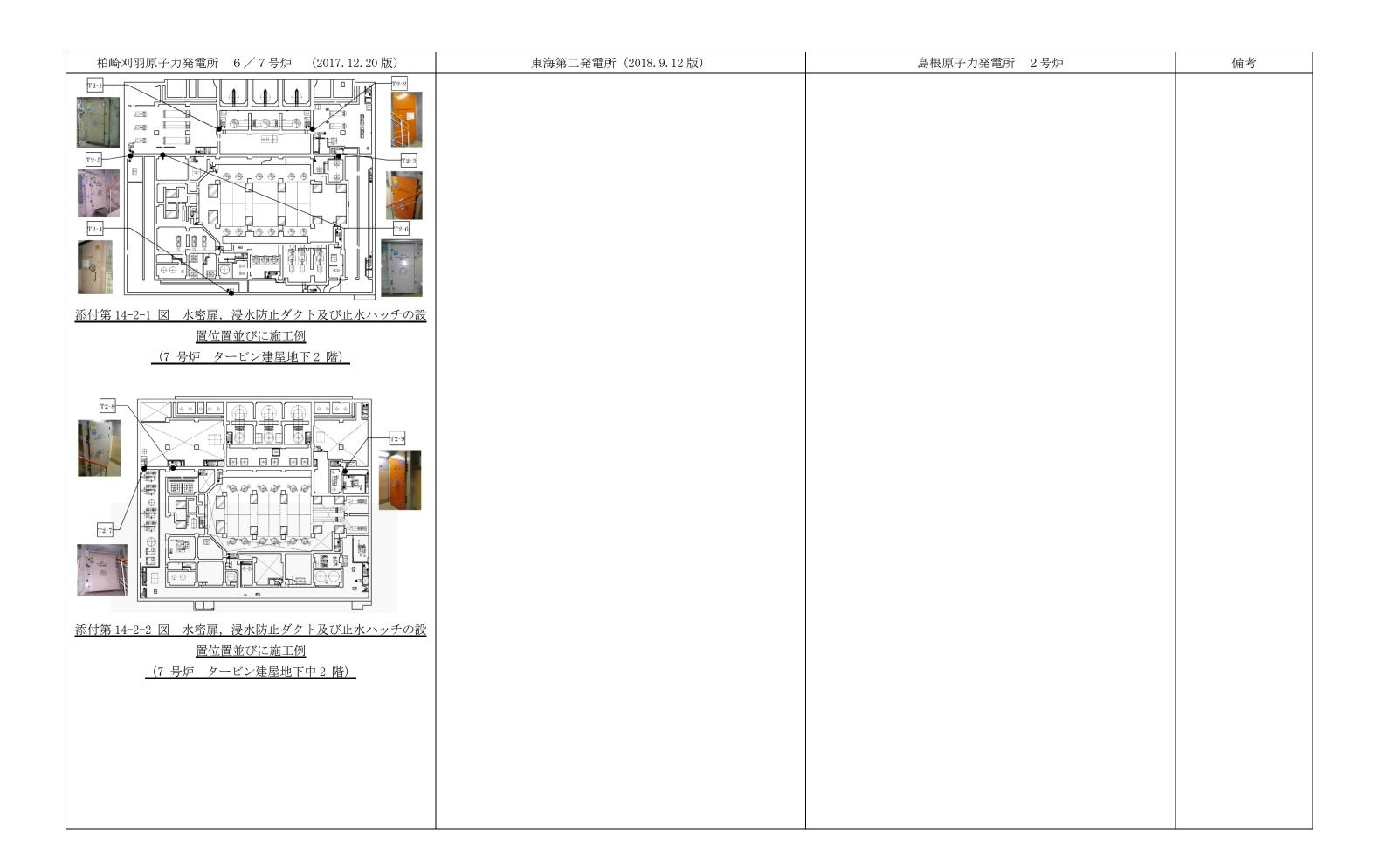
実線・・設備運用又は体制等の相違(設計方針の相違)

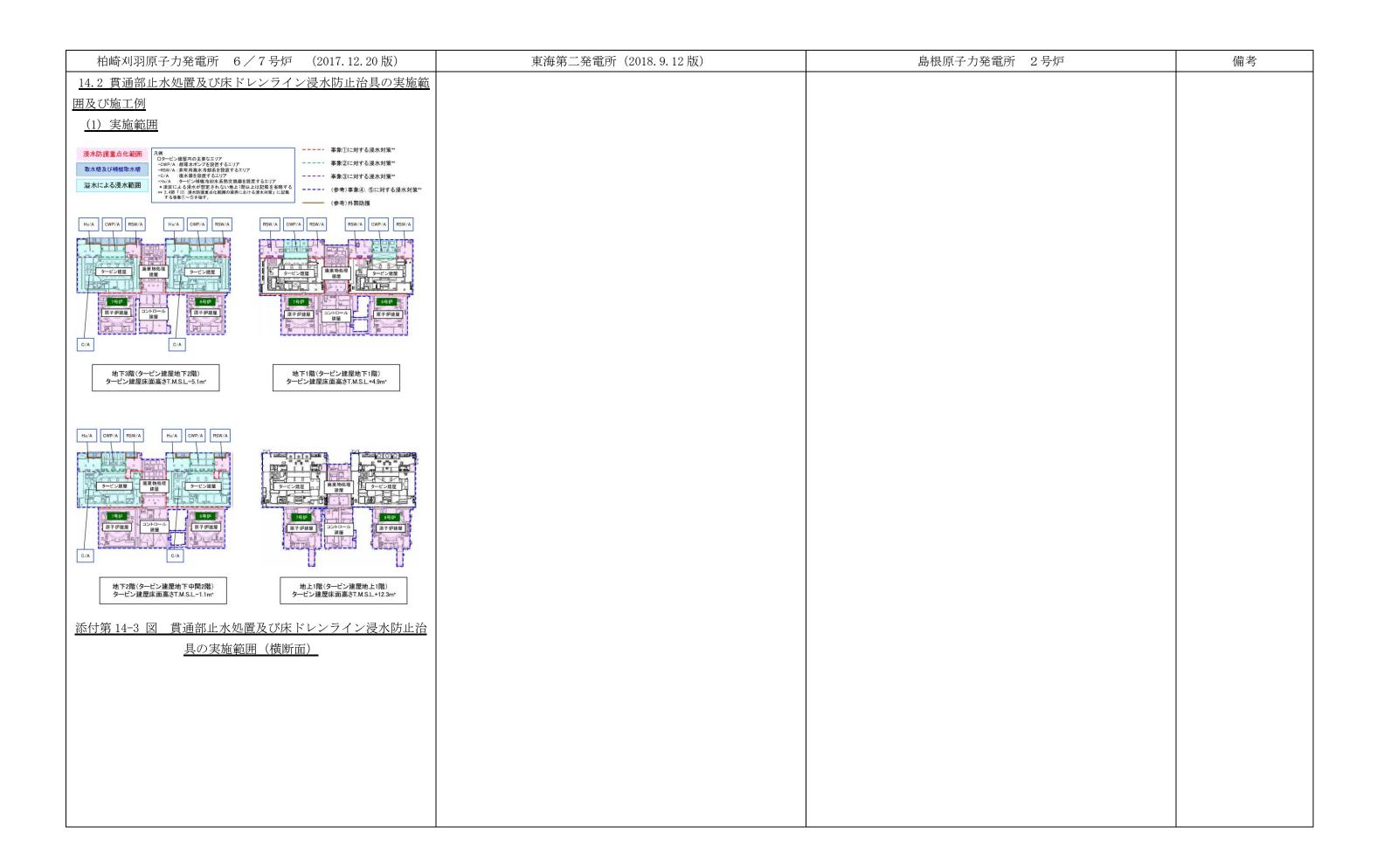

波線・・記載表現、設備名称の相違(実質的な相違なし)

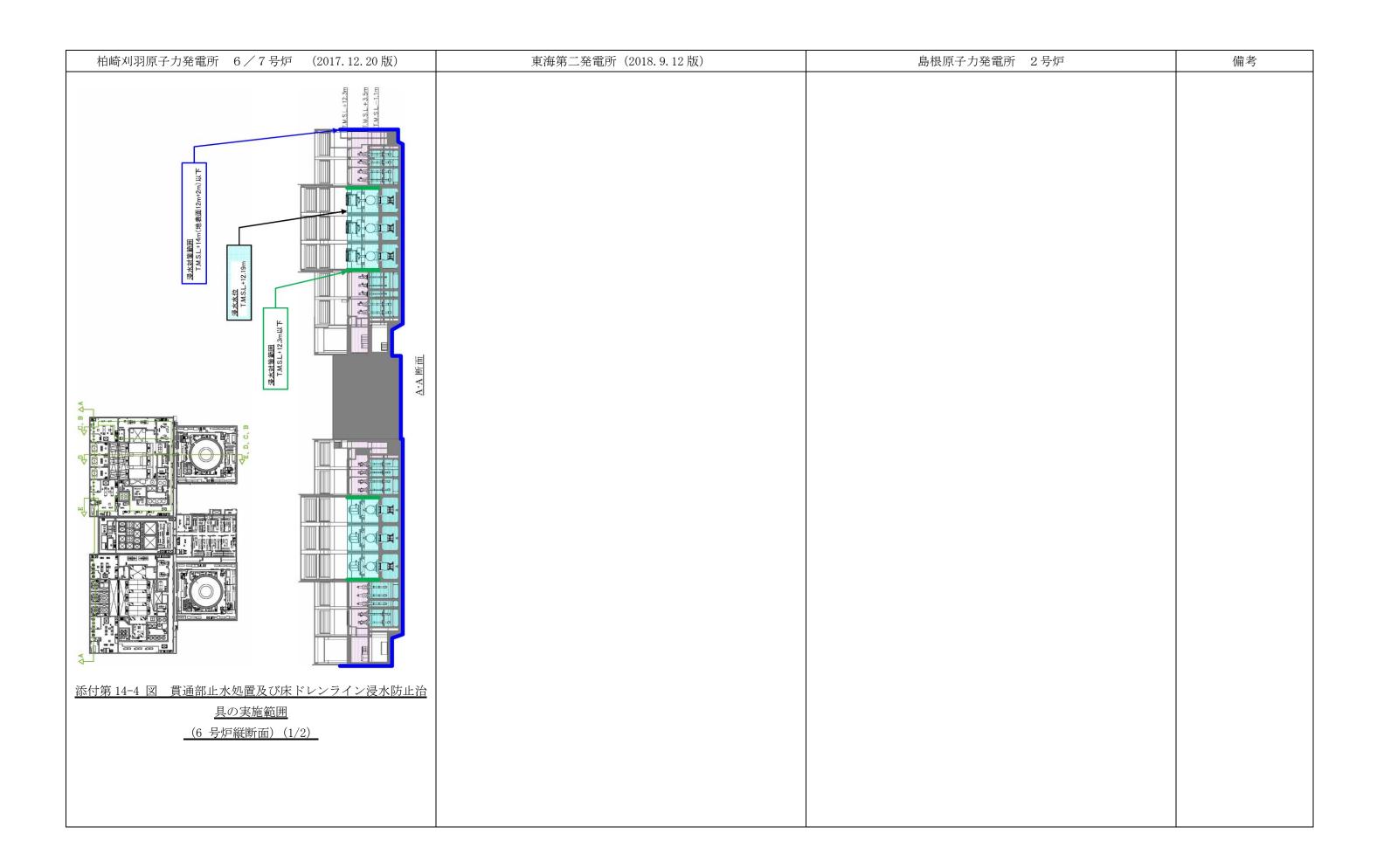
まとめ資料比較表 〔第5条 津波による損傷の防止 別添1 添付資料11〕

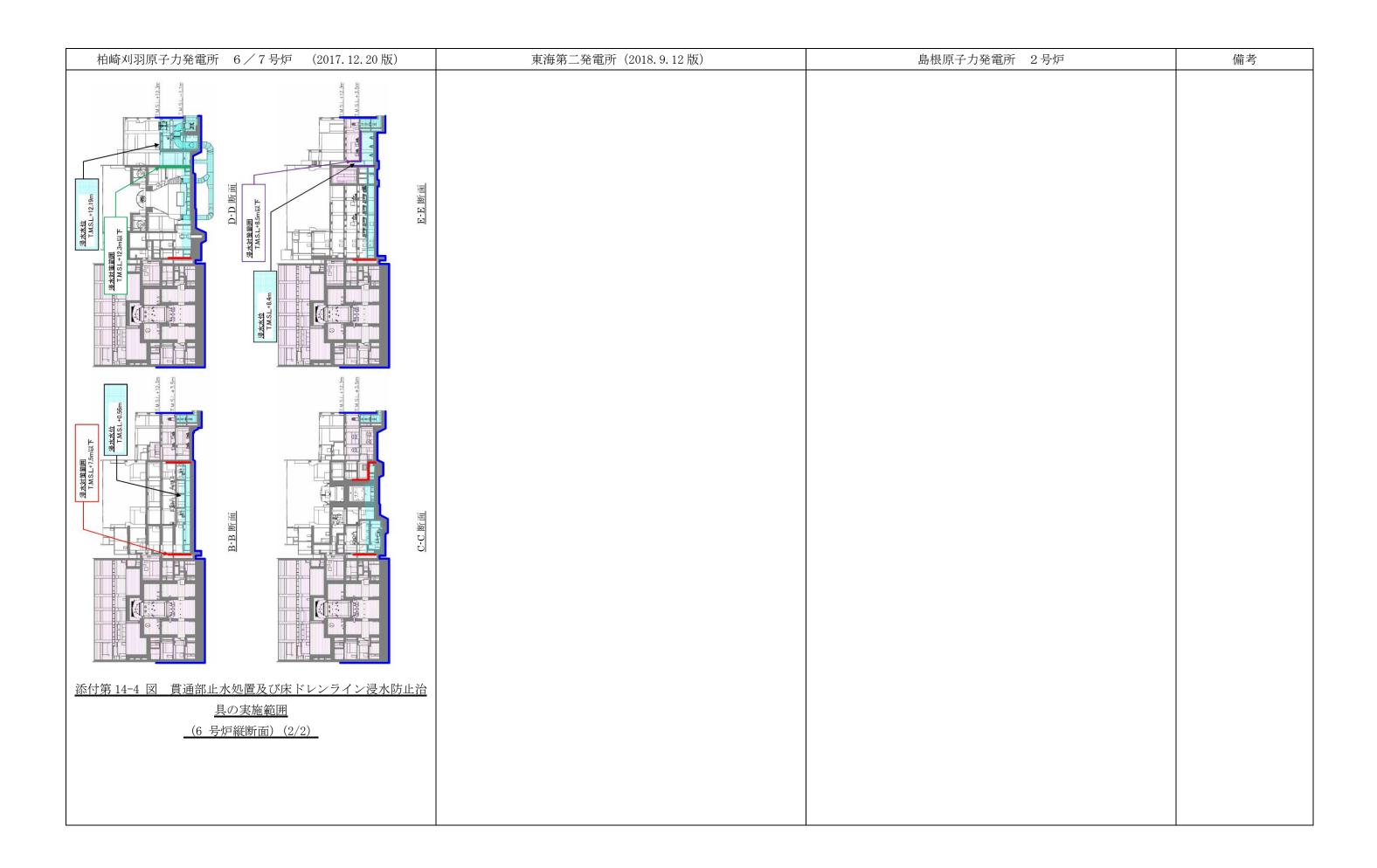
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
添付資料 1.4		添付資料 11	
浸水防護重点化範囲の境界における浸水対策の設置位置,実施範		浸水防護重点化範囲の境界における浸水対策の設置位置、実施範	
囲及び施工例		囲及び施工例	
		1. はじめに	
14.1 水密扉,ダクト閉止板,浸水防止ダクト及び止水ハッチの		浸水防護重点化範囲の境界については、浸水を防止するため浸	・資料構成の相違
設置位置並びに施工例		水防止設備を設置している。	【柏崎 6/7】
		浸水防護重点化範囲であるタービン建物(耐震Sクラスの設備	島根2号炉は,浸水防
		を設置するエリア),取水槽海水ポンプエリア,取水槽循環水ポン	護重点化範囲毎に分け
		プエリアに浸水対策として実施している浸水防止設備(水密扉及	て記載
		び貫通部止水処置)については、内郭防護として整理する。	
		2. 浸水対策の位置	
		(1) タービン建物 (耐震 S クラスの設備を設置するエリア)	
		タービン建物 (耐震 S クラスの設備を設置するエリア) に対	
		する浸水対策については、タービン建物(耐震 S クラスの設備	
		を設置するエリア)とタービン建物(復水器を設置するエリア)	
		との境界における浸水対策及びタービン建物(復水器を設置す	
		るエリア)と海域との境界における対策があることから,以下	
		にそれぞれの内容について示す。	
		a. タービン建物(耐震 S クラスの設備を設置するエリア)とタ	
		ービン建物(復水器を設置するエリア)との境界における浸	
		水対策	
		浸水防護重点化範囲であるタービン建物(耐震 S クラスの設	
		備を設置するエリア) への浸水対策として実施している浸水防	
		上設備の設置位置,浸水防止設備リストを示す(図1,表1)。。	

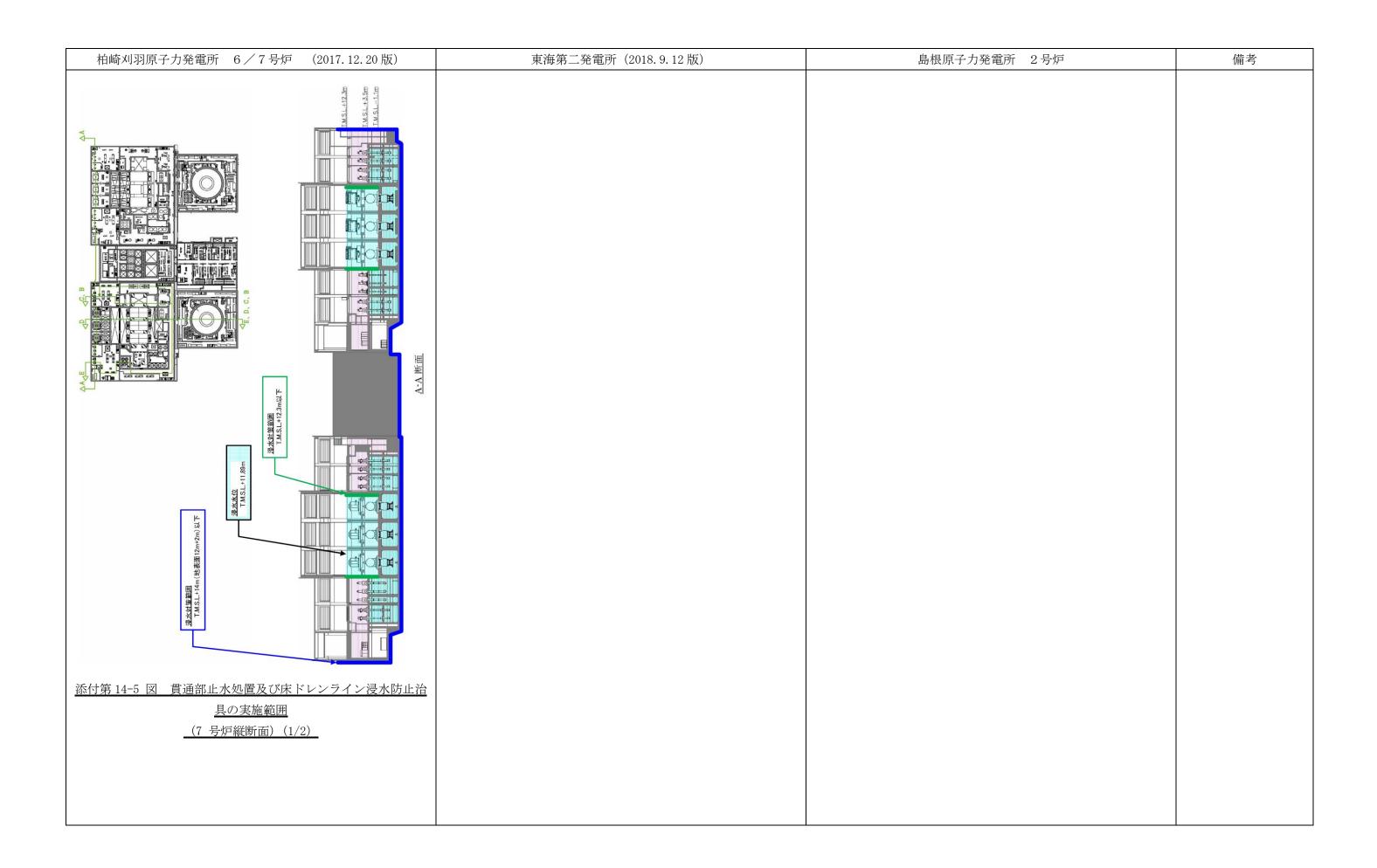

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
行政的人の分別に1万万元电力(2011、12、2011以)	水1時分一元电/川(2010. 3.12 III)		
		番 設置 名称 種類 号 高さ 版 様 ① EL2.0m 版水壁 ③ EL2.0m 水密扉 ⑥ EL2.0m 水密扉 ⑥ EL2.0m 水密扉 ⑦ EL2.0m 水密扉 ③ EL2.0m 水密扉 ⑦ EL2.0m 水密扉 ⑧ EL2.0m 水密扉	

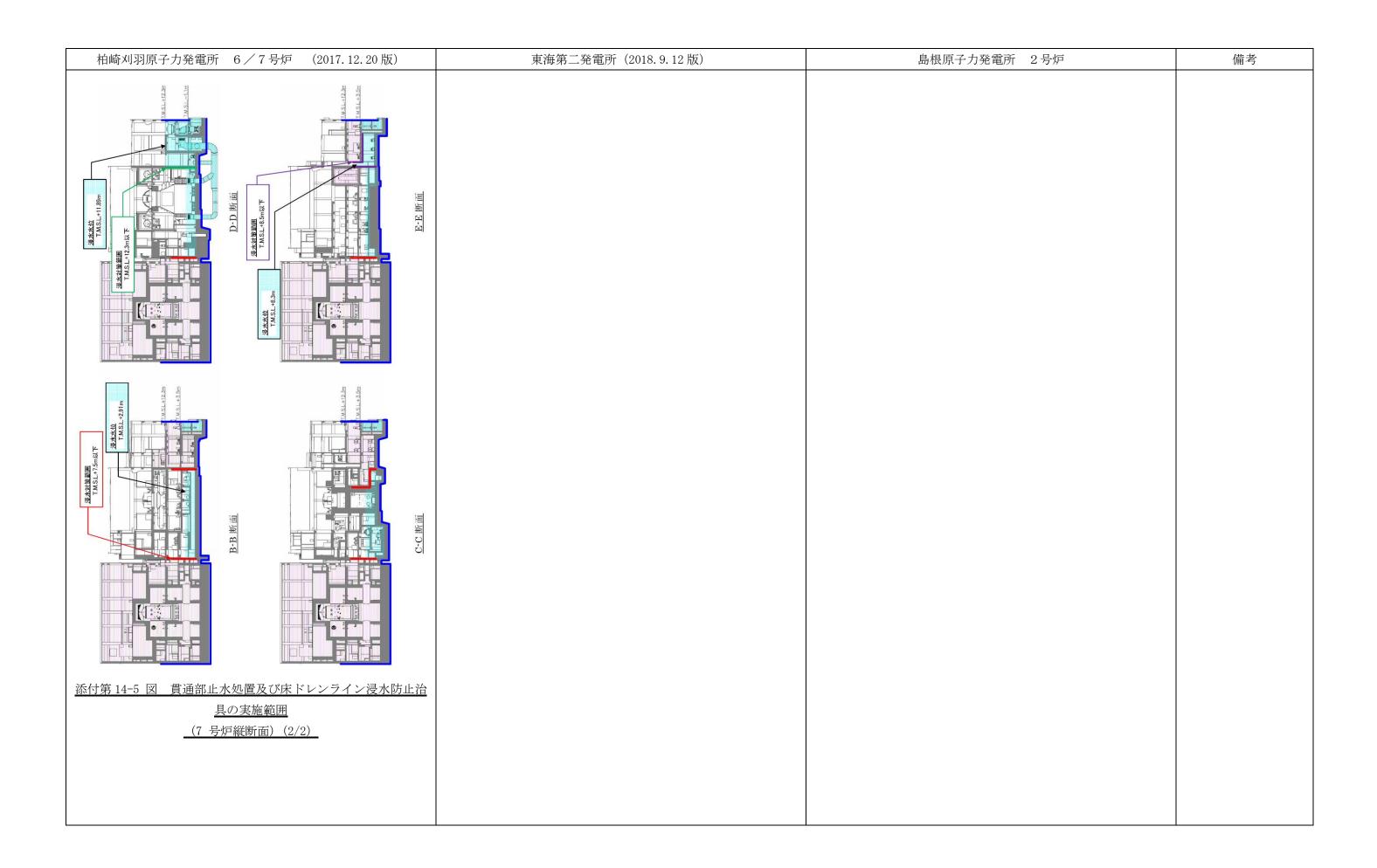
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉 備考 添付第 14-1 表 水密扉、ダクト閉止板及び止水ハッチの設置位置 b. タービン建物 (耐震 S クラスの設備を設置するエリア) と海 並びに仕様(6号炉) 域との境界における浸水対策 浸水防護重点化範囲であるタービン建物(耐震Sクラスの設 番号 種類 建屋 名称 地下2階 循環水配管、電解鉄イオン供給装置 備を設置するエリア) への浸水対策として実施している浸水防 2,180 995 水密扉 タービン建屋 地下2階(-4.8) 循環水配管, 電解鉄イオン供給装置 止設備の設置位置,浸水防止設備リストを示す(図2,表2)。 水密扉 タービン建屋 1,060 タービン建屋地下2階 北西階段室 屋外配管ダクト(タービン建物~放水槽) 建屋間連絡水密扉(原子炉建屋地下 ービン建屋 855 水密扉 2.020 3階~タービン建屋地下2階) 建屋間連絡水密扉(タービン建屋地 地下2階 水密扉 ービン建屋 1,805 2階~廃棄物処理建屋地下3階) 原子炉建物 TCW熱交 廃棄物処理建物よりロ 地下中2階 (-1.1) 計装用圧縮空気系・所内用空気圧縮 水密扉 タービン建屋 1,875 CSW排水ダクト タービン建屋地下中 2 階 南西階段 室 水密扉 原子炉建物 【凡例】 ービン建屋 960 T2-7水密扉 :電動弁,逆止弁 :浸水防護重点化範囲 タービン建屋地下中 2 階 北西階段 地下中2階 T2-8 水密扉 タービン建屋 1.940 905 :原子炉補機海水系配管(耐震Sクラス) 室 水密展 ○ 原子炉補機海水系配管(耐震5クラス) ○ 高圧炉心スブレイ補機海水系配管(耐震5クラス) ○ 原子炉補機海水系放水配管(耐震5クラス) ○ 高圧炉心スブレイ補機海水系放水配管(耐震6クラス) ○ 今上シ補機海水系配管(耐震6クラス) ○ 衛堤水系配管(耐震6クラス) ○ (原化管(耐震6クラス) ○ (原水炉油機海水ボンブ(耐震5クラス) ② (原水炉補機海水ボンブ(耐震5クラス) ④ (原水炉油機海水ボンブ(耐震5クラス) ④ (南上炉心スブレイ補機海水ボンブ(耐震5クラス) ○ タージンは機塩水水ブ(耐震70円2) 取水槽 水密扉 タービン建屋 下中 2 階~廃棄物処理建屋地下 2 1,210 水密扉 タービン建屋 循環水ポンプ室 水密扉 2 1,060 水密屏 タービン建屋 循環水ポンプ室 水密屏1 タービン補機海水ポンプ(耐震Cクラス) タービン建屋地下1階 北西階段室 地下 1 階 (): 第二にン補機(海ボホンノ(前) (): 循環水ポンプ(耐震Cクラス) (): 除じんポンプ(耐震Cクラス) T2-12 水密扉 タービン建屋 2,040 960 (+4.9)水密扉 建屋間連絡水密扉(原子炉建屋地下 1階~タービン建屋地下1階) 3-1, 3-2 地下1階(+4.9) 注) 浸水防護機能を除く耐震クラスを記載 ービン建屋 3,034 3,734 水密扉 T2-13 地下1階 (+4.9) タービン建屋地下1階 南西階段室 T2-14 水密扉 タービン建屋 2.040 960 図2 浸水対策の概要 タービン建屋地下 1 階 南階段室 水密扉 タービン建屋 905 タービン補機冷却海水系配管室 ービン建屋 水密扉 水密屏 表2 タービン建物(耐震 S クラスの設備を設置するエリア)の 原子炉補機冷却系 B系 熱交換 ダクト閉止板 ロビン建屋 650 1,500 浸水対策設備リスト (海域との境界) 原子炉補機冷却系 B系 熱交換器・ポンプ室 ダクト閉止板 2 ービン建屋 1,500 設置 番号 原子炉補機冷却系 B系 熱交換器・ポンプ室 止水ハッチ 地下1階(+3.5) 高さ※ 縦 横 タービン建屋 4,940 3,680 (1) 止水ハッチ EL4.7m タービン補機海水系配管 ϕ 750 (屋外配管ダクト) EL2. 7m 液体廃棄物処理系配管 (1) - 2φ80 (屋外配管ダクト) (1) - 3原子炉補機海水系配管 配管 海水系配管 ※ 設置高さが複数にまたがる場合等には「一」を記載する。 (2) 取水槽海水ポンプエリア 浸水防護重点化範囲である取水槽海水ポンプエリアに浸水対 策として実施している浸水防止設備の設置位置,浸水防止設備 リストを示す(図2,表3)。

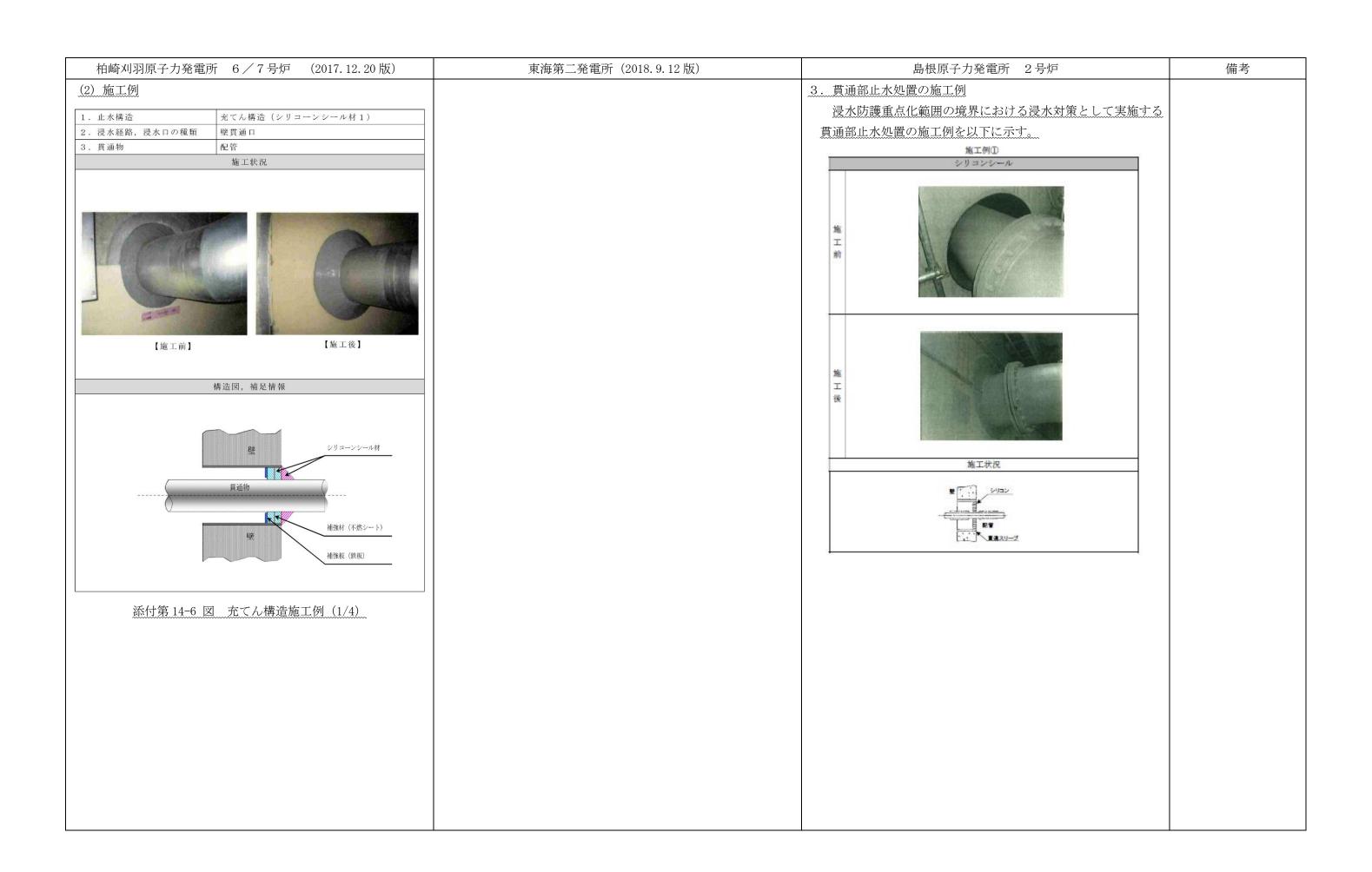


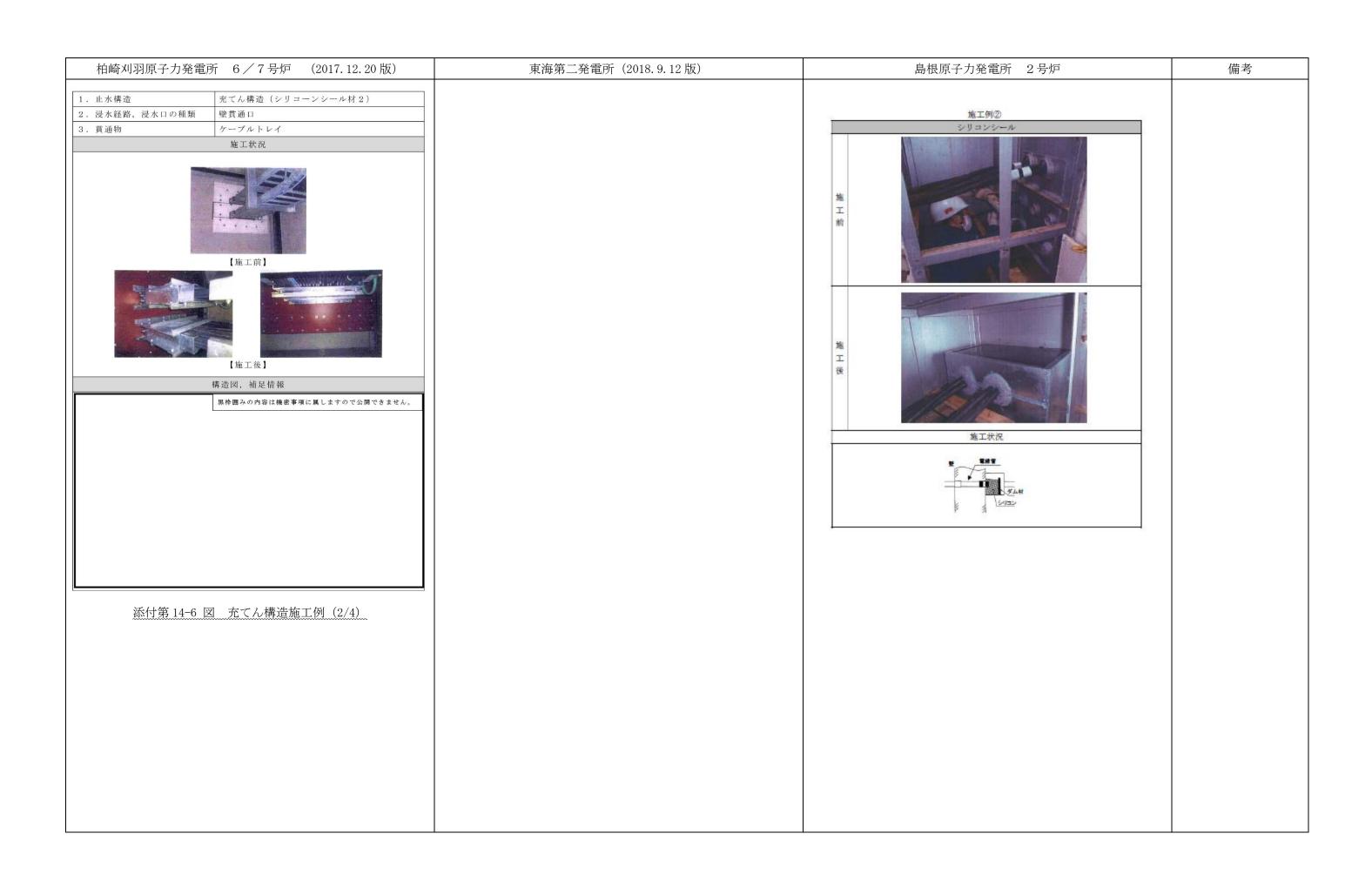

後行第12 1 2 3 大変事。 アント等件 転送 がきないようの記載 (名を2015年) 月 (会 147 タードン 伊幸が丁 1 PA)	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
位置並びに施工例				

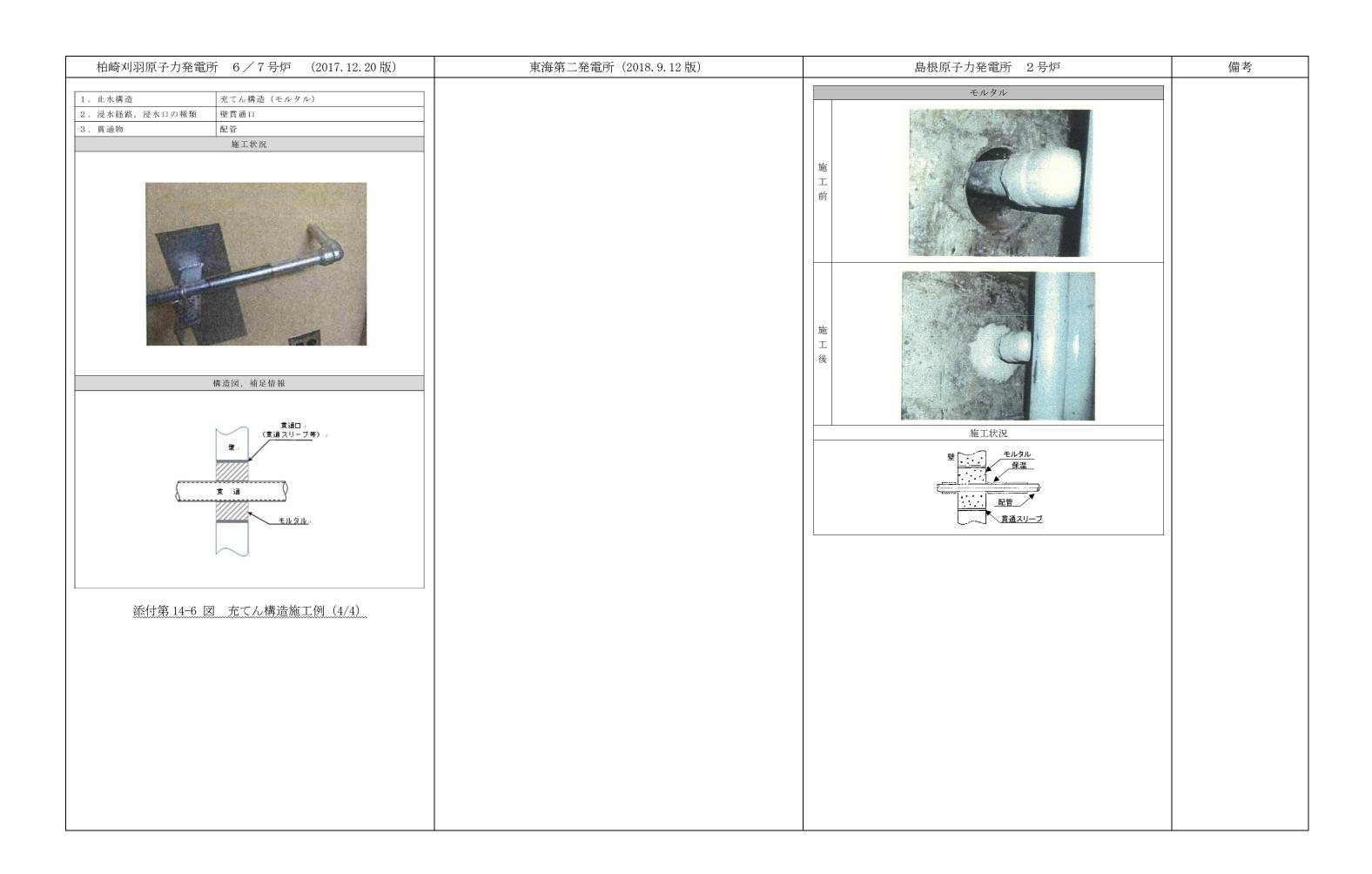

	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
添付第 14-2 表 水密扉, ダクト閉止板及び止水ハッチの設置位			
置並びに仕様(7 号炉)			
来 尽 観 雑 体 限 設置フロア り か (mm)			
T2-1 水密犀 タービン建屋 (T.M.S.L. m) 石が 縦 横			
T2-2 水密犀 タービン建屋 地下 2 階			
T2-3 水密犀 タービン建屋 地下 2 階 タービン建屋地下 2 階 北西階段 2,180 995			
T2-4 水密犀 タービン建屋 地下 2 階 建屋間連絡水密扉 (原子炉建屋地 2,160 1,060 下 3 階~タービン建屋地下 2 階) 2,160 1,060			
T2-5 水密犀 タービン建歴 地下 2 階 タービン補機冷却系 熱交換器・ 1,950 995 (-4.8) ポンプ室 水密扉 1			
T2-6 水密犀 タービン建屋 地下 2 階 タービン補機冷却系 熱交換器・ 2,180 995 (-4.8) ポンプ室 水密扉 2			
T2-7 水密犀 タービン建屋 地下中 2 階 タービン補機冷却系熱交換器・ポ 1,860 1,530 ンプ窓 水密扉 3			
T2-8 水密犀 タービン建屋 地下中 2 階 タービン建屋地下中 2 階 南西階 2,180 995 日本 10 日本 1			
T2-9 水密犀 タービン建屋 地下中 2 階 タービン建屋地下中 2 階 北西階 2,180 995 段室 水密扉			
T2-10 水密犀 タービン建屋 地下 1 階 (+3.5) 循環水ポンプモータ室 水密扉 1 2,160 1,060			
T2-11 水密犀 タービン建屋 地下 1 階 (+3.5) 循環水ボンブモータ室 水密屏 2 2,160 1,060			
T2-12 水密犀 タービン建屋 地下 1 階 建屋間連絡水密扉 (原子炉建屋地 2,520 3,020 下 1 階~タービン建屋地下 1 階)			
T2-13 水密犀 タービン建屋 地下 1 階 タービン建屋地下 1 階 南階段室 2,080 875 水密犀			
T2-14 水密犀 タービン建屋 地下 1階 タービン建屋地下 1階 南西階段 2,180 995 室 水密屏			
T2-15 水密犀 タービン建屋 地下 1 階 原子炉補機冷却系 B 系 熱交換 2,180 820 器・ボンブ室 水密屏			
T2-16 水密犀 タービン建屋 地下 1 階 タービン建屋地下 1 階 南東 3 階 1,960 760 段室 水密犀			
T2-17 水密犀 タービン建屋 地下 1 階 タービン建屋地下 1 階 北西階段 2,180 995			
① 浸水防止ダクト タービン建屋 地下 1 階 原子炉補機冷却系 B 系 熱交換 器・ボンブ室 浸水防止ダクト 1,800 1,500			
(1) 止水ハッチ タービン建屋 地下 1 階 原子炉補機冷却系 B 系 熱交換 器・ボンブ室 止水ハッチ 1 5,200			
(2) 止水ハッチ タービン建屋 地下 1 階 原子炉補機冷却系 B 系 熱交換 器・ボンブ室 止水ハッチ 2 2,200 1,700			




神術研究子が発電器 2号が 物学 2号が 12号が 12号が 12号が 12号が 12号が 12号が 12号が







柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. 止水構造 充てん構造 (シリコーンシール材 3)			
2. 浸水経路, 浸水口の種類 壁貫通口			
3. 貫通物 ケーブル			
施工状況			
THE CALL STORY OF THE PARTY OF			
man A-83-5 (7-4)			
VALUE OF			
【施工前】 【施工後】			
構造図,補足情報			
黒枠囲みの内容は機密事項に属しますので公開できません。			
添付第 14-6 図 充てん構造施工例 (3/4)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
1. 止水構造 閉止構造 (閉止キャップ)			
2. 浸水経路, 浸水口の種類 壁貫通口 3. 貫通物 なし(予備電線管)			
施工状況			
ル ク・カューファンタル)			
(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1			
【施工前】			
構造図,補足情報			
黒枠囲みの内容は機密事項に属しますので公開できません。			
添付第 14-7 図 閉止構造施工例 (1/2)			

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版) 東海第二	発電所 (2018. 9. 12 版) 島根原	
柏崎州羽原子月発電所 6 / 7 号炉 (2017, 12, 20 版) 東海第二 1, 北水梅造	発電所 (2018. 9. 12 版) 島根原	子力発電所 2号炉 備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
1. 止水構造 ブーツ構造 1			
2. 浸水経路, 浸水口の種類 壁貫通口 3. 貫通物 配管(常温)			
施工状況			
大中口径配管 大中口径配管 【施工前】			
ペース版 パンド シールカバー パンド カランオフランジ 上書 大中口径配管			
添付第 14-8 図 ブーツ構造施工例 (1/2)			

	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
竹崎利初原丁刀光电灯 0/1号炉 (2017.12.20 版)	果(毋免—)先电/列(2018. 9. 12 版)	局低原于刀兜电 <u>剂 2 万</u> 沙	加州
1. 止水構造 ブーツ構造 2			
2. 浸水経路, 浸水口の種類 壁貫通口			
3. 貫通物 配管(高温)			
施工状況			
「施工後]			
構造図、補足情報 締付けバンド サポートバンド			
野熱材シリコンラバー引布			
添付第 14-8 図 ブーツ構造施工例 (2/2)			

	まとめ資料比較表 〔第5条 津波による損傷の防止 別湖	<u> </u>	1遅(実質的な相遅なし <u>)</u>
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
添付資料17	添付資料13	添付資料 1.2	
基準津波に伴う砂移動評価について	基準津波に伴う砂移動評価について	基準津波に伴う砂移動評価について	
17.1 粒径のパラメータスタディ 基準津波による水位変動に伴う海底の砂の移動が取水口へ の通水性に影響がないことを砂移動評価にて確認している。	1. はじめに 基準津波による水位変動に伴う海底の砂の移動が取水口へ の通水性に影響がないことを砂移動評価にて確認 <u>する</u> 。	1. はじめに 基準津波による水位変動に伴う海底の砂の移動が取水口へ の通水性に影響がないことを砂移動評価にて確認している。	

17.2 粒径のパラメータスタディ

響を検討した。

砂移動評価における粒径の違いによる堆積厚さへの影響を 確認するため、粒径のパラメータスタディを実施した。

ここでは、砂移動解析における粒径の違いによる堆積厚さへ

の影響及び防波堤をモデル化しない状態での堆積厚さへの影

検討は、平均粒径 (D50) に加えて、D10 及びD90 を粒径と したケースを追加した。検討ケースを添付第17-1表に示す。 粒径は,添付第17-1 図に示す粒径加積曲線より,D10 相当は 0.1mm, D90 相当は1mm に設定した。

砂移動評価は、基本ケースにおいて、 堆積厚さが厚く評価さ れた高橋ほか(1999)の方法を用いた。評価結果を添付第17-2 表に、堆積侵食分布図を添付第17-2 図に示す。

評価結果から、粒径を変えることにより評価地点によって堆 積厚さに変動はあるものの、いずれも取水口前面においては、 基本ケースより最大堆積厚さが薄くなっていることから, 粒径 の違いによる取水口前面における堆積厚さへの影響は小さい。

添付第17-1表 検討ケース

粒径	備考
0. 27mm	D ₅₀ , 基本ケース (既往ケース)
1 mm	D ₉₀ 相当
0.1mm	D ₁₀ 相当

2. 粒径のパラメータスタディ

響を検討した。

砂移動評価における粒径の違いによる堆積厚さへの影響を 確認するため、粒径のパラメータスタディを実施した。

ここでは、砂移動解析における粒径の違いによる堆積厚さへ

の影響及び防波堤をモデル化しない状態での堆積厚さへの影

検討は、平均粒径 (D₅₀) に加えて、10%粒径 (D₁₀) 及び 90% 粒径 (Don) を粒径としたケースを追加した。検討ケースを第1 表に示す。各試料採取地点の粒径加積曲線から D₁₀相当及び D₀₀ 相当の粒径を求め、平均した結果、D10相当は 0.10mm、D90相当 は1.8mmに設定した。試料採取位置を第1図に,各試料採取地 点の粒径加積曲線を第2図に示す。

砂移動評価は、基本ケースにおいて、堆積厚さが厚く評価さ れた高橋他(1999)の方法を用いた。評価結果を第2表に、堆 積侵食分布図を第3図に示す。

評価結果から、粒径を変えることにより評価地点によって堆 積厚さに変動はあるものの、いずれも取水口前面においては、 基本ケースより最大堆積厚さが薄くなっており、粒径の違いに よる取水口前面における堆積厚さへの影響は小さい。

第1表 検討ケース

粒径	備考
0.15mm	D ₅₀ , 基本ケース
0.10mm	D ₁₀ 相当
1.8mm	D ₉₀ 相当

ここでは、砂移動解析における粒径の違いによる堆積厚さへ

の影響及び防波堤をモデル化しない状態での堆積厚さへの影 響を検討した。

2. 粒径のパラメータスタディ

砂移動評価における粒径の違いによる堆積厚さへの影響を 確認するため、粒径のパラメータスタディを実施した。

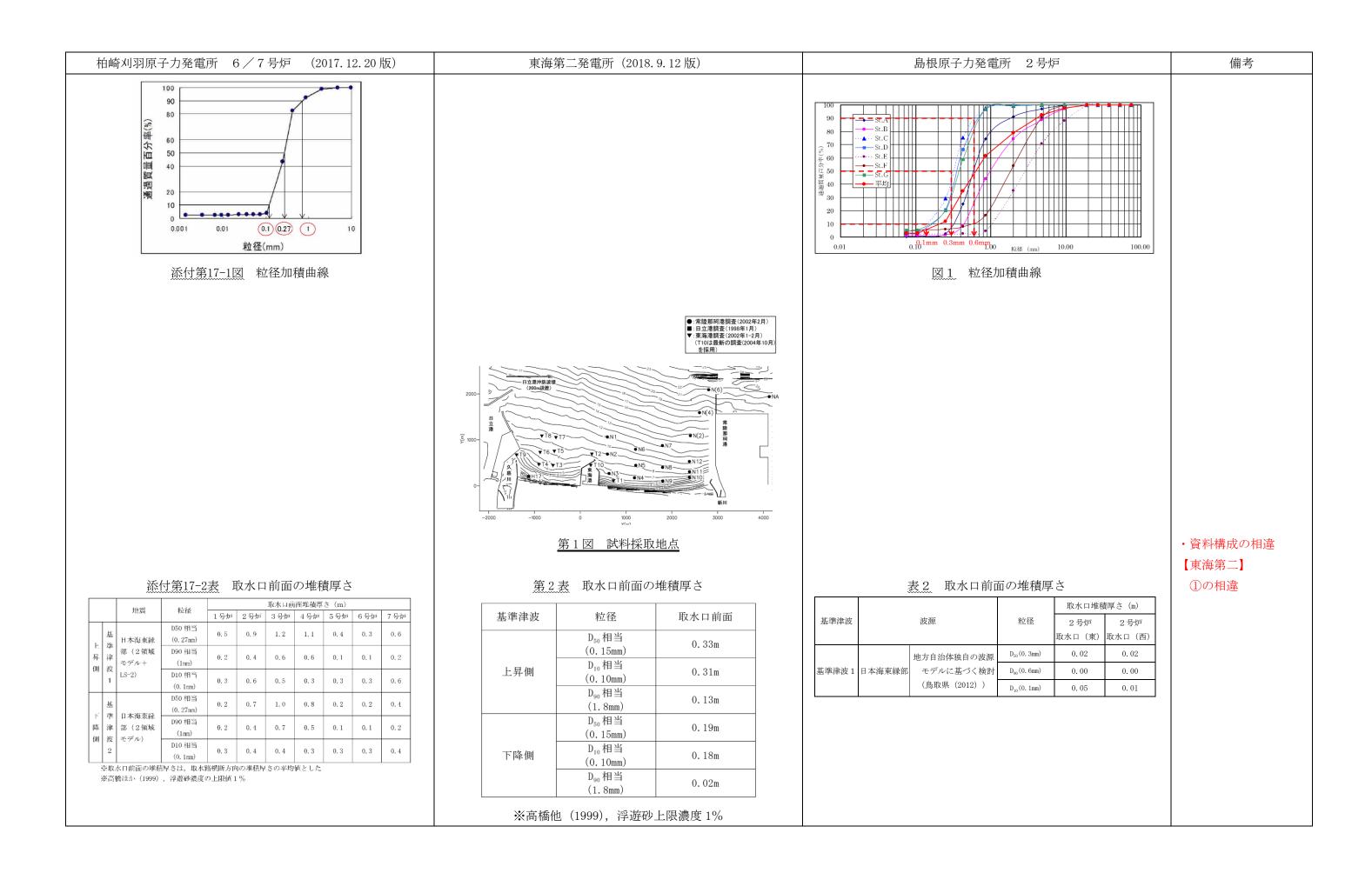
検討は、平均粒径 (D50) に加えて、D10 及びD90 を粒径とし たケースを追加した。検討ケースを表1に示す。粒径は、図1 に示す粒径加積曲線より、D₁₀ 相当は0.1mm, D₉₀ 相当は0.6mm に設定した。

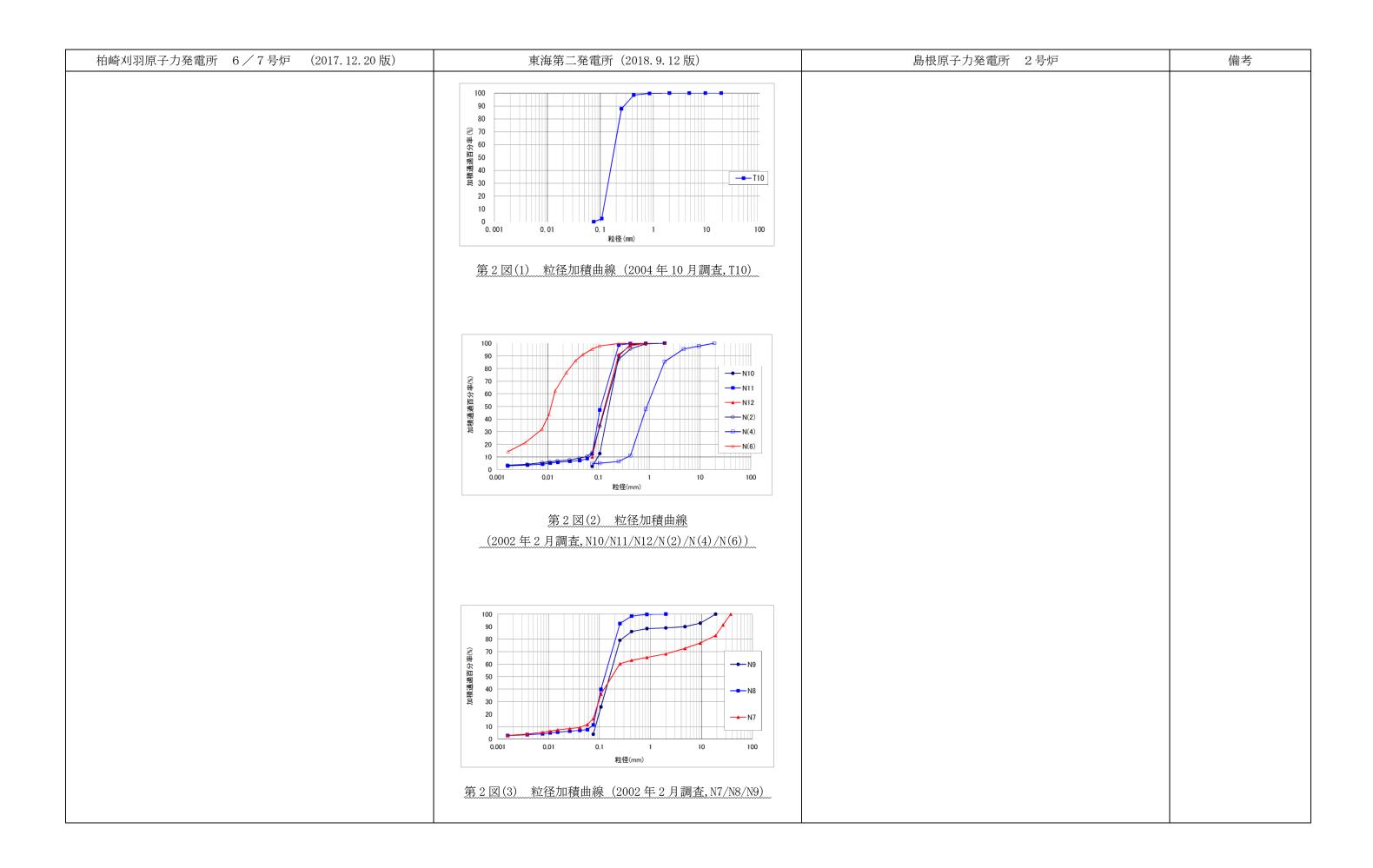
砂移動評価は、基本ケースにおいて、堆積厚さが厚く評価さ れた高橋ほか(1999)の方法を用いた。評価結果を表2に, 堆積 | 取位置を添付資料13に 浸食分布図を図2に示す。

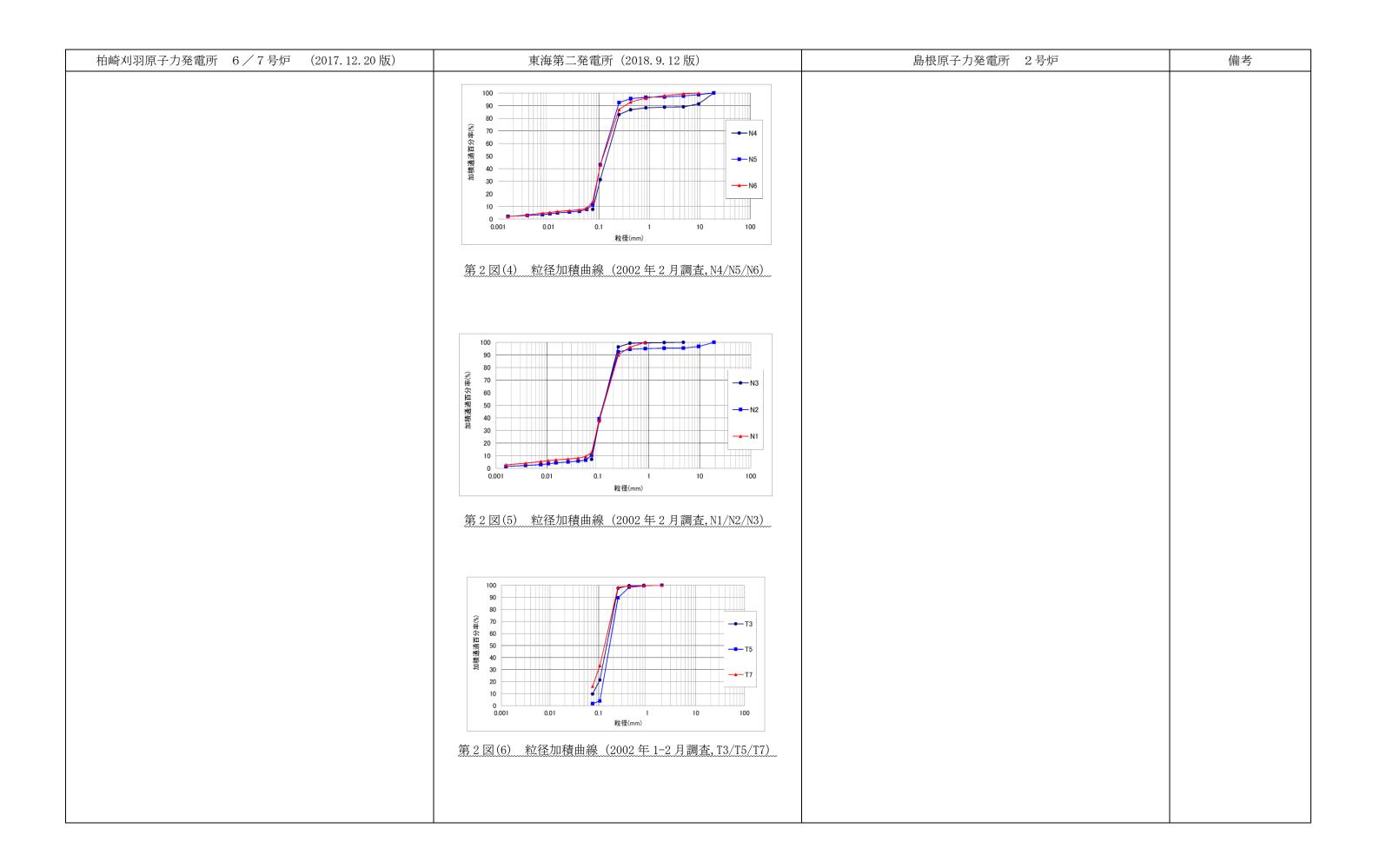
評価結果から、粒径を変えることにより評価地点によって堆 積厚さに変動はあり、D₁₀ケースの場合、取水口前面において堆 積厚さが0.05mとなったが、海底面から取水呑口下端までの高 さ(5.50m)に対して十分に小さいことから、粒径の違いによ る取水口前面における堆積厚さへの影響は小さい。

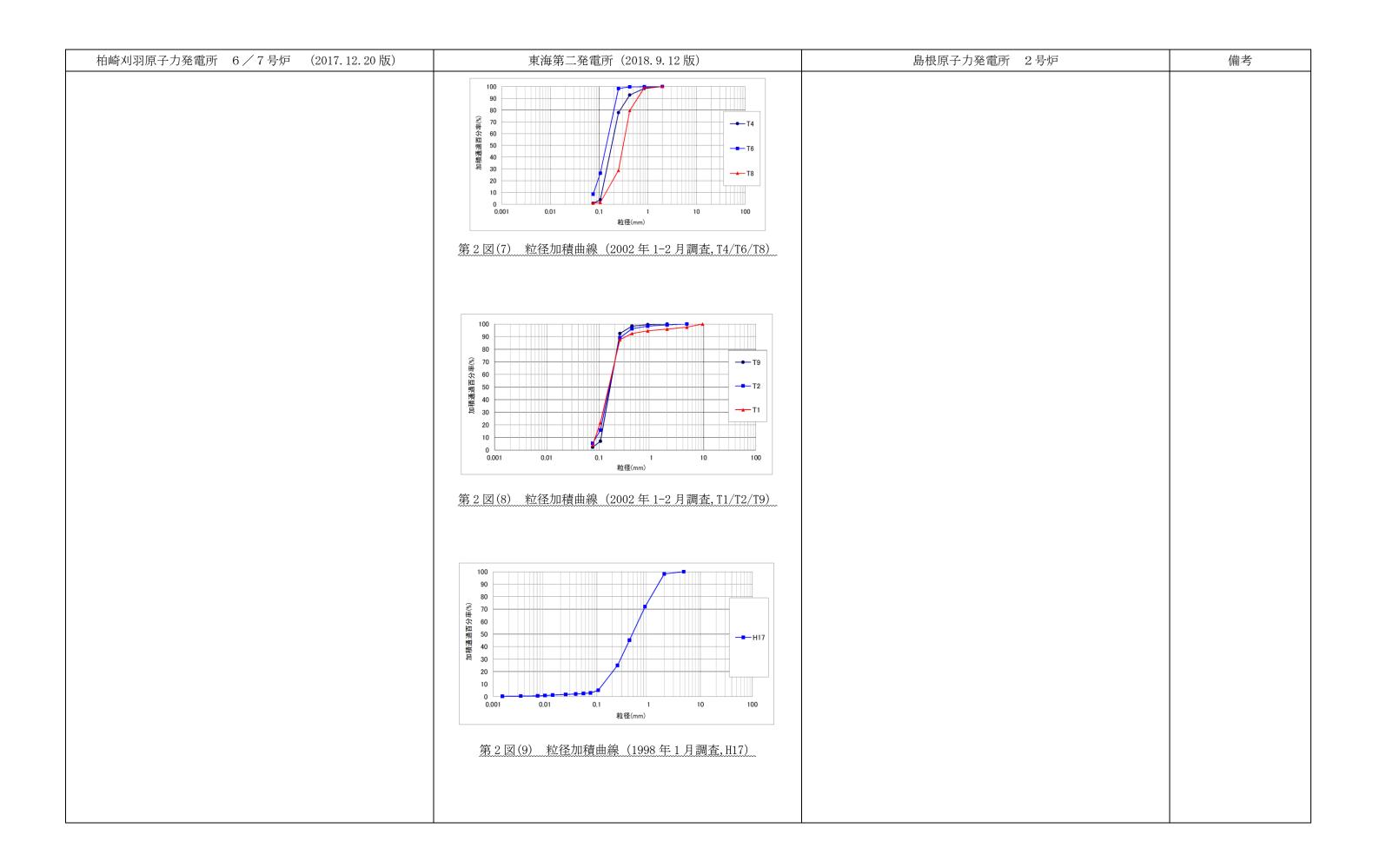
表1 検討ケース

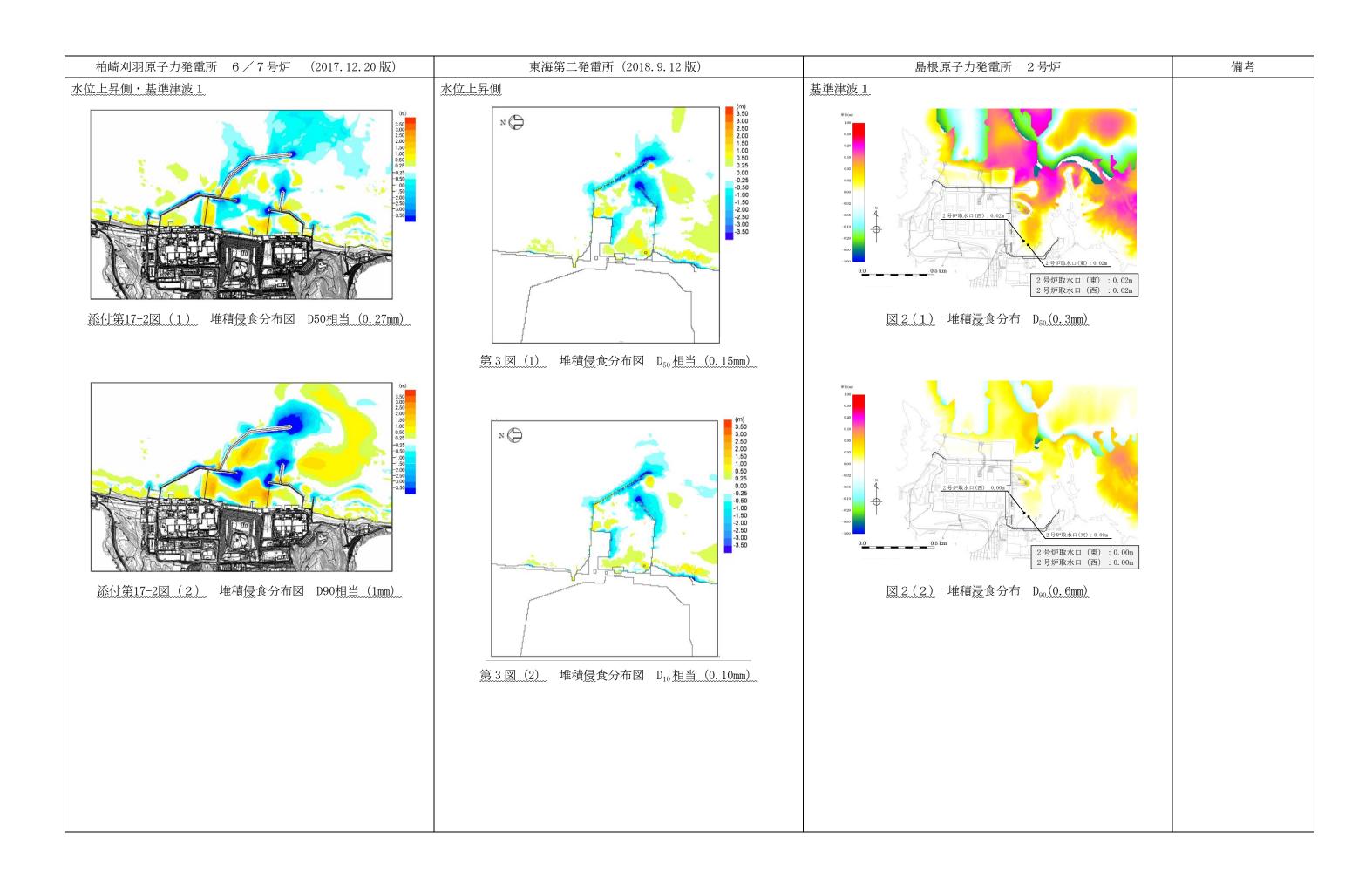
粒径	備考
0.3mm	D ₅₀ , 基本ケース (既往ケース)
0.6mm	D ₉₀ 相当
0.1mm	D ₁₀ 相当


・ 資料構成の相違

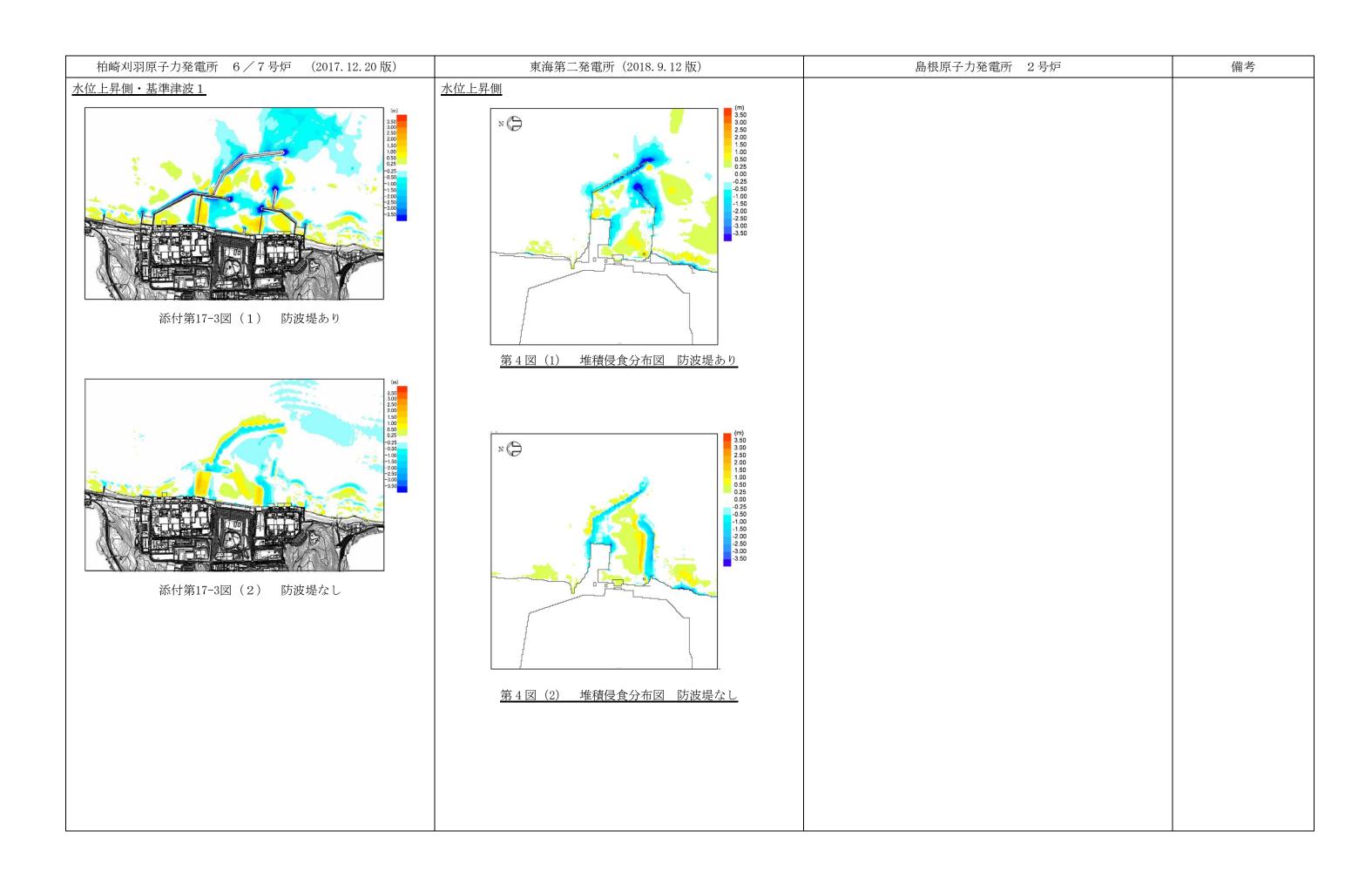

【東海第二】

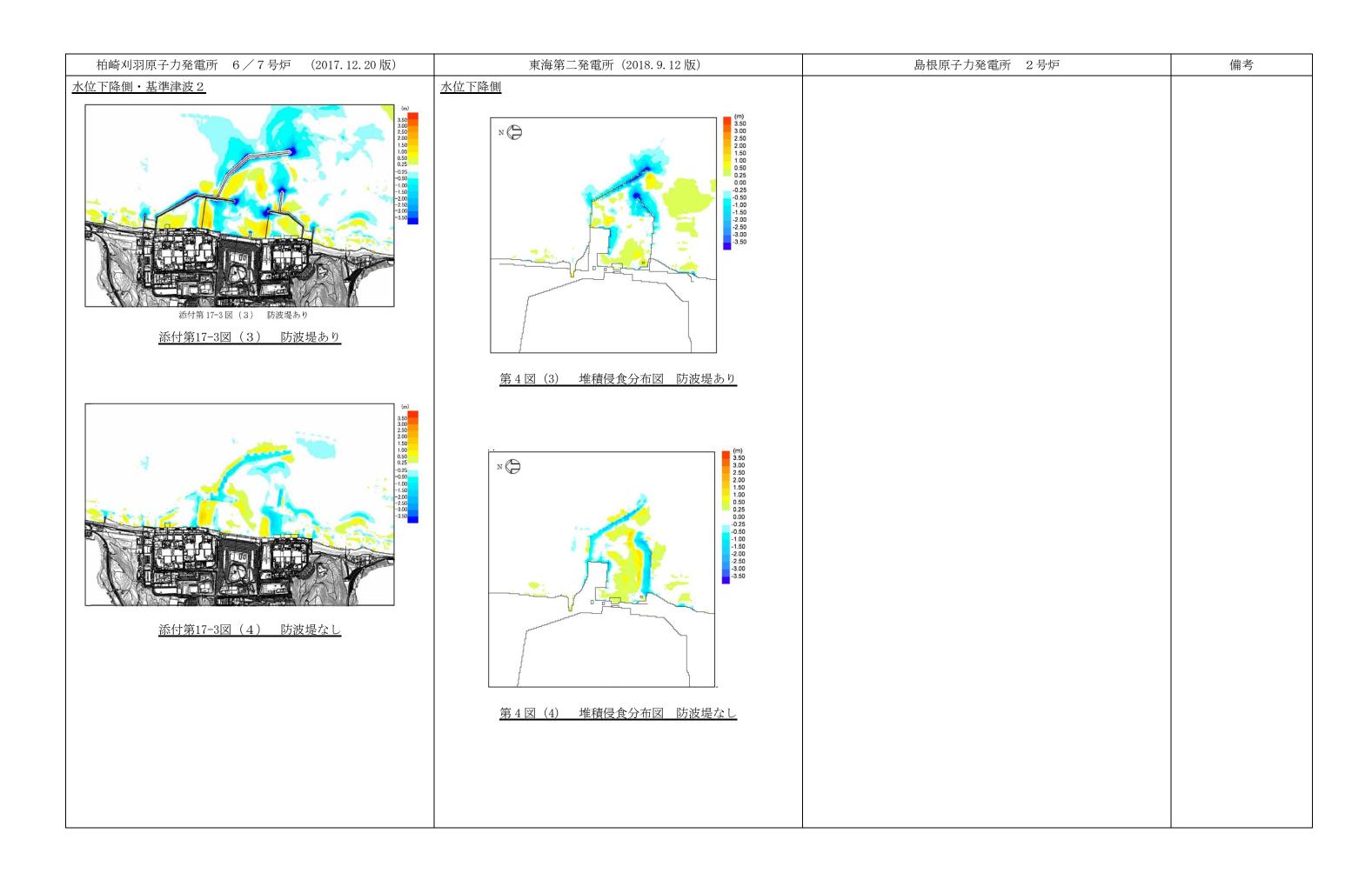

島根2号炉は試料採 記載(以下,①の相違)


・評価結果の相違 【柏崎6/7,東海第二】


基本ケースより堆積 厚さが大きい結果があ るが, 施設に与える影響 はない

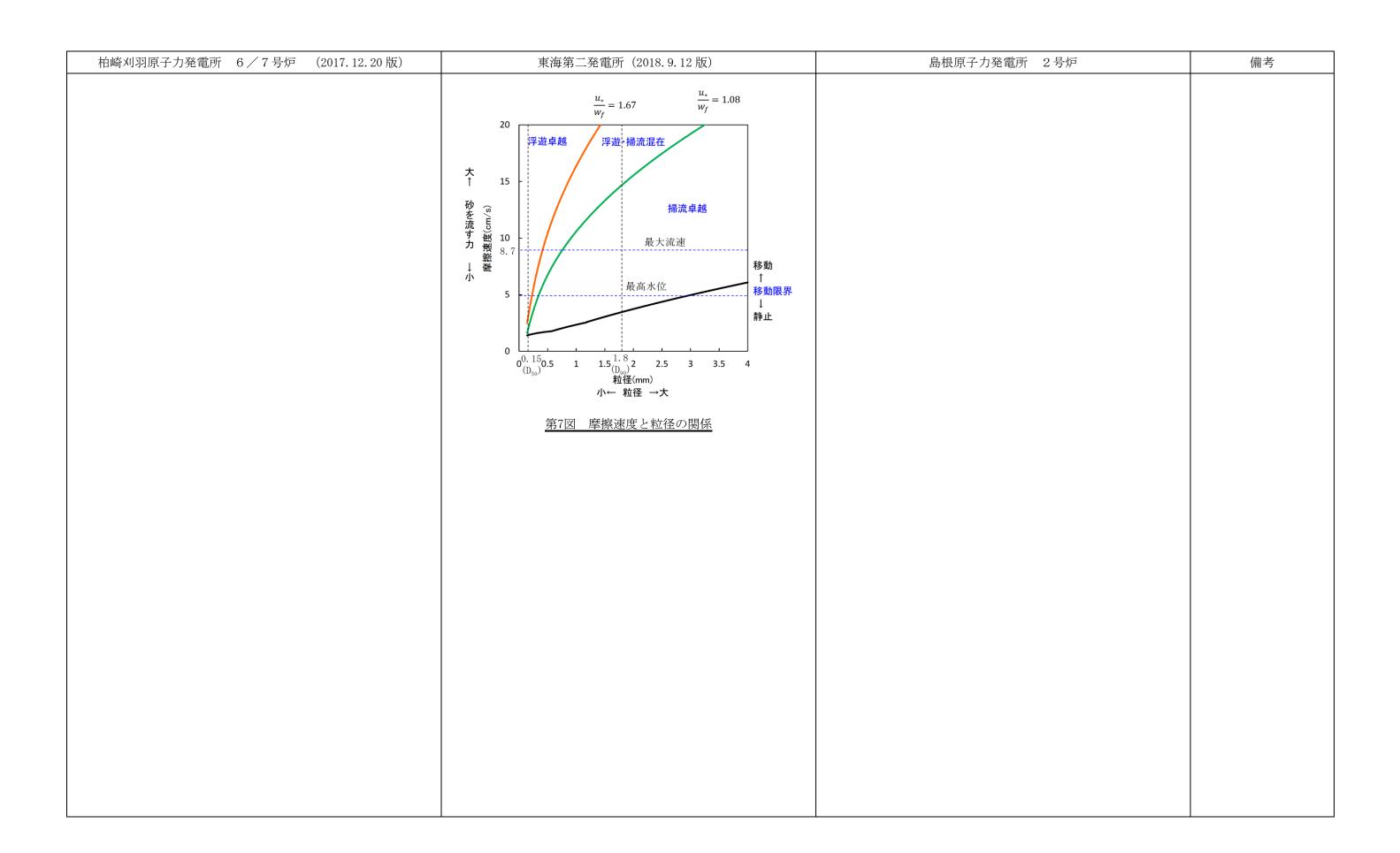






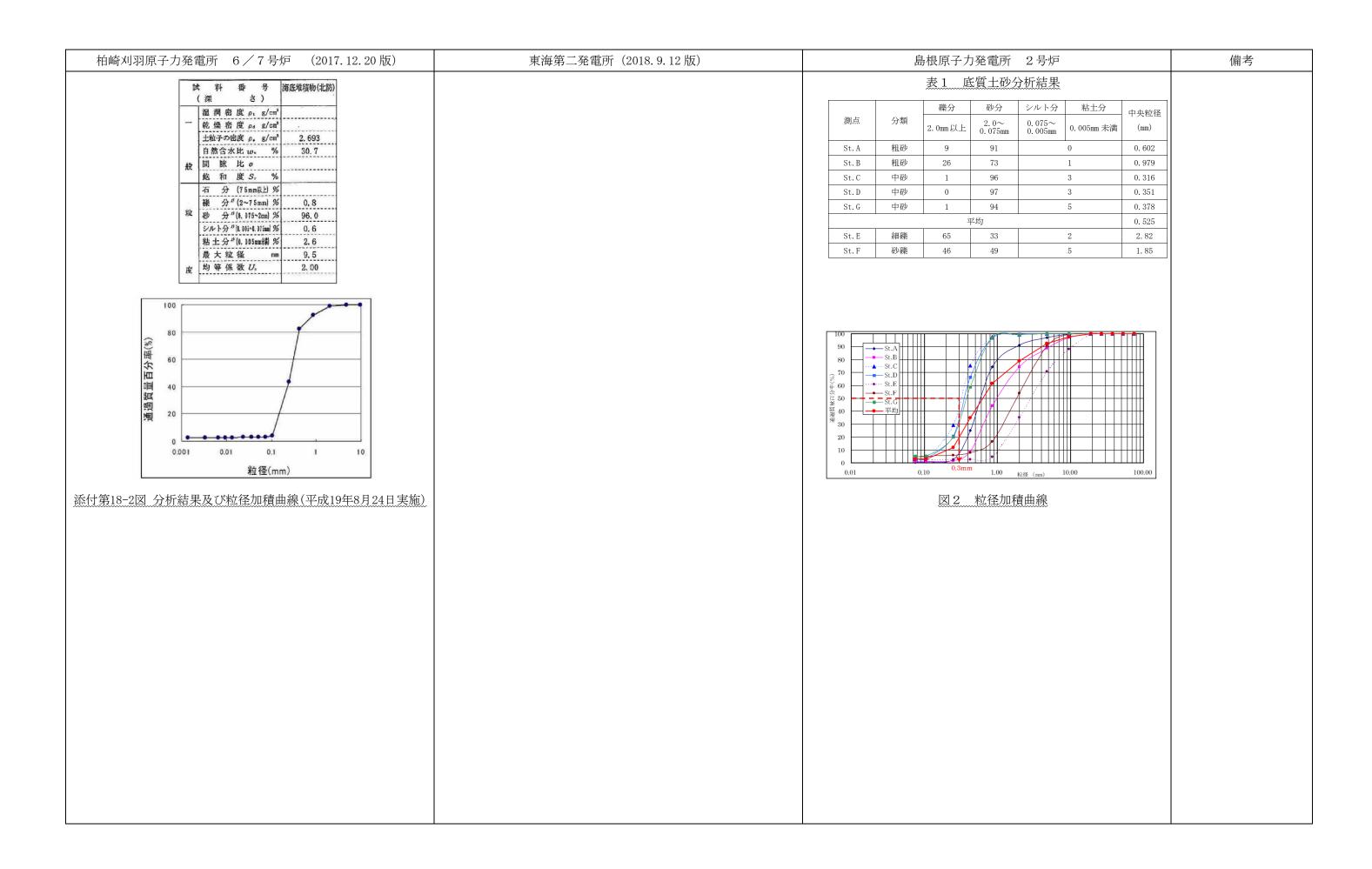
備考 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉 17.3 防波堤をモデル化しない状態での影響評価 防波堤をモデル化しない状態での影響評価 ・検討内容の相違 砂移動評価においては, 防波堤は健全な状態と仮定して解析 砂移動評価においては, 防波堤は健全な状態と仮定して解析 【柏崎6/7,東海第二】 を実施している。ここでは、影響評価として、 地震時における を実施している。ここでは、影響評価として、地震時における 島根2号炉は基準津 防波堤の損傷を考慮して, 防波堤をモデル化しない状態とした 防波堤の損傷を考慮して,保守的に防波堤をモデル化しない状 波1~6の検討の中で, 砂移動解析を実施し、堆積厚さへの影響を検討した。なお、解 態とした砂移動解析を実施し、堆積厚さへの影響を検討した。 防波堤が無い状態での 析条件は「17.2 粒径のパラメータスタディ」と同様に、高橋 なお、解析条件は「2. 粒径のパラメータスタディ」と同様に、 影響評価を実施済 ほか(1999)を参考に、平均粒径を用いて実施した。 高橋他(1999)を参考に、平均粒径を用いて実施した。 評価結果を添付第17-3表に示し、堆積侵食分布図を添付第 評価結果を第3表に示し、堆積侵食分布図を第4図に示す。 17-3 図に示す。防波堤の有無による堆積厚さの変化は評価地 防波堤の有無による堆積厚さの変化は評価地点による違いが 点による違いが多少あるものの、最大堆積厚さについては変化 多少あるものの,最大堆積厚さについては大差なく,防波堤の がなく、防波堤の有無による影響は小さい。 有無による影響は小さい。 添付第17-3表 取水口前面の堆積厚さ 第3表 取水口前面の堆積厚さ 取水山前面堆積厚さ(m) 地震 防波堤 基準津波 防波堤 取水口前面 1号炉 2号炉 3号炉 4号炉 5号炉 6号炉 7号炉 1, 1 0, 4 0, 5 0.9 1.2 0.3 0,6 あり 0.33m|: | 準 | 日本海東縁部 上昇側 昇 津 (2領域モデル なし 側 波 +LS-2) 0.36m0.7 0.7 0.9 0.8 0.9 0.9 0.8 1 あり 0.19 m基 0.2 0.7 1.0 0.8 0.2 0.2 0.4 下 準 日本海東縁部 下降側 なし 0.23m降 津 (2領域モデ 側 波 ル) 0.6 0.5 0.6 0.6 0, 5 0.5 2

※取水口前面の堆積厚さは、取水路横断方向の堆積厚さの平均値とした ※高橋ほか(1999)、浮遊砂濃度の上限値1%


※高橋他 (1999), 浮遊砂上限濃度 1%

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	4. 平均粒径よりも大きな粒径を有する砂の浮遊可能性評価		・検討内容の相違
	非常用海水ポンプによる取水とともに海水系に混入する微		【東海第二】
	小な浮遊砂は、ポンプ出口の海水ストレーナを通過した後、海		島根2号炉はD90によ
	水系の各機器に供給され、最終的に放水ピットから放水され		る取水口位置における
	る。大きな粒径を有する砂が供給される場合は、非常用海水ポ		堆積がほとんどないた
	ンプの軸固着又は、海水系機器の閉塞が懸念されることから、		め, 平均粒径よりも大き
	ここでは平均粒径よりも大きな粒径を有する砂の浮遊可能性		な粒径を有する砂の浮
	について、一般的な技術知見を用いて評価を実施した。		遊可能性評価を省略
	砂移動に関する技術知見としては, ①沈降速度, ②移動形態,		
	③底面摩擦速度の関係がある。		
	①沈降速度(Rubey 式(河川・海岸の砂移動で一般的に使用))		
	$\frac{w_f}{\sqrt{sgd}} = \sqrt{\frac{2}{3} + \frac{36v^2}{sgd^3}} - \sqrt{\frac{36v^2}{sgd^3}}$		
	w _f : 土砂の沈降速度, s: 土砂の水中比重, g: 重力加速度 (=9.8),		
	d: 土砂の粒径		
	v : 水の動粘性係数(≒1.0×10 ⁻⁶ m²/s)		
	②移動形態※(荒井・清水「現場のための水理学3」)		
	掃流卓越領域・・・・・・・・・・・・ <u>u*</u> <1.08		
	掃流・浮遊の混在領域・・・・・1.08 $<\frac{u*}{wf}<$ 1.67		
	浮遊卓越領域・・・・・・・・1.67 $<$ $\frac{u*}{wf}$		
	u*:摩擦速度		
	※土砂粒子の浮遊速度と沈降速度の関係から導出した理論式。		
	③底面摩擦速度(岩垣式(河川・海岸の砂移動で一般的に使用))		
	$d \ge 0.303 \text{ cm}$; $u_{*c}^2 = 80.9d$		
	$0.118 \le d \le 0.303 \text{ cm}$; = 134.6 $d^{31/32}$		
	$0.0565 \le d \le 0.118 \text{ cm}$; =55.0d		
	$0.0065 \le d \le 0.0565 \text{cm}$; $= 8.41 d^{11/32}$		
	$d \le 0.0065 \text{cm}$; $= 226d$		
	u*c: 底面摩擦速度		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	①~③を整理すると第5図となり、平均粒径よりも大きな粒		
	径を有する砂は浮遊しにくい。		
	東海第二発電所のサイト条件を踏まえた上で、平均粒径より		
	も大きな粒径を有する砂の浮遊可能性について考察した。対象		
	地点については、海水ポンプ室の閉塞性への影響を踏まえ、取		
	水口前面とした。		
	まずは浮遊可能性の検討に必要な摩擦速度を算出した。摩擦		
	速度の算出に当たっては,砂移動による砂の堆積量が大きい上		
	昇側の基準津波における取水口前面の流速と全水深を用いた。		
	$u_* = \sqrt{gn^2U U /D^{1/3}}$ (マニング則)		
	摩擦速度は u*で表される。ここで, n はマニングの粗度係数,		
	U は流速, D は全水深である。マニングの粗度係数 n:0.03m ^{-1/3} ・		
	s (土木学会 2016) を用いた。流速 U 及び全水深 D については,		
	最大流速時における流速 (1.5m/s) と全水深 (17.8m), 最高水		
	位時における流速 (0.9m/s) と全水深 (21.6m) 及び最低水位		
	時における流速 (0.01m/s) と全水深 (2.1m) とした。		
	計算の結果,最大流速時の摩擦速度は 8.7cm/s,最高水位		
	時の摩擦速度は 5.0cm/s,最低水位時の摩擦速度は 0.1cm/s と		
	なった。これらを考慮すると、取水口前面の摩擦速度は主に		
	0.1~8.7cm/s の範囲内となると考えられる。		
	粒径については粒径加積曲線の結果から、東海第二発電所前		
	面における平均粒径(D_{50})は 0.15 mm であり, D_{90} 相当は 1.8 mm		
	である。		
	摩擦速度と粒径の関係から、最大流速時及び最高水位の場		
	合, 平均粒径 (D ₅₀) では浮遊卓越となるが D ₉₀ 相当では掃流卓		
	越となる。よって,東海第二発電所のサイト条件を踏まえても,		
	粒径が大きい砂ほど浮遊しにくいと考えられる。		
	なお、非常用海水ポンプの軸受には、異物混入による軸受の		
	損傷を防止するため,異物逃し溝(最小約3.7mm)が設けられ		
	ンプの取水時に浮遊砂の一部がポンプ軸受に混入したとして		
	も,異物の逃し溝から排出される構造となっている。		



実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

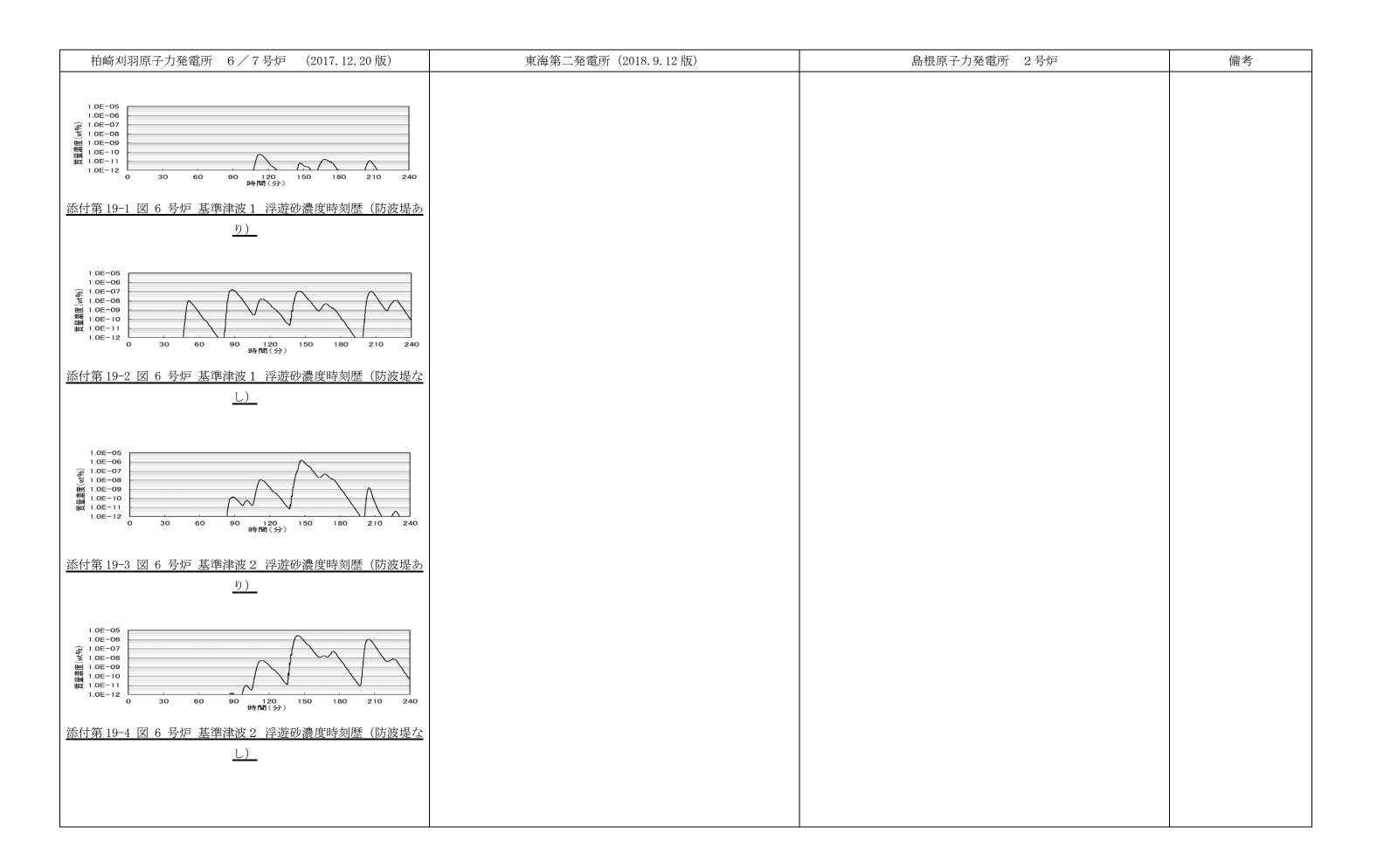
まとめ資料比較表 〔第5条 津波による損傷の防止 別添1 添付資料13〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
施付資料18 柏崎刈羽原子力発電所周辺海域における底質土砂の分析結果について 底質土砂の性状について,平成19 年8 月に実施した発電所港湾 内での底質土砂の分析結果(粒径分布)では,粒径2.0mm~0.075mm の砂分が主体で,平均粒径は0.27mmであった。また2.0mm以上の 礫分はごく僅かであり,ほとんどが砂である。試料採取場所を添 付第18-1 図に,分析結果を添付第18-2 図に示す。		添付資料 13 島根原子力発電所周辺海域における底質土砂の分析結果について 1. 底質土砂の性状 平成7年5~10月に実施した発電所敷地周辺海域での底質土砂の分析結果(粒径分布)では、発電所沿岸域のほとんどが岩、礫及び砂礫で構成されているが、沖合域の海底地質は砂が分布しており、砂に分類される St. A~St. D 及び St. G の中央粒径は 0.5mm程度であった。試料採取場所を図1に、分析結果を表1に、粒径加積地線を図2に示す	
(の) 100m (の) 100m (本) 18-1図 底質土砂分析における試料採取場所		加積曲線を図2に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		2. 砂移動評価に用いる砂の粒径の設定	・評価方法の相違
		<u>底質土砂分析結果に基づき、砂移動評価に用いる砂の粒径を設</u>	【柏崎6/7,東海第二】
		定した。設定に当っては、以下の2点に留意した。	島根2号炉は砂移動
		①底質土砂分析結果の代表性を有する粒径として D50 を用いる。	評価に用いる砂の粒径
		②安全側の評価となるよう、掃流・浮遊が生じやすい細かい粒	を細かい粒径に設定
		径を用いる。	
		上記を考慮し、各測点の D50 粒径のうち、最も細かい粒径となる	
		St.CのD ₅₀ (0.3mm)を砂移動評価に用いる砂の粒径とする(図2)。	

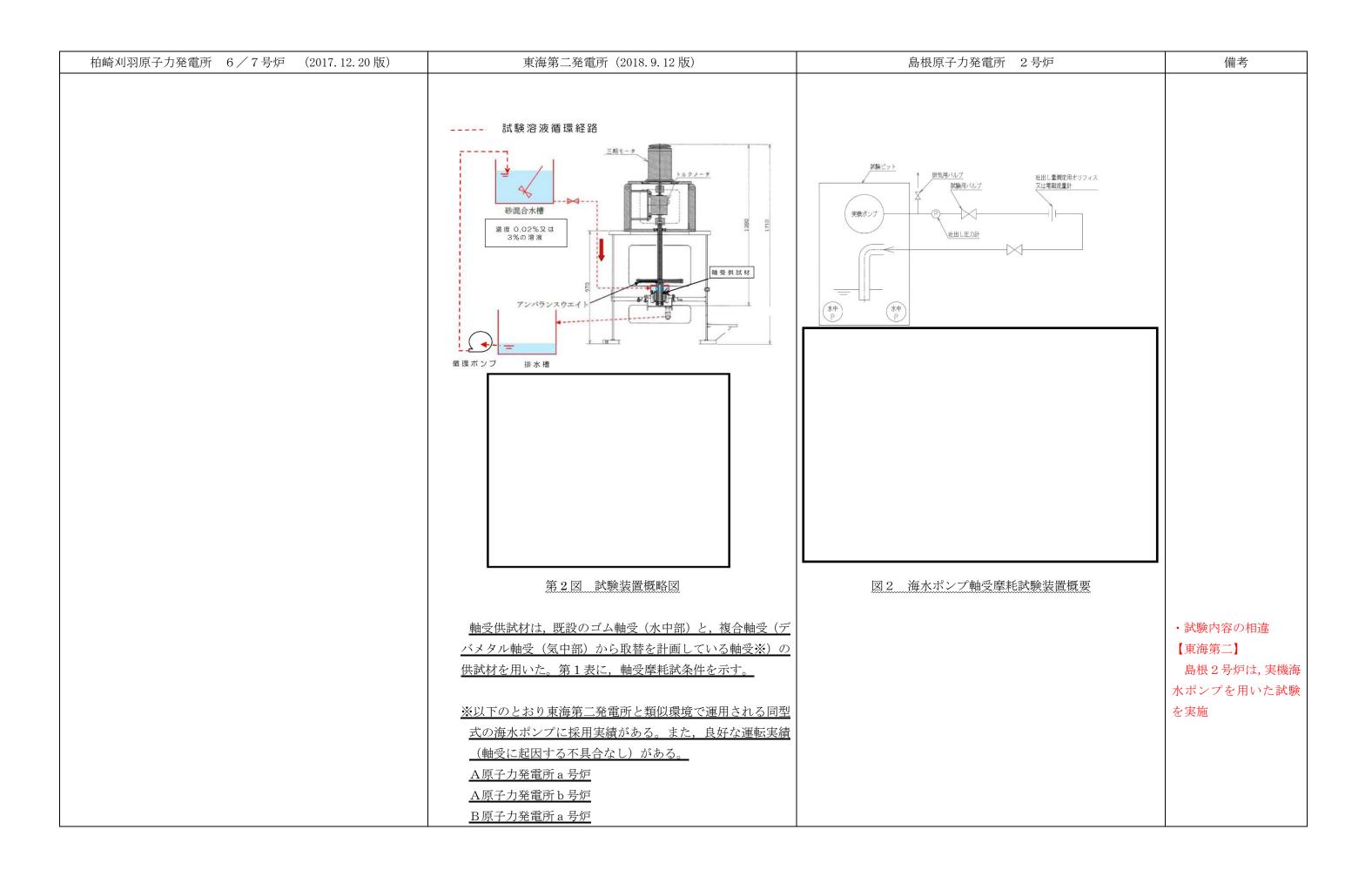
柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
(参考)			・資料構成の相違
砂移動の形態について			【柏崎6/7】
			島根2号炉は参考の
砂移動に関する技術知見としては、① ~ ③ 式により砂移動の			記載を省略する
形態を作図することができ、これにより砂粒径が大きいほど、 砂			
は移動しない、もしくは浮遊しにくいことを示すことができる。			
① Rubey 式により沈降速度を算出 (河川・海岸の砂移動で一般			
的に使用)			
wf:沈降速度[cm/s] s:砂の水中比重 g:重力加速度[cm/s2]			
d:砂粒の粒径[cm]			
v : 水の動粘性係数[cm2 /s]			
$\frac{w_f}{\sqrt{sgd}} = \sqrt{\frac{2}{3} + \frac{36v^2}{sgd^2}} - \sqrt{\frac{36v^2}{sgd^3}}$			
② 岩垣式により砂粒の粒径から限界摩擦速度を算出(河川・海			
岸の砂移動で一般的に使用)			
u*c:限界摩擦速度[cm/s] d: 砂粒の粒径[cm]			
$0.303 \le d \Longrightarrow u_{*c}^{2} = 80.9d$			
$0.118 \le d \le 0.303 \Longrightarrow u_{*c}^{2} = 134.6d^{31/22}$			
$0.0565 \le d \le 0.118 \Rightarrow u_{*c}^{-2} = 55d$			
$0.0065 \le d \le 0.0565 \Longrightarrow u_{*c}^{2} = 8.41d^{11/32}$			
$d \le 0.0065 \Longrightarrow u_{*c}^{2} = 226d$			
③ 砂の掃流および浮遊領域を判定 (荒井・清水「現場のための			
水理学3 」より)			
u*: 摩擦速度[cm/s] u*c: 限界摩擦速度[cm/s] wf: 沈降速			
度[cm/s]			
砂静止・・・u* <u*c 砂移動・・・u*="">u*c</u*c>			
掃流卓越領域···················· <u>u*</u> <1.08			
掃流・浮遊の混在領域・・・・・1.08 $<\frac{u^*}{wf}<$ 1.67			
浮遊卓越領域・・・・・・・1.67 < <u>u*</u> wf			

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
田崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 20	果海第二発電所 (2018. 9. 12 版)	高限原子刀発電所 2 专炉	/順考

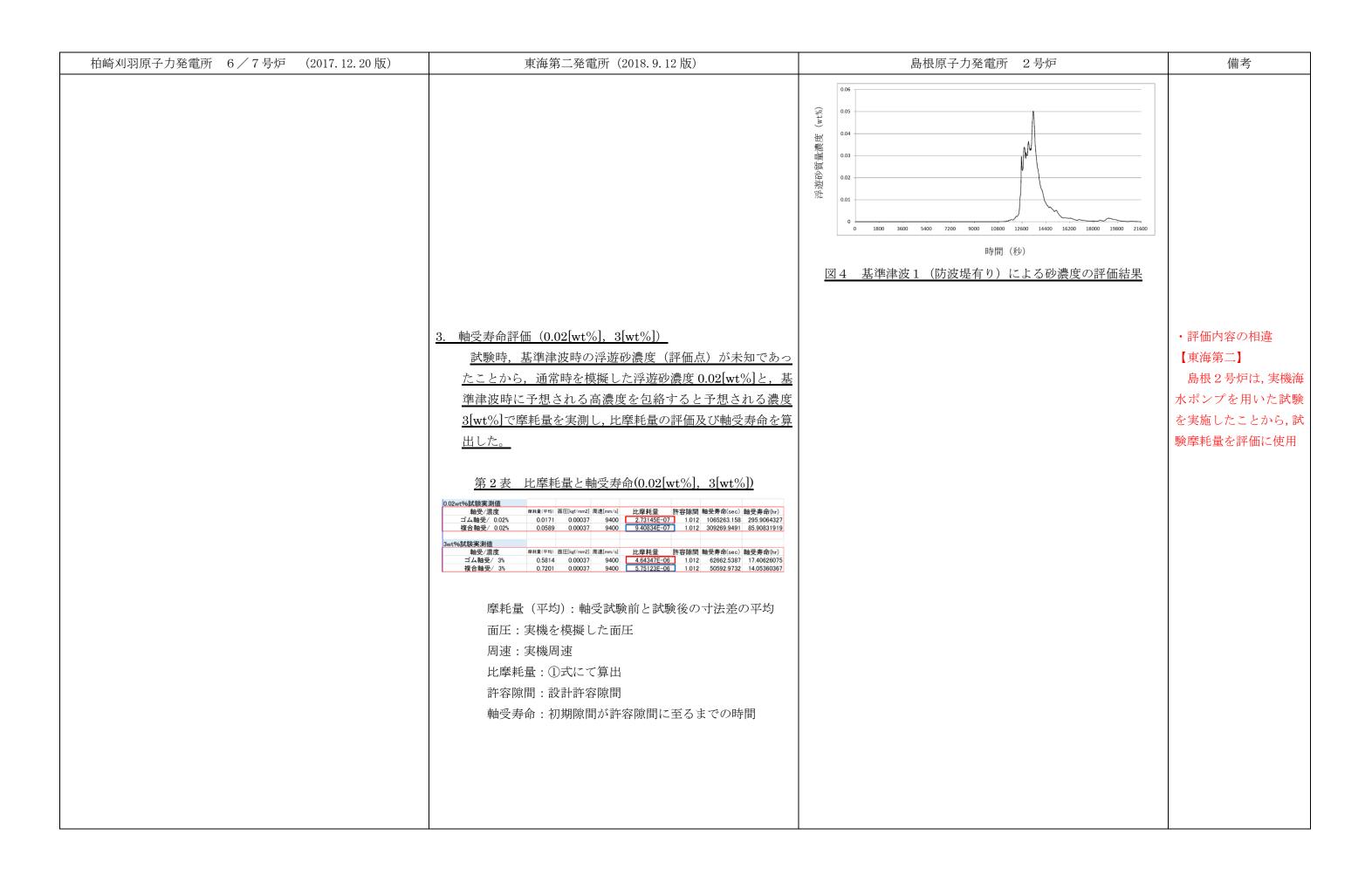

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

まとめ資料比較表 〔第5条 津波による損傷の防止 別添1 添付資料14〕

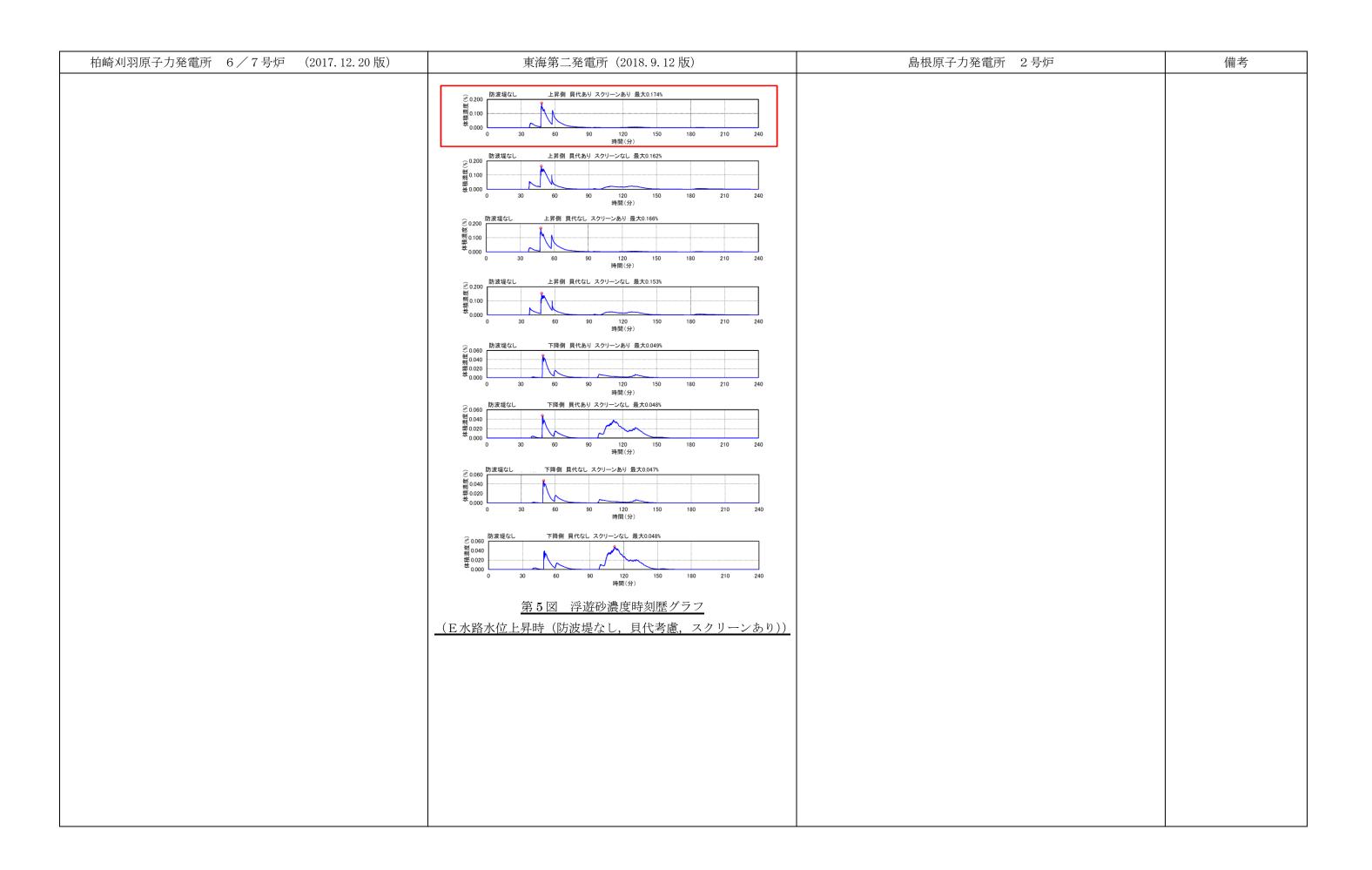

柏崎刈羽原子力発電所 6/7号炉 (2017, 12, 20版) 東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉 備考 添付資料19 添付資料14 添付資料 14 海水ポンプ軸受の浮遊砂耐性について 非常用海水ポンプ軸受の浮遊砂耐性について 海水ポンプ軸受の浮遊砂耐性について 1. はじめに 19.1 はじめに 1. 非常用海水ポンプ軸受の浮遊砂耐性について 基準津波襲来時を想定した取水路における砂移動解析を実施 東海第二発電所の非常用海水ポンプは、海水取水時に海水 海水ポンプは、取水時に浮遊砂の一部が軸受潤滑水とともにポ 中に含まれる浮遊砂を吸い込み、軸受隙間に入り込む可能性 ンプ軸受に混入したとしても、図1に示すとおり、軸受に設けら し,解析により得られた海水ポンプ取水地点の浮遊砂濃度を基に, 海水ポンプ軸受の浮遊砂に対する耐性について評価する。 を考慮し、砂が混入してもこれを排出することで機能維持可 れた異物排出溝(溝深さ約 3.5mm)から連続排出される構造となっ 能な設計としている(第1図)。また、これまでの運転実績か ているため、取水機能は維持できる設計となっている。これまで ら、浮遊砂混入によるトラブルは発生していない。 の運転実績においても、浮遊砂混入による軸受損傷は発生してい しかしながら、津波発生時は、津波により海底の砂が巻き ないが、ここでは、発電所周辺の細かな砂(粒径 0.3mm 程度)が 上げられ、通常よりも浮遊砂環境が厳しくなる可能性がある 軸受に混入した場合の軸受の耐性について評価する。 ことから, 既設のデバメタル軸受については, 浮遊砂に対す ・設備の相違 る耐性の高い複合軸受に取り替える計画とし、試験装置を用 【東海第二】 い、高濃度の浮遊砂濃度を模擬した試験を実施し、非常用海 島根2号炉は浮遊砂 水ポンプ軸受の耐性を評価する。 に対する耐性の高いテ フロン軸受を使用して おり,取替えは計画して デバメタル軸受 (1) デバメタル 軸受 (気中部) いない 軸受 異物逃し溝 軸受 デバメタル軸受 (気中部) 異物排出溝 複合軸受*に取替え予定 軸受 ゴム-デバメタルのハ ブリッドタイプ) テフロン軸受断面図 異物逃し溝 軸受 ゴム軸受(水中部) □: テフロン軸受 星物沸1.滞/ 第1図 非常用海水ポンプ断面図,軸受図 図1 海水ポンプ軸受構造図

一 相崎刈初原十刀発置	電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	that had by I.V.			Verylol litte. D. o. Lea Ye.
9.2 取水路における砂				・資料構成の相違
	<u>動解析については、「1.4 入力津波の設定」</u>			【柏崎 6/7】
	解析, 及び「2.5 (2) a. 砂の移動・堆積に			砂移動解析の方法
	おける砂の移動・堆積の数値シミュレーシ			び結果については、「3
	て, 「高橋ほか (1999) の手法」 [1] に			砂濃度評価」に記載
	施し、浮遊砂濃度を算出する。			
砂移動解析の人力条件	件を添付第19-1 表に示す <u>。</u>			
添付第 19:	-1 表 砂移動解析の入力条件			
項目	入力値 設定根拠			
平均粒径 [mm]	0.27 敷地前面海域における浚渫砂 の物理特性試験結果			
空隙率	0.4 高橋ほか (1992)			
砂の密度 [kg/m³]	2,690 敷地前面海域における浚渫砂 の物理特性試験結果			
浮遊砂体積濃度上限値 [%]	[3] 1 高橋ほか(1999)			
9.3 取水路における砂	移動解析結果			
	び防波堤有無の各ケースにおいて,海水ポ			
	孚遊砂濃度時刻歴を示す。6 号炉を添付第			
	に,7 号炉を添付第19-5 図~添付第19-8			
[に示す。_				
	ハ値を示すのは, 6 号炉および7 号炉とも			
	是なし)のケース(6 号炉:添付第19-4 図,			
<u> 号炉:添付第19-8図)</u>	で地震発生から約140 分経過した時点で,			
送遊砂濃度は1×10-5wt	:%以下であった <u>。</u>			
,				
波源 基準津波	1, 2			
波源 基準津波 1砂移動モデル 高橋ほか	1, 2 (1999)			
波源 基準津波	1, 2 (1999)			
砂移動モデル 高橋ほか	1, 2 (1999)			
波源 基準津波 砂移動モデル 高橋ほか	1, 2 (1999)			


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
1.0E-05 1.0E-06 1.0E-07 1.0E-08 概 1.0E-09 概 1.0E-10 版 1.0E-12 0 30 60 90 120 150 180 210 240 添付第 19-5 図 7 号炉 基準津波 1 浮遊砂濃度時刻歴(防波堤あ			DII V
1.0E-05 1.0E-06 (9 1.0E-07 2 1.0E-08 世 1.0E-09 門 1.0E-10 町 1.0E-12 0 30 60 90 120 150 180 210 240 添付第 19-6 図 7 号炉 基準津波 1 浮遊砂濃度時刻歴(防波堤な し)			
1.0E-05 1.0E-06 (1.0E-07 (1.0E-08 (1.0E-09 (1.0E-10) (1.0E-11) (1.0E-12) (1.0E-13) (1.0E-14) (1.0E-15) (
1.0E-05 1.0E-06 (1.0E-07 (25) 1.0E-08 (21) 1.0E-08 (21) 1.0E-10 (21) 1.0E-12 (22) 150 180 210 240 (33) 60 90 120 150 180 210 240 (34) 添付第 19-8 図 7 号炉 基準津波 2 浮遊砂濃度時刻歴(防波堤な し)			

柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	2.	軸受摩耗試験	2. 軸受摩耗試験	・評価内容の相違
			(1) 試験方法	【柏崎 6/7】
		試験装置に、軸受供試材を取り付けて一定時間運転し、運	試験ピット内に粒径 0.3mm 程度の砂を入れ,実機海水ポン	島根2号炉は,軸受の
		転前後の供試材寸法測定により摩耗量を求めた。試験溶液の	<u>プを用い軸受の</u> 摩耗量を <u>測定した。</u> 試験 <u>における</u> 砂濃度は,	砂耐性について,試験に
		砂濃度は,通常運転時模擬濃度 0.02[wt%]及び高濃度	島根2号炉の取水槽位置における砂濃度を包絡し、また、濃	より確認
		3[wt%]を設定し、試験時間を通して、連続的にこの濃度の溶	度の違いによる摩耗の傾向を把握するため2点設定した。試	・試験内容の相違
		液が軸受に供給される試験系統とした。	験条件を表1に、海水ポンプ軸受摩耗試験装置の概要を図2	【東海第二】
		試験装置の概略構成図を第2図に示す。	に示す。	島根2号炉は,実機海
				水ポンプを用いた試験
			表 1 試験条件	を実施
			項目 試験条件 備考	
			砂濃度 1回目 0.016wt% 島根2号炉取水槽位置における砂濃度を包	
			砂濃度 2回目 0.100wt% 絡し,傾向把握のため2点設定。 吐出量 2040m³/h ポンプの定格流量。	
			砂仕様 字部珪砂 (6号) 発電所周辺の細かな砂(粒径 0.3mm 程度)が	
			多く含まれる砂を採用。 1回目 2時間 試験時間:2時間2分(122分)	
			試験時間	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二系	発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	B原子力発電所 b 号	-炉		
	<u>B原子力発電所 c 号</u>	炉		
	B原子力発電所 d 号	炉		
	C原子力発電所 a 号	炉		
	第1表	軸受摩耗試験条件		
	項目	試験条件		
	回転数[m/s]	試験装置:5(実機:9.4*1)		
	面圧 [kPa]	3.7*2		
	砂粒径 [mm]	0. 15		
	軸受供試材材料	ゴム,複合型		
	試験時間[hr]	5		
		・・①	砂濃度 0.016wt%及び 0.1wt%における実機海水ポンプの軸受 摩耗結果から 1 時間あたりの摩耗量を算出した。試験結果より 確認された軸受の 1 時間当たりの摩耗量を表 2 に、濃度と摩耗 量の関係を図 3 に示す。	・評価内容の相違 【東海第二】 島根 2 号炉は,実機 水ポンプを用いた試 を実施したことから, 験摩耗量を評価に使用

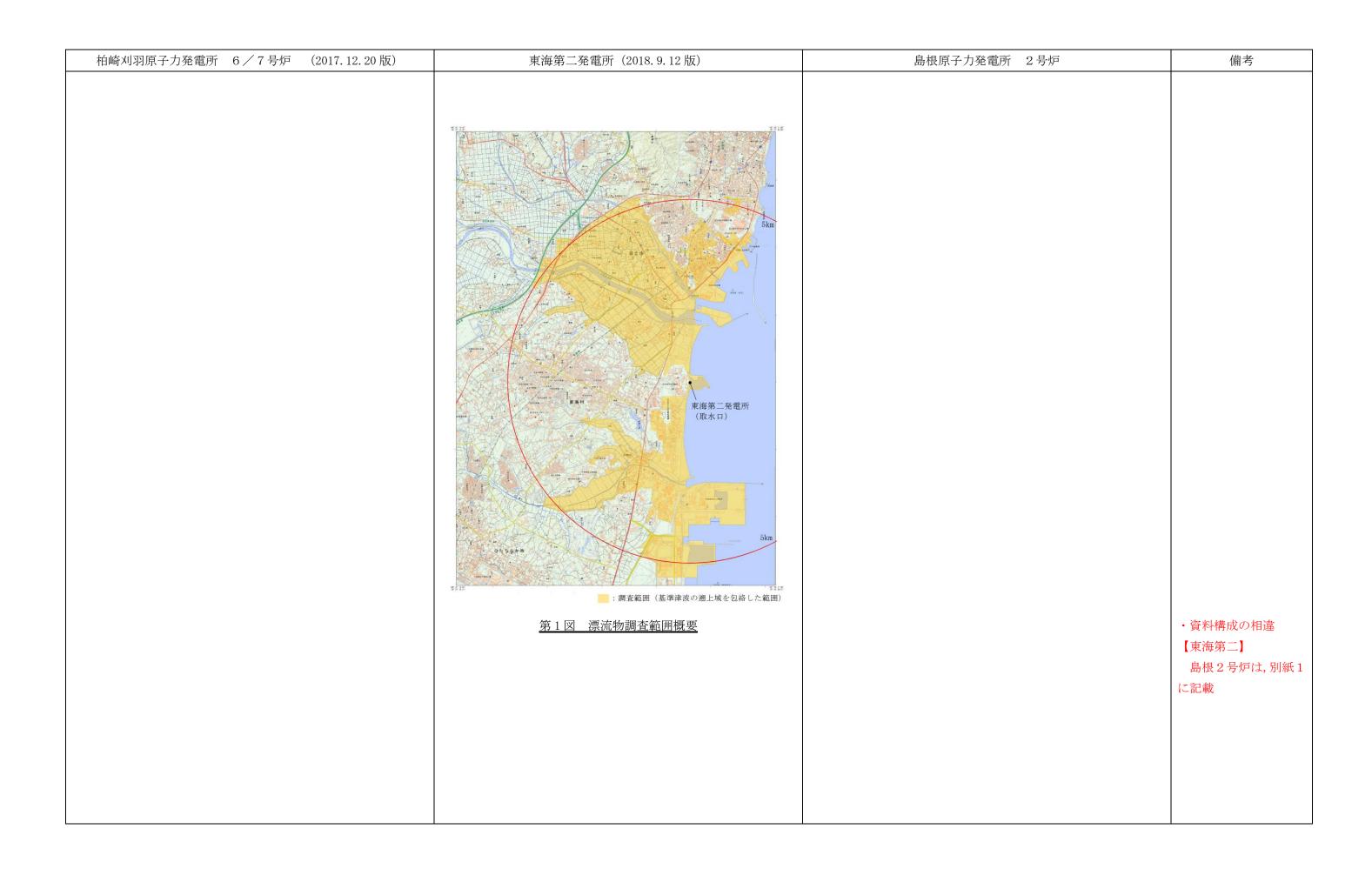

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	$\underline{K_1\omega_0}$: $0.02[\mathrm{wt}\%]$ における比摩耗量		
	<u>K1ω :3 [wt%]</u> における比摩耗量		
		図3 試験における濃度(wt%)と摩耗量(mm)の関係	
			・評価条件の相違
		3. 砂濃度評価	【柏崎 6/7,東海第二】
		島根2号炉の取水槽位置の砂濃度は表3に示す条件にて解析を	
		実施し算出している。取水槽位置での砂濃度は図4に示すとおり	る評価条件の相違
		であり、取水槽で砂濃度の変化が見られる 12000 秒から砂濃度が	
		下降傾向を示す 19800 秒間の平均砂濃度 0.0082wt%を評価に用い	
		<u>ることとする。</u>	
		表3 基準津波による砂移動の解析条件	
		波源 鳥取県 (2012) が日本海東縁部に想定した地震による津波	
		砂移動モデル 高橋ほか (1999) の手法による検討結果	
		算出点 取水槽位置 浮遊砂体積濃度上限値 1%	
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	4. 軸受寿命評価(0.48[wt%])	4. 軸受耐性評価結果	・評価内容の相違
	<u>基準津波時の砂移動解析結果から、非常用海水ポンプ室近</u>	(1) 軸受評価方法	【東海第二】
	傍の浮遊砂濃度は,0.18[vol%]との結果が得られたことから,	軸受評価の方法については,砂濃度 0.016wt%及び 0.1wt%	島根2号炉は,実機海
	砂の密度 2.72[g/cm3]を乗じて重量濃度 0.48[wt%]に換算	の試験で求められた濃度と摩耗量の関係から, 砂濃度が低い	水ポンプを用いた試験
	した上で, 比摩耗量の式 (②) を参考に, 0.02 [wt%] と 3	ときに摩耗量は低くなる傾向にある。島根2号炉の取水槽位	を実施したことから,試
	[wt%] の試験結果から,浮遊砂濃度 0.48[wt%]における比	置の砂濃度は、0.0082wt%であるため、砂濃度 0.016wt%の試	験摩耗量を評価に使用
	摩耗量を算出した。	験で確認された摩耗量より低くなると考えられるが、ここで	
	なお、比摩耗量の式(②)は公開文献「立軸ポンプセラミ	は保守的に,試験結果から得られた 0.016wt%の砂濃度におけ	
	ックス軸受に関する研究」*から引用している。この公開文	<u>る摩耗量</u> を用いることとする。評価に用いる	
	献では, 200~3000ppm のスラリー濃度の軸受摩耗量を測定	摩耗量を図5に示す。	
	しており、比摩耗量とスラリー濃度との間には相関関係があ		
	ると結論づけられており、この知見を参考とした。		
	$\frac{\omega}{\omega_0} = \left[\frac{C_{\omega}}{C_0}\right]^{0.9} \cdot \cdot \textcircled{2}$		
	*出典:立軸ポンプセラミックス軸受に関する研究,湧川ほ		
	か(日本機械学会論文集(B編)53巻 491号(昭 62-7)、		
	pp.2094~2098		
	PP		
	②式を参考とし, 0.02[wt%]の比摩耗量と 3[wt%]の比摩耗		
	量の 2 点間が線形近似できると評価し、以下の式にて		
	0.48[wt%]におけるゴム軸受と複合軸受の比摩耗量を算出し		
	た。		
		図 5 評価に用いる摩耗量	
	【ゴム軸受】	<u></u>	
		(2) 軸受評価結果 隙間管理値に達するまでの許容寸法 に対し、1時	
		間あたりの摩耗量をとすると、運転可能時間	
	比摩耗量 k=1.64748×10 ⁻⁶ [mm ² /kgf] ・・・③	は約82時間と評価される。	
	元/字代里 K-1.04740/10 [IIIIII / KgI] · · · ①	19WA OS RALINI C HT IM C 4 N.の。	

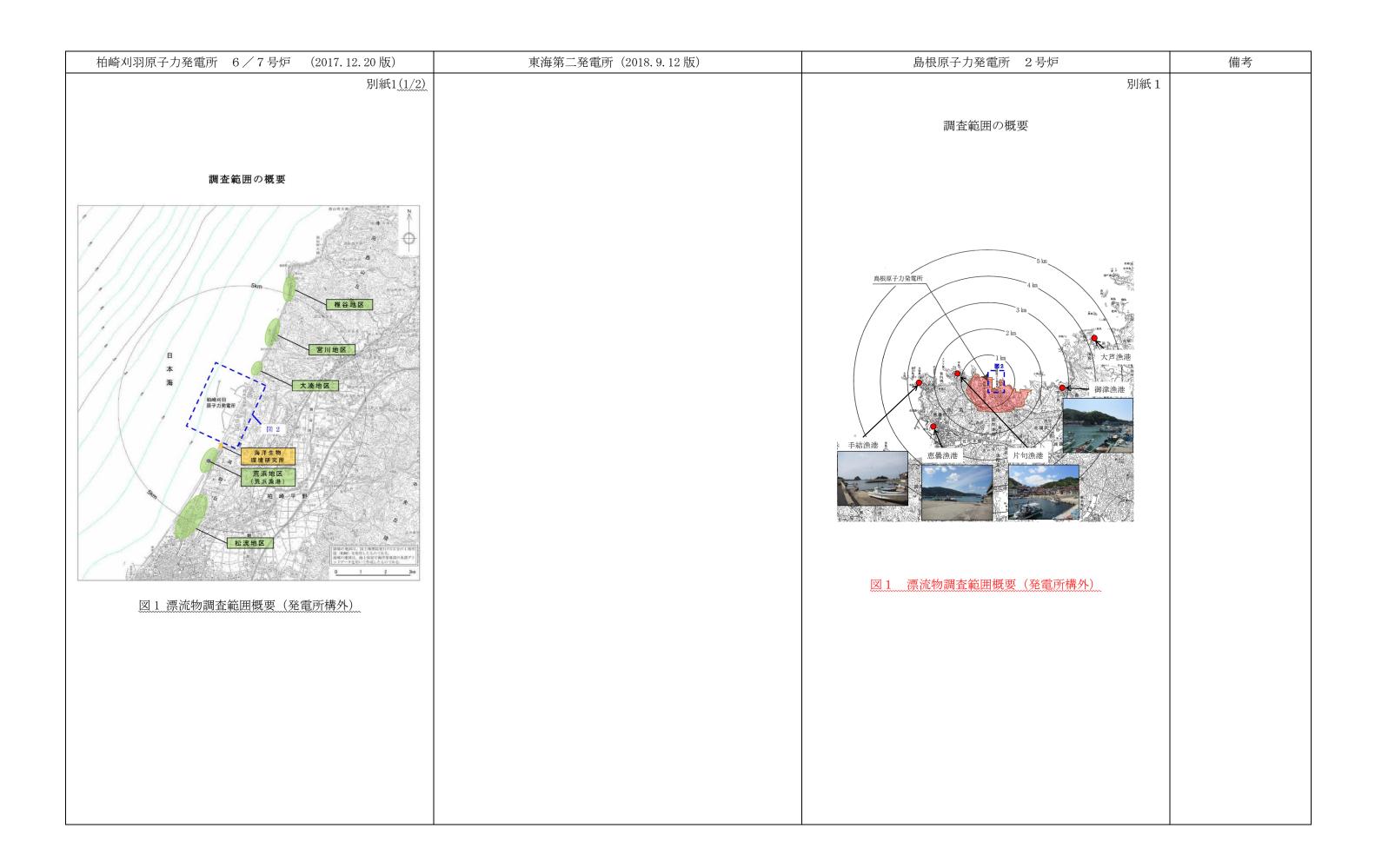
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12 版) 【複合軸受】 比摩耗量 k=2.9662×10 ⁻⁶ [mm²/kgf]・・・④ ③及び④を元に寿命評価した結果, 隙間許容値に至るまで の運転時間は, 第 3 表のとおり, ゴム軸受で約 49 時間, 複合軸受で約 27 時間と評価した。 第 3 表 比摩耗量と軸受寿命(0.48wt%) ○48wt、(評価濃度)における寿命評価	島根原子力発電所 2号炉	備考
	第3図 浮遊砂濃度と比摩耗量との相関図(ゴム軸受)		

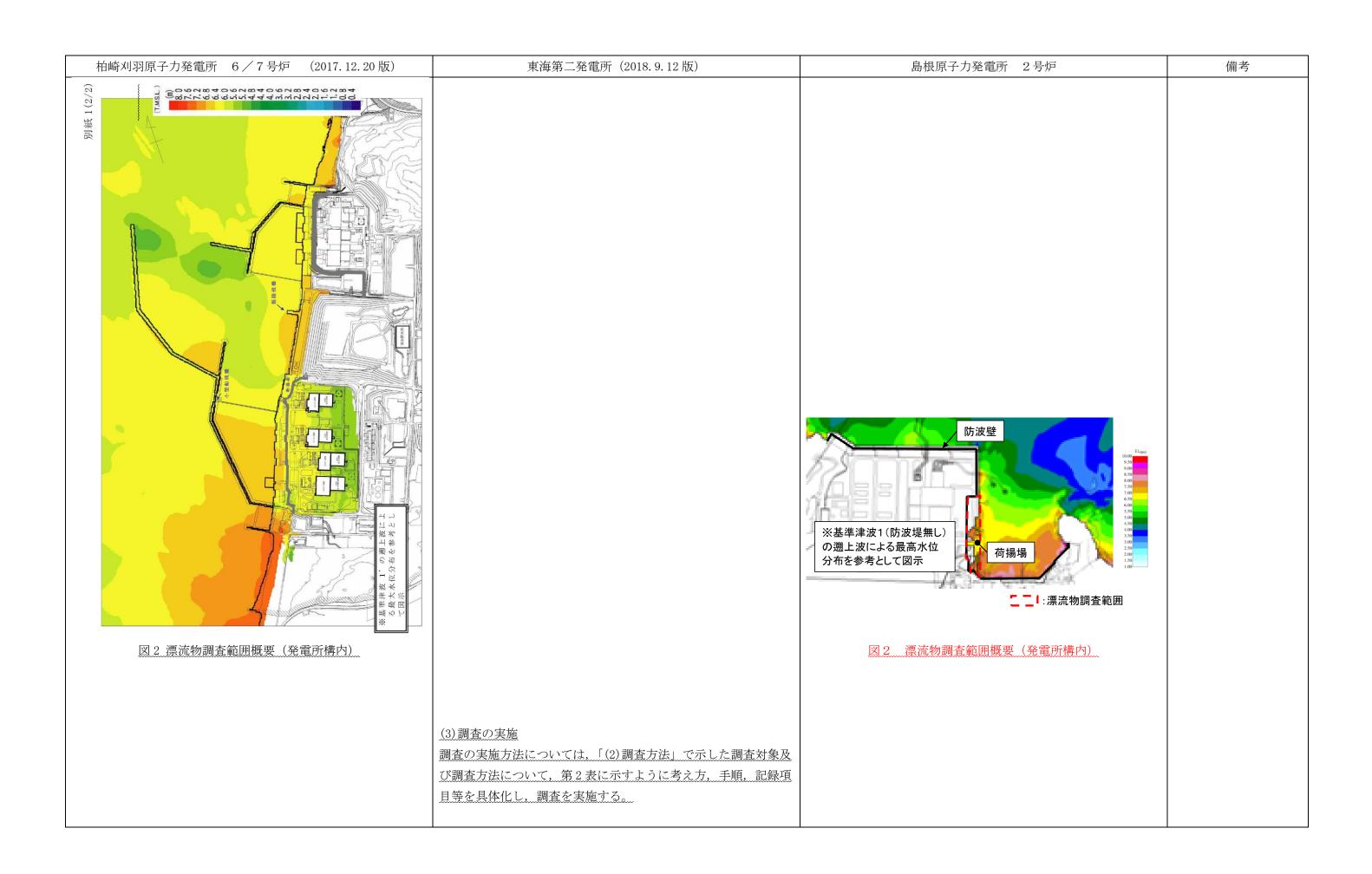
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第4図 浮遊砂濃度と比摩耗量との相関図(複合軸受) 5. 浮遊砂濃度のピーク時間の評価 基準津波時の砂移動計算結果から得られた砂濃度の時刻歴 グラフを第5図に、取水口及び取水構造物(取水路及び取水 ピット)の配置を第6図に示す。また、砂移動計算の諸条件 を第4表に、その他の解析条件を第5表に示す。 非常用海水ポンプが設置される全水路の計算結果から、最 も高い砂濃度を示すE水路のケースを想定しても、基準津波 時の浮遊砂濃度のピークは数分で収束し、軸受摩耗試験で設 定したような連続5時間の高濃度の状態は認められない。		・資料構成の相違 【東海第二】 島根2号炉は、浮遊砂 の評価について「3.砂 濃度評価」に記載

崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018	. 9. 12 版)	島根原子力発電所 2号炉	備考
L				
<u>第</u>	6図 取水口及び取水構造物(取水	路及び取水ピット)配置図		
	第4表 砂移動計算	の諸条件		
	設定値	備考		
	少移動モデル 高橋ほか(1999)によるモデル			
	マニングの粗 0.03[m ^{-1/3} ・s]	土木学会(2002)より		
	≨遊砂体積濃 1,3,5[vo1%]			
	を上限値 うち、1[vol%]が最もよく砂 再現していると確認できた	ことか		
	ら,上限濃度1%時の解析結果 ゆの粒径 0.15[mm]	とを採用 底質調査より設定		
	9の粒径 0.15[mm] 少粒の密度 2.72[g/cm ³]	底質調査より設定		
1 17				

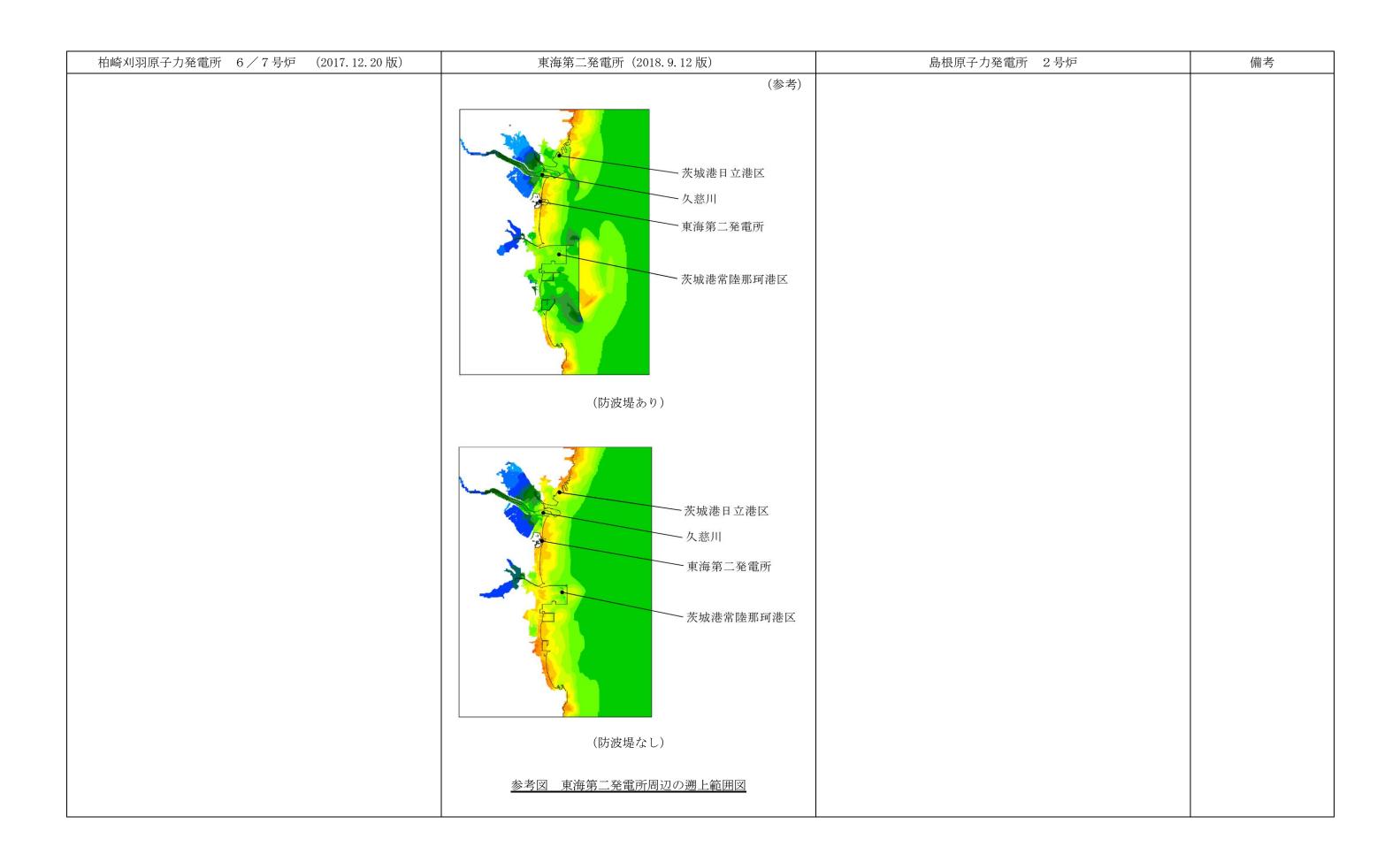

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電	所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
	第5表 そ	の他の解析条件		
	項目	評価条件		
	海水取水流量[m ³ /hr]	2549.4*		
	その他の考慮事項	防波堤の有無,スクリーンの有無, 貝代の有無		
	*非常用海水ポンプ全台運転 系ポンプ停止時の流量	、循環水ポンプ及び補機冷却系海水		
19.4 海水ポンプ軸受の浮遊砂に対する耐性評価	6. 総合評価		<u>5. まとめ</u>	・評価内容の相違
基準津波襲来時を想定した取水路における砂移動解析によって		毎水ポンプの軸受は、基準津波時に	準波襲来による浮遊砂濃度が上昇する時間は長くても3時間	【柏崎 6/7】
得られた海水ポンプ取水地点の浮遊砂濃度は、6号炉および7号	***************************************	中央粒径 0.15mm) が混入しても,	程度であり、津波襲来時に海水ポンプ軸受部に浮遊砂が混入し	島根2号炉は,実機海
炉ともに1×10 ⁻⁵ wt%以下であった。		mm)によりこれを排出することで	たとしても海水ポンプ軸受耐性は十分にあり、取水性に問題は	水ポンプを用いた試験
	機能維持可能である。		ない 。	を実施
量1,800m³/h) が海水とともに取水する浮遊砂量は3g/min 程度と		き上げられた浮遊砂が軸受に巻き込		
微量であることを示す。また、取水された多くの海水は、軸受摺	まれたとしても、ポンプピ	ット近傍が高濃度の浮遊砂の状態に		
動面隙間より断面積比で約60 倍ある揚水管内側流路を通過する	ある時間は数分で収束する	ことから、試験結果から得られた運		
ことを踏まえると、軸受摺動面に混入する浮遊砂量は3g/min より	転可能時間で十分包絡でき	,非常用海水ポンプの軸受は機能維		
さらに減少することが見込まれることから、基準津波襲来時の浮	持可能である。			
遊砂による軸受摩耗への影響はないと評価する。				
参考文献 「1]:「掃流砂層・浮遊砂層間の交換砂量を考慮した津波移動床モデルの開発」, 高橋智幸・首藤伸夫・今村文彦・浅井大輔・海岸工学論文集,46,606-610, 1999.				

実線・・設備運用又は体制等の相違(設計方針の相違)


波線・・記載表現、設備名称の相違(実質的な相違なし)


まとめ資料比較表	「第5条	津波による損傷の防止	別添 1	添付資料 15]
	LM U A	1十1次(こめ 3) 1貝 <i>m */ 1</i> 71 土	カコ かん エ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
添付資料20	添付資料 <u>1.6</u>	添付資料 1.5	
津波漂流物の調査要領について	津波漂流物の調査要領について	津波漂流物の調査要領について	
<u>20.1</u> はじめに	1. はじめに	1. はじめに	
「実用発電用原子炉及びその附属施設の位置,構造及び設備の	東海第二発電所において基準津波による水位変動に伴う漂	「実用発電用原子炉及びその付属施設の位置、構造及び設備の	
基準に関する規則(平成25 年7 月8 日施行)」の第五条において,	流物に対して取水口及び取水路の通水性が確保できる設計で	基準に関する規則(平成25年7月8日施行)」の第五条において,	
基準津波に対して設計基準対象施設が安全機能を損なわれるおそ	あることが要求されている。	基準津波に対して設計基準対象施設が安全機能を損なわれるおそ	
れがないことが求められており、同解釈の別記3 において、基準	このため、同要求に対して適合性を確認する「基準津波によ	れがないことが求められており、同解釈の別記3において、基準	
津波による水位変動に伴う漂流物に対して取水口及び取水路の通	り漂流物となる可能性がある施設・設備等」の調査要領を示す。	津波による漂流物に対して取水口及び取水路の通水性が確保でき	
k性が確保できる設計であることが要求されている。		る設計であることが要求されている。	
本書は、同要求に対する適合性を示すにあたり実施した「基準		<u>本書は、</u> 同要求に対する適合性を示すにあたり実施した「基準	
津波により漂流物となる可能性がある施設・設備等」の調査の,		津波により漂流物となる可能性がある施設・設備等」の調査要領	
調査要領を示すものである。		を示すものである。	
20.2 調査要領	2. 調査要領	2. 調査要領	
·····································	(1) 調査範囲	(1)調査範囲	
調査範囲は、海域については基準津波の流向及び流速より、発	調査範囲は、基準津波の流向、流速及び継続時間より、東海	調査範囲は,発電所構内については,防波壁外側の荷揚場とし,	
電所周辺5km 圏内とし,陸域については,基準津波の遡上域を考	第二発電所の取水口から半径 5km 内の海域及び陸域とする。な		
薫し, 5km 圏内における海岸線に沿った標高10m 以下の範囲とす	お,陸域については,標高,地形を考慮し,基準津波の遡上域	辺 5 km 圏内の海岸線に沿った範囲とする。調査範囲の概要を別紙	
る。調査範囲の概要を別紙1 に示す。	を包絡した範囲とする。調査範囲を第1図に示す。	<u>1</u> に示す。	
(2) 調査方法	(2) 調査方法	(2)調査方法	
調査は上記の調査範囲を発電所構内・構外、海域・陸域により	調査は上記の調査範囲を発電所敷地内・敷地外又は陸域・海		
四つに分類し実施する。分類ごとの調査対象、調査方法を添付第		に分類し実施する。分類毎の調査対象,調査方法を表1に示す。	
20-1 表に示す。	び調査方法を第1表に示す。	(-) The country of the property of the country of t	
(o) ⇒7 63 +->4		(a) ⇒163 +->\-	
(3) 記録方法		(3)記録方法 (2)調本士社 で言したを調本社会に (2)	
調査結果記録は、別紙2に示す定義、考え方等に基づき、具体		調査結果の記録は、「(2)調査方法」で示した各調査対象につい	
りに記録する。		て定義や考え方に基づき、具体的に記録する。調査方法を別紙2	
		に示す。	


第1 女 「京が称となる可能性がある施設・設備等」の調査方法の構築 第1 女 「京が称しているでは、では、では、では、では、では、では、では、では、では、では、では、では、で	t	自崎刈羽	原子力発	電所 6/7	号炉	(2017. 12. 20 版)		月	[海第二発電]	沂(2018. 9.	12版)				島根原	子力発電	所 2号炉	備考
接換	付复	≶ 20−1	表「漂泳			る施設・設備等』。の調	第1表「沒	真流物σ	可能性がある	る施設・設備	1等」の調査方法の概要	= 2	表1	漂流物	となる可能	と性があ	る施設・設備等の調査方法	
Table 10 10 10 10 10 10 10 1							調杏新	i IIII	調杏分免		調杏方注		细木软匠	FI				
現代 現代 現代 現代 現代 現代 現代 現代							発電所敷地	海域・		方法		発行	歌音を		調査対象		調査方法	
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			T	調査対象		調査方法	内・敷地外	隆耿	 船舶 			構内	構外	・政・座域			机药生用毒类 期末 1 、	
本語	Đ		海域・陸域	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Mr Joh	льян		-			海城	紅緬色空	資料調查		
### 1						に定例業務により来航する船		御坝	・海上設置物			発行		144-154	лили чт	開取調査		
### ### ### ### ### ### #### #########				• 80 8ú	・資料調査	✓ 港湾施設使用願	VV 485 33*			現場調査	抽出する。				人工構造物			
### 12 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			海域			港湾区域内作業届			・建物・構築物	資料調查				陸域	可動・可搬			
「日本 「日本 「日本 日本 日本 日本 日本															物品等	現場調査	現場調査(海上,陸上)により対象を抽出	
所称		発雷所				現場調査により対象を抽出		陸域		現場調査	その他建物等、機器、車両を抽			を	加加加加	聞取調査	漁港、自治体関係者への聞き取り調査	
・						囲内にある建屋及び機器類並				現場調本	現場を調査し、資機材等、そ	家庭		(世)以	加州日寺	現場調査	現場調査(海上、陸上)により調査対象を抽出	
大学 1 日本 1 日本					• 資料調查				・その他物品等						人工構造物			
・ 銀生			陸城		A 11 19 AL	✓ 建物配置図			- 船舶	資料調査	る。	1		陸域	可動・可搬	現場調査	現場調査 (海上, 陸上) により対象を抽出	
選案			71			✔ 資機材管理システム				聞き取り調査					物品等			
福城 福城 福城 福城 福城 福城 福城 福城					調査	により対象を抽出		海域		資料調查	工業地域、対象の有無等を確認							
複数 一番主政業物					・現場調査				・海上設置物	現場調査								
株式 株式 株式 株式 株式 株式 株式 株式			海域	• 船舶	・聞き取り		発電所			聞き取り調査	関係者からの聞き取り調査を							
構外		70 35 7	1144 - 1950	・海上設置物	調査	き取り調査並びに漁協及び自 ・治体管理資料の調査により対 象を抽出					地図等の資料により,集落, 工業地域,対象の有無等を確認							
・ 人工権適勝									・建物・構築物									
一型			25.15		図上調査			陸域		現場調査								
別紙)		陸城			等の空中写真等を参考とする)				聞き取り調査	関係者からの聞き取り調査を 実施し、建物・構築物、その他							
					・現場調査													
別紙2:調査時の記録方法	別糸	氏1:調3				以上						別	紙1:					

柏	崎刈.	羽原子力発電	所 6/7号	炉 (2017. 1	12.20版)				東海第	5二発電所(2	018. 9. 12 版)					島根原子力発電所	斤 2号炉		備考
					別紙2													別紙2	
		Ē	調査時の記録力	7法					第2表	調査の実施	西方法(1/2)			調査時の記録方法					
査 知 発電所 類 構内・構外	查範囲 海域·陸域	項目	<u>操奏対象</u> 具体的な定義、考え方、例	調査方法	記錄方法	Î	調査範囲	分類	調査対 具体的な 考え方		調査内容	記録項目	調 発電所	直範囲 「 海域	/	調査対象	調査方法	記録方法	
		1 船舶	_	1)以下の資料を調査し、港湾内に 例業務により来航する船舶を抽出 ・港湾施設使用顧 ・工事用及び調査用船舶港湾 区域内作業届	定		船	舶 一	東海港の済 湾内に業者 により来 する船舶	・燃料等輸送船	「東海港・港湾施設使用 願/許可書」により、船舶 を抽出し、記録する。	総トン数、喫水)	構内/	陸域	18 🗆	具体的な定義、考え方、例		ILINE J.J. IZA	
	海域			3) 現場調査(により上記以外の対象 抽出	象を			備 海上 置物		置 ・標識ブイ・浮桟橋	設備図書等により、機 器、施設等を抽出し、記録 する。 現場のウォークダウン により、機器・施設等を抽 出し、記録する。	名称, 仕様 (寸法, 質量, 材質), 数量,		海域	船舶	_	1)以下の資料を調査し,港 湾内に定例業務により来航 する船舶を抽出 ・「船舶証明書」	入溝頻度, 船舶名, 総トン数, 寸法, 状	
		2 海上設置物	港湾内に設置されている人工構築物 ※土木構造物(港湾施設等)及び機器類 (調査分類Bで抽出)を除くすべての人工 築物	り上記以外の対象を細田	名称及び属性(重量、設置場所、設置 状態等)を記録 ※特殊浮標については船舶(分類A及 びご)の評価に包含されるものとして、 個別での抽出・記録は不要とする		建類		無物等 生地に定え	・技橋	設備図書等により、建 物・構築物等を抽出し、記録する。 現場のウォークダウン により、建物・構築物等を 抽出し、記録する。	名称, 仕様(寸法, 構造), 設置場所	発電所				2)社内関係者への聞き取り 調査により上記以外の対象 を抽出	態(係留方法,位置)	
		1 遠屋 2 機器類	土地に定着している建物 基礎等に提え付けられた本設の機器 <例> ・クレーン ・クシーク	建物配置図配置図	内 名称、仕様(主要構造/材質、寸法等) 及び数量を記録 ※類型化できる配電盤・分電盤・射障 要率は代表を記録することとし、個別で の抽出・記録は不要とする	3	řě Tě	機器	基礎等には 特別 を で で で で で で で で で で で で で で で で で で	セ ・	設備図書等により、機器 を抽出し、記録する。 現場のウォークダウン により、機器を抽出し、記録する。	質量,材質,構造(形	構内	域陸	機器類	土地に定着している建物 基礎等に据え付けられた本 設の機器 <例> ・クレーン	1) 社内関係者への聞き取り 調査により上記以外の 対象を抽出 2) 現場調査により上記以外	名称, 仕様(寸法等), 数量を記録	
発電所構内	-	常時保管	・配電盤、分電盤、制御盤 工事用資機材のうち、常時保管されてい もの(仮設倉庫・小屋は本カテゴリーに含む)	1) 賞機材管理システムを開金し、2 例業務により常設又は仮置きされる 賞機材を抽出	定 る を 表材質等)及び敬差に記録 次型金単の選携が動きたいもの及び手工具類等の容易・施面積が小さく積	月男士	所	資機等	常設又は位置きされた	た点検用機材・仮設タンク・足場材・コンクリートハッチ等	現場のウォークダウン により、資機材等を抽出 し、記録する。			双座	その他漂流物になり得	・タンク ・配電盤, 分電盤, 制御盤 人工構築物等	の対象を抽出 現場調査により調査対象を抽出	名称を記載,仕様 (寸法等),数量を	
3	陸城 -	黄機材. 車両	工事用資機材のうち、工事期間中にのみ 持ち込まれ仮置きされるもの、車両等 人工構築物及び植生	3) 現場調査により上記以外の対象 抽出	エ 具解等の容積・断定戦か小さく(積 変列表と含め)通水性に影響を与えな しものは、代表を記録することと、個 別での抽出、記録は不要とする		域設類		資機材、集合の機器を表現の機器を表現の機器を表現の機器を表現した。	也 ・車庫, 駐車場等の	設備図書等により、調査 範囲内にある車庫、駐車場 等を確認する。	車両の種類,数量,			船舶	_	1)現場調査(海上,陸上)により調査対象を抽出	記載 船舶名, 状態 (停泊 有無, 停泊場所), 数量, 属性 (重量) を記録	
	5	5 その他一般構築物、植生	※1~4及び土木構造物(道路等)を べての人工構築物並びに植生 ぐ例〉 - コンクリート蓋・板・塊 - 銅製手型・階段・様子・呆台 - 銅製子のブ - チェッカーブレート ・ グレーチング - マンホール差 - おき	演奏物並びに植生 蓋・様・境 階段・様子・芸台 ブ ルート 現場調査により調査対象を抽出 グ	名称を記載 ※明示するものは、重量とり環境物化 しない。多ない登場を指面部が小な (環境)発生的)連州性に影響を与 えないため、代表を記載することは、 個別のの抽出・記録は不要とする。			その		備 機 巻 小・自動販売機	現場のウォークダウン により、車両を抽出し、記録する。 現場のウォークダウン	名称, 仕様 (寸法, 世来(瓜44)) 部界	発電所構外	海域	海上設置物	人工構築物 <例> ・定置網 ・浮筏 ・浮枝橋	2)漁協,自治体関係者への 聞き取り調査により上記以 外の対象を抽出	名称を記載	
			・配管 ・電灯 ラ ・空間がラ ・空間が外機 ・消火栓 ・消火栓 ・振楽器 ・標識					物品等	序 仮置きされ た物品、 器等,人工札 造物,植生	n ・柵 幾 ・防砂林 p	により, その他物品等を抽出し, 記録する。	状況,数量,設置場所		陸域	家屋類 車両 その他一般 構築物	一 乗用車, 大型車, 二輪車等 人工構築物, 植生 く例> ・フェンス	1)現場調査 (海上,陸上)により対象を抽出	名称を記載	
	海域	取り調査並びに漁盗及び自治体管理		リ調 き 名称を記載		第 2 表 調査の実施方法(2/2)													
発電所		2 海上設置物	・定置網・浮筏・浮桟橋	抽出	※1 又は例示するものに評価が担当されるものは、代表を記録することとし、 個別での抽出・記録は不要とする	調	直	V #62	調査対象 具体的な		調査方								
構外		1 家屋類 2 車面		1) 国土地理院20万分1地勢図を調 し、調査範囲内にある集落及び施設 を抽出:抽出にあたり国土地理院電 子国土Web等の空中写真等を参考 する)	設 名称を記載	型	船舶	分類 一	考え方 調査範囲内		調査内容 資料により、船舶を抽出 し、記録する。 別係者からの聞き取り により、船舶を抽出し、記 録する。 (関係者から開き された 資料の確認を含	名称,仕様(寸法, 総トン数, 喫水)							
		3 その他一般構築物. 植生	<例> ・フェンス ・電社 ・相生	2)現場調査(海上及び陸上)により 寮を抽出	対対地で記録は不要とする		域 設備 類等	備 海 上 等 置物	設 海上に設置 された機 器,施設等	せ ・標識ブイ ・浮桟橋 ・定置網	む。) 地図等*の資料により, 集落、工業地帯、対象の有 無等を確認する。 現場のウォークダウン により,海上設置物を抽出 し、記録する。	名称,数量,設置場 所							
						発電所敷地外	建华	テンク	築物等	業施設等 ・桟橋	地図等*の資料により, 集落,工業地帯,対象の有 無等を確認する。 現場のウォークダウン	名称,数量,設置場 所							
							陸域設備	車両	施設に定常的に駐車される多数の車両	· 乗用車, 大型車等	地図等*の資料より調 査範囲内に多数の車両が 駐車する可能性のある施 設を確認する。 現場のウォークダウン により、車両を抽出し、記 録する。	車両の種類,数量, 駐車場所							
							類等	-	他 上工構造物 植生	 ・設備,機器類 ・出荷待ち製品 ・自動販売機 ・街灯 ・柵 ・防砂林 	地図等*の資料により, 集落,工業地帯,対象の有 無等を確認する。 現場のウォークダウン により,その他物品等を抽 出し,記録する。	名称,数量,設置状 況,設置場所							
						k	k 国	土地理	里院発行の	の地図,イン	ターネット地図	• 空中写真等							

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	3. 人工構造物等の状況を考慮した継続的な調査方針		・資料構成の相違
	3. 人工構造物等の状況を考慮した秘説的な調査方面 人工構造物※1の位置,形状等に変化が生じた場合又は隣接		【東海第二】
	事業所において工事・作業等により設置されうる仮設物等につ		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	************************************		造物等の状況を考慮
	結果に影響を及ぼす可能性がある。		た継続的な調査方針
	このため、人工構造物については自治体、地域の連絡会・協		ついて「別添1 2.
	定等の情報を活用し、定期的(1[回/年]以上)に状況※2を		章」に記載
	確認するとともに、隣接事業所において工事・作業等により設		平」(C記載
	置されうる仮設物等については設置状況に変更が生じる可能		
	性がある場合に適時情報入手できるよう文書の取り交わしに		
	より情報共有手段を構築し、仮設物の設置状況を確認する。設		
	置状況の確認結果により必要に応じて「2. 調査要領」に示し		
	た要領にて漂流物調査を実施する方針とする。また、発電所の		
	施設・設備の改造や追加設置※3を行う場合においても、その		
	都度,津波防護施設等の健全性又は取水機能を有する安全設備		
	等の取水性への影響評価を行う。これら調査・評価方針につい		
	ては、保安規定において規定化し管理する。なお、隣接事業所		
	における仮設物等の設置状況の確認に関する具体的な運用手		
	順として、津波防護施設等の健全性、取水機能を有する安全設		
	備等の取水性に対する既往の漂流物評価に影響を及ぼす可能		
	性のある仮設物の設置状況の変更が確認される場合には,必要		
	な情報を入手できるよう運用手順を定める方針である。		
	※1:港湾施設,河川堤防,海岸線の防波堤,防潮堤等,海		
	上設置物,津波遡上域の建物・構築物,敷地前面海域にお		
	ける通過船舶等		
	※2:既往の調査結果に包含される民家、電柱、マンホール		
	の増加等評価に影響しないものは除く。		
	※3:「核原料物質、核燃料物質及び原子炉の規制に関する法		
	<u>律」第43条の3の9 (工事の計画の認可) 及び第43条の</u>		
	3の10(工事の計画の届出)に基づき申請する工事のうち,		
	「改造の工事」又は「修理であって性能又は強度に影響を		
	及ぼす工事」を含む。		

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

まとめ資料比較表 [第5条 津波による損傷の防止 別添1 添付資料16]

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
添付資料21	添付資料19	添付資料 1.6	
燃料等輸送船の係留索の耐力について	燃料等輸送船の係留索の耐力について	燃料等輸送船の係留索の耐力について	
21.1 概要	1. 概要	1概要	
燃料等輸送船(以下,「輸送船」という。)は, <u>津波警報等発</u>	燃料等輸送船(以下「輸送船」という。)は、津波警報等発	燃料等輸送船(以下,「輸送船」という。)は,津波襲来までに	
今時,原則,緊急退避するが,津波流向及び物揚場と取水口との	表時は、原則として緊急退避するが、極めて短時間に津波が襲	時間的余裕がある津波の場合は、緊急退避するが、津波襲来まで	
位置関係を踏まえ、短時間に津波が襲来する場合を考慮し、係留	来する場合を考慮し、津波の流向及び物揚岸壁(以下「岸壁」	に時間的余裕がない津波の場合は, 荷揚場に係留することとなる。	
索の耐力について評価を実施する。	という。)と取水口の位置関係を踏まえ、係留索の耐力につい	そのため、ここでは、係留索の耐力について評価を実施する。 <u>ま</u>	・記載内容の相違
	て評価を実施する。	た、耐津波設計における係留索を固定する係船柱及び係船環(以	【柏崎 6/7,東海第二】
		下ここでは「係船柱」という。)の必要性等について別紙に示す。	島根2号炉は,係船柱
係留索については、船舶の大きさから一定の算式によって計算	係留索については、船舶の大きさから一定の算式によって計	係留索については、船舶の大きさから一定の算式によって計算	及び係船環の必要性等
される数値(艤装数)に応じた仕様(強度、本数)を有するもの	算される数値(艤装数)に応じた仕様(強度,本数)を有する	される数値(艤装数)に応じた仕様(強度、本数)を有するもの	について記載
を備えることが,日本海事協会(NK)の鋼船規則において定めら	ものを備えることが,日本海事協会 (NK) の鋼船規則において	を備えることが,日本海事協会(NK)の鋼船規則において定めら	
れている。	定められている。	れている。	
本書では、輸送船が備えている係留索の係留力及び津波による	今回, 輸送船が備えている係留索の係留力及び流圧力につい	本書では、輸送船が備えている係留索の係留力及び津波による	
流圧力を石油会社国際海事評議会OCIMF (Oil Companies	工	流圧力 <u>を</u> 石油会社国際海事評議会 OCIMF (Oil Companies	
International Maritime Forum) 刊行"MooringEquipment	International Marine Forum)の手法を用いて算出し,耐力評	International Maritime Forum) 刊行"Mooring Equipment	
Guidelines"の手法を用いて算出し,耐力評価を行う。なお,同	価を行う。	Guidelines"の手法を用いて算出し、耐力評価を行う。なお、同	
書は船舶の係留方法・係留設備に関わる要求事項を規定するもの		書は船舶の係留方法・係留設備に関わる要求事項を規定するもの	
であり、流圧力の評価については大型タンカーを主たる適用対象		であり、流圧力の評価については大型タンカーを主たる適用対象	
とするものであるが、輸送船は大型タンカーと同じ1軸船であり、		とするものであるが,輸送船は大型タンカーと同じ1軸船であり,	
水線下の形状が類似しているため,同評価を輸送船に適用するこ		水線下の形状が類似しているため、同評価を輸送船に適用するこ	
とは可能と考える。		とは可能と考える。	

柏崎刈	羽原子力発電所 6/	7号炉 (2017.12.20版)		東海第二発電所	(2018. 9. 12 版)		島根原子	力発電所 2号炉	備考	
			なお, 岸	壁については、基準	準地震動Ssに対して,必要な対	<u>なお</u>	荷揚場については,	岩着構造であり、基準地震動 Ss に対	・設備の相違	
			策工を実施	し、当初の位置及		- ∤ して損傷	することはなく、本	係留索の耐力評価に影響を及ぼさな	【東海第二】	
					て, 緊急退避可能時間 (本文)	-	· 資料 38 参照)。		島根2号炉の荷揚	
					と、基準津波及び早く到達する	_	g/1 00 9 m// o		は基準地震動 Ss に対	
			·			_				
					した津波の到達(第2表)までは	_			て損傷しない	
			輸送船は退	避可能であること	<u>から,</u> 本係留索の耐力評価に影響	r e			・評価条件の相違	
			を及ぼさな	:V v _o					【東海第二】	
									島根2号炉では海	
									 活断層から想定され	
									地震による津波に対	
									て,緊急退避を想定し	
									<i>\'</i>	
2 評価			2. 評価			2. 評価				
1)輪這	· 给船,係留索,係船柱		(1) 輸送船,	係留索, 係留柱		(1)輸送船	Y, 係留索, 係船柱	の仕様		
		を添付第21-1 表に,配置を添付			仕様を第1表に、配置を第1図に		· ·	~~~~~ ○仕様を表 1 に,配置を図 1 に示す。		
				M 田 州, M 田 工 1 7 1		- +10 22/11	, MESK, MARILE			
1-1 X	に示す。		示す。							
ž.	付第 21-1 表 輸送船,	係留索,係船柱の仕様	第	5.1表 輸送船,係	留索, <u>係留柱</u> の仕様		表 <u>1</u> 輸送船,	係留索, 係船柱の仕様	・設備の相違	
	項目	仕 様			// 124		項目	仕様	【東海第二】	
		約 5,000 トン		項目	仕 様		総トン数	11.fx 約 5, 000 トン	 係船柱強度の相違	
		約 3,000 トン		総トン数	約5,000t		載貨重量トン	約3,000トン	V1/34 11100 1 11100	
谕送船	喫水	約 5m		載貨重量トン	約3,000t	#♥/★ ₩	喫水	約 5m		
制心加口	全長	100.0m (垂線間長:94.4m)	輸送船	喫水	約5m	輸送船	全長	100.0m (垂線間長:94.4m)		
	型幅	16. 5m		全長	100.0m (垂線間長:94.4m)		型幅	16. 5m	1	
	形状	(添付第 21-1 図参照)		型幅	16.5m		形状	(図1参照)		
		60mm (ノミナル値)		形状	(第1図参照)		直径	60mm (ノミナル値)		
係留索		Polyethylene Rope Grade 1		直径	60mm (ノミナル値)	係留索	素材種別	Polyethylene Rope Grade 1		
	破断荷重	279kN (キロニュートン) =28.5tonf		妻材種別	Polyethylene Rone Grade 1		破断荷重	279kN (キロニュートン) =28.5tonf		

Polyethylene Rope Grade 1

28. $5 \operatorname{tonf} \times 0.7 = 20.0 \operatorname{tonf}$

279kN (≒28.5tonf)

(第1図参照)

(第1図参照)

(第1図参照)

35.0tonf

素材種別

破断荷重

係留状態

強度

係船機ブレーキカ

ビット数, 位置

係留索

係留柱

係船機ブレーキカ

ビット数,位置

係留状態

強度

係船柱

28.5tonf×0.7≒20.0tonf

(添付第 21-1 図参照)

(添付第 21-1 図参照)

25t, 50t

係船機ブレーキカ

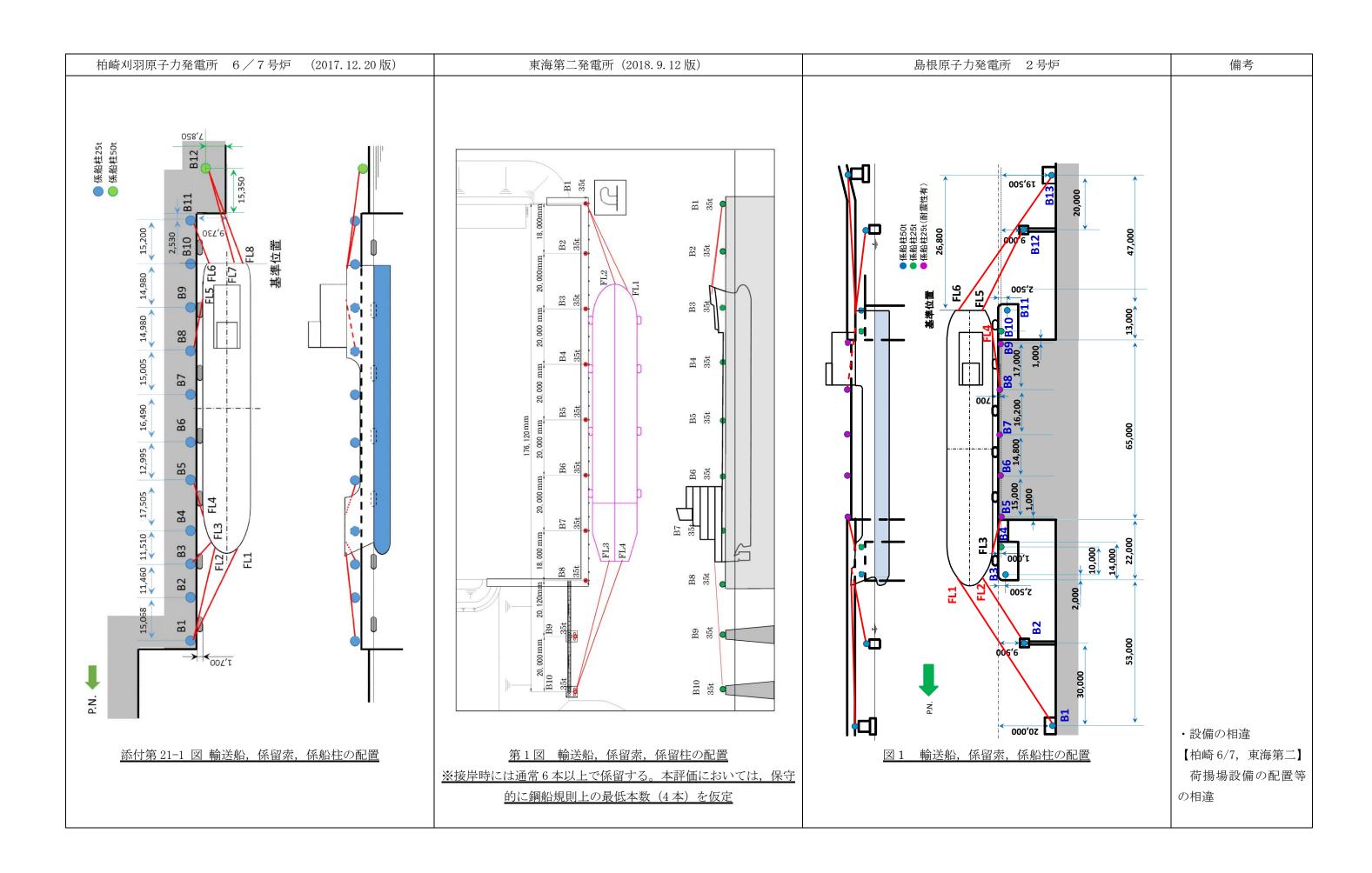
形状

ビット数,位置

係留状態

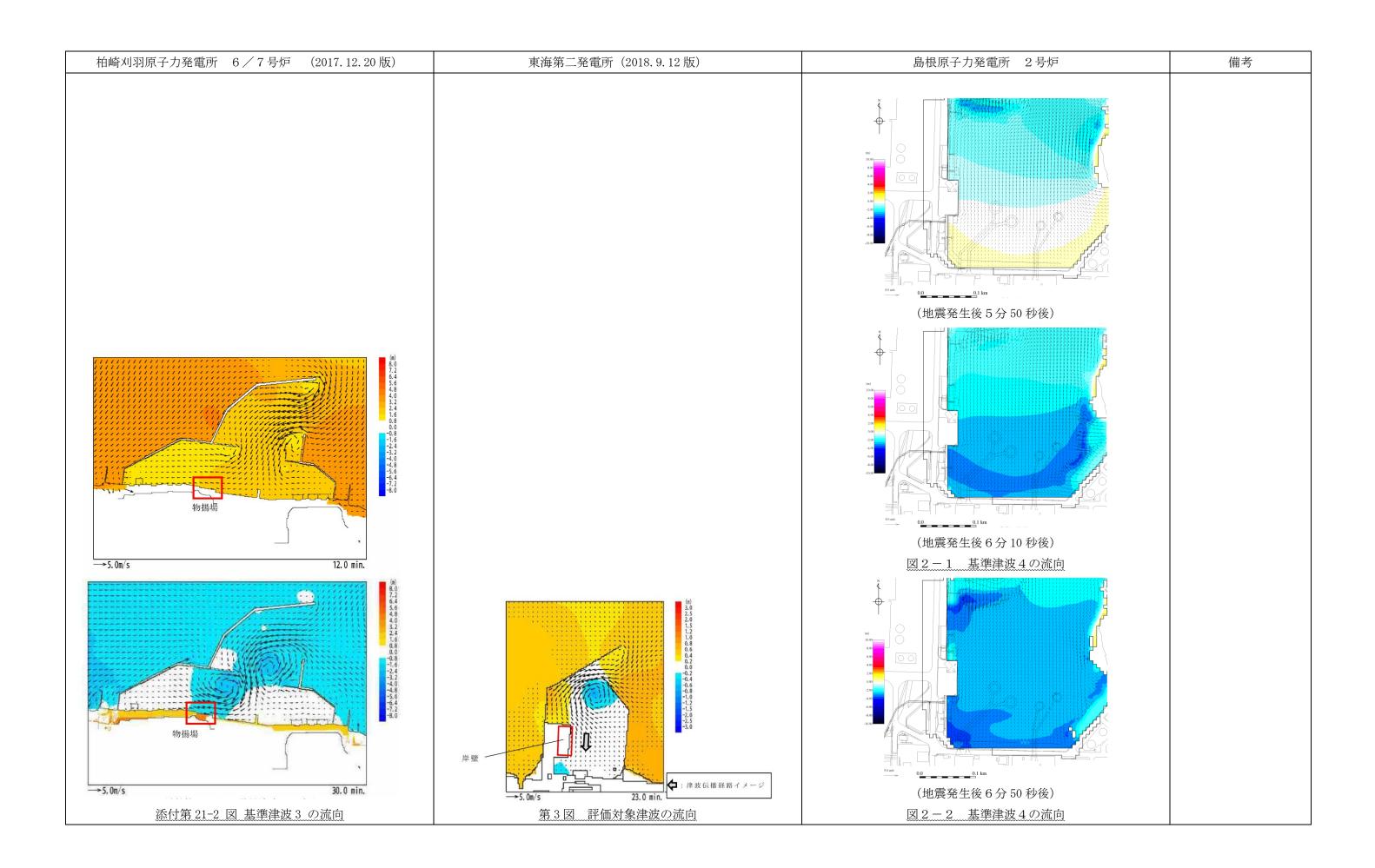
強度

係船柱


28. 5tonf \times 0. 7 \rightleftharpoons 20. 0tonf

(図1参照)

(図1参照)

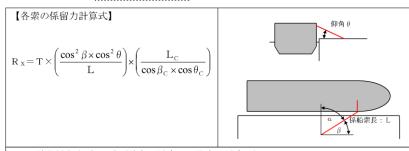

(図1参照)

25t, 50t

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
(2) 津波条件(流向,水位,流速)	(2) 津波条件(流向,水位,流速)	(2)津波条件(流向,水位,流速)	
襲来までに時間的余裕がなく,輸送船を離岸できない可能性が	津波警報等発表時は,原則として緊急退避するが,極めて短	襲来までに時間的余裕がなく,輸送船を離岸できない海域活断	・評価条件の相違
<u>ある基準津波3(別添1 本文 第2.5-19 図参照)</u> を評価条件とする。	時間に津波が襲来する場合を考慮し、早く襲来する可能性があ	層から想定される地震による津波を評価条件とする。	【東海第二】
	る第 2 図に示す敷地周辺の海域活断層を波源とした津波の中		東海第二では, 基準津
	から、評価対象津波を選定する。		波到達までに緊急退避
			が可能であることから
			敷地に早く襲来する津
	8// ()		波を津波高さも考慮し
	東海第二発電所 NO '8E 140.0E 141.0E 第2図 海域活断層の位置		選定
	第 2 表に,取水口前面位置における各海域活断層の津波高さと		・評価条件の相違
	第2表に、取水口削血位置におりる各番域品例層の年級高さと 到達時間の関係を示す。第2表に示すとおり、F8及びF16を波源		【東海第二】
	とした津波は他の海域活断層を波源とした津波に比べて、早く到		東海第二では,基準
	達するが、F8 及び F16 を波源とした津波の到達時刻はほぼ同様で		波到達までに緊急退避
	あるため、ここでは保守的に最高水位が最も大きい F16 を波源と		が可能であることから
	した津波を選定した。		敷地に早く襲来する津
			波を津波高さも考慮し
			選定
			~= /L

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海	第二発電所(2018.9.12	2版)	島根原子力発電所 2号炉	備考
	第2表 各海域活断	層の津波高さと到達時間 かんかん かんかん かんかん かんかん かんかん かんかん かんかん かん	間の関係 (取水口前面)		評価条件の相違
	海域活断層名	最高水位 (T.P. m)	到達時刻(分)		【東海第二】
	F1~塩ノ平	+1.7	32		東海第二では,基準津
	F3~F4	+1.2	43		波到達までに緊急退避
	F8	+1.9	24		が可能であることから,
	F16	+ 2.0	25		敷地に早く襲来する津
<u>基準津波3</u> による <u>物揚場</u> 近傍の流向は, <u>添付第21-2</u> 図に例示す	評価対象津波の	流向は,第3図に例示	するとおり岸壁に対す	海域活断層から想定される地震による津波による荷揚場近傍の	波を津波高さも考慮し
るとおり物揚場に対する接線方向の成分が支配的となる。これに	る接線方向の成分	分が支配的となる。これ	に対して、輸送船は崖	流向は、図2に例示するとおり、荷揚場に対する接線方向の成分	選定
対し、輸送船は物揚場(コンクリート製)と平行して接岸される	壁と平行して接岸	堂されることから,評価	は輸送船の船首及び船	が支配的となる。これに対し、輸送船は荷揚場と平行して接岸さ	
ことから,評価は輸送船の船首及び船尾方向の流圧力に対する係	尾方向それぞれの	の流圧力に対する係留勢	亥の耐力について実施	れることから, 評価は輸送船の船首及び船尾方向の流圧力に対す	
留索の耐力について実施する。	する。			る係留索の耐力について実施する。	

			I
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
一方, <u>基準津波3</u> の物場場位置における水位及び接線方向成分	<u>評価対象津波の岸壁位置</u> における水位及び接線方向成分の	一方、海域活断層から想定される地震による津波の荷揚場位置	
の流速は, <u>添付第21-3-1</u> 図のとおりとなる。	流速を第4図に示す。	における水位及び接線方向成分の流速は、図3-1のとおりとな	
<u>添付第21-3-1</u> 図に示すとおり <u>地震発生後15 分で第一波の最高</u>		<u>5</u>	・評価条件の相違
点に達する。その後、引き波が発生し、流速は地震発生後30分に		図3-1に示すとおり、地震発生後、押し波が5分程度継続し	【柏崎 6/7】
<u>最大の3.2m/s に達する。</u>		た後、引き波に転じ約6分で第一波の最低点に達し、流速は第1	
緊急退避時間との関係から、津波が最大流速に到達する前に輸		波の最低点と同時刻に最大の 2.3m/s に達する。	・資料構成の相違
<u>送船は退避できると考えられるものの(別添1 本文 第2.5-19 図</u>			【東海第二】
参照),今回は係留により対応することを仮定し,最大流速3.2m/s		2	東海第二は評価条件
で生じる流圧力に対する係留力を評価する。		1 0 一本位 1 2 1 ※ 2 3 3 4 4 5 10 20 30 時間 (分)	を図の後に記載
8 	(a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	2 1.5 0.5 例 -0.5 例 -1.5 -2 -2.5 10 20 30 時間 (分)	
添付第21-3-1 図 基準津波3 の水位・流速(物揚場前面)	第4図 評価対象津波の水位及び流速(岸壁)	図3-1 基準津波4の流速(荷揚場近傍)	・評価条件の相違
			【柏崎 6/7, 東海第二】


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
なお、地震等により防波堤の損傷を想定した場合(防波堤なし		なお、図3-1に示した津波の流速は、防波堤の損傷を想定し	・評価条件の相違
の条件)でも、接線方向成分の流速は、添付第21-3-2 図に示すと		た場合における流速であり、防波堤の損傷を想定しない場合(防	【東海第二】
おり防波堤健全時(添付第21-3-1 図)よりも小さいため、流速条		波堤健全の条件)でも、接線方向成分の流速は、図3-2に示す	島根2号炉では,防波
件は健全状態における流速に包含される。		とおり,流速条件は防波堤損傷状態における流速と同程度である。	堤有無による評価条件
			への影響について記載
		2 1 0 () () () () () () () () () () () () ()	
(*) 8		2 1.5 1 0.5 更 0 贵 -0.5 院 -1 -1.5 -2 -2.5 最大流速2.2m/s 時間(分)	
添付第 21-3-2 図 防波堤損傷時における基準津波 3 の流速 (物揚	第4図に示すとおり評価対象津波は地震発生後約17分で第	図3-2 防波堤健全時における基準津波4の流速(荷揚場近傍)	・資料構成の相違
場前面)	一波の最高点に到達後、引き波が発生し、地震発生後約26分		【東海第二】
	の第二波で最高津波高さ T.P.+1.9m に達する。流速は地震発		島根2号炉は評価条
	生後約23分に最大1.9m/sに達する。		件を図の前に記載
	緊急退避可能時間(本文 第2.5-26 図参照)を考慮すると,		・評価条件の相違
	輸送船は最大流速到達前に退避可能であるものの、今回は係留		【東海第二】
	による対応を仮定し,最大流速 1.9m/s で生じる流圧力に対する係留力を評価する。また,係留力の評価に当たっては,第4		
	図に示す押し波高さ T.P. +1.9m (朔望平均満潮位 (T.P. +		
	0.61m) 及び 2011 年東北地方太平洋沖地震に伴う地殻変動		
	(0.2m 沈下) 考慮済み) に上昇側潮位のばらつき (+0.18m)		
	を考慮した最高水位 T. P. +2. 1m で評価する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

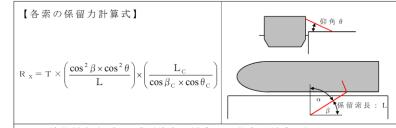
(3) 係留力

係留力の計算方法を<u>添付第21-2</u> 表に,計算結果を<u>添付第21-3</u> 表,添付第21-4図及び<u>添付第21-5</u> 図に示す。

添付第 21-2 表 係留力の計算方法 1)

- Rx:前後係留力 [tonf](前方は添字f,後方は添字a)
- T :係留索1本に掛けることができる最大張力 [tonf]
- β : 係留索水平角(物揚場平行線となす角度) [deg]
- θ :係留索の仰角 [deg]
- L :係留索の長さ(船外+船内)[m]
- βc:各グループ*で最も負荷の大きい係留索の係留索水平角(物揚場平行線となす角度)[deg]
- θc:各グループ*で最も負荷の大きい係留索の仰角 [deg]
- Lc:各グループ*で最も負荷の大きい係留索の長さ(船外+船内)[m]
 - ※係留索の機能別グループ(前方係留力または後方係留力)

参考文献


1) 日本タンカー協会:係留設備に関する指針 第2版, pp. 167, 2002.

東海第二発電所(2018. 9. 12 版)

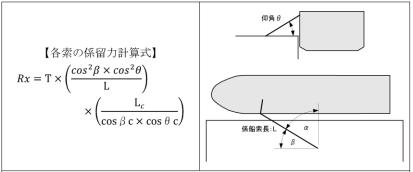
(3) 係留力

係留力の計算方法を<u>第3表</u>に、計算結果を<u>第4表</u>、<u>第5図及</u> び第6図に示す。

第3表 係留力の計算方法

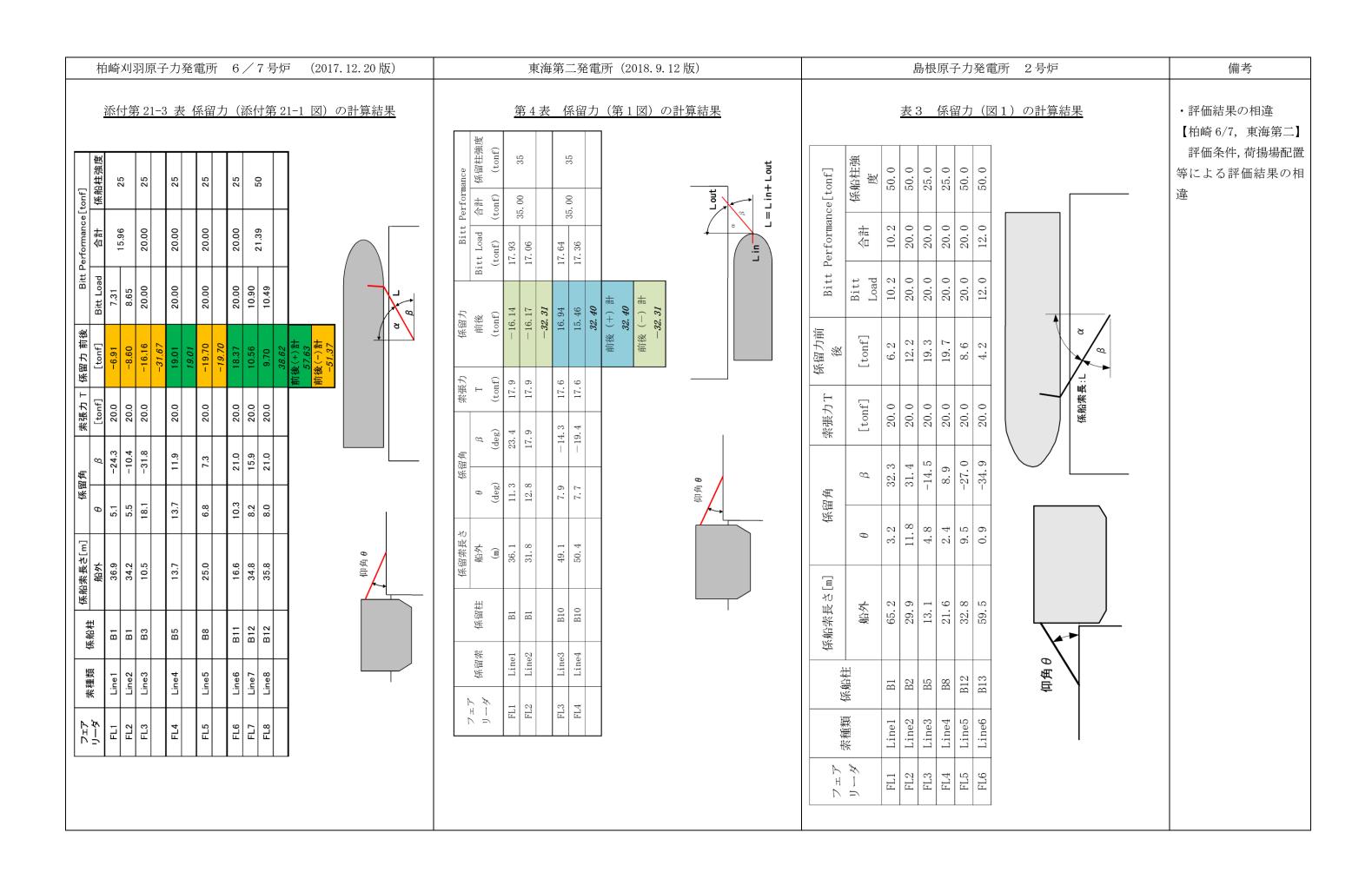
- R_x:前後係留力 [tonf] (前方は添字f,後方は添字a)
- T : 係留索 1 本に掛けることができる最大張力 [tonf]
- β : 係留索水平角 (岸壁平行線となす角度) [deg]
- θ : 係留索の仰角 [deg]
- L :係留索の長さ(船外+船内)[m]
- β_c:各グループ*で最も負荷の大きい係留索の係留索水平角(岸壁平行線 となす角度)[deg]
- θ_c :各グループ**で最も負荷の大きい係留索の仰角 [deg]
- L_c:各グループ*で最も負荷の大きい係留索の長さ(船外+船内)[m]
- ※係留索の機能別グループ(前方係留力又は後方係留力)

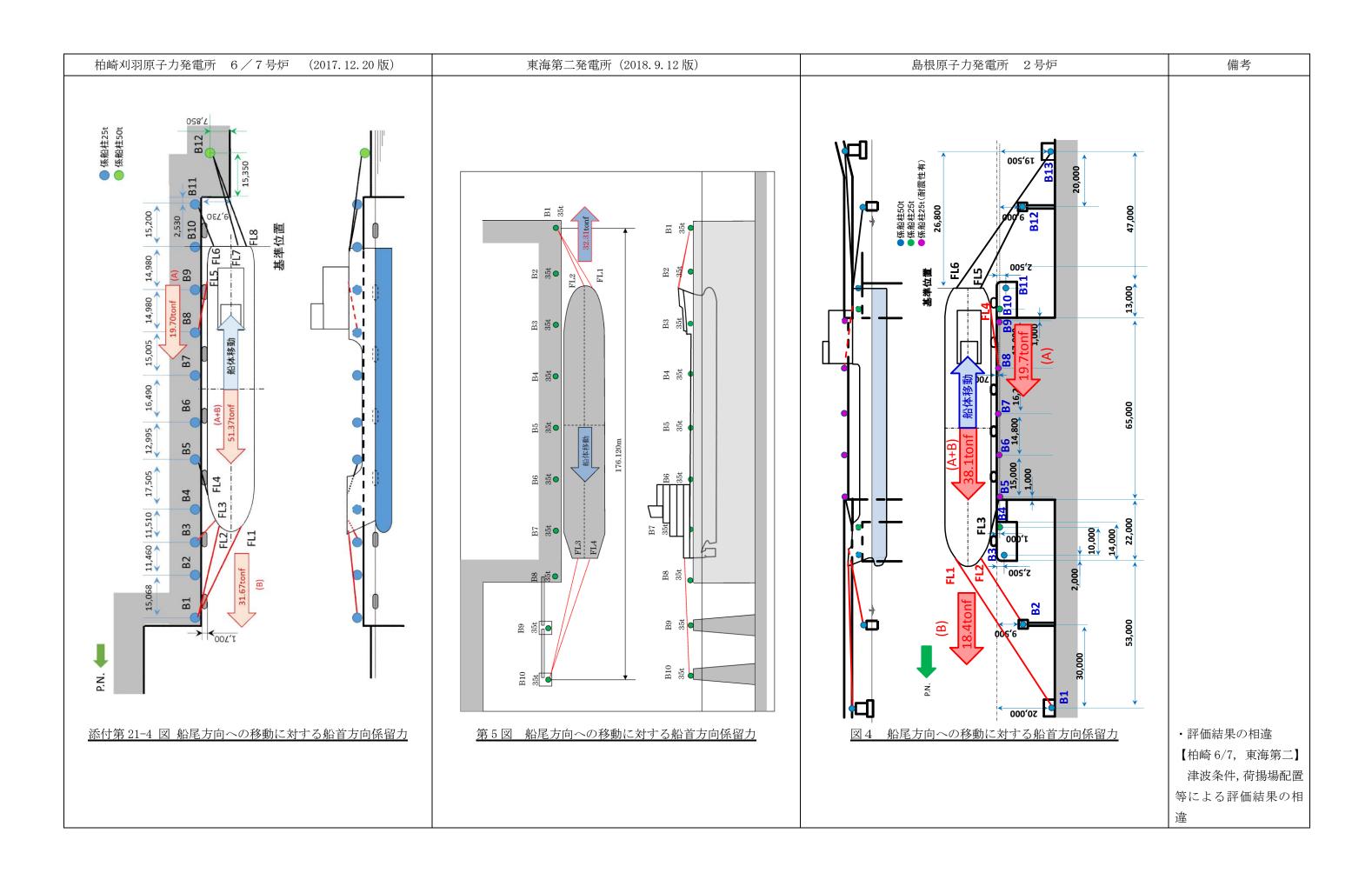
(出典:係留設備に関する指針 OCIMF刊行)

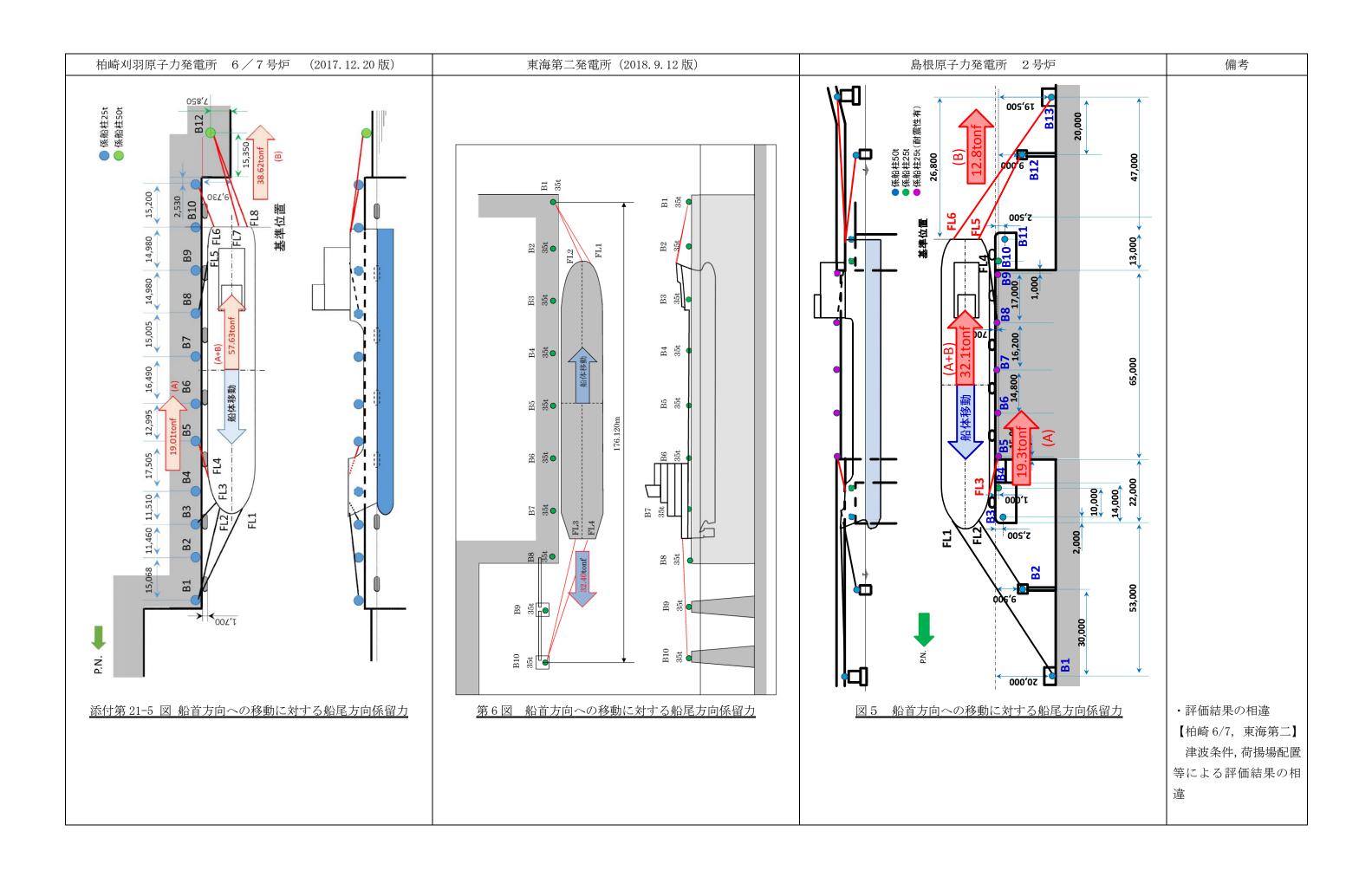

(3)係留力

係留力の計算方法を表2に、計算結果を表3、図4、5に示す。

島根原子力発電所 2号炉


備考


表2 係留力の計算方法



- Rx:前後係留力[tonf](前方は添字f,後報は添字a)
- T : 係留索 1 本に掛けることができる最大張力[tonf]
- β:係留索水平角(岸壁平行線となす角度)[deg]
- θ:係留索の仰角[deg]
- L :係留索の長さ(船外+船内)[m]
- β。: 各グループ*で最も負荷の大きい係留索の係留索水平角(岸壁平行線となす 角度) [deg]
- θ_。: 各グループ*で最も負荷の大きい係留索の仰角(岸壁平行線となす角度) [deg]
- L。: 各グループ*で最も負荷の大きい係留索の長さ(船外+船内)[m] ※係留索の機能別グループ(前方係留力または後方係留力)

(出典:係留設備に関する指針 OCIMF刊行)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

(4) 流圧力

流圧力の計算方法を<u>添付第21-4</u> 表に,係留力との比較結果を<u>添</u>付第21-6 図に示す。

添付第 21-4 表 流圧力の計算方法 1)

【流圧力計算式】
$F_{X_C} = \frac{1}{2} \times C_{X_C} \times \rho_C \times V_C^2 \times L_{PP} \times d$

 Cxc:縦方向流圧力係数

 Vc:流速 [m/s]

 Lpp: 垂線問長 [m]

d : 喫水 [m]

ρς :水密度 [kgf·sec²/m⁴] (=104.7kgf·sec²/m⁴)

Fxc: 縦方向流圧力 [kgf]

0.1 0.0 0.1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 相対流向角[deg]

参考文献

1) OCIMF: Mooring Equipment Guidelines 3rd Edition, pp. 178, pp. 187, pp. 202,

2008.

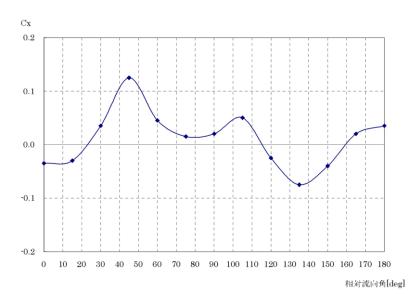
東海第二発電所(2018.9.12版)

(4) 流圧力

流圧力の計算方法を<u>第5表</u>に示す。計算結果について,前項で求めた係留力と比較した結果を<u>第7</u>図に示す。

第5表 流圧力の計算方法

【流圧力計算式】


 $F_{X_C} = \frac{1}{2} \times C_{X_C} \times \rho_C \times V_C^2 \times L_{PP} \times d$

F_{xc}: 縦方向流圧力 [kgf] C_{xc}: 縦方向流圧力係数 V_c : 流速 [m/s]

L_{PP}: 垂線間長 [m] d : 喫水 [m]

ρ_C : 水密度 [kgf·s²/m⁴] (=104.5kgf·s²/m⁴)

(出典: VLCC における風圧及び流圧の予測 OCIMF 刊行)

(出典: VLCC における風圧及び流圧の予測 OCIMF 刊行) 縦方向流圧力係数 [CX]

(4)流圧力

流圧力の計算方法を<u>表</u>4に示す。<u>計算結果について</u>,前項で求めた係留力との比較結果を図6に示す。

島根原子力発電所 2号炉

表4 流圧力の計算方法

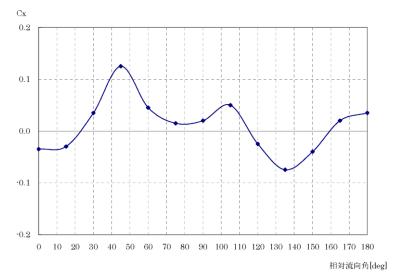
【流圧力計算式】

F_{xc}: 縦方向流圧力[kgf]

備考

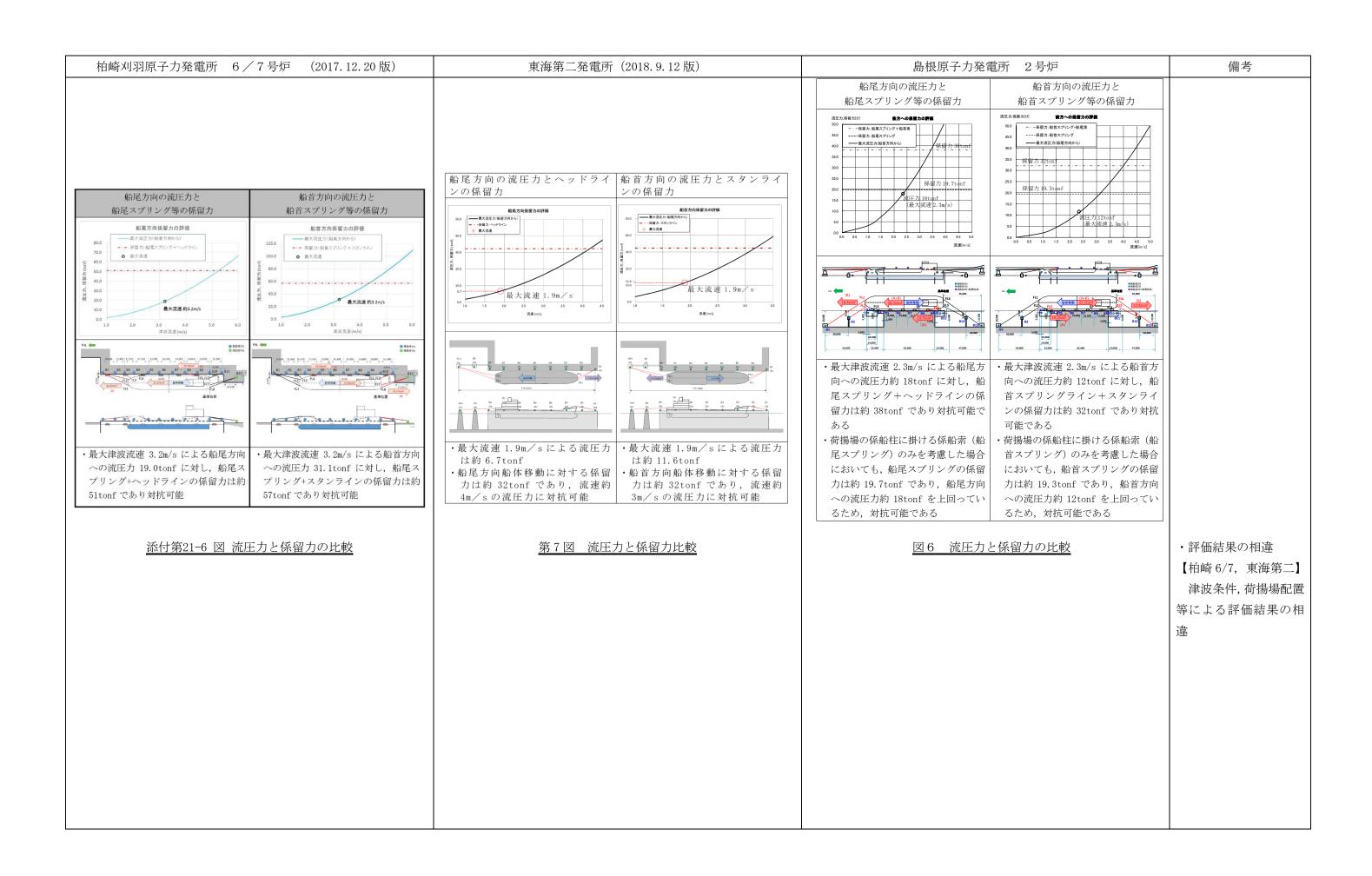
 $Fxc = \frac{1}{2} \times C_{xc} \times \rho_c \times V_c^2 \times L_{pp} \times d$

C_{xc}: 縦方向流圧力計数 V_c: 流速[m/s]

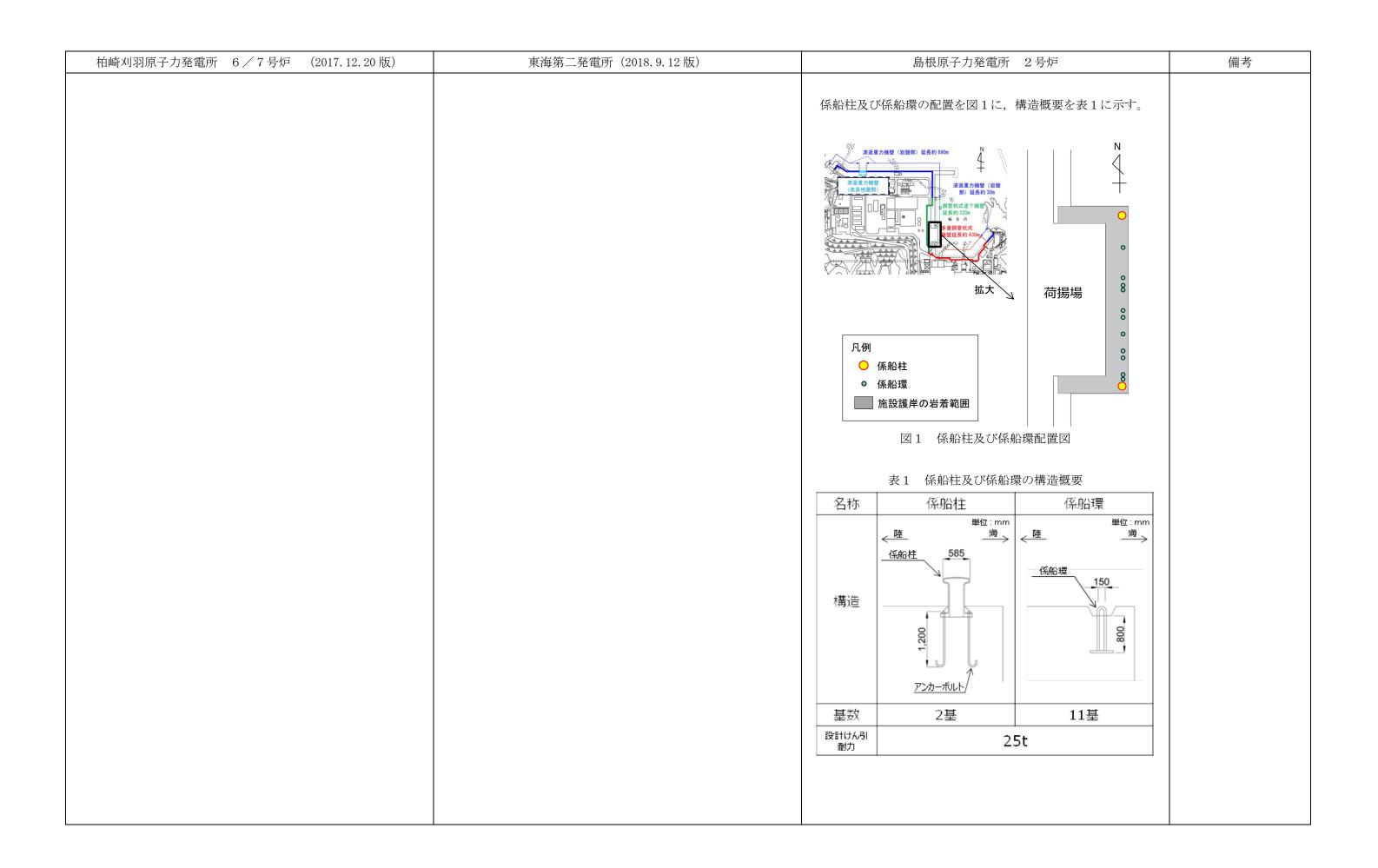

L_m: 垂線間直[m]

d : 喫水[m]

 ρ_{c} : 水密度[kg • \sec^{2}/m^{4}]


 $(=104.5 \text{ sec}^2/\text{m}^4)$

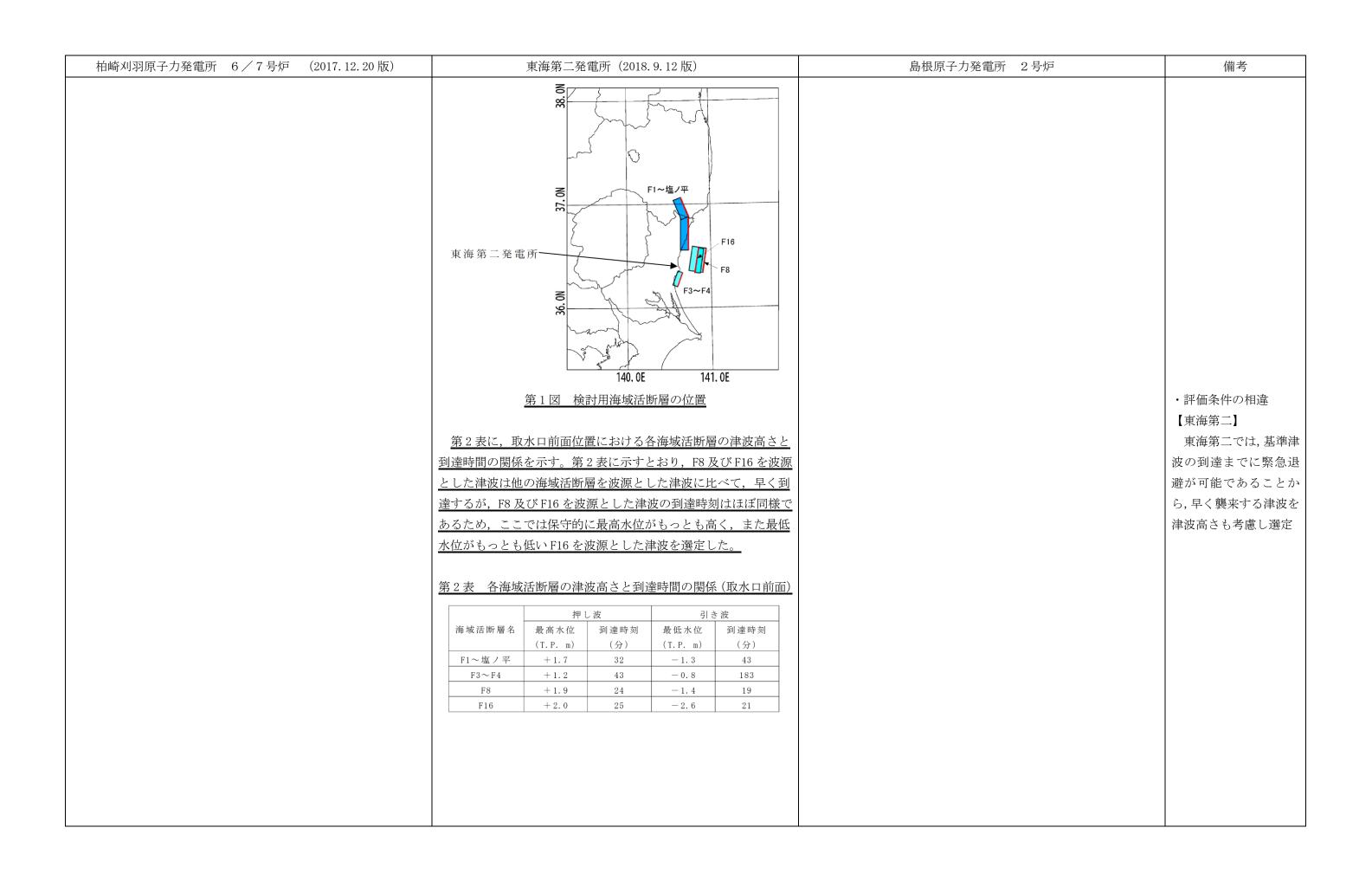
(出典:係留設備に関する指針 OCIMF刊行)


(出典: VLCC における風圧及び流圧の予測 OCIMF 刊行)

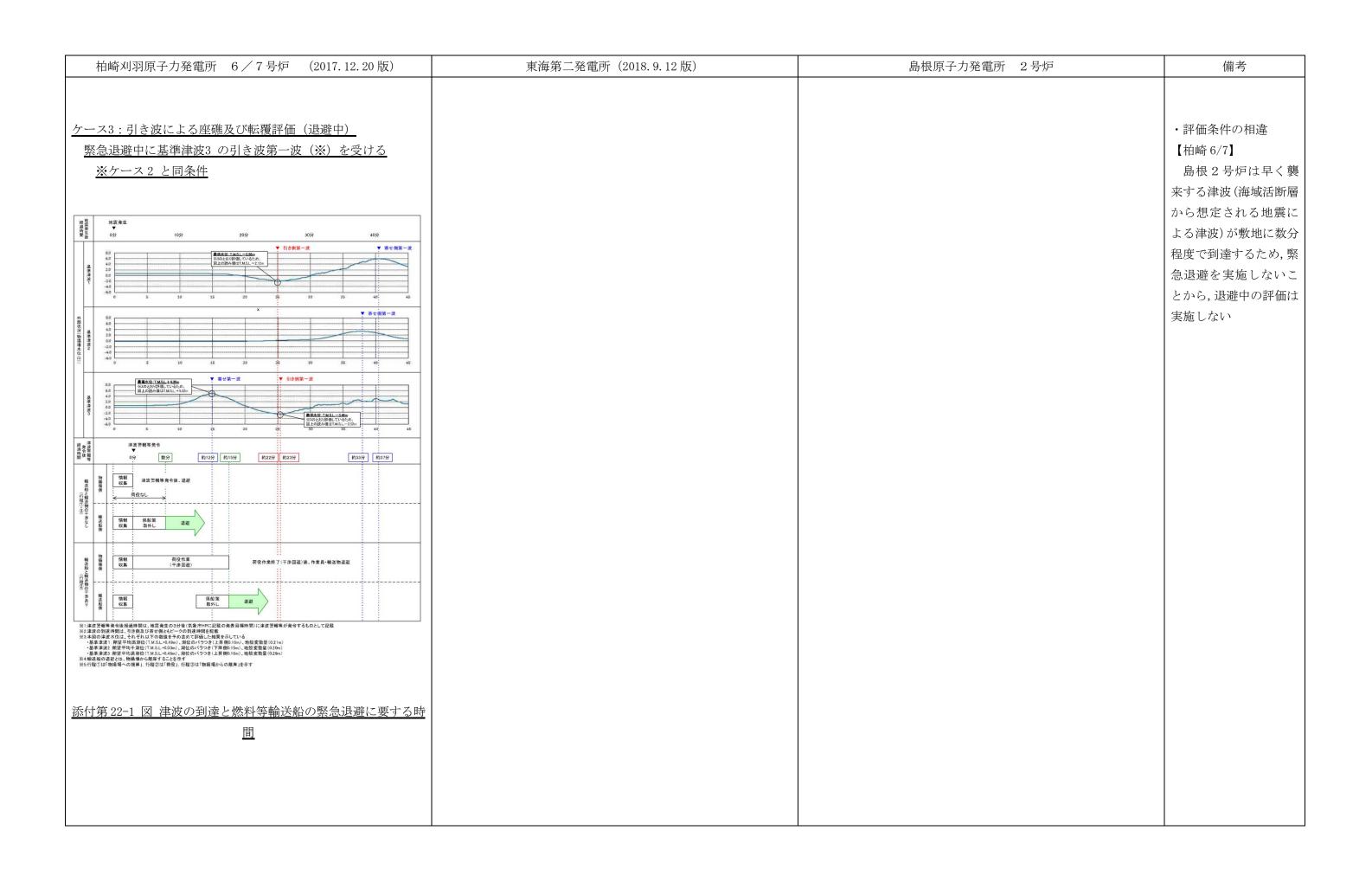
縦方向流圧力係数[Cx]

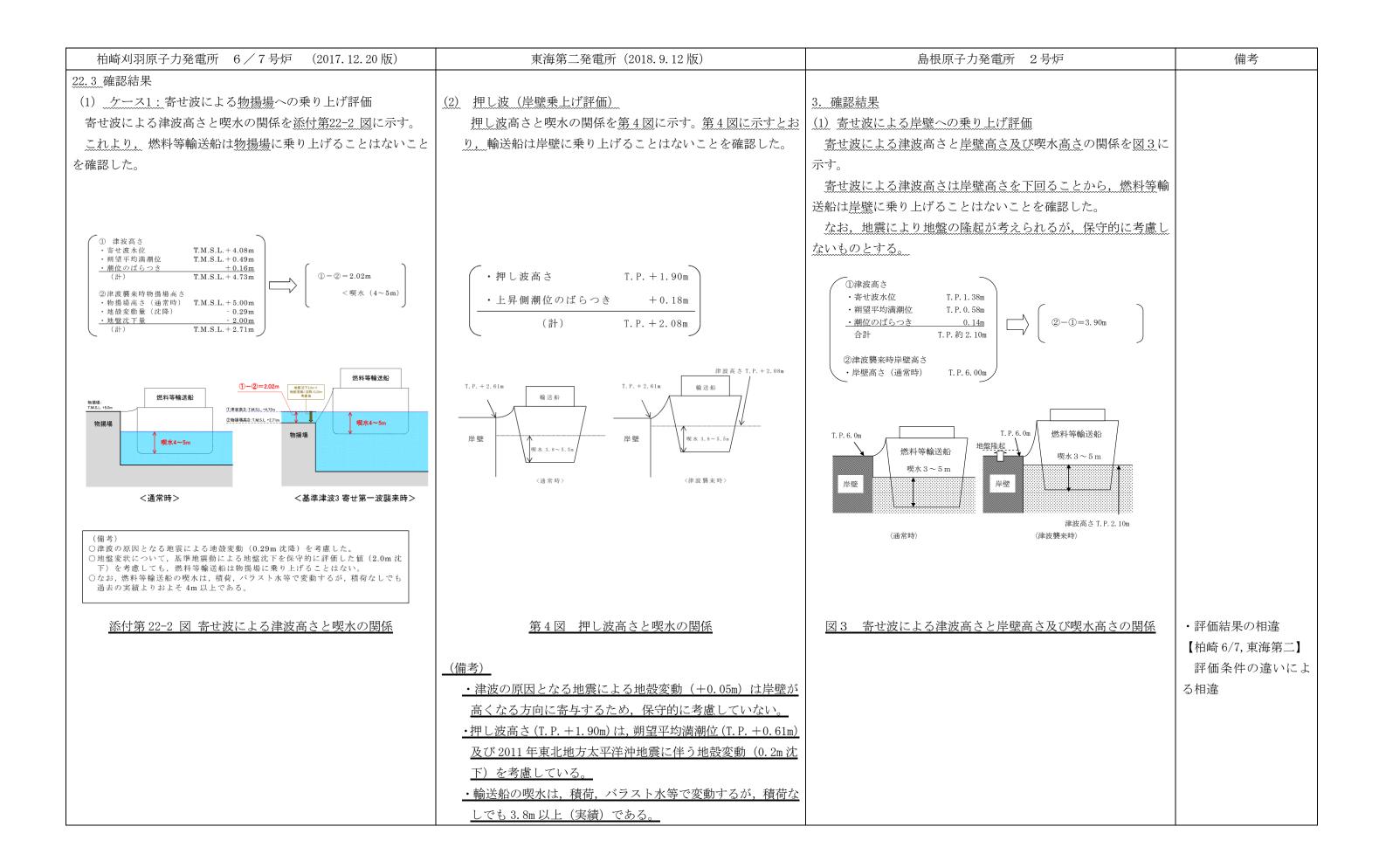
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
21.3 結論 津波 (最大流速3.2m/s: 添付第21-3 図参照) による流圧力に対し、対し、係留力 (約51tonf、約57tonf) が上回ることを確認した。したがって、津波に対し、輸送船が係留によって対応すると仮定した場合においても係留力により物揚場に留まり続けることができる。	3. 結論 評価対象津波 (最大流速 1.9m/s:第4図参照) による流圧 力に対し、係留力 (約 32tonf) が上回ることを確認した。 従って、早い津波に対し、輸送船が係留によって対応すると 仮定した場合においても、係留力により岸壁に留まり続けることができる。	3. 結論	【柏崎 6/7,東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		別紙	
		耐津波設計における係船柱及び係船環の必要性等について	・記載内容の相違
			【柏崎 6/7,東海第二】
		1. 概要	島根2号炉は,係船村
		燃料等輸送船は、津波襲来までに時間的余裕がある津波の場合	及び係船環の必要性等
		は、緊急退避するが、津波襲来までに時間的余裕がない津波の場	について記載
		合は、荷揚場に係留する。	
		ここでは、係留索が機能しない場合、燃料等輸送船は輪谷湾内	
		を漂流し、取水口へ到達する可能性があるため、取水口への到達	
		可能性評価を踏まえ、係留索を固定する係船柱及び係船環の必要	
		性等について示す。	
		2. 係船柱及び係船環の必要性について	
		燃料等輸送船が係留索がない状態において取水口上部に漂流し	
		た場合, 基準津波4の取水口における最低水位 EL-4.2m に対して,	
		喫水高さは3m~5m であることから, 取水口 (上端 EL-9.0m) に	
		到達する可能性がある。	
		3. 係船柱及び係船環の位置付けについて	
		係船索を固定する係船柱及び係船環について、漂流防止装置と	
		位置付け設計を行う。	
		4. 漂流防止装置の評価方針について	
		海域活断層に想定される地震による津波の来襲に伴い,荷揚場	
		に係留された燃料等輸送船を漂流させないため、荷揚場の係船柱	
		及び係船環を漂流防止装置として設計する。(燃料等輸送船の係留	
		については、係船柱又は係船環のうち、いずれか2基を使用する。)	
		【規制基準における要求事項等】	
		津波防護施設の外側の発電所敷地内及び近傍において建物・構	
		築物、設置物等が破損、倒壊、漂流する可能性について検討する	
		こと。上記の検討の結果、漂流物の可能性がある場合は、防潮堤	
		等の津波防護施設,浸水防止設備に波及的影響を及ぼさないよう,	
		漂流防止装置または津波防護施設、浸水防止設備への影響防止措	
		置を施すこと。	


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)				島根	原子	力発電	訓	2 号炉		備考
									環は,海域活断		
									力を受けた燃料		
									それのないよう 也震動Ssに対		
									世展勤る s に対 鱼度を有するこ		
		る。		, 40 C 4	0.2	,	. , ,	111 / 2			
			及て	バ係船 弱	景の事	要求機	能と	評価フ	5針を表2に示	す。	
				<u>-بر</u>				to.	ب ب		
				「ボーベル・ ・基準地震動 S s に対し,漂流防止装置に要求される機能を損なうおそれのないよう,構造強度を有すること。 ・・海域活断層に想定される地震による津波の流れによる流圧力を受けた燃料等輸送船の引張荷重に対し,漂流		:看部	MAI	,(考慮	る。 係船柱及び係船環の設計においては,常時荷重,地震荷重及び係留力※を適切に組合せて設計を行う。なお, 海域活断層から想定される地震による津波は荷揚場に遡上しないことから,津波荷重は考慮しない。 ・常時荷重+地震荷重 ・常時荷重+係留力+余震荷重	3	
				を有す		·係船環定着部	断破填		251 在公司 2015 12 12 12 12 12 12 12 12 12 12 12 12 12		
			係船環	告強度 張荷重			ĘΨ	江东石	る。 係船柱及び係船環の設計においては,常時荷重,地震荷重及び係留力※を適切に組合せて設計を行う。 海域活断層から想定される地震による津波は荷揚場に遡上しないことから,津波荷重は考慮しない。 ・常時荷重+地震荷重 ・常時荷重+係留力+余震荷重		
			逐	5, 構災船の引				いた波	C組合 Cは考 		
		1		3Uよう 計画送	۰	本体	強	度(5点	を適切 液荷量		
		七		それの 然料等	2000	·係船環本体	ボ液場 ん断砂	波の速		S S	
		評価方針		ならお受けた	5年日3	•	世型	A び 連 が を	なび条についてとから		
		<u>ال</u>	20 21 21	能を損	追强医	_		形状)	荷重万 Lしない	6	
			(交 5万 松	不画をつる機関での対応での対応での対応であるができます。	()	7—ボルト 部	硫壞	送船の	地震		
		M		要求され	70.2 2	・アンカー 定着部	せん圏		荷重,	1	
		び係船環の		装置に登り扱いが	£110)			然彩	第 第 第 第 第 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
		(A)	拱	が による こよる 連	[なつお	710	略	上 以	ハて(は, こよる道 重		
			係船柱	鴻海 地震(5	能を指	ンカーボルト	f破壞 ,断破	 	+175も(・地震(・調査 ・調査 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・		
				対し、される	れる級 ハバと。	7.7.	中	7 ※((買の設置 ごされる 荷重 カ + 糸		
		※		S S C C 检证:	りに装置に要求される ・終局状態に至らないこと			力度船の湯	条船場 トル の 報道 トル 多 配 ままま ままま ままま ままま ままま まままま ままま まままま ままま まままま		
				鴻動	表直(5) 決態(23	·係船柱本体	が数	P 高 記 日	上及びず 新層が 荷庫・荷庫・		
				野 (年年) (年)	が止ぎ 終局状	条船村	1げ及7	短期計 然料等	30. 条件 计域沿出 计算 中部		
		_	+	TK 25.	_ *:	•	世型	4. 1.	· H.		
				1212	性能目標	照查部位	照查項目	許容限界	問題 問題 可 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明		
		L B	装置名	要求機能	性能	温	照	計			
			<i>¥K</i>	곝				計価			
								1111	K		

実線・・設備運用又は体制等の相違(設計方針の相違)


波線・・記載表現、設備名称の相違(実質的な相違なし)


まとめ資料比較表 〔第5条 津波による損傷の防止 別添1 添付資料 17〕

備考 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉 添付資料22 添付資料20 添付資料 17 燃料等輸送船の喫水と津波高さの関係について 燃料等輸送船の喫水と津波高さとの関係について 燃料等輸送船の喫水高さと津波高さとの関係について 22.1 はじめに 1. 概要 1. はじめに 燃料等輸送船(以下「輸送船」という。)は、津波警報等発表時 燃料等輸送船は、津波警報等発令時、原則、緊急退避するが、 燃料等輸送船は、津波警報等発令時、原則、緊急退避するが、 津波の襲来までに時間的な余裕がなく緊急退避が困難な場合につ は、原則として緊急退避するが、極めて短時間に津波が襲来する 津波の襲来までに時間的な余裕がなく緊急退避が困難な場合につ いて、燃料等輸送船の喫水と津波高さとの関係に基づき、寄せ波 場合を考慮し、押し波により輸送船が物揚岸壁(以下「岸壁」と いて、燃料等輸送船の喫水高さと津波高さとの関係に基づき、寄 に対して物揚場に乗り上げることのないこと、引き波に対して座 いう。)に乗り上げることはないこと、また引き波により座礁及び せ波に対して荷揚場に乗り上げることのないこと、引き波に対し 礁及び転覆するおそれのないことを確認する。また、緊急退避が 転覆するおそれのないことを確認する。 て座礁、転覆するおそれのないことを確認する。また、緊急退避 可能であった場合についても、退避中に引き波により、座礁及び が可能であった場合についても, 退避中に引き波により, 座礁, 転覆するおそれのないことを確認する。 転覆するおそれのないことを確認する。 2. 評価 2. 確認条件 22.2 確認条件 燃料等輸送船は、津波警報等発令時、原則、緊急退避する。輸 津波警報等発表時は、原則として緊急退避するが、極めて短時 燃料等輸送船は、津波警報等発令時、原則、緊急退避する。輸 評価条件の相違 送行程(「物揚場への接岸」~「荷役」~「物揚場からの離岸」) 送行程(「荷揚場岸壁への接岸」~「荷役」~「荷揚場岸壁からの 間に津波が襲来する場合を考慮し、早く襲来する可能性がある第 【東海第二】 において、輸送船と輸送物の干渉がない「荷役」以外の行程にお 1図に示す敷地周辺の海域活断層を波源とした津波の中から、評 離岸」) において、燃料等輸送船と輸送物の干渉がない「荷役」以 東海第二では,基準津 いては、津波警報等の発令から数分程度で緊急退避が可能である 価対象津波を選定する。 外の行程においては,津波警報等の発令から数分程度で緊急退避 波の到達までに緊急退 が、輸送船と輸送物が干渉し得る「荷役」行程では、緊急退避に が可能である。また、燃料等輸送船と輸送物が干渉し得る「荷役」 避が可能であることか 15~30 分程度を要する場合がある。 行程では、30分程度の時間があれば緊急退避が十分可能である ら,早く襲来する津波 ことから、確認の範囲は、早く襲来する海域活断層から想定され 柏崎刈羽原子力発電所で襲来が想定される津波の到達時間と緊 を, 高さも考慮し選定 る地震による津波で水位変化が一番大きい押し波、引き波を評価 急退避に要する時間との関係を示すと添付第22-1 図のとおりと 評価条件の相違 対象とする。 なる。 【柏崎 6/7】 これを踏まえ、以下の3ケースを確認ケースとする。なお、添 基準津波の到達時間 付第22-1 図より、40 分程度の時間があれば緊急退避が十分可能 等の相違 であることから、確認の範囲は津波警報等の発令後、40 分の期間 とした。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
相崎刈羽原子力発電所 6/7号炉 (2017.12.20版) ケース1:寄せ波による物揚場への乗り上げ評価 緊急退避できずに基準津波3の寄せ波第一波(※)を受ける ※最高水位 T.M.S.L. +4.08m (発生時刻:地震後約15分)	東海第二発電所 (2018. 9. 12 版) (1) 津波高さ a. 押し波 第 2 図に、最高水位を示した評価対象津波の波形を示す。第 2 図に示すとおり地震発生後約 17 分で第一波の最高点に到達後、引き波が発生し、地震発生後約 26 分の第二波で最高津波高さ (T. P. +1. 90m (朔望平均満潮位 (T. P. +0. 61m) 及び 2011 年東北地方太平洋沖地震に伴う地殻変動 (0. 2m 沈下) 考慮済み)) に達している。 (2 40	(1) 検討ケース 図1,2に,燃料等輸送船が停泊する荷揚場における海域活断層から想定される地震による津波の波形を示す。押し波時の最大水位はT.P.2.0m,引き波時の最低水位はT.P4.07mである。 2 1 0 1.38(約15分) 20 30 時間(分) 図1 基準津波4による荷揚場での時刻歴波形	備考 ・評価条件の相違 【柏崎 6/7, 東海第二】 津波等の高さ, 地盤変 動に係る相違
ケース2:引き波による座礁及び転覆評価(緊急退避不能時) 緊急退避できずに基準津波3の引き波第一波(※)を受ける ※最低水位 T.M.S.L 3.46m(発生時刻:地震後約26分) ※基準津波1の引き波第一波は本ケースに包含される	b. 引き波 第3図に、最低水位を示した評価対象津波の波形を示す。第 3図に示すとおり地震発生後約17分で第一波の最高点に到達 後,引き波が発生し、地震発生後約22分に最低津波高さ(T.P. -2.53m(朔望平均干潮位(T.P0.81m)及び2011年東北地 方太平洋沖地震に伴う地殻変動(0.2m 沈下)考慮済み))に達 している。	(水位上昇側) 2 1 0 水位 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	・評価条件の相違 【柏崎 6/7, 東海第二】 津波等の高さ, 地盤変 動に係る相違
	ま -2.0	-3. 88-0. 02-0. 17=T. P4. 07m -3. 88-0. 02-0. 17=T. P4. 07m 10 20 30 時間(分) 図2 基準津波4による荷揚場での時刻歴波形 (水位下降側)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

東海第二発電所(2018.9.12版)

引き波高さと喫水の関係を第5図に示す。第5図に示すとお

り、輸送船は引き波の最低高さ時には一時的に着底し得るが、

この場合も以下の理由により座礁及び転覆することはなく漂

・仮に一時的な着底があったとしても,輸送船は二重船殼構造

等、十分な船体強度を有しており、水位回復後に退避が可能

・輸送船の重量及び扁平的な断面形状より、着底後の引き波に

よる流圧力、又は水位回復時の押し波による流圧力に対して

転覆の可能性はない。なお、転覆に関わる評価を別紙に示す。

(2) 引き波(着底評価)

(3) 引き波(着底評価)

流物とならない。

であり座礁する可能性はない。

引き波による津波高さと喫水高さの関係を図4に示す。

これより、燃料等輸送船は引き波のピークの際には一時的に着 底し得ることが示されるが、この場合も、以下の理由より座礁及 び転覆することはない(漂流物とならない)。

(2) ケース2:引き波による座礁及び転覆評価(緊急退避不能時)

引き波による津波高さと喫水の関係を添付第22-3 図に示す。

● 一時的な着底があったとしても、輸送船は二重船殻構造等、 十分な船体強度を有しており,水位回復後に退避が可能で

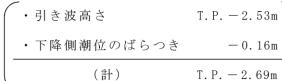
これにより、燃料等輸送船は引き波のピークの際には一時的に 着底し得ることが示されるが、この場合も、以下の理由により座 礁, 転覆することはない (漂流物とならない)。

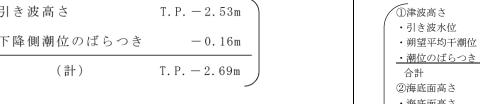
島根原子力発電所 2号炉

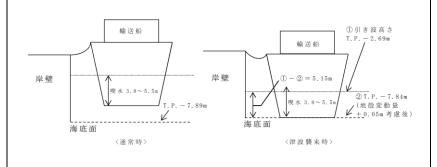
ある。

・一時的な着底があったとしても、燃料等輸送船は二重船殻 構造等、十分な船体強度を有しており、水位回復後に退避 が可能である。

● また、着底後の引き波による流圧力、あるいは水位回復時 の寄せ波による流圧力に対する転覆の可能性については、 輸送船の重量及び扁平な断面形状より, その可能性はない。 なお, 転覆の可能性に関わる具体的な評価を別紙に示す。


・また, 着底後の引き波による流圧力, あるいは水位回復時 の押し波による流圧力に対する転覆の可能性については、 燃料等輸送船の重量及び扁平な断面形状より、その可能性 はない。


T. P. -3. 88m

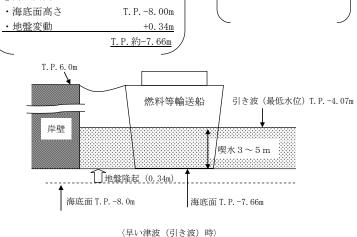

T. P. -0. 02m

T. P. 約-4.07m

-0.17m

燃料等輸送船 物揚場 喫水4~5m <通常時>

<基準津波3 引き第一波襲来時>


1-2=2.92m

喫水4~5m

物揚場

第5図 引き波高さと喫水の関係

- (備考)
 - ・津波の原因となる地震による地殻変動 (+0.05m) を考慮し
 - ・引き波高さ (T. P. -2.53m) は, 朔望平均干潮位 (T. P. -0.81m) 及び 2011 年東北地方太平洋沖地震に伴う地殻変動 (0.2m 沈 下)を考慮している。

(1)-(2)=3.59m

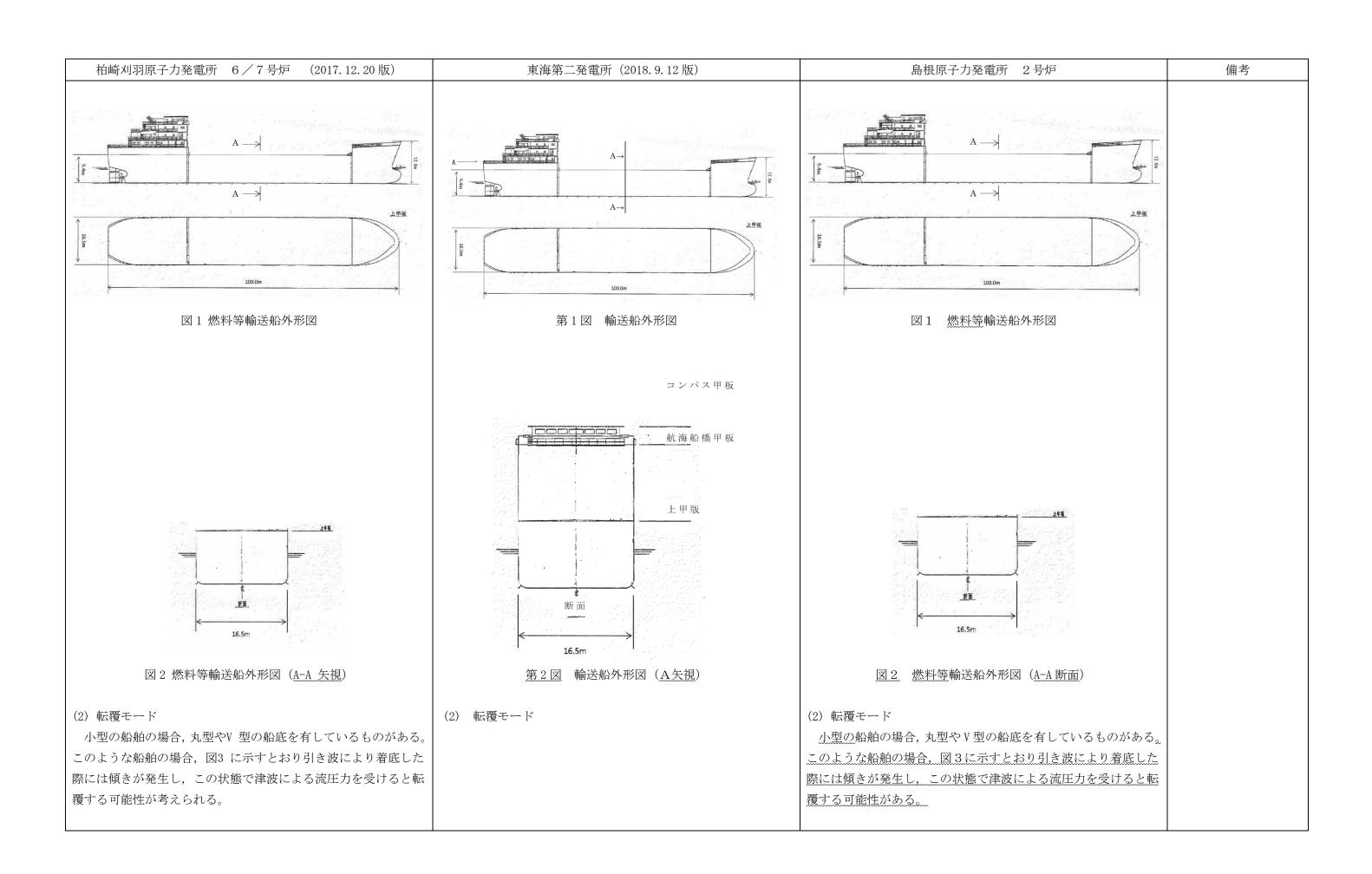
< 喫水 (3~5 m)

図4 引き波による津波高さと喫水高さの関係

・評価結果の相違 【柏崎 6/7, 東海第二】 評価条件の違いによ る相違

備考

○津波の原因となる地震による地殻変動及び地盤変状は,海底との距離が大きく


添付第22-3 図 引き波による津波高さと喫水の関係

なる方向に寄与するため,保守的に考慮していない。

5条-別添1-添付17-6

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
(3) ケース3:引き波による座礁及び転覆評価(退避中)			・評価条件の相違
柏崎刈羽原子力発電所の港湾内の海底面高さは、港湾内でほぼ			【柏崎 6/7】
一定であるため、本ケースにおける引き波高さと喫水との関係は			島根2号炉は早く襲
ケース2 における添付第22-3 図と同等である。			 来する津波(海域活断層
したがって、図より燃料等輸送船は、退避中、引き波のピーク			から想定される地震に
の際には一時的に着底し得ることが示されるが、この場合も、前			 よる津波)が敷地に数分
述と同様,輸送船の船体強度,重量及び形状より,離岸後の輸送			程度で到達するため、緊
船は、座礁及び転覆することなく、退避可能(漂流物とならない)			急退避を実施しないこ
と判断できる。			 とから, 退避中の評価は
			実施しない
22.4 結論	3. 結論	4. 結論	
朔望平均満潮位・干潮位等の保守的な条件を考慮した場合でも、	朔望平均満潮位、干潮位等の保守的な条件を考慮し、極めて		
燃料等輸送船は、津波高さと喫水高さの関係から寄せ波により物		燃料等輸送船は、津波高さと喫水高さの関係から寄せ波により荷	
揚場に乗り上げることはなく、また、緊急退避ができない場合及	さと喫水高さの関係から <u>岸壁</u> に乗り上げることはなく,また,	揚場に乗り上げることはなく、また、緊急退避ができない場合で	
び退避中に引き波により一時的に着底した場合でも、座礁及び転		も、引き波により一時的に着底することが考えられるが、船体は	
覆しない (漂流物とならない)ことを確認した。		二重船殻構造等、十分な強度を有しており、水位回復後に退避が	
		可能であり、漂流物とならないことを確認した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海鎮	第二発電所(2018. 9. 12 版)		島根原子力発電所 2号炉	備考
別紙		別紙		別紙	
燃料等輸送船の着底時の転覆の可能性について		沿の着底時の転覆の可能性について 	燃料等輔	前送船の着底時の転覆の可能性について	
本別紙では、燃料等輸送船が <u>物揚場</u> における停泊時 <u>及び港湾内で緊急退避中</u> に引き波により着底することを想定し、その際の転覆の可能性について評価する。	る停泊 <u>中</u> 及び港湾	以下「輸送船」という。)の物揚岸壁におけ 内で緊急退避中に引き波により着底するこ 際の転覆の可能性について評価する。	より着底すること する。ここでは、	料等輸送船が荷揚場における停泊時に引き波に を想定し、その際の転覆の可能性について評価 転覆の可能性の観点から、転覆しやすい 高くなる積荷がない場合の評価結果を示	・評価条件の相違 【柏崎 6/7, 東海第二】 島根 2 号炉は早く襲 来する津波(海域活断層 から想定される地震に よる津波)が敷地に数分 程度で到達するため,緊
 評価条件 燃料等輸送船の仕様・形状 燃料等輸送船の仕様を表1に、外形図を図1及び図2に示す。 	2. 評価条件(1) 輸送船の仕様・輸送船の仕様を	形状 第1表に,外形図を第1図及び第2図に示す。	1. 評価条件 (1) <u>燃料等</u> 輸送船。 燃料等輸送船。	船の仕様・形状 の仕様を表 <u>1</u> に,外形図を図 <u>1</u> 及び図 <u>2</u> に示す。	急退避を実施しないこ とから,退避中の評価は
表 1 燃料等輸送船の仕様 項 目 仕 様 満載排水量 約 7,000 トン 載貨重量トン 約 3,000 トン 喫水 約 5m 全長 100.0m (垂線間長:94.4m) 型幅 16.5m	項 目 満載排水量 載貨重量トン 喫水 全長 型幅	第1表 輸送船の仕様	項 目 満載排水量 載貨重量トン 喫水 全長 型幅	表 1 燃料等輸送船の仕様	

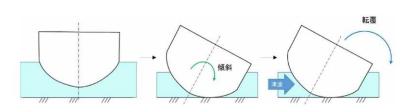


図3 丸型の船底を有する船舶の着底状態

一方,燃料等輸送船は一般のタンカーなどと同様に図2で示したとおり,断面形状が扁平であり船底が平底型である。このため,引き波により着底した場合にも傾くことなく安定していると考えられるが,ここでは保守的に,図4に示すように燃料等輸送船が津波を受けた際に船底の端部が海底に引っ掛かり,船底端部周りに回転する状況を想定し,転覆可能性の評価を行うものとする。

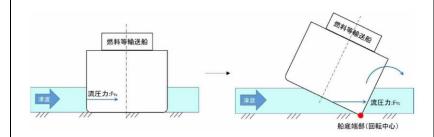
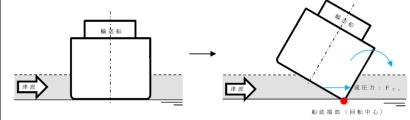



図4 想定転覆モード

2. 転覆評価

図4 の転覆モードにおいて燃料等輸送船に働く力とモーメントを図5 に示す。

一般の船舶の場合, 丸型や V 型の船底を有しているものがあるが, 輸送船は第2図に示すとおり, 断面形状が扁平であり船底が平底型である。このため, 引き波により着底した場合にも傾くことなく安定していると考えられるが, ここでは保守的に, 第3図に示すように輸送船が津波を受けた際に船底の端部が海底に引っ掛かり, 船底端部周りに回転する状況を想定し, 転覆可能性の評価を行うものとする。

第3図 想定転覆モード

3. 転覆評価

第3図の想定転覆モードにおいて輸送船に働く力とモーメントを第4図に示す。

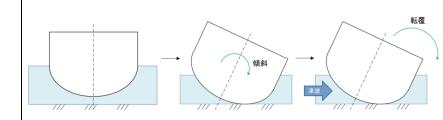


図3 丸型の船底を有する船舶の着底状態

一方,燃料等輸送船は一般のタンカーなどと同様に図2で示したとおり、断面形状が扁平であり船底が平底型である。このため、引き波により着底した場合にも傾くことなく安定していると考えられるが、ここでは保守的に、図4に示すように燃料等輸送船が津波を受けた際に船底の端部が海底に引っ掛かり、船底端部周りに回転する状況を想定し、転覆の可能性の評価を行うものとする。

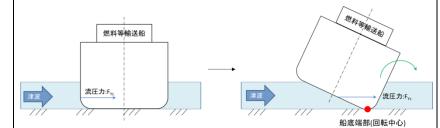


図4 想定転覆モード

2. 転覆評価

図4の転覆モードにおいて燃料等輸送船に働く力とモーメント を図5に示す。

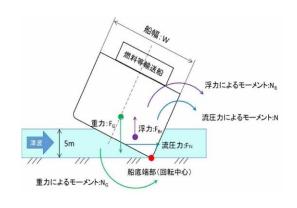


図5燃料等輸送船に働く力とモーメント

津波を受けると流圧力 F_{Yc} によるモーメントNが発生し、船底端部を中心に燃料等輸送船を回転させる。また、浮力 F_{Br} によるモーメントN_Bも流圧力によるモーメントN と同じ方向に発生する。一方、重力 F_G によるモーメントN_Gがこれらのモーメントと逆方向に発生し燃料等輸送船の傾きを戻す。この際、流圧力及び浮力によるモーメントにより傾きが増大し、重心位置が回転中心の鉛直線上を超える場合には転覆する。

重心位置が回転中心の鉛直線上にあるときの傾きは<u>約60°</u>であるため、ここでは傾きを<u>30°</u>と仮定し、流圧力によるモーメントNと浮力によるモーメントN_Bの和と重力によるモーメントN_Gとのモーメントの釣り合いから転覆しないことを確認する。

重力によるモーメントN。は次式のとおりとなる。

 $N_G = F_G \times X(GR)$

 $= 7000 \times 5.1$

=35700 [tonf⋅m]

N_c: 重力によるモーメント [tonf·m]

 F_{G} : 燃料等輸送船の重量(=<u>満載排水量</u>) [tonf] (= $\underline{7000}$)

X(GR): 重心と回転中心の水平方向距離 [m] (≒<u>5.1</u>)

次に流圧力によるモーメントN は次式にて計算できる。

第4図 輸送船に働く力とモーメント

津波を受けると流圧力 F_{Yc} によるモーメントNが発生し、船底端部を中心に輸送船を回転させる。また、浮力 F_B によるモーメント N_B も流圧力によるモーメント N_C がこれらのモーメントと逆方向に発生し輸送船の傾きを戻す。この際、流圧力及び浮力によるモーメントにより傾きが増大し、重心位置が回転中心の鉛直線上を超える場合には転覆する。

重心位置が回転中心の鉛直線上にあるときの傾きは約 48° であるため、ここでは傾きを 24° と仮定し、流圧力によるモーメントNと浮力によるモーメントN_Bの和と重力によるモーメントN_Gとのモーメントの釣り合いから転覆しないことを確認する。

重力によるモーメントNcは次式のとおりとなる。

 $N_G = F_G \times X \quad (GR)$

 $=4,000\times4.5$

 $=18,000 [tonf \cdot m]$

N_c: 重力によるモーメント [tonf·m]

F_C:輸送船(空荷状態)の重量 [tonf] (=4,000)

X (GR): 重心と回転中心の水平方向距離 [m] (≒4.5)

次に流圧力によるモーメントNは次式にて計算できる。

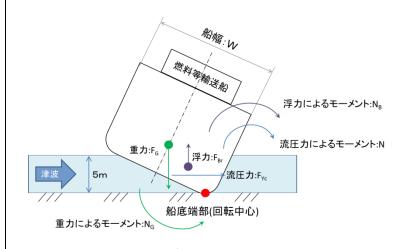


図5 燃料等輸送船に働く力とモーメント

津波を受けると流圧力 F_{YC} によるモーメントNが発生し、船底端部を中心に燃料等輸送船を回転させる。また、浮力 F_{BL} によるモーメント N_B も流圧力によるモーメント N_C がこれらのモーメントと逆方向に発生し、燃料等輸送船の傾きを戻す。この際、流圧力及び浮力によるモーメントにより傾きが増大し、重心位置が回転中心の鉛直線上を超える場合には転覆する。

重心位置が回転中心の鉛直線上にあるときの傾きは<u>約48°</u>であるため、ここでは、傾きを 24°と仮定し、流圧力によるモーメントNと浮力によるモーメントN_Bの和と重力によるモーメントN_Gとのモーメントの釣り合いから転覆しないことを確認する。

重力によるモーメント Nc は次式のとおりとなる。

 $N_G = F_G \times X (GR)$

 $=4,000\times4.5$

 $=18,000[tonf \cdot m]$

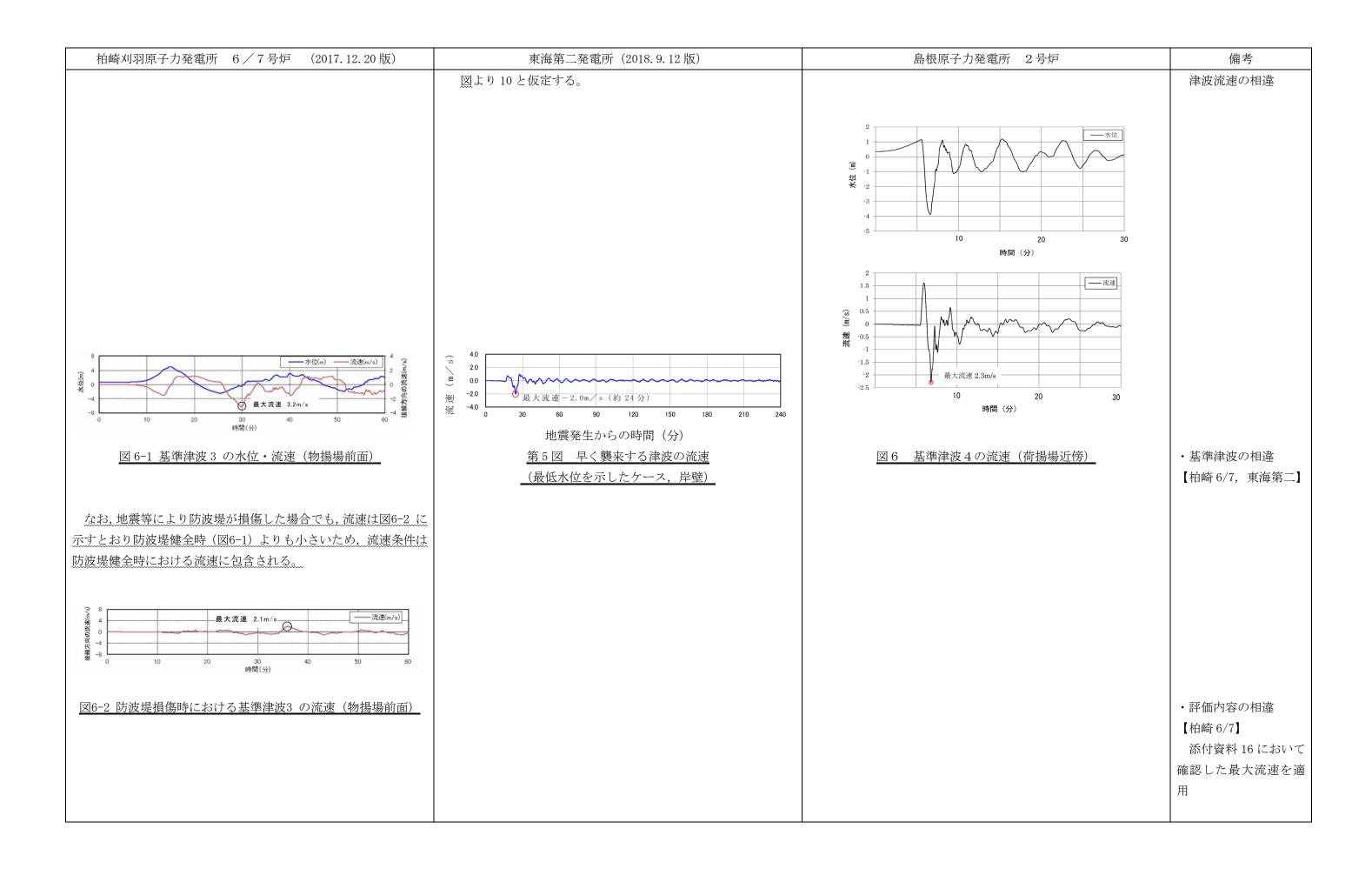
N_c: 重力によるモーメント [tonf・m]

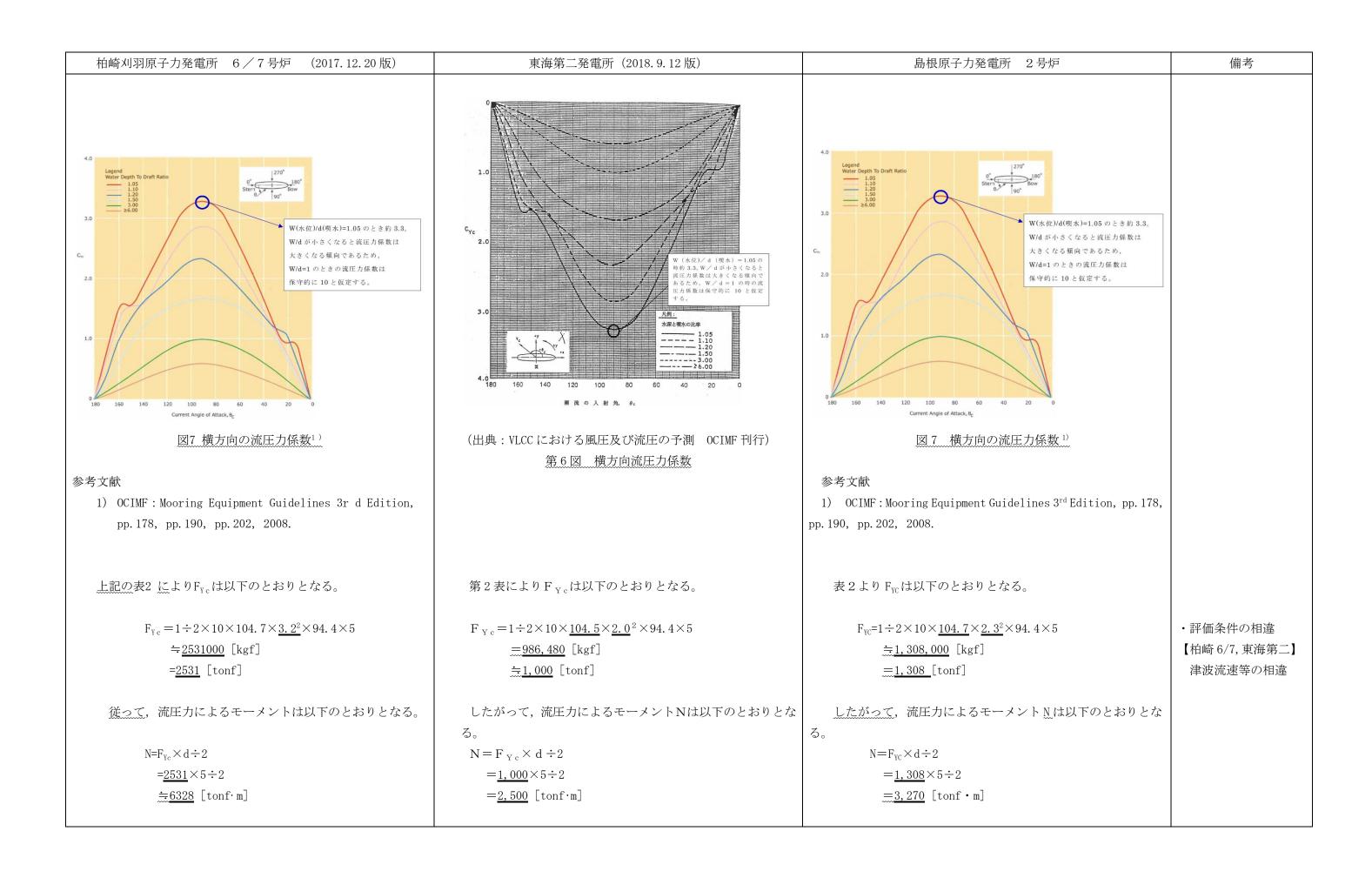
F_G: <u>燃料等</u>輸送船の重量 <u>(=空荷状態重量)</u> [tonf] (=<u>4,000</u>)

X(GR):重心と回転中心の水平方向距離 [m] (≒<u>4.5</u>)

次に流圧力によるモーメントNは次式にて計算できる。

・評価条件の相違

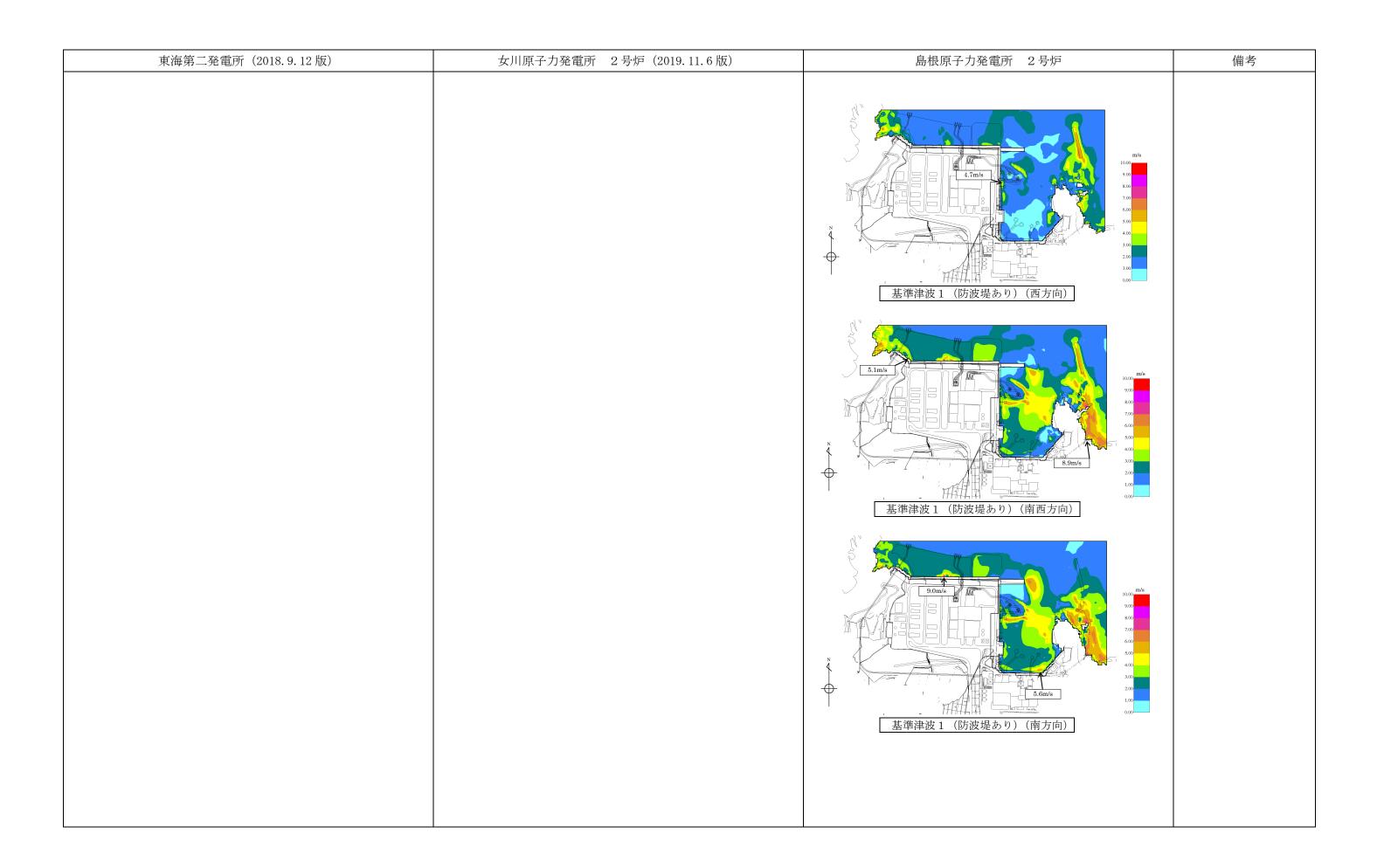

【柏崎 6/7】

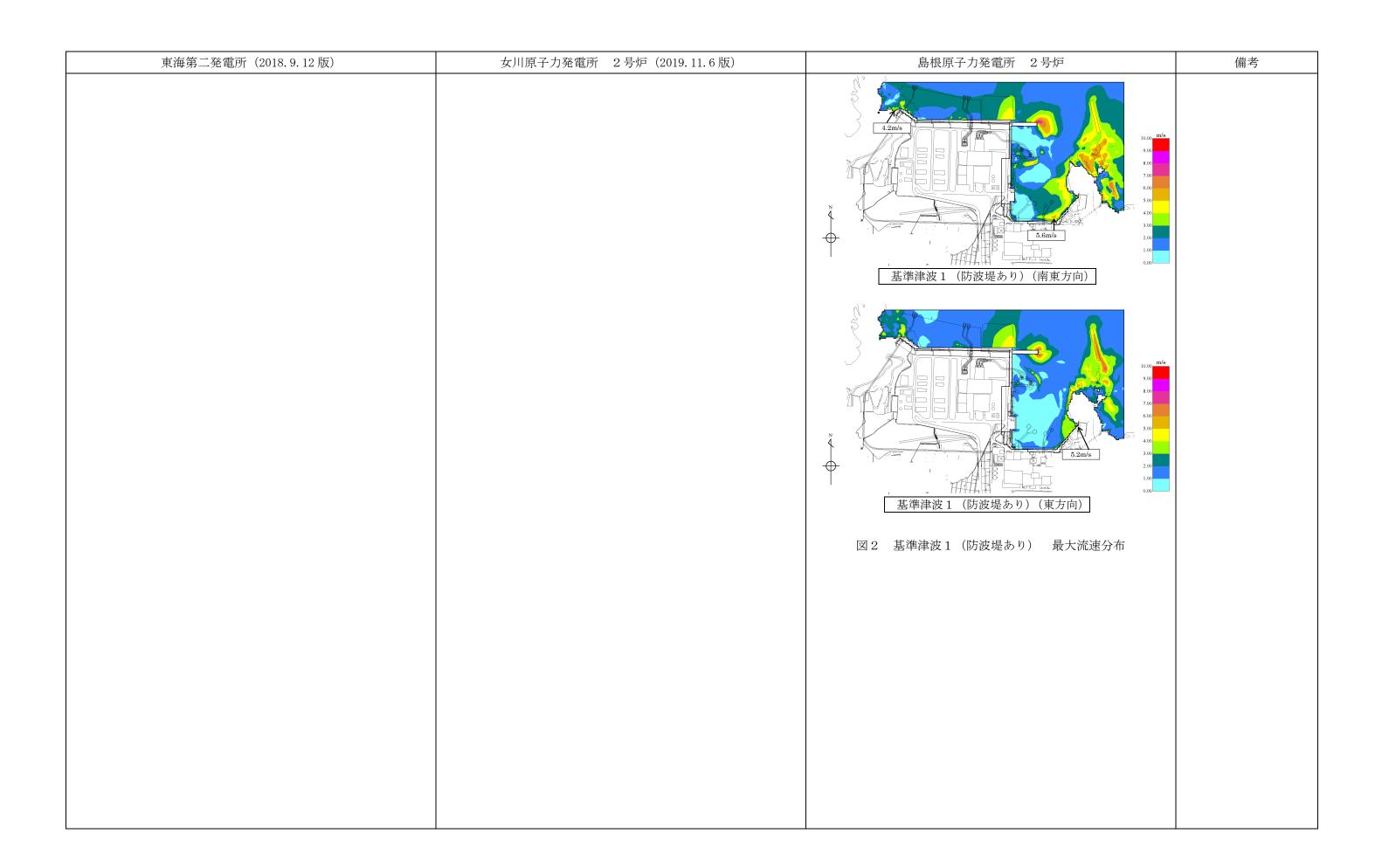

島根2号炉は空荷状 態を考慮

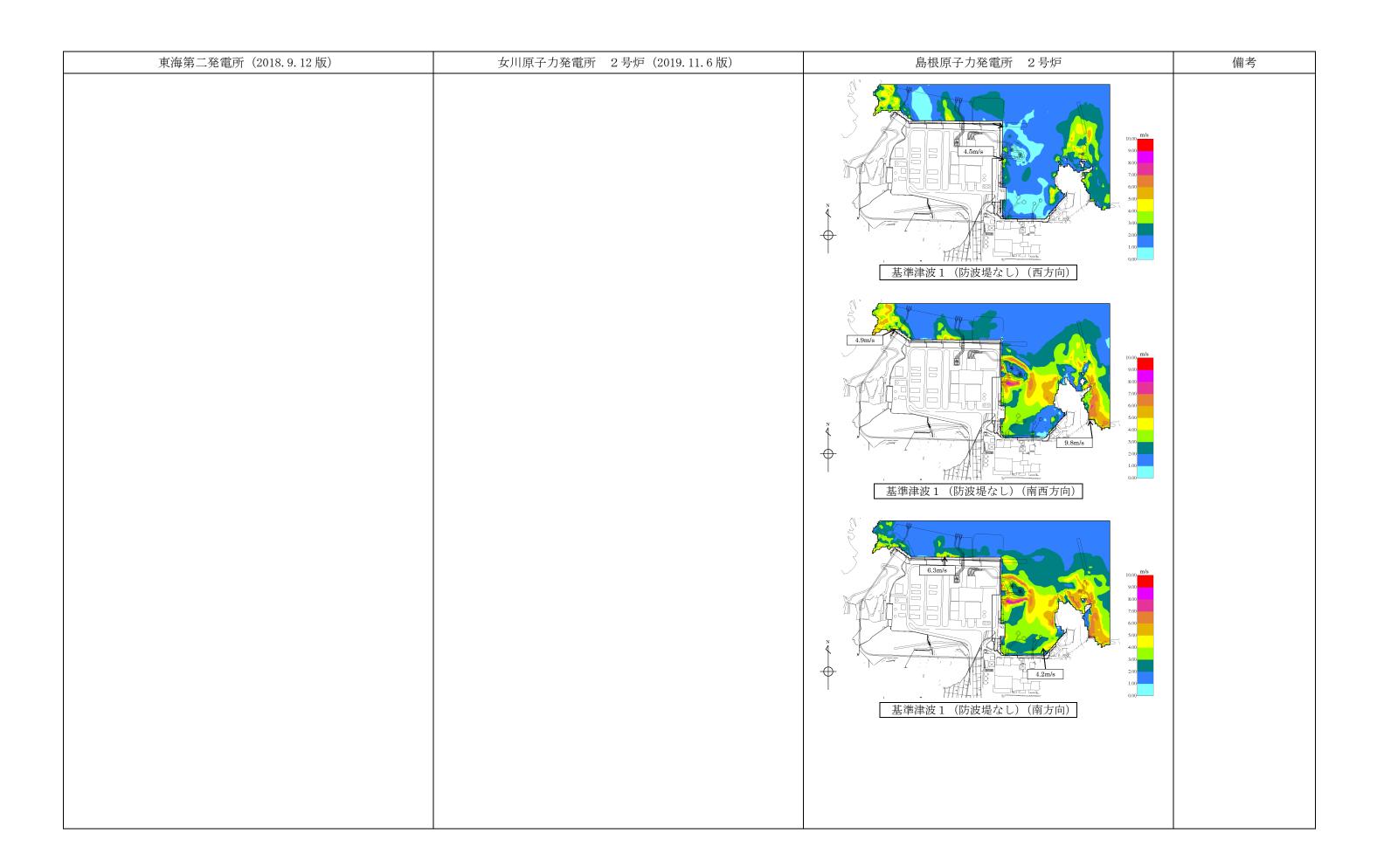
・評価条件の相違 【柏崎 6/7】

島根2号炉は空荷状 態を考慮

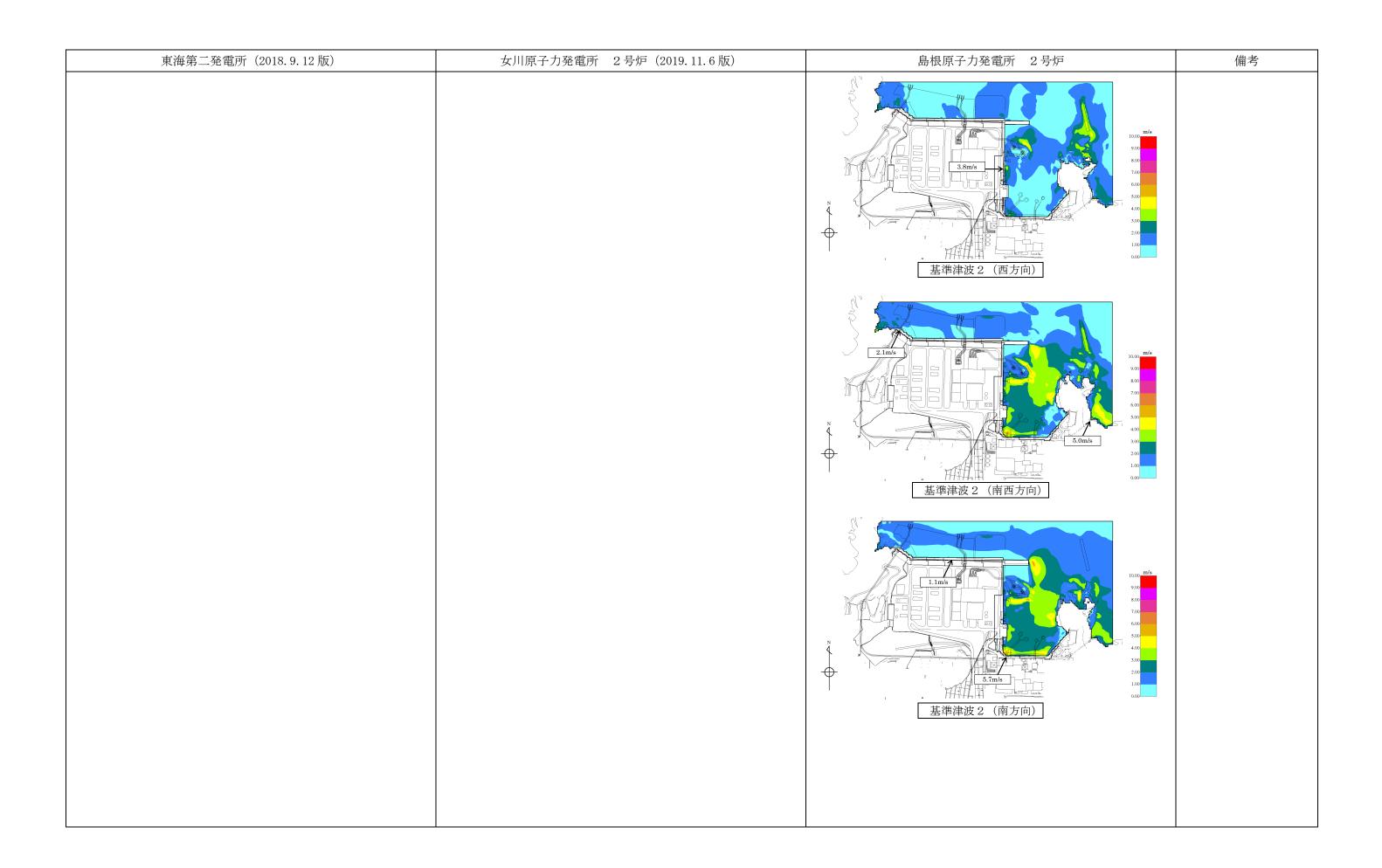
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
$N=F_{Y_{c}}\times W \div 2$ $=F_{Y_{c}}\times d \div 2$	$N = F_{Y_c} \times W \div 2$ $= F_{Y_c} \times d \div 2$	$N = F_{yc} \times W \div 2$ $= F_{yc} \times d \div 2$	
N:流圧力によるモーメント [tonf·m] F _{Yc} :流圧力 [tonf] W:水位 [m] d:喫水 [m] (=5) ここで、流圧力は受圧面積が最大のときに最も大きくなり、かつ、流圧力によるモーメントは流圧力の作用点と回転中心との距離が最大のときに最も大きくなるため、本評価における水位は喫水と同等とした。 また、横方向の流圧力F _{Yc} を表2に示す方法で計算する。	 N:流圧力によるモーメント [tonf·m] F_{Yc}:流圧力 [tonf] W:水位 [m] d:喫水 [m] (=5) ここで,流圧力は受圧面積が最大のときに最も大きくなり,かつ,流圧力によるモーメントは流圧力の作用点と回転中心と	N:流圧力によるモーメント[tonf・m] $F_{YC}:流圧力 [tonf]$ W:水位 [m] d:喫水 [m] (=5)	
表 2 横方向流圧力の計算方法 1 [kgf] $F_{\gamma_{c}} = \frac{1}{2} \times C_{\gamma_{c}} \times \rho_{c} \times V_{c}^{2} \times L_{pp} \times d$ $F_{\gamma_{c}} = \frac{1}{2} \times C_{\gamma_{c}} \times \rho_{c} \times V_{c}^{2} \times L_{pp} \times d$ $F_{\gamma_{c}} = \frac{1}{2} \times C_{\gamma_{c}} \times \rho_{c} \times V_{c}^{2} \times L_{pp} \times d$ $V_{c} : $	第2表 横方向流圧力の計算方法 【流圧力計算式】 F _{Yc} :横方向流圧力 [kgf] C _{Yc} :横方向流圧力係数 V _C :流速 [m/s] L _{PP} : 垂線間長 [m] d : 喫水 [m] ρ _C :水密度 [kgf・s²/m⁴] (出典:VLCC における風圧及び流圧の予測 OCIMF 刊行)	表 2 横方向流圧力の計算方法 $^{1)}$ 【流圧力計算式】 $F_{\gamma_c} = \frac{1}{2} \times C_{\gamma_c} \times \rho_c \times V_c^2 \times L_{PP} \times d$ $F_{\gamma_c} = \frac{1}{2} \times C_{\gamma_c} \times \rho_c \times V_c^2 \times L_{PP} \times d$ $F_{\gamma_c} = \frac{1}{2} \times C_{\gamma_c} \times \rho_c \times V_c^2 \times L_{PP} \times d$ $V_c : 流速 [m/s]$ $L_{PP} : 垂線間長 [m] (=94.4)$ $d : 喫水 [m] (=5)$ $\rho_c : 水密度 [kgf \cdot sec^2/m^4]$ $(=104.7kgf \cdot sec^2/m^4)$	
このとき,流速は <u>図6-1</u> に示す <u>早く襲来する</u> 津波の最大流速 <u>3.2</u> m/s を適用し,横方向流圧力係数を図7 より10 と仮定する。	このとき,流速は第5図に示す最低水位を示した早く襲来する津波の最大流速 2.0m/s を適用し,横方向流圧力係数を第6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	・評価条件の相違 【柏崎 6/7,東海第二】

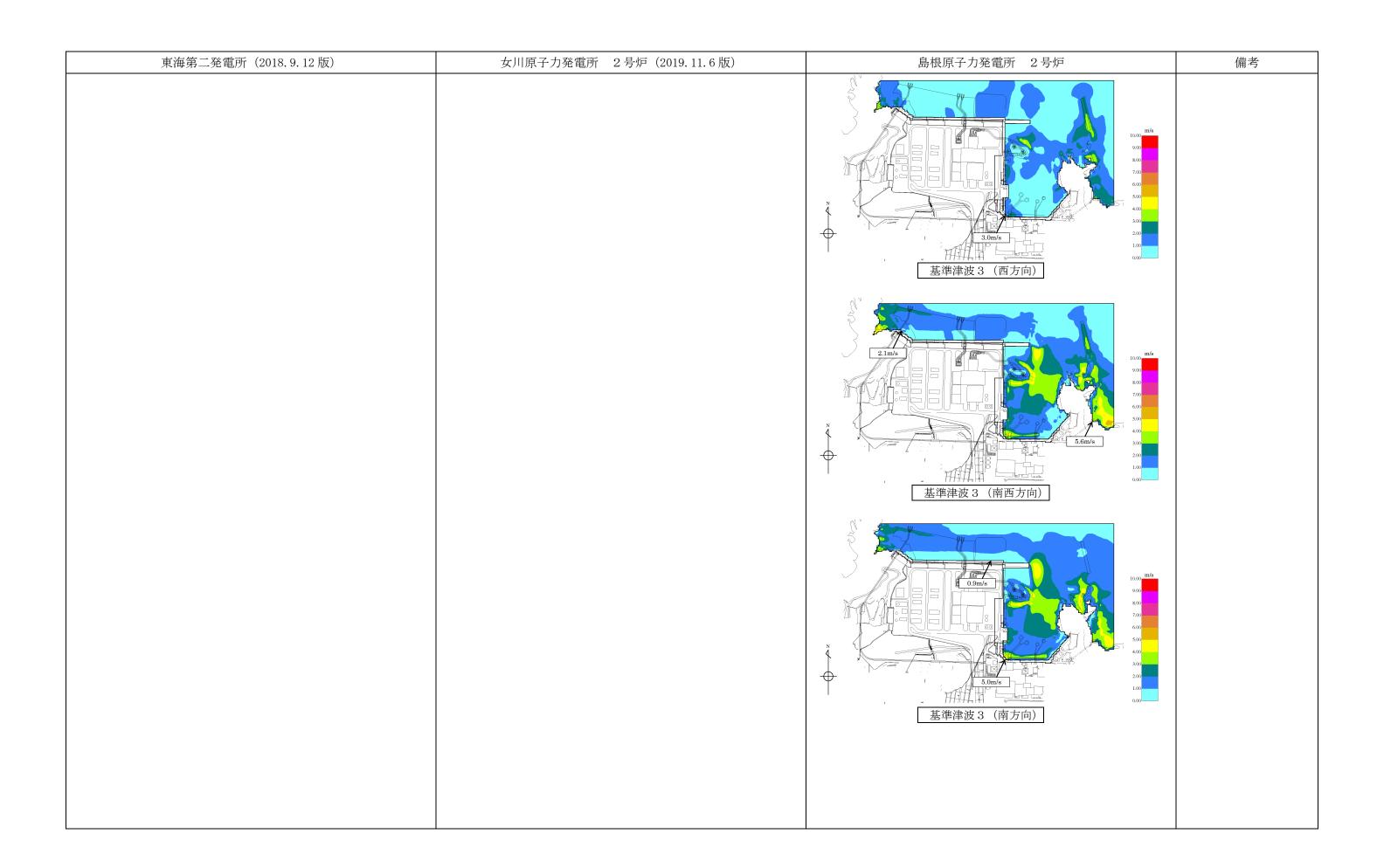

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
最後に浮力によるモーメントN _B は次式にて評価する。	最後に浮力によるモーメントN _B は次式にて評価する。	最後に浮力によるモーメント N _B は次式にて評価する。	
$NB = F_{Br} \times X(BR)$	$N_B = F_{Br} \times X (BR)$	$N_B = F_{Br} \times X (BR)$	
$= \underline{2500} \times \underline{2.0}$	$=1,700\times3.0$	$=$ 1, 700 \times 3. 0	
<u>≒</u> 5000 [tonf·m]	=5,100 [tonf·m]	$= 5,100 [tonf \cdot m]$	
N _B :浮力によるモーメント [tonf·m]	N _B :浮力によるモーメント [tonf·m]	N _B :浮力によるモーメント[tonf]	
F _{Br} :傾いた際の燃料等輸送船の浮力 [tonf] (≒ <u>2500</u>)	F _{Br} :傾いた際の輸送船の浮力 [tonf] (≒1,700)	F _{Br} :傾いた際の燃料等輸送船の浮力[tonf] (≒ <u>1,700</u>)	
X(BR):浮心と回転中心の水平方向距離 [m] (≒ <u>2.0</u>)	X (BR): 浮心と回転中心の水平方向距離 [m] (≒3.0)	X(BR):浮心と回転中心の水平方向距離[m] (≒ <u>3.0</u>)	
以上の結果をまとめると、以下に示すとおり重力によるモ	以上の結果をまとめると、以下に示すとおり重力によるモー	以上の結果をまとめると,以下に示すとおり重力によるモー	
ーメントN _G は流圧力によるモーメントと浮力によるモーメ	メントNgは流圧力によるモーメントと浮力によるモーメン	メント N _G は流圧力によるモーメントと浮力によるモーメントの	
ントの和より大きくなるため、燃料等輸送船は転覆すること	トの和より大きくなるため、輸送船は転覆することはない。	和より大きくなるため、燃料等輸送船は転覆することはない。	
はない。			
$N+N_B = 6328 + 5000$	$N + N_B = 2,500 + 5,100$	$N+N_B=3,270+5,100$	
$=\underline{11328} \text{ [tonf·m]} < \text{NG}=\underline{35700} \text{ [tonf·m]}$	$=$ $\underline{7,600}$ [tonf·m] $<$ N _G (=18,000) [tonf·m]	$= 8,370 \text{ [tonf} \cdot \text{m]} < N_6 = 18,000 \text{ [tonf} \cdot \text{m]}$	
3. 結論	<u>4.</u> 結論	3結論	
燃料等輸送船は着底後に津波による流圧力を受けてもその形状	輸送船は着底後に津波による流圧力を受けてもその形状から通	燃料等輸送船は着底後に津波による流圧力を受けてもその形状	
から通常の状態であれば転覆することはなく, また, 保守的に船	常の状態であれば転覆することはなく、また、保守的に船底の一	から通常の状態であれば転覆することなく、また、保守的に船底	
底の一部が固定されるような状態を想定した場合であっても転覆	部が固定されるような状態を想定した場合であっても転覆しない	の一部が固定されるような状態を想定した場合であっても転覆し	
しないことを確認した。	ことを確認した。	ないことを確認した。	

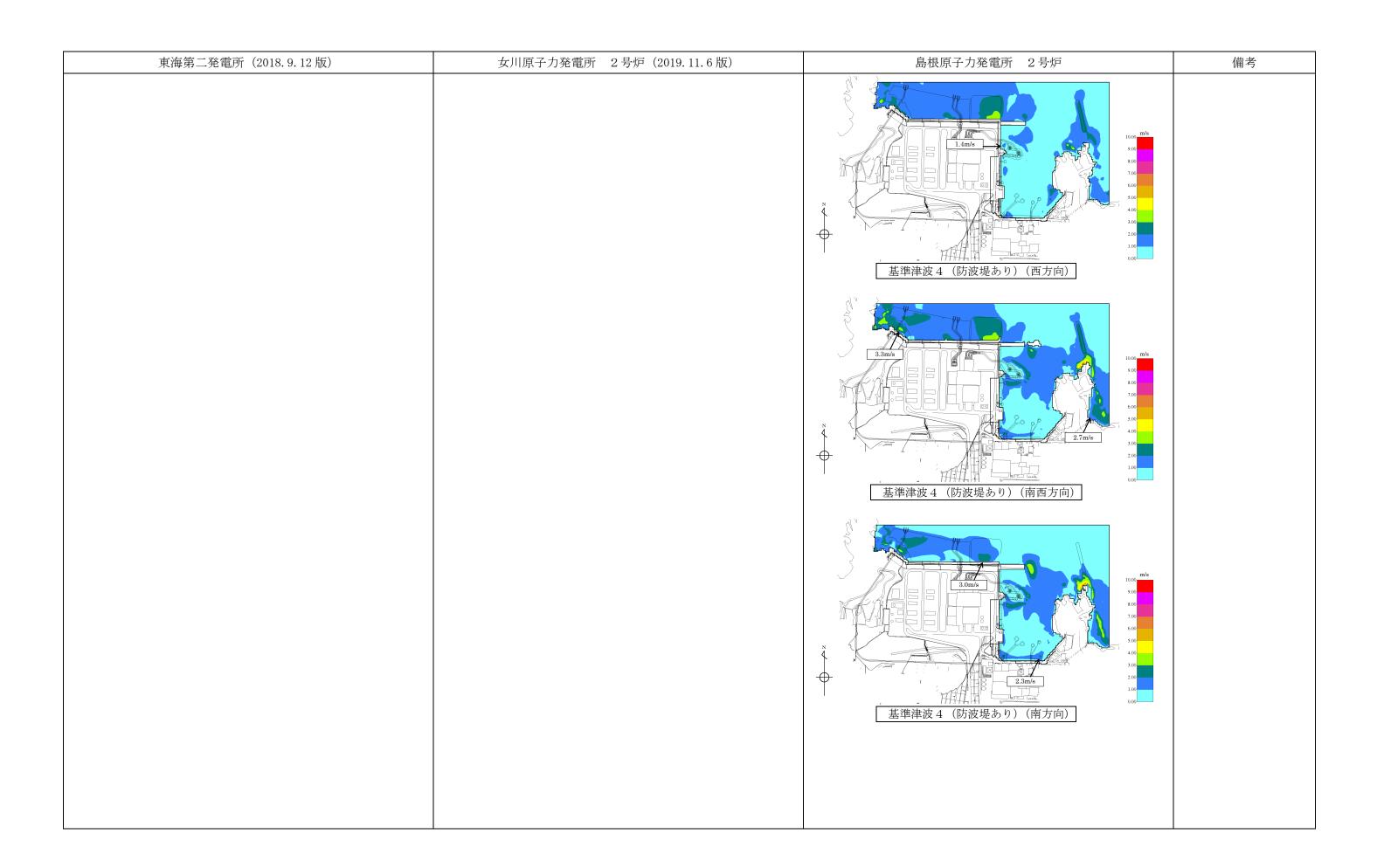

実線・・設備運用又は体制等の相違(設計方針の相違)

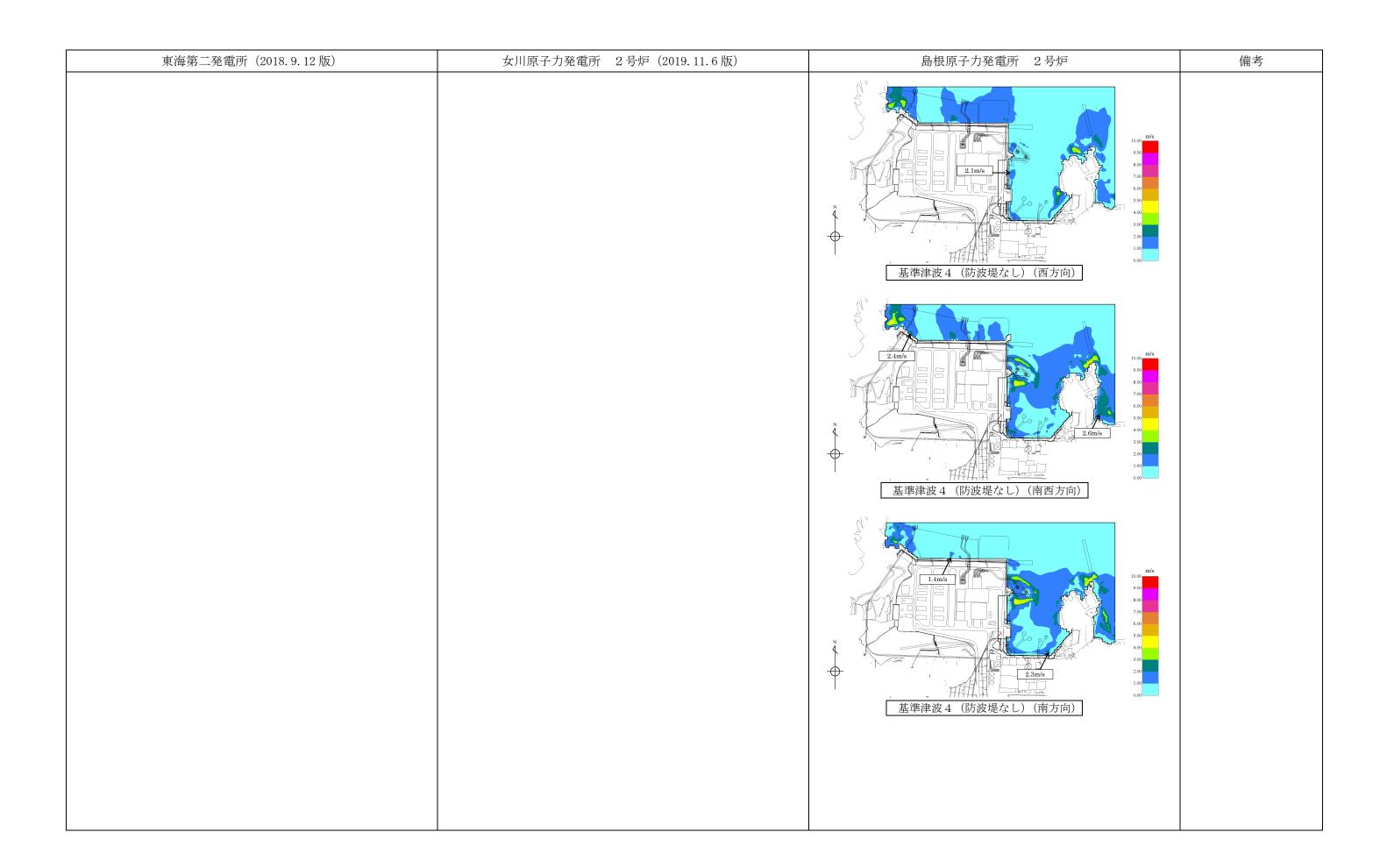

波線・・記載表現、設備名称の相違(実質的な相違なし)

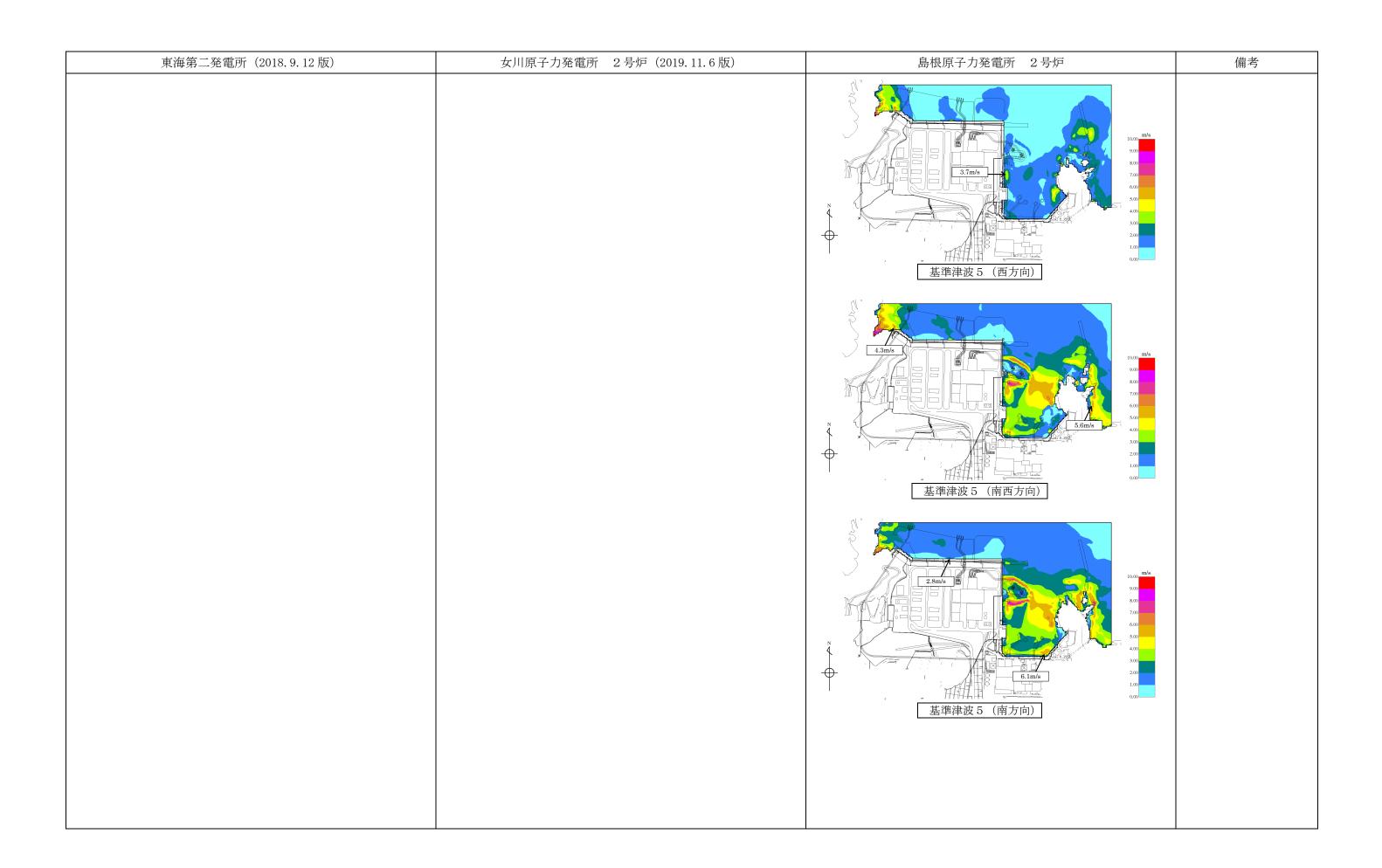
まとめ資料比較表 〔第5条 津波による損傷の防止 別添1 添付資料18〕

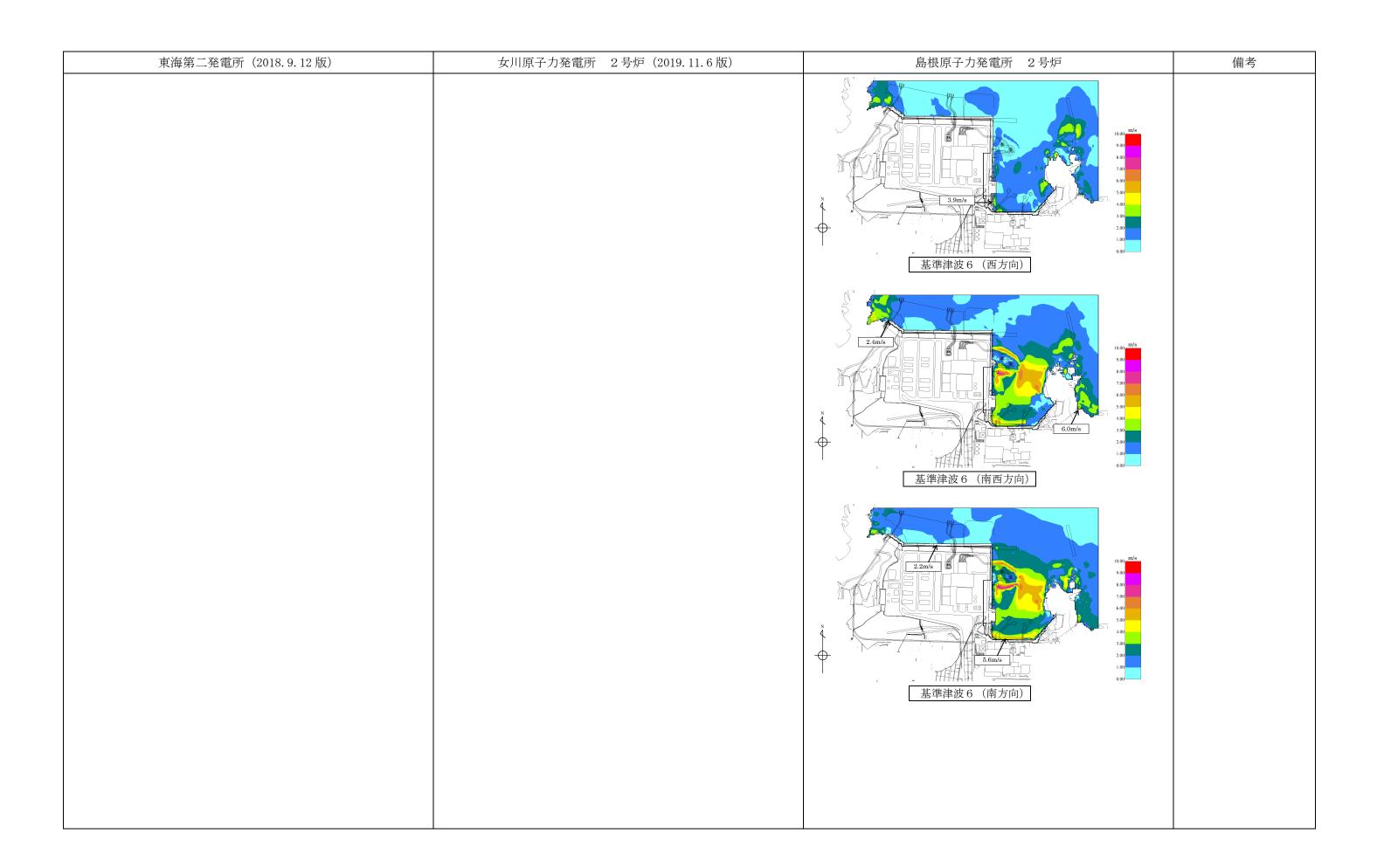

	島根原子力発電所 2 号炉	備考
添付資料 15	添付資料 18	
漂流物の評価に考慮する津波の流速・流向について	漂流物の評価に <u>おいて</u> 考慮する津波の流速・流向について	
1. はじめに	1. 設計に用いる遡上波の流速について	
津波による漂流物の漂流速度は、津波の流速に支配される。文	津波による漂流物の漂流速度は、津波の流速に支配される。文	
献**)によると漂流物の最大漂流速度は津波の浸水流速より小さく	献※1 によると漂流物の最大漂流速度は津波の浸水流速より小さく	
なっている (図1)が、安全側に漂流速度として津波の流速を用	なっているが、安全側に漂流速度として津波の流速を用いる。	
いる。		
2.5 2.5 1.5 0.5 0 0.5 1 1.5 2 2.5 3	3 2.5 2 E 1.5 0 0 0 0.5 1 1.5 2 2 2.5 3	
図1 浸水流速 v _{ts} と最大漂流速度 v _{dm} の関係	図1 浸水流速 v _{ts} と最大漂流速度 v _{dm} の関係	
	※1 海岸工学論文集, 第 54 巻(2007) 遡上津波によるコンテナ漂流力に関	
する大規模実験(有川ほか)	する大規模実験(有川ほか)	
 津波の流速は、津波遡上シミュレーションにより得られる値を	漂流物の衝突速度は、評価対象施設周辺の流速に依存すると考	・検討方針の相違による
用いる。		記載内容の相違
	度を設定する。漂流物が各施設に衝突する際の荷重の大きさは、	【東海第二,女川2】
	評価対象施設に対して直交方向の流速に依存すると考えられるた	
	め,評価対象施設に対して直交方向の最大流速を抽出し,これに	
	不確かさを考慮して、安全側の評価を実施する。また、防波壁等、	
	広範囲にわたる施設は地点により流速が異なるが、設計に用いる	
	漂流物の衝突荷重として、安全側に評価対象施設全体の最大流速	
	を用いる。	
	評価対象施設における最大流速分布を図2~9に示す。	
	結果としては、基準津波における最大流速は施設護岸港湾外で	
	9.0m/s,施設護岸港湾内で9.0m/s,1号炉放水連絡通路前で9.8m/s	
	が抽出されたことから、安全側に施設護岸港湾外、港湾内及び 1	
	号炉放水連絡通路前で 10.0m/s を, 津波防護施設及び浸水防止設	
	備の衝突荷重評価に用いる漂流速度として設定する。	




東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		10.00 m/s 10.00 m/s 9.00 10.	
		10.00 m/s 9.00 8.00 7.00 6.00 1.00 1.00 1.00 1.00 1.00 1.00 1	
		図3 基準津波1 (防波堤なし) 最大流速分布	


東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		2.0m/s 2.0m/s 1000 m/s 9.00 8.00 7.00 6.00 5.00 4.00 3.00 1.00 0.00 基準津波 2 (南東方向)	
		10.00 m/s 9.00 8.00 7.00 6.00 4.00 4.00 1.00 1.00 1.00 0.00	
		図4 基準津波2 最大流速分布	


東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		2.0ms 2.0ms 9.00 8.00 7.00 6.00 4.00 4.00 1.00 基準津波 3 (南東方向)	
		10.00 m/s 9.00 8.00 7.00 6.00 5.00 4.00 4.00 1.00 0.00	
		図 5 基準津波 3 最大流速分布	


東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		1.5m/s 1.5m/s 1.5m/s 1.5m/s 10.00 m/s 9.00 8.00 7.00 6.00 1.00 1.00 0.00 基準津波 4 (防波堤あり) (南東方向)	
		10.00 m/s 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00	
		図 6 基準津波 4 (防波堤あり) 最大流速分布	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		2.3m/s 2.3m/s 10.00 m/s 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.4m/s 1.00 0.00 基準津波 4 (防波堤なし) (南東方向)	
		10.00 m/s 9,00 8,00 7,00 6,00 5,00 4,00 1,00 1,00 0,00 基準津波 4 (防波堤なし) (東方向)	
		図7 基準津波4 (防波堤なし) 最大流速分布	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		3.4m/s 3.4m/s 9.00 8.00 7.00 6.00 4.00 3.00 4.00 0.00 基準津波 5 (南東方向)	
		10.00 m/s 9,00 8,00 7,00 6,00 4,00 1,00 1,00 1,00 1,00 1,00 1,00 1	
		図8 基準津波5 最大流速分布	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		3.4m/s 9.00 8.00 7.00 6.00 3.00 2.00 1.00 0.00 基準津波 6 (南東方向)	
		10.00 m/s 9.00 7.00 6.00 5.00 4.3m/s 3.00 2.00 1.00 0.00	
		図 9 基準津波 6 最大流速分布	

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現, 設備名称の相違 (実質的な相違なし)

まとめ資料比較表 〔第5条 津波による損傷の防止 別添1 添付資料19〕

備考 柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 女川原子力発電所 2号炉(2020.2.7版) 島根原子力発電所 2号炉 添付資料 26 添付資料 19 添付資料 19

津波監視設備の監視に関する考え方

津波に関する情報は、気象庁から発信される津波情報(日本気 象協会からのファックス受信または、緊急警報ラジオ)や、構内 に設置している津波監視カメラ及び取水槽水位計によって収集す る。地震・津波が発生した際のプラント運用に関するフローは添 付第26-1 図に示す通り。

構内に設置する津波監視設備(津波監視カメラ,取水槽水位計) は、津波襲来状況及び構内の状況を監視するため、昼夜にわたっ て監視可能な設計としている。監視の考え方について、添付第26-1 表に纏める。

添付第 26-1 表 津波監視の考え方

監視対象	設備	監視場所	監視設備の考え方
引き波	取水槽水位計	・6 号及び 7 号 炉 中 央 制御室	引き波時には非常用海水冷却系の取水 確保を日的として,主に取水槽水位計(6 号及び7号炉非常用海水ポンプ室に設 置)の水位値を確認する。
影響	津波監視カメラ	・6 号及び 7 号 炉 中 央 制御室	津波監視カメラを,7号炉主排気筒に設置し,津波(引き波)の状況を確認する。
津波襲来	津波監視カメラ	・6 号及び 7 号 炉 中 央 制御室	津波襲来時には主に津波監視カメラ (7 号炉主排気筒に設置) の映像を確認し, 襲来状況や敷地浸水状況等をリアルタ イムかつ継続的に確認する。
状況 	取水槽水位計	・6 号及び 7 号 炉 中 央 制御室	取水槽水位計にて,上昇側及び下降側水 位を確認する。
襲来後の構内状況	津波監視カメラ	・6 号及び 7 号 炉 中 央 制御室・5 号炉緊急 時対策所	津波監視カメラを、7号炉主排気筒に設置し、津波襲来後の構内状況を監視する。

津波監視設備の監視に関する考え方

津波に関する情報は、気象庁から発信される津波情報(日本気) 象協会からのファックス受信又は緊急警報ラジオ)や、構内に設 置している津波監視カメラ及び取水ピット水位計によって収集す る。地震・津波が発生した際のプラント運用に関するフローは図 | 及び取水槽水位計によって収集する。地震・津波が発生した際の 1及び図2に示すとおり。

構内に設置する津波監視設備(津波監視カメラ、取水ピット水 位計)は、津波襲来状況及び構内の状況を監視するため、昼夜に│は、津波襲来状況及び構内の状況を監視するため、昼夜にわたっ わたって監視可能な設計としている。監視の考え方について、表 1に纏める。

表1 津波監視の考え方

監視 対象	設備	監視場所	監視設備の考え方
引き波	津波監視カメラ	2号炉 中央制御室	津波監視カメラを、2号炉原子炉建屋屋上及び防潮 堤北側エリアに設置し、津波(引き波)の状況を確 認する。
影響	取水ピット水位計	2号炉 中央制御室	引き波時には非常用補機冷却海水系の取水確保を 目的として、主に取水ピット水位計(2号炉海水ポ ンプ室補機ポンプエリアに設置)の水位値を確認す る。
津波襲 来状況	津波監視カメラ	2号炉 中央制御室	津波襲来時には主に津波監視カメラ(2号炉原子炉 建屋屋上及び防潮堤北側エリアに設置)の映像を確 認し,襲来状況や敷地浸水状況等をリアルタイムか つ継続的に確認する。
	取水ピット水位計	2号炉 中央制御室	取水ピット水位計にて, 上昇側及び下降側水位を確認する。
襲来後 の構内 状況	津波監視カメラ	2号炉 中央制御室	津波監視カメラを、2号炉原子炉建屋屋上及び防潮 堤北側エリアに設置し、津波襲来後の構内状況を監 視する。

津波監視設備の監視に関する考え方

津波に関する情報は、気象庁から発信される津波情報(日本気 象協会からのデータ受信による警報発報及びパソコン画面への表 示又は緊急警報ラジオ) や、構内に設置している津波監視カメラ プラント運用に関するフローは添付資料37に示すとおり。

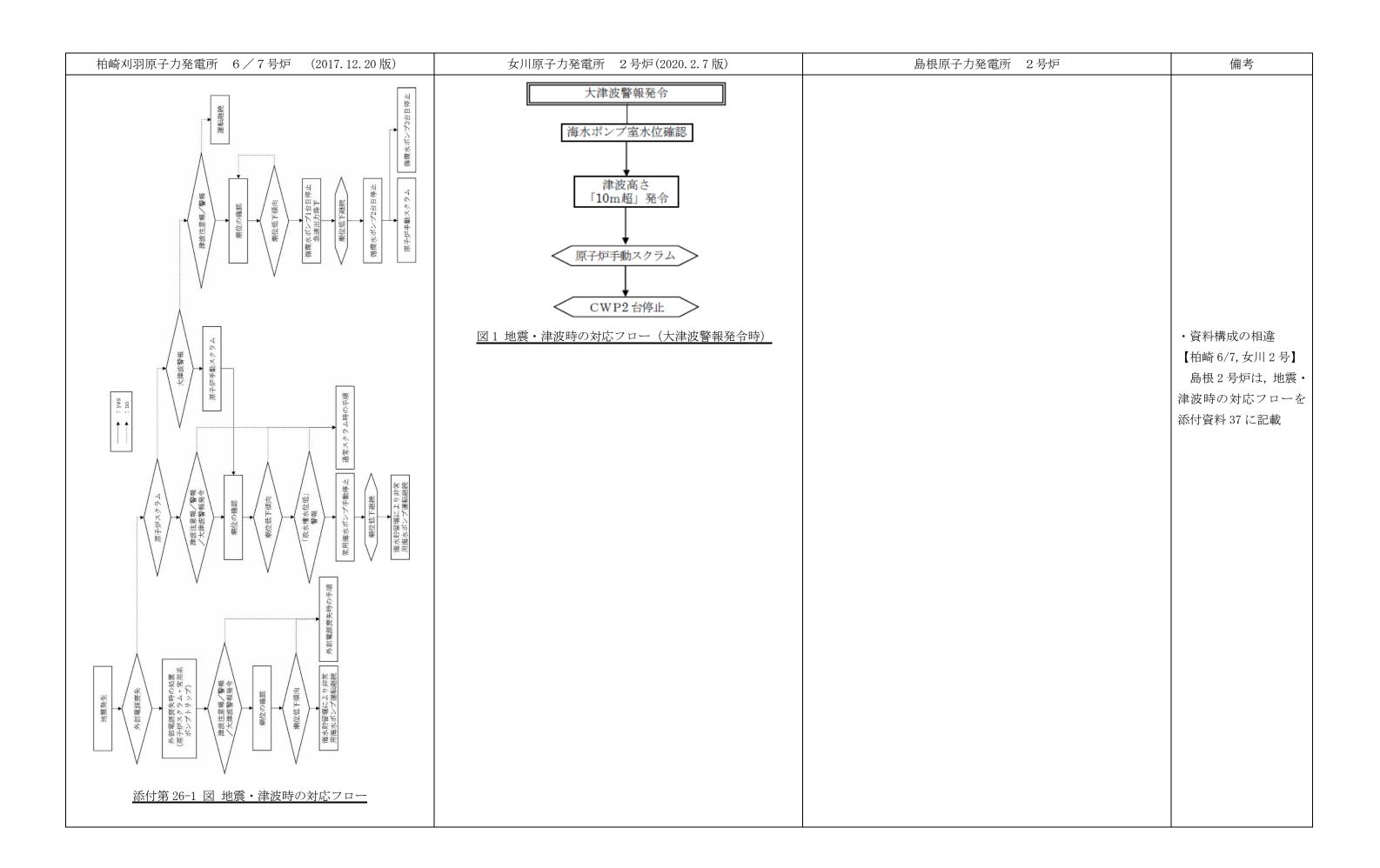

構内に設置する津波監視設備(津波監視カメラ,取水槽水位計) て監視可能な設計としている。監視の考え方について、表1に纏 │ 津波時の対応フローを める。

表 1 津波監視の考え方

事象	設備	監視場所	監視設備の考え方
			引き波時には非常用海水冷却系の海
引き波	取水槽水位計	中央制御室	水確保を目的として, 取水槽水位計の
発生時			水位を確認する。
光生時	津波監視カメラ	中央制御室	津波監視カメラを排気筒に設置し,津
	年収量化パクノ	中大前仰主	波(引き波)の状況を確認する。
			津波襲来時には主に津波監視カメラ
	津波監視カメラ	中央制御室	(排気筒に設置)の映像を確認し、津
津波襲来			波の襲来状況や敷地浸水状況等をリ
体仮装木 状況			アルタイムかつ継続的に確認する。
1/1/1	取水槽水位計		取水槽水位計にて,上昇側水位を確認
		中央制御室	する。(入力津波高さを上回る EL10.7m
			まで、計測可能な設計としている。)
津波襲来後	津波監視カメラ	中央制御室	津波監視カメラの映像を確認し, 津波
の構内状況	年収証児パクノ	中大 門 仰 至	襲来後の構内の状況を監視する。

・資料構成の相違 【柏崎 6/7, 女川 2 号】 島根2号炉は,地震・ 添付資料37に記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
津波監視カメラの映像は <u>添付第26-2 図</u> に示すフローに従い,中	津波監視カメラの映像は図3に示すフローに従い、中央制御室	津波監視カメラの映像は図1に示すフローに従い,中央制御室	
央制御室にて当直員が監視することを基本とするが, <u>5 号炉</u> 緊急	にて当直員が監視することを基本とする。	にて当直員が監視することを基本とするが、緊急時対策所でもカ	
寺対策所でもカメラ映像の確認を通して現場状況の確認が可能と		メラ映像の確認を通して現場状況の確認が可能となるよう監視設	
なるよう監視設備を配備する。		備を配備する。	
複数箇所で同時にカメラ操作を行い操作信号が重複することを		複数箇所で同時にカメラ操作を行い操作信号が重複することを	
避けるため,カメラの操作は中央制御室にて実施する設計とする。		避けるため,カメラの操作は中央制御室にて実施する設計とする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	津波発生		
	海水ポンプ室水位低警報発生 (0. P2. 98m)		
	海水ポンプ室水位確認		
	海水ポンプ室水位低下継続		
	出力低下操作		
	海水ポンプ室水位低低警報発生 (0. P3. 79m)		
	*		
	原子炉手動スクラム 海水ポンプ室水位極低警報発生 (0. P5. 95m)		
	CWP2 台停止 CWP2 台自動停止		
	※CWP手動停止操作前に水位極低設定値まで水位が下がった場合		
	図 2 地震・津波時の対応フロー (大津波警報発令時以外)		

実線・・設備運用又は体制等の相違(設計方針の相違) 波線・・記載表現 設備名称の相違(宝質的な相違な)

及び津波監視設備については、設置許可基準規則及び関連審査 ガイドに記載される下記事項を考慮した上で荷重の組合せを設 定する。 花載箇所 記載所 登載内容 素は1 設置許可基準規則等の荷重組合せに関する要求事項 表は1 設置許可基準規則等の荷重組合せに関する要求事項 表は1 設置許可基準規則等の荷重組合せに関する要求事項 表は2 表は2 設置許可基準規則等の荷重組合せに関する要求事項 表は2 表は3 影響者ガイド ²¹ の組合せを設定する。 表は3 影響者ガイド ²¹ の組合せを設定する。 表は2 影響者がは、2 影響者がは、2 影響者がは、2 影響者がは、2 影響者がは、3 影響者がは、4 の組合せを設定する。 表は3 影響者がは、4 の組合せを設定する。 表は4 の組合せを設定する。 の組合せを設定する。 の組合せを設定する。 まは第一本のでは、2 の関連を表がは、2 の関連を表がは、3 の関連を表がは、3 の関連を表がは、3 の関連を表がは、4 の関連を表がは、4 の関連を表がは、5 の観音を表がは、5 の関連を表がは、5 の関連を表がは、5 の関連を表がは、5 の関連を表がは、5 の関連を表がは、5 の関連を表がは、5 の関連を表がは、5 の観がに、5 の記述を表がは、5 の記述を表がは、5 の記	東	海第二発電所(2018.9.12版)		女川原子力発電所 2号炉(2019.11.6版)				島	·····································	
 基施第二発電所において設置する津波防護施設、浸水防止設備			添付資料_2_6_	添付資料 20			添付資料 20			
東海第二発電所において設置する津波防護施設、浸水防止設備 及び津波監視設備については、設置許可基準規則及び関連審査 ガイドに記載される下記事項を考慮した上で荷重の組合せを設 定する。 を基準所	耐津波設計において考慮する荷重の組合せについて			耐津波設計にお	おいて考慮する荷重の組合せに	ついて		耐津波設計に:	おいて考慮する荷重の組合せに	こついて
記載箇所 記載内容 考慮する荷重 表慮する荷重 表慮する荷重と基準地震動による地震力を組合せる。	及び津波監視設が がイドに記載され	備については、設置許可基準規	則及び関連審査	女川原子力発電所に 備及び津波監視設備に ガイドに記載される一 定する。	こついては,設置許可基準規則 下記事項を考慮した上で荷重の	及び関連審査 組合せを設	記 審	島根原子力発電所 設備及び津波監視 いまではいいでは いまでは、 の組合せを設定する。	設備については,設置許可基準 される下記事項 <u>(表1)</u> を考慮 る。	規則及び関連 した上で荷重
The proof of t	記載簡正	記載 内容	老膚する荷重	記載箇所		考慮する荷重		記載箇所		考慮する荷重
2 耐震審査ガイド*1	和震審査ガイド*	常時作用している荷重及び運転時に 作用する荷重と基準地震動による地	・常時荷重		作用する荷重と基準地震動による地・		1		用する荷重と基準地震動による地震力	
耐津波審査ガイド ^{※2} 耐津波設計における荷重の組合せを ・常時荷重 ・余震荷重	2	地震と津波が同時に作用する可能性 について検討し、必要に応じて基準 地震動による地震力と津波による荷	・地震荷重	6. 3. 3	波が同時に作用する可能性について 検討し、必要に応じて基準地震動に よる地震力と津波による荷重の組合 せを考慮すること。	津波荷重	2		同時に作用する可能性について検討し, 必要に応じて基準地震動による地震力 と津波による荷重の組合せを考慮する	
考慮されていること。 ・余 農何里	3	S * 2		(3) 5.1(4) 耐津波審査ガイド^{※2}	漂流物の衝突による荷重の組合せを	余震荷重	3			• 津波荷重
本波による波圧及び漂流物の衝突に よる荷重の組合せを考慮して設計す ・津波荷重 ・津波荷重 ・津波荷重 ・津波荷重 ・津波荷重 ・東流物衝突荷重 ・漂流物衝突荷重 ・源流物衝突荷重 ・源流物衝突石 ・源流物衝突石 ・源流物衝突荷重 ・源流物衝突石 ・源流水		よる荷重の組合せを考慮して設計す		5. 4. 2	津波監視設備については、地震荷	地震荷重	4			
5 耐津波審査ガイド**2 津波監視設備については、地震荷重・風荷重の組合せを考慮すること。・風荷重 ・風荷重 ・風荷重 安全施設は、想定される自然現象(地震及び津波を除く。)が発生した場・その他自然現象 ・その他自然現象 ・風荷重 ・				5. 3	安全施設は、想定される自然現象(地	201 20 000 1000	5		, , , , , , , , , , , , , , , , , , , ,	
■ 2	6	に大きな影響を及ぼす恐れがあると 想定される自然現象により当該重要 安全施設に作用する衝撃及び設計基	・その他自然現象による荷重	(6)		こよる荷重	6		及び津波を除く。) が発生した場合においても安全機能を損なわないものでな	・積雪荷重

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2 号炉	備考
1. 考慮する荷重について	2. 考慮する荷重について	2 考慮する荷重について	
(1) 常時荷重	(1) 常時荷重	(1) 常時荷重	
常時作用している荷重として、自重、積載荷重及び海中施	常時作用している荷重として、自重、積載荷重及び海中施	常時作用している荷重として,自重,積載荷重 <mark>及び海中施設</mark>	
設に対する静水圧等を考慮する。	設に対する静水圧等を考慮する。	に対する静水圧等を考慮する。	
なお、当該施設・設備に運転時の荷重が作用する場合は、	なお、当該施設・設備に運転時の荷重が作用する場合は、	なお、当該施設・設備に運転時の荷重が作用する場合は、運	
運転時荷重を考慮する。	運転時荷重を考慮する。	転時荷重を考慮する。	
(6) 地震荷重 (S _S)	(2) 地震荷重 (Ss)	(2) 地震荷重(Ss)	
基準地震動Ssに <u>伴う</u> 地震力を考慮する。	基準地震動 Ss による地震力を考慮する。	基準地震動Ssに <u>よる</u> 地震力を考慮する。	
(7) 余震荷重	(3) 余震荷重	(3) 余震荷重	
余震荷重として,弾性設計用地震動 <u>S_d-D1に伴う</u> 地震力	余震荷重として,弾性設計用地震動 <u>Sd-D2</u> による地震力を	余震荷重として, 弾性設計用地震動S d-Dによる地震力を考	
を考慮する。	考慮する(添付資料23参照)。	慮する。(添付資料 22 参照)	
なお、施設が浸水した状態で余震が発生した場合の動水圧		なお、施設が浸水した状態で余震が発生した場合における、	
荷重(スロッシング荷重)も合わせて考慮する。	動水圧荷重(スロッシング荷重)も合わせて考慮する。	施設内滞留水に生じる動水圧荷重 (スロッシングによる荷重等)	
		もがせて考慮する。 これで表慮する。	
	(4) 津波荷重(静)	(4) <u>静的</u> 荷重(静 <u>水圧</u>)	
津波による浸水に伴う静水圧 <u>(水頭)</u> を考慮する。	津波により施設・設備に作用する静的荷重(静水圧による	津波 <mark>等</mark> により設備に作用する静的荷重 <u>として</u> , 津波 <mark>等</mark> による	・考慮する静的荷重の相
	荷重)を考慮する。	浸水に伴う静水圧を考慮する。	違
			【東海第二,女川2】
(5) 津波荷重(動・波圧)	(5) <u>津波</u> 荷重(<u>動・</u> 波力)	(5) <u>動的</u> 荷重(波力)	島根2号炉は、低耐震
津波の波力が直接作用する場合は、津波高さ又は津波の浸	津波により施設・設備に作用する動的荷重として、津波の	津波により設備に作用する動的荷重として、津波の波力によ	
水深による静水圧並びに動水圧として作用する津波の波圧	波力による荷重を考慮する。	る荷重を考慮する。	る保有水の溢水の影響
による荷重を考慮する。			を受ける設備があるこ
<u>(4)</u> 津波荷重(<u>動・</u> 突き上げ)	(6)津波荷重(動・突き上げ)	(6) <u>動的</u> 荷重(突き上げ)	とから、「等」を記載。
津波の波圧が水路等の経路を経由して作用する場合は、経	津波により施設・設備に作用する動的荷重として、突き上		
路の応答圧力(水頭)として動水圧及び静水圧によって鉛直	げ荷重(経路からの津波が鉛直上向き方向に作用する場合の	<u>路からの津波が鉛直上向き方向に作用する場合の津波荷重)を</u>	
上向きに作用する荷重を考慮する。	津波荷重)を考慮する。	考慮する。	
(8) 漂流物衝突荷重	(7) 漂流物衝突荷重	(7) 漂流物衝突荷重	
漂流物の衝突荷重を考慮する。	漂流物の衝突荷重を考慮する。	漂流物の衝突荷重を考慮する。	
	(8) 風荷重	(8) 風荷重	
	「第6条外部からの衝撃による損傷の防止」において規	「第6条 外部からの衝撃による損傷の防止」において規定	
	定する設計基準風速に伴う荷重を考慮する。	する設計基準風速に伴う荷重を考慮する。	

東海第二発電所(2018.9.12版)	女川原子力発電所 2 号炉(2019.11.6 版)	島根原子力発電所 2号炉	備考
(2) その他自然現象による荷重(風荷重,積雪荷重等) 各荷重は「第6条 外部からの衝撃による損傷の防止」に 規定する設計基準風速の風荷重,設計基準積雪量の積雪荷 重,降下火砕物による荷重を考慮する。 風荷重は,建築基準法及び同施行令第87条第2項及び第4 項に基づく建設省告示第1454号を参照し,設計基準風速を 風荷重として考慮する。ただし,竜巻による風荷重又は降下 火砕物による荷重については,「第6条 外部からの衝撃に よる損傷の防止」において外部事象防護対象施設に該当する 施設・設備について考慮する。	その他自然現象による荷重(風荷重、積雪荷重等) 各荷重は「第6条 外部からの衝撃による損傷の防止」に 規定する設計基準風速の風荷重、設計基準積雪量の積雪荷 重,降下火砕物による荷重を考慮する。 風荷重は、建築基準法及び同施行令第87条第2項及び第4 頁に基づく建設省告示第1454号を参照し、設計基準風速を 風荷重として考慮する。ただし、竜巻による風荷重又は降下 火砕物による荷重については、「第6条 外部からの衝撃に よる損傷の防止」において外部事象防護対象施設に該当する		・考慮する荷重の相違 【東海第二,女川2】 第6条において規定す る自然現象の組合せの 相違
 2. 荷重の組合せ (1) 荷重の組合せの考え方 荷重の組合せの設定に当たっては、施設・設備の設置状況を考慮し、以下の考え方により組合せを設定する。 a. 設置場所 屋内又は海中に設置する施設・設備については、その他自然現象による荷重(風荷重、積雪荷重等)の影響を受けないため考慮は不要とする。 	3. 荷重の組合せ (1) 設置状況等に応じて考慮する荷重について 荷重の組合せの設定にあたっては、施設・設備の設置状況を考慮 し、各荷重の組合せ要否を以下のとおり整理する。 a. 設置場所 屋内あるいは海中に設置する施設・設備については、その他自 然現象の影響を受けないため、「その他自然現象に伴う荷重」は 考慮不要と整理する。	 3. 荷重の組合せ 3.1 設置状況等に応じて考慮する荷重について 荷重の組合せの設定に当たっては、施設・設備の設置状況を 考慮し、各荷重の組合せ要否を以下のとおり整理する。 (1) 設置場所 屋内または海中に設置する施設・設備については、「風荷重」 及び「積雪荷重」は考慮不要と整理する。 	
b. 津波荷重の種別 津波の波力の影響を受けない施設・設備については、津波 荷重として、「津波荷重(静)」を考慮する。 津波の波力の影響を受ける施設・設備については、津波荷 重として動水圧を考慮する。直接波力が作用する施設・設備 については、「津波荷重(動・波圧)」を考慮する。経路を経 由して波圧が作用する施設・設備については、「津波荷重 (動・突き上げ)」を考慮する。	b. 津波荷重の種別 津波の直接的な影響を受けない場所に設置する施設・設備については、津波荷重として「津波荷重(静)」を考慮する。 津波の直接的な影響を受ける場所に設置する施設・設備については、津波荷重として動的荷重を考慮し、経路からの津波が鉛直上向きに作用する施設・設備については、「津波荷重(動・突き上げ)」を考慮する。それ以外の施設・設備については、「津波荷重(動・波力)」を考慮する。	ついては、津波荷重として「 <mark>静的</mark> 荷重(静 <u>水圧</u>)」を考慮する。	
c. 漂流物衝突の <u>有無</u> 漂流物の衝突が想定される施設・設備については「漂流物 衝突荷重」を考慮する。	c漂流物衝突の <u>有無</u> 漂流物の衝突が想定される施設・設備については,「漂流物衝突 荷重」を考慮する。	(3) 漂流物衝突の <mark>影響</mark> 漂流物の衝突が想定される施設・設備については,「漂流物 衝突荷重」を考慮する。	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		(4) 津波の波源の活動の影響	・考慮する荷重の相違
		地震に起因する津波の影響を受ける施設・設備について,	【東海第二,女川2】
		以下のとおり整理する。	波源の違いによる地
		海域活断層に想定される地震による津波の影響を受ける場	震荷重の考慮有無につ
		所に設置する施設・設備について、海域活断層に想定される	いて記載
		地震による津波荷重に「余震荷重」を考慮する。	
		なお、日本海東縁部に想定される地震による津波の影響を	
		受ける場所に設置する施設・設備については、日本海東縁部	
		に想定される地震による「余震荷重」は敷地への影響が明ら	
		かに小さいことから,「余震荷重」を考慮しない。(添付資料	
		22 参照)	
9 夕歩訊、訊供の訊到シャル、マ本申みフ歩毛の如人ル	(0) 夕佐訊、訊供の訊訊によれて本庫子フ世毛の知へに	99夕佐訊、訊供の訊引によれ、で払春小で共呑の何人に	
3. 各施設・設備の設計において考慮する荷重の組合せ	(2) 各施設・設備の設計において考慮する荷重の組合せ	3.2 各施設・設備の設計において考慮する荷重の組合せ	
各施設・設備に展開し、津波防護施設及び浸水防止設備の	3. (1) に示す考え方を各施設・設備に展開し、津波防護 特別 温水は小乳供及び油水は温泉供の乳乳になる。 て老虎士	3.1 に示す考え方を各施設・設備に展開し、津波防護施設、	
設計に当たって考慮する荷重の組合せを以下のとおり整理	施設,浸水防止設備及び津波監視設備の設計にあたって考慮する共和の組合はない下のしたい整理する。	浸水防止設備及び津波監視設備の設計にあたって考慮する荷重の	
する。第1表に各施設・設備の荷重の組合せを示す。	る荷重の組合せを以下のとおり整理する。	組合せを以下のとおり整理する。図1に津波防護施設、浸水防止	
(1) 附期目及20代期員	_ 7十油14目	設備及び津波監視設備の位置を示し、表2に考慮する荷重を示す。	対象設備の相違
(1) 防潮堤及び防潮扉	a. 防潮堤 広潮場の記録において老庫よる芸芸は、この記墨供知により	(1) 防波壁	・対象設備の相違 【東海第二,女川2】
<u>防潮堤及び防潮扉</u> は、 <u>その</u> 設置状況より以下のとおり整理 される。	防潮堤の設計において考慮する荷重は、 <u>その</u> 設置状況により 以下のとおり整理する。	防波壁の設計において考慮する荷重は、防波壁の設置状況より以下のとおり整理される。	【果佛弗二,女川4】
G1100.	以下のこれり登座する。	り以下のとねり登垤される。	
a. 設置場所	(a)設置場所	a. 設置場所	
屋外の設置であるため、その他自然現象による荷重(風荷	屋外の施設であるため、風荷重及びその他自然現象に伴う荷	屋外に設置するため、「風荷重」及び「積雪荷重」を考慮	
重、積雪荷重等)については、設備の設置状況、構造(形状)	重については、施設の設置状況、構造(形状)等の条件を含め	† 5	
等の条件を含めて、適切に組合せを考慮する。	て、適切に組合せを考慮する。		
b. 津波荷重の種別	<u>(b)</u> 津波荷重の種別	b. 津波荷重の種別	
津波の波力を直接受けることから、津波荷重(動・波力)	津波の直接的な影響を受ける場所に設置する施設であるた	津波の直接的な影響を受ける場所に設置する施設である	
を考慮する。	め、津波荷重として、「 <u>津波</u> 荷重(<u>動・</u> 波力)」を考慮する。	ため,津波荷重として「 <mark>動的</mark> 荷重(波力)」を考慮する。	
	余震との重畳時においては, 防潮堤前面に入力津波水位の海		・設置個所の違いによる
	水があることを仮定し、「津波荷重(静)」を考慮する。		考慮する荷重の相違
			【女川2】
c. 漂流物衝突の <u>有無</u>	(c) 漂流物衝突の <u>有無</u>	c. 漂流物衝突の <mark>影響</mark>	
漂流物の衝突が想定されるため、漂流物の衝突荷重を考慮	漂流物の衝突が想定されるため,「漂流物衝突荷重」を考慮する。	漂流物の衝突が想定されるため,「漂流物衝突荷重」を考	
する。		慮する。	

東海第二発電所(2018.9.12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		d. 余震荷重の影響 海域活断層に想定される地震による津波が到達する防波 壁(波返重力擁壁)のケーソン部等については個別に評価 を実施する。	・考慮する荷重の相違 【東海第二,女川2】 基準津波の波源の違 いによる地震荷重の考 慮有無について記載
上記を考慮し、以下の荷重の組合せに対して構造設計を行う。 ・常時荷重+地震荷重(S _S) ・常時荷重+ <u>津</u> 波荷重(<u>動・</u> 波圧) ・常時荷重+ <u>津</u> 波荷重(<u>動・</u> 波圧)+余震荷重 ・常時荷重+ <u>津</u> 波荷重(<u>動・</u> 波圧)+漂流物衝突荷重	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。 ①常時荷重+地震荷重 (Ss) ②常時荷重+津波荷重 (動・波力) ③常時荷重+津波荷重 (動・波力) +漂流物衝突荷重 ④常時荷重+津波荷重 (静) +余震荷重	上記を考慮し,以下の荷重の組合せに対して構造設計を行う。 ・ 常時荷重+地震荷重(Ss) ・ 常時荷重+動的荷重(波力) ・ 常時荷重+動的荷重(波力)+漂流物衝突荷重 ・ 常時荷重+動的荷重(波力)+余震荷重	・設置個所の違いによる考慮する荷重の相違
なお,防潮堤及び防潮扉は外部事象防護対象施設には該当しないが,津波防護に対する重要性を鑑み,自主的に竜巻による風荷重及び降下火砕物荷重を考慮する。 上記のほか,防潮堤及び防潮扉の設計においては,安全側の評価を行う観点から,常時荷重,津波荷重,余震荷重及び漂流物衝突荷重の組合せの影響を考慮する(詳細については,詳細設計段階で検討する。)。なお,津波荷重と余震荷重の組合せにおいては,最大荷重が同時に作用する可能性が小さいことから,津波により浸水している状態で余震が発生することを想定し,津波荷重は入力津波による浸水高さに応じた静水圧とする。			【女川2】
(2) 放水路ゲート 放水路ゲートは、その設置状況より以下のとおり整理される。	b. 防潮壁 防潮壁の設計において考慮する荷重は、その設置状況により以下 のとおり整理する。	(2) 防波壁通路防波扉及び1号放水連絡通路防波扉 防波壁通路防波扉及び1号放水連絡通路防波扉の設計におい て考慮する荷重は、防波壁通路防波扉及び1号放水連絡通路防 波扉の設置状況より以下のとおり整理される。	・対象設備の相違 【東海第二,女川2】 設備の相違による記載内容の相違
a. 設置場所 屋外の設置であるため、その他自然現象による荷重(風荷重,積雪荷重等)については、設備の設置状況、構造(形状)等の条件を含めて、適切に組合せを考慮する。	(a) 設置場所 屋外の施設であるため,風荷重及びその他自然現象に伴う荷重に ついては,施設の設置状況,構造(形状)等の条件を含めて,適 切に組合せを考慮する。	a. 設置場所 屋外に設置するため、「風荷重」を考慮するが、積雪が考 えられる構造ではないため、「積雪荷重」は考慮不要である。	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2 号炉	備考
b. 津波荷重の種別 荷重を受ける方向は鉛直上向き以外の方向もあるが、津波 の波力を放水路を経由して受けるため、経路の応答圧力によ る荷重が支配的であり、 <u>津波荷重(動・突き上げ)を考慮</u> す る。	(b)津波荷重の種別 津波の直接的な影響を受けない場所に設置する施設であるため、 津波荷重として、「津波荷重(静)」を考慮する。	b. 津波荷重の種別 津波の直接的な影響を受ける場所に設置する設備である ため、津波荷重として <u>「動的荷重(波力)」を考慮する。</u>	・対象設備の設置箇所及 び構造の違いによる考 慮する荷重の相違
c. 漂流物衝突の <u>有無</u> 放水口の開口からの漂流物は想定されないため, <u>漂流物衝</u> 突荷重は考慮しない。	(c)漂流物衝突の <u>有無</u> 漂流物の衝突が想定されないため, <u>「漂流物衝突荷重」は考慮不</u> 要である。	 c. 漂流物の衝突の<mark>影響</mark> 漂流物の衝突が想定されるため, 「漂流物衝突荷重」を考慮する。 d. 余震荷重の影響 	【東海第二,女川2】
上記を考慮し,以下の荷重の組合せに対して構造設計を行う。 ・常時荷重+地震荷重(S _S) ・常時荷重+津波荷重(動・突き上げ)	上記を考慮し,以下の荷重の組合せに対して構造設計を行う。 ①常時荷重+地震荷重(Ss) ②常時荷重+津波荷重(静)	 海域活断層に想定される地震による津波の影響を受けないため、「余震荷重」は考慮不要である。 上記を考慮し、以下の荷重の組合せに対して構造設計を行う。 ・ 常時荷重+地震荷重(Ss) ・ 常時荷重+動的荷重(波力) 	対象設備の設置箇所及
・常時荷重+津波荷重(動・突き上げ)+余震荷重	③常時荷重+津波荷重(静)+余震荷重	• 常時荷重+ <mark>動的</mark> 荷重(波力)+漂流物衝突荷重	び構造の違いによる考慮する荷重の相違 【女川2】
(3) 構内排水路逆流防止設備 構内排水路逆流防止設備は、その設置状況より以下のとお り整理される。	<u>c. 取放水路</u> 流路縮小工 取放水路流路縮小工の設計において考慮する荷重は、その設置状 況により以下のとおり整理する。	(3) 1号炉取水槽流路縮小工 1号炉取水槽流路縮小工の設計において考慮する荷重は, 1 号炉取水槽流路縮小工の設置状況より以下のとおり整理され る。	・対象設備の相違 【東海第二,女川2】 設備の相違による記 載内容の相違
a. 設置場所 屋外の設置であるため、その他自然現象による荷重(風荷重、積雪荷重等)については、設備の設置状況、構造(形状)等の条件を含めて、適切に組合せを考慮する。	(a)設置場所 海中設置のため、「その他自然現象に伴う荷重」は考慮不要であ る。	a. 設置場所 屋外に設置するが、1号炉取水管端部に設置されること から、「風荷重」及び「積雪荷重」は考慮不要である。	
b. 津波荷重の種別 構内排水路逆流防止設備は、防潮堤の前面に設置されているため、津波の波力を直接受けると考え、津波荷重(動・波力)を考慮する。	(b) 津波荷重の種別 津波の直接的な影響を受ける場所に設置する施設であるため、津 波荷重として、「 <u>津</u> 波荷重(<u>動・</u> 波力)」を考慮する。 余震との重畳時においては、防潮堤前面に入力津波水位の海水が あることを仮定し、「津波荷重(静)」を考慮する。	b. 津波荷重の種別 津波の直接的な影響を受ける場所に設置する施設である ため、津波荷重として「 <u>動的</u> 荷重(波力)」を考慮する。 <u>な</u> <u>お、津波荷重(津波波力)は、津波時の静水圧、流水圧及</u> <u>び流水の摩擦による推力を考慮する。</u>	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
c. 漂流物衝突の <u>有無</u>	(c) 漂流物衝突の <u>有無</u>	c. 漂流物衝突の <u>影響</u>	
集水枡内に設置するため、漂流物の到達は想定されないた	漂流物の衝突が想定されないため,「漂流物衝突荷重」は考慮不	漂流物の衝突が想定されないため、「漂流物衝突荷重」は	
め、漂流物衝突荷重は考慮しない。	要である。	考慮不要である。	
		d. 余震荷重の影響	・考慮する荷重の相違
		1号炉取水槽流路縮小工に対しては,海域活断層に想定	【東海第二,女川2】
		される地震による津波の影響を受けるため、「余震荷重」を	波源の違いによる地
		考慮する。	震荷重の考慮有無について記載
上記を考慮し, 以下の荷重の組合せに対して構造設計を行う。	上記を考慮し,以下の荷重の組合せに対して構造設計を行う。	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。	
・常時荷重+地震荷重(S _S)	①常時荷重+地震荷重(Ss)	· 常時荷重+地震荷重 (Ss)	
・常時荷重+ <u>津波</u> 荷重(<u>動・</u> 波力)	②常時荷重+ <u>津波</u> 荷重(<u>動・</u> 波力)	· 常時荷重+動的荷重(波力)	
・常時荷重+ <u>津波</u> 荷重(<u>動・</u> 波力)+余震荷重	③常時荷重+ <u>津波荷重(静)</u> +余震荷重	· 常時荷重+ <u>動的荷重(波力)</u> +余震荷重	・対象設備の設置箇所及 び構造の違いによる考
			慮する荷重の相違
			【女川2】

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
(4) 貯留堰	<u>d. 貯留堰</u>		・設備の相違
貯留堰は、その設置状況より以下のとおり整理される	貯留堰の設計において考慮する荷重は、その設置状況により以下		【東海第二,女川2】
	のとおり整理する。		島根2号炉では海中
			に設置する海水貯留堰
a. 設置場所	(a)設置場所		を設置していない
海中の設置であるため、その他自然現象による荷重(風荷	海中設置のため、「その他自然現象に伴う荷重」は考慮不要であ		
重,積雪荷重等)は考慮しない。	る。		
海中の設置であるため、貯留堰天端高さより上方の水頭を			
積載荷重として考慮する。			
b. 津波荷重の種別	(b)津波荷重の種別		
津波の波力を直接受けることから、津波荷重(動・波力)	津波の直接的な影響を受ける場所に設置する施設であるため、津		
を考慮する。	波荷重として、「津波荷重(動・波力)」を考慮する。		
	余震との重畳時においては,防潮堤前面に入力津波水位の海水が		
	あることを仮定し、「津波荷重(静)」を考慮する。		
SHEST HAVE TO A TOTAL			
c. 漂流物衝突の有無 源流物の衝突が相向されるなめ、源海畑の衝突帯重(押)	(c) 漂流物衝突の有無 - 海海物の海の海の海の大力では、「海海物海の海の海の大力では、100mm		
漂流物の衝突が想定されるため、漂流物の衝突荷重(押し 波時及び引き波時)を考慮する	漂流物の衝突が想定されるため、「漂流物衝突荷重」を考慮する。		
上記を考慮し,以下の荷重の組合せに対して構造設計を行う。	上記を考慮し,以下の荷重の組合せに対して構造設計を行う。		
・常時荷重+地震荷重(S_S)	①常時荷重+地震荷重 (Ss)		
· 常時荷重+津波荷重(動・波圧)	②常時荷重+津波荷重(動・波力)		
・常時荷重+津波荷重(動・波圧)+余震荷重	 ③常時荷重+津波荷重(動・波力)+漂流物衝突荷重		
・常時荷重+津波荷重(動・波圧)+漂流物衝突荷重	④常時荷重+津波荷重(静)+余震荷重		
上記のほか,貯留堰の設計においては,安全側の評価を行			
う観点から、常時荷重、津波荷重、余震荷重及び漂流物衝突			
荷重の組合せの影響を考慮する(詳細については、詳細設計			
段階で検討する。)。			

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
(5) 取水路点検用開口部浸水防止蓋			・設備の相違
取水路点検用開口部浸水防止蓋は、その設置状況より以下			【東海第二】
のとおり整理される。			島根2号炉では浸水
			防止蓋は設置していな
			V
a. 設置場所			
屋外の設置のため、その他自然現象による荷重(風荷重、			
積雪荷重等)については、設備の設置状況、構造(形状)等			
の条件を含めて、適切に組合せを考慮する。			
b. 津波荷重の種別			
津波の波力が取水路を経由して鉛直上向きに作用するた			
め、津波荷重(動・突き上げ)を考慮する。			
c. 漂流物衝突の有無			
取水路の上版への設置であり、漂流物の到達が想定されな			
いため、漂流物の衝突荷重は考慮しない。			
V・ため、保価物の国大恒里はお思いなV。			
上記を考慮し、以下の荷重の組合せに対して構造設計を行う。			
・常時荷重+地震荷重 (S _s)			
・常時荷重+津波荷重(動・突き上げ)			
・常時荷重+津波荷重(動・突き上げ)+余震荷重			
而两两里,伊及两里(第一人C工77),从及两里			

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	e. 逆流防止設備(屋外排水路) 逆流防止設備(屋外排水路)の設計において考慮する荷重は、その設置状況により以下のとおり整理する。	(4) <u>屋外排水路逆止弁</u> 屋外排水路逆止弁の設計において考慮する荷重は,屋外排水 路逆止弁の設置状況より以下のとおり整理される。	・対象設備の相違 【東海第二,女川2】 設備の相違による記 載内容の相違
	(a) 設置場所 屋外の設備であるため、風荷重及びその他自然現象に伴う荷重については、設備の設置状況、構造(形状)等の条件を含めて、適切に組合せを考慮する。	a. 設置場所 屋外に設置するが、敷地地下に設置されることから、 <u>「風</u> 荷重」及び「積雪荷重」は考慮不要である。	・対象設備の設置箇所及 び構造の違いによる考 慮する荷重の相違 【東海第二,女川2】
	(b)津波荷重の種別 津波の直接的な影響を受ける場所に設置する設備であるため、津 波荷重として、「津波荷重(動・波力)」を考慮する。 余震との重畳時においては、防潮堤前面に入力津波水位の海水が あることを仮定し、「津波荷重(静)」を考慮する。	b. 津波荷重の種別 津波の直接的な影響を受けない場所に設置する設備であるため,津波荷重として <u>「静的荷重(静水圧)」</u> を考慮する。	・対象設備の設置箇所及 び構造の違いによる考 慮する荷重の相違 【東海第二,女川2】
	(c) 漂流物衝突の有無 漂流物の衝突が想定されるため, 「漂流物衝突荷重」を考慮する。	c. 漂流物衝突の <mark>影響</mark> 漂流物の衝突が想定されないため, 「漂流物衝突荷重」は 考慮不要である。 d. 余震荷重の影響 屋外排水路逆止弁に対しては, 海域活断層に想定される 地震による津波の影響を受けるため, 「余震荷重」を考慮す	び構造の違いによる考慮する荷重の相違 【東海第二,女川2】 ・考慮する荷重の相違
	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。 ①常時荷重+地震荷重(Ss) ②常時荷重+津波荷重(動・波力)	る。 上記を考慮し,以下の荷重の組合せに対して構造設計を行う。 ・ 常時荷重+地震荷重(Ss) ・ 常時荷重+ <mark>静的荷重(静水圧)</mark>	波源の違いによる地 震荷重の考慮有無について記載 ・対象設備の設置箇所及
	③常時荷重+津波荷重(動・波力)+漂流物衝突荷重④常時荷重+津波荷重(静)+余震荷重	· 常時荷重+ <mark>静的</mark> 荷重(静 <u>水圧</u>)+余震荷 <u>重</u>	び構造の違いによる考慮する荷重の相違 【東海第二,女川2】

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
(6) 海水ポンプグランドドレン排出口逆止弁, 取水ピット祭	f. 逆流防止設備 (2 号炉補機冷却海水系放水路)		・対象設備の相違
気抜き配管逆止弁	逆流防止設備(2号炉補機冷却海水系放水路)の設計において考		【東海第二,女川2】
海水ポンプグランドドレン排出口逆止弁及び取水ピット気	虚する荷重は、その設置状況により以下のとおり整理する。		設備の相違による記
気抜き配管逆止弁は、その設置状況より以下のとおり整理る			載内容の相違
れる。			
a. 設置場所	(a)設置場所		
屋外の設置であるため、その他自然現象による荷重(風布	屋外の設備であるため、風荷重及びその他自然現象に伴う荷重に		
重,積雪荷重等)については, <u>設備の設置状況,構造(形状</u>	<u>)</u> ついては,設備の設置状況,構造(形状)等の条件を含めて,適		
等の条件を含めて、適切に組合せを考慮する。	切に組合せを考慮する。		
	(b) 津波荷重の種別		
b. 津波荷重の種別	津波の直接的な影響を受けない場所に設置する設備であるため,		
津波の波力が取水路を経由して、鉛直上向きに作用するだ	津波荷重として、「津波荷重(静)」を考慮する。		
め, <u>津波荷重(動・突き上げ)</u> を考慮する。			
	(c) 漂流物衝突の有無		
	漂流物の衝突が想定されないため,「漂流物衝突荷重」は考慮不		
	要である。		
c. 漂流物衝突の有無			
取水ピット上版への設置であり、漂流物の到達が想定され			
ないため,漂流物の衝突荷重は考慮しない。			
上記を考慮し,以下の荷重の組合せに対して構造設計を行う。	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。		
・常時荷重+地震荷重(S_S)	①常時荷重+地震荷重 (Ss)		
・常時荷重+津波荷重(動・突き上げ)	②常時荷重+津波荷重(静)		
・常時荷重+津波荷重(動・突き上げ)+余震荷重	③常時荷重+津波荷重(静)+余震荷重		

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		(5) 防水壁	・対象設備の相違
		a. 除じん機エリア防水壁	【東海第二・女川2】
		除じん機エリアの防水壁の設計において考慮する荷重は、除	設備の相違による記
		じん機エリア防水壁の設置状況より以下のとおり整理される。	載内容の相違
		(a) 設置場所	
		屋外に設置するため、「風荷重」を考慮するが、積雪が考	
		えられる構造ではないため、「積雪荷重」は考慮不要である。	
		(b) 津波荷重の種別	
		津波の直接的な影響を受けない場所に設置する施設であ	
		るため、津波荷重として「 <mark>静的</mark> 荷重 (静水圧)」を考慮する。	
		(c) 漂流物衝突の <mark>影響</mark>	
		漂流物の衝突が想定されないため,「漂流物衝突荷重」は	
		考慮不要である。	
		(d) 余震荷重の影響	
		海域活断層に想定される地震による津波の影響を受けな	
		いため,「余震荷重」は考慮不要である。	
		上記を考慮し,以下の荷重の組合せに対して構造設計を行う。	
		・ 常時荷重+地震荷重(Ss)	
		· 常時荷重+ <mark>静的</mark> 荷重(静水圧)	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		b. 復水器エリア防水壁	
		復水器エリア防水壁の設計において考慮する荷重は, 復	
		水器エリア防水壁の設置状況より以下のとおり整理され	
		<u> వ</u> .	
		(a) 設置場所	
		屋内に設置するため、「風荷重」及び「積雪荷重」は考慮	
		不要である。	
		(b) 津波荷重等の種別	
		津波の直接的な影響を受けない場所に設置する設備であ	
		るが,低耐震クラス機器の損傷による保有水の溢水の影響	
		を受けることから,「静的荷重 (静水圧)」を考慮する。	
		(c) 漂流物衝突の影響	
		漂流物の衝突が想定されないため、「漂流物衝突荷重」は	
		考慮不要である。	
		(d) 余震荷重の影響	
		復水器エリア防水壁に対しては、低耐震クラス機器の損	
		傷による保有水の溢水の影響を受けることから、「余震荷	
		重」を考慮する。	
		上記を考慮し、以下の荷重の組合せに対して構造設計を行う。	
		• 常時荷重+地震荷重 (S s)	
		・ 常時荷重+静的荷重(静水圧)	
		• 常時荷重+静的荷重(静水圧)+余震荷重	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
(7) 放水路ゲート点検用開口部浸水防止蓋			・設備の相違
放水路ゲート点検用開口部浸水防止蓋は、その設置状況よ			【東海第二】
り以下のとおり整理される。			島根2号炉に同様の
			- 設備なし
a. 設置場所			
屋外の設置のため、その他自然現象による荷重(風荷重、			
積雪荷重等)については,設備の設置状況,構造(形状)等			
の条件を含めて、適切に組合せを考慮する。			
b. 津波荷重の種別			
津波の波力が放水路を経由して、鉛直上向きに作用するた			
め、津波荷重(動・突き上げ)を考慮する。			
c. 漂流物衝突の有無			
放水路の上版への設置であり、漂流物の到達が想定されな			
いため、漂流物の衝突荷重は考慮しない。			
上記を考慮し、以下の荷重の組合せに対して構造設計を行う。			
・常時荷重+地震荷重 (S _S)			
・常時荷重+津波荷重(動・突き上げ)			
・常時荷重+津波荷重(動・突き上げ)+余震荷重			
(8) SA用海水ピット開口部浸水防止蓋			・設備の相違
SA用海水ピット開口部浸水防止蓋は、その設置状況より			【東海第二】
以下のとおり整理される。			島根2号炉に同様の
			設備なし
a. 設置場所			
屋外の設置であるため、その他自然現象による荷重(風荷			
重,積雪荷重等)については,設備の設置状況,構造(形状)			
等の条件を含めて、適切に組合せを考慮する。			
b. 津波荷重の種別			
津波の波力がSA用海水ピット用取水塔及び海水引込み管			
を経由して、鉛直上向きに作用するため、津波荷重(動・突			
き上げ)を考慮する。			

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
c. 漂流物衝突の有無			
SA用海水ピット上部開口部への設置であり、漂流物の到			
達が想定されないため、漂流物の衝突荷重は考慮しない。			
上記を考慮し、以下の荷重の組合せに対して構造設計を行う。			
・常時荷重+地震荷重 (S _S)			
・常時荷重+津波荷重(動・突き上げ)			
・常時荷重+津波荷重(動・突き上げ)+余震荷重			
(9) 緊急用海水ポンプピット点検用開口部浸水防止蓋, 緊急用			・設備の相違
海水ポンプグランドドレン排水口逆止弁,緊急用海水ポン			【東海第二】
プ室床ドレン排水口逆止弁			島根2号炉に浸水防
緊急用海水ポンプピット点検用開口部浸水防止蓋,緊急用			止蓋は設置していない。
海水ポンプグランドドレン排水口逆止弁及び緊急用海水ポ			逆止弁については,
ンプ室床ドレン排水口逆止弁は、その設置状況より以下のと			(7)に記載。
おり整理される。			
a. 設置場所			
屋内の設置のため、その他自然現象による荷重(風荷重、			
積雪荷重等)は考慮しない。			
なお,緊急用海水ポンプピット点検用開口部浸水防止蓋,			
緊急用海水ポンプグランドドレン排水口逆止弁及び緊急用			
海水ポンプ室床ドレン排水口逆止弁は屋内の設置であり、火			
山防護施設ではないため、降下火砕物荷重は考慮しない。			
b. 津波荷重の種別			
津波の波力がSA用海水ピット用取水塔,海水引込み管,			
SA用海水ピット及び緊急用海水取水管を経由して受け、鉛			
直上向きに作用するため、津波荷重(動・突き上げ)を考慮			
する。			
c. 漂流物衝突の有無			
緊急用海水ポンプピットの上版への設置であり、漂流物の			
到達が想定されないため、漂流物の衝突荷重は考慮しない。			

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
上記を考慮し、以下の荷重の組合せに対して構造設計を行う。			
・常時荷重+地震荷重 (S _S)			
・常時荷重+津波荷重(動・突き上げ)			
・常時荷重+津波荷重(動・突き上げ)+余震荷重			
(10) 海水ポンプ室ケーブル点検口浸水防止蓋 海水ポンプ室ケーブル点検口浸水防止蓋は、その設置状況 より以下のとおり整理される。 a. 設置場所 屋外の設置であるため、その他自然現象による荷重(風荷 重、積雪荷重等)については、設備の設置状況、構造(形状)等の条件を含めて、適切に組合せを考慮する。 b. 津波荷重の種別 津波が遡上又は流入しない箇所への設置であり、非常用海 水系配管(戻り管)、屋外タンク等の損傷に起因する溢水に よる浸水のため、津波荷重(静)を考慮する。 c. 漂流物衝突の有無 津波が遡上又は流入しない箇所への設置であるため、漂流 物衝突荷重は考慮しない。 上記を考慮し、以下の荷重の組合せに対して構造設計を行う。 ・常時荷重+地震荷重(S _S) ・常時荷重+津波荷重(静) ・常時荷重+津波荷重(静)			・設備の相違 【東海第二】 島根2号炉に同様の 設備なし

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	g. 水密扉(3号炉海水熱交換器建屋補機ポンプエリア) 水密扉(3号炉海水熱交換器建屋補機ポンプエリア)の設計において考慮する荷重は、その設置状況により以下のとおり整理する。	(6) 水密扉 a. 除じん機工リア水密扉 除じん機工リア水密扉の設計において考慮する荷重は、除じん機工リア水密扉の設置状況より以下のとおり整理される。	
	(a) 設置場所 屋外の設備であるため、風荷重及びその他自然現象に伴う荷重に ついては、設備の設置状況、構造(形状)等の条件を含めて、適 切に組合せを考慮する。	(a) 設置場所 屋外に設置するため、「風荷重」を考慮するが、積雪が考 えられる構造ではないため、「積雪荷重」は考慮不要である。	
	(b) 津波荷重の種別 津波の直接的な影響を受けない場所に設置する設備であるため、 津波荷重として、「津波荷重(静)」を考慮する。 (c) 漂流物衝突の <u>有無</u> 漂流物の衝突が想定されないため、「漂流物衝突荷重」は考慮不 要である。	(b) 津波荷重の種別 津波の直接的な影響を受けない場所に設置する設備であるため、津波荷重として「静的荷重(静水圧)」を考慮する。 (c) 漂流物衝突の影響 漂流物の衝突が想定されないため、「漂流物衝突荷重」は 考慮不要である。	
		(d) 余震荷重の影響 海域活断層に想定される地震による津波の影響を受けないため、「余震荷重」は考慮不要である。	・考慮する荷重の相違 【女川2】 波源の違いによる地 震荷重の考慮有無につ いて記載
	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。 ①常時荷重+地震荷重 (Ss) ②常時荷重+津波荷重 (静) ③常時荷重+津波荷重 (静) +余震荷重	上記を考慮し,以下の荷重の組合せに対して構造設計を行う。 ・ 常時荷重+地震荷重(Ss) ・ 常時荷重+静的荷重(静水圧)	・対象設備の設置箇所及 び構造の違いによる考 慮する荷重の相違 【女川2】

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
(11) <u>常設代替高圧電源装置用カルバート原子炉建屋側水密扉</u> 常設代替高圧電源装置用カルバート原子炉建屋側水密扉 は、その設置状況より以下のとおり整理される。	h. 水密扉 (2号炉原子炉建屋, 2号炉制御建屋) 水密扉 (2号炉原子炉建屋, 2号炉制御建屋)の設計において考慮する荷重は, その設置状況により以下のとおり整理する。	b. 復水器エリア水密扉 復水器エリア水密扉の設計において考慮する荷重は、復水器 エリア水密扉の設置状況により以下のとおり整理される。	
a. 設置場所 屋内の設置のため、その他自然現象による荷重(風荷重、 積雪荷重等)は考慮しない。 なお、常設代替高圧電源装置用カルバート原子炉建屋側水 密扉は屋内の設置であり、火山防護施設ではないため、降下 火砕物荷重は考慮しない。	(a) 設置場所 屋内設置のため、「その他自然現象に伴う荷重」は考慮不要である。	(a) 設置場所 屋内に設置するため,「風荷重」及び「積雪荷重」は考慮 不要である。	
b. 津波荷重の種別 津波が遡上又は流入しない箇所への設置であり、非常用海 水系配管(戻り管)、屋外タンク等の損傷に起因する溢水に よる浸水のため、津波荷重(静)を考慮する。	(b) 津波荷重の種別 津波の直接的な影響を受けない場所に設置する設備であるため、 津波荷重として、「津波荷重(静)」を考慮する。	(b) 津波荷重等の種別 津波の直接的な影響を受けない場所に設置する設備であるが、低耐震クラス機器の損傷による保有水の溢水の影響を受けることから、「静的荷重(静水圧)」を考慮する。	
c. 漂流物衝突の <u>有無</u> 津波が遡上又は流入しない箇所への設置であるため、漂流 物衝突荷重は考慮しない。	(c) 漂流物衝突の <u>有無</u> 漂流物の衝突が想定されないため,「漂流物衝突荷重」は考慮不 要である。	(c) 漂流物衝突の <u>影響</u> 漂流物の衝突が想定されないため,「漂流物衝突荷重」は 考慮不要である。	
		(d) 余震荷重の影響 復水器エリア水密扉に対しては、低耐震クラス機器の損傷による保有水の溢水の影響を受けることから、「余震荷重」を考慮する。	・考慮する荷重の相違 【東海第二,女川2】 波源の違いによる地 震荷重の考慮有無につ いて記載
上記を考慮し、以下の荷重の組合せに対して構造設計を行う。 ・常時荷重+地震荷重(S _S) ・常時荷重+ <u>津波</u> 荷重(静) ・常時荷重+ <u>津波</u> 荷重(静)+余震荷重	上記を考慮し,以下の荷重の組合せに対して構造設計を行う。 ①常時荷重+地震荷重 (Ss) ②常時荷重+津波荷重 (静) ③常時荷重+津波荷重 (静) +余震荷重	上記を考慮し,以下の荷重の組合せに対して構造設計を行う。 ・ 常時荷重+地震荷重 (Ss) ・ 常時荷重+静的荷重 (静水圧) ・ 常時荷重+静的荷重 (静水圧) +余震荷重	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	i. 浸水防止蓋(2号炉揚水井戸,補機冷却系トレンチ,3号		・設備の相違
	炉揚水井戸, 2号炉軽油タンクエリア)		【東海第二】
	浸水防止蓋(2号炉揚水井戸、補機冷却系トレンチ、3号炉揚水		島根2号炉に同様の
	井戸, 2号炉軽油タンクエリア)の設計において考慮する荷重は,		設備なし
	その設置状況により以下のとおり整理する。		
	(a)設置場所		
	屋外の設備であるため、風荷重及びその他自然現象に伴う荷重に		
	ついては、設備の設置状況、構造(形状)等の条件を含めて、適		
	切に組合せを考慮する。		
	(b)津波荷重の種別		
	津波の直接的な影響を受けない場所に設置する設備であるため,		
	津波荷重として、「津波荷重(静)」を考慮する。		
	(c)漂流物衝突の有無		
	漂流物の衝突が想定されないため,「漂流物衝突荷重」は考慮不		
	要である。		
	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。		
	①常時荷重+地震荷重 (Ss)		
	②常時荷重+津波荷重(静)		
	③常時荷重+津波荷重(静)+余震荷重		

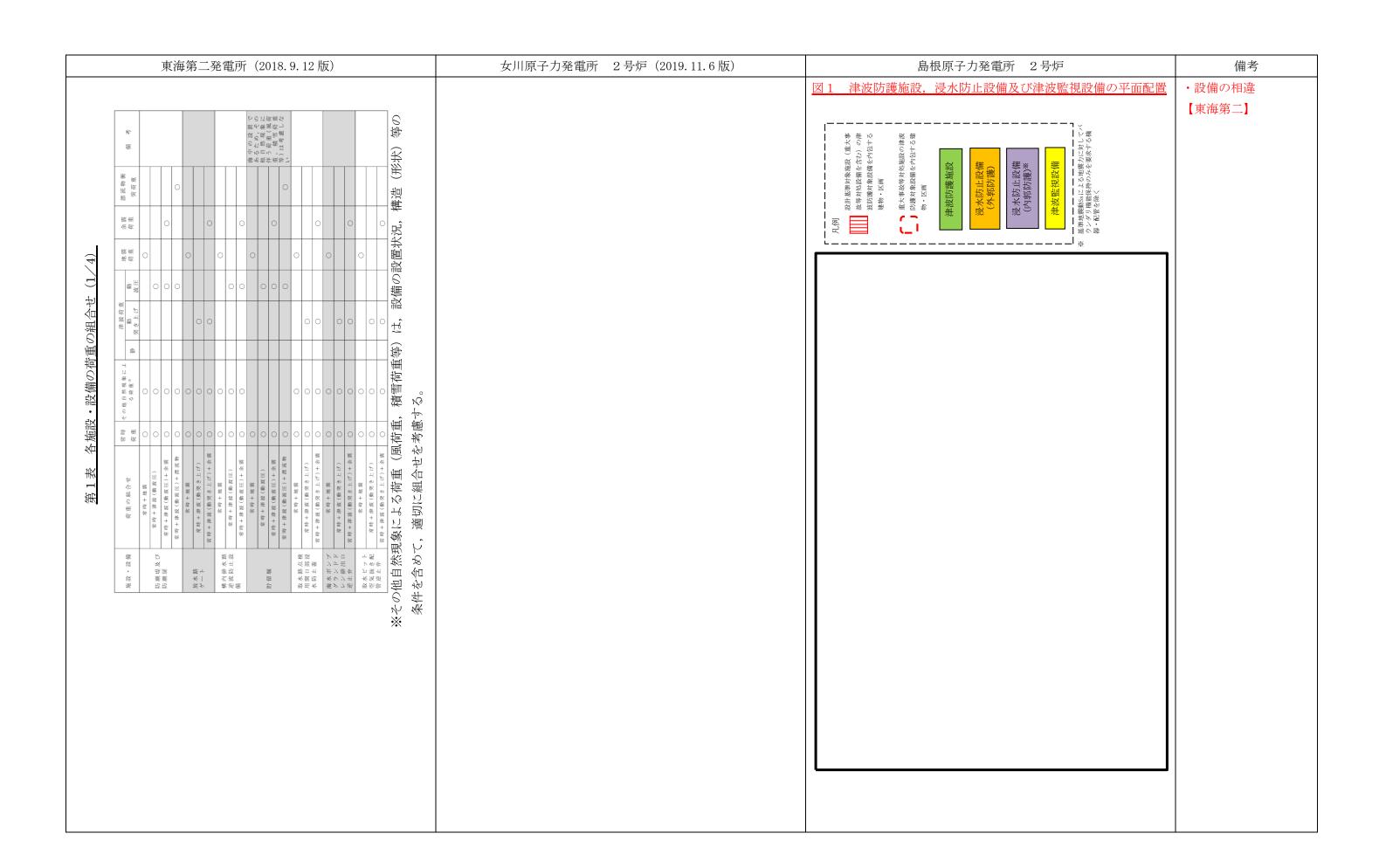
東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	j. 浸水防止蓋(3号炉熱交換器建屋補機ポンプエリア,補機冷		・設備の相違
	<u> </u>		【女川2】
	浸水防止蓋(3号炉熱交換器建屋補機ポンプエリア、補機冷却海		島根2号炉に同様の
	水系放水ピット)の設計において考慮する荷重は,その設置状況		設備なし
	により以下のとおり整理する。		
	(a)設置場所		
	屋外の設備であるため、風荷重及びその他自然現象に伴う荷重に		
	ついては、設備の設置状況、構造(形状)等の条件を含めて、適		
	切に組合せを考慮する。		
	(b) 津波荷重の種別		
	津波の直接的な影響を受ける場所に設置する設備であり、津波が		
	鉛直上向きに作用する設備であるため、「津波荷重(動・突き上		
	げ)」を考慮する。		
	(c)漂流物衝突の有無		
	漂流物の衝突が想定されないため、「漂流物衝突荷重」は考慮不		
	要である。		
	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。		
	①常時荷重+地震荷重(Ss)		
	②常時荷重+津波荷重(動・突き上げ)		
	③常時荷重+津波荷重(動・突き上げ)+余震荷重		

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	k. 浸水防止壁 (2号炉海水ポンプ室補機ポンプエリア)		・設備の相違
	浸水防止壁(2号炉海水ポンプ室補機ポンプエリア)の設計にお		【女川2】
	いて考慮する荷重は、その設置状況により以下のとおり整理す		島根2号炉に同様の
	る。		設備なし
	(a)設置場所		
	屋外の設備であるため、風荷重及びその他自然現象に伴う荷重に		
	ついては、設備の設置状況、構造(形状)等の条件を含めて、適		
	切に組合せを考慮する。		
	(1) 净冲共主众任则		
	(b) 津波荷重の種別 津波の直接的な影響を受けない場所に設置する設備であるため,		
	津波荷重として、「津波荷重(静)」を考慮する。		
	 存仮何重として、「存仮何重(肝)」を考慮する。		
	(c)漂流物衝突の有無		
	漂流物の衝突が想定されないため,「漂流物衝突荷重」は考慮不		
	要である。		
	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。		
	①常時荷重+地震荷重 (Ss)		
	②常時荷重+津波荷重(静)		
	③常時荷重+津波荷重(静)+余震荷重		

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	n. 逆止弁付きファンネル 逆止弁付きファンネルの設計において考慮する荷重は、その設	(7) 床ドレン逆止弁 a. 取水槽床ドレン逆止弁 取水槽床ドレン逆止弁の設計において考慮する荷重は、取水	
	置状況により以下のとおり整理 <u>する。</u> (a)設置場所	槽床ドレン逆止弁の設置状況より以下のとおり整理される。 (a) 設置場所	
	屋外の設備であるため、風荷重及びその他自然現象に伴う荷重 については、設備の設置状況、構造(形状)等の条件を含めて、 適切に組合せを考慮する。	屋外に設置するため、「積雪荷重」は考慮するが、敷地地下に設置されることから、「風荷重」は考慮不要である。	
	(b) 津波荷重の種別 津波の直接的な影響を受ける場所に設置する設備であり、津波 が鉛直上向きに作用する設備であるため、「 <u>津波</u> 荷重(<u>動・</u> 突き 上げ)」を考慮する。	(b) 津波荷重の種別 津波の直接的な影響を受ける場所に設置する設備であり,波圧が鉛直上向きに作用する設備であるため,「 <u>動的</u> 荷重(突き上げ)」を考慮する。	
	(c) 漂流物衝突の <u>有無</u> 漂流物の衝突が想定されないため,「漂流物衝突荷重」は考慮不 要である。	(c) 漂流物衝突の <mark>影響</mark> 漂流物の衝突が想定されないため,「漂流物衝突荷重」は 考慮不要である。	
		(d) 余震荷重の影響 取水槽床ドレン逆止弁に対しては、海域活断層に想定される地震による津波の影響を受けるため、「余震荷重」を考慮する。	
	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。 ①常時荷重+地震荷重 (Ss) ②常時荷重+津波荷重 (動・突き上げ) ③常時荷重+津波荷重 (動・突き上げ) +余震荷重	上記を考慮し,以下の荷重の組合せに対して構造設計を行う。 ・ 常時荷重+地震荷重(Ss) ・ 常時荷重+動的荷重(突き上げ) ・ 常時荷重+動的荷重(突き上げ)+余震荷重	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		b. タービン建物床ドレン逆止弁	・設備の相違
		タービン建物床ドレン逆止弁の設計において考慮する荷	【東海第二・女川2】
		重は、タービン建物床ドレン逆止弁の設置状況より以下の	設備の相違による記
		とおり整理される。	載内容の相違
		(a)設置場所	
		屋内に設置するため、「風荷重」及び「積雪荷重」は考慮	
		不要である。	
		(b) 津波荷重等の種別	
		津波の直接的な影響を受けない場所に設置する設備であ	
		るが、低耐震クラス機器の損傷による保有水の溢水の影響	
		を受けることから、「静的荷重(静水圧)」を考慮する。	
		(c) 漂流物衝突の影響	
		漂流物の衝突が想定されないため、「漂流物衝突荷重」は	
		考慮不要である。	
		(d) 余震荷重の影響	
		タービン建物床ドレン逆止弁に対しては、低耐震クラス	
		機器の損傷による保有水の溢水の影響を受けることから、	
		「余震荷重」を考慮する。	
		上記を考慮し,以下の荷重の組合せに対して構造設計を行う。	
		・ 常時荷重+地震荷重(Ss)	
		・ 常時荷重+静的荷重(静水圧)	
		· 常時荷重+静的荷重(静水圧)+余震荷重	

	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
(12) 海水ポンプ室貫通部止水処置,原子炉建屋境界貫通部止	1. 貫通部止水処置(防潮壁のバイパス経路となる2号炉海水ポ		VIII 25
水処置 海水ポンプ室貫通部止水処置及び原子炉建屋境界貫通部止水処置は、その設置状況より以下のとおり整理される。	ンプ室スクリーンエリア等の防潮壁下部貫通部,2号炉軽油タンクエリア) 貫通部止水処置(防潮壁のバイパス経路となる2号炉海水ポンプ室スクリーンエリア等の防潮壁下部貫通部,2号炉軽油タンクエリア)の設計において考慮する荷重は、その設置状況により以下のとおり整理する。	貫通部止水処置の設計において考慮する荷重は、 <u>貫通部止水</u> 処置の設置状況より以下のとおり整理される。	
a. 設置場所 <u>屋外又は屋外との境界の設置であるため</u> , その他自然現象 による荷重(風荷重, 積雪荷重等)については, 設備の設置 状況, 構造(形状)等の条件を含めて, 適切に組合せを考慮 する。	(a) 設置場所 屋外の設備であるため、風荷重及びその他自然現象に伴う荷重 については、設備の設置状況、構造(形状)等の条件を含めて、 適切に組合せを考慮する。	a. 設置場所 <u>屋内又は</u> 屋外に設置するが,屋内に設置するものについては,「風荷重」及び「積雪荷重」は考慮不要である。屋外に設置するものについても,敷地地下に設置されることから「風荷重」は考慮不要であり,また,積雪が考えられる構造でないことから「積雪荷重」は考慮不要である。	【東海第二・女川2】
b. 津波荷重の種別 津波が遡上又は流入しない箇所への設置であり、循環水系 配管、非常用海水系配管(戻り管)、屋外タンク等の損傷に 起因する溢水による浸水のため、津波荷重(静)を考慮する。	(b) 津波荷重の種別 津波の直接的な影響を受けない場所に設置する設備であるため、津波荷重として、「 <u>津波</u> 荷重(静)」を考慮する。	b. 津波荷重の種別 津波の <u>波力の</u> 影響を受けない場所に設置する <u>施設</u> である ため,津波荷重として「 <u>静的</u> 荷重(静 <mark>水圧</mark>)」を考慮する。	
c. 漂流物衝突の有無 津波が遡上又は流入しない箇所への設置であるため、漂流 物衝突荷重は考慮しない。	(c) 漂流物衝突の有無 漂流物の衝突が想定されないため,「漂流物衝突荷重」は考慮 不要である。	c. 漂流物衝突の影響 漂流物の衝突が想定されないため,「漂流物衝突荷重」は 考慮不要である。	
上記を考慮し,以下の荷重の組合せに対して構造設計を行う。	上記を考慮し,以下の荷重の組合せに対して構造設計を行う。	d. 余震荷重の影響 貫通部止水処置に対しては、海域活断層に想定される地 震による津波の影響を受けるものについて、「余震荷重」を 考慮する。 上記を考慮し、以下の荷重の組合せに対して構造設計を行う。	・考慮する荷重の相違 【東海第二,女川2】 波源の違いによる地 震荷重の考慮有無につ いて記載
・常時荷重+地震荷重(S _S) ・常時荷重+ <u>津波</u> 荷重(静) ・常時荷重+ <u>津波</u> 荷重(静) +余震荷重	①常時荷重+地震荷重 (Ss) ②常時荷重+津波荷重 (静) ③常時荷重+津波荷重 (静) +余震荷重	 常時荷重+地震荷重(Ss) 常時荷重+<u>静的</u>荷重(静<u>水圧</u>) 常時荷重+<u>静的</u>荷重(静<u>水圧</u>) +余震荷重 	


東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2 号炉 (2019.11.6 版)	島根原子力発電所 2号炉	備考
(13) 常設代替高圧電源装置用カルバート(立坑部)貫通部止	m. 貫通部止水処置 (2 号炉原子炉建屋, 2 号炉制御建屋)	. 3 12700 3 2 3 2 2 2 2 2 1 2 1 2 7 7	・資料構成の相違
水処置	貫通部止水処置(2号炉原子炉建屋、2号炉制御建屋)の設計		【東海第二・女川2】
常設代替高圧電源装置用カルバート(立坑部)貫通部止水	において考慮する荷重は、その設置状況により以下のとおり整理		島根は屋内と屋外を
処置は、その設置状況より以下のとおり整理される。	する。		まとめて記載
a. 設置場所	(a)設置場所		
屋内の設置のため、その他自然現象による荷重(風荷重、	屋内設置のため、「その他自然現象に伴う荷重」は考慮不要で		
積雪荷重等)は考慮しない。	ある。		
なお、常設代替高圧電源装置用カルバート(立坑部)貫通			
部止水処置は屋内の設置であり、火山防護施設ではないた			
め,降下火砕物荷重は考慮しない。			
1 海冲共长の钎皿	(1) 海冲共手の任即		
b. 津波荷重の種別	(b) 津波荷重の種別		
津波が遡上又は流入しない箇所への設置であり、非常用海			
水系配管(戻り管),屋外タンク等の損傷に起因する溢水に よる浸水のため,津波荷重(静)を考慮する。	め、津波荷重として、「津波荷重(静)」を考慮する。		
よる技小のため, 伴似何里(肝)を			
c. 漂流物衝突の有無	(c)漂流物衝突の有無		
津波が遡上又は流入しない箇所への設置であるため,漂流	漂流物の衝突が想定されないため,「漂流物衝突荷重」は考慮		
物衝突荷重は考慮しない。	不要である。		
 上記を考慮し,以下の荷重の組合せに対して構造設計を行う。	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。		
・常時荷重+地震荷重(S_S)	①常時荷重+地震荷重(Ss)		
• 常時荷重+津波荷重(静)	②常時荷重+津波荷重(静)		
・常時荷重+津波荷重(静)+余震荷重	③常時荷重+津波荷重(静)+余震荷重		

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
(14) 防潮堤及び防潮扉下部貫通部止水処置			・資料構成の相違
防潮堤及び防潮扉下部貫通部止水処置は、その設置状況よ			【東海第二・女川2】
り以下のとおり整理される。			島根は屋内と屋外を
			まとめて記載
AN PER HE RIC			
a. 設置場所			
屋外の設置であるため、その他自然現象による荷重(風荷			
重、積雪荷重等)については、設備の設置状況、構造(形状)			
等の条件を含めて、適切に組合せを考慮する。			
b. 津波荷重の種別			
防潮堤及び防潮扉下部貫通部止水処置は,防潮堤の前面に			
設置されているため、津波の波力を直接受けると考え、津波			
荷重(動・波力)を考慮する。			
c. 漂流物衝突の有無			
防潮堤及び防潮扉の下部への設置となり防潮堤前面に位置			
するが、構造(形状)より漂流物が直接貫通部止水処置に衝			
突するとは考え難いことから、漂流物衝突荷重は考慮しな			
V.			
上記を考慮し、以下の荷重の組合せに対して構造設計を行う。			
・常時荷重+地震荷重 (S _S)			
・常時荷重+津波荷重(動・波力)			
・常時荷重+津波荷重(動・波力)+余震荷重			
· 市时间里「年夜间里(勤· 夜刀)」示层间里			

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		(9) 隔離弁, ポンプ及び配管	・設備の相違
		隔離弁,ポンプ及び配管の設計において考慮する荷重は,隔	【東海第二,女川2】
		離弁、ポンプ及び配管の設置状況より以下のとおり整理され	
		る。	
		a. 設置場所 屋内(配管ダクト内)又は屋外に設置するが,屋内に設	
		置するものについては、「風荷重」及び「積雪荷重」は考慮	
		不要である。屋外に設置するものについても、敷地地下に	
		設置されることから「風荷重」は考慮不要であり、また、	
		積雪が考えられる構造でないことから「積雪荷重」は考慮	
		不要である。	
		b. 津波荷重の種別	
		津波の直接的な影響を受ける場所に設置する施設である	
		ため、津波荷重として「動的荷重(波力)」を考慮する。	
		- 海海海の野の	
		c. 漂流物衝突の影響	
		漂流物の衝突が想定されないため、「漂流物衝突荷重」は	
		考慮不要である。	
		d. 余震荷重の影響	
		海域活断層より想定される地震による津波が到達する部	
		位については「余震荷重」を考慮する。	
		上記を考慮し、以下の荷重の組合せに対して構造設計を行う。	
		・ 常時荷重+地震荷重(Ss)	
		・ 常時荷重+動的荷重(波力)	
		・ 常時荷重+動的荷重(波力)+余震荷重	

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2 号炉	備考
(15) 津波・構内監視カメラ 津波・構内監視カメラは、 <u>その</u> 設置状況より以下のとおり 整理される。	○. 津波監視カメラ津波監視カメラの設計において考慮する荷重は、その設置状況により以下のとおり整理する。	(10) 津波監視カメラ 津波監視カメラの設計において考慮する荷重は、 <u>津波監視カ</u> メラの設置状況により以下のとおり整理される。	
a. 設置場所 屋外の設置ため、その他自然現象による荷重(風荷重、積	(a) 設置場所 屋外の設備であるため、風荷重及びその他自然現象に伴う荷重に	a. 設置場所 屋外に設置するため、「風荷重」及び「積雪荷重」を考慮	
雪荷重等)については、設備の設置状況、構造(形状)等の 条件を含めて、適切に組合せを考慮する。	ついては、設備の設置状況、構造(形状)等の条件を含めて、適切に組合せを考慮する。	<u>する。</u>	
b. 津波荷重の種別 津波が遡上又は流入しない防潮堤内側に設置するため、津 波荷重は考慮しない。	(b) 津波荷重の種別 津波の影響を受けない <u>高所</u> に設置するため、津波荷重は考慮不要 である。	b. 津波荷重の種別 津波の影響を受けない場所に設置する設備であるため、 津波荷重は考慮不要である。	
c. 漂流物衝突の <u>有無</u> 津波が遡上又は流入しない防潮堤内側に設置するため、漂 流物衝突荷重は考慮しない。	(c) 漂流物衝突の <u>有無</u> 漂流物の衝突が想定されないため,「漂流物衝突荷重」は考慮不 要である。	c. 漂流物衝突の <mark>影響</mark> 漂流物の衝突が想定されないため,「漂流物衝突荷重」は 考慮不要である。	
上記を考慮し、以下の荷重の組合せに対して構造設計を行う。 ・常時荷重+地震荷重(S _S)	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。 ① 常時荷重+地震荷重 (Ss)	上記を考慮し,以下の荷重の組合せに対して構造設計を行う。 ・ 常時荷重+地震荷重(Ss)	
(16) 取水ピット水位計 取水ピット水位計は、その設置状況より以下のとおり整理 される。	p. 取水ピット水位計 取水ピット水位計の設計において考慮する荷重は、その設置状況 により以下のとおり整理する。	(11) 取水槽水位計 取水槽水位計の設計において考慮する荷重は,取水槽水位計 の設置状況により以下のとおり整理される。	
a. 設置場所 屋外の設置であるため、その他自然現象による荷重(風荷重、積雪荷重等)については、設備の設置状況、構造(形状)等の条件を含めて、適切に組合せを考慮する。	(a) 設置場所 屋外の設備であるため、風荷重及びその他自然現象に伴う荷重については、設備の設置状況、構造(形状)等の条件を含めて、適切に組合せを考慮する。	a. 設置場所 屋外に設置するが、敷地地下に設置されることから、「風荷 重」は考慮不要であり、積雪が考えられる構造でないことか ら「積雪荷重」は考慮不要である。	
b. 津波荷重の種別 津波の波力が取水路を経由して、鉛直上向きに作用するため、津波荷重(動・突き上げ)を考慮する。	(b) 津波荷重の種別 津波の直接的な影響を受ける場所に設置する設備であり、 <u>津波が</u> 鉛直上向きに作用する設備であるため、「津波荷重(動・突き上 <u>げ)」</u> を考慮する。	b. 津波荷重の種別 津波の直接的な影響を受ける場所に設置する設備である ため、津波荷重として <u>「動的荷重(波力)」</u> を考慮する。	・設備の相違 【東海第二,女川2】

東海第二発電所(2018.9.12版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
c. 漂流物衝突の <u>有無</u> 取水ピットへの設置であり、漂流物の到達は想定されない	(c) 漂流物衝突の <u>有無</u> 漂流物の衝突が想定されないため,「漂流物衝突荷重」は考慮不	c. 漂流物衝突の <mark>影響</mark> 漂流物の <u>衝突が</u> 想定されないため,「漂流物衝突荷重」は	
ため,漂流物衝突荷重を考慮しない。	要である。	考慮不要である。	
		d. 余震荷重の影響	・考慮する荷重の相違
		取水槽水位計に対しては、海域活断層に想定される地震 による津波の影響を受けるため、「余震荷重」を考慮する。	【東海第二,女川2】 波源の違いによる均
			震荷重の考慮有無について記載
上記を考慮し、以下の荷重の組合せに対して構造設計を行う。	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。	上記を考慮し、以下の荷重の組合せに対して構造設計を行う。	V CILIFX
・常時荷重+地震荷重(S _S)	①常時荷重+地震荷重(Ss)	• 常時荷重+地震荷重 (Ss)	・設置場所及び設備の道
・常時荷重+津波荷重(動・突き上げ)・常時荷重+津波荷重(動・突き上げ)+余震荷重	②常時荷重+津波荷重(動・突き上げ) ③常時荷重+津波荷重(動・突き上げ)+余震荷重	常時荷重+動的荷重(波力)常時荷重+動的荷重(波力)+余震荷重	・ 取画場所及い設備の意 いによる相違
			【東海第二,女川2】
17) 潮位計			・設備の相違
潮位計は、その設置状況より以下のとおり整理される。			【東海第二】
a. 設置場所			島根に同様な設備はな
屋外の設置であるため、その他自然現象による荷重(風荷			V.
重, 積雪荷重等) については, 設備の設置状況, 構造(形状) 等の条件を含めて, 適切に組合せを考慮する。			
o. 津波荷重の種別			
潮位計は、取水路の取水口側に設置されているため、津波			
の波力を直接受けると考え、津波荷重(動・波力)を考慮す			
る。			
c. 漂流物衝突の有無 取水路内への設置であり、漂流物の到達は想定されないた			
め、漂流物衝突荷重を考慮しない。			
上記を考慮し,以下の荷重の組合せに対して構造設計を行う。			
• 常時荷重+地震荷重 (S _S)			
・常時荷重+津波荷重(動・波圧)・常時荷重+津波荷重(動・波圧)+余震荷重			
· 市时们里工件仅们里(别· 仅注) 十宋辰们里			

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
無の		表 2 津波防護施設,浸水防止設備及び津波監視設備で考慮する	・設備の相違
金の という はい		一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	【東海第二】
(編集) (編集) (編集) (編集) (編集) (編集) (編集) (編集)		備考 波用及び 1号放力	
(本)			
世		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
(報) (数) (数) (数) (数) (数) (数) (数) (数) (数) (数		 	
(学》		(株)	
		(Ss)	
(編集) (B B B B B B B B	
(5 + (5 + (5 + (5 + (5 + (5 + (5 + (5 +			
原の組合性 (6) 20 20 20 20 20 20 20 20 20 20 20 20 20		2000 (2000) (20	
(株)		展外 (永徳部) (永徳部) (永徳市下) (東地市下) (東地市下) (東地市下) (東地市下) (東地市下) (東地市下) (東西内 原内 原内 原内 原内 原内 原内 原内 原内 原内 原内 原内 原内 原内	
編 数~口止 SS 4		設備	
		对參 海及	

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	र्ग
(
海 海 海 海 神 大 大 大 大 大 大 大 大 大 大 大 大 大			
ea ea ea ea ea ea ea ea ea ea			
操業			
# *** *** *** *** *** *** *** *** *** *	လို		
96 60 80 80 80 80 80 80 80 80 80 80 80 80 80	が 高 本 画 本 の の の の の の の の の の の の の		
	田 		
出 地 波 清 地 芝 若 芝 結 送 港 ゼ ガ ガ ガ	条件を含めて、適切に組合		
鑑 常 圧 用 ト 屋 海 楽木 原境止 常圧用 ト 園 海 楽木 原境止 常圧用 ト 質 的 的 質 如 な 節 力 牙 似 態 々 子 木 水 質 め 子 牙 木 水 通 置 か 数 徳 春 義 ペ 好 徳 彦 ン 恋 建 種 通 置 棒 森 ダ く が 第 と ご 徳 理 趣 理 母 森 女 人 が 第 一 祖 屋 離 温 置 春 森 女 人 が 3 2 2 3 4 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	《		

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
第1表 各施設・設備の荷重の組合せ (4/4)	女川原丁刀光电別 2 万分 (2013-11.0 版)	荷収が丁万光电灯(2万分)	

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

まとめ資料比較表 [5条 津波による損傷の防止 別添1 添付資料21]

女川原子力発電所 2号炉(2019.11.6版) 島根原子力発電所 2号炉 東海第二発電所(2018.9.12版) 備考 添付資料29 添付資料 22 添付資料 21 各種基準類における衝突荷重の算定式及び衝突荷重について 基準類における衝突荷重算定式について 基準類における衝突荷重算定式及び衝突荷重について 1. はじめに 1. はじめに 1. はじめに 東海第二発電所において考慮する漂流物の衝突荷重の算定 女川原子力発電所において考慮する漂流物の衝突荷重の算 島根原子力発電所において考慮する漂流物の衝突荷重の算定 ・検討方針の相違による に当たり, 既往の算定式について調査し, 適用する算定式につ 定に当たり, 既往の算定式について調査し, 適用する算定式に に当たり、島根原子力発電所における基準津波の津波特性を平 記載内容の相違 いて検討すると共に、基準津波による津波シミュレーションか ついて検討した。 面二次元津波シミュレーションより確認し、「2.5.2(3) 基準津 【東海第二,女川2】 ら算定した津波流速に基づき、漂流物の衝突荷重を設定した。 波に伴う取水口付近の漂流物に対する取水性確保」に示す取水 口に対する漂流物の影響の評価プロセスより、漂流物衝突荷重 の設定に考慮する漂流物を抽出するとともに, 既往の衝突荷重 の算定式とその根拠について整理した。 2. 基準類における衝突荷重算定式について 2. 基準類における衝突荷重算定式について 2. 基準類における衝突荷重算定式について 「耐津波設計に係る工認審査ガイド」において、記載されて 「耐津波設計に係る工認審査ガイド」において、記載されてい 耐津波設計に係る工認審査ガイドにおいて挙げられている参 いる参考規格・基準類のうち、漂流物の衝突荷重又は衝突エネ る参考規格・基準類のうち、漂流物の衝突荷重又は衝突エネル 考規格・基準類のうち、漂流物の衝突荷重または衝突エネルギ ルギについて記載されているものは、「道路橋示方書・同解説 ギーについて記載されているものは、「道路橋示方書・同解説 I ーについて記載されているものは、「道路橋示方書・同解説 I Ⅰ共通編((社)日本道路協会,平成14年3月)」及び「津波 共通編((社)日本道路協会,平成14年3月)」及び「津波漂流 共通編(平成14年3月)」と「津波漂流物対策施設設計ガイド 漂流物対策設計ガイドライン(案)(財)沿岸技術研究センタ 物対策施設設計ガイドライン(案)(財)沿岸技術研究センター, ライン(平成26年)」であり、それぞれ以下のように適用範囲・ 一,(社)寒地港湾技術研究センター(平成21年)」であり、 (社) 寒地港湾技術研究センター (平成21年)」であり、それ 考え方、算定式を示している。 それぞれ以下のように適用範囲・考え方,算定式を示している。 ぞれ以下のように適用範囲・考え方、算定式を示している。 2.1 道路橋示方書·同解説 I 共通編 (1) 道路橋示方書・同解説 Ⅰ共通編 ①道路橋示方書·同解説 I 共通編((社)日本道路協会,平成 14年3月) (1) 適用範囲・考え方 a. 適用範囲・考え方 ○適用範囲・考え方: 流木その他の流送物の衝突のおそれがある場合の衝突荷重 流木その他の流送物の衝突のおそれがある場合の衝突荷重を 橋(橋脚)に自動車、流木あるいは船舶等が衝突する場合 を算定する式を示している。 の衝突荷重を算定する式である。 算定する式を示している。 (2) 算定式 b. 算定式 ○算定式: 衝突力 $P = 0.1 \times W \times v$ 衝突力 $P = 0.1 \times W \times v$ 衝突力 P=0.1×₩×v ここで、P:衝突力(kN) ここで、P:衝突力(kN) ここに、P: 衝突力 (kN) W:流送物の重量(kN) W:流送物の重量(kN) W:流送物の重量(kN) v : 表面流速 (m/s) v : 表面流速 (m/s) v :表面流速 (m/s) これは、衝突荷重として、基準に示される唯一の算定式である。

2.2 津波漂流物対策設計ガイドライン(案)

(1) 適用範囲・考え方

「漁港・漁場の施設の設計の手引き(全国漁港漁場協会 2003 年版)」の接岸エネルギの算定方法に準じて設定されたもので、漁船のほか、車両、流木、コンテナにも適用される。支柱及び漂流物捕捉スクリーンの変形でエネルギを吸収させることにより、漂流物の侵入を防ぐための津波漂流物対策施設の設計に適用される式を示している。

(2) 算定式

船舶の衝突エネルギ $E = E_0 = W \times v^2 / 2g$ ※船の回転により衝突エネルギが消費される (1/4 点衝突) の場合:

 $E = E' = W \times v^2 / 4g$

 $\subset \subset \mathcal{C}$, $W=W_0+W'=W_0+(\pi/4)\times D^2L\gamma_W$

W:仮想重量(kN)

W₀:排水トン数 (kN)

W':付加重量(kN)

D: 喫水 (m)

L:横付けの場合は船の長さ,縦付けの場合は船の幅(m)

γw:海水の単位体積重量(kN/m³)

3. 漂流物の衝突荷重算定式の適用事例

安藤ら (2006) **1によれば、南海地震津波による被害を想定して、高知港を対象に平面二次元津波シミュレーション結果に基づいた被害予測手法の検討を行い、特に漂流物の衝突による構造物の被害、道路交通網等アクセス手段の途絶について検討を行い、港湾全体における脆弱性評価手法を検討している。この中で、荷役設備・海岸施設の漂流物による被害を検討するに当たって、漂流物の衝突力を算定しており、船舶については道路橋示方書による式を選定している (下表参照)。

※1:地震津波に関する脆弱性評価手法の検討,沿岸技術研究 センター論文集 No.6 (2006) (2) 津波漂流物対策施設設計ガイドライン(案)

a. 適用範囲・考え方

「漁港・漁場の施設の設計の手引き(全国漁港漁場協会 2003 年版)」の接岸エネルギーの算定方法に準じて設定されたもので、漁船のほか、車両、流木、コンテナにも適用される。支柱及び漂流物捕捉スクリーンの変形でエネルギーを吸収させることにより、漂流物の侵入を防ぐための津波漂流物対策施設の設計に適用される式を示している。

b. 算定式

船舶の衝突エネルギー $E = E_0 = W \times v^2 / 2g$ ※船の回転により衝突エネルギーが消費される(1/4点衝突) の場合:

 $E = E' = W \times v 2/4g$

 $\subset \subset \mathcal{C}$, $W=W_0+W'=W_0+(\pi/4)\times D^2L_{\gamma W}$

W:仮想重量(kN)

W₀:排水トン数(kN)

W':付加重量(kN)

D: 喫水 (m)

L:横付けの場合は船の長さ,縦付けの場合は船の幅(m)

γw:海水の単位体積重量(kN/m³)

これは、鋼管杭等の支柱の変形及びワイヤーロープの伸びにより衝突エネルギーを吸収する考え方であり、弾性設計には適さないものである。

3. 漂流物の衝突荷重算定式の適用事例

安藤ら (2006) **によれば、南海地震津波による被害を想定して、高知港を対象に平面二次元津波シミュレーション結果に基づいた被害予測手法の検討を行い、特に漂流物の衝突による構造物の被害、道路交通網等アクセス手段の途絶について検討を行い、港湾全体における脆弱性評価手法を検討している。この中で、荷役設備・海岸施設の漂流物による被害を検討するに当たって、漂流物の衝突力を算定しており、船舶については道路橋示方書による式を選定している (表 1 参照)。

※: 地震津波に関する脆弱性評価手法の検討, 沿岸技術研究センター論文集 No. 6 (2006)

②津波漂流物対策施設設計ガイドライン (沿岸技術研究センター, 寒地研究センター, 平成 26 年)

○適用範囲・考え方:

「漁港・漁場の施設の設計の手引き(全国漁港漁場協会 2003 年版)」の接岸エネルギーの算定方法に準じて設定されたものであり、漁船の他、車両・流木・コンテナにも適用されるが、支柱及び漂流物捕捉スクリーンの変形でエネルギーを吸収させることにより、漂流物の進入を防ぐための津波漂流物対策施設の設計に適用される式である。

○算定式:

船舶の衝突エネルギーE=E₀=W×V²/(2g)

(船の回転により衝突エネルギーが消費される(1/4点衝突) 場合

 $E=E'=W\times V^2/(4g)$

 $\subset \subset \backslash \subset$, $W=W_0+W'=W_0+(\pi/4)\times (D^2L\gamma_w)$

W:仮想重量(kN)

W₀: 排水トン数 (kN)

W':付加重量(kN)

D : 喫水 (m)

L:横付けの場合は船の長さ、縦付けの場合は船の幅(m)

γ_w:海水の単位体積重量(kN/m³)

これは、鋼管杭等の支柱の変形及びワイヤーロープの伸びに より衝突エネルギーを吸収する考え方であり、弾性設計には 適さないものである。

3. 漂流物の衝突荷重算定式の適用事例

安藤ら(2006)^{※1} によれば、南海地震津波による被害を想定して高知港を対象に、平面二次元津波数値シミュレーション結果に基づいた被害予測手法の検討を行い、特に漂流物の衝突による構造物の被害、道路交通網等アクセス手段の途絶について検討を行い、港湾全体における脆弱性評価手法を検討している。この中で荷役設備・海岸施設の漂流物による被害を検討するに当たって、漂流物の衝突力を算定しており、船舶に対しては道路橋示方書を採用している。

※1 地震津波に関する脆弱性評価手法の検討,沿岸技術研究センター論文集, No. 6 (2006)

表-1 各施設の許容漂流速度

		ZX 1 170HX 1911	1 1/4 1// 14/	~	
		選定式		対象施設	
			クレーン	水門	倉庫
車	両	陸上遡上津波と漂流物の衝突 力に関する実験的研究 ⁴⁾	4.8 m/s	1.5 m/s	1.5 m/s
コンテナ	20ft	陸上遡上津波と漂流物の衝突 力に関する実験的研究 ⁴⁾	4.9 m/s	1.5 m/s	1.5 m/s
37))	40ft	陸上遡上津波と漂流物の衝突 力に関する実験的研究 ⁴⁾	4.7 m/s	1.5 m/s	1.5 m/s
船舶	小型	衝突荷重(道路橋示方書)	5.0m/s超	5.0m/s超	5.0m/s超
ᄱᄓᄱ	大型	衝突荷重(道路橋示方書)	5.0m/s超	1.8 m/s	1.8 m/s
木	材	陸上遡上津波と漂流物の衝突 力に関する実験的研究 ⁴⁾	5.0m/s超	1.7 m/s	1.7 m/s

また、船舶による衝突荷重の算出においては、(財)沿岸技 術研究センター及び国土交通省国土技術政策総合研究所によ る研究においても, 道路橋示方書に示される算定式が採用され ている。

4. 漂流物による衝突力算定式に関する既往の研究論文

平成23年度 建築基準整備促進事業「40. 津波危険地域に おける建築基準等の整備に資する検討」中間報告 その2(平 成23年10月 東京大学生産技術研究所)では、漂流物が建築 物に及ぼす影響の評価について研究途上の段階であり, 断片的 な知見に留まっている。この内容は建築物を対象としており, 対象構造物が異なることから参考として扱う。また, 漂流物が 建築物に衝突する際に瞬間的に作用する衝突力に関する既往 の研究を示しているが、「対象としている漂流物は(a)、(b)、 (d), (e)が流木, (c), (d), (e)がコンテナである((e)は任意 の漂流物を対象としているものの実質流木とコンテナしか算 定できない)。」としている。一方, 東海第二発電所における漂 流物としては、漁船を想定していることから評価式($(a) \sim (e)$) については、今後その他の衝突荷重の算定式の適用性も踏まえ て今後検討する。

表1 各施設の許容漂流速度

		選定式		対象施設	
		12 /2 .	クレーン	水門	倉庫
車	両	陸上遡上津波と漂流物の衝突 力に関する実験的研究 ⁴⁾	4.8 m/s	1.5 m/s	1.5 m/s
コンテナ	20ft	陸上遡上津波と漂流物の衝突 力に関する実験的研究 ⁴⁾	4.9 m/s	1.5 m/s	1.5 m/s
27))	40ft	陸上遡上津波と漂流物の衝突 力に関する実験的研究 ⁴⁾	4.7 m/s	1.5 m/s	1.5 m/s
的八岗台	小型	衝突荷重(道路橋示方書)	5.0m/s超	5.0m/s超	5.0m/s超
船舶	大型	衝突荷重(道路橋示方書)	5.0m/s超	1.8 m/s	1.8 m/s
木	材	陸上遡上津波と漂流物の衝突 力に関する実験的研究 ⁴⁾	5.0m/s超	1.7 m/s	1.7 m/s

また、船舶による衝突荷重の算出においては、(財)沿岸技術 研究センター及び国土交通省国土技術政策総合研究所による 研究においても,道路橋示方書に示される算定式が採用されて おり、船舶による漂流荷重に対する適用性が示されている。

4. 漂流物による衝突力算定式に関する既往の研究論文

平成23年度建築基準整備促進事業「40. 津波危険地域にお ける建築基準等の整備に資する検討」中間報告 その2 (平成 23年10月 東京大学生産技術研究所)」では、「漂流物が建築 物に及ぼす影響の評価について研究途上の段階であり, 断片的 な知見が得られているのみである。また、建築物に被害をもた らした漂流物の詳細情報は被害調査から得られず,既往の知見 は検証できなかった」としている。また、漂流物が建築物に衝 突する際に瞬間的に作用する衝突力に関する既往の研究を示 しているが,「対象としている漂流物は(a), (b), (d), (e)が 流木, (c), (d), (e) がコンテナである((e) は任意の漂流物を 対象としているものの実質流木とコンテナしか算定できな い)。」としている。それぞれの評価式((a)~(e))の概要を表 2に示す。

表-1 各施設の許容漂流速度

島根原子力発電所 2号炉

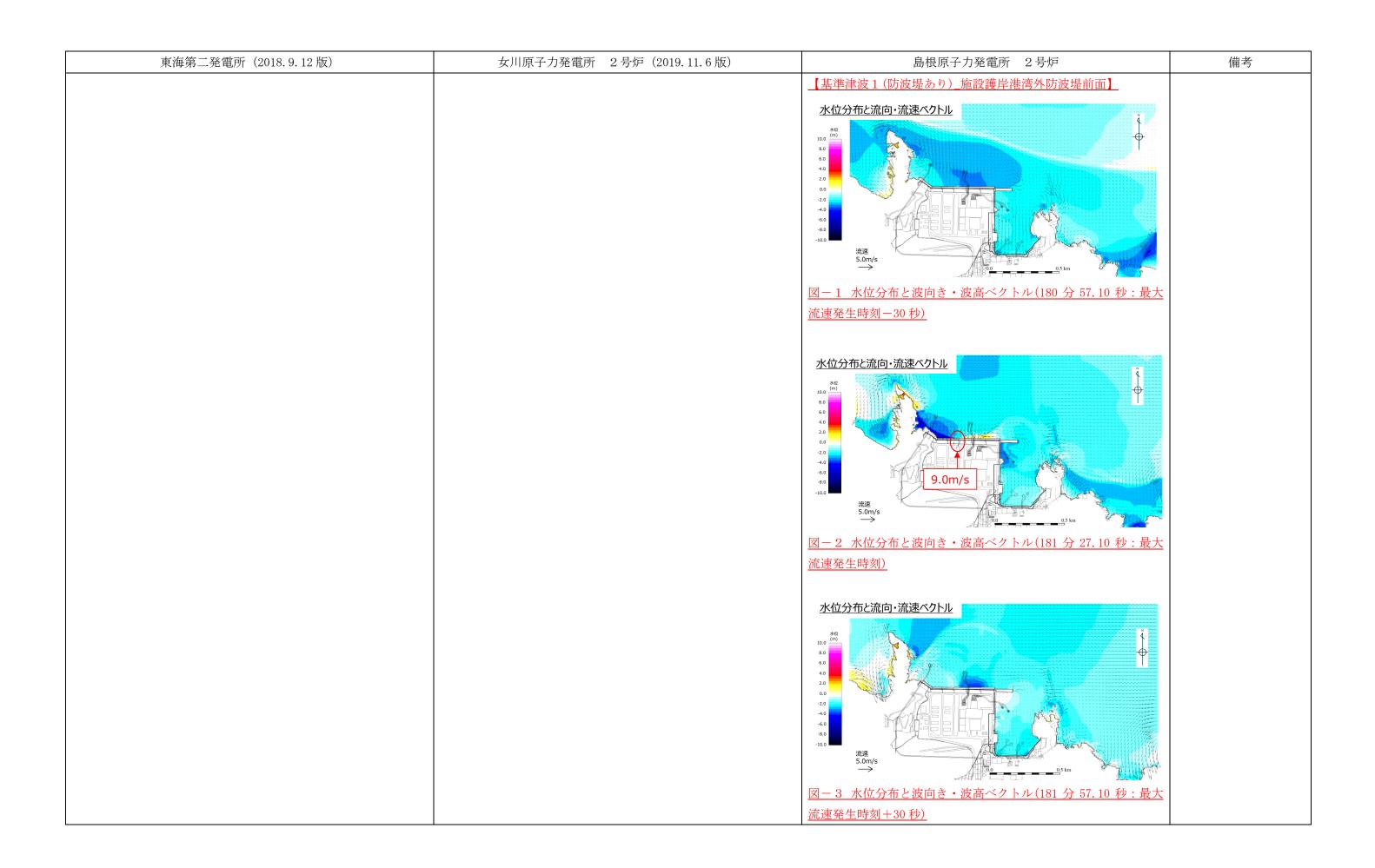
		選定式		対象施設	
		選定式	クレーン	水門	倉庫
車	両	陸上遡上津波と漂流物の衝突 力に関する実験的研究 ⁴⁾	4.8 m/s	1.5 m/s	1.5 m/s
コンテナ	20ft	陸上遡上津波と漂流物の衝突 力に関する実験的研究 ⁴⁾	4.9 m/s	1.5 m/s	1.5 m/s
2///	40ft	陸上遡上津波と漂流物の衝突 力に関する実験的研究 ⁴⁾	4.7 m/s	1.5 m/s	1.5 m/s
船舶	小型	衝突荷重(道路橋示方書)	5.0m/s超	5.0m/s超	5.0m/s超
חנית קוני	大型	衝突荷重 (道路橋示方書)	5.0m/s超	1.8 m/s	1.8 m/s
木	材	陸上遡上津波と漂流物の衝突 力に関する実験的研究 ⁴⁾	5.0m/s超	1.7 m/s	1.7 m/s

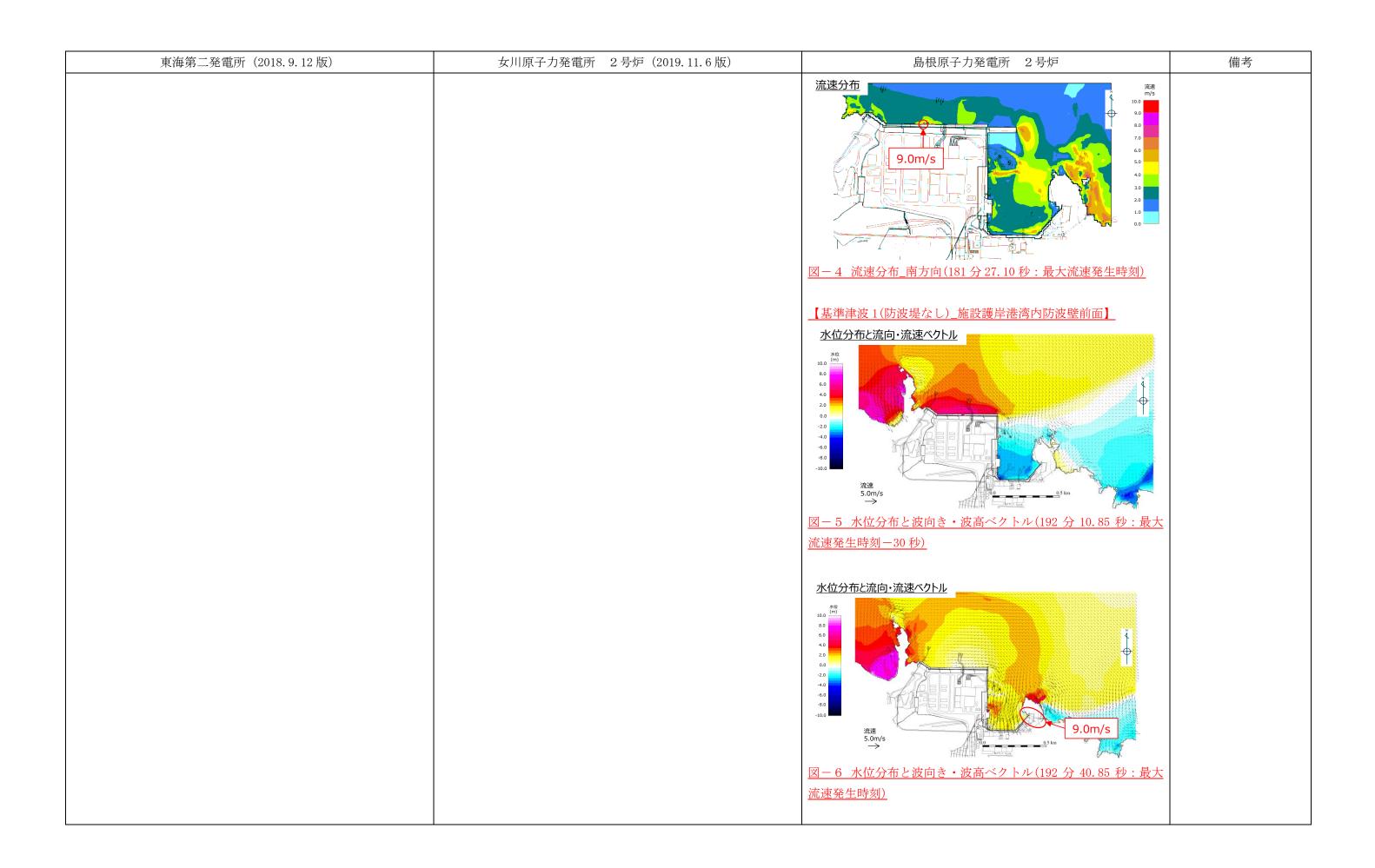
4. 漂流物による衝突力評価式に関する既往の研究論文

道路橋示方書等の基準類以外でも、漂流物による衝突力評価 |・検討方針の相違による に対する研究が複数存在している。以下に、これらの研究概要 | 記載内容の相違 を例示するが、木材やコンテナ等を対象とした事例が多く、船 舶の衝突を考慮した事例は少ない。

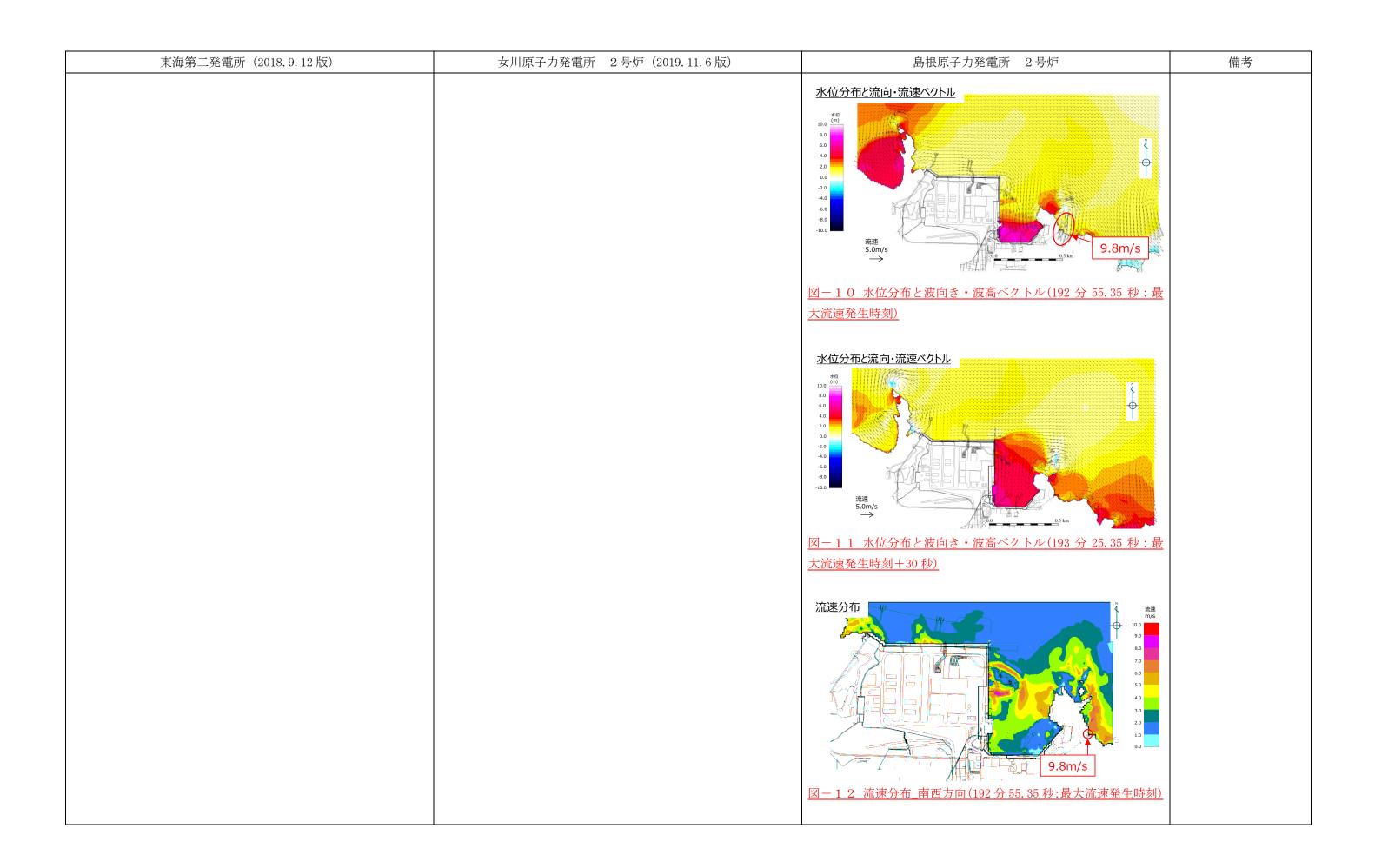
○適用範囲・考え方:

「平成 23 年度建築基準整備促進事業 40. 津波危険地域にお ける建築基準等の整備に資する検討」(東京大学生産技術研究所 (2011))では、「漂流物の衝突による建築物への影響の評価につ いては、研究途上の段階であり、また、被害調査においても、 被害をもたらした漂流物の詳細な情報を得ることは難しいた め、既往の知見の検証は困難であった」としている。また、津 波による漂流物が建築物に衝突する際の衝突力に関する研究を 以下に示しているが,「対象としている漂流物は(a),(b),(d), (e)」が流木, (c), (d), (e) がコンテナである ((e) は任意 の漂流物を対象としているものの実質流木とコンテナしか算定 できない。)としている。


島根原子力発電所における漂流物としては、船舶を想定して いることから評価式(a)~(e)については、その他の衝突荷重の 算定式の適用性も踏まえて今後検討する。


【東海第二,女川2】

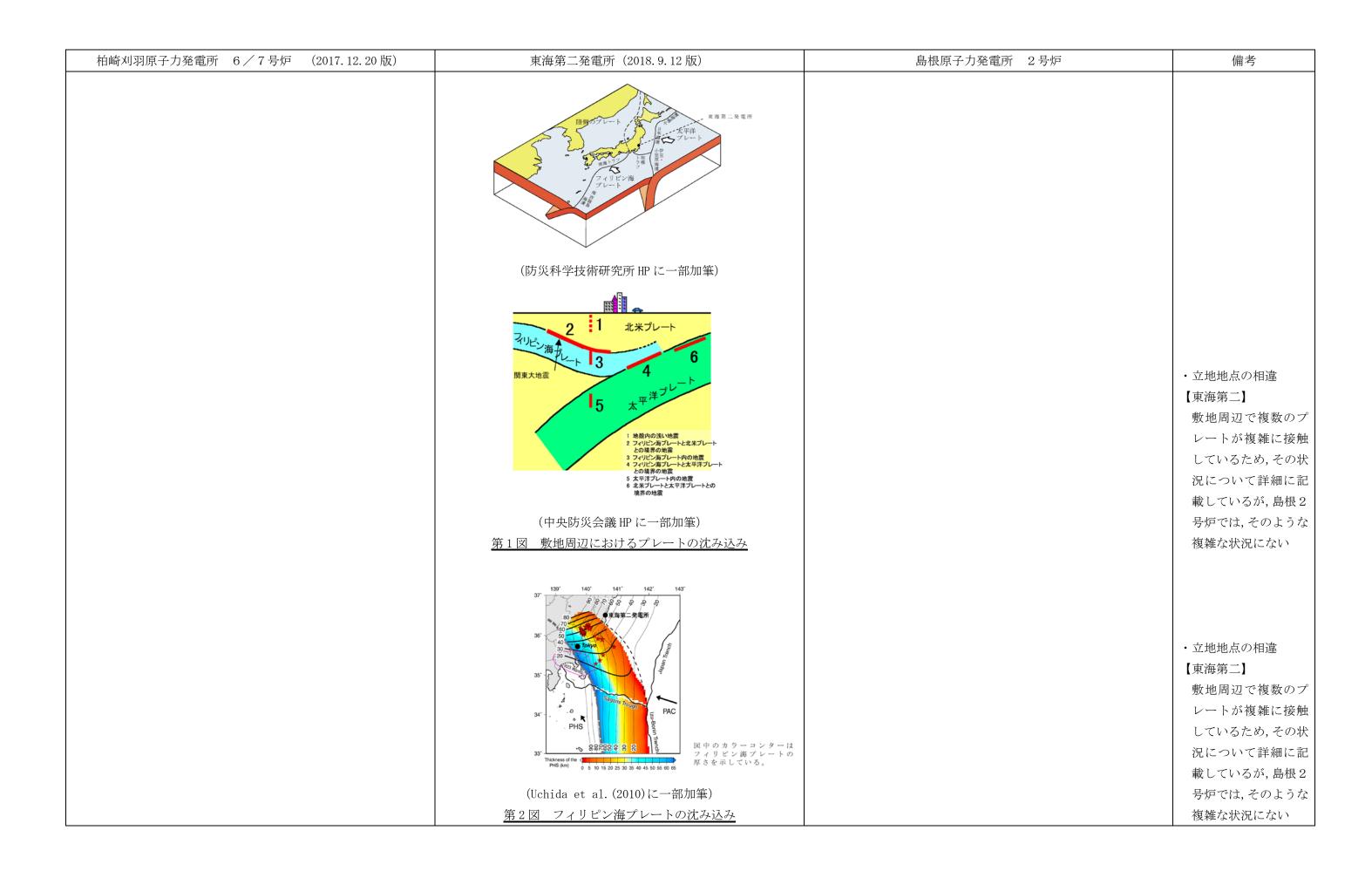
東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2 号炉	備考
漂流物による衝突力評価式に関する既往の研究論文(1/2) 既往の評価式	要されている。 表名 (1) 漂流物による衝突力評価式に関する既往の研究論文(1/2)	 ○算定式(a): (a) 松冨の評価式**² 津波による円柱形上の流木が縦向きに衝突する場合の衝突力を次式のとおり提案している。 F_m=1.6・C_{MA}・{ v_{A0}/(gD)^{0.5}}^{1.2}・(σ_f/γL)^{0.4}・(γD²L) ここに、C_{MA}:見かけの質量係数(段波・サージでは1.7,定常流では1.9) v_{A0}:流木の衝突速度D:流木の衝突速度 L:流木の長さσ_f:流木の降伏応力 	U用 行
原本等の衝突力に関する実験の研究。 海 摩工学論文集 第55 巻, pp. 721-725, 2003 (c) 水谷らの評価式 (c) 水谷らの評価式 (d) 水谷法美ら: エプロン上のコンテナに作 用する減速力と選減 衝突力に関する研究、海岸工学論文集、第52 巻pp. 741-745, 2005 (e) 水谷らの評価式 (f) 水谷は美ら: エプロント・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	用任例向き:2.0~4.0 (2 次元), 1.5 (3 次元), 円柱級 向き:2.0 程度, 球:0.8 程度) V _I : 段波波速 D: 漂流物の代表高さ L: 漂流物の代表長さ M: 漂流物の質量 g: 重力加速度	γ:流木の単位体積重量 g:重力加速度 ※2 松冨英夫(1999) 流木衝突力の実用的な評価式と変化特性,土木学会論文集,No621,pp.111-127 〇算定式(b): (b) 池野らの評価式※3 円柱以外にも角柱,球の形状をした木材による衝突力を次式のとおり提案している。 FH=S・CMA・{(VH/(g ^{0.5} D ^{0.25} L ^{0.25})}2.5・(gM) ここに,FH:漂流物の衝突力(kN) S:係数(5.0) CMA:見かけの質量係数 (円柱横向き:2.0(2次元),1.5(3次元), 角柱横向き:2.0~4.0(2次元),1.5(3次元), 円柱縦向き:2.0 程度,球:0.8程度)	
		V _H : 漂流物移動速度 (m/s) D: 漂流物の代表高さ (m) L: 漂流物の代表長さ (m) M: 漂流物の質量 (t) g: 重力加速度 ※3 池野正明・田中寛好(2003) 陸上遡上波と漂流物の衝突力に関する実験的研究,海岸工学論文集,第 50 巻,pp.721-725	


備考 東海第二発電所(2018.9.12版) 女川原子力発電所 2号炉(2019.11.6版) 島根原子力発電所 2号炉 ○算定式(c): 漂流物による衝突力評価式に関する既往の研究論文(2/2) 表2(2) 漂流物による衝突力評価式に関する既往の研究論文(2/2) 既往の評価式 (c) 水谷らの評価式※4 有川ら[4]は、コンクリート構造物に鋼製構造物(コンテナ等)が漂流衝 既往の評価式 (d) 有川らの評価式 (d) 有川らの評価式 有川ら[4]は、コンクリート構造物に鋼製構造物 (コンテナ等) が漂 突する際の衝突力を次式のとおり提案している。 津波により漂流するコンテナの衝突力を次式の通り提案し 流衝突する際の衝突力を次式の通り提案している。 _4] 有川太郎ら:遡上津波 によるコンテナ漂流 ている。 $F = \gamma_p \chi^{2/5} \left(\frac{5}{4} \widetilde{m} \right)^{3/5} v^{6/5}$ 力に関する大規模実 波によるコンテナ漂 流力に関する大規模 験, 海岸工学論文集, $\chi = \frac{4\sqrt{a}}{3\pi} \frac{1}{k_1 + k_2}$, $k = \frac{1 - v^2}{\pi E}$, $\widetilde{m} = \frac{m_1 m_2}{m_1 + m_2}$ 実験,海岸工学論文 第54 巻, pp. 846- $F_m = 2 \rho_w \eta_m B_c V_x^2 + (WV_x/gdt)$ $\chi = \frac{4\sqrt{a}}{3\pi} \frac{1}{k_1 + k_2}$, $k = \frac{1 - v^2}{\pi E}$, $\widetilde{m} = \frac{m_1 m_2}{m_1 + m_2}$ 美級, 毎年エ子嗣又 集,第54 巻, pp. 846-850, 2007 [5] 有川太郎ら:津波に 51 有川太郎ら:津波によ ここに, F_m:漂流衝突力(kN) る漂流木のコンクリート壁面破壊に関す ここで, F: 衝突力 よる漂流木のコンタ a: 衝突面半径の1/2 (コンテナ衝突面の縦横長さの平均の1/4) リート壁面破壊に関 する大規模実験, 土 a:衝突面半径の1/2 (コンテナ衝突面の縦横長さの平均の る人規模実験, 土木学 dt : 衝突時間(s) E:ヤング率 (コンクリート版) 会論文集B2, Vol. 66, 木学会論文集B2, E:ヤング率 (コンクリート版) ν:ポアソン比 ν:ポアソン比 No. 1, pp. 781-785, Vol. 66, No. 1, pp. 781-785, 2010 m·質量 η m: 最大遡上水位 (m) v:衝突速度 m:質量 p: 塑性によるエネルギー減衰効果 (0.25) v:衝突速度 ρ_w:水の密度 (t/m³) p: 塑性によるエネルギー減衰効果 (0.25) m やk の添え字は、衝突体と被衝突体を示す。 やk の添え字は、衝突体と被衝突体を示す また, 有川ら[5]は, 松冨[1]にならい, 上式においてm=C_{MA}m(C_{Ma}: B_::コンテナ幅(m) また,有川ら[5]は,松冨[1]にならい,上式において $m=C_{MA}m$ (C_{MA} : サージタイプの1.7)とすることで,流木のコンクリ サージタイプの1.7) とすることで、流木のコンクリート版に対 する衝突力を評価できるとしている。 一ト版に対する衝突力を評価できるとしている。 V_x: コンテナの漂流速度 (m/s) 塑性によるエネルギー減衰効果を考慮した考え方である。 W:コンテナ重量(kN) (e) FEMA の評価式 FEMA P646[6]では、漂流物による衝突力を正確に評価するのは困難とし (e) FEMA の評価式 FEMA P646[6]では、漂流物による衝突力を正確に評価するのは困難 ながら,以下の式を一例として示している。 g : 重力加速度 としながら,以下の式を一例として示している。 61 FEMA. Guidelines for Design of Structures $F_i = C_m u_{\text{max}} \sqrt{km}$ for Design of for Vertical ※4 水谷法美·高木祐介·白石和睦·宮島正悟·富田孝史(2005) Structures for Vertical Evacuation from Evacuation from Tsunamis, FEMA ここで、 Γ_i :衝突力 ここで, F_i: 衝突力 C_w: 付加質量係数 (2.0 を推奨) エプロントのコンテナに作用する津波波力と漂流衝突力 C_m:付加質量係数 (2.0 を推奨) Tsunamis, FEMA P646, umx:最大流速 u_{max}: 最大流速 に関する研究,海岸工学論文集,第52巻,pp. 741-745 m:漂流物の質量 m:漂流物の質量 k:漂流物の有効剛性 k:漂流物の有効剛性 漂流物の質量・有効剛性は主要な漂流物について表3.1 の 漂流物の質量・有効剛性は主要な漂流物について表3.1 のとお 通り概略値が与えられているが、それ以外の漂流物につい り概略値が与えられているが、それ以外の漂流物については設 ○算定式(d): ては設計において評価することとなっている。 計において評価することとなっている。 表 3.1 漂流物の質量と有効剛性 表 3.1 漂流物の質量と有効剛性 (d) 有川らの評価式※5 画流動 質量 m [kg] 有効剛性 k [N/m] 質量 m [kg] 有効剛性 k [N/m] 漂流物 材木・丸太 450 2.4×10^{6} 材木・丸太 2.4×10^{6} コンクリート構造物に鋼構造物(コンテナ等)が漂流衝突 40ft コンテナ 3,800 (空載) 6.5×10^{8} 40ft コンテナ 3,800 (空載) 6.5×10^{8} 20ft コンテナ 2,200 (空載) 1.5×10^{9} 2,200 (空載) 1.5×10^{9} する際の衝突力を次式の通り提案している。 20ft 重量コンテナ 2,400 (空載) 1.7×10^{9} 20ft 重量コンテナ 1.7×109 2,400 (空載) $F = \gamma_n \chi^{2/5} \{(5/4) \text{ m}\}^{3/5} \text{ v}^{6/5}$ 流木とコンテナに対して提案されたものである。 $\chi = \{4\sqrt{a/3} \pi\} \{1/(k_1+k_2)\}$ $k = (1 - v^2) / (\pi E)$ $m = (m_1 m_2) / (m_1 + m_2)$ ここに、a:衝突面半径の1/2 (コンテナ衝突面の縦横長さ の平均の 1/4) E:ヤング率 (コンクリート板) ν:ポアソン比 m:質量 v:衝突速度 γ_n: 塑性によるエネルギー減衰効果(0.25) mやkの添え字は衝突体と被衝突体を示す。 ※5 有川太郎·大坪大輔·中野史丈·下迫健一郎·石川信隆 (2007) 遡上津波によるコンテナ漂流力に関する大規模実 験,海岸工学論文集,第 54 巻,pp. 846-850

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		○算定式(e):	
		(e) FEMA の評価式 ^{※6}	
		漂流物による衝突力を正確に評価するのは困難としな	かゞ
		ら,以下の式を一例として示している。	
		$F_i = 1.3 u_{max} \sqrt{\{km(1+c)\}}$	
		ここに, F _i :衝突力(kN)	
		u _{max} :最大流速(m/s)	
		m:漂流物の質量	
		c:付加質量係数	
		k:漂流物の有効剛性(kN/m²)	
		36 FEMA (2012) Guidelines for Design of Structures for	or
		Vertical Evacuation from Tsunamis Second Edition, FE	MA
		P-646.	
	5. 評価すべき漂流物の設定	5. 基準津波の特性(流向・流速)	・検討方針の相違による
	各津波防護施設の漂流物の衝突荷重として考慮する漂流物	漂流物の衝突荷重算定に用いる流速は、津波の流速に支配	
	及び衝突速度については、各津波防護施設の構造や設置位置、	れることから、漂流物の漂流速度として津波の流速を用いる	
	さらに基準津波の流向・流速等の特徴を適切に考慮した上で、	防波堤の有無を考慮した基準津波1~6について,平面二次	_
	津波防護施設ごとに設定するものとする。非常用海水ポンプの		_
	取水性では、取水口の開口部の標高が海水面よりも下降にある		
	ことを踏まえ、津波の水位によらず、遠方から時間をかけて発		<u>元</u>
	電所に漂流する可能性のある施設・設備を抽出し、取水口の閉		
	塞の可能性を検討したが、漂流物の衝突荷重を検討する際に	<u>表-2 最大流速発生時の流況</u>	
	は、漂流速度と流れの向きが荷重に大きく影響することを踏ま	73.517	
	え,改めて発電所周辺での流速・流向を確認し,衝突対象とする漂流物を抽出することとする。	施設護岸港湾外 基準津波 1 南 9.0m/s 181分27.10秒 防波壁前面 では、	
	具体的には、以下の事項を考慮して、発電所敷地内及び敷地	施設護岸港湾内 基準津波 1 南東 9.0m/s 192分40.85秒 (防波堤なし)	
	前面海域に設置されている施設・設備の中から適切に衝突対象 とする漂流物を抽出する方針である。	1号放水連絡通路 基準津波 1 防波扉前面 基準建設 1 (防波堤なし) 南西 9.8m/s 192分55.35秒	
	・ 基準津波は、第一波の水位が高く、流速も大きいことか	※ <u>5</u> 条-別添 1-添付 18「漂流物の評価において考慮する津波の	一 流
	ら、第一波により漂流したものが被衝突物(津波防護施	速・流向について」参照	<u> </u>
	設等) 〜与える影響(荷重) が大きい。		
		表-2に示す各対象箇所の最大流速発生時刻近傍(最大	· 诗
		刻,最大時刻前後30秒)における水位分布と流向・流速べ	
		トル図,及び最大流速発生時刻における流速分布図を図-1	
		12に示す。	

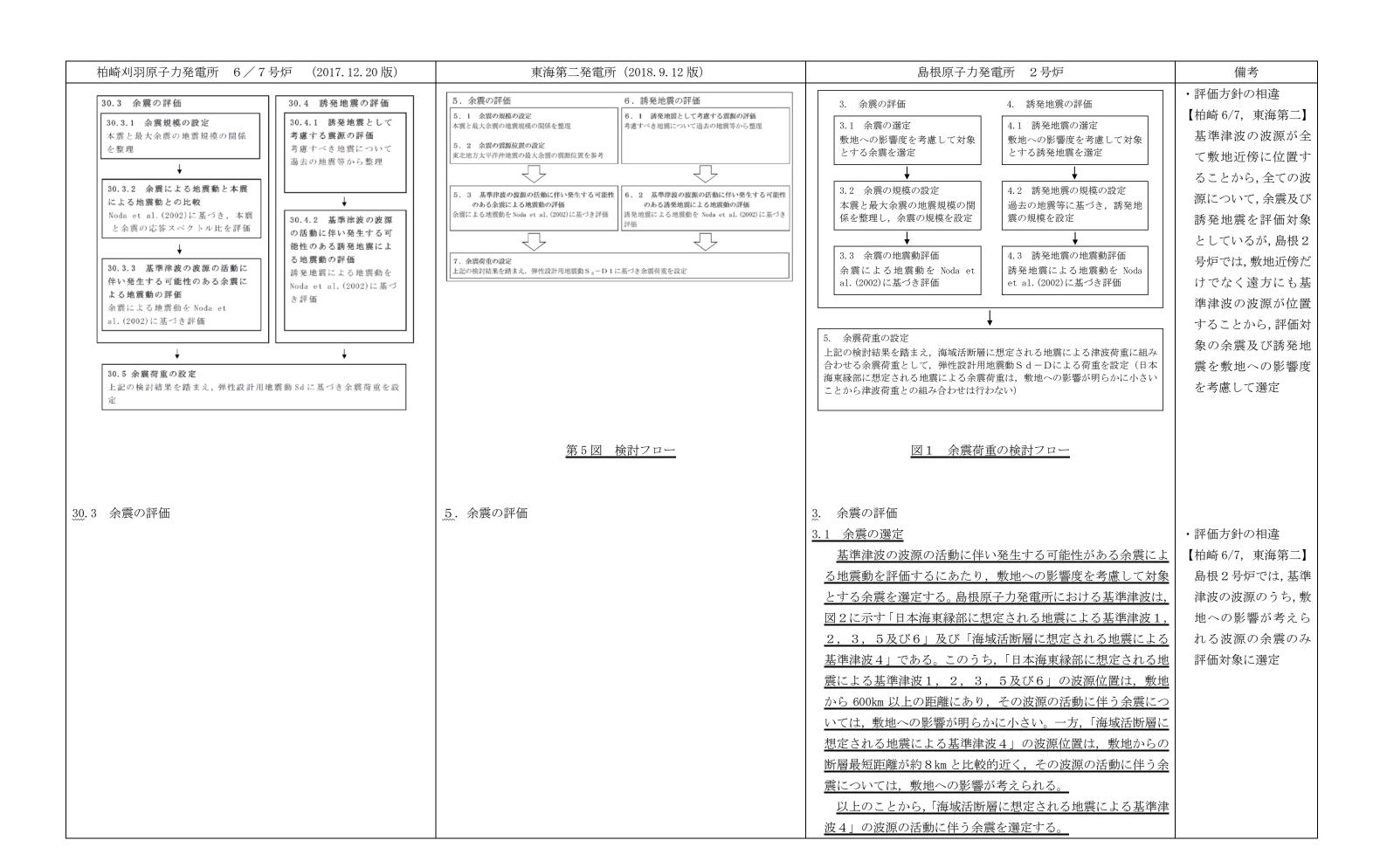
2.5.2 (3) 基準電影に伴う吸水に対する原本・対する原本・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・	分 炉 備考	島根原子力発電所 2号炉	女川原子力発電所 2号炉(2019.11.6版)	東海第二発電所(2018. 9. 12 版)
本学館像上に示す電水口に対する標面が可能を対して、港湾口で高端からなる作業的及び特別を関係できます。 上り、漂流物学を対したる作業的及び特別と関係を対した。 できる可能性のある物理を対したでは、 全事所における常識の地質を使きまつる及び図ー13に示す。 大一つ 可能性のある物理を使用できる。 「日本の中では、「日本の中	・検討方針の相違による	6. 漂流物の配置位置及び種類等		
上り、高添物衝突帯車の設定に考慮する需應物として、進海内で開始を拡発しての作品を対して、連海内の変化の表面の主要を対して、地田上と流流物・電及び発生所における高減・調整・	近の漂流物に対する取 記載内容の相違	「2.5.2 (3) 基準津波に伴う取水口付近の漂流物に対		
で無途物となる作業部及び配益場致信等並びに発電所運動を整 行する可能性のある角能を抽出した。抽出した開港物ー覧及び 発電所に対しる高速物と関位性をよる。3 地田した高速物・ (200	の影響の評価プロセス 【東海第二,女川2】	水性確保」に示す取水口に対する漂流物の影響の評価に		
在する可能性のある漁船を抽出した。抽出した悪流物・管及び 整帯所における理流物見屋位置を表 - 3 及び図 - 1 3 に示す。 表 - 3 抽出した悪流物・電	漂流物として,港湾内	より,漂流物衝突荷重の設定に考慮する漂流物として,		
### 1	並びに発電所近傍を航	で漂流物となる作業船及び荷揚場設備等並びに発電所は		
京の 相出した 深流物 を	出した漂流物一覧及び	行する可能性のある漁船を抽出した。抽出した漂流物-		
(金)	及び図-13に示す。	発電所における漂流物配置位置を表一3及び図-13ほ		
型が表現の対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対	-覧	表一3 抽出した漂流物一覧		
防波壁通路 防波壁通路 防波壁通路	### (### #### #### ######	電響 (納船・機トン数)		

東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
漂流物の衝突荷重算定式の選定	6. 漂流物荷重の評価式	7. 漂流物の衝突荷重算定式の選定	
既往の知見によると、さまざまな漂流物の衝突力算定式が提	女川原子力発電所における地形・津波等の特徴,流速や段	設置変更許可段階においては,島根原子力発電所における基	・検討方針の相違による
案されていることから,今後その他の衝突荷重の算定式の適用	波・砕波の発生状況, 漂流物の性状等から式の適用性を判断し	準津波の津波特性を流況解析結果より確認し,漂流物衝突荷重	記載内容の相違
性についても検討し、詳細設計に反映する。	た上で評価を実施する。	の設定に考慮する漂流物を抽出するとともに、道路橋示方書を	【東海第二,女川2】
ここでは、(財)沿岸技術研究センター及び国土交通省によ		含む既往の様々な衝突荷重の算定式とその根拠について整理し	
る検討においても、漁船の衝突荷重の算定については「耐津波		た。詳細設計段階において,抽出した漂流物の配置,種類等を	
設計に係る工認審査ガイド」に記載されている参考規格・基準		踏まえ, 算定式の適用性を確認し, 漂流物衝突荷重を算定する。	
類のうち,道路橋示方書に示される算定式を採用していること		なお、島根原子力発電所における基準津波の津波特性の確認	
から, 道路橋示方書による方法で算定した例について次項より		結果より,施設護岸港湾内及び港湾外の防波壁前面で最大流速	
示す。		9.0m/s(流向:南東・南), 1 号放水連絡通路防波扉前面で最大流	
		速 9.8m/s(流向:南西)となることを確認した。以上より、津波	
		防護施設における津波による漂流物衝突荷重の評価には、安全	
		側に流速 10.0m/s を用いることとする。	
漂流物の評価に考慮する津波の流速			
津波による漂流物の漂流速度は、津波の流速に支配されるこ			
とから, 漂流速度として津波の流速を用いることとし, 流速は			
津波シミュレーションにより算定する。			
基準津波に対して、防波堤があるモデル、防波堤がないモデ			
ル及び防波堤の耐震評価結果から防波堤を1m沈下させたモ			
デルを用いて津波シミュレーションを実施し, 敷地前面海域に			
おける表面流速を評価した。それぞれのケースにおける前面海			
域の最大流速分布を第1図に示す。			
3.9 3.9 3.8 3.5 3.6 4.5 4.5 3.9 3.8			
4.1 4.2 4.3 3.8 5.2 6.3 3.6 3.7 3.8			
4.6 4.8 4.6 5.7 5.8 2.6 3.7 3.9 3.9			
5.2 5.4 5.2 5.9 7.1 1.7 4.1 4.1 4.0			
5.0 5.2 4.7 2.2 3.5 3.8 47 4.3 4.0			
4.6 3.4 3.4 3.8 3.1 2.1 3.7 5.2 4.4			
01			
(防波堤ありモデル)			


東海第二発電所(2018. 9. 12 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2 号炉	備考
3.8 3.7 3.6 3.5 3.4 3.8 3.3 3.2 3.3 3.9 3.9 3.9 4.0 3.6 3.6 3.4 3.5 3.5 4.3 4.3 4.1 4.2 3.7 4.1 3.9 3.7 3.7 5.0 5.1 4.9 5.9 4.2 3.9 4.1 3.9 3.8 5.0 5.4 4.6 6.4 4.0 4.0 4.3 3.9 3.8 (防波堤なしモデル)			
3.9 3.9 3.8 3.5 3.6 4.6 4.1 3.8 3.7 4.1 4.1 4.2 3.7 50 6.3 3.5 3.7 3.7 4.6 4.7 4.6 5.8 5.9 2.8 3.9 3.8 3.8 5.1 5.3 5.3 6.6 6.9 2.6 41 4.0 3.9 4.9 5.1 4.7 3.2 3.7 4.0 46 4.0 3.9 4.5 3.3 3.5 4.1 2.5 2.2 5.1 4.3 (防波堤 1 m沈下モデル) 第1図 前面海域の最大流速分布図			
7. 防潮堤に想定する漂流物の衝突荷重(道路橋示方書の例) 津波シミュレーションの結果より,前面海域の最大流速は防 波堤ありモデルにおいて7.1m/s,防波堤なしモデルにおいて 6.6m/s,防波堤1 m沈下モデルにおいて6.9m/s であった。 上記の最大流速は7.1m/s であるが,漂流物の評価に考慮す る津波の流速は,安全側の設定とし,10m/sとする。 また,東海第二発電所で想定する漂流物の最大重量は,15t (排水トン数)の漁船とする。 漂流物の衝突荷重については,道路橋示方書による方法の場 合は以下の通りとなる。 漂流物の衝突荷重P=0.1×15×9.8×10=147(kN)			

実線・・設備運用又は体制等の相違(設計方針の相違)

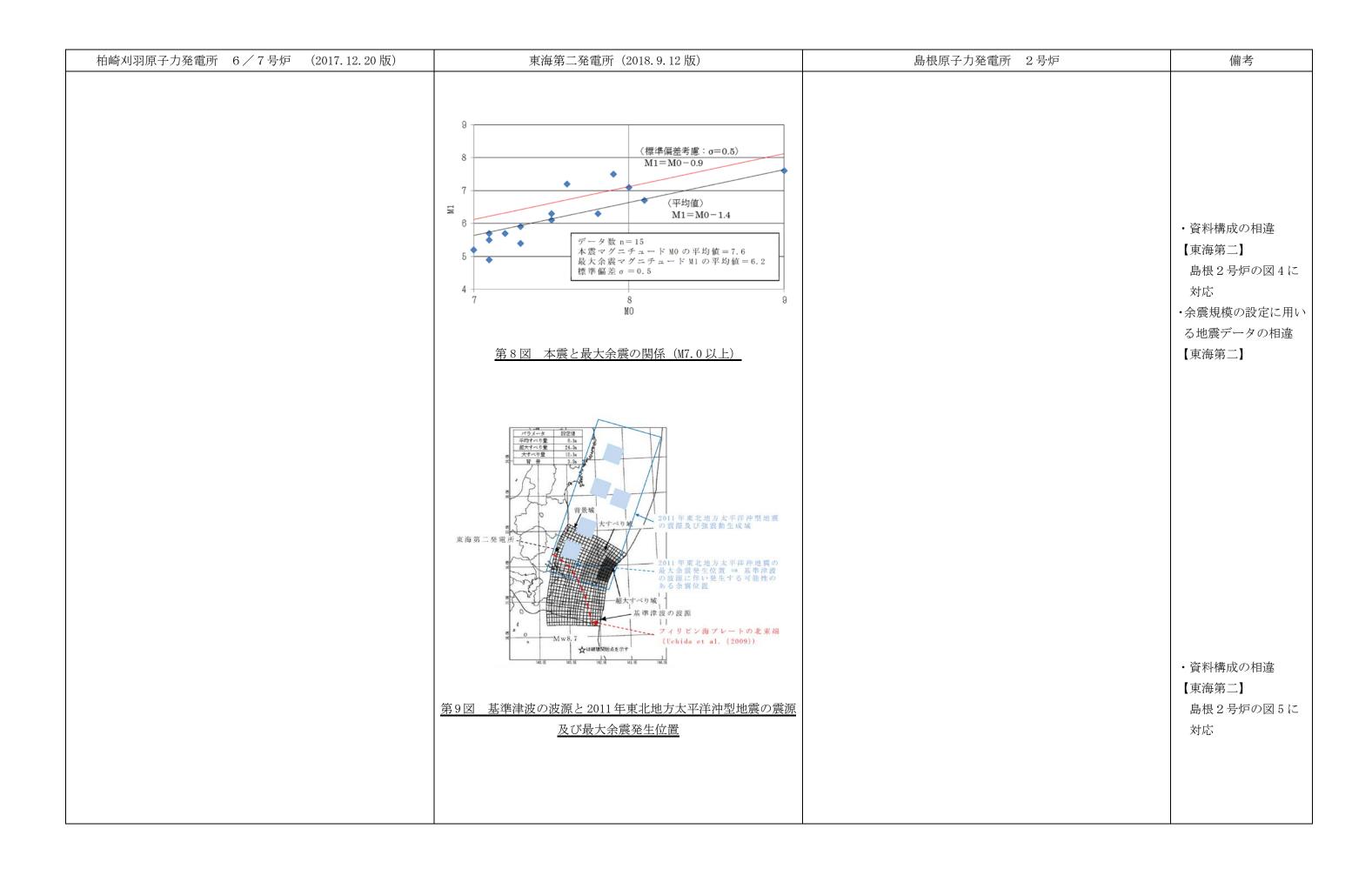
波線・・記載表現、設備名称の相違(実質的な相違なし)


まとめ資料比較表 〔第5条 津波による損傷の防止 別添1 添付資料22〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	まとめ資料比較表 【第 5 栄	島根原子力発電所 2号炉	備考
添付資料 30 耐津波設計における津波荷重と余震荷重の組み合わせについて 30.1 規制基準における要求事項等 ・サイトの地学的背景を踏まえ、余震の発生の可能性を検討すること。 ・余震発生の可能性に応じて入力津波による荷重と余震による荷重との組み合わせを考慮すること。	添付資料28 耐津波設計における津波荷重と余震荷重の組合せについて 1. 規制基準における要求事項等 ・サイトの地学的背景を踏まえ、余震の発生の可能性を検討すること。 ・余震発生の可能性に応じて余震による荷重と入力津波による荷重との組合せを考慮すること。	添付資料 22 耐津波設計における余震荷重と津波荷重の組合せについて 1. 規制基準における要求事項等 ・サイトの地学的背景を踏まえ、余震の発生の可能性を検討すること。 ・余震発生の可能性に応じて余震による荷重と入力津波による荷重との組合せを考慮すること。	
	2. 敷地周辺のプレートテクトニクス 敷地周辺は、陸のプレート、太平洋プレート、フィリピン海 プレートの3つのプレートが接触する場所であり、その状況に ついて模式的に示したものを第1図に示す。関東地方において は南方からフィリピン海プレートが沈み込み、そのフィリピン 海プレートは敷地のほぼ直下まで及んでいる(第2図)。		・立地地点の相違 【東海第二】 敷地周辺で複数のプレートが複雑にそめ、そのにでは、そのにでは、ようなでは、そのような複雑な状況にない

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	3. 基準津波の波源		・資料構成の相違
	津波波源は、日本海溝におけるプレート間地震に起因する波		【東海第二】
	源として設定し、その規模は Mw8.7 である。津波波源モデルを		島根2号炉では,「3.1
	第3図に示す。		余震の選定」において
			記載
	三陸沖中部 三陸沖南部 三陸中南部 三陸中南部 三陸東南部 海前 2/8 海線は海溝輪 2/8 2/7 2/8 2/8 2/8 2/8 2/8 2/8 2/8 2/8 2/8 2/8		
	第3図 津波波源モデル		・資料構成の相違 【東海第二】 島根2号炉の図2に 対応

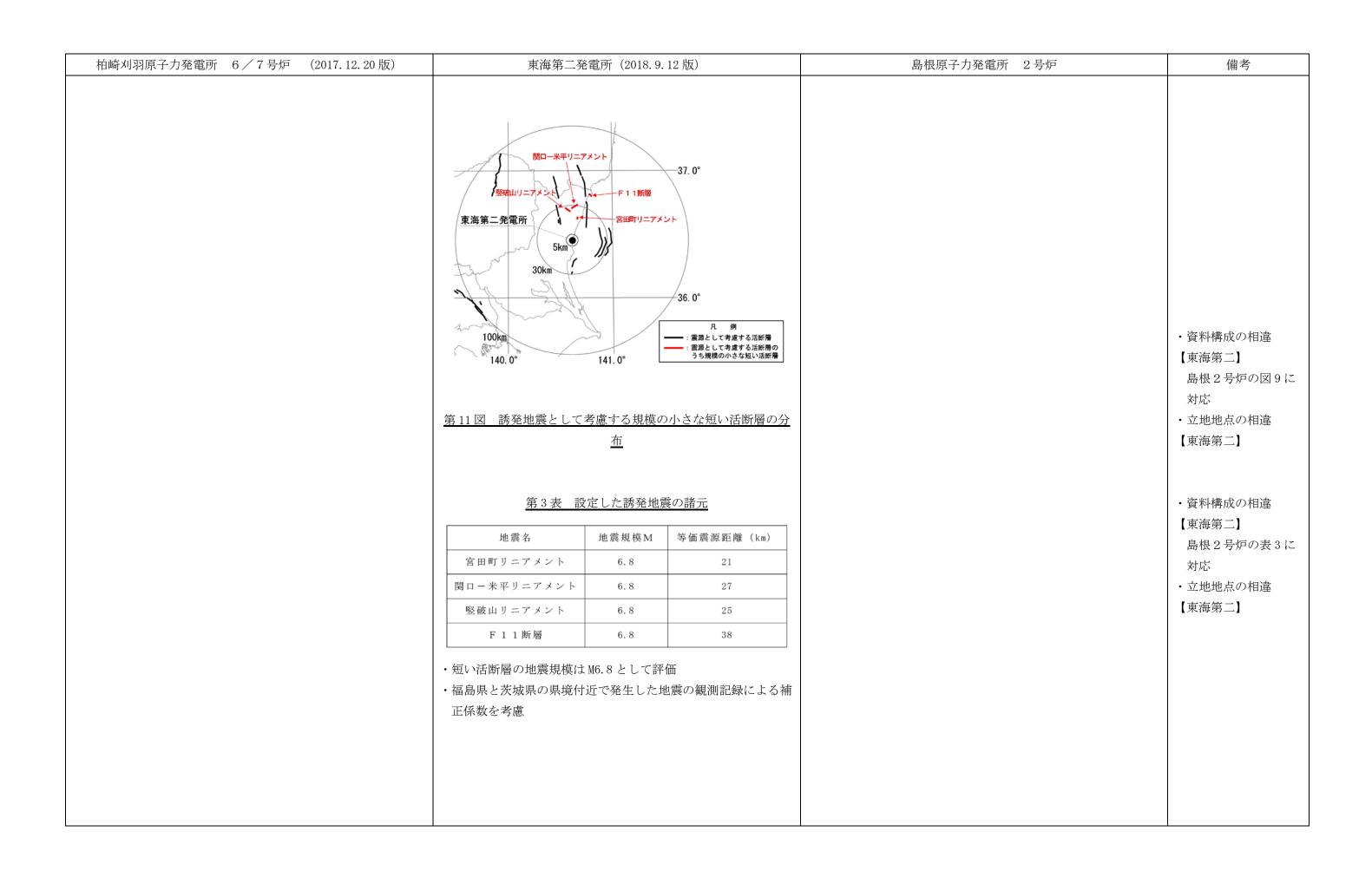
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 島根原子力発電所 2号炉 備考 東海第二発電所 (2018.9.12版) 30.2 検討方針 4. 検討方針 2. 検討方針 余震による荷重については、本震発生後の余震及び誘発地震を 東海第二発電所周辺のプレートテクトニクス的背景や基準 余震による荷重については、本震発生後の余震及び誘発地震 ・ 資料構成の相違 津波と同じ地震発生様式(プレート間地震)である2011年東 検討し、耐津波設計において津波荷重と組み合わせる適切な余震 を検討し、耐津波設計において津波荷重と組み合わせる適切な 【東海第二】 荷重を設定する。なお、本検討においては、本震の震源域におい 北地方太平洋沖地震の余震発生状況 (第4図)を踏まえ、基準 余震荷重を設定する。なお、本検討においては、本震の震源域 島根2号炉では,「3. て発生する地震を余震とし、本震の震源域の外で発生する地震を 津波の波源の活動(本震)に伴い発生する可能性のある余震を において発生する地震を余震とし、本震の震源域の外で発生す 余震の評価 | 及び 「4. 設定し,耐津波設計において津波荷重と組み合わせる適切な余 誘発地震の評価」にお 誘発地震として整理した。 る地震を誘発地震として整理し、図1の流れで検討を実施した。 検討は以下の流れで実施した。 震荷重を設定する。 いて,余震及び誘発地 なお,本検討では、日本地震工学会(2014)を参考に、本震 震の具体的な検討内 の震源域とその周辺において発生する地震(アウターライズの 容を記載 地震及び破壊域内のスラブ内地震を含む。) を余震とし、この 余震発生域外において,本震がトリガーとなって発生する地震 を誘発地震として整理した。 余震荷重の検討フローを第5図に示す。 3月12日4:47 M6.4 スラブ内地震 ブレート間地震 (東北地方太平洋沖地震の本震) 內陸地殼內地震 3月12日3:59 M6.7 3月11日15:25 M7.5 アウターライズ地震 3月11日15:15 M7.6 ブレート間地震 (東北地方太平洋沖地震の最大余震) 第4図 東北地方太平洋沖地震の余震・誘発地震の発生状況 ・資料構成の相違 (東京大学地震研究所 HP に地震発生様式を加筆) 【東海第二】 島根2号炉では,「3. 余震の評価 | 及び 「4. 誘発地震の評価」にお いて,余震及び誘発地 震の具体的な検討内 容を記載

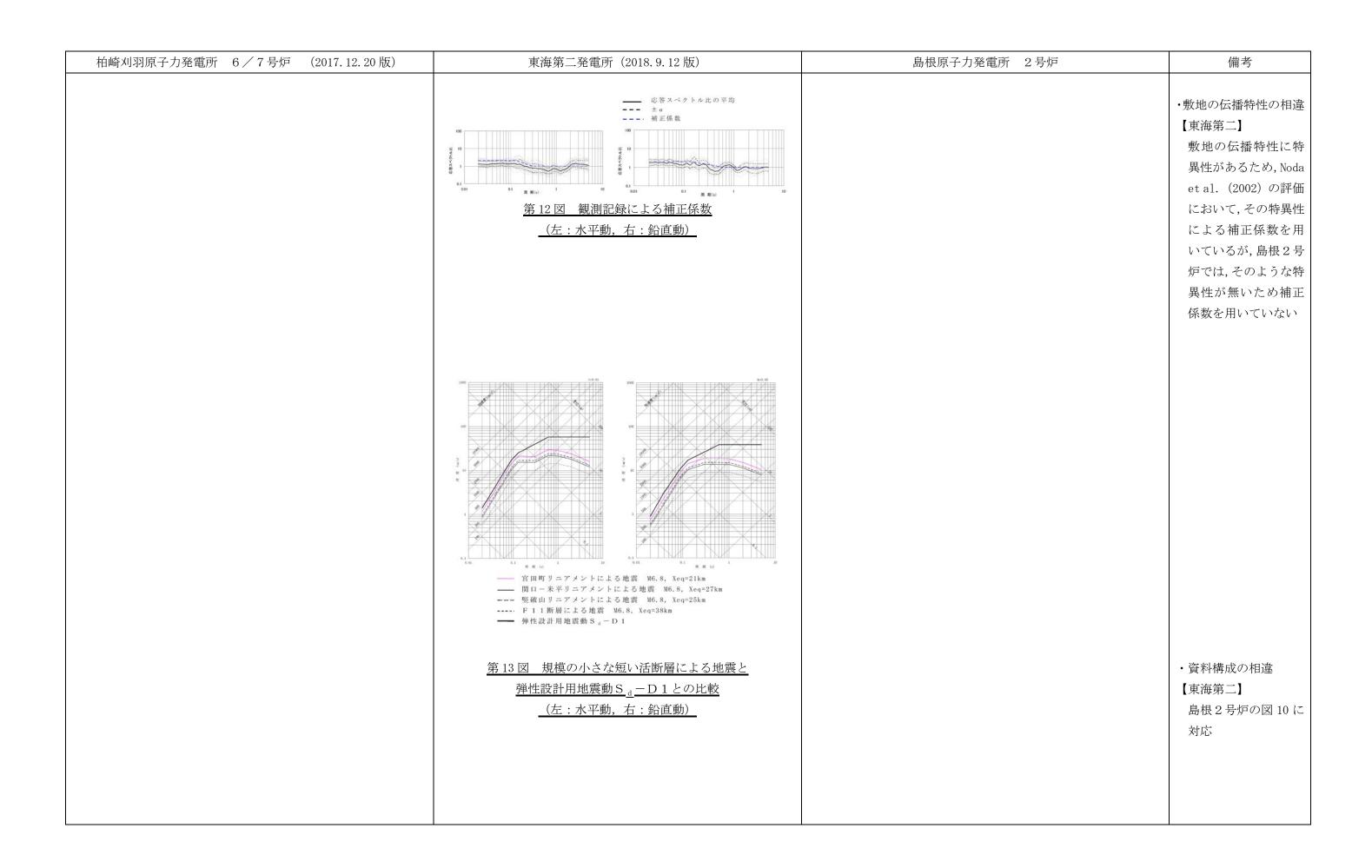


柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
30.3.1 余震規模の設定	5. 1 余震の規模の設定	3.2 余震の規模の設定	C. MA
余震の規模は、過去の地震データにおける本震規模と最大余震			
の規模の関係を整理することにより想定する。検討対象とした地	震の規模の関係を整理することにより想定する。検討対象とし	震の規模の関係を整理することにより想定する。検討対象とし	
震は、津波荷重と組み合わせる余震荷重を評価するという観点か		た地震は、津波荷重と組み合わせる余震荷重を評価するという	
ら、地震調査研究推進本部の地震データによる本震のマグニチュ	観点から、地震調査研究推進本部(2016)の地震データによる	観点から、地震調査研究推進本部の地震データによる本震のマ	
ードが 7.0 以上とし、かつ、基準津波の波源の活動に伴い発生す	本震のマグニチュード M7.0 以上とし、かつ、基準津波の波源	グニチュードが7.0以上とし、かつ、余震を考慮する基準津波	++ >4+ >4->4->4->
る津波の最大水位変化を生起する時間帯は、最大でも地震発生か	の活動に伴い発生する津波の最大水位変化を生起する時間帯	4の波源の活動に伴い発生する津波の最大水位変化を生起する	・基準津波の相違
ら約4時間であることを考慮し、本震と最大余震との時間間隔が	が地震発生から約40分後(第6図)であることを考慮し、本	時間帯は、最大でも地震発生から約10分以内であることを考慮	【柏崎 6/7,東海第二】
<u>12 時間</u> 以内の地震とした。 <u>添付第 30-1 表に</u> ,対象とした地震の	震と最大余震との時間間隔が <u>12 時間</u> 以内の地震と <u>する。第1</u>	し、本震と最大余震との時間間隔が1時間程度以内の地震とし	・最大水位変化を生起す
諸元を示す。	表に、対象とした地震の諸元を示す。また、検討対象とした地	た。対象とした地震の諸元及び震央分布を表1及び図3に示す。	る時間帯の相違
	震の震央分布を第7図に示す。		【柏崎 6/7,東海第二】
同表に、敷地が位置する日本海東縁部の地震の本震のマグニチュ			・余震の相違
ードが 7.0 以上の地震の諸元を併せて示す。また、検討対象とし			【柏崎 6/7】
た地震の震央分布を添付第30-1図に示す。			島根2号炉では,敷地
			への影響が明らかに
			小さい日本海東縁部
地震調査研究推進本部の地震データについて, 本震のマグニチュ	地震調査研究推進本部 (2016) の地震データを整理し、本震	地震調査研究推進本部の地震データについて、本震のマグニチ	に想定される地震の
ード MO と最大余震のマグニチュード M1 の関係から本震と余震の	のマグニチュードMOと最大余震のマグニチュードM1の関係か	ュードM0と最大余震のマグニチュードM1の関係から本震と	余震は評価対象外
マグニチュードの差 D1 は, 添付第 30-2 図のとおり, D1=M0-	ら本震と余震のマグニチュードの差 D1 を求めると、第8回の	余震のマグニチュードの差D1は、図4のとおり、D1=M0	
M1= <u>1.4</u> として評価できる。	通り, D1=M0-M1=1.4 として評価できる。余震の規模を想定	-M1= <u>1.2</u> として評価できる。余震の規模を想定する際は、	・余震規模の設定に用い
		 データ数が少ないことから,保守的に標準偏差を考慮しD1=	る地震データの相違
	慮し D1=0.9 として余震の規模を想定する。	0.9 として余震の規模を想定する。	【柏崎 6/7,東海第二】
同図に示す、日本海東縁部の地震の傾向は、地震調査研究推進本			・余震の相違
部の地震データにみられる関係と調和的である。余震の規模を想			【柏崎 6/7】
定する際は、データ数が少ないことから、保守的に標準偏差を考			島根2号炉では、敷地
慮しD1=0.9 として余震の規模を想定する。			への影響が明らかに
感 UI V. V C U C M M V M M R E M M C M O C M M M M M M M M M M M M M M			小さい日本海東縁部
			に想定される地震の
			余震は評価対象外
	グーマー 人乗の地乗用性は N 0 7 0 0 ト N N 7 0 (N _ N) ナ		
	<u>従って、余震の地震規模は Mw8.7-0.9 より M7.8 (Mw=M とす</u>		・資料構成の相違
	<u>る。)と設定する。</u>		【東海第二】
			島根2号炉では、表2
			に対応
			・設定した震源諸元の
			相違
			【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	5. 2 余震の震源位置の設定		・ 設定方針の相違
	基準津波 (Mw8.7) の波源と基準地震動 S_s の一つとして設定		【東海第二】
	した 2011 年東北地方太平洋沖型地震 (Mw9.0) の震源は茨城県		2011 年東北地方太平
	<u>沖で重なっており、その重なっている領域において 2011 年東</u>		洋沖地震の最大余震
	北地方太平洋沖地震 (Mw9.0) の最大余震 (M7.6) が発生して		を踏まえて余震の震
	いる。この最大余震の地震発生様式は基準津波と同じプレート		源位置を設定してい
	間地震である。これら波源、震源等の位置関係を第9図に示す。		るが、島根2号炉で
	一般に規模の大きなプレート間地震は、過去に発生した規模		は, 基準津波4の波源
	の大きなプレート間地震の震源域で繰返し発生する。		に余震の震源位置を
	また,2011 年東北地方太平洋沖地震の強震動生成域も過去に		設定
	発生した規模の大きなプレート間地震の発生位置と対応して		
	いることが指摘されている (例えば入倉 (2012))。従って,基		
	準津波の波源が活動した場合の強震動生成域や規模の大きな		
	余震の発生位置は 2011 年東北地方太平洋沖地震における茨城		
	<u>県沖の例と類似すると考えられる。以上のことから、基準津波</u>		
	の波源の活動に伴い発生する可能性のある余震は2011年東北		
	地方太平洋沖地震 (Mw9.0) の最大余震 (M7.6) の震源位置に		
	設定する(第9図)。		
	なお、茨城県沖南部から房総沖にかけては第2図で示したと		
	おり, 陸のプレートと太平洋プレートの間にフィリピン海プレ		
	<u>ートが潜り込んでおり,Uchida et al.(2009)</u> によれば,この		
	領域ではプレート間結合度が低いことが示されている。従っ		
	て, 第9図に示したフィリピン海プレートの北東端より南側に		
	おいて規模の大きな地震は発生しにくいと考えられる。		
30.3.2 余震による地震動と本震による地震動との比較			・評価方針の相違
本震と余震の応答スペクトルを Noda et al. (2002) により評			【柏崎 6/7】
価し、本震と余震との地震動レベルを確認する。添付第 30-3 図			本震と余震の地震動
に M8.0 及び M7.0 の本震に対し、余震の規模を D1=0.9 を用い評価			の比が、Ss と Sd の比
し, Noda et al. (2002) の適用範囲の中で等価震源距離 Xeq を			を下回ることを確認
25, 50, 75 及び 100km と設定し, スペクトル比を評価した結果を			しているが、余震と
- 示す。なお、ここではスペクトル比を評価するため、内陸補正や			Sd の比較(柏崎 6/7
観測記録による補正は実施していない。添付第30-3図によると、			では 30.3.3, 島根 2
余震による地震動は本震による地震動に対しおよそ 0.3~0.4 倍			号炉では3.3に示す)
程度となり、基準地震動 Ss と弾性設計用地震動 Sd との比 0.5 を			により、余震が Sd を
下回ることが確認される。_			下回ることを確認て
			きれば問題ないため,

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
			島根2号炉では実施
			していない
30.3.3 <u>基準津波の波源の活動に伴い発生する可能性のある</u> 余震	5. 3 基準津波の波源の活動に伴い発生する可能性のある余震	3.3 余震 <u>の</u> 地震動評価	
による地震動の評価	による地震動の評価		
基準津波の波源の活動に伴い発生する可能性がある余震による	基準津波の波源の活動に伴い発生する可能性のある余震に	基準津波4の波源の活動に伴い発生する可能性がある余震に	
地震動を評価する。柏崎刈羽原子力発電所における基準津波の波	よる地震動を評価する。余震の地震規模は「5.1 余震の規	よる地震動を評価するにあたり、表2及び図5に示す波源の諸	
源は,添付第30-4図に示す「基準津波1及び2の波源」及び「基	模の設定」のとおり M7.8, 震源位置は「5.2 余震の震源	元及び震源モデルを設定し、上記の関係式に基づき余震の規模	
<u>準津波3の波源」である。それぞれの波源について地震動を評価</u>	位置の設定」のとおり 2011 年東北地方太平洋沖地震の最大余	<u>を設定した上で</u> , Noda et al. (2002) により <u>応答スペクトルを</u>	
<u>するに当たり、添付第30-2表及び添付第30-5図</u> に示す震源モ	震発生位置とする。設定した余震の地震諸元を第2表に示す。	評価した。	
デルを設定し,上記の関係式に基づき余震規模を設定した上で,	上記に基づき、基準津波の波源の活動に伴い発生する可能性		
<u>余震による応答スペクトルを</u> Noda et al. (2002) により評価し	<u>のある余震による地震動評価を</u> Noda et al.(2002)により <u>行</u>		
た。 なお、評価においては、海域で発生する地震に対しては敷地	<u></u> گَ٠		•敷地の伝播特性の相違
における伝播特性に差が認められるため、地震波の顕著な増幅が			【柏崎 6/7】
認められる 1 号炉を含む領域を「荒浜側」と地震波の顕著な増幅			敷地の伝播特性に特
が認められない5号炉を含む領域を「大湊側」として、添付第30			異性があるため, Noda
<u>-6</u> 図に示す観測記録に基づく補正係数をそれぞれ用いることで			et al. (2002) の評価
伝播特性を反映した。また、敷地における伝播特性の差は、敷地			において,その特異性
から南西側に位置する地震についてのみ顕著に確認されている			による補正係数を用
が、敷地から北側に位置する基準津波1及び2の波源に対しても			いているが,島根2号
保守的に同じ補正係数を用いた。 添付第30-7図に評価結果を示	評価結果を第10図に示す。	その評価結果と弾性設計用地震動Sd-Dの応答スペクトルを比	炉では, そのような特
す。同図より、評価結果は、弾性設計用地震動 Sd を下回ることが	同図より, 評価結果は, 弾性設計用地震動 S d - D 1 を下回	較して図6に示す。同図より、基準津波4の波源の活動に伴う余	異性が無いため補正
確認される。	ることが確認される。	震の地震動評価結果は、弾性設計用地震動Sd-Dを下回ってい	係数を用いていない
		<u>5.</u> .	
	▼約 40 分後 2 0		
	© 20		
	製-10 0 30 60 90 120 150 180 210 240 時間 (分)		
	第6図 基準津波の取水口前面位置における時刻歴波形		 ・資料構成の相違
	20 - 20 1 1 1 20 - 100 1 1 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 2 1		【東海第二】
			島根2号炉では,「3.2
			余震の規模の設定」に
			おいて文章により記
			載

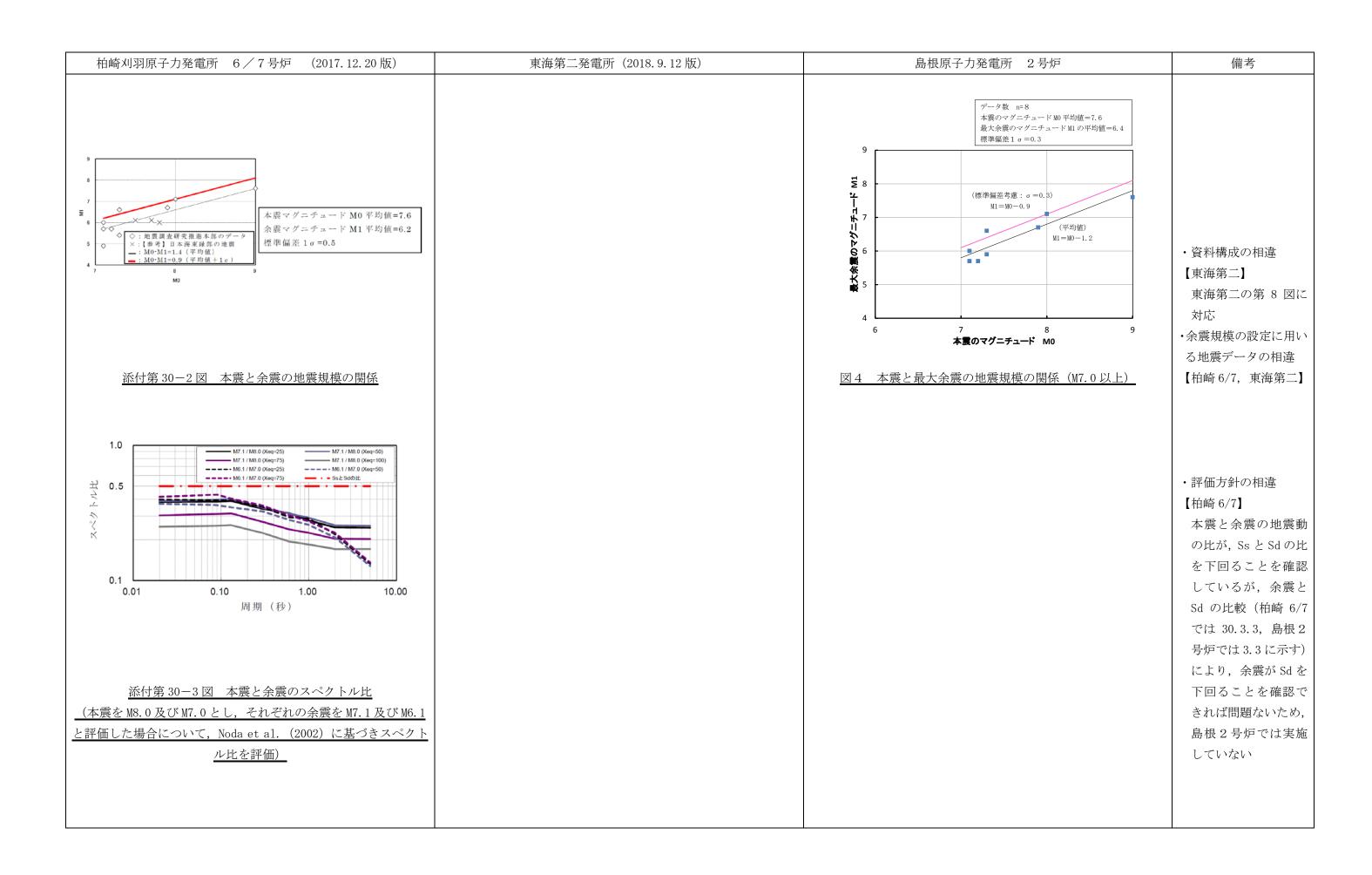

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
	第1表 過去の地震における本震と最大余震の関係 No 発生年月日 震源 本震 最大余震 本震との M0 時間間隔 1 1933/3/3 昭和三陸地震 8.1 6.7 0.125日 2 1937/2/21 択捉島南東沖の地震 7.6 7.2 0 日幸! 3 1948/6/28 福井地震 7.1 5.5 0.004日 4 1961/8/19 北美濃地震 7.0 5.2 0.1 日 5 1964/6/16 新潟地震 7.5 6.1 0.011 日 6 1968/4/1 日向離地震 7.5 6.3 0.3 日 7 1968/5/16 十勝沖地震 7.5 6.3 0.3 日 7 1968/5/16 北海道東方沖の地震 7.8 6.3 0.3 日 7 1968/5/17 兵庫県南部地震 7.8 6.3 0.3 日 9 1995/1/17 兵庫県南部地震 7.3 5.4 0.003 日 10 2003/5/26 宮城県沖 7.1 4.9 0.26 日 11 2003/9/26 十勝沖地震 8.0 7.1 0.05 日 12 2008/6/14 岩手・宮城内陸地震 7.2 5.7 0.025 日 13 2008/9/11 十勝沖 7.1 5.7 0.008 日 14 2011/3/11 東北地方太平洋沖地震 9.0 7.6 ^{※2} 0.02 日 15 2016/4/16 熊本地震 7.3 5.9 0.1 日 ※1 : 24 時間以内であるが半日以内か不明		 ・資料構成の相違 【東海第二】 島根2号炉の表1に対応 ・余震規模の設定に用いる地震データの相違 【東海第二】
	※2: 気象庁による最新の震源情報を参照 ***********************************		・資料構成の相違 【東海第二】 島根 2 号炉の図 3 に 対応
	128° 132° 136° 140° 144° 148° 152° 第7図 余震の地震規模の評価に用いた地震の震央分布		・余震規模の設定に用る地震データの相違【東海第二】



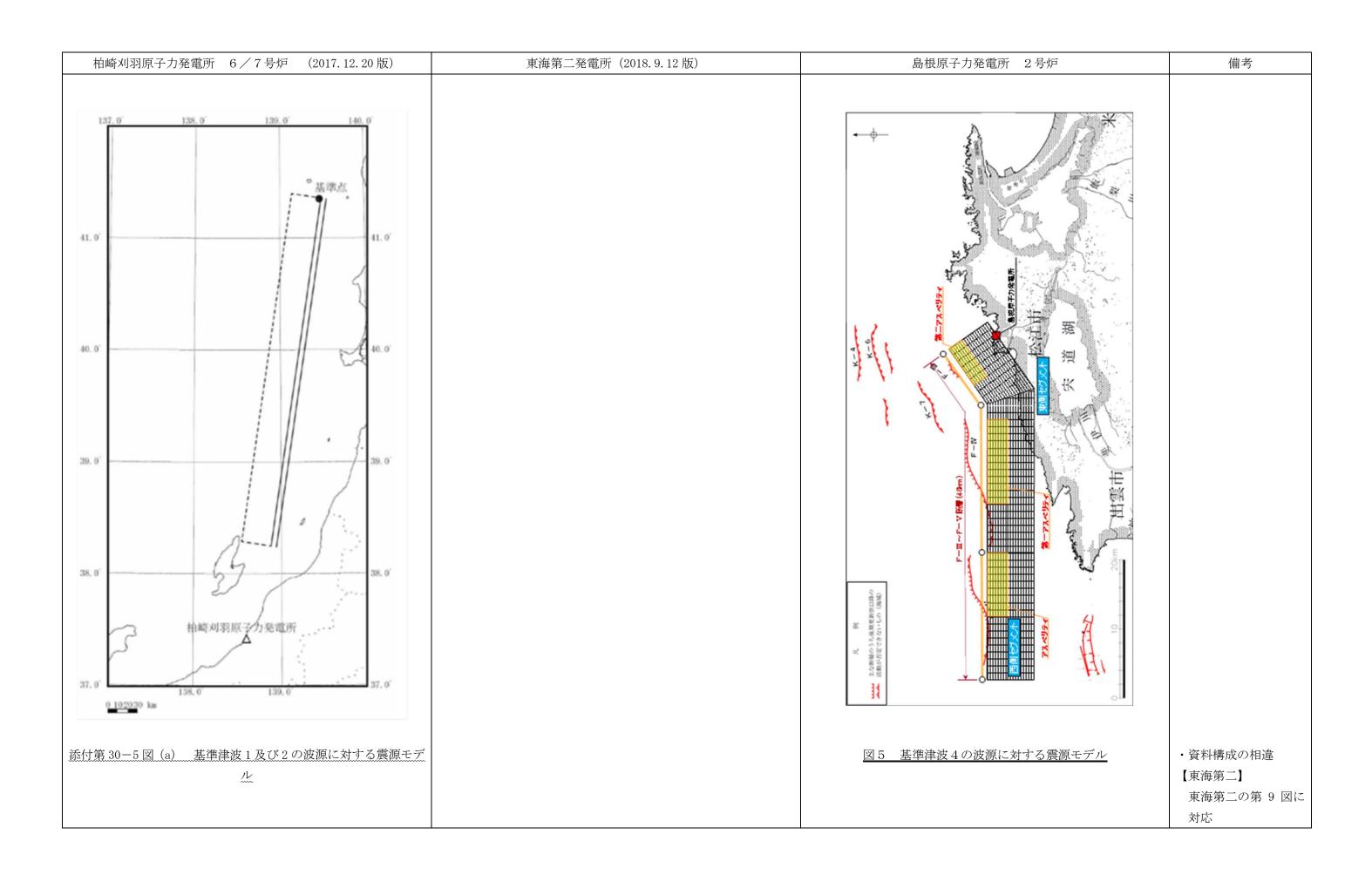
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所((2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第2表 設定した余震の震源諸元			・資料構成の相違 【東海第二】
	項目	設定値		島根2号炉の表2に
	本震の地震規模 (Mw)	8. 7		対応
	余震の地震規模 (M)	7.8		・設定した震源諸元の 相違
	等価震源距離 (km)	86		【東海第二】
	1000 1000	計用地震動S _d -D1との比較		 資料構成の相違 【東海第二】 島根2号炉の図6に 対応

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
30.4 誘発地震の評価	<u>6</u> . 誘発地震の評価	4. 誘発地震の評価	
30.4.1 誘発地震として考慮する震源の評価	6. 1 誘発地震として考慮する震源の評価	4.1 誘発地震の選定	
基準津波の波源の活動に伴い発生する可能性がある誘発地震と	基準津波の波源の活動に伴い発生する可能性のある誘発地	基準津波の波源の活動に伴い発生する可能性がある誘発地震	
して考慮する地震を選定する。	震として考慮する震源を評価する。	による地震動を評価するにあたり、敷地への影響度を考慮して	・評価方針の相違
		対象とする誘発地震を選定する。	【柏崎 6/7,東海第二】
			島根2号炉では,基準
誘発地震の地震規模を評価するに当たり、添付第 30-1 表中に	評価に際しては、「4.検討方針」のとおり、基準津波と同	過去に発生した誘発地震について,2011年東北地方太平洋沖	津波の波源のうち, 敷
示す 2011 年東北地方太平洋沖地震 (M9.0) 及び敷地が位置する日	じ地震発生様式である 2011 年東北地方太平洋沖地震の事例を	地震 (M9.0) を対象に,余震活動の領域内の地震を除いた本震	地への影響が考えら
本海東縁部の地震の本震のマグニチュードM7.0以上の3地震を対	参考に地震規模、発生位置を検討する。	発生後 24 時間以内に発生したM6.5 以上の内陸地殻内地震を確	れる波源の誘発地震
象に、本震発生後24時間以内に発生した地震を検討した。添付第		認すると、本震発生から約 13 時間後に長野県北部の地震(M	のみ評価対象に選定
30-8 図に示すとおり, 2011 年東北地方太平洋沖地震 (M9.0) の		6.7) が誘発地震として発生しており、それぞれの地震の震央位	・評価方針の相違
誘発地震は、2011年長野県北部の地震(M6.7)が本震発生から約		置は、図7に示すとおり約400km離れた位置関係になっている。	【柏崎 6/7,東海第二】
13 時間後の 3 月 12 日に発生している。		図8に示す国土地理院による 2011 年東北地方太平洋沖地震	島根2号炉では,基準
		(M9.0) の発生後(2011年2月下旬~3月下旬)の地殻変動に	津波の波源のうち,敷
		よると,誘発地震の長野県北部の地震 (M6.7) の震央位置周辺	地への影響が考えら
		に比べて,敷地周辺ではほとんど地殻変動は見られない。また,	れる波源の誘発地震
		遠田 (2011) において,2011 年東北地方太平洋沖地震(M9.0)	のみ評価対象に選定
		の発生後の応力変化を検討し、近畿地方の変化量は概ね 0. 1bar	するため, 誘発地震が
		以下と小さく, 地震活動に目立った変化は見られないことから,	発生したとされてい
		「近畿の活断層への影響はごくわずか」としており、近畿地方	る 2011 年東北地方太
		よりもさらに西方の敷地周辺の活断層への影響もごくわずかと	平洋沖地震を対象に
また, 日本海東縁部の地震については、余震を含めたとしても		考えられる。なお、日本海東縁部の地震の本震のマグニチュー	敷地への影響を記載
M6.5未満の地震しか発生していない。		ドが 7.0 以上の 3 地震(1964 年新潟地震:本震M7.5 最大余震	
		6.1, 1983 年日本海中部地震:本震M7.7 最大余震 6.1, 1993	
		年北海道南西沖地震:本震M7.8 最大余震 6.0) については,	
		余震を含めたとしてもM6.5未満の地震しか発生していない。	
		基準津波のうち、「日本海東縁部に想定される地震による基準	・評価方針の相違
		津波1,2,3,5及び6」の波源は2011年東北地方太平洋沖	【柏崎 6/7,東海第二】
		地震(M9.0)より規模が小さく、その位置は図7に示すとおり	島根2号炉では,各基
		敷地から 600km 以上の距離にあり,2011 年東北地方太平洋沖地	準津波の波源の誘発
		震とその誘発地震の位置関係よりも更に離れていることから,	地震による敷地への
		上記の地殻変動や応力変化を考慮すると、その波源の活動に伴	影響について検討し、
		う誘発地震が敷地周辺で発生することは考えられない。	敷地への影響が考え
		一方,「海域活断層に想定される地震による基準津波4」の波	られる波源の誘発地
		源位置は、図7に示すとおり、敷地からの断層最短距離が約8	震のみ評価対象に選
		km と比較的近いことから、その波源の活動に伴う誘発地震が敷	定

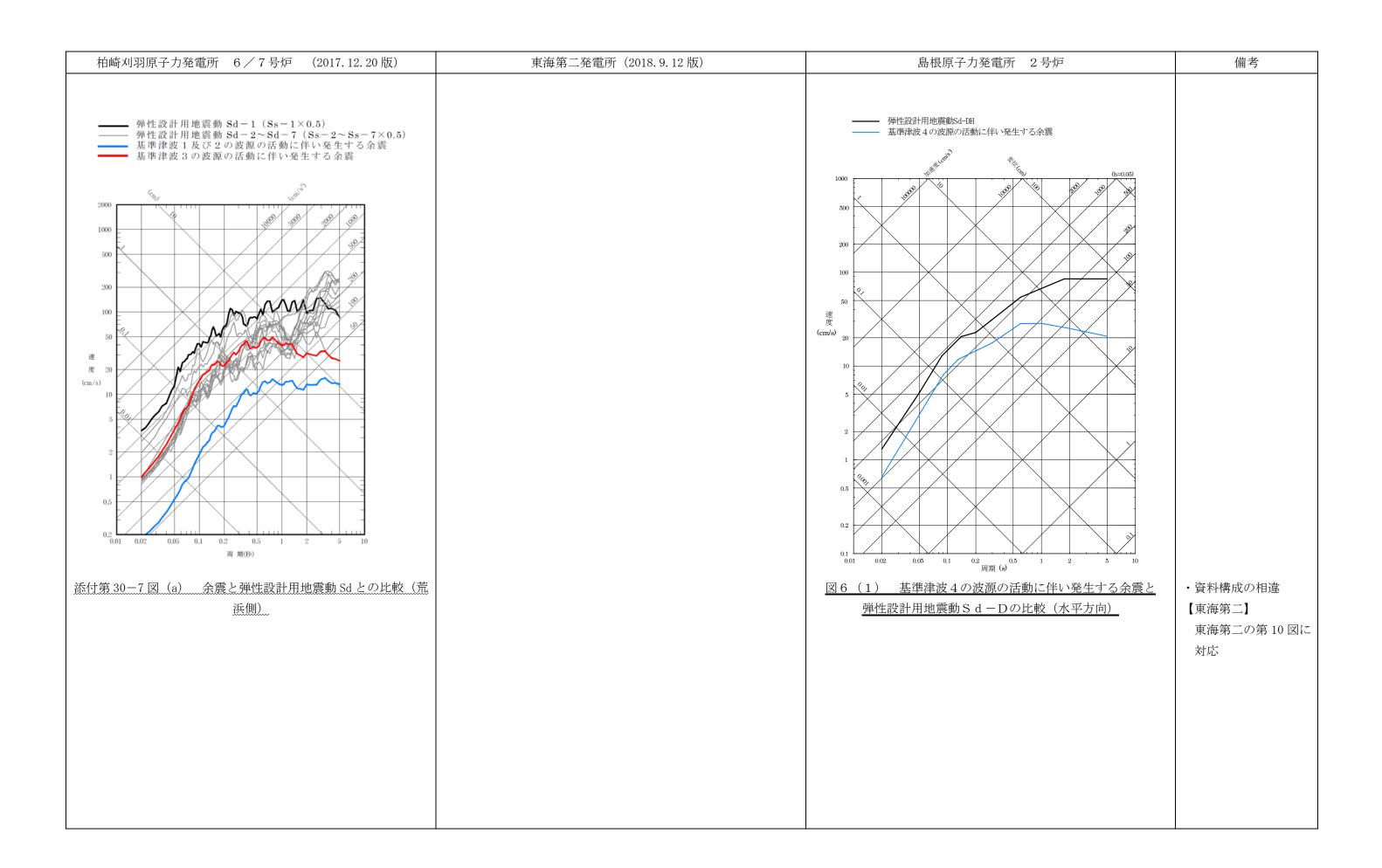
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		地周辺で発生することは考えられる。	
		以上のことから,「海域活断層に想定される地震による基準津	
		波4」の波源の活動に伴う誘発地震を選定する。	
		4.2 誘発地震の規模の設定	
以上より、基準津波の継続時間のうち最大水位変化を生起する	第4図に示された2011年東北地方太平洋沖地震の発生による	2011 年東北地方太平洋沖地震(M9.0)では誘発地震の長野県	
時間帯において M6.8以上の誘発地震が発生するとは考えにくい。	誘発地震のうち,本震発生からもっとも早く発生した誘発地震	北部の地震 (M6.7) が発生したのは本震発生から約 13 時間後	
しかしながら、本震発生後に規模の小さな誘発地震が発生してい	は3月12日長野県北部の地震(M6.7)であり、本震発生から	である。誘発地震を考慮する基準津波4の継続時間のうち最大	
ることを踏まえ、保守的に、添付第 30-9 図に示す基準地震動の	13 時間後である。	水位変化を生起する時間帯(最大でも地震発生から約 10 分以	基準津波の相違
評価において検討用地震と選定されなかった規模の小さな孤立し	一方、東海第二発電所の基準津波の到達時間は第6図に示す	内) においてM6.8 以上の誘発地震が発生することは考えにく	【東海第二】
た短い活断層による地震を対象とする。	とおり, 地震発生から約 <u>40 分後</u> である。	いが,保守的に基準地震動の評価において検討用地震に選定さ	
	このことから, 基準津波の到達時間帯において規模の大きな	れなかった孤立した短い活断層による地震を対象とし、誘発地	
	誘発地震が発生する可能性は低いと考えられる。	震の規模をM6.8に設定する。	
	しかしながら、規模の小さな誘発地震は2011年東北地方太		
	平洋沖地震発生直後から発生していることを踏まえ, 基準地震		
	動の評価において検討用地震の候補として考慮していた規模		
	の小さな短い活断層による地震を保守的に考慮する。		
30.4.2 <u>基準津波の波源の活動に伴い発生する可能性のある</u> 誘発	6.2 基準津波の波源の活動に伴い発生する可能性のある誘発	4.3 誘発地震の地震動評価	
地震の評価	地震による地震動の評価		
基準津波の波源の活動に伴い発生する可能性がある誘発地震に	基準津波の波源の活動に伴い発生する可能性のある誘発地	基準津波4の波源の活動に伴う誘発地震について、表3及び	
よる地震動を評価する。評価においては,孤立した短い活断層に	震による地震動を評価する。誘発地震として考慮する規模の小	図9に示す孤立した短い活断層による地震を対象にM6.8 の震	
よる地震 <u>の規模を保守的に M6.8 として</u> 震源モデルを設定し, <u>誘発</u>	さな短い活断層の分布及び地震諸元をそれぞれ第 11 図及び第	源モデルを設定し,Noda et al. (2002) により <u>応答スペクトル</u>	
地震による応答スペクトルを Noda et al. (2002) により評価し	3表に示す。地震動評価はNoda et al. (2002)により行う。そ	を評価した。その評価結果と弾性設計用地震動 S d - D の応答	
た。派付第 30-3 表に諸元を,添付第 30-9 図に断層の分布図を	の際、基準地震動策定における内陸地殻内地震の評価と同様、	スペクトルを比較して図10に示す。同図より、基準津波4の波	敷地の伝播特性の相談
それぞれ示す。なお,評価においては,陸域で発生する地震に対	福島県と茨城県の県境付近で発生した地震の観測記録による	源の活動に伴う誘発地震の地震動評価結果は、弾性設計用地震	【柏崎 6/7,東海第二】
しては荒浜側と大湊側で伝播特性がおおむね等しいことから,添	補正係数を考慮する。観測記録による補正係数を第12図に,	動Sd <u>-D</u> を下回 <u>っている</u> 。	敷地の伝播特性に特
付第30-10図に示す補正係数を用い伝播特性を反映した。添付第	評価結果を第13図に示す。		異性があるため, Nod
30-11 図に評価結果を示す。同図より,評価結果は,弾性設計用	同図より,評価結果は,弾性設計用地震動 $S_d-\underline{D1}$ を下回		et al. (2002) の評価
地震動 Sd を下回ることが確認される。	ることが確認される。		において,その特異性
			による補正係数を月
			いているが,島根25
			炉では,そのような特
			異性が無いため補工
		1	係数を用いていない



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
30.5 余震荷重の設定 以上の検討結果から、弾性設計用地震動 Sd は余震及び誘発地震 による地震動を上回ることが確認された。弾性設計用地震動 Sd の うち、Sd-1 は全ての周期帯において、余震及び誘発地震による 地震動を十分に上回ることから、保守的に Sd-1 による荷重を津 波荷重に組み合わせる余震荷重として設定する。	7. 余震荷重の設定 以上の検討結果から、 <u>弾性設計用地震動</u> S _d - <u>D1</u> を津波荷 重に組み合わせる余震荷重として考慮する。	5. 余震荷重の設定 以上の検討結果から、基準津波1、2、3、5及び6の波源である「日本海東縁部に想定される地震」については、その余震及び誘発地震の敷地への影響が明らかに小さいことから、津渡荷重に組み合わせる余震荷重を設定しない。また、基準津波4の波源である「海域活断層に想定される地震」については、その余震及び誘発地震の地震動評価結果を、全ての周期帯において弾性設計用地震動Sd-Dが十分に上回ることから、保守的にSd-Dによる荷重を海域活断層に想定される地震による津波荷重に組み合わせる余震荷重として設定する。	・評価方針の相違 【柏崎 6/7, 東海第二】 島根 2 号炉では, 敷地 への影響が明らかに 小さい波源の余震及 び誘発地震は評価対 象外
【参考文献】 Noda, S., K. Yashiro, K. Takahashi, M. Takemura, S. Ohno, M. Tohdo, and T. Watanabe (2002): RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES, OECD-NEA Workshop on the Relations between Seismological DATA and Seismic Engineering, Oct. 16-18, Istanbul 大竹政和, 平朝彦, 太田陽子編 (2002): 日本海東緑の活断層と地震テクトニクス,東京大学出版会	8. 参考文献 ・日本地震工学会(2014): 東日本大震災合同調査報告, 共通編 1, 地震・地震動 ・地震調査研究推進本部(2016): 大地震後の地震活動の見通しに関する情報のあり方, 平成 28 年 8 月 19 日 ・入倉孝次郎(2012): 海溝型巨大地震の強震動予測のための震源モデルの構築, 第 40 回地盤震動シンポジウム ・Naoki Uchida, Junichi Nakajima, Akira Hasegawa, Toru Matsuzawa(2009): What controls interplate coupling?: Evidence for abrupt change in coupling across a border between two overlying plates in the NE Japan subduction zone, Earth and Planetary Science Letters 283, 111-121 ・Shizuo Noda, Kazuhiko Yashiro, Katsuya Takahashi, Masayuki Takemura, Susumu Ohno, Masanobu Tohdo, Takahide Watanabe (2002): RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES, OECD, NEA Workshop on the Relations between Seismological Data and Seismic Engineering Analysis, Oct. 16-18, Istanbul	*Noda, S.・K. Yashiro・K. Takahashi・M. Takemura・S. Ohno・M. Tohdo・T. Watanabe(2002): RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES, OECD_NEA Workshop on the Relations Between Seismological DATA and Seismic Engineering, Oct. 16-18 Istanbul, pp. 399-408 ・地震調査研究推進本部(2016): 大地震後の地震活動の見通しに関する情報のあり方、平成28年8月19日 ・国土地理院(2011): 平成23年3月の地殻変動について・遠田晋次(2011): 東北地方太平洋沖地震にともなう静的応力変化,http://www1.rcep.dpri.kyoto-u.ac.jp/events/110311 tohoku/toda/index.html ・活断層研究会編(1991): [新編] 日本の活断層分布図と資料,東京大学出版会	・評価方針の相違 【柏崎 6/7, 東海第二】 評価方針の相違による参考文献の相違

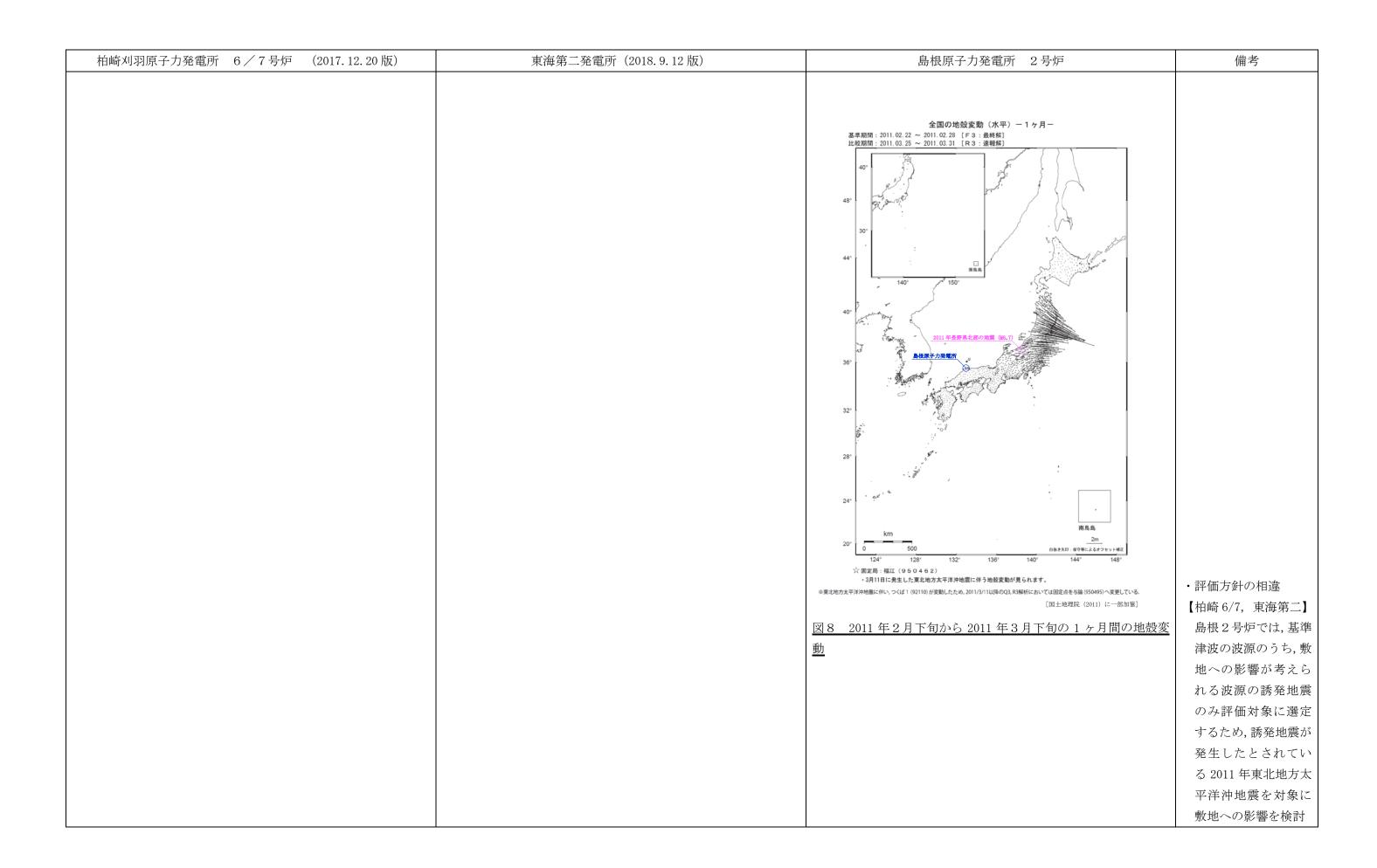

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉 130.0° 135.0° 140.0° 145.0° 45.0° 45.0° 45.0° 46.0° 基準津波2.3 (日本海東電船) (日本海東南部) (日本海東電船) (日本海東電船) (日本海東南部) (日本海東電船) (日本海東電船) (日本海東電船) (日本海東電船) (日本海東電船) (日本海東電船) (日本海東電船) (日本海東南部) (日本海南南部) (日本海南南南南南南南部) (日本海南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南南	
			柏崎 6/7 の添付第 30-4 図,東海第二の 第3図に対応

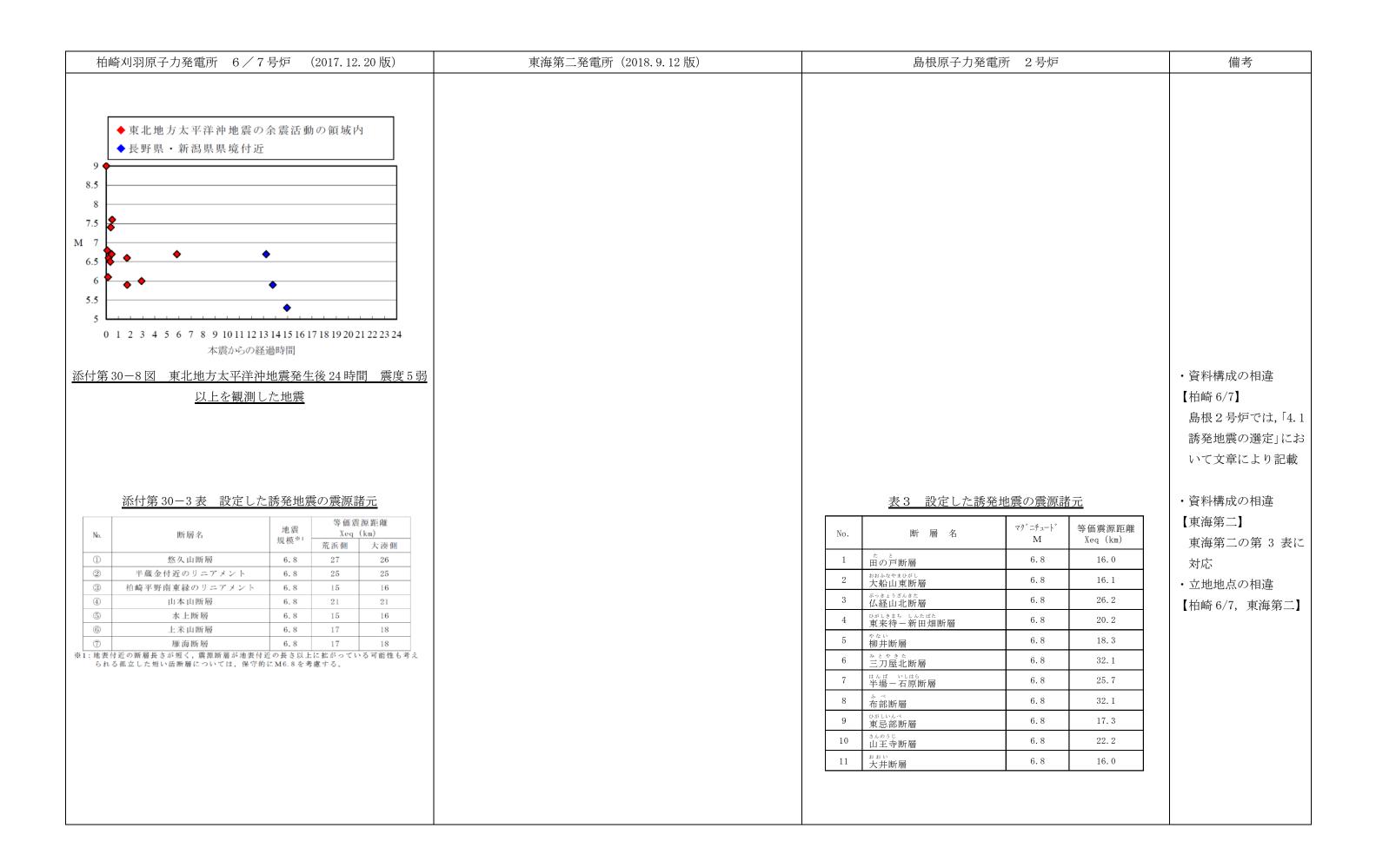
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉 備考 添付第30-1表 過去の地震における本震と最大余震の関係 過去の地震における本震と最大余震の関係 (M7.0以上) 表 1 ・資料構成の相違 【東海第二】 発生年月日 本震との 時間間隔 マク゛ニチュート゛ マグニチュード 東海第二の第 1 表に No 発生年月日 間 震源 十勝沖 1 2003/9/26 7.1 1:18 本震 MO 最大余震 M1 対応 2 2004/11/29 釧路沖 6.0 0:04 千島列島東方 1 1995. 1. 17 淡路島 1:52 ・余震規模の設定に用い 7. 1*1 2 2003.5.26 宮城県沖 4.9 6:20 5 2008/9/11 十勝沖 0:12 3 2003.9.26 十勝沖 8.0 1:18 東北地方太平洋沖地震 る地震データの相違 6 2011/3/11 0:29 4 2004.11.29 7.1 釧路沖 0:04 6.6 0:13 7 2012/12/7 三陸沖 5 2006.11.15 千島列島東方 7. 9 6.7^{*}1 1:12 【柏崎 6/7,東海第二】 6 2008, 6, 14 岩手宫城内陸地震 7.2 0:37 2008.9.11 7.1 0:12 ※1:気象庁による最新の震源情報を参照 9. 0 7.6**1 8 2011.3.11 東日本太平洋沖地震 0:29 9 2012.12.7 三陸沖 7.3 0:13 A^{₩2} 1964.6.16 新潟地震 7.5 0:16 1983.5.26 日本海中部地震 0:57 北海道南西沖地震 7.8 1993.7.12 1:28 ※1: 気象庁による最新の震源情報を参照, ※2: 日本海東縁部の地震 45.0° 40.0° 35.0° 126° 128° 130° 132° 134° 136° 138° 140° 142° 144° 146° 148° 150° 152° 154° 0 200 400 30.0° 図3 余震の地震規模の評価に用いた地震の震央分布 添付第30-1図 余震の地震規模の評価に用いた地震の震央分布 ・資料構成の相違 本震(★)と最大余震(★) _[本震(★), 余震(★)] 【東海第二】 東海第二の第7図に 対応 ・余震規模の設定に用い る地震データの相違 【柏崎 6/7, 東海第二】

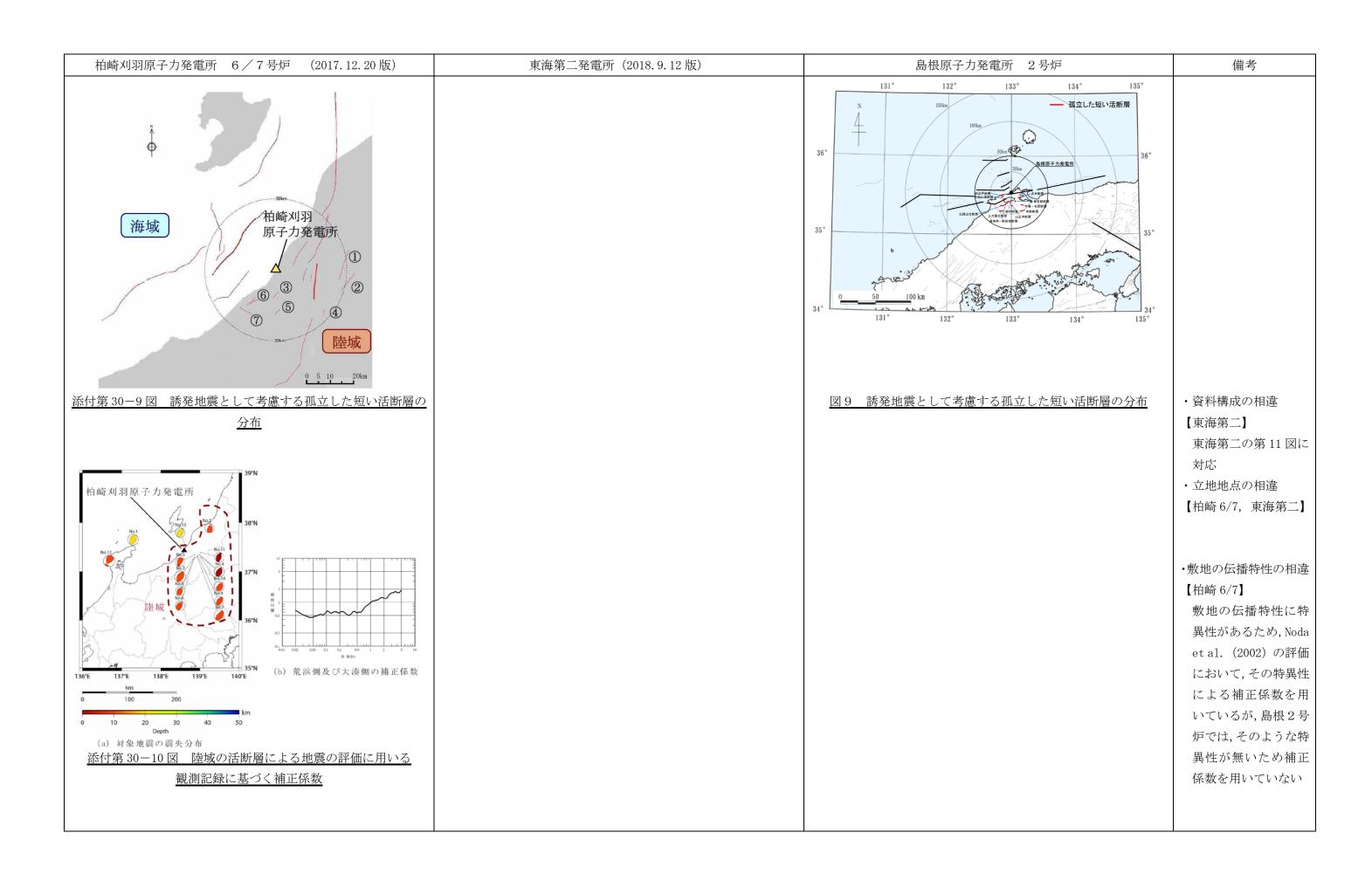

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2 号炉	備考
基準律数1及び2の数原 青倉県西方沖 地路県沖 基準律数3の変源 「福崎川明 原子力効電所 「添付第30-4 図 基準津波の波源			・資料構成の相違 【柏崎 6/7】 島根 2 号炉の図 2 に 対応

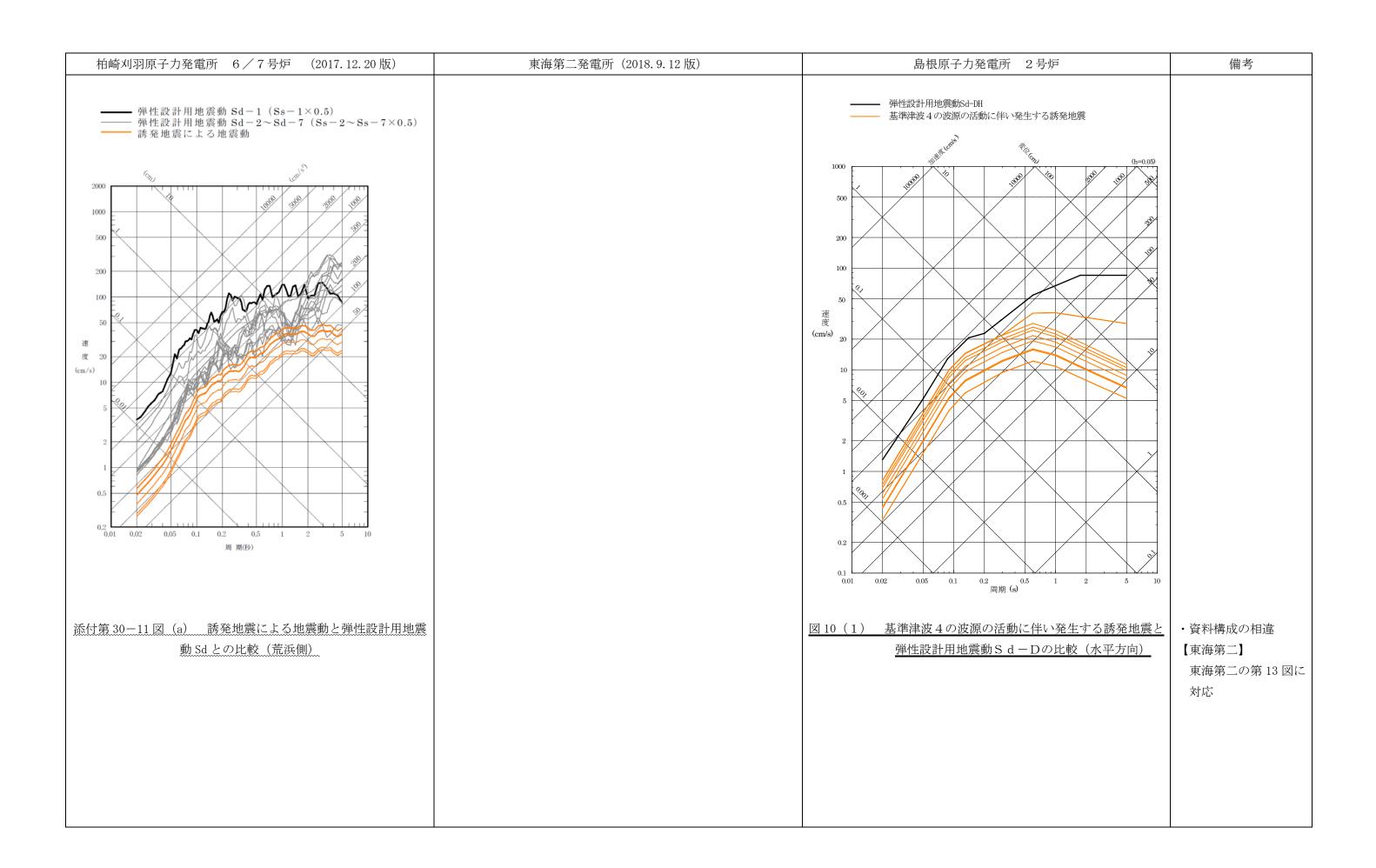
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電	所 2号炉	備考
		表2 設定した余額	震の震源諸元	・資料構成の相違
		項目	設定値	【柏崎 6/7, 東海第二】 柏崎 6/7 の添付第
		本震のマグニチュード	7.6	30-2 表, 東海第二の
		余震のマグニチュード ^{※1}	6. 7	第2表に対応
		等価震源距離 ^{※2} (km) ※1:本震と余震のマグニチュードの差D1を 0.9	17.3 9として、余震のマグニチュードを評価	・設定した震源諸元の
		※2:図5に示す震源モデルに対し, Noda et al.	(2002) に基づき等価震源距離を評価	相違【柏崎 6/7,東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
137.5 137.6 137.6 137.8 138.6 138.5 138.6 138.8 138.6 138.8 138.6 138.8 138.6 138.8 138.6 138.8 138.6 138.8 138.6 138.8 138.6 138.8 138.6 138.8 138.6 138.8 138.6 138.8 138.6 138.8 138.6 138.8 138.6 138.8 138.6 138.8 13			

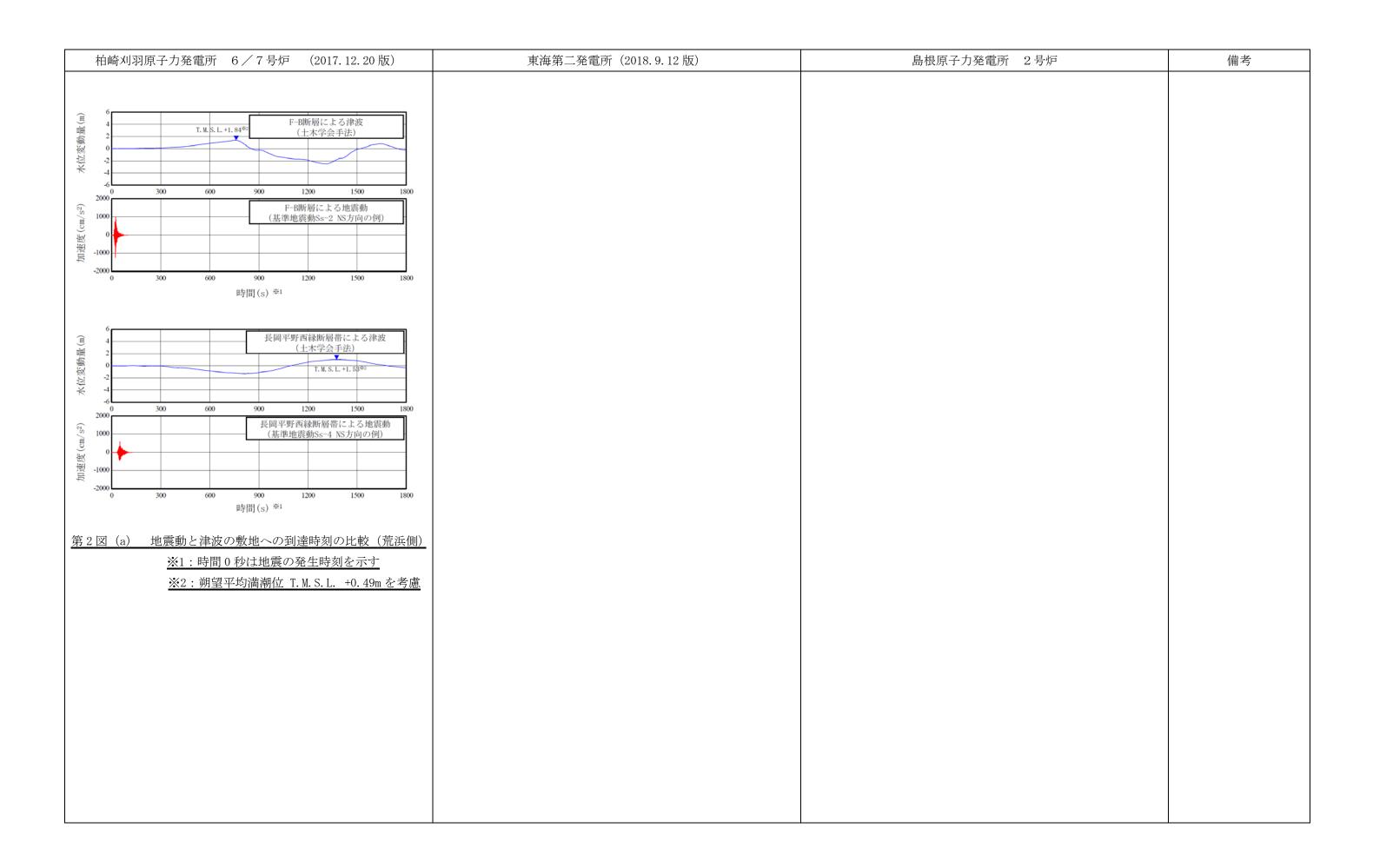

柏崎刈羽	羽原子力発電所	6/7号灯	炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u> </u>	然付第 30−2 表	き 設定した。	余震の震源諸元			・資料構成の相違
		設力	定値			【柏崎 6/7】
項目	基準津波1及		基準津波3の波源			島根2号炉の表 2~
本震の	荒浜側	大湊側	荒浜側 大湊側			対応
本長の地震規模	8.	6	8. 0			・設定した震源諸元の
余震の	7.	7	7. 1			相違
也震規模 ^{※1} 等価震源						
距離 Xeq	204	202	41 40			【柏崎 6/7】
海域 No.137年 km 100 (a) 対	138 *E 139 *E 200 20 30 40 Depth 象地震の震央分布	36°N 36°N 140°E	(e) 大湊側の補正係数 Z +bb (素の) (c) 大湊側の補正係数			・敷地の伝播特性の柞
<u>你们男</u> 。			る地震の評価に用いる			
	(観) 記	録に基づく補	<u>用止沉料</u>			【柏崎 6/7】
						敷地の伝播特性に
						異性があるため, N
						et al. (2002) の記
						において、その特質
						による補正係数を
						いているが,島根:
						炉では, そのような
						異性が無いため補
						係数を用いていな

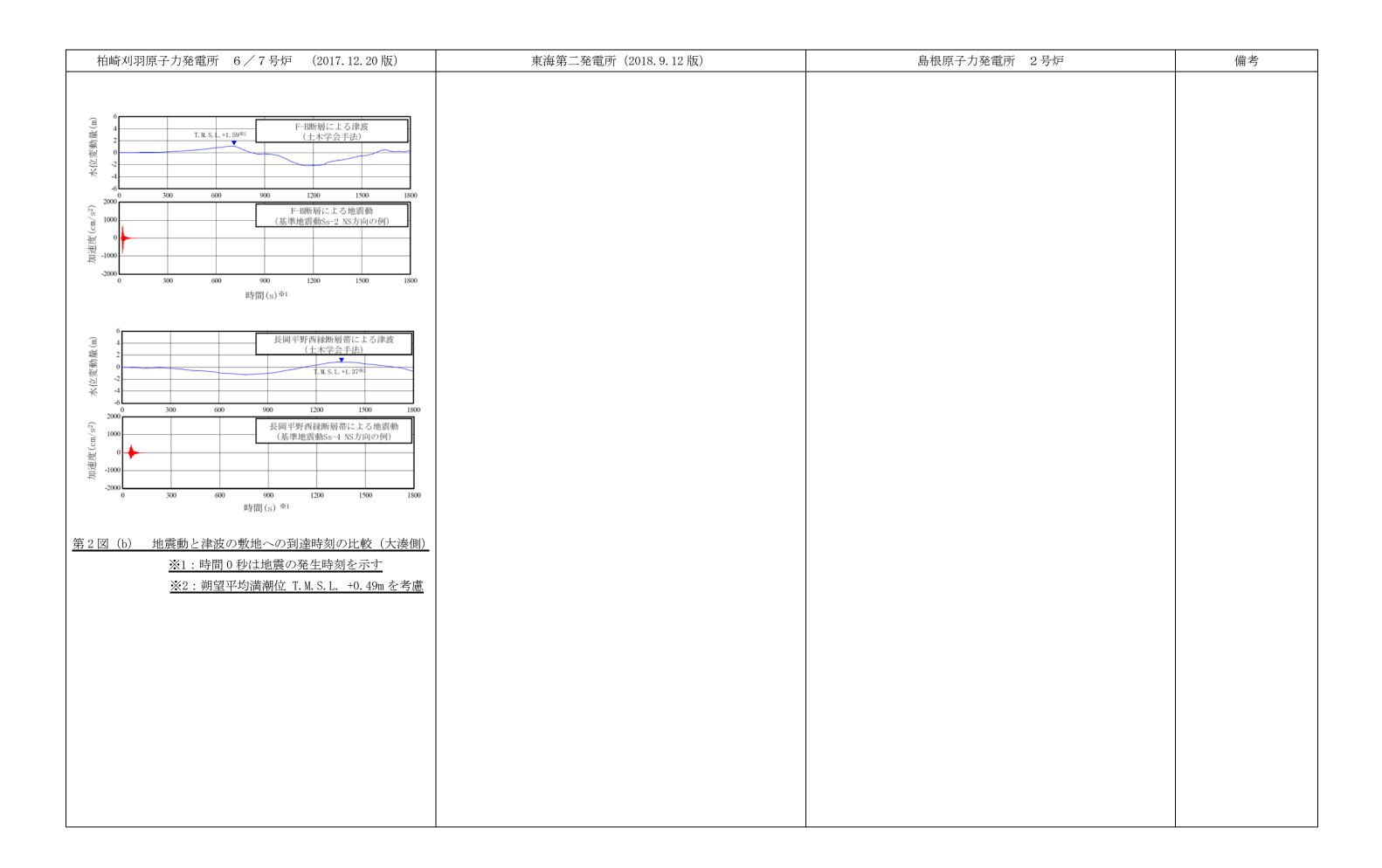



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
イ	東海第一発電灯 (2018. 9. 12 版)	局限原土力発電所 2 万分	

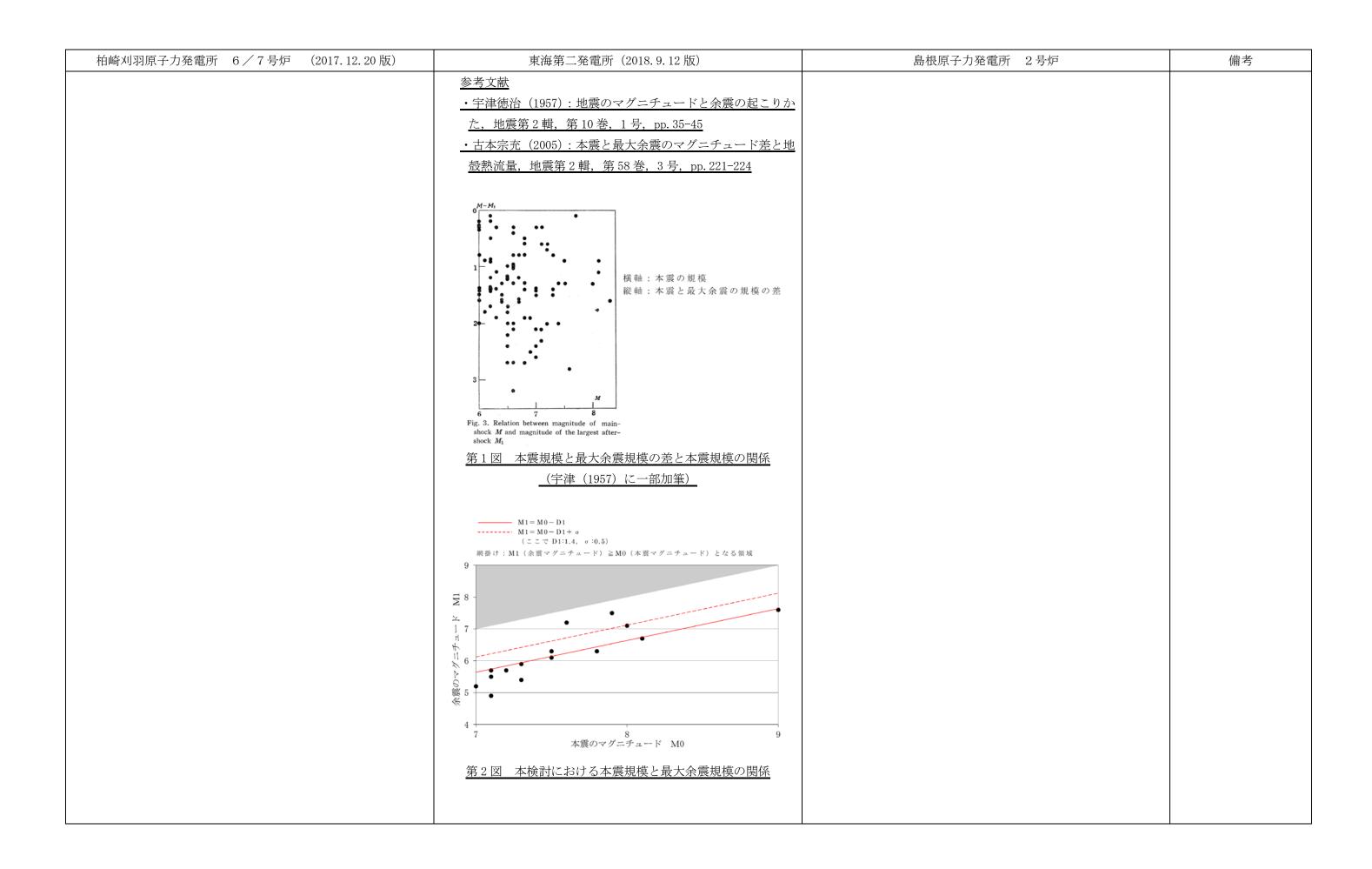

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		理性設計用地類的Sd-DV 基準律波 4 の波蘭の活動に伴い発生する余震	・資料構成の相違
		弾性設計用地震動 S d - Dの比較(鉛直方向)	【東海第二】 東海第二の第 10 図に 対応 ・資料構成の相違 【柏崎 6/7】 島根 2 号炉では, 鉛直 方向も比較

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
			130.0° 135.0° 140.0° 145.0°	・評価方針の相違 「計価 6/7, 東海第二】 島根 2 号炉での影響が考えたの影響が考えたの影響が考えたの影響が発発に関するといるのみ評価が発生したとなったとは、とこの11 年東北地震を対象に、この11 日本 11 日



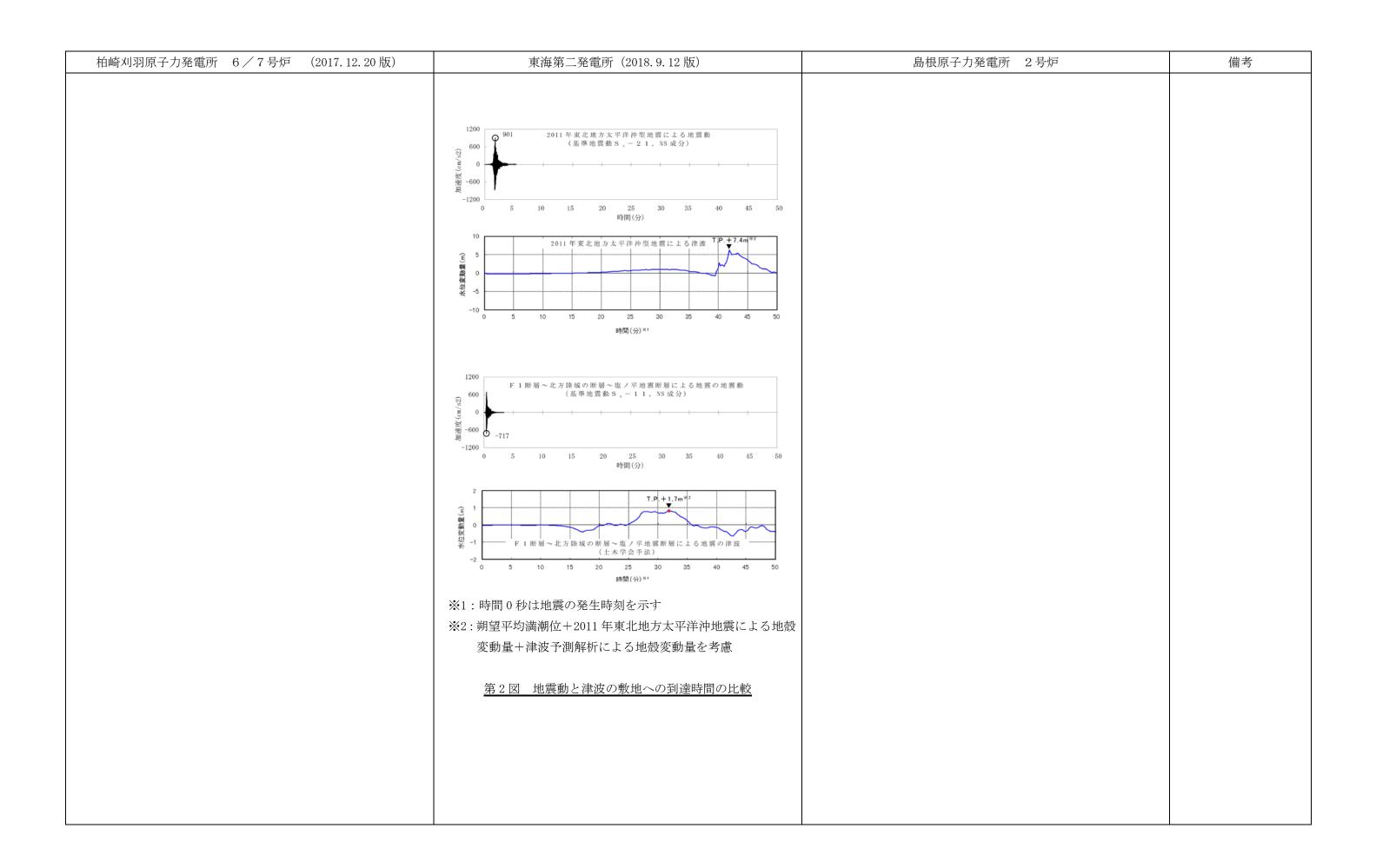

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		島根原子力発電所 2 号炉	備考
	水(時初一元电河 (2010.7.12 J以)	ROTENT J J J J J HELDT L J J J J J J J J J J J J J J J J J J	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版) 東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	展性設計用地震動Sd-DV 基準達成4の波源の活動に伴い発生する誘発地震 (cm/s) 20 10 (2) 基準達成4の波源の活動に伴い発生する誘発地震と 弾性設計用地震動Sd-Dの比較(鉛直方向)	・資料構成の相違 【東海第二】 東海第二の第 13 図に 対応 ・資料構成の相違 【柏崎 6/7】 島根 2 号炉では, 鉛直


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
<u>(参考)</u>			・資料構成の相違
基準地震動 Ss による地震力と津波荷重の組み合わせについて			【柏崎 6/7】
			島根2号炉では,基準
1. 規制基準における要求事項等			地震動 Ss による地震
基準地震動 Ss による地震力と地震力以外の荷重を適切に組み			力と津波荷重の組合
合わせていることを確認する。その場合、地震力以外の荷重につ			せについては,別紙1
いては、津波荷重を含む。			に記載。
2. 基準地震動 Ss による地震力と津波荷重の組み合わせについ			
<u></u>			
基準地震動 Ss の策定における検討用地震は第 1 図に示す F-B			
断層及び長岡平野西縁断層帯による地震である。これらの断層に			
ついては、敷地に近い位置に存在し、地震波と津波は伝播速度が			
異なることを考慮すると、両者の組み合わせを考慮する必要はな			
いと考えられる。以下,「2.1 基準地震動 Ss の震源と津波の波源			
が同一の場合」と「2.2 基準地震動 Ss の震源と津波の波源が異な			
る場合」とに分けて詳細に検討した結果を示す。			
2.1 基準地震動 Ss の震源と津波の波源が同一の場合			
F-B 断層及び長岡平野西縁断層帯の活動に伴う地震動が敷地に			
到達する時間は第2図に示すとおり、地震発生後1分以内である			
のに対し、同時間帯において敷地における津波の水位変動量はお			
おむね 0m である。そのため、両者が同時に敷地に到達することは			
ないことから, 基準地震動 Ss による地震力と津波荷重の組み合わ			
せを考慮する必要はない。			
2.2 基準地震動 Ss の震源と津波の波源が異なる場合			
F-B 断層及び長岡平野西縁断層帯の活動に伴い、津波を起こす			
地震が誘発される可能性は低いと考えられる。仮に誘発地震の発			
生を考慮した場合においても, F-B 断層及び長岡平野西縁断層帯			
の活動に伴う地震動が敷地に到達する地震発生後 1 分以内に、誘			
発地震に伴う津波が敷地に到達することはない。また,活断層調			
査結果に基づく個々の活断層による地震に伴い津波が発生して			
も、敷地に遡上しない。			
以上により, 基準地震動 Ss による地震力と津波荷重の組み合わ			
せを考慮する必要はない。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
福城 (2017.12.20 版) 長岡平野西縁勝層帯 帯	東海第二発電所 (2018. 9. 12 版)	局积原子刀発電所 2 专炉	(順考)

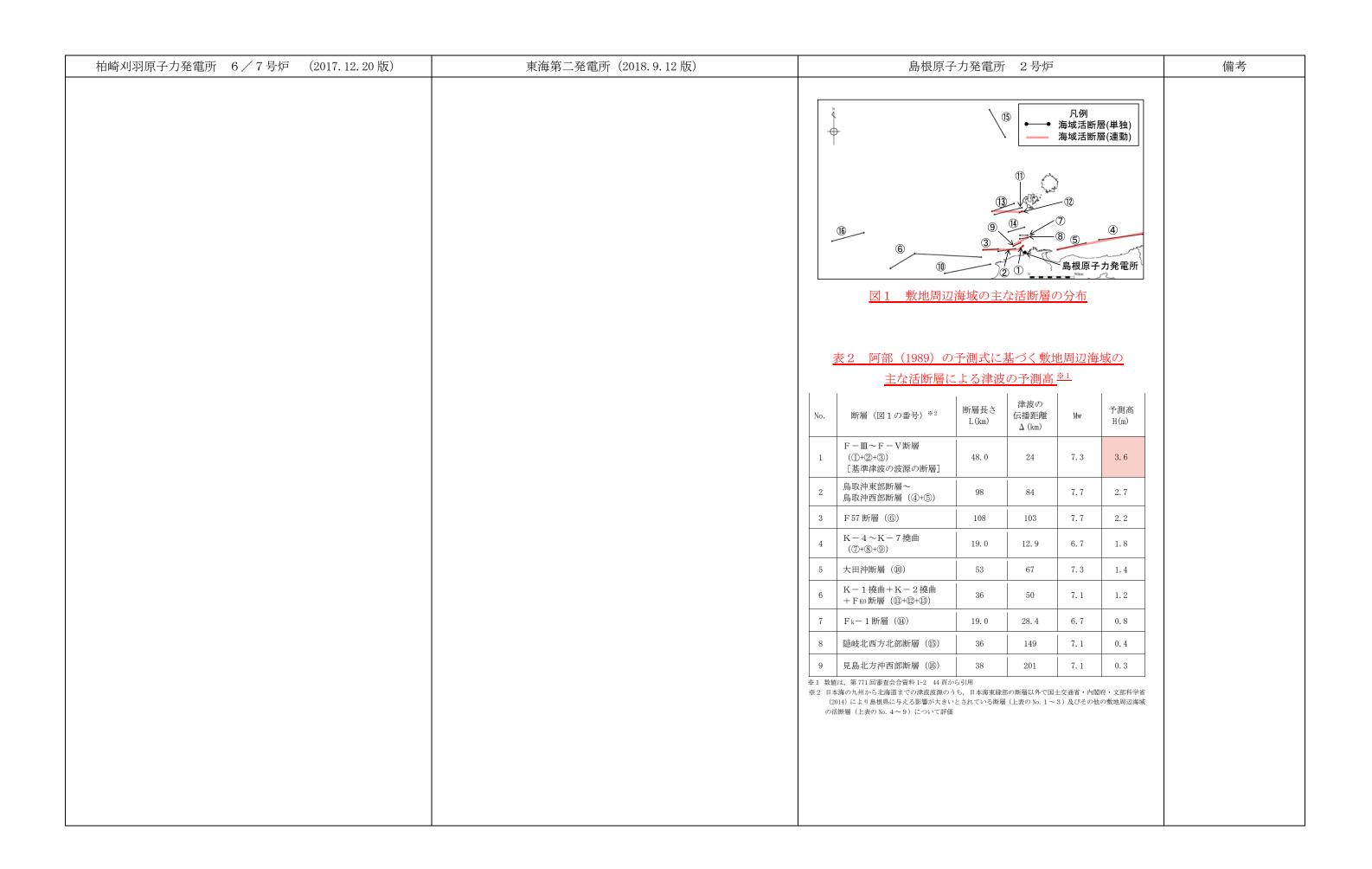
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	(参考1)		・資料構成の相違
	余震の規模の設定のための本震と余震の規模の関係について		【東海第二】
			東海第二の参考情
	本震と最大余震規模の差については、本震の規模に依存しな		であるため, 島根 2
	いことが知られている (古本 (2005))。例えば宇津 (1957) で		炉では記載してい
	は、日本で発生した地震について、本震、最大余震規模の差と		Į)
	本震規模の関係を第1図のとおり示し,両者の関係は低いこと		
	を指摘している。_		
	したがって,本震規模を MO,最大余震規模を M1,両者の差		
	を D1 とすれば, D1 は本震規模に依存しない定数になることか		
	ら,最大余震規模 M1 は下記の 1 次式で表現できる。		
	M1 = M0 - D1		
	最大余震規模の評価式は、上式を当てはめた回帰分析により		
	D1 を求めることで得られる (第2図)。このように、最大余震		
	規模の評価式は、地震学的知見を踏まえた上で定式化した。		
	ここからは、データの少ないマグニチュード8以上の地震も		
	含めて1次式で回帰することの妥当性について,海外の巨大地		
	震データで補って検討した。検討に用いた地震は第2図のデー		
	タのうち, 本震及び最大余震のモーメントマグニチュードが得		
	られている地震と、海外の巨大地震のうち、本震発生と最大余		
	震の発生間隔が概ね 12 時間以内の地震である。これら地震の		
	諸元を第1表に,また本震規模と最大余震規模の関係を第3		
	図に示す。同図から、本震規模がマグニチュード8以上の地震		
	に対しても最大余震規模評価に際して1次式を適用できるこ		
	とがわかる。		
	以上のことから,最大余震規模の評価に際して,地震学的知		
	見に基づいて1次式を用いることが妥当であることを確認し		
	た。さらに、最大余震の規模は標準偏差を考慮することで保守		
	的な設定となるよう配慮している。その上で、余震荷重として		
	は最大余震の応答スペクトルを上回る弾性設計用地震動S。		
	- D1を考慮している。		



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第1表 過去の地震における本震と最大余震の関係 (Mw)		
	No 発生年月日 震瀬 本震 最大余度 マブ・オュート 本意との M1 時間間隔 1 1952/11/04 off the east coast of the Kamchatka Peninsula, Russia 9.0 6.9 0.2 日 2 1964/06/16 新潟地震 7.6 5.7 0.0 日 3 1968/04/01 日向離地震 7.5 6.8 0.3 日 1968/05/16 十勝沖地震 8.2 7.9 0.4 日 5 2003/05/26 5 2003/05/26 5 2003/05/26 5 2003/05/26 1894 7.0 4.7 0.3 日 6 2003/09/26 + 1894 18 2 7.0 4.7 0.3 日 7 2004/12/26 0ff the west coast of northern Sumatra 9.1 7.2 0.1 日 8 2007/09/12 southern Sumatra, Indonesia 8.4 7.9 0.5 日 9 2008/06/14 岩手・宮域内陸地震 6.9 5.5 0.0 日 10 2008/09/11 + 1894 10 10 2008/09/11 東沿地方太平洋沖地震 6.8 5.3 0.0 日 11 2010/02/27 offshore Bio-Bio, Chile 8.8 7.4 0.1 日 12 2011/03/11 東北地方太平洋沖地震 9.0 7.7 0.0 日 13 2012/04/10 ff the west coast of northern Sumatra 8.6 8.2 0.1 日 14 2015/09/16 48km W of Illapel, Chile 8.3 7.0 0.0 日 15 2016/04/16 熊本地震 7.0 5.8 0.1 日 ※検討に用いる地震は、第2図のデータのうち、本震及び最大		
	余震のモーメントマグニチュードが得られている地震と,海外		
	の巨大地震のうち,本震発生と最大余震の発生間隔が概ね 12		
	時間以内の地震である。モーメントマグニチュード (Mw) は気		
	象庁,アメリカ地質調査所,防災科学技術研究所が公表してい		
	る値を参照している。		
	●: 国内の地震、○: 海外の地震 利掛け: M1 (余震マグニチュード) ≥ M0 (本震マグニチュード) となる領域 9.0 1 8.0 1 7.0 1 6.0 1 6.5 7.0 7.5 8.0 8.5 9.0 9.5 本震のマグニチュード M0		
	※2004年スマトラ島沖地震(Mw9.1)の震源域付近では 2005年		
	に Mw8.6, 2007 年に Mw8.4, 2012 年に Mw8.6 の地震が発生して		
	いるが, Mw9 クラスの巨大地震の影響は長期間に亘ると予想さ		
	れることから、これらの地震も余震として扱うことが考えられ		
	る。また Mw9 クラスの地震に対するデータは少ないことから、		
	本震発生からの経過時間の制約(12時間以内)を外し、最も		
	規模の大きい Mw8.6 の地震(第1表の No.13)を2004年スマ		
	トラ島沖地震 (Mw9.1) の最大余震とした場合を参考で示した。		
	第3図 国内外の本震規模と最大余震規模の関係 (Mw)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	(参考2)		資料構成の相違
	基準地震動 S _S による地震力と津波荷重の組合せについて		【東海第二】
			島根2号炉では,基準
	1. 規制基準における要求事項等		地震動 Ss による地震
	<u>基準地震動Ss</u> による地震力と地震力以外の荷重を適切に組		力と津波荷重の組合
	み合わせていることを確認する。その場合, 地震力以外の荷重		せについては,別紙:
	については、津波の荷重を含む。		に記載。
	2. 基準地震動Ssによる地震力と津波荷重の組合せについて		
	<u>基準地震動 S s として選定している震源は第1図に示す2011</u>		
	年東北地方太平洋沖型地震及びF 1 断層~北方陸域の断層~		
	塩ノ平地震断層の同時活動による地震(以下,「F1断層~北		
	- 方陸域の断層〜塩ノ平地震断層による地震」という。)である。		
	これらの震源については、地震波と津波の伝播速度が異なるこ		
	とを考慮すると,両者の組合せを考慮する必要はないと考えら		
	れる。以下,「2.1 基準地震動S _s の震源と津波の波源が		
	同一の場合」と「2.2 基準地震動S _S の震源と津波の波源		
	が異なる場合」とに分けて詳細を検討した結果を示す。		
	2. 1 基準地震動 S _s の震源と津波の波源が同一の場合		
	- 2011 年東北地方太平洋沖型地震及びF 1 断層〜北方陸域の		
	断層~塩ノ平地震断層による地震に伴う地震動及び津波の水		
	位変動量が敷地に到達する時間は第2図に示す通りである。		
	2011年東北地方太平洋沖型地震では地震発生後5分以内, F		
	1 断層〜北方陸域の断層〜塩ノ平地震断層による地震では地		
	震発生後2分以内に敷地内に地震動が到達するのに対し,同時		
	間帯において敷地における津波の水位変動量はどちらも概ね		
	Om である。そのため、両者が同時に敷地に到達することはな		
	いことから, 基準地震動 S _s による地震力と津波荷重の組合せ		
	を考慮する必要はない。		
	2. 2 基準地震動 S _s の震源と津波の波源が異なる場合		
	F1断層〜北方陸域の断層〜塩ノ平地震断層による地震に		
	伴い、津波を起こす地震が誘発される可能性は低いと考えられ		
	るが、仮に誘発地震の発生を考慮した場合においても、地震動		
	が敷地に到達する2分以内に、F1断層~北方陸域の断層~塩		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	ノ平地震断層による地震以外の活動に伴う津波が敷地に到達		
	<u>することはない。</u>		
	また,2011 年東北地方太平洋沖型地震に伴う誘発地震の発生		
	を考慮した場合においても,地震動が敷地に到達する5分以内		
	に,2011 年東北地方太平洋沖型地震以外の活動に伴う津波が		
	敷地に到達することはない。		
	以上により、基準地震動 S _s による地震力と津波荷重の組合		
	せを考慮する必要はない。		
	東海第二 東海第二 発電所 3700 14070 14170 14170 14170 14270 14		


13年 - 13年	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	相畸利利尔丁刀発电灯 6/17万炉 (2017.12.20 版)	東海第二発電所 「139.0° 140.0° 141.0° 36.0° F 1 断層~北方陸域の断層~塩ノ平地震断層による地震	高軟原十刀発电灯 2 万炉	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		<u>別紙 1</u>	・資料構成の相違
			【柏崎 6/7,東海第二】
		荷重の組合せに関する津波と地震の組合せの方針について	島根2号炉では,第6
			条「外部からの衝撃に
		1. 津波と地震の組合せについて	よる損傷の防止」の自
		第6条(外部からの衝撃による損傷の防止)において自然現	然現象の組合せの考
		象の組合せは、発生頻度及び最大荷重の継続時間を考慮して検	え方に基づき,津波荷
		討するとしており、基準津波と基準地震動を独立事象として扱	重と地震荷重の組合
		う場合は、それぞれの発生頻度が十分小さいことから、津波荷	せの方針について記
		重と地震荷重の組合せを考慮しない。それ以外の組合せについ	載
		<u>て、以下に示す。</u>	
		2. 基準津波と地震の組合せについて	
		異なり同時に敷地に到達することはないため、津波荷重と地震	
		- 一 荷重の組合せを考慮する必要はない。	
		は、同時に敷地に到達することを想定し、津波荷重と地震荷重	
		する余震については, 当該津波の波源が敷地から遠く, 余震の	
		敷地への影響が明らかに小さいことから、津波荷重と地震荷重	
		の組合せを考慮しない。さらに、当該津波については、仮に余	
		震以外のその他の地震として,頻度が高く年に1回程度発生す	
		る地震動レベルの小さい地震を独立事象として想定したとして	
		も, 当該津波の発生頻度及び最大荷重継続時間(120分と設定:	
		別紙2参照)を踏まえると、当該津波の最大荷重継続時間内に	
		余震以外のその他の地震が発生する頻度は、表1のとおり、2.	
		3×10-8/年であり十分小さい※ことから、津波荷重と地震荷重	
		の組合せを考慮しない。	
		また, 基準津波以外の津波は, 阿部 (1989) の予測式に基づ	
		く津波の予測高さによると、表2に示すとおり、基準津波(海	
		域活断層)の波源の断層であるF−Ⅲ~F−V断層に比べて水	
		位が低く敷地に与える影響は小さいため,余震荷重との組合せ	
		を考慮しない。	

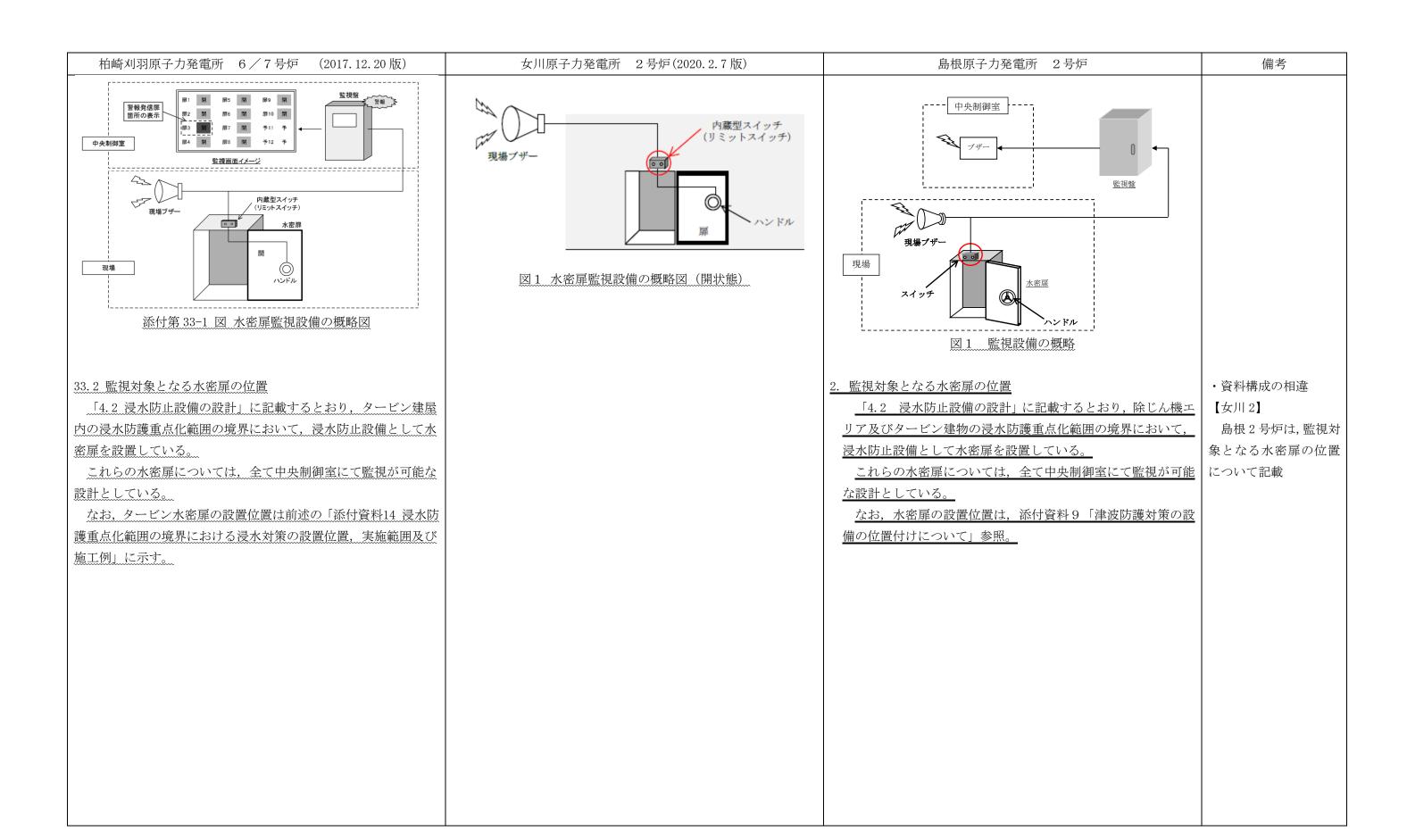
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		※JEAG4601 において組み合わせるべき荷重としては、事象の発生確率、継続時間、 地震動の発生確率を踏まえ、その確率が 10 ⁻⁷ /炉年以下となるものは組合せが不	
		要と記載されている	
		3. 基準地震動と津波の組合せについて	
		基準地震動の震源(海域活断層)からの本震と当該本震に伴	
		う津波は、伝播速度が異なり同時に敷地に到達することはない	
		ことから、組合せを考慮する必要はない。	
		基準地震動の震源については、他の海域の活断層よりも敷地	
		に近い位置に存在し、仮に誘発地震に伴う津波の発生を考慮し	
		た場合においても、基準地震動が敷地に到達すると同時に当該	
		津波が敷地に到達することはないことから、組合せを考慮する	
		必要はない。	
		<u>▶ 阿部勝征(1989)</u> : 地震と津波のマグニチュードに基づく津波	
		高の予測,東京大学地震研究所彙報, Vol. 64, pp. 51-69	
		<u>・国土交通省・内閣府・文部科学省(2014):日本海における大</u>	
		規模地震に関する調査検討会, 最終報告書 (H26.9)	
		<u> </u>	

## 1 素を見から、		荷重の種類 最大荷重 継続時間 (年) 発生頻度 (/年) 地震 (基準地震動) 10 ^{-5*1} 5×10 ^{-4*3} (基準連波 (基準連波) 2.3×10 ^{-4*2} 10 ⁻⁴ ~10 ^{-5*4} (基準連波) ※1 10 ⁻⁵ =5分/(365日×24時間×60分)として算出 ※2 2.3×10 ⁻⁴ =120分/(365日×24時間×60分)として算出 (別紙2参照) ※3 JEAG4601に記載されている基準地震動S ₂ の発生確率を読み替えて適用 ※4 ハザード評価結果 (基準津波の最大荷重継続時間内に余震以外のその他の地震が発生する頻度)	
		発生頻度 最大荷重継続時間 発生頻度 (想定) 10 ⁻⁴ /年 × 2.3×10 ⁻⁴ 年 × 1/年	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		別紙 2	・ 資料構成の相違
			【柏崎 6/7,東海第二】
		基準津波の最大荷重継続時間について	島根2号炉では,別紙
			1に記載の基準津波
		「1.6 設計または評価に用いる入力津波」において確認してい	の最大荷重継続時間
		る,各施設に対する入力津波の時刻歴波形を図1に示す。なお,	について, 設定根拠を
		「海域活断層に想定される地震による基準津波4」は、「日本海東	記載
		縁部に想定される地震による基準津波1,2,3,5及び6」と	
		比べ、その津波の継続時間が短いことから、「日本海東縁部に想定	
		される地震による基準津波1,2,3,5及び6」の時刻歴波形	
		のうち、各施設に対して最も水位が高くなる入力津波の時刻歴波	
		形を示している。	
		図1のとおり、入力津波が最大水位となるのは短時間であるこ	
		とから、津波による最大荷重継続時間も短時間となる。ただし、	
		最大ではないものの比較的高い水位が発生していることから、高	
		い水位が発生する範囲を余裕を持って包含する時間として、津波	
		の最大荷重継続時間を120分と設定している。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		(ED) (TE) (TE) (TE) (TE) (TE) (TE) (TE) (TE	

1. 号を行る対象がある。 (ス・海東 1. 大田 1.	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	120 分 120 分 120 分 120 分 120 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 時間 (分) 1 号炉放水槽 (入力津波 1, 防波堤乗有り) 1 号炉冷却水排水槽 (入力津波 1, 防波堤有り) 1 号炉冷却水排水槽 (入力津波 1, 防波堤有り)	備考
			図1 入力津波の時刻歴波形(日本海東縁部)(2/4)	


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉 (II) 以来 (III) 以来 (III) 以来 (III) 以来 (III) 以来 (IIII) 以来 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	備考
		2 号炉放水槽(入力津波 1, 防波堤角り) 120 分 120	
		図1 入力津波の時刻歴波形(日本海東縁部)(3/4)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		120 分 120 分 120 分 120 分 120 分 120 分 120 分 120 分 120 0 120 0	
		図1 入力津波の時刻歴波形(日本海東縁部)(4/4)	

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	まとめ資料比較表 〔第5条 津波による損傷の防止 別家 女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
添付資料33	添付資料25	添付資料 23	 (添付資料 23 は柏崎
	13.11.3.2.11.2.0	13413321125	6/7, 女川2と比較)
水密扉の運用管理について	水密扉の運用管理について	水密扉の運用管理について	3, 1, 30, 12 2,250
33.1 概要	1. 概要	1. 概要	
浸水対策として整備する水密扉については基本的には閉止状態	浸水対策として整備する水密扉については、津波時に扉が確実	浸水防止設備として整備する水密扉は通常時閉運用としてお	
にある。津波時に扉が確実に閉止されていることを確認するため,	に閉止されていることを確認するため、以下の運用管理とする方	り、現場での注意表示(水密扉表示、常時閉表示)及び各種手順	
以下の運用管理を行う方針である。	針である。水密扉監視設備の概略図を図1に示す。	書にて閉運用とすることとしている。また、開閉状態の確認のた	
・発電所内に入所する者に対して、確実な閉止運用がなされるよ	(1)発電所内に入所する者に対して、確実な閉止運用がなされ	め、水密扉に対して、以下により「扉設置場所での"開"状態の	
う, 周知徹底する (作業を計画・実施するにあたっての「柏	るよう周知徹底する。	認知性向上」及び「中央制御室での開閉状態の監視」を実施し、	
崎刈羽統一実施事項」として定める。)。	(2) 水密扉開放時には、現場ブザーにより注意喚起し、閉止忘	水密扉の閉め忘れを防止している。図1に水密扉監視設備の概略	
・水密扉開放時は、現場ブザーにより注意喚起し、閉止忘れを防	れを防止する。	を示す。	
止する。中央制御室にて水密扉の開閉状態が確認できるよう監	(3) 水密扉は原則閉運用とし、施錠管理を行う。なお、資機材	・発電所内に入所する者に対して、確実な閉止運用がなされる	
視設備を設置し,扉「開」状態が, 一定時間続いた場合は,運	の運搬や作業に伴い,水密扉を連続開放する必要がある場合	よう周知徹底する。	
転員に告知警報を発生する。	は,以下の体制がとられていることを条件に,連続開放を可	・警報ブザーを扉設置場所に設置する。	
	とし, 開放前に発電課長に作業の実施を連絡することとする。	・中央制御室に警報ブザーを設置する。	
・屋外に通じる大物搬入口等の開放は、大津波警報発生時に速や			
かに閉鎖できる人員を確保する。			
なお, 資機材の運搬や作業に伴い開放する必要がある場合は,		なお,資機材の運搬や作業に伴い開放する必要がある場合は,	
以下を条件に連続開放を可とする運用としている。	【作業条件】	以下を条件に連続開放を可とする運用としている。	
・大津波警報発生後、速やかに閉止できる人員が確保されている	・監視人を配置し、緊急時は閉止可能な体制がとられていること。	・津波注意報、津波警報又は大津波警報発令後、速やかに閉止	
こと。		できる人員が確保されていること。	
・津波警報発発令時には、当直長からのページング放送等により、	・津波警報(注意報)発令時には、発電課長からのページング等	・津波注意報、津波警報又は大津波警報発令時には、当直長か	
直ちに水密扉を閉止すること。	により、直ちに水密扉を閉止すること。	らのページング放送等により,直ちに水密扉を閉止すること。	

