まとめ資料比較表 〔有効性評価 添付資料 3.2.2〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料3.2.3	資料なし	添付資料 3.2.2	
格納容器破損モード「DCH」,「FCI」及び「MCCI」の評価事故シー		格納容器破損モード「DCH」,「FCI」及び「MCCI」の	
ケンスの位置付け		評価事故シーケンスの位置づけ	
格納容器破損モード「局圧溶融物放出/格納容器雰囲気直接加		格納容器破損モード「高圧溶融物放出/格納容器雰囲気直接加	
熱(DCH)」,「原子炉圧力容器外の溶融燃料-冷却材相互作用(FCI)」		熱(DCH)」,「原子炉圧力容器外の溶融燃料-冷却材相互作用(F	
及び「溶融炉心・コンクリート相互作用(MCCI)」については、各		С І)」及び「溶融炉心・コンクリート相互作用(МСС І)」につ	
プラント損傷状態 (PDS) に対応する各重要事故シーケンス及び「雰		いては、各プラント損傷状態(PDS)に対応する各重要事故シ	
囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」の評		ーケンス及び「雰囲気圧力・温度による静的負荷(格納容器過圧・	
価事故シーケンスへの重大事故等対策の有効性評価の結果等か		過温破損)」の評価事故シーケンスへの重大事故等防止対策の有効	
ら、重大事故等対処設備に期待する場合、炉心損傷あるいは炉心		性評価の結果等から、重大事故等対処設備に期待する場合、炉心	
下部プレナムへの溶融炉心移行までに事象の進展を停止し、これ		損傷あるいは炉心下部プレナムへの溶融炉心移行までに事象の進	
らの現象の発生を防止することが出来る。		展を停止し、これらの現象の発生を防止することが出来る。	
しかしながら,格納容器破損モード「DCH」,「FCI」及び「MCCI」		しかしながら、格納容器破損モード「DCH」、「FCI」及び	
は、「実用発電用原子炉及びその附属施設の位置、構造及び設備の		「MCCI」は、「実用発電用原子炉及びその附属施設の位置、構	
基準に関する規則の解釈」(以下「解釈」という。)第37 条2-1(a)		造及び設備の基準に関する規則の解釈」(以下,「解釈」という。)	
において、「必ず想定する格納容器破損モード」として定められて		第37条2-1(a)において、「必ず想定する格納容器破損モード」と	
いる。このため、今回の評価では重大事故等対処設備の一部に期		して定められている。このため、今回の評価では重大事故等対処	
待しないものとして、各物理化学現象に伴う格納容器破損が懸念		設備の一部に期待しないものとして、各物理化学現象に伴う格納	
される状態に至る評価事故シーケンスを設定している。		容器破損が懸念される状態に至る評価事故シーケンスを設定して	
		いる。	
一方,格納容器破損モード「雰囲気圧力・温度による静的負荷		一方、格納容器破損モード「雰囲気圧力・温度による静的負荷	
(格納容器過圧・過温破損)」については,事故シーケンス選定の		(格納容器過圧・過温破損)」については,事故シーケンス選定の	
プロセスにおいて,国内外の先進的な対策と同等な対策を講じて		プロセスにおいて,国内外の先進的な対策と同等な対策を講じて	
も炉心損傷を防止できない事故シーケンスとして抽出された、「太		も炉心損傷を防止できない事故シーケンスとして抽出された、「流	
<u>破断LOCA+ECCS 注水機能喪失+全交流動力電源喪失</u> 」を評価事故		却材喪失(大破断LOCA)+ECCS注水機能喪失+全交流動	
シーケンスとして選定し、重大事故等対策の有効性を評価してい		<u>力電源喪失</u> 」を評価事故シーケンスとして選定し,重大事故等対	
る。		策の有効性を評価している。	
以上のとおり、格納容器破損モード「雰囲気圧力・温度による		以上のとおり、格納容器破損モード「雰囲気圧力・温度による	
静的負荷(格納容器過圧・過温破損)」は重大事故等対策に期待し		静的負荷(格納容器過圧・過温破損)」は重大事故等対策に期待し	
て評価し,解釈第37 条2-3(a)~(c)の評価項目に対する重大事故		て評価し,解釈第 37 条 2-3(a)~(c)の評価項目に対する重大事	
等対策の有効性を評価しており,格納容器破損モード「DCH」,「FCI」		故等対策の有効性を評価しており,格納容器破損モード「DCH」,	
及び「MCCI」は、評価を成立させるために、重大事故等対処設備		「FCI」及び「MCCI」は、評価を成立させるために、重大	
の一部に期待しないものとして,解釈第37 条2-3(d),(e),(i)の		事故等対処設備の一部に期待しないものとして,解釈第37条	
評価項目に対する重大事故等対策の有効性を評価している。		2-3(d),(e),(i)の評価項目に対する重大事故等対策の有効性を評	
以上		価している。以上	

まとめ資料比較表 〔有効性評価 添付資料 3.2.3〕

			1
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料3.2.2	添付資料3.2.5	添付資料 3.2.3	
原子炉建屋から大気中への放射性物質の漏えい量について	原子炉建屋から大気中へ漏えいするCs-137の漏えい量評価につ	原子炉建物から大気中への放射性物質の漏えい量について	
	L'IT	(高圧溶融物放出/格納容器雰囲気直接加熱)	
本格納容器破損モードの重大事故等対策の有効性評価では、厳し	本資料では、「原子炉建屋から大気中へ漏えいするCs-137」の	本格納容器破損モードの重大事故等対策の有効性評価では、厳	
い事象を想定した場合でも、原子炉格納容器が破損することなく安	放出量評価について示す。	しい事象を想定した場合でも、原子炉格納容器が破損することな	
定状態に至る結果が得られている。この評価結果に照らして <u>原子炉</u>		く安定状態に全る結果が得られている。この評価結果に照らして	
建屋から大気中への放射性物質の漏えい量を考える。		原子炉建物から大気中への放射性物質の漏えい量を考える。	
本格納容器破損防止対策の有効性評価では、非常用ディーセル発	なお、本評価では、原子炉建屋ガス処理系(非常用ガス処理系及	格納容器破損防止対策の有効性評価では、通常運転時に用いて	・解析条件の相違
電機からの電源供給により非常用ガス処理糸が起動し,事象発生か	び非常用ガス再循環系で構成)が起動するまでの間、格納容器から	いる原子炉棟内の換気糸が全交流動力電源喪失により停止し、交	
ら原子炉建屋の設計負圧が維持されていることを想定している。	原子炉建屋に漏えいした放射性物質は、瞬時に原子炉建屋から大気	流電源が回復した後に非常用ガス処理系が起動する状況を想定し	島根2号炉は、本シナ
	中へ漏えいするものとして,放出量を保守的に評価しているか,ト	<u>ている。ここで、原子炉棟内の換気糸の停止から非常用ガス処理</u>	リオの評価においてSB
	記のとおり、格納谷器の健全性か維持されており、原子炉建屋の換	<u>糸が起動するまでの時間遅れを考慮し、非常用ガス処理糸によっ</u>	0の 単量を 考慮してい
	気空調系が停止している場合は、格納谷器から原子炉建屋に漏えい	<u>て原子炉棟の設計負圧が達成されるまで事象発生から70分かか</u>	る。
土地は広田地坦を、「どっチ」ませかせかったさせざけています。	した放射性物質の一部は、原土炉建産内で沈着又は時间減衰するた	ると想定している。	
本格納谷希岐損七ードの里大事故等対束の有効性評価では原于	の, 大気中への放出重は本評価結果より少なくならと考えられる。	本格納谷器破損七ートの里大事故対束の有効性評価では原ナ炉	
炉格納谷器の闭し込め機能は健全であると評価していることから、	・格納谷希が健全な場合,格納谷希内の放射性物質は,格納谷希生	格納谷畚の闭し込の機能は健全であると評価していることから、	
原于炉格納谷器から多重の水蒸気が原子炉建産に漏えいすること	<u> ノに応して原子炉建屋へ漏えいするものとしている。漏えいした</u> たましいた気の、潮い、原子に決尽力であるものとしている。漏えいした	原子炉格納谷器から漏えいした水蒸気は原子炉建物内で疑縮さ	
は悪く、痛えいした水蒸気は原土炉建産内で凝縮されることから、	放射性物質の一部は、原子炉建屋内での重力化降等に伴い、原子	れ、原子炉建物空間部が加圧されることはないと考えられる。ま	
原土炉建屋空間部が加圧されることはないと考えられる。また、原	炉建屋内に化着すると考えられる。	た、原子炉棟内の換気系は停止しているため、原子炉建物内空間	
<u> 十炉建屋内の換気空調系</u> は停止しているため, <u>原十炉建屋</u> 内空間部	・原子炉建室内の換気空調系が停止している場合、原子炉建室内外	<u> 艶と外気との圧力差が生じにくく、原子炉建物内外での空気のや</u>	
と外気との圧力差か生しにくく, <u>原子炉建屋内外</u> での空気のやりと	における圧力差が生しにくく、原子炉建屋内外での空気のやりと	りとりは殆どないものと考えられる。さらに、原子炉格納谷器内	
りは殆どないものと考えられる。さらに、原子炉格納谷器内から風	りは多くないと考えられるため、漏えいした放射性物質の一部は	から原子炉建物に漏えいした粒子状放射性物質は、原子炉建物内	
子炉建屋に漏えいした粒子状放射性物質は,原子炉建屋内での重力	原子炉建屋内に滞留し、時間減衰すると考えられる。	での重力沈降や水蒸気の凝縮に伴い、原子炉建物内に沈着するも	
次降や水蒸気の錠縮に伴い, <u>原子炉建屋内</u> に沈着するものと考えら		のと考えられる。	
れる。			
これらのことから、原子炉格納谷畚の健全性か維持されており、		これらのことから、原于炉格納谷器の健全性か維持されており、	
原十炉区域・タービン区域換気空調系か停止している場合は、原十		原子炉棟内の換え糸が停止している場合は、原子炉格納谷器から	
炉格納容器から原子炉建屋内に漏えいした放射性物質は,原子炉建		原子炉建物内に漏えいした放射性物質は、原子炉建物内で時間減	
<u> 屋内で時間減衰し、また、原十炉建屋内で</u> 除去されるため、大気中		表し、また、 <u>原子炉建物内</u> で除去されるため、大気中へは殆ど放	
へは殆ど放出されないものと考えられる。		出されないものと考えられる。	
		本評価では、上述の状況に係わらず、非常用カス処理系が起動	・解析条件の相違
		し、原子炉運物の設計負圧が達成されるまでの間、原子炉格納容	
			局限2号炉は、本シナ
		<u>炉建物から大気中へ漏えいすることを想定した場合の放出量を示</u>	リオの評価において、S
		<u> </u>	BOの重畳を考慮してい

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海	第二発電所(2018.9	. 12版)			島根原子力発電所 2号炉	備考
1. 評価条件 1.	評価条件				1.	評価条件	る。
(1)本格納容器破損モードの評価事故シーケンスである「 <u>過渡事象</u>	放出量評価条件	を第1表,大気中への友	女出過程及び相	既略図を第1	(1)	本格納容器破損モードの評価事故シーケンスである「過渡事	
+高圧注水失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧失 図	及び第2図に示す。	~				象+高圧炉心冷却失敗+原子炉減圧失敗+炉心損傷後の原子	
<u>敗(+DCH 発生)</u> 」について評価する。	第1	表放出量評価条件	(1/2)			<u>炉減圧失敗+原子炉注水失敗+DCH発生</u> 」について評価す	
	項目	評価条件	選定理由			る。	
(2) 原子炉格納容器からの漏えい量は, MAAP 解析上で原子炉格納	評価事象	「適選事象+高圧炉心帯却天取+手動減 圧失敗+炉心損傷後の手動減圧失敗+ DCH」(全交流動力電源喪失の重畳を	-		(2)	原子炉格納容器からの漏えい量は, MAAP解析上で原子炉	
容器内圧力に応じて漏えい率が変化するものとし、開口面積は	炉心熱出力	考慮) 3, 293MW	定格熱出力			格納容器圧力に応じて漏えい率が変化するものとし、開口面	
以下のように設定する。(添付資料3.1.2.6 参照)	運転時間	1 サイクル当たり 10,000 時間(416日)	1 サイクル 13 ヶ月(395 日)を考慮して設定			積は以下のように設定する。(添付資料3.1.2.6 参照)	
・1Pd 以下 : 0.9Pd で <u>0.4%</u> /日 相当	取替炉心の 燃料装荷割合	1 サイクル: 0.229 2 サイクル: 0.229 3 サイクル: 0.229	取替炉心の燃料装荷割 合に基づき設定			・1Pd以下:0.9Pd で <u>0.5%</u> /日 相当	・設計漏洩率の相違
・1~2Pd : 2.0Pd で1.3%/日 相当		4 サイクル: 0.229 5 サイクル: 0.084	「単位熱出力当たりの			・1~2Pd:2.0Pd で1.3%/日 相当	【柏崎 6/7】
<u>なお、</u> エアロゾル粒子は <u>格納容器外</u> に放出される前に貫通	炉内蓄積量 (Cs-137)	約4.36×10 ¹⁷ Bq	伊内審積量(Ba√WB)」 × 「3,2930m(定格熟出 力)」 (単位熱出力当たりの 伊内警積量(Ba√MB)は、 BWR共通条件として、 東海第二と同じ装荷燃 料(9×9億米(A雲型)), 上記の運転時間及び取 巻炉企の感転時間及び取 巻炉企の感転特美宿割6 で算出したABWRの サイクル末期の値 [∞] を使 用)		(3)	エアロゾル粒子は <u>原子炉格納容器外</u> に放出される前に貫通	
部内で捕集されることが実験的に確認されていることから	放出開始時間	格納容器漏えい:事象発生直後	MAAP解析結果			部内で捕集されることが実験的に確認されていることから原	
<u>格納容器</u> の漏えい孔におけるエアロゾルの捕集の効果 <u>に期</u>	11/11/27 mm P3 - 500 放出割合 (℃ 5 - 1317)	約0.73	MAAP解析結果			<u>子炉格納容器</u> の漏えい孔におけるエアロゾルの捕集の効果 <u>を</u>	・解析条件の相違
待できるが、本評価では保守的に考慮しないこととする。	倍雨な品の備え い孔における捕 集効果	考慮しない	保守的に設定	1		考慮して評価する (DF=10)。	【柏崎 6/7, 東海第二】
	格納容器内での 除去効果	ョン・プール及びペデスタル (ドライウェ ル部) 水プールでのスクラビング並びにド	M A A P の F P 挙動モ デル				①島根2号炉は,最確条
	熬納容婴内 n H	ライウェルスブレイ)	サプレッション・プール 水 p H制御設備は, 重大				件として格納容器貫通部
	制御の効果	考慮しない	事故等対処設備と位置 付けていないため,保守 的に設定				の捕集効果を考慮した評
	※ 東海第二発電) 蓄積量を保守(所(BWR5)に比べて炉心比出力が大きく 的に評価するABWRの値を使用。	, 単位熱出力当たりの炉内				価としている。
(3) 非党田ガス処理系に上ろ百子恒建屋の設計負圧が維持されて	第1	志 故出 是 亚価冬姓	(9 / 9)		(4)	百子 何建物 から大気中への放射性物質の漏えいについてけ	 ・解析冬性の相違
					(ゴ)	非党田ガス処理系に上り角圧が達成される裏象発生 70 分後	【柏崎 6/7】
<u>いることで心たし、本計画では取引換入中のる面/日相当で気息</u> オス	項目	評価条件	選定理由 MAAP解析にて格納 容器の開口面積を設定			までけ国子に建物内の抜射性物質の保持機能に期待したい。	111
<u> </u>	格納容器から原 子信建屋への漫	1Pd以下:0.9Pdで0.5%/d	し格納容器圧力に応じ 漏えい率が変化するも のとし 核納容器の設計			よくは床」が定初1000次利圧初頁の床村機能に効付しない。 レレー (協与変無限) 非常用ガラ加理変にとり設計各匹を法	山 オの証価において ら
	えい率	1Pd超過 : 2Pdで1.3%/d	漏えい率 (0.9Pd で 0.5%/d)及びAECの まなに其べき語序(活体			<u>ここし(換入学無限), 作用用以へ処理</u> 示により取計員圧で建 式」た後は記記梅写索1回/日相当た考慮すて	リオの計画にわいて、う
	格納容器から原	C - T WE - 900 07 × 10 - 7	式寺に並うさ 設定(称刊 資料 3.1.2.5 参照)			成した後は畝計換风平1回/日相当を考慮りる。	
	子 炉 建 屋 へ の 漏 えい 割 合	C s T 頬 : 約2.07×10 · C s O H 類 : 約6.17×10 ⁻⁸	MAAP解析結果				
	原十邦建屋がら 大気への漏えい 率(非常用ガス 処理系及び非常 用ガス再循環系	無限大/d(地上放出) (格納容器から原子炉建屋へ漏えいした放 射性物質は,瞬時に大気へ漏えいするもの として評価)	保守的に設定				・運用の相違 【東海第二】
	の 起動 削 ガ ス 処 理 系 から 大気 への		設計値に基づき設定				②島根2号炉は,非常用
	放出率(非常用 ガス処理系及び 非常用ガス再循	1 回/d (排気筒放出)	(非常用ガス処理系の ファン容量)				ガス処理系の起動操作時
	東示の起動後)		起動操作時間(115分) +負圧達成時間(5分)				間(60分)+負圧達成時
	非常用ガス処理 系及び非常用ガ ス再循環系の起	事象発生から2時間後	 (起動に伴い原子炉建 屋原子炉棟内は負圧に なるが、保守的に負圧達 	2			間(10分)を想定して設
	動時間		成時間として 5 分を想 定)				定。
	デモカスシンジェ 系及び非常用ガ ス再留示のフ	考慮しない	保守的に設定				・設計換気率の相違
	コルフロズ対学 プローアウトバ ネルの開閉状態	開状態	原子炉建屋原子炉棟内 の急激な圧力上昇等に よるブローアウトパネ ルの開放がないため				【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(4) 非常用ガス処理系はフィルタを通して原子炉区域内の空気を		(5) 非常用ガス処理系はフィルタを通して原子炉棟内の空気を	
外気に放出するためフィルタの放射性物質の除去性能に期待で		外気に放出するためフィルタの放射性物質の除去性能に期待	
きるが,本評価では保守的に期待しないこととする (DF=1)。		できるが、本評価では保守的に期待しないこととする(DF	
		$= 1)_{\circ}$	
(5) 原子炉建屋内での放射能量の時間減衰は考慮せず,また,原子		(6) 原子炉建物内での放射能量の時間減衰は考慮せず,また,原	
炉建屋内での粒子状物質の除去効果は保守的に考慮しない。		子炉建物内での粒子状物質の除去効果は保守的に考慮しな	
		لا ^ب ه	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2
	Cs-137の炉内蓄積量 (K執容器内・の放出割合 :MAAP解析に基づく) (K執容器内・の放出割合 :MAAP解析に基づく) (K執容器から原子炉建屋への調えい率: IPd 以下:0.9Pd で 0.5%/d IPd 超過:2Pd で 1.3%/d (F7炉建屋への調入割合 :MAAP解析に基づく) (原子炉建屋への調入割合 :MAAP解析に基づく) (原子炉建屋小ら減入割合 :MAAP解析に基づく) (原子炉建屋から満足の) (原子炉建屋から満足いで) (原子炉建屋から満足い又出 海営しない) (原子炉建屋から満足い又出 海営のも満足い又出 第1回 Cs-137の大気放出過程	
	<complex-block></complex-block>	

号炉	備考
	・記載方針の相違
	【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
2. 評価結果	2. 評価結果	2. 評価結果	・解析結果の相違
原子炉建屋から大気中へ漏えいするCs-137 の評価結果を表1に	原子炉建屋から大気中へのCs-137の漏えい量を第2表に示	原子炉建物から大気中へ漏えいする Cs-137 の評価結果を表	【柏崎 6/7】
示す。	t.	1に示す。	島根2号炉は、格納容器
<u>原子炉建屋</u> から大気中へ <u>漏えいするCs-137</u> は7日間で約2.5TBq	<u>原子炉建屋</u> から大気中へのCs-137の漏えい量は,約3.2×10	原子炉建物から大気中への放射性物質(Cs-137)の漏えい量	漏えい時のエアロゾル捕
であり, 基準の100TBq を下回っている。	<u>-2TBq(事象発生7日間)</u> であり, <u>評価項目の</u> 100TBqを下回ってい	<u>は約 0.56TBq(7 日間)</u> であり, 基準の 100TBq を下回っている。	集効果 (DF10) を考慮し
	る。		たこと等により、格納容
			器漏えい起因の放出が減
	なお,本評価事象では,原子炉圧力容器破損に伴いペデスタル		少している。
	(ドライウェル部)にデブリが移行するが、ペデスタル(ドライ		【東海第二】
	<u>ウェル部)に移行したデブリからのCs-137放出は, デブリがぺ</u>		島根2号炉は、格納容器
	デスタル(ドライウェル部)のコンクリートを侵食した際に発生		圧力が高めに推移するた
	<u>するガスに随伴して生じるものであり,東海第二発電所ではコリ</u>		め、格納容器漏えい起因
	ウムシールドの設置によりコンクリートの侵食は生じないため,		の放出が増加している。
	ペデスタル(ドライウェル部)に移行したデブリ内に含まれるC		
	<u>s-137の放出は考慮していない。ペデスタル(ドライウェル部)</u>		・記載方針の相違
	に移行したデブリ内からのCs-137が全て放出されたと仮定し		【東海第二】
	<u>た場合でも, 高揮発性核種であるCs-137は, 炉心損傷に伴い大</u>		
	部分が炉内から放出されるため,ペデスタル(ドライウェル部)		
	<u>に移行したデブリ内に含まれるCs-137は少なく,Cs-137放</u>		
	出量への影響はほとんどない。(第3表参照)		
	<u>また, 添付資料3.1.2.4に示す「雰囲気圧力・温度による静的</u>		
	<u>負荷(格納容器過圧・過温破損)」において代替循環冷却系を使用</u>		
	<u>する場合のCs-137の漏えい量(約7.5TBq)より10⁻²程度小さ</u>		
	<u>い結果となっているが,これは事象初期におけるCs-137の原子</u>		
	炉圧力容器から格納容器への放出経路の違いによる影響が大きい		
	(下記参照)。		・記載方針の相違
	・格納容器から原子炉建屋へ放出するCs-137の放出量に対す		【東海第二】
	る格納容器圧力の違いによる影響は小さい(格納容器内の除去効		
	果を受けない希ガスに対する格納容器から原子炉建屋への放出		
	割合*に大きな差がなく,高揮発性核種であるCsも同様と考え		
	<u>3)</u>		
	※「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」:		
	約0.04		
	「高圧溶融物放出/格納容器雰囲気直接加熱」:約0.03		
	 「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」 		
	では,LOCA破断口から格納容器気相部へ直接放出されるのに		
	対し、「高圧溶融物放出/格納容器雰囲気直接加熱」では、原子		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	炉圧力容器破損前まで(事象発生約4.5時間),逃がし安全弁(自		
	動減圧機能)を介してサプレッション・プールへ移行した後、格	<u>}</u>	
	納容器気相部へ放出されるため,サプレッション・プールにおい	<u> </u>	
	てスクラビングによる除去効果を受ける。		
		なお, 事象発生7日間以降の影響を確認するため, 事象発生	
なお,事象発生7日間以降の影響を確認するため,事象発生30日	また, 事象発生7日間以降の影響を確認するため評価した, 事	30 日間, 100 日間における環境への Cs-137 の放出量を確認し	
間, 100 日間における環境へのCs-137 の放出量を確認している。	象発生30日間,100日間における <u>大気中</u> へのC s -137の <u>漏えい</u> 量	TUZ.	
	は, <u>約3.4×10⁻²TBq(事象発生30日間)及び約3.9×10⁻²TBq(</u>]	事象発生後30日間及び100日間での放出量においても100TBq	・解析結果の相違
事象発生後30 日間及び100 日間での放出量においても100TBq	<u>象発生100日間)であり、いずれの場合においても100TBqを下回</u>	」を下回る。	【東海第二】
を下回る。	っている。		
	なお、事象発生7日以降の長期解析においては、事象発生約5	3	・解析結果の相違
		_	【東海第二】
			島根2号炉は、事象発
	 実施し、事象発生100日まで格納容器ベントを継続しているが、		生 100 日までに酸素濃度
	格納容器の除熱機能,格納容器への窒素注入機能及び格納容器の		がベント基準に至らない
	の可燃性ガスの濃度制御系機能が確保できた場合には,格納容器		ことから、格納容器ベン
	ベントを停止する運用とする。		トを実施していない。
	※ 第3.2-28図に示す格納容器圧力の推移では、格納容器の日	<u>1</u>	
	力を高く評価するために格納容器からの漏えいを考慮し	<u>~</u>	
	ていないが,約53日後に酸素濃度が4.3vo1%に到達し格約	<u>4</u>	
	容器ベントを実施している		
表1 原子炉建屋から大気中への放射性物質(Cs-137)の漏えい量	第2表 大気中へのC s -137の漏えい量	 表1 原子炉建物から大気中への放射性物質(C s −137)の漏えい量	
(単位:TBq)		漏えい量(7日間) 漏えい量(30日間) 漏えい量(100日間)	・解析結果の相違
漏えい量(7日間) 漏えい量(30日間) 漏えい量(100日間)	事象発生7日間 事象発生30日間 事象発生100日間	高圧溶融物放出/ 格納容器雰囲気直 約 0. 56 約 0. 57 約 0. 58 [*]	【柏崎 6/7】
高圧溶融物放出/格納容 約 2.5 約 2.6 約 2.6	<u>約 3.2×10⁻²TBq</u> 約 3.4×10 ⁻² TBq 約 3.9×10 ⁻² TBq [*]		島根2号炉は,格納容器
			漏えい時のエアロソル捕 焦熱田 (DE10) さまま)
	*		集効果(DF10) を考慮し たこしなにより 故她家
	生約53日後から事象発生100日よで格納谷畚ヘント美施)	む (事家発生約81日 仮から100日まで格納谷奋ヘント美他)	にこと等により、格納谷
			少している。
			┃ 【米(毋用一】 自根9.早后け 故妯索聖
			岡瓜ムケがは,俗称谷谷 「「山が真めに堆殺するち
			」 」 加加回のに推移9つに
			の放出が増加している

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 第3表 原子炉圧力容器から格納容器へのCs-137の放出割合及 びペデスタル(ドライウェル部)に移行したデブリ内に含まれ <u>るCs-137の割合</u> 原子炉圧力容器から格納容器への Cs-137の放出割合* ペデスタル(ドライウェル部)に移 行したデブリ内に含まれる Cs-137の割合 約0.73 約0.73 第7炉圧力容器から格納容器への放出経路は以下のとおり。 ・原子炉圧力容器から逃がし安全弁(自動減圧機能)を介し たサプレッション・プールへの放出 ・原子炉圧力容器破損箇所から格納容器気相部への放出	島根原子力発電所 2 号炉	<u>備考</u> ・記載方針の相違 【東海第二】

まとめ資料比較表 〔有効性評価 添付資料 3.2.4〕				
7	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子	-力発電所 2 号炉 備考	
(1/2)	添付資料 3.2.4	添付資料 3.2.9 (7)	添付資料 3.2.4 ・相違理由は本文参照	
(直接加熱) 蝕物放出/格納容器雰囲気直接加熱)	201-5-2-6-666月 長術でいいでは、「「「」」」」」 長術でしいで「「「」」」」」」 こ、かっての686年6月(「」」」」」」」」」 こ、かっての686年6月(「」」」」」」」」 こ、かっての686年6月(「」」」」」」」 こ、かっての686年6月(」」」」」」 こ、かっての686年6月(」」」」 こ、かっての686年6月(」」」」」」 こ、かっての686年6月(」」」」 こ、かっての686年6月(」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」 「」」」 「」」 「」」 「」」 「」」 「」」」 「」 「	評価項目となるバラメータに 市务件を最確条件とした場合の運転員等操作時間及び評価 に与える影響」にて確認。 にもたえる影響」にて確認。 にートアップに関子るモデルは、TNL事故についての再現性 となるバラメータに与える影響」にて確認。 モートアップの感旋解行び、加二ウムーオ反応連度の病候 いての政変解している。 市会にこそなるが同時時間への必要には必要性であり、 働作数にし、「、中心液融間始時間なののでか。 の認知を認定している。 からいことを確認している。 からいことを確認している。 からいことを確認している。 するないですないに原子がしたの運転員等操作時間に与え ないたいで、評価項目となるバラメータに与える影響にない ににあまれ、「「「「「」」」 ないたいことから、評価項目となるバラメータに与える影響にない に「「」」 ないたいことから、評価項目となるバラメータに与える影響にない に「「」 ないたいことから、評価項目となるバラメータに与える影響にない に「「」 ないたいことから、評価項目となるバラメータに与える影響にない でいた。 ではたいが、 ではたいこことから、評価項目となるバラメータに与える影響にない でする。 ではたいで、 ではないでしたから、評価項目となるバラメータに与える影響にない でいる。 でいる。このため、原子が心体下確に対す などのにないため、「「」」 などのでは、「」、「」、 ではないている。このため、原子が心体下確に対す などのでは、 でいる。このため、原子がのないで に可考し、 の方は一人 本ができる。 たいている。このため、原子がのない では、 の方は一人 本のできたいで、 このため、原子がの必要にない。 したの、 では、 なっての正式になっている。 したの、 では、 なっての正式にない。 になっても なっていたまです。 でいる。 したの、 でいる。 したの、 でいる。 したの。 には、 では、 なっている。 このため、原子がのない にでする。 たいこ、 にでする。 でいたい でいる。 このため、原子がのなる。 なってや なった。 でのため、原子がのない でいる。 でのため、 にでする。 でのため、 にでする。 でのため、 にでする。 でのため、 にでする。 でのため、 でいたの。 でのため、 にでする。 でのため、 にでいての たのでの ないての ないての ないての たの、 たの、 での たの、 たの たの、 たの たの たの たの たの たの たの たの たの たの	本解曲事のなンーン、いい、コロン・アンルルールコール 本展示事のなどの人の た時点での運転員等操作による原子が言述確認達し た時点での運転員等操作による原子が言述確認達し に成成し、原子が圧力な器を30mに [gage]以下に 低成し、原子が圧力な器使用の原子が圧力を 3.パラメータに与える影響はないことから、評価項目とな 5.パラメータに与える影響はないことから、評価項目とな 5.パラメータに与える影響はない。 水位低下幅は解析コートドMAAPの評価結果の 方保守的であることを確認している。このため、原 子切水位の感謝作者の長度のの意見であり、原子が急速減圧操作後 に原子が圧力は違やかに広下下すのごを許なた。 1. 飲分程度の差異であり、原子が急速減圧操作後 に原子が圧力は違やかに広下することから、評価項 目となるパラメータに与える影響はない。 地方引き急影響はない。 1. 第二になるパラス 3. 炊分程度の差異であり、原子が急速減圧操作後 に原子がEDの範疇に強いさい。 このた 1. たなるパラス・クトに与える影響はない。 3. 小子に与える影響はない。 3. 小子に与える影響はない。 3. 小子に与える影響はない。 3. 小子に与える影響はない。 3. 小子に与える影響はない。 3. 小子に与える影響はない。 3. 小子に与える影響はない。 3. 小子に与える影響はない。	
:出/格納容器雰囲気 i える影響(高圧溶晶	・ 営業者を支援した、ションの協会は、などのなってのション 、営業者を支援した、ションの協会は、2011、2011 、メータにのえる防衛、にてきる、かした、 についての原始性を確認している。かした、 についての原始性を確認している。かした、 としたに認定の確認でした。この、かした、 ションの、の原始性を確認していての感染的ので、2011 を参加している。	2. る影響 素具要能に現在、 「「重要」」」「「「「「「」」」」」」」 本語の「「」」」「「」」」」 本語の「「」」」」 本語の「「」」」」 本語の「「」」」」 本語の「「」」」 本語の「「」」」」 本語の「「」」」」 本語の「「」」」」 本語の「「」」」 本語の「「」」 本語の「「」」」 本語の「「」」」 本語の「「」」」 本語の「「」」」 本語の「「」」」 本語の「」」」 本語の「」」」 本語の「」」」 本語の「」」」 本語の「」」」 本語の「」」」 本語の「」」」 本語の「」」」 本語の「」」」 本語の「」」」 本語の「」」」」 本語の「」」」 本語の「」」」」 本語の「」」」 本語の「」」」 本語の「」」」 本語の「」」」」 本語の「」」」」 本語の「」」」」 本語の「」」」」 本語の「」」」 本語の「」」」 本語の「」」」 本語の「」」」」 本語の「」」」 本語の「」」」」 本語の「」」」 本語の「」」」 本語の「」」」」 本語の「」」」」 本語の「」」」」 本語の「」」」」 本語の「」」」 本語の「」」」」 本語の「」」」」 本語の「」」」」 本語の「」」」」 本語の「」」」」 本語の「」」」」 本語の「」」」」 本語の「」」」」 本語の「」」」 本」」 本」」 本」」」 本」」 本」」 本」」」 本 本 本 本 本 本 本 本 本 本 本 本 本	報告合む会ての原子様への注 報告合む会ての原子様への注 「設置すべき操作は現子好水位 の包括としている操作なは 力ない。 してたりた時点の成田 力なでは 力の成正力な 力が が 動についてにも鳥の成日 なない。 から、 数分程度の差異である 、 が が の た の の に した の に した の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の の に の に の に の に の に の の に の い の に の に の い の に の い の に の い の に の い の に の で の に の い の 一 に の に の の の に の で の の の に の で の の に の の の の の の に た の の の の の の の た の っ い に た の っ い に ひ た の っ の た い の っ の た の っ の 。 、 の っ の 、 、 の っ の っ 、 、 。 の た い の 。 、 、 の っ の 、 、 の っ 、 、 。 、 、 の に 、 、 の の 。 、 、 、 の っ 、 、 の 。 、 、 の に 、 、 の の っ に 、 し っ 、 、 、 の の 。 、 の っ の 。 、 の の 、 、 の の 。 、 の の し 、 の の っ の 。 。 の 。 の 。 の 。 の の の の 、 の の の っ の っ の の の っ の 。 、 の の っ の っ の っ の っ の っ の っ の っ の っ の っ の っ の っ の っ の っ の っ っ っ っ の っ っ に う つ の こ っ の っ の っ の っ の っ の っ の っ の っ の っ い つ い 、 つ い つ に 、 つ い 一 、 つ い つ い 一 、 の つ い つ い て い に の つ い つ い 一 、 の つ い つ い つ い 一 の の つ い つ い つ い つ い つ い つ い つ い つ い つ つ い つ つ い つ つ つ い つ い つ つ つ い つ つ つ い つ つ つ つ い つ つ い つ つ つ つ い つ つ つ つ つ つ つ つ つ つ つ つ つ	
iについて(高圧溶融物放 員目となるパラメータに与	(1) 時代の一般になったの「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	職家員会議会議会議会員会議会議会員会員会員会員会員会員会員会員会員会員会員会員会員	なシーケンスでは、重大事故等対処設備 現実することを想定しており、最初に 対原成治シンを想定しており、最初に 対した。 満たの語をの意知者でした。 し、通転員等操作時間に与える整備に加 でのか水位計算モデル)は原子却木位 でが消費であるSAFERコードとの でが消費でおり、原子切水位が燃料権力数 個に当途する時間が早まる可能性が、 整定のでおり、原子切水位が燃料権力数 個に与える影響はかい。 算用に与える影響はない。 算用に与える影響はない。	
きの影響評価 間及び評価項	いたまだが、のに、「「「」」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	いたい。 など、 など、 など、 など、 たい、 など、 たい、 たい、 たい、 たい、 たい、 たい、 たい、 たい	
びび解析条件の不確か。 いさが運転員等操作時	 「パト・人力からに方よれる。 「パト・人力からに方よれる。 「パト・人力からに方よれる。 「パー・ケップロ・ マン論書書店の前にないする。 「パー・「パー・ティップロ・ した。 「パー・「パー・ディップロ・ はれる」 「パー・「パー・ディップロ・ にために発わった。 「パー・「パー・「パー・」 「パー・「パー・」 「パー・」 「パ	大力値に含まれる。 木籠から 大力値に含まれる。 生、野心道健有にさけるからにートケ 生、野心道健有での深趣施設であいる 電気にした。 一次の想的な酸した。 「数することを確認した。」 数することを確認した。 「数することを確認した。」 数することを確認した。 「数した」の他のな酸したでは がし、成也のな酸した。 「成也のな酸」で、成 動のに、したりマントントンの活動にな 確認した。 一次の消滅するので、 構成したい、 一次の消滅するので、 加加していた。 構成したい、 加加していた。 一次の消滅するので、 一次の確認した。 一次の消滅するので、	メリン にほいつけい warrane and warrane and a fast に 大規制の分割に した感嘆解行により影響を確認し いた感嘆解行により影響を確認して いた感嘆作して A シーケンス とう サムへのリロケーション開始時刻 しない。 ロードでは S A F E R コードで考 たけい、以下の傾向を確認した。 を行い、以下の傾向を確認した。 を行い、以下の傾向の確認した。 を行い、以下の傾向の体話したで などに活発が生じたものの水位在 アコードでは留か生じたものの水位在 アコードでは「単なものの水位在 アコードでは「単なもの」 の水位によります。 の水位により、 による有効能料種間第までの水 前コードで同等である。	
≆析コード及 現象の不確け	法委員報 展行を学び 通道法 新行きをかっ (11.1)たび編載 からできかぁ(11.1)たび編載 を行きたい ためしたいなった。 を行きている を行きたい たっていてして かっていいない。 かっていいたいで、 からしたいなった。 からしたいなん(11.1)になった。 かっていいたい。		 の業 「200 ・「200 ・「1000 ・「100 ・」100 ・「100 ・」100 ・「100 ・」100 ・ ・	
角 ける重要 <u>1</u>		「	溶動 かったし かって かって かって し かん そ ほろ 原語 感 か ひょう し ひょう	
ごたンド -		 一番、「「「」」」 「」」」 「」」」 「」」」 「」」 <li< td=""><td>燃管 燃管 沸ド 気、化活 洛出流流林酸 好愛 謙率 液水(化活 洛出流流 花比 被形,以数 藤率 液水(工活)活油 被形,以数 分位者, 却() 化化 林臨差 離愛向 材界压</td></li<>	燃管 燃管 沸ド 気、化活 洛出流流林酸 好愛 謙率 液水(化活 洛出流流 花比 被形,以数 藤率 液水(工活)活油 被形,以数 分位者, 却() 化化 林臨差 離愛向 材界压	
解析コー		や	原压器	
表1		表.		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
物放出人格納容器源 (2/2) 262/9/	(こ与える駅響(2/2) 評価項目となるパラメータ 評価項目となるパラメータ 正々える第二 施护心の筆動モデルはTNI手板についての再現性を確認 になる、また、好心ノード崩離のパラメータを低下させ 態度解析により好心溶酶単体的での解測に与える影響は小さい とを通認していうの。 評価事故シーケンスでは、原子炉圧力容素の解消する前 一分な時間余校をもって手動施圧により原子が圧力を パラメータに与える影響にない。 ボプソナナムでの溶離が心見す少な パラメータに与える影響にない。 デークないする影響にない。 ボプリンナムでの溶離がのの挙動に関子る感覚候解でに ・一分な時間余校をもって手動施圧により原子が圧力を のroticase(以下に連接していることから、評価項目とな パラメータに与える影響にない。 一一分な時間余校をもって手動施圧により原子が圧力を のroticase(以下に連接していることから、評価項目とな パラメータに与える影響にない。 一一分な時間余校をもって手動施圧により原子が圧力を がすっている。また、炉心子の参照 たいる。また、炉心子の子のを がためいの 一一分ないうなどの 御杯取動機構からかい うメータに与える影響にない。 一一分が、原子が圧力容器被損制がにに用いる最大 インクが、原子が圧力容器被損制がににより原子が圧力を確認している。 したらいことを確認していることから、評価項目となる ジメータに与える影響にない。 一一句に「なる影響にならい。 一句に「なる」とから、評価項目となる ジェータに不必必要能損制でにする したる」とから、評価項目となる がしていることから、評価項目となる がしていることから、評価項目となる がしていることから、評価項目となる がっている。また、炉心子がなどの がためいのに たいたい。 たいたいでのでの理解をを がしていることから、評価項目となる がられたいでのでの するのでする したういでの のでのる。 したういでの のでの のでの のでの のでの のでの のでの のでの	放出人格約容器雰囲気直接加熱(2/2) 種原目となるバラメータに与える影響 種原目となるバラメータに与える影響 電影している。また、野心ノード研練のパラ を低下させた感度解析により類です る影響はない。 意能にさせたるバラメータに与える影響 なの等調をすいた。 また、野心、「一般」のの の な時間余俗をもって手動減低により原子が かた時間余裕をもって手動減低により原子が し、原子炉に力容器が破損 に、十分な時間余裕をもって手動減低により に、中ンスでは、原子炉に力容器が破損 に、十分な時間余裕をもって手動減低にたより ではかさい。 評価項目となるバラメータに与える影響はない。 調査している。とから、 はれたけでした。 などの学みにしきい他のに要けているこ に、 中ないである。 などの学みにしきた確認している。 に、 中ないでは、 などの学校には、 などの学校によれ などの学みにしきた。 などの学会にさせた場合に原子炉に力なと などの などの参加モデルたけTM11ま成についての再 確認している。 などの学会にされた はかさい。 電動機構やケジング溶液節の破損判定に たかったいる。 都知道目となるバラメータに与える影響はなた などの学会にされた などの学会にでする。 常体がついての有 などの子ろくの子子を確認している。 などの学校によれ などの学校によれ などの子子を確認している。 などの学校には、 などの子子を確認している。 などの などの などの などの などの などの などの などの	
3.1 就打 二人式 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	第13、施行コードにおける重要現象の不能かさが運転局等操作時間及び採価項目となるバラメーメ 第13、施行コードにおける重要現象のと考示す。 	1 第計コートにおける重要見多の不縮かさが運転員等級作時間及び評価項目となるバラメータに与える影響(周圧溶融後 1 1111) 101111 101111 101111 1011111 1011111111	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
	<section-header><section-header></section-header></section-header>	

	柏崎刈羽	原子力発電	前 6/7号	号炉 (2017.12.20版)				東海第	二発電所	f (201	8. 9. 12	叉)				É	晶根原	原子力発	電所	2-	号炉				備考
													4)												
器雰囲気直接加熱)(2/2)	運動になって	4	ş.	偏分型含淡 令社令六 衛 僅 恒	/4)	となるバラメータ 与える影響		内筆動を対象としていることから、格 な影響にない。		●破損までは重大事故等対処設備を含 皆に期待しないことで原子炉圧力容器 り、水温の影響はない。	1 1		序囲気直接加熱)(2 / ₄	バラメータに与える影響				圧力容器内挙動を対象として 将器側の条件による直接的な				故等対処設備を含む全ての原 期待しないことで原子炉圧力 と想定しており、水温の影響は	1	I	
ઇ出 乙格納容器	サメータに与える演算 は流にしている考慮にある合体のなら は記述書でする可能におからが、この は記述書である可能になるのが、この 認定書なりたがによるためが読むという に、赤葉解散のたりした式法へのも な適価でよって、		1.を内心した時に「「「「「」」です 第一日本での。	「なから、物価の部の実施の強化のでいた。 かっして、、細胞の認確の確認の確認の に使わって、こまたが、ここの、ここの、 に使わって、こまたないとし、 の、「のいい」である。 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	waws.come.come.ann.ann はかい. - 与える影響(2	評価項目		ナリオは原子炉圧力容器 器側の条件により直接的		ナリオは原子炉圧力容器 での原子炉への注水機能 に至ることを想定してま			(出/格納容器§	評価項目となる				本シナリオは原子炉 いるため,原子炉格線 影響はない。				本シナリオは重大事 子炉への注水機能に 容器破損に至ること たい。	0. x 4%		
擊(高圧溶融物)	「新御会社となるべい 読術者作し、大和のし、新作者作での 読術者作での 読術者での のの影響によったものに、 一般でのようこととから、 が ためたり、 一般では した。 他 一般では した。 ためた した の に の に の に の に の に の に の に の に の に の	····································	୦ଗର ମହନ୍ଦ୍ରଳମାର୍ଥ/୧୦୦୬ ୧୯୫ ଓ	福山市、地口が完全かられた。 「はおいて、やからは「気気」です。 アメットがある。ころ気に使いてドメー でき、「ため」でもし、こちに、 ため、「ため」として、 できた。「ため」として、 できた。「ため」として、 「ため」、 できた。「ため」として、 「ため」、 できた。「ため」として、 「ため」、 できた。「ため」として、 「ため」、 できた。「ため」として、 「ため」、 できた。 「ため」、 「た」、 「ため」、 「ため」、 「た」、 「」、 「」、 「」、 「」、 「」、 「」、 「」、 「	************************************			ていることから, 新容		故等対処設備を本シ とで原子炉圧力 む全 響はない。 破損	いた必要な容量 等操作時間に与 ででに必要な容量 管操作時間に与		(高圧溶融物放	チえる影響				動を対象としているた 5直接的な影響はない。				を含む全ての原子炉へ 子炉圧力容器破損に至 暫はない。	はよりも水源容量の余裕 ちことはなく,運転員等	ドより燃料容量の余裕が ことはなく,運転員等機	
 ラメータに与える影響	第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	Exemples, WenkerLarD. Submits Throno Dentition 20, 2 Cre Prediate International Computer Sciences (Created Sciences) Restances (Created Sciences) Created Sciences (Created Sciences) Created Science	#0.448916.01-4-2シング9.45条を取らここと40.014846.686	1/6番点の中にになった。 からし、 で、きやいかはにないとうかいし、参加が通い(協力が供給 で、きかいかはにないとない 本的に、キャントが違ったいでは、 本的に、キャントが違ったいで、 本的に、そうとし、 その、公司が確認が知い、 たい、公司が適切を行い、 たい、公司が適切を行い、 たい、公司が適切を行い、 たい、公司が適切を行い、 たい、公司が適切を行い、 たい、公司が適切を行い、 たい、公司が適切を行い、 たい、公司が適切を行い、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 のでしたい、 たい、 たい、 のでしたい、 たい、 のでしたい、 たい、 たい、 たい、 たい、 たい、 たい、 たい、 たい、 たい、	munitumenteerees	運転員等操作時間に与える影響		オは原子炉圧力容器内準動を対象とし ¹ 側の条件により直接的な影響にない。		オは原子炉圧力容器破損までは重大事 の原子炉への注水機能に期待しないこ こ至ることを想定しており,水温の影得	秋の谷軍として事業が生かっ」。1 ままま おり、木額は枯渇しないことから通転員 まない。 現の容量として事象発生から 7 日後ま より、禁科は枯渇しないことから通転員	。 「 」 「 」	・メータに与える影響	運転員等操作時間に与				本ンナリオは原子炉圧力容器内挙 め、原子炉格納容器側の条件によ?				本シナリオは重大事故等対処設備 の注水機能に期待しないことで原 ることを想定しており,水温の影響	最確条件とした場合には,解析条件 が大きくなるため,水源が枯渇する 操作時間に与える影響はない。	最確条件とした場合には,解析条件 大きくなるため, 燃料が招高するこ 作時間に与える影響はない。	
平価項目となる/>	(2.6.5.1.2) (2.6.5.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1	中国の大学会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社	マロトンギロをえると 1000-100-100-100-100-100-100-100-100-10	・外部5000としてで設定 したが、 したが、 からったでいる。 かられている。 やったすででいてい。 やったすでいてい。 やったすででいた。 やったすででいている。 かられている。 やったすでででいた。 やったすででいている。 かられている。 やったすでででいた。 やったすでででいた。 やったすでででいた。 やったすでででいた。 やったすでででいた。 やったすでででいた。 やったすでででいた。 やったすでででいた。 やったすでででいた。 やったすででででいた。 やったすでででいた。 やったすででででいた。 やったすででででいた。 やったすででででいた。 やったすでででいた。 やったすででででいた。 やったすででででいた。 やったすででででいた。 やったすででででいた。 やったすでででいた。 やったすででででいた。 やったすででででいた。 やったすででででいた。 やったすでででいた。 やったすでででいた。 やったすででででいた。 やったすでででいた。 やったすででででいた。 やったすでででいた。 やったすでででいた。 やったすでででいた。 やったすででいた。 やったすででいた。 やったすででいた。 やったすででいた。 やったすででいた。 やったすでいた。 やったでいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったすででいた。 やったすでいた。 やったいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったすでいた。 やったでいた。 やったますでいた。 やったますでいた。 やったすでいた。 やったすでいた。 やったでいた。 やったるでいた。 やったますでいた。 やったますでいた。 やったますでいた。 やったますでいた。 やったまでいた。 やったますでいた。 やったますでいた。 やったますでいた。 やったますでいた。 やった。 やったますでいた。 やった。 やったますでいた。 やったますでの。 やったますでいた。 やったますで、 やったますでいた。 やったますででのでいた。 やったますでいた。 やったますでいた	∽∽▽▽∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞	考え方	ッション・プー バ設定	ッション・ブー レイ設定 格 約4容器	容器圧力を包給 な な な な の に な の に な の に な の に な の の の の	どを包含する高本シナリ 含む金で 容器破損 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	50%代替淡水時 官幅に1 定 たる影響 大る影響 ド可搬型設備用 管理値下1 限値を設定		面項目となるパラ	条件設定の考え方 ライウェル内体緒の設計値	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2設計値 (内部機器及び構造 0体積を除いた値)を設定	8破壊弁の設定値	諸運転時のサプレッション ゲール水位として設定 営業転時のサプレッション	。 ール水温度の上限値として 言	濱運転時の格納容器圧力と 2設定	営運転時の格納容器温度と ご設定	小貯水槽の水源温度として 制値及び夏季の外気温度を まえて設定	3貯水槽の水量を参考に, 最 条件を包絡できる条件を設	国所構内に防蔵している合 容量を参考に,最確条件を包 できる条件を設定	
作時間及び	や 生活に	(1) 泉水田水道成び道気油 参坊に設置 南雪ら高能 クレクの論 南雪ら高能 クレクの論	第一首条街の南市な職点 単にに水を備設まとして前 単にに水を認識をいいて前 単にに水能の施業以を使用 一水化の通常にとり加い中国 実施に目にたりのビリン に水能の通常になりたい。 は第四日に前を使用した」 に来る通義に通行 「メート」たな通識者に通行	本で用しいことを問題点。 市でのに力を通しく対象 からし、と同時に応じる 通路にし、定日時に応じる 通路にし、定日時に応じる 通路にし、完全中の違い仕事 書がし、定合時に応じる 通路にし、完全中の違い仕事	in the service servi	条件設定の	通常運転時のサプレ ル水位の下限値とし	通常運転時のサプレ ル水温度の土限値と	 通常運転時の格納? する値 通常運転時の格納? (ドライウェル内3) 設計温度)として設 	年間の気象条件変化 めの水温を設定	西側淡水貯水貯水設備) 槽の管理下限値を設 軽油貯蔵タンク及7 軽油タンクの管理下		時間及び評(金かさ 条件	0m ³ (户 4, 700m ³ + 1	2,800m ³ 猫の 値) メロナパーキ	インティーク チェンバ間差 真(計値)	約3.63m 通(値) ・1	#1000 · · · · · · · · · · · · · · · · · ·	約7kPa[gage] 通9 値)	54℃程度 通行 値) し ⁻	以下 (値) 略 実見	3以上 *永虹) 帝部	3以上 3以上 3 3 3 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4	
重転員等操	、 "PG#FFACU#AGe#FF12 - (約2-14) - (約2-14) - (約3-15-(1-14) - (5(3-14) - (5(3-14)) - (5(3-1	21, 400m ⁽ 2以上 (淡水的水池水道+催/) (淡水的) (淡水山) ((彩油タンクが草) (彩油タンクが草)	 ※非る	※出生する可能性は営業 をない、 をない、 た野を出せた同時に応じ 、 たまり、 このにしず酸化 、 このにしず酸化 、 このにして 、 ののに、 ののに、 ののに、 ののに、 ののに、 ののに、 ののに、 の	* Truck at transform を最確条件	機器条件)の不 施条件		32°C	gage]∼ age] 58°C		5 時本設備+代替 インク+可搬型		転員等操作	事故条件)の不利 最確約	7,90 (設計 空間部:	液相部: 液相部: (設計 3 43tPo (ドラ	・ 、 、 、 、 、 、 、 、 、 、 、 、 、	約3.59m~ (実測) (美洲 (美洲	約5kPa[gage] ~ (実測	約45℃~約 (実測	31,C1 (実績	7,000m (合計时	1,180m (合計坊	
ら件とした場合の)	HH Weiwert-001時間中 Weiwert-001時間中 Weiwert-001年4年11日1日 Weiwert-001年4日 Setter 6-201-2月1日 Setter 6-201-201-201-201-201-201-201-201-201-201	- muor 1:2 15 第三人 1:2 15 15 15 15 15 15 15 15 15 15 15 15 15	昭元4年後の2015年 高には14年の2015年 京には14年の6月15日まままた 京大田田田田田田 京大田田田田田 市会報告 市会報告 市会報告 市会和日日 市会報告 市会和日日 日		アレイネリス Wai manineran (Rai) 第2表解析条件:	条件(初期条件,事故条件及び 確かさ 解析条件 最1	an a	約 15°C~約 (実績値)	約 2. 2 kPa[約 4. 7kPa[s (実績値) 約 25℃~約 (実績値)	35°UF	8, 600m ³ (西國部次人) 600m ³ (西國部次人) 1, 010kL 以上 100kL 以上		キとした場合の運動	解析条件(初期条件, 解析条件	7, 900m ³	空間部:4, 700m ⁶ 液相部:2, 800m ⁵ 3.435Pa - バラオ ウィ バー井	o. Toka (1. / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	3.61m (NWL)	35°C	5.0kPa[gage]	57°C	35°C	7, 000m ³	1, 180m ³	
f条件を最確 う						属相	+プレッショ (通) ・プール水位 4.7cm	- プレッショ - プート永道 32°C	 納容器圧力 5kPa 6約容器雰囲気 57°C 	+部水源の温度 35℃	 部水源の容量 約8,4 約1,4 	1 & 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ミ件を最確条作	項目格納容器空間体	Humathura 積(ドライウェル) 救諭容器空間体	鑚(サプレッショ ン・チェンバ)	真空破壞弁	サブ レッション ・ブール米位	・プール水温度	格納容器圧力	格納容器温度	外部水源の温度	外部水源の容量	燃料の容量	
表2 解秒						ΞŤ	\ 	→ 八型	初期条件	<u>م</u>	<i>v</i>	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	表2 解析务						初期金	· 					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			東海第二	二発電所	f (2018.	9.12版)						島根原子力発	電所	2号炉	備考
	こる影響(3/4 <u>)</u>	範項目となるバラメータ 11.5年える影響 11.5年との上記で、11.5年の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日	ドマルシウム 17 現代を設定した場合に、歳日 日 ガバウンダリ 現代を設定した場合は、歳日		10)クリーブ酸損や職点い等が生じる原因と による酸量と指定できるが、ネントリンドでは などの電圧調査と対象を低いに成子が多位が能料有効度能能 におび化酸に調査した時点で成子が急速減圧 5、特象地限に与える影響は小さく、評価項 5、特象地限にもよる影響になって、評価項	は、原子が熱出力の低下ない。GRFY研会を2.2.0 くなり、原子が来位の低行は読向され、原子 が遅くならい、原子中に方部線構造も違い、原子 時後他に原子が圧力は進せわくに低下するこ ちバラメータに与える影響はない。	は、読みに安全弁を通じて特徴管理内に依由 するか、成子が圧力は読みに安全弁により朝 の広洋整備はないことから、評価項目とな 影響は小さい。	同様であり、事条道展に上来る影響はない。 めバラメータバ与える影響はない。	格納容器雰囲気直接加熱)(3/4)	評価項目となるパラメータに与える影響	起因事象として、原子炉水位の低下の観点で厳しい 事象であるLOCA等の原子炉冷却材圧力パウン ダリ喪失を仮定した場合は滅圧操作が不要となる。	I		東浜電力福島第一原子力発電所の事故に対する存 心・稀納容器の推定の評価において、炉内検計装配 管のドライチューノ、進がし安全弁のフランジガス そのドライチューノ、進がし安全弁のフランジガス 大場合、原子が日本のこととたるため、 減圧の規模によっては原子や減圧操作をしなくと 減圧の規模によっては原子や減圧操作をしなくと 該価に額被加出/格納容器雰囲気直接加熱を回離 する可能性がある。 する可能性がある。 生命にが影酔権有効長症部から燃料権有効長の20% 上の位置にて減圧操作をうたかと多素を見れ、評 一の位置にて減圧操作をうたかと参表られ、評 一の位置にて減圧操作をうたかと考えられ、評 他項目となるバラメータに与える影響はない。	
	時間及び評価項目となるパラメータに与え	第4 運転用等額付加速用に与える影響 1・・・のフォルシャルにたった加速点とものの1・・があった。	この、時代がないないないないないないないないので、そので、そのかないで、そのかないでいない 所手が行動性化力パックダリ酸失き反応した場合に、減圧しない等の学が行動できた。 したなる。		よる配管等のクリーブ破損や溜えい等が生じる原因と 高価がメによる配置等 ートアップにした影響を推断できるが、キンリオマは (FGPらL-トアップ) 組や通えい等の発生面に原子切水信が読料者効度能加 クリーブ酸和子面えい の発生面に原子切水信が読料者効度能加 クリーブ酸和子面えい の発生の効果」の第二に原子の合同にデザロ急速加 から酸料剤物度の 20% (内容の 20%)上の範囲に有える影響は小点く、細胞具 操作を差渉することかい 日本ることから、参加額に中える影響は小点く、細胞員 操作を差渉することかい に下える影響によい。	した場合には、原子伊熱出力の低下が中を3.より、 (2017年3.より、 現は少なくなることから、原子学家伝統に指導而なれる 第一次会議選任業権での開始、 第一次会議選任を実施すること)に変 が高速議任権権での開始、 り、低子学会議選任を登録 とから、評価項目とな	した場合には、進がし安全非を通じて活動資源内に依田 操業条件とした場合には、 に満立がなっていた。 読者が強ひするが、、原子が田口力は高い「安全半により」のため高が高速が強い 読みがないない、、 原子が田口力は高い「安全半により」である高い高速に使いない きたいなどの事業にない。 しための意識はない。 しための意識はない。	最確条件は回転であり、事業通販に与える影響はないこ 解析条件を設確条件は1 後点員等操作時間に与える影響はない。 とから、評価項目となら	ラメータに与える影響(高圧溶融物放出/	運転員等操作時間に与える影響	点で 超因事象として、原子炉水位の低下の観点で厳しい事 まであるLOCA等の原子炉冷却材圧力パウンダリ 喪失を仮定した場合は減圧操作が不要となる。	(第一部) (1) (1) (1) (1) (1) (1) (1) (1	を想示しても設	東京電力福島第一原子力発電所の事故に対する好 心・熱神容器の推定の評価において、炉内線計装配管 の・特神容器の推定の評価において、炉内線計装配管 のドライチューン、進防に安全弁のフレンゴラ及され のドライチューン、進防に安全弁のフレンゴラ及され のドライチューン、進防に安全弁のコンに言及され 正子のこれに手が急圧がを上しては、気相節減入いは広子 が出人格納容器等相気直接加熱を回避する可能性があ 5。 が出人格納容器等相気直接加熱を回避する可能性があ 5 か出人格納容器等相気道接加熱を回避する可能性があ 5 が出人格納容器等相気道接加熱を回避する可能性があ 5 が出した時子様に発酵をしては、気相節調入いれ広子 がためご線等特徴力を認定しては、気相節調入いれ広子 がためご線等特徴力を認定しては、気相節調入いれ広子 があったいたの がためご線等や指示した。 1 のでしたアップによる影響と推定でき、ホンナリオで に対する影響に小さいことから、運転員等操作時間に 与える影響に小さいことから、運転員等操作時間に 5 5 5 5 5 5 5 5 5 5 5 5 5	
	合に運転員等操作	■ 注記定の考え方 → □□□ 本価1, → □□□ 本価1,	2.00年下の職点で能し、1023年978-0 2.02年7の職点で能し、1023年978-0 2.02年7月2月2日 第12日、第2日 第12日、第2日 第12日、第2日 第12日、第12日 第12日 第12日 第12日 第12日 第12日 第12日 第12日	Name Date Action Acti	商温ガスに 市でかって つてがひで してがひて の から続手 が 数件で数算件 数件 数件の 数件	5.5.5.所子が熟出力が、酸繊素件と あるが原子が熟出して、外生する第気 や酸しい設定として、外生する第気 や酸しい酸化学うして、第 が、操作却 息間及び病子が保護系 とならずが学った。 にないすいない。 (1.5.5.5.5.5.7.5.1.2.5.1.5.5.1.5.5.1.5.5.5.5.5.5.5.5.5	6-6.31主振気3時時前客 第6-5.41-11.212と 第7-5.48-11.212と 第7-5.48-11.212と 第7-5.48-11.212 第7-5.48-11 第7-5.48 第5-5.48 5-3.58 5-5	こ与える影響は厳強で、解射条件としたえる影響は厳強で、解射条件という。 いら、全交流動力電源要とから、運びし、運びし、運びし、運びした、運びしたを請まえて	評価項目となるパ	条件設定の考え方	原子炉水位の低下の観, 厳しい事象を設定	高圧注水機能として可 高圧注水機能として可 局離時行当系及び高圧 スプレ系の機能変勢: 圧注水機能として残留 主系 (低圧注水モード) 転圧炉心スプレノ系の 酸圧炉心スプレノ系の 酸氏を設定するととも) 大事故等対処設備によ 子症比全活のとなどは 大事故等対処設備によ 主た、全ての非常用式 ・ と彼等の機能酸失を設	全交流動力電源喪失を するため,外部電源なし 定	原子炉圧力を厳しく見るものとして設定	
	は最確条件とした場	な条件及び機器条件)の かさ 最確条件	原子的 一 一 一 一 一 一 一 一 一 一 一 一 一	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	おり起た お生する可能性は否 原子炉圧力 定できない のとして認	1000回行業 一に2000回前年 「市場」 1000回前年 1000回前 1000回前年 1000回前年 1000回前年 1000回前年 1000回前年 1000回前年 1000回前年 1000回前年 1000回前年 1000回前年 1000回前年 1000回前年 1000回前年 1000回前 1000回前 1000回前 1000回前 1000回前 1000回前 1000回前 1000回前	施時間でき 施時間でき 「日本の保護系電源使 して、原子ー 大文は第十字が化築 原子が水信 日子により して、「日本」 「一本」 一本」 「一本」 一本」 一本 一本 一本 一本 一本 一本 一本 一本 一本 一本	電源使失いよるボン 事象進展に ブ停止(事象発生と同 あることか 時) 一般で 一般で	言員等操作時間及び	事故条件)の不確かさ 最確条件	I	I	I	発生する可能性は否定できな	
	第2表 解析条件を	解析条件(初期条件,事 不確式 解析条件	合本成長の企業失 全交換動力電器喪失 高価にため構造、低圧注 本機能及び防子が出 等の喪失 力が認知値のの重大 した の成子が注入機能の 養先 一が注入機能の	外部電源なし	による配 リーブ破 い等	 クラム信 展子炉水位低 (レベル3)信号 	哪 步 止	ポンプ 事象発生と同時に停 止	件とした場合の運転	解析条件(初期条件, 解析条件	給水流量の全喪失	高圧注水機能喪失 底圧注水機能喪失 重大事故等対処設備による 原子が比較能の優失 全交流動力電源喪失	外部電源なし	考慮しない	
		E M	起因事务 成全機能 以分寸-55	展	西羅ガス 音等のクク 南令麗子	4	機器条件	再循環系	解析条件を最確条	項目	起因事象	安全機能の喪失 に対する仮定	專 故 余	t 商量 定 () () () () () () () () () (
									素 2						

	柏崎刈羽原子力発電所	6/7号炉 (2017.12.20版)			東海第二発電所(2018	8. 9. 12版)			島根原子力発電所 2号炉	備考
貳直接加熱) (1/4)				調練実織等	中央通貨運行に 本人人工 本人人工 「 本」 「 一 を に 二 二 一 本 に 二 二 本 二 本 一 本 に 二 調 編 本 一 本 に 二 一 一 本 に 元 二 本 一 本 二 本 二 本 二 本 二 本 二 本 二 本 二 本 二 本 二 本 二 本 二 本 二 本 二 本 一 本 元 本 一 本 元 本 一 本 元 本 一 本 元 本 一 本 元 本 一 本 元 本 一 本 元 本 一 本 元 本 一 本 一 本 一 本 一 本 一 本 一 本 一 本 一 本 一 本 一 本 一 本 一 本 一 二 二 二 二 二 二 二 二 二 二 二 二 二	中央曲響線にお 「中大人間 「「一人((()))」 「「一人(()))」 「一人(()))」 「一人(()))」 「一人(())」 「一人(())」 「一人()) 「一人())」 「一人())」 「一人()) 「一人())」 「一人())」 「一人())」 「一人()) 「一人())」 「一人()) 「一人())」 「一人()) 「一人())」 「一人()) 「一人())」 「一人())	.直接加熱) (1/5)	訓練実績等	本 市 市 市 市 市 市 市 市 市 市 市 市 市	
各納容器雰囲気	6 当家地域通道における 「「「「「「」」」、「」」、「」、「」、「」、「」、」、「」、」、「」、」、	各価価価値 各価価値 は、1000000000000000000000000000000000000	余裕(1/3)	操作時間余裕	行手が急速減圧操作に ついては、原子が伝達減圧操作に ついては、原子が圧力容 認識があるよっに活了する 力容器破損までの時間 は客袋在から約4.50 (事袋発生から約.38 分 (事袋発生から約.38 分 (5)、整備時に不会常らある (5)、整備時に不会常らある (5)、整備時に高級保護。 (5)、整備時にの意識保て がある。	条約者提換換用的止で の時間は操作用的止て の時間は操作用使用 を時間よ子で飛行上の息 でもり、時間会がたもの でかり、時間会がたもの でい、本操作たいと前 に、工業情に違い のよう、単能に違い のよう、単能に違い でいた 事件であ 会社がらお」。 合用であり、約3 時間の 会社がらあっ」とから、時 目前会がある。	納容器雰囲気	操作余裕時間	「周、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二	
溶融物放出/ヤ	たたらいり またらいり (たらいり) (間 時の町 図 てきいは 株工等) (目 時の町 図 ては、 同 パワリンド (1 1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1	例 (小山山小野龍山) 約 (小山山小野龍山) 山山山和田市(小田山) 山山山和田市(小田) 米田山山) 米田山山山山 米田山山山山 市山山山山山山山山 市山山山山山 市山山山山山 市山山山山 市山山山山 市山山山山 市山山山山 市山山山山 市山山山山 市山山山山 市山山山山 市山山山山 市山山山山 市山山山 市山山山 市山山山 市山山山 市山山山 市山山山 市山山山 市山山山 市山山山 市山 市	長び操作時間	評価項目となる バラメータ に与える影響	本語を見ていた。 「「「」」」 「「」」」 「」」 「」」 「」」 「」」 「」	第一番番目の 「「「「」」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」」、 「」、 「	容融物放出/格	評価項目となるパラ メータに与える影響	数本等性 金属 一番 一番 一番 一番 一 一 一 一 一 一 一 一 一 一 本 本 本 本	
操作時間余裕(高圧)	20年に二、日本市工会社の経営市場場は、 2月10日、1月1日、2月1日、2月1日、2月1日、2月1日、2月1日、2月1日、2月1	Terring of the second s	メータに与える影響	運転員等操作時間 に与える影響	原子が木広が続着有効表成部 のも燃料有効表成部 この燃料有効のの2004の60 第に2013達するまでには事業があ 生から約3000回転ががま ローまた。原子の急速に換加強 は原子が水位の低子傾向を調 は原子が水位の低子傾向と調 は原子が水位の低子傾向と調 したがきあらっじの準備的 は原子が水位の低子傾向と調 に原子が水位の低子傾向と調 に発行したがられるが、中央通 着が低円に解析コード及び新 進かる可能性があるが、中央通 置かる可能性があるが、中央通 置かる可能性があるが、中央通 置かる可能性があるが、中央通 置かる可能性があるが、中央通 置かる可能性があるが、中央通 置かる可能性があるが、中央通 置かる可能性があるが、中央通 置かる可能性があるが、中央通 置かる可能性があるが、中央通 置かる可能性があるが、中央通 置かる可能性がなった。2013年10000000000000000000000000000000000	大陸構成治理系通転は事業発 生 90 分後に開始することとし ているが、即開始術をつい回 でいるが、即開始術をついて だされているため操作団が使い下値 がされ操作団に与えるのを認識に がきばればにしょか。、進行目 を設備にはのにしょう。、進行目 時間に、操作的操作開始 時間に、素化化の操作開始 時間に、素化化の操作開始 時間に、素化一直の操作目のによう。、 素施にすてた一直の操作目のによう。 素施に一回一の運作目的を請求 素施し、同一の運作目的を請求。	作時間余裕(高圧袮	運転員等操作時間に与え る影響	及 、 、 、 、 、 、 、 、 、 、 、 、 、	
に与える影響、評価項目となるパラメータに与える影響及び	低価値用、(価子無利) AFTRATCA Methody Table (Contraction) 6441 2-0040004 AFTRATCA AFTRATCA AFTRATCA AFTRATCA 6441 2-0040004 AFTRATCA AFTRATCA AFTRATCA AFTRATCA 6441 2-0040004 AFTRATCA AFTRATCA AFTRATCA AFTRATCA 6441 2-004004 AFTRATCA AFTRATCA AFTRATCA AFTRATCA 6450 4-040004 AFTRATCA AFTRATCA AFTRATCA AFTRATCA 6450 4-040004 AFTRATCA AFTRATCA AFTRATCA AFTRATCA 6450 4-040004 AFTRATCA AFTRATCA AFTRATCA AFTRATCA AFTRATCA 6450 4-040004 AFTRATCA AFTRATCA AFTRATCA AFTRATCA AFTRATCA AFTRATCA	Even and a set of the set	3表 運転員等操作時間に与える影響,評価項目となるパラ、	(条件(操作条件)の不識かさ 解析条件 条件設定の 解析条件 条(5)	【認知】 (認知) (認知) (認知) (認知) (認知) (認知)(認知)(認知)(認知)(認知)(認知)(認知)(認知)(認知)(認知)	現金の主要になり、 市交通貨店でのお店舗受信及び非常用ディーセルを電機の非常用高圧素能で 市交通貨店であっ、第ついごおにより等待用協会 素の民勢運輸を用金する手能としている。そのため、認知意れにより操作開始的 市に与える影響はたし、 工作により等待用協会 国に与える影響はたし。 東京の「「東京の間」 「「「「「大」」」」」 「「「「「」」」」」」」」」」、「「「」」」」、「「」」」、「」」」」、「」」 「「「」」」」」、「」」」、「」」」、「「」」」、「」」」、「」」、「	- 与える影響,評価項目となるパラメータに与える影響及び操	 (件) の (抽明間) (換作の不確かき要因 (支方) 	「認知」 「認知」 「認知」 「「「「「「「」」」」 「「「「」」」」 「「「」」」」 「「」」」 「「」」」 「」」 「」」 「」」 「」」 「」」 「」 「	
員等操作時間	成	離上海村○H.go 至乾愛上所以孫 遵任承礼	御代	角目	H - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	あ」 の1、50 で、1、50 小 の1、50 小 市 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、	等操作時間 (3	解析条件(操作3 不確かさ 解析上の操作開 操作開始 表件	原位権底燃約(2位達点 子が有部料」 %置し 伊燃効(基準)高にた 水料長り有のい到時 伊のる定	
長3 運転 員							運転員∉	町	原道作 水減 が用 心臓	
017							表 3		凝作杀件	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<page-header></page-header>	東海第二発電所 (2018. 9. 12 版)		備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電	電所 2 号炉 備考
	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	レえる影響及び操作時間余裕(3/3) 	東海市市学校電話 中心 (2018.9.12 版) 東海市市学校電話 中心 (2018.9.12 版) 南京市学校会報報告報告報告報告報告報告報告報告報告報告報告報告報告報告報告報告報告報告報	 「● 「● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	法 自根原原子力発電所 2 号炉 2 (11) 11) 11) <td>備考</td>	備考
	第1表 運転員等操作時間に与える影響,評価項目となるパラメータに生 項目 部所条件 (操作条件) 項目 の不識かさ 第 第 第 第	(学会社) (学会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社	「「「「「「「」」」」」、「「「」」」、「「「」」、「「」」、「「」」、「「	3.2 通転員等報任時日にしたえる影響、評価項目となんがランクレクレクえん影響及び執行時日の	

				よこの負担比較な 「日別山町」画 小門負担う	2.0)					
柏崎	刘羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)			島根原子力発電	所 2号炉		備考
7 日間における水源の対応について(高圧溶融物放出/格納容器雰囲気直接加熱) ○** ***	後水均蔵槽水単:約1,700m ³ 淡水街小池:約1,800m ³ 淡水街小池:約18,000m ³ 「水街小小ジーン 〇木納水器下館活山(2,400m ⁴) 以子が圧力容器破損後は崩壊熱用当で注水。 1000 ⁴ /h で 2 時間) 原子が二方容器破損後は崩壊熱用当で注水。 2000 ⁴ /h で 2 時間) 原子が二次部器の指数(は崩壊熱用当で注水。 2000 ⁴ /h で 2 時間) 原子が二次に加索(電波)による防約容器スプレイ 第4454840550 1000 ⁴ /h で 2 時間)	原 f-Pit H 73 容許 時時に属 (2 min /h)。 開始 (7 min /h)。 原子炉 F /j容器破損以降, 465 kPa [gage]に到進以降は 13 0mi /h 以上で注水。 ③淡水貯水池から復水貯廠槽への移送 事象発生12 時間後から可解型代特許水ポンプ (A-2 級) 4 台を用いて 130mi /h で淡水貯水池の水を復水貯蔵槽へ鈴水する。	○時間評価(右 F図) 事象発生12時間までは復水貯蔵槽を水源として格納容器下部注水及び格納容器スプレイを実施するため、復水貯蔵槽水量は減少する。事象発生12時間後から復水貯蔵槽への桶給を開始するため、水量の減少割合は低下する。事象発生約 20.5時間後以降は、サプレッション・チェンパのプール水を水源 しした代替確義冷却系の逆転を実施することにより水量の減少は停止する。 ました代替価素(本)の一般を実施することにより水量の減少は停止する。 した代替価素(本)の一般を実施することにより水量の減少は停止する。 の水肪評価素(本)の1.500m/必要とない。また、7.1回間の対応を考慮すると、6.5及低(7.15炉のそれぞれで約.2,700m/必要となる。6.5及 び 7.9炉の同時被災を考慮すると、約.5,400m/必要とされる。各号炉の復水貯蔵槽に約.1,700m/及び淡水貯水油に約.18,000m/の水を保着することから、6.4 見及び7.9炉の同時被災を考慮した場合も必要水量を読得可能であり、安定して沿却を継続することが可能である	 添付資料3.2.11 7 日間における水源の対応について (高圧溶融物放出/格納容器雰囲気直接加熱) 水源に関する評価 ※水源(有効水量) 代替淡水貯槽:約4,300m³ 水使用バターン 常設低圧代替注水系ポンプを用いた代替格納容器スプレイ 冷却系(常設)による格納容器冷却 原子炉圧力容器破損後,代替淡水貯槽を水源とした常設低 正代替注水系ポンプを用いた代替格納容器スプレイ冷却系 (常設)による格納容器冷却 定代替注水系ポンプを用いた代替格納容器スプレイ冷却系 (常設)による格納容器冷却を実施する。格納容器圧力が低 下傾向に転じた後は,格納容器正力0.465MPa[gage]到達で冷 却開始,0.400MPa[gage]で停止の操作を継続する。 ② 常設低圧代替注水系ポンプを用いた格納容器下部注水系(常設)によるペデスタル(ドライウェル部)注水 原子炉圧力容器破損後,代替淡水貯槽を水源とした常設低圧 代替注水系ポンプを用いた格納容器下部注水系(常設)による ペデスタル(ドライウェル部)注水を実施する。その後、ペデ スタル(ドライウェル部)に落下した溶融炉心を冠水維持させるため,格納容器下部水位2.25m以下でペデスタル(ドライウェル部)に表する。 3. 時間評価 格納容器冷却等によって,代替淡水貯槽の水量は減少する。 事象発生90分後までに代替循環冷却系による格納容器除熱を 実施し,代替格納容器スブレイ冷却系(常設)による格納容器 冷却等を停止するため,代替淡水貯槽の水量の減少は停止する。 この間の代替淡水貯槽の使用水量は合計約380m³である。 	7 日間における水源の対応について(高圧溶融物放出/格納容器雰囲気直接加熱)	〇水源 輪谷貯水槽(西) [※] :7, 000m ³ ※設置許可基準規則 56 条【解釈】1b) 項を満足するための代替淡水源(措置)	〇水使用パターン ①格納容器代替スプレイ系(可搬型)によるペデスタル注水 原子炉圧力容器下鏡部温度が 300℃に到達した時点で開始し,ペデスタル水位 2. 4m(注水量 225m ³)到達後停止 ②ペデスタル代替注水系(可搬型)によるペデスタル注水 原子炉圧力容器破損以降,崩壊熱相当に余裕を見た量で注水	〇時間評価 事象発生 12 時間までは輪谷貯水槽(西)を水源としてペデスタル注水を実施するため,輪谷貯水槽(西)水位は減少する。事象発 生後約 10 時間後から,サプレッション・チェンバのプール水を水源とした残留熱代替除去系の運転を実施する。	○水源評価結果 ○水源評価結果 時間評価の結果から輪谷貯水槽(西)が枯渇することはない。また、7日間の対応を考慮すると、約600m ³ 必要となり、十分に水量 以 を確保しているため対応可能である。 225m ³ + (55m ³ /h×4.6h) + (35 ³ /h×2h) =600m ³	 ・運用の相違 【柏崎 6/7,東海第二】 島根 2 号炉は可搬型設備によりペデスタル注水を実施する。 ・評価結果の相違 【柏崎 6/7,東海第二】 ・解析条件の相違 【柏崎 6/7】 島根 2 号炉は,事象発 生後から必要な可搬型設備を準備し,使用することを想定。

まとめ資料比較表 「有効性評価 添付資料325]

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12	版)		島根原子力発電所	2 号炉		備考				
		添付	資料 3.2.12		添	村資料 3.2.6	・設備設計の相違 【柏崎 6/7】				
	7日間における燃料の対応に~	ついて		<u>7日間における燃料の来</u>	応について		島根2号炉は、緊急時				
	(高圧溶融物放出/格納容器雰囲気	直接加熱)	(高圧溶融物放出/格納容器)	(高圧溶融物放出/格納容器雰囲気直接加熱)						
東京の 悪 の 置 り 悪 っ 悪 っ ほ っ ほう 悪 し 悪 の 悪 の 悪 の 悪 の 悪 う ほう ひょうちょう	4.2.6 保守的に全ての設備が,事象発生直後から	7日間燃料	を消費する	保守的に全ての設備が、事象発生直	俊から7日間	燃料を消費す	た、モニタリングボスト				
1年 1年 1年 1年 1年 1年 1年 1年 1年 1年 1年 1年 1年 1	ものとして評価する。			るものとして評価する。			は非吊用父流竜源設備又は登録代表な法言源設備				
日式の 11 の 11式の	□ 「「「「」ズ び」」	公計	制定	바고고	_₹1	yar=	による電源供給が可能で				
第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	ドマネクリー		判定 軽油貯蔵タ	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	合計	判正	ある。				
本 本 本 本 本 本 本 本 本 本 本 本 本 本	 市 ない () () () () () () () () () () () () ()	7日間の 軽油消費量	ンクの容量 は約 800kL	 (燃費は保守的に最大負荷時を想定) 2.09m³/h×24h×7日×1台=351.12m³ 							
	= 約 352. 8kL	赤寸 352.8kL	であり,7日 間対応可能	大量送水車 1台起動	-	ガスタービン発	・評価結果の相違				
	窒素供給裝置用電源車 1 台起動 (終始容異内への変素注入)	7日間の	可搬型設備 用軽油タン	0.0652m ³ /h×24h×7日×1台=10.9536m ³	7日間の 軽油消費量	電機用軽油タン クの容量は約	【柏崎 6/7,東海第二】				
大大大 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(竹前谷晉) $500 \pm 8(EX)$ 110.0L/h(燃料消費率)×168h(運転時間)×1台(運転台数) =約18.5kL	軽油消費量 約 18.5kL	りのな重は 約 210kL で あり,7日間 対応可能	大型送水ボンプ車 1 台起動 0.31m ³ /h×24h×7 日×1 台=52.08m ³	彩 423m ³	450m ³ であり,7 日間対応可能					
の ガガ 出 か の の の の の の の の の の の の の	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		緊急時対策 所用発電機 燃料油貯蔵	可搬式窒素供給装置 1 台起動 0.036 m ³ /h×24h×7日×1台=6.048m ³							
て (市) 上 谷融地 (後期日小和型電源設備等, 7 (後期日小和型電源設備等, 7 (後期日子伊羅線谷坦系専用の (1900月7日7日7日7日 1900月7日4日 (1900月7日7日7日7日 (1900月7日7日7日7日 (1900月7日7日7日7日7日 (1900月7日7日7日7日7日7日 (1900月7日7日7日7日7日7日 (1900月7日7日7日7日7日7日7日 (1900月7日7日7日7日7日7日7日7日 (1900月7日7日7日7日7日7日7日7日7日7日 (1900月7日7日7日7日7日7日7日7日7日7日7日7日7日7日7日 (1900月7日7日7日7日7日7日7日7日7日7日7日7日7日7日7日7日7日7日7	(燃料消費率は保守的に定格出力運転時を想定) ビジン ビジン ロック ロック ロック ロック ロック ロック ロック ロック	7日間の 軽油消費量 約70.0kL	タンクの容 量は約 75kL であり,7日 間の対応可 能	緊急時対策所用発電機 1台 0.0469 m³/h×24h×7日×1台=7.8792m³	7日間の 軽油消費量 約8m ³	緊急時対策所用 燃料地下タンク の容量は約45m ³ であり,7日間 対応可能					
ス日間/こおける燃料の対応/こついて アケット状況: (***) <td>21 年度は1月まであるために用いて、「しておりの目的に手術用がイーーでの 28.3 廃労規定に基へへ容疑。 28.3 廃労規定に基へへ容疑。</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	21 年度は1月まであるために用いて、「しておりの目的に手術用がイーーでの 28.3 廃労規定に基へへ容疑。 28.3 廃労規定に基へへ容疑。										

まとめ資料比較表 〔有効性評価 添付資料 3.2.6〕

柏崎刈羽原子力発電所 6 /7号炬 (2017-12-20版)	東海第二発電所			鳥根原子力発行	雪所 25	 号炉		備老
容料かし			添付資料3213		 ・ 解析条件の相違 			
			MATE 10. 2. 10		【柏崎 6/7】			
	省	雪酒設備の有る	告		自根の早后は 必要有			
			古坛加劫)	市政代育父师电你权师少真何(同	1/11(合留317/)	<u>//XII/18///1</u>	<u> </u>	西国なったは、必安員
		約谷奋芬田 気	旦按加 <u>熱)</u>	<u></u> 直接加	熱)			何に対して常設代谷父
								流電源設備にて電源供
	主要負荷リスト	電源設備:常設作	代替高圧電源装置】 ####0#	主要負荷リスト		- 4 0001 W		給を行う。
	起動順序 主要機器名称 医金田氏染白酶纪熟色炭	負荷容量 (k W) 大	進勤時の取 負荷容量 (kW) (kW) (kW) (kW) (kW) (kW) (kW) (kW)	電源設備:カスタービン発電機	正格出刀	: 4,800kW	定常時の	
	 第二部日本日期にあり、 第二部日本日期にあり、 第二部日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本	約 120 約 97	約 245 約 217	起動 主要機器	負荷容量	最大負荷容量	最大負荷容量	・設備設計の相違
	 ○ 市 & K & L () f (L ∩ ボ ハ · · · · · · · · · · · · · · · · · ·	約 190 約 190 約 510 約 510	約 892 約 597 約 1,579 約 1,111	順子	(KW)	(kW)	(kW)	【東海第二】
	てい 配 を 安 な 具 何 (5) 代 替 確 常 知 男 系 ボンブ 非 常 用 母 線 2 C 自動 起動 負 荷 使 は a strute の 思 。 の	*/14 約140 彩	約 1,468 約 1,251	 ガスタービン発電機付帯設備 () () () () () () () () () () () () () (約 111	約 300	約 111	常設代巷交流電源設
	 ・ 直流125 % 元電器 A ・ 非常用照明⁶ 4 ・ 120 / 240 % 計 装用 主 母線 盤 2 A 	約 79 約 108 約 134	約 1,833 約 1,820	 ② 代替所内電気設備負荷(目動投入負荷) ③ 充電器,非常用照明,非常用ガス処理3 	利 18	約 129	約 129	備かた電源供給が必要
	 ・ その他と要な負荷⁸⁴ ・ その他不要な負荷⁸⁴ 非常用母線20日動起動負荷 	約 14 約 234		(3) 他 (D 系高圧母線自動投入負荷)	約 512	約 707	約 641	1 加かり电 (赤石かど安)
	 ・ 直流1250元電器 B ・ 非常用照明⁶ ・ 120/2400計 装用 主母線 盤 2 B ・ 120/2400計 装用 主母線 盤 2 B 	約 60 約 86 約 134	約 2,240 約 2,235	④ 格納谷益水素濃度(SA),格納谷益日 素濃度(SA)監視設備	約 20	約 661	約 661	となる負荷が異なる。
	 ・ ての他へ安な到荷 非常用ガス再常成素排風機 非常用ガス処理系排風機 3 	約 135 約 55 約 8 約 8	約 2,529 約 2,341	⑤ B-中央制御室送風機	約 180	約 1,056	約 841	
	てい他を要な具何 停止負荷 中央制御室挽気系空気調和機ファン	利 95 約 - 52 約 45	1 0 010 th 0 777	⑥ B-中央制御室非常用再循環送風機 ⑦ B-中央制御室冷凍機	約 30	約 933	約 871	
	凹 中央制御奚換気糸フィルタ糸ファン その他必要な食荷 面 蓄電池室排気ファン	約8 第 約183 約8 約8	約 2, 918 約 2, 577	① D=中天前仰至市線機 _ 充電器,非常用照明,非常用ガス処理系	系 500	₩9 1, 373	πIJ 1, 171	
		約 154 約 30 第	約 2,848 約 2,769	^⑧ 他(C系高圧母線自動投入負荷)	約 329	約 1,562	約 1,500	
				 ④ A-淡水ポンプ(移動式代替熱交換設備) ④ A-淡水ポンプ(移動式代替熱交換設備) 	約 110	約 1,670	約1,610	
	負荷容量(kW) 7,000	常設代替高圧電源製	装置 5 台 の 最 大 容 量 6,900k W ^{⊗ 1}	 10 B-淡水ボンブ(移動式代替熱交換設備) 10 建印動代共除主ポンプ 	約 110	約1,780	約1,720	
	6.000			10 パロホパレー 10 B-燃料プール冷却水ポンプ	約 110	約 1,930 約 1,970	約 1, 795	
	0,000	常設代替高圧電源装置5	5台の連続定格容量5,520km ^{※2}	出力(kW) 5,000 「		ガスタービン の定格出力(4	発電機 ,800k冊)	
	5,000						,	
	4,000	最大負荷容量		4,000 -				
	常設代 替 高 圧 電 源 装 置 2 台 🛞	約3,131km						
	の 最大客量2.760kW [*] 常設代替高圧電源装置2台 の連続定格容量2.208kW [*] ⑦			3,000 -				
						最大容量:約	51,986k₩	
	1,000			2,000 -			12	
			1	Ū. (Ž)	® 	ᡔ᠋᠋᠃ᢅ᠆᠆᠆		
	2 常設代替高圧 常設代替高圧 電源装置 2 台 常設代替高圧 電源装置 3 台	}}	25 経過時間(h)					
	起動 追加起動 ⁶⁰⁰ 常設代替高圧電源	原装置の負荷積算イメージ						
	※1 常設代替高圧電源装置定格出力運転時の容量(1,380k ※2 常設代替高圧電源装置定格出力運転時の80%の容量(※3 ま変目中部の負要への絵書にはい、自容容量が感知す	W×運転台数=最大容量) 1,380kW×0.8×運転台数=通 スため、変形件株面圧電源。	連続定格容量) 期間を3会追加起動する				24	
	※3 が市泊ら林の民间への転通に行い、民間を集が項加り ※4 有効性評価で期待していないが電源供給される不要な	6.1.0, 市政代育両庄地區3 負荷	ак (ш. т. т. ст. н <u>е</u> ли н <u>е</u> во у т.)	ムガスタービン発電機起動	,	10	24 経過時間(h)	
				堂設代基本流電源設備	の負荷積	「笛イメージ		
				田城下百久加电你联盟	小只叫俱	. 91° 1 / 🗸		

まとめ資料比較表 〔有効性評価 添付資料 3.2.7〕

	まとめ資料比較表 〔有効性評価 3.3 原子炉圧力容器外の溶融	燃料-冷却材相互作用〕 <u>実線・・設備運用又は体制等の</u>	相違(設計方針の相違)
		波線・・記載表現, 設備名称の	相違(美賀的な相違なし)
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3.3 原子炉圧力容器外の溶融燃料ー冷却材相互作用	3.3 原子炉圧力容器外の溶融燃料ー冷却材相互作用	3.3 原子炉圧力容器外の溶融燃料ー冷却材相互作用	
3.3.1 格納容器破損モードの特徴,格納容器破損防止対策	3.3.1 格納容器破損モードの特徴,格納容器破損防止対策	3.3.1 格納容器破損モードの特徴,格納容器破損防止対策	
(1) 格納容器破損モード内のプラント損傷状態	(1) 格納容器破損モード内のプラント損傷状態	(1) 格納容器破損モード内のプラント損傷状態	
格納容器破損モード「原子炉圧力容器外の溶融燃料-冷却	格納容器破損モード「原子炉圧力容器外の溶融燃料-冷却	格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却	
材相互作用」に至る可能性のあるプラント損傷状態は, 「1.2	材相互作用」に至る可能性のあるプラント損傷状態は, 「1.2	材相互作用」に至る可能性のあるプラント損傷状態は, 「1.2	
評価対象の整理及び評価項目の設定」に示すとおり, TQUV,	評価対象の整理及び評価項目の設定」に示すとおり、TQU	評価対象の整理及び評価項目の設定」に示すとおり、TQU	
TQUX,_LOCA, <u>長期 TB, TBU 及び TBP</u> である。	V, TQUX,…LOCA, <u>長期TB, TBU, TBP及びT</u>	V, TQUX <u>及び</u> LOCAである。	・評価条件の相違
	<u> B D</u> である。		【柏崎 6/7, 東海第二】
			PRA により抽出される
(2) 格納容器破損モードの特徴及び格納容器破損防止対策の基	(2) 格納容器破損モードの特徴及び格納容器破損防止対策の基	(2) 格納容器破損モードの特徴及び格納容器破損防止対策の基	プラント損傷状態の相
本的考え方	本的考え方	本的考え方	違。
格納容器破損モード「原子炉圧力容器外の溶融燃料-冷却	格納容器破損モード「原子炉圧力容器外の溶融燃料-冷却	格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却	
材相互作用」では,発電用原子炉の運転中に運転時の異常な	材相互作用」では,発電用原子炉の運転中に運転時の異常な	材相互作用」では、発電用原子炉の運転中に運転時の異常な	
過渡変化,原子炉冷却材喪失事故(LOCA) <u>又は全交流動力電</u>	過渡変化,原子炉冷却材喪失事故(LOCA) <u>又は全交流動</u>	過渡変化、原子炉冷却材喪失事故(LOCA)が発生すると	・評価条件の相違
<u>源喪失</u> が発生するとともに、非常用炉心冷却系等の安全機能	<u>力電源喪失</u> が発生するとともに、非常用炉心冷却系等の安全	ともに、非常用炉心冷却系等の安全機能の喪失が重畳する。	【柏崎 6/7, 東海第二】
の喪失が重畳する。このため,緩和措置がとられない場合に	機能の喪失が重畳する。このため,緩和措置がとられない場	このため、緩和措置がとられない場合には、溶融炉心と原子	PRA により抽出される
は、溶融炉心と原子炉圧力容器外の水が接触して一時的な格	合には、溶融炉心と原子炉圧力容器外の水が接触して一時的	炉圧力容器外の水が接触して一時的な格納容器圧力の急上昇	事故シーケンスの相違。
納容器圧力の急上昇が生じ、このときに発生するエネルギが	な格納容器圧力の急上昇が生じ、このときに発生するエネル	が生じ、このときに発生するエネルギが大きい場合に構造物	
大きい場合に構造物が破壊され原子炉格納容器の破損に至	ギが大きい場合に構造物が破壊され <u>格納容器</u> の破損に至る。	が破壊され原子炉格納容器の破損に至る。	
る。			
原子炉圧力容器外の溶融燃料ー冷却材相互作用による水蒸	原子炉圧力容器外の溶融燃料ー冷却材相互作用による水蒸	原子炉圧力容器外の溶融燃料ー冷却材相互作用による水蒸	
気爆発事象については、これまでに実ウランを用いて種々の	気爆発事象については、これまでに実ウランを用いて種々の	気爆発事象については、これまでに実ウランを用いて種々の	
実験が行われている。水蒸気爆発は,溶融炉心が水中に落下	実験が行われている。水蒸気爆発は,溶融炉心が水中に落下	実験が行われている。水蒸気爆発は、溶融炉心が水中に落下	
し、細粒化して分散する際に蒸気膜を形成し、そこに何らか	し、細粒化して分散する際に蒸気膜を形成し、そこに何らか	し、細粒化して分散する際に蒸気膜を形成し、そこに何らか	
の外乱が加わることによって蒸気膜が崩壊した際に、瞬時の	の外乱が加わることによって蒸気膜が崩壊した際に、瞬時の	の外乱が加わることによって蒸気膜が崩壊した際に、瞬時の	
圧力伝播を生じ,大きなエネルギを発生させる事象である。	圧力伝播を生じ,大きなエネルギを発生させる事象である。	圧力伝播を生じ,大きなエネルギを発生させる事象である。	
細粒化した溶融炉心を覆う蒸気膜には安定性があり、何らか	細粒化した溶融炉心を覆う蒸気膜には安定性があり、何らか	細粒化した溶融炉心を覆う蒸気膜には安定性があり、何らか	
の外乱がなければ蒸気膜の崩壊は起こりにくいという知見が	の外乱がなければ蒸気膜の崩壊は起こりにくいという知見が	の外乱がなければ蒸気膜の崩壊は起こりにくいという知見が	
実験等により得られている。原子炉格納容器下部に張られた	実験等により得られている。 <u>ペデスタル(ドライウェル部)</u>	実験等により得られている。ペデスタルに張られた水は準静	
水は準静的であり、外乱が加わる要素は考えにくい。このこ	に張られた水は準静的であり、外乱が加わる要素は考えにく	的であり、外乱が加わる要素は考えにくい。このことから、	
とから、実機において水蒸気爆発に至る可能性は極めて小さ	い。このことから、実機において水蒸気爆発に至る可能性は	実機において水蒸気爆発に至る可能性は極めて小さいと考え	
いと考えられる。	極めて小さいと考えられる。	られる。	
(添付資料 3.3.1, 3.3.2)	(添付資料 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5)	(添付資料 3.3.1, 3.3.2)	
また、水蒸気爆発とは別に、溶融炉心から原子炉冷却材へ	また、水蒸気爆発とは別に、溶融炉心から原子炉冷却材へ	また、水蒸気爆発とは別に、溶融炉心から原子炉冷却材へ	
の伝熱によって水蒸気が発生することに伴う急激な格納容器	の伝熱によって水蒸気が発生することに伴う急激な格納容器	の伝熱によって水蒸気が発生することに伴う急激な格納容器	

圧力の上昇(以下「圧力スパイク」という。)が発生する。 圧力の上昇(以下「圧力スパイク」という。)が発生する。 圧力の上昇(以下「圧力スパイク」という。)が発生する。	
上記のとおり,現実的には水蒸気爆発が発生する可能性は 上記のとおり,現実的には水蒸気爆発が発生する可能性は 上記のとおり,現実的には水蒸気爆発が発生する可能性は	
極めて小さいと考えられることから、本評価では、圧力スパ 極めて小さいと考えられることから、本評価では、圧力スパ 極めて小さいと考えられることから、本評価では、圧力スパ	
イクについてその影響を評価する。イクについてその影響を評価する。イクについてその影響を評価する。	
したがって、本格納容器破損モードでは、原子炉格納容器 したがって、本格納容器破損モードでは、格納容器を冷却 したがって、本格納容器破損モードでは、原子炉格納容器	
を冷却及び除熱し、溶融炉心から原子炉格納容器下部の水へ 及び除熱し、溶融炉心からペデスタル(ドライウェル部)の を冷却及び除熱し、溶融炉心からペデスタルの水への伝熱に	
の伝熱による、水蒸気発生に伴う格納容器圧力の上昇を抑制 水への伝熱による、水蒸気発生に伴う格納容器圧力の上昇を よる、水蒸気発生に伴う格納容器圧力の上昇を抑制すること	
することにより、原子炉格納容器の破損を防止する。 抑制することにより、格納容器の破損を防止する。 により、原子炉格納容器の破損を防止する。	
また,溶融炉心の落下後は, <u>格納容器下部注水系(常設)</u> また,溶融炉心の落下後は, <u>格納容器下部注水系(常設)</u> また,溶融炉心の落下後は, <u>ペデスタル代替注水系(可搬</u>	・解析条件の相違
によって溶融炉心を冷却するとともに, <u>代替格納容器スプレ</u> によって溶融炉心を冷却するとともに, <u>代替格納容器スプレ型</u> によって溶融炉心の冷却を実施する。その後,残留熱代	【柏崎 6/7, 東海第二】
<u>イ冷却系(常設)</u> による原子炉格納容器冷却を実施する。そ <u>イ冷却系(常設)</u> による格納容器冷却を実施する。その後, <u>替除去系</u> 又は <u>格納容器フィルタベント系</u> によって <u>原子炉格納</u>	
の後,代替循環冷却系又は格納容器圧力逃がし装置によって 代替循環冷却系又は格納容器圧力逃がし装置によって格納容 容器の圧力及び温度を低下させる。	
原子炉格納容器の圧力及び温度を低下させる。	
さらに, 格納容器内における水素燃焼を防止するため, 格 さらに, 原子炉格納容器内における水素燃焼を防止するた	・運用の相違
<u>納容器内</u> の水素濃度及び酸素濃度が可燃領域に至るまでに, め, <u>原子炉格納容器内</u> の水素濃度及び酸素濃度が可燃領域に	【柏崎 6/7】
<u>格納容器内</u> へ窒素を注入することによって, <u>格納容器</u> の破損 至るまでに, <u>原子炉格納容器内</u> へ窒素を注入することによっ	島根2号炉は,可燃性
を防止する。 て,原子炉格納容器の破損を防止する。	ガス濃度の制御は SA 設
なお、本格納容器破損モードの有効性評価を実施する上で なお、本格納容器破損モードの有効性評価を実施する上で なお、本格納容器破損モードの有効性評価を実施する上で	備である可搬式窒素供給
は、重大事故等対処設備による原子炉注水機能についても使は、 <u>原子炉圧力容器破損までは</u> 重大事故等対処設備による原は、重大事故等対処設備による原子炉注水機能についても使	装置による窒素封入を実
用できないものと仮定し、原子炉圧力容器破損に至るものと 子炉注水機能についても使用できないものと仮定し、原子炉 用できないものと仮定し、原子炉圧力容器破損に至るものと	施することとしている。
する。 圧力容器破損に至るものとする。一方,本格納容器破損モー する。	・解析条件の相違
ドに対しては、原子炉圧力容器破損後の格納容器破損防止の	【東海第二】
ための重大事故等対策の有効性についても評価するため、原	島根2号炉は、シナリ
子炉圧力容器破損後は重大事故等対策に係る手順に基づきプ	オの想定として, 原子炉
ラント状態を評価することとする。したがって本評価では,	圧力容器破損後も原子炉
原子炉圧力容器破損後も原子炉圧力容器内に残存する放射性	圧力容器内を冷却するた
物質の冷却のために原子炉に注水する対策及び手順を整備す	めの原子炉注水が実施で
ることから、これを考慮した有効性評価を実施することとす	きないものとしている。
<u> </u>	
(3)格納容器破損防止対策 (3)格納容器破損防止対策 (3)格納容器破損防止対策	
格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却 格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却 格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却	
材相互作用」で想定される事故シーケンスでは,原子炉格納 材相互作用」で想定される事故シーケンスでは、ペデスタル 材相互作用」で想定される事故シーケンスでは、ペデスタル	
<u>容器下部</u> への溶融炉心落下を想定する。この状況では, <u>原子</u> (<u>ドライウェル部)</u> への溶融炉心落下を想定する。この状況 への溶融炉心落下を想定する。この状況では, <u>ペデスタル</u> に	
<u>炉格納容器下部</u> における「溶融炉心・コンクリート相互作用」 では、 <u>ペデスタル(ドライウェル部)には通常運転時から約</u> おける「溶融炉心・コンクリート相互作用」を緩和する観点	・運用の相違
を緩和する観点から,溶融炉心落下前に <u>格納容器下部注水系</u> <u>1mの水位が形成されており,ペデスタル(ドライウェル部)</u> から,溶融炉心落下前に <u>格納容器代替スプレイ系(可搬型)</u>	【東海第二】
(常設)による原子炉格納容器下部への水張りを行うことか における「溶融炉心・コンクリート相互作用」を緩和する観 によるペデスタルへの水張りを行うことから、溶融炉心落下	島根2号炉は、事故時
ら,溶融炉心落下時には <u>原子炉格納容器下部</u> に水が張られた 点から,溶融炉心落下前に格納容器下部注水系(常設)によ 時にはペデスタルに水が張られた状態を想定する。なお,こ	に原子炉圧力容器破損の
状態を想定する。なお,この水張り深さは,「原子炉圧力容」 <u>るペデスタル(ドライウェル部)水位の確保を行う</u> ことから, の水張り深さは,「原子炉圧力容器外の溶融燃料-冷却材相	徴候によりペデスタルに

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
器外の溶融燃料ー冷却材相互作用」に伴う圧力スパイクの発	溶融炉心落下時にはペデスタル(ドライウェル部)に水が張	互作用」に伴う圧力スパイクの発生を仮定した場合の影響を	水張りをする運用として
生を仮定した場合の影響を小さく抑えつつ,「溶融炉心・コ	られた状態を想定する。なお,この水位は,「原子炉圧力容	小さく抑えつつ,「溶融炉心・コンクリート相互作用」の緩	いる。
ンクリート相互作用」の緩和効果に期待できる深さを考慮し	器外の溶融燃料ー冷却材相互作用」に伴う圧力スパイクの発	和効果に期待できる深さを考慮して <u>2.4m</u> としている。	・運用の相違
て <u>約 2m</u> としている。	生を仮定した場合の影響を小さく抑えつつ, 「溶融炉心・コ		【柏崎 6/7, 東海第二】
	ンクリート相互作用」の緩和効果に期待できる深さを考慮し		初期水張り深さの相違
	て <u>1m</u> としている。		
また、その後の格納容器圧力及び温度の上昇を抑制する観	また、その後の格納容器圧力及び雰囲気温度の上昇を抑制	また、その後の格納容器圧力及び温度の上昇を抑制する観	
点から, <u>代替格納容器スプレイ冷却系(常設)</u> による原子炉	する観点から,代替格納容器スプレイ冷却系(常設)による	点から, <u>残留熱代替除去系</u> による <u>原子炉格納容器除熱手段</u> 又	・解析結果の相違
格納容器冷却手段及び代替循環冷却系による原子炉格納容器	格納容器冷却手段、緊急用海水系による冷却水(海水)の確	は <u>格納容器フィルタベント系</u> による <u>原子炉格納容器除熱手段</u>	【柏崎 6/7, 東海第二】
除熱手段又は格納容器圧力逃がし装置による原子炉格納容器	保手段及び代替循環冷却系による格納容器除熱手段又は格納	を整備 <u>する。なお、これらの原子炉圧力容器破損以降の格納</u>	
除熱手段を整備する。なお、これらの原子炉圧力容器破損以	<u>容器圧力逃がし装置による格納容器除熱手段を整備し、長期</u>	容器過圧・過温に対応する手順及び重大事故等対策は「3.1	・整理方針の相違
降の格納容器過圧・過温に対応する手順及び重大事故等対策	的な格納容器内酸素濃度の上昇を抑制する観点から,可搬型	雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」	【東海第二】
は「3.1 雰囲気圧力・温度による静的負荷(格納容器過圧・	窒素供給装置による格納容器内への窒素注入手段を整備す	と同じである。	島根2号炉は,原子炉
過温破損)」と同じである。	<u>a.</u>		圧力容器破損以降のマネ
			ジメントは「3.1 雰囲気
			圧力・温度による静的負
			荷(格納容器過圧・過温
			破損)」に記載の対応と同
			じである旨を記載してい
			る。
本格納容器破損モードに至るまでの事象進展への対応、本	本格納容器破損モードに至るまでの事象進展への対応、本	本格納容器破損モードに至るまでの事象進展への対応、本	
格納容器破損モードによる原子炉格納容器の破損防止及び原	格納容器破損モードによる格納容器の破損防止及び格納容器	格納容器破損モードによる原子炉格納容器の破損防止及び原	
子炉格納容器の破損を防止した以降の対応を含めた一連の重	の破損を防止した以降の対応を含めた一連の重大事故等対策	<u>子炉格納容器</u> の破損を防止した以降の対応を含めた一連の重	
大事故等対策の概要は, 「3.2 高圧溶融物放出/格納容器雰	の概要は,「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」	大事故等対策の概要は、「3.2 高圧溶融物放出/格納容器雰	
囲気直接加熱」の 3.2.1(3)の a.から j.に示している。この	の 3.2.1(3)の a. から g. に示している。このうち,本格納	囲気直接加熱」の 3.2.1(3)の a.から k.に示している。この	
うち,本格納容器破損モードに対する重大事故等対策は,「3.2	容器破損モードに対する重大事故等対策は, 「3.2 高圧溶融	うち,本格納容器破損モードに対する重大事故等対策は,「3.2	
高圧溶融物放出/格納容器雰囲気直接加熱」の3.2.1(3)に示	物放出/格納容器雰囲気直接加熱」の 3.2.1.(3)に示す.i.	高圧溶融物放出/格納容器雰囲気直接加熱」の 3.2.1(3)に示	
す g. 及び h. である。なお,g. の <u>原子炉格納容器下部</u> への注水	及び <u>k</u> . である。なお, <u>i</u> . の <u>格納容器下部注水系(常設)</u>	す <u>f</u> . 及び g. である。なお,g. の <u>ペデスタルへの注水</u> は, <u>ペデ</u>	・運用の相違
は, <u>原子炉格納容器下部</u> における「溶融炉心・コンクリート	によるペデスタル(ドライウェル部)水位の確保は、ペデス	<u>スタル</u> における「溶融炉心・コンクリート相互作用」を緩和	【東海第二】
相互作用」を緩和する観点から実施するものであるが、原子	<u>タル(ドライウェル部)</u> における「溶融炉心・コンクリート	する観点から実施するものであるが, <u>ペデスタル</u> に溶融炉心	島根2号炉は、格納容
<u>炉格納容器下部</u> に溶融炉心が落下した際の「原子炉圧力容器	相互作用」を緩和する観点から実施するものであるが, ぺ゚゚デ	が落下した際の「原子炉圧力容器外の溶融燃料ー冷却材相互	器代替スプレイ系(可搬
外の溶融燃料ー冷却材相互作用」への影響も考慮して原子炉	スタル(ドライウェル部)に溶融炉心が落下した際の「原子	作用」への影響も考慮して <u>ペデスタル</u> への注水量及びペデス	型) にてペデスタルへ初
格納容器下部への注水量及び原子炉格納容器下部の水位を定	炉圧力容器外の溶融燃料ー冷却材相互作用」への影響も考慮	<u>タル</u> の水位を定めていることから、本格納容器破損モードの	期水張りを行い、ペデス
めていることから、本格納容器破損モードの対策として整理	してペデスタル(ドライウェル部)の水位を定めていること	対策として整理した。	タル水位に応じて停止す
した。	から、本格納容器破損モードの対策として整理した。		る手順としている。
(添付資料 3.3.3)		(添付資料 3.3.3)	

_

E beings ($h = 200$, $h = 2$				
本特徴電影(14)、中止電きない物理を除くなるいたが、 特徴電影(14)、中に電きない物理を除くなるいたが、 特徴電影(14)、中に電きない物理を除くなるいたが、 本特徴電影(14)、中に電きない物理を除くなるいたが、 本特徴電影(14)、中に電きない物理を使くなるいたが、 本特徴電影(14)、中に電きない物理を使くなるいたが、 本特徴電影(14)、中に電きない物理を使くなるいたが、 本特徴電影(14)、中に電きない物理を使くなるいたが、 本特徴電影(14)、中に電きない物理を使くなるいたが、 本特徴電影(14)、中に電きない物理を使くなるいたが、 本特徴電影(14)、中に電きないかかないたが、 本特徴電影(14)、中に電きないかかないたが、 本特徴電影(14)、中に電きないかかないたが、 本特徴電影(14)、中に電きないかかないたが、 本特徴電影(14)、中に電きないたが、 本特徴電影(14)、中に電きないたが、 本特徴電影(14)、中に電きないたが、 本特徴電影(14)、中に電きないたが、 本特徴電影(14)、中に電きないたが、 本特徴電影(14)、中に電きないたが、 本特徴電影(14)、中に電きないたが、 本特徴電影(14)、中に電きないたが、 本特徴電影(14)、中に電きないたが、 本特徴電影(14)、中に電きないたが、 本特徴電影(14)、中電電音ないたが、 本特徴電影(14)、中電電音ないたが、 本特徴電影(14)、中電電音ないたが、 本特徴電影(14)、中電電音ないたが、 本特徴電影(14)、中電電音ないたが、 本特徴電影(14)、中電電音ないたが、 本特徴電影(14)、中電電音音ないたが) 本特徴電影(14)、中電電音音音ないたが) 本特徴電影(14)、中電電音音ないたが) 本特徴電影(14)、中電電音音ないたが) 本特徴電影(14)、中電電音音ないたが) 本特徴電影(14)、中電電音音ないたが) 本特徴電影(14)、中電電音音ないたが) 本特徴電影(14)、中電電音音ないたが) 本特徴電影(14)、中電電音 本特徴電影(14)、中電電音音ないたが) 本特徴電影(14)、中電電音音ないたが) 本特徴電影(14)、中電電音 本特徴電影(14)、中電電音 本特徴電影(14)、中電電音 本特徴電影(14)、中電電音 本特徴電影(14)、中電電音 本特徴電影(14)、中電電音 本特徴電影(14)、中電電音 本特徴電影(14)、中電電音 本特徴電影(14)、中電電音 本特徴電影(14)、中電電音 本特徴電影 本特徴電影(14)、中電電音 本特徴電影 本特徴電影 本特徴電影(14)、中電電音 本特徴 本特徴電影(14)、中電電音 本特徴 本特徴電影(14)、中電電音 本特徴 本特徴 本特徴 本特徴 本特徴 本特徴 本特徴 本特徴	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
Series with $(-r)$ Seri	本格納容器破損モードに至るまでの事象進展への対応、本	本格納容器破損モードに至るまでの事象進展への対応、本	本格納容器破損モードに至るまでの事象進展への対応、本	
$ \begin{split} & = \operatorname{constant}_{x \in x \in$	格納容器破損モードによる原子炉格納容器の破損防止及び原	格納容器破損モードによる格納容器の破損防止及び格納容器	格納容器破損モードによる原子炉格納容器の破損防止及び原	
 大学は全球のの知識を報知したいて、ここにはないため、この取りため、「ないないでは、「ないないでは、「ないないない」」であった。ここには、「ないないない」」であった。ここには、「ないないない」」であった。ここには、「ないないない」」であった。ここには、「ないないない」」であった。ここには、「ないないない」」であった。ここには、「ないないない」」であった。ここには、「ないないない」」であった。ここには、「ないないない」」であった。ここには、「ないないない」」であった。「ないないない」」であった。「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」「ないないない」」」「ないないないない	子炉格納容器の破損を防止した以降の対応を含めた一連の重	の破損を防止した以降の対応を含めた一連の重大事故等対策	子炉格納容器の破損を防止した以降の対応を含めた一連の重	
$ \begin{aligned} & = \frac{1}{2} S_{2} S$	大事故等対策の概略系統図は「3.2 高圧溶融物放出/格納容	の概略系統図は「3.2 高圧溶融物放出/格納容器雰囲気直接	大事故等対策の概略系統図は「3.2 高圧溶融物放出/格納容	
 a. Consta, Adams20, Consta, Consta, Adams20, Consta, Consta, Adams20, Consta, Consta,	器雰囲気直接加熱」に示す <u>第 3.2.1 図</u> から <u>第 3.2.4 図</u> であ	加熱」に示す <u>第3.2-1図</u> である。このうち、本格納容器破損	器雰囲気直接加熱」に示す <u>第3.2.1-1(1)図から第3.2.1-1(3)</u>	
 内容和回来意志至王は広が見たしたりないであった時期であいます。 など、どと次まする手柄長など準体験した保護にするため、 はつかりため、 本本が特徴がため、「など、たまする手術長など準体験」としていため、 はつかりため、 本本が特徴がため、「など、たまする手術長など準体験」としていため、 はつかりため、 本本が特徴がため、「など、たます」の特徴があるこのかりため、 しつかいため、 かけため、 たたさいため、このかりしたか、 たた、したうこ(1)の、原子が正力が読がられた。 たたえかである、 たたえかである、 たたえかでの構成を知識したの構成が可能なしたかしてきた。 たたえかである、 たたさいため、このかりしたか、 たたえかである。 たたえかである、 たかすないためでしたか。 たかすないためできたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たかすないためでしたか。 たたえかでたか。 たたえかでたか。 たたえかでかる。 たたえかでかる。 たたえかでたか。 たかれためでしたか。 たたえかでかる。 たたえかでいため。 たたえかでかる。 たたえかでいためでしたか。 たたえかでかる。 たたえかでいたか。 たたえかでいたか。 たたえかでいたか。 たたえかでかる。 たたえかでかる。 たたえかでかる。 たたえかでかる。 たたえかでかる。 たたえかでかる。 たたえかでかる。 たたえかでかする。 たたえかでかる。 たたえかでかる。 たたえかでかる。 たたえかでかる。 たたえかでかる。 たたえかでかる。 たたえかでいたか。 たたえかでかするまかがいうか。 たたえかでかる。 たたえかでかか。 たたえかでかる。 たたえかでかかりかかうでしたたれやする。 たたえかでかかりかう たたえかでかかりかうか。 たたえかでかかりかうか。 たたえかでかするまかかりかうか。 たたえかでかかりかうでか。 たたえかでかするまかかかりかう。	る。このうち、本格納容器破損モードの重大事故等対策の概	モードの重大事故等対策の概略系統図は第3.2-1図(2/5)	図である。このうち、本格納容器破損モードの重大事故等対	
 中中にためらいる手換なびを変ますとすべきない。 からう手はなびの空かまたしたない。 からう手はなびの空かまたしたない。 からう手はなびの空かまたしたない。 からう手はなびの空かまたしたが、 からいきまたしたが、 からいきまたたが、 からいきまたたが、 からいきまたたが、 からいきまたたが、 からいたきまたしたが、 からいたきまたしたが、 からいきまたたが、 からいたきまたいたが、 からいきまたたが、 からいたきまたたいたが、 からいたきまたが、 からいたきまたたいたが、 からいたきまたい からいたきまたたいたが、 からいたきまたが、 からいたきまたが、 からいたきまたが、 からいたきまたが、 からいたが、 からいたきまたが、 からいたきまたが、 からいたきまたが、 からいたきまたが、 からいたきまたが、 からいたがり からいたきまたが、 からいたきまたが、 からいたきまたが、 からいたがり からいたがら からいたがらまたが からいたがまたが からいたがまたが からいたがまたが からいたがり からかられ からかられ からかられ からかられ からかられ からかられ からかられ からかられ からいたがり からいたがり からかられ から	略系統図は <u>第3.2.2 図及び第3.2.3 図</u> である。本格納容器破	<u>及び第3.2-1図(3/5)</u> である。本格納容器破損モードに対	策の概略系統図は「3.2 高圧溶融物放出/格納容器雰囲気直	
 からしたかである。 かいと考え、金生頭のの観点でいたしたまである。 かいと考え、金生頭のの観点でいたしたまである。 たたかである。 たかしたたかである。 たかである。 たたかである。 たたかである。 たかしたたかである。 たかである。 たたかである。 たたかである。 たたかである。 たたかである。 たたかである。 たたがである。 たたがである。 たたがである。 たたがである。 たたがである。 たたがである。 たかであたがでたかである。 たがである。 たがでかである。 たがでかである。 たがでかである。 たがである。 たがでかる。 たがである。 たがである。 たがでかる。 たがでかである。 たがでかである。 たがでかる。	損モードに対応する手順及び必要な要員と作業項目は「3.2	応する手順及び必要な要員と作業項目は「3.2 高圧溶融物放	接加熱」に示す第 3.2.1-1(2)図である。本格納容器破損モー	
1.1.1 2.5 1 約請書整報額換上が整めた表面の A.5.1 各請書整報額換上が整めた表面の A.5.2 各請書整報額換上が整めた表面の A.5.2 A 前着整整報報告 A.5.2 A 前着整 を A f f f f f f f f f f f f f f f f f f	高圧溶融物放出/格納容器雰囲気直接加熱」と同じである。	出/格納容器雰囲気直接加熱」と同じである。	ドに対応する手順及び必要な要員と作業項目は「3.2 高圧溶	
 3.3.2 株式容容疑問した対策のする他に評価 3.3.2 株式容容疑問した対策のうなしたご用した。 3.3.2 株式容容疑問した対策ので見てござ用した。 3.3.2 株式容容疑問したが、 3.3.2 株式容容疑問したが、 3.3.2 株式容容疑問したが、 3.3.2 株式容容疑問した。 3.3.2 株式容容疑問した。 3.3.2 株式容容疑問した。 3.3.2 株式容認疑問した。 3.3.2 株式容認認認認認知識のでのでした。 3.3.2 株式容認認認認認認認認認認認認認認認認認認認認認認認認認認認認認認認認認認認認			融物放出/格納容器雰囲気直接加熱」と同じである。	
 (1) 有効性が働いたが、 木精神器構成したして、運転の使いたしたりまたが、 キャンとおり、ワシンド相違状態とで知じたし、事業後進得ない 、デオとおり、ワシンド相違状態とで知じたし、事業後進得ない 、テオとおり、ワシンド相違状態とで知じたし、事業後進得ない 、シストレン学生は、「上空電研究や多量型ない評価申込ること、 、キャンとおり、シストン健康生ない。 、デオとおり、ワシンド相違状態をでない、「急速な生な」 、たけ、支援はなどの時間が後かく登点ない、「たい」と準確対象の登型ない評価申認をして、 、オキとおり、ワント相違状態をでない、「急速な生な」 、たけ、支援はなどの時間が見かく登点ない、「たい」と準確対象の登型ない評価申認をして、 、オキとおり、ワント相違状態をでない、「急速な生な」 、たい、支援はなどの時間が見かで登したが、 、ないとなどった、たい、ため、「たい」とない、 、本がしてきたい、 、たい、定して、たい、したが、 、たい、ため、 、たい、ため、 、たい、ため、 、たい、ため、 、ため、 、	3.3.2 格納容器破損防止対策の有効性評価	 3.3.2 格納容器破損防止対策の有効性評価	3.3.2 格納容器破損防止対策の有効性評価	
本株植物部破壊や一ドを計価する上で達定した評価事故> ーケンスは、「1.2 評価対象の変現及び評価項目の設定」に 示すとおり、プラント国気に装をす加いし、濃素健素なため、 たまた、「1.2 注価、酸心、安全非可用次数を含まない、「温度生気また。 正式たた数は上気原から加速素をなます。」「温度生気また」、 温度生気がたまなまたは、加速した要なたの、「温度生気ない、「温度生気ない」「温度生気ない」」」 示さたがいまたなたきない、「温度生気ない」」「温度生気ない」」「温度生気ない」」」 たた、「1.2 2.1(3)に、原子炉圧力容積外の容量が完全すたい。」」 たた、「1.2 2.1(3)に、原子炉圧力容積外の容量が完全すたい。」」 たた、「1.2 2.1(3)に、原子炉圧力容積外の容量が完全すたい。」 たた、「1.2 2.1(3)に、原子炉圧力容積外の容量が完全すたい。」 たた、「1.2 2.1(3)に、原子炉工力容積外の容量が完全すたい」」 たた、「1.2 2.1(3)に、原子炉工力容量外の容量が完全すたたかである。 たた、「1.2 2.1(3)に、原子炉工力容量外の容量が出たかいと考え、 たた、「1.2 2.1(3)に、原子炉工力容量外の容量が出たたかである。 たた、「1.2 2.1(3)に、原子炉工力容量かの容量が出たたかである。 たた、「1.2 2.1(3)に、原子炉工力容量かの容量が出たたかである。 たた、「1.2 2.1(3)に、原子炉工力容量か、「2.2 (1.5)に、「1.5)に、1.5)との主ない、1.5)と、たかい、ためたっか、 たた、「1.2 2.1(3)に、原子が生」なかか、 たた、「1.2 2.1(3)に、原子が生」なかか、 たた、「1.2 2.1(3)に、原子が、」」 たた、「1.2 2.1(3)に、原子が生」なかか、 たた、「1.2 2.1(3)に、原子が生」なかか、 たたが、「1.2 1.5)、「1.5)と、 たた、「1.2 2.1(3)に、原子が生」なかか、 たた、「1.2 2.1(3)に、原子が生」なか、 たた、「1.2 2.1(3)に、原子が生」なか、 たた、「1.2 2.1(3)に、原子が生」なか、 たた、「1.2 2.1(3)に、原子、 たたが、」、 たた、「1.2 2.1(3)に、原子、 たたが、」、 たた、「1.5)と、 たた、「1.2 2.1(3)に、原子、 たた、「1.5)と、 たた、「1.5)と、 たた、「1.5)と、 たた、「1.5)と、 たた、「1.5)と、 たたが、 たた、「1.5)と、 たた、「1.5)と、 たた、「1.5)と、 たた、「1.5)と、 たた、「1.5)と、 たた、「1.5)と、 たたい、 たた、「1.5)と、 たたい、 たた、「1.5)となる、 たたい、 たい、	(1) 有効性評価の方法	 (1) 有効性評価の方法	 (1) 有効性評価の方法 	
 ・ケンスは、「1.2 評価対象の整想及び評価項目の成定」に 示すとおり、ブラント目標気能をTuVとし、事物を興趣が早く 気や出催までの時間条箱の観点で歳しい過波事象を返回事 象とし、添いしな全弁育間実販を含まない。「温速果金士 正法大気欠止が工作など」、本がし安全弁育間実販を含まない。「温速果金士 国家とし、添いし安全弁育間実販を含まない。「温速果金士 当年早らか出催までの時間条箱の観点で歳しい過波事象を返回事 象とし、添いし安全弁育間実販を含まない。「温速果金士 当年早らか出催までの時間条箱の観点でんどい強い事業で歳しためご なシーケンスとした事由に、プラント構築販売すびかく ため、声な対応に及ぼす違いし安全共育開の成子の影響は大きい事なシーケンスとした事は、ブラント したたのである。 また、「1.2.2.100」度子炉正力容器外の溶電熱パーキャ 電話からの展子が設定するたい。「空かく大き」をない。 たい事などううため、「空かく大き」」とないため、 たたで、たか、ブラント損傷気能を「加いためで、 ため、事な対応に及ぼす違いしたちでもある。 たた、「1.2.2.100」度子炉正力容器外の溶電熱パーキャ 者相互気が加いたちなしたまかできか。 たた、「1.2.2.100」度子炉正力容器外の溶電熱パーキャ 者相互気が加いたちなしたまかできか。 たた、「1.2.2.100」度子炉正力容器外の溶電熱パーキャ 者相互成が加いたちなられて可能のかいたき たた、「カ、ブラント損傷気能をないこのでかいたきるたい、 たかすなどの、プラント損傷気能をしていためでもか。 たた、「1.2.2.100」原子炉正力容器外の溶電熱パーキャ 者相互成が加いたちなら、ごかゆいたうな たた。「カ、ブラント損傷気能をしてためでもか。 たた、「1.2.2.100」原子が正力容易がの溶電熱パーキャ 者相互偽が高いたきならないたきな、 たた、「1.2.2.100」原子が正力容易か、 なるな、 たた、「1.2.2.100」原子が正力容易か、高速が応じたためでもか。 たた、「1.2.2.100」原子が正力容易が高速のに気にたためでもか。 たた、「カ、ブラント損傷気能をしてためでもか。 たた、「1.2.2.100」原子が正力容易がの溶電法パーキャと考 たたるかにすないなるためにするため 「おか・ネーがの違点でような」ないたためを 声 「炉圧力容器液化」でのするため、可能力が加いたきえたいすないたきるた。」 たた、「オ.7.2.2.100」原子が正力容易がの溶血素(1.2.2.100)」原子が正力容易が、 のた、「オ.2.2.100」原子が正力容易が、 のなた」「オ.2.2.100」原子が正力容易がの溶血素(1.2.2.100)」原子が正力容易が、 たた、「1.2.2.100」原子が正力容易がの溶血素(1.2.2.100) でする。 たた、「1.2.2.100」原子が正力容易が、 のなんにまかてなの がかっかの違点でする(1.2.2.100) に見てがたったるため 、 かた、「1.2.2.100」原子が正力容易がの溶血素(1.2.2.100) に見いたかでするため。 たた、「1.2.2.100」原子が正力容易がの溶血素(1.2.2.100) に見いたがでかするため ため、「1.2.2.100] たた、「1.2.2.100] たたが「1.2.2.100] たた、「1.2.2.100] たい、「1.2.2.100] たた、「1.2.2.100] たた、「1.2.2.100] たたが「1.2.5.1.1.2.2.100] たい、「1.2.2.100] たた、「1.2.2.100] たた、「1.2.2.100] たた、「1.2.2.100] たた、「1.2.2.100] たた、「1.2.2.100] たた、「1.2.2.100] たた、「1.2.2.100] たた、「1.2.2.100] たた、「1.2.2.100]	本格納容器破損モードを評価する上で選定した評価事故シ	本格納容器破損モードを評価する上で選定した評価事故シ	本格納容器破損モードを評価する上で選定した評価事故シ	
 ボヤとおり、ブランド損除法施を TQU とし、事業進展が早く厚心不信をから見たい、「加速生産を TQU とし、事業進展が などの不信までの時間条約の風にないに通知事業をお助す などし、違いし安全弁再開大敗を含まない。」通速主集 市だとおり、ブランド損除法施参をTQU とし、事業進展が などし、違いし安全弁再開大敗を含まない。」通速主集上 市だとおり、ブランド損除法施参をTQU とし、事業進展が などし、違いし安全弁再開大敗を含まない。」通速主集上 市だとおり、ブランド損除法施参をTQU とし、事業進展が などし、違いし安全弁再開大敗を含まない。」通道主集上 市だしたが用たした用に、ボイとおり、ブランド損除法しつまたが、「通道主集上 市だしたがきたい」となど、学校の用にたすでの時間条約の風などたとして知られ、ブランド 内留決戦などなど、からた、うた、小したなまた、 ないきなしたためである。 また、「1.2.2.1(3)と、原子炉圧力容器外の溶融燃料一合料 対性した作用に、ボイとおり、ブランド損除法しつきない、「通道でない」が使いた ないきなしたためである。 また、「1.2.2.1(3)と、原子炉圧力容器外の溶融燃料一合料 対性した用に、ボイとおり、ブランド損除法したが ないきなしたためである。 また、「1.2.2.1(3)と、原子炉圧力容器外の溶融燃料一合料 対性したためである。 また、「1.2.2.1(3)と、原子炉圧力容器外の溶融燃料一合料 対性した用に、ボイとおり、ブランド損除法したのであるため、事政 たた、「1.2.2.1(3)と、原子炉圧力容器外の溶融燃料一合料 対性したためで、ため、まなし、「2.5.1(3)」(1.2.2.1(3)と、原子炉圧力容器外の溶融燃料一合料 対性したためで、ため、ため、さめ、「2.5.1(3)」(1.2.2.1(3)と、原子炉圧力容器外の溶酸燃料ー合料 対性したためでもある。 また、「1.2.2.1(3)と、原子炉圧力容器外の溶酸燃料ー合料 対性したためでもある。 よ、「1.2.2.1(3)と、原子炉圧力容器外の溶酸燃料」であい、ごで、透いしたきない、「2.5.1(3)」(1.2.2.1(3)と、原子炉ビトクシスを加てるため、 本気気解におする条件になりまため、「2.5.1(3)」(1.2.2.1(3)と、原子炉(1.5.5.5.1))) た、「カ、ブランド損除法を1.0.2.2.1(3)」と、原子炉(1.5.5.5.1)) た、「カ、ブランド損除法の(1.5.5.5.1)) た、「1.2.2.1(3)」に、原子炉(1.2.5.5.1)) た、「1.2.2.1(3)」に、原子炉(1.5.5.5.1)) た、「1.2.2.1(3)」に、原子炉(1.5.5.5.1)) た、「1.2.2.1(3)」に、原子炉(1.5.5.5.1)) た、「1.2.2.1(3)」に、原子炉(1.5.5.5.1)) た、「1.2.2.1(3)」に、原子炉(1.5.5.5.1)) た、「1.2.2.1(3)」に、原子炉(1.5.5.5.1)) た、「1.2.2.1(3)」に、原子炉(1.5.5.5.1)) た、「1.2.2.1(3)」に、原子炉(1.5.5.5.1)) た、「1.5.2.5.1)) た、「1.5.2.5.1))	ーケンスは、「1.2 評価対象の整理及び評価項目の設定」に	ーケンスは、「1.2 評価対象の整理及び評価項目の設定」に	ーケンスは、「1.2 評価対象の整理及び評価項目の設定」に	
く使心相傷までの時間余務の観点で戴い山通徳事象を起因す 象とし、迷がし安全が再研失敗を含えない、「温度宝皇士 品に弦水度以上観に注水失敗・温液無から満男失敗をきまないす なシーケンスとした理由は、プラント損傷状態が1700であ るた。の、認がし安全キ再開気敗を含まない。「温度三皇士 品に好心満知去敗止症」「かうい」「とし、「二人」、「二人」、「二人」、「二人」、「二人」、「二人」、「二人」、「二人」	示すとおり、プラント損傷状態を TQUV とし、事象進展が早	示すとおり、プラント損傷状態をTQUVとし、事象進展が	示すとおり、プラント損傷状態をTQUVとし、事象進展が	
象とし、遮がし安全弁育問失敗を含まない、「温波変象」点 圧注水失敗土処に並水失敗土損傷死症の海見失敗(十匹工 案 土」である。ここで、恋がし安全弁育問失敗を含まない。 加水したシェレニーは、ブラント損傷振態の運転で大きい事故シーケンスを油 たった、シスとした理由は、ブラント損傷振態の運転でたきい事故シーケンスを たった、シスシーシュを確定 たた、「1.2.2.1(3)の、原子伊圧力容器外の海融燃料ーやお 材相互作用」に示すとおり、ブラント損傷振態の運転では、 水素気爆発に対する条件設置の数にと考える低い、活動使やの 内部エネルギの観点でより意いと考えるこの時の圧力 バイクへの影響については、解除条件のうち効期条件の不 能力容器物はこでの時間が短くなる。この時の圧力 バイクへの影響については、解除条件のうち効期条件の不 かさとして評価する。事象とし、進がし安全弁育問失敗を含まない、「温波変象土 高圧なた着知失敗土低圧地心治知失敗土低圧地心治知失敗 生ご、進いし安全弁育問大敗を含まない。「温波変象土 ニこで、逃い皮安弁育問大敗を含まない。」 加水した空気が、大きな事件の気気が、水素気 なたいしたましためである。事象とし、進がし安全弁育問大敗を含まない、「温波変象土 高圧なたきが知水した空気が、大きい事故シーケンスと した。「カ」ブラント損傷振態の運転では、 オールギの観点でより意しいと考えられる「QUVであるため」 本気気暴気に対する条件認定の数しきを考慮し、溶酸から たた、「1.2.2.1(3)の、原子伊圧力容器外の溶融燃料ー合お 材相互作用」に示すとおり、ブラント損傷振態の運走では、 水素気爆発に対する条件就定の数しきを考慮し、溶酸から たた、「カ」ブラント損傷振態の運走では、 水素気爆発に対する条件の発展の数しきを考慮し、溶酸からの ため、「クント損傷振態の なた」、「シン」1.2.2.1(3)の、原子伊圧力容器外の溶融燃料ー合お 本気爆発症に対する条件の表し、 たた、「カ」ブラント損傷振態の運走では、 水素気酸したさすがし、大素気和な「知識したる」」 なた」に たた、「カ」ブラント損傷振態の運転でなる」 ため、デザロー力容器破損までの時間が短くなる。この時の正力 バイタへの影響については、解析条件のうち効用条件の表した たた、「カ」パラント力なたれいては、解析条件のうち効用条件の表した たた、「カ」パラント力に には、解析条件のうち効用条件の表して評価する。 さらに、本評価事数シークンスにおいては、解析条件のうち効用条件の表 ためた。中熱な実施するこの均均に明石を載する、 やお気になり取りため、全な変動が石を数する素体がなく、 ため、小分のたいにな気を数するそれの内が応間が多く、 ためにすいたの数素をするこのの内応時間ないろく、 医性の方法 のため、全次変動力推測展子の重なを増する。 キャー教えをなる事な対処な気が不見、本の学の気や描いてなり、 のためにすいため、素板する ために示いたいたい、新振手使いうる初切しため、 ためにないため、素板を中ののものが原子作の なたいためまなかする 、さらに、本評価事数シークンスにおいては、電気のなしいため、 ため、たた、他気なを数するそれの分の気能使する。 キャークなとなる事な対処式の多く、 ため、小分のため事でなしたかやな として評価する、 として評価する。 として評価する、 として評価する、 とした。中力のためには、解析者を取りるの ためになりため時間が多く、 ためため、 ため、本の学な気をなしていたは、解析者を知らる としたが中かる 、本に物えをなりたる事での知ら時間を完成するすな対処式の多く、 を として評価する 、ためため、 なん、会次変動力 ためにたいため気を使する 、 ためため、 ため、などしてのかたり、特徴が高くなど、ためため、全な変しため市場なやの電音な、 や として評価する として評価する したかやかりためする としたかやかくためになりのの方の前間が多くしたかかる <td>く炉心損傷までの時間余裕の観点で厳しい過渡事象を起因事</td> <td>早く炉心損傷までの時間余裕の観点で厳しい過渡事象を起因</td> <td>早く炉心損傷までの時間余裕の観点で厳しい過渡事象を起因</td> <td></td>	く炉心損傷までの時間余裕の観点で厳しい過渡事象を起因事	早く炉心損傷までの時間余裕の観点で厳しい過渡事象を起因	早く炉心損傷までの時間余裕の観点で厳しい過渡事象を起因	
正注水大敗十振臣造水失敗十振臣強水失敗十振臣強水失敗十振臣強水失敗十振臣強水令治非失敗十振臣強水令的事成之を受す、部が以安全赤爾斯大敗を含まない事故シーケンスとした理由は、プラント損傷状態が1000であ。高臣知心治相失敗十振臣強水失敗十振臣強水(未四二 進人(上下C、1.(二スクスクル))である。ここで、逃が以安全 ホー報幣大敗を含まない事故シーケンスを進 アロレマあるため、事故力定に及ぼす遮が以安全赤爾斯大敗を含まない事故シーケンスを進 アロレマあるため、事故力定に及ぼす遮が以安全赤和第次敗を含まない事故シーケンスを進 アロレマあるため、事故力にた及ぼす遮が以安全赤和事件大敗を含まない事故シーケンスを進 アロレマあるため、事故力にためである。高臣知心治相失敗十振臣強水(二、一本 法人生拡張気力を含また)大敗(上をごうない事故シーケンスとした理由は、プラン した理由は、プラント損傷状態ので見いてなどか、事故シーケンスを進 アレント損害(大敗を加重なから)、「し.2.2.1(3)」。原子が正力容器外の溶散燃料ー 本気気爆発に対する条件設定の強したきな意し、溶動し、一本 アント損傷(大敗な)、「し.2.2.1(3)」。原子が正力容器外の溶散燃料ー 本気気爆発に対する条件設定の強したきな意し、溶動(中本)、一本 アント損傷(大敗な)、「し.2.2.1(3)」。原子が正力容器やの容散燃料」 本気気爆発に対する条件設定の強したきな意し、溶動(中本)、 アント損傷(大敗な)、「た、一方、プラント損傷(大敗な)」とそえるし、(本気)、第40年の アロレマあるため、事女 アロレマンスにおいては、一葉のの二、アブラント損傷(大敗の)、「か」、一方、プラント損傷(大敗の)、「と、一方、ブラント損傷(大敗な)」とこ、(二、二、デ、ブラント損傷(大敗の)、「な」、一方、ブラント損傷(大敗の)、「しこ、(二、二、デ、ブラント損傷(大敗の))、「、一方、ブラント損傷(大敗の)」とそえる、このときの(二)、 アボールがや教した(二)、「「」こ.2.2.1(3)」、「か」、「つ、ブラント損傷(大敗の)」とそえる、「な」、「」、二、」、「、」、「」、「シン」」 アント損傷(大敗の)、「か」、「」、「シン」」と、(二、」、「、」、「シン」」、「」、「、」、「、」、「 アント損害(大敗の)、「」、一方、「、」、「シン」」、「」、「」、「シン」」 アンスにおいては、一葉(小)、「二、二、二、」、「」、「シン」」 アント損害(大敗の)、「」、「二、二」、「」、」、「」、「シン」」 アント損害(大敗の)、「」、「二、二」、「」、」」、」、」、」、」、」、」、」、」、」、」、」、」、	象とし、逃がし安全弁再閉失敗を含まない、「過渡事象+高	事象とし、逃がし安全弁再閉失敗を含まない、「過渡事象+	事象とし、逃がし安全弁再閉失敗を含まない、「過渡事象+	
生)(中ある。ここで、迷がし安全弁町間失敗を含まない事 なシーケンスとした理由は、プラント損傷状態がTQUVであ なため、事数対応に及ぼす逃がし安全弁再開の成否の影響は 小さいと考え、充生幾度の観点で大きい事故シーケンスを進 定したためである。(井ECI(ベデスタル))である。ここで、迷がし安全 キ数対応に及ぼす逃がし サントガ場(新生姜が下QUVであるため、事数対応に及ぼす逃がし 安全弁町間の成否の影響にしためである。法水 (重大要競差対意を含む) 失敗 + F C I 発生, である ここで、迷がし安全弁再開の成否の影響は いたいと考え、充生類度の観点で大きい事故シーケンスを進 たさい事故シーケンスを進 安全弁町間の成否の影響にしためである。法水 (重大要競差対意を含む) 失敗 + F C I 発生, である ここで、迷がし安全弁再開の成否の影響にいたいときま なき弁護の観点で大きい事故シーケンスを進 たさい事故シーケンスを選 たさいすか。法水 (重大要競差対応表示) キ数対応に及ぼす逃がし安全弁再開の成否の影響にいたいときま なき弁可加の成否の影響にいたいときえ、第生頻度の観点なとうしたしためである。また、「1.2.2.1(3)。原子炉圧力容器体の溶磁燃料 ー 冷却 材相互作用」に示すとおり、プラント損傷状態の湿 加材相互作用」に示すとおり、プラント損傷状態の湿定では、 水蒸気爆発に対する条件設定の截しさを考慮し、溶離炉の 内部エネルぞの観点でより気しいと考えられるてQUVを選 定し、一方、プラント損傷状態を10CAとする場合、事 象発生直後から原子炉合却材が原子炉格報客場内に流出するため パイクへの影響については、解析条件のうも初期条件の不確 かさとして評価する。法本気(小素)(1.2.2.1(3))法本気(小素)(1.2.2.1(3))法本気(小素)(1.2.2.1(3))法本気(小素)(1.2.2.1(3))法本気(小素)(1.2.2.1(3))法本気(小素)(1.2.2.1(3))法本気(小素)(1.2.2.1(3))法本気(小素)(1.2.2.1(3))法本気(小素)(1.2.2.1(3))法本気(1.3.2.2.1(3))法未気(1.2.2.1(3))法未気(1.3.2.2.1(3)	圧注水失敗+低圧注水失敗+損傷炉心冷却失敗(+FCI 発	高圧炉心冷却失敗+低圧炉心冷却失敗+損傷炉心冷却失敗	高圧炉心冷却失敗+低圧炉心冷却失敗+炉心損傷後の原子炉	
 並シーケンスとした理由は、ブラント損傷状態が TQUV であ ちため、事故対応に及ぼす逃がし安全弁再閉の成否の影響は、 かさいと考え、発生頻度の観点で大きい事故シーケンスを速 定したためである。 また、「L.2.2.1(3)。、原子炉圧力容器外の溶融燃料一冷却 が構工作用」に示すとおり、ブラント損傷状態の運定では、 水蒸気爆発に対する条件設定の厳しさを考慮し、溶融炉の 内部エネルギの観点でより厳しいと考えられる TQUV を選定 した。一方、ブラント損傷状態の運たでは、 ホブラント損傷状態の運たでは、 ホ蒸気爆発に対する条件設定の厳しさを考慮し、溶融炉の 内部エネルギの観点でより厳しいと考えられる TQUV を選定 した。一方、ブラント損傷状態の運たでは、 ホズラス場合、事発 生直後から原子炉冷却材が原子炉を納雪客港内に溢出するため 示子が圧力容器破損までの時間が短くなる。この時の圧力ス パイノへの影響については、解析条件のうち初期条件の不確 かさとして評価する。 かさとして評価する。 かさとして評価する。 かさとして評価する。 かさとして評価する。 なの逆木・除熱を実施するまでの対応時間が短くたち。この対応時間が短くたち。この対応時間が短くたち。この時の圧力 パイクへの影響については、解析条件のうち初期条件の不確 かさとして評価する。 ならに、本評価率数シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる率数対処設備が多く、のごをすたの対応時間を短くしく群価する。 ならに、本評価事数シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる率数対処設備が多く、 名の逆本、除熱を実施するまでの対応時間を短くしく群価する。 ならに、本群価率数シーケンスにおいては、電源の復旧、 た、「主なの」、全流動力電源要先の置数を考慮まする。 	生)」である。ここで、逃がし安全弁再閉失敗を含まない事	(+FCI(ペデスタル)) である。ここで、逃がし安全	注水(重大事故等対策を含む)失敗+FCI発生」である。	
あため、事故対応に及ぼす逃がし安全弁可問の成否の影響は 小さいと考え、発生頻度の観点でたきい事故シーケンスを進 定したためである。ト損傷状態がTQUVであるため、事故対応に及ぼす逃がし 大きい事故シーケンスを選定したためである。した理由は、ブラント損傷状態がTQUVであるため、事故 対応に及ぼす逃がし安全弁再閉の成否の影響は小さいと考え え、差先、「1.2.2.1(3)。 正すさおり、ブラント損傷状態の運業では、 大素気爆発に対する条件設定の厳しさを考慮し、溶血炉心 内部エネルギの観点でより厳しいと考えられる TQUV を選定 した。一方、ブラント損傷状態を LOCA とする場合、事象発 生直後から原子炉合加材が原子炉格納容器内に流出するため アゲ圧力容器破損までの時間が短くなる。この時の圧力ス バイクへの影響については、解析条件のうも刺集件の不確 かさとして評価する。した理由は、ブラント損傷状態がTQUVであるため、事故 対応に及ぼす逃がし安全弁再閉の成否の影響は小さいと考 え、発生頻度の観点で大きい事故シーケンスを選定したため である。 こまた、「1.2.2.1(3)。原子炉圧力容器外の溶融燃料ー冷却 材相互作用」に示すとおり、ブラント損傷状態の湿定では、 水素気爆発に対する条件設定の厳しさを考慮し、溶融炉心 内部エネルギの観点でより厳しいと考えられる TQUV を選定 定した。一方、ブラント損傷状態をLOCA とする場合、事象 象発生直後から原子炉合和材が <u>原子炉格</u> 線が加入した。この時の圧力ス バイクへの影響については、解析条件のうち刺集体のうち刺集体のうち刺集体のである。 こめとうして評価する。 こちに、本評価事数シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、 証件する。 こちに、本評価事数シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、 配合、 シークンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、 配合、会支流動力電源度次の電量を含蔵する。 ・解析条件の相違 第 ・解析条件の相違 ・解析条件の相違 ・ 40歳のち、会交流動力電源度次の電量を含蔵する。 のおして評価する。・解析条件の相違 ・ ・ 名 のお・ 条件 を として評価する。 ころ ころ ンの注意にたいてく として評価する。 	故シーケンスとした理由は、プラント損傷状態が TQUV であ	弁再閉失敗を含まない事故シーケンスとした理由は、プラン	ここで、逃がし安全弁再閉失敗を含まない事故シーケンスと	
 小さいと考え、発生態度の観点で大きい事故シーケンスを選 定したためである。 また、「1.2.2.1(3)。、原子炉圧力容器外の溶融燃料ー冷却 材相互作用」に示すとおり、プラント損傷状態の適定では、 水蒸気爆発に対する条件設定の厳しさを考慮し、溶酸炉心の 内部エネルギの観点でより厳しいと考えられるTQUVを適 定した。一方、プラント損傷状態の値にでは、 水蒸気爆発に対する条件設定の厳しさを考慮し、溶酸炉心の 内部エネルギの観点でより酸しいと考えられるTQUVを適 定した。一方、プラント損傷状態をLOCAとする場合、事象発 生直後から原子炉冷却材が原子炉格納容器内に流出するため 原子炉圧力容器破損までの時間が短くなる。この時の圧力ス バイクへの影響については、解析条件のうち初期条件の不確 かさとして評価する。 本様気やの不能 かさとして評価する。 本様気やのでは、 水気爆を定から原子炉冷却材が原子炉格納容器内に流出するため ためとして評価する。 たらに、本評価車なシーケンスにおいては、解析条件のうち初期条件の不能 かさとして評価する。 たらに、本評価車なシーケンスにおいては、解析条件のうち初期条件の不能 かさとして評価する。 たらに、本評価車なシーケンスにおいては、解析条件のうち初期条件の不能 かさとして評価する。 たらに、本評価車なシーケンスにおいては、解析条件のうち初期条件の ため、ため原子炉に力容器破損までの時間が短くなる。この時の圧 力スパイクへの影響については、解析条件のうち初期条件の不能 かさとして評価する。 ため原子炉に力容器破損までの時間が短くなる。この時の圧 力スパイクへの影響については、解析条件のうち初期条件の かさとして評価する。 ため原子炉に力容器破損までの時間が短くなる。この時の圧 力スパイクへの影響については、解析条件のうち初期条件の かさとして評価する。 ため原子炉に力容器破損までの方応時間を厳しく 一次構築の確保等、必要となる事故対処設備が多く、<u>原子炉</u> 指体52%の方法での対応時間を厳しく 許価する。 体析条件の相違 体析条件の相違 ため原子炉に力容器破損なの方にする、など、か気がな時間を厳しく評価する、 ため原子炉においては、電源の復に、 注水機能の確保等、必要となる事故対処設備が多く、<u>原子炉</u> 指体52%の方法での対応時間を厳しく 注意に、ため茶を実施するまでの対応時間を厳しく 体析条件の有違 体析条件の相違 人体の注意 人体の注意 人体教を実施するまでの対応時間を厳しく 人体教会 人体教会 人体教会 人体の注意 人体の注意 人体教会 人体教会 人体の注意 人体教会 人体教会 人体教 人体教会 人体教会 人体教会 人体教会 人体教会 人体教会 人体の 人体教会 人体の 人体教会 人体教会 人体教会 人体教会 人体会 人体会 人体会 人体会 人体の 人体教会 人体会 人体会 人体会 人体会 人体教会 人体教会 人体会 人体会 人体会 人体会<!--</td--><td>るため、事故対応に及ぼす逃がし安全弁再閉の成否の影響は</td><td>ト損傷状態がTQUVであるため、事故対応に及ぼす逃がし</td><td>した理由は、プラント損傷状態がTQUVであるため、事故</td><td></td>	るため、事故対応に及ぼす逃がし安全弁再閉の成否の影響は	ト損傷状態がTQUVであるため、事故対応に及ぼす逃がし	した理由は、プラント損傷状態がTQUVであるため、事故	
	小さいと考え、発生頻度の観点で大きい事故シーケンスを選	安全弁再閉の成否の影響は小さいと考え、発生頻度の観点で	対応に及ぼす逃がし安全弁再閉の成否の影響は小さいと考	
また、「1.2.2.1(3) c. 原子炉圧力容器外の溶融燃料ー冷却 材相互作用」に示すとおり、プラント損傷状態の遅定では、 水蒸気爆発に対する条件設定の厳しさを考慮し、溶融炉心の 内部エネルギの観点でより厳しいと考えられる TQUV を選定 した。一方、プラント損傷状態を LOCA とする場合、事象発 生直後から原子炉冷却材が原子炉格納容器内に流出するため 原子炉圧力容器破損までの時間が短くなる。この時の圧力ス パイクへの影響については、解析条件のうち初期条件の不確 かさとして評価する。 こちに、本評価事数シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、 <u>陸納容</u> <u>路本から、全交流動力電源喪失の電量を考慮する。</u> 本然気爆を加する素件設定の効応時間を厳しく	定したためである。	大きい事故シーケンスを選定したためである。	え、発生頻度の観点で大きい事故シーケンスを選定したため	
また、「1.2.2.1(3) c. 原子炉圧力容器外の溶融燃料-冷却 材相互作用」に示すとおり、プラント損傷状態の適定では、 水蒸気爆発に対する条件設定の敵しさを考慮し、溶融炉心の 内部エネルギの観点でより厳しいと考えられる TQUV を適定 した。一方、プラント損傷状態を LOCA とする場合、事象発 生直後から原子炉治却材が原子炉格納容器内に流出するため 原子炉圧力容器破損までの時間が短くなる。この時の圧力ス パイクへの影響については、解析条件のうち初期条件の不確 かさとして評価する。 ちらに、本評価事故シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、 <u>格納容</u> 器への注水・除熱を実施するまでの対応時間を厳しく評価す る観点から、全交流動力電源喪失の重畳を考慮する。			である。	
材相互作用」に示すとおり、ブラント損傷状態の遷定では、 水蒸気爆発に対する条件設定の厳しさを考慮し、溶融炉心の 内部エネルギの観点でより厳しいと考えられる TQUV を選定 した。一方、ブラント損傷状態を LOCA とする場合、事象発 生直後から原子炉冷却材が原子炉格納容器内に流出するため 原子炉圧力容器破損までの時間が短くなる。この時の圧力ス パイクへの影響については、解析条件のうち初期条件の不確 かさとして評価する。対相互作用」に示すとおり、ブラント損傷状態の運定では、 水蒸気爆発に対する条件設定の厳しさを考慮し、溶融炉心の 内部エネルギの観点でより厳しいと考えられる TQUV を選 定した。一方、ブラント損傷状態を LOCA とする場合、事象発 生直後から原子炉冷却材が原子が降熱容器内に流出するため アグレカ容器破損までの時間が短くなる。この時の圧力ス パイクへの影響については、解析条件のうち初期条件のうち初期条件のの影響については、解析条件のうちも初期条件のうちも初期条件のうち初期条件のすき かさとして評価する。材相互作用」に示すとおり、ブラント損傷状態の運定では、 水蒸気爆発に対する条件設定の厳しさを考慮し、溶酸炉心の 内部エネルギの観点でより厳しいと考えられる TQUV を選 定した。一方、ブラント損傷状態を LOCA とする場合、事 象発生直後から原子炉冷却材が原子が極納容器内に流出するため パイクへの影響については、解析条件のうち初期条件のうちも初期条件のうち初期条件の かさとして評価する。 さらに、本評価事故シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、 格納容 器への注水・除熱を実施するまでの対応時間を厳しく評価す る観点から、全交流動力電源喪失の重畳を考慮する。材相互作用」に示すとおり、ブラント損傷状態の運定では、 水蒸気爆発に対する条件設定の厳しさを考慮し、溶酸が心の 内部エネルギの観点でより厳しいと考えられる TQUV を選 定した。一方、ブラント損傷状態をLOCA とする場合、事 象発生直後から原子炉心力均能が原子炉格納容器(に流出する ため原子炉に力容器破損までの時間が短くなる。この時の圧 ウスパイクへの影響については、解析条件のうち初期条件の で確かさとして評価する。 さらに、本評価事故シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、 格納容器への注水・除熱を実施するまでの対応時間を厳しく 評価する観点から、全交流動力電源喪失の重畳を考慮する。材相互作用」に示すとおり、「ブラント損傷状態の の第二本ルギの観点でより、 な蒸気の原子が気力制体が原子がした、 (本)、 	また、「1.2.2.1(3)c. 原子炉圧力容器外の溶融燃料-冷却	また、「1.2.2.1(3) c. 原子炉圧力容器外の溶融燃料-冷	また、「1.2.2.1(3)c. 原子炉圧力容器外の溶融燃料-冷却	
 水蒸気爆発に対する条件設定の厳しさを考慮し、溶融炉心の 内部エネルギの観点でより厳しいと考えられる TQUV を選定 した。一方、プラント損傷状態を LOCA とする場合、事象発 生直後から原子炉冷却材が原子炉格納容器内に流出するため 原子炉圧力容器破損までの時間が短くなる。この時の圧力ス パイクへの影響については、解析条件のうち初期条件の不確 かさとして評価する。 さらに、本評価事故シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、<u>格納容</u> 器への注水・除熱を実施するまでの対応時間を厳しく評価する。 さん成 から、全交流動力電源喪失の重畳を考慮する。 	材相互作用」に示すとおり、プラント損傷状態の選定では、	却材相互作用」に示すとおり、プラント損傷状態の選定では、	材相互作用」に示すとおり、プラント損傷状態の選定では、	
内部エネルギの観点でより厳しいと考えられる TQUV を選定 した。一方、プラント損傷状態を LOCA とする場合、事象発 生直後から原子炉冷却材が原子炉格納容器内に流出するため 原子炉圧力容器破損までの時間が短くなる。この時の圧力ス パイクへの影響については、解析条件のうち初期条件の不確 かさとして評価する。 こちに、本評価事故シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、 <u>格納容</u> 器への注水・除熱を実施するまでの対応時間を厳しく評価す る観点から、全交流動力電源喪失の重畳を考慮する。	水蒸気爆発に対する条件設定の厳しさを考慮し、溶融炉心の	水蒸気爆発に対する条件設定の厳しさを考慮し、溶融炉心の	水蒸気爆発に対する条件設定の厳しさを考慮し、溶融炉心の	
 した。一方、プラント損傷状態を LOCA とする場合、事象発 生直後から原子炉冷却材が原子炉格納容器内に流出するため 原子炉圧力容器破損までの時間が短くなる。この時の圧力ス パイクへの影響については、解析条件のうち初期条件の不確 かさとして評価する。 さらに、本評価事故シーケンスにおいては、電源の復旧, 注水機能の確保等、必要となる事故対処設備が多く、格納容 器への注水・除熱を実施するまでの対応時間を厳しく評価する。 ・解析条件の相違 ・解析条件の相違 ・解析条件の相違 ・解析条件の相違 ・解析条件の相違 ・解析条件の相違 ・解析条件の相違 ・目前、6-7] 島根 2 号炉に、本シナ る観点から、全交流動力電源喪失の重畳を考慮する。 	内部エネルギの観点でより厳しいと考えられる TQUV を選定	内部エネルギの観点でより厳しいと考えられるTQUVを選	内部エネルギの観点でより厳しいと考えられるTQUVを選	
生直後から原子炉冷却材が原子炉格納容器内に流出するため 原子炉圧力容器破損までの時間が短くなる。この時の圧力ス パイクへの影響については、解析条件のうち初期条件の不確 かさとして評価する。象発生直後から原子炉冷却材が <u>原子炉格納容器</u> 内に流出する ため原子炉圧力容器破損までの時間が短くなる。この時の圧力、 パイクへの影響については、解析条件のうち事故条件の不確 かさとして評価する。象発生直後から原子炉冷却材が <u>原子炉格納容器</u> 内に流出する ため原子炉圧力容器破損までの時間が短くなる。この時の圧 力スパイクへの影響については、解析条件のうち初期条件の 不確かさとして評価する。・解析条件のうち初期条件の ・ ・ がさとして評価する。・解析条件のうち初期条件の不確 かさとして評価する。・解析条件のうち事故条件の不確 かさとして評価する。・解析条件のうち初期条件の ・ ・ ならに、本評価事故シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、 、 Amage・解析条件の相違・解析条件の ・ さらに、本評価事故シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、 、 名観点から、全交流動力電源喪失の重畳を考慮する。・ ・ 解析条件の ・ 	した。一方、プラント損傷状態を LOCA とする場合、事象発	定した。一方、プラント損傷状態をLOCAとする場合、事	定した。一方、プラント損傷状態をLOCAとする場合、事	
原子炉圧力容器破損までの時間が短くなる。この時の圧力ス パイクへの影響については、解析条件のうち初期条件の不確 かさとして評価する。 子炉圧力容器破損までの時間が短くなる。このときの圧力ス パイクへの影響については、解析条件のうち事故条件の不確 かさとして評価する。 ため原子炉圧力容器破損までの時間が短くなる。この時の圧 力スパイクへの影響については、解析条件のうち初期条件の 不確かさとして評価する。 ため原子炉圧力容器破損までの時間が短くなる。この時の圧力ス パイクへの影響については、解析条件のうち事故条件の不確 かさとして評価する。 ため原子炉圧力容器破損までの時間が短くなる。この時の圧 力スパイクへの影響については、解析条件のうち初期条件の 不確かさとして評価する。 ため原子炉圧力容器破損までの時間が短くなる。この時の圧 パイクへの影響については、解析条件のうち初期条件の ため原子炉圧力容器破損までの時間が短くなる。この時の圧 力スパイクへの影響については、解析条件のうち初期条件の 不確かさとして評価する。 ため原子炉圧力容器破損までの時間が短くなる。この時の圧 力スパイクへの影響については、解析条件のうち初期条件の 不確かさとして評価する。 ため原子炉圧力容器破損までの時間が短くなる。この時の圧 力スパイクへの影響については、解析条件のうち初期条件の 不確かさとして評価する。 ため原子炉圧力容器破損までの時間が短くなる。この時の圧 力スパイクへの影響については、解析条件ののも などして評価する。 ため原子炉圧力容器破損までの時間が短くなる。この時の圧 かさとして評価する。 ため原子炉圧力容器破損までの時間が短くなる。この時の圧 力スパイクへの影響については、解析条件のの影響については、解析条件ののも などして評価する。 ため原子炉圧力容器破損までの時間が短くなる。この時の圧 かさとして評価する。 ため原子炉圧力容器破損までの時間が短くなる。この時の圧 かさとして評価する。 ため原子炉圧力容器破損までの時間が短くなる。 ため原子炉 ため原子炉 ため原子炉 ため原子炉 ため原子炉 ため原子 ため原子炉 ため原子 ため原子 ため原子 ため原子 ため原子 ため原子 ため原子 ため原子 ため原子<	生直後から原子炉冷却材が原子炉格納容器内に流出するため	象発生直後から原子炉冷却材が格納容器内に流出するため原	象発生直後から原子炉冷却材が原子炉格納容器内に流出する	
パイクへの影響については、解析条件のうち初期条件の不確 かさとして評価する。 パイクへの影響については、解析条件のうち事故条件の不確 かさとして評価する。 カスパイクへの影響については、解析条件のうち初期条件の かさとして評価する。 カスパイクへの影響については、解析条件のうち初期条件の ・ がさとして評価する。 ・ さらに、本評価事故シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、格納容 器への注水・除熱を実施するまでの対応時間を厳しく評価する。 ・ がさとして評価する。 ・ ・ がおいたして認知 がなとして評価する。 ・ がなとして評価する。 ・ ・ がなとして評価する。 ・ がなとして評価する。 ・ がなとして評価する。 ・ がなとして評価する。 ・ がなとして評価する。 ・ ならいては、解析条件のうち初期条件の ・ がなとして評価する。 ・ がなとして評価する。 ・ ・ ・ は、 においては、 ・ がたいにおいては、 で 	原子炉圧力容器破損までの時間が短くなる。この時の圧力ス	子炉圧力容器破損までの時間が短くなる。このときの圧力ス	ため原子炉圧力容器破損までの時間が短くなる。この時の圧	
かさとして評価する。 かさとして評価する。 不確かさとして評価する。 ・解析条件の相違 かさとして評価する。 さらに、本評価事故シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、格納容 さらに、本評価事故シーケンスにおいては、電源の復旧、 ・解析条件の相違 注水機能の確保等、必要となる事故対処設備が多く、格納容 た水機能の確保等、必要となる事故対処設備が多く、原子炉 ・解析条件の相違 品根2号炉は、本シナ る観点から、全交流動力電源喪失の重畳を考慮する。 ・解析条件の相違	パイクへの影響については、解析条件のうち初期条件の不確	パイクへの影響については、解析条件のうち事故条件の不確	カスパイクへの影響については、解析条件のうち初期条件の	
さらに、本評価事故シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、格納容 器への注水・除熱を実施するまでの対応時間を厳しく評価す る観点から、全交流動力電源喪失の重畳を考慮する。	かさとして評価する。	かさとして評価する。	不確かさとして評価する。	
注水機能の確保等,必要となる事故対処設備が多く,格納容 強への注水・除熱を実施するまでの対応時間を厳しく評価す る観点から,全交流動力電源喪失の重畳を考慮する。		さらに、本評価事故シーケンスにおいては、電源の復旧.	さらに、本評価事故シーケンスにおいては、電源の復旧.	・解析条件の相違
器への注水・除熱を実施するまでの対応時間を厳しく評価す る観点から、全交流動力電源喪失の重畳を考慮する。 評価する観点から、全交流動力電源喪失の重畳を考慮する。 リオの評価において全交		注水機能の確保等、必要となる事故対処設備が多く、格納容	注水機能の確保等、必要となる事故対処設備が多く、原子炉	【柏崎 6/7】
る観点から、全交流動力電源喪失の重畳を考慮する。		器への注水・除熱を実施するまでの対応時間を厳しく評価す	格納容器への注水・除熱を実施するまでの対応時間を厳しく	島根2号炉は、本シナ
		る観点から、全交流動力電源喪失の重畳を考慮する。	評価する観点から、全交流動力電源喪失の重畳を考慮する。	リオの評価において全交

柏崎刈羽原子力発電所	6 / 7 号炉	(2017, 12, 20版)

なお、本評価事故シーケンスは、「3.2 高圧溶融物放出/ 格納容器雰囲気直接加熱」及び「3.5 溶融炉心・コンクリー ト相互作用」において有効性を評価したシーケンスと同様の シーケンスである。本格納容器破損モード及び「3.5 溶融炉 心・コンクリート相互作用」ではプラント損傷状態を TQUV と し、「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」では プラント損傷状態を TQUX としており, 異なるプラント損傷 状態を選定している。しかしながら、どちらのプラント損傷 状態であっても原子炉水位が有効燃料棒底部から有効燃料棒 の長さの 10%上の位置に到達した時点で逃がし安全弁の手動 開操作によって原子炉を減圧する手順であり、原子炉減圧以 降も、溶融炉心の挙動に従って一連の流れで生じる各格納容 器破損モードを、定められた一連の手順に従って防止するこ ととなる。このことから、これらの格納容器破損モードにつ いては同様のシーケンスで評価する。

本評価事故シーケンスでは、炉心における崩壊熱、燃料棒 内温度変化,燃料棒表面熱伝達,燃料被覆管酸化,燃料被覆 管変形、沸騰・ボイド率変化、気液分離(水位変化)・対向 流、炉心損傷後の原子炉圧力容器におけるリロケーション、 構造材との熱伝達、原子炉圧力容器破損、原子炉格納容器に おける格納容器各領域間の流動、炉心損傷後の原子炉格納容 器における原子炉圧力容器外 FCI (溶融炉心細粒化)並びに原 子炉圧力容器外 FCI (デブリ粒子熱伝達) が重要現象となる。

よって、これらの現象を適切に評価することが可能であり、 原子炉圧力容器内及び原子炉格納容器内の熱水力モデルを備 え、かつ、炉心損傷後のシビアアクシデント特有の溶融炉心 挙動に関するモデルを有するシビアアクシデント総合解析コ ード MAAP により格納容器圧力等の過渡応答を求める。

また、解析コード及び解析条件の不確かさの影響評価の範 囲として、本評価事故シーケンスにおける運転員等操作時間 に与える影響、評価項目となるパラメータに与える影響及び 操作時間余裕を評価する。

(2) 有効性評価の条件	
本評価事故シーケンスの有効性評価の条件は、	「3.2 高圧

なお、本評価事故シーケンスは、「3.2 高圧溶融物放出/ 格納容器雰囲気直接加熱」及び「3.5 溶融炉心・コンクリー ト相互作用」において有効性を評価したシーケンスと同様の シーケンスである。本格納容器破損モード及び「3.5 溶融炉 心・コンクリート相互作用」ではプラント損傷状態をTQU Vとし、「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」 ではプラント損傷状態をTQUXとしており、異なるプラン ト損傷状態を選定している。しかしながら、どちらのプラン ト損傷状態であっても原子炉水位が燃料有効長底部から燃料 有効長の20%上の位置に到達した時点で逃がし安全弁(自動 減圧機能)の手動開操作によって原子炉を減圧する手順であ り、原子炉減圧以降も、溶融炉心の挙動に従って一連の流れ で生じる各格納容器破損モードを、定められた一連の手順に 従って防止することとなる。このことから、これらの格納容 器破損モードについては同様のシーケンスで評価する。

本評価事故シーケンスでは、炉心における崩壊熱、燃料棒 内温度変化,燃料棒表面熱伝達,燃料被覆管酸化,燃料被覆 管変形、沸騰・ボイド率変化及び気液分離(水位変化)・対 向流, 炉心損傷後の原子炉圧力容器におけるリロケーション, 構造材との熱伝達及び原子炉圧力容器破損、格納容器におけ る格納容器各領域間の流動、炉心損傷後の格納容器における 原子炉圧力容器外FCI(溶融炉心細粒化)並びに原子炉圧 力容器外FCI(デブリ粒子熱伝達)が重要現象となる。

よって、これらの現象を適切に評価することが可能であり、 原子炉圧力容器内及び格納容器内の熱水力モデルを備え、か つ、炉心損傷後のシビアアクシデント特有の溶融炉心挙動に 関するモデルを有するシビアアクシデント総合解析コードM AAPにより格納容器圧力等の過渡応答を求める。

また、解析コード及び解析条件の不確かさの影響評価の範 囲として、本評価事故シーケンスにおける運転員等操作時間 に与える影響、評価項目となるパラメータに与える影響及び 操作時間余裕を評価する。

本評価事故シーケンスの有効性評価の条件は、「3.2 高圧

(2) 有効性評価の条件

島根原子力発電所 2号炉	備考
	流動力電源喪失の重畳を
	考慮する。
なお,本評価事故シーケンスは,「3.2 高圧溶融物放出/	
格納容器雰囲気直接加熱」及び「3.5 溶融炉心・コンクリー	
ト相互作用」において有効性を評価したシーケンスと同様の	
シーケンスである。本格納容器破損モード及び「3.5 溶融炉	
心・コンクリート相互作用」ではプラント損傷状態をTQU	
Vとし,「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」	
ではプラント損傷状態をTQUXとしており,異なるプラン	
ト状態を選定している。しかしながら,どちらのプラント損	
傷状態であっても原子炉水位が燃料棒有効長底部から燃料棒	
<u>有効長の20%</u> 上の位置に到達した時点で逃がし安全弁の手動	・解析結果の相違
開操作によって原子炉を減圧する手順であり、原子炉減圧以	【柏崎 6/7】
降も、溶融炉心の挙動に従って一連の流れで生じる各格納容	ジルコニウム-水反応
器破損モードを、定められた一連の手順に従って防止するこ	が著しくなる前に減圧す
ととなる。このことから、これらの格納容器破損モードにつ	るという考え方は同じで
いては同様のシーケンスで評価する。	はあるが,感度解析結果
本評価事故シーケンスでは、炉心における崩壊熱、燃料棒	の差異により、島根2号
内温度変化, 燃料棒表面熱伝達, 燃料被覆管酸化, 燃料被覆	炉は,BAF+20%で原子炉減
管変形,沸騰・ボイド率変化,気液分離(水位変化)・対向	圧を実施する。
流,炉心損傷後の原子炉圧力容器におけるリロケーション,	
構造材との熱伝達、原子炉圧力容器破損、原子炉格納容器に	
おける格納容器各領域間の流動、炉心損傷後の原子炉格納容	
器における原子炉圧力容器外FCI(溶融炉心細粒化)並び	
に原子炉圧力容器外FCI(デブリ粒子熱伝達)が重要現象	
となる。	
よって,これらの現象を適切に評価することが可能であり,	
原子炉圧力容器内及び原子炉格納容器内の熱水力モデルを備	
え,かつ,炉心損傷後のシビアアクシデント特有の溶融炉心	
挙動に関するモデルを有するシビアアクシデント総合解析コ	
ードMAAPにより格納容器圧力等の過渡応答を求める。	
また、解析コード及び解析条件の不確かさの影響評価の範	
囲として、本評価事故シーケンスにおける運転員等操作時間	
に与える影響,評価項目となるパラメータに与える影響及び	
操作時間余裕を評価する。	
(2) 有効性評価の余件	
本評価事政シーケンスの有効性評価の条件は,「3.2 高圧	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
溶融物放出/格納容器雰囲気直接加熱」の条件と同じである。	溶融物放出/格納容器雰囲気直接加熱」の条件と同じである。	溶融物放出/格納容器雰囲気直接加熱」の条件と同じである。	
(3) 有効性評価の結果 本評価事故シーケンスにおける原子炉圧力及び原子炉水位	(3) 有効性評価の結果 本評価事故シーケンスにおける格納容器圧力及び格納容器	(3) 有効性評価の結果 本評価事故シーケンスにおける原子炉圧力及び原子炉水位	
(シュラウド内外水位)の推移を <u>第 3. 3. 1 図</u> 及び <u>第 3. 3. 2 図</u>	<u>雰囲気温度</u> の推移を <u>第3.3-1図及び第3.3-2図</u> に示す。	<u>(シュラウド内外水位)の推移を第 3.3.2-1(1)図</u> 及び <u>第</u>	
に、格納容器圧力、格納容器温度、原子炉格納容器下部の水		<u>3.3.2-1(2)図に</u> 格納容器圧力,格納容器温度,ペデスタル	
位及び注水流量の推移を <u>第3.3.3図</u> から <u>第3.3.6図</u> に示す。		<u>の水位及び注水流量</u> の推移を <u>第 3.3.2-1(3)図から第 3.3.2</u> <u>-1(6)図</u> に示す。	
a. 事象進展	a. 事象進展	a. 事象進展	
事象進展は「3.2 高圧溶融物放出/格納容器雰囲気直接	事象進展は「3.2 高圧溶融物放出/格納容器雰囲気直接加	事象進展は「3.2 高圧溶融物放出/格納容器雰囲気直接	
加熱」と同じである。	熱」と同じである。	加熱」と同じである。	
b. 評価項目等	b. 評価項目等	b. 評価項目等	
圧力スパイクによって原子炉格納容器バウンダリにかか	圧力スパイク <u>(約1分間の溶融炉心落下)</u> によって <u>格納容器</u>	圧力スパイクによって <u>原子炉格納容器バウンダリ</u> にかか	
る圧力の最大値は, <u>約0.51MPa[gage]</u> に抑えられる。原子炉	<u>バウンダリ</u> にかかる圧力の最大値は, <u>約0.22MPa [gage]</u> に抑	る圧力の最大値は, <u>約193kPa[gage]</u> に抑えられる。 <u>原子炉</u>	・解析結果の相違
格納容器バウンダリにかかる圧力は、原子炉格納容器の限	えられる。 <u>格納容器バウンダリ</u> にかかる圧力は, <u>格納容器</u> の	格納容器バウンダリにかかる圧力は、原子炉格納容器の限	【柏崎 6/7, 東海第二】
界圧力 <u>0.62MPa[gage]</u> を下回るため,原子炉格納容器バウン	限界圧力 <u>0.62MPa [gage]</u> を下回るため, <u>格納容器バウンダリ</u>	界圧力 <u>853kPa[gage]</u> を下回るため, <u>原子炉格納容器バウン</u>	・設備設計の相違
ダリの機能は維持される。	の機能は維持される。	<u>ダリ</u> の機能は維持される。	【柏崎 6/7, 東海第二】
			島根2号炉(Mark-1 ま)した岐 c/7(ADWP)
			以)と怕呵 0/1 (ABWR), 東海笛 ^一 (Mark-Ⅱ)の是
			泉海泉二(Mark II)の取 高使用圧力の相違
圧力スパイクによって原子炉格納容器バウンダリにかか	圧力スパイクによって格納容器バウンダリにかかる温度の	圧力スパイクによって原子炉格納容器バウンダリにかか	
る温度の最大値は, <u>約146℃</u> に抑えられる。原子炉格納容器	最大値は, <u>約118℃</u> に抑えられる。格納容器バウンダリにかか	る温度の最大値は, <u>約123℃</u> に抑えられる。 <u>原子炉格納容器</u>	・解析結果の相違
バウンダリにかかる温度は,原子炉格納容器の限界温度の		<u>バウンダリ</u> にかかる温度は、 <u>原子炉格納容器</u> の限界温度の	【柏崎 6/7, 東海第二】
200℃を下回るため, 原子炉格納容器バウンダリの機能は維	<u>器バウンダリ</u> の機能は維持される。	200℃を下回るため, 原子炉格納容器バウンダリの機能は維	
持される。		持される。	
本評価では,「1.2.2.2 有効性を確認するための評価項目	本評価では、「1.2.2.2 有効性を確認するための評価項目	本評価では,「1.2.2.2 有効性を確認するための評価項目	
の設定」に示す(5)の評価項目について,格納容器圧力をパ	の設定」に示す(5)の評価項目について,格納容器圧力をパラ	の設定」に示す(5)の評価項目について,格納容器圧力をパ	
ラメータとして対策の有効性を確認した。なお,「1.2.2.2	メータとして対策の有効性を確認した。なお、「1.2.2.2 有	ラメータとして対策の有効性を確認した。なお、「1.2.2.2	
有効性を確認するための評価項目の設定」に示す(4)及び	効性を確認するための評価項目の設定」に示す(4)及び(8)の	有効性を確認するための評価項目の設定」に示す(4)及び	
(8)の評価項目の評価結果については「3.2 高圧溶融物放出	評価項目の評価結果については「3.2 高圧溶融物放出/格納	(8)の評価項目の評価結果については「3.2 高圧溶融物放出	
/格納容器雰囲気直接加熱」及び「3.5 溶融炉心・コンク	容器雰囲気直接加熱」及び「3.5 溶融炉心・コンクリート相	/格納容器雰囲気直接加熱」及び「3.5 溶融炉心・コンク	
リート相互作用」にて評価項目を満足することを確認して	互作用」にて評価項目を満足することを確認している。また、 医ストロールでは見たるほとなっている。また、	リート相互作用」にて評価項目を満足することを確認して	
いる。また、原子炉格納容器下部に落下した溶融炉心及び	原子炉圧力容器が破損する場合における「1.2.2.2 有効性を	いる。また、ベテスタルに落トした溶融炉心及び原子炉格	・整埋万針の相違
原子炉格納谷器の安定状態維持については「3.5溶融炉心・	確認するための評価項目の設定」に示す(1)から(3),(6),(7) の認知道日の認知は思考がに、「「こと」、「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、	<u>納谷</u> 齢の安定状態維持については <u>13.5容融炉心・コンクリ</u>	【果海第二】
コンクリート相互作用」にて催認している。	の評価項目の評価結果业のにヘアスタル(ドフイワエル部)	<u>一下相互作用」</u> にて確認している。	谷格納谷器城預モード
	に洛下しに浴離炉心及の烙納谷猛の女正状態維持については		ご唯認対家とする評価項

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」にて確認		目の相違。
	している。		
(添付資料 3.5.1)		(添付資料 3.5.1)	
3.3.3 解析コード及び解析条件の不確かさの影響評価	3.3.3 解析コード及び解析条件の不確かさの影響評価	3.3.3 解析コード及び解析条件の不確かさの影響評価	
解析コード及び解析条件の不確かさの影響評価の範囲として,	解析コード及び解析条件の不確かさの影響評価の範囲として,	解析コード及び解析条件の不確かさの影響評価の範囲として,	
運転員等操作時間に与える影響,評価項目となるパラメータに与	運転員等操作時間に与える影響,評価項目となるパラメータに与	運転員等操作時間に与える影響,評価項目となるパラメータに与	
える影響及び操作時間余裕を評価するものとする。	える影響及び操作時間余裕を評価するものとする。	える影響及び操作時間余裕を評価するものとする。	
格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相	格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相	格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相	
互作用」では、重大事故等対処設備を含む全ての原子炉注水機能	互作用」では、重大事故等対処設備を含む全ての原子炉注水機能	互作用」では、重大事故等対処設備を含む全ての原子炉注水機能	
が喪失して炉心損傷及び原子炉圧力容器破損に至り、溶融炉心が	が喪失して炉心損傷及び原子炉圧力容器破損に至り、溶融炉心が	が喪失して炉心損傷及び原子炉圧力容器破損に至り、溶融炉心が	
原子炉格納容器下部の水中に落下して大きいエネルギを発生する	ペデスタル (ドライウェル部)の水中に落下して大きいエネルギ	<u>ペデスタル</u> の水中に落下して大きいエネルギを発生することが特	
ことが特徴である。	を発生することが特徴である。	徴である。	
また、不確かさの影響を確認する運転員等操作は、 <u>事象発生か</u>	また、不確かさの影響を確認する運転員等操作は、事象進展に	また、不確かさの影響を確認する運転員等操作は、事象進展に	・記載方針の相違
ら12 時間程度までの短時間に期待する操作及び事象進展に有意	有意な影響を与えると考えられる操作として、 <u>緊急用海水系によ</u>	有意な影響を与えると考えられる操作として、 <u>格納容器代替スプ</u>	【柏崎 6/7,東海第二】
な影響を与えると考えられる操作として、溶融炉心落下前の格納	る冷却水(海水)の確保操作及び代替循環冷却系による格納容器	レイ系(可搬型)によるペデスタルへの注水操作(原子炉圧力容	島根2号炉は、事象発
容器下部注水(常設)による水張り操作とする。	<u>除熱操作</u> とする。	<u>器破損前の初期水張り)</u> とする。	生から 12 時間までの操
			作ではなく, FCI 等の物
			理現象に対する対策のみ
			記載し、その操作の不確
			かさについての影響を確
			認している。
本評価事故シーケンスの有効性評価における現象の不確かさと	本評価事故シーケンスの有効性評価における現象の不確かさと	本評価事故シーケンスの有効性評価における現象の不確かさと	
しては,溶融炉心落下速度,細粒化量,プール水とデブリ粒子の	しては、溶融炉心落下速度、細粒化量及びプール水とデブリ粒子	しては、溶融炉心落下速度、細粒化量, プール水とデブリ粒子の	
伝熱が挙げられる。	の伝熱が挙げられる。	伝熱が挙げられる。	
本評価事故シーケンスの評価では、溶融炉心落下速度、細粒化	本評価事故シーケンスの評価では、溶融炉心落下速度、細粒化	溶融炉心落下速度及び細粒化量の不確かさに対して、エントレ	・記載方針の相違
<u>量の不確かさに対してエントレインメント係数を変化させた場合</u>	<u>量の不確かさに対して、エントレインメント係数を変化させた場</u>	インメント係数を変化させた場合並びにプール水とデブリ粒子の	【柏崎 6/7, 東海第二】
の影響評価を実施する。	合の影響評価を実施する。なお、プール水とデブリ粒子の伝熱の	<u>伝熱の不確かさに対してデブリ粒子径を変化させた場合の本格納</u>	BWR プラント安全審査
なお、プール水とデブリ粒子の伝熱の不確かさに対してデブリ粒	不確かさに対してデブリ粒子径を変化させた場合の本格納容器破	容器破損モードに対する影響は小さいことを確認している。	資料「重大事故等対策の
子径を変化させた場合の本格納容器破損モードに対する影響は小	損モードに対する影響は小さいことを確認している。		有効性評価に係るシビア
さいことを確認している。			アクシデント解析コード
エントレインメント係数を変化させた場合の影響評価の結果,	エントレインメント係数を変化させた場合の影響評価の結果,		について」において、
運転員等操作時間に与える影響はなく、評価項目となるパラメー	運転員等操作時間に与える影響はなく,評価項目となるパラメー		BWR-5 Mark-I 改良型格
タに与える影響は小さいことを確認している。	タに与える影響は小さいことを確認している。		納容器プラントに対し
			て,エントレインメント
			係数及びデブリ粒子径を
			パラメータとした感度解
			析を実施し,原子炉圧力

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			容器外 FCI により生じる
			圧力スパイクへの感度が
			小さいことを確認してい
			る。
なお,これまでのFCI 実験の知見からは,一部の二酸化ウラン	なお,これまでのFCI実験の知見からは,一部の二酸化ウラ	なお、これまでのFCI実験の知見からは、一部の二酸化ウラ	
混合物を用いて実機条件よりも高い溶融物温度の条件のもとで実	ン混合物を用いて実機条件よりも高い溶融物温度の条件の下で実	ン混合物を用いて実機条件よりも高い溶融物温度の条件のもとで	
施された実験においてトリガなしで水蒸気爆発が発生している例	施された実験においてトリガなしで水蒸気爆発が発生している例	実施された実験においてトリガなしで水蒸気爆発が発生している	
が報告されているが、実機で想定される程度の溶融物の温度にお	が報告されているが、実機で想定される程度の溶融物の温度にお	例が報告されているが、実機で想定される程度の溶融物の温度に	
いて実施された実験においてトリガなしで水蒸気爆発が発生して	いて実施された実験においてトリガなしで水蒸気爆発が発生して	おいて実施された実験においてトリガなしで水蒸気爆発が発生し	
いる例は確認されていないことから、実機条件においては原子炉	いる例は確認されていないことから、実機条件においては格納容	ている例は確認されていないことから、実機条件においては原子	
格納容器の損傷に至る大規模な原子炉圧力容器外の溶融燃料ー冷	器の損傷に至る大規模な原子炉圧力容器外の溶融燃料ー冷却材相	炉格納容器の損傷に至る大規模な原子炉圧力容器外の溶融燃料ー	
却材相互作用の発生の可能性は低いと推定される。	互作用の発生の可能性は低いと推定される。	冷却材相互作用の発生の可能性は低いと推定される。	
(1) 解析コードにおける重要現象の不確かさの影響評価	(1) 解析コードにおける重要現象の不確かさの影響評価	(1) 解析コードにおける重要現象の不確かさの影響評価	
本評価事故シーケンスにおいて不確かさの影響評価を行う	本評価事故シーケンスにおいて不確かさの影響評価を行う	本評価事故シーケンスにおいて不確かさの影響評価を行う	
重要現象とは、「1.7 解析コード及び解析条件の不確かさの	重要現象とは、「1.7 解析コード及び解析条件の不確かさの	重要現象とは、「1.7 解析コード及び解析条件の不確かさの	
影響評価方針」に示すとおりであり、それらの不確かさの影	影響評価方針」に示すとおりであり、それらの不確かさの影	影響評価方針」に示すとおりであり、それらの不確かさの影	
響評価は以下のとおりである。	響評価は以下のとおりである。	響評価は以下のとおりである。	
a. 運転員等操作時間に与える影響	a. 運転員等操作時間に与える影響	a. 運転員等操作時間に与える影響	
炉心における燃料棒内温度変化,燃料棒表面熱伝達,燃	炉心における燃料棒内温度変化,燃料棒表面熱伝達,燃	炉心における燃料棒内温度変化,燃料棒表面熱伝達,燃	
料被覆管酸化及び燃料被覆管変形の不確かさとして、炉心	料被覆管酸化及び燃料被覆管変形の不確かさとして、炉心	料被覆管酸化及び燃料被覆管変形の不確かさとして、炉心	
ヒートアップに関するモデルは、TMI 事故についての再現	ヒートアップに関するモデルは, TMI事故についての再	ヒートアップに関するモデルは, TMI事故についての再	
性及びCORA 実験についての再現性を確認している。炉心ヒ	現性及びCORA実験についての再現性を確認している。	現性及びCORA実験についての再現性を確認している。	
ートアップの感度解析(ジルコニウムー水反応速度の係数	炉心ヒートアップの感度解析(ジルコニウム-水反応速度	炉心ヒートアップの感度解析(ジルコニウム-水反応速度	
についての感度解析)では、炉心溶融時間及び炉心下部プ	の係数についての感度解析)では、炉心溶融開始時間及び	の係数についての感度解析)では、炉心溶融開始時間及び	
レナムへの溶融炉心移行の開始時間に対する感度は数分程	炉心下部プレナムへの溶融炉心移行の開始時間に対する感	炉心下部プレナムへの溶融炉心移行の開始時間に対する感	
度であり、影響は小さいことを確認している。	度は数分程度であり、影響は小さいことを確認している。	度は数分程度であり、影響は小さいことを確認している。	
本評価事故シーケンスでは、原子炉圧力容器下鏡部温度	本評価事故シーケンスでは,原子炉圧力容器温度(下鏡	本評価事故シーケンスでは、原子炉圧力容器下鏡温度が	・運用の相違
が300℃に到達した時点で原子炉格納容器下部への初期水	部)を操作開始の起点としている運転員等操作はないこと	300℃に到達した時点でペデスタルへの初期水張り操作を	【東海第二】
張り操作を実施するが、炉心下部プレナムへの溶融炉心移	から、運転員等操作時間に与える影響はない。	実施するが、炉心下部プレナムへの溶融炉心移行の開始時	島根2号炉は、原子炉
行の開始時間の不確かさは小さく、炉心下部プレナムへ溶		間の不確かさは小さく、炉心下部プレナムへ溶融炉心が移	圧力容器下鏡温度 300℃
融炉心が移行した際の原子炉圧力容器下鏡部温度の上昇は		行した際の原子炉圧力容器下鏡温度の上昇は急峻であるこ	到達にてペデスタルへの
急峻であることから、原子炉圧力容器下鏡部温度を操作開		とから、原子炉圧力容器下鏡温度を操作開始の起点として	注水操作を実施するた
始の起点としている <u>原子炉格納容器下部</u> への初期水張り操		いるペデスタルへの初期水張り操作に係る運転員等操作時	め、不確かさの影響を記
作に係る運転員等操作時間に与える影響は小さい。		間に与える影響は小さい。	載している。
炉心における沸騰・ボイド率変化及び気液分離(水位変	炉心における沸騰・ボイド率変化及び気液分離(水位変	炉心における沸騰・ボイド率変化及び気液分離(水位変	
化)・対向流の不確かさとして、 炉心モデル(炉心水位計算	化)・対向流の不確かさとして、炉心モデル(炉心水位計	化)・対向流の不確かさとして, 炉心モデル(炉心水位計算	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
モデル)は、原子炉水位挙動について原子炉圧力容器内の	算モデル)は、原子炉水位挙動について原子炉圧力容器内	モデル)は、原子炉水位挙動について原子炉圧力容器内の	
モデルが精緻である解析コードSAFER の評価結果との比較	のモデルが精緻である解析コードSAFERの評価結果と	モデルが精緻である解析コードSAFERの評価結果との	
により水位低下幅は解析コードMAAP の評価結果の方が保	の比較により水位低下幅は解析コードMAAPの評価結果	比較により水位低下幅は解析コードMAAPの評価結果の	
守的であるものの、その差異は小さいことを確認している	の方が大きく、解析コードSAFERに対して保守的であ	方が <u>大きく,解析コードSAFERに対して</u> 保守的である	
ことから、運転員等操作時間に与える影響は小さい。	るものの,その差異は小さいことを確認していることから,	ものの,その差異は小さいことを確認していることから,	
	運転員等操作時間に与える影響は小さい。	運転員等操作時間に与える影響は小さい。	
原子炉格納容器における格納容器各領域間の流動の不確	格納容器における格納容器各領域間の流動の不確かさと	原子炉格納容器における格納容器各領域間の流動の不確	
かさとして、格納容器モデル(格納容器の熱水力モデル)	して,格納容器モデル(格納容器の熱水力モデル)はHD	かさとして、格納容器モデル(原子炉格納容器の熱水力モ	
はHDR 実験解析では区画によって格納容器温度を十数℃程	R実験解析では区画によって <u>格納容器雰囲気温度</u> を十数℃	デル)はHDR実験解析では区画によって <u>格納容器温度</u> を	
度,格納容器圧力を1割程度高めに評価する傾向を確認し	程度,格納容器圧力を1割程度高めに評価する傾向を確認	十数℃程度、格納容器圧力を1割程度高めに評価する傾向	
ているが,BWR の格納容器内の区画とは異なる等,実験体	しているが、BWRの格納容器内の区画とは異なる等、実	を確認しているが、BWRの格納容器内の区画とは異なる	
系に起因するものと考えられ、実機体系においてはこの解	験体系に起因するものと考えられ、実機体系においてはこ	等、実験体系に起因するものと考えられ、実機体系におい	
析で確認された不確かさは小さくなるものと推定される。	の解析で確認された不確かさは小さくなるものと推定され	てはこの解析で確認された不確かさは小さくなるものと推	
しかし、全体としては格納容器圧力及び温度の傾向を適切	る。しかし、全体としては格納容器圧力及び雰囲気温度の	定される。しかし、全体としては格納容器圧力及び <u>温度</u> の	
に再現できており、また、格納容器圧力及び温度を操作開	傾向を適切に再現できており、また、格納容器圧力及び霑	傾向を適切に再現できており,また,格納容器圧力及び温	
始の起点としている運転員等操作はないことから、運転員	<u> 囲気温度</u> を操作開始の起点としている運転員等操作はない	度を操作開始の起点としている運転員等操作はないことか	
等操作時間に与える影響はない。	ことから、運転員等操作時間に与える影響はない。	ら、運転員等操作時間に与える影響はない。	
炉心損傷後の原子炉圧力容器におけるリロケーション及	炉心損傷後の原子炉圧力容器におけるリロケーション及	炉心損傷後の原子炉圧力容器におけるリロケーション及	
び構造材との熱伝達の不確かさとして、溶融炉心の挙動モ	び構造材との熱伝達の不確かさとして、溶融炉心の挙動モ	び構造材との熱伝達の不確かさとして、溶融炉心の挙動モ	
デルはTMI 事故についての再現性を確認している。また,	デルはTMI事故についての再現性を確認している。また,	デルはTMI事故についての再現性を確認している。また,	
炉心ノード崩壊のパラメータを低下させた感度解析により	炉心ノード崩壊のパラメータを低下させた感度解析により	炉心ノード崩壊のパラメータを低下させた感度解析により	
原子炉圧力容器破損時間に与える影響は小さいことを確認	原子炉圧力容器破損時間に与える影響は小さいことを確認	原子炉圧力容器破損時間に与える影響は小さいことを確認	
している。リロケーションの影響を受ける可能性がある操	している。本評価事故シーケンスでは,原子炉圧力容器温	している。 <u>リロケーションの影響を受ける可能性がある操</u>	・運用の相違
作としては,原子炉圧力容器下鏡部温度が300℃に到達した	度(下鏡部)を操作開始の起点としている運転員等操作は	作としては,原子炉圧力容器下鏡温度が300℃に到達した時	【東海第二】
時点での原子炉格納容器下部への初期水張り操作がある	ないことから、運転員等操作時間に与える影響はない。	<u>点でのペデスタルへの初期水張り操作があるが, 炉心下部</u>	島根2号炉は、原子炉
が、炉心下部プレナムへの溶融炉心移行の開始時間の不確		プレナムへの溶融炉心移行の開始時間の不確かさは小さ	圧力容器下鏡温度 300℃
かさは小さく、炉心下部プレナムへ溶融炉心が移行した際		<u>く,</u> 炉心下部プレナムへ溶融炉心が移行した際の原子炉圧	到達にてペデスタルへの
の原子炉圧力容器下鏡部温度の上昇は急峻であることか		力容器下鏡温度の上昇は急峻であることから、原子炉圧力	注水操作を実施するた
ら,原子炉圧力容器下鏡部温度を操作開始の起点としてい		容器下鏡温度を操作開始の起点としているペデスタルへの	め、不確かさの影響を記
る原子炉格納容器下部への初期水張り操作に係る運転員等		初期水張り操作に係る運転員等操作時間に与える影響は小	載している。
操作時間に与える影響は小さい。		<u>さい。</u>	
炉心損傷後の原子炉圧力容器における原子炉圧力容器破	炉心損傷後の原子炉圧力容器における原子炉圧力容器破	炉心損傷後の原子炉圧力容器における原子炉圧力容器破	
損の不確かさとして,制御棒駆動機構ハウジング溶接部の	損の不確かさとして、制御棒駆動機構ハウジング溶接部の	損の不確かさとして、制御棒駆動機構ハウジング溶接部の	
破損判定に用いる最大ひずみ(しきい値)に関する感度解	破損判定に用いる最大ひずみ(しきい値)に関する感度解	破損判定に用いる最大ひずみ(しきい値)に関する感度解	
析により最大ひずみを低下させた場合に原子炉圧力容器破	析により最大ひずみを低下させた場合に原子炉圧力容器破	析により最大ひずみを低下させた場合に原子炉圧力容器破	
損時間が早まることを確認している。本評価事故シーケン	損時間が早まることを確認している。本評価事故シーケン	損時間が早まることを確認している。本評価事故シーケン	
スでは、原子炉圧力容器破損を操作開始の起点としている	スでは、原子炉圧力容器破損を操作開始の起点としている	スでは、原子炉圧力容器破損を操作開始の起点としている	
運転員等操作はないことから、運転員等操作時間に与える	運転員等操作はないことから、運転員等操作時間に与える	運転員等操作はないことから、運転員等操作時間に与える	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
影響はない。	影響はない。	影響はない。	
炉心損傷後の原子炉格納容器における溶融燃料ー冷却材	炉心損傷後の <u>格納容器</u> における溶融燃料 – 冷却材相互作	炉心損傷後の <u>原子炉格納容器</u> における溶融燃料 – 冷却材	
相互作用の不確かさとして、溶融炉心の細粒化モデルにお	用の不確かさとして、溶融炉心の細粒化モデルにおけるエ	相互作用の不確かさとして、溶融炉心の細粒化モデルにお	
けるエントレインメント係数及びデブリ粒子径の感度解析	ントレインメント係数及びデブリ粒子径の感度解析により	けるエントレインメント係数及びデブリ粒子径の感度解析	
により原子炉圧力容器外の溶融燃料ー冷却材相互作用によ	原子炉圧力容器外の溶融燃料ー冷却材相互作用による圧力	により原子炉圧力容器外の溶融燃料ー冷却材相互作用によ	
る圧力スパイクに与える影響は小さいことを確認してい	スパイクに与える影響は小さいことを確認している。	る圧力スパイクに与える影響は小さいことを確認してい	
る。本評価事故シーケンスでは,原子炉圧力容器外の溶融	本評価事故シーケンスでは、原子炉圧力容器外の溶融燃	る。本評価事故シーケンスでは,原子炉圧力容器外の溶融	
燃料ー冷却材相互作用による圧力スパイクを起点とした運	料ー冷却材相互作用による圧力スパイクを起点とした運転	燃料ー冷却材相互作用による圧力スパイクを起点とした運	
転員等操作はないことから、運転員等操作時間に与える影	員等操作はないことから、運転員等操作時間に与える影響	転員等操作はないことから、運転員等操作時間に与える影	
響はない。	はない。	響はない。	
(添付資料 3.3.4)	(添付資料 3. 3. 6)	(添付資料3.3.4)	
b. 評価項目となるパラメータに与える影響	b. 評価項目となるパラメータに与える影響	b. 評価項目となるパラメータに与える影響	
炉心における燃料棒内温度変化,燃料棒表面熱伝達,燃	炉心における燃料棒内温度変化、燃料棒表面熱伝達、燃	炉心における燃料棒内温度変化、燃料棒表面熱伝達、燃	
料被覆管酸化及び燃料被覆管変形の不確かさとして、炉心	料被覆管酸化及び燃料被覆管変形の不確かさとして、炉心	料被覆管酸化及び燃料被覆管変形の不確かさとして、炉心	
ヒートアップに関するモデルは, TMI 事故についての再現	ヒートアップに関するモデルは, TMI事故についての再	ヒートアップに関するモデルは, TMI事故についての再	
性及びCORA 実験についての再現性を確認している。炉心ヒ	現性及びCORA実験についての再現性を確認している。	現性及びCORA実験についての再現性を確認している。	
ートアップの感度解析(ジルコニウム-水反応速度の係数	炉心ヒートアップの感度解析(ジルコニウム-水反応速度	炉心ヒートアップの感度解析(ジルコニウムー水反応速度	
についての感度解析)では、格納容器圧力挙動への影響は	の係数についての感度解析)では,格納容器圧力挙動への	の係数についての感度解析)では,格納容器圧力挙動への	
小さいことを確認していることから、評価項目となるパラ	影響は小さいことを確認していることから、評価項目とな	影響は小さいことを確認していることから、評価項目とな	
メータに与える影響は小さい。	るパラメータに与える影響は小さい。	るパラメータに与える影響は小さい。	
炉心における沸騰・ボイド率変化及び気液分離(水位変	炉心における沸騰・ボイド率変化及び気液分離(水位変	炉心における沸騰・ボイド率変化及び気液分離(水位変	
化)・対向流の不確かさとして、炉心モデル(炉心水位計算	化)・対向流の不確かさとして、炉心モデル(炉心水位計	化)・対向流の不確かさとして, 炉心モデル(炉心水位計算	
モデル)は、原子炉水位挙動について原子炉圧力容器内の	算モデル)は、原子炉水位挙動について原子炉圧力容器内	モデル)は,原子炉水位挙動について原子炉圧力容器内の	
モデルが精緻である解析コードSAFER の評価結果との比較	のモデルが精緻である解析コードSAFERの評価結果と	モデルが精緻である解析コードSAFERの評価結果との	
により水位低下幅は解析コードMAAP の評価結果の方が保	の比較により水位低下幅は解析コードMAAPの評価結果	比較により水位低下幅は解析コードMAAPの評価結果の	
守的であるものの、その差異は小さいことを確認している	の方が大きく、解析コードSAFERに対して保守的であ	方が <u>大きく,解析コードSAFERに対して</u> 保守的である	
ことから、評価項目となるパラメータに与える影響は小さ	るものの, その差異は小さいことを確認していることから,	ものの、その差異は小さいことを確認していることから、	
لا ب _o	評価項目となるパラメータに与える影響は小さい。	評価項目となるパラメータに与える影響は小さい。	
原子炉格納容器における格納容器各領域間の流動の不確	格納容器における格納容器各領域間の流動の不確かさと	原子炉格納容器における格納容器各領域間の流動の不確	
かさとして、格納容器モデル(格納容器の熱水力モデル)	して,格納容器モデル(<u>格納容器</u> の熱水力モデル)はHD	かさとして,格納容器モデル(原子炉格納容器の熱水力モ	
はHDR 実験解析では区画によって格納容器温度を十数℃程	R実験解析では区画によって <u>格納容器雰囲気温度</u> を十数℃	デル)はHDR実験解析では区画によって <u>格納容器温度</u> を	
度,格納容器圧力を1 割程度高めに評価する傾向を確認し	程度,格納容器圧力を1割程度高めに評価する傾向を確認	十数℃程度、格納容器圧力を1割程度高めに評価する傾向	
ているが, BWR の格納容器内の区画とは異なる等, 実験体	しているが, BWRの格納容器内の区画とは異なる等,	を確認しているが、BWRの格納容器内の区画とは異なる	
系に起因するものと考えられ、実機体系においてはこの解	実験体系に起因するものと考えられ、実機体系において	等、実験体系に起因するものと考えられ、実機体系におい	
析で確認された不確かさは小さくなるものと推定される。	はこの解析で確認された不確かさは小さくなるものと推定	てはこの解析で確認された不確かさは小さくなるものと推	
しかし、全体としては格納容器圧力及び温度の傾向を適切	される。しかし、全体としては格納容器圧力及び雰囲気温	定される。しかし、全体としては格納容器圧力及び温度の	
に再現できていることから、評価項目となるパラメータに	度の傾向を適切に再現できていることから、評価項目とな	傾向を適切に再現できていることから、評価項目となるパ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
与える影響は小さい。	るパラメータに与える影響は小さい。	ラメータに与える影響は小さい。	
炉心損傷後の原子炉圧力容器におけるリロケーション及	炉心損傷後の原子炉圧力容器におけるリロケーション及	炉心損傷後の原子炉圧力容器におけるリロケーション及	
び構造材との熱伝達の不確かさとして、溶融炉心の挙動モ	び構造材との熱伝達の不確かさとして、溶融炉心の挙動モ	び構造材との熱伝達の不確かさとして、溶融炉心挙動モデ	
デルはTMI 事故についての再現性を確認している。また,	デルはTMI事故についての再現性を確認している。また,	ルはTMI事故についての再現性を確認している。また,	
炉心ノード崩壊のパラメータを低下させた感度解析により	炉心ノード崩壊のパラメータを低下させた感度解析により	炉心ノード崩壊のパラメータを低下させた感度解析により	
原子炉圧力容器破損時間に与える影響は小さいことを確認	原子炉圧力容器破損時間に与える影響は小さいことを確認	原子炉圧力容器破損時間に与える影響は小さいことを確認	
しており,原子炉圧力容器外の溶融燃料-冷却材相互作用	しており、原子炉圧力容器外の溶融燃料ー冷却材相互作用	しており、原子炉圧力容器外の溶融燃料ー冷却材相互作用	
による格納容器圧力上昇に与える影響はほぼないことか	による格納容器圧力上昇に与える影響はほぼないことか	による格納容器圧力上昇に与える影響はほぼないことか	
ら,評価項目となるパラメータに与える影響はない。	ら,評価項目となるパラメータに与える影響は小さい。	ら、評価項目となるパラメータに与える影響はない。	
炉心損傷後の原子炉圧力容器における原子炉圧力容器破	炉心損傷後の原子炉圧力容器における原子炉圧力容器破	炉心損傷後の原子炉圧力容器における原子炉圧力容器破	
損の不確かさとして、制御棒駆動機構ハウジング溶接部の	損の不確かさとして、制御棒駆動機構ハウジング溶接部の	損の不確かさとして、制御棒駆動機構ハウジング溶接部の	
破損判定に用いる最大ひずみ(しきい値)に関する感度解	破損判定に用いる最大ひずみ(しきい値)に関する感度解	破損判定に用いる最大ひずみ(しきい値)に関する感度解	
析により最大ひずみを低下させた場合に原子炉圧力容器破	析により最大ひずみを低下させた場合に原子炉圧力容器破	析により最大ひずみを低下させた場合に原子炉圧力容器破	
損時間が早まることを確認しているが,原子炉圧力容器破	損時間が早まることを確認しているが、原子炉圧力容器破	損時間が早まることを確認しているが,原子炉圧力容器破	
損(事象発生から <u>約7 時間</u> 後)に対して早まる時間は僅か	損(事象発生から <u>約 4.5 時間</u> 後)に対して早まる時間は僅	損(事象発生から <u>約5.4時間</u> 後)に対して早まる時間は僅か	・解析結果の相違
であることから、評価項目となるパラメータに与える影響	かであることから、評価項目となるパラメータに与える影	であることから、評価項目となるパラメータに与える影響	【柏崎 6/7, 東海第二】
は小さい。	響は小さい。	は小さい。	
炉心損傷後の原子炉格納容器における溶融燃料ー冷却材	炉心損傷後の <u>格納容器</u> における溶融燃料ー冷却材相互作	炉心損傷後の <u>原子炉格納容器</u> における溶融燃料ー冷却材	
相互作用の不確かさとして, <u>エントレインメント係数につ</u>	用の不確かさとして,溶融炉心の細粒化モデルにおけるエ	相互作用の不確かさとして、エントレインメント係数及び	・記載方針の相違
いて感度解析を行った結果, 第3.3.7 図及び第3.3.8 図に	ントレインメント係数及びデブリ粒子径の感度解析によ	デブリ粒子径の感度解析により、原子炉圧力容器外の溶融	【柏崎 6/7, 東海第二】
<u>示すとおり,エントレインメント係数を変化させた場合に</u>	り, <u>BWR 5, Mark-I改良型格納容器プラントにお</u>	燃料ー冷却材相互作用による圧力スパイクに与える影響は	BWR プラント安全審査
<u>おいても</u> 原子炉圧力容器外の溶融燃料 – 冷却材相互作用に	いて,原子炉圧力容器外の溶融燃料-冷却材相互作用によ	小さいことを確認していることから、評価項目となるパラ	資料「重大事故等対策の
よる圧力スパイクに与える影響は小さいことを確認してい	る圧力スパイクに与える影響は小さいことを確認してい	メータに与える影響は小さい。	有効性評価に係るシビア
ることから、評価項目となるパラメータに与える影響は小	<u>る。BWR5, Mark-Ⅱ型格納容器プラントである東</u>		アクシデント解析コード
さい。	海第二発電所においても原子炉圧力容器外の溶融燃料ー冷	(添付資料3.3.4, 3.3.5)	について」において,
(添付資料 3.3.4, 3.3.5)	却材相互作用による圧力スパイクに与える影響を確認する		BWR-5 Mark-I 改良型格
	ため、最も感度のあるエントレインメント係数について		納容器プラントに対し
	感度解析を行った結果, 第 3.3-3 図及び第 3.3-4 図に示		て,エントレインメント
	<u>すとおり,エントレインメント係数を変化させた場合にお</u>		係数及びデブリ粒子径を
	<u>いても</u> 原子炉圧力容器外の溶融燃料ー冷却材相互作用によ		パラメータとした感度解
	る圧力スパイクに与える影響は小さいことを確認している		析を実施し,原子炉圧力
	ことから、評価項目となるパラメータに与える影響は小さ		容器外 FCI により生じる
	⟨v₀		圧力スパイクへの感度は
	(添付資料 3.3.6, 3.3.7)		小さいことを確認してい
			る。
(2) 解析条件の不確かさの影響評価	(2) 解析条件の不確かさの影響評価	(2) 解析条件の不確かさの影響評価	
a. 初期条件,事故条件及び重大事故等対策に関連する機器	a. 初期条件,事故条件及び重大事故等対策に関連する機器	a. 初期条件,事故条件及び重大事故等対策に関連する機器	
条件	条件	条件	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
初期条件,事故条件及び重大事故等対策に関連する機器	初期条件、事故条件及び重大事故等対策に関連する機器	初期条件、事故条件及び重大事故等対策に関連する機器	
条件は, 第3.2.2表に示すとおりであり, それらの条件設定	条件は, <u>第3.2-2表</u> に示すとおりであり,それらの条件設	条件は, <u>第3.2.2-1表</u> に示すとおりであり, それらの条件設	
を設計値等, 最確条件とした場合の影響を評価する。また,	定を設計値等,最確条件とした場合の影響を評価する。ま	定を設計値等,最確条件とした場合の影響を評価する。ま	
解析条件の設定に当たっては、評価項目となるパラメータ	た、解析条件の設定に当たっては、評価項目となるパラメ	た,解析条件の設定に当たっては,評価項目となるパラメ	
に対する余裕が小さくなるような設定があることから、そ	ータに対する余裕が小さくなるような設定があることか	ータに対する余裕が小さくなるような設定があることか	
の中で事象進展に有意な影響を与えると考えられる項目に	ら、その中で事象進展に有意な影響を与えると考えられる	ら、その中で事象進展に有意な影響を与えると考えられる	
関する影響評価の結果を以下に示す。	項目に関する影響評価の結果を以下に示す。	項目に関する影響評価の結果を以下に示す。	
(a) 運転員等操作時間に与える影響	(a) 運転員等操作時間に与える影響	(a) 運転員等操作時間に与える影響	
初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼	初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼	初期条件の原子炉停止後の崩壊熱は,解析条件の燃焼	
度 33GWd/t に対応したものとしており, その最確条件は	度 33GWd/t に対応したものとしており, その最確条件は	度 33GWd/t に対応したものとしており, その最確条件は	
平均的燃焼度約 30GWd/t であり,解析条件の不確かさと	平均的燃焼度 <u>約31GWd/t</u> であり,解析条件の不確かさと	平均的燃焼度 <u>約 30GWd/t</u> であり,解析条件の不確かさと	・実績値の相違
して、最確条件とした場合は、解析条件で設定している	して、最確条件とした場合は、解析条件で設定している	して、最確条件とした場合は、解析条件で設定している	【東海第二】
崩壊熱よりも小さくなるため、発生する蒸気量は少なく	崩壊熱よりも小さくなるため、発生する蒸気量は少なく	崩壊熱よりも小さくなるため、発生する蒸気量は少なく	島根2号炉の最確条件
なり、原子炉圧力容器破損に至るまでの事象進展は緩和	なり、原子炉圧力容器破損に至るまでの事象進展は緩和	なり、原子炉圧力容器破損に至るまでの事象進展は緩和	を記載。
されるが、操作手順(原子炉圧力容器下鏡部温度に応じ	されるが、原子炉圧力容器温度(下鏡部)を操作開始の	されるが、操作手順(原子炉圧力容器下鏡温度に応じて	
て <u>原子炉格納容器下部</u> への初期水張り操作を実施するこ	<u>起点としている運転員等操作</u> はないことから,運転員等	ペデスタルへの初期水張り操作を実施すること)に変わ	
と)に変わりはないことから、運転員等操作時間に与え	操作時間に与える影響はない。	りはないことから、運転員等操作時間に与える影響はな	
る影響はない。		<i>د</i> ، .	
初期条件の外部水源の温度は,解析条件の <u>50℃(事象</u>	初期条件の外部水源の温度は,解析条件の35℃に対し	初期条件の外部水源の温度は,解析条件の <u>35℃</u> に対し	
開始 12 時間以降は 45℃,事象開始 24 時間以降は 40℃)	て最確条件は <u>35℃以下</u> であり,解析条件の不確かさとし	て最確条件は <u>31℃以下</u> であり,解析条件の不確かさとし	・実績値の相違
に対して最確条件は <u>約 35℃~約 50℃</u> であり, 解析条件の	て, 最確条件とした場合は, ペデスタル(ドライウェル)	て,最確条件とした場合は, ペデスタルへの注水温度が	【柏崎 6/7,東海第二】
不確かさとして、最確条件とした場合は、原子炉格納容	<u>部)への</u> 注水温度が低くな <u>るが</u> ,注水温度を操作開始の	低くなり、原子炉圧力容器破損時のペデスタルのプール	島根2号炉の最確条件
<u>器下部</u> への注水温度が低くなり,原子炉圧力容器破損時	起点としている運転員等操作はないことから、運転員等	水温度が低くなるが、注水温度を操作開始の起点として	を記載。
の原子炉格納容器下部プール水温度が低くなるが、注水	操作時間に与える影響はない。	いる運転員等操作はないことから、運転員等操作時間に	
温度を操作開始の起点としている運転員等操作はないこ		与える影響はない。	
とから、運転員等操作時間に与える影響はない。			
初期条件の原子炉圧力,原子炉水位,炉心流量,格納	初期条件の原子炉圧力,原子炉水位,炉心流量,格納	初期条件の原子炉圧力,原子炉水位,炉心流量,格納	
容器容積(ウェットウェル)の空間部及び液相部, サプ	容器体積(サプレッション・チェンバ)の空間部及び液	<u>容器容積(ウェットウェル)</u> の空間部及び液相部, <u>サプ</u>	
レッション・チェンバ・プール水位、格納容器圧力及び	相部,サプレッション・プール水位,格納容器圧力及び	レッション・プール水位,格納容器圧力及び格納容器温	
格納容器温度は、解析条件の不確かさとして、ゆらぎに	格納容器雰囲気温度は、解析条件の不確かさとして、ゆ	度は、解析条件の不確かさとして、ゆらぎにより解析条	
より解析条件に対して変動を与え得るが、事象進展に与	らぎにより解析条件に対して変動を与え得るが、事象進	件に対して変動を与え得るが、事象進展に与える影響は	
える影響は小さいことから,運転員等操作時間に与える	展に与える影響は小さいことから、運転員等操作時間に	小さいことから、運転員等操作時間に与える影響は小さ	
影響は小さい。	与える影響は小さい。	<i>د</i> ر.	
事故条件の起因事象は,解析条件の不確かさとして,	事故条件の起因事象は,解析条件の不確かさとして,	事故条件の起因事象は、解析条件の不確かさとして、	
大破断 LOCA を考慮した場合,原子炉冷却材の放出量が増	大破断LOCAを考慮した場合,原子炉冷却材の放出量	大破断LOCAを考慮した場合,原子炉冷却材の放出量	
加することにより原子炉圧力容器破損に至るまでの事象	が増加することにより原子炉圧力容器破損に至るまでの	が増加することにより原子炉圧力容器破損に至るまでの	
進展は早まるが,操作手順(原子炉圧力容器下鏡部温度	事象進展は早まるが、原子炉圧力容器温度(下鏡部)を	事象進展は早まるが, <u>操作手順(原子炉圧力容器下鏡温</u>	・運用の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
に応じて <u>原子炉格納容器下部</u> への初期水張りを実施する	操作開始の起点としている運転員等操作はないことか	度に応じてペデスタルへの初期水張りを実施すること)	【東海第二】
こと)に変わりはないことから、運転員等操作時間に与	<u>ら</u> ,運転員等操作時間に与える影響はない。	<u>に変わりはないことから、</u> 運転員等操作時間に与える影	
える影響はない。	(添付資料 3.3.6, 3.3.8)	響はない。	
(添付資料 3.3.4, 3.3.6)		(添付資料3.3.4, 3.3.5)	
(b) 評価項目となるパラメータに与える影響	(b) 評価項目となるパラメータに与える影響	(b) 評価項目となるパラメータに与える影響	
初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼	初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼	初期条件の原子炉停止後の崩壊熱は,解析条件の燃焼	
度 33GWd/t に対応したものとしており,その最確条件は	度 33GWd/t に対応したものとしており, その最確条件は	度 33GWd/t に対応したものとしており, その最確条件は	
平均的燃焼度約 30GWd/t であり,解析条件の不確かさと	平均的燃焼度 <u>約31GWd/t</u> であり,解析条件の不確かさと	平均的燃焼度 <u>約 30GWd/t</u> であり,解析条件の不確かさと	・実績値の相違
して, 最確条件とした場合は, 解析条件で設定している	して、最確条件とした場合は、解析条件で設定している	して、最確条件とした場合は、解析条件で設定している	【東海第二】
崩壊熱よりも小さくなるため、溶融炉心の持つエネルギ	崩壊熱よりも小さくなるため、溶融炉心の持つエネルギ	崩壊熱よりも小さくなるため,溶融炉心の持つエネルギ	島根2号炉の最確条件
が小さくなることから、評価項目となるパラメータに対	が小さくなることから、評価項目となるパラメータに対	が小さくなることから、評価項目となるパラメータに対	を記載。
する余裕は大きくなる。	する余裕は大きくなる。	する余裕は大きくなる。	
初期条件の外部水源の温度は,解析条件の50℃(事象)	初期条件の外部水源の温度は,解析条件の35℃に対し	初期条件の外部水源の温度は,解析条件の <u>35℃</u> に対し	・実績値の相違
開始 12 時間以降は 45℃,事象開始 24 時間以降は 40℃)	て最確条件は <u>35℃以下</u> であり,解析条件の不確かさとし	て最確条件は <u>31℃以下</u> であり,解析条件の不確かさとし	【柏崎 6/7, 東海第二】
に対して最確条件は <u>約 35℃~約 50℃</u> であり, 解析条件の	て,最確条件とした場合は, <u>ペデスタル(ドライウェル</u>	て,最確条件とした場合は, <u>ペデスタルへの注水温度が</u>	島根2号炉の最確条件
不確かさとして、最確条件とした場合は、原子炉格納容	<u>部)への注水温度が低くなるが、ペデスタル(ドライウ</u>	低くなり、原子炉圧力容器破損時のペデスタルのプール	を記載。
<u>器下部</u> への注水温度が低くなり,原子炉圧力容器破損時	ェル部)には通常運転時から約 1m の水位が形成されてい	<u>水温度が低くなるが、ペデスタルのプール水温度が低い</u>	・運用の相違
の原子炉格納容器下部プール水温度が低くなるが、原子	ることから外部水源の温度がペデスタル(ドライウェル	場合は、顕熱によるエネルギの吸収量が多くなり、潜熱	【東海第二】
<u>炉格納容器下部</u> プール水温度が低い場合は, 顕熱による	<u>部)のプール水に与える影響はなく,評価項目となるパ</u>	<u>で吸収するエネルギが相対的に減少し,圧力スパイクに</u>	島根2号炉は,原子炉
エネルギの吸収量が多くなり、潜熱で吸収するエネルギ	ラメータに対する影響はない。	寄与する水蒸気発生量が低下することで格納容器圧力の	圧力容器下鏡温度 300℃
が相対的に減少し、圧力スパイクに寄与する水蒸気発生		<u>上昇は緩和されることから, 評価項目となるパラメータ</u>	到達で屋外貯蔵槽水源に
量が低下することで格納容器圧力の上昇は緩和されるこ		に対する余裕は大きくなる。	よるペデスタル注水を実
とから、評価項目となるパラメータに対する余裕は大き			施することから外部水源
くなる。			の温度がペデスタルのプ
初期条件の原子炉圧力,原子炉水位,炉心流量,格納	初期条件の原子炉圧力,原子炉水位,炉心流量, <u>格納</u>	初期条件の原子炉圧力,原子炉水位,炉心流量, <u>格納</u>	ール水温度に影響がある
容器容積(ウェットウェル)の空間部及び液相部, サプ	<u>容器体積(サプレッション・チェンバ)</u> の空間部及び液	<u>容器容積(ウェットウェル)</u> の空間部及び液相部, <u>サプ</u>	旨を記載。
<u>レッション・チェンバ・プール水位</u> ,格納容器圧力及び	相部、サプレッション・プール水位、格納容器圧力並び	レッション・プール水位,格納容器圧力及び格納容器温	
格納容器温度は、解析条件の不確かさとして、ゆらぎに	<u>に格納容器雰囲気温度は、解析条件の不確かさとして、</u>	度は、解析条件の不確かさとして、ゆらぎにより解析条	
より解析条件に対して変動を与え得るが、事象進展に与	ゆらぎにより解析条件に対して変動を与え得るが、事象	件に対して変動を与え得るが、事象進展に与える影響は	
える影響は小さいことから、評価項目となるパラメータ	進展に与える影響は小さいことから、評価項目となるパ	小さいことから、評価項目となるパラメータに与える影	
に与える影響は小さい。	ラメータに与える影響は小さい。	響は小さい。	
事故条件の起因事象は、原子炉圧力容器への給水はで	事故条件の起因事象は、原子炉圧力容器への給水はで	事故条件の起因事象は、原子炉圧力容器への給水はで	
きないものとして給水流量の全喪失を設定している。事	きないものとして給水流量の全喪失を設定している。事	きないものとして給水流量の全喪失を設定している。事	
故条件について, 原子炉圧力容器外の溶融燃料 – 冷却材	故条件について, 原子炉圧力容器外の溶融燃料 – 冷却材	故条件について, 原子炉圧力容器外の溶融燃料-冷却材	
相互作用による圧力スパイクを評価するにあたり、溶融	相互作用による圧力スパイクを評価するに <u>当たり</u> ,溶融	相互作用による圧力スパイクを評価するに <u>あたり</u> ,溶融	
炉心落下時の崩壊熱の影響を確認する観点から感度解析	炉心落下時の崩壊熱の影響を確認する観点から感度解析	炉心落下時の崩壊熱の影響を確認する観点から感度解析	
を実施した。感度解析は、事故シーケンスを「大破断	を実施した。感度解析は、事故シーケンスを「大破断L	を実施した。感度解析は,事故シーケンスを「大破断L	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
---	---	--	------------------
LOCA+ECCS 注水機能喪失」とし,本評価事故シーケンス	OCA+ <u>注水機能喪失</u> 」とし、本評価事故シーケンスの	OCA+ <u>ECCS注水機能喪失</u> 」とし、本評価事故シー	
の解析条件と同様、電源の有無に係らず重大事故等対処	解析条件と同様、電源の有無に係らず重大事故等対処設	ケンスの解析条件と同様、電源の有無に係らず重大事故	
設備による原子炉注水機能についても使用できないもの	備による原子炉注水機能についても使用できないものと	等対処設備による原子炉注水機能についても使用できな	
と仮定した場合,原子炉圧力容器破損のタイミングが早	仮定した場合、原子炉圧力容器破損のタイミングが早く	いものと仮定した場合,原子炉圧力容器破損のタイミン	
くなることを考慮したものである。その結果, 第 3.3.9	なることを考慮したものである。その結果, <u>第3.3-5</u> 図	グが早くなることを考慮したものである。その結果, 第	
図に示すとおり,事象発生から <u>約 6.4 時間</u> 後に原子炉圧	に示すとおり、事象発生から <u>約3.3時間</u> 後に原子炉圧力	<u>3.3.2-1(7)図</u> に示すとおり,事象発生から <u>約 3.3 時間</u> 後	・解析結果の相違
力容器破損に至り,圧力スパイクの最大値は <u>約</u>	容器破損に至り, 圧力スパイクの最大値は <u>約 0.20MPa</u>	に原子炉圧力容器破損に至り、圧力スパイクの最大値は	【柏崎 6/7, 東海第二】
<u>0.44MPa[gage]</u> となったが, 圧力スパイクの最大値は本評	[gage]となったが、圧力スパイクの最大値は本評価の	<u>約 301kPa[gage]</u> となったが,圧力スパイクの最大値は本	
価の結果と同程度であり、原子炉格納容器の限界圧力	結果と同程度であり, <u>格納容器</u> の限界圧力 <u>0.62MPa[gage]</u>	評価の結果と同程度であり、原子炉格納容器の限界圧力	・設備設計の相違
<u>0.62MPa[gage]</u> 以下であることから,評価項目を満足す	以下であることから、評価項目を満足する。	<u>853kPa[gage]</u> 以下であることから, 評価項目を満足する。	【柏崎 6/7, 東海第二】
る。	(添付資料 3.3.6, 3.3.8)	(添付資料3.3.4, 3.3.5)	島根2号炉(Mark-Ⅰ
(添付資料 3.3.4, 3.3.6)			改)と柏崎 6/7(ABWR),
b. 操作条件	b. 操作条件	b. 操作条件	東海第二(Mark-Ⅱ)の最
操作条件の不確かさとして、操作の不確かさを「認知」、	操作条件の不確かさとして、操作の不確かさを「認知」、	操作条件の不確かさとして、操作の不確かさを「認知」、	高使用圧力の相違。
「要員配置」,「移動」,「操作所要時間」,「他の並列操作有	「要員配置」,「移動」,「操作所要時間」,「他の並列	「要員配置」,「移動」,「操作所要時間」,「他の並列操作	
無」及び「操作の確実さ」の6要因に分類し,これらの要因	操作有無」及び「操作の確実さ」の6 要因に分類し、これ	有無」及び「操作の確実さ」の6要因に分類し、これらの	
が運転員等操作時間に与える影響を評価する。また,運転	らの要因が運転員等操作時間に与える影響を評価する。ま	要因が運転員等操作時間に与える影響を評価する。また,	
員等操作時間に与える影響が評価項目となるパラメータに	た、運転員等操作時間に与える影響が評価項目となるパラ	運転員等操作時間に与える影響が評価項目となるパラメー	
与える影響を評価し、評価結果を以下に示す。	メータに与える影響を評価し、評価結果を以下に示す。	タに与える影響を評価し、評価結果を以下に示す。	
(a) 運転員等操作時間に与える影響	(a) 運転員等操作時間に与える影響	(a) 運転員等操作時間に与える影響	
操作条件の溶融炉心落下前の格納容器下部注水系(常		操作条件の格納容器代替スプレイ系(可搬型)による	
		ペデスタルへの注水操作(原子炉圧力容器破損前の初期	
ている。運転員等操作時間に与える影響として,原子炉			
圧力容器下鏡部温度が 300℃に到達するまでに事象発生		等操作時間に与える影響として、原子炉圧力容器下鏡温	
から <u>約 3.7 時間</u> の時間余裕があり,また,原子炉格納容		<u>度</u> が 300℃に到達するまでに事象発生から <u>約 3.1 時間</u> の	・解析結果の相違
器下部の水張り操作は原子炉圧力容器下鏡部温度を監視		時間余裕があり、また、格納容器代替スプレイ系(可搬	【柏崎 6/7】
しながら溶融炉心の炉心下部プレナムへの移行を判断		型)によるペデスタルへの注水操作は原子炉圧力容器下	
し、水張り操作を実施するため、実態の操作開始時間は			
解析上の設定とほぼ同等であり、操作開始時間に与える		移行を判断し,水張り操作を実施するため,実態の操作	
影響は小さいことから、運転員等操作時間に与える影響		開始時間は解析上の設定とほぼ同等であり、操作開始時	
も小さい。当該操作は、解析コード及び解析条件(操作		間に与える影響は小さいことから、運転員等操作時間に	
条件を除く)の不確かさにより操作開始時間は遅れる可		与える影響も小さい。当該操作は、解析コード及び解析	
能性があるが、中央制御室の運転員とは別に現場操作を		条件(操作条件を除く)の不確かさにより操作開始時間	
行う運転員(現場)を配置しており,また,他の並列操		は遅れる可能性があるが, <u>当該操作に対応する運転員</u> ,	
作を加味して操作の所要時間を算定していることから、		対策要員に他の並列操作はなく,また,現場操作におけ	
他の操作に与える影響はない。		る評価上の所要時間には余裕を見込んで算定しているこ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(还付資料 3.3.4)	操作条件の緊急用海水系による冷却水(海水)の確保 操作及び代替循環冷却系による格納容器除熱操作は、事 象発生90分後に開始することとしているが、余裕時間を 含めて設定されているため操作の不確かさが操作開始時 間に与える影響は小さい。また、本操作の操作開始時間 は、緊急用海水系の準備期間を考慮して設定したもので あり、緊急用海水系の操作開始時間が早まれば、本操作 の操作時間も早まる可能性があり、代替循環冷却系の運 転開始時間も早まるが、その他の操作と並列して実施す る場合でも、順次実施し所定の時間までに操作を完了で きることから影響はない。	とから,他の操作に与える影響はない。 (<u>添付資料3.3.4</u>)	・運用の相違 【東海第二】 島根2号炉は,FCI等 の物理現象に対する対策 のみを対象とし,その操 作の不確かさについての 影響を記載することとし ており,残留熱代替除去 系による格納容器除熱に 対して影響を与える操作 とはしていない。
(b) 評価項目となるパラメータに与える影響操作時間に与える影響として、実態の操作開始時間は解析上の設定とほぼ同等であることから、評価項目となるパラメータに与える影響は小さい。	(b) 評価項目となるパラメータに与える影響 <u> 操作条件の緊急用海水系による冷却水(海水)の確保</u> <u> 操作及び代替循環冷却系による格納容器減圧及び除熱操</u> <u> 作は,緊急用海水系の操作開始時間が早まった場合には、 </u> <u> 本操作も早まる可能性があり,格納容器圧力及び雰囲気 </u> <u> 温度を早期に低下させる可能性があることから,評価項 </u> <u> 月となるパラメータに対する余裕が大きくなる。</u> (強住資料3.3.6)	(b) 評価項目となるパラメータに与える影響 操作条件の <u>格納容器代替スプレイ系(可搬型)による ペデスタルへの注水操作(原子炉圧力容器破損前の初期</u> 水張り) は、運転員等操作時間に与える影響として、実 態の操作開始時間は解析上の設定とほぼ同等であること から、評価項目となるパラメータに与える影響は小さい。 (添付資料3.3.4)	・記載方針の相違 【東海第二】 島根2号炉は,FCI等 の物理現象に対する対策 のみを対象とし,その操 作の不確かさについての 影響を記載することとし ており,残留熱代替除去 系による格納容器除熱操 作は記載していない。
(3) 操作時間余裕の把握 操作開始時間の遅れによる影響度合いを把握する観点か ら,評価項目となるパラメータに対して,対策の有効性が確 認できる範囲内での操作時間余裕を確認し,その結果を以下 に示す。	(3)操作時間余裕の把握 操作開始時間の遅れによる影響度合いを把握する観点から,評価項目となるパラメータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認し,その結果を以下に示す。	(3) 操作時間余裕の把握 操作開始時間の遅れによる影響度合いを把握する観点から,評価項目となるパラメータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認し,その結果を以下に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	なお、格納容器下部注水系(常設)によるペデスタル(ド		・運用の相違
	ライウェル部)水位の確保操作については解析上考慮しない		【東海第二】
	操作であるが、「原子炉圧力容器外の溶融燃料-冷却材相互		島根2号炉は,通常運
	作用」の影響を小さく抑える観点を踏まえ操作時間余裕を確		転時からのペデスタル水
	認する。		位確保操作はなく、事故
			時の原子炉圧力容器破損
			の徴候によりペデスタル
			に水張りを実施する運用
			としている。
操作条件の溶融炉心落下前の格納容器下部注水系(常設)		操作条件の <u>格納容器代替スプレイ系(可搬型)によるペデ</u>	・解析結果の相違
による水張り操作については,原子炉圧力容器下鏡部温度が		スタルへの注水操作(原子炉圧力容器破損前の初期水張り)	【柏崎 6/7】
300℃に到達するまでの時間は事象発生から <u>約 3.7 時間</u> あり,		については, <u>原子炉圧力容器下鏡温度</u> が 300℃に到達するま	
原子炉格納容器下部への注水操作は原子炉圧力容器下鏡部温		での時間は事象発生から <u>約 3.1 時間</u> あり, <u>ペデスタル</u> への注	
度の上昇傾向を監視しながらあらかじめ準備が可能である。		水操作は <u>原子炉圧力容器下鏡温度</u> の上昇傾向を監視しながら	
また, <u>原子炉圧力容器下鏡部温度 300℃到達時点での中央制</u>		あらかじめ準備が可能である。また,溶融炉心落下前の <u>格納</u>	
御室における原子炉格納容器下部への注水操作の操作時間は		<u>容器代替スプレイ系(可搬型)</u> による水張りは <u>約 1.9 時間</u> で	
約5分間である。溶融炉心落下前の格納容器下部注水系(常		完了することから、水張りを原子炉圧力容器下鏡温度 300℃	
<u>設)</u> による水張りは <u>約 2 時間</u> で完了することから,水張りを		<u>到達時点である</u> 事象発生から <u>約 3.1 時間後</u> に開始すると、事	
事象発生から約3.7時間後に開始すると,事象発生から約5.7		象発生から <u>約 5.0 時間後</u> に水張りが完了する。事象発生から	
<u>時間後</u> に水張りが完了する。事象発生から <u>約 5.7 時間後</u> の水		<u>約 5.0 時間後</u> の水張りの完了から,事象発生から <u>約 5.4 時間</u>	
張りの完了から,事象発生から <u>約 7.0 時間後</u> の原子炉圧力容		<u>後</u> の原子炉圧力容器破損までの時間を考慮すると、 <u>ペデスタ</u>	
器破損までの時間を考慮すると、原子炉格納容器下部への注		<u>ル</u> への注水操作は操作遅れに対して <u>0.4 時間</u> 程度の時間余裕	
水操作は操作遅れに対して <u>1時間</u> 程度の時間余裕がある。		がある。	
(添付資料 3.3.4)			
	操作条件の緊急用海水系による冷却水(海水)の確保操作	(添付資料3.3.4)	・記載方針の相違
	及び代替循環冷却系による格納容器除熱操作については、格		【東海第二】
	納容器除熱開始までの時間は事象発生から 90 分あり, 準備時		島根2号炉は, FCI 等の
	間が確保できるため,時間余裕がある。なお,本操作が大幅		物理現象に対する対策の
	に遅れるような事態になった場合でも、原子炉圧力容器破損		みを対象とし、その操作
	に至るまでの時間は事象発生から約4.5時間であり、約3時		の不確かさについての影
	間の時間余裕がある。		響を記載することとして
	格納容器下部注水系(常設)によるペデスタル(ドライウ		いる。
	ェル部)水位の確保操作については,事象発生から 90 分後の		
	代替循環冷却系による格納容器除熱操作実施後に行う。原子		
	炉圧力容器破損までの時間は事象発生から約4.5時間あり,		
	操作時間は約24分間であることから,操作完了後の排水時間		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	5 分を考慮しても,操作遅れに対して約 2.5 時間程度の時間		
	余裕がある。		
	(添付資料 3.3.6)		
(4) まとめ	(4) まとめ	(4) まとめ	
解析コード及び解析条件の不確かさの影響評価の範囲とし	解析コード及び解析条件の不確かさの影響評価の範囲とし	解析コード及び解析条件の不確かさの影響評価の範囲とし	
て、運転員等操作時間に与える影響、評価項目となるパラメ	て、運転員等操作時間に与える影響、評価項目となるパラメ	て、運転員等操作時間に与える影響、評価項目となるパラメ	
ータに与える影響及び操作時間余裕を確認した。その結果,	ータに与える影響及び操作時間余裕を確認した。その結果,	ータに与える影響及び操作時間余裕を確認した。その結果,	
解析コード及び解析条件の不確かさが運転員等操作時間に与	解析コード及び解析条件の不確かさが運転員等操作時間に与	解析コード及び解析条件の不確かさが運転員等操作時間に与	
える影響等を考慮した場合においても、評価項目となるパラ	える影響等を考慮した場合においても、評価項目となるパラ	える影響等を考慮した場合においても、評価項目となるパラ	
メータに与える影響は小さい。このほか、評価項目となるパ	メータに与える影響は小さい。このほか、評価項目となるパ	メータに与える影響は小さい。このほか、評価項目となるパ	
ラメータに対して、対策の有効性が確認できる範囲内におい	ラメータに対して、対策の有効性が確認できる範囲内におい	ラメータに対して、対策の有効性が確認できる範囲内におい	
て,操作時間には時間余裕がある。	て、操作時間には時間余裕がある。	て,操作時間には時間余裕がある。	
	なお,「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」		・解析条件の相違
	において、原子炉圧力容器破損後の原子炉注水を考慮しない		【東海第二】
	場合の影響について感度解析を実施しており、評価項目とな		島根2号炉は、原子炉
	るパラメータに対する影響は小さいことを確認している。		圧力容器破損後の原子炉
	(添付資料 3.2.10)		注水を想定していない
			が、東海第二では、原子
			炉圧力容器破損後,原子
			炉圧力容器内の冷却を考
			慮し、代替循環冷却 系に
			よる原子炉注水を行うも
			のとしているため、原子
			炉注水を考慮しない場合
			の感度解析を実施してい
			る。
3.3.4 必要な要員及び貸線の評価			
本評価事故シーケンスは、「3.2 局圧溶融物放出/格納容器雰囲	本評価事故シーケンスは、「3.2 局圧溶融物放出/格納容器雰	本評価事故シーケンスは、「3.2 高圧溶融物放出/格納容器雰	
気直接加熱」と同じであることから、必要な要員及び資源の評価	囲気直接加熱」と同じであることから、必要な要員及び貸源の評	囲気直接加熱」と同じであることから、必要な要員及び資源の評	
は「3.2.4 必要な要員及び資源の評価」と同じである。	価は「3.2.4 必要な要員及び資源の評価」と同じである。	価は「3.2.4 必要な要員及び資源の評価」と同じである。	
335 結論	335 結 論	335 結論	
百作用」でけ、運転時の異堂か過渡変化。百子后冷却材重生重坊	百作用」では、運転時の異堂か過渡変化。百子后冷却は重生重が	百作用」では、運転時の異堂か過渡変化マけ百子店冷却材車生車	
(IOCA) マけ全な流動力電源範生が発生すスレレもに 非常田信	(IOCA) 又け全応添動力電源範生が発生すスレレルに 非常	五「「」」、「は、 是社会のシス市な過波及に入るホート「日本的 茂人 ず 故(IOCA) が発生するとともに 非常田恒心冷却 医年の安全	 ・評価冬姓の相違
心冷却系等の安全機能の専生が重得する このため 滚融信心と		機能の喪失が重畳する このため	【柏崎 6/7 宙海笛一】
原子炉圧力容器外の水が接触して一時的か圧力の角ト星が生じ	心と原子炉圧力容器外の水が接触して一時的た核納容器圧力の多	の水が接触して一時的か圧力の急上星が生じ、このレきに発生す	▶11HPH 0/1, 木14 - A PRA にトり抽出されス
原子炉圧力容器外の水が接触して一時的な圧力の急上昇が生じ、	心と原子炉圧力容器外の水が接触して一時的な格納容器圧力の急	の水が接触して一時的な圧力の急上昇が生じ、このときに発生す	PRA により抽出される

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
このときに発生するエネルギが大きい場合に構造物が破壊され原	上昇が生じ、このときに発生するエネルギが大きい場合に構造物	るエネルギが大きい場合に構造物が破壊され原子炉格納容器の破	事故シーケンスの相違。
子炉格納容器の破損に至ることが特徴である。格納容器破損モー	が破壊され格納容器の破損に至ることが特徴である。格納容器破	損に至ることが特徴である。格納容器破損モード「原子炉圧力容	
ド「原子炉圧力容器外の溶融燃料ー冷却材相互作用」に対する格	損モード「原子炉圧力容器外の溶融燃料ー冷却材相互作用」に対	器外の溶融燃料ー冷却材相互作用」に対する格納容器破損防止対	
納容器破損防止対策としては、格納容器下部注水系(常設)によ	する格納容器破損防止対策としては、格納容器下部注水系(常設)	策としては、格納容器代替スプレイ系(可搬型)によるペデスタ	
る格納容器下部注水により原子炉圧力容器破損前に原子炉格納容	によるペデスタル (ドライウェル部) 注水により原子炉圧力容器	ル注水により原子炉圧力容器破損前にペデスタルへ 2.4m の水張	・運用の相違
<u>器下部へ約2m</u> の水張りを実施する手段を整備している。	破損前にペデスタル(ドライウェル部)の水位1m を確保する手段	りを実施する手段を整備している。	【柏崎 6/7, 東海第二】
	を整備している。		初期水張り深さの相
格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相	格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相	格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相	違。
互作用」の評価事故シーケンス「過渡事象+高圧注水失敗+低圧	互作用」の評価事故シーケンス「過渡事象+高圧炉心冷却失敗+	互作用」の評価事故シーケンス「過渡事象+高圧炉心冷却失敗+	
注水失敗+損傷炉心冷却失敗(+FCI 発生)」について、有効性評	低圧炉心冷却失敗+損傷炉心冷却失敗(+FCI(ペデスタル))」	低圧炉心冷却失敗+炉心損傷後の原子炉注水(重大事故等対策を	
価を行った。	について、有効性評価を行った。	<u>含む)失敗+FCI発生」</u> について,有効性評価を行った。	
上記の場合には、水蒸気発生によって圧力スパイクが発生する	上記の場合には、水蒸気発生によって圧力スパイクが発生する	上記の場合には、水蒸気発生によって圧力スパイクが発生する	
が,原子炉格納容器バウンダリにかかる圧力は,原子炉格納容器	が、 格納容器バウンダリにかかる圧力は、 格納容器の限界圧力	が,原子炉格納容器バウンダリにかかる圧力は,原子炉格納容器	
の限界圧力 0.62MPa[gage]を下回るため,原子炉格納容器バウン	<u>0.62MPa [gage]</u> を下回るため, <u>格納容器バウンダリ</u> の機能は維持	の限界圧力 <u>853kPa[gage]</u> を下回るため, <u>原子炉格納容器バウンダ</u>	・設備設計の相違
ダリの機能は維持できる。また、安定状態を維持できる。	できる。また、安定状態を維持できる。	<u>リ</u> の機能は維持できる。また,安定状態を維持できる。	【柏崎 6/7, 東海第二】
(添付資料 3.5.1)		(添付資料 3.5.1)	島根2号炉(Mark-I
解析コード及び解析条件の不確かさについて確認した結果、運	解析コード及び解析条件の不確かさについて確認した結果、運	解析コード及び解析条件の不確かさについて確認した結果、運	改) と柏崎 6/7 (ABWR),
転員等操作時間に与える影響及び評価項目となるパラメータに与	転員等操作時間に与える影響及び評価項目となるパラメータに与	転員等操作時間に与える影響及び評価項目となるパラメータに与	東海第二 (Mark-Ⅱ) の最
える影響は小さい。また、対策の有効性が確認できる範囲内にお	える影響は小さい。また、対策の有効性が確認できる範囲内にお	える影響は小さい。また、対策の有効性が確認できる範囲内にお	高使用圧力の相違。
いて、操作時間余裕について確認した結果、操作が遅れた場合で	いて、操作時間余裕について確認した結果、操作が遅れた場合で	いて、操作時間余裕について確認した結果、操作が遅れた場合で	
も一定の余裕がある。	も一定の余裕がある。	も一定の余裕がある。	
重大事故等対策時に必要な要員は、運転員及び緊急時対策要員	重大事故等対策時に必要な要員は、災害対策要員にて確保可能	重大事故等対策時に必要な要員は、運転員及び緊急時対策要員	
にて確保可能である。また,必要な水源,燃料及び電源を供給可	である。また、必要な水源、燃料及び電源を供給可能である。	にて確保可能である。また、必要な水源、燃料及び電源を供給可	
能である。		能である。	
以上のことから、格納容器下部注水系(常設)による原子炉格	以上のことから、格納容器下部注水系(常設)によるペデスタ	以上のことから、格納容器代替スプレイ系(可搬型)による 🗠	
<u>納容器下部への注水等の格納容器破損防止対策は</u> , 選定した評価	ル(ドライウェル部)水位の確保等の格納容器破損防止対策は,	<u>デスタルへの注水</u> 等の格納容器破損防止対策は,選定した評価事	
事故シーケンスに対して有効であることが確認でき、格納容器破	選定した評価事故シーケンスに対して有効であることが確認で	故シーケンスに対して有効であることが確認でき、格納容器破損	
損モード「原子炉圧力容器外の溶融燃料ー冷却材相互作用」に対	き、格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材	モード「原子炉圧力容器外の溶融燃料ー冷却材相互作用」に対し	
して有効である。	相互作用」に対して有効である。	て有効である。	

備考

記載方針の相違

【東海第二】

島根2号炉は,事象進 展の説明に必要な図面を 再掲しているが, 東海第 二では本項で確認する評 価項目に関連するものの み記載している。なお、 3プラントとも,原子炉 圧力の推移は「3.2 DCH」 に記載しており差異理由 等は DCH 側に記載。(柏崎 6/7:第3.2.7 図, 島根2 号炉:第3.2.2-1(1)図)

【東海第二】

島根2号炉は,事象進 展の説明に必要な図面を 再掲しているが, 東海第 二では本項で確認する評 価項目に関連するものの み記載している。なお, 3プラントとも,原子炉 水位(シュラウド内外水 位)の推移は「3.2 DCH」 に記載しており差異理由 等は DCH 側に記載。(柏崎 6/7:第3.2.8 図, 島根2 号炉:第3.2.2-1(2)図)

炉	備考
	・記載方針の相違
	【柏崎 6/7,東海第二】
	島根2号炉は,BWR プ
	ラント安全審査資料「重
	大事故等対策の有効性評
	価に係るシビアアクシデ
	ント解析コードについ
	て」において, BWR-5
	Mark-I改良型格納容器
	プラントに対して, エン
	トレインメント係数及び
	デブリ粒子径をパラメー
	タとした感度解析を実施
	し, 原子炉圧力容器外
	FCI により生じる圧力ス
	パイクへの感度が小さい
	ことを確認していること
	から,個別プラントでの
	感度解析は実施していな
	لا ب _o

・解析結果の相違

備考

【柏崎 6/7, 東海第二】 ①島根2号炉は,事象初 期に格納容器スプレイの 実施基準に到達しない が, 柏崎 6/7 及び東海第 二は格納容器スプレイの 実施基準に到達すること による相違。

【東海第二】

②東海第二 (MarkⅡ) は, 島根2号炉(Mark I 改) に対し,出力当たりの格 納容器体積が小さいた め,下部プレナムへの溶 融炉心移行時の圧力スパ イクが大きい。

【柏崎 6/7,東海第二】 ③島根2号炉は、大破断 LOCA が発生する場合,原 子炉冷却材圧力バウンダ リからの原子炉冷却材の 放出によって,格納容器 圧力が上昇することに加 之, 原子炉圧力容器破損 のタイミングが早くな り, 原子力圧力容器破損 時の格納容器圧力がベー スケースに対して高くな るため, 感度解析の方が ピーク圧力が高い。柏崎 6/7 及び東海第二では大 破断 LOCA 発生後に格納 容器スプレイを実施して いることから, 感度解析 の方がピーク圧力が低 い。

【東海第二】

 ②品紙をや使し、装置料 (社管協会部の運転員称) 二の学校の表示の運転員称 (目前) に、ステレイを実施する ため時かの部に方が完め している。 	柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	〔参考〕東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(特徴会主のの認知法知道 に保守内容スアンイ実施 業年に可通していか、回 均常二つな異知事であった し、スアレイを実施する ためた教室器由が変更 している。					④島根2号炉は,残留熱
に 特徴 (学校) くろ (外) 第二 (学校) (学校) (学校) (学校) (学校) (学校) (学校) (学校)					代替除去系の運転開始前
第第二の注意者が認知。					に格納容器スプレイ実施
第二では体容容スプレンパク支援して、スプレイを支援して、スプレイを支援して、スプレイを支援して、スプレイを支援して、ための外の容易に力が変動していう。					基準に到達しないが、東
レイの突着基準に到金 し、スプレクを実施する ため格納客等に力が交換 している。					海第二では格納容器スプ
し、スプレイを実施するため修神客器圧力が変動している。					レイの実施基準に到達
ため名納容器正力が変動 している。					し、スプレイを実施する
					ため格納容器圧力が変動
					している。

まとめ資料比較表 〔有効性評価 添付資料 3.3.1〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料 3.3.1	添付資料 3.3.1	添付資料 3.3.1	
原子炉圧力容器外の溶融燃料ー冷却材相互作用に関する知見の整	原子炉圧力容器外の溶融燃料ー冷却材相互作用(炉外FCI)	原子炉圧力容器外の溶融燃料ー冷却材相互作用に関する知見の	
理	に関する知見の整理について	整理	
1. 原子炉圧力容器外の溶融燃料ー冷却材相互作用の概要	1. <u>炉外FCI</u> の概要	1. 原子炉圧力容器外の溶融燃料 – 冷却材相互作用の概要	
炉心損傷後、溶融燃料と冷却材が接触すると、一時的な圧力の	炉外FCIは ,溶融炉心が原子炉圧力容器の破損口から放出さ	<u> 炉心損傷後,溶融燃料と冷却材が接触すると,一時的な圧力の</u>	
急上昇が生じる可能性がある。このときに発生するエネルギが大	れた際に, 溶融炉心と原子炉圧力容器外の冷却材が接触して一時	急上昇が生じる可能性がある。このときに発生するエネルギが大	
きいと構造物が破壊され原子炉格納容器が破損する場合がある。	的な圧力の急上昇が生じる事象である。このときに発生するエネ	きいと構造物が破壊され原子炉格納容器が破損する場合がある。	
溶融炉心と冷却材との接触及びそれに伴って引き起こされる現象	ルギが大きいと原子炉支持構造材が破損され、格納容器が破損す	溶融炉心と冷却材との接触及びそれに伴って引き起こされる現	
のことを「溶融燃料ー冷却材相互作用 (FCI)」と呼ぶ。また, FCI	る可能性がある。この圧力上昇については激しい水蒸気発生によ	象のことを「溶融燃料―冷却材相互作用 (FCI)」と呼ぶ。ま	
のうち、溶融炉心が水中に落下した際に溶融炉心の周囲に形成さ	る場合(圧力スパイク)に加え、水蒸気爆発によって衝撃波が生	た, FCIのうち, 溶融炉心が水中に落下した際に溶融炉心の周	
れる蒸気膜が、何らかの外乱によって崩壊した際に瞬時の圧力伝	じる場合が考えられるが、これまでの知見から、水蒸気爆発の発	囲に形成される蒸気膜が、何らかの外乱によって崩壊した際に瞬	
播を生じ、大きなエネルギを発生させる事象を「水蒸気爆発」と	生の可能性は極めて低いと考えられている。	時の圧力伝播を生じ、大きなエネルギを発生させる事象を「水蒸	
呼び、溶融炉心から原子炉冷却材への伝熱によって水蒸気が発生		気爆発」と呼び、溶融炉心から原子炉冷却材への伝熱によって水	
することに伴う急激な格納容器圧力の上昇を「圧力スパイク」と		蒸気が発生することに伴う急激な格納容器圧力の上昇を「圧力ス	
呼ぶ。		パイク」と呼ぶ。	
原子炉圧力容器底部から溶融炉心が流出し,原子炉格納容器下		原子炉圧力容器底部から溶融炉心が流出し、ペデスタルで冷却	
部で冷却材と接触することで発生する FCI を「原子炉圧力容器外		材と接触することで発生するFCIを「原子炉圧力容器外の溶融	
の溶融燃料ー冷却材相互作用(炉外 FCI)」と呼ぶ。これまでの研		燃料―冷却材相互作用(炉外FCI)」と呼ぶ。これまでの研究	
究では、炉外 FCI における水蒸気爆発現象を以下のような段階的		では、炉外FCIにおける水蒸気爆発現象を以下のような段階的	
な過程によって説明するモデルが提唱されている。		な過程によって説明するモデルが提唱されている。	
① 原子炉圧力容器から落下する溶融炉心(デブリジェット)が		① 原子炉圧力容器から落下する溶融炉心 (デブリジェット) が	
冷却材中に落下する。冷却材と接触した溶融炉心は、その界		冷却材中に落下する。冷却材と接触した溶融炉心は、その界	
面の不安定性により細粒化して冷却材中に分散する(エント		面の不安定性により細粒化して冷却材中に分散する(エント	
レイン)。細粒化した溶融炉心(以下「デブリ粒子」と称す。)		レイン)。細粒化した溶融炉心(以下「デブリ粒子」と称す。)	
は, 蒸気膜に覆われた状態で膜沸騰を伴う冷却材との混合状		は、蒸気膜に覆われた状態で膜沸騰を伴う冷却材との混合状	
態となる(粗混合)。		態となる(粗混合)。	
② さらに, 自発的もしくは外部からの圧力パルス等の外乱によ		② さらに、自発的もしくは外部からの圧力パルス等の外乱によ	
り,膜沸騰が不安定化し(トリガリング),デブリ粒子と冷		り, 膜沸騰が不安定化し(トリガリング), デブリ粒子と冷	
却材が直接接触する。		却材が直接接触する。	
③ デブリ粒子と冷却材の直接接触により、急速な熱の移動が発		③ デブリ粒子と冷却材の直接接触により, 急速な熱の移動が発	
生し、急速な蒸気発生・溶融炉心の微細化により、さらにデ		生し、急速な蒸気発生・溶融炉心の微細化により、さらにデ	
ブリ粒子と冷却材の接触を促進し(伝播),蒸気発生を促進		ブリ粒子と冷却材の接触を促進し(伝播),蒸気発生を促進	
する。この蒸気発生により圧力波が発生する。		する。この蒸気発生により圧力波が発生する。	
④ 発生した圧力波が通過した後の高温高圧領域(元々は粗混合		④ 発生した圧力波が通過した後の高温高圧領域 (元々は粗混合	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
領域)の膨張により運動エネルギが発生し、構造材を破壊す		領域)の膨張により運動エネルギが発生し、構造材を破壊す	
る要因となる。		る要因となる。	
水蒸気爆発が発生するためには、トリガリングが働く必要があ		水蒸気爆発が発生するためには、トリガリングが働く必要があ	
り、さらにデブリ粒子と冷却材の接触が瞬時に粗混合領域全体に		り,さらにデブリ粒子と冷却材の接触が瞬時に粗混合領域全体に	
伝播する必要がある。水蒸気爆発に至らない場合でも、急速な蒸		伝播する必要がある。水蒸気爆発に至らない場合でも、急速な蒸	
気発生による圧力上昇(圧力スパイク)が発生する。		気発生による圧力上昇(圧力スパイク)が発生する。	
	<u>FCIに関するこれまでの知見の概要を次に整理する。</u>		・記載方針の相違
			【東海第二】
2. 水蒸気爆発が発生する可能性について	2. 過去の知見の整理	2. 水蒸気爆発が発生する可能性について	島根2号炉は、過去に
これまでの代表的なFCI の実験として, JRC イスプラ研究所で	過去に実施された代表的なFCIの実験研究として,(旧)日本	<u>これまでの</u> 代表的なFCIの実験として, JRCイスプラ研究	実施された代表的な F
実施された FARO 実験, KROTOS 実験, (旧) 原子力発電技術機構	<u>原子力研究所で実施されたALPHA試験</u> ,JRCイスプラ研究	所で実施されたFARO実験, KROTOS実験, (旧) 原子力	CIの実験の概要につ
で実施された COTELS 実験, 韓国原子力研究所で実施された TROI	所で実施されたKROTOS試験、FARO試験、(旧)原子力発	発電技術機構で実施されたCOTELS実験、韓国原子力研究所	いては, MAAPコード
実験等がある。これらの実験では UO2 混合物と模擬溶融物として	電技術機構で実施されたCOTELS試験,韓国原子力研究所(К	で実施されたTROI実験等がある。これらの実験ではUO2混	説明資料を引用してい
アルミナ等を用いている。	AERI)で実施されたTROI試験 <u>及びSERENA試験</u> があ	合物と模擬溶融物としてアルミナ等を用いている。	る。
	る。これらの試験では模擬溶融物としてUO2混合物を用いた試験		
これまでの代表的な FCI の実験から得られた知見については,	とアルミナ等を用いた試験がある。 各試験の試験条件及び試験結	<u>これまでの代表的なFCIの実験から得られた知見について</u>	
付録3「重大事故等対策の有効性評価に係るシビアアクシデント	果については、以下に示すとおりである。	は,解析コード (MAAPコード) ^[1] の「添付2 溶融炉心と冷	
解析コードについて」第5部MAAPの添付2「溶融炉心と冷却材		<u>却材の相互作用について」に示されている。</u> これまでのUO ₂ 混	
の相互作用について」に示した。これまでの UO2 混合物を用いた		合物を用いた実験では、KROTOS実験及びTROI実験の一	
実験では, KROTOS 実験及び TROI 実験の一部の実験ケースにおい		部の実験ケースにおいて、水蒸気爆発の発生が報告されている。	
て、水蒸気爆発の発生が報告されている。			
このうち, KROTOS 実験は, 溶融炉心が水中に落下している時に		このうち, KROTOS実験は, 溶融炉心が水中に落下してい	
容器の底から圧縮ガスを供給し、膜沸騰を強制的に不安定化させ		る時に容器の底から圧縮ガスを供給し、膜沸騰を強制的に不安定	
て(外部トリガを与えて)いるため、実機で起こるとは考えられ		化させて(外部トリガを与えて)いるため、実機で起こるとは考	
ない条件で実験した結果であるが、機械的エネルギへの変換効率		えられない条件で実験した結果であるが、機械的エネルギへの変	
は最大でも0.05%程度であり大規模な水蒸気爆発に至っていない。		換効率は最大でも 0.05%程度であり大規模な水蒸気爆発に至っ	
また、外部トリガを与えた場合でも水蒸気爆発に至らなかったケ		ていない。また、外部トリガを与えた場合でも水蒸気爆発に至ら	
ースが複数確認されている。		なかったケースが複数確認されている。	
	<u>2.1 ALPHA試験</u>		
	<u>ALPHA試験[1]</u> では、テルミット反応による酸化アルミニウ		
	ムと鉄からなる模擬溶融物を用いた実験が実施されている。AL		
	<u>PHA試験装置の概要を第1図に示す。試験容器は、内径3.9m</u> ,		
	高さ 5.7m, 容積 50m ³ である。模擬格納容器に設置した冷却水プー		
	ルに高温溶融物を落下させ、水蒸気爆発に関する特性データを計		
	<u>測する試験装置である。ALPHA試験結果のまとめを第1表に</u>		
	<u>示す。高雰囲気圧力(STX008, STX012, STX015)</u> , サブクール度が		
	小さい場合 (STX014) は、水蒸気爆発の発生が抑制される試験結		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		果が知見として得られている。溶融物を半減させた 3 ケース		
		(STX001, STX010, STX013) のうち, 2 ケース (STX001, STX013)		
		では、水蒸気爆発が発生していない。また、水蒸気爆発のエネル		
		ギ変換効率は、1~6%程度となっている。ALPHA試験の代表		
		的試験(STX016)の圧力変化の例を第2図に示す。		
		<u>2.2 KROTOS試験</u>		
		<u> KROTOS</u> 試験 ^{[2][3][4]} では, FARO試験が大型試験装置で		
		あるのに対して小型の試験装置であるが、主に低圧・サブクール		
		水を条件として試験を実施している。KROTOS試験装置の概		
		要を第3図に示す。KROTOS試験の代表的試験(K37,K42)		
		の圧力変化の例を第4図に示す。KROTOS試験では模擬コリ		
		ウムとしてUO2混合物を用いた試験とアルミナを用いた試験を		
		実施している。KROTOS試験結果のまとめを第2表に示す。		
		アルミナ試験では、サブクール度が大きい試験ケース(K38, K40,		
		<u>K42, K43, K49)では、外部トリガ無しで水蒸気爆発が発生してい</u>		
		<u>るが,サブクール度が小さい試験ケース(K41,K44,K50,K51)</u>		
		では、外部トリガ無しでは水蒸気爆発は発生していない。一方,		
		<u>UO2</u> 混合物試験では、サブクール度に依らず外部トリガ無しで		
		<u>は水蒸気爆発は発生していない。また、UO2混合物試験でも外</u>		
		部トリガありでは水蒸気爆発が発生している(K46,K52,K53)が,		
		これらのケースはサブクール度が大きい試験ケースである。また,		
		<u>UO2</u> 混合物試験の水蒸気爆発のエネルギ変換効率は、アルミナ		
		試験の水蒸気爆発に比較して低い結果となっている。アルミナ試		
		<u>験とUO2混合物の相違については、以下のように考察されてい</u>		
		<u> 3.</u>		
		・アルミナはプール水面近傍でブレークアップし,粗混合時に粒		
		子が半径方向に拡がり,水蒸気爆発の伝播がしやすくなった可		
		能性がある。		
		 ・UO2混合物試験では、外部トリガ無しでは水蒸気爆発は発生 		
		していない。UO2混合物の方が一般的に過熱度は小さく,U		
		O2混合物の粒子表面が水と接触した直後に表面が固化しや		
		<u>すく、これが水蒸気爆発の発生を抑制した可能性がある。UO</u>		
		2 混合物試験では水素が発生し、これにより蒸気膜の崩壊によ		
		る水蒸気爆発の発生を抑制した可能性がある。		
		<u>2.3 FARO試験</u>		
		<u>FARO試験^{[3][5]}では、酸化物コリウム及び金属Zrを含むコ</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	リウムが用いられ、多くの試験は高圧・飽和水条件で実施されて		
	いるが、低圧・サブクール水条件の試験も実施されている。FA		
	RO試験装置の概要を第5図に示す。FARO試験結果のまとめ		
	を第3表に示す。また,圧力変化の例としてL-14とL-19の圧力		
	挙動を第6図に示す。FARO試験のいずれの試験ケースでも水		
	蒸気爆発は発生していない。FARO試験で得られた主な知見は		
	以下のとおりである。		
	 ・高圧・飽和水試験、低圧・サブクール試験の何れにおいても水 		
	蒸気爆発は発生していない。		
	・高圧・飽和水の酸化物コリウム試験の場合は一部が粒子化し,		
	一部はパンケーキ状でプール底部に堆積した。高圧・飽和水の		
	コリウムに金属Zr成分を含んだ試験及び低圧・サブクール試		
	験では全てのコリウムは粒子化した。		
	・粒子の質量中央径は比較的大きかったが,試験条件(初期圧力,		
	水深、コリウム落下速度、サブクール度)に依存していない。		
	・金属Zrを含めた試験ケース(L-11)では、金属Zrの酸化に		
	より,金属Zrを含めない試験ケース(L-14)よりも圧力上昇		
	が大きくなる。		
	<u>2.4 COTELS試験</u>		
	<u>COTELS^[6]試験では、模擬溶融物としてUO2-Zr-Z</u>		
	<u>rO2-SS混合物を用いており、コリウムに金属成分が含まれ</u>		
	ている。COTELS試験装置の概要を第7図に示す。COTE		
	<u>LS</u> 試験結果のまとめを第4表に示す。COTELS試験の代表		
	的な試験ケース(A1)の圧力挙動を第8図,各試験ケースの圧力		
	変化を第9図に示す。溶融混合物がプール水に接触した直後		
	<u>(Region 1) は急激な圧力上昇となる。その後、サブクール水で</u>		
	は蒸気凝縮が発生し、一時的に圧力が減少する (Region 2) が、		
	溶融混合物からの熱伝達による蒸気発生により、準定常的な状態		
	まで徐々に圧力が上昇する(Region 3)。COTELS試験で得ら		
	れた主な知見は、以下のとおりである。		
	・サブクール度が大きいケースも含めて、全ての試験での水蒸気		
	爆発は発生していない。		
	・プールに落下した溶融コリウムは、ほとんどがプール水中で粒		
	子化した。		
	・粒子径は、コリウム落下速度の大きいケースを除いて、質量中		
	央径で 6mm 程度である。コリウム落下速度の大きいケースの粒		
	子径は小さくなっている。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	・コリウム落下速度の大きいケースで、粒子径が小さく初期圧力		
	上昇幅も大きくなる傾向がある。また、準定常的な状態での圧		
	力は,溶融物量が多く,サブクール度が小さく,プール水量が		
	少ない程高くなる傾向である。		
	<u>2.5 TROI試験</u>		
	<u> TROI試験^[7]は,韓国原子力研究所(KAERI)で実施さ</u>		
	<u>れている試験であり,2007 年から2012 年までは,KROTOS</u>		
	<u>試験とともにOECD/NEAのSERENAプロジェクトとし</u>		
	て実施された試験である。TROI試験装置の概要を第10図に示		
	<u>す。TROI試験条件と試験結果のまとめを第5表に示す。</u>		
	<u>ZrO2を用いた試験では外部トリガリングを与えていない</u>		
	が, 圧力スパイクや水蒸気爆発が発生した試験がある。一方, U		
	<u> O 2 - Z r O 2 の混合物を用いた試験では、異なった条件による</u>		
	<u>内部トリガリングを発生させるため又は外部トリガリングによる</u>		
	水蒸気爆発時の発生エネルギを変えるため,混合物の割合,水深,		
	混合物量等の様々な条件による試験を実施し、数ケースでは水蒸		
	気爆発が発生している。TROI試験で得られた主な知見は以下		
	<u>のとおりである。</u>		
	・自発的な水蒸気爆発が生じた試験は、融点を大きく上回る過熱		
	<u>度を溶融物に対して与えるなどの実機と異なる条件であり、そ</u>		
	の他の試験では自発的な水蒸気爆発は生じていない。		
	・水深が深い場合(130cm)では、内部トリガリングによる水蒸		
	気爆発は発生していない。水深が深いことにより、溶融物粒子		
	が底部に到達するまでの沈降時間が長くなり, 溶融物粒子が固		
	化しやすい状況となる。このため、溶融物粒子が底部に接触す		
	ることで発生するトリガリングの可能性は低減する可能性が		
	ある[8]。		
	<u>2.6 SERENA試験</u>		
	<u>SERENA試験は、OECD/NEA主導のもと実施されて</u>		
	いる試験であり、2001 年から 2006 年にかけて実施されたフェー		
	ズ1と,2007年から2012年にかけて実施されたフェーズ2に分		
	<u>かれている。フェーズ1では既存の試験に対する再現解析が行わ</u>		
	<u>れた。また,フェーズ2ではKROTOS及びTROI装置を使</u>		
	用した試験と、その再現解析が行われた。さらに、両フェーズに		
	おいて実機原子炉を想定した解析が行われた。フェーズ2で行わ		
	れた試験の試験条件及び試験結果を表6に示す。SERENA試		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	験で得られた知見は以下のとおりである。		
	<u>(1) フェーズ1</u>		
	・(解析)解析コードはアルミナを用いた試験によって調整され		
	ており, UO2-ZrO2コリウムの爆発による機械的エネル		
	ギ変換効率を過大評価する傾向にある。		
	・(解析)予測される炉内水蒸気爆発の最大荷重は原子炉圧力容		
	器の破損強度と比べて十分小さい。		
	・(解析)予測される炉外水蒸気爆発の最大荷重は格納容器に影		
	響を与える可能性があるが,解析コードの不確かさとばらつき		
	が大きく、その程度を推定することは難しい。		
	<u>(2) フェーズ 2</u>		
	・(実験) 80%UO2-20%ZrO2コリウムは,70%UO2-		
	<u>30%ZrO2コリウムに比べてやや爆発のエネルギが大きい。</u>		
	これは、フェーズ1の結果と逆の傾向であり、更に考察が必要。		
	 ・(実験) UO2-ZrO2のみで構成されるコリウムは、アル 		
	ミナと比べて爆発のエネルギは小さい。		
	 ・(実験) コリウムの組成に酸化物以外(金属の単体など)が含 		
	まれる場合について,酸化と水素生成による影響は定量化でき		
	なかった。		
	・(実験)全ての観測された爆発の機械的エネルギ変換効率は,		
	従来観測されていたエネルギ変換効率と同様に、比較的小さ		
	い。これは、UO2の密度が高いために溶融コリウムの粒子径		
	が小さくなり,固化が促進されて水蒸気爆発への寄与が小さく		
	なったことと,粗混合段階のボイド率が上昇して爆発のエネル		
	ギを低減したことによると推測されている。		
	<u>3. FCI実験の知見の整理</u>		
	前項で示したFCI実験の知見を整理し,原子炉圧力容器外水		
	蒸気爆発の可能性について考察する。		
	酸化アルミニウムと鉄からなる模擬溶融物を用いたALPHA		
	試験及びアルミナを用いたKROTOS試験では、外部トリガ無		
	しで水蒸気爆発が発生しているが、UO2を用いたКROTOS,		
	<u>FARO, COTELS試験では外部トリガ無しでは水蒸気爆発</u>		
	は発生していない。UO2混合物では一般的に過熱度が小さいた		
	め、粗混合粒子表面が早期に固化し、蒸気膜が崩壊しても溶融物		
	の微細化が起きにくく、水蒸気爆発の発生が抑制されるためと考		
	えられる。		
TROI 実験については, No.10, 12, 13 及び14 実験において,	TROI試験ではUO2混合物を用いた場合でもトリガ無しで	<u>TROI実験については, No. 10, 12, 13 及び14 実験において,</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
外部トリガがない条件で水蒸気爆発が観測されている。しかしな	水蒸気爆発が発生している例(TROI-10, 12, 13, 14)が報告され	外部トリガがない条件で水蒸気爆発が観測されている。しかしな	
がら,TROI 実験で用いた溶融物の過熱度が実機条件の過熱度	ている。TROI-10, 12 は, 溶融物温度が 3,800K 程度の高い温度で	がら, TROI実験で用いた溶融物の過熱度が実機条件の過熱度	
(300K 程度)に比べてかなり高いことが水蒸気爆発の発生に至っ	の試験条件である。また, TROI-13, 14 の溶融物温度は, それぞ	(300K 程度)に比べてかなり高いことが水蒸気爆発の発生に至っ	
た理由と考えられ、実機条件に近い溶融物温度では水蒸気爆発の	<u>れ 2,600K, 3,000K であるが, TROI-13 では, 温度計測に問題があ</u>	た理由と考えられ、実機条件に近い溶融物温度では水蒸気爆発の	
発生可能性は小さいと考えられる。また、自発的に水蒸気爆発が	り実際には 3,500K 以上と推測されている。また,TROI-14 では,	発生可能性は小さいと考えられる。また、自発的に水蒸気爆発が	
発生したとされる No.13 のエネルギ変換効率は 0.4%であり,	二つの温度計が異なる最高温度(4,000K, 3,200K)を示しており,	発生したとされる No. 13 のエネルギ変換効率は 0.4%であり, K	
KROTOS 実験の例よりは大きくなるが、1%を下回る小さいものであ	温度計測の不確かさが大きいとされている。以上を踏まえると,	<u>ROTOS実験の例よりは大きくなるが、1%を下回る小さいも</u>	
る。なお、溶融物の温度を含め、実機を模擬した溶融物を用いた	<u>TROI試験の溶融物温度はかなり高い試験条件と考えられ、他</u>	のである。なお、溶融物の温度を含め、実機を模擬した溶融物を	
実験の中で水蒸気爆発が観測された例は、いずれも外部トリガが	の試験で想定しているような実機条件に近い溶融物温度では水蒸	用いた実験の中で水蒸気爆発が観測された例は、いずれも外部ト	
ある条件で実施されたものである。	気爆発の発生可能性は十分小さいと考えられる。	リガがある条件で実施されたものである。	
	TROI 試験と実機条件の比較を検討するために, 模擬溶融物		
	<u>にコリウム (UO2-ZrO2) を用いた TROI-10, 12, 23, 25</u>		
	と実機条件の比較を第7表に示す。この表では,第11図に示すR		
	<u>i c o u - S p a l d i n g 式による粒子化割合^[9]の概算値を示</u>		
	している。溶融物温度が高く過熱度が大きい TROI-10, 12 では,		
	自発的水蒸気爆発が観測されている。これに対して、溶融物温度		
	が高く過熱度が大きいが水深が 1.3m と深い TROI-23 では,水蒸気		
	爆発は発生していない。これは、水深が深いことにより、溶融物		
	粒子が底部に到着するまでの沈降時間が長くなり、溶融物粒子が		
	固化しやすいため、溶融物粒子が底部に接触することで発生する		
	トリガリングを抑制したと考えられる ^[8] 。		
	水蒸気爆発が発生した TROI-10, 12 の粒子化割合は約 60%であ		
	るが,水深がより深い TROI-23 では,粒子化割合が約80%と比較		
	的大きい値となっており、底部に到達する前に固化する溶融物粒		
	子が比較的多いと考えられる。一方、水深及び粒子化割合は		
	TROI-10, 12 と同程度であるが, 溶融物温度がやや低い TROI-25		
	では、蒸気発生による圧力上昇 (Steam Spike) は生じているが、		
	水蒸気爆発は発生していない。溶融物温度が低い場合、過熱度が		
	小さく粒子が固化しやすいため、水蒸気爆発が抑制されたものと		
	考えられる。		
	実機条件では,溶融ジェットの初期直径は計装配管口径(約4cm)		
	~制御棒駆動機構ハウジングの直径(約15cm)程度と想定される		
	が,ペデスタル(ドライウェル部)注水対策により水深は1mとな		
	る。これより、粒子化割合は約35%~90%となるが、溶融物温度		
	が約 2,650K 以下と水蒸気爆発が発生したTROI試験よりも十		
	分低いと考えられ、大規模な水蒸気爆発の発生の可能性は十分小		
	さいと考えられる。		
	また、いくつかのTROI試験では水蒸気爆発が発生したとき		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	の機械的エネルギ変換効率が報告されている(第5表)。これらの		
	中で自発的に水蒸気爆発が発生したとされる TROI-13 の機械的エ		
	ネルギ変換効率は 0.4%である。これは、ALPHA試験(第1		
	表)やKROTOS試験(第2表)で観測されているように,ア		
	ルミナによる金属模擬溶融物試験の値に対して比較的小さい値と		
	なっている。		
	<u>また, KROTOS試験 (K46, K52, K53) では, UO2混合物</u>		
	を用いた試験でも外部トリガを与えた場合は水蒸気爆発が観測さ		
	れているが、これらの試験ケースはサブクール度が大きい試験ケ		
	ースである(K46のサブクール度:83K,K52のサブクール度:102K,		
	K53のサブクール度:122K)。したがって、サブクール度が大きい		
	場合には、UO2混合物を用いた場合でも、水蒸気爆発の可能性		
	が高くなることが考えられる。これは、サブクール度が大きい場		
	合には、粗混合粒子の蒸気膜の安定度が低下し、蒸気膜の崩壊が		
	発生しやすいことが要因と考えられる。		
	しかし, KROTOS試験の K52, K53 と同程度の高サブクール		
	度の条件であるFARO試験のL-31 (サブクール度:104K), L-33		
	(サブクール度:124K)では,水蒸気爆発が発生していない。こ		
	れらの試験のUO2混合物量は、KROTOS試験が数kgである		
	のに対して 100kg 程度であり、より実機条件に近い。		
	また, COTELS試験の高サブクール試験(A11)でも水蒸気		
	爆発は発生していない。COTELS試験は、BWRの原子炉圧		
	力容器外FCIを模擬した試験であり、溶融物に圧力容器内の構		
	造物を想定したステンレススチールを含んでいる。また、溶融物		
	量も 50kg 程度であり、KROTOS試験よりも実機条件に近い。		
	以上より、UO2混合物の溶融物量が少ないKROTOS試験		
	では、水蒸気爆発が発生しているが、溶融物量が多くより実機体		
	系に近い大規模試験であるFARO試験, COTELS試験では,		
	水蒸気爆発は発生していない。		
上述のとおり、溶融物の温度を含め、実機を模擬した溶融物を用	FCI試験では、水蒸気爆発のトリガを発生させるために、高	上述のとおり、溶融物の温度を含め、実機を模擬した溶融物を	
いた FCI 実験において水蒸気爆発が発生したケースでは、水蒸気	圧ガスを封入した装置(KROTOS試験では最高 20MPa のガス	用いたFCI実験において水蒸気爆発が発生したケースでは、水	
爆発のトリガを発生させるための装置を用いている。水蒸気爆発	を封入可能な装置)を用いている。水蒸気爆発のトリガは粗混合	蒸気爆発のトリガを発生させるための装置を用いている。水蒸気	
のトリガは粗混合粒子の周囲に形成される蒸気膜の崩壊に起因す	粒子の周囲に形成される蒸気膜の崩壊に起因すると考えられてお	爆発のトリガは粗混合粒子の周囲に形成される蒸気膜の崩壊に	
ると考えられており、上述の実験で用いられたトリガ装置は蒸気	り、トリガ装置により圧力パルスを発生させ蒸気膜を不安定化さ	起因すると考えられており、上述の実験で用いられたトリガ装置	
膜を不安定化させる効果があると考えられるが、一方、実機条件	せる効果があると考えられる。実機条件では、このようなトリガ	は蒸気膜を不安定化させる効果があると考えられるが、一方、実	
ではこのようなトリガ装置で発生させているような圧力外乱とな	装置で発生させているような圧力外乱となる要因は考えられな	機条件ではこのようなトリガ装置で発生させているような圧力	
る要因は考えられない。	い。また、溶融物がプール底部に接触することでトリガ要因とな	外乱となる要因は考えられない。	
	ることが考えられるが、BWRの原子炉圧力容器外FCIを模擬		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
	したCOTELS試験の試験装置では、BWRのペデスタル底部	
	と同様に平板コンクリートを模擬した試験装置としており、実機	
	条件と同様であるが水蒸気爆発は観測されていない。	
	また、実機条件では、水深が試験条件よりも深くなる可能性が	
	あるが、水深が深いことにより、溶融物粒子が底部に到達するま	
	での沈降時間が長くなり、溶融物粒子が固化しやすい状況となる。	
	このため、溶融物粒子が底部に接触することで発生するトリガリ	
	ングのリスクは低減する可能性がある。	
	以上より, BWRの実機条件において水蒸気爆発のトリガとな	
	る特段の要因は考えられないため、実機条件でも水蒸気爆発の発	
	生リスクは十分小さいと考えられる。	
以上のことから,実機において大規模な水蒸気爆発が発生する可	上記の試験条件と実機条件の検討より、実機においては、格納	以上のことから、実機において大規模な
能性は極めて小さいと考えられ、原子炉格納容器健全性に与える	容器の損傷に至る大規模な原子炉圧力容器外水蒸気爆発の可能性	可能性は極めて小さいと考えられ、原子炉
影響はないと考える。	は十分に小さいと考えられる。	る影響はないと考える。
以上		
	4. 参考文献	<u>3</u> . 参考文献
	[1]N. Yamano, Y. Maruyama, T. Kudo, A. Hidaka, J. Sugimoto,	[1]「沸騰水型原子力発電所 重大事故等來
	Phenomenological studies on melt-coolant interactions in	<u>るシビアアクシデント解析コード(MA</u>
	the ALPHA program, Nucl. Eng. Des. 155 369-389, 1995	<u>エネルギーシステムズ株式会社, TLR-0</u>
	[2]I.Huhtiniemi, D.Mgallon, H.Hohmann, Results of recent	<u>リア・エナジー株式会社, HLR-123, 平</u>
	KROTOS FCI tests : alumina versus corium melts, Nucl. Eng.	
	<u>Des. 189 379-389, 1999</u>	
	[3]D. Magllon, Characteristics of corium debris bed generated	
	in large-scale fuel-coolant interaction experiments, Nucl.	
	<u>Eng. Des. 236 1998-2009, 2006</u>	
	[4]H.S.Park, R.Chapman, M.L.Corradini, Vapor Explosions in a	
	<u>One-Dimensional Large-Scale Geometry With Simulant Melts,</u>	
	NUREG/CR-6623, 1999	
	[5]D.Magallon, et al, Lessons learn from FARO/TERMOS corium	
	melt quenching experiments, Nucl. Eng. Des. 189 223-238,	
	<u>1999</u>	
	[6]M.Kato, H.Nagasaka, COTELS Fuel Coolant Interaction Tests	
	under Ex-Vessel Conditions, JAERI-Conf 2000-015, 2000	
	[7]V.Tyrpekl, Material effect in the fuel - coolant	
	interaction : structural characterization and	
	solidification mechanism, 2012	
	[8]J.H.Kim, et al, The Influence of Variations in the Water	
	Depth and Melt Composition on a Spontaneous Steam Explosion	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所	2 号炉	備考
		in the TROI Experiments, Proceedings of ICAPP' 04			
		[9](財)原子力安全研究協会,「シビアアクシデント対策評価の			
		ための格納容器イベントツリーに関する検討」,平成 13 年 7 月			
		[10]M. Kato, et al, Fuel Coolant Interaction Tests using U02			
		Corium under Ex-vessel Conditions, JAERI-Conf 99-005, 1999.			
		[11]J.H.Song, Fuel Coolant Interaction Experiments in TROI			
		using a U02/Zr02 mixture, Nucl. Eng. Des., 222, 1-15, 2003			
		[12] J. H. Kim, Results of the Triggered Steam Explosion from the			
		TROI Experiment, Nucl. Tech., Vol.158 378-395, 2007			
		[13]NEA/CSNI/R, OECD/SERENA Project Report Summary and			
		Conclusions, 2015			
		14JNUCLEA Nuclear Thermodynamic Database, Version 2005-01			
				以上	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				-	東海	第	二発	電展	近 ((20)	18. 9	9.1	2版)						島根	原子力	発電所	2号	炉			備考	
		幾械的エネルギ	変換効率(%)	1		0.86	0.66 3.33	1	1 1	1	1 1	1		5.67		4.05												
		水蒸気爆発発生	Yes	Yes :	Yes	Yes	Yes	No	Yes No	No	No	No	No Ves	Yes	No	Yes												
		外部トリガ	No	No	No	No	No	No	No	No	No	No	No	No	No	No												
	件及び試験	大涨(=)	1.0	1.0	1.0	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.0	0.9												
	要な試験条	木温度(K)	289	292	300 289	295	286	293	297 284	372	288	282	298	281	281	281												
	試験の主	匡力(MPa)	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	1.60	1.00	0.10	0.10	0.10	0.10												
	1表 ALPHA	下。 客融物質量(kg)	20	20	20	20	20	10	10	20	20	20	20	20	20	20												
	策	溶融物組成	Fe-Al 2 0 3	Fe-Al ₂ 0 ₃	Fe-A1 2 0 3 Fe-A1 2 0 3	Fe-Al ₂ 0 ₃	Fe-A1 2 0 3 Fe-A1 2 0 3	Fe-Al ₂ 0 ₃	Fe-A1203 Fe-A1203	Fe-A1 2 0 3	Fe-A1 2 0 3 Fe-A1 2 0 2	Fe-A1 2 0 3	Fe-Al ₂ 0 ₃ Fe-Al ₂ 0 ₃	Fe-A1 2 0 3	Fe-A1 2 0 3	Fe-A1 2 0 3												
		試験ケース	STX002	STX003	STX005 STX009	STX016	STX017 STX018	STX001	STX010 STX013	STX014	STX008 STX012	STX015	STX006 STX011	STX019	STX020	STX021												
		試験名							АГРНА																			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	2 表 KROTOS 試験の主要な消除条件及び試験結果[03]164 2 通 (Refs) (Refs) <th< th=""><th>島根原子力発電所 2号炉</th><th>備考</th></th<>	島根原子力発電所 2号炉	備考
	第2表 第2表 常報物組成 Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Bowt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02 80wt%U02-20wt%Zr02		
	名 名		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	/試験結果[3] ル度 水深 外部 (m) トリガ 0.87 No 1.00 No 2.00 No 2.00 No 1.47 No 1.44 No 1.44 No 1.45 No 1.45 No		
	D主要な試験条件及C 副度 圧力 サブクー (MPa) サブクー (MPa) (K) (MPa) (K) (MPa) (K) (S) 5.8 12 23 5.8 12 23 5.8 12 23 5.8 12 23 5.8 12 23 5.8 12 23 0.5 1 70 0.2 01 104 124		
	表 FARO試験の 液融物質量 溶融物 溶融物質量 溶融物 (kg) (k) (kg) (k) <		
	 第 論 物 組 成 考 溶融 物 組 成 ス 80wt%I02=20wt%Zr02 80wt%I02=20wt%Zr02 77wt%I02=20wt%Zr02 80wt%I02=20wt%Zr02 80wt%I02=20wt%Zr02 80wt%I02=20wt%Zr02 80wt%I02=20wt%Zr02 80wt%I02=20wt%Zr02 80wt%I02=20wt%Zr02 80wt%I02=20wt%Zr02 80wt%I02=20wt%Zr02 80wt%I02=20wt%Zr02 		
	議憲名 議憲名 FAR0 L-10 L-11 L-11 L-21 L-21 L-22 L-22 L-22 L-23		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考

柏崎刈羽原子力発電所 6/	7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		第6.表 TACI Lingue Lin		

_

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	機械的エ <i>ネルギ</i> 変換効率 (%) 0.12 0.28 0.28 0.35 0.06 0.06 0.06 0.10 0.10 $-^{(\pm 1)}$ 0.18 $-^{(\pm 1)}$		
	水蒸気爆発 発生 Yes Yes Yes Yes Yes Yes ((m)) Yes Flergetic event(m2) Yes		
	戦結果[13] 外部 トリガ トリガ Yes Yes Yes Yes Yes Yes Yes Yes		
	文び訳(m) ※ ※ ※ (m) (m) (m) (m) (m) (m) (m)		
	職条件 法 (K) (K) (K) (K) (K) (K) (K) (K) (K) (K)		
	王要な試 用 カ (MPa) (MPa) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		
	$ $		
	NA試験(ブ) 縦融物館 単 (kg) (kg) 15.4 15.4 15.9 14.3 1.7.9 9.3 9.3 9.3 2.4 1.7 1.7 1.7 1.7 1.7		
	第6表 SERE 溶融物組成 容融物組成 73.4wt%U02-26.6wt%Zr02 68wt%U02-29wt%Zr02 68wt%U02-29wt%Zr02 71wt%U02-19wt%Zr02 73.3wt%U02-18.3wt%Zr02 75.3wt%U02-18.5wt%Zr02 76wt%U02-18.5wt%Zr02 73.3wt%U02-18.5wt%Zr02 73wt%U02-18.3wt%Zr02 73wt%U02-18.3wt%Zr02 70wt%U02-20wt%Zr02 80.1wt%U02-20.4wt%Zr02 -8.5wt%Zr02 80.1wt%U02-20.4wt%Zr02 -4.1wt%Fc203-2.5wt%FP		
	デス フ デ ス フ テ ス イ フ ス フ フ フ フ フ フ フ フ フ フ フ フ フ		
	读聚名 SERENA (TRO1/ KROTOS) (许1) 実際 (许2) 計測		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第7書 TROI試驗と実機条件の比較		
	武験ケース (過熱度) (注1) ジェット径 水深 粒子化割合(注2) 水蒸気爆発 3.800K		
	TR0I-10 G900K) 6.5 cm 0.67m 約 60% Yes 3.800K 3.800K 5.5 cm 5.5 cm		
	TR0I-12 G900K) 6.5cm 0.67m 約 60% Yes 3.600K 3.600K 4.600K 4.600K		
	TR0I-23 3,500K 7.4cm 1.30m 約 80% No 3,500K 3,500K 500K		
	TR01-25 G600K) 8.0cm 0.67m 約 50% Steam Spike 約 2.650K 約 2.650K 1000000000000000000000000000000000000		
	実機条件 (約 140K) 約 4~15cm 1m 約 35~90% - (注 1) 試験条件の過熱度は U0。/Zr0。の相図 ^[14] より固相線温度を約 2,900K とした場合の概算値		
	実機条件の過熱度は事故解析結果による下部プレナム部の溶融物(酸化物層)の過熱度の概算値		
	(注 2) R i c o u - S p a l d i n g 相関式 (第 11 図) による概算評価値		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	High-Speed Water High-Speed ビーマー・レーマー・レーマー・レーマー・レーマー・レーマー・レーマー・レーマー・		
	<u>第12 ALTIAR 表表色の成本</u> 0.14 0.12 0.11 0.09 0.09 0.09 0.09 0.09 0.00 0.09 0.00 0		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	Image: set in the set of t		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第5図 FARO試験装置の概要		

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$ \begin{array}{c} $		
	<u>第9図 COTELS試験の各試験ケースの圧力変化</u>		
	第10図 TROISONED TROISONED		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
			<u>第11図 Ricou-Spalding相関式による</u> <u>粒子化割合のマップ</u>	

炉	備考

	まとめ資料比較表 〔有効性評価 添付資料 3.	3.2]	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料 3.3.2	添付資料 3.3.2	添付資料 3.3.2	
水蒸気爆発の発生を仮定した場合の原子炉格納容器の健全性へ	水蒸気爆発の発生を想定した場合の格納容器の健全性への影響評	水蒸気爆発の発生を仮定した場合の原子炉格納容器の健全性へ	
の影響評価	価	の影響評価	
1 評価の目的	1 評価目的	1 評価の目的	
水蒸気爆発現象は、粗混合、トリガリング、拡大伝播といった		水蒸気爆発現象は、粗混合、トリガリング、拡大伝播といった	・記載方針の相違
段階的な過程によって説明するモデルが提唱されており. これら		段階的な過程によって説明するモデルが提唱されており、これら	【東海第二】
を全て満たさなければ大規模な水蒸気爆発は発生しないと考えら		を全て満たさなければ大規模な水蒸気爆発は発生しないと考え	島根2号炉は、過去に
れている。		られている。	実施された代表的な
溶融炉心が原子炉圧力容器の破損口から落下した際に水蒸気爆	溶融炉心(以下「デブリ」という。)が原子炉圧力容器(以下「R	溶融炉心が原子炉圧力容器の破損口から落下した際に水蒸気爆	FCI の実験から得られ
発が発生する可能性は、これまでの知見からも極めて低いと考え	PV」という。)の破損口から落下した際に水蒸気爆発(以下「S	発が発生する可能性は、これまでの知見からも極めて低いと考え	た知見について記載し
られるが、水蒸気爆発が発生した場合についても考慮し、原子炉	E」という。)が発生する可能性は、これまでの知見からも極めて	られるが、水蒸気爆発が発生した場合についても考慮し、原子炉	ている。
格納容器の健全性に対する影響を確認しておくことは、原子炉格	低いと考えられる。しかしながら, SEが発生した場合を考慮し,	格納容器の健全性に対する影響を確認しておくことは、ペデスタ	
納容器下部への水張り等の格納容器破損防止対策の適切性を確認	格納容器の健全性に対する影響を確認しておくことは格納容器下	ルへの水張り等の格納容器破損防止対策の適切性を確認する上	
する上でも有益な参考情報になると考える。このため、ここでは	部への水張り等の格納容器破損防止対策の適切性を確認する上で	でも有益な参考情報になると考える。このため,ここでは <u>溶融炉</u>	
溶融炉心落下時の水蒸気爆発の発生を仮定し、水蒸気爆発が生じ	も有益な参考情報になると考える。このため、ここでは <u>デブリ落</u>	心落下時の水蒸気爆発の発生を仮定し、水蒸気爆発が生じた際の	
た際の原子炉格納容器の健全性を評価した。	<u>下時のSE発生を想定し,その際の格納容器</u> の健全性を評価する。	原子炉格納容器の健全性を評価した。	
	2. 評価方針		・評価方針の相違
	<u>東海第二発電所のペデスタルは鉄筋コンクリート造の上下層円</u>		【東海第二】
	<u>筒部の中間に床スラブを有する構造であり、デブリ落下時にSE</u>		島根2号炉は内側鋼
	が発生した場合、ペデスタルの側壁(上下層円筒部)及び床スラ		板,外側鋼板,リブ鋼板
	ブに過大な圧力が作用する。		からなる二重鋼板製ペ
	<u>ペデスタルの側壁はRPV支持機能を分担している。SE発生</u>		デスタルであるのに対
	の影響により、ペデスタルの側壁が損傷し、RPV支持機能が喪		し,東海第二はペデスタ
	失した場合には、 R P V が転倒し格納容器本体へ接触する等によ		ル側壁及び床スラブは
	り、格納容器の健全性が損なわれるおそれがある。		鉄筋コンクリート製ペ
	また,ペデスタルの床スラブは,RPV破損時に落下するデブ		デスタルであることか
	リをペデスタル(ドライウェル部)で保持する機能を分担してい		ら,構造の違いにより評
	<u>る。SE発生の影響により、ペデスタルの床スラブが損傷し、デ</u>		価方法が異なる。
	ブリ保持機能が喪失した場合には、サプレッション・チェンバへ		
	デブリが落下し, サプレッション・チェンバを水源とする系統 (残		
	<u> 留熱除去系,代替循環冷却系)に影響を及ぼし,格納容器の冷却</u>		
	ができなくなることで格納容器の健全性が損なわれるおそれがあ		
	<u>る。</u>		
	以上を踏まえ, S E 発生時の格納容器の健全性を評価するため,		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--	--	---	-------------------
	SEが発生した場合のペデスタルの構造健全性を評価し、ペデス		
	タルのRPV支持機能及びデブリ保持機能が損なわれないことを		
	<u>確認する。</u>		
	3評価方法		
2. 評価に用いた解析コード等	(1) 評価条件	2. 評価に用いた解析コード等	
水蒸気爆発の影響を評価するにあたっては、溶融燃料ー冷却材	<u>SEの影響を評価するに当たっては、SE</u> によって発生するエ	水蒸気爆発の影響を評価するにあたっては、溶融燃料ー冷却材	
相互作用によって発生するエネルギ、発生エネルギによる圧力伝	ネルギ,発生エネルギによる圧力伝播挙動及び構造応答が重要な	相互作用によって発生するエネルギ、発生エネルギによる圧力伝	
播挙動及び構造応答が重要な現象となる。よって、これらの現象	現象となる。よって、これらの現象を適切に評価することが可能	播挙動及び構造応答が重要な現象となる。よって、これらの現象	
を適切に評価することが可能である水蒸気爆発解析コード	である <u>SE</u> 解析コードJASMINE <u>及び汎用有限要素解析コー</u>	を適切に評価することが可能である水蒸気爆発解析コードJAS	
JASMINE,構造応答解析コードAUTODYN-2Dにより圧力伝播挙動及	<u>ドLS-DYNA</u> を用いてペデスタルの構造健全性を評価する。	MINE, 構造応答解析コードAUTODYN-2Dにより圧力	・評価条件の相違
び構造応答,格納容器圧力等の過渡応答を求める。		伝播挙動及び構造応答,格納容器圧力等の過渡応答を求める。	【東海第二】
これらの解析コードに対して構築した評価モデル及び入力の詳	本評価に適用するJASMINEコードの解析条件及び解析結	これらの解析コードに対して構築した評価モデル及び入力の詳	東海第二では,鉄筋コ
細は添付資料 1.5.1 の(3)に示している。溶融炉心の物性値は	<u>果の詳細を添付資料 3.3.3 に示す。また、LS-DYNAコード</u>	細は添付資料 1.5.1 の(3)に示している。溶融炉心の物性値は J	ンクリート製格納容器
JASMINE コードに付属している溶融コリウム模擬のライブラリか	<u>の評価モデル及び入力の詳細を添付資料 3.3.4 に示す。</u>	ASMINEコードに付属している溶融コリウム模擬のライブラ	であり,鉄筋構造をモデ
ら、デブリ物性値が実機条件に近いと考えられるライブラリを用		リから、デブリ物性値が実機条件に近いと考えられるライブラリ	ル化するために,
いた。また、これらの解析コードへの入力条件の一部は、シビア		を用いた。また、これらの解析コードへの入力条件の一部は、シ	LS-DYNA-3D が用いられ
アクシデント総合解析コード MAAP を用いて評価した,「3.3 原子		ビアアクシデント総合解析コードMAAPを用いて評価した,	ている。一方、島根2号
炉圧力容器外の溶融燃料ー冷却材相互作用」の評価結果を用いた。		「3.3 原子炉圧力容器外の溶融燃料ー冷却材相互作用」の評価結	炉および柏崎 6/7 のペ
		果を用いた。	デスタルは,周方向に規
(添付資料 1.5.1)		(添付資料 1.5.1)	則的な構造物であるた
			め, AUTODYN-2D が用い
3. 評価条件		3. 評価条件	られている。
主要解析条件を表 1 に示す。MAAP による解析の結果から溶融		主要解析条件を表1に示す。MAAPによる解析の結果から溶	
炉心は原子炉圧力容器底部の中央から落下するものとし, 溶融炉		融炉心は原子炉圧力容器底部の中央から落下するものとし、溶融	
心が原子炉圧力容器の破損口から落下する際には、溶融炉心・コ		炉心が原子炉圧力容器の破損口から落下する際には、溶融炉心・	
ンクリート相互作用の緩和策として、原子炉格納容器下部に水位	なお,これらの解析コードにおいて,ペデスタル(ドライウェ	コンクリート相互作用の緩和策として, ペデスタルに水位 2.4mの	・運用の相違
<u>2m</u> の水張りが実施されているものとした。	ル部)の水位は 1m とし, コリウムシールドは模擬しない条件とす	水張りが実施されているものとした。	【柏崎 6/7, 東海第二】
	<u> </u>		島根2号において,
			マネジメントで想定す
			る水張り水位を評価条
			件に設定。
なお, 応力評価の対象としている <u>内側及び外側鋼板 (厚さ 30mm)</u>		なお、応力評価の対象としている <u>内側鋼板(厚さ 32mm)及び外</u>	・設備設計の相違
の降伏応力は約 490MPa である。		<u>側鋼板(厚さ 38mm)</u> の降伏応力は約 490MPa である。	【柏崎 6/7】
			内側および外側鋼板
			厚さの相違。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(2) 判断基準		・設備設計の相違
	炉心損傷防止に失敗し、重大事故時を想定する防護レベルにお		【東海第二】
	いて、格納容器の健全性維持に必要な安全機能であるRPV支持		島根2号炉は内側鋼
	機能及びデブリ保持機能が損なわれないことを確認する観点か		板,外側鋼板,リブ鋼板
	ら、本評価では構造物が終局限界状態に至らないことを確認する		からなる二重鋼板製ペ
	ための判断基準を設定する。		デスタルであるのに対
	第1表にペデスタル構造健全性評価の判断基準を示す。		し,東海第二はペデスタ
			ル側壁及び床スラブは
	<u>a. 側壁(RPV支持機能)</u>		鉄筋コンクリート製ペ
	ペデスタルの側壁は上下層円筒構造であることから、同様な		デスタルであることか
	円筒形状の構築物の設計規格が示されている,発電用原子力設		ら,構造の違いにより評
	備規格コンクリート製原子炉格納容器規格((社)日本機械学会,		価の判断条件が異なる。
	2003) (以下「CCV規格」という。)を準用して判断基準を設		
	定する。		
	コンクリートの圧縮ひずみについては, CCV規格		
	CVE-3511.2 荷重状態IVのシェル部コンクリートの許容ひずみ		
	である 3,000 μ を基準として, R P V 支持機能に影響を及ぼす		
	範囲の圧壊が生じないこととする。鉄筋の引張ひずみについて		
	は, C C V 規格 CVE-3511.2 荷重状態IVの鉄筋の許容ひずみであ		
	<u>る 5,000 μ を超えないこととする。SE時に発生する面外方向</u>		
	のせん断については, C C V 規格 CVE-3514.2 荷重状態IVにおけ		
	る終局面外せん断応力度を設定し,上部側壁で 3.09N/mm ² ,下		
	部側壁で 2.65N/mm ² を超えないこととする。別添1に終局面外		
	せん断応力度の算定過程を示す。		
	また、SEは爆発事象であり衝撃荷重が問題となることから、		
	建築物の耐衝撃設計の考え方((社)日本建築学会,2015))(以		
	下「AI」耐衝撃設計の考え方」という。)において進行性崩壊		
	回避の考え方が示されていることを参考に、構造物の崩壊に対		
	する健全性を確認する観点より、SEによる側壁の変位が増大		
	しないことを確認することとする。		
	b. 床スラブ(デブリ保持機能)		
	コンクリートの圧縮ひずみについては、側壁と同様にCCV		
	規格を準用することとし、荷重状態IVのコンクリートの許容ひ		
	ずみである 3,000 μ を基準として, デブリ保持機能に影響を及		
	ぼす範囲の圧壊が生じないこととする。鉄筋についても側壁と		
	同様に荷重状態Ⅳの鉄筋の許容ひずみである 5,000 µ を超えな		
	いこととする。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	ペデスタルは上下層円筒部の中間に円盤形の床スラブを有す		
	る構造であるが、この構造に対する面外せん断の判断基準設定		
	に当たり、CCV規格には適した規定がないことから、コンク		
	リート標準示方書 [構造性能照査編]((社)土木学会,2002))		
	(以下「コンクリート標準示方書 [構造性能照査編]」という。)		
	いこととした。別添2に終局面外せん断応力度の算定過程を示		
	構造物の崩壊に対する健全性を確認する観点より、SEによる		
	床スラブの変位(たわみ量)が増大しないことを確認すること		
	とする。		
	【比較のため 「添付資料333」の一部を記載】		
4 亚価結果		▲ 輕価結果	
* 町岡畑本 水素気爆発に伴うエネルギ 百子恒枚紬茨哭下部内側及び外側	第3回に水蒸気爆発に伴う運動エネルギの堆移を示す	*************************************	
(,))開始版の向方向及び軸方向応力の推移を図5に示す。//例 細垢の国方向及び軸方向広力の推移を図5に示す		新板の向方向及び軸方向応力の推移を図5に示す。 下向野板の向	
判似 の向力向及び知力向心力の推移を図るに小り。	→ 茎仁爆びのび仕た相字」た相会に ペニックル (ドラノウ	力回及い軸力回応力の推移を図るに小り。 - 北茎ケ爆発の発生た相索」た相合にペニュなルの北に仁またわ	
小烝丸爆発の先生を忠正した場合に原于炉格納谷益下部下ノイ	小祭凤爆発の先生を怨足した場合にハリスクル(トノイリエ ル部)のセロにまたれて医動エネルギの見上体はかりのUIでた	小烝丸爆発の先生を忠正した場合にハウムタルの小に伝達され	細花が用の相当
リエルの水に伝達される連動エイルキの取入値は、 <u>約(M</u>)での	ル前)の水に伝達される連動エイルキの最人値は <u>約3.3M」</u> であ	る運動エイルキの取入値は、 <u>約14M」</u> である。このエイルキを入力	・ 解析結果の相遅
る。このエイルキを入力とし、原土炉栓船谷益下部内側及い外側		とし、ハナムタル内側及の外側鋼板にかかる応力を再付した結果,	【相呵 0/1, 果御弗二】
鋼板にかかる応力を解析した結果、原子炉格納谷益下部の内側鋼		<u>ヘナスタルの内側輌板にかかる応力は約233MPa</u> ,外側輌板にかか	局根2亏炉の万か, 時は a/2 古次体子しい
		る応力は <u>約140MPa</u> となった。これは内側及び外側鋼板の降伏応力	相崎 6/7, 東海弗 - と比
なった。これは内側及び外側鋼板の降伏応刀を大きく下回る値で		を大さく下回る値であり、かつ、弾性範囲内にあることから、原	戦して水蒸気爆発で発 4.) まにも
あり、かつ、弾性範囲内にあることから、原子炉圧力容器の支持		子炉圧力容器の支持に支障が生じるものではない。なお、構造上、	生する運動エネルキー
に支障が生じるものではない。なお、構造上、原子炉格納容器ト		ペデスタル内側鋼板にかかる応力の方が外側鋼板にかかる応力よ	が大きいため、鋼板の応
部の内側鋼板にかかる応力の方が外側鋼板にかかる応力よりも大		りも大きくなる傾向があるが、原子炉圧力容器の支持機能につい	力が大きくなると考え
きくなる傾向があるが,原子炉圧力容器の支持機能については原		てはペデスタルの外側鋼板のみで維持可能である。	られる。
子炉格納容器下部の外側鋼板のみで維持可能である。			【柏崎 6/7】
			ペデスタル直径が島
			根2号炉の方が小さく,
			発生源(ガスバグ)と鋼
			板の距離が近いため,さ
			らに応力が大きくなる
			と考えられる。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	4. 評価結果		
	 (1) 側壁(RPV支持機能) 		・解析結果の相違
	<u>a. 側壁の変位</u>		【東海第二】
	第 1 図に側壁の半径方向変位時刻歴を示す。最大変位はX		島根2号炉は内側鋼
	方向で約0.16mmにとどまり,変位は増大していないことから,		板,外側鋼板,リブ鋼板
	SE後の構造物の進行性の崩壊はない。		からなる二重鋼板製ペ
	<u>b. コンクリートの圧縮ひずみ</u>		デスタルであるのに対
	第3図に最小主ひずみ(圧縮ひずみ)分布を示す。側壁に		し,東海第二はペデスタ
	<u>はCCV規格に基づく許容ひずみ 3,000μ を超える部位は生</u>		ル側壁及び床スラブは
	じないことから、機能に影響を及ぼす圧壊は生じない。		鉄筋コンクリート製ペ
	c. 鉄筋の引張ひずみ		デスタルであることか
	第4図に鉄筋の軸ひずみ(引張ひずみ)分布を示す。側壁		ら,構造の違いにより評
	の鉄筋に発生する軸ひずみは約 184μ であり, CCV規格に		価結果および評価の判
	基づく許容ひずみ 5,000μ を超えない。		断条件が異なる。
	d. 側壁の面外せん断		
	第2表に側壁の面外せん断評価結果を示す。発生するせん		
	断応力度は上部約 0.93N/mm ² 及び下部約 0.77N/mm ² であり,		
	<u>それぞれのCCV規格に基づく終局面外せん断応力度であ</u>		
	<u>る,3.09N/mm²及び2.65N/mm²を超えない。</u>		
	(2) 床スラブ (デブリ保持機能)		
	a. 床スラブの変位(たわみ量)		
	第 2 図に床スラブの鉛直方向変位の時刻歴を示す。最大変		
	位は約 2.0mm とどまり,変位は増大していないことから, S		
	<u>E後の構造物の進行性の崩壊はない。</u>		
	b. コンクリートの圧縮ひずみ		
	第3図に示したとおり、CCV規格に基づく許容ひずみ		
	3,000 µ を超える部位は、床スラブ上面の僅かな範囲にとどま		
	ることから、機能に影響を及ぼす圧壊は生じない。		
	c. 鉄筋の引張ひずみ		
	第4図に示したとおり、床スラブの鉄筋に発生する軸ひず		
	<u>みは約364μであり、CCV規格に基づく許容ひずみ5,000μ</u>		
	を超えない <u>。</u>		
	d. 床スラブの面外せん断		
	第3表に床スラブの面外せん断に対する評価結果を示す。		
	発生するせん断応力度は約3.70N/mm ² であり,終局面外せん		
	断応力度 4.33N/mm ² を超えない。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4表にペデスタル構造健全性評価の評価結果のまとめを示		
	<u>t.</u>		
	<u>5. まとめ</u>		
以上の結果から,水蒸気爆発の発生を想定した場合であっても,	<u>SE解析コードJASMINE</u> ,汎用有限要素解析コードLS	以上の結果から、水蒸気爆発の発生を想定した場合であって	
原子炉圧力容器の支持機能は維持され格納容器の健全性に支障が	-DYNAにより, SEの発生を想定した場合の格納容器健全性	も,原子炉圧力容器の支持機能は維持され格納容器の健全性に	
ないことから、原子炉格納容器バウンダリの機能を維持できるこ	への影響を評価した。その結果, SE時のペデスタル(ドライウ	支障がないことから、原子炉格納容器バウンダリの機能を維持	
とを確認した。	エル部)床面及び壁面に発生する応力やひずみは判断基準を満足	できることを確認した。	
	し、SE後においても変位の増大はないことから、ペデスタルに		
以上	要求されるRPV支持機能及びデブリ保持機能が損なわれないこ	以上	
	<u>とを確認した。したがって、SEの発生を想定した場合であって</u>		
	も、格納容器の健全性は維持される。		

炉	備考
AUTODYN-2D で応力を解析	・解析結果の相違 【柏崎 6/7,東海第二】 ペデスタル水深や粗 混合量等の違いによる 差異。
降休応力:490MPa - <t< td=""><td>【柏崎 6/7】 島根 2 号炉の方が, 柏崎 6/7 と比較して水 蒸気爆発で発生する運 動エネルギーが大きい ため,鋼板の応力が大き くなると考えられる。 また,ペデスタル直径が 島根 2 号炉の方が小さ く,発生源(ガスバグ) と鋼板の距離が近いた め,さらに応力が大きく なると考えられる。</td></t<>	【柏崎 6/7】 島根 2 号炉の方が, 柏崎 6/7 と比較して水 蒸気爆発で発生する運 動エネルギーが大きい ため,鋼板の応力が大き くなると考えられる。 また,ペデスタル直径が 島根 2 号炉の方が小さ く,発生源(ガスバグ) と鋼板の距離が近いた め,さらに応力が大きく なると考えられる。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
<u>一周方向応力</u> <u>一周方向応力</u> <u>465</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>405</u> <u>505</u> <u>60</u> <u>60</u> <u>60</u>		(\mathbf{r}_{4}) $($
図 4 内側鋼板の周方向及び軸方向応力の推移※1		図4 内側鋼板の周方向及び軸方
<u>— 周方向応力 — 釉方向応力</u>		250 200 150 50 -50 -50 -50 -50 -50 -50 -50 -50 -5
図5 外側鋼板の周方向及び軸方向応力の推移※1		図5 外側鋼板の周方向及び軸方
※1 JASMINE によって評価した水蒸気爆発による運動エネルギ (図 1)の最大値を AUTODYN への時刻 0 での入力とし, <u>格納</u> <u>容器下部</u> 鋼板の応力の推移(図 2~5)を評価している。この ため, 図 1 と図 2~5 の時刻歴は一致しない。		※1 JASMINEによって評価した水 エネルギ(図1)の最大値をAUT(の入力とし、ペデスタル鋼板の応力 評価している。このため、図1と図 しない。

	柏崎	刈羽原	子力発電所	f 6/	7 号炉	(2017.12	2.20版)		東海第二発電	所(2018. 9. 12 版)				島根原	京子力発 的	電所 2	号炉			備考
ことの容融燃料 - 冷却材相互作用(水蒸気爆発の評価))		1 制御棒駆動機構、ウジング1本の外径として設定 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	客融炉心ーコンクリート相互作用による格納容器破損防止対策として, 落下 した落融炉心を微粒子化し、十分な除熱量を確保するため, あらかじめ木張 りを行うものとして手順上定めている値 則	外部水源の水温として設定 9 1	7 FAR0 試験結果におけるデブリ粒径分布をもとに設定	 EARO, KROTOS 等の各種試験結果におけるデブリ粒径分布をもとに設定 	2. 20 版)	- 重複する条件を除く。	東海第二発電	所(2018. 9. 12版)	お知めの恣斗嫌害(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	<u> 1111-1111-1111-1111-1111-1111-1111-11</u>	0.2m 制御棒駆動機構ハウジング1本の外径として設定	溶融炉心ーコンクリート相互作用による格納容器破損防止対 2.4m 策として,落下した溶融炉心を微粒子化し,十分な除熱量を確 保するため,予め水張りを行うものとして手順上定めている値	35°C 外喪大減の水崩として設め うつて うつて うつて うつ う う う の た に が の が が が の が に う し の が の が の が に う の の が の う の の の の の の の の の の の の の の	1 4 EARO試験結果におけるデブリ粒径分布をもとに設定 5 3	50 m FARO, KROTOS等の各種試験結果におけるデブリ粒径 が布をもとに設定	NE の解析結果を もとに設定	用」と重複する条件を除く。	備考 ・解析条件の相違 【柏崎 6/7】 ペデスタル水深およ び水温の差異。
表1 主要解析条件(原子炉圧	解析コード 項目 主要	MAAP [※] 原子炉圧力容器の破損径	ペデスタル水深	原子炉格納容器下部への水 張りに用いる水の温度	JASMINE 粗混合粒子径	爆発計算時の微粒子径	AUTODYN-2D 溶融燃料ー冷却材相互作用 JASMINE したよる発生エネルギ も、	※「3.3 原子炉圧力容器外の溶融燃料-冷却材相互作用			主 1 十田部大家	<u> マ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</u>	MAAP [*] 原子炉圧力容器の破損径	ペデスタル水深	ペデスタルへの水張りに用いる水の温度	JASMINE 粗混合粒子径	爆発計算時の微粒子径	AUTODYN-2D 用による発生エネルギ		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			Ī	東海第二	二発電展	所(201	8. 9. 12	版)			島根原子力発電所 2号炉	備考
		準用規格等	衝撃設計の考え方	格 CVE-3511. 2	格 CVE-3514. 2	格 CVE-3511. 2	衝撃設計の考え方	格 CVE-3511.2	──卜標準示方書 能照査編〕	格 CVE-3511.2		・評価条件の相違 【東海第二】 島根2号炉は内側鋼 板,外側鋼板,リブ鋼板 からなる二重鋼板製ペ デスタルであるのに対 し,東海第二はペデスタ ル側壁及び床スラブは
			」所行	C V 規オ	C V 規材	C V 規オ	[]耐	℃ U 規材	ノクリー 専造性値	こV規相		鉄筋コンクリート製ペ
			AI	CO	C	C	A I	C		C C		デスタルであることか
	評価の判断基準		進行性の崩壊がない	3,000μ)が生じない	:3.09 N/mm ² , 下部側壁	-	進行性の崩壊がない	3,000μ) が生じない	^{m2})を超えない			ら,構造の違いにより評 価の判断条件が異なる。
	第1表 ペデスタル構造健全性請	判断基準	変位が増大せず、SE後の構造物の	機能に影響を及ぼす範囲の圧壊 (3	終局面外せん断応力度(上部側壁: 2.65N/mm ²)を超えない	許容ひずみ(5,000μ)を超えない	変位が増大せず、SE後の構造物の	機能に影響を及ぼす範囲の圧壊 (:	終局面外せん断応力度(4.33N/m	許容ひずみ(5,000μ)を超えない		
		項目	変位	圧縮ひずみ	面外せん断	引張ひずみ	変位	圧縮ひずみ	面外せん断	引張ひずみ		
		8位	П	ンクリー	⁄_	鉄統	п	ンクリー		殺税		
		新 任 弟		间	留			床ス	ラブ			
		機能		지 더 > -	支持機能			デブリロ	保持機能			
		I					1					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東	夏海第二発電所(20)18.9.12版)		島根原子力発電所 2号炉	備考
	第2表	側壁の面外せんと	新に対する評価結	果		・評価条件の相違
	<u></u> 家体型は	惑生亡力度	和陈耳滩	⇒⊽ /Ⅲ※		【東海第二】
		光生心力度	刊例 茲 毕	а н 1ш		島根2号炉は内側鋼
		※1 0.93 N/mm²	3.09 N/mm ²	0		板,外側鋼板,リブ鋼板
	側壁下部	約 0.77 N/mm²	2.65 N/mm ²	0		からなる二重鋼板製ペ
	※ 「〇」解析結	「果の発生応力度が判	断基準を満足する			デスタルであるのに対
						し,東海第二はペデスタ
	第3表)	末スラブの面外せん	し断に対する評価	結果		ル側壁及び床スラブは
	評価部位	発生応力度	判断基準	評価*		鉄筋コンクリート製ペ
	(中マラブ	±π 2.70 N ∠mm ²	4 33 N / mm ²			デスタルであることか
						ら,構造の違いにより評
	※ 「〇」解析結	果の発生応力度が判	断基準を満足する			価結果および評価の判
						断条件が異なる。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				東海第	5二発電	፤所(2	018.9.	12版)				島根原子力発電所 2号炉	備考
		評価*	0	0	0	0	0	0	0	0			 ・評価条件の相違 【東海第二】 島根2号炉は内側鋼 板,外側鋼板,リブ鋼板
											-		からなる二重鋼板製ペ
				いれず	/mm ² /mm ²			画を) 本ダル このるのに対
		₩	しない	生じィ	. 93N, . 77N,	п	L tru	エジン	mm ²	п			ル側壁及び床スラブは
		析結	墙大	聞い	资 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	184	唐 大	メリビ	70N	364			鉄筋コンクリート製ペ
		角	位は	は側	三 開 開 記 二	柒	位は	は床	約3.	、			デスタルであることか
	Ŕ		痰	田姨	上部()下部()		痰	田穂					ら,構造の違いにより評
	₩ -2)										-		価結果および評価の判
	果の				3側壁								断条件が異なる。
	価結		ばない	ない	間下		いない	ない					
	の評グ		」換か	生じ	nm ² ,		」「「」「」」	住い	172				
	平価(生の肩	žÅ (1∕N6		生の貞	žų (超え				
	調査		進行	π 000	: 3.0		進行	π 000	÷				
	健全	崔 演	物の	(3,	圓壁	172	物の	(3,	2 mm 2	17			
	構造	判断	構造	王姨	上部(昭バイ	↓ 構 (1)	田姨	33N/	昭えた			
	NK		後の	直囲の	度 こ い (_) を 清	後の	直囲の	£ (4.	() を見			
	K ĨL		SI	ぼす争	らち むち 聞 ろう	π 00(SI	ぼす亀	芯力馬	π 000			
	Ÿ		ل ائة,	を及り	いん しん	(5, 0	۴. [%] ,	を及し	ん断し	(5, 0			
	表		墙大	影響	外 社 111 ²	4.4	墙大	影響	外也	4.4	10		
	第 4		位が	い部門	局面 65N/	容ひ	位が	い記	国面	なひ	足す		
			痰	獭	然 2.	掉	- K	蒸	绕	指	- を		
		_		ten 1	し、海	ton		ten 1	漸	ten 1	1 年 棟		
		風		宿ひす	4 4 4 7	長ひす	뉟	痛ひす	<u>ү</u> Ф. Ф.	長ひす	51年11月		
			変位	E	画	- - - - - - - - - - - - - - - - - - -	変	H Щ	画	<u>3</u> [3	話果?		
		3位	П	ンクリー		鉄筋	п	ンクリー		鉄筋	解析		
		平価音			: 434-11			1K ×	10 %		ō		
		1)1122			: 1121)				11 / 1 /				
		機能		$\bowtie \square > \downarrow$	N 持機能			デブリロ	床持機能		*		
							1						

炉	備考
	・評価条件の相違
	【東海第二】
	島根2号炉は内側鋼
	板,外側鋼板,リブ鋼板
	からなる二重鋼板製ペ
	デスタルであるのに対
	し,東海第二はペデスタ
	ル側壁及び床スラブは
	鉄筋コンクリート製ペ
	デスタルであることか
	ら,構造の違いにより評
	価結果および評価の判
	断条件が異なる。

炉	備考
	・評価条件の相違
	【東海第二】
	島根2号炉は内側鋼
	板,外側鋼板,リブ鋼板
	からなる二重鋼板製ペ
	デスタルであるのに対
	し,東海第二はペデスタ
	ル側壁及び床スラブは
	鉄筋コンクリート製ペ
	デスタルであることか
	ら,構造の違いにより評
	価結果および評価の判
	断条件が異なる。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			・評価条件の相違
			【東海第二】
			島根2号炉は内側鋼
			板,外側鋼板,リブ鋼板
			からなる二重鋼板製ペ
			デスタルであるのに対
			し,東海第二はペデスタ
			ル側壁及び床スラブは
			鉄筋コンクリート製ペ
			デスタルであることか
			ら,構造の違いにより評
			価結果および評価の判
			断条件が異なる。
	第3図 コンクリートの最小主ひすみ(圧縮ひすみ)分布		
	第4図 鉄筋の軸ひずみ分布		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考	
		別添1		
	側壁の終局面外せん断応力度		・評価方針の相違	
			【東海第二】	
	1. 算定条件		島根2号炉は内側鋼	
	ペデスタルの側壁は、円筒形シェル構造であることか	Б, С	板,外側鋼板,リブ鋼板	
	C V 規格 CVE-3514.2 荷重状態Ⅳにおけるシェル部の終	局面外	からなる二重鋼板製ペ	
	せん断応力度の算定式を適用し、側壁の終局面外せん断	応力度	デスタルであるのに対	
	を算定する。第1図に算定対象部位を示す。	し,東海第二はペデスタ		
			ル側壁及び床スラブは	
	$\tau_H = 10 p_{t\theta} \cdot f_y / (13.2\sqrt{\beta} - \beta)$		鉄筋コンクリート製ペ	
	ここで、		デスタルであることか	
	$ au_H$:終局面外せん断応力度 (N/mm ²)		ら,構造の違いにより評	
	$p_{t heta}$:円周方向主筋の鉄筋比(一)		価方法が異なる。	
	f_{γ} :鉄筋の許容引張応力度 (N/mm ²)			
	β : 次の計算式により計算した値 $\beta = r/t$			
	r :シェル部の胴の厚さの中心までの半径(mm)			
	t :シェル部の胴の厚さ(mm)			
	各項目の数値を下表に示す。			
	項目数値			
	p _{tθ} :円周方向主筋の鉄筋比			
	上 部 <i>f_y</i> :鉄筋の許容引張応力度 345N/mm	2		
	(創) 壁 r :シェル部の胴の厚さの中心までの半径			
	t:シェル部の胴の厚さ			
	$p_{t heta}$:円周方向主筋の鉄筋比			
	下	2		
	 (側) (正) (T) (T)			
	。			
	2. 昇正結果			
	昇正の結果,側壁の終向面外せん断応刀度は上部側壁で (2) 工業期間時での cpv (2) たこ	č 3. U9N		
	/ 皿=~, 下部測壁 (2.65N/ 皿= となる。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	为10 并仁八豕叩吐		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別添 2		
	床スラブの終局面外せん断応力度		・評価方針の相違
			【東海第二】
	1. 算定条件		島根2号炉は内側鋼
	SE時の床スラブのせん断力に対する検討は、コンクリート		板,外側鋼板,リブ鋼板
	標準示方書 [構造性能照査編] に基づき,終局限界状態に至ら		からなる二重鋼板製ペ
	ないことを確認する。評価対象となる床スラブの形状は円盤形		デスタルであるのに対
	であり、SEによる分布荷重を受ける。		し, 東海第二はペデスタ
	せん断に対する検討に際して、分布荷重を受ける円盤スラブ		ル側壁及び床スラブは
	の部材応力分布について、機械工学便覧を参照し、対象とする		鉄筋コンクリート製ペ
	部材のせん断力の最大値が生じている断面の曲げモーメント及		デスタルであることか
	びせん断力と躯体の形状寸法より、せん断スパン比が 1.0 以下		ら,構造の違いにより評
	であることを確認した。一般的に、せん断スパン比が 1.0 以下		価方法が異なる。
	である梁部材はディープビームと呼ばれており,本検討では,		
	コンクリート標準示方書 [構造性能照査編] に示されるディー		
	プビームの設計せん断耐力式を適用し,床スラブの終局面外せ		
	ん断応力度を設定する。		
	$V_{cdd} = \beta_d \cdot \beta_p \cdot \beta_a \cdot f_{dd} \cdot b_w \cdot d / \gamma_b$		
	ここで,		
	$f_{dd} = 0.19 \sqrt{f'_{cd}} (N / \text{mm}^2)$		
	$eta_d = \sqrt[4]{1/d}$ ただし、 $eta_p > 1.5$ となる場合は 1.5 とする		
	$\beta_p = \sqrt[3]{100 p_w}$ ただし、 $\beta_p > 1.5$ となる場合は 1.5 とする		
	$\beta_a = \frac{5}{1 + (a/d)^2}$		
	f'_{ad} : コンクリートの設計圧縮強度 (N/mm ²)		
	d : 有効せい (m)		
	p_w :引張鉄筋比(一)		
	a/a: じんぼ (一) $b_{\rm m}$:腹部の幅 (mm)		
	γ_b :部材係数 (一)		
	各項目の数値を下表に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12	2版)	島根原子力発電所 2号炉	備考
	項目	数值		
	f' cd:コンクリートの設計圧縮強度	32.86N/mm ²		
	コンクリートの設計基準強度	22.06N/mm ²		
	压縮強度動的増倍率**	1.49		
	d :有効せい			
	p_w :引張鉄筋比			
	<i>a/d</i> : せん断スパン比	0.43		
	b w:腹部の幅			
	γ_b :部材係数	1.3		
	※ 次項参照			
	2. 圧縮強度動的増倍率の算定			
	一般に、コンクリートの強度、ヤング	系数等の材料特性は,		
	コンクリートに作用する荷重の載荷速度に	こ依存する。その強度		
	とヤング係数は、応力速度又はひずみ速!	度の対数に比例して増		
	加することが明らかになっていることよ	り、床スラブの終局面		
	外せん断応力度算定においては、圧縮に対	対する材料強度にひず		
	み速度効果を考慮することとし,本評価	ではコンクリート標準		
	示方書 [構造性能照査編] において具体的	的計算方法が示されて		
	いる, CEB-FIP Model Code 1990 による	王縮強度動的増倍率を		
	設定した。			
	LS-DYNAコードによるSE解析	では、せん断検討範囲		
	の床スラブのコンクリート要素が経験する	るひずみ速度が 30s ⁻¹		
	以下であるため,その範囲における CEB-	-FIP Model Code 1990		
	の圧縮強度動的増倍率の算定式を以下に表	下す。		
	$f_{c,imp}/f_{cm} = (\dot{\varepsilon_c}/\dot{\varepsilon_{c0}})^{1.026\alpha_s}$ for $ \dot{\varepsilon_c} \le 30$	s ⁻¹		
	ここで,			
	$\alpha = \frac{1}{2}$			
	$u_s = \frac{1}{5 + 9f_{cm}/f_{cm0}}$			
	$f_{c,imp}$: 衝撃時の圧縮強度 f_{cm} : 圧縮強度 = 225kg/cm ² ×0.098 f_{cm0} : 10MPa $\dot{\epsilon}_{c}$: ひずみ速度 ^{**} = 0.5 s ⁻¹ $\dot{\epsilon}_{c0}$: 30×10 ⁻⁶ s ⁻¹	80665 ≒ 22.06 MPa		
	※ LS=DYNA⊐ートを用いたSE解 ひずみ速度に基づき設定	ゆい いわり の 木 ヘ フ ノ 端前の		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	以上より、圧縮強度の動的増倍率は 1.49 となる。		
	3. 算定結果		
	ディープビームの設計せん断耐力V _{cdd} は,約6,078 kN となり,		
	終局面外せん断応力度として 4.33 N/mm ² となる。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別添 3		
	SE発生時の面外せん断応力度の算定方法		・評価方針の相違
			【東海第二】
	1. 面外せん断に対する検討範囲		島根2号炉は内側鋼
	(1) 床スラブの検討範囲		板,外側鋼板,リブ鋼板
	第1図にペデスタルの床スラブの形状寸法を示す。ペデス		からなる二重鋼板製ペ
	タルの床スラブは直径 6,172mm, 板厚___の円盤形状で		デスタルであるのに対
	あり, SE時には圧力波の伝播による分布荷重を受ける。 面		し,東海第二はペデスタ
	外せん断に対する検討に際して、分布荷重を受ける円盤スラ		ル側壁及び床スラブは
	ブの部材応力分布について,機械工学便覧の円板の応力計算		鉄筋コンクリート製ペ
	式に基づき、対象とする部材のせん断力(Q)の最大値が生		デスタルであることか
	じている断面の曲げモーメント(M)及びせん断力(Q)に		ら,構造の違いにより評
	よりせん断スパン比を確認した。第2図に曲げモーメント及		価方法が異なる。
	びせん断力分布図を示す。せん断力の最大値が生じる断面は		
	スラブ端部であり,曲げモーメントとの関係を算定した結果,		
	せん断スパン比が 1.0 以下であった。一般的にせん断スパン		
	比が 1.0 以下である梁部材は、ディープビームと呼ばれてお		
	り、本検討では、コンクリート標準示方書 [構造性能照査編]		
	に示されるディープビームの設計せん断耐力式に適用し、終		
	局限界に対する構造健全性を確認する。		
	前述のとおり, 東海第二発電所のペデスタルの床スラブは,		
	躯体の形状、寸法及び応力状態より、せん断スパン比が小さ		
	い構造物である。本評価に用いる検討範囲及び検討用のせん		
	断力については,原子力発電所耐震設計技術規程 JEAC		
	4601-2008((社)日本電気協会, 2008)において, 主要な荷		
	重が分布荷重又は多点荷重で、材料非線形解析手法を用いて		
	具体的な部材性能照査を行う場合の参考図書として記載され		
	ている原子力発電所屋外重要土木構造物の耐震性能照査指		
	針・マニュアル((社)土木学会, 1992)を用いて検討範囲及		
	び検討用せん断力の設定を行った。		
	第3図に床スラブの形状及び発生するせん断力分布の概念		
	図を示す。検討断面の位置は側壁内側のスラブ端部からの距		
	離 x に設定する。なお, 距離 x の上限値として有効せいの 1.5		
	倍,下限値として断面せいの1/2倍と規定されているため,		
	本評価においては,安全側に下限値となる断面せいの1/2倍		
	であるとし、更に検討用のせん断力についても、スラ		
	ブ端部からの位置のせん断力ではなく,距離 x から部		
	材端部までのせん断力分布の平均値を用いた値を検討用のせ		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2	018. 9. 12 版)	島根原子力発電所	2 号炉	備考	
ん敗	うとした。第4図に、解析	所モデルにおける床スラフ	`検討			
範囲](LS-DYNA解析結界	見の評価におけるせん断力	の抽			
出筆	出範囲)を示す。					
(2) 俱	壁の検討範囲					
	第 5 図に側壁検討範囲を	示す。ペデスタルの側	壁は			
EL.	12.184mにて上部と下部の1	二階層に分けられている該	計で			
ある	ある。SE発生時の水張高さであるペデスタル床面高さ 1m ま					
での	の側壁に直接動的荷重が加わることから、側壁の検討断面					
は上	は上部、下部のそれぞれの水の接する高さの断面とした。					
2. 面外	せん断応力度の算定					
面外	せん断応力度の算定につい	ヽて, 床スラブを例に説明 [、]	する。			
なお.	側壁についても床スラブと	:同様に面外せん断応力度	を 算			
定して	いる。					
第6	図にペデスタル床スラブダ	耑部の躯体形状の概念を 示	; † 。			
また,	第7図に直交座標系応力局	戊分を示す。床スラブ端 部	1列			
目の名	目の各要素のせん断力(Q(1, 1)~Q(1, j))は,直交座標系					
におけ	における τ _{vz} 応力成分に相当するせん断応力度 (τ _{vz} (1, 1) ~					
au yz (τ _{yz} (1, j))を要素毎に取り出し,要素毎のせん断断面積(A					
(1, 1	l) ~A (1, j)) をそれぞれ	1.乗じることにより算定す	る。			
床スラ	ブ端部の1列目の要素幅当	自たりの面外せん断応力度	は,			
スラフ	の厚さ方向(1~j 行目)の	の各要素のせん断力(Q(l, 1)			
\sim Q (1	\sim Q(1, j))を合算した値($\sum_{i=1}^{j} Q_{(1, i)}$)に 1 列目のせん断断					
面積	面積 $(\sum_{i=1}^{j} A_{(1, i)})$ で除して,スラブ端部 1 列目の面外せん断					
応力度	E (τ ₁)を算定する。したオ	バって, k列目の面外せん	断応			
力度	力度 (τ_k) は, $\tau_k = \sum_{i=1}^j Q_{(k,i)} / \sum_{i=1}^j A_{(k,i)}$ で表すことができ					
る。次	る。次に、列毎の面外せん断応力度 $(\tau_1 \sim \tau_k)$ に、それぞれの					
半径方	半径方向要素幅を乗じて合算した値を検討範囲の幅で除すこと					
により	,検討範囲における面外も	せん断応力度を算定する。	第 1			
表に本	、手順により算定した SE チ	隆生時の面外せん断応力度	を示			
す。						
	第1表 SE発生時の面外せん断応力度					
	評価対象部位	発生応力度				
	上部	約 0.93 N/mm²				
	19)空 下部	約 0.77 N/mm²				
	床スラブ	約 3.70 N/mm ²				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第1図 ペデスタルの床スラブの形状寸法		
	<i>l</i> :部材長 <i>W_r</i> :分布荷重 <i>w_r(l/2)²</i> 曲げモーメント (M) 分布図		
	<i>l</i> :部材長 <i>W_r</i> :分布荷重 せん断力(Q)分布図 2		
	第2図 曲げモーメント及びせん断力分布の関係		
	ボデスタル床スラブ 引張鉄筋位置 h : 断面せい d : 有効せい a : せん断スパン X : 端部から検討断面の距離 (せん断力の平均化範囲) せん断力 (Q) 成式 デスタル 側壁 ただし、 h2 \leq X \leq 1.5d		
	第3図 床スラブの形状及び発生するせん断力分布の概念		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4図 床スラブ部解析モデルにおける面外せん断力の検討範囲		
	第5図 側壁部解析モデルにおける面外せん断力の検討範囲		
	$(10) \times A(1, 0) = Q(1, 0)$		
	$\mathbb{R}^{3,\overline{7},\overline{7}}$		
	$1 \bigoplus I \rightarrow 1$ $2 \bigoplus I \rightarrow 1$ $2 \bigoplus I \rightarrow 1$ $1 \bigoplus I \rightarrow 1$ $1 \bigoplus I \rightarrow 1$ $2 \bigoplus I \rightarrow 1$ $1 \bigoplus I \rightarrow 1$		
	j 段目 →		
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ Y \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \\ \end{array} \\ $		
	<1 列目の面外せん断応力の算出>		
	第6図 床スラブ端部躯体形状概念図		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		第7図 直交座標系応力成分		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別添4		
	ペデスタルに作用する圧力について		・評価方針の相違
			【東海第二】
	1. ペデスタル躯体に作用する圧力の分布		島根2号炉は内側鋼
	水蒸気爆発は、溶融デブリが水中に落下し、融体が膜沸騰状		板,外側鋼板,リブ鋼板
	態で分散混合することで粗混合領域が形成され、さらに、この		からなる二重鋼板製ペ
	粗混合領域においてトリガリングが発生することで、融体の細		デスタルであるのに対
	粒化,急速放熱に伴い圧力波が粗混合領域内を伝播し,この相		し,東海第二はペデスタ
	互作用の結果、高圧領域(爆発源)が形成される事象である。		ル側壁及び床スラブは
	ペデスタル中心でSEが発生すると、高圧領域より生じた圧力		鉄筋コンクリート製ペ
	波は、水中で減衰(距離減衰)しながら側壁の方向へ進行する。		デスタルであることか
	第1図及び第2図にLS-DYNA解析におけるペデスタル		ら,構造の違いにより評
	躯体に作用する圧力の分布を示す。LS-DYNA解析では,		価方法が異なる。
	床スラブには最高約 55MPa, 側壁には最高約 4MPa の圧力が作用		
	する。		
	なお、LS-DYNAにおける爆発源の調整の結果、側壁及		
	び床スラブの力積がSE解析コードJASMINEの解析結果		
	を包絡していることを確認している。(添付資料3.3.4別添)		
	 手計算との発生応力の比較 		
	ペデスタル躯体に作用する圧力より材料力学に基づく手計算		
	手法を用いて求めたコンクリートの応力と、LS-DYNA解		
	析におけるコンクリートの応力を比較した。		
	第3図に手計算及び解析結果の応力比較を示す。下部側壁に		
	作用する圧力の平均値(最高約 2MPa)より機械工学便覧に示さ		
	れている内圧を受ける円筒の弾性応力算定式にて求めた面外方		
	向応力の平均値は最大約 0.70N/mm ² であり, 解析結果の約		
	0.77N/mm ² と比較して両者はよく一致している。したがって,		
	LS-DYNA解析では構造物の応答が適切に評価されてい		
	る。		
	$\sigma_r = -\frac{k^2/R^2 - 1}{k^2 - 1} P_a$		
	k : b/aにより計算した値		
	R : r/a により計算した値		
	a : 内半径 (mm) …3,086mm 國6-9 内外Eを受ける円筒 (總林工学研究 III部編 -3 材料力学)		
	b :外半径 (mm) ··		
	r :半径方向の座標 (mm) ··· (下部側壁の壁厚中心)		
	P _a :内圧 (MPa)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(#31.5m) (#31.5m)		
	24 24 24 24 25 (693.00) 3 7 th d		
	(約1.2m) ————————————————————————————————————		
	23 23 23 23 23 23 23 23 23 23 23 23 23 2		
	時間 [ms 1.1例の指行]		
	22 22 22 22 22 22 22 22 22 22 22 22 22		
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
	王 王 子 王 子		
	Ereful (HEI) Erefu		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第3図 手計及OKNHAK (FMME)		

柏崎刈羽原子力発電所 6/7号	炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		別派 5		
		SE後のコンクリートの残留ひび割れの影響(参考)		・評価方針の相違
				【東海第二】
		1. はじめに		島根2号炉は内側鋼
		東海第二発電所では,SEによって残留熱除去系及び代替循		板,外側鋼板,リブ鋼板
		環冷却系の水源となるサプレッション・チェンバに大量のデブ		からなる二重鋼板製ペ
		リが移行するような経路が形成されないことを確認するため、		デスタルであるのに対
		SEによってペデスタルの構造が終局状態に至らないことを評		し,東海第二はペデスタ
		価し、RPV支持機能及びデブリ保持機能が維持されることを		ル側壁及び床スラブは
		確認している。しかしながら、SEによって躯体に生じた残留		鉄筋コンクリート製ペ
		ひび割れより、デブリの冷却水がペデスタルの外へ漏えいする		デスタルであることか
		ことも考えられることから、デブリ冷却性の観点で残留ひび割		ら,構造の違いにより評
		れからの漏水影響を検討する。		価方法が異なる。
		2. 残留ひび割れ幅の算定		
		(1) 算定方法		
		LS-DYNAコードによるSE解析終了時刻における鉄		
		筋の軸方向の引張応力状態により、コンクリート標準示方書		
		[設計編]((社)土木学会,2012))(以下「コンクリート標		
		準示方書[設計編]」という。)のひび割れ幅の算定式を用い		
		てペデスタル躯体の残留ひび割れ幅を算定する。		
		鉄筋コンクリート部材に曲げモーメントが作用した場合,		
		曲げモーメントの増加と共にひび割れが発生し、その本数が		
		増加することでひび割れ間隔が小さくなっていく。しかし、		
		曲げモーメントがある程度以上大きくなると、新たなひび割		
		れが発生しない状態となる。このとき、鉄筋コンクリートの		
		ひび割れ幅(W_{cr})は、一般的に(1)式で表すことができ、		
		鉄筋コンクリートのひび割れ間隔に、ひび割れ間のコンクリ		
		ートと鉄筋のひずみ差を乗じた値として与えられることにな		
		る。		
		$W_{cr} = \int_0^{l_{cr}} (\varepsilon_s - \varepsilon_c) d_x \cdots (1)$		
		ここで、		
		<i>l_{cr}</i> :ひび割れ間隔		
		$\varepsilon_s - \varepsilon_c$:鉄筋とコンクリートのひずみ差		
		これを基に、コンクリート標準示方書 [設計編] では、鉄		
		筋のかぶりや鋼材の表面形状等を考慮し、(2)式のように示		
		されている。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) $W_{cr} = 1.1k_1k_2k_3\{4c + 0.7(C_s - \phi)\}\begin{pmatrix}\sigma_{se} + \varepsilon' \\ E_s + \varepsilon' \\ csd\end{pmatrix}$ … (2) ここで, k_1 :鉄筋の表面形状がひび割れ幅に及ぼす影響を表す 係数 (-) k_2 :コンクリートの品質がひび割れ幅に及ぼす影響を 表す係数で (3) 式による $k_2 = \frac{15}{f'_c + 20} + 0.7$ … (3) f'_c :コンクリートの圧縮強度 (N/mm ²) k_3 :引張鋼材の段数の影響を表す係数で (4) 式による $k_2 = \frac{5(n+2)}{m}$ … (4)	島根原子力発電所 2号炉	備考
	n : 引張鋼材の段数(一) c : かぶり(mm) C_s : 鋼材の中心間隔(mm) \emptyset : 鋼材径(mm) σ_{se} : 鋼材位置のコンクリートの応力が0の状態からの 鉄筋応力度の増加量(N/mm ²) E_s : 鉄筋のヤング係数(N/mm ²) ε'_{csd} : コンクリートの収縮及びクリープ等によるひび割 れ幅の増加を考慮するための数値(一) (1) 式及び(2) 式よりSEによりペデスタル躯体に生じ る残留ひび割れ幅(W_{cr})を算出する。		
	$W_{cr} = l_{cr} \left(\frac{\sigma_{se}}{E_s} + \varepsilon' \right) $ … (5) 各項目の数値を下表に示す。		
	項目数値		
	k1 : 鉄筋の表面形状がひび割れ幅に及ぼす影響 1.0 を表す係数(異形鉄筋) 1.0		
	f'_{c} : コンクリートの圧縮強度 22.06 N/mm ²		
	n : 引張鋼材の段数		
	c : かぶり		
	<i>C_s</i> :鋼材の中心間隔		
	Ø :鋼材径		
	E_s :鉄筋のヤング係数 $2.05 \times 10^5 \text{ N/mm}^2$ ε'_{csd} :コンクリートの収縮及びクリープ等による ひび割れ幅の増加を考慮するための数値 150×10^{-6}		
	(2) 算定結果		
	第 1 図に側壁部及び床スラブ部での残留ひび割れ幅を示		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	す。解析終了時刻における鉄筋の軸方向引張応力状態に基づ		
	き算定した各鉄筋位置における残留ひび割れ幅の最大値は側		
	壁部で約 0.05mm, 床スラブ部(最下段鉄筋)で約 0.13mm で		
	ある。		
	3. SE後の残留ひび割れによる漏水影響の検討		
	(1) ペデスタル躯体の応力状態を考慮した漏水影響の検討		
	残留ひび割れによる漏水影響が表れやすいと考えられる床		
	スラブを対象に、ペデスタル躯体の応力状態より漏水影響に		
	ついて検討する。		
	第2図に鉄筋の応力-ひずみ関係を示す。解析終了時刻に		
	おける床スラブ下端鉄筋の 1 段目の軸方向の引張ひずみは		
	200μ 程度である。これは,鉄筋の応力-ひずみ関係で表現		
	した場合,ほぼ初期状態に当たる長期許容応力度(195N/mm		
	²)の 1/5 に相当する応力レベルであり,床スラブ下端側に		
	作用する引張応力に対する強度は損なわれていない。		
	第3図に床スラブ断面応力状態を示す。SE後にはデブリ		
	自重等の荷重が作用した状態となることから、構造的に床ス		
	ラブ断面内では中立軸を境に鉄筋が配置される床スラブ下端		
	側に引張応力が作用するが,床スラブ上端側ではひび割れを		
	閉鎖させる方向の圧縮応力が作用する。また,SE後におい		
	ても、ペデスタル(ドライウェル部)へ落下したデブリによ		
	って床スラブの上端側のコンクリートが加熱されることで,		
	圧縮応力が作用した状態となる。		
	以上のことより、ペデスタル躯体の応力状態を考慮すると、		
	実機においてSE後の残留ひび割れが生じた場合において		
	も、漏水量は相当小さい値になると考えられる。		
	(2) 既往の知見を踏まえた漏水影響の検討		
	「コンクリートのひび割れ調査,補修・補強指針―2009―」		
	において、建築物を対象とした漏水実験や実構造物における		
	実態調査がまとめられている。この中で坂本他の検討*1で		
	は,10cm~26cmまでの板厚による実験を行っており,板厚が		
	厚くなる方が漏水に対して有利であり,26cmでは漏水が生じ		
	るひび割れ幅は 0.2mm 以上であったと報告されている。これ		
	に対して,実機ペデスタルの側壁(厚さ:上部,下		
	部)及び床スラブ(厚さ:)は, 26cm以上		
	の板厚を有している。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	また,一般に,ひび割れ幅が 0.2mm 未満であれば,水質に		
	よる目詰まりやひび割れ内部のコンクリートの水和反応によ		
	る固形物の析出等により,漏水流量が時間とともに減少する※		
	² ことが分かっている。		
	※1 コンクリート壁体のひびわれと漏水の関係について		
	(その2)(日本建築学会大会学術講演便概集,昭和		
	55年9月)		
	※2 沈埋トンネル側壁のひび割れからの漏水と自癒効果		
	の確認実験(コンクリート工学年次論文報告集,		
	Vol.17, No.1 1995)		
	(3) MCCI影響抑制対策施工に伴う漏水影響の低減効果につ		
	いて		
	MCCI影響抑制対策であるコリウムシールドの設置に伴		
	い、水密性確保の観点でペデスタル躯体とコリウムシールド		
	の間をSUS製ライナでライニングする計画としている。こ		
	のため、デブリが落下した以降の状態においても、SUS製		
	ライナが残留ひび割れからの漏水影響低減に寄与すると考え		
	られる。		
	4. 残留ひび割れからの漏水を仮定したデブリ冷却性への影響評		
	価		
	前述のとおり、ペデスタル躯体の応力状態や既往の知見等を		
	考慮すると、実機において残留ひび割れから漏えいが発生した		
	場合においても、漏水量は相当小さくなると考えられるが、こ		
	こでは残留ひび割れからの漏水を仮定した場合のデブリ冷却性		
	への影響について定量的に検討する。		
	(1) 漏水量の評価		
	漏水量は「コンクリートのひび割れ調査,補修・補強指針		
	-2009-付:ひび割れの調査と補修・補強事例(社団法人日		
	本コンクリート工学協会)」における漏水量の算定式に基づ		
	き,残留ひび割れ幅に対する漏水量を評価する。なお,本評		
	価における算定条件は漏水量を多く見積もる観点で保守的な		
	設定とする。		
	【漏水量算定式】		
	$C_w \cdot L \cdot w^3 \cdot \Delta p$		
	$Q = \frac{12\nu \cdot t}{12\nu \cdot t}$		
	ここで, Q :漏水量 (mm ³ /s)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018	3. 9. 12 版)	島根原子力発電所 2号炉	備考
	C _w :低減係数(-) L :ひび割れ長さ(mm) w :ひび割れ幅(mm) Δp :作用圧力(N/mm ²) ν :水の粘性係数(Ns/ t :部材の厚さ(ひび害	´mm²) Nれ深さ) (mm)		
	項目の数値を下表に示す。			
	項目	数值		
	<i>C_w</i> : 低減係数 ^{※1}	0.01		
	L : ひび割れ長さ*2	上部側壁: 112,000mm 下部側壁: 27,000mm 床スラブ: 74,000mm		
	w :ひび割れ幅 ^{*3}	側 壁:0.05mm 床スラブ:0.13mm		
	Δp :作用圧力 ^{※4}	0.25 N/mm ²		
	v :水の粘性係数 ^{※5}	$1.82 \times 10^{-10} \text{ Ns/mm}^2$		
	t :部材の厚さ(ひび割れ深さ)			
	 ※1 構造体の壁厚さ lm の実験結果(「沈埋と自癒効果実験」コンクリート工学年後基づく値 ※2 コングリート標準示方書[設計編]の びペデスタル躯体寸法に基づき設定した ※3 LS-DYNA解析結果に基づき算定 れ幅の最大値 ※4 デブリ全量落下後に人通用開口部高さ 3m 高さ)での床スラブ上面での水頭圧 ーサプレッション・チェンバ差圧を考け おいても,保守的に同じ作用圧力を適け ※5 RPV破損後のサプレッション・チェン 	トンネル側壁のひび割れからの漏水 太論文報告集 vol. 17 No. 1 1995) に 算定式にて評価したひび割れ間隔及 とひび割れ長さ した床スラブ及び側壁の残留ひび割 まで水張りされた状態(床面より約 ,及びRPV破損後のドライウェル 重した圧力(側壁部の漏水量算定に 用) バ温度に基づき 150℃の値を設定		
	(2) 漏水量の算定結果			
	上記の条件にて求めた漏水量は	, 側壁部で約 0.05m³/h,		
	床スラブで約 0.38m ³ /h となり,	合計約 0.43m ³ /h である。		
	(3) 漏水量に対するデブリ冷却性へ	の影響評価		
	算定した床スラブ及び側壁の漏	水量は合計で約 0.43m ³ /h	1	
	であるが、これに対して格納容器	下部注水系(常設)にて 80m	n	
	°/hのベテスタル注水が可能であ F谷のコンクリートの確切れざき	oる。したがって,万が一S カによる泥水ボルドた坦へ		
		40による個小小生しに場合 ス注水島を確保できストレ		
	から、デブリ冷却性への影響はな	ッロハ重 ^{で単面} M くてつこと い。		

5. まとめ LS-DYNAコードの解析諸果に基づきペデスタル瓶体に 発生する殺留ひび勢れ幅は嗅聴部で約0.05mm,床スラブ部で約 0.13mmであることを評価した。これに対して、ペデスタル瓶体 の応力状態,既往の知見等を考慮すると残留ひび割れからの潤 水量は相当小さくなると考えられる。さらに、残留ひび割れからの潤 水量は相当小さくなると考えられる。さらに、残留ひび割れからの潤 水量は相当小さくなると考えられる。さらに、水面でいず別れか らの潤水を仮定して保守的に評価した湯水が自然力 して、ペデスタルの床面に落下したデブリを冷却するための格 納容器下部注水系(常定)は 30m ² /h で注水可能であることか ら、万が-SE後の残留ひび割れによる濁水が生じた場合にお いても、ペデスタルの床面に落下したデブリを十分に冷却する ことが可能である。
$\frac{\boxed{0} \\ \hline 0 \\ 0 \\$
第2図 鉄筋の応力-ひずみ関係とSE後の鉄筋の応力レベル

USUCE RPTC) USUCE RPTC) USUC	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		(SD345 鉄筋)		
		第3図 床スラブ断面応力状態		

柏崎刈羽原子力発電所 6/7号炉 (2017	. 12. 20版) 東海第二発電所(2018. 9. 12版)	島根原子力発電所 2号炉	備考
	別添 6		・評価方針の相違
	<u>ペデスタルの対策施工に伴う床スラブの強度維持について</u>		【東海第二】
			島根2号炉は内側鋼
	SEが発生した場合のLS-DYNAコードによるペテスタ		板、外側鋼板、リブ鋼板
	ル構造健全性評価では、ペデスタル全体のコンクリートを一体		からなる二重鋼板製ペ
	としてモデル化している。一方で、実機では、MCCI対策で		テスタルであるのに対
	あるスリット状態水流路の施工等のため、床スフフ上部の既存		し、東海第一はペテスタ
	コンクリートを斫り、スリット等を設置した上で再度コンクリ		ル側壁及び床スフフは
	ートを打継ぐこととなる。そこで、コンクリート打継ぎに当た		鉄筋コングリート製ペ
	っては、コンクリートを斫る前と同等の強度を維持することと		アスタルであることか
	する。		ら,構造の違いにより評
	ここでは、床スフフの強度維持の万針、必要鉄筋量の評価、		価万法が異なる。
	施上の成立性及び施上による影響の有無について説明する。		
	1. 床スラブの強度維持の方針		
	対策後のペデスタル概要図を第1図に示す。施工後において		
	も、施工前と同等の強度を維持し、ペデスタル全体のコンクリ		
	ートを一体としてモデル化したLS-DYNAコードによるペ		
	デスタル構造健全性評価を適用可能とするための必要な事項及		
	び対応方針は、以下のとおりである(第2図)。		
	① 必要事項:打継ぎコンクリートと既存コンクリート間は,		
	施工前と同様に荷重が伝達されること		
	対応方針:施工前と同様に荷重伝達するため,鉄筋を追		
	加		
	② 必要事項:打継ぎコンクリートの強度は,既存コンクリ		
	ートと同等の強度を確保		
	対応方針:既存コンクリートと同等の設計基準強度を有		
	するコンクリートを選定		
	なお、実際の施工においては、コンクリートを打継ぎする際		
	は境界面の打継処理をすることから、コンクリートの打継目に		
	も一定程度の強度を有するものと考えられるが、「2. 必要鉄筋		
	量の評価」では保守的にこの効果を考慮せず、必要な鉄筋量を		
	評価することとする。		
	0. 以再始效目の河川		
	他上後においても,他上則と同様に何重を伝達する構造とす		
	るため,必要な跃筋量を追加することとし,各種合成構造設計		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------	--	--------------	----
	指針・同解説((社)日本建築学会,2010)(以下,「合成指針」		
	という。)及び原子力施設鉄筋コンクリート構造計算規準・同		
	解説((社)日本建築学会,2005)(以下,「RC-N規準」と		
	いう。)に基づき算定する。また、SE評価では終局状態に至		
	らないことを確認しているため, コンクリート強度については		
	短期許容応力度を考慮する。さらに、SE発生時においても施		
	工前と同様の荷重伝達を達成する観点より, LS-DYNAを		
	用いたSE評価に基づく, コンクリートの圧縮強度動的増倍率		
	(1.49倍)(別添2参照)を考慮した設計とする。なお,コン		
	クリートは設計上, 圧縮力とせん断力を負担するが, 圧縮力に		
	ついては施工前後で水蒸気爆発時の荷重伝達の様態に変わり		
	はないことから、せん断力を対象とした必要鉄筋量を評価す		
	る。		
	2.1 鉛直方向鉄筋		
	(1) 接着系アンカーのせん断耐力 (
	合成指針に基づき,		
	$q_a = min[q_{a1}, q_{a2}, q_{a3}]$		
	$q_{a1} = \varphi_1 \cdot \ _s \sigma_{qa} \cdot _{sc} a$		
	$q_{a2} = \varphi_2 \cdot {}_c \sigma_{qa} \cdot {}_{sc} a$		
	$q_{a3} = \varphi_2 \cdot {}_c \sigma_t \cdot A_{qc}$		
	ここで、		
	<i>q_a</i> :接着系アンカーボルト1本当たりの許容せん断力		
	(M) <i>q_{a1}</i> :接着系アンカーボルトのせん断強度により決まる		
	場合のアンカーボルト 1 本当たりの許容せん断力		
	(N) ・ 定差した 飯休の 支圧 強 産 に 上 h 決 ま る 提 今 の 接 差		
	qa2 . 足有じた躯体の交圧強度により伏よる場合の没有 系アンカーボルト1本当たりの許容せん断力(N)		
	q _{a3} :定着した躯体のコーン状破壊により決まる場合の		
	接着系アンカーボルト 1 本当たりの許容せん断力		
	φ_1 :低減係数で短期荷重用の 1.0 を用いる。		
	$arphi_2$:低減係数で短期荷重用の $2/3$ を用いる。		
	$s\sigma_{qa}$:接着系アンカーボルトのせん断強度で,		
	$s\sigma_{qa} = 0.7 \cdot s\sigma_y$ とする。 ・ 接著系アンカーボルトの相枚降伏協度=345N / mm		
	$s v_y $ · $v_y = v_y + v_y = v_y + v_y = v_y + v_y +$		
	sca : 接着系アンカーボルトの断面積		
	$c\sigma_{qa}$:コンクリートの支圧強度で、 $c\sigma_{qa} = 0.5\sqrt{F_{cd} \cdot E_c}$ と		
	する。 		
	$\vec{c}, c\sigma_t = 0.31\sqrt{F_{cd}} \xi \neq \delta_0$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	F_c : コンクリートの設計基準強度=22.06N/mm ² F_{cd} : 応力状態(短期)及び圧縮強度動的増倍率(1.49 倍)を考慮したコンクリートの圧縮強度= $F_c \times 1.5 \times 1.49 \Rightarrow 49.30$ N/mm ² E_c : コンクリートのヤング係数=2.2×10 ⁴ N/mm ² A_{qc} : せん断力に対するコーン状は界面の有効投影面積 $でA_{qc} = 0.5\pi c^2 と する。(第3図)$: へりあき寸法		
	以上より, $q_{a1} \doteq 6.92 \times 10^{4}$ N $q_{a2} \doteq 9.95 \times 10^{4}$ N $q_{a3} \doteq 9.12 \times 10^{4}$ N よって, $q_{a} = min[q_{a1}, q_{a2}, q_{a3}]$ であるため, せん断耐力 q_{a} は 6.92×10^{4} N となる。		
	(2) コンクリートの短期許容せん断応力度 RC-N規準に基づくコンクリートの短期許容応力度にお いて、コンクリートの圧縮強度動的増倍率を考慮し、 $f_s = 1.5 \cdot \frac{1}{30} \cdot F_c \cdot DIF$ かつ $1.5 \cdot \left(0.49 + \frac{1}{100}F_c \cdot DIF\right)$ 以下 ここで、 F_c : コンクリートの設計基準強度=22.06N/mm ² DIF : コンクリートの圧縮強度動的増倍率=1.49		
	以上より、 $1.5 \cdot \frac{1}{30} \cdot F_c \cdot \text{DIF} \Rightarrow 1.64 \text{ N/mm}^2$ $1.5 \cdot \left(0.49 + \frac{1}{100}F_c \cdot DIF\right) \Rightarrow 1.23 \text{ N/mm}^2$ よって、コンクリートの短期許容せん断応力度f _s は 1.23N/ mm ² となる。		
	(3) $1m^2$ 当たりに必要な鉄筋本数 $1m^2$ 当たりのコンクリートの許容せん断耐力 f_{sa} は、 $f_{sa} = f_s \cdot 1000^2 = 1.23 \times 10^6$ N $1m^2$ 当たりに配置する鉄筋の本数 n_a は、 $n_a = f_{sa}/q_a = 17.78$ 本		
	以上より, 打継ぎコンクリート部 1m ² 当たり鉄筋を 18 本以上配置する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	2.2 水平方向鉄筋		
	(1) 接着系アンカーのせん断耐力 (
	合成指針に基づき,		
	$q_a = min[q_{a1}, q_{a2}, q_{a3}]$		
	$q_{a1} = \varphi_1 \cdot \ _s \sigma_{qa} \cdot _{sc} a$		
	$q_{a2} = \varphi_2 \cdot \ _c \sigma_{qa} \cdot _{sc} a$		
	$q_{a3} = \varphi_2 \cdot {}_c \sigma_t \cdot A_{qc}$		
	ここで,		
	q a :接着系アンカーボルト1本当たりの許容せん断力 (N)		
	<i>q</i> a1 :接着系アンカーボルトのせん断強度により決まる 場合のアンカーボルト 1 本当たりの許容せん断力		
	(N) q_{a2} :定着した躯体の支圧強度により決まる場合の接着		
	※テンカーホルト1本当たりの計浴せん断刀(N) a _{a2} :定着した躯体のコーン状破壊により決まる場合の		
	(N) (N) (N) (A		
	<i>φ</i> ₁ : 低減係数で短期荷重用の 1.0 を用いる。		
	φ_2 :低減係数で短期荷重用の $2/3$ を用いる。		
	$s\sigma_{qa}$: 接着糸ケンカーホルトのせん断強度で、		
	$so_{qa} = 0.7$ $so_{y} < y < 0$ 。 :接着系アンカーボルトの規格降伏強度=345N/mm		
	2		
	sca : 接着系アンカーボルトの断面積		
	$c\sigma_{qa}$:コンクリートの支圧強度で、 $c\sigma_{qa} = 0.5\sqrt{F_{cd}} \cdot E_c $ と する。		
	$c\sigma_t$:コーン状破壊に対するコンクリートの引張強度		
	で、 $_c\sigma_t = 0.31\sqrt{F_{cd}}$ とする。		
	F_c : コンクリートの設計基準強度=22.06N/mm ²		
	<i>r_{cd}</i> :心刀仄態(短期)及の圧縮强度動的増倍率(1.49) 倍) を考慮したコンクリートの圧縮強産=		
	$F_c \times 1.5 \times 1.49 \Rightarrow 49.30$ Mm ²		
	E_c : コンクリートのヤング係数=2.2×10 ⁴ N/mm ²		
	A_{qc} : せん断力に対するコーン状は界面の有効投影面積		
	$CA_{qc} = 0.5\pi C^{-2} c g 3 control (第3因)$ C : へりあき寸法		
	以上より,		
	$q_{a1} \doteq 1.22 \times 10^5 \mathrm{N}$		
	$q_{a2} = 1.76 \times 10^{\circ} \text{N}$ $q_{a2} = 5.13 \times 10^{4} \text{N}$		
	a_{a_3} よう 10 10 10 10 10 10 10 10 10 10 10 10 10		
	5.13×10^4 N $cas - cas - c$		
	-		
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(2) コンクリートの短期許容せん断応力度		
	RC-N規準に基づくコンクリートの短期許容応力度にお		
	いて、コンクリートの圧縮強度動的増倍率を考慮し、		
	$f_s = 1.5 \cdot \frac{1}{30} \cdot F_c \cdot DIF$ カック $1.5 \cdot \left(0.49 + \frac{1}{100} F_c \cdot DIF\right)$ 以下		
	ここで、		
	F_c : コンクリートの設計基準強度=22.06N/mm ²		
	DIF : コンクリートの圧縮强度動的増倍率=1.49		
	以上より,		
	$1.5 \cdot \frac{1}{20} \cdot F_c \cdot \text{DIF} = 1.64 \text{ N/mm}^2$		
	$1.5 \cdot \left(0.49 + \frac{1}{100}F_c \cdot DIF\right) \rightleftharpoons 1.23 \text{ N/mm}^2$		
	よって、コンクリートの短期計谷せん断応力度 I_s は 1.23N/		
	$mn^2 < \lambda_x \circ$		
	(3) 1m²当たりに必要な鉄筋木数		
	(b) Im コルクリートの短期許容せん断耐力 f は		
	$f = f \cdot 1000^2 = 1.23 \times 10^6 \text{N}$		
	f_{Sa} f_{S} 1000 1.20 × 10 K		
	$1m^2$ 当たりに配置する鉄筋の本数 n_a は,		
	$n_a = f_{sa}/q_a \approx 23.98 \text{\AA}$		
	以上より、打秘さコンクリート部 Im* 目にり		
	平以上配直する。		
	2.3 施工前後でのペデスタル構造の比較		
	上記で評価した必要鉄筋量を追加した場合のペデスタル構		
	造を,施工前と比較して第4図に示す。		
	鉛直方向鉄筋及び水平方向鉄筋の追加により, 施工前と同様		
	に荷重伝達が可能となる。また,既存コンクリートと同等の設		
	計基準強度を有する打継ぎコンクリートを使用することで, 打		
	継ぎコンクリート部は施工前と同等の強度が確保される。な		
	お,形状保持筋については,床スラブの強度維持ではなく,打		
	継ぎコンクリート部の形状を保持するために追加する。		
	2.4 SE評価で設定した終局面外せん断応力度への影響		
	SE評価では、ペデスタルの床スラブの形状を考慮して、コ		
	ンクリート標準示方書 [構造性能照査編] に示されるディープ		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	ビームの設計せん断耐力式を適用した、終局面外せん断応力度		
	を判断基準として設定している(別添2参照)。		
	第5図に示すとおり、ディープビームの設計せん断耐力式は、		
	部材の高さと引張側主筋との関係より、部材上面に作用する荷		
	重の載荷点と支点を結ぶタイドアーチ的な耐荷機構(圧縮スト		
	ラット)により、せん断力に抵抗する考え方で定められている。		
	ここで、鉛直方向鉄筋を追加することにより、施工前の一体打		
	設コンクリートと同様に,既設コンクリートと打継ぎコンクリ		
	ートの荷重伝達を行えること、さらに、水平方向鉄筋は、施工		
	前と同等の強度を維持するために追加するが、ディープビーム		
	の設計せん断耐力式において関係しないことから、ペデスタル		
	の対策施工後においても、SE評価で用いた床スラブの終局面		
	外せん断応力度に変更はない。		
	3. 施工の成立性		
	①鉛直鉄筋 ()の埋込長は、床スラブの既設鉄筋深さまで		
	到達しないことから、鉛直鉄筋の削孔は可能である。また、		
	ペデスタル側壁の既設鉄筋の最小ピッチはm 程度であ		
	り、床スラブ端部に追加する水平方向鉄筋(__)の削孔径		
	より十分大きいため,削孔は可能である。		
	②ペデスタルに鉄筋用の削孔をする際は、ハンマードリルで穴		
	を開ける。ハンマードリルは鉄筋を切断しないため、鉄筋の		
	誤切断を回避可能である。		
	③ペデスタル側壁については,既設鉄筋ピッチを確認するため,		
	一部は表面の鉄筋まで斫り出し、既設鉄筋位置を目視にて確		
	認して削孔位置を決める。		
	④鉄筋の施工管理として,削孔後の穴を清掃し異物を除去する。		
	その後掘削深さを確認し、規定範囲であることを確認する。		
	規定の深さまで削孔出来なかった穴が存在する場合は、規定		
	範囲の穴と識別表示する。		
	⑤使用する接着材(セメント系アンカー)の施工手順に基づい		
	て注入し、所定の長さまで鉄筋を挿入する。		
	⑦接着材(セメント系アンカー)が固まった後、穴をコンクリ		
	ートで埋め戻す。		
	以上のとおり、既存のコンクリートに鉄筋を追加するため		
	の削孔は可能であり、工事の内容は一般建築の耐震補強で広		
	く用いられているものであるため,施工の成立性に問題はな		
	<i>د</i> ر.		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		4. 削孔箇所の強度		
		床スラブへの鉄筋追加に伴い、既存コンクリートを削孔する		
		ことになるが、削孔部には耐環境性に優れ、コンクリートより		
		も付着強度や圧縮強度に優れた接着材や、コンクリートよりも		
		強度・剛性の高い鉄筋を埋め込み、その上でコンクリートを充		
		てんする。この接合部の引張強度は,鉄筋の降伏点以上の強度が		
		得られることから、削孔箇所は施工前と同等以上の強度が確保		
		される。		
		また、接着材としては、耐放射線に優れる無機系(セメント)		
		であり,かつ,200℃においても強度に影響ないものを使用する。		
		また,鉄筋についても放射線影響及び 200℃における強度低下		
		はなく、シビアアクシデント時に施工箇所の強度が低下するこ		
		とはない。		
		以上より、施工による構造強度への悪影響はなく、既存の耐		
		震評価への影響もない。		
		5. まとめ		
		MCCI対策として床スラブのコンクリートを斫り, 打継ぐ		
		際,鉄筋を追加すること等により,施工前と同等の強度を維持		
		するため、施工後においてもペデスタル全体のコンクリートを		
		一体としてモデル化したLS-DYNAコードによるペデスタ		
		ル構造健全性評価を適用可能である。また、鉄筋の追加等によ		
		り床スラブの強度は施工前と同等以上になるため、施工前の床		
		スラブ全体の終局面外せん断応力度(4.33N/mm ²)は施工後に		
		おいても確保される。		
		また、既設鉄筋の配置を考慮しても、鉄筋追加のための削孔		
		等の施工は可能である。さらに、削孔箇所は施工前と同等以上		
		の強度が確保され、シビアアクシデント時に強度が低下するこ		
		とはない。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第1図 対策後のペデスタル概要図		
	既存コンクリート		
	無筋層 クリート部 クリート部		
	鉄筋層 クリート部		
	荷重伝達		
	第2図 ペデスタルでの荷重伝達		
	a		
	I_{o} A_{qc} C $A_{qc}=0.5\pi c^{2}$		
	弗3因 则即仍有刻技影即慎		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第14. (RP) 第14. (RP) 第14. (RP) 第14. (RP) 第14. (RP) 第14. (RP)		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		新産方向銀橋により、既存コン 大平方向鉄筋 大平方向鉄筋 大市方向鉄筋 市 和 11総ゴコンクリート部 第6億万回線店 11総ゴコンクリート部 第6億万回線店 11総ゴコンクリート部 第6億万回線店 11総プロン 11総プロンクリート部 11総プロンクリート部 11総プロンクリート部 11総プロンクリート部 11総プロンクリート部 11総プロンクリート部 11総プロンクリート部 11総プロンクリート部 11総プロンクリート部 11総プロンクリート部 11総プロンクリート部 11総プロンクリート部 11総プロンクリート部 11総プロンクリート部 11(1)	第5回 アィーフビーム構造における社が動励力の戦心	

まとめ資料比較表 〔有効性評価 添付資料 3.3.3〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
添付資料 3.3.3	添付資料 3.3.3	
原子炉格納容器下部への水張り実施の適切性	ペデスタルへの水張り実施の適切性	
炉心の溶融が進展し、溶融炉心が原子炉圧刀容器低部から流	炉心の溶融が進展し、溶融炉心が原子炉圧力容器底部から流	
出するような場合には、原子炉格納容器内で発生する種々の現	出するような場合には、原子炉格納容器内で発生する種々の現	
象の発生を防止あるいは影響を緩和することで、格納谷器の破	象の発生を防止あるいは影響を緩和することで、原子炉格納容	
損を防止することが重要なマネジメントとなる。原子炉圧力容	器の破損を防止することが重要なマネジメントとなる。 原子炉	
器の外において発生する現象のうち、溶融炉心・コンクリート	圧力容器の外において発生する現象のうち, 溶融炉心・コンク	
相互作用(以下「MCCI」という。)に対してはその影響緩和の手段	リート相互作用(以下「MCCI」という。)に対してはその影	
として、格納容器下部ドライウェルへの溶融炉心落下前の水振	響緩和の手段として、ペデスタルへの溶融炉心落下前の水張り	
り(以下「初期水張り」という。)が有効な対策となる。一方、初	(以下「初期水張り」という。)が有効な対策となる。一方、初	
期水張りによって、原子炉圧力容器外の溶融燃料ー冷却材相互	期水張りによって、原子炉圧力容器外の溶融燃料ー冷却材相互	
作用(以下「FCI」という。)による急激な水蒸気発生に伴う <u>格納</u>	作用(以下「FCI」という。)による急激な水蒸気発生に伴う	
<u> 容器</u> 内圧力の急激な上昇(以下「圧力スパイク」という。)が生じ	原子炉格納容器内圧力の急激な上昇(以下「圧力スパイク」と	
るほか、実機条件における大規模な水蒸気爆発の発生の可能性	いう。)が生じるほか、実機条件における大規模な水蒸気爆発の	
は低いと推定されるものの、水蒸気爆発が発生する可能性も考	発生の可能性は低いと推定されるものの、水蒸気爆発が発生す	
慮に入れる必要がある。初期水張りの水深によって想定される	る可能性も考慮に入れる必要がある。初期水張りの水深によっ	
影響の程度は変化すると考えられることから、初期水張りを実	て想定される影響の程度は変化すると考えられることから、初	
施する場合には,両者の影響を考慮して水位を決定する必要が	期水張りを実施する場合には,両者の影響を考慮して水位を決	
ある。以下に初期水張りにおける水位設定の考え方を示す。	定する必要がある。以下に初期水張りにおける水位設定の考え	
	方を示す。	
1. <u>格納容器下部ドライウェル</u> への水張りの FCI に対する影響	1. ペデスタルへの水張りのFCIに対する影響	
FCI として生じる主な現象は、圧力スパイクである。	FCIとして生じる主な現象は、圧力スパイクである。	
圧力スパイクは,水深が深い場合,顕熱によるエネルギの吸収	圧力スパイクは、水深が深い場合、顕熱によるエネルギの吸	
量が多くなり、潜熱で吸収するエネルギが相対的に減少し、水	収量が多くなり,潜熱で吸収するエネルギが相対的に減少し,	
蒸気発生量が低下することで、ピークが低くなる可能性がある	水蒸気発生量が低下することで、ピークが低くなる可能性があ	
一方、溶融炉心の粗混合量が多くなり、細粒化した粒子から水	る一方、溶融炉心の粗混合量が多くなり、細粒化した粒子から	
への伝熱量が多くなることで、ピークが高くなる可能性もある。	水への伝熱量が多くなることで、ピークが高くなる可能性もあ	
	る。	
なお,FCI として生じる現象としては水蒸気爆発も挙げられる	なお, FCIとして生じる現象としては水蒸気爆発も挙げら	
が、水蒸気爆発については、 UO_2 主体の溶融物が水中に落下した	れるが,水蒸気爆発については,UO ₂ 主体の溶融物が水中に	
場合に水蒸気爆発が発生した実験例は僅かであること及び、水	落下した場合に水蒸気爆発が発生した実験例は僅かであること	
蒸気爆発が発生した実験は,外部トリガを意図的に与えた場合,	及び、水蒸気爆発が発生した実験は、外部トリガを意図的に与	
または溶融物の温度が溶融炉心の温度を上回る程の極端に大き	えた場合、または溶融物の温度が溶融炉心の温度を上回る程の	
な過熱度で実験した場合に限られることを確認している。[1-4]	極端に大きな過熱度で実験した場合に限られることを確認して	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
また,水深1.3m 以上の条件下での水蒸気爆発の発生は報告され	いる。 ^[1-4] また,水深 1.3m 以上の条件下での水蒸気爆発の発生	
ておらず,実機条件に近い多くの溶融物量を落下させた実験で	は報告されておらず、実機条件に近い多くの溶融物量を落下さ	
も水蒸気爆発の発生は報告されていない。 ^[2, 5, 6] これらを考慮	せた実験でも水蒸気爆発の発生は報告されていない。[2,5,6]これ	
すると、実機で水蒸気爆発が生じる可能性は小さいと考える。	らを考慮すると、実機で水蒸気爆発が生じる可能性は小さいと	
しかしながら、仮に水蒸気爆発が発生した場合を想定すると、	考える。しかしながら、仮に水蒸気爆発が発生した場合を想定	
水深が深い方が粗混合が促進され,発生するエネルギが大きく	すると、水深が深い方が粗混合が促進され、発生するエネルギ	
なることから、構造壁への衝撃荷重が大きくなると考えられる。	が大きくなることから、構造壁への衝撃荷重が大きくなると考	
	えられる。	
2. <u>格納容器下部ドライウェル</u> への水張りの MCCI に対する影響	2. ペデスタルへの水張りのMCCIに対する影響	
格納容器下部ドライウェルへの初期水張りに失敗し、溶融炉	<u>ペデスタル</u> への初期水張りに失敗し,溶融炉心落下後に注水	
心落下後に注水を開始した場合,これまでの知見 ^[7-16] からは,	を開始した場合,これまでの知見[7-16]からは,溶融炉心上部に	
溶融炉心上部にクラストが形成され、溶融炉心の冷却が阻害さ	クラストが形成され、溶融炉心の冷却が阻害される可能性が考	
れる可能性が考えられる。	えられる。	
一方、初期水張りを実施することで、溶融物落下時に溶融炉	一方、初期水張りを実施することで、溶融物落下時に溶融炉	
心が粒子化されるため、クラストの形成によるデブリ内部への	心が粒子化されるため、クラストの形成によるデブリ内部への	
熱の閉じ込めを抑制することができ、デブリ上面からの除熱と	熱の閉じ込めを抑制することができ、デブリ上面からの除熱と	
落下時の溶融炉心の急速な冷却(デブリクエンチ)に期待でき	落下時の溶融炉心の急速な冷却(デブリクエンチ)に期待でき	
る。 [5, 6, 17]	る。 ^[5, 6, 17]	
3. 初期水張りの水位について	3. 初期水張りの水位について	
(1) 水位の設定	(1) 水位の設定	
1.及び 2.に示したとおり,初期水張りの水位は, FCI の水蒸	1. 及び2. に示した通り、初期水張りの水位は、FCIの	
気爆発による <u>格納容器</u> への影響の観点では低い方が良く, MCCI	水蒸気爆発による原子炉格納容器への影響の観点では低い方	
による <u>格納容器</u> への影響の観点では高い方が良い。 <u>ABWR におい</u>	が良く, MCCIによる原子炉格納容器への影響の観点では高	
ては、従来の炉型に比較して格納容器下部ドライウェルの床面	い方が良い。なお,添付資料 3.3.1 「原子炉圧力容器外の溶融	・設備設計の相違
積が広いため、溶融炉心が拡がった際に溶融炉心上面からの除	燃料-冷却材相互作用に関する知見の整理」で確認したように,	【柏崎 6/7】
熱に寄与する面積が大きく,また,溶融炉心が格納容器下部に	水蒸気爆発が発生する可能性は小さいものと考えられるのに	島根2号炉では,ペデ
落下した際の堆積高さが低いため, MCCI が緩和され易いという	対し、ペデスタルに溶融炉心が落下するとMCC I は発生する	スタルにおける MCCI の
特徴がある。	ため, MCCIの影響緩和を考慮する必要があるが, 島根2号	影響抑制にコリウムシ
	炉のペデスタル床面には,溶融炉心に対して耐侵食性を有する	ールドを期待している。
	ジルコニア耐熱材を材料とするコリウムシールドを設置して	
	いるため, MCCIによるペデスタル下部のコンクリート侵食	
	を抑制できるという特徴がある。	
以上を踏まえ, <u>6. 号及び 7. 号炉</u> においては, FCI の圧力スパイ	以上を踏まえ, <u>島根2号炉</u> においては, FCIの圧力スパイ	
クを考慮しても原子炉格納容器バウンダリの機能が維持され、	クを考慮しても原子炉格納容器バウンダリの機能が維持され、	
MCCI 緩和のための溶融炉心の粒子化の効果に期待でき,さらに	MCC I 緩和のための溶融炉心の粒子化の効果に期待でき、さ	
FCI の水蒸気爆発が発生した場合の影響を小さく抑えることが	らにFCIの水蒸気爆発が発生した場合の影響を小さく抑え	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
できる水位として,初期水張り水位を <u>2m</u> に設定している。初期		ることができる水位として,初期水張り水位を <u>2.4m(コリウ</u>	・運用の相違
水張り水位 <u>2m</u> における FCI, MCCI の影響や,水張りの実施可能		<u>ムシールド上面からの水位)</u> に設定している。初期水張り水位	【柏崎 6/7】
性については, FCI, MCCI 各事象の有効性評価で示したとおり,		<u>2.4m</u> におけるFCI, MCCIの影響や, 水張りの実施可能	初期水張り深さの相
問題がないものと考える。		性については、FCI、MCCI各事象の有効性評価で示した	違。
		とおり、問題がないものと考える。	
(2) 水位の設定根拠		(2)水位の設定根拠	
a. FCI の影響の観点		a. FCIの影響の観点	
1. に示したとおり、実機では水蒸気爆発が発生する可能性は小		1. に示したとおり,実機では水蒸気爆発が発生する可能性	
さい。しかしながら, 仮に FCI による水蒸気爆発の発生を前提と		は小さい。しかしながら,仮にFCIによる水蒸気爆発の発生	
した場合, 格納容器下部ドライウェルの水位について, 水位が高		を前提とした場合, ペデスタルの水位について, 水位が高い方	
い方が溶融炉心の細粒化割合が大きくなる傾向がある。この場		が溶融炉心の細粒化割合が大きくなる傾向がある。この場合,	
合、細粒化した粒子から水への伝熱量が多くなるので、水蒸気爆		細粒化した粒子から水への伝熱量が多くなるので,水蒸気爆発	
発に伴い格納容器下部ドライウェルに与えられる荷重は大きく		に伴いペデスタルに与えられる荷重は大きくなる。このことか	
なる。このことから, <u>格納容器下部ドライウェル</u> の水深が <u>2m</u> よ		ら, <u>ペデスタル</u> の水深が <u>2.4m</u> より深い場合の影響を評価し,	・運用の相違
り深い場合の影響を評価し, 問題がないことを確認している。こ		問題がないことを確認している。この詳細は4. に示す。	【柏崎 6/7】
の詳細は4. に示す。			初期水張り深さの相
			違。
b. MCCI の影響の観点		b. MCCI の影響の観点	
初期水張りの水深に応じて溶融炉心の一部が水中で粒子			・評価方針の相違
化し、急速冷却されることを考慮した上で、粒子化しなかっ			【柏崎 6/7】
た溶融炉心によって形成される連続層の高さを評価し、この			柏崎 6/7 では, ハード
連続層の冷却性の観点から、初期水張りの水深の妥当性を確			クラストが形成され,水
<u>認した。評価条件を以下に示す。なお、本評価はコリウムシ</u>			がコリウム内に全く浸
ールド設置前の格納容器下部床面積(約88m2)に基づき評価			入しない条件でのデブ
<u>を行っている。</u>			リの連続層高さを目安
			に, 初期水張り水深を決
・溶融炉心の水中での粒子化割合の評価には, MAAP コー			定している。
<u> ドにも用いられている Ricou- Spalding 相関式^[18]を用</u>			
<u>vre</u>			
・原子炉圧力容器の破損形態は制御棒駆動機構ハウジング			
1本の逸出を想定し、溶融物流出に伴う破損口の拡大を			
考慮した溶融炉心流出質量速度とした。			
・粒子化した溶融炉心が連続層の上部に堆積した状態であ			
ろ,粒子状ベッドの冷却性については,Lipinski 0-D モ			
デルを使用して評価している。粒子状ベッドのドライア			
ウト熱流束と堆積したコリウムが床に均一に拡がった			
と仮定した場合の崩壊熱除去に必要な熱流束(図1参照)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
を比較すると、粒子状ベッドのドライアウト熱流束			
(0.8MW/m2 以上) は崩壊熱除去に必要な熱流束(全炉心			
落下で約 0.36MW/m2) よりも十分に大きく, 粒子状ベッ			
ドの冷却可能性は極めて高いことから,連続層から水へ			
の崩壊熱除去を妨げないものとした。			
・落下した溶融炉心は格納容器下部床上を拡がると考えら			
れるが、これまでの実験データを元にした解析 ^[19] による			
と、有効性評価で想定している制御棒駆動機構ハウジン			
<u> グの逸出を想定すると, ABWR (ペデスタル半径約 5.3m)</u>			
<u>で床上に水がある場合でも、床全面に溶融物が拡がるこ</u>			
とが示されていることから、溶融炉心の拡がり面積を格			
納容器下部床全面とした。			
<u>また、初期水張りの水位を決定する上での設定目安は以下</u>			
のとおりとした。			
 ・連続層が安定クラストとなり、水が連続層内に浸入せず、 			
連続層の熱伝導が除熱の律速条件になると仮定して評			
価したところ,連続層厚さ 15cm までは,連続層が安定			
<u>クラスト化していても連続層上面からの除熱によって</u>			
コンクリートを分解温度以下に維持できる (MCCI の進展			
<u>を防止可能)という結果(図2参照)が得られたため,</u>			
連続層厚さが 15cm となる水深を初期水張りの設定目安			
<u>とした。</u>			
上記の評価条件を元に,水張り水深と溶融炉心落下量をパラ			
メータとして,連続層堆積高さを評価した。評価結果を図 3			
に示す。			
評価結果を上記の初期水張りの水位の設定目安に照らす			
と、初期水張りの水位が2m程度の場合、溶融炉心落下量が全			
炉心 70%であれば連続層の高さを 15cm 以下にすることがで			
き,初期水張りの水位が 3m 程度の場合,溶融炉心落下量が			
全炉心 100%の場合でも連続層の高さが 15cm 以下になること			
を確認した。			
以上の結果を考慮し、手順上、初期水張りの水位は 2m とし			
ている。コリウムシールドの設置により格納容器下部の面積			
が小さくなっていること及び有効性評価では、溶融炉心が全			
<u>量落下するものとして評価していることにより上記の評価結</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
果より厳しくなる可能性があるものの、落下割合には不確か		
さがあることや溶融炉心落下後には崩壊熱相当の注水を実施		
する手順としていること及び実機スケールではクラストへの		
水の浸入に期待できるという知見を踏まえ、初期水張りの水		
位を 2m としている。また, 2m の初期水張りは, 事象発生か		
ら溶融炉心落下までの時間余裕の中で十分に対応可能な操作		
である。		
		原子炉圧力容器の下部から溶融炉心
		<u>デスタルに溶融炉心の冷却に十分なオ</u>
		ることによって、溶融炉心が落下時に
		ドとして堆積することにより, デブリン
		<u>れる。</u>
		島根原子力発電所2号炉では,「3.5
		<u>ート相互作用」に示すとおり、全炉心</u>
		心としてペデスタルに落下し, 落下し;
		ルに一様に拡がるものとしており、この
		<u>1mとなる。しかしながら、デブリの</u>
		があると考えられることから, この不得
		におけるデブリの冠水に関する評価を
		水深の妥当性を確認した。
	【比較のため,「添付資料 3.2.14」の一部を記載】	
	<u>2.</u> 評価対象事故シーケンス	
	<u>RPV破損する有効性評価の評価事故シーケンスとして、過</u>	
	<u>渡事象時に注水機能が喪失する事象(以下「過渡事象」という。)</u>	
	<u>を選定している。ここでは、有効性評価のベースケースとなる</u>	
	<u>過渡事象について,デブリの冠水状態の評価を実施する。</u>	
	<u>また、起因事象をLOCAとした場合には事象進展が異なる</u>	
	<u>ことから、RPV破損時間が早くなる大破断LOCA時に注水</u>	
	機能が喪失する事象(以下「LOCA事象」という。)について	
	<u>も、同様にデブリの冠水状態の評価を実施する。</u>	
		(a) アフリの堆積局さ
	アフリの堆積形状を <u>第1</u> 図に示す。ホロシティを考慮したデ	アフリの堆積形状を <u>図1</u> に示す。ボ
	フリ 堆積局さ H _{debri} はれ(1) で評価する。	ノリ堆積尚さ 日 _{debri} は式(1)で評価する
	$H_{dobari} = (V_{\mu} \times (1 - \Phi_{ant}) + V_{\mu} + V_{\mu} \times \Phi_{ant} \div (1 - P)) \div S_{\mu} $ (1)	$H_{debri} = H_0 \times (1 - \phi_{ent}) + H_s + H_0 \times \phi_e$
		ここで、

	<u></u>)世 步.
"炉	/
が落下するまでに, ペ <u>×位及び水量を確保す</u> 粒子化され, 粒子ベッ 冷却性の向上が期待さ 5 溶融炉心・コンクリ に相当する量が溶融炉 た溶融炉心はペデスタ の場合の堆積高さは約 堆積高さには不確かさ 確かさを考慮した場合 実施し,初期水張りの	・評価方針の相違 【柏崎 6/7】 島根2号炉は,冷却材 プールにデブリが落下 した際の粒子化による デブリ堆積高さへの影 響を踏まえた上で,初期 水張り水深の妥当性を 確認している。
	 ・評価方針の相違 【東海第二】 LOCA 事象の場合, LOCA ブローダウン流量 によるペデスタルへの 水の流入が考えられる ことから,島根2号炉は LOCA 事象の場合の評価 を実施していない。
ロシティを考慮したデ ?。 e _{nt} ÷ (1 – P) 式(1)	

始 体则羽盾乙力恐雲正 6 / 7 是后 (2017 19 20 版)	 南海第二 ※ 重 <i>〔</i> 9018 0 19 5〕		借去
伯响·利尔于·万先电/ 0/ 7 5/ (2011:12:20 版)	₩ · 次副版体程[約 20m3]	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
	$V_{\underline{s}}$: ヘデスタル内構造物体積[約4m ^o] (別称1参照)	<u>H_s:ペデスタル内構造物分のデブリ堆積高さ [0.17m]</u>	
	$ \Phi_{ent}: Ricou-Spalding相関式に基づく粒子 $	Φ _{ent} : Ricou-Spalding相関式 ^[18] に基づく	
	化割合 <u>[0.173]</u> (別添2参照)	粒子化割合 <u>(0.38)</u>	
	P:ポロシティ[0.5]既往実験の知見から保守的に設定(別	P :ポロシティ[0.5] <u>PUL i MS実験の知見(0.29~</u>	
	<u>添3参照)</u>	0.37)及びMAAPコード説明書のデブリ除熱量検討	
		で想定している範囲(0.26~0.48)から保守的に設定	
	<u>S_{fz}:コリウムシールドの設置を考慮した床面積[約 27.08m</u>		
	2]		
	また、粒子化したデブリの間隙に冷却水が浸入するため、デ		・記載箇所の相違
	ブリの冠水維持評価の観点から粒子化したデブリの範囲を除い		【東海第二】
	た水プール水深 Handlagt について式(2)で評価する。ここで、デ		島根2号炉は、「(c)
	ブリ堆積範囲より上の領域にはコリウムシールドが敷設されて		溶融炉心の冠水評価」に
	いたいものとする		記載
	$H_{\mu} = (H_{\mu} - (V \times \Phi_{\mu} \div (1-P) \times P \div S_{\mu})) \times (S_{\mu} \land S_{\mu})$		
	$\frac{\Pi_{\text{pool}-\text{ent}} - (\Pi_{\text{pool}})}{(2)} (\underline{V}_{\text{m}} \land \Psi_{\text{ent}} \cdot (1 - 1) \land 1 \cdot \underline{S}_{f_2} /) \land (\underline{S}_{f_2} / \underline{S}_{f_1} / \underline{S}_{f_2} / \underline{S}_{f_2} / \underline{S}_{f_1} / \underline{S}_{f_2} / \underline{S}_{f_1} / \underline{S}_{f_2} / \underline{S}_{f_2} / \underline{S}_{f_2} / \underline{S}_{f_1} / \underline{S}_{f_2} / \underline{S}$		
	S_{f} : コリリムシールトか設置されていない範囲の断面積		
	<u>[#] 29. 92m²]</u>		
	式(1)からデブリ堆積高さ H _{debri} は <u>約 1.71m</u> となる。 <u>また,式</u>	式(1)からデブリ堆積高さは, <u>約1.6m</u> となる。	・解析結果の相違
	<u>(2)から粒子化したデブリの範囲を除いた水プール水深 H_{pool-ent}</u>		【東海第二】
	は約0.69mとなる。		
	<u>解析コードMAAPを用いた有効性評価の結果(デブリから</u>		
	水プールへの限界熱流束を 800kW/m ² (圧力依存性あり)と設		
	<u>定)から、RPV破損によるデブリ落下からペデスタル注水開</u>		
	始までの 7 分間におけるペデスタル水位低下量は,過渡事象の		
	場合は約 0.34m, LOCA事象の場合は約 0.44m であり, デブ		
	<u>リの冠水は維持される。なお, R P V 破損時点からデブリ露出</u>		
	までの時間は、過渡事象の場合で約21分間、LOCA事象の場		
	合で約15分間であることから、ペデスタル注水の開始が遅れた		
	場合でも一定時間冠水維持することが可能である。		
	[:::::::::::::::::::::::::::::::::::::		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			【比較のため,「添付資料 3.2.14」の一部を記載】	(b) デブリ堆積形状の不確かさ評価	
			5. デブリ堆積形状の不確かさ評価 (別添4参照)	デブリが均一に堆積しない場合の堆積高さについて評価	
			水プール水位に対してデブリ落下量が多く粒子化割合が小さ	I.J.	
			いことから、落下したデブリは均一に堆積すると考えられる。		
			ここでは、デブリが均一に堆積しない場合にデブリ冠水維持に		
			与える影響について評価する(第3図)。	PULiMS実験において確認されたデブリ堆積高さと	
			PUL i MS実験において確認されたデブリ堆積高さと拡が	拡がり距離のアスペクト比を適用し, デブリ堆積形状を山状	
			り距離のアスペクト比を適用してデブリ堆積形状を山状と想定	と想定すると、均一化した場合と比較して堆積高さが高くな	
			し,均一化した場合と比較して堆積高さが高くな <u>り</u> , <u>露出まで</u>	<u>a</u> .	・評価方針の相違
			の水深が低くなる場合の評価を実施した結果、水プール水位は		【柏崎 6/7】
			約 0.56m となった。水プールとの接触面積増加の影響を考慮し		島根2号炉は,コリウ
			た場合における水位低下量は,過渡事象の場合は約 0.32m,L		ムシールドによる MCCI
			<u>OCA事象の場合は約0.41m であり, デブリの冠水が維持され</u>		抑制に期待しており,ま
			ることを確認した。		た初期水張りの開始か
			【ここまで】		ら溶融炉心が落下する
					時点までには十分な時
					間余裕があることから、
					水位が低い場合を仮定
					した評価は実施してい
					ない。
			6 機器ドレンサンプが溶融したい場合の不確かさ評価(別添5		 ・設備設計の相違
			参照)		【東海第二】
			ペデスタル内に設置された機器ドレンサンプは、デブリ落下		
			時には溶融しデブリに取り込まれることで溶融デブリとして堆		
			積すると考えられる。ここでは、機器ドレンサンプが溶融しな		
			いと仮定した場合にデブリ冠水維持に与える影響について評価		
			する。		
			新設する機器ドレンサンプの体積を既設と同等として評価し		
			た結果,水プール水位は約0.58mとなった。水位低下量は,過		
			渡事象の場合は約 0.34m, LOCA事象の場合は約 0.44m であ		
			り、デブリの冠水が維持されることを確認した。		
			$\frac{7. \pm 200}{100}$		
			<u>以上の評価から、過渡事家及びLOCA事象いずれにおいて</u>		
			<u>も、RPV做損からイ分の間において、テブリの冠水状態が維</u>		
			村されることを確認した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	* 粒子状デブリ 溶融デブリ		
	<u>第1図 デブリ堆積形状</u> Liendel 00 0F94, ED7: 0.4 Walded, RFB: 3 ms		・記載箇所の相違 【東海第二】 島根2号炉は,図1に 記載。
	1.20% 第2図 粒子状ベッド高さとドライアウト熱流束の関係		・評価方針の相違 【柏崎 6/7】
	第3図 デブリ堆積形状(不確かさ考慮)		・記載箇所の相違
	【ここまで】		【東海第二】
	【比較のため,「添付資料 3.2.14 別添 4」を記載】		島根2号炉は,図2に 記載。
	3. デブリの拡がりに関する不確かさ評価		
	これまでの知見によれば、溶融物は床全面に拡がると想定さ		
	れ、粒子状ベッドについても短期間で均一化される。よって、		
	デブリの拡がりに関する不確かさはなく, コリウムシールド高		
	さ等の設計は、均一化されていることを前提としたもので問題		
	ないと考えているが、デブリの堆積高さに対して厳しい評価を		
	<u> 夫旭し影響を確認する観忌から、PULIMS夫</u> 陳において催 認されたデブ川株積富さし世がり55酸のアフペクしいた適用		
	し、均一化した場合と比較して堆積高さが高くなる場合の評価		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		<u>を行う。PULiMS実験は溶融物を水中に落下した実験であ</u>		
		り,溶融物と粒子状デブリベッドを含めたデブリ全体としての		
		堆積高さに関する知見として適用できるものである。		
		<u>(1) アスペクト比</u>		・記載箇所の相違
		<u>PULiMS実験のうち,溶融物量が比較的大きい E4</u>		【東海第二】
		実験において,平均堆積高さ 41mm に対して,拡がり距離		
		<u>は 740mm×560mm となっている(第 2 図, 第 2 表)。アスペ</u>		
		<u>クト比としては 1:18~1:14 程度となっており, おおよそ</u>		
		<u>1:16 程度の拡がり挙動を示している。デブリ堆積高さの</u>		
		評価としては、ポロシティやペデスタル内構造物量等の保		
		守的な設定をしているため,不確かさ評価として考慮する		
		アスペクト比としては、実験結果に基づく平均的な値とし		
		<u>て 1:16 を適用し評価を行う。</u>		
		<u>第2表 PULiMS実験条件と結果</u>		
		Table 1. PULIMS-E test matrix with initial conditions. Parameter PULIMS tests		
		Bit E2 E3 E4 E5 Melt material Bi ₂ O ₂ -WO ₃ Bi ₂ O ₂ -WO ₃ Bi ₂ O ₂ -WO ₃ Si ₂ O ₂ -WO ₃ Melt mass composition, % 42.64-57.36 30-70 42.64-57.36 42.64-57.36 15.74-84.26		
		Melt jet diameter, mm 20 20 20 20 Jet free fall height, mm 400 400 400 400 400 Jetitel weiter braume, J 3 3 10 6 6		
		Initial met volume, L 3 3 10 6 6 Initial met mass, kg 23.4 7.5 78.1 46.9 41.2 $T_{tab}^{\ 0}C$ 870 1027 870 870 1231 $T_{sb}^{\ 0}C$ 870 1027 870 870 1231		
		Metric temperature in the funnel upon pouring, °C 0.00 1221 0.00 1221 Water nool denth. mm 200 200 200 200		
		Water temperature, °C 79 78 75 77 72		
		Table 2. Measured and estimated properties of the debris beds in PULIMS-E tests.		
		Parameter Expositive for the formation of the forma		
		Total size X X y, min 400x440 ~730x730 740x300 Cake size X X y, mm ~430x320 ~750x750 711x471 ~400x420 Max debris height, mm 93 unknown 106 50		
		Area averaged debris bed height, mm 31 ~30 30 22 Volume averaged debris bed height, mm 50 unknown 41 28 Debris height under injection point, mm 48 unknown 50 39		
		Total area occupied by cake, m' 0.14 ~0.44 0.30 0.14 Measured particulate debris mass, kg ~4 unknown 2.9 - Measured particulate debris mass fraction, %0 ~20% unknown ~6.8% -		
		Solidified cake mass, kg ~20 unknown 39.5 13.6 Measured debris bed volume, L ~4.2 unknown 8.9 ~3.1 Estimated total cake porosity 0.29 - 0.36 0.37		
		Symmetry of the spread non-sym. unknown non-sym. symmetric Steam explosion no yes no yes Cake formation cake no cake cake		
		Measured melt superheat, °C 136 206 70 300 Measured melt superheat in the pool, °C 121 77 48 90 Estimated loss of melt superheat (ue to jet)		
		interaction with coolant, *C 15 129 22 210		
		EDUBTIONS		
		EKUPTIONS		
		41mm(平均高さ)		
		560mm		
		740mm		
		第2図 PUL i MS実験結果(E4)		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		(2) 堆積高さ評価		
		デブリ堆積高さの評価でのベースケース※(添付資料 3.2.16	b. (a) の堆積高さに対して, アスペクト比を考慮した	
		参照)の堆積高さに対してアスペクト比を考慮した場合のデブ	場合のデブリの堆積形状として,図2のように,連続層につ	
		リの堆積形状として, 第3図のように連続層については円柱上	いては、円柱状に堆積した形状とし、その上に粒子状デブリ	
		に円錐が堆積した形状とし、その上に粒子化層が一様に堆積す	が円錐状に堆積する形状を仮定する。ここで、アスペクト比	
		る形状を仮定する。	は、PUL i MS試験で得られた1:14を想定する [※] 。これ	
			を元に初期水張り 2.4m における堆積高さを計算した結果,	
		連続層の円錐部分については、堆積高さが最大となるのは床	堆積高さは約1.9mとなる。計算方法は以下のとおりである。	
		全面に拡がった場合であることから、コリウムシールド厚さを		
		考慮したペデスタル直径 5.872m にアスペクト比を考慮すると,	・連続層の円錐部分については、堆積高さが最大となるのは	
		頂点部分の堆積高さは約0.37mとなる。円柱部分については、	床全面に拡がった場合であることから、ペデスタル径	
		連続層デブリのうち円錐部分の体積を除いたものとなるため、	5.745mにアスペクト比を考慮すると,頂点部分の堆積高さ	
		<u>堆積高さは約1.09mとなる。</u>	<u>は約0.42mとなる。</u>	
		粒子化層については、連続層の上に一様に堆積すると仮定す	 ・円柱部分については、連続層のうち、円錐部分の体積を除 	
		るため, 堆積高さは約0.36mとなる。	いたものとして求める。	
		以上から、デブリの堆積高さは、連続層と粒子化層の体積高	 ・粒子状デブリについては、連続層の上に一様に堆積すると 	
		さの合計となることから、約1.81mとなる。	仮定して求める。	
		※ 炉外溶融物体積:3m ³ ,ポロシティ:0.35を設定	・デブリ堆積高さは上述の連続層と粒子状デブリの堆積高さ	
			<u>の合計となる。</u>	
		<u>第3図 デブリ堆積形状(アスペクト比考慮)</u>		
		(3) デブリの冠水維持に対する評価		
		粒子化割合 0.173 のデブリ量に対してポロシティ 0.35 で全て		
		の間隙に浸水していると仮定した場合、円錐部分の頂部から水		
		面までの水深は約 0.56m である。また、円錐状に堆積すること	なお, デブリ堆積形状が山状の場合, 均一化した場合と比	
		で水プールとの接触面積が増え、蒸発量が増加するが、一様に	較して溶融炉心上部水プールとの伝熱面積が増加して、水位	
		堆積した場合の水プールとの接触面積からの増加割合は 1%未	低下が早くなる可能性があるが、伝熱面積の増加分は1%未	
		満であり、蒸発量に対して有意な影響を与えない。有効性評価	満である。したがって、伝熱面積の増加によるペデスタル水	
		のMAAP結果に基づく、RPV破損によるデブリ落下から格	位変化への影響は小さく、デブリ露出までの時間への影響は	
		納容器下部注水までの期間における水位低下量は、過渡事象の	小さい。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	場合は約 0.31m, LOCA事象の場合は約 0.40m であり, 蒸発 量の増加として保守的に 1%を見込んだ場合でも, 水位低下量 は, 過渡事象の場合は約 0.32m, LOCA事象の場合は約 0.41m となるため, デブリの冠水は維持される。 【ここまで】		
	【比較のため,「添付資料3.2.14 別添4」の一部を再掲】 (1) アスペクト比 PUL i MS実験のうち,溶融物量が比較的大きいE4 実験に おいて,平均堆積高さ 41mm に対して,拡がり距離は 740mm×560mm となっている(第2図,第2表)。アスペクト比 としては1:18~1:14 程度となっており, <u>おおよそ1:16 程度の</u> 拡がり挙動を示している。デブリ堆積高さの評価としては,ポ ロシティやペデスタル内構造物量等の保守的な設定をしている ため,不確かさ評価として考慮するアスペクト比としては,実 験結果に基づく平均的な値として1:16 を適用し評価を行う。	※PUL i MS実験のうち,溶融物量が比較的大きいE 4実 験において,平均堆積高さ 41mm に対して,拡がり距離は 740mm×560mm となっている(表1,図3)。アスペクト比 としては1:18~1:14となっており, <u>デブリ堆積高さの</u> 評価としては,保守的に,1:14を適用し評価を行う。 PUL i MS実験は溶融物を水中に落下した実験であり, 連続層と粒子状デブリを含めたデブリ全体としての体積高 さに関する知見として適用できるものである。連続層と粒 子状デブリを含めた全体を1:14とするため,本評価では 円柱状に堆積した連続層の上に粒子状デブリが円錐状に堆 積する形状を仮定する。	・評価条件の相違 【東海第二】 島根2号炉は,冠水評 価の観点からデブリ堆 積高さを保守的に評価 している。
	【比較のため,「添付資料 3.2.14」の一部を再掲】 また,粒子化したデブリの間隙に冷却水が浸入するため,デ ブリの冠水維持評価の観点から粒子化したデブリの範囲を除い た水プール水深 $H_{pool-ent}$ について式(2)で評価する。ここで,デ ブリ堆積範囲より上の領域にはコリウムシールドが敷設されて いないものとする。 $H_{pool-ent} = (H_{pool} - (V_m \times \Phi_{ent} \div (1-P) \times P \div S_{f2})) \times (S_{f2} / S_{f})$ (2) $H_{pool}: 木プール初期水深[1m]$ <u>$S_f: =$Jウムシールドが設置されていない範囲の断面積</u> <u>[約 29.92m²]</u>	(c) デブリ冠水評価 粒子化したデブリの間隙に冷却水が浸入するため, デブリ の冠水維持評価の観点から粒子化したデブリの範囲を除い た水プール水深 $H_{pool-ent}$ について式(2) で評価する。 $H_{pool-ent} = H_{pool} - (H_0 \times \phi_{ent} \div (1-P) \times P) \qquad $	

			1
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	式(1)からデブリ堆積高さ H _{debri} は約 1.71m となる。また,式	式(2)から粒子化したデブリの範囲を除いた水ブール水	
	(2)から粒子化したデブリの範囲を除いた水プール水深 H _{pool-ent}	徐 $\Pi_{pool-ent}$ は <u>赤リ 2.005m</u> となる。	・解析結果の相違
	は <u>約 0.69m</u> となる。		【東海第二】
	解析コードMAAPを用いた有効性評価の結果(デブリから	MAAPコードを用いた有効性評価の結果(デブリから水	
	水プールへの限界熱流束を 800kW/m ² (圧力依存性あり)と設定)	プールへの限界熱流束を 800kW/m²(圧力依存性あり)と設定)	
	から, RPV破損によるデブリ落下からペデスタル注水開始ま	から,原子炉圧力容器破損後のペデスタル注水が実施され	
	での7分間におけるペデスタル水位低下量は、過渡事象の場合	<u>ず, デブリ露出*までの時間は, 過渡起因事象の場合で約1.4</u>	・解析結果の相違
	は約 0.34m, LOCA事象の場合は約 0.44m であり, デブリの冠	<u>時間, LOCA起因事象の場合で約 0.58 時間</u> であることか	【東海第二】
	水は維持される。なお、RPV破損時点からデブリ露出までの	<u>ら、粒子化したデブリの範囲を除いた水プール水深条件であ</u>	・評価方針の相違
	時間は,過渡事象の場合で約 21 分間,LOCA事象の場合で約	<u>って、</u> ペデスタル注水の開始が遅れた場合でも一定時間冠水	【東海第二】
	15 分間であることから、ペデスタル注水の開始が遅れた場合で	維持することが可能であることを確認した。	LOCA 事象の場合,
	も一定時間冠水維持することが可能である。		LOCA ブローダウン流量
	【ここまで】		によるペデスタルへの
			水の流入が考えられる
			ことから,島根2号炉で
			は LOCA 事象の場合の評
			価を実施していない。
			・設備設計の相違
			【柏崎 6/7】
			柏崎 6/7 は, 6 号炉と
			7 号炉の差異を踏まえ
また, 柏崎刈羽原子力発電所 6 号及び 7 号炉について, 「3.5		また, MCCIに対して保守的な評価条件を設定した上で,	た記載としている。
溶融炉心・コンクリート相互作用」に示すとおり、コリウム		初期水張りの有効性を感度解析によって確認している。初期	
シールド設置後の格納容器下部の面積がより小さくなる6号		水張りの水位を2.4mとした場合について、溶融炉心は全量落	
炉の設計をもとにした格納容器下部の床面積において MCCI		下するものとし、上面熱流束を格納容器圧力への依存性を考	
による侵食量の評価を行っている。また, MCCI に対して保守		慮しない800kW/m ² 一定とした場合であっても、MCCⅠによ	
的な評価条件を設定した上で、初期水張りの有効性を感度解		る侵食量は数cm(800kW/m ² (圧力依存あり)の場合,床面0	・評価方針の相違
析によって確認している。初期水張りの水位を 2m とした場合		cm. 壁面約4 cmであるのに対し、800k W/m^2 (一定)の場合、床	【柏崎 6/7】
について、溶融炉心は全量落下するものとし、上面熱流束を		面Ocm. 壁面約13cm) に留まることを確認していることから.	島根2号炉は,コリウ
格納容器圧力への依存性を考慮しない800kW/m ² 一定とした場		現状の初期水張りの水位の設定に問題はないものと考える。	ムシールドによる MCCI
合であっても、MCCI による侵食量は数 cm (床面約 9cm,壁面		感度解析の結果を図4に示す。	 抑制に期待しており,ま
約 8cm) であり、初期水張りが遅れた場合を想定し、初期水			た初期水張りの開始か
張りの水位を 1m とした場合であっても MCCI による侵食量			ら溶融炉心が落下する
は数 cm (床面約 12cm, 壁面約 11cm) に留まることを確認し			時点までには十分な時
ていることから、現状の初期水張りの水位の設定に問題はな			間余裕があることから
いものと考える。感度解析の結果を図4に示す。			水位が低い場合を仮定
			した評価を実施してい

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			ない。
		※ デブリが水面から露出する状態の悪影響として、以下が考	
		えられることから、これらの影響を防止するためデブリの冠	
		水状態を維持する。	
		① FP 放出に関する悪影響	
		水面から露出した部分のデブリは冷却されにくく高温状	
		態を維持するため、その下に堆積するデブリの除熱も悪くな	
		り、デブリの平均温度が上昇する。この結果、高温のデブリ	
		からの FP 放出が継続する。また水面から露出しているデブ	
		リから放出された FP については,水中で除去される効果を	
		期待できないことから, 格納容器への FP 放出量が増加する。	
		② 格納容器過温に対する悪影響	
		水面から露出した部分のデブリは高温状態を維持するた	
		め, 輻射や対流によりペデスタル雰囲気や格納容器バウンダ	
		リを直接加熱する要因となる。この結果、格納容器の健全性	
		に影響を与える可能性がある。	
		③ MCCI に対する悪影響	
		水面から露出した部分のデブリは高温状態を維持するた	
		め、その下に堆積するデブリの除熱も悪くなり、デブリの平	
		均温度が上昇する。この結果, ペデスタル床面のコリウムシ	
		ールドやコンクリートの侵食量が増加し、格納容器の健全性	
		に影響を与える可能性がある。	
c. まとめ		c $\pm b$	
FCI については、これまでの試験結果から、実機において		FCIについては、これまでの試験結果から、実機におい	・記載方針の相違
格納容器の破損に至るような大規模な原子炉圧力容器外での		て原子炉格納容器の破損に至るような大規模な原子炉圧力	【柏崎 6/7】
水蒸気爆発の発生の可能性は小さいと考える。また、FCIの		容器外での水蒸気爆発の発生の可能性は小さいと考える。な	島根2号炉は、溶融炉
発生を前提とした評価においても、格納容器下部ドライウェ		お、FCIの発生を前提とした評価においても、ペデスタル	心が落下する時点で、ペ
ルの構造損傷に伴う格納容器の破損には至らず、また、十分		の構造損傷に伴う原子炉格納容器の破損には至らず、十分な	デスタルに溶融炉心の
な余裕があることを確認しており、格納容器下部への初期水		余裕があることを確認しており、その水位が原子炉格納容器	冷却に十分な水位及び
張りの有無及びその水位が、格納容器の健全性に影響を与え		の健全性に影響を与えるものではないと判断している。ま	水量を確保するための
るものではないと判断している。		た,溶融炉心の粒子化の効果等によるMCCIの影響緩和に	ペデスタル注水手段を
		も期待できる。	整備しており,溶融炉心
			の粒子化の効果等によ
			る MCCI の影響緩和に期
			待できるものとしてい
			る。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
上記を踏まえ,格納容器下部ドライウェルに溶融炉心が落下する状況に対しては,格納容器下部ドライウェルに 2m の初期水張りまで注水を実施する運用としている。		上記を踏まえ, <u>ペデスタル</u> に溶融炉心が落下する状況に対して は, <u>ペデスタル</u> に <u>2.4m</u> の初期水張りまで注水を実施する運用とし ている。	・運用の相違 【柏崎 6/7】 初期水張り深さの相 違。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
4. 格納容器下部の水位上昇の影響		4. ペデスタルの水位上昇の影響	
事故対応の中で格納容器スプレイを実施すると, リターンラ		炉心損傷後の事故対応として, ペデスタルへの初期水張り運	・設備設計の相違
インを通じたサプレッション・チェンバ・プールからの流入や		用の手順を定め、またペデスタル内外には、重大事故等発生時	【柏崎 6/7】
ベント管を通じた流入によって冷却材が格納容器下部ドライ		における <mark>貯</mark> 水状況を把握するための計測設備を設けていること	
ウェルに流れ込み, 下部ドライウェル水位を上昇させる場合が		<u>から、ペデスタル水位は適切に管理可能であるが、</u> ここでは、	
<u>ある。</u> ここでは, FCI の有効性評価で設定した原子炉圧力容器		FCIの有効性評価で設定した原子炉圧力容器破損に至るシナ	
破損に至るシナリオにおいて, 格納容器下部ドライウェルへの		リオにおいて, ペデスタルへの初期水張りの水位が高い場合を	
初期水張りの水位が上昇していた場合を想定し,その際の FCI		想定し、その際のFCIへの影響を評価した。	
への影響を評価した。			
。 涼融恒心茲下前の下部ドライウェル水位上見の可能性		。 原子恒圧力容異破損前のペデスタル水位上見の可能性	・設備設計の相違
		<u>a.</u> <u>m」</u> が上力存留破損制のペイスアル小位工 <u>并のう能に</u> 枚如 <u>の</u> 架フプレイに上るペデフタルへの注水場作(百子恒正	【 柏 岵 6/7】
<u> 谷融</u> が心洛一前の沿船谷福一部ドライウェルの初始が成り の他に枚納容哭下部ドライウェルの水位を増加させる更因と		<u>福利存益ハノレイによる、ハハノル、の住水保住(床」が住</u> 力容器破損前の初期水準り)け、スプレイ水がペデスタル関ロ	【/[][[H]]] ()/ / 】
の他に俗和谷福」前下アイケエルの水位を増加させる安凶とし		27日福阪賀市の7万湖小派のアは、ハアレイ小が、アメアル用日 部である制御祷駆動機構搬出入口上りペデスタル内に流入する	
ては、信仰各部ハノレイによる日本内が信仰各部一前下ノイク		一部でのる間四律駆動及併成ロハロより、アメアルドルに低入する ことにとって時水し、ペデスタル水位計にて水位 9 $4m$ を確認し	
エル 単面の 建造化 こう 「 首の前から加入 うる 湯 百か 与えられ		た後 注水を停止する手順としている この流敗において 頂	
<u>す続して設置されているため</u> 格納容器スプレイに上る冷却材		<u> </u>	
は 基本的にけ連通社からベント管に流れ変もると考えられる		り スプレイ水が滞留するような機器や堰けない ペデスタル	
が仮に格納容器スプレイの水が全て格納容器下部ドライウェ		開口部とドライウェル床面の間にけ堰があろものの ドライウ	
ルに流入したとしても、今回の申請において示した解析ケース		ェル床面に溜まった水は一様に上昇し、制御棒駆動機構搬出入	
において、格納容器下部ドライウェルに形成される水位は4m		ロは比較的大きな開口部であることから、スプレイ水はこの開	
以下である。ただし、初期水張り操作による注水と格納容器ス		口部を通じて、遅滞なくペデスタルに流れ込むと考えられるた	
プレイの水の流入を合わせて形成される格納容器下部水位が		め、スプレイ水の原子炉格納容器内における滞留による影響は	
		考えにくい。	
り操作を停止するものとした。		この操作においてペデスタル水位を上昇させる要因として	
また, LOCA を伴う場合には, 破断口から流出した冷却材が格		は、停止操作判断による時間遅れ及び操作実施後のスプレイ弁	
プレイによる冷却材の流入の可能性が考えられるが,LOCA によ		性がある。この場合、注水停止後もオーバーフローを続けるこ	
って原子炉圧力容器から流出する冷却材は飽和蒸気であり、サ		とでペデスタル水位は上昇するが、ペデスタル水位が制御棒駆	
 ブクール度が小さい。このため,LOCA によって流出した冷却材		動機構搬出入口下端位置までの高さ(約3.8m)よりも高くなる	
によって水位が形成された格納容器下部ドライウェルでの水蒸		には、ドライウェル床面全体を拡がりながら水位が形成される	
気爆発の発生を仮定しても、発生する運動エネルギは小さいも		必要があり、その水位上昇は緩やかであることから、実際の事	
のと考えられる。		<u>故対応において、制御棒駆動機構搬出入口下端位置までの高さ</u>	
		(約3.8m)よりも高い水位となることはない。	
		また、その他ペデスタル水位を増加させる要因としては、注	
		水の停止後にドライウェルサンプに貯まったスプレイ水が、ド	
		ライウェルサンプとペデスタル床を接続するドレン配管及びコ	
		リウムシールドスリットを通じて、ドライウェルサンプからペ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		デスタルに流入する場合(逆流)が考えられる。ただし、この	
		経路を通じて流入する流量は最大で約 1.5m³/h, ペデスタルの	
		水位上昇率は約0.06m/hであり,注水を停止した後の原子炉圧	
		力容器破損までの逆流による水位上昇分は約3cm であること	
		から, FCIに対して与える影響は小さいと考える。なお,逆	
		流を続けたとしても水頭圧の関係から、制御棒駆動機構搬出入	
		口下端位置までの高さ(約3.8m)となることはない。	
b. 評価条件		b . 評価条件	
溶融炉心が格納容器下部ドライウェルに落下する前に,格納		溶融炉心がペデスタルに落下する前に、ペデスタルに制御棒	 ・設備設計の相違
容器下部にリターンラインまでの高さ(7m)の水位が形成され		駆動機構搬出入口下端位置までの高さ(約3.8m)の水位が形成	【柏崎 6/7】
ているものとした。この水位は上記「a. 溶融炉心落下前の下部		されているものとした。	
ドライウェル水位上昇の可能性」に照らして十分に高いと考え		また、ここでは現実的な溶融炉心の落下様態を想定した条件	・評価条件の相違
る。その他の解析条件は、添付資料 3.3.2 において設定した評		を適用し, その他の解析条件は, 添付資料 3.3.2 において設定	【柏崎 6/7】
価条件と同様とした。		した評価条件と同様とした。	島根2号炉は,現実的
			な評価条件で水蒸気爆
			発評価を実施。
<u>c</u> . 評価結果		c.評価結果	
圧力スパイクに加え、水蒸気爆発による影響についても評価		圧力スパイクに加え、水蒸気爆発による影響についても評価	
を実施した。以下にその結果を示す。		を実施した。以下にその結果を示す。	
(1) 圧力スパイク		(1) 圧力スパイク	
格納容器圧力の評価結果を図9 に示す。原子炉圧力容器		格納容器圧力の評価結果を図9に示す。原子炉圧力容器が	
が破損して、溶融炉心が格納容器下部ドライウェルの水中		破損して,溶融炉心がペデスタルの水中に落下する際に圧力	
に落下する際に圧力スパイクが生じているが、圧力スパイ		スパイクが生じているが,圧力スパイクのピーク圧力は <u>約</u>	
クのピーク圧力は <u>約 0.26MPa</u> であり, <u>水位 2m の場合の約</u>		<u>216kPa[gage]</u> であり, <u>水位 2.4m の場合の約 193kPa[gage]よ</u>	・解析結果の相違
<u>0.51MPa よりも低くなっている。</u>		<u>りも高くなっている。</u>	【柏崎 6/7】
この理由としては、初期水張り水位の上昇によって格納		この理由としては、初期水張り水位の上昇によってペデス	
<u>容器下部ドライウェル</u> の水量が多くなり,溶融炉心の粗混		<u>タル</u> の水量が多くなり,溶融炉心の粗混合量が増加し,水へ	
合量が増加し,水への伝熱量が増加した <u>ものの,落下した</u>		の伝熱量が増加したために, 圧力スパイク評価は厳しくなっ	・解析結果の相違
溶融炉心の周囲のサブクール状態の水量が増加したことに		たものと考えられる。	【柏崎 6/7】
よる効果が、溶融炉心落下時の水温上昇とそれに伴う蒸気			
発生を緩和する側に作用し、ピーク圧力が抑制された可能			
性が考えられる。			
(2) 水蒸気爆発		(2)水蒸気爆発	
水蒸気爆発によって格納容器下部の水に伝達される運動		水蒸気爆発に伴うエネルギ,ペデスタル内側及び外側の応	・解析結果の相違
エネルギの評価結果を図5に示す。最大値は約16MJであ		力の推移を図5,図6及び図7に示す。水蒸気爆発の発生を	【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
り,水位 2m の場合(約 7MJ)と比べて約 2 倍に増加して		想定した場合にペデスタルの水に伝達される運動エネルギ	
いる。		の最大値は約 0.2MJ である。このエネルギを入力とし、ペデ	
このエネルギを入力とした応力の解析結果を図6及び図		スタルの内側及び外側鋼板にかかる応力を解析した結果, ペ	
7 に示す。格納容器下部ドライウェルの内側鋼板の最大応		デスタルの内側鋼板にかかる応力は約 14MPa,外側鋼板にか	
力は約 278MPa であり,水位 2m の場合の約 32MPa と比べて		かる応力は約 7MPa となった。これはペデスタル内側及び外	
約9倍に増加している。また、格納容器下部ドライウェル		<u>側鋼板の</u> 降伏応力(490MPa)を十分に下回っており, <u>原子炉</u>	
の外側鋼板の最大応力は約 168MPa であり,水位 2m の場合		格納容器破損に至るおそれはないと考える。	
の約 25MPa と比べて約 7 倍に増加している。格納容器下部			
<u>ドライウェルの内側鋼板の</u> 降伏応力(490MPa)を十分に下			
回っており, 格納容器破損に至るおそれはないと考える。			
また、初期水張りの水位が上昇すると、水面から原子炉		また,初期水張りの水位が上昇すると,水面から原子炉圧	
圧力容器の底部までの距離が短くなる。格納容器下部ドラ		力容器の底部までの距離が短くなる。 <u>ペデスタル</u> で水蒸気爆	
<u>イウェル</u> で水蒸気爆発が発生した場合には,発生した水蒸		発が発生した場合には,発生した水蒸気によって水塊がピス	
気によって水塊がピストン状に押し上げられ、水塊が原子		トン状に押し上げられ、水塊が原子炉圧力容器の底部に衝突	
炉圧力容器の底部に衝突する可能性が考えられるが、水面		する可能性が考えられるが,水面と原子炉圧力容器の底部の	
と原子炉圧力容器の底部の距離が短くなることにより、衝		距離が短くなることにより, 衝突の可能性が高くなることが	
突の可能性が高くなることが懸念される。		懸念される。	
水塊による水位上昇は, 主にペデスタルの径, D と初期水		水塊による水位上昇は,主にペデスタルの径,Dと初期水	
位, H₀のアスペクト比 (H₀/D) によって整理できる。 ^[20] 初		位, H ₀ のアスペクト比 (H ₀ /D) によって整理できる。 ^[19]	
期水張り水位 <u>2m</u> の場合,アスペクト比が <u>約 0.19</u> となるこ		初期水張り水位 <u>2.4m</u> の場合,アスペクト比が <u>約 0.42</u> となる	・解析結果の相違
とから,水塊の上昇を含む最大水位は <u>約 2m</u> となる。また,		ことから,水塊の上昇を含む最大水位は <u>約 2.4m</u> となる。ま	【柏崎 6/7】
初期水張り水位 <u>7m</u> の場合, アスペクト比が約 0.66 となる		た,初期水張り水位 <u>約3.8m</u> の場合,アスペクト比が約0.66	
ことから,水塊の上昇を含む最大水位は <u>約 11.2m</u> となる。		となることから,水塊の上昇を含む最大水位は <u>約 7.2m</u> とな	
水位 7mの場合,水塊は <u>格納容器下部ドライウェル床面</u> から		る。水位 <u>約 3.8m</u> の場合,水塊は <u>コリウムシールド上面</u> から	
<u>約11.2m</u> まで上昇する可能性があるが,この高さは <u>格納容</u>		<u>約 7.2m</u> まで上昇する可能性があるが,この高さは <u>コリウム</u>	
<u>器下部ドライウェル床面</u> から原子炉圧力容器の底部までの		<u>シールド上面</u> から原子炉圧力容器の底部までの高さである	
高さである <u>約11.5m</u> よりも低いことから,水塊が原子炉圧		<u>約9.5m</u> よりも低いことから,水塊が原子炉圧力容器の底部	
力容器の底部に衝突することはなく、水塊による衝撃によ		に衝突することはなく、水塊による衝撃により、原子炉格納	
り、原子炉格納容器の支持機能の健全性に与える影響はな		容器の支持機能の健全性に与える影響はない。	
لا کې			
水蒸気爆発が発生した際の気相部の挙動については,		水蒸気爆発が発生した際の気相部の挙動については、JA	
JASMINE コードを用い, 添付資料 3.3.2 の評価条件(初期		SMINEコードを用い,添付資料3.3.2の評価条件(初期	
水張り水位 2m) における,原子炉格納容器下部の空間部で		水張り水位 2.4m) における, ペデスタルの空間部での格納容	・運用の相違
の格納容器圧力を評価した。評価結果を図8に示す。水蒸		器圧力を評価した。評価結果を図8に示す。水蒸気爆発時の	【柏崎 6/7】
気爆発時の粗混合粒子の細粒化と伝熱により、爆発源の膨		粗混合粒子の細粒化と伝熱により、爆発源の膨張に伴う圧力	初期水張り深さの相
張に伴う圧力波が伝播する。圧力波は減衰するため、原子		波が伝播する。圧力波は減衰するため、原子炉圧力容器底部	違。
炉圧力容器底部に到達する時点では 0.30MPa[abs]以下とな		に到達する時点では 0.30MPa[abs]以下となる。0.30MPa 程度	
る。0.30MPa 程度の圧力波によって原子炉圧力容器が損傷		の圧力波によって原子炉圧力容器が損傷に至ることは想定	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
に至ることは想定し難いことから、圧力波による原子炉圧		し難いことから, 圧力波による原子炉圧力容器への影響は無	
力容器への影響は無視できる程度と考える。原子炉格納容		視できる程度と考える。原子炉格納容器への影響について	
器への影響については、原子炉格納容器の構造上、原子炉		は,原子炉格納容器の構造上, ペデスタルにおいて発生した	
<u>格納容器下部</u> において発生した圧力波が減衰されないまま		圧力波が減衰されないまま原子炉格納容器上部に到達する	
原子炉格納容器上部に到達することは考えにくいが、仮に		ことは考えにくいが,仮に 0.30MPa 程度の圧力波が <u>原子炉格</u>	
0.30MPa 程度の圧力波が <u>原子炉圧力容器上部</u> の壁面に到達		<u>納容器上部</u> の壁面に到達しても,原子炉格納容器の限界圧力	
しても,原子炉格納容器の限界圧力(<u>0.62MPa[gage]</u>)未満		(<u>0.853MPa[gage]</u>) 未満であることから,原子炉格納容器が	・設備設計の相違
であることから、原子炉格納容器が破損に至ることはない。		破損に至ることはない。	【柏崎 6/7】
以上の結果から,格納容器下部ドライウェルの水位を現状の		以上の結果から、ペデスタルの水位を現状の初期水張り水位	
初期水張りの水位である 2m 以上に上昇させた場合であっても,		である 2.4m 以上に上昇させた場合であっても, FCIによって	・運用の相違
FCI によって格納容器が破損に至るおそれはないと考える。こ		原子炉格納容器が破損に至るおそれはないと考える。このこと	【柏崎 6/7】
のことから事故対応におけるドライウェルスプレイ等の運転操			初期水張り深さの相
作に対して, FCI の観点からの制約は生じない。		への初期水張り運用に対して, FCI の観点からの制約は生じな	違。
		ℓv₀	
5		5 社社	
		り・和冊 自相百子力発電所9号桁においては FCI が発生した場	
上ている日の影響を低減しりり、存配が心の起」しの効果すに トス MCCI の影響経和を期待できる水位として 初期水準り水		CIの影響経和を期待できる水位として 初期水準り水位を	・運田の相違
なる meel の影響被相を夠待 くさる が し こ し く、 初海 が 旅 ク か 位 を 9m に 設 定 し て い ろ また 事故 対 広 に お け ろ ド ラ イ ウェ		2 4m に設定している。また、ペデスタルの水位が上見した提合	【柏崎 6/7】
して $2m$ に に		2.411に設定している。よに、ハーバーの小正が上升した物日であってた原子に核納容器が破損に至るおそれはない	111
水位が上見した場合であっても杦納容界が破損に至ろなそれけ			造
以上			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
参考文献		参考文献	
[1] V. Tyrpekl, Material effect in the nuclear fuel - coolant		[1] V.Tyrpekl, Material effect in the nuclear fuel – coolant	
interaction : structural characterization of the steam		interaction : structural characterization of the steam	
explosion debris and solidification mechanism, 2012		explosion debris and solidification mechanism, 2012	
[2] J.H.Kim, et al, The Influence of Variations in the Water		[2] J.H.Kim, et al, The Influence of Variations in the Water	
Depth and Melt Composition on a Spontaneous Steam		Depth and Melt Composition on a Spontaneous Steam Explosion	
Explosion in the TROI Experiments, Proceedings of		in the TROI Experiments, Proceedings of ICAPP'04	
ICAPP' 04			
[3] J.H. Song, Fuel Coolant Interaction Experiments in TROI		[3] J.H.Song, Fuel Coolant Interaction Experiments in TROI	
using a U02/Zr02 mixture, Nucl.Eng.Design. 222, 1-15,		using a U02/Zr02 mixture, Nucl. Eng. Design. 222, 1-15,	
2003		2003	
[4] J.H. Kim, Results of the Triggered Steam Explosions from		[4] J.H.Kim, Results of the Triggered Steam Explosions from	
the TROI Experiment, Nucl. Tech., Vol. 158 378-395, 2007		the TROI Experiment, Nucl, Tech., Vol.158 378-395, 2007	
[5] D.Magallon, "Characteristics of corium debris bed		[5] D.Magallon, "Characteristics of corium debris bed	
generated in large-scale fuel-coolant interaction		generated in large-scale fuel-coolant interaction	
experiments," Nucl. Eng. Design, 236 1998-2009, 2006		experiments," Nucl. Eng.Design, 236 1998-2009, 2006	
[6] M. Kato, H. Nagasaka, "COTELS Fuel Coolant Interaction		[6] M. Kato, H. Nagasaka, "COTELS Fuel Coolant Interaction	
Tests under Ex-Vessel Conditions," JAERI-Conf 2000-015,		Tests under Ex-Vessel Conditions," JAERI-Conf 2000-015,	
2000		2000	
[7] (財)原子力発電技術機構(NUPEC),「重要構造物安全評価		[7] (財)原子力発電技術機構(NUPEC),「重要構造物安全評価	
(原子炉格納容器信頼性実証事業)に関する総括報告書」2003		(原子炉格納容器信頼性実証事業)に関する総括報告書」2003	
[8] B.R.Sehgal, et al., "ACE Project Phase C&D:ACE/MCCI and		[8] B. R. Sehgal, et al., "ACE Project Phase C&D:ACE/MCCI and	
MACE Tests", NUREG/CP-0119, Vol. 2, 1991		MACE Tests", NUREG/CR-0119, Vol.2, 1991	
[9] R.E.Blose, et al., "SWISS: Sustained Heated Metallic		[9] R.E.Blose, et al., "SWISS: Sustained Heated Metallic	
Melt/Concrete Interactions With Overlying Water		Melt/Concrete Interactions With Overlying Water Pools,"	
Pools," NUREG/CR-4727, 1987		NUREG/CR-4727, 1987	
[10] R.E.Blose, et al., "Core-Concrete Interactions with		[10] R.E.Blose, et al., "Core-Concrete Interactions with	
Overlying Water Pools - The WETCOR-1		Overlying Water Pools - The WETCOR-1 Test," NUREG/CR-5907,	
Test," NUREG/CR-5907, 1993		1993	
[11] M.T.Farmer, et al., "Status of Large Scale MACE Core		[11] M.T.Farmer, et al. "Status of Large Scale MACE Core	
Coolability Experiments", Proc. OECD Workshop on		Coolability Experiments", Proc. OECD Workshop on Ex-Vessel	
Ex-Vessel Debris Coolability, Karlsruhe, Germany, 1999		Debris Coolability, Karlsruhe, Germany, 1999	
[12] M.T.Farmer, et al., "Corium Coolability under Ex-Vessel		[12] M. T.Farmer, et al., "Corium Coolability under Ex-Vessel	
Accident Conditions for LWRs," Nuc. Eng. and Technol.,		Accident Conditions for LWRs," Nuc. Eng. and Technol., 41,	
41, 5, 2009		5, 2009	
[13] M. T. Farmer, et al., "OECD MCCI Project 2-D Core Concrete		[13] M.T.Farmer, et al., "OECD MCCI Project 2-D Core Concrete	
Interaction (CCI) Tests : Final		Interaction (CCI) Tests : Final	
Report, " OECD/MCCI-2005-TR05, 2006		Report, " OECD/MCCI-2005-TR05, 2006	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
[14] M.T.Farmer, et al., "OECD MCCI Project Final		[14] M.T.Farmer, et al., "OECD MCCI Project Final	
Report, " OECD/MCCI-2005-TR06, 2006		Report, " OECD/MCCI-2005-TR06, 2006	
[15] M.T.Farmer, et al., "OECD MCCI-2 Project Final		[15] M.T.Farmer, et al., "OECD MCCI-2 Project Final	
Report, " OECD/MCCI-2010-TR07, 2010		Report, " OECD/MCCI-2010-TR07, 2010	
[16] H.Nagasaka, et al., "COTELS Project (3): Ex-vessel		[16] H.Nagasaka, et al., "COTELS Project (3): Ex-vessel	
Debris Cooling Tests," OECD Workshop on Ex-Vessel Debris		Debris Cooling Tests," OECD Workshop on Ex-Vessel Debris	
Coolability, Karlsruhe, Germany, 1999		Coolability, Karlsruhe, Germany, 1999	
[17] A. Karbojian, et al.," A scoping study of debris bed		[17] A. Karbojian, et al., "A scoping study of debris bed	
formation in the DEFOR test facility," Nucl. Eng. Design		formation in the DEFOR test facility," Nucl. Eng. Design	
239 1653- 1659, 2009		239 1653- 1659, 2009	
[18] F.B.Ricou, D.B.Spalding, "Measurements of Entrainment		[18] F.B.Ricou, D.B.Spalding, "Measurements of Entrainment	
by Axisymmetrical Turbulent Jets," Journal of Fluid		by Axisymmetrical Turbulent Jets," Journal of Fluid	
Mechanics, Vol.11, pp.21-32, 1961		Mechanics, Vol.11, pp.21-32, 1961	
[19] 中島 他, SAMPSON コードによる ABWR 格納容器ペデスタル			・評価方針の相違
上の炉心デブリの3次元拡がり評価,日本原子力学会「2013			【柏崎 6/7】
<u>年秋の大会」H12, 2013 年 9 月</u>			島根2号炉は,初期水
[20] 稲坂 他「軽水炉のシビアアクシデント時における気泡急成		[19] 稲坂 他「軽水炉のシビアアクシデント時における気泡急成	張り水深に対する評価
長による水撃力の研究」,海上技術安全研究報告書 第4巻 第		長による水撃力の研究」,海上技術安全研究報告書 第4巻 第	方法が柏崎 6/7 と異な
3 号, p. 323-343, 2004.		3 号, p. 323-343, 2004.	ることから,参考文献が
		[20] A. Konovalenko et al., Experimental Results on Pouring and	異なる。
		Underwater Liquid Melt Spreading and Energetic	
		Melt-coolant Interaction, NUTHOS-9, Kaohsiung, Taiwan,	
		<u>September 9-13, 2012.</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
	【比較のため,「添付資料 3.2.14」の一部を再掲】	ペデスタルブール水 デブリ堆積高さ
	<u>第1図</u> デブリ堆積形状 日本 日本 日本 日本 日本 日本 日本 日本 日本 日 (1) 日本 日 (1) 日 日	図 <u>1</u> デブリ堆積高さ
	第3図 デブリ堆積形状 (不確かさ考慮) 【ここまで】	ペデスタルブール水 デブリ ^{堆積高さ} 図2 デブリ堆積高さの概念図(不
	【比較のため,「添付資料 3. 2. 14 別添 4」の一部を再掲】 FRUPTIONS (1nm (平均高さ) 560mm	
	第2図 PUL i MS実験結果 (E4)	図3 PUL i MS実験結

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

第2表 PULiMS実験条件と結果

Table 1. PULiMS-E test matrix with initial conditions.

Deverator	PULiMS tests						
Parameter	E1	E2	E3	E4	E5		
Melt material	Bi ₂ O ₃ -WO ₃	B ₂ O ₃ -CaO	Bi ₂ O ₃ -WO ₃	Bi ₂ O ₃ -WO ₃	ZrO ₂ -WO ₃		
Malt mass composition . 0%	42.64-57.36	30-70	42.64-57.36	42.64-57.36	15.74-84.26		
Weit mass composition, %	eutectic	non-eutectic	eutectic	eutectic	eutectic		
Melt jet diameter, mm	20	20	20	20	20		
Jet free fall height, mm	400	400	400	400	400		
Initial melt volume, L	3	3	10	6	6		
Initial melt mass, kg	23.4	7.5	78.1	46.9	41.2		
T _{sol} , °C	870	1027	870	870	1231		
Tlia, °C	870	1027	870	870	1231		
Melt temperature in the funnel upon pouring, °C	1006	1350	1076	940	1531		
Water pool depth, mm	200	200	200	200	200		
Water temperature, °C	79	78	75	77	72		

Table 2. Measured and estimated properties of the debris beds in PULiMS-E tests.

	Exploratory PULiMS tests					
Parameter	E1	E3	E4	E5		
Melt release time, (sec)	10	15	12	~8.7		
Total size $x \times y$, mm	460x440	~750x750	740x560	-		
Cake size $x \times y$, mm	~430x320	~750x750	711x471	~400x420		
Max debris height, mm	93	unknown	106	50		
Area averaged debris bed height, mm	31	~30	30	22		
Volume averaged debris bed height, mm	50	unknown	41	28		
Debris height under injection point, mm	48	unknown	50	39		
Total area occupied by cake, m ²	0.14	~0.44	0.30	0.14		
Measured particulate debris mass, kg	~4	unknown	2.9	-		
Measured particulate debris mass fraction, %	~20%	unknown	~6.8%	-		
Solidified cake mass, kg	~20	unknown	39.5	13.6		
Measured debris bed volume, L	~4.2	unknown	8.9	~3.1		
Estimated total cake porosity	0.29	-	0.36	0.37		
Symmetry of the spread	non-sym.	unknown	non-sym.	symmetric		
Steam explosion	no	yes	no	yes		
Cake formation	cake	no cake	cake	cake		
Measured melt superheat, °C	136	206	70	300		
Measured melt superheat in the pool, °C	121	77	48	90		
Estimated loss of melt superheat due to jet interaction with coolant, °C	15	129	22	210		

島根原	原子力列	论電所	2 号炉			備考
± 1 DII			/4L 1 6+1	Ħ [20]		
衣I PU	LIM	5 美駛采	半と枯れ	₹ ^[20]		
Table 1. PULi	MS-E test	matrix with i	nitial condit	tions.		
Parameter	E1	E2	E3	E4	E5	
Melt material	Bi ₂ O ₃ -WO ₃ 42.64-57.36	B ₂ O ₃ -CaO 30-70	Bi ₂ O ₃ -WO ₃ 42.64-57.36	Bi ₂ O ₃ -WO ₃ 42.64-57.36	ZrO ₂ -WO ₃ 15.74-84.26	
Mell mass composition, %	eutectic	non-eutectic	eutectic	eutectic	eutectic	
Jet free fall height, mm	400	400	400	400	400	
Initial melt volume, L Initial melt mass, kg	3 23.4	7.5	10 78.1	6 46.9	41.2	
T _{sol} , °C Then °C	870 870	1027 1027	870 870	870 870	1231 1231	
Melt temperature in the funnel	1006	1350	1076	940	1531	
Water pool depth, mm	200	200	200	200	200	
Water temperature, °C	79	78	75	77	72	
Table 2 Manual and add		·	A . I	In DUI IN	E davida	
Table 2. Measured and estim	lated prop	erties of the	Exploratory P	ULIMS tests	S-E lesis.	
Malt release time (sec)		E1	E3	E4	E5	
Total size $x \times y$, mm		460x440	~750x750	740x560	-	
Cake size $x \times y$, mm Max debris height, mm		~430x320 93	~750x750 unknown	711x471 106	~400x420 50	
Area averaged debris bed height, mn	a	31	~30	30	22	
Debris height under injection point, i	mm	48	unknown	50	39	
Total area occupied by cake, m ² Measured particulate debris mass, k	g	0.14	~0.44 unknown	0.30	0.14	
Measured particulate debris mass fra	action, %	~20%	unknown	~6.8%	-	
Measured debris bed volume, L		~20 ~4.2	unknown	39.5 8.9	~3.1	
Estimated total cake porosity Symmetry of the spread		0.29 non-sym	- unknown	0.36 non-sym	0.37 symmetric	
Steam explosion		no	yes	no	yes	
Cake formation Measured melt superheat, °C		136	206	70	300	
Measured melt superheat in the pool Estimated loss of melt superheat due	,°C	121	77	48	90	
interaction with coolant, °C		15	129	22	210	

島根原子力発電所 2号炉					備考	
表1 PU	LiM	S実験翁	条件と結果	果[20]		
Table 1. PULL	MS-E test h	natrix with	PULIMS tests	lions.	-	
Parameter	E1	E2	E3	E4	E5	
Melt material	Bi ₂ O ₃ -WO ₃	B2O3-CaO 30-70	Bi ₂ O ₃ -WO ₃	Bi ₂ O ₃ -WO ₃	ZrO ₂ -WO ₃	
Melt mass composition, %	eutectic	non-eutectic	eutectic	eutectic	eutectic	
Melt jet diameter, mm	20	20	20	20	20	
Jet free fail height, mm Initial melt volume, L	400	400	10	400	6	
Initial melt mass, kg	23.4	7.5	78.1	46.9	41.2	
T _{iol} , °C T ₂ , °C	870 870	1027	870	870 870	1231	
Melt temperature in the funnel	1006	1350	1076	940	1531	
upon pouring, °C Water pool denth, mm	1000	200	200	200	200	
Water temperature, °C	79	78	75	77	72	
Table 2. Measured and estin	nated prope	erties of the	debris beds Exploratory P	in PULiMS ULIMS tests	S-E tests.	
Parameter		E1	E3	E4	E5	
Melt release time, (sec)		10 460x440	15 ~750x750	12 740x560	~8.7	
Cake size $x \times y$, mm		~430x320	~750x750	711x471	~400x420	
Max debris height, mm		93	unknown	106	50	
Area averaged debris bed height, mi	n mm	31 50	~30	30	22	
Debris height under injection point.	mm	48	unknown	50	39	
Total area occupied by cake, m2		0.14	~0.44	0.30	0.14	
Measured particulate debris mass, k	g	~4	unknown	2.9		
Solidified cake mass, kg	action, vo	~20%	unknown	39.5	13.6	
Measured debris bed volume, L		~4.2	unknown	8.9	~3.1	
Estimated total cake porosity		0.29	-	0.36	0.37	
Symmetry of the spread		non-sym. no	ves	non-sym. no	ves	
Cake formation		cake	no cake	cake	cake	
Measured melt superheat, °C	. %	136	206	70	300	
Estimated loss of melt superheat due	to jet	121	11	48	90	
interaction with coolant, °C		15	129	22	210	
interaction with coolant, "C						

【ここまで】

517

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<figure><figure><figure><text><figure><figure><figure><figure><figure></figure></figure></figure></figure></figure></text></figure></figure></figure>			・評価方針の相違 【柏崎 6/7 柏崎 6/7 では、ハード クラストが形成され、水 がコリウム内に全く浸 入しない条件でのデブ リの連続層高さを目安 に、初期水張り水深を決 定している。

備考 ・解析結果の相違 【柏崎 6/7】 島根2号炉は,原子炉 圧力容器破損以降はコ リウムシールドを設置 していないペデスタル 壁面にのみ, コンクリー トに侵食が生じている。 ・評価方針の相違 【柏崎 6/7】 島根2号炉は,コリウ ムシールドによる MCCI 抑制に期待しており,ま た初期水張りの開始か ら溶融炉心が落下する 時点までには十分な時 間余裕があることから, 水位が低い場合を仮定 した評価は実施してい ない。

炉	備考
5 0. 2MJ)	・解析結果の相違 【柏崎 6/7】 ペデスタル水深や粗 混合量等の違いによる 差異。
40 50	
.8m, 現実的な想定) ^{※1}	
, , , , , , , , , , , , , , , , , , , ,	
降伏応力:490Pa ミーゼス相当応力 14 16 18 20	
5力の変化(約 3.8m, 現実	
降伏応力:490減Pa ニー・ ミーゼス相当応力 ー 14 16 18 20	
:力の変化(約 3.8m,現実	
る運動エネルギ(図5)の最 ペデスタル鋼板の応力の推移 6,7の時刻歴は一致しない。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		<figure><figure></figure></figure>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
<page-header> TEDEMONIPARING TARGET OV TYGY (UT1.2.400MJ)</page-header>		西依水 T J J 定 电 J び 2 で

・解析結果の相違
 【柏崎 6/7】
 圧力スパイク後は緩

備考

たガスハイク後は緩 やかに圧力及び温度が 上昇しており,島根2号 炉と柏崎 6/7 で同様の 傾向となっている。
柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			【比較のため,「添付資料 3.2.14 別添 2」を記載】		
			別添2	別紙	
			粒子化割合の算出	粒子化割合の算出	・解析結果の相違
					【東海第二】
			粒子化割合は以下のRicou-Spalding相関式によ	R P V 破損時における流出する溶融炉心の粒子化割合を以下の	粒子化割合の算出に
			り求めた。	Ricou-Spalding相関式によって評価している。本	ついて,考え方の相違は
			$d_{di0}^2 - d_{di}^2$	相関式は、MAAPにおいても実装されている。	ないが, MAAPの解析
			$\Phi_{ent} = \frac{a_{j,0} - a_{j}}{d_{d,0}^2}$	$\Phi = \frac{d_{dj,0}^2 - d_{dj}^2}{d_{dj,0}^2 - d_{dj}^2}$	結果のアウトプットを
			uj,0	$d_{dj,0}^2$	用いるため, 粒子化割合
			$\left(\rho \right)^{1/2}$	$= \left(\rho_{\rm ex} \right)^{1/2}$	の数値については相違
			$d_{dj} = d_{dj,0} - 2E_0 \left(\frac{\gamma_w}{\rho_{di}}\right) \Delta H_{pool}$	$d_{dj} = d_{dj,0} - 2E_0 \left(\frac{\gamma_w}{\rho_{di}} \right) \Delta H_{pool}$	している。
			ΔH_{mod} ・プール水深 [m]		
			d _{dj} : プール底部におけるデブリジェット径 [m]	a_{dj} : フール底部におけるアフリシェット径 [m]	
			d _{dj,0} :気相部落下を考慮した水面におけるデブリジェット径 ^{※1} [m]	d _{dj,0} :気相部落トを考慮した水面におけるデブリジェット径 ^{×1} [m]	
			ρ _{dj} : デブリジェット密度 [kg/m ³]	$oldsymbol{ ho}_{dj}$:デブリジェット密度 [kg/m ³]	
			ρ_w :水密度 [kg/m ³]	$ ho_w$:水密度 [kg/m ³]	
			※1 解析コードMAAPによる破損口径の拡大(アブレーシ	※1 解析コードMAAPによる破損口径の拡大(アブレーシ	
			ョン)を考慮	ョン)を考慮	
			評価条件は以下のとおり。	証価条件は以下のとおり	
			・プール水深:1m (ペデスタル水位)	・	
			 ・デブリジェット密度: (MAAP計算結果^{*2}) 	 ・デブリジェット密度: kg/m³ (MAAP計算結果*²) 	
			・初期デブリジェット径:0.15m(CRD案内管径)	・初期デブリジェット径:0.20m (CRD案内管径)	
			※2 粒子化割合を大きく見積もる観点から、デブリ密度が小	※2 粒子化割合を大きく見積もる観点から、デブリ密度が小	
			さい過渡事象シーケンスの値を使用	さい過渡事象シーケンスの値を使用	
			以上により評価した結果、粒子化割合は以下のとおり。	以上により評価した結果、粒子化割合は以下のとおり。	
			・エントレインメント係数の場合:約17.3%	・エントレンメント係数 の場合:約 29%	
			(MAAP推奨範囲の最確値 ^{※3})	(MAAP推奨範囲の最確値 ^{※3})	
			・エントレインメント係数 の場合:約22.7%	・エントレンメント係数の場合:約38%	
			(MAAP推奨範囲の最大値 ^{※3})	(MAAP推奨範囲の最大値※3)	
			※3 MAAPコードにおけるエントレインメント係数は, F	※3 MAAPコードにおけるエントレインメント係数は, F	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	ARO実験のベンチマーク解析の不確かさの範囲から,	ARO実験のベンチマーク解析の不確かさの範囲から,	
	からである。また、不確かさの範囲のうち、およ	からである。また、不確かさの範囲のうち、	
	そ中間となる を推奨範囲の最確値としており、A	およそ中間となる を推奨範囲の最確値としてお	
	LPHA-MJB実験の検証解析において、最確値を用い	り、ALPHA-MJB実験の検証解析において、最確	
	ることで実験結果とよく一致する結果が得られている。	値を用いることで実験結果とよく一致する結果が得られ	
	【ここまで】	ている。	