口仁市力の同さの計算 ので求めた田村部公の体積及びペデスタル内底面積上り	
				田柱部分の高さは式(6)により計算できる。	
				$V_{lm}$	
				$H_{lcy} = \frac{lcy}{A_p} $ (6)	
				$H_{lcy}$ :円柱部分の高さ[m]	
				$V_{lcy}$ :円柱部分の体積[m ³ ]	
				A _p :ペデスタル内底面積 [m ³ ]	
				以上, (2)から(3)で求めた各部分高さ(H _{len} , H _{lev} )を合計す	
				ることで、デブリ全体の堆積高さが計算される。	
				3.評価の保守性について	
				本評価は、下記の点で保守性を有している。	
				・RPV破損及びデブリ落下位置が中心軸から外れた場合,	
				R P V の曲率を考慮すると、偏心位置でのデブリ落下量は	
				減少すると考えられるが、本評価では保守的に偏心位置か	
				ら全量が落下したものとしている。	
				・溶融炉心の落下後, MCCI によりペデスタル壁面を侵食し,	
				ペデスタル床面の半径は大きくなると、デブリ堆積高さは	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20	版) 東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20	版) 東海第二発電所 (2018. 9. 12 版)	<u> 島根原子力発電所 2号炉</u> 小さくなると考えられる。デブリ堆積高さを保守的に評価 するため、ペデスタル壁面の侵食によるペデスタル床面の 半径の拡大は考慮していない。	備考
		別図1 偏心位置における円錐状のデブリ堆積状態の例	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
37.ドライウェルサンプへの溶融炉心流人防止対策に期待した			29. ドライウェルサンブへの溶融炉心流入防止対策に期待した	
場合の溶融炉心・コンクリート相互作用の影響について			場合の溶融炉心・コンクリート相互作用の影響について	
1. サンプに対する溶融炉心・コンクリート相互作用の考慮の必			1. サンプに対する溶融炉心・コンクリート相互作用の考慮の必	
要性			要性	
<u>原子炉格納容器下部</u> の床面には、 <u>格納容器内で発生した廃</u>			原子炉格納容器内には、原子炉格納容器内で発生した廃液を	
液の収集のために,図1-1,図1-2のとおり高電導度廃液サンプ			集水し、ポンプによって原子炉格納容器外へ移送するためにド	
(HCWサンプ)と低電導度廃液サンプ(LCWサンプ)が設置され			ライウェル機器ドレンサンプおよびドライウェル床ドレンサン	
<u>This</u>			プ(以下「ドライウェルサンプ」という。)が図 1-1,図 1-2	
			のとおり配置されており、ペデスタル床とドライウェルサンプ	
			はドレン配管にて接続されている。	
※動伝しの <b>英工味</b> 及び英工後の光動にけて <b>か</b> かたが十たい。			次融伝とが ペデュタルに 黄玉 ナス相合にけ ペデュタルけれ	、乳供乳乳の相当
<u>俗融炉心の洛下时及の洛下该の年期には不確かさか入さい</u> しまうこれてが、これまでの知見た金昭1、其大的には声のか			谷融炉心が、ケイルに溶下りる場合には、ハケスタル往水	
<u>とちんられるか、これまでの知見を参照し、基本的には速やか</u> に広天に快ぶり、送む原さで世球セスさのしして取り扱うこ			により水位か形成されており、俗融炉心の行却が促進し粘性が	【 化 呵 0/1】
に床面に払かり、一体な厚さで堆積するものとして取り扱うこ			<u>増加することから、ヘデスタルに落下した溶融炉心か下レン配</u> 答た语じてじるくウールサンプに落またて可能性は低いしまう	トライリエルリンノ
<u>ここしている。</u> この上るに取り扱う相合、波動伝さが出いプロに法ませて			官を通してトノイリエルリンノに加入りる可能性は低いと考え これてきのの、溶動にたがドラノウールサンプ中に法ですてこ	1110日1月1日1月1日1月1日1月1日1日1日1日1日1日1日1日1日1日1
このように取り扱う場合、俗蹠炉心がリンフ内に加入りる			<u>られてものの</u> , 谷脈炉心がトノイリエルリンノ内に加入りるこ した老虐ナてト ドライウェルサンプ時声トペデスタルが側倒	
<u>ここと 5 思 9 る 2 安 か の る か , リンノ は 広 部 と 調 要 ノ 1 / よ じ</u> の 5 晩 が 約 20 cm と 近 く 原 こ に 枚 加 宏 思 下 如 中 五 ち 堀 い 下 ば ち			<u>とをち思りると、トノイリエルリンノ生面とハリスタル外側輌</u> たしの野難はコンクリートな金して	
			<u> </u>	
			リエルリンノ床面から原子炉俗納谷器ハリンタリでのる鋼袋ノ	
			1 $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$	
「竹口」「「 $\Pi$ 」「 $\Pi$ (以)」「 $\Pi$ (U)」 (U)」 (U)」 (U)」 (U)				
			ス現れがある	
<u>う。</u> これらの理由から「以下の 9」のとおりにサンプにおける			これらの理由から、以下の2、のとおりドライウェルサンプ	
MCCI への対策を検討 3 のとおり マリウムシールドの恐			における $MCCL$ への対策を検討し 3 のとおり コリウム	
置竿に上りサンプへの流入を防止することとした。またんの			シールドの設置に上りドライウェルサンプへの流入を防止する	
			$\sum \mu + 0$ $\mu = 1$ $\mu + 1$ $\mu = 1$ $\mu + 1$ $\mu = 1$	
2439, 49952 ルトに知何93300000000000000000000000000000000000			こここした。 よた4. のとわり、 ユリリムシールトに知付りる 坦合のペデュタルにおける $MCCI$ の影響評価を実施した	
即にわける MCI の影響計画を美地した。			場合のペリスケルにおけるMCCIの影音計画を実施した。	
				<u> </u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
図 1-1 格納容器の構造図(ABWR, RCCV 型格納容器)		<image/> <image/>	
図1-2 ドライウェルサンプの配置(7 号炉の例)		<figure></figure>	
<ol> <li>サンプにおける MCCI 対策の必要性         <ol> <li>サンプにおける MCCI 対策が必要と考える理由</li></ol></li></ol>	【比較のため,「添付資料3.5.3」の一部を記載】 東海第二発電所では,原子炉圧力容器(以下「RPV」とい う。)破損時にペデスタル(ドライウェル部)(以下「ペデスタ ル」という。)に落下した溶融炉心が,ペデスタルに設置された 格納容器ドレンサンプの排水流路を通じてサプレッション・チ エンバへ移行することを防止するため,排水流路の形状を変更 することとしている。	<ol> <li>サンプにおけるMCCI対策の必要性</li> <li>サンプにおけるMCCI対策が必要と考える理由 炉心損傷後,原子炉圧力容器内で十分な冷却が行われず,溶 融炉心が原子炉圧力容器の底部から落下した場合,ペデスタル での溶融炉心の挙動には不確かさがあり,ドレン配管を通じて 溶融炉心がドライウェルサンプに流入するか否かは不確かさが 大きいと考える。</li> </ol>	<ul> <li>・記載方針の相違</li> <li>【柏崎 6/7】</li> <li>島根2号炉および東</li> <li>海第二では,溶融炉心</li> <li>のドレン配管の流入の</li> <li>可能性に対する考察を</li> <li>記載。</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
また、初期水張りをしていることから水中を進む間に溶融	<u>RPV破損時には、ペデスタル内の水により格納容器ドレン</u>	<u>また</u> ,原子炉圧力容器破損時には、ペデスタルへの初期水張	
炉心が固化し, 空隙が生じて, 空隙から浸入した水によって除	サンプの排水流路は水で満たされていることから、溶融炉心が	りによって、ドレン配管は水で満たされていることから、溶融	
熱される等、緩和側に働く要因もいくつか考えられる。	排水流路に流入する際には、流路内から水や水蒸気の対向流が	<u> 炉心がドレン配管に流入する際には,流路内から水や水蒸気の</u>	
	生じる。また、溶融炉心が格納容器ドレンサンプの排水口に到	対向流が生じる。また、溶融炉心がドライウェルサンプの排水	
	<u>達するまでの温度低下及び粘性増加を考慮すると,現実的には</u>	口に到達するまでの温度低下及び粘性増加を考慮すると、現実	
	溶融炉心の排水流路への流入はごく限定的と考えられる。	的には溶融炉心のドレン配管への流入はごく限定的と考えられ	
		<u> 3.</u>	
しかしながら、上記の緩和要因を定量的に見込むことは困	しかしながら、溶融炉心の落下時及び落下後の挙動は不確か	 しかしながら、上記のような緩和要因を定量的に見込むこと	・評価方針の相違
難なため、保守的な評価体系でサンプ流入時の影響を評価す	さがあることから,溶融炉心の排水流路への流入を想定した場	は困難なため, 溶融炉心のドレン配管内への流入を想定した場	【柏崎 6/7】
 る。		合のドレン配管内での溶融炉心の凝固距離について, MAAP	島根2号炉および東
		結果をもとに評価し、ドライウェルサンプへの流入可能性につ	海第二では、溶融炉心
	し、スリット状排水流路の有効性を確認した。	いて評価した。	がドレン配管へ流入し
a. 評価体系			た場合の凝固距離を評
• MAAP コードでは、サンプのような直方体の形状を模擬			価。一方, 柏崎 6/7 で
できないため、床面積をサンプの床面積に合わせた円柱			は.原子炉格納容器下
で模擬した。サンプの床面積は6号炉と7号炉を比較し			部の床面にサンプが設
て、サンプへのデブリ流量に対して、サンプ床面積が小			置されていることから、
さく上面から水への除熱量が少たくたろ7号炉で代表			空にいてい むここに 3, 溶融炉心のサンプ流入
させた サンプ侵食量の評価体系を図 2-1 に示す			時の影響についてM
・			A A P コードを用いた
ライウェル床面に均一に拡がってサンプの滚融恒心の上			
レート に 推請する 高 さ約 0.5 m を 加 え た 約 1.9 m と l た			ている
<u> </u>			
市価/ ハンコ・日初に町価 福祉/10 ニンノノー 相互作田」における 深融に心変下時刻の崩壊執(東免発生)			
$C. 計価 枯木、 証 伝 ケーフ 2.1 .  \square 2.2  に デ ナ ト ヤ ル ・ サ ン プ の 信 食 鼻$			
・ 計画/ $\wedge 2^{-1}$ . 因 $2^{-2}$ に小り こわり、 リンノの 反 長里 け 知 0.12m  で た い  御制 ラノナ の 出 復 に け 五 こ かい こ ト			
<u>は利し.13m じめり, 刺殺ノイノの損傷には主らないこと</u>			
• 評価ケース $2-2$ ではサンノの侵良軍は床面で約 $0.78m$ で ため、 細胞に たわにのまわることを かおした			
のり、 刺殺フイフ に 判 连 り る こ と を 帷 認 し に 。			
いしのしみん。忠康執卫がして執法ナメロウムシャセキレン			
<u>以上のとわり、朋塚然及の上面然流界を保守的に考慮して</u>			
- わり、浴酔児心の浴下重、水中洛下後の至期にも小碓かさかあ			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉
ると考えられる状態の評価結果であるが, 鋼製ライナの損傷を		
防止できない評価結果が得られたことを考慮し, サンプにおけ		
る MCCI 対策を講じることとした。		
	1. 格納容器ドレンサンプ排水流路の形状変更を考慮した凝固	
	停止評価モデル	
	<u>第1</u> 図に,格納容器ドレンサンプ排水流路の形状変更を考慮	
	した凝固停止評価モデルの概要図を示す。	
	各ドレンサンプからの排水流路は、ペデスタル床面に堆積す	
	<u>る溶融炉心による熱影響を抑制するコンクリート深さまで通じ</u>	
	<u>る縦方向の流路(縦スリット)と、流入した溶融炉心を凝固さ</u>	
	<u>せる横方向の流路(横スリット)を介し、既設の格納容器ドレ</u>	
	ンサンプ排水配管へ接続する構成とする。	
	<u>また,縦スリット及び横スリットは薄い中空平板型(幅</u>	
	[内径],厚さ [内径])の形状とし,周囲をSU	
	S材とすることで、流入した溶融炉心の冷却及び凝固停止を	
	促進させる設計とする。	
	趣 趣	

備考

## ・記載方針の相違

## 【東海第二】

島根2号炉および柏 崎6/7では,2.(2)b. の「ドレン配管内での溶 融炉心の凝固距離につ いて」において凝固距離 の評価を記載。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
【比較のため, 3.2 (6)を記載】 EPRI (Electric Power Research Institute) 及びFAI (FAUSKE & ASSOCIATE, LLC) が,下部プレナムを模擬した試験体に模擬 溶融炉心 (Al203) を流入させる試験を行っている。同試験の 試験体系が,比較的,7号炉のドレン配管 (80A) に近い体系と なっていることから,その試験結果に基づき,ドレン配管内で の溶融炉心の凝固距離について評価を行う。	2. 既往の試験結果に基づく評価 配管等の流路内における溶融炉心の流動・凝固挙動に係る試 験として、米国EPRI及びFAIにより実施された炉心溶融 時のRPV下部プレナム貫通部の挙動に係る試験がある。 ^[1] この試験では、RPV下部プレナム及びドレン配管(内径 5cm) を模擬した試験体に模擬コリウムとしてA1 ₂ O ₃ を流入させ、 その流動挙動を確認している。	<ul> <li>(2)溶融炉心の凝固評価</li> <li>a. EPRI/FAI試験の概要</li> <li>EPRI (Electric Power Research Ir (FAUSKE &amp; ASSOCIATE, LLC)が、下部プロ 体に模擬溶融炉心(A1₂O₃)を流入させ</li> <li>同試験の試験体系が、比較的、島根2号焼 に近い体系となっていることから、その調 レン配管内での溶融炉心の凝固距離につい</li> </ul>
a. EPRI/FAI試験の概要 図3-13に試験装置概要を示す。酸化鉄とアルミニウムによる テルミット反応により、模擬溶融炉心である溶融したA1203が 生成される。模擬溶融炉心はテルミットレシーバに流入し、密 度差により鉄とA1203とで成層化が起こる。密度差からA1203は 鉄より上層にあることにより、A1203によりセメント製のキャ ップが溶融し、A1203のみLower Chamberに移行する。このとき、 Lower Chamber及びドレン配管は水で満たされており、溶融炉	<u>第2図に試験装置の概要図を示す。</u>	図2に試験装置概要を示す。酸化鉄とス ルミット反応により、模擬溶融炉心である 生成される。模擬溶融炉心はテルミット 度差により鉄とA1 ₂ O ₃ とで成層化が起 ₂ O ₃ は鉄より上層にあることにより、A1 製のキャップが溶融し、A1 ₂ O ₃ のみL erに移行する。このとき、Lower
心が原子炉格納容器下部へと落下してくる際の実機の条件と 類似している。試験の結果,模擬溶融炉心の流動距離(凝固距 離)は0.79mであった。	<ul> <li>試験の結果,配管内でのA1₂O₃の流動距離は最大でも79cm</li> <li>程度となっており,配管の破断は生じていない。</li> <li>また,配管内での水平方向の流速は最大でも約0.2m/sと推定されており,流路形状に基づきベルヌーイ則により計算され</li> <li>る流速よりも1/10から1/100小さい結果となっている。これ</li> <li>は、模擬ドレン配管内における水の存在により、模擬コリウム</li> <li>の流動が著しく抑制されたためと推定されている。</li> <li>第1表に,EPRI試験条件と東二の排水流路における条件</li> <li>の比較を示す。</li> <li>EPRI試験では、模擬コリウムとしてA1₂O₃を用いており、その体積当たりの溶融潜熱は約4.41×10⁹ J/m³と計算される。これに対して、東海第二発電所の溶融炉心の場合、溶融</li> <li>潜熱に加えて液相線温度から固相線温度までの顕熱を考慮しても、体積当たりの凝固までの放出熱量は</li> <li>と計算され、A1₂O₃と同等であることが分かる。</li> <li>また、東海第二の溶融炉心の熱伝導率はA1₂O₃に比べて大きいことに加え、格納容器ドレンサンプの排水流路はスリット</li> </ul>	レン配管は水で満たされており、溶融炉4部へと落下してくる際の実機の条件と類( 果、模擬溶融炉心の流動距離(凝固距離)

炉	

Institute) 及びFAI プレナムを模擬した試験 させる試験を行っており, 砂炉のドレン配管(80A) の試験結果に基づき,ド ついて評価を行う。

とアルミニウムによるテ ある溶融したAl₂O₃が トレシーバに流入し,密 起こる。密度差からAl Al₂O₃によりセメント Lower Chamb た Chamber及びド 炉心が原子炉格納容器下 類似している。試験の結 雛)は 0.79m であった。 ・記載方針の相違

【東海第二】

東海第二では EPRI 試 験条件と東二の排水流 路における条件を比較 し,溶融炉心が横スリ ットの範囲内で凝固停 止することが示されて いる。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	一方,東海第二の溶融炉心はA1203に比べて動粘度が小さ		
	いことや堆積ヘッドが大きくなっていることから, EPRI試		
	験条件に対して流路内での流入速度が速くなることが考えられ		
	<u>る。しかし、流速が大きくなると、溶融炉心とSUS材間の対</u>		
	<u>流熱伝達率が大きくなり溶融炉心の冷却率が大きくなることか</u>		
	ら, 流動距離は流速の増加に対して単純に線形には増加しない。		
	以上より, EPRI試験条件と実機条件の差を勘案しても,		
	総合的な流動距離への影響は同程度であることから、東海第		
	<u>二のスリット条件でもEPRI試験結果の流動距離(約</u>		
	79cm)を大きく上回ることは考えにくく,溶融炉心は横スリ		
	ット長さ (の範囲内で凝固停止するものと考えられ		
	<u>3.</u>		
<image/>	<complex-block></complex-block>	中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国 <th></th>	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号	·炉 備考	
-----------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------	
田崎刈羽原子刀発電所 6 / 7 号炉 (2017.12.20版)	第選挙 1 (2015) 第選挙 1 (1) 第選挙 1 (1) 第 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) 1 (201) </th <th>少       備考         ・記載方針の相違 【東海第二】       島根2号炉および柏 崎6/7では、2.(2) b.         のドレン配管内での溶 融炉心の凝固距離について」において凝固距離       の評価を記載している。</th>	少       備考         ・記載方針の相違 【東海第二】       島根2号炉および柏 崎6/7では、2.(2) b.         のドレン配管内での溶 融炉心の凝固距離について」において凝固距離       の評価を記載している。	
	<td></td>		
	【ここまで】		

_

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			・記載方針の相違
b. ドレン配管内での溶融炉心の凝固距離について		b. ドレン配管内での溶融炉心の凝固距離について	【東海第二】
ドレン配管内の溶融炉心の溶融凝固特性は流入する溶融炉		ドレン配管内の溶融炉心の溶融凝固特性は流入する溶融炉心	東海第二では、格納
心の保有熱量と,配管外部への放熱量に依存するものと考えら		の保有熱量と、配管外部への放熱量に依存するものと考えられ	容器ドレンサンプ排水
れる。そこで,ドレン配管体系について,溶融炉心の物性の違		る。そこで、ドレン配管体系について、溶融炉心の物性の違い	流路における凝固停止
いも考慮して,溶融炉心の保有熱量及び配管外への放熱量(配		も考慮して、溶融炉心の保有熱量及び配管外への放熱量(配管	評価結果が1.に記載さ
管系に依存)の比率に基づき流動距離を推定する。		系に依存)の比率に基づき流動距離を推定する。	れている。
表3-6に評価に使用する溶融炉心とコンクリートの物性値を		<u>表1</u> に評価に使用する溶融炉心の物性値を示す。A1 ₂ O ₃ の	
示す。Al203の溶融潜熱(hfs=1.16×10 ⁶ J/kg)に密度		溶融潜熱(hfs=1.16×10 ⁶ J/kg)に密度 ( $\rho$ =3,800kg/m ³ ) を乗	
(ρ=3800kg/m ³ )を乗じると,流動停止までの保有熱量は		じると、A1 ₂ O ₃ の流動停止までの保有熱量は4,408MJ/m ³ とな	
4408MJ/m ³ となる。一方,溶融炉心の流動停止までの保有熱量		る。一方、溶融炉心の流動停止までの保有熱量は顕熱と溶融潜	
は顕熱と溶融潜熱の和として次式で表される。		熱の和として次式で表される。	
$h_{db} = \{ (T_d - T_{sol}) C_p + h_{fs} \}$		$h_{db}= \{(T_d-T_{sol})C_p+h_{fs}\}$	
ここで、hdb:溶融炉心の流動停止までの顕熱と溶融潜熱の		ここで, hab:溶融炉心の流動停止までの顕熱と溶融潜熱の和	
和(J), Td:溶融炉心温度(℃), Tsol:溶融炉心固相線温度		( J /kg)	
(℃),Cp:溶融炉心比熱(J/kg℃),hfs:溶融炉心溶融潜熱(J/kg)		Td:溶融炉心温度(℃)	
である。		Tsol:溶融炉心固相線温度(℃)	
		C _p :溶融炉心比熱(J/kg℃)	
		hfs:溶融炉心溶融潜熱(J/kg)	
		である。	・評価結果の相違
このとき、htbは約したとなり、密度を乗じ、流動停止		このとき, habはとなり, 密度を乗じ, 流	【柏崎 6/7】
までの保有熱量とするととなり、Al2O3の約倍		動停止までの保有熱量とすると となり、 A12	評価に適用する溶融
となる。		O ₃ の倍となる。	炉心物性等による差異。
また,ドレン配管 (80A) の配管直径(df)を8cmと仮定すると,		また,ドレン配管(80A)の配管直径(df)を8cmと仮定する	
EPRI/FAI試験のドレンラインdtes (5cm)より,配管径の比は約		と, EPRI/FAI試験のドレンライン dtes(5cm)より,	
1.6倍である。配管径の比,保有熱量比を用いて,ドレン配管		配管径の比は約1.6倍である。配管径の比,保有熱量比を用い	
内の溶融炉心流動距離(凝固距離)を次の様に評価する。		て、ドレン配管内の溶融炉心流動距離(凝固距離)を次の様に	
		評価する。	
$L = L_{tes} \times d_f/d_{tes} \times (h_{db} \rho_{db}) / (h_{al} \rho_{al})$		$L = L_{tes} \times d_f/d_{tes} \times (h_{db} \rho_{db}) / (h_{al} \rho_{al})$	
ここで,L:ドレン配管内の溶融炉心流動距離(凝固距離),		ここで、 L:ドレン配管内の溶融炉心流動距離(凝固距離)	
Ltes:EPRI/FAI試験の流動距離,		Ltes: EPRI/FAI 試験の流動距離	
tes:配管直径比,		df/dtes:配管直径比	
(hdb ρ db) / (hal ρ al):流動停止までの保有熱量比		hdb ρ db/ hal ρ al:流動停止までの保有熱量比	
である。		である。	
EPRI/FAI試験の流動距離0.79mを基に、上記式によってドレ		EPRI/FAI試験の流動距離 0.79m を基に,上記式によ	・評価結果の相違
ン配管内の溶融炉心の凝固距離を評価すると、凝固距離は		ってドレン配管内の溶融炉心の凝固距離を評価すると、凝固距	【柏崎 6/7】
となる。		離はしとなる。	評価に適用する溶融
			炉心物性等による差異。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
機器ファンネルからドライウェルサンプまでのドレン配管		ファンネルからドライウェルサンプへと繋がるドレン配管長	
長は, 最短でも約3.6m以上であることから, 機器ファンネルに		は, 最短でも以上の配管長を有しており, かつ「b.ド	・設備設計の相違
流入した溶融炉心は、ドレン配管内で凝固するため、ドライウ		レン配管内での溶融炉心の凝固距離について」及び別紙-1に	【柏崎 6/7】
ェルサンプ内に到達することはないと考えられる。		示すとおり,ドレン配管内の溶融炉心の凝固距離は最大でも	ドレン配管長の差異。
		であり、ドライウェルサンプに溶融炉心が流入すること	・評価結果の相違
		はない。	【柏崎 6/7】
表3-6 評価に使用する溶融炉心物性値及びコンクリート物性値*		表1 評価に使用する溶融炉心物性値**	MAAP解析におけ
			る溶融物性値の差異。
		※ 溶融炉心物性値については、MAAP解析における、原子炉圧力容器破損直前	
※溶融炉心物性値については、MAAP解析における、原子炉圧力容器破損直前の下部		の下部プレナム内の物性値を使用した。	
タレケム内の物性値を使用した。また、コンクリート物性値については、原子炉 格納容器のコンクリートの密度とし、また、既往の研究(NURREG/CR-2282)より			
融点及び溶融潜熱を引用した。			
[ここまで]			
(2) コリウムシールドの選定理由		(3) コリウムシールドの選定理由	
これまでは、サンプの位置や水中落下後の挙動の不確かさ、		(2)の評価結果では、ペデスタル注水に上って溶融デブリ	・設計方針の相違
評価条件の保守性等を考慮し、当初は鋼製ライナの損傷に至る		はドレン配管内で止まろが、溶酔デブリの凝固距離にけ不確か	【柏崎 6/7】
までの侵食がサンプにおいて生じる状態は想定していなかっ		さがあると考えられることから ドライウェルサンプへの溶融	島根2号炉において
たものの、現象の不確かさを踏まえ、サンプの防護のための自		「「小流入防止対策を講じることとした」	も、溶融デブリの冷却
主対策としてコリウムシールドを設置していた。			性や凝固距離の不確か
対策の検討に際しては、サンプ及びサンプポンプ等の既存		対策の検討に際しては「ドレン配管内におけろ冷却を促進し	さを考慮して、コリウ
の設備の機能を阻害しない観点で検討を実施した。図 2-3 に			ムシールドを対策とし
サンプ内の構造を示す。サンプポンプの吸込みがサンプの底部		福祉の日を十分に自己 日本とそうにのに、 市転 アノノルをつ	て選定しているが,設備
から約 0.15m の高さにあり、ファンネルからの流入口がサン		機能といった既存の設備の機能を阻害したい観点及び施工性の	の相違により記載が異
プの底部から約 0.35m の位置にある等. サンプの底部付近に			なる。
は様々な機器、構造物があることを考慮し、サンプの防護のた		一般が、く快的と失地し、キャン・記号人自よくの他品を運びする <u>対</u> 第としてコリウムシールドを選定した	-
めの対策としてコリウムシールドを選定した。			
機器、構造物の設置高さを見直し、サンプの底上げを行う			
等、大規模な工事を伴う対策を講じることけ、技術的にけ不可			
************************************			
あっても、サンプの防護の組占で十分か性能を有していると考			
シュ、し、ノーンジャランの成小、「ノルは正形で行しているころ			
<u>ん、ーラフムマール「で 里八 邦以 守板 仰 以 聞 に 世 単 竹 り る こ こ</u> レ し た			



炉	備考
	<ul> <li>・評価方針の相違</li> <li>【柏崎 6/7】</li> <li>柏崎 6/7 では,溶融</li> <li>炉心のサンプ流入時の</li> <li>影響について,MAA</li> <li>Pコードを用いたMC</li> <li>C I 評価が実施されて</li> <li>いる。</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
3. 設備の概要		3. 設備の概要	
3.1 設置目的		3.1 設置目的	
炉心損傷後に原子炉圧力容器底部が破損し, <u>原子炉格納容器</u>		炉心損傷後に原子炉圧力容器底部が破損し, ペデスタルへの	
下部ドライウェルへの溶融炉心の落下に至り,落下してきた溶		溶融炉心の落下に至り,落下してきた溶融炉心が <u>ドレン配管を</u>	・設備設計の相違
融炉心が <u>ドライウェル高電導度廃液サンプ及びドライウェル</u>		<u>通じ,ドライウェルサンプ内に流入する場合,サンプピット壁</u>	【柏崎 6/7】
低電導度廃液サンプ(以下,「ドライウェルサンプ」という。)		面は原子炉圧力容器支持のための外側鋼板が露出しており、ド	設備や格納容器構造
内に流入する場合,ドライウェルサンプ底面から原子炉格納容		ライウェルサンプ壁面と外側鋼板との距離も近く、またドライ	の相違により、想定さ
器バウンダリである鋼製ライナまでの距離が小さいことから <u>,</u>		ウェルサンプ床面から原子炉格納容器バウンダリである鋼製ラ	れる損傷箇所が異なる
サンプ底面コンクリートの侵食により溶融炉心が鋼製ライナ		イナまでの距離も近いことから、コンクリート侵食によって原	ため、記載が異なる。
に接触し,原子炉格納容器のバウンダリ機能が損なわれるおそ		子炉圧力容器の支持機能及び原子炉格納容器のバウンダリの健	
<u>れがある。</u> ドライウェルサンプへの溶融炉心の流入を <u>防ぎ</u> , <u>か</u>		<u>全性が損なわれる恐れがある。</u> ドライウェルサンプへの溶融炉	
つ原子炉格納容器下部注水設備と合わせて,サンプ底面のコン		心の流入を防ぐことで、サンプ床面のコンクリートの侵食を抑	
クリートの侵食を抑制し,溶融炉心が原子炉格納容器バウンダ		制し、溶融炉心が原子炉格納容器バウンダリに接触することを	
リに接触することを防止するために,原子炉格納容器下部にコ		防止するために、ペデスタルにコリウムシールドを設置する。	
図3-1 コリウムシールド外観(7 号炉)			
		図3 コリウムシールド外観	
表 3-1 コリウムシールド仕様		表2 コリウムシールド仕様	
6 分炉     7 分炉       耐熱材材質     ジルコニア ( $\mathbf{ZrO}_{2}$ )		ジールド材 ジルコニア (ZrO ₂ )     日地は	
<ul> <li>(サンフ防護材,犠牲材)</li> <li>耐熱材融点</li> <li>2677℃</li> </ul>		ライニング材	
高さ		耐熱材融点 シールドは見さ	
		寸法 水路 (スリット部) 長さ	
スリット長さ         耐震性         S s 機能維持		耐震性	
		1	

32.2 きびシシーやド始き       32.2 さびシシーやドはき       1) コシクシーやド始き       1) コシクシーやドはき         10.3 コシクシーやマスラン作       1) コシクシーやドはき       2) フシシーやドはき       2) フシシーやドはき         1.3 フタンーやマスラン作       1) フシシーやアのたけ       2) フシシーやドはき       2) フシシーやドはき         1.3 フタンーやアスランド       1) フシシーやドはき       2) フシシーやドはき       2) フシシーやドはき       2) フシシーやドはき         1.3 フタンーやドはぎ       2) フシシーやドはぎ       2) フシシーやドはぎ       2) フシシーやドはぎ       2) フシシーやドはぎ         1.3 フタンシーや「スランド       1) フランシーやドはぎ       2) フシシーやドはぎ       2) フシシーやドはぎ       2) フシシーやドはぎ       2) フシシーやドはぎ         1.3 フタンシーやアスランド       1) フタンシーやドはぎ       2) フシシーやドはぎ       2) フシンシーや「スランド       2) フシンシンシード       2) フシンシンシンド       2	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
101: PDA2に評価事件:       1) PDA2に評価事件:       -         102: PDA2に評価事件:       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	3.2 コリウムシールド構造		3.2 コリウムシールド構造	
<ul> <li>a. 法学校学校の15月</li> <li>a. 法学校学校会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社</li></ul>	(1)コリウムシールド設計条件		(1) コリウムシールド設計条件	
ヨリシムシーム*を数計するための決議条件となる主点ナ       ヨリシムシーム*を数計するための決議条件となる主点ナ       ヨリシムシーム*を数計であるか。         ・ 10月、(2)濃季発気の(地帯での)の心清検索的 決切算子算法本       アイロビヤ(2)濃雪発気の(地帯での)の心清検索的 決切算子算法本       アイロビヤ(2)濃雪発気の(地帯での)の心清検索的 決切算子算法本       ************************************	a. 想定する事故シナリオ		a. 想定する事故シナリオ	
リオは以わりとかり。         リオは以わりとかり。         リオは以わりとかり。         リオは以わりとかり。         リオは以わりとかり。         リオは以わりとかり。         ・ロンの「微葉素像の出してのわらみ海峡(約) 及び用きた         ・空間方法の構成 2010 (分類 300 によういた) 2010 (小力) 2010 (小力	コリウムシールドを設計するための前提条件となる事故シナ		コリウムシールドを設計するための前提条件となる事故シナ	
・ DQL (法書書案像の中にはさななしぶ方法条約) 点の第千のたれ 文政を想定 (す効に訂催における以てしたりすえ目報)         ・ T QUV (法書書案像の中にはさななしな方法来約) 点の第千のたれ 文政を想定 (す効に訂催における以てしたりすえ目報)         ・ Witimp の推進 (す効に訂催における以てしたりすえ目報)         ・ Witimp の推進 (日本の)           2 による方。そうの春心を決定後を確認 (日本の)         ・ Witimp の推進 (日本の)         - Witimp の (日本の)           Witimp の (日本の)         - Witimp の (日本の)         - Witimp 0        - Witimp 0	リオは以下のとおり。		リオは以下のとおり。	
System         日本大阪をなた         日本大阪をなた         日本大阪をなた         「市気計工におけるのC1 シアリオと同時)           ・京子炉口が客港におけるのC1 シアリオと同時)         ・京子炉口が客港におけるのC1 シアリオと同時)         ・京子が口が客港におけるのC1 シアリオと同時)         ・京都が1000000000000000000000000000000000000	・TQUV(過渡事象後の低圧での炉心冷却失敗)及び原子炉注水		・TQUV(過渡事象後の低圧での炉心冷却失敗)及び原子炉	
(古物理)       (有物理)       (市地位力容器域目前の <u>高小地理和変更)</u> · 「市地位力容器域目前の <u>高小地理和変更)</u> · 「市地位力容器」       · 「市地位力容器」       · 「市地位力容器」       · 「市地位力容器」       · 「市地位力容器」       · 「市地位力容器」       · 「市地行力       · 「市田力力       · 「市田力力       · 「日本日力」       · 「「日本日力」       · 「日本日力」       · 「日本日力」 <td>失敗を想定</td> <td></td> <td>注水失敗を想定</td> <td></td>	失敗を想定		注水失敗を想定	
・ ます死中方客報紙前的 <u>は子和空秋空は「女は水太に加くてなった大なたまれ」でした</u> ・ まず死中方客報紙前的 <u>ビデスタル学校によりてしての水空</u> ・ 常市坊内的随種         加は広水、その後も注水に継续変強       一 読成されているものとし、その後も注水に建築変強       ・ 常市坊内的種         取が取得取またシャックを下部の構造から、客聴したがか な道 トのから実物なを描しし、下部プレウムに準ト、それに伴       ・ 不可方容を読みたしている。       ・ 常市坊内的種         20111111111111111111111111111111111111	(有効性評価におけるMCCIシナリオと同様)		(有効性評価におけるMCCIシナリオと同様)	
かいたいなか、その後も住水は神秘学校           部成されているものとし、その後も住水は神秘学校           にもお           にあわ           にあわ           にたわ           にたか           にか           にたか           にした           にした           にした           にした           にしたか           にたか         にたの           にか           にの           にの           にたか         にの           にたの         にの           に         につい           につい           につい           につい           にの           にの      <	・原子炉圧力容器破損前の原子炉格納容器下部注水(水張高さ		・原子炉圧力容器破損前のペデスタル注水により1mの水位が	・評価方針の相違
Mar Sefferststron-order trägensen         Sur Seffersten         S	<u>2m) は成功,</u> その後も注水は継続実施		<u>形成されているものとし</u> 、その後も注水は継続実施	【柏崎 6/7】
Kur 規模送失式たシュラウド下部の構造がら、溶融した厚や は定すの近の支持線を指導し、下ボブレナムに落下、それに伴 い気不伊圧力容量下鏡の中央的(声気記)における熱的な復傷 かた大くなり、見子便正力容量が強化、資産から成果 かたたきなえなり、見子便正力容量が強化、資産から成果 かたまたと消費がない、ない、中レビスクロントに応じた。それ たいに伴い気で使に力容量がない、気管理が多数に なり、などたくなりまたで、それ たいに伴い気で使に力容量がない、気管理が多数に なり、などなどない、ことできない、ない、中レビスクロントは ない、ない、としている。     Aシールドの定まれの、高祉 たいて、単く作人なの ない、アントムに除い、それ のでのはいた。     Aシールドの定まれの、高祉 たいて、単く作人なの ない、アントムにない、見子便通知度がない、高速使うから ない、アントムとが不安にない、ころ、見子使用した のかないた。     Aシールドの定まれの、高祉 たいて、単く作人なの ない、アントムにない、東安 ののはいた。     Aシールドの定まれの、高祉 たいて、単く作人なの ない、アントムとない、ころ、見子使用した ののないた。     Aシールドの定まれの、高祉 たいて、単く作人なの ない、アントムとない、ころ、たいた のないため、ころ、高速使らない、ころ、 たいていた。     Aシールドの定まれの、 に合いて、 についての。     Aシールドの定まれの、 に合いたいでので、 についてのこ についての。     Aシールドの定まれの、 に合いたので、 についてのこ についてのこ についてのこ についてのこ についてのご たいたので、 についてのこ についてのご についてのご たいたので、 についてのご たいたので、 についてのご たいたので、 についてのご たいたので、 についてのご たいたのでのでいたので、 についてのご たいたので、 についてのご たいたのでので、 についてのご たいたので、 についてのご たいたのでのでいたので についてのご たいたので、 についてのご たいたので、 についてのご たいたのでのでいたので についてのご たいたのでのでので についてのご たいたので、 についてのご たいたのでので についてのご たいたのでので についてのご たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいで たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいたので たいで たいで たいで たいで たいで たいで たいで たいで たいで たい				島根2号炉のコリウ
MAP 規F需果またシッフクド下部の構造から、溶風にた定か は血・から心支持物を損傷し、ド部ングラムに巻く、されに作 いて少年ロウ密帯す酸の中央部(炉気剤)における熱的な機構 が大くさり、原子が用力が濃か成は、溶剤がらが原子所产力 容易に流出(等い)すると設定される、溶剤がいか原子所产力 容易に流出(等い)すると設定される、溶剤がいか原子所产力 容易に流出(等い)すると設定される、溶剤がいか原子所产力 容易に流出(等い)すると認定でか可定に落下して見ご想意洗症 変正認定時度、その後、ごごとなどが可定に落下してごごご 変更認定時度、その後、ごごとなど非直を水平力のには致い、 アンシネルに支水力         MAA P想行請果またはシッフクド下部の構造から、溶風に たから注意とが認った。デンスになり、ころと、ござん の濃濃で認いてきる思想 かは、市野グレク容濃が良い、音がくの意思 とない。 ま3 容濃が心理症ですでした溶影でも認思し、 とない。         NAA P想行請果またはシッフクド下部の構造から、溶風に いのかえ受きるきか にはい、モデンクスに思えた。 の濃濃で認いてきる認力 かは、たきとかざので説、たきがためてなた。 なりたいまのない、デンスなが重ない、デアレーた容認力 のはそのが見たがでないますでした。 の濃縮からか可能です。 ころときない、デジェクタークにないまでから、 の濃縮からかすがにはない、 ころときなない、手切を見かない。 たま3 容濃が心理症に原子が見たがない。 このにするのにないますな場合の に原子が生力容響が成 ったいでない。 このにするのにない。 たま3 容濃が心理症に原子が生力容響が成 することをならい、手切を急いついてすな場合の。 でいたまのないないないです。 ために、 うかなこうなーたが成正です。 ために使用の に原子が生力容響が成 ったいたちでの ためでの にない。         といて、低少性を含む い、 などの ころしたがでする。 の濃縮からかでにない。 たいたまの ためにないたいない。 たいたちでかた。 たいたちでかた。 たいたちでかたいないたいます。 ためにないたいますなない。 たいたちでかたたいないたいますな。 ためにないたいますな ためにないたいまですないためできかでない。 ためにないたいたちでないたちでないたちでない。 ためにないたいますな ためにないたちでないたちでないたちでないたちでないたちでないたちでないたちでないたちで				ムシールドの設計条件
NAP 解析結果またショラウド下部の構造から、激励した炉心 は直下の厚心支持板を損傷し、下部ブレナムに落下、それに伴 いて、たシロカ客等 7歳の中央者(で)正義)においる感的使損傷 か大き(なな)、房子(レナカな客)で)においる感かし ないた(いて,たシロカ客等 7歳の中央者(で)正義)においる感かし ため、ためて、たシロシスを構成性、溶血がなない、深かした。 を思いた溶性が常す 70年し方容器で激の中央部(6)で高い)においる感か かられていたい。原子(レナカに客下、それに伴 いていた)になる感がの時、感動したがの病子 中圧力容量から説け、(2)でシロカンに溶けで、 のた)、たどの空気の感染を)高速な からないたい。原子(レナカに客下、それに伴 いたい(2)でシロカン(2)での中央が、 (2)でシロカン(2)でのた)でンゴン(2)、アンシン(2)、(2)でシロカン(2)、(2)で) (2) シングルの(2)、(2) シングルの(2)、(2) シングルの(2)、(2) ジロカン(2)、(2) (2) シングルの(2)、(2) シングルの(2)、(2) シングルの(2)、(2) シングルの(2)、(2) ジロカン(2)、(2) シングルの(2)、(2) シングルの(2) (2) シングルで(2)、(2) シングルの(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)				として,保守性を考慮
MAX 解析結果またシュクウド下語の構造から、溶破した節か。         1aとしている。           MAX 解析結果またシュクウド下語の構造から、溶破した第一キれに伴         バアシグロケム溶液で、含水酸を提倡し、下ロブレナム溶液で、されに伴           い深シグロケカ溶素で強の中失惑(伊延部)における熟めな混構         水海水回し方容認が強烈、溶酸しか原子炉圧力容認が強烈、溶酸しか原子炉圧力容認が強烈、溶酸しかな原子が生また。           が含くなり、原子炉圧力容認が強烈、溶酸しか原子炉圧力容認から、溶動した         水海水回したのなどのためにとんどが構成にないていた           ※ 「した溶酸がくひえやのほとんどが構成にないていた         原子炉圧力容認が強烈、溶酸しかな原子が正式           ※ 「した溶酸がくひえやのほとんどが構成にないた         原子炉圧力容認が強烈、溶酸しかなの強悪した           水口を加速したのなが構成す         アンクケム・カンシンで進入すると発電される。           水口         アングロケムやと設計要求準値           ・ カリウムシ・かと設計要求準値         ・ のりウムシ・かと設計要求準値           ・ カリウムシ・小と認識を動作したのな         ・ 水酸後の「加固修」原子炉圧力容認が成計           なことをと考慮し、非数後後の方動回復」原子炉圧力容認が成計         ・ のすいない           ・ カリウムシ・小と認識で、         ・ のりウムシ・小と読みを発電           ・ カリウムシ・小と認識が成計         ・ のりたいのに           ・ ロリウムシケルド設計要求準値         ・ のがた見るの強強           ・ パロ ・ アム を放きの いたり         ・ のかな ・ 水酸後の ・ 小板 たり ・ 水気 ・ 水気 かない           ・ パロ ・ アム ・ 水気 かな ・ 水酸後 ・ 小 町 ・ 小板 たり ・ 水気 かない         ・ のかな ・ 小板 たり ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・				し,初期の水張り高さを
MAP 解析確果またシュラクド下部の構造から、溶融したやら は直下の売心文辨数を建築し、下落プレナムに落下、それに伴         MAA P 解析症果またジュラクド下部の構造から、溶融し た炉 のは直下の売心文辨数を建築し、下落プレナムに落下、それに伴         パード第プレナムに落下、それに伴           い原子伊圧力容器下酸の中央部(伊定約)における熟めな損傷         たかした認識 (第下) けると起定される。原子伊圧力容器が破損、活動にかぶ原子デビガ         空損感大きくなり、原子伊圧力容器が破点 活動にかぶ原子デビガ           容器外に成出(第下) すると起定される。原子伊圧力容器から 落下した溶離がらればてのほとんどが重直に落下して交互発的な 落下した溶離がられてのほとんどが重直に落下して交互 をつき、ご差 2.25を消滅に (第下) すると起定される。原子伊圧力容器が成出、 たて溶原でからましたご差 2.45 (第一) すると起定される。原子伊圧力容器が成し、 ファンネルに深水すると起定される。原子伊圧力容器が成正         ・設備設計の和達           したすし、「クイロ・レーマンプへ流入すると起定される。原語が のの絶索は」」と想応、 表3 2.55 高能炉心和成内家         ・設備設計の和成式         ・設備設計の和道           シュリウムシールド設計要求事項         ・通販売小に非該計要求事項         ・調販売レベル・平成後 <u>約・6時間</u> に同子伊圧力容器が成正 することを考慮し、事故後 <u>6.9時間</u> 出当とする。 (ジルニコクムー大反応熟14.5m)         ・解析症果の相応 指摘 6/7]				1mとしている。
は直下の炉心支持板を損傷し、下部プレナルに落下,それに伴 い気子が正力容器で幾の中央部(の)洗剤) における熱的な損傷 が大きくなり、原子炉圧力容器が酸の中央部(の)洗剤) における熱的な損傷 が大きくなり、原子炉圧力容器が酸の中央部(の)洗剤) における熱的な 調整から海下した溶融炉のはそのけとんどが執直に落下し気差距 始高 客下した溶融炉のはそのけとんどが執直に落下し気差距 始高 (本市が)、まさくなり、原子炉圧力容器が低から(水下)のに 読む、(アクリュルセップス)、入すると想定される。原子炉圧力容 器がた(油田(客下) すると思定される。原子炉圧力容 器が低か(本下)、たると想定される。原子炉圧力容 器が低か(本下)、ため(な)、ため)、原子炉圧力容 器が低かった)、ため(水下)、ため)、原子炉圧力容 器が低かった)、ため(水下)、ため)、ため) (油前の7) ・前線熟レベル・T-茶板( <u>客前)</u> (原子炉圧力容器が低か ることを考察()、男女( <u>客前)</u> (原子炉圧力容器が低か ることを考察()、男女( <u>客前)</u> (原子炉圧力容器が低か ることを考察()、男女( <u>客前)</u> (原子炉圧力容器が低か) ん(ジルコンロノー水((家語)を客()))、(ジルコンロノー水((家語))を得知)	MAAP 解析結果またシュラウド下部の構造から,溶融した炉心		MAAP解析結果またはシュラウド下部の構造から、溶融し	
い原子炉圧力容器下鏡の中央部(炉底部)における熱的な損傷       れに伴い原子炉圧力容器下鏡の中央部(炉底部)における熱的       れに伴い原子炉圧力容器下鏡の中央部(炉底部)における熱的       おはりる熱的       おはうる熱的         方容易へに読用(落)けっると想定される。原子炉圧力容器が破損、溶融戸らが原子炉圧力       方容易へに読用(落)けっると想定される。原子が圧力容器が破損、溶融戸らが原子       か圧力容器へに読用(落)けっると想定される。原子が圧力容器が破損、溶融戸らが原子       か圧力容器へに読用(落)けっると想定される。原子が圧力容器が破損       ???         第にした溶血がしたのほとんどが確直に落下した完全       タルケッシンへの定入すると想定される。容融がらの設置[1]       シークシールに読みてきる。原子が圧力容器が吸用(方)       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ??       ?       ??       ??       ??       ??       ??       ??       ?       ??       ??       ?       ?       ??       ?       ? </td <td>は直下の炉心支持板を損傷し、下部プレナムに落下、それに伴</td> <td></td> <td>た炉心は直下の炉心支持板を損傷し、下部プレナムに落下、そ</td> <td></td>	は直下の炉心支持板を損傷し、下部プレナムに落下、それに伴		た炉心は直下の炉心支持板を損傷し、下部プレナムに落下、そ	
が大きくなり、原子伊圧力容器が破損、溶融炉心が原子伊圧力       な損傷が大きくなり、原子伊圧力容器が破損、溶融炉心が原子         容異外に読出(案下)すると想定される。原子伊圧力容器が破損       深温から第下した溶融炉心はそのほとんどが電圧(落下し <u>尻子炉着納容</u> 落下した溶融炉心はそのほとんどが電圧(落下し <u>尻子炉着納容</u> な近点が大きと認定される。原子伊圧力容器が成し、         逸上部に(案下)すると想定される。原子伊圧力容器が成損す       な損傷が大きくなり、原子伊圧力容器が取損、         必約金漬(1)と認定       な力を必然く気える点に確認し、         麦3・2 溶融が心組成内訳	い原子炉圧力容器下鏡の中央部(炉底部)における熱的な損傷		れに伴い原子炉圧力容器下鏡の中央部(炉底部)における熱的	
容器外に流出(落下)すると想定される。原子炉圧力容器から 落下した溶酸炉心はそのほとんどが垂直に落下し <u>気子炉植物容</u> 炉圧力容器かに流出(落下)すると想定される。原子炉圧力容 器から落下した溶酸炉心はそのほとんどが垂直に落下し <u>気子ンス かた底に到速、その後、「プスクル床面を水平方向に表散し、 ファンネルに、流入すると想定される。溶酸炉心貌起せ」       ・ 載備設計の相違            <ul> <li>             ・必認識は</li> <li>             と想定。             </li> <li>             ま3・2溶酸炉心和成内限         </li> </ul>               を3 溶酸炉心和成内限               ・数備設計の相違               ・数備設計の相違               ・数備設計の相違                 b. コリウムシールド設計要求事項               b. コリウムシールド設計要求事項               b. コリウムシールド設計要求事項               b. コリウムシールド設計要求事項               b. コリウムシールド設計要求事項               ・解析新来の相違             (ゴル = -) ノールド設計要求事項               b. コリウムシールド設計要求事項             ・ 施換(し時間機に原子炉圧力容器が成相 transpace = </u>	が大きくなり,原子炉圧力容器が破損,溶融炉心が原子炉圧力		な損傷が大きくなり、原子炉圧力容器が破損、溶融炉心が原子	
落下した溶融炉心はそのほとんどが垂直に落下し <u>原子炉格納容</u> 器から落下した溶融炉心はそのほとんどが垂直に落下し <u>マブス</u> クル床面に到途。その後、底工炉格納容器丁盤床面を水平方向に 拡散し、ドライウェルセンブへ流入すると想定される。溶融炉       ・設備設計の相違 し         立た窓:       表3-2溶融炉心組成内訳       ※3 溶融炉心組成内訳       ・設備設計の相違         上       大切と二本人下設計要求事項       ・設備設計の相違 し       ・設備設計の相違 し         ・       ・       ・       ・         ・       ・       ・       ・       ・         ・       ・       ・       ・       ・         ・       ・       ・       ・       ・       ・         ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       ・       *       ・       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *	容器外に流出(落下)すると想定される。原子炉圧力容器から		炉圧力容器外に流出(落下)すると想定される。原子炉圧力容	
器下部に到達。その後、 <u>原子炉格納容器下部</u> 床面を水平力向に 拡散し、 <u>ドフイウェルサンブ</u> ~流入すると想定される。溶融炉 心の総量は」と想定。 衣3-2 溶融炉心組成内訳       クル成面に到達。その後、ベデスタル(市面を水平力向に転散し、 ファンネルに流入すると想定される。溶融炉心総量は」 と想定。       ・設備設計の相違 し構飾 6/7]         b. コリウムシールド設計要求事項 ・崩壊熱レベル:事政後 <u>約7時間後</u> に原子炉圧力容器が破損す ることを考慮し、事故後 <u>6時間</u> 相当とする。 (ジルロニウムー水反反熱も考慮)       ・新切着果の相違 日前崎 6/7]       ・解析着果の相違 (補崎 6/7]	落下した溶融炉心はそのほとんどが垂直に落下し原子炉格納容		器から落下した溶融炉心はそのほとんどが垂直に落下し <u>ペデス</u>	
拡散し、 <u>ドライウェルサンブへ</u> 満入すると想定される。溶融炉       ションネルに流入すると想定される。溶融炉心総量は       ・設備設計の相違         心の総量は       と想定。       と想定。         友 3 - 2 溶融炉心組成内訳       友 3 溶融炉心組成内訳         b. コリウムシールド設計要求事項       ・崩壊熱レベル:事故後 <u>約7.時間後</u> に原子炉圧力容器が破損することを考慮し、事故後 <u>6時間</u> 相当とする。         ふことを考慮し、事故後 <u>6時間間</u> 相当とする。       ・解析結果の相違         (ジルコニウムー水反応熱も考慮)       ・解析結果の相違	<u>器下部</u> に到達。その後, <u>原子炉格納容器下部</u> 床面を水平方向に		<u>タル床面</u> に到達。その後, ペデスタル床面を水平方向に拡散し,	
・の総量は           と想定。           と想定。           長3 溶融炉心組成内訳             よう2溶融炉心組成内訳           よう2溶融炉心組成内訳           よう2溶融炉心組成内訳           ようの             b. コリウムシールド設計要求事項           b. コリウムシールド設計要求事項           b. コリウムシールド設計要求事項           b. コリウムシールド設計要求事項           b. コリウムシールド設計要求事項           b. ゴリウムシールド設計要求事項           b. ゴリウムシールド設計要求事項           b. ゴリウムシールド設計要求事項           b. ゴリウムシールド設計要求事項           · 解析結果の相違             ·	拡散し, <u>ドライウェルサンプへ</u> 流入すると想定される。溶融炉		ファンネルに流入すると想定される。溶融炉心の総量は	・設備設計の相違
表 3-2 溶融炉心組成内訳       表 3 溶融炉心組成内訳                 b. コリウムシールド設計要求事項         ・崩壊熱レベル:事故後 <u>約7時間後</u> に原子炉圧力容器が破損することを考慮し、事故後 <u>6時間</u> 相当とする。 (ジルコニウムー水反応熱も考慮)	心の総量はと想定。		と想定。	【柏崎 6/7】
b. コリウムシールド設計要求事項       ・         ・       ・         ・       崩壊熱レベル:事故後約7.時間後に原子炉圧力容器が破損することを考慮し、事故後6時間相当とする。 (ジルコニウムー水反応熱も考慮)	表 3-2 溶融炉心組成内訳		表3 溶融炉心組成内訳	
b. コリウムシールド設計要求事項       b. コリウムシールド設計要求事項         ・崩壊熱レベル:事故後 <u>約7.時間後</u> に原子炉圧力容器が破損することを考慮し、事故後 <u>6.時間</u> 相当とする。 (ジルコニウムー水反応熱も考慮)       ・解析結果の相違 (柏崎 6/7]				
b. コリウムシールド設計要求事項         ・崩壊熱レベル:事故後 <u>約7 時間後</u> に原子炉圧力容器が破損す ることを考慮し、事故後 <u>6時間</u> 相当とする。 (ジルコニウムー水反応熟も考慮)         (ジルコニウムー水反応熟も考慮)				
b. コリウムシールド設計要求事項         ・崩壊熱レベル:事故後 <u>約7時間後</u> に原子炉圧力容器が破損す ることを考慮し、事故後 <u>6時間</u> 相当とする。 (ジルコニウムー水反応熱も考慮)         ・解析結果の相違				
b. コリウムシールド設計要求事項         ・崩壊熱レベル:事故後約7時間後に原子炉圧力容器が破損す         ることを考慮し、事故後6時間相当とする。         (ジルコニウムー水反応熱も考慮)    b. コリウムシールド設計要求事項 ・崩壊熱レベル:事故後約5.4時間後に原子炉圧力容器が破損 することを考慮し、事故後5.6時間相当とす ろ。(ジルコニウムー水反応熱も考慮) ・解析結果の相違 【柏崎 6/7】				
b. コリウムシールド設計要求事項         ・崩壊熱レベル:事故後約7時間後に原子炉圧力容器が破損す         ることを考慮し、事故後6時間相当とする。         (ジルコニウムー水反応熱も考慮)    b. コリウムシールド設計要求事項 ・崩壊熱レベル:事故後約5.4時間後に原子炉圧力容器が破損す することを考慮し、事故後5時間相当とする。 (ジルコニウムー水反応熱も考慮) b. コリウムシールド設計要求事項 ・崩壊熱レベル:事故後約5.4時間後に原子炉圧力容器が破損す することを考慮し、事故後5時間相当とする。 (ジルコニウムー水反応熱も考慮) b. コリウムシールド設計要求事項 ・解析結果の相違 【柏崎 6/7】				
b. コリウムシールド設計要求事項         ・崩壊熱レベル:事故後約7時間後に原子炉圧力容器が破損す ることを考慮し、事故後6時間相当とする。 (ジルコニウムー水反応熱も考慮)         ・が解析結果の相違				
b. コリウムシールド設計要求事項         ・崩壊熱レベル:事故後約7時間後に原子炉圧力容器が破損す ることを考慮し、事故後6時間相当とする。 (ジルコニウムー水反応熱も考慮)         ・が解析結果の相違				
b. コリウムシールド設計要求事項       b. コリウムシールド設計要求事項         ・崩壊熱レベル:事故後約7時間後に原子炉圧力容器が破損す ることを考慮し、事故後6時間相当とする。 (ジルコニウムー水反応熱も考慮)       ・崩壊熱レベル:事故後約5.4時間後に原子炉圧力容器が破損 することを考慮し、事故後5時間相当とす。 る。(ジルコニウムー水反応熱も考慮)       ・解析結果の相違 【柏崎 6/7】				
b. コリウムシールド設計要求事項       b. コリウムシールド設計要求事項       b. コリウムシールド設計要求事項         ・崩壊熱レベル:事故後約7時間後に原子炉圧力容器が破損す       ・崩壊熱レベル:事故後約5.4時間後に原子炉圧力容器が破損       ・解析結果の相違         ることを考慮し、事故後6時間相当とする。       することを考慮し、事故後5時間相当とする。       【柏崎 6/7】         (ジルコニウムー水反応熱も考慮)       ろ。(ジルコニウムー水反応熱も考慮)				
<ul> <li>・崩壊熱レベル:事故後<u>約7時間後</u>に原子炉圧力容器が破損することを考慮し、事故後6時間相当とする。</li> <li>(ジルコニウムー水反応熱も考慮)</li> <li>・崩壊熱レベル:事故後<u>約5.4時間後</u>に原子炉圧力容器が破損すする。</li> <li>・崩壊熱レベル:事故後<u>約5.4時間後</u>に原子炉圧力容器が破損すする。</li> <li>・解析結果の相違</li> <li>・解析結果の相違</li> <li>・解析結果の相違</li> <li>・前端(1)</li> <li>・前(1)</li> <li>・前(1)</li> <li>・前(1)</li></ul>	b. コリウムシールド設計要求事項		b. コリウムシールド設計要求事項	
ることを考慮し、事故後 <u>6時間</u> 相当とする。 (ジルコニウムー水反応熱も考慮)	・崩壊熱レベル:事故後約7時間後に原子炉圧力容器が破損す		・崩壊熱レベル:事故後約5.4時間後に原子炉圧力容器が破損	・解析結果の相違
(ジルコニウムー水反応熱も考慮)	ることを考慮し、事故後 <u>6時間</u> 相当とする。		することを考慮し、事故後5時間相当とす	【柏崎 6/7】
	(ジルコニウムー水反応熱も考慮)		る。(ジルコニウムー水反応熱も考慮)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
・床面積 : コリウムシールド設置による床面積減少分を		・床面積 : <u>コリウムシールド設置後のペデスタルの</u>	)溶・設計方針の相違
考慮し, 74 m ² とする。(7号炉の値。6号炉		融デブリ拡がり面積を可能な限り減少	<u>さ</u> 【柏崎 6/7】
$lt60 m^2$		せないように, ペデスタル全体を覆う棒	<u> 造 コリウムシールドの</u>
		とし, とする。	形状の差異による記載
・溶融炉心質量:原子炉圧力容器内の主要設備(表3-2に記載)		・溶融炉心質量 :原子炉圧力容器内の主要設備(表3に記	載)の相違
の溶融を考慮し、とする。		の溶融を考慮し、とする。	
・溶融炉心初期温度:MAAP解析における,原子炉圧力容器が破		・溶融炉心初期温度: MAAP解析における, 原子炉圧力容器	まから
損し、溶融炉心が原子炉格納容器下部に		破損し,溶融炉心がペデスタルに落下し	た
落下した直後の温度,,,とする。		直後の温度とする。	-
・溶融炉心除熱量:有効性評価よりも保守的な,と		・溶融炉心除熱量 : 有効性評価よりも保守的な,	と
する。		する。	
・初期水張条件:原子炉圧力容器破損前から原子炉格納容器下		・初期水張条件 : 原子力圧力容器破損前からペデスタルに	注注
部に注水を行うことを考慮し,高さ <u>2m</u> とする。		水を行うことを考慮し, <u>MCCI</u> の観点	(か)・評価方針の相違
		<u>ら保守性を持たせた高さ1m</u> とする。	【柏崎 6/7】
			島根2号炉は, コリウ
			ムシールドの設計条件
			として,保守性を考慮
			し, 初期の水張り高さを
			1mとしている。
(2)コリウムシールド基本構造		(2) コリウムシールド基本構造	
コリウムシールドの外形及び基本構造を図3-2,図3-3に示		コリウムシールドの外形及び基本構造を図4に示す。コ	У
す。コリウムシールドは溶融炉心のドライウェルサンプへの流		ウムシールドは溶融炉心のドライウェルサンプへの流入を	:防
入を防ぐため, <u>ドライウェルサンプを囲うように設置する。 ま</u>		ぐため, <u>ペデスタル床面全体を覆う構造とする。なお,</u> ニ	<u>リ</u> ・設計方針の相違
た,コリウムシールドはドライウェルサンプへの溶融炉心流入		ウムシールドの下部には,矩形流路(スリット)を設置す	<u>る。</u> 【柏崎 6/7】
を防ぐための「堰」と原子炉格納容器下部床面コンクリート侵			コリウムシールドの
<u>食を防ぐための「床防護部」,及び原子炉格納容器下部壁面コ</u>			形状の差異による記載
ンクリート侵食を防ぐための「壁防護部」により構成され、耐			の相違。
熱材を鋼製の補強フレームにて支持する構造とする。			
なお、耐熱材材質としては溶融炉心落下時に熱的に損傷しな		耐熱材材質としては溶融炉心落下時に熱的に損傷しない	
いことに加え, 溶融炉心による化学的侵食(共晶反応, 酸化還		とに加え、溶融炉心による化学侵食(共晶反応、酸化還元	反
元反応, 合金化等)まで考慮し, ジルコニア(ZrO2)を選定し		応,合金化等)まで考慮し、ジルコニア( $Z r O_2$ )を選定	EL
た。ジルコニア(Zr02)耐熱材については,国内外の鉄鋼業界		た。ジルコニア( $Z r O_2$ )耐熱材については、国内外の銀	长鋼
において十分な導入実績があり,かつ,既往の研究において,		業界において十分な導入実績があり、かつ、既往の研究に	お
ジルコニア(ZrO2)耐熱材が高い耐熱性・耐侵食性を持つこと		いて、ジルコニア( $Z r O_2$ )耐熱材が高い耐熱性・耐侵食	2性
が確認されている <u>(別紙 - 1 参照)</u> 。		を持つことが確認されている <u>(別紙-3参照)</u> 。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
図 3-2 コリウムシールド外形(7 号炉)		図4 コリウムシールド外形及び基本構造	
図 3-3 コリウムシールド基本構造(7 号炉)			
(3) コリウムシールド各部寸法(7号炉)		(3) コリウムシールド各部寸法	
a. 堰の高さについて			・設計方針の相違
原子炉格納容器下部に落下する溶融炉心の総量は			【柏崎 6/7】
想定しており,落下した溶融炉心がコリウムシールドを乗り越			島根2号炉のコリウ
<u>えてドライウェルサンプに流入することがないよう, 堰の高さ</u>			ムシールドは,ペデスタ
を決定する。溶融炉心の組成は表 3-2 のとおりであるが, 原子			ル床面全体を覆う構造
炉圧力容器の下部には制御棒駆動機構等の既設設備が存在し			であるため, 堰の高さに
ており, 溶融炉心が原子炉圧力容器から流出した際には, 既設			ついては記載していな
設備の一部が溶融し、溶融炉心の総量が増加する可能性があ			۷ v _o
る。溶融炉心の堆積高さの算出式を以下に示す。			
$\frac{m_d}{m_m} + \frac{m_m}{m_m} + V_s$			
$H_d = \frac{\rho_d - \rho_{SUS}}{A_{pd}}$			
ここで,Ha:溶融炉心堆積高さ[m],ma:溶融炉心総量[kg],			
<u>ρ</u> α:溶融炉心密度[kg/m³], mm:原子炉圧力容器の下部に存在			
する機器重量[kg], ρsus:SUS密度[kg/m³], Apd:コリウム			
シールド及びコリウムシールドに囲われる部分の面積を除い			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12版)	島根原子力発電所 2号炉	備考
たペデスタル床面積[m²], Vs:溶融炉心に埋没する耐熱材容積			
<u>[m³]とする。</u>			
上記の式に各値を代入した結果を表3-3に示す。ただし,			
$\underline{\mathbf{m}}_{\mathbf{d}}$ , $\rho_{\mathbf{d}}$ , $p_{\mathbf{d}}$ , $\mathbf{m}_{\mathbf{m}}$ , $\rho_{\mathbf{SUS}}$ , $\rho_{\mathbf{SUS}}$ ,			
<u>Apd= , Vs= とする。</u>			
表3-3より,制御棒駆動機構等,原子炉格納容器の下部に存			
在する主要設備が溶融した場合の,溶融炉心の堆積高さは,			
となる。			
なお,溶融炉心の粘性が非常に小さく,落下経路に存在す			
る原子炉圧力容器下部の既設設備に長時間接触する可能性は			
低いと考えられること, また, 原子炉格納容器下部には原子炉			
圧力容器破損前に水張りがされており,かつ継続的に注水され			
ていることにより、落下した溶融炉心は冷却され、原子炉格納			
容器の下部に存在する主要設備が全て溶融する可能性は低い			
<u>と考えられることから,コリウムシールドの堰の高さを</u>			
とする。			
表 3-3 溶融する構造物の量に対する溶融炉心堆積高さ [m]			
b. 床防護部寸法について			・設計方針の相違
溶融炉心が原子炉格納容器下部床コンクリートを侵食する			【柏崎 6/7】
場合、コリウムシールドと床面との間に間隙が発生する。その			島根2号炉のコリウ
間隙から, 溶融炉心が補強フレームのアンカーボルトに接触し			ムシールドは, ペデスタ
損傷させること,及びドライウェルサンプへの溶融炉心の流入			ル床面全体を覆う構造
を防止するため、コリウムシールドには床防護部を設ける。床			であるため, 床防護寸法
面の水平方向の侵食量は, MAAP解析による原子炉格納容器下部			については記載してい
壁面の侵食量と同じくとして、従って、床防護部の寸			ない。
法をコンクリート侵食量に余裕をみてとす			
<u>a.</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
コリウムシールド 溶融炉心 床面			
図 3-4 床面侵食イメージ図			
図 3-5 コンクリート侵食量評価結果			
<u> </u>			・設計方針の相違 【柏崎 6/7】 島根 2 号炉のコリウ ムシールドは、ペデスタ ル床面全体を覆う構造 であるため、壁防護寸法 については記載してい ない。
d. 耐熱材基本構成について 図3-3に示すとおり耐熱材は溶融炉心との接触に伴う熱衝撃 対策として二層構造(サンプ防護材:厚さ + 犠牲材: 厚さ 2 とし、ジルコニア製の耐熱モルタルにて互いを 接着する。サンプ防護材の厚さについては、耐熱材厚さ方向の 熱伝導評価により、溶融炉心と接触する部分の温度時間変化を 求め、最高温度が耐熱材材質であるジルコニアの融点を超えな い厚さとする。 ジルコニア融点については、ジルコニア単体の融点は2677℃		a. 耐熱材基本構成について 耐熱材は溶融炉心との接触に伴う熱衝撃対策として二層構造 (サンプ防護材:厚さ +犠牲材:厚さ )とし, にて互いに接着する。サンプ防護材 の厚さについては,耐熱材厚さ方向の熱伝導評価により,溶融 炉心と接触する部分の温度時間変化を求め,最高温度が耐熱材 材質であるジルコニアの融点を超えない厚さとする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
であるが, 共晶反応及び酸化還元反応・合金化反応により融点		であるが、共晶反応及び酸化還元反応・合金化反応により融点	
が下がることを考慮し, 2100℃とした。一般にUO ₂ - ZrO ₂ の共		が下がることを考慮し,2,100℃とした。一般にUO ₂ -ZrO	
晶温度は約2500℃であることが知られており, UO ₂ - ZrO ₂ の共		₂ の共晶温度は約 2,500℃であることが知られており, UO ₂ -	
晶温度を考慮しても十分に低い融点を設定している。 また, 耐		$Z r O_2$ の共晶温度を考慮しても十分に低い融点を設定してい	
熱材の熱伝導評価においては保守的に,図3-7に示すとおり溶		る。また、耐熱材の熱伝導評価においては保守的に、図6に示	
融炉心と接触する耐熱材表面の温度として,溶融炉心初期温度		すとおり溶融炉心と接触する耐熱材表面の温度として、溶融炉	
を上回るを初期条件として与えている。加えて,溶融		心初期温度を上回る を初期条件として与えている。加	
炉心の水への除熱量を,有効性評価にて用いている値		えて,溶融炉心の水への除熱量を,有効性評価にて用いている	
(800kW/m²) よりも小さいとすることで, 溶融炉心		値(800kW/m ² ( <u>圧力依存あり</u> ))よりも保守的な値	
が高温である時間が長くなり,より侵食量が増える評価条件と		することで、溶融炉心が高温である時間が長くなり、より侵食	
している。		量が増える評価条件としている。	
なお,評価結果から耐熱材の侵食量は___以下である		なお,評価結果から耐熱材の侵食量は以下であるが,	
が,コリウムシールド設計においては耐熱材の厚さに十分な余		コリウムシールド設計においては耐熱材の厚さに十分な余裕**	
裕*を見込み,サンプ防護材の厚さはとする。		を見込み,サンプ防護材の厚さは とする。	
※別紙-1 に示す過去の侵食試験時の試験時間と実機条件の相違も考慮した。		※別紙-3に示す過去の侵食試験時の試験時間と実機条件の相違も考慮した。	
		耐熱材(ZO2)         Tin       T2       Tn       T2       Tn       T2       T2	
図 3-7 溶融炉心温度変化(温度境界条件 Tin(t))			
※破線:MAAP 解析結果, 実線:解析結果を包絡する評価用温度を表す		図6 溶融炉心温度変化(温度境界条件T _{in} (t)) ※実線:MAAP解析結果,破線:解析結果を包絡する評価用温度を表す	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	【比較のため,「添付貸料3.5.1 別添3」の一部を記載】		
図 3-8 デブリと接触するノードの温度変化	解析コードMAAPによろ得食量評価では 溶融炉心中のZr	図7 デブリと接触するノードの温度変化	
	によるZrO。耐熱材の環元反応を考慮し、耐熱材侵食試験結果に		
犠牲材については,あくまでも熱衝撃を吸収するためのもの	基づき侵食開始温度を保守的に 2,100℃と設定した上で, 溶融炉	犠牲材については、あくまでも熱衝撃を吸収するためのもの	
(熱衝撃による割れを許容するもの) であることから, 耐熱材	心によるコリウムシールドの侵食が生じないことを確認してい	(熱衝撃による割れを許容するもの)であることから、耐熱材	
製造上の最小厚さ () とする。	る。しかし、溶融炉心中には少量ながらその他の金属酸化物も含	製造上の最小厚さ()とする。	
また, <u>定期検査時の取外・取付を鑑み,</u> 耐熱材は鋼製のカバ	まれており、これらの影響によってZrO2耐熱材が侵食される可	また,耐熱材は鋼製のライニングプレート()	
ープレート () にて覆う構造とした。	能性も考えられるため、関連する既往実験の知見を考慮した場合	にて覆う構造とした。	
	のコリウムシールドの侵食量について検討する。		
たお 横擬窓融恒心に上ろジルコニア耐熱材の侵食挙動に係		たお 横擬溶融恒心に上ろジルコニア耐熱材の得食挙動に係	
る実験として、欧州委員会のプロジェクトとして実施された	して、欧州委員会のプロジェクトとして実施されたCIT実験	る実験として、欧州委員会のプロジェクトとして実施されたC	
CIT(Corium Interactions and Thermochemistry)実験 ^{[1][2]}	[1][2]がある。	I T 実験(Corium Interactions and Thermochemistry) ^{[1][2]}	
がある。		<u>がある。</u>	
CIT実験において、溶融炉心中の酸化鉄含有量が大きい場合	<u>CIT実験では、第1図に示すような試験装置によって、模</u>	<u>CIT実験において、溶融炉心中の酸化鉄含有量が大きい場</u>	
に,酸化鉄とジルコニアとの共晶反応により,ジルコニアの融	擬溶融炉心とZrO2耐熱材を最長10時間程度接触させ、模擬	合に,酸化鉄とジルコニアとの共晶反応により,ジルコニアの	
点よりも低い温度でジルコニア耐熱材が溶融,侵食されたこと	溶融炉心の表面温度(ZrO2耐熱材との界面温度)と侵食深さ	融点よりも低い温度でジルコニア耐熱材が溶融,侵食されたこ	
が報告されている。実機における溶融炉心中の酸化鉄の割合	の推移が測定された。そのうち、CIT-9及び CIT-11 では実機の	とが報告されている。実機における溶融炉心中の酸化鉄の割合	
は、 <u>3%程度**</u> と小さいことから、実機においてジルコニア耐熱	条件に近い組成のZrO。耐熱材が用いられている。	は、4%程度**と小さいことから、実機においてジルコニア耐熱	・解析結果の相違
材の融点が大幅に下がることはないと考えられるが、ここでは	CIT-9における入力エネルギ及び模擬溶融炉心表面温度とZ	材の融点が大幅に下がることはないと考えられるが、ここでは	【柏崎 6/7】
011 夫験の各実験余件の中でも比較的実機に近い条件である CIT の実験(増換流動店と中の輸化)分の集合、20 50/0 モズー専	<u> </u>	UII美販の合実験余件の中でも比較的実機に近い条件である CIT の実験(増換溶動気と中の動化体の動合、20 50/) アズ	
し11-9天練(快艇俗融炉心中の酸化鉄の割合:30.5%)及び、更に増振滚融信心由の酸化鉄の割合が直く上り世界反応の影響	11の取於印化は反良休さは 22.0mm, 取入の反長迷度は 0.18mm/ min と報告されている 実験において 措版深融信心は孫道加	<u>し」」→去駅(快艇俗際炉心中の酸化鉄の割合:30.5%)及い</u> 再に構築溶融信心中の酸化鉄の割合が真く トロサ星豆内の影	
「「実施俗臨床心下の政心」」が同て、より共相区心の影響 が大きいと考えられるCIT-11宝驗(構擬淡融后小山の酸化鉄の	ШШ <u>CTK日 C40 CV·②。</u> 天歌(C42V·C), 保護(企臨)/小小は防景加 熱に上り2 080℃から2 474℃まで段階的に見温されたが 出力	<u> 冬に活熟()</u> ()()()()()()()()()()()()()()()()()()	
割合:81.0%)の結果を基に、侵食量を評価する。CIT-9実験で	を一定に維持し模擬溶融炉心の昇温を停止すると、耐熱材の侵	化鉄の割合:81.0%)の結果を基に. 侵食量を評価する。CI	
は, 模擬溶融炉心を2080℃から2474℃まで段階的に昇温し, 各	食は一定の深さまで進んだ後に停止する挙動が確認されてい	T-9実験では、模擬溶融炉心を 2,080℃から 2,474℃まで段階	
段階においてジルコニア耐熱材の侵食が確認されており、その	<u>る。また, CIT-11 における模擬溶融炉心表面温度とZrO</u> 2耐	的に昇温し、各段階においてジルコニア耐熱材の侵食が確認さ	
最大侵食速度は0.18mm/minであった。一方, CIT-11実験におい	熱材の侵食深さの推移を第4図に示す。最終的な侵食深さは	れており,その最大侵食速度は0.18mm/min であった。一方,C	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
て確認されたジルコニア耐熱材の侵食開始温度は1825℃であ	<u>39.5mm, 最大の侵食速度は 0.28mm/min と報告されており,</u>	<u>IT-11</u> 実験において確認されたジルコニア耐熱材の侵食開始	
った。	CIT-9 と同様に出力を一定に維持すると侵食が停止する挙動が	温度は1,825℃であった。	
	確認されている。		
	【ここまで】		
	【比較のため,「添付資料3.5.1 別添3」の一部を記載】		
	3. 実機における溶融炉心中の金属酸化物によるZrO2 耐熱材		
	<u>の侵食</u>		
	<u>CIT-9 及び CIT-11 実験は、ともに実機の酸化鉄の割合を大き</u>		
	く上回っているが、ここでは実機の酸化鉄の割合により近い		
	<u>CIT-9 実験に基づき, 溶融炉心中の金属酸化物によるΖrO₂耐</u>		
	<u>熱材の侵食量について考察する。</u>		
	<u>実機のMAAP解析結果によれば、溶融炉心とコリウムシー</u>		
	<u>ルドの接触面の最高温度は約2,000℃となっている。CIT-9 実験</u>		
	<u>では,これを上回る 2,080℃において約 4mm の侵食が見られて</u>		
	いるが,その侵食量は時間とともに増加する傾向にはない結果		
	<u>となっている。ただし、この挙動は実験容器が外部から冷却さ</u>		
	<u>れていたことに起因することが示唆されており、外部冷却がな</u>		
	い場合には侵食が継続的に生じる可能性がある。		
侵食評価においては, 溶融炉心温度がCIT-11実験でのジルコ	仮に実機において溶融炉心中の金属酸化物による侵食が継続	侵食評価においては,溶融炉心温度がCIT-11 実験でのジ	
ニア耐熱材の侵食開始温度である1825℃より更に低い1800℃	的に生じる可能性を考慮し, RPV破損時点から溶融炉心とコ	ルコニア耐熱材の侵食開始温度である 1,825℃より更に低い	
となるまで,ジルコニア耐熱材が0.18mm/minの侵食速度で侵食	<u>リウムシールドの接触面温度が 1,800℃^{**3}を下回るまでの約 3</u>	1,800℃となるまで, ジルコニア耐熱材が 0.18mm/min の侵食速	
されると仮定する。図3−7より,溶融炉心温度が1800℃となる	<u>時間, CIT-9 実験で確認された最大侵食速度である 0.18mm/min</u>	度で侵食されると仮定する。 図6より, 溶融炉心温度が1,800℃	・解析結果の相違
までの時間は約3時間であることから,侵食量は約0.033mとな	<u>で侵食が進んだと仮定した場合でも,侵食量は約33mmとなる。</u>	となるまでの時間は約3.7~7.8時間であることから,侵食量は	【柏崎 6/7,東海第二】
<u> </u>		約0.085mとなる。	設備の構造や評価条
	※3 溶融炉心中の酸化鉄による侵食がより生じやすい条件		件の差異により,
	<u>と考えられる CIT-11 実験にて, Z r O 2</u> 耐熱材の侵食が		1,800℃となるまでの時
	開始している温度(第4図)		間および侵食量が異な
したがって,溶融炉心中の酸化鉄が局所的に存在しジルコニ	したがって、万一溶融炉心中の酸化鉄が局所的に存在し耐熱	したがって、溶融炉心中の酸化鉄が局所的に存在しジルコニ	る。
ア耐熱材が侵食されたとしても,侵食量はコリウムシールドの	材が侵食されたとしても,侵食量はコリウムシールド厚さ15cm	ア耐熱材が侵食されたとしても、侵食量はコリウムシールドの	
耐熱材厚さ(サンプ防護材:+犠牲材:)	を十分下回る。	耐熱材厚さ(サンプ防護材: <u>厚さ</u> +犠牲材: <u>厚さ</u>	
を十分に下回るため、コリウムシールドの機能に影響はない。		)を十分に下回るため、コリウムシールドの機能に影響	
※RPV破損時点での溶融炉心中の酸化鉄割合(MAAP解析結果より)		はない。	
		※RPV破損時点での溶融炉心中の酸化鉄割合(MAAP解析結果より)	
	なお,コリウムシールドのZrO。耐熱材ブロック間やアンカ	なお, コリウムシールドのZrO ₂ 耐熱材ブロック間やアンカ	・設備設計の相違
	ボルト周囲の隙間には、耐熱材ブロックと同成分の不定形耐火	ボルト周囲の隙間には、耐熱材ブロックと同成分の不定形耐火	【柏崎 6/7】
	物とモルタルバインダ(主成分:ケイ酸ナトリウム)を混錬し	物とモルタルバインダ(主成分:ケイ酸ナトリウム)を混錬し	島根2号炉および東
ニア耐熱材の侵食開始温度である1825℃より更に低い1800℃ となるまで、ジルコニア耐熱材が0.18mm/minの侵食速度で侵食 されると仮定する。図3-7より、溶融炉心温度が1800℃となる までの時間は約3時間であることから、侵食量は約0.033mとな る。 したがって、溶融炉心中の酸化鉄が局所的に存在しジルコニ ア耐熱材が侵食されたとしても、侵食量はコリウムシールドの 耐熱材厚さ[](サンプ防護材:[]+犠牲材:[]) を十分に下回るため、コリウムシールドの機能に影響はない。 ※RPV破損時点での溶融炉心中の酸化鉄割合(MAAP解析結果より)	<ul> <li>         的に生じる可能性を考慮し、RPV破損時点から溶融炉心とコ リウムシールドの接触面温度が 1,800℃*3を下回るまでの約 3 時間,CIT-9実験で確認された最大侵食速度である 0.18mm/min で侵食が進んだと仮定した場合でも、侵食量は約 33mmとなる。     </li> <li>         ※3 溶融炉心中の酸化鉄による侵食がより生じやすい条件 と考えられる CIT-11実験にて、ZrO₂耐熱材の侵食が 開始している温度(第4図) したがって、万一溶融炉心中の酸化鉄が局所的に存在し耐熱 材が侵食されたとしても、侵食量はコリウムシールド厚さ 15cm を十分下回る。     </li> <li>         なお、コリウムシールドのZrO₂耐熱材ブロック間やアンカ ボルト周囲の隙間には、耐熱材ブロックと同成分の不定形耐火 物とモルタルバインダ(主成分:ケイ酸ナトリウム)を混錬し     </li> </ul>	ルコニア耐熱材の侵食開始温度である 1,825℃より更に低い 1,800℃となるまで、ジルコニア耐熱材が 0.18mm/min の侵食速 度で侵食されると仮定する。図6より,溶融炉心温度が 1,800℃ となるまでの時間は約3.7~7.8 時間であることから,侵食量は 約0.085mとなる。 したがって、溶融炉心中の酸化鉄が局所的に存在しジルコニ ア耐熱材が侵食されたとしても、侵食量はコリウムシールドの 耐熱材厚さ (サンプ防護材:厚さ) +犠牲材: 厚さ ) を十分に下回るため、コリウムシールドの機能に影響 はない。 ※RPV破損時点での溶融炉心中の酸化鉄割合(MAAP解析結果より) なお、コリウムシールドのZrO₂耐熱材ブロック間やアンカ ボルト周囲の隙間には、耐熱材ブロックと同成分の不定形耐火 物とモルタルバインダ(主成分:ケイ酸ナトリウム)を混錬し	<ul> <li>・解析結果の相違</li> <li>【柏崎 6/7,東海第二】 設備の構造や評価条</li> <li>件の差異により, 1,800℃となるまでの時間および侵食量が異なる。</li> <li>・設備設計の相違</li> <li>【柏崎 6/7】</li> <li>島根2号炉および東</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	たモルタルを目地材として用いる(第5図)。このモルタルは,	たモルタルを目地材として用いる。このモルタルは、耐熱材ブ	海第二では, コリウムシ
	耐熱材ブロックと同等のZrO2含有率を有するものを用いる	ロックと同等のZrO2含有率を有するものを用いるとともに,	ールドのZrO ₂ 耐熱
	とともに、常温で固化し、固化後は周囲の $\mathbf{Z} \mathbf{r} \mathbf{O}_2$ 耐熱材と結合	常温で固化し,固化後は周囲のZrO ₂ 耐熱材と結合して耐熱材	材ブロック間やアンカ
	して耐熱材ブロックと同等の性能を発揮するため、溶融炉心に	ブロックと同等の性能を発揮するため、溶融炉心による選択的	ボルト周囲の隙間のモ
	よる選択的な侵食は生じない。また、仮にモルタルの溶融を想	な侵食は生じない。また,仮にモルタルの溶融を想定する場合	ルタルに対する検討を
	定する場合においても,モルタルの大半を占めるZrO2は溶融	においても, モルタルの大半を占めるZrO ₂ は溶融せず, モル	実施している。
	せず、モルタルバインダのみが溶融すると考えられるため、耐	タルバインダのみが溶融すると考えられるため、耐火材ブロッ	
	火材ブロックに生じる間隙は極めて僅かであること、及びコリ	クに生じる間隙は極めて僅かであること、及びコリウムシール	
	ウムシールドへの伝熱によって溶融炉心は表面がクラスト化し	ドへの伝熱によって溶融炉心は表面がクラスト化し流動性が低	
	流動性が低下することから、耐火材ブロックに生じる間隙へ選	下することから、耐火材ブロックに生じる間隙へ選択的に侵入	
	択的に侵入するとは考え難く、コリウムシールドの健全性に影	するとは考え難く、コリウムシールドの健全性に影響を与える	
	響を与えることはないと考える。	ことはないと考える。	
	【ここまで】		
e. スリット部の構造について		b. スリット部の構造について	
<u>ドライウェル高電導度廃液サンプの前に</u> 設置するコリウム		<u>ペデスタル床面に</u> 設置するコリウムシールドについては,床	・設備設計の相違
シールドについては, <u>ドライウェル高電導度廃液サンプ</u> の漏え		<u> ドレンサンプ</u> の漏えい検出機能を維持するため, コリウムシー	【柏崎 6/7】
い検出機能を維持するため, コリウムシールド下部 (床面との		ルド下部(床面との間)にスリットを設置する。スリット寸法	
間)にスリットを設置する。スリット寸法については, <u>ドライ</u>		については,床ドレンサンプへの漏えい水の流入量が1gpm	
<u>ウェル高電導度廃液サンプ</u> への漏えい水の流入量が 1gpm		(0.228m ³ /h) 以上となるように設定する。同時に, スリット <u>内</u>	
(0.228m³/h) 以上となるように設定する。同時に, スリット		の溶融炉心が構造物への伝熱によりドレン配管に流入する前に	・記載方針の相違
が溶融炉心のサンプへの有意な流入経路とならないことを確		<u>凝固し,水路を閉塞することを確認する。</u>	【柏崎 6/7】
認する。			
(i) スリット内の溶融炉心凝固評価について		(i)スリット内の溶融炉心凝固評価について	
溶融炉心のスリット内凝固評価は実溶融炉心を用いた試験		溶融炉心のスリット内凝固評価は実溶融炉心を用いた試験	
による確認が困難であることから, 複数の評価モデルで凝固評		による確認が困難であることから、複数の評価モデルで凝固	
価を実施し,各々の結果を包絡するようにスリット長さを決定		評価を実施し、各々の結果を包絡するようにスリット長さを	
する。なお,凝固評価においては,事前注水成功によりスリッ		決定する。なお,凝固評価においては,事前注水成功により	
ト内に水が存在すると考えられるものの, スリット部が非常に		スリット内に水が存在すると考えられるものの、水は存在し	
狭隘であることから、水は存在しないものとして評価を行っ		ないものとして評価を行った。	
た。			
凝固評価に用いたモデルを表 <u>3-4</u> に,各モデルでの凝固評価		凝固評価に用いたモデルを表4に,各モデルでの凝固評価	
結果を表3-5に示す。モデルの違いにより溶融炉心の凝固評価		結果を表5に示す。モデルの違いにより溶融炉心の凝固評価	
結果に多少の差異があるものの, <u>最大でも</u> あれば溶融		に多少の差異があるものの、高さのスリットであれば	・解析結果の相違
<u>炉心はスリット内で凝固する</u> ことから, 溶融炉心の凝固距離に		溶融炉心の流動距離は最大でも であることから, 溶	【柏崎 6/7】
余裕を見込んで、スリット長さをとする。		融炉心の凝固距離に余裕を見込んで,スリット長さを以	設備設計の違いによ
		上とする。	る溶融炉心の凝固距離

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
表 3-4 デブリ凝固評価モデル比較		表4 デブリ凝固評価モデル比較	および必要となるスリ
評価モデル         概要         適用実績           平行平板間で溶融デブリが凝固し流 路が閉塞することを想定したモデル         ・米国 NRC に認可されたモデル           US-ABWR は本モデルに基づき標準設計認証を取得           円管内での溶融デブリの流動距離を 評価するモデル         ・MAP の RPV 下部プレナムにおける核計装管等の 貫通部配管でのデブリ凝固評価に用いられている           定RI によって行われた機擬デブリの凝固試験結 果と、ホモデルの評価結果とが、おおよそ一致して いることが確認されている           流路周長全体を伝熱面とし、壁面へ の伝熱を評価するモデル         ・溶酶デブリに対する硬固評価には使用実績なし           ・鋳造分野で使用されている		評価モデル     概要     適用実績       平行平板間の溶融デブリが     ・米国 NRC に認可されたモデル       凝固し流路が平衡すること     ・US-ABWR は本モデルに基づき標準設計認証を取得       円管内での溶融デブリの流動距離を評価するモデル     ・MAAPのRPV下部プレナムにおける核計装配管等の貫通部配管でのデブリ凝固評価に用いられている。       ・EPRIによって行われた模擬デブリの凝固試験結果と、本モデルの評価	ット長さが異なる。
≠ 3-5 7Ⅱット内デブⅡ将国評価結果		<ul> <li>結果とが、おおよそ一致していることが確認されている。</li> <li>流路周長全体を伝熱面とし、壁面への伝熱を評価するモデル</li> <li>・海造分野で使用されている。</li> <li>志ち、スリット内デブリ路田評価には</li> </ul>	
(ii)漏えい検出機能への影響について		(ii)漏えい検出機能への影響について	
原于炉格納谷奋下部床面には勾配が無く、床面主体に痛え		<u>コリワムシールドはペアスタル床面全面に設置することか</u>	<ul> <li>・設備設計の扣着     </li> </ul>
<u>い水が広からた時点で初めて下ノイウエル尚电等度廃彼り</u> ンプに流入し、漏えいが検出されることから、漏えい水の水		ら, 1 gpm の備えい水かスリットを流れる院の損失水頭かユ リウムシールド厚さ未満であれば 漏えい検出機能への影響	【柏崎 6/7】
位がスリット高さ未満であれば、スリット部通過に伴う圧損		ククタン・ハー子で不同でのれりは、「個人で「快口」及他 いのが音 はない。	設備設計の違いによ
が発生せず、コリウムシールドの有無に関わらず漏えい検出			る漏えい検出の評価モ
機能への影響はない。			デルの差異。
従って,漏えい水の水位=スリット高さとなる場合のスリ		従って、スリット通過時の損失水頭=コリウムシールド厚	
ット通過後の流量を求め、漏えい検出に必要となる流量との		さとなる場合のスリット通過後の流量を求め、漏えい検出に	
比較を行う。			
		h $\exists J J J \Delta S - J L F$ $\Delta h_1$ $\Delta h_2$ $\exists D J J D L P$ 2 T > 3 L D L	
凶3−9 スリット部流路概念		図8 スリット部流路概念	
<u>入口圧損(Δh1),流路</u> 圧損(Δh2),出口圧損(Δh3)		<u>スリット流路の</u> 圧損(Δh ₁ ),出口圧損(Δh ₂ )とするとスリ	
とするとスリット部全体の圧損(h)は以下の式で表される。		ット部全体の圧損(h)は以下の式で表される。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
h崎州羽原十刀発電所       6 / 7 号炉       (2017.12.20版)         h = Δhi+ Δh2+ Δh3         上式の各項を展開し、h=       (スリット高さ),ま         たスリット幅:       とするとスリット通過後の流量(Q)         は       Q=       (スリット1ヶ所あたり)         となり、漏えい検出に必要となる流量(1gpm (0.228m3/h))       を上回る。         従って、ドライウェル高電導度廃液サンプの漏えい検出機       能に影響はない。         なお、スリット設置にあたっては、スリットが何らかの原因で閉塞することを鑑み、床面レベルに       ,幅         長さ       のスリットを       ヶ所、更に床面から0.01mの高さ         に、高さ       ,幅       ,長さ       のスリットを	東御弗 <u>—</u> . 先電所 (2018. 9. 12版)	高根原十刀発電所 2 名 <u>h=Ah₁+Ah₂</u> 上式の各項を展開し, h= ( <u></u> またスリット幅: <u></u> とすると, スリ は, Q= (スリット1ヶ所あた となり,漏えい検出に必要となる流量 (1 上回る。 従って,ドライウェルサンプの漏えい格 なお,スリット設置にあたっては,ス で閉塞することを鑑み,高さ <u></u> ,幅 上のスリットを4ヶ所設置する。 <u>以下にスリット部断面の概略図を示す。</u>
設置する。 (4) <u>コリウムシールドと原子炉圧力容器との離隔距離</u> <u>炉心溶融事故発生時の原子炉圧力容器の破損個所として,</u> <u>原子炉圧力容器下鏡中央部が想定される。原子炉圧力容器の</u> 中心からコリウムシールドまでは約3.2m, ドライウェルサン		図9 スリット部断面概(         (iii) ペデスタル壁面と水路(スリット部)         ペデスタル壁面にはコリウムシールド         面からのコンクリート侵食が想定される。         食筒所がスリット流路内へのデブリの有
<u> 一地からコブリンスシールドまでは休防:2間,ドワイウエルサンプ</u> <u> ごまでは約3.7m離れていることから原子炉圧力容器から流</u> <u> 出した溶融炉心がドライウェルサンプに直接流入すること</u> はないと考えている。		低面所がスクラード加品中す、60クラクラの有点 いように、スリット部は壁から離して設 距離については、既存のファンネルの を考慮した上で、構造上配置可能 る限り壁面から離した配置とする。
図3-10 原子炉圧力容器中心からの離隔距離(7 号炉)		

号炉	備考
リウムシールド厚さ), リット通過後の流量(Q)	
とり) (1gpm (0.228m³/h) )を	
検出機能に影響はない。	
、リットが何らかの原因 冨,長さ以	
. <u>.</u>	<ul> <li>・設備設計の相違</li> <li>【柏崎 6/7】</li> <li>設備設計の違いによ</li> <li>る記載方針の相違。</li> </ul>
既略図	
3) の離隔距離 ぶを設置しないため, 壁 5。ペデスタル壁面の侵 所意な流入経路とならな 設置する。壁からの離隔 9壁面までの長さ、、 比な範囲において, でき	<ul> <li>・設備設計の相違</li> <li>【柏崎 6/7】</li> <li>設備設計の違いによ</li> <li>る離隔距離の考慮方法</li> <li>の差異。</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12版)	島根原子力発電所 2号炉	備考
(5) コリウムシールド設置に伴う悪影響の有無			(4) コリウムシールド設置に伴う悪影響の有無	
			<u>コリウムシールドの設置により設計基準事故対処設備及び他</u>	
			の重大事故等対処設備に対し影響を及ぼす可能性があることか	
			<u>ら、コリウムシールドの設置による悪影響の有無について確認</u>	
			を行った。	
			a. 原子炉格納容器の閉じ込め機能への悪影響の有無	・記載方針の相違
			<u>コリウムシールド設置に伴う追加重量, RPVペデスタル基</u>	【柏崎 6/7】
			礎ボルトの発生荷重(モーメント)の増加率は小さく耐震性へ	島根2号炉は, コリ
			の影響は軽微であり、またコンクリート侵食及び非凝縮性ガス	ウムシールド設置に伴
			の発生を抑制することから、原子炉格納容器の閉じ込め機能へ	う格納容器閉じ込め機
			の悪影響はない。	能への影響の考察を記
				載。
a . 原子炉格納容器下部注水系への悪影響の有無			b. <u>ペデスタル注水系</u> への悪影響の有無	
コリウムシールドが設置される <u>原子炉格納容器下部</u> には <u>原</u>			コリウムシールドが設置される <u>ペデスタル</u> には <u>ペデスタル注</u>	・設備設計の相違
<u>子炉格納容器下部注水系</u> の注水口が設置されているが, <u>注水口</u>			<u>水</u> の注水口が設置されているが, <u>コリウムシールド設置による</u>	【柏崎 6/7】
とコリウムシールド設置位置とは水平距離で 離隔され			既存の床面からの底上げによる干渉影響はなく、ペデスタル注	島根2号炉は, コリ
ていることから,原子炉格納容器下部注水系の機能を阻害する			水の機能を阻害することはない。	ウムシールドをペデス
ことはない。				タル床全面に敷設して
なお,原子炉格納容器下部注水系の注水口は大量の溶融炉心が			なお、ペデスタル注水の注水口は大量の溶融デブリが直接接	いるため、注水口とコ
直接接触しない様に設置されていることから, 溶融炉心により			触しない様に設置されていることから、溶融炉心によりペデス	リウムシールドの水平
原子炉格納容器下部注水系の機能が喪失することはない。			タル注水の機能が喪失することはない。	距離は記載していない。
図3-11 コリウムシールドと原子炉格納容器下部注水系注水口 との設置位置概要図				
(6)機器ファンネルからサンプへの溶融炉心の流入について				・設備設計の相違
7 号炉原子炉格納容器下部床面には機器ファンネルが存在				【柏崎 6/7】
し、溶融炉心が原子炉格納容器下部床面に堆積した場合には、				島根2号炉は, コリ
溶融炉心の堆積高さが機器ファンネル高さを超えることから、				ウムシールドをペデス
機器ファンネルに溶融炉心が流入する。機器ファンネルの位置				タル床全面に敷設し,

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
及びドレン配管の敷設状況について図 3-12 に示す。		
機器ファンネルからドライウェルサンプへと繋がるドレン		
ドレン配管内での溶融炉心の凝固距離について」及び別紙 - 2		
に示すとおり、ドレン配管内の溶融炉心の凝固距離は最大でも		
約 2.7m と, ドライウェルサンプに溶融炉心が流入することは		
ない。しかしながら、ドレン配管内の溶融炉心の凝固挙動の不		
確かさを考慮し、ドライウェルサンプまでのドレン配管長が		
5m 以下の機器ファンネルについては、コンクリート等により		
閉止を行う。		
なお,6号炉原子炉格納容器下部床面には機器ファンネルが存		
在しない。		
図3-12 機器ファンネル配置及びドレン配管敷設状況(7 号炉)		
<u>EPRI (Electric Power Research Institute) 及びFAI (FAUSKE</u>		
& ASSOCIATE, LLC)が,下部プレナムを模擬した試験体に模擬		
溶融炉心(Al2O3)を流入させる試験を行っている。同試験の		
試験体系が,比較的,7号炉のドレン配管(80A)に近い体系と		
なっていることから、その試験結果に基づき、ドレン配管内で		
の溶融炉心の凝固距離について評価を行う。		
a. EPRI/FAI試験の概要		
図3-13に試験装置概要を示す。酸化鉄とアルミニウムによる		
テルミット反応により,模擬溶融炉心である溶融したAl203が		
生成される。模擬溶融炉心はテルミットレシーバに流入し、密		
度差により鉄とAl203とで成層化が起こる。密度差からAl203は		
鉄より上層にあることにより, Al203によりセメント製のキャ		
ップが溶融し、Al2O3のみLower Chamberに移行する。このとき、		
Lower Chamber及びドレン配管は水で満たされており,溶融炉		
心が原子炉格納容器下部へと落下してくる際の実機の条件と		

炉	備考
	機器ファンネルからの
	サンプへの溶融炉心の
	流入を防止できるため,
	本評価を実施していな
	ℓ ′ _°
	・記載箇所の相違
	【柏崎 6/7】
	島根2号炉について
	は, E P R I / F A I 試
	験の概要を 2.(2)a.に
	記載している。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12版)	島根原子力発電所 2号炮
類似している。試験の結果、模擬溶融炉心の流動距離(凝固距		
離)は0.79mであった。		
使版デブリの洗れ ・ しつの 226 m3 ・ しつの 236 m3 ・ しのの 128 m3 ・ いの 1		
<u> 図3-13 EPRI</u> 試験装置概要		
<u>b. ドレン配管内での溶融炉心の凝固距離について</u>		
ドレン配管内の溶融炉心の溶融凝固特性は流入する溶融炉		
心の保有熱量と,配管外部への放熱量に依存するものと考えら		
れる。そこで、ドレン配管体系について、溶融炉心の物性の違		
いも考慮して,溶融炉心の保有熱量及び配管外への放熱量(配		
管系に依存)の比率に基づき流動距離を推定する。		
表3-6に評価に使用する溶融炉心とコンクリートの物性値を		
示す。Al203の溶融潜熱(hfs=1.16×10 ⁶ J/kg)に密度		
(ρ=3800kg/m ³ )を乗じると,流動停止までの保有熱量は		
4408MJ/m ³ となる。一方,溶融炉心の流動停止までの保有熱量		
は顕熱と溶融潜熱の和として次式で表される。		
$\underline{h_{db}} = \{ (T_d - T_{sol}) C_p + h_{fs} \}$		
ここで, hab: 溶融炉心の流動停止までの顕熱と溶融潜熱の		
和(J), Td:溶融炉心温度(℃), Tsol:溶融炉心固相線温度		
$(℃), C_p$ :溶融炉心比熱 $(J/kg ℃), h_{fs}$ :溶融炉心溶融潜熱 $(J/kg)$		
である。		
このとき、http://となり、密度を乗じ、流動停止ま		
での保有熱量とすると となり, Al2O3の約 倍となる。		
また,ドレン配管 (80A) の配管直径(df)を8cmと仮定すると,		
EPRI/FAI試験のドレンラインdtes (5cm) より, 配管径の比は約		
1.6倍である。配管径の比,保有熱量比を用いて,ドレン配管		
内の溶融炉心流動距離(凝固距離)を次の様に評価する。		
$L = L_{tes} \times d_f/d_{tes} \times (h_{db} \rho_{db}) / (h_{al} \rho_{al})$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
ここで,L:ドレン配管内の溶融炉心流動距離(凝固距離),			
Ltes : EPRI/FAI試験の流動距離,df/dtes : 配管直径比,(hdb ρ db)			
/ (hal p al):流動停止までの保有熱量比である。			
EPRI/FAI試験の流動距離0.79mを基に、上記式によってドレ			
ン配管内の溶融炉心の凝固距離を評価すると、凝固距離は			
となる。			
機器ファンネルからドライウェルサンプまでのドレン配管			
長は, 最短でも約3.6m以上であることから, 機器ファンネルに			
<u>流入した溶融炉心は, ドレン配管内で凝固するため, ドライウ</u>			
ェルサンプ内に到達することはないと考えられる。			
ま9_6 証価に使用する溶動に心動地値及びコンカルート動地値※			
「 ※溶融炉心物性値については、MAAP 解析における、原子炉圧力容器破損直前の下部			
<u>プレナム内の物性値を使用した。また、コンクリート物性値については、原子炉</u>			
格納容器のコンクリートの密度とし,また,既往の研究(NURREG/CR-2282)より			
融点及び溶融潜熱を引用した。			
(7)6号炉コリウムシールドの構造について			・申請号炉数の相違
<u>6</u> 号炉のコリウムシールドについても,上述の7号炉コリウム			【柏崎 6/7】
シールドと同様の設計方針に基づき,設計を行った。号炉間の			島根2号炉は,単号炉
既設設備の差異により,6号炉コリウムシールドと7号炉コリウ			申請である。
ムシールドとでは一部形状が異なる。なお、使用している耐熱			
材材質に変更はなし。6号炉コリウムシールド外形図を図3-14			
に示す。			
図3-14 コリウムシールド外形図(6 号炉)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
参考文献			
[1] D. Lopukh et al., "New Experimental Results On The Interaction Of Molten			
Corium With Core Catcher			
Material", ICONE-8179, (2000).			
[2] J.M.Seiler, K.Froment, "Material Effects On Multiphase Phenomena In			
Late Phases Of Severe Accidents Of			
Nuclear Reactors", Multiphase Science and technology, Vol.12, No.2,			
pp. 117–257, (2000).			
		1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 - 1			
耐熱材と模擬溶融炉心との相互作用試験結果について			・記載箇所の相違
			【柏崎 6/7】
原子炉の過酷事故において、放射性物質が環境へ放出するこ			島根2号炉は,コリウ
とを防ぐため、溶融炉心による格納容器の侵食を抑制する静的			ムシールド材料の選定
デブリ冷却システムの開発に取り組んでいる。溶融炉心を受け			について別紙-3 に記
止めて保持する役割を担う耐熱材は、高融点で且つ化学的安定			載。
性に優れていることが必要であることから、候補材としては、			
Zr02 等が挙げられる。模擬溶融炉心と上記耐熱材との侵食デー			
タを取ることを目的として、侵食試験を実施した。			
以下に溶融Zr 及び模擬溶融炉心(U02-ZrO ₂ -Zr)による耐熱材			
侵食試験の概要について			
示す。			
1. 溶融Zr による耐熱材侵食試験			
1-1. 試験方法			
耐熱材には ZrO ₂ の多孔質材料を用いた。模擬溶			
融炉心の金属成分をるつぼに入れ、るつぼ上部に耐熱材試験片			
をセットする(図別‐1)。これらを電気炉で加熱し,2000℃			
~2200℃の所定温度にして金属を溶かす。溶融した金属中に耐			
熱材試験片を上部から挿入し、5 分間保持する。その後、試験			
片を初期位置へ戻してから炉冷する。各種試験片について、冷			
却後に外観及び試験片の残存状態を確認した。なお、溶融炉心			
の主な構成材料として, BWRで使用されるU02, Zr, ZrO ₂ , Fe 等			
が想定されるが, 試験においては, 金属成分は100mo1%Zr とし			
た。			
1 治具を上下させて 試験片を浸渍させる			
耐熱材試験片 20mm×60mm×10mm			
図別 - 1 試験体系			
1-2. 試験結果			
図別‐2 に金属組成が100mo1%Zr における試験後の耐熱材試			
験片の断面写真を示す。いずれの耐熱材においても、金属組成			
のZr 量に応じて侵食量は増加した。また、金属組成によらず侵			
食量は>ZrO ₂ となり, ZrO ₂ ,,の順に耐			
侵食性に優れていることが確認できた。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12版)	島根原子力発電所 2号炉	備考
図別 - 2 試験後の断面写真			
2. 模擬溶融炉心による耐熱材侵食試験			
2-1. 試験方法			
高融点材料にて製作したるつぼ内に円柱状に加工したZr02耐			
熱材と模擬溶融炉心粒子を所定の重量分装荷した。模擬溶融炉			
心の組成はU02-Zr02-Zr: 30mo1%-30mo1%-40mo1%とした。			
同るつはを試験装置の誘導コイル内に設置して、誘導加熱に			
より加熱を行った。試験中の榠擬溶融炉心の温度は、放射温度			
計により計測した。試験時の温度は、放射温度計や熱電対にし			
計測している模擬俗識が心の温度が、日標温度範囲(2000 $C$ ) 2100 $C$ )に入るように氾産制御を行った 氾産保持時間は10 公			
図別 - 3 試験体系			
2-2. 試験結果			
試験温度の推移を図別‐4 に示す。試験においては2000℃~			
2050℃の範囲で,約10 分程度温度が保持されている事を確認し			
た。また,試験後のるつぼの断面写真を図別-5 に示す。ZrO ₂ 耐			
熱材の厚さが試験前から変わっていないことから、模擬溶融炉			
心によるZrO ₂ 耐熱材の有意な侵食が無いことが分かる。			
2200 2100 g 1900 m 1800 1700 TC1 Micron Impac			
1400 3200 3400 3600 3800 4000 4200			
^{&gt;&gt;m} *** 図別 - 4 試験温度推移			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
図別 - 5 試験後の断面写真			
3. 耐熱材への模擬溶融炉心落下試験			
3-1. 試験方法			
耐熱材に溶融炉心が接触した際の短期的な相互作用を確認す			
るため、 $ZrO_2$ 耐熱材の上に模擬溶融炉心を落下させ、耐熱材の			
侵食深さの測定、耐熱材侵食性状や模擬溶融炉心の固化性状の			
分析などを実施した。模擬溶融炉心の組成はU02-Zr02-Zr:			
30mo1%-30mo1%-40mo1%とした。ZrO ₂ 耐熱材を内張りしたコンク			
リートトラップの上部に電気炉を設置し、電気炉により加熱し			
に倶婉浴離炉心をZr02 耐熱材上に溶下させ、コンクリートトフ いプに乳帯した効素対により2-0 耐熱なの温度な測定した。封			
ックに設置した熱電利により $2\Gamma0_2$			
候表世を囚がり、「これ、り。			
Tring (株) Tring (株) Tring (株) Tring (株) For (本) Tring (株) Tring ( Tring (			
図別-6 試験装置			
3-2. 試験結果			
試験温度推移を図別-7 に示す。ZrO ₂ 耐熱材側面(模擬溶融			
炉心側)の温度を測定する熱電対が模擬溶融炉心落下直後に最			
局温度約2450℃を観測したことから,落下してきた模擬溶融炉			
心温度は2450し以上でめつたと推測される。また、試験後のコ			
マクリートトノツノ例面与具を図別・8 に示す。 関係裕配炉心 接触率から最大で約1 m が現在ルレーチの国辺如が白色ルレイ			
」女広中から取入したりICIIIが赤巴化し、ての同辺部か日巴化しし			
、 つここの市底町ごないこしいいい, 頭有な町窓内の反反区の, 晒窓 材の割れは確認されたかった			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
2500 2000 500 500 500 60 500 60 500 60 500 60 500 60 500 60 500 60 500 50			
図別-7 試験温度推移			
図別 - 8 試驗後の断面写直			
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□			
一般に、 $ZrO_2$ には還元雰囲気で高温に曝露されると材料中に			
酸素欠損が起こり、変色する特性があることが知られている。			
試験においては,計測された模擬溶融炉心の温度が2450℃以上			
と高温であり、かつ模擬溶融炉心中には金属Zr が存在すること			
から, 模擬溶融炉心中の金属 $Zr$ によって $ZrO_2$ 耐熱材の表面で還			
元反応が起こり,酸素欠損が生したど推測される。しかしなか に 里色部についてY線回振会振を行った結果 耐熱材表面の			
う, 一日中についてム淋巴り刀りを打つた雨木, 咽水肉衣田の 組成に有音か変化が確認されたかったことから ケ指した酸素			
の量は微量であり、Zr0。耐熱材の耐熱性能に影響はないと考え			
られる(図別-9 参照)。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12版)	島根原子力発電所 2号炉	備考
なお、事故時においては、格納容器下部に事前注水がなされ				
ているため,格納容器下部に落下してきた溶融炉心中に残存す				
る未酸化の金属Zr は,水との反応によって酸化されると想定さ				
れる。MAAP 解析の結果から,格納容器下部に落下してきた溶融				
炉心は,2000℃を超える高い温度でコリウムシールドと数十分				
接触する可能性があるが,上述のとおり,溶融炉心中の金属Zr				
は酸化されていると考えられることから、事故時に溶融炉心が				
コリウムシールドと接触したとしても、ZrO ₂ 耐熱材の表面が還				
元されることによる影響は軽微であると考えられる。				
4. まとめ				
以上により、ZrO ₂ 耐熱材が溶融炉心に対して高い耐性を有し				
ていることが分かった。				
なお,実際の事故状況においては上述のとおり,ZrO2 耐熱材				
の表面が還元されにくく、還元による影響は軽微であると考え				
られる。また,本試験において黒色化が確認されたZrO2耐熱材は				
X線回折分析の結果から、その組成は大きく変化していないと				
考えられる。一方で、ZrO2 耐熱材の機械的強度の変化の有無等				
については、本試験において十分なデータ採取がなされていな				
いことから、コリウムシールドの実設計においては、耐熱材構				
造をサンプ防護材(厚さ: )と,サンプ防護材に直接溶融				
炉心が接触することを防ぐ犠牲材(厚さ:)との二層構造				
としていることに加え,サンプ防護材の厚さは,解析により求				
めた侵食量 に十分な余裕を見込んだ厚さ とすること				
により、高温状態の溶融炉心とコリウムシールドとの接触に伴				
う悪影響を考慮した保守的な設計としている。				
以上				
本試験は、中部電力(株)、東北電力(株)、東京電力ホールディングス(株)、北陸電				
力(株),中国電力(株),日本原子力発電(株),電源開発(株),(一財)エネルギー総				
合工学研究所,(株)東芝,日立GE ニュークリア・エナジー(株)が実施した共同研究				
の成果の一部である。				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
4. コリウムシールドに期待した場合の評価		4. コリウムシールドに期待した場合の評価	
	【比較のため,「添付資料 3.5.1」の一部を記載】		・設備設計の相違
	格納容器破損モード「溶融炉心・コンクリート相互作用	」に対 コリウムシールドについて、解析コードにおける取扱いを示	【柏崎 6/7】
	<u>する重大事故等対処設備である</u> コリウムシールドについて	,解析 すとともに,解析コード及び解析条件の不確かさの影響を確認	島根2号炉および東
	コードにおける取扱いを示すとともに,解析コード及び解	新条件 するため、ペデスタルにおけるコリウムシールド及びコンクリ	海第二では, MAAP
	の不確かさの影響について整理する。	一ト侵食量を評価した。	コードを用いてコリウ
			ムシールドに期待した
	1. 解析コードにおけるコリウムシールドの取扱いについ	て (1)解析コードにおけるコリウムシールドの取扱いについて	評価を実施しているこ
	解析コードMAAPにおける,溶融炉心・コンクリー	<u> MAAPユード</u> における <u>MCCI</u> 伝熱モデルでは、溶融炉心	とから,評価方法の概
	作用(以下「MCCI」という。)伝熱モデルでは、溶融	炉心コンクリート間の伝熱, クラストの伝熱と厚さ, 上部クラス	要について記載。
	コンクリート間の伝熱、クラストの伝熱と厚さ、上部ク	ラスト トー水プール間熱伝達が考慮されている。ここでは、コリウム	
	-水プール間熱伝達が考慮されている。ここでは、コリ	ウムシ シールド模擬に伴う設定の変更点及び評価モデルの適用性につ	
	ールド模擬に伴う設定の変更点及び評価モデルの適用性	につい いて示す。	
	て示す。		
	(1) コリウムシールドの模擬について	a. コリウムシールドの模擬について	
	解析コードMAAPにおけるMCCI伝熱モデルの	概念図 MAAP <u>コード</u> におけるMCCI伝熱モデルの概念図を図10	
	を <u>第1図</u> に示す。 <u>解析コード</u> MAAPによる侵食量評	面では、 に示す。MAAPユードによる侵食量評価では、本モデルのう	
	本モデルのうちコンクリートの物性値として設定され	ている ち、コンクリートの物性値として設定されている以下のパラメ	
	以下のパラメータについてZrO2の物性値を固定値	で設定 ータについて, ZrO ₂ の物性値を固定値で設定し, コリウムシ	
	し、コリウムシールドを模擬している。なお、通常の	ールドを模擬している。なお、通常のコンクリート評価モデル	
	リート評価モデルではコンクリート表面に存在するラ	イナを ではコンクリート表面に存在するライナを考慮しているが、コ	
	考慮しているが、コリウムシールドの模擬に当たって	はライ リウムシールドの模擬に当たってはライナの物性値についても	
	ナの物性値についてもコリウムシールド耐熱材のもの	を設定 コリウムシールド耐熱材のものを設定し、ライナを考慮しない	
	し、ライナを考慮しないモデルとしている。	モデルとしている。	
	・侵食開始温度	・侵食開始温度	
	<ul> <li>密度</li> </ul>	<ul> <li>・密度</li> </ul>	
	<ul> <li>・比熱</li> </ul>	<ul> <li>・比熱</li> </ul>	
	・熱伝導率	・熱伝導率	
	<ul> <li>溶融潜熱</li> </ul>	<ul> <li>・溶融潜熱</li> </ul>	
	侵食開始温度については、化学反応等による侵食開	始温度  侵食開始温度については、化学反応等による侵食開始温度低	
	低下を考慮した保守的な設定としている(別添1)。ま	た,落 下を考慮した保守的な設定としている。また,落下した溶融炉	
	下した溶融炉心とコリウムシールド間の接触面温度は	侵食開 心とコリウムシールド間の接触面温度は侵食開始温度未満であ	
	始温度未満であることから、コリウムシールドの侵食	は発生 ることから、コリウムシールドの侵食は発生しない。なお、解	
	しない。なお、解析上はコリウムシールドの厚さを考	慮し, 析上はコリウムシールド厚さを考慮し, コリウムシールド裏面	
	コリウムシールド裏面にはコンクリートが配置された	モデル にはコンクリートが配置されたモデルとして評価を実施してい	
	*1として評価を実施しているが, コンクリート-コリ	ウムシ るが、コンクリート-コリウムシールド間の伝熱において接触	
	ールド間の伝熱において接触熱抵抗は考慮していない	。 熱抵抗は考慮していない。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	以上のとおり, 解析コードMAAPにおいてコリウムシー	以上のとおり, MAAP <u>コード</u> においてコリウムシールドを	
	ルドを適切に模擬している。	適切に模擬している。	
	※1 ペデスタル(ドライウェル部)壁面,床のコンクリートとドライウェル,サ		・設備設計の相違
	プレッション・チェンバ雰囲気との伝熱についても考慮している。		【東海第二】
			ペデスタル構造の相
	(2) 溶融炉心-コリウムシールド間の伝熱	b. 溶融炉心-コリウムシールド間の伝熱	違。
	溶融炉心ーコリウムシールド間の伝熱は、溶融炉心ーコン	溶融炉心ーコリウムシールド間の伝熱は、溶融炉心ーコンク	
	クリート間の伝熱と同様のモデルを用いている。溶融ブール	リート間の伝熱と同様のモデルを用いている。溶融ブールから	
	からクラスト、クラストから構造材への伝熱は以下の式で評	クフスト、クフストから構造材への伝熱は以下の式で評価され、	
	価され, <u>(1)</u> で示した構造材の物性値等による影響を受けすに カニューロの熱見が人て構造せたなにたて知いため、これ	aで示した構造材の物性値等による影響を受けすにクラスト内の動見ばなく構体性に強にたる影響を受けすにクラスト内	
	クラスト内の熱重か至く構造材に移行する扱いとなってわ の	の熱重か至し構造材に移行する扱いとなっており、壁面及の床の対応に広ちしないエデルとなっている。なか、仁熱な受けた	
	り、室面及び床の材負に依住しないモノルとなっている。なな、伝教を受けた構造材の測度と見け、構造材の執行道家等	の材具に依住しないてアルとなっている。なわ、仏然を文けた 構造なの理由と見は、構造なの執行道家等の物所に基づき計算	
	る、 仏然を 文の た 構造 化 の 価 反 上 升 は 、 構造 化 の 然 仏 等 平 寺 の 物 性 に 其 づき 計 質 さ れ	構造物の温度工弁は、構造物の窓口等半寺の物住に至うと可募 され	
	ムシールド耐熱材の物性値を適切に入力することで、適切に	性値を適切に入力することで、適切に計算される。	
	計算される。		
	床 古向の執流声 $a_1 - h_1 (T_1 - T_2) + a_1 X_1$	床支向の熱流す $a = h (T - T) + a \cdot X$	
	$\int r_{r,m} r_$	$ \begin{array}{c} \mu_{d} = h_{d} \left( 1 - f \right)^{n} \end{array} $	
	$n_d = n_{d0}(1 - f_s)^n$	$H_d - H_{d0}(\mathbf{I} - \mathbf{J}_s)$ 時本向の想法本 $a - h (T - T) + a \cdot \mathbf{V}$	
	壁方向の熱流束 $q_s = h_s \left(T_f - T_{F,m}\right) + q_v \cdot X_{cs}$	型方向仍然而来 $q_s = n_s (I_f - I_{F,m}) + q_v \cdot \Lambda_{cs}$	
	$h_s = h_{s0}(1 - f_s)^n$	$n_s = n_{s0}(1 - J_s)$	
	ここで、		
	$q_d$ , $q_s$ : 床方向及び側面方向の熱流束 [W/m²]	$q_d$ , $q_s$ :床方面及び側面方向の熱流束 [W/m ² ]	
	$h_d$ , $h_s$ : 溶融プールからクラスト層への対流熱伝達係数	$h_d$ , $h_s$ :溶融プールからクラスト層への対流熱伝達係数	
	[₩∕m ² K]	$[W/m^2K]$	
	$h_{d0}, h_{s0}:$ 溶融プールが完全な液相の場合の対流熱伝達	$h_{d0}, \; h_{s0}:$ 溶融プールが完全な液相の場合の対流熱伝達	
	係数 [W/m ² K]	係数 [W/m ² K]	
	$f_s$ : 固化割合 $[-]$	$f_s$ :固化割合 $[-]$	
	<b>n</b> : 固化効果項の指数 [-]	n:固化効果項の指数 [-]	
	<i>T_f</i> : 溶融プールの温度 [K]	$T_{f}$ :溶融プールの温度 [K]	
	, <i>T_{F m}</i> : デブリ融点 [K]	$T_{F,m}$ :デブリ融点 [K]	
	$q_n$ : 体積発熱率「W/m ³ ]	$q_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	
	<i>X</i> ed. <i>X</i> eg: 床面及び壁面のクラスト厚さ「m]	$X_{cd}$ , $X_{cs}$ :床面及び壁面のクラスト厚さ [m]	
	(3) クラストの厚さ	c. クラストの厚さ	
	床面及び壁面のクラスト厚さ評価モデルでは、溶融プール	床面及び壁面のクラスト厚さ評価モデルでは,溶融プール	
	からの伝熱及び構造材への伝熱によりクラスト厚さの変化率	からの伝熱及び構造材への伝熱によりクラスト厚さの変化率	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	を計算しており、壁面及び床の材質に依存しないモデルとな	を計算しており、壁面及び床の材質に依存しないモデルとな	
	っているため、コリウムシールドにも適用可能である。なお、	っているため、コリウムシールドに適用可能である。なお、	
	クラストーコリウムシールド接触面温度は, <u>(1)</u> に記載のとお	クラストーコリウムシールド接触面温度は、aに記載のとお	
	り $\operatorname{Zr}\operatorname{O}_2$ の物性値を基に計算されることから、クラストの厚		
	さを評価するにあたり $\mathbf{Z} \mathbf{r} \mathbf{O}_2$ の物性値が考慮されている。	さを評価するにあたり Ζ r O 。の物性値が考慮されている。	
	$q = 2k_F(T_{F,m} - T_i)/x_c$	$a = 2k_{\rm p}(T_{\rm p} - T_{\rm r})/x$	
	ここで,	$\frac{1}{2} \frac{1}{2} \frac{1}$	
	<b>q</b> : 床方向又は側面方向の熱流束 [W/m ² ]	a ・ 床 方 面 又 は 側 面 方 向 の 熱 流 束 「 W / m ² ]	
	 k _n : デブリ熱伝導率「W/mK]	$     \mu $ · デブリ執伝道家 [W/mK]	
	<b>T</b> . ・ デブリ融占「K]	T · デブリ 融占 [k]	
	$\mathbf{T}$ : カラストーフリウムシールド接触両泪度 ^{※2} [K]	$T_{F,m}$ · ノノノ 福二 [K] T· クラストーフ ]] ウムシールド 接触 西 泪 酢※1 [K]	
	$I_i$ . $J_j$ , J	$\mathbf{r}_i$ , $\mathbf{r}_j$ , $\mathbf{r}$	
	$x_c$ : 休山又は壁山のクラス下岸さ[山]		
	※9、っせウルシュルドの主声泪座し同時でもり、カラフトからの仁効是ひびすう		
	1たコリウムシールドの返出温度と同胞とのり、ノノストル-500匹派重及り入分	※1 コリリムシールトの衣面温度と回順であり、クラストからの伝熱重及の入力し	
		にヨリリムシールトの物性値に基づいて適切に計算されている。	
	ブールボ	ブール水	
	イロー         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th>イロ     上部クラスト     ブール温度       オーレ     注意のフール     ブール温度       ア部クラスト     (放物分布)       現界温度     (放物分布)       現界温度     *       マクリート     *       ホーンクリート     *</th> <th></th>	イロ     上部クラスト     ブール温度       オーレ     注意のフール     ブール温度       ア部クラスト     (放物分布)       現界温度     (放物分布)       現界温度     *       マクリート     *       ホーンクリート     *	
	第1図 解析コードMAAPにおけるMCCI伝熱モデル	図10 MAAPコードのMCCI 伝熱モデル	
	2. 解析コードにおける不確かさの影響	(2)解析コードにおける不確かさの影響	・設備設計の相違
	(1) 不確かさの整理	<ul> <li>(i) 不確かさの整理</li> </ul>	【柏崎 6/7】
	解析コードにおける、コリウムシールドを考慮したMCC	解析コードにおける、コリウムシールドを考慮したMCCI	島根2号炉および東
	I 過程毎の不確かさ要因を整理する。BWRプラント安全審	過程毎の不確かさ要因を整理する。BWRプラント安全審査資	海第二では、解析コー
	査資料   重大事故等対策の有効性評価に係るシビアアクシデ	料	ドにおける不確かさ要
	ント解析コードについて」において、MCCIは以下の過程	析コードについて」において, MCCIは以下の過程で段階的	因を整理。
	で段階的に推移することが示されているが、コリウムシール	に推移することが示されているが、コリウムシールドを考慮し	
	ドを考慮してもこの過程に変わりはない。	てもこの過程に変わりはない。	
	・原子炉圧力容器下部ヘッド破損過程	・原子炉圧力容器下部ヘッド破損過程	

・溶融物の落下・堆積過程・・溶融物の落下・堆積過程	
・MCCI進行と注水によるデブリ冷却過程 ・MCCI進行と注水によるデブリ冷却過程	
ただし、「MCCI進行と注水によるデブリ冷却過程」にお	価方針の相違
いては、MCCI現象の影響因子として溶融炉心からのコリ	毎第二】
ウムシールドを介したコンクリートへの伝熱を考慮する必要	退2号炉は,格納容
がある。ここで, MCCI伝熱モデルでは固定値の物性を設	告の観点から,コリ
定することから、コリウムシールドを介した伝熱の感度解析	シールドを介した
パラメータとして、コリウムシールドの伝熱物性値の温度依	達の不確かさが格
存性が想定される。第2図にMCCIにおける不確かさに関	器の機能の健全性
する流れ図を示す。	える影響は小さい
と判断	断し,コリウムシー
ルドの	の伝熱に対する感
度解析	折は実施していな
い。(1	(島根2号炉のペデ
スタル	ル床面から格納容
器ライ	イナまでのコンク
MCCI現象の影響因子より抽出された感度解析パラメー MCCI現象の影響因子より抽出された感度解析パラメータ リート	ト厚さは約4m)
タに対して、感度解析の要否を整理する。MCCI評価の不 に対して、感度解析の要否を整理する。MCCI評価の不確か	
確かさに関する評価結果を <u>第1表</u> に示す。 さに関する評価結果を表 <u>6</u> に示す。	
エントレインメント係数について,感度解析より溶融炉心 エントレインメント係数について,感度解析より溶融炉心の	
の細粒化割合がコンクリート侵食に与える感度は小さいこと 細粒化割合がコンクリート侵食に与える感度は小さいことを確	
を確認している。また、このことは、エントレインメント係 認している。また、このことは、エントレインメント係数の不	
数の不確かさにより溶融炉心の細粒化割合が変化した場合で 確かさにより溶融炉心の細粒化割合が変化した場合でも溶融炉	
も溶融炉心の温度に対する感度は小さいことを示しており, 心の温度に対する感度は小さいことを示しており, コリウムシ	
コリウムシールド侵食に与える感度についても同様に小さい ールド侵食に与える感度についても同様に小さいと考えられる	
と考えられることから、評価項目となるパラメータに与えることから、評価項目となるパラメータに与える影響は小さく、	
影響は小さく、コリウムシールドを考慮した感度解析は不要コリウムシールドを考慮した感度解析は不要である。	
である。	
溶融炉心の拡がりについて、溶融炉心の拡がりが抑制され 熔融炉心の拡がりについて、溶融炉心の拡がりが抑制される	
ると想定した場合は,種々の不均一な堆積形状を考慮しても, と想定した場合は,種々の不均一な堆積形状を考慮しても,拡	
拡がりが抑制されないペデスタル <u>(ドライウェル部)</u> への均 がりが抑制されないペデスタルへの均一堆積形状の方が溶融炉	
一堆積形状の方が溶融炉心と水の伝熱面積が大きくなり、溶 心と水の伝熱面積が大きくなり、溶融炉心が冷却される傾向と	
融炉心が冷却される傾向となる。 <u>拡がりが抑制されない均一</u> なる。 <u>ペデスタルに落下した溶融炉心については、「3.5 溶融</u> ・評価	価方針の相違
堆積形状の場合,溶融炉心落下時点における溶融炉心とコリ 炉心・コンクリート相互作用」(以下「ベースケース」という) 【東海	毎第二】
ウムシールドの接触面温度はコリウムシールドの侵食開始温の有効性評価では、床面に一様に拡がる評価モデルとして扱う。	<b>艮2号炉は,ペデス</b>
<u>度を下回っており,また,溶融炉心への注水によって溶融炉</u> <u>ているが,堆積形状の不確かさが想定されるため,プラントの</u> タルに	に落下した溶融炉
心は継続的に冷却されることから,溶融炉心の拡がりが抑制 形状や事前水張りの深さを踏まえて,拡がりが抑制された感度 心の拡	広がり面積に対す
されると想定した場合においても、コリウムシールド及びコ 解析により、影響を確認する。 る感度	度解析を実施。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	ンクリートの侵食への影響はなく、評価項目となるパラメー		
	タに与える影響はないことから、コリウムシールドを考慮し		
	た感度解析は不要である。		
	上面熱流束係数及び溶融プールークラスト間の熱伝達係数	上面熱流束係数及び溶融プール-クラスト間の熱伝達係数に	
	について、溶融炉心・コンクリート相互作用への影響を確認	ついて、溶融炉心・コンクリート相互作用への影響を確認する	
	する観点で実施したエントレインメント係数,上面熱流束及	観点で実施したエントレインメント係数,上面熱流束及び溶融	
	び溶融プールからクラストへの熱伝達係数をパラメータとし	プールからクラストへの熱伝達係数をパラメータとした感度解	
	た感度解析を踏まえ, <u>解析コード</u> MAAPによりコリウムシ	析を踏まえ, MAAP <u>コード</u> によりコリウムシールド及びコン	
	ールド及びコンクリート侵食量について支配的な溶融炉心か	クリート侵食量について支配的な溶融炉心からプールへの熱流	
	らプールへの熱流束を対象に感度解析を行い、影響を確認す	束を対象に感度解析を行い、影響を確認する。	
	る。【感度解析①】		
	また、侵食の異方性について、コンクリート侵食の異方性	また,侵食の異方性について,コンクリート侵食の異方性に	
	については溶融炉心からプール水への熱流束の感度に比べて	ついては溶融炉心からプール水への熱流束の感度に比べて影響	
	影響が小さいことが確認されており、コリウムシールドは侵	が小さいことが確認されており、コリウムシールドは侵食開始	
	食開始温度に到達していないことより同様に影響が小さいと	温度に到達していないことより同様に影響が小さいと考えられ	
	考えられるため、上記の溶融炉心からプールへの熱流束を対	るため、上記の溶融炉心からプールへの熱流束を対象にした感	
	象にした感度解析により、影響を確認する。【感度解析①】	度解析により、影響を確認する。	
	コリウムシールドの伝熱物性値の温度依存性について, <u>解</u>		・評価方針の相違
	<u> 析コードMAAPにおけるMCCI伝熱モデルでは,固定値</u>		【東海第二】
	の物性を設定することから、不確かさが想定される。このた		島根2号炉では,コリ
	め、感度解析により伝熱物性値(熱伝導率、比熱)の温度依		ウムシールドを介した
	存性の影響を確認する。【感度解析②】		熱伝達の不確かさが格
			納容器の機能の健全性
			ヘ与える影響は小さい
			と判断し, コリウムシー
			ルドの伝熱に対する感
			度解析は実施していな
			$V_{\circ}$

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	のハノロC1 割油の・パッパット         単体第二条電所         (5018 - 0.12 m)         自体第二条電子         単体第二条電子         単体第二条電子         単体第二条電子         単体第二条電子         単体第二条電子         日本のよりまた         日本のよ	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	(2) 感度解析	<ul> <li>(ii)感度解析</li> <li>ベースケースの条件設定に対し、「(i)不確かさの整理」で</li> <li>整理した不確かさ要因について、コリウムシールド及びコンク</li> <li>リート侵食量に対する感度を確認した。</li> </ul>	・評価方針の相違 【東海第二】 島根2号炉および柏
【比較のため, 記載を亚の答え】 (2) 格納容器下部床面の評価(溶融炉心が均一に拡がらない場合) 原子炉格納容器下部に落下した溶融炉心について, 評価モデ ルでは床面に一様に拡がるものとして扱っているが, その挙動 には不確かさがあると考えられ, 溶融炉心が均一に拡がらない 場合も考えられる。この場合のMCCIの影響を確認するため, 以		<u>a. 溶融炉心の拡がりを抑制する場合の感度解析</u>	崎 6/7 では、ペテスタル に落下した溶融炉心の 拡がり面積に対する感 度解析を実施。
<ul> <li>下のケースについて侵食量を評価した。</li> <li>a. 評価体系</li> <li>・溶融炉心が拡がらないことを想定した最も極端なケースとして、水中に落下した溶融炉心は水中で拡がらず、初期水張り水深と同じ高さの円柱になるものとした。</li> <li>・溶融炉心が中心から外れた位置で円柱を形成した場合を想定し、溶融炉心の側面がコンクリートの壁で囲まれた体系を設定した。</li> <li>・評価体系(円柱)の高さは2m(初期水張り高さ)、底面積は約2m²(原子炉格納容器下部床面積の約1/4)とし、評価体系(円柱)の上面から水によって除熱されるものとした。ただし、上面からの除熱量は評価体系(円柱)上面の面積に側面の面積を加えた値とした。これは、溶融炉心が拡がらない場合に仮に溶融炉心の一部が壁面に接触しても、側面の大部分は水に接触していると考えられるためである。</li> </ul>		<ul> <li>(a) 評価条件</li> <li>・溶融炉心が拡がらないことを想定した最も極端なケースとして、水中に落下した溶融炉心は水中で拡がらず、初期水張り水深と同じ高さの円柱になるものとした。</li> <li>・溶融炉心が中心から外れた位置で円柱を形成した場合を想定し、溶融炉心の側面がコンクリートの壁で囲まれた体系を設定した。</li> <li>・評価体系(円柱)の高さは2.4m(初期水張り高さ)、底面積は約11m²(ペデスタル床面積の約2/5)とし、評価体系(円柱)の上面から水によって除熱されるものとした。ただし、円柱の側面部分も水に接していることを想定し、上面からの除熱量は円柱上面の面積に側面の面積を加えた値とした。</li> </ul>	<ul> <li>・評価条件の相違</li> <li>【柏崎 6/7】</li> <li>島根 2 号炉における</li> <li>初期水張高さ、ペデス</li> <li>タル底面積、MAAP解</li> <li>析結果に基づいて評価</li> <li>を実施。</li> </ul>
<ul> <li>b. 評価条件</li> <li>・評価ケース4-3:有効性評価「溶融炉心・コンクリート相互 作用」における溶融炉心落下時刻の崩壊熱(事象発生から約7 時間後)及び格納容器圧力への依存性を考慮した上面熱流束 を用いた評価。</li> </ul>			
<ul> <li>c. 評価結果</li> <li>・評価ケース4-3:図4-3に示すとおり,原子炉格納容器下部床 面の侵食量は約0.01m,鋼製ライナの損傷には至ることは無 く,壁面の侵食量は約0.01mであり,外側鋼板の侵食に至る</li> </ul>		<ul> <li>(b) 評価結果</li> <li>評価結果を図 12 に示す。評価の結果、ペデスタルのプール</li> <li>水中に落下した溶融炉心とコリウムシールドの接触面温度は</li> <li>2,100℃未満であり、コリウムシールドを設置することにより、</li> </ul>	・評価結果の相違 【柏崎 6/7】 評価条件に基づく解

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<u>ことは無く、原子炉格納容器</u> の支持機能を維持できることを		溶融炉心・コンクリート相互作用によるコンクリートの侵食が	析結果の相違。
確認した。		<u>生じない。このため,</u> 原子炉圧力容器の支持機能を維持できる	
【ここまで】		ことを確認した。	
(1) 格納容器下部床面の評価(溶融炉心が一様に広がる場合)			・評価方針の相違
コリウムシールドに期待する場合, コリウムシールドを考慮			【柏崎 6/7】
しない場合に比べて溶融炉心が拡がる原子炉格納容器下部の			島根2号炉は,溶融炉
床面の面積が狭まることから,原子炉格納容器上部の面積も減			心が一様に拡がる場合
<u>少する。このため,原子炉格納容器上部からの除熱量が減少し,</u>			をベースケースで評価
原子炉格納容器下部の床面における侵食量が増加することが			しており,コリウムシー
考えられることから,以下のケースについて侵食量を評価し			ルドをペデスタル床全
<u>t.</u>			面に敷設しているため,
			溶融炉心が一様に拡が
<u>a. 評価体系</u>			る場合の拡がり床面積
・MAAPコードでは、コリウムシールド設置後のような複雑な床			には影響しない。
<u>面の形状を模擬できないため,原子炉格納容器下部の床面積</u>			
<u>全体からコリウムシールドで囲まれる部分の面積を除いた</u>			
面積を底面積とした円柱で模擬した。			
・評価体系(円柱)の底面積はコリウムシールドで囲まれる部分			
が広く,評価体系(円柱)の底面積が小さい6号炉で代表させ,			
<u>62.0m²とした。</u>			
b. 評価条件			
・評価ケース4-1:有効性評価「溶融炉心・コンクリート相互			
作用」における溶融炉心落下時刻の崩壊熱(事象発生から約7			
時間後)及び格納容器圧力への依存性を考慮した上面熱流束			
<u>を用いた評価。</u>			
・評価ケース4-2:事象発生から約7時間後の崩壊熱及び	<u>a. 溶融炉心上面熱流束の感度解析【感度解析①</u>	<u>b. 溶融炉心上面熱流束の感度解析</u>	
800kW/m ² 一定の上面熱流束を用いた評価。	<u>(a)解析条件</u>	<u>(a)</u> 評価条件	
	解析条件を第2表に示す。溶融炉心から水プールへの熱	<ul> <li>・ペデスタルに落下した後の上面熱流束をベースケースから変</li> </ul>	
	流束ついては,上面熱流束の不確かさを考慮した 800kW/m	更し, 800kW/m ² (一定) とする。これは, Kutatela	
	2(一定)とする。また,対象シーケンスは,事象進展が早	d z e型の水平平板限界熱流束相関式において大気圧状態を	
	く,崩壊熱が大きくなり,侵食を厳しくする観点で「大破	想定した場合,溶融炉心からプール水への熱流束が800 kW/m ²	
	断LOCA時に損傷炉心冷却に失敗し、原子炉圧力容器が	程度であることを考慮し,保守的に設定した値である。なお,	
	破損するシーケンス」とする。	ベースケースでは溶融炉心からプール水への熱流束を 800	
		kW/m ² (圧力依存有り)としている。ベースケースにおける原	
		子炉圧力容器破損後の格納容器圧力は、約0.2MPa[gage]以上	
		で制御されていることから、ベースケースにおける溶融炉心	
		からプール水への熱流束は、約1,300kW/m ² (格納容器圧力約	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		0.2MPa[gage]において)以上となる。	
c. 評価結果	(b) <u>解析結果</u>	(b) 評価結果	
・評価ケース4-1:図4-1に示すとおり、原子炉格納容器下部床			
面の侵食量は約0.01mであり,鋼製ライナの損傷には至るこ			
とは無く, 原子炉格納容器下部壁面の侵食量は約0.01mであ			
り、外側鋼板の損傷に至ることは無いことを確認した。			
<ul> <li>         ・ 評価ケース4-2:図4-2に示すとおり、原子炉格納容器下部     </li> </ul>	評価結果を <u>第3</u> 表に示す。 <u>ペデスタルのプール水中に落</u>	評価結果を図13に示す。評価の結果, ペデスタルのプール水	・解析結果の相違
床面の侵食量は約0.08mであり,鋼製ライナの損傷には至る	下した溶融炉心とコリウムシールドの接触面温度は	中に落下した溶融炉心とコリウムシールドの接触面温度は	【柏崎 6/7, 東海第二】
ことは無く,原子炉格納容器下部壁面の侵食量は約0.07mで	2,100℃未満であり, コリウムシールドを設置することによ	<u>2,100℃未満であり、コンクリート侵食量は床面でOm, 壁面で</u>	設備や評価条件等の
あり,外側鋼板の損傷に至ることは無いことを確認した <u>。</u>	り,溶融炉心・コンクリート相互作用によるコンクリート	<u>約0.13mに抑えられており</u> ,原子炉圧力容器の支持機能を維持	違いによる解析結果の
	<u>の侵食が生じない。</u> このため,原子炉圧力容器の支持機能	できることを確認した。	相違。
	を維持できる。		
(2) 格納容器下部床面の評価(溶融炉心が均一に拡がらない			・記載箇所の相違
場合)			【柏崎 6/7】
原子炉格納容器下部に落下した溶融炉心について, 評価モデ			島根2号炉では、溶
ルでは床面に一様に拡がるものとして扱っているが,その挙動			融炉心の拡がり面積に
には不確かさがあると考えられ,溶融炉心が均一に拡がらない			対する感度解析を4.
場合も考えられる。この場合のMCCIの影響を確認するため、以			(3) a. に記載。
下のケースについて侵食量を評価した。			
a. 評価体系			
<ul> <li>溶融炉心が拡がらないことを想定した最も極端なケースとし</li> </ul>			
て,水中に落下した溶融炉心は水中で拡がらず,初期水張り			
水深と同じ高さの円柱になるものとした。			
・溶融炉心が中心から外れた位置で円柱を形成した場合を想定			
し、溶融炉心の側面がコンクリートの壁で囲まれた体系を設			
定した。			
・評価体系(円柱)の高さは2m(初期水張り高さ),底面積は約			
22m ² (原子炉格納容器下部床面積の約1/4)とし,評価体系(円			
柱)の上面から水によって除熱されるものとした。ただし,			
上面からの除熱量は評価体系(円柱)上面の面積に側面の面			
積を加えた値とした。これは,溶融炉心が拡がらない場合に			
仮に溶融炉心の一部が壁面に接触しても、側面の大部分は水			
に接触していると考えられるためである。			
b. 評価条件			
・評価ケース4-3:有効性評価「溶融炉心・コンクリート相互			
作用」における溶融炉心落下時刻の崩壊熱(事象発生から約7			
時間後)及び格納容器圧力への依存性を考慮した上面熱流束			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
を用いた評価。			
c. 評価結果			
・評価ケース4-3:図4-3に示すとおり、原子炉格納容器下部床			
面の侵食量は約0.01m,鋼製ライナの損傷には至ることは無			
く,壁面の侵食量は約0.01mであり,外側鋼板の侵食に至る			
ことは無く、原子炉格納容器の支持機能を維持できることを			
確認した。			
(3) 溶融炉心の一部がコリウムシールドを越えて, サンプに流			・設備設計の相違
入する場合			【柏崎 6/7】
原子炉格納容器下部に落下した溶融炉心はコリウムシール			島根2号炉のコリウ
ドによってせき止められ, あるいはファンネルの途中で固化す			ムシールドは, ペデスタ
ることにより、多量にサンプに流入することは無いと考える。			ル床面全体を覆う構造
細粒化された溶融炉心が水中に浮遊することにより,僅かな量			であり,ここでは, 柏崎
がコリウムシールドの内側に移行することは考えられるが, 細			6/7 の構造に依存した
粒化された溶融炉心は周囲の水によって十分に冷却されてい			評価が実施されている。
ると考えられることから,仮に僅かな量の細粒化された溶融炉			
心がサンプに移行しても、サンプ床面を有意に侵食するもので			
はないと考える。			
ただし、溶融炉心に対し、ポロシティを見込んだ場合、溶融			
炉心の一部がコリウムシールドを越えて,サンプに流入するこ			
とが考えられることから,以下のようにサンプ床面の侵食量を			
評価した。			
a. 評価体系			
・ MAAP コードでは,サンプのような直方体の形状を模擬でき			
ないため、床面積をサンプの床面積に合わせた円柱で模擬し			
た。			
<ul> <li>サンプへの流入量を考慮する上で必要となる格納容器下部</li> </ul>			
のモデル(コリウムシールド設置位置, コリウムシールド高			
さ,サンプの形状)は,6 号炉と7 号炉を比較して,サンプ			
越流時の流入量が多く, サンプ床面積が小さく上面から水へ			
の除熱量が少なくなる7 号炉で代表させた。			
b. 評価条件			
・ ポロシティ評価範囲			
MAAP コードにおける不確かさの範囲と同様に、ポロシティを			
0.26(面心立方格子,最稠密),0.32(体心立方格子),0.4(MAAP			
標準値), 0.48(単純立方格子)の範囲を想定する。ポロシテ			
ィについては、概ね0.3 以上と報告されているが、ポロシテ			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------------	----------------------	--------------	----
ィに対する侵食量の感度を確認する観点から、ポロシティの			
最小値について,本評価では仮想的に0.26 を設定した。な			
お、粒子化割合の評価にはRicou-Spalding 相関式を用い,			
エントレインメント係数はMAAP 推奨値とした。こ			
の評価結果をもとに、本評価における粒子化割合は63%とし			
た。			
・ 崩壊熱及び上面熱流束			
事象発生から7 時間後の崩壊熱,ポロシティ及び格納容器			
圧力への依存性を考慮した上面熱流束を用いた評価を行う。			
上面熱流束は, 図4-4 のLipinski 0-D モデルを用いたドラ			
イアウト熱流束をもとに表4-1 のとおりに設定した。			
Lipinski 0-D モデルについては別紙4 に詳細を示す。			
・ 溶融炉心の堆積厚さの設定			
各ポロシティを用いた場合の下部ドライウェルでの溶融			
炉心の堆積高さ(コリウムシールドに囲まれた床面積を除い			
た場合)は表4-1 のとおりとなる。これを踏まえ, 各ポロシ			
ティを用いた場合のサンプ内への溶融炉心の流入量を以下			
のとおりに考慮し,表4-1 のとおりにサンプ内での溶融炉心			
の堆積高さを設定した。			
(i) コリウムシールドの高さ以上に堆積し, コリウムシール			
ドの内側に流入するものと見なす溶融炉心の量がサン			
プの体積未満の場合			
ポロシティが0.26 のケースでは, コリウムシールドの			
高さ以上に堆積する溶融炉心の量がサンプ2 つ分の容量			
(サンプ床面積の小さい7 号炉で代表)未満であることか			
ら,二つのサンプに均一に溶融炉心が流入すると想定し,			
堆積厚さを約0.7mとした。			
(ii) コリウムシールドの高さ以上に堆積し, コリウムシー			
ルドの内側に流入するものと見なす溶融炉心の量がサ			
ンプの体積以上の場合			
ポロシティが0.32, 0.4 及び0.48 のケースでは, 溶融			
炉心の流入量がサンプ2つ分(サンプ床面積の小さい7 号			
炉で代表)の容量を大きく上回る。溶融炉心がコリウムシ			
ールドの内側のサンプ外の領域にも堆積するため, サンプ			
及びコリウムシールドの内側のサンプ外の領域に堆積し			
た場合の堆積高さを用いてサンプ床面の侵食量評価を行			
った。			
c. 評価結果			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所	f 2号炉	備考
· 表4-2 に示すとおり,サンプ床面の侵食量は最大約0.05m で					
あり、鋼製ライナの損傷には至ることは無く、サンプ壁面					
の侵食量は最大約0.05m であり,外側鋼板の損傷に至るこ					
とは無いことを確認した。					
(4) 溶融物の落下量を保守的に考慮する場合の影響					・設備設計の相違
原子炉格納容器下部に溶融炉心と共に落下し得る構造物に					【柏崎 6/7】
ついては表3-3 に整理しており,原子炉圧力容器内の構造物					島根2号炉のコリウ
のみならずCRD交換装置や原子炉圧力容器外の全てのCRDハウ					ムシールドは, ペデスタ
ジング等を考慮しても,落下した溶融物のポロシティが0の					ル床面全体を覆う構造
場合はコリウムシールドを越えない設計としている。					であり, ここでは, 柏崎
落下した溶融物の量を十分保守的に設定している前提では					6/7 の構造に依存した
あるが、ここでポロシティを考慮する場合、溶融物の一部は					評価が実施されている。
サンプの内側に流入すると考えられる。このため、溶融物の					
落下量に対するサンプ床面の侵食量の感度を確認する観点か					
ら,以下のようにサンプ床面の侵食量を評価した。					
a. 評価体系					•
・ MAAP コードでは, サンプのような直方体の形状を模擬でき					
ないため、床面積をサンプの床面積に合わせた円柱で模擬し					
た。					
<ul> <li>サンプへの流入量を考慮する上で必要となる格納容器下部</li> </ul>					
のモデル(コリウムシールド設置位置, コリウムシールド高					
さ,サンプの形状)は,6 号炉と7 号炉を比較して,7 号炉					
のコンクリート侵食量の方が多いことを確認し,7 号炉で代					
表させた。					
b. 評価条件					
<ul> <li>本評価では落下した溶融物の量を保守的に設定するものと</li> </ul>					
し、他のパラメータについて、評価結果に与える影響の大					
きなパラメータについてはノミナル条件に近いと考える値					
とした。評価条件の設定の考え方を表4-3 に示す。					
・ ポロシティ評価範囲					
文献値等において,ポロシティは現実的には0.3 以上と報告					
されていることを踏まえ,0.32(体心立方格子の値)とした。					
なお、粒子化割合の評価にはRicou-Spalding 相関式を用い,					
エントレインメント係数はMAAP 推奨値とした。こ					
の評価結果をもとに、本評価における粒子化割合は63%とし					
た。					
・崩壊熱及び上面熱流束					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2-
事象発生から7 時間後の崩壊熱,ポロシティ及び格納容器圧		
カへの依存性を考慮した上面熱流束を用いた評価を行う。上		
面熱流束は, 図4-4 のLipinski 0-D モデルを用いたドライ		
アウト熱流束をもとに表4-3 のとおりに設定した。		
・ 溶融炉心の堆積厚さの設定		
表4-4 に示すとおり、ポロシティ及び落下物量の想定から、		
溶融炉心がコリウムシールド内を埋め, 更に格納容器下部全		
体に堆積する高さ(格納容器下部床面から約0.66m(サンプ床		
面から約2.06m))とした。		
c. 評価結果		
・ 表4-5 に示すとおり, サンプ床面の侵食量は約0.09m であ		
り、鋼製ライナの損傷に至ることは無く、サンプ壁面の侵		
食量は約0.09m であり,外側鋼板の損傷に至ることは無い		
ことを確認した。		
(5) 溶融炉心落下位置が原子炉圧力容器底部中心から径方向		
に偏る場合の想定		
溶融炉心が圧力容器底部のどの位置から落下するかについ		
ては不確かさがあるが,基本的には圧力容器底部の中心及びそ		
の近傍に配置されており圧力容器底部を貫通する構造部材で		
あるCRD ハウジングからの落下を想定している。原子炉圧力容		
器破損後に原子炉格納容器下部に落下する溶融炉心が,原子炉		
格納容器下部のサンプに流入することを防止する目的でコリ		
ウムシールドを設置しているが,その堰の設置位置は図4-5,		
図4-6 に示すとおり,CRD ハウジングの最外周の位置よりも格		
納容器下部の壁面寄りとしており,CRD ハウジングの最外周を		
溶融炉心の落下位置として想定しても,原子炉格納容器下部に		
落下した溶融炉心はコリウムシールドによってせき止められ		
るものと考える。		
溶融炉心の拡がりについては「解析コードMAAP 説明資料 添		
付3 溶融炉心とコンクリートの相互作用について 付録4 溶融		
物の拡がり実験」において参照した知見から、格納容器下部に		
落下した溶融炉心は数分程度で格納容器下部に拡がり、また、		
ANL の実験では, デブリベッドが均一化することに要した時間		
が2~3 分程度であったことも踏まえると,格納容器下部に落		
下した溶融炉心は短時間で格納容器下部に均一に拡がるもの		
と考える。		
しかしながら、コリウムシールド近傍に落下した場合、一時		



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炮
的に偏って高く堆積することにより, 溶融炉心が格納容器下部		
に拡がる前にコリウムシールドを越えてサンプに流入する可		
能性が考えられる。		
偏って堆積する場合、堆積物の形状には不確かさがあり、モ		
デル化することは困難である。このため, 堆積物の形状の不確		
かさについては, ポロシティを極めて保守的に設定し, 堆積物		
全体の堆積高さを高く評価した上で,多くの溶融炉心がコリウ		
ムシールドの内側に流入する評価で代表させるものとする。		
流入する溶融炉心の状態を考えると,水中に落下した溶融炉		
心は一部が細粒化して冷却され,細粒化された密度の低い溶融		
炉心は落下した溶融炉心の上部に集まるものと考えられる。こ		
のため,コリウムシールドを越えてサンプに流入すると考えら		
れる溶融炉心の状態は、細粒化され、冷却、固化された、ポロ		
シティが高く密度の低い状態と考えられる。		
表4-1 に示す, ポロシティを0.48 とした評価は, 格納容器		
下部での堆積高さが高く,多くの溶融炉心がコリウムシールド		
の内側に流入した結果, コリウムシールドの内外が同じ堆積高		
さとなっている。この場合であっても,表4-2 に示すとおり,		
床面及び壁面の侵食量は0m であることから, 堆積の形状の不		
確かさを包絡させる観点で多量の溶融炉心の流入を考慮して		
も,多量の溶融炉心がサンプに流入する場合には,ポロシティ		
の高い溶融炉心がサンプに流入するため、高い水への除熱量		
(上面熱流束)に期待できると考えられることから, サンプの損		
傷は防止できるものと考える。		
	b. 伝熱物性値温度依存性の感度解析【感度解析②】	
	コリウムシールドの伝熱物性値の温度依存性の影響につい	
	ては,「4. コリウムシールドの侵食及び伝熱物性値の温度	
	依存性を考慮した感度解析」において、コリウムシールド	
	の侵食が生じた場合の影響と併せて確認する。なお、伝熱	
	物性値の温度依存性の取扱いが可能な汎用有限解析コード	
	<u>にて評価した場合においても, ペデスタル(ドライウェル</u>	
	部) のコンクリートが侵食されないことを確認している (別	
	添 2)。	

炉	備考
	・評価方針の相違
	【東海第二】
	島根2号炉では,コリ
	ウムシールドを介した
	熱伝達の不確かさが格
	納谷器の機能の健全性
	ハラスる影響は小さい
	レドの伝執に対すス感
	度解析は実施していな

柏崎刈羽原子力発	電所 6/	/7号炉	(2017.12.	20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所	2 号炉	備考
<u>表4-1 ポロシティ〜</u>	の依存性を	と考慮した	場合の上面	熱流束の					
	定と溶融炉	<u>いの堆積</u>	<u> </u>	1	1				
ポロシティ	0.26	0.32	0.40	0.48	-				
上面熱流束(格納容器圧力 依存性を考慮)(kW/m²)	$800^{*2}$	図 4 ⁻ 1300 ^{※2}	·4 参照 2200 ^{**2}	3300*2	-				
下部ドライウェル ^{*1} での 溶融炉心の堆積高さ(m)	約 0.68	約 0.73	約 0.80	約 0.89					
越流する溶融炉心の 体積(m ³ )	約 2.6	約 5.8	約 11	約 18					
サンプ床面からの 堆積高さ(m)	約 0.7	約 1.4	約 1.8	約 2.1					
※1 コリウムシールドに囲	まれた床面積	を除き, コリ	ウムシールドの	の内側への流					
入を考慮しない場合の堆	積高さ								
※2(参考)格納容器圧力0.	4MPa[abs]にま	らける値							
<u> </u> 素4-9	サンプに流	入する場合	の昼食量調	亚価結里					
ポロシティ	0.26	0.32	0.40	0.48					
サンプ床面侵食量(m)	約 0.05	約 0.03	約 0.01	0					
サンプ壁面侵食量(m)	約 0.05	約 0.03	約 0.01	0					
		1.4m							
ポロシティ 0.26		ポロシテ	√ 0.32						
			8						
ポロシティ 0.40		ポロシテ	× 0.48						
	1, 411) = 23(14)		、 総 3 4 3 4 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	た用い、					
■松子にです。竹柄な辞	「命に到達した俗獣が	<i>.</i>	エントレインメント係 MAAP 推奨値 この評価により、本評	数は とした。 価における					
ポロシティ	別のコリウムシールド	"越流量のイメージ	粒子化割合は 63%とし	た。					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	<ol> <li>解析条件における不確かさの影響 解析コードMAAPにおけるMCCI評価では、コリウムシ ールドを考慮した機器条件として、以下の条件を設定している。 ・コリウムシールド耐熱材の種類 ・コリウムシールド耐熱材の侵食開始温度 ・ペデスタル(ドライウェル部)床面積 これらは全て最確条件と同様の設定であることから、不確か さの影響はない。解析コードMAAPの解析条件を第4表に示 す。</li> </ol>	(3) 解析条件における不確かさの影響 解析コードMAAPにおけるMCCI評価では、コリウムシ ールドを考慮した機器条件として、以下の条件を設定している。 ・コリウムシールド耐熱材の種類 ・コリウムシールド耐熱材の優食開始温度 ・ペデスタル床面積 これらは全て最確条件と同様の設定であることから、不確 かさの影響はない。解析コードMAAPの解析条件を表7に示 す。なお、MCCI伝熱モデルにおいて、コリウムシールド耐 熟材の二層構造(サンプ防護材+犠牲材)のうち、サンプ防護 材の厚さ部分に対してZrOgの物性値を設定している。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		表7 解析コードMAAP解析条件	
		項目 解析条件 最確条件	
		コリリムシールト同熟材 ジルコニア耐熱材 ジルコニア耐熱材	-
		機 コリワムシールド耐熱材 2,100℃ ^{*1} 2,100℃ ^{*1} 2,100℃ ^{*1}	
		* ペデスタル床面積	
		コリウムシールド厚さ	
		※1 Z r O ₂ 耐熱材の 100mo1% Z r による侵食試験結果に基づき設定	
	4. コリウムシールドの侵食及び伝熱物性値の温度依存性を考慮		・評価方針の相違
	した感度解析		【東海第二】
	溶融炉心中の金属酸化物によるジルコニア耐熱材の溶出によ		島根2号炉では,コリウ
	り、コリウムシールドが侵食される可能性があるが、既往の実		ムシールドを介した熱
	験にて確認された侵食速度を仮定した場合、コリウムシールド		伝達の不確かさが格納
	の侵食量は約 33mm となる (別添 3)。コリウムシールドの厚み		容器の機能の健全性へ
	が減少した場合、コリウムシールド外表面のペデスタル(ドラ		与える影響は小さいと
	イウェル部) のコンクリートへの伝熱量が大きくなることから,		判断し,コリウムシール
	この影響を感度解析により確認する。また、前述のとおり、解		ドの伝熱に対する感度
	析コードMAAPでは $Z$ rO ₂ の物性値を固定値で設定するモ		解析は実施していない。
	デルであることから、伝熱物性値の温度依存性の不確かさの影		
	響についても併せて確認する。		
	(1) 肝切米件 毎年冬供な第5末にデオーマリウムシールドの厚さけ、マ		
	勝切未住を免り &にかり。コリウムシールドの岸さは、コ リウムシールドの設計値に対して 既分実験に其べく得会長		
	する かな コリウムシールドの得合によるペデスタル(ド		
	うる。なわ、コックムシールトの反反による、クバクル(ト ライウェル部) 床面積の拡大け保守的に考慮しない		
	ナイノエル前の水面積の広穴は休り前に与感じない。 また 解析コードMAAPにおけるコリウムシールドの伝		
	執物性値の温度依存性の不確かなを考慮し ペデスタル (ド		
	ライウェル部)のコンクリートの温度を厳しく評価すろ細占		
	で 堂温時の $7 r \Omega_0$ の伝教物性値を設定する		
	対象シーケンスは 事象准展が早く 崩壊熱が大きくたり		
	ペデスタル (ドライウェル部) のコンクリート侵食を厳しく		
	評価すろ観点で「大破断LOCA時に損傷炉心冷却に失敗」		
	原子炉圧力容器が破損するシーケンス」とする。		
	(2) 解析結果		
	解析結果を第6表に示す。また、ベースケース及び感度解		
	析ケースのコリウムシールド温度の推移及びコンクリート温		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東淮	再第二発電所 (2018.	9.12版)	島根原子力発電所 2号炉	備考
	度の推移を第	3 図から第6図,クラ	スト厚さの推移(上下)	方	
	向)を第7図	に示す。コリウムシー	ルド内表面温度の最高	值	
	は約 1,860℃1	ことどまり, コリウム	シールドの侵食開始温	度	
	である 2,100°	Cを下回ることから,	コリウムシールドの侵会	食	
	は溶融炉心中の	の金属酸化物によるジ	ルコニア耐熱材の溶出	र	
	生じた状態かり	ら進行しない。また,	コリウムシールド外表	面	
	と接するペデン	スタル(ドライウェル	部)コンクリートの温	度	
	の最高値は約	728℃にとどまり, コ	ンクリートの侵食開始	昷	
	度である約 1,	230℃を下回ることか	ら, コンクリートは侵	食	
	されない。この	のため, コリウムシー	ルドが溶融炉心中の金	属	
	酸化物により	<b>員食された場合におい</b>	ても、コリウムシール	Я	
	を介した伝熱の	の不確かさが,評価項	目となるパラメータに-	与	
	える影響は小る	さい。			
	なお、本評作	西においては, コンク	リートの表面温度を厳	L	
	く評価する観	点から, コンクリート	ーコリウムシールド間の	の	
	接触熱抵抗は素	考慮していない。 接触	熱抵抗を考慮した場合は	2	
	は,溶融炉心フ	からペデスタル(ドラ	イウェル部)コンクリ・	-	
	トへの熱通過率が小さくなり、溶融炉心及びコリウムシー			rL	
	ドの温度挙動に影響を与えることが考えられるが、溶融炉			<u>ن</u>	
	はペデスタル(ドライウェル部)のプール水に落下した直			发	
	に 2,100℃未満となること,また,溶融炉心から上面水へ			t	
	崩壊熱以上の除熱がされ溶融炉心の温度は 2,100℃未満を維			维	
	持することから、コリウムシールドの侵食は生じず、温度挙			举	
	動への影響は軽微であると考えられる。				
	<u>第2表 解析</u> 多	<u>《件(溶融炉心上面熱》</u>	<u> </u>		
	項目	ベースケース	感度ケース		
	対象シーケンス	過渡事象時に損傷炉心冷却 に失敗し,原子炉圧力容器が 破損するシーケンス	大破断LOCA時に損傷炉 心冷却に失敗し,原子炉圧力 容器が破損するシーケンス		
	溶融炉心から水プール への限界熱流束	800kW/m ² (圧力依存性あり)	800kW/m ² (一定 ^{※1} )		
	ペデスタル初期水位		lm		
	ペデスタル注水	RPV破損7分	↑後から 80m³/h		
	コリウムシールド厚さ	tリウムシールド厚さ 15cm			
	コリウムシールド侵食 開始温度	レド侵食 変 2,100℃ ^{※2}			
	R P V 破損時の 溶融炉心温度	MAAP解析	結果に基づく		
	<ul> <li>※1 侵食の不均一性等</li> <li>※2 ZrO₂耐熱材の</li> </ul>	等の影響を考慮して設定 100mo1%Zrによる侵食試験系	吉果に基づき設定(別添 1)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電	〕所 (2018.9.12	版)	島根原子力発電所 2号烷
	第3表 解析結果(溶融	如此一些一般。"	【感度解析①】	
	項目	ベースケース	感度ケース	
	コリウムシールド侵食量 (壁面及び床面)	侵食なし	侵食なし	
	ペデスタル (ドライウェル部) コンクリート侵食量 (壁面及び床面)	侵食なし	侵食なし	
	<u>第4表</u> 解析:	ュードMAAP解	折条件	
	項目	解析条件	最確条件	
	コリウムシールド耐熱材 の種類	ジルコニア耐火材	ジルコニア耐火材	
	機 器 3 りウムシールド耐熱材 条 の侵食開始温度 件	2, 100°C	2, 100°C	
	ベデスタル (ドライウェル部) 床面積	コリウムシールド を考慮	コリウムシールド を考慮	
	項目     ベー       項目     ベー       対象シーケンス     過渡事象町       オ象シーケンス     に失敗し,)       破損す     コリウムシールド厚さ       コリウムシールド     ロリウムシールド       上数     コリウムシールド       上数     コリウムシールド       ム     コリウムシールド	<u>解析②</u> -スケース に損傷炉心冷却 原子炉圧力容器が るシーケンス 15cm *2 *2 2,100℃*4	<u>感度ケース</u> 歯斯LOCA時に損傷炉 却に失敗し,原子炉圧力 器が破損するシーケンス 11cm ^{*1} *3 *3	
	ペデスタル(ドライウェ ル部)床面積           ペデスタル初期水位           ※1 溶融炉心中の金属酸化物によ?	27.08m ² 1m 5侵食を仮定した厚さと	して設定(別添3)	
	<ul> <li>※2 ZrO₂耐熱材の侵食開始温度</li> <li>※3 ZrO₂耐熱材の常温における</li> <li>※4 ZrO₂耐熱材の100mo1%Zr</li> </ul>	における伝熱物性とし 伝熱物性として設定 による侵食試験結果に	て設定 基づき設定(別添 1)	
	   第6表 解析結果(伝熱物性	這値及びコリウムミ	レールド侵食)【感度	
		解析②		
	項目	ベースケース	感度ケース	
	コリウムシールド侵食量 (壁面及び床面)	侵食なし	侵食なし	
	ペデスタル (ドライウェル部) コンクリート侵食量 (壁面及び床面)	侵食なし	侵食なし	

炉	備考



炉	備考
ペデスタル床面の侵食量 ペデスタル壁面の侵食量 ^{1リートの混合物の温度が 相互作用が停止する。 108 120 132 144 156 168 リート侵食量の推移}	・解析結果の相違 【柏崎 6/7】 島根 2 号炉は,柏崎 6/7 に比べて,溶融炉 心の拡がり面積(ペデス タル床面積)が小さいた め,壁面侵食量が大き くなる。
- ペデスタル床面の侵食量 - ペデスタル壁面の侵食量 30 40	<ul> <li>・解析結果の相違</li> <li>【柏崎 6/7】</li> <li>島根 2 号では, 拡がり</li> <li>を抑制した場合の方が</li> <li>溶融炉心と水との伝熱</li> <li>面積が大きくなり, 除熱</li> <li>量が大きくなることで,</li> <li>コンクリート侵食は生</li> <li>じていない。</li> </ul>
<u>リート侵食量の推移</u> <u>る場合)</u> - ペデスタル床面の役食量 - ペデスタル球面の役食量 - ペデスタル球面の役食量 - ペデスタル球面の役食量 - ト反応が停止する - 13m 	・解析結果の相違 【柏崎 6/7】 ベースケースよりも, コンクリート侵食量が 増加しており,島根2号 炉と柏崎 6/7 で同様の 傾向となっている。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
$\frac{1 \times 10^7}{1 \times 10^4}$ $\frac{1 \times 10^7}{1 \times 10^4}$ $\frac{1 \times 10^4}{1 \times 10^4}$ 			<ul> <li>・設備設計の相違</li> <li>【柏崎 6/7】</li> <li>柏崎 6/7 では,溶融</li> <li>炉心の一部がコリウム</li> <li>シールドを超えてサン</li> <li>プに流入する場合の評価が実施されており,</li> <li>Lipinski0-D モデルに基づいてドライアウト</li> <li>熱流束が設定されている。</li> </ul>
(a) 側面図			
(b) 上面図			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
(6 号炉)			
図4-6 CRD ハウジング最外周とコリウムシールドの位置関係			
(7 号炉)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<u> 図4-7 格納容器ト部端のイメージ(格納容器底部床面から上部</u> た場影)			
<u> </u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	5. まとめ	(4) まとめ	
	解析コードMAAPではコリウムシールドを適切に模擬して	MAAP <u>ユード</u> ではコリウムシールドを適切に模擬してお	
	おり、溶融炉心-コリウムシールド間の伝熱モデルはコリウム	り、溶融炉心-コリウムシールド間の伝熱モデルはコリウムシ	
	シールドに適用可能である。	ールドに適用可能である。	
	コリウムシールドを考慮した解析コードの不確かさを踏まえ	コリウムシールドを考慮した解析コードの不確かさを踏まえ	
	た感度解析により、原子炉圧力容器の支持機能を維持でき、不	た感度解析により、原子炉圧力容器の支持機能を維持でき、不	
	確かさの影響は小さいことを確認した。また、コリウムシール	確かさの影響は小さいことを確認した。また、コリウムシール	
	ドを考慮した解析条件は最確条件と同様であり、不確かさはな	ドを考慮した解析条件は最確条件と同様であり、不確かさはな	
	ر کې د	ر کې د	
	さらに、コリウムシールドが溶融炉心中の金属酸化物により		・評価方針の相違
	<u>侵食される可能性を考慮した感度解析により、コリウムシール</u>		【東海第二】
	ド外表面と接するコンクリートは侵食されないことを確認し		島根2号炉では, コリ
	<u>to</u>		ウムシールドを介した
	【ここまで】		熱伝達の不確かさが格
			納容器の機能の健全性
			ヘ与える影響は小さい
			と判断し,コリウムシー
			ルドの侵食等の感度解
			析は実施していない。
5. まとめ		5.まとめ	
コリウムシールドの設置後の原子炉格納容器下部の床面の		コリウムシールドの設置 <u>によって、SA時にペデスタル内に</u>	・記載方針の相違
<u>侵食量は僅かであり、格納容器の支持機能に影響しないことを</u>		落下したデブリがスリット内でファンネルに到達する前に凝固	【柏崎 6/7】
確認した。これにより、コリウムシールドは格納容器の支持機		することで、ドライウェルサンプへのデブリ流入を防止すると	設備および評価方針
能に影響を及ぼすことなくサンプでのMCCIのリスクを低減で		ともに、ペデスタル床面及び壁面における侵食量が抑制される	の違いによるまとめの
きることを確認した。このため、コリウムシールドを重大事故		<u>ことで原子炉圧力容器の</u> 支持機能に影響を及ぼすことなく、M	相違。
等緩和設備に位置付けることとした。		CCIのリスクを低減できることを確認した。	
また、溶融炉心が原子炉格納容器下部床面において均一に拡			
がらない場合においても侵食量は僅かであることを確認した。			
以上		[1] D.Lopukh et al., "New Experimental Results On The	
		Interaction Of Molten Corium With Core Catcher	
		<u>Material</u> , <u>ICONE-8179</u> , (2000).	
		L2JJ.M. Seller, K. Froment, Material Effects On Multiphase	
		Prenomena in Late Phases Of Severe Accidents Of Nuclear	
		Reactors , Multiphase Science and technology, Vol.12,	
		<u>NO. 2, pp. 117-257, (2000).</u>	
		」 以上	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
別紙-2		別紙-1	
KK7下部D/Wドレン配管内の凝固評価に関するEPRI/FAI試験の適用		<u>NS2</u> 下部 D/W ドレン配管内の凝固評価に関するEPRI/FA	
性について		I 試験の適用性について	
1. EPRI/FAI試験と <u>KK7</u> のファンネルの体系の比較		1. EPRI/FAI 試験と <u>NS2</u> のファンネルの体系の比較	
EPRI/FAI試験の適用性を検討するにあたり, <u>KK7</u> の下部D/W		EPRI/FAI試験の適用性を検討するにあたり、 <u>NS2</u> の	
サンプと体系を比較するため、溶融物条件を表別2-1に、流路		下部D/Wサンプと体系を比較するため、溶融物条件を表別 1-1	
構造を表別2-2に比較する。		に,流路構造を <u>表別1-2</u> に比較する。	
<u>表別2-1</u> のとおり, EPRI/FAI試験で用いたアルミナと, MAAP		表別 1-1 のとおり, EPRI/FAI試験で用いたアルミナと,	
解析結果に基づく溶融デブリ(平均)の物性を比較すると、密		MAAP解析結果に基づく溶融デブリ(平均)の物性を比較する	
度・熱伝導率が異なるものの,配管内での溶融物凝固・流動特		と, 密度・熱伝導率が異なるものの, 配管内での溶融物凝固・流	
性に影響する凝固までの蓄熱量,動粘性係数は近い値になって		動特性に影響する凝固までの蓄熱量、動粘度は近い値になってい	
いる。なお,溶融デブリ( <u>酸化物</u> ),溶融デブリ(金属)はEPRI/FAI		る。なお、溶融デブリ( <u>平均</u> )、溶融デブリ(金属)はEPRI	
試験との蓄熱量比が小さいことから,溶融デブリ( <u>平均</u> )につい		/FAI試験との蓄熱量比が小さいことから、溶融デブリ(酸化	・評価結果の相違
て流動距離を評価する。		<u>物</u> )について流動距離を評価する。	【柏崎 6/7】
<u>表別2-2</u> に流路構造を比較する。EPRI/FAI試験の配管径50mm		表別 1-2 に流路構造を比較する。EPR I / FA I 試験の配管	島根2号炉における
に対し, <u>KK7</u> のファンネルの口径は78mm(80A)であり, 配管断面		径 50mm に対し, <u>NS2</u> のファンネルロ径は 78mm (80A) であり,	デブリ物性値等による
積比は <u>KK7</u> の方が約2.44倍大きい。そのため,単位長さあたり		配管断面積比は <u>NS2</u> の方が約2.44倍大きい。そのため,単位長	相違。
の凝固までの蓄熱量比は, 溶融デブリ ( <u>平均</u> ) のケースにおい		さあたりの凝固までの蓄熱量比は、溶融デブリ(酸化物)のケー	
て,限界固相率1のとき <u>約2.63倍</u> ,限界固相率0.64のとき <u>約1.72</u>		スにおいて,限界固相率1のとき約2.04倍,限界固相率0.64の	
倍となる。一方で,配管径が大きくなると単位長さあたりの円		とき約1.27倍となる。一方で、配管径が大きくなると単位長さあ	
管への伝熱面積(表面積)も増加するため、単位長さあたりの		たりの円管への伝熱面積(表面積)も増加するため、単位長さあ	
伝熱面積は <u>KK7</u> の方が約1.56倍大きい。		たりの伝熱面積は <u>NS2</u> の方が約1.56倍大きい。	
デブリの堆積高さは,EPRI/FAI試験で約0.18m(試験後の観察		デブリの堆積高さは, EPRI/FAI試験で約0.18m (試験	
結果)であり, <u>KK7</u> では <u>約0.56m</u> (MAAP結果)である。またEPRI/FAI		後の観察結果)であり、 <u>NS2</u> では <u>約1.04m</u> (MAAP結果)で	・評価結果の相違
試験においてベースプレートから配管水平部までの長さは約		ある。また、EPRI/FAI試験においてベースプレートから	【柏崎 6/7】
0.27m, <u>KK7</u> では <u>ペデスタル床面</u> からド <u>レン配管水平部</u> まで <u>が最</u>		配管水平部までの長さは約0.27m, <u>NS2</u> では <u>耐熱材上面</u> から配	
<u>も深いケースで約0.97m</u> である。従って配管水平部までの堆積		管水平部まで約0.94mである。従って配管水平部までの堆積高さ	
高さはEPRI/FAI試験で約0.45m, <u>KK7</u> で <u>約1.5m</u> である。このヘッ		はEPRI/FAI試験で約0.45m, <u>NS2</u> で <u>約2m</u> である。この	
ドに基づき、ベルヌーイの式で配管入口流速を評価すると、		ヘッドに基づき、ベルヌーイの式で配管入口流速を評価すると、	
EPRI/FAI試験で約3.0m/s, <u>KK7</u> で <u>約5.5m/s</u> となる。		EPRI/FAI試験で約3.0m/s, <u>NS2</u> で <u>約6.3m/s</u> となる。	
2. EPRI/FAI試験の適用性		2. E P R I / F A I 試験の適用性	
EPRI/FAIの試験を <u>KK7</u> のファンネルの体系に適用するにあた		EPRI/FAIの試験を <u>NS2</u> のファンネルの体系に適用す	
り, Flemingsモデルの式を参考に, 両者の体系の違いから流動		るにあたり、Flemingsモデルの式を参考に、両者の体系	
距離を評価する。		の違いから流動距離を評価する。	
Flemingsモデルではデブリの流動距離はデブリの保有熱量,		Flemingsモデルではデブリの流動距離はデブリの保有	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
デブリからの除熱量,デブリの流速の関係から計算されてい			熱量、デブリからの除熱量、デブリの流速の関係から計算されて	
る。このため、これらの要素についてEPRI/FAIの試験条件とKK7			いる。このため、これらの要素についてEPRI/FAIの試験	
での評価条件の比をとり, EPRI/FAIの試験結果をKK7のファン			条件と <u>NS2</u> での評価条件の比をとり, EPRI/FAIの試験	
ネルに適用した場合の評価を行う。			結果をNS2のファンネルに適用した場合の評価を行う。	
この場合, <u>KK7</u> のファンネルでのデブリの流動距離(L <u>ĸ</u> 7)は次の			この場合, <u>NS2</u> のファンネルでのデブリの流動距離(L _{NS2} )は	
式で表現できると考えられる。			次の式で表現できると考えられる。	
$L_{K7} = L_{FAI} \times \frac{d_{K7}}{d_{FAI}} \times \frac{h_{K7}\rho_{K7}}{h_{FAI}\rho_{FAI}} \times \frac{v_{K7}}{v_{FAI}}$			$L_{NS2} = L_{FAI} \times \frac{d_{NS2}}{d_{FAI}} \times \frac{h_{NS2}\rho_{NS2}}{h_{FAI}\rho_{FAI}} \times \frac{v_{NS2}}{v_{FAI}}$	
$rac{d_{_{K7}}}{d_{_{FAI}}}$ :配管直径比			$\frac{d_{NS2}}{d_{FAI}}$ :配管直径比	
$rac{h_{\scriptscriptstyle K7} ho_{\scriptscriptstyle K7}}{h_{\scriptscriptstyle FAI} ho_{\scriptscriptstyle FAI}}:$ 凝固までの蓄熱量比			$rac{h_{\scriptscriptstyle NS2} ho_{\scriptscriptstyle NS2}}{h_{\scriptscriptstyle FAI} ho_{\scriptscriptstyle FAI}}:$ 凝固までの蓄熱量比	
$rac{m{v}_{K7}}{m{v}_{FAI}}$ :デブリの速度比 $\overline{m{v}_{FAI}}$ : デブリの速度比 であり、上式に基づいてデブリの流動距離( $L_{k7}$ )を求めると、			<mark>v_{NS2}</mark> :デブリの速度比 v _{FAI}	
$L_{K7} = 0.79 \times 1.56 \times 1.08 \times 2$			であり、上式に基づいてデブリの流動距離(Lwso)を求めると、	
= 2.7 (m)			$L_{NS2} = 0.79 \times 1.56 \times 1.221$	・評価結果の相違
			= (m)	【柏崎 6/7】 島根 2 号炉における
となる。ファンネル流入から停止までの時間が短いことから,			となる。ファンネル流入から停止までの時間が短いことから、本	デブリ物性値等による
本評価では流入中の崩壊熱は無視できるものとした。なお、こ			評価では流入中の崩壊熱は無視できるものとした。なお、この流	相違。
の流動距離は流動限界固相率を1として評価している。固相率の			動距離は流動限界固相率を1として評価している。固相率の上昇	
上昇に伴い,粘性係数はある点で急激に上昇する傾向があり,			に伴い、粘性係数はある点で急激に上昇する傾向があり、固相率	
固相率0.64程度で粘性係数が初期値の1×105倍になる等,流動限			0.64 程度で粘性係数が初期値の1×105倍になる等,流動限界固	
界固相率を考慮することで流動距離は更に低下するものと考え			相率を考慮することで流動距離は更に低下するものと考えられ	
られる。			る。	
EPRI/FAI試験とKK7で考慮した溶融物の条件では、溶融物の組			EPRI/FAI試験と <u>NS2</u> で考慮した溶融物の条件では,	
成がEPRI/FAI試験では単相, <u>KK7</u> では混合物であり,条件が異な			溶融物の組成がEPRI/FAI試験では単相, <u>NS2</u> では混合	
っている。凝固様式の違いとして、単相では凝固点まで温度が			物であり、条件が異なっている。凝固様式の違いとして、単相で	
低下し、溶融潜熱が奪われた段階で凝固し、混合組成の場合は			は凝固点まで温度が低下し,溶融潜熱が奪われた段階で凝固し,	
固相の割合が徐々に増加し、流動限界固相率が1の場合は固相線			混合組成の場合は固相の割合が徐々に増加し、流動限界固相率が	
温度まで温度が低下した時点で凝固する。なお、現実には流動			1の場合は固相線温度まで温度が低下した時点で凝固する。なお,	
限界固相率は1よりも小さな値と考えられるが、上記の評価では			現実には流動限界固相率は1よりも小さな値と考えられるが、上	
保守的に1としている。水中を流動する場合は、単相では溶融潜			記の評価では保守的に1としている。水中を流動する場合は、単	

柏崎刈羽原-	子力発電所	6/7号;	炉 (2017.1	2.20版)	東海第二発電所 (2018.9.12版)		島根原子力発電所 2号炉	備考
熱が奪われる	までは凝固し	しないが、消	昆合組成は固相	相割合が増加	р	7	相では溶融潜熱が奪われるまでは凝固しないが、混合組成は固相	
し流動限界固構	泪率で凝固す	けるため、 传	R有熱量(凝固	までの蓄熱	量	2	割合が増加し流動限界固相率で凝固するため、保有熱量(凝固ま	
比)が同程度の	場合 単相	の方が流動	距離は長くな	ろ、よって			での蓄熱量比)が同程度の場合、単相の方が流動距離は長くなる。	
FPRI/FAI試驗で	での単属試験	金の結里得は	これた法動距	難をKK7のス	,		トーズ FPRI/FAI 試験での単層試験の結果得られた流動距離を $N$	
	トマ玉石は	太手町成分						
クールに適用。	9る許恤は,	(元里)」に日本で	ど女く兄惧も	る, 体寸的な			<u> </u>	
扱いとなると考	与える。					-	守的な扱いになると考える。	
以上より,オ	本評価はEPR	I/FAIの試験	険からデブリロ	の保有熱量,			以上より、本評価はEPRI/FAIの試験からデブリの保有	
デブリからの隊	余熱量,デフ	ブリの流速を	をもとに流動	距離を求める		ž	熱量、デブリからの除熱量、デブリの流速をもとに流動距離を求	
際の最大値と考	考える。					č	める際の最大値と考える。	
				以上			以 上	
	表別2-1	溶融物条件	「の比較				表別 1-1 溶融物条件の比較	・評価結果の相違
106.03	EDD1 SPHE		V_7		7			【柏崎 6/7】
	EPKI 試験 アルミナ	溶融デブリ (平均)	N-7 溶融デブリ(酸化物学)	l 溶融デブリ(金属)※5			第月目         ヒドドリ系統         NS-2           溶融物         アルミナ         溶融デブリ(平均)         溶融デブリ(酸化物)*1         溶融デブリ(金属)*2           湯器物布         (2)         (2)         (2)         (2)	<ul> <li>□ 白田 0 旦信 (アキン) トマ</li> </ul>
過熱度(K)	100	39 液相線 2200	-60 ) 液相線 2412	164 液相線 1482				局限 2 万炉にわりる
一 徹点(°C)	2047	固相線 1591	1 固相線 2063	固相線 1415			密度 (kg/m ³ )	デブリ物性値等による
(kg/m ⁻ ) 比熱(kJ/kgK)	1.3	0, 54	0. 51	0. 682	-		比熱 (kJ/kgK) 溶腺清熱 (kJ/kg)	相違。
溶融潜熱(kJ/kg)	1160	303	310	280			熱伝導率(W/mK)	
熱伝導率(W/mK) 粘性係数(Pa • s)	7.5	14	0, 0033-0, 0076	35	-		称注所致(ra's) 動粘性係数(m ² /s)	
動粘性係数(m ² /s)	7. 89×10 ⁻⁷	$4.08 \times 10^{-7} - 9.40 \times 10^{-7}$	⁷ 4. 04×10 ⁻⁷ - 9. 31×10 ⁻⁷	$5.17 \times 10^{-7} - 8.02 \times 10^{-7}$			- 縦固までの蓄熱量 (MJ/m [*] ) (四期日和198-1 0)	
凝固までの蓄熱量(MJ/m ³ )	4902	5277	3734	3380			(取作価格年=1.0) 	
(限界固相率=1.0) 凝固までの蓄熱量(M1/m ³ )					-		(限界固相率=0.64) 経固までの落熟量比 1	
(限界固相率=0.64)	-	3438	2299	2474			(限界固相率1.0)	
凝固までの蓄熱量比1 (限界固相率=1,0)	1	1.08	0. 77	0, 69			減固までの蓄熱量比2 (限界固相率=0.64)	
凝固までの蓄熱量比 2 (限界固相率=0.64)	1	0.71	0. 47	0, 51			※1 酸化物:UO。 Zr、ZrO。 ※2 金属:SUS成分	
※1 酸化物:UO ₂	, Zr, Zr0 ₂	※2 金属:	SUS 成分					
	表別2-2	流路構造0	<u>)比較</u>				表別 1-2 流路構造の比較	・評価結果の相違
項日 Nit Xià the	EPRI 試験 アルミナ	液動デブル (カ村)	K-7 淡湖ホデーブ 11 (新たルレルー)	滚藤デブド (A屋)			項目 EPRI試験 NS-2	【柏崎 6/7】
流路構造比較	77027	(17)國(アンリ(平均)	(1998年/フラッ(11871年初) 円管	HARRY A A CREWEL			溶融物         アルミナ         溶融テフリ(半均)         溶融デブリ(酸化物)         溶融デブリ(金属)           流路構造比較	鳥根2号炉における
流路内径(n)	0.05(50A)		0.078 (80A)				流路内径 (m)	
断面積比	1		2, 44				断面積比	設備形状等による相違。
単位長さあたりの 凝固までの蓄熱量比1 (限界固相率=1,0)	I	2, 63	1.86	1.69			単位長さあたりの 凝固までの蓄熱量比 1 (限界固相率=1.0)	
単位長さあたりの 凝固までの蓄熱量 2 (限界固相率=0,64)	I	1. 73	1, 14	1. 24			単位長さあたりの 凝固までの蓄熱量比 2 (限界固相率=0.64)	
単位長さあたりの伝熱面積比	1		1.56				単位長さあたりの伝熱面積比	
床面から配管水平部までの深さ(m	0,273		0.972					
テノリ堆積高さ(m) ヘッドから計算される流速(m/s)	2.99		5, 49				ヘッドから計算される流速 (m/s)	
流速の実測値(m/s)	0.03 (平均) ~0.19(量	b大)	-				(加速の)夫(時間 (m/ S)	
デブリの流動距離(m)	~0.79		2.7				デブリの流動距離 (m)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号	炉	備考
別紙3					
溶融炉心ファンネル流入後のドレン配管における管壁の侵食量評					・設備設計の相違
<u>価(7 号炉のみ)</u>					【相崎 6/7】
					島根2 号炉は、コリ
格納谷器下部の床面にファンネルか設置されており、床下にドレ					ワムシールドをベテス
ン配官か設置されている号炉は7号炉のみである。このため、7号					タル床全面に敷設し,
炉を想定して以下の評価を実施した。なお、6号炉では床面にファ					機器ファンネルへの溶
ンネルが無く、ドレンは格納容器ト部壁面に設置された配管を通					離炉心の侵入を防止し
じてサンプにドレンが集められる構造となっていることから7 号					ている。
炉と同様の評価は不要である。					
a. 評価体糸					
・ ファンネル内に流入した溶融炉心を円柱で模擬し、側面はコン					
クリートで囲まれているものとし、両端が水によって除熟され					
るものとした。					
・ 溶融炉心の流動距離(円柱の高さ)は、別紙2の評価結果を踏ま					
え、ファンネルからサンプまでの長さが最短の配管に合わせて					
・ 崩壊烈は事象発生から6 時間後の値とした。					
・水への熱流束は有効性評価における不確かさ評価において保守					
的な値として用いている800kW/m ² 一定とした。					
c. 評価結果					
・ 官壁の侵食量は約0.08m となった。ドレン配官から格納谷器パ					
ワンタリであるフイナまでの最短距離が約0.5m であることか					
ら、コンクリートの侵食がフイナに到達することは無いことを確					
認した。(別図3-1 参照)					
d. 評価の保守性について					
本評価では、種々の个確かさを包絡する観点でb. の評価を実					
施したか、現実的には以下の効果に期待できるものと考えられ、					
b. の評価には保守性があるものと考える。なお, c. のとおり,					
b. の保守的な評価条件であっても、コンクリートの侵食がフィ					
ナに到達することは無い。(別図3-2 参照)					
・流入重、流入距離の観点					
流人量については別紙2 に示すとおり,保守的に流動限界固					
相率を1 とした場合の評価においても流動距離は約2.7m であ					
り、流動限界固相率を0.64(粘性係数が初期値の1×10°倍になる					
値)として考慮すると流入量及び流入距離は更に低減されるも					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
のと考える。(別図3-2 中③参照)			
・ 流入経路の影響			
原子炉圧力容器下部から落下した溶融炉心がファンネルに流			
入する際にはファンネルの蓋を溶融させる必要があるが、蓋の			
裏面には初期水張りによる水が張られており、蓋の表面からの			
熱伝達によって水が蒸発しても、蓋の裏面にはサンプ側から水			
が供給されることから、原子炉圧力容器下部からの溶融炉心の			
落下を仮定した上でも、ファンネルからの溶融炉心侵入の発生			
には不確かさがあるものと考える。(別図3-2 中①参照)			
ドレン配管は,ファンネル流入口から数10cm 程度垂直に落下			
した後、水平に曲がる構造となっており、さらに水平落下後も			
少なくとも数回屈曲していることから、配管の曲りによる抵抗			
により流入量,流入距離は低減されるものと考える。(図3-12,			
別図3-2 中②参照)			
• 崩壊熱			
崩壊熱については事象発生から6 時間後の崩壊熱を用いて			
評価したが、有効性評価のベースケースでの溶融炉心落下時刻			
は事象発生の7 時間後であり,保守的な想定になっているもの			
と考える。また、格納容器下部に落下した溶融炉心が格納容器			
下部の端に到達し、ファンネルの蓋を溶融させ、ドレン配管に			
流入するまでの時間を考えると、崩壊熱については更に低減さ			
れるものと考える。(別図3-2 中④参照)			
<ul> <li>除熱の形態</li> </ul>			
水への熱流束については,保守的に800kW/m ² 一定としている			
が,現実的には圧力依存性に期待できるものと考える。(別図3-2			
中⑤参照)			
また、ドレン配管に浸入した溶融炉心の両端からの除熱にのみ			
期待しているが、侵食が進展した場合、水平な配管の上部には			
空隙の多い領域が生じるものと考えられ、その領域への水の浸			
入を考慮すると更に除熱量が増大する。ドレン配管のサンプ側			
からは初期水張り及び溶融炉心落下後の原子炉格納容器下部へ			
の注水によって水が供給され続けるため、水が枯渇する状況は			
考えにくい。ドレン配管内での溶融炉心・コンクリート相互作			
用による非凝縮性ガスの発生及びドレン配管内への流出によ			
り、空隙部に水が侵入できない可能性が考えられるが、その場			
合は非凝縮性ガスによる溶融炉心からの除熱に期待できるもの			
と考える。(別図3-2 中⑥参照)			
・ 更なる感度解析の確認結果			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
格納容器下部床下に存在する最も長いファンネルからのドレ			
ン配管は約13.2m であるが, これが溶融炉心で満たされた, 本			
評価よりも更に極端なモデルを仮定しても、管壁の侵食量は約			
0.25m に留まり, ライナまでの最短距離(約0.5m)には余裕があ			
ることを確認している。			
PCV ライナ     デュー・       別図3-1 下部ドライウェルファンネル配管評価のイメージ			
d. コンクリート侵食時に発生する非疑縮性ガスの挙動			
・ 官壁の使食重が利の.08m となるよどに使食されるコンクリー			
トワ144頃は、トレン昭官を3.0m とした場合、 2.6×(0.122 0.04 ² ) × $-$ = 0.14 m ³			
3.6×(0.122 - 0.04) × $\pi$ = 0.14 m b かて、この目会によってコンカリ、しに会まれて000 が会て			
となる。この侵退によう(コンクリートに召まれる002 が主く			
質重 : 0.14×2300×0.015 = 約5 Kg			
144頁: 5 / 44 × 22.4 = $\pi$ 12. 5Nm ^o			
となる。また、上記の体積のコンクリートに対してMULI が生			
しに場合,約3kg の水素が発生することとなる。官内に溶融炉			
心が流入した彼は、官内の水による冷却や侵食に伴って空隙が			
発生すると考えると、発生しに非疑縮性ガスは官壁に沿つし排			
田されるものと考えられる。			
これらの非疑縮性ガスについては、有効性評価「3.5 溶融炉			
心・コンクリート相互作用」では、シルコニワムー水反応によ			
って約1400kg の水素が発生することから,上記のコンクリー			
ト侵食の評価結果を踏まえて数kg 程度の非凝縮性ガスの発生			
を考慮しても、格納容器圧力及び格納容器内の気体組成に有意			
な影響を及ぼすものではないと考える。			
以上			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<image/> (加速は)(1.0)((1.0)(1.0)(1.0)(1.0)(1.0)(1.0)(1.			

東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		・記載方針の相違
		【柏崎 6/7】
		柏崎 6/7 号では, 溶
		融炉心の一部がコリウ
		ムシールドを超えてサ
		ンプに流入する場合の
		評価が実施されており,
		Lipinski0-D モデルに
		基づいてドライアウト
		熱流束が設定されてい
		る。
	東海第二発電所 (2018. 9. 12版)	★補第二発電所 (2018.9.12版)

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			【比較のため,「添付資料3.5.3」の一部を記載】		
				別紙-2	
				<u>コリウムシールドスリット内での凝固停止評価について</u>	
				コリウムシールドフリット内にたけるデブリ海田証価は用なデ	
				コリリムシールドへリット内にわけるノノリ鍵直計価格未を小	
			3. 溶融金属の凝固モデルによる評価	7 0	
			3.1 溶融金属の流路内での凝固挙動	1. 溶融金属の流路内での凝固挙動	
			<u>第3</u> 図に,流路内における溶融金属の凝固挙動の概念図を示	図別 2-1 に、流路内における溶融金属の凝固挙動の概念図を	
			₫。	示す。	
			純金属や共晶温度の合金では, <u>第3図(a)</u> のように流路の入口	純金属や共晶温度の合金では,図別 2-1(a)のように流路の入	
			付近から固化クラストが成長し流路が閉塞することで、流動が	ロ付近から固化クラストが成長し流路が閉塞することで、流動	
			停止する。	が停止する。	
			一方、液相線温度と固相線温度に差がある合金では、第3図	一方、液相線温度と固相線温度に差がある合金では、図別	
			(b)のように溶融物の先端から温度低下とともに固相率が増加	2-1(b)のように溶融物の先端から温度低下とともに固相率が増	
			し、流動限界固相率を超えたとさに流動を停止する。これは、	加し、流動限界固相率を超えたとさに流動を停止する。これは、	
			<u>第4</u> 国に小りように、回相率の増加とともに相性が増加りるに めである	<u>図別 2-2</u> に小りよりに、回相学の増加とともに粘性が増加りる ためである	
			※ このる。 溶融炉心については、液相線温度 に対して固相線温		
				による確認が困難であることから、複数の評価モデルで凝固評	・評価方針の相違
			の凝固挙動を示すものと考えられる。		【東海第二】
			液相	液相	
			入口付近から凝固が開始	入口付近から凝固が開始 固相割合が徐々に増加	
			流路が閉塞し、流動停止		
			(a) 純金属 (b) 合金		
			第9回、法政内での次期会民の経田光動の概会図	(a) (a) 和金属 (b) 合金 (b) 合金 回 回 1 、 法敗内での 流動 会尾の 返田 送動の 輝 会回	
			用3因 (肌的)での俗蹠並属の疑固手動の概念因	因而2-1 机路内℃切谷脓金属切皴固举動切枕态因	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所 (20	018.9.12版)	島根原子力発電所 2号炉	備考
		30 A LLoy Ω C.1 Δ Sn-1.0%Pb 300 0.4 Sn-1.5% Pb 300 0.4 Sn-1.5% Pb 300 0.4 Sn-1.5% Pb 300 0.4 C.R: Coolig Rate(°C/min Ω : Rotation Speed (rp 0 0.2 0.4 Volume Fraction	R. 49 208 55 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c c} \hline All oy & C. R. \\ \hline 0.5n-5\% Pb & 0.86 \\ \hline 0.8n-5\% Pb & 0.45 \\ \hline 0.45\% Pb & 0.47 \\ \hline 0.45\% Pb & 0.45\% Pb & 0.47 \\ \hline 0.45\% Pb & 0.45\% Pb & 0.45\% Pb \\ \hline 0.45\% Pb & 0.45\% Pb & 0.45\% Pb & 0.45\% Pb \\ \hline 0.45\% Pb & 0.45\% Pb & 0.45\% Pb & 0.45\% Pb \\ \hline 0.45\% Pb & 0.45\% Pb & 0.45\% Pb & 0.45\% Pb \\ \hline 0.45\% Pb & 0.$	
		第4回 溶融合金 <u>における</u> 固相率と	と <u>見かけの</u> 粘性の関係 ^[3]	<u>図別 2-2</u> 溶融金属の固相率 <u>割合</u> と粘性の関係 ^[1]	
		<ul> <li>3.2 評価方法</li> <li>溶融合金の流路内での流動距離</li> <li>Flemingのモデル^[4]があり、この</li> <li>スリット内での流動距離の評価を行 す。</li> <li>なお、本凝固評価モデルは流路内</li> <li>態を前提としていることから、実材</li> <li>評価となると考えられる。</li> </ul>	を評価するモデルとして, モデルを用いて溶融炉心の横 うった。その内容を以下に示 内に水が存在しないドライ状 幾条件に対して十分保守的な	2. 評価方法 純金属の流路内での凝固モデルとしては, US-ABWR DCDモデル, Epsteinモデル(MAAPの下部プレナ ム貫通部閉塞モデル)を使用し,合金の流路内での凝固モデル としては, Flemingsモデルを使用する。 なお,本凝固評価モデルは流路内に水が存在しないドライ状 態を前提としていることから,実機条件に対して十分保守的な 評価となると考えられる。	
		【比較のため、「(参考) その他の凝固	周モデルによる評価」を記載】	2.1 純金属モデル	
		O <u>US-ABWR DCDモデルの</u>	概要 [1]	a. US-ABWR DCD $\tau \tau \mu^{[2]}$	
		<ul> <li>US-ABWR DCDモデルは</li> <li>サンプ周囲に設置されるコリウム</li> <li>が通るためのスリット流路を対象</li> <li>デルである。</li> <li>本モデルは純金属の凝固挙動を</li> <li>いて周辺の構造材への熱伝導により</li> <li>塞するものとしている。</li> </ul>	, RPV下部のドライウェル シールドにおいて, ドレン水 とした溶融炉心の凝固評価モ 想定し, 流路の入口付近にお りクラストが成長し流路が閉	本モデルは純金属の凝固挙動を想定し,流路の入口付近にお いて周辺の構造材への熱伝導によりクラストが成長し流路が閉 塞するものとしている。	<ul> <li>・記載方針の相違</li> <li>【東海第二】</li> <li>一部記載は異なるが、</li> <li>内容は同等である。</li> </ul>
		DCDモデルの評価式を以下に示	示す。	DCDモデルの評価式を以下に示す。流動距離は流動停止までの平均速度と流動停止までの平均時間の積で求められる	
		$L_{freeze} = ar{v}(t_{freeze})t_{free}$	eze (1)	$L_{freeze} = \overline{v} \left( t_{freeze} \right) t_{freeze} $ (1)	
		$z = \overline{c},$ $t_{freeze} = \left[\frac{H_0 \rho_{cm}(h_{lh} + c_p \Delta T)}{4k_w (T_s - T_i)}\right]$	$\left(\frac{1}{\sqrt{\pi\alpha_w}}\right)^2$ (2)	$\Xi \equiv \overline{\mathcal{C}},$ $t_{freeze} = \left[\frac{H_0 \rho_{cm} (h_{lh} + c_p \Delta T) \sqrt{\pi \alpha_w}}{4k_w (T_s - T_i)}\right]^2 $ (2)	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.12版)		島根原子力発電所 2号炉	備考
					US-ABWR DCDでは,入口流速は以下の	ように表わさ
					れている。	
					$v_{e}(t) = \sqrt{\frac{2g\dot{m}_{ves}t}{\rho_{cm}A_{ld}}}$	(3)
					しかしながら、ペデスタル床面よりも下部にス されるため、縦スリット内のヘッド <b>h</b> 。を考慮し以	リットが設置
					る必要がある。	
					$v_{e}(t) = \sqrt{2g\left(\frac{\dot{m}_{ves}}{\rho_{cm}A_{ld}}t + h_{0}\right)}$	(4)
					この場合,DCDモデルの評価で使用される平	均流速におい
					て,初期ヘッド $h_{_0}$ による項が追加され,以下のよ	うに修正され
					る。	
	$\bar{v} = \frac{\frac{2}{3}a}{2}$	$\frac{\sqrt{t} - \frac{a_0 b'}{H_0} t}{1 + \frac{4b'}{3H_0} \sqrt{t}}$		(3)	$v_{e}(t) = \frac{\frac{2}{3}a_{0}\sqrt{t} + \sqrt{2gh_{0}} - \frac{a_{0}b_{0}}{H_{0}}t - \frac{4b_{0}\sqrt{2gh_{0}}}{3H_{0}}\sqrt{t}}{\left(1 + \frac{4b_{0}}{3H_{0}}\sqrt{t}\right)}$	(5)
					ここで,	
	$a_0 = \sqrt{\frac{1}{2}}$	2gṁ _{ves} o _{cm} A _{ld}	$b'_{0} = \frac{2k_{w}}{\rho_{cm}(h_{lh} + m_{lh})}$	$\frac{1}{(T_s - T_i)} + c_p \Delta T \sqrt{\pi \alpha_w}$	$a_0 = \sqrt{\frac{2g\dot{m}_{ves}}{\rho_{cm}A_{ld}}}$	(6)
					$b_0 = \sqrt{\frac{2k_f \left(T_{f,m} - T_s\right)}{\rho_{cm} h_{lh}}}$	(7)
					溶融炉心が過熱度を持つ場合, $b_0$ は以下の式を	使用する。過
					熱度がない場合、 $b_0 = b'_0$ となる。	
					$b_0' = \frac{2k_f (T_s - T_i)}{\rho_{cm} (h_{lh} + c_p \Delta T) \sqrt{\pi \alpha_w}}$	(8)
	であり, 名	テパラメータは以下の	のとおりである。		であり、各パラメータは以下のとおりである。	
	$L_{freeze}$ : /s), $t_j$ $ ho_{cm}$ :溶 kg), $C_p$	流動距離(m), $\bar{v}(t)$ <i>reeze</i> :凝固完了時間 融炉心密度(kg/m ³ :溶融炉心比熱(J/	):溶融炉心の流路内 ](s), $H_0$ :スリット ³ ), $h_{lh}$ :溶融炉心溶 $(kgK),\Delta T:溶融炉心$	∃平均流速(m 、高さ(m), 系融潜熱(J/ い過熱度(K),	$L_{freeze}$ :流動距離(m), $\overline{v}(t)$ :平均流速(m/s), 了時間(s), $\rho_{cm}$ :溶融デブリ密度(kg/m ³ ), $C_p$ :溶融デブリ $\Delta T$ :過熱度(K),	t _{freeze} :凝固完 北熱(J/kgK),
	$\alpha_w$ :構立	$\alpha_w$ :構造材熱拡散率 (m ² /s), $k_w$ :構造材熱伝導率 (W/mK),		_} 率(W/mK),	$H_0$ :スリット高さ (m), $h_0$ :縦スリット部高さ	$(m), \alpha_w$ :

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	$T_s$ :接触面温度(K), $T_i$ :構造材初期温度(K), $g$ :重力加速	構造材熱拡散率 (m²/s),	
	度(m/s ² ), ṁ _{ves} : R P V からの溶融炉心落下率(kg/s),	$\mathbf{k}_{w}$ :構造材熱伝達率 (w/mK), $\mathbf{k}_{f}$ :デブリ熱伝導率 (w/mK),	
	$A_{ld}$ :下部ドライウェル床面積 (m ² )	$T_s$ :接触面温度(K), $T_i$ :構造材初期温度(K), $T_{f,m}$ :溶融	
		デブリ温度 (K),	
		$g:$ 重力加速度 (m/s ² ), $\dot{m}_{ves}:$ R P V からのデブリ落下率 (kg/s),	
		$A_{ld}$ :下部ドライウェル床面積 (m ² )	
	DCD ^[1] においては,過去に実施された関連試験に係る文		
	献を参照し、それらの試験結果よりDCDモデルによる評価の		
	適用性を確認している。		
	○Epstein モデルの概要 ^{[2][3]}	b. Epsteinモデル ^{[3] [4]}	・記載方針の相違
	Epstein モデルは、MAAPコードのRPV下部プレナム貫	Epsteinモデルは、MAAPコードのRPV下部プレ	【東海第二】
	通部閉塞計算に使用されているモデルであり、DCDモデルと	ナム貫通部閉塞計算に使用されているモデルであり、DCDモ	一部記載は異なるが,
	同様に流路の入口付近からの閉塞が想定されている。	デルと同様に流路の入口付近からの閉塞が想定されている。	内容は同等である。
	Epstein モデルの評価式を以下に示す。溶融炉心の総流動距	Epsteinモデルの評価式を以下に示す。溶融炉心の総	
	離は(5)式と(6)式の和で求められる。	流動距離は式(9)と式(10)の和で求められる。	
	・溶融炉心が過熱度を有する領域での流動距離	・溶融炉心が過熱度を有する領域での流動距離	
	$X^* = \frac{D}{2f} \ln\left(\frac{T_0 - T_{mp}}{T^* - T_{mp}}\right) \tag{5}$	$X = \frac{D}{2f} \ln \left( \frac{T_0 - T_{mp}}{T^{\ast} - T_{mp}} \right) $ (9)	
	・溶融炉心の過熱度がない領域での流動距離	・溶融炉心が過熱度のない領域での流動距離	
	$x_s = 0.155 \operatorname{Re}^{8/11} D \left[\frac{\Pr}{B}\right]^{7/11} \tag{6}$	$X_{s} = 0.155 \mathrm{Re}^{8/11}  D \left[\frac{\mathrm{Pr}}{B}\right]^{7/11} \tag{10}$	
	ここで,	ここで,	
	$B = \left[1 + \frac{2C_p(T_{mp} - T_w)}{\lambda}\right]^{1/2} - 1 \tag{7}$	$B = \left[1 + \frac{2C_p(T_{mp} - T_w)}{\lambda}\right]^{\frac{1}{2}} - 1 $ (11)	
	であり、各パラメータは以下のとおりである。	であり、各パラメータは以下のとおりである。	
	X*, X _s :流動距離 (m), Re:レイノルズ数 (−), Pr:プラン	X : 流動距離 (m), Re : レイノルズ数, Pr : プラントル数,	
	トル数 (-),	D:水力等価直径(m),	
	$D$ :水力等価直径(m), $\lambda$ :溶融炉心溶融潜熱(J/kg),	$\lambda$ :溶融潜熱(J/kg) $C_p$ :溶融デブリ比熱(J/kgK), $T_0$ :デ	
	$C_p$ :溶融炉心比熱(J/kgK), $T_0$ :溶融炉心初期温度(K),	ブリ初期温度 (K),	
	$T_{mp}$ :溶融炉心融点(K), $T_w$ :構造材初期温度(K),	$T_{mp}$ :デブリ融点 (K), $T_{w}$ :構造材初期温度 (K), $T^{*}$ :デブ	
	$T^*$ :溶融炉心凝固開始温度(推定值)(K), $f$ :摩擦係数(-)	リ凝固開始温度(推定値)(K), f:摩擦係数(-)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	なお, <i>T</i> * – <i>T_{mp}</i> はEPRIレポート ^[3] を基に10Kとする。	なお, $T^{*}$ - $T_{_{mp}}$ はEPRIレポートを基に 10K とする。	
	EPRIは、第1図に示すRPV下部プレナムの核計装管を		
	模擬した試験体に溶融アルミナを流入させる試験を行い,		
	Epstein モデルによる流動距離評価結果との比較を実施してい		
	る。		
	その結果, 試験結果に対して Epstein モデルによる流動距離		
	は同等又は大きめの評価結果となっている。		
	Seci Table       Differential       Calculated Penetration       Measured         Year of the second of the se		
	第1図 EPRI試験装置及び試験結果		
	参考文献		
	[1] GE-Hitachi Nuclear Energy Americas LLC, ABWR Design		
	Control Document, United States Nuclear Regulatory		
	Commission, 2010		
	[2] M.Epstein et al., Freezing-Controlled Penetration of		
	aSaturated Liquid Into a Cold Tube, Journal of Heat		
	Transfer, Vol.99, 1977		
	[3] EPRI, Experiments to Address Lower Plenum Response Under		
	Severe Accident Conditions, Volumel, EPRI report TR-103389, 1994		
	【ここまで】		
		2.2 合金モデル	
	(1) Flemings モデルの評価式	<u>(1) Flemingsモデルの評価式^[5]</u>	・記載方針の相違
	Flemings モデルは(1)式のように表され,流路を流れる溶	Flemingsモデルは式(12)のように表され,流路を流	【東海第二】
	一 ご ご ご ご ご ご ご ご ご ご ご ご ご ご ご ご ご ご ご	れる溶融物が保有するエネルギと周囲の構造材への除熱速度を	一部記載は異なるが、
	に、俗醜物が疑固するよでに必要なエイルモか除去されるまでの流動距離を証価するエデルした。ていて	もとに、浴融物が疑回するよでに必要なエイルモか除去される	四谷は回寺でめる。
	く vノイハL男/ ロヒ丙ヒ ′Δ ロヤ   Щ り る に ノ / ν こ /よ つ く V ' る。	よ、い小川町中で町Щくさるて / アとなつ しいる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	$L_{freeze} = \frac{A\rho v (f_c H_f + C_p \Delta T)}{hS(T_d - T_w)} \left(1 + \frac{B}{2}\right) $ (1) $\Xi \equiv \overline{C},$ $B = \frac{h \sqrt{\pi \alpha_w \Delta X}}{k_w \sqrt{v}} $ (2)	$L_{freeze} = \frac{A\rho v(f_c H_f + C_p \Delta T)}{hS(T_d - T_w)} (1 + \frac{B}{2}) $ (12) $\Xi \equiv \overline{C},$ $B = \frac{h\sqrt{\pi \alpha_w \Delta X}}{k_w \sqrt{\nu}} $ (13)	
	であり、各パラメータの内容は以下のとおりである。 $L_{freeze}$ :流動距離(m)、 $A$ :流路断面積(m ² )、 $\rho$ :溶融炉心密度(kg/m ³ )、 $v$ :溶融炉心流速(m/s)、 $f_c$ :流動限界固相率(-)、 $H_f$ :溶融炉心溶融潜熱(J/kg)、 $C_p$ :溶融炉心比熱(J/kgK)、 $\Delta T$ :初期温度と凝固温度の差 (K)、 $h$ :熱伝達率(W/m ² K)、 $S$ :流路周長(m)、 $T_d$ :溶融炉	であり、各パラメータの内容は以下のとおりである。 $L_{freeze}$ :流動距離(m)、A:流路断面積(m ² )、 $\rho$ :溶融デブリ密度(kg/m ³ )、v:溶融デブリ流速(m/s)、 $f_c$ :流動限界固相率(-)、 $H_f$ :溶融デブリ溶融潜熱(J/kg)、 $C_p$ :溶融デブリ比熱(J/kgK)、 $\Delta T$ :初期温度と凝固温度の 差(K)、h:熱伝達率(W/m ² K)、S:流路周長(m)、 $T_d$ :溶 助デブリに執(U)	
	<ul> <li>心温度(K),</li> <li><i>T_w</i>:構造材温度(K), <i>α_w</i>:構造材熱拡散率(m²/s),</li> <li><i>ΔX</i>:チョーキングレンジ^{**}(m), <i>k_w</i>:構造材熱伝導率(W/mK)</li> <li>※ 溶融物先端でどの程度の長さが流動限界固相率を超え ると流動が停止するかを定義する定数</li> </ul>	融デブリ温度 (K), <i>T_w</i> :構造材温度 (K), <i>α_w</i> :構造材熱拡散率 (m ² /s), ΔX:チョーキングレンジ ^{**} (m), k _w :構造材熱伝達率 (w/mK) [*] :溶融物先端でどの程度の長さが流動限界固相率を超えると 流動が停止するかを定義する定数	
	(2) 熱伝達係数の計算 溶融炉心とスリット構造材間の熱伝達係数 $h$ は,溶融炉心の 熱伝導率 $k$ ,水力等価直径 $d_e$ 及び Sleicher-Rouse の式 ^[5] よ り求まるヌセルト数 Nu を用いて,下式により算出する。 $h = \frac{k}{d_e} Nu$ (3)	(2) 熱伝達係数の計算 溶融デブリとスリット構造材間の熱伝達係数 <i>h</i> は,溶融デブ リの熱伝導率 <i>k</i> ,水力等価直径 $d_e$ 及びSleicher-Ro useの式 ^[6] 又はGnielinskiの式 ^[5] より求まるヌ セルト数 <i>Nu</i> を用いて,下式により算出する。 $h = \frac{k}{d_e}Nu$ (14)	
	Sleicher-Rouse の式 $Nu_{m} = 5 + 0.015 \operatorname{Re}_{f}{}^{a} \operatorname{Pr}_{w}{}^{b}$ $(10^{4} < \operatorname{Re} < 10^{6}, 0.1 < Pr < 10^{4})$ (4) $\begin{cases} a = 0.88 - \frac{0.24}{4 + \operatorname{Pr}_{w}} \\ b = \frac{1}{3} + 0.5 \operatorname{exp}(-0.6 \operatorname{Pr}_{w}) \end{cases}$	S 1 e i c h e r - R o u s e の式 $Nu = 5 + 0.015 \operatorname{Re}_{f}^{a} \operatorname{Pr}_{w}^{b}$ $(10^{4} < \operatorname{Re} < 10^{6}, 0.1 < \operatorname{Pr} < 10^{4})$ (15) $a = 0.88 - \frac{0.24}{4 + \operatorname{Pr}_{w}}$ (16) $b = \frac{1}{2} + 0.5 \exp(-0.6 \operatorname{Pr}_{w})$ (17)	
	添字はそれぞれ, m: 混合平均温度, f: 膜温度, w: 壁温 における物性値を表す。ただし本評価では, 物性値は温度 によらず一定と仮定している。	5 添字はそれぞれ, <i>m</i> :混合平均温度, <i>f</i> :膜温度, <i>w</i> :壁温 における物性値を表す。ただし,本評価では,物性値は温度に よらず一定と仮定する。 また,レイノルズ数が 3000 < Re < 10 ⁶ , 0.5 < Pr < 2000 の範 囲については次式(Gnielinskiの式)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		$Nu = \frac{(f/2)(\text{Re}-1000)\text{Pr}}{1+12.7\sqrt{f/2}(\text{Pr}^{2/3}-1)} $ (18)	
		ここで、 f は管摩擦係数であり、	
		$f = (3.64 \log_{10}(\text{Re}) - 3.28)^{-2} $ (19)	
		と与えられる。	
		Sleicher-Rouseの式, Gnielinski	
		の式が共に適用範囲的となる場合は、メセルト数が小さい方を 採用する。	
	(3) 溶融炉心の温度低下の考慮 <ul> <li>(1)式から直接的に流動距離を計算すると,流路内を進行する間の溶融炉心の温度低下が考慮されず,溶融炉心から構造材への熱伝達速度が過大評価されることにより,流動距離が短く評価されることが考えられる。</li> <li>今回の評価では,Flemingsの評価式を基に,流動に伴う溶融炉心の温度低下を考慮した上で,溶融炉心先端が流動停止する固相率に至るまでの除熱時間を算出し,溶融炉心の流速との積により流動距離を計算した。評価の概要を第5図に示す。</li> </ul>	<ul> <li>(3)溶融デブリの温度低下の考慮</li> <li>式(12)から直接的に流動距離を計算すると、流路内を進行する間のデブリの温度低下が考慮されず、溶融炉心から構造材への熱伝達速度が過大評価されることにより、流動距離が短く評価されることが考えられる。</li> <li>今回の評価では、Flemingsの評価式をもとに、流動に伴うデブリの温度低下を考慮した上で、溶融炉心先端が流動停止する固相率に至るまでの除熱時間を算出し、溶融炉心の流速との積により流動距離を計算した。</li> <li>まず、初期にデブリが保有する流動停止までの熱量は、固相線温度T_{ext}を基準として</li> </ul>	
		$Q_0 = \{C_p(T_{d0} - T_{sol}) + H_f\}f_c m_d $ (20)	
		となる。デブリが Δ <i>t</i> の時間に Δx の距離流動したときの除熱量 は,	
		$Q_{rm}^{\ \ p} = hS\Delta x \left(T_d^{\ \ p} - T_w^{\ \ p}\right) \left(\frac{1}{1 + \frac{B}{2}}\right) \Delta t $ (21)	
		であり、 $\Delta x$ 流動後のデブリの保有熱量及び温度は、 $O^{p+1} = O^p - O_{}^p$ (22)	
		$\mathcal{L}_{d} = \mathcal{L}_{d}  \mathcal{L}_{rm} \tag{22}$ $T_{d}^{p+1} = \frac{\mathcal{Q}_{d}^{p+1}}{C_{c}m_{d}} + T_{sol} \tag{23}$	
		," となる。ここで, $C_f$ は溶融潜熱を考慮した溶融デブリの換算比 熱であり,以下のように表わされる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.	7.12.20版) 東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	第5図 溶融炉心流動距離の評価イメージ図	$C_{f} = C_{p} + \frac{H_{f}}{T_{liq} - T_{sol}}$ (24) 各パラメータの内容は以下のとおりである。 $Q_{0}$ :流動停止するために除去が必要なエネルギ(J), $T_{d0}$ :デ ブリ初期温度(K), $T_{sol}$ :デブリ固相線温度(K), $T_{liq}$ :デブリ液相線温度(K), $m_{d}$ :デブリ質量(kg), $Q_{rm}$ :タイムステップ毎の除熱量(J), $\Delta x$ :タイムステップ 毎の流動距離(m), $\Delta t$ :タイムステップ(s) 以上より,デブリの凝固までの保有エネルギ $Q_{d}$ が0になるまで の時間が得られ,溶融デブリの流速との積により,溶融デブリの 流動距離が計算される。	
	3.3 評価条件 <u>横スリット内</u> での溶融 <u>炉心</u> 凝固評価に用いた条件を <u>第2素</u> に示す。 溶融炉心の物性については、MAAP計算結果におけるRP V破損時の溶融炉心の保有エネルギを大きく設定する観点から、T QUVシーケンスの値を設定する。	<ul> <li>3. 評価条件         <u>コリウムシールド内</u>での溶融<u>デブリ</u>凝固評価に用いた条件を表         <u>別 2-1</u>に示す。         溶融炉心の物性については,MAAPで使用されているRP         V破損直前の下部プレナムの物性値を用いる。         <u>表別 2-1</u> 評価条件         <u>構造材温度         落融炉心初期温度         SUS 密度         SUS 熟伝導率         SUS 熟然伝導率         SUS 比熱         答融炉心液相線温度         <del>落融</del>炉心液相線温度         <del>ブリ密度         デブリ素伝導率         </del>デブリ熱伝導率         <del>デブリ熱伝導率         </del>デブリ粘性係数         * 格納容器設計圧力の2倍(853kPa(gage))における水の飽和温度         Flemingsモデル固有の変数を表別 2-2に示す。         </u></li> </ul>	<ul> <li>・評価方針の相違</li> <li>【東海第二】</li> <li>島根2号炉は、大破断</li> <li>LOCAケースも想定している。</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	客融炉心の流速については、溶融炉心全量に加えペデスタル 内構造物等がペデスタル内に堆積した場合の堆積高さ」と、 横スリット下端までの高低差 の合計 をヘッドとして考 慮した場合、溶融炉心の流速は約 となる。これに対し、 スリット内の冷却水の存在による溶融炉心の流速の低下とし て、EPRI試験の知見(1/10から1/100)及び実機溶融炉 心とEPRI試験の溶融アルミナの動粘度の差(約1.6倍)を 考慮し、保守的に1/2を考慮した を設定する。 流動限界固相率及びチョーキングレンジについては、既往の 溶融炉心拡がり試験においては固相率が 0.4~0.6 程度で粘性 が急激に増加するといった知見 ^[6] があるが、チョーキングレ ンジには明確な知見がないことから、溶融炉心先端が完全に凝 固するまで流動が続くものと仮定し、流動限界固相率を 1.0、 チョーキングレンジを 0m と設定する。	エロズのテナノフモ电力 2.5 $\mu$ 流動限界固相率及びチョーキングレンジについては,既往の     溶融炉心拡がり試験においては固相率が 0.4~0.6 程度で粘性     が急激に増加するといった知見 ^[7] があるが,チョーキングレン     ジには明確な知見がないことから,溶融炉心先端が完全に凝固     するまで流動が続くものと仮定し,流動限界固相率を 1.0, チ ョーキングレンジを 0 m と設定する。 <u>表別 2-2 Flemingsモデル固有の変数</u> <u>流動限界固相率(fc) 1.0</u> チョーキングレンジ( $\Delta$ X)(m) 0 <u>また,スリットの寸法を表別 2-3</u> に示す。 <u>表別 2-3 スリット形状</u> <u>スリット高さ</u> 流路幅	<ul> <li>・記載方針の相違</li> <li>【東海第二】</li> <li>島根2号炉は,F1e</li> <li>mingsモデル固有</li> <li>の変数とスリット形状</li> <li>についても記載。</li> </ul>
	【比較のため、記載を並び替え】 溶融炉心の流速については、溶融炉心全量に加えペデスタル 内構造物等がペデスタル内に堆積した場合の堆積高さ」と、 横スリット下端までの高低差」の合計 をヘッドとして考 慮した場合、溶融炉心の流速は約 となる。これに対し、 スリット内の冷却水の存在による溶融炉心の流速の低下とし て、EPRI試験の知見(1/10から1/100)及び実機溶融炉 心とEPRI試験の溶融アルミナの動粘度の差(約1.6倍)を 考慮し、保守的に1/2を考慮した を設定する。	<u>表別 2-4 に流入速度関連パラメータを示す。</u> 溶融炉心の流速については、溶融炉心全量に加えペデスタル 内構造物等がペデスタル内に堆積した場合の堆積高さ約1m と、コリウムシールド設置時の既存の床面からの底上げ高さ の合計をヘッドとして考慮した場合、溶融炉 心の流速はとなる。これに対し、保守的にこの値を 切り上げてを設定する。 <u>US-ABWR DCDモデルでは、デブリ落下率がパラメ ータとなっている。デブリ落下率は破損孔径をCRDー本相当 としたものを基に設定している。 </u>	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	第 投入 11.12.12.01.12.1	前子         通用         確応         確応         確応         確応         確認           市大         近路風(cm)         近路風(cm)         政計範         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         一         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ● </td <td>表別2-4 流入速度関連パラメーク       デブリ落下率(kg/s)       DCDモデル評価時の       初期ヘッド(m)       デブリ流入速度(m/s)</td> <td>C., HI</td>	表別2-4 流入速度関連パラメーク       デブリ落下率(kg/s)       DCDモデル評価時の       初期ヘッド(m)       デブリ流入速度(m/s)	C., HI
	<ul> <li>3.4 評価結果</li> <li>3.3 に示</li> <li>は約1.0m</li> <li>停止するこ</li> <li><u>度であり、</u></li> <li>なお、第</li> <li><u>及びプラン</u></li> <li>り、(4)式の</li> </ul>	R にた条件に基づく評価の結果,溶融炉心の流動距離 となり, <u>横スリット</u> の長さ()の範囲内で凝固 とを確認した。 <u>また,凝固に要する時間は</u> 程 この間の溶融炉心の崩壊熱による影響は無視し得る。 2 表の評価条件において,溶融炉心のレイノルズ数 トル数はそれぞれ Re≒1.3×10 ⁵ 及び Pr≒0.14 であ O Sleicher-Rouse の式の適用範囲内である。	<ul> <li>4. 評価結果         <ol> <li>に示した条件に基づく各モデルにおける評価結果を表別             </li> <li>2-5 ~表別2-7に示す。溶融炉心の流動距離は最大でも             となり、スリット長さ             の範囲内で凝固停止することを             確認した。また、スリット内での上下面からの除熱(デブリか             ら耐熱材への熱伝導)がデブリ体積発熱量よりも大幅に上回る             ため、比較的短時間でデブリが凝固するスリット内の凝固にお             いては、この間の溶融デブリの崩壊熱による影響は無視し得る。         </li> </ol></li></ul> <li> <ul> <li>表別2-5 US-ABWR DCDモデル評価         </li> <li>デブリ落下率(kg/s)</li></ul></li>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島相	限原子力発電所 2号
		表別 2-6	Epsteinモ
		流入速度(kg/s)	流動距 TQUVケース
		表別 2-7	Flemingsモ
		流入速度(kg/s)	流動距 TQUVケース
	<ul> <li>3.5 評価における保守性について</li> <li>本評価は、以下のような点で保守性を有すると考えられる。</li> <li>・本評価は流路内がドライな状態を前提としているが、実際にはスリット内は水で満たされた状態であり、溶融炉心から水への除熱等により流動距離はより短くなると考えられる。</li> <li>・流動距離の計算において、溶融炉心の流速は流動停止まで一定としており、縦スリット及び横スリット内での圧損や粘性増加に伴う速度低下を考慮していない。</li> <li>・ 横スリットへ流入する溶融炉心の初期温度は、RPV破損時の溶融炉心平均温度()に対し保守的に液相線温度()を設定しているが、溶融炉心がペデスタル床面を拡がる間や縦スリットを通過する間の除熱を考慮すると、実際にはより温度は低下し、またそれに伴い溶融炉心の粘性は増加すると考えられる。</li> <li>・ 流動限界固相率は1.0を設定しているが、既往の溶融炉心拡がり試験においては、固相率が0.4~0.6程度で粘性が急激に増加するといった知見^[6]がある。</li> </ul>	<ul> <li>5.評価における保守本評価は、以下の・本評価は、以下の・本評価は流路内がはスリット内は水への除熱等により・流動の計算にていた。</li> <li>・流動としていり、ス下を考していない。</li> <li>・スリット内へ流入の溶設しているがるしているが。</li> <li>・えりット内へ流り温を設しているがる。</li> <li>・流動限界固相率はがり試験において増加するといった。</li> </ul>	性について ような点で保守性を ドライな状態を前提 で満たされた状態で 流動距離は短くなる おいて,溶融炉心の リット内での圧損や い。 する溶融炉心がペデス する間の除熱を考慮 たそれに伴い溶融炉 1.0を設定している は,固相率が 0.4~0. 知見 ^[7] がある。
	3.6 評価条件の不確かさによる影響について <u>第2表の評価条件において、溶融炉心の物性値条件について</u>		
	はMAAP計算結果における溶融炉心の組成平均値を用いてい る。 これに対して、スリットに流入する溶融炉心の物性は不確か		
	<u>さを有すると考えられることから、評価条件の不確かさとして</u>		
	MAAP 計算結果のりら谷融炉心内の金属相反い酸化物相の物 性値を参照し,評価結果への影響を検討する。なお,第2表の		
	評価条件において、構造材物性値は不確かさが小さいと考えら		

分炉	備考
デル評価	
) ) )	
大破断LOCAケース	
<u>:デル評価</u>	
離 (m)	
大破断LOCAケース	
右すスト老ラられス	
としていろが、実際に	
あり,溶融炉心から水	
と考えられる。	
流速は流動停止まで一	
粘性増加に伴う速度低	
温度は、RPV破損時	
相線温度(	
マル水面に払かる面や すると 実際にけ上り	
うると, 突厥にはよう 心の粘性は増加すると	
が,既往の溶融炉心拡	
6程度で粘性が急激に	
	芝生生のおや
	・評価力針の相遅 【 宙海第一】
	【采1997二】

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)		島根原子力発電所 2号炉	備考
			れること、構造材初期温度及び溶融炉心流動条件	は十分な保守		
			<u>性を見込み設定していることから,評価結果に対</u>	する不確かさ		
			の影響は小さいと考えられる。			
			<u>第3表に、MAAP計算結果における溶融炉心</u>	の組成平均,		
			金属相及び酸化物相のそれぞれの物性値を示す。	各物性値から		
			計算される溶融炉心が凝固するまでの体積当たり	の放出熱量を		
			比較すると、組成平均の物性値を用いた場合が最	も大きく,溶		
			融炉心の凝固までの流動距離が最も長くなること	が分かる。		
			<u>したがって、溶融炉心の物性値の不確かさを考</u>	<u>慮した場合で</u>		
			<u>も,溶融炉心は横スリットの長さ(</u> )の範	囲内で凝固停		
			止すると考えられる。			
			第3表 溶融炉心の物性値の比較			
			項目 組成平均 金属相 酸化物相 游相線混度 (°C)	備考		
			国相線温度(℃) 固相線温度(℃)	<ul> <li>MAAP計算</li> <li>結果</li> </ul>		
			溶融 招度 (kg / m ³ ) 比熱 (J / kgK)	<ul> <li>(RPV破損</li> <li>時の値)</li> </ul>		
			²⁷⁻¹ 溶融潜熱(J/kg) 休康当たりの原用	時(1077101)		
			までの放出熱量	計算値		
			(J/m ³ )			
						・記載方針の相違
					溶融テフリのスリット内疑固評価を実施した。溶融テフリの	【東海第二】
					<u>スリット内疑固評価は、実テフリを用いた試験による確認か困</u>	島根2号炉は,まとめ
					難であるため、別法による確認として、純金属と合金のそれそ	を記載。
					れのモテルで評価を実施した。その結果、保守的な条件として	
					評価したとして、 スリット幅 , スリット局さ と	
					すれば、溶融テフリの流動距離は であり、流路長さ	
					であれは、スリットに流入した溶融テフリは十分に	
					一般回することを確認した。	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			<ol> <li>参考文献         <ol> <li>[1] EPRI, Experiments to Address Lower Plenum Response Under Severe Accident Conditions, Volumel, EPRI report TR-103389, 1994</li> <li>[2] L. J. Siefken et al., SCDAP/RELAP5/MOD3.3 Code Manual; MATPRO - A Library of Materials Properties for Light-Water-Reactor Accident Analysis, NUREG/CR-6150, Vol. 4 Rev.2, 2001</li> <li>[3] 渋谷 他, 固相・液相共存下における鉄および非鉄合金のみ かけの粘性の測定結果, 鉄と鋼, 第66年, 第10号, 1980</li> <li>[4] M. C. Fleming et al., An Experimental and Quantitative Evaluation of the Fluidity of Aluminium Alloys", AFC Transactions, vol.69, 1961</li> <li>[5] 日本機械学会, 伝熱工学資料 第4版, 1986</li> <li>[6] M. T. Farmer, Melt Spreading Code Assessment, Modifications, and Applications to the EPR Core Catcher Design, ANL-09/10, 2009</li> </ol></li> </ol>	<ol> <li>参考文献</li> <li>法谷 他, 固相, 液相共存下における鉄および非鉄合金のみかけの粘性の測定結果, 鉄と鋼, 第66年, 第10号, 1980</li> <li>GE-Hitachi Nuclear Energy Americas LLC, ABWR Design Control Document, United States Nuclear Regulatory Commission, 2010</li> <li>M. Epstein et al., Freezing-Controlled Penetration of a Saturated Liquid Into a Cold Tube, Journal of Heat Transfer, Vol.99, 1977</li> <li>EPRI, Experiments to Address Lower Plenum Response Under Severe Accident Conditions, Volumel, EPRI report TR-103389, 1994</li> <li>M. C. Fleming et al., An Experimental and Quantitative Evaluation of the Fluidity of Aluminium Alloys", AFC Transactions, vol.69, 1961</li> <li>日本機械学会, 伝熱工学資料 第5版, 2009</li> <li>M. T. Farmer, Melt Spreading Code Assessment, Modifications, and Applications to the EPR Core Catcher Design, ANL-09/10, 2009</li> </ol>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
【比較のため,「別紙 - 1」を記載】	【比較のため,「添付資料 3.2.15」を記載】		
別紙 - 1		別紙−3	
耐熱材と模擬溶融炉心との相互作用試験結果について	コリワムシールド材料の選定について	ヨリウムシールド材料の選定について	
原子炉の過酷事故において、放射性物質が環境へ放出するこ	原子炉の過酷事故において、放射性物質が環境へ放出すること	原子炉の過酷事故において、放射性物質が環境へ放出すること	
とを防ぐため、溶融炉心による格納容器の侵食を抑制する静的	を防ぐため、溶融炉心による格納容器の侵食を抑制する静的デブ	を防ぐため、溶融炉心による格納容器の侵食を抑制する静的デブ	
デブリ冷却システムの開発に取り組んでいる。溶融炉心を受け	リ冷却システムの開発に取り組んでいる。溶融炉心を受け止めて	リ冷却システムの開発に取り組んでいる。溶融炉心を受け止めて	
止めて保持する役割を担う耐熱材は、高融点で且つ化学的安定	  保持する役割を担う耐熱材は,高融点でかつ化学的安定性に優れ	保持する役割を担う耐熱材は、高融点でかつ化学的安定性に優れ	
性に優れていることが必要であることから、候補材としては、	ていることが必要であることから, 候補材としては, , , ,	ていることが必要であることから、候補材としては、	
Zr02 等が挙げられる。模擬溶融炉心と上記耐熱材	<b> </b>	ZrO ₂ 等が挙げられる。模擬溶融炉心と上記耐熱材との	
との侵食データを取ることを目的として,侵食試験を実施した。	タを取ることを目的として、侵食試験を実施した。		
以下に溶融Zr 及び模擬溶融炉心(U02-ZrO ₂ -Zr)による耐熱材	以下に溶融Zr及び模擬溶融炉心(UO ₂ -ZrO ₂ -Zr)に	以下に溶融Zr及び模擬溶融炉心(UO ₂ -ZrO ₂ -Zr)に	
侵食試験の概要について	よる耐熱材侵食試験の概要について示す。この結果より、コリウ	よる耐熱材侵食試験の概要について示す。この結果より、コリウ	
示す。	ムシールド材料として $Z r O_2$ を選定した。	ムシールド材料としてΖ r Ο 2を選定した。	
1. 溶融Zr による耐熱材侵食試験	1. 溶融Zrによる耐熱材侵食試験	1. 溶融Zrによる耐熱材侵食試験	
1-1. 試験方法	1.1 試験方法	1.1 試験方法	
耐熱材には ZrO ₂ の多孔質材料を用いた。模擬溶	耐熱材には , , ZrO ₂ の多孔質材料を用いた。	耐熱材には ZrO ₂ の多孔質材料を用いた。	
融炉心の金属成分をるつぼに入れ、るつぼ上部に耐熱材試験片		模擬溶融炉心の金属成分をるつぼに入れ、るつぼ上部に耐熱材	
をセットする(図別‐1)。これらを電気炉で加熱し, 2000℃	試験片をセットする(第 1 図)。これらを電気炉で加熱し,	試験片をセットする (図別 3-1)。これらを電気炉で加熱し,	
~2200℃の所定温度にして金属を溶かす。溶融した金属中に耐	2,000℃~2,200℃の所定温度にして金属を溶かす。溶融した金	2,000℃~2,200℃の所定温度にして金属を溶かす。溶融した金	
熱材試験片を上部から挿入し、5 分間保持する。その後、試験	属中に耐熱材試験片を上部から挿入し、5 分間保持する。その	属中に耐熱材試験片を上部から挿入し、5分間保持する。その	
片を初期位置へ戻してから炉冷する。各種試験片について、冷	後,試験片を初期位置へ戻してから炉冷する。各種試験片につ	後,試験片を初期位置へ戻してから炉冷する。各種試験片につ	
却後に外観及び試験片の残存状態を確認した。なお、溶融炉心	いて、冷却後に外観及び試験片の残存状態を確認した。なお、	いて、冷却後に外観及び試験片の残存状態を確認した。なお、	
の主な構成材料として, BWRで使用されるU02, Zr, Zr0 ₂ , Fe 等	溶融炉心の主な構成材料として、BWRで使用されるUO ₂ 、Z	溶融炉心の主な構成材料として、BWRで使用されるUO ₂ 、Z	
が想定されるが, 試験においては, 金属成分は100mo1%Zr とし	r,ZrO ₂ ,Fe等が想定されるが,試験においては,金属成	r, ZrO ₂ , Fe等が想定されるが, 試験においては, 金属成	
た。	分は100mo1%Zrとした。	分は100mo1%Zrとした。	
るつぼ ・ のm × 60mm × 10mm 金属円坂		るつぼ	
図別 - 1 試驗休조			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12版)	島根原子力発電所 2号	
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	
1-2. 試験結果	1.2 試験結果	1.2 試験結果	
図別‐2 に金属組成が100mo1%Zr における試験後の耐熱材試	第2図に金属組成が 100mo1%Ζ r における試験後の耐熱材試	図別 3-2 に金属組成が 100mo1%Z r に	
験片の断面写真を示す。いずれの耐熱材においても、金属組成	験片の断面写真を示す。いずれの耐熱材においても、金属組成	試験片の断面写真を示す。いずれの耐熱	
のZr 量に応じて侵食量は増加した。また、金属組成によらず侵	のZr量に応じて侵食量は増加した。また,金属組成によらず	成のZr量に応じて侵食量は増加した。	
食量は > ZrO ₂ となり, ZrO ₂ , の順に耐	侵食量は	ず侵食量は > >ZrO ₂ d	
侵食性に優れていることが確認できた。	順に耐侵食性に優れていることが確認できた。	の順に耐侵食性に優れてい	
図別 - 2 試験後の断面写真 2. 模擬溶融炉心による耐熱材侵食試験 2-1. 試験方法 高融点材料にて製作したるつぼ内に円柱状に加工したZr0 ₂ 耐 熱材と模擬溶融炉心粒子を所定の重量分装荷した。模擬溶融炉 心の組成はU0 ₂ -Zr0 ₂ -Zr: 30mo1%-30mo1%-40mo1%とした。 同るつぼを試験装置の誘導コイル内に設置して,誘導加熱に より加熱を行った。試験中の模擬溶融炉心の温度は,放射温度 計により計測した。試験時の温度は,放射温度計や熱電対にて 計測している模擬溶融炉心の温度が,目標温度範囲(2000℃~ 2100℃)に入るように温度制御を行った。温度保持時間は10分 とした。試験体系を図別-3 に示す。	第2図 試験後の断面写真 第2図 試験後の断面写真 2. 模擬溶融炉心による耐熱材侵食試験 2.1 試験方法 高融点材料にて製作したるつぼ内に円柱状に加工したZr O₂耐熱材と模擬溶融炉心粒子を所定の重量分装荷した。模擬 溶融炉心の組成はUO₂-ZrO₂-Zr:30mo1%-30mo1%- 40mo1%とした。 同るつぼを試験装置の誘導コイル内に設置して,誘導加熱に より加熱を行った。試験中の模擬溶融炉心の温度は,放射温度 計により計測した。試験中の複擬溶融炉心の温度は,放射温度 計により計測した。試験中の複擬溶融炉心の温度は,放射温度 計により計測した。試験中の複類溶融炉心の温度は,放射温度 計している模擬溶融炉心の温度が,目標温度範囲(2,000℃ ~2,100℃) に入るように温度制御を行った。温度保持時間は 10分とした。	図別3-2 試験後の断面 2. 模擬溶融炉心による耐熱材侵食試験 2.1 試験方法 高融点材料にて製作したるつぼ内にF O ₂ 耐熱材と模擬溶融炉心粒子を所定の 溶 融 炉 心 の 組 成 は U O ₂ - Z 30mo1%-30mo1%-40mo1%とした。 同るつぼを試験装置の誘導コイル内に より加熱を行った。試験中の模擬溶融炉 計により計測した。試験時の温度は、放 計測している模擬溶融炉心の温度が、目格 2,100℃) に入るように温度制御を行った とした。試験体系を図別3-3 に示す。	

炉	備考
おける試験後の耐熱材 材においても,金属組 また,金属組成によら となり,ZrO ₂ , <u>ること</u> が確認できた。	
写真	
円柱状に加工した乙r 重量分装荷した。模擬 r O ₂ – Z r :	
設置して,誘導加熱に 心の温度は,放射温度 射温度計や熱電対にて 票温度範囲(2,000℃~ 。温度保持時間は10分	



## 2-2. 試験結果

試験温度の推移を図別 - 4 に示す。試験においては2000℃~ 2050℃の範囲で、約10 分程度温度が保持されている事を確認し た。また,試験後のるつぼの断面写真を図別-5 に示す。ZrO2 耐 熱材の厚さが試験前から変わっていないことから、模擬溶融炉 心によるZrO2 耐熱材の有意な侵食が無いことが分かる。



図別-4 試験温度推移





試験温度の推移を図別 3-4 に示す。試 ~2,050℃の範囲で,約10分程度温度が 確認した。また,試験後のるつぼの断面写 ZrO2耐熱材の厚さが試験前から変わっ 擬溶融炉心によるZrO2耐熱材の有意が かる。



炉	備考
<ul> <li>              復振溶融炉心      </li> <li>             ろつぼ         </li> </ul>	
験においては 2,000℃ 保持されていることを 写真を図別 3-5 に示す。 っていないことから, 模 な侵食がないことが分	

柏崎刈羽原子力	発電所 6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.12版)			島根原子力発電	Î所 2岁
			L 第5図 試験後	後の断面写直	]	L	図別 3-5 試験(	後の断面

3. 耐熱材への模擬溶融炉心落下試験

3.1 試験方法

3. 耐熱材への模擬溶融炉心落下試験

3-1. 試験方法

耐熱材に溶融炉心が接触した際の短期的な相互作用を確認す るため、ZrO2 耐熱材の上に模擬溶融炉心を落下させ、耐熱材の 侵食深さの測定,耐熱材侵食性状や模擬溶融炉心の固化性状の 分析などを実施した。模擬溶融炉心の組成はU0₂-Zr0₂-Zr: 30mo1%-30mo1%-40mo1%とした。ZrO2 耐熱材を内張りしたコンク リートトラップの上部に電気炉を設置し、電気炉により加熱し た模擬溶融炉心をZrO2 耐熱材上に落下させ、コンクリートトラ ップに設置した熱電対によりZrO2 耐熱材の温度を測定した。試 験装置を図別-6 に示す。



ZrO。耐熱材 ZrO2耐熱材側面(模擬溶融炉心

側)の温度測定用熱電対設置位置

第6図 試験装置

耐熱材に溶融炉心が接触した際の短期的な相互作用を確認

するため、ZrO2耐熱材の上に模擬溶融炉心を落下させ、耐

熱材の侵食深さの測定, 耐熱材侵食性状や模擬溶融炉心の固化

3.

3.



図別-6 試験装置

## 3-2. 試験結果

試験温度推移を図別-7 に示す。Zr02 耐熱材側面(模擬溶融 炉心側)の温度を測定する熱電対が模擬溶融炉心落下直後に最

3.2 試験結果 試験温度推移を第7図に示す。ZrO2耐熱材側面(模擬溶融 炉心側)の温度を測定する熱電対が模擬溶融炉心落下直後に最



3.

島根原子力発電所 2号炉	備考
図別 3-5 試験後の断面写真	
耐熱材への模擬溶融炉心落下試験 1 試験方法 耐熱材に溶融炉心が接触した際の短期的な相互作用を確認す るため、 $Z r O_2$ 耐熱材の上に模擬溶融炉心を落下させ、耐熱材 の侵食深さの測定、耐熱材侵食性状や模擬溶融炉心の固化性状 の分析などを実施した。模擬溶融炉心の組成は $UO_2 - Z r O_2$ $-Z r : 30mo1\%-30mo1\%-40mo1\%とした。Z r O_2耐熱材を内張りしたコンクリートトラップの上部に電気炉を設置し、電気炉により加熱した模擬溶融炉心をZ r O_2耐熱材上に落下させ、コンクリートトラップに設置した熱電対によりZ r O_2耐熱材の温度を測定した。試験装置を図別3-6 に示す。$	
<complex-block><complex-block></complex-block></complex-block>	
<ol> <li>2 試験結果</li> <li>試験温度推移を図別 3-7 に示す。ZrO₂耐熱材側面(模擬溶</li> <li>融炉心側)の温度を測定する熱電対が模擬溶融炉心落下直後に</li> </ol>	



导炉	備考
,落下してきた模擬溶	
測される。また,試験	
別 3-8 に示す。 模擬溶	
し、その周辺部が白色	
著な耐熱材の侵食及び	
「「「」」の温度	
300 360	
ſφ	
<b>惨</b>	
写真	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所	2 5
· · · · · · · · · · · · · · · · · · ·	サキズのよい				
凶別-9 胴煞	水衣曲の成方	刀竹棺禾	男どの問題がおります。		

一般に、ZrO₂には還元雰囲気で高温に曝露されると材料中に 酸素欠損が起こり、変色する特性があることが知られている。 試験においては、計測された模擬溶融炉心の温度が2450℃以上 と高温であり、かつ模擬溶融炉心中には金属Zr が存在すること から、模擬溶融炉心中の金属Zr によってZrO₂ 耐熱材の表面で還 元反応が起こり、酸素欠損が生じたと推測される。しかしなが ら、黒色部についてX線回折分析を行った結果、耐熱材表面の 組成に有意な変化が確認されなかったことから、欠損した酸素 の量は微量であり、ZrO₂ 耐熱材の耐熱性能に影響はないと考え られる(図別-9 参照)。

なお,事故時においては,格納容器下部に事前注水がなされ ているため,格納容器下部に落下してきた溶融炉心中に残存す る未酸化の金属Zr は,水との反応によって酸化されると想定さ れる。MAAP 解析の結果から,格納容器下部に落下してきた溶融 炉心は,2000℃を超える高い温度でコリウムシールドと数十分 接触する可能性があるが,上述のとおり,溶融炉心中の金属Zr は酸化されていると考えられることから,事故時に溶融炉心が コリウムシールドと接触したとしても,ZrO₂ 耐熱材の表面が還 元されることによる影響は軽微であると考えられる。 一般に、ZrO₂には還元雰囲気で高温に暴露されると材料中 に酸素欠損が起こり、変色する特性があることが知られている。 試験においては、計測された模擬溶融炉心の温度が 2,450℃以 上と高温であり、かつ模擬溶融炉心中には金属Zrが存在する ことから、模擬溶融炉心中の金属ZrによってZrO₂耐熱材の 表面で還元反応が起こり、酸素欠損が生じたと推測される。し かしながら、黒色部についてX線回折分析を行った結果、耐熱 材表面の組成に有意な変化が確認されなかったことから、欠損 した酸素の量は微量であり、ZrO₂耐熱材の耐熱性能に影響は ないと考えられる(第9図)。

なお、ペデスタル(ドライウェル部)には水プールが存在す るため、ペデスタル(ドライウェル部)に落下してきた溶融炉 心中に残存する未酸化の金属Zrは、水との反応によって酸化 されると想定される。MAAP解析の結果から、ペデスタル(ド ライウェル部)に落下してきた溶融炉心は、2,000℃を超える高 い温度でコリウムシールドと数十分接触する可能性があるが、 上述のとおり、溶融炉心中の金属Zrは酸化されていると考え られることから、事故時に溶融炉心がコリウムシールドと接触 したとしても、ZrO₂耐熱材の表面が還元されることによる影 響は軽微であると考えられる。 一般に、ZrO₂には還元雰囲気で高温( に酸素欠損が起こり、変色する特性がある 試験においては、計測された模擬溶融炉, 上と高温であり、かつ模擬溶融炉心中に ことから、模擬溶融炉心中の金属Zrによ 表面で還元反応が起こり、酸素欠損が生 かしながら、黒色部についてX線回折分析 材表面の組成に有意な変化が確認されなが した酸素の量は微量であり、ZrO₂耐熱が ないと考えられる(図別 3-9)。

なお、ペデスタルには水プールが存在 に落下してきた溶融炉心中に残存する未 との反応によって酸化されると想定され 果から、ペデスタルに落下してきた溶融炉 る高い温度でコリウムシールドと数十分 が、上述のとおり、溶融炉心中の金属Z 考えられることから、事故時に溶融炉心 接触したとしても、ZrO₂耐熱材の表面 る影響は軽微であると考えられる。

步炉	備考
	・記載箇所の相違
	【柏崎 6/7,東海第二】
に暴露されると材料中	
ることが知られている。	
心の温度が 2,450℃以	
は金属Zrが存在すろ	
Cot Z r O m 樹材の	
じたと推測される	
析を行った結果一耐熱	
かったことから ケ指	
おの耐熱性能に影響け	
小小小山がに下肥に水量は	
すろため、ペデスタル	
酸化の金属 $7 r$ け 水	
ス MAAP解析の結	
~ 2 000℃を超う	
接触する可能性がある	
* け酸化されている	
エは取旧されしているとがっ日ウムシールドレ	
パーソソムシール下と が震士されてきしたト	
ルー逐儿で4レのことによ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
4. まとめ 以上により、Zr02 耐熱材が溶融炉心に対して高い耐性を有していることが分かった。 本お、実際の事故状況においては上述のとおり、Zr02 耐熱材 の表面が還元されにくく、還元による影響は軽微であると考えられる。また、本試験においては上述のとおり、Zr02 耐熱材 の表面が還元されにくく、還元による影響は軽微であると考えられる。また、本試験においては上述のとおり、Zr02 耐熱材 の表面が還元されにくく、還元による影響は軽微であると考えられる。また、本試験において黒色化が確認されたZr02 耐熱材は X線回折分析の結果から、その組成は大きく変化していないと 考えられる。一方で、Zr02 耐熱材の機械的強度の変化の有無等 については、本試験において十分なデーク採取がなされていないことから、コリウムシールドの実設計においては、耐熱材構 造をサンプ防護材(厚さ:)と、サンプ防護材の厚さは、解析により求 めた侵食量」に十分な余裕を見込んだ厚さ」とすること により、高温状態の溶融炉心とコリウムシールドとの接触に伴	<ul> <li>東海第二発電所 (2018.9.12版)</li> <li>4. まとめ         上記試験結果から,溶融炉心に対して高い耐性を有している         Z r O₂ (ジルコニア)耐熱材を,コリウムシールドに用いる材         料として選定した。     </li> </ul>	<u> </u>
う悪影響を考慮した保守的な設計としている。		
以 上 本試験は、中部電力(株)、東北電力(株)、東京電力ホールディングス(株)、北陸電	<ul> <li>※ 本試験は、中部電力(株)、東北電力(株)、東京電力ホールディングス(株)、北陸電</li> </ul>	<ul> <li>※ 本試験は、中部電力(株)、東北電力(株)、東京電力ホ</li> </ul>
カ(株)、中国電力(株)、日本原子力発電(株)、電源開発(株)、(一財)エネルギー総	力(株)、中国電力(株)、日本原子力発電(株)、電源開発(株)、(一財)エネルギー総合	力(株),中国電力(株),日本原子力発電(株),電源開発
合丁学研究所 (株)東芝 日立(F ニュークリア・エナジー(株)が宝飾1 た世同研究	T学研究所(株)東芝 日立 CF ニュークリア・エナジー(株)が実施した北同研究の	T学研究所 (株)東芝 日立 (F ニュークリア・エナジ
ロエテックレクリ、パルノホと、ロエロビーエーシックノーエノシー(水)が天地した共同研究の市里の一部である	エテッリノルノリ, パルノホル、 ロエ ロレ ーユ シ ソ ノ ・ ユ ノ シ 「(林)か 天旭 し に 共同研究の) 市里の一部である	エナッリフルフ, パルフホと, 日上 01 ーユーク ップ・エブン
		成本の一部である。
【ここまで】	【ここまで】	

号炉	備考
号炉 	備考 ・記載箇所の相違 【柏崎 6/7,東海第二】 ・記載方針の相違 【柏崎 6/7】
ホールディングス(株),北陸電 引発(株),(一財)エネルギー総合 ジー(株)が実施した共同研究の	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 3.2.2		
39. 原子炉圧力容器表面温度の設置箇所	原子炉圧力容器の破損判断について	30. 原子炉圧力容器表面温度の設置箇所	
原子炉压力型器温度(6号炉)  地震有称  甘加能测 No.		No.         機器番号         機器名称         計測範囲	
2 1821-TE0122		1         TE298-1A-1         圧力容器円筒胴温度         0~300℃	
41821-TE0120 除子炉圧力容器上置フランジ温度 0~300°C 51821-TE013A 原子炉圧力容器プランジスタッドボル-温度 0~300°C 61821-TE013B 廃子炉圧力容器プランジスタッドボル-温度 0~300°C		2         TE298-1A-2         圧力容器円筒胴温度         0~300℃	
7         821-TE014A         県子炉圧力容量限フランジ温度         0~300℃           8         821-TE014B         房子炉圧力容量限フランジ温度         0~300℃           9         821-TE014B         房石炉厂力容量限プランジ温度         0~300℃		3 TE298-1A-3 圧力容器円筒胴温度 0~300℃	
101821-TE016A 備予理任力容響的フランジ下部品度 0~300℃ 111821-TE0168 億予更任力容響的フランジ下部品度 0~300℃		4 TE298-1B-1 圧力容器 A 給水ノズルセイフェンド温度 0~300℃	
121212/11C1016 時子がた力を確認プランド除金店 0-3000C 131212-11C0166 絵木ノズル449世 クシンドを含また 0-300℃ 1416121-11C016E 絵木ノズル449セーフエンド重度 0~300℃		5 TE298-1C-1 圧力容器 A 給水ノズル温度 0~300℃	
15]821-TED16F 裕木パズル4028度 0-300℃ 16]821-TED16G 給木パズル402地でつまンド温度 0~300℃ 17]821-TED16H 像ボノズル402地でつまンド温度 0~300℃		6 TE298-1B-2 圧力容器 B 給水ノズ ルセクエント 温度 0~300℃	
18         回21-TEO16J         原子炉圧力容響下鏡上部温度         0~300°C           19         1921-TEO16K         原子炉圧力容響下鏡上部温度         0~300°C           0         000°C         0.500°C		7 TE298-1C-2 圧力容器 B 給水/ズル温度 0~300℃	
2010211101111、時子が12.21948178817884180、03-3001C 211821-TEO1161 原子が日本219487188178481848(0-0-3001C 221821-TEO1161 原子が日本21948718417841848(0-0-3001C)		8 TE298-1B-3 圧力容器 C 給水ノズルセイフェンド温度 0~300℃	
231821-TED169 第子伊丘力容器支持スカート上部温度 0~300°C 24 821-TE0168 第子伊丘力容器支持スカート上部温度 0~300°C 251821-TE0168 年子伊丘力容易支持スカート上部温度 0~300°C		9 TE298−1C−3 圧力容器 C 給水/ズ M温度 0~300℃	
26         回21-TED16T         原子炉圧力容都支持スカート中部温度         0~300°C           27         127-TED16U         原子炉圧力容器支持スカート中部温度         0~300°C           20         0000         0         000°C		10 TE298-1B-4 圧力容器 D 給水ノズルセイフェンド温度 0~300℃	
291021-11C0149 時子が正と980次(#パンドード回通版 0-3000℃ 301021-11C0149 時子が正と988次(#パンドード回通版 0-300℃ 301021-11C0158 第子が圧力容器支持スパート下回通度 0~300℃		11     TE298-1C-4     圧力容器 D 給水/ズ W温度     0~300℃	
31 [121-TE019 / 第子炉近力器支持スナートTP電温度 0~300°C 32 [921-TE081 / 第子炉水包計量線構(A)温度(集相部) 0~350°C 33 [921-TE082 / 8 戶炉水包計量線構(A)温度(集相部) 0~350°C		12     TE298-1D-1     圧力容器下鏡 ^ヘ 外温度     0~300℃	
34 (921-TE093A) 原子炉水位計 凝縮格(A) 温度(計算配管) 0~350°C 35 [221-TE0918] 医子伊水位計 凝縮格(A) 温度(計算配管) 0~350°C 9 [221-TE0918] 医子伊水位計 凝縮格(A) 温度(計算配管) 0~350°C		13     TE298-1D-2     圧力容器下鏡へ外温度     0~300℃	
3.1851-120833 協士和公司取得総領(8)署任(對異医基) 0~320,C 3.01551-120833 協士和公司取得総領(8)署任(對異医基) 0~320,C		14 TE298-1D-3 圧力容器下鏡へ外温度 0~300℃	
		15     TE298-1E-1     圧力容器支持スカート上部温度     0~300℃	
<u>原子炉圧力容器温度(7号炉)</u> No. 機器養予 機器を称 計測範囲 No. 使器養予 機器を称 より前範囲 No. のでのから しょうのから		16 TE298-1E-2 圧力容器支持スカート上部温度 0~300℃	
1221112124 康子が正力容さ五度(周温度) 0-3000 C 21211111112 - 11212 - 11211111111111111		17 TE298-1E-3 圧力容器支持スカート上部温度 0~300℃	
4月21-TE0138 原子炉正力容器上直フランジ温度 0~300℃ 5月21-TE014A 原子炉圧力容器フランジスタッドボルト温度 0~300℃ 6月21-TE048 原子炉圧力容器フランジスタッドボルト温度 0~300℃		18 TE298-1F-1 圧力容器支持スカ→ト下部温度 0~300℃	
7         821-TE015A         原子炉丘方容着限フランジ温度         0~300℃           8/821-TE0159         原子炉丘方容薄限フランジ温度         0-300℃           0         800℃         0-300℃		19     TE298-1F-2     圧力容器支持がトト部温度     0~300℃       00     TE208-1F-2     圧力容器支持がトトア部温度     0~300℃	
9 D2111C103 (東子東佐力会都アクンジェ称戦度) 07-300 U 10 D2111 D211- RD148 (東子東佐力会都アクシジド 藤厳度 0~300 U 11 D21-TE0148 東子東佐力容者第7ランジド 藤島度 0~300 U		20 TE298-1F-3 圧力容器支持为一下部温度 0~300℃	
121821-TE0160 原子炉反力容使用ランジア部造度 0~300°C 131821-TE0178 給水バズルM9温度 0~300°C 141821-TE0188 絵水バズルM9温度 0~300°C		21     TE298-1G-1     原子炉上力容器温度(SA)     0~500℃       co     TE2002-16-0     F.Z.F.F.F.C.F.P.P.P.F.C.(2,4)     0.500℃	
15         1821-TE0170         総木ノズルM40温度         0~300°C           16         1821-TE0180         総木ノズルM40セーフエンド温度         0~300°C           17         1702-TE0154         総木ノズルM50セート         10~200°C		22     IE298-16-2     原于炉庄刀谷器温度(SA)     0~500℃       00     TE000_16_0     F. + 安肥工焼温廃     0 000℃	
16 回21-TED190		23         IE298-16-3         圧力容益下現温度         0~300 C           94         TE208-16-4         压力容器下始点如泪度         0~200°C	
201821-1152020 第十世紀大学者支持イメカート中部温度 0~3000C 221 (122-11522020 第十世紀大学者支持イメカート中部温度 0~3000C 22 (121-11522020 第十世紀大学者支持大スカート中部温度 0~3000C		24         16296-16-4         压力存命下现底印值及         0°~300 C           95         TE208-24-1         压力容器 L 差退度         0°~300 C	
231821-TEC11A 原子炉正力容器支持スカート下部温度 0~300°C 241821-TEC21B 原子炉正力容器支持スカート下部温度 0~300°C 251821-TEC21C 原子炉正力容器支持スカード和温度 0~300°C		25         1E298-2A-1         压力存益上盈温度         0~300 C           26         TE208-2A-2         压力容器上差泪度         0~300°C	
26         回21-TE022A         原子炉正力容響下焼上部温度         0~300°C           27         1821-TE022B         原子炉正力容響下焼止部温度         0~300°C           98         1921-TE022B         原子炉正力容響下焼止部温度         0~300°C           98         1921-TE022B         原子炉正力容器下焼止部温度         0~300°C		20         11239 2A 2         江乃存品上盈温及         0 - 300 C           97         TE908_9P_1         E 力容哭上業行が道度         0~-200°C	
20         限子炉丘力容易下統下部温度         0~300°C           30         限子炉丘力容易下統下部温度         0~300°C           30         第子炉丘力容易下統下部温度         0~300°C		21 11239 2B 1 圧力存留上量//// 温皮 0 300 C 28 TF298-2B-2 圧力宏哭上蓋フランジ温産 0~300℃	
311世21-TC2232 原子がた力容を下版:第二版 0~300°C 32123-TC-2000-1 使子がた力力装装術(A)温度(気相節) 0~350°C 33121-TC-200A-2 原子が水台計装装術(A)温度(気相節) 0~350°C		20         TE236 2B 2         圧力存留工業//// 価度         0 - 300 C           20         TE208-3-1         圧力容異7/2ット*ボル追座         0 ~ 300 °C	
34 [321-TE-2004-3 原子伊水台計算線構(A)温度(計算配管) 0~350°C 35 [921-TE-2008-1 原子伊水台計算線構(6)温度(算描第) 0~350°C 36 [921-TE-2008-2 時子伊水台計算線構(6)温度(算描篇) 0~350°C		2.9         112.395 3 1         12.37存益が分下本が計画及         0 - 300 C           30         TF208-3-2         圧力容異74ヵ)、** が注重産         0 ~ 300 °C	
37     221-TE-2008-3     原子炉水位計凝結構(6)温度(計整配管)     0~350℃       第十年共常共初的条本		30         IE230-3-2         IE230-3-2         IE230-3-2         IE230-3-2         IE230-3-2         IE230-3-2         IE230-3-2         IE330-3-2         IE330-3-2 <thie330-3-2< th=""> <thie330< td=""><td></td></thie330<></thie330-3-2<>	
血へやなマラソ処は用 重大事後等分処設備以外は、常用計器(耐震性又は耐濃速性等はないが、監視可能であれば顔子炉施設の状態を把握することが可能な計器)		31 11239 年1 12.57年福州四平/777 温度 0 - 300 C 32 TF298-4-2 圧力容哭胴体フランジ温度 0~300℃	
		33 TF298-4-3 圧力容器胴体77ンジ温度 0~300℃	
		■ : 重大事故等対処設備	
		重大事故等対処設備以外は、常用計器(耐震性又は耐環境性等はないが、監視可	
		能であれば原子炉施設の状態を把握することが可能な計器)	



炉	備考
<u>の設置箇所</u>	<ul> <li>・設備設計の相違</li> <li>【柏崎 6/7,東海第二】</li> <li>設備設計の相違によ</li> </ul>
	<ul> <li>る設置箇所の相違。</li> <li>・設備設計の相違</li> <li>【柏崎 6/7,東海第二】 島根2号炉は,RPV</li> <li>破損の徴候を検知する</li> <li>には下鏡部の温度で十 分と考え,下鏡部の2箇</li> <li>所の温度計を重大事故</li> <li>等対処設備としている。</li> </ul>

43. 原子炉減圧に関する各種対策及び逃がし安全弁(SRV)の耐環       資料なし       32. 原子炉減圧に関する各種対策及び逃がし安全弁(SRV)の耐	
境性能向上に向けた今後の取り組みについて 環境性能向上に向けた今後の取り組みについて	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
【資料1】		【資料1】	(資料1は「重大事故
「柏崎川羽原子力発雲市6号及787号恒重士			等対処設備について(補
事故等対処設備について(補足説明資料)		島根原子力発電所2号炉	足説明資料) 46-10 その
(平成 29 年 1 月 27 日提出)抜粋		重大事故等対処設備について(補足説明資料)抜粋	他設備」の再掲であるた
			め,重大事故等対処設備
			の比較表において比較
			を行う。)
46-10		46-10 その他設備	
その他設備			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
【資料2】		【資料2】	
SRVの耐環境性能向上に向けた取り組みについて		SRVの耐環境性能向上に向けた取り組みについて	
1. 概要		1. 概要	
SRVの耐環境性向上対策は、更なる安全性向上対策として設置を		SRVの耐環境性向上対策は,更なる安全性向上対策とし	
進めている <u>代替SRV駆動装置</u> に対して,SRV駆動源である高圧窒素		て設置を進めている逃がし安全弁窒素ガス代替供給設備に対し	
ガスの流路となる「SRV用電磁弁」及び「SRVシリンダー」に対し		て、SRV駆動源である高圧窒素ガスの流路となる「SRV	
てシール材の改良を実施するものとする。		用電磁弁」及び「SRVシリンダ」に対してシール材の改良	
		を実施するものとする。	
代替SRV駆動装置は、HPIN系(A/B)と独立した窒素ガスボンベ.		逃がし安全弁窒素ガス代替供給設備は.逃がし安全弁窒素ガ	
自圧式切替弁及び配管・弁類から構成し、SRV用電磁弁の排気ポー		ス供給系と独立した窒素ガスボンベ、自圧式切替弁及び配	
トに窒素ボンベの窒素ガスを供給することにより、電磁弁操作を		管・弁類から構成し、SRV用電磁弁の排気ポートに窒素ガ	
不要としたSRV開操作が可能な設計とする。		スボンベの窒素ガスを供給することにより、電磁弁操作を不	
		要としたSRV開操作が可能な設計とする。	
ここで、自圧式切替弁は、SRV用電磁弁の排気ポートと代替SRV		ここで、自圧式切替弁をSRV用電磁弁の排気ポートと逃	
駆動装置の接続部に設置し、以下の(1)通常運転時、(2)HPIN		がし安全弁案素ガス代替供給設備供給設備の接続部に設置し	
系によるSRV動作時. $(3)$ 代替SRV駆動装置によるSRV動作時に示		以下の(1)通常運転時(2)逃がし安全弁窒素ガス供給	
すとおりの切替操作が可能な設計とする。		系によるSRV動作時、(3)逃がし安全弁窒素ガス代替供給	
		設備によるSRV動作時に示すとおりの切替操作が可能な	
		設計とする。	
(1) 通常運転時 (SRV待機時)		(1)通常運転時(SRV待機時)	
自圧式切替弁は、弁体が代替SRV駆動装置の窒素ボンベ側を		自圧式切替弁は、弁体が逃がし安全弁窒素ガス代替供給	
閉止し、排気ポート側を原子炉格納容器内に開放することで、		設備の窒素ガスボンベ側を閉止し排気ポート側を原子炉	
SRVピストンが閉操作するときの排気流路を確保する。		格納容器内に開放することで、SRVピストンが閉動作	
		するときの排気流路を確保する。	
(2) HPIN系によるSRV動作時		(2) 逃がし安全弁窒素ガス供給系によるSRV動作時	
自圧式切替弁は、排気ポート側を解放しており、SRV閉動作		自圧式切替弁は、排気ポート側を開放しており、SR	
時のピストンからの排気を原子炉格納容器へ排気するための		V閉動作時のピストンからの排気を原子炉格納容器へ	
流路を確保する。		排気するための流路を確保する。	
(3)代替SRV駆動装置によるSRV動作時		(3)逃がし安全弁窒素ガス代替供給設備によるSRV動作時	
自圧式切替弁は、代替SRV駆動装置の窒素ボンベ圧力により		自圧式切替弁は、逃がし安全弁窒素ガス代替供給設備の	
バネ及び弁体を押し上げられることにより排気ポートを閉止		窒素ガスボンベ圧力によりバネ及び弁体を押し上げら	
し、代替SRV駆動装置の窒素ボンベからSRVピストンまでの流		れることにより排気ポートを閉止し,逃がし安全弁窒素ガ	
路を確保する。		ス代替供給設備の窒素ガスボンベからSRVピストンま	
		での流路を確保する。	
また、自圧式切替弁の弁体シール部は全て、無機物である膨張		また、自圧式切替弁の弁体シール部は全て、無機物である	
黒鉛シートを使用しており、重大事故等時の高温蒸気や高放射線		膨張黒鉛シートを使用しており,重大事故等時の高温蒸気や	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
量の影響によりシール性が低下することがない設計としている。 本系統は、ADS機能 <u>なしの4個(B21-F001D, E, K, U)</u> へ、 <u>代替SRV</u> 駆動装置の窒素ガスボンベの窒素ガスの供給を行う設計する。 ここで、 <u>代替SRV駆動装置</u> の系統概要図を図1に、SRV本体に対す る電磁弁及び自圧式切替弁の配置図を図2に、自圧式切替弁の構造 図を図3に、自圧式切替弁及び電磁弁の動作概要図を図4に示す。		高放射線量の影響によりシール性が低下することがない設計としている。 本系統は、ADS機能 <u>がない2個</u> へ、逃がし安全弁窒素ガ ス代替供給設備の窒素ガスボンベの窒素ガスの供給を行う設 計とする。 ここで、逃がし安全弁窒素ガス代替供給設備の系統概要図を 図1に、SRV本体に対する電磁弁及び自圧式切替弁の配置 図を図2に、自圧式切替弁の構造図を図3に、自圧式切替弁 及び電磁弁の動作概要図を図4に示す。	<ul> <li>・設備設計の相違</li> <li>【柏崎 6/7】</li> <li>減圧に必要な弁数の</li> <li>相違。</li> </ul>
<complex-block></complex-block>			
図1. 代替逃がし安全弁駆動装置の系統概要図		図1 逃がし安全弁窒素ガス代替供給設備 系統概要図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
図2. SRV本体に対する電磁弁及び自圧式切替弁の配置図		図2 SRV本体に対する電磁弁及び自圧式切替弁の配置図	
[]			
図3 白圧式切替弁の構造図		図3 自圧式切替弁 構造図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
図4. 自圧式切替弁及び電磁弁の動作概要図		図4 自圧式切替弁及び電磁弁 動作概要図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2 長
2.SRV用電磁弁の耐環境性能試験結果並びに今後の方針について		2. SRV用電磁弁の耐環境性能試験結果
(1) 試験目的		(1) 試験目的
SRVの機能向上させるための更なる安全対策として, <u>高圧窒素</u>		SRVの機能向上させるための更なる
ガス供給系及び代替SRV駆動装置により高圧窒素ガスを供給す		し安全弁窒素ガス供給系及び逃がし安全
る際に流路となるバウンダリについて、電磁弁の作動性能に影		備により高圧窒素ガスを供給する際に流
響を与えないシール部を、従来のフッ素ゴムより高温耐性が優		ついて、電磁弁の作動性能に影響を与え
れた改良EPDM材に変更し、高温蒸気環境下におけるシール性能		のフッ素ゴムより高温耐性が優れた改良
を試験により確認する。		高温蒸気環境下におけるシール性能を試
(2) 試験体概要		(2) 試験体概要
試験体であるSRV用電磁弁の概要並びに改良EPDM材の採用箇		試験体であるSRV用電磁弁の概要並
所を図5に示す。		採用箇所を図5に示す。
図5 改良EPDM材を採用したSRV用電磁弁概要図		図5 改良EPDM材を採用したSR

计定	備考
並びに今後の方針につ	
安全対策として、逃が	
弁窒素ガス代替供給設	
略となるパワンタリに	
ないシール部を、従来	
EPDMMに変更し、 除に上り 確認する	
映により唯祕りる。	
びに改良FPDM材の	
V用電磁弁概要凶	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 25
(3) 試験手順及び項目		(3) 試験手順及び項目
本試験で実施する試験項目を図6に示す。		本試験で実施する試験項目を図6に示
初期機能試験		初期機能試験
		V
熱·放射線同時劣化処理		熱・放射線同時劣化処理
加圧劣化処理		加止劣化処理
機械劣化処理		✓ 機械劣化処理
↓		
振動劣化処理		振動劣化処理
多化処理後の機能試験		劣化処理後の機能試験
事故時放射線照射処理		事が時故射線昭針処理
<b>_</b>		
蒸気曝露試験(シール性能確認*1)		素気曝露試験(シール性能確認*1)
図6 試験手順及び項目		図6 試験手順及び項
※1シール性確認の判定基準		<ul><li>※1シール性確認の判定基準</li></ul>
・排気(EXH)ポート側圧力に供給(SUP)ポート側圧力の漏え		・排気(EXH)ポート側圧力に供給(SU
いが認められないこと。		えいが認められないこと。
・無励磁時の漏えい量は目標として以下であること。		・無励磁時の漏えい量は目標として
(4)蒸気曝露試験装置概要及び蒸気曝露試験条件		<ul><li>(4) 蒸気曝露試験装置概要及び蒸気曝露</li></ul>
本試験で使用する蒸気曝露試験装置の概要を図7に示す。ま		本試験で使用する蒸気曝露試験装置の
た,重大事故環境試験条件を表1及び蒸気曝露試験条件を図8に		た,重大事故環境試験条件を表1及び蒸
示す。		に示す。
図7 蒸気曝露試験装置の概要		図7 蒸気曝露試験装置の

炉	備考
ł	
9 °	
H	
P)ポート側圧力の漏	
以下であること。	
試験条件	
概要を <u>図7</u> に示す。ま	
気曝露試験条件を図8	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
表1 重大事故環境試験条件		表1 重大事故環境試験条件	
項目 条件 解析結果(参考)		項目条件	
時間(経過) 0~168 時間 168~175 時間 0~約 7 時間 ^{※2}		時間(経過)         0~168 時間         168~175 時間           広古(hPp[recel])         710         954	
注力(kPalgage)) 710 854 150KPa以下 [∞] 温度(℃) 171 178 150℃以下 ^{※4}		$E$ // (kFa[gage]) $710$ $854$ $lag (^{\circ}C)$ 171178	
雰囲気         蒸気         蒸気         蒸気		雰囲気         蒸気         蒸気	
放射線量(MGy) *1 0.1MGy 以下*3		放射線量(MGy) *1	
※1:事象発生から7日間の累積放射線量を示す。		※1:事象発生から7日間の累積放射線量を示す。	
※2:有効性評価「高圧溶融物放出/格納容器雰囲気直接加熱			・記載方針の相違
(DCH)」において,逃がし安全弁(SRV)の機能に期待する			【柏崎 6/7】
(原子炉圧力容器破損に至る)期間(事象発生から約7時間			全ての有効性評価シ
後まで)。			ナリオを包絡する条件
<ul> <li>※3:有効性評価「DCH」における※2の期間の値。放射線量は</li> </ul>			で試験を行っているた
※2の期間の思 <i>積</i> 値			め、代表的たシナリオ
※4:有効性評価「DCH」におけるSRVの温度評価(三次元熱流動			(DCH)の解析結果を掲
(mm) 結果(PCVスプレイ無1.)			載したい
Att http://www.and.and.and.			
		図 9 苏气喝熏封驗冬//	
四0 涂入喙路飞峡木门		凶 O 涂 XU 塚 路 叶秋 木 干	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(5) 蒸気曝露試験並びに分解調査結果		(5) 蒸気曝露試験並びに分解調査結果	
蒸気曝露試験の結果,蒸気曝露試験中において漏えいが確認		蒸気曝露試験の結果,蒸気曝露試験中において漏えいが確認	
されることはなく、分解調査の結果、僅かな変形、軟化が確認		されることはなく、分解調査の結果、僅かな変形、軟化が確認	
されたものの、従来の設計基準事故環境下に比べ高温蒸気に対		されたものの、従来の設計基準事故環境下に比べ高温蒸気に対	
して,より長時間(図8参照)にわたって,SRV駆動部(シリン		して,より長時間(図8参照)にわたって,SRV駆動部(シリ	
ダー)へ窒素ガスを供給する経路のシール性能が発揮され耐環		ンダ)へ窒素ガスを供給する経路のシール性能が発揮され耐環	
境性が向上していることを確認した。		境性が向上していることを確認した。	
蒸気曝露試験後のSRV用電磁弁を分解し,主弁,ピストン弁シ		蒸気曝露試験後のSRV用電磁弁を分解し、主弁、ピストン	
ート部及び主弁シート部Uパッキン(図5参照)シール部分につ		弁シート部及び主弁シート部Uパッキン(図 <u>5</u> 参照)シール部分	
いて,健全品との比較調査を行った。表2にシール部分の分解調		について,健全品との比較調査を行った。表2にシール部分の	
査結果 (主弁シート部シール部分及び主弁シート部Uパッキンシ		分解調査結果(主弁シート部シール部分及び主弁シート部Uパ	
ール部分)を示す。		ッキンシール部分)を示す。	
外観及び寸法確認の結果、主弁シート部シール部分について		外観及び寸法確認の結果、主弁シート部シール部分について	
は、シート部が軟化してシール部分の凹部の変形が確認された		は、シート部が軟化してシール部分の凹部の変形が確認された	
が僅かなものであった。また、従来のフッ素ゴム材を使用する		が僅かなものであった。また、従来のフッ素ゴム材を使用する	
主弁シート部Uパッキンについても変形が確認されたが僅かな		主弁シート部Uパッキンについても変形が確認されたが僅かな	
ものであった。		ものであった。	
表2 シール部分の分解調査結果		表2 シール部分の分解調査結果	
(主弁シート部シール部分及び主弁シート部Uパッキンシール部		(主弁シート部シール部分及び主弁シート部Uパッキンシール部	
分)		分)	
· · · · · · · · · · · · · · · · · · ·			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(6) 今後の方針		(6) 今後の方針	
SRV駆動部(シリンダー)へ窒素ガスを供給する経路のシール		SRV駆動部(シリンダ)へ窒素ガスを供給する経路のシー	
性能が発揮されていることが確認されたことから, SRVの機能向		ル性能が発揮されていることが確認されたことから、SRVの	
上させるための更なる安全性向上対策として,代替SRV駆動装置		機能向上させるための更なる安全性向上対策として、 <u>全てのS</u>	・運用の相違
による駆動時の高圧窒素ガス流路となるSRV用電磁弁に対して		<u>RV</u> 用電磁弁について改良EPDM材を採用した電磁弁に交換	【柏崎 6/7】
改良EPDM材へ優先的に交換し,他のSRV用電磁弁についても計画		<u> </u>	島根2号炉は更なる
的に交換していく。			安全性向上対策として,
			再稼働までに SRV の全
			ての電磁弁を交換する。
3. SRV <u>シリンダー</u> 改良の進捗及び今後の方針について		3. SRV <u>シリンダ</u> 改良の進捗及び今後の方針について	
(1) 設計方針		(1) 設計方針	
SRV <u>シリンダー</u> のシール部においては, 熱によって損傷する恐		SRV <u>シリンダ</u> のシール部においては,熱によって損傷する	
れがあることから、高温蒸気環境下におけるシール性能を向上		恐れがあることから、高温蒸気環境下におけるシール性能を向	
させることを目的として,シリンダーピストンの作動に影響を		上させることを目的として, <u>シリンダ</u> ピストンの作動に影響を	
与えないシール部(シリンダ_0リング)を、従来のフッ素ゴム		与えないシール部(シリンダOリング)を、従来のフッ素ゴム	
より高温耐性が優れた改良EPDM材に変更する予定である。		より高温耐性が優れた改良EPDM材に変更する予定である。	
また、従来のフッ素ゴム材を使用するピストンの摺動部にお		また、従来のフッ素ゴム材を使用するピストンの摺動部にお	
いては、ピストン全開動作時に、フッ素ゴム材のシート部(ピ		いては、ピストン全開動作時に、フッ素ゴム材のシート部(ピ	
ストン0リング)の外側に改良EPDM材のシート部(バックシート		ストンOリング)の外側に改良EPDM材のシート部(バック	
0リング)を設置することにより、ピストン0リングが機能喪失		シートOリング)を設置することにより、ピストンOリングが	
した場合においてもバックシート <u>0リング</u> によりシール機能を		機能喪失した場合においてもバックシートによりシール機能を	・設備設計の相違
維持することが可能となる改良を実施する予定である。		維持することが可能となる改良を実施する予定である。	【柏崎 6/7】
ここで,既設 <u>SRV</u> の概要図を <u>図9</u> に,既設シリンダー及び改良		ここで,既設 <u>シリンダ</u> の概要図を <u>図9</u> に,改良 <u>シリンダ</u> の概	設備仕様の相違。
<u>シリンダー</u> の概要図を <u>図10</u> に示す。		要図を <u>図10</u> に示す。	
なお,改良シリンダーに対しては,シリンダー単体試験,SRV		なお,改良シリンダに対しては,シリンダ単体試験,SRV	
組合せ試験を実施するとともに、高温蒸気環境下におけるシリ		組合せ試験を実施するとともに,高温蒸気環境下における <u>シリ</u>	
ンダー漏えい試験を実施している。		ンダ漏えい試験を実施している。	



炉	備考
王义	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
既設シリンダー ・ ビストンのリング(フッ素ゴム) ・ シリンダーのリング(フッ素ゴム)			
図10 既設シリンダー及び改良シリンダーの概要図 (2)健全性確認試験 改良シリンダーの健全性確認試験として,下記の表3に示すシ リンダー単体試験,SRV組合せ試験及び蒸気曝露試験(試験装 置:図11,試験条件:図12参照)を実施し,SRV動作に対して影 響がないことの確認を実施した。		<ul> <li>図 10 改良シリンダ 概要図</li> <li>(2)健全性確認試験 改良シリンダの健全性確認試験として,<u>放射線劣化試験</u> 射線量:約 MGy),下記の表3に示すシリンダ単体診 SRV組合せ試験及び蒸気曝露試験を実施し,SRV動作 して影響がないことの確認を実施した。</li> </ul>	<u>後(放</u> :験, :に対

表3. 改良シリンダーの健全性確認試験内容 表3 改良シリンダの健全性確認試験内容	
確認項目 就喻多性 制定基準 結果	
単応の名目         単応の名目         単応の名目         単本           シリンダ         駆動部漏えい試験         協力に作動すること         良           単体試験         助ご験         日本にすること         良	
単体の扱う     影明部FF明の扱う     F1倍に明FF93C2       駆動部漏     漏えいがないこと	
SRV $\mu$ $\pm$ $\pm$ $\pm$ $\hat{x}$ $\hat{y}$ $\hat{y}$ $\hat{y}$	
アキュムレータ容         全開操作可能なこ         食	
$\underline{a}$ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	
能なこと     逃がし弁       応答時間確認試験     アキュムレータ容量       (し) で今間佐動	
砂以内*2に全開動     しので生用作動       作可能なこと     すること	
蒸気曝露     漏えい試験     漏えいがないこと     良       試験     (シリンダー単体)	
入力信号から	
内* ² に全開動作可能な こと	
蒸気曝露 開保持確 168時間連続開保持可 良	
※1:最小作動圧力 MPaで動作可能なことを確認 ※1:最小作動圧力 MPaで動作可能なことを確認 ※1:最小作動圧力 MPaで動作可能なことを確認	
※2:設計基準事故対処設備のECCS機能(ADS機能)としての糸統 シーマンジンションション・ション・ション・ション・ション・ション・ション・ション・ション・	
設計要求事項 の 糸統設計要求事項 の 糸統設計要求事項 の と の に の に の の に の に の の に の に の の に の の に の の の の の の の の の の の の の の の の の の の の	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
図11 蒸気曝露試験装置の概要			
		図 11 蒸気曝露試験装置の概要	
图12 烝気曝露試験余件			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(3) 今後の方針		(3) 今後の <mark>対応</mark>	
①耐SA環境性の向上		①耐SA環境性の向上	
<u>代替SRV駆動装置</u> においては, SRV用電磁弁が機能喪失した場		<u>逃がし窒素ガス代替供給設備</u> においては、SRV用電磁弁	
合においても, SRV用電磁弁の排気ポートから窒素ガスを供給		が機能喪失した場合においても、SRV用電磁弁の排気ポー	
することにより、SRV全開操作が可能な設計としていることか		トから窒素ガスを供給することにより、SRV全開操作が可	
ら, 改良シリンダ <u>―</u> の耐SA環境性の目標として <u>図13に示すとお</u>		能な設計としていることから、改良シリンダの耐SA環境性	
<u>り、格納容器</u> の限界温度・圧力を目指す設計とする。		の目標として <u>原子炉格納容器</u> の限界温度・圧力 <u>(200℃</u> ,	
		<u>0.853MPa[gage])</u> を目指す設計とする。	・設備設計の違い
			【柏崎 6/7】
			柏崎 6/7(ABWR)と島
			根2号炉(Mark-I改)
			の最高使用圧力の相違。
②DB機能に対する影響評価		②DB機能に対する影響評価	
SRVシリンダーの改良は、DBA時のSRV動作に影響を与える変		SRVシリンダの改良は、DBA時のSRV動作に影響を	
更*1となることから、今後、信頼性確認試験*2を実施し、プ		与える変更*1となることから、今後、信頼性確認試験*2を実	
ラント運転に影響を与えないことを確認する予定である。		施し、プラント運転に影響を与えないことを確認する(2020	
		年3月予定)。	
※1:改良シリンダーは、SRV本体に接続するシリンダー摺動部		※1:改良シリンダは、SRV本体に接続するシリンダ摺動部	
となるピストン寸法及び重量が増加する		となるピストン寸法及び重量が増加する	
※2:信頼性確認試験の項目は機械劣化試験、放射線劣化試験、		※2:信頼性確認試験の項目は機械劣化試験、放射線劣化試験、	
熱劣化試驗,加振試驗,耐震試驗,水力学的動荷重試驗,		熱劣化試験,加振試験,耐震試験,水力学的動荷重試験,	
事故時放射線試験、蒸気曝露環境試験及び作動試験等と		事故時放射線試験、蒸気曝露環境試験及び作動試験等と	
なる		なる	
③スケジュール		③スケジュール	
改良シリンダー導入の今後のスケジュールとしては、SRV本		プラント運転に影響を与えないことが確認された場合、更	・試験進捗による相違
体及び試験治工具の製作がクリチカルとなり、下記のとおり約		なる安全性向上のため改良シリンダを採用することとし、実	【柏崎 6/7】
3年を目途に進めていく予定である。		機への導入準備が整い次第、至近のプラント停止中に設置す	
<ul> <li>・200℃、2Pdの耐環境試験:6ヶ月</li> </ul>			
<ul> <li>・信頼性確認試験:36か月(供試体製作(標進納期24ヶ月))</li> </ul>			
<u> </u>			
認した場合・12ヶ月))			
		1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
4. シール材の健全性について		4. シール材の健全性について	
SRV用電磁弁及びSRVシリンダーのシール材をフッ素ゴムから		SRV用電磁弁及びSRVシリンダのシール材をフッ素ゴ	
改良EPDMへ変更することにより、シール機能の耐環境性向上に		ムから改良EPDMへ変更することにより、シール機能の耐	
ついて下記のとおり示す。		環境性向上について下記のとおり示す。	
① フッ素ゴム及び改良EPDM製シール材の圧縮永久ひずみ試験		①フッ素ゴム及び改良EPDM製シール材の圧縮永久ひずみ試	
について		験について	
フッ素ゴム及び改良EPDM製シール材の圧縮永久ひずみ試		フッ素ゴム及び改良EPDM製シール材の圧縮永久ひずみ	
験結果の比較を表4に示す。		試験結果の比較を表4に示す。	
表4の試験結果は、SRVが設置されている原子炉格納容器		<u>表4</u> の試験結果は、SRVが設置されている原子炉格納容	
内における事故後7日間の累積放射線量を上回る800kGyを		器内における事故後7日間の累積放射線量を上回る 800kGy	
照射し,原子炉格納容器限界温度である200℃以上の環境に		を照射し,原子炉格納容器限界温度である 200℃以上の環境	
曝露した後,フッ素ゴム及び改良EPDM製シール材の圧縮永久		に曝露した後、フッ素ゴム及び改良EPDM製シール材の圧	
ひずみを測定した結果を示している。その結果,フッ素ゴム		縮永久ひずみを測定した結果を示している。その結果、フッ	
は800kGy, 乾熱, 200℃の環境に3日間(72h)曝露されるこ		素ゴムは800kGy, 乾熱, 200℃の環境に3日間(72h)曝露さ	
とで圧縮永久ひずみがに劣化することが予想され		れることで圧縮永久ひずみが に劣化することが	
るのに対して,改良EPDM製シール材は800kGy,乾熱/蒸気,		予想されるのに対して、改良EPDM製シール材は800kGy、	
200℃の環境に7日間 (168h) 曝露されても圧縮永久ひずみは		乾熱/蒸気, 200℃の環境に7日間(168h)曝露されても圧縮永	
最大 であることが確認できている。本結果が示す		久ひずみは最大 であることが確認できている。本	
とおり,改良EPDM製シール材はフッ素ゴムより耐環境性が十		結果が示すとおり、改良EPDM製シール材はフッ素ゴムよ	
分高いことが確認できるため,シール機能の耐環境性向上が		り耐環境性が十分高いことが確認できるため、シール機能の	
達成できると考えている。		耐環境性向上が達成できると考えている。	
表4 シール材の圧縮永久ひずみ試験結果		表4 シール材の圧縮永久ひずみ試験結果	
放射線         ガス性状         温度         圧縮永久ひずみ試験*           累積照射量         ガス性状         温度         24h         72h         168h		放射線 おっぱり おっと 圧縮永久ひずみ試験*	
フッ素ゴム         800kGy         乾熱         200℃           改良 EPDM         800kGv         乾熱         200℃		材質         累積照射量         ガス性状         温度         24h         72h         168h	
改良 EPDM         800kGy         乾熱         250℃           改良 EPDM         800kGy         蒸気         200℃		フッ素ゴム 800kGy 乾熱 200℃ 	
改良 EPDM 800kGy 蒸気 250℃		改良EPDM $800kGy$ 乾熱 $250\%$	
		改良EPDM         800kGy         蒸気         200℃	
		改良EPDM 800kGy 蒸気 250℃	
※圧縮永久ひずみ試験とは、所定の圧縮率をかけ変形させた後、		※圧縮永久ひずみ試験とは,所定の圧縮率をかけ変形させた後,	
開放時の戻り量を評価するものである。完全に元の形状に戻		開放時の戻り量を評価するものである。完全に元の形状に戻	
った場合を0%、全く復元せずに完全に圧縮された状態のまま		った場合を0%,全く復元せず完全に圧縮された状態を100%	
である状態を100%としている。圧縮永久ひずみ試験結果が低		としている。圧縮永久ひずみ試験結果が低い程、シール材の	
い程、シール材の復元量が確保されていることを意味してお		復元量が確保されていることを意味しており, シール機能は	
りシール機能は健全であることを示している。		健全であることを示している。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
② 改良EPDM製シール材の性能確認試験について	②改良EPDM製シール材の性能確認試験について	
上記の①で示すシール材特性試験に加え,改良EPDM製シー	上記の①で示すシール材特性試験に加え、改良EPDM製	
ル材のシール機能を確認するために, 小型フランジ試験装置	シール材のシール機能を確認するために、小型フランジ試験	
を用いて事故環境下に曝露させ,性能確認試験を実施してい	装置を用いて事故環境下に曝露させ、性能確認試験を実施し	
る。本試験は, 原子炉格納容器内における事故後7日間の累	ている。本試験は原子炉格納容器内における事故後7日間の	
積放射線量の目安である800kGy,格納容器限界温度である	累積放射線量の目安である 800kGy, 格納容器限界温度である	
200℃と余裕を見た250℃の環境に7日間(168h)曝露した試	200℃と余裕を見た 250℃の環境に7日間(168h)曝露した試験	
験体に対してHe気密性能確認試験を実施し,格納容器限界圧	体に対して He 気密性能確認試験を実施し,格納容器限界圧力	
力2Pd <u>(0.62MPa)</u> を超える0.9MPa加圧時において漏えいがな	2Pd <u>(0.853MPa)</u> を超える MPa 加圧時において漏えいがな	・設備設計の違い
いことを確認した。	いことを確認した。	【柏崎 6/7】
		柏崎 6/7(ABWR)と島
なお,改良EPDM製シール材の試験の詳細を <u>別紙-1</u> 「改良EPDM	なお、改良EPDM製シール材の試験の詳細を <u>別紙-1</u> 「改	根2号炉(Mark-I改)
シール材の試験について(平成27年11月19日審査会合資料抜	良EPDMシール材の試験について」で示す。	の最高使用圧力の相違。
粋)」で示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
另1紙-1	別紙-1	
改良EPDMシール材の試験について	改良EPDMシール材の試験について	
改良EPDMシール材について、耐高温性、耐蒸気性を確認するた		
めに、800kGyのカンマ緑照射を行った材料を用いて、高温曝露又	るために、800kGy のカンマ緑照射を行った材料を用いて、高温曝	
は蒸気曝露を行った後、気密確認試験を実施して漏えいの有無を	露又は蒸気曝露を行った後、気密確認試験を実施して漏えいの有	
確認した。また、試験後の外観観察、FI-IR分析及び硬さ測定を行	無を確認した。また、試験後の外観観祭、FT-IR分析及び硬	
い、曝露後のシール材の状況を確認した。本試験に使用した試験	さ測定を行い、曝露後のシール材の状況を確認した。本試験に使	
治具寸法を図1,外観を図2に示す。シール材の断面寸法は実機の	用した試験治具寸法を図1,外観を図2に示す。シール材の断面	
1/2とし、内側の段差1mmに加えて外側からも高温空気又は蒸気に	寸法は実機の1/2とし、内側の段差1mmに加えて外側からも高	
曝露されるため、実機条件と比較して保守的な条件となると想定	温空気又は蒸気に曝露されるため、実機条件と比較して保守的な	
される。試験の詳細と結果を以下に記載する。	条件となると想定される。試験の詳細と結果を以下に記載する。	
①高温曝露	①高温曝露	
熱処理炉を使用して200℃, 168hの高温曝露を実施した。	熱処理炉を使用して 200℃, 168h の高温曝露を実施した。	
②蒸気曝露	②蒸気曝露	
東京電力技術開発センター第二研究棟の蒸気用オートクレ	東京電力技術開発センター第二研究棟の蒸気用オートクレ	
ーブを使用して, 1MPa, 250℃の蒸気環境下で168時間曝露を	ーブを使用して, 1 MPa, 250℃の蒸気環境下で 168 時間曝露	
実施した。蒸気用オートクレーブの系統図を図3に,試験体設	を実施した。蒸気用オートクレーブの系統図を図3に、試験	
 置状況を <u>図4</u> に示す。	体設置状況を図4に示す。	
③He気密確認試験	③He 機密確認試験	
高温曝露及び蒸気曝露後の試験体について,Heを用いて気	高温曝露及び蒸気曝露後の試験体について, He を用いて気	
密試験を実施した。負荷圧力は0.3MPa, 0.65MPa, 0.9MPaとし,	密試験を実施した。負荷圧力は 0.3MPa, 0.65MPa, 0.9MPa と	
スヌープでのリーク確認と, 0.3MPaは保持時間10分, 0.65MPa	し,スヌープでのリーク確認と,0.3MPa は保持時間 10分,	
及び0.9MPaは保持時間30分で圧力降下の有無を確認した。ま	0.65MPa 及び 0.9MPa は保持時間 30 分で圧力降下の有無を確	
た,0.8mmの隙間ゲージを用いて開口変位を模擬した気密確認	認した。また, 0.8mmの隙間ゲージを用いて開口変位を模擬	
試験も実施した(実機1.6mm相当の変位)。試験状況を図5,6	した機密確認試験も実施した(実機1.6mm 相当の変位)。試験	
に,試験結果を表1に示す。いずれの条件下でもリーク及び圧	状況を図5,6に,試験結果を表1に示す。いずれの条件下	
力降下は認められなかった。	でもリーク及び圧力降下は認められなかった。	
④試験後外観観察	④試験後外観観察	
デジタルマイクロスコープを用いてHe気密確認試験後のシ	デジタルマイクロスコープを用いて He 気密確認試験後の	
ール材表面を観察した。観察結果を図7に示す。シール材表面	シール材表面を観察した。観察結果を図7に示す。シール材	
に割れ等の顕著な劣化は認められなかった。	表面に割れ等の顕著な劣化は認められなかった。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
図1 試驗治見寸法		図1 試驗没見寸決
因1 时候们共计公		四1 四次位共立公
<b>上部</b> では、100 m m m 150 m m m 1200 m m m		
図2 試験治具及びシール材外観		図2 試験治具及びシール
図3 蒸気用オートクレーブ系統図		図3 蒸気用オートクレーフ



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<image/> <caption></caption>		<image/> <caption></caption>	
<image/> <image/> <image/> <image/> <image/>		<image/> <image/> <complex-block><image/><image/><image/></complex-block>	
表1 He気密確認試験状況		表 1 He 気密試験確認状況	
No.         ガンマ線         変位         0.3MPa         0.65MPa         0.9MPa		No.         曝露条件         γ線照射 量         変位         0.3MPa         0.65MPa         0.9MPa	
照射重     無り重       1     乾熱 200℃, 168h     800kGy     無し     ○     ○       0.8mm     ○     ○     ○		1     乾熱 200°C, 168h     800kGy     無し     〇     〇       1     乾熱 200°C, 168h     800kGy     0.8mm     〇     〇	
2     蒸気 1MPa, 250°C, 168h     800kGy     無し     ○     ○		2     蒸気 1MPa, 250°C, 168h     800kGy     無し     〇     〇       点     蒸気 1MPa, 250°C,     無し     〇     〇	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		3     168h     800kGy     0.8mm     0     0       〇:リーク及び圧力降下なし	
○:リーク及び圧力降下なし			
	172		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
^{曝露而} 		WEAT       WEAT       WEAT         Image: State of the sta	
⑤ FT-IR分析 試験後のシール材のFT-IR分析結果を図8,9に示す。FT-IR は赤外線が分子結合の振動や回転運動のエネルギーとして吸 収されることを利用して,試料に赤外線を照射して透過又は 反射した光量を測定することにより分子構造や官能基の情報 を取得可能である。高温曝露中に空気が直接接触する位置(曝 露面)では、ベースポリマーの骨格に対応するピークが消失 していたが、その他の分析位置、曝露条件では顕著な劣化は 認められなかった。		⑤FT-IR分析 試験後のシール材のFT-IR分析結果を図8,9に示す。 FT-IRは赤外線が分子結合の振動や回転運動のエネルギーとして吸収されることを利用して,試料に赤外線を照射して透過又は反射した光量を測定することにより分子構造や官能基の情報を取得可能である。高温曝露中に空気が直接接触する位置(曝露面)では、ベースポリマーの骨格に対応するピークが消失していたが、その他の分析位置、曝露条件では顕著な劣化は認められなかった。	
図8 FT-IR分析結果 (曝露面)		図8 FT-IR分析結果 (曝露面)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
図9 FT-IR分析結果(シート面)		図9 FT-IR分析結果(シート面)	
<ol> <li>(6) 硬 さ 測 定</li> </ol>		⑥硬さ測定	
試験後のシール材の硬さ測定結果を図10に示す。曝露面,		試験後のシール材の硬さ測定結果を図10に示す。曝露面,	
シート面,裏面,断面の硬さを測定した。曝露面において,		シート面,裏面,断面の硬さを測定した。曝露面において,	
乾熱200℃, 168h条件では酸化劣化によって硬さが顕著に上昇		乾熱 200℃, 168h 条件では酸化劣化によって硬さが顕著に上	
していた。その他の部位,条件では,蒸気250℃,168h条件の		昇していた。その他の部位,条件では,蒸気 250℃, 168h 条	
曝露面で右十の軟化か確認された以外, 使さば初期値近傍で あり 顕萎な少化は確認されなかった		件の曝露面で右十の軟化か確認された以外, 硬さは初期値近	
■ 曝露面		◆ ◆暴露麺 ■ シート柄	
◆シート血 ● 裏面		▲ 裏面	
Hall		•	
•			
		初期值 乾式200℃ 蒸気250℃ 168時間 168時間	
→ 初期値 乾熱 200°C 蒸気 250°C 168h 168h			
図10 硬さ測定結果		図 10 硬さ測定結果	
以上の試験結果から、2000、2Pd、168hの条件下では、改良 FPDMシール材を使用した場合は 正力ト見時のフランジ室の関		以上の試験結果から、200℃、2Pd、168hの条件下では、改 良FPDMシール材を伸用した場合は 正力ト見時のフランバ	
ロを勘案しても原子炉格納容器フランジ部の気密性は保たれる		部の開口を勘案しても原子炉格納容器フランジ部の気密性は保	
と考えられる。		たれると考えられる。	
以上			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
44. 非常用ガス処理系の使用を考慮した評価について	資料なし	33. 非常用ガス処理系の使用を考慮した評価について	
<u>柏崎刈羽原子力発電所6 号及び7 号炉</u> においては,重大事故時 における現場作業の成立性を確かなものにするため,必要な対策 を実施の上,以下の運用を行うこととしている。		<u>島根原子力発電所2号炉</u> においては,重大事故時における現場 作業の成立性を確かなものにするため,必要な対策を実施の上, 以下の運用を行うこととしている。	
<ul> <li>・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する</li> <li>・全交流電源喪失時においても屋外作業を行わずに速やかに非 常用ガス処理系を使用できるよう、ガスタービン発電機を中 央制御室から遠隔操作により起動する</li> </ul>		<ul> <li>・作業現場の放射線量の上昇の緩和のため、非常用ガス処理系 を起動する</li> <li>・全交流電源喪失時においても屋外作業を行わずに速やかに非 常用ガス処理系を使用できるよう、ガスタービン発電機を中 央制御室から遠隔操作により起動する</li> </ul>	
ここでは、非常用ガス処理系の運転を考慮した場合の重大事 故時における作業時の被ばく線量を確認した。 なお、格納容器ベント実施に伴う現場作業の線量影響の評価 条件及び評価結果の詳細は、「重大事故等対処設備について 別 添資料-1 原子炉格納容器の過圧破損を防止するための設備(格 納容器圧力逃がし装置)について」の別紙33 に示す。 また、中央制御室での被ばく線量については、「59 条 原子炉 制御室(補足説明資料) 59-11 原子炉制御室の居住性に係る被 ばく評価について」に示す。		ここでは、非常用ガス処理系の運転を考慮した場合の重大事故 時における作業時の被ばく線量を確認した。 なお、格納容器ベント実施に伴う現場作業の線量影響の評価条 件及び評価結果の詳細は、「重大事故等対処設備について別添資 料-1 格納容器フィルタベント系について」の別紙8に示す。 また、中央制御室での被ばく線量については、「59条 運転員 が原子炉制御室にとどまるための設備(補足説明資料)59-11 原 子炉制御室の居住性に係る被ばく評価について」に示す。	
1.現場の作業環境の評価結果を <u>表1</u> に示す。評価の結果,被ば く線量は最大でも <u>約87mSv</u> となった。このことから,各々の現場 作業は作業可能であることを確認した。 なお,作業の評価条件及び評価結果の詳細は別紙「給油等の 現場作業の線量影響について」に示す。		<ol> <li>現場の作業環境の評価結果を表1に示す。評価の結果,被ば く線量は最大でも約58mSvとなった。このことから、各々の現 場作業は作業可能であることを確認した。 なお、作業の評価条件及び評価結果の詳細は別紙「給油等の 現場作業の線量影響について」に示す。</li> </ol>	・評価結果の相違 【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島	島根原子力発電所 2号炉				
表1 有効性評価(重大事故)で想定する主な現場作業と放射線環 暗	表1 有効性評価(重	表1 有効性評価(重大事故)で想定する主な現場作業と放射線 環境				
作業項目         具体的な運転操作・作業内容         放射線環境           復水貯蔵槽への         ・可搬型代替注水ポンプ(A-2 級)による淡水貯水池 補給         最大約63mSv	低圧原子炉代替注 水槽への補給準備	<ul> <li>・大量送水車による輪谷貯水</li> <li>槽から低圧原子炉代替注水</li> <li>約 28mSv</li> </ul>				
・軽油タンクからタンクローリへの補給           各機器への給油         ・可搬型代替注水ポンプ(A-2 級),電源車,大容量 送水車(熱交換器ユニット用)への燃料給油作業           常設代替交流電         ・常設代替交流電源設備準備操作及び運転状態確認 (第一ガスタービン発電機)           電操作         ・M/C 受電確認, MCC 受電           代替原子炉補機         ・供表面子伝袖機合和系 進備操作、運転性能監視	各機器への給油	<ul> <li>・ガスタービン発電機用軽油</li> <li>タンクからタンクローリへの補給</li> <li>約15mSv[※]</li> </ul>				
※評価結果が最大となる「大容量送水車(熱交換器ユニット用) への燃料給油作業」の値を示す	常設代替交流電源 設備からの受電操 作	<ul> <li>・常設代替交流電源設備準備 操作及び運転状態確認(ガ スタービン発電機)</li> <li>・M/C受電操作,受電確認</li> </ul>				
	原子炉補機代替冷却系運転操作	<ul> <li>・原子炉補機代替冷却系準備 操作,運転状態監視</li> <li>約 58mSv</li> </ul>				
	の値を示す					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙		別紙	
給油等の現場作業の線量影響について		給油等の現場作業の線量影響について	
モレまれがいいいてはほかみいけんは、彼世はアマネル来したス		モリまれけいいいておりためでは、このにやりよう	
里大事故時における現場作業は放射線環境下での作業となる。		里大事故時における現場作業は放射線環境下での作業となる。	
ここでは、有効性評価(重大事故)で想定する王な現場作業のう		ここでは、有効性評価(重大事故)で想定する王な現場作業のう	
ち、別紙表1 に示す作業について作業時の被はく線量の評価を行		ち、別紙表1に示す作業について作業時の被はく緑量の評価を行	
った。作業の時間帯等を別紙表2に示す。また、各現場作業にお		った。作業の時間帯等を別紙表2に示す。また、各現場作業にお	
ける線量影響評価で採用した評価点を <u>別紙図1</u> から <u>別紙図4</u> に示		ける線量影響評価で採用した評価点を <u>別紙図1</u> から <u>別紙図3</u> に示	
す。		す。	
各作業の評価時間には作業場所への往復時間を含めた。なお、		各作業の評価時間には作業場所への往復時間を含めた。なお、	
移動中における線量率が作業中における線量率と異なることを考		移動中における線量率が作業中における線量率と異なることを考	
慮し、作業によっては、作業中と移動中で異なる場所を評価点と		慮し,作業によっては,作業中と移動中で異なる場所を評価点と	
設定し評価した。線源強度や大気拡散評価等の評価条件は、「重大		設定し評価した。線源強度や大気拡散評価等の評価条件は、「重大	
事故等対処設備について 別添資料-1 原子炉格納容器の過圧破損		事故等対処設備について 補足説明資料 59-11 原子炉制御室の	
を防止するための設備(格納容器圧力逃がし装置)について」の		居住性(炉心の著しい損傷)に係る被ばく評価について」と同じ	
別紙33 と同じとした。また,格納容器ベント実施後の作業は,7 号		とした。また、格納容器ベント実施後の作業は、W/Wベントを	
炉にてW/W ベントを実施した場合を代表として評価した。評価結		実施した場合を代表として評価した。評価結果を <u>別紙表2</u> に示す。	
果を <u>別紙表2</u> に示す。			
評価の結果,被ばく線量は最大でも <u>約87mSv</u> となった。このこ		評価の結果,被ばく線量は最大でも <u>約58mSv</u> となった。このこ	・評価結果の相違
とから、各々の現場作業は作業可能であることを確認した。		とから、各々の現場作業は作業可能であることを確認した。	【柏崎 6/7】
別紙表1 右効性評価(重大事故)で相定する主た現場作業		別紙表1 有効性評価(重大事故)で相定する主か現場作業	<ul> <li>・設備設計の相違</li> </ul>
			【柏崎 6/7】
・可搬型代替注水ポンプ(A-2 級)による淡水貯水池から復水貯蔵		作業項目	
槽への補給			
各機器への給油 ・可搬型代替注水ボンプ(A-2級),電源車,大容量送水車(熱交換		補給準備 あた を は な な の 会 に 、 の 会 に 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	
器ユニット用)への燃料給油作業		油         ・大量送水車,大型送水ポンプ車への燃料給油作業	
常設代替交流電源設 ・常設代替交流電源設備準備操作及び連転状態確認(第一カスター ビン発電機)		常設代替交流 ・常設代替交流電源設備準備操作及び運転状態確認(ガスタービ 電源設備から ン発電機)	
<ul><li> 備からの受電操作 ・M/C 受電確認, MCC 受電 </li></ul>		の受電操作 ・M/C受電操作,受電確認	
代替原子炉補機冷却 - 代替原子炉補機冷却系 準備操作,運転状態監視		原子炉補機代	
		育中国家連邦 「床丁炉桶液1、育中国家中開採IF,運転状態監沈 操作	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉				備考									
									411/2			汝 2 2	<u> </u>	<u>ب</u>	代表した。 ろ」に記載	・設備設計,運用, 評 条件の相違	平価
へ <i>h</i> r-46-829	搬型代替注水	ンフへの裕油 屋外	時間 45 分後 ^{%3}	移動 10 分 作業 10 分	約 84mSv	Utr.			ト実施後の作業	   大量送水   への給	屋外*1	42.5時間	作業 37 移動 25	1 mSv Ľ	専側作業地点で で設定 でる影響にしい、	【柏崎 6/7】	
業に伴う被ばく ************************************	大容量送水車 可	<ul><li>への粘油</li><li>小</li><li>小</li><li>品外</li></ul>	0時間 35 分後 ^{※3} 40	移動 10 分 作業 20 分 ^{%5}	統) 87mSv	 東に成功した場合を想定する。 主水ポンプへの給油」と同じと		<b>宇業に伴う被ばく</b>	格納容器ベン	大型送水ポンプ車 への給油	屋外*1	38.8時間後 ^{※3}	作業 41 分 移動 25 分	約 15mSv	所である原子炉建物」 146時間、評価時間。 で事故時の対応に与う しように設定。		
で想定する主な現場作 */	代替原子炉補機 冷却조油転起化	10.44.7.4.E.1.4.4.1.4.1.4.4.1.4.1.4.4.1.4.4.1.4.4.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	11 時間後 4	1 班: 移動 190 分 作業 120 分 2 班: 移動 20 分 作業 240 分	1 班 : 約 54mSv 2 班 : 約 49mSv	場合を想定する。 代替循環冷却系を用いて事象収 丁時間は保守的に「可搬型代替? と考慮した 20 分を想定する。		で想定する主な現場(	新代	原子炉補機代替 冷却系運転操作	屋外*1	2時間 30 分後 ^{*2}	作業 7 時間 20 分 移動 25 分	約 58mSv	) に近接した作業場所 )」に基づき、移動開 )給油作業中断が重大 会油作業が完了となる		
生評価(重大事故)、	復水貯蔵槽への補給	屋外	6時間5分後	移動 55 分 ^{%4} 作業 310 分	₩5 63mSv	 系を用いて事象収束に成功した (W/ペント)に至り,6号炉で 容量送水車への給油」の作業完 動時間除く)に,時間余裕3分?		<u> </u>	<b>客ベント実施前の作</b>	氏圧原子炉代替 水槽への補給準備	屋外*1	20 分後 ^{*2}	╒業 1 時間 40 分 移動 25 分	糸5 28mSv	放出点 (原子炉建物 成立性確認表 (一覧 に伴う一時待避中の 送水ポンプ車への約		
別紙表2 有効	常設代替交流電源	設備からの受電操作屋内	10 分後	移動, 作業 60 分	¥́л 0. 32mSv	 には、両号炉井に代替循環冷却 には、7号炉で格納容器ペント 業活了となるように設定。「大 時間5分を含む。 見定する給油作業時間 17 分(移		別紙表2 有效	格納容器	<ul><li> 七替交流電源 </li><li> ・ らの受電操作 </li><li> 注 ・ </li></ul>	屋内	0 分後*2	F業 70 分 ℓ ≷動 15 分	約 40mSv	に当たっては,最も 重大事故等対策の) 2 格納容器ベント 施約7時間後に大型		
			移動開始時間 (事象開始後)	<b>旧</b> 神 <del>即</del> 握	被ばく線量	<ul> <li>※1 評価に当たって</li> <li>※2 評価に当たって</li> <li>※3 計価間後に付当</li> <li>※3 引時間後に付当</li> <li>※3 引き間後に付当</li> <li>※3 引きの存案</li> <li>※5 技術的能力で想</li> </ul>				「読代」		開始時間 2(開始後) 2(	時間*2 h	ビく線量	屋外移動中の評価(「添付資料 1.3.1 「添付資料 1.3.1 「補足説明資料 10 とおり、ベント実力		
												8 (事) (事)	小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小	一	9 33 57 33 57 34 37 37 37 37 37 37 37 37 37 37 37 37 37		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別祇凶Ⅰ復水灯風槽への補給		「別紙図1 低圧原于炉代替注水槽への補給,原于炉補機代替行却糸 軍転操作及び屋外移動中の線量評価点	
別紙凶2 代替原子炉補機冷却杀運転操作(7 号炉对心时)			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------	---------------------	--------------------------------	----
			ר
			J
		別紙図9 七刑送水ポンプ甫への給油作業の評価占	
加减因3 八石重达八半、07船祖		所和因と 八主 送水林 シノ 単一の相面 [[未の] 面 加	
別紙図4 可搬型代替注水ポンプへの給油		別紙図3 大量送水車への給油作業の評価点	—

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
49. 溶融炉心落下位置が原子炉格納容器下部の中心軸から外れ、	22 溶融炉心が原子炉圧力容器下部の偏心位置より落下した場合	37. 溶融炉心落下位置がペデスタルの中心軸から外れ,壁側に偏	
壁側に偏って落下した場合の影響評価	の影響評価	って落下した場合の影響評価	
1. 評価の目的	1. 評価目的	1. 評価の目的	
平成29 年2 月の1F2 原子炉格納容器下部の調査結果では,			・評価方針の相違
原子炉格納容器下部の中心軸から外れた位置のグレーチング			【柏崎 6/7】
の落下が確認されている。確認された範囲は原子炉格納容器下			島根2号炉および東
部の一部であり, 原子炉格納容器下部の中心等未確認の箇所が			海第二では現実的な評
多く,グレーチングの落下理由についても現状不明であるが,			価条件で水蒸気爆発評
グレーチングの落下理由の可能性の1 つとして, RPVから流出			価を実施。柏崎 6/7 で
した溶融炉心が落下したことの影響が考えられる。			は、現実的および保守
			的な評価条件で水蒸気
			爆発評価が実施されて
			いる。
	実機において、水蒸気爆発 (以下「SE」という。)が発生	実機において,水蒸気爆発が発生する可能性は,これまで	
	する可能性は、これまでの知見からも極めて低いと考えられる	の知見からも極めて低いと考えられるが, <u>島根2号炉</u> では,	
	が, <u>東海第二発電所</u> では,事象の不確かさを踏まえ保守性を考	事象の不確かさを踏まえ保守性を考慮した入力条件による水	
	慮した入力条件による <u>SE評価</u> (以下「基本ケース」という。)	蒸気爆発評価(以下「基本ケース」という。)を実施し、万が	
	を実施し、万が一の <u>SE</u> の発生を想定した場合でも <u>格納容器</u> の	一の <u>水蒸気爆発</u> の発生を想定した場合でも <u>原子炉格納容器</u> の	
	健全性が損なわれないことを確認している。	健全性が損なわれないことを確認している。	
	有効性評価のMAAP解析では,下部プレナムへ移行した溶	有効性評価のMAAP解析では、下部プレナムへ移行した	
	融炉心 (以下「デブリ」という。) による過熱で原子炉圧力容	溶融炉心による過熱で原子炉圧力容器下部の中心部温度が最	
	器 (以下「RPV」という。) 下部の中心部温度が最も高くな	も高くなり、その位置の制御棒駆動機構ハウジング溶接部に	
	り、その位置の制御棒駆動機構 (以下「CRD」という。) ハ	生じるひずみによって原子炉圧力容器破損に至る結果となっ	
	ウジング溶接部に生じるひずみによって <u>RPV</u> 破損に至る結	ている。このため、基本ケースの入力条件のうち、溶融炉心	
	果となっている。このため、基本ケースの入力条件のうち、メ	の放出口径については原子炉圧力容器下部の中心としてい	
	<u>ルト放出位置</u> については <u>RPV</u> 下部の中心としている。また,	る。また,溶融炉心の放出口径については,爆発規模が大き	
	メルト放出口径については,爆発規模が大きくなる条件として	くなる条件として <u>制御棒駆動機構</u> ハウジングの逸出を想定し	
	<u>CRD</u> ハウジングの逸出を想定した口径を設定している。	た口径を想定している。	
	しかしながら,実際に重大事故が発生した場合においては,	しかしながら, 実際に重大事故が発生した場合においては,	
	有効性評価上期待していない原子炉注水手段の復旧等,想定と	有効性評価上期待していない原子炉注水手段の復旧等、想定	
	は異なる対応や事故進展の影響により, <u>RPV</u> 下部の中心から	とは異なる対応や事故進展の影響により、原子炉圧力容器下	
	外れた偏心位置での貫通部溶接破損によって生じたわずかな	部の中心から外れた偏心位置での貫通部溶接破損によって生	
	間隙からデブリ流出する等,基本ケースでの想定と異なる落下	じたわずかな間隙から溶融炉心が流出する等、基本ケースで	
	様態となることも考えられる。また, 偏心位置で <u>SE</u> が発生し	の想定と異なる落下様態となることも考えられる。また、偏	
	た場合、爆発位置が基本ケースよりも側壁に近接するため、局	心位置で水蒸気爆発が発生した場合、爆発位置が基本ケース	
	部的に大きな動的荷重が作用する可能性がある。	よりも側壁に近接するため、局部的に大きな動的荷重が作用	
		する可能性がある。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
今回,確認されたグレーチングの落下位置がCRD ハウジング	ここでは, 偏心位置における現実的なデブリの落下様態を想	ここでは、偏心位置における現実的な溶融炉心の落下様態	
の外周部近傍の下部であることを踏まえ,KK6/7 に対して溶融	定した <u>SE</u> の影響を評価し, <u>格納容器</u> の健全性が損なわれない	を想定した水蒸気爆発の影響を評価し,原子炉格納容器の健	
炉心の落下位置がCRD ハウジングの外周部に溶融炉心が落下	ことを確認するとともに, 基本ケースの評価の代表性を確認す	全性が損なわれないことを確認するとともに、基本ケースの	
し、水蒸気爆発の発生を仮定した場合の影響を確認した。	る。	代表性を確認する。	
2. 評価に用いた解析コード等	2. 評価方法	2. 評価方法	
水蒸気爆発の影響を評価するにあたっては、溶融燃料ー冷却	(1) 評価条件	(1)評価条件	
材相互作用によって発生するエネルギー,発生エネルギーによ	解析コードは基本ケースと同様に, <u>SE</u> 解析コードJAS	解析コードは基本ケースと同様に,水蒸気爆発解析コード	
る圧力伝播挙動及び構造応答が重要な現象となる。よって、こ	MINE <u>及び汎用有限要素解析コードLS-DYNA</u> を用	JASMINE,構造応答解析コードAUTODYN-2D	・評価コードの相違
れらの現象を適切に評価することが可能である水蒸気爆発解	いて評価した。本評価における各コードの入力条件及び評価	を用いて評価した。本評価における各コードの入力条件及び	【東海第二】
<u> 析コードJASMINE, 構造応答解析コードAUTODYN-2D により圧力</u>	モデルの取扱いを以下に示す。	評価モデルの取扱いを以下に示す。	島根2号炉のペデス
伝播挙動及び構造応答,格納容器圧力等の過渡応答を求める。			タルは、周方向に規則的
			な構造物であるため,
			AUTODYN-2D を用いた。
3. 評価条件	a. JASMINE	a. JASMINE	
主要解析条件を表1 に示す。溶融炉心は原子炉圧力容器底部	第1表に主要入力条件を示す。本評価の入力条件及び評価モ	<u>表1</u> に主要入力条件を示す。本評価の入力条件及び評価モ	・評価条件の相違
のCRDハウジングの外周部直下に落下するものとし,溶融炉心	デルは基本ケースと同様とするが,以下については現実的な条	デルは基本ケースと同様とするが、以下については現実的な	【柏崎 6/7】
が原子炉圧力容器の破損口から落下する際には、溶融炉心・コ	件として適用する。	条件として適用する。	島根2号炉および東
ンクリート相互作用の緩和策として,原子炉格納容器下部に水			海第二では現実的な評
位2m の水張りが実施されているものとした。また,原子炉格			価条件で水蒸気爆発評
納容器下部の水位が上昇するケースとして,原子炉格納容器下			価を実施。基本ケースの
部にリターンラインまでの高さ (7m)の水位が形成されている			評価は保守性を含んだ
場合の評価も実施した。構造応答解析コードAUTODYN-2D によ			条件設定となっており、
る評価モデルのイメージを図1 に示す。図1 の通り, 評価モデ			溶融炉心が偏心位置に
ルを溶融炉心落下位置から格納容器下部壁面までの最短距離			落下した場合について,
<u>を半径とする円筒とした。なお、粗混合過程で溶融炉心が拡が</u>			保守的な条件を重畳さ
る範囲が図1 に示す範囲よりも十分に小さいため,円筒の半径			せた評価としていない。
の差異は溶融燃料ー冷却材相互作用によって発生するエネル			
ギーに影響しないと考えられることから,水蒸気爆発解析コー			
ドJASMINE の評価モデルでは円筒の半径を狭めず実機に即し			
たモデルとし, 溶融燃料-冷却材相互作用によって発生するエ			
ネルギーを評価した。			
	(a)メルト放出口径	<u>(a)溶融炉心落下量</u>	
	<u>第1図及び第2図にCRDハウジングサポート構造を示す。C</u>	図1に制御棒駆動機構ハウジング支持金具構造を示す。	・記載方針の相違
	RDハウジングサポートは、ペデスタル内側の鋼板に固定され	制御棒駆動機構ハウジング支持金具は,原子炉本体の基礎	【東海第二】
	た上部サポートビームにハンガーロッド等を介してグリッド	の鋼板に固定されたサポートビームに吊り棒等を介してグ	記載方法は異なるが、
	プレートを接続した構造によりCRDハウジングの逸出を防	<u>リッドプレートを接続した構造により制御棒駆動機構ハウ</u>	島根2号炉と東海第二

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	止する設計としている。	ジングの溢出を防止する設計としている。	で同様の評価条件が想
	基本ケースでは、CRDハウジングの逸出を想定した口径	基本ケースでは、制御棒駆動機構ハウジング1本分	定されている。
	を考慮しているが, 上記のとおりCRDハウジングの外	(0.15m) に流出時の溶融炉心による口径の拡大分 (0.05m)	
	部サポートが設置されているため現実的には逸出は考えにく	を見込んだ口径のジェット(0.20m)を考慮しているが,上	
	い。このため、本評価ではCRDハウジングが保持された状態	記のとおり制御棒駆動機構ハウジングの支持金具が設置さ	
	を想定し、CRDハウジングとRPV下鏡板との間に生じる間	れているため現実的には制御棒駆動機構ハウジング1本が	
	隙からのメルト放出を考慮する。	瞬時に脱落することは考えにくく,溶接の薄い箇所等, <u>僅</u>	
		かな口径から流出した溶融炉心が構造材を伝い、あるいは	
		構造材によって分散され、細い径で徐々に落下する形態が	
		考えられる。このため、本評価では制御棒駆動機構ハウジ	
		ングと原子炉圧力容器の下鏡部との間に生じる間隙からの	
		溶融炉心の放出を考慮する。	
	<u>CRD</u> ハウジングと <u>RPV下鏡板</u> との間に生じる間隙の幅	制御捧駆動機構ハウジングと原子炉圧力容器の下鏡部と	
	は, サンディア国立研究所の <u>RPV</u> 下部ヘッド破損を模擬した	の間に生じる間隙の幅は,サンディア国立研究所の <u>原子炉</u>	
	LHF試験 ^[1] において,貫通部溶接の破損によって約4mmの間	圧力容器下部ヘッド破損を模擬したLHF試験[1]におい	
	隙が生じたことを踏まえ, これと同じ間隙幅を本評価において	て,貫通部溶接の破損によって約4mmの間隙が生じたこと	
	仮定する。	を踏まえ、これと同じ間隙幅を本評価において仮定する。	
	<u>以上より想定したCRDハウジングとRPV下鏡板との間</u>	以上より制御棒駆動機構ハウジングと原子炉圧力容器の	
	に生じる開口面積(約))と等価な口径である をメ	下鏡部との間に生じる隙間幅を4mmと想定し, 面積に換算	
	ルト放出口径として設定する。	すると約 10cm ² となる。この開口面積(約 10cm ² )と等価な	
		口径である 35.7mm を溶融炉心の放出口径として設定する。	
		なお、島根原子力発電所2号機の制御棒駆動機構ハウジ	
		ングと原子炉圧力容器の下鏡部の間の開口面積は最大でも	
		<u>約3cm²であり, 10cm²に包絡される。</u>	
	(b) <u>粗混合時液滴径</u>	(b) <u>粗混合粒径</u>	
	既存のFCI試験ではザウター平均粒径として0~3mm程度	既存のFCI試験 <u>(FARO,COTELS等)</u> ではザ	
	と報告されていることから, 基本ケースでは保守的にを設	ウター平均粒径として0~3mm 程度と報告されていること	
	定しているが,本評価では現実的な条件として既往の実験から	から,基本ケースでは保守的に4mmを設定しているが,本	
	得られている平均粒径の条件である__を設定する。	評価では現実的な条件として既往の実験から得られている	
		平均粒径の条件である3mmを設定する。	
	(c) トリガリングタイミング	(c) トリガリングタイミング	
	基本ケースでは、SEにより発生する運動エネルギが最も大	基本ケースでは、水蒸気爆発により発生する運動エネル	
	きくなると考えられる条件である粗混合融体質量ピーク時点	ギが最も大きくなると考えられる条件である粗混合融体質	
	としている。一方、実機条件では、高圧ガスや爆薬を用いた大	量ピーク時点としている。一方,実機条件では,高圧ガス	
	規模FCI実験のトリガ装置で発生させているような外部ト	や爆薬を用いた大規模FCI実験のトリガ装置で発生させ	
	リガが与えられる状況は考えにくく,また, <u>東海第二発電所</u> で	ているような外部トリガが与えられる状況は考えにくく,	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	は重大事故時のペデスタル水位を <u>1mに制限する運用とするこ</u>	また, <u>島根2号炉</u> では重大事故時のペデスタル水位 <u>は</u> 2.4m	
	とから,現実的にはメルトジェットがペデスタル床面に接触す	としていることから,現実的にはメルトジェットがペデス	
	る際の衝撃によりトリガリング発生する可能性が高いと考え	タル床面に接触する際の衝撃によりトリガリングが発生す	
	られる。このため、本評価ではメルトジェット先端が床面に到	る可能性が高いと考えられる。このため、本評価ではメル	
	達した時点を設定する。	トジェット先端が床面に到達した時点を設定する。	
	以上のとおり,本評価では一部現実的な入力条件を適用する	以上のとおり、本評価では一部現実的な入力条件を適用す	
	が、実機での <u>SE</u> に対して次の保守性が含まれているものと考	るが,実機での <u>水蒸気爆発</u> に対して次の保守性が含まれてい	
	える。	るものと考える。	
	第3図に <u>RPV下部</u> 構造物配置状況を示す。 JASMINE	図2にペデスタル内構造物配置状況を示す。 JASMIN	
	ではメルトが放出口から直線的に自由落下し直接水プールに	Eでは <u>溶融炉心</u> が放出口から直線的に自由落下し直接水プー	
	侵入する理想的なメルトジェットを仮定した評価モデルとな	ルに侵入する理想的なメルトジェットを仮定した評価モデル	
	っているが,実機の <u>RPV</u> 下部には <u>CRD</u> ハウジング, <u>炉内計</u>	となっているが,実機の <u>原子炉圧力容器</u> 下部には <u>制御棒駆動</u>	
	<u>装ハウジング、ケーブル等</u> が設置されており、更に下部には足	機構ハウジングが設置されており,更に下部には足場となる	
	場となるグレーチング等の構造物が存在する。このため、実機	グレーチング等の構造物が存在する。このため、実機の重大	
	の重大事故において <u>RPV</u> 下部から流出した <u>デブリ</u> はこれら	事故において <u>原子炉圧力容器</u> 下部から流出した <u>溶融炉心</u> はこ	
	の構造物に接触し、分散するものと想定され、 <u>RPV</u> 下部から	れらの構造物に接触し,分散するものと想定され,原子炉圧	
	流出したデブリが理想的なジェット形状を保ったまま直接水	<u>力容器</u> 下部から流出した <u>溶融炉心</u> が理想的なジェット形状を	
	プールに侵入することはないと考えられる。したがって、実機	保ったまま直接水プールに侵入することはないと考えられ	
	の重大事故において爆発に寄与する粗混合融体質量はJAS	る。したがって,実機の重大事故において爆発に寄与する粗	
	MINEで考慮されている粗混合融体質量よりも更に少なく	混合融体質量はJASMINEで考慮されている粗混合融体	
	なり、爆発規模は小さくなると考えられる。	質量よりも更に <u>小さく</u> なり,爆発規模は小さくなると考えら	
		れる。	
	b. LS-DYNA	b. $AUTODYN-2D$	・評価コードの相違
	第2表に爆発源仕様を,第4図に解析モデルを示す。本評価の	<u>図3</u> に解析モデルを示す。本評価の入力条件及び評価モデル	【東海第二】
	入力条件及び評価モデルは基本ケースと同様とするが, 半径方	は基本ケースと同様とするが,半径方向の爆発源位置について	島根2号炉のペデス
	向の爆発源位置については、 <u>ペデスタル</u> 側壁に最も近接する <u>R</u>	は, 格納容器側壁に最も近接する原子炉圧力容器下部最外周の	タルは,周方向に規則的
	<u>PV</u> 下部最外周の <u>CRD</u> ハウジング直下の位置とする。	制御棒駆動機構ハウジング直下の位置とする。	な構造物であるため,
	(2) 判断其准		へいいい~20 を用いた。
			このため、高根乙方炉
	LS = DINAによる、アメクル構造健主性計画の判例室 進け其本なーフ目送しまる		こ果供另一(ハ)ハク
	<u> 単は基本クース同様とりる。</u>		が構造健主性計価の利
			阿巫宇も共なる。
4. 評価結果	3. 評価結果	3. 評価結果	
原子炉格納容器下部に水位2m の水張りが実施されている場	(1) JASMINE	水蒸気爆発に伴うエネルギ、ペデスタル内側及び外側鋼板	
合における水蒸気爆発に伴うエネルギー,原子炉格納容器下部	第3表にJASMINE評価結果を示す。流体の運動エネル	の応力の推移を図4、図5及び図6に示す。水蒸気爆発の発	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
内側及び外側鋼板の応力の推移を図2,図3_及び図4_に示す。	ギの最大値は <u>約1.1MJ</u> である。	生を想定した場合にペデスタルの水に伝達される運動エネル	・評価結果の相違
水蒸気爆発の発生を想定した場合に原子炉格納容器下部ドラ		ギの最大値は, <u>約 0.6MJ</u> である。このエネルギを入力とし,	【柏崎 6/7,東海第二】
イウェルの水に伝達される運動エネルギーの最大値は, <u>約7MJ</u>	(2) $L S - D Y N A$	ペデスタル内側及び外側鋼板にかかる応力を解析した結果,	
である。この <u>エネルギー</u> を入力とし, <u>原子炉格納容器下部</u> 内側	<u>第4表にLS-DYNAによるペデスタル構造健全性評価結</u>	ペデスタルの内側鋼板に加わる応力は <u>約 53MPa</u> ,外側鋼板に	
及び外側鋼板にかかる応力を解析した結果, 原子炉格納容器下	果を,第5図にペデスタル変位時刻歴,第6図にコンクリート最	かかる応力は <u>約 12MPa</u> となった。これは内側及び外側鋼板の	
部の内側鋼板に加わる応力は <u>約98MPa</u> ,外側鋼板にかかる応力	小主ひずみ分布,第7図に鉄筋軸ひずみ分布及び第8図にコンク	降伏応力を大きく下回る値であり,かつ,弾性範囲内にある	
は <u>約47MPa</u> となった。これは内側及び外側鋼板の降伏応力を大	<u>リートせん断応力度を示す。LS-DYNAの解析結果はすべ</u>	ことから、原子炉圧力容器の支持に支障が生じるものではな	
きく下回る値であり、かつ、弾性範囲内にあることから、原子	ての項目の判断基準を満足している。よって, 偏心位置でのS	<i>د</i> ، .	
炉圧力容器の支持に支障が生じるものでは無い。	<u> Eによってもペデスタルに要求される機能は維持され、格納容</u>		
	<u>器の健全性は損なわれることはない。</u>		
	なお, 側壁及び床スラブの面外せん断応力度の検討範囲及び		
	算定方法は基本ケースと同じである。		
また, 原子炉格納容器下部に水位7m の水張りが実施されて			・評価条件の相違
いる場合における水蒸気爆発に伴うエネルギー, 原子炉格納容			【柏崎 6/7】
器下部内側鋼板の相当塑性ひずみの推移及び外側鋼板の応力			島根2号炉および東
の推移を図5, 図6 及び図7 に示す。水蒸気爆発の発生を想定			海第二では,現実的な
した場合に原子炉格納容器下部ドライウェルの水に伝達され			水張り水位でのみの水
る運動エネルギーの最大値は,約16MJ である。このエネルギ			蒸気爆発評価を実施。
<u>ーを入力とし、原子炉格納容器下部内側及び外側鋼板にかかる</u>			
応力を解析した結果, 原子炉格納容器下部の内側鋼板にかかる			
応力は降伏応力を超えるものの,相当塑性ひずみは約0.13%,			
<u>外側鋼板にかかる応力は約326MPa となった。応力評価の対象</u>			
としている内側及び外側鋼板(厚さ30mm)降伏応力は約490MPa			
である。外側鋼板にかかる応力は降伏応力を大きく下回る値で			
あり、かつ、弾性範囲内にあることから、原子炉圧力容器の支			
持に支障が生じるものでは無い。			
なお,構造上,原子炉格納容器下部の内側鋼板にかかる応力		なお,構造上, <u>ペデスタル</u> の内側鋼板にかかる応力の方が	
の方が外側鋼板にかかる応力よりも大きくなる傾向があるが、		外側鋼板にかかる応力よりも大きくなる傾向があるが,原子	
原子炉圧力容器の支持機能については原子炉格納容器下部の		炉圧力容器の支持機能についてはペデスタルの外側鋼板のみ	
外側鋼板のみで維持可能である。		で維持可能である。	
以上の結果から, <u>水位2m 及び水位7m において,</u> 水蒸気爆発		以上の結果から, <u>現実的と考えられる評価条件において溶融</u>	・評価条件の相違
の発生を想定した場合であっても,原子炉格納容器バウンダリ		<u>炉心が偏心位置に落下して</u> 水蒸気爆発の発生を想定した場合	【柏崎 6/7】
の機能を維持できることを確認した。		であっても,原子炉格納容器バウンダリの機能を維持できるこ	島根2号炉は、現実
		とを確認した。	的な水張り水位でのみ
			の水蒸気爆発評価を実 
			施。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
5. 水蒸気爆発についての評価の保守性について			・記載方針の相違
上記の評価結果が示す通り,初期水張り水位7mの評価条件			【柏崎 6/7】
では内側鋼板が僅かに歪む結果となった。上記の結果であって			現状の水蒸気爆発評
もKK6/7 の格納容器下部の支持機能は十分維持されるものと			価が様々な保守性を含
考えるが,現状の水蒸気爆発の評価は様々な保守性を含んでい			んでいることを鑑みて,
ると考えており,溶融炉心落下時の溶融炉心の挙動や実機の状			水蒸気爆発評価の評価
況を現実的に考えれば, 爆発の規模はより低減されるものと考			条件の保守性について
える。以下ではRPV 破損時の溶融炉心のふるまいを考慮し, 本			の考察が記載されてい
水蒸気爆発評価における評価条件の保守性について述べる。			る。
(1) 溶融炉心の落下高さ			
JASMINE では, RPV 破損後, 溶融炉心はペデスタルに張ら			
れた初期水張りの水面まで自由落下し、プール内へ流入する			
評価モデルとなっている。しかしながら実機のRPV 下部には			
CRD, 炉内計装ハウジング, ケーブルが設置されており, 更に			
下部にはCRD 交換機や足場となるグレーチング等の構造物が			
存在している(図8, 図9 参照)。実機の構造上, RPV 底部から			
<u>流出した溶融炉心はこれらの構造物に接触し、分散すること</u>			
が自然と考えられることから、溶融炉心が直接初期水張りの			
水面まで落下することはないと考えられる。したがって、溶			
融炉心の落下を考慮する上では、少なくとも溶融炉心が一旦			
留まる可能性が高いCRD 交換機のターンテーブル高さ(ペデ			
スタル床上約5m)を考慮することが現実的と考えられる。			
水張り高さが5m 未満の場合は溶融炉心がCRD 交換機の高			
さで一旦停止した上で初期水張りの水面に落下することか			
ら、溶融炉心の落下速度が遅くなり、これにより粗混合量が			
減少することから, RPV 底部から直接初期水張りの水面に落			
下する場合に比べて水蒸気爆発の規模が小さくなる。水張り			
高さが5m 以上の場合は溶融炉心がグレーチング等の構造物			
に接触することでトリガリングを誘発する可能性が考えら			
れ,この場合,爆発発生の位置が高く,粗混合量が少ない状			
<u>態での爆発となることから、粗混合量のピークをとるまで沈</u>			
んでから爆発する場合に比べて水蒸気爆発の規模が小さくな			
<u>a.</u>			
(2) 溶融炉心の放出速度			
溶融炉心の放出速度は破損口にかかる溶融炉心の堆積圧			
等からMAAP4 で計算されており, 8m/s が設定されている。溶			
融炉心の堆積圧の計算では,燃料に加えて炉内構造物が考慮			
されているものの、実際には燃料や構造材の一部が炉心位置			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
に滞留することが考えられる。			
また,端部から落下する場合,RPV 底部が半球状になって			
いることから、堆積圧が低下し、放出速度が緩和される可能			
性が考えられる。			
(3) 溶融炉心落下量			
溶融炉心のRPV 破損口からの落下の形態については, 現			
状,CRD ハウジング1 本分(0.15m)に流出時の溶融炉心による			
口径の拡大分(0.05m)を見込んだ口径のジェット(0.20m)を考			
慮しているが, 実際にはCRD ハウジング1 本が瞬時に脱落す			
ることは考えにくく、溶接の薄い箇所等、僅かな口径から流			
<u>出した溶融炉心が構造材を伝い、あるいは構造材によって分</u>			
<u>散され,細い径で徐々に落下する形態が考えられる。現実的</u>			
な流出箇所と流下の形態を想定する場合, 粗混合量はCRD ハ			
ウジング1 本分の口径のジェットを想定する場合に比べて少			
ないものと考えられることから,水蒸気爆発の規模が小さく			
<u>なる。</u>			
<u>下部プレナムに溶融炉心が落下した後の流出経路に関す</u>			
<u>る知見としては,NUREG/CR-5582</u> に実験結果が示されている。			
<u>NUREG-5582 では,RPV 及びRPV 底部の貫通部を模擬した圧力</u>			
容器に高温の溶融炉心の模擬物質を落下させた際の圧力容器			
<u>の破損の挙動を調査しており、その結果、貫通部材の抜け落</u>			
ちは確認されず、圧力容器と貫通部材の間の溶接部の貫通が			
<u>確認されたと報告されている。また,貫通した箇所の隙間の</u>			
<u>大きさは元々の大きさである0.2mm から約4mm まで増加した</u>			
と報告されている。			
柏崎刈羽原子力発電所6 号及び7 号炉のFMCRD とRPV の構			
造に照らすと,RPV とCRDハウジングの隙間の大きさは0.25mm			
であり, 面積に換算すると0.6cm2 となる。また, 仮に隙間の			
大きさが4mm まで増加した場合を想定すると,面積は約10cm2			
となる。この様にRPV とCRD ハウジングの隙間から溶融炉心			
が流出する場合を想定するとしても, RPV とCRD ハウジング			
の溶接面の全周が均一に溶融し、同時に貫通して溶融炉心が			
下部プレナムに一斉に流出することは考えにくく,実際には			
溶接面の一部から流出が開始するものと考えると、溶融炉心			
の流出の口径は更に狭まるものと考えられるため、上記の想			
定についても未だ保守性を有しているものと考えられる。			
<u>(4) 溶融炉心の温度</u>			
RPV から流出した溶融炉心は構造材を伝う間に構造材によ			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
って熱を奪われ、冷却される可能性が考えられる。この場合,			
溶融炉心はクエンチされ易くなることから,冷却効果を考慮			
しない場合に比べて爆発に寄与する溶融炉心の量が減少する			
可能性が考えられる。			
(5) トリガ位置およびタイミング			
(1)に記載の通り,初期水張り高さを5m以上とする場合,			
溶融炉心は5m 高さのグレーチング等に接触した際の衝撃で			
トリガリングが発生する可能性が考えられる。この場合、爆			
発発生の位置が高く、粗混合量が少ない状態での爆発となる			
<u>ことから、粗混合量のピークをとるまで沈んでから爆発する</u>			
場合に比べて水蒸気爆発の規模が小さくなる。			
<u>初期水張り高さ7m を考える場合であっても, 2m の深さで</u>			
水蒸気爆発が生じると考えれば,爆発の規模としては2m水張			
りの場合と同程度の結果※と考えられる。			
<u>※ 水深7m で粗混合量のピークをとるまで沈んでから爆発</u>			
<u>する場合に発生するエネルギーは16MJ だが, 2m 水張りの場</u>			
<u>合は7MJ。</u>			
(6) 粗混合粒径			
既存のFCI 試験ではザウター平均粒径として0~3mm 程度			
と報告されていることからJASMINE 解析では保守的に4mm を			
設定してきた。このため、現実的な条件として既往の実験か			
ら得られている平均粒径の条件である3mm を設定することが			
<u>妥当と考える。これにより、溶融炉心はクエンチされ易くな</u>			
<u>ることから、粒径を4mm とする場合に比べて爆発に寄与する</u>			
溶融炉心の量が減少する可能性が考えられる。			
(7)格納容器下部の水温			
評価では格納容器下部の水温を50℃としているが,実際に			
<u>は格納容器スプレイによってスプレイ時の水温50℃よりも高</u>			
い温度の水が格納容器下部に流入する可能性が考えられる			
(有効性評価「炉外FCI」のベースケースのRPV 破損前のドラ			
<u>イウェルの雰囲気温度は約80℃)他, サプレッション・チェン</u>			
バ・プール水位が上昇しリターンラインから水が流入する場			
合には,有効性評価「炉外FCI」のベースケースのサプレッシ			
<u>ョン・チェンバの水温が約100℃になっていることから,50℃</u>			
より高い水温の水で格納容器下部が満たされると考えられ			
<u>る。</u>			
溶融炉心がサブクールの低い水中(高温の水中)に落下する			
場合,落下し,分散した溶融炉心の近傍が高ボイド率となり,			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
衝撃力の伝播を抑制すると考えられることから、格納容器下			
部の水温が高い場合に水蒸気爆発に伴って発生するエネルギ			
一は、格納容器下部の水温が低い場合に比べて小さくなるも			
のと考えられる。			
なお,溶融炉心がサブクールの低い水中(高温の水中)に落			
下する場合,トリガリングが発生しにくいという知見が得ら			
れている。これはサブクールが高い水中(低温の水中)に落下			
した場合に比べて溶融炉心を覆う蒸気膜が安定なためと考え			
られている。			
<ol> <li>現実的と考えられる評価条件における影響評価</li> </ol>			・記載方針の相違
上記5.の通り,現在の水蒸気爆発の評価条件は種々の保守			【柏崎 6/7】
<u>性を有していると考えられることから,NUREG-5582 を参考に</u>			前項の水蒸気爆発評
RPV 底部破損(溶融物流出)口径を見直す等, 大きな保守性を			価の評価条件の保守性
有していると考えられるパラメータについては評価条件を見			についての考察を踏ま
直し,水蒸気爆発による影響評価を実施した。			え、現実的な評価条件
(1) 評価条件(図1 及び表2 参照)			での水蒸気爆発解析が
・溶融炉心落下位置:CRD ハウジング最外周での溶融炉心			実施されている。
の落下を想定			
・RPV 底部破損(溶融物流出)口径:0.0357m(約10cm2)(RPV			
<u>とCRD ハウジングの隙間の面積0.6cm² に余裕を見込ん</u>			
<u>だ値)</u>			
・溶融物の放出速度:8m/s(ベースケースから変更なし。)			
・初期水張り水位:7m			
・トリガリング位置:格納容器下部床面から5m(グレーチン			
<u>グ高さ)</u>			
・粗混合粒子径3mm			
・初期水張り水温50℃(ベースケースから変更なし。)			
<ul> <li>・構造応答解析コードAUTODYN-2D による評価モデル:溶融</li> </ul>			
炉心落下位置から格納容器下部壁面までの最短距離を半			
径とする円筒			
(2) 評価結果			
・運動エネルギーの最大値:1.5MJ(図10 参照)			
・内側鋼板におけるミーゼス相当応力の最大値:70MPa(図			
11 参照)			
・外側鋼板におけるミーゼス相当応力の最大値:33MPa(図			
12 参照)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
7. 評価結果の比較	(3) 基本ケース解析との比較	4. 評価結果の比較	
初期水張り水位,溶融炉心落下位置,その他評価条件を変	第5表に基本ケース解析との比較を示す。評価対象とする項	<u>表2に基本ケース解析との比較を示す。</u> 現実的と考えられ	・評価結果の相違
<u>更して実施した評価結果の比較を表3 に示す。6.に示す、</u> 現	目のうち, 側壁下部の面外せん断応力度及び側壁鉄筋の引張ひ	る評価条件において溶融炉心が偏心位置に落下した場合の影	【柏崎 6/7,東海第二】
実的と考えられる評価条件において溶融炉心が偏心位置に落	ずみ以外は、基本ケース解析結果を下回るか、同様(変位、圧	響評価の結果, <u>基本ケースよりもペデスタルの内側及び外側</u>	島根2号炉の基本ケ
下した場合の影響評価の結果, <u>ベースケース(初期水張り水位</u>	壊の範囲)である。	それぞれの鋼板に加わる応力が小さくなる結果となった。	ースでは、保守的な評
2m の格納容器下部中心に溶融炉心が落下した場合について,	側壁下部の面外せん断応力度は基本ケースの解析結果を上		価条件が適用されてお
保守的な評価条件で評価したケース)よりも格納容器下部の	回っているが,判断基準である終局面外せん断応力度に対して		り,現実的な評価条件
内側及び外側それぞれの鋼板に加わる応力が大きくなった。	十分な余裕がある。また、上部側壁に発生する面外せん断応力		を適用した偏心ケース
<u>一方,ベースケースに対して初期水張り水位のみ7m に変更し</u>	度は基本ケースの6割程度にとどまっている。		の評価結果を包絡する
た評価結果よりは、格納容器下部の内側及び外側それぞれの	側壁の鉄筋の引張ひずみも基本ケースの解析結果を上回っ		結果となっている。
<u>鋼板に加わる応力が小さくなる結果となった。</u>	ているが、判断基準の許容ひずみを十分に下回り、更に降伏応		
	<u>力345N/mm²に対して発生応力の最大値は約52N/mm²にとど</u>		
	まり、弾性限界に対しても十分な余裕がある。		
このことから、現実的と考えられる評価条件において溶融	<u>以上より, 偏心位置における現実的なデブリの落下様態を想</u>	このことから、現実的と考えられる評価条件において溶融	
炉心が偏心位置に落下した場合 <u>の影響評価の結果は,保守的</u>	定したSEの影響は基本ケースに代表されるものと考えられ	炉心が偏心位置に落下した場合 <u>に対しても,基本ケースの評</u>	・記載方針の相違
<u>な評価条件において溶融炉心が中心位置に落下した場合の評</u>	<u> 3.</u>	価は代表性を有していることを確認した <u>。</u>	【柏崎 6/7】
<u>価結果に包絡されると扱うことができると考える。</u>			島根2号炉および東
			海第二では現実的な評
以 上		以 上	価条件で水蒸気爆発評
	<u>4. まとめ</u>		価を実施。
	<u>偏心位置における現実的なデブリの落下様態を想定した S</u>		
	<u> Eの影響を評価した。その結果、ペデスタル構造健全性評価の</u>		
	<u>すべて判断基準を満足し、ペデスタルに要求される機能が損な</u>		
	われず,格納容器の健全性は維持されることを確認した。		
	<u>また,基本ケースとの解析結果の比較を行い,偏心位置での</u>		
	現実的なデブリの落下様態を想定したSEに対しても,基本ケ		
	<u>ースの評価は代表性を有していることを確認した。</u>		
	参考文献	参考文献	
	[1] T.Y.Chu, M.M.Pilch, J.H.Bentz, J.S.Ludwigsen, W-YLu and	[1] T.Y.Chu, M.M.Pilch, J.H.Bentz, J.S.Ludwigsen, W-YLu and	
	L.L.Humperies, "Lower Head Failure Experiment and	L.L.Humperies, "Lower Head Failure Experiment and	
	Analyses," NUREG/CR-5582, SAND98-2047,1999.	Analyses," NUREG/CR-5582 , SAND98-2047,1999.	
	[2] General Electric Systems Technology Manual Chapter 2.1		
	Reactor Vessel System, USNRC HRTD, Rev 09/11		



·炉	備考
	・評価モデルの相違 【柏崎 6/7】 島根 2 号炉のペデス タルの構造および溶融 炉心落下位置を反映。
Ť	
<ul> <li>圧力源</li> <li>計算モデルの座標原点</li> <li>(鉛直方向=X 径方向=V)</li> </ul>	
Y(径) YN-2Dコードの	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2
10 10 5 5 6 10 10 20 30 40 50 60 70 80 90 100 100 100 100 100 100 100		
120 100 100 100 100 100 100 100		
120       (最大応力は 47MPa,降伏応力は 490MPa)       -ミーゼス相当応力         00       (日本)       (日本)         00       (日本)       (日本)		
※1 JASMINE によって評価した水蒸気爆発による運動エネルギー(図2)の最 大値をAUTODYNへの時刻0 での入力とし,格納容器下部鋼板の応力の推 移(図3,4)を評価している。このため,図2 と図3,4 の時刻歴は一致 しない。		

2号炉	備考
	・評価条件の相違
	【柏崎 6/7】
	相崎 6/7 は,保守的な
	評価余件にわりる水烝 写爆発証価結果を示1
	ス 爆 先 計 価 相 未 を 小 し て い ろ

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2
20 15 15 10 米 10 10 0 0 10 20 30 40 50 60 時間 (ms)	N-2D で応力を解析 70 80 90 100		
図5 水蒸気爆発によるエネルギーの推 1.6E-03 1.4E-03 1.2E-03 1.0E-03 1.0E-03 8.0E-04 2.0E-04 0.0E+00 0 10 20 30 40 時間 (ms) ※3 最大相当 御板の3	移 (水位7m) *2 		
図6 原子炉格納容器下部内側鋼板の相当塑性	生ひずみの推移(水位		
<u>7m) **2</u>	→ → → → → → → → → → → → → →		
※2 JASMINE によって評価した水蒸気爆発による運 大値をAUTODYNへの時刻0 での入力とし、格納名 移(図6,7)を評価している。このため、図5 と しない。	動エネルギー(図5)の最 容器下部鋼板の応力の推 図6,7 の時刻歴は一致		

号炉	備考
	<ul> <li>・評価条件の相違</li> <li>【柏崎 6/7】</li> <li>柏崎 6/7 は,保守的な</li> <li>評価条件における水蒸</li> <li>気爆発評価結果を示し</li> <li>ている。</li> </ul>



- 炉	備考
*支持金具	
2 2	
E.	
<b>I</b> .	
置状況	



~炉	備考





·炉	備考
	・評価結果の相違
	【東海第二】
	島根2号炉は内側鋼
	板,外側鋼板,リブ鋼板
	からなる二重鋼板製ペ
	デスタルであるのに対
	し,東海第二はペデスタ
	ル側壁及び床スラブは
	鉄筋コンクリート製ペ
	デスタルであることか
	ら,構造の違いによりペ
	デスタル構造健全性評
	価の評価結果が異なる。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	·		
	第8回 コンクリート面外社 断点力産		
	<u> 第6回 コンクタード面外とん例応力度</u>		

柏崎	제33	原子力系	笔而	6 / 7	7 号炉	î (	2017.	12.20版)	東海第二発電所(2018.9.12版)     島根原子力発電所 2号炉	備考
										・評価条件の相違 【柏崎 6/7】 保守的な水蒸気が 評価の評価条件。
条件設定の考え方	制御棒駆動機構ハウジング1本の外径として設定	溶融炉心ーコンクリート相互作用による格納容器破損防止対策として、落下 した溶融炉心を微粒子化し、十分な除熱量を確保するため、予め水張りを行 うものとして手順上定めている値	原子炉格納容器下部にリターンラインまでの高さ(1m)の水位が形成されて いるものとして設定	外部水源の水温として設定	破損口にかかる溶融炉心の堆積圧等から MAAP4 で計算	FAR0 試験結果におけるデブリ粒径分布をもとに設定	FAR0, KROTOS 等の各種試験結果におけるデブリ粒径分布をもとに設定	- JASMINE による解析結果をもとに設定		
主要解析条件	0. 2m	2m	7m	50°C	8m/s	4mm	50 µ m	ペデスタル水漆 2mの 場合:約 7MJ ペデスタル水深 7mの 場合:約 16MJ		
項目	原子炉圧力容器の破損径	ジェレムレン		原子炉格納容器下部への水 張りに用いる水の温度	溶融物の放出速度	粗混合粒子径	爆発計算時の微粒子径	溶融炉心一冷却材相互作用 による発生エネルギー		
解析コード	MAAP			JASMINE				AUTODYN-2D		

柏	崎刈羽原	子力発電	電所 6	/7号炸	戸 (20	17. 12. 2	20版)	東海第二発電所(2018.9.12版)				島村	<b></b>	·力発管	電所	2号	炉			備考
惣疋による評価/ ──		おん							定たる評価))					1				1		・評価条件の相違 【柏崎 6/7】 ペデスタル水深,水張 りに用いる水の温度,構
17)り,小杀又决死い計画/(冊心浴!火い沈天印/3.3. 冬4部をの参った	PV と CRD ハウジングの隙間の面積 0.6cm²に余裕を見込んだ値	〔子炉格納容器下部にリターンラインまでの高さ(7m)の水位が形成され いるものとして設定	r部水源の水温として設定	找損口にかかる溶融炉心の堆積圧等から MAAP4 で計算	住の実験から得られている平均粒径	4R0, KR0T0S 等の各種試験結果におけるデブリ粒径分布をもとに設定	WINE による解析結果をもとに設定		うち,水蒸気爆発の評価(偏心落下及び現実的な想)	/ // ////////////////////////////////	本HRAKモいちへの 原子炉圧力容器と制御棒駆動機構ハウジングの隙間の面積 3cm ³ に余裕を見込んだ値	溶融炉心-コンクリート相互作用による格納容器破損防止対策として落下した溶融炉心を微粒子化し、十分な除熱量を確保するため、あらかじめ水張りを行うものとして手順上定めている値	外部水源の水温として設定	破損口にかかる溶融炉心の堆積圧等から MAAP4 で計算	既往の実験から得られている平均粒径	FAR0, KROTOS 等の各種試験結果におけるデブリ粒径分布をもと に設定	現実的条件には容融物がペデスタル床面に接触する際の衝撃 によりトリガリングが発生する可能性が高いと考えられるこ とから設定	JASMINE による解析結果をもとに設定	原子炉圧力容器下部の中心から外れた偏心位置からの溶融炉 心落下を想定して設定	造応答解析条件等の相違。
11/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0357m (約 10cm ² )	7m	50°C	8m/s	33	50 µ m	, J. 5MJ		高利材相互作用の	十里留古る	工委時初末日 0.0357m (約 10cm²)	2. 4m	35°C	8m/s	3mm	50 μ m	溶融物が床面に 到達した時点	彩 0.6MJ	最外周制御棒位置下	
	(子炉圧力容器の破損経	ミデスタル水深	「子炉格納容器下部への水」	「融物の放出速度		・	融炉心一冷却材相互作用 :よる発生エネルギー		→ 「 な 器 外の 溶融 炉 一 ⊀		項日 原子炉圧力容器の破損径	ペデスタル水深	ペデスタルへの水張りに 用いる水の温度	溶融物の放出速度	粗混合粒子径	爆発計算時の微粒子径	トリガリングタイミング	溶融炉心-冷却材相互作 用による発生エネルギ	爆発源の径方向位置	
		<u> </u>	通道	为ASMINE		 教	が AUTODYN-2D ろ		所条件(原子炉圧力			JASMINE						AUTODYN-2D		
女 r T ス									● ● ● ● ● ●											

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)			東海第	第二発	電所(	2018. 9	9.12版	)			島村	退原子力発電所 结	2 号炉	備考
											1				<ul> <li>・判断基準の相違</li> <li>【東海第二】</li> <li>島根2号炉は内側鋼</li> <li>板,外側鋼板,リブ鋼板</li> <li>からなる二重鋼板製ペ</li> </ul>
		^{存価※1}	0	0	0	0	0	0	0	0					デスタルであるのに対
		ifitz			0 0						_				し, 泉海第二は、ノスクル側辟及び床スラブけ
			ない	17			ない	いない	III 2						鉄筋コンクリート製ペ
		「結果	1	壊け仕じく	0. 52N 0. 95N	249 μ	1 手 し	壊 に 上 l	3N⁄ II	$101 \mu$					デスタルであることか
	E)	角	立は増	国に	···· 約 約	約 2	立は増	ゴビ	5 2.1	約 ]					ら,構造の違いによりペ
			変(	阆	上部 市 第		変化	床ス	条						デスタル構造健全性評
			-		圓壁		-				-				価の判断基準が異なる。
	表。ペデスタル構造健全性評価の評価結果(偏	判断基準	変位が増大せず, SE後の構造物の進行性の崩壊がない	機能に影響を及ぼす範囲の圧壊(3,000μ)が生じない	終局面外せん断応力度(上部側壁:3.09N/mm ² , 下部( 2.65N/mm ² )を超えない	許容ひずみ(5,000μ)を超えない	変位が増大せず, SE後の構造物の進行性の崩壊がない	機能に影響を及ぼす範囲の圧壊(3,000μ)が生じない	終局面外せん断応力度(3.55N/mm ² ) ^{※2} を超えない	許容ひずみ(2,000μ)を超えない	準を満足する ゆにて算定した終局面外せん断応力度				
	第	項目	変位	圧縮ひずみ	面外せんり	引張ひずみ	変位	圧縮ひずみ	面外せんり	引張ひずみ	果が判断 」増倍率 1.				
		#位	п	ンクリー		鉄꼂	п.)	ンクリー	~	鉄筋	析結 更 此				
		計価音		側	塑			床スニ	アブ	1	0」解:				
		機能		K U ≻ #	X持機能			デブリ保	持機能		<ul> <li>€1 : 「</li> <li>€2 : <u>H</u></li> </ul>				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)								東海第二発電所(2018.9.12版)													島根原子力発電所 2号炉						
							7									1							表 2	評価結果の 素下時 (現実的)	<u>比較</u> 		7
				h.l.					24				3 2 0			さした (文				内	側鋼板にな	ゝかる圧力		約 53MPa		約 233MP	a
					I	内側鋼板:約70MPa 外側鋼板:約33MPa			基本ケースに対	<b>膵</b> 研結末の1		I	上部:約0.5 下部:約1.2	約 1.35	I	(基本ケースに対影響範囲が軽得	約 0.58	約 0.28		外	側鋼板にカ	かる圧力		約 12MPa		約 140MP	Pa
5ミーゼス相当応力)の比較	容融炉心落下位置	CRD ハウジング最外周	(価条件(溶融炉心落下量等)		5 5	反に加わる応力は降伏応力 (490MPa) 5。相当塑性ひずみ約 0. 13% ^{%6} Pa	らないと考える。	解析との比較	は果 エャケーマ	ゆチン べ (中心位置) またに届せ さい	冬山は百人 しょい	圧壊は側壁に生じない	上部:約0.93N/mm ² 下部:約0.77N/mm ²	縦5 184 μ	変位は増大しない	圧壊は床スラブ上面の わずかな範囲にとどまる	約 3.70N/mm ²	約 364 μ									
F部内側/外側鋼板に加わる	×4	中心位置	その他の評	保守的な想定	Pa 内側鋼板:約 98MP Pa 外側鋼板:約 47MP	MPa MPa MPa 外側鋼板:約 326M	り側鋼板の支持機能の支障とはな	第5表 基本ケース角	解析: ** ⁼ **/m:	(編心位置) (編心位置) またら母子」ない	冬山 ふすん しょい	圧壊は側壁に生じない	上部:約0.52N/mm ² 下部:約0.95N/mm ²	<i></i> ^ж 5 249 <i>д</i>	変位は増大しない	:壊は床スラブに生じない	約 2.13N/mm ²	約 101 μ									
結果(格納容器-		格納容器下部			【ベースケース】 内側鋼板:約 32M 外側鋼板:約 25M	内側鋼板:約278 外側鋼板:約168	 0.2%未満であり, F		通目			50 fr 3	、せん断	いずみ		E Later H	・せん断	そものう									
3 評価					2m	7m	ひずみは			か が が が	× T	王	画列	引張	效位	端 出 、	画列	日语									
表					L L L L L L L L L L L L L L L L L L L		∃当塑性ī		泽価 部位		U 7 1		±	御徳	л	ま ス		御御									
					初期水员	大	(6 最大相		劉治		К	₽ > ₩:	持機能			デンショ	床杼犧能										
							- ^			I																	

炉
---

備考	
Vm J	

・評価結果の相違

【柏崎 6/7】

島根2号炉の基本ケー スでは、保守的な評価 条件が適用されており、 現実的な評価条件を適 用した偏心ケースの評 価結果を包絡する結果 となっている。