柏山	倚刈羽原子力発電所 6/7号炉(2017.12.20)			東海第二発電所(2018.	9.18版))			島根	原子力発電所 2号炉	備考
3.5 中步	や制御室待避室のデータ表示装置(待避室)で確認で	き 3.5	中央制	制御室待避室のデータ表示装置	で確認で	きるパラ	ラメータ	1:	3.5 中央制御室待避室	四のプラントパラメータ監視装置(中央	
るパラメー	-9	<u>第3</u>	8.5-13	表 データ表示装置(待避室)	で確認	できるノ	ペラメータ	7	制御室待避室)でで	確認できるパラメータ	
		4		(1/6)					表 3.5-1 プラントパラ	ラメータ監視装置(中央制御室待避室)で	・設備の相違
<u>表 3.5-1</u>	データ表示装置(待避室)で確認できるパラメータ		的	対象パラメータ	SPDSパ	E R S S 伝 送パラメー	バックアッ プ対象パラ		確認できるハ	ペラメータ(1/6)	【柏崎 6/7, 東海第二】
1 89	対象パフメータ A P R M 平均値	┨╎┨──	111 Aug 1	the day was had well taken a mer day.		タ(※1)	メータ		日的	対象パラメータ	
	APRM (A)	1	平均出	出力領域計装 半均	0	0	-			APRM (平均値)	
1	APRM (B)]	平均日	田力嗩喚評篓 A	0	0	0	11		平均出力領域計装 CH1	
1	APRM (C)	111	平均正	田力限或計装 B				١.		平均出力領域計装 CH2	
	APRM (D)	4 () (平均山 亚均井	田力領域計委 D	0	0		11		平均出力領域計装 CH3	
L	SRNM (A) 対数計数率出力 CDNM (D) 分数計数率出力	4 • • • •	平均出	出力領域計装 E	0	0		۰.		平均出力領域計装 CH4	
•	SRNM (B) 対象町家単山刀 SRNM (C) 対象計数案用力	1	平均出	出力領域計装 F	0	0	_			平均山力領域計製 CHS	
1	SRNM (D) 対数計数半出力	1.1	起動領	領域計装 A	0	0	0	•		SRMレベル CH21	
-	SRNM (E) 対数計数率出力	- 炉心 度の:	反応 北態 起動領	領域計装 B	0	0	0			SRMレベル CH22	
I	SRNM (F) 対数計数率出力	確認	起動領	領域計装 C	0	0	0		炉心反応度の状態確認	SRMレベル CH23	
便心反应度	S R N M (G) 対数計数率出力	┨╵╿	起動領	領域計装 D	0	0	0			SRMレベル CH24	
の状態確認	S R N M (H) 対数計数率出力	4 : 1	起動領	領域計装 E	0	0	0			IRMVベル CHII	
	SRNM (J) 対数計数率出力	4	起動領	領域計装 F	0	0	0			IRMUNU CHI2	
	SRNM (L) 对数計数半出力 CDNM (A) 計載ままま	1:1	起動領	領域計装 G	0	0	0			IRMレベル CH14	
:	SRNM (R) 計畫本本本	1 	起動領	領域計装 H	0	0	0			IRMレベル CH15	
•	SRNM (C) 計数率高高	1:0	直流土	±24V 中性子モニタ用分電盤電圧	0	0	0			IRMレベル CH16	
:	SRNM (D) 計数率高高		ほう酸	酸水注入ポンプ吐出圧力	0	0	0			IRMレベル CH17	
·	SRNM (E) 計数率高高] [[]	原子炉	炉水位(狭帯域)	0	0	-			IRMレベル CH18	
:	SRNM (F) 計数率高高	4' 1	原子炸	炉水位(広帯域)	0	0	0			□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
·	SRNM (G) 計数率高高	411	原子炉	炉水位(燃料域)	0	0	0			B-原子炉圧力 ■	
	SRNM (H) 計數率高高	4'()	原子炉	炉水位(SA広带城)	0	0	0			原子炉圧力(SA)	
'	SRNM (J) 計数半高高 cnnnm (1) 計数半面高	4 : []	原子炉	炉水位(SA燃料域)	0	0	0			原子炉水位 (広帯域)	
	SKNM (L) 町新年向向 西子仮圧力 (広集論) (RV)	1'()	原子炸	炉圧力	0	0	0			A-原子炉水位(広帯域)	
	原子炉圧力 (A)	1	原子炉	炉圧力(SA)	0	0	0			B-原子炉水位(広帯域) ■	
	原子 炉 圧 力 (B)		冷 却 高圧炉 態 確	炉心スプレイ系系統流量	0	0	0			原子炉水位(燃料域)	
	原子 炉 圧 力 (C)	認	低圧炸	炉心スプレイ系系統流量	0	0	0			A 一 原 于 炉 小 位 (燃料域) B - 原 子 炬 水 位 (燃料 域)	
	原子炉圧力 (SA)	111	原子炸	炉隔雕時冷却系系統流量	0	0	0			原子炉水位(狭带域)	
	原子炉水位(広帯域)PBV	4 1	残留素	熱除去糸糸航流量A	0	0	0	1	伝さぬ却の出始であ到	原子炉水位(SA)	
	原子炉水位 (広帯域) (A)	111	残留素	熱除去糸糸靴流量B	0	0	0	11	炉心行却の状態確認	A SR弁 開	
外心滑却の	原子炉水位(広帯薬)(C)	4 4	残留絮	熱除去糸糸統流量C	0	0				B SR弁 開	
状態確認	原于炉水低(瓜带菜)(F) 医乙烷表价(碘钒酸)DDV	111	通かし	し安全开出口温度	0	0	-	11		C SR弁 開	
	原于炉水位(胞科集)FBV 原子炉水位(燃料能)(A)	1	原子炉	炉 冉 循 境 ホ シ フ 入 口 温 度	0	0	-			D SR并開	
	原子炉水位 (燃料城) (B)	╡╎[└─┈	原于% 1:ERSS	シー# ハ / / / / / / / / / / / / / / / / / /	 ータ及び既設 S	U PDSから追加	 したパラメー・	11		E SR开闭 F SR弁 開	
	原子 炉 水 位 (SA) (ワイド)	1	タのうち	5, プラント状態を把握する主要なパラメータをERS	Sへ伝送する。			1		G SR弁開	
	原子炉水位 (SA) (ナロー)] [原十刀事	▶ 来看防灰来勢計画の改正に合わせ,必要に応し週且見	但していく。		1	1		H SR弁 開	
	炉水温度 PBV							11		J SR弁 開	
	逃し安全弁 開	1 (K SR弁 開	
1		11						11			
1								- I.		M S K 升 用	
		11						11			
		1									
		- 1 I						11			
		1.1									
•											
I		- }						•			
		. I 📙						L L			
						1					
	:SA節	开			- I.	:	SA範囲	-		:SA範囲	
		- I			_						

柏	崎刈羽原子力発電所 6/7号炉(2017.12.20)		東海第二発電所(2018.9	9.18版)				島根原	至了力発電所 2号炉	備考
1		第3.5-	1表 データ表示装置(待避室)	で確認	できるパ	ラメータ		表 3.5-1 プラントパラ	メータ監視装置(中央制御室待避室)で	・設備の相違
:	6号炉(2/7)		(2/6)		_ *		ין ז	応 羽ベキスパ	=	【柏崎 6/7 甫海 第一】
日的	対象パラメータ	1	(2/0)					<u>1進船 にきるハ</u>		【仰响 0/ 1, 米(伊
				SPDS	ERSS伝	バックアッ	11	目的	対象パラメータ	
	HPCF(B) 系統流量	目的	対象パラメータ	パラメータ	送パラメー タ(※1)	プ対象パラ	1		高圧炉心スプレイポンプ出口流量	
	HPCF(C)系統進量 DCLCF体験員		原子炉圧力容器温度	0	0	0	1		高圧炉心スプレイポンプ出口圧力	
	本正代黎注水系系統進量		残留熟除去系熱交換器入口温度	0	0	0	I I		低圧炉心スプレイポンプ出口圧力	
	RHR (A) 系統流量	1	高圧代替注水系系統流量	0	0	0	11		原子炉隔離時冷却ポンプ出口流量	
· .	R H R (B) 系統 洪量	•	低圧代替注水系原子炉注水流量(常設ライン用)	0	0	0	ч		原子炉隔離時冷却ポンプ出口圧力	
	R H R (C) 系統洗量		低圧代替注水系原子炉注水流量(常設ライン狭帯域用)	0	0	0	11		高圧原子炉代替注水流量	
1:1	携留勤除去系數交換器 (A)入口温度		低圧代替注水系原子炉注水流量(可搬ライン用)	0	0	0	11		A-残留熱味云糸小ンノ山口孤重 B-残留熱除去系ポンプ出口流量	
	按留勤除去采勤交换器 (B)入口温度		低圧代替注水系原子炉注水流量(可搬ライン狭帯域用)	0	0	0	16		 □ ○ ス留点(ホコンパロン) 出日(加重) □ ○ 一残留熱除去系ポンプ出口流量 	
	務留勤除去承勤交換器 (C)入口温度		代替循環俗却糸原ナ炉注水流重	0	0		11		A-残留熱除去系ポンプ出口圧力	
	茨省 即原本 东西 关 長 香 (A) 口口 强 医 森 母 教 時 主 系 教 卒 施 民 (B) 出口 强 皮		西側淡水貯水設備水位	0	0	0	1		B-残留熱除去系ポンプ出口圧力 -	
	按留影除去采熟交换器 (C) 出口温度		M/C 2 A − 1 電圧	0	0	-	24		○一残留熱院去糸ホンフ出口圧力 建図執代基除主系面子恒注水流量	
	表留熟除去系熟交换器 (A) 入口冷却水流量		M∕C 2A-2電圧	0	0	-	L II		A 一残留熱除去系熱交換器入口温度	
	携留整除去系整交换器 (B)入口冷却水流量	恒心冷却	M/C 2 B−1 電圧	0	0		•		B-残留熱除去系熱交換器入口温度	
	ุ 按留熟除去系熟交换器(C) 入口冷却水流量	 の状態確 	M∕C 2 B−2 電圧	0	0	-	I I		A一残留熱除去系熱交換器出口温度	
	原子师補機治却水系(A.)系統流量	86	M/C 2C電圧	0	0	0	11	おう、冷和の小学校でを知	B − 残留熱除去系熱交換器出口温度	
5 炉心治虫	の 原子炉補機冷却水系(B)系統流量 の	•	M/C 2D電圧	0	0	0		がい行动の状態確認	A-残留熟际云杀怒父操都行却亦而重 B-残留魏除去系魏交挽器冷却水流量	
状態確認	原十卯倍儀行却亦来(し)未乾四重 6. 9. と. 4. 1. 5. 第章目			0	0		11		6.9KV系統電圧(A)	
1:1	6.9kV 6A2母線電圧		D/G 2.D 遮断器(670)閉	0	0				6.9KV 系統電圧(B)	
!	6.9kV 6B1母線電圧		HPCS D/G遮断器(680)閉	0	0		i li		6.9KV系統電圧(C)	
	6.9 k V 6 B 2 母線電圧		圧力容器フランジ温度	0	0	-	1		6.9KV 糸統電圧 (D) 6.9KV 系統電圧 (HPCS)	
	6.9kV 6SA1母線電圧		125V 系蓄電池 A 系電圧	0	0	0	ı lı		A-D/G受電しや断器閉	
	6.9kV 6SA2母線電圧		125V 系蓄電池 B 系電圧	0	0	0	1		B-D/G受電しや断器閉	
	6.9kV 65B1母線電圧		125V 系蓄電池HPCS系電圧	0	0	0	L I		A − 原子炉圧力容器温度(SA)	
		1	緊急用直流 125V 主母線盤電圧	0	0	•	• •		B-原子炉圧力容器温度(SA)	
	6.9kV 6D @ 樂電圧		緊急用M/C電圧	0	0		I I		B-低圧原子炉代替注水ポンプ出口圧力	
	6.9kV 6E母線電圧		索忌用P/C電圧 故納容異素囲気放射線モニタ(D/W)(Δ)	0	0		: 11		低圧原子炉代替注水槽水位	
· .	D/G 6A 遮断器 投入		「株納容器雰囲気放射線モニタ(D/W)(R)	0	0		1		HPCS-D/G受電しゃ断器閉	
	D/G 6B 進断器 投入	原子炉格	格納容器雰囲気放射線モニタ(S/C)(A)	0	0	0	11		緊急用M/C電圧	
	D/G 6C 遮断器 投入	 納容器内 の状態確 	格納容器雰囲気放射線モニタ(S/C)(B)	0	0	0	11		SA-L/C電圧 A-再循環ポンプ入口温度	
	原子炉压力容器温度	認	ドライウェル圧力 (広帯域)	0	0	0	ili		B-再循環ポンプ入口温度	
	(原十卯庄刀将舂下厩上卵温度) 海太捕鈴太系接曼 (原子何圧力容器) (RPV注太接曼)		ドライウェル圧力(狭帯域)	0	0	0	16		A-格納容器雰囲気放射線モニタ(ドライウェル)	
	後水管部水水協業(水)を広力者() (X * ((水)協業) 後水管業権太位 (S A)		ドライウェル圧力			0	ı İt		B−格納容器雰囲気放射線モニタ(ドライウェル)	
		×1:1	RSS伝医バノメークは読むSPDSのERSS伝医バノメータのうち、プラント状態を把握する主要なパラメータをERS	- ク 反 い 屁 設 S S へ 伝 送 す る。	SPD S から追加	UEN7X	2	原子炉格納容器内の状態確認	A-格納谷希芬田気放射線セニタ (サプレッション・チェンバ)	
1	1	- J.	1子力事業者防災業務計画の改定に合わせ、必要に応じ適宜見前	直していく。			L II		B-格納容器雰囲気放射線モニタ	
1		1					1		(サプレッション・チェンバ)	
÷		÷				I	L II			
1		1					: 11			
1		1					11		1	
1		•					16			
(1 + 1) = 1		14 A 4					16		a ser a s	
	2 - 21			- A.					Z = 2.1	
	:SA範囲					SA範囲	1		:SA範囲	
				_	•					

柏山	奇刈羽原子力発電所 6/7号炉(2017.12.20)			東海第二発電所(2018.9	9.18版)				島根原	系子力発電所 2号炉	備考
		<mark>ال</mark> م ال	第3	5-1 表 データ表示装置(待避室)	で確認す	できるパ	ラメータ		表 3.5-1 プラントパラ	メータ監視装置(中央制御室待避室)で	 ・設備の相違
·	6 号炉(3 / 7)							1	本 初 っ キ て い		
- E #1	社会パラメータ			(3/ 6)				: L	唯能できるハ	///////	【阳呵 0/1, 宋伊弗二】
	A &				e d d e e e e e e	ERSS伝	バックアッ	41	目的	対象パラメータ	
	CAMS(A)D/W放射能		目	ウ 対象パラメータ	ラメータ	送パラメー タ(※1)	プ対象パラ メータ	11		ドライウェル圧力(広域)	
	CAMS(B) D/W放射能			サプレッション・チェンバ圧力	0	0	0			$A = r \gamma 4 \gamma \epsilon \nu E \beta$ (SA) B = $k \gamma 4 \gamma \epsilon \nu E \beta$ (SA)	
	CAMS (A) S/C放射能			サプレッション・プール圧力	0	0	-	11		A-サプレッション・チェンバ圧力 (SA)	
	CAMS(B)S/C政制館 トライカーをFFカ(##W)(#+)			ドライウェル雰囲気温度	0	0	0	1		B-サプレッション・チェンバ圧力 (SA)	
	トライリェル注力(広告楽)(夏大) 素装容器内圧力(D/W)			サプレッション・プール水温度 (平均値)	0	0	0	ı.		サプレッション・プール水位	
				サプレッション・プール水温度	0	0	0	31		サブレッション・ブール水位 (SA)	
	幕前容器内圧力 (S/C)			サプレッション・プール雰囲気温度	0	0	0	11		A サブレッション・フェンバ温度 (SA) B-サプレッション・チェンバ温度 (SA)	
	R P V ペロシール部周辺温度 (最大)			サプレッション・チェンバ雰囲気温度	0	0	0	•		サプレッション・プール水温度 (MAX)	
	サプレッションプール水位 BV			サプレッション・プール水位	0	0	0	11		A-サプレッション・プール水温度 (SA)	
-	サプレッション・チェンバ・プール水位			格納容器雰囲気水素濃度(D/W)	0	0	-	• I		B-サプレッション・プール水温度(SA)	
	サブレッション・チェンバ気体温度			格納容器雰囲気水素濃度(S/C)	0	0	-	11		A − 格納谷 奋水素 震度 B − 枚納 突 哭 水 表 濃 庄	
-	S / P 水 温 度 (最大)	-		格納容器雰囲気酸素濃度(D/W)	0	0	-	11		格納容器水素濃度(SA)	
	サプレッション・チェンパ・プール水温度(中間上部)			格納容器雰囲気酸素濃度(S/C)	0	0	-	46		A-格納容器酸素濃度	
	サブレッション・チェンパ・プール水温度(中間下部)	•			0	0				B-格納容器酸素濃度	
	サブレッション・チェンバ・ブール水温度(下部)			格納谷盗内販素濃度(SA)		0				格納容器酸素濃度(SA)	
格納容器内	CAMS(A) 示亲接接 CAMS(D) 士事論論		原子	国本 低圧代替在小示裕和存益ヘノレイ流量(市設ノイン用)	0	0		11		A-CAMSドフイワエル選択 B-CAMSドライウェル選択	
の状態確認	CAMS(B) 水奈復夜 本純安発内水麦濃度 (SA) (D/W)		納容の状	器内 設定して自己が示音術を紹介していた重(う取りすび)加 態確 低圧代基注水系格納容器下部注水流量	0	0	0	36		B CAMS+ワイリエル感い ドライウェル温度(胴体フランジ周囲)	
	====================================		認	代替循環冷却系格納容器スプレイ流量	0	0	0	11		A-ドライウェル温度 (SA) (上部)	
	CAMS(A) 酸素濃度			格納容器下部水位	0	0	0	1	原子炉格納容器内の状態確認	B-ドライウェル温度 (SA) (上部)	
	CAMS(B) 酸素濃度			格納容器下部水温	0	0	0	r -		A-ドライウェル温度(SA)(中部)	
	CAMS(A)サンプル切替(D/W)			常設高圧代替注水系ポンプ吐出圧力	0	0	0	÷ 1		B-ドフイウェル温度(SA)(甲部)	
	C A M S (B) サンプル切替 (D/W)			常設低圧代替注水系ポンプ吐出圧力	0	0	0	11		A 下 γ	
	R H R (A) 系統流量			代替循環冷却系ポンプ吐出圧力	0	0	0	• I		ペデスタル水位(コリウムシールド上表面 +0.1m)	
	RHR (B) 系統流量			原子炉隔離時冷却系ポンプ吐出圧力	0	0	0	11		ペデスタル水位(コリウムシールド上表面 +1.2m)	
-	RHR (C) 系統消量			高圧炉心スプレイ系ポンプ吐出圧力	0	0	0	•		A - ペデスタル水位	
	RHR各新容器市却ライン播劇作品 全開以外 			残留熱除去系ポンプ吐出圧力	0	0	0	11		(コリリムシールト上衣面 +2.4m) B - ペデスタル水位	
•	K H K 倍動符 谷市 科フイン 潜艇 非し 玉面 秋介 線 磁動除去 系ポンプ (A) 計出 圧力	-		低圧炉心スプレイ系ポンプ吐出圧力	0	0	0	11		(コリウムシールド上表面 +2.4m)	
	推留勤除去系ポンプ(B)吐出圧力			代替循環冷却系ポンプ入口温度	0	0	0	42		代替注水流量(常設)	
	渡留熟除去系ポンプ(C) 吐出圧力			残留熱除去系熱交換器出口温度	0	0	0	11		A-代替注水流量(可搬型)	
	ドライウェル雰囲気温度(上部ドライウェルフランジ部雰囲気温度)			残留熟除去系海水系系統流量	0	0	0			B − 代替注水流量(可搬型)	
	ドライウェル雰囲気温度(下部ドライウェルリターンライン上部雰囲気温度)			緊急用海水糸流量(残留熱除去糸熱交換器) 取為用海水系流量(時回熱除土系建築)	0	0	0			残留然代谷际云糸柏約谷 奋スノレイ 流重 A - ペデスタル温度(SA)	
	復水補給水系流量 (原子炉蓓納容器) (ドライウェル注水流量)	L	*	繁急用海水糸流重(残留熱际云糸相機) 1:ERSS伝送パラメータは既設SPDSのERSS伝送パラメ	- タ及び既設 S	U PDSから追加	0したパラメー	36		R リバリル温度 (SA) B-ペデスタル温度 (SA)	
				タのうち、プラント状態を把握する主要なパラメータをERS	Sへ伝送する。			d È		A-ペデスタル水温度 (SA)	
	1			示丁刀事来有切灭来伤計画の以上に百47℃,必要に応し適直元	直していて。			31		B-ペデスタル水温度(SA)	
		-					a a sa sa sa sa	.		A-残留熱代替除去系ボンブ出口圧力 P-破闷熱供抹除土系ポンプ出口圧力	
	1				1.12	11 L L	C A 绘田			B 一 残留然代替陈云宗ホンク山口圧力 ドライウェル水位(格納容器底面 - 3 m)	
							SA軋団			ドライウェル水位(格納容器底面 −1m)	
										ドライウェル水位(格納容器底面 +1m)	
		1									
		1									

柏崎	奇刈羽原子力発電所 6/7号炉(2017.12.20)		東海第二発電所(2018.9	9.18版)		É	鲁根原子力発電所 2号炉	備考
			第35-1表 データ表示装置(待避室)	で確認	できろノ	ペラメータ	表35-1 プラント	パラメータ監視装置(中央制御室待避室)で	 設備の相違
I	6 号炉(4 / 7)			く「中田中山					
- H 40	計算パールーク	1	(4/6)				確認でき	<u> (4/6)</u>	【柏崎 6/7,東海第二】
H #7	A &				EDSSE	ドッカアッ	■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	特徴プラス、ケ	
	復木移送ポンプ(A)吐出圧力	1	目的 対象パラメータ	SPDSパ ラメータ	送パラメー	プ対象パラ		#気筒高レンジモニタ	
	復木移送ポンプ (B) 吐出圧力		建 22装除主系 Δ注入金令围	0	> (%1)	×=2		排気筒低レンジモニタ (A c h)	
	復木移送ポンプ (C) 吐出圧力		原子炉格 残留熟除去系 B注入弁全開	0	0	iI		排気筒低レンジモニタ(Bch)	
格納容器内	復水補給水系溫度 (代替循環冷却)	- 11	納 容 器 内 の 北 能 確 残留熱除去系 C 注入弁全開	0	0	- i		主蒸気管放射線異常高トリップA1 主蒸気管放射線異常高トリップA1	
の状態確認	猫約容器下部木位(ペデスタル水位高(3m))		 認 格納容器内スプレイ弁A(全開) 	0	0	- i		主蒸気管放射線異常高トリップA2	
	幕新 容 器下部 木 位 (ペデス タル 木 位 高 (2 m))	- 11	格納容器内スプレイ弁B(全開)	0	0	i		主蒸気管放射線異常高トリップB2	
	高新祥都下師木任(ペデスタル木住高 (1a)) 第七號論上で注意(同文記性語の第)(ごぼうたった上注意)		主排気筒放射線モニタム	0	0	- i		格納容器内側隔離	
	復示僧和不永远重(原十炉僧前谷谷)(ヘアスクル住水浜重) 地を施設者を知能(1-2)(東上)	1	王排気筒放射線モニタB - * # 与 (主) (2) (2)	0	0		放射能隔離の状態確認	格納谷希外側隔離 A 主義与内側隔離金分開	
	好ス両好ス以前版 (IC) (東大) 総句領総句 (SCIN) 放射能 (A)	-	主張気管放射線モニタ(A)	0	0		•	B-主蒸気内側隔離弁全閉	
	近天同野人(3011)(水和市(ス)	1	主蒸気管放射線モニタ(B)	0	0	0		C-主蒸気内側隔離弁全閉	
	- 本気を放射能素(スクラム)区分(1)		主蒸気管放射線モニタ(C)	0	0	0		D-主蒸気内側隔離弁全閉	
	主義気管放射能高 (スクラム) 区分 (2)		主蒸気管放射線モニタ(D)	0	0	0		A-王蒸気外側隔離弁全閉 B-主蒸気外側隔離金全閉	
	主義気管放射能高 (スクラム) 区分 (3)	- 11	排ガス放射能(プレホールドアップ) A	0	0	- i •		C-主蒸気外側隔離弁全閉	
	主蒸気管放射能高 (スクラム)区分 (4)		放射能隔 排ガス放射能(プレホールドアップ)B	0	0			D-主蒸気外側隔離弁全閉	
-	PCIS 隔離 内侧	- 17	離の状態 NS4 A 個隔離 NS4 A 個隔離		0			A-SGT自動起動	
	PCIS隔離 外侧	1	主蒸気内側隔離弁A全閉	0	0	!		B-SGT目動起動 SCTS真レンジェータ	
放射胞隔離	MSIV (内側) 閉	1	主蒸気内側隔離弁 B 全閉	0	0	- !	1	SGTS間レンジモニタ SGTS低レンジモニタ(Ach)	
の状態確認	主蒸気内側屬離舟 (A) 全团以外	12	主蒸気内側隔離弁C全閉	0	0	-	•	SGTS低レンジモニタ (Bch)	
	主蒸気内側屬離舟 (B) 全閉以外	1	主蒸気内側隔離弁D全閉	0	0	-	I	A-原子炉建物外気差圧	
	主蒸気内側隔離舟(C) 全閉以外	-	主蒸気外側隔離弁A全閉	0	0			B-原子炉建物外気差圧 C-原子炉建物外気差压	
	主蒸気内側屬離弁 (D) 全閉以外	1	主蒸気外側隔離弁B全閉	0	0	- !!		D-原子炉建物外気差压	
	M S I V (外側) 閉	11	主蒸気外側隔離弁C全閉 - 支払の回隔離会D会明	0	0			中央制御室外氛差圧	
	主蒸気外侧隔離弁(A.) 全閉以外		主然気が同時離开し上内 SGTS A作動	0	0	!I		放水路水モニタ	
	主蒸気外侧屬離弁 (B) 全閉以外	- 11	SGTS B作動	0	0	- !!		モニタリング・ポスト#1H	
	主蒸気外側隔離舟 (C) 全閉以外		環境の情 SGTSモニタ(高レンジ)A	0	0	-		モニタリング・ホスト#2日	
· .	主蒸気外側隔離弁 (D) 全閉以外		報確認SGTSモニタ(高レンジ) B	0	0	!	環境の状態確認	モニタリング・ポスト#4日	
	SGTS (A) 作動 (1系)	11	SGTSモニタ(低レンジ) A	0	0	!	•	モニタリング・ポスト#5H	
環境の情	SGTS (B) 作動 (1系)	1	SGTSモニタ (低レンジ) B	〇 			I	モニタリング・ポスト#6日	
候谁怒	SGTS評ガス放射能 (IC) (最大)		※1:ERSS伝送ハジメークは読設SPDSのERSS伝送ハジメー タのうち、プラント状態を把握する主要なパラメータをERSS	- ク及い成設さらへ伝送する。	PDSから追加		•	モニタリング・ボスト#1L(10分間平均) モニタリング・ポスト#2L(10分間平均)	
	SGTS評ガス (SCIN) 放射能 (A)	1	原子力事業者防災業務計画の改定に合わせ、必要に応じ適宜見直	ELていく。			I	モニタリング・ポスト#3L(10分間平均)	
	SGTS研ガス (SCIN) 政府能(B)							モニタリング・ポスト#4L(10分間平均)	
1	1	- U						モニタリング・ポスト#5L(10分間平均)	
1								モニタリング・ボスト#6L(10分間平均) 国内(28.5m-U)	
				i di	- 1 L J	SA範囲		風向 (26.5m-0) 風向 (130M-D, 10 分間平均風向)	
					- - 11	1=		風速 (28.5m-U)	
								風速(130M-D, 10分間平均風速)	
	: S A範囲	ŧ						大気安定度(10分間平均)	
	— · — ·						•		
								· · · · · · · · · · · · · · · · · · ·	

柏山	奇刈羽原子力発電所 6/7号炉(2017.12.20)				東海第二発電所(2018.9	9.18版)				島根原	系子力発電所 2号炉	備考
[笌	〕3.5	5-1表	、データ表示装置(待避室)	で確認	できるノ	ペラメータ	7	表 3.5-1 プラントパラ	メータ監視装置(中央制御室待避室)で	・設備の相違
·	6 号炉(5 / 7)				(5/6)					確認できろパ	(5/6)	【柏崎 6/7 東海第一】
目的	対象パラメータ											
I			目的	的	対象パラメータ	SPDSパ ラメータ	E R S S 伝 送パラメー	バックアッ プ対象パラ	11	目的	対象パラメータ	
	ADS A 作動			新日本	油ルベント支払計線エータ	0	9 (%1)	<i>x</i> - <i>y</i>	1		A-ADS作動 B-ADS作動	
	ADS B 作動			放水口	$\Box = -2$	0	0	-	тh		RCICポンプ作動	
	RCIC 作動			モニタ	タリング・ポスト(A)	0	0	-			HPCSポンプ作動	
	H P C F ポンプ (B) 起動			モニタ	タリング・ポスト(B)	0	0	-	11		A-RHRホンプ作動 B-RHRポンプ作動	
非常用炉	H P C F ポンプ (C) 起動	1		モニタ	タリング・ポスト(C)	0	0	_			C-RHRポンプ作動	
心冷却系	RHRポンプ(A) 起動			モニタ	タリング・ポスト(D)	0	0	-		 非常用炉心冷却系(ECCS)の	RHR MV222-4A 全閉	
(ECC	R H R ポンプ (B) 起動			モニタ	タリング・ポスト(A)広域レンジ	0	0	-	11	状態等確認	RHR MV 2 2 2 - 4 B 全閉 PHP MV 2 2 2 - 5 A 今閉	
- S)の状態	R H R ポンプ (C) 起動		環境の	の情 モニタ	ダリンク・ホスト(B)広域レンン タリング・ポスト(C)広域レンジ	0	0	_	11		RHR MV2222 5 R 至闭 RHR MV2222-5B 全閉	
	R H R 往入介 (A) 全開以外		報確認	8 E	タリング・ポスト(D)広域レンジ	0	0	_			RHR MV2222-5C 全閉	
	R H R 往入介 (B) 全開以外			大気多	安定度 10 分值	0	0	-	24		全制御棒全挿入 本 给水法是	
	R H R 在入			18m ~	ベクトル平均風向 10分値	0	0	-	тh		A [−] 和小孤重 B−給水流量	
	全制 御 荐 全 挿 入	•		71m ~	ベクトル平均風向 10分値	0	0	-	$\cdot \cdot$		LPCSポンプ作動	
	親給水洗量	L.		140m	ベクトル平均風向 10分値	0	0	-	I I		モードSW運転	
	使用済態料貯蔵プール水位・温度(SA)	1		18m ~	ベクトル平均風速 10 分値	0	0	-			燃料ブール水位・温度(SA)(燃料ラック上端+6710 mm) 燃料ブール水位・温度(SA)(燃料ラック上端+6000 mm)	
•	(使用済感科貯蔵プールエリア芽園気温度)			140m	ヘクトル平均風速 10 分値 ベクトル亚均固連 10 分値	0	0	_	ч			
	使用済燃料貯蔵プール水位・温度(SA)		* 1	1 : E R S S	伝送パラメータは既設SPDSのERSS伝送パラメ	↓ ータ及び既設:	SPDSから追加	目したパラメー	11		燃料プール水位・温度 (SA) (燃料ラック上端+2000 mm)	
	(使用済盛料貯蔵フール程度(燃料フック上端+6000mm))	Ľ		タのうち 原子力事	5, プラント状態を把握する主要なパラメータをERS 『業者防災業務計画の改定に合わせ,必要に応じ適宜見	Sへ伝送する。 直していく。			11	燃料プールの状態確認	燃料プール水位・温度(SA)(燃料ラック上端レベル) (燃料フール水位・温度(SA)(燃料ラック上端レベル)	
'	使用済感料貯蔵フール木位・温度(SA)	li -							i li			
	(使用各些科好蔵フール福度(燃料フック上端+5000mm))	1	1.7						16		燃料プールエリア放射線モニタ(低レンジ)(SA)	
	使用容認料所属ノール不低・温度(SA) (確果法論系的調子」の過度(機能長いクト例は4000==))										燃料プールエリア放射線モニタ(高レンジ)(SA)	
	(夜市好助村灯廠) ー // 佳夜(助村 / フラ 上端 +4000000/) 施田決勝転的職プニルナか、街座 (0 A)					i i i	Ξ·1.	S ∧ 銌田	E I			
使用済燃料	医用例照符灯展ノール小弦・値及(3-12) (検用決時転防器プロの得座(検科モックト例12000mm))						· · _* *	い A 単凹 四				
プールの状	(医用例動行動) = 2 金後(取行) 2 2 1 増 (Southang)) 線面波線転動業プレル支持・提定(SA)											
- 態確認	(使用法教科的部プール項度(教科ラック上領±2000mm))											
	(C. // () からり () // () () () () () () () () () () () () ()										· · · · · ·	
	(使用该燃料貯蔵プール温度(燃料ラック上端+1000mm))										: S A範囲	
	使用済燃料貯蔵プール水位・温度(SA)											
	(使用済燃料貯蔵プール温度(燃料ラック上端))											
	使用済燃料貯蔵プール木位・温度(SA)											
	(使用済燃料貯蔵プール温度(燃料ラック上端 -1000mm))											
•	使用済燃料貯蔵プール放射線モニタ(低レンジ)											
	使用済燃料貯蔵プール放射線モニタ(高レンジ)											
:	· · · · · · · · · · · · · · · · · · ·											
	1											
1 												

柏	奇刈羽原子力発電所 6/7号炉(2017.12.20)		東海第二発電所(2018.	9.18版)				島根原子力発電所 2号炉	備考
1		第3.5	-1表 データ表示装置(待避室)	で確認	できるパ	ラメータ		表 3.5-1 プラントパラメータ監視装置(中央制御室待避室)で	・設備の相違
i -			(6/6)			1		確認できるパラメータ(6/6)	
	6 号炉(6 / 7)			a p p a vi	ERSS伝	バックアッ			
		目的	対象パラメータ	SPDSバ ラメータ	送パラメー タ(※1)	プ対象パラ メータ		目的対象パラメータ	:
(対象ハフメータ	1	使用済燃料プール水位・温度(SA広域)	0	0	0		A-第1ベントフィルタ出口が素顔及 A-第1ベントフィルタ出口放射線モニタ(高レンジ)	1
1	使用済燃料貯蔵ブール水位・温度 (SA広域)	 使用済燃 料プール 	使用済燃料プール温度(SA)	0	0	0		B-第1ベントフィルタ出口放射線モニタ(高レンジ)	
	(使用済燃料貯蔵プールエリア雰囲気温度)	の状態確 認	使用済燃料プール温度	0	0	0		第1ベントフィルタ出口放射線モニタ(低レンジ) A-スクラバ容器圧力	1
	使用済燃料貯蔵プール水位・温度(SA広域) (体用済燃料)2000 プール水位・温度(SA広域)		使用済然料ノールエリノ放射線モニタ(高レンシ・低レン ジ)	0	0	0		B-スクラバ容器圧力	1
	(使用各部科町庫ノール温度(部科ブラッ上編 +6/30mm)) 使用各燃料貯蔵プール水位・温度(SA広域)	* 表爆 怒	フィルタ装置出口放射線モニタ (高レンジ・低レンジ)	0	0	0		C-スクラバ容器圧力 アースクラバ容器圧力	1
	(使用済燃料貯蔵プール温度(燃料ラック上端 +6500mm))	「「赤藻児」による格	フィルタ装置入口水素濃度	0	0	0		D-スクラハ谷森圧力 A1-スクラバ容器水位	
	使用済燃料貯蔵プール水位・温度(SA広域)	 納容器の 破損防止 	ノイルダ装直上力 フィルタ装置水位	0	0			水素爆発による原子炉格納容器の A2-スクラバ容器水位	
	(使用済燃料貯蔵プール温度(燃料ラック上端 +6000mm)) 検用済機和防薬プールさか、得度 (SAIT地)	確認	フィルタ装置スクラビング水温度	0	0	0		破損防止確認 B1-スクラバ容器水位	
	(使用済燃料貯蔵ブールル温度(燃料ラック上端 +5500mm))	水素爆発	原子炉建屋水素濃度	0	0			B2-スクラバ容器水位 C1-スクラバ容器水位	1
	使用済燃料貯蔵プール水位・温度(SA広域)	 による原 子炉建屋 						C2-スクラバ容器水位	1
	(使用済燃料貯蔵プール温度(燃料ラック上端 +5000mm))	の 損 傷 防 止確認	静的触媒式水素再結合器動作監視装置	0	0	0		D1-スクラバ容器水位	1
使用済燃料	(使用各燃料貯蔵ブール水位・温度(SA広域) (使用落燃料貯蔵プール温度(燃料ラック上端 +4000mm))	-	自動減圧系 A作動	0	0	-		D2-スクラバ容器水位 A-スクラバ容異温度	
プールの状	使用済燃料貯蔵プール水位・温度(SA広域)	1	自動減圧系 B作動	0	0	-		B-スクラバ容器温度	
態確認	(使用済燃料貯蔵プール温度(燃料ラック上端 +3000mm))		非常用窒素供給系供給圧力	0	0	0		C-スクラバ容器温度	
	使用済然料貯蔵プール木位・温度(SA広域) (体用洗料料) (体用洗料料) (体料用 (クト)((+10000		非常用窒素供給系高圧窒素ボンベ圧力	0	0			D-スクラバ容器温度 A 面乙には他かま悪鹿(D / D 燃料取装)	-
	(使用終態料貯蔵プール本位・温度(約47 / ジッエ編 + 2000mm)) 使用終態料貯蔵プール本位・温度(SA広域)		非常用逃かし女生开墾期糸供給圧力 非常用逃がし安全弁駆動系高圧容素ボンベ圧力	0	0			B-原子炉建物水素濃度(R/B燃料取替階)	1
	(使用済燃料貯蔵プール温度(燃料ラック上端 +1000mm))		原子炉隔離時冷却系ポンプ起動	0	0	-		原子炉建物水素濃度(SGT配管)	
	使用済燃料貯蔵プール水位・温度(SA広域)		高圧炉心スプレイ系ポンプ起動	0	0	_		原子炉建物水素濃度(所員用エアロック室)	
	(使用済燃料貯蔵プール温度(燃料ラック上端)) (使用済燃料貯蔵プール温度(燃料ラック上端))	 非常用炉 心冷却系 	高圧炉心スプレイ系注入弁全開	0	0	-		水素爆発による原子炉建物の 原子炉建物水素濃度(SRV補修室) 損傷防止確認 原子炉建物水素濃度(CRD補修室)	
	使用資態料貯庫フール不位・温度(SALA項) (使用済燃料貯量プール温度(燃料ラック上端 -1000mm))	(ECCS) の 状態等	低圧炉心スプレイ系ポンプ起動	0	0			D-静的触媒式水素処理装置入口温度	
1	使用済燃料貯蔵プール水位・温度(SA広域)		低圧炉心スプレイ系注入弁全開	0	0	-		D-静的触媒式水素処理装置出口温度	
	(使用済燃料貯蔵プール温度(燃料ラック上端 -3000mm))		残留熱除去系ポンプA起動	0	0	-		S 一静的触媒式水素処理装置入口温度	1
	使用済然料貯蔵プール木位・温度(SA広域)		残留熱院去糸ホンフB起動	0	0			5一种的服媒式水茶处理装直出口温度	1
	(使用资源科好業ノール温度(ノール監修行症)		戏留熟陈去系A注入弁全開	0	0				1
	1		残留熱除去系B注入弁全開	0	0	-	-		-
		-	残留熱除去系C注入弁全開	0	0	- 1			
1			全制御棒全挿入	0	0	-		·SA箭囲	a
1 C		津波監視	取水ビット水位計 	0	0	0			-
	– . – . – . – . – . – . – . – . – .	×1:E	潮位計 RSS伝送パラメータは既設SPDSのERSS伝送パラメ−	- タ及び既設S	O PDSから追加 D S D D S D D S D S D S D S D S D S D S D S D S D S D S D S D D S D S D S D S D D S D D S D	したパラメー			
		タ 原	のうち、プラント状態を把握する主要なパラメータをERS 子力事業者防災業務計画の改定に合わせ、必要に広じ適宜見画	S へ伝送する。 直していく。					
		L . L				I			
				- 10	- 1 L .	S ∆ 絎田			
				- <u>-</u>	° - °				

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・設備の相違
6号炉(7/7)			【柏崎 6/7】
- 日的 対象パラメータ			
フィルタ装置水素濃度(格約容器圧力逃がし装置水素濃度)			
フィルタ装置木業濃度(フィルタベント装置出口水素濃度)			
フィルタ装置出口放射兼モニタ(A)			
水素爆発に フイルタ装置出口放射線モニタ (B)			
よる格納容 フィルタ装置入口圧力			
止機器 フィルタ装置スクラパ水pH			
フィルタ装置金属フィルタ差圧			
耐圧強化ペント系放射線モニタ (A)			
耐圧強化ペント系放射線モニタ (B)			
原子炉建屋水素濃度(R/Bオペフロ水素濃度A)			
原子炉建屋木素濃度(R/Bオペフロ水素濃度B)			
原子炉建屋木素濃度(上部ドライウェル所員用エアロック)			
原子炉建屋木素濃度(上部ドライウェル機器搬入用ハッチ)			
水素療発に 原子炉建屋水素濃度(サプレッション・チェンバ出入口)			
よる原子が 原子炉建屋水素濃度(下部ドライウェル所員用エアロック)			
爆励の損傷 原子炉建屋水素濃度(下部ドライウェル機器搬入用ハッチ)			
防止機器 静的触媒式水素再結合器 動作監視装置(北侧PAR板気温度)			
静的触媒式水素再結合器 動作監視装置(北侧PAR排気温度)			
静的触媒式水素再結合器 動作監視装置(南側PAR痰気温度)			
静的触媒式水素再結合器 動作監視装置(南側PAR排気温度)			
$z = z_1$ (12)			
·····································			

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・申請号炉数の相違
7号に(1/7)			
			て同じ)
			【柏崎 6/7】
A P R M (平均值)			
APRM(A) APRM(B)			
APRM (C)			
APRM (D) SRNM (A) 計数率			
SRNM (B) 計数率			
- <u>SRNM (C)</u> 計数率 			
SRNM (D) 計版中 SRNM (E) 計版率			
SRNM (F) 計数率			
の状態確認 SRNM (J) 計数率			
SRNM (L) 計款率 SRNM A 計影素本本			
SRNM A 印象中间间 SRNM B 計数半高高			
SRNM C 計数半高高			
SRNM D FI家半向向 SRNM E 計数半高高			
SRNM F 計数率高高			
SRNM G 計数半高高 SRNM H 計数半高高			
SRNM J 計数半高高			
<u>SRNM L</u> 計数半高高 (第2年にた A			
原十炉庄力 A 原子炉庄力 (A)			
原子 炉 圧 力 (B)			
原子炉庄刀 (C) 原子炉庄力 (SA)			
原子 炉 水 位 (W) A			
原子炉木位(広帯域)(A) 炉心冷却の 原子衍木位(広帯域)(C)			
状態確認 原子炉水位(広带端)(F)			
原子炉水位(F) 医子板大位(番糕味)(A)			
原子炉水位(燃料域)(B)			
原子 炉 木位 (SA) (ワイド)			
原子炉水位 (SA) (テロー) CUW再生熱交換器入口温度			
SRVM (CRT)			
·····			

柏山	奇刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
Γ	7 号炬(2 / 7)			
目的	対象パラメータ			
	H P C F (B) 系統進量			
	HPCF(C)系統進量			
	R C I C 系統 流量			
	高圧代替往水系系統満量			
	R H R (A) 系統流量			
	RHR (B) 系統流量			
	R H R (C) 系統流量			
	機留熟除去系動交換器(A)入口温度			
	残留動隊士永敷交換器(B)人口温度 まの表現上であた後期(の) 3 日 週間			
	探偵 熟味去米 熟交 興谷 (C) 人口 温度 ゆ 田参 時 士 名参 奈 時 第(A) 出口 過 座			
1	然間照你五水照火装备(A)山口信度 建原素除土采素力抽屉(b)山口语度			
	成副影称五东影文装备(D)山口信度 建园整路主系集立施器(C) 出口语度			
	深留照時至示照文後報(C)山口進後 碑留教院去采載交換品(A)入口冷却大流量			
	非显影除去采购交换品(R)入口冷却大流量			
	推留期除去系動交換器 (C)入口冷却水流量			
	原子师補機治却水系(A.)系統流量			
炉心冷却の	原子师補機冷却水系 (B) 系統流量			
状態確認	原子师補機治却水系(C)系統流量			
	6.9kV 7A1母亲電圧			
	6.9kV 7A2母兼電圧			
1	6.9kV 7B1母線電圧			
	6.9kV 7B2母線電圧			
	6.9kV 6SA1母線電圧			
	6.9kV 6SA2母線電圧			
	6.9kV 6SB1但線電圧			
	6.9kV 6SB2母線電圧			
	6.9 KV 7 C 印刷電圧			
	6.9KV 7D詳修道注 e 0トV 7F品論書II			
	0. 5 k V / L 中来地広 M / C 7 C D / C 赤梁洋新発見			
	M/C 7D D/G受電波新算問			
	M/C 7E D/G受意波新算問			
	原子师圧力容器温度(RPV下號上部温度)			
	復水補給水系流量(原子炉圧力容器) (RHR (A) 注入配管流量)			
	復水貯蔵槽水位 (SA)			
1				
	1			
1				
1- . -				
	$z = z_1$			
	:SA範囲			
				1

柏	崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
F • F • F				
1	7 号炬 (3 / 7)			
目的	対象パラメータ			
	各納容器内雰囲気放射線モニタ (A) D/W			
	格納容器内雰囲気放射線モニタ (B) D / W			
· ·	ー 結約容器内雰囲気放射線モニタ(A) S/C			
	格納容器内雰囲気放射線モニタ (B) S/C			
•	ドライウェル圧力 (W)			
	善納容器内圧力 (D/W)			
•	S / C 圧力 (最大值)			
	善納容器内圧力 (S/C)			
	D/W温度(最大值)			
	S/P 水温度最大值			
	S / P 水位(W) (最大值)			
	サプレッション・チェンパ・プール水位			
	サプレッション・チェンバ気体温度			
	サプレッション・チェンバ・プール水温度(中間上部)			
	サプレッション・チェンパ・プール水温度(中間下部)			
	サブレッション・チェンパ・プール水温度(下部)			
•				
格納容器内	答 納 将 器 内 木 素 濃 度 (B)			
の状態確認	益 納 将 器 内 木 素 溴 定 (S A) (D / W)			
	結納容器内水素濃度(SA)(S∕C)			
	- 結約容器内酸素濃度(A)			
· ·	格納容器內酸素濃度 (B)			
	C A M S (A) D / W 剥定中			
•	CAMS (B) D/W 制定中			
	CAMS(A)S/C 測定中			
· ·	CAMS(B)S/C 創定中			
	R H R (A) 米親洗査			
•	RHR(B) 米朝漢宣			
	RHR (C) 糸朝満宣 D C V T プレイタ (D)			
	PCVスクレイザ(B) 全団 PCVスプレイサ(C) 合目			
	アビマスノアイザ (C) 生肉 液型素除去系ポップ (A) 時出に力			
	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)			
	建築教験去系ポンプ(C)吐出圧力			
	() () () () () () () () () () () () () (
	ドライウェル専囲気温岸(下部D/W内専囲気温岸)			
1	1			
	1			
	·····································			

柏岬	時刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
. — . —				
1	7 号炉 (4 / 7)			
•				
日的	対象パラメータ			
•				
	復水補給水系流量(原子炉格納容器)(RHR(B)注入配管流量)			
	復木移送ポンプ (A) 吐出圧力			
	復木移送ポンプ(B)吐出圧力			
*	復木移送ポンプ(C)吐出圧力			
10 MT 45 45 11	復水補給水系溫度 (代替循環冷却)			
の状態確認	格納容器下郭水位 (D/W下郭水位 (3m))			
	А前容器下部水位 (D/W下部水位 (2m))			
	格納容器下部水位 (D/W下部水位 (1m))			
	復水補給水系流量(原子炉裝納容器) (下部 D / W 注水流量)	·		
	排気筒放射線モニタ (IC) 最大値			
	排気筒放射線モニタ(SCIN)A			
	排気筒放射線モニタ(SCIN)B			
	区分工主蒸気管放射能高高			
	区分Ⅱ主蒸気管放射能高高			
•	区分Ⅲ主蒸気管放射能高高			
	区分 IV 主蒸気管放射能高高			
•	PCIS 編載 内侧			
放射能隔離	PCIS 編載 外側			
の状態確認	主条気内側陽離弁 全弁全団			
	主条気内側陽離弁(A)全団			
	主张为内侧隐蔽升(B) 全团 主张是中间团装在(C) 在目			
	主張丸均衡勝非(い)全国			
	主張丸内側磨顔弁 (D) 全国 主要者从周囲観点 点点点間			
	正然从小词图除开 主开主问 主装包从间隔就会 (A) 公開	·		
	主要从行向田能力(4)主向 主要有从程度就会(1) 全限			
	主意从// 同用版// (1/ 1) (1/			
	主葉気外側隔離舟 (D) 全閉			
•	SGTS (A) 作動			
	SGTS (B) 作動			
康桃の情報	SGTS放射線モニタ(IC)最大値			
ON DO	SGTS排ガス放射線モニタ (SCIN) A			
	SGTS排ガス放射線モニタ (SCIN) B			
		-		
	$z = z_{1}$			
	·····································			

柏	倚刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1.1 - 1				
1	7 長恒(5 / 7)			
•	19/ (0/1)			
日的	対象パラメータ			
	ADS A 作動			
· ·	ADS B 作動			
	RCIC起動状態 (CRT)			
	HPCFポンプ(B)起動			
念念用 纽 心	HPCFポンプ(C)起動			
14 to 15 (12	_ R H R ポンプ (A) 起動			
4 2 M (12	。 RHRポンプ(B) 起動			
CS)の状	^B R H R ポンプ (C) 起動			
99 1	R H R 注入 介 (A) 全閉			
	R H R 往入 介 (B) 全 開			
	R H R 注入 f (C) 全開			
	全制御穆全挿入			
	全給水満量			
111	使用済感料貯蔵プール水位・温度(SA)			
•	(使用済燃料貯蔵プールエリア雰囲気温度)			
	使用済感料貯蔵プール水位・温度(SA)			
· ·	(使用済感料貯蔵ブール温度(燃料ラック上端+6000mm))			
	使用済燃料貯蔵プール木位・温度(SA)			
	(使用済燃料貯蔵ブール温度(燃料ラック上端+5000mm))			
	使用済燃料貯蔵プール水位・温度(SA)			
1:1	(使用済燃料貯蔵ブール温度(燃料ラック上端+4000mm))			
使用済燃料	使用済燃料貯蔵プール水位・温度(SA)			
プールの状	(使用済燃料貯蔵ブール温度(燃料ラック上端+3000mm))			
態確認	使用済感料貯蔵フール水位・温度(SA)			
	(使用済盛料貯蔵フール温度(燃料フック上端+2000mm))			
	使用済態科貯蔵プール木位・担度(SA)			
	(使用資料料料) (使用資料料) (使用資料) (使用資料料) ((1.1))			
•	使用資源材料業ノール本位・進度(SA) (体界体験的業式」と認定(体影会」とも強い)			
	(使用例照杯灯廠ノール准洗(照杯フック工場)) 使用決勝利的調ブールまた、適用(cas)			
•	(方保護行灯廠ノール小型・値及(され) (施業改善戦的調ブール海岸(絶戦号ックト第-1000mm))			
	(医用資源代灯薬シール値及(加行ノラン工術-1000年)) 推開波過転防護プロル放射線エーカ (所レソジ)			
	(川田川石川県ノーク以前参にニノ(以下ノン) 准国法務税的選プロル放射第チェク(メレンジ)			
1				
1				
	: S A 範囲			
1				

柏	崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1				
1	7 号炉(6 / 7)			
目的	対象パラメータ			
	使用漆微彩的 難ブール水位・温度 (SA広城)			
	(神田波教教的職プールエリア豊田気道度)			
	(周保監督所蔵ノール水径・温度(SAム城) (地図洗器部設置ブール通序(撮影音にカト語」(2750			
	(使用各版杯町庫ノール温度(版杯フラッ工端 +6750000))			
-	使用済盛料貯蔵プール水位・温度(SA広域)			
	(使用客館料貯蔵フール温度(燃料フック上端 +6500mm))			
1:1	使用済感料貯蔵プール水位・温度(SA広域)			
	(使用済燃料貯蔵プール温度(燃料ラック上端 +6000mm))			
	使用済燃料貯蔵プール木位・温度(SA広域)			
	(使用済燃料貯蔵プール温度(燃料ラック上端 +5500mm))			
	使用済燃料貯蔵プール水位・温度(SA広域)			
	(使用済燃料貯蔵プール温度(燃料ラック上端 +5000mm))			
使用済燃	使用済燃料貯蔵プール水位・温度(SA広域)			
料プール	(使用済燃料貯蔵プール温度(燃料ラック上端 +4000mm))			
の状態確	使用済燃料貯蔵プール木位・温度 (SA広域) -			
18	(使用済燃料貯蔵プール温度(燃料ラック上端 +3000mm))			
	使用済燃料貯蔵プール水位・温度(SA広域)			
	(使用済燃料貯蔵プール温度(燃料ラック上端 +2000mm))			
	使用済燃料貯蔵プール水位・温度(SA広域)			
11	(使用済燃料貯蔵プール温度(燃料ラック上端 +1000mm))			
	使用済燃料貯蔵プール水位・温度(SA広域)			
	(使用済燃料貯蔵プール温度(燃料ラック上端))			
	使用済燃料貯蔵プール木位・温度 (SA広域)			
-	(使用済燃料貯蔵プール温度(燃料ラック上端 -1000mm))			
	使用済燃料貯蔵プール木位・温度(SA広域)			
	(使用済燃料貯蔵プール温度(燃料ラック上端 -3000mm))			
	使用済燃料貯蔵プール水位・温岸(SA広域)			
	(使用済燃料 貯蔵プール温度(プール底部付近)			
1				
1	1			
1				
<u> </u>				
	・SA範囲			
1				

柏	崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
•	7 号炉(7 / 7)			
日的	対象パラメータ			
	フノルク法曼大要達度(為約定規圧力法が)、法曼大要達度)			
	21 かえ 教皇小宗後氏(田町杵谷に)) 起から教皇小宗後氏)			
	ノイルク設置不奈後氏(ノイルクヘント設置ロロホ奈後氏)			
	フィルタ装置出口放射線モニタ(A)			
水素爆発に	フィルタ装置出口取射線モニタ(B)			
よる格納容	フィルタ装置入口圧力			
新四雄語院	フィルタ装置木位(A)			
48 V2 98 54 50	フィルタ装置木位(B)			
止確認	フィルタ装置スクラバ水pH			
	フィルタ装置金属フィルタ差圧			
•	耐圧強化ペント系放射線モニタ (A)			
	耐圧強化ペント系放射線モニタ(B)			
-	原子炉建屋水素濃度(R/Bオペフロ水素濃度A)			
	原子伊藤景木素濃度(R/Bオペフロ水素濃度B)			
	原子切達泉太素濃度(上部ドライウェル所員用エアロック)			
	「「「「「「「」」」」」、「「」」、「」」、「」」、「」、「」、「」、「」、「」			
水素爆発に	原王が康臣小兼侯氏(王郎ドアイソニが領督取八用ハファ) 国王指揮員士奏連章(王づしっとっつ・チェンズ出入口)			
よる原子炉	原子が漫画水系像後(サンビラション・デェンハロハロ)			
強原の損傷	原子炉爆歴水素機度(下部ドライウェル府員用エアロック)			
14 d. 14 80	原子炉爆風水素濃度(下部ドライワェル機器撒入用ハッテ)			
P.0 TT 408 NO	静的触媒式水素再結合器 動作監視装置(北側PAR吸気温度)			
	静的触媒式水素再結合器 動作監視装置(北側PAR排気温度)			
	静的触媒式水素再結合器 動作監視装置(南側PAR痰気温度)			
	静的触媒式水素再結合器 動作監視装置(南側PAR排気温度)			
-		· ·		
1				
-				
1				
	2 - 2 - 2			
	:SA範	<u>用</u>		

柏崎刈羽原子力発電所 6/	7 号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所	備考			
3.6 事故シーケンスの組み合わせる	と待避室の収容性	3.6 中央制御室待避室の内部寸法について	3.6 中央制御室待避室の収容性		-		
重大事故等が発生した場合にお	おいても中央制御室に運転員		(1) 中央制御室待避室に待避する	1			
がとどまる居住性を確保するため	め,中央制御室待避室を設置	(1) 中央制御室待避室に待避する要員数の考え方	重大事故等が発生した場合に	重大事故等が発生した場合においても中央制御室に運転員			
している。			■ がとどまる居住性を確保するた	め,中央制御室待避室を設置			
中央制御室待避室は, 重大事件	故等に対応する要員がとどま		LTUZen				
ることができなければならない。	そのため、中央制御室待避		中央制御室待避室は,重大事	故時の格納容器ベント実施時			
室の設計は <u>収容可能人数を「20</u> ź	<u>名」</u> としている。その内訳を	中央制御室待避室には、 <u>3名</u> の運転員が待避することと	<u>に,運転員</u> がとどまることがで	きなければならない。そのた	・設備の相違		
表3.6-1に示す。		している。この要員数を設定した考え方を以下に示す。	め、中央制御室待避室の設計は	<u>収容可能人数を「5名」</u> とし	【柏崎 6/7, 東海第二】		
表 3.6-1 中央制御室収	容人数設計内訳	 待避前に中央制御室で行う以下の運転操作に必要 	ている。内訳を表 3.6-1 に示す	0	島根2号炉では,当直		
当直長	1名	な要員数を確保する。	表 3.6-1 中央制御室待避	室収容人数設計内訳	長,当直副長,中央制御		
当直副長	2名	▶ 格納容器スプレイ停止,原子炉注水流量の	当直長	1名	室運転員各1名の他,フ		
運転員	12名	調整及び格納容器ベント操作を, SA操作	当直副長	1名	イルタベント操作を現		
消火対応要員	3名	盤において,指揮者(発電長)1名及び操	運転員(中央制御室)	1名	場で行った場合の現場		
予備	2名	作者 (運転員A) 1名で実施する。	運転員(現場)	2名	■運転員2名の計5名を		
合計	20名	▶ 中央制御室待避室の正圧化操作を操作者	合計	5名	収容できる設計とする。		
		(運転員B) 1名で実施する。					
		したがって、待避前に中央制御室で行う運転操作に					
		必要な要員数は <u>3名</u> である。	<u>なお</u> ,運転員が中央制御室待	避室に待避している間は、運	-		
		② 運転員が中央制御室待避室に待避している間は、運	■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■	必要はなく, <u>プラントパラメ</u>	1		
1		転員による運転操作を実施する必要はなく、データ表	一夕監視装置(中央制御室待避	<u>室)</u> によるプラントパラメー	1		
		示装置(待避室)によるプラントパラメータの監視及	タの監視及び衛星電話設備(固	定型),無線通信設備(固定			
		び衛星電話設備又は携行型有線通話装置による通信	↓ <u>型)又は有線式通信設備</u> による	連絡を行うこととしており表			
		連絡を行うこととしており、①に必要な要員数に包含	<u>3.6-1</u> の要員数に包含される。		-		
а н		される。			1		
		③ 原子炉施設保安規定の定めにより、中央制御室には		I	l i		
		3名の運転員が常駐する必要がある。					
		以上の条件から、中央制御室待避室の収容要員数を指揮					
		者(発電長)1名及び操作者(運転員A及び運転員B)2					
		名の計3名に設定する。			-		
					1		
L		i		فالمتا بالمالية المارية	1		
	:SA範囲	:SA範囲					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
また、複数号炉の同一中央制御室であるため、重大事故等		また, <u>重大事故等</u> の事故シーケンス <u>毎</u> の運転員の対応要員	・申請号炉数の相違
の事故シーケンスが組合わさった場合においても対応が可能		数を評価した。	【柏崎 6/7】
である必要がある。そのため、事故シーケンスの組み合わせ		評価条件として、「雰囲気圧力・温度による静的負荷(格納)	
による運転員の対応要員数を評価した。		容器過圧・過温破損)(残留熱代替除去系を使用しない場合)」	
評価条件として,6号炉において「雰囲気圧力・温度による		(以下,「大LOCA」とする)の事故シナリオを想定した。	
静的負荷(格納容器過圧・過温破損)(代替循環冷却を使用し			
ない場合)」(以下, 「大LOCA」とする)の <u>発生を想定し, 7</u>		なお、全交流動力電源喪失シナリオは4シナリオあるが、対	
<u>号炉側を事故シーケンス組合せとして、有効性評価における</u>		応要員数が変わらないため「全交流動力電源喪失(外部電源喪	
<u>他の</u> 事故シナリオを想定した。		■ 失+DG失敗)」で代表する。「格納容器雰囲気直接加熱(DCH)」	
↓ なお、全交流動力電源喪失シナリオは4シナリオあるが、6		「原子炉圧力容器外の溶融燃料-冷却材相互作用(FCI)」「 溶	
<u>号炉の原子炉格納容器ベント操作時における</u> 対応要員数が変		融炉心・コンクリート相互作用(MCCI)」の3シナリオについて	
わらないため「全交流動力電源喪失(外部電源喪失+DG 喪		は「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破	
失)」で代表する。「格納容器雰囲気直接加熱(DCH)」「原子		損)(残留熱代替除去系を使用する場合)」で実施する残留熱	
炉圧力容器外の溶融燃料-冷却材相互作用(FCI)」「 溶融炉		【 <u>代替除去系</u> を使用した対応と同じであり,「停止中の反応度	
心・コンクリート相互作用(MCCI)」の3シナリオについては「雰		誤投入」シナリオは,事故の終息が短時間で終了するため対	
■ 囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(<u>代</u>		象外とした。	
<u> </u>		事故シーケンス毎における運転員の対応要員数を表3.6-2	
使用した対応と同じであり、「停止中の反応度誤投入」シナ		に示す。	
リオは、事故の終息が短時間で終了するため対象外とした。		-	
事故シーケンスの組み合わせによる運転員の対応要員数を			
表 3.6-2 に示す。		1	
事故シーケンスの組み合わせを考慮しても,運転員の対応		また, <u>図 3.6-1,2 にて中央制御室待避室を使用する事故</u>	・記載方針の相違
<u>要員数は最大で「15名」であり,消火活動要員を含めても</u>		<u>シーケンス</u> の作業時間抜粋を示す。	【柏崎 6/7】
「18名」であり、中央制御室待避室の設計「20名」により		-	島根2号炉は中央制御
<u>+分対応可能である。</u>		1	室待避室を使用する事
6号炉の原子炉格納容器ベント操作時の7号炉側の作業への		1	故シーケンスのタイム
影響について表3.6-3に整理した。			チャートを記載
<u>また,図3.6-1~14 にて事故シーケンス組み合わせ毎の作</u>			
業時間抜粋を示す。			
		•	
		L	
 : SA範囲		·····································	

	柏嵋	奇刈习	习原-	子力	老電所	歽	6 /	/ 7 長	予炉 ((201	7.1	2.2	0)								島柑	泉原子	力列	老電	所	24	号炉						備考
表	3.6-2	2 耳	[故:	/_/	マンフ	ス組	合せ	によ	、る運	転員	し の	対応	要	員数		表 3.6-2 各事故シーケンスにおける運転員の対応人数							・体制の相違										
- ₩₩	10.12	16名 16名	18名	18名	16名	14名	16名	18名	18名		13名	15名	15名	1b 名	15 4			ii <	中	28名 8名	31名	31名 28名	11名	29 名	10名 31名		(2名) ※ 94 及	^{24治 26名}	8名	29名			【柏崎 6/7】 島根 2 号炉の各事故シ ーケンスにおける対応 人数を記載
消火要	щ v	3名 3名	34	3名	3名	3名	3名	3名	3名		3.4	34	34	2 2	34			通報連絡等を行う	要員、復旧班要員	23 名 5 名	24 名	24名 23名	5名	23 名	5名 24名	24 名 01 を	24名 91 <i>々</i>	21 名 21 名	5	24名 5 &	Ţ		
	計です。	13 A	15 4	15名	13名	11名	13名	15名	15名		10名	12名	12 4	12.45	12 4		目童泉	Ľ		谷 校	名	名 名	名	名	₩ 4	名 名	名)*	4 4	容	<i>₩</i> 4			
與数 7.446	広ち	5名 5名	14	74	5名	3名	5名	7 &	7 &		24	4名	44	4-4-	44		堅急時対待				2	2	9	9	- 2	, 2	3	21 C			_		
対応 8.446	対応	1名 7名	74	7名	7 名	7名	7名	7名	7名		74	7名	7名 	14	7 4			員数 (運転員)	運転員	3 名 子	5名。	2 3 名	4名	4名	3 %	5 名	(2名)* 1 タ	- ¹ 3名	1名	3 3 分	員数		
	調査を	14	14	1名	1名	1名	1名	1名	1名		14	1名	14	1.4	14			対応要	当直副長	1名	1名	1 1名	1名	1名	1名	4 4	名 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	名 4	1名	1名	<u>「</u> 」 修動する人		
K V Y	新 年	授大 朝朱	{		其牛)	~			用する場				能喪失	いまん しょうしん しょうしょう ひょうしょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	田淵の				当直長	- 名 名	- 7	- 1 名	1名	- 子		平 下 下	₩ ₩	- - 安	1名	- - - - - - - - - - - - 	▲ ● ● ● ● ● ● ●		
 ・ - ・ - ・ - ・ - ・ - ・ - ・ - ・ - ・ - ・ -	希望主法旧姓,田恒	尚止・医圧注不機能 高圧注水・減圧機能	全交流動力電源喪失	崩遽熱除去機能喪失 (崩遽熱除去機能喪失 (過回執除去区機能更	原子炉停止機能喪失	LOCA 時注水機能喪失	格納容器バイパス (インサーフェイスシステF1.0CV)	<u>大 TOCA</u> 人 TOCA (代替循環冷却を使	合)	想定事故 1	想定事故 2	停止中島繊維除去機	停止日金交流動力電	停止中原子炉冷却材			ケンス		水機能喪失 下継能喪失	部電源喪失+DG 失敗)	(取水機能喪失) 留熱除去系機能喪失)	機能喪失	機能喪失	クターフェイスシステム LOCA) 毕系お伸田士ス提合)	5米を使用する場合) 玄お庙田したい但へ)	米を快用しばい場合) 歩 1	政1 故2	於去機能喪失	b力電源喪失 Anttociciu	施前までに、緊急		
 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・								¥ LOCA					-					事 並 が シー		高圧・低圧注 高圧注水・減	全交流動力電源喪失(外;	用 崩壞熱除去機能喪失 崩壞熱除去機能喪失(残	原子炉停止	TOCA時注水	格納容器バイパス(小 + 1 0CA(建留執代基除=	人 LUCA (残留熱化管係2 十 I OCA (確認執冷秩险主	人 LUCA (残留熱竹脊砾去 相定重	·····································	停止中崩壞熱除	停止中全交流動	「 <u>」</u> ()内の数値はベント実		
<u>※事は</u> 数は量	 女シー したて	-ケン ご「1!		D組。	入合さ	<u>りせ</u> 消	を を 水 沢	<u> </u>	しても 更目を	<u>,</u> 道 ·含义	重転 りて	<u>員の</u> も	⊃対/		ー <u>実員</u> と	L .	• •						-					-			*	- i	
<u>なるこ</u> 可能	<u>_ とカ</u> ごある	<u>нБ,</u> 5 <u>.</u>	<u>中</u> 与	之制征	<u>》</u> 室征	<u></u> 寺避:	<u>室</u> の	<u>)設計</u>	- [20	名		: S	<u>)</u>) 十 (分交通用	<u>_</u> <u> 応</u>												Ċ.		:	S A:	範囲		

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	■(2) 中央制御室待避室内の必要スペースの考え方	(2) 中央制御室待避室内の必要スペースの考え方	
	中央制御室待避室内で行う作業は、データ表示装置によ	中央制御室待避室内で行う作業は、プラントパラメータ	
	るプラントパラメータの監視、衛星電話等による通信連絡	<u> 監視装置(中央制御室待避室)</u> によるプラントパラメータ	I
	のみであり、広い作業スペースは不要であることから、以	の監視、衛星電話設備(固定型)又は無線通信設備(固定	
	下の条件を考慮して中央制御室待避室の必要寸法を検討	型)による通信連絡のみであり、広い作業スペースは不要	
	する。	であることから、以下の条件を考慮して中央制御室待避室	
	I and the second se	の必要寸法を検討する。	
	▶ 運転員 <u>3 名</u> が着席して待機するために必要なスペ	▶ 運転員 5名が着席して待機するために必要なスペ	・待避人員数の相違
			【東海第二】
	▶ <u>データ表示装置</u> , <u>衛星電話</u> 及び <u>可搬型照明</u> を配置	▶ プラントパラメータ監視装置(中央制御室待避	島根2号炉では、当直
	するためのスペース	室), <u>LED照明(ランタンタイプ)</u> ,酸素濃度計,	長,当直副長,中央制御
	▶ 待避室内圧力調整用の配管・バルブの設置及び操	二酸化炭素濃度計及び有線式通信設備の専用接続端	室運転員各1名の他,フ
	作スペース	<u>子</u> を配置するためのスペース	イルタベント操作を現
	▶ 携行型有線通話装置接続箱の設置スペース	▶ 待避室内圧力調整用の配管・バルブの設置及び操	場で行った場合の現場
	運転員が椅子に座った姿勢で待機するために必要なス	作スペース	運転員2名の計5名を
	ペースを1名当たり500mm×1,200mmとすると、中央制御	運転員が椅子に座った姿勢で待機するために必要なス	収容できる設計とする。
	室待避室の必要寸法は 2,000mm×1,200mm となる。	ペースを1名当たり 500mm×1,200mm とすると,中央制御	・設備の相違
	I	室待避室の必要寸法は <u>3,000mm×1,200mm</u> となる。	【東海第二】
			■ 収容人員数の相違によ
	(3) 中央制御室待避室の居住性向上	(3) 中央制御室待避室の居住性向上	る寸法の相違
	中央制御室待避室の必要寸法として 2,000mm×1,200mm	中央制御室待避室の必要寸法として <u>3,000mm×1,200mm</u>	
	を設定するが、中央制御室待避室の居住性を向上させるた	を設定するが、中央制御室待避室の居住性を向上させるた	
	▶ め、以下を実施する。	め、以下を実施する。	
	▶ 外部との通信手段の確保(衛星電話設備/携行型)	外部との通信手段の確保(衛星電話設備(固定型)	
	有線通話装置)	/無線通信設備(固定型)/有線式通信設備)	I
	▶ 十分な照度の確保(可搬型照明(SA))	▶ 十分な照度の確保(LED照明(ランタンタイプ))	
	▶ 天井高を高く設定することで、室内空間を広くす	▶ 天井高を高く設定することで、室内空間を広くす	
	る	る (2,000mm)	
	▶ 鉛ガラスの窓の設置		
	これに加えて、更なる居住性向上のため、中央制御室待	これに加えて, 更なる居住性向上のため, 中央制御室待	I
	避室の床面積を必要寸法における床面積の2倍に拡大す	避室の床面積を必要寸法における床面積の2倍以上に拡大	
	る。	する。	i
	: S A範囲	: S A範囲	

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	(4) 中央制御室待避室のレイアウト	■(4) 中央制御室待避室のレイアウト	
	これまでの検討結果を反映した中央制御室待避室のレ	これまでの検討結果を反映した中央制御室待避室のレ	
	イアウト図を第 3.6-1 図に示す。中央制御室待避室は,	【 イアウト図として図 2.4−14 に示している。また,中央制	
	必要十分なスペースを確保する設計とする。	御室待避室の寸法は, 6,000mm×2,000mm と必要十分なスペ	
		ースを確保する設計とする。	
	進藤扉		
	気密扉		
		ii: !	
		il i	
	1		
	携行型有線通話 装置接続箱 		
		i (
		il i	
	第3.6−1図 中央制御室待避室レイアウト図	11 III III III III III III III III III	
	· ·	i	

柞	崎刈羽原	子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
表 3.	6-3 6号	炉原子炉格納容器ベントによる影響(1/5)		
6 号炉 事故シーケンス	7号炉 事故シーケンス	6 号炉原子炉格納容器ベント操作時の7号炉側作業への影響		
	高圧・低圧注水 機能喪失	【7 号炉運転員への影響】 原子炉水位を防圧代替注水系(常設)により維持しているため原子炉注入 弁の操作が必要になるが、待避度への待避前に原子炉注水量を調整すること により中央制御室での操作頻度を少なくすることができる 【緊急時対策要員への影響】 優水貯蔵槽への補給を実施しているが、既に通常水位まで回復しているこ なり、使用型ので補修を開始しているが、既に通常水位まで回復しているこ な		
	高圧注水・減圧	したから、6 分が近くが開始する「中国に国地を行正してお起うしことから」 し アイルタ装置水位調整等については、6 号炉原子炉格納容器ペント前に水 位調整を実施することで対応可能。また、炉心技術前の原子炉格納容器ペン トであるため、耐圧強化ペントに切り替えることも可能 【7 号炉運転員への影響】 際の戦略主系に上ろ原子何停止時冷却エードを実施しているため、漆量調 影		
大 LOCA	機能喪失 全交流動力電源	整は不要であり、6号炉の原子炉格納容器ペントによる影響はない 家急時対策要員への影響し 原子炉理転員への影響」 原子炉力位を低圧代替注水系(常設)により維持しており、発留熟絵去系		
	喪失	による格納容器スプレイを実施しているため、原子が注入先及び格納容器ス プレイキの操作が必要になる、発電物能主系にとる構造為出を実施すること により中央制御室での操作範疇を少なくすることができる 【緊急時対策要員への影響】 復水貯蔵槽への補給を実施しているが、既に通常木位まで回復しているこ とから、6 分別原子が格納容器ペント前に補給を停止して特遇することが可 し の生活を見たいた。そのたちには、第日の		
		交替又は遮蔽が期待できるタービン連屋大物搬入口に配置する等の被ばく 低減対応が可能。また、残留熱除主系を停止して、再度原子炉格納容器ペン トによる格納容器除熱を実施することも可能		
表 3.	6-3 6号	炉原子炉格納容器ベントによる影響(2/5)		
6 号炉 事故シーケンス	7 号炉 事故シーケンス	6 号炉原子炉格納容器ベント操作時の7号炉側作業への影響		
!	崩壞熱除去 機能喪失 (取水機能喪失)	【7 号炉運転員への影響】 原子炉水位を低圧代替注木系(常設)により維持しているため原子炉注入 弁の操作が必要になるが、待避室への待運前に原子炉注水量を調整すること により中央制調室での操作模度を少なくすることができる 【繁急時対策要員への影響】 復伏防蔵槽への描述を実施しているが、既に通常木位まで回復しているこ をから、6 号炉原子炉格納容器ベント前に補給を停止して待避することが可 な		
	品被執险土	代替原子が補機冷却系運転のために、電源車等への給油を行うが、要員の 交替又は運動が期待できるタービン様屋大物搬入口に配置する等の数ばく低 減対応が可能。また、残留熱除主系を停止して、原子炉格納容器ペントによ る格納容器除熱を実施することも可能 7.7 代が運転日への影響】		
大 LOCA	崩破熱訴云 機能喪失 (残留熱除去系 機能喪失)	原子印木位を高圧印心法水系により維持しているため原子炉法入弁の操作 が必要になるが、低圧代替法水系(常設)に切り替えることにより中央制御 室での操作履度を少なくすることができる 【緊急時対策要員への影響 後大貯蔵槽への補給を実施しているが、既に通常水位まで回復しているこ とから、6 号印原子印格納容器ペント前に補給を停止して待避することが可 能		
i i		フィルタ装置水位調整等については、6 号炉原子炉格納容器ペント前に木 位調整を実施することで対応可能。また、炉心損傷前の原子炉格納容器ペン トであるため、耐圧強化ペントに切り替えることも可能 「こ <u>4の増加を日</u> のの単化ペントに切り替えることも可能		
	原子炉停止 機能喪失	1 方が運転以(************************************		
表 3.	6-3 6号	炉原子炉格納容器ベントによる影響(3/5)		
6 号炉 事故シーケンス	7 号炉 事故シーケン	6 号炉原子炉格納容器ベント操作時の7号炉側作業への影響		
	LOCA 時注水機創	8度失 「ア子炉本位を低圧代替注木系(常設)により維持しているため原子炉 注入弁の操作が必要になるが、待選室への待選前に原子炉注木量を調整 することにより中央制御室での操作頻度を少なくすることができる 「教急時対策要員への影響」 役未貯蔵構への総給を実施しているが、既に通常木位まで回復してい ることから」6号炉原子炉格納容器ペント前に補給を停止して待避する した新可能		
- 大 LOCA	格納容器パイパ (インターフェイスシステム			
		の操作が必要になるが、残留熟除去系による原子炉停止時冷却モードに 切り替えることにより中央制御室での操作頻度を少なくすることがで きる 【繁急時対策要員への影響】 繁急時対策要員を必要としないシナリオであるため影響はない		
	大 LOCA (代替循環冷却 する場合)	2 【7 号炉運転員への影響】 代替循環冷却により原子炉および格納容器の除熱を実施しており中 夫利調査での操作は不要 【緊急時対策要員への影響】 代替原子炉補偿冷却系運転のために,電源車等への給油を行うが,要 員の交替又は遮截が期待できるタービン建屋大物搬入口に配置する等 の被ばく低減対応が可能。		
E		:SA範囲		

号炉	備考
	・申請号炉数の相違
	【柏崎 6/7】
	・申請号炉数の相違
	【柏崎 6/7】
	・申請号炉数の相違
	【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 3.6-3 6 号炉原子炉格納容器ベントによる影響(4/5)			・申請号炉数の相違
			【柏崎 6/7】
6.号仰 7.号仰			
■ 「「使用透燃料ブールへの可搬型注水ポンプによる蒸発量に応じた注水に より使用透燃料ブール水位を維持しているが、通常水位まで回復するこ とにより6.5月に同子炉路納空器ペント前に補給が各値して作業すること			
が可能 【緊急時対策要員への影響】 使用済燃料プールへの可搬型注水ポンプによる補給を実施しているし			
が、通常水位まで回復することにより6号炉原子炉格納容器ペント前に 補給を停止して待避することが可能 (7号炉運転員への影響)			
使用済燃料ブールへの可搬型注水ポンプによる蒸発量に応じた注水に より使用済燃料ブール水位を維持しているが、通常水位まで回復するこ とにより6号伊原子炉約約要器ペント前に補給を停止して停止すると			
が可能 【緊急時対策要員への影響】 使用済燃料ブールへの可搬型注水ポンプによる補給を実施している			
が、通常本位まで回復することにより6号炉原子炉格納容器ベント前に 補給を停止して待避することが可能			
残留熱除も美派による原子炉停止時治却モードを実施しているため、流 警 機能喪失 量調整は不要であり、6号炉の原子炉格納容器ペントによる影響はない な 【緊急時対策要員への影響】			
緊急時対策要員を必要としないシナリオであるため影響はない %			
表 3.6-3 6 号炉原子炉格納容器ベントによる影響 (5/5)			・申請号炉数の相違
			【柏崎 6/7】
6号炉 7号炉 6号炉原子炉格納容器ペント操作時の7号炉側作業への影響			
事故シーケンス 事故シーケンス 停止中全交流動 [7号炉運転員への影響] 残留熟除去系による原子炉停止時治却モードを実施しているため、流量調			
力電源要失 整 は不要であり、6 号炉の原子炉格納容器ペントによる影響はない 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、			
交替又は遊戲が期待できるタービン様屋大物戦入口に配置する等の被ぼく低し、 減対応が可能。また、6 号炉の原子炉格納容器ペント開始前に代替原子炉補 機冷却および残留熱除去茶を停止して、再度透がし安全弁による原子炉減圧			
推行および復水移送ホンプによる低圧代替症水を実施することも可能 停止中原子炉約 和社の済出 現留熟除去系による原子炉停止時治却モードを実施しているため、流量調 響			
2455 2455 2455 2455 2555 2555 2555 2555			
1			
La construcción de la construcci			
L SA範囲			

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・記載方針の相違
			【柏崎 6/7, 東海第二】
 An and a set of the /li>			■島根2号炉は中央制御
 A the state of the			■ 至待避至を使用する事
 Alternative sector and the sector and			チャートを記載(図
			3. 6-1 🗵 3. 6-2)
 Here and the second seco			
			i i i i i i i i i i i i i i i i i i i
anna anna anna anna anna anna anna anna			
()()()()()()()()()()()()()()()()()()()		Entry (1)	
		Annual Control of	
840 C - 640 MI 0 - 64 MI 0		1 1	
000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		на станована и станова И станована и стан	
		али и полното на полн	
図 3.6-1 大LOCA+高圧・低圧注水機能喪失		■ 図 3.6-1 「大LOCA+高圧・低圧注水機能喪失+全交流動力	
		■ <u>電源喪失」シーケンス(中央制御室運転員)</u>	
· - · · ·			
		· · · · · · · · · · · · · · · · · · ·	

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・記載方針の相違
			【柏崎 6/7,東海第二】
			島根2号炉は中央制御
			室待避室を使用する事
			故シーケンスのタイム
			チャートを記載(図
			3.6-1 🗵 3.6-2)
		An deriver all and all and all all all all all all all all all al	
		Provide Control of Control o	
		図 3.6-2 「大LOCA+高圧・低圧注水機能喪失 <u>+全交流動力</u>	
		電源喪失」シーケンス(現場運転員)	
		: SA範囲	
		<u> </u>	

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・記載方針の相違
- · · · · · · · · · · · · · · · · · · ·			【柏崎 6/7,東海第二】
			島根2号炉は中央制御
			室待避室を使用する事
The second			故シーケンスのタイム
4 Contra to the			チャートを記載(図
an market with the second s			3.6-1 図 3.6-2)
(40) (41) (42) (42) (43) (44) (44) (44) (44) (44) (44) (44			
図 3.6-2 大LOCA+高圧注水・減圧機能喪失			
L SA範囲			

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・記載方針の相違
			【柏崎 6/7,東海第二】
- 순한 질문은 학교가 또 부분 관람이 학전문자			島根2号炉は中央制御
	1		室待避室を使用する事
			故シーケンスのタイム
			チャートを記載(図
			3.6-1 🗵 3.6-2)
	1		
	1		
	-		
	1		
	1		
	1		
1			
□ <u>図 3.6-3</u> 大LOCA+全交流動力電源喪失			
· - · ·			
· · · · · · · · · · · · · · · · · · ·			

柏崎刈羽原子力発電展	所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
				・記載方針の相違
1	2.17.7 2.10.100 2.10.100 2.10.10000000000			【柏崎 6/7,東海第二】
- 1				島根2号炉は中央制御
				室待避室を使用する事
				故シーケンスのタイム
	A manual of the second			チャートを記載(図
				3.6-1 🗵 3.6-2)
I.	Provide the second seco			
	┥┩╶╴╠╋╋┿┥┥┝┝╴┼╶┥╸┝╋┥┥┥╸╸╸			
New York Control of Co				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
<u>凶 3. b−4 大〇CA+崩</u> 場	<u> </u>			
	· · · · · · · · · · · · · · · · · · ·			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1			・記載方針の相違
HILLON HILLON			【柏崎 6/7,東海第二】
A comparison of the second sec			島根2号炉は中央制御
A Contraction of the second of			室待避室を使用する事
A CARL AND			故シーケンスのタイム
A CONTRACTOR OF A CONTRACTOR O			チャートを記載(図
			3.6-1 図 3.6-2)
A Construction of the second s			
図 3.6-5 大LOCA+崩壊熱除去機能喪失(残留熱除去系が故)			
障した場合)			

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・記載方針の相違
			【柏崎 6/7,東海第二】
			島根2号炉は中央制御
			室待避室を使用する事
			故シーケンスのタイム
			チャートを記載(図
			3.6-1 図 3.6-2)
図 3.6-6 大LOCA+原子炉停止機能喪失			
·····································			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・記載方針の相違
Annual and an annual and an annual and an annual and an			【柏崎 6/7,東海第二】
			島根2号炉は中央制御
			室待避室を使用する事
A DECEMBER OF A			故シーケンスのタイム
A MANUAL AND			チャートを記載(図
			3.6-1 図 3.6-2)
An and a second			
│ │ <mark>╢<mark>┝┼┼╂╗┥</mark>╞╪╾┤╞<mark>┉</mark>╴╴╴╴<mark>╎╂</mark>╶╶╴╴╶╎╗╴┝╎╴╎╗┼╘╶┨╶┤╴╴╴</mark>			
図 3.6-7 大LOCA+LOCA時注水機能喪失			
: S A範囲			

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
i			・記載方針の相違
a construction of the second se			【柏崎 6/7,東海第二】
A Second Se Second Second Se Second Second Se Second Second Secon			島根2号炉は中央制御
			室待避室を使用する事
			故シーケンスのタイム
			チャートを記載(図
			3.6-1 🗵 3.6-2)
図 3.6-8 大LOCA+格納容器バイパス(インターフェイスシ			
<u>ステムLOCA)</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1			・記載方針の相違
			【柏崎 6/7,東海第二】
			島根2号炉は中央制御
			室待避室を使用する事
			故シーケンスのタイム
			チャートを記載(図
			3.6-1 図 3.6-2)
図36-9 大LOCA+大LOCA(代基循環冷却を使用する場			
【 			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1 1			・記載方針の相違
김 동문 실험 성 수도			【柏崎 6/7,東海第二】
A Constraint of the second sec			島根2号炉は中央制御
			室待避室を使用する事
			故シーケンスのタイム
A contract of the second			チャートを記載(図
Automotion and an an			3.6-1 🗵 3.6-2)
図 3.6-10 大LOCA+想定事故 1			
: S A範囲			
'			

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1			・記載方針の相違
A CONTRACTOR OF A CONTRACTOR O			【柏崎 6/7,東海第二】
			島根2号炉は中央制御
			室待避室を使用する事
A COMPANY OF A COM			故シーケンスのタイム
			チャートを記載(図
erectory reserves reserv			3.6-1 🗵 3.6-2)
A constraint of the second sec			
i i i i i i i i i i i i i i i i i i i			
図 3.6-11 大LOCA+想定事故 2			
┗			
L			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・記載方針の相違
			【柏崎 6/7,東海第二】
			島根2号炉は中央制御
			室待避室を使用する事
			故シーケンスのタイム
			チャートを記載(図
			3.6-1 🗵 3.6-2)
図 3.6-12 大LOCA+停止中の崩壊熱除去機能喪失			
□ · - · · · · · · · · · · · · · · · · ·			

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
ii			・記載方針の相違
42			【柏崎 6/7,東海第二】
1 A A A A A A A A A A A A A A A A A A A			島根2号炉は中央制御
			室待避室を使用する事
			故シーケンスのタイム
			チャートを記載(図
			3.6-1 図 3.6-2)
400 mm state			
図 3.6-13 大LOCA+停止中の全交流動力電源喪失			
: S A範囲			
'			

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
i · · · · · · · · · · · · · · · · · · ·			・記載方針の相違
			【柏崎 6/7,東海第二】
Part of the second			島根2号炉は中央制御
			室待避室を使用する事
			故シーケンスのタイム
			チャートを記載(図
- Comment of the second s			3.6-1 図 3.6-2)
li i			
図 3.6-14 大LOCA+停止中の原子炉冷却材の流出			
柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
---	---------------------	--------------------------------------	--------------------------------
3.7 申請前号炉の中央制御室の居住性評価について		3.7 申請前号炉の中央制御室の居住性評価について	
柏崎刈羽原子力発電所6号及び7号炉において炉心の著しい	1	■ 島根原子力発電所2号炉において、炉心の著しい損傷が発	 申請号炉数及び申請前
損傷が発生した場合における申請前号炉(1~5号炉)の中央		生した場合の格納容器ベント実施時における運転終了号恒	号位の運用の相違
制御室の居住性評価について以下に示す。なお,6号及び7号			「拍岐 ∈ /7】
炉で炉心の著しい損傷が発生した場合において,5号炉の運転		(15炉)の運転員は、日方炉の中央制御室から索急時対東	【作出师可 10/ 7】
員は自号炉の中央制御室から5号炉原子炉建屋内緊急時対策		<u> 所に移動し1号炉の監視業務等を行う設計としていることか</u>	
所に移動し5号炉の監視業務等を行う設計としていることか		<u>ら,1号</u> 炉に関しては,2号炉の運転員の被ばく評価結果(補	
<u>ら,5号炉に関しては中央制御室を居住性評価の対象とせず</u> ,	-		
■ <u>5</u> 号炉原子炉建屋内緊急時対策所の居住性について検討を行		▶ 央制御室の居住性評価の対象外とした。	
<u>った。</u>			
居住性評価に当たっては、「実用発電用原子炉に係る重			
大事故時の制御室及び緊急時対策所の居住性に係る被ばく	.1		
許価に関する審査ガイド」(以下「審査ガイド」という。)			
図3.7-1に相崎刈羽原子刀発電所1~7号炉中央制御室の			
<u>配直凶を示す。</u>	1	1	
	1		
1	1	1	
■図 3.7-1 柏崎刈羽原子力発電所 1~7 号炉中央制御室 配置図	1	1	
(1) 居住性評価の前提条件			
想定事象は,6号及び7号炉中央制御室の居住性(炉心の著			
しい損傷)に係る被ばく評価と同様に以下のとおりとした。			
-6号又は7号炉のいずれかが「大破断LOCA 時に非常用炉心		1	
冷却系の機能及び全交流動力電源が喪失するシーケンス」で、		: :	
格納容器圧力逃がし装置を用いた格納容器ベントを実施す			
	1	1	
-6号乂は7号炉の残る1つが「大破断LOCA時に非常用炉心			
一 行却糸の機能及び全父流動刀電源か喪矢するシーケンス」で、 小共任理が相互によりまたよります。			
<u>1\</u> (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
		le	

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
居住性評価においては, 6 号及び7 号炉のうち1~4号炉の			・申請前号炉の運用の相
中央制御室により近接している7号炉において,格納容器ベン			違【柏崎 6/7】
トを実施することを想定した。また、5号炉の中央制御室の運			
転員は5号炉原子炉建屋内緊急時対策所に待避することを前			
提に,上述の想定事象における5 号炉原子炉建屋内緊急時対			
策所の居住性を検討対象とした。			
なお, 被ばく評価に用いる大気中への放出放射能量及び放.			
射性物質の大気拡散の評価は,補足説明資料59-11「原子炉制			
御室の居住性に係る被ばく評価について2. 中央制御室の居住			
性(炉心の著しい損傷)に係る被ばく評価について」で示す			
<u>方法と同様の方法にて実施した。</u>			
I I I I I I I I I I I I I I I I I I I			
(2) 1~4 号炉中央制御室の居住性について			
1~4号炉の中央制御室における居住性評価の評価結果を表			
3.7-1に示す。1~4号炉の運転員は、各号炉の中央制御室内に			
とどまることとする。また中央制御室内ではマスクを着用す			
るものとし、着用時間は1時間当たり0.9時間と想定した。さ			
らに運転員の交替は考慮しないものとして、評価を行った。			
評価の結果,最も被ばく量が大きくなるのは4号炉中央制御室			
の運転員であり、約54mSv/7日間となる。			
<u>なお, 1~4 号炉の中央制御室に対しては, 6 号及び7 号炉</u>			
で炉心の著しい損傷が発生した場合においても自号炉にとど			
まることができるよう、以下の放射線防護資機材を配備する			
設計とする。			
○ 放射線防護資機材等の配備			
 ・チェンジングエリアの設置、マスク着脱時等に使用 			
<u>するクリーンエリアの設置、マスク・着替え等放射</u>			
線防護資機材の配備,水・食料の配備			
 ・酸素濃度計,二酸化炭素濃度計,可搬型エリアモニ 			
<u>タ,可搬型照明の配備</u>			
Ei			
: S A範囲			

	柏崎刈羽原子力	発電所	6/7号炉	(2017.12.	20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表3.7-1 1~4号炉中央制御室の居住性に係る被ばく評価結果※1				・申請前号炉の運用の相				
(7 号炉格納容器ベント実施時) (運転員の交替を考慮)			(運転員の)	交替を考慮			違【柏崎 6/7】	
	しない場合)	_						
	神げく経路		実効線量(m 6 号及び 7 号炉か	uSv/7日間) №らの寄与の合言				
	DO THE Y REPAIL	1 号炉	2 号炉	3号炉	4 号炉			
	 原子炉建屋内の放 射性物質からのガ 							
-	ンマ線による中央	0.1以下	0.1以下	0.1以下	0.1以下			
	制御室内での外部 被ばく							
	 							
	マ線による中央制	約1.0×10 ⁻¹	約1.2×10 ⁻¹	約9.9×10 ⁻¹	約1.2×10°			
窗	御室内での外部被 ぱく							
内作	 3 外気から取り込ま 							
葉時	れた放射性物質に よる中央制御室内	約2.5×10 ¹	約3.1×10 ¹	約3.8×10 ¹	約5.2×10 ¹			
	での被ばく ^{※2} (内部) 内容結パく ^{※3}	約2.1×101	約2.5×10 ¹	\$52 1 × 10 ¹	約4.3×10 ¹			
	外部被ばく	約4.2×10 ⁰	約5.8×10°	約6.9×10 ⁰	約9.2×10 ⁰			
	 (④) 大気中に放出され 地表面に沈着した 							
	放射性物質からの	0.1以下	0.1以下	0.1以下	0.1以下			
	ガンマ線による中 央制御室内での外							
Ē	部被ばく							
	(=①+②+③+④)	約26	約31	約39	約54			
	※1 評価手法	け「補足」	資料59-1	原子炉制御	室の居住性			
	に係ろ被	<u>ばく</u> 評価	$k \sim 1072$	中中制御	<u> </u>			
		返て可回 転しい掲れ	自になるな	本げく 証価				
	<u>(</u> / / / / / / / / / / / / / / / / / / /		<u>気」に下る</u> か	<u>火はく叶</u> 川				
			ノ力伝にしま		インマロマンを出			
	<u>※2 中央制</u> 価		三調糸は空間	间燃停止及				
	<u>止し,外</u> 多	えが0.5回/	/hで中央制行	御室内に流	込するもの			
	と仮定							
	<u>※3 マスクの</u>	防護係数	:としてPF50),着用時間	間は1時間当			
	<u>たり0.9時</u>	間と想定						
— •								
				- 1 L L	SA範囲			
					~ ▲▲┯╝ҜҴ			
1								

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(3) 5 号炉中央制御室の居住性について			・申請前号炉の運用の相
■ 5号炉中央制御室は図3.7-1に示すとおり、6号及び7号炉に			違【柏崎 6/7】
近接しているため6号及び7号炉の発災時に環境の悪化の影響			
を受けやすい。このため、6号及び7号炉で炉心の著しい損傷			
が発生した場合においては、5号炉の運転員は中央制御室から			
5号炉原子炉建屋内緊急時対策所に待避する設計としている。			
5号炉原子炉建屋内緊急時対策所の居住性設備は,6号及び7			
号炉中央制御室※1の遮蔽設備及び空調設備と同等以上の性能			
を有する設計とし、福島第一原子力発電所事故と同等の事象			
の発生を想定した場合においても、必要な居住性が確保され			
<u>る設計としている。**2</u>			
そのため,前述(1)の想定事象が発生した場合においても,			
5号炉中央制御室の運転員が滞在する5号炉原子炉建屋内緊急			
時対策所の居住性は確保される設計とする。			
※1 「補足説明資料59-11 原子炉制御室の居住性に係る被ばく評			
価について」において、6号及び7号炉中央制御室の居住性			
が審査ガイドの判断基準である「運転員の実効線量が7日間			
で100mSvを超えないこと」を満足することを確認している			
※2 「61条緊急時対策所の補足説明資料61-10 緊急時対策所の居			
住性に係る被ばく評価について」を参照			
なお,5号炉原子炉建屋内緊急時対策所においては,5号炉			
<u>運転員が業務を継続できるよう、プラント監視等のための設</u>			
備を配置し、また1~4号炉同様、放射線防護資機材を配備す			
る設計とする。			
1			
○ 5号炉原子炉建屋内緊急時対策所にてプラント監視,通			
信連絡が実施できる設備の設置			
・デジタル記録計等を用いたプラントパラメータの遠			
隔監視機器・手順整備			
・現場との通信連絡設備配備			
:			
· · · · · · · · · · · · · · · · · · ·			

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
○ 放射線防護資機材等の配備			
・チェンジングエリアの設置,マスク着脱時等に使用			
するクリーンエリアの設置,マスク・着替え等放射			
線防護資機材の配備,水・食料の配備			
・酸素濃度計,二酸化炭素濃度計,可搬型エリアモニ			
タ,可搬型照明の配備			
<u>4. まとめ</u>			
以上より、中央制御室の運転員の滞在場所(1~4号炉中央			
制御室及び5号炉原子炉建屋内緊急時対策所)の設置や放射線防護			
資機材配備等により、申請前各号炉においても、6号及び7号炉で			
炉心の著しい損傷が発生した場合に必要な居住性(7日間100mSv			
を超えない)が確保される設計であることを確認した。			
······································			
·····································			

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	3.7 ブローアウトパネルに係る設計方針		・資料構成の相違
	(1) ブローアウトパネル閉止装置		島根2号炉は59条補足
	原子炉建屋外側ブローアウトパネルの開放状態で炉心損傷		説明資料にてブローア
	した場合、各開口部に対応するブローアウトパネル閉止装置		ウトパネル閉止装置の
	を速やかに閉止し、原子炉建屋の気密性が確保できる設計と		設計方針を記載。
	する。気密性の高いJIS等級(A4等級)の建具を用いる		
	ことで、閉止時には原子炉建屋の負圧を確保する。また、遠		
	隔及び手動による閉止機能を設置することにより、万一、電		
	源がない状態でも閉止機能を維持する設計とする。なお , 閉		
	止機能は、以下のとおりである。詳細は、今後の詳細設計に		
	て決定する。		
	・遠隔閉止:電動扉方式(SA電源負荷)		
	・手動閉止:スライド扉にワイヤを取付け,これをウィン		
	チで牽引することで閉止		
	ブローアウトパネル閉止装置の概要図を第3.7-1図に示		
	す。		
	※1 A 4 等級: J I S A 1561に規定される気密性等級線に		
	合致する気密性能を有するもの		
	<image/> <complex-block></complex-block>		

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	(2) 竜巻飛来物防護対策		
	ブローアウトパネル閉止装置の開閉機能及び原子炉建屋外		
	側ブローアウトパネルの開放機能に干渉しないように、防護		
	ネット(40mmメッシュ)を設置する。防護ネットは, 原子炉		
	建屋外側ブローアウトパネル正面のみならず、上下左右にも		
	設置し、極力、原子炉建屋外壁との間隙を防護する設計とす		
	る。なお、詳細は、今後の詳細設計にて決定する。		
	 る。なお、詳細は、今後の詳細設計にて決定する。 (3) ブローアウトパネル強制開放装置 原子炉建屋内側から、油圧ジャッキにより原子炉建屋外 側ブローアウトパネルを強制的に開放する装置を設置す る。油圧配管は、屋内に敷設し、屋外に設置する油圧発生 装置と接続する。また、開放機構を原子炉建屋内に設置し、 ブローアウトパネル閉止装置及び竜巻飛来物防護対策の防 護ネットとの干渉を回避する設計とする。なお、作動液も 含め、詳細は、今後の詳細設計にて決定する。 油圧ジャッキ設置イメージを第3.7-2図に、ブローアウトパネル開閉前後イメージを第3.7-3図に示す。 		
	第3.7-2図 油圧ジャッキ設置イメージ		

柏崎刈羽原子力発電所 6/7号炉(2017.12.20)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	内側 外側 進圧 第下防止 ブローアウト 第下防止 ブローアウト 第二 第二 第二		
	第3.7-3図 ブローアウトパネル開閉前後イメージ		
	 (4) ブローアウトパネル開閉状態表示 原子炉建屋外側ブローアウトパネルの各パネルにはリミットスイッチを設置し、開放したパネルを中央制御室にて特定できる設計とする。なお、詳細は、今後の詳細設計にて決定する。 ブローアウトパネル開閉状態表示の概要図を第3.7-4図に示す。 		
	^{正面図} 第3.7-4図 ブローアウトパネル開閉状態表示 概要図		
	 (5) ブローアウトパネル閉止装置開閉状態表示 ブローアウトパネル閉止装置についてもリミットスイッチ を設置し、スライド扉の開閉状態を中央制御室にて特定でき る設計とする。なお、詳細は、今後の設計により決定する。 ブローアウトパネル閉止装置開閉状態表示の概要を第3.7 -5図に示す。 		

Ē	備考

実線・・

まとめ資料比較表〔59条補足説明資料 59-11 原子炉制御室の居住性(炉心の著しい損傷)に係る被ばく評価について〕 波線・・記載表現,設備名称の相違(実質的な相違なし)

柞	崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	59-11		59 - 10	59-11	
	原子炉制御室の居住性に係る被ば	く評価について	中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価	原子炉制御室の居住性(炉心の著しい損傷)に係る被ばく評価に	
			について	ついて	

|--|

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号	炉 備考
目次 26条別添2参照 本資料	目 次 _ · · · · · · · · · · · · · · · · · ·	目次	
1. 中央制御室の居住性(設計基準事故)に係る被ばく評価につい			・資料構成の相違
<u>て・・・26 条-別添2-1-1</u>			【柏崎 6/7】
1.1 大気中への放出量の評価・・・・・・・・・26 条-別添2-1-1			島根2号炉は,26条別
1.2 大気拡散の評価・・・・・・・・・・・・・・26 条-別添2-1-1			添2に記載
1.3 建屋内の放射性物質からのガンマ線の評価・26 条-別添2-1-1			
<u>1.4 中央制御室の居住性に係る被ばく評価・・・26 条-別添2-1-1</u>			
1.4.1 中央制御室内での被ばく・・・・・・・・26 条-別添2-1-2			
<u>1.4.1.1 建屋内の放射性物質からのガンマ線による</u>			
<u>中央制御室内での被ばく(経路②)・・・26 条-別添2-1-2</u>			
1.4.1.2 大気中へ放出された放射性物質のガンマ線による			
中央制御室内での被ばく (経路②)・・・26 条-別添2-1-2			
1.4.1.3 室内に外気から取り込まれた放射性物質による			
中央制御室内での被ばく (経路③)・・・26 条-別添2-1-4			
1.4.2 入退域時の被ばく・・・・・・・・・・・26 条-別添2-1-4			
<u>1.4.2.1 建屋内の放射性物質からのガンマ線による</u>			
<u>入退域時の被ばく(経路④)・・・・・26 条-別添2-1-4</u>			
1.4.2.2 大気中へ放出された放射性物質による			
<u>入退域時の被ばく(経路⑤)・・・・・26 条-別添2-1-4</u>			
1.5 評価結果のまとめ・・・・・・・・・・・・26 条-別添2-1-5			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)		島根原子力発電所 2号炉	備考
2 中央制御室の居住性(炉心の著しい損傷) に係る	中央制御室の居住性(炉心の著しい損傷)に係る被	ぼく評価につ	中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価につ	
被ばく評価について	いて		いて	
<u>2.1</u> 評価事象	1. 評価事象	59 - 10 - 1	1. 評価事象	
22 大気中への放出量の評価	2. 大気中への放出量の評価	59-10-2	2. 大気中への放出量の評価	
2.3 大気拡散の評価	3. 大気拡散の評価	59 - 10 - 2	3. 大気拡散の評価	
	4. 原子炉建屋内の放射性物質からのガンマ線の評(<u> 59−10−2</u>		・資料構成の相違
2.4 中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価	5中央制御室の居住性に係る被ばく評価	59 - 10 - 3	4. 中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価	【東海第二】
				島根2号炉は,4.1.1に
- <u>2</u> 4.1 中央制御室内での被ばく <u>・・・・・・・・・・・・・59-11-2-</u> (5.1中央制御室内での被ばく	59-10-3	4.1 中央制御室内での被ばく	記載
<u>2.4.1.1 原子炉建屋</u> 内等の放射性物質からの	5.1.1 原子炉建屋からのガンマ線による	i	<u>4.1.1 原子炉建物内</u> 等の放射性物質からの	
ガンマ線による被ばく (経路①) <u>・・・・・・・・59-11-2-</u>	被ばく (経路①)	59 - 10 - 3	ガンマ線による被ばく (経路①)	
24.1.2 放射性雲中の放射性物質からの	5.1.2 大気中へ放出された放射性物質のガンマ線		4.1.2 放射性雲中の放射性物質からの	
ガンマ線による被ばく (経路②) <u>・・・・・・・・59-11-2-</u>	し による被ばく (経路②)	59 - 10 - 4	ガンマ線による被ばく(経路②)	
24.1.3 地表面に沈着した放射性物質からの			4.1.3 地表面に沈着した放射性物質からの	・資料構成の相違
ガンマ線による被ばく (経路③) <u>・・・・・・・59-11-2-</u>		1	ガンマ線による被ばく(経路③)	【東海第二】
24.1.4 室内に外気から取り込まれた放射性物質による	5.1.3 室内に外気から取り込まれた放射性物質か	i	4.1.4 室内に外気から取り込まれた放射性物質による	東海第二は 5.1.2 中に
被ばく (経路④) <u>・・・・・・・・・・・・・・・・59-11-2-</u>	らのガンマ線による被ばく(経路③)	59 - 10 - 4	被ばく (経路④)	記載
2.4.2 入退域時の被ばく	5.2 入退域時の被ばく	59 - 10 - 6	<u>4.2</u> 入退域時の被ばく	
<u>2.4.2.1 原子炉建屋</u> 内等の放射性物質からの	1 5.2.1 建屋内からのガンマ線による		4.2.1 原子炉建物内等の放射性物質からの	
- ガンマ線による被ばく(経路⑤) <u></u>	zu 被ばく (経路④)	59-10-6	ガンマ線による被ばく(経路⑤)	
24.2.2 放射性雲中の放射性物質からの	5.2.2 大気中へ放出された放射性物質による	i	4.2.2 放射性雲中の放射性物質からの	
ガンマ線による被ばく (経路⑥)		59 - 10 - 6	ガンマ線による被ばく(経路⑥)	
2.4.2.3 地表面に沈着した放射性物質からの			4.2.3 地表面に沈着した放射性物質からの	
ガンマ線による被ばく (経路⑦)			ガンマ線による被ばく(経路⑦)	
2.4.2.4 大気中へ放出された放射性物質の吸入摂取による			4.2.4 大気中へ放出された放射性物質の吸入摂取による	
被ばく (経路⑧) <u>・・・・・・・・・・・・・・・59-11-2-8</u>		1	被ばく (経路⑧)	
25 評価結果のまとめ	6. 評価結果のまとめ	59 - 10 - 10	5. 評価結果まとめ	
		1		
		i		
	<u> </u>			
· I	di d	1		
		i		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
添付資料1 中央制御室の居住性(設計基準事故)に係る			・資料構成の相違
<u>被ばく評価について 26 条-別添2-添1-1-1</u>			【柏崎 6/7】
1-1 中央制御室の居住性(設計基準事故) に係る			島根2号炉は,26条別
<u>被ばく評価条件表・・・・・・・・26 条−別添2−添1−1−1</u>			添2に記載
1-2 居住性評価に用いた気象資料			
の代表性について・・・・・・・26 条-別添2-添1-2-1			
1-3 空気流入率試験結果について・・・・・26 条-別添2-添1-3-1			
1-4.運転員の交替について・・・・・・・26.条-別添2-添1-4-1			
1-5 内規※1 との整合性について・・・・・26 条-別派 2-派 1-5-1			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
■添付資料2 中央制御室の居住性(炉心の著しい損傷)に係る被ば	■添付資料 中央制御室の居住性(炉心の著しい損傷)に係る被ば	添付資料 中央制御室の居住性(炉心の著しい損傷)に係る被ば	
く評価について	■く評価について	く評価について	
2-1 中央制御室の居住性(炉心の著しい損傷)	1 中央制御室の居住性(炉心の著しい損傷)	1 中央制御室の居住性(炉心の著しい損傷)	
に係る被ばく評価条件	に係る被ばく評価条件59-10-添1-1	に係る被ばく評価条件	
2-2 事象の選定の考え方について・・・・・・・・59-11-添2-2-1	2 事象の選定の考え方について59-10-派2-1	2 事象選定の考え方について	
2-3 核分裂生成物の原子炉格納容器外への	7 原子炉格納容器外への核分裂生成物の放出	3. 核分裂生成物の格納容器外への放出割合の設定について	
放出割合の設定について <u>・・・・・・59-11-添2-3-1</u>	割合の設定について 59-10-添7-1		
2-4 放射性物質の大気放出過程について・・・・・59-11-添2-4-1	1	4 放射性物質の大気放出過程について	
<u>2-5 原子炉格納容器</u> 等への無機よう素の	5.原子炉格納容器内における無機よう素の	5 格納容器等への無機よう素の沈着効果について	
沈着効果について・・・・・・・・・59-11-添2-5-1	自然沈着効果について 59-10-派5-1		
2-6_6_号及び7_号炉の原子炉建屋原子炉		<u>6</u> 原子炉棟の負圧達成時間について	・記載方針の相違
区域の負圧達成時間について・・・・・59-11-添2-6-1			【東海第二】
2-7 被ばく評価に用いた気象資料の代表性		7. 被ばく評価に用いた気象資料の代表性	島根2号炉は原子炉棟
について	1	KONT	の負圧達成時間につい
2-8 被ばく評価に用いる大気拡散評価に	8 <u>炉心の著しい損傷が発生した場合の居住性評価(</u> 被ばく評価)	8 被ばく評価に用いる大気拡散評価について	て記載
ついて	に用いる大気拡散の評価について <u>59-10-添8-1</u>		
2-9 地表面への沈着速度の設定について59-11-添2-9-1	16 地表面への沈着速度の設定について 59-10- 添16-1	9地表面への沈着速度の設定について	
2-10 エアロゾル粒子の乾性沈着速度について・・・59-11-添2-10-1	15 エアロゾルの乾性沈着速度について59-10-添15-1	10_エアロゾル粒子の乾性沈着速度について	
2-11 有機よう素の乾性沈着速度について・・・・・59-11-添2-11-1	17 有機よう素の乾性沈着速度について59-10-添17-1	11 有機よう素の乾性沈着速度について	
2-12 マスクによる防護係数について59-11-添2-12-1	12 全面マスクによる防護係数について59-10-添12-1	12 マスクによる防護係数について	
2-13 原子炉建屋内の放射性物質からのガン	1	13 原子炉建物内の放射性物質からのガンマ線	
マ線による被ばくの評価方法について <u>・59-11-添2-13-1</u>		による被ばくの評価方法について	
2-14 放射性雲中の放射性物質からのガンマ		14 放射性雲中の放射性物質からのガンマ線	
線による被ばくの評価方法について・・・59-11-添2-14-1		による被ばくの評価方法について	
■ 2-15 地表面に沈差した放射性物質からのガンマ線	- ■ 14 ガランドシャイン線評価モデルについて 59-10-添14-1	15 地表面に沈差した放射性物質からのガンマ線に上ろ被げくの	
によろ被げくの評価方法について・・・・59-11-添2-15-1		10	
2-16 室内に外気から取り込まれた放射性物質によ		16 室内に外気から取り込まれた放射性物質によろ被ばくの評価	
る被ばくの評価方法について・・・・・59-11-添2-16-1		方法について	
2-17 大気中に放出された放射性物質の入退域時の吸入		17 大気中に放出された放射性物質の入退域時の吸入摂取による	
摂取による被ばくの評価方法について・・59-11-添2-17-1	1	被ばくの評価方法について	
2-18 格納容器圧力逃がし装置及びよう素フィルタ内の放射性物			・評価項目の相違
質からのガンマ線による被ばくの評価方法について			【柏崎 6/7】
······································			島根2号炉では, FCVS
			格納槽は地下に設置し、
			十分な遮蔽を設けるた
			め線源として考慮して
			いない

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-19 原子炉格納容器内pH 制御の効果に期待することによる影響			・評価項目の相違
<u>について</u> ・・・・・・・・・・・・59-11-添2-19-1	I contraction of the second		【柏崎 6/7】
	I contraction of the second		島根2号炉では, pH 制
			御に期待した評価を行
			っていない
2-20 6号及び7号炉で格納容器ベントを実施した			・申請号炉数の相違
 場合の影響について・・・・・・・・59-11-添2-20-1			【柏崎 6/7】
2-21 コンクリート厚の施工誤差の影響について・59-11-添2-21-1			・評価条件の相違
	l de la companya de la compa		【柏崎 6/7】
	I construction of the second se		島根2号炉は、予めコ
	I contraction of the second		ンクリート施工公差を
			差し引いた評価を実施
			している
2-22 格納容器雰囲気直接加熱発生時の被ばく		18 格納容器雰囲気直接加熱発生時の被ばく評価について	
評価について・・・・・・・・・・59-11-添2-22-1			
2-23 空気流入率試験結果について・・・・・・・59-11-添2-23-1-	- 11 空気流入率測定試験結果について 59-10-添11-1	19 空気流入率試験結果について	
2-24 格納容器ベントの実施タイミングを変更することによる影	I		・運用の相違
響について・・・・・・・・・・・・・・・59-11-添 2-24-1	I		【柏崎 6/7】
			島根2号炉は、ベント実
			施タイミングの変更は
			想定しない
	9 フィルタの除去性能について 59-10-添9-1	20 フィルタの除去性能について	
	3 格納容器漏えい率の設定について 59-10-添3-1	21. 原子炉格納容器漏えい率の設定について	
	18 実効放出継続時間の設定について 59-10-添18-1	22 実効放出継続時間の設定について	
	19_待避時間の設定根拠について 59-10-添19-1	23. 待避時間の設定根拠について	
		24 プルーム通過中の中央制御室換気系の運転モードについて	・資料構成の相違
2-25 審査ガイド※2 への適合状況・・・・・・・59-11-添 2-25-1	20 審査ガイド※1への適合状況 59-10-添20-1		【柏崎 6/7,東海第二】
	■ ▲ <u>原子炉格納容器内での除去効果について</u> 59-10-添4-1		
	- <u>6</u> サプレッション・プールでのスクラビングによる除去効果(無		
	<u>機よう素) について</u>		
	10 中央制御室換気系フィルタ内放射性物質からの		
	<u> 被ばくについて</u>		
	13 運転員の勤務体系について 59-10-添13-		
(※1) 原子力発電所中央制御室の居住性に係る被ばく評価手法に	※1 実用発電用原子炉に係る重大事故時の制御室及び緊急時対策	※1:実用発電用原子炉に係る重大事故時の制御室及び緊急時対	
ついて (内規)	所の居住性に係る被ばく評価に関する審査ガイド	策所の居住性に係る被ばく評価に関する審査ガイド	
(※2)実用発電用原子炉に係る重大事故時の制御室及び緊急時対	:SA範囲		
▶ 策所の居住性に係る被ばく評価に関する審査ガイド			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2. 中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価に	中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価につ	中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価につ	
ついて	いて	いて	
炉心の著しい損傷が発生した場合の中央制御室の居住性(炉心	炉心の著しい損傷が発生した場合の中央制御室の居住性に係	炉心の著しい損傷が発生した場合の中央制御室の居住性(炉心	
の著しい損傷)に係る被ばく評価は、「実用発電用原子炉に係る	る被ばく評価に当たっては,「実用発電用原子炉に係る重大事故	の著しい損傷)に係る被ばく評価は、「実用発電用原子炉に係る重	
重大事故時の制御室及び緊急時対策所の居住性に係る被ばく評価	時の制御室及び緊急時対策所の居住性に係る被ばく評価に関す	大事故時の制御室及び緊急時対策所の居住性に係る被ばく評価に	
に関する審査ガイド」(以下「審査ガイド」という。)に基づき	る審査ガイド」(以下「審査ガイド」という。)に基づき,評価を	関する審査ガイド」(以下「審査ガイド」という。)に基づき行っ	
行った。	行った。	た。	
(実用発電用原子炉及びその附属施設の技術基準に関する	(実用発電用原子炉及びその附属施設の位置、構造及び設備の基	(実用発電用原子炉及びその附属施設の技術基準に関する	
規則の解釈 第74条抜粋)	準に関する規則の解釈第 59 条より抜粋)	規則の解釈 第74 条抜粋)	
	【実用発電用原子炉及びその附属施設の位置、構造及び設備の		
	基準に関する規則の解釈】第59条(運転員が原子炉制御室にと		
	どまるための設備) 第1項		
b) 炉心の著しい損傷が発生した場合の原子炉制御室の居住	b) 炉心の著しい損傷が発生した場合の原子炉制御室の居住性に	b) 炉心の著しい損傷が発生した場合の原子炉制御室の居住	
性について、次の要件を満たすものであること。	ついて、次の要件を満たすものであること。	性について、次の要件を満たすものであること。	
① 本規程第37 条の想定する格納容器破損モードのうち、	① 本規程第37条の想定する格納容器破損モードのうち、原子炉	① 設置許可基準規則第37 条の想定する格納容器破損モ	
原子炉制御室の運転員の被ばくの観点から結果が最も厳	制御室の運転員の被ばくの観点から結果が最も厳しくなる事	ードのうち、原子炉制御室の運転員の被ばくの観点から結	
しくなる事故収束に成功した事故シーケンス(例えば、炉	故収束に成功した事故シーケンス(例えば、炉心の著しい損	果が最も厳しくなる事故収束に成功した事故シーケンス	
心の著しい損傷の後、格納容器圧力逃がし装置等の格納容	傷の後、格納容器圧力逃がし装置等の格納容器破損防止対策	(例えば、炉心の著しい損傷の後、格納容器圧力逃がし装	
器破損防止対策が有効に機能した場合)を想定すること。	が有効に機能した場合)を想定すること。	置等の格納容器破損防止対策が有効に機能した場合)を想	
		定すること。	
② 運転員はマスクの着用を考慮してもよい。ただしその	② 運転員はマスクの着用を考慮してもよい。ただし、その場合	② 運転員はマスクの着用を考慮してもよい。ただしその	
場合は、実施のための体制を整備すること。	は実施のための体制を整備すること。	場合は、実施のための体制を整備すること。	
③ 交代要員体制を考慮してもよい。ただしその場合は、	③ 交代要員体制を考慮してもよい。ただし、その場合は実施の	③ 交代要員体制を考慮してもよい。ただしその場合は、	
実施のための体制を整備すること。	ための体制を整備すること。	実施のための体制を整備すること。	
④ 判断基準は、運転員の実効線量が7 日間で100mSv を超	④ 判断基準は、運転員の実効線量が7日間で100mSv を超えない	④ 判断基準は、運転員の実効線量が7 日間で100mSv を超	
えないこと。	こと。	えないこと。	
評価の結果,7日間での実効線量は6号及び7号炉が代替循環冷却		評価の結果,7日間での実効線量は,残留熱代替除去系を用い	
系を用いて事象収束に成功した場合で最大約 <u>66mSv</u> , <u>6号炉が格納</u>		て事象収束に成功した場合で最大約 35mSv, 格納容器ベントを実施	・評価結果の相違
容器ベントを実施し7号炉が代替循環冷却系を用いて事象収束に		して事象収束に成功した場合で最大約 52mSv となった。	【柏崎 6/7,東海第二】
成功した場合で最大約78mSv7号炉が格納容器ベントを実施し6号			・申請号炉数の相違
炉が代替循環冷却系を用いて事象収束に成功した場合で最大約			
86mSvとなった。また、遮蔽モデル上のコンクリート厚を許容され			・評価条件の相違
る施工誤差分だけ薄くした場合は、6号及び7号炉が代替循環冷却			【柏崎 6/7】
系を用いて事象収束に成功した場合で最大約68mSv, 6号炉が格納			島根2号炉は,予めコン
容器ベントを実施し7号炉が代替循環冷却系を用いて事象収束に			クリート施工公差を差
成功した場合で最大約80mSv,7号炉が格納容器ベントを実施し6			し引いた評価を実施し

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
号炉が代替循環冷却系を用いて事象収束に成功した場合で最大約			ている
87mSv となった。			
このことから、判断基準である「運転員の実効線量が7日間で		このことから、判断基準である「運転員の実効線量が 7 日間で	
100mSvを超えないこと」を満足することを確認した。		100mSv を超えないこと」を満足することを確認した。	
2.1 評価事象	1. 評価事象	1. 評価事象	
柏崎刈羽原子力発電所6号及び7号炉においては,「想定する格	<u>東海第二発電所</u> においては,「想定する格納容器破損モードのう	<u>島根原子力発電所2号炉</u> においては、「想定する格納容器破損モ	
納容器破損モードのうち、中央制御室の運転員の被ばくの観点か	ち、中央制御室の運転員の被ばく低減の観点から結果が最も厳し	ードのうち、中央制御室の運転員の被ばくの観点から結果が最も	
ら結果が最も厳しくなる事故収束に成功した事故シーケンス」で	くなる事故収束に成功した事故シーケンス」である「雰囲気圧力・	厳しくなる事故収束に成功した事故シーケンス」である「大破断	
ある「大破断LOCA 時に非常用炉心冷却系の機能及び全交流動力電	温度による静的負荷(格納容器過圧・過温破損)」で想定される事	LOCA時に非常用炉心冷却系の機能及び全交流動力電源が喪失した	
源が喪失したシーケンス」においても、格納容器ベントを実施す	故シーケンスにおいても,格納容器ベントの実施時期を遅延させ	シーケンス」においても、格納容器ベントを実施することなく事	
ることなく事象を収束することのできる代替循環冷却系を整備し	ることができる代替循環冷却系を整備する。	象を収束することのできる残留熱代替除去系を整備する。	
ている。			
したがって,審査ガイド4.2(3)h.被ばく線量の重ね合わせに基づ			・申請号炉数の相違
き,6号及び7号炉において同時に炉心の著しい損傷が発生したと			【柏崎 6/7】
想定する場合、第一に両号炉において代替循環冷却系を用いて事			
象を収束することとなる。			
しかしながら,被ばく評価においては, <u>片方の号炉において代替</u>	しかし、被ばく評価においては、中央制御室の居住性評価を厳	しかしながら、被ばく評価においては、残留熱代替除去系の運	
循環治却系の運転に失敗することも考慮し、当該号炉において格	しくする観点から、代替循環冷却系を使用できず、早期の格納容	転に失敗することも考慮し、当該号炉において格納容器フィルタ	
納容器圧力逃がし装置を用いた格納容器ベントを実施した場合も	器圧力逃がし装置による格納容器ベントを実施した場合を想定す	ベント系を用いた格納容器ベントを実施した場合を評価対象とす	
評価対象とする。格納容器ベントの実施に至る事故シーケンスと	<u>Zem</u>	る。格納容器ベントの実施に至る事故シーケンスとしては、前述	
しては、前述の「大破断LOCA 時に非常用炉心冷却系の機能及び全		の「大破断LOCA時に非常用炉心冷却系の機能及び全交流動力電源	
交流動力電源が喪失したシーケンス」を選定する。なお、よう素		が喪失したシーケンス」を選定する。なお、よう素放出量の低減	
放出量の低減対策として導入した原子炉格納容器内pH 制御につ		対策として導入した格納容器内 pH 制御については、その効果に	
いては、その効果に期待しないものとした		期待しないものとした。	
2.2 大気中への放出量の評価	2. 大気中への放出量の評価	2. 大気中への放出量の評価	
大気中へ放出される放射性物質の量は、上記2.1で示した事故シ	放射性物質については、上記1.で示した事故シーケンスを想定	大気中へ放出される放射性物質の量は、上記 2.1 で示した事故	
ーケンスを想定し評価した。なお、原子炉格納容器から格納容器	し、原子炉格納容器から格納容器圧力逃がし装置への流入量及び	シーケンスを想定し評価した。なお、格納容器から格納容器フィ	
圧力逃がし装置への流入量及び原子炉格納容器から原子炉建屋へ	原子炉格納容器から原子炉建屋への漏えい量をMAAP解析及び	ルタベント系への流入量及び格納容器から原子炉建物への漏えい	
の漏えい量は、MAAP解析及びNUREG-1465の知見を用いて評価し	NUREG-1465の知見を用いて評価した。	量は、MAAP解析及びNUREG-1465の知見を用いて評	
た。ただし、MAAPコードでは、よう素の化学組成は考慮されない	ただし、MAAPコードでは、よう素の化学組成は考慮されな	価した。ただし、MAAPコードでは、よう素の化学組成は考慮	
ため、粒子状よう素、無機よう素及び有機よう素については、大	いため、粒子状よう素、無機よう素及び有機よう素については、	されないため、粒子状よう素、無機よう素及び有機よう素につい	
気中への放出量評価条件を設定し放出量を評価した。評価に用い	<u>R.G.1.195の知見を用いて評価した。</u>	ては、大気中への放出量評価条件を設定し放出量を評価した。評	
た放出放射能量を表1及び表2に示す。		<u> 価に用いた放出放射能量を表1及び表2に示す。</u>	

柏崎刈羽	羽原子力発電所 6	/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)		島根原子力発電	重所 2 ₺
表1 大	気中への放出放射	能量(7日間積算值)		表1 大学	気中への放出放射能	量(7日間
(代替循環)	令却系により事象	を収束することを想定する		(残留熱代替	除去系により事象を	収束する
	場合)	_			る場合)	
		放出放射能量[Bq](gross 値)(単				放出放射
拉锤耙	停止時炉内内蔵量	一号炉)		核種類	停止時炉内内蔵量 [p] (, , , , , , , , , , , , , , , , , ,	原子炉
1次1里天貝	[Bq] (gross 値)	原子炉建屋からの漏えい及び			[Bq] (gross 但)	非常用
		非常用ガス処理系による放出		希ガス類	約 1.6×10 ¹⁹	
希ガス類	約 2.6×10 ¹⁹	約 3.8×10 ¹⁷		 よう素類	約 2.1×10 ¹⁹	
よう素類	約 3.4×10 ¹⁹	約 1.6×10 ¹⁶		 Cs 類	約 8.3×10 ¹⁷	
Cs 類	約 1.3×10 ¹⁸	約 3.9×10 ¹³		 Te 類	約 5 9×10 ¹⁸	
Te 類	約 9.5×10 ¹⁸	約 2.9×10 ¹³		Ba 粨	約1.8×10 ¹⁹	
Ba 類	約 2.9×10 ¹⁹	約 2.8×10 ¹³			※5 1. 8×10 ¹⁹	
Ru 類	約 2.9×10 ¹⁹	約 4.6×10 ¹²		Ku 須	前月1.8×10-5	
Ce 類	約 8.9×10 ¹⁹	約 3.5×10 ¹²		Ce 類	約 5.5×10 ¹⁹	
La 類	約 6.5×10 ¹⁹	約 8.2×10 ¹¹		La 類	約4.1×10 ¹⁹	

ŧο	十年市。の毎日毎日総具	(7	口明建當估)
区 乙	八八十~~ 0 瓜山 瓜 1 肥里	(1	日间傾昇胆/

第1-2表	大気中への放出放射能量評価結果(7日積算)	
		-

(格納容器ベントの実施を想定する場合)				
	放出放射能量[Bq](g	ross 値)(単一号炉)		
	格納容器圧力逃がし装置	原子炉建屋からの		
核種類	及び	漏えい及び		
	よう素フィルタを経由し	非常用ガス処理系による放		
	た放出	出		
希ガス類	約7.8×10 ¹⁸	約 1.3×10 ¹⁷		
よう素類	約 6.4×10 ¹⁵	約 7.5×10 ¹⁵		
Cs 類	約 3.4×10 ⁹	約4.0×10 ¹³		
Te 類	約 2.4×10 ⁹	約 3.3×10 ¹³		
Ba 類	約 2.3×10 ⁹	約 3.0×10 ¹³		
Ru 類	約 3.7×10 ⁸	約 5.0×10 ¹²		
Ce 類	約 3.0×10 ⁸	約4.1×1012		
La 類	約 6.6×107	約 8.8×10 ¹¹		

技種	放出加	汝射能[Bq](gross 値)	¥ 1	
修理	原子炉建屋から大気	格納容器圧力逃がし		
<i>9n</i> - <i>)</i>	中へ放出	装置を経由した放出	19.01	
希ガス類	約 3.6×10 ¹⁶	約 8.9×10 ¹⁸	約 9.0×10 ¹⁸	
よう素類	約 2.8×10 ¹⁵	約 7.3×10 ¹⁵	約 1.0×10 ¹⁶	
СѕОН類	約 3.8×10 ¹³	約 5.0×10 ⁸	約 3.8×10 ¹³	
S b 類	約 4.5×10 ¹²	約 2.6×10 ⁷	約 4.5×10 ¹²	
ТеО₂類	約 3.7×10 ¹³	約 4.4×10 ⁸	約 3.7×10 ¹³	
SrO類	約 2.0×10 ¹³	約 1.7×10 ⁸	約 2.0×10 ¹³	
ВаО類	約 2.0×10 ¹³	約 2.1×10 ⁸	約 2.0×10 ¹³	
MoO₂類	約 6.9×10 ¹²	約 8.4×10 ⁷	約 6.9×10 ¹²	
C e O₂類	約4.3×10 ¹²	約 5.4×10 ⁷	約 4.3×10 ¹²	
L a 2O3類	約 1.2×10 ¹²	約 1.2×10 ⁷	約 1.2×10 ¹²	
<u>※1</u> 小数点第2位以下切上げ				
• >>•				

	島根原子力発電	這所 2号炉	備考
長1 大気中への放出放射能量(7日間積算値)			・評価結果の相違
留熱代替	除去系により事象を	【柏崎 6/7】	
	る場合)		・評価対象の相違
	停止時后内内蒂曼	放出放射能量[Bq](gross 值)) 【東海第二】
亥種類	序止时炉P1P1敞里 [Pa] (gross 值)	原子炉建物からの漏えい及び	▶ 島根2号炉は,残留熱代
	[Dq] (gross 但)	非常用ガス処理系による放出	出 替除去系を用いて事象
ガス類	約 1.6×10 ¹⁹	約 8.8×10 ¹⁶	収束したケースの評価
う素類	約 2.1×10 ¹⁹	約4.5×10 ¹⁵	を記載
Cs 類	約 8.3×10 ¹⁷	約 2.7×10 ¹²	
Te 類	約 5.9×10 ¹⁸	約 2.8×10 ¹²	
Ba 類	約 1.8×10 ¹⁹	約 2.7×10 ¹²	
Ru 類	約 1.8×10 ¹⁹	約 4.8×10 ¹¹	
Ce 類	約 5.5×10 ¹⁹	約 3.0×10 ¹¹	
La 類	約4.1×10 ¹⁹	約 7.7×10 ¹⁰	
<u>表 2 大</u> (格;	- 気中への放出放射 納容器ベントの実施	能 <u>量(7 日間積算値)</u> 5を想定する場合)	・評価結果の相違 【柏崎 6/7,東海第二】
	放出放射前	毛暈[Ba] (gross 値)	
		原子炉建物からの漏え	
核種類	格納容器フィルタ	べ い及び	
	ントを経由した放	出 非常用ガス処理系によ	
		る放出	
希ガス紫	頁 約 5.1×10 ¹⁸	約 2.3×10 ¹⁶	
よう素類	頁 約 4.2×10 ¹⁵	約 1.9×10 ¹⁵	
Cs 類	約 5.5×10 ⁹	約 3.4×10 ¹²	
Te 類	約4.4×10 ⁹	約 3.2×10 ¹²	
Ba 類	約 3.8×10 ⁹	約 3.1×10 ¹²	
Ru 類	約 8.4×10 ⁸	約 5.5×10 ¹¹	
Ce 類	約 5.3×10 ⁸	約 3.4×10 ¹¹	
La 類	約 1.2×10 ⁸	約 9.1×10 ¹⁰	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				. 20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉				備考				
2.3 大気拡散の評価					 大気拡散の評価 	 大気拡散の評価 								
被ばく評価に用いる相対濃度と相対線量は、大気拡散の評価に				広散の評価に	被ばく評価に用いる相対濃度と相対線量は、大気拡散の評価に	被ばく評価に用いる相対濃度と相対線量は,大気拡散の評価に								
従い実効放出総	継続時間を基は	こ計算した値を	*年間につい	って小さいほ	従い実効放出継続時間を基に計算した結果を年間について小さい	従い実効放出約								
うから順に並べ	べて整理し, 具	累積出現頻度97	7%に当たる	値を用いた。	方から順に並べた累積出現頻度 97%に当たる値を用いた。評価に	から順に並べて	て整理し,累積	責出現頻度 97%	こ当たる値	を用いた。				
評価においては	t, <u>柏崎刈羽</u> /	原子力発電所敷	(地内にお)	いて観測した	おいては, 2005 年 4 月~2006 年 3 月の1 年間における気象データ	評価において	は, <u>島根</u> 原子力	7発電所敷地内に	こおいて観	測した <u>2009</u>	・代表気象年の相違			
1985年10月~19	<u>986年9月</u> の1 ⁴	年間における気	象データを	を使用した。	を使用した。なお、当該データの使用に当たっては、当該1年間	年1月~2009	<u>年12月</u> の1年	間における気象	ミデータを	吏用した。	【柏崎 6/7,東海第二】			
相対濃度及び	が相対線量の語	評価結果を表30	に示す。		の気象データが長期間の気象状態を代表しているかどうかの検討	相対濃度及び	び相対線量の評	平価結果を表 3 k	こ示す。		・資料構成の相違			
					をF分布検定により実施し、特に異常でないことを確認している。						【東海第二】			
											島根2号炉では,2-7に			
	表 3 相対濃	度及び相対線量	重				表3 相対濃	<u> </u>			記載			
放出源及び	新年上	業日十份	相対濃度	相対線量		放出源及び	款年上	羊口十份	相対濃度	相対線量	・評価条件の相違			
放出源高さ*	計Ш黒	有日刀位	$[s/m^3]$	[Gy/Bq]		放出源高さ**	計៕点	有百万位	$[s/m^3]$	[Gy/Bq]	【柏崎 6/7】			
6 号炉格納容器	中央制御室	SE, SSE, S, SSW,	E 1 × 10-4	2.0.10-18			中央制御室	NNE, NE, ENE,	4.02/10-4	5 1 1 (10-18	Γ.			
圧力逃がし装置配	中心	SW, WSW	5. 1 × 10	3.8×10		物体应用了、2	中心	E, ESE, SE	4.9×10 ⁻¹	5.1×10	Γ.			
管	コントロール	CCE C CCW CW WCW	4.7×10-4	2.7×10-18		格納谷奋ノイル	中央制御室換	NNE, NE, ENE,	F 0 X 10-4	E 0 X 10 ⁻¹⁸	Γ.			
(地上 40.4m)	建屋入口	55E, 5, 55W, 5W, W5W	4. 7 × 10	5. 7 × 10		ダハント米排ス	気系吸気口	E, ESE, SE, SSE	5.9×10 ⁻¹	5.3 × 10 10	Γ.			
7 号炉格納容器	中央制御室	WNW, NW, NNW, N,	0 E × 10 ⁻⁴	6.4×10^{-18}		E (the b som)	2号 R/B 原子炉	CW WCW W WNW			Γ.			
圧力逃がし装置配	中心	NNE, NE, ENE, E	8. 5 × 10	6.4×10			補機冷却系熱	SW, WSW, W, WINW,	7.5 $\times 10^{-4}$	6. 1×10^{-18}	Γ.			
管	コントロール	WSW, W, WNW, NW,	0.7×10^{-4}	7.4×10^{-18}			交換器室入口	INW, ININW, IN, ININE, INE			Γ.			
(地上 39.7m)	建屋入口	NNW, N, NNE, NE, ENE	9.7~10	7.4×10			中央制御室	NNE, NE, ENE, E,	1.1×10^{-3}	$E - 2 \times 10^{-18}$	Γ.			
6 巴尼西乙尼港县	中央制御室	SE, SSE, S, SSW,	0.5×10^{-4}	2.8×10^{-18}			中心	ESE, SE	1.1×10	5. 2 × 10 **	Γ.			
0 亏炉原于炉建座	中心	SW, WSW	9.5~10	5.8 ~ 10			中央制御室換	NNE, NE, ENE, E,			Γ.			
(++++ + 0m)	コントロール	SSE S SSM SM MSM	0.1×10^{-4}	2.7×10^{-18}		原子炉建物	気系吸気口 E	ESE, SE, SSE	1.2×10^{-3}	5.5 $\times 10^{-18}$	Γ.			
(프로그 이미)	建屋入口	33E, 3, 33%, 3%, %3%	9.1~10	5.7 × 10		(地上 Om)					Γ.			
7 是惊原之惊建最	中央制御室	WNW, NW, NNW, N,	1.7×10^{-3}	6.2×10^{-18}			2号 R/B 原子炉	SSW, SW, WSW, W,			Γ.			
「なが床」が建産	中心	NNE, NE, ENE, E, ESE	1. 7 ~ 10	0.3×10			補機冷却系熱	WNW, NW, NNW, N,	1.6×10^{-3}	6. 0×10^{-18}	Γ.			
ー (#打ト 0m)	コントロール	W, WNW, NW, NNW,	2.0×10^{-3}	7.2×10^{-18}			交換器室入口	NNE			Γ.			
(PET 011)	建屋入口	N, NNE, NE, ENE, E	2.0×10	1.2×10			中央制御室	NNE, NE, ENE, E,		10	Γ.			
	中央制御室	SE, SSE, S, SSW, SW,	5.1×10^{-4}	2.8×10^{-18}				中心	ESE, SE, SSE, S,	2.8 $\times 10^{-4}$	2. 6×10^{-18}	Γ.		
6 号炉主排気筒	中心	WSW	5.1~10	5.8~10				SSW			Γ.			
(地上 73m)	コントロール	CCE C CCW CW WCW	4.8×10^{-4}	2.7×10^{-18}		排気筒	中央制御室換	NNE, NE, ENE, E,			Γ.			
	建屋入口	55 <u>2</u> , 5, 55 % , 5 % , 8 %	4.0×10	5.7×10		(地上 110m)	(地上 110m)	(地上 110m)	(地上110m)	(地上 110m) 気系吸気口	ESE, SE, SSE, S, 110m) 気系吸気口	SE, SE, SSE, S, 2.9×10^{-4}	2. 7×10^{-18}	I.
	中央制御室	WNW, NW, NNW, N,	8.4×10^{-4}	6.4×10^{-18}				SSW			ſ.			
7 号炉主排気筒	中心	NNE, NE, ENE, E, ESE	0.4~10	0.4×10			2 号 R/B 原子炉		1 0	1	Γ.			
(地上 73m)	コントロール	W, WNW, NW, NNW,	9.8×10^{-4}	7.4×10^{-18}			補機 份 却 糸 熱	SSE, S, SSW	1.3×10^{-4}	1.1×10^{-18}				
	建屋入口	N, NNE, NE, ENE, E	5.0710	1. 1/ 10		>>+↓□□滞=	↓ 父操恭至人日	シートフログ	ᇓᇇᆠᆃᆇᇥ					
※放出源高さば	は、放出エネル	ルギーによる影	響は未考慮			* 放出源局さ	コ, 放出エネル	/ キーによる影響	い木考慮					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	4. 原子炉建屋内の放射性物質からのガンマ線の評価		・資料構成の相違
	原子炉建屋原子炉棟内の放射性物質からの直接ガンマ		【東海第二】
	線及びスカイシャインガンマ線による運転員の実効線量		島根2号炉は,4.1.1に
	は、施設の位置、建屋の配置、形状等から評価した。直接		記載
	ガンマ線についてはQAD-CGGP2Rコード,スカイ		
	<u>シャインガンマ線についてはANISNコード及びG3</u>		
	<u>3-GP2Rコードを用いて評価した。</u>		
2.4 中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価	5. 中央制御室の居住性に係る被ばく評価	4. 中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価	
被ばく評価に当たっては,評価期間を事故発生後7日間とし,運	被ばく評価に当たって考慮している被ばく経路(①~5)は第	被ばく評価に当たっては,評価期間を事故発生後7日間とし,	
転員が交替(<u>5直2交替</u>)するものとして実効線量を評価した。運	5-1回に示すとおりである。それぞれの経路における評価方法及	運転員が交替(<u>4直2交替</u>)するものとして実効線量を評価した。	・運用の相違
転員の直交替サイクルを表4に、交替スケジュール例を表5に、ま	び評価条件は以下に示すとおりである。	運転員の直交替サイクルを表4に、交替スケジュール例を表5に	【柏崎 6/7,東海第二】
た、評価で想定した運転員の入退域及び中央制御室滞在の開始及	中央制御室等の運転員に係る被ばく評価期間は事象発生後7日	<u>示す。</u> また,評価で想定した運転員の入退域及び中央制御室滞在	島根2号炉は,平常時の
び終了の時間並びに空調起動や格納容器ベント実施の時間の前後	間とした。	の開始及び終了の時間並びに空調起動や格納容器ベント実施の時	直交代サイクルとして
関係を参考図に示す。なお、本評価においては、1直(1日目)の	運転員の勤務体系(5直2交替)に基づき、中央制御室の滞在	間の前後関係を参考図に示す。なお、 <mark>格納容器ベントの影響が最</mark>	日勤班を考慮しない4
中央制御室滞在開始時に事故が発生するものと想定した。また,	期間及び入退域の時間を考慮して評価する。想定する勤務体系を	大となるよう、ベントの1時間前に直交代を行うものと想定した。	直2交代として評価
被ばく線量が厳しくなる場合は、特定の班のみが過大な被ばくを	第5-1表に示す。		・評価条件の相違
受けることにならないよう、訓練直が代わりに勤務することを想			【柏崎 6/7,東海第二】
定する等,評価上で班交替を工夫するものとした。			島根2号炉はベントの
被ばく評価に当たって考慮した被ばく経路と被ばく経路のイメ		被ばく評価に当たって考慮した被ばく経路と被ばく経路のイメ	際に滞在する直が最大
ージを図1及び図2に示す。また、中央制御室の居住性(炉心の著		ージを図1及び図2に示す。また、中央制御室の居住性(炉心の	となるようにベント前
しい損傷)に係る被ばく評価の主要条件を表9に,被ばく評価に係		著しい損傷)に係る被ばく評価の主要条件を表9に、被ばく評価	の直交代を想定
る換気空調設備の概略図を図3に示す。		に係る中央制御室換気系の概要図を図3に示す。	
<u>表4</u> 直交替サイクル	<u>第5-1表</u> 想定する勤務体系	表4 直交替サイクル	・運用の相違
中央制御室の滞在時間	中央制御室の滞在時間	中央制御室の滞在時間	【柏崎 6/7,東海第二】
1直 8:30~21:25	1 直 8:00~21:45	1直 8:00~21:15	島根2号炉の被はく評
2直 21:00~8:55	2直 21:30~8:15	2直 21:00~8:15	価に用いた直交代スケ
	日勤業務	日勤班	シュールを記載
※1.緊急時における訓練直の対応を見直すことを検討中			

炉			備考
レ例	J		・運用の相違
Ħ	7日	入退域回数	【柏崎 6/7,東海第二】
		7 回	島根2号炉の被ばく評
	1直	7 回	価に用いた直交代スケ
直		6 回	ジュールを記載
直	2直	8 回	
		0回	
		以降、省略、評価において で空調経動等のイベン ドロット 「ごを調経動等のイベン ドロット 「ごを調整動等のイベン ドロット 「ごを認定しての開 マントによる放出の開 「「」 「 「」 「」 「」 「」 「 「」 「」 「 「」 「 「 「 「 「 「」 「 「 「 「 「 「	 ・申請号炉数の相違 【柏崎 6/7】 ・設備及び運用の相違 【東海第二】 ①の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2.4.1 中央制御室内での被ばく	5.1 中央制御室内での被ばく	4.1 中央制御室内での被ばく	
2.4.1.1 原子炉建屋内等の放射性物質からのガンマ線による被ば	5.1.1 原子炉建屋からのガンマ線による被ばく(経路①)	4.1.1 原子炉建物内等の放射性物質からのガンマ線による被ばく	
く (経路①)		(経路①)	
事故期間中に原子炉建屋内に存在する放射性物質からの直接ガ	事故期間中に原子炉建屋原子炉棟内に存在する放射性物質から	事故期間中に原子炉建物内に存在する放射性物質からの直接ガ	
ンマ線及びスカイシャインガンマ線による中央制御室内での外部	の直接ガンマ線及びスカイシャインガンマ線による中央制御室内	ンマ線及びスカイシャインガンマ線による中央制御室内での外部	
被ばくは, 原子炉建屋内の放射性物質の積算線源強度, 施設の位	での運転員の外部被ばくは、前述 4. の方法で実効線量を評価し	被ばくは,原子炉建物内の放射性物質の積算線源強度,施設の位	
置,遮蔽構造,地形条件等を踏まえて評価した。	them.	置,遮蔽構造,地形条件等を踏まえて評価した。	
		なお、遮蔽の厚さは遮蔽モデル上の厚さから許容される施工誤	・評価条件の相違
		差(マイナス側)分だけ薄くしたものを用いて評価した。	【柏崎 6/7】
			島根2号炉は,予めコン
			クリート施工誤差を差
			し引いた評価を実施し
			ている
また,格納容器圧力逃がし装置のフィルタ装置及び配管並びに			・評価条件の相違
よう素フィルタ内に取り込まれた放射性物質からの直接ガンマ線			【柏崎 6/7】
及びスカイシャインガンマ線による外部被ばくも評価した。			島根2号炉では, FCVS
			格納槽は地下に設置し、
原子炉建屋内に存在する放射性物質からの直接ガンマ線につい		原子炉建物内に存在する放射性物質からの直接ガンマ線につい	十分な遮蔽を設けるた
てはQAD-CGGP2Rコードを用い,スカイシャインガンマ線について		<u>てはQAD-CGGP2Rコードを用い、スカイシャインガンマ</u>	め線源として考慮して
はANISN コード及びG33-GP2R コードを用いて評価した。また,格		線についてはANISN コード及びG33-GP2R コードを	いない
納容器圧力逃がし装置のフィルタ装置及び配管並びによう素フィ		用いて評価した。	
ルタ内に取り込まれた放射性物質からの直接ガンマ線について			
は, QAD-CGGP2R コードを用い, スカイシャインガンマ線について			
<u>はQAD-CGGP2R コード及びG33-GP2R コードを用いて評価した。</u>			
2.4.1.2 放射性雲中の放射性物質からのガンマ線による被ばく	5.1.2 大気中へ放出された放射性物質のガンマ線による被ばく	4.1.2 放射性雲中の放射性物質からのガンマ線による被ばく(経	
(経路②)	(経路②)	路②)	
放射性雲中の放射性物質からのガンマ線による中央制御室内で	大気中へ放出された放射性物質からのガンマ線による中央制御	放射性雲中の放射性物質からのガンマ線による中央制御室内で	
の外部被ばくは、事故期間中の大気中への放射性物質の放出量を	室内での外部被ばくは、事故期間中の大気中への放射性物質の放	の外部被ばくは、事故期間中の大気中への放射性物質の放出量を	
基に、大気拡散効果と建屋によるガンマ線の遮蔽効果を踏まえて	出量を基に大気拡散効果と中央制御室の壁によるガンマ線の遮蔽	基に、大気拡散効果と建物によるガンマ線の遮蔽効果を踏まえて	
評価した。	効果を踏まえて運転員の実効線量を評価した。	<u>評価した。なお、遮蔽の厚さは遮蔽モデル上の厚さから許容され</u>	・評価条件の相違
		る施工誤差 (マイナス側) 分だけ薄くしたものを用いて評価した。	【柏崎 6/7】
			島根2号炉は,予めコン
2.4.1.3 地表面に沈着した放射性物質からのガンマ線による被ば		4.1.3 地表面に沈着した放射性物質からのガンマ線による被ばく	クリート施工誤差を差
く (経路③)			し引いた評価を実施し
地表面に沈着した放射性物質からのガンマ線による中央制御室	また、地表面に沈着した放射性物質からのガンマ線についても	地表面に沈着した放射性物質からのガンマ線による中央制御室	ている
内での外部被ばくは、事故期間中の大気中への放射性物質の放出	考慮して評価した。	内での外部被ばくは、事故期間中の大気中への放射性物質の放出	
量を基に、大気拡散評価、地表面沈着効果及び建屋によるガンマ		量を基に、大気拡散評価、地表面沈着効果及び建物によるガンマ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
線の遮蔽効果を踏まえて評価した。		線の遮蔽効果を踏まえて評価した。なお、遮蔽の厚さは遮蔽モデ	・評価条件の相違
		ル上の厚さから許容される施工誤差(マイナス側)分だけ薄くし	【柏崎 6/7】
		たものを用いて評価した。	島根2号炉は,予めコン
			クリート施工誤差を差
2.4.1.4 室内に外気から取り込まれた放射性物質による被ばく	5.1.3 室内に外気から取り込まれた放射性物質からのガンマ線に	4.1.4 室内に外気から取り込まれた放射性物質による被ばく(経	し引いた評価を実施し
(経路④)	よる被ばく (経路③)	路④)	ている
	事故期間中に大気中へ放出された放射性物質の一部は外気から		
外気から中央制御室内に取り込まれた放射性物質による被ばく	中央制御室内に取り込まれる。中央制御室内に取り込まれた放射	外気から中央制御室内に取り込まれた放射性物質による被ばく	
は、中央制御室内の放射性物質濃度を基に、放射性物質からのガ	性物質のガンマ線による外部被ばく及び放射性物質の吸入摂取に	は、中央制御室内の放射性物質濃度を基に、放射性物質からのガ	
ンマ線による外部被ばく及び放射性物質の吸入摂取による内部被	よる内部被ばくの和として実効線量を評価した。	ンマ線による外部被ばく及び放射性物質の吸入摂取による内部被	
ばくの和として評価した。なお、内部被ばくの評価に当たっては、	なお、内部被ばくの評価に当たってはマスクの着用による防護係	<u>ばくの和として評価した。</u> なお、内部被ばくの評価に当たっては、	
マスクの着用による防護効果を考慮した。また,運転員は図4に示	数を考慮した。	マスクの着用による防護効果を考慮した。また,運転員は図4に	
す中央制御室待避室内に滞在するとして評価した。	評価に当たっては、(1)~(4)に示す中央制御室換気系の効果及	示す中央制御室待避室内に滞在するとして評価した。	
中央制御室内の放射性物質濃度の計算は,以下の(1)から(3)に	び中央制御室に設置する待避室の遮蔽効果等を考慮した。なお,	中央制御室内の放射性物質濃度の計算は、以下の(1)から(3)に	
示す効果を考慮した。被ばく評価で想定する空調運用等のタイム	<u>中央制御室換気系の起動時間については、全交流動力電源喪失を</u>	示す効果を考慮した。被ばく評価で想定する空調運用等のタイム	
チャートを図5に示す。	想定した起動時間を考慮した評価とした。また、待避室の遮蔽効	チャートを図5に示す。	
	果は、待避室に待避する期間のみについて考慮した評価とした。		
	中央制御室内での対応のタイムチャートを第5.1.3-1図に示す。		
(1) <u>中央制御室可搬型陽圧化空調機</u> による中央制御室の <u>陽圧化</u>	(1) 中央制御室換気運転モード	(1) 中央制御室換気系による中央制御室の正圧化	・設備及び運用の相違
<u>設計基準対象施設である恒設の中央制御室換気空調系を停止</u>	中央制御室換気系の運転モードを以下に示す。具体的な系	中央制御室を中央制御室換気系により正圧化することで, 非常	【柏崎 6/7】
<u>し,さらに外気取り込みダンパを閉止したうえで,</u> 中央制御室	統構成は第5.1.3-2図に示すとおりである。	用チャコール・フィルタ・ユニットを経由しない外気の流入を防	①の相違
を中央制御室可搬型陽圧化空調機(以下「可搬型陽圧化空調機」	1) 通常時運転時	止する効果を考慮した。	【東海第二】
<u>という。)</u> により <u>陽圧化</u> することで、 <u>可搬型陽圧化空調機の活</u>	通常時は,中央制御室空気調和機ファン及び中央制御		島根2号炉は,常設空調
性炭フィルタ及び高性能フィルタ(以下「フィルタユニット」	室排気用ファンにより、一部外気を取り入れる閉回路循		による中央制御室の正
という。)を経由しない外気の流入を防止する効果を考慮した。	環方式によって中央制御室の空気調節を行う。		圧化後は,フィルタを通
また, 可搬型陽圧化空調機により供給する外気に対しては,	2) 事故時	また、中央制御室換気系により供給する外気に対しては、非常	らない空気の流入はな
フィルタユニットによる放射性物質の除去効果を考慮した。な	事故時は,外気取入口を遮断して,中央制御室フィル	用チャコール・フィルタ・ユニットによる放射性物質の除去効果	V
お, <u>可搬型陽圧化空調機</u> の起動時間については, <u>可搬設備の設</u>	タ系ファンによりフィルタユニット(高性能粒子フィル	を考慮した。なお、中央制御室換気系の起動時間については、全	
<u>置に要する時間遅れや</u> 全交流動力電源喪失を想定した遅れを考	タ及びチャコールフィルタ)を通した閉回路循環運転と	交流動力電源喪失を想定した遅れを考慮し、有効性評価で設定し	
慮し,有効性評価で設定した <u>3時</u> 間を起動遅れ時間として考慮し	し、運転員を放射線被ばくから防護する。	た2時間を起動遅れ時間として考慮した。	
た。	なお、外気の遮断が長期にわたり、室内環境が悪化し		
	た場合には、チャコールフィルタにより外気を浄化して		
	取り入れることもできる。		
	(2) フィルタを通らない空気流入量		
	中央制御室へのよう素除去フィルタを通らない空気の流		
	入量は,空気流入率測定試験結果を踏まえて保守的に換気率		
	<u>換算で1.0回/hと仮定して評価した。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(2) 中央制御室待避室陽圧化装置による中央制御室待避室の陽	(3) 待避室	(2) 中央制御室待避室空気ボンベによる中央制御室待避室の正圧	
<u> </u>	中央制御室内に設置する待避室には、格納容器ベント開始	止	
中央制御室待避室を中央制御室待避室陽圧化装置(以下「陽	から <u>5 時間待避</u> すると想定する。 待避中は待避室内を空気ボ	中央制御室待避室を中央制御室待避室空気ボンベにより正圧化	・運用の相違
<u> 圧化装置」という。)</u> により <u>陽圧化</u> することで、外気の流入を	ンベにより加圧し室内を正圧にするものとし, 外部からの空	することで、外気の流入を防止する効果を考慮した。	【柏崎 6/7,東海第二】
防止する効果を考慮した。	気の流入はないものとして評価した。待避室の概要図及び設		島根2号炉は8時間の
	置場所を第 5. 1. 3-3 図に示す。		待避を行う
なお、代替循環冷却系を用いて事象を収束する号炉からの影			・申請号炉数の相違
響については,陽圧化装置による効果を考慮しないものとした。			【柏崎 6/7】
	(4) マスクの考慮	(3)マスクの考慮	
	事象発生から3時間後まではマスクを着用(DF50)すると	制御室滞在時には、マスクを5時間着用 (PF50), 1時間外すこ	・評価条件の相違
	想定した。	とを繰り返すものとして評価した。	【東海第二】
			島根2号炉は, PF50 の
			全面マスクを6時間当
			たり1時間外すものと
			して評価
(3) 中央制御室への外気の直接流入率		(4)中央制御室への外気の直接流入率	
可搬型陽圧化空調機により中央制御室を陽圧化していない期		<u>中央制御室換気系</u> により中央制御室を <u>正圧化</u> していない期間に	
間においては、中央制御室への外気の直接流入率を0.5回/h と		おいては、中央制御室への外気の直接流入率を 0.5 回/h と仮定し	
仮定して評価した。		て評価した。	
2.4.2 人退域時の被はく	5.2 人退域時の被はく	4.2 人退域時の被はく	
人退域時の運転員の美効線量の評価に当たっては、周辺監視区		人退域時の運転員の美効線量の評価に当たっては、 <u>緊急時対策</u>	・連用の相違
<u> 取境界</u> からコントロール建産中央制御室出入日までの運転員の移		<u>所</u> から <u>出来前御室出入</u> しまでの運転員の移動経路を対象とした。	
「		代表評価点は2号原子炉建物原子炉補機俗却系熱交換器室入口と	茶ケタルでおみ
人退域ことに評価点に15分間滞任するとして評価した。たたし、		し、人退域ことに評価点に 15 分間滞任するとして評価した。 	
格納谷益圧力逃かし装直のワイルタ装直及び配官並びによう素ク			島根2号炉では、FCVS
イルタ内に取り込まれた放射性物質からの影響については、アク			格納槽は地下に設置し、
セスルートより緑源に近接した位直を評価点として進走し、2分前			十分な遮敝を設けるに
<u>滞住するとして評価した。</u>			の禄侭としてろ愿して
			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2.4.2.1 原子炉建屋内等の放射性物質からのガンマ線による被ば	5.2.1 建屋内からのガンマ線による被ばく(経路④)	4.2.1 原子炉建物内等の放射性物質からのガンマ線による被ばく	
く (経路⑤)		(経路⑤)	
事故期間中に原子炉建屋内に存在する放射性物質からの直接ガ	事故期間中に原子炉建屋原子炉棟内に存在する放射性物質から	事故期間中に原子炉建物内に存在する放射性物質からの直接ガ	
ンマ線及びスカイシャインガンマ線による入退域時の運転員の外	の直接ガンマ線及びスカイシャインガンマ線による入退域時の運	ンマ線及びスカイシャインガンマ線による入退域時の運転員の外	
部被ばくは、評価点を屋外とすること以外は「2.4.1.1.原子炉建	転員の外部被ばくは、中央制御室の壁等によるガンマ線の遮蔽効	部被ばくは, 評価点を屋外とすること以外は「4.1.1 原子炉建物	
屋内等の放射性物質からのガンマ線による被ばく(経路①)」と	果を期待しないこと以外は、「5.1.1 原子炉建屋からのガンマ線に	内等の放射性物質からのガンマ線による被ばく(経路①)」と同様	
同様な手法で実効線量を評価した。	よる被ばく(経路①)」と同様な手法で実効線量を評価した。	な手法で実効線量を評価した。	
	入退域時の運転員の実効線量の評価に当たっては,周辺監視区		
	域境界から中央制御室出入口までの運転員の移動経路を対象と		
	し、代表評価点は、建屋入口とした。		
2.4.2.2 放射性雲中の放射性物質からのガンマ線による被ばく	5.2.2 大気中へ放出された放射性物質による被ばく (経路⑤)	4.2.2 放射性雲中の放射性物質からのガンマ線による被ばく(経	
(経路⑥)		路⑥)	
中央制御室の壁等によるガンマ線の遮蔽効果を期待しないこと	大気中へ放出された放射性物質からのガンマ線による入退域時	中央制御室の壁等によるガンマ線の遮蔽効果を期待しないこと	
以外は「2.4.1.2 放射性雲中の放射性物質からのガンマ線による	の外部被ばくは、中央制御室の壁によるガンマ線の遮蔽効果を期	以外は「4.1.2 放射性雲中の放射性物質からのガンマ線による被	
被ばく(経路②)」と同様な手法で実効線量を評価した。	待しないこと以外は「5.1.2 大気中へ放出された放射性物質のガ	<u>ばく(経路②)」</u> と同様な手法で実効線量を評価した。	
	ンマ線による被ばく(経路②)」と同様な手法で,吸入摂取による		
2.4.2.3 地表面に沈着した放射性物質からのガンマ線による被ば	内部被ばくは中央制御室の換気系に期待しないこと以外は「5.1.3	4.2.3 地表面に沈着した放射性物質からのガンマ線による被ばく	
く (経路⑦)	室内に外気から取り込まれた放射性物質による被ばく(経路③)」	(経路⑦)	
中央制御室の壁等によるガンマ線の遮蔽効果を期待しないこと	と同様な方法で放射性物質からのガンマ線による外部被ばく及び	中央制御室の壁等によるガンマ線の遮蔽効果を期待しないこと	
以外は「2.4.1.3 地表面に沈着した放射性物質からのガンマ線に	吸入摂取による内部被ばくの和として運転員の実効線量を評価し	以外は「4.1.3 地表面に沈着した放射性物質からのガンマ線によ	
よる被ばく(経路③)」と同様な手法で実効線量を評価した。	た。内部被ばくの評価に当たってはマスクの着用による防護係数	る被ばく(経路③)」と同様な手法で実効線量を評価した。	
	を考慮した。また、地表面に沈着した放射性物質からのガンマ線		
2.4.2.4 大気中へ放出された放射性物質の吸入摂取による被ばく	についても考慮して評価した。	4.2.4 大気中へ放出された放射性物質の吸入摂取による被ばく	
(経路⑧)	入退域時の運転員の実効線量の評価に当たっては,上記 5.2.1	(経路⑧)	
入退域時の内部被ばくは、事故期間中の大気中への放射性物質	の仮定と同じである。	入退域時の内部被ばくは、事故期間中の大気中への放射性物質	
の放出量及び大気拡散効果を踏まえ評価した。なお、評価に当た		の放出量及び大気拡散効果を踏まえ評価した。なお、評価に当た	
ってはマスクの着用による防護効果を考慮した。		ってはマスクの着用による防護効果を考慮した。	
2.5 評価結果のまとめ	6. 評価結果のまとめ	5. 評価結果のまとめ	
6号及び7号炉の両号炉にて代替循環冷却系を用いて事象収束に	1. に示したとおり,東海第二発電所において炉心の著しい損傷		・申請号炉数の相違
成功した場合の評価結果を表6-1-1及び表6-1-2に示す。また <u>, 片</u>	が発生した場合、第一に代替循環冷却系を用いて事象を収束する		【柏崎 6/7】
<u>方の号炉において</u> 格納容器ベントを実施した場合の評価結果を表	が、被ばく評価においては、中央制御室の居住性評価を厳しくす		・評価対象の相違
6-2-1から表6-3-2に示す。さらに、各ケースについて被ばく線量	る観点から、代替循環冷却系を使用できず、格納容器圧力逃がし	<u> 残留熱代替除去系を用いて事象収束に成功した場合の評価結果</u>	【東海第二】
の合計が最も大きい班の評価結果の内訳を表7-1-1から表7-3-2	<u>装置を用いた格納容器ベントを実施した場合を想定した。</u> この想	<u>を表 6-1-1 及び表 6-1-2 に示す。</u> また,格納容器ベントを実	島根2号炉は,残留熱代
に、被ばく線量の合計が最も大きい滞在日における評価結果の内	定に基づく,7日間の各班の中央制御室の居住性(炉心の著しい	施した場合の評価結果を表 6-2-1 及び表 6-2-2 に示す。さら	替除去系を用いて事象
訳を表8-1-1から表8-3-2に示す。	損傷)に係る被ばく評価結果は,第6-1表に示すとおりである。	に、各ケースについて被ばく線量の合計が最も大きい班の評価結	収束したケースの評価
評価の結果,7日間での実効線量は6号及び7号炉で代替循環冷却		果の内訳を表 7-1-1 から表 7-2-2 に、被ばく線量の合計が最	を記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版) 島根原子力発電所 2号炉	備考
系を用いて事象収束に成功した場合で最大約66mSv, 6号炉が格納 また,中央制御室の運転員の実効線量の内訳は第6-2表に示す も大きい滞在日における評価結果の内訳を表8-1-1	1 から表 8-2
容器ベントを実施した場合で最大約78mSv,7号炉が格納容器ベン 通りであり,実効線量は約 60mSv である。したがって,評価結果 -2 に示す。	
トを実施した場合で最大約86mSvとなった。また,遮蔽モデル上のは、「判断基準は、運転員の実効線量が7日間で100mSvを超えな 評価の結果、7日間での実効線量は格納容器ベン	トを実施した ・評価結果の相違
コンクリート厚を許容される施工誤差分だけ薄くした場合は、6 いこと」を満足している。 場合で最大約 52mSv となった。	【柏崎 6/7, 東海第二】
号及び7号炉で代替循環冷却系を用いて事象収束に成功した場合 なお、マスクを着用しない場合の7日間の各班の実効線量は第	・評価条件及び申請号炉
で最大約68mSv, 6号炉が格納容器ベントを実施した場合で最大約 6-3表に示すとおりである。また,中央制御室の運転員の実効	数の相違
80mSv,7号炉が格納容器ベントを実施した場合で最大約87mSvとな 線量の内訳は第6-4表に示す通りである。	【柏崎 6/7】
$2t_{\circ}$	島根2号炉は,予めコン
このことから、判断基準である「運転員の実効線量が7日間で この評価に係る被ばく経路イメージを第 6-5 表に、被ばく評 このことから、判断基準である「運転員の実効線量	<u>量が7日間で</u> クリート施工誤差を差
100mSvを超えないこと」を満足することを確認した。 価の主要評価条件を第6-6表に示す。 100mSvを超えないこと」を満足することを確認した。	am し引いた評価を実施し
	ている

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉							備考		
表 6-1-1 各勤務サイクルでの被ばく線量				表 6-1-	-1 各勤	務サイ	クルでの)被ばく	線量		・評価結果の相違
(両号炉において代替循環冷却系を用いて事象を収束する場合)		(残留熱代替除去系を用いて事象を収束する場合)					_	【柏崎 6/7】			
(中央制御室内でマスクの着用を考慮した場合)(単位:mSv)*1*2			(7	スクの着	青用を考	慮した	場合)(]	単位:m	<u>Sv) ^{%1%2}</u>		・評価対象の相違
1日 2日 3日 4日 5日 6日 7日 合計 ^{※3} 」 」 」 」 」 」 約59			1 目	2日	3日	4 日	5日	6 日	7日	合計	【東海第二】
A 班 約 21 ^{※4} 約 17 約 21 (約 60) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ ○ ○ ○ ○ ○		A 班	<u>約 12</u>	約8		約8	約8			<u>約 35</u>	島根2号炉は,残留熱代
B班 約 22 ¹⁰⁵ - 約 23 ¹⁰⁵ - 約 45 (約 46)		R ĦF		約8	約8				約 9 ※ 3	約 25	替除去系を用いて事象
C班 - - 約 20 約 22 約 23 - - 約 64 (約 66) (約 66) (約 66) (約 66) (約 66) (約 66)		DAT		Ψ10	Ψ1 O				MJ 0	亦5 Z3	収束したケースの評価
D 班 約 22 約 23 約 13 ¹⁹⁶ (約 60)		C 班	約8				約8	約8		約 23	を記載
注意 注意 注意 約 66 E 班 約 16**4 約 19 - - - - 約 66 (約 68) - - - - - - 約 66		D 班			約9	約8		約7	約4*3	約 27	
※1 入退域時においてマスク <u>(PF=1000)</u> の着用を考慮		₩1	入退均	或時にお	いてマ	スク <u>(</u> P	<u>PF=50)</u> 0	の着用を	考慮		
※2 中央制御室内でマスク (PF=50) の着用を考慮。6時間当たり		₩2	中央制	制御室内	でマス	ク_(PF=5	50)の着	用を考	慮。5時	間着用,	
1時間外すものとして評価		1時	間外す	ことを繰	り返す	ものとし	して評価	Ì			
※3 括弧内:遮蔽モデル上のコンクリート厚を許容される施工誤											・資機材の相違
差分だけ薄くした場合の被ばく線量											【柏崎 6/7】
											・評価条件の相違
											【柏崎 6/7】
											島根2号炉は,予めコン
※4 中央制御室内で事故後1日目のみマスク (PF=1000) の着用を											クリート施工誤差を差
考慮。6時間当たり18分間外すものとして評価											し引いた評価を実施し
※5 特定の班のみが過大な彼はくを受けることのないよう,訓練											
<u> 但か代わりに勤務することを想定する等,評価上で班父替を工大</u>											・資機材、連用の相違
											【相畸 6/7】
		× 2	⇒⊽/≖+	扣目幼 一	古金の	フトセリテム	せるかが	之始旦	14 7 1	日1古	【相崎 6/7】
		(D	ゴギ 加速	<u>切目於</u> 」 由モノ 始	<u> 県</u> 別の	入火に行	モン放け				局根2万炉は, 通吊时の 直充供(4 直 0 充住) た
Lの班が中天前脚至備住中に、文質のために入域する1LL動務の班 (大評価では71日1支の班上目じ班な相定)が1はなぬ了した時			ガング			小しまた	聖史法	· (歌在:	即即处了	(D班)	■文化(4世2文化)を 相字」を証価なテレブ
「半計画では1日日1旦の班と回し班を忍足」が八墩を於」した時		いた	ふたげ	黒(よ)…八 ノ 絈 昌 た	受及し.	十天町1	吼盖(加)工		別則於」	- F. C./	
品で計画規則於」(事家光生//10100时间後)となる。本衣では、 証価期間後了声前の1はに伴ら並ばく組長け、7日日1声の並ばく		l'alt.									v · 🎝 。
X集に加たくま生している。よに、本Xにおいる1日日2月の2016 く線長け 7日日9直の班が由山制御客滞在山に評価期間級了とわ											
△派集協,「日日2島ジン切が十人的呼主曲」上十(EIT曲辺)回派」となる ることから →城及び山山割御宮滞在(評価期間級了まで)」に伴											
<u>ることがら、</u> 人致及び下天町町主他は、町町期間にすよく/に住 う神げく線景を示している											

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉							備考		
表 6-1-2 各勤務サイクルでの被ばく線量				長6-1-	-2 各勤	務サイ	クルでの	被ばく	線量		・評価結果の相違
(両号炉において代替循環冷却系を用いて事象を収束する場合)			(残	貂熱代 権	静除去系	を用いて	て事象を	収束す	る場合)	-	【柏崎 6/7】
(中央制御室内でマスクの着用を考慮しない場合)(単位:mSv) ^{*1}			(7	・スクの	着用を考	岑慮しな	い場合)	(単位	: mSv)		・評価対象の相違
1日 2日 3日 4日 5日 6日 7日 合計*2			1日	2 日	3 日	4日	5 日	6 日	7日	合計	【東海第二】
A 班 約 260 約 20 約 25 <u>約 310</u> (約 310)											島根2号炉は,残留熱代
B 班 約 27 ¹⁰³ - 約 28 ²⁰³ - 約 55 (約 56)		A 班	<u>約 271</u>	約 19		約 22	約 20			<u>約 331</u>	替除去系を用いて事象
C班 約78 http://www.action.com/action/acti		B 班		約 21	約 23				約 23 ^{※1}	約 66	収束したケースの評価
道町 道町 道町 道町 2007 D 班 - - - - 約 28 約 29 約 18 ²⁴ 約 74											を記載
		C 班	約 14				約 23	約 21		約 57	
2 34 第9 28 第9 22 第9 37-22 (約 89)		D FIE			約 194	約 94		約 19	約 19※1	約 77	
		DJT			ボリ 2 4	₩J 24		示〕10	₩J 12	<u> </u>	
※1 入退城時においてマスク (PF-1000) の差田を考慮											・ 評価冬姓の相違
											【柏崎 6/7】
											時にもマスクの効果を
											期待しない
 ※2 括弧内:遮蔽モデルトのコンクリート厚を許容される施工誤											・評価条件の相違
差分だけ薄くした場合の被ばく線量											【柏崎 6/7】
											島根2号炉は、予めコン
											クリート施工誤差を差
											し引いた評価を実施し
											ている
※3 特定の班のみが過大な被ばくを受けることのないよう 訓練											・評価条件の相違
直が代わりに勤務することを想定する等 評価上で研交替を工去											【柏崎 6/7】
											鳥根2号炉け 通常時の
											直交代 (4 直 9 交代) を
											超文 (102 文 () 2 相定 た証価を示 て
											心たった計画を示して
※4 評価期間終了直前の入城に伴う被げく線量を 7日日1直の被		* 1	証価期	問紋了正	古前のフ	は広に伴	う袖げく	、線畳を	· 7 日	目1店	
ばく線量に加えて整理 7日日9直の被げく線量は 入城及7次中山		(P		u!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	ません ままに hn	シンズルールエ ママ較刊	】 ■ 7日	いないまた。 日9店	·····································	ニーエービー の袖げ	
御家濃在(評価期間級了まで)に伴う被げく線畳(表6-1-1の※		ノ迫く娘		私転及び	(山山生)	ふふ <u>み</u> 御玄溥だ	☶ (証価	.出	「まで)	に伴う	
			まはたり	シ示して	いる	er = 100 1	ᆇᇞᅋᄃᄖᄥ	2711F1/15	the state of the s	1 miltude	
		IXXIA									

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
表 6-2-1 各勤務サイクルでの被ばく線量	第6-1表 各班の中央制御室の居住性(炉心の著しい損傷)に 表 6-2-1 各勤務サイクルでの被ばく線量	・評価結果の相違
(6 号炉:格納容器ベント実施 7 号炉:代替循環冷却系を用いて	係る被ばく評価結果(マスクを考慮する場合) (格納容器ベントを実施して事象を収束する場合)	【柏崎 6/7,東海第二】
事象収束)	(単位:mSv)	1
(中央制御室内でマスクの着用を考慮した場合)(単位:mSv)*1*2	1日目 2日目 3日目 4日目 5日目 6日目 7日目 合計	
1日 2日 3日 4日 5日 6日 7日 合計 ^{第3} Im Im <td< td=""><td>A $\hbar 6.0 \times 10^1$ A $\hbar 6.0 \times 10^1$ A $\hbar 9$ $\hbar 8$ $\hbar 7$</td><td></td></td<>	A $\hbar 6.0 \times 10^1$ A $\hbar 6.0 \times 10^1$ A $\hbar 9$ $\hbar 8$ $\hbar 7$	
A 班約 20 ¹⁸⁴ 約 30 - 約 25 (約 76)	□	
B 班 約 27 ¹⁰⁵ - 約 24 ¹⁰⁵ 約 23 ¹⁰⁵ - 約 73 (約 75)	C 約 4.0×10 ¹ 約 7.5×10 ⁰ 約 6.2×10 ⁰ 約 5.4×10 ¹	-
C班 約40 約26 約12 ⁹⁵⁹⁶⁶ 約78 (約79)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
D班 約 24 約 23 約 31 ¹⁰⁵¹⁰⁶ (約 80)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
E班約16 ³⁸⁴ 約41 約56 (約58)		
※1 入退域時においてマスク <u>(PF=1000)</u> の着用を考慮	※1 入退域時においてマスク <u>(PF=50)</u> の着用を考慮	・資機材の相違
※2 中央制御室内でマスク(PF=50)の着用を考慮。6時間当たり	※2 中央制御室内でマスク(PF=50)の着用を考慮。5時間着用,	【柏崎 6/7】
1時間外すものとして評価	1時間外すことを繰り返すものとして評価	島根2号炉は,全面マス
		ク着用の条件で評価
※3 括弧内:遮蔽モデル上のコンクリート厚を許容される施工誤		・評価条件の相違
差分だけ薄くした場合の被ばく線量		【柏崎 6/7】
		島根2号炉は,予めコン
		クリート施工誤差を差
		し引いた評価を実施し
※4 中中制御室内で東投後1日日のひマスク(DE-1000)の美田な		、次地村及び軍田の相違
<u>※4 中天前御室内で事取後1日日のみマハク (FF-1000) の有用を</u> 考慮 6時間当たり18分間外すなのとして評価		・貝機的及び運用の相連 自根9号后は PE50 の
		金面マスクを6時間当
		たり1時間外すものと
		して評価
※5 特定の班のみが過大な被ばくを受けることのないよう,訓練		・評価条件の相違
直が代わりに勤務することを想定する等,評価上で班交替を工夫		【柏崎 6/7】
		島根2号炉は,通常時の
		直交代(4直2交代)を
		想定した評価を示して
		いる。
※6 評価期間終了直前の入域に伴う被ばく線量を,7日目1直の被	※3 評価期間終了直前の入域に伴う被ばく線量を,7日目1直(B	
ばく線量に加えて整理。7日目2直の被ばく線量は、入域及び中央	班)の被ばく線量に加えて整理。7日目2直(D班)の被ばく線量	
制御室滞在(評価期間終了まで)に伴う被ばく線量(表6-1-1の※	は,入城及び中央制御室滞在(評価期間終了まで)に伴う被ばく	
6を参照)	線量を示している。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 6-2-2 各勤務サイクルでの被ばく線量	第6-3表 各班の中央制御室の居住性(炉心の著しい損傷)に	表 6-2-2 各勤務サイクルでの被ばく線量・	・評価結果の相違
(6 号炉:格納容器ベント実施 7 号炉:代替循環冷却系を用いて	係る被ばく評価結果(マスクを考慮しない場合)	(格納容器ベントを実施して事象を収束する場合)	【柏崎 6/7,東海第二】
事象収束)		(マスクの着用を考慮しない場合)(単位:mSv) ^{*1}	
(中央制御室内でマスクの着用を考慮しない場合)(単位:mSv) ^{*1}	(単位:mSv)		
1日 2日 3日 4日 5日 6日 7日 合計 ^{第3}	1日目 2日目 3日目 4日目 5日目 6日目 7日目 合計	1日 2日 3日 4日 5日 6日 7日 合計	
A 班 約 20 ³⁹⁴ 約 42 - 約 24 約 85 (約 87)	$\begin{array}{c c} A \\ \hline B \\ \hline B \\ \hline \end{array} \qquad	A 班 約 272 約 21 ^{*1} 約 10 ^{*1} 約 7 ^{*1} 約 309	
B班 約29 ^{ins} - 約21 ^{ins} 約19 ^{ins} - 約69 (約70)	\overline{H} $\overline{h}_1 . 2 \times 10^1$ $\overline{h}_2 . 3 \times 10^0$ $\overline{h}_2 . 5 \times 10^0$ $\overline{h}_2 . 7 \times 10^0$ $\overline{h}_3 . 0 \times 10^1$ \overline{C} $\overline{h}_1 . 0 \times 10^1$ $\overline{h}_2 . 0 \times 10^0$		
C班 約 50 約 26 約 10 ¹⁰⁵⁰⁶ (約 87)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
□ 田 D 班 約 22 約 20 約 26 ⁹⁵⁹⁹⁶ 約 69	jh h </td <td>C班 約14 約9 約7 約28</td> <td></td>	C班 約14 約9 約7 約28	
2010 1000 (約 70) F W かっぷん かたてん 約 70		D班 約21 約12 約6 約5 ^{*2} 約42	
1. 32 約 16 ** <u>約 54</u> (約 71)			
 ※1 入退域時においてマスク(PF=1000)の着用を考慮			・評価条件の相違
			【柏崎 6/7】
			島根2号炉では、入退域
			時にもマスクの効果を
		其	期待しない
 ※2 括弧内:遮蔽モデル上のコンクリート厚を許容される施工誤			・評価条件の相違
差分だけ薄くした場合の被ばく線量			【柏崎 6/7】
		唐	島根2号炉は,予めコン
			クリート施工誤差を差
		ι ι	し引いた評価を実施し
		7	ている
※3 特定の班のみが過大な被ばくを受けることのないよう, 訓練			・評価条件の相違
直が代わりに勤務することを想定する等、評価上で班交替を工夫		,	【柏崎 6/7】
		唐	 島根2号炉は,通常時の
※4 評価期間終了直前の入域に伴う被ばく線量を,7日目1直の被		※1 評価期間終了直前の入域に伴う被ばく線量を,7日目1直(B 産	直交代(4直2交代)を
ばく線量に加えて整理。7日目2直の被ばく線量は、入域及び中央		班)の被ばく線量に加えて整理。7日目2直(D班)の被ばく線量 想	想定した評価を示して
制御室滞在(評価期間終了まで)に伴う被ばく線量(表6-1-1の※		は、入域及び中央制御室滞在(評価期間終了まで)に伴う被ばく線し	いる。
6を参照)		量を示している。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 6-3-1 各勤務サイクルでの被ばく線量			・申請号炉数の相違
(6 号炉:代替循環冷却系を用いて事象収束 7 号炉:格納容器べ			【柏崎 6/7】
<u>ント実施)</u>			
(中央制御室内でマスクの着用を考慮した場合)(単位:mSv) ^{*1*2}			
1日 2日 3日 4日 5日 6日 7日 合計型			
A 班 約 260 約 39 - 約 28 約 320 (約 320)			
B班 約 30 ^{i#3} - 約 27 ^{i#3} 約 26 ^{i#3} - 約 26 ^{i#3} - (約 82)			
ご思して ご思して ご思して (0,000) C 班 - - 約43 約29 - - 約15 ⁹³⁹⁴ 約87			
<u>※1 人退域時においてマスク (PF=1000) の着用を考慮</u>			
※2 中央制御室内でマスク (PF=50) の着用を考慮。6時間当たり			
1時間外すものとして評価			
※3 括弧内:遮蔽モテル上のコンクリート厚を計容される施工誤			
<u>差分たけ薄くした場合の彼はく線量</u>			
※4 中央制御室内で事故後1日目のみマスク (PF=1000) の着用を オポーム 時間火た ゆ いい 開め トレットレーズ (FF=1000) の着用を			
<u>考慮。6時間当たり18分間外すものとして評価</u>			
※5 特定の班のみか過大な彼はくを受けることのないよう、訓練			
<u> 直か代わりに勤務することを想定する等,評価上で班父替を上大</u>			
<u>※6 評価期間終」目前の入域に伴う彼はく禄重を、7日日1回の彼</u>			
はく緑重に加えて整理。7日日2直の彼はく緑重は、人域及び中央			
制御至滞在(評価期間終了まで)に伴う被はく線量(表6-1-1の※			
<u>6を参照)</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 6-3-2 各勤務サイクルでの被ばく線量			・申請号炉数の相違
(6 号炉:代替循環冷却を用いて事象収束 7 号炉:格納容器ベン			【柏崎 6/7】
ト実施)			
(中央制御室内でマスクの着用を考慮しない場合)(単位:mSv) ^{*1}			
13日 13日 25日 21日 21日 21日 21日 21日 21日 21日 21日 21日 21			
<u>ます 200</u> 新 31 新 200 (約 340) 日本 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
B 班 約 30 ^{@3} 約 23 ^{@3} 約 21 ^{@3} - (約 76)			
C班 約53 約28 約12 ²⁰³⁹⁴ 約92 (約93)			
D 班 約 25 約 22 約 28 ^{第3第4} 約 75 (約 76)			
<u> 「 距</u> ド 班 約 27 約 59 - - - - - - 約 86 (約 88)			
(#2.667			
<u>※1 入退域時においてマスク(PF=1000)の着用を考慮</u>			
※2 括弧内:遮蔽モデル上のコンクリート厚を許容される施工誤			
差分だけ薄くした場合の被ばく線量			
※3 特定の班のみが過大な被ばくを受けることのないよう,訓練			
直が代わりに勤務することを想定する等,評価上で班交替を工夫			
※4 評価期間終了直前の入域に伴う被ばく線量を,7日目1直の被			
<u>ばく線量に加えて整理。7日目2直の被ばく線量は、入域及び中央</u>			
制御室滞在(評価期間終了まで)に伴う被ばく線量(表6-1-1の※			
<u>6を参照)</u>			

	柏崎刈羽原子力発電所 6/7	7号炉	(2017.12	. 20版)	東海第二発電所(2018.9.18版)		島根原子力発電所 2号炉		備考
表 7-	-1-1 評価結果の内訳(被ばく	線量が最	:大となる	班 (E 班) の		表 7-1-1	評価結果の内訳(被ばく線量が最	・評価結果の相違	
	合計)	_					の合計)	【柏崎 6/7】	
両)	号炉において代替循環冷却系を	を用いて	事象を収す	東する場合)		(残	留熱代替除去系を用いて事象を収す	東する場合)	・評価対象の相違
(1	(中央制御室内でマスクの着用を考慮する場合)(単位:mSv)					(マスクの着用を考慮する場合)(単	【東海第二】	
	袖 ディ 経験	6 号炉	7 号炉						島根2号炉は,残留熱代
	取入すみ 入 水土 単口	からの寄与	からの寄与				被ばく経路	2 号炉	替除去系を用いて事象
	①原子炉建屋内等の放射性物質からのガンマ線	約111×10 ⁻¹	0.1.125	約 1.1×10-1			①原子炉建物内等の放射性物質からのガンマ		収束したケースの評価
	による中央制御室内での被ばく	", j 1. 1 × 10	0.12/1	(約1.4×10-1)			線による中央制御室内での被ばく	約 5.2×10 ⁻⁴	を記載
	②放射性雲中の放射性物質からのガンマ線によ	約37×10 ⁻¹	約6.2×10 ⁻¹	約 9.9×10-1			②放射性雲中の放射性物質からのガンマ線に		
中	る中央制御室内での被ばく	"J 5. 1×10	"J 0. 2×10	(約 1.0×10 ⁰)			よる中央制御室内での被ばく	約 3.0×10 ⁻¹	
央	③地表面に沈着した放射性物質のガンマ線によ	約 5 0×10 ⁻¹	約8.2×10 ⁻¹	約 1.3×10 ⁰			③地表面に沈着した放射性物質のガンマ線に		
制	る中央制御室内での被ばく	A-9 61 61 110	"., or <u>E</u> 10	(約1.5×10))		中央制御	よる中央制御室内での被ばく	約 9.9×10 ⁻¹	
御	④室内に外気から取り込まれた放射性物質によ	約25×10°	約40×10°	約 6.5×10°		室滞在時	④室内に外気から取り込まれた放射性物質に		
室	る中央制御室内での被ばく	"., <u>Bross</u> 10	,,,, II 0	(約6.5×10))			よる中央制御室内での被ばく	約 1.3×10 ¹	
滞	(内訳)内部被ばく	約 9.7×10 ⁻¹	約 1.6×10 ⁰	約 2.6×10°			(内訳)内部被ばく	約 1.1×10 ¹	
在				(約2.6×10))			外部被ばく	約 2.5×10°	
時	外部被ぼく	約 1.5×10 ⁰	約 2.4×10 ⁰	約 3.9×100			小計 (①+②+③+④)	約 1.4×10 ¹	
				(約 3.9×10 ⁰)			⑤原子炉建物内等の放射性物質からのガンマ		
	小計 (①+②+③+④)	約 3.4×10 ⁰	約 5.5×10º	約 8.9×10 ⁰			線による入退域時の被ばく 約 3.2 ⑥放射性雲中の放射性物質からのガンマ線に	約 3.2×10 ⁻¹	
				(約 9.2×10 ⁰)					
	⑤原子炉建屋内等の放射性物質からのガンマ線	約 3.0×10 ⁰	約 8.9×10 ⁰	約 1.2×10 ¹			よる入退城時の被ばく	約 2.4×10-1	
	による入退域時の被ばく			(約1.4×10 ¹)		入退城時	⑦地表面に沈着した放射性物質からのガンマ		
	⑥放射性雲中の放射性物質からのガンマ線によ	約 2.2×10 ⁰	約 4.5×10°	約 6.7×10 ⁰			線による入退域時の被ばく	約 1.9×10 ¹	
入	る入退域時の被ばく			(約 6.7×10 ⁰)			⑧大気中へ放出された放射性物質の吸入摂取		
退	⑦地表面に沈着した放射性物質からのガンマ線	約 1.3×10 ¹	約 2.6×10 ¹	約 3.8×10 ¹			による入退域時の被ばく	約 3.6×10 ⁻¹	
域	による入退域時の被ばく			(約 3.8×10 ¹)			小計 (⑤+⑥+⑦+⑧)	約 2.0×10 ¹	
時	⑧大気中へ放出された放射性物質の吸入摂取に	約 1.9×10 ⁻¹	約 3.9×10 ⁻¹	約 5.8×10 ⁻¹		4	N = 1 (1) + (2) + (3) + (4) + (5) + (6) + (7) + (8)	約 35	
	よる入退域時の被ばく			(約5.8×10-1)					
	小計 (⑤+⑥+⑦+⑧)	約 1.8×10 ¹	約 3.9×10 ¹	約 5.7×10 ¹					
				(約 5.9×10 ¹)					
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 2.1×10 ¹	約 4.5×10 ¹	約 66					
				(約 68)					 • 評価条件の相違
× 1	括弧内・渡茲モデルトのコン	クリート	亘を許容:	されス協丁調					【柏崎 6/7】
	だけ蒲く」た場合の抽げく線長	<u>>))</u> 書	子で町石で						島根2号炉は予めコン
	/こり (守 / し/こ勿 口 V/(次 (み /)水当	E							 クリート施工誤差を差
									し引いた評価を実施し

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				20版)	東海第二発電所(2018.9.18版)		備考			
表	7-1-2 評価結果の内訳(被ばく	、線量が最	大となる	班 (A 班) の		<u>表 7-1-</u>	-2	・評価結果の相違		
	合計)						の合計)		【柏崎 6/7】
(両号炉において代替循環冷却系	を用いて	事象を収束	(する場合)		_	(残留	熱代替除去系を用いて事象を収す	・評価対象の相違	
(中央制御室内でマスクの着用を	考慮しない	い場合) (主	单位 : mSv)			(マ)	【東海第二】		
	被ばく経路	6 号炉	7 号炉	合計**1					1	島根2号炉は,残留熱代
	Γ	からの寄与	からの寄与					被ばく経路	2 号炉	替除去系を用いて事象
	①原子炉建屋内等の放射性物質からのガ	約 1.3×10 ⁻¹	0.1以下	約 1.3×10 ⁻¹				①百子恒建物内笶の放射性物質からのガンマ		収束したケースの評価
	ンマ線による中央制御室内での被ばく			(約1.6×10-1)				④示丁 デ 足初 約 号の 成 別 圧 初 員 か ら の み ク マ 線に 上 ろ 中 中 制 御 宝 内 で の 被 げ く	約 5.2×10-4	を記載
	②放射性雲中の放射性物質からのガンマ	約4.9×10 ⁻¹	約 8.2×10 ⁻¹	約 1.3×10°						
中	線による中央制御室内での被ばく			(約1.4×10%)				②放射性雲中の放射性物質からのガンマ線に	約 3.0×10-1	
央	③地表面に沈着した放射性物質のガンマ	約 5.7×10 ⁻¹	約 9.5×10 ⁻¹	約 1.5×10°						
制	線による中央制御室内での被ばく			(約 1.7×10°)		中央	央制御	③地表面に沉着した放射性物質のカンマ線に	約 9.9×10 ⁻¹	
御	④室内に外気から取り込まれた放射性	約 9.9×10 ¹	約 1.7×10 ²	約 2.7×10 ²		室港	帯在時	よる中央制御主内での彼はく		
室	物質による中央制御室内での被ばく			(約 2.7×10 ²)	0°)		(日至内に外気がら取り込まれに放射性物具に トスロロ制御空ロズの地ぼく)	約 2.9×10 ²		
滞	(内訳)内部被ばく	約 9.8×10 ¹	約 1.6×10 ²	約 2.6×10 ²				(中却) 中部地ゴイ	⁴ 2 0 0 × 10 ²	
在				(約 2.6×10 ²)				(内訳) 内部彼はく	ボリ 2. 9×10 約 2. 5×10 ⁰	
時	外部被ばく	約 1.3×10 ⁰	約 2.1×10°	約 3.3×10°					赤J 2. 3×10 約 2. 0×10 ²	
				(約3.4×10))					#J 2. 9×10	
	小計 (①+②+③+④)	約 1.0×10 ²	約 1.7×10 ²	約 2.7×10 ²				⑤原子炉運物内等の放射性物質からのカンマ	約 3.2×10 ⁻¹	
				(約 2.7×10 ²)				線による人退攻時の彼はく		
	⑤原子炉建屋内等の放射性物質からのガ	約 1.7×10 ⁰	約 4.5×10º	約 6.2×100				⑥放射性雲中の放射性物質からのガンマ線に	約 2.4×10-1	
	ンマ線による入退域時の被ばく			(約7.1×10))		-		よる入退城時の被ばく		
	⑥放射性雲中の放射性物質からのガンマ	約 1.9×10 ⁰	約 3.8×10 ⁰	約 5.6×10°		人业	退嘶時	⑦地表面に沈着した放射性物質からの	約 1.9×10 ¹	
入	線による入退域時の被ばく			(約 5.6×10))				ガンマ線による人退域時の被はく		
退	⑦地表面に沈着した放射性物質からのガ	約 8.5×10°	約 1.7×10 ¹	約 2.6×101				⑧大気中へ放出された放射性物質の	約 1.8×10 ¹	
域	ンマ線による入退域時の被ばく			(約 2.6×10 ¹)				吸入摂取による入退域時の彼はく		
時	⑧大気中へ放出された放射性物質の吸入	約 1.4×10 ⁻¹	約 2.9×10 ⁻¹	約 4.4×10 ⁻¹				小計 ((5)+(6)+(7)+(8))	約 3.8×10 ⁻	
	摂取による入退域時の被ばく			(約 4.4×10 ⁻¹)			合言	+(1)+2+3+(+5)+(+7)+(8)	約 331	
	小計 (⑤+⑥+⑦+⑧)	約 1.2×10 ¹	約 2.6×10 ¹	約 3.8×10 ¹						
				(約 3.9×10 ¹)						
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 1.1×10 ²	約 1.9×10 ²	約 310						
				(約 310)						・評価条件の相違
*	括弧内:遮蔽モデル上のコン	クリート	享を許容さ	れる施工誤						【柏崎 6/7】
<u>差</u>	分だけ薄くした場合の被ばく線	量								島根2号炉は,予めコン
										クリート施工誤差を差
										し引いた評価を実施し
										ている

	柏崎刈羽原子力発電所 6/		東海第二発電所(2018.9.18版)														島根原子力発電所 2号炉	備考				
表	7-2-1 評価結果の内訳(被ばく	く線量が最	大となる野	E (D 班) の	表 6-2 表 中央制御室の運転員の実効線量の内訳(マスクを考												スク	を考	表 7-2-	1 評価結果の内訳(被ばく線量が最大	・評価結果の相違	
	<u>合計</u>	<u>)</u>			<u>慮する場合)</u>															<u>の合計)</u>	【柏崎 6/7,東海第二】	
(6	5号炉:格納容器ベント実施 7	<u> </u>	替循環冷却	を用いて事																格納容器ベントを実施して事象を収束		
																				(マスクの者用を考慮する場合)(単位		
_	(中大前御主内(マハクの有用で			<u>17</u> IIISV)																		
	被ばく経路	からの寄与	からの寄与	合計**1		班 10 ⁻¹	10^{-2}	10 0	10 0	0 01	10 1	10 -1	10^{-2}	10 -3	10 -2	10 1	10 1	10 1		被ばく経路	2	
	①原子炉建屋内等の放射性物質からのガ ンマ線による中央制御室内での被ぼく	約 1.5×10º	0.1以下	約 1.5×10 ⁰ (約 1.6×10 ⁰)		EJ 約2.3×	約1.1×	約5.2×	約2.9× 約8.1×	が30.1 ~ 約4.6 5×	^{死り4. 3} へ 約1. 3×	約4.3×	約1.0×	約6.3×	約1.6×	約2.5×	約2.6×	約3.9×		①原子炉建物内等の放射性物質からのガンマ線による中央制御室内での被ばく	約 8.4×10 ⁻⁵	
中	②放射性雲中の放射性物質からのガンマ 線による中央制御室内での被ばく	0.1以下	約 7.0×10 ⁻¹	約 7.0×10 ⁻¹ (約 7.4×10 ⁻¹)		⊃班 ×10 ⁻²	$ imes 10^{-3}$	$\times 10^{-3}$	×10 ⁰	×10 ⁰	×10 °	$\times 10^{-1}$	$ imes 10^{-3}$	$ imes 10^{-3}$	×10 ⁻³	$\times 10^{-1}$	$\times 10^{-1}$	$\times 10^{-1}$		②放射性雲中の放射性物質からのガンマ線による中 央制御室内での被ばく	約 4. 0×10°	
央制	③地表面に沈着した放射性物質のガンマ 線による中央制御室内での被ばく	約 3.6×10 ⁻¹	約 6.0×10 ⁻¹	約 9.6×10 ⁻¹ (約 1.1×10 ⁰)	([I 約9.4	約14.6	約3.7	約1.2	C .15小 8 243 8	がり5.2	約1.9	約5.1	約3.0	約8.1	約2.4	約2.4	約2.9	中央制御室	③地表面に沈着した放射性物質のガンマ線による中 央制御室内での被ばく	約 8.6×10 ⁻¹	
御室	④室内に外気から取り込まれた放射性物 質による中央制御室内での被ばく	約 1.1×10 ⁰	約 5.9×10º	約 7.0×10 ⁰ (約 7.0×10 ⁰)	Į E/∕vSm) Į	C班 .0×10 ⁻¹	4×10^{-1}	$.1 \times 10^{-0}$	7×10^{-1}	8×10 ⁰	7×10^{-1}	5×10^{-1}	2×10^{-2}	$.7 \times 10^{-3}$. 8×10 ⁻²	6×10^{-1}	7×10^{-1}	$.4 \times 10^{-1}$	10 12.03	④室内に外気から取り込まれた放射性物質による中 央制御室内での被ばく	約 2. 3×10 ¹	
滞	 (内訳) 内部被ばく	0.1以下	約 2.3×10º	約 2.3×10°	汤線量	約6.	約1.	約6.	約7. 約6	かり0. 2位4	^{形14.} 約2.	約5.	約1.	約5.	約1.	約2.	約2.	約5.		(内訳)内部被ばく	約 1.4×10 ⁰	
在				(約2.3×10))	- #K															外部被ばく	約 2.1×101	
時	外部被ばく	約 1.1×10 ⁰	約 3.6×10º	約4.6×100		3班 ×10 ⁻²	$ imes 10^{-3}$	$\times 10^{-3}$	× 10 ⁻¹	×10 0	×10 ⁰	$\times 10^{-2}$	$\times 10^{-3}$	$\times 10^{-3}$	$\times 10^{-3}$	$\times 10^{-1}$	$\times 10^{-1}$	×10 ¹		小計 (①+②+③+④)	約 2. <mark>7</mark> ×10 ¹	
				(約 4.6×10°) 約 1.0×10 ¹		約6.3	約3.0	約2.3	約8.0	0.00.m 7 1.02.4 7 2.04.7	新95.5	約9.2	約2.6	約1.7	約4.3	約2.4	約2.4	約3.0		⑤原子炉建物内等の放射性物質からのガンマ線による入退域時の被ばく	約 1.7×10 ⁻¹	
	小計 (①+②+③+④) ③回子炬建屋内等の防蝕性物質からのガ	約 3.0×10 ⁰	約 7.2×10 ⁰	(約1.0×10 ¹)		、班 ≺10 ⁻¹	< 10 ⁻¹	$\times 10^{-0}$	×10 ¹	0 UT 0	×10 1	× 10 ⁻¹	$\times 10^{-3}$	< 10 ⁻³	< 10 ⁻³	< 10 ⁰	×10 ⁰	×10 ¹		⑥放射性雲中の放射性物質からのガンマ線による入 退域時の被ばく	約 1.1×10 ⁻¹	
	③示于F/#星/1号の版射は初員からのガンマ線による入退域時の被ばく	約 8.5×10º	約 1.1×10 ¹	^{余9} 2. 0×10 (約 2. 1×10 ¹)		A 約7.8>	約9.6>	約5.3>	約4.0> 約4.0>	がJT-07	形り4.1.7 約5.2>	約2.6>	約5.6>	約1.3>	約6.9>	約8.0>	約8.3>	約6.0>	入退城時	⑦地表面に沈着した放射性物質からのガンマ線によ	約 2.3×10 ¹	
入	⑥放射性雲中の放射性物質からのガンマ線による入退域時の被ばく	約7.6×10-1	約 5.6×10 ⁰	約 6.3×10° (約 6.3×10°)		ガンマ線及 よる被ばく	質による被	3被ばく)	彼ばく) ・ =+			ガンマ線及 よる被ぼく	被ばく)	被ばく)		昏した放射				る人退域時の被はく ⑧大気中へ放出された放射性物質の吸入摂取による	約 1.7×10 ⁻¹	
退城	⑦地表面に沈着した放射性物質からのガ ンマ線による入退域時の被ばく	約 1.4×10 ¹	約 2.8×10 ¹	約 4.1×10 ¹ (約 4.1×10 ¹)		らの直接/ ンマ線に。	放射性物質.	(外部	〔 上 二 二 二	日 表面に沈 ³	nin.	らの直接/ ソマ線に。	(外部	(内部		表面に沈清	iin an			入退域時の被ばく 小計(⑤+⑥+⑦+⑧)	約 2.4×10 ¹	
時	⑧大気中へ放出された放射性物質の吸入 約5.9×10 ⁻¹ 約5.9×10 ⁻¹ 約5.9×10 ⁻¹		約 5.9×10 ⁻¹ (約 5.9×10 ⁻¹)		<u>井</u> 井 (- マインガ) (女 田 された た が (が ら 和 た が (が 七 っ オ ン インガン () (日 され (か) ((一 オ インガン) () (日 され た が (一 マインガン) () (一 、 インガンガ) () (一 、 インガンガ) () (一 、 ・ ・ ・ ン 、 (、 ・ ・ た) () () () () () () () () ()			牧出され地	よる被ばく 小	射性物質か シャインガ	な王ムカ	欧田 c 4 c /c 顔による破		阪田され地 よる被ぼく	ŕ			合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 52			
	小計 (⑤+⑥+⑦+⑧)	約 2.3×10 ¹	約 4.5×10 ¹	約 6. 8×10 ¹		経 路 建屋内放 びスカイ	大気中~) ばく	室内亿外	テレート	大気中へ	性物質に	建屋内放け びスカイ	大会中へ	く <u>×</u> +-> 放射性物 ぼく	-	大気中へ、住物質に						
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 2.6×10 ¹	約 5.2×10 ¹	(新 7.0×10 ⁻) 約 78 (約 80)		被 ば <			室内作業時					入退域時								・評価条件の相違
※1 括弧内:遮蔽モデル上のコンクリート厚を許容される施工誤 差分だけ薄くした場合の被ばく線量																						【柏崎 6/7】 島根 2 号炉は, 予めコン クリート施工誤差を差 し引いた評価を実施し ている

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				20版)	東海第二発電所(2018.9.18版)		備考		
表7	-2-2 評価結果の内訳(被は	ばく線量が最	大となる現	E (A 班) の		表 7-2-	-2 評価結果の内訳(被ばく線量が最大。	・評価結果の相違	
		計)					の合計)		【柏崎 6/7】
(6	号炉:格納容器ベント実施	7 号炉:代春	陸循環冷却	を用いて事		_	(格納容器ベントを実施して事象を収束す		
	象収	又束)				-	(マスクの着用を考慮しない場合)(単位	Ż∶mSv)	
(=	P央制御室内でマスクの着用	を考慮しない	<u>い場合)(単</u>	<u> (位:mSv)</u>					
	被ばく経路	6 号炉 からの寄与	7 号炉 からの寄与	合計**1			被ばく経路	2 号炉	
	①原子炉建屋内等の放射性物質からのガンマ線による中央制御室内での被ばく	約 8.1×10 ⁻¹	0.1以下	約 8.1×10 ⁻¹ (約 8.9×10 ⁻¹)			①原子炉建物内等の放射性物質からのガンマ線による 中央制御室内での被ばく	約 3.5×10 ⁻⁴	
-	②放射性雲中の放射性物質からのガンマ 線にトム中央制御室内での対げく	約 9.2×10 ⁻¹	約 8.2×10 ⁻¹	約 1.7×10°			②放射性雲中の放射性物質からのガンマ線による中央 制御室内での被ばく	約 2.6×10 ⁻¹	
央	③地表面に沈着した放射性物質のガンマ	約 9.8×10 ⁻¹	約 9.1×10 ⁻¹	約 1.9×10 ⁰		中央制御室	③地表面に沈着した放射性物質のガンマ線による中央 制御空中での対応	約 9.1×10 ⁻¹	
御	線による中央制御室内での被ばく ④室内に外気から取り込まれた放射性物	約 1.0×10 ²	約 1.7×10 ²	(約 2.1×10°) 約 2.7×10 ²		滞在時	(型室内に外気から取り込まれた放射性物質による中央	約 2.8×10 ²	
室	質による中央制御室内での被ばく			(約 2.7×10 ²)			制御室内での彼はく (内部) 内辺独居と	約2.7×102	
滞	(内訳)内部被ばく	約 9.9×101	約 1.6×10 ²	約 2.6×10 ²			(ドヨハ)「ヨロリカスは、	約 1. 9×10 ⁰	
臣	外部神ぼく	約4.7×10 ⁰	約 2 2×10 ⁰	(示) 2. 6×10°) 約 6. 9×10°			小計 (①+②+③+④)	約 2.8×10 ²	
		<i>",,</i> 11110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(約 7.0×10 [°])			⑤原子炉建物内等の放射性物質からのガンマ線による		
				約 2.8×10 ²			入退域時の被ばく	約 1. 9×10 ⁻¹	
	小計 (①+②+③+④)	約 1.1×10 ²	約 1.7×10 ²	(約 2.8×10 ²)			⑥放射性雲中の放射性物質からのガンマ線による入退	<u> </u>	
	⑤原子炉建屋内等の放射性物質からのガ	45 4 1 × 100	\$5 4 0 × 100	約 8.9×10°			域時の被ばく	ボリ 1. 2 × 10	
	ンマ線による入退域時の被ばく	赤J 4. 1×10°	赤J 4.8×10°	(約 9.8×10)		入退域時	⑦地表面に沈着した放射性物質からのガンマ線による	約 2.3×10 ¹	
	⑥放射性雲中の放射性物質からのガンマ	約 2.3×10 ⁰	約 3.9×10°	約 6.1×100			入退域時の被ばく		
Л	線による入退域時の被ばく			(約6.1×10))			⑧大気中へ放出された放射性物質の吸入摂取による入	約7.3×10°	
退	⑦地表面に沈着した放射性物質からのガ	約 1.5×10 ¹	約 1.8×10 ¹	約 3.2×10 ¹			退 域時の 被ばく 		
域	ンマ線による入退域時の被ばく			(約 3.2×10 ¹)			小計 (⑤+⑥+⑦+⑧)	約 3. 1×10 ¹	
時	⑧大気中へ放出された放射性物質の吸入	約 2.0×10 ⁻¹	約 3.2×10 ⁻¹	約 5.2×10 ⁻¹			合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 309	
	採取による八超奥時の彼はく			(ボ) 5.2×10) 約4.8×10 ¹		L	I		
	小計 (⑤+⑥+⑦+⑧)	約 2.1×10 ¹	約 2.7×10 ¹	(約 4. 9×10 ¹)					
				約 320					
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 1.3×10 ²	約 2.0×10 ²	(約 320)					・評価条件の相違
×1	「「「「」」「「「」」」」」」	ンクリート	百ち社家キ	わる施丁記					【相崎 6/7】
<u>※1</u> 差4	がけ蓮くした場合の被げく	<u>- / / / / / / / / / / / / / / / / / / /</u>	チで町台C	4 い 幻 旭 上 咲					局限 4 万州は, 丁のコン カリート協工調主な主
<u>//</u>									レ 引いた評価を実施し
									ている
	柏崎刈羽原子力発電所 6/7	7号炉 ((2017. 12. 2	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考		
------------	---	------------------------	-----------------------	--------------------------	---------------------	--------------	-----------		
表	7-3-1 評価結果の内訳(被ばく	線量が最	大となる班	E (C 班) の			・申請号炉数の相違		
	<u>合</u> 計)						【柏崎 6/7】		
(6	5号炉:代替循環冷却を用いて事	象収束	7 号炉:格;	納容器ベン					
	ト実施								
	(中央制御室内でマスクの着用を	考慮する	場合)(単	位:mSv)					
	被ぼく経路	6 号炉	7 号炉	合計*1					
		からの寄与	からの寄与						
	①原子炉建屋内等の放射性物質からのガ	0.1以下	約 1.3×10 ⁰	約 1.4×10 ⁰					
	ンマ線による中央制御室内での被ばく			(約 1.4×10 ⁰)					
	②放射性雲中の放射性物質からのガンマ	約4.1×10 ⁻¹	0.1以下	約4.4×10-1					
中	線による中央制御室内での被ばく			(約4.7×10 ⁻¹)					
央	③地表面に沈着した放射性物質のガンマ	約 4.1×10 ⁻¹	約 9.4×10-1	約 1.4×10 ⁰					
制	線による甲央制御室内での被はく			(約 1.5×10°)					
御	④ 室内に外気から取り込まれた放射性物 酸にトチュータ制御空中での地域と	約 3.0×10°	約 2.0×10 ¹	新 2.3×10 ⁻					
単	頁による中央前御至内での彼はく (内部) 内部独居ノ	約1.2×100	約2.2×10-1	(#) 2.3×10)					
在		πJ 1. 2 × 10	₩J 2. 3×10	(約14×10 ⁰)					
時	外部被ばく	約1.9×10º	約 1.9×10 ¹	約 2.1×10 ¹					
				(約 2.1×10 ¹)					
				約 2.6×10 ¹					
	小計 (①+②+③+④)	約 3.9×10°	約 2.2×10 ¹	(約 2.6×10 ¹)					
	⑤原子炉建屋内等の放射性物質からのガ			約 1.4×10 ¹					
	ンマ線による入退域時の被ばく	約 2.1×10 ⁰	約 1.2×10 ¹	(約 1.5×10 ¹)					
	⑥放射性雲中の放射性物質からのガンマ			約 4.4×10 ⁰					
入	線による入退域時の被ばく	約 2.3×10°	約 2.1×10"	(約 4.4×10 ⁰)					
退	⑦地表面に沈着した放射性物質からのガ	45 0 AV 100	(5 0 0×10)	約 4.1×10 ¹					
域	ンマ線による入退域時の被ばく	赤J 9.4×10 ⁻	前 3.2×10	(約 4.1×10 ¹)					
時	⑧大気中へ放出された放射性物質の吸入	約 2.1×10 ⁻¹	0.1以下	約 2.1×10 ⁻¹					
	摂取による入退域時の被ばく	,,,, <u>B</u> , 1., 10	011001	(約2.1×10-1)					
	小計 (⑤+⑥+⑦+⑧)	約 1.4×10 ¹	約 4.6×10 ¹	約 6.0×10 ¹					
				(約 6.1×10 ¹)					
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 1.8×10 ¹	約 6.8×10 ¹	約 86					
				(約 87)					
※ 1	括弧内:遮蔽モデル上のコン	クリート厚	夏を許容され	れる施工誤					
差	分だけ薄くした場合の被ばく線量	1. E.							

	柏崎刈羽原子力発電所 6/	7 号炉	(2017.12.	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表了	7-3-2 評価結果の内訳(被ばく	(線量が最	大となる	旺 (A 班) の			・申請号炉数の相違
	合計)					【柏崎 6/7】
(6	号炉:代替循環冷却系を用いて	事象収束	7 号炉:	格納容器べ			
	ント実	施)					
(=	中央制御室内でマスクの着用を	考慮しない	い場合) (<u>)</u>	単位 : mSv)			
	袖げく級路	<u>6 号炉</u>	<u>7.号炉</u>	승카**1			
	UATO A JEEPH	<u>からの寄与</u>	<u>からの寄与</u>	<u></u>			
	①原子炉建屋内等の放射性物質からのガ	約13×10 ⁻¹	約38×10 ⁻¹	約 5.1×10 ⁻¹			
	ンマ線による中央制御室内での被ばく	MJ 1. 5 × 10	MJ 5. 0 × 10	(約 5.7×10 ⁻¹)			
	②放射性雲中の放射性物質からのガンマ	約4.0×10 ⁻¹	約1.5×10 ⁰	約 2.0×10°			
中	線による中央制御室内での被ばく	*14.5×10	*9 1. 3 ~ 10	(約 2.1×10°)			
央	③地表面に沈着した放射性物質のガンマ	約55×10 ⁻¹	約1.7×10 ⁰	約 2.3×10°			
制	線による中央制御室内での被ばく	MJ 5. 5 × 10	"J 1. I × 10	(約 2.5×10°)			
御	④室内に外気から取り込まれた放射性物	約10×10 ²	約1.7×10 ²	約 2.7×10 ²			
室	質による中央制御室内での被ばく	,,,, 11 0 · · 10	"., IIIIO	(約 2.7×10 ²)			
滞	(内訳)内部被ばく	約 9.8×10 ¹	約 1.7×10 ²	約 2.7×10 ²			
在				(約 2.7×10 ²)			
時	外部被ばく	約 1.3×10°	約8.4×100	約 9.7×10°			
				(約 9.7×10°)			
	小計 (①+②+③+④)	約 1.0×10 ²	約 1.8×10 ²	約 2.8×10 ²			
				(約 2.8×10 ²)			
	⑤原子炉建屋内等の放射性物質からのガ	約 1.8×10°	約 5.8×10º	約7.6×10°			
	ンマ線による入退域時の被ばく			(約8.3×10))			
	⑥放射性雲中の放射性物質からのガンマ	約 1.9×10°	約 4.5×10°	約 6.4×10°			
入	線による入退域時の被ばく			(約 6.4×10°)			
退	⑦地表面に沈着した放射性物質からのガ	約 8.6×10°	約 3.1×10 ¹	約 4.0×10 ¹			
域	ンマ線による入退域時の被ばく			(約 4.0×10 ¹)			
時	⑧大気中へ放出された放射性物質の吸入	約 1.5×10 ⁻¹	約 4.3×10 ⁻¹	約 5.9×10 ⁻¹			
	摂取による入退域時の被ばく			(約 5.9×10-1)			
	小計 (⑤+⑥+⑦+⑧)	約 1.2×10 ¹	約 4.2×10 ¹	約 5.5×10 ¹			
				(約 5.5×10 ¹)			
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 1.1×10 ²	約 2.2×10 ²	約 330			
				(約 340)			
<u>×1</u>	括弧内:遮蔽モデル上のコン	<u>クリート</u> -	厚を許容さ	れる施工誤			
差分	うだけ薄くした場合の被ばく線						

	柏崎刈羽原子力発電所 6/	7号炉	(2017.12.	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉		備考
	表 8-1-1 評価結果のP	内訳(E 班	の7日目)	_		表 8-1-1 評価結果の内訳(A班の	1日目)	・評価結果の相違
句)	j号炉において代替循環冷却系	を用いて	事象を収束	する場合)		(残留熱代替除去系を用いて事象を収束	する場合)	【柏崎 6/7】
(中央制御室内でマスクの着用を	を考慮する	場合)(単	位:mSv)		(マスクの着用を考慮する場合)(単位	江:mSv)	
	油 ドイノ 級政	6 号炉	7 号炉	△卦※1				
		からの寄与	からの寄与			被ばく経路	2 号炉	
	①原子炉建屋内等の放射性物質からのガ	01以下	01以下	0.1以下				
	ンマ線による中央制御室内での被ばく	0.1 241	0.1 241	(0.1以下)		①原子炉建物内等の放射性物質からのガンマ線に	約 3.6×10 ⁻⁴	
	②放射性雲中の放射性物質からのガンマ	約 1 2×10 ⁻¹	約20×10 ⁻¹	約 3.2×10 ⁻¹		よる中央制御室内での被ばく 		
中	線による中央制御室内での被ばく	"JI. 27(10	", <u>2.</u> 07. 10	(約 3.4×10 ⁻¹)		②放射性雲中の放射性物質からのガンマ線による	約 1.5×10 ⁻¹	
央	③地表面に沈着した放射性物質のガンマ	約 1.1×10 ⁻¹	約 1.8×10 ⁻¹	約 3.0×10 ⁻¹		中央制御室内での被ばく		
制	線による中央制御室内での被ばく			(約 3.3×10-1)	中央制	③地表面に沈着した放射性物質のガンマ線による	約 3.1×10 ⁻¹	
御	④室内に外気から取り込まれた放射性物	約1.2×10 ⁰	約 1.9×10º	約 3.1×10 ⁰	室滞在	中央制御室内での被ばく		
室	質による中央制御室内での被ばく			(約 3.1×10°)		④室内に外気から取り込まれた放射性物質による	約 7.6×10 ⁰	
滞	(内訳)内部被ばく	約4.6×10-1	約 7.7×10 ⁻¹	約 1.2×10 ⁰		中央制御室内での被ばく		
在				(約 1.2×10 ⁰)		(内訳)内部被ばく	約 5.9×10 ⁰	
時	外部被ばく	約 6.9×10 ⁻¹	約 1.1×10°	約 1.8×10 ⁰		外部被ばく	約 1.7×10 ⁰	
				(約 1.8×10°)		小計 (①+②+③+④)	約 8.1×10 ⁰	
	小計 (①+②+③+④)	約 1.4×10 ⁰	約 2.3×10º	約 3.7×10°		⑤原子炉建物内等の放射性物質からのガンマ線に	約4.1×10-2	
				(約 3.7×10°)		よる入退域時の被ばく		
	⑤原子炉建屋内等の放射性物質からのガ	約 1.6×10 ⁰	約 5.2×10º	約 6.8×10 ⁰		⑥放射性雲中の放射性物質からのガンマ線による	約 2.5×10 ⁻²	
	ンマ線による入退域時の被ばく			(約7.8×10 ⁰)		入退域時の被ばく		
	⑥放射性雲中の放射性物質からのガンマ	約 8.6×10 ⁻¹	約 1.7×10º	約 2.6×10 ⁰	入退城	⑦地表面に沈着した放射性物質からのガンマ線に	約 3.4×10°	
入	線による入退域時の被ばく			(約2.6×10 ⁰)		よる入退域時の被ばく		
退	⑦地表面に沈着した放射性物質からのガ	約 5.9×10°	約 1.2×10 ¹	約 1.8×10 ¹		⑧大気中へ放出された放射性物質の吸入摂取によ こことになった。	約 2.2×10 ⁻²	
域	ンマ線による入退域時の被ばく			(約1.8×10 ¹)		る入退域時の被ばく	<i></i>	
時	⑧大気中へ放出された放射性物質の吸入	0.1以下	約 2.0×10 ⁻¹	約 2.9×10 ⁻¹		$1/\frac{1}{2}$ ((2)+(6)+(7)+(8))	約 3.5×100	
	摂取による入退域時の被ばく			(約 2.9×10 ⁻¹)		合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 12	
	小計 (⑤+⑥+⑦+⑧)	約 8.5×10º	約 1.9×10 ¹	約 2.8×10 ¹				
				(約 2.9×10 ¹)				
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 9.9×10º	約 2.1×10 ¹	約 31				
				(約 32)				
₩1	括弧内:遮蔽モデル上のコン	クリート	夏を許容さ	れる施工誤				・評価条件の相違
差分	だけ薄くした場合の被ばく線	量						【柏崎 6/7】
								島根2号炉は,予めコン
								クリート施工誤差を差
								し引いた評価を実施し
								ている

	柏崎刈羽原子力発電所 6/	7号炉	(2017.12.	20版)	東海第二発電所(2018.9.18版)		島根原子力発電所 2号炉		備考
	表 8-1-2 評価結果の内	內訳(A 班	の1日目)	_			表 8-1-2 評価結果の内訳(A班の1	日目)	・評価結果の相違
(両号炉において代替循環冷却系	を用いて	事象を収束	(する場合)			残留熱代替除去系を用いて事象を収束す	る場合)	【柏崎 6/7】
([中央制御室内でマスクの着用を	考慮しない	い場合) (主	单位 : mSv)		_	(マスクの着用を考慮しない場合)(単位	:mSv)	
	被ばく経路	6 号炉	7 号炉	合計*1					_
		からの寄与	からの寄与				被ばく経路	2 号炉	
	①原子炉建屋内等の放射性物質からのガ	約 1.0×10 ⁻¹	0.1以下	約 1.1×10-1			① 百子 后律物内 竿の 故 射 性物 質 か らの ガンマ 線 に ド		-
	ンマ線による中央制御室内での被ばく			(約 1.3×10-1)			(1)パート それわけもの 成 利 日本 夏 からの スク 、 豚による	約 3.6×10 ⁻⁴	
	②放射性雲中の放射性物質からのガンマ	約 2.2×10 ⁻¹	約 3.6×10 ⁻¹	約 5.8×10 ⁻¹		-			_
中	線による中央制御室内での被ばく			(約 6.1×10 ⁻¹)			②放射性雲中の放射性物質からのガンマ線による中 ・ 制作ですようの対応	約1.5×10 ⁻¹	
央	③地表面に沈着した放射性物質のガンマ	約 2.1×10 ⁻¹	約 3.5×10 ⁻¹	約 5.6×10 ⁻¹		-			-
制	線による中央制御室内での被ばく			(約 6.3×10-1)	中共	中央制御室	③地表面に に 着した 放射 性物 質の カンマ 緑による 中	約 3.1×10 ⁻¹	
御	④室内に外気から取り込まれた放射性物	約 9.5×10 ¹	約 1.6×10 ²	約 2.5×10 ²	ž	滞在時	大町町中11 Cの彼は、 の実内にめ与ふた町の込まれたお針州物質に下る山		_
室	質による中央制御室内での被ばく			(約 2.5×10 ²)			(*)エアトベル・ジャンシンシュルレールオービジョー・マンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシ	約 2.7×10 ²	
滞	(内訳)内部被ばく	約 9.5×10 ¹	約 1.6×10 ²	約 2.5×10 ²		-	(内訳) 内部被ばく	約2.6×10 ²	-
日	おがたドイ	約 9 4 × 10-1	約4.0×10 ⁻¹	(糸) 2.5×10°)			外部被ばく	約 1.7×10 ⁰	
	アトロル校「ムト	示5 2. 4 ^ 10	₩9 4. 0 × 10	₩10.5×10 (約6.6×10 ⁻¹)		-	小計 (①+②+③+④)	約 2.7×10 ²	_
				約2.6×10 ²			⑤原子炉建物内等の放射性物質からのガンマ線によ		_
	小計 (①+②+③+④)	約 9.6×10 ¹	約 1.6×10 ²	(約 2.6×10 ²)			る入退域時の被ばく	約 4.1×10 ⁻²	
	⑤原子炉建屋内等の放射性物質からのガ			約 8.2×10 ⁻¹		-	⑥放射性雲中の放射性物質からのガンマ線による入		-
	ンマ線による入退域時の被ばく	約 2.7×10 ⁻¹	約 5.5×10 ⁻¹	(約 9.3×10 ⁻¹)			退域時の被ばく	約 2.5×10 ⁻²	
	⑥放射性雲中の放射性物質からのガンマ			約 7.4×10 ⁻¹	А	入退城時	⑦地表面に沈着した放射性物質からのガンマ線によ	44. a. 1 a. 0	
入	線による入退域時の被ばく	約 2.5×10 ⁻¹	約4.9×10-1	(約 7.4×10 ⁻¹)			る入退域時の被ばく	約 3.4×10°	
退	⑦地表面に沈着した放射性物質からのガ			約 4.3×10°		Ī	⑧大気中へ放出された放射性物質の吸入摂取による	約1.1×10 ⁰	
域	ンマ線による入退域時の被ばく	約 1.4×10 ⁰	約 2.9×10 ⁰	(約 4.3×10°)		-	入退域時の被ばく	ж у 1. 1 × 10	
時	⑧大気中へ放出された放射性物質の吸入			0.1以下			小計 (⑤+⑥+⑦+⑧)	約 4.6×10°	
	摂取による入退域時の被ばく	0.1 U.F	0.1以下	(0.1以下)			合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 271	_
	小卦(同上同上同上回)	約1.0×10 ⁰	約4.0×10 ⁰	約 5.9×10°					
		#51.5×10	*5 4. 0 × 10	(約 6.0×10°)					
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約9.8×10 ¹	約 1 6×10 ²	約 260					
		"., or or or or	,,,, II 0. · I 0	(約 260)					
₩1	括弧内 : 遮蔽モデル上のコン	クリート	夏を許容さ	れる施工誤					・評価条件の相違
差分	うだけ薄くした場合の被ばく線:	量							【柏崎 6/7】
									島根2号炉は,予めコン
									クリート施工誤差を差
									し引いた評価を実施し
									ている

支払・1 工作 支払・1 工作 大学・1 工作	備考		島根原子力発電所 2号炉				東海第二発電所(2018.9.18版)								厚	20版)	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)													
	・評価結果の相違	2日目)	表 8-2-1 評価結果の内訳(B班の		考慮	、クを	尺 (マス	の内	ı線量)実効	損の	運転	室の	制御	中央	表	6-4 🗦	表(-	の2日目)	内訳 (E 班	表 8-2-1 評価結果の								
	【柏崎 6/7】	<u> する場合)</u>	(格納容器ベントを用いて事象を収束-							昜合)	ないず	した							系を用いて	春循環冷却	7 号炉:代料	(6 号炉:格納容器ベント実施 7								
		立:mSv)	(マスクの着用を考慮する場合)(単作																		又束)	事象収								
Distribution																			位:mSv)	場合)(単	を考慮する	(中央制御室内でマスクの着用								
() (2 号炉	- 		0 1	0 1	0 1 0 1	0 -1	0 -2	0 -1	0 1	0 0	0 0	0 0	0 0	0 -2	E 0 ⁻¹		合計**1	7 号炉 からの寄与	6 号炉 からの寄与	被ばく経路								
Value (statistication (statistit)))))))))))))))))))))))))))))))		約 6.7×10 ⁻⁵	①原子炉建物内等の放射性物質からのガンマ線に よる中央制御室内での被ばく		約3.9×1	約2.6×1	彩J3. 3×1 約2. 5×1	約3.2×1	約1.0×1	約14.3×1	約1.3×1	約4.5×1	彩18.1×1	がつい. ビート 約12. 9×1	約5.2×1	約2.3×1 約1.1×1 約1.1×1	E明 約2.3×1		約 3.1×10 ⁰	0.1以下	約 3.1×10 ⁰	①原子炉建屋内等の放射性物質からのガ								
● ●		約 4.0×10 ⁰	②放射性雲中の放射性物質からのガンマ線による				-				+	+		+		، بە	5		(約 3.3×10 ⁰) 約 3.0×10 ⁰			ンマ線による中央制御室内での被ばく ②放射性雲中の放射性物質からのガンマ								
 		//. o	中央制御室内での彼はく ③地表面に沈着した放射性物質のガンマ線による		2. 9×10 ¹	2.4×10 ¹	$.6 \times 10^{-1}$	$.5 \times 10^{-1}$	5. 1×10 ⁻	.9×10	5. 2×10 ⁰	8×10 ⁰	. 3×10 ⁰	2×10 ⁰	3. 7×10 ⁻	0.4×10 L.6×10	D班		(約 3.2×10 ⁰)	約 2.2×10 ⁻¹	約 2.8×10 ⁰	中 線による中央制御室内での被ばく								
Image: market in the second of the		約 3.1×10 1	中央制御室内での被ばく	中央制御	彩	約2	10%	約1	約6	10%	彩16				影響	3[5 [%]	51%	(約 8.7×10 ⁻¹ (約 9.8×10 ⁻¹)	央 ③地表面に沈着した放射性物質のガンマ 約8.7×10 ⁻¹ 制 線による中央制御室内での被ばく 約5.6×10 ⁻¹ 約3.2×10 ⁻¹										
● ●		約 2.2×101	④至内に外気から取り込まれた放射性物質による 中央制御室内での被ばく	 单 伸 仕 時	<10 ¹	<10 ¹	<10 1	<10 -1	< 10 -2	< 10 -1	<10 1	<10 0	<10 0	<10 ⁻¹	<10 0	<10 ¹	∶班 <10 ⁻¹	mSv/7∃	約 5.9×10 ⁰	御 ④室内に外気から取り込まれた放射性物 約4.7×10 ⁰ 約5.9×10 ⁰ 室 質による中央制御室内での被ばく 約4.7×10 ⁰										
市 内面相広 日上にが 内面相広 市< 市< 市<		約 7.9×10 ⁻¹	(内訳)内部被ばく		約5.4>	約2.7>	彩J3. 0 > 約2. 6 >	約2.8>	約1.2>	約5.5>	約2.7>	約4.8>	約6.8>	·····································	約6.1>	彩96. 0 > ※11. 4 >	S16.0>	劾線量((約 6.1×10°) 約 8.8×10 ⁻¹	第 (内訳) 内部被ばく 約4.5×10 ⁻¹ 約4.3×10 ⁻¹ 約8.8×10 ⁻¹										
Number Numer Numer Numer <td></td> <td>約 2.1×101</td> <td>外部被ばく</td> <td></td> <td></td> <td>_</td> <td></td> <td>-2</td> <td>ę</td> <td>-2</td> <td></td> <td>•</td> <td></td> <td>-</td> <td>ę.</td> <td>, 6 ,</td> <td>-2</td> <td>承.</td> <td>(約8.8×10⁻¹)</td> <td>約 8 9×10⁻¹</td> <td>約14.2×10⁰</td> <td>在時、日本地理</td>		約 2.1×101	外部被ばく			_		-2	ę	-2		•		-	ę.	, 6 ,	-2	承.	(約8.8×10 ⁻¹)	約 8 9×10 ⁻¹	約14.2×10 ⁰	在時、日本地理								
No. No. <td></td> <td>約 2.6×10¹</td> <td>小計 (①+②+③+④)</td> <td></td> <td>0×10</td> <td>4×10</td> <td>5×10 4×10</td> <td>3×10</td> <td>6×10</td> <td>2×10</td> <td>5×10</td> <td>7×10</td> <td>0×10</td> <td>0×10</td> <td>3×10</td> <td>3×10 0×10</td> <td>B班 3×10</td> <td></td> <td>(約5.0×10)</td> <td>πy 6. 2 ^ 10</td> <td>₩J 4. 2 ∧ 10</td> <td>1 21日11次は、</td>		約 2.6×10 ¹	小計 (①+②+③+④)		0×10	4×10	5×10 4×10	3×10	6×10	2×10	5×10	7×10	0×10	0×10	3×10	3×10 0×10	B班 3×10		(約5.0×10)	πy 6. 2 ^ 10	₩J 4. 2 ∧ 10	1 21日11次は、								
Image: contract		約 1.3×10 ⁻¹	⑤原子炉建物内等の放射性物質からのガンマ線に よる入退域時の被ばく		約13.	約2.	約8. 約2.	約8.	約2.	約9.	約5.	約4.	約8.	****	約2.	約6. 約13.	約16.		約 1.3×10 ¹	約 1.8×10 ⁰	約 1.1×10 ¹	小計 (①+②+③+④)								
シッペ能はなん温暖時の厳ばく 約3.5×10 約2.5×10 約2.5×10 約2.5×10 約3.5×10 約1.5×10		約 8.8×10 ⁻²	⑥放射性雲中の放射性物質からのガンマ線による		$\times 10^{3}$	$\times 10^{-0}$	×10 ⁻	$\times 10^{-2}$	$\times 10^{-3}$	× 10 ⁻¹	×10 ³	×10 ⁰	×10 ³	×10 3	×10 ⁰	× 10 -1 ×	▲班 ×10 -1		(約 1.4×10 ¹) 約 5.7×10 ⁰	46 0 101100	46 0. 01/10 ⁰	⑤原子炉建屋内等の放射性物質からのガ								
小 前 前 1<		約7.9×10 ⁰	⑦地表面に沈着した放射性物質からのガンマ線に	入退城時	約1.0>	約8.3>	新16.8> 約8.0>	約6.3>	約5.6>	約2.6>	約1.0>	約4.7>	約1.0>	約1.0>	約5.3>	約7.8、 約9.6>	A 約7.82		(約 6.1×10 ⁰)	約 2. 1×10°	約 3.6×10°	ンマ線による入退城時の被ばく								
$\frac{1}{k} \frac{1}{k} \frac{1}$		"51. 5×10	よる入退城時の被ばく (8)大気中へ放出された放射性物質の吸入摂取によ				手た放射	ばく)	ばく)	マ線及。被ばく	-	た放射	6 m	() ()	ばく)		マ線及		秋J 3.4×10° (約 3.4×10°)	約 1.6×10 ⁰	約 1.7×10 ⁰	 ⑤放射性裏中の放射性割質からのカンマ 入線による入退域時の被ばく 								
(a) (b) (b) (b) (b) (b) (b) (b) (c) (c)<		約 1.2×10 ⁻¹	る入退城時の被ばく			1	合 に沈着し	(内部被	(外部被	□直接ガン 線による	1	に沈着し		(内部被 (内部被	(外部被	、線による 性物質に	直接ガン		約 1.8×10 ¹ (約 1.8×10 ¹)	約 7.3×10 ⁰	約 1.1×10 ¹	 退 ⑦地表面に沈着した放射性物質からのガ w w w v w w k								
$\frac{1}{4\pi m (1 + 2m + 3m + 6m + 6m + 6m + 6m + 6m + 6m + 6$		約 8.2×10 ⁰	小計 (5+6+7+8)		1			て被		かいの	~	毛 地 上 地	(り質		ガンマた数	2050		約2.9×10 ⁻¹			時 (8)大気中へ放出された放射性物質の吸入								
小計 (⑤+⑥+⑦+⑧) 約1.7×10' 約1.1×10' 約2.8×10' 約2.8×10' 約2.8×10' 約2.8×10' 約2.8×10' 約2.8×10' 約2.8×10' 約41 合計 (①+②+③+④+⑤+⑦+⑧) 約2.8×10' 約1.3×10' 約41 約41 1		約 35	合計(①+②+③+④+⑤+⑦+⑧)		de la companya de la comp	イ	放出され、 よろ被げ	阪田され 質による:	یر د د	射性物質 シャイン	よる彼は小	放出され	ŭ<	気から取 放射性物		シャイン 放出され	射性物質		約2.9×10 ⁻¹)	約 1.2×10 ⁻¹	約 1.6×10-1	摂取による入退域時の被ばく								
合計(①+②+③+④+⑤+⑥+⑦+⑧) 約2.8×10 ¹ 約1.3×10 ¹ 約41 (約42) 次 部 ※1 括弧内:遮蔽モデル上のコンクリート厚を許容される施工誤 ※1 括弧内:遮蔽モデル上のコンクリート厚を許容される施工誤					~~		大気中へ 体物館に	大気中く抜生くばく	H 1	建屋内放 びスカイ	性物質に	大気中く 体物電に	による彼	 	й<	びスカイ 大気中へ	経 路 建屋内放		約 2.8×10 ¹ (約 2.8×10 ¹)	小計 (⑤+⑥+⑦+⑧) 約1.7×10 ¹ 約1.1×10 ¹ (約2.8×10 ¹ (約2.8×10 ¹										
※1 括弧内:遮蔽モデル上のコンクリート厚を許容される施工誤								入退域時						室内作業時			被 ばく		約 41 (約 42)	合計(①+②+③+④+⑤+⑥+⑦+⑧) 約 2.8×10 ¹ 約 1.3×10 ¹ 約 41 (約 42)										
差分だけ薄くした場合の被ばく線量	 ・評価条件の相違 【柏崎 6/7】 島根2号炉は,予めコン クリート施工誤差を差 し引いた評価を実施し ていろ 					1							•	QUI			I		れる施工誤	<u> </u> 夏を許容さ	- レ ンクリート 泉量	└ <u>※1</u> 括弧内:遮蔽モデル上のコン 差分だけ薄くした場合の被ばく線								

	柏崎刈羽原子力発電所 6/	7号炉	(2017.12	. 20版)	東海第二発電所(2018.9.18版)		島根原子力発電所 2号炉		備考
(6	<u>表 8-2-2</u> 評価結果のP 号炉:格納容器ベント実施 7	内訳(A 班 ′ 号炉 : 代	の1日目 替循環冷却	<u>)</u> 却系を用いて			表8-2-2 評価結果の内訳(A班の1) (格納容器ベントを実施して事象を収束す	日目) トる場合)	・評価結果の相違 【柏崎 6/7】
(=	<u>事象収</u> コ央制御室内でマスクの着用を	<u>(束)</u> ·考慮しな	い場合)(〔単位:mSv)	_	-	(マスクの着用を考慮しない場合)(単位	<u>Z</u> :mSv)	
	被ばく経路	6 号炉 からの寄与	7 号炉 からの寄与	合計**1			被ばく経路	2号炉	
	①原子炉建屋内等の放射性物質からのガ ンマ線による中央制御室内での被ばく	約 1.0×10 ⁻¹	0.1以下	約 1. 0×10 ⁻¹ (約 1. 3×10 ⁻¹)			①原子炉建物内等の放射性物質からのガンマ線による中央制御室内での被ばく	約 2.4×10 ⁻⁴	
ŧ	②放射性雲中の放射性物質からのガンマ 線による中央制御室内での被ばく	約 2.1×10 ⁻¹	約 3.6×10 ⁻¹	約 5.7×10 ⁻¹ (約 6.1×10 ⁻¹)			②放射性雲中の放射性物質からのガンマ線による中 央制御室内での被ばく	約 1.7×10 ⁻¹	
央	 ③地表面に沈着した放射性物質のガンマ 線による中央制御室内での被ばく 	約 2.1×10 ⁻¹	約 3.5×10-1	約 5.6×10 ⁻¹ (約 6.3×10 ⁻¹)		中央制御室	③地表面に沈着した放射性物質のガンマ線による中 央制御室内での被ばく	約 2.0×10-1	
御室	 ④室内に外気から取り込まれた放射性物 質による中央制御室内での被ばく 	約 9.0×10 ¹	約 1.6×10 ²	約 2.5×10 ² (約 2.5×10 ²)		滞在時	④室内に外気から取り込まれた放射性物質による中 央制御室内での被ばく	約 2.7×10 ²	
漭	- (内訳) 内部被ばく	約 9.0×10 ¹	約 1.6×10 ²	約 2.5×10 ²			(内訳)内部被ばく	約 2.6×10 ²	
白眼	外部被ばく	約 2.3×10 ⁻¹	約 4.0×10 ⁻¹	(約 2.5×10 ²) 約 6.3×10 ⁻¹			外部被ばく	約 1.6×10°	
	小計 (①+②+③+④)	約 9.0×10 ¹	約 1.6×10 ²	 (約 6. 4×10⁻¹) 約 2. 5×10² (約 2. 5×10²) 			5原子炉建物内等の放射性物質からのガンマ線によ る入退域時の被ばく	新 3.6×10 ⁻²	
	⑤原子炉建屋内等の放射性物質からのガ ンマ線による入退域時の被ばく	約 2.6×10 ⁻¹	約 5.5×10 ⁻¹	約 8. 1×10 ⁻¹ (約 9. 2×10 ⁻¹)			⑥放射性雲中の放射性物質からのガンマ線による入 退域時の被ばく	約 2.3×10 ⁻²	
٦	⑥放射性雲中の放射性物質からのガンマ 線による入退城時の被ばく	約 2.4×10 ⁻¹	約 4.9×10 ⁻¹	約 7.4×10 ⁻¹ (約 7.4×10 ⁻¹)		入退域時	⑦地表面に沈着した放射性物質からのガンマ線による入退域時の被ばく	約 3.9×10°	
退场	 ⑦地表面に沈着した放射性物質からのガ ンマ線による入退域時の被ばく 	約 1.4×10°	約 2.9×10°	約 4.3×10° (約 4.3×10°)			⑧大気中へ放出された放射性物質の吸入摂取による 入退域時の被ばく	約 8.9×10 ⁻¹	
岐	⑧大気中へ放出された放射性物質の吸入 摂取による入退破時の被げく	0.1以下	0.1以下	0.1以下 (0.1以下)			小計 (⑤+⑥+⑦+⑧)	約 4.8×10°	
	小計 (⑤+⑥+⑦+⑧)	約 1.9×10 ⁰	約 4.0×10°	約 5.9×10 ⁰ (約 6.0×10 ⁰)			合計(①+2+3+4+5+6+7+8)	約 272	
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 9.2×10 ¹	約 1.6×10 ²	約 260 (約 260)					・評価条件の相違
<u>※1</u> <u>差分</u>	 括弧内∶遮蔽モデル上のコン ♪だけ薄くした場合の被ばく線	クリート量	厚を許容	 される施工					【柏崎 6/7】 島根2号炉は, 予めコン クリート施工誤差を差 し引いた評価を実施し ている

	柏崎刈羽原子力発電所 6/	7号炉	(2017.12.2	20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
	表 8-3-1 評価結果のP	り訳(E 班の	の2日目)			・申請号炉数の相違
(6	号炉:代替循環冷却系を用いて	て事象収束	7 号炉:	格納容器べ		【柏崎 6/7】
	<u>ント実</u>	施)				
	中央制御室内でマスクの着用を	を考慮する	場合)(単	立:mSv)		
	被ばく経路	6 号炉 からの寄与	7 号炉 からの寄与	合計 ^{※1}		
	①原子炉建屋内等の放射性物質からのガ	0.1以下	約 1.8×10 ⁰	約 1.8×10 ⁰		
	②放射性雲中の放射性物質からのガンマ	約 1.3×10 ⁻¹	約 4.7×10 ⁰	約 4.8×10 ⁰		
中 央	線による中央制御室内での被ばく ③地表面に沈着した放射性物質のガンマ	約1.9×10 ⁻¹	約 9 8×10 ⁻¹	(約 5.2×10°) 約 1.2×10°		
制御	線による中央制御室内での被ばく ④室内に外気から取り込まれた放射性物	"J 1. J × 10	"J J. 0//10	(約 1.3×10 ⁰) 約 8.7×10 ⁰		
室	質による中央制御室内での被ばく	約 7.6×10 ⁻¹	約 8.0×10 ⁰	(約 9.0×10°)		
滞在	(内訳)内部被ばく	約 2.6×10-1	約 8. 0×10-1	約 1.1×10° (約 1.1×10°)		
時	外部被ばく	約 5.0×10 ⁻¹	約 7.2×10 ⁰	約 7.7×10 ⁰ (約 7.9×10 ⁰)		
	小計 (①+②+③+④)	約 1.1×10º	約 1.5×10 ¹	約 1.7×10 ¹ (約 1.7×10 ¹)		
	⑤原子炉建屋内等の放射性物質からのガ ンマ線による入退城時の被ぼく	約 7.5×10 ⁻¹	約 4.6×10 ⁰	約 5.4×10 ⁰ (約 5.7×10 ⁰)		
	⑥放射性雲中の放射性物質からのガンマ	約 8.2×10 ⁻¹	約 3.3×10 ⁰	約 4.2×10 ⁰		
入 退	線による入退域時の被はく ⑦地表面に沈着した放射性物質からのガ	約 3.6×10 ⁰	約2.4×10 ¹	(約 4.2×10°) 約 2.8×10 ¹		
域時	ンマ線による入退域時の被ばく 8大気中へ放出された放射性物質の吸入			(約 2.8×10 ¹) 約 4.2×10 ⁻¹		
	摂取による入退城時の被ばく	0.1以下	約 3.6×10 ⁻¹	(約 4. 2×10 ⁻¹)		
	小計 (⑤+⑥+⑦+⑧)	約 5.2×10°	約 3.2×10 ¹	*5 3.8×10 (約 3.8×10 ¹)		
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 6.3×10º	約 4.8×10 ¹	約 54 (約 55)		
※1 差少	括弧内 : 遮蔽モデル上のコン うだけ薄くした場合の被ばく線	クリート厚 量	夏を許容さ.	れる施工誤		

	柏崎刈羽原子力発電所 6/	7号炉	(2017.12.	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	表 8-3-2 評価結果の	为訳(A 班	の1日目)	_			・申請号炉数の相違
((6 号炉:代替循環冷却系を用い~	て事象収束	7 号炉:	格納容器べ			【柏崎 6/7】
	ント実	[施]					
(中央制御室内でマスクの着用を	考慮しない	い場合) (<u>)</u>	单位:mSv)			
		6 号炉	7 号炉				
	被ばく経路	からの寄与	からの寄与	合計**1			
	①原子炉建屋内等の放射性物質からのガ			約 1.1×10 ⁻¹			
	ンマ線による中央制御室内での被ばく	約 1. 0×10 ⁻¹	0.1以下	(約 1.3×10-1)			
	②放射性雲中の放射性物質からのガンマ			約 5.7×10 ⁻¹			
中	線による中央制御室内での被ばく	約 2.2×10 ⁻¹	約 3.5×10 ⁻¹	(約 6.0×10 ⁻¹)			
央	③地表面に沈着した放射性物質のガンマ			約 5.6×10 ⁻¹			
制	線による中央制御室内での被ばく	約 2.1×10 ⁻¹	約 3.5×10 ⁻¹	(約 6.3×10-1)			
御	④室内に外気から取り込まれた放射性物			約 2.4×10 ²			
室	質による中央制御室内での被ばく	約 9.5×10 ¹	約 1.5×10 ²	(約2.4×10 ²)			
滞	(内訳)内部被ばく	約 9.5×10 ¹	約 1.5×10 ²	約 2.4×10 ²			
在				(約 2.4×10 ²)			
時	外部被ばく	約 2.4×10 ⁻¹	約 3.8×10 ⁻¹	約 6.2×10 ⁻¹			
				(約 6.3×10-1)			
		約 .0.0×101	45 1 5 × 10 ²	約 2.5×10 ²			
	小計 (①+②+③+④)	約9.6×10	₩J 1.5×10°	(約 2.5×10 ²)			
	⑤原子炉建屋内等の放射性物質からのガ	<i></i>	<i>M</i> -	約 8.1×10 ⁻¹			
	ンマ線による入退域時の被ばく	₩J 2.7×10 *	約 5.4×10 °	(約 9.2×10 ⁻¹)			
	⑥放射性雲中の放射性物質からのガンマ	46 0 5 × 4 0-1	46 4 00 4 4 0 - 1	約 7.3×10 ⁻¹			
入	線による入退域時の被ばく	#J 2.5×10	前14.9×10 ⁻	(約7.3×10 ⁻¹)			
退	⑦地表面に沈着した放射性物質からのガ	約1.4×100	\$5.0.0×10 ⁰	約4.3×10 ⁰			
堿	ンマ線による入退域時の被ばく	前1.4×10	πJ 2. 9×10 ⁻	(約4.3×10 ⁰)			
時	⑧大気中へ放出された放射性物質の吸入	a 1 N T	0.1.DIT	0.1以下			
	摂取による入退域時の被ばく	0. I K F	0.1 U.F	(0.1以下)			
		佐1 0×10 ⁰	*5 0 0 × 100	約 5.9×10 ⁰			
	小計 ((3)+(5)+(7)+(8))	#J 1.9×10	πJ 3.9×10 ⁻	(約 6.0×10 ⁰)			
		約0.0×10	95 1 E V 102	約 250			
	□ Ħ (U T Ø T Ø T Ø T Ø T Ø T U T Ø)	₩J 9. 8 ^ 10	〒9 1. 5 ^ 10	(約 250)			
*	1 括弧内:遮蔽モデル上のコン	·クリート!	厚を許容さ	れる施工誤			
<u>差</u>	分だけ薄くした場合の被ばく線	量					

	柏崎刈羽原	至了之子,一般,一个个的"小子"。			東海第二発電所(2018.	9.18版)				島村	退原子力発電所 2 号炉	î	備考
表	9 中央制御	国室の居住性(炉心の著しい損傷)に係る被ばく評	第	6-6表 「	中央制御室の居住性(炉	この著しい損傷)に係る	表	9 中:	央制	卸室の居住	性(炉心の著しい損傷)に係る被ばく評価	
		価の主要条件 (1/4)			被ばく評価の主要評	価条件					の主要条件(1/4)		
	項目	評価条件		項目	評価条件	選定理由			項目	1	評価条	牛	
	発災プラント	6 号及び 7 号炉		評価事象	 「大破断LOCA+高圧炉心冷却失敗」 +低圧炉心冷却失敗」 (代替循環冷却) 系を使用できない場合) (全交流動力) 	審査ガイドに示されたとおり設定 (添付2参照)			発災に	プラント	2 号炬		
	int has do fo	大破断 LOCA 時に非常用炉心冷却系の	放出放	放出開始時間	 電源喪失の重畳を考慮) 格納容器漏えい:事象発生直後 ぬっ突眠正力逃が1 装置に上ろ減圧及 	M A A P 解析结果			477 /		大破断 LOCA 時に非常	用炉心冷却系の	
	評価爭象	機能及び全交流動力電源が喪失	射能量	非常用ガス処理	び除熱:事象発生から約19時間後	起動操作時間(115分)+負圧達成			計 作	曲爭家	機能及び全交流動	力電源が喪失	
/古	炉心熱出力	<u>3926MW</u>	評価条	系及び非常用ガ ス再循環系の起 動時間	事象発生から2時間後	時間(b分)(起動に伴い原子炉運 屋原子炉棟内は負圧になるが,保守 的に負圧達成時間として5分を想	停		炉心	熱出力	2436M	<u>I</u>	・設備の相違
현		1 サイクル:10000h(約416日)	伴	事故の評価期間	7日間	定) 審査ガイドに示す7日間における運転員の実効線量を評価する観点か	止				1 サイクル:10000h (約416日)		【柏崎 6/7,東海第二】
世		2 サイクル: 20000h	- 大			ら設定 原子炉建屋放出時の高さは地上放	時				2 サイクル:20000h		熱出力の相違
村	海岸時間	3 サイクル: 30000h	気 条拡 件散	放出源及び 放出源高さ	放出源:原子炉建屋からの放出(地上 高 0m),格納容器圧力逃がし装置排気 ロ放出(地上高 57m)及び非常用ガス	田として地上高 0m で設定 格納容器圧力逃がし装置排気口放 出時の高さは地上高 57m に設定	炉		運轉	云時間	3 サイクル:30000h		
~ 内	運転時间	4 サイクル: 40000h	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	лдцикајс	処理系出口(地上高140m)	非常用ガス処理系からの放出時は 排気筒高さとして地上140mに設定	内				4 サイクル:40000h		
内		5 サイクル:50000h		 中央制御室非常 用循環設備よう 素フィルタに上 	95%	フィルタユニットの設計値(チャコ ールフィルタ効率:97%)を保守的 に設定(添付910条昭)	内				5 サイクル:50000h		
蔵		(平均燃焼度:約30GWd/t)		る除去効率 中央制御室非常		フィルタユニットの設計値(高性能	蔵				1 サイクル: 0.229 (200 体)		
量		1 サイクル:0.229 (200体)		用換気糸 微粒子 フィルタによる 除去効率	99%	粒子フィルタ:99.97%)を保守的 に設定(添付 9,10 参照)	量		市麸	恒心の	2 サイクル:0.229 (200 体)		
	取巷炉心の	2 サイクル:0.229 (200体)	湖	中央制御室非常 用換気系の起動 時間	事象発生から2時間	 全交流動力電源喪失を考慮し、代替 電源からの電源供給開始時間から 保守的に設定 			快 料 当	は荷割合	3 サイクル:0.229 (200 体)		
	燃料装荷割合	3 サイクル:0.229 (200体)	しばく	空気流入率	1 回/h	非常用換気系作動時の空気流入率 測定試験結果の結果である0.47回			ASW171-4	200010	4 サイクル:0.229 (200体)		
	7.0011920191910	4 サイクル:0.229 (200体)	一個条		マスク着用を考慮する場合は事象発生	(添付 11 参照) 中央制御室非常用換気系作動前及					5 サイクル:0.084 (72体)		
		5 サイクル:0.084 (72体)	14	マスクによる 防護係数	 から3時間及び入退域時:50 (その他の期間及びマスク着用を考慮しない場合は評価期間中常時マスク着 	び中央制御室内の放射性物質濃度 が下がるまでの時間についてマス クの着用を考慮。(添付12参照)			気象	データ	島根原子力発電所における	1年間の気象データ	・代表気象年の相違
	気象データ	柏崎刈羽原子力発電所における1年間の気象データ		待避安	用なし) 事免発生から約 19 時間後	格納容器圧力逃がし装置により放出されるな針性物質からの決げく					(2009年1月~2009年1	2月)(地上約 20m)	【柏崎 6/7,東海第二】
		(<u>1985 年 10 月~1986 年 9 月</u>) (地上約 10m)		加圧開始時間	(ベント開始時)	おけんの成れに初見からの後はく を防護するために待避室に待避す ると思定			宝女	为放出	【格納容器フィルタベント系排気	〔管】 1時間	・評価条件の相違
	実効放出	全放出源:1 時間		待避室加圧時間	ベント開始から5時間	中央制御室内に流入した放射性物 質からの影響を十分に防護できる 時間として設定			総総	志時間	【原子炉建物】	1 時間	島根2号炉は、気象指針
	継続時間								1,1210			30時間	に基づき,実効放出継続
	建屋巻き込み	全放出源:考慮する							建屋着	き込み	全放出源:考	慮する	時間を設定(全放出量/
	累積出現頻度	小さい方から累積して 97%							累積出	出現頻度	小さい方から累	積して 97%	最大放出率)
		【格納容器圧力逃がし装置配管】					*		放出	酒 及71	【格納容器フィルタベント系排気	〔管】 地上 50m	
大		6 号炉:地上 40.4m, 7 号炉:地上 39.7m					気		放出	源高さ	【原子炉建物】	地上 Om	
気	放出源及び	【原子炉建屋中心】					拡		лдц		【排気筒】	地上 110m	
拡	放出源高さ	6 号炉:地上 0m, 7 号炉:地上 0m					散		由中	評価点:中	【格納容器フィルタベント系	排気管】 6 方位	
散		【主排気筒】					124		制御	央制御室中	【原子炉建物】	6 方位	
		6 号炉:地上 73m, 7 号炉:地上 73m						羊	雪雪	心	【排気筒】	9 方位	
	中央制御室	【格納容器圧力逃がし装置配管】 6号炉:6方位,7号炉:8方位							主	評価点:中	【格納容器フィルタベント系	排気管】 7 方位	
	着	【原子炉建屋中心】 6号炉:6方位,7号炉:9方位						н +	時	央制御室換	【原子炉建物】	7 方位	
	日 日	【主排気筒】 6号炉:6方位,7号炉:9方位						分位	μÛ	気系吸気口	【排気筒】	9 方位	
	方	【格納容器圧力逃がし装置配管】 6号炉:5方位,7号炉:9方位						14	_		【格納容器フィルタベント系排気	〔管】 9方位	
	位 入退域時	【原子炉建屋中心】 6号炉:5方位,7号炉:9方位							7	入退城時	【原子炉建物】	9 方位	
		【主排気筒】 6号炉:5方位,7号炉:9方位									【排気筒】	3 方位	
								_	_			_	

表 9	中山制御室の民住姓(111 5
	中天雨仰至976日住()	炉心の著しい損傷)に係る被ばく評	表	9 中央制御室の居住性	(炉心の著しい損傷)に係る被ばく評	
	価の主	要条件(2/4)		価の	主要条件(2/4)	
	項目	評価条件		項目	評価条件	
	百乙后故她家明混之时期处吐却	事故発生直後(なお,放射性物質は, MAAP 解析		故始索思温之时期的时期	事故発生直後(なお,放射性物質は, MAAP 解析に基	・評価結果の相違
	原于炉格酌谷蕃傭之い用炉时刻	に基づき事故発生約20分後から漏えい)		格納谷奋涌えい角始時刻	づき事故発生 <u>約5分後</u> から漏えい)	【柏崎 6/7】
		開口面積を格納容器圧力に応じ設定。MAAP 解析		收益应明计合成之后进行	開口面積を格納容器圧力に応じ設定。MAAP 解析上	・設計漏洩率の相違
		上で,格納容器圧力に応じ漏えい率が変化するも		格納谷恭から原于炉建物への 漏えい家	で,格納容器圧力に応じ漏えい率が変化するものとした。	【柏崎 6/7】
		のとした。		(希ガス,エアロゾル及び有機		
	原子炉格納容器から	【開口面積】		よう素)	1 Pd以下: 0.9Pdで <u>0.3%/日</u> 1 Pd~ · 2 0Pdで1 3%/日に相当する関ロ面積	
	原子炉建屋への漏えい率	1Pd以下:0.9Pdで <u>0.4%/日</u> ,				
		1~2Pd:2.0Pdで1.3%/日		格納容器から原子炉建物への	漏えい率を格納容器圧力に応じ設定。	
		に相当する開口面積		漏えい率		
				(無機よう素)	0.9Pd& F: 0.5%/ H	
原	百子炬圧力容器から原子炬格納容器	粒子状上う素・5%				
子	k	無機よう素・91%		原子炉圧力容器から格納容器	粒子状よう素: 5%	
炉	放出されるよう素の形態	有機よう素:4%	+6	に放出されるよう素の形態		
格	原子炉格納容器内 pH 制御の効果	未考慮	俗納	格納容器内pH 制御の効果	未考慮	
納	原子炉格納容器の		容		<u> 希ガス:1</u>	
容	漏えい孔における捕集効果	未考慮	器	格納容器の	粒子状放射性物質:10	・評価条件の相違
器	原子炉格納容器内での		外	漏えい孔における捕集効果	<u>無機よう素:1</u>	【柏崎 6/7,東海第二】
外	有機よう素の除去効果	未考慮	~		<u>有機よう素:1</u>	島根2号炉は,最確条件
\sim		・格納容器スプレイによる除去効果	0	格納容器内での	未考慮	として格納容器漏えい
Ø		・自然沈着による除去効果	放	有機よう素の际去効朱	・枚納突界スプレイに上る除土効果	孔における捕集効果等
放	原子炉格納容器内での	・サプレッション・プールでのスクラビングによ	Щ		 自然沈着による除去効果 	を考慮
出	粒子状放射性物質の除去効果	る除去効果		格納容器内での	・サプレッション・プールでのスクラビングによる除去	
		上記を MAAP 解析で評価		粒子状放射性物質の除去効果	効果	
	原子炉格納容器等への				上記をMAAP解析で評価	
	無機よう素の自然沈着率	9.0×10 ⁻⁴ [1/s](上限 DF=200)		格納容器等への	9.0×10 ⁻⁴ [1/s](上限 DF=200)	
	サプレッション・プールでのスクラ			無機よう素の自然沈着率		
	ビングによる無機よう素の除去係数	<u>無機よう素:10</u>		サフレッション・フールでのス	毎歩とる妻・5	芝佐タ供のお海
		停止時炉内内蔵量に対して,		クラビングによる無機より系の除去係数	<u>(成より糸・5</u>	・評価条件の相遅
		希ガス類:約9.2×10 ⁻¹ Ba 類:約2.1×10 ⁻⁷			停止時炉内内蔵量に対して,	
	原子炉格納容器から	よう素類:約 3.3×10 ⁻² Ru 類:約 2.6×10 ⁻⁸			希ガス類:約9.0×10 ⁻¹ Ba 類:約5.4×10 ⁻⁷	局恨乙万炉は、MAKK- の除土板粉土 室田
	ベントラインへの流入割合	<u>Cs 類:約2.6×10⁻⁶ La 類:約2.1×10⁻⁹</u>		格納谷器から	よう素類:約3.3×10 ⁻² Ru 類:約6.8×10 ⁻⁸	の际本体数を週用
		<u>Te 類:約5.2×10⁻⁷ Ce 類:約5.2×10⁻⁹</u>		マーティマーマル八司百	<u>Cs 類:約6.8×10⁻⁶ La 類:約5.4×10⁻⁹</u>	
					<u>Te 類:約1.4×10⁻⁶ Ce 類:約1.4×10⁻⁸</u>	【作出町 6/7】

	柏崎刈羽原子力発電所	6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)		島根原	子力発電所 2号炉	備考
表 9	中央制御室の居住性(炉心の著しい損傷)に係る被ばく評		表 9	中央制御室の居住性	注(炉心の著しい損傷)に係る被ばく評	
	価の主要	要条件(3/4)			価の)主要条件(3/4)	
	項目	評価条件			項目	評価条件	
原		格納容器ベントの実施を想定する場合:				格納容器ベントの実施を想定する場合:	
子		停止時炉内内蔵量に対して,				停止時炉内内蔵量に対して,	
炉		希ガス類:約1.4×10 ⁻² Ba 類:約2.3×10 ⁻⁶				<u>希ガス類:約4.2×10⁻³ Ba 類:約3.4×10⁻⁷</u>	・評価結果の相違
格		よう素類:約6.6×10 ⁻⁴ Ru 類:約2.8×10 ⁻⁷				よう素類:約2.8×10 ⁻⁴ Ru 類:約4.2×10 ⁻⁸	【柏崎 6/7】
納		<u>Cs 類:約2.8×10⁻⁵ La 類:約2.3×10⁻⁸</u>		格納		<u>Cs 類:約4.2×10⁻⁶ La 類:約3.4×10⁻⁹</u>	
容	原子炉格納容器から	<u>Te 類:約5.6×10⁻⁶ Ce 類:約5.6×10⁻⁸</u>		容器	格納容器から	<u>Te 類:約8.5×10⁻⁷ Ce 類:約8.5×10⁻⁹</u>	
器	原子炉建屋への流入割合	代替循環冷却系を用いて事象を収束することを		外 へ の	原子炉建物への流入割合	残留熱代替除去系を用いて事象を収束することを想定	
外		想定する場合:停止時炉内内蔵量に対して,		放出		する場合:停止時炉内内蔵量に対して,	
\sim		希ガス類:約9.1×10 ⁻² Ba 類:約2.2×10 ⁻⁶				<u> 希ガス類:約2.7×10⁻² Ba 類:約2.6×10⁻⁷</u>	・評価結果の相違
Ø		<u>よう素類:約3.7×10⁻³ Ru 類:約2.7×10⁻⁷</u>				<u>よう素類:約1.3×10⁻³ Ru 類:約3.3×10⁻⁸</u>	【柏崎 6/7】
放		<u>Cs 類:約2.7×10⁻⁵ La 類:約2.2×10⁻⁸</u>				<u>Cs 類:約3.3×10⁻⁶ La 類:約2.6×10⁻⁹</u>	
出		<u>Te 類:約5.4×10⁻⁶ Ce 類:約5.4×10⁻⁸</u>				<u>Te 類:約6.5×10⁻⁷ Ce 類:約6.5×10⁻⁹</u>	
	格納容器ベント開始時間	事故発生から <u>約38時間後</u>			格納容器ベント開始時間	事故発生から <u>約 32 時間後</u>	
	格納容器圧力逃がし装置の	希ガス, 有機よう素:1				有機よう素・50	
	除去係数	粒子状放射性物質, <u>無機よう素:1000</u>		柞	各納容器フィルタベント系の	無機よう素・100	
	トミまフィルカの除土が粉	希ガス,粒子状放射性物質,無機よう素:1			除去係数	粒子状放射性物質:1000	・設備・運用の相違
	より系ノイルクの际去団数	有機よう素:50					【柏崎 6/7】
	原子炉建屋原子炉区域からの	事故発生直後及び非常用ガス処理系の停止直後			原子炉建物からの	事故発生直後	・設備の相違 【柏崎 6/7】
	漏えい開始時刻				漏えい開始時刻		 運用の相違
環境	非常用ガス処理系起動時間	事故発生から <u>30 分後</u>			非常用ガス処理系起動時間	事故発生から <u>60 分後</u>	【柏崎 6/7】
\sim				環 			島根2号炉は、SGTを
D	非常用ガス処理系排風機風量	<u>2000m³/h</u>		の放出	非常用ガス処理系換気量	$4400 \text{m}^3/\text{h}$	停止しない ・設備・運用の相違
放山	原子炉建屋原子炉区域	事 故発生から 40 分後			原子炉建物	事故発生から70分後	【柏崎 6/7】
щ	負圧達成時間				負圧達成時間		・設備の相違
		事故発生から 40 分後~31 時間後*1:				・事故発生から <u>70 分後~168 時間後</u> : 1回/日 で屋	【柏崎 6/7】
		で屋外に放出				外に放出	・設備・運用の相違
	原子炉建屋原子炉区域の換気率	(非常用ガス処理系による放出)			原子炉建物の換気率	(非常用ガス処理系による放出)	【柏崎 6/7】
		<u>上記以外の期間</u> :				 事故発生から 70 分後までの期間: 無限大[回/日] 	・設備・運用の相違
		無限大[回/日] (原子炉建屋からの漏えい)				(原子炉建物からの漏えい)	【柏崎 6/7】
	非常用ガス処理系の	未考慮			非常用ガス処理系の	未考慮	
	フィルタ装置の除去効果				フィルタ装置の除去効果	· · · · ·	
<u>×1</u>	代替循環冷却系により事	「象収束する場合は168時間後まで					
1							

柏崎刈羽原子力発電所 6	/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)		島根原	子力発電所 2号炉	備考
表9 中央制御室の居住性(炉	心の著しい損傷)に係る被ばく評		表 9	中央制御室の居住性	(炉心の著しい損傷) に係る被ばく評価	
価の主要	条件 (4/4)			\mathcal{O}	主要条件(4/4)	
項目	評価条件			項目	評価条件	
可搬型陽圧化空調機 (風量,フィルタ除去効 率及び起動遅れ時間)	【 <u>風量】</u> 事故発生から 0~3 時間後: 0m ³ /h 事故発生から 3~168 時間後: 6000m ³ /h 【活性炭フィルタ除去効率】 希ガス,粒子状放射性物質: 0% 無機よう素,有機よう素: 99.9% 【高性能フィルタ除去効率】 希ガス,無機よう素,有機よう素: 0% 粒子状放射性物質: 99.9% 【起動遅れ時間】3 時間			中央制御室換気系 (風量,フィルタ除去効 率及び起動遅れ時間)	【再循環フィルタ流量】 事故発生から 0~2 時間後 : 0m³/h 事故発生から 2~168 時間後 : 32000m³/h 【外気取込流量】 事故発生から 0~2 時間後 : 0m³/h 事故発生から 2~168 時間後 : 17500m³/h 【チャコールフィルタ除去効率】 希ガス、粒子状放射性物質 : 0% 無機よう素、有機よう素 : 95% 【高性能粒子フィルタ除去効率】 希ガス、無機よう素、有機よう素 : 0% 粒子状放射性物質 : 99.9% 本和知知時間 2 0時間	・設備及び運用の相違 【柏崎 6/7】 ①の相違
中央制御室バウンダリ への外気の直接流入率	事故発生から <u>0~3 時間後</u> : 0.5 回/h 事故発生から <u>3~168 時間後</u> : 0 回/h		-	中央制御室バウンダリ	<u> ・1000年40時間)2時間</u> 事故発生から <u>0~2時間後</u> :0.5回/h 事故発生から2~168時間後:0回/h	・運用の相違 【 柏崎 6/7】
運 転 員 の ぞ気供給量	事故発生から 0~38 時間後: 0m ³ /h 事故発生から 38~48 時間後: <u>95m³/h^{**2}</u> 事故発生から 48~168 時間後: 0m ³ /h		運転員の被ご	中央制御室待避室空気ボンベ の 空気供給量	事故発生から 0~約 32 時間後 : 0m ³ /h 事故発生から約 32~約 40 時間後 : <u>11 m³/h</u> 事故発生から約 40~168 時間後 : 0m ³ /h	 ・空気供給量の相違 【柏崎 6/7】 要員数等の相違により 必要換気量が異なって いる
く	<u>入退域時:1000</u> 中央制御室滞在時:50(1日目のみ1000)		は く 評	中央制御室待避室バウンダリ 体積	<u>30m³</u>	・設備の相違 【柏崎 6/7】
価ヨウ素剤の服用	未考慮		価		入退域時 <u>:50</u>	・資機材の相違
交替要員体制の考慮	考慮する			マスクの防護係数	中央制御室滞在時:50(5時間着用,1時間外すことを % いませ)	【柏崎 6/7】
直接ガンマ線及びスカイシャインガ ンマ線の評価コード	 【原子炉建屋内の放射性物質からの寄与】 ・直接ガンマ線:QAD-CGGP2R コード ・スカイシャインガンマ線:ANISN コード, G33-GP2R コード 【格納容器圧力逃がし装置のフィルタ装置及び配 管並びに 			ヨウ素剤の服用 交替要員体制の考慮 直接ガンマ線及びスカイ	未考慮 考慮する 【原子炉建物内の放射性物質からの寄与】 ・直接ガンマ線:QAD-CGGP2R コード ・スカイシャインガンマ線:ANISN コード,G3	島根2号炉は全面マス ク(PF50)で評価
	<u>よう素フィルタ内の放射性物質からの寄与</u> ・直接ガンマ線:QAD-CGGP2R コード ・スカイシャインガンマ線:QAD-CGGP2R コード, G33-GP2R コード			シャインガンマ線の評価 コード	3−GP2R ⊐− ド	 ・評価条件の相違 【柏崎 6/7】 島根 2 号炉では、FCVS 株 4 地域は地下に記号」
地表面への沈着速度	エアロゾル粒子 : 1. 2cm/s 無機よう素 : 1. 2cm/s 有機よう素 : 4. 0×10 ⁻³ cm/s 希ガス : 沈着なし			地表面への沈着速度	エアロゾル粒子:1.2cm/s 無機よう素:1.2cm/s 有機よう素:4.0×10 ⁻³ cm/s 希ガス:沈着なし	☆桃宿は地下に設直し、 十分な遮蔽を設けるため線源として考慮して いない
評価期間	7 日間			評価期間	7 日間	
※2 代替循環冷却系により事 ては陽圧化装置の効果を考慮し	象収束する号炉からの影響に対し ない					・申請号炉数の相違 【柏崎 6/7】

计定	備考
<	
被ばく)	
被ばく	
ばく	
生物質による外部被ばく)	
<	
被ばく)	
被ばく	
ばく	
<	
() () () () () () () () () ()	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2
ТПШПУЛЯЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛ	東御弗→弗電所 (2018.9.18 №)	田文(京子)7)7注电) 車改発生からの経過時間[0] 0 70min 2 原子炉建物からの温えい 非常用方ス処理系放出 本売用方ス処理系放出 中央制御室内辺室気気系 東京系 望気末ンペ 運転等 中央制御室内辺室内への 外気の直接洗入 中央制御室存遊室に滞在
22 代稿欄登録が未得いて事業を必要する考察がある意味で知っております。 図 5 被ばく評価で想定する空調運用等タイムチャート		<u>図 5 被ばく評価で想定する空調運用</u>

<u>実線</u>・・ 波線・・

まとめ資料比較表 〔59 条補足説明資料 59-11 原子炉制御室の居住性に係る被ばく評価について(添付資料)〕

柏	崎刈羽原子力発電所	6/7号炉	(2017.12.20版)		東海第二発	隆電所(2018.9.18	島根原子力発電所 2 長				
添付資料	料 2 中央制御室の居住性	(炉心の著しい	\損傷) に係る被ばく評	添付資料	中央制御室の居	皆住性(炉心の著	しい損傷)に係る	添付資料	料 中央制御室の居住	主性(炉心の)灌
価につい	いて			被ばく評	価について			被ばく評価について			
2-1 中	央制御室の居住性(炉心の	著しい損傷)	に係る被ばく評価条件					1 中央	制御室の居住性(炉	心の著しい攅	員傷
								価条件			
<u>表</u>	2-1-1 大気中への放け	出放射能量評	² 価条件(1/5)	<u>第</u>	1-1表 大気中~	への放出放射能量	:評価条件(1/6)		<u>長 1-1 大気中への放出</u>	出放射能量評	価
項目	評価条件	選定理由	審査ガイドでの記載					項目	評価条件	選定理由	_
発災プ ラント	<u>6 号及び 7 号炉</u>	<u>運転号炉を想定。</u> <u>号炉ごとに評価</u> <u>し被ばく線量を</u> <u>足し合わせた。</u>	4.2(3)h. 同じ敷地内に複数の原子 炉施設が設置されている場合、全原 子炉施設について同時に事故が起き たと想定して評価を行うが、各原子 炉施設から被ばく経路別に個別に評 価を実施して、その結果を合算する ことは保守的な結果を与える。					発災ブラ ント	<u>2 号炉</u>	<u>運転号炉を想定</u>	
				項目	評価条件	選定理由	審査ガイドでの記載				
評価事	大破断 LOCA 時に非常用炉心冷却系 の機能及び全交流動力電源が喪失	 運転員の被ばく の観点から結果 が最も厳しくな る事故シーケン スとして選定(添 付資料2 2-2,2-22参照) 	4.1(2)a. 原子炉制御室の居住性に 係る被ばく評価では、格納容器破損 防止対策の有効性評価(⁸²⁾ で想定す る格納容器破損モードのうち、原子 炉制御室の運転員又は対策要員の被 ばくの観点から結果が最も厳しくな る事故収束に成功した事故シーケン ス(この場合、格納容器破損防止対 策が有効に働くため、格納容器破損防止対 策が有効に働くため、格納容器は健 全である)のソースターム解析を基 に、大気中への放射性物質放出量及 び原子炉施設内の放射性物質存在量 分布を設定する。	評価事象	「大破断LOCA+高圧炉 心冷却失敗+低圧炉心冷却 失敗」(代替循環冷却系を使 用できない場合)(全交流動 力電源喪失の重畳を考慮)	審査ガイドに示されたと おり設定 (添付 2 参照)	4.1(2)a.原子炉制御室の居住性 に係る被ばく評価では、格納容 器破損防止対策の有効性評価で 想定する格納容器破損モードの うち,原子炉削御室の運転して は対策要員の被ばくの観点から 結果が最も厳しくなる事故収束 に成功した事故シーケンス(こ の場合,格納容器破損防止対策 が有効に働くため,格納容器は 健全である)のソースターム解 析を基に、大気中への放射性物 質放出量及び原子炉施設内の放 射性物質存在量分布を設定す る。	評価事象	大破断LOCA 時に非常用炉心 冷却系の機能及び全交流動力電 源が喪失	運転員の被ばくの 観点から結果が最 も厳しくなる事故 シーケンスとして 選定(添付資料 2,18参照)	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
炉心熱	<u>3926MW</u>	定格熱出力	_	后心数中力	3 30370m	宁故塾山力	_	炉心熱出	<u>2436M</u> W	定格熱出力	
運転時間	1 サイクル:1000h (約416日) 2 サイクル:2000h 3 サイクル:3000h 4 サイクル:4000h 5 サイクル:5000h	 1 サイクル 13 ヶ 月 (395 日) を考慮 して,燃料の最高 取出燃焼度に余 裕を持たせ長め 	_	運転時間	1 サイクル当たり 10,000 時間(約 416 日)	1 サイクル 13 ヵ月 (395 日)を考慮して設定		運転時間	1 サイクル:10000h (約 416 日) 2 サイクル:20000h 3 サイクル:30000h 4 サイクル:40000h 5 サイクル:50000h	 1 サイクル 13 ヶ 月 (395 日) を考慮 して,燃料の最高 取出燃焼度に余裕 を持たせ長めに設 定 	
取替炉 心の 燃料装 荷割合	 (平均燃焼度:約 30GWd/t) 1 サイクル:0.229 (200 体) 2 サイクル:0.229 (200 体) 3 サイクル:0.229 (200 体) 4 サイクル:0.229 (200 体) 5 サイクル:0.084 (72 体) 	に設定 取替炉心の燃料 装荷割合に基づ き設定	_	取替炉心の 燃料装荷割 合	1 サイクル: 0.229 2 サイクル: 0.229 3 サイクル: 0.229 4 サイクル: 0.229 5 サイクル: 0.084	取替炉心の燃料装荷割合 に基づき設定		取替炉心 の 燃料装荷 割合	1 サイクル: 0.229 (200 体) 2 サイクル: 0.229 (200 体) 3 サイクル: 0.229 (200 体) 4 サイクル: 0.229 (200 体) 5 サイクル: 0.084 (72 体)	取替炉心の燃料装 荷割合に基づき設 定(ABWR の値を用 いて,炉内内蔵量 を計算し,熱出力 3926MW で規格化)	

<u>実線</u>・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現,設備名称の相違(実質的な相違なし)

寻炉	備考
そしい損傷)に係る	
§)に係る被ばく評	
条件 (1/5)	
索大ゴノビズの売共	
番鱼ルイトでの記載	
<u> </u>	・甲請号炉数の相違
	【柏崎 6/7】
4.1(2)a. 原子炉制御室の居住性に係	
る被ばく評価では、格納容器破損防止	
対策の有効性評価 ^(参2) で想定する格納	
容器破損モードのうち、原子炉制御室	
の運転員又は対策要員の被ばくの観点	
から結果が最も厳しくなる事故収束に	
 动した事故シーケンス(この場合、	
格納容器破損防止対策が有効に働くた	
め、格納容器は健全である)のソース	
ターム解析を基に、大気中への放射性	
物質放出量及び原子炉施設内の放射性	
物質存在量分布を設定する。	・熱出力の相違
—	
	【
	設計の相違
_	
_	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)		東海第二発電所	所(2018.9.18片	反)	島根原子力発電所 2号炉				備考
表 2-1-1 大気中への放出放射能量評価	西条件(2/5)	第1-	-1表 大気中への放	(出放射能量評価	5条件(2/6)	表 1-	1 大気中への放出放	射能量評価条件(2	/5)	
		項目 評価条件 選定理由 希ガス類: 約2.2×10 ¹⁹ Bq 「単位熱出力当たりの炉 よう素類: 約2.8×10 ¹⁹ Bq 「単位熱出力当たりの炉 CsOH類: 約1.1×10 ¹⁸ Bq 「単位熱出力当たりの炉 広う素類: 約1.3×10 ¹⁸ Bq 「単位熱出力当たりの炉 Sb類: 約1.3×10 ¹⁸ Bq 「単位熱出力当たりの炉 TeO3類: 約1.2×10 ¹⁹ Bq (単位熱出力当たりの炉 D*煮積量(Bq/MW)」× 「3.293MF(定格熱出力)」 (単位熱出力当たりの炉 の蓋積量(Bq/MW)」× 13.293MF(定格熱出力)」 「単位熱出力当たりの炉 1.3×10 ¹⁹ Bq 「単位熱出力当たりの炉 第1.2×10 ¹⁹ Bq 野家積量(Bq/MW)」 1.9×10 ¹⁹ Bq 「 1.9×10 ¹⁹ Bq 1.9×2.4×10 ¹⁹ Bq 1.9×9 1.9×9 1.9×9 1.9×9 <			審査ガイドでの記載 <u>4.3.(1)a. 希ガス類, ヨウ素</u> <u>類, Cs 類, Te 類, Ba 類, Ru</u> <u>類, Ce 類及び La 類を考慮す</u> <u>る</u> 。			 ・資料構成の相違 【東海第二】 島根2号炉は,表 1-2 に記載 		
項目 評価条件 選定理	審査ガイドでの記載		<u>(核種毎の炉内蓄積量を核</u> <u>種グループ毎に集約して</u> 記載)	<u>戸心の燃料装荷割合で算</u> <u>出したABWRのサイク</u> レ末期 ^{※1} の値を使用)		項目	評価条件	選定理由	審査ガイドでの記載	
原子炉格納容器漏えい: 原子炉格納容器漏えい: 事故発生直後(なお,放射性物質 MAAP解析に基づ 事放発生直後(なお,放射性物質 MAAP解析に基づ は、MAAP解析に基づき事故発生約20 格納容器ベント: 分後から漏えい) MAAP解析に基づ 椿納容器ベント: 原子炉建屋原子炉目 事故発生から約38時間後 原子炉建屋原子炉目 時刻 事故発生加ら約38時間後 原子炉建屋原子炉区域漏えい: が解消する時刻 事故発生直後及び非常用ガス処理 東子炉建屋原子 非常用ガス処理系による放出: 達成時間を参照 事故発生から <u>40分後</u> (添行資料22-6	 えい: く 4.3(4)a.放射性物 質の大気中への放 (く) 出開始時刻及び放 出職続時間は 炉区域の負圧 4.1(2)a で選定した事故シーケンス による放出: のソースターム解 析結果を基に設定する。 	放出開始時間	格納容器漏えい: <u>事象発生直</u> 後 格納容器圧力逃がし装置に よる格納容器減圧及び除 熱:事象発生から <u>約 19 時間</u> 後	MAAP解析結果	4.3. (4)a. 放射性物質の大気 中への放出開始時刻及び放出 継続時間は,4.1(2)a で選定 した事故シーケンスのソース ターム解析結果を基に設定す る。	放出開始 時刻	 原子炉格納容器漏えい: 事故発生直後(なお,放射性 物質は、MAAP解析に基づき 事故発生約5分後から漏えい) 格納容器ベント: 事故発生から約32時間後 原子炉棟からの漏えい: 事故発生直後 非常用ガス処理系による放出: 事故発生から 70分後 	 原子炉格納容器漏えい: MAAP解析に基づく 格納容器ペント: MAAP解析に基づく 原子炉棟からの漏えい:原子炉 棟の負圧が達成されるまでの 時刻 非常用ガス処理系による放出: 原子炉棟の負圧達成時間を 参照 (添付資料 6 参照) 	4.3(4)a.放射性物質 の大気中への放出開 始時刻及び放出継続 時間は4.1(2)aで選 定した事故シーケン スのソースターム解 析結果を基に設定す る。	 ・解析結果の相違 【柏崎 6/7,東海第二】 ・設備及び運用の相違 【柏崎 6/7,東海第二】
原子炉格 原子炉格納容器内 納容器内 は、重大事故等対処 pH 未考慮 制御の効 料2 2-19 を参照	1 pH 制御設備 型設備と位置付 慮しない 結果は,添付資)	原子炉格納 容器内 p H 制御の効果	す オ 考慮しない い	サプレッション・プール kpH制御設備は,重大 事故等対処設備と位置付 けていないため,保守的 こ設定	_	原子炉格納容器 内 pH 制御の効果	未考慮	格納容器内 pH 制御設備は,重 大事故等対処設備と位置付け ていないため考慮しない	_	局低25分は,争政死生 から70分で原子炉棟負 圧確保
原子炉圧 力容器か ら原子炉 粒子状よう素:5% 廃子炉格納容器内 原子炉格納容器内 本機よう素:91% 果に期待しないたい に放出さ 有機よう素:4% れるよう	4.3(1)a. 原子炉格 約容器内への放出 め,R.G.1.195 割合の設定に際し、 ヨウ素類の性状を 適切に考慮する。	よう素の形 態 <u>第1-</u> _{項目}	粒子状よう素:5% 無機よう素:91% 有機よう素:4% -1表大気中への放 評価条件	R. G. 1. 195 ^{**2} に基づき ^{役定} (出放射能量評価 _{選定理由}	4.3(1) a. 原子炉格納容器への放出割合の設定に際し、ヨウ素類の性状を適切に考慮する。 5条件(3/6) 審査ガイドでの記載	原子炉圧力容器 から格納容器に 放出されるよう 素の形態	粒子状よう素:5% 無機よう素:91% 有機よう素:4% 開口面積を格納容器圧力に応 じ設定。	格納容器内 pH 制御の効果に 期待しないため, R.G.1.195 に 基づき設定	 4.3(1)a. 原子炉格納 容器内への放出割合 の設定に際し、ヨウ素 類の性状を適切に考慮する。 	
素の形態 開口面積を格納容器圧力に応じ設定。 原子炉格 MAAP解析上で,格納容器圧力に応じ、漏えい率が変化するものとした。 原子炉格納容器の 6原子炉 【開口面積】 (0.9Pd で 0.4%/目) 違屋への 1Pd 以下: 0.9Pd で 0.4%/目, 式に基づき設定 漏えい率 1~2Pd : 2.0Pd で 1.3%/目 式に基づき設定	 設計漏えい率 4.3(3)e. 原子炉格 納容器漏えい率は、 4.1(2)a で選定し た事故シーケンス の事故進展解析結 果を基に設定する。 	原子炉格納容器 子炉建屋への (希ガス,エア び有機よう素)	器から原 1Pd以下:0.9Pdで0.5 漏えい率 /日 1Pd 超過:2Pdで1.39 /日	 MAAP解析にて見 炉格納容器の開口員 を設定し格納容器の に応じ漏えい率が変 するものとし、原子(納容器の設計漏えい (0.9Pd で 0.5%/1) 及びAECの式等に づき設定(添付3参) 	 第子 4.3(3)e. 原子炉 前積 格納容器漏えい E力 率は,4.1(2)a で 変化 選定した事故シ 戸格 ーケンスの事故 準属解析結果を 基に設定する。 三基 	格納容器から原 子炉建物への漏 えい率(希ガス, エアロゾル及び 有機よう素)	MAAP解析上で,格納容器圧 力に応じ漏えい率が変化する ものとした。 【開口面積】 1Pd以下:0.9Pdで <u>0.5%/日</u> , 1Pd~:2.0Pdで1.3%/日 に相当する開口面積	格納容器の設計漏えい率 (0.5%/日)及び,AEC式に 基づき設定	 4.3(3)e. 原子炉格納 容器漏えい率は、 4.1(2)a で選定した 事故シーケンスの事 故進展解析結果を基 に設定する。 	・漏えい率の相違 【柏崎 6/7】 設計の相違
		原子炉格納容器 子炉建屋への∛ (無機よう素)	 Ⅰ. 5h 後~19. 5h 後:1.35 ✓日 上記以外の期間:0.55 ✓日 	 原子炉格納容器の計 漏えい率及びAEC 式等に基づき設定(株 容器圧力が0.9Pdをま る期間を包絡する」 に1.3%/日の漏えい を設定)(添付3参照 	^文 計 C の 各納 超え こ う () 率 ()	格納容器から原 子炉建物への漏 えい率 (無機よう素)	漏えい率を格納容器圧力に応 じ設定。 【漏えい率】 0.9Pd以下:0.5%/日 0.9Pd~ :1.3%/日	格納容器の設計漏えい率及び AECの式に基づき設定(格納 容器圧力が 0.9Pd を超える期 間を包絡するように 1.3%/日 の漏えい率を設定)	 4.3(3)e. 原子炉格納 容器漏えい率は、 4.1(2)a で選定した 事故シーケンスの事 故進展解析結果を基 に設定する。 	

柏崎刈羽原子	子力発電所 6/	7 号炉 (2017	7.12.20版)		東海第二発電	電所(2018.9.18片	反)			備考		
表 2-1-1 大	、気中への放出放射	村能量評価条件	(3/5)	第1-	1表 大気中への	放出放射能量評価		表 1-1 大気	「中への放出放射	能量評価条件	(3/5)	
項目	評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイドでの記	
原子炉格納容器の漏えい 孔における捕集効果	未考慮	保守的に考慮しない ものとした	_	原子炉格納 容器の漏え い孔におけ る捕集効果	考慮しない	保守的に考慮しないもの とした	_	格納容器の漏えい孔にお ける捕集効果	希ガス:1 粒子状物質:10 無機よう素:1 有機よう素:1	<u>粒子</u> 状物質に対し <u>て</u> ,格納容器の漏え <u>い孔における捕集効</u> <u>果を考慮^{*1}</u>		・評価条件の相違 【柏崎 6/7,東海第二】 島根2号炉は,最確条件 として格納容器漏えい
原子炉格納容器内での粒 子状放射性物質の除去効 果	 ・格納容器スプレイによる 除去効果 ・自然沈着による除去効果 ・サプレッション・プール でのスクラビングによ る除去効果 上記を MAAP 解析で評価 	選定した事故シーケ ンスの事故進展解析 条件を基に設定	4.3(3)c. 原子炉格納容 器スプレイの作動につい ては、4.1(2) a で選定 した事故シーケンスの事 故進展解析条件を基に設 定する。 4.3(3)d. 原子炉格納容 器内の自然沈着率につい ては、実験等から得られ た適切なモデルを基に設 空する。	原子炉格納 容器内での 除去効果 (エ アロゾル) <u>第</u> 1一	MAAP解析に基づく(沈 着, サブレッション・プー ルでのスクラビング及びド ライウェルスプレイ)	MAAPのFP ^{挙動モデ} ル (添付4参照) 放出放射能量評価	4.3(3)c. 原子炉格納容器ス プレイの作動については、 4.1(2)a で選定した事故シ ーケンスの事故進展解析条 件を基に設定する。 4.3(3)d. 原子炉格納容器内 の自然沈着率については、 実験等から得られた適切な モデルを基に設定する。 5条件(4/6)	格納容器内での粒子状放 射性物質の除去効果	 ・格納容器スプレイによる 除去効果 ・自然沈着による除去効果 ・サプレッション・プール でのスクラビングによ る除去効果 上記をMAAP解析で評価 	選定した事故シーケ ンスの事故進展解析 条件を基に設定	 4.3(3)c. 原子炉格納容器 スプレイの作動について は、4.1(2) a で選定した 事故シーケンスの事故進展 解析条件を基に設定する。 4.3(3)d. 原子炉格納容器 内の自然沈着率について は、実験等から得られた適切なモデルを基に設定する。 	北における捕集効米等を考慮
		保守的に考慮しない	定する。	項目	評価条件	選定理由	審査ガイドでの記載			但古地与老帝主体。		
原子炉格納容器内での有機よう妻の除主効果	未考慮	ものとした	_	原子炉格納容	また 老歯したい	根字的に設定		格納容器内での有機よう 素の除去効果	未考慮	保守的に考慮しない ものとした	—	
原子炉格納容器等への無 機よう素の自然沈着率	9.0×10 ⁻⁴ [1/s] (上限 DF=200)	CSE 実験に基づき設定 (添付資料 2 2-5 参 照)	4.3(3)d. 原子炉格納容 器内の自然沈着率につい ては、実験等から得られ た適切なモデルを基に設 定する。	 (有機よう素) 原子炉格納 容器内での 除去効果(無 機よう素) 	自然沈着率:9.0×10 ⁻⁴ (1/s) (原子炉格納容器内の 最大存在量から 1/200まで) サプレッション・プー	C S E 実験及び Standard Review Plan 6.5.2 ^{*3} に基づき設定 (添付5参照)	4.3(3)d. 原子炉格納容 器内の自然沈着率につ いては,実験等から得ら れた適切なモデルを基 に設定する。	格納容器等への無機よう 素の自然沈着率	9.0×10 ⁻⁴ [1/s] (上限 DF=200)	CSE 実験に基づき設 定 (添付資料 5参照)	4.3(3)d. 原子炉格納容器 内の自然沈着率について は、実験等から得られた適 切なモデルを基に設定す る。	
サプレッション・プールで のスクラビングによる無 機よう素の除去係数	<u>無機よう素:10</u>	Standard Review Plan6.5.5 に基づき 設定	_	<u>第1</u>	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.5.5 ^{*4} に基づき設定 (添付6参照) の放出放射能量評	 范価条件(6/6)	サプレッション・プールで のスクラビングによる無 機よう素の除去係数	<u>無機よう素:5</u>	NUREG-0800 Standard Review Plan6.5.5 に	_	・評価条件の相違 【柏崎 6/7,東海第二】
格納容器圧力逃がし装置 の除去係数	 希ガス:1 有機よう素:1 無機よう素:1000 粒子状放射性物質:1000 希ガス:1 		_	格納容器圧力逃 がし装置の除去 係数	 希ガス:1 有機よう素:50 無機よう素:100 エアロゾル:1,000 	設計値に基づき設定	_	格納容器フィルタベント 系での除去係数	 希ガス:1 有機よう素:50 <u>無機よう素:100</u> 粒子状放射性物質:1000 	に基づき 設定 設計値	_	 島根2号炉は、MARK-Ⅰ の除去係数を適用 ・評価条件の相違
よう素フィルタの除去係	粒子状放射性物質:1	—	_		, , , , , , , , , , , , , , , , , , , ,			※1 「原子炉格納容器からの	漏えいに関するエアロゾル粒	子の捕集効果の設定につい	いて」 東北電力株式会社, 東京	【柏崎 6/7】
数	無機よう素:1	いもは	-					電力ホールディングス株式会社	,,中部電力株式会社,北陸電力)株式会社,中国電力株式会	社,日本原子力発電株式会	設計の相違
	11版よりポ・50	四月月又月	<u> </u>					社,電源開発株式会社,	2019 年 12 月			

柏崎刈翔	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			東海第	二発電所(2018	. 9. 18 版)			島根原子力発電		備考	
表 2-1-	-1 大気中への放出放	射能量評価条件	(4/5)	<u>第1-1表</u> 大気中	コーの放出放射貧	能量評価条件(6/6)	表	1-1 大気中への放出放射	能量評価条件(4/5)	
項目	評価条件	選定理由	審査ガイドでの記	希ガス類	<u>:約9.5×10⁻¹</u>			項目	評価条件	選定理由	審査ガイドでの記載	
原子 炉格 子 炉格か ら 子 器 ン ン へ の 合 <u>L</u> <u>C</u>	亭止時炉内内蔵量に対して, 希ガス類:約9.2×10 ⁻¹ よう素類:約3.3×10 ⁻² ふ類:約2.6×10 ⁻⁶ 企類:約5.2×10 ⁻⁷ 品類:約2.1×10 ⁻⁷ ね類:約2.6×10 ⁻⁸ 品類:約2.1×10 ⁻⁹ に類:約5.2×10 ⁻⁹	MAAP 解析結果及び NUREG-1465 の知見 に基づき設定(添 付資料2 2-3参照) よう素類について は、よう素の化学形 態に応じた原子炉 格納容器内での除 去のされかたの違 いを考慮	 4.3(4) a. 放射性物 質の大気中への放 出開始時刻及び放 出継 続時間は、4.1 (2) a で選定した事故 シーケンスのソー スターム解析結果 を基に設定 	格納容器圧力 C s OH類 逃がし装置への放出割合 T e O 2類 B a O類 M o O 2類 C e O 2類 L a 2O 3類	$: 約 1.0 \times 10^{-7} $: 約 4.0 × 10 ⁻⁷ : 約 8.9 × 10 ⁻⁸ : 約 3.6 × 10 ⁻⁸ : 約 3.6 × 10 ⁻⁸ : 約 4.5 × 10 ⁻⁹ : 約 8.9 × 10 ⁻¹⁰ : 約 3.6 × 10 ⁻¹⁰	MAAP解析結 果及びNURE G-1465 の知見 に基づき設定(添 付7参照)	_	格 納 容 器 か ら ベ ン ト ラ イ ン へ の 流 入 割合	停止時炉内内蔵量に対して, <u>希ガス類:約9.0×10⁻¹</u> <u>よう素類:約3.3×10⁻²</u> <u>Cs 類:約6.8×10⁻⁶</u> <u>Te 類:約1.4×10⁻⁶</u> <u>Ba 類:約5.4×10⁻⁷</u> <u>Ru 類:約5.4×10⁻⁸</u> <u>La 類:約5.4×10⁻⁹</u> <u>Ce 類:約1.4×10⁻⁸</u>	MAAP 解析結果 及びNUREG -1465の知見に基づ き設定(添付資料 3参照) よう素類について は、よう素の化学形 態に応じた格納容器 内での除去のされか たの違いを考慮	4.3(4)a. 放射性物 質の大気中への放出 開始時刻及び放出継 続時間は、4.1(2)a で選定した事故シー ケンスのソースター ム解析結果を基に設 定	・評価結果の相違 【柏崎 6/7,東海第二】
構構 構構 項 預 正 E 正 E 正 E 正 E 正 E 正 E 正 E 正 E 正 E 正 E 正 E 正 E 正 E 正 E 正 E 二 E 二 E 正 E E E E E E E	各納容器ペントの実施を想定 する場合: 亭止時炉内内蔵量に対して, 希ガス類:約1.4×10 ⁻² よう素類:約2.8×10 ⁻⁵ 20:類:約2.8×10 ⁻⁵ 20:類:約2.8×10 ⁻⁷ 20:類:約2.8×10 ⁻⁷ 20:類:約2.3×10 ⁻⁸ 20:類:約5.6×10 ⁻⁸ 大替循環冷却系を用いて事象を 収束することを想定する場合: 亭止時炉内内蔵量に対して, 希ガス類:約9.1×10 ⁻² よう素類:約5.4×10 ⁻⁶ 20:類:約5.4×10 ⁻⁶ 20:類:約2.7×10 ⁻⁵ 20:類:約2.7×10 ⁻⁶ 20:類:約2.2×10 ⁻⁶ 20:類:約2.2×10 ⁻⁸ 20:約5.4×10 ⁻⁸	同上	同上	第1-1表 大気中 原子炉格納容器 希ガス類 小ら原子炉建屋 C s I類 への漏えい割合 S b 類 T e O2類 S r O類 B a O類 Mo O2類 C e O2類 L a 2O3類	<u>1への放出放射角</u> <u>:約4.3×10⁻³</u> <u>:約6.2×10⁻⁵</u> <u>:約6.7×10⁻⁶</u> <u>:約6.7×10⁻⁶</u> <u>:約2.7×10⁻⁶</u> <u>:約2.7×10⁻⁶</u> <u>:約3.4×10⁻⁷</u> <u>:約6.7×10⁻⁸</u> <u>:約2.7×10⁻⁸</u>	<u> 宅 量</u> 評価条件(MAAP解析結 果及びNURE G-1465 ^{*5} の知 見に基づき設定 (添付7参照)	<u>4/6)</u> 	格 納 容 器 か 建 み へ の 流 入 割 合	格納容器ペントの実施を想定す る場合: 停止時炉内内蔵量に対して, <u>希ガス類:約4.2×10⁻³</u> <u>よう素類:約2.8×10⁻⁴</u> <u>Cs 類:約4.2×10⁻⁶</u> <u>Te 類:約4.2×10⁻⁶</u> <u>Te 類:約8.5×10⁻⁷</u> <u>Ba 類:約3.4×10⁻⁷</u> <u>Ba 類:約3.4×10⁻⁹</u> <u>Ce 類:約8.5×10⁻⁹</u> <u>Ce 類:約8.5×10⁻⁹</u> <u>Ce 類:約8.5×10⁻⁹</u> <u>Ce 類:約8.5×10⁻⁹</u> <u>残留熱代替除去系を用いて事象</u> <u>を収束することを想定する場合:</u> <u>停止時炉内内蔵量に対して,</u> <u>希ガス類:約2.7×10⁻²</u> <u>よう素類:約1.3×10⁻³</u> <u>Cs 類:約3.3×10⁻⁶</u> <u>Te 類:約6.5×10⁻⁷</u> <u>Ba 類:約2.6×10⁻⁷</u> <u>Ba 類:約2.6×10⁻⁷</u> <u>Ba 類:約2.6×10⁻⁹</u> <u>Ce 類:約6.5×10⁻⁹</u>	同上	同上	・評価結果の相違 【柏崎 6/7,東海第二】 ・構成の相違 【東海第二】 島根2号炉は,残留熱代 替除去系を用いて事象 収束したケースの評価 を記載

柏崎刈	羽原子力発電所 6/7号	炉 (2017.12	20版)		東海第二発電	 〔11] 〔11] 〔11] 〔11] 〔11] 〔11] 〔11] 〔11]	坂)			備考		
表 2-1-	-1 大気中への放出放射能量	量評価条件(5/	(5)	<u>第1-1表</u>	大気中への	放出放射能量評值	西条件(4/6)	表 1	-1 大気中への放出放射	能量評価条件(5/	/5)	
項目	評価条件	選定理由	審査ガイドでの		無限大/日(地上			項目	評価条件	選定理由	審査ガイドでの記載	
原子炉建屋原	 ・原子炉建屋原子炉区域負圧維持期間以 外:無限大[回/日] ・原子炉建屋原子炉区域負圧維持期間:非 	非常用ガス処理系に より負圧維持してい ない期間は原子炉建 屋原子炉区域内に放 射性物質が保持され	nL#X	原子炉建屋から 大気への漏えい 率(非常用ガス 処理系及び非常 用ガス再循環系 の起動前)	(原子炉格納容器 から原子炉建屋 へ漏えいした放 射性物質は、即 座に大気へ漏え いするものとし て評価)	保守的に設定	_		 ・原子炉棟負圧維持期間以外:無限大 [回/日] 	非常用ガス処理系により 負圧維持していない期間 は原子炉棟に放射性物質 が保持されないものとし		
子炉区域の換	常用ガス <u>処理系の</u> 定格風量 <u>2000m³/h</u> によ る換気率 により屋外に放出(た	ないものとした。非常	—	第1-1表	大気中への	放出放射能量評価	西条件(5/6)	原子炉棟の換 気率	・原子炉棟負圧維持期間:非常用ガス	た。非常用ガス処理系によ	—	・設備の相違
率灵	だし,原子炉建屋原子炉区域内 の放射性物質濃度変化は換気 <u>率 0.5</u> [回/日] を用いて評価)	用ガス処理系により 負圧維持している期 間は保守的に非常用 ガス処理系の定格風		項目 非常用ガス処理系か	評価条件	選定理由	審査ガイドでの記載4.3(3)a.非常用ガス処理系		処理系の定格風量 <u>4400m³/h</u> による換 気率 <u>1回/日</u> により屋外に放出	り負圧維持している期間 は保守的に非常用ガス処 理系の定格風量を基に設 定。		【柏崎 6/7,東海第二】
		量を基に設定。		ら大気への放出率(非 常用ガス処理系及び 非常用ガス再循環系 の起動後)	<u>1 回/日</u> (排気筒放 出)	設計値に基づき設定 (非常用ガス処理系の ファン容量)	 (BWR)又はアニュラス空 気浄化設備(PWR)の作動 については、4.1(2)aで選定 した事故シーケンスの事故 					
非常用ガス処 理系起動時間	事故発生から 30 分後	運用を基に設定	_	非常用ガス処理系及 び非常用ガス再循環 系の起動時間	<u>事象発生から 2 時間</u> 後	起動操作時間(115分) <u>+負圧達成時間(5分)</u> (起動に伴い原子炉建 屋原子炉棟内は負圧に なるが,保守的に負圧達	進展解析条件を基に設定す る。	非常用ガス処 理系起動時間	<u>事故発生から 60 分後</u>	運用を基に設定	_	 ・設備及び運用の相違 【東海第二】 島根2号炉は,SGT 起動 から原子炉棟負圧確保
非常用ガス処 理系排風機風 量	<u>2000m³/h</u>	非常用ガス処理系の 設計値を基に設定	_			成時間として 5 分を想 定)		非常用ガス処 理系排気ファ ン風量	<u>4400m³/h</u>	非常用ガス処理系の設計 値を基に設定	_	までの所要時間を考慮 して設定
非常用ガス処理 系のフィルタ装 置の除去係数	<u> </u>	保守的に考慮しない ものとした	_	非常用ガス処理系及 び非常用ガス再循環 系のフィルタ除去効 率	考慮しない	保守的に設定	4.3(3)b. ヨウ素類及びエア ロゾルのフィルタ効率は、使 用条件での設計値を基に設 定する。なお、フィルタ効率 の設定に際し、ヨウ素類の性 状を適切に考慮する。	非常用ガス処 理系のフィル タ装置の除去 係数	<u> 希ガス:1</u> <u>粒子状放射性物質:1</u> <u>無機よう素:1</u> <u>有機よう素:1</u>	保守的に考慮しないもの とした	_	 ・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉の SGT 設計 値を使用
原子炉建屋原 子炉区域負圧 達成時間	<u>事故発生から 40 分後</u>	非常用ガス処理系起 動時間及び排気風量 並びに原子炉建屋原 子炉区域の設計気密 度を基に評価し設定 (添付資料2 2-6を 参照)	_	<u>原子炉建屋外側ブロ</u> <u>ーアウトバネルの開</u> 閉状態		原子炉建屋原子炉棟内 の急激な圧力上昇等に よる原子炉建屋外側ブ ローアウトパネルの開 放がないため	一一	原子炉棟負圧 達成時間	<u>事故発生から 70 分後</u>	非常用ガス処理系起動時 間及び排気風量並びに原 子炉棟の設計気密度を基 に評価し設定(添付資料 6を参照)	_	 ・設備及び運用の相違 【柏崎 6/7,東海第二】 島根2号炉は,事故発生 から70分後に原子炉棟
事故の 評価期間	7 日間	審査ガイドに示され たとおり設定	 3.判断基準は、運転員の実効線量が7日間で100mSv を超えないこと。 	<u>牙1</u> 11		2770人口(72人)1112里戸 審査ガイドに示す7日 間における運転員の実 効線量を評価する観点 から設定	 1回来(〒(0/0) 3. (解釈抜粋)第74条(原子炉 制御室)1 b) ④判断基準は, 運転員の実効線量が7日間で 100mSv を超えないこと。 	事故の 評価期間	7 日間	審査ガイドに示されたと おり設定	 3. 判断基準は、運転 員の実効線量が7日 間で100mSv を超え ないこと。 	の負圧を確保
									1	1		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.	20版) 東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	※1 東海第二発電所(BWR5)に比べて炉心比出力が大き		
	く、単位熱出力当たりの炉内蓄積量を保守的に評価するAB		
	WRの値を使用。		
	2 Regulatory Guide 1.195, "Methods and Assumptions for		
	Evaluating Radiological Consequences of Desigh Basis		
	Accidents at Light-Water Nuclear Power Reactors", May 2003		
	X3 Standard Review Plan6.5.2, "Containment Spray as a		
	Fission Product Cleanup System", December 2005		
	<u>%4</u> Standard Review Plan6.5.5, "Pressure Suppression		
	Pool as a Fission Product Cleanup System", March 2007		
	<u> X5 NUREG-1465, "Accident Source Terms for Light-Water</u>		
	Nuclear Power Plants", 1995		

柏崎		፪所 6 ∕ ′	7 号炉 (2	2017.12.20版)	東海第二発電所(2018.9.18版)					島根	備考		
表 2-	1-2 大気中~	の放出放射	才能量(7日	間積算値)	<u>第1-2</u> 表	そ 大気中への放出	放射能量評価結果	(7日積算)	表	1-2 大気中への	>放出放射能量(7日	間積算値)	・評価対象及び評価結果
(代替)	賃環冷却系によ	り事象を収	又束すること	<u>・を想定する場</u>					(残留熱	代替除去系に	より事象を収束するこ	とを想定する場	の相違
		合)									<u>合)</u>		【東海第二】
	信止时	后中中共同	放出放射能量[B	Bq](gross 值)(単一号炉)						(÷. 1 pb	放出放射	f能量[Bq] (gross 値)	島根2号炉は,残留熱代
核種類	停止时	炉内内蔵重	原子炉建	車屋からの漏えい及び					核種类	停止時) 領	P内内蔵量 原子炉	建物からの漏えい及び	替除去系を用いて事象
	[Rď] (gross 但)	非常用メ	ガス処理系による放出						[Bd] (i	gross 値) 非常用	ガス処理系による放出	収束したケースの評価
希ガス	類 約2	2. 6×10^{19}		約 3.8×10 ¹⁷					希ガス	類 約1	6×10^{19}	約 8.8×10 ¹⁶	を記載
よう素	類 約3	3.4×10^{19}		約 1.6×10 ¹⁶					よう素	類 約2	1×10 ¹⁹	約 4.5×10 ¹⁵	
Cs 頖	[約1	. 3×10 ¹⁸		約 3.9×1013					Cs 判	〔 約8	. 3×10 ¹⁷	約 2.7×10 ¹²	
Te 頖	[約9	0.5×10^{18}		約 2.9×1013					Te 判	〔 約5	.9×10 ¹⁸	約 2.8×10 ¹²	
Ba 頖	(約2	2. 9×10^{19}		約 2.8×10 ¹³					Ba 判	〔 約1	8×10 ¹⁹	約 2.7×10 ¹²	
Ru 頖	į 約2	2.9×10^{19}		約 4.6×10 ¹²					Ru 判	〔 約1	8×10 ¹⁹	約 4.8×10 ¹¹	
Ce 頖	į 約8	3.9×10^{19}		約 3.5×10 ¹²					Ce 判	〔 約5	5×10^{19}	約 3.0×10 ¹¹	
La 頖	i 約6	5.5×10^{19}		約 8.2×10 ¹¹					La 判	〔 約4	1×10 ¹⁹	約 7.7×10 ¹⁰	
主 9_	1_2 十写山へ	のお出お庭	+ 能景 (7 日	問待質値)									
12 4	<u>15 八×十</u> (枚納 <u></u> 次×十)	いたの実施		<u>间傾异直/</u> 退合)					表	1-3 大気中への	>放出放射能量(7日	間積算値)	 ・ 評価結果の相違
		<u> お出</u> 放	むいん デン							(格納容器べ	ントの実施を想定する	5場合)	【柏崎 6/7、東海第二】
	停止時炉内内蔵	故幼家哭耳	力冰ぶ) 壮震	商工信建長からの混らい。		放	出放射能[Bq](gross 値) ^{※1}			信止時后内内蔵	放出放射能量[Bq] (gross 値)	
核種類	日 <u>二</u> 、小/ 十月 小成	あびよう妻	フィルタを	及び	核種	原子炉建屋から大気中	格納容器圧力逃がし装		核種類		格納容器フィルタベント系	原子炉建物からの漏えい	
1211112/24	 [Bq] (gross 値)	経由し	た放出	北常用ガス処理系に	グループ	へ放出	置を経由した放出	合計		玉 [Ba] (gross 值)	を経由した放出	及び非常用ガス処理系に	
		μH 0	ТСЛАЩ	よる放出	希ガス類	約 3.6×10 ¹⁶	約 8.9×10 ¹⁸	約 9.0×10 ¹⁸				よる放出	
希ガス類	約 2.6×10 ¹⁹	約7.8	8×10^{18}	約 1. 3×10 ¹⁷	よう素類	約 2.8×10 ¹⁵	約 7.3×10 ¹⁵	約 1.0×10 ¹⁶	希ガス類	約 1.6×10 ¹⁹	約 5.1×10 ¹⁸	約 2.3×10 ¹⁶	
よう素類	約 3.4×10 ¹⁹	約6.4	4×10^{15}	約 7.5×10 ¹⁵	C s O H 類	約 3.8×10 ¹³	約 5.0×10 ⁸	約 3.8×10 ¹³	よう素類	約 2.1×10 ¹⁹	約 4.2×10 ¹⁵	約 1.9×10 ¹⁵	
Cs 類	約 1.3×10 ¹⁸	約3.4	4×10^{9}	約 4.0×10 ¹³	Sb類	約 4.5×10 ¹²	約 2.6×10 ⁷	約4.5×10 ¹²	Cs 類	約 8.3×10 ¹⁷	約 5.5×10 ⁹	約 3.4×10 ¹²	
Te 類	約 9.5×10 ¹⁸	約 2.4	4×10^{9}	約 3.3×10 ¹³	T e O ₂類	約 3.7×10 ¹³	約 4.4×10 ⁸	約 3.7×10 ¹³	Te 類	約 5.9×10 ¹⁸	約 4.4×10 ⁹	約 3. 2×10 ¹²	
Ba 類	約 2.9×10 ¹⁹	約 2.3	3×10^{9}	約 3.0×10 ¹³	SrO類	約 2.0×10 ¹³	約 1.7×10 ⁸	約2.0×10 ¹³	Ba 類	約 1.8×10 ¹⁹	約 3.8×10 ⁹	約 3.1×10 ¹²	
Ru 類	約 2.9×10 ¹⁹	約 3.7	7×10^{8}	約 5.0×10 ¹²	ВаО類	約 2.0×10 ¹³	約 2.1×10 ⁸	約 2.0×10 ¹³	Ru 類	約 1.8×10 ¹⁹	約 8.4×10 ⁸	約 5.5×10 ¹¹	
Ce 類	約 8.9×10 ¹⁹	約 3.(0×10^{8}	約 4.1×10 ¹²	M o O ₂類	約 6.9×10 ¹²	約 8.4×10 ⁷	約 6.9×10 ¹²	Ce 類	約 5.5×10 ¹⁹	約 5.3×10 ⁸	約 3.4×10 ¹¹	
La 類	約 6.5×10 ¹⁹	約6.0	6×10^{7}	約 8.8×1011	C e O ₂類	約4.3×10 ¹²	約 5.4×10 ⁷	約 4.3×10 ¹²	La 類	約 4.1×10 ¹⁹	約 1.2×10 ⁸	約 9.1×10 ¹⁰	
					L a 2O3類	約 1.2×10 ¹²	約 1.2×10 ⁷	約 1.2×10 ¹²					

柏峰	奇刈羽原子力発電所	6/7号炉 (20)	17.12.20版)		東海第	第二発電所(20	18.9.18版)	島根原子力発電所 2号炉				備考
	表 2-1-4 大気技	広散評価条件(1/4)	_		第1-3	表 大気拡散	評価条件(1/5)		表 1-4 大気拡	広散評価条件(1/4)		
項目	評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイドでの記載	
大気拡散 評価モデ ル	ガウスプルームモデル	審査ガイドに示されたとおり 設定	4.2(2)a. 放射性物質の空 気中濃度は、放出源高さ及 び気象条件に応じて、空間 濃度分布が水平方向及び鉛 直方向ともに正規分布にな ると仮定したガウスプルー ムモデルを適用して計算す る。	大気拡散 評価モデ ル	ガウスプルームモデ ル	審査ガイド及び被ば く評価手法(内規) に示されたとおり設 定	4.2(2)a. 放射性物質の空気中濃度は, 放出源高 さ及び気象条件に応じて, 空間濃度分布が水平 方向及び鉛直方向ともに正規分布になると仮定 したガウスプルームモデルを適用して計算す る。	大気拡散 評価モデ ル	ガウスプルームモデル	審査ガイドに示されたとおり 設定	4.2(2)a. 放射性物質の空 気中濃度は、放出源高さ及 び気象条件に応じて、空間 濃度分布が水平方向及び鉛 直方向ともに正規分布にな ると仮定したガウスプルー ムモデルを適用して計算す る。	
気象デー タ	柏崎刈羽原子力発電所におけ る1年間の気象データ(<u>1985年</u> <u>10月~1986年9月</u>)(地上約 10m)	建屋影響を受ける大気拡散評 価を行うため保守的に地上風 (地上約10m)の気象データを 使用。審査ガイドに示された 通り,発電所において観測さ れた1年間の気象データを使 用(添付資料2 2-7を参照)	4.2(2)a.風向、風速、大気 安定度及び降雨の観測項目 を、現地において少なくと も1年間観測して得られた 気象資料を大気拡散式に用 いる。	気象デー タ	東海第二発電所にお ける1年間の気象資 料(2005年4月~ 2006年3月) (地上風を代表する 観測点(地上高10m) の気象データ)	建屋影響を受ける大 気拡散評価を行うた め保守的に地上風 (地上高10m)の気象 データを審査ガイド に示されたとおり発 電所において観測さ れた1年間の気象資 料を使用	4.2.(2)a.風向,風速,大気安定度及び降雨の 観測項目を,現地において少なくとも1年間観 測して得られた気象資料を大気拡散式に用い る。	気象デー タ	島根原子力発電所における 1 年間の気象データ(<u>2009 年 1</u> <u>月~2009 年 12 月</u>)(地上約 20m)	建物影響を受ける大気拡散評 価を行うため保守的に地上風 (地上約20m)の気象データを 使用。審査ガイドに示された通 り,発電所において観測された 1年間の気象データを使用 (添付資料 7を参照)	4.2(2)a.風向、風速、大気 安定度及び降雨の観測項目 を、現地において少なくと も1年間観測して得られた 気象資料を大気拡散式に用 いる。	・評価条件の相違 【柏崎 6/7,東海第二】
実効放出 継続時間	全放出源:1 時間	保守的に 1 時間と設定	4.2(2)c.相対濃度は、短時間放出又は長時間放出に応じて、毎時刻の気象項目と実効的な放出継続時間を基に評価点ごとに計算する。	実効放出 継続時間	全核種:1時間	保守的に最も短い実 効放出継続時間を設 定(添付18参照)	4.2.(2)c. 相対濃度は,短時間放出又は長時間 放出に応じて,毎時刻の気象項目と実効的な放 出継続時間を基に評価点ごとに計算する。	実効放出 継続時間	【格納容器フィルタベント系 排気管】 1時間 【原子炉建物】 1時間	格納容器フィルタベント系排 気管及び原子炉建物からの放 出については保守的に1時間と 設定。排気筒からの放出は、気 象指針に従い、全放出量を最大	4.2(2)c. 相対濃度は、短時 間放出又は長時間放出に応 じて、毎時刻の気象項目と 実効的な放出継続時間を基	 ・評価条件の相違 島根2号炉は,気象指針 に基づき,実効放出継続
放出源及び放出源	【6 号炉】 • 6 号炉格納容器圧力逃がし装置配管: 地上 40. 4m • 6 号炉原子炉建屋中心: • 6 号炉主排気筒: 地上 73m 【7 号炉】 • 7 号炉格納容器圧力逃がし装置配管: 週配管: • 7 号炉原子炉建屋中心: • 7 号炉原子炉建屋中心: • 7 号炉原子炉建屋中心: • 7 号炉主排気筒: • 7 号炉主排気筒:	審査ガイドに示されたとおり 設定 ただし,放出エネルギーによ る影響は未考慮	 4.3(4)b. 放出源高さは、 4.1 (2) a で選定した事故 シーケンスに応じた放出口 からの放出を仮定する。4.1 (2) a で選定した事故シーケンスのソースターム解析 結果を基に、放出エネルギーを考慮してもよい。 	放出源及 び放出源 高さ	<u>第1-33</u> 放出源:原子炉建屋 からの放出(<u>地上高</u> 0 ^m),格納容器圧力 逃がし装置排気口 放出(<u>地上高 57m</u>) 及び非常用ガス処 理系出口(<u>地上高</u> <u>140m</u>)	長 大気拡散評 原子炉建屋放出時の 高さは地上放出とし て地上高0mで設定 格納容器圧力逃がし 装置排気口放出時の 高さは地上高 57mに 設定 非常用ガス処理系からの放出時は排気筒 高さとして地上 140m に設定	<u>価条件(2/5)</u> 4.3. (4)b. 放出源高さは、4.1(2)a で選定した 事故シーケンスに応じた放出ロからの放出を仮 定する。4.1(2)a で選定した事故シーケンスの ソースターム解析結果を基に、放出エネルギー を考慮してもよい。	放出源及び放出源高さ	【排気筒】 30 <u>時間</u> 【格納容器フィルタベント系 排気管】 地上 50m 【原子炉建物】 地上 0m 【排気筒】 地上 110m	放出量で除した値を保守的に 丸めた値とする。 審査ガイドに示されたとおり 設定 ただし,放出エネルギーによる 影響は未考慮	に評価点ごとに計算する。 4.3(4)b. 放出源高さは、 4.1 (2) a で選定した事故 シーケンスに応じた放出口 からの放出を仮定する。4.1 (2) a で選定した事故シー ケンスのソースターム解析 結果を基に、放出エネルギ ーを考慮してもよい。	時間を設定(至放出重/ 最大放出率) ・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉の放出位置 を記載 ・申請号炉数の相違 【柏崎 6/7】

柏崎刈	羽原子力発電所	6/7号炉	(2017.12.20版)		東海第	第二発電所(20	18.9.18版)		島根原子	子力発電所	2 号炉	備考
	表 2-1-4 大気	瓜拡散評価条件	(2/4)		第1-3署	表 大気拡散評	価条件(2/5)		表 1-4 大気扨	去散評価条件	(2/4)	・評価条件の相違
項目	評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイドでの記載	【柏崎 6/7,東海第二】
累積出現頻度	小さい方から 累積して 97%	 審査ガイドに示されたとおり設定 (添付資料 2 2-8を参照) 	4.2(2)c. 評価点の相対濃度又は相対 線量は、毎時刻の相対濃度又は相対線 量を年間について小さい方から累積 した場合、その累積出現頻度が97%に 当たる値とする。	累 積出現 頻度	小さい方から 97%	審査ガイドに示され たとおり設定	4.2. (2) c. 評価点の相対濃度又は相対線量は、 毎時刻の相対濃度又は相対線量を年間について 小さい方から累積した場合、その累積出現頻度 が 97%に当たる値とする。	累積出現頻度	小さい方から 累積して 97%	 審査ガイドに示さ れたとおり設定 (添付資料 8 を 参照) 	4.2(2)c. 評価点の相対濃度又は相対線量は、毎時刻の相対濃度又は相対線量を 年間について小さい方から累積した場 合、その累積出現頻度が97%に当たる値 とする。	
建屋巻さ込み	全放出源 : 考慮する	放出源から近距離の 建屋の影響を受ける ため,建屋による巻き 込み現象を考慮	4.2(2)a. 原子炉制御室/緊急時制御 室/緊急時対策所の居住性評価で特 徴的な放出点から近距離の建屋の影 響を受ける場合には、建屋による巻き 込み現象を考慮した大気拡散による 拡散バラメータを用いる。	建屋巻き 込み	考慮する	原子炉建屋放出及び 格納容器圧力逃がし 装置排気口放出は放 出源から近距離の建 屋(原子炉建屋)の影 響を受けるため,建屋 による巻き込み現象 を考慮	4.2.(2)a. 原子炉制御室/緊急時制御室/緊急時制御室/緊急時対策所の居住性評価で特徴的な放出点から近距離の建屋の影響を受ける場合には、建屋による巻き込み現象を考慮した大気拡散による拡散パラメータを用いる。	建物巻き込み	全放出源 : 考慮する	放出源から近距離 の建物の影響を受 けるため,建物に よる巻き込み現象 を考慮	4.2(2)a. 原子炉制御室/緊急時制御室/緊急時対策所の居住性評価で特徴的 な放出点から近距離の建屋の影響を受ける場合には、建屋による巻き込み現象 を考慮した大気拡散による拡散パラメ ータを用いる。	
			4.2(2)b. 巻き込みを生じる建屋とし		<u>第1-3</u>	3表 大気拡散	評価条件(3/5)				4.2(2)b. 巻き込みを生じる建屋とし	
巻き込みを 生じる代表建屋	<u>6 号炉原子炉建屋及び</u> <u>7 号炉原子炉建屋</u>	巻き込みの影響が最 も大きい建屋として 設定	て、原子炉格納容器、原子炉建屋、原 子炉補助建屋、タービン建屋、コント ロール建屋及び燃料取り扱い建屋等、 原則として放出源の近隣に存在する すべての建屋が対象となるが、巻き込 みの影響が最も大きいと考えられる 一つの建屋を代表建屋とすることは、 保守的な結果を与える。	項目 巻き込み を生じる 代表建屋	評価条件 <u>原子炉建屋</u>	選定理由 放出源から最も近く, 巻き込みの影響が最 も大きい建屋として 選定	審査ガイドでの記載 4.2. (2)b. 巻き込みを生じる建屋として、原子 炉格納容器、原子炉建屋、原子炉補助建屋、タ ービン建屋、コントロール建屋及び燃料取り扱い建屋等、原則として放出源の近隣に存在する すべての建屋が対象となるが、巻き込みの影響 が最も大きいと考えられる一つの建屋を代表建 屋とすることは、保守的な結果を与える。	巻き込みを 生じる代表建物	<u>2号炉原子炉建物</u> <u>及び</u> 2号炉タービン建物	巻き込みの影響が 最も大きい建物と して設定	て、原子炉格納容器、原子炉建屋、原子 炉補助建屋、タービン建屋、コントロー ル建屋及び燃料取り扱い建屋等、原則と して放出源の近隣に存在するすべての 建屋が対象となるが、巻き込みの影響が 最も大きいと考えられる一つの建屋を 代表建屋とすることは、保守的な結果を 与える。	
放射性物質濃度 の評価点	【中央制御室滞在時】 中央制御室中心 【入退城時】 <u>コントロール建屋入口</u>	審査ガイドに示され たとおり設定	4.2(2)b.3) i) 建屋の巻き込みの影響 を受ける場合には、原子炉制御室/緊 急時制御室/緊急時対策所の属する 建屋表面での濃度は風下距離の依存 性は小さくほぼ一様と考えられるの で、評価点は厳密に定める必要はな い。 屋上面を代表とする場合、例えば原子 炉制御室/緊急時制御室/緊急時対 策所の中心点を評価点とするのは妥 当である。	放射性物 質濃度の 評価点	【中央制御室内】 中央制御室中心 【入退城時】 <u>建屋出入口</u>	【中央制御室内】 審査ガイドに示され たとおり設定 【入退域時】 被ばく評価手法(内 規)に示された方法に 基づき設定	【中央制御室内】 4.2.(2)b. 屋上面を代表とする場合, 例えば原 子炉制御室/緊急時制御室/緊急時対策所の中心 点を評価点とするのは妥当である。 【入退城時】 7.5.1(5)a) 管理区域の入口を代表評価とし, 入 退域ごとに評価点に, 15 分間滞在するとする。 (被ばく評価手法(内規)) なお,審査ガイドには入退城時の評価点につい て, 記載なし。	放射性物質濃度 の評価点	【中央制御室滞在時】 中央制御室中心 中央制御室換気系給気 旦 【入退域時】 2.号炉原子炉補機冷却 <u>系熱交換器室入口</u>	審査ガイドに示さ れたとおり設定	4.2(2)b.3) i) 建屋の巻き込みの影響を 受ける場合には、原子炉制御室/緊急時 制御室/緊急時対策所の属する建屋表 面での濃度は風下距離の依存性は小さ くほぼ一様と考えられるので、評価点は 厳密に定める必要はない。 屋上面を代表とする場合、例えば原子炉 制御室/緊急時制御室/緊急時対策所 の中心点を評価点とするのは妥当であ る。	・評価条件の相違 【柏崎 6/7,東海第二】 島根2号炉では,放射性 物質の取り込みの評価 において,吸気口におけ
												る濃度を使用

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版)						018.9.18版)		島根原子力発電	所 2号炉		備考	
表 2-1-4 大気拡散評価	i条件(3/4)			第1-3表	大気拡散	x評価条件(4/5)	F(4/5) 表 1-4 大気拡散評価条件(3/4)					
項評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイドでの記載	項	頁 評価条件	選定理由	審査ガイドでの記載	【柏崎 6/7,東海第二】	
目 【格納容器圧力速がし装置配管】 6 号炉:6 方位 (SE, SSE, S, SSW, SW, WSW) 7 号炉:8 方位 (WNW, NW, NW, NW, N, NNE, NE, ENE, E) 1 原子炉建屋中心】 6 号炉:6 方位 (SE, SSE, S, SSW, SW, WSW) 7 号炉:9 方位 (WNW, NW, NW, NN, NNE, NE, ENE, E, ESE) [主排気筒】 6 号炉:6 方位 (SE, SSE, S, SSW, SW, WSW) 7 号炉:9 方位 (WNW, NW, NNW, NN, NNE, NE, ENE, E, ESE) 【主排気筒】 6 号炉:5 方位 (SSE, S, SSW, SW, WSW) 7 号炉:9 方位 (WNW, NW, NNW, NN, NNE, NE, ENE, E, ESE) [原子炉建屋中心] 6 号炉:5 方位 (SSE, S, SSW, SW, WSW) 7 号炉:5 方位 (SSE, S, SSW, SW, WSW) 7 号炉:5 方位 (SSE, S, SSW, SW, WSW) 7 号炉:5 方位 (SSE, S, SSW, SW, WSW) 7 号炉:9 方位 (W, WNW, NW, NN, NNE, NE, ENE, E) [主排気筒] 6 号炉:5 方位 (SSE, S, SSW, SW, WSW) 7 号炉:9 方位 (W, WNW, NW, NNW, N, NNE, NE, ENE, E) 【主排気筒】 6 号炉:5 方位 (SSE, S, SSW, SW, WSW) 7 号炉:9 方位 (W, WNW, NW, NNW, N, NNE, NE, ENE, E) [主排気筒] 6 号炉:5 方位 (W, WNW, NW, NNW, N, NNE, NE, ENE, E) [審査ガイドに 示 された 基づき 設定(添付資料 2 2-8 を参照) 	4.2(2)a. 原子炉制御 室/緊急時制御室/ 緊急時制御室/ 緊急時利策所の居住 性に係る被ばく評価 では、建屋の風下後流 側での広範囲に及ぶ 乱流混合域が顕著で あることから、放射性 物質濃度を計算する 当該着目方位として は、放出源と評価点と を結ぶラインが含ま れる1 方位のみを対 象とするのではなく、 図5 に示すように、建 屋の後流側の拡がり の影響が評価点に及 ぶ可能性のある複数 の方位を対象とする。	着日方位	9 方位 建屋放出: S, SSW, SW, WSW, W, WNW, N N, NNW, N 格納容器圧力逃がし装置排気口放出: SW, WSW, W, WNW, NW, NNW, NNW, NNW, NNW,	審ドれ方づ(参照)	4.2.(2)a.原子炉制御室の居住性に係る 被ばく評価では、建屋の風下後流側での 広範囲に及ぶ乱流混合域が顕著である ことから、放射性物質濃度を計算する当 該着目方位としては、放出源と評価点と を結ぶラインが含まれる1方位のみを対 象とするのではなく、図5に示すように、 建屋の後流側の拡がりの影響が評価点 に及ぶ可能性のある複数の方位を対象 とする。	Ⅰ	・評価点:中央制御室中心 【格納容器フィルタベント系排気管] 6方位 (NRE, NE, ENE, E, ESE, SE) 【原子炉建物中心] 6方位 (NNE, NE, ENE, E, ESE, SE) 【排気筒] 9方位 (NNE, NE, ENE, E, ESE, SE, SSE, S, SSW) "評価点:中央制御室換気系給気口 【格納容器フィルタベント系排気管] 7方位 (NNE, NE, ENE, E, ESE, SE, SSE, S, SSW) "評価点:中央制御室換気系給気口 【格納容器フィルタベント系排気管] 7方位 (NNE, NE, ENE, E, ESE, SE, SSE) 【原子炉建物中心] 7方位 (NNE, NE, ENE, E, ESE, SE, SSE) 【排気筒] 9方位 (NNE, NE, ENE, E, ESE, SE, SSE, S, SSW) 【格納容器フィルタベント系排気管] 9方位 (SW, WSW, W, WNW, NW, NNW, NNE, NE) 【原子炉建物中心] 7方位 (SSW, SW, W, WNW, NW, NNW, NN, NNE, NE) 【原子炉建物中心] 9方位 (SSW, SW, W, WNW, NW, NNW, NNN, NNE, NE) 【原子炉建物中心] 9方位 (SSW, SW, W, WNW, NW, NNW, NNN, NNE) 【排気筒] 3方位 (SSE, S, SSW)	審査ガイドに示 された評価方法 に基づき設定 (添付資料 8 を参照)	4.2(2)a. 原子炉制御 室/緊急時制御室/ 緊急時対策所の居住 性に係る被ばく評価 では、建屋の風下後流 側での広範囲に及ぶ 乱流混合域が顕著で あることから、放射性 物質濃度を計算する 当該着目方位として は、放出源と評価点と を結ぶラインが含ま れる1方位のみを対 象とするのではなく、 図5 に示すように、建 屋の後流側の拡がり の影響が評価点に及 ぶ可能性のある複数 の方位を対象とする。	島根の気象を用いて評 価	

柏	崎刈羽原子力発行	電所 6/7号炉 (2	017.12.20版)	東海第二発電所(2018.9.18版)				島根	泉原子力発電所 2号炉		備考	
	表 2-1-4	大気拡散評価条件(4/4	4)		第1-3	3表 大気拡散	文評価条件(5/5)		表 1-4 大	、気拡散評価条件(4/4)	_	
項目	評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイドでの記載	
建屋投影面積	<u>1931m²</u>	審査ガイドに示されたとおり 設定 風向に垂直な投影面積のうち 最も小さいもの	4.2(2)b.1)風向に垂直 な代表建屋の投影面積を 求め、放射性物質の濃度 を求めるために大気拡散 式の入力とする。 4.2(2)b.2)建屋の影響 がある場合の多くは複数 の風向を対象に計算する 必要があるので、風向の 方位ごとに垂直な投影面 積を求める。ただし、対 象となる複数の方位の投 影面積の中で、最小面積 を、すべての方位の計算 の入力として共通に適用 することは、合理的であ	建屋投 影面積	原子炉建屋の投 影断面積: <u>3,000m²</u>	原子炉建屋の投 影断面積	4.2. (2)b. 風向に垂直な代表建屋の投影 面積を求め, 放射性物質の濃度を求める ために大気拡散式の入力とする。	建物投影面積	 2 号炉原子炉建物: <u>2600m²</u> (原子炉建物,格納容 器フィルタベント系 排気管放出時) 2 号炉タービン建 物:<u>2100m²</u> (排気筒放出時) 	審査ガイドに示されたとおり 設定 風向に垂直な投影面積のうち 最も小さいもの	4.2(2)b.1)風向に垂直 な代表建屋の投影面積を 求め、放射性物質の濃度 を求めるために大気拡散 式の入力とする。 4.2(2)b.2)建屋の影響 がある場合の多くは複数 の風向を対象に計算する 必要があるので、風向の 方位ごとに垂直な投影面 積を求める。ただし、対 象となる複数の方位の投 影面積の中で、最小面積 を、すべての方位の計算 の入力として共通に適用 することは、合理的であ	 ・設備の相違 【柏崎 6/7,東海第二】 島根2号炉の設備に応じた投影面積を記載
形状係数	1/2	「原子力発電所中央制御室の 居住性に係る被ばく評価手法 について(内規)」に示された とおり設定	り味守的である。 4.2(2)a. 放射性物質の 大気拡散の詳細は、「原子 力発電所中央制御室の居 住性に係る被ばく評価手 法について(内規)」によ る。	形状係数	1/2	審査ガイドに示 された評価方法 に基づき設定	5.1.1(2)形状係数の値は,特に根拠が示 されるもののほかは原則として 1/2 を 用いる(被ばく評価手法(内規)) なお,審査ガイドには形状係数につい て,記載なし。	形状係数	1/2	「原子力発電所中央制御室の 居住性に係る被ばく評価手法 について (内規)」に示された とおり設定	り保守的である。 4.2(2)a. 放射性物質の 大気拡散の詳細は、「原子 力発電所中央制御室の居 住性に係る被ばく評価手 法について(内規)」によ る。	

柏崎刈羽原子	子力発電所 6/7	7 号炉 (2017.1	2.20版)		東海	第二発電	所(2018.9.18片	反)		島根原子力発電所 2号炉				
表 2-1-5 材	相対濃度(χ/Q))	及び相対線量(D	/Q)		第1-	-4表 相	対濃度及び相対	線量	表 1-5 相	<u>表 1-5</u> 相対濃度 (χ/Q) 及び相対線量 (D/Q)				
放出源及び	aw Aur 占	相対濃度	相対線量				相対濃度	相対線量	放出源及び	秋 /正占	相対濃度	相対線量	【柏崎 6/7,東海第二】	
放出源高さ**	計画法	$[s/m^3]$	[Gy/Bq]	評価対象	評価	「点	χ / Q (s/m ³)	D∕Q (Gy∕Bq)	放出源高さ**	許恒尽	$[s/m^3]$	[Gy/Bq]	島根の気象を用いて評	
6 号炉格納容器 圧力逃がし装置配	中央制御室 中心	5. 1×10^{-4}	3.8×10 ⁻¹⁸			建屋放出	約 8.3×10 ⁻⁴	約 2.9×10 ⁻¹⁸		中央制御室中心	4.9×10^{-4}	5. 1×10^{-18}	価	
管 (地上 40.4m)	コントロール 建屋入口	4.7×10^{-4}	3.7×10 ⁻¹⁸			非常用が	<i>\$</i> ⁴ 7 2 0 × 10−6	約.0.0×10-2.0	格納容器フィルタベ ント系排気管	中央制御室換気系 給気口	5.9 $\times 10^{-4}$	5. 3×10 ⁻¹⁸		
7号炉格納容器 圧力逃がし装置配	中央制御室 中心	$8.5 imes 10^{-4}$	6. 4×10^{-18}	室内作業時	中央制御室 中心	放出	新3.0×10 ⁻⁰ 新3.8×10 ⁻²⁰	(地上 50m)	2 号炉原子炉補機 冷却系熱交換器室	7.5×10^{-4}	6. 1×10 ⁻¹⁸			
管 (地上 39.7m)	コントロール 建屋入口	9.7×10 ⁻⁴	7. 4×10^{-18}			正力逃がし装置放	約 3.7×10 ⁻⁴	約 8.8×10 ⁻¹⁹		入口 中央制御室	1 1×10-3	5.2×10^{-18}		
6 号炉	中央制御室 中心	9.5×10 ⁻⁴	3.8×10^{-18}			出				中心	1.1/10	0.2710		
(地上 0m)	コントロール 建屋入口	9.1×10 ⁻⁴	3. 7×10^{-18}			建屋放出	約 8.2×10 ⁻⁴	約 2.9×10 ⁻¹⁸	原子炉建物 (地上 0m)	給気口	1.2×10^{-3}	5. 5×10^{-18}		
7 号炉 原子炉建屋中心	中央制御室 中心	1.7×10 ⁻³	6.3×10 ⁻¹⁸	入退域時	建屋	非常用ガ ス処理系 放出	約 3.0×10 ⁻⁶	約 9.0×10 ⁻²⁰		2号炉原子炉補機 冷却系熱交換器室	1.6×10^{-3}	6. 0×10^{-18}		
(地上 0m)	コントロール 建屋入口	2.0×10 ⁻³	7.2×10 ⁻¹⁸		出入口	格納容器 圧力逃が				中央制御室	2.8×10^{-4}	2. 6×10 ⁻¹⁸		
6 号炉主排気筒	中央制御室 中心	5.1×10 ⁻⁴	3.8×10 ⁻¹⁸			し装置放出	約 3.7×10 ⁻⁴	約 9.4×10 ^{-1 9}	排気筒	中央制御室換気系	2.9×10^{-4}	2. 7×10^{-18}		
(地上 73m)	コントロール 建屋入口	4.8×10 ⁻⁴	3.7×10 ⁻¹⁸	(添付 8	参照)	照)			(地上 110m)	2号炉原子炉補機	1 3×10 ⁻⁴	1 1 × 10 ⁻¹⁸		
7 号炉主排気筒	中央制御室 中心	8.4×10 ⁻⁴	6. 4×10^{-18}									1.1^10		
(地上 73m)	コントロール 建屋入口	9.8×10 ⁻⁴	7. 4×10^{-18}						※放田源高さは,	成田エイルキーに	こよる影響は木材			
※放出源高さは放	牧出エネルギーによ	こる影響は未考慮												

	柏崎刈羽原	原子力発電所	6/7号炉 (2017.12.	20版)	東海第二発電所(2018.9.18版)							備考			
表	2-1-6 原子	ゲ炉建屋内の	放射性物質からの直接ガン	マ線及びス	第1-5表 直接ガンマ線及びスカイシャインガンマ線の評価				表 1-6 原子炉建物内の放射性物質からの直接ガンマ線及びス					・評価条件の相違	
		カイシャイ	ンガンマ線の評価条件			条件(1/3)				<u>カイシャインガンマ線の評価条件</u>					【柏崎 6/7,東海第二】
	項目	評価条件	選定理由	審査ガイドでの記		 	評価条件 「第1-1表 大 気中への放出放 射能量評価条	 選定埋田 「第1-1表 大気中 への放出放射能量評 価条件」を参照 	審査ガイドでの記載 4.3(5)a.4.1(2)aで選定した事故シー ケンスのソースターム解析結果を基 に、想定事故時に原子炉格納容器から		項目	評価条件	選定理由	審査ガイドでの記載	
線源強	原子炉建屋内 線源強度分布	放出された放射性 物質が自由空間容 積に均一に分布す るとし,事故後1日 ごとの積算線源強	運転員の交替を考慮した場合の評価をより 適切に行えるように設定	載 4.3(5)a.原子炉建 屋内の放射性物質 は、自由空間容積に 均一に分布するも のとして、事故後7 日間の積算線源強	線源条件	される放射性 物質 格納容器内線 源強度分布	件」を参照 格納容器内に放 出された核分裂 生成物が均一に 分布	 審査ガイドに示され たとおり設定 3. (解釈抜粋)第7 	原子炉建屋内に放出された放射性物 質を設定する。 4.3(5)a.原子炉建屋内の放射性物質 は、自由空間容積に均一に分布するも のとして、事故後7日間の積算線源強 度を計算する。	線源強度	原子炉建物内線源強度分布	放出された放射性物質 が自由空間容積に均一 に分布するとし,事故 後直交代ごとの積算線 源強度を計算	運転員の交替を考慮した場合 の評価をより適切に行えるよ うに設定	 4.3(5)a. 原子炉建屋 内の放射性物質は、自 由空間容積に均一に分 布するものとして、事 故後7日間の積算線源 強度を計算する 	
度	事故の評価期間	度を計算 7日	審査ガイドに示されたとおり設定	度を計算する		7 日間	 番査ガイドに示す7日間における運転員の実効線量を評価する 観点から設定 	 4条(原子炉制御室) 1 b) ④判断基準 は、運転員の実効線 量が7日間で100mSv を超えないこと。 	7 日間		事故の評価期間	7日	審査ガイドに示されたとおり 設定	同上	
	原子炉建屋 遮蔽厚さ	図 2-1-1 のとおり		4.3(5)a. 原子炉建 屋内の放射性物質 からのスカイシャ インガンマ線及び	計算モデル	遮蔽厚さ	第1-2図のとお り	審査ガイドに示され た評価方法に基づき 設定	4.3(5)a.原子炉建屋内の放射性物質 からのスカイシャインガンマ線及び 直接ガンマ線による外部被ばく線量 は、積算線源強度、施設の位置、遮へ		原子炉建物 遮蔽厚さ		審査ガイドに示された評価方 法に基づき設定	4.3(5)a. 原子炉建屋 内の放射性物質からの スカイシャインガンマ 線及び直接ガンマ線に	
計算モデ	中央制御室 遮蔽厚さ	(評価点高さ) スカイシャインガ ンマ線 : 天井面高さ	審査ガイドに示された評価方法に基づき設 定(コンクリート厚の施工誤差の影響につ いては,添付資料2 2-21を参照)	直接ガンマ線によ る外部被ばく線量 は、積算線源強度、 施設の位置、遮へい	^件 第1		 	<u> </u>	い構造及び地形条件から計算する。 インガンマ線の評価条	計算モデー	中央制御室 遮蔽厚さ	図 1-1 のとおり (評価点高さ) 直接ガンマ線及びスカ	なお、 <u>遮蔽の厚さは遮蔽モナル</u> 上の厚さから許容される施工 誤差(マイナス側)だけ薄くし た値を適用する	よる外部被ばく線量 は、積算線源強度、施 設の位置、遮へい構造 及び地形条件から計算	
N		吉培ガンフ組・		構造及び地形条件 から計算する。		項日	評価冬件	<u>件(2/3)</u> _{選定理由}	塞杏ガイドでの記載	<i>I</i>		イシャインガンマ線 : <u>中央制御室天井面高さ</u>		する。	
	評価点	直近777 (MR. <u>床面上 1.5m</u>	中心点より線源となる建屋に近い壁側を選 定	-		AF	ит цислуут	直接ガンマ線の線量計 用いる QAD-CGP2R は 形状を,スカイシャイ ンマ線の線量評価に用 ANISN 及び G33-GP2R (P価に 三次元 ンガ リいろ よそれ		評価点		中心点より線源となる建物に 近い壁側を選定	-	
評価コード	直接ガンマ線:(スカイシャー ANISN コード, (【格納容器圧力逃 装置及び配管並び の放射性物質	AAD-CGGP2R コード インガンマ線: G33-GP2R コード (がし装置のフィルタ によう素フィルタ内 賃からの寄与]	直接ガンマ線の線量評価に用いる QAD-CGGP2Rコードは三次元形状を、スカイ シャインガンマ線の線量評価に用いる ANISNコード及びG33-GP2Rコードはそれぞ れ一次元、三次元形状を扱う遮蔽解析コー ドであり、ガンマ線の線量を計算すること ができる。計算に必要な主な条件は線源条 件、遮蔽体条件であり、これらの条件が与 えられれば線量評価は可能である。したが って、炉心の著しい損傷が発生した場合に おける線量評価に適用可能である。	_	直接	6線・スカイシャイ ン線評価コード	直接線評価: QAD-CGGP2R スカイシャイン 線評価: ANISN G33-GP2R	 ANISN 及び G33-GP2R はそれ ぞれー次元及び三次元形状 を扱う遮蔽解析コードであり、ガンマ線量を計算する ことができる。計算に必要 な主な条件は,線源条件,遮 敵体条件であり、これらの 条件が与えられれば線量評 価は可能である。したがっ て、設計基準事故を超える 事故における線量評価に適 用可能である。 QAD-CG6P2R, ANISN 及び G33- GP2R はそれぞれ許認可での 		評価コ	直接ガンマ線 : Q スカイシ AN L SN コー	AD-CGGP2R コー ド ヤインガンマ線 : ド G33-GP2R コ	直接ガンマ線の線量評価に用 いるQAD-CGGP2R コ ードは三次元形状を,スカイシ ャインガンマ線の線量評価に 用いるANISN コード及び G33-GP2Rコードはそ れぞれ一次元,三次元形状を扱 う遮蔽解析コードであり,ガン マ線の線量を計算することが できる。計算に必要な主な条件	_	・評価条件の相違 【柏崎 6/7】 島根2号炉は,予めコン クリート施工誤差を差
	直接ガンマ線:(スカイシャィ	QAD-CGGP2R コード インガンマ線 :	QAD-CGGP2R コード, ANISN コード及び G33-GP2R コードはそれぞれ許認可での使		第1	-5表 直接	接ガンマ線及	及びスカイシャ	インガンマ線の評価条	1 ANISN コード,G33-GP2Rコ は線源条件,遮蔽体条件であ ド ード り,これらの条件が与えられれ げ始星初年は可能のちました 1					し引いた評価を実施し
	QAD-CGGP2R ⊐− F	', <u>G33-GP2R</u> ⊐−− ド	用実績がある。	<u> </u>	評価	項目	評価条件 第 1-2 図のと おり	件 (3/3) 選定理由 中央制御室内滞在時の 評価は線量が最大とな る位置とする。 入退城時の評価は建屋 1-200章 ので選定	審査ガイドでの記載 ―				がって、炉心の著しい損傷が発 生した場合における線量評価 に適用可能である。QAD-C GGP2Rコード,ANIS Nコード及びG33-GP2 Rコードはそれぞれ許認可で		ている 島根2号炉の直接線は, 線量が最大となる天井
					遮蔽	厚さ	第 1-2 図のと おり	入口の尚さ 2m を選定。 審査ガイドに示された 評価方法に基づき設定	4.3(5)a.原子炉建屋内の放射性物質 からのスカイシャインガンマ線及び 直接ガンマ線による外部被ばく線量 は、積算線源強度、施設の位置、遮 へい構造及び地形条件から計算す る。				の使用実績がある。		山で計加
					許容	差	評価で考慮す るコンクリー ト遮蔽は,公称 値からマイナ ス側許容差(- 5mm)を引いた 値を適用	建築工事標準仕様書 JASS 5N・同解説(原子 力発電所施設における 鉄筋コンクリート工事, 日本建築学会)に基づき 設定	-						
					コン	クリート密度	2.00g/cm ³	建築工事標準仕様書 JASS 5N・同解説(原子 力発電所施設における 鉄筋コンクリート工事, 日本建築学会)を基に算 出した値を設定	_						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表2-1-7 直接ガンマ線及びスカイシャインガンマ線の評価に用		表 1-7 直接ガンマ線及びスカイシャインガンマ線の評価に	用・評価対象及び構成の相
いる原子炉建屋内の積算線源強度(1/2)(代替循環冷却系を用いて		いる原子炉建物内の積算線源強度(1/2)(残留熱代替除去系	<u>を</u> 違
事象を収束する場合)		用いて事象を収束する場合)	【東海第二】
			【東海第二】 島根2号炉は、RHARで収 束する場合も記載。 島根2号炉は、24時間ご との積算線源強度を評 価 $\frac{1}{1\times10^{9}}$ $\frac{1}{1\times10^{9}}$ $\frac{1}{1\times10^{9}}$ $\frac{1}{1\times10^{9}}$ $\frac{1}{1\times10^{9}}$ $\frac{1}{1\times10^{9}}$ $\frac{1}{1\times10^{9}}$ $\frac{1}{1\times10^{9}}$ $\frac{1}{1\times10^{9}}$ $\frac{1}{1\times10^{9}}$ $\frac{1}{1\times10^{9}}$ $\frac{1}{1\times10^{1}}$

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海	島根原子力発電所 2号炉							備考			
表 2-1-7 直接ガンマ線及びスカイシャインガンマ線の評価	第1-6表 直接ガンマ線及びスカイシャインガンマ線の評価				表 1-7 直接ガンマ線及びスカイシャインガンマ線の評価に用							・評価対象及び構成の相
に用いる原子炉建屋内の	に用いろ				 いる原子炉建物内の							違
	エネルギ	<u></u> 群別ガンマ線積	。 節線源強度((1/4)	 着 管 線 源	「 	(格納容哭~	ミントの生	- E協を相て	定する場	특合)	【東海第二】
エネルギー(MoV) 積算線源強度(photons)(単一号炉当たり) ^{第1}		体動変界ベント	宇旋前)					 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			<u>, 17</u>	
上限 (少表エネ) 24 時間後 48 時間後 72 時間後 96 時間後 120 時間後 144 時間後 168 時間後			天旭时/	185	エネルギー			Pikiki Ki				西位2月》は、101111(12
「桜 (1)&エー 時点 時点 時点 時点 時点 時点	群 (MeV) 群	マ線槓鼻線源強度 (Photons) 群	エネルキ (MeV)	カンマ緑槓鼻線源強度 (Photons)	(MeV)	24 時間後 44 時点	8 時間後 時点 時点 時点	96 時間後 時点	120 時間後 時点	144 時間後 時点	168 時間後 時点	来9 つ场合も記載。 点に20日に、20日日、20日日、20日日、20日日、20日日、20日日、20日日
- 1.00×10 ⁻² 2.7×10 ¹⁰ 1.4×10 ²⁰ 2.6×10 ²⁰ 3.6×10 ²⁰ 4.5×10 ²⁰ 5.3×10 ²⁰ 6.0×10 ²⁰ 1.00×10 ⁻² 2.00×10 ⁻² 2.7×10 ¹⁰ 1.4×10 ²⁰ 2.6×10 ²⁰ 3.6×10 ²⁰ 4.5×10 ²⁰ 5.3×10 ²⁰ 6.0×10 ²⁰	1 0.01	約7.8×10 ¹⁸ 22	2 1.5	約 2.4×10 ^{1 8}	0.01	5.5×10 ¹⁸ 1	. 9×10 ¹⁹ 2. 5×10 ¹⁹	2.6×10 ¹⁹	2.7 $\times 10^{19}$	2. 7×10^{19}	2. 7×10^{19}	島根2号炉は,24時間こ
$\frac{1.00\times10^{-2}}{2.00\times10^{-2}} \frac{3.0\times10^{-2}}{3.1\times10^{10}} \frac{1.6\times10^{10}}{1.6\times10^{10}} \frac{2.9\times10^{10}}{4.0\times10^{10}} \frac{4.8\times10^{10}}{4.8\times10^{10}} \frac{5.5\times10^{10}}{5.5\times10^{10}} \frac{6.1\times10^{10}}{6.1\times10^{10}}$	2 0.02	約8.7×10 ¹⁸ 23	3 1.66	約7.5×10 ¹⁷	0.02	6.2×10 ¹⁸ 2 7.1×10 ¹⁸ 2	$.1 \times 10^{19}$ 2.7×10 ¹⁹ $.5 \times 10^{19}$ 3.1×10 ¹⁹	$\begin{array}{c} 2.9 \times 10^{19} \\ 3.3 \times 10^{19} \end{array}$	3.0×10^{19} 3.4×10^{19}	3.0×10^{19} 3.4×10^{19}	3.0×10^{19} 3.4×10^{19}	との積算線源強度を評
$\frac{3.00 \times 10^{-2}}{4.50 \times 10^{-2}} \frac{4.50 \times 10^{-2}}{6.0 \times 10^{-2}} \frac{5.0 \times 10^{30}}{1.5 \times 10^{30}} \frac{3.1 \times 10^{31}}{6.0 \times 10^{31}} \frac{8.6 \times 10^{31}}{1.1 \times 10^{32}} \frac{1.1 \times 10^{32}}{1.5 \times 10^{32}} \frac{1.5 \times 10^{32}}{1.5 \times 10$	4 0.045	約1.4×10 ²⁰ 25	2.0 5 2.5	約 1. 6×10 ¹⁸ 約 4. 6×10 ¹⁸	0.045	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$.2 \times 10^{20}$ 5. 6×10^{20} $.8 \times 10^{17}$ 1. 2×10^{18}	$\begin{array}{c} 6.0 \times 10^{20} \\ 1.2 \times 10^{18} \end{array}$	$\begin{array}{c} 6.1 \times 10^{20} \\ 1.2 \times 10^{18} \end{array}$	$\begin{array}{c} 6.2 \times 10^{20} \\ 1.2 \times 10^{18} \end{array}$	$\frac{6.2 \times 10^{20}}{1.2 \times 10^{18}}$	価
$\frac{1}{6} \cdot 00 \times 10^{-2} \ 7.00 \times 10^{-2} \ 1.0 \times 10^{10} \ 3.5 \times 10^{10} \ 5.5 \times 10^{10} \ 7.2 \times 10^{10} \ 8.6 \times 10^{10} \ 9.8 \times 10^{10} \ 1.1 \times 10^{10}$	5 0.06	約 5. 3×10 ¹⁷ 26	3.0	約 1. 3×10 ^{1 7}	0.07	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 8.1 \times 10^{17} \\ 8.8 \times 10^{19} \end{array}$	8. 2×10^{17} 9. 0×10^{19}	8. 2×10^{17} 9. 1×10^{19}	$\frac{8.2 \times 10^{17}}{9.1 \times 10^{19}}$	
$\frac{7.00 \times 10^{-2}}{7.50 \times 10^{-2}} \frac{7.50 \times 10^{-2}}{1.00 \times 10^{-1}} \frac{7.3 \times 10^{10}}{3.6 \times 10^{20}} \frac{4.5 \times 10^{20}}{4.5 \times 10^{21}} \frac{8.9 \times 10^{21}}{6.4 \times 10^{21}} \frac{1.6 \times 10^{21}}{1.6 \times 10^{21}} \frac{1.9 \times 10^{21}}{1.6 \times 10^{21}} \frac{2.2 \times 10^{21}}{1.1 \times 10^{22}}$	6 0.07	約 3.6×10 ¹⁷ 27	3.5	約 1.5×10 ¹⁵	0.1	$\begin{array}{c cccc} 7.1 \times 10^{19} & 3 \\ 2.8 \times 10^{17} & 6 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.4×10^{20} 8.2×10^{17}	$\begin{array}{c} 4.5 \times 10^{20} \\ 8.3 \times 10^{17} \end{array}$	$\begin{array}{c} 4.5 \times 10^{20} \\ 8.4 \times 10^{17} \end{array}$	$\frac{4.5 \times 10^{20}}{8.4 \times 10^{17}}$	
$\frac{1.00\times10^{-1}}{1.00\times10^{-1}} \frac{1.00\times10^{-1}}{1.2\times10^{10}} \frac{1.2\times10^{10}}{3.0\times10^{11}} \frac{4.2\times10^{10}}{4.2\times10^{10}} \frac{5.4\times10^{-1}}{5.1\times10^{10}} \frac{5.8\times10^{11}}{5.8\times10^{11}} \frac{6.4\times10^{11}}{7.0\times10^{10}}$	7 0.075	約 2. 0×10 ^{1 9} 28	4.0	約 1.5×10 ^{1 5}	0.2	3.6×10 ¹⁹ 8 7.2×10 ¹⁹ 1	$.6 \times 10^{19}$ 9.1×10 ¹⁹ $.7 \times 10^{20}$ 1.8×10 ²⁰	9.2×10 ¹⁹ 1.8×10 ²⁰	9.2×10 ¹⁹ 1.8×10 ²⁰	9.2×10 ¹⁹ 1.8×10 ²⁰	9. 2×10^{19} 1. 8×10^{20}	
1.50×10 ⁻¹ 2.00×10 ⁻¹ 1.1×10 ³⁰ 3.4×10 ³⁰ 4.1×10 ³⁰ 4.3×10 ³⁰ 4.4×10 ³⁰ 4.5×10 ³⁰ 4.6×10 ³⁰ 2.00×10 ⁻¹ 2.00×10 ⁻¹ 2.2×10 ³⁰ 6.8×10 ³⁰ 8.8×10 ³⁰ 8.8×10 ³⁰ 8.8×10 ³⁰ 8.8×10 ³⁰ 8.1×10 ³⁰ 1.1×10	8 0.1	約 9.9×10^{19} 29 約 4.6×10^{17} 30	<u>4.5</u>	約 5.0×10 ⁵	0.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0×10^{19} 2. 6×10^{19} 0×10^{19} 1. 3×10^{19}	$\begin{array}{c} 2.7 \times 10^{19} \\ 1.4 \times 10^{19} \end{array}$	2.8×10^{19} 1.4×10^{19}	2.8×10^{19} 1.4×10^{19}	$\begin{array}{c} 2.8 \times 10^{19} \\ 1.4 \times 10^{19} \end{array}$	
$\frac{2}{3},00\times10^{-1},0$	10 0.2	約 5. 6×10 ^{1 9} 31	5.5	約 5.0×10 ⁵	0.51	9.7×10 ¹⁸ 2 3.2×10 ¹⁷ 8	$.7 \times 10^{19}$ 3.2×10^{19} $.9 \times 10^{17}$ 1.1×10^{18}	3.3×10^{19} 1.1×10 ¹⁸	3.4×10^{19} 1.1×10^{18}	3.4×10^{19} 1.1×10^{18}	$\frac{3.4 \times 10^{19}}{1.1 \times 10^{18}}$	
4.00×10 ⁻¹ 4.50×10 ⁻¹ 1.8×10 ¹⁹ 6.1×10 ¹⁹ 1.1×10 ²⁰ 1.5×10 ²⁰ 1.9×10 ²⁰ 2.3×10 ²⁰ 2.6×10 ²⁰ 4.50×10 ²¹ 5.10×10 ²¹ 5.10×10 ²¹ 6.7×10 ¹⁹ 6.6×10 ¹⁹ 6.6×10 ¹⁹ 1.0×10 ²⁰ 1.1×10 ²⁰ 1.1×10 ²⁰	11 0.3	約 1.1×10 ²⁰ 32	6.0	約 5.0×10 ⁵	0.6	1.4×10^{19} 3 1.6×10^{19} 4	$.9 \times 10^{19}$ 4.7 × 10 ¹⁹ $.4 \times 10^{19}$ 5.3 × 10 ¹⁹	4.9×10^{19} 5.5×10 ¹⁹	4.9×10^{19} 5.6×10 ¹⁹	5. 0×10^{19} 5. 6×10^{19}	5.0×10^{19} 5.6×10^{19}	
$\frac{4.50\times10^{-1}}{5.10\times10^{-1}} \frac{5.10\times10^{-1}}{5.12\times10^{-1}} \frac{2.7\times10^{-1}}{9.0\times10^{11}} \frac{8.6\times10^{-1}}{2.2\times10^{10}} \frac{5.6\times10^{-1}}{3.2\times10^{10}} \frac{1.1\times10^{-1}}{3.4\times10^{10}} \frac{1.1\times10^{-1}}{3.8\times10^{10}}$	12 0.4	約 6. 6×10 ^{1 8} 33	6.5	約 5.7×10 ⁴	0.8	5.3×10 ¹⁸ 1 1.1×10 ¹⁹ 3	$.6 \times 10^{19}$ 2.0×10 ¹⁹ .2×10 ¹⁹ 4.0×10 ¹⁹	2.1×10^{19} 4.2×10^{19}	2.1×10^{19} 4.3×10^{19}	2.2×10^{19} 4.3×10^{19}	2.2×10^{19} 4.3×10^{19}	
5.12×10 ⁻¹ 6.00×10 ⁻¹ 4.0×10 ¹⁹ 9.7×10 ¹⁹ 1.3×10 ²⁰ 1.4×10 ²⁰ 1.5×10 ²⁰ 1.6×10 ²⁰ 1.7×10 ²⁰	13 0.45	約 3. 3×10 ¹⁸ 34 約 1. 1×10 ¹⁹ 25	7.0	約 5.7×10 ⁴	1.33	4.6×10^{18} 1 1.4×10 ¹⁷ 3	0×10^{19} 1. 2×10 ¹⁹ . 1×10 ¹⁷ 3. 6×10 ¹⁷	1.2×10^{19} 3.8×10^{17}	1.3×10^{19} 3.8×10^{17}	1.3×10^{19} 3.8×10^{17}	$\frac{1.3 \times 10^{19}}{3.8 \times 10^{17}}$	
$\frac{6.00\times10^{-1}}{7.00\times10^{-1}} \frac{1.00\times10^{-1}}{8.00\times10^{-1}} \frac{4.5\times10^{-1}}{1.3\times10^{10}} \frac{1.1\times10^{-1}}{2.5\times10^{10}} \frac{1.6\times10^{-1}}{3.2\times10^{10}} \frac{1.7\times10^{-1}}{3.4\times10^{10}} \frac{1.8\times10^{-1}}{3.7\times10^{10}} \frac{1.9\times10^{-1}}{3.7\times10^{10}}$	15 0.512	約3.7×10 ¹⁷ 36	5 7.5 5 8.0	新 5.7×10 ⁴	1.5	2.2×10^{18} 5 6.4×10 ¹⁷ 9	0×10^{18} 5.8×10 ¹⁸ .6×10 ¹⁷ 1.0×10 ¹⁸	$\begin{array}{c} 6.0 \times 10^{18} \\ 1.1 \times 10^{18} \end{array}$	$\begin{array}{c} 6.1 \times 10^{18} \\ 1.1 \times 10^{18} \end{array}$	$\begin{array}{c} 6.1 \times 10^{18} \\ 1.1 \times 10^{18} \end{array}$	$ \begin{array}{c} 6.1 \times 10^{18} \\ 1.1 \times 10^{18} \end{array} $	
8.00×10 ⁻¹ 1.00×10 ⁰ 2.5×10 ¹⁰ 5.1×10 ¹⁰ 5.9×10 ¹⁰ 6.4×10 ¹⁰ 6.8×10 ¹⁰ 7.2×10 ¹⁰ 7.5×10 ¹⁰	16 0.6	約1.6×10 ¹⁹ 37	10.0	約 1.8×10 ⁴	2.0	1.4×10^{18} 2 3.4×10^{18} 4	0×10^{18} 2. 2×10 ¹⁸ 0×10^{18} 4. 2×10 ¹⁸	2.2×10^{18} 4.3×10^{18}	2.3×10^{18} 4.3×10^{18}	2.3×10^{18} 4.3×10^{18}	$\begin{array}{r} 2.3 \times 10^{18} \\ 4.3 \times 10^{18} \end{array}$	
$\frac{1.00\times10^{-}}{1.33\times10^{0}} \frac{1.33\times10^{-}}{1.34\times10^{0}} \frac{2.1\times10^{-}}{6.3\times10^{17}} \frac{3.5\times10^{-}}{1.1\times10^{10}} \frac{3.1\times10^{-}}{1.1\times10^{10}} \frac{3.8\times10^{-}}{1.1\times10^{10}} \frac{3.8\times10^{-}}{1.2\times10^{10}} \frac{3.8\times10^{-}}{1.2\times10^{-}} \frac{3.8\times10^{-}}{1.2\times10^{-}} \frac{3.8\times10^{-}}{1.2\times1$	17 0.7	約1.8×10 ¹⁹ 38	3 12.0	約 8.8×10 ³	3.0 3.5	1.3×10^{17} 1 1.6×10^{15} 1	$.4 \times 10^{17}$ 1.4×10^{17} $.6 \times 10^{15}$ 1.6×10^{15}	1.5×10^{17} 1.6×10^{15}	1.5×10^{17} 1.6×10^{15}	1.5×10^{17} 1.6×10^{15}	$\frac{1.5 \times 10^{17}}{1.6 \times 10^{15}}$	
1.34×10 ⁰ 1.50×10 ⁰ 1.0×10 ¹⁰ 1.6×10 ¹⁰ 1.7×10 ¹⁰ 1.8×10 ¹⁰ 1.8×10 ¹⁰ 1.8×10 ¹⁰ 1.9×10 ¹⁰	18 0.8	約5.4×10 ¹⁸ 39) 14.0	0.0	4.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$.6 \times 10^{15}$ 1.6×10^{15} 3.5×10^{4} 9.9×10^{4}	1.6×10^{15} 1.1×10^{5}	1.6×10^{15} 1.2×10^{5}	$\frac{1.6 \times 10^{15}}{1.2 \times 10^{5}}$	$\frac{1.6 \times 10^{15}}{1.3 \times 10^{5}}$	
$\frac{1.50\times10^{-1}}{1.66\times10^{0}} \xrightarrow{1.00\times10^{0}} 3.4\times10^{-1} \xrightarrow{4.2\times10^{-1}} 4.3\times10^{-1} \xrightarrow{4.3\times10^{-1}} 4.3\times10^{-1} \xrightarrow{4.3\times10^{-1}} 4.3\times10^{-1} \xrightarrow{4.3\times10^{-1}} 4.3\times10^{-1} \xrightarrow{4.3\times10^{-1}} 1.66\times10^{0} \xrightarrow{1.00\times10^{-1}} 1.1\times10^{-1} \xrightarrow{1.00\times10^{-1}} 9.1\times10^{-1} \xrightarrow{1.00\times10^{-1}} 9.2\times10^{-1} 1.0$	20 1.33	約 5. 0×10 ¹⁸ 41	30.0	0.0	5.0 5.5	5.6×10^4 8 5.6×10^4 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1×10^{5} 1.1×10^{5}	1.2×10^{5} 1.2×10^{5}	1.2×10^{5} 1.2×10^{5}	1.3×10^{5} 1.3×10^{5}	
2.00×10 ⁰ 2.50×10 ⁰ 1.5×10 ¹⁰ 1.6×10 ¹⁰	21 1.34	約1.5×10 ¹⁷ 42	2 50.0	0.0	6.0 6.5	5.6×10^4 8 6.4×10 ³ 9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1×10^{5} 1.3×10^{4}	1.2×10^{5} 1.3×10^{4}	1.2×10^{5} 1.4×10^{4}	1.3×10^{5} 1.5×10^{4}	
$\frac{2.50\times10^{-1}}{3.00\times10^{0}} \frac{3.50\times10^{-1}}{5.5\times10^{-1}} \frac{5.4\times10^{-1}}{5.4\times10^{-1}} \frac{5.4\times10^{-1}}{5.5\times10^{-1}} \frac{5.5\times10^{-1}}{5.5\times10^{-1}} \frac{5.5\times10^{-1}}{5.5\times10^{-1}$,	7.0	6.4×10^3 9 6.4×10^3 9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.3×10^{4} 1.3×10^{4}	1.3×10^{4} 1.3×10^{4}	1.4×10^{4} 1.4×10^{4}	1.5×10^{4} 1.5×10^{4}	
3.50×10 ⁶ 4.00×10 ⁶ 6.9×10 ¹⁵					8.0 10.0	6.4×10 ³ 9 2.0×10 ³ 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.3×10^4 3.9×10^3	1.3×10^4 4.1×10^3	$\begin{array}{c} 1.4 \times 10^{4} \\ 4.4 \times 10^{3} \end{array}$	$ \begin{array}{c} 1.5 \times 10^{4} \\ 4.6 \times 10^{3} \end{array} $	
$\frac{4.00\times10^{6}}{4.50\times10^{6}} \frac{5.00\times10^{6}}{5.00\times10^{6}} \frac{1.7\times10^{6}}{1.7\times10^{6}} \frac{3.5\times10^{6}}{5.4\times10^{6}} \frac{5.4\times10^{6}}{7.2\times10^{6}} \frac{7.2\times10^{6}}{9.0\times10^{6}} \frac{9.0\times10^{6}}{1.1\times10^{7}} \frac{1.3\times10^{7}}{1.3\times10^{7}}$					12.0 14.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$.5 \times 10^{3}$ 1.8×10^{3} 0.0×10^{0} 0.0×10^{0}	1.9×10^{3} 0.0×10^{0}	2.1×10^{3} 0.0×10^{0}	2.2×10^{3} 0.0×10^{0}	$\begin{array}{c} 2.3 \times 10^{3} \\ 0.0 \times 10^{0} \end{array}$	
5.00×10^6 5.50×10^6 1.7×10^6 3.5×10^6 5.4×10^6 7.2×10^6 9.0×10^6 1.1×10^7 1.3×10^7					20.0	$\begin{array}{c cccc} 0.0 \times 10^0 & 0 \\ \hline 0.0 \times 10^0 & 0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0×10^{0} 0.0×10^{0}	0.0×10^{0} 0.0×10^{0}	$\begin{array}{c} 0.0 \times 10^{0} \\ 0.0 \times 10^{0} \end{array}$	$ \begin{array}{c} 0.0 \times 10^{0} \\ 0.0 \times 10^{0} \end{array} $	
$\frac{6.50\times10^6}{6.00\times10^6} \frac{1.1\times10^6}{6.50\times10^6} \frac{3.5\times10^6}{1.9\times10^5} \frac{3.4\times10^6}{6.1\times10^5} \frac{7.2\times10^6}{8.3\times10^5} \frac{9.0\times10^6}{1.0\times10^6} \frac{1.1\times10^6}{1.5\times10^6} \frac{1.5\times10^6}{1.5\times10^6}$					50.0	0.0×10^{0} 0	0.0×10^{0} 0.0×10^{0}	0.0×10^{0}	0.0×10^{0}	0.0×10^{0}	0.0×10^{0}	
6.50×10 ⁶ 7.00×10 ⁶ 1.9×10 ⁵ 4.0×10 ⁵ 6.1×10 ⁵ 8.3×10 ⁵ 1.0×10 ⁶ 1.2×10 ⁶ 1.5×10 ⁶												
$\frac{7.50 \times 10^{6}}{7.50 \times 10^{6}} \frac{1.9 \times 10^{7}}{8.00 \times 10^{6}} \frac{4.0 \times 10^{7}}{4.0 \times 10^{5}} \frac{6.1 \times 10^{7}}{6.1 \times 10^{5}} \frac{8.3 \times 10^{7}}{1.0 \times 10^{6}} \frac{1.0 \times 10^{7}}{1.2 \times 10^{6}} \frac{1.2 \times 10^{7}}{1.5 \times 10^{6}}$												
8.00×10^{6} 1.00×10^{1} 5.9×10^{4} 1.2×10^{5} 1.9×10^{5} 2.5×10^{5} 3.2×10^{5} 3.8×10^{5} 4.5×10^{5}												
$\frac{1.00 \times 10^{-1}}{1.20 \times 10^{1}} \frac{1.20 \times 10^{-1}}{1.40 \times 10^{1}} \frac{2.9 \times 10^{-1}}{0.0 \times 10^{0}} \frac{9.4 \times 10^{-1}}{0.0 \times 10^{0}} \frac{1.3 \times 10^{-1}}{0.0 \times 10^{1}} \frac{1.9 \times 10^{-1}}{0.0 \times 10^{0}} \frac{2.2 \times 10^{-1}}{0.0 \times 10^{0}} \frac{1.9 \times 10^{-1}}{0.0 \times 10^{-1}} 1.9 \times 10^$												
$1.40 \times 10^{1} 2.00 \times 10^{1} 0.0 \times 10^{0}												
$\frac{2.00 \times 10^{-1}}{3.00 \times 10^{1}} \frac{3.00 \times 10^{-1}}{5.00 \times 10^{1}} \frac{0.0 \times 10^{-1}}{0.0 \times 10^{10}} \frac{0.0 \times 10^{-1}}{0.0 \times 10^{-1}}$												
※1 有効数字3桁目を四捨五入した値												
	1				1							

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所	F (201	8.9.18片	反)	島根原子力発電所 2号炉	備考
	第1-6表 直	[接ガンマ線及びス	マカイ	シャイン	ガンマ線の評価		・評価対象及び構成の相
		に用い	いる				違
	エネ	、ルギ群別ガンマ網	1. 積質	線源強度	(2/4)		【東海第二】
		(枚納容聖べ)	·/ L 生	(旅時)			●根の早后は 94時間ご
				加西村			面似と方がは、24时间に
	群 エネルギ (MeV)	ガンマ線積算線源強度 (Photons)	群	エネルギ (MeV)	ガンマ線積算線源強度 (Photons)		との積鼻線源強度を評
	1 0.01	約 1.3×10 ¹⁹	22	1.5	約 2.2×10 ¹⁸		価
	2 0.02	約 1.5×10 ¹⁹	23	1.66	約 3.7×10 ¹⁷		
	3 0.03	約 1.7×10 ¹⁹	24	2.0	約 8.0×10 ¹⁷		
	4 0.045	約 2. 9×10 ^{2 0}	25	2.5	約1.1×10 ¹ °		
	6 0.07	約 4. 9×10 ^{1 7}	20	3.5	約 4. 8×10 ^{1 2}		
	7 0.075	約 4. 2×10 ^{1 9}	28	4.0	約 4.8×10 ^{1 2}		
	8 0.1	約 2.1×10 ²⁰	29	4.5	約 2.2×10 ⁵		
	9 0.15	約 4.7×10 ¹⁷	30	5.0	約 2.2×10 ⁵		
	10 0.2	約 8.0×10 ¹⁹	31	5.5	約 2.2×10 ⁵		
	11 0.3	約 1.6×10 ²⁰	32	6.0	約 2.2×10 ⁵		
	12 0.4	約 9. 3×10 ¹⁸	33	6.5	約 2.6×10 ⁴		
	13 0.45	約 4.6×10 ^{1.9}	34	7.0	約 2.6×10 ⁴		
	15 0.512	約 4. 7×10 ^{1 7}	36	8.0	約 2. 6×10 ⁴		
	16 0.6	約 2.1×10 ¹⁹	37	10.0	約 7.9×10 ³		
	17 0.7	約 2.3×10 ¹⁹	38	12.0	約 4.0×10 ³		
	18 0.8	約7.2×10 ¹⁸	39	14.0	0.0		
	19 1.0	約 1.4×10 ¹⁹	40	20.0	0.0		
	20 1.33	約 4.6×10 ¹⁸	41	30.0	0.0		
	21 1.34	約 1.4×101 /	42	50.0	0.0		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電列	f (201	8.9.18	坂)	島根原子力発電所 2号炉	備考
	第1-6	表 直接ガンマ線及び	スカイ	シャイ:	ンガンマ線の評価に		・評価対象及び構成の相
		用	いる				違
							【宙海箆二】
		(恰桃谷奋	ヘノト	夫肔(仮)	-		島根2亏炉は、RHAR C4X
	群 エジ	ネルギ ガンマ線積算線源強度 (Photons)	群	エネルギ (MoV)	ガンマ線積算線源強度 (Photons)		束する場合も記載。
	1 0	.01 約1.6×10 ¹⁹	22	1.5	約 1.9×10 ^{1 8}		島根2号炉は,24時間ご
	2 0	.02 約1.8×10 ¹⁹	23	1.66	約 1.9×10 ¹⁷		との積算線源強度を評
	3 0	.03 約 2.0×10 ¹⁹	24	2.0	約 4.1×10 ¹⁷		価
	4 0.	.045 約 4.0×10 ²⁰	25	2.5	約 4.1×10 ¹⁷		1100
	5 0	.06 約 6.1×10 ¹⁷	26	3.0	約 9.4×10 ^{1 b}		
		0.07 約4.1×10 ¹⁴	27	3.5	約 3.5×10 ¹¹ 約 3.5×10 ¹¹		
	8 (0.1 約2.9×10 ²⁰	29	4.0	約 3.6×10 ⁵		
	9 0	. 15 約 3. 8×10 ¹⁷	30	5.0	約 3.6×10 ⁵		
	10 (0.2 約3.5×10 ¹⁹	31	5.5	約 3.6×10 ⁵		
	11 (0.3 約7.1×10 ¹⁹	32	6.0	約 3.6×10 ⁵		
	12 (0.4 約1.1×10 ¹⁹	33	6.5	約 4.1×10 ⁴		
	13 0	9.45 約 5.7×10 ¹⁸	34	7.0	約 4.1×10 ⁴		
	14 0	51 約1.2×10 ¹⁹	35	7.5	約4.1×10 ⁴		
	16 (1.512 約4.1×10 ⁻¹ 2.6 約1.8×10 ¹⁹	37	10.0	約1.3×10 ⁴		
	17 (約 2. 1×10 ^{1 9}	38	12. 0	約 6.3×10 ³		
	18 (0.8 約8.3×10 ¹⁸	39	14.0	0.0		
	19	1.0 約 1.7×10 ¹⁹	40	20.0	0.0		
	20 1	. 33 約 3. 9×10 ^{1 8}	41	30.0	0.0		
	21 1	. 34 約 1. 2×10 ¹⁷	42	50.0	0.0		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	第1-6表 直接ガンマ線及びスカイシャインガンマ線の評価に		・評価対象及び構成の相
	用いるエネルギ群別ガンマ線積算線源強度(4/4)		違
	(合計)		【東海第二】
			自根の是信け PHARで版
	群エネルギガンマ線積算線源強度 (Photons)群エネルギガンマ線積算線源強度 (MeV)(MeV)(Photons)(Photons)		西依2万炉は、MIAK(収 士上2個人1 司共
	1 0.01 $\$$ 3.7×10 ¹⁹ 22 1.5 $\$$ 6.5×10 ¹⁸		宋する場合も記載。
	2 0.02 約4.1×10 ¹⁹ 23 1.66 約1.3×10 ¹⁸		島根2号炉は,24時間ご
	3 0.03 約4.8×10 ¹⁹ 24 2.0 約2.8×10 ¹⁸		との積算線源強度を評
	4 0.045 約8.3×10 ²⁰ 25 2.5 約6.2×10 ¹⁸		価
	5 0.06 $\$71.9 \times 10^{1\circ}$ 26 3.0 $\$71.6 \times 10^{1\circ}$ 6 0.07 $\$51.3 \times 10^{18}$ 27 3.5 $\$51.5 \times 10^{15}$		
	0 0.07 $\% 91.3 \times 10^{-20}$ 27 3.3 $\% 91.3 \times 10^{-10}$ 7 0.075 $\$ 1.2 \times 10^{20}$ 28 4.0 $\$ 1.5 \times 10^{15}$		
	8 0.1 約 6.0×10 ²⁰ 29 4.5 約 1.1×10 ⁶		
	9 0.15 約1.3×10 ¹⁸ 30 5.0 約1.1×10 ⁶		
	10 0.2 約 1.7×10 ²⁰ 31 5.5 約 1.1×10 ⁶		
	11 0.3 約 3.4×10 ²⁰ 32 6.0 約 1.1×10 ⁶		
	12 0.4 $\Re 2.7 \times 10^{1.9}$ 33 6.5 $\Re 1.2 \times 10^{3}$ 13 0.45 $\Re 1.4 \times 10^{1.9}$ 34 7.0 $\Re 1.2 \times 10^{5}$		
	13 0.43 $\% 31.4 \times 10^{-19}$ 34 7.0 $\% 1.2 \times 10^{-19}$ 14 0.51 $\$ 3.7 \times 10^{19}$ 35 7.5 $\$ 1.2 \times 10^{5}$		
	15 0.512 約1.2×10 ¹⁸ 36 8.0 約1.2×10 ⁵		
	16 0.6 約 5.5×10 ¹⁹ 37 10.0 約 3.8×10 ⁴		
	17 0.7 約 6. 2×10 ¹⁹ 38 12.0 約 1.9×10 ⁴		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

劳炉	備考
/ガンマ線の計算モデ	

	III. Li
劳炉	備考
	・評価モデルの相違
	【柏崎 6/7】
	スカイシャインガンマ
	線の評価に当たっては,
	原子炉建物屋上階の下
	層階の自由空間中の放
	射性物質に起因するガ
	ンマ線は原子炉建物屋
	上階の床面により十分
	に遮蔽されるため, 原子
	炉建物最上階の自由空
	間中の放射性物質に起
	因するガンマ線のみを
	考慮するものとした。
シック線の斗筲エデ	
、 水 いつ 昇 て /	

予炉	備考
	・設備の相違
	【柏崎 6/7】
	建物配置の相違に伴う
	評価点の相違
ガンマ線の計算モデル	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	第1-2図 原子炉建屋の計算モデル(4/5)	図 1-1 直接ガンマ線及びスカイシャインガンマ線の計算モデル	
		(4/4)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	第 1-2 図 原子炉建屋の計算モデル(5/5)		

柏崎刈羽	原子力発電所 6/7号;	12.20版)		東海第二	二発電所(2018.9.	18版)	島根原子力発電所 2号炉				
<u></u>	長 2-1-8 防護措置の評価系	条件(1/3)			第1-7表 「	中央制御室換気設	備条件(2/2)		表 1-8 防護措置の評価系	条件(1/3)	_
項目	評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイドでの記載
中央制御室換気空調 系(中央制御室送風 機,中央制御室排風 機,中央制御室非風 機,中央制御室再循 環送風機)の風量	事故発生から 0~168 時間後: 0㎡ ³ /h(給排気隔離ダンパ閉止)	炉心の著しい損 傷が発生した場 合には恒設の中 央制御室換気空 調系を停止する 運用とする	4.2(2)e. 原子炉制御 室/緊急時制御室/緊 急時対策所内への外気 取入による放射性物質 の取り込みについて は、非常用換気空調設 備の設計及び運転条件 に従って計算する	外気取り込み 量 	<u>閉回路循環運転:27</u> 時間 <u>外気取り入れ運 転:3時間</u>	閉回路循環運転が長期に わたり室内環境が悪化し て外気取り入れる際に必 要な運転時間として設定	- - - -	中央制御室換気系 (再循環用ファン, 排気ファン,チャコ ール・フィルタ・ブ ースタ・ファン)の 風量	【外気取込量】 事故発生から 0~2時間後:0 ^{m3} /h <u>2時間以降:17500m³/h</u> 【再循環流量】 事故発生から 0~2時間後:0 ^{m3} /h	運用を基に設 定	4.2(2)e. 原子炉制御室/ 緊急時制御室/緊急時対 策所内への外気取入によ る放射性物質の取り込み については、非常用換気空 調設備の設計及び運転条 件に従って計算する。
可搬型陽圧化空調機 の風量	事故発生から 0~3 時間後: 0m ³ /h 事故発生から 3~168 時間後: 6000m ³ /h	運用を基に設定可搬設備の設置	に () () 前昇 () の。	項目 中央制御室非 常用換気系の 起動時間	3 1 - (衣 中: 評価条件 事象発生から 2 時 間	大市(仰)至(探気)設備 選定理由 全交流動力電源喪失を考慮し、代替電源からの電源供給開始時間から保守	 余1午(1/2) 審査ガイドでの記載 4.3(3)f.原子炉制御室の非常用換気 空調設備の作動については、非常用 電源の作動状態を基に設定する。 	中央制御室換気系の 起動遅れ時間	2 時間以降:32000m ³ /h 2 時間	全交流動力電 源喪失対応に 要する時間遅 れを考慮1 設	4.3(3)f. 原子炉制御室の 非常用換気空調設備の作 動については、非常用電源 の作動升能を基に設定す
可搬型陽圧化空調機 の起動遅れ時間	3 時間	に要する時間遅 れや全交流動力 電源喪失対応に 要する時間遅れ を考慮し設定	 4.3(3)f. 原子炉制御 室の非常用換気空調設 備の作動については、 非常用電源の作動状態 を基に設定する。 			的に設定				402 5 感 U BX 定	の IF動 (A LE 2 ME L X 上) る。
陽圧化装置の空気供 給量	 事故発生から 0~38 時間後:0m³/h 事故発生から 38~48 時間後^{±1}:95m³/h 事故発生から 48~168 時間後:0m³/h 事故発生から 48~168 時間後:0m³/h ※1 格納容器ベントの実施に伴い評価 期間中に放出される放射性物質の うち,大部分が放出される期間(数 時間(添付資料2 2-4 図2-4-5参 照))に余裕を持たせ,陽圧化装置 による陽圧化時間を10時間と設定 	運用を基に設 定。なお,代替 循環冷却系を用 いて事象を収束 する号炉からの 影響に対して は,陽圧化装置 の効果を考慮し ないものとし た。	同上								

・設備及び運用の相違
【柏崎 6/7,東海第二】
島根2号炉は,常設空調
を用いた加圧によりフ
ィルタを通らない外気
の流入を防止する

備考

柏山	奇刈羽原子力発電所 6,	子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.			発電所(2018.9.18	版) 島根原子力発電所 2号炉					備考	
	表 2-1-8 防護措置の	の評価条件(2/3)	_	第	1-7表 中央	R制御室換気設備条	牛(1/2)		表 1-8 防護措置の評	価条件(2/3)		
項目	評価条件	選定理由	審査ガイドでの記載	中央制御室非常		フィルタユニットの設計値	4.2(1)a.ヨウ素及びエアロゾル	項目	評価条件	選定理由	審査ガイドでの記載	
可搬型陽 圧化空調	希ガス:0%		 4.2(1)a. ヨウ素類及 びエアロゾルのフィル タ効率は、使用条件で 	用循環設備よう 素フィルタによ る除去効率	95%	(チャコールフィルタ効率:97%)を保守的に設定(添付9,10参照)	のフィルタ効率は,使用条件で の設計値を基に設定する。なお, フィルタ効率の設定に際し, ヨ	中央制御室換	希ガス:0%		4.2(1)a. ヨウ素類及び エアロゾルのフィルタ	
機の高性 能フィル タの除去	無機よう素:0% 有機よう素:0% 粒子状放射性物質・99.9%	設計値を基に設定	 の設計値を基に設定す る。なお、フィルタ効 率の設定に際し、ヨウ 	中央制御室非常		フィルタユニットの設計値	 ウ素類の性状を適切に考慮する。 同上 	気系フィルタ ユニットの高 性能フィルタ	無機よう素:0% 有機よう素:0% 粒子状放射性物質:99.9%	設計値を基に設定	効率は、使用条件での設 計値を基に設定する。な お、フィルタ効率の設定	・設備の相違 【柏崎 6/7.東海第二】
効率			素類の性状を適切に考 慮する。	用換気系微粒子 フィルタによる		(高性能粒子フィルタ: 99.97%)を保守的に設定(添		の除去効率			に際し、ヨウ素類の性状 を適切に考慮する。	島根2号炉の設計値を 使用
 可搬型陽 圧化空調 機の活性 炭フィル タの除去 効率 	希ガス:0% 無機よう素: <u>99.9%</u> 有機よう素: <u>99.9%</u> 粒子状放射性物質:0%	同上	同上	除去効率	<u>99%</u>	付 9, 10 参照)		中央制御室換 気系フィルタ ユニットのチ ャコールフィ ルタの除去効 率	希ガス:0% 無機よう素: <u>95%</u> 有機よう素: <u>95%</u> 粒子状放射性物質:0%	同上	同上	・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉の設計値を 使用
 中央制御 室バウン ダリへの 外気の直 接流入率 	事故発生から0~3時間後 <u>:0.5回/h</u> 事故発生から 3~168 時間後 <u>:0 回/h</u>	可搬型陽圧化空調機によ り中央制御室バウンダリ を陽圧化していない期間 は、空気流入率測定試験結 果(0.30回/h,添付資料2 2-23 参照)を基に,保守 的に外気の直接流入率0.5 回/hを仮定した。 陽圧化している期間は,外 気の直接流入を防止でき る設計としている。	 4.2(1)b. 既設の場合 では、空気流入率は、 空気流入率測定試験結 果を基に設定する。 	空気流入率	<u>1 回/h</u>	非常用換気系作動時の空気流 入率測定試験結果の結果であ ろ0.47回/hに対して外気か らフィルタを通らずに中央制 御室内に取り込まれる放射性 物質の量が保守的となるよう に設定(添付11参照)	4.2(1)b. 既設の場合では, 空 気流入率は, 空気流入率測定試 験結果を基に設定する。	中央制御室バ ウンダリへの 外気の直接流 入率	事故発生から0~2時間後: <u>0.5回/h</u> 事故発生から 2~168 時間後 <u>:0 回/h</u>	中央制御室換気系によ り中央制御室バウンダ リを正圧化していない 期間は、空気流入率測定 試験結果(約0.1回/h、 添付資料 19 参照)を 基に、保守的に外気の直 接流入率0.5回/hを仮定 した。 正圧化している期間は、 外気の直接流入を防止 できる設計と している。	4.2(1)b. 既設の場合で は、空気流入率は、空気 流入率測定試験結果を 基に設定する。	・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉の測定結果 を元に設定

柏崎刈え	羽原子力発電所 6,	/7号炉 (20)17.12.20版)	東海第二発電所(2018.9.18版)					島根原子ナ	力発電所 2号	炉	備考
	表 2-1-8 防護措置の	の評価条件(3/	3)						<u>表 1-8 防護措置</u>	の評価条件(3/3)	
項目	評価条件	選定理由	審査ガイドでの記載					項目	評価条件	選定理由	審査ガイドでの記載	
	中央制御室バウンダリ:		4.2(2)e. 原子炉制御室/緊 急時制御室/緊急時対策所内					中央制御室の空	<u>中央</u> 制御室バウンダリ <u>:</u>		4.2(2)e. 原子炉制御室/緊急時制 御室/緊急時対策所内に取り込ま	乳供の相当
中央制御室の空 調バウンダリ体 積	<u>20800m³</u> 中央制御室待避室:	設計値を基に設定	に取り込まれる放射性物質の 空気流入量は、空気流入率及 び原子炉制御室/緊急時制御 室/緊急時対策所パウンダリ					調バウンダリ体 積	<u>17150m</u> ² 中央制御室待避室: <u>30m³</u>	設計値を基に設定	れる放射性物質の空気流入量は、空 気流入率及び原子炉制御室/緊急 時制御室/緊急時対策所バウンダ リ体積(容積)を用いて計算する。	【柏崎 6/7】
放射性物質のガ	<u>100m³</u> 中央制御室バウンダリ:		体積(容積)を用いて計算す る。					放射性物質のガ	中央制御室内容積: 2440m ³		4.2(3)d. 原子炉制御室/緊急時制 御室/緊急時対策所内へ外気から 取り込まれた放射性物質からのガ	・設備の相違
 	<u>20800m³</u> 中央制御室待避室:	同上	同上		第 1-7 表 中	11.11.11.11.11.11.11.11.11.11.11.11.11.	(生 (2 / 2)	部被ばくに係る容積	<u>- 110m</u> 中央制御室待避室: <u>30m³</u>	同上	ンマ線による外部被ばくは、室内の 空気中時間積分濃度及びクラウド シャインに対する外部被ばく線量	【柏崎 6/7】 島根 2 号炉における容 積を記載
	<u>100m*</u> 入退域時: <u>1000</u>	性能上期待できる値 (添付資料2 2-12	②運転員はマスクの着用を考	マスクによ る防護係数	 第111次 中立 事象発生から3時間及び 入退城時:50 	大川山中三1矢×山立川市大1 中央制御室非常用換気系作動 前及び中央制御室内の放射性	 (1) (2/2) 4.2(3)c.原子炉制御室/緊急時 制御室/緊急時対策所内でマス 			性能上期待できる 値(添付資料 12	換身体数の値で計算する	・資機材の相違 【柏崎 6/7】
マスクの 防護係数	中央制御室滞在時: 50 <u>(1日目のみ1000)</u>	参照)。入退域時及び 中央制御室滞在時と もにマスクの着用を	慮してもよい。ただしその場 合は、実施のための体制を整 備すること。		(その他の期間及びマス ク着用を考慮しない場合 は評価期間中常時マスク 第四ない)	 物質濃度が下がるまでの時間 についてマスクの着用を考 慮。(添付 12 参照) 	ク着用を考慮する。その場合は, マスク着用を考慮しない場合の 評価結果も提出を求める。		入退城時:50	参照)。入退城時及 び中央制御室滞在 時ともにマスクの	3.第74条1 b)②運転員はマスクの	柏崎 6/7 は, 電動ファン 付全面マスクも使用 【東海第二】 島根2号短は 断続的に
ヨウ素剤の服用	未考慮	考慮した。 保守的に考慮しない ものとした		中央制御室	▲用なし) 第1-9 葉 運転員の直交替(5直2	表 運転員交替考慮 ^{運転員の勤務形態 (5 直 2 交替)}	条件 3.74条1.b)③交代要員体制を	マスクの防護係数	中央制御室滞在時:50(5 時間着用,1時間外すこと を繰り返す)	着用を考慮した。 中央制御室滞在時 のマスク着用時間	着用を考慮してもよい。ただしその 場合は、実施のための体制を整備す ること。	局低25分は, 阿旅的に マスク着用を考慮
要員の交替	考慮する	運用を基に設定	③交代要員体制を考慮しても よい。ただしその場合は、実 施のための体制を整備すること。	滞在時	交替)に基づき,班ごと の中央制御室の滞在時間 で評価(日勤業務の班ご との交替も考慮)	に基づき, 班ごとに中央制御室 滞在中の被ばくを評価。なお, 一班当たり線量が高くなる場合 には, 被ばく平準化のために日	考慮してもよい。ただしその場 合は実施のための体制を整備 する事。			については、休憩、 水分補給等を考慮 しマスクを外す期 間を考慮した。		
	入域及び退域でそれぞれ1回当 たり,					勤業務に当たっている班に交替 する。(添付 13 参照)		<u>ヨウ素剤の</u> 服用	未考慮	保 <u>守的に考慮しな</u> いものとした		
入退域に 要する時間	 ・コントロール建屋入口に 15 分とどまるものとする ・よう素フィルタ等からの寄与 	実測値に余裕を持た せ設定	_	入退城時	運転員の直交替(5直2 交替)に基づき,班ご との入退域時間で評価	運転員の勤務形態(5直2交替) に基づき,班ごとに入退域に必 要な時間を15分(片道)として	_	要員の交替	考慮する	運用を基に設定	 第74条1b)③交代要員体制を考 慮してもよい。ただしその場合は、 実施のための体制を整備すること。 	 ・設備の相違 【柏崎 6/7】 島根2号炉では,FCVS
	<u>を評価する際は、アクセスルー</u> <u>ト上に2分間とどまるものとす</u> <u>ろ</u>					被ばくを評価。(添付 13 参照)		入退域に 要する時間	 入域及び退域でそれぞれ 1 回当たり、 ・2号炉原子炉補機冷却系 熱交換器室入口に 15 分と どまるものとする 	実測値に余裕を持 たせ設定	_	格納槽は地下に設置 し,十分な遮蔽を設け るため線源として考慮 していない
									1	1	<u> </u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海貿	第二発電所(2018.9	9.18版)		島根原	〔子力発電所 2号炉		備考
		<u>第1-8</u> 表	中央制御室内待	避室設備条件		表 1-9 中学	央制御室内待避室設備条件		・設備の相違
	項目	評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイド	【柏崎 6/7,東海第二】
	待避室遮蔽	<u>遮蔽厚 : コンクリー</u>	中央制御室内に流入した放射					での記載	島根2号炉の待避室遮
		<u>ト 40cm (公称値) 相</u>	性物質からのガンマ線による		待避室遮蔽	遮蔽厚:鉛	中央制御室内に流入した放射性	—	蔽を用いて評価
		当	被ばくを十分に低減できる設	—		<u>0.5cm相当</u>	物質からのガンマ線による被ば		・設備の相違
			計。				くを十分に低減できる設計。		【柏崎 6/7,東海第二】
		評価で考慮する <u>コン</u>	建築工事標準仕様書 JASS						島根2号炉は,鉛等を使
		<u>クリート遮蔽</u> は, 公称	5N·同解説(原子力発電所施						用している
	許容差	値からマイナス側許	設における鉄筋コンクリート	-					
		容差 (-5mm) を引い	工事,日本建築学会)に基づき						
		た値を適用	設定						
	コンクリ		新設遮蔽のコンクリート密		鉛密度	<u>11.3g/cm³</u>	鉛密度は11.3g/cm ³ 以上で施工	_	
	ート密度	2.10g/cm ³	度は 2.10g/cm ³ 以上で施工	—	待避室加圧	事象発生から	格納容器フィルタベント系によ		
	待避室加	事象発生から <u>約 19</u>	格納容器圧力逃がし装置によ		開始時間	約 32 時間後	り放出される放射性物質からの		・運用の相違
	圧開始時	時間後	り放出される放射性物質から			(ベント開始	被ばくを防護するために待避室	—	【柏崎 6/7,東海第二】
	間	(ベント開始時)	の被ばくを防護するために待	-		15 分前)	に待避すると想定		ベント実施時間の相違
			避室に待避すると想定		待避室加圧	ベント開始 15	中央制御室内に流入した放射性		
	待避室加	ベント開始から5時	中央制御室内に流入した放射		時間	<mark>分前</mark> から <u>8 時</u>	物質からの影響を十分に防護で	_	・運用の相違
	圧時間	間	性物質からの影響を十分に防	_		<u>間 15 分</u>	きる時間として設定		【柏崎 6/7,東海第二】
			護できる時間として設定		空気流入率	ボンベ加圧	待避室への待避時は待避室内を		島根2号炉の加圧時間
	空気流入	ボンベ加圧時:0回	待避室への待避時は待避室内			時:0回/h	空気ボンベにより加圧し, 外部か	_	を記載
	率	∕h	を空気ボンベにより加圧し,				らの空気流入がないと想定		
			外部からの空気流入がないと	-					
			想定						

柏嵋	利羽原子力発電所	6/7号炉 (2017.1	2.20版)		東海第二発電	所(2018. 9. 18 版)		島根原子力発電所 2号炉				備考	
表 2-1-9	線量換算係数及び	地表面への沈着速度の	条件	<u>第1-1</u>	0表線量換算係数,「	呼吸率及び地表への沈	「着速度の条件		表1	-10 線量換算係数及び地	も表面への沈着速度の	の条件	
項目	評価条件	選定理由	審査ガイドでの記載	項目	評価条件	選定理由	審査ガイドでの記載		項目	評価条件	選定理由	審査ガイドでの記載	
線量換算 係数	成人実効線量換算係数使用 (主な核種を以下に示す) I-131:2.0×10-8Sv/Bq I-132:3.1×10-10Sv/Bq I-133:4.0×10-9Sv/Bq I-134:1.5×10-10Sv/Bq I-135:9.2×10-10Sv/Bq Cs-134:2.0×10-8Sv/Bq Cs-136:2.8×10-9Sv/Bq Cs-137:3.9×10-8Sv/Bq 上記以外の核種は ICRP Publication71 及び ICRP Publication72 に基づく	ICRP Publication71及び ICRP Publication72に基づ く		線量換算数	 係 成人実効線量換算係数を使用 (主な核種を以下に示す) I-131 : 2.0×10⁻⁸ Sv/Bq I-132 : 3.1×10⁻¹⁰ Sv/Bq I-133 : 4.0×10⁻⁹ Sv/Bq I-134 : 1.5×10⁻¹⁰ Sv/Bq I-135 : 9.2×10⁻¹⁰ Sv/Bq Cs-134 : 2.0×10⁻⁸ Sv/Bq Cs-136 : 2.8×10⁻⁹ Sv/Bq L:RU外の核種は ICRP Pub.71 等に基づく 	ICRP Publication 71 等に基づく			線量換算 係数	成人実効線量換算係数使用 (主な核種を以下に示す) I-131:2.0×10 ⁻⁸ Sv/Bq I-132:3.1×10 ⁻¹⁰ Sv/Bq I-133:4.0×10 ⁻⁹ Sv/Bq I-134:1.5×10 ⁻¹⁰ Sv/Bq I-135:9.2×10 ⁻¹⁰ Sv/Bq Cs-134:2.0×10 ⁻⁸ Sv/Bq Cs-136:2.8×10 ⁻⁹ Sv/Bq Cs-137:3.9×10 ⁻⁸ Sv/Bq 上記以外の核種は ICRP Publication71 及び ICRP Publication72 に基づく	ICRP Publication71及び ICRP Publication72に基づく		
		ICRP Publication71 に基づ		呼吸率	1.2m ³ /h	成人活動時の呼吸率を設定。			成旺安	1.0-3/h	ICRP Publication71 に基づく		
呼吸率	1. 2m³/h	く成人活動時の呼吸率を設	-			ICRP Publication 71に基づく			呼吸举	1.2m²/h	成人活動時の呼吸率を設定	_	
		定		地表面~	の エアロゾル:1.2 cm/s	線量目標値評価指針を参考に、湿	4.2.(2)d 放射性物				線量目標値評価指針(降水時		
地表への 沈着速度	エアロゾル粒子:1.2cm/s 無機よう素:1.2cm/s 有機よう素:4.0×10 ⁻³ cm/s 希ガス:沈着なし	 線量目標値評価指針(降水 時における沈着率は乾燥時 の2~3倍大きい)を参考に, 湿性沈着を考慮して乾性沈 着速度(0.3 cm/s)の4倍を設 定。乾性沈着速度は NUREG/CR-4551 Vol.2^{※1}及び NRPB-R322 より設定。 (添付資料2 	4.2.(2)d. 放射性物 質の地表面への沈着 評価では、地表面へ の乾性沈着及び降雨 による湿性沈着を考 慮して地表面沈着濃 度を計算する。	沈着速度	無機よう素:1.2 cm∕s 有機よう素:4.0×10 ⁻³ cm∕s 希ガス:沈着無し	 性沈着を考慮して乾性沈着速度 (0.3cm/s及び10⁻³cm/s)の4 倍を設定。 エアロゾル及び無機よう素の乾 性沈着速度は NUREG/CR-4551Vol.2^{*5}より設定 有機よう素の乾性沈着速度は NRPB-R322^{*6}より設定 (添付14,15,16参照) 	質の地表面への沈着 評価では,地表面へ の乾性沈着及び降雨 による湿性沈着を考 慮して地表面沈着濃 度を計算する。		地表への 沈着速度	エアロゾル粒子:1.2cm/s 無機よう素:1.2cm/s 有機よう素:4.0×10 ⁻³ cm/s 希ガス:沈着なし	における沈着率は乾燥時の2 ~3倍大きい)を参考に,湿性 沈着を考慮して乾性沈着速度 (0.3cm/s)の4倍を設定。乾性 沈着速度はNUREG /CR-4551 Vol.2 ^{#1} 及びNRP B-R322より設定。 (添付資料 9,10,11を参 照)	4.2.(2)d.放射性物 質の地表面への沈着 評価では、地表面へ の乾性沈着及び降雨 による湿性沈着を考 慮して地表面沈着濃 度を計算する。	
		2-9,2-10,2-11 を参照)		₩5 ¥		.2 "Evaluation of Se	evere Accident	×	•1 NURF	G/CR-4551 Vol 2 "Evalu	uation of Severe Ac	cident Risks:	
X1 N Ris	L UREG/CR-4551 Vol.2 ks: Quantification	2 "Evaluation of Sev of Major Input Param	l vere Accident neters	R ※6 英 C	isks:Quantification 国 NRPB-R322-Atomospi ommittee Annual Repo	of Major Input Para here Dispersion Mpde rt	ameters" lling Liaison	QU	uantif:	ication of Major Input	2 Parameters		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-2 事象の選定の考え方について	2 事象の選定の考え方について	2 事象の選定の考え方について	
炉心の著しい損傷が発生した場合の中央制御室の居住性に係る	炉心の著しい損傷が発生した場合の中央制御室の居住性に係る	炉心の著しい損傷が発生した場合の中央制御室の居住性に係る	
被ばく評価に当たっては、評価事象として、重大事故等対策の有	被ばく線量は、中央制御室内に取り込まれた放射性物質による被	被ばく評価に当たっては、評価事象として,重大事故等対策の有	
効性評価において想定する格納容器破損モードのうち、運転員の	ばく及び地表面に沈着した放射性物質による被ばくが支配的であ	効性評価において想定する格納容器破損モードのうち、運転員の	
被ばくの観点から結果が最も厳しくなる事故収束に成功した事故	ることから、放射性物質の放出量が多くなる事象が被ばく評価の	被ばくの観点から結果が最も厳しくなる事故収束に成功した事故	
シーケンスを選定する必要がある。	観点から厳しくなる。さらに、格納容器圧力が高く維持される事	シーケンスを選定する必要がある。	
	象や炉心損傷時間が早い事象は中央制御室の被ばく評価の観点か		
	ら厳しくなる。		
	<u>炉心の著しい損傷が発生した場合における対応として,代替循</u>		
	環冷却系を使用できず、格納容器圧力逃がし装置による原子炉格		
	納容器内の減圧及び除熱操作(以下「格納容器ベント」という。)		
	を実施する場合は、格納容器圧力の抑制のため格納容器ベント実		
	施までは代替格納容器スプレイ冷却系(常設)による格納容器冷		
	却操作(以下「格納容器スプレイ」という。)を実施する。格納容		
	器スプレイによる圧力抑制効果を高くする観点で、格納容器圧力		
	を比較的高い領域で維持するため、代替循環冷却系を使用する場		
	合と比較して格納容器貫通部等からの漏えい率が大きくなり、大		
	気への放射性物質の放出量が多くなる。さらに、格納容器ベント		
	の実施に伴い放射性物質を大気へ放出するため、放出量が多くな		
	Jan		
	また、原子炉建屋ガス処理系の起動により、原子炉建屋から大		
	気への放射性物質の放出率低減効果に期待できることから、事象		
	進展が早く原子炉建屋ガス処理系の起動前の格納容器貫通部等か		
	らの漏えい量が多いほど、大気への放出量が多くなる。さらに、		
	炉心損傷時間が早いほど、早期に格納容器内に放出される放射性		
	物質は多くなるため,格納容器貫通部からの漏えい量も多くなる。		
	以上より、代替循環冷却系を使用せず格納容器ベントを実施す		
	る場合、かつ炉心損傷の時間が早く評価上想定している原子炉建		
	屋ガス処理系の起動までの時間が長い場合には、放射性物質の放		
	出量が多くなる。		
柏崎刈羽原子力発電所6号及び7号炉においては、 炉心の著しい	第2-1表に炉心の著しい損傷が発生した場合に想定する事象	島根原子力発電所2号炉においては、重大事故等時の中央制御	
損傷が発生した場合の中央制御室の居住性を確認する上で想定す	の中央制御室の居住性に係る被ばく評価への影響を示す。第2-1	室の居住性を確認する上で想定する事故シナリオとして、炉心損	
る事故シナリオとして、炉心損傷が発生する「大破断LOCA 時に非	表に示すとおり、格納容器破損防止対策の有効性評価で想定して	傷が発生する「冷却材喪失(大破断LOCA)+ECCS注水機	
常用炉心冷却系の機能及び全交流動力電源が喪失」シナリオを選	いる炉心損傷を前提とした事象のうち、炉心損傷時間が早く、格	<u>能喪失+全交流動力電源喪失」シナリオを</u> 選定した。	
定した。	納容器ベントを実施する「大破断LOCA+高圧炉心冷却失敗+		
	低圧炉心冷却失敗」の代替循環冷却系を使用できない場合が最も		
	放射性物質の放出量が多くなるため、この事象を中央制御室の居		
	住性に係る被ばく評価で想定する事象として選定する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二	二発電所(201	8.9.18版)		島根原子力発電所 2号炉	備考
なお,柏崎刈羽原子力発電所6号及び7号炉においては,両号炉	第 2-1 表	炉心の著し	い損傷が発生	した場合に想	定する事象の	なお, 島根原子力発電所2号炉においては, 重大事故等が発生	・申請号炉数の相違
において同時に炉心の著しい損傷が発生したと想定する場合、第		中央制御室	の居住性に係	る被ばく評価	への影響	したと想定する場合、第一に残留熱代替除去系を用いて事象を収	【柏崎 6/7】
一に両号炉において代替循環冷却系を用いて事象を収束すること		大破断しつの	∧ シナⅡ オ ^{※1}	DCH		<u>束することとなる。</u> しかしながら、被ばく評価においては <u>残留熱</u>	・資料構成の相違
<u>となる。</u> しかしながら,被ばく評価においては <u>片方の号炉におい</u>			AV) 94	シナリオ*2	中央制御室被	代替除去系による格納容器除熱に失敗することも考慮し、当該号	【東海第二】
て代替循環冷却系の運転に失敗することも考慮し、当該号炉にお	事象	代替循環冷	代替循環冷	代替循環冷	ばく評価への	炉において格納容器圧力フィルタベント系を用いてサプレッショ	大LOCA 時に RHAR が使用
いて <u>格納容器圧力逃がし装置</u> を用いてサプレッション・チェンバ		却糸を使用 する場合	却糸を使用できない場	却糸を使用 する	影響	ン・チェンバの排気ラインを使用した格納容器ベントを実施する	できず, ベントに至る
の排気ラインを使用した格納容器ベントを実施する場合も評価対		у . Э - 20 Ц	合 ⁽	7.0		場合も評価対象とする。	ケースが被ばく評価上
象とする。	格納容器				格納容器圧力		最も厳しいと評価して
(1)事象の概要(格納容器ベント実施時)	ベント	実施しない	実施する	実施しない	が高い状態で	(1)事象の概要(格納容器ベント実施時)	いる点は島根2号炉と
a. 大破断 LOCA が発生し, 原子炉格納容器内に冷却材が大量に	(7日間)				推移すると、	a. 大破断LOCA が発生し, 格納容器内に冷却材が大量に漏	同じ
漏えいする。		代替循環冷	格納容器圧	代替循環冷	原子炉格納容 哭からの漏え	えいする。	
b. 更に非常用炉心冷却系(ECCS)喪失,全交流動力電源喪失		却系の使用	力は高い状	却系の使用	い率が大きく	b. 更に非常用炉心冷却系(ECCS)喪失,全交流動力電源喪	
(SBO)を想定するため,原子炉圧力容器への注水ができず炉		により俗納 容器圧力は	思じ推移りる。また、格	により俗納 容器圧力は	なり、放出量	失(SBO)を想定するため,原子炉圧力容器への注水がで	
心損傷に至る。 <u>70 分後</u> に <u>低圧代替注水系(常設)</u> による原子		低い状態で	納容器ベン	低い状態で	が多くなる。	きず炉心損傷に至る。 30 分後に低圧原子炉代替注水系 (常設)	・設備及び運用の相違
炉圧力容器への注水を開始することで、原子炉圧力容器破損		推移する。	ト実施に伴	推移する。	格納容器ベン	による原子炉圧力容器への注水を開始することで、原子炉圧	【柏崎 6/7,東海第二】
は回避される。			い放射性物		トを実施する	力容器破損は回避される。	島根2号炉の事故シナ
c. その後, 原子炉圧力容器への注水及び <u>原子炉格納容器</u> へのス			質を大気へ		で、 成別 圧初 質が大気へ放	c. その後,原子炉圧力容器への注水及び <u>格納容器</u> へのスプレイ	リオを使用
プレイを実施するが,事象発生から <u>約38 時間後に格納容器圧</u>			成田りる。		出されるた	を実施するが、事象発生から約32時間後に外部注水制限に到	・設備及び運用の相違
<u>力が限界圧力に到達し、格納容器圧力逃がし装置</u> を用いたべ					め、放出量が	<u>達し,格納容器フィルタベント系を</u> 用いたベントを実施する。	【柏崎 6/7,東海第二】
ントを実施する。					多くなる。		島根2号炉の事故シナ
(2)想定事故シナリオ選定	炉心預傷	% 5	4 />	約25人	大気への放出	(2)想定事故シナリオ選定	リオを使用
想定事故シナリオ選定については、事故のきっかけとなる起因	(燃料被	ポリ	4 万	かり 30 万	単位減効末に 期待できる非	想定事故シナリオ選定については、事故のきっかけとなる起因	
事象の選定を行い、起因事象に基づく事故シナリオの抽出及び分	覆管温度	大破断LOC	Aを想定して	静的負荷シ	常用ガス処理	事象の選定を行い、起因事象に基づく事故シナリオの抽出及び分	
類を行う。その後、重大事故等対策の有効性評価及び事故シナリ	1,000K 到	おり,早期(ま	卡常用ガス処理	ナリオより	系及び非常用	類を行う。その後、重大事故等対策の有効性評価及び事故シナリ	
オの選定を行う。	達時間を	系及び非常用	ガス再循環系	は遅いが,非	ガス再循環系	オの選定を行う。	
a. 起因事象の選定	想定)	の起動前)に	.炉心損傷に至	常用ガス処理変及び非	の起動(事家	a. 起因事象の選定	
プラントに影響を与える事象について、内部で発生する事象		_ଦ ୍		理 示 及 い 非 常 用 ガ ス 再	までに、炉心	プラントに影響を与える事象について, 内部で発生する事象	
と外部で発生する事象(地震、津波、その他自然現象)をそれ				循環系の起	損傷時間が早	と外部で発生する事象(地震、津波、その他自然現象)をそれ	
ぞれ分析し、事故のきっかけとなる事象(起因事象)について				動前に炉心	いほど放出量	ぞれ分析し、事故のきっかけとなる事象(起因事象)について	
選定する。				損傷に至る。	が多くなる。	選定する。	
プラント内部で発生する事象については、プラントの外乱と						プラント内部で発生する事象については、 プラントの外乱と	
なる事象として、従前より許認可解析の対象としてきた事象で						なる事象として、従前より許認可解析の対象としてきた事象で	
ある運転時の異常な過渡変化(外部電源喪失等)及び設計基準						ある運転時の異常な過渡変化(外部電源喪失等)及び設計基準	
事故(原子炉冷却材喪失等)を選定する。また,原子炉の運転						事故(原子炉冷却材喪失等)を選定する。また、原子炉の運転	
に影響を与える事象として、非常用交流電源母線の故障、原子						に影響を与える事象として、非常用交流電源母線の故障、原子	
炉補機冷却系の故障等を選定する。						炉補機冷却系の故障等を選定する。	
プラント外部で発生する事象については,地震,津波に加え,						プラント外部で発生する事象については,地震,津波に加え,	
地震・津波以外の自然現象の42 事象から,地域性等を考慮して						地震・津波以外の自然現象の 53 事象から,地域性等を考慮し	
							1

柏崎刈羽原子力発電所 6/	7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電	所 2号炉	備考	
9 事象(風(台風),竜巻,火	山,落雷,積雪,低温(凍結),		11 事象(洪水,風(台風),竜	巻, 凍結, 降水, 積雪, 落雷,		
降水,生物学的事象,地滑り)	を選定する。また,設計基準を		地滑り、火山の影響、生物学的	事象,森林火災)を選定する。		
大幅に超える規模の事象発生を	想定した上で,プラントに有意		また,設計基準を大幅に超える規	模の事象発生を想定した上で,		
な頻度で影響を与えると考えら	れる場合は、考慮すべき起因事		プラントに有意な頻度で影響を	与えると考えられる場合は、考		
象とする。			慮すべき起因事象とする。			
b. 起因事象に基づく事故シナリ	オの抽出及び分類		b. 起因事象に基づく事故シナリオの	り抽出及び分類		
イベントツリー等により、事	故のきっかけとなる事象(起因		イベントツリー等により、事	夜のきっかけとなる事象(起因		
事象)を出発点に、事象がどの	ように進展して最終状態に至る		事象)を出発点に、事象がどの。	事象)を出発点に、事象がどのように進展して最終状態に至る		
かを、安全機能を有する系統の	動作の成否を分岐として樹形状		かを,安全機能を有する系統の	動作の成否を分岐として樹形状		
に展開し、事故シナリオを漏れ	なく抽出する。		に展開し,事故シナリオを漏れた	なく抽出する。		
抽出した事故シナリオを事故	:進展の特徴によって, 表2-2-1		抽出した事故シナリオを事故進	展の特徴によって,表 2-1 の		
のとおりグループ別に分類する	0		とおりグループ別に分類する。			
表 2-2-1 運転中の炉心損傷に	こ係る事故シナリオグループ					
出力運転中の炉心損傷に係る	lati sa-		表 2-1 運転中の炉心損傷に係	る事故シナリオグループ		
事故シナリオグループ	(tity) (tity)		出力運転中の炉心損傷に係る	भग नम		
	崩壊熱の除去に失敗して		事故シナリオグループ	(成安)		
崩壞熱际去機能喪失	炉心損傷に至るグループ			崩壊熱の除去に失敗して		
	低圧注水に失敗して		崩壞熟除去機能喪失	炉心損傷に至るグループ		
高圧・低圧圧水機能喪失	炉心損傷に至るグループ			低圧注水に失敗して		
	高圧注水に失敗して		高圧・低圧汪水機能喪失	炉心損傷に至るグループ		
局上:汪水・ 減圧機能喪失	炉心損傷に至るグループ			高圧注水に失敗して		
	電源を失うことにより		高圧汪水・減圧機能喪失	炉心損傷に至るグループ		
全父流動力電源喪失	炉心損傷に至るグループ			電源を失うことにより		
	止める機能を喪失して		全交流動力電源喪失	炉心損傷に至るグループ		
原于炉停止機能喪失	炉心損傷に至るグループ			止める機能を喪失して		
	LOCA 時に注水に失敗して		原子炉停止機能喪失	炉心損傷に至るグループ		
LUCA 时往水機肥喪大	炉心損傷に至るグループ			LOCA 時に注水に失敗して		
			LOCA 時注水機能喪失	炉心損傷に至るグループ		
				·		
c. 重大事故等対策の有効性評価	はび事故シナリオの選定 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、		c. 重大事故等対策の有効性評価及び	ゞ 事故シナリオの選定		
b. で分類した事故シナリオの	うち、出力運転中の原子炉にお		b. で分類した事故シナリオの	うち、出力運転中の原子炉にお		
ける崩壊熱除去機能喪失,高圧	・低圧注水機能喪失,高圧注水・		ける崩壊熱除去機能喪失, 高圧・	低圧注水機能喪失,高圧注水·		
减圧機能喪失,全交流動力電源	喪失、原子炉停止機能喪失につ		減圧機能喪失,全交流動力電源要	喪失,原子炉停止機能喪失につ		
いては炉心損傷に至らないため	,重大事故等対処設備が機能し		いては炉心損傷に至らないため,	重大事故等対処設備が機能し		
ても炉心損傷を避けられない事	むシナリオは, LOCA 時注水機能		ても炉心損傷を避けられない事情	女シナリオは、LOCA時注水		
喪失のみとなる。			機能喪失のみとなる。			
しかしながら、重大事故等対	策の有効性評価においては、格		しかしながら、重大事故等対策	策の有効性評価においては,格		
納容器破損モードとして,雰囲気	気圧力・温度による静的負荷(格		納容器破損モードとして, 雰囲気	〔圧力・温度による静的負荷(格		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
納容器過圧・過温破損)(LOCA 時注水機能喪失)に加えて,高		納容器過圧・過温破損)(LOCA 時注水機能喪失)に加えて,	
圧溶融物放出/格納容器雰囲気直接加熱 (DCH) ,原子炉圧力容		高圧溶融物放出/格納容器雰囲気直接加熱(DCH),原子炉圧	
器外の溶融燃料-冷却材相互作用 (FCI) , 水素燃焼, 溶融炉心・		力容器外の溶融燃料-冷却材相互作用(FCI),水素燃焼,溶	
コンクリート相互作用(MCCI)の計5つを想定している ^{※1} 。		融炉心・コンクリート相互作用(MCCI)の計5つを想定し	
		ている*1。	
これらのモードにおける原子炉格納容器の破損防止のための		これらのモードにおける格納容器の破損防止のための対応	
対応は, LOCA 時注水機能喪失とDCH に集約されているため,		は,LOCA 時注水機能喪失とDCH に集約されているため,	
LOCA 時注水機能喪失とDCH のうち,運転員の被ばくの観点から		LOCA 時注水機能喪失とDCH のうち, 運転員の被ばくの	
結果が厳しくなる事故シーケンスを確認した結果, LOCA 時注水		観点から結果が厳しくなる事故シーケンスを確認した結果、L	
機能喪失の方が厳しくなる結果となった(「2-22 格納容器雰		OCA 時注水機能喪失の方が厳しくなる結果となった(「添付	
囲気直接加熱発生時の被ばく評価について」を参照)。		資料 18 格納容器雰囲気直接加熱発生時の被ばく評価につい	
		て」を参照)。	
以上より, 炉心損傷が発生するLOCA 時注水機能喪失を想定事		以上より、炉心損傷が発生するLOCA 時注水機能喪失を想	
故シナリオとして選定した。		定事故シナリオとして選定した。	
なお,前述のとおり, <u>両号炉において同時に</u> 想定事故シナリ		なお,前述のとおり, <u>2号炉において</u> 想定事故シナリオが発	・申請号炉数の相違
オが発生したと想定する場合,第一に <u>両号炉において代替循環</u>		生したと想定する場合,第一に <u>残留熱代替除去系</u> を用いて事象	【柏崎6/7】
<u> 治却系</u> を用いて事象を収束することとなる。しかしながら,被		を収束することとなる。しかしながら、被ばく評価においては	
ばく評価においては <u>片方の号炉において代替循環冷却系の運転</u>		残留熱代替除去系による格納容器除熱に失敗することも考慮	
に失敗することも考慮し,当該号炉において <u>格納容器圧力逃が</u>		し、当該号炉において <u>格納容器フィルタベント系</u> を用いてサプ	
し装置を用いてサプレッション・チェンバの排気ラインを使用		レッション・チェンバの排気ラインを使用した格納容器ベント	
した格納容器ベントを実施する場合も評価対象とした。		を実施する場合も評価対象とした。	
※1 格納容器破損モード「DCH」, 「FCI」及び「MCCI」は, 重		※1 格納容器破損モード「DCH」,「FCI」及び「MCCI」	
大事故等対処設備に期待する場合はこれらの現象の発生を		は、重大事故等対処設備に期待する場合はこれらの現象の	
防止することができるが、「実用発電用原子炉及びその附		発生を防止することができるが、「実用発電用原子炉及びそ	
属施設の位置、構造及び設備の基準に関する規則の解釈」		の附属施設の位置、構造及び設備の基準に関する規則の解	
第37条2-1(a)において、「必ず想定する格納容器破損モー		釈」第37 条2-1(a)において,「必ず想定する格納容器破損	
ド」として定められているため、評価を成立させるために、		モード」として定められているため、評価を成立させるた	
重大事故等対処設備の一部に期待しないものとしている。		めに、重大事故等対処設備の一部に期待しないものとして	
		いる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-3 核分裂生成物の原子炉格納容器外への放出割合の設定につ	7 原子炉格納容器外への核分裂生成物の放出割合の設定につい	3 核分裂生成物の格納容器外への放出割合の設定について	
いて	7		
炉心の著しい損傷が発生した場合における中央制御室の居住性	大気への放出量は、炉内蓄積量に原子炉格納容器外への放出割	炉心の著しい損傷が発生した場合における中央制御室の居住性	
評価に当たっては、放射性物質の原子炉格納容器外への放出割合	合を乗じることで算出する。(参考1参照)	評価に当たっては、放射性物質の格納容器外への放出割合をMA	
をMAAP コードとNUREG-1465の知見を利用し評価している。	原子炉格納容器外への放出割合の評価に当たっては、想定事故	<u>AP コードとNUREG-1465の知見を利用し評価している。</u>	
大破断LOCA 時に非常用炉心冷却系の機能及び全交流動力電源	シナリオ「大破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失	大破断LOCA 時に非常用炉心冷却系の機能及び全交流動力	
が喪失するシナリオ(W/Wベント)でのMAAP 解析による放出割合	敗」(全交流動力電源喪失の重畳を考慮)において原子炉圧力容器	電源が喪失するシナリオ(W/Wベント) <u>でのMAAP</u> 解析による	
の評価結果(事故発生から168時点)を表2-3-3 に示す。ただし、	が健全な状態で事故収束するため、そのプラント状態を模擬可能	放出割合の評価結果(事故発生から168時間経過時点)を表3-3 に	
以下に示すとおり,表2-3-3の値は中央制御室の居住性評価に使用	なMAAPコードを用いることとするが、以下の考察から、NU	示す。ただし、以下に示すとおり、表3-3の値は中央制御室の居住	
していない。	REG-1465の知見を用いて一部補正する。MAAP解析結果を	性評価に使用していない。	
	<u>第7-1表に,NUREG-1465の知見を用いて一部補正した結果</u>		
	を第7-2表に示す。		
	① T M I や福島第一原子力発電所事故での観測事実について		
表2-3-3によると,高揮発性核種 (CsIやCsOH)の放出割合 (10	<u>第7-1表</u> によると,高揮発性核種(CsI,CsOH)のベン	<u>表3-3</u> によると,高揮発性核種(CsIやCsOH)のベントラ	
-6オーダー)と比べ、中・低揮発性核種の放出割合が極めて大き	トラインからの放出割合(10 ⁻⁶ <u>~10⁻⁷</u> オーダー)と比べ,中・低	インからの放出割合(10 ⁻⁶ オーダー)と比べ、中・低揮発性核種	・解析結果の相違
い (10 ⁻⁴ オーダー) という結果となっている。	揮発性核種の放出割合が大きい(<u>10⁻⁵</u> オーダー)という結果にな	の放出割合が大きい(<u>10⁻⁴</u> オーダー)という結果となっている。	【柏崎 6/7,東海第二】
	っている。		島根2号の事故シナリ
一方、TMI事故や福島第一原子力発電所事故での観測事実から、	一方, TMIや福島第一原子力発電所事故での観測事実から,	一方、TMI事故や福島第一原子力発電所事故での観測事実から、	オを使用
事故が起こった場合に最も多く放出される粒子状の物質はよう素	事故が発生した場合に最も多く放出される粒子状物質は、よう素	事故が起こった場合に最も多く放出される粒子状の物質はよう素	
やセシウム等の高揮発性の物質であり、中・低揮発性の物質の放	やセシウム等の高揮発性の物質であり、中・低揮発性の物質の放	やセシウム等の高揮発性の物質であり、中・低揮発性の物質の放	
出量は高揮発性の物質と比べ少量であることが分かっている。	出量は高揮発性の物質と比べて少量であることがわかっている。	出量は高揮発性の物質と比べ少量であることが分かっている。	
表2-3-4は,TMI事故後に評価された放射性核種の場所ごとの存	<u>第7-3</u> 素は, TMI事故後に評価された放射性核種の場所毎の	<u>表3-4</u> は,TMI事故後に評価された放射性核種の場所ごとの存在	
在量であるが、希ガスや高揮発性核種(セシウムやよう素)が原	存在量であるが、希ガスや高揮発性核種(セシウムやよう素)が	量であるが、希ガスや高揮発性核種(セシウムやよう素)が原子	
子炉圧力容器外に全量のうち半分程度放出されている一方で,	原子炉圧力容器外に炉内蓄積量の半分程度放出される一方で,	炉圧力容器外に全量のうち半分程度放出されている一方で、中・	
中・低揮発性核種はほぼ全量が原子炉圧力容器内に保持されてい	中・低揮発性核種はほぼ全量が原子炉圧力容器に保持されている	低揮発性核種はほぼ全量が原子炉圧力容器内に保持されていると	
るという評価となっている。	という評価となっている。	いう評価となっている。	
さらに,表2-3-5は,福島第一原子力発電所事故後に実施された	また, <u>第7-4</u> 素は, 福島第一原子力発電所事故後に実施された	さらに,表3-5は,福島第一原子力発電所事故後に実施された発	
発電所敷地内の土壌中放射性核種のサンプリング結果であるが,	発電所敷地内の土壤中放射性核種のサンプリング結果であるが、	電所敷地内の土壌中放射性核種のサンプリング結果であるが、最	
最も多く検出されているのは高揮発性核種(セシウムやよう素)	最も多く検出されているのは高揮発性核種(セシウムやよう素)	も多く検出されているのは高揮発性核種(セシウムやよう素)で	
であり、多くの中・低揮発性核種は不検出という結果となってい	であり、多くの中・低揮発性核種は不検出(<u>ND</u>)という結果と	あり、多くの中・低揮発性核種は不検出という結果となっている。	
る。	なっている。		
また、燃料からの核分裂生成物の放出及び移動挙動に関する実	②各元素の放出挙動について	<u>また</u> ,燃料からの核分裂生成物の放出及び移動挙動に関する <u>実</u>	
験結果より,各元素の放出挙動は以下のように整理されており*1,	燃料からの核分裂生成物の放出及び移行挙動に関する研究結果	験結果より,各元素の放出挙動は以下のように整理されており*1,	
希ガスが高温で燃料からほぼ全量放出されるのに対し、それ以外	より,各元素の放出挙動は以下のように整理されており*4, 高揮	希ガスが高温で燃料からほぼ全量放出されるのに対し、それ以外	
の核種の放出挙動は雰囲気条件に依存するとしている。	発性核種が高温でほぼ全量放出されるのに対し、中・低揮発性核	の核種の放出挙動は雰囲気条件に依存するとしている。	
希ガス : 高温にて燃料からほぼ全量放出される。	種は雰囲気条件に大きく左右される。	希ガス : 高温にて燃料からほぼ全量放出される。	
I, Cs : 高温にて燃料からほぼ全量放出される。放出速度は希	希ガス:高温にてほぼ全量放出される。	I, Cs : 高温にて燃料からほぼ全量放出される。放出速度は希	
ガスと同等。	I, Cs:高温にてほぼ全量放出される。放出速度は希ガスと	ガスと同等。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
Sb, Te : 高温にて燃料からほぼ全量放出される。また被覆管と	同等。	Sb, Te :高温にて燃料からほぼ全量放出される。また被覆管と	
反応した後、被覆管の酸化に伴い放出される。	S b, T e:被覆管と反応した後, 被覆管の酸化に伴い放出さ	反応した後、被覆管の酸化に伴い放出される。	
Sr, Mo, Ru, Rh, Ba:雰囲気条件(酸化条件 or 還元条件)に	れる。	Sr, Mo, Ru, Rh, Ba:雰囲気条件(酸化条件 or 還元条件)に	
大きな影響を受ける。	Sr, Mo, Ru, Rh, Ba:雰囲気条件(酸化条件 or 還	大きな影響を受ける。	
	元条件)に大きな影響を受		
Ce, Np, Pu, Y, Zr, Nb:高温状態でも放出速度は低い。	ける。	Ce, Np, Pu, Y, Zr, Nb:高温状態でも放出速度は低い。	
	C e, N p, P u, Y, Z r, N b:高温状態でも放出速度は		
※1 「化学形に着目した破損燃料からの核分裂生成物及びアクチ	低い。	※1 「化学形に着目した破損燃料からの核分裂生成物及びアクチ	
ニドの放出挙動評価のための研究(JAEA-Review 2013-034, 2013	※4 「化学形に着目した破損燃料からの核分裂生成物及びア	ニドの放出挙動評価のための研究(JAEA-Review 2013-034,	
年12月)」	クチニドの放出挙動評価のための研究 (JAEA-Review	2013年12月)」	
	2013-034, 2013年12月)」		
表2-3-3の評価結果はこれらの観測事実及び実験結果と整合が	③補正について	表3-3の評価結果はこれらの観測事実及び実験結果と整合が取	
取れていない。これは、大破断LOCA時に非常用炉心冷却系の機能	①及び②より,第7-1表の中・低揮発性核種の放出割合が	れていない。これは、大破断LOCA 時に非常用炉心冷却糸の機	
及び全交流動力電源が喪失するシナリオにおいては, MAAP 解析が	高揮発性核種よりも大きいという結果は実態に即しておらず、	能及び全交流動力電源が喪失するシナリオにおいては、MAAP	
中・低揮発性核種の放出割合を過度に大きく評価しているためで	これは、MAAP解析において、中・低揮発性核種の放出割合	解析が中・低揮発性核種の放出割合を過度に大きく評価している	
あると考えられる。	が過度に大きく評価されたためと考えられ、要因としては、溶	ためであると考えられる。	
MAAP 解析の持つ保守性としては、炉心が再冠水し溶融炉心の外	融燃料が再冠水し溶融燃料の外周部が固化した後でも、燃料デ	MAAP 解析の持つ保守性としては、 炉心が再冠水し溶融炉心	
周部が固化した後でも、燃料デブリ表面からの放射性物質の放出	ブリ表面からの放射性物質の放出評価において溶融燃料の平均	の外周部が固化した後でも、燃料デブリ表面からの放射性物質の	
評価において溶融プール中心部の温度を参照し放出量を評価して	温度を参照して放出量を評価していることや、溶融燃料上部の	放出評価において <u>溶融プール中心部の温度を</u> 参照し放出量を評価	
いることや、炉心冠水時において燃料デブリ上部の水によるスク	水によるスクラビング効果を考慮していないことが挙げられ	していることや、 <u>炉心冠水時において燃料デブリ</u> 上部の水による	
ラビング効果を考慮していないことが挙げられる。MAAP コードの	る。なお、MAAPコードの開発元であるEPRIからも、以	スクラビング効果を考慮していないことが挙げられる。MAAP	
開発元であるEPRI からも,再冠水した炉心からの低揮発性核種の	下の報告がなされている。	コードの開発元であるEPRIからも,再冠水した炉心からの低	
放出についてMAAP 解析が保守的な結果を与える場合がある旨の		揮発性核種の放出についてMAAP解析が保守的な結果を与える	
以下の報告がなされている。		場合がある旨の以下報告がなされている。	
・炉心が再冠水した場合の低揮発性核種(Ru及びMo)の放出に		・炉心が再冠水した場合の低揮発性核種(Ru及びMo)の放出に	
ついて、低温の溶融燃料表面付近ではなく、溶融燃料の平均	・炉心が再冠水した場合の低揮発性核種(Ru及びMo)の	ついて、低温の溶融燃料表面付近ではなく、溶融燃料の平均	
温度を基に放出速度を算出しているため, MAAP 解析が保守的	放出について、低温の溶融燃料表面付近ではなく、溶融燃料	温度を基に放出速度を算出しているため, MAAP 解析が保	
な結果を与える場合がある。	の平均温度を基に放出速度を算出しているため、MAAP解	守的な結果を与える場合がある。	
・Moの放出量評価について, NUREG-1465 よりもMAAP コードの	析が保守的な結果を与える場合がある。	・Moの放出量評価について、NUREG-1465 よりもMAAP	
方が放出量を多く評価する。	・Moの放出量評価について, NUREG-1465 よりもMAA	コードの方が放出量を多く評価する。	
なお、高揮発性核種(セシウムやよう素)については炉心溶融	Pの方が放出量を多く評価する。	なお, 高揮発性核種(セシウムやよう素)については炉心溶融	
初期に炉心外に放出されるため、上述の保守性の影響は受けにく		初期に炉心外に放出されるため、上述の保守性の影響は受けにく	
いものと考えられる。		いものと考えられる。	
以上のことから、大破断LOCA 時に非常用炉心冷却系の機能及び		以上のことから、大破断LOCA 時に非常用炉心冷却系の機能	
全交流動力電源が喪失するシナリオにおいて中・低揮発性核種の		及び全交流動力電源が喪失するシナリオにおいて中・低揮発性核	1
放出割合を評価する際,単にMAAP 解析による評価結果を採用する		種の放出割合を評価する際,単にMAAP 解析による評価結果を	1
と、放出割合として過度に保守的な結果を与える可能性があるた		採用すると、放出割合として過度に保守的な結果を与える可能性	1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.9	. 18 版)		島根原子力	備考	
め、他の手法を用いた評価が必要になると考えられる。				があるた	め、他の手法を用いた		
そこで、炉心の著しい損傷が発生した場合における中央制御室				そこで	, 炉心の著しい損傷;		
の居住性を評価する際は, MAAP 解析による放出割合の評価結果以	したがって, T	MI事故や福島第一原子	力発電所事故の実態によ	の居住性	を評価する際は, MA		
外に,海外での規制等にも活用されているNUREG-1465(米国の原	り見合った、環境中への放出量を評価するため、中・低揮発性核				,海外での規制等に		
子力規制委員会 (NRC) で整備されたものであり、米国でもシビア	種の放出割合を	補正することとした。補助	<u> 正するに当たり, TMI</u>	(米国の)	原子力規制委員会(N		
アクシデント時の典型的な例として、中央制御室の居住性等の	事故を契機とし	て行われたシビアアクショ	デントに係るソースター	でもシビ	アアクシデント時の		
様々な評価で使用されている)の知見を利用するものとした。こ	ム研究を踏まえ,	, 被覆管材であるジルコ:	ニウムの酸化量の違い等	住性等の	様々な評価で使用され		
のことにより、TMI 事故や福島第一原子力発電所事故の実態によ	により核分裂生!	成物の放出量や放出タイ	ミングに相違が生じるこ	した。こ	のことにより, TMI		
り見合った評価が可能となる。	とを考慮し, B	WR及びPWRそれぞれに	こ対して放出割合を設定	実態によ	り見合った評価が可能	能となる。	
なお,事故シーケンス <u>「大破断LOCA+ECCS 注水機能喪失+全交流</u>	<u>する等,より現</u>	実的なソースタームの設定	定を目的として制定され				・評価条件の相違
<u>動力電源喪失」</u> において、原子炉注水機能が使用できないものと	たNUREG-14	165の知見を利用する。		なお,	事故シーケンス「冷	却材喪失(大破断LOCA)+EC	【柏崎 6/7,東海第二】
仮定した場合における、炉心損傷開始から、原子炉圧力容器が破				<u>CS注水</u>	機能喪失+全交流動	力電源喪失」において,原子炉注水	
損するまでのMAAP 解析事象進展(炉心の著しい損傷が発生した場				機能が使	用できないものと仮	定した場合における, 炉心損傷開始	
合における中央制御室の居住性評価における想定事故シナリオで				<u>から,原</u>	子炉圧力容器が破損	するまでのMAAP 解析事象進展	
は、当該事故シーケンスにおいて原子炉注水機能を使用すること				_ (炉心の)	著しい損傷が発生し	た場合における中央制御室の居住性	
により原子炉圧力容器破損には至らない)とNUREG-1465の想定の				評価にお	ける想定事故シナリ	オでは、当該事故シーケンスにおい	
比較は表2-3-1のとおりであり, NUREG-1465の想定とMAAP 解析の	事象発生後,炉	<u> む損傷が開始し,原子炉</u>	王力容器が破損するまで	て原子炉	注水機能を使用する	ことにより原子炉圧力容器破損には	
事象進展に大きな差はなく、本評価においてNUREG-1465の知見は	のMAAP解析	<u>とNUREG-1465の想定</u>	<u> Eの比較を第7-5表のと</u>	至らない)とNUREG-1465の想定の比較は表3-1のとおりであ			
使用可能と判断した。	おりであり,想	定事故シーケンスでは重	大事故等対処設備による	り, NUREG-1465の想定とMAAP 解析の事象進展に大きな			
NUREG-1465の知見を利用した場合の放出割合の評価結果を表	原子炉注水によ	り原子炉圧力容器破損に	は至らないが、NURE	差はなく,本評価においてNUREG-1465の知見は使用可能と判			
2-3-6に示す。	<u>G-1465</u> の想定	とMAAP解析の事象進	<u> 展に大きな差はなく,本</u>	: 断したam			
	評価においてNI	<u>UREG-1465の知見は利</u>	川用可能と判断している。	NUR	E G-1465の知見を利	用した場合の放出割合の評価結果	
				を表3-6に	ニ示す。		
<u>表 2-3-1</u> MAAP 解析事象進展と NUREG-1465 の想定の比較	<u>第7-5表 MA</u>	AP事象進展とNURE	<u>G-1465の想定の比較</u>	表 3-1 1	MAAP 解析事象進	展とNUREG-1465の想定の比較	・解析結果の相違
燃料被覆管の損傷が開始し、ギャップか 炉心溶融が開始し、溶融燃料が原子炉圧力容器破		燃料被覆管損傷が開始し, ギャップから放射性物質	炉心溶融が開始し,溶融 燃料が原子炉圧力容器破		燃料被覆管の損傷が開始し	, ギャ 炉心溶融が開始し, 溶融燃料が原子炉圧力	【柏崎 6/7,東海第二】
ら放射性物質が放出される期間 損するまでの期間		が放出される期間	損するまでの期間		ップから放射性物質が放出	される 容器破損するまでの期間	
МААР 約 17 分~約 41 $3^{\oplus 1}$ 約 41 $3^{\oplus 2}$	MAAP	約4分~約27分 ^{*5}	約 27 分~約 3.3 時間 ^{※6}		期間		
NUREG-1465 ~30 分 30 分~2 時間				MAAP	約5分~約28分*1	約 28 分~約 3.2 時間*2	
※1 炉心損傷開始(燃料被覆管温度1000K)~炉心溶融開始(燃	N U R E G	~30分	30 分~2 時間	NUREG	~30分	30 分~2 時間	
料被覆管温度2500K)	↓ 1100 ※5	 	~燃料漆融開始(燃	-1465			
※2 原子炉注水機能が使用できないものと仮定した場合におけ		19日(旅初刊版1复目 1,000瓜)		※1 炉心	。損傷開始(燃料被覆	ē管温度1000K)~炉心溶融開始(燃	
る原子炉圧力容器破損時間	将 值 反 2,300 k)※6 盾子 恒 注 7	kをしたい提合における	百子后正力灾哭破損	料被覆管	温度2500K)		
	時間(木評価にも	いてけ原子恒注水によ	かり ※ 圧力 名 部 破 度 り	※2 原子	子炉注水機能が使用で	できないものと仮定した場合におけ	
	指にけ至らたい			る原子炉	圧力容器破損時間		
	1						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
各MAAP核種グループの放出割合の具体的な評価手法は以下に示	以下, 各核種グループにおける放出割合の具体的な評価手法	各MAAP核種グループの放出割合の具体的な評価手法は以下	
すとおり。	を示す。	に示すとおり。	
(1)希ガスグループ, CsI グループ, CsOH グループ	 (1) 希ガスグループ、CsIグループ、CsOHグループ 	(1)希ガスグループ, Cs I グループ, Cs OHグループ	
希ガスを含めた高揮発性の核種グループについては、格納容器	希ガスを含めた高揮発性の核種グループについては, MA	希ガスを含めた高揮発性の核種グループについては、格納容器	
圧力逃がし装置への放出割合、原子炉格納容器から原子炉建屋へ	AP解析結果から得られた放出割合を採用する。	からベントラインへの放出割合,格納容器から原子炉建物への漏	
の漏えい割合ともにMAAP 解析の結果得られた放出割合を採用す		<u>えい割合ともに</u> MAAP 解析の結果得られた放出割合を採用す	
る。		る。	
なお, Cs の放出割合は, CsI グループとCsOH グループの放出	なお, С s の放出割合については, С s I グループ及びС	なお, Csの放出割合は, Cs I グループとCs OHグループの	
割合*1*2,及び,I元素とCs元素の停止時炉内内蔵量より,以下	s OHグループの放出割合, I 元素とC s 元素の原子炉停止	放出割合*1*2,及び,I元素とCs元素の停止時炉内内蔵量より,以	
の式を用いて評価する。	直後の炉内蓄積重量より,式1を用いて評価する。(式1の導	下の式を用いて評価する。	
	出過程は、参考2参照)	$M_{I} = W_{Cs}$	
		$F_{CS}(T) = F_{CS0H}(T) + \frac{1}{M_{CS}} \times \frac{1}{W_{I}} \times (F_{CSI}(T) - F_{CS0H}(T))$	
$\mathbf{F}_{\mathrm{C}}(\mathbf{T}) = \mathbf{F}_{\mathrm{C}} \cdots (\mathbf{T}) + \frac{\mathbf{M}_{\mathrm{I}}}{\mathbf{M}_{\mathrm{C}}} \times \frac{\mathbf{W}_{\mathrm{C}}}{\mathbf{V}} \times (\mathbf{F}_{\mathrm{C}}(\mathbf{T}) - \mathbf{F}_{\mathrm{C}} \cdots (\mathbf{T}))$	$E_{I}(T) = E_{I}(T) + \frac{M_{I}}{M_{I}} \times \frac{W_{Cs}}{V} (E_{I}(T) - E_{I}(T)) \qquad (= 1)$	F _{cs} (T) : 時刻 T におけるセシウムの放出割合	
$\mathbf{r}_{Cs}(I) = \mathbf{r}_{Cs0H}(I) + \frac{1}{M_{Cs}} \wedge \frac{1}{W_{I}} \wedge (\mathbf{r}_{CsI}(I) - \mathbf{r}_{Cs0H}(I))$	$F_{CS}(I) - F_{CSOH}(I) + \frac{1}{M_{CS}} \times \frac{1}{W_I} \times (F_{CSI}(I) - F_{CSOH}(I)) \qquad (1 \leq 1)$	F _{CsoH} (T) :時刻 T における CsOH グループの放出割合	
F (F) ・時刻 F におけるセシウムの地田割合	<i>F_{Cs}(T)</i> :時刻 T における C s の放出割合	F _{CsI} (T) : 時刻 T における CsI グループの放出割合	
F _{Cs} (I) :時刻 T における CsOH グループの放出割合	F_{C} * :時刻 T におけるC s OHグループの放出割合	M _I : 停止直後の I 元素の停止時炉内内蔵量	
Gon(T) :時刻 T における CsI グループの放出割合	H(I) $F_{Call}(T)$:時刻 T における C s I グループの放出割合	M _{Cs} : 停止直後の Cs 元素の停止時炉内内蔵量	
M _I :停止直後の I 元素の停止時炉内内蔵量	M ₁ :停止直後のIの炉内蓄積重量	W _I : Iの原子量	
M _{Cs} :停止直後のCs元素の停止時炉内内蔵量	<i>M_{Cs}</i> :停止直後のCsの炉内蓄積重量	W _{Cs} : Cs の原子量	
W _I :1の原子童 W- ・Ceの原子費	<i>W</i> ₁ : I の分子量		
WCs . Co von f m	<i>W_{Cs}</i> : C s の分子量	※1 MAAP コードでは化学的・物理的性質を考慮し核種をグ	
※1 MAAP コードでは化学的・物理的性質を考慮し核種をグルー		ループ分けしており、各グループの放出割合は、当該グルー	
プ分けしており、各グループの放出割合は、当該グループの		プの停止時炉内内蔵量と放出重量の比をとることで評価して	
停止時炉内内蔵量と放出重量の比をとることで評価してい		いる。	
る。		※2 各核種グループの停止時炉内内蔵量は以下の手順により評	
※2 各核種グループの停止時炉内内蔵量は以下の手順により評	大気への放出量は、炉内蓄積量に原子炉格納容器外への放出割	価している。	
価している。	合を乗じることで算出する。(参考1参照)	① ORIGEN コードにより核種ごとの初期重量を評価する。	
① ORIGEN コードにより核種ごとの初期重量を評価する。	参考1 大気への放出量評価過程について	② ①の評価をもとに、同位体の重量を足し合わせ、各元素の重	
② ①の評価をもとに、同位体の重量を足し合わせ、各元素の重	大気への放出量は、「核種ごとに評価した炉内蓄積量」に「M	量を評価する。	
量を評価する。	AAPにより評価した核種グループごとの原子炉格納容器外	③ ②の結果をMAAP コードにインプットし, MAAP コー	
③ ②の結果をMAAP コードにインプットし, MAAP コードにて,	への放出割合」を乗じることで算出する。本評価において考	ドにて、各元素の化合物の重量を評価する。	
各元素の化合物の重量を評価する。	慮したMAAPにおける核種グループと各グループの核種を	④ 各化合物は表3-2に示す核種グループに属するものとして整	
④ 各化合物は表2-3-2に示す核種グループに属するものとして	第7-7表に示す。なお、MAAPにおける核種グループとN	理している。核種グループの炉内内蔵量は、当該の核種グル	
整理している。核種グループの炉内内蔵量は、当該の核種グ	<u>UREG-1465における核種グループの比較は第7-1図のと</u>	ープに属する化合物の炉内内蔵量の和として評価している。	
ループに属する化合物の炉内内蔵量の和として評価してい	おりであり、分類数に違いはあるが、取り扱っている核種は		
る。	同等である。		

柏崎刈羽原子力到	発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)			島根原子力発電所 2号炉				備考
表 2-3-2	各核種グループの炉	内内蔵量	贫	第7-7表MAAPにおける核種グル—プと各グループの核種			表 3-2	各核種グループの炉内	内蔵量	・評価結果の相違
な孫 グループ	タ技種ガループに対応すてルム価	炉内内藏量[kg]		第 7-7 表 MAAPにおける核	を種グル―プと各グループの核種		技種ガループ	各核種グループに対応	炉内内蔵量[kg]	【柏崎 6/7,東海第二】
	〒121年2772 フルスルサラル日初	(安定核種を含む)		核種グループ	核種 ^{※9}		核種グルーク	する化合物	(安定核種を含む)	
希ガス	Xe, Kr			希ガス類	Kr, Xe	希	ラガス	Xe, Kr		
CsI	CsI, RbI			C s I 類	I	Cs	sI	Ι		
TeO ₂ , Te ₂	TeO ₂ , Te ₂			C s OH類	Cs, Rb	Τe	eO ₂ , Te ₂	Те		
Sr0	Sr0				S b	Sı	r0	Sr		
MoO ₂	MoO_2 , RuO_2 , TcO_2 , RhO_2			ТеО。箱	Те	Mo	002	Mo, Ru, Tc		
CsOH	CsOH, RbOH			S r O 頪	S r	Cs	sOH	Cs, Rb		
Ba0	Ba0					Ba	a0	Ва		
La ₂ 0 ₃	La_2O_3 , Pr_2O_3 , Nd_2O_3 , Sm_2O_3 ,			B a O 独	Ва	La	a_0_	La, Pr, Nd, Sm, Y, Zr,		
	Y_2O_3 , ZrO_2 , NbO_2 , AmO_2 , CmO_2			M o O 2 類	Mo, Co, Tc, Ru, Rh		~2~3	Nb		
CeO ₂	CeO ₂ , NpO ₂ , PuO ₂			C e O 2類	Ce, Np, Pu	Ce	e0 ₂	Ce, Np, Pu		
Sb	Sb			L a 。O 。類	La, Y, Zr, Nb,	Sł	b	Sb		
UO2	UO2			2 077 .	Pr, Nd, Am, Cm	UC	02	UO2		
 ※ 表中に示すTe₂の Te元素の全量がT 	炉内内蔵量[kg]は,停」 「e ₂ の形態で存在する場合	上時に炉内に存在する 合の値に相当する。		※9 本評価において「Te ₂ 類」及び るMAAP解析結果がゼロのため	「「UO₂類」の核種グループに対す め、対象外とした。	*	表中に示すTe ₂ の炊 Te元素の全量がTe	戸内内蔵量[kg]は,停⊥ e₂の形態で存在する場合	と時に炉内に存在する 合の値に相当する。	
				[FP の核種グループ] (NUREG-1465) ガーブ 核種 1 希ガス/Xe, Kr 2 ハロゲン/I, Br 3 アルカリ金属/Cs, Rb 4 テルルグループ/ Te, Sb, Se 5 パリカ・ストロングル 6 貴金属/ 日金属/ 日金属/ 日金属/ 日本 7 レストロ人の、Te, Co 7 フンタノイド/ La, Zr, Nd, Eu, Nb, Pm, Pr, Sm, Y, Cm, Am 8 セリウムグループ/ Ce, Pu, Np 第7-1図 MAAAP及びNUREG (「重大事故等対策の有效 コードについて」の「第5	Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of the principal structure Image: Mapping of					

Addationaliza (Addationaliza	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
I_{c} exp(s_{c} by M_{c} or M_{c} exp(s_{c} by M_{c} exp(s_{c} by M_{c} exp(s_{c} by M_{c} exp(s_{c} by	(2)それ以外の核種グループ	(2) 中・低揮発性の核種グループ	(2)それ以外の核種グループ	
$ I_{2} M_{2} M_{$	中・低揮発性の核種グループについては,MAAP解析の結果得ら	中低揮発性の核種グループについては、MAAP解析から得ら	中・低揮発性の核種グループについては、MAAP解析 <u>の結果</u>	
$\begin{split} & A_{n} \neq y 2 \gamma n - \gamma 0 x y h - \chi 0 x y - \gamma 0 x y h - \chi 0 x \gamma n - \gamma 0 x y h - \chi 0 x y - \gamma 0 x y h - \chi 0 x - \gamma 0 x y h - \chi 0 x - \gamma 0 x y h - \chi 0 x - \gamma 0 x - \gamma 0 x y h - \chi 0 x - \gamma 0 x - \gamma 0 x + \eta - \chi 0 x - \gamma 0$	れた放出割合は採用せず、MAAP解析の結果から得られたCsの放出	れた放出割合は採用せず, MAAP解析の結果から得られたCs	得られた放出割合は採用せず、MAAP解析の結果から得られた	
 1) (小会会を留下ご 1) (かきの書町で)(小会)(小会)(小会)(小会)(小会)(小会)(小会)(小会)(小会)(小会	割合,希ガスグループの放出割合及びNUREG-1465 の知見を利用し	の放出割合,希ガスグループの放出割合及びNUREG-1465	Csの放出割合,希ガスグループの放出割合及びNUREG-1465	
$ a \delta regeneration of the set of$	放出割合を評価する。	の知見を利用して放出割合を評価する。	の知見を利用し放出割合を評価する。	
$ \frac{1}{2} 1$	a. 格納容器圧力逃がし装置への放出割合		a. 格納容器からベントラインへの放出割合	
$ \frac{1}{12} \left[\frac{1}{2}	放出割合の経時的な振る舞いは希ガスと同一**1とし,Csの放出	ここで、中・低揮発性の核種における放出割合の経時的な振	放出割合の経時的な振る舞いは希ガスと同一 ^{※1} とし、Csの放出	
$ \frac{1}{12} \sum_{k=1}^{n} \frac{1}{1$	割合に対する当該核種グループの放出割合の比率が,168時間経過	る舞いは,格納容器ベントからの放出については希ガス,原子	割合に対する当該核種グループの放出割合の比率が,168時間経過	
Here: LSI 2-8 2 # Web LS, #2-6-7 & GUNRDO-1460 C mark b 2 h LS, <u><i>LC</i>-2426 d mark d mark</u> b 2 h LS, <u><i>LC</i>-2426 d mark d mark</u> F & 8 4 2 h 2 h 1 (2 m g mark d mark) (2 m b 2 m b	時点においてNUREG-1465で得られた比率に等しいとして,以下の	炉建屋への漏えいについてはCsと同一になるものとし*7,	時点においてNUREG-1465で得られた比率に等しいとして,以	
EXAL SET DENsities and the object of the set of t	評価式に基づき評価した。表2-3-7及び表2-3-8にNUREG-1465で評	事象発生から 168 時間経過時点におけるC s の放出割合に対	下の評価式に基づき評価した。表3-7及び表3-8にNUREG-1465	
$E_1(T) = F_{makegan}(T) \times \frac{T}{T_{m}} \times \frac{F_m(1460)}{F_{makegan}(1200)}$ $H_0(T) = E_{makegan}(1200)$ $F_{makegan}(T) \times \frac{T}{T_{m}} \times \frac{F_m(1460)}{F_{makegan}(1200)}$ $H_0(T) = E_{makegan}(1200)$ $H_0(T) = E_{makegan}(12$	価された原子炉格納容器内への放出割合を示す。	する当該核種グループの放出割合の比率はNUREG-1465で	で評価された格納容器内への放出割合を示す	
$ f_{1}(1) = F_{netheres}(1) < \sum_{l=0}^{n} \frac{1}{l_{netheres}(1)} + \frac{1}{l_{netheres}(1)}} = F_{netheres}(1) + \frac{1}{l_{netheres}(1)}} + \frac{1}{l_{netheres}(1)}} = F_{netheres}(1) + \frac{1}{l_{netheres}(1)}} + \frac{1}{l_{nethere$		得られた比率に等しいとして,式2及び式3に基づき評価する。		
$ \begin{split} \mathbf{F}_{1}(\mathbf{T}) = \mathbf{F}_{nallegggg}(\mathbf{T}) \times \frac{1}{r_{gg}} \times \frac{1}{r_{gg}(160)} \\ \mathbf{F}_{1}(\mathbf{T}) = \mathbf{F}_{nalleggggg}(\mathbf{T}) \times \frac{1}{r_{gg}} \times \frac{1}{r_{gg}(160)} \\ \mathbf{F}_{1}(\mathbf{T}) = \mathbf{F}_{nalleggggg}(\mathbf{T}) \times \frac{1}{r_{gg}} \times \frac{1}{r_{gg}(160)} \\ \mathbf{F}_{1}(\mathbf{T}) = \mathbf{F}_{nalleggggg}(\mathbf{T}) \times \frac{1}{r_{gg}(160)} \\ \mathbf{F}_{1}(\mathbf{T}) = \mathbf{F}_{nallegggg}(\mathbf{T}) \times \frac{1}{r_{gg}(160)} \\ \mathbf{F}_{1}(\mathbf{T}) = \mathbf{F}_{nalleggggg}(\mathbf{T}) \times \frac{1}{r_{gg}(160)} \\ \mathbf{F}_{1}(\mathbf{T}) = \mathbf{F}_{nalleggggg}(\mathbf{T}) \times \frac{1}{r_{gg}(160)} \\ \mathbf{F}_{1}(\mathbf{T}) = \mathbf{F}_{nallegggg}(\mathbf{T}) \times \frac{1}{r_{gg}(160)} \\ \mathbf{F}_{1}(\mathbf{T}) = \mathbf{F}_{nalleggggg}(\mathbf{T}) \times \frac{1}{r_{gg}(160)} \\ \mathbf{F}_{1}(\mathbf{T}) = \mathbf{F}_{nalleggggggggggggggggggggggggggggggggggg$		また、第 7-6 表に, NUREG-1465 で評価された格納容器		
$ \begin{aligned} & \mu_{i}(\mathbf{r}) = \mathbf{r}_{achdeged}(\mathbf{r}) \cdot \frac{1}{Y_{a}} \times \frac{\mathbf{r}_{c}(168h)}{\mathbf{r}_{achdeged}(186h)} \\ & \mu_{i}(\mathbf{r}) = \mathbf{r}_{achdeged}(186h) \\ & \mu_{i}(\mathbf{r}) = \mathbf{r}_{ac$		内への放出割合を示す。		
$\mathbf{F}(\mathbf{T}) = \mathbf{F}_{notegent}(\mathbf{T})$ $\mathbf{F}_{notegent}(\mathbf{T})$	γ. F _{ca} (168h)	【格納容器圧力逃がし装置への放出】	$\gamma_i = F_{Cs}(168h)$	
Identified Full <br< td=""><td>$F_{i}(T) = F_{noble gass}(T) \times \frac{\gamma_{1}}{\gamma_{cs}} \times \frac{\Gamma_{cs}(T)}{F_{noble gass}(168h)}$</td><td>$Fi(T) = F_{CS}(168h) \times \frac{Y_i}{Y_{CS}} \times \frac{F_{NG}(T)}{F_{NG}(168h)} \qquad (\vec{x}, 2)$</td><td>$F_i(T) = F_{noblegas}(T) \times \frac{1}{\gamma_{cs}} \times \frac{1}{F_{noblegas}(168h)}$</td><td></td></br<>	$F_{i}(T) = F_{noble gass}(T) \times \frac{\gamma_{1}}{\gamma_{cs}} \times \frac{\Gamma_{cs}(T)}{F_{noble gass}(168h)}$	$Fi(T) = F_{CS}(168h) \times \frac{Y_i}{Y_{CS}} \times \frac{F_{NG}(T)}{F_{NG}(168h)} \qquad (\vec{x}, 2)$	$F_i(T) = F_{noblegas}(T) \times \frac{1}{\gamma_{cs}} \times \frac{1}{F_{noblegas}(168h)}$	
F_{int} : Heff (123) 5 i # 0 Wark k# 2/h - 70 km Heff (231) 5 i # 0 Wark k# 2		【原子炉格納容器から原子炉建屋への漏えい】	F:(T) :時刻 T における i 番目の MAAP 核種グループ放出割	
Feature 11 : 時間 (1-23) (本部 スタハクークの設出制作 1 : WIRE-146 : 151 6 i = # 20 MAA P 接種グループの第一种整体容量 中 (1-23) (本部 スタル 大型 (1-23)	F _i (T):時刻Tにおけるi番目のMAAP核種グループの放出割合	$Fi(T) = F_{CS}(T) \times \frac{\gamma_i}{\gamma_{CS}} \qquad (\vec{x}, 3)$	合	
r_{1} r_{1} r_{1} r_{1} r_{2} r_{1} r_{2} r_{1} r_{2} r_{1} r_{2} <td>Fnoble gass(I) : 時刻 1 における布カスクループの成田割合 v ・NIREC-1465 における i 番目の MAAP 核種グループに相当</td> <td></td> <td>Fnoblegas(:時刻 I における希ガスグループの放出割合</td> <td></td>	Fnoble gass(I) : 時刻 1 における布カスクループの成田割合 v ・NIREC-1465 における i 番目の MAAP 核種グループに相当		Fnoblegas(:時刻 I における希ガスグループの放出割合	
* :: NERDE1-466 における G& Effeit 1-5 装置 ダハーブの原本 が EN REG-186 における G & Effeit 1-5 装置 ダルーブの原本 * * EN REG-186 における G & Effeit 1-5 装置 ダルーブの 厚本 * * EN REG-186 における G & Effeit 1-5 装置 ダルーブの 厚本 	する核種グループの原子炉格納容器への放出割合	<i>F_i(T)</i> :時刻 T における i 番目のMAAP 核種グループの放出割合 <i>F_w(T)</i> :時刻 T における希ガスグループの放出割合	v: : NUREG-1465 における i 番目の MAAP 核種グループに	
p Hadd Ham $+ 5 d R M 7 0 R P Hadd R M - 7 0 R P Hadd R M$	γ _{cs} :NUREG-1465 における Cs に相当する核種グループの原子	$F_{cs}(T)$:時刻TにおけるCsの放出割合 y_{4} :NUREG-1465におけるi番目のMAAP核種グループに相当	相当する核種グループの格納容器への放出割合	
NormationPressper-orgenerationRefW1 中・低揮発性の核種グループは、事故初期の燃料が高温とな っているとき以外は殆ど燃料外に放出されないものと考えら れる。そのため、格納容器ペント後の燃料からの道加放出は ほとんどなく、事故初期に原子炉格納容器内に放出され、原 子炉格納容器ペント後の燃料からの道加放出は され得ると考えられる。 名・約合家学校、とに伴い中・低揮発性核種は <u>原子炉格納容器気</u> 	炉格納容器への放出割合	する核種グループの原子炉格納容器への放出割合 ************************************	v _{er} : NUREG-1465 における Cs に相当する核種グループの	
※1中・低揮発性の核種グループは、事故初期の燃料が高温とな っているとき以外は殆ど燃料外に放出されないものと考えら れる。そのため、格納容器ペント後の燃料から適加放出は ほとんどなく、事故初期に原子炉格納容器内に放出されないものと考えら 		炉格納容器への放出割合	格納容器への放出割合	
ーているとき以外は殆ど燃料体に放出されないものと考えら れる。そのため、格納容器ペント後の燃料からの追加放出な はとんどなく、事故初期に <u>原子炉格納容器</u> のに放出され。 こいては、格納容器ペントに伴い大気に放出される量が少なく、墜面等への付着量 も少ない。したがって、格納容器に力逃がし装置への放出に ついては、格納容器ペントに伴い大気に放出された後も、墜 面等に付着した放射性物質の再浮遊に伴い大気への放出が生 じると考えられる。っているとき以外は殆ど燃料外に放出されないものと考えら れる。そのため、格納容器ペント後の燃料からの追加放出は ことなく、事故初期に風子炉格納容器気相 部に浮遊しているものだけが大気中に放出されんないものと考えら も放出割合の経時的な振る舞いは、同じく原子炉格納容器気相 部に浮遊しており壁面等からの追加放出がない希ガスの放出割 合の振る舞いに近いと考えられる。ーロているとき以外は殆ど燃料外に放出されないものと考えら れる。そのため、格納容器 気相認に浮遊しているものだけが大気中に放出され着きた考 えられる。相部からペントラインに流入するが、その流入の仕方、すなわち も放出割合の経時的な振る舞いに近いと考えられる。小ちの追加放出がない希ガスの放出割 とうしたる。ーロているとき以外は殆ど燃料外に放出されないものと考えら れる。そのため、格納容器ペント後の燃料からの追加放出は さんどなく、事故初期に格納容器気相認い ほとんどなく、事故初期に格納容器気相認い とうためのだけが大気中に放出され得ると考 えられる。相部からペントラインに流入するが、その流入の仕方、すなわち た放出割合の経費の違いに近いと考えられる。小ちの追加放出がない希ガスの放出割合の振動 シストラインに流入するが、その流入の仕方、すなわち放出 割合の経時的な振る舞いは、同じく格納容器気相認い 記入するが、その流入の仕方、すなわち ため方した。小ちの追加放出がない希ガスの放出割 合成し合い シストラインに流入するが、その流入の仕方、すなわち放出 割合の経費の振動ががか、オスの放出割合の振動 に近いと考えられる。したのことから、中・低揮発性の核種グループの「各時刻に お力な加出割合」は、「各時刻における希ガスグループの気 」少たのことから、中・低揮発性の核種グループの「各時刻に おける放出割合」は、「各時刻における希ガスグループの広告 」割合しに比例するものとした。シスから、中・低揮発性の核種グループの「各時刻に おうるガスグループの広告シスから、中・低揮発性の核種グループの「各時刻に おうるガスグループの放出割 自じ」に化付するものとした。	※1 中・低揮発性の核種グループは、事故初期の燃料が高温とな	 ※7 また、中・低揮発性の核種グループは、Csに比べて原	※1 中・低揮発性の核種グループは、事故初期の燃料が高温とな	
れる。そのため、格納容器ベント後の燃料からの追加放出は ほとんどなく、事故初期に <u>原子炉格納容器内</u> に放出され、原 <u>子炉格納容器気</u> 相部に浮遊しているものだけが大気中に放出 され得ると考えられる。 格納容器ベントに伴い中・低揮発性核種は <u>原子炉格納容器気</u> 部に得るしたが分、その流入の仕方、すなわ ち放出割合の経時的な振る舞いは、同じく原子炉格納容器気和 部に浮遊しており壁面等からの追加放出がない希ガスの放出割 合の振る舞いに近いと考えられる。 以上のことから、中・低揮発性の核種グループの「各時刻に おける放出割合」は、「各時刻における希ガスグループの放出 割合」に比例するものとした。	っているとき以外は殆ど燃料外に放出されないものと考えら		っているとき以外は殆ど燃料外に放出されないものと考えら	
はる。このが、加油酸、生産、酸加酸に ほとんどなく、事故初期に原子炉格納容器内に放出され、原 子炉格納容器気相部に浮遊しているものだけが大気中に放出 され得ると考えられる。 裕納容器ベントに伴い中・低揮発性核種は原子炉格納容器気 相部からベントラインに流入するが、その流入の仕方、すなわ ちかに割合の経時的な振る舞いは、同じく原子炉格納容器気相 部に浮遊しており壁面等からの追加放出がない希ガスの放出割 合の振る舞いに近いと考えられる。 以上のことから、中・低揮発性の核種グループの「各時刻に おける放出割合」は、「各時刻における希ガスグループの放出 割合」に比例するものとした。	れる。そのため、格納容器ベント後の燃料からの追加放出は	<u> </u>	れる。そのため、格納容器ベント後の燃料からの追加放出は	
$\pm f$ Defension and the matrix an	ほとんどなく、事故初期に原子炉格納容器内に放出され、原	ついては、格納容器ベントに伴い大気に放出された後も、壁	ほとんどなく、事故初期に格納容器内に放出され、格納容器	
1.7.11.7.11.1.1<	子炉格納容器気相部に浮游していろものだけが大気中に放出		気相部に浮游しているものだけが大気中に放出され得ると考	
	され得ると考えられる。	じろCsではたく 原子炉格納容器気相部に浮游し 壁面等	ż 6 h.Z	
Image: Link and work of the left of		からの追加放出がたい希ガスの放出割合の振ろ舞いに近いと	格納容器ベントに伴い中・低揮発性核種は格納容器気相部か	
Think b = $0 + y + y$ = $(e,w,y) = y + y + y$ $(e,w,y) = (e,w,y) = (e$	相部からベントラインに流入するがその流入の仕方すたわ	老えられる	らベントラインに流入するが、その流入の仕方、すたわち放出	
の加出計日の経時的な版の発いな、何じて、前子作権相存益又相前 部に浮遊しており壁面等からの追加放出がない希ガスの放出割 合の振る舞いに近いと考えられる。 以上のことから、中・低揮発性の核種グループの「各時刻に おける放出割合」は、「各時刻における希ガスグループの放出割合」は、「各時刻における希ガスグループの広告時刻に 割合」に比例するものとした。		17. A. D. A. L. D. A.		
a)に存近ででおう型面等からの追加放出がない ポガスの放出計合の版る丼(合の振る舞いに近いと考えられる。 以上のことから、中・低揮発性の核種グループの「各時刻に おける放出割合」は、「各時刻における希ガスグループの放出 割合」に比例するものとした。 30 2 m = 30 2 m - 30 2 m - 30 - 20 m - 20 m - 30 - 30 - 20 m -	シル山前日の住所的な派 シチャーム、同じて赤丁 が旧約存留久伯		前日の柱所的な派る先いな。同じ、恒阳在船、但即に行びし、	
い上のことから、中・低揮発性の核種グループの「各時刻に 以上のことから、中・低揮発性の核種グループの「各時刻に おける放出割合」は、「各時刻における希ガスグループの放出 当合」に比例するものとした。 シレンのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に おける放出割合」は、「各時刻における希ガスグループの放出 シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループの「各時刻に シントのことから、中・低揮発性の核種グループのの トロープの「各時刻に シントのことから、中・低揮発性の核種グループの シントのことから、中・低揮発性の核種グループの シントのことから、中・低揮発性の核種グループの シントのことから、中・低揮発性の核種グループの シントのことから、中・低揮発性の核種グループの トロープの シントのとした。 シントのとした。	ールにするして409至面寺からの足加成山かない市みへの放山割 今の振る無いに近いと考えられる		に近いと考えられる	
は、いうにないの、中心は単光性の核性グループので、低上のことがら、中心は単光性の核性グループので、低上のことがら、中心は単光性の核性グループので、低上のことがら、中心は単光性の核性グループので、低単光性の核性グループので、 おける放出割合」は、「各時刻における希ガスグループの放出 割合」に比例するものとした。	ロッルのダインレビィンクへりなしる。	トのことから、山・低ヶ孫州の枝種グループの「冬時如に	いたないになんじんしない。	
おいる放山前口」は、「在時刻におりる布ガスクルークの放山 割合」に比例するものとした。 <u>sの放出割合」に比例するものとする。</u> <u>割合」に比例するものとした。</u> <u>割合」に比例するものとした。</u>	め上のここから、ヤ・四理光社の核性クルーノの「谷时刻に わけて毎日割合」け 「久時却にわけて柔ぜっガル」 プの特山	<u> め上いこという</u> 、 $ T = 0 (1 + 0) \times 1 + 0 (1 + 0) \times 1 + 2 (1 + 0) \times 1 + 2 (1 + 0) + 2 (1 + 0$	<u> め上いことかり、 ナ・ 陸理 ボヨシリ 茶種 クルークの 「 谷时刻に</u> わけ ス 毎 中国 ム レ ナ 「 久 時 初 に た オ ス ボ フ ゲ ル ー プ の サ 山	
	やいる原田町口」は、「台村刻にわける市ルベクルーノの原田 割合」に比例するものとした	<u>シリン派出前日」は、「住村刻にわける市ルスノルーノズはし</u> 。の特出割合」に比例するたのとする	<u>おいる (日間日」は、「住時刻にわける市ルヘクルーノの放田</u> 	
	部日」 に比別する ものと した。	$\frac{S_{0}}{S_{0}} = \frac{S_{0}}{S_{0}} = \frac{S_{0}}{S$	FILL CHURLY & DVIC CICon	

柏崎刈羽原子フ	力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)				備考	
表 2-3-3	MAAP 解析による放出割合の評価結果	第7-1表 放出割合の評価結果(MAAP解析)			<u>表 3-3</u> M	・評価結果の相違	
(炉心の著しい損倒	傷が発生した場合における中央制御室の居住性				(炉心の著しい損	傷が発生した場合における中央制御室の居住性	【柏崎 6/7,東海第二】
	評価に使用しない)	技種	「百乙后故如应兕ふこ」百	按师应出口力水彩上壮星		評価に使用しない)	
	停止時炉内内蔵量に対する	校理 グルー	京宁炉格納谷器がら原子炉建屋への漏えい割	格納谷益上力述がし表直 への		停止時炉内内蔵量に対する	
核種グループ	格納容器圧力逃がし装置への放出割合	プ	合**1	放出割合 ^{※1}	核種グループ	ベントラインへの流入割合	
	(事故発生から168時間後時点)	希ガス	約 4.3×10 ⁻³	約 9.5×10 ⁻¹		(事故発生から 168 時間後時点)	
希ガス	約 9.2×10 ⁻¹	類			希ガス	約 9.0×10 ⁻¹	
CsI	約 1.3×10 ⁻⁶	CsI 類	約 6.2×10 ⁻⁵	約 1.0×10 ⁻⁶	CsI	約 4.4×10 ⁻⁶	
TeO ₂	約 1.7×10 ⁻⁶	CsOH 類	約 3.1×10 ⁻⁵	約 4.0×10 ⁻⁷	TeO ₂	約 2.5×10 ⁻⁸	
Sr0	約2.0×10 ⁻⁴	Sb 類	約 7.6×10 ⁻⁵	約 2.7×10 ⁻⁶	Sr0	約 2.4×10 ⁻⁴	
MoO ₂	約3.0×10-6	TeO。 類	約44×10 ⁻⁵	約38×10 ⁻⁷	MoO ₂	約 7.1×10 ⁻⁶	
CsOH	約 2.7×10 ⁻⁶	Sm0 粨	※5 9. 6×10 ⁻⁵	*5 2.6×10 ⁻⁵	CsOH	約 7.0×10 ⁻⁶	
BaO	約 4.2×10 ⁻⁵		新り8.0×10	赤り 2. 0 へ 10	BaO	約 1.7×10-4	
La ₂ 0 ₃	約 1.0×10-4	Ba0 類	約 9.1×10 ⁻³	約 1.5×10 ⁻³	La ₂ 0 ₃	約 3.3×10 ⁻⁵	
CeO ₂	約 1.0×10 ⁻⁴	Mo0 ₂ 類	約 9.1×10 ⁻⁵	約 3.5×10 ⁻⁶	CeO ₂	約 3.3×10 ⁻⁵	
Sb	約 2.9×10-6	CeO ₂ 類	約 1.6×10 ⁻⁵	約 1.1×10 ⁻⁵	Sb	約 3.8×10-6	
Te ₂	0	La ₂ 0 ₃ 類	約 1.6×10 ⁻⁵	約 1.1×10 ⁻⁵	Te ₂	0	
UO_2	0	※1 小数点	〔第2位を四捨五入		UO ₂	0	
Cs ^{≭1}	約 2.6×10 ⁻⁶				Cs ^{₩1}	約 6.8×10 ⁻⁶	
※1 CsIグループ	と CsOH グループの放出割合から評価(評価式				※1 CsIグル	~ープとCsOH グループの放出割合から評価	
	は参考1を参照)					(評価式は参考1を参照)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 2-3-4 TMI 事故後に評価された放射性核種の場所ごとの存在	第7-3表 TMI事故後に評価された放射性核種の場所毎の	表 3-4 TMI 事故後に評価された放射性核種の場所ごとの存在量	
量	存在割合※3	(単位:%)	
		核種 低揮発性 中揮発性 高揮発性 高揮発性	
核推 ¹⁴⁴ Ce ¹¹⁴ Eu ¹¹⁵ Eu ⁹⁰ Sr ¹⁰⁶ Ru ¹¹⁰ Sb ¹¹⁷ Cs ¹¹⁰ I ⁶¹ Kr	Image: Instant Stress Image: Im	File File File File File File File File	
原子炉建屋 原子炉冷却系 105.4 122.7 109.5 89.7 93.2 117.2 40.1 42 30 原子炉冷却系 - - - 1 - 0.2 3 1 - 地陵水,気相タンク類 0.01 - - 2.1 0.5 0.7 47 (47)† 54 補助建屋 - - - 0.1 - 0.7 5 7 - 合計 105 122 110 93 94 119 95 97 85 * 広範囲の「濃度調定値と多量のデブリ(おもに地際水沈顕物)のため、ここでの保持量は仰らインベントリーを大きく 上回る分析結果とたってしまう。したがって、ここに保持された「ロインベントリーはCaと同等であると考える。 出典: TMI-2号機の調査研究成果(渡会偵祐, 井上康, 桝田藤夫 日本原子力 学会誌Vol.32, No.4(1990)) 90)	原子炉冷和条 - - - 1 - 0.2 3 1 - 地階水、気相タンク類 0.01 - - 2.1 0.5 0.7 47 (47) [†] 54 補助速屋 - - - 0.1 - 0.7 5 7 - 全計 105 122 110 93 94 119 95 97 85 * 古範囲の温度測定値と多量のデブリ(おもに地下水沈殿物)のため、ここでの保持量は炉心インペントリーを大きく上 回る分析結果となってしまう。したがって、ここに保持された100インペントリーを大きく上 回る分析結果となってしまう。したがって、ここに保持された100インペントリーを大きく上 回る分析結果 -	原子炉容器 105.4 122.7 109.5 89.7 93.2 117.2 40.1 42 30 原子炉冷却系 - - - 1 - 0.2 3 1 - 地階水,気相タンク類 0.01 - - 2.1 0.5 0.7 47 (47)† 54 補助建屋 - - - 0.1 - 0.7 5 7 - 合計 105 122 110 93 94 119 95 97 85 * 広範囲の1歳度測定値と多量のデブリ(おもに地際水沈酸物)のため、ここでの保持量は炉心イソベントリーを大きく 上回る分析結果となってしまう。したがって、ここに保持された1のインベントリーはCoと同等であると考える。 101 101 101 117 9	
state state <td< td=""><td></td><td></td><td></td></td<>			

柏崎刈羽原子	力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)			備考			
表 2-3-6 NUREG-1465 の知見を用いた補正後の放出割合		第7-2表 放出割合の評価結果			表 3-6 NURE	表 3-6 NUREG-1465 の知見を用いた補正後の放出割合		
(炉心の著しい損傷が発生した場合における中央制御室の居住性		(中・低揮発性の核種グループに対する補正後)		(炉心の著しい損傷	ふが発生した場合における中央制御室の居住性	【柏崎 6/7,東海第二】		
	評価に使用)					評価に使用)		
	停止時炉内内蔵量に対する		「「「「「「「」」」」。「「」」」。「「」」」。「」」。「」」。「」」。「」」	枚納容哭圧力逃がし法署へ		停止時炉内内蔵量に対する		
核種グループ	格納容器圧力逃がし装置への放出割合	核種	「「「「「「「「「」」」」「「「」」」」「「「」」」」「「「」」」」「「「」」」」		核種グループ	ベントラインへの流入割合		
	(事故発生から168時間後時点)	グループ	加建定、防備之い割日	5 故出到全※1		(事故発生から168時間後時点)		
希ガス	約 9.2×10 ⁻¹	孟ガス粨	約43×10 ⁻³		希ガス	約 9.0×10 ⁻¹		
CsI	約 1.3×10 ⁻⁶	CsI 類	約 4. 3×10	約 1 0×10 ⁻⁶	CsI	約 4.4×10 ⁻⁶	1	
TeO_2	約 5.2×10 ⁻⁷	CsOH 粨	約3.1×10 ⁻⁵	約 4 0×10 ⁻⁷	TeO ₂	約 1.4×10 ⁻⁶		
Sr0	約 2.1×10 ⁻⁷	Cs 箱 ^{※2}	約3.1×10 約3.4×10 ⁻⁵	約4.5×10 ⁻⁷	Sr0	約 5.4×10 ⁻⁷		
MoO ₂	約 2.6×10 ⁻⁸	CS 頬 Sh 粨	約 6.7×10 ⁻⁶	約4.5×10 ⁻⁸	MoO ₂	約 6.8×10 ⁻⁸		
CsOH	約 2.7×10 ⁻⁶		約 6.7×10 ⁻⁶	約 8.0×10 ⁻⁸	Cs0H	約 7.0×10 ⁻⁶		
BaO	約 2.1×10 ⁻⁷	TeO ₂ 短	新 2.7×10^{-6}	新り8.9×10 約2.6×10 ⁻⁸	BaO	約 5.4×10 ⁻⁷		
La_2O_3	約 2.1×10 ⁻⁹	Ba0 粨	$\frac{1}{12.7 \times 10^{-6}}$	※1 3. 6×10 ^{−8}	La ₂ 0 ₃	約 5.4×10 ⁻⁹		
CeO_2	約 5.2×10 ⁻⁹	Dati _現	約 2. 7×10 約 3. 4×10^{-7}	※1 3. 5×10 ⁻⁹	CeO ₂	約 1.4×10 ⁻⁸		
Sb	約 5.2×10 ⁻⁷		約 5.4×10 約 6.7×10 ⁻⁸	約4.5×10 約8.0×10 ⁻¹⁰	Sb	約 1.4×10 ⁻⁶		
Te2	0 ^{%2}		約 2 7×10 ⁻⁸	※5 3. 5×10 ※5 3. 6×10 ⁻¹⁰	Te ₂	0 ^{%2}		
UO_2	0 ^{%2}	→1 小数占	第2.1×10 第2.位を四捨五入	₩J 5. 0×10	UO ₂	0 ^{%2}		
Cs ^{%1}	約 2.6×10 ⁻⁶	※2 CsI 類	毎日日日二八 毎日で「CsOH 類の値から評価	雨 (評価式は式 1)	Cs ^{**1}	約 6.8×10 ⁻⁶		
※1 CsIグループ	とCsOHグループの放出割合から評価(評価式は	/			※1 CsIグル	ープとC s OHグループの放出割合から評価		
 参考1を参照)					(評価式は参考1を	参照)		
×2 本評価におい	ヽて「Te ₂ グループ」及び「UO ₂ グループ」の放出				※2 本評価におい	て「Te,グループ」及び「UO,グループ」の放出		
割合のMAAP解析結	果はゼロであるため、NUREG-1465の知見を用い				割合のMAAP解析	話果はゼロであるため、NUREG-1465の知		
た補正の対象外と	した。				見を用いた補正の素	*象外とした。		
							1	
							1	
							1	
							1	
							1	
							1	
							1	
							1	
							1	
							1	
							1	
							1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)							
表 2-3-7 NUREG-1465 での原子炉格納容器内への放出							
核種グループ	原子炉格納容器への放出割合**1						
Cs	0.25						
TeO_2 , Sb, Te_2	0.05						
Sr0, Ba0	0.02						
MoO_2	0.0025						
CeO_2 , UO_2	0.0005						
La_2O_3	0.0002						

※1 NUREG-1465のTable 3.12「Gap Release」の値と「Early In-Vessel」の値の和を参照(NUREG-1465 では, 「Gap Release」, 「Early In-Vessel」, 「Ex-Vessel」及び「Late In-Vessel」の各事象進展フェーズに対して原子炉格納容器内 への放出割合を与えている。炉心の著しい損傷が発生した場 合における中央制御室の居住性評価における想定事故シナリ オでは,原子炉圧力容器が健全な状態で事故収束するため, 原子炉圧力容器損傷前までの炉心からの放出を想定する「Gap Release」及び「Early In-Vessel」の値の和を用いる。)

Group	Title	Elements in Group
1	Noble gases	Xe, Kr
2	Halogens	I, Br
3	Alkali Metals	Cs, Rb
4	Tellurium group	Te, Sb, Se
5.	Barium, strontium	Ba, Sr
6	Noble Metals	Ru, Rh, Pd, Mo, Tc, Co
7	Lanthanides	La, Zr, Nd, Eu, Nb, Pm, Pr, Sm, Y, Cm, Am
8	Cerium group	Ce, Pu, Np

	Gap Release***	Early In-Vessel	Ex-Vessel	Late In-Vessel
Duration (Hours)	0.5	1.5	3.0	10.0
Noble Gases**	0.05	0.95	D	0
Halogens	0.05	0.25	0.30	0.01
Alkali Metals	0.05	0.20	0.35	0.01
Tellurium group	0	0.05	0.25	0.005
Barium, Strontium	0	0.02	0.1	. 0
Noble Metals	0	0.0025	0.0025	0
Cerium group	0	0.0005	0.005	0
Lanthanides	0	. 0.0002	0.005	0

Values shown are fractions of core inventory.
 See Table 3.8 for a listing of the elements in each group
 Gap release is 3 percent if long-term fuel cooling is maintained.

	東海第二発電所(2018.9.18版)
第7-6表	NUREG-1465での原子炉格納容器内への放出割合

核種グループ	原子炉格納容器への放出割合**8
Cs	0.25
TeO ₂ , Sb	0.05
Sr0, Ba0	0.02
MoO 2	0.0025
CeO ₂	0.0005
La ₂ 0 ₃	0.0002

※8 NUREG-1465のTable3.12「Gap Release」及び「Early In-Vessel」の値の和

(NUREG-1465では、「Gap Release」,「Early In-Vessel」, 「Ex-Vessel」及び「Late In-Vessel」の各事象進展フェーズ に対して原子炉格納容器内への放出割合を与えている。本評 価事象は原子炉圧力容器が健全な状態で事故収束するため、 原子炉圧力容器損傷前までの炉心からの放出を想定する「Gap Release」及び「Early In-Vessel」の値を用いる。) 第7-7表MAAPにおける核種グループと各グループの核種

核種グループ	核種 ^{※9}
希ガス類	Кг, Хе
C s I 類	I
C s O H 類	Cs, Rb
Sb類	S b
ТеО₂類	T e
SrO類	S r
ВаО類	Ва
M o O ₂類	Mo, Co, Tc, Ru, Rl
СеО₂類	Ce, Np, Pu
**	La, Y, Zr, Nb,
L a 2 U 3 頬	Pr, Nd, Am, Cm

(NURE	G-1465)		(MAAP)	
ク [*] ループ	核種]	ク*ループ	核種
1	希ガス/Xe, Kr	1	1	希ガス
2	ハロゲン/I, Br	L	2	CsI
3	アルカリ金属/Cs, Rb		- 3	TeO ₂
4	テルルグループ/	\sim	4	SrO
5	ハ リウム・ストロンチウム/	\downarrow	5	MoO ₂
0	Ba, Sr		6	CsOH
6	實金馬/ Ru, Rh, Pd, Mo, Tc, Co		7	BaO
7	ランタノイド/	1	8	La ₂ O ₃
	Pr, Sm, Y, Cm, Am	T H	9	CeO ₂
8	セリウムグループ/		10	Sb
	Ce, ru, Np	1	11	Te ₂
			12	UO ₂

第7-1図 MAAP及びNUREG-1465における核種グループの (「重大事故等対策の有効性評価に係るシビアアクシデント解析 コードについて」の「第5部 MAAP」(抜粋))

	島根原子力	発電所 2	号炉		備考
表 3-7 NUR H	EG-1465 での	の原子炉格	納容器	内への放出割合	
核種グループ	原子炉	F格納容器~	への放け	出割合 ^{※1}	
Cs		0.2	5		
TeO_2 , Sb, Te_2		0.0	5		
Sr0, Ba0		0.0	2		
MoO_2		0.00	25		
CeO_2 , UO_2		0.00	05		
La ₂ O ₃ 0. 0002					
₩1 NUREG	-1465のTabl	e 3.12 「Gap	Relea	se」の値と「Early	,
In-Vessel」 Ø	の値の和を参	照(NUR	EG-	1465 では,「Gap	
Release」,	「Early In-Ve	ssel],	ſEx−Ve	ssel」及び「Late	9
In-Vessel」の	各事象進展了	フェーズに	対して	原子炉格納容器内	
への放出割合	を与えている	。炉心の	蒈しい	損傷が発生した場	
合における中	央制御室の尾	∃住性評価↓	こおけ	る想定事故シナリ	
オでは, 原子:	炉圧力容器カ	「健全な状態	態で事i	牧収束するため ,	
原子炉圧力容	器損傷前まて	の炉心かり	らの放	出を想定する「Gap)
Release」及て	ド「Early In	-Vessel+ 0	の値の	和を用いる。)	
-	U U	-		,	
丰	2-8 NIID	F = -1465	(坩粋)	
13	JO NOK	EG 1403	(1)(1))	
Group	Title	Elements in Groups	up.		
1	Noble gases	Xe, Kr			
2	Halogens Alkali Metals	I, Br Cs. Rb			
4	Tellurium group	Te, Sb, Se			
- 5 -	Barium, strontium	Ba, Sr Bu Bh Pd Mo	Th Co		
7	Lanthanides	La, Zr, Nd, Eu, I	ND, Pm,		
8	Cerium group	Ce, Pu, Np	-sin		
	Table 3.12 BWR Rel	eases Into Contains	ment*		
	Gap Release*** Ea	arly In-Vessel 1	Ex-Vessel	Late In-Vessel	
Duration (Hours)	0.5	1.5	3.0	10.0	
Noble Gases**	0.05	0.95	0 30	0	
Alkali Metals	0.05	0.20	0.35	0.01	
Tellurium group	0	0.05	0.25	0.005	
Barium, Strontium	0	0.02	0.1	. 0	
Noble Metals	0	0.0025	0.0025	0	
Cerium group	0	0.0005	0.005	0	
Lanthanides	0	0.0002	0.005	0	
Values shown are fra See Table 3.8 for a lis Gap release is 3 perc	ctions of core inventor ting of the elements ir ent if long-term fuel o	each group soling is maintained	L		

	島根原子力	発電所	2 号炉			備考	
3-7 NURI	EG-1465 での	の原子炉材	各納容器	内への放出	割合		
種グループ	原子炉	■格納容器	尋への放出	出割合**1			
Cs		0.	25				
D_2 , Sb, Te $_2$		0.	05				
Sr0, Ba0		0.	02				
MoO_2		0. (0025				
CeO ₂ , UO ₂		0.0	0005				
La_2O_3		0.0	0002				
NUREG	-1465のTabl	e 3.12 「Ga	ap Releas	se」の値と	[Early		
[n-Vessel] Ø	つ値の和を参	照(NU	R E G-1	465 では,	「Gap		
Release」,	「Early In-Ve	essel」,	「Ex−Ves	ssel」及び	「Late		
[n-Vessel」の	各事象進展了	フェーズに	こ対して	原子炉格納	容器内		
への放出割合	を与えている	ち。炉心の)著しい掛	員傷が発生	した場		
合における中	央制御室の周	居住性評価	話における	5.想定事故:	シナリ		
オでは, 原子	炉圧力容器が	「健全なり	代態で事故	文収束する 7	ため,		
原子炉圧力容	器損傷前まて	での炉心カ	いらの放出	出を想定する	5 「Gap		
Release」及て	ド「Early In	-Vessel」	の値の種	巾を用いる。)		
表	3-8 NUR	E G-146	5(抜粋)	1			
表	3–8 NUR Table 3.8 Revised Ra	E G-146	55(抜粋) ""	1			
表 Group	3–8 NUR Table 3.8 Revised Ra Title	E G = 146 dionuclide Grou Elements in t	55(抜粋) ^{ups} Group				
表 Group 1 2	3-8 NUR Table 3.8 Revised Ra Title Nobic gases Halogens	E G-146 dionuclide Grow Elements in (Xe, Kr I, Br	55(抜粋) ups Group				
表 Group 1 2 3	3-8 NUR Table 3.8 Revised Ra Title Noble gases Halogens Alkali Metals	E G -146 dionuclide Grou Elements in (Xe, Kr I, Br Cs, Rb T, St Sc	55(抜粋) ups Group				
表 Group 1 2 3 4 5	3-8 NUR Table 3.8 Revised Ra Title Noble gases Halogens Alkali Metals Tellurium group Barium, strontium	E G-146 dionuclide Grou Elements in (Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr	55(抜粋) ups Group				
表 Group 1 2 3 4 5 6 7	3-8 NUR Table 3.8 Revised Ra Title Noble gases Halogens Alkali Metals Tellurium group Barium, strontium Noble Metals	E G -146 dionuclide Grou Elements in 0 Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Ze, Mc E	55(抜粋) ups Group 40, Tc, Co				
表 Group 1 2 3 4 5 6 7 8	3-8 NUR Table 3.8 Revised Ra Title Noble gases Halogens Alkali Metals Tellurium group Barium, strontium Noble Metals Lanthanides Cerium group	E G-146 dionuclide Grou Elements in (Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Zr, Nd, E Pr, Sm, Y, Cn Ce, Pu, Np	55 (抜粋) ups Group 40, TE, Co uu, ND, Pm, n, Am				
表 Group 1 2 3 4 5 6 7 8	3-8 NUR Table 3.8 Revised Ra Title Noble gases Halogens Alkali Metals Tellurium group Barium, strontium Noble Metals Lanthanides Cerium group	E G -146 dionuclide Grou Elements in (Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Zr, Nd, E Pr, Sm, Y, Cn Ce, Pu, Np	55 (抜粋) ups Group 40, Tc, Co u, ND, Pm, n, Am				
表 Group 1 2 3 4 5 6 7 8	3-8 NUR Table 3.8 Revised Ra Title Noble gases Halogens Alknii Metals Tellurium group Barium, strontium Noble Metals Lanthanides Cerium group Table 3.12 BWR Ret Gap Release***	E G -146 dionuclide Grou Elements in (Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Zr, Nd, E Pr, Sm, Y, Cn Ce, Pu, Np leases Into Conta ariy In-Vessel	55 (抜粋) ups Group 40, TE, Co u, ND, Pm, n, Am	Late In-Vessel			
表 Group 1 2 3 4 5 6 7 8 uration (Hours)	3-8 NUR Table 3.8 Revised Ra Title Noble gases Halogens Alkali Metals Tellurium group Barium, strontium Noble Metals Lanthanides Cerium group Table 3.12 BWR Rel Gap Release*** Es	E G -146 edionuclide Grou Elements in (Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Zr, Nd, E Pr, Sm, Y, Cn Ce, Pu, Np leases Into Conta arly In-Vessel 1.5	55 (抜粋) ups Group 40, Tc, Co u, ND, Pm, n, Am ainment* Ex-Vessel 3.0	Late In-Vessel 10.0			
表 Group 1 2 3 4 5 6 7 8 uration (Hours) oble Gases**	3-8 NUR Table 3.8 Revised Ra Title Nobic gases Halogens Alkali Metals Tellurium group Barium, strontium Nobie Metals Lanthanides Cerium group Table 3.12 BWR Rel Gap Release*** Ei 0.5 0.05	E G -146 dionuclide Grou Elements in 0 Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Zr, Nd, E Pr, Sm, Y, Cr Ce, Pu, Np leases Into Contr arly In-Vessel 1.5 0.95	55 (抜粋) ups Group 40, Tc, Co u, ND, Pm, n, Am ainment* Ex-Vessel 3.0 0	Late In-Vessel 10.0 0			
表 Group 1 2 3 4 5 6 7 8 uration (Hours) oble Gases** alogens	3-8 NUR Table 3.8 Revised Ra Title Noble gases Halogens Alkali Metals Tellurium group Barium, strontium Noble Metals Lanthanides Cerium group Table 3.12 BWR Ref Gap Release*** Ex 0.5 0.05 0.05 0.05	E G -146 dionuclide Grou Elements in 0 Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Zr, Nd, E Pr, Sm, Y, Cn Ce, Pu, Np leases Into Contra arly In-Vessel 1.5 0.95 0.25 0.20	55 (抜粋) ups Group 40, Tc, Co u, ND, Pm, n, Am ainment* Ex-Vessel 3.0 0 0.30 0.32	Late In-Vessel 10.0 0.01 0.01			
表 Group 1 2 3 4 5 6 7 8 uration (Hours) coble Gases** alogens Ikali Metals Ellurium aroup	3-8 NUR Table 3.8 Revised Ra Title Noble gases Halogens Alkali Metals Tellurium group Barium, strontium Noble Metals Lanthanides Cerium group Table 3.12 BWR Ref Gap Release*** Ex 0.5 0.05 0.05 0.05 0	E G -146 dionuclide Grou Elements in (Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Zr, Nd, E Pr, Sm, Y, Cn Ce, Pu, Np eases Into Contra ariy In-Vessel 1.5 0.95 0.25 0.20 0.05	55 (抜粋) ups Group 40, Tc, Co u, ND, Pm, n, Am ainment* Ex-Vessel 3.0 0 0.35 0.35 0.25	Late In-Vessel 10.0 0 0.01 0.01 0.05			
表 Group 1 2 3 4 5 6 7 8 uration (Hours) oble Gases** alogens Ikali Metals Ellucium group arium, Strontium	3-8 NUR Table 3.8 Revised Ra Title Noble gases Halogens Alkali Metals Tellurium group Barium, strontium Noble Metals Lanthanides Cerium group Table 3.12 BWR Ref Gap Release*** Ex 0.5 0.05 0.05 0 0 0	E G -146 dionuclide Grou Elements in (Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Zr, Nd, E Pr, Sm, Y, Cn Ce, Pu, Np leases Into Contra arily In-Vessel 1.5 0.95 0.25 0.20 0.05 0.02	55 (抜粋) ups Group 40, Tc, Co u, ND, Pm, n, Am ainment* Ex-Vessel 3.0 0 0.35 0.25 0.1	Late In-Vessel 10.0 0 0.01 0.01 0.005 0			
表 Group 1 2 3 4 5 6 7 8 uration (Hours) oble Gases** alogens Liburium group arium, Strontium oble Metals	3-8 NUR Table 3.8 Revised Ra Title Nobic gases Halogens Alkali Metals Tellurium group Barium, strontium Nobie Metals Lanthanides Cerium group Table 3.12 BWR Ref Gap Release*** Ex 0.5 0.05 0.05 0.05 0.05 0.05 0.05 0.05	E G -146 dionuclide Grou Elements in (Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Zr, Nd, E Pr, Sm, Y, Cn Ce, Pu, Np eases Into Conta ariy In-Vessel 1.5 0.95 0.25 0.20 0.05 0.02 0.0025	55 (抜粋) ups Group 40, TE, Co u, ND, Pm, n, Am ainment* Ex-Vessel 3.0 0 0.35 0.25 0.1 0.0025	Late In-Vessel 10.0 0 0.01 0.01 0.005 0 0			
表 Group 1 2 3 4 5 6 7 8 uration (Hours) oble Gases** alogens ikali Metals ellurium group arium, Strontium oble Metals erium group	3-8 NUR Table 3.8 Revised Ra Title Noble gases Halogens Alknii Metals Tellurium group Barium, strontium Noble Metals Lanthanides Cerium group Table 3.12 BWR Rel Gap Release*** Ex 0.5 0.05 0.05 0.05 0.05 0.05 0.05 0.05	E G -146 edionuclide Grou Elements in (Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Zr, Nd, E Pr, Sm, Y, Cr Ce, Pu, Np eases Into Conta arly In-Vessel 1.5 0.95 0.25 0.20 0.0025 0.0005 0.0005 0.0005	55 (抜粋) ups Group 40, Tc, Co u, ND, Pm, n, Am ainment* Ex-Vessel 3.0 0 0.30 0.35 0.25 0.1 0.0025 0.005	Late In-Vessel 10.0 0 0.01 0.01 0.005 0 0 0 0			
表 Group 1 2 3 4 5 6 7 8 uration (Hours) oble Gases** alogens ikali Metals ellurium group arium, Strontium oble Metals erium group anthanides	3-8 NUR Table 3.8 Revised Ra Title Noble gases Halogens Alkali Metals Tellurium group Barium, strontium Noble Metals Lanthanides Cerium group Table 3.12 BWR Ref Gap Release*** Ex 0.5 0.05 0.05 0.05 0 0 0 0 0	E G -146 dionuclide Grou Elements in (Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Zr, Nd, E Pr, Sm, Y, Cn Ce, Pu, Np leases Into Conta arily In-Vessel 1.5 0.95 0.25 0.20 0.0025 0.0005 0.0005 0.0002	55 (抜粋) ups Group 40, Te, Co u, ND, Pm, n, Am ainment* Ex-Vessel 3.0 0 0.30 0.35 0.25 0.1 0.0025 0.005 0.005	Late In-Vessel 10.0 0 0.01 0.01 0.005 0 0 0 0 0 0 0			
表 Group 1 2 3 4 5 6 7 8 uration (Hours) oble Gases** alogens klali Metals enlurium group arium, Strontium oble Metals erium group anthanides * Values shown are fra ** Gap release is 3 perc	3-8 NUR Table 3.8 Revised Ra Title Nobic gases Halogens Alkali Metals Tellurium group Barium, strontium Nobie Metals Lanthanides Cerium group Table 3.12 BWR Ref 0.5 0.05 0.	E G -146 dionuclide Gran Elements in (Xe, Kr I, Br Cs, Rb Te, Sb, Se Ba, Sr Ru, Rh, Pd, M La, Zr, Nd, E Pr, Sm, Y, Cn Ce, Pu, Np eases Into Conta arly In-Vessel 1.5 0.95 0.25 0.20 0.002 0.0025 0.0002 y teach group pooling is maintain	55 (抜粋) ups Group 40, TE, Co u, ND, Pm, n, Am ainment* Ex-Vessel 3.0 0 0.35 0.25 0.1 0.0025 0.005 0.005 0.005 0.005	Late In-Vessel 10.0 0 0.01 0.005 0 0 0 0			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
参考1	参考2	参考1	
セシウムの放出割合の評価方法	<u>C s の放出割合の評価式について</u>	セシウムの放出割合の評価方法	
1. セシウムの放出割合	Csの放出割合については、CsIグループ及びCsOHグ ループの放出割合、I及びCsの原子炉停止直後の炉内蓄積重 量並びにI及びCsの分子量を用いて、下記の式1により評 価している。ここでは、式1の導出過程について示す。F_Cs(T)=F_CsOH(T)+M_I/M_Cs × W_Cs/W_I × (F_CsI(T) - F_CsOH(T)) (式1)	<u>1. セシウムの放出割合</u>	
	FCs(T) : 時刻 T におけるC s の放出割合 FC s OH(T) : 時刻 T におけるC s OHグループの放出 割合 FC s I(T) : 時刻 T におけるC s I グループの放出割 合 MI : 停止直後の I の炉内蓄積重量 MC s : 停止直後の C s の炉内蓄積重量 VI : I の分子量 WC s : C s の分子量		
(1)CsIの形態で存在しているセシウム 全よう素がCsIの形態で存在するものとして整理する。CsIの 形態で存在しているセシウムの重量は以下のとおりとなる。	 CsIに含まれるCs Iは全てCsIとして存在しているため、CsI中に含ま れるCsは、CsI中に含まれるIの重量にI及びCsの分 子量の比を乗ずることで算出する。 	 (1) <u>C s I の形態で存在しているセシウム</u> 全よう素がC s I の形態で存在するものとして整理する。 <u>C s I の形態で存在しているセシウムの重量は以下のとおりと</u>なる。 	
CsIの初期重量[kg] = M _I + M _I /W _I ×W _{Cs} CsI初期重量中のセシウム重量[kg] = M _I /W _I ×WCs セシウム元素初期重量[kg]:MCs よう素元素初期重 量[kg]:M _I セシウム原子量[-]:WCs よう素原子量[-]: W _I	<u>M_(Cs(CsI)) (T)=M_I×W_Cs/W_I ×F_CsI (T)</u> <u>MCs(CsI)(T):時刻TにおけるCsI中に含まれるCsの放出</u> 量	CsIの初期重量[kg] = MI + MI/WI×WCs CsI初期重量中のセシウム重量[kg] = MI/WI×WCs セシウム元素初期重量[kg]:MCs よう素元素初期重量 [kg]:MI セシウム原子量[-]:WCs よう素原子量[-]:WI	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(2)CsOHの形態で存在しているセシウム	2. <u>CsOHに含まれるCs</u>	(2) <u>C s OH</u> の形態で存在しているセシウム	
全セシウムがCsIとCsOHの形態で存在するものとして整理する。	<u>CsはCsI又はCsOHのいずれかの形態で存在してい</u>	全セシウムがCsIとCsOHの形態で存在するものとして整	
CsOH の形態で存在しているセシウムの重量は以下のとおりとな	るため、CsOH中に含まれるCsは、1. で算出したCs	理する。CsOHの形態で存在しているセシウムの重量は以下の	
る。	I中に含まれるCsを差引くことで算出する。	とおりとなる。	
CsOH初期重量中のセシウム重量[kg] = MCs - CsI 初期重量	$\underline{M}_{Cs}(\underline{CsOH}) (\underline{T}) = (\underline{M}_{Cs}-\underline{M}_{I} \times \underline{W}_{Cs}/\underline{W}_{I}) \times \underline{F}_{CsOH} (\underline{T})$	<u>C s OH</u> 初期重量中のセシウム重量[kg]	
中のセシウム重量[kg]	<u>MCs(OH)(T):時刻 T におけるC s OH中に含まれるC s の放</u>	<u>= MCs - C s I 初期重量中のセシウム重量[kg]</u>	
= MCs $-$ M _I /W _I ×W _{Cs}	出量	$=$ MCs $-$ MI/WI \times WCs	
(3)セシウムの放出量			
MAAP 解析により CsI と CsOH の原子炉格納容器外への放出割合		(3)セシウムの放出量	
を評価		MAAP 解析によりCsI とCsOH の格納容器外への放	
		出割合を評価	
セシウムの放出重量[kg] = $M_I/W_I \times W_{Cs} \times X + (M_{Cs} - M_I/W_I)$			
$\times W_{Cs}) \times Y$		セシウムの放出重量[kg] = MI/WI×WCs × X + (MCs -	
X:CsI 放出割合 (MAAP 解析により得られる)		$\underline{MI/WI \times WCs} \times \underline{Y}$	
Y:CsOH 放出割合 (MAAP 解析により得られる)		X:CsI 放出割合 (MAAP 解析により得られる)	
		Y:CsOH 放出割合(MAAP 解析により得られる)	
(4) セシウムの放出割合	3. <u>C.s.</u> の放出割合	<u>(4)セシウム</u> の放出割合	
1. (3) で得られたセシウムの放出量から, セシウムの放出割合を	<u>1. 及び 2. で得られたC s の放出量をC s の炉内蓄積重量</u>	1. (3)で得られたセシウムの放出量から, セシウムの放出割合を	
評価	で除することで、Csの放出割合を算出する。	評価	
セシウムの放出割合 = セシウムの放出量/セシウム元素初期重量	$F_Cs(T) = (M_Cs(CsI)(T) + M_Cs(CsOH)(T)) / M_Cs$	セシウムの放出割合=セシウムの放出量/セシウム元素初期重量	
$= \mathbf{M}_{\mathrm{I}} / \mathbf{W}_{\mathrm{I}} \times \mathbf{W}_{\mathrm{Cs}} / \mathbf{M}_{\mathrm{Cs}} \times \mathbf{X} + (1 - \mathbf{M}_{\mathrm{I}} / \mathbf{W}_{\mathrm{I}} \times \mathbf{W}_{\mathrm{Cs}} / \mathbf{M}_{\mathrm{Cs}}) \times \mathbf{Y}$	$= (M_I \times W_C s / W_I \times F_C s I (T) + (M_C s - M_C s (C s I)) \times F_C s 0 H (T))$	$= MI/WI \times WCs/MCs \times X + (1 - MI/WI \times WCs/MCs) \times Y$	
$= Y + M_{I}/M_{Cs} \times W_{Cs}/W_{I} (X - Y)$	/M_Cs	= Y + MI/MCs×WCs/WI (X - Y)	
以上	= $(M_I \times W_Cs/W_I \times F_CsI(T) + (M_Cs-M_I \times W_Cs/W_I) \times F_CsOH$	以上	
	(T))/M_Cs		
	=F_CsOH(T)+M_I/M_Cs×W_Cs/W_I×(F_CsI(T)-F_CsOH(T))		

参考3 MAAP解析結果及びNUREG-1465の放出割合に ・資料構成の	相違
<u>ついて</u> 【東海第二】	
島根2号炉に	おいても
被ばく評価への寄与が大きい核種に対するMAAP解析結 有効性評価の	添付資料
果及びNURG-1465の放出割合を第7-8表に示す。第7-8 3.1.3.3 (別新	も) にて同
表のとおり、C s 及び I についてはMAA P 解析結果の方が 様の考察を記	載してい
大きい。また,希ガスについては,NUREG-1465の放出割 る。	
合の方が大きいが,これは東海第二の想定事故シナリオでは,	
原子炉注水により炉心が再冠水することで炉心内に健全な状	
態の燃料が一部存在するためと考える。	
第7-8表 MAAP解析結果及びNUREG-1465の放出割合	
MAAP NUREG-1465	
希ガス約0.951	
I 約0.78 0.30	
Cs 約0.37 0.25	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-4 放射性物質の大気放出過程について		4 放射性物質の大気放出過程について	
原子炉格納容器からサプレッション・チェンバの排気ラインに		<u>格納容器</u> からサプレッション・チェンバの排気ラインに流入し	
流入した放射性物質は、格納容器圧力逃がし装置及びよう素フィ		た放射性物質は、格納容器フィルタベント系を経由し大気中に放	
ルタを経由し大気中に放出される。		出される。	
また、原子炉格納容器から原子炉建屋に漏えいした放射性物質		また、格納容器から原子炉建物に漏えいした放射性物質は、原	
は,原子炉建屋から非常用ガス処理系(以下「SGTS」という。)		<u>子炉建物</u> から非常用ガス処理系を経由して,又は直接大気中に放	
を経由して、又は直接大気中に放出される。		出される。	
大気中への放射性物質の放出経路ごと及び事故発生からの経過		大気中への放射性物質の放出経路ごと及び事故発生からの経過	
時間ごとの単位時間当たりの放射性物質の放出割合の評価式※1		時間ごとの単位時間当たりの放射性物質の放出割合の評価式*1を	
を以下に示す。また,放射性物質の大気放出過程を図2-4-1から図		以下に示す。また,放射性物質の大気放出過程を図 4-1 から図 4-4	
2-4-4に示し,大気中への放出トレンドを図2-4-5から図2-4-7に示		に示し,大気中への放出トレンドを図 4-5 から図 4-7 に示す。	
す。		※1 各評価式における放出割合等は停止時炉内内蔵量に対する割	
※1 各評価式における放出割合等は停止時炉内内蔵量に対する		合を表す。	
割合を表す。			
		(1)格納容器からサプレッション・チェンバの排気ラインに流入	
(1)原子炉格納容器からサプレッション・チェンバの排気ライン		した放射性物質	
に流入した放射性物質			
$q_{\text{new} \to \pi}(t) = q_{\text{new} \to \text{new}}(t) \times \frac{1}{1}$		$q_{PCV \to \pm (t)} = q_{PCV \to FCVS}(t) \times \frac{1}{DF}$	
$\operatorname{PCV}_{3\times 30}$ $\operatorname{PCV}_{3\times 30}$ $\operatorname{DF}_1 \cdot \operatorname{DF}_2$			
a _{new.+*} (t) : 時刻 t における単位時間当たりの大気中への放出割合[1/s]		q_{PCV→大気}(t) :時刻 t における単位時間当たりの大気中への放出	
<pre>q_{PCV→FCVS}(t) :時刻 t における単位時間当たりの流入割合[1/s]</pre>		割合[1/s]	
(原子炉格納容器からサプレッション・チェンバの排気ライン)		q_{PCV→FCVS}(t) :時刻 t における単位時間当たりの流入割合[1/s]	
DF ₁ :格納容器圧力逃がし装置の除去係数[-] ^{薬1}		(格納容器からサプレッション・チェンバの排気ライ	
DF ₂ :よう素フィルタの除去係数[-] ^{**1}		ン)	
		DF : 格納容器フィルタベント系の除去係数[-]*1	
※1 除去係数は添付資料 2 2-1 を参照			
		※1 除去係数は添付資料 1 を参照	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(2)原子炉格納容器から原子炉建屋に漏えいした放射性物質		(2)格納容器から原子炉建物に漏えいした放射性物質	
① 事故発生から原子炉建屋原子炉区域(以下「原子炉区域」と		①事故発生から原子炉棟の負圧達成まで(事故発生 70 分後**1ま	・設備及び運用の相違
いう。) の負圧達成まで (事故発生40分後*1まで)		<u>で)</u>	【柏崎 6/7】
$\label{eq:q_RB} q_{R/B \to \pm {\rm I} {\rm I} {\rm I}}(t) = q_{PCV \to R/B}(t) \qquad (t < T_1)^{- \Re 2}$		$q_{R/B \to {\rm T}_{\rm T}}(t) = q_{PCV \to R/B}(t) \qquad (t < T_1)^{\otimes 2}$	SGT起動時間の相違
 q_{R/B→大気}(t):時刻tにおける単位時間当たりの 原子炉建屋から大気中への放出割合[1/s] q_{PCV→R/B}(t):時刻tにおける単位時間当たりの 原子炉格納容器から原子炉建屋への漏えい割合[1/s] T₁:原子炉区域の負圧達成時間(事故発生40分後)[s] 		 q_{R/B→大気}(t) :時刻tにおける単位時間当たりの原子炉建物から大気中への放出割合[1/s] q_{PCV→R/B}(t) :時刻tにおける単位時間当たりの原子炉格納容器から原子炉建物への漏えい割合[1/s] T₁ :原子炉棟の負担達成時間(事故発生 70 分後)[s] 	
		※1 非常用ガス処理系起動時間及び排気風量並びに原子炉建物の	
※1 SGTS起動時間及び排気風量並びに原子炉区域の設計気密度		設計気密度を基に評価し設定(添付資料6を参照)	
を基に評価し設定(添付資料2 2-6を参照)		※2 この期間では原子炉棟の負圧が達成されていないことから,	
※2 この期間では原子炉区域の負圧が達成されていないことか			
のとして評価した。評価に当たっては,原子炉区域の換気率 を保守的に無限大[回/日]とした。		的に無限大[回/日]とした。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
② 原子炉区域負圧達成からSGTS の停止まで		②原子炉棟負圧達成から非常用ガス処理系の停止まで	
格納容器ベントを実施する場合:事故発生40分後から31時間後※1		格納容器ベントを実施する場合: <u>事故発生 70 分後から 168</u>	・運用の相違
代替循環冷却系を用いて事象収束に成功する場合: 事故発生		時間後(評価期間(7日間)中で停止しないことを想定)**	【柏崎 6/7】
40 後から168時間後(評価期間(7日間)中で停止しないこ		<u> 残留熱代替除去系</u> を用いて事象収束に成功する場合: <u>事故発生70</u>	島根2号炉は, SGT を停
とを想定)		<u>分後から168時間後</u> (評価期間(7日間)中で停止しないこと	止しない手順となって
$q_{R/B \to \pm \pm \pm}(t) = \lambda_1 \cdot Q_{R/B}(t) \qquad (T_1 \leq t < T_2)^{\pm 2}$		を想定)	いる
d0(t)		$q_{R/B \to $ 大気 $(t) = \lambda \cdot Q_{R/B}(t)$ $(T_1 \leq t)^{2}$	・設備の相違
$\frac{\mathrm{d}\mathbf{Q}_{\mathrm{R/B}}(t)}{\mathrm{d}\mathbf{t}} = -\lambda_2 \cdot \mathbf{Q}_{\mathrm{R/B}}(t) + \mathbf{q}_{\mathrm{PCV} \to \mathrm{R/B}}(t)$		$dQ_{R/B}(t) = 2 \cdot Q_{R/B}(t) + Q_{R/B}(t)$	【柏崎 6/7】
$Q_{R/R}(T_1) = \int_{0}^{T_1} q_{PCV \rightarrow R/R}(t) dt$		$\frac{dt}{dt} = -\lambda^{2} Q_{R/B}(t) + q_{PCV \to R/B}(t)$	
J ₀ having ber		$Q_{R/B}(T_1)^{\otimes 3} = \int_0^{T_1} q_{PCV \to R/B}(t) dt$	
$q_{R/B \to t \propto}(t)$:時刻tにおける単位時間当たりの原子炉建屋から大気中への放出割合[1/s]			
q _{RV} → _{R/B} (t) :時刻t における単位時間当たりの原子炉格納容器から原子炉建屋への漏えい割合[1/s]		q _{R/B→大気} (t) :時刻 t における単位時間当たりの原子炉建物から大	
$Q_{R/B}(t)$:時刻t における原子炉建屋内での存在割合[-]		気中への放出割合[1/s]	
λ ₁ :原子炉区域の換気率[1/s] (SCTS の定格風量と原子炉区域空間容積から算出 [※])		$q_{PCV \rightarrow R/B}(t)$:時刻 t における単位時間当たりの原子炉格納容器か	
λ_2 : 原子炉区域の換気率[1/s] (原子炉区域の設計気密度を基に設定 ²⁸)		ら原子炉建物への漏えい割合[1/s]	
T ₁ :原子炉区域の負圧達成時間(事故発生40分後)[s]		Q _{R/B} (t) :時刻 t における原子炉建物内での存在割合[-]	
T ₂ :SGTS 停止時間[s]		λ : 原子炉棟の換気率[1/s]	
		(非常用ガス処理系の定格風量と原子炉棟空間容積	
		から算出**4)	
		T ₁ :原子炉棟の負圧達成時間(事故発生 70 分後)[s]	
※1 SGTSの停止撮作を全めた格納容器ベント准備作業け 格納容		※1	 ・ ・ 軍田の相違
※1 501507月11日秋日で10万亿日本1日本1007日本1日本1007日本11日本1007日本11日本11日本11日本11日本11日本11日本11日本11日本11日本1		のとして評価した	////////////////////////////////////
ら約32時間後)までに行う運用としていろ、このうち SGTS			島根2号炉け SGT を停
の停止操作は数分で完了できることから、本評価では、格納			正しない手順となって
容器ベント判断の1時間程度前(事故発生から31時間後)に			いる
<u> </u>			
いて事象収束に成功する場合においては、SGTSは停止しない			
ものとして評価した。			
※2 この期間では原子炉区域の負圧が維持されているため、放射		 ※2 この期間では原子炉棟の負圧が維持されているため、放射	
性物質は原子炉建屋から大気中に直接放出されず, SGTSを経		性物質は原子炉建物から大気中に直接放出されず,非常用ガ	
由して大気中へ放出される。		ス処理系を経由して大気中へ放出される。	
※3 原子炉区域の負圧達成時間(T1)における,停止時炉内内蔵		※3 原子炉棟の負圧達成時間(T ₁)における,停止時炉内内蔵	
量に対する <u>原子炉建屋内</u> での存在割合は,保守的に時刻T ₁ ま		量に対する原子炉建物内での存在割合は、保守的に時刻T」	
でに原子炉格納容器から原子炉建屋に漏えいした放射性物質		までに格納容器から原子炉建物に漏えいした放射性物質の全	
の全量が原子炉建屋内に存在するものとして評価した。		量が原子炉建物内に存在するものとして評価した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
※4 <u></u> 原子炉区域 の換気率[1/s]は, SGTS の定格風量		※4 原子炉棟 の換気率[1/s]は、非常用ガス	・運用の相違
(2000[m ³ /h])による換気率 及び原子炉区域		処理系の定格風量(4400[m³/h])による換気率(1[回/日])	【柏崎 6/7】
の気密度の設計値(0.5[回/日])を用いて,評価上保守的とな		を採用した。	島根2号炉は, SGT を停
るように設定した。大気中への放出率の評価では大きい方の換			止しない手順となって
気率 を採用し,原子炉区域内の存在割合の			いる
<u>評価では小さい方の換気率(0.5[回/日])を採用した。</u>			
③ SGTS の停止以降(事故発生から 31 時間後以降)			
(格納容器ベントを実施する場合のみ)			
$q_{R/B \rightarrow \pm \Re}(t) = q_{PCV \rightarrow R/B}(t) + \ \delta \ (t - T_2) \cdot Q_{R/B}(T_2) \qquad (T_2 \leq t) \ ^{\#_1}$			
$\delta (t - T_2) = \begin{cases} 0, & t \neq T_2 \\ \infty, & t = T_2 \end{cases}$			
 q_{R/B→大気}(t):時刻tにおける単位時間当たりの 原子炉建屋から大気中への放出割合[1/s] q_{PCV→R/B}(t):時刻tにおける単位時間当たりの 原子炉格納容器から原子炉建屋への漏えい割合[1/s] Q_{R/B}(T₂):時刻T₂における原子炉建屋内での存在割合[-]^{※2} T₂:SGTS 停止時間(事故発生から31時間後)[s] 			
 ※1 この期間では原子炉区域の負圧が維持されていないと想定 し,放射性物質は原子炉建屋から大気中に直接放出されるものとして評価した。評価に当たっては、原子炉区域の換気率を保守的に無限大[回/日]とした。 ※2 QR/B(T₂)は前述の②の第2式において、t=T₂時点でのQ_{R/B}を用いた。 			 ・運用の相違 【柏崎 6/7】 島根 2 号炉は, SGT を停止しない手順となって いる

予炉	備考
	・資料構成の相違
	【東海第二】 島根2号炉の放出経路 は図2.4.1~図2.4.4に 示している。 放出タイミングは図5 に示している。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2-
14-20 15-16 15-1		16+18 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+17 16+18 16+17 16+19 16+17 16+19 16+17 16+19 16+17 16+19 16+17 16+19 16+17 16+19 16+17 16+19 16+17 16+19 16+17 16+19 16+17 16+19 16+17 16+19 16+17 16+19 16+17 16+19 16+17 16+19 16+17

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-5 原子炉格納容器等への無機よう素の沈着効果について	5 原子炉格納容器内における無機よう素の自然沈着効果に	5 格納容器等への無機よう素の沈着効果について	
	ついて		
	1. 無機よう素の自然沈着率の設定		
	原子炉格納容器内での無機よう素の除去効果として, 自然沈着		
	率9.0×10 ⁻⁴ (1/s)(原子炉格納容器内の最大存在量から1/		
	200 まで)を用いている。以下に、自然沈着率の算出に関する概		
	要を示す。		
原子炉格納容器内における無機よう素の自然沈着率について	原子炉格納容器内における無機よう素の自然沈着について, 財	格納容器内における無機よう素の自然沈着率については、財団	
は、財団法人原子力発電技術機構(以下「NUPEC」という。)によ	団法人原子力発電技術機構(以下「NUPEC」という。)によ	法人 原子力発電技術機構(以下「NUPEC」という。)による	
る検討「平成9年度 NUREG-1465のソースタームを用いた放射性物	る検討「平成9年度NUREG-1465のソースタームを用いた放	検討「平成9年度 NUREG-1465 のソースタームを用いた放射	
質放出量の評価に関する報告書」において、CSE A6実験に基づく	射性物質放出量の評価に関する報告書(平成10年3月)」におい	性物質放出量の評価に関する報告書」において, CSE A6 実	
値が示されている。	て, CSE(Containment Systems Experiment)A6 実験に基づ	験に基づく値が示されている。	
	く値が示されている。		
自然沈着率の算出に関する概要を以下に示す。	原子炉格納容器内での無機よう素の自然沈着率をλ _α (μg/m	自然沈着率の算出に関する概要を以下に示す。	
	³)とすると,原子炉格納容器内における無機よう素濃度ρの濃		
原子炉格納容器内における無機よう素の濃度の時間変化は、無	度変化(1/s)は式1で表され、自然沈着率λαは時刻 to におけ	格納容器内における無機よう素の濃度の時間変化は、無機よう	
機よう素の自然沈着率を用いると以下の式で表される。	る無機よう素濃度 ρ ₀ と時刻 t ₁ における無機よう素濃度 ρ ₁ を用	素の自然沈着率を用いると以下の式で表される。	
do(t)	いて式2のとおりとなる。	$\frac{d\rho(t)}{d\rho(t)} = -\lambda \cdot \rho(t)$	
$\frac{d\rho(t)}{dt} = -\lambda_d \cdot \rho(t)$		$dt = \lambda_d p(t)$	
	$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\lambda_{\mathrm{d}}\rho \qquad (\vec{\mathrm{x}} 1)$		
ρ(t):時刻tにおける原子炉格納容器内における無機よう素の濃度[μg/m³]		ρ(t):時刻tにおける原子炉格納容器内における無機よう素の濃度	
ん4 . 日然に有中口/5」	$\lambda_{\rm d} = -\frac{1}{t_1 - t_0} \log\left(\frac{\rho_1}{\rho}\right) \qquad (\vec{\rm x} \ 2)$	$\lambda_{d}: 自然沈着率[1/s]$	
これを解くことで、自然化着率は、時刻10、11での原子炉格納		これを解くことで、自然沉着率は、時刻 t_0 、 t_1 での原子炉格納 の明白にいいえ無機トニュの濃度さ思いて以てのトラにまたは	
谷益内における無機よう素の濃度を用いて以下のように表され		谷鈷内における無機よう素の濃度を用いて以下のように表され	
Ω_{sum} 1 $(\rho(t_1))$		Den.	
$\lambda_d = -\frac{1}{t_1 - t_0} \cdot \log\left(\frac{1}{\rho(t_0)}\right)$		$\lambda_d = -\frac{1}{t_1 - t_0} \cdot \ln\left(\frac{\rho(t_1)}{\rho(t_0)}\right)$	
NUPEC 報告書では, Nuclear Technology "Removal of Iodine and	なお、NUPECの報告書では, Nuclear Technology "Removal	NUPEC 報告書では, Nuclear Technology "Removal of Iodine and	
Particles by Spraysin the Containment Systems Experiment"	of Iodine and Particles by Sprays in the Containment Systems	Particles by Spraysin the Containment Systems Experiment"	
の記載(CSE A6実験)より,「CSE A6実験の無機ヨウ素の濃度	Experiment"の記載(CSE A6実験)より,時刻0分におけ	の記載(CSE A6 実験)より、「CSE A6 実験の無機ヨウ素の濃度変	
変化では,時刻0分で濃度10 ⁵ μg/m ³ であったものが,時刻30分で	- る無機よう素の気相濃度10 ⁵ μg/m ³ 及び時刻30分における無機	化では, 時刻 0 分で濃度 10 ⁵ μg/m ³ であったものが, 時刻 30 分で	
1.995×10 ⁴ µg/m ³ となる。」として,時刻及び濃度を上式に代入す	よう素の気相濃度 1.995×10 ⁴ µg/m ³ を上式に代入することで,	1.995×10 ⁴ μg/m ³ となる。」として,時刻及び濃度を上式に代入す	
ることで無機よう素の自然沈着率9.0×10 ⁻⁴ [1/s]を算出している。	式3のとおり、無機よう素の自然沈着率9.0×10-4(1/s)を算	ることで無機よう素の自然沈着率 9.0×10 ⁻⁴ [1/s]を算出してい	
	出したとしている。	Ze	
	$\lambda = -\frac{1}{1 - \log(1.995 \times 10^4)} \sim 0.0 \times 10^{-4} \qquad (\pm 2)$		
	$\pi_{\rm d} = -\frac{1}{30 \times 60 - 0} \log\left(-\frac{10^5}{10^5}\right) \approx 3.0 \times 10^{-10}$		
I		· · · · · · · · · · · · · · · · · · ·	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
これは事故初期のよう素の浮遊量が多く、格納容器スプレイを	この自然沈着率は,BNWL-1244,"Removal of Iodine and	これは事故初期のよう素の浮遊量が多く、格納容器スプレイを	
していない状態下での挙動を模擬するためのものであると考えら	Particles from Containment Atmospheres by Spray-Containment	していない状態下での挙動を模擬するためのものであると考えら	
れる。なお、米国SRP6.5.2では原子炉格納容器内の無機よう素が	Systems Experiment Interim Report"のCSE A6実験による	れる。なお、米国 SRP6.5.2 では原子炉格納容器内の無機よう素が	
1/200になるまでは無機よう素の除去が見込まれるとしている。	無機よう素の気相部濃度の時間変化を表す図に基づくものであ	1/200になるまでは無機よう素の除去が見込まれるとしている。	
	る。時刻0分から30分の濃度変化は、よう素の浮遊量が多く、		
	格納容器スプレイを考慮していない事故初期の状態を模擬して		
	いると考えられる。(第5-1図参照)		
CSE A6実験等から、原子炉格納容器に浮遊している放射性物質		CSE A6 実験等から、原子炉格納容器に浮遊している放射性物質	
が、放出された放射性物質量の数100分の1程度に低下する時点ま		が,放出された放射性物質量の数100分の1程度に低下する時点	
では自然沈着速度がほぼ一定であり、原子炉格納容器内の無機よ		までは自然沈着速度がほぼ一定であり、原子炉格納容器内の無機	
う素はその大部分が事故初期の自然沈着速度に応じて除去される		よう素はその大部分が事故初期の自然沈着速度に応じて除去され	
ことが分かっている。そこで、原子炉格納容器等への無機よう素		ることが分かっている。そこで,原子炉格納容器等への無機よう	
の沈着効果の設定に当たっては、自然沈着率として上式により得		素の沈着効果の設定に当たっては、自然沈着率として上式により	
られた事故初期の自然沈着率(9.0×10 ⁻⁴ [1/s])を代表として適用		得られた事故初期の自然沈着率(9.0×10 ⁻⁴ [1/s])を代表として適	
し,また,自然沈着による上限DF(除去効率)を200とした。		用し,また,自然沈着による上限DF(除去効率)を200とした。	
CSE A6実験の詳細は前述のNuclear Technology の論文において		CSE A6 実験の詳細は前述の Nuclear Technology の論文におい	
BNWL-1244が引用されている。参考として, BNWL-1244記載の原子		て BNWL-1244 が引用されている。参考として, BNWL-1244 記載の	
炉格納容器内における無機よう素の時間変化を図2-5-1に示す。		格納容器内における無機よう素の時間変化を図 5-1 に示す。	

柏崎刈羽	羽原子力発電	節 6/7	号炉 (2017.12.20版)		東海第二	_発電所(20	18.9.18版))		島根	原子力発電所	〒 2号炉		備考
				(参考)										(参考)	
	CSE	実験の適応性	生について	C	2. CSE集	-験の適用に~	ついて				СSE	実験の適応	性につい	T	
					CSE美	験条件と東海	毎第二発電所	すの評価条件	‡の比較を第 5−1						
CSE実験と	本被ばく評	価で想定して	ている事責	なシーケンス 大破断	表に示す。					CSE 実	験と本被ば	く評価で想定	こしている	事故シーケンス	
LOCA 時に非	常用炉心冷	却糸の機能人	なび全交が	「動力電源が喪失」に						却材喪失(ナ	て 破 断 L O C	(A) + EC	C S 注水桥	幾能喪失+全交流動	
おけるMAAP	解析結果に	よる格納容者	は内の条件	キを表1で比較する。						力電源喪失」	力電源喪失」におけるMAAP 解析結果による格納容器内の条件				
なお、NUPI	EC報告書に	おいては,ス	プレイが	使用される前の期間						を表1で比較	を表1で比較する。				
のよう素濃厚	₹に基づき自 	然沈着速度	を設定し	ており、実験条件は						なお, NU	「PEC 報行	吉書において	は,スプ	~イが使用される前	
柏崎刈羽6号	及び7号炉の)事故シーケ	ンスに対	するMAAP解析結果に						の期間のよう	う素濃度に基	「うき自然沈」	着速度を記	安定しており、実験	
より得られた	上原子炉格約	物容器内の条	件と概ね	同等である。						条件は島根2	2. 号炉の事間	女シーケンス	に対する	MAAP 解析結果	
										により得られ	した格納容器	詩内の条件と	既ね同等で	である。	
		-1 -> -1 -1													
<u>表1</u>	CSE 実験条(牛と柏崎刈氷	36号及び	¹ 7号炉の比較	第5-1表	<u>CSE実験条</u>	<u>件と東海第二</u> S F 実験の Pres	二発電所の計	<u>*価条件の比較</u>	, <u></u>	<u>表1 CSE 写</u>	<u> 実験条件と島</u>	根2号炉の	<u>の比較</u>	・評価結果の相違
	CSE	実験の Run No).	柏崎刈羽6号及び7		A 6 ^{**1,*2}	<u>3 E 吴鞅の Kull</u> A 5 ^{※ 3}	A 1 1 ^{**3}	東海第二発電所		CSE	E 実験の Run No). 	島根2号炉解析結	【柏崎 6/7,東海第二】
	$A-6^{*1, *2}$	A-5 ^{**3}	A-11 ^{**3}	号炉解析結果	索囲気	蒸気+空	同左	同左	同左		A-6 ^{*1, *2}	A-5**3	A-11 ^{**3}	果	
雰囲気	蒸気+空	同左	同左	蒸気+窒素	索囲気圧力	気		1.1.2		雰囲気	蒸気+空	同左	同左	蒸気+窒素	
	気			(+水素)	(MPa[gage]) 約 0.20	約 0.22	約 0.24	約 0.47 以下**4		気			(+水素)	
雰囲気圧力	約 0.20	約 0.22	約 0.24	約 0. 3 ^[2]	第曲気温度 (℃)	約 120	約 120	約 120	約 200 以下**4	雰囲気圧力	約 0.20	約 0.22	約 0.24	約 0. 23[2]	
(MPaG)					格納容器	間欠※5	151	151	問欠 ^{※6}	(MPaG)					
雰囲気温度	約 120	約 120	約 120	約 207 ^[2]	スプレイ					雰囲気温度	約 120	約 120	約 120	約 200 以下 ^[2]	
(°C)										(°C)					
				あり										あり	
スプレイの	あり[1]	なし	なし	(無機よう素に対						スプレイの	あり[1]	なし	なし	(無機よう素に対	
有無				しては						有無				しては自然沈着の	
				自然沈着のみ考慮)										み考慮)	
※ 1 : R. K. Hi	lliard et.a	al "Removal	l of iodi	ne and particles by	₩1 R. K. H	lliard et.a	l, "Removal	of iodine	and particles by	₩1 : R. K. Hi	lliard et.a	1 "Removal	of iodin	e and particles by	
spray	s in the co	ontainment s	systems e	experiment", Nucl.	sprays	; in the con	itainment sy	ystems expe	eriment", Nucl.	spray	s in the co	ontainment s	ystems ex	periment ,Nucl.	
Techn	ol. Vol 10	p449-519,1	971		Techno)1. Vol 10 p	p499-519, 1	1971		Techn	ol. Vol 10	p449-519, 19	971		
₩2 : R. K. H1	2: R.K.Hilliard et.al "Removal of iodine and particles from			₩2 R. K. H	lliard et.a	1, "Removal	l of iodine	e and particles	※ 2 : R. K. H1	lliard et. a	l "Removal	of iodine	and particles from		
containment atmospheres by sprays", BNWL-1244			from o	ontainment	atmospherie	es by sprag	ys", BNWL-1244	contain	ment atmosp	oheres by sp	prays″,B	NWL-1244			
3: R. K. Hilliard and L. F. Coleman "Natural transport effects			₩3 R. K. H	lliard and	L.F.Coleman	n, "Natural	l transport	※ 3 : R. K. Hil	lliard and L	.F.Coleman	"Natural	transport effects			
on fission product			effect	s on fissio	n product b	ehavior in	the containment	on fiss	ion product "	t behavior i	in the co	ntainment systems			
behavior in the containment systems			syster	ıs experimen	ıt", BNWL-1	1457		experi	ment",BNV	WL-1457					
experiment"	,BNWL-14	57			<u>※4</u> 評価∃	「故シーケン」	スにおける	各納容器圧	力及び雰囲気温度	[1]自然沈着	速度の算出	には1回目の	スプレイカ	³ 使用される前の格	
[1]自然沈着	速度の算出	には1回目の	スプレイ	が使用される前の格	<u>OMA</u>	AP解析結果	<u> 長より記載</u>			納容器内の濃	農度を用いて	いる。			
納容器内の激	農度を用いて	いる。			<u>※5_A6 実</u> 類	良はスプレイ	を伴う実験だ	ごが,自然沈	こ着率の算出には1	[2]格納容器	破損防止対策	策の有効性評	「価の事故	シーケンス「冷却材	
[2]格納容器	破損防止対	策の有効性語	平価の事責	女シーケンス 「 <u>大破断</u>	回目の)スプレイ実	施前における	5原子炉格;	納容器内の濃度変	喪失(大夜	波断LOC1	$\underline{A}) + \underline{E} \underline{C} \underline{C}$	S注水機的	能喪失+全交流動力	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
LOCA 時に非常用炉心冷却系の機能及び全交流動力電源が喪	化より設定している	重源喪失」において, 炉心からよう素が大量放出された後(事	
<u>失</u> 」において、 炉心からよう素が大量放出された後(事象初期)	※6 格納容器スプレイを実施するが,評価上は無機よう素の除去	象初期)の値	
の値	効果に対しては自然沈着のみ考慮し、格納容器スプレイによ		
	る除去効果は考慮しない		
CCF字段でフプレノた住田していたい、「ひてい」11にたいけて無機	フプレイた住田していないこの下、AFBでAII字酔にわけ		
しいと実験でヘノレイを使用していないA-3及いA-11にわける無機		CSE 美殿 CA / V1 を使用していない A=3 及び A=11 におりる無機とる表の教練容器内気相報濃度の時間亦化な図 1 に示す	
よう糸の裕樹谷協門×(伯部康度の時間多化を図1にかり。初期の化 美(スプレイキ体田の期間)についてけ A-6の坦今とナキな羊け	る無機より糸の原丁刀指袖谷袖門気怕部儀度の時間変化をある-2	る無機よう糸の棺槨谷船り気怕部很度の時間変化を図れていかり。 初期の沈美(スプレイキ症田の期間)についてけ、 $A=6$ の場合と	
1 (ハノレイ 木使用の)別间)については、A-000%」ことへさな定は 認めこれず、初期濃度とり数100公の101と低下した後、対差が預	図に小り。初期の化有についてはA0 <u>と</u> 回家の限回を小りことも に 初期濃度とり数百公の1 租度まで低下した後は緩免からなる		
110000419, 初期候及より数100万001以上低下した後, 化有加稳 あかたわてこと(カットナフ)が認めされて	に、	<u>入さな定は認められし</u> 、切別低度より数1000刀の1以上低下した 後、対差が預わかになること(カットナフ)が認めこれる	
$(\mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} $	個的が見られる。また、本国 SKP0.5.2 では、原丁炉俗和谷谷内 0_2 毎機上る表濃度が $1/200$ になるまでは無機上る表の除土が見込		
10 ² RUN A-5 10 ² RUN A-11			
ICENTRAL IODINE IODINE	The second contraction of the second se	ELEMENTAL IODINE IDDINE	
n 10 ⁶ 112 ^{−1} 12 ^{−1} 13 5 a 3 min n n 10 ⁶ 10 ^{−1} 12 ^{−1} 12 ^{−1} 16 a 0.5 min			
S MAIN ROOM	$\sim_{c} 10^{4} \frac{1}{10^{2}} 1$		
0 10 AVG OF 12 LOCATIONS : 10 2 10 -			
5 1/2 ^{14405hr}	$\begin{bmatrix} 10^3 \\ - & \text{AVG OF 12 LOCATIONS } \pm 1\sigma \end{bmatrix} \begin{bmatrix} 0 \\ 10^3 \\ - \end{bmatrix} \begin{bmatrix} -1 \\ 10^3 \\ - \end{bmatrix}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	$\frac{1}{10}$		
MIDDLE ROOM			
BOTTOM ROOM	10 ¹ MIDDLE ROOM	BOTTOM ROOM	
Bottom ROOM	BOTTOM ROOM	ROTOM ROOM	
10 4 8 12 15 20 24 0 4 8 12 15 20 24 48	10^{0} $\frac{1}{2}$ $\frac{1}{10^{0}}$ $\frac{1}{2}$ $\frac{1}{10^{0}}$ $\frac{1}{2}$ $\frac{1}{10^{0}}$ $\frac{1}{2}$ $\frac{1}{10^{0}}$ $\frac{1}{2}$ $\frac{1}{10^{0}}$ $\frac{1}{$	C 4 8 12 16 20 24 0 4 8 12 16 20 24 48	
FIGURE B-5. FIGURE B-6.	FIGURE B-5. FIGURE B-6.	FIGURE B-5. FIGURE B-6.	
Concentration of Elemental Concentration of Elemental Iodine in Gas Space, Run A-5 Iodine in Gas Space, Run A-11	Concentration of Elemental Concentration of Elemental Iodine in Gas Space, Run A-5 Iodine in Gas Space, Run A-11	Concentration of Elemental Concentration of Elemental Iodine in Gas Space, Run A-5 Icdine in Gas Space, Run A-11	
図1 CSE A-5及びA-11実験による無機よう素の格納容器内気相	第5-2図 CSE A5及びA11実験における無機よう素の	図1 CSE <u>A-5</u> 及び <u>A-11</u> 実験に <u>よる</u> 無機よう素の格納容器内	
部濃度の時間変化	原子炉格納容器内気相部濃度の時間変化	気相部濃度の時間変化	
自然沈着率は評価する体系の体積と内面積の比である比表面積	自然沈着率は,…評価する体系の体積と内表面積の比である比表	自然沈着率は評価する体系の体積と内面積の比である比表面積	
の影響を受け、比表面積が大きいほど自然沈着率は大きくなると	面積の影響を受け、比表面積が大きいほど自然沈着率は大きくな	の影響を受け、比表面積が大きいほど自然沈着率は大きくなると	
考えられる。	ると考えられるため, CSE実験と東海第二発電所の比表面積の	考えられる。	
CSE実験における体系と柏崎刈羽6号及び7号炉の比表面積につ	比較を第5-2表に示す。表からCSE実験と東海第二発電所の比	CSE実験における体系と島根2号炉の比表面積について表2	
いて表2に示す。CSE実験と柏崎刈羽6号及び7号炉の比表面積は同	表面積は同程度となっていることが確認できる。	に示す。CSE実験と島根2号炉の比表面積は同程度となってお	
程度となっており、CSE実験で得られた自然沈着速度を用いること		り、CSE実験で得られた自然沈着速度を用いることができると	
ができると考えられる。		考えられる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第	二発電所(2018.9.18	8版)	Ę	島根原子力発電所 2号	炉	備考		
<u>表2</u> CSE 実験と材	白崎刈羽6号及び7号	<u> テクロン かいまで しょう かいまた しょう しょう しょう しょう しょう しょう しょう しょう しょう しょう</u>	<u>第5-2表 CSE実</u>	食と東海第二発電所の	比表面積の比較	表2 CSE実験と島根2号炉の比表面積の比較		表面積の比較	・設備の相違	
	CSE 実験体系	柏崎刈羽6号及び		CSE実験体系	東海第二発電所		CSE実験体系	島根2号炉	【柏崎 6/7,東海第二】	
		7 号炉	体積 (m ³)	約 600	約 5,700	体積 (m ³)	約 600	約 13,000		
体積 (m ³)	約 600	約 13000	表面積(m ²)	約 570	約 5,900	内面積 (m²)	約 570	約 12,000		
内面積(m ²)	約 570	約 12000	比表面積(1/m)	約 0.96	約 1.04	比表面積 (1/m)	約 0.9	約 0.9		
比表面槓 (1/m)	約 0.9	約 0.9			I					

柏崎刈羽原子力発電	 重所 6 / 7 号炉 (2017.	12.20版)	東海第二発電所(2018.9.18版)	Ē	晶根原子力発電所 2号炉		備考
2-6 6号及び7号炉の	原子炉建屋原子炉区域の負担	王達成時間につ		6 原子炉棟の負圧達	成時間について		
いて							
中央制御室の居住性は	に係る被ばく評価に使用して	ている原子炉建		中央制御室の居住	性に係る被ばく評価に使用し	ている原子炉棟	
屋原子炉区域(以下「原	原子炉区域」という。)の <u></u> の	負圧達成時間40		の負圧達成時間 70 グ	分(=非常用ガス処理系排気フ	ァン起動 60 分+	・設備及び運用の相違
<u>分(=非常用ガス処理系</u>	(以下「SGTS」という。)	排風機起動30		排気ファン起動から	排気ファン起動から原子炉棟負圧達成時間 10 分)は,表 6-1 に		【柏崎 6/7】
分+排風機起動から原子	炉区域負圧達成時間10分)	は, 表2-6-1に		示すとおり設定して	いる。なお,排気ファン起動	から負圧達成ま	
示すとおり設定している	る。なお、排風機起動から負	員圧達成までの		での時間については	,格納容器から原子炉棟への	漏えい量, 原子	
時間については、原子加	戸格納容器から原子炉区域~	〜の漏えい量,		炉棟外からのインリ	ーク量を考慮して算出してい	る(別紙参照)。	
原子炉区域外からのイン	/リーク量を考慮して算出し	ている(別紙					
参照)。							
表 2-6-1 6号及び 7-	号炉の原子炉区域負圧達成	時間について		表 6-1 [原子炉建物負圧達成時間につい	いて	・評価条件の相違
		6号及び7号炉				2 号炉	【柏崎 6/7】
原子炉区域容積[m³]				原子炉棟容積[m³]			
SGTS 排風機流量[m³/h]		2000		非常用ガス処理系排気フ	アン流量[m ³ /h]	4400	
	事象発生~SGTS 排風機起動	30 分			事象発生~SGTS 排気ファン起動	60分	
原子炉区域負圧達成時間	SGTS 排風機起動~負圧達成	<約10分		原子炉棟負圧達成時間	SGTS 排気ファン起動〜負圧達成	<約10分	
		<約40分				<約 70 分	
評価において使用する原子	上炉区域負圧達成時間	40分		評価において使用する原-	子炉棟負圧達成時間	70 分	
		1					

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	(別紙)		(別紙)
6号及び7号炉の原子炉区域負圧達成時間	間の算出について		原子炉棟負圧達成時間の算出について	
6号及び7号炉の原子炉区域をSGTS 排風	風機で排気した際に負圧		2号炉原子炉棟を非常用ガス処理系排気ファンで排気した際	<u>教</u>
達成までに要する時間を評価する。			に負圧達成までに要する時間を評価する。	
1.評価モデル			1.評価モデル	
原子炉区域の圧力評価モデルを図1に示	示す。		原子炉棟の圧力評価モデルを図1 に示す。	
原子炉区域圧力は、SGTS排風機による	排気と、原子炉区域イン		原子炉棟圧力は、非常用ガス処理系排気ファンによる排気と	2m
リーク及び原子炉格納容器からの漏えいの	のバランスにより決定さ		原子炉建物インリーク及び格納容器からの漏えいのバランスに	よ
れるものとする。			り決定されるものとする。	
原子炉区域 インリーク流量:Q _{in} (t) 原子炉区域 等価漏えい面積:A 原子炉 医域外 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉区域 原子炉格納容器 いらの潮えい量 :Q _{PCV} 原子炉格納容器	非照機 売量: Q _{aut} 非常用 ガス処理系		原子炉棟 インリーク流量:Q _n (t) 原子炉 等価漏えい面積:A	
図1 原子炉区域の圧力評価モラ	デル		図1 原子炉棟の圧力評価モデル	
2. 評価式 原子炉区域の圧力変化率は、気体の状態 体のモル数変化率で表される。 $\frac{dp}{dt} = \frac{RT}{V} \frac{dn}{dt}$ ・・	態方程式に従い気 ・・(1)		2. 評価式 原子炉棟の圧力変化率は、気体の状態方程式に従い気体の モル数変化率で表される。 $\frac{dp}{dt} = \frac{RT}{V} \frac{dn}{dt} \cdot \cdot \cdot (1)$	
したがって, <u>原子炉区域</u> の圧力 (p(t)))は次式に従う。		したがって,原子炉棟の圧力(p(t))は次式に従う。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
$p(t + \Delta t) = p(t) + \Delta t \frac{RT}{V} \frac{dn}{dt}$	$p(t + \Delta t) = p(t) + \Delta t \frac{RT}{V} \frac{dn}{dt}$	
$\Leftrightarrow p(t + \Delta t) = p(t) + \Delta t \frac{RT}{V} \left\{ \frac{p(t)}{RT} \left(-Q_{out} + Q_{in}(t) + Q_{PCV}(t) \right) \right\}$	$\Leftrightarrow p(t + \Delta t) = p(t) + \Delta t \frac{RT}{V} \left\{ \frac{p(t)}{RT} \left(-Q_{out} + Q_{in}(t) + Q_{PCV}(t) \right) \right\}$	
$\Leftrightarrow p(t + \Delta t) = p(t) + \Delta t \frac{p(t)}{V} \left(-Q_{out} + Q_{in}(t) + Q_{PCV}(t)\right) \cdot \cdot \cdot (2)$	$\Leftrightarrow p(t + \Delta t)p(t) + \Delta t \frac{p(t)}{v} \left(-Q_{out} + Q_{in}(t) + Q_{PCV}(t)\right) \cdots (2)$	
Q _{out} :SGTS 排風機流量[m³/s] Q _{in} (t):原子炉区域インリーク流量[m³/s] Q _{rev} (t):原子炉格納容器からの漏えい流量[m³/s]	Q _{out} :非常用ガス処理系排気ファン流量[m ³ /s] Q _{in} (t):原子炉棟インリーク流量[m ³ /s] Q _{PCV} (t):格納容器からの漏えい流量[m ³ /s]	
<u>原子炉区域</u> インリーク流量Qin(t)は大気圧と原子炉区域の圧力 の差により流量が変化し,その流量はベルヌーイ式で規定される ことから次式のとおりとなる。	原子炉棟インリーク流量Qin(t)は大気圧と原子炉建物の圧力 の差により流量が変化し、その流量はベルヌーイ式で規定され ることから次式のとおりとなる。	
$Q_{in}(t) = A_{\sqrt{\frac{2(p_{atom} - p(t))}{\rho}}} \cdot \cdot \cdot (3)$	$Q_{in}(t) = A \sqrt{\frac{2(P_{atom} - P(t))}{\rho}} \cdot \cdot \cdot (3)$	
A:原子炉区城等価漏えい面積[m²]	A:原子炉棟等価漏えい面積[m ²]	
<u>原子炉区域</u> 等価漏えい面積Aは,原子炉区域の設計気密度に基づき,式(3)と同じくベルヌーイ式により求められる。	原子炉棟等価漏えい面積Aは,原子炉棟の設計気密度に基づき, 式(3)と同じくベルヌーイ式により求められる。	
原子炉格納容器からの漏えい流量Q _{PCV} (t)は,原子炉格納容器内 のガスが原子炉区域に漏えいし,体積膨張するものとして求める。 全ての漏えいガスが凝縮せず,理想気体として存在すると仮定す	原子炉格納容器からの漏えい流量 Q _{PCV} (t)は, <u>格納容器内</u> のガス が <u>原子炉棟</u> に漏えいし,体積膨張するものとして求める。全ての 漏えいガスが凝縮せず,理想気体として存在すると仮定すると, その流量は次式のとおりとなる。	
$Q_{PCV}(t) = V_{PCV} \times \frac{\gamma_{PCV}}{100.24.3600} \times \frac{p_{PCV}}{T_{PCV}} \times \frac{T}{p(t)} \cdot \cdot \cdot (4)$ $\gamma_{PCV} : 原子炉格納容器設計漏えい率[%/日]$	$Q_{PCV}(t) = V_{PCV} \times \frac{\gamma_{PCV}}{100 \cdot 24 \cdot 3600} \times \frac{P_{PCV}}{T_{pcv}} \times \frac{T}{P(t)} \cdot \cdot \cdot (4)$ $\gamma_{PCV}: 格納容器設計漏えい率[%/日]$	
したがって,式(2)~(4)より,原子炉区域の圧力変化量 を求める評価式は以下のとおりとなる。 $p(t+\Delta t) = p(t) + \Delta t \frac{p(t)}{V} \left(-Q_{aut} + A_{\sqrt{\frac{2(p_{aux} - p(t))}{\rho}}} + V_{PCV} \times \frac{\gamma_{PCV}}{100 \cdot 24 \cdot 3600} \times \frac{p_{PCV}}{T_{PCV}} \times \frac{T}{p(t)} \right)$	したがって、式(2)~(4)より、原子炉棟の圧力変化量を 求める評価式は以下のとおりとなる。 $p(t+\Delta t) = p(t) + \Delta t \frac{p(t)}{V} \left(-Q_{out} + A \sqrt{\frac{2(p_{atom} - p(t))}{\rho}} + V_{PCV} \times \frac{\gamma_{PCV}}{100 \cdot 24 \cdot 3600} \times \frac{p_{PCV}}{T_{PCV}} \times \frac{T}{p(t)} \right)$	

柏崎刈羽	原子力	発電所 6/	7 号炉 (20)17.12.20版)	東海第二発電所(2018.9.18版)		島相	眼原子力発電	所 2号炉		備考
3.評価条件					3. 評伯	価条件					
原子炉区域	負圧達	式時間の評価	に用いる条件	を表1に示す。負圧	原于	〔子炉棟負圧	達成時	間の評価に用	引いる条件を	表1 に示す。負圧	
達成と判断す	る基準	王力は-6.4mm	Aq とする。		達成と	達成と判断する基準圧力は-6.4mmAq とする。					
表1	原子炉	区域負圧達成	は時間の評価 須	<u>条件</u>		表1 原	京子炉枝	東負圧達成時	間の評価条何	<u>+</u>	・評価条件の相違
項目	式中 記号	単位	値	備考	1	項目	式中 記号	単位	値	備考	【柏崎 6/7】
大気圧	p_{atom}	Pa(abs) (kPa(abs))	101325 (101. 325)	標準大気圧	大気圧	圧	$\mathbf{p}_{\mathrm{atom}}$	Pa (abs) (kPa (abs))	101325 (101. 325)	標準大気圧	
大気密度	ρ	kg/m^3	1. 127	気温 40℃の密度を設定	大気密	密度	ρ	kg/m^3	1.127	気温 40℃の密度を設定	
原子炉区域圧力	P(t)	Pa (abs)	-	事象発生後,原子炉区域圧 力は大気圧まで戻ると想 定し,初期圧力には大気圧 を設定	原子炉	炉棟圧力	P(t)	Pa (abs)	-	事象発生後,原子炉区 域圧力は大気圧まで戻 ると想定し,初期圧力 には大気圧を設定	
原子炉区域容積	V	m ³		設計値	原子炉	炉棟容積	V	m ³		設計値	
原子炉区域温度	Т	K	313. 15	40℃と仮定	原子炉	炉棟温度	Т	K	313. 15	40℃と仮定	
原子炉区域 等価漏えい面積	A	m ²		原子炉区域の設計気密度 に基づき、ベルヌーイ式よ り算出 ^{*1}	原子炉等価漏	炉棟 漏えい面積	A	m²		原子炉棟設計気密度に 基づき,ベルヌーイ式 より算出 ^{*1}	
SGTS 排風機流量 原子炉格納容器圧	Q _{out}	m ³ /s (m ³ /h) Pa(gage)	0.556 (2000) 279×10^{3}	設計値(定格流量) 原子 (に 体 統 金 怒 最 高 使 用	非常用 系 排约 量	「用ガス処理 非気ファン流	$Q_{\rm out}$	m³/s (m³/h)	1. 222 (4400)	設計値 (定格流量)	
力	P _{PCV}	(kPa(gage))	(279)	正力の 0.9 倍	格納容	容器圧力	P _{PCV}	Pa(gage) (kPa(gage))	384×10^{3} (384)	格納容器最高使用圧力 の 0.9 倍	
積	V _{PCV}	m ³	13310	設計値	格納容	容器容積	V _{PCV}	m ³	12600	設計値	
原子炉格納容器温度	T _{PCV}	K	313. 15	保守的に原子炉区域と同 じ温度を仮定	格納容	容器温度	T _{PCV}	K	313. 15	保守的に原子炉建物と 同じ温度を仮定	
原子炉格納容器 設計漏えい率	γ pev	%/日	0. 4	原子炉格納容器最高使用 圧力の 0.9倍までの設計漏 えい率	格納容設計漏	容器 漏えい率	γ _{PCV}	%/日	0.5	格納容器最高使用圧力 の 0.9 倍までの設計漏 えい率	
 ※1 <u>原子炉</u> き,内部 である。 積を使用 	区域の設 ふの漏 ここで した。	計気密度は, えい率が1日に は,保守的に	「6.4mmAqの こつき内部空 50[%/日]にお	<u>負圧状態にあると</u> 間容積の50%以下」 ける等価漏えい面		<u>原子炉棟の</u> <u>内部への漏</u> <u>ある。ここ</u> 使用した。	D設計 えい率 では保 ⁴	【密度は,「6. が1日につき 守的に100[%/	. 4mmAqの負圧 内部空間容 (日]における	<u>E状態にあるとき,</u> <u>積の100%以下」で</u> う等価漏えい面積を	・設備の相違 【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
4. 評価結果		4.評価結果	
原子炉区域圧力の時間変化を図2に示す。		原子炉棟圧力の時間変化を図2 に示す。	
<u>SGTS排風機</u> 起動後, <u>原子炉区域</u> 圧力は単調に低下し, <u>約333秒後</u>		非常用ガス処理系排気ファン起動後、原子炉棟圧力は単調に低	
に負圧達成と判断する基準値 (-6.4mmAq) を下回る。		下し, <u>約 250</u> 秒後に負圧達成と判断する基準値(-6.4mmAq)を下	・評価結果の相違
中央制御室の居住性に係る被ばく評価においては負圧達成時間		回る。	【柏崎 6/7】
として、約333秒を丸めて保守的に10分を使用する。		ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	
		して,約 250 秒を丸めて保守的に 10 分を使用する。	・評価結果の相違
			【柏崎 6/7】
-1			
(br -2 -3 -3			
A -4 出 -5 疑 -6 ● 自圧達成基準値(-6.4mmAq)		\vec{E} -4 \vec{R} -5 \vec{H} = 5 \vec{E} = \vec{E} = E	
県 -7 市 -7 藍 -8			
-9 -10 0 200 400 600 800 1000			
時間(s)		0 200 400 600 800 1000 時間(s)	
図2 原子炉区域圧力の時間変化		図2原子炉棟圧力の時間変化	・評価結果の相違 【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-7 被ばく評価に用いた気象資料の代表性について		7 被ばく評価に用いた気象資料の代表性について	
柏崎刈羽原子力発電所敷地内において観測した <u>1985年10 から</u>		島根原子力発電所敷地内において観測した 2009 年 1 月から	・評価条件の相違
1986年9月までの1年間の気象データを用いて評価を行うに当た		<u>2009 年12 月まで</u> の1年間の気象データを用いて評価を行うに当	【柏崎 6/7】
り、当該1年間の気象データが長期間の気象状態を代表している		たり、当該1年間の気象データが長期間の気象状態を代表してい	島根2号炉の気象を代
かどうかの検討をF分布検定により実施した。		るかどうかの検討をF分布検定により実施した。	表する期間のデータを
以下に検定方法及び検討結果を示す。		以下に検定方法及び検討結果を示す。	使用
1. 検定方法		1. 検定方法	
(1)検定に用いた観測データ		(1)検定に用いた観測データ	
気象資料の代表性を確認するに当たっては、通常は被ばく評価		気象資料の代表性を確認するに当たっては、通常は被ばく評価	
上重要な排気筒高風を用いて検定するものの、被ばく評価では保		上重要な排気筒高所風を用いて検定するものの、被ばく評価では	
守的に地上風を使用することもあることから、排気筒高さ付近を		保守的に地上風を使用することもあることから、排気筒高さ付近	
代表する <u>標高85mの</u> 観測データに加え、参考として <u>標高20mの観</u>		を代表する <u>標高 130m</u> の観測データに加え,参考として <u>標高 28.5</u>	・設備の相違
<u>測データ</u> を用いて検定を行った。		<u>mの観測データ</u> を用いて検定を行った。	【柏崎 6/7】
(2)データ統計期間		(2)データ統計期間	排気筒高さの相違
統計年: 2004年04月~2013年03月		統計年: 2008 年1月~2008 年 12 月, 2010 年1月~2018 年 12	・評価条件の相違
検定年: <u>1985年10月~1986年09月</u>		<u>月</u>	【柏崎 6/7】
(3)検定方法		検定年: <u>2009年1月~2009年12月</u>	島根2号炉の気象を代
不良標本の棄却検定に関するF分布検定の手順に従って検定を		(3) 検定方法	表する期間のデータを
行った。		不良標本の棄却検定に関するF分布検定の手順に従って検定を	使用
2. 検定結果		行った。	
検定の結果,排気筒高さ付近を代表する <u>標高85mの観測データ</u>		2. 検定結果	
については, <u>有意水準5%で棄却されたのは3項目(風向:E,SSE,</u>		検定の結果, 排気筒高さ付近を代表する <u>標高 130m 及び標高</u>	
<u>風速階級:5.5~6.4m/s)であった。</u>		<u>28.5m の観測データ</u> について, 有意水準5%で棄却された項目は	・検定結果の相違
<u> 棄却された3項目のうち, 風向 (E, SSE) についてはいずれも海</u>		無かった(0項目)ことから,評価に使用している気象データは,	【柏崎 6/7】
側に向かう風であること及び風速(5.5~6.4m/s)については, 棄		長期間の気象状態を代表しているものと判断した。	
却限界をわずかに超えた程度であることから、評価に使用してい			
る気象データは、長期間の気象状態を代表しているものと判断し			
<u>t.</u>			
なお,標高20mの観測データについては,有意水準5%で棄却さ			
れたのは11項目であったものの,排気筒高さ付近を代表する標高			
85mの観測データにより代表性は確認できていることから、当該			
データの使用には特段の問題はないものと判断した。			
検定結果を表2-7-1から表2-7-4に示す。		検定結果を表 7-1 から表 7-4 に示す。	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)			東海第二発電所(2018.9.18版)					Ē	島根」	<u></u> 京子	力発育	電所	÷ 2	2 号炸	炉						備	考															
	表 2-7-1 棄却検定表(風向)												妻	長 7-	1 棄	却検	定表	そ (盾	虱向))						・検定結果の)相違										
6 8 8 8 8 8	10 扳 知																				観浿	リ場所	「: 冨	통場	(標i	高 28	. 5m,	,地	上高		0m)	(%))			【柏崎 6/7】	
1986年0 2013年0	₩ ₩ ₩	0	0					×	0	0	0	0	0	0	0					転換	業初	00			0	0 0	0	0	0	0	0	0 0		0	0	島根2号炉 用	の気象を使
10月~1 04月~2	順男 下限	3.90	1. 8	1.4	8 I 8	4.5	10.3	8.0	3.14	1.7(0.0	3.3	5.71	6.18	5.5	3.5	5		業		× -	0.73	0, 03	0.12	-0. 09	0. 14 2. 22	7.44	1.55	2.39	0.82	0.99	2.15 9.09	7. 61	9.83	1.98	7.14	
1985年 2004年	来 東 日 四	8.40	3.21	4.33	4, 50 5, 70	9.93	18.86	14.71	5.84	3.34	7.00	7.98	8.15	10.95	14.38	6.60	97.70		<u> 奄</u> :利105			3.04 -	0.56	0.68	1.66 -	4. 78	26. 93	16.72	4.76	2.71	1.85	5.09 16.37	15.61	16.56 7 00	7. 89		
5 51m) 5 75m)	検定年 1985	5.73	2.05	1.91	Z. 80 5. 73	9.16	15, 18	7.24	4.26	2.09	3.00	6.90	6.96	9.82	10.97	5.30	16.0) 魚定年 000 年	-	0.53	0.26	0.30	0.51	1. 71 7. 84	22.90 2	11.28	4.21	1.91	1. 19	3.65	14.86	[1.41]	5.10		
唐 七 君 君 君	内值	6. 16	2.52	2.89	3. 23 4. 43	7.22	14.62	11.40	4.49	2.52	3.48	5.64	6.93	8.55	9, 98	5.05	0. 88			^{下均值_8}	1	1.16	0. 29	0.40	0. 78	2. 46 10. 42	22. 18 2	9.14	3. 58	1.77	1.42	3. 62 12. 73	11.61	13. 19	4.94		
前 85m 第 85m	2012 3	6.46	2.59	1.80	3.46	6.61	6. 02	1.71	4.19	2.10	2.59	4.89	6.30	9.23	12.59	5.81	B -1			018年		2.06	0.49	0.47	1.22	2. 95 9. 42	22.04	10.37	3. 23	1.97	1.46	2.55 13.70	9.42	14.55	3.77		
C点 (視 A点 (視	110	5, 14	2.64	2.58	3.21	6. 72	6.25	2.30	4. 38	2. 33	2.66	5.09	6.47	7.54	1. 02	6.03	0. 20			2017年		0.93	0.36	0.55	1.54	4. 00 13. 43	19. 19	6. 00	3. 57	1.65	1.60	3.85 15.33	11.54	12.43	3.72		
: 敷地内 : 敷地内	010 2	£. 80	. 81	2. 67	8 9	16.3	1. 59 1	3.86 1	5. 03	2.40	3.47	5. 57	1. 91	3. 94	. 81 1	5.46). 4/			2016年		0.70	0.31	0.47	0.87	3. 17 13. 87	23. 57	5.69	3.14	1.55	1.47	3.69	10.43	13.25	5.83		
6 泊 年 [計基問	60	. 84	12.	29.	24 2	22	55 14	. 53 12	94	. 74	11.	. 82	. 69	. 14 8	.06 10	94	18.			2015年1		0.86	0.39	0.59	0.92	2.77	22.85	6. 18	3.15	1.18	1.35	3.79 12.04	11.74	12.92	5.40		
¥6: 99	8	96 7	71 2	28	91 3	57 6	82 14	09 12	53 4	23 23	64 2	57 4	03 6	38 7	21 8	37 4	200			2014 年		1.23	0. 29	0.42	0.72	3. 31 13. 94	22. 31	6.74	3.05	1.42	1.19	3.29 12.01	10.65	14.78	4.37		
	7 200	24 6.	52	51 S	7 9 8 7	1. 7.	16.	20 10.	3.	75 2.	2.	4.	4 7.	34 9.	38 10.	9 7	o R			2013 年		0.66	0.22	0.32	0.67	2.71 12.61	24.24	7.75	3. 93	1.45	1.45	4.72 13.77	9.72	12.02	3. 52		
	2001	6.2	1 2.6	5 i 6	4 2.2	7.2	14.1	11.2	4.6	2.7	3.0	9 6.1	7.1	9.3	9.6	4 0	<u>~</u>			2012 年		3.05	0.32	0.25	0.40	1.14 5.56	18. 59	15.61	3.68	1.81	1.22	2.81 10.55	12.10	15.91	6.09		
	2006	6.42	2.6	2.90	й. 19 19	8.1	15.22	11.19	4.4	2.2(2.4(5.49	7.4(9.82	8.16	4.5	ă.0			2011年		0.85	0.16	0.33	0.55	1. 39 5. 67	22. 03	11.09	4.05	2.31	1.60	3. 53 13. 11	13. 53	12.38	7.16		
	2005	5, 93	2.67	3.22	3, 08	7.00	11.46	10, 11	5.28	3.13	5.31	6.87	6.61	7.58	11.76	5.38	0. 53			2010 年		0.64	0.28	0.26	0.39	1.34 7.34	22.10	10.94	4.61	2.43	1.67	3.98 14.17	12.10	11.93	5. 63		
	2004	5, 69	2.37	3.72	5.00	9.57	12.55	9.61	3.94	2.77	6.53	7.34	6.83	7.98	7.25	4.37	0.47		-14	2008 年		0.59	0.12	0.32	0.55	1.78 8.75	24.91	10.98	3. 33	1.90	1. 18	3.99 10.85	14.87	11.77	3.92		
	施計年 風向	N	NNE	NE	ENE	ESE	SE	SSE	S	SSW	SW	MSW	W	WNW	MN	MNN	CALM		人統計位		風向	N	NE	ENE	ш	ESE	SSE	S	SSW	SW	MSW	MNM	MN	MNN	静穏		

柏	崎刈	羽原子	·力発'	電所	6	/'	7号	炉	(201	7.1	2.20)版)		東海第二発電所(2018.9.18版)			島根	原子	一力季	的電視	听 :	2 号炸	戸				備考
	表 2-7-2 棄却検定表(風速)										表 7-	-2 勇	毛却枝	食定著	表()	風速))				・検定結果の相違							
														_			観測場所:	露場	(樗	雲高 2	28. 51	n, 均	也上高	焉 20ı	n) (%)		【柏崎 6/7】
36年09月 13年03月 (*)	制定	○探択 ×棄却	0	0	0	0	0	0	×	0	С						判 〇 × 孫葉 初 招	0	0	0	0	0	0	0				島根2号炉の気象を使用
10 月~196 04 月~201	限界	下限	0.00	4. 24	10.86	12.38	12.33	9.35	8.48	4.73	3.21	1 80	10.81	5		界	上限	1.98	21.79	20.38	14.00	8.19	4.70	1.79	1.00	00.00	0. 18	
1985年) 2004年(兼出	上限	2.26	8.94	13. 93	17.43	15.53	14.71	9.95	7.93	4.98	- 02 - 02	99 68	3		棄却限	 전 丁	7.89	32. 45	28.54	19.82	12.46	7.58	5.86	4.37	- 00 - 5 - 6 - 7	1.92	
と声 51m) と声 75m)	検定年	1985	3 0.91	6.92	11.37	15.33	3 14.83	3 11.51	8.38	6.12	4.41	9	0.17 07) 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第	5. 10	26. 56	26. 18	17.90	9.45	4.87	3. 26	2.61 1.96	1.00	1. 15	
5m, 拖」 5m, 拖」		平均值	0.8	4 6.55	7 12.4(9 14.91	1 13.90	0 12.00	9.22	6.33	4.09		16 75				平均值 2	4.94	27.12	24.46	16.91	10.33	6.14	3.82	2.69 - Fo	1. 30 0. 07	1. 05	
点 (練売8 点 (練売8		2012	6 1.0	6 7.2	9 12.8	5 13.5	0 12.8	7 10.2	4 8.8	7 6.4	3 4.4	0	10 0 0	2			2018 年	3.77) 25.68	l 24.74	3 18.71	9 10.64	5.96	3.87	3.12	1. (9 0. 0.7	0.75	
(地内CA		2011	7 0.8	7 6.4	3 12.7	5 14.2	3 14.3	4 12.1	8 9.1	2 6.4	7 4.4		0 16 1				6 2017 年	3 3.72	19 26. 3(99 23. 11	55 17.46	7 10.79	1 5.88	6 4.33	7 3.39	1 2.23	⁴ 1. 30 2 1. 50	
定 年: - - 期間: 豊		2010	1 0.4	5 7.0	8 12.0	8 14.6	6 14.4	6 12.5	3 8.8	8 6.0	7 4.0		2 7 F				15 201 年	40 5.8	71 30. 1	93 23. 9	77 16.5	21 9.9	04 6.3	26 3.1	92 1.8	17 0. A	89 0.7	
後続		2009	0 2.3	0 6.8	9 12.8	1 15.5	4 13.2	7 11.0	2 9.1	3 7.4	2.4.4	0	0 13 9				● 114 20	. 37 5.	3. 99 30.	5. 91 23.	5. 75 15.	0. 23 10.	. 97 6.	. 02 3.	. 02 1.	- 00 I.	. 95 0.	
		2008	9 0.8	2 7.9	1 12.6	8 15.9	11 13.9	8 11.3	3 9.2	3 6.3	9 4.3	6	0 11 0	2			2013 2	3. 52 4	26. 26 28	25.88 21	18.32 10	10.92 10	6.21 5	3.16 3	2.43 2.43		0.83 0	
		2007	8.0.8	3 7.3	7 13.0	8 15.9	9 14.8	1 12.6	5 9.0	8 5.1	8 3.4	0	7 15 1				2012 年	6. 09	23.47	21.03	15.77	11.92	7.63	5.65	4.06	2. U4	1. 12	
		2006	3 0.6	1 6.0	12.4	16.1	6 14.4	2 13.7	3 9.6	1 5.7	3.5		5 77 E	2			2011 年	7.16	3 27.29	24.06	3 14.90	5 8.41	6.21	4.79	2.90	1.92	1. 07	
		1 2006	47 0.E	75 5.7	11.4	48 14.8	37 13.9	11.4	0. 9. 3	33 6.4	33 4.1		10 10 10				8 2010	2 5.63	50 26. 78	32 24.62	01 16.86	3 10.35	9 6.03	5 3.65	1 2.85 1 - 35	4 1.40 0 0 00	7 0.80	
	田	200	0.4	4	1.1	13.4	13.3	13. (9.7	6.8	8	6	2.1			111		4 3.9	4 25.8	4 27.3	4 18. (4 9.8	4 5.1	4 3.3	4 2.3 - 2.3	4 F	+ · · ·	
	赤塚	風速 (m/s)	0.0~0.4	0.5~1.4	1.5~2.4	2.5~3.4	3.5~4.4	4.5~5.4	5.5~6.4	6.5~7.4	7.5~8.4	0 5~0	0.0 5 CI F	-		統計4	風麗」。	0.0~0.	$0.5 \sim 1.$	$1.5 \sim 2.$	2. $5 \sim 3$.	3.5~4.	4.5~5.	5.5~6.	$6.5 \sim 7.$	0.0.00	9.5~	
										-																		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
表 2-7-3 棄却検定表(風向)	表 7-3 棄却検定表 (風向)	・検定結果の相違
883 22 22 22 22 22 22 22 22 22 22 22 22 22	観測場所:管理事務所屋上(標高130m, 地上高115m)(%)	【柏崎 6/7】
		島根2号炉の気象を使
		用
88年10 24年10 米山市 11:15 3:27 3:27 3:27 3:37 3:37 3:37 1:154 3:35 3:37 3:37 1:154 3:37 3:37 1:154 1:154 3:37 3:37 1:154 1:154 1:155 1	第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	
10m) 19(10m) 19(10m) 19(10m) 19(10m) 19(10m) 20(10m) 20(10m) 20(10m) 20(10m) 20(10m) 20(10m) 20(10m) 20(10m) 20(11m)	兼结問 兼结問 主に限 子・に限 子・に限 子・に限 子・に限 子・に限 子・に限 子・に限 子・	
 書書 書書 書 = =<td>3.063.063.063.063.063.063.063.065.425.425.955.955.955.955.955.951.98</td><td></td>	3.063.063.063.063.063.063.063.065.425.425.955.955.955.955.955.951.98	
1 3 2 0 円 1 3 0 0 0 円 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	予約 予約 予約 予約 予約 第 5 5 5 5 5 5 5 5 5 5 5 5 5	
A A A A A A A A A A A A A A	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
: 幾地門 : 100 2 2 100 2 2 100 2 2 100 2 2 100 2 2 100 1 2 100 2 2 100 2	$ \begin{array}{c c} 017 \pm 2 \\ \hline 0117 \pm 2 \\ \hline 017 \pm 2 \\ \hline $	
8 泊 2 泊 3 泊 4 泊 4 泊 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2016年2 2016年2 3.69 9.56 6.30 9.56 6.30 7.25 7.25 7.07 7.07 7.82 6.95 6.95 6.95 6.95 6.17 7.28 7.28 7.29 5.30 6.64 6.26 6.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5	
Magnetic	2015年 2.2015年 1.7.73 2.73 2.73 2.73 2.73 5.61 5.61 5.79 6.15 6.15 5.79 6.15 6.15 6.38 6.46 6.38 6.46 6.38 6.38 6.38 7.66 6.38 7.66 6.38 7.73 5.79 5.79 5.79 6.16 6.53 7.73 5.79 5.73 5.79 5.73 5.79 6.54 5.73 5.79 5.73 5.79 5.73 5.79 6.54 5.73 5.79 5.73 5.79 5.73 5.79 5.73 5.79 5.73 5.79 5.73 5.79 5.73 5.79 5.73 5.73 5.73 5.73 5.73 5.73 5.73 5.73	
7 200 7 200 100 100	$\begin{array}{c c} 2014 \ 4 \mp \\ 2014 \ 4 \pm \\ 3 \cdot 81 \\ \hline 6 \cdot 40 \\ 6 \cdot 40 \\ \hline 7 \cdot 02 \\ 6 \cdot 45 \\ \hline 7 \cdot 02 \\ 6 \cdot 38 \\ 6 \cdot 45 \\ \hline 7 \cdot 35 \\ 6 \cdot 38 \\ 6 \cdot 45 \\ \hline 7 \cdot 35 \\ 6 \cdot 45 \\ \hline 7 \cdot 35 \\ 6 \cdot 45 \\ \hline 7 \cdot 35 \\ 6 \cdot 45 \\ \hline 7 \cdot 35 \\ \hline 7 - 3$	
3 3 3 1 1 1 1 200 3 3 3 3 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2006 2010 1.1.61 2.57 2.35 2.35 7.96 5.77 2.27 7.96 6.55 7.7 2.27 7.96 6.55 7.77 9.57 7.96 6.55 7.77 9.57 7.96 6.55 7.79 6.55 7.79 7.96 7.96 7.96 7.96 7.96 7.96 7.96	$\begin{array}{c} 122 \\ 212 \\ 255 \\$	
2005 6.51 6.51 1.25 2.04 9.56 9.56 9.56 9.56 9.30 9.30 9.30 9.30 9.30 5.75 5.75	011 年2 11 年2 15 55 55 55 55 55 55 55 55 55 55 55 55 5	
2004 6.69 1.116 1.116 2.05 2.23 2.23 2.290 2.90 2.90 2.90 2.90 2.80 2.56 3.17 8.17 8.17 8.17 8.17 8.17 8.17 8.17 8	10 年2 3. 67 5. 26 5. 26 5. 87 6. 16 6. 16 6. 16 6. 16 6. 18 7. 79 8. 14 8. 14 8. 35 6. 16 7. 42 1. 42 1. 5 2. 5 2. 14 2. 14 2. 14	
	008年2 3.3.71 5.5.44 5.5.44 5.5.44 5.67 5.64 7.7.05 5.64 7.7.05 5.64 7.7.05 5.64 7.7.05 5.64 7.7.05 5.64 7.7.05 5.64 7.7.05 5.64 7.7.05 5.7.15 5.64 7.7.05 5.7.15 5.5.23 7.7.05 5.7.15 5.5.23 7.7.05 5.7.15 5.5.23 7.7.05 5.5.23 7.7.05 5.5.23 7.7.05 5.5.23 7.7.05 5.5.23 7.7.05 5.5.23 7.7.05 5.5.23 7.7.05 7.7.0	
「「「」」 「」」 「」」 「」」 「」」 「」」 「」」	総計 一 一 一 一 一 画 一 画 一 画 一 一 画 一 一 画 一 一 一 画 一 一 一 一 一 一 一 一 一 一 一 一 一	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				2.20	版)		東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉							備考												
	表 2-7-4 棄却検定表(風速)						速)	-						表 7-4 棄却検定表 (風速)							・評価結果の相違						
щщ														場所:管理事務所屋上(標高 130m, 地上高 115m)(%)										【柏崎 6/7】			
6年09 3年03 (e)	有定	○ 揉揉 × 難	×	×	××	0	0	0	0	0	0	×			単の× 転数の×	0	0	0	0	0	0	0	0 (0	0	0	島根2号炉の気象を使 用
0 月 ~196 4 月 ~201	限界	下限	4.09	43.80	13. 53	3.77	2.86	2.40	1.47	1.04	0.50	0.25		E	上语	1.43	7.23	12.38	14.90	14.96	10.75	7.60	4. 63	00.7	1.34	1.60	
1985年1 2004年0	兼加	田子	12.27	51.17	8.87	6.41	5.17	4.14	4.30	3.57	2.41	3.34		新生品	上國	3. 59	13.93	18.50	19.58	18.45	15. 58	10. 13	6.60	4. 02	3.43	6.20	
第 10m) 第 10m)	検定年	1985	3.45	28. 26	30. 49 10. 11	6, 12	4.34	4.00	3, 16	3.21	2.39	4.47			● ● ● ● ● ● ● ● ● ● ● ● ● ●	1. 98	11.05	15.38	17.85	17.08	13.62	9.01	5.24	3. U3	2.18	3. 59	
6 년 唐 년 년 년		半均值	8.18	47.48	15, 57 7, 96	5.09	4.01	3.27	2.88	2.31	1.46	1.79			F均值 ^表	2.51	10. 58	15.44	17.24	16. 70	13. 16	8.86	5.62 2 E0	3. 39 2	2.39	3.90	
(練声 20) (練声 20)		2012	9.43	46.74	14.91 7.74	5.27	4.43	3.27	2.86	2.30	1.36	1.69			2018 至	2.51	10.88	14.77	15.84	16.26	14.68	9.16	5.38 277	3. 11 2. 11	2.72	4.04	
飽村 A 点 飽村 A 点		2011	10.41	49.05	13.87 8.02	5, 68	4.39	3.31	2.54	1.51	0.66	0.56			2017 年	1.91	8.51	13.25	15.83	17.38	14.51	9.17	6.35	4.12	2.94	6.04	
年:敷力 調問:敷力		2010	8.11	48.83	15.64	4.55	3.80	3.57	2.90	2.45	1.52	1.48			2016年	2.94	1 11.83	8 16.05	1 17.00	9 16.54	6 13.37	8.48	5.37	0, IY	2.25	2.97	
祾 売 業		2009	10.14	47.44	15.49 8.26	5.04	3.65	2.77	1.99	1.89	1.43	2.00			4 2015年	5 3.25	1 12.6	33 17.98	13 18.0	26 15.79)6 11.1(4 7.67	5 5.00	Z Z. 94	2 2.27	3 3.30	
		2008	9, 17	47.40	16.31 8.39	4, 44	3.60	2.77	2.27	2.13	1.75	1.75			13 201	24 1.8	71 9.5	07 15.8	48 17. 1	09 16.2	58 13. (18 9.1	74 6.2	1 3.0 1 3.0	19 2.5	45 4.8	
		2007	7.16	47.96	15.74 8.26	4.98	3.96	3. 55	3.29	2.40	1.39	1.32			12 20	81 2.2	. 14 8. 7	. 56 14.	. 15 17.	. 83 18.	. 94 13.	71 9.]	40 5.3	77 77 7	17 2.4	07 4.	
		2006	6.88	49.32	16.39	4.78	3.34	2.93	2.75	1.95	1.17	2.59			011 20 年 4	. 84 2.	2.21 11	5. 29 15	7.20 18	5.81 16	2. 33 12	. 46 8.	. 44 5.	. 00 2 2 2	. 06	. 71 3.	
		2005	5.75	45.66	15.25 8.12	6, 14	4.30	3.58	3.67	3.08	1.97	2.47			2010 2	2.42 2	0.25 12	5.55 16	6.78 17	6. 72 15	2.72 12	9.44 8	5.74 5	4. 21 3	2.95 2	3.21 3	
		2004	6.55	44.91	16.53	4.93	4.74	3.65	3.67	3.06	1.85	2.28			2008 年	2.29	10.14 1	15.09 1	18.98	17.35	13.28	9.22	5.51	3. 23 ,	1.49	3.41	
	世志場	風速 (m/s)	$0, 0 \sim 0.4$	0.5~1.4	$1.5\sim2.4$ $2.5\sim3.4$	3.5~4.4	4.5~5.4	5.5~6.4	6.5~7.4	7.5~8.4	8.5~9.4	9.5 BLE		代言に	風速階級	(m/s) 0.0~0.4	$0.5 \sim 1.4$	$1.5 \sim 2.4$	2.5 \sim 3.4	$3.5 \sim 4.4$	4.5 \sim 5.4	$5.5 \sim 6.4$	$6.5 \sim 7.4$	$7.5 \sim 8.4$	8.5~9.4	$9.5 \sim$	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-8 被ばく評価に用いる大気拡散評価について	8 炉心の著しい損傷が発生した場合の居住性評価(被ばく評	8 被ばく評価に用いる大気拡散評価について	
	価)…に用いる大気拡散の評価について		
中央制御室の居住性評価で用いる相対濃度及び相対線量は、実	中央制御室の居住性評価で用いる相対濃度及び相対線量は,実	中央制御室の居住性評価で用いる相対濃度及び相対線量は、実	
効放出継続時間を基に計算した値を年間について小さい値から順	効放出継続時間を基に計算した値を年間について小さい値から	効放出継続時間を基に計算した値を年間について小さい値から順	
に並べて整理し、累積出現頻度97%に当たる値としている。着目方	順に並べて整理し,累積出現頻度 97%に当たる値としている。	に並べて整理し,累積出現頻度 97%に当たる値としている。 <u>着目</u>	
位を図2-8-1から図2-8-12,評価結果を表2-8-1に示す。	評価対象方位を第8-1図から第8-4図に,各評価点における相	方位を図 8-1 から図 8-9,評価結果を表 8-1 に示す。	
	対濃度及び相対線量の評価結果を第8-1表に示す。		
		着目方位の選定方法は、「原子力発電所中央制御室の居住性に係	
		る被ばく評価手法について(内規)」に従い,以下のとおり行う。	
		【解説 5.7】評価する方位	
		(1) 建屋影響を受けない場合の評価の方位の定義	
		建屋による影響が小さく評価点の濃度の拡がりのパラメー	
		タがσy, σzによって近似できる場合は,当該方位のみを計	
		算してもよい。	
		(2) 建屋後流での巻き込みの影響を受ける場合の評価の方位の	
		定義	
		建屋による巻き込みを考慮する場合には、当該方位に加え	
		て評価点から巻き込みを考慮する建物を見込む方位を評価方	
		位として計算する。	
		5.1.2 原子炉施設周辺の建屋影響による拡散	
		(1) 原子炉施設の建屋後流での巻き込みが生じる場合の条件	
		a) 中央制御室のように, 事故時の放射性物質の放出点から比	
		較的近距離の場所では、建屋の風下側における風の巻き込	
		みによる影響が顕著となると考えられる。そのため、放出	
		点と巻き込みを生じる建屋及び評価点との位置関係によっ	
		ては、建屋の影響を考慮して大気拡散の計算をする必要が	
		ある。	
		中央制御室の被ばく評価においては、放出点と巻き込み	
		を生じる建屋及び評価点との位置関係について、以下に示	
		す条件すべてに該当した場合,放出点から放出された放射	
		性物質は建屋の風下側で巻き込みの影響を受け拡散し、評	
		価点に到達するものとする。	
		放出点から評価点までの距離は、保守的な評価となるよ	
		うに水平距離を用いる。	
		1) 放出点の高さが建屋の高さの 2.5 倍に満たない場合	
		2) 放出点と評価点を結んだ直線と平行で放出点を風上と	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		した風向 n について,放出点の位置が風向 n と建屋の投	
		影形状に応じて定まる一定の範囲(図 5.1 の領域 An)の	
		中にある場合	
		3) 評価点が,巻き込みを生じる建屋の風下側にある場合	
		上記の三つの条件のうちの一つでも該当しない場合に	
		は、建屋の影響はないものとして大気拡散評価を行うもの	
		とする。	
		ただし、放出点と評価点が隣接するような場合の濃度予	
		測には適用しない。	
		建屋の影響の有無の判断手順を,図5.2 に示す。	
		風向に対して垂直な 建屋の中心線	
		放出点 霍 評価点	
		建屋 中央制御室	
		注:L 建屋又は建屋群の風向に垂直な面での高さ又は幅の小さい方	
		図 5.1 建屋影響を考慮する条件(水平断面での位置関係)	
		thu 4 5 + 46	
		成山太崎でか。 周辺建屋の2.5倍以上か? Yes	
		放出点と時間にというに通知というで	
		巻き込みを生じる代表建屋及び	
		図5.100領域ARD範囲を決定	
		風向について放出点が	
		図5.107領域AnのWel用内に 存在するか? No	
		Yes	
		評価点が風向水ついて	
		建産の加速や例にあるか? NO	
		建産野音のツ 建産野音なし	
		 図59 建屋影響の右無の判断毛順	
	1		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
相対濃度及び相対線量の評価に当たっては、年間を通じて1時間		相対濃度及び相対線量の評価に当たっては、年間を通じて1時	
ごとの気象条件に対して相対濃度及び相対線量を算出し、小さい		間ごとの気象条件に対して相対濃度及び相対線量を算出し、小さ	
値から順に並べて整理した。評価結果を表2-8-2から表2-8-5に示		い値から順に並べて整理した。評価結果を表 8-2 から表 8-4 に示	
す。		す	
図 2-8-1 着目方位	第8-1図 中央制御室滞在時の評価対象方位(風向)	図 8-1 着目方位	
(放出源:6号炉格納容器圧力逃がし装置配管,評価点:中央制	(放出源:格納容器圧力逃がし装置排気口,評価点:中央制	(放出源:2号炉格納容器フィルタベント系排気管,評価点:中	
御室中心)	御室中心)	央制御室中心)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		図8-2着目方位 (放出源:格納容器フィルタベント系排気管,評価点:中央制御 室換気系給気口)	 ・評価条件の相違 【柏崎 6/7,東海第二】 島根2号炉では,取込被 ばくの評価点として中 央制御室換気系給気口 を評価点としている
図 2-8-21 着目方位 (放出源:7号炉格納容器圧力逃がし装置配管,評価点:中央制 御室中心)			 ・申請号炉数の相違 【柏崎 6/7】 島根 2 号炉は,単号炉 申請のため該当図面なし

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
図 2-8-3 看日万位 (放出源:6号炉格納容器圧力逃がし装置配管,評価点:コント	第8-2図 入退吸時の評価対象方位(風向) (放出源:格納容器圧力逃がし装置排気口,評価点:建屋出	図 8-3 有日万位 (放出源:格納容器フィルタベント系排気 ⁵
<u>ロール建屋入口</u>)		子炉補機冷却系熱交換器室。
図 2-8-4 着目方位		
(放出源:7 号炉格納容器圧力逃がし装置配管,評価点:コント ロール建民入口)		

号炉	備考
気管,評価点:2号炉原	
<u>室入口</u>)	
	・申請号炉数の相違
	【柏崎 6/7】
	島根2号炉は、単号炉
	申請のため該当図面な
	L

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
図 2-8-5 着目方位	第8-3図 中央制御室滞在時の評価対象方位(風向)	図 8-4 着目方位	
(放出源:6号炉原子炉建屋中心,評価点:中央制御室中心)	(放出源:原子炉建屋側壁,評価点:中央制御室中心)	(放出源 <u>:2号炉原子炉建物中心</u> ,評価点:中央制御室中心)	
			・評価条件の相違
			【柏崎 6/7,東海第二】
		図 8-5 着目方位 (放出源・2号炉原子炉建物中小、 評価占・中央制御室挽気系給	島根2号炉では,取込 被げくの評価占として
			中央制御室換気系給気
			ロを評価点としている

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
図 2-8-6 着目方位		
(放出源:7 号炉原子炉建屋中心,評価点:中央制御室中心)		
図 2-8-7 着目方位 (放出源・6 号恒原子恒建屋山心、 証価占・コントロール建屋 1	第8-4 図 人退域時の評価対象方位(風向) (放出源・原子に建屋側辟 証価占・建屋出入口)	図 8-6 着目方位 (放出源・原子恒建物由よ、 証価占・9 早)
		<u>交換器室入口</u>)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2
<u>図 2-8-8 着目方位</u>		
(放出源:7号炉原子炉建屋中心,評価点:コントロール建屋入、		

医生生素 着地力型 (次出版: ごと点正日が装飾, 計画点: 1大規模型中心) 38.7 着ビル型 (法定版: 非完美) 38.7 着ビル型 (法定版: 非完美) 第4.5 着ビル型 38.5 着ビル型 第4.5 着ビル型 「第4.6 巻ビル」 38.5 着ビル型 「第4.6 巻ビル」 「第4.6 巻ビル」 「第4.6 巻ビル」	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
現金をを発見対応 (後生活:6.5 約2年時期)、2位式:中央解判室中心) R8ケ 糸目対応 (後生活:6.5 約2年時期)、2位式:中央解判室中心) R8ケ 糸目対応 (後生活:6.5 約2年時期)、2位式:中央解判室中心) Participantic (日本時代) (後生活:6.5 約2年時期)、2位式:中央解判室中心) (第25年春日方位) Participantic (日本時代) Participantic (日本時代) (次出版:1月25日、春日方位) (次出版:1月25日、春日点:1日21)(日本時代) Participantic (日本時代) Participantic (日本時代) (次出版:1月25日、春日点:1日21)(日本時代) (日本時代) Participantic (日本時代) Participantic (日本時代)				
(法上会: 引き方で (法出版: 注意型です資本階、評価点: 中大動料室中心) [14:51 行き方(*) (法出版: 注意型です資本階、評価点: 中大動料室中心) 「四本市中市(*) (法出版: 建式画: 建立用: 方定 (法出版: 建式画: 建石油: 正元規模=建造工会会) 「四本市中市(*) 「一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一				
レシニシタ・アロカか (成山英: 6 気が上単体的) 評価ム: 中央制御玄中心) トペック・アロカか (成山英: 後気前, 宇宙力: 中央制御玄中心) トペック・アロカか (成山英: 後気前, 宇宙力: 中央制御玄中心) ・ボルキアののま (成山英: 後気前, 宇宙力: 中央制御玄中心) ・ボルキアののま (成山英: 住友声, 計作点: ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
展生を全 着目方位 (悠江源: 近公式主仰风想、計画点: 中央初閉当中心) 図 着目方位<br (悠江源: 評気想、評価点: 中央初閉当中心) 回った 方田 小坊 「「「「「「」」」」」」」」」」」」」 回った 方田 小坊 「「「」」」」」」」」」」」」 「「」」」」」」」」」」」 「「」」」」」」」」」」」」」」」」」」」」 「「」」」」」」」」」」」」」」 「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」				
超2-2-2 な日方在 (次田源: 近天空主神文書, 評価点: 中央制御室中心) 図97 な日方位 (次田源: 建文書, 評価点: 中央制御室中心) 図97 な日方位 (次田源: 建文書, 評価点: 中央制御室中心) ・評価条件の物理 (川南の) ・評価条件の物理 (加南の) ・評価条件の物理 (加南の) ・評価条件の物理 (加索の) ・評価条件の制理 (加索の) ・評価条件の物理 (加索の) ・評価条件の) ・ ・ ・ ・ ・				
超之会意着目为空 (波出展:支空度「技気局:詳価人:中央制御室中心) 図 %7 着目方空 (波出展: 換気局: 評価人:中央制御室中心) 回生文 貴田方空 (波出展: 読気局: 中央制御室(広会主中大制御室) 「耐傷帯の地理 回生文 貴田方空 (広出版: 排気陽, 評価点: 中央制御室(広会主)) ・耐傷帯の地理				
風空をジ 着月方位 (放山線: 点気左主非英英語, 詳価点: 中央利御室中心) 図9-7 着月方位 (放山線: 非安英語, 評価点: 中央利御室中心) 国本会 第日方位 (放山線: 法安定 書加方位) (放山線: 法安定 書加方位) 国本会 常日方位 (内田橋: 法安信, 評価点: 中央制御室健安会論实血) ・零価条準の相当 (日本報の7) (内田橋: 法安信, 評価点: 中央制御室健安会論实血) ・零価条準の相当 (日本利和学校長家会会 日本利和学校長家会会)				
IQ2点2 #目方作 (次用版: <u>0.55亿</u> 建建筑品、運動点: ①火動調査①心) IN3-7 #目方作 (次用版: 即気品、運動点: ①火動調査①心) IN3-7 #目方作 (次用版: 非気励(運動点: ①火動調査①心) IIII: IIII: IIIII: IIIII: IIIII: IIIII: IIIII: IIIII: IIIII: IIIIII: IIIIII: IIIIII: IIIIII: IIIIII: IIIIII: IIIIII: IIIII: IIII: IIIII: IIII: IIIII: IIII: III				
B2.5.2. 発目方位: 以8-7 発目方位: (放出源: 直気払:主席文商, 評価点:中央前御弦中心) 」 B2.5.2. 発目方位: (放出源: 持文句, 評価点: 中央前御弦中心) (放出席: 述文句, 評価点: 中央前御玄中心) 」 (放出席: 述文句, 評価点: 中央前御玄永公公公) 」 (放出席: 述文句, 評価点: 中央前御玄永公公公) 」 (放出席: 述文句, 評価点: 中央前御玄永公公公) 」 (政治市: 正文句) 」 (政治市: 正述文句, 評価点: している 3				
属2529 着日方位 (放山源: 6.5分記:非規策備,詳価点:中央制御室中心) 属 6-7 着日方位 (放山源: 排気筒,詳価点:中央制御室中心) 属 6-7 着日方位 医2-8 左目方位 (及出版: 排気筒, 浮価点: 中央動御室強気系統気1) 「評価条件の相違 [折値 6-7] 最現2 考定では, 販込 法定での評価点としている ・評価条件の相違 [折値 6-7]				
返送法法 花日方位 (放出源:60分上主導気筒,評価点:中央制御空中心) 図ペー 花日方位 (放出源:修文筒,評価点:中央制御空中心) <				J
Ling (放出源: <u>1.55</u> 度生基体気筒,詳価点:中央制御確中心) (放出源: <u>1.55</u> 度生基体気筒,詳価点:中央制御確中心) (放出源: <u>1.55</u> 度生基体気筒,詳価点:中央制御確中心) (放出源: <u>1.55</u> 度生基体気筒,詳価点:中央制御確決しつ) (放出源: <u>1.55</u> 度生基体気筒,詳価点:中央制御確決しつ) (放出源: <u>1.55</u> 度生基体気筒,詳価点:中央制御を換気系設 <u>」</u> (放出源: <u>1.55</u> 度生基体気筒,詳価点:中央制御を換気系設 <u>」</u> (放出源: <u>1.55</u> 度生基体気管,詳価点:中央制御を換気系設 <u>」</u> (放出源: <u>1.55</u> 度生基体気管,詳価点:中央制御を換気系設 <u>」</u>	図 2 2 0 美日士佐		図 0 7 美日士位	
	<u>凶之つう</u> 有日刀位 (放出源・6 号位主排气筒 評価占・中央制御室中心)		因 0-7 有日 万位 (放出源・排気筒 評価占・中央制御室中心)	
図8-8 若日方位 (数出源: 非気筒, 評価点: 中央制御楽独気系給気口) ・評価条件の相違 【和時 6/7】 (数出源: 非気筒, 評価点: 中央制御楽独気系給気口) ・評価条件の相違 【和時 6/7】 日本部価点としている レロショーの				
図8-8 音日方位 (放出源: 排気筒, 評価点: 中央制錬室機気系給気口) ・評価条件の相違 【拍崎 6/7】 高根2号炉では、取込 被ばくの評価点として 中央制錬室機気系給気 口を評価点としている				
図8-8 登目方位 ・評価条件の相違 (放出源:排気筒,評価点:中失調測室換気系給気口) ・評価条件の相違 (放出源:排気筒,評価点:中失調測室換気系給気口) 品根2号炉では、取込 被ぼくの評価点として 中央制御室換気系給気口 の評価点としている				1
図8-8 若日方位 ・評価条件の相違 (放出源:排気筒,評価点:中央副御宝換気系給気口) ・評価条件の相違 【和崎6/7】 品根2号炉では、取込 板ばくの評価点として 中央副御宝換気系給気 口を評価点としている 日を評価点としている				
図8-8 着目方位 ・評価条件の相違 (放出源:排気筒,評価点:中央制御室換気系給気口) 「相哈 6/7] 島根 2 号炉では、取込 過後づくの評価点として 中央制御室換気系給気口 「中沢制御室換気系給気口」 の評価点としている 中沢制御室換気系給気				
図8-8 着目方位 ・評価条件の相違 (放出源:排気筒,評価点:中央制御室換気系給気口) 「評価条件の相違 (放出源:排気筒,評価点:中央制御室換気系給気口) 島根2号炉では、取込 被ばくの評価点として 中央制御室換気系給気 ロを評価点としている 田を評価点としている				
図8-8 着目方位 ・評価条件の相違 (放出源:桃気筒,評価点:中央制御室換気系給気口) ・評価条件の相違 (放出源:桃気筒,評価点:中央制御室換気系給気口) 島根2号炉では、取込 波送くの評価点として 中央制御室換気系給気 ロを評価点としている 日を評価点としている				
図8-8 着目方位 ・評価条件の相違 図8-8 着目方位 【柏崎 6/7】 (放出源:排気筒,評価点:中央制御室換気系給気口) 島根2号炉では、取込 被ばくの評価点として 中央制御室換気系給気 ロを評価点としている 日を評価点としている				
図8-8 着目方位 ・評価条件の相違 (放出源:排気筒,評価点:中央制御室換気系給気口) 「相崎 6/7] 島根2号炉では,取込 あばくの評価点として 中央制御室換気系給気 日を評価点としている				
図8-8 着目方位 ・評価条件の相違 (放出源:排気筒,評価点:中央制御室換気系給気口) ・評価条件の相違 (放出源:排気筒,評価点:中央制御室換気系給気口) 島根2号炉では,取込 被ばくの評価点として 中央制御室換気系給気 ロを評価点としていろ				
図8-8 着目方位 ・評価条件の相違 (放出源:排気筒,評価点:中央制御室換気系給気口) 【柏崎 6/7】 島根2号炉では,取込 被ばくの評価点として 中央制御室換気系給気口 「中央制御室換気系給気」				
図8-8 着目方位 ・評価条件の相違 (放出源:排気筒,評価点:中央制御室換気系給気口) 【柏崎 6/7】 島根2号炉では,取込 被ばくの評価点として 中央制御室換気系給気」 中央制御室換気系給気」				
図8-8 着目方位 ・評価条件の相違 (放出源:排気筒,評価点:中央制御室換気系給気口) 【柏崎 6/7】 場根2号炉では,取込 被ばくの評価点として 中央制御室換気系給気 日を評価点としている				
図 8-8 着目方位【柏崎 6/7】(放出源:排気筒,評価点:中央制御室換気系給気口)島根 2 号炉では,取込 被ばくの評価点として 中央制御室換気系給気 口を評価点としている				・評価条件の相違
(放出源:排気筒,評価点:中央制御室換気系給気口) 島根2号炉では,取込 被ばくの評価点として 中央制御室換気系給気 口を評価点としている			図 8-8 着目方位	【柏崎 6/7】
被はくの評価点として 中央制御室換気系給気 口を評価点としている			<u>(放出源:排気筒,評価点:中央制御室換気系給気口)</u>	島根2号炉では,取込 地域くの新知り
中央制御室換気系結気 口を評価点としている				一 彼はくの評価点として 由山判御完備与 変換与
				十大町仰主換风ボ柿気 日を評価占としていろ

	図 2-8-10 着日方(· ·	
(放出	出源:7号炉主排気筒,評価点:		
	図 2-8-11 着目方(位	図 8-9 着目方位
(放出源	:6号炉主排気筒,評価点:ユ	ントロール建屋入口)	(放出源:排気筒,評価点:2号炉原子炉
			入口)

 ・申請号炉数の相違
図 2-8-12 着目方位 【柏崎 6/7】
(放出源:7号炉主排気筒,評価点:コントロール建屋入口) 島根2号炉は,単号炉
申請のため該当図面な

柏崎刈江	羽原子力発電	⑥所 6 ∕ 7 号	炉 (2017.1	12.20版)	東海第二発電所(2018.9.18版)						島根原子力発電所 2号炉				備考			
表 2-8-1 各評価点における着目方位並びに相対濃度及び相対線						第 8-1 表 各評価点における相対濃度及び相対線量の評価結						表 8-1 各評価点における着目方位並びに相対濃度及び相対線量				・評価条件及び拡散評価		
	1	<u>量</u>			<u></u> <u></u>	Ę							放出源及び	評価点	着目方位	相対濃度	相対線量	結果の相違
放出源及び	評価点	着目方位	相対濃度	相対線量		評価注	対象	評価点 (放出源からの	着目方位	相対濃度 (χ/Q)	相対線量 (D/Q)		放出源高さ**	H L BRANK		[s/m³]	[Gy/Bq]	【柏崎 6/7,東海第二】
放出源高さ**			$[s/m^3]$	[Gy/Bq]				距離)		(s/m³)	(Gy∕Bq)			中央制御室	NNE, NE, ENE,	4.9×10 ⁻⁴	5. 1×10 ⁻¹⁸	
6 号炉格納容器	中央制御室	SE, SSE, S, SSW,	5. 1×10 ⁻⁴	3.8×10^{-18}		格納容器	室内	中央制御室中心	SW, WSW, W, WNW, NW, NNW,	約 3.7×10 ⁻⁴	約8.8×10 ⁻¹⁹			中心	E, ESE, SE			
圧力逃がし装置	申心	SW, WSW				圧力逃が	作業時	(55m)	N, NNE, NE (9 方位)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>"., </i>		格納容器フィルタ	中央制御室換気系	NNE, NE, ENE,	5.9×10^{-4}	5. 3×10 ⁻¹⁸	
配管	コントロール	SSE, S. SSW, SW, WSW	4. 7×10^{-4}	3.7×10^{-18}		し装置出			SSW SW WSW				ベント排気管(地	給気口	E, ESE, SE, SSE			
(地上 40.4m)	建屋入口	, _, _, ,,,				口配管	入退域時	建屋出入口 (45m)	W, WNW, NW, NNW, N, NNE	約 3.7×10 ⁻⁴	約 9.4×10 ⁻¹⁹		上 50m)	2号炉原子炉補機	SW, WSW, W, WNW,			
7 号炉格納容	中央制御室	WNW, NW, NNW, N,	0 EX 10 ⁻⁴	0 E V 10-1					(9 方位)					冷却系熱交換器室	NW, NNW, N, NNE, NE	7.5 $\times 10^{-4}$	6. 1×10 ⁻¹⁸	
器圧力逃がし装	中心	NNE, NE, ENE, E	8. 5 × 10	8. 5 × 10			室内	中中制御堂中之	S, SSW, SW,					入口				
置配管	コントロール	WSW, W, WNW, NW,	0.7×10-4	7 4×10-18		建屋放出	作業時	中央制御室中心 (10m)	wSw, w, wNw, NW, NNW, N (0 支付)	約 8.3×10 ⁻⁴	約 2.9×10 ⁻¹⁸			中央制御室	NNE, NE, ENE, E,	1.1×10^{-3}	5. 2×10 ⁻¹⁸	
(地上 39.7m)	建屋入口	NNW, N, NNE, NE, ENE	9.7×10	7.4×10		(原子炉			(5))12)					中心	ESE, SE			
	中央制御室	SE, SSE, S, SSW,	0.51110-4	0.01/10-18		建屋側壁)	入退城時	建屋出入口	S, SSW, SW, WSW, W, WNW,	約 8.2×10 ⁻⁴	約 2.9×10 ⁻¹⁸		百乙后建物	中央制御室換気系	NNE, NE, ENE, E,	1.2×10^{-3}	5 5 × 10 ⁻¹⁸	
6 号炉原子炉	中心	SW, WSW	9.5×10 ·	3.8×10				(15m)	NW, NNW, N (9 方位)				(地上Om)	給気口	ESE, SE, SSE	1.2 ~ 10	5.5×10	
建産中心 (## h 0m)	コントロール	CCE C CCW CW WCW	0.1×10 ⁻⁴	2.7×10 ⁻¹⁸		-16 - 346 PP1 - 18	室内	中央制御室中心	W	約20×10-6	約 8 8 × 10-2 0		() <u>U</u> ()m)	2号炉原子炉補機				
(地上 0m)	建屋入口	55E, 5, 55W, 5W, W5W	9.1×10	3. 7 × 10		非常用力	作業時	(100m)	(1 方位)	示り 5. 0 本 10 ~	₩J 8.8×10			冷却系熱交換器室	SSW, SW, WSW, W,	1.6×10^{-3}	6. 0×10 ⁻¹⁸	
7 日后回了后	中央制御室	WNW, NW, NNW, N,	1.7×10^{-3}	6.2×10^{-18}		ス処埋糸		建屋出入口	W	約2.0×10-6	約0.0×10-20			入口	WNW, NW, NNW, N, NNE			
(芳炉原于炉	中心	NNE, NE, ENE, E, ESE	1. 7 × 10	6.3×10		而口放西	入返或时	(110m)	(1 方位)	#J 3. 0×10 °	#J 9.0×10 - °			中央制御室	NNE, NE, ENE, E, ESE,			
建座中心 (## h 0=)	コントロール	W, WNW, NW, NNW,	2.0×10^{-3}	7.9×10-18			1							中心	SE, SSE, S, SSW	2.8 $\times 10^{-4}$	2. 6×10^{-18}	
	建屋入口	N, NNE, NE, ENE, E	2.0×10	7.2×10										中央制御室換気系	NNE, NE, ENE, E, ESE,			
6 是恒	中央制御室	SE, SSE, S, SSW, SW,	5 1×10 ⁻⁴	3.8×10^{-18}									主排気筒	給気口	SE, SSE, S, SSW	2.9 $\times 10^{-4}$	2. 7×10^{-18}	
	中心	WSW	5.1×10	5.6×10									(地上 110m)	2号炉原子炉補機				
(地上73m)	コントロール	SSE S. SSW. SW. WSW	4.8×10^{-4}	3.7×10 ⁻¹⁸										冷却系熱交換器室	SSE, S, SSW	1.3×10^{-4}	1.1×10^{-18}	
	建屋入口	, _,,, ,,												入口				
	中央制御室	WNW, NW, NNW, N,										>	×1 放出源	〔高さは, 放日	出エネルギーに	よる影響は	未考慮	
7 号炉	中心	NNE, NE, ENE, E, ESE	8. 4×10^{-4}	6. 4×10^{-18}								>	¥2 ⊠ 8-9	のとおり, 言	評価点が放出点	気から見て着	き込みを生じ	
主排気筒	コントロール	W WNW NW NNW											る建物の風	し上側にあるた	こめ, 内規の	【解説 5.7】	(1)のとおり評	
(地上 73m)	建屋入口	N. NNE. NE. ENE. E	9.8 $\times 10^{-4}$	7. 4×10^{-18}									価対象方位	なは評価点と	放出点を結ぶ	1 方位のみ	の計算となる	
▶ 放出源	高さけ 放け	Hエネルギーに	 - 」 - 」 - 」 - 」 - 」 - 」 - 」 - 」 - 」 - 」	老富									が,保守的	に隣接2方位	を加えた3方	位を評価対	象としている。	
					相対濃度及び相対線量の評価に当たっては,年間を通じて1													
					联	間ごと	の気象	条件に対して	[相対濃度]	及び相対線	量を算出							
					ŗ	小さい	い値から	順に並べて	整理した。言	平価結果を第	98-2表							
					12	示す。												

柏崎メ	小羽原子力)発電所 6	/7号炉	(2017.12.2	0版)		東	海第二発電所(2018.9.18版)			Į	 - - - - - - - - - 	老電所 2号
表 2-8-2	相対濃度	及び相対線	量の値(6 号	炉起因,中	央制御室中		第8-2表相対	対濃度及び相対	線量の評価結果	₹ (1/3)	表 8-	-2 相対濃	度及び相対総	泉量の値(□
		<u>i</u>	<u> </u>				(格;	納容器圧力逃が	し装置放出)				相文	讨濃度
		相文	対濃度	相対	線量		相关	濃度	相关	1線量	評価点	放出源	累積出現頻度	値
評価点	放出源	累積出現頻度	値	累積出現頻度	値		累積出現頻度 (%)	評価結果 (s/m ³)	累積出現頻度 (%)	評価結果 (Gy/Bq)			[%]	[s/m³]
		[%]	[s/m³]	[%]	[Gy/Bq]	室内		… 約3.7×10 ⁻⁴		… 約8.8×10 ⁻¹⁹				
						作業	97.001	約 3.7×10 ⁻⁴ 約 3.7×10 ⁻⁴	97.001	約 8.8×10 ⁻¹⁹ 約 8.8×10 ⁻¹⁹		格納容器	97.02	4.9 $\times 10^{-4}$
	6 号炉	97.16	5. 3×10^{-4}	97.07	4. 0×10^{-18}	時						フィルタベ	<u>97.01</u>	4.9×10^{-4}
	格納容器	97.07	5.1×10^{-4}	<u>97.06</u>	3.8×10^{-18}	入退	96.990		96.990	約 9.4×10 ⁻¹⁹		ント排気管	97.00	4.9×10^{-4}
	圧力逃がし	96.97	4.9 $\times 10^{-4}$	96.95	3.8×10^{-18}	域時	97.001	約 3.7×10 ⁻⁴	97.001	約 9.4×10 ⁻¹⁹				
	装置配管 6 号炉													
							第8-2表相対	対濃度及び相対	線量の評価結果	± (2/3)		2 号炉	97.02	1.1×10 ⁻³
		97.16	1.0×10^{-3}	97.16	4. 0×10 ⁻¹⁸			(建屋放出	出)		中央制御室	原子炉建物	<u>97.01</u>	1.1×10^{-3}
中央制御室	原子炉建屋	<u>97.06</u>	9.5×10^{-4}	<u>97. 07</u>	3.8×10^{-18}		相対濃度		ξ相対線量		中心	中心	97.00	1.1×10^{-3}
中心	中心	96.80	9.3×10 ⁻⁴	96.97	3. 7×10^{-18}		累積出現頻度 (%)	評価結果 (s/m ³)	累積出現頻度 (%)	評価結果 (Gy/Bq)				
						室内	 96. 990	… 約 8.3×10 ⁻⁴	 96. 990	… 約 2.9×10 ⁻¹⁸				
						作業	97.001 97.013	約 8.3×10 ⁻⁴ 約 8.3×10 ⁻⁴	97.001 97.013	約 2.9×10 ⁻¹⁸ 約 2.9×10 ⁻¹⁸			97.03	2.8×10^{-4}
		97.16	5. 4×10^{-4}	97.07	4.0×10 ⁻¹⁸	時						排気筒	97.02	2.8×10^{-4}
	6 号炉	97.07	5.1×10^{-4}	97.06	3.8×10^{-18}	入退	96.990	約 8.2×10 ⁻⁴ 約 8.2×10 ⁻⁴	96.990	約 2.9×10 ⁻¹⁸ 約 2.9×10 ⁻¹⁸			97.00	2.8×10^{-4}
	主排気筒	96.97	4.9×10^{-4}	96.95	3.8×10 ⁻¹⁸	域時	97.013	約 8.2×10 ⁻⁴	97.013	約 2.9×10 ⁻¹⁸ 				
									伯見の萩年分月				I	I
							<u> </u>	<u>い候皮及び相対</u> 「常用ガス処理系	家 <u>車の評価結果</u> 系出口放出)	<u>ξ (δ/δ)</u>				
							相対	濃度	相対	線量				
							累積出現頻度 (%)	評価結果 (s/m ³)	累積出現頻度 (%)	評価結果 (Gy/Bq)				

		相対	濃度	相対	線量	
		累積出現頻度	評価結果	累積出現頻度	評価結果	
		(%)	(s∕m³)	(%)	(Gy∕Bq)	
	索					
	丙	96.994	約 3.0×10 ⁻⁶	96.994	約 8.8×10 ⁻²⁰	
	作	97.006	約 3.0×10 ⁻⁶	97.006	約 8.8×10 ⁻²⁰	
	業	97.018	約 3.1×10 ⁻⁶	97.018	約 8.8×10 ⁻²⁰	
	н 4 .					
	쥬	96.994	約 3.0×10 ⁻⁶	96.994	約 9.0×10 ⁻²⁰	
	一起	97.006	約 3.0×10 ⁻⁶	97.006	約 9.0×10 ⁻²⁰	
時	時	97.018	約 3.1×10 ⁻⁶	97.018	約 9.0×10 ⁻²⁰	

中央制御室中心) ・評価結果及び資料構成の相違 第4曲地吸艇度 催 (1) (5) (5)/Pal 97.02 5.1×10 ¹⁹ 97.01 5.1×10 ¹⁹ 97.02 5.1×10 ¹⁹ 97.00 4.6×10 ¹⁹ 97.01 5.1×10 ¹⁹ 97.02 5.1×10 ¹⁹ 97.02 5.1×10 ¹⁹ 97.03 5.1×10 ¹⁹ 97.04 4.8×10 ¹⁹ 97.05 2.5×10 ¹⁹ 97.06 2.5×10 ¹⁹ 97.02 2.5×10 ¹⁹ 97.00 2.5×10 ¹⁹ 97.02 2.5×10 ¹⁹ 97.02 2.5×10 ¹⁹ 97.00 2.5×10 ¹⁹ 97.00 2.5×10 ¹⁹	₽)	炉		備考
相対療服 の相違 第項出現頻度 値 [S] [Gy/Ba] 第7.02 5.1×10 ²⁹ 97.02 5.1×10 ²⁹ 97.00 4.6×10 ²⁹ 97.00 4.6×10 ²⁹ 97.00 4.6×10 ²⁹ 97.01 5.1×10 ²⁹ 97.02 5.1×10 ²⁹ 97.02 5.1×10 ²⁹ 97.03 2.5×10 ²⁹ 97.04 2.5×10 ²⁹ 97.05 2.5×10 ²⁹ 97.00 2.5×10 ²⁹ 97.01 5.1×10 ²⁹	Þ	央制御室中,	<u> </u>	・評価結果及び資料構成
※積出現範定 低 (5) [69/Pa] (5) (109/Pa] 97.02 5.1×10 ¹⁹ 97.01 5.1×10 ¹⁹ 97.00 4.6×10 ¹⁹ 97.02 5.1×10 ¹⁹ 97.03 2.5×10 ¹⁹ 97.00 2.5×10 ¹⁹ 97.01 5.1×10 ¹⁹		相対絼	量	の相違
(5) (6y/kd) 97.02 5.1×10 ¹⁹ 97.02 5.1×10 ¹⁹ 97.00 4.6×10 ¹⁹ 97.01 5.1×10 ¹⁹ 97.02 5.1×10 ¹⁹ 97.02 5.1×10 ¹⁹ 97.01 5.1×10 ¹⁹ 97.02 5.1×10 ¹⁹ 97.03 2.5×10 ¹⁹ 97.00 2.5×10 ¹⁹ 97.00 2.5×10 ¹⁹ 97.00 2.5×10 ¹⁹ 97.00 2.5×10 ¹⁹		累積出現頻度	値	【柏崎 6/7,東海第二】
… … 97.02 5.1×10" 97.01 5.1×10" 97.00 4.6×10" 97.00 4.6×10" 07.00 4.6×10" 97.01 5.1×10" 97.02 5.1×10" 97.01 5.1×10" 97.02 5.1×10" 97.00 4.8×10" 97.00 4.8×10" 97.00 4.8×10" 97.01 5.1×10" 97.02 2.5×10" 97.03 2.5×10" 97.00 2.5×10" 97.00 2.5×10" 97.02 2.5×10" 97.03 2.5×10" 97.04 2.5×10" 97.05 2.5×10" 97.06 2.5×10" 97.07 9.5×10"		[%]	[Gy/Bq]	東海第二の「室内作業
97.02 5.1×10 ¹⁸ 97.01 5.1×10 ¹⁸ 97.00 4.6×10 ¹⁸ 0 0 0 97.02 5.1×10 ¹⁸ 97.01 5.1×10 ¹⁸ 97.02 5.1×10 ¹⁸ 97.01 5.1×10 ¹⁸ 97.02 5.1×10 ¹⁸ 97.03 2.5×10 ¹⁸ 97.04 2.5×10 ¹⁸ 97.05 2.5×10 ¹⁸ 97.00 2.5×10 ¹⁸ 97.02 2.5×10 ¹⁸ 97.03 2.5×10 ¹⁸ 97.04 2.5×10 ¹⁸				時」は島根2号炉の評
97.01 5.1×10 ¹⁰ 97.00 4.6×10 ¹⁰ 97.02 5.1×10 ¹⁰ 97.01 5.1×10 ¹⁰ 97.00 4.8×10 ¹⁰ 97.00 4.8×10 ¹⁰ 97.00 4.8×10 ¹⁰ 97.02 2.5×10 ¹⁰ 97.00 2.5×10 ¹⁰ 97.02 2.5×10 ¹⁰ 97.03 2.5×10 ¹⁰ 97.04 1.0 ¹⁰		97.02	5.1×10 ⁻¹⁸	価点「中央制御室中心」
97.00 4.6×10 ¹⁸ 97.02 5.1×10 ¹⁸ 97.00 5.1×10 ¹⁸ 97.00 4.8×10 ¹⁸ 97.00 4.8×10 ¹⁸ 97.03 2.5×10 ¹⁸ 97.00 2.5×10 ¹⁸ 97.00 2.5×10 ¹⁸ 97.00 2.5×10 ¹⁸ 97.00 2.5×10 ¹⁸		<u>97.01</u>	5.1×10 ⁻¹⁸	及び「中央制御室換気
… … … … … … 97.02 5.1×10 ¹⁸ 97.01 5.1×10 ¹⁸ 97.00 4.8×10 ¹⁸ … … … … … … … … … … … … … … … … 97.02 2.5×10 ¹⁸ 97.02 2.5×10 ¹⁸ 97.00 2.5×10 ¹⁸ 97.00 2.5×10 ¹⁸ … …		97.00	4.6×10 ⁻¹⁸	系給気口」に相当
… … 97.02 5.1×10 ¹¹⁶ 97.01 5.1×10 ¹¹⁶ 97.00 4.8×10 ¹¹⁶ 97.00 4.8×10 ¹¹⁶ 97.01 5.1×10 ¹¹⁶ 97.02 2.5×10 ¹¹⁶ 97.03 2.5×10 ¹¹⁶ 97.00 2.5×10 ¹¹⁶ 97.00 2.5×10 ¹¹⁶ 97.00 2.5×10 ¹¹⁶ 97.00 2.5×10 ¹¹⁶ 97.02 2.5×10 ¹¹⁶ 97.03 1.5×10 ¹¹⁶ 97.04 2.5×10 ¹¹⁶ 97.05 1.5×10 ¹¹⁶ 97.06 2.5×10 ¹¹⁶ 97.07 1.5×10 ¹¹⁶ 97.08 1.5×10 ¹¹⁶ 97.09 1.5×10 ¹¹⁶				また,東海第二の「入
97.02 5.1×10 ⁻¹⁶ 97.01 5.1×10 ⁻¹⁶ 97.00 4.8×10 ⁻¹⁶ 97.01 0.1×10 ⁻¹⁶ 97.02 2.5×10 ⁻¹⁶ 97.02 2.5×10 ⁻¹⁶ 97.00 2.5×10 ⁻¹⁶ 97.01 0.1×10 ⁻¹⁶				退域時」は島根2号炉
97.01 5.1×10 ¹⁸ 97.00 4.8×10 ¹⁸ 07.03 2.5×10 ¹⁸ 97.02 2.5×10 ¹⁸ 97.00 2.5×10 ¹⁸ 07.00 2.5×10 ¹⁸		97.02	5.1×10 ⁻¹⁸	の評価点「2号炉原子
97.00 4.8×10 ⁻¹⁸ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		<u>97. 01</u>	<u>5.1×10⁻¹⁸</u>	炉補機冷却系熱交換器
\cdots \cdots 97.03 2.5×10^{-18} 97.02 2.5×10^{-18} 97.00 2.5×10^{-18} \cdots \cdots		97.00	4.8×10 ⁻¹⁸	室入口」に相当
\dots \dots 97.03 2.5×10^{-18} 97.00 2.5×10^{-18} 97.00 2.5×10^{-18} \dots \dots				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
97.02 2.5×10 ⁻¹⁸ 97.00 2.5×10 ⁻¹⁸		97.03	2.5×10^{-18}	
		<u>97. 02</u>	2.5×10^{-18}	
		97.00	2.5×10^{-18}	

柏崎メ	小羽原子力	発電所 6.	/7号炉	(2017.12.20	0版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 2-8-3	相対濃度	及び相対線量	量の値(7 号	炉起因,中9	<u> 快制御室中</u>			・申請号炉数の相違
		<u>, 1</u>	5)					【柏崎 6/7】
		相交	濃度	相対網	線量			島根2号炉は,単号炉申
評価点	放出源	累積出現頻度	値	累積出現頻度	値			請のため該当する表無
		[%]	$[s/m^3]$	[%]	[Gy/Bq]			L
	7号炉	98.84	9. 6×10^{-4}	97.32	6.5×10 ⁻¹⁸			
	格納容器	<u>97. 32</u>	8.5×10^{-4}	<u>97.12</u>	6.4×10^{-18}			
	圧力逃がし	96.94	8.0×10 ⁻⁴	96.75	6. 2×10 ⁻¹⁸			
	装直配官							
	7 号炉	97.22	1.7×10^{-3}	97.22	6.8×10 ⁻¹⁸			
中央制御室	原子炉建屋	<u>97. 02</u>	1.7×10^{-3}	<u>97. 02</u>	<u>6.3×10⁻¹⁸</u>			
中心	中心	96.64	1.7×10^{-3}	96.64	6. 2×10 ⁻¹⁸			
	7 号炉 主排気筒	98.81	9.5 $\times 10^{-4}$	97.22	6.5×10 ⁻¹⁸			
		97.22	8.4×10^{-4}	<u>97.02</u>	6.4×10^{-18}			
		96.84	7.9 $\times 10^{-4}$	96.64	6. 2×10 ⁻¹⁸			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)					島根原子力発電所 2号炉						備考
	第8-2表 相対濃度及び相対線量の評価結果(1/3)				表 8-3 相対濃度及び相対線量の値(中央制御室換気系給気口)					・評価条件の相違		
	(格納容器圧力逃がし装置放出)					相文	讨濃度	相対	泉量	【柏崎 6/7,東海第二】		
		相対	濃度	相文	線量	評価点	放出源	累積出現頻度	値	累積出現頻度	値	島根2号炉では,取込
	累積	(%)	評価結果 (s/m ³)	累積出現頻度 (%)	評価結果 (Gy/Bq)			[%]	$[s/m^3]$	[%]	[Gy/Bq]	被ばくの評価点として
	室 内 9	 96. 990	… 約 3.7×10 ⁻⁴	 96. 990	… 約 8.8×10 ⁻¹⁹							中央制御室換気系給気
	作 9 業 9	97.001 97.013	約 3.7×10 ⁻⁴ 約 3.7×10 ⁻⁴	97.001 97.013	約 8.8×10 ⁻¹⁹ 約 8.8×10 ⁻¹⁹		格納容器	97.02	5.8 $\times 10^{-4}$	97.02	5.3×10 ⁻¹⁸	口を評価点としている
	時						フィルタベ	<u>97.01</u>	5.8×10^{-4}	<u>97.01</u>	5.3×10^{-18}	・評価結果及び資料構成
	入 9	96.990 97.001	約 3.7×10 ⁻⁴ 約 3.7×10 ⁻⁴	96.990 97.001	約 9.4×10 ⁻¹⁹ 約 9.4×10 ⁻¹⁹		ント排気管	97.00	5.8 $\times 10^{-4}$	97.00	5.3×10 ⁻¹⁸	の相違
	時 9	97.013	約 3.8×10 ⁻⁴ 	97.013	約 9.4×10 ⁻¹⁹							【柏崎 6/7,東海第二】
	tata -											東海第二の「室内作業
	<u>第 8-</u>	-2 表 相対	「濃度及び相対)	線重の評価結果	(2/3)	中央制御室換	2 号炉	97. 02	1.2×10^{-3}	97.02	5.5×10 ⁻¹⁸	時」は島根2号炉の評価
			(建屋放出	<u>법)</u>		気系給気口	原子炉建物	<u>97. 01</u>	1.2×10^{-3}	<u>97.01</u>	5.5×10^{-18}	点「中央制御室中心」及
	思藉	相対	濃度 評価結里	相対 思 諸 出 理	打線量 評価結果		中心	97.00	1.2×10^{-3}	97.00	5.3×10 ⁻¹⁸	い「中央制御至換気糸縮
	* 19	(%)	(s/m ³)	(%)	Gy∕Bq)							気日」に相当
	室 9	96.990	約 8.3×10 ⁻⁴	96. 990	約 2.9×10 ⁻¹⁸ 約 2.9×10 ⁻¹⁸							また、 東伊弗二の「八」
	半 9 時	97.013	約 8.3×10 約 8.3×10 ⁻⁴	97.013	約 2. 9×10 ⁻¹⁸			97.03	2.9 $\times 10^{-4}$	97.03	2.6 $\times 10^{-18}$	2000円」は高位25万 の証価占「9月百子后
	7		···		····		排気筒	<u>97. 02</u>	2.9×10^{-4}	<u>97.02</u>	2.6×10^{-18}	初計圖点「25床」が 補機冷却系執交換器室
	退 9	96. 990 97. 001	約 8.2×10 4 約 8.2×10 ⁻⁴	96.990	約 2. 9×10^{-18} 約 2. 9×10^{-18}			97.00	2.9×10^{-4}	97.00	2.6×10 ⁻¹⁸	備機市 ⇒ 示 烈 文 供 部 主 入口 に 相 当
	時 9		約 8.2×10 4 	97.013	#J 2. 9×10 10							
	第 8-	-2表 相対	†濃度及び相対;	線量の評価結果	: (3/3)							
		(非	常用ガス処理系	系出口放出)								
		相対測	農度	相対	線量							
	累積	出現頻度 (%)	評価結果 (s/m ³)	累積出現頻度 (%)	評価結果 (Gy/Bq)							
	室 内 9		… 約 3.0×10 ⁻⁶	 96. 994	… 約 8.8×10 ⁻²⁰							
	作 9 業 9	7.006 7.018	約 3.0×10 ⁻⁶ 約 3.1×10 ⁻⁶	97.006 97.018	約 8.8×10 ⁻²⁰ 約 8.8×10 ⁻²⁰							
	p4											
	入 90 退 97	06. 994 07. 006	約 3.0×10 ⁻⁶ 約 3.0×10 ⁻⁶	96. 994 97. 006	約 9.0×10 ⁻²⁰ 約 9.0×10 ⁻²⁰							
	時 9	7.018 	約 3.1×10 ⁻⁶	97.018	約 9.0×10 ⁻²⁰							
				I	1							

柏崎刈	羽原子力	発電所 6/	/7号炉	(2017.12.2	0版)		東	海第二発電所(2018.9.18版)			Į	島根原子力多	発電所 2
表 2-8-4	相対濃度)	及び相対線量	との値 (6号	- 炉起因,コン	ントロール	第8-2表 相対濃度及び相対線量の評価結果 (1/3)				表 8-4 相対濃度及び相対線量の値(2号)				
		建屋	入口)				(格;	納容器圧力逃が	し装置放出)				換器	室入口)
		相対濃度		相対線量			相关	†濃度	相対	線量			相关	濃度
評価点	放出源	累積出現頻度	出現頻度 値	累積出現頻度	値		累積出現頻度 (%)	評価結果 (s/m ³)	累積出現頻度 (%)	評価結果 (Gy/Bq)	評価点	放出源	累積出現頻度	値
		[%]	$[s/m^3]$	[%]	[Gy/Bq]	室内	 96. 990	… 約 3.7×10 ⁻⁴	 96. 990	… 約 8.8×10 ⁻¹⁹			[%]	$[s/m^3]$
	6号炉 格納容器 圧力逃がし 装置配管					作業	97.001 97.013	約 3.7×10 ⁻⁴ 約 3.7×10 ⁻⁴	97.001 97.013	約 8.8×10 ⁻¹⁹ 約 8.8×10 ⁻¹⁹				
		97.34	5.0×10 ⁻⁴	97.27	3.9×10 ⁻¹⁸	時						格納容器	97.02	7.4×10^{-4}
		97.23	<u>4.7×10⁻⁴</u>	<u>97. 16</u>	3.7×10^{-18}	入退域時	96.990	約 3.7×10 ⁻⁴ 約 2.7×10 ⁻⁴	96.990	約 9.4×10 ⁻¹⁹		フィルタベ	<u>97.01</u>	7.4×10^{-4}
		96.99	4.6×10 ⁻⁴	96.92	3.6×10 ⁻¹⁸		97.013	約 3.8×10 ⁻⁴	97.013	約 9.4×10 ⁻¹⁹		ント排気管	97.00	7.4 $\times 10^{-4}$
							<u>第8-2表相対</u>	対濃度及び相対						
	6 号炉	97.23	9.1×10 ⁻⁴	97.23	3.8×10 ⁻¹⁸			(建屋放出	2号炉原子炉	2 号炉	97.02	1.5×10^{-3}		
コントロール	原子炉建屋	<u>97. 08</u>	<u>9.1×10⁻⁴</u>	<u>97. 16</u>	3.7×10^{-18}		相关	力濃度	相交	線量	補機冷却系熱	原子炉建物	<u>97.01</u>	1.5×10^{-3}
建屋入口	中心	96.84	8.3×10 ⁻⁴	96. 92	3.5×10 ⁻¹⁸		累積出現頻度 (%)	評価結果 (s/m ³)	累積出現頻度 (%)	評価結果 (Gy/Bq)	交換器室入口	中心	97.00	1.5×10^{-3}
						室内	 96. 990	… 約 8.3×10 ⁻⁴	 96. 990	… 約 2.9×10 ⁻¹⁸				
	6 号炉 主排気筒					作業	97.001 97.013	約 8.3×10 ⁻⁴ 約 8.3×10 ⁻⁴	97.001 97.013	約 2.9×10 ⁻¹⁸ 約 2.9×10 ⁻¹⁸				
		97.34	5.1×10 ⁻⁴	97.16	3.8×10 ⁻¹⁸	時							97.03	1.3×10^{-4}
		<u>97. 23</u>	<u>4.8×10⁻⁴</u>	<u>97. 15</u>	<u>3.7×10⁻¹⁸</u>	入退	96. 990 97. 001	約 8.2×10 ⁻⁴ 約 8.2×10 ⁻⁴	96. 990 97. 001	約 2.9×10 ⁻¹⁸ 約 2.9×10 ⁻¹⁸		排気筒	<u>97. 02</u>	1.3×10^{-4}
		96.99	4.7×10 ⁻⁴	96.91	3.6×10 ⁻¹⁸		97.013	約 8.2×10 ⁻⁴	97.013	約 2.9×10 ⁻¹⁸			97.00	1.3×10^{-4}
	1	I	1	1	I. J		<u>第8-2表</u> 相対	対濃度及び相対	線量の評価結果	: (3/3)		1	l	1
1						1	(-1)	日ビッちょう	<i>で 山 い +</i> ム <i>山</i> ()		1			

(非常用ガス処理系出口放出)

	相対	濃度	相対	線量	
	累積出現頻度	評価結果	累積出現頻度	評価結果	
	(%)	(s∕m³)	(%)	(Gy∕Bq)	
索					
王内作業时	96.994	約 3.0×10 ⁻⁶	96.994	約 8.8×10 ⁻²⁰	
	97.006	約 3.0×10 ⁻⁶	97.006	約 8.8×10 ⁻²⁰	
	97.018	約 3.1×10 ⁻⁶	97.018	約 8.8×10 ⁻²⁰	
时					
る	96.994	約 3.0×10 ⁻⁶	96.994	約 9.0×10 ⁻²⁰	
退城時	97.006	約 3.0×10 ⁻⁶	97.006	約 9.0×10 ⁻²⁰	
	97.018	約 3.1×10 ⁻⁶	97.018	約 9.0×10 ⁻²⁰	

2 天	予炉		備考
炉	原子炉補機	令却系熱交	・評価結果及び資料構成
			の相違
	相対	線量	【柏崎 6/7,東海第二】
	累積出現頻度	値	東海第二の「室内作業
	[%]	[Gy/Bq]	時」は島根2号炉の評
			価点「中央制御室中心」
	97.02	6. 1×10^{-18}	及び「中央制御室換気
	<u>97.01</u>	6.1×10^{-18}	系給気口」に相当
	97.00	6. 1×10^{-18}	また、東海第二の「入
			退域時」は島根2号炉
			の評価点「2号炉原子
	97.02	6. 0×10 ⁻¹⁸	炉補機冷却系熱交換器
	<u>97.01</u>	6.0×10^{-18}	室入口」に相当
	97.00	6. 0×10^{-18}	
	97.03	1.1×10^{-18}	
	<u>97. 02</u>	1.1×10^{-18}	
	97.00	1.1×10^{-18}	

相対濃度及	び相対線量	しのは (7日				
		【の恒(7万	「炉起因,コ	ントロール		・申請号炉数の相違
	建屋	入口)				【柏崎 6/7】
相対濃度			相対約	泉量		島根2号炉は、単号炉
放出源	累積出現頻度	値	累積出現頻度	値		申請のため該当する表
	[%]	$[s/m^3]$	[%]	[Gy/Bq]		無し
7 号炉	100.00	1.0×10 ⁻³	100.00	7.6 $\times 10^{-18}$		
格納谷器	<u>98. 41</u>	9.7×10 ⁻⁴	<u>98. 41</u>	7.4×10^{-18}		
圧力述がし	96. 47	8.5 $\times 10^{-4}$	96.47	6.7×10 ⁻¹⁸		
※但即"E						
7 号炉	100.00	2.1×10 ⁻³	100.00	7.3 $\times 10^{-18}$		
原子炉建屋	<u>98. 61</u>	2.0×10^{-3}	<u>98.61</u>	7.2×10^{-18}		
中心	96.82	1.9×10 ⁻³	96.82	6.9×10 ⁻¹⁸		
-						
	100.00	1.0×10^{-3}	100.00	7. 6×10^{-18}		
(方炉	<u>98. 61</u>	9.8×10 ⁻⁴	<u>98.61</u>	7.4×10^{-18}		
土外风间	96.82	8.5 $\times 10^{-4}$	96.82	6.8×10 ⁻¹⁸		
-						
	放出源 7 号炉 7 号炉 原子炉建屋 中心 7 号炉 主排気筒	周期 成出源 泉積出現頻度 「%] 7号炉 月の000 客商配管 100.00 泉電配管 100.00 京子炉電 月炉 100.00 原子炉電 98.61 中心 96.82 100.00 月分戸 100.00 月台 100.00 96.82 100.00 98.61 96.82 100.00 98.61 100.00 98.61 96.82 100.00 98.61 96.82 100.00 96.82 100.01 100.02 100.03 100.03 100.04 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.0	相対決し 累積出現頻度 値 [%] [s/n ³] 7 号炉 100.00 1.0×10 ³ 格納容器 98.41 9.7×10 ⁴ 度力速がし 96.47 8.5×10 ⁴ 実置配管 100.00 2.1×10 ³ 原子炉 98.61 2.0×10 ³ 原子炉 98.61 2.0×10 ³ 育坊 100.00 1.0×10 ³ 自100.00 1.0×10 ³ 1 算子炉 98.61 9.8×10 ⁴ 100.00 1.0×10 ³ 1 算影 100.00 1.0×10 ³ 100.00 1.0×10 ³ 1 算影 1 1.0×10 ³ 日の: 98.61 9.8×10 ⁴ 96.82 8.5×10 ⁴ 1 100.00 1.0×10 ³ 1 東排 96.82 8.5×10 ⁴ 100.10 1.0×10 ³ 1 100.10 1.0×10 ³ 1 100.10 1.0×10 ³ 1 100.10 1.0×10 ³ 1	川田川東原 「相対表定 相対表定 第積出現頻度 値 果積出現頻度 「「」」 「[3] 7 号炉 「100.00 1.0×10 ⁻⁰ 100.00 1 作約容器 98.41 9.7×10 ⁻¹ 98.41 9.7×10 ⁻¹ 98.41 方添かし 96.47 8.5×10 ⁻¹ 96.47 100.00 1 100.00 1 100.00 1 100.00 1 100.00 1 100.00 1	内市 日本 日本 日本 日本 旅街田祭 「伝」 第借田県飯女 「伝」 「伝」 「G」 G」 G」 G」	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-9 地表面への沈着速度の設定について	16 地表面への沈着速度の設定について	9 地表面への沈着速度の設定について	
2-9 地表面への沈着速度の設定について	16 地表面への沈着速度の設定について 地表面への放射性物質の沈着は、第 16-1 図に示すように 乾性沈着と湿性沈着によって発生する。乾性沈着は地上近く の放射性物質が、地面状態等によって決まる沈着割合(沈着 速度)に応じて地表面に沈着する現象であり、放射性物質の 地表面濃度に沈着速度をかけることで計算される。湿性沈着 は降水によって放射性物質が雨水に取り込まれ、地表面に落 下・沈着する現象であり、大気中の放射性物質の濃度分布と 降水強度及び沈着の割合を示すウォッシュアウト係数によ って計算される。	9 地表面への沈着速度の設定について 9 地表面への沈着速度の設定について	
中央制御室の居住性に係る被ばく評価においては、地表面への	中央制御室の居住性評価において、地表面への沈着速度と	中央制御室の居住性に係る被ばく評価においては, 地表面への	
沈着速度として、乾性沈着及び湿性沈着を考慮した沈着速度(エ	して, <u>乾性沈着速度0.3cm/sの4倍である1.2cm/s^{※1}</u> を用	沈着速度として、乾性沈着及び湿性沈着を考慮した沈着速度(エ	
アロゾル粒子及び無機よう素:1.2cm/s, 有機よう素:4.0×	いている。	アロゾル粒子及び無機よう素:1.2cm/s, 有機よう素:4.0×	
10°cm/s) を用いている。	※1 有機よう素の地表面への沈着速度としては 4.0×10 $-3_{cm/s}$	<u>10°cm/s</u>) を用いている。	
「発電用軽水型原子炉施設周辺の線量目標値に対する評価指		「発電用軽水型原子炉施設周辺の線量目標値に対する評価指	
針」(昭和51年9月28日 原子力委員会決定,一部改訂平成13年3	指針」(昭和51年9月28日原子力委員会決定,一部改訂 平	針」(昭和 51 年 9 月 28 日 原子力委員会決定,一部改訂 平成 13	
月29日)の解説において,葉菜上の放射性よう素の沈着率を考慮	成13年3月29日)の解説において,葉菜上の放射性よう素	年3月29日)の解説において,葉菜上の放射性よう素の沈着率を	
するときに、「降水時における沈着率は、乾燥時の2~3倍大きい	の沈着率を考慮するときに、「降水時における沈着率は、乾	考慮するときに、「降水時における沈着率は、乾燥時の 2~3 倍大	
値となる」と示されている。これを踏まえ、湿性沈着を考慮した	燥時の 2~3 倍大きい値となる」と示されている。これを踏	きい値となる」と示されている。これを踏まえ、湿性沈着を考慮	
沈着速度は、乾性沈着による沈着も含めて乾性沈着速度(添付資	まえ、湿性沈着を考慮した沈着速度は、乾性沈着による沈着	した沈着速度は、乾性沈着による沈着も含めて乾性沈着速度(添	
料2 2-10, 2-11を参照)の4倍と設定した。	も含めて乾性沈着速度の4倍と設定した。	付資料 10, 11 を参照)の4倍と設定した。	
湿性沈着を考慮した沈着速度を,乾性沈着速度の4倍として設定	以下では、湿性沈着を考慮した沈着速度を、乾性沈着速度	湿性沈着を考慮した沈着速度を,乾性沈着速度の4倍として設	
した妥当性の検討結果を以下に示す。 	04 倍として 設定した 妥当 性を <u>検討した。</u>	正した 安当性の 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1. 検討手法	1. 評価手法	1. 検討手法	
湿性沈着を考慮した沈着速度の妥当性は、乾性沈着率と湿性沈	湿性沈着を考慮した沈着速度の適用性は、乾性沈着率と	湿性沈着を考慮した沈着速度の妥当性は、乾性沈着率と湿性沈	
着率を合計した沈着率の累積出現頻度97%値と、乾性沈着率の累積	湿性沈着率を合計した沈着率の累積出現頻度 97%値を求め,	着率を合計した沈着率の累積出現頻度 97%値と,乾性沈着率の累	
出現頻度97%値の比が4倍を超えていないことによって示す。乾性	乾性沈着率の累積出現頻度 97%値との比を求める。その比と	積出現頻度 97%値の比が 4.倍を超えていないことによって示す。	
沈着率及び湿性沈着率は以下のように定義される。	乾性沈着速度(0.3cm/s, 添付資料 15 参照)の積が <u>1.2cm</u>	乾性沈着率及び湿性沈着率は以下のように定義される。	
	/s を超えていないことを確認する。乾性沈着率及び湿性沈		
	着率は以下のように定義される。乾性沈着率及び湿性沈着率		
	は以下のように定義される。		
(1)乾性沈着率	(1) 乾性沈着率	(1)乾性沈着率	
乾性沈着率は「日本原子力学会標準 原子力発電所の確率論的	乾性沈着率は,「日本原子力学会標準 原子力発電所の確率	乾性沈着率は「日本原子力学会標準 原子力発電所の確率論的安	
安全評価に関する実施基準(レベル3PSA編):2008」(社団法人	論的安全評価に関する実施基準(レベル 3 P S A 編): 2008」	全評価に関する実施基準(レベル 3PSA 編):2008」(社団法人 日	
日本原子力学会) (以下「学会標準」という。) 解説4.7を参考に	(社団法人 日本原子力学会)(以下「学会標準」という。)	本原子力学会)(以下「学会標準」という。)解説 4.7 を参考に評	
評価した。「学会標準」解説4.7では使用する相対濃度は地表面高	解説 4.7 を参考に評価した。 <u>学会標準解説 4.7</u> では,使用す	価した。「学会標準」解説 4.7 では使用する相対濃度は地表面高さ	
さ付近としているが、ここでは「原子力発電所中央制御室の居住	る相対濃度は地表面高さ付近としているが、ここでは内規	付近としているが、ここでは「原子力発電所中央制御室の居住性	
性に係る被ばく評価手法について(内規)」(原子力安全・保安	[【解説 5.3】①]に従い, <u>地上高さ</u> の相対濃度を用いた。	に係る被ばく評価手法について(内規)」(原子力安全・保安院 平	
院 平成21年8月12日)[【解説5.3】(1)]に従い評価した,放出源		<u>成 21 年 8 月 12 日</u>)[【解説 5.3】(1)]に従い評価した, <u>放出源高</u>	
高さの相対濃度を用いた。		<u>さ</u> の相対濃度を用いた。	
$(\gamma/0)$ $(\mathbf{x},\mathbf{y},\mathbf{z})_{i} = \mathbf{V}_{i} \cdot \gamma/0(\mathbf{x},\mathbf{y},\mathbf{z})_{i} \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{I}$	$(\chi/Q)_{D}(x,y,z)_{i} = V_{d} \cdot \chi/Q(x,y,z)_{i} \cdot \cdot \cdot \cdot \cdot \square$	$\left(\chi/Q\right)_{\mathrm{D}}(\mathbf{x},\mathbf{y},\mathbf{z})_{\mathrm{i}} = V_{d} \cdot \chi/Q(\mathbf{x},\mathbf{y},\mathbf{z})_{\mathrm{i}} \cdot \cdot \cdot \cdot \cdot \mathbf{D}$	
$(\chi/\epsilon)_{\rm D} (\chi/\epsilon)_{\rm I} = $			
(~ /0) (****) · 時刻: での軟性沈美家[1/m²]	$\left(\chi/Q ight)_{D}$ (x,y,z) _i :時刻 i での乾性沈着率[1/m ²]	$\left(\left.\chi/Q\right)_{D}(x,y,z)_{i}:$ 時刻 i での乾性沈着率[1/m ²]	
$(\chi/Q)_{D}(\chi,y,z)_{i}$, which is the second	χ /Q(x,y,z) _i :時刻 i での相対濃度[s/m ³]	$\chi/Q(x,y,z)_i$:時刻 i での相対濃度 $[s/m^3]$	
χ/Q(x,y,z) _i : 時刻1 Cの相対濃度[s/m ⁻]	V _d :沈着速度[m/s](0.003 NUREG/CR-4551 Vol.2より)	V _d : 沈着速度[m/s](0.003 NUREG / CR	
V _d : 沈着速度[m/s] (0.003 NUREG/CR-4551 Vol.2より)		-4551 Vol. 2より)	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
--	--	--	----
(2)湿性沈着率	(2) 湿性沈着率	(2)湿性沈着率	
降雨時には、評価点上空の放射性核種の地表への沈着は、降雨	降雨時には、評価点上空の放射性核種の地表への沈着は、降	降雨時には、評価点上空の放射性核種の地表への沈着は、降雨	
による影響を受ける。	雨による影響を受ける。湿性沈着率(χ/Q)w(x, y)i は学会標	による影響を受ける。	
湿性沈着率 χ /Q _w (x, y) _i は「学会標準」解説4.11より以下のよう	準解説 4.11 より以下のように表される。	湿性沈着率χ/Q(x, y)は「学会標準」解説 4.11より以下のよう	
に表される。		に表される。	
$\left(\chi/Q\right)_{W}(x,y)_{i} = \Lambda_{i} \cdot \int_{0}^{\infty} \chi/Q(x,y,z)_{i} dz = \chi/Q(x,y,0)_{i} \cdot \Lambda_{i} \sqrt{\frac{\pi}{2} \sum_{zi} \exp[\frac{h^{2}}{2 \sum_{zi}^{2}}]} \cdot \cdot \text{(2)}$	$\left(\chi/Q\right)_{w}(x,y)_{i} = \Lambda \cdot \int_{0}^{\infty} \chi/Q(x,y,z)_{i} dz = \chi/Q(x,y,0)_{i} \Lambda_{i} \sqrt{2\pi} \Sigma_{zi} \exp\left[\frac{h^{2}}{2\Sigma_{zi}}\right] \cdot \cdot \cdot \cdot$ (2)	$\left(\chi/Q\right)_{w}(x,y)_{i} = \Lambda_{i} \cdot \int_{0}^{\infty} \chi/Q(x,y,z)_{i} dz = \chi/Q(x,y,0)_{i} \cdot \Lambda_{i} \sqrt{\frac{\pi}{2}} \Sigma_{zi} \exp[\frac{h^{2}}{2\Sigma_{zi}^{2}}] \cdot \cdot \textcircled{2}$	
$(\chi/Q)_w(x,y)_i$:時刻iでの湿性沈着率[1/m ²] $\chi/Q(x,y,0)_i$:時刻iでの地表面高さでの相対濃度[s/m ³] Λ_i :時刻iでのウォッシュアウト係数[1/s] $(=9.5 \times 10^{-5} \times Pr_i^{0.8}$ 学会標準より) Pr_i :時刻iでの降水強度[mm/h] Σ_{zi} :時刻iでの建屋影響を考慮した放射性雲の鉛直方向の拡散幅[m] h :放出高さ[m]	 (χ/Q)_w(x,y)_i :時刻 i での湿性沈着率[1/m²] χ/Q(x,y,0)₀ :時刻 i での地表面高さでの相対濃度[s/m³] Λ_i :時刻 i でのウォッシュアウト係数[1/s] (=9.5×10⁻⁵×Pr^{0.8}子会標準より) P_{Ti} :時刻 i での降水強度[mm/h] Σ_{zi} :時刻 i での建屋影響を考慮した放射性雲の鉛直方向の拡散幅 [m] h :放出高さ[m] 	$(\chi/Q)_w(x,y)_i: 時刻 i での湿性沈着率[1/m2] \chi/Q(x,y,0)_i: 時刻 i での地表面高さでの相対濃度[s/m3] \Lambda_i : 時刻 i でのウォッシュアウト係数[1/s](= 9.5 \times 10^{-5} \times pr_i^{0.8} 学会標準より)Pr_i : 時刻 i での降水強度[mm/h]\Sigma_{zi} : 時刻 i での建物影響を考慮した放射性雲の鉛直方向の拡散幅[m]h :放出高さ[m]$	
乾性沈着率と湿性沈着率を合計した沈着率の累積出現頻度97% 値と,乾性沈着率の累積出現頻度97%値の比は以下で定義される。 <u>乾性沈着率と湿性沈着率を合計した沈着率の累積出現頻度97%値</u> <u>乾性沈着率の累積出現頻度97%値</u> $\left(\sqrt{d \cdot \chi/Q(x,y,z)_i + \chi/Q(x,y,0)_i \cdot \Lambda_i \sqrt{\frac{\pi}{2} \sum_{zi} \exp[\frac{h^2}{2 \sum_{zi}^2}]}_{y_{27\%}} \dots (3) \right)$	乾性沈着率と湿性沈着率を合計した沈着率の累積出現頻度 97%値と,乾性沈着率の累積出現頻度 97%値の比は以下で定 義される。 乾性沈着率と湿性沈着率を合計した沈着率の累積出現頻度 <u>97%値(①+②)</u> 乾性沈着率の累積出現頻度 97%値(①) $= \frac{\left(V_{d} \cdot \chi/Q(xy,z)_{i} + \chi/Q(x,y,0)_{i}\Lambda_{i}\sqrt{2\pi\Sigma_{zi}}\exp\left[\frac{h^{2}}{2\Sigma_{zi}}\right]\right)_{97\%}}{(V_{d} \cdot \chi/Q(x,y,z)_{i})_{97\%}} \dots ③$	幹性沈着率と湿性沈着率を合計した沈着率の累積出現頻度 97% 値と,乾性沈着率の累積出現頻度 97%値の比は以下で定義される。 乾性沈着率の累積出現頻度 97%値 $= \frac{\left(V_d \cdot \chi/Q(x,y,z)_i + \chi/Q(x,y,0)_i \cdot \Lambda_i \sqrt{\frac{\pi}{2}} \Sigma_{zi} \exp[\frac{h^2}{2\Sigma_{zi}^2}]\right)_{97\%}}{(V_d \cdot \chi/Q(x,y,z)_i)_{97\%}}$ ③	
	 地表面沈着率の累積出現頻度 97%値の求め方 地表面沈着率の累積出現頻度は、気象指針に記載されてい る x / Qの累積出現頻度 97%値の求め方※2に基づいて計算 した。具体的には以下の手順で計算を行った(第 16-2 図参 照)。 (1)各時刻における気象条件から、式①及び式②を用いて x / Q,乾性沈着率,湿性沈着率を1時間毎に算出する。なお、 評価対象方位以外に風が吹いた時刻については、評価対象方 位における x / Qがゼロとなるため、地表面沈着率(乾性沈 着率+湿性沈着率)もゼロとなる。 第16-2 図の例は、評価対象方位をSWとした場合であ 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
	り, x/Qによる乾性沈着率及び降水による湿性沈着率から	
	地表面沈着率を算出する。評価対象方位SW以外の方位に風	
	が吹いた時刻については、地表面沈着率はゼロとなる。	
	(2) 上記(1) で求めた1 時間毎の地表面沈着率を値の大き	
	さ順に並びかえ,小さい方から数えて累積出現頻度が 97%値	
	を超えたところの沈着率を,地表面沈着率の97%値とする(地	
	表面沈着率の累積出現頻度であるため, χ/Qの累積出現頻	
	度と異なる)。	
	※2(気象指針解説抜粋)	
	VI. 想定事故時等の大気拡散の解析方法	
	1. 線量計算に用いる相対濃度	
	(2) 着目地点の相対濃度は、毎時刻の相対濃度を年間につい	
	て小さい方から累積した場合,その累積出現頻度が 97%に当	
	たる相対濃度とする。	
	日本の大力大大大大大	
	時かか) 考 1 3 (14)	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	4/1 1:00 $\begin{array}{c} SW\\ (N E) \end{array}$ 4.3 F $O \times 10^{-9}$ $O \times 10^{-9}$ $O \times 10^{-9}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(NE) 評価対象方位の時刻のみぇ/ の耳でがかが考まざい可 #生気な発表の出現前度を見解に並て読え	
	Q χ S va te λ af $\#$ S m μ λ with λ af $\#$ S m λ af π λ with λ with λ af π λ with λ with λ af π λ with λ	
	セロとなるため,地表面沈着半 はゼロとなる。 地表面沈着走の	
	地交回応有=90%値	
	- 超表面沉着半の並び替えであり、気象条件 によってェノQは必ずしも昇順に並ぶと は限らない。	
	(従来の X / Q計算とば順番か異なる。)	
	第16-2 図 地表面沈着率の累積出現頻度 97%値の求め方	
	(評価対象方位がSWの場合)	

炉	備考

柏崎刈羽	原子力発電所	6/7号炉	(2017.12.2	0版)			東海第二発電	電所(2018.9.	18版)			島根原子	全力発電所 2	号炉		備考
2. 検討結果					3. 評価	i結果					2. 検討結果					
表2-9-1に中	中央制御室滞在	時及び入退域	時の評価点に	ついての	第	<u>16−1</u>	長に中央制御	室の評価点に	ついての評価	「結果を	表 9-1 に中	中央制御室滞在	時及び入退域	時の評価点に~	ついての検	
検討結果を示	す。				示す。	达性沈着	率に放出点と	と同じ高さの	相対濃度を用	いたと	討結果を示す。					
乾性沈着率	に放出源と同じ	じ高さの相対激	農度を用いたと	とき, 乾性	き, 乾性	沈着率	と湿性沈着率	率を合計した	沈着率の累積	乱現頻	乾性沈着率に放出源と同じ高さの相対濃度を用いたとき、乾性					
沈着率と湿性	沈着率を合計	した沈着率の郹	累積出現頻度9	7%値と, 乾	度 97% (直と,真	生に注意率の見	累積出現頻度	97%値の比ば	<u>よ約 1.2</u>	沈着率と湿性沈着率を合計した沈着率の累積出現頻度 97%値と,					
性沈着率の累	積出現頻度97%	値の比は <u>1.0</u> ~	<u>~1.3</u> 程度とな	った。	となった	.					乾性沈着率の累積出現頻度 97%値の比は約1.0~1.4 倍程度となっ					・評価結果の相違
以上より, 酒	显性沈着を考慮	意した沈着速度	そを乾性沈着速	夏度の4倍と	以上	:より,	湿性沈着を考	考慮した沈着	速度を乾性沈	着速度	tem					【柏崎 6/7,東海第二】
設定すること	は保守的である	るといえる。			の4倍と	設定す	ることは保守	F的であるとい	いえる。		以上より,	湿性沈着を考慮	慮した沈着速風	度を乾性沈着遠	速度の 4 倍	
											と設定するこ	とは保守的で	あるといえる。			
	表 2-9-1	沈着率評価	結果				第16-1表	沈着率評価約	<u>吉果</u>			表 9-1	沈着率評価編	<u>;果</u>		・評価結果の相違
th 니 깨 포 기 가		①於桃边芝皮	②乾性沈着率	Like (Leg. L. I. Ville, and a	① 乾性沈着	②乾性沈着率		おいてない		①お仲仲美卒	②乾性沈着率	LL.	【柏崎 6/7,東海第二】
放田原及い	評価点	①乾性ル有半	+湿性沈着率		評価点	放出点	相対濃度 (s/m ³)	率 (1 (m ²)	+湿性沈着率	比 (②/①)	放田原及び	評価点	① 乾性沉 有平	+湿性沈着率	r.	
成田原向 2 ***		(1/m ⁻)	$(1/m^2)$	(2/(1))	中央制			(1/m)	(1/m ⁻)		瓜田原局○ [▲]		(1/m ²)	$(1/m^2)$	(2/1)	
6 号炉格納容器	中央制御室中心	約1.5×10 ⁻⁶	約 2.0×10 ⁻⁶	約 1.3	御室中心	建屋	約 8.3×10 ⁻⁴	約 2.5×10 ⁻⁶	約 2.9×10 ⁻⁶	約 1.1		中央制御室中心	約1.5×10 ⁻⁶	約19×10 ⁻⁶	約13	
圧力逃がし装置					建屋出	原子炉	約 8.2×10 ⁻⁴	約 2.5×10 ⁻⁶	約 2.9×10 ⁻⁶	約 1.2	枚納容哭	1 2000 1 2 1 2	,,,, I. 0, (I 0	J.J 1. 0 / 10	" , j 1. 0	
配管	コントロール	約14×10 ⁻⁶	\$51.9×10 ⁻⁶	約13		建屋					ロルタベン	中央制御室換気	約 1.7×10 ⁻⁶	約 2.1×10 ⁻⁶	約 1.2	
(地上 40.4m)	建屋入口	MJ 1. 1/ 10	"J 1. J × 10	MJ 1. 5							ト玄排気管	系給気口				
7 号炉格納容器											(#th b 50m)	2号炉原子炉補				
圧力逃がし装置	中央制御室中心	約 2.5×10 ⁻	約 3.0×10 ⁻⁶	約 1.2							(JET 2000)	機冷却系熱交換	約 2.2×10 ⁻⁶	約 2.3×10 ⁻⁶	約 1.0	
配管	コントロール											器室入口				
(地上 39.7m)	建屋入口	約 2.9×10 ⁻⁶	約 3.1×10 ⁻⁶	約 1.0								中央制御室中心	約 3.2×10 ⁻⁶	約 3.7×10 ⁻⁶	約 1.2	
6号炉原子炉	中央制御室中心	約 2.8×10°	約 3.4×10-。	約 1.2							2号炉原子炉	中央制御室換気	約 3.6×10 ⁻⁶	約4.3×10 ⁻⁶	約 1.2	
建屋中心	コントロール	約10.7×10 ⁻⁶	約10.0×10 ⁻⁶	×51.0							建物中心	糸給気口				
(地上 Om)	建屋入口	₩J 2. 7 × 10	₩J 3. 2 ^ 10	ポリ 1. 2							(地上 Om)	2 号炉原子炉補				
7 号炉原子炉	中央制御室中心	約 5.1×10 ⁻⁶	約 5.9×10-6	約 1.2								機冷却系熱交換	約 4.5×10 ⁻⁶	約 4.6×10 ⁻⁶	約 1.0	
建屋中心												器室入口				
(地上 Om)	コントロール	約 6.1×10-6	約 6.1×10 ⁻⁶	約 1.0								中央制御室中心	約 8.3×10 ⁻⁷	約 1.1×10 ⁻⁶	約 1.4	
	建屋入口				-							由中制御室搬気				
6 号炉	中央制御室中心	約 1.5×10 ⁻⁶	約 2.0×10 ⁻⁶	約 1.3							2号炉	■ 大雨町主庆八 玄絵気口	約 8.7×10 ⁻⁷	約 1.2×10 ⁻⁶	約 1.4	
主排気筒	コントロール										排気筒	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □				
(地上 73m)	建長し口	約 1.4×10 ⁻⁶	約 1.9×10 ⁻⁶	約 1.3							(地上 110m)	2 亏炉原于炉桶	約2.0×10-7	約4.9×10-7	約10	
	建崖八口											機行 动 未 然 文 換	#J 5. 9×10	形 4.8 × 10	₩J 1. Z	
7 号炉	甲央制御室中心	約 2.5×10 ⁻⁶	約 3. 0×10⁻⁰	約 1.2	4							谷主八日 キャロー	ウルギート	2 影線いチャーキョー	<u></u>	
主排気筒	コントロール	約 3.0×10-6	約 3.1×10 ⁻⁶	約 1.0							₩ 放出源局	さは, 放出工	イルキーにより	る影響は木考慮	Ē,	
(地上 73m)	建屋入口				╢											
₩ 放出源高	さは、放出エン	ネルギーによる	る影響は未考慮	É.												

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-10 エアロゾル粒子の乾性沈着速度について	15 エアロゾルの乾性沈着速度について	10 エアロゾル粒子の乾性沈着速度について	
中央制御室の居住性評価では, 地表面へのエアロゾル粒子の	中央制御室の線量影響評価では,地表面への放射性物質の	中央制御室の居住性評価では,地表面へのエアロゾル粒子の	
沈着速度として乾性沈着及び降水による湿性沈着を考慮した	沈着速度として乾性沈着及び降水による湿性沈着を考慮し	沈着速度として乾性沈着及び降水による湿性沈着を考慮した	
沈着速度(1.2cm/s, 添付資料 2 2-9 参照)を用いており, 沈	た沈着速度(1.2cm/s, 添付 16 参照)を用いており, 沈着	沈着速度(1.2cm/s, 添付資料 9 参照)を用いており, 沈着速	
着速度の評価に当たっては, 乾性沈着速度として 0.3cm/s を用	速度の評価に当たっては, 乾性沈着速度として 0.3cm/s を	度の評価に当たっては,乾性沈着速度として 0.3cm/s を用いて	
いている。乾性沈着速度の設定の考え方を以下に示す。	用いている。以下に,乾性沈着速度の設定の考え方を示す。	いる。乾性沈着速度の設定の考え方を以下に示す。	
エアロゾル粒子の乾性沈着速度は,NUREG/CR-4551*1に基づ	エアロゾルの乾性沈着速度は、NUREG/CR-4551	エアロゾル <u>粒子</u> の乾性沈着速度は, NUREG/CR-4551 ^{※1}	
き 0.3cm/s と設定した。NUREG/CR-4551 では郊外を対象として	<u>o 1.2^{**1}に基づき 0.3cm/s</u> と設定した。	に基づき 0.3cm/s と設定した。	
おり,郊外とは道路,芝生及び木々で構成されるとしている。	NUREG/CR-4551 <u>Vol.2</u> では郊外を対象としてお	NUREG/CR-4551 では郊外を対象としており,郊外とは	
原子力発電所内は舗装面が多く, 建屋屋上はコンクリートであ	り、郊外とは道路、芝生及び木々で構成されるとしている。	道路、芝生及び木々で構成されるとしている。原子力発電所内	
るため、この沈着速度が適用できると考えられる。また、	原子力発電所内も同様の構成であるため、この沈着速度が適	は舗装面が多く,建物屋上はコンクリートであるため,この沈	
NUREG/CR-4551 では 0.5μm~5μm の粒径に対して検討されて	用できると考えられる。また,NUREG/CR-4551 ⊻	着速度が適用できると考えられる。また, NUREG/CR-4551	
いるが,原子炉格納容器内の除去過程で,相対的に粒子径の大	<u>1.2</u> では 0.5μ m ~ 5μ m の粒径に対して検討されているが,	では 0.5µm~5µm の粒径に対して検討されているが,格納容	
きなエアロゾル粒子は原子炉格納容器内に十分捕集されるた	格納容器内の除去過程で,相対的に粒子径の大きなエアロゾ	器内の除去過程で,相対的に粒子径の大きなエアロゾル <u>粒子</u> は	
め, 粒径の大きなエアロゾル粒子は放出されにくいと考えられ	ルは格納容器内に十分捕集されるため、粒径の大きなエアロ	格納容器内に十分捕集されるため, 粒径の大きなエアロゾル粒	
る。	ゾルの放出はされにくいと考えられる。	子は放出されにくいと考えられる。	
また, W.G.N.Slinn の検討 ^{※2} によると, 草や水, 小石といっ	また, W.G.N. Slinn の検討 ^{※2} によると, 草や水, 小石と	また, W.G.N.Slinn の検討 ^{※2} によると, 草や水, 小石とい	
た様々な材質に対する粒径に応じた乾性の沈着速度を整理し	いった様々な材質に対する粒径に応じた乾性の沈着速度を	った様々な材質に対する粒径に応じた乾性の沈着速度を整理	
ており, これによると 0.1μm~5μm の粒径では沈着速度は	整理しており, これによると 0.1µm~5µm の粒径では沈着	しており,これによると $0.1 \mu m \sim 5 \mu m$ の粒径では沈着速度は	
0.3cm/s 程度 (図 2-10-1) である。以上のことから,中央制御	速度は 0.3cm/s 程度(第 15-1 図)である。以上のことか	0.3cm/s 程度(図10-1)である。以上のことから,中央制御室	
室の居住性に係る線量影響評価におけるエアロゾル粒子の乾	ら,現場作業の線量影響評価におけるエアロゾルの乾性の沈	の居住性に係る線量影響評価におけるエアロゾル粒子の乾性	
性の沈着速度として 0.3cm/s を適用できると判断した。	着速度として 0.3cm/s を適用できると判断した。	の沈着速度として 0.3cm/s を適用できると判断した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(参考)	(参考)	(参考)	
炉心の著しい損傷が発生した場合のエアロゾル粒子の粒径につい	シビアアクシデント時のエアロゾルの粒径について	炉心の著しい損傷が発生した場合のエアロゾル粒子の粒径につい	
τ		て	
炉心の著しい損傷が発生した場合に原子炉格納容器内で発生す	シビアアクシデント時に格納容器内で発生する放射性物質	炉心の著しい損傷が発生した場合に格納容器内で発生する放射	
る放射性物質を含むエアロゾル粒子の粒径分布として本評価で設	を含むエアロゾル粒径分布として「0.1µm~5µm」の範囲で	性物質を含むエアロゾル粒子の粒径分布として本評価で設定して	
定している「0.1µm 以上」は、粒径分布に関して実施されている	あることは、粒径分布に関して実施されている研究を基に設	いる「0.1µm 以上」は、粒径分布に関して実施されている研究を	
研究を基に設定している。	定している。	基に設定している。	
炉心の著しい損傷が発生した場合には原子炉格納容器内にスプ	シビアアクシデント時には格納容器内にスプレイ等による	<u>炉心の著しい損傷が発生した場合</u> には格納容器内にスプレイ等	
レイ等による注水が実施されることから、炉心の著しい損傷が発	注水が実施されることから、シビアアクシデント時の粒径分	による注水が実施されることから、炉心の著しい損傷が発生した	
生した場合の粒径分布を想定し、「原子炉格納容器内でのエアロ	布を想定し、「格納容器内でのエアロゾルの挙動」及び「格納	場合の粒径分布を想定し、「格納容器内でのエアロゾルの挙動」及	
ゾルの挙動」及び「原子炉格納容器内の水の存在の考慮」といっ	容器内の水の存在の考慮」といった観点で実施された <u>第15-1</u>	び「格納容器内の水の存在の考慮」といった観点で実施された表	
た観点で実施された表1の②,⑤に示す試験等を調査した。さらに、	表の②,⑤に示す試験等を調査した。さらに, <u>シビアアクシ</u>	1.の②,⑤に示す試験等を調査した。さらに、炉心の著しい損傷	
炉心の著しい損傷が発生した場合のエアロゾル粒子の粒径に対す	デント時のエアロゾルの粒径に対する共通的な知見とされて	が発生した場合のエアロゾル粒子の粒径に対する共通的な知見と	
る共通的な知見とされている情報を得るために、海外の規制機関	いる情報を得るために、海外の規制機関(NRC等)や各国	されている情報を得るために,海外の規制機関(NRC 等)や各国	
(NRC 等)や各国の合同で実施されている炉心の著しい損傷が発	の合同で実施されているシビアアクシデント時のエアロゾル	の合同で実施されている炉心の著しい損傷が発生した場合のエア	
生した場合のエアロゾルの挙動の試験等(表1の①,③,④)を調	の挙動の試験等(<u>第 15-1 表</u> の①, ③, ④)を調査した。以	ロゾルの挙動の試験等(表1の①,③,④)を調査した。以上の	
査した。以上の調査結果を表1に示す。	上の調査結果を <u>第 15-1 表</u> に,各試験の概要を <u>第 15-2 表</u> に	調査結果を表1に示す。	
	示す。		
この表で整理した試験等は、想定するエアロゾル発生源、挙動	この表で整理した試験等は,想定するエアロゾル発生源,	この表で整理した試験等は、想定するエアロゾル発生源、挙動	
範囲(原子炉格納容器,1次冷却材配管等),水の存在等に違いが	挙動範囲(格納容器、原子炉冷却材配管等)、水の存在等に違	範囲(格納容器,1次冷却材配管等),水の存在等に違いがあるが,	
あるが、エアロゾル粒子の粒径の範囲に大きな違いはなく、原子	いがあるが、エアロゾル粒径の範囲に大きな違いはなく、格	エアロゾル粒子の粒径の範囲に大きな違いはなく、格納容器内環	
炉格納容器内環境でのエアロゾル粒子の粒径はこれらのエアロゾ	納容器内環境でのエアロゾル粒径はこれらのエアロゾル粒径	境でのエアロゾル粒子の粒径はこれらのエアロゾル粒子の粒径と	
ル粒子の粒径と同等な分布範囲を持つものと推定できる。	と同等な分布範囲を持つものと推定できる。	同等な分布範囲を持つものと推定できる。	
したがって、過去の種々の調査・研究により示されている範囲	したがって、過去の種々の調査・研究により示されている	したがって、過去の種々の調査・研究により示されている範囲を	
を包含する値として,0.1μm 以上のエアロゾル粒子を想定するこ	範囲をカバーする値として, 0.1µm <u>~5µm</u> のエアロゾルを想	包含する値として,0.1µm 以上のエアロゾル <u>粒子</u> を想定すること	
とは妥当である。	定することは妥当である。	は妥当である。	

	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版)				島根原子力発電所 2号炉				備考				
表 1	炉心の著しい損傷	が発生した場合	のエアロゾル粒子の粒径	子の粒径 第15-1表 <u>シビアアクシデント</u> 時のエアロゾル粒径について			表 1	長1 炉心の著しい損傷が発生した場合のエアロゾル粒子の粒径					
	についての文献調査結果			の調査結果					についての文献調査結果				
番号	試験名又は報告書名 等	エアロゾル粒 子の	備考	番 号 ①	試験名又は 報告書名等 LACE LA	エアロゾル粒径 (µm) 0.5~5	備考 シビアアクシデント時の評価に使用 されるコードでの格納容器閉じ込め	番号	試	験名又は報告書 名等	エアロゾル粒 子の	備考	
		粒径(μm)	にくっせい、担佐いなん」		2**	(第15-2図参照)	機能喪失を想定した条件とした比較 試験				粒径(μm)	にしっせい、担佐いざルト	
	LACE LA2%1	約 0.5~5	炉心の者しい損傷か発生し た場合の評価に使用される	2	N U R E G / C R -5901 ^{# 2}	0.25~2.5 (参考1-1)	格納容器内に水が存在し,溶融炉心を 覆っている場合のスクラビング効果 のモデル化を紹介したレポート				約 0.5~5	炉心の者しい損傷か発生し た場合の評価に使用される	
	LAUE LAZ	(図1参照)	閉じ込め機能喪失を想定条	3	A E C L が 実施 した試験 ^{**3}	0.1~3.0 (参考1-2)	シビアアクシデント時の炉心損傷を 考慮した1次系内のエアロゾル挙動に 着目した実験			LACE LAZ ^{AA}	(図1参照)	閉じ込め機能喪失を想定条	
			原子炉格納容器内に水が存	4	РВF— SFD ^{ж3}	0.29~0.56 (参考1-2)	シビアアクシデント時の炉心損傷を 考慮した1次系内のエアロゾル挙動に 着目した実験					原子炉格納容器内に水が存	
2	NUREG/CR-5901 ^{**2}	0.25~2.5 (参考 1-1)	在し、溶融炉心を覆ってい る場合のスクラビング効果 のモデル化を紹介したレポ	5	P H E B U S - F P * 3	0.5~0.65 (参考1-2)	シビアアクシデント時のFP挙動の実 験(左記のエアロゾル粒径はPHEBUS FP 実験の格納容器内のエアロゾル挙動 に着目した実験の結果)	2	NU	UREG/CR-5901 ^{%2}	0.25~2.5 (参考1-1)	在し、溶融炉心を覆ってい る場合のスクラビング効果 のモデル化を紹介したレポ	
			- F	₩1	J. H. Wilsor	n and P. C. Ar	rwood, Summary of Pretest					-	
3	AECLが実施した実験	$0.1 \sim 3.0$	炉心の著しい損傷が発生し た場合を考慮した1次系内	Aer Exp	osol Code Cale eriments (LACE P.C. Arwood F	culations for) LA2, ORNL A.	LWR Aerosol Containment L. Wright, J. H. Wilson	3	AEG	CL が実施した実	$0.1 \sim 3.0$	炉心の著しい損傷が発生し た場合を考慮した1次系内	
		(麥考 1-2)	のエアロソル 挙 野 監 胎	AER	OSOL CONTAINME	NT TESTS LA1	AND LA2		疑^°		(麥考 1-2)	のエアログル挙動に有日した主輪	
			に 「 炉心の 著しい 損傷が 発生し	₩2	D. A. Power	rs and J. L.	Sprung, NUREG/CR-5901, A					炉心の著しい損傷が発生し	
		0.29~0.56	た場合を考慮した1次系内	Sim	plified Model	of Aerosol Se	crubbing by a Water Pool				0.29~0.56	た場合を考慮した1次系内	
4	PBF-SFD ^{**3}	(参考 1-2)	のエアロゾル挙動に着目し	0ve	rlying Core De	bris Interact:	ing With Concrete	4		PBF-SFD ^{**3}	(参考 1-2)	のエアロゾル挙動に着目し	
			た実験	*	3 STATE-OF-	THE-ART REPOR	T ON NUCLEAR AEROSOLS,					た実験	
			炉心の著しい損傷が発生し た場合のFP挙動の実験(左	NEA	/CSNI/R (2009)							炉心の著しい損傷が発生し た場合のFP挙動の実験(左	
5	PHÉBUS FP ^{₩3}	0.5~0.65 (参考 1-2)	記のエアロゾル粒径は PHÉBUS FP実験の原子炉格納 容器内のエアロゾル挙動に					5		PHÉBUS FP ^{₩3}	0.5~0.65 (参考1-2)	記のエアロゾル粒径は PHÉBUS FP実験の原子炉格納 容器内のエアロゾル挙動に	
			着目した実験の結果)									着目した実験の結果)	
参考	文献							参考	今 文献	犬		·1	
₩1	: J. H. Wilson and P	. C. Arwood, Su	mmary of Pretest Aerosol					₩1	: J.	H. Wilson and P	. C. Arwood, S	ummary of Pretest Aerosol	
Code Calculations for LWR Aerosol Containment							Сос	de Calculations	s for LWR Aero	osol Containment			
	Experiments (LACE) Test LA2							Exp	periments (LACE	E) Test LA2			
★2 : D. A. Powers and J. L. Sprung, NUREG/CR-5901, A Simplified						₩2	≫2 : D. A. Powers and J. L. Sprung, NUREG/CR-5901, A Simplified						
Model of Aerosol Scrubbing by a Water Pool Overlying Core								Model of Aerosol Scrubbing by a Water Pool Overlying Core					
	Debris Interacting	g With Concrete	<u>þ</u>						Debris Interacting With Concrete				
₩3	: STATE-OF-THE-ART	REPORT ON NUCI	LEAR AEROSOLS, NEA/CSNI					₩3	: STA	ATE-OF-THE-ART	REPORT ON NUC	CLEAR AEROSOLS, NEA/CSNI	
/R (2009) 5							/R (2009) 5						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

東海第二発電所(2018.9.18版)

参考1-1 NUREG/CR-5901の抜粋

島根原子力発電所 25

参考 1-1 NUREG/CR-5901 の抜粋

so-called "quench" temperature. At temperatures below this quench temperature the kinetics of gas phase reactions among CO, CO₂, H₂, and H₂O are too slow to maintain chemical equilibrium on useful time scales. In the sharp temperature drop created by the water pool, very hot gases produced by the core debris are suddenly cooled to temperatures such that the gas composition is effectively "frozen" at the equilibrium composition for the "quench" temperature. Experimental evidence suggest that the "quench" temperature is 1300 to 1000 K. The value of the quench temperature was assumed to be uniformly distributed over this temperature range for the calculations done here.

(6) <u>Solute Mass</u>. The mass of solutes in water pools overlying core debris attacking concrete has not been examined carefully in the experiments done to date. It is assumed here that the logarithm of the solute mass is uniformly distributed over the range of $ln(0.05 \text{ g/kilogram } H_2O) = -3.00$ to $ln(100 \text{ g/kilogram } H_2O) = 4.61$.

(7) <u>Volume Fraction Suspended Solids</u>. The volume fraction of suspended solids in the water pool will increase with time. Depending on the available facilities for replenishing the water, this volume fraction could become quite large. Models available for this study are, however, limited to volume fractions of 0.1. Consequently, the volume fraction of suspended solids is taken to be uniformly distributed over the range of 0 to 0.1.

(8) <u>Density of Suspended Solids</u>. Among the materials that are expected to make up the suspended solids are Ca(OH)₂ ($\rho = 2.2 \text{ g/cm}^3$) or SiO₂ ($\rho = 2.2 \text{ g/cm}^3$) from the concrete and UO₂($\rho = 10 \text{ g/cm}^3$) or ZrO₂ ($\rho = 5.9 \text{ g/cm}^3$) from the core debris or any of a variety of aerosol materials. It is assumed here that the material density of the suspended solids is uniformly distributed over the range of 2 to 6 g/cm³. The upper limit is chosen based on the assumption that suspended UO₂ will hydrate, thus reducing its effective density. Otherwise, gas sparging will not keep such a dense material suspended.

(9) <u>Surface Tension of Water</u>. The surface tension of the water can be increased or decreased by dissolved materials. The magnitude of the change is taken here to be $S\sigma(w)$ where S is the weight fraction of dissolved solids. The sign of the change is taken to be minus or plus depending on whether a random variable ε is less than 0.5 or greater than or equal to 0.5. Thus, the surface tension of the liquid is:

$$\sigma_1 = \begin{cases} \sigma(w) \ (1-S) & for \ \epsilon < 0.5 \\ \sigma(w) \ (1+S) & for \ \epsilon \ge 0.5 \end{cases}$$

where $\sigma(w)$ is the surface tension of pure water.

(10) <u>Mean Aerosol Particle Size</u>. The mass mean particle size for aerosols produced during melt/concrete interactions is known only for situations in which no water is present. There is reason to believe smaller particles will be produced if a water pool is present. Examination of aerosols produced during melt/concrete interactions shows that the primary particles are about 0.1 µm in diameter. Even with a water pool present, smaller particles would not be expected. so-called "quench" temperature. At temperatures below this quench temperature the kinetics of gas phase reactions among CO, CO_2 , H_2 , and H_2O are too slow to maintain chemical equilibrium on useful time scales. In the sharp temperature drop created by the water pool, very hot gases produced by the core debris are suddenly cooled to temperatures such that the gas composition is effectively "frozen" at the equilibrium composition for the "quench" temperature. Experimental evidence suggest that the "quench" temperature is 1300 to 1000 K. The value of the quench temperature was assumed to be uniformly distributed over this temperature range for the calculations done here.

(6) <u>Solute Mass</u>. The mass of solutes in water pools overlying core debris attacking concrete has not been examined carefully in the experiments done to date. It is assumed here that the logarithm of the solute mass is uniformly distributed over the range of $\ln(0.05 \text{ g/kilogram H}_2\text{O}) = -3.00$ to $\ln(100 \text{ g/kilogram H}_2\text{O}) = 4.61$.

(7) <u>Volume Fraction Suspended Solids</u>. The volume fraction of suspended solids in the water pool will increase with time. Depending on the available facilities for replenishing the water, this volume fraction could become quite large. Models available for this study are, however, limited to volume fractions of 0.1. Consequently, the volume fraction of suspended solids is taken to be uniformly distributed over the range of 0 to 0.1.

(8) <u>Density of Suspended Solids</u>. Among the materials that are expected to make up the suspended solids are Ca(OH)₂ ($\rho = 2.2 \text{ g/cm}^3$) or SiO₂ ($\rho = 2.2 \text{ g/cm}^3$) from the concrete and UO₂($\rho = 10 \text{ g/cm}^3$) or ZrO₂ ($\rho = 5.9 \text{ g/cm}^3$) from the core debris or any of a variety of aerosol materials. It is assumed here that the material density of the suspended solids is uniformly distributed over the range of 2 to 6 g/cm³. The upper limit is chosen based on the assumption that suspended UO₂ will hydrate, thus reducing its effective density. Otherwise, gas sparging will not keep such a dense material suspended.

(9) <u>Surface Tension of Water</u>. The surface tension of the water can be increased or decreased by dissolved materials. The magnitude of the change is taken here to be $S\sigma(w)$ where S is the weight fraction of dissolved solids. The sign of the change is taken to be minus or plus depending on whether a random variable ϵ is less than 0.5 or greater than or equal to 0.5. Thus, the surface tension of the liquid is:

$$\sigma_1 = \begin{cases} \sigma(w) \ (1-S) & for \ \epsilon < 0.5 \\ \sigma(w) \ (1+S) & for \ \epsilon \ge 0.5 \end{cases}$$

where $\sigma(w)$ is the surface tension of pure water.

(10) <u>Mean Aerosol Particle Size</u>. The mass mean particle size for aerosols produced during melt/concrete interactions is known only for situations in which no water is present. There is reason to believe smaller particles will be produced if a water pool is present. Examination of aerosols produced during melt/concrete interactions shows that the primary particles are about 0.1 μ m in diameter. Even with a water pool present, smaller particles would not be expected.

参考 1-1 NUREG

so-called "quench" temperature. At temperatures below this quere gas phase reactions among CO, CO_2 , H_2 , and H_2O are to equilibrium on useful time scales. In the sharp temperature drop hot gases produced by the core debris are suddenly cooled to to composition is effectively "frozen" at the equilibrium composition Experimental evidence suggest that the "quench" temperature is the quench temperature was assumed to be uniformly distributed the calculations done here.

(6) <u>Solute Mass</u>. The mass of solutes in water pools overlying has not been examined carefully in the experiments done to data logarithm of the solute mass is uniformly distributed over the H_2O = -3.00 to ln(100 g/kilogram H_2O) = 4.61.

(7) <u>Volume Fraction Suspended Solids</u>. The volume fraction of pool will increase with time. Depending on the available facilit this volume fraction could become quite large. Models availabl limited to volume fractions of 0.1. Consequently, the volume taken to be uniformly distributed over the range of 0 to 0.1.

(8) <u>Density of Suspended Solids</u>. Among the materials that suspended solids are Ca(OH)₂ ($\rho = 2.2 \text{ g/cm}^3$) or SiO₂ ($\rho = 2.2 \text{ J}^2$) UO₂($\rho = 10 \text{ g/cm}^3$) or ZrO₂ ($\rho = 5.9 \text{ g/cm}^3$) from the core aerosol materials. It is assumed here that the material densi uniformly distributed over the range of 2 to 6 g/cm³. The upper assumption that suspended UO₂ will hydrate, thus reducing its effective sparging will not keep such a dense material suspended.

(9) <u>Surface Tension of Water</u>. The surface tension of the water by dissolved materials. The magnitude of the change is taken he weight fraction of dissolved solids. The sign of the change depending on whether a random variable ϵ is less than 0.5 or Thus, the surface tension of the liquid is:

 $\sigma_1 = \begin{cases} \sigma(w) \ (1-S) & for \ \epsilon < 0.5 \\ \sigma(w) \ (1+S) & for \ \epsilon \ge 0.5 \end{cases}$

where $\sigma(w)$ is the surface tension of pure water.

(10) <u>Mean Aerosol Particle Size</u>. The mass mean particle size melt/concrete interactions is known only for situations in which reason to believe smaller particles will be produced if a water por aerosols produced during melt/concrete interactions shows that to 0.1 µm in diameter. Even with a water pool present, smaller particles are pool present.

寻炉	備考
/CR-5901の抜粋	
ench temperature the kinetics of two slow to maintain chemical created by the water pool, very temperatures such that the gas in for the "quench" temperature. 1300 to 1000 K. The value of over this temperature range for	
core debris attacking concrete te. It is assumed here that the e range of $\ln(0.05 \text{ g/kilogram})$	
f suspended solids in the water ties for replenishing the water, le for this study are, however, fraction of suspended solids is	
are expected to make up the 2 g/cm^3) from the concrete and debris or any of a variety of ity of the suspended solids is er limit is chosen based on the fective density. Otherwise, gas	
r can be increased or decreased ere to be $S\sigma(w)$ where S is the is taken to be minus or plus r greater than or equal to 0.5.	
}	
e for aerosols produced during no water is present. There is ool is present. Examination of the primary particles are about articles would not be expected.	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	Consequently, the natural logarithm of the mean particle size is taken here to be uniformly distributed over the range from ln (0.25 μ m) = -1.39 to ln (2.5 μ m) = 0.92.	Consequently, the natural logarithm of the mean particle size is taken here to be uniformly distributed over the range from ln (0.25 μ m) = -1.39 to ln (2.5 μ m) = 0.92.	
	(11) <u>Geometric Standard Deviation of the Particle Size Distribution</u> . The aerosols produced during core debris-concrete interactions are assumed to have lognormal size distributions. Experimentally determined geometric standard deviations for the distributions in cases with no water present vary between 1.6 and 3.2. An argument can be made that the geometric standard deviation is positively correlated with the mean size of the aerosol. Proof of this correlation is difficult to marshall because of the sparse data base. It can also be argued that smaller geometric standard deviations will be produced in situations with water present. It is unlikely that data will ever be available to demonstrate this contention. The geometric standard deviation of the size distribution is assumed to be uniformly distributed over the range of 1.6 to 3.2. Any correlation of the geometric standard deviation with the mean size of the aerosol is neglected.	(11) Geometric Standard Deviation of the Particle Size Distribution. The aerosols produced during core debris-concrete interactions are assumed to have lognormal size distributions. Experimentally determined geometric standard deviations for the distributions in cases with no water present vary between 1.6 and 3.2. An argument can be made that the geometric standard deviation is positively correlated with the mean size of the aerosol. Proof of this correlation is difficult to marshall because of the sparse data base. It can also be argued that smaller geometric standard deviations will be produced in situations with water present. It is unlikely that data will ever be available to demonstrate this contention. The geometric standard deviation of the size distribution is assumed to be uniformly distributed over the range of 1.6 to 3.2. Any correlation of the geometric standard deviation with the mean size of the aerosol is neglected.	
	(12) <u>Aerosol Material Density</u> . Early in the course of core debris interactions with concrete, UO ₂ with a solid density of around 10 g/cm ³ is the predominant aerosol material. As the interaction progresses, oxides of iron, manganese and chromium with densities of about 5.5 g/cm ³ and condensed products of concrete decomposition such as Na ₂ O, K ₂ O, Al ₂ O ₃ SiO ₂ , and CaO with densities of 1.3 to 4 g/cm ³ become the dominant aerosol species. Condensation and reaction of water with the species may alter the apparent material densities. Coagglomeration of aerosolized materials also complicates the prediction of the densities of materials that make up the aerosol. As a result the material density of the aerosol is considered uncertain. The material density used in the calculation of aerosol trapping is taken to be an uncertain parameter uniformly distributed over the range of 1.5 to 10.0 g/cm ³ .	(12) <u>Aerosol Material Density</u> . Early in the course of core debris interactions with concrete, UO ₂ with a solid density of around 10 g/cm ³ is the predominant aerosol material. As the interaction progresses, oxides of iron, manganese and chromium with densities of about 5.5 g/cm ³ and condensed products of concrete decomposition such as Na ₂ O, K ₂ O, Al ₂ O ₃ SiO ₂ , and CaO with densities of 1.3 to 4 g/cm ³ become the dominant aerosol species. Condensation and reaction of water with the species may alter the apparent material densities. Coagglomeration of aerosolized materials also complicates the prediction of the densities of materials that make up the aerosol. As a result the material density of the aerosol is considered uncertain. The material density used in the calculation of aerosol trapping is taken to be an uncertain parameter uniformly distributed over the range of 1.5 to 10.0 g/cm ³ .	
	Note that the mean aerosol particle size predicted by the VANESA code [6] is correlated with the particle material density to the $-1/3$ power. This correlation of aerosol particle size with particle material density was taken to be too weak and insufficiently supported by experimental evidence to be considered in the uncertainty analyses done here.	Note that the mean aerosol particle size predicted by the VANESA code [6] is correlated with the particle material density to the -1/3 power. This correlation of aerosol particle size with particle material density was taken to be too weak and insufficiently supported by experimental evidence to be considered in the uncertainty analyses done here.	
	(13) <u>Initial Bubble Size</u> . The initial bubble size is calculated from the Davidson-Schular equation:	(13) Initial Bubble Size. The initial bubble size is calculated from the Davidson-Schular equation:	
	$D_b = \epsilon \left(\frac{6}{\pi}\right)^{1/3} \frac{V_s^{0.4}}{g^{0.2}} \ cm$	$D_{b} = \epsilon \left(\frac{6}{\pi}\right)^{1/3} \frac{V_{s}^{0.4}}{g^{0.2}} \ cm$	
	where ϵ is assumed to be uniformly distributed over the range of 1 to 1.54. The minimum bubble size is limited by the Fritz formula to be:	where ϵ is assumed to be uniformly distributed over the range of 1 to 1.54. The minimum bubble size is limited by the Fritz formula to be:	
	$D_b = 0.0105 \ \Psi[\sigma_l / g(\rho_l - \rho_s)]^{1/2}$	$D_{b} = 0.0105 \ \Psi[\sigma_{l} / g(\rho_{l} - \rho_{g})]^{1/2}$	
	where the contact angle is assumed to be uniformly distributed over the range of 20 to 120°. The maximum bubble size is limited by the Taylor instability model to be:	where the contact angle is assumed to be uniformly distributed over the range of 20 to 120°. The maximum bubble size is limited by the Taylor instability model to be:	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

東海第二発電所(2018.9.18版)

参考 1-2 STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS. NEA/CSNI/R(2009)5の抜粋及び試験の概要

9.2.1 Aerosols in the RCS

9.2.1.1 AECL

The experimenters conclude that spherical particles of around 0.1 to 0.3 µm formed (though their composition was not established) then these agglomerated giving rise to a mixture of compact particles between 0.1 and 3.0 µm in size at the point of measurement. The composition of the particles was found to be dominated by Cs, Sn and U: while the Cs and Sn mass contributions remained constant and very similar in mass, U was relatively minor in the first hour at 1860 K evolving to be the main contributor in the third (very approximately: 42 % U, 26 % Sn, 33 % Cs). Neither break down of composition by particle size nor statistical size information was measured.

9.2.1.2 PBF-SFD

Further interesting measurements for purposes here were six isokinetic, sequential, filtered samples located about 13 m from the bundle outlet. These were used to follow the evolution of the aerosol composition and to examine particle size (SEM). Based on these analyses the authors state that particle geometrical-mean diameter varied over the range 0.29-0.56 µm (elimination of the first filter due to it being early with respect to the main transient gives the range 0.32-0.56 µm) while standard deviation fluctuated between 1.6 and 2.06. In the images of filter deposits needle-like forms are seen. Turning to composition, if the first filter sample is eliminated and "below detection limit" is taken as zero, for the structural components and volatile fission products we have in terms of percentages the values given in Table 9.2-1.

9.2.2 Aerosols in the containment

9.2.2.1 PHÉBUS FP

The aerosol size distributions were fairly lognormal with an average size (AMMD) in FPT0 of 2.4 µm at the end of the 5-hour bundle-degradation phase growing to 3.5 µm before stabilizing at 3.35 µm; aerosol size in FPT1 was slightly larger at between 3.5 and 4.0 µm. Geometric-mean diameter (dss) of particles in FPT1 was seen to be between 0.5 and 0.65 µm a SEM image of a deposit is shown in Fig. 9.2-2. In both tests the geometric standard deviation of the lognormal distribution was fairly constant at a value of around 2.0. There was clear evidence that aerosol composition varied very little as a function of particle size except for the late settling phase of the FPT1 test: during this period, the smallest particles were found to be cesium-rich. In terms of chemical speciation, X-ray techniques were used on some deposits and there also exist many data on the solubilities of the different elements in numerous deposits giving a clue as to the potential forms of some of the elements. However, post-test oxidation of samples cannot be excluded since storage times were long (months) and the value of speculating on potential speciation on the basis of the available information is debatable. Nevertheless, there is clear evidence that some elements reached higher states of oxidation in the containment when compared to their chemical form in the circuit.

試験名又は報告書名等	試験の概要			
ADOL AST (A) 大学論	CANDU のジルカロイ被覆管燃料を使用した、1次系での核分			
ADUL //* 突地 U/L 突映	裂生成物の挙動についての試験			
	米国のアイダホ国立工学環境研究所で実施された炉心損傷状			
PBF-SFD	態での燃料棒及び炉心のふるまい並びに核分裂生成物及び水			
	素の放出についての試験			
	フランスのカダラッシュ研究所の PHÉBUS 研究炉で実施され			
PHÉRIS EP	た, 炉心の著しい損傷が発生した場合の, 炉心燃料から1次			
THEORY IT	系を経て原子炉格納容器に至るまでの核分裂生成物の挙動を			
	調べる実機燃料を用いた総合試験			

参考1-2 STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS, NEA/CSNI/R(2009)5の抜粋及び試験の概要

9.2.1 Aerosols in the RCS

The experimenters conclude that spherical particles of around 0.1 to 0.3 µm formed (though their composition was not established) then these agglomerated giving rise to a mixture of compact particles between 0.1 and 3.0 µm in size at the point of measurement. The composition of the particles was found to be dominated by Cs, Sn and U: while the Cs and Sn mass contributions remained constant and very similar in mass, U was relatively minor in the first hour at 1860 K evolving to be the main contributor in the third (very approximately: 42 % U, 26 % Sn, 33 % Cs). Neither break down of composition by particle size nor statistical size information was measured.

Further interesting measurements for purposes here were six isokinetic, sequential, filtered samples located about 13 m from the bundle outlet. These were used to follow the evolution of the aerosol composition and to examine particle size (SEM). Based on these analyses the authors state that particle geometrical-mean diameter varied over the range 0.29-0.56 µm (elimination of the first filter due to it being early with respect to the main transient gives the range 0.32-0.56 µm) while standard deviation fluctuated between 1.6 and 2.06. In the images of filter deposits needle-like forms are seen. Turning to composition, if the first filter sample is eliminated and "below detection limit" is taken as zero, for the structural components and volatile fission products we have in terms of percentages the values given in Table 9.2-1.

9.2.2 Aerosols in the containment

9.2.2.1 PHÉBUS FP

The aerosol size distributions were fairly lognormal with an average size (AMMD) in FPT0 of 2.4 µm at the end of the 5-hour bundle-degradation phase growing to 3.5 µm before stabilizing at 3.35 µm; aerosol size in FPT1 was slightly larger at between 3.5 and 4.0 µm. Geometric-mean diameter (d₅₀) of particles in FPT1 was seen to be between 0.5 and 0.65 µm; a SEM image of a deposit is shown in Fig. 9.2-2. In both tests the geometric standard deviation of the lognormal distribution was fairly constant at a value of around 2.0. There was clear evidence that aerosol composition varied very little as a function of particle size except for the late settling phase of the FPT1 test: during this period, the smallest particles were found to be cesium-rich. In terms of chemical speciation, X-ray techniques were used on some deposits and there also exist many data on the solubilities of the different elements in numerous deposits giving a clue as to the potential forms of some of the elements. However, post-test oxidation of samples cannot be excluded since storage times were long (months) and the value of speculating on potential speciation on the basis of the available information is debatable. Nevertheless, there is clear evidence that some elements reached higher states of oxidation in the containment when compared to their chemical form in the circuit.

第15-2表 試験の概要

試験名又は報告書名等	試験の概要
AFCLが実施した実験	CANDUのジルカロイ被覆管燃料を使用した,1次系でも核分裂生 成物の挙動についての試験
PBF-SFD	米国アイダホ国立工学環境研究所で実施された炉心損傷状態での燃 料棒及び炉心のふるまい並びに核分裂生成物及び水素の放出につい ての試験
PHEBUS FP	フランスカダラッシュ研究所のPHEBUS研究炉で実施された,シ ビアアクシデント条件下での炉心燃料から1次系を経て格納容器に至 るまでの核分裂生成物の挙動を調べる実機燃料を用いた総合試験

i i	島根原千刀発電所 2 号炉	備考					
参考 1	-2 STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS, NEA/CSNI/R(2009)5の抜粋及び試験の概要						
2.1 Aerosols in the RCS							
2.1.1 AECL							
The experimenters conclude th omposition was not established etween[0.1 and 3.0 μm]in size a e dominated by Cs, Sn and U: v n mass, U was relatively minor very approximately: 42 % U, 2 <i>t</i> tatistical size information was m	at spherical particles of around 0.1 to 0.3 µm formed (though their 1) then these agglomerated giving rise to a mixture of compact particles t the point of measurement. The composition of the particles was found to while the Cs and Sn mass contributions remained constant and very similar in the first hour at 1860 K evolving to be the main contributor in the third is % Sn, 33 % Cs). Neither break down of composition by particle size nor neasured.						
2.1.2 PBF-SFD							
urther interesting measurements bout 13 m from the bundle outle o examine particle size (SEM), iameter varied over the range 0, o the main transient gives the r .06. In the images of filter dep ample is eliminated and "belo olatile fission products we have	ther interesting measurements for purposes here were six isokinetic, sequential, filtered samples located at 13 m from the bundle outlet. These were used to follow the evolution of the aerosol composition and examine particle size (SEM). Based on these analyses the authors state that particle geometrical-mean meter varied over the range $0.29 \cdot 0.56 \mu\text{m}$ (elimination of the first filter due to it being early with respect the main transient gives the range $0.32 \cdot 0.56 \mu\text{m}$ (elimination of the first filter due to it being early with respect the main transient gives the range $0.32 \cdot 0.56 \mu\text{m}$ (while standard deviation fluctuated between 1.6 and 6. In the images of filter deposits needle-like forms are seen. Turning to composition, if the first filter apple is eliminated and "below detection limit" is taken as zero, for the structural components and the first on products we have in terms of percentages the values given in Table 9.2-1.						
2.2 Aerosols in the contain	ment						
2.2.1 PHÉBUS FP							
he aerosol size distributions we see and of the 5-hour bundle-deg ze in FPT1 was slightly larger. PT1 was seen to be between[0,] stst the geometric standard devia 0. There was clear evidence t scept for the late settling phase e cesium-rich. In terms of chen lso exist many data on the solul se potential forms of some of th nee storage times were long (m se available information is debuilt ger states of oxidation in the c	re fairly lognormal with an average size (AMMD) in FPT0 of 2.4 μ m at gradation phase growing to 3.5 μ m before stabilizing at 3.35 μ m; aerosol at between 3.5 and 4.0 μ m. Geometric-mean diameter (d ₅₀) of particles in 5 and 0.65 μ m] a SEM image of a deposit is shown in Fig. 9.2-2. In both at on 0.65 μ m] a SEM image of a deposit is shown in Fig. 9.2-2. In both at aerosol composition varied very little as a function of particle size of the FPT1 test: during this period, the smallest particles were found to nical speciation, X-ray techniques were used on some deposits and there bilities of the different elements in numerous deposits giving a clue as to ue elements. However, post-test oxidation of samples cannot be excluded onths) and the value of speculating on potential speciation on the basis of atable. Nevertheless, there is clear evidence that some elements reached ontainment when compared to their chemical form in the circuit.						
試験名又は報告書名等	試験の概要						
AECL が実施した実験	CANDU のジルカロイ被覆管燃料を使用した、1次系での核分 裂生成物の挙動についての試験						
米国のアイダホ国立工学環境研究所で実施された炉心損傷状 PBF-SFD 胞での燃料棒及び炉心のふるまい並びに核分裂生成物及び水 素の放出についての試験							
PHÉBUS FP							

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-11 有機よう素の乾性沈着速度について	17 有機よう素の乾性沈着速度について	11 有機よう素の乾性沈着速度について	
中央制御室の居住性に係る被ばく評価では、原子炉建屋から放	今回の評価では, <u>原子炉建屋</u> から放出されるよう素のうち,	中央制御室の居住性に係る被ばく評価では,原子炉建物から放	
出されるよう素のうち、無機よう素はエアロゾル粒子と同じ沈着	無機よう素はエアロゾルと同じ沈着速度を用いる。有機よう	出されるよう素のうち、無機よう素はエアロゾル粒子と同じ沈着	
速度を用いた。有機よう素についてはエアロゾル粒子とは別に,	素についてはエアロゾルと別に乾性沈着速度を 10 ⁻³ cm/s と	速度を用いた。有機よう素についてはエアロゾル粒子とは別に,	
乾性沈着速度として, NRPB-R322を参照し10 ⁻³ cm/sと設定した。以	し,湿性沈着を考慮して乾性沈着速度の4倍である4×10 ⁻³ cm	乾性沈着速度として, NRPB-R322 を参照し 10 ⁻³ cm/s と	
下にその根拠を示す。	/s を設定した。以下にその根拠を示す。	設定した。以下にその根拠を示す。	
(1)英国放射線防護庁 (NRPB) による報告	(1)英国放射線防護庁(NRPB)による報告	(1)英国放射線防護庁(NRPB)による報告	
英国放射線防護庁 大気拡散委員会による年次レポート	英国放射線防護庁 大気拡散委員会による年次レポート	英国放射線防護庁 大気拡散委員会による年次レポート(NRPB	
(NRPB-R322 ^{**1})に沈着速度に関する報告がなされている。本レポ	(NRPB-R322 ^{※1})に沈着速度に関する報告がなされ	-R322 ^{*1})に沈着速度に関する報告がなされている。本レポ	
ートでは、有機よう素について、植物に対する沈着速度に関する	ている。本レポートでは,有機よう素について,植物に対す	ートでは、有機よう素について、植物に対する沈着速度に関する	
知見が整理されており、以下のとおり報告されている。	る沈着速度に関する知見が整理されており、以下の通り報告	知見が整理されており、以下のとおり報告されている。	
	されている。		
・植物に対する沈着速度の"best judgement"として10 ⁻⁵ m/s	・植物に対する沈着速度の"best judgement"として 10 ⁻⁵ m	・植物に対する沈着速度の"best judgement"として 10 ⁻⁵ m/s	
(10 ⁻³ cm/s)を推奨	/s(10 ⁻³ cm/s)を推奨	(10 ⁻³ cm/s) を推奨	
(2)日本原子力学会による報告	(2)日本原子力学会による報告	(2)日本原子力学会による報告	
日本原子力学会標準レベル3PSA解説4.8に沈着速度に関する以	日本原子力学会標準レベル 3PSA 解説 4.8 に沈着速度に関す	日本原子力学会標準レベル 3PSA 解説 4.8 に沈着速度に関する	
下の報告がなされている。	る以下の報告がなされている。	以下の報告がなされている。	
 ・ヨウ化メチルは非反応性の化合物であり、沈着速度が小さく、 	・ヨウ化メチルは非反応性の化合物であり、沈着速度が小	・ヨウ化メチルは非反応性の化合物であり,沈着速度が小さく,	
実験で1 ⁰⁻⁴ ~10 ⁻² cm/sの範囲である。	さく,実験で10 ⁻⁴ ~10 ⁻² cm/sの範囲である。	実験で 10 ⁻⁴ ~10 ⁻² cm/s の範囲である。	
・ヨウ化メチルの沈着は、公衆のリスクに対し僅かな寄与をす	・ヨウ化メチルの沈着は、公衆のリスクに対し、僅かな寄	 ・ヨウ化メチルの沈着は、公衆のリスクに対し僅かな寄与をす 	
るだけであり、事故影響評価においてはその沈着は無視でき	与をするだけであり、事故影響評価においてはその影響は無	るだけであり、事故影響評価においてはその沈着は無視でき	
る。	視できる。	る。	
以上のことから、有機よう素の乾性沈着速度はエアロゾル粒子	以上のことから有機よう素の乾性沈着速度はエアロゾルの	以上のことから、有機よう素の乾性沈着速度はエアロゾル粒子	
の乾性沈着速度0.3cm/sに比べて小さいことが言える。	乾性沈着速度 0.3cm/sに比べて小さいことがいえる。	の乾性沈着速度 0.3cm/s に比べて小さいことが言える。	
また,原子力発電所構内は,コンクリート,道路,芝生及び木々	また原子力発電所構内は,コンクリート,道路,芝生及び	また,原子力発電所構内は,コンクリート,道路,芝生及び木々	
で構成されているが、エアロゾル粒子の沈着速度の実験結果	木々で構成されているが、エアロゾルへの沈着速度の実験結	で構成されているが、エアロゾル粒子の沈着速度の実験結果(N	
(NUREG/CR-4551)によると、沈着速度が大きいのは芝生や木々で	果 (NUREG/CR-4551 Vol. 2)によると,沈	UREG/CR-4551)によると、沈着速度が大きいのは芝生や木々	
あり、植物に対する沈着速度が大きくなる傾向であった。	着速度が大きいのは芝生や木々であり、植物に対する沈着速	であり、植物に対する沈着速度が大きくなる傾向であった。	
	度が大きくなる傾向であった。		
したがって,有機よう素の乾性沈着速度として,NRPB-R322の	したがって有機よう素の乾性沈着速度として、NRPB-	したがって、有機よう素の乾性沈着速度として、NRPB-R	
植物に対する沈着速度である10 ⁻³ cm/sを用いるのは妥当と判断し	R322の植物に対する沈着速度である 10−3cm/s を用い	322 の植物に対する沈着速度である 10 ⁻³ cm/s を用いるのは妥	
た。	るのは妥当と判断した。	当と判断した。	
₩1 NRPB-R322-Atmospheric Dispersion Modelling Liaison	※1 : N R P B−R 322-Atomospheric Dispersion Moddeling	💥 1 NRPB-R322-Atmospheric Dispersion Modelling Liaison	
Committee Annual Report, 1998-99	Liaison Committee Annual Report, 1988-99	Committee Annual Report, 1998-99	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

NRPB-R322 ANNEX-A 「2.2 Iodine」の抜粋

2.2.2 Meadow grass and crops

Methyl iodide

There are fewer data for methyl iodide than for elemental iodine, but all the data indicate that it is poorly absorbed by vegetation, such that surface resistance is by far the dominant resistance component. The early data have been reviewed elsewhere (Underwood, 1988; Harper *et al*, 1994) and no substantial body of new data is available. The measured values range between 10^{-6} and 10^{-4} m s⁻¹ approximately. Again, there are no strong reasons for taking r_2 to be a function of windspeed, so it is recommended that v_d is taken to be a constant. Based on the limited data available, the 'best judgement' value of v_d is taken as 10^{-5} m s⁻¹ and the 'conservative' value as 10^{-4} m s⁻¹. Where there is uncertainty as to the chemical species of the iodine, it is clearly safest to assume that it is all in elemental form from the viewpoint of making a conservative estimate of deposition flux.

2.2.3 Urban

Methyl iodide

There appear to be no data for the deposition of methyl iodide to building surfaces: the deposition velocity will be limited by adsorption processes and chemical reactions (if any) at the surface, for which specific data are required. No recommendations are given in this case. For vegetation within the urban area (lawns and parks etc), it is recommended that the values for extended grass surfaces be used.

東海第二発電所(2018.9.18版)

NRPB-R322 ANNEX-A 「2.2 Iodine」の抜粋

2.2.2 Meadow grass and crops Elemental iodine

Methyl iodide

There are fewer data for methyl iodide than for elemental iodine, but all the data indicate that it is poorly absorbed by vegetation, such that surface resistance is by far the dominant resistance component. The early data have been reviewed elsewhere (Underwood, 1988; Harper *et al*, 1994) and no substantial body of new data is available. The measured values range between 10^{-6} and 10^{-4} m s⁻¹ approximately. Again, there are no strong reasons for taking r_z to be a function of windspeed, so it is recommended that v_d is taken to be a constant. Based on the limited data available, the 'best judgement' value of v_d is taken as 10^{-5} m s⁻¹ and the 'conservative' value as 10^{-4} m s⁻¹. Where there is uncertainty as to the chemical species of the iodine, it is clearly safest to assume that it is all in elemental form from the viewpoint of making a conservative estimate of deposition flux.

2.2.3 Urban

Elemental iodine

Methyl iodide

There appear to be no data for the deposition of methyl iodide to building surfaces: the deposition velocity will be limited by adsorption processes and chemical reactions (if any) at the surface, for which specific data are required. No recommendations are given in this case. For vegetation within the urban area (lawns and parks etc), it is recommended that the values for extended grass surfaces be used.

島根原子力発電所 2号

NRPB-322 ANNEX-A 「2.2

2.2.2 Meadow grass and crops

Methyl iodide

There are fewer data for methyl iodide than for elemental iodi it is poorly absorbed by vegetation, such that surface resistance is b component. The early data have been reviewed elsewhere (Underwood no substantial body of new data is available. The measured values ran, approximately. Again, there are no strong reasons for taking r_2 to be a recommended that v_d is taken to be a constant. Based on the limited data value of v_d is taken as 10^{-5} m s⁻¹ and the 'conservative' value as 10^{-4} m as to the chemical species of the iodine, it is clearly safest to assume that the viewpoint of making a conservative estimate of deposition flux.

2.2.3 Urban

Methyl iodide

There appear to be no data for the deposition of methyl io deposition velocity will be limited by adsorption processes and che surface, for which specific data are required. No recommendations are g within the urban area (lawns and parks etc), it is recommended that surfaces be used.

寻炉	備考
2 Iodine」の抜粋	
ine, but all the data indicate that	
by far the dominant resistance	
1, 1988; Harper <i>et al</i> , 1994) and	
ige between 10 and 10 m s	
a mailable the thest indoement.	
n s ⁻¹ . Where there is uncertainty	
at it is all in elemental form from	
odide to building surfaces: the	
enneal reactions (if any) at the	
t the values for extended grass	
The rates for energies press	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-12 マスクによる防護係数について	12 全面マスクによる防護係数について	12 マスクによる防護係数について	
<u> 炉心の著しい損傷が発生した場合の居住性に係る被ばく評価</u> に	炉心の著しい損傷が発生した場合の居住性に係る被ばく評価	重大事故等時の居住性に係る被ばく評価において、以下の検討	
おいて,以下の検討を踏まえ,全面マスクによる防護係数を50,	において、以下の検討を踏まえ、全面マスクの防護係数とし	を踏まえ、全面マスクによる防護係数を 50 として使用する。	
電動ファン付き全面マスクによる防護係数を1000として使用す	て 50 を使用している。		・資機材の相違
<u>3.</u>			【柏崎 6/7】
			島根2号炉は,全面マス
1.厚生労働省労働基準局長通知について	1. 厚生労働省労働基準局長通知について	1. 厚生労働省労働基準局長通知について	クの使用を想定した評
「電離放射線障害防止規則の一部を改正する省令の施行等につ	「電離放射線障害防止規則の一部を改正する省令の施行等に	「電離放射線障害防止規則の一部を改正する省令の施行等につ	価としている
いて」(基発0412 第1号都道府県労働局長あて厚生労働省労働基	ついて」(基発 0412 第 1 号 都道府県労働局長あて厚生労働	いて」(基発0412 第1号都道府県労働局長あて厚生労働省労働基	
準局長通知)によると、「200万ベクレル毎キログラムを超える事	省労働基準局長通知)(以下「基発 0412 第1号」という。)に	準局長通知)によると、「200万ベクレル毎キログラムを超える事	
故由来廃棄物等を取り扱う作業であって、粉じん濃度が10ミリグ	よると「200 万ベクレル毎キログラムを超える事故由来廃棄物	故由来廃棄物等を取り扱う作業であって、粉じん濃度が10ミリグ	
ラム毎立方メートルを超える場所における作業を行う場合、内部	等を取り扱う作業であって,粉じん濃度が 10 ミリグラム毎立	ラム毎立方メートルを超える場所における作業を行う場合、内部	
被ばく線量を1年につき1ミリシーベルト以下とするため、漏れを	方メートルを超える場所における作業を取り扱う場合、内部	被ばく線量を1年につき1ミリシーベルト以下とするため、漏れを	
考慮しても、50以上の防護係数を期待できる捕集効率99.9%以上の	被ばく線量を1年につき1ミリシーベルト以下とするため,	考慮しても、50以上の防護係数を期待できる捕集効率99.9%以上の	
全面型防じんマスクの着用を義務付けたものであること」として	漏れを考慮しても,50以上の防護係数を期待できる捕集効率	全面型防じんマスクの着用を義務付けたものであること」として	
いる。	99.9%以上の全面型防じんマスクの着用を義務付けたもので	いる。	
	あること」としている。		
●以下,電離放射線障害防止規則(最終改正:平成25年7月8日)	●以下, 電離放射線障害防止規則(最終改正: 平成 25 年 7 月	●以下,電離放射線障害防止規則(最終改正:平成25年7月8日)	
拔粋	8日)抜粋	抜粋	
第三十八条事業者は、第二十八条の規定により明示した区域	第 38 条 事業者は,第 28 条の規定により明示した区域内の	第三十八条事業者は、第二十八条の規定により明示した区域	
内の作業又は緊急作業その他の作業で、第三条第三項の厚生労	作業又は緊急作業その他の作業で、第3条第3項の厚生労働	内の作業又は緊急作業その他の作業で、第三条第三項の厚生労	
働大臣が定める限度を超えて汚染された空気を吸入するおそれ	大臣が定める限度を超えて汚染された空気を吸入するおそれ	働大臣が定める限度を超えて汚染された空気を吸入するおそれ	
のあるものに労働者を従事させるときは、その汚染の程度に応	のあるものに労働者を従事させるときは、その汚染の程度に	のあるものに労働者を従事させるときは、その汚染の程度に応	
じて防じんマスク、防毒マスク、ホースマスク、酸素呼吸器等	応じて防じんマスク、防毒マスク、ホースマスク、酸素呼吸	じて防じんマスク、防毒マスク、ホースマスク、酸素呼吸器等	
の有効な呼吸用保護具を備え、これらをその作業に従事する労	器等の有効な呼吸用保護具を備え、これらをその作業に従事	の有効な呼吸用保護具を備え、これらをその作業に従事する労	
働者に使用させなければならない。	する労働者に使用させなければならない。	働者に使用させなければならない。	
●以下, 基発0412第1号(平成25年4月12日) 抜粋 た (# # 見 (知 20 名 閉 仮)	●以下, 基発 0412 第1 亏 (平成 25 年 4 月 12 日抜粋) た 旧葉目 (第 20 条 間係)	●以下,基発0412第1号(平成25年4月12日)抜粋	
① 第1頃の「有効な呼吸用保護兵」は、次に掲りる作業の	① 第1項の「有効な呼吸用保護兵」は、次に掲りる作業の ロハルズ事件中本席案件体の共計性準確の反心に広じた状態	① 第1項の「有効な呼吸用保護兵」は、次に掲りる作業の	
区分及び事故田米廃業物等の放射能震度の区分に応した捕	区分及い事故田米廃業物等の放射能震度の区分に応しに捕集	区分及い事政田米廃業物等の放射能震度の区分に応した捕	
集効率を持つ呼吸用保護具又はこれと同等以上のものをい	効率を持つ呼吸用保護具又はこれと同等以上のものをいうこ 1	果効率を持つ呼吸用保護具又はこれと同等以上のものをい	
うこと。		う <u>こ</u> と。	

柏崎刈羽原子力発電所 6/7号	号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
放射能濃度 200万 Bq/kg 超 5	放射能濃度 50万Bq/kg超 200万Bq/kg以 下	放射能濃度 放射能濃度 放射能濃度 放射能濃度 放射能濃度 50万Bq/kg超 50万Bq/kg 超 50万Bq/kg 以下 500DF 500DF<	放射能濃度 放射能濃度 放射能濃度 放射能濃度 50万Bq/kg超 加射能濃度 200万Bq/kg超 200万Bq/kg辺 50万Bq/kg以 下 下	
高濃度粉じん作 捕集効率 99.9%以 業(粉じん濃度 上 10mg/m³ 超の場所 (全面型)	捕集効率 95%以 捕集効率 80% 上 以上	ける作業) 高濃度粉じん作業 捕集効率 95%以 以外の作業 上 (粉じん濃度 10mg /m³以下の場所に おける作業)	高濃度粉じん作 業(粉じん濃度 10mg/m³超の場所 における作業) 捕集効率 99.9%以 上 (全面型) 捕集効率 95%以 上 捕集効率 80%	
 高濃度粉じん作 業以外の作業(粉 じん濃度 10mg/m³ 捕集効率 95%以上 以下の場所にお ける作業) 	捕集効率 80%以 上		高濃度粉じん作 業以外の作業(粉) じん濃度 10mg/m³ 捕集効率 95%以上 以下の場所にお 上	
②防じんマスクの捕集効率につ ログラムを超える事故由来 廃棄物等を取り扱う作業であ ラム毎立方メートルを超える 合、内部被ばく線量を1年につ るため、漏れを考慮しても、 る捕集効率99.9%以上の全面型 付けたものであること。	いては、200万ベクレル毎キ って、粉じん濃度が10ミリグ 場所における作業を行う場 つき1ミリシーベルト以下とす 50以上の防護係数を期待でき 2防じんマスクの着用を義務	②防じんマスクの捕集効率については、200万ベクレル毎キロ グラムの超える事故由来廃棄物を扱う作業であって、粉じん 濃度が10ミリグラム毎立方メートルを超える場所における作 業を行う場合、内部被ばく線量を1年につき1ミリシーベル ト以下とするため、漏れを考慮しても、50以上の防護係数を 期待できる捕集効率99.9%以上の全面型防じんマスクの着用 を義務付けたものであること。	 ②防じんマスクの捕集効率については、200万ベクレル毎キ ログラムを超える事故由来 廃棄物等を取り扱う作業であって、粉じん濃度が10ミリグ ラム毎立方メートルを超える場所における作業を行う場 合、内部被ばく線量を1年につき1ミリシーベルト以下とす るため、漏れを考慮しても、50以上の防護係数を期待でき る捕集効率99.9%以上の全面型防じんマスクの着用を義務 付けたものであること。 	
2. 全面マスクの防護係数 50 について 空気中の放射性物質の濃度が「核」 錬の事業に関する規則等の規定に基 別表第一 第四欄」の十分の一を超 する。 全面マスクを納入しているマスク ク(よう素用吸収缶)についての除 査は,放射性ヨウ化メチルを用い, る。その結果は,DF≧1.21×10 ³ と十 確認した。(フィルタの透過率は0.0	て 原料物質又は核燃料物質の製 づく線量限度等を定める告示 える場合,全面マスクを着用 メーカーにおいて,全面マス 染係数を検査している。本検 除染係数を算出したものであ 分な除染係数を有することを 083%以下)	 マスクメーカーによる除染係数検査結果について 全面マスクを納入しているマスクメーカーにおいて、全面マスク(よう素用吸収缶)についての除染係数を検査している。本検査は、放射性ヨウ化メチルを用い、除染係数を算出したものである。その結果は第12-1表に示すとおりであり、 DF≧1.21×103と十分な除染係数を有することを確認した。 (フィルタの透過率は0.083%以下) 	 2. 全面マスクの防護係数 50 について 空気中の放射性物質の濃度が「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示別表第一 第四欄」の十分の一を超える場合,全面マスクを着用する。 全面マスクを納入しているマスクメーカーにおいて,全面マスク(よう素用吸収缶)についての除染係数を検査している。本検査は,放射性ヨウ化メチルを用い,除染係数を算出したものである。 その結果は、DF≥1.21×10³ と十分な除染係数を有することを確認した。(フィルタの透過率は 0.083%以下) 	

柏崎	刈羽原子力	発電所	6/7号炉	(2017.	12.20版)		東海	毎第二発電	 重所(2018	. 9. 18 版)			I	島根原子力	〕発電所 2	号炉		備考
表 2-12-1 マスクメーカーによる除染係数検査結果						第 12-	-1表 マ	スクメー	カーによる	5 除染係数	文検査結果	Ā	表 12-1 マスクメーカーによる除染係数検査結果					
(CA-N4RI (⑨	及 収缶)が	対性ヨウ化	ヒメチル通知	気試験							(CA-N4RI (9	及収缶) 放	、射性ヨウ化	メチル通気	試験	
入口濃度	4 時間]後	10 時	持間後			4 時	間後	10 🗷	5 問後			4時	間後	10 時	f間後		
「Ba/cm ³]	出口濃度	DF 値	出口濃度	DF 値	試験条件	入口濃度 (Bq/cm ³)	出口濃度 (Ba/cm ³)	DF 値	出口濃度 (Ba / cm ³)	DF 値	試験条件	[Ba/cm ³]	出口濃度	DF値	出口濃度	DF値	試験条件	
	[Bq/cm ³]	- 1	$[Bq/cm^3]$	16-2		9.45×10 ⁻²	4.17×10^{-7}	2.27×10 ⁵	8. 33×10 ⁻⁷	1.13×10 ⁵	試験流量:20L/min		$[Bq/cm^3]$		$[Bq/cm^3]$			
9. 45×10^{-2}	ND	2.27×10^{5}	8.33×10 ⁻⁷	1.13×10^{5}	試験流量:20L/min	7.59×10 ⁻⁵	6.25×10 ⁻⁸	1.21×10 ³	2.78×10 ⁻⁸	2.73×10 ³	通気温度:30℃ 相対湿度:95%RH	9.45×10^{-2}	ND	2. 27×10^{5}	8.33×10^{-7}	1.13×10^{5}	試験流量:20L/min	
	(4.17×10 ⁻⁷)				- 通気温度:30℃					1	1		(4.17×10 ⁻⁷)				通気温度:30℃	
7.59×10^{-5}	ND	1.21×10^{3}	ND	2.73×10^{3}	相対湿度:95%RH							7.59 $\times 10^{-5}$	ND	1.21×10^{3}	ND	2.73 $\times 10^{3}$	相対湿度:95%RH	
	(6.25×10 ⁻⁸)	(1000	(2.78×10 ⁻⁸)										(6. 25×10 ⁻⁸)	(lat 1st . l .	(2.78×10 ⁻⁸)			
ND:検出	限界值未満	(括弧内	が検出限界	.値)								ND:検出	限界值未満	[(拮弧内:	が検出限界位	直)		
. 1. 1.						また同	ドノコスノ	フィーカー	-に ト り 今	面ママカ	の漏れ家を検	++	日ドイラフ	<i>ь</i> , т	にとい人	T	泥とまたや木	
また,	可じくマス	クメーカ	ーにより全	面マスク0)漏れ率を検査	本しており		ベン ス ふむ 0 019	により主 %であった		り個化学を彼れ家と降沈係	また,	回しくマメ	·クメーカ 0 010/です	ーにより全[ちょち	面マスクの	雨 れ や を 使 宜	
しており	, 最大でも	0.01%°Ca				直してい 粉 (フィ)	レタ香温惑	、0 0.01 ミ) から到	管 さわ ろ	-。 <u></u>	+約 1 075 で		,取人じも			田旧雄日の	温和 住田五	
以上の	ことから,	JIST 815	0:2006 □円	ド吸用保護	良の選択、使用	to to								5 1 815U.	2006 中学校	用体で見り	<u>選択,使用及</u>	
及び保守	菅埋万法」 、 トンチルマキ	の防護係	数の求め方 ***	に従い、派	雨れ率と际架係								理力伝」の	小びでが数	シルフロー	たい、(雨子し	平と际架体数	
一致(ワイ)	レダ透週率)から計算	 早される防i	護係数は約	11075であった。								2週半)	から訂昇	21101/1渡1	糸安(よれ)10	<u>15 Cめつ/こ。</u>	
防護係	数(PF)=100	/{漏れ3	≤ (%) +フ	イルタ透過	围率(%)}							防護係数	(PF)=100/	(漏れ率	(%) +フィノ	レタ透過率	(%) }	
	=100/	(0.01+0)	. 083) ≒107	'5								=100/(0.	. 01+0. 083	3)≒1075				
						3. 呼吸用	保護具着	用に関す	る教育・訓	練につい	7							
						東海第二	発電所では	<u>t, 定期</u> 核	食査等にお	いて定期	的に着用の機							
						会がある	ことから、	基本的に	こ呼吸用保	護具着用	に関して習熟							
						している。	~											
ただし	全面マス	クによる	防護係数に	ついては,	着用者個人の	また,放	村線業務従	住事者指定	を時及び定	期的に,	放射線防護に	ただし	, 全面マス	クによる	防護係数に	ついては,	着用者個人の	
値であり	実作業時	の防護係	数は,より	低下する可	可能性があるた	関する教育・訓練を実施している。講師による指導のもとフ				値であり,実作業時の防護係数は,より低下する可能性があるた					能性があるた			
め, 講師	による指導	のもとフ	イッティン	グテスター	ーを使用した全	イッティングテスターを使用した呼吸用保護具着用訓練にお				め,講師による指導のもとフィッティングテスターを使用した全					を使用した全			
面マスク	着用訓練を	行い、漏	れ率(フィ	ルタ透過率	≤を含む)2%を	いて、漏れ	1率(フィ	ルタ透過	率を含む) 2%を担	保できるよう	面マスク着用訓練を行い,漏れ率(フィルタ透過率を含む)2%を					を含む) 2%を	
担保でき	るよう正し	く全面マ	スクを着用	できている	ることを確認し	正しく呼	及用保護具	を着用て	きている	ことを確認	忍する。	担保できるよう正しく全面マスクを着用できていることを確認し					ことを確認し	
ている。						今後とも,	さらに孝	教育・訓練	東を進めて	いき,呼	吸用保護具着	TN3.						
このた	め,全面マ	スクによ	る防護係数	:は,50とす	トる。なお,全	用の熟練	度を高めて	行く。				このた	め,全面マ	スクによ	る防護係数に	<u>は, 50 とす</u>	る。なお、全	
面マスク	着用訓練に	ついては	,今後とも	,さらに参	汝育・訓練を進							面マスク	着用訓練に	ついては	, 今後とも,	さらに教	育・訓練を進	
めていき	マスク着	用の熟練	度を高めて	いく。								めていき	,マスク着	用の熟練	度を高めてい	<u>N</u>		

柏崎	刘羽原子力	」発電所	6/7号炉	(2017.	12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
3. 電動フ	アン付き金	全面マスク	の防護係数	1000 につ	いて			・資機材の相違
空気中	の放射性物	物質の濃度	が特に高い	環境で作業	業を行う場合			【柏崎 6/7】
(例えば	,可搬型隊	易圧化空調	機の起動前	におけるロ	中央制御室滞在			島根2号炉は,全面マス
時等),	電動ファン	/付き全面	マスクを着	用する。				クの使用を想定した評
電動フ	ァン付き金	全面マスク	を納入して	いる2つの	マスクメーカ			価としている
ーにおい	て,電動ス	ファン付き	全面マスク	(よう素咖	吸収缶)につい			
ての除染	係数を検査	至している	。本検査は	,放射性日	ヨウ化メチルを			
用い除染	係数を算出	目したもの	である。そ	の結果は,	$DF \ge 1.71 \times 103$			
<u>と十分な</u>	除染係数を	と有するこ	とを確認し	た。(フィ	イルタの透過率			
は0.058%	以下)							
表2	2-12-2 マ	・スクメー	カーA によ	る除染係数	x 検査結果			
R	DG — 72HP	(吸収缶)	放射性ヨウ	化メチル通	通気試験			
入口濃度	4 時	間後	10 時	間後				
[Bg/cm ³]	出口濃度	DF 値	出口濃度	DF 値	試験条件			
	$[Bq/cm^3]$	1)	[Bq/cm ³]	1,				
8.83×10 ⁻²	1.91×10^{-5}	4.62×10^{3}	2.64×10 ⁻⁵	3.34×10^{3}	試験流量:47L/min			
8.08 $\times 10^{-5}$	ND	$1.71 \times 10^{3 \pm 1}$	4.73×10 ⁻⁸	1.71×10^{3}	通気温度:30℃			
					相対湿度:95%RH			
<u>ND:検出</u>	限界值未清	苟						
<u>×1 10</u>	時間試験に	こおいて最	初に検出さ	れたサンプ	プリング時間の			
DF を示す	-							
表:	2-12-3 🗟	マクメー	カーB による	る除染係数	、検査結果			
C	A-V3NRI	(吸収缶)	放射性ヨウ	化メチル通	<u> 通気試験</u>			
入口濃度	4 時	間後	10 時	間後	_			
[Bq/cm ³]	出口濃度	DF 値	出口濃度	DF 値	試験条件			
	[Bq/cm ³]		[Bq/cm ³]					
8.84×10 ⁻²	5.04×10 ⁻⁷	1.75×10^{5}	3.03×10^{-6}	2.92×10^4	試験流量:38L/min			
9.89×10 ⁻⁵	ND	$3.0 \times 10^{3 \% 2}$	ND	4.5×10 ^{3$\%2$}	通気温度:30℃			
	(3.3×10 ⁻⁸)		(2.2×10^{-8})		相対湿度:95%RH			
<u>ND:検出</u>	限界值未清	<u> </u>	が検出限界	值) ※2	<u>DF 値は,検出</u>			
<u>限界値よ</u>	り算出した	-						
<u>また,</u>	<u>同じくマス</u>	スクメーカ	ーにより電	動ファン作	<u>すき全面マスク</u>			
<u>の漏れ率</u>	を検査して	こおり,0.	<u>01%未満で</u>	あった。				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
<u>電動ファン付き全面マスクは、電動ファンを内蔵しており、図</u>			・資機材の相違
2-12-1とおり着用者の呼吸を常に監視しながらフィルタを通した			【柏崎 6/7】
十分な量の空気を面体に供給することで、面体内を常に陽圧に保			島根2号炉は,全面マス
つことができるため、全面マスクに比べ着用者による防護係数の			クの使用を想定した評
低下の可能性は低い。			価としている
息を吸うとき 息を吐くとき			
プロワー 稼働時 面体内 万ロワー 原止時 面体内 送風 送風停止*2 振気			
 息を吸うと面体内の空気が吸引されるが、 送風することで陰圧の状態になることを防ぐ。 ・すき間が生じた場合はエアが噴き出す。 ・息を吐く際は面体内圧が低下する要因がないため、 その分送風を抑える。 			
図 2-12-1 陽圧化マスクのイメージ			
以上のことから、JIST 8150:2006「呼吸用保護具の選択、使用			
<u> 及い休寸官理力法」の防護係数の水の力に促い,痛れ半と味染除</u> 数(フィッカンズ週末)から記算されて吐滞疾粉は約1470です。た			
<u> </u>			
<u>防護係数(PF)=100/{ 漏れ率(%)+フィルタ透過率(%)}</u> <u>=100/(0.01+0.058)≒1470</u>			
このため、電動ファン付き全面マスクによる防護係数は、保守			
的に1000とする。			
加えて、電動ファン付き全面マスクは、面体内が陽圧化するた			
め、全面マスクに比べ楽に呼吸をすることができる。			
<u>電動ファン付き全面マスクのバッテリー稼働時間は、メーカー</u>			
公称値として5時間以上となっている。なお、電源が切れた状態に			
おいても,全面マスク同等の防護係数を有する。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-13 原子炉建屋内の放射性物質からのガンマ線による被ばくの		13 原子炉建物内の放射性物質からのガンマ線による被ばくの評	
評価方法について		価方法について	
中央制御室の居住性に係る被ばく評価における、原子炉建屋内		中央制御室の居住性に係る被ばく評価における, 原子炉建物内	
の放射性物質からのガンマ線(直接ガンマ線及びスカイシャイン		の放射性物質からのガンマ線(直接ガンマ線及びスカイシャイン	
ガンマ線)による被ばくは、原子炉建屋内の放射性物質の積算線		ガンマ線)による被ばくは、原子炉建物内の放射性物質の積算線	
源強度,施設の位置,遮蔽構造,地形条件等から評価する。具体		源強度,施設の位置,遮蔽構造,地形条件等から評価する。具体	
的な評価方法を以下に示す。		的な評価方法を以下に示す。	
なお,中央制御室の居住性に係る被ばく評価においては,格納			・設備の相違
容器圧力逃がし装置及びよう素フィルタ内に取り込まれた放射性			【柏崎 6/7】
物質からのガンマ線 (直接ガンマ線及びスカイシャインガンマ線)			島根2号炉では, FCVS
による被ばくについても評価しており,評価方法については「2-18			格納槽は地下に設置し、
格納容器圧力逃がし装置及びよう素フィルタ内の放射性物質から			十分な遮蔽を設けるた
のガンマ線による被ばくについて」に記載する。			め線源として考慮して
(1)原子炉建屋内の積算線源強度		(1)原子炉建物内の積算線源強度	いない
原子炉格納容器から原子炉建屋内に漏えいした放射性物質の積		格納容器から原子炉建物内に漏えいした放射性物質の積算線源	
算線源強度[photons]は、核種ごとの積算崩壊数[Bq・s]に核種ご		強度[photons]は、核種ごとの積算崩壊数[Bq・s]に核種ごとエネ	
とエネルギーごとの放出率[photons/(Bq•s)]を乗ずることで評価		ルギーごとの放出率[photons/(Bq・s)]を乗ずることで評価した。	
した。なお、放射性物質は自由空間内		なお,放射性物質は自由空間内 に均一に分布するも	
に分布するものとした。		のとした。	
$a = \sum_{i=1}^{n} a_{i}$		$S = \sum O_{1} \cdot S_{2}$	
$S_{\gamma} = \sum_{k} Q_{k} \cdot S_{k\gamma}$		$\sigma_{\gamma} = \sum_{K} q_{K} \sigma_{K\gamma}$	
S _y :エネルギー γの photon の積算線源強度[photons]		s _γ :エネルギーγの photon の積算線源強度[photons]	
Q _k :核種 k の積算崩據数[Bq・s]		Q _k :核種 k の積算崩壊数[B _q ·s]	
s _{ky} : 核種 k のエネルギーγ の photon の放出率[photons/(Bq・s)]		s _{ky} :核種 k のエネルギーγの photon の放出率[photons/(B _q ·s)]	
核種ごとの積算崩壊数は以下の式により評価した。ここで、核		核種ごとの積算崩壊数は以下の式により評価した。ここで、核	
種の原子炉建屋内への漏えい率[Bq/s]は,添付資料2 2-1の表		種の原子炉建物内への漏えい率[Bq/s]は, 添付資料1の表1-1に	
2-1-1に示すとおり, MAAP解析結果及びNUREG-1465の知見に基づき		示すとおり, MAAP 解析結果及びNUREG-1465 の知見に基	
評価した。また、よう素類については、よう素の化学形態に応じ		づき評価した。また、よう素類については、よう素の化学形態に	
た原子炉格納容器内での除去のされ方の違いを考慮した。		応じた格納容器内での除去のされ方の違いを考慮した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
$Q_{k} = \int_{0}^{T} q_{k}(t) \cdot \frac{1}{\lambda_{k}} \cdot \left(1 - \exp(-\lambda_{k}(T-t))\right) dt$		$Q_{k} = \int_{0}^{T} q_{k}(t) \cdot \frac{1}{\lambda_{k}} \cdot \left(1 - exp(-\lambda_{k}(T-t))\right) dt$	
Q _k : 核種 k の積算崩壊数[Bq・s] q _k (t) : 時刻 t における核種 k の原子炉建屋への漏えい率[Bq/s] λ _k : 核種 k の崩壊定数[1/s] T :評価期間[s]		Q _k :核種 k の積算崩壊数[Bq・s] q _k (t):時刻 t における核種 k の原子炉建物への漏えい率[Bq/s] λ _k :核種 k の崩壊定数[1/s] T:評価期間[s]	
核種ごとエネルギーごとの放出率[photons/(Bq・s)]は、制動放 射 (H_0) を考慮したORIGEN2 ライブラリ (gkl2obrm.lib) 値を参 照する。また、エネルギー群をORIGEN2のガンマ線ライブラリの群 構造 (18群) からMATXSLIB-J33 (42群) に変換した。変換方法は 「日本原子力学会標準 低レベル放射性廃棄物輸送容器の安全設 計及び検査基準: 2008」 (2009年9月 (社団法人) 日本原子力学会) の附属書Hに記載されている変換方法を用いた。 (図2-13-1参照) 以上の条件に基づき評価した原子炉建屋内の積算線源強度は添 付資料2 2-1の表2-1-7のとおり。		核種ごとエネルギーごとの放出率[photons/(Bq・s)]は、 <u>ベータ</u> <u>線放出核種の水中における</u> 制動放射を考慮した ORIGEN2 ライブラ リ (gxh2obrm. lib)値を参照した。また、エネルギー群を ORIGEN2 のガンマ線ライブラリ群構造(18 群)から MATXSLIB-J33(42 群)に 変換した。変換方法は「日本原子力学会標準 低レベル放射性廃 棄物輸送容器の安全設計及び検査基準:2008」(2009 年 9 月(社 団法人)日本原子力学会)の付属書IIに記載されている変換方法 を用いた。(図 13-1 参照) 以上の条件に基づき評価した原子炉建物内の積算線源強度は添 付資料1の表 1-7のとおり。	
図 2-13-1 エネルギー群の変換方法		w _{k,n} : ⊿E _{k+1,n} /⊿E _{k,k+1} 図 13-1 エネルギー群の変換方法	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(2)評価体系		(2)評価体系	
直接ガンマ線及びスカイシャインガンマ線の評価体系は添付資		直接ガンマ線及びスカイシャインガンマ線の評価体系は添付資	
料2 2-1の図2-1-1のとおり。		料1の図1-1のとおり。	
中央制御室滞在時の評価に当たっては、中央制御室待避室周り		中央制御室滞在時の評価に当たっては、中央制御室待避室周り	
の遮蔽壁によるガンマ線の遮蔽効果は保守的に考慮せず、ユント		の遮蔽壁によるガンマ線の遮蔽効果は保守的に考慮せず、 <u>制御室</u>	
ロール建屋の外壁及び2階床面の遮蔽効果のみを考慮した。		建物の遮蔽及び原子炉建物の外壁のみを考慮した。なお、制御室	・評価条件の相違
		建物の遮蔽及び2号炉原子炉建物の外壁の厚さのうち最も薄い遮	【柏崎 6/7】
		蔽壁から、それぞれのマイナス側許容施工誤差を差し引いた値を	島根2号炉は,予めコ
		使用した。	ンクリート施工誤差を
評価点は中央制御室の中で線源となる原子炉建屋に最も近い点		評価点は中央制御室の中で線源となる原子炉建物に最も近い点	差し引いた評価を実施
(北面:6号炉からの影響評価時,南面:7号炉からの影響評価時)		とし,評価点高さは中央制御室の天井面とした。	している
とし,評価点高さは中央制御室の床面から1.5m高さとした。			
入退域時の評価に当たっては、周囲の遮蔽壁による遮蔽効果は		入退域時の評価に当たっては、周囲の遮蔽壁による遮蔽効果は	
保守的に考慮しないものとした。評価点はコントロール建屋の入		保守的に考慮しないものとした。評価点は2号炉原子炉補機冷却	
<u> 只</u> とし,評価点高さは <u>地面から1.5m高さ</u> とした。		<u>系熱交換器室入口</u> とし,評価点高さは <u>地面から2m 高さ</u> とした。	・評価条件の相違
なお、直接ガンマ線の評価に当たっては、原子炉建屋の地下階		なお,直接ガンマ線の評価に当たっては,原子炉建物の地下階	【柏崎 6/7】
の自由空間中の放射性物質に起因するガンマ線は地下階の外壁及		の自由空間中の放射性物質に起因するガンマ線は地下階の外壁及	島根2号炉は,被ばく上
び土壌により十分に遮蔽されると考えられることから,1階から最		び土壌により十分に遮蔽されると考えられることから、地上1 階	最も厳しくなる地点を
上階(5階)までの自由空間中の放射性物質に起因するガンマ線の		から原子炉建物屋上階までの自由空間中の放射性物質に起因する	評価点としている。
みを考慮するものとした。また、スカイシャインガンマ線の評価		ガンマ線のみを考慮するものとした。また、スカイシャインガン	・評価条件の相違
に当たっては、下層階の自由空間中の放射性物質に起因するガン		マ線の評価に当たっては、原子炉建物屋上階の下層階の自由空間	
マ線は原子炉建屋の床面により十分に遮蔽されると考えられるこ		中の放射性物質に起因するガンマ線は原子炉建物屋上階の床面に	
とから,原子炉建屋4階から最上階(5階)までの自由空間中の放		より十分に遮蔽されると考えられることから、原子炉建物最上階	
射性物質に起因するガンマ線のみを考慮するものとした。		の自由空間中の放射性物質に起因するガンマ線のみを考慮するも	
(3)評価コード		<u>nelte</u>	
直接ガンマ線による被ばく評価には, QAD-CGGP2Rコード**1を用		(3)評価コード	
いた。また、スカイシャインガンマ線による被ばくの評価には、		直接ガンマ線による被ばく評価には,QAD-CGGP2R コ	
ANISNコード及びG33-GP2Rコード ^{※1} を用いた。		ード*1を用いた。また、スカイシャインガンマ線による被ばくの	
		評価には、ANISN コード及びG33-GP2R コード※1を	
※1 ビルドアップ係数は GP 法を用いて計算した。		用いた。	
		※1 ビルドアップ係数はGP 法を用いて計算した。	
(4)評価結果		(4)評価結果	
直接ガンマ線及びスカイシャインガンマ線による被ばくの評価		直接ガンマ線及びスカイシャインガンマ線による被ばくの評価	
結果を表2-13-1及び表2-13-2に示す。		結果を表 13-1 及び表 13-2 に示す。	

羽原	子力	発電所 6	/7号炉	(2017.12.	20版)
評価	結果	1. (代替循環	環冷却系を用	引いて事象を	と収束する場
			合)		
		-	an bride	W [o]	
		-1-1-1-1	評価稿	果[mSv]	
	積算日数	直接力	ンマ緑	スカイシャー	インガンマ緑
4		6 号炉	7 号炉	6 号炉	7号炉
	1日	約 1.9×10 ⁻¹	約 5.8×10 ⁻³	約 9.6×10 ⁻⁵	約2.5×10 ⁻⁴
	2日	約 2.2×10 ⁻¹	約 6.3×10 ⁻³	約1.6×10 ⁻⁴	約4.4×10 ⁻⁴
	3日	約 2.4×10 ⁻¹	約 6.6×10 ⁻³	約 2.2×10 ⁻⁴	約 6.1×10 ⁻⁴
	4日	約 2.5×10 ⁻¹	約 6.8×10 ⁻³	約 2.7×10 ⁻⁴	約7.6×10 ⁻⁴
	5日	約 2.6×10 ⁻¹	約 6.9×10 ⁻³	約 3.2×10 ⁻⁴	約 9.1×10 ⁻⁴
	6日	約 2.7×10 ⁻¹	約7.0×10 ⁻³	約 3.7×10 ⁻⁴	約1.1×10 ⁻³
	7日	約 2.8×10 ⁻¹	約7.1×10 ⁻³	約4.1×10 ⁻⁴	約1.2×10 ⁻³
	18	約 6.9×10 ⁰	約4.9×10 ⁻³	約1.9×10 ¹	約 5.3×10 ¹
	28	約1.1 1 1 10	約5.4×10-3	約4.0×10	約1.5×102
	4 H	\$51.1×10	ME 6 V 10-3	10 4. 0 × 10	\$51.0×10 \$50.6×102
	3 🗆	釈) 1.4×10 [*]	和 5.6×10-	₩) 8.3×10°	釈) 2. 6×10*
	4日	約 1.7×10 [•]	約 5.8×10°	₩9 1.2×10*	約 3.8×10*
	58	約 2.0×10 ¹	約 5.9×10 ⁻³	約 1.6×10 ²	約 5.2×10 ²
	6日 7日	約 2.2×10 ¹ 約 2.5×10 ¹	約 6.0×10 ⁻³ 約 6.1×10 ⁻³	約 2.1×10 ² 約 2.6×10 ²	約 6.8×10 ² 約 8.5×10 ²
2	6日 7日 評価結果	約2.2×10 ¹ 約2.5×10 ¹ (格納容器	約6.0×10 ³ 約6.1×10 ³ ベントを実	約2.1×10 ² 約2.6×10 ² 施する場合	約 6.8×10 ² 約 8.5×10 ²
2	6日 7日 評価結果	約2.2×10 ⁴ 約2.5×10 ⁴ (格納容器	約6.0×10 ³ 約6.1×10 ³ ベントを実 評価結	約2.1×10 ² 約2.6×10 ² 施する場合 课[mSv]	約 6.8×10 ² 約 8.5×10 ²
2	6日 7日 評価結果 積算日数	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 _{直接力}	約6.0×10 ³ 約6.1×10 ³ ベントを実 評価結	約2.1×10 ² 約2.6×10 ² 施する場合 課[mSv] スカイシャ	約6.8×10 ² 約8.5×10 ²)
	6日 7日 評価結果 積算日数	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 直接力 6 号炉	 約6.0×10³ 約6.1×10³ ベントを実 評価結 シマ線 7号炉 	約2.1×10 ² 約2.6×10 ² 施する場合 [果[mSv] スカイシャ 6号炉	 約 6.8×10² 約 8.5×10² / /ul>
	6日 7日 評価結果 積算日数 1日	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 直接力 6号炉 約1.9×10 ⁻¹	 約6.0×10³ 約6.1×10³ ベントを実 評価結 シマ線 7 号炉 約5.6×10⁻³ 	約2.1×10 ² 約2.6×10 ² 施する場合 ^{[果[mSv]} スカイシャ 6号炉 約9.5×10 ⁵	 約6.8×10² 約8.5×10² インガンマ線 7号炉 約2.5×10⁻⁴
	6日 7日 評価結果 積算日数 1日 2日	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 直接力 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹	 約6.0×10³ 約6.1×10³ ベントを実 評価結 シマ線 7 号炉 約5.6×10⁻³ 約6.2×10⁻³ 	 約2.1×10² 約2.6×10² 施する場合 课[mSv] スカイシャ 6号炉 約9.5×10⁻⁵ 約1.6×10⁻¹ 	 約6.8×10² 約8.5×10² インガンマ線 7号炉 約2.5×10⁻⁴ 約4.4×10⁻⁴
	6日 7日 評価結果 積算日数 1日 2日	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 直接力 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹	 約6.0×10³ 約6.1×10³ ベントを実 評価結 シマ線 7号炉 約5.6×10⁻³ 約6.2×10⁻³ 約6.2×10⁻³ 	約2.1×10 ² 約2.6×10 ² 施する場合 課[mSv] スカイシャ 6号炉 約9.5×10 ⁻⁵ 約1.6×10 ⁻¹	 約6.8×10² 約8.5×10² インガンマ線 7号炉 約2.5×10⁻⁴ 約4.4×10⁻⁴ 約5.2×10⁻⁴
	6日 7日 評価結果 積算日数 1日 2日 3日	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 直接力 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹ 約2.2×10 ⁻¹	 約6.0×10³ 約6.1×10³ ベントを実 評価結 ジンマ線 7号炉 約5.6×10⁻³ 約6.2×10⁻³ 約6.2×10⁻³ 約6.2×10⁻³ 	 約2.1×10² 約2.6×10² 施する場合 課[mSv] スカイシャ 6号炉 約9.5×10⁻⁵ 約1.6×10⁻¹ 約1.9×10⁻⁴ 	 約6.8×10² 約8.5×10² インガンマ線 7号炉 約2.5×10⁻⁴ 約4.4×10⁻⁴ 約5.2×10⁻⁴
2	6日 7日 評価結果 積算日数 1日 2日 3日 4日	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 直接力 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹ 約2.2×10 ⁻¹	 約6.0×10³ 約6.1×10³ ベントを実 評価結 ジマ線 7号炉 約5.6×10⁻³ 約6.2×10⁻³ 約6.2×10⁻³ 約6.3×10⁻³ 	約2.1×10 ² 約2.6×10 ² 施する場合 课[mSv] スカイシャ 6号炉 約9.5×10 ⁻⁵ 約1.6×10 ⁻¹ 約1.9×10 ⁻⁴	 約6.8×10² 約8.5×10² インガンマ線 7号炉 約2.5×10⁻⁴ 約4.4×10⁻⁴ 約5.2×10⁻⁴ 約5.7×10⁻⁴
	6日 7日 評価結果 積算日数 1日 2日 3日 4日 5日	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 直接力 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹ 約2.2×10 ⁻¹ 約2.3×10 ⁻¹	 約6.0×10³ 約6.1×10³ ベントを実 評価結 アンマ線 7号炉 約5.6×10⁻³ 約6.2×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 	 約2.1×10² 約2.6×10² 施する場合 課[mSv] スカイシャ 6号炉 約9.5×10⁻⁵ 約1.6×10⁻⁴ 約2.0×10⁻⁴ 約2.2×10⁻⁴ 	 約6.8×10² 約8.5×10² インガンマ線 7号炉 約2.5×10⁻⁴ 約4.4×10⁻⁴ 約5.2×10⁻⁴ 約5.7×10⁻⁴ 約6.1×10⁻⁴
2	6日 7日 評価結果 積算日数 1日 2日 3日 4日 5日 6日	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 直接力 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹ 約2.2×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹	 約6.0×10³ 約6.1×10³ ベントを実 評価結 シマ線 7 号炉 約5.6×10⁻³ 約6.2×10⁻³ 約6.2×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 	 約2.1×10² 約2.6×10² 施する場合 課[mSv] スカイシャ 6号炉 約9.5×10⁻⁵ 約1.6×10⁻¹ 約1.9×10⁻⁴ 約2.2×10⁻⁴ 約2.3×10⁻⁴ 	 約6.8×10² 約8.5×10² インガンマ線 7 号炉 約2.5×10⁻⁴ 約4.4×10⁻⁴ 約5.2×10⁻⁴ 約5.7×10⁻⁴ 約6.1×10⁻⁴ 約6.5×10⁻⁴
	6日 7日 評価結果 積算日数 1日 2日 3日 4日 5日 6日 7日	約2.2×10 ⁴ 約2.5×10 ⁴ (格納容器 直接力 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹	 約6.0×10³ 約6.1×10³ ベントを実 評価編 ママ線 7号炉 約5.6×10⁻³ 約6.2×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 	 約2.1×10² 約2.6×10² 施する場合 課[mSv] スカイシャ 6号炉 約9.5×10⁻⁵ 約1.6×10⁻¹ 約2.0×10⁻⁴ 約2.2×10⁻⁴ 約2.3×10⁻⁴ 約2.3×10⁻⁴ 約2.4×10⁻⁴ 	 約6.8×10² 約8.5×10² 約8.5×10² インガンマ線 7号炉 約2.5×10⁻⁴ 約4.4×10⁻⁴ 約5.7×10⁻⁴ 約5.7×10⁻⁴ 約6.1×10⁻⁴ 約6.7×10⁻⁴ 約6.7×10⁻⁴
	6日 7日 評価結果 積算日数 1日 2日 3日 4日 5日 6日 7日 1日	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 直接力 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹	 約6.0×10³ 約6.1×10³ ベントを実 評価結 シマ線 7号炉 約5.6×10⁻³ 約6.2×10⁻³ 約6.2×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約4.8×10⁻³ 	 約2.1×10² 約2.6×10² 施する場合 課[mSv] スカイシャ 6号炉 約9.5×10⁻⁵ 約1.6×10⁻¹ 約1.9×10⁻⁴ 約2.2×10⁻⁴ 約2.3×10⁻⁴ 約2.4×10⁻¹ 約1.8×10¹ 	 約6.8×10² 約8.5×10² 約8.5×10² インガンマ線 7号炉 約2.5×10⁻⁴ 約4.4×10⁻¹ 約5.2×10⁻⁴ 約5.7×10⁻⁴ 約6.1×10⁻⁴ 約6.5×10⁻⁴ 約6.7×10⁻⁴ 約5.2×10¹
	6日 7日 評価結果 積算日数 1日 2日 3日 4日 5日 6日 7日 2日	約 2. 2×10 ¹ 約 2. 5×10 ¹ (格納容器 直接力 6 号炉 約 1. 9×10 ⁻¹ 約 2. 2×10 ⁻¹ 約 2. 2×10 ⁻¹ 約 2. 3×10 ⁻¹	 約6.0×10³ 約6.1×10³ ※ 6.1×10³ 評価結 ジマ線 7 号炉 約5.6×10³ 約6.2×10⁻³ 約6.2×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 	約2.1×10 ² 約2.6×10 ² 施する場合 課[mSv] スカイシャ 6号炉 約9.5×10 ⁻⁵ 約1.6×10 ⁻¹ 約1.9×10 ⁻⁴ 約2.0×10 ⁻¹ 約2.2×10 ⁻⁴ 約2.3×10 ⁻⁴ 約2.4×10 ⁻¹ 約5.1×10 ¹	 約6.8×10² 約8.5×10² 約8.5×10² インガンマ線 7 号炉 約2.5×10⁻⁴ 約4.4×10⁻⁴ 約5.2×10⁻⁴ 約5.7×10⁻⁴ 約6.1×10⁻⁴ 約6.7×10⁻⁴ 約6.7×10⁻⁴ 約5.2×10¹ 約5.2×10¹ 約5.2×10¹ 約5.2×10¹ 約5.2×10¹ 約5.2×10¹
	6日 7日 評価結果 積算日数 1日 2日 3日 4日 5日 6日 7日 1日 2日 3日 4日 5日 6日 7日 1日 2日 3日	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 直接力 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹ 約2.2×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹	 約6.0×10³ 約6.1×10³ ベントを実 評価結 ジンマ線 7号炉 約5.6×10⁻³ 約6.2×10⁻³ 約6.2×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 	 約2.1×10² 約2.6×10² 施する場合 課[mSv] スカイシャ 6号炉 約9.5×10⁻⁵ 約1.6×10⁻¹ 約2.0×10⁻⁴ 約2.2×10⁻⁴ 約2.3×10⁴ 約2.4×10⁻¹ 約1.8×10⁴ 約5.1×10¹ 約5.1×10¹ 約7.1×10¹ 	約6.8×10 ² 約8.5×10 ² 約8.5×10 ² インガンマ線 7号炉 約2.5×10 ⁻⁴ 約5.2×10 ⁻⁴ 約5.7×10 ⁻⁴ 約6.1×10 ⁻⁴ 約6.5×10 ⁻⁴ 約6.7×10 ⁻⁴ 約5.7×10 ⁻⁴ 約5.2×10 ¹⁴ 約6.1×10 ⁻⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹² 約1.5×10 ² 約2.2×10 ²
	6日 7日 評価結果 積算日数 1日 2日 3日 4日 5日 6日 7日 1日 2日 3日 4日 5日 6日 7日 1日 2日 3日 4日 5日 6日 7日 1日 2日 3日 4日	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 直接力 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹ 約2.2×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約1.1×10 ¹ 約1.1×10 ¹ 約1.2×10 ¹	 約6.0×10³ 約6.1×10³ ※ たいたを実 評価結 ジンマ線 7 号炉 約5.6×10⁻³ 約6.2×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 約5.3×10⁻³ 	 約2.1×10² 約2.6×10² 施する場合 課[mSv] スカイシャ 6号炉 約9.5×10⁻⁵ 約1.6×10⁻¹ 約1.9×10⁻⁴ 約2.2×10⁻⁴ 約2.4×10⁻¹ 約5.1×10¹ 約5.1×10¹ 約5.1×10¹ 約5.5×10¹ 	 約6.8×10² 約8.5×10² 約8.5×10² インガンマ線 7 号炉 約2.5×10⁻⁴ 約4.4×10⁻⁴ 約5.2×10⁻⁴ 約5.2×10⁻⁴ 約6.1×10⁻⁴ 約6.5×10⁻⁴ 約6.7×10⁻⁴ 約6.7×10⁻⁴ 約5.2×10¹ 約5.2×10¹ 約5.2×10² 約2.2×10² 約2.6×10²
	6日 7日 評価結果 積算日数 1日 2日 3日 4日 5日 6日 7日 1日 2日 3日 4日 5日 6日 7日 1日 2日 3日 4日 5日 4日 5日	約2.2×10 ⁴ 約2.5×10 ⁴ (格納容器 直接力 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹ 約2.2×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約1.1×10 ¹ 約1.1×10 ¹ 約1.3×10 ¹	 約6.0×10³ 約6.1×10³ 約6.1×10³ アンマ線 7号炉 約5.6×10⁻³ 約6.2×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約5.3×10⁻³ 	 約2.1×10² 約2.6×10² 施する場合 課[mSv] スカイシャ 6号炉 約9.5×10⁻⁵ 約1.6×10⁻¹ 約2.0×10⁻⁴ 約2.0×10⁻⁴ 約2.3×10⁻⁴ 約2.3×10⁻⁴ 約2.3×10⁻⁴ 約5.1×10⁴ 約5.1×10¹ 約5.1×10¹ 約8.5×10¹ 約9.7×10¹ 	約6.8×10 ² 約8.5×10 ² 約8.5×10 ² 105,000 7号炉 約2.5×10 ⁻⁴ 約5.2×10 ⁻⁴ 約5.2×10 ⁻⁴ 約5.7×10 ⁻⁴ 約6.1×10 ⁻⁴ 約6.7×10 ⁻⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹⁴ 約6.1×10 ⁻⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹⁴ 約5.2×10 ¹² 約2.2×10 ² 約2.6×10 ² 約3.0×10 ²
	6日 7日 7日 2価結果 積算日数 1日 2日 3日 4日 5日 6日 7日 1日 2日 3日 4日 5日 6日 7日 7日 6日 7日 6日 7日 6日 7日 6日 7日 7日 7日 7日 7日 7日 70 70 70 70 70 70 70 70 70 70 70 70 70	約2.2×10 ¹ 約2.5×10 ¹ (格納容器 直接力 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹ 約2.2×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ¹ 約1.1×10 ¹ 約1.1×10 ¹ 約1.2×10 ¹ 約1.4×10 ¹	 約6.0×10³ 約6.1×10³ ※ たまま ※ たまま ※ たきま ※ たき <	 約2.1×10² 約2.6×10² 施する場合 課[mSv] スカイシャ 6号炉 約9.5×10⁻⁵ 約1.6×10⁻¹ 約1.9×10⁻⁴ 約2.0×10⁻⁴ 約2.3×10⁻⁴ 約2.3×10⁻⁴ 約5.1×10¹ 約5.1×10¹ 約5.1×10¹ 約7.1×10¹ 約9.7×10¹ 約9.7×10¹ 約9.7×10¹ 約1.1×10² 	 約6.8×10² 約8.5×10² 約8.5×10² インガンマ線 7号炉 約2.5×10⁻⁴ 約4.4×10⁻⁴ 約5.2×10⁻⁴ 約5.7×10⁻⁴ 約6.1×10⁻⁴ 約6.5×10⁻⁴ 約6.7×10⁻⁴ 約5.2×10¹ 約5.2×10¹ 約5.2×10¹ 約5.2×10¹ 約5.2×10² 約2.2×10² 約2.6×10² 約3.0×10² 約3.0×10²
	6日 7日 6日 7日 6日 6日 7日 7日 7日 7日 7日 7日 7日 7日 7日 7日 7日 7日 7日	約2.2×10 ⁴ 約2.5×10 ⁴ (格納容器 6号炉 約1.9×10 ⁻¹ 約2.2×10 ⁻¹ 約2.2×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約2.3×10 ⁻¹ 約1.1×10 ¹ 約1.1×10 ¹ 約1.4×10 ¹	 約6.0×10³ 約6.1×10³ 約6.1×10³ アンマ線 7号炉 約5.6×10⁻³ 約6.2×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約6.3×10⁻³ 約5.3×10⁻³ 	 約2.1×10² 約2.6×10² 施する場合 課[mSv] スカイシャ 6号炉 約9.5×10⁻⁵ 約1.6×10⁻¹ 約2.0×10⁻⁴ 約2.0×10⁻⁴ 約2.2×10⁻⁴ 約2.3×10⁻⁴ 約2.3×10⁻⁴ 約2.4×10⁻¹ 約5.1×10¹ 約5.1×10¹ 約5.1×10¹ 約7.1×10¹ 約9.7×10¹ 約9.7×10¹ 約9.7×10¹ 約1.1×10² 約1.1×10² 	約6.8×10 ² 約8.5×10 ² 約8.5×10 ² インガンマ線 7号炉 約2.5×10 ⁻⁴ 約5.2×10 ⁻⁴ 約5.2×10 ⁻⁴ 約5.2×10 ⁻⁴ 約5.2×10 ⁻⁴ 約5.7×10 ⁻⁴ 約6.1×10 ⁻⁴ 約6.5×10 ⁻⁴ 約6.7×10 ⁻⁴ 約5.2×10 ¹ 約5.2×10 ¹ 約5.2×10 ¹ 約5.2×10 ² 約5.2×10 ² 約5.2×10 ² 約2.2×10 ² 約3.0×10 ² 約3.0×10 ² 約3.0×10 ²

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-14 放射性雲中の放射性物質からのガンマ線による被ばくの評		14 放射性雲中の放射性物質からのガンマ線による被ばくの評価	
価方法について		方法について	
中央制御室の居住性に係る被ばく評価における、放射性雲中の		中央制御室の居住性に係る被ばく評価における、放射性雲中の	
放射性物質からのガンマ線(クラウドシャインガンマ線)による		放射性物質からのガンマ線(クラウドシャインガンマ線)による	
被ばくは、放射性物質の放出量、大気拡散の効果及び建屋による		被ばくは、放射性物質の放出量、大気拡散の効果及び建物による	
ガンマ線の遮蔽効果を考慮し評価する。		ガンマ線の遮蔽効果を考慮し評価する。	
具体的な評価方法を以下に示す。		具体的な評価方法を以下に示す。	
(1)放出量及7%大気拡散		(1) 放出量及7%大気拡散	
大気中への放出放射能量は添付資料2 2-1の表2-1-2の値を用		大気中への放出放射能量は添付資料1の表1-2の値を用いた。	
いた。また、使用する相対線量は添付資料2 2-1の表2-1-5の値を		また、使用する相対線量は添付資料1の表1-5の値を用いた。	
(2)評価体系		(2)評価体系	
中央制御室滞在時の評価においては、中央制御室を囲む遮蔽を		中央制御室滞在時の評価においては、中央制御室を囲む遮蔽を	
考慮し、遮蔽厚さをコンクリート		考慮し、遮蔽壁厚さは、制御室建物外壁コンクリートの最小厚さ	・評価条件の相違
ルを図2-14-1に示す。		からマイナス側の許容施工誤差したものです。	【柏崎 6/7】
入退域時の評価においては、保守的に周囲に遮蔽壁がないもの		値 と設定した。評価モデルを図 14-1 に示す。	島根2号炉は、予めコ
とした。		入退域時の評価においては,保守的に周囲に遮蔽壁がないもの	ンクリート施工誤差を
		とした。	差し引いた評価を実施
コンクリート		コンクリート (2.1g/cm3)	している
(2.15g/cm ³)			
評価点			
		軒価点	
図 2-14-1 クラウドシャインガンマ線に対する中央制御室滞在時		図 14-1 クラウドシャインガンマ線に対する中央制御室滞在時の	・評価条件の相違
の遮蔽モデル		遮蔽モデル	【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(3)評価コード		(3)評価コード	
クラウドシャインガンマ線による被ばくは、評価コードを使用		クラウドシャインガンマ線による被ばくは、以下に示す式を用	
せず以下に示す式を用いて評価した。		いて評価した。 <u>遮蔽体の減衰率Bexp(-µX)の評価にはQAD</u>	・評価方法の相違
		-CGGP2Rを用いた。	【柏崎 6/7】
【中央制御室滞在時】			島根2号炉は,減衰率の
		【中央制御室滞在時】	評価に計算コードを用
$H = \sum \int_{-\infty}^{T} h_{\mu}(t) dt$		$\sum_{r=1}^{T} \int_{0}^{T} dr$	いている
$\sum_{\mathbf{k}} J_0$		$H = \sum_{k} \int_{0}^{1} h_{k}(t) dt$	
$\mathbf{h}_{\mathbf{k}}(\mathbf{t}) = \mathbf{K} \cdot (\mathbf{D}/\mathbf{Q}) \cdot \mathbf{q}_{\mathbf{k}}(\mathbf{t}) \cdot \sum_{\mathbf{x}} \mathbf{p}_{\mathbf{k},\mathbf{y}} \cdot \mathbf{B}_{\mathbf{y}} \cdot \exp(-\mu_{\mathbf{y}} \cdot \mathbf{X})$		$h_k(t) = K \cdot (D/Q) \cdot q_k(t) \cdot \sum_{X} p_{kY} \cdot B_Y \cdot exp(-\mu_Y \cdot X)$	
【入退城時】		【入退域時】	
$H = \sum \int_{-\infty}^{\infty} K_{12}(D_{12}(0) + \alpha_{12}(t)) dt$		$\nabla \sum_{i=1}^{T} \nabla i = i = 0$	
$\mathbf{R} = \sum_{\mathbf{k}} \int_{0}^{1} \mathbf{R}^{*}(\mathbf{D}/\mathbf{Q})^{*} \mathbf{q}_{\mathbf{k}}(t) dt$		$H = \sum_{k} \int_{0}^{\infty} K \cdot (D/Q) \cdot q_{k}(t) dt$	
H : クラウドシャインガンマ線による実効線量[Sv] h _k (t) : クラウドシャインガンマ線のうち,核種kからのガンマ線による 単位時間当たりの実効線量[Sv/s] K : 空気カーマから実効線量への換算係数(1)[Sv/Gy] (D/Q) : 相対線量[Gy/Bq] q _k (t) : 時刻tにおける核種kの大気中への放出率[Bq/s](0.5MeV 換算) p _k : 核種kが放出するphotonのうち,エネルギー yのphotonの割合[-] B _v : エネルギー yのphotonにおけるビルドアップ係数[-] μ : エネルギー yのphotonにおける遮蔽体に対する線減衰係数[1/m] X : 遮蔽体厚さ[m] T : 評価期間[s]		 H : クラウドシャインガンマ線による実効線量[Sv] h_k(t) : クラウドシャインガンマ線のうち,核種kからのガンマ線による 単位時間当たりの実効線量[Sv/s] K : 空気カーマから実効線量への換算係数(1)[Sv/Gy] (D/Q) : 相対線量[Gy/Bq] g_k(t) : 時刻tにおける核種kの大気中への放出率[Bq/s](0.5MeV 換算) p_k : 核種kが放出するphotonのうち,エネルギー yのphotonの割合[-] G : エネルギー yのphotonにおける遮蔽体に対する線滅衰係数[1/m] J : 評価期間[s] 	

柏崎刈羽原子	子力発電所 6/2	7号炉 (2017.	12.20版)	東海第二発電所(2018.9.18版)	島	根原子力発電所 2号	炉	備考
ビルドアップ	系数は, 「放射線カ	施設のしゃへい	計算実務マニュ		遮蔽効果を考慮する	ら際のガンマ線エネル	ギー群は, ORIGE	・評価方法の相違
アル 2007」(公益財団法人原	子力安全技術セ	ンター) に記載		N2のガンマ線ライフ	ブラリの群構造(18群)	を使用した。	島根2号炉は、減衰率
されている値をP	内挿することにより	<u>り求めた。</u> また,	遮蔽効果を考					の評価に計算コードを
慮する際のガンー	マ線エネルギー群に	は,ORIGEN2のガ	ンマ線ライブラ					用いている
リの群構造(18種	詳)からMATXSLIB-	J33(42群)に	変換した。変換					
方法は, 直接ガン	ンマ線及びスカイジ	ンャインガンマ	線による被ばく					
の評価時と同様,	「日本原子力学会	会標準 低レベ	ル放射性廃棄物					
輸送容器の安全語	設計及び検査基準:	2008」(2009年9	月社団法人 日					
本原子力学会)の	の附属書H に記載さ	されている変換	方法を用いた。					
(4)評価結果					(4)評価結果			
クラウドシャ-	インガンマ線による	る被ばくの評価	結果を表 2-14-1		クラウドシャインガン	/マ線による被ばくの	評価結果を表 14-1 及	
及び表 2-14-2 に	示す。				び表 14-2 に示す。			
<u>表2-14-1</u> クラ	ラウドシャインガン	マ線による被に	ばくの評価結 <u>果</u>		<u>表 14-1 クラウドシ</u>	/ャインガンマ線によ	る被ばくの評価結果	・評価結果の相違
(代替循環	設冷却系を用いて事	象収束に成功す	-る場合)		(残留熱代替除去	玉系を用いて事象収束	に成功する場合)	【柏崎 6/7】
評価位置	 宿 日 数	評価結	F果[mSv]		評価位置	積算日数	評価結果[mSv]	
	19.77 1 33	6 号炉	7 号炉		中央制御室滞在時	7日	約7.7×10 ⁻¹	
中央制御室滞在時	7 日	約 1.9×10 ⁰	約 3.2×10 ⁰		入退域時	7日	約 3.4×10 ¹	
入退域時	7 日	約 2.8×10 ²	約 5.6×10 ²					
主 9 14 9 カミ	こうじこく イン・ガン	いつぬたトスかい	ギノの証体注用		≠ 14-9 カラウド:	レインガンマ線に上	く神げくの証価結果	 ・評価結果の相違
<u>AX 2 14 2 9 7</u>	(格納容器ベントを	<u>、 < /u>	よくの計画加末		(格納	容器ベントを実施する		【柏崎 6/7】
		アルションション	·果[mSv]		評価位置	積算日数 積算日数	評価結果[mSv]	
評価位置	積算日数	6 号炉	7 炉		中央制御室滞在時	7日	約 4.4×10 ⁰	
中央制御室滞在時	7日	約 3.8×10 ⁰	約 6.4×10 ⁰		入退域時	7日	約 5.0×10 ³	
入退域時	7日	約4.0×10 ³	約 8.0×10 ³					
			, v					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-15 地表面に沈着した放射性物質からのガンマ線による被ばく	14 グランドシャイン評価モデルについて	15 地表面に沈着した放射性物質からのガンマ線による被ばくの	
の評価方法について		評価方法について	
中央制御室の居住性に係る被ばく評価における地表面に沈着し	中央制御室の居住性に影響するグランドシャインの評価モデ	中央制御室の居住性に係る被ばく評価における地表面に沈着し	
た放射性物質からのガンマ線(グランドシャインガンマ線)によ	ルを以下に示す。	た放射性物質からのガンマ線(グランドシャインガンマ線)によ	
る被ばくは、放射性物質の放出量、大気拡散の効果及び沈着速度		る被ばくは、放射性物質の放出量、大気拡散の効果及び沈着速度	
並びに建屋によるガンマ線の遮蔽効果を考慮し評価した。		並びに建物外壁によるガンマ線の遮蔽効果を考慮し評価した。	
具体的な評価方法を以下に示す。		具体的な評価方法を以下に示す。	
1. 入退域時における評価方法		1. 入退域時における評価方法	
入退域時における被ばく線量は、コントロール建屋入口におけ		(1) 地表面の単位面積当たりの積算線源強度	
る相対濃度を用いて評価した単位面積当たりの積算崩壊数[Bg・		入退域時における被ばく線量は,2号炉原子炉補機冷却系	
s/m²]に, 「External Exposure to Radionucl ides in Air, Water,		熱交換器室入口と同じ濃度で、その周囲の地表面に一様に沈着	・評価方法の相違
and Soil FGR-12 EPA-402-R-93-081.(1993) TableIII.3」に記載		しているものと仮定した。	【柏崎 6/7】
の,地表面濃度から実効線量率への換算係数を乗じることで評価			柏崎 6/7 と島根2号炉
した。		<u>a. 地表沈着量</u>	は相対濃度を用いて地
		事故後,時刻 t までに大気中へ放出された放射性物質の地表	表面の汚染を考慮する
		沈着量は、次式により計算した。	点は同じ。実効線量へ
		$f(t) = \int_{t}^{t} (W_{t}(t)) f(t) = f(t) + f(t) = f(t) + f(t)$	の換算について、島根
		$C_k(t) = \int_0^{\infty} (V_g \cdot (\chi/Q) \cdot f \cdot q_k(t) - \lambda_k \cdot C_k(t)) \cdot dt$	2号炉及び東海第二で
		<i>C_k(t</i>):核種 k の単位面積当たりの地表沈着量[Bq/m ²]	は中央制御室滞在時の
		V_g :地表面への沈着速度 $[m/s]$	評価と同様, QADコ
		(χ/Q):相対濃度[s/m³]	ード等を使用している
		ƒ:沈着した放射性物質のうち残存する割合(1)[−]	が, 柏崎 6/7 は文献の
		q _k (t):時刻 t における核種 k の大気中への放出率[Bq/s]	換算係数を使用。
		λ _k :核種 k の崩壊定数[1/s]	
		b積算線源強度	
		地表面の単位面積当たりの積算線源強度[photons/m ²]は、核	
		種ごとの単位面積当たりの地表沈着量[Bg/m ²]に核種ごとエネ	
		<u>ルギーごとの放出率[photons/(Bq・s)]を乗じ,評価期間(事故</u>	
		後 T ₁ から T ₂ まで)において積分することで評価した。	
		$s = \sum_{n=1}^{T_2} C_n s_n \cdot dt$	
		$S_{\gamma} = \sum_{K} J_{T_1} S_{K\gamma} \cdot u t$	
		s _v :単位面積当たりのエネルギーアの photon の積算線源強度[photons/m ²]	
		s _{kγ} :核種 k のエネルギーγ の photon の放出率[photons/(Bq · s)]	
		T1, T2: 任意の評価期間[s]	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		c. その他評価条件	・資料構成の相違
		核種の大気中への放出率[Bq/s]は添付資料 1 の表 1-1 に基	【柏崎 6/7】
		づき評価した。また,相対濃度は,2号炉原子炉補機冷却系熱	柏崎 6/7 と島根2号炉
		交換器室入口の値として表 1-5 の値を用いた。	は相対濃度を用いて地
		地表面への沈着速度は乾性沈着及び湿性沈着を考慮した値を	表面の汚染を考慮する
		用いた。(添付資料 9,10,11 を参照)	点は同じ。
		核種ごとエネルギーごとの放出率[photons/(Bq・s)]は,	・評価方法の相違
		<u>制動放射(H₂0)を考慮したORIGEN2 ライブラリ</u>	【柏崎 6/7】
		(gxh2obrm.lib)値から求めた。また,エネルギー群をO	島根2号炉及び東海第
		<u>RIGEN2のガンマ線ライブラリの群構造(18群)から</u>	二では中央制御室滞在
		<u>MATXSLIB-J33 (42 群)に変換した。変換方法</u>	時の評価と同様, QAD
		は,直接ガンマ線及びスカイシャインガンマ線による被ば	コード等を使用するた
		くの評価時と同様、「日本原子力学会標準 低レベル放射性	め, 放出率のライブラリ
		廃棄物輸送容器の安全設計及び検査基準: 2008」(2009年9	を読み込んでいるが,柏
		月社団法人 日本原子力学会)の附属書 H に記載されてい	崎 6/7 は文献の換算係
		る変換方法を用いた。	数を使用。
		以上の条件に基づき評価した地表面の単位面積当たりの	
		積算線源強度を表 15-1 及び表 15-2 に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉		備考
		<u>表15-1</u> グランドシャイ	ンガンマ線の評価に用いる単位面積当た	・評価方法の相違
		りの積	算線源強度(入退域時)	【柏崎 6/7】
		(残留熱代替除去	系を用いて事象を収束する場合)	
		エネルギー(MeV)	単位面積当たりの積算線源強度	
		0.01	(photons/m ⁺) (168 時間後時点) 9.1×10 ¹²	
		0.02	$\frac{1.0 \times 10^{1.3}}{3.1 \times 10^{1.3}}$	
		0.045	$\frac{3.1 \times 10}{7.5 \times 10^{1.2}}$	
		0.06	2.4×10^{12}	
		0.07	$\frac{1.6 \times 10^{12}}{2.1 \times 10^{12}}$	
		0.075	$\frac{2.1 \times 10^{-1}}{1.0 \times 10^{1.3}}$	
		0.15	3. 3×10 ^{1 2}	
		0. 2	1.8×10^{13}	
		0.3	$\frac{3.7 \times 10^{1.3}}{2.4 \times 10^{1.4}}$	
		0.45	$\frac{2.4 \times 10}{1.2 \times 10^{1.4}}$	
		0.51	$2.0 \times 10^{1.4}$	
		0.512	6.6×10^{12}	
		0.6	$\frac{2.9 \times 10^{14}}{3.3 \times 10^{14}}$	
		0.8	$\frac{3.3 \times 10}{1.5 \times 10^{1.4}}$	
		1.0	3.1×10^{14}	
		1.33	8.2×10^{13}	
		1.34	$\frac{2.5 \times 10^{12}}{4.0 \times 10^{13}}$	
		1.66	5.4×10^{12}	
		2.0	1.1×10^{13}	
		2.5	7.6×10^{12}	
		3. 0	$\frac{1.7 \times 10^{-1}}{1.7 \times 10^{7}}$	
		4.0	1.7×10^{7}	
		4.5	6.2×10^{0}	
		5.0	$\frac{6.2 \times 10^{\circ}}{6.2 \times 10^{\circ}}$	
		6.0	$\frac{0.2 \times 10}{6.2 \times 10^{0}}$	
		6.5	7.1×10^{-1}	
		7.0	$\frac{7.1 \times 10^{-1}}{7.1 \times 10^{-1}}$	
		8.0	7.1×10^{-1}	
		10.0	2.2×10^{-1}	
		12.0	1.1×10^{-1}	
		14.0	$0.0 \times 10^{\circ}$	
		30.0	$0.0 \times 10^{\circ}$	
		50.0	0.0×10 ⁰	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		表15-2 グランドシャインガンマ線の評価に用いる単位面積当た	・評価方法の相違
		りの積算線源強度(入退域時)	【柏崎 6/7】
		(格納容器ベントを実施する場合)	
		エネルギー(MeV) (bhotons/m ²) (168 時間後時点)	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{ c c c c c c }\hline 0.07 & 2.0 \times 10^{12} \\ \hline 0.075 & 2.7 \times 10^{12} \\ \hline \end{array}$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
		$\begin{array}{c ccccc} 1.66 & 6.3 \times 10^{12} \\ \hline 2.0 & 1.2 \times 10^{13} \end{array}$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{ c c c c c c }\hline & 3.0 & 2.2 \times 10^{-1} \\ \hline & 3.5 & 1.7 \times 10^{-7} \\ \hline \end{array}$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	 (1)線源領域 入退域時の評価モデルを第 14-3 図に示す。原子炉建屋 周辺の地形は平坦で約 100m 離れた場所に丘状の斜面がある。 斜面は標高差 20m 程度のなだらかな形状であり、また原子炉 建屋周辺の建屋によって遮蔽されるため地形による寄与は 無視できると考えられる。そこで、地表線源からのグランド シャインの評価にあたっては、放射性物質が平坦な土壌に一様に沈着したものとし、線源領域は評価点を囲む一辺 800m の正方形と設定した。 	 (2)評価体系 <u>a.線源領域</u> <u>2</u>号炉原子炉補機冷却系熱交換器室入口周辺の地表面は <u>平坦であるとし,線源領域範囲は地表面からの影響がほぼ</u> <u>飽和する評価点を中心とした 800m 四方の範囲とした。な</u> <u>お,この領域に含まれる海面及び斜面も平坦な地表面と仮</u> <u>定し,線源とした。</u> <u>地表面の線源の評価モデルを図 15-1 に示す。</u> 	 ・記載方針の相違 【柏崎 6/7】 島根 2 号炉は,中央制御 室内と同様の方法で評価
	(3) 評価点 入退域時の評価点は,計算モデルの中心,地表面より高 さ1mの位置とした。評価点を第14-3 図中に示す。	 b. 遮蔽及び評価点 入退域時の評価に当たっては,周囲の建物による遮蔽効 果は保守的に考慮しないものとした。評価点は2号炉原子 炉補機冷却系熱交換器室入口とし,評価点高さは地面から 1mとした。 	
	(4)評価コード 評価コードはQAD-CGGP2Rコードを用いた。	<u>(3) 評価コード</u> <u>評価コードはQAD-CGGP2Rコード^{*1}を用いた。</u> <u>※1 ビルドアップ係数はGP法を用いて計算した</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)			島根原子力発電所 2	
	400000 線源 400000 ⁰⁹	★ 評価点 400000 ★評価点 400000	400000	A A 400m 40 <u>解源面</u> 400m 40	
	<u> 断面</u> <u>第14−3 図 入退域</u> 時	<u>iA-A</u> <u> </u>		断面 A-A 図 15-1 入退域時のグランドシャインガン び線源領域)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2. 中央制御室滞在時における評価方法		2. 中央制御室滞在時における評価方法	
(1) 地表面の単位面積当たりの積算線源強度		(1)線源面の単位面積当たりの積算線源強度	
放射性物質が,中央制御室の中心位置と同じ濃度で, コントロ		放射性物質が、中央制御室の中心位置と同じ濃度で、制	
ール建屋の屋上及びコントロール建屋周りの地表面に一様に沈着		御室建物の屋上及び1号炉廃棄物処理建物屋上高さの地表	・評価条件の相違
しているものと仮定した。		面に一様に沈着しているものと仮定した。	【柏崎 6/7】
地表面の単位面積当たりの積算線源強度[photons/m ²]は、核種			建物配置が異なること
ごとの単位面積当たりの積算崩壊数[Bq・s/m ²]に核種ごとエネル		地表沈着量,積算線源強度の算出方法は入退域時と同様とした。	による評価体系(線源
ギーごとの放出率[photons/(Bq・s)]を乗ずることで評価した。			領域)の相違。
$s_{\nu} = \sum_{k} Q_k \cdot s_{k\nu}$			
S _y : 単位面積当たりのエネルギー γ の photon の積算線源強度[photons/m ²]			
Q。 : 核種 k の単位面積当たりの積算崩壊数[Bq・s/m ²]			
s _{ky} :核種 k のエネルギー y の photon の放出率[photons/(Bq・s)]			
<u>ここで, 核種 k の単位面積当たりの積算崩壊数[Bq・s/m²]は以</u>			
下の式により評価した。			
q _k (t) : 時刻 t における核種 k の大気中への放出率[Bq/s]			
V _s : 地表面への沈着速度[m/s]			
f ₁ : 沈着した放射性物質のうち残存する割合(1)[-]			
λ _k : 核種 k の崩壊定数[1/s]			
1 : #*1mJ+91MJLSJ			
$Q_{k} = \int_{0}^{T} (\chi/Q) \cdot q_{k}(t) \cdot V_{g} \cdot \frac{f_{1}}{\lambda_{k}} \cdot (1 - \exp(-\lambda_{k} \cdot (T - t))) dt$			
Qa : 核種 k の単位面積当たりの積算崩壊数[Bq・s/m²]			
χ/Q :相対濃度[s/m³]			
 核種の大気中への放出率[Bg/s]は添付資料2 2-1の表2-1-1に			
基づき評価した。また、相対濃度は、中央制御室の中心位置の値			
<u>として表2-1-5の値を用いた。</u>			
地表面への沈着速度は乾性沈着及び湿性沈着を考慮した値を用			
<u> </u> 射 (H ₂ 0) を考慮したORIGEN2ライブラリ (gxh2obrm. 1ib) 値から			
<u></u>			
以上の条件に基づき評価した地表面の単位面積当たりの積算線		以上の条件に基づき評価した地表面の単位面積当たりの積算線	
源強度を表2-15-1及び表2-15-2に示す。		源強度を表 15-3 及び表 15-4 に示す。	

柏崎刈羽原子	一力発電所 6/"	7 号炉 (2017	7.12.20版)	東海第二発電所(2018.9.18版)	島根原	系子力発電所 2号炉	備考
<u>表 2-15-1</u> グラン	ドシャインガン ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	マ線の評価に月	用いる単位面積当		表 15-3 グランドシャイ	ンガンマ線の評価に用いる単位面積当た	・評価結果の相違
	たりの積算約	泉源強度			りの積算線源	<u> 〔中央制御室滞在時〕</u>	【柏崎 6/7】
(代替循	環冷却系を用いて	事象を収束す	る場合)		(残留熱代替除去	系を用いて事象を収束する場合)	
- 21	-¥(W-V)	単位両種来を加	の建築道道設備				
		中世回復ヨたり (nhotong/m ²) ((160時間後時点)		エネルギー(MoV)	単位面積当たりの積算線源強度	
下限	391ユ (一米-11 文 元 来 41)	(photons/m) (7 县标		0.01	(photons/m ²) (168 時間後時点) 1.1×10 ¹³	
	(1(3(二个//イー)	0万)/* 約00×103	(77)) ⁴		0.02	$\frac{1.2 \times 10^{13}}{4.0 \times 10^{13}}$	
0.00×10 ⁻²	2.00×10-2	秋J 3, 9×10	\$5.0 0×10 ¹⁴		0.045	$\frac{9.4 \times 10^{12}}{9.4 \times 10^{12}}$	
2.00×10	3.00×10-	約 1.2×10	約2.0×10 ¹³		0.06	$\frac{2.8 \times 10^{1.2}}{1.9 \times 10^{1.2}}$	
3.00×10 ⁻²	4. 50×10 ⁻²	約 2.8×10 ¹³	約 4.6×10 ¹³		0.075	$\frac{2.8 \times 10^{12}}{1.4 \times 10^{13}}$	
4. 50×10 ⁻²	7.00×10-2	約 1.1×10 ¹³	約 1.8×10 ¹³		0.15	3.9×10^{12}	
7.00×10 ⁻²	1.00×10 ⁻¹	約 4.6×10 ¹³	約7.6×10 ¹³		0.2	$\frac{2.4 \times 10^{1.5}}{4.7 \times 10^{1.3}}$	
1.00×10 ⁻¹	1.50×10 ⁻¹	約 6.3×10 ¹²	約1.0×10 ¹³		0.4	$\frac{3.2 \times 10^{1.4}}{1.6 \times 10^{1.4}}$	
1. 50×10 ⁻¹	3. 00×10 ⁻¹	約1.9×10 ¹⁴	約 3.1×10 ¹⁴		0.51	2.5×10^{14}	
3. 00×10 ⁻¹	4. 50×10 ⁻¹	約1.4×10 ¹⁵	約 2.3×10 ¹⁵		0.512	$\frac{8.3 \times 10^{12}}{3.6 \times 10^{14}}$	
4. 50×10 ⁻¹	7.00×10 ⁻¹	約7.2×10 ¹⁴	約1.2×10 ¹⁵		0.7	$\frac{4.1 \times 10^{1.4}}{2.0 \times 10^{1.4}}$	
7. 00×10^{-1}	1.00×10^{0}	約 2.4×10 ¹⁴	約 3.9×10 ¹⁴		1.0	$\frac{3.9 \times 10^{14}}{0.0000}$	
1.00×10°	1.50×10^{0}	約7.4×10 ¹³	約 1.2×10 ¹⁴		1. 33	$\frac{9.6 \times 10^{1.5}}{2.9 \times 10^{1.2}}$	
1.50×10°	2.00×10°	約 9.0×10 ¹²	約1.5×10 ¹³		1.5	$\frac{4.7 \times 10^{1.3}}{5.6 \times 10^{1.2}}$	
2.00×10°	2.50×10°	約 2.7×10 ¹²	約4.4×10 ¹²		2.0	$\frac{1.2 \times 10^{1.3}}{0.5 \times 10^{1.2}}$	
2.50×10°	3.00×10^{0}	約 5.2×10 ¹⁰	約 8.5×10 ¹⁰		3.0	$\frac{9.5 \times 10^{1.2}}{2.2 \times 10^{1.1}}$	
3.00×10°	4.00×10°	約4.6×107	約7.7×107		3.5	1.2×10^{7} 1.2×10^{7}	
4.00×10°	6.00×10°	約 2.4×10 ²	約4.0×10 ²		4.5	$5.5 \times 10^{\circ}$	
6.00×10°	8.00×10°	約 2.8×10 ¹	約4.6×10 ¹		5. 5	5.5×10^{-0} 5.5×10^{0}	
8.00×10°	1, 10×10 ¹	約3.2×10 ⁰	約 5.4×10°		6.0	$\frac{5.5 \times 10^{0}}{6.3 \times 10^{-1}}$	
					7.0	6.3×10^{-1}	
					8.0	$\frac{6.3 \times 10^{-1}}{6.3 \times 10^{-1}}$	
					10.0	$\frac{2.0 \times 10^{-1}}{9.7 \times 10^{-2}}$	
						$0.0 \times 10^{\circ}$	
					30.0	$\frac{0.0 \times 10^{\circ}}{0.0 \times 10^{\circ}}$	
					50.0	0. 0×10 ⁰	

柏崎刈羽原子	力発電所 6/7	号炉 (2017.	12.20版)	東海第二発電所(2018.9.18版)	島根	島根原子力発電所 2号炉	
表 2-15-2 グラン	·ドシャインガンマ	マ線の評価に用	いる単位面積当		表15-4 グランドシャインガンマ線の評価に用いる単位面積当た・		・評価結果の相違
	たりの積算線	限旗強度			りの積算線	源強度(中央制御室滞在時)	【柏崎 6/7】
(孝	各納容器ベントを知	実施する場合)	_		(格納容	器ベントを実施する場合)	
エネル	ギー(MeV)	単位面積当たり	の積算線源強度		エネルギー(MeV)	単位面積当たりの積算線源強度	
	上限	(photons/m²) ((168 時間後時点)		0.01	(photons/m [*]) (168 時間復時県) 1.2×10 ¹³	
下限	(代表エネルギー)	6号炉	7 号炉		0.02	$\frac{1.3 \times 10^{13}}{4.0 \times 10^{13}}$	
-	2.00×10 ⁻²	約 5.9×10 ¹³	約1.0×10 ¹⁴		0.045	9.5×10^{12} 3.0×10^{12}	
2.00×10 ⁻²	3.00×10 ⁻²	約1.7×10 ¹⁴	約 3.0×10 ¹⁴		0.07	$\frac{2.0 \times 10^{12}}{2.0 \times 10^{12}}$	
3. 00×10 ⁻²	4. 50×10 ⁻²	約4.1×10 ¹³	約7.2×10 ¹³		0.075		
4. 50×10 ⁻²	7.00×10 ⁻²	約 1.8×10 ¹³	約 3. 2×10 ¹³		0.15	$\frac{4.1 \times 10^{12}}{2.4 \times 10^{13}}$	
7.00×10 ⁻²	1.00×10 ⁻¹	約6.2×10 ¹³	\$51 1×10 ¹⁴		0.3	4.7×10^{13}	
1.00×10 ⁻¹	1.50×10 ⁻¹	\$5 1.0×10 ¹³	\$5 1.8×10 ¹³		0.4	$\frac{5.2 \times 10}{1.6 \times 10^{14}}$	
1.50×10-1	1. 30×10	約2.7×104	\$54.6×10 ¹⁴		0.51	$\frac{2.6 \times 10^{14}}{8.7 \times 10^{12}}$	
1. 50 × 10	3.00×10 ⁻¹	*0 2.7×10 ¹⁵	¥9 4. 0×10 ¹⁵		0.6	3.8×10^{14}	
3, 00×10 *	4. 50 × 10 °	約 1.8×10 ⁻⁵	約 3.2×10 ⁻⁴		0.7	$\frac{4.4 \times 10}{2.0 \times 10^{14}}$	
4. 50×10 ⁻¹	7.00×10 ⁻¹	約 1.1×10 ¹⁶	約 2.0×10 ⁴⁵		1. 0	$\frac{4.1 \times 10^{14}}{1.0 \times 10^{14}}$	
7.00×10 ⁻¹	1.00×10°	約 3.5×10 ¹⁴	約 6.1×10 ¹⁴		1.34	3.1×10^{12}	
1.00×10°	1.50×10°	約1.1×10 ¹⁴	約1.9×10 ¹⁴		1. 5	$\frac{4.9 \times 10^{-5}}{5.8 \times 10^{12}}$	
1.50×10°	2.00×10°	約 1.2×10 ¹³	約 2.1×10 ¹³		2.0	$\frac{1.2 \times 10^{13}}{9.9 \times 10^{12}}$	
2. 00×10°	2.50×10°	約 3.7×10 ¹²	約 6.4×10 ¹²		3.0	2.3×10^{11}	
2.50×10^{0}	3.00×10°	約7.1×10 ¹⁰	約 1.2×10 ¹¹		4.0	1.2×10^{7} 1.2×10^{7}	
3. 00×10°	4.00×10°	約6.5×107	約1.1×10 ⁸		4.5	$5.9 \times 10^{\circ}$ $5.9 \times 10^{\circ}$	
4.00×10°	6.00×10°	約4.1×10 ²	約7.1×10 ²		5.5	5.9×10^{0}	
6.00×10°	8.00×10°	約4.7×101	約 8.2×10 ¹		6.5		
8.00×10°	1. 10×10 ¹	約 5.4×10 ⁰	約 9.4×10°		7.0	$\frac{6.7 \times 10^{-1}}{6.7 \times 10^{-1}}$	
					8.0	6.7×10 ⁻¹	
					10.0	$\frac{2.1 \times 10^{-1}}{1.0 \times 10^{-1}}$	
					20.0	$0.0 \times 10^{\circ}$ $0.0 \times 10^{\circ}$	
						0.0×10^{0}	
					50.0	0.0×10	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(2)評価体系		(2)評価体系	
a. 線源領域	(1)線源領域	a. 線源領域	
コントロール建屋屋上及びコントロール建屋周辺の地表面を線	原子炉建屋周辺の地形を第14-1 図に,中央制御室内の評	制御室建物屋上の高さの周辺領域及び1号炉廃棄物処理	・評価条件の相違
源領域とした。	価モデルを第14-2図に示す。線源領域は炉心の著しい損傷	建物屋上を線源領域とした。	【柏崎 6/7】
コントロール建屋屋上は平坦であるとし、線源領域の面積はコ	が発生した場合に大気中に放出された放射性物質が、中央制	制御室建物の周囲の建物のうち、制御室建物より高い建	建物配置が異なること
ントロール建屋の屋上の面積(2478m ² =42m×59m)と同一とした。	御室天井及び周辺建屋天井の上面に均一に沈着した面線源	物については、保守的に放射性物質が制御室建物屋上高さ	による評価体系(線源領
	とし, 評価点である中央制御室中心を囲む一辺 800m の正方	の周辺領域に平坦に分布しているものとした。また、線源	域)の相違。
	形と設定した。また、線源範囲の設定は以下のように分けた。	範囲の設定は以下のように分けた。	
	・中央制御室天井より高い位置に存在する線源は中央制御	・制御室建物の屋上より高い位置に存在する線源は制御	
	室の天井レベル(EL23m)で代表させた。	室建物の屋上高さ(EL22050)で代表させた。	
	・中央制御室天井より低い位置に存在する線源のレベルは	・制御室建物の屋上より低い位置に存在する線源は1号	
	サービス建屋天井レベル(EL22m)又は南側空調機械室レベ	炉廃棄物処理建物屋上(EL20150)で代表させた。	
コントロール建屋周辺の地表面は平坦であるとし,線源領域範	<u>ル (EL18m) に代表させた。</u>	制御室建物屋上高さの線源領域範囲は線源領域からの影	
囲は地表面からの影響がほぼ飽和するコントロール建屋中心から		響がほぼ飽和する制御室建物の周囲 400m 以内とした。な	
半径500m以内とした。なお、この領域に含まれる海面及び斜面も		お、この領域に含まれる地表面、海面及び斜面も平坦な制	
平坦な地表面と仮定し、線源とした。地表面の線源の評価モデル		御室建物屋上面と同一面と仮定し、線源とした。線源の評	
を図2-15-1から図2-15-3に示す。		価モデルを図 15-2 から図 15-4 に示す。	
b. 遮蔽及び評価点	(2)遮蔽	b. 遮蔽及び評価点	
グランドシャインガンマ線の評価においては, コントロール建	グランドシャインによる影響の評価 <u>に当たって,遮蔽物</u>	グランドシャインガンマ線の評価においては, <u>制御室建</u>	
屋の外壁・2階床・天井のコンクリートのみを遮蔽として考慮した。	は第14-2図に示す中央制御室遮蔽とし、中央制御室を囲む	物の外壁・天井のコンクリートのみを遮蔽として考慮した。	
コントロール建屋の評価モデルの断面図を図2-15-2に、平面図及	東西南北壁及び天井の躯体について各々の最少厚さで代表	制御室建物の評価モデルの断面図を図 15-3 に, 平面図及び	
び評価点を図2-15-3に示す。遮蔽の厚さは薄い部分で代表し、東	Litzen	評価点を図 15-4 に示す。 遮蔽の厚さは, <u>中央制御室より高</u>	・評価条件の相違
側の外壁の厚さは , それ以外は全て とし		い位置から入射する放射線に対して中央制御室天井コンク	【柏崎 6/7】
<u>t.</u>		リート,中央制御室より低い位置から入射す	島根2号炉は,予めコン
		る放射線に対して中央制御室外壁コンクリート	クリート施工誤差を差
		の公称値からそれぞれマイナス側許容差 を引	し引いた評価を実施し
		いた値を設定した。	ている
また,コンクリートの組成は普通コンクリート(密度2.15g/cm ³)	また、コンクリートの種類は普通コンクリート(密度	また, 中央制御室遮蔽は鉄筋コンクリートであるが評価	
L. L. tem	2.0g/cm ³) とした。	上, 普通コンクリート (密度 2.1g/cm ³) とした。	
なお,中央制御室待避室では,鉛カーテン等の追加遮蔽を設け			・設備の相違
るが、グランドシャインガンマ線による影響の評価に当たっては			【柏崎 6/7】
上記以外の壁による遮蔽効果には期待しておらず、保守的な遮蔽			島根2号炉では可搬型
モデルとなっている。			遮蔽を用いない

柏崎X	川羽原子力発	電所 6	/7号炉	(2017.12.	20版)	東海第二発電所(2018.9.18版)		島根原子力発電	፤ 所 2号炉		備考
評価点は、地表面の線源からのグランドシャインガンマ線と、					シマ線と,	(3)評価点	中央制御室内の評価点は,制御室建物の屋上高さに設定				
コントロール建屋の屋上の線源からのグランドシャインガンマ線						中央制御室内の評価点は、線量が最大となる位置とした。	した線源面からのグランドシャインガンマ線と制御室建物				
のそれぞれに対し評価結果が最も大きくなる点を選定し、各評価						評価点を第14-2図中に示す。	の屋上より低い線源面からのグランドシャインガンマ線の				
点における評価結果の和をグランドシャインガンマ線の評価結果							それぞ	それぞれに対し評価結果が最も大きくなる点を選定し、各			
とした。なお,評価点高さは中央制御室の床面から1.5mとした。							評価点における評価結果の和をグランドシャインガンマ線				
							の評価結果とした。				
(3)評価コード						(4)評価コード	(3)評価コード				
評価コードは QAD-CGGP2R コード ^{※1} を用いた。						評価コードはQAD-CGGP2Rコードを用いた。	評価コードはQAD-CGGP2Rコード**1を用いた。				
※1 ビルドアップ係数は GP 法を用いて計算した							※1 ビルドアップ係数はGP法を用いて計算した				
3. 評価結果							3. 評価結果				
グランドシャインガンマ線による被ばくの評価結果を表 2-15-3							グランドシャインガンマ線による被ばくの評価結果を表 15-5				
及び表 2-15-4 に示す。							及び表 15-6 に示す。				
表 2-15-3 グランドシャインガンマ線による被ばくの評価結果							<u> 衣15-5 クフンドンヤインカンマ線による被はくの評価結果</u> (産の熱少共除土変た円いて声免疫力によって見る)				・評価結果の相違
(代替循境冷却糸を用いて事象収束に成功する場合)					<u> </u>		(残留熱代省际本糸を用いく事家収束に成切する場合)			【相畸 6/7】	
評価位置	線源	積算日数		実効線重[mSv]	A =1		評価位置	線源	積算日数	実効線量[mSv]	
			6 号炉	7号炉				1号炉廃業物処理建物	7日	$3.3 \times 10^{\circ}$	
中央制御室	地表面沉着分	7日	彩 1.6×10°	*) 2. 7 × 10°	彩J 4. 3×10°		中央制御室	(低階層)の沈着分			
滞在時	屋上沉着分	7日	約 4.2×10 ⁻¹	約 6. 9×10 ⁻¹	約 1.1×10°		滞在時	制御室建物屋上	7日	6. 0×10^{-3}	
	合計	7日	約 2.0×10°	約 3.4×10°	約 5.4×10°			沈着分			
人退城時	台計	7日	約 1.2×10°	約 2.4×10°	約 3.6×10°			合計	7日	3.3×10 ⁰	
							入退域時	合計	7 日	1.8×10 ³	
素 9-15-4 ガランドシャインガンマ娘にトス 地げくの証価仕用							表 15-6 グランドシャインガンマ線による被ばくの評価結果			・評価結果の相違	
(格納容器ベントを実施する場合)							(格納容器ベントを実施する場合)			【拍临6/7】	
				<u>実効線量[mSv]</u>			評価位置	線源	積算日数	実効線量[mSv]	
評価位置	線源	積算日数	6 号炉	7 号炉	合計			1 县信度娄朐加理建物			
	地表面沈着分	7日	約 2.4×10 ⁰	約 4.2×10°	約 6.6×10°			1 万炉廃業初処理建物 (低階層)の沈差公	7日	3. 4×10^{0}	
中央制御室	屋上沈着分	7日	約 6.2×10 ⁻¹	約 1.1×10 ⁰	約 1.7×10 ⁰		中央制御室	制御家建物民上			
滞在時	合計	7 日	約 3.0×10°	約 5.3×10°	約 8.3×10 ⁰		滞在時	沈善分	7 日	6.3 \times 10 ⁻³	
入退域時	合計	7日	約1.7×10 ³	約 3.8×10 ³	約 5.5×10 ³				7日	$3.5 \times 10^{\circ}$	
							入退城時	스카	7 日	2.3×10^{3}	
									1 11	2.0/10	

炉	備考
互とした領域)	 ・評価条件の相違 【柏崎 6/7】 建物配置が異なること による評価体系(線源 領域)の相違。

・設備の相違 【柏崎 6/7,東海第二】
 ・ 【 ・ ・

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
 相崎刈羽原子力発電所 6/7号炉 (2017.12.20版) ● N ● 地表面沈着 評価位置(T.M.S.L.18800) ● 屋上沈着 評価位置(T.M.S.L.18800) □ントロール建屋 平面図 	東海第二発電所 (2018.9.18版)	<u> 島根原子力発電所 2号炉</u> 図 15-4 評価モデルの平面図及び評価点	- 備考 ・設備の相違 【柏崎 6/7,東海第二】
コントロール建屋 平面図			【柏崎 6/7,東海第二】
<u>図2-15-3</u> 評価モアルの半面図及び評価点			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-16 室内に外気から取り込まれた放射性物質による被ばくの評		16 室内に外気から取り込まれた放射性物質による被ばくの評価	
価方法について		方法について	
中央制御室の居住性評価における、室内に外気から取り込まれ		中央制御室の居住性評価における、室内に外気から取り込まれ	
た放射性物質による被ばくの評価方法を以下に示す。なお, <u>可搬</u>		た放射性物質による被ばくの評価方法を以下に示す。なお, 中央	
型陽圧化空調機のフィルタユニットに取り込まれた放射性物質に		制御室換気系のフィルタユニットに取り込まれた放射性物質によ	・設備の相違
よる被ばくについては,フィルタユニット周りに遮蔽を設け,ま		る被ばくについては,建物外壁による遮蔽と十分な離隔距離を確	【柏崎 6/7】
た離隔距離を十分に確保することから、無視できる程度にまで低		保できることから、無視できる程度にまで低減されるものと考え	①の相違
減されるものと考え評価対象外とした。		評価対象外とした。	
(1)放射性物質の濃度		(1) 放射性物質の濃度	
中央制御室の雰囲気中に浮遊する放射性物質量の時間変化は,		中央制御室の雰囲気中に浮遊する放射性物質量の時間変化	
<u>可搬型陽圧化空調機</u> の効果を考慮し,以下の式で評価した。なお,		は, <u>中央制御室換気系</u> の効果を考慮し,以下の式で評価した。	
保守的な想定として,中央制御室待避室内の放射性物質の濃度は,		なお、保守的な想定として、中央制御室待避室内の放射性物質	
陽圧化装置による陽圧化が終了した直後に中央制御室内の放射性		の濃度は、空気ボンベによる正圧化を実施していない期間につ	
物質の濃度と同一になるものとした。		いては中央制御室内の放射性物質の濃度と同一になるものとし	
		teo	
【 <u>陽圧化装置</u> による <u>陽圧化</u> を実施していない期間】		【 <u>中央制御室待避室の正圧化</u> を実施していない期間】	
$m_{0k}(\mathbf{t}) = \mathbf{m}_{1k}(\mathbf{t})$		$m_{\rm pk}(t) = m_{\rm lk}(t)$	
M _{1k} (t)		$m_{1k}(t) = \frac{M_{1k}(t)}{2}$	
$m_{1k}(\mathbf{t}) = \frac{1}{V_1}$		V1	
		$\frac{\mathrm{d}M_{1k}(t)}{\mathrm{d}t} = -\lambda_{k}\cdotM_{1k}(t) - (G_{1} + \alpha + G_{F} \cdot \frac{E_{k}}{100})\cdot\frac{M_{1k}(t)}{V} \cdot + \left(1 - \frac{E_{k}}{100} \cdot G_{1} \cdot S_{k}(t) + \alpha \cdot S_{k}(t)\right)$	
$\frac{dM_{1k}(t)}{dt} = -\lambda_k \cdot M_{1k}(t) - \frac{G_1}{V_k} \cdot M_{1k}(t) - \frac{\alpha}{V_k} \cdot M_{1k}(t) + \left(1 - \frac{E_k}{100}\right) \cdot G_1 \cdot S_k(t) + \alpha \cdot S_k(t)$			
		$S_{k}(t) = (\chi/Q) \cdot q_{k}(t)$	
$S_k(t) = (\chi/Q) \cdot Q_k(t)$		m _{0k} (t):時刻tにおける核種kの中央制御室待避室内の放射能濃度[Bq/m ³]	
		m _{1k} (t):時刻 t に _{おける} 核種 k の中央制御室内の放射能濃度[Bq/m ³]	
m _{ik} (t):時刻tにおける核種kの中央制御室待壁室内の放射能濃度[Bq/m ²] m _{ik} (t):時刻tにおける核種kの中央制御室内の放射能濃度[Bq/m ³]		M _{2k} (t):時刻 t における核種 k の中央制御室内の放射能量[Bq]	
M _{1k} (t):時刻tにおける核種kの中央制御室内の放射能量[Bq]		V ₂ :中央制御室バウンダリ内容積[m ³]	
Vi : 中央制御室パウンダリ内容積[m³]			
λ _k :核種 k の崩壊定数[1/s]		G1 : 中央制御室換気糸外気取込み風量[m²/s]	
 G : 可搬型踢圧化空調機の更重[m/s] E : 可搬型踢圧化空調機のフィルタユニットの除去効率[%] 		GP :: 一番相張ノイルタを通る流星 $[m^{a}/s]$	
S _k (t) : 時刻 t における核種 k の放射能濃度[Bq/m ³]		E_k : 中央制御室換気糸フィルタユニットの除去効率[%] $s_k(r)$ ・ 時刻 + におけろ核種 k の放射能濃度 $[R_0/m^2]$	
 α :中央制御室パウンダリへの空気流入量[m³/s] 		 α : 中央制御室バウンダリへの空気流入量[m³/s] 	
(=空気流入率×中央制御室パウンダリ内容積)		(=空気流入率×中央制御室バウンダリ内容積) */0 ・相対濃度「e/m ²]	
		q _k (t) :時刻 t における核種 k の放出率[Bq/s]	
Q _k (t) :時刻 t における核種 k の放出率[Bq/s]			
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
【陽圧化装置による陽圧化を実施する期間】			
M _{ok} (t)		【中央制御室待避室の正圧化を実施する期間】	
$m_{0k}(\mathbf{t}) = \frac{\mathbf{v}_{0}}{\mathbf{v}_{0}}$		$m_{\rm e}(t) = \frac{M_{\rm 0k}(t)}{t}$	
		W _{0k} CO V ₀	
$\frac{dM_{0k}(t)}{dt} = -\lambda_{k} \cdot M_{0k}(t) - \frac{G_{0}}{v} \cdot M_{0k}(t)$		$\frac{\mathrm{d}M_{\mathrm{ok}}(t)}{\mathrm{d}H_{\mathrm{ok}}(t)} = -\lambda_{k} \cdot M_{\mathrm{ok}}(t) - \frac{G_{0}}{\mathrm{d}H_{\mathrm{ok}}(t)} \cdot M_{\mathrm{ok}}(t)$	
ve vo		dt v_0 v_0	
m _{0k} (t):時刻tにおける核種kの中央制御室待避室内の放射能濃度[Bq/m ³]			
Mok(t) :時刻 t における核種 k の中央制御室待避室内の放射能量[Bq]		m _{ok} (t): 時刻 t における核種 k の中央制御室待避室内の放射能濃度	
V ₀ : 中央制御室待避室バウンダリ内容積[m ³]		[Bq/m]	
λ_k :核種kの崩壊定数[1/s]		M _{0k} (f): 時刻 1 にわける核種 K の中天前御室付班室内の成別能重[Bq]	
00 : 勝圧化装置の空気供給重[m/s]		v_0 . 中天前仰主付班主ハリンクリ的谷禎[m]) · 枝類 k の崩壊宗教[1/]	
		∧k・ 12 K の 朋友 上 叙[1/5]	
核種の大気中への放出率[Ba/s]け沃付資料? 2-1の表2-1-1に		$0_0 \cdot \mathbf{T} \times \mathbf{X} \times \mathbf{Y} = \mathbf{X} \times \mathbf{Y} \times \mathbf$	
其づき評価した また 相対濃度は表2-1-5の値を用いた			
		き評価した。また、相対濃度は表 1-5 の値を用いた。	
(2)評価体系			
室内に外気から取り込まれた放射性物質による被ばくの評価に		(2)評価体系	
当たり想定した遮蔽及び評価点を図2-16-1から図2-16-3に示す。		室内に外気から取り込まれた放射性物質による被ばくの評価に	
なお、線源領域は中央制御室及び中央制御室待避室内の空間部と		当たり想定した遮蔽及び評価点を図 16-1 から図 16-2 に示す。な	
し、室内の放射能濃度は一様とした。		お,線源領域は中央制御室及び中央制御室待避室内の空間部とし,	
(3)評価コード		室内の放射能濃度は一様とした。	
中央制御室内の放射性物質からのガンマ線による外部被ばくの		(3)評価コード	
評価に当たっては, QAD-CGGP2Rコードを用いた。		中央制御室内の放射性物質からのガンマ線による外部被ばくの	
中央制御室待避室内の放射性物質からのガンマ線による外部被		評価に当たっては、QAD-CGGP2R コードを用いた。	
ばく及び吸入摂取による内部被ばくの評価に当たっては、評価コ		中央制御室待避室内の放射性物質からのガンマ線による外部被	
ードを使用せず、以下の式を用いて評価した。		ばく及び吸入摂取による内部被ばくの評価に当たっては、評価コ	
吸入摂取による内部被ばく: $H = \int_0^T R \cdot H_{\infty} \cdot C(t) dt \cdot \frac{1}{PF}$		ードを使用せず、以下の式を用いて評価した。	
		吸入摂取による内部被ばく: $\mathbf{H} = \int_0^T \mathbf{R} \cdot \mathbf{H}_{\infty} \cdot \mathbf{C}(\mathbf{t}) \mathbf{dt} \cdot \frac{1}{\mathbf{D}_{\mathbf{F}}}$	
 H :吸入の内部被ばくによる実効線量[Sv] 			
R :呼吸率(1.2/3600) ^{※1} [m ³ /s]		H : 吸入の内部被はくによる美効線重[Sv]	
H∞ :呼吸時の実効線量への換算係数*2[Sv/Bq]		K : 吸入举 $(1.2/3600)^{**}$ [m [°] /s]	
C(t) :時刻 t における室内の放射能濃度[Bq/m ³]		Π_{∞} : 吸入時の未刻稼重への換算係数 [SV/Bq]	
T :評価期間[s]		いい ・ ^h オタリ い に わり る 主 ビリック 放 対 拒 仮 皮 L Bq/m 」 T ・ 証 価 期目[]	
PF :マスクの防護係数[-]		・ m lilli / m lill / m lill / m lilli / m li	
※1 ICRP Publication71に基づく成人活動時の呼吸率を設定			
※2 ICRP Publication71及び ICRP Publication72 に基づき設定		※1 ICRP Publication71 に基づく成人活動時の呼吸率を設定	

柏崎刈羽]原子力発電	所 6/	~7号炉 (2	2017.12.2	0版)	東海第二発電所(2018.9.18版)		島根原子	产力発電所	斤 2号炉		備考
外部被ばく	: н _у =	$\int_0^T 6.2 \times$	$10^{-14} \cdot E_{\gamma} \cdot (1$	$-e^{-\mu R}$; _y (t)dt		₩2 ICRP Pu	blication71 及	なび ICRP	Publication72	に基づき設定	
H_{γ} E_{γ} μ R C_{γ} (t)	: ガンマ線の9 : ガンマ線の9 : 空気に対する : 室内容積半野 : 時刻 t におい	ト部被ばく 東効エネル 5ガンマ線 素換算時等 ける室内の	による実効線 ギー(0.5)[MeV の線エネルギー 価半径[m] 放射能濃度[Bc	量 [Sv] 7] 一吸収係数[1/m ³]	[1/m]		外部被ばく H γ E γ R C γ (t	: H _γ = ∫ ₀ ^T 6.2 注 : ガンマ線の : ガンマ線の :空気に対する : 室内容積半 : 時刻 t にお	× 10⁻¹⁴ 外部被ばく 実効エネル がンマ線 球換算時朝 ける室内の	・ E_γ・(1 - e^{-μ} による実効線量[マギー(0.5)[MeV] の線エネルギー吸 価半径[m] の放射能濃度[Bq/m	^ℝ)・C _γ (t)dt Sv] 収係数[1/m] ³]	
т	(ガンマ線0 夏毎期間[s]	. 5MeV 換算	1)					(ガンマ線 0.	5MeV 換算))		
1	. #T10090101[3]						(4)評価結果	:評価期間[s				
(4)評価結果 (4)評価結果		ナルナゼ			くの気気が		室内に外気	いら取り込まれ	1た放射 [,]	性物質による被	支ばくの評価 結	
至内に外家	いから取り込	まれたが	【射性物質に、 -	よる彼はく	、の評価が		果を表 16-1	及び表 16-2 に	示す。			
果を表2-16-	1 皮 () 表 2-16 マロロマ 句 (三 -)	ー2に不す	。		トマーナルング		表 16-1 室口	内に外気から取	り込まれ	た放射性物質に	よる被ばくの	・評価条件及び評価結果
<u>表2-16-1 当</u>	国に外気の	<u>り取りと</u> の証在	<u>」よれた放射</u> 「全田	圧物質に。	よる彼は		評価結果(系を用い	て事象収束に成	戈功する場合)	
(4+共	活理 [2] 却玄:	<u>の評価</u> を用いて	<u>「柿米</u> 東色収まにす	オオス担				(運転員のる	を替を考慮	慮しない場合)		【作日此可 15/7】
	(運転員)	の交替を	<u>事家収来に</u> が 考慮しない場	<u>(め)りる場</u> 合)	<u>i []</u>		評価位置	線源	積算日数	被ばく経路	評価結果[mSv]	・評価ケースの相違
評価位置	線源	積算日数	被ばく経路	評価約 6 号炉	吉果[mSv] 7 号炉				7日	外部被ばく	約 4.9×10 ⁰	【柏崎 6/7】 島根2号炉は, RHAR
	中央制御室内浮 遊分	7日	外部被ばく	約 1.1×10 ⁻¹	約 1.8×10		中央制御室	中央制御室内浮遊 分	7日	内部被ばく (マスクなし)	約 3.7×10 ²	で収束する場合には待 避室の使用を想定して
中央制御室待避			外部被ばく	約 7.7×10°	約 1.3×10					内部被ばく (マスクあり)	約 2.6×10 ¹	いない
室	中央制御室待避 室内浮遊分	7 日		約 1.2×10 ²	約 2.1×10		<u>表 16-2 室</u>	内に外気から取	り込まれ	た放射性物質に	<u>よる被ばくの</u>	・評価結果の相違
		₩1	 マスクの着	」 用を考慮	 しない場	J	<u> </u>	<u>·価結果</u> (格納名 (運転員のス	おおヘン	> を想定する場 言したい提合)	合)	【 11 町 b/ 7】 ・ 証価 古針の 相造
表2-16-2 室	国内に外気が	ら取り辺	まれた放射	性物質に。	よる被ば				く首を与属			【柏崎 6/7】
		の評価	<u> 新結果</u>				計価位置 		積算日数	被ばく経路	評価結果[mSv]	島根2号炉は,待避中の
	(格納容報	器ベント	を想定する場	景合)					7日	外部被ばく	約 2.4×10 ¹	中央制御室からの被ば
亚瓜片墨		の交替を [:]	考慮しない場	書合) 評価₭	吉果[mSv]		中央制御室	中央制御室内浮遊 分	7日	内部被ばく (マスクなし)	約 2.9×10 ²	くについて考慮
#T IIW112 IB.		(長弁日女	ス 取はく 住田	6 号炉	7 号炉					内部被ばく (マスクあり)	約 1.0×10 ¹	
	中央制御室内浮 分	7日	外部被ばく	約 2.2×10 ⁰	約 3.6×10			中央制御室内浮遊 分	8 時間	外部被ばく	約 2.1×10 ⁰	
中央制御室待避室	中央制御室待避	室	外部被ばく	約 2.0×10 ¹	約 3.3×10		中央制御室待			外部被ばく	約1.6×10 ⁻²	
	内浮遊分	7日	吸入摂取による 内部被ばく ^{*1}	約 1.1×10 ²	約 1.8×10		避室	中央制御室待避室	8 時間	内部被ばく (マスクなし)	約 2.0×10 ⁰	
		₩1	- マスクの着	用を考慮	しない場			浮遊分		内部被ばく (マスクあり)	約7.5×10 ⁻¹	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
図 2-16-1 コントロール建屋		R:室内谷植と同じ谷植をもつ千球の千住[m] 室内濃度:一様 図 16-1 中央制御室内に外気から取り込まれた放射性物質による	
		線源強度の評価モデル図 (11.3g/cm ³) デ価点	
図 2-16-2 中央制御室		図 16-2 中央制御室待避室遮蔽モデル図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
図 2-16-3 中央制御室待避室			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-17 大気中に放出された放射性物質の入退域時の吸入摂取によ			
る被ばくの評価方法について		17 大気中に放出された放射性物質の入退域時の吸入摂取による	
		被ばくの評価方法について	
中央制御室の居住性評価における、大気中に放出された放射性			
物質の入退域時の吸入摂取による被ばくの評価方法を以下に示		中央制御室の居住性評価における、大気中に放出された放射性	
す。		物質の入退域時の吸入摂取による被ばくの評価方法を以下に示	
		す。	
(1)放出量及び大気拡散			
核種の大気中への放出率[Bq/s]は添付資料2 2-1の表2-1-1に		(1)放出量及び大気拡散	
基づき評価した。また,相対濃度は表2-1-5の値を用いた。		核種の大気中への放出率[Bq/s]は添付資料1の表1-1に基づき評	
(2)評価コード		価した。また、相対濃度は表1-5の値を用いた。	
大気中に放出された放射性物質の入退域時の吸入摂取による被		(2)評価コード	
ばくは、評価コードを使用せず以下に示す式を用いて評価した。		大気中に放出された放射性物質の入退域時の吸入摂取による被	
		ばくは、評価コードを使用せず以下に示す式を用いて評価した。	
吸入摂取による内部被ばく:		$\mathbf{U} = \begin{pmatrix} \mathbf{T} \\ \mathbf{D} \end{pmatrix} \mathbf{U} = (\mathbf{U} \mid \mathbf{O}) = \mathbf{O}(\mathbf{O}) + \mathbf{I}$	
$\mathbf{U} = \begin{pmatrix} \mathbf{T} \\ \mathbf{D} \end{pmatrix} \mathbf{U} = (\mathbf{U} \cdot \mathbf{D}) \mathbf{D} (\mathbf{U}) \mathbf{D} \begin{pmatrix} \mathbf{U} \\ \mathbf{U} \end{pmatrix} \mathbf{U}$		$H = \int_0^\infty R \cdot H_\infty \cdot (\chi/Q) \cdot Q(t) dt \cdot \frac{1}{PF}$	
$H = \int_0^{\infty} R \cdot H_\infty \cdot (\chi/Q) \cdot Q(t) dt \cdot \frac{1}{PF}$			
		H : 吸入の内部被ばくによる実効線量[Sv]	
H :吸入の内部被ばくによる実効線量[Sv]		R : 呼吸率(1.2/3600) ^{※1} [m ³ /s]	
R :呼吸率(1.2/3600) ^{*1} [m ³ /s]		H _∞ : 吸入時の実効線量への換算係数 ^{*2} [Sv/Bq]	
H∞ :呼吸時の美効線重への換算係数 ^{™2} [SV/Bq] (~/0):相対濃度[s/m ³]		χ/Q :相対濃度[s/m ³]	
Q(t) :時刻 t における核種の環境放出率[Bq/s]		O(t) :時刻 t における核種の環境放出率[Bq/s]	
T :評価期間[s]		T : 評価期間[s]	
PF :マスクの防護係数[-]		PF : マスクの防護係数[-]	
		※1 ICRP Publication71に基づく成人活動時の呼吸率を設定	
 ※1 ICRP Publication71に基づく成人活動時の呼吸率を設定		※2 ICRP Publication71 及び ICRP Publication72 に基づき設定	
※2 ICRP Publication71 及び ICRP Publication72 に基づき設定			

柏崎刈羽原子	力発電所 6/	7号炉 (2017.	. 12. 20版)	東海第二発電所(2018.9.18版)	島根原	原子力発電所 2号	炉	備考
(3)評価結果								
大気中に放出さ	れた放射性物質	の入退域時の吸	入摂取による被		(3)評価結果			
ばくの評価結果を	表2-17-1及び表記	2-17-2に示す。			大気中に放出された放	射性物質の入退域時	時の吸入摂取による被	
表 2-17-1 大気中	「に放出された放	射性物質の吸入	、摂取による入退		ばくの評価結果を表17-1	及び表17-2に示す。		・評価結果の相違
	域時の被ばく	の評価結果			表 17-1 大気中に放出さ	れた放射性物質の吸	及入摂取による入退域	【柏崎 6/7】
(代替循環)	令却系を用いて事	事象収束に成功す	する場合)		時の) 被ばくの評価結果		
荻 (古) (元) (元)	 1 1 1 1 1 1 1 1 1 1 1 1 1	評価結	果[mSv] ^{※2}		(残留熱代替除去系	を用いて事象収束に	こ成功する場合)	
計11111111月	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	6 号炉	7 号炉		評価位置	積算日数	評価結果[mSv] ^{*2}	
入退城時	7 日※1	約 2 5×10 ⁴	約 5 2×10 ⁴		入退域時(2号炉原子炉	ī		
	• •	μ 9 2. 0 × 10	"у б. 2 /(10		補機冷却系熱交換器室入	. 7日 ^{※1}	約 2.4×10 ³	
※1 屋外に7日間	間滞在するものと	して評価			口)			
※2 マスクの着月	用を考慮しない場	易合			※1 屋外に7日間滞在す	るものとして評価		
					※2 マスクの着用を考慮	ぼしない場合		
								・評価結果の相違
					表 17-2 大気中に放出さ	れた放射性物質の吸	及入摂取による入退域	【柏崎 6/7】
表 2-17-2 大気中	「に放出された放	射性物質の吸入	摂取による入退		時の) 被ばくの評価結果		
	域時の被ばく	の評価結果			(格納容器べ	ントの実施を想定す	する場合)	
(格納	容器ベントの実	施を想定する場	合)					
	(本体 中 米)	評価結果	果[mSv] ^{※2}		評価位置	積算日数	評価結果[mSv]*2	
評価位置	槓异日数	6 号炉	7 号炉		入退域時(2号炉原子炉			
					補機冷却系熱交換器室入	7 日**1	約 9.3×10 ³	
入退域時	7 日 ^{※1}	約 2.4×10 ⁴	約 5.0×10 ⁴		口)			
↓ ※1 屋外に 7 日間	間滞在するものと	して評価			※1 屋外に7日間滞在す	るものとして評価		
×1 座/101日 ×2 マスクの差E	田を老虐したい提				※2 マスクの着用を考慮	ぼしない場合		
	日を与感しない物	7 L						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-18 格納容器圧力逃がし装置及びよう素フィルタ内の放射性物			・評価対象の相違
質からのガンマ線による被ばくの評価方法について			【柏崎 6/7】
格納容器ベント実施に伴いベントラインに流入する放射性物質			島根2号炉では, FCVS
の大部分は、希ガス類を除き、格納容器圧力逃がし装置のフィル			格納槽は地下に設置し,
タ装置及び配管並びによう素フィルタ内に取り込まれ線源とな			十分な遮蔽を設けるた
る。ここでは、中央制御室の居住性に係る被ばく評価における、			め線源として考慮して
当該線源からのガンマ線(直接ガンマ線及びスカイシャインガン			いない
マ線)による被ばくの評価方法を示す。			
なお、フィルタ装置内(スクラバ水及び金属フィルタ)の放射			
性物質からの直接ガンマ線については,			
厚さ			
強度から、当該線源からのスカイシャインガンマ線及び他の線源			
からの直接ガンマ線及びスカイシャインガンマ線と比較し、十分			
小さいとして評価の対象外とした。			
1. 評価条件			
1.1 線源モデル			
a.よう素フィルタ			
中央制御室滞在時の被ばく線量評価に用いる線源モデルの設定			
においては、有機よう素がよう素フィルタ内に取り込まれるもの			
とした。また、入退域時の被ばく線量評価に用いる線源モデルの			
設定においては、有機よう素及び無機よう素がよう素フィルタ内			
に取り込まれるものとした ^{*1} 。保守的な想定として,評価期間中			
に格納容器圧力逃がし装置に流入するよう素の総量(中央制御室			
滞在時の評価においては有機よう素、入退域時の評価においては			
有機よう素及び無機よう素を考慮)が、格納容器ベント直後によ			
う素フィルタ内に移行するものとした。格納容器圧力逃がし装置			
に流入する放射性物質の流入割合(停止時炉内内蔵量に対する割			
合)を表2-18-1に示す。 直接ガンマ線の線源モデルけ占線源とし、当該占線源の線源強			
度け 取り込まれた放射性物質を1占に集約することによって求め			
た ²²			
* 。			
ただし、当該占線順の線順強度け、上う素フィルタに上ろ自己渡			
① 0AD-CCGP2Rコードを用いて図2-18-1に示す形状のよう素フィ			
しなの休着線派 ²² から500mト空の直接ガンマ線の線畳を延備			
オス			
			1 1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
 QAD-CGGP2R コードを用いて①の線量を再現する点線源の線源 			・評価対象の相違
強度を評価する。			【柏崎 6/7】
			島根2号炉では, FCVS
※1 無機よう素はフィルタ装置のスクラバ水で大部分が除去さ			格納槽は地下に設置し,
れるためよう素フィルタにはほとんど移行しないものと考え			十分な遮蔽を設けるた
られるが、よう素フィルタからの影響が大きい入退域時の評			め線源として考慮して
価においては、保守的な想定として格納容器圧力逃がし装置			いない
に流入する無機よう素の総量がよう素フィルタ内に取り込ま			
れるものとした。ただし、この想定においても、線源として			
支配的となるのは有機よう素であり、無機よう素が被ばく線			
量に与える影響は小さい。			
※2 「直接ガンマ線の点線源の線源強度」と「スカイシャインガ			
ンマ線の点線源の線源強度の評価に用いた体積線源の線源強			
度」は同一。有機よう素及び無機よう素の総量がよう素フィ			
ルタに取り込まれた場合の線源強度は表2-18-2を参照。			
b.フィルタ装置(スクラバ水及び金属フィルタ)			
無機よう素及び粒子状放射性物質が、フィルタ装置内に取り込			
まれるものとした。保守的な想定として、評価期間中に格納容器			
圧力逃がし装置に流入する無機よう素及び粒子状放射性物質の総			
量が、格納容器ベント直後にフィルタ装置内に移行するものとし			
た。			
フィルタ装置はスクラバ水と金属フィルタで構成されているこ			
とから、フィルタ装置内の線源は、スクラバ水部分と金属フィル			
タ部分の2領域に分けた。粒子状放射性物質は大部分がスクラバ水			
で除去された後、残りが金属フィルタで除去されるため、フィル			
タ装置内の線源は9割がスクラバ水部分に存在し、残りの1割が金			
属フィルタ部分に存在するものとした。なお、無機よう素はスク			
ラバ水でのみ除去されるが、粒子状放射性物質と同様の存在割合			
を想定した。この想定は,より放出角度の大きい金属フィルタ(図			
2-18-17及び図2-18-18参照) に一部存在するという想定であるこ			
とから保守的な結果を与える。			
金属フィルタ及びスクラバ水のスカイシャインガンマ線の線源			
モデルは点線源とした。当該点線源の線源強度は、金属フィルタ			
及びスクラバ水周りの鉄遮蔽並びにスクラバ水の自己遮蔽を考慮			
するため、以下の手順で評価した。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
① QAD-CGGP2Rコードを用いて図2-18-2に示す形状のスクラバ水			・評価対象の相違
の体積線源 ^{※3} 及び金属フィルタの点線源 ^{※3} から各々500m上空			【柏崎 6/7】
の直接ガンマ線の線量を評価する。			島根2号炉では, FCVS
 QAD-CGGP2R コードを用いて①の線量を再現する点線源の線源 			格納槽は地下に設置し,
強度を評価する。			十分な遮蔽を設けるた
※3 「金属フィルタの点線源の線源強度」及び「スクラバ水の体			め線源として考慮して
積線源の線源強度」は、表2-18-2を参照。			いない
c. 配管			
無機よう素及び粒子状放射性物質が配管内に付着するものと			
し,希ガス及び有機よう素は配管内に付着しないものと想定した。			
ここで、配管内の放射性物質の付着割合としては、格納容器圧力			
逃がし装置に流入する無機よう素及び粒子状放射性物質の総量の			
10%が配管100m に付着するものとした(付着割合:10%/100m)。			
なお、保守的な想定として、評価期間中に格納容器圧力逃がし装			
置に流入する無機よう素及び粒子状放射性物質の総量が格納容器			
ベント直後に配管に移行し、上記の付着割合で配管に付着するも			
のとした。			
よう素フィルタの下流側の配管については、流入前にフィルタ			
装置及びよう素フィルタにて大部分の放射性物質が除去されるこ			
とから,当該配管内に付着する放射性物質の被ばくへの影響は,			
他の線源による影響と比べ十分小さいとして評価の対象外とし			
た。			
直接ガンマ線の線源モデルは体積線源 ^{*4} とした。評価に用いた			
線源モデルを図2-18-19に示す。なお、配管長さは、配管周りの遮			
蔽を考慮する場合は100m,配管周りの遮蔽を考慮しない場合は			
0.5mとし、各々の場合における6号及び7号炉の屋外の配管長さを			
包絡する長さとした。(評価モデルの作成において参照した配管			
の配置図を図2-18-4から図2-18-7に示す。)			
スカイシャインガンマ線の線源モデルは点線源とし、当該点線			
源の線源強度は、以下の手順で評価した。			
 QAD-CGGP2Rコードを用いて図2-18-3に示す形状の配管の体積 			
線源 ^{※4} から500m上空の直接ガンマ線の線量を評価する。なお,			
配管長さは、6号及び7号炉の屋外の配管のうち、上部に遮蔽			
のない配管長さを包絡する長さとして10mとした。			
 QAD-CGGP2Rコードを用いて①の線量を再現する点線源の線源 			
強度を評価する。			
※4 配管 100mの体積線源の線源強度は,表 2-18-2 を参照。			

柏崎	川羽原子力発電所	6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 2-	18-1 放射性物質の格	納容器圧力逃がし装置への流入割合			・評価対象の相違
	信止時后内内背骨	停止時炉内内蔵量に対する			【柏崎 6/7】
	停止时炉内内藏重 [Ro] (groos 值)	格納容器圧力逃がし装置への流入割合			島根2号炉では, FCVS
	[bq] (gross 直)	(事故発生から 168 時間後時点) [-]			格納槽は地下に設置し,
希ガス類	約 2.6×10 ¹⁹	約 9.2×10 ⁻¹			十分な遮蔽を設けるた
よう素類	約 3.4×10 ¹⁹	約 3.3×10 ⁻²			め線源として考慮して
Cs 類	約 1.3×10 ¹⁸	約 2.6×10-6			いない
Te 頖	約 9.5×10 ¹⁸	約 5.2×10 ⁻⁷			
Ba 類	約 2.9×10 ¹⁹	約 2.1×10-7			
Ru 類	約 2.9×10 ¹⁹	約 2.6×10-8			
La 類	約 6.5×10 ¹⁹	約 2.1×10 ⁻⁹			
Ce 類	約 8.9×10 ¹⁹	約 5.2×10-9			
A ↑	5000 (新園図) (新園図) (A-A・断面) 2-18-1	空気 (速度1.2×10*s/c#) A A (支面部) (3.7.75g/cm³) (次,7.5g/cm³) (次) (図) (主 (図) (注 (注 (図) (注 (法 (四) (二 (1)			

	ر
炉	備考
	・評価対象の相違
	【柏崎 6/7】
	島根2号炉では, FCVS
	格納槽は地下に設置し,
	十分な遮蔽を設けるた
	め線源として考慮して
	いない

	ر
炉	備考
	・評価対象の相違
	【柏崎 6/7】
	島根2号炉では, FCVS
	格納槽は地下に設置し,
	十分な遮蔽を設けるた
	め線源として考慮して
	いない

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
6号炉原子炉建屋			 ・評価対象の相違 【柏崎 6/7】 島根 2 号炉では, FCVS 格納槽は地下に設置 し, 十分な遮蔽を設け るため線源として考慮 していない
黒線部分:上部			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
6号炉原子炉建屋 (1)			 ・評価対象の相違 【柏崎 6/7】 島根2号炉では,FCVS 格納槽は地下に設置 し,十分な遮蔽を設け るため線源として考慮 していない
図 2-18-5 配管配置(断面図)(6 号炉)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・評価対象の相違
â			【柏崎 6/7】
			島根2号炉では, FCVS
			格納槽は地下に設置し、
7号炉原子炉建屋			十分な遮蔽を設けるた
			め線源として考慮して
			いない
·······			
□ ∧ ··· ∧ ··· ·			
格納容器			
正力 逃がし 黒線部分:上部 厚さの鉄板.			
装置側面及び下面をの鉄板で遮蔽			
青緑部分:上面・側面・下面ともに遮蔽なし 赤緯部分・上部には遮蔽なし			
側面及び下面をの鉄板で遮蔽			
図 9-19-6 - 副答詞署(亚贡図)(7 号/5)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・評価対象の相違
7号/ 原子/ 伊棣屋			【柏崎 6/7】
			島根2号炉では, FCVS
			格納槽は地下に設置し、
			十分な遮蔽を設けるた
			め線源として考慮して
			いない
 黒線部分:上部 「早さの鉄板,			
図 2-18-7 配管配置(断面図)(7 号炉)			
1.2 線源強度			
格納容器ベント開始時刻におけるよう素フィルタの線源強度			
[photons/s]は、評価期間中に格納容器圧力逃がし装置に流入する			
よう素の総量(中央制御室滞在時の評価においては有機よう素,			
入退域時の評価においては有機よう素及び無機よう素を考慮)が,			
格納容器ベント開始時刻によう素フィルタ内に移行すると想定し			
算出した。また、フィルタ装置(スクラバ水及び金属フィルタ)			
については無機よう素及び粒子状放射性物質の総量が移行し、配			
管については無機よう素及び粒子状放射性物質の総量の10%が配			
管100mに移行するものとして線源強度を算出した。格納容器ベン			
ト開始時刻以降においては、よう素フィルタ及び配管の線源強度			
は時間減衰を考慮し、フィルタ装置の線源強度は時間減衰を考慮			
しないものとした。			
停止時炉内内蔵量に対する核種ごとの原子炉格納容器から格納			
容器圧力逃がし装置への流入割合(評価期間中に格納容器圧力逃			
がし装置に流入する総量)は、MAAP解析及びNUREG-1465の知			
見に基づき評価した。なお, MAAPコードでは, よう素の化学			
組成は考慮されないため、粒子状よう素、無機よう素及び有機よ			
 う素については,ベントラインへの流入割合の評価条件をそれぞ			
れ設定し評価した。			
以上の条件に基づき評価した格納容器ベント開始直後の線源強			
度を表2-18-2に示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				(2017.12	. 20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
表 2-18-2 各線源領域の線源強度(格納容器ベント開始直後)			F器ベント	開始直後)		・評価対象の相違	
	(6 -	号及び7号	骨炉で同一	·)			【柏崎 6/7】
							島根2号炉では, FCVS
線源強度			強度			格納槽は地下に設置し.	
エネル	キー(MeV)	フィル	9 装置及びよう素 記絵 · 「=hoton	『フイルタ:[pho c/ (c + 100=)]	otons/s]		十分な渡藤を設けるた
		711	成者: [photon: な壮爆	s/ (s • 100m/ j			「方な遮蔽を使けるため。
下限	上限	21/2	2 表直	記管	よう素		の旅びとして与慮して
1.05	(代表エネルギー)	スクラバ水	エ柄フィルタ	100	フィルタ ^{薬1薬2}		(,)L(,
-	2.00×10 ⁻²	約7.2×10 ¹⁴	約8.0×10 ¹³	約 8.0×10 ¹³	約7.1×10 ¹⁶		
2.00×10 ⁻²	3.00×10 ⁻²	約 2.1×10 ¹⁴	約 2.4×10 ¹³	約 2.4×10 ¹³	約 2.1×10 ¹⁶		
3.00×10 ⁻²	4.50×10-2	約 1.1×10 ¹⁴	約1.2×10 ¹³	約 1.2×10 ¹³	約1.0×10 ¹⁶		
4.50×10 ⁻²	7.00×10 ⁻²	約1.3×1014	約1.4×10 ¹³	約 1.4×10 ¹³	約1.3×10 ¹⁶		
7.00×10 ⁻²	1.00×10 ⁻¹	約1.0×10 ¹⁴	約1.1×10 ¹³	約 1.1×10 ¹³	約1.0×10 ¹⁶		
1.00×10 ⁻¹	1.50×10 ⁻¹	約 5.1×10 ¹³	約 5.7×10 ¹²	約 5.7×10 ¹²	約 5.0×10 ¹⁵		
1.50×10 ⁻¹	3. 00×10 ⁻¹	約 2.0×10 ¹⁴	約 2.2×10 ¹³	約 2.2×10 ¹³	約1.9×10 ¹⁶		
3.00×10 ⁻¹	4.50×10 ⁻¹	約 9.9×10 ¹⁴	約1.1×10 ¹⁴	約 1.1×10 ¹⁴	約 9.8×10 ¹⁶		
4.50×10 ⁻¹	7.00×10 ⁻¹	約 3.0×10 ¹⁰	約 3.4×10 ¹⁴	約 3.4×10 ⁴⁴	約 3.0×10 ¹⁷		
7.00×10°	1.00×10°	約1.6×10 約2.0×10 ¹⁴	和1.7×10 ¹⁴	約 1.7×10 ¹³	〒1.6×10 ¹⁶		
1. 50×10	2.00×10	約 3. 9×10 約 4. 1×10 ¹³	約4.5×10 約4.5×10 ¹²	約4.5×10 ¹²	約4.0×10 ¹⁵		
2.00×10	2. 50×10	約2.5×10 ¹³	約2.8×10 ¹²	約 2.8×10 ¹²	約 2. 4×10 ¹⁵		
2.50×10°	3.00×10 ⁰	約 5.7×10 ¹¹	約6.4×10 ¹⁰	約 6.4×10 ¹⁰	約 5.6×10 ¹³		
3.00×10°	4.00×10 ⁰	約 1.0×10 ⁷	約1.1×10 ⁶	約1.1×10 ⁶	0		
4.00×10°	6.00×10 ⁰	約1.2×10 ⁶	約 1.3×10 ⁵	約1.3×10 ⁵	0		
6.00×10°	8.00×10°	約 6.1×10 ⁻¹	約6.8×10 ⁻²	約 6.8×10 ⁻²	0		
8.00×10°	1.10×10^{1}	約7.1×10 ⁻²	約7.9×10-3	約 7.9×10-3	0		
※1 よう素	ミフィルタ本 (本2基分					
※2 格納容	F器圧力逃が	し装置に涙	記入する有	機よう素	及び無機よ		
う素の	総量がよう素	フィルタ	に取り込ま	まれた場合	るの線源強度		
を記載							
							1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1.3 評価点			・評価対象の相違
a.評価点の位置			【柏崎 6/7】
中央制御室滞在時の評価点は、中央制御室内でよう素フィルタ			島根2号炉では, FCVS
及びフィルタ装置に最も近い位置として図2-18-8に示す点を選定			格納槽は地下に設置し、
した。入退域時の評価点は、アクセスルートよりもフィルタ装置			十分な遮蔽を設けるた
及びよう素フィルタに近い点として、図2-18-8に示す点を選定し			め線源として考慮して
た。各評価点の線源からの水平距離を表2-18-3及び表2-18-4に示			いない
す。			
b.評価点の高さ			
直接ガンマ線の評価において、評価点の高さは中央制御室滞在			
時及び入退域時ともに各線源と同じ高さとした。スカイシャイン			
ガンマ線の評価においては、中央制御室滞在時は中央制御室の天			
井面高さ,入退域時は地表面から1.5m高さとした。			
c.評価点周りの遮蔽			
中央制御室滞在時の評価においては、評価点が遮蔽で覆われて			
いるものとして評価した。遮蔽厚さは、中央制御室が属するコン			
トロール建屋の遮蔽を考慮し、コンクリートで			
定した。評価点周りの遮蔽モデルを図2-18-9に示す。なお、入退			
域時の評価においては,保守的に周囲に遮蔽壁がないものとした。			
図 2-18-8 アクセスルート並びに線源及び評価点位置(中央制御			
室滞在時及び入退域時)			

柏崎刈羽原	〔子力発電所	6/7号炉	(2017.12.2	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	戸 備考
表 2-18-3	各評価点の線	源からの水平距	钜離 ^{※1} (入退	基域時)			・評価対象の相違
		線源					【柏崎 6/7】
	フィルタ装置及	びよう素フィルタ	イルタ 配管				島根2号炉では, FCVS
評価点	(フィルタ装置	中心からの距離)	離) (最近接点からの距離)				格納槽は地下に設置し、
	6 号炉	7 号炉	6 号炉	7 号炉			十分な遮蔽を設けるた
6 号炉格納容器							め線源として考慮して
ベント実施時の	約 48m	-	約 56m	-			いない
評価点							
7 号炉格納容器							
ベント実施時の	_	約 49m	_	約 49m			
評価点							
	₩1	小数点第一位	を切り捨て	11			
表 2-18-4 各詞	平価点の線源が	いらの水平距離	^{※1} (中央制御	『室滞在時)			
		線源					
-	フィルタ装置及	びよう素フィルタ	西己	管			
評価点	(フィルタ装置	中心からの距離)	(最近接点丸	いらの距離)			
	6 号炉	7 号炉	6 号炉	7 号炉			
6 号炉格納容器							
ベント実施時の	約 49m	-	約 29m	-			
評価点							
7 号炉格納容器							
ベント実施時の	_	約 66m	_	約 61m			
評価点							
		※1 小数点	第一位を切	り捨て			
			ンクリート				
		(2	15g/cm°)				
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○							
図 2-18-9 中	央制御室滞在	時における評価	西点周りの遮	医蔽モデル			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1.4 評価体系			・評価対象の相違
a.よう素フィルタ			【柏崎 6/7】
中央制御室滞在時及び入退域時の直接ガンマ線及びスカイシ			島根2号炉では, FCVS
ャインガンマ線の評価体系を図2-18-10及び図2-18-11に示す。			格納槽は地下に設置し、
スカイシャインガンマ線の線源(点線源)の高さは、よう素フ			十分な遮蔽を設けるた
ィルタ上端の高さとした。			め線源として考慮して
スカイシャインガンマ線の評価に用いた放出角度は、図			いない
2-18-12に示すよう素フィルタ及びフィルタベント遮蔽壁の配			
置を基に算出した。放出角度を図2-18-13に示す。			
b. フィルタ装置(スクラバ水及び金属フィルタ)			
中央制御室滞在時及び入退域時のスカイシャインガンマ線の			
評価体系を図2-18-14及び図2-18-15に示す。スカイシャインガ			
ンマ線の線源(点線源)の高さは、スクラバ水上端及び金属フ			
ィルタ上端の高さとした。			
スカイシャインガンマ線の評価に用いた放出角度は、図			
2-18-16に示すスクラバ水及び金属フィルタ並びにフィルタベ			
ント遮蔽壁の配置を基に算出した。放出角度を図2-18-17及び図			
2-18-18に示す。			
c. 配管			
中央制御室滞在時及び入退域時の直接ガンマ線及びスカイシ			
ャインガンマ線の評価体系を図2-18-19及び図2-18-20に示す。			
スカイシャインガンマ線の線源 (点線源) の高さは, 図2-18-5			
及び図2-18-7に赤線又は青線で示した配管の中心高さとした。			
また,放出角度は,180度とした。			
1.5 評価コード			
直接ガンマ線の評価には、QAD-CGGP2Rコード*を用いた。また、			
スカイシャインガンマ線の評価には, QAD-CGGP2Rコード*及び			
G33-GP2Rコードを用いた。			
※ ビルドアップ係数は GP 法を用いて計算した。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版) 	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考 ・評価対象の相違 【柏崎 6/7】 島根 2 号炉では、FCVS 格納槽は地下に設置し、 十分な遮蔽を設けるため線源として考慮していない

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・評価対象の相違
空気			【柏崎 6/7】
(密度1.2×10 ⁻³ g/cm ²)			島根2号炉では, FCVS
			格納槽は地下に設置し,
\uparrow			十分な遮蔽を設けるた
			め線源として考慮して
(半面図)			いない
<u>放出角度</u> コンクリート (密度2.15g/cm ³)			
1			
GL			
(A-A'断面)			
<u>凡例</u> ※1 中央制御室滞在時及び入退城時のそれぞれの評価点と 線源との距離は素2-18-3及び表2-18-4を参照。			
• : 点錄源			
 :評価点(中央制御室滞在時) 			
● :評価点 (入遇城時)			
図 0 10 11 - 芝麻 デジャ (マキアン・アンドン・ラクト トミギマ・			
図 2-18-11 評価モアル(ヘルインヤインルンマ線,より茶ノイ			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考 ・評価対象の相違 【柏崎 6/7】 島根 2 号炉では,FCVS 格納槽は地下に設置し, 十分な遮蔽を設けるた め線源として考慮して いない
(8号炉平面図) (7号炉平面図)			
(8号炉断面図) (7号炉断面図)			
図 2-18-12 よう素フィルタモデル図(6 号及び 7 号炉で共通)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
放出角度			・評価対象の相違
			【柏崎 6/7】
			島根2号炉では, FCVS
			格納槽は地下に設置し,
点線源 出位			十分な遮蔽を設けるた
平1 <u>1</u> 2:mm			め線源として考慮して
※:対角距離を選択			いない
図 2-18-13 放出角度(よう素フィルタ)			
▲ ※1 ▲ (容面図) (容面図)			
加出角度 コンクリート (密度2.15g/cm ³) 1500mm GL			
<u> <u> </u> </u> 			
 :評価点(入造城時) 			
図 2-18-14 評価モデル (スカイシャインガンマ線, 金属フィルタ)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・評価対象の相違
空気 (塗費: 2×16%/c=3)			【柏崎 6/7】
(5.9.1.2 ~ 10 %/ CE/)			島根2号炉では, FCVS
			格納槽は地下に設置し,
			十分な遮蔽を設けるた
(図画堂)			め線源として考慮して
			いない
=ンクリート (密度2.15g/cm ³)			
<u> 故田角度</u> 1500m GL			
 人回 ● :点線源 ● : 点線源 ● : 点面 ● : 点面			
● : 評価点 (中央制御蜜澤在時)			
 ● : 評価点 (入造城時) 			
図 2-18-15 評価モテル(スカイジャインカンマ線、スクラバ水)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20月	反) 東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
マッルダベント定款時			・評価対象の相違
			【柏崎 6/7】
			島根2号炉では, FCVS
			格納槽は地下に設置し,
			十分な遮蔽を設けるた
			め線源として考慮して
			いたい
(時下面[21)			
(平面図)			
図 2-18-16 フィルタ装置モデル図(6号及び7号炉で	共通)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
N			・評価対象の相違
			【柏崎 6/7】
			島根2号炉では, FCVS
			格納槽は地下に設置し,
			十分な遮蔽を設けるた
			め線源として考慮して
			いない
de lot : mm			
※:対角距離を選択			
図 9-18-17 故出角度(スクラバ水)			
<u>放出角度</u>			
「 「 」 「 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」			
单位:mm			
※:対角距離を選択			
図 2-18-18 放田) (金属ノイルタ)			

	ر
炉	備考
	・評価対象の相違
	【柏崎 6/7】
	島根2号炉では, FCVS
	格納槽は地下に設置し,
	十分な遮蔽を設けるた
	め線源として考慮して
	いない

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・評価対象の相違
空观			【柏崎 6/7】
(密度1.2×10 ⁻⁹ g/cm ³)			島根2号炉では, FCVS
<u>A</u> #1 <u>A'</u>			格納槽は地下に設置し、
\uparrow \uparrow			十分な遮蔽を設けるた
(平面図)			め線源として考慮して
			いない
(密度2.15g/cm*) 放出角度			
180[2]			
\$#2			
03			
↓ ↑ 1500mm			
 ・ ・			
 :評価点(入造城時) 			
図 2-18-20 評価モデル(スカイシャインガンマ線,配管)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-19 原子炉格納容器内 pH 制御の効果に期待することによる影			・評価方針の相違
響について			【柏崎 6/7】
中央制御室の居住性の評価に当たっては、よう素放出量の低減			島根2号炉ではpH制御
対策として導入した原子炉格納容器内pH制御についてはその効果			に期待した評価を行っ
に期待しないものとしている。			ていない
以下では,「59-11 原子炉制御室の居住性に係る被ばく評価に			
ついて 2. 中央制御室の居住性(炉心の著しい損傷)に係る被			
ばく評価について」に示した評価ケースのうち、評価結果が最も			
厳しくなる6号炉が代替循環冷却系を用いて事象収束に成功し,7			
号炉が格納容器ベントを実施するケースを例として、原子炉格納			
容器内pH制御の効果に期待することによる影響を評価した。			
評価条件は、よう素の放出放射能量以外は原子炉格納容器内pH			
制御の効果に期待しない場合と同じとした。また、よう素放出量			
の低減による影響を考慮する被ばく経路は以下のとおりとし、そ			
の他の被ばく経路については、保守的に原子炉格納容器内pH制御			
の効果に期待しない場合と同じとした。			
【よう素放出量の低減による影響を考慮する被ばく経路】			
・中央制御室滞在時			
- 格納容器圧力逃がし装置のフィルタ装置及び配管並びによう			
素フィルタ内に取り込まれた放射性物質からのガンマ線によ			
る中央制御室内での被ばく			
- 放射性雲中の放射性物質からのガンマ線による中央制御室内			
での被ばく			
- 室内に外気から取り込まれた放射性物質による中央制御室内			
での被ばく*1			
※1 室内に外気から取り込まれた放射性物質のうち,中央制御室			
内の放射性物質からのガンマ線による外部被ばくについて			
は,保守的に原子炉格納容器内pH 制御の効果に期待しない場			
合と同じとした。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
・入退域時			・評価方針の相違
- 格納容器圧力逃がし装置のフィルタ装置及び配管並びによう			【柏崎 6/7】
素フィルタ内に取り込まれた放射性物質からのガンマ線によ			島根2号炉では pH 制御
る入退域時の被ばく			に期待した評価を行っ
- 放射性雲中の放射性物質からのガンマ線による入退域時の被			ていない
ばく			
- 地表面に沈着した放射性物質からのガンマ線による入退域時			
の被ばく			
- 大気中へ放出された放射性物質の吸入摂取による入退域時の			
被ばく			
1. 放射性物質の大気中への放出量			
原子炉格納容器内pH制御の効果に期待した場合の放出放射能量			
を表2-19-1及び表2-19-2に示す。なお、原子炉格納容器内pH制御			
の効果に期待する場合のよう素の放出放射能量は、「柏崎刈羽原			
子力発電所6号及び7号炉 重大事故等対処設備について 別添資			
料-1」の3.2.2.1.2に示す評価式に基づき評価した。			

柏崎メ	川羽原子力	発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所	2 号炉 備考
表 2	-19-1 大	気中への放出放射能量	(7日間積算値)			・評価方針の相違
(代替循	環冷却系	により事象を収束する	ことを想定する場合)			【柏崎 6/7】
	放出放射能量[Bq] (gross 値) (単一号炉)		量[Bq] (gross 値) (単一号炉)			島根2号炉ではpH制御
核種類	停止時炉内内蔵量	F内内蔵量 原子炉	『建屋からの漏えい及び			に期待した評価を行っ
	[Bq] (g	ross 値) 非常用	月ガス処理系による放出			ていない
希ガス類	約 2.	6×10^{19}	約 3.8×10 ¹⁷			
よう素類	約 3.	4×10^{19}	約 7.5×10 ¹⁴			
Cs 類	約1.	3×10^{18}	約 3.9×10 ¹³			
Te 類	約 9.	5×10^{18}	約 2.9×10 ¹³			
Ba 類	約 2.	9×10^{19}	約 2.8×10 ¹³			
Ru 類	約 2.	9×10^{19}	約 4.6×10 ¹²			
Ce 類	約 8.	9×10^{19}	約 3.5×10 ¹²			
La 類	約 6.	5×10^{19}	約 8.2×10 ¹²			
表 2	-19-2 大	気中への放出放射能量	(7日間積算値)			
	(W/W	ベントの実施を想定す	-る場合)			
		放出放射能量[Bq](g	ross 値)(単一号炉)			
	-	格納容器圧力逃がし装置		-		
核種	〔類	及びよう素フィルタを	原子炉建屋からの漏えい及び			
		経由した放出	非常用ガス処理系による放出			
希ガ	ス類	約7.8×10 ¹⁸	約 1.3×10 ¹⁷			
よう	素類	約 4.5×10 ¹⁰	約 7.7×10 ¹⁴			
Cs	類	約 3.4×10 ⁹	約 4.0×10 ¹³			
Te	類	約 2.4×10 ⁹	約 3.3×10 ¹³			
Ва	類	約 2.3×10 ⁹	約 3.0×10 ¹³			
Ru	類	約 3.7×10 ⁸	約 5.0×10 ¹²			
Се	類	約 3.0×10 ⁸	約 4.1×10 ¹²			
La	類	約 6.6×10 ⁷	約 8.8×10 ¹¹			
			·	-		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考			
---	---------------------	--------------	---------------			
2. 評価結果			・評価方針の相違			
原子炉格納容器内pH制御の効果に期待した場合の評価結果を表			【柏崎 6/7】			
2-19-3-1及び2-19-3-2に示す。さらに、被ばく線量の合計が最も			島根2号炉では pH 制御			
大きい班の評価結果の内訳を表2-19-4-1及び2-19-4-2に, 被ばく			に期待した評価を行っ			
線量の合計が最も大きい滞在日における評価結果の内訳を表			ていない			
2-19-5-1及び表2-19-5-2に示す。また、各表の括弧内に、原子炉						
格納容器内pH制御の効果に期待しない場合の評価結果を示す。						
評価の結果, 被ばく線量の合計が最も大きくなる班で約51mSv						
となり、原子炉格納容器内pH制御の効果に期待しない場合(約						
86mSv)に比べ小さくなることを確認した。						
表2-19-3-1 原子炉格納容器内pH制御の効果に期待する場合の各						
勤務サイクルでの被ばく						
線量(6号炉:代替循環冷却系を用いて事象収束 7						
号炉:格納容器ベント実施)						
(中央制御室内でマスクの着用を考慮した場合)(単位:mSv)						
*1*2*3						
1日 2日 3日 4日 5日 6日 7日 合計						
A 班 約 12 ^{※4} 約 23 - 約 12 ^{※5} 約 47 (約 20) (約 42) (約 24)						
$B \mathfrak{M} = - \frac{2\pi}{8014^{365}} - \frac{2\pi}{8011^{365}} + \frac{2\pi}{8011^{365}} + \frac{2\pi}{8010} + \frac{2\pi}{8010} + \frac{2\pi}{8000} + \frac{2\pi}{80000} + \frac{2\pi}{8000000000000000000000000000000000000$						
C班 - - 約 33 約 13 - - 約 5.0 ^{106,000}						
(約 50) (約 26) (約 10) (款 20) 1回 1回 1回 1回 1回 1回 1回 1回 1回 1回 1回 1回						
2 第 (約 22) (約 20) (約 26) (約 69) 2 第 第 10 ^{※4} 約 29 約 39						
E班 約10 約20 (約70) (約16) (約54)						
※1 括弧内:原子炉格納容器内のpH 制御の効果に期待しない場						
合の被ばく線量						
※2 入退域時においてマスク (PF=1000) の着用を考慮						
※3 中央制御室内でマスク (PF=50) の着用を考慮。6 時間当た						
り1 時間外すものとして評価						
※4 中央制御室内で, 事故後1 日目のみマスク (PF=1000) の着						
用を考慮。6 時間当たり18 分間外すものとして評価						
※5 特定の班のみが過大な被ばくを受けることのないよう,訓練						
直が代わりに勤務することを想定する等、評価上で班交替を						
工夫						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考				
※6 本評価において想定した直交替スケジュールでは、7 日	目2		・評価方針の相違				
直の班が中央制御室滞在中に,交替のために入域する			【柏崎 6/7】				
1直勤務の班(本評価では7日目1直の班と同じ班を想定)	が入		島根2号炉では pH 制御				
域を終了した時点で評価期間終了(事象発生から168時間	後)		に期待した評価を行っ				
となる。本表では、評価期間終了直前の入域に伴う被ばく	〈線		ていない				
量は,7日目1直の被ばく線量に加えて整理している。また	-,						
本表における7日目2直の被ばく線量は,7日目2直の班が中	中央						
制御室滞在中に評価期間終了となることから、入域及び中	中央						
制御室滞在(評価期間終了まで)に伴う被ばく線量を示し							
いる							
表2-19-3-2 原子炉格納容器内pH制御の効果に期待する場合の	の各						
勤務サイクルでの被ばく							
線量 (6号炉:代替循環冷却系を用いて事象収束	5 7						
号炉:格納容器ベント実施)							
(中央制御室内でマスクの着用を考慮しない場合)(単位:m	hSv)						
*1*2							
1日 2日 3日 4日 5日 6日 7日 合	81						
A 班 約 120 約 25 _ 約 12 ^{₩3} 約 12 ^{₩3} (約 25)	<u>160</u> 330)						
B班 約14 ^{¥3} - 約11 ^{¥3} 約9.6 ^{¥3} - 約	34						
(約30) (約23) (約21) (第)	51						
C班 新3.3 新1.3 新3.0 (約 (約 53) (約 28) (約 12) (約	92)						
D 班 約 11 約 10 約 13 ^{※3※4} 約 (約 25) (約 22) (約 28) (約	34 75)						
E 班 約 16 約 29 約 (約 59)	45 86)						
※1 括弧内:原子炉格納容器内のpH制御の効果に期待しない	易合						
の被ばく線量							
※2 入退域時においてマスク (PF=1000) の着用を考慮							
※3 特定の班のみが過大な被ばくを受けることのないよう,	訓練						
直が代わりに勤務することを想定する等,評価上で班交替を							
工夫							
※4 評価期間終了直前の入域に伴う被ばく線量を,7日目1直の	の被						
ばく線量に加えて整理。7日目2直の被ばく線量は,入域及	をび						
中央制御室滞在(評価期間終了まで)に伴う被ばく線量	(表						
2-19-3-1の ^{**6} を参照)							

	柏崎刈羽原子力発電所 6	6/7号炉	(2017.12.	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表2	-19-4-1 評価結果の内訳	(被ばく線量	しが最大とな	ころ班 (C班)			・評価方針の相違
	Ø	合計)					【柏崎 6/7】
	(6号炉:代	古術環冷却	系を用いて	事象収束	7		島根2号炉ではpH制御
	号炉:格納3	容器ベント身	実施)				に期待した評価を行っ
	(中央制御室内でマス	くの着用を	考慮する場	合)(単位			ていない
	Ι	nSv)					
	ትተኮንድ ጎ የአርበላ	6 号炉	7 号炉	A⇒L*1			
	牧はく産品	からの寄与**1	からの寄与**1				
	①原子炉建屋内等の放射性物質からの	0.1以下	0.1以下	0.1以下			
	ガンマ線による中央制御室内での被ばく	(0.1以下)	(約1.3×10°)	(約1.4×10°)			
	②放射性雲中の放射性物質からのガンマ	0.1以下	0.1以下	0.1以下			
中	線による中央制御室内での被ばく	(約4.1×10-1)	(0.1以下)	(約 4.4×10 ⁻¹)			
央	③地表面に沈着した放射性物質のガンマ	約 4.1×10 ⁻¹	約 9.4×10-1	約 1.4×10°			
制	線による中央制御室内での被ばく	(約4.1×10-1)	(約 9.4×10-1)	(約1.4×10))			
御	④室内に外気から取り込まれた放射性物	約 1.9×10 ⁰	約 1.9×10 ¹	約 2.1×10 ¹			
室	質による中央制御室内での被ばく	(約 3.0×10 ⁰)	(約 2.0×10 ¹)	(約 2.3×10 ¹)			
滞	(内訳)内部被ばく	0.1以下	0.1以下	0.1以下			
在		(約 1.2×10 ⁰)	(約 2.3×10-1)	(約1.4×10°)			
時	外部被ばく	約 1.9×10°	約 1.9×10 ¹	約 2.1×10 ¹			
		(約1.9×10 ⁰)	(約 1.9×10 ¹)	(約 2.1×10 ¹)			
	小卦(①+②+②+④)	約 2.3×10 ⁰	約 2.0×10 ¹	約 2.3×10 ¹			
		(約 3.9×10 ⁰)	(約 2.2×10 ¹)	(約2.6×10 ¹)			
	⑤原子炉建屋内等の放射性物質からの	約 2.1×10 ⁰	約 3.2×10 ⁰	約 5.3×10 ⁰			
	ガンマ線による入退域時の被ばく	(約 2.1×10 ⁰)	(約 1.2×10 ¹)	(約1.4×10 ¹)			
	⑥放射性雲中の放射性物質からのガンマ	約 1.1×10 ⁰	約 2.1×10 ⁰	約 3.3×10°			
入	線による入退域時の被ばく	(約 2.3×10°)	(約 2.1×10°)	(約4.4×10°)			
退	⑦地表面に沈着した放射性物質からの	約 4.2×10 ⁰	約 1.5×10 ¹	約 1.9×10 ¹			
堿	ガンマ線による入退域時の被ばく	(約 9.4×10 ⁰)	(約 3.2×10 ¹)	(約4.1×10 ¹)			
時	⑧大気中へ放出された放射性物質の吸入	0.1以下	0.1以下	0.1以下			
	摂取による入退域時の被ばく	(約2.1×10-1)	(0.1以下)	(約 2.1×10-1)			
	小計 (⑤+⑥+⑦+⑧)	約 7.4×10 ⁰	約 2.0×10 ¹	約 2.8×10 ¹			
		(約1.4×10 ¹)	(約 4.6×10 ¹)	(約 6.0×10 ¹)			
	☆≯(①+②+③+①+⑤+⑤+⑦+⑧)	約 9.8×10 ⁰	約 4.1×10 ¹	約 51			
		(約1.8×10 ¹)	(約 6.8×10 ¹)	(約 86)			
₩1	括弧内:原子炉格納容器	内のpH制御の	の効果に期待	寺しない場合			
の初	皮ばく線量(被ばく線量が聶	し 大となる班	E (C班) の	合計)			

	柏崎刈羽原子力発電所 6	/7号炉	(2017.12.	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表2	-19-4-2 評価結果の内訳(被は	く線量が最大	となる班(A	班)の合計)			・評価方針の相違
	(6号炉:代料	替循環冷却系	を用いて事象	収束 7号炉:			【柏崎 6/7】
	格納容器	ベント実施)					島根2号炉では pH 制御
	(中央制御室内でマ	スクの着用を	考慮しない場	合)(単位:			に期待した評価を行っ
	n	nSv)					ていない
	ትተኮ አድ ፖ ሳ ላ ወ ወ ላ	6 号炉	7 号炉	(A, ₹1, ¥1			
	怓はく産的	からの寄与**1	からの寄与**1				
	①原子炉建屋内等の放射性物質からの	約 1.3×10 ⁻¹	0.1以下	約 1.3×10-1			
	ガンマ線による中央制御室内での被ばく	(約1.3×10-1)	(約 3.8×10-1)	(約 5.1×10-1)			
	②放射性雲中の放射性物質からのガンマ	約 1.9×10 ⁻¹	約4.3×10-1	約 6.2×10-1			
中	線による中央制御室内での被ばく	(約4.9×10-1)	(約1.5×10°)	(約 2.0×10°)			
央	③地表面に沈着した放射性物質のガンマ	約 5.5×10 ⁻¹	約 1.7×10 ⁰	約 2.3×10 ⁰			
制	線による中央制御室内での被ばく	(約 5.5×10 ⁻¹)	(約 1.7×10°)	(約 2.3×10°)			
御	④室内に外気から取り込まれた放射性物	約 5.4×10 ¹	約 7.7×101	約 1.3×10 ²			
室	質による中央制御室内での被ばく	(約 1.0×10 ²)	(約1.7×10 ²)	(約 2.7×10 ²)			
滞	(内訳)内部被ばく	約 5.3×10 ¹	約 6.9×10 ¹	約 1.2×10 ²			
在		(約 9.8×10 ¹)	(約 1.7×10 ²)	(約 2.7×10 ²)			
時	外部被ばく	約 1.3×10°	約 8.3×10°	約 9.6×10 ⁰			
		(約 1.3×10°)	(約 8.4×10°)	(約 9.7×10 ⁰)			
	小津 (①+②+③+④)	約 5.5×10 ¹	約7.9×10 ¹	約 1.3×10 ²			
	1.81 (UI UI UI UI UI	(約 1.0×10 ²)	(約1.8×10 ²)	(約 2.8×10 ²)			
	⑤原子炉建屋内等の放射性物質からの	約 1.8×10 ⁰	約 3.0×10°	約 4.8×10 ⁰			
	ガンマ線による入退域時の被ばく	(約 1.8×10°)	(約 5.8×10°)	(約7.6×10 ⁰)			
	⑥放射性雲中の放射性物質からのガンマ	約 1.0×10 ⁰	約 2.8×10 ⁰	約 3.9×10 ⁰			
入	線による入退域時の被ばく	(約 1.9×10°)	(約4.5×10°)	(約 6.4×10°)			
退	⑦地表面に沈着した放射性物質からの	約 4.5×10°	約 1.5×10 ¹	約 1.9×10 ¹			
域	ガンマ線による入退域時の被ばく	(約 8.6×10°)	(約 3.1×10 ¹)	(約 4.0×10 ¹)			
時	⑧大気中へ放出された放射性物質の吸入	0.1以下	0.1以下	0.1以下			
	摂取による入退域時の被ばく	(約 1.5×10 ⁻¹)	(約4.3×10-1)	(約 5.9×10-1)			
	$4\sqrt{3}+((5)+(6)+(7)+(8))$	約 7.3×10°	約 2.0×10 ¹	約 2.8×10 ¹			
		(約 1.2×10 ¹)	(約4.2×10 ¹)	(約 5.5×10 ¹)			
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 6.2×10 ¹	約 9.9×10 ¹	約 160			
		(約 1.1×10 ²)	(約 2.2×10 ²)	(約 330)			
₩1	括弧内:原子炉格納容器内のpH	制御の効果に	期待しない場	合の被ばく線			
量	(被ばく線量が最大となる班(AJ	E) の合計)					

	柏崎刈羽原子力発電所	6/7号炉	(2017.12.2	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	表 2-19-5-1 評価約	店果の内訳(C 助	Eの3日目)				・評価方針の相違
(6	号炉:代替循環冷却系を用い~	て事象収束 7号	号炉:格納容器	景ベント実施)			【柏崎 6/7】
	(中央制御室内でマスクの)	着用を考慮する	場合)(単位:	mSv)			島根2号炉では pH 制御
	July 18 & Grande	6 号炉	7 号炉	A 21 %1			に期待した評価を行っ
	彼はく経路	からの寄与**1	からの寄与 ^{**1}	合計~~			ていない
	①原子炉建屋内等の放射性物質からの	0.1以下	0.1以下	0.1以下			
	ガンマ線による中央制御室内での被ばく	(0.1以下)	(約 1.8×10°)	(約1.8×10°)			
	②放射性雲中の放射性物質からのガンマ	0.1以下	0.1以下	0.1以下			
中	線による中央制御室内での被ばく	(約 1.3×10-1)	(約4.7×10°)	(約4.8×10°)			
央	③地表面に沈着した放射性物質のガンマ	約 1.7×10 ⁻¹	約 4.6×10 ⁻¹	約 6.3×10 ⁻¹			
制	線による中央制御室内での被ばく	(約 1.9×10-1)	(約 9.8×10 ⁻¹)	(約1.2×10°)			
御	④室内に外気から取り込まれた放射性物	約 6.1×10 ⁻¹	約 1.8×10 ¹	約 1.9×10 ¹			
室	質による中央制御室内での被ばく	(約7.6×10-1)	(約 8.0×10°)	(約 8.7×10°)			
滞	(内訳)内部被ばく	0.1以下	0.1以下	0.1以下			
在		(約 2.6×10-1)	(約 8.0×10 ⁻¹)	(約1.1×10°)			
時	外部被ばく	約 5.9×10 ⁻¹	約 1.8×10 ¹	約 1.9×10 ¹			
		(約 5.0×10-1)	(約7.2×10°)	(約7.7×10)			
		約 8.0×10-1	約 1.9×10 ¹	約 1.9×10 ¹			
	小虹 (①+③+④)	(約1.1×10 ⁰)	(約 1.5×10 ¹)	(約 1.7×10 ¹)			
	⑤原子炉建屋内等の放射性物質からの	約 7.5×10 ⁻¹	約 1.7×10°	約 2.5×10°			
	ガンマ線による入退域時の被ばく	(約7.5×10-1)	(約4.6×10))	(約 5.4×10°)			
	⑥放射性雲中の放射性物質からのガンマ	約 4.4×10-1	約 1.2×10°	約 1.6×10°			
入	線による入退域時の被ばく	(約 8.2×10-1)	(約 3.3×10))	(約4.2×10))			
退	⑦地表面に沈着した放射性物質からのガ	約 1.8×10°	約7.3×10°	約 9.1×10°			
域	ンマ線による入退域時の被ばく	(約 3.6×10°)	(約 2.4×10 ¹)	(約 2.8×10 ¹)			
時	⑧大気中へ放出された放射性物質の吸入	0.1以下	0.1以下	0.1以下			
	摂取による入退域時の被ばく	(0.1以下)	(約 3.6×10-1)	(約4.2×10 ⁻¹)			
		約 3.0×10 ⁰	約 1.0×10 ¹	約 1.3×10 ¹			
	J,≞I (@+@+(D+@)	(約 5.2×10°)	(約 3.2×10 ¹)	(約 3.8×10 ¹)			
		約 3.8×10 ⁰	約 2.9×10 ¹	約 33			
	◻॥(⋓⊤₡т७т७т७т७т७т७т	(約 6.3×10°)	(約 4.8×10 ¹)	(約 54)			
₩1	括弧内:原子炉格納容器内の	pH制御の効果に	期待しない場	合の被ばく線			
量	(被ばく線量の合計が最も大き	い滞在日(E班2	日目)の被ば	く線量)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			(2017.12.1	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	表 2-19-5-2 評価結:	果の内訳(A 現	£の1日目)				・評価方針の相違
(6	号炉:代替循環冷却系を用いて	事象収束 7号		景ベント実施)			【柏崎 6/7】
	(中央制御室内でマスクの着月	flを考慮しなV	、場合)(単位	:mSv)			島根2号炉では pH 制御
6 号炉 7 号炉				6 -31 ⁽⁶⁾ 1			に期待した評価を行っ
	彼はく経路	からの寄与 ^{**1}	からの寄与 ^{**1}	合計~~			ていない
	①原子炉建屋内等の放射性物質からの	約 1.0×10 ⁻¹	0.1以下	約 1.1×10 ⁻¹			
	ガンマ線による中央制御室内での被ばく	(約 1.0×10-1)	(0.1以下)	(約 1.1×10 ⁻¹)			
	②放射性雲中の放射性物質からのガンマ	約 1.6×10 ⁻¹	約 2.6×10 ⁻¹	約 4.2×10 ⁻¹			
中	線による中央制御室内での被ばく	(約 2.2×10-1)	(約 3.5×10-1)	(約 5.7×10 ⁻¹)			
央	③地表面に沈着した放射性物質のガンマ	約 2.1×10 ⁻¹	約 3.5×10 ⁻¹	約 5.6×10 ⁻¹			
制	線による中央制御室内での被ばく	(約 2.1×10 ⁻¹)	(約 3.5×10-1)	(約 5.6×10-1)			
御	④室内に外気から取り込まれた放射性物	約 5.3×10 ¹	約 6.7×10 ¹	約 1.2×10 ²			
室	質による中央制御室内での被ばく	(約 9.5×10 ¹)	(約1.5×10 ²)	(約 2.4×10 ²)			
滞	(内訳)内部被ばく	約 5.2×10 ¹	約 6.7×10 ¹	約 1.2×10 ²			
在		(約 9.5×10 ¹)	(約1.5×10 ²)	(約 2.4×10 ²)			
時	外部被ばく	約 2.2×10 ⁻¹	約 3.4×10 ⁻¹	約 5.6×10 ⁻¹			
		(約 2.4×10-1)	(約 3.8×10-1)	(約 6.2×10 ⁻¹)			
	小計 (①+②+③+④)	約 5.3×10 ¹	約 6.8×10 ¹	約 1.2×10 ²			
		(約 9.6×10 ¹)	(約 1.5×10 ²)	(約 2.5×10 ²)			
	⑤原子炉建屋内等の放射性物質からの	約 2.7×10 ⁻¹	約 5.4×10 ⁻¹	約 8.1×10 ⁻¹			
	ガンマ線による入退域時の被ばく	(約 2.7×10-1)	(約 5.4×10-1)	(約8.1×10-1)			
	⑥放射性雲中の放射性物質からのガンマ	約 1.6×10 ⁻¹	約 3.1×10 ⁻¹	約 4.7×10 ⁻¹			
入	線による入退域時の被ばく	(約 2.5×10-1)	(約4.9×10-1)	(約7.3×10 ⁻¹)			
退	⑦地表面に沈着した放射性物質からのガ	約 9.0×10-1	約 1.7×10°	約 2.6×10°			
域	ンマ線による入退域時の被ばく	(約1.4×10°)	(約2.9×10°)	(約 4.3×10°)			
時	⑧大気中へ放出された放射性物質の吸入	0.1以下	0.1以下	0.1以下			
	摂取による入退域時の被ばく	(0.1以下)	(0.1以下)	(0.1以下)			
	小計 (5+6+⑦+8)	約 1.3×10 ⁰	約 2.5×10°	約 3.9×100			
		(約 1.9×10 ⁰)	(約 3.9×10 ⁰)	(約 5.9×10°)			
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 5.4×10 ¹	約7.0×10 ¹	約 120			
		(約 9.8×10 ¹)	(約1.5×10 ²)	(約 250)			
₩1	括弧内:原子炉格納容器内のpH	制御の効果に	期待しない場	合の被ばく線			
量	(被ばく線量の合計が最も大きい	滞在日(A班1	日目)の被ば	く線量)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-20 6 号及び7 号炉で格納容器ベントを実施した場合の影響に			・申請号炉数の相違
ついて			【柏崎 6/7】
柏崎刈羽原子力発電所6号及び7号炉では,各号炉において同時			島根2号炉は単号炉申
に炉心の著しい損傷が発生したと想定する場合、第一に両号炉に			請のため該当する資料
おいて代替循環冷却系を用いて事象を収束することとなる。しか			なし
しながら、被ばく評価では片方の号炉において代替循環冷却系の			
運転に失敗することも考慮し、当該号炉で格納容器圧力逃がし装			
置を用いた格納容器ベントを実施した場合も評価対象としてい			
る。			
このことに加え、更なる安全性向上のために遮蔽設計をより厳			
しくする観点から、両方の号炉において代替循環冷却系の運転に			
失敗し、同時に格納容器圧力逃がし装置を用いた格納容器ベント			
を行う場合も想定し、自主的な対策を講じている。ここでは、格			
納容器ベントを同時に実施する場合の影響を評価した。			
2つの号炉にて同時に格納容器ベントを行う場合, 評価点と放出			
源の位置関係によっては、評価点に到達し影響を及ぼす放射性物			
質は片方の号炉から放出されたもののみとなる可能性がある。大			
気中に放出された放射性物質による影響が片方の号炉からのみと			
なるか否かは、大気拡散評価において選定された着目方位の重な			
りの有無を調べることで確認できる。表2-20-1に、大気拡散評価			
にて選定された着目方位を示す。			
表2-20-1より,着目方位の多くは両号炉で異なっていることが			
確認できる。このことは、片方の号炉から放出された放射性物質			
が中央制御室の居住性に影響を及ぼすとき、もう片方の号炉から			
同時刻に放出された放射性物質が影響を及ぼすことはほとんどな			
いことに対応する。したがって、格納容器ベントを同時に実施し			
た場合の影響を、例えば単一号炉で格納容器ベントを実施した場			
合の影響の和により評価することは過度に保守的であると考えら			
れる。			
このことにかかわらず、ここでは遮蔽設計をより保守的に評価			
するために、格納容器ベントを同時に実施した場合の影響評価を、			
単一号炉で格納容器ベントを実施した場合の影響の和をとること			
で評価した*1。評価結果を表2-20-2-1から表2-20-4-2に示す。			
評価の結果,7日間での実効線量は最大約91mSvとなった。また,			
遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄く			
した場合は最大約92mSvとなった。			
このことから、判断基準である「運転員の実効線量が7日間で			
100mSvを超えないこと」を満足することを確認した。			

柏崎刈羽原子力発電	所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
					・申請号炉数の相違
※1 入退域時のよう素	フィルタからの影響	評価に当たっては,単			【柏崎 6/7】
一号炉で格納容器ベ	シトを実施する場合	と同様,よう素フィ			島根2号炉は単号炉申
ルタの近傍に合計2分	分間(各号炉で1分間]ずつ)滞在するもの			請のため該当する資料
とした。					なし
表 2-20-1 各放	出源及び評価点にお	ける着目方位			
放出源	評価点	着目方位			
	中央制御室	SE, SSE, S, SSW,			
6 号炉格納容器	中心	SW, WSW			
圧力逃がし装置配管	コントロール	SSF S SSW SW WSW			
	建屋入口	552, 5, 55%, 5%, 85%			
	中央制御室	WNW, NW, NNW, N,			
7 号炉格納容器	中心	NNE, NE, ENE, E			
圧力逃がし装置配管	コントロール	WSW, W, WNW, NW,			
	建屋入口	NNW, N, NNE, NE, ENE			
	中央制御室	SE, SSE, S, SSW,			
6 号炉	中心	SW, WSW			
原子炉建屋中心	コントロール	SSF S SSW SW WSW			
	建屋入口				
	中央制御室	WNW, NW, NNW, N,			
7 号炉	中心	NNE, NE, ENE, E, ESE			
原子炉建屋中心	コントロール	W, WNW, NW, NNW,			
	建屋入口	N, NNE, NE, ENE, E			
	中央制御室	SE, SSE, S, SSW, SW, W			
6 号炉	中心	SW			
主排気筒	コントロール	SSE, S. SSW, SW, WSW			
	建屋入口				
	中央制御室	WNW, NW, NNW, N,			
7 号炉	中心	NNE, NE, ENE, E, ESE			
主排気筒	コントロール	W, WNW, NW, NNW,			
	建屋入口	N, NNE, NE, ENE, E			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 2-20-2-1 各勤務サイクルでの被ばく線量			・申請号炉数の相違
(両号炉において格納容器ベントを実施する場合)			【柏崎 6/7】
(中央制御室内でマスクの着用を考慮した場合)(単位:mSv)*1*2			島根2号炉は単号炉申
*3			請のため該当する資料
1日 2日 3日 4日 5日 6日 7日 合計			なし
A SE 約 20 ¹⁰⁴ 約 54 2重 2重 2重 2重 2重 40.01			
B班 約31 ¹⁹⁵ 約23 ¹⁹⁵ 約20 ¹⁹⁵ 約17 ¹⁹⁵ - (約92)			
C班 約65 約27 <u>約91</u>			
約 21 新 18 約 23 ⁻⁰⁰⁰⁰ (約 63)			
E班約16 ³⁵⁴ 約72 (約90)			
※1 括弧内:遮蔽モデル上のコンクリート厚を許容される施工誤			
差分だけ薄くした場合の被ばく線量			
※2 入退域時においてマスク (PF=1000) の着用を考慮			
※3 中央制御室内でマスク (PF=50) の着用を考慮。6 時間当た			
り1時間外すものとして評価			
※4 中央制御室内で,事故後1日目のみマスク (PF=1000)の着			
用を考慮。6時間当たり18分間外すものとして評価			
※5 特定の班のみが過大な被ばくを受けることのないよう, 訓練			
直が代わりに勤務することを想定する等、評価上で班交替を			
工夫			
※6 評価期間終了直前の入域に伴う被ばく線量を,7日目1直の被			
ばく線量に加えて整理。7日目2直の被ばく線量は、入域及び			
中央制御室滞在(評価期間終了まで)に伴う被ばく線量(表			
2-19-3-1の ^{※6} を参照)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・申請号炉数の相違
表 2-20-2-2 各勤務サイクルでの被ばく線量			【柏崎 6/7】
(両号炉において格納容器ベントを実施する場合)			島根2号炉は単号炉申
(中央制御室内でマスクの着用を考慮しない場合)(単位:mSv) ^{*1}			請のため該当する資料
*2			なし
1日 2日 3日 4日 5日 6日 7日 合計			
A 班 約 250 約 76 約 8.4 #39#4 約 330			
28 28 28 28 30 (k) 10			
B班 約 31 ^{₩3} 約 23 ^{₩3} 約 20 ^{₩3} 約 17 ^{₩3} - ^{₩3 51} (約 92)			
C班 約93 C班 約66 約27 約93			
(飛)94)			
D班 約 21 約 18 約 23 ^{章3章4} (約 63)			
E班 約 27 約 78 約 110 (約 110)			
※1 拮弧内: 遮蔽モアル上のコンクリート厚を計容される施上誤			
左方にり 得く しに 場 ロ い 彼 は \ 脉 里 ※2 入 退 域 時 に た い て っ ヱ カ (DE-1000) の 差 田 を 老 虐			
χ_2 八区域時においてマハク (II-1000) の有用を写慮 χ_2 時空の班の五が過去な地球人を受けることのないよう 訓練			
※3 村庄の近のみが過入な彼はくと文けることのないよう, 訓練 声が仕もりに勤致することを相完する笑。 証価上で班応誌を			
正かれなりに勤務することを忍足する寺,計価工で班交省を エナ			
※4 計価労间於「旦則の八項に伴う彼はく禄星を,10日1旦の彼 ばく須是に加えて政理 70日9克の地ばく須是は、1ばみび			
は、豚重に加えて登垤。(日日2旦の彼は、豚重は、八域及び 中中制御空渡左(冠圧期間彼了まで)に伴るかばく領导(ま			
中央前御主席住(評価期间於」まで)に伴り彼はく藤里(衣			
2-19-3-10)*** を参照)			

	柏崎刈羽原子力発電所 6/	~7号炉	(2017.12.	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所	2 号炉	備考
								・申請号炉数の相違
表 2·	-20-3-1 評価結果の内訳(被	皮ばく線量	が最大とな	:る班 (C 班)				【柏崎 6/7】
	の合	計)						島根2号炉は単号炉申
	(両号炉において格納容器	骨ベントを	実施する場	 合)				請のため該当する資料
(1	中央制御室内でマスクの着用	を考慮する	5場合)(単	位:mSv)				なし
		6 号炉	7 号炉					
	被ばく経路	からの寄与	からの寄与	合計*1				
	①原子炉建屋内等の放射性物質からの			約 3.1×10 ⁰				
	ガンマ線による中央制御室内での被ばく	約 2.0×10 ⁰	約 1.1×10 ⁰	(約 3.4×10°)				
	②放射性雲中の放射性物質からのガンマ			0.1以下				
	線による中央制御室内での被ばく	0.1以下	0.1以下	(0.1以下)				
中	③地表面に沈着した放射性物質のガンマ	7		約 1.2×10°				
央	線による中央制御室内での被ばく	約4.4×10 ⁻¹	約7.8×10 ⁻¹	(約1.4×10°)				
制	④室内に外気から取り込まれた放射性物			約 3.1×10 ¹				
御	質による中央制御室内での被ばく	約 1.2×10 ¹	約 1.9×10 ¹	(約 3.1×10 ¹)				
室	(内訳)内部被ばく	約 1.3×10 ⁻¹	約 2.3×10 ⁻¹	約 3.6×10 ⁻¹				
滞				(約 3.6×				
在	外部被ばく	約 1.1×10 ¹	約 1.9×10 ¹	10^{-1})				
時				約 3.1×10 ¹				
				(約 3.1×10 ¹)				
				約 3.5×10 ¹				
	小計 (①+②+③+④)	約 1.4×10 ¹	約 2.1×10 ¹	(約 3.6×10 ¹)				
	⑤原子炉建屋内等の放射性物質からの			約 1. 2×10 ¹				
	ガンマ線による入退城時の被ばく	約 5.2×10°	約 7.0×10 ⁰	(約1.3×10 ¹)				
	⑥放射性雪中の放射性物質からのガンマ			約2.9×10 ⁰				
7	線による入退城時の被ばく	約 9.8×10 ⁻¹	約 2.0×10 ⁰	(約2.9×10 ⁰)				
退	⑦地表面に沈着した放射性物質からの			約41×10 ¹				
远	ガンマ線によろ入退城時の被げく	約 1.3×10 ¹	約 2.8×10 ¹	(約41×10 ¹)				
時	②大気中へ按出された放射性物質の吸入			0.1.UT				
	(個人人) 初出されのに成れた物質の次人 摂取に上ろ入退城時の被げく	0.1以下	0.1以下	(0.1以下)				
				(0.1以十) 約5.6×10 ¹				
	小計 (⑤+⑥+⑦+⑧)	約 1.9×10 ¹	約 3.7×10 ¹	※5.0×10 (約5.6×10 ¹)				
				(赤) 5. 0 ~ 10)				
合	計(①+②+③+④+⑤+⑥+⑦+⑧)	約 3.3×10 ¹	約 5.8×10 ¹	赤丁 91 (約 02)				
× 1	好ご内・ 海茲エジュレの つい	/ カリー 1	目を弥索を	(ホ) 92)				
×1	100001・巡戦てノル上のユ、 主公だけ藩とした担合の地に	ィクソート Yノ 幼昌	序を前谷く	140の旭上识				
	圧月にり得くしに笏百り彼に	* 、 心 里						

	柏崎刈羽原子力発電所 6/	~7 号炉	(2017.12.2	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所	2 号炉	備考
								・申請号炉数の相違
表 2	2-20-3-2 評価結果の内訳(被	支ばく線量 ズ	が最大とな	る班 (A 班)				【柏崎 6/7】
	の合	計)						島根2号炉は単号炉申
	(両号炉において格納容器	景ベントを筆	実施する場	合)				請のため該当する資料
(□	中央制御室内でマスクの着用を	を考慮しない	い場合)(単	单位 : mSv)				なし
		6 号炉	7 号炉	A 71 W1				
	被ばく経路	からの寄与	からの寄与	合計*1				
	①原子炉建屋内等の放射性物質からの			約 6.9×10 ⁻¹				
	ガンマ線による中央制御室内での被ばく	約 4.9×10 ⁻¹	約 2.1×10 ⁻¹	(約7.6×10 ⁻¹)				
	②放射性雲中の放射性物質からのガンマ			約 2.4×10°				
中	線による中央制御室内での被ばく	約 9.1×10 ⁻¹	約 1.5×10°	(約2.6×10°)				
央	③地表面に沈着した放射性物質のガンマ			約 2.5×10°				
制	線による中央制御室内での被ばく	約 9.1×10 ⁻¹	約 1.6×10°	(約 2.8×10°)				
御	④室内に外気から取り込まれた放射性物			約 2.8×10 ²				
室	質による中央制御室内での被ばく	約 1.0×10 ²	約 1.7×10 ²	(約 2.8×10 ²)				
滞	(内訳)内部被ばく	約 9.9×10 ¹	約 1.7×10 ²	約 2.7×10 ²				
在				(約 2.7×10 ²)				
時	外部被ばく	約 4.5×10º	約 7.9×10°	約 1.2×10 ¹				
				(約1.2×10 ¹)				
				約 2.8×10 ²				
	小計 (①+②+③+④)	約 1.1×10 ²	約 1.8×10 ²	(約 2.8×10 ²)				
	⑤原子炉建屋内等の放射性物質からの			約4.4×10°				
	ガンマ線による入退域時の被ばく	約 1.5×10°	約 2.9×10°	(約4.8×10°)				
	⑥放射性雲中の放射性物質からのガンマ			約 6.0×10°				
入	線による入退域時の被ばく	約 2.0×10°	約 3.9×10°	(約 6.0×10°)				
退	⑦地表面に沈着した放射性物質からのガ			約 3.6×10 ¹				
堿	ンマ線による入退域時の被ばく	約 1.1×10 ⁴	約 2.5×10 ⁴	(約 3.6×10 ¹)				
時	⑧大気中へ放出された放射性物質の吸入			約 6.3×10 ⁻¹				
	摂取による入退域時の被ばく	約 2.0×10 ⁻¹	約4.3×10-1	(約6.3×10-1)				
				約 4.7×10 ¹				
	小計 (5+6+7+8)	約 1.5×10 ¹	約 3.2×10 ¹	(約4.7×10 ¹)				
				約 330				
î	$h^{(1)}(1+2+3+4+5+6+7+8)$	約 1.2×10 ²	約 2.1×10 ²	(約 330)				
₩1	括弧内:遮蔽モデル上のコン	- - ノクリート	_ 厚を許容さ	れる施工誤				
	差分だけ薄くした場合の被は	ばく線量						

	柏崎刈羽原子力発電所 6/	7号炉	(2017.12.2	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所	2 号炉	備考
								・申請号炉数の相違
	表 2-20-4-1 評価結果の	D内訳(E st	班の2日目))				【柏崎 6/7】
	(両号炉において格納容器	ベントを	実施する場	合)				島根2号炉は単号炉申
(中央制御室内でマスクの着用	を考慮する	。場合)(単	位:mSv)				請のため該当する資料
		6 号炉	7 号炉					なし
	被ばく経路	からの寄与	からの寄与	合計*1				
	①原子炉建屋内等の放射性物質からの			約4.9×10°				
	ガンマ線による中央制御室内での被ばく	約 3.1×10°	約 1.8×10°	(約 5.2×10°)				
	②放射性雲中の放射性物質からのガンマ			約 7.5×10°				
中	線による中央制御室内での被ばく	約 2.8×10 ⁰	約 4.7×10°	(約 8.1×10°)				
央	③地表面に沈着した放射性物質のガンマ			約 1.5×10°				
制	線による中央制御室内での被ばく	約 5.6×10 ⁻¹	約 9.8×10 ⁻¹	(約1.7×10°)				
御	④室内に外気から取り込まれた放射性物			約 1.3×10 ¹				
室	質による中央制御室内での被ばく	約 4.7×10°	約 8.0×10°	(約1.3×10 ¹)				
滞	(内訳)内部被ばく	約4.5×10 ⁻¹	約 8.0×10 ⁻¹	約 1.2×10°				
在				(約1.2×10°)				
時	外部被ばく	約 4.2×10°	約 7.2×10°	約 1.1×10 ¹				
				(約1.2×10 ¹)				
				約 2.7×10 ¹				
	小計 (①+②+③+④)	約 1.1×10'	約 1.5×10'	(約 2.8×10 ¹)				
	⑤原子炉建屋内等の放射性物質からの	<i>4</i> (- 0, -1, -1, -0)	<i>4</i> (- 0, 0, -1, 0)	約 5.3×10°				
	ガンマ線による入退域時の被ばく	約 2.1×10°	約 3.2×10°	(約 5.6×10°)				
	⑥放射性雲中の放射性物質からのガンマ			約 5.1×10º				
入	線による入退域時の被ばく	約 1.7×10°	約 3.3×10°	(約 5.1×10°)				
退	⑦地表面に沈着した放射性物質からの			約 3.5×10 ¹				
域	ガンマ線による入退域時の被ばく	約 1.1×10'	約 2.4×10	(約 3.5×10 ¹)				
時	⑧大気中へ放出された放射性物質の吸入			約 5.2×10 ⁻¹				
	摂取による入退域時の被ばく	約 1.6×10 ⁻¹	約 3.6×10-1	(約5.2×10-1)				
				約 4.6×10 ¹				
	小計 ((5)+(6)+(7)+(8))	約 1.5×10 ¹	約 3.1×10 ¹	(約 4.6×10 ¹)				
				約 72				
1	f(1) + (2) + (3) + (4) + (5) + (6) + (7) + (8)	約 2.6×10 ⁴	約 4.6×10	(約 74)				
₩1	括弧内:遮蔽モデル上のコン	·クリート	厚を許容さ	れる施工誤				
差分	うだけ薄くした場合の被ばく線	量						

	柏崎刈羽原子力発電所 6/	~7 号炉	(2017.12.2	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
							・申請号炉数の相違
	表 2-20-4-2 評価結果の	の内訳(A:	旺の1日目)			【柏崎 6/7】
	(両号炉において格納容器	景ベントを	実施する場	合)			島根2号炉は単号炉申
()	中央制御室内でマスクの着用を	を考慮しな	い場合)(単	单位 : mSv)			請のため該当する資料
	Lite vie b der min	6 号炉	7 号炉	A -1 - 1 - 1 - 1			なし
	被はく経路	からの寄与	からの寄与	合計**			
	①原子炉建屋内等の放射性物質からの			約 1.0×10 ⁻¹			
	ガンマ線による中央制御室内での被ばく	約 1.0×10 ⁻¹	0.1以下	(約1.3×10 ⁻¹)			
	②放射性雲中の放射性物質からのガンマ			約 5.6×10 ⁻¹			
中	線による中央制御室内での被ばく	約 2.1×10 ⁻¹	約 3.5×10 ⁻¹	(約5.9×10 ⁻¹)			
央	③地表面に沈着した放射性物質のガンマ			約 5.6×10 ⁻¹			
制	線による中央制御室内での被ばく	約 2.1×10 ⁻¹	約 3.5×10 ⁻¹	(約6.2×10 ⁻¹)			
御	④室内に外気から取り込まれた放射性物			約 2.4×10 ²			
室	質による中央制御室内での被ばく	約 9.0×10 ¹	約 1.5×10 ²	(約 2.4×10 ²)			
滞	 (内訳) 内部被ばく	約 9.0×10 ¹	約 1.5×10 ²	約 2.4×10 ²			
在				(約 2.4×10 ²)			
時	外部被ばく	約 2.3×10 ⁻¹	約3.8×10-1	約 6.1×10 ⁻¹			
				(約6.2×10 ⁻¹)			
				約 2.4×10 ²			
	小計 (①+②+③+④)	約 9.0×10 ¹	約 1.5×10 ²	(約 2.4×10 ²)			
	⑤原子炉建屋内等の放射性物質からの			約 8.0×10 ⁻¹			
	ガンマ線による入退域時の被ばく	約 2.6×10 ⁻¹	約 5.4×10 ⁻¹	(約9.1×10 ⁻¹)			
	⑥放射性雲中の放射性物質からのガンマ			約 7.3×10 ⁻¹			
入	線による入退域時の被ばく	約 2.4×10 ⁻¹	約4.9×10-1	(約7.3×10 ⁻¹)			
退	⑦地表面に沈着した放射性物質からの			約 4.3×10°			
域	ガンマ線による入退域時の被ばく	約 1.4×10 ⁰	約 2.9×10 ⁰	(約 4.3×10°)			
時	⑧大気中へ放出された放射性物質の吸入			0.1以下			
	摂取による入退域時の被ばく	0.1以下	0.1以下	(0.1以下)			
				約 5.9×10°			
	小計 (⑤+⑥+⑦+⑧)	約 1.9×10 ⁰	約 3.9×10°	(約 6.0×10°)			
				約 250			
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 9.2×10 ¹	約 1.5×10 ²	(約 250)			
└ ┊∦ 1	括弧内: 遮蔽モデルトのコン	<u> </u> /クリート	」 厚を許容さ	れる施工誤			
	差分だけ薄くした場合の被は	ばく線量					

らめ施 いた評
Pめ施 いた評
やめ施 いた評
いた評

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
クリート厚区間における,単位厚さ当たりの線量透過率を用いた。			・評価条件の相違
各評価条件におけるコンクリート厚0cmから100cm間について			【柏崎 6/7】
10cm間隔で算出した線量透過率を表2-20-1から表2-20-2に示す**			島根2号炉では予め施
² 。また,各々の評価条件における単位厚さ当たりの線量透過率が			工誤差を差し引いた評
最も小さくなるコンクリート厚区間及び施工誤差分の厚さのコン			価としている
クリートの線量透過率の評価結果を表2-20-3から表2-20-4に示			
す。施工誤差分の厚さ(-5mm)のコンクリートの線量透過率は約			
9.1×10 ⁻¹ から約9.5×10 ⁻¹ となった。			
※2 6 号炉からの影響を代表として示す。			
表 2-21-1 各被ばく経路及びコンクリート厚に対する線量透過率			
*1			
(代替循環冷却系を用いて事象を収束する号炉)			
被ばく経路			
建屋から大気中への漏えい及び			
ート厚 シャインガンマ線 「m」 ジャインガンマ線			
(CE) クリントシマ クリクトシマ た放射性物質 並逐声ンクリーダーンクリー インガンマ線 インガンマ線			
管理コンクリ 転車コンクリ からのガンマ ート ート ^{#2} 線			
$0 \qquad 1.0 \times 10^{0} \qquad 1.0 \times 10^{0} \qquad 1.0 \times 10^{0} \qquad 1.0 \times 10^{0} \qquad 1.0 \times 10^{0}$			
10 $\Re 2.3 \times 10^{-1}$ $\Re 3.2 \times 10^{-1}$ $\Re 5.9 \times 10^{-1}$ $\Re 3.6 \times 10^{-1}$ $\Re 1.8 \times 10^{-1}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
40 約4.2×10 ⁻³ 約1.2×10 ⁻² 約2.2×10 ⁻² 約1.4×10 ⁻² 約1.5×10 ⁻³			
50 約1.3×10 ⁻³ 約4.4×10 ⁻³ 約6.9×10 ⁻³ 約4.6×10 ⁻³ 約5.2×10 ⁻⁴			
60 約4.3×10 ⁻⁴ 約1.7×10 ⁻³ 約2.2×10 ⁻³ 約1.6×10 ⁻³ 約2.1×10 ⁻⁴ 70 約1.6×10 ⁻⁴ 約7.2×10 ⁻⁴ 約7.3×10 ⁻⁴ 約5.6×10 ⁻⁴ 約9.1×10 ⁻⁵			
80 約5.9×10 ⁻⁵ 約3.1×10 ⁻⁴ 約2.5×10 ⁻⁴ 約2.1×10 ⁻⁴ 約4.1×10 ⁻⁵			
90 約 2.4×10 ⁻⁵ 約 1.4×10 ⁻⁴ 約 8.8×10 ⁻⁵ 約 7.9×10 ⁻⁵ 約 1.9×10 ⁻⁵			
100 約 9.8×10 ⁻⁶ 約 6.5×10 ⁻⁵ 約 3.2×10 ⁻⁵ 約 3.1×10 ⁻⁵ 約 8.5×10 ⁻⁶			
※1 一部を除き普通コンクリート (密度・2 15g/cm ³) に			
オオス値を示す			
※2 軽重コンクリート密度:1./g/cm ^o			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・評価条件の相違
表 2-21-2 各被ばく経路及びコンクリート厚に対する線量透過率			【柏崎 6/7】
**1			島根2号炉では予め施
(格納容器ベントを実施する号炉)			工誤差を差し引いた評
被ばく経路			価としている
建屋から大気中への漏えい及び非常格納容器圧力迭がし装置配管から大 用ガスは回見から大気中への漏えい及び非常格納容器圧力迭がし装置配管から大 アイルタ内の放射性物質からのガン			
原子炉地屋内の放射性 スキ・シカム山 スキ・シカム山 マ泉			
コンクリ 物質からの直接ガンマ 室内に外 室内に外 メールタ内 装置内の 放射性物 ート車 線及びスカイシャイン 気から取 気から取 気から取 放射性物 放射性物			
[cm] ^{ガンマ線} グランド クラウド り込まれ グランド クラウド り込まれ 物質から 賞からの 直接ガン シャイン シャイン た放射性 シャイン シャイン た放射性 の直接ガ スカイシ マ線及び			
ガンマ線 ガンマ線 物質から ガンマ線 物質から ンマ線及 ヤインガ スカイシ のガンマ のガンマ びスカイ ンマ線 キインガ			
 普通コン 軽量コンク タリート リート⁸³ 線 線 線 線 ジャイン ンマ線 ガンマ線 			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$ \begin{array}{c} 20 & 87, 3 \times 10^{-9} 81, 3 \times 10^{-9} 82, 2 \times 10^{-9} 81, 2 \times 10^{-9} 87, 0 \times 10^{-9} 87, 0 \times 10^{-9} 85, 3 \times 10^{-9} 8$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
70 $\#3.5.0\times10^{-1}\#1.2\times10^{-1}\#1.5\times10^{-1}\#6.5\times10^{-1}\#1.3\times10^{-1}\#1.3\times10^{-1}\#3.4\times10^{-1}\#3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1}\%3.3\times10^{-1$			
100 約2.1×10 ⁴ 約1.3×10 ⁴ 約3.3×10 ⁴ 約4.0×10 ⁴ 約1.1×10 ⁴ 約1.3×10 ⁴ 約4.9×10 ⁴ 約1.2×10 ⁴ 10.2×10 ⁴ 10.2×10 ⁴ <td></td> <td></td> <td></td>			
×1 一切な除き並通コンカリート (密府・9,15 $-(3)$)に対すて			
※1 印を味ざ言通コングリート(名及・2・15g/ Cm) に対する 値を示す			
[[

柏崎刈羽原子九	発電所 6	/7号炉	(2017.12.	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 2-21-3 各被ばく経路における施工誤差分の厚さのコンクリー							・評価条件の相違 【柏崎 6/7】
	トに対する	る線量透過	率				島根2号炉では予め施
(代替循環	冷却糸を用い 	いて事象を	収束する号	沪)			工誤差を差し引いた評
		コンクリート	厚の施工誤差**1				価としている
被ばく経路	-5mm	-10mm	-15mm	-25mm			
	(遮蔽1枚)	(遮蔽2枚)	(遮蔽3枚)	(遮蔽5枚)			
 晋通コ 原子炉建屋内の放 ンクリ 射性物質からの直 ート 接ガンマ線及びス 	約 9.3×10 ⁻¹	約 8.6×10 ⁻¹	約 8.0×10 ⁻¹	約 6.9×10-1			
 ホイシャインガン 軽量コ カイシャインガン ンクリ マ線 ート 	約 9. 4×10 ⁻¹	約 8. 9×10 ⁻¹	約 8.3×10 ⁻¹	約 7.4×10 ⁻¹			
クラウドシャイ 建屋から 大気中へ	約 9.5×10 ⁻¹	約 9. 0×10 ⁻¹	約 8.5×10 ⁻¹	約 7.6×10 ⁻¹			
の漏えい グランドシャイ 及び非常 用ガス処	約 9.4×10 ⁻¹	約 8.9×10 ⁻¹	約 8.4×10-1	約 7.5×10-1			
理系から 室内に外気から 大気中へ 取り込まれた放 の放出 射性物質 からのガンマ線	約 9. 1×10 ⁻¹	約 8. 3×10 ⁻¹	約 7.5×10-1	約 6. 2×10 ⁻¹			
※1 遮蔽壁が褚	夏数枚重なる	場合は、名	ト 遮蔽壁に え	けし施工誤差			
			(-{	omm) を考慮			

柏崎刈羽	原子力発電所	6/7長	}炉 (20	017. 12. 20	版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
							・評価条件の相違
表 2-21-4 各被ばく経路における施工誤差分の厚さのコンクリー					ンクリー		【柏崎 6/7】
	トに対	する線量	透過率				島根2号炉では予め施
	(格納容器ベントを実施する号炉						工誤差を差し引いた評
			コンクリート	夏の施工誤差 ^{№1}			価としている
被は		-5mm	-10mm	-15mm	-25mm		
		(遮蔽1枚)	(遮蔽2枚)	(遮蔽3枚)	(遮蔽5枚)		
原子炉建屋内の放射性物質からの直接ガンマ	普通コン クリート	約 9.4×10 ⁻¹	約 8.8×10 ⁻¹	約 8. 2×10 ⁻¹	約 7.2×10 ⁻¹		
線及びスカイシャイン	軽量コン	約 9.5×10 ⁻¹	約 9.0×10 ⁻¹	約 8.5×10 ⁻¹	約 7.6×10 ⁻¹		
カンマ線	グリート						
神見わら 上乞中。 の温	ッフリトシャインガ ンマ線	約 9.4×10 ⁻¹	約8.9×10-1	約8.4×10 ⁻¹	約 7.5×10 ⁻¹		
建屋から入気中への備 えい及び非常用ガス処	グランドシャインガ ンマ線	約 9.4×10 ⁻¹	約8.9×10-1	約 8.4×10 ⁻¹	約 7.5×10 ⁻¹		
理系から大気中への放	室内に外気から取り						
出	込まれた放射性物質	約 9.3×10 ⁻¹	約8.6×10-1	約7.9×10-1	約 6.8×10 ⁻¹		
	からのガンマ線						
	クラウドシャインガ ンマ線	約 9.2×10 ⁻¹	約8.5×10-1	約7.8×10 ⁻¹	約 6.7×10 ⁻¹		
格納容器圧力逃 がし装置配管か	グランドシャインガ ンマ線	約 9.4×10 ⁻¹	約8.8×10-1	約 8.3×10 ⁻¹	約 7.3×10 ⁻¹		
ら大気中への放	室内に外気から取り						
出	込まれた放射性物質	約 9.2×10 ⁻¹	約 8.5×10 ⁻¹	約7.8×10 ⁻¹	約 6.6×10 ⁻¹		
	からのガンマ線						
	よう素フィルタ内の						
	放射性物質からの直						
	接ガンマ線及びスカ	約 9.4×10 ⁻¹	約8.8×10 ⁻¹	約 8.2×10 ⁻¹	約7.2×10 ⁻¹		
救幼家职工力速	イシャインガンマ編						
が1 装置及びト	フィルタ装置内の放						
ふまてノルクロ	ショルン表面的の成	約0.4×10-1	約8.8×10-1	約8.9×10-1	約7.9×10-1		
フボノイルクロ	利任物員からのヘガ	₩J 9. 4 × 10	πj 8. 8 × 10	₩J 6. 2 × 10	₩J 7. 2 ∧ 10		
の成別性物質が	インヤインルンマ緑						
らのガンマ線	配官内の放射性物質						
	いらい旦按刀シマ緑	約 9.4×10 ⁻¹	約 8.8×10 ⁻¹	約 8.2×10 ⁻¹	約7.2×10-1		
	皮いヘルイシャイン						
※1) 南苏臣	がおおちょう	て旧人い	友`运志	時 /ァ ┶レ) -	協士部士		
**1 遮敝壁	い限毀仪里なる	る場合は	,	壁に 灯し)	他上誤左		
(-5mm) を考	·						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
3. 居住性評価結果への影響について			・評価条件の相違
中央制御室の居住性に係る被ばく評価においては、被ばく経路			【柏崎 6/7】
ごとに遮蔽モデルを設定している。各遮蔽モデルは原子炉格納容			島根2号炉では予め施
器の遮蔽効果や大部分の内壁の遮蔽効果に期待しない等、保守性			工誤差を差し引いた評
を確保したモデルとなっており、仮にコンクリートの実際の厚さ			価としている
が公称値よりも許容される施工誤差分だけ薄い場合であっても、			
施工誤差の影響は遮蔽モデルの持つ保守性に包含されるものと考			
えられる。			
上述の状況に係らず、遮蔽モデル上の各コンクリート厚を許容			
される施工誤差分だけ薄くした場合の被ばく線量に与える影響を			
評価した。			
施工誤差を考慮した場合における各被ばく経路の被ばく線量の			
上昇率を表2-21-5及び表2-21-6に示す。また,許容される施工誤			
差を考慮した場合における被ばく線量の評価結果は,「2.中央制			
御室の居住性(重大事故)に係る被ばく評価について」の2.5に示			
すとおり。			
遮蔽モデル上の各コンクリート厚を許容される施工誤差分だけ			
薄くした場合,被ばく線量の上昇分は1mSvから2mSv程度となり,			
公称値を参照した評価結果(最大約86mSv)と合算しても判断基準			
「運転員の実効線量が7日間で100mSvを超えないこと」を満足する			
ことを確認した。			

柏崎刈羽原子力発	電所 6/7号炉 (2017. 12. 20	版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 2-21-5 各被ばく約	経路における遮蔽モデル	~上で各コン	クリート			・評価条件の相違
厚	を許容される施工誤差分	行				【柏崎 6/7】
だけ薄くするこ	とによる被ばく線量に	与える影響	※ 1			島根2号炉では予め施
(代替循環冷却系を用いて事象を収束する号炉)						工誤差を差し引いた評
評価モデル上で参照している 施工誤差とし 被ばく線				価としている		
被ばく経路	コンクリート遮蔽の実際の枚	て考慮する厚	量の上昇			
	数	ż	率			
原子炉建屋内の放射性物質か						
らの直接ガンマ線	3枚以下	-15mm	約 25%上昇			
原子炉建屋内の放射性物質か	3枚以下					
らのスカイシャインガンマ線	(内,1枚は軽量コンクリート)	-15mm	約 23%上昇			
グランドシャインガンマ線	2枚以下	-10mm	約 12%上昇			
ちこうじい、ノンボン一道	1 44	-	約 5.6%上			
クラリトシャインガンマ線	1 12	-5mm	昇			
室内に外気から取り込まれた		_				
放射性物質からのガンマ線	1 校	-5mm	約 10%上昇			
※1 中央制御室滞在	時における影響を代表で	で示す。入退	域時の評			
価モデルでは,中	中央制御室滞在時と比べ	遮蔽枚数が	少ないの			
で、被ばく線量の	上昇率は小さくなる。					

柏崎刈	羽原子力発電府	斤 6/7号炉	(2017.12.2	0版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
表 2-21-6	各被ばく経路	における遮蔽モラ	デル上で各コン	ンクリート		・評価条件の相違
厚を許容さ	れる施工誤差の	分だけ薄くするこ	ことによる被に	ばく線量に		【柏崎 6/7】
与之	える影響 ^{※1} (格	納容器ベントを	実施する号炉)		島根2号炉では予め施
		評価モデル上で参照している	松子部立しして本書か	対応く領具の上		工誤差を差し引いた評
被	ばく経路	コンクリート遮蔽の実際の枚	爬上設定として考慮り	彼はく豚重の上		価としている
		数	☆厚さ	升半		
原子炉建屋内の放射性	生物質からの直接ガンマ線	3枚以下	-15mm	約 22%上昇		
原子炉建屋内の放射	性物質からのスカイシャイ	3 枚以下(内, 1 枚は		<i></i>		
ンガンマ線		軽量コンクリート)	-15mm	約 21% 上升		
	グランドシャインガン			di anti la B		
	マ線	2 权以下	-10mm	約 12% 上升		
建屋から大気中へ	クラウドシャインガン		_			
の漏えい及び非常	マ線	1 枚	-5mm	約 5.8% 上昇		
用ガス処理糸から	室内に外気から取り込					
大気中への放出	まれた放射性物質から	1枚	-5mm	約 8.0%上昇		
	のガンマ線					
	グランドシャインガン					
	マ線	2枚以下	-10mm	約 13%上昇		
格納容器圧力逃が	クラウドシャインガン					
し装置配管から大	マ線	1枚	-5mm	約 8.4%上昇		
気中への放出	室内に外気から取り込					
	まれた放射性物質から	1枚	-5mm	約 8.7%上昇		
	のガンマ線					
	よう素フィルタ内の放					
	射性物質からの直接ガ	2枚	-10mm	約14%上昇		
	ンマ線					
	よう素フィルタ内の放					
	射性物質からのスカイ	1枚	-5mm	約 6.8%上昇		
格納容器圧力逃が	シャインガンマ線					
し装置及びよう素	フィルタ装置内の放射					
フィルタ内の放射	性物質からのスカイシ	1枚	-5mm	約 6.7%上昇		
性物質からのガン	ャインガンマ線					
マ線	配管内の放射性物質か					
	らの直接ガンマ線	1枚	—5mm	約 6.7%上昇		
	配管内の放射性物質か					
	らのスカイシャインガ	1枚	-5mm	約 6.7%上昇		
	ンマ線					
L			I			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
※1 中央制御室滞在時における影響を代表で示す。入退域時の評			・評価条件の相違
価モデルでは、中央制御室滞在時と比べ遮蔽枚数が少ないの			【柏崎 6/7】
で、被ばく線量の上昇率は小さくなる。			島根2号炉では予め施
			工誤差を差し引いた評
(参考)原子炉運転時の炉心熱出力を定格熱出力に余裕を見た出			価としている。
力とした場合の影響について			
中央制御室の居住性に係る被ばく評価では、審査ガイドに基づ			
き最適評価手法を採用しており、原子炉運転時の炉心熱出力とし			
て定格熱出力を参照している。以下では、原子炉運転時の炉心熱			
出力を、設計基準事故解析と同様に、定格熱出力に余裕を見た出			
力(定格熱出力の102%)とした場合の影響を検討した。			
検討の結果,定格熱出力の102%での運転継続を仮定した場合に			
おいても,被ばく線量は最大約88mSvとなり,			
判断基準「運転員の実効線量が7日間で100mSvを超えないこと」			
を満足することを確認した。以下、検討結果を示す。			
<検討>			
中央制御室の居住性に係る被ばく評価において考慮した各被ば			
く経路からの被ばく線量は、線源となる放射性物質の量に比例し、			
また、線源となる放射性物質の量は、停止時炉内内蔵量に比例す			
る。			
なお、停止時炉内内蔵量は、以下の式より評価している。			
停止時炉内内蔵量[Bq]=単位出力当たりの停止時炉内内蔵量※			
[Bq/MW]×炉心熱出力[MW]			
※電力共通研究「立地審査指針改定に伴うソースタームに関す			
る研究(BWR)」において評価			
ここで、原子炉運転時の炉心熱出力を定格熱出力の102%とした			
場合における放射性物質の環境中への放出割合として添付資料2			
2-1の表2-1-1に示す値を用いる場合,各被ばく経路からの被ばく			
線量は炉心熱出力に比例することになる。この場合、炉心熱出力			
を定格熱出力の102%とした場合における被ばく線量は、定格熱出			
力を用いて評価した結果を1.02倍することによって求められる。			
定格熱出力を用いた場合における各被ばく経路からの合計値			
(最大約86mSv ^{※1})を1.02倍すると,評価結果は約88mSvになり,			
判断基準「運転員の実効線量が7日間で100mSvを超えないこと」を			
満足している。			

	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
ſ	※1 「59-11 原子炉制御室の居住性に係る被ばく評価について		
	2. 中央制御室の居住性(炉心の著しい損傷)に係る被ばく		
	評価について」に示した評価ケースのうち,評価結果が最		
	も厳しくなる6号炉が代替循環冷却系を用いて事象収束に		
	成功し,7号炉が格納容器ベントを実施する場合の評価結果		

2 号炉	備考
	・評価条件の相違
	【柏崎 6/7】
	島根2号炉では予め施
	工誤差を差し引いた評
	価としている。
	1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2-22 格納容器雰囲気直接加熱発生時の被ばく評価について			
中央制御室の居住性の評価に当たっては、「2-2 事象の選定の		18 格納容器雰囲気直接加熱発生時の被ばく評価について	
考え方について」のとおり、炉心損傷が発生するLOCA時注水機能		中央制御室の居住性の評価に当たっては、「2 事象の選定の考	
喪失を想定事故シナリオとして選定し、両号炉において代替循環		え方について」のとおり、炉心損傷が発生するLOCA時注水機	・申請号炉数の相違
冷却系を用いて事象を収束した場合,及び片方の号炉において代		能喪失を想定事故シナリオとして選定し, 格納容器フィルタベン	【柏崎 6/7】
替循環冷却系を用いて事象収束するのではなく格納容器圧力逃が		ト系を用いたサプレッション・チェンバの排気ライン経由の格納	
し装置を用いたサプレッション・チェンバの排気ライン経由の格		容器ベントを実施する場合を評価対象とした。	
納容器ベントを実施する場合を評価対象とした。			
一方,重大事故等対策の有効性評価においては,格納容器破損			
モードとして,雰囲気圧力・温度による静的負荷(格納容器過圧・		一方,重大事故等対策の有効性評価においては,格納容器破損	
過温破損)(LOCA時注水機能喪失),高圧溶融物放出/格納容器		モードとして,雰囲気圧力・温度による静的負荷(格納容器過圧・	
雰囲気直接加熱 (DCH),原子炉圧力容器外の溶融燃料ー冷却材相		過温破損)(LOCA時注水機能喪失),高圧溶融物放出/格納	
互作用 (FCI),水素燃焼,溶融炉心・コンクリート相互作用 (MCCI)		容器雰囲気直接加熱(DCH),原子炉圧力容器外の溶融燃料-	
の5つを想定しており、これらのモードにおける原子炉格納容器の		冷却材相互作用(FCI),水素燃焼,溶融炉心・コンクリート	
破損防止のための対応は、LOCA時注水機能喪失とDCHに集約されて		相互作用(MCCI)の5つを想定しており、これらのモードに	
いる。なお,DCHは事象発生のために重大事故等対処設備による原		おける原子炉格納容器の破損防止のための対応は、LOCA時注	
子炉注水機能についても使用できないものと仮定したシナリオで		水機能喪失とDCHに集約されている。なお、DCHは事象発生	
あり,代替循環冷却系を用いることでPCV ベントに至らず事象収		のために重大事故等対処設備による原子炉注水機能についても使	
束するものである。		用できないものと仮定したシナリオであり、残留熱代替除去系を	
このうち、LOCA時注水機能喪失については上述のとおり想定事		用いることで格納容器ベントに至らず事象収束するものである。	
故シナリオとして評価していることから,ここではDCH発生時の被		このうち、LOCA時注水機能喪失については上述のとおり想	
ばく影響を評価した。		定事故シナリオとして評価していることから、ここではDCH発	
		生時の被ばく影響を評価した。	
1. 中央制御室内の環境としての評価結果			
(7日間積算値)		1. 中央制御室内の環境としての評価結果	
設置許可基準規則の解釈 第59条1 b) ②,同③において,運用		(7日間積算値)	
面での対策であるマスクの着用及び運転員の交替について考慮し		設置許可基準規則の解釈 第59条1 b) ②, 同③において, 運用	
てもよいこととなっているが、設置許可基準規則 第59条の要求		面での対策であるマスクの着用及び運転員の交替について考慮し	
事項である「運転員がとどまるために必要な設備」の妥当性を評		てもよいこととなっているが,設置許可基準規則 第59条の要求	
価するうえでは、運用面での対策に期待しない場合における中央		事項である「運転員がとどまるために必要な設備」の妥当性を評	
制御室内環境として最も厳しい事象を選定する必要がある。		価するうえでは、運用面での対策に期待しない場合における中央	
そこで,重大事故等対策の有効性評価のうち,LOCA時注水機能		制御室内環境として最も厳しい事象を選定する必要がある。	
喪失とDCHの両シナリオにおいて、運用面での対策に期待せず、7		そこで、重大事故等対策の有効性評価のうち、LOCA時注水	
日間中央制御室内にとどまった場合の評価を実施した。評価結果		機能喪失とDCHの両シナリオにおいて、運用面での対策に期待	
を表2-22-1に示す。(以下,LOCA時注水機能喪失については「大		せず,7日間中央制御室内にとどまった場合の評価を実施した。	
LOCA(代替循環)」と記載する。)		評価結果を表18-1に示す。(以下, LOCA時注水機能喪失につ	
表2-22-1のとおり,内部被ばくについては大LOCA(代替循環)が		いては「大LOCA(残留熱代替除去)」と記載する。)	
大きく,外部被ばくについてはDCHが大きく,合計では大LOCA(代		表18-1のとおり、内部被ばくについては大LOCA (残留熱代	

柏崎刈羽原子	力発電所 6/7	号炉 (2017.12	2.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉			備考	
<u> 替循環)</u> が大きい評	<u> 環)</u> が大きい評価結果となった。すなわち,運用面での対策に <u> </u>			てはDCHが大	さく, 合計				
期待しない場合における中央制御室内環境としては大LOCA(代替			大LOCA <u>(代</u> 替		では大LOCA (残留熱代替除去) が大きい評価結果となった。				
<u>循環)</u> の方が厳しく	なることを確認し	」た。 (本評価結	果に関する考		すなわち,運用面での対	け 策に 期待しな	い場合における	中央制御室	
察は別紙参照)					内環境としては大LOC	CA(残留熱代	替除去) の方が	厳しくなる	
					ことを確認した。(本語	呼価結果に関す	る考察は別紙参	*照)	
表 2-22-1 マスク	着用なし,運転員	交替なしの場合	の評価結果*1						・評価結果の相違
	<u>**2</u>				表 18-1 マスク着用な	し,運転員交替	なしの場合の言	平価結果*1*2	【柏崎 6/7】
(mSv/7 日間)	内部被ばく	外部被ばく	合計		(mSv/7 日間)	内部被ばく	外部被ばく	合計	
6 号炉:大 LOCA(代替循	約 1.2×10 ²	約 1.2×10 ¹			大LOCA(残留熱代	約9.7×102	^変 力 0 0 × 100	※ 与 200	
環)					替除去)	☆J 3.7×10 ⁻²	がJ 9. 0 × 10°	承生380	
7 号炉:大 LOCA(代替循	約 2.1×10 ²	約 1.9×10 ¹	約 360		DCH(残留熱代替除				
環)					(去)	約 2.9×10 ²	約 1.3×10 ¹	約 300	
c 日后, DCH(体共研究)	\$5 C 2 V 10	約1.6×10			※1 大LOCA (残留	了 熱代替除去):	冷却材喪失(ナ	て破断LOC	
	#9 0. 3 × 10	₩9 1. 0×10	約 210		A) + E C C S 注水機能	<u> </u>	動力電源喪失	(残留熱代替	
7 号炉:DCH(代替循境)	約 1.0×10°	新 2.6×10 ⁴			除去系を用いて事象を収	(東する場合)			
※1 大 LOCA(代替	循環): <u>大破断 LC</u>	CA+全交流動力	<u>電源喪失+全</u>		※2 DCH (残留熱代	、 替除去): D C	H(残留熱代権	*除去系を用	
ECCS 機能喪失					いて事象を収束する)				
(代替循環冷却	却系を用いて事象	を収束する場合)						
※2 DCH(代替循環	的:DCH(代替循環	冷却系を用いて	事象を収束す						
る)									

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
2. 入退域を考慮した場合の評価結果			
(7日間積算値(1班あたりの平均))		2. 入退域を考慮した場合の評価結果	
1.のとおり、中央制御室内環境としては大LOCA(代替循環)の方		(7日間積算値(1班あたりの平均))	
が厳しいことを確認したが、中央制御室の運転員は通常5直2交替		1. のとおり、中央制御室内環境としては大LOCA(残留熱	
体制であり、炉心の著しい損傷が発生した場合においても交替す		<u>代替除去</u> の方が厳しいことを確認したが,中央制御室の運転員	
ることが想定されるため、交替の際の入退域時に屋外を通ること		は通常4直2交替体制であり、炉心の著しい損傷が発生した場合	
による被ばくを含め、平均的な被ばく線量を確認した。		においても交替することが想定されるため、交替の際の入退域時	
		に屋外を通ることによる被ばくを含め、平均的な被ばく線量を確	
1. 同様に, <u>大LOCA(代替循環)</u> とDCH の両シナリオにおいて,中		認した。	
央制御室内でのマスク着用には期待しないが、運転員の交替を平		1. 同様に, <u>大LOCA(残留熱代替除去)</u> とDCH(残留熱	
均的に考慮して評価する。5直2交替体制において、中央制御室滞		代替除去)の両シナリオにおいて、中央制御室内でのマスク着用	
在時間及び入退域回数が最大となる班は		には期待しないが、運転員の交替を平均的に考慮して評価する。	
中央制御室滞在時間49時間40分		4直2交替体制において、中央制御室滞在時間及び入退域回数が	
入退域回数8回(1回あたり15分)		最大となる班は	・運用の相違
であるため,		中央制御室滞在時間 49時間	【柏崎 6/7】
中央制御室内での被ばく線量		入退域回数 8回(1回あたり15分)	
=中央制御室内での被ばく線量7日間積算値× <u>(49時間40分</u>		であるため,	
/168時間)		中央制御室内での被ばく線量	・運用の相違
入退域時の被ばく線量		=中央制御室内での被ばく線量7日間積算値× <u>(49時間/168</u>	【柏崎 6/7】
=入退域評価点での被ばく線量7日間積算値×(8回×15分		時間)	
/168時間)		入退域時の被ばく線量	
として評価する。ただし、入退域においては審査ガイドに基づき		=入退域評価点での被ばく線量7日間積算値×(8回×15分	
マスク <u>(PF1000)</u> を着用するものとして評価する。評価結果を表		/168時間)	
2-22-2に示す。		として評価する。ただし、入退域においては審査ガイドに基づき	・資機材の相違
表2-22-2のとおり, <u>内部被ばくについては大LOCA(代替循環)が</u>		マスク(PF50)を着用するものとして評価する。評価結果を表	【柏崎 6/7】
大きく,外部被ばくについてはDCHが大きく,合計では大LOCA(代		18-2に示す。	島根2号炉は全面マス
<u> </u>		表18-2のとおり、 <u>内部被ばく及び外部被ばくいずれについても</u>	ク (PF50) で評価を実施
過影響を考慮した場合においても、1班あたりの平均的な環境とし		大LOCA (残留熱代替除去) が大きい評価結果となった。すな	・評価結果の相違
ては大LOCA(代替循環)の方が厳しくなることを確認した。		わち、入退域時の屋外通過影響を考慮した場合においても、1班	【柏崎 6/7】
表 2-22-2 中央制御室内マスク着用なしの場合の評価結果(1班		あたりの平均的な環境としては大LOCA (残留熱代替除去)の	
あたりの平均)	方が厳しくなることを確認した。		・評価結果の相違
(mSv/7 日間) 内部被ばく 外部被ばく 合計		表 18-2 中央制御室内マスク着用なしの場合の評価結果(1 班あ	
6 号炉:大LOCA(代替循環) 約 3.7×10 ¹ 約 2.5×10 ¹		たりの平均)	
7 号炉:大LOCA(代替循環) 約 6.2×10 ¹ 約 5.2×10 ¹ 約 170		(mSv/7日間) 内部被ばく 外部被ばく 合計	
6 号炉: DCH(代替循環) 約1.9×10 ¹ 約3.1×10 ¹		大LOCA (残留 // // // // // // // // // // // // //	
7号炉:DCH(代替循環) 約3.2×10 ¹ 約6.6×10 ¹		熱代替除去) 約 1.1×10 ² 約 2.4×10 ¹ 約 130	
		DCH(残留熱代) 約8.5×10 ¹ 約1.1×10 ¹ 約96	
		春除去) ホラン・シストン ホラン・シストン ホラン・シストン	
L	I	1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
3. 運用面での対策も考慮した場合の評価結果			・評価結果の相違
1. 及び2. から、中央制御室内環境としても、平均的な運転員交			【柏崎 6/7】
替を考慮した場合の環境としても、大LOCA(代替循環)の方が厳し			島根2号炉では DCH の
いことを確認した。ただし,いずれの評価結果においても100mSv/7			際の1 班あたりの平均
日間を上回っていることから、運用面での対策も考慮することで			的な環境として
100mSv/7日間を下回ることを確認する。			100mSv/7 日間を下回っ
大LOCA(代替循環)については想定事故シナリオとして評価して			ており、マスク、交代
いることから、ここではDCH発生時の運転員の被ばく影響につい			等の運用面の対策を考
て、運用面での対策であるマスクの着用及び運転員の交替の両方			慮することにより
を考慮した場合に100mSv/7日間を下回ることを確認する。運用面			100mSv/7 日間をさらに
での対策については, 簡易的に大LOCA(代替循環)において想定し			下回ることが自明であ
ていたものと同じ条件とする。			るため当該資料を作成
評価結果を表2-22-3に示す。また、被ばく線量の合計が最も大			していない。
きい班(E班)の評価結果の内訳を表2-22-4に,中央制御室内にて			
マスク (PF=1000) を用いている班・滞在日のうち代表例としてA			
班の1日目の評価結果を表2-22-5に、中央制御室内にてマスク			
(PF=50)を用いている班・滞在日のうち代表例としてA班の2日目			
の評価結果を表2-22-6に示す。			
評価の結果, DCH発生時においても運転員の被ばく線量は			
100mSv/7日間を下回ることを確認した。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 2-22-3 各勤務サイクルでの被ばく線量(両号炉 DCH(代替循			・評価結果の相違
環))			【柏崎 6/7】
(中央制御室内でマスクの着用を考慮した場合)(単位:mSv) ^{※1※2}			島根2号炉では DCH の
※ 3			際の1 班あたりの平均
1日 2日 3日 4日 5日 6日 7日 合計			的な環境として
1度 A 班 約 13平4 約 26 約 28 約 67			100mSv/7 日間を下回っ
R#F 約55 - 約55			ており, マスク, 交代等
(約 56) 道道 道道 道 約 85			の運用面の対策を考慮
^{2 版} 約 29 約 28 約 27 (約 87) ■ III III III 約 70			することにより
D班 約 28 約 27 約 15 ¹⁰⁶ (約 72)			100mSv/7 日間をさらに
E 班 約 22 ¹⁰⁴ 約 28 約 38 ¹⁰⁶ 約 91)			下回ることが自明であ
			るため当該資料を作成
※1 括弧内:遮蔽モデル上のコンクリート厚を許容される施工誤			していない。
差分だけ薄くした場合の被ばく線量			
※2 入退域時において,マスク (PF=1000)の着用を考慮			
※3 中央制御室滞在時において,マスク (PF=50)の着用を考慮。			
6時間当たり1時間外すものとして評価			
※4 中央制御室滞在時においても,事故後1 日目のみマスク			
(PF=1000)の着用を考慮。6時間当たり18分間外すものとし			
て評価			
※5 特定の班のみが過大な被ばくを受けることのないよう, 訓練			
直が代わりに勤務することを想定する等、評価上で班交替を			
工夫			
※6 評価期間終了直前の入域に伴う被ばく線量を,7日目1直の被			
ばく線量に加えて整理。7日目2直の被ばく線量は、入域及び			
中央制御室滞在(評価期間終了まで)に伴う被ばく線量(表			
2-19-3-1の ^{※6} を参照)			

	柏崎刈羽原子力発電所 6/	7号炉	(2017.12.2	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考									
表	2-22-4 評価結果の内訳(被は	ぼく線量がコ	最大となる	班 (E 班)			・評価結果の相違									
	の合言	十)					【柏崎 6/7】									
(両号炉 DCH(代替循環))(中央制	御室内で~	マスクの着	用を考慮す			島根2号炉では DCH の									
	る場合)(単	位:mSv)					際の1班あたりの平均									
	- 	6 号炉	7 号炉	A ⇒1 %1			的な環境として									
	彼はく栓路	からの寄与	からの寄与	合計~~			100mSv/7 日間を下回っ									
	①臣こには見てなのなりが			約 1.2×10 ⁻¹			ており, マスク, 交代等									
	①原ナ炉建産内等の放射性物質からの	約 1.2×10 ⁻¹	0.1以下	(約 1.5×			の運用面の対策を考慮									
	カンマ線による中央前御室内での彼はく			10-1)			することにより									
-	②放射性雲中の放射性物質からのガンマ	約 C 1 × 10 ⁻¹	約1.0×10 ⁰	約 1.6×10°			100mSv/7 日間をさらに									
+	線による中央制御室内での被ばく	#J 0. I × IU	#J 1. 0 × 10	(約1.7×10°)			下回ることが自明であ									
火	: ③地表面に沈着した放射性物質のガンマ	約 E	\$50 C×10 ⁻¹	約 1.5×10°			るため当該資料を作成									
帀	線による中央制御室内での被ばく	#J 5.8×10	前 9.6×10	(約1.7×10°)			していない。									
何	④室内に外気から取り込まれた放射性物	約 2 4 × 10 ⁰	約日 C × 10 ⁰	約 8.9×10°												
主	質による中央制御室内での被ばく	がり3.4×10	が) 5. 6 × 10	(約8.9×10))												
作	(内訳)内部被ばく	約 1.2×10°	約 2.0×10 ⁰	約 3.2×10°												
11				(約 3.2×10°)												
14	外部被ばく	約 2.2×10°	約 3.6×10º	約 5.8×10°												
				(約 5.8×10°)												
	小計 (① ② ③ ④)	約4.7×10 ⁰	\$5 4 7 × 10 ⁰	約4.7×10 ⁰	約47×10 ⁰	約47×10 ⁰	約4 7×10 ⁰	絵1 4 7 × 10 ⁰	約47×10 ⁰	約4 7×10 ⁰	約4.7×10 ⁰	約7.6×100	約 1.2×10 ¹			
	小司 (①十②十③十④)	示9 4.7 へ10	赤り 7. 0 ^ 10	(約 1.3×10 ¹)												
	⑤原子炉建屋内等の放射性物質からの	約4.5×100	約1.2×101	約 1.8×10 ¹												
	ガンマ線による入退域時の被ばく	示り 4. 3 へ 10	形 1.3 ~ 10	(約 2.0×10 ¹)												
	⑥放射性雲中の放射性物質からのガンマ	約4.0×100	約7.0×100	約 1.2×10 ¹												
入	線による入退域時の被ばく	〒9 4. 0 ヘ 10	示97.9810	(約 1.2×10 ¹)												
退	⑦地表面に沈着した放射性物質からの	約1.5×10 ¹	約2.0×101	約 4.5×10 ¹												
堿	ガンマ線による入退域時の被ばく	₩9 1. 3×10	₩J 5. 0×10	(約 4.5×10 ¹)												
時	⑧大気中へ放出された放射性物質の吸入	約 2 5×10 ⁻¹	約7.0×10 ⁻¹	約 1.0×10°												
	摂取による入退域時の被ばく	₩J 5. 5 ^ 10	₩97.0×10	(約 1.0×10°)												
	小乳(同)(同)(同)	約 2 4 × 101	約 E 2×10 ¹	約 7.5×10 ¹												
		示り 2. 4 ヘ 10	示9 5. 2 ^ 10	(約7.8×10 ¹)												
		約9.9×101	約 E 0×10 ¹	約 88												
	合計(①+②+③+④+③+①+①+③)	ボリ 2.8 × 10	形 5.9×10	(約 91)												
*	1 括弧内:遮蔽モデル上のコン	クリート	厚を許容さ	れる施工誤												
	差分だけ薄くした場合の被ば	く線量														

柏崎刈羽	原子力発電所 6/	7号炉	(2017.12.2	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表 2	2-22-5 評価結果の	内訳(A 班	の1日目)				・評価結果の相違
(両号炉 DCH((代替循環))(中央制	御室内で~	マスクの着	用を考慮す			【柏崎 6/7】
る場合) (単位 : mSv)							島根2号炉では DCH の
	サルゴ ノ (マ D ケ	6 号炉	7 号炉	∧ ⇒1 %1			際の1班あたりの平均
12	皮はく 栓 路	からの寄与	からの寄与	合計"			的な環境として
①百乙后建日	是肉焼のお針桃物質からの			0.1以下			100mSv/7 日間を下回っ
リホーが定ち	王内寺の成初に初貢からの エロロ判御安内での強げく	0.1以下	0.1以下	(約 1.2×			ており, マスク, 交代等
カンマ豚によ	る中天前師重円ての彼はく			10^{-1})			の運用面の対策を考慮
⑦妝射卅重巾	のお針状物質からのガンマ			約 4.5×10 ⁻¹			することにより
② 成初 圧 云 丁 線に ト ろ ロ	山山制御室内での被げく	約 1.7×10 ⁻¹	約 2.8×10 ⁻¹	(約 4.8×			100mSv/7 日間をさらに
中	F 大 間 岬 主 H C O 版 は X			10-1)			下回ることが自明であ
央の地表面に対	美した故財性物質のガンマ			約 6.7×10 ⁻¹			るため当該資料を作成
制線によるに	中央制御室内での被げく	約 2.5×10 ⁻¹	約 4.2×10 ⁻¹	(約 7.5×			していない。
御	「大時時主日での反はく			10 ⁻¹)			
室 ④室内に外気	から取り込まれた放射性物	約14×10 ⁰	約2.3×10 ⁰	約 3.7×10°			
滞 質による	中央制御室内での被ばく	"., I. I. (IO	".; <u>1</u> . 07. 10	(約 3.7×10°)			
在 (内訳) 内部	『被ばく	約 1.3×10°	約 2.1×10°	約 3.3×10º			
時				(約3.3×10°)			
外部	『被ばく	約 1.2×10 ⁻¹	約 1.9×10 ⁻¹	約 3.1×10 ⁻¹			
				(約 3.1×			
				10-1)			
小計	(1+2+3+4)	約1.9×10º	約 3.0×10º	約4.9×10°			
				(約 5.0×10°)			
⑤原子炉建垦	屋内等の放射性物質からの	約 3.9×10 ⁻¹	約 8.9×10 ⁻¹	約 1.3×10°			
ガンマ線し	こよる入退域時の被ばく			(約1.5×10°)			
⑥放射性雲中	の放射性物質からのガンマ	約 3.7×10 ⁻¹	約 7.3×10 ⁻¹	約 1.1×10º			
入 線によ	る入退域時の被ばく			(約1.1×10°)			
退 ⑦地表面に注	た着した放射性物質からの	約 1.7×10º	約 3.6×10º	約 5.3×10°			
域 ガンマ線1	こよる入退域時の被ばく			(約 5.3×10°)			
時 ⑧大気中へ放	出された放射性物質の吸入	0.1以下	0.1以下	0.1以下			
摂取に。	よる入退域時の被ばく			(0.1以下)			
小計	(5+6+7+8)	約 2.5×10°	約 5.2×10º	約7.7×10º			
				(約7.9×10°)			
合計(①+②+③)+4+5+6+7+8)	約 4.4×10º	約 8.2×10º	約 13			
				(約13)			
※1 括弧内:	遮蔽モデル上のコン	·クリート!	厚を許容さ	れる施工誤			
差分だけ薄	くした場合の被ばく	線量					

	柏崎刈羽原子力発電所 6/	7号炉	(2017.12.	20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	表 2-22-6 評価結果の	内訳(A 班	Eの2日目))			・評価結果の相違
(両号炉 DCH(代替循環))(中央制御室内でマスクの着用を考慮す			マスクの着	青用を考慮す			【柏崎 6/7】
る場合) (単位 : mSv)							島根2号炉では DCH の
	Labor 18 2 for the	6 号炉	7 号炉	A =1 ×1			際の1班あたりの平均
	彼はく経路	からの寄与	からの寄与	合計~"			的な環境として
	①原子炉建屋内等の放射性物質からの			0.1以下			100mSv/7 日間を下回っ
	ガンマ線による中央制御室内での被ばく	0.1以下	0.1以下	(0.1以下)			ており, マスク, 交代等
				約 6.7×10 ⁻¹			の運用面の対策を考慮
	②放射性雲中の放射性物質からのカンマ	約 2.5×10 ⁻¹	約4.2×10 ⁻¹	(約7.1×			することにより
¢	線による甲央制御室内での彼はく 1			10-1)			100mSv/7 日間をさらに
央				約 6.8×10 ⁻¹			下回ることが自明であ
制	③ 地衣面に 礼者した 別社物質の カノマ	約 2.6×10 ⁻¹	約4.3×10 ⁻¹	(約 7.7×			るため当該資料を作成
衜	線による中央前御室内での彼はく]			10-1)			していない。
室	④室内に外気から取り込まれた放射性物	約1.3×10 ⁰	約 2 2×10 ⁰	約 3.5×10º			
汫	質による中央制御室内での被ばく	ж у 1. 3 × 10	₩J 2. 2 × 10	(約 3.5×10°)			
在	(内訳) 内部被ばく	約 4.2×10 ⁻¹	約 6.9×10 ⁻¹	約 1.1×10º			
時	Ê			(約 1.1×10°)			
	外部被ばく	約 8.9×10 ⁻¹	約 1.5×10°	約 2.4×10°			
				(約2.4×10°)			
	小計 (①+②+③+④)	約1.9×10 ⁰	約30×10°	約4.9×10°			
		"J 1. 0 × 10	JU 01 07 (10	(約 5.0×10°)			
	⑤原子炉建屋内等の放射性物質からの	約1.1×10º	約2.8×10°	約 3.9×10°			
	ガンマ線による入退域時の被ばく	,,,, IIIIO	A.3 BI 01 110	(約4.4×10°)			
	⑥放射性雲中の放射性物質からのガンマ	約1.4×10°	約2.8×10°	約 4.2×10°			
Л	線による入退域時の被ばく		<i></i>	(約 4.2×10°)			
追	⑦地表面に沈着した放射性物質からの	約 4.3×10º	約 8.7×10°	約 1.3×10 ¹			
坷	ガンマ線による入退域時の被ばく			(約 1.3×10 ¹)			
時	(8)大気中へ放出された放射性物質の吸入			約 2.8×10 ⁻¹			
	摂取による入退域時の被ばく	0.1以下	約1.9×10 ⁻¹	(約2.8×			
				10 ⁻¹)			
	小計 (5+6+7+8)	約 6.8×10º	約 1.4×10 ¹	約 2.1×10 ¹			
				(約 2.2×10 ¹)			
	습計(①+②+③+④+⑤+⑥+⑦+⑧)	約 8.7×10º	約 1.7×10 ¹	約 26			
				(約 27)			
*	1 括弧内: 遮蔽モデル上のコン	/クリート,	厚を許容さ	れる施工誤			
	差分だけ薄くした場合の被ば	く線量					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
4. 結論			
DCH発生時の被ばく影響を評価した結果, 1. 及び2. のとおり,		3. 結論	
運用面での対策に期待しない場合における中央制御室内環境とし		DCH発生時の被ばく影響を評価した結果,1.及び2.のと	
ても、平均的な運転員交替を考慮した場合の環境としても、DCH		おり、運用面での対策に期待しない場合における中央制御室内環	
よりも大LOCA(代替循環)の方が厳しいことを確認した。		境としても, 平均的な運転員交替を考慮した場合の環境としても,	
このことから、中央制御室の居住性評価に当たって、DCHではな		大LOCA (残留熱代替除去) の方が厳しいことを確認した。	
く大LOCA(代替循環)を想定事故シナリオとして選定することは妥		このことから、中央制御室の居住性評価に当たって、DCH (残	
当であることを確認した。理由は以下のとおり。		<u>留熱代替除去)</u> ではなく大LOCA (残留熱代替除去)を想定事	
		故シナリオとして選定することは妥当であることを確認した。理	
・居住性評価においては運用面での対策も考慮してよいことと		由は以下のとおり。	
なっているが、運用面での対策は事象進展等に応じて決定す		・居住性評価においては運用面での対策も考慮してよいことと	
るものであり、判断基準(100mSv/7日間)を満足する範囲に		なっているが、運用面での対策は事象進展等に応じて決定す	
おいては、同一事象であっても異なる対策をとることができ		るものであり,判断基準(100mSv/7日間)を満足する範囲に	
ること		おいては、同一事象であっても異なる対策をとることができ	
 「運転員がとどまるために必要な設備」の妥当性評価に用い 		ること	
る事象を選定するために最も厳しい事象を確認する場合にお		 「運転員がとどまるために必要な設備」の妥当性評価に用い 	
いては、同一事象であっても変動しうるパラメータは除外し		る事象を選定するために最も厳しい事象を確認する場合にお	
て、運転員をとりまく環境としての厳しさを確認する必要が		いては、同一事象であっても変動しうるパラメータは除外し	
あること		て、運転員をとりまく環境としての厳しさを確認する必要が	
また、上述の環境としての厳しさを確認した結果においては、		あること	
DCH発生時に100mSv/7日間を上回っていることから,運用面での対		また、上述の環境としての厳しさを確認した結果においては、	・評価結果の相違
策も考慮することで運転員の被ばく線量が100mSv/7日間を下回る		DCH発生時に、 <u>4直2交替体制における1班あたりの平均的な</u>	【柏崎 6/7,東海第二】
ことを確認した。		運転員の被ばく (マスク着用なし) において100mSv/7日間を下回	島根2号炉の評価結果
		ることを確認した。	を記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(別紙)			
大 LOCA(代替循環)シナリオ及び DCH シナリオの被ばく線量の違い		(別紙)	
についての考察		大LOCA <u>(残留熱代替除去)</u> シナリオ及びDCHシナリオの被	
		ばく線量の違いについての考察	
運転員がマスクを着用せずに7日間中央制御室内にとどまった			
場合,大LOCA(代替循環)の方が被ばく線量が大きくなる。これは,		運転員がマスクを着用せずに7日間中央制御室内にとどまった	
表 2-22-1 に示すとおり大 LOCA(代替循環)の内部被ばくの影響が		場合,大LOCA (残留熱代替除去) の方が被ばく線量が大きく	
大きいことが原因である。		なる。これは,表 18-1 に示すとおり大LOCA(残留熱代替除去)	
大 LOCA(代替循環)の内部被ばくの影響が大きいことは、各シナ		の内部被ばくの影響が大きいことが原因である。	
リオの放射性物質の放出開始時刻,非常用ガス処理系の起動時刻		大LOCA (残留熱代替除去) の内部被ばくの影響が大きいこ	
及び中央制御室可搬型陽圧化空調機の起動時刻のタイムチャート		とは、各シナリオの放射性物質の放出開始時刻、非常用ガス処理	
によって説明することができ、以下に要因について示す。(図		系の起動時刻及び中央制御室換気系の起動時刻のタイムチャート	
2-22-1 参照)		によって説明することができ、以下に要因について示す。(図18-1	
被ばく評価では,運転員の被ばく低減設備である非常用ガス処		参照)	
理系(以下「SGTS」という。)及び中央制御室可搬型陽圧化空調		被ばく評価では、運転員の被ばく低減設備である非常用ガス処	・設備及び運用の相違
機(以下「MCR可搬空調」という。)の効果を考慮しており、 <u>各設</u>		理系及び中央制御室換気系の効果を考慮しており、各設備の効果	【柏崎 6/7】
備の効果は事象発生から40分後(SGTS)及び3時間後(MCR可搬空		は非常用ガス処理系が事象発生の70分後、中央制御室換気系が事	島根2号炉は原子炉棟
<u>調)から期待している^{*1}。</u>		象発生の2時間後から期待している*1。	の負圧確保を事故後 70
これに対して、大LOCA(代替循環)及びDCHの原子炉格納容器から			分後としている
原子炉建屋への放射性物質の放出開始時刻は、MAAP解析から、 <u>事</u>		これに対して、大LOCA (残留熱代替除去) 及びDCH (残	
<u>象発生から約20分後(</u> 大LOCA(代替循環))及び約1時間後(DCH)		留熱代替除去)の原子炉格納容器から原子炉建物への放射性物質	・解析結果の相違
となっており、大LOCA(代替循環)の方が早い。		の放出開始時刻は、MAAP解析から、 <u>事象発生から約5分後(</u> 大	【柏崎 6/7】
		LOCA (残留熱代替除去)) 及び約1時間後(DCH) となっ	
<u>SGTS</u> の起動時刻と各シナリオの放出開始時刻に着目すると, <u>DCH</u>		ており、大LOCA <u>(残留熱代替除去)</u> の方が早い。	
ではSGTS起動後に放出が開始しているのに対して、大LOCA(代替循		非常用ガス処理系の起動時刻と各シナリオの放出開始時刻に着	・運用の相違
環)ではSGTS起動前に放出が開始し、SGTSの効果に期待できない時		目すると,大LOCA(残留熱代替除去),DCH(残留熱代替	【柏崎 6/7】
間から放出が開始している。 (図2-22-1 要因①)		除去)いずれのシナリオにおいても、非常用ガス処理系起動前に	SGT 起動時期の相違
		<u>放射性物質の放出が開始しているが、DCH(残留熱代替除去)</u>	
		に比べて,大LOCA(残留熱代替除去)の方が非常用ガス処理	
また, MCR可搬空調の起動時刻と各シナリオの放出開始時刻に着		系の効果に期待できない期間が長い。(図18-1 要因①)	
目すると、各シナリオともにMCR可搬空調起動前に放出が開始して		また、中央制御室換気系の起動時刻と各シナリオの放出開始時	
いる点では同じであるものの,大LOCA(代替循環)の方がより早く		刻に着目すると、各シナリオともに中央制御室換気系起動前に放	
放出が開始するため, MCR可搬空調の効果に期待できない時間が長		出が開始している点では同じであるものの,大LOCA(残留熱	
い。 (図2-22-1 要因②)		<u>代替除去</u>)の方がより早く放出が開始するため, <u>中央制御室換気</u>	
以上の要因により、大LOCA(代替循環)の方が、事象初期におけ		系の効果に期待できない時間が長い。 (図18-1 要因②)	
る中央制御室内への空調フィルタを経由しない放射性物質の取り		以上の要因により,大LOCA(残留熱代替除去)の方が,事	
込み量が多く,内部被ばくが大きくなり,結果として,運転員が		象初期における中央制御室内への空調フィルタを経由しない放射	
マスクを着用せずに7日間中央制御室内にとどまった場合におけ		性物質の取り込み量が多く、内部被ばくが大きくなり、結果とし	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
る合計被ばく線量についても大きい結果となる**2。		て,運転員がマスクを着用せずに7日間中
※1 SGTSにより原子炉建屋原子炉区域の負圧を維持していない		た場合における合計被ばく線量についても
期間は, 原子炉建屋原子炉区域の換気率は無限大[回/日]と設		※1 非常用ガス処理系により原子炉棟の
定している。また, <u>MCR可搬空調</u> を運転していない期間は,中		期間は,原子炉棟の換気率は無限大[[
央制御室の換気率は0.5[回/h]と仮定し,外気が直接流入する		また, <u>中央制御室換気系</u> を運転してい
ものと想定している。		室の換気率は0.5[回/h]と仮定し,外気
※2 外部被ばくについては希ガスの影響が支配的であり,空調フ		想定している。
ィルタを経由したか否かの影響は小さい。したがって,7日間		※2 外部被ばくについては希ガスの影響
の被ばく線量の評価においては, 希ガスの放出量が大きいDCH		フィルタを経由したか否かの影響は小
の方が外部被ばくが大きくなる。ただし、内部被ばくと比較		日間の被ばく線量の評価においては、
し,その影響は小さいことから,合計被ばく線量は大LOCA(代		いDCHの方が外部被ばくが大きくな
替循環)の方が大きい結果となる。		くと比較し、その影響は小さいことか
		大LOCA(残留熱代替除去)の方が
事些発生からの経過時間[h] 0 約20min 40min 約11 3 168		事故発生からの経過時間(h) 0 5min 約1h 70min 2
		格納容器から原 大LOCA(現留熱代替除去)
代籍福祉からの第300 第7年79連編が500第300 第20 第21		子炉建物への放 DCH(現留防代替除去)
中央制御室換支空調系 中央制御室 マヨ級用面になった理論		射性物質の放出
空調運転等		環境中への放射 体物質の放出 生物質の放出 生物型の放出
要因① #REERIC42886 #REERIC #REERIC42886 #REERIC42886 #REERIC42886 #REERIC42886 #REERIC42886 #REERIC42886 #REERIC42886 #REERIC42886		9FAM7/ANA #KU
Wates-broattaintip) o num too 87994W18 ALOCA (103468). 0 <td></td> <td>中央制印室換気 中央制印室換気 系運転等 中央制印室内への</td>		中央制印室換気 中央制印室換気 系運転等 中央制印室内への
管理(2013) OOL (151802). 単型(2013) OOL (151802). 単型(2013) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14)		外気の直接流入
		非常用ガス処理系起動前の非常用
		要因① 放出期間が長い 放出期
		事故免生からの経過時間(h) 0 約 5min 約 1h 70min 2
		相納音響から原 大LOCA(残留熱代替除去) 子炉建物への放 ////////////////////////////////////
		射性物質の放出 DCH(携留熱代替解去)
		環境中への放射 原子伊道物からの消えい
		性物質の放出 非常用ガス処理系放出
		要因② 中央制御室換気系起動前の 外気流入期間が長い 外外
		事故発生からの経過時間[h] 0 5min 約1h 70min 2
		格納容器から原 子炉建物への放
		射性物質の放出 DCH(狭留熱代智陰去)
		中央制御室換気 中央制御室換気系
		系運転等 中央制御室内への 外気の直接流入
図2-22-1 被ばく評価で想定する空調運用等タイムチャートと各		
シナリオにおける放射性物質の放出開始時刻		図 18-1 被ばく評価で想定する空調運用等
		ナリオにおける放射性物質の放

柏崎刈羽原子力発電所 6 / 7 号炉 (2017 12 20 版)		東海 窪	 至		鳥根原子ナ	備老				
9-93 応気流入率対除社里について	11	和中才	<u>- 元電所(2010. 3. 1</u> ·		西低所17					
	11 至风加八平侧足迅驶船未にりいて				10 空気流入率計験結果について					
「原スカ惑電武中市制御宝の民住地に係る神ばく証価毛汁につ	モオにへ 「百乙力発電武力力判御室の民住地に係る地域ノ河伍毛社」									
「原丁刀光电所中矢耐御主の居住住に体る彼は、計画于伝にり	「原于刀先竜所甲矢制御至の居住住に徐る彼はく許恤于法に				「百乙力発電斫巾巾判御室の足住州に依て地げく証価モ社につい					
(いて(内規)」(原子刀女主・休女阮 平成21平8月12日)の別称	20、 C (F)が (十八41・01・41 広応 F 1 万十八 41 平 8 月				「「「」」「元电四丁一四回至の百世性に体る彼は、計画于広について て(内坦)」(百二五左合・倪左陀・亚式の1年の月10日)の回					
資料「原子刀発電所の中央制御室の空気流入率測定試験手法」に	12 日)」の別祢賃科「原士刀発竜所の中央制御室の空気流入				し(P1)税)」(原丁刀女王・休女院 平成 41 年 8 月 12 日)の別 沃次戦「国子市政電話の中市戦御堂の空気法1 東測会社際で社					
基づざ、 相畸列羽原于刀発電所6号及び7号炉中央制御室について	平側と両映于広」に奉つさ、 <u>果御弗二先竜所中央</u> 制御至につ				添貨科「原-	ナノ発電所の中央				
平成22年3月に試験を実施した結果,空気流入率は最大で0.30回/					に基づさ、					
h (±0.0063 (95%信頼限界値)) である。試験結果の詳細を表	$([(0, 47)] \square / h (\pm 0, 012 (95%)[16] 頼限界値)) ((55) (55$				2017 年 8 月に試験を実施した結果、空気流入率は最大で 0.082 回					局根2 号炉の試験結果
2-23-1に示す。	表に試験結果の	詳細を	示す。	<u>/h (+0.0030(95%信頼限界値)) である</u> 。試験結果の詳細を以下に 、				を記載		
<u>表 2-23-1 空気流入率試験結果</u>	第 11-1 表 勇	東海第二	_ 発電 所 中 央 制 御 室 空	「不す。						
項目 内容 試験日程 平成22年3月16日~平成22年3月17日(6号炉運転中、7号炉運転中)	結果			_	<u>表 19−1 空気流入率試験結果</u>				・試験結果の相違	
試験の特徴 柏崎川羽原子力発電所6号及び7号9中央制御室 系統 トレーサガス濃度測定値の場所によるパラツキ:(測定値一平均値)/平均値(%)	項目	内容			項目	内容			【柏崎 6/7,東海第二】	
刈一化の程度 A赤 -1.3.5% -1.5 B茶 -9.7.5% -9.7.5% -9.7.5% 砂範示法 -9.7.5% -9.7.5% -9.7.5%	試験日程	平成27年2月24日~平成27年2月26日			試験日程	2017年8月1日~2017年8月2日(1,2号炉停止中)			島根2号炉の試験結果	
中市 市市 市 市市 市 </td <td colspan="3">(試験時のプラント状態:停止中)</td> <td>試験実施箇所</td> <td colspan="3">島根原子力発電所1/2号炉中央制御室</td> <td>号炉中央制御室</td> <td>を記載</td>		(試験時のプラント状態:停止中)			試験実施箇所	島根原子力発電所1/2号炉中央制御室			号炉中央制御室	を記載
	空気流入率測定 試験における 均一化の程度	トレーサガス濃度測定値の場所によるバラツキ			均一化の程度	系統 トレーサガス濃度測定値の場所によるバラツキ:(源			?値の場所によるバラツキ:(測定値―	
		 ※ 統 : (測定値-平均値) / 平均値(%) 				平均值)/平均值(%)			ý)	
		A系 -7.6~7.0%				A系	-6.4%~4.5%			
		B系 -5.7~8.1%				B 系 −6.4%~4.5%		-6.4%~4.5%		
	試験手法	内規に定める空気流入率測定試験手法のうち			試験手法	試験手法 全サンプリングによる試験手法				
		「基本的な試験手順」/「全サンプリング点による試験手順」にて実施			適用条件	内容		適用	備考	
	適用条件	内 容		適用 備考	-	トレーサガス濃度測定	「値のバラツ	0		
		トレーサ	トガス濃度測定値のバラツキが	0		キが平均値の±10%以F	内か。			
		平均値の±10%以内か。			-	決定係数 R ² が 0.90 以	が 0.90 以上であるこ		均一化の目安を満足するが、全サ	
		決定係数	(R ² が0.90以上であること。	 □ 均一化の日安を満足 している 		と。	と。		ンプリング点による試験手順を適	
		 ①中央市 に比へ 	「御童の空気流入率か,別区画 「て小さいこと。 「の除ぬが」1時点の会測定デ	 している		 ①中央制御室の空気流 	流入率が,別区		用 9 つ	\neg
		 〇行共点 一夕個 ③中央集 	(の原外が, 1時点の主風定) 動数の10%以内であること。 1個家以外の空気流入率が大き	 – 特異点の除外はない 特定の区画を排除せ 	-	画に比べて小さいこ。	と。	-		
		い区画を各和	iに、立入規制等の管理的措置 重マニュアル等に明記し、運転	 ボークングロック・ボーク・ボーク・ボーク・ボーク・ボーク・ボーク・ボーク・ボーク・ボーク・ボー		②特異点の除外が,1時	寺点の全測定		特異点の除外は無い	
		員へ周	」 知すること。 空気流入率	価している。	-	データ個数の 10%未	、満であるこ	-		
		术版	(土以下は95%信頼限界値)	次定係数K*	-	Ł.				
	試験結果	A A	0.47回/h (±0.012)		-	③中央制御室以外の空 + きい区画に ユ 1 #	気流入率が		中中制御安エンズロープ内な与今	
		B 糸	0.44 回/h (±0.012)	_	-	の措置を各種マニュ	アル等に明	-	中央制御皇エンパローク内を包括	
	特記事項					記し、運転員へ周知	すること。			
					試験結果		空気液			
						系統	(+以下に	は95%信頼	決定係数R ²	
							限界	·値)		
						B系	0.082 回/h	n (+0. 0030)	0.93	
					特記事項	Aź	0.0/6 [E]/h (+0.012) 0.93			
								ぼし		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考							
--	---------------------	--------------	--------------							
2-24 格納容器ベントの実施タイミングを変更することによる影			・運用の相違							
響について			【柏崎 6/7】							
柏崎刈羽原子力発電所6号及び7号炉においては、炉心の著しい			島根2号炉ではS/P水位							
損傷が発生した場合の中央制御室の居住性を確認する上で想定す			によりベント実施を判							
る事故シナリオとして、炉心損傷が発生する「大破断LOCA時に非			断以降, 直ちにベントを							
常用炉心冷却系の機能及び全交流動力電源が喪失」するシナリオ			行うものとして評価を							
を選定している。当該シナリオにおいて、「両号炉において代替			行っており,限界圧力ま							
循環冷却系を用いて事象を収束した場合」及び「片方の号炉にお			でベント実施タイミン							
いて代替循環冷却系を用いて事象収束するのではなく格納容器圧			グを遅らせることを想							
力逃がし装置を用いたサプレッション・チェンバの排気ライン経			定していない。							
由の格納容器ベントを実施する場合」を評価対象としている。										
炉心の著しい損傷が発生した場合の中央制御室の居住性の評価										
においては、格納容器ベントの実施タイミングを事象発生から約										
38時間後と設定しており、片方の号炉において格納容器ベントを										
実施した場合でも運転員の被ばく線量が100mSv/7日間を下回るこ										
とを確認している。一方、「柏崎刈羽原子力発電所6号及び7号炉										
重大事故等対処設備について別添資料-1 原子炉格納容器の過圧										
破損を防止するための設備(格納容器圧力逃がし装置)について」										
の別紙44に示したとおり、格納容器ベントは格納容器ベント判断										
(事象発生から約32時間後)から格納容器圧力が限界圧力に接近										
するまで(事象発生から約38時間後 ^{※1})に実施するものとしてお										
り、事象発生から約38時間よりも前に格納容器ベントを実施する										
ことが可能な運用となっている。										
ここでは、格納容器ベントの実施タイミングを変更することに										
よる影響を確認するために、格納容器ベントを事象発生約32時間										
後に実施する場合の居住性評価に与える影響について検討を行っ										
た。										
検討の結果,格納容器ベントを事象発生約32時間後に実施する										
場合,運転員の被ばく線量は最大約94mSvとなり、判断基準である										
「運転員の実効線量が7日間で100mSvを超えないこと」を満足する										
ことを確認した。										
※1 サプレッション・チェンバ・プール水位がベントライン-1m										
を超えないように格納容器スプレイを停止することから、格										
納容器圧力は上昇し、事象発生から約38時間経過した時点で										
原子炉格納容器の限界圧力(620kPa[gage])に接近する。										

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1. 居住性評価に与える影響			・運用の相違
格納容器ベントを約32時間後に実施する場合(以下、「32時間			【柏崎 6/7】
ベント時」という。)及び約38時間後に実施する場合(以下,「38			島根2号炉ではS/P水位
時間ベント時」という。)の大気中への放出放射能量(事象発生			によりベント実施を判
から7日間の積算値)並びにその比を表2-24-1-1及び表2-24-1-2			断以降, 直ちにベントを
に示す。32時間ベント時は、38時間ベント時と比べ、原子炉格納			行うものとして評価を
容器内での除去(自然沈着等)や時間減衰の効果に期待できる期			行っており,限界圧力ま
間が短くなるため、ベントライン経由の放出量は大きくなる傾向			でベント実施タイミン
となる。ただし、格納容器ベント実施後は原子炉格納容器から原			グを遅らせることを想
子炉建屋への漏えいが減少することから,原子炉建屋経由の放出			定していない。
量は、より早く格納容器ベントを実施する32時間ベント時の方が			
小さい傾向となる。			
放出タイミングが異なることについては、班交替や陽圧化装置			
による中央制御室待避室の陽圧化のタイミング等を適切に変更す			
ることにより対応可能であることから、放出タイミングの違いそ			
のものが居住性に与える影響は小さいものと考えられる。32時間			
ベント時の評価は,「陽圧化装置による中央制御室待避室の陽圧			
化開始時間」と「直交替サイクル」について、32時間ベント時の			
放出タイミングを踏まえた評価条件を設定した。「陽圧化装置に			
よる中央制御室待避室の陽圧化開始時間」は、格納容器ベント実			
施タイミングに合わせ、事象発生から32時間後と想定した(陽圧			
化時間は38時間ベント時と同様に「10時間」)。「直交替サイク			
ル」については、格納容器ベント実施時に中央制御室に滞在して			
いる班は,通常の直交替サイクル ^{※1} ではなく,陽圧化装置による			
中央制御室待避室の陽圧化時間が終了するまで、中央制御室に滞			
在するものと想定した(中央制御室滞在時間:18時間25分)。ま			
た,直交替サイクルを元に戻すため,次に中央制御室に滞在する			
班は滞在時間を短くし(中央制御室滞在時間:6時間25分),それ			
以降の班については、通常の直交替サイクルとなるように調整し			
た。			
32時間ベント時における運転員の被ばく線量の評価結果を,表			
2-24-2-1から表2-24-3-3に示す。評価の結果,7日間での実効線量			
は6号炉が格納容器ベントを実施し7号炉が代替循環冷却系を用い			
て事象収束に成功した場合で最大約84mSv,7号炉が格納容器ベン			
トを実施し6号炉が代替循環冷却系を用いて事象収束に成功した			
場合で最大約92mSvとなった。なお、両号炉において格納容器ベン			
トを実施した場合においても最大約94mSvとなった。このことか			
ら,判断基準である「運転員の実効線量が7日間で100mSvを超えな			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
いこと」を満足することを確認した。						・運用の相違
						【柏崎 6/7】
※1 中央制御室の滞在時間(1直:8:30~21:25(12時間55分),			2時間55分),			島根2号炉ではS/P水位
2直:21:00 ⁻	~8:55(11時間55分	子))				によりベント実施を判
表	2-24-1-1 大気中-	への放出放射能量				断以降,直ちにベントを
(格納容器圧力)	逃がし装置及びよう	う素フィルタを経	由した放出)			行うものとして評価を
	格納容器圧力逃加	ぶし装置及びよう素ス	フィルタを経由			行っており,限界圧力ま
		した放出				でベント実施タイミン
	[Bq] (0.5MeV 換	算値)(単一号炉)(7日間積算値)			グを遅らせることを想
	①32 時間ベント	寺 ②38 時間ベント	、 (①/②)			定していない。
	\searrow	時	に (①/ ②)			
希ガス類	約 1.2×10 ¹⁸	約 1.0×10 ¹⁸	約 1.21			
よう素類	約 1.7×10 ¹⁶	約 1.6×10 ¹⁶	約 1.09			
Cs 類	約 1.2×10 ¹⁰	約 8.5×10 ⁹	約 1.40			
Te 類	約 2.6×10 ⁹	約 1.7×10 ⁹	約 1.52			
Ba 類	約 9.4×10 ⁸	約 6.2×10 ⁸	約 1.53			
Ru 類	約 2.9×10 ⁸	約 2.0×10 ⁸	約 1.43			
La 類	約 1.2×10 ⁸	約 8.3×10 ⁷	約 1.49			
Ce 類	約 1.5×10 ⁸	約 9.8×10 ⁷	約 1.51			
表	2-24-1-2 大気中-	への放出放射能量				
(原子炉建屋か	いらの漏えい及び非	常用ガス処理系に	こよる放出)			
	原子炉建屋からの漏	「えい及び非常用ガス	、処理系による			
		放出				
	[Bq] (0.5MeV 換算	値)(単一号炉)(7	日間積算値)			
	①32 時間ベント時	②38 時間ベント	比 (①/②)			
		時				
希ガス類	約 1.4×10 ¹⁶	約 2.0×10 ¹⁶	約 0.71			
よう素類	約 1.4×10 ¹⁶	約 1.8×10 ¹⁶	約 0.74			
Cs 類	約 9.9×10 ¹³	約 9.9×10 ¹³	約 1.00			
Te 類	約 2.6×10 ¹³	約 2.6×10 ¹³	約 1.00			
Ba 類	約 1.2×10 ¹³	約 1.2×10 ¹³	約 1.02			
Ru 類	約 2.6×10 ¹²	約 2.6×10 ¹²	約 1.00			
La 類	約 1.2×10 ¹²	約 1.2×10 ¹²	約 1.00			
Ce 類	約 1.3×10 ¹²	約 1.4×10 ¹²	約 0.99			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表2-24-2-1 各勤務サイクルでの被ばく線量			・運用の相違
(6号炉:格納容器ベント実施 7号炉:代替循環冷却系を用いて			【柏崎 6/7】
事象収束)			島根2号炉ではS/P水位
(中央制御室内でマスクの着用を考慮) (単位:mSv)*1*2			によりベント実施を判
1日 2日 3日 4日 5日 6日 7日 合計 ^{第3}			断以降, 直ちにベントを
if			行うものとして評価を
z盧 z盧 z盧 z盧 ショ B 班 -			行っており,限界圧力ま
C H			でベント実施タイミン
市引 31 市引 25 市引 12mont (約 78) D. HT 1点 1点 1点 約 77			グを遅らせることを想
助 約 24 約 23 約 31 ^{第596} (約 78) 2#			定していない。
E班 約 15 ^{※4} 約 42			
※1 入退域時においてマスク (PF=1000) の着用を考慮			
※2 中央制御室内でマスク(PF=50)の着用を考慮。6時間当たり			
1時間外すものとして評価			
※3 括弧内:38時間ベント時の被ばく線量			
※4 中央制御室内で事故後1日目のみマスク (PF=1000) の着用を			
考慮。6時間当たり18分間外すものとして評価			
※5 特定の班のみが過大な被ばくを受けることのないよう, 訓練			
直が代わりに勤務することを想定する等,評価上で班交替を			
工夫			
※6 評価期間終了直前の入域に伴う被ばく線量を,7日目1直の被			
ばく線量に加えて整理。7日目2直の被ばく線量は、入域及び			
中央制御室滞在(評価期間終了まで)に伴う被ばく線量(表			
2-19-3-1の ^{※6} を参照)			
表2-24-2-2 各勤務サイクルでの被ばく線量			
(6号炉:代替循環冷却系を用いて事象収束 7号炉:格納容器べ			
ント実施)			
(中央制御室内でマスクの着用を考慮)(単位:mSv) ^{*1*2}			
1日 2日 3日 4日 5日 6日 7日 合計 ³³ ig ig <td< td=""><td></td><td></td><td></td></td<>			
A 班 約 21 ^{※4} 約 48 - 約 23 <u>幣 92</u> (約 85)			
B 班 約 27 ^{※5} - 約 20 ^{※5} 約 19 ^{※5} - 約 67 (約 69)			
C班 約35 約25 約69 (約86)			
D班 約 22 約 20 約 25 ^{從596} (約 67			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
※1 入退域時においてマスク (PF=1000) の着用を考慮			・運用の相違
※2 中央制御室内でマスク(PF=50)の着用を考慮。6時間当たり			【柏崎 6/7】
1時間外すものとして評価			島根2号炉ではS/P水位
※3 括弧内:38時間ベント時の被ばく線量			によりベント実施を判
※4 中央制御室内で事故後1日目のみマスク (PF=1000)の着用を			断以降,直ちにベントを
考慮。6時間当たり18分間外すものとして評価			行うものとして評価を
※5 特定の班のみが過大な被ばくを受けることのないよう,訓練			行っており,限界圧力ま
直が代わりに勤務することを想定する等,評価上で班交替を			でベント実施タイミン
工夫			グを遅らせることを想
※6 評価期間終了直前の入域に伴う被ばく線量を,7日目1直の被			定していない。
ばく線量に加えて整理。7日目2直の被ばく線量は、入域及び			
中央制御室滞在(評価期間終了まで)に伴う被ばく線量(表			
2-19-3-1の ^{※6} を参照)			
表 2-24-2-3 各勤務サイクルでの被ばく線量			
(両号炉において格納容器ベントを実施する場合)			
(中央制御室内でマスクの着用を考慮)(単位:mSv) ^{*1*2}			
1日 2日 3日 4日 5日 6日 7日 合計 ^{第3}			
A班 約 21 ³⁴⁴ 約 65 ^{2点} 約 8.0 ⁹⁵⁵⁹⁶ (約 82)			
B班 - - 2個 2個 2個 2回 2回 2回 2回 約 87 約 99 約 99 約 99 約 99 約 19 ^{%5} 約 16 ^{%5} - 約 87 (約 91) 10 ^{%5} 10 ^{%5} 10 ^{%5} - 10 ^{%5} %5			
C班 約 66 (約 91)			
D班 約 20 約 17 約 22 ^{第686} (約 63)			
E 班 約 15 ³⁵⁴ 約 71 約 86 (約 88)			
※1 人退域時においてマスク (PF=1000) の着用を考慮 ※2 中央制御空中でコスタ (PF=2000) の着用を考慮			
※2 中央制御至内でマスク (PF=50) の有用を考慮。6時间目にり			
※3 招加円,30時間、2下時の彼は、豚里 ※4 中中判御安内で事故後1 日日のひつフカ (DE-1000)の美田			
本者 中天間岬主P1C 争取後1 ロロのみ マハク (II-1000) の有用 た老園 6時間当たり19公開外すたのとして評価			
そう悪。の時間当たり10万間パリものとして計画			
本が代わりに勘察することを相定する空 評価上で班応法を			
世が10479に動物することを心だする寺, 計画工で現文者を 工土			
→へ ※6 証価期間終了直前の入城に伴ら独げく線景を 7日日1直の独			
山山制御宏湛在(延価期間級了まで)に伴ら城げく娘鼻(ま			
「八回四四王山町江(町四河町町ボゴよく)(に十ノ牧は、林里(公 9-19-3-1の ^{※6} を参昭)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			(2017.12	. 20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表2-24-3-1 評価結果の内訳(被ばく線量が最大となる班(A班)			が最大とな	こる班(A班)			・運用の相違
の合計)							【柏崎 6/7】
(64	号炉:格納容器ベント実施	7号炉:代	、 替循環冷却	即系を用いて			島根2号炉ではS/P水位
	事象	収束)					によりベント実施を判
	(中央制御室内でマスクの)着用を考慮	⑤) (単位	:mSv)			断以降, 直ちにベントを
		0.845					行うものとして評価を
	被ばく経路	b 旁炉 からの寄与	7 写炉 からの寄与	合計率			行っており,限界圧力ま
	①原子炉建屋内等の放射性物質からのガ	約 4.6×10º	0.1以下	約4.6×10 ⁰			でベント実施タイミン
	ンマ線による甲央制御室内での被はく ②放射性雲中の放射性物質からのガンマ			(約 1.5×10°) 約 6.0×10°			ゲを遅らせることを相
	線による中央制御室内での被ばく	約 5.0×10°	約 9.2×10 ⁻¹	(約 7.0×10 ⁻¹)			テレアいない
中央劇	③地表面に沈着した放射性物質のガンマ 線による中央制御室内での被ばく	約 1.2×10 ⁰	約 1.1×10º	約 2.2×10 ⁰ (約 9.6×10 ⁻¹)			
御室	④室内に外気から取り込まれた放射性物 質によろ中央刺綱室内での抜けく	約 1.2×10 ¹	約 1.2×10 ¹	約 2.4×10 ¹ (約 7.0×10 ⁰)			
在時	(内訳)内部被ばく	約 6.0×10º	約 9.3×10°	約 1.5×10 ¹			
	外部施行く	約6.3×10 ⁰	約2.6×10 ⁰	(約2.3×10°) 約8.9×10°			
	/THURKIN (¥3 0. 3 × 10	"sy 2. 0 × 10	(約 4.6×10 ⁰)			
	小計 (①+②+③+④)	約 2.3×10 ¹	約 1.4×10 ¹	約 3.7×10 ¹ (約 1.0×10 ¹)			
	⑤原子炉建屋内等の放射性物質からのガ	4h 7 0		約 1. 2×10 ¹			
	ンマ線による入退城時の被ばく	₩97.3×10°	※J 4.8×10°	(約 2.0×10 ¹)			
	⑥放射性雲中の放射性物質からのガンマ 線による入退城時の被ばく	約 1.5×10º	約 3.9×10°	約 5.4×10 ⁰ (約 6.3×10 ⁰)			
入退城時	⑦地表面に沈着した放射性物質からのガ ンマ線による入退域時の被ばく	約 1.2×10 ¹	約 1.8×10 ¹	約 3.0×10 ¹ (約 4.1×10 ¹)			
-	⑧大気中へ放出された放射性物質の吸入 (第15-1)におようになります。	0.1以下	約 3.2×10 ⁻¹	約 3.6×10 ⁻¹			
	摂取による入地或時の彼はく			(和 5.9×10 ⁻) 約 4.7×10 ¹			
	小計 (⑤+⑥+⑦+⑧)	約 2.1×10 ¹	約 2.7×10 ¹	(約 6.8×10 ¹)			
1	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 4. 4×10 ¹	約4.1×101	約 84 (約 78)			
₩1	括弧内:38 時間ベント時	において被	皮ばく線量 オ	が最大となる			
班(D	班)の評価結果						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			(2017.12	2.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
表	2-24-3-2 評価結果の内訳	(被ばく線量	量が最大と;	なる班(A班)			・運用の相違
	Ø)	合計)					【柏崎 6/7】
(6 号炉:代替循環冷却系を	用いて事象	収束 7号;	炉:格納容器			島根2号炉ではS/P水位
	ベン	、ト実施)					によりベント実施を判
	(中央制御室内でマスク	の着用を考	慮)(単位	:mSv)			断以降,直ちにベントを
	44-12 / Vernor	6号炉	7号炉	<u>∧ #1.@</u> 1			行うものとして評価を
	彼はく絶略	からの寄与	からの寄与	合町~~ 			行っており,限界圧力ま
	①原子が加速内等の成射性物質がらのカ ンマ線による中央制御室内での被ばく	約 1.3×10 ⁻¹	約 2.6×10°	(約 1.4×10°)			でベント実施タイミン
	②放射性雲中の放射性物質からのガンマ 線による中央制御室内での被げく	約 5.5×10 ⁻¹	約 8.5×10°	約 9.0×10 ⁰			グを遅らせることを想
	③地表面に沈着した放射性物質のガンマ			約 2.7×10 ⁰			定していない。
9 8	線による中央制御室内での被ばく	約 6.4×10 ⁻¹	約 2.0×10°	(約1.4×10))			
Contraction of	④室内に外気から取り込まれた放射性物 質による中央制御室内での被ばく	約 7.2×10 ⁰	約 2.1×10 ¹	約 2.8×10 ¹ (約 2.3×10 ¹)			
花田	(内訳) 内部被ばく	約 5.6×10º	約 1.0×10 ¹	約 1.6×10 ¹			
	外部被ばく	約 1.6×10º	約 1.1×10 ¹	(約 1.4×10 ⁰) 約 1.2×10 ¹			
				(約 2.1×10 ¹)			
	小計 (①+②+③+④)	約 8.5×10º	約 3.4×10 ¹	約 4. 2×10 ¹ (約 2. 6×10 ¹)			
	⑤原子炉建屋内等の放射性物質からのガ ンマ線による入退城時の被げく	約 1.8×10 ⁰	約 8.6×10°	約1.0×10 ¹ (約1.4×10 ¹)			
	⑥放射性雲中の放射性物質からのガンマ	約20×10 ⁰	\$\$13.0×10 ⁰	約4.9×10 ⁰			
2	線による入退域時の被ばく ⑦地表面に沈差した放射性物質からのガ		10000000	(約4.4×10 ⁰) 約3.4×10 ¹			
北田田	ンマ線による入退城時の被ばく	約 8.6×10 ⁰	約 2.6×10 ¹	(約 4.1×10 ¹)			
	⑧大気中へ放出された放射性物質の吸入 摂取による入退域時の被ばく	約 1.6×10 ⁻¹	0.1以下	約 2.3×10 ⁻ⁱ (約 2.1×10 ⁻ⁱ)			
	小計 (⑤+⑥+⑦+⑧)	約 1.3×10 ¹	約 3.7×10 ¹	約 5.0×10 ¹			
				(約 6. 0×10 ¹) 約 92			
	合計(①+②+③+④+⑤+⑥+⑦+⑧)	約 2.1×10 ¹	約 7.1×10 ¹	(約 86)			
*	1 括弧内:38 時間ベント	時において褚	波ばく線量	が最大となる			
班	(C 班)の評価結果						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考		
表2-24-3-3 評価結果の内訳(被ばく線量が最大となる班(A班)			が最大とな	こる班(A班)			・運用の相違
	の行	合計)					【柏崎 6/7】
(両号炉において格納容器ベントを実施する場合)			実施する場	景合)			島根2号炉ではS/P水位
	(中央制御室内でマスクの)着用を考慮)(単位	:mSv)			によりベント実施を判
	被ばく経路	6 号炉	7号炉	合計型			断以降,直ちにベントを
	①原子炉建屋内等の放射性物質からのガ	からの寄与	からの寄与	約 6.6×10 ⁰			行うものとして評価を
	ンマ線による中央制御室内での被ばく	約 4.2×10 ⁰	約 2.4×10°	(約 3.1×10 ⁰)			行っており,限界圧力ま
	②放射性雲中の放射性物質からのガンマ 線による中央制御室内での被ばく	約 5.0×10º	約 8.5×10°	約 1.4×10 ¹ (0.1以下)			でベント実施タイミン
d	③地表面に沈着した放射性物質のガンマ	約 1.1×10 ⁰	約 1.9×10 ⁰	約 3.0×10°			グを遅らせることを想
	線による中央制御室内での被ばく			(約1.2×10 ⁰)			定していない。
the first sector	 ④ 室内に外気から取り込まれた放射性物 質による中央制御室内での被ばく 	約 1.2×10 ¹	約 2.0×10 ¹	約 3.2×10 ⁴ (約 3.1×10 ⁴)			
Ť B	E (内訳)内部被ばく	約 6.0×10º	約 1.0×10 ¹	約1.6×10 ¹			
	外部被ばく	約 6.0×10º	約 1.0×10 ¹	(約3.6×10 ⁴) 約1.6×10 ⁴			
				(約 3.1×10 ¹)			
	小計 (①+②+③+④)	約 2.2×10 ¹	約 3.3×10 ¹	和 5.5×10 ⁴ (約 3.5×10 ⁴)			
	⑤原子炉建屋内等の放射性物質からのガ ンマ線による入退ば時の被げく	約 3.0×10º	約 4.2×10°	約7.2×10 ⁰ (約1.2×10 ¹)			
	⑥放射性雲中の放射性物質からのガンマ	約1.2×10 ⁰	約2.3×10 ⁰	約 3.5×10 ⁰			
,	線による入退域時の被ばく	*9 1. 2 ~ 10	x 9 2. 3 ∧ 10	(約2.9×10 ⁰)			
近世日	の地表面に 化着した 成射性物質からの ガ ンマ線による 入退域時の 被ばく	約 9.0×10º	約 1.9×10 ¹	和2.8×10 ⁻ (約4.1×10 ¹)			
	⑧大気中へ放出された放射性物質の吸入 摂取による入退域時の被ばく	0.1以下	0.1以下	約 1.0×10 ⁻¹ (0.1以下)			
	小計 (⑤+⑥+⑦+⑧)	約 1.3×10 ¹	約 2.6×10 ¹	約3.9×10 ¹ (約5.6×10 ¹)			
	合計(①+2+3+4+5+6+7+8)	約 3.6×10 ¹	約 5.9×10 ¹	約 94			
				(約 91)			
×1	- 括弧内:38 時間ベント時	において被	8ばく線量な	が最大となる			
班	C 班)の評価結果						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	9フィルタの除去性能について	20 フィルタの除去性能について	
	中央制御室の居住性評価に係る被ばく評価において、中央制	中央制御室の居住性評価に係る被ばく評価において、中央制	
	御室換気空調系での放射性物質の除去を前提としているた	御室換気系での放射性物質の除去を前提としているため、そ	
	め、そのフィルタ性能に期待している。評価事故シーケンス	のフィルタ性能に期待している。評価事故シーケンスにおけ	
	におけるフィルタのよう素及び粒子状物質の捕集量を評価	るフィルタのよう素及び粒子状物質の捕集量を評価し、フィ	
	し、フィルタに捕集できる容量が確保されていることを確認	ルタに捕集できる容量が確保されていることを確認してい	
	している。以下に、評価方法及び評価結果を示す。	る。以下に、評価方法及び評価結果を示す。	
	1. フィルタへの捕集量の評価条件	1. フィルタへの捕集量の評価条件	
	フィルタに捕集されるよう素及び粒子状物質の重量評価の条	フィルタに捕集されるよう素及び粒子状物質の重量評価の条	
	件を以下のとおり設定する。	件を以下のとおり設定する。	
	① よう素重量の評価において、安定核種として I-127 及び	① よう素重量の評価において,安定核種として I-127 及び	
	I-129を考慮する。	I-129 を考慮する。	
	② <u>第9-1表</u> に示す炉内蓄積量を評価に用いる。	② <u>表 20-1</u> に示す炉内蓄積量を評価に用いる。	
	③ よう素用チャコールフィルタの捕集量評価においては,	③ チャコールフィルタの捕集量評価においては、よう素の	
	よう素の化学組成を有機よう素4%,無機よう素96%とする。	化学組成を有機よう素4%,無機よう素96%とする。	
	④ 粒子用高効率フィルタの捕集量評価においては、よう素	④ 高性能粒子フィルタの捕集量評価においては、よう素の	
	の全量が粒子状よう素として設定する。	全量が粒子状よう素として設定する。	
	⑤ 中央制御室換気空調系の再循環フィルタ(よう素用チャ	⑤ 中央制御室系の <u>フィルタユニット(チャコールフィルタ</u>	
	<u>コールフィルタ及び粒子用高効率フィルタ)</u> における捕集量	及び高性能粒子フィルタ)における捕集量評価については、	
	評価については、大気放出量評価における格納容器圧力逃が	大気放出量評価における格納容器フィルタベント系の除染係	
	し装置の除染係数は考慮しない。また、フィルタの除去効率	数は考慮しない。また、フィルタの除去効率は100%として評	
	は100%として評価する。(<u>第9-1図及び第9-2</u> 図参照)	価する。(図 20-1~図 20-3 参照)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電	所(2018. 9. 18 版)	島根原	原子力発電所 2号炉	備考
	第9-1表 炉内蓄積	貢量(安定核種含む)	表 20-1 炉	内蓄積量(安定各種含む)	・評価条件の相違
			核種グループ	炉内蓄積量(kg)	【東海第二】
	核種グループ	炉内蓄積量 (kg)	よう 素類	約 1.8×10 ¹	
	よう素類	約 2.4×10 ¹	(よう素)	約 6.9×10 ⁻¹	
			Cs 類	約 1.1×10 ²	
	C s 類	約 1.5×10 ²	Sb 類	約 2.4×10 ⁻²	
	S b 類	約 3.2×10 ⁻²	Te 類	約 4.3×10-1	
			Sr 類	約 5.0×101	
	T e 類	約 5.9×10 ⁻¹	Ba 類	約 1.6×100	
	Sr類	約 6.8×10 ¹	Ru 類	約 1.4×10 ¹	
			Ce 類	約 5.9×10 ²	
	B a 類	約 2.2×10 ⁰	La 類	約 2.1×101	
	R u 類	約 1.9×10 ¹	合計	約 8.0×10 ²	
	Се類	約 8.0×10 ²			
	L a 類	約 2.8×10 ¹			
	合計	約 1.1×10 ³			
	2. フィルタへの捕集量の評価 フィルタの捕集量評価結果に ィルタの保持容量を十分に下回	結果 は <u>第 9-2 表</u> のとおりであり,フ 回る。	2. フィルタへの捕集量 フィルタの捕集量評 タの保持容量を十分に	の評価結果 価結果は <u>表 20-2</u> のとおりであり, フィル 下回る。	
	第9-2表中央制御室換気空調系における フィルタ保持容量と捕集量評価結果 フィルタの種類 保持容量(g)		表 20-2中央制御室換気系フィルタユニットの捕集量フィルタ種類保持容量(g)チャコールフィルタ約 2.6×10 ³ 約 1.7×10 ⁻¹ 高効素特スコード約 1.2×104		・評価結果の相違 【東海第二】
	よう素用チャコールフィルタ	約 9.9×10 ¹ 約 1.4×10 ⁻¹			
	粒子用高効率フィルタ	約 2.3×10 ³ 約 7.5×10 ⁻⁴			

<pre>seture 1 seture 1 s</pre>	柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
() () () () () () () () () ()					
Image: Second					よう素の炬内内臓
(単称の) (単称の) (単称の) (単称の) (単称の) (単称の) (単称の) (単称の) (単称の) (単称の) (単なの) (一なの)					(無機よう素 96%)
					「 格納容器への放出書 :MAAP 解析に基 ☆
(*********************************					↓ (格納容器内での自然 沈着速度 : 9×10 ⁻⁴ [1/s], DF20
					● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
(注意中:本本書な) (注意中:本本書な) (注意中:本本書な) (本書書から本 (記念:107) (注意中:本書な) (本書書から本 (記念:2.6番) (本書本) (本本書な) (本書本) (本本書の) (本本書な) (本本書の) (本本書の) (本本書な) (本本書の) (本本書の) (本本書な) (本本書の) (本本書の) (本本書本) (本本書本) (本本書本) (本本書本) (本本書本) (本本) (本本) (本本) (本本) (本) (本本) (本本) (本) (本本) (本) (本) (本) (***) (本) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (**) (*) (**) (*) (*) (*) (*) (*) <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td>					· · · · · · · · · · · · · · · · · · ·
$ \left[\begin{array}{c} \left(\begin{array}{c} \lambda x t \psi z z \delta R \\ z , 0 (1, t \times t)^{-1} (\omega) \end{array} \right) \left(\begin{array}{c} z + t \pm z z \delta R \\ z , 0 (2, t \times t)^{-1} (\omega) \end{array} \right) \left(\begin{array}{c} z + t \pm z z \delta R \\ z , 0 (2, t \times t)^{-1} (\omega) \end{array} \right) \left(\begin{array}{c} z + t \pm z z \delta R \\ z + t + z + z + z + z + z \\ \end{array} \right) \left(\begin{array}{c} z + t \pm z + z + z + z \\ z + z + z + z + z + z \\ \end{array} \right) \left(\begin{array}{c} z + z + z + z + z \\ z + z + z + z + z \\ \end{array} \right) \left(\begin{array}{c} z + z + z + z + z \\ z + z + z + z + z \\ \end{array} \right) \left(\begin{array}{c} z + z + z + z + z \\ z + z + z + z + z \\ \end{array} \right) \left(\begin{array}{c} z + z + z + z \\ z + z + z + z \\ z + z +$					◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
は、 は、 は、					大気拡散による希釈 (地上放出) (北上放出) (オ/Q:1.2×10 ⁻³ (s/m ³) (オ気筒放出) (オ気筒放出) (オクロ(s/m ³) (オクロ(s/m ³))) (オクロ(s/m ³))
■ 「中田町はない」 ● 「中田町はない」 ● 「中田町はない」 ● 「中田町はない」 ● 「中田町はない」 ● 「中田町はない」 ● 「中田町はない」 ● 「日本町はない」 ● 「					
(中な時間でに承し、 (中なり、 (中本り、 (中本り、 (中本り、 (中本り、 (中本り、					中央制御室外気の 無機よう素濃度
					↓ (中央制御室に流入した う素が全量捕集 ↓
					<u>図 20-2 中央制御室換気系ワイルタへの無</u> 権

柏崎刈羽原子力発電所 6/7号炉 (2017.12.	20版) 東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	3 格納容器漏えい率の設定について	21 原子炉格納容器漏えい率の設定について	
	原子炉格納容器からの原子炉建屋への漏えい率は,MAAP 内で模擬した漏えい孔の等価漏えい面積及び原子炉格納容器 の圧力に応じて設定している。 模擬する漏えい孔の等価漏えい面積は,以下に示す格納容 器圧力が最高使用圧力である 310kPa[gage](1Pd)以下の場合 と最高使用圧力を超過した後の場合の2種類を設定する。 ただし,MAAP解析においては,よう素の化学組成につい て考慮されておらず,全て粒子状よう素として扱われること から,無機よう素及び有機よう素の格納容器漏えい率は別途 設定する。	 中央制御室の居住性に係わる被ばく評価及び有効性評価の環境へのCs-137 漏えい評価において,原子炉格納容器からの放射性物質等の漏えいは,MAAP内で模擬した漏えい孔の等価漏えい面積及び原子炉格納容器の圧力に応じて漏えい流量を評価している。 模擬する漏えい孔の等価漏えい面積は以下に示す格納容器圧力が最高使用圧力以下の場合と最高使用圧力を超過した後の場合の2種類を設定する。 	
	1. 格納容器圧力が最高使用圧力以下の場合 格納容器圧力が最高使用圧力以下の場合,設計漏えい率 (0.9Pd で 0.5%/日)を基に算出した等価漏えい面積(約3 ×10 ⁻⁶ m2)を設定し,MAAP内で圧力に応じた漏えい量を 評価している。	1. 格納容器圧力が最高使用圧力以下の場合 格納容器圧力が最高使用圧力以下の場合,設計漏えい率(0.9Pd で0.5%/日)をもとに算出した等価漏えい面積(ドライウェル及 びウェットウェルの総面積は約3.2×10 ⁻⁶ m ²)を設定し,MAAP 内で圧力に応じた漏えい量を評価している。	 ・設備設計の相違 【柏崎 6/7,東海第二】 Pd 等の相違による等
	 2. 格納容器圧力が最高使用圧力を超過した場合 格納容器圧力が最高使用圧力を超過した場合, 2Pd で漏えい率 1.3%/日となる等価漏えい面積(約7×10⁻⁶m2)を設定し, 1.と同様にMAAP内で圧力に応じた漏えい量を評価している。 	 2.格納容器圧力が最高使用圧力を超過した場合 格納容器圧力が最高使用圧力を超過した場合,<u>853kPa[gage]</u>で 1.3%/日となる等価漏えい面積(ドライウェル及びウェットウェ ルの総面積は約8.5×10⁻⁶m²)を設定し、1.と同様にMAAP内 で圧力に応じた漏えい量を評価している。 	価漏えい面積の相違。
	2Pdにおける漏えい率1.3%/目は、以下のAECの評価式、 GEの評価式及び定常流の式によって評価した漏えい率の結 果を包絡する値として設定した。これらの式は、設計基準事 故の原子炉冷却材喪失時の評価において格納容器漏えい率の 評価に用いている理論式 ^{*1} である。格納容器圧力が最高使用 圧力の2倍である620kPa[gage](2Pd)及び格納容器雰囲気温 度200℃までは、事故後7日間に渡り、格納容器本体並びに開 口部及び貫通部の健全性が確保されていることを確認してい ることから、これらの理論式を用いて格納容器圧力 2Pd 及び 雰囲気温度 200℃における漏えい率を設定することは可能と 判断した。	853kPa[gage]での1.3%/日の設定は以下のAECの評価式及 びGEの評価式によって評価した漏えい率の結果を包絡する値 として設定した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	○AECの評価式 $L = L_0 \sqrt{(P_t - P_a) \times R_t \times T_t}$ L : 事故時の格納容器漏えい率 (2Pd) [約1.28%/日] L_0 : 設計漏えい率 (0.9Pd) [0.5%/日] P_t : 事故時の格納容器圧力 (2Pd) [721.325kPa[abs]] P_d : 設計圧力 (0.9Pd) [380.325kPa[abs]] P_a : 格納容器外の圧力 (大気圧) [101.325kPa[abs]] R_t : 事故時の気体定数 ^{※2} [523.7J/Kg·K] R_d : 空気の気体定数 [287J/Kg·K] T_t : 事故時の格納容器雰囲気温度 (200℃) [473.15K] T_d : 格納容器雰囲気温度 (20℃) [293.15K]	〇AECの評価式※1 $L = L_0 \sqrt{\frac{(P_t - P_a) \times R_t \times T_t}{(P_d - P_a) \times R_d \times T_d}} = 1.28\%/ 日$ L : 事故時の格納容器漏えい率 L0 : 設計漏えい率 (圧力 Pd に対して (ここでは 0.9Pd)) 【0.5%/ 日】 Pt : 事故時の格納容器内圧力 【954.325kPa[abs]】 Pd : 設計圧力 【485.625kPa[abs]】 Pa : 格納容器外の圧力 【101.325kPa[abs]】 Rt : 事故時の気体定数 ※2 【523.7J/Kg·K】 Rt : 事故時の気体定数 【287J/Kg·K】 Rt : 事故時の格納容器内温度 【473.15K】 Tt : 事故時の格納容器内温度 【473.15K】	
	○GEの評価式(General Electric 社の漏えいモデル式) $L = L_0 \sqrt{\frac{1 - \left(\frac{Pa}{Pt}\right)^2}{1 - \left(\frac{Pa}{Pd}\right)^2}}$ L : 事故時の格納容器漏えい率(2Pd) 【約 0.51%/日】 L_0 : 設計漏えい率(0.9Pd) 【0.5%/日】 Pt : 事故時の格納容器圧力(2Pd) 【721.325kPa[abs]] Pd : 設計圧力(0.9Pd) 【380.325kPa[abs]] Pa : 格納容器外の圧力(大気圧) 【101.325kPa[abs]]	 ○GEの評価式 (General Electric 社の漏えいモデル式) <i>μ</i>=<i>μ</i>₀ √(1-(^{fa}/_{Fa})²)/(1-(^{fa}/_{Fa})²) = 0.508%/ H <i>μ</i>=<i>μ</i>₀ √(1-(^{fa}/_{Fa})²) = 0.508%/ H L : 事故時の格納容器漏えい率 [0 : 数計漏えい率 (圧力 Pd に対して (ここでは 0.9Pd)) [0.5%/ H] Pt : 事故時の格納容器内圧力 [954.325kPa[abs]] Pd : 設計圧力 [485.625kPa[abs]] Pa : 格納容器外の圧力 [101.325kPa[abs]] 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版	i)	島根原子力発電所 2号炉	備考
	○定常流の式			
				・評価方針の相違
	$L = L_0 \left[\frac{\rho_d (P_t - P_a)}{\rho_d (P_t - P_a)} \right]$			【東海第二】
	$\sqrt{\rho_t(r_a - r_a)}$			AEC の式において温度
	L : 事故時の格納容器漏えい率 (2Pd)	【約 0.93%/日】		も考慮した評価を行っ
	L _o : 設計漏えい率 (0.9Pd)	【0.5%/日】		ており,より保守的な評
	ρ _ι : 事故時の格納容器内気体の平均密度 ^{*3}	【2.9kg∕m³】		価となるため島根2号
	 	【4.5kg∕m³】		炉では定常流の式での
	<i>P_t</i> : 事故時の格納容器圧力 (2Pd)	[721.325kPa[abs]]		計画で打っていたい。
	P _d : 設計圧力 (0.9Pd)	【380. 325kPa[abs]】		
	P. : 格納容器外の圧力(大気圧)	[101.325kPa[abs]]		
	 ※1 「沸騰水型原子力発電所 事故時の被ば 	く評価手法につ		
	いて (平成16年1月)」 (株式会社 日立製作)	新)		
	※2 事故時の気体定数Rtは,以下の式により)算出した。		
	Rt[J/kg・K]=モル気体定数約 8.314[J/K・n	nol]/平均分子		
	量M[kg/mol]			
	AECの評価式より,事故時の気体定数が大き	きくなるほど漏		
	えい率は高くなる。また,上記計算式より,	事故時の気体定		
	数は、平均分子量が小さくなるほど大きくなる	る。事故時の原		
	子炉格納容器内は水素, 窒素及び水蒸気で構成	戈されるため,		
	分子量の小さい水素の割合が増加するほど平均	自分子量は小さ	<u> %1 United States Atomic Energy Commission report "reactor</u>	
	くなり,結果として事故時の気体定数は大きく	くなる。平均分	containment leakage testing and surveillance report USAEC	
	子量の設定に当たり,水素,窒素及び水蒸気	「のガス組成を	technical safety guide Dec. 1996"	
	34%:33%:33%とし、水素の割合(34%))	よ, <u>有効性評価</u>		
	(「雰囲気圧力・温度による静的負荷(格納容者	器過圧・過温破	※2 事故時の気体定数は水素ガス(2.016):窒素ガス(28.01):水	
	損)」)における水素発生量(約700kg(内訳:	ジルコニウムー	蒸気(18.02)のガス組成34%:33%:33%より計算している。	
	水反応約325kg,アルミニウム/亜鉛の反応	約 246kg,水の	AECの評価式は事故時の気体定数に依存し、水素ガス等の	
	放射線分解約115kg))を包含した値であるこ	とから,保守的	ように気体定数が大きい気体の割合が大きい場合に漏えい率	
	な設定であると考える。		が高くなるため、燃料有効部被覆管が全てジルコニウムー水	
	※3 事故時の原子炉格納容器内気体の平均密度	度otは,以下	反応した場合の水素ガス発生量(約 1,000kg)を考慮して保守	・評価結果の相違
	の式により算出した。		的に設定している。	【東海第二】
	<u>ρ t [kg/m³] = 平均分子量M[kg/mol]×物質</u>	量n[mol]/格		
	納容器体積V[m ³]			
	定常流の式より、事故時の原子炉格納容器内気	気体の平均密度		
	が小さくなるほど漏えい率は大きくなる。また	と, 上記計算式		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			より、事故時の原子炉格納容器内気体の平均密度は、平均分		
			子量が小さくなるほど小さくなる。平均分子量は※2と同じで		
			あり、保守的な設定であると考える。		
			※4 原子炉格納容器内気体の平均密度 ρ_dは,以下の式により算		
			出した。		
			$\rho_{\underline{d}}[\underline{kg/m^3}] = 1.205[\underline{kg/m^3}] \times (\underline{P_d}[\underline{Pa}]/\underline{P_a}[\underline{Pa}])$		
			<u>1.205[kg/m³]:乾燥空気密度(20℃)</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	3. 無機よう素及び有機よう素の格納容器漏えい率	3. 無機よう素及び有機よう素の格納容器漏えい率	
	(1) 無機よう素	(1) 無機よう素	
	他の核種と同様に格納容器圧力に応じて漏えい率が変動する	他の核種と同様に格納容器圧力に応じて漏えい率が変動す	
	と考えるが、MAAP解析において無機よう素を模擬してい	ると考えるが、MAAP解析において無機よう素を模擬して	
	ないため、MAAP解析結果による格納容器圧力を基に漏え	いないため、MAAP解析結果による格納容器圧力を基に漏	
	い率を設定する。	えい率を設定する。	
	漏えい率の設定に当たっては、 <u>第3-1図</u> のとおりMAAP解	漏えい率の設定に当たっては、図21-1のとおりMAAP解	
	析結果による格納容器圧力を包絡した格納容器圧力を設定	析結果による格納容器圧力を包絡した格納容器圧力を設定	
	し、その格納容器圧力に対する漏えい率を設定している。	し、その格納容器圧力に対する漏えい率を設定している。	
	このように設定した漏えい率は, 0.9Pd 以下で 0.5%/日,	このように設定した漏えい率は, 0.9Pd 以下で 0.5%/日,	
	0.9Pd 超過で 1.3%/日を一律に与えるものであり, MAAP	0.9Pd 超過で 1.3%/日を一律に与え, 0.9Pd 超過以降は, 1.3%	・評価条件の相違
	解析における漏えい率を包絡した保守的な設定であると考え	<u>/日を維持する</u> ものであり、MAAP解析における漏えい率	【東海第二】
	る。	を包絡した保守的な設定であると考える。	島根2号炉はベント後
	800		減圧しても 1.3%/日を
	800 1.5h 2Pd (1.3%/日) 19.5h 600 00 00 0.9Pd 500 00 0.9Pd 00 00 0.9Pd 00 00 0.9Pd 00 0.9Pd 0.5%/日) 00 2.4 6.8 10.12 101 14.16 18.20 22.24 9 9 9 10.12 101 14.16 18.20 22.24 103 101 14.16 18.20 10.12 103 1	100^{00}_{00} 12h 1.3%/d(2Pd=853kPa) 100 100 100 100 100 100 100 100 100 10	維持
	(2) 有機よう素 有機よう素についても, 無機よう素と同様の漏えい率の設 定が可能であるが, 有機よう素がガス状として振る舞うこと 及び原子炉格納容器内での除去効果を受けない点で希ガスに 類似していることから, MAAP解析における希ガスと同じ 挙動を示すものとし, 1. 及び2. に基づき漏えい率を設定する。	(2) 有機よう素 有機よう素についても,無機よう素と同様の漏えい率の設 定が可能であるが,有機よう素がガス状として振る舞うこと 及び原子炉格納容器内での除去効果を受けない点で希ガスに 類似していることから,MAAP解析における希ガスと同じ 挙動を示すものとし,1.及び2.に基づき漏えい率を設定する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	18 実効放出継続時間の設定について	<u>22</u> 実効放出継続時間の設定について	
	大気拡散評価に用いる実効放出継続時間は, 「発電用原子炉	大気拡散評価に用いる実効放出継続時間は、「発電用原子炉	
	施設の安全解析に関する気象指針」*1に従い,事故期間中の	施設の安全解析に関する気象指針」 ^{※1} に従い、事故期間中の	
	放射性物質の全放出量を 1 時間当たりの最大放出量で除した	放射性物質の全放出量を 1 時間当たりの最大放出量で除した	
	値として計算する。実効放出継続時間は、大気拡散評価で放出	値として計算する。実効放出継続時間は、大気拡散評価で放	
	継続時間を考慮した単位時間当たりの拡散係数を求めるため	出継続時間中の相対濃度を求めるために設定するものであ	
	に設定するものであり、被ばく評価においては、評価対象期間	り,被ばく評価においては,評価対象期間の放出率に相対濃	
	の放出率に拡散係数を乗じることにより大気拡散を考慮した	度を乗じることにより大気拡散を考慮した放射性物質の地表	
	評価を行う。	空気中濃度の評価を行う。	
	実効放出継続時間は放出経路ごとに設定しており,原子炉建	実効放出継続時間は放出経路ごとに設定しており、原子炉	
	屋,非常用ガス処理系排気筒及び格納容器圧力逃がし装置排気	建物(地上0m),非常用ガス処理系排気管(地上110m)及	
	<u>□</u> のそれぞれの放出経路について実効放出継続時間を計算し	び格納容器フィルタベント系排気管(地上 50m)のそれぞれの	
	た結果を <u>第18-1</u> 表に示す。	放出経路について実効放出継続時間を計算した結果を表 22-	
		1.に示す。	
	原子炉建屋及び格納容器圧力逃がし装置からの放出の実効	原子炉建物からの放出の実効放出継続時間は1時間程度,	
	放出継続時間は1時間程度であり,非常用ガス処理系排気筒か	格納容器フィルタベント系からの実効放出継続時間は <u>1時間</u>	・評価結果の相違
	らの放出の実効放出継続時間は <u>20 時間~30 時間</u> 程度となって	程度であり、非常用ガス処理系排気管からの放出の実効放出	【東海第二】
	いる。	継続時間は <u>34 時間~36 時</u> 間程度となっている。	
	大気拡散評価に用いる風速,風向などの気象データは,1時	大気拡散評価に用いる風速,風向などの気象データは,1時	
	間ごとのデータとして整理されており,実効放出継続時間とし	間ごとのデータとして整理されており、実効放出継続時間と	
	て設定できる最小単位は1時間である。	して設定できる最小単位は1時間である。	
	また,実効放出継続時間を2時間以上で設定した場合,その期	また,実効放出継続時間を2時間以上で設定した場合,そ	
	間に同一風向の風が吹き続けることを想定し,その期間の拡散	の期間に同一風向の風が吹き続けることを想定し、その期間	
	係数の平均を単位時間当たりの拡散係数としている。	の相対濃度の平均を単位時間当たりの相対濃度としている。	
	なお、平均する期間に異なる風向が含まれる場合は、拡散係数	なお、平均する期間に評価対象と異なる風向が含まれる場合	
	を0として平均を計算する。このため、実効放出継続時間が長	は, 当該時間の相対濃度を0として平均を計算する。このた	
	くなるほど平均される期間が長くなり拡散係数は小さい傾向	め、実効放出継続時間が長くなるほど平均される期間が長く	
	となる。	なり相対濃度は小さい傾向となる。	
	このことから、中央制御室の居住性に係る被ばく評価では、保	このことから、中央制御室の居住性に係る被ばく評価では、	
	守的に被ばく評価上の影響が大きい原子炉建屋及び格納容器	保守的に被ばく評価上の影響が大きい原子炉建物及び格納容	
	圧力逃がし装置からの放出における実効放出継続時間である	器フィルタベント系排気管からの放出における実効放出継続	
	1時間を適用し大気拡散評価を行った。	時間である1時間を適用し大気拡散評価を行った。	
	なお、参考として実効放出継続時間の違いによる拡散係数(相		
	対濃度,相対線量)の変化について第18-2表に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.1	8版)	島根原子力発電所 2号炉	備考
	※1 (気象指針解説抜粋) (3) 実効放出継続時間(T)は,想定事 放出率に変化があるので,放出モードを考 なければならないが,事故期間中の放射性物 時間当たりの最大放出量で除した値を用い 方法である。	故の種類によって 慮して適切に定め 7質の全放出量を 1 ることもひとつの	 ※1 (気象指針解説抜粋) (3) 実効放出継続時間(T)は、想定事故の種類によ 出率に変化があるので、放出モードを考慮して適切に定 ればならないが、事故期間中の放射性物質の全放出量を 当たりの最大放出量で除した値を用いることもひとつの ある。 	:って放 <u>:</u> めなけ · 1 時間)方法で
	第18-1表 S/Cからベントを行う場合の (1a)	<u>実効放出継続時間</u> (0+20) <u>実効放出機時間 (b)</u> (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	東空ー1 東効放出継続時間の計算結果 ① ② 実効放出継続 放出量(Bq) 最大放出率(Bq/h) (①÷② 原子炉 排気筒 フィルタ 原子炉 排気筒 全物 ベント 建物 ベント 建物 希ガス 1.3×10 ¹⁵ 2.2×10 ¹⁴ 5.1×10 ¹⁵ 1.0×10 ¹⁵ 6.3×10 ¹⁴ 3.6×10 ¹⁵ 約1.3 約34.3 希ガス以外 2.8×10 ¹⁴ 1.6×10 ¹⁵ 4.2×10 ¹⁵ 2.3×10 ¹⁴ 4.5×10 ¹³ 3.1×10 ¹⁵ 約1.2 約36.	・評価結果の相違 ^{時間(h)} ⁽⁾⁾ ⁽⁾ フィルタ <u>ベント</u> <u>3 約1.4</u> 1 約1.4
	第 18-2 表 実効放出継続時間の違いによる	拡散係数の変化		
	相対濃度 (s/m ³)	相対線量 (Gy/Bq)		
	1時間約3.0×10 ⁻⁶	約 1.2×10 ⁻¹⁹		
	5時間約2.9×10 ⁻⁶	約 8.8×10 ⁻²⁰		
	10 時間 約 1.7×10 ⁻⁶	約 7.5×10 ⁻²⁰		
	20 時間 約 1.2×10 ⁻⁶	約 6.2×10 ⁻²⁰		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017, 12, 20 版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号
	19 待避時間の設定根拠について	23 待避時間の設定根拠について
	中央制御室では、ベント実施時における放射性物質による 被ばく低減のために待避室に待避することとしており、中央 制御室の居住性評価においては待避時間を5時間としてい る。 待避時間の設定については、運転員の実効線量が100mSv/7 日間を超えないよう、余裕を考慮し設備、運用等を整備して いる。また、継続的に作業可能な線量率として数mSv/hと なるよう、中央制御室の居住性評価においては、第19-1図 に示すとおり、待避室外の空間線量率が約6mSv/hなるまで は待避室に待避すると想定し評価している。	中央制御室では,フィルタベント実施時代 による運転員の被ばく低減のために中央制 することとしており,中央制御室の居住性 避時間を <u>8時間</u> としている。 待避時間の設定については,運転員の実 日間を超えないよう,余裕を考慮し,設備 ている。また,継続的に作業可能な線量率 るよう,中央制御室の居住性評価において 間線量率が <u>数 mSv/h 以下</u> になるまでは,名 とを想定して評価している。
	$\frac{1}{100}$ $$	$\int_{1}^{1} g_{\text{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)		島根原子力	発電所 2	2 号炉	備考
		<u>24</u> プルームi	通過中の中央制御	『室換気系の	の運転モードについて	・資料構成の相違
		島根2号炉	では中央制御室	の運転員の	の被ばくを低減するた	【柏崎 6/7, 東海第二】
		め,中央制御	室換気系による	中央制御室	の正圧化を行う事とし	島根2号炉は,プルーム
		ているが,格為	納容器ベント <mark>後</mark> (の待避室に	待避している期間につ	通過時,に MCR を加圧
		いても,中央	制御室換気系の	加圧運転モ	ードを継続することに	運転モードとする運用
		ついて妥当性	潅認を行った。			としているが、循環運
		1. プルーム	通過中の中央制行	卸室換気系	の運転モードに関する	転とした場合との比較
		ケーススタデ	ſ			を実施
		プルーム通道	過中の中央制御	室換気系の	運転モードについて,	
		系統隔離運転	(以下,「循環運	転」という)への切替を想定して	
		空気流入率を	パラメータにケー	ーススタデ	ィを行い,加圧運転を	
		継続するケージ	ス (ベースケース	ス)と比較	した結果,表 24-1 に示	
		すとおり、プノ	レーム通過中の <mark>進</mark>	[転モードる	を循環運転とした場合,	
		加圧運転を継続	売するケースと	北べてプル	ーム通過中に中央制御	
		室に滞在する	B班(2日目)の	D線量は増加	加する結果となった。	
		また,加圧済	軍転を継続する	湯合 (ベー	スケース)と同程度の	
		線量となると	きの空気流入率に	こついて評	価した結果, 0.06 回/h	
		であり,空気	流入率試験結果	(約 0.1 回	/h)を下回る結果とな	
		った。				
		表 24-1 各ケ	ースにおけるべ	ント時滞在	斑の被ばく線量(室内	
		に外気カ	いら取り込まれた	放射性物質	質による被ばく)	
			プルーム通過中の	換気率	ベント時滞在班	
			MCR運転モード	(回/h)	<mark>取込み</mark> 被ばく線量(mSv)	
		ベースケース	加圧運転を継続	約1 ^{**1}	約 22 (うち外部被ばく 約 21)	
		ケース1	循環運転 <mark>に切替</mark>	0.5^{*2}	約 26 (うち外部被ばく 約 25)	
		ケース2	循環運転に切替	0.1 ^{**3}	約 29 (うち外部被ばく 約 28)	
		ケース3	循環運転に切替	0.06 ^{**4}	約 22 (うち外部被ばく 約 21)	
		※1 加圧運転にま	がする外気取込みおよ	び空気流出量	(17500m ³ /h) と中央制御室バ	
		ウンダリ容積	(17150m ³) から設定			
		※2 DBA時の許	『価において空気流入	.率試験結果を	踏まえ保守的に設定している	
		空気流入率(SA時の評価において	、換気空調系が	起動するまでの期間の空気流	
		入率としても	吏用)			
		※3 循環運転時の	空気流入率試験結果	(0.082 回/h)	より仮定した空気流入率	
		※4 ベースケース	と同程度の結果とな	る空気流入率		

柏崎刈羽原子力発電所 6/7号	· テ炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			2. プルーム通過時における中央制御室の空間線量率	
			プルーム通過時において、中央制御室運転モードを加圧運転	
			で継続した場合(ベースケース)と、循環運転に切替えた場合	
			における、中央制御室内(待避室外)の空間線量率について図	
			24-1 に示す。循環運転時の空気流入率は表 24-1 で示した 0.5 回	
			/h, 0.1回/h及び0.06回/hについてそれぞれ示す。	
			図 24-1 のとおり,加圧運転を継続(換気率=約 1.0)した場合	
			の空間線量率のピークと比較して、循環運転を行った場合の線	
			量率のピークは, 換気率が小さいほどピークも低くなる。一方,	
			各線量率の経時変化について傾きのパラメータとして、指数関	
			数 (EXP(-λt)) の指数 λ を比較すると, 加圧運転を継続 (換	
			気率=約1.0) した場合と比べて、空気流入率が小さいほど、減	
			衰を示すパラメータ λ の値が小さくなる (線量率の低下が鈍く	
			なる)ことが分かった。	
			これは、屋外のベントガス中の放射性物質の濃度が、ベント	
			直後をピークに急激に下がるためであり、ベント後、制御室内	
			の線量率は外気の取り込み(または外気流入)の割合に応じて	
			上昇し、おおむね1~2時間でピークを迎えた後は、外気の方	
			が放射性物質濃度が低くなるため、より換気率の大きなケース	
			において制御室内の線量率の低下速度が速くなっていると考え	
			られる。	
			$(1) < - \lambda f - \lambda$ $(2) f - \lambda f (0, 5 m/h) Sh$	
			If era (1) 10 (1) 10 (1) 10 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		3. 運転員の受ける線量率	
		プルーム通過中に加圧運転を継続する場合(ベースケース)	
		と、中央制御室待避室に待避している期間に循環運転に切替を	
		行う場合(ケース2)における制御室内に取込まれた希ガス等	
		によって中央制御室運転員が受ける線量率について,図24-2に	
		示す。なお、ケース2では、空気流入率試験の結果(0.082回/h)	
		を踏まえて設定した実力値に近い値として空気流入率 0.1 回/h	
		を設定している。	
		図中青く塗った領域については、加圧運転を継続する場合に	
		比べて、循環運転に切り替えることによって、線量率が下がる	
		期間を、赤く塗った領域は、逆に線量率が増加する期間を示し	
		ており、それぞれの面積が減少または増加する被ばく線量(mSv)	
		に対応する。	
		ケース2では、ベースケースと比べて、ベント直後の希ガス	
		等の取り込みが少なくなることで、線量率のピークは低くなる	
		ものの、取り込まれた希ガス等の <mark>換気が十分</mark> に行われず待避室	
		からの退出後の中央制御室内の線量率が高止まりすることによ	
		り、取り込みの <mark>抑制による被ばく</mark> の低減分を換気不足による増	
		加分が上回る結果となった。	
		ペースケース(加圧運転継続)時に運転員の受ける線量率(換気率:約1.0回/h) ケース2(待避中循環運転切替)時に運転員の受ける線量率(換気率:0.1回/h) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		1E+03 構理運転に切替の場合、加圧運転継続と比較 して練量率の減少が緩やかとなり、待避室から	
		3月1日+02 世 哲の場合、加 著の場合、加	
		(なる。)	
		44 44 45 1E-01	
		「 「 ■ IE-02 ペント開始 ■ IE-02 ペント開始	
		# 約32h / 持超室滞在(8h) 11 加重2015 28 山 ド ド ・・・・・・・・・・・・・・・・・・・・・	
		- 200 30 35 40 45 事故後の時間(h)	
		図 24-1 中央制御室内の空間線量率の推移	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		4. 結論	
		プルーム通過中の中央制御室換気系の運転モードについて,	
		空気流入率をパラメータにケーススタディを行った。その結果,	
		空気流入率試験により確認した実態に近い空気流入率である	
		0.1 回/h を仮定した場合においても,実効線量は加圧運転を継	
		続した場合に比べて増加した。	
		循環運転において実効線量が増加する理由としては、循環運	
		転を行った場合の、希ガス等の取り込みが少なくなることによ	
		る低減分を、希ガスの排出が少なくなることによる増加分が上	
		回ることによる。	
		以上より、プルーム通過中においても、加圧運転を継続する	
		運用が適切であると考える。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		(参考)	
		中央制御室内放射能濃度評価の方法	
		中央制御室内放射能濃度の評価モデルは図1のとおり。	
		空気流入量(α)	
		外気取込風量(G1) 74/49効率	
		再 循 中央制御室換気系	
		環 パウンダリ内容積 (V ₁)	
		中国線ノイルタ加重(GF)	
		空気流出量(α)	
		図1 中山制御安内投射総連座荻伍モデル	
		因1 中天前仰至的双射能很及計個モノル	
		中央制御室内の放射能濃度け、次式に上り評価する	
		$m_{1k}(t) = \frac{M_{1k}(t)}{V_1}$	
		$\frac{dM_{1k}(t)}{dt} = -\lambda_k \cdot M_{1k}(t) - (G_1 + \alpha + G_F \cdot \frac{E_k}{100}) \cdot \frac{M_{1k}(t)}{V_1} \cdot + \left(1 - \frac{E_k}{100} \cdot G_1 \cdot S_k(t) + \alpha \cdot S_k(t)\right)$	
		$S_k(t) = (\chi/Q) \cdot q_k(t)$	
		ここで、	
		m _{1k} (t):時刻 t における核種 k の中央制御室内の放射能濃度[Bq/m ³]	
		M_{1k}(t) :時刻 t における核種 k の中央制御室内の放射能量[Bq]	
		V ₁ :中央制御室バウンダリ内容積[m ³]	
		λ _k :核種 k の崩壊定数[1/s]	
		$G_1:$ 中央制御室換気系外気取込み風量 $[m^3/s]$	
		G_F :再循環フィルタを通る流量 $[m^3/s]$	
		E	
		$S_k(t)$:時刻 t における核種 k の放射能濃度 $[Bq/m^3]$	
		α:中央制御室バウンダリへの空気流入量[m ³ /s]	
		(=空気流入率×中央制御室バウンダリ内容積)	
		χ/Q:相対濃度[s/m ³]	
		q_k(t) :時刻 t における核種 k の放出率[Bq/s]	

柏崎刈羽原子力発電所 6/7	号炉 (2017.12.20版)	東海第二発電所(2018. 9. 18 版)	島根原子力発電	Î所 2 号炉	備考
2-25 審査ガイドへの適合状況		20 審査ガイドへの適合状況		24 審査ガイドへの適合状況		
実用発電用原子炉に係る重大事故時の制御室及び	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び	中央制御室の居住性に係る被ばく評価の	
緊急時対策所の居住性に係る被ばく評価に関する審査ガ	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		緊急時対策所の居住性に係る被ばく評価に関する審査ガ	審査ガイドへの適合状況	
イド				イド		
3.制御室及び緊急時対策所の居住性に係る被ばく評価		3. 制御室及び緊急時対策所の居住性に係る被ばく評価		3.制御室及び緊急時対策所の居住性に係る被ばく評価		
(解釈より抜粋)		(解釈より抜粋)		(解釈より抜粋)		
第74条(原子炉制御室)		第74条(原子炉制御室)		第74条(原子炉制御室)		
1 第74条に規定する「運転員がとどまるために必要		1. 第74条に規定する「運転員がとどまるために必要な		1 第74条に規定する「運転員がとどまるために必要		
な設備」とは、以下に掲げる措置又はこれらと同等以		設備」とは、以下に掲げる措置又はこれらと同等以上		な設備」とは、以下に掲げる措置又はこれらと同等以		
上の効果を有する措置を行うための設備をいう。		の効果を有する措置を行うための設備をいう。		上の効果を有する措置を行うための設備をいう。		
b) 炉心の著しい損傷が発生した場合の原子炉制御室の	1 b) → 審査ガイドどおり	b) 炉心の著しい損傷が発生した場合の原子炉制御室の居	1 b)→審査ガイドの趣旨に基づき評価	b) 炉心の著しい損傷が発生した場合の原子炉制御室の	1 b) → 審査ガイドどおり	
居住性について、次の要件を満たすものであること。		住性について、次の要件を満たすものであること。		居住性について、次の要件を満たすものであること。		
① 設置許可基準規則解釈第37条の想定する格納容器						
破損モードのうち、原子炉制御室の運転員の被ばくの	① 評価事象については、「想定する格納容器破損	① 設置許可基準規則解釈第37条の想定する格納容	 納容器圧力逃がし装置による格納容器破損 	① 設置許可基準規則解釈第37条の想定する格納容器	① 評価事象については、「想定する格納容器破損	
観点から結果が最も厳しくなる事故収束に成功した事	モードのうち、原子炉制御室の運転員の被ばくの	器破損モードのうち,原子炉制御室の運転員の被	防止対策を考慮する事故シーケンスを選定	破損モードのうち、原子炉制御室の運転員の被ばくの	モードのうち、原子炉制御室の運転員の被ばくの	
故シーケンス(例えば、炉心の著しい損傷の後、格納	観点から結果が最も厳しくなる事故収束に成功	ばくの観点から結果が最も厳しくなる事故収束に	している。	観点から結果が最も厳しくなる事故収束に成功した事	観点から結果が最も厳しくなる事故収束に成功	
容器圧力逃がし装置等の格納容器破損防止対策が有効	した事故シーケンス」として,格納容器破損防止	成功した事故シーケンス(例えば、炉心の著しい		故シーケンス(例えば、炉心の著しい損傷の後、格納	した事故シーケンス」として、格納容器破損防止	
に機能した場合)を想定すること。	対策に係る有効性評価における雰囲気圧力・温度	損傷の後、格納容器圧力逃がし装置等の格納容器		容器圧力逃がし装置等の格納容器破損防止対策が有効	対策に係る有効性評価における雰囲気圧力・温度	
	による静的負荷のうち,格納容器過圧の破損モー	破損防止対策が有効に機能した場合)を想定する		に機能した場合)を想定すること。	による静的負荷のうち,格納容器過圧の破損モー	
	ドにおいて想定している「大破断LOCA時に非常用	こと。			ドにおいて想定している「大破断LOCA+EC	
	炉心冷却系の機能及び全交流動力電源が喪失し				CS注水機能喪失+全交流動力電源喪失」を選定	
	たシーケンス」を選定した。当該事故シーケンス				した。当該事故シーケンスにおいては第一に残留	
	においては第一に代替循環冷却系により事象を				熱代替除去系により事象を収束するが、被ばく評	
	収束するが, 被ばく評価においては, 単一号炉に				価においては、残留熱代替除去系による格納容器	
	おいて代替循環冷却に失敗し,格納容器圧力逃が				除熱に失敗し、格納容器フィルタベント系を用い	
	し装置を用いた格納容器ベントを実施する場合				た格納容器ベントを実施する場合についても想	
	についても想定した。なお、よう素放出量の低減				定した。なお、よう素放出量の低減対策として導	
	対策として導入した格納容器内pH制御について				入した格納容器内pH制御については、その効果に	
	は、その効果に期待しないものとした。				期待しないものとした。	
② 運転員はマスクの着用を考慮してもよい。ただしその	② 中央制御室滞在時及び入退域時ともにマスクの	② 運転員はマスクの着用を考慮してもよい。ただ	② マスク着用は考慮する場合と考慮しない場	② 運転員はマスクの着用を考慮してもよい。ただしその	② 中央制御室滞在時及び入退域時ともにマスクの	
場合は、実施のための体制を整備すること。	着用を考慮した。また,実施のための体制を整備	し、その場合は実施のための体制を整備すること。	合とで評価している。	場合は、実施のための体制を整備すること。	着用を考慮した。また、実施のための体制を整備	
	している。				している。	・運用の相違
③ 交代要員体制を考慮してもよい。ただしその場合は、	③ 運転員の勤務形態 (<u>5直2交替</u>) を考慮して評価	③ 交代要員体制を考慮してもよい。ただし、その場合は	③運転員の勤務形態 (<u>5直2交代</u>) を考慮して評価	③ 交代要員体制を考慮してもよい。ただしその場合は、	③ 運転員の勤務形態(<u>4直2交替</u>)を考慮して評価	【柏崎 6/7,東海第二】
実施のための体制を整備すること。	している。また、実施のための体制を整備してい	実施のための体制を整備すること。	している。	実施のための体制を整備すること。	している。また、実施のための体制を整備してい	島根2号炉は通常の
	<u>م</u> .				る。	勤務形態である4直2
④ 判断基準は、運転員の実効線量が7日間で100mSv を	④ 運転員の実効線量が7日間で100mSvを超えない	 ④ 判断基準は,運転員の実効線量が7日間で100mSv を 	④運転員の実効線量が7日間で100mSv を超えな	 判断基準は、運転員の実効線量が7日間で100mSv を 	 ④ 運転員の実効線量が7日間で100mSvを超えない 	交代を仮定して評価を
超えないこと。	ことを確認している。	超えないこと。	いことを確認している。	超えないこと。	ことを確認している。	行っている
_					7	

柏崎刈羽原子力発電所 6/7	7号炉 (2017.12.20版)	東海第二発電所(2	2018. 9. 18 版)	島根原子力発電	所 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
4. 居住性に係る被ばく評価の標準評価手法		4. 居住性に係る被ばく評価の標準評価手法		4. 居住性に係る被ばく評価の標準評価手法		
4.1 居住性に係る被ばく評価の手法及び範囲	4.1 → 審査ガイドどおり	4.1 居住性に係る被ばく評価の手法及び範囲	4.1 →審査ガイドのとおり	4. 1 居住性に係る被ばく評価の手法及び範囲	4.1 → 審査ガイドどおり	
① 居住性に係る被ばく評価にあたっては最適評価手法を	最適評価手法を適用し, 「4.2 居住性に係る被	① 居住性に係る被ばく評価にあたっては最適評価手法	最適評価手法を適用し,「4.2 居住性に係る被	① 居住性に係る被ばく評価にあたっては最適評価手法	最適評価手法を適用し,「4.2 居住性に係る被	
適用し、「4.2 居住性に係る被ばく評価の共通解析条件」	ばく評価の共通解析条件」に基づいて評価してい	を適用し、「4.2 居住性に係る被ばく評価の共通解析条	ばく評価の共通解析条件」に基づいて評価してい	を適用し、「4.2 居住性に係る被ばく評価の共通解析	ばく評価の共通解析条件」に基づいて評価してい	
を適用する。ただし、保守的な仮定及び条件の適用を否	వ.	件」を適用する。ただし,保守的な仮定及び条件の適用	る。実験等に基づいて検証されたコードやこれま	条件」を適用する。ただし、保守的な仮定及び条件の	5.	
定するものではない。		を否定するものではない。	での許認可で使用したモデルに基づいて評価して	適用を否定するものではない。		
② 実験等を基に検証され、適用範囲が適切なモデルを用	実験等に基づいて検証されたコードやこれまで	② 実験等を基に検証され、適用範囲が適切なモデルを用	いる。	② 実験等を基に検証され、適用範囲が適切なモデルを用	実験等に基づいて検証されたコードやこれまで	
いる。	の許認可で使用したモデルに基づいて評価してい	いる。		いる。	の許認可で使用したモデルに基づいて評価してい	
③ 不確かさが大きいモデルを使用する場合や検証された	న .	③ 不確かさが大きいモデルを使用する場合や検証され		③ 不確かさが大きいモデルを使用する場合や検証され	る。	
モデルの適用範囲を超える場合には、感度解析結果等を		たモデルの適用範囲を超える場合には,感度解析結果等		たモデルの適用範囲を超える場合には、感度解析結果		
基にその影響を適切に考慮する。		を基にその影響を適切に考慮する。		等を基にその影響を適切に考慮する。		
(1) 被ばく経路		 (1) 被ばく経路 	4.1 (1)→ 審査ガイドのとおり	(1) 被ばく経路		
原子炉制御室/緊急時制御室/緊急時対策所の居住性	4.1(1) → 審査ガイドどおり	原子炉制御室/緊急時制御室/緊急時対策所の居住性に	中央制御室居住性に係る被ばく経路は図1のと	原子炉制御室/緊急時制御室/緊急時対策所の居住性	4.1(1) → 審査ガイドどおり	
に係る被ばく評価では、次の被ばく経路による被ばく線量	中央制御室の居住性に係る被ばくは、図1の①	係る被ばく評価では、次の被ばく経路による被ばく線量	おり、①~⑤の経路に対して評価している。	に係る被ばく評価では、次の被ばく経路による被ばく線	中央制御室の居住性に係る被ばくは、図1の①	
を評価する。図1に、原子炉制御室の居住性に係る被ばく	~⑤の被ばく経路に対して評価している。	を評価する。図1 に,原子炉制御室の居住性に係る被ば		量を評価する。図1に、原子炉制御室の居住性に係る被ば	~⑤の被ばく経路に対して評価している。	
経路を、図2に、緊急時制御室又は緊急時対策所の居住性		く経路を,図2に,緊急時制御室又は緊急時対策所の居		く経路を、図2に、緊急時制御室又は緊急時対策所の居住		
に係る被ばく経路をそれぞれ示す。		住性に係る被ばく経路をそれぞれ示す。		性に係る被ばく経路をそれぞれ示す。		
ただし、合理的な理由がある場合は、この経路によらな		ただし、合理的な理由がある場合は、この経路によら		ただし、合理的な理由がある場合は、この経路によら		
いことができる。		ないことができる。		ないことができる。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.9.18版)		島根原子力発電所 2号炉		備考
実用発電用原子炉に係る重大事故時の制御室及び	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び	中央制御室の居住性に係る被ばく評価の	
緊急時対策所の居住性に係る被ばく評価に関する審査ガ	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		緊急時対策所の居住性に係る被ばく評価に関する審査	審査ガイドへの適合状況	
イド				ガイド		
① 原子炉建屋内の放射性物質からのガンマ線による原	4.1(1)① → 審査ガイドどおり	① 原子炉建屋内の放射性物質からのガンマ線による原	4.1 (1) ①→審査ガイドのとおり	① 原子炉建屋内の放射性物質からのガンマ線による原	4.1(1)① → 審査ガイドどおり	
子炉制御室/緊急時制御室/緊急時対策所内での被ば		子炉制御室/緊急時制御室/緊急時対策所内での被ばく		子炉制御室/緊急時制御室/緊急時対策所内での被		
<		原子炉建屋(二次格納施設(BWR 型原子炉施設)又は原		ぼく		
原子炉建屋(二次格納施設(BWR 型原子炉施設)又は		子炉格納容器及びアニュラス部(PWR 型原子炉施設))内		原子炉建屋(二次格納施設(BWR 型原子炉施設)又は		
原子炉格納容器及びアニュラス部(PWR 型原子炉施設))		の放射性物質から放射されるガンマ線による原子炉制御		原子炉格納容器及びアニュラス部 (PWR 型原子炉施設))		
内の放射性物質から放射されるガンマ線による原子炉制		室/緊急時制御室/緊急時対策所内での被ばく線量を,		内の放射性物質から放射されるガンマ線による原子炉		
御室/緊急時制御室/緊急時対策所内での被ばく線量		次の二つの経路を対象に計算する。		制御室/緊急時制御室/緊急時対策所内での被ばく線		
を、次の二つの経路を対象に計算する。				量を、次の二つの経路を対象に計算する。		
一 原子炉建屋内の放射性物質からのスカイシャインガ	原子炉建屋内等の放射性物質からのスカイシ	一 原子炉建屋内の放射性物質からのスカイシャイン	原子炉建屋内の放射性物質からのスカイシャイン	一 原子炉建屋内の放射性物質からのスカイシャイン	原子炉建物内等の放射性物質からのスカイシャ	
ンマ線による外部被ばく	ャインガンマ線による中央制御室内での外部被	ガンマ線による外部被ばく	ガンマ線による中央制御室内での外部被ばく線量	ガンマ線による外部被ばく	インガンマ線による中央制御室内での外部被ばく	
	ばく線量を評価している。		を評価している。		線量を評価している。	
二 原子炉建屋内の放射性物質からの直接ガンマ線によ	原子炉建屋内等の放射性物質からの直接ガン	二 原子炉建屋内の放射性物質からの直接ガンマ線に	原子炉建屋内の放射性物質からの直接ガンマ線に	二 原子炉建屋内の放射性物質からの直接ガンマ線に	原子炉建物内等の放射性物質からの直接ガンマ	
る外部被ばく	マ線による中央制御室内での外部被ばく線量を	よる外部被ぼく	よる中央制御室での外部被ばく線量を評価してい	よる外部被ばく	線による中央制御室内での外部被ばく線量を評価	
	評価している。		\$°		している。	
② 大気中へ放出された放射性物質による原子炉制御室	4.1(1)② → 審査ガイドどおり	② 大気中へ放出された放射性物質による原子炉制御	4.1(1)②→審査ガイドのとおり	② 大気中へ放出された放射性物質による原子炉制御室	4.1(1)② → 審査ガイドどおり	
/緊急時制御室/緊急時対策所内での被ばく		室/緊急時制御室/緊急時対策所内での被ばく大気中へ		/緊急時制御室/緊急時対策所内での被ばく		
大気中へ放出された放射性物質から放射されるガンマ		放出された放射性物質から放射されるガンマ線による外		大気中へ放出された放射性物質から放射されるガン		
線による外部被ばく線量を、次の二つの経路を対象に計		部被ばく線量を,次の二つの経路を対象に計算する。		マ線による外部被ばく線量を、次の二つの経路を対象に		
算する。				計算する。		
 	大気中へ放出された放射性物質からのガンマ	一 放射性雲中の放射性物質からのガンマ線による外	大気中に放出された放射性物質からのガンマ線に	 	大気中へ放出された放射性物質からのガンマ線	
被ばく (クラウドシャイン)	線による中央制御室内での外部被ばく(クラウド	部被ばく(クラウドシャイン)	よ中央制御室での外部被ばくは、事故期間中の大	部被ばく(クラウドシャイン)	による中央制御室内での外部被ばく(クラウドシャ	
	シャイン)は、放射性物質の放出量、大気拡散の		気中への放射性物質の放出量を基に大気拡散効果		イン)は,放射性物質の放出量,大気拡散の効果及	
	効果及び建屋によるガンマ線の遮蔽効果を考慮		と中央制御室の壁によるガンマ線遮蔽効果を踏ま		び建物によるガンマ線の遮蔽効果を考慮し評価し	
	し評価している。		えて運転員の外部被ばく(クラウドシャイン)を評		ている。	
二 地表面に沈着した放射性物質からのガンマ線による	地表面に沈着した放射性物質からのガンマ線		価している。	二 地表面に沈着した放射性物質からのガンマ線によ	地表面に沈着した放射性物質からのガンマ線に	
外部被ばく(グランドシャイン)	による中央制御室内での外部被ばく(グランドシ	二 地表面に沈着した放射性物質からのガンマ線によ	地表面に沈着した放射性物質からのガンマ線によ	る外部被ばく(グランドシャイン)	よる中央制御室内での外部被ばく(グランドシャイ	
	ャイン)は、放射性物質の放出量、大気拡散の効	る外部被ばく(グランドシャイン)	る外部被ばく (グランドシャイン)についても考慮		ン)は、放射性物質の放出量、大気拡散の効果及び	
	果及び沈着速度並びに建屋によるガンマ線の遮		して評価している。		沈着速度並びに建物によるガンマ線の遮蔽効果を	
	蔽効果を考慮し評価している。				考慮し評価している。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 18 版)	島根原子力発電	 昏所 2 号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド 審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
③ 外気から取り込まれた放射性物質による原子炉制御室 4.1(1)③ → 審査ガイドどおり	③ 外気から取り込まれた放射性物質による原子炉制御	4.1(1)③→審査ガイドのとおり	③ 外気から取り込まれた放射性物質による原子炉制御	4.1(1)③ → 審査ガイドどおり	
/緊急時制御室/緊急時対策所内での被ばく	室/緊急時制御室/緊急時対策所内での被ばく原子炉制	中央制御室内に取り込まれた放射性物質は、中央	室/緊急時制御室/緊急時対策所内での被ばく		
原子炉制御室/緊急時制御室/緊急時対策所内に取り	御室/緊急時制御室/緊急時対策所内に取り込まれた放	制御室に沈着せず浮遊しているものとして評価し	原子炉制御室/緊急時制御室/緊急時対策所内に取		
込まれた放射性物質による被ばく線量を、次の二つの被ば	射性物質による被ばく線量を、次の二つの被ばく経路を	ている。	り込まれた放射性物質による被ばく線量を、次の二つの		
く経路を対象にして計算する。	対象にして計算する。		被ばく経路を対象にして計算する。		
なお、原子炉制御室/緊急時制御室/緊急時対策所内に 中央制御室に取り込まれた放射性物質は,中央	なお,原子炉制御室/緊急時制御室/緊急時対策所内に		なお、原子炉制御室/緊急時制御室/緊急時対策所内	中央制御室に取り込まれた放射性物質は,中央制	
取り込まれた放射性物質は、室内に沈着せずに浮遊してい 制御室内に沈着せずに浮遊しているものと仮定し	取り込まれた放射性物質は、室内に沈着せずに浮遊して		に取り込まれた放射性物質は、室内に沈着せずに浮遊し	御室内に沈着せずに浮遊しているものと仮定して	
るものと仮定して評価する。 て評価している。	いるものと仮定して評価する。		ているものと仮定して評価する。	評価している。	
一 原子炉制御室/緊急時制御室/緊急時対策所内へ外 中央制御室に取り込まれた放射性物質は、中央	一 原子炉制御室/緊急時制御室/緊急時対策所內へ	事故期間中に大気中に放出された放射性物質の一	 原子炉制御室/緊急時制御室/緊急時対策所内へ 	中央制御室に取り込まれた放射性物質は,中央制	
気から取り込まれた放射性物質の吸入摂取による内制御室内に沈着せずに浮遊しているものと仮定し	外気から取り込まれた放射性物質の吸入摂取による内部	部は外気から中央制御室内に取り込まれる。中央	外気から取り込まれた放射性物質の吸入摂取によ	御室内に沈着せずに浮遊しているものと仮定して	
部被ばくて評価している。	被ばく二 原子炉制御室/緊急時制御室/緊急時対策所	制御室内に取り込まれた放射性物質のガンマ線に	る内部被ばく	評価している。	
二 原子炉制御室/緊急時制御室/緊急時対策所内~外	内へ外気から取り込まれた放射性物質からのガンマ線に	よる外部被ばく及び吸入摂取による内部被ばくの	二 原子炉制御室/緊急時制御室/緊急時対策所内へ		
気から取り込まれた放射性物質からのガンマ線によ	よる外部被ばく	和として実効線量を評価している。	外気から取り込まれた放射性物質からのガンマ線		
る外部被ばく	④ 原子炉建屋内の放射性物質からのガンマ線による	4.1(1)④→審査ガイドのとおり	による外部被ばく		
④ 原子炉建屋内の放射性物質からのガンマ線による入退 4.1(1)④ → 審査ガイドどおり	入退域での被ばく		④ 原子炉建屋内の放射性物質からのガンマ線による入	4.1(1)④ → 審査ガイドどおり	
域での被ばく	原子炉建屋内の放射性物質から放射されるガンマ線に		退域での被ばく		
原子炉建屋内の放射性物質から放射されるガンマ線に	よる入退域での被ばく線量を、次の二つの経路を対象に		原子炉建屋内の放射性物質から放射されるガンマ線		
よる入退域での被ばく線量を、次の二つの経路を対象に計	計算する。		による入退域での被ばく線量を、次の二つの経路を対象		
算する。			に計算する。		
一原子炉建屋内の放射性物質からのスカイシャインガ 原子炉建屋内等の放射性物質からのスカイシャ	一 原子炉建屋内の放射性物質からのスカイシャイン	原子炉建屋内の放射性物質からのスカイシャイン	ー 原子炉建屋内の放射性物質からのスカイシャイン	原子炉建物内等の放射性物質からのスカイシャ	
ンマ線による外部被ばく インガンマ線による入退域時の外部被ばく線量を	ガンマ線による外部被ばく	ガンマ線による入退域時の外部被ばく線量を評価	ガンマ線による外部被ばく	インガンマ線による入退域時の外部被ばく線量を	
評価している。		している。		評価している。	
二 原子炉建屋内の放射性物質からの直接ガンマ線によ 原子炉建屋内等の放射性物質からの直接ガンマ	二 原子炉建屋内の放射性物質からの直接ガンマ線に	原子炉建屋内の放射性物質からの直接ガンマ線に	二 原子炉建屋内の放射性物質からの直接ガンマ線に	原子炉建物内等の放射性物質からの直接ガンマ	
る外部被ばく 線による入退域時の外部被ばく線量を評価してい	よる外部被ばく	よる入退域時の外部被ばく線量を評価している。	よる外部被ばく	線による入退域時の外部被ばく線量を評価してい	
る。				a.	
I		·			

柏崎刈羽原子力発電所 6/	7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 18 版)	島根原子力発電	所 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
⑤ 大気中へ放出された放射性物質による入退域での被	4.1(1)⑤ → 審査ガイドどおり	⑤ 大気中へ放出された放射性物質による入退域での被	4.1(1)⑤→審査ガイドのとおり	⑤ 大気中へ放出された放射性物質による入退域での被ば	4.1(1)⑤ → 審査ガイドどおり	
ぼく		ばく大気中へ放出された放射性物質による被ばく線量	大気中へ放出された放射性物質からのガンマ線に	<		
大気中へ放出された放射性物質による被ばく線量を、		を,次の三つの経路を対象に計算する。	よる入退域時の被ばくは、中央制御室の壁による	大気中へ放出された放射性物質による被ばく線量を、次		
次の三つの経路を対象に計算する。			ガンマ線の遮蔽効果を期待しないこと以外は	の三つの経路を対象に計算する。		
 	放射性雲中の放射性物質からのガンマ線による	一 放射性雲中の放射性物質からのガンマ線による外部	「4.1(1)②大気中へ放出された放射性物質による	一 放射性雲中の放射性物質からのガンマ線による外部	放射性雲中の放射性物質からのガンマ線による	
部被ばく (クラウドシャイン)	入退域時の外部被ばく(クラウドシャイン)を評	被ばく (クラウドシャイン)	中央制御室内での被ばく」と同様な手段で、放射	被ばく (クラウドシャイン)	入退域時の外部被ばく(クラウドシャイン)を評	
二 地表面に沈着した放射性物質からのガンマ線によ	価している。	二 地表面に沈着した放射性物質からのガンマ線による	性物質からのガンマ線による外部被ばくおよび吸		価している。	
る外部被ばく(グランドシャイン)	地表面に沈着した放射性物質からのガンマ線に	外部被ばく(グランドシャイン)	入摂取による内部被ばくの和として実効線量を評	二 地表面に沈着した放射性物質からのガンマ線による	地表面に沈着した放射性物質からのガンマ線に	
	よる入退域時の外部被ばく(グランドシャイン)		価している。地表面に沈着した放射物質放射性物	外部被ばく(グランドシャイン)	よる入退域時の外部被ばく(グランドシャイン)	
三 放射性物質の吸入摂取による内部被ばく	を評価している。	三 放射性物質の吸入摂取による内部被ばく	質からのガンマ線についても考慮して評価してい		を評価している。	
	放射性物質の吸入摂取による入退域時の内部被		る 。	三 放射性物質の吸入摂取による内部被ばく	放射性物質の吸入摂取による入退域時の内部被	
	ばくを評価している。				ばくを評価している。	

柏崎刈羽原子力発電所 6/	7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 18 版)	島根原子力発電	Î所 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
(2) 評価の手順	4.1(2) → 審査ガイドどおり	(2) 評価の手順	4.1(2)→審査ガイドのとおり	(2) 評価の手順	4.1(2) → 審査ガイドどおり	
原子炉制御室/緊急時制御室/緊急時対策所の居住	中央制御室居住性に係る被ばくは図3の手順に	原子炉制御室/緊急時制御室/緊急時対策所の居住性に	中央制御室居住性に係る被ばくは,図3の手	原子炉制御室/繁急時制御室/繁急時対策所の居住性	中央制御室居住性に係る被ばくは図3の手順に基	
性に係る被ばく評価の手順を図3に示す。	基づいて評価している。	係る被ばく評価の手順を図3 に示す。	順に基づいて評価している。	に係る被ばく評価の手順を図3に示す。	づいて評価している。	
a. 原子炉制御室/緊急時制御室/緊急時対策所の居住	4.1(2)a. → 審査ガイドどおり	a. 原子炉制御室/緊急時制御室/緊急時対策所の居住	4.1(2)a.→審査ガイドのとおり	a. 原子炉制御室/緊急時制御室/緊急時対策所の居住性	4.1(2)a. → 審査ガイドどおり	
性に係る被ばく評価に用いるソースタームを設定す	評価事象については、「想定する格納容器破損	性に係る被ばく評価に用いるソースタームを設定する。		に係る被ばく評価に用いるソースタームを設定する。	評価事象については、「想定する格納容器破損モ	
వ.	モードのうち、原子炉制御室の運転員の被ばくの	・原子炉制御室の居住性に係る被ばく評価では、格納容	評価事象については、炉心の著しい損傷が発生	・原子炉制御室の居住性に係る被ばく評価では、格	ードのうち、原子炉制御室の運転員の被ばくの観点	
・原子炉制御室の居住性に係る被ばく評価では、格	観点から結果が最も厳しくなる事故収束に成功し	器破損防止対策の有効性評価 (参2)で想定する格納容	するシーケンス「大 LOCA+高圧炉心冷却失敗+低	納容器破損防止対策の有効性評価 (*2) で想定する	から結果が最も厳しくなる事故収束に成功した事	
納容器破損防止対策の有効性評価 (*2) で想定する	た事故シーケンス」として、格納容器破損防止対	器破損モードのうち、原子炉制御室の運転員又は対策要	圧炉心冷却失敗+全交流動力電源喪失」を選定す	格納容器破損モードのうち、原子炉制御室の運転	故シーケンス」として,格納容器破損防止対策に係	
格納容器破損モードのうち、原子炉制御室の運転	策に係る有効性評価における雰囲気圧力・温度に	員の被ばくの観点から結果が最も厳しくなる事故収束に	る。また、放出放射能量の観点から、代替循環冷	員又は対策要員の被ばくの観点から結果が最も厳	る有効性評価における雰囲気圧力・温度による静的	
員又は対策要員の被ばくの観点から結果が最も厳	よる静的負荷のうち、格納容器過圧の破損モード	成功した事故シーケンス(この場合,格納容器破損防止	却系の機能喪失を仮定し、格納容器圧力逃がし装	しくなる事故収束に成功した事故シーケンス(こ	負荷のうち,格納容器過圧の破損モードにおいて想	
しくなる事故収束に成功した事故シーケンス(こ	において想定している「大破断LOCA時に非常用炉	対策が有効に働くため,格納容器は健全である)のソー	置による格納容器ベントを実施する場合を想定す	の場合、格納容器破損防止対策が有効に働くため、	定している「冷却材喪失(大破断LOCA)+EC	
の場合、格納容器破損防止対策が有効に働くため、	心冷却系の機能及び全交流動力電源が喪失したシ	スターム解析を基に、大気中への放射性物質放出量及び	a .	格納容器は健全である)のソースターム解析を基	CS注水機能喪失+全交流動力電源喪失」を選定し	
格納容器は健全である)のソースターム解析を基	ーケンス」を選定した。当該事故シーケンスにお	原子炉施設内の放射性物質存在量分布を設定する。		に、大気中への放射性物質放出量及び原子炉施設	た。当該事故シーケンスにおいては第一に残留熱代	
に、大気中への放射性物質放出量及び原子炉施設	いては第一に代替循環冷却系により事象を収束す			内の放射性物質存在量分布を設定する。	替除去系により事象を収束するが, 被ばく評価にお	
内の放射性物質存在量分布を設定する。	るが、被ばく評価においては、単一号炉において			・緊急時制御室又は緊急時対策所の居住性に係る被	いては,残留熱代替除去系による格納容器除熱に失	
・緊急時制御室又は緊急時対策所の居住性に係る被	代替循環冷却に失敗し、格納容器圧力逃がし装置	・緊急時制御室又は緊急時対策所の居住性に係る被ばく	大気中への放射性物質の放出量については,	ばく評価では、放射性物質の大気中への放出割合	敗し,格納容器フィルタベント系を用いた格納容器	
ばく評価では、放射性物質の大気中への放出割合	を用いた格納容器ベントを実施する場合について	評価では、放射性物質の大気中への放出割合が東京電力	MAAP 解析結果を元に設定しているが、放出割合に	が東京電力株式会社福島第一原子力発電所事故と	ベントを実施する場合について想定した。原子炉格	
が東京電力株式会社福島第一原子力発電所事故と	も想定した。原子炉格納容器から格納容器圧力逃	株式会社福島第一原子力発電所事故と同等と仮定した事	ついては、TMI-2 事故や福島第一原子力発電所事	同等と仮定した事故に対して、放射性物質の大気	納容器から格納容器フィルタベント系への流入量,	
同等と仮定した事故に対して、放射性物質の大気	がし装置への流入量、及び、原子炉格納容器から	故に対して,放射性物質の大気中への放出割合及び炉心	放での知見も踏まえた設定としている。	中への放出割合及び炉心内蔵量から大気中への放	及び,原子炉格納容器から原子炉建物への漏えい量	
中への放出割合及び炉心内蔵量から大気中への放	原子炉建屋への漏えい量を, MAAP解析及び	内蔵量から大気中への放射性物質放出量を計算する。		射性物質放出量を計算する。	を,MAAP解析及びNUREG-1465 の知見を用	
射性物質放出量を計算する。	NUREG-1465 の知見を用いて評価した。ただし,	また、放射性物質の原子炉格納容器内への放出割合及び		また、放射性物質の原子炉格納容器内への放出	いて評価した。ただし, MAAPコードではよう素	
また、放射性物質の原子炉格納容器内への放	MAAPコードではよう素の化学組成は考慮されない	炉心内蔵量から原子炉施設内の放射性物質存在量分布を		割合及び炉心内蔵量から原子炉施設内の放射性	の化学組成は考慮されないため、粒子状よう素、無	
出割合及び炉心内蔵量から原子炉施設内の放射	ため、粒子状よう素、無機よう素及び有機よう素	設定する。		物質存在量分布を設定する。	機よう素及び有機よう素については、大気中への放	
性物質存在量分布を設定する。	については,大気中への放出量評価条件を設定し,				出量評価条件を設定し、放出量を評価した。なお、	
	放出量を評価した。なお、よう素放出量の低減対				よう素放出量の低減対策として導入した原子炉格	
	策として導入した原子炉格納容器内pH 制御につ				納容器内pH 制御については、その効果に期待しな	
	いては、その効果に期待しないものとした。				いものとした。	
b. 原子炉施設敷地内の年間の実気象データを用いて、	4.1(2)b. → 審査ガイドどおり	b. 原子炉施設敷地内の年間の実気象データを用いて,	4.1(2)b.→審査ガイドのとおり	b. 原子炉施設敷地内の年間の実気象データを用いて、大	4.1(2)b. → 審査ガイドどおり	
大気拡散を計算して相対濃度及び相対線量を計算す	被ばく評価に用いる相対濃度と相対線量は、大	大気拡散を計算して相対濃度及び相対線量を計算する。	被ばく評価に用いる相対濃度及び相対線量は、大	気拡散を計算して相対濃度及び相対線量を計算する。	被ばく評価に用いる相対濃度と相対線量は, 大気	
a.	気拡散の評価に従い実効放出継続時間を基に計算		気拡散の評価に従い実効放出継続時間を基に計算		拡散の評価に従い実効放出継続時間を基に計算し	
	した値を年間について小さいほうから順に並べて		した値を年間について、小さい方から順に並べた		た値を年間について小さいほうから順に並べて整	
	整理し,累積出現頻度97%に当たる値を用いてい		累積出現頻度97%に当たる値を用いている。評価に		理し,累積出現頻度97%に当たる値を用いている。	・評価条件の相違
	る。評価においては, <u>柏崎刈羽原子力発電所敷地</u>		おいては, <u>2005年4月1日から2006年3月31日</u> の1年		評価においては, <u>島根原子力発電所敷地内</u> において	【柏崎 6/7,東海第二】
	<u>内</u> において観測した <u>1985年10月~1986年9月</u> の1年		間における気象データを使用している。		観測した <u>2009年1月~2009年12月</u> の1年間における	島根 2 号炉の気象を考
	間における気象データを使用している。				気象データを使用している。	慮

柏崎刈羽原子力発電所 6/	7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.18版)		島根原子力発電	備考	
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
c. 原子炉施設内の放射性物質存在量分布から原子炉建屋	4.1(2)c. → 審査ガイドどおり	c. 原子炉施設内の放射性物質存在量分布から原子炉建屋	4.1(2)c.→審査ガイドのとおり	c. 原子炉施設内の放射性物質存在量分布から原子炉建屋	4.1(2)c. → 審査ガイドどおり	
内の線源強度を計算する。	スカイシャインガンマ線及び直接ガンマ線によ	内の線源強度を計算する。	原子炉施設内の放射性物質存在量分布を考慮し、	内の線源強度を計算する。	スカイシャインガンマ線及び直接ガンマ線によ	
	る外部被ばく線量を評価するために, 原子炉施設内		スカイシャインガンマ線及び直接ガンマ線による		る外部被ばく線量を評価するために、原子炉施設内	
	の放射性物質存在量分布から原子炉建屋内の線源		外部被ばく線量を評価するために、原子炉建屋内		の放射性物質存在量分布から原子炉建物内の線源	
	強度を計算している。		の線源強度を計算している。		強度を計算している。	
d. 原子炉制御室/緊急時制御室/緊急時対策所内での運	4.1(2)d. → 審査ガイドどおり	d. 原子炉制御室/緊急時制御室/緊急時対策所内での運	4.1(2) d. →審査ガイドのとおり	d. 原子炉制御室/緊急時制御室/緊急時対策所内での運	4.1(2)d. → 審査ガイドどおり	
転員又は対策要員の被ばく線量を計算する。		転員又は対策要員の被ばく線量を計算する。	前項c.の結果を用いて,原子炉建屋内の放射性物	転員又は対策要員の被ばく線量を計算する。		
・上記c の結果を用いて、原子炉建屋内の放射性物質	前項c の結果を用いて,原子炉建屋内の放射性物	・上記 c の結果を用いて, 原子炉建屋内の放射性物質か	質からのガンマ線による外部被ばく線量を計算し	・上記cの結果を用いて、原子炉建屋内の放射性物	前項c の結果を用いて, 原子炉建物内の放射性物	
からのガンマ線 (スカイシャインガンマ線、直接ガ	質からのガンマ線による被ばく線量を計算してい	らのガンマ線(スカイシャインガンマ線,直接ガンマ線)	ている。	質からのガンマ線(スカイシャインガンマ線、直	質からのガンマ線による被ばく線量を計算してい	
ンマ線)による被ばく線量を計算する。	వం	による被ばく線量を計算する。	前項a. 及びb. の結果を用いて、大気中へ放出され	接ガンマ線)による被ばく線量を計算する。	Z.	
・上記a 及びb の結果を用いて、大気中へ放出された	前項a 及びb の結果を用いて,大気中へ放出され	・上記 a 及び b の結果を用いて,大気中へ放出された放	た放射性物質及び地表面に沈着した放射性物質の	・上記a 及びb の結果を用いて、大気中へ放出され	前項a 及びb の結果を用いて,大気中へ放出され	
放射性物質及び地表面に沈着した放射性物質のガ	た放射性物質及び地表面に沈着した放射性物質か	射性物質及び地表面に沈着した放射性物質のガンマ線に	ガンマ線による外部被ばく線量を計算している。	た放射性物質及び地表面に沈着した放射性物質の	た放射性物質及び地表面に沈着した放射性物質か	
ンマ線による外部被ばく線量を計算する。	らのガンマ線による外部被ばく線量を計算してい	よる外部被ばく線量を計算する。	前項a. 及びb. の結果を用いて、中央制御室内に外	ガンマ線による外部被ばく線量を計算する。	らのガンマ線による外部被ばく線量を計算してい	
	る。	・上記 a 及び b の結果を用いて,原子炉制御室/緊急時	気から取り込まれた放射性物質による被ばく線量		る。	
・上記a 及びb の結果を用いて、原子炉制御室/緊急	前項a 及びb の結果を用いて,中央制御室内に外	制御室/緊急時対策所内に外気から取り込まれた放射性	(ガンマ線による外部被ばく線量及び吸入摂取に	・上記a 及びb の結果を用いて、原子炉制御室/緊	前項a 及びb の結果を用いて, 中央制御室内に外	
時制御室/緊急時対策所内に外気から取り込まれ	気から取り込まれた放射性物質による被ばく線量	物質による被ばく線量(ガンマ線による外部被ばく及び	よる内部被ばく線量)を計算している。	急時制御室/緊急時対策所内に外気から取り込ま	気から取り込まれた放射性物質による被ばく線量	
た放射性物質による被ばく線量(ガンマ線による外	(ガンマ線による外部被ばく及び吸入摂取による	吸入摂取による内部被ばく)を計算する。		れた放射性物質による被ばく線量(ガンマ線によ	(ガンマ線による外部被ばく及び吸入摂取による	
部被ばく及び吸入摂取による内部被ばく)を計算す	内部被ばく)を計算している。			る外部被ばく及び吸入摂取による内部被ばく)を	内部被ばく)を計算している。	
a .	4.1(2)e. → 審査ガイドどおり			計算する。		
e. 上記d で計算した線量の合計値が、判断基準を満たし	前項d で計算した線量の合計値が,「判断基準は、	e. 上記 d で計算した線量の合計値が, 判断基準を満たし	4.1(2)e.→審査ガイドのとおり	e. 上記d で計算した線量の合計値が、判断基準を満たし	4.1(2)e. → 審査ガイドどおり	
ているかどうかを確認する。	運転員の実効線量が7日間で100mSvを超えないこ	ているかどうかを確認する。	上記d. で計算した線量の合計値が, 「判断基準は,	ているかどうかを確認する。	前項d で計算した線量の合計値が,「判断基準は、	
	と」を満足していることを確認している。		運転員の実効線量が7日間で100mSvを超えないこ		運転員の実効線量が7日間で100mSvを超えないこ	
			と」を満足することを確認している。		と」を満足していることを確認している。	
4.2 居住性に係る被ばく評価の共通解析条件		4.2 居住性に係る被ばく評価の共通解析条件		4.2 居住性に係る被ばく評価の共通解析条件		
 (1) 沈着・除去等 		 (1) 沈着・除去等 		(1) 沈着・除去等		
 a. 原子炉制御室/堅急時制御室/堅急時対策所の非常用 	4.2(1)a. → 審査ガイドどおり	 a. 原子炉制御室/緊急時制御室/緊急時対策所の非常 	4.2(1)a.→審査ガイドのとおり	a. 原子炉制御室/堅急時制御室/堅急時対策所の非常用	4.2(1)a. → 審査ガイドどおり	
施気空調設備フィルタ効率	高性能フィルタ及び活性炭フィルタの除去効率	日換気空調設備フィルタ効率ヨウ素類及びエアロゾルの	中央制御室非常用循環設備よう素フィルタに	協会空調設備フィルタ効率	高性能粒子フィルタ及びチャコールフィルタの	
コウ素類及びエアロゾルのフィルタ効率け 使用条件	は、設計値を基に設定している。	フィルタ効率は使用条件での設計値を基に設定する。	よろ除去効率として 設計値であろ95%を 中央制	ヨウ素類及びエアロゾルのフィルタ効率は 使用条件	除去効率は、設計値を基に設定している。	
での設計値を基に設定する	フィルタ効率の設定に際] てけ 上う素類の性状	ハイバノ が干は、氏が木口 くつぬ 山區と玉に成た / 90 かお、フィルタ効率の設定に際1. コウ麦類の性状を適	御宮施気設備のフィルタ除去効率は一設計上期待	ークボベム (ー) ー) ハッショハ) か干は、 (ハルネロ での設計値を其に設定する	フィルタ効率の設定に際してけ よう素類の性状	
たお、フィルタ効率の設定に際1. ヨウ素類の性量を	を適切に考慮している	切に老膚すろ	できろ値として 有機とう妻け95% 無機とう妻及	(*) いいにとまたいた / シ。 たお、フィルタ効率の設定に際1. ヨウ素類の性状を	を適切に考慮している	 ・ 評価 ・
なわ、ノイルアガキの取足に広し、コクボ城のIE4/1で 適切にを慮する		9月にや鹿りる。	でもの他として、竹城より赤は2000、六城より赤久	なわ、ノイルア 効率の以上に広し、コリ 未須の EW を 適切に 考慮する		「面本日の加速
//// ~7 /肥、 ソ ~ / 00 / / / 20 0						↓ ^{水144} 77 ↓ 皀根 9 巳 「 の 歌卦 た 去 」
						四位 クケン以口で有 歯
						//EX

柏崎刈羽原子力発電所 6/	7 号炉 (2017. 12. 20 版)	東海第二発電所(2	2018. 9. 18 版)		島根原子力発電	所 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	1 [実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド			対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
b. 空気流入率	4.2(1)b. → 審査ガイドどおり	b. 空気流入率	4.2(1)b.→審査ガイドのとおり	1	b. 空気流入率	4.2(1)b. → 審査ガイドどおり	
既設の場合では、空気流入率は、空気流入率測定試験	中央制御室内を陽圧化している間は,空気の流	既設の場合では、空気流入率は、空気流入率測定試験結	中央制御室待避室に待避している間は、空気		既設の場合では、空気流入率は、空気流入率測定試験	中央制御室内を正圧化している間は、フィルタ	
結果を基に設定する。	入は考慮しない。	果を基に設定する。	の流入は考慮しない。	;	結果を基に設定する。	を介さない空気の流入は考慮しない。	
新設の場合では、空気流入率は、設計値を基に設定す	中央制御室内を陽圧化していない間は、空気流	新設の場合では、空気流入率は、設計値を基に設定する。	中央制御室待避室に待避していない間は、空気流		新設の場合では、空気流入率は、設計値を基に設定す	中央制御室内を正圧化していない間は、空気流	
る。(なお、原子炉制御室/緊急時制御室/緊急時対策	入率測定試験結果を基に空気流入率を0.5回/hと	(なお、原子炉制御室/緊急時制御室/緊急時対策所設	入率を <u>1回/h</u> とした。		る。(なお、原子炉制御室/緊急時制御室/緊急時対策	入率測定試験結果を基に空気流入率を 0.5回/hと	・評価条件の相違
所設置後、設定値の妥当性を空気流入率測定試験によっ	している。	置後,設定値の妥当性を空気流入率測定試験によって確		j	所設置後、設定値の妥当性を空気流入率測定試験によっ	している。	【東海第二】
て確認する。)		認する。)			て確認する。)		島根 2 号炉の試験結果
							を考慮
(2) 大気拡散		(2) 大気拡散			(2) 大気拡散		
a. 放射性物質の大気拡散	4.2(2)a. → 審査ガイドどおり	a. 放射性物質の大気拡散	4.2(2)a.→審査ガイドのとおり	:	a. 放射性物質の大気拡散	4.2(2)a. → 審査ガイドどおり	
・放射性物質の空気中濃度は、放出源高さ及び気象条	放射性物質の空気中濃度は、ガウスプルームモ	・放射性物質の空気中濃度は、放出源高さ及び気象条件	放射性物質の空気中濃度は、ガウスブルーム		・放射性物質の空気中濃度は、放出源高さ及び気象条	放射性物質の空気中濃度は、ガウスプルームモ	
件に応じて、空間濃度分布が水平方向及び鉛直方向	デルを適用して計算している。	に応じて、空間濃度分布が水平方向及び鉛直方向ともに	モデルを適用して計算している。		件に応じて、空間濃度分布が水平方向及び鉛直方向	デルを適用して計算している。	
ともに正規分布になると仮定したガウスプルーム		正規分布になると仮定したガウスプルームモデルを適用			ともに正規分布になると仮定したガウスプルーム		
モデルを適用して計算する。		して計算する。			モデルを適用して計算する。		
なお、三次元拡散シミュレーションモデルを用		なお,三次元拡散シミュレーションモデルを用いてもよ			なお、三次元拡散シミュレーションモデルを用		
いてもよい。		€`₀			いてもよい。		
・風向、風速、大気安定度及び降雨の観測項目を、現	柏崎刈羽原子力発電所敷地内で観測した <u>1985年</u>	・風向,風速,大気安定度及び降雨の観測項目を,現地	東海第二発電所内で観測して得られた <u>2005年</u>		・風向、風速、大気安定度及び降雨の観測項目を、現	島根原子力発電所敷地内で観測した2009年1月	・評価条件の相違
地において少なくとも1年間観測して得られた気象	<u>10月から1986年9月</u> の1年間の気象資料を大気拡	において少なくとも1 年間観測して得られた気象資料を	<u>4月1日から2006年3月31日</u> の1年間の気象データを		地において少なくとも1年間観測して得られた気象	<u>から2009年12月</u> の1年間の気象資料を大気拡散式	【東海第二】
資料を大気拡散式に用いる。	散式に用いている。	大気拡散式に用いる。	大気拡散計算に用いている。		資料を大気拡散式に用いる。	に用いている。	島根 2 号炉の気象を考
・ガウスプルームモデルを適用して計算する場合に	水平及び垂直方向の拡散パラメータは、風下距	・ガウスプルームモデルを適用して計算する場合には,	水平方向及び鉛直方向の拡散パラメータは,		・ガウスプルームモデルを適用して計算する場合に	水平及び垂直方向の拡散パラメータは、風下距	慮
は、水平及び垂直方向の拡散パラメータは、風下距	離及び大気安定度に応じて、気象指針における相	水平及び垂直方向の拡散パラメータは、風下距離及び大	風下距離及び大気安定度に応じて、気象指針の相		は、水平及び垂直方向の拡散パラメータは、風下距	離及び大気安定度に応じて、気象指針における相	
離及び大気安定度に応じて、気象指針 (*3) における	関式を用いて計算している。	気安定度に応じて、気象指針(参3)における相関式を用	関式を用いて計算している。		離及び大気安定度に応じて、気象指針(**3)における	関式を用いて計算している。	
相関式を用いて計算する。		いて計算する。			相関式を用いて計算する。		
・原子炉制御室/緊急時制御室/緊急時対策所の居住	放出点から近距離の建屋(原子炉建屋)の影響を	・原子炉制御室/緊急時制御室/緊急時対策所の居住性	放出点(格納容器圧力逃がし装置配管)から		・原子炉制御室/緊急時制御室/緊急時対策所の居住	放出点(格納容器フィルタベント系排気口)から	
性評価で特徴的な放出点から近距離の建屋の影響	受けるため、建屋による巻き込みを考慮し、建屋	評価で特徴的な放出点から近距離の建屋の影響を受ける	近距離の建屋(原子炉建屋)の影響を受けるため,		性評価で特徴的な放出点から近距離の建屋の影響	近距離の建物(原子炉建物)の影響を受けるため,	
を受ける場合には、建屋による巻き込み現象を考慮	の影響がある場合の拡散パラメータを用いてい	場合には、建屋による巻き込み現象を考慮した大気拡散	建屋による巻き込みを考慮し、建屋の影響がある		を受ける場合には、建屋による巻き込み現象を考慮	建物による巻き込みを考慮し、建物の影響がある	
した大気拡散による拡散パラメータを用いる。	5.	による拡散パラメータを用いる。	場合の拡散パラメータを用いている。		した大気拡散による拡散パラメータを用いる。	場合の拡散パラメータを用いている。	

柏崎刈羽原子力発電所 6/7	7 号炉 (2017. 12. 20 版)	東海第二発電所(2	2018. 9. 18 版)	島根原子力発電	這所 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
・原子炉建屋の建屋後流での巻き込みが生じる場合の	一~三のすべての条件に該当するため、建屋によ	・原子炉建屋の建屋後流での巻き込みが生じる場合の条	一~三の全ての条件に該当するため、建屋による	・原子炉建屋の建屋後流での巻き込みが生じる場合	一~三のすべての条件に該当するため、建物による	
条件については、放出点と巻き込みが生じる建屋及	る巻き込みを考慮して評価している。	件については,放出点と巻き込みが生じる建屋及び評価	巻き込みを考慮して評価している。	の条件については、放出点と巻き込みが生じる建	巻き込みを考慮して評価している。	
び評価点との位置関係について、次に示す条件すべ		点との位置関係について,次に示す条件すべてに該当し		屋及び評価点との位置関係について、次に示す条		
てに該当した場合、放出点から放出された放射性物		た場合、放出点から放出された放射性物質は建屋の風下		件すべてに該当した場合、放出点から放出された		
質は建屋の風下側で巻き込みの影響を受け拡散し、		側で巻き込みの影響を受け拡散し、評価点に到達するも		放射性物質は建屋の風下側で巻き込みの影響を受		
評価点に到達するものとする。		のとする。		け拡散し、評価点に到達するものとする。		
一 放出点の高さが建屋の高さの2.5倍に満たない場合	各放出点の高さは建屋の高さの 2.5 倍に満たな	一 放出点の高さが建屋の高さの 2.5 倍に満たない場合	放出点(格納容器圧力逃がし装置配管)が原子炉	一 放出点の高さが建屋の高さの2.5倍に満たない場合	各放出点の高さは建物の高さの 2.5 倍に満たな	
二 放出点と評価点を結んだ直線と平行で放出点を風下	<i>د</i> ۲ ₀	二 放出点と評価点を結んだ直線と平行で放出点を風下	建屋の屋上にあるため,建屋の高さの2.5倍に満た	二 放出点と評価点を結んだ直線と平行で放出点を風下	<i>د</i> ن _ه	
とした風向n について、放出点の位置が風向n と建屋	各放出点の位置は図4の領域An の中にある。	とした風向 n について, 放出点の位置が風向 n と建屋の	talv.	とした風向n について、放出点の位置が風向n と建	各放出点の位置は図4の領域Anの中にある。	
の投影形状に応じて定まる一定の範囲(図4の領域An)		投影形状に応じて定まる一定の範囲(図4の領域An)の	放出点の位置は、図4の領域Anの中にある。	屋の投影形状に応じて定まる一定の範囲(図4の領域		
の中にある場合		中にある場合	評価点(中央制御室等)は,巻き込みを生じる建屋	An)の中にある場合		
三 評価点が、巻き込みを生じる建屋の風下側にある場合	評価点(中央制御室等)は,巻き込みを生じる	三 評価点が,巻き込みを生じる建屋の風下側にある場合	(原子炉建屋)の風下側にある。	三 評価点が、巻き込みを生じる建屋の風下側にある場	評価点(中央制御室等)は、巻き込みを生じる建	
上記の三つの条件のうちの一つでも該当しない場合に	建屋(原子炉建屋)の風下側にある。	上記の三つの条件のうちの一つでも該当しない場合に	建屋による巻き込みを考慮し、図5に示すように、	<u></u> 合	物(原子炉建物)の風下側にある。	
は、建屋の影響はないものとして大気拡散評価を行うもの		は, 建屋の影響はないものとして大気拡散評価を行うも	建屋の後流側拡がりの影響が評価点に及ぶ可能性	上記の三つの条件のうちの一つでも該当しない場合に		
とする ^(歩1) 。		のとする (参4)。	がある複数の方位(評価方位9方位(中央制御室及	は、建屋の影響はないものとして大気拡散評価を行うも		
・原子炉制御室/緊急時制御室/緊急時対策所の居住	建屋による巻き込みを考慮し,図5に示された		び入退域))を対象としている。	のとする (参4)。		
性に係る被ばく評価では、建屋の風下後流側での広	ように、建屋の後流側の拡がりの影響が評価点に	・原子炉制御室/緊急時制御室/緊急時対策所の居住性		・原子炉制御室/緊急時制御室/緊急時対策所の居	建物による巻き込みを考慮し,図5に示されたよ	
範囲に及ぶ乱流混合域が顕著であることから、放射	及ぶ可能性のある複数の方位を対象としている。	に係る被ばく評価では、建屋の風下後流側での広範囲に		住性に係る被ばく評価では、建屋の風下後流側で	うに, 建物の後流側の拡がりの影響が評価点に及ぶ	
性物質濃度を計算する当該着目方位としては、放出		及ぶ乱流混合域が顕著であることから,放射性物質濃度		の広範囲に及ぶ乱流混合域が顕著であることか	可能性のある複数の方位を対象としている。	
源と評価点とを結ぶラインが含まれる1方位のみ		を計算する当該着目方位としては,放出源と評価点とを		ら、放射性物質濃度を計算する当該着目方位とし		
を対象とするのではなく、図5に示すように、建屋		結ぶラインが含まれる1方位のみを対象とするのではな		ては、放出源と評価点とを結ぶラインが含まれる		
の後流側の拡がりの影響が評価点に及ぶ可能性の		く,図5に示すように、建屋の後流側の拡がりの影響が		1方位のみを対象とするのではなく、図5に示すよ		
ある複数の方位を対象とする。		評価点に及ぶ可能性のある複数の方位を対象とする。		うに、建屋の後流側の拡がりの影響が評価点に及		
				ぶ可能性のある複数の方位を対象とする。		
・放射性物質の大気拡散の詳細は、「原子力発電所中	放射性物質の大気拡散については, 「原子力発	・放射性物質の大気拡散の詳細は、「原子力発電所中央制	放射性物質の大気拡散については, 「原子力発電	・放射性物質の大気拡散の詳細は、「原子力発電所	放射性物質の大気拡散については,「原子力発電	
央制御室の居住性に係る被ばく評価手法について	電所中央制御室の居住性に係る被ばく評価手法に	御室の居住性に係る被ばく評価手法について(内規)」	所中央制御室の居住性に係る被ばく評価手法につ	中央制御室の居住性に係る被ばく評価手法につい	所中央制御室の居住性に係る被ばく評価手法につ	
(内規)」 ^(参1) による。	ついて(内規)」に基づいて評価している。	(参1)による。	いて(内規)」に基づいて評価している	て(内規)」 ^(参1) による。	いて(内規)」に基づいて評価している。	

柏崎刈羽原子力発電所 6/	7 号炉 (2017. 12. 20 版)	東海第二発電所(2	2018. 9. 18 版)	島根原子力発電	ŝ所 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急		実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
時対策所の居住性に係る被ばく評価に関する審査ガイ	中央制御室の居住性に係る被はく評価の	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
k	審査ガイドへの適合状況	b. 建屋による巻き込みの評価条件	4.2(2)b.→審査ガイドのとおり	b. 建屋による巻き込みの評価条件	4.2(2)b. → 審査ガイドどおり	
b. 建屋による巻き込みの評価条件	4.2(2)b. → 審査ガイドどおり	・巻き込みを生じる代表建屋	建屋巻き込みによる拡散を考慮している。	・巻き込みを生じる代表建屋	建物巻き込みによる拡散を考慮している。	
・巻き込みを生じる代表建屋	建屋巻き込みによる拡散を考慮している。	 原子炉建屋の近辺では,隣接する複数の建屋の風 		1) 原子炉建屋の近辺では、隣接する複数の建屋の風		
1) 原子炉建屋の近辺では、隣接する複数の建屋の風		下側で広く巻き込みによる拡散が生じているもの		下側で広く巻き込みによる拡散が生じているもの		
下側で広く巻き込みによる拡散が生じているもの		とする。		とする。		
とする。		2) 巻き込みを生じる建屋として,原子炉格納容器,原子	放出源(格納容器圧力逃がし装置配管)から最も	2)巻き込みを生じる建屋として、原子炉格納容器、	巻き込みの影響が最も大きい建物として, <u>2号</u>	・設備の相違
2)巻き込みを生じる建屋として、原子炉格納容器、	巻き込みの影響が最も大きい建屋として6号炉	炉建屋,原子炉補助建屋,タービン建屋,コントロール	近く,巻き込みの影響が最も大きい建屋とし <u>て原</u>	原子炉建屋、原子炉補助建屋、タービン建屋、コ	原子炉建物中心放出時及び2号格納容器フィル	【柏崎 6/7,東海第二】
原子炉建屋、原子炉補助建屋、タービン建屋、コ	原子炉建屋及び7号炉原子炉建屋を代表建屋とし	建屋及び燃料取り扱い建屋等,原則として放出源の近隣	子炉建屋を代表建屋としている。	ントロール建屋及び燃料取り扱い建屋等、原則と	タベント系排気管は原子炉建物,2号排気筒放出	島根 2 号炉の建物配置
ントロール建屋及び燃料取り扱い建屋等、原則と	ている。	に存在するすべての建屋が対象となるが、巻き込みの影		して放出源の近隣に存在するすべての建屋が対象	時はタービン建物を代表建物としている。	を考慮
して放出源の近隣に存在するすべての建屋が対象		響が最も大きいと考えられる一つの建屋を代表建屋とす		となるが、巻き込みの影響が最も大きいと考えら		
となるが、巻き込みの影響が最も大きいと考えら		ることは、保守的な結果を与える。		れる一つの建屋を代表建屋とすることは、保守的		
れる一つの建屋を代表建屋とすることは、保守的		 放射性物質濃度の評価点 		な結果を与える。		
な結果を与える。		1) 原子炉制御室/緊急時制御室/緊急時対策所が属す		・放射性物質濃度の評価点		
・放射性物質濃度の評価点		る建屋の代表面の選定		1) 原子炉制御室/緊急時制御室/緊急時対策所が		
1) 原子炉制御室/緊急時制御室/緊急時対策所が		原子炉制御室/緊急時制御室/緊急時対策所内には、次		属する建屋の代表面の選定		
属する建屋の代表面の選定		の i)又は ii)によって, 原子炉制御室/緊急時制御室/		原子炉制御室/緊急時制御室/緊急時対策所		
原子炉制御室/緊急時制御室/緊急時対策所		緊急時対策所が属する建屋の表面から放射性物質が侵入		内には、次のi)又はii)によって、原子炉制御室		
内には、次のi)又はii)によって、原子炉制御室		するとする。		/緊急時制御室/緊急時対策所が属する建屋の		
/緊急時制御室/緊急時対策所が属する建屋の		i)事故時に外気取入を行う場合は、主に給気口を介して		表面から放射性物質が侵入するとする。		
表面から放射性物質が侵入するとする。		の外気取入及び室内への直接流入		i)事故時に外気取入を行う場合は、主に給気口	<u>中</u> 央制御室は、チャコール・フィルタ・ブース	・運用の相違
i)事故時に外気取入を行う場合は、主に給気口	中央制御室は, <u>可搬型陽圧化空調機</u> によりフィ	ii)事故時に外気の取入れを遮断する場合は、室内への		を介しての外気取入及び室内への直接流入	<u>タ・ファンによりフィルタを介した外気を取り入</u>	【東海第二】
を介しての外気取入及び室内への直接流入	ルタを介した外気を取り入れるとして評価してい	直接流入		ii)事故時に外気の取入れを遮断する場合は、室	れるとして評価している。外気取入時の放射性物	①の相違
ii)事故時に外気の取入れを遮断する場合は、	る。また, <u>可搬型陽圧化空調機</u> により中央制御室		·	内への直接流入	質濃度の評価点としては中央制御室換気系給気	・評価条件の相違
室内への直接流入	を陽圧化していない期間においては、外気が直接				口を選定し、保守的に放出点と同じ高さにおける	【柏崎 6/7】
	流入するとして評価している。放射性物質濃度の				<u>濃度を評価している。また,チャコール・フィル</u>	柏崎 6/7 は中央制御室
	評価点としては <u>中央制御室中心</u> を選定し,保守的				<u>タ・ブースタ・ファンにより中央制御室を正圧化</u>	中心を評価点としてい
	に放出点と同じ高さにおける濃度を評価してい				していない期間においては、外気が直接流入する	るが,島根2号炉は外
	\$.				として評価している。放射性物質濃度の評価点と	気の取り込み口を放射
					しては中央制御室中心を選定し、保守的に放出点	性物質濃度の評価点と
					と同じ高さにおける濃度を評価している。	している
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 18 版)	島根原子力発電	所 2号炉	備考	
---	--	------------------------	----------------------------	---------------------------------	-------------------------	
実用発電用原子炉に係る重大事故時の制御室及び緊急時 中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の		
対策所の居住性に係る被ばく評価に関する審査ガイド 審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況		
2) 建屋による巻き込みの影響が生じる場合、原子	 建屋による巻き込みの影響が生じる場合,原子炉 	建屋による巻き込みの影響を考慮しており、事故	2) 建屋による巻き込みの影響が生じる場合、原子炉		・評価条件の相違	
炉制御室/緊急時制御室/緊急時対策所が属す	制御室/緊急時制御室/緊急時対策所が属する建	時には間欠的に外気を取り入れる。代表面として	制御室/緊急時制御室/緊急時対策所が属する建		【東海第二】	
る建屋の近辺ではほぼ全般にわたり、代表建屋に	屋の近辺ではほぼ全般にわたり、代表建屋による	建屋側面を選定し、保守的に地上高さにおける濃	屋の近辺ではほぼ全般にわたり、代表建屋による巻		島根2号炉の評価点高	
よる巻き込みによる拡散の効果が及んでいると	巻き込みによる拡散の効果が及んでいると考えら	<u>度</u> を評価している。	き込みによる拡散の効果が及んでいると考えられ		さは放出点と同じとし	
考えられる。	れる。		a.		ている。	
このため、原子炉制御室/緊急時制御室/緊急時	このため、原子炉制御室/緊急時制御室/緊急時対策所		このため、原子炉制御室/緊急時制御室/緊急時対			
対策所換気空調設備の非常時の運転モードに応じ	換気空調設備の非常時の運転モードに応じて, 次の i)又		策所換気空調設備の非常時の運転モードに応じて、次			
て、次のi)又はii)によって、原子炉制御室/緊急	は ii)によって, 原子炉制御室/緊急時制御室/緊急時対		のi)又はii)によって、原子炉制御室/緊急時制御室			
時制御室/緊急時対策所が属する建屋の表面の濃	策所が属する建屋の表面の濃度を計算する。		/緊急時対策所が属する建屋の表面の濃度を計算す			
度を計算する。			る 。			
i) 評価期間中も給気口から外気を取入れるこ 中央制御室は, <u>可搬型陽圧化空調機</u> によりフィ	i) 評価期間中も給気口から外気を取入れることを前提	建屋側面を選定しており、評価点は中央制御室内	i) 評価期間中も給気口から外気を取入れること	中央制御室は、チャコール・フィルタ・ブース	・運用の相違	
とを前提とする場合は、給気口が設置されて ルタを介した外気を取り入れるとして評価してい	とする場合は,給気口が設置されている原子炉制御室/	の最も線量が高い位置とする。	を前提とする場合は、給気口が設置されている	タ・ファンによりフィルタを介した外気を取り入	【東海第二】	
いる原子炉制御室/緊急時制御室/緊急時対 る。また, <u>可搬型陽圧化空調機</u> により中央制御室	緊急時制御室/緊急時対策所が属する建屋の表面とす		原子炉制御室/緊急時制御室/緊急時対策所	れるとして評価している。外気取入時の放射性物	 の相違 	
策所が属する建屋の表面とする。 を <u>陽圧化</u> していない期間においては、外気が直接	\$.		が属する建屋の表面とする。	質濃度の評価点としては中央制御室換気系給気口	・評価条件の相違	
ii) 評価期間中は外気を遮断することを前提と 流入するとして評価している。放射性物質濃度の	ii)評価期間中は外気を遮断することを前提とする場合		ii) 評価期間中は外気を遮断することを前提と	を選定し、保守的に放出点と同じ高さにおける濃	【柏崎 6/7】	
する場合は、原子炉制御室/緊急時制御室/ 評価点としては <u>中央制御室中心</u> を選定し,保守的	は、原子炉制御室/緊急時制御室/緊急時対策所が属す		する場合は、原子炉制御室/緊急時制御室/緊	<u>度</u> を評価している。また、チャコール・フィルタ・	柏崎 6/7 は中央制御室	
緊急時対策所が属する建屋の各表面(屋上面 に放出点と同じ高さにおける濃度を評価してい	る建屋の各表面(屋上面又は側面)のうちの代表面(代		急時対策所が属する建屋の各表面(屋上面又は	プースタ・ファンにより中央制御室を正圧化して	中心を評価点としてい	
又は側面)のうちの代表面(代表評価面)を る。	表評価面)を選定する。		側面)のうちの代表面(代表評価面)を選定す	いない期間においては、外気が直接流入するとし	るが,島根2号炉は外	
選定する。		·	る。	て評価している。放射性物質濃度の評価点として	気の取り込み口を放射	
				は中央制御室中心を選定し,保守的に放出点と同	性物質濃度の評価点と	
				じ高さにおける濃度を評価している。	している	
				L		
			<u> </u>		1	

柏崎刈羽原子力発電所 6/7	7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 18 版)		島根原子力発電局	新 2 号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発	電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策列	所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
3) 代表面における評価点		3) 代表面における評価点		3) 代表	ē面における評価点		
i) 建屋の巻き込みの影響を受ける場合には、原子	評価点は <u>中央制御室中心</u> としている。	i) 建屋の巻き込みの影響を受ける場合には, 原子炉制御	代表面として建屋側面を選定し、保守的に地上高		i) 建屋の巻き込みの影響を受ける場合には、原子	評価点は <u>中央制御室換気系給気口</u> としている。	・評価条件の相違
炉制御室/緊急時制御室/緊急時対策所の属す		室/緊急時制御室/緊急時対策所の属する建屋表面での	<u>さにおける濃度を評価している。</u>		炉制御室/緊急時制御室/緊急時対策所の属す		【柏崎 6/7,東海第二】
る建屋表面での濃度は風下距離の依存性は小さ		濃度は風下距離の依存性は小さくほぼ一様と考えられる			る建屋表面での濃度は風下距離の依存性は小さ		島根2号炉は外気の取
くほぼ一様と考えられるので、評価点は厳密に		ので,評価点は厳密に定める必要はない。			くほぼ一様と考えられるので、評価点は厳密に		り込み口を放射性物質
定める必要はない。		屋上面を代表とする場合,例えば原子炉制御室/緊急時			定める必要はない。		濃度の評価点としてい
屋上面を代表とする場合、例えば原子炉制		制御室/緊急時対策所の中心点を評価点とするのは妥当			屋上面を代表とする場合、例えば原子炉制		3
御室/緊急時制御室/緊急時対策所の中心点		である。			御室/緊急時制御室/緊急時対策所の中心点		
を評価点とするのは妥当である。					を評価点とするのは妥当である。		
ii) 代表評価面を、原子炉制御室/緊急時制御室	評価点は <u>中央制御室中心</u> としている。保守的に	ii) 代表評価面を, 原子炉制御室/緊急時制御室/緊急	屋上面を代表としており、評価点は中央制御室内		ii) 代表評価面を、原子炉制御室/緊急時制御室	放射性物質濃度の評価点としては中央制御室換	
/緊急時対策が属する建屋の屋上面とすること	評価点が放出点と同じ高さであると仮定して評価	時対策所が属する建屋の屋上面とすることは適切な選定	の最も線量が高い位置としている。また、放出点		/緊急時対策が属する建屋の屋上面とすること	気系給気口を選定し、保守的に放出点と同じ高さ	
は適切な選定である。	している。	である。	と評価点の直線距離に基づき、濃度評価の拡散パ		は適切な選定である。	における濃度を評価している。	
また、原子炉制御室/緊急時制御室/緊急		また,原子炉制御室/緊急時制御室/緊急時対策所が屋	ラメータを算出している。直線距離の評価に当た		また、原子炉制御室/緊急時制御室/緊急		
時対策所が屋上面から離れている場合は、原		上面から離れている場合は,原子炉制御室/緊急時制御	っては、保守的に評価点が放出点と同じ高さであ		時対策所が屋上面から離れている場合は、原		
子炉制御室/緊急時制御室/緊急時対策所が		室/緊急時対策所が属する建屋の側面を代表評価面とし	ると仮定した。		子炉制御室/緊急時制御室/緊急時対策所が		
属する建屋の側面を代表評価面として、それ		て,それに対応する高さでの濃度を対で適用することも			属する建屋の側面を代表評価面として、それ		
に対応する高さでの濃度を対で適用すること		適切である。			に対応する高さでの濃度を対で適用すること		
も適切である。					も適切である。		
iii)屋上面を代表面とする場合は、評価点として	放出点と評価点間の直線距離に基づき、濃度評	iii) 屋上面を代表面とする場合は, 評価点として原子炉			iii) 屋上面を代表面とする場合は、評価点として	放出点と評価点間の直線距離に基づき、濃度評	
原子炉制御室/緊急時制御室/緊急時対策所の	価の拡散パラメータを算出している。	制御室/緊急時制御室/緊急時対策所の中心点を選定			原子炉制御室/緊急時制御室/緊急時対策所の	価の拡散パラメータを算出している。	
中心点を選定し、対応する風下距離から拡散パ		し、対応する風下距離から拡散パラメータを算出しても			中心点を選定し、対応する風下距離から拡散パ		
ラメータを算出してもよい。		よい。			ラメータを算出してもよい。		
またσy=0 及びσz=0 として、σy0、σ		またσy=0 及びσz=0 として, σy0, σz0 の値を適用			またσy=0 及びσz=0 として、σy0、σ		
z0 の値を適用してもよい。		してもよい。			z0 の値を適用してもよい。		

柏崎刈羽原子力発電所 6/7	7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 18 版)	島根原子力発電	所 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
・着目方位		・着目方位		・着目方位		
1) 原子炉制御室/緊急時制御室/緊急時対策所の被ばく	建屋による巻き込みを考慮し, i)~iii)の条	1) 原子炉制御室/緊急時制御室/緊急時対策所の被ば	建屋による巻き込みを考慮し、 i)~iii)の条件に	1) 原子炉制御室/緊急時制御室/緊急時対策所の被ば	建物による巻き込みを考慮し, i)~iii)の条	
評価の計算では、代表建屋の風下後流側での広範囲に及	件に該当する方位を選定し、建屋の後流側の拡が	く評価の計算では、代表建屋の風下後流側での広範囲に	該当する方位を選定し、建屋の後流側の拡がりの	く評価の計算では、代表建屋の風下後流側での広範囲	件に該当する方位を選定し、建物の後流側の拡が	
ぶ乱流混合域が顕著であることから、放射性物質濃度を	りの影響が評価点に及ぶ可能性のある複数の方位	及ぶ乱流混合域が顕著であることから、放射性物質濃度	影響が評価点に及ぼす可能性がある複数の方位	に及ぶ乱流混合域が顕著であることから、放射性物質	りの影響が評価点に及ぶ可能性のある複数の方位	
計算する当該着目方位としては、放出源と評価点とを結	を対象としている。	を計算する当該着目方位としては、放出源と評価点とを	(評価方位は9方位)を対象としている。	濃度を計算する当該着目方位としては、放出源と評価	を対象としている。	
ぶラインが含まれる1方位のみを対象とするのではな		結ぶラインが含まれる1方位のみを対象とするのではな	建屋による巻き込みを考慮し、「原子力発電所	点とを結ぶラインが含まれる1方位のみを対象とする		
く、図5 に示すように、代表建屋の後流側の拡がりの影		く、図5に示すように、代表建屋の後流側の拡がりの影	中央制御室の居住性に係る被ばく評価手法につい	のではなく、図5 に示すように、代表建屋の後流側の		
響が評価点に及ぶ可能性のある複数の方位を対象とす		響が評価点に及ぶ可能性のある複数の方位を対象とす	て(内規)」に基づいて複数方位を対象として評価	拡がりの影響が評価点に及ぶ可能性のある複数の方位		
る。		る。	している。	を対象とする。		
評価対象とする方位は、放出された放射性物質が建		評価対象とする方位は、放出された放射性物質が建屋の		評価対象とする方位は、放出された放射性物質が建		
屋の影響を受けて拡散すること及び建屋の影響を受		影響を受けて拡散すること及び建屋の影響を受けて拡散		屋の影響を受けて拡散すること及び建屋の影響を受		
けて拡散された放射性物質が評価点に届くことの両		された放射性物質が評価点に届くことの両方に該当する		けて拡散された放射性物質が評価点に届くことの両		
方に該当する方位とする。		方位とする。		方に該当する方位とする。		
具体的には、全16 方位について以下の三つの条件		具体的には,全16 方位について以下の三つの条件に該当		具体的には、全16 方位について以下の三つの条件		
に該当する方位を選定し、すべての条件に該当する方		する方位を選定し、すべての条件に該当する方位を評価		に該当する方位を選定し、すべての条件に該当する方		
位を評価対象とする。		対象とする。		位を評価対象とする。		
i) 放出点が評価点の風上にあること	放出点が評価点の風上にある方位を対象として	i) 放出点が評価点の風上にあること	放出点が評価点の風上にある方位を対象としてい	i) 放出点が評価点の風上にあること	放出点が評価点の風上にある方位を対象として	
	いる。		Z.		いる。	
ii) 放出点から放出された放射性物質が、建屋の	放出点は建屋に近接しているため、放出点が評	ii) 放出点から放出された放射性物質が, 建屋の風下側	放出点は建屋に近接しているため、風向の方位は	ii)放出点から放出された放射性物質が、建屋の	放出点から放出された放射性物質が、建物の風	
風下側に巻き込まれるような範囲に、評価点が	価点の風上となる 180°を対象としている。	に巻き込まれるような範囲に、評価点が存在すること。	放出点が評価点の風上となる180°を対象として	風下側に巻き込まれるような範囲に、評価点が	下側に巻き込まれ評価点に達する複数の方位を対	
存在すること。この条件に該当する風向の方位		この条件に該当する風向の方位m1の選定には、図6の	いる。	存在すること。この条件に該当する風向の方位	象としている。ただし,放出点が 0.5Lの拡散領域	
m ₁ の選定には、図6のような方法を用いること		ような方法を用いることができる。図6の対象となる二		m ₁ の選定には、図6のような方法を用いること	の内部にある場合は、放出点が評価点の風上とな	
ができる。図6の対象となる二つの風向の方位の		つの風向の方位の範囲m1A, m1Bのうち, 放出点が		ができる。図6の対象となる二つの風向の方位	る 180°を対象としている。	
範囲		評価点の風上となるどちらか一方の範囲が評価の対象と		の範囲		
m1A、m1Bのうち、放出点が評価点の風上と		なる。放出点が建屋に接近し、0.5Lの拡散領域(図 6 の		m _{1A} 、m _{1B} のうち、放出点が評価点の風上と		
なるどちらか一方の範囲が評価の対象とな		ハッチング部分)の内部にある場合は,風向の方位m1は		なるどちらか一方の範囲が評価の対象とな		
る。放出点が建屋に接近し、0.5Lの拡散領域		放出点が評価点の風上となる 180° が対象となる。		る。放出点が建屋に接近し、0.5Lの拡散領域		
(図6のハッチング部分)の内部にある場合は、				(図6のハッチング部分)の内部にある場合は、		
風向の方位m ₁ は放出点が評価点の風上とな				風向の方位m ₁ は放出点が評価点の風上とな		
る180°が対象となる。				る180°が対象となる。		

柏崎刈羽原子力発電所 6/	7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 18 版)	島根原子力発電	所 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
iii) 建屋の風下側で巻き込まれた大気が評価	図7に示す方法により、建屋の後流側の拡がりの	iii) 建屋の風下側で巻き込まれた大気が評価点に到達		iii)建屋の風下側で巻き込まれた大気が評価点	図7に示す方法により,建物の後流側の拡がりの	
点に到達すること。この条件に該当する風向	影響が評価点に及ぶ可能性のある複数の方位を評	すること。		に到達すること。この条件に該当する風向の方	影響が評価点に及ぶ可能性のある複数の方位を評	
の方	価方位として選定としている。	この条件に該当する風向の方位m2の選定には、図7に	図7に示す方法により, 建屋の後流側の拡がりの影	位m ₂ の選定には、図7に示す方法を用いるこ	価方位として選定としている。	
位m2の選定には、図7に示す方法を用いるこ		示す方法を用いることができる。評価点が建屋に接近し,	響が評価点に及ぶ可能性のある複数の方位(評価	とができる。評価点が建屋に接近し、0.5Lの		
とができる。評価点が建屋に接近し、0.5L		0.5Lの拡散領域(図 7 のハッチング部分)の内部にある	方位は9方位)を評価方位として選定している。	拡散領域(図7のハッチング部分)の内部にあ		
の拡散領域(図7のハッチング部分)の内部に		場合は、風向の方位m2は放出点が評価点の風上となる		る場合は、風向の方位m₂は放出点が評価点の		
ある場合は、風向の方位m₂は放出点が評価		180°が対象となる。		風上となる180°が対象となる。		
点の風上となる180°が対象となる。		図 6 及び図7 は、断面が円筒形状の建屋を例として示し		図6及び図7、断面が円筒形状の建屋を例として示して		
図6及び図7、断面が円筒形状の建屋を例として示して		ているが、断面形状が矩形の建屋についても、同じ要領		いるが、断面形状が矩形の建屋についても、同じ要領で		
いるが、断面形状が矩形の建屋についても、同じ要領で		で評価対象の方位を決定することができる。		評価対象の方位を決定することができる。		
評価対象の方位を決定することができる。		建屋の影響がある場合の評価対象方位選定手順を、図8				
		に示す。				
2) 具体的には、図9 のとおり、原子炉制御室/緊急時	「着目方位1)」の方法により,評価対象の方位	2) 具体的には、図9のとおり、原子炉制御室/緊急時制	「・着目方位 1)」の方法により, 評価対象の方	2) 具体的には、図9 のとおり、原子炉制御室/緊急時制	「着目方位1)」の方法により,評価対象の方位	
制御室/緊急時対策所が属する建屋表面において定	を選定している。	御室/緊急時対策所が属する建屋表面において定めた評	位を選定している。	御室/緊急時対策所が属する建屋表面において定めた	を選定している。	
めた評価点から、原子炉施設の代表建屋の水平断面を		価点から, 原子炉施設の代表建屋の水平断面を見込む範		評価点から、原子炉施設の代表建屋の水平断面を見込		
見込む範囲にあるすべての方位を定める。		囲にあるすべての方位を定める。		む範囲にあるすべての方位を定める。		
幾何学的に建屋群を見込む範囲に対して、気象評		幾何学的に建屋群を見込む範囲に対して、気象評価上の		幾何学的に建屋群を見込む範囲に対して、気象評価		
価上の方位とのずれによって、評価すべき方位の数		方位とのずれによって,評価すべき方位の数が増加する		上の方位とのずれによって、評価すべき方位の数が増		
が増加することが考えられるが、この場合、幾何学		ことが考えられるが、この場合、幾何学的な見込み範囲		加することが考えられるが、この場合、幾何学的な見		
的な見込み範囲に相当する適切な見込み方位の設定		に相当する適切な見込み方位の設定を行ってもよい。		込み範囲に相当する適切な見込み方位の設定を行っ		
を行ってもよい。				てもよい。		

柏崎刈羽原子力発電所 6/7	7 号炉 (2017.12.20版)	東海第二発電所(2018. 9. 18 版)	島根原子力発電	〔所 2 号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
・建屋投影面積		・建屋投影面積		 建屋投影面積 		
1) 図10に示すとおり、風向に垂直な代表建屋の投影面積	原子炉建屋の垂直な投影面積を大気拡散式の入	1) 図 10 に示すとおり,風向に垂直な代表建屋の投影面	風向に垂直な原子炉建屋の投影面積を大気拡散式	1) 図10に示すとおり、風向に垂直な代表建屋の投影面積	原子炉建物又はタービン建物の垂直な投影面積	・設備の相違
を求め、放射性物質の濃度を求めるために大気拡散式の	カとしている。	積を求め、放射性物質の濃度を求めるために大気拡散式	の入力としている。	を求め、放射性物質の濃度を求めるために大気拡散式	を大気拡散式の入力としている。	【柏崎 6/7,東海第二】
入力とする。		の入力とする。		の入力とする。		島根 2 号炉の建物配置
2) 建屋の影響がある場合の多くは複数の風向を対象に計	すべての方位について, <u>原子炉建屋</u> の最小投影	2) 建屋の影響がある場合の多くは複数の風向を対象に	<u>原子炉建屋</u> の最小投影面積を用いている。	2) 建屋の影響がある場合の多くは複数の風向を対象に	2号原子炉建物中心放出時及び2号格納容器フィ	を考慮
算する必要があるので、風向の方位ごとに垂直な投影面	面積を用いている。	計算する必要があるので,風向の方位ごとに垂直な投影		計算する必要があるので、風向の方位ごとに垂直な投	ルタベント系排気管放出時の着目方位については	・設備の相違
積を求める。ただし、対象となる複数の方位の投影面積		面積を求める。ただし、対象となる複数の方位の投影面		影面積を求める。ただし、対象となる複数の方位の投	原子炉建物,2号排気筒放出時の着目方位について	【柏崎 6/7,東海第二】
の中で、最小面積を、すべての方位の計算の入力として		積の中で、最小面積を、すべての方位の計算の入力とし		影面積の中で、最小面積を、すべての方位の計算の入	<u>はタービン建物</u> の最小投影面積を用いている。	島根 2 号炉の建物配置
共通に適用することは、合理的であり保守的である。		て共通に適用することは、合理的であり保守的である。		力として共通に適用することは、合理的であり保守的		を考慮
3) 風下側の地表面から上側の投影面積を求め大気拡散式				である。		
の入力とする。方位によって風下側の地表面の高さが異	原子炉建屋の地表面からの投影面積を用いてい	3)風下側の地表面から上側の投影面積を求め大気拡散式	原子炉建屋の地上階部分の投影面積を用いてい	3)風下側の地表面から上側の投影面積を求め大気拡散	原子炉建物又はタービン建物の地表面から上側	
なる場合は、方位ごとに地表面高さから上側の面積を求	న .	の入力とする。方位によって風下側の地表面の高さが異	వం	式の入力とする。方位によって風下側の地表面の高さ	の投影面積を用いている。	
める。また、方位によって、代表建屋とは別の建屋が重		なる場合は,方位ごとに地表面高さから上側の面積を求		が異なる場合は、方位ごとに地表面高さから上側の面		
なっている場合でも、原則地表面から上側の代表建屋の		める。また、方位によって、代表建屋とは別の建屋が重		積を求める。また、方位によって、代表建屋とは別の		
投影面積を用いる。		なっている場合でも,原則地表面から上側の代表建屋の		建屋が重なっている場合でも、原則地表面から上側の		
		投影面積を用いる。		代表建屋の投影面積を用いる。		
c. 相対濃度及び相対線量						
・相対濃度は、短時間放出又は長時間放出に応じて、	4.2(2)c. → 審査ガイドどおり	c. 相対濃度及び相対線量	4.2(2)c.→審査ガイドのとおり	c. 相対濃度及び相対線量	4.2(2)c. → 審査ガイドどおり	
毎時刻の気象項目と実効的な放出継続時間を基に	相対濃度は、毎時刻の気象項目(風向、風速、	・相対濃度は、短時間放出又は長時間放出に応じて、毎	相対濃度は,毎時刻の気象項目(風向,風速,	・相対濃度は、短時間放出又は長時間放出に応じて、	相対濃度は、毎時刻の気象項目(風向、風速、大	
評価点ごとに計算する。	大気安定度)及び実効放出継続時間を基に、短時	時刻の気象項目と実効的な放出継続時間を基に評価点ご	大気安定度)及び実効放出継続時間を基に,短時間	毎時刻の気象項目と実効的な放出継続時間を基に	気安定度) 及び実効放出継続時間を基に, 原子炉建	
	間放出の式を適用し、評価している。	とに計算する。	放出の式を適用し、評価している。	評価点ごとに計算する。	物放出及び格納容器フィルタベント排気管放出の	
・相対線量は、放射性物質の空間濃度分布を算出し、	相対線量は、放射性物質の空間濃度分布を算出	・相対線量は、放射性物質の空間濃度分布を算出し、こ	相対線量は、放射性物質の空間濃度分布を算	・相対線量は、放射性物質の空間濃度分布を算出し、	場合は短時間放出の式を適用し,排気筒放出の場合	・評価方針の相違
これをガンマ線量計算モデルに適用して評価点ご	し、これをガンマ線量計算モデルに適用して計算	れをガンマ線量計算モデルに適用して評価点ごとに計算	出し、これをガンマ線計算モデルに適用し、計算	これをガンマ線量計算モデルに適用して評価点ご	<u>は長時間放出の式を適用し</u> ,評価している。	【柏崎 6/7,東海第二】
とに計算する。	している。	する。	している。	とに計算する。	相対線量は、放射性物質の空間濃度分布を算出	島根2号炉は,排気筒放
					し,これをガンマ線量計算モデルに適用して計算し	出時には気象指針に記
					ている。	載の方法により算出し
・評価点の相対濃度又は相対線量は、毎時刻の相対濃	年間の気象データに基づく相対濃度及び相対線	・評価点の相対濃度又は相対線量は、毎時刻の相対濃度	年間の気象データに基づく相対濃度及び相対	・評価点の相対濃度又は相対線量は、毎時刻の相対	年間の気象データに基づく相対濃度及び相対線	た実効放出継続時間(30
度又は相対線量を年間について小さい方から累積	量を小さい方から累積し,97%に当たる値を用い	又は相対線量を年間について小さい方から累積した場	線量を各時刻の風向に応じて、小さい方から累積	濃度又は相対線量を年間について小さい方から累	量を小さい方から累積し,97%に当たる値を用いて	時間)による長時間放出
した場合、その累積出現頻度が 97%に当たる値とす	ている。	合,その累積出現頻度が97%に当たる値とする。	し,97%に当たる値を用いている。	積した場合、その累積出現頻度が 97%に当たる値と	いる。	の式を適用している。
る。			相対濃度及び相対線量の詳細は、「原子力発	する。		
・相対濃度及び相対線量の詳細は、「原子力発電所中	相対濃度及び相対線量の詳細は、「原子力発電	・相対濃度及び相対線量の詳細は、「原子力発電所中央制	電所中央制御室の居住性に係る被ばく評価手法に	・相対濃度及び相対線量の詳細は、「原子力発電所	相対濃度及び相対線量の詳細は、「原子力発電所	
央制御室の居住性に係る被ばく評価手法について	所中央制御室の居住性に係る被ばく評価手法につ	御室の居住性に係る被ばく評価手法について (内規)」(参	ついて(内規)」に基づいて評価している。	中央制御室の居住性に係る被ばく評価手法につい	中央制御室の居住性に係る被ばく評価手法につい	
(内規)」 ^(参1) による。	いて(内規)」に基づいて評価している。	1) による。		て(内規)」 ^(参1) による。	て(内規)」に基づいて評価している。	
·	·					

柏崎刈羽原子力発電所 6/	7 号炉 (2017. 12. 20 版)	東海第二発電所(2	2018. 9. 18 版)		島根原子力発電	前 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況] [実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド			対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
d. 地表面への沈着	4.2(2)d. → 審査ガイドどおり	d. 地表面への沈着	4.2(2)d.→審査ガイドのとおり		d. 地表面への沈着	4.2(2)d. → 審査ガイドどおり	
放射性物質の地表面への沈着評価では、地表面への乾	地表面物質への乾性沈着及び降雨による湿性沈	放射性物質の地表面への沈着評価では、地表面への乾性	地表面への乾性沈着及び降雨による湿性沈着		放射性物質の地表面への沈着評価では、地表面への乾	地表面物質への乾性沈着及び降雨による湿性沈	
性沈着及び降雨による湿性沈着を考慮して地表面沈着濃	着を考慮して地表面沈着濃度を計算している。	沈着及び降雨による湿性沈着を考慮して地表面沈着濃度	を考慮して地表面沈着濃度を計算している。		性沈着及び降雨による湿性沈着を考慮して地表面沈着濃	着を考慮して地表面沈着濃度を計算している。	
度を計算する。	沈着速度については線量目標値評価指針を参考	を計算する。			度を計算する。	沈着速度については線量目標値評価指針を参考	
	に,湿性沈着を考慮して乾性沈着速度の4 倍を設定					に,湿性沈着を考慮して乾性沈着速度の4 倍を設	
	している。乾性沈着速度はNUREG/CR-4551 Vol.2 及					定している。乾性沈着速度はNUREG/CR-4551 Vol.2	
	びNRPB-R322 より設定している。					及びNRPB-R322 より設定している。	
e. 原子炉制御室/緊急時制御室/緊急時対策所内の放射	4.2(2)e. → 審査ガイドどおり	e. 原子炉制御室/緊急時制御室/緊急時対策所内の放射	4.2(2)e.→審査ガイドのとおり		e. 原子炉制御室/緊急時制御室/緊急時対策所内の放射	4.2(2)e. → 審査ガイドどおり	
性物質濃度		性物質濃度			性物質濃度		
・原子炉制御室/緊急時制御室/緊急時対策所の建屋		・原子炉制御室/緊急時制御室/緊急時対策所の建屋の			・原子炉制御室/緊急時制御室/緊急時対策所の建屋		
の表面空気中から、次の二つの経路で放射性物質が		表面空気中から、次の二つの経路で放射性物質が外気か			の表面空気中から、次の二つの経路で放射性物質が		
外気から取り込まれることを仮定する。		ら取り込まれることを仮定する。			外気から取り込まれることを仮定する。		
一 原子炉制御室/緊急時制御室/緊急時対策所の非常	中央制御室は外気の取り入れにより陽圧化し, 室	一 原子炉制御室/緊急時制御室/緊急時対策所の非常	中央制御室は間欠的に外気取入れ運転運転に		一 原子炉制御室/緊急時制御室/緊急時対策所の非常	中央制御室は外気の取り入れにより正圧化し,	・運用の相違
用換気空調設備によって室内に取り入れること(外	内への直接流入を遮断できるとして評価している。	用換気空調設備によって室内に取り入れること(外気取	より外気が取り込まれることを仮定している。ま		用換気空調設備によって室内に取り入れること(外	室内への直接流入を遮断できるとして評価してい	【東海第二】
気取入)	中央制御室を陽圧化していない間は, 室内へ直接	٨)	た中央制御室非常用循環設備の運転による空気が		気取入)	<u>a.</u>	島根2号炉は加圧運転
二 原子炉制御室/緊急時制御室/緊急時対策所内に直	流入するとして評価している。	二 原子炉制御室/緊急時制御室/緊急時対策所内に直	直接流入することを仮定している。		二 原子炉制御室/緊急時制御室/緊急時対策所内に直	<u> 中央制御室を正圧化していない間は, 室内へ直</u>	を行うためフィルタを
接流入すること(空気流入)		接流入すること(空気流入)	プルーム通過中は運転員は中央制御室待避室		接流入すること(空気流入)	接流入するとして評価している。	通らない空気の流入を
・原子炉制御室/緊急時制御室/緊急時対策所内の雰		・原子炉制御室/緊急時制御室/緊急時対策所内の雰囲	<u>に待避し、室内を加圧するため外気取入れ及び空</u>		・原子炉制御室/緊急時制御室/緊急時対策所内の雰		考慮しない。
囲気中で放射性物質は、一様混合すると仮定する。	中央制御室では放射性物質は一様混合するとし,	気中で放射性物質は、一様混合すると仮定する。	気流入はないものとして評価している。		囲気中で放射性物質は、一様混合すると仮定する。		
なお、原子炉制御室/緊急時制御室/緊急時対	室内での放射性物質は沈着せず浮遊しているもの	なお、原子炉制御室/緊急時制御室/緊急時対策所内に	中央制御室内では放射性物質は一様混合する		なお、原子炉制御室/緊急時制御室/緊急時対	中央制御室では放射性物質は一様混合すると	
策所内に取り込まれた放射性物質は、室内に沈着	と仮定している。	取り込まれた放射性物質は, 室内に沈着せずに浮遊して	とし、室内で放射性物質は沈着せず、浮遊してい		策所内に取り込まれた放射性物質は、室内に沈着	し、室内での放射性物質は沈着せず浮遊している	
せずに浮遊しているものと仮定する。		いるものと仮定する。	ると仮定している。		せずに浮遊しているものと仮定する。	ものと仮定している。	
・原子炉制御室/緊急時制御室/緊急時対策所内への	中央制御室は外気の取り入れにより陽圧化し, 室	・原子炉制御室/緊急時制御室/緊急時対策所内への外	外気取入れによる放射性物質の取り込みにつ		・原子炉制御室/緊急時制御室/緊急時対策所内への	中央制御室は外気の取り入れにより正圧化し,	
外気取入による放射性物質の取り込みについては、	内への直接流入を遮断できるとして評価している。	気取入による放射性物質の取り込みについては、非常用	いては、中央制御室の換気設備の設計及び運転条		外気取入による放射性物質の取り込みについては、	室内への直接流入を遮断できるとして評価してい	
非常用換気空調設備の設計及び運転条件に従って	中央制御室を陽圧化していない間は, 室内へ直接流	換気空調設備の設計及び運転条件に従って計算する。	件に従って計算している。		非常用換気空調設備の設計及び運転条件に従って	<u>る。</u> 中央制御室を正圧化していない間は,室内へ	
計算する。	入するとして評価している。				計算する。	直接流入するとして評価している。	
・原子炉制御室/緊急時制御室/緊急時対策所内に取	直接流入量の評価に当たっては, バウンダリ容積	・原子炉制御室/緊急時制御室/緊急時対策所内に取り	空気流入量は中央制御室のバウンダリ体積(容積)		・原子炉制御室/緊急時制御室/緊急時対策所内に取	直接流入量の評価に当たっては, <u>空気流入率及</u>	
り込まれる放射性物質の空気流入量は、空気流入率	を用いて計算している。	込まれる放射性物質の空気流入量は、空気流入率及び原	を用いてい計算している。		り込まれる放射性物質の空気流入量は、空気流入率	びバウンダリ容積を用いて計算している。	
及び原子炉制御室/緊急時制御室/緊急時対策所		子炉制御室/緊急時制御室/緊急時対策所バウンダリ体			及び原子炉制御室/緊急時制御室/緊急時対策所		
バウンダリ体積(容積)を用いて計算する。		積(容積)を用いて計算する。			バウンダリ体積(容積)を用いて計算する。		
L	۱ا			┙╽┖		·	

柏崎刈羽原子力発電所 6/2	7 号炉 (2017. 12. 20 版)	東海第二発電所(2	2018. 9. 18 版)	島根原子力発電	所 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
(3)線量評価		(3)線量評価		(3)線量評価		
a. 放射性雲中の放射性物質からのガンマ線による原子炉	4.2(3)a. → 審査ガイドどおり	a. 放射性雲中の放射性物質からのガンマ線による原子炉	4.2(3)a. →審査ガイドのとおり	a. 放射性雲中の放射性物質からのガンマ線による原子炉	4.2(3)a. → 審査ガイドどおり	
制御室/緊急時制御室/緊急時対策所内での外部被ば	中央制御室におけるクラウドシャインについて	制御室/緊急時制御室/緊急時対策所内での外部被ばく	外部被ばく線量については,空気中濃度及びクラ	制御室/緊急時制御室/緊急時対策所内での外部被ば	中央制御室におけるクラウドシャインについて	
く(クラウドシャイン)	は,放射性物質の放出量,大気拡散の効果及び建屋	(クラウドシャイン)	ウドシャインに対する外部被ばく線量換算係数の	く (クラウドシャイン)	は,放射性物質の放出量,大気拡散の効果及び建	
・放射性雲中の放射性物質からのガンマ線による外部	によるガンマ線の遮蔽効果を考慮し評価している。	・放射性雲中の放射性物質からのガンマ線による外部被	積で計算した線量率を積算して計算している。	・放射性雲中の放射性物質からのガンマ線による外部	物によるガンマ線の遮蔽効果を考慮し評価してい	
被ばく線量は、空気中時間積分濃度及びクラウドシ		ばく線量は、空気中時間積分濃度及びクラウドシャイン		被ばく線量は、空気中時間積分濃度及びクラウドシ	a.	
ャインに対する外部被ばく線量換算係数の積で計		に対する外部被ばく線量換算係数の積で計算する。		ャインに対する外部被ばく線量換算係数の積で計		
算する。	中央制御室内の運転員については建屋による遮			算する。		
・原子炉制御室/緊急時制御室/緊急時対策所内にい	蔽効果を考慮している。	・原子炉制御室/緊急時制御室/緊急時対策所内にいる	中央制御室の運転員については建屋による遮蔽効	・原子炉制御室/緊急時制御室/緊急時対策所内にい	中央制御室内の運転員については建物による遮	
る運転員又は対策要員に対しては、原子炉制御室/		運転員又は対策要員に対しては、原子炉制御室/緊急時	果を考慮している。	る運転員又は対策要員に対しては、原子炉制御室/	蔽効果を考慮している。	
緊急時制御室/緊急時対策所の建屋によって放射		制御室/緊急時対策所の建屋によって放射線が遮へいさ		緊急時制御室/緊急時対策所の建屋によって放射		
線が遮へいされる低減効果を考慮する。		れる低減効果を考慮する。		線が遮へいされる低減効果を考慮する。		
	4.2(3)b. → 審査ガイドどおり					
b. 地表面に沈着した放射性物質からのガンマ線による原		b. 地表面に沈着した放射性物質からのガンマ線による原	4.2(3)b.→審査ガイドのとおり	b. 地表面に沈着した放射性物質からのガンマ線による原	4.2(3)b. → 審査ガイドどおり	
子炉制御室/緊急時制御室/緊急時対策所内での外部		子炉制御室/緊急時制御室/緊急時対策所内での外部被		子炉制御室/緊急時制御室/緊急時対策所内での外部		
被ばく(グランドシャイン)		ばく (グランドシャイン)		被ばく (グランドシャイン)		
・地表面に沈着した放射性物質からのガンマ線による	中央制御室におけるグランドシャインについて	・地表面に沈着した放射性物質からのガンマ線による外	中央制御室の運転員のグランドシャインによる外	・地表面に沈着した放射性物質からのガンマ線による	中央制御室におけるグランドシャインについて	
外部被ばく線量は、地表面沈着濃度及びグランドシ	は,放射性物質の放出量,大気拡散の効果及び沈着	部被ばく線量は,地表面沈着濃度及びグランドシャイン	部被ばくについては,建屋による遮蔽効果を考慮	外部被ばく線量は、地表面沈着濃度及びグランドシ	は,放射性物質の放出量,大気拡散の効果及び沈	
ャインに対する外部被ばく線量換算係数の積で計	速度並びに建屋によるガンマ線の遮蔽効果を考慮	に対する外部被ばく線量換算係数の積で計算する。	している。	ャインに対する外部被ばく線量換算係数の積で計	着速度並びに建物によるガンマ線の遮蔽効果を考	
算する。	し評価している。			算する。	慮し評価している。	
・原子炉制御室/緊急時制御室/緊急時対策所内にい	中央制御室内の運転員については建屋による遮	・原子炉制御室/緊急時制御室/緊急時対策所内にいる		・原子炉制御室/緊急時制御室/緊急時対策所内にい	中央制御室内の運転員については建物による遮	
る運転員又は対策要員に対しては、原子炉制御室/	蔽効果を考慮している。	運転員又は対策要員に対しては,原子炉制御室/緊急時		る運転員又は対策要員に対しては、原子炉制御室/	蔽効果を考慮している。	
緊急時制御室/緊急時対策所の建屋によって放射		制御室/緊急時対策所の建屋によって放射線が遮へいさ		緊急時制御室/緊急時対策所の建屋によって放射		
線が遮へいされる低減効果を考慮する。		れる低減効果を考慮する。		線が遮へいされる低減効果を考慮する。		

柏崎刈羽原子力発電所 6/"	7 号炉 (2017. 12. 20 版)	東海第二発電所(2018. 9. 18 版)		島根原子力発電	所 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び 緊急時対策所の居住性に係る被ばく評価に関する審査ガ イド	中央制御室の居住性に係る被ばく評価の 審査ガイドへの適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時 対策所の居住性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況		実用発電用原子炉に係る重大事故時の制御室及び 緊急時対策所の居住性に係る被ばく評価に関する審査ガ イド	中央制御室の居住性に係る被ばく評価の 審査ガイドへの適合状況	
c. 原子炉制御室/緊急時制御室/緊急時対策所内へ外気	4.2(3)c. → 審査ガイドどおり	c. 原子炉制御室/緊急時制御室/緊急時対策所内へ外気	4.2(3)c. →審査ガイドのとおり	1	c. 原子炉制御室/緊急時制御室/緊急時対策所内へ外気	4.2(3)c. → 審査ガイドどおり	
から取り込まれた放射性物質の吸入摂取による原子炉		から取り込まれた放射性物質の吸入摂取による原子炉制	中央制御室内における内部被ばくについて		から取り込まれた放射性物質の吸入摂取による原子炉		
制御室/緊急時制御室/緊急時対策所内での内部被ば		御室/緊急時制御室/緊急時対策所内での内部被ばく	は、空気中濃度、呼吸率及び内部被ばく換算係数		制御室/緊急時制御室/緊急時対策所内での内部被ば		
<			の積で計算した線量率を積算して計算している。		<		
・原子炉制御室/緊急時制御室/緊急時対策所内へ	中央制御室における内部被ばく線量については,	 ・原子炉制御室/緊急時制御室/緊急時対策所内へ外気 			・原子炉制御室/緊急時制御室/緊急時対策所内へ外	中央制御室における内部被ばく線量について	
外気から取り込まれた放射性物質の吸入摂取によ	空気中濃度,呼吸率及び内部被ばく換算係数から計	から取り込まれた放射性物質の吸入摂取による内部被ば			気から取り込まれた放射性物質の吸入摂取による	は、空気中濃度、呼吸率及び内部被ばく換算係数	
る内部被ばく線量は、室内の空気中時間積分濃度、	算している。	く線量は、室内の空気中時間積分濃度、呼吸率及び吸入			内部被ばく線量は、室内の空気中時間積分濃度、呼	から計算している。	
呼吸率及び吸入による内部被ばく線量換算係数の		による内部被ばく線量換算係数の積で計算する。			吸率及び吸入による内部被ばく線量換算係数の積		
積で計算する。					で計算する。		
・なお、原子炉制御室/緊急時制御室/緊急時対策	中央制御室では室内の放射性物質は沈着せずに	・なお,原子炉制御室/緊急時制御室/緊急時対策所内	中央制御室内では室内で放射性物質は沈着せず浮		・なお、原子炉制御室/緊急時制御室/緊急時対策所	中央制御室では室内の放射性物質は沈着せずに	
所内に取り込まれた放射性物質は、室内に沈着せ	浮遊しているものと仮定している。	に取り込まれた放射性物質は、室内に沈着せずに浮遊し	遊しているものと仮定している。		内に取り込まれた放射性物質は、室内に沈着せずに	浮遊しているものと仮定している。	
ずに浮遊しているものと仮定する。		ているものと仮定する。			浮遊しているものと仮定する。		
・原子炉制御室/緊急時制御室/緊急時対策所内で	マスクの着用を考慮して評価している。また,マ	・原子炉制御室/緊急時制御室/緊急時対策所内でマス	事象発生から3時間及び入退域時にマスクを着用		・原子炉制御室/緊急時制御室/緊急時対策所内でマ	マスクの着用を考慮して評価している。また、	
マスク着用を考慮する。その場合は、マスク着用	スクを着用しない場合についても評価している。	ク着用を考慮する。その場合は、マスク着用を考慮しな	することとした。		スク着用を考慮する。その場合は、マスク着用を考	マスクを着用しない場合についても評価してい	
を考慮しない場合の評価結果も提出を求める。		い場合の評価結果も提出を求める。			慮しない場合の評価結果も提出を求める。	\$.	
	4.2(3)d. → 審査ガイドどおり						
d. 原子炉制御室/緊急時制御室/緊急時対策所内へ外気		d. 原子炉制御室/緊急時制御室/緊急時対策所內へ外気	4.2(3)d. →審査ガイドのとおり		d. 原子炉制御室/緊急時制御室/緊急時対策所内へ外気	4.2(3)d. → 審査ガイドどおり	
から取り込まれた放射性物質のガンマ線による外部被		から取り込まれた放射性物質のガンマ線による外部被ば			から取り込まれた放射性物質のガンマ線による外部被		
ばく	中央制御室に取り込まれた放射性物質からのガ	<			ばく		
・原子炉制御室/緊急時制御室/緊急時対策所内へ	ンマ線による外部被ばく線量については, 空気中濃	・原子炉制御室/緊急時制御室/緊急時対策所内へ外気	中央制御室内に取り込まれた放射性物質からのガ		・原子炉制御室/緊急時制御室/緊急時対策所内へ外	中央制御室に取り込まれた放射性物質からのガ	
外気から取り込まれた放射性物質からのガンマ線	度及び建屋によるガンマ線の遮蔽効果を考慮し評	から取り込まれた放射性物質からのガンマ線による外部	ンマ線の外部被ばくについては、空気中濃度及び		気から取り込まれた放射性物質からのガンマ線に	ンマ線による外部被ばく線量については、空気中	
による外部被ばく線量は、室内の空気中時間積分	価している。	被ばく線量は,室内の空気中時間積分濃度及びクラウド	クラウドシャインに対する外部被ばく線量係数の		よる外部被ばく線量は、室内の空気中時間積分濃度	濃度及び建屋によるガンマ線の遮蔽効果を考慮し	
濃度及びクラウドシャインに対する外部被ばく線		シャインに対する外部被ばく線量換算係数の積で計算す	積で計算した線量率を積算して計算している。		及びクラウドシャインに対する外部被ばく線量換	評価している。	
量換算係数の積で計算する。	中央制御室では室内の放射性物質は沈着せずに	る。			算係数の積で計算する。		
・なお、原子炉制御室/緊急時制御室/緊急時対策	浮遊しているものと仮定している。	・なお、原子炉制御室/緊急時制御室/緊急時対策所内	中央制御室で室内に取り込まれた放射性物質は沈		・なお、原子炉制御室/緊急時制御室/緊急時対策所	中央制御室では室内の放射性物質は沈着せずに	
所内に取り込まれた放射性物質は、c 項の内部被		に取り込まれた放射性物質は, c 項の内部被ばく同様,	着せず浮遊しているものと仮定している。		内に取り込まれた放射性物質は、c 項の内部被ばく	浮遊しているものと仮定している。	
ばく同様、室内に沈着せずに浮遊しているものと		室内に沈着せずに浮遊しているものと仮定する。			同様、室内に沈着せずに浮遊しているものと仮定す		
仮定する。					న .		

柏崎刈羽原子力発電所 6/7	7 号炉 (2017.12.20版)	東海第二発電所(2	2018. 9. 18 版)		島根原子力発電	所 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び 緊急時対策所の居住性に係る被ばく評価に関する審査ガ イド	中央制御室の居住性に係る被ばく評価の 審査ガイドへの適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時 対策所の居住性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況		実用発電用原子炉に係る重大事故時の制御室及び 緊急時対策所の居住性に係る被ばく評価に関する審査ガ イド	中央制御室の居住性に係る被ばく評価の 審査ガイドへの適合状況	
e. 放射性雲中の放射性物質からのガンマ線による入退域	4.2(3)e. → 審査ガイドどおり	e. 放射性雲中の放射性物質からのガンマ線による入退	4.2(3)e.→審査ガイドのとおり		e. 放射性雲中の放射性物質からのガンマ線による入退域	4.2(3)e. → 審査ガイドどおり	
での外部被ばく(クラウドシャイン)		域での外部被ばく(クラウドシャイン)			での外部被ばく(クラウドシャイン)		
・放射性雲中の放射性物質からのガンマ線による外	入退域におけるクラウドシャインについては, 放	・放射性雲中の放射性物質からのガンマ線による外部被	外部被ばく線量については、空気中濃度及びクラ		 ・放射性雲中の放射性物質からのガンマ線による外部 	入退域におけるクラウドシャインについては,	
部被ばく線量は、空気中時間積分濃度及びクラウ	射性物質の放出量, 大気拡散の効果を考慮し評価し	ばく線量は、空気中時間積分濃度及びクラウドシャイン	ウドシャインに対する外部被ばく線量換算係数の		被ばく線量は、空気中時間積分濃度及びクラウドシ	放射性物質の放出量、大気拡散の効果を考慮し評	
ドシャインに対する外部被ばく線量換算係数の積	ている。	に対する外部被ばく線量換算係数の積で計算する。	積で計算した線量率を積算して計算している。		ャインに対する外部被ばく線量換算係数の積で計	価している。	
で計算する。					算する。		
f. 地表面に沈着した放射性物質からのガンマ線による入 退域での外部被ばく (グランドシャイン)	4.2(3)f. → 審査ガイドどおり	 f. 地表面に沈着した放射性物質からのガンマ線による入 退域での外部被ばく(グランドシャイン) 	4.2(3)f. →審査ガイドのとおり		f. 地表面に沈着した放射性物質からのガンマ線による入 退域での外部被ばく (グランドシャイン)	4.2(3)f. → 審査ガイドどおり	
・地表面に沈着した放射性物質からのガンマ線によ	入退域でのグランドシャイン線量については, 地	 ・地表面に沈着した放射性物質からのガンマ線による外 	入退城時の運転員のグランドシャインによる外部		・地表面に沈着した放射性物質からのガンマ線による	入退域でのグランドシャイン線量については、	
る外部被ばく線量は、地表面沈着濃度及びグラン	表面沈着濃度及びグランドシャインに対する外部	部被ばく線量は、地表面沈着濃度及びグランドシャイン	被ばくについては、地表沈着濃度及びグランドシ		外部被ばく線量は、地表面沈着濃度及びグランドシ	地表面沈着濃度及びグランドシャインに対する外	
ドシャインに対する外部被ばく線量換算係数の積	被ばく線量換算係数の積で計算した線量率を積算	に対する外部被ばく線量換算係数の積で計算する。	ャインに対する外部被ばく線量換算係数の積で計		ャインに対する外部被ばく線量換算係数の積で計	部被ばく線量換算係数の積で計算した線量率を積	
で計算する。	して計算している。		算した線量率を積算して計算している。考慮して		算する。	算して計算している。	
			いる。				
g. 放射性物質の吸入摂取による入退域での内部被ばく	4.2(3)g. → 審査ガイドどおり	g. 放射性物質の吸入摂取による入退域での内部被ばく	4.2(3)g.→審査ガイドのとおり		g. 放射性物質の吸入摂取による入退域での内部被ばく	4.2(3)g. → 審査ガイドどおり	
・放射性物質の吸入摂取による内部被ばく線量は、	入退域での内部被ばくについては空気中濃度,呼	 ・放射性物質の吸入摂取による内部被ばく線量は、入退 	入退城時の運転員の内部被ばくについては、空気		・放射性物質の吸入摂取による内部被ばく線量は、入	入退域での内部被ばくについては空気中濃度,	
入退域での空気中時間積分濃度、呼吸率及び吸入	吸率及び内部被ばく換算係数から計算している。	域での空気中時間積分濃度,呼吸率及び吸入による内部	中濃度、呼吸率及び内部被ばく換算係数の積で計		退域での空気中時間積分濃度、呼吸率及び吸入によ	呼吸率及び内部被ばく換算係数から計算してい	
による内部被ばく線量換算係数の積で計算する。	入退域でのマスク着用による被ばく低減効果を	被ばく線量換算係数の積で計算する。	算した線量率を積算して計算している。		る内部被ばく線量換算係数の積で計算する。	న .	
 入退域での放射線防護による被ばく低減効果を考 	考慮している。	 ・入退域での放射線防護による被ばく低減効果を考慮し 	マスク着用を考慮する場合は事象発生から3時間		 入退域での放射線防護による被ばく低減効果を考慮 	入退域でのマスク着用による被ばく低減効果を	
慮してもよい。		てもよい。	及び入退域時にマスクを着用することとした。		してもよい。	考慮している。	
h. 被ばく線量の重ね合わせ	4.2(3)h. → 審査ガイドどおり	h. 被ばく線量の重ね合わせ	4.2(3) h.→複数原子炉施設は設置されていない		h. 被ばく線量の重ね合わせ	4.2(3)h. → 審査ガイドどおり	中寺日に坐の招達
 同じ敷地内に複数の原子炉施設が設置されている 	6号炉,7号炉において同時に炉心の著しい損傷が	 同じ敷地内に複数の原子炉施設が設置されている場合, 	ため考慮しない		 ・同じ敷地内に複数の原子炉施設が設置されている場 	複数の原子炉施設の設置変更許可申請を実施し	・甲請方炉剱の相遅
場合、全原子炉施設について同時に事故が起きた	発生したと想定した場合, 第一に両号炉において代	全原子炉施設について同時に事故が起きたと想定して評			合、全原子炉施設について同時に事故が起きたと想	ていない為考慮しない。	【相畸 6/7】
と想定して評価を行うが、各原子炉施設から被ば	替循環冷却系を用いて事象を収束することとなる。	価を行うが、各原子炉施設から被ばく経路別に個別に評			定して評価を行うが、各原子炉施設から被ばく経路		
く経路別に個別に評価を実施して、その結果を合	しかしながら、本被ばく評価においては、片方の号	価を実施して、その結果を合算することは保守的な結果			別に個別に評価を実施して、その結果を合算するこ		
算することは保守的な結果を与える。原子炉施設	炉において代替循環冷却に失敗することも考慮し、	を与える。原子炉施設敷地内の地形や、原子炉施設と評			とは保守的な結果を与える。原子炉施設敷地内の地		
敷地内の地形や、原子炉施設と評価対象位置の関	当該号炉において格納容器圧力逃がし装置を用い	価対象位置の関係等を考慮した、より現実的な被はく線			形や、原子炉施設と評価対象位置の関係等を考慮し		
係等を考慮した、より現実的な被ばく線量の重ね	た格納容器ベントを想定して評価している。	量の重ね合わせ評価を実施する場合はその妥当性を説明			た、より現実的な被ばく線量の重ね合わせ評価を実		
合わせ評価を実施する場合はその妥当性を説明し		した資料の提出を求める。			施する場合はその妥当性を説明した資料の提出を		
た資料の提出を求める。				JIL	求める。		

柏崎刈羽原子力発電所 6/7号	 号炉 (2017.12.20版)	東海第二発電所(2	2018. 9. 18 版)	島根原子力発電	i所 2 号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
4.3 原子炉制御室の居住性に係る被ばく評価の主要		4.4 緊急時制御室又は緊急時対策所の居住性に係る被		4.3 原子炉制御室の居住性に係る被ばく評価の主要解		
解析条件等		ばく評価の主要解析条件等		析条件等		
(1) ソースターム 4.	4.3(1)→ 審査ガイドの趣旨に基づき設定	(1) ソースターム	4.4(1)→審査ガイドのとおり	(1) ソースターム	4.3(1)→ 審査ガイドの趣旨に基づき設定	
a. 原子炉格納容器内への放出割合 4.	4.3(1)a. → 審査ガイドどおり	a. 原子炉格納容器への放出割合		a. 原子炉格納容器内への放出割合	4.3(1)a. → 審査ガイドどおり	
・原子炉格納容器内への放射性物質の放出割合は、 4.	4.1(2)a. で選定した事故シーケンスのソースタ	・原子炉格納容器への放出割合は 4.1(2)a で選定した事	4.1(2)aで選定した事故シーケンスのソースター	・原子炉格納容器内への放射性物質の放出割合は、4.1	4.1(2)a. で選定した事故シーケンスのソースタ	
4.1 (2) a で選定した事故シーケンスのソースターム	ム解析結果を基に設定している。	故シーケンスのソースターム解析結果をもとに設定す	ム解析結果をもとに設定している。	(2) a で選定した事故シーケンスのソースターム	ーム解析結果を基に設定している。	
ーム解析結果を基に設定する。		る。		解析結果を基に設定する。		
・希ガス類、ヨウ素類、Cs 類、Te 類、Ba 類、Ru 類、 希	希ガス類, よう素類, Cs 類, Te 類, Ba 類, Ru	・希ガス類, ヨウ素類, Cs 類, Te 類, Ba 類, Ru 類, Ce	希ガス類, ヨウ素類, Cs類, Te類, Ba類, Ru類,	・希ガス類、ヨウ素類、Cs 類、Te 類、Ba 類、Ru 類、	希ガス類, よう素類, Cs 類, Te 類, Ba 類, Ru	
Ce 類及びLa 類を考慮する。 類,	, Ce 類及びLa 類を考慮している。	類,及びLa類を考慮する。	Ce類,及びLa類を考慮している。	Ce 類及びLa 類を考慮する。	類, Ce 類及びLa 類を考慮している。	
・なお、原子炉格納容器内への放出割合の設定に際	よう素の性状については, R.G.1.195を参照して	 ・なお格納容器への放出割合の設定に際し、ヨウ素類の 	よう素の性状については, R. G. 1. 195を参照してい	・なお、原子炉格納容器内への放出割合の設定に際し、	よう素の性状については, R.G.1.195 を参照し	
し、ヨウ素類の性状を適切に考慮する。 いる	る。	形状を適切に考慮する。	る。	ヨウ素類の性状を適切に考慮する。	ている。	
b. 原子炉格納容器内への放出率				b. 原子炉格納容器内への放出率		
・原子炉格納容器内への放射性物質の放出率は、4.1 4.	4.3(1)b. → 審査ガイドどおり			・原子炉格納容器内への放射性物質の放出率は、4.1	4.3(1)b. → 審査ガイドどおり	
(2) a で選定した事故シーケンスのソースターム 4.	4.1(2)a. で選定した事故シーケンスのソースタ			(2) a で選定した事故シーケンスのソースターム	4.1(2)a. で選定した事故シーケンスのソースタ	
解析結果を基に設定する。	ム解析結果を基に設定している。			解析結果を基に設定する。	ーム解析結果を基に設定している。	
(2) 非常用電源		(2) 非常用電源	4.4(2)→審査ガイドのとおり	(2)非常用電源		
非常用電源の作動については、4.1 (2) a で選定した 4.	4.3(2) → 審査ガイドどおり	非常用電源の作動については 4.1(2)a で選定した事故シ	4.1(2)aで選定した事故シーケンスと同じ電源条	非常用電源の作動については、4.1 (2) a で選定した	4.3(2) → 審査ガイドどおり	
事故シーケンスの事故進展解析条件を基に設定する。 4.	4.1(2)a. で選定した事故シーケンスの事故進展	ーケンスの事故進展解析条件を基に設定する。	件を設定している。なお、ソースターム条件設定	事故シーケンスの事故進展解析条件を基に設定する。	4.1(2)a. で選定した事故シーケンスの事故進展	
ただし、代替交流電源からの給電を考慮する場合は、 解析	析条件を基に設定している。	ただし,代替交流電源からの給電を考慮する場合は,	に当たり、代替電源からの給電に要する時間を考	ただし、代替交流電源からの給電を考慮する場合は、	解析条件を基に設定している。	
給電までに要する余裕時間を見込むこと。		給電までに要する余裕時間を見込むこと	慮している。	給電までに要する余裕時間を見込むこと。		
					·	

柏崎刈羽原子力発電所 6/	7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 18 版)	島根原子力発電	 重所 2 号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び 緊急時対策所の居住性に係る被ばく評価に関する審査ガ イド	中央制御室の居住性に係る被ばく評価の 審査ガイドへの適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時 対策所の居住性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び 緊急時対策所の居住性に係る被ばく評価に関する審査 ガイド	中央制御室の居住性に係る被ばく評価の 審査ガイドへの適合状況	
 (3) 沈着・除去等 a. 非常用ガス処理系 (BWR) 又はアニュラス空気浄化設備 (PWR) 非常用ガス処理系 (BWR) 又はアニュラス空気浄化 設備 (PWR) の作動については、4.1 (2) a で選定した事故シーケンスの事故進展解析条件を基に設定する。 	 4.3(3)a. → 審査ガイドどおり 非常用ガス処理系の作動時間については,事故 発生から40 分後(非常用ガス処理系排風機起動 30 分+排風機起動から原子炉区域負圧達成時間 10 分)として評価している。 	 (3) 沈着・除去等 a. 非常用ガス処理系(BWR)又はアニュラス空気浄化設備 (PWR) 非常用ガス処理系(BWR)又はアニュラス空気浄化設備 (PWR)の動作については4.1(2)aで選定した事故シーケン スの事故進展解析条件を基に設定する。 	 4.4(3)a→審査ガイドのとおり 4.1(2)aで選定した事故シーケンスのソースター ム解析結果をもとに非常用ガス再循環系及び非常 用ガス処理系の作動を設定している。 	 (3) 沈着・除去等 a. 非常用ガス処理系 (BWR) 又はアニュラス空気浄化設備 (PWR) 非常用ガス処理系 (BWR) 又はアニュラス空気浄化 設備 (PWR) の作動については、4.1 (2) a で選定した事故シーケンスの事故進展解析条件を基に設定する。 	 4.3(3)a. → 審査ガイドどおり 非常用ガス処理系の作動時間については,事放発 生から70分後(非常用ガス処理系排気ファン起動60 分+非常用ガス処理系排気ファン起動から原子炉建 物負圧達成時間10分)として評価している。 	
b. 非常用ガス処理系 (BWR) 又はアニュラス空気浄化設備 (PWR) フィルタ効率 ヨウ素類及びエアロゾルのフィルタ効率は、使用 条件での設計値を基に設定する。	4.3(3)b. → 非常用ガス処理系による除去効 果は考慮していない。	 b. 非常用ガス処理系(BWR)又はアニュラス空気浄化設備 (PWR)フィルタ効率 ヨウ素類及びエアロゾルのフィルタ効率は、使用条件 での設計値を基に設定する。 なお、フィルタ効率の設定に際し、ヨウ素類の性状を 	 4.4(3)b→審査ガイドのとおり 非常用ガス再循環系及び非常用ガス処理系のフィ ルタ効率は期待しない。 	 b. 非常用ガス処理系 (BWR) 又はアニュラス空気浄化設備 (PWR) フィルタ効率 ヨウ素類及びエアロゾルのフィルタ効率は、使用 条件での設計値を基に設定する。 なお、フィルタ効率の設定に際し、ヨウ素類の性 	4.3(3)b. → 非常用ガス処理系による除去効 果は考慮していない。	
 c. 原子炉格納容器スプレイ 原子炉格納容器スプレイの作動については、4.1 (2) a で選定した事故シーケンスの事故進展解析条件を基に設定する。 d. 原子炉格納容器内の自然沈着 原子炉格納容器内の自然沈着率については、実験等から得られた適切なモデルを基に設定する。 	 4.3(3)c. → 審査ガイドどおり 格納容器スプレイの作動については、4.1(2)a で選定した事故シーケンスの事故進展解析条件 を基に設定している。 4.3(3)d. → 審査ガイドどおり 原子炉格納容器内の粒子状放射性物質の除去 については、MAAP解析に基づき評価している。 無機よう素の原子炉格納容器内での自然沈着 率は、CSE実験に基づき9.0×10⁻⁴[1/s](上限 DF=200)と設定している。 	 適切に考慮する。 c.原子炉格納容器スプレイ 原子炉格納容器スプレイの作動については 4.1(2)a で 選定した事故シーケンスの事故進展解析条件を基に設定する。 d.原子炉格納容器内への自然沈着 原子炉格納容器内への自然沈着率については,実験などから得られた適切なモデルを基に設定する。 	 4.4(3) c→審査ガイドのとおり 格納容器スプレイの作動については4.1(2)aで選定した事故シーケンスの事故進展解析条件を基に設定している。 4.4(3) d→審査ガイドのとおり 格納容器内への自然沈着率については,CSE実験による知見を反映したモデルとしている。 	 状を適切に考慮する。 c.原子炉格納容器スプレイ 原子炉格納容器スプレイの作動については、4.1 (2) a で選定した事故シーケンスの事故進展解析条件を基に設定する。 d.原子炉格納容器内の自然沈着 原子炉格納容器内の自然沈着率については、実験 等から得られた適切なモデルを基に設定する。 	 4.3(3)c. → 審査ガイドどおり 格納容器スプレイの作動については,4.1(2)a で 選定した事故シーケンスの事故進展解析条件を基 に設定している。 4.3(3)d. → 審査ガイドどおり 原子炉格納容器内の粒子状放射性物質の除去に ついては、MAAP解析に基づき評価している。 無機よう素の原子炉格納容器内での沈着による 除去係数は、CSE実験に基づき9.0×10⁴[1/s] (上限DF=200)と設定している。 	
	無機よう素のサプレッション・プールでのスク ラビングによる除去係数は, Standard Review Plan6.5.5に基づき <u>10</u> と設定している。				無機よう素のサプレッション・プールでのスクラ ビングによる除去係数は, Standard Review Plan6.5.5に基づき <u>5</u> と設定している。	 ・設計の相違 【柏崎 6/7,東海第二】 島根 2 号炉は MARK- I の除去係数を適用

柏崎刈羽原子力発電所 6/	7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 18 版)	島根原子力発電	前 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び 緊急時対策所の居住性に係る被ばく評価に関する審査	中央制御室の居住性に係る被ばく評価の 審査ガイドへの適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時 対策所の居住性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び 緊急時対策所の居住性に係る被ばく評価に関する審査ガ	中央制御室の居住性に係る被ばく評価の 審査ガイドへの適合状況	
ガイド e. 原子炉格納容器漏えい率	4.3(3)e. → 審査ガイドどおり	e. 原子炉格納容器漏えい率	4.4(3)e→審査ガイドのとおり	イド e. 原子炉格納容器漏えい率	4.3(3)e. → 審査ガイドどおり	
原子炉格納容器漏えい率は、4.1 (2) a で選定し た事故シーケンスの事故進展解析結果を基に設定	4.1(2)a. 選定した事故シーケンスの原子炉格納 容器内圧力に応じた漏えい率を設定している。	原子炉格納容器漏えい率は 4.1(2)a で選定した事故シ ーケンスの事故進展解析条件を基に設定する。	原子炉格納容器漏えい率については4.1(2)aで選 定した事故シーケンスの事故進展解析条件を基に	原子炉格納容器漏えい率は、4.1 (2) a で選定した 事故シーケンスの事故進展解析結果を基に設定する。	4.1(2)a. 選定した事故シーケンスの原子炉格納 容器内圧力に応じた漏えい率を設定している。	
⁹ ℃。 f. 原子炉制御室の非常用換気空調設備	4.3(3)f. → 審査ガイドどおり 可搬型陽圧化空調機の起動時間については, 可	f.原子炉制御室の非常用換気空調設備 原子炉制御室の非常用換気空調設備の作動について	ix ℓ C C V S。 4.4(3) f→審査ガイドのとおり	 f. 原子炉制御室の非常用換気空調設備 原子炉制御室の非常用換気空調設備の作動につい 	 4.3(3)f. → 審査ガイドどおり 中央制御室換気系の起動時間については、全交 	
原子炉制御室の非常用換気空調設備の作動につ いては、非常用電源の作動状態を基に設定する。	搬設備の設置に要する時間遅れや全交流動力電源 喪失を想定した遅れを3時間として評価してい	は、非常用電源の作動状態を基に設定する。	中央制御室非常用循環設備の起動時間については 全交流動力電源喪失祖想定した遅れを有効性評価	ては、非常用電源の作動状態を基に設定する。	流動力電源喪失を想定した遅れを2時間として評 価している。	
	న .	(4) 大気拡散	で設定した2時間として評価した。	(4) 大気拡散		
 (4)大気拡散 a.放出開始時刻及び放出継続時間 放射性物質の大気中への放出開始時刻及び放出 継続時間は 41(2)a で確定した事故シーケンス 	 4.3(4)a. → 審査ガイドどおり 放射性物質の大気中への放出開始時刻は, 4.1(2)a. で選定した事故シーケンスのソースター ム解析結果を基に設定している、実効放出継続時 	 a. 放出開始時刻及び放出継続時間 ・放射性物質の大気中への放出開始時刻及び放出継続時間は、4.1(2)a で選定した事故シーケンスの事故進展解析 条件を基に設定する。 	 4.4(4)a.→審査ガイドのとおり 放射性物質の大気中への放出開始時刻は4.1(2)a で選定した事故シーケンスのソースターム解析結 卑をもとに設定している。 	 a. 放出開始時刻及び放出継続時間 放射性物質の大気中への放出開始時刻及び放出継 続時間は、4.1 (2) a で選定した事故シーケンスのソ ースターム解析結果を基に設定する。 	 4.3(4)a. → 審査ガイドどおり 放射性物質の大気中への放出開始時刻は, 4.1(2)a.で選定した事故シーケンスのソースター ム解析結果を基に設定している。実効放出継続時 	 ・評価方針の相違 【柏崎 6/7,東海第二】 島根2号炉では 排気筒
のソースターム解析結果を基に設定する。	間は保守的に <u>1時間</u> としている。		放射性物質の大気中への放出継続時間は,保守的 に <u>1時間</u> としている。		間は保守的に2号原子炉建物中心放出時又は格納 容器フィルタベント系排気管放出時の場合を1時 間, <u>排気筒放出時の場合を30時間</u> としている。	放出時の実効放出継続 時間を気象指針に記載 されている方法で算出
 b. 放出源高さ 放出源高さは、4.1 (2) a で選定した事故シーケ ンスに応じた放出口からの放出を仮定する。4.1 (2) a で選定した事故シーケンスのソースターム解析 結果を基に、放出エネルギーを考慮してもよい。 	4.3(4)b. → 審査ガイドの趣旨に基づき設定 放出源高さは,放出源ごとに設定している。 放出エネルギーによる影響は考慮していない。	 b. 放出源高さ 放出源高さは、4.1(2)aで選定した事故シーケンスに応じ た放出口からの放出を仮定する。4.1(2)aで選定した事故 シーケンスのソースターム解析結果を基に、放出エネル ギーを考慮してもよい。 	4.4(4)b.→審査ガイドのとおり 放出源高さは,地上放出を仮定する。放出エネル ギーは考慮していない。	 b. 放出源高さ 放出源高さは、4.1 (2) a で選定した事故シーケン スに応じた放出口からの放出を仮定する。4.1 (2) a で 選定した事故シーケンスのソースターム解析結果を 基に、放出エネルギーを考慮してもよい。 	4.3(4)b. → 審査ガイドの趣旨に基づき設定 放出源高さは,放出源ごとに設定している。 放出エネルギーによる影響は考慮していない。	し 30 時間としている。

柏崎刈羽原子力発電所 6/	7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 18 版)	島根原子力発電	這所 2号炉	備考
実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の適合状況	実用発電用原子炉に係る重大事故時の制御室及び緊急時	中央制御室の居住性に係る被ばく評価の	
対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	対策所の居住性に係る被ばく評価に関する審査ガイド		対策所の居住性に係る被ばく評価に関する審査ガイド	審査ガイドへの適合状況	
(5)線量評価		(5)線量評価		(5)線量評価		
a. 原子炉建屋内の放射性物質からのガンマ線による原子	4.3(5)a. → 審査ガイドどおり	a. 原子炉建屋内の 放射性物質からのガンマ線による原	4.4(5)a→審査ガイドのとおり	a. 原子炉建屋内の放射性物質からのガンマ線による原子	4.3(5)a. → 審査ガイドどおり	
炉制御室内での外部被ばく		子炉制御室内での外部被ばく		炉制御室内での外部被ばく		
・4.1(2)a で選定した事故シーケンスのソースタ	4.1(2)a. で選定した事故シーケンスの解析結果	・4.1(2)a で選定した事故シーケンスのソースターム解析	4.1(2)aで選定した事故シーケンスの解析結果を	・4.1 (2) a で選定した事故シーケンスのソースタ	4.1(2)a. で選定した事故シーケンスの解析結果	
ーム解析結果を基に、想定事故時に原子炉格納容	を基に、想定事故時に原子炉建屋内に放出された	結果を基に、想定事故時に原子炉格納容器から原子炉建	基に、想定事故時に原子炉建屋内に放出された放	ーム解析結果を基に、想定事故時に原子炉格納容	を基に、想定事故時に原子炉建物内に放出された放	
器から原子炉建屋内に放出された放射性物質を設	放射性物質を設定し、スカイシャインガンマ線及	屋内に放出された放射性物質を設定する。この原子炉建	射性物質を設定し、スカイシャインガンマ線及び	器から原子炉建屋内に放出された放射性物質を設	射性物質を設定し, スカイシャインガンマ線及び直	
定する。この原子炉建屋内の放射性物質をスカイ	び直接ガンマ線の線源としている。	屋内の放射性物質をスカイシャインガンマ線及び直接ガ	直接ガンマ線の線源としている。	定する。この原子炉建屋内の放射性物質をスカイ	接ガンマ線の線源としている。	
シャインガンマ線及び直接ガンマ線の線源とす		ンマ線の線源とする。		シャインガンマ線及び直接ガンマ線の線源とす		
న .				る。		
・原子炉建屋内の放射性物質は、自由空間容積に均	建屋内の放射性物質は自由空間容積に均一に分	・原子炉建屋内の放射性物質は自由空間容積に均一に分	原子炉建屋内の放射性物質は、自由空間体積に均	・原子炉建屋内の放射性物質は、自由空間容積に均	原子炉建物内の放射性物質は自由空間容積に均	
一に分布するものとして、事故後7日間の積算線	布しているものとし,事故後 1 日ごとの積算線源	布するものとして,事故後7日間の積算線源強度を計算	一に分布しているものとして計算している。	一に分布するものとして、事故後7日間の積算線	一に分布しているものとし,事故後1日ごとの積算	
源強度を計算する。	強度を7日目まで計算している。	する。	原子炉建屋内の放射性物質からのスカイシャ	源強度を計算する。	線源強度を7日目まで計算している。	
・原子炉建屋内の放射性物質からのスカイシャイン	原子炉建屋内の放射性物質からのスカイシャイ	・原子炉建屋内の放射性物質からのスカイシャインガン	インガンマ線及び直接ガンマ線による外部被ばく	・原子炉建屋内の放射性物質からのスカイシャイン	原子炉建物内の放射性物質からのスカイシャイ	
ガンマ線及び直接ガンマ線による外部被ばく線量	ンガンマ線及び直接ガンマ線による外部被ばく線	マ線及び直接ガンマ線による外部被ばく線量は、積算線	線量は、積算線源強度、施設の位置・地形条件(線	ガンマ線及び直接ガンマ線による外部被ばく線量	ンガンマ線及び直接ガンマ線による外部被ばく線	
は、積算線源強度、施設の位置、遮へい構造及び	量は、原子炉建屋内の放射性物質の積算線源強度、	源強度、施設の位置、遮へい構造及び地形条件から計算	源位置と評価点との距離等),遮蔽構造(原子炉建	は、積算線源強度、施設の位置、遮へい構造及び	量は、原子炉建物内の放射性物質の積算線源強度、	
地形条件から計算する。	施設の位置、遮蔽構造、地形条件等から評価して	する。	屋外部遮蔽構造、中央制御室遮蔽構造)から計算	地形条件から計算する。	施設の位置,遮蔽構造,地形条件等から評価してい	
	いる。直接ガンマ線による外部被ばく線量を		している。直接ガンマ線による外部被ばく線量を		る。直接ガンマ線による外部被ばく線量をQAD-	
	QAD-CGGP2R コード, スカイシャインガンマ線によ		QAD-CGGP2Rコード,スカイシャインガ		CGGP2Rコード, スカイシャインガンマ線によ	
	る外部被ばく線量を ANISN コード及び G33-GP2R コ		ンマ線による外部被ばく線量をANISNコード		る外部被ばく線量をANISNコード及びG33	
	ードで計算している。 <u>また、格納容器圧力逃がし</u>		及びG33-GP2Rコードで計算している。		-GP2Rコードで計算している。	・設備の相違
	<u>装置及びよう素フィルタ内の放射性物質からのス</u>					【柏崎 6/7】
	カイシャインガンマ線及び直接ガンマ線による外					島根2号炉では FCVS 格
	部被ばく線量も評価している。直接ガンマ線によ					納槽は地下に設置し,
	<u>る</u> 外部被ばく線量を QAD-CGGP2R コード,スカイシ					十分な遮蔽を設けるた
	<u>ャインガンマ線による外部被ばく線量を</u>					め線源として考慮して
	QAD-CGGP2Rコード及びG33-GP2Rコードで計算して					いない
	<u>113.</u>					
b. 原子炉建屋内の放射性物質からのガンマ線による入退	4.3(5)b. → 審査ガイドどおり	b. 原子炉建屋内の放射性物質からのガンマ線による入退	原子炉建屋内の放射性物質からのスカイシャイン	b. 原子炉建屋内の放射性物質からのガンマ線による入退	4.3(5)b. → 審査ガイドどおり	
域での外部被ばく		域での外部被ばく	ガンマ線及び直接ガンマ線による入退域時の外部	域での外部被ばく		
・スカイシャインガンマ線及び直接ガンマ線の線源	原子炉建屋内の放射性物質からのスカイシャイ	 ・スカイシャインガンマ線及び直接ガンマ線の線源は、 	被ばく線量は,4.3(5)aと同様の計算している。	・スカイシャインガンマ線及び直接ガンマ線の線源	原子炉建物内の放射性物質からのスカイシャイ	
は、上記 a と同様に設定する。	ンガンマ線及び直接ガンマ線による入退域時の外	上記 a と同様に設定する。		は、上記 a と同様に設定する。	ンガンマ線及び直接ガンマ線による入退域時の外	
	部被ばく線量は、4.3(5)a.と同様の条件で計算し				部被ばく線量は,4.3(5)a.と同様の条件で計算して	
・積算線源強度、原子炉建屋内の放射性物質からのス	ている。	・積算線源強度,原子炉建屋内の放射性物質からのスカ		・積算線源強度、原子炉建屋内の放射性物質からのス	いる。	
カイシャインガンマ線及び直接ガンマ線による外		イシャインガンマ線及び直接ガンマ線による外部被ばく		カイシャインガンマ線及び直接ガンマ線による外		
部被ばく線量は、上記 a と同様の条件で計算する。		線量は,上記 a と同様に設定する。		部被ばく線量は、上記 a と同様の条件で計算する。		

分炉	備考
室の居住性に係る被ばく	
ガイドへの適合状況	
審査ガイドどおり	
審査ガイドどおり	
番査ガイドどおり	

予炉	備考
『室の居住性に係る被ば	
く評価の	
ガイドへの適合状況	
<u>来本ガイドドおり</u>	
	1

3炉	備考
『室の居住性に係る被ば	
く評価の	
ガイドへの適合状況	
審査ガイドどおり	
審査ガイドどおり	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
実用発電用原子炉に係る重大事故時 の制御室及び 緊急時対策所の居住性に係る被ばく 評価に関する審査ガイド 審査ガイドへの適合状況	実用発電用原子炉に係る重大事故時 の制御室及び緊急時対策所の居住性 に係る被ばく評価に関する審査ガイ ド	実用発電用原子炉に係る重大事故 時の制御室及び 緊急時対策所の居住性に係る被ば く評価に関する審査ガイド 審査ガイドへの適合状況	
	図 6, 図 7→審査ガイドのとおり		
	図 6, 図 7→審査ガイドのとおり		
	図 6, 図 7→審査ガイドのとおり		

予炉	備考
その居住性に係る被ば く評価の	
イドへの適合状況	
査ガイドどおり	
査ガイドどおり	
<u>∲</u> 査ガイドどおり	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	6 サプレッション・プールでのスクラビングによる除去効果		・資料構成の相違
	(無機よう素) について		【東海第二】
			島根2号炉も同様の条
	サプレッション・プールでのスクラビングによる無機よう素		件を用いて評価してい
	の除去効果(以下「DF」という。)として, Standard Review		${\mathcal Z}$. Standard Review
	Plan 6.5.5に基づきDF10を設定している。これは Standard		Plan 6.5.5 に基づき
	Review Plan 6.5.5 において,「無機よう素のスクラビングに		Mark- I に対する DF5 を
	よる除去効果として, Mark-Ⅱ及びMark-Ⅲに対し		用いている。(表 1-1 大
	てDF10 以下, Mark-Iに対してDF5 以下を主張する		気中への放出放射能量
	場合は、特に計算を必要とせず容認しても良い」との記載(抜		評価条件(3/5)参照)
	粋参照)に基づくものであり,東海第二発電所はMark-		
	Ⅱ型原子炉格納容器を採用していることから,サプレッショ		
	ン・プールの沸騰の有無に関わらず, DF10 を適用すること		
	としている。		
	なお、有機よう素についてはガス状の性質であることから、		
	本DFの効果には期待していない。粒子状よう素のDFにつ		
	いては、MAAP解析のスクラビング計算プログラム(SU		
	PRAコード)にて評価している。		
	「Standard Review Plan 6.5.5」(抜粋)		
	 <u>Pool Decontamination Factor</u>. The decontamination factor (DF) of the pool is defined as the ratio of the amount of a contaminant entering the pool to the amount leaving. Decontamination factors for each fission product form as functions of time can be calculated by the SPARC code. An applicant may use the SPARC code or other methods to calculate the retention of fission products within the pool, provided that these methods are described in the SAR adequately to permit review. If the time-integrated IDF values claimed by the applicant for removal of particulates and elemental iodine are 10 or less for a Mark II or a Mark III containment, or are 5 or less for a Mark I containment, the applicant's values may be accepted without any need to perform calculations.¹ A DF value of one (no retention) should be used for noble gases and for organic iodides. The applicant should provide justification for any DF values greater than those given above. The reviewer has an option to perform an independent confirmatory calculation of the DF. If the SPARC code is used for a confirmatory calculation of fission product decontamination, the review should take care in proper establishment of the input parameters for the calculations. 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	参考		・資料構成の相違
	サプレッション・プールでのスクラビングによる		【東海第二】
	無機よう素の除去効果に関する他の知見について		島根2号炉も同様の条
			件を用いて評価してい
	サプレッション・プールでのスクラビングによる無機よう素		${\mathfrak Z}$ 。 Standard Review
	の除去効果に関する他の知見として、SPARCコードによ		Plan 6.5.5 に基づき
	る計算結果並びにUKAEA及びPOSEIDONにて行わ		Mark-Iに対する DF5 を
	れた実験がある。		用いている。(表 1-1 大
	1. SPARCコードによる計算結果		気中への放出放射能量
	Standard Review Plan 6.5.5 の引用文献※1において, SP		評価条件(3/5)参照)
	ARCコードを用いたよう素のスクラビングによる除去効果		
	を計算している。当該文献では, Mark-I型原子炉格納		
	容器を対象として無機よう素(I2),粒子状よう素(CsI)		
	及び有機よう素(CH3I)に対するスクラビングによる除		
	去効果を計算している。計算結果は第 1 図のとおりであり,		
	無機よう素に対するDFは最小で10程度である。		
	なお、選定した事故シーケンスは、原子炉停止機能喪失であ		
	り、以下の事故進展を想定している。		
	・過渡時において制御棒の挿入不良が発生		
	・緊急炉心冷却システムは作動するが、原子炉出力レベルは		
	サプレッション・プールの冷却能力を超過		
	・原子炉圧力容器の過圧破損の発生により冷却材が喪失した		
	結果、炉心損傷が発生		
	¥1 D C O		
	in Summersein		
	in Suppression		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	Pools", 19th DOE/NRC Nuclear Air Cleaning Conference.		・資料構成の相違
			【東海第二】
			島根2号炉も同様の条
			件を用いて評価してい
			${\mathfrak Z}$. Standard Review
			Plan 6.5.5 に基づき
			Mark- I に対する DF5 を
			用いている。(表 1-1 大
			気中への放出放射能量
	HO 10 ² 12 流量の減少により, スクラビングによる除 去効果が低下** 10 ¹ 10 ² CH ₃ I		評価条件 (3/5) 参照)
	10 130 135 140 145 150 155 160 165 170		
	Accident Time, min		
	第1図 SPARC計算結果(瞬時値DF)		
	※文献中の記載(抜粋)		
	"Here the 12 flow rate is fairly high until 148.5min,		
	then the rate (and incoming 12 concentration) decreases.		
	These decreases cause the pool scrubbing to become less		
	effective at the lodine concentrations of pool.		
	2 IIKAEA及びPOSEIDONにて行われた実験		
	無機よう素に対するスクラビングによる除去効果について.		
	UKAEA※2及びPOSEIDON※3において実験が行		
	われている。実験体系を第2図及び第3図、実験条件及び実		
	験結果を第1表及び第2表に示す※4。第2表のとおり. 無		
	機よう素のDFは最小で14である。		
	※2 イギリスのウィンフリス(重水減速沸騰軽水冷却炉		
	(SGHWR))の蒸気抑制システムにおける核分裂生成物の保持を		
	調べるための実験		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	※3 スイスのポール・シェラー研究所で行われた水中へのガ		・資料構成の相違
	ス状よう素のスクラビングに関する実験		【東海第二】
	*4 "State-of-the-art review on fission products aerosol		島根2号炉も同様の条
	pool scrubbing under severe accident conditions", 1995		件を用いて評価してい
			${\mathcal Z}$. Standard Review
	LEGEND		Plan 6.5.5 に基づき
	() = TEMPERATURE MEASUREMENT () = PRESSURE MEASUREMENT () = FLOW MEASUREMENT		Mark-Iに対する DF5 を
	3 = SAMPLING POINT COMPRESSOR OR MAIN		用いている。(表 1-1 大
			気中への放出放射能量
	STEAM ACCUMULAT ORS		評価条件(3/5)参照)
	第2図 UKAEA実験体系		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)								島根原子力発電所 2号炉	備考
	第1表 実験条件									・資料構成の相違
	Program	Aerosol	Aerosol	Carrier	Steam mass	Water	Pool	Injector		【東海第二】
	- Toginan		size, µm	fluid	fraction	temp., ℃	pressure			島根2号炉も同様の条
	ACE	CsI CsOH	1.7 - 2.7 1.6 - 2.8	N ₂ + steam	0.008 - 0.31	25 83	ambient	sparger		件を用いて評価してい
		Csl	0.2 - 3.0	air, N ₂ or		- ambient		single		${\mathcal Z}$ 。 Standard Review
	EPRI	TeO ₂ Sn	0.4 - 2.7 2.7	He + steam	0 - 0.95	- near sa- turated	ambient	orifice		Plan 6.5.5 に基づき
	EPSI	CsI	~4.5 (radius)	steam	1	273 (initially)	1.1 MPa 3.1 MPa 6.1 MPa	single orifice		Mark-Iに対する DF5 を
	GE	Eu ₂ O ₃	0.1 - 40.0	air	0	ambient	ambient	single		用いている。(表 1-1 大
	JAERI	DOP	0.3 - 10.0	air	0	ambient	ambient	single		 気中への放出放射能量 証価冬供(2/5) 参昭)
	LACE -	Csl	1.7 - 7.2	N ₂ +	0.07 -	110	3 bar	-single		計個未件(5/5) 参照)
	España			steam	0.85		(abs.)	orifice -multior.		
	SPARTA	CsI	0.7	air + N ₂	0	close to saturation	ambient	2 orifices		
	UKAEA	Cr/Ni	0.06	air + steam	0.25 - 0.96	ambient	ambient	4 orifices (downco-		
	UKAEA	I ₂ vapour		air and/or	0 - 1	ambient	ambient	4 orifices		
	 			steam				(downco- mers)		
	DOSEI-	I ₂ vapour		N ₂	0	ambient	ambient	-single orifice		
	<u></u>									
			h-h-							
			第	2 表 実	颗結朱 					
	Exp	eriments		Species teste	d	D	F range			
	AC	E		Mn I			11 - 260 47 - 1500			
	E	PRI		DOP Csl. TeO.			6 - 12	· ·		
				Sn		11	10 - 6800			
	G	E		Eu ₂ O ₃		68	8 - 2900			
	JAE	RI		DOP		10	0 - 150			
	LACE-	España		CsI		10	6 - 3000			
	UK	AEA		Ni/Cr		1:	5 - 1680			
	POSE	IDON		I ₂ I ₂		2(4 - 240 0 - <u>300 0</u> 00	!		
	* Only one	test performed	l.							

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	4 原子炉格納容器内での除去効果について		・記載方針の相違
			【東海第二】
	MAAPにおけるエアロゾルに対する原子炉格納容器内の除		島根2号炉も除去効果
	去効果として、沈着、サプレッション・プールでのスクラビ		をMAAP内で考慮し
	ング及びドライウェルスプレイを考慮している。また、沈着		ており,解析コードで
	については、重力沈降、拡散泳動、熱泳動、慣性衝突、核分		説明している通りであ
	裂生成物(以下「FP」という。)ガス凝縮/再蒸発で構成さ		る。また、沸騰による
	れる。(「重大事故等対策の有効性評価に係るシビアアクシデ		スクラビングへの影響
	ント解析コードについて」の「第5部 MAAP」(抜粋)参		については,有効性評
	照)		価の補足説明資料 13 で
			説明している。
	「重大事故等対策の有効性評価に係るシビアアクシデント解		
	析コードについて」の「第5部 MAAP」(抜粋)		
	(2) F P の状態変化・輸送モデル		
	高温燃料から出た希ガス以外のFPは雰囲気の温度に依存して凝固し、エアロゾ		
	ルへ変化する。気相及び液相中のFPの輸送においては、熱水力計算から求まる体		
	積流量からFP輸送量を計算する。FPがガス状とエアロゾル状の場合は、気体の 流れに乗って 原子恒圧力容異内と原子恒格納容異内の条部に輸送される 水プー		
	ル上に沈着したFPの場合は、区画内の水の領域間の移動に伴って輸送される。ま		
	た, 炉心あるいは溶融炉心中のFPの場合は, 溶融炉心の移動量に基づいて輸送さ		
	れる。		
	FPの輛送モアルは上述の仮定に基ついており、炉心燃料から放出されてから原 子炬格納容器に到達する経路としては 次のとおりである 燃料から原子炉圧力容		
	器内に放出されたFPは、原子炉圧力容器破損前にはLOCA破損口あるいは逃が		
	し安全弁から原子炉格納容器へ放出される。また、原子炉圧力容器破損後には原子		
	炉圧力容器破損口若しくは格納容器下部に落下した溶融炉心からFPが原子炉格納 空間、 乾燥をたて、 減減、 完全なまるがでた場合になった。		
	容器へ放出される。逃がし安全弁を通じて放出されたFPはスクラビンクによって サプレッション・チェンバ液相部へ移行する 原子恒格納容器の気相部へ放出され		
	たFPは、気体の流れに伴って原子炉格納容器内を移行する。		
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	原子炉圧力容器及び原子炉格納容器内での気体,エアロゾル及び構造物表面上(沈		・記載方針の相違
	着)の状態間の遷移を模擬している。原子炉格納容器内のFP輸送モデル概要を図		【東海第二】
	3.3-15 に示す。		鳥根2号炉も除去効果
	エアロゾルの沈着の種類としては、重力沈降、拡散泳動、熱泳動、慣性衝突、F		あんとう の の の の の 水
	Pガス凝縮, F Pガス再蒸発を模擬している。なお, 沈着したエアロゾルの再浮遊		をMAAP内で考慮し
	は考慮していない。 重力対路は Stakesの重力対路式とSmalushamaki 古田式 (エアロゾルの対役公本		ており,解析コードで
	重力に降な、Stokesの重力に降くるmonuchowski力性ス(エアログルの極佳力和 に対する保存式)の解から得られる無次元相関式を用いて 浮游するエアロゾル質		説明している通りであ
	量濃度から沈着率を求める。なお、Smoluchowski 方程式を無次元相関式としている		る。また、沸騰による
	のは解析時間短縮のためであり、この相関式を使用したMAAPのモデルは様々な		スクラビングへの影響
	実験データと比較して検証が行われている。		についてけ 古劫州 証
	拡散泳動による沈着は、水蒸気凝縮により生じる Stefan 流(壁面へ向かう流体力		
	学的気流)のみを考慮して沈着率を求める。		価の補足説明資料13で
	熱泳動による沈着は、Epsteinのモデルを用い、沈着面での温度勾配による沈着速		説明している。
	度及び沈着率を求める。		
	慣性衝突による沈着は、原子炉格納容器内でのみ考慮され、流れの甲にある構造		
	初に、 流緑から外れたエノロクルが個矢するものと似たし、 礼有平は重力化降の場合と同様に Smoluchowski 方程式の解から得られる無次元相関式を用いて求める		
	FPガスの凝縮は、FPガスの構造物表面への凝縮であり、雰囲気中の気体状F		
	P圧力がFP飽和蒸気圧を超えると構造物表面への凝縮を計算する。		
	5-66		
	F P ガスの 再 蒸発は、 凝縮と 逆であり、 気体状 F P の 圧力が F P の 飽 和 蒸気 上を		
	▶回ると、 ※充か起こると 仮定している。 ▼アロゾルのプール水によるスクラビング用色による除土効果の取り扱いに問う。		
	エノロノルのノールホによるスタノビンク残家による歴云効末の取り扱いに関しては スクラビングによる除染係数(DF)を設定し、エアロゾル除去効果が計算さ		
	れる。DFの値は、クエンチャ、垂直ベント、水平ベントの3つの種類のスクラビ		
	ング機器に対し,詳細コード SUPRA ^[9] を用いて,圧力,プール水深,キャリアガス		
	中の水蒸気質量割合,プール水のサブクール度及びエアロゾル粒子径をパラメータ		
	として評価した結果を内蔵しており、これらのデータから求める。		
	また、格納容器スプレイによるFP除去も模擬しており、スプレイ液滴とエアロ		
	ゾルとの衝突による除去率を衝突効率、スプレイの液滴径、流量及び落下高さから		
	計算する。		
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	1. 沈着及びドライウェルスプレイによる除去効果		・記載方針の相違
	沈着及びドライウェルスプレイによる除去効果を確認するた		【東海第二】
	め,感度解析を行った。解析結果を第 4-1 図に示す。なお,		島根2号炉も除去効果
	感度解析では、以下の式により原子炉格納容器内の除去効果		をMAAP内で考慮し
	(除染係数(以下「DF」という。))を算出している。		ている。東海第二は個別
			の除去効果に関する感
	原子炉格納容器内DF=原子炉格納容器内へのCsI放出割		度解析を実施。
	合/ベントラインから大気へのC s I 放出割合		
	S/C ベント		
	1.0E+07		
	1.0E+06 -		
	1.0E+05		
	↓ 1.0E+04		
	Ŭ QØ 105-03		
	1.0E+02		
	1.0E+01 -		
	1.0E+00 0 5 10 15 20 25 30 35 40 45 50		
	第4-1図 エアロソルに対する原子炉格納容器内の除去効果		
	(感度解析結果)		
	第4-1図より、全除去効果を考慮したベースケースにおける		
	DF (10 ⁶ オーダー) との比較から、重力沈降のDFは 10^{3} 程		
	度, ドライウェルスプレイのDFは10~10 ² 程度であることが		
	わかる。これより、重力沈降及びドライウェルスプレイ両方		
	によるDFは 10 ⁴ ~10 ⁵ 程度となるため,エアロゾルに対する		
	原子炉格納容器内の除去効果は重力沈降及びドライウェルス		
	プレイの影響が大きいと考える。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	2. サプレッション・プールでのスクラビングによる除去		・資料構成の相違
	効果		【東海第二】
	(1) スクラビング効果について		島根 2 号炉は有効性評
	スクラビングは、エアロゾルを含む気体がプール内に移行す		価補足説明資料「13.
	る場合、気泡が分裂しながら上昇していく過程においてエア		サプレッション・チェ
	ロゾルが気泡界面に到達した時点で水に溶解して気体から除		ンバのスクラビングに
	去される現象である。スクラビングにおけるエアロゾル除去		よるエアロゾル捕集効
	のメカニズムは、プールへの注入時の水との衝突や気泡がプ		果」にて記載
	ール水中を上昇していく過程における慣性衝突等が考えられ		
	る。		
	(2) MAAP解析上の扱いについて		
	スクラビングによる除去効果について、MAAP解析ではス		
	クラビング計算プログラム(SUPRAコード)により計算		
	されたDF値のデータテーブルに、プール水深、エアロゾル		
	の粒子径、キャリアガス中の水蒸気割合、格納容器圧力及び		
	サプレッション・プールのサブクール度の条件を補間して求		
	めている。		
	SUPRAコードでは、スクラビングに伴う初期気泡生成時		
	及び気泡上昇時のエアロゾルの除去効果をモデル化してお		
	り、気泡挙動(気泡サイズ及び気泡上昇速度)、初期気泡生成		
	時のDF,気泡上昇時のDFを評価式により与えている。第4		
	-2 図に、気泡中のエアロゾルが気泡界面に到達するまでの過		
	程を示す。気泡上昇時における各過程の除去速度を評価する		
	ことでエアロゾルのDFを与えている。		
	熱泳動 ブラウン拡散		
	重力沈降 (慣性沈着) 対流沈着 拡散泳動,対流沈着		
	第4-2図 スクラビングによるエアロゾル捕集効果		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	(3) SUPRAコードによる計算結果と実験結果の比較に		・資料構成の相違
	ついて		【東海第二】
	SUPRAコードによる計算結果については、電力共同研究		島根 2 号炉は有効性評
	※1にて実験結果との比較検討が行われている。試験条件及		価補足説明資料「13.
	び試験装置の概要を第 4-1 表及び第 4-3 図に示す。また,		サプレッション・チェ
	試験結果を第4-4図から第4-10図に示す。		ンバのスクラビングに
	試験結果より、SUPRAコードによる計算結果と実験結果		よるエアロゾル捕集効
	について、キャリアガス流量等のパラメータ値の増減による		果」にて記載
	DF値の傾向は概ね一致していることを確認した。		
	また, 粒径 µmまでの粒子について, SUPRAコード		
	による計算結果が実験結果より小さいDF値を示しており,		
	保守的な評価であることを確認した。		
	一方, 粒径 µmの粒子について, SUPRAコードによ		
	る計算結果が実験結果より大きいDF値を示しているが、こ		
	れは実験とSUPRAコードで用いている粒子の違い(実		
	験:LATEX粒子(密度 g/cm ³),SUPRAコード:C		
	s O H (密度 g/cm ³) が影響しているためである。S U		
	PRAコードの計算結果を密度補正※2した第4-7図及び第		
	4-9 図では、SUPRAコードによる計算結果は実験結果よ		
	り概ね小さいDF値を示すことが確認できる。		
	以上より, SUPRAコードにより計算されたDF値を用い		
	ることは妥当と考える。		
	※1 共同研究報告書「放射能放出低減装置に関する開発研		
	究」(PHASE2)最終報告書 平成5年3月		
	※2 実験ではLATEX粒子を用いているため、その粒径は		
	となる。一方, SUPRAコードで		
	はCsOHの粒径を基にしているため、粒径に粒子密度		
	(g/cm ³)の平方根を乗じることによりに		
	換算する。		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)		東海第二発電所(2018.9.	18版)		 〔子力発電所 2号炉	備考
				第4-1表 試験条件				・資料構成の相違
			[Paramoter	Standard	Range		【東海第二】
				ratawetet	Value	Mange		島根 2 号炉は有効性評
			Geometric property	scrubbing depth (meters)	15 2.7	1~15 0~3.8		価補足説明資料「13.
			Hudnoullic	pool water temperature (°C)	80	20~110		サプレッション・チェ
			property	steam fraction (vol.%)	50	0~80		ンハのスクフヒンクに
			Aerosol	particle dismeter (µm)	0.21~1.1	0.1~1.9		よるエノロノル 抽果 効 果」にて記載
			property	DEBLECTION NOZZLE 第4-3 図 試験装置の	LATEA	LAIEA.USI		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・資料構成の相違
			【東海第二】
			島根 2 号炉は有効性評
			価補足説明資料「13.
			サプレッション・チェ
			ンバのスクラビングに
			よるエアロゾル捕集効
			果」にて記載
	第4-4図 キャリアガス流量に対するDFの比較		
	第4-5図 ブール水温に対するDFの比較		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20	版) 東海第二発電所(2018.9.18版)	島根原子力発電所 2号
	第4-6図 水蒸気割合に対するDFの比較	
	第4-7図 水蒸気割合に対するDFの比較(密度補正)	

炉	備考
	・資料構成の相違
	【東海第二】
	島根 2 号炉は有効性評
	価補足説明資料「13.
	サプレッション・チェ
	ンバのスクラビングに
	よるエアロゾル捕集効
	果」にて記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
	第4-8図 スクラビング水深に対するDFの比較	
	第4-9図 スクラビング水深に対するDFの比較(密度補正)	

炉	備考
	・資料構成の相違
	【東海第二】
	島根 2 号炉は有効性評
	価補足説明資料「13.
	サプレッション・チェ
	ンバのスクラビングに
	よるエアロゾル捕集効
	果」にて記載

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
					・資料構成の相違
					【東海第二】
					島根 2 号炉は有効性評
					価補足説明資料「13.
					サプレッション・チェ
					ンバのスクラビングに
					よるエアロゾル捕集効
					果」にて記載
			第 4-10 図 ガス温度に対するDFの比較		
			(4) 沸騰による除去効果への影響について		
			「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破		
			損)」の代替循環冷却系を使用できない場合における事故シー		
			ケンスでは,第4-11図のとおり,格納容器圧力逃がし装置		
			による格納容器減圧及び除熱の実施に伴いサプレッション・		
			プールは飽和状態(沸騰状態)になるため、サプレッション・		
			プールの沸騰による除去効果への影響を確認した。MAAP		
			解析条件及び評価結果を第4-2表及び第4-3表に示す。な		
			お、エアロゾルの粒径については、スクラビング前後でそれ		
			ぞれ最も割合の多い粒径について除去効果への影響を確認し		
			た。その結果、第4-3表のとおり沸騰時の除去効果は非沸騰		
			時に比べて小さいことを確認した。		
			ただし、「雰囲気圧力・温度による静的負荷(格納容器過圧・		
			過温破損)」の代替循環冷却系を使用できない場合における事		
			故シーケンスでは、第 4-12 図のとおり、原子炉圧力容器内		
			のCs-137は、大破断LOCAにより生じた破断口より格納		
			容器内気相部へ移行し、その後重力沈降等により、事象発生5		
			時間程度で大部分が原子炉格納容器内液相部へ移行するた		
			め、本評価においてサプレッション・プールの沸騰による除		
			去効果の減少の影響はほとんどないと考える。		
			なお, C s I , C s OHの沸点はそれぞれ 1,280℃, 272.3℃		
			以上※2であり、シビアアクシデント時に原子炉格納容器内		
			でCsI,CsOHが揮発することは考えにくいが、サプレ		
			ッション・プールの沸騰に伴い液相部中のCsI, CsOH		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	の一部が気相部へ移行する可能性がある。ただし、その場合		・資料構成の相違
	でも、ドライウェルから格納容器圧力逃がし装置を介した場		【東海第二】
	合のC s -137 放出量(事象発生 7 日間で約 18TBq)に包絡さ		島根 2 号炉は有効性評
	れると考えられる。		価補足説明資料「13.
	※2 化合物の辞典 髙本 進・稲本直樹・中原勝儼・山﨑 昶		サプレッション・チェ
	[編集] 1997年11月20日		ンバのスクラビングに
			よるエアロゾル捕集効
			果」にて記載
	100 80 常設低圧代替注水系ボンブを用いた代替格納容器スプレイ冷却系(常設)による格納 容器冷却操作(約3.9時間)に伴うサブクール度の低下 サ 60 ウ 10 ウ 10 ク 10 レ 10 皮 10 水 10 ウ 10 レ 10 レ <td< th=""><th>3</th><th></th></td<>	3	
	第 4-11 図 サプレッション・プールのサブクール度の推移		
	第 4-2 表 評価条件		
	項目 評価条件※ 選定理由		
	蒸気割合 % ウェルにおける蒸気割合(約)		
	55%) 113 格納容器ベント実施前の格納容		
	格納容器圧力 kPa [gage] 器圧力 (400kPa [gage] ~465kPa		
	[gage])相当 サプレッション・プール 事機では水深 3m 以上のため 設		
	水深		
	サブクール度 回回回 DC 飽和状態として設定(設定下限)		
	エアロゾルの粒径(半径) エアロゾルの粒径(半径) スクラビング前において、最も 割合が多い粒径 エアロゾルの粒径(半径) エクラビング後において、最も 割合が多い粒径		
	※ SUPRAコードにより計算されたデータテーブルの設定値を採用		
	※SUPRAコードにより計算されたデータテーブルの設定		
	値を採用		

炉	備考		
	・資料構成の相違		
	【東海第二】		
	島根 2 号炉は有効性評		
	価補足説明資料「13.		
	サプレッション・チェ		
	ンバのスクラビングに		
	よるエアロゾル捕集効		
	果」にて記載		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東流	毎第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
				・資料構成の相違
	10 中央制御室換务	気系フィルタ内放射性物質からの被ばくに		【東海第二】
	ついて			島根2号炉の中央制御
				室換気系フィルタは,
	中央制御室換気系フィルタの近傍には、中央制御室チェン			廃棄物処理建物2Fに
	ジングエリアがあるため、フィルタ内に付着した放射性物質			設置されており、中央
	からのガンマ線に起因する運転員の身体の汚染検査等に伴う			制御室チェンジングエ
	被ばく線量を評価した。			リアに対し十分な距離
				や遮蔽が期待できるた
	1. 考慮する線源			め、影響はない。
	格納容器ベント実施に伴い放出される放射性物質のうち希			
	ガス類はフィルタ装置に取り込まれず、中央制御室換気系の			
	粒子用高効率フィルタ及びよう素チャコールフィルタ内には			
	放射性物質が取り込まれる。			
	取り込まれる放射	付性物質のうち、炉心の著しい損傷が発生		
	した場合の大気放出量は第 10-1 表のとおりであり,希ガス			
	類及びよう素類の放出割合が大きい。したがって、よう素チ			
	ャコールフィルタに取り込まれたよう素が支配的な線源とな			
	る。			
	上記のことから、よう素チャコールフィルタ内のよう素に			
	起因するガンマ線による影響を評価した。			
	なお、よう素チャコールフィルタに流入するよう素は、そ			
	の全量がフィルタ内に取り込まれるものとし、よう素はフィ			
	ルタ内に一様に分布するものとした。			
	第10-1表 炉心の著しい損傷が発生した場合の大気放出量			
		大気放出量 (Bq)		
	希ガス類	約 9.0×10 ^{1 8}		
	よう素類	約 1.0×10 ¹⁶		
	СѕОН類	約 3.8×10 ^{1 3}		
	S b 類	約 4.5×10 ^{1 2}		
	T e O ₂ 類	約 3.7×10 ^{1 3}		
	SrO類	約 2.0×10 ^{1 3}		
	ВаО類	約 2.0×10 ^{1 3}		
	M o O 2 類	約 6.9×10 ^{1 2}		
	C e O ₂ 類	約 4.3×10 ^{1 2}		
	L a 2 O 3 類	約 1.2×10 ^{1 2}		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考	
--------------------------------	--	--------------	------------	
			・資料構成の相違	
	2. 評価点		【東海第二】	
	チェンジングエリアの中でよう素フィルタに最も近い点を		島根2号炉の中央制御	
	評価点として選定した。線源と評価点との位置関係を第10-1		室換気系フィルタは,	
	図に示す。		廃棄物処理建物2Fに	
			設置されており、中央	
			制御室チェンジングエ	
			リアに対し十分な距離	
			や遮蔽が期待できるた	
	134.5		め、影響はない。	
	₩AI197 ₩~~4137 ₩			
	North And			
	第10-1 図 線源,チェンジングエリア及び評価点の位置関係			
	3. 評価コード			
	評価コードはQAD-CGGP2Rコードを用いた。			
	評価点における空間線量率の推移を第 10-2 図に示す。チ			
	ェンジングエリア内の線量率は最大で約0.4mSv/hである。			
	1E+00			
	ei 1E-01 樹			
	$1E-02 \begin{array}{c c c c c c c c c c c c c c c c c c c $			
	事故後の経過時間(h)			
	第10-2 図 チェンジングエリアの空間線量率の推移			

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)		東海第二	発電所	(2018.9	. 18版)			島根原子力発電所 2	号炉	備考
											・資料構成の相違
	1	3 運転	員の勤務体系に	ついて							【東海第二】
	炉	心の著	しい損傷が発生	した場	合の中央	制御室	居住性評	価に			島根2号炉は通常の勤
	*	ける直	交替の考慮は,	実態の難	勤務形態	(5直2	交替)に	基づ			務形態である4直2交
	te de la constante	設定し	た。被ばく評価	におい	ては,事	故期間	中に被は	ミくの			代を仮定して評価を行
	累	響が大	きくなる期間に	,勤務	スケジュ	ール上	,最も長	- く滞			っている
	右	する場	合を想定し評価	を行っ	た。また	, 班当	たりの紡	量が			
	青	iくなる	場合には、被は	くの平	準化のた	め日勤	業務の班	が交			
	権	するも	のとし評価を行	った。							
		(1) 中央	中制御室居住性語	F価で想	定する糞	防務形態					
	初	ぼく評	価の勤務形態に	ついて	は、事故	期間中	に放出さ	れる			
	龙	射性物	質が多くなる格	·納容器·	ベント実	施時及	び換気系	が停			
		こしてい	る事故発生直後	が被ば	くの影響	の大き	くなるこ	とか			
	Ę	,勤務	スケジュール上	,最も	滞在時間	が長く	なる場合	·を想			
	兌	し設定	した。								
	赵	定する	勤務体系は第 1	3-1 表	に示すと	おりで	ある。ま	た,			
	事	故発生	直後に滞在して	いる班	(A班)	は,線	量が高く	なる			
	2	とから	,被ばくの平準	化のため	わ,2日目	目以降は	, A班の)代わ			
	Ŷ	に日勤	業務の班(E班)が滞在	至するも	のとし評	平価を行	った。			
	t _c	お,入	退域時の被ばく	評価に	ついては	、入退	域(片道	i) に			
	Ŷ	要な時	間を 15 分とし評	平価を行	った。						
			第 13-1 著	表 想定	ミする勤務	务体系					
				中央	い制御室	の滞在日	時間				
			1直		8:00~	21:45					
			2 直		21:30	~8:15					
			日勤業務		_	_					
			1日日 2日日	3日目	4日目	5日目	6日目	7日目			
	-	A班	1直								
		B班		1直	1直		2 直	2 直			
	-	C班 D班	2直	9 直		1直	1直	1 直			
		E 班	1直	2 円	2直	2直					
		I									

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			・資料構成の相違
	① 格納容器ベント実施時に滞在時間が最長となる場合		【東海第二】
	格納容器ベント実施時はベント放出による被ばくの影響が大		島根2号炉は通常の勤
	きくなることから、ベント実施直前に交替し、ベント実施時		務形態である4直2交
	に中央制御室の滞在時間が最長となる場合(E班がベント実		代を仮定して評価を行
	施時に滞在する場合)を想定し、以下の勤務スケジュールで		っている
	評価を行った。		
	イベント ▽炉心損傷発生 ▽格納容器ペント		
	経過時間 (h) 0 18 19 時刻 14:00 21:30 8:00 21:30 1直 A班 E班 1 2直 C班 D班		
	②事故発生直後に滞在時間が最長となる場合		
	事故発生直後(事象発生から2時間)は換気系が停止してい		
	ることから被ばくの影響が大きくなることから、事故発生時		
	に父替し、事故発生直後に甲央制御室の滞在時間が最長とな		
	る場合(A班が事故発生直後に滞在する場合)を想定し、以		
	下の勤務スクシュールで評価を行った。		
	イベント ▽炉心損傷発生 ▽格納容器ペント 経過時間(h) 0 19 時刻 8:00 21:30 1直 A班 E班 2直 C班 D班		
	(2) 中央制御室居住州証価に係る被げく証価結果		
	(2) 下天前御主店にほけ個に広る彼はくけШ柏木 (1) で相定した勤務スケジュールにおける独げく評価結果に		
	(1) てぶたした動物バノジェールにおける彼は、11 Ш相木に ついて格納容器ベント実施時に滞在時間が最長とたろ場合を		
	第 13-2 表及び第 13-3 表に 事故発生直後に滞在時間が最		
	長とかろ場合を第 13-4 表及び第 13-5 表示す。この結果		
	最も被ばく線量が大きくなるのは、事故発生直後に滞在時間		
	が最長となる場合のA班であり、実効線量は約 60mSy となっ		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.9.18版)			島根原子力発電所 2号炉	備考
						・資料構成の相違
	第 1	3-2 表 格納容器ベント実施時に滞在時間	が最長	となる		【東海第二】
	場合	の被ばく評価結果(マスクを考慮)				島根2号炉は通常の勤
				(mSv)		務形能である4直2交
			1			代を仮定して評価を行
	A	1日目 2日目 3日目 4日目 5日目 6日目	7日目	合計		
	班 班	J 5. 9×10 ¹		約 5.9×10 ¹		2(1)2
	班 C	約 1.3×10 ¹ 約 9.9×10 ⁰ 約 5.7×10 ⁰	約 4.8×10	約 3.4×10 ¹		
	近 班	シンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシン		約 3.7×10 ¹		
	近 班	約 1.5×10 ¹ 約 1.1×10 ¹	約 7.8×10	約 3.4×10 ¹		
	班			約 6.0×10 ¹	-	
	第 1 場合 (マ	3-3 表 格納容器ベント実施時に滞在時間 の最大の線量となる班(E班)の被ばく評(スクを考慮)	が最長 価結果の	となる り内訳		
		被ばく経路	実効線	-		
		①建屋からのガンマ線による被げく	(mSv) 約45×	$\frac{10^{-1}}{10^{-1}}$		
		②大気中へ放出された放射性物質のガンマ	亦J 1. 0 八	101		
	中央	線による被ばく	ボJ 1.4 ×	10 -		
	制御室	 ③室内に外気から取り込まれた放射性物質 による被ばく 	約 1.3×	10 ¹		
	内化	(内訳) 内部被ばく	約 2.2×	10 ⁰		
	業時	外部被はく の大気中へ放出され、地表面に注着した放射	約 1.0×	10 1		
	Led .	世物質のガンマ線による被ばく	約 4.9×	10 ⁰		
		小 計 (①+②+③)	約 3.2×	10 ¹		
		④建屋からのガンマ線による被ばく	約 5.9×	10 ⁻¹		
	7	 ⑤大気中へ放出された放射性物質による彼 ばく 	約 1.8×	10 ⁻²		
	退城	(内訳)内部被ばく	約 4.6×	10 ⁻³		
	時	外部被ばく ⑤大気中へ放出され、地表面に注差した放射	約 1.3×	10 ⁻²		
		世物質のガンマ線による被ばく	約 2.7×	10 ¹		
		小 計 (④+⑤)	約 2.7×	10 1		
		合 計 (①+②+③+④+⑤)	約 6.00	< 10 ¹		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.9.18	3版)	島根原子力発電所 2号炉	備考
					・資料構成の相違
	第 13	-4表 事故発生直後に滞在時間が最長	長となる場合の被ばく		【東海第二】
	評価	結果(マスクを考慮)			島根2号炉は通常の勤
	H I IMA		(mS _V)		惑派 単うが 高志二市 シゴン 惑形能である4直9 な
					協力感でのる手直之文
	A	1 日目 2 日目 3 日目 4 日目 5 日目	6日目 7日目 合計	_	れを仮定して評価を打
	班 班) 6. 0×10 ¹	約 6.0×10		っている
	班	約 1.2×10 ¹ 約 9.3×10 ⁰	約 5.5×10°約 2.7×10°約 3.0×10		
	U 班	1 4. 0×10 ¹ 約 7. 5×10 ⁰	約 6. 2×10 ⁰ 約 5. 4×10		
	D 班	約 1.4×10 ¹ 約 1.0×10 ¹	約 5.2×10 ⁰ 約 2.9×10)1	
	E 班	約 2.4×10 ¹ 約 8.0×10 ⁰ 約 6.6×10 ⁰	約 3.9×10		
	ktr 1 0		ミレムス旧人の目しの		
	■ 用 13		そとなる場合の最大の		
	線量	となる班			
	(A	班)の被ばく評価結果の内訳(マスク を	を考慮)		
			実効線量		
		被ばく経路	(mSv)		
		①建屋からのガンマ線による被ばく	約 7.8×10 ⁻¹		
	中	②大気中へ放出された放射性物質のガンマ	約 9.6×10 ⁻¹		
	央制	③室内に外気から取り込まれた放射性物質			
	御室	による被ばく	約 4.6×101		
	内作	(内訳) 内部被ばく	約 4.0×10 ¹		
	業	外部被はく の大気中へ放出され 地表面に沈差した放射	新 5.3×10°		
	ьд	性物質のガンマ線による被ばく	約 4.7×10 ⁰		
		小 計 (①+②+③)	約 5.2×10 ¹		
		④建屋からのガンマ線による被ばく	約 2.6×10 ⁻¹		
		(5)大気中へ放出された放射性物質による被 / パイ	約 6.9×10 ⁻³		
	入退	(内訳) 内部被ばく	約 1.3×10 ⁻³		
	域時	外部被ばく	約 5.6×10 ⁻³		
		⑤大気中へ放出され,地表面に沈着した放射 性物質のガンマ絶に上ろ被げく	約 8.0×10 ⁰		
		小計(④+5)	約 8.3×10 ⁰		
		合計(①+②+③+④+⑤)	約 6.04×10 ¹		
	1				

ŧ	とめ資料比較表〔59条 補足説明資料 59-12 非常用ガス処理系にテ	<u>実線</u> 流入する水素濃度について〕	・・ <u>設備運用又は体制等の相</u> ・・記載表現,設備名称の相	<u>違(設計方針の相違)</u> <u>違(実質的な相違なし)</u>
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所	2 号炉	備考
59-12 非常用ガス処理系に流入する水素濃度について		<u>59-12</u> 非常用ガス処理系に流入する	<u>か水素濃度について</u>	・記載方針の相違 【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
非常用ガス処理系に流入する水素濃度について	非常用ガス処理系に流入する水素濃度について	
1. 概要	1. 概要	
重大事故等時に非常用ガス処理系(以下「 <u>SGTS</u> 」という)に流	重大事故等時に非常用ガス処理系(以下「SGT」という)に流入	
入する水素濃度を、保守的な条件での物質収支計算により評価す	する水素濃度を,保守的な条件での物質収支計算により評価する。	
る。		
2. 評価	2. 評価	
水素濃度の評価方法を以下に示す。計算結果は保守側に処理し	水素濃度の評価方法を以下に示す。計算結果は保守側に処理し	
た値を記載している。	た値を記載している。	
なお、評価モデル(概念図)を図 59-12-1, 評価に用いた条件	なお,評価モデル(概念図)を図 59-12-1,評価に用いた条	
を表 59-12-1 に示す。	件を表 59-12-1 に示す。	
・原子炉格納容器(以下「PCV」という)から原子炉建屋へ漏えい	・原子炉格納容器(以下「PCV」という)から <u>原子炉建物</u> へ漏えい	
する気体の条件として, PCV内の環境が最も厳しくなる事故シナ	する気体の条件として, PCV内の環境が最も厳しくなる事故シナ	
リオを包絡した温度、圧力、水素量及び格納容器漏えい率を想	リオを包絡した温度、圧力、水素量及び格納容器漏えい率を想	
定し、次式によりPCV から <u>原子炉建屋</u> への漏えい量W _{pcv} [m ³ /s]を	定し,次式によりPCV から <u>原子炉建物</u> への漏えい量W _{pev} [m ³ /s]を	
評価する。	評価する。	
$\gamma = P_{rev} T_{systs}$ 1.5 721 350.15	$W_{pcv} = \Theta_{2F} \times V_{pcv} \frac{\gamma}{100 \cdot 24} \frac{P_{pcv}}{T_{nev}} \frac{I_{sgt}}{P_{oct}}$	
$W_{pev} = V_{pev} \times \frac{\gamma}{100 \times 24 \times 3600} \times \frac{\gamma}{T_{pev}} \times \frac{\gamma}{P_{sgts}} = 13310 \times \frac{\gamma}{100 \times 24 \times 3600} \times \frac{\gamma}{473.15} \times \frac{\gamma}{101.325}$	200 2 r pcv sgt	
$= 0.0122 [m^3 / s]$		
・SGTS 起動前は、PCV から漏えいしたガスは全て原子炉建屋オペ	・SGT 起動前は、PCV から漏えいしたガスは全て原子炉建物2階	
レーティングフロア内にとどまるものと仮定し、次式により原	にとどまるものと仮定し、次式により原子炉建物2階の水素濃	
子炉建屋オペレーティングフロア内の水素濃度 αμμ[%]を評価	度 $\alpha_{\rm hom}$ [%]を評価する。	
$D \rightarrow V / T$	$P_{pcv}V_{pcv}$	
$\alpha_{h_{-}rb} = \alpha_{h_{-}pcv} \times \frac{T_{pcv} \times V_{pcv}/T_{pcv}}{P \times V_{-}/T} \times \frac{\gamma}{100 \times 24 \times 3600} \times T_1 \times 60$	$\alpha = \Theta \times \alpha = \frac{\overline{T_{pcv}}}{\gamma} \cdot X$	
$721 \times 13310/473$ 15 1 5	h_2F $2F$ h_pcv $\frac{P_{2F}V_{2F}}{T_{2F}}$ $100 \cdot 24$	
$= 33 \times \frac{121 \times 12010}{101.325 \times 36100/350.15} \times \frac{110}{100 \times 24 \times 3600} \times 30 \times 60$	-21	
= 0.03[%]		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
・SGTS 起動後は、PCV から原子炉建屋に漏えいした気体は全て直		・SGT 起動後は, PCV から <u>原子炉建物</u> に漏えいした気体は全て直	
接SGTS に流入するものとし, SGTS の吸込流量が合計で		接 <u>SGT</u> に流入するものとし, <u>SGT</u> の吸込流量が合計で <u>4,400m³/h</u>	・設備の相違
<u>2000m³/h</u> (定格流量)となるように <u>原子炉建屋オペレーティン</u>		(定格流量)となるように <u>原子炉建物2階</u> からの流入量を設定	【柏崎 6/7】
グフロアからの流入量を設定する。PCV 内と原子炉建屋オペレ		する。PCV 内と原子炉建物2階内の水素濃度から、次式により	設備仕様の相違
ーティングフロア内の水素濃度から,次式により <u>SGTS</u> に流入す		SGT に流入する水素濃度 $\alpha_{h_{sgt}}$ [%]を評価する。	
る水素濃度 a _{h_sgts} [%]を評価する。			
$W_{} \times \alpha_{+} + (W_{} - W_{}) \times \alpha_{+-+} = 0.0122 \times 33 + (0.556 - 0.0122) \times 0.03$			
$\alpha_{h_sgts} = \frac{-\frac{1}{Pev} - \frac{1}{m_{-}Pev} + \frac{1}{m_{sgts}}}{W_{sgts}} = \frac{0.0122 \times 0.0122 \times 0.0122 \times 0.0012}{0.0556}$		$W_{pcv} \cdot \alpha_{h PCV} + (W_{sgt} - W_{pcv}) \cdot \alpha_{h 2F}$	
= 0.8[%]		$\alpha_{h_{sgt}} = \frac{W_{sgt}}{W_{sgt}}$	

柏崎刈羽原	子力発電	所 6/	7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)		島根原	〔子力発電所 2	号炉
原子/Pは 原子 で で し た ア に 月 に 子 点 に 子 点 に 子 に 、 で 点 で 、 で 、 で 、 で 、 で 、 で 、 で 、 で 、 で	置 ティングフロア m ³] Pa] K] (m ³] 満えい率: γ_{pc} (*) [[Pa] 濃えい率: γ_{pc} (*) [[K] : $\alpha_{k,pcx}$ (*)	۵/day]	7 ₃₈₉ -W _{pee} [m ³ /s]	SGTS 吸込量:W _{upb} [m ³ /s] 圧力:P _{ipp} [Pa] 温度:T _{ep} [K] 水泰濃度:a _{k_kpp} [-]		2階 容積: V _{2F} [m ³] 圧力: P _{2F} [Pa] 温度: T _{2F} [K] 水素濃度: α _{b_2F} [-] PCV 容積: V _{pcv} [m ³] 格納容器漏えし ³ 圧力: P _{pcv} [Pa] 温度: T _{pcv} [Pa] 温度: T _{pcv} [Fa] 水素濃度: α _{h_pcv} [-	<u>α</u> :γ[%/day]	W _{sgt} W _{pcv} [m ³ /h W _{pcv} [m ³ /hr]	SGT 吸込量:W _{sgt} [m ³ /hr] 圧力:P _{sgt} [Pa] 温度:T _{sgt} [K] 水素濃度: α _{h_sgt} [-]
	図 5	9-12-1	評価モデ	ル			図 59-	-12-1 評価モ	デル
	<u>表</u> 59-11	<u>2-1</u> 評	価に用いた	こ条件		Ę	表 <u>5</u> 9-12	<u>-1</u> 評価に用い	いた条件
パラメータ	記号	値	単位	備考		パラメータ	記号	値 単位	備考
CV 容積	$V_{\rm pcv}$	13310	m ³	設計値		逃がし安全弁搬出ハッ			-
内圧力	$P_{\rm pev}$	721	kPa[abs]	PCV 限界圧力		チの周長割合	$\Theta_{_{2\mathrm{F}}}$		
内温度	$T_{\rm pev}$	473.15	К	PCV 限界温度		PCV 容積	$V_{\rm pev}$	12,600 m ³	設計値
漏えい率				上記の圧力・温度に基づく		PCV 内圧力	$\mathbf{P}_{\mathrm{pev}}$	954.504 kPa[abs]	PCV 限界圧力
	γ	1.5	%/day	漏えい率に余裕をみた値		PCV 内温度	$T_{\rm pev}$	473.15 K	PCV 限界温度
子炉建屋オペレーテ	V	26100		低減率 0.85 として算出し		PCV 漏えい率		1.2 V/day	上記の圧力・温度に基づく
グフロア内体積	V _{rb}	36100	m	た容積			γ	1.3 %/day	漏えい率に余裕をみた値
予炉建屋オペレーテ	р	101 325	kPa[abs]	大気圧		原子炉建物2階体積	V	3902 7 m ³	低減率 0.85 として算出し
グフロア内圧力	rb rb	101.020	M a [ab3]				v _{rb}	5502.1 m	た容積
子炉建屋オペレーテ	Τ.	350.15	К	重大事故等時に想定して		原子炉建物2階圧力	Ρ.	101.325 kPa[abs]	大気圧
ングフロア内温度	rb	000.10	11	いる温度			* rb	Tollogo malaob)	
Ⅴ 内水素濃度				燃料有効部被覆管が全て		原子炉建物2階温度	T.,	339.15 K	重大事故等時に想定して
	α.	33	%	ジルコニウム-水反応し			- rb		いる温度
	tt h_pev	00	70	た場合の水素量発生を想		PCV 内水素濃度			燃料有効部被覆管が全て
				定(約1600kg)			α.	17 %	ジルコニウム-水反応し
S 吸込流量	$W_{ m sgts}$	0. 556	m³/s	設計値 (定格流量)			h_pcv	/*	た場合の水素量発生を想
S 内圧力	$\mathrm{P}_{\mathrm{sgts}}$	101.325	kPa[abs]	大気圧					定(約 1000kg)
TS 内温度				原子炉建屋オペレーティ		SGT 吸込流量	$W_{ m sgt}$	4400 m ³ /h	設計値 (定格流量)
	$\mathrm{T}_{\mathrm{sgts}}$	350.15	К	ングフロア内空気を吸い		SGT 内圧力	$P_{\rm sgt}$	101.325 kPa[abs]	大気圧
				込むため同温を想定		SGT 内温度	т	339 15 K	原子炉建物2階空気を吸
GTS 起動時刻	Τ ₁	30	min	想定起動時刻			1 _{sgt}	555.15 K	い込むため同温を想定
	•	•		·		SGT 起動時刻	Х	1 h	想定起動時刻

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
3. 評価結果		3. 評価結果	
SGTS 起動前はPCV からの漏えいにより原子炉建屋オペレーテ		SGT 起動前はPCV からの漏えいにより原子炉建物2階の水素濃	
<u>イングフロア内</u> の水素濃度が上昇するが, SGTS 起動直前における		度が上昇するが, <u>SGT</u> 起動直前における <u>2階</u> の水素濃度は <u>0.02%</u>	・評価結果の相違
原子炉建屋オペレーティングフロア内の水素濃度は0.03%程度と		程度となった。その値をもとに <u>SGT</u> に流入する水素濃度を評価し	【柏崎 6/7】
なった。その値をもとに <u>SGTS</u> に流入する水素濃度を評価した結		た結果, <u>約0.03%</u> となり,保守的な条件においても水素が燃焼する	
果,約0.8%となり、保守的な条件においても水素が燃焼する濃度		濃度である4%を十分に下回ることを確認した。	
である4%を十分に下回ることを確認した。			
4. 解析条件の変化による影響の考察		4. 解析条件の変化による影響の考察	
(1) <u>SGTS</u> 起動時刻		(1) <u>SGT</u> 起動時刻	
<u>SGTS</u> 起動時刻の感度評価として, <u>40分後</u> に起動した場合を想定		<u>SGT</u> 起動時刻の感度評価として, <u>70分後</u> に起動した場合を想定	・運用の相違
する。 <u>SGTS</u> 起動時刻は <u>SGTS</u> 起動前までに <u>原子炉建屋オペレーティ</u>		する。 <u>SGT</u> 起動時刻は <u>SGT</u> 起動前までに <u>原子炉建物2階</u> に溜まる水	【柏崎 6/7】
ングフロア内に溜まる水素量に影響するが、 <u>40分</u> に後ろ倒しした		素量に影響するが, <u>70分</u> に後ろ倒しした場合でも <u>原子炉建物2階</u>	有効性評価における
場合でも原子炉建屋オペレーティングフロア内の水素濃度は		<u>のSGT吸込口に流入する</u> 水素濃度は <u>0.04%</u> にしかならず,影響は微	SGT 起動時間の相違
<u>0.03%</u> にしかならず,影響は微少である。		少である。	により, 想定時間が異
			なる
			・評価結果の相違
			【柏崎 6/7】
(2)水素発生量		(2)水素発生量	
水素発生量の感度評価として、炉心内全ジルコニウム反応相当		水素発生量の感度評価として、炉心内全ジルコニウム反応相当	
量の水素(約3,600kg)が発生した場合を想定すると,PCV 内の水素		量の水素(<u>約2,500kg</u>)が発生した場合を想定すると,PCV 内の水素	・設備の相違
発生量はベースケースと比べて <u>3,600kg/1,600kg=2.25倍</u> となる。		発生量はベースケースと比べて <u>2,500kg/1,000kg=2.5倍</u> となる。 更	【柏崎 6/7】
更に, PCV 内の亜鉛及びアルミニウムの反応による水素(<u>約239kg</u>)		に, PCV 内の亜鉛及びアルミニウムの反応による水素(<u>約469kg</u>)	燃料装荷量並びに PC
の発生を想定すると、PCV 内の水素発生量はベースケースと比べ		の発生を想定すると, PCV 内の水素発生量はベースケースと比べ	Ⅴ 内グレーチング及
て <u>3,839kg/1,600kg=2.4倍</u> となる。その他の条件は同一と仮定し,		て <u>2,969kg/1,000kg≒3倍</u> となる。その他の条件は同一と仮定し,	び保温材の量の相違
SGTS 起動時点の原子炉建屋オペレーティングフロア内の水素濃		SGT 起動時点の原子炉建物2階の水素濃度は小さいことを踏まえ	により,水素発生量が
度は小さいことを踏まえると, SGTS に流入する水素濃度はベース		ると, <u>SGT</u> に流入する水素濃度はベースケースと比べて <u>3倍</u> とな	異なる
ケースと比べて <u>2.4倍</u> となり, <u>0.8×2.4=約1.9%</u> となる。		り, <u>0.03×3=約0.09%</u> となる。	・評価結果の相違
			【柏崎 6/7】
(3)蒸気濃度		(3)蒸気濃度	
蒸気濃度の感度評価として、原子炉建屋オペレーティングフロ		蒸気濃度の感度評価として,原子炉建物2階の湿度が100%の状	
ア内の湿度が100%の状況を想定すると、原子炉建屋オペレーティ		況を想定すると, <u>原子炉建物2階</u> の温度が <u>66℃</u> ,湿度100%の時の	・設備の相違
<u>ングフロア内</u> の温度が <u>77℃</u> ,湿度100%の時の蒸気濃度は <u>約41%</u> と		蒸気濃度は <u>約26%</u> となる。 <u>SGT</u> 内が完全ドライ条件となると仮定し	【柏崎 6/7】
なる。 <u>SGTS</u> 内が完全ドライ条件となると仮定して計算すると,水		て計算すると,水素濃度はベースケースと比べて <u>1/(1-0.26)=1.36</u>	事故時条件の相違に
素濃度はベースケースと比べて <u>1/(1-0.41)=1.7倍</u> となり, <u>0.8×</u>		<u>倍</u> となり, <u>0.03×1.36=約0.041%と</u> なる。	より,事故時想定環境
1.7=約1.4%となる。			が異なる
			・評価結果の相違
			【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(4) <u>SGTS</u> 吸込流量		(4) <u>SGT</u> 吸込流量	
SGTS 吸込流量の感度解析として、仮に流量が1 割低下した場合		SGT 吸込流量の感度解析として,仮に流量が1 割低下した場合	
を想定した場合において、 SGTS に流入する水素濃度はベースケ		を想定した場合において、 <u>SGT</u> に流入する水素濃度はベースケー	
ースと比べて1/0.9=1.1倍となり, <u>0.8×1.1=約0.9%</u> となる。		スと比べて1/0.9=1.1倍となり, <u>0.03×1.1=約0.033%</u> となる。	
			・評価結果の相違
			【柏崎 6/7】
(5)PCV 漏えい率		(5)PCV 漏えい率	
PCV 漏えい率の感度解析として,2倍(<u>3.0%/day</u>)となった場合		PCV 漏えい率の感度解析として,2倍(<u>2.6%/day</u>)となった場合	
を想定すると, SGTS に流入する水素濃度はベースケースと比べて		を想定すると, SGI に流入する水素濃度はベースケースと比べて2	・設備の相違
2倍となり, <u>0.8×2=約1.6%</u> となる。		倍となり, <u>0.03×2=約0.06%となる</u> 。	【柏崎 6/7】
			PCV 圧力,ガス組成等
			の相違により,算出さ
			れる漏えい率が異な
			3
			・評価結果の相違
上記のとおり、解析条件の変化による影響を考慮しても、水素		上記のとおり、解析条件の変化による影響を考慮しても、水素	【柏崎 6/7】
濃度が4%を下回ることを確認した。しかし,(2)~(5)の結果と組		濃度が4%を下回ることを確認した。さらに、(2)~(5)の結果と組	
み合わせると、0.8%×2.4×1.7×1.1×2=約7.2%となり、水素濃度		み合わせたとしても, 0.03%×3×1.36×1.1×2=約0.27%となり,	
が4%を上回る。このようにPCV から顕著な水素が確認された場合		水素濃度が4%を下回るため,燃焼に至らないことを確認した。	・評価結果の相違
は, SGTS を使用せずに静的触媒式水素再結合器により水素を処理			【柏崎 6/7】
するため、問題になることはない。			
以上			

まとめ資料比較表〔59条 補足説明資料 59-13 非常用ガス処理系の系統内における水素の滞留について〕

59-13 非常用が不処理系の系統内における水素の特徴について	59-13 非常用ガス処理系の系統内における水茶の滞留について 59-13 非常用ガス処理系の系統内における水茶の滞留について [東海第二]

<u>実線</u>・・<u>設備運用又は体制等の相違(設計方針の相違)</u>

波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版) 島根原子力発電所 2号炉	備考
非常用ガス処理系の系統内における水素の滞留について	非常用ガス処理系の系統内における水素の滞留について	
非常用ガス処理系は,設置許可基準規則第59条に対応するた	非常用ガス処理系は,設置許可基準規則第59条に対応するため,	
め,原子炉建屋の換気を行うことにより、炉心の著しい損傷が発	原子炉建物の換気を行うことにより、炉心の著しい損傷が発生し	
生した場合の中央制御室の運転員の被ばくの低減を目的として使	た場合の中央制御室の運転員の被ばくの低減を目的として使用す	
用するが、その際、原子炉格納容器から漏えいする水素を系統内	るが、その際、原子炉格納容器から漏えいする水素を系統内に持	
に持ち込む可能性がある。	ち込む可能性がある。	
このため、「水素爆発による当該原子炉建屋等の損傷を防止す	このため、「水素爆発による当該原子炉建屋等の損傷を防止す	
るための設備」に準じ、非常用ガス処理系が「動的機器等に水素	るための設備」に準じ、非常用ガス処理系が「動的機器等に水素	
爆発を防止する機能をつけること」を満足していることを、下記	爆発を防止する機能をつけること」を満足していることを、下記	
のとおり評価した。	のとおり評価した。	
(1) 非常用ガス処理系運転時の水素爆発防止機能	(1) 非常用ガス処理系運転時の水素爆発防止機能	
非常用ガス処理系は、以下に記載する機能を有しており、水素	非常用ガス処理系は、以下に記載する機能を有しており、水素	
排出設備を設置する場合の要求事項である「動的機器等に水素爆	排出設備を設置する場合の要求事項である「動的機器等に水素爆	
発を防止する機能」を満足していると考える。	発を防止する機能」を満足していると考える。	
① 非常用ガス処理系は, 乾燥装置, 排風機, フィルタ装置, 及	① 非常用ガス処理系は、排気ファン、前置ガス処理装置、後置	
びこれらをつなぐダクトで構成されている。本系統は水素が	ガス処理装置及びこれらをつなぐダクトで構成されている。	
滞留しないよう排風機により強制的に水素を含む気体を屋外	本系統は水素が滞留しないよう排気ファンにより強制的に水	
に排出する設計としている。	素を含む気体を屋外に排出する設計としている。	
② 非常用ガス処理系は, <u>原子炉建屋内</u> の水素を含む気体を排出	② 非常用ガス処理系は, <u>原子炉建物内</u> の水素を含む気体を排出	
し,原子炉建屋内の水素濃度を可燃限界未満とすることで,	し,原子炉建物内の水素濃度を可燃限界未満とすることで,	
原子炉建屋及び非常用ガス処理系の水素爆発を防止する機能	原子炉建物及び非常用ガス処理系の水素爆発を防止する機能	
を有している。	を有している。	
③ 原子炉格納容器から <u>原子炉建屋</u> への漏えい率を <u>1.5%/day</u> と	③ 原子炉格納容器から <u>原子炉建物</u> への漏えい率を <u>1.3%/day</u> と	・設備の相違
し、原子炉建屋内の静的触媒式水素再結合装置(PAR)に期待	し,原子炉建物内の静的触媒式水素処理装置(PAR)に期待せ	【柏崎 6/7】
せず,非常用ガス処理系を起動する際の原子炉建屋内の水素	ず、非常用ガス処理系を起動する際の原子炉建物内の水素濃	PCV 圧力,ガス組成等の
濃度を評価した結果,水素濃度は <u>0.03vol%</u> 程度であり,可燃	度を評価した結果,水素濃度は <u>0.02vol%</u> 程度であり,可燃限	相違により,算出される
限界未満である。	界未満である。	漏えい率が異なる
		・評価結果の相違
		【柏崎 6/7】
④ 全交流動力電源喪失時にも,電源復旧後,中央制御室での遠	④ 全交流動力電源喪失時にも,電源復旧後,中央制御室での遠	
隔操作により代替交流電源設備を起動させることにより, <u>約</u>	隔操作により代替交流電源設備を起動させることにより, <u>約</u>	・運用の相違
<u>30分</u> で非常用ガス処理系を起動する手順を整備している。	60分で非常用ガス処理系を起動する手順を整備している。	【柏崎 6/7】
		有効性評価における
		SGT 起動時間の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
⑤ 原子炉格納容器から <u>原子炉建屋</u> への漏えい率を <u>1.5%/day</u> と		⑤ 原子炉格納容器から <u>原子炉建物</u> への漏えい率を <u>1.3%/day</u> と	・設備の相違
し, <u>原子炉建屋内の静的触媒式水素再結合装置(PAR)</u> に期待		し, <u>原子炉建物内の静的触媒式水素処理装置(PAR)</u> に期待し	【柏崎 6/7】
しない場合において、事故後の平衡状態における原子炉建屋		ない場合において、事故後の平衡状態における原子炉建物内	PCV 圧力, ガス組成等の
内及び非常用ガス処理系内の水素濃度を評価した結果,非常		及び非常用ガス処理系内の水素濃度を評価した結果,非常用	相違により,算出される
用ガス処理系内の水素濃度は最大で <u>0.8vol%</u> 程度であり,可燃		ガス処理系内の水素濃度は最大で <u>0.03vol%</u> 程度であり,可燃	漏えい率が異なる
限界未満である。		限界未満である。	・評価結果の相違
			【柏崎 6/7】
⑥ 非常用ガス処理系は,重大事故後の平衡状態において水素濃		⑥ 非常用ガス処理系は,重大事故後の平衡状態において水素濃	
度が可燃限界未満であることから、水素爆発をすることなく		度が可燃限界未満であることから、水素爆発をすることなく	
起動・運転することが可能である。		起動・運転することが可能である。	
これら①~⑥の状況から,非常用ガス処理系の運転時について		これら①~⑥の状況から,非常用ガス処理系の運転時について	
は、水素爆発を防止する機能を有していると評価できる。		は、水素爆発を防止する機能を有していると評価できる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(2) 非常用ガス処理系停止後の水素滞留の防止		(2) 非常用ガス処理系停止後の水素滞留の防止	
非常用ガス処理系は、原子炉格納容器の破損により、原子炉建		非常用ガス処理系は、原子炉格納容器の破損により、原子炉建	
屋オペレーティングフロアへの水素漏えい量が増加し、可燃限界		<u>物へ</u> の水素漏えい量が増加し,可燃限界に達する恐れがある場合	
に達する恐れがある場合等に、停止操作を実施する。非常用ガス		等に、停止操作を実施する。非常用ガス処理系を停止する際には、	
処理系を停止する際には、原子炉建屋オペレーティングフロア内		原子炉建物内の水素濃度が、可燃限界未満の状態において停止す	
の水素濃度が、可燃限界未満の状態において停止する。このため、		る。このため、系統の停止後、系統内に水素が残留した場合にお	
系統の停止後、系統内に水素が残留した場合においても、系統の		いても、系統の出入口に設置された隔離弁が閉鎖するため、水素	
出入口に設置された隔離弁が閉鎖するため、水素が系統内に追加		が系統内に追加で供給されることはなく、水素濃度は流入時の濃	
で供給されることはなく、水素濃度は流入時の濃度を上回ること		度を上回ることはないと考えられる。	
はないと考えられる。		このため、系統内に残留した水素が可燃限界以上の濃度になる	
このため、系統内に残留した水素が可燃限界以上の濃度になる		ことはなく、着火することはないと考える。	
ことはなく、着火することはないと考える。		以上	
以上			

まとめ資料比較表〔59条 補足説明資料 59-14 原子炉建物ブローアウト閉止装置について〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18)	島根原子力発電所 2号炉	備考
		59-14 原子炉建物ブローアウトパネル閉止装置について	 ・記載方針の相違 【柏崎 6/7】 島根 2 号炉はブローア ウトパネル閉止装置に 関する設計方針を記載 ・資料構成の相違 【東海第二】 東海第二は補足説明資 料 59-9 原子炉制御室 について(被ばく評価除 く) 3.7 ブローアウト パネルに係る設計方針 に記載しておりここで
			は当該部分のみ再掲

<u>実線</u>・・<u>設備運用又は体制等の相違(設計方針の相違)</u>

波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18)	島根原子力発電所 2号炉	備考
	<u>3.7</u> ブローアウトパネルに係る設計方針	1ブローアウトパネルに係る設計方針	
	(1) ブローアウトパネル閉止装置	(1) ブローアウトパネル閉止装置	
	原子炉建屋外側ブローアウトパネルの開放状態で炉心損傷	原子炉建物の二次格納施設を構成するブローアウトパネル	
	した場合、各開口部に対応するブローアウトパネル閉止装置	の開放状態で炉心損傷した場合,原子炉棟内に設置する各開	・設備の相違
	を速やかに閉止し、原子炉建屋の気密性が確保できる設計と	口部に対応するブローアウトパネル閉止装置を速やかに閉止	【東海第二】
	する。	し、原子炉建物の気密性が確保できる設計とする。	島根2号炉は原子炉
			棟内に閉止装置を設置
			する。
	気密性の高いJIS等級(A4等級)の <u>建具</u> を用いること	気密性の高いJIS等級(A4等級)の気密性を有するダ	・設備の相違
	で、閉止時には原子炉建屋の負圧を確保する。また、遠隔及	<u>ンパ</u> を用いることで, 閉止時には <u>原子炉棟</u> の負圧を確保する。	【東海第二】
	び手動による閉止機能を設置することにより、万一、電源が	また、遠隔及び手動による閉止機能を設置することにより、	島根2号炉はダンパ
	ない状態でも閉止機能を維持する設計とする。なお、閉止機	万一,電源がない状態でも閉止機能を維持する設計とする。	タイプの閉止装置を設
	能は、以下のとおりである。詳細は、今後の詳細設計にて決	なお、閉止機能は、以下のとおりである。詳細は、今後の詳	置する(以下,④の相違)
	定する。	細設計にて決定する。	
	・遠隔閉止: <u>電動扉方式</u> (SA電源負荷)	・遠隔閉止: <u>電動駆動方式</u> (SA電源負荷)	・設備の相違
	・手動閉止: <u>スライド扉にワイヤを取付け,これをウィン</u>	・手動閉止:駆動部に設置するハンドルを操作することで	【東海第二】
	<u>チで牽引することで閉止</u>	閉止	島根2号炉の閉止装
	ブローアウトパネル閉止装置の概要図を <u>第3.7-1図</u> に示	ブローアウトパネル閉止装置の概要図を図59-14-1に示	置はダンパタイプのた
	す。	す。	め,東海第二の扉タイプ
	※1 A4等級: JIS A1561に規定される気密性等級線に	※1 A 4 等級: J I S A 1561 に規定される気密性等級線に合致	と作動機構が異なる
	合致する気密性能を有するもの	する気密性能を有するもの	
	外側		
	原子炉建屋 第止装置		
	ブローアウト		
	フローアウト 閉止装置		
	AT I		
	落下防止 電券飛来物		
	チェーン防護対策		
	閉止装置		
	第3.7-1図 ブローアウトパネル閉止装置 概要図	図 59-14-1 原子炉建物燃料取替階ブローアウトパネル 概要	・設備の相違
			【東海第二】
			④の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18)	島根原子力発電所 2号炉	備考
	(2) 竜巻飛来物防護対策		・設備の相違
	ブローアウトパネル閉止装置の開閉機能及び原子炉建屋外		【東海第二】
	側ブローアウトパネルの開放機能に干渉しないように、防護		島根2号炉はブロー
	ネット(40mmメッシュ)を設置する。防護ネットは, 原子炉		アウトパネル閉止装置
	建屋外側ブローアウトパネル正面のみならず、上下左右にも		を原子炉棟内に設置す
	設置し、極力、原子炉建屋外壁との間隙を防護する設計とす		るため, 屋外に設置され
	る。なお、詳細は、今後の詳細設計にて決定する。		ている竜巻防護ネット
			への干渉はない
	(3) ブローアウトパネル強制開放装置		・設備の相違
	原子炉建屋内側から、油圧ジャッキにより原子炉建屋外		【東海第二】
	側ブローアウトパネルを強制的に開放する装置を設置す		島根2号炉はブロー
	る。油圧配管は、屋内に敷設し、屋外に設置する油圧発生		アウトパネル閉止装置
	装置と接続する。また,開放機構を原子炉建屋内に設置し,		を原子炉棟内に設置し,
	ブローアウトパネル閉止装置及び竜巻飛来物防護対策の防		ブローアウトパネルの
	<u>護ネットとの干渉を回避する設計とする。なお、作動液も</u>		開閉状態に関わらず閉
	含め,詳細は,今後の詳細設計にて決定する。		止動作が可能であるた
	<u>油圧ジャッキ設置イメージを第3.7-2図に, ブローアウ</u>		め,ブローアウトパネル
	トパネル開閉前後イメージを第3.7-3図に示す。		閉止装置の関連設備と
			して強制開放装置は設
			置しない
	原ナ炉建屋内側 クリック フローアウトハネル		
	2494		
	油圧配管		
	11 11		
	第3.7-2図 油圧ジャッキ設置イメージ		

柏崎刈羽原子力発電所 6/7号炉 ((2017.12.20版)	東海第二発電所(2018.9.18)	島根原子力発電所 2号炉	備考
		内側 外側 内側 外側 海田田 第下防止 第下防止 第下防止 プローアウト パネル 防護対策 「第下防止 プローアウト パネル 第正配置 第下防止 第二日 第二日 第二日 第二日 第二日 第二日 第二日 第二日		
		 第3.7-3図 ブローアウトパネル開閉前後イメージ (4) ブローアウトパネル開閉状態表示 原子炉建屋外側ブローアウトパネルの各パネルにはリミットスイッチを設置し、開放したパネルを中央制御室にて特定できる設計とする。なお、詳細は、今後の詳細設計にて決定する。 ブローアウトパネル開閉状態表示の概要図を第3.7-4図に示す。 		・設備の相違 【東海第二】 ブローアウトパネル 閉止装置は炉心損傷時 等に閉止する判断基準 としており,既設ブロー アウトパネルの開閉状 態に関わらないため,開 放状態表示は設置しな
		アウトパネルの開放検知 第フラウトパネルの開放検知 レリシャトスイッチ デデザルボー 単 レリシットスイッチ エテザルボー 単 レリシットスイッチ エテザルボー 単 レーングローブウトパネルの開放検知 エテザルボー 単 正面図 第3.7-4図 ブローアウトパネル開閉状態表示 概要図		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18)	島根原子力発電所 2号炉	備考
		(5) ブローアウトパネル閉止装置開閉状態表示	(2) ブローアウトパネル閉止装置開閉状態表示	
		ブローアウトパネル閉止装置について <u>も</u> リミットスイッチ	ブローアウトパネル閉止装置についてリミットスイッチを	
		を設置し, <u>スライド扉</u> の開閉状態を中央制御室にて特定でき	設置し, <u>ダンパ</u> の開閉状態を <mark>中央制御室</mark> にて特定できる設計	・設備の相違
		る設計とする。なお、詳細は、今後の設計により決定する。	とする。なお、詳細は、今後の設計により決定する。	【東海第二】
		ブローアウトパネル閉止装置開閉状態表示の概要を第3.7	ブローアウトパネル閉止装置開閉状態表示の概要を図59-	④の相違。
		<u>5図</u> に示す。	14-2に示す。	
		リミットスイッチ スライド扉の開閉検知 リミットスイッチ スライド扉建具 スライド扉建具 スライド扉建具 スライド扉 ブローアウト パネル間口部 スライド扉		
			図59-14-2 ブローアウトパネル閉止装置開閉状態表示 概要	
		第3.7-5図 ブローアウトパネル閉止装置開閉状態表示 概要図	X	
			【参考】原子炉建屋気密性確保の成立性について	
		【参考】原子炉建屋気密性確保の成立性について	ブローアウトパネル閉止装置には, JISA1516「建具の気	
		ブローアウトパネル閉止装置には, JISA1516「建具の気	密性試験方法」の気密性等級線A4等級 <u>を満足</u> する <u>ダンパ</u> を設	・設備の相違
		密性試験方法」の気密性等級線A4等級 <u>に合致</u> する <u>扉</u> を設置す	置することにより、原子炉棟の気密性を確保する。なお、以下	【東海第二】
		ることにより、原子炉建屋の気密性を確保する。なお、以下に	に示すように、A4等級 <u>を満足するダンパ</u> の許容漏えい量と <u>非</u>	島根2号炉はA4等
		示すように、A4等級 <u>の扉</u> の許容漏えい量と <u>原子炉建屋ガス処</u>	<u>常用ガス処理系</u> の排気容量から, <u>原子炉棟</u> 気密性が確保できる	級以上の気密性とな
		<u>理系</u> の排気容量から, <u>原子炉建屋</u> 気密性が確保できることを以	ことを以下に確認した。なお、詳細は、今後の詳細設計にて決	る可能性があるため,
		下に確認した。なお、詳細は、今後の詳細設計にて決定する。	定する。	適切な記載とする。④
			◆設計上の気密要求である圧力差 63Pa [gage] において, A	の相違
		◆設計上の気密要求である圧力差 63Pa [gage] において,	4 等級ドア 1m ² 当たりの通気量は, 12.6m ³ /h	
		A 4 等級ドア 1m ² 当たりの通気量は, 12.6m ² /h	◆ブローアウトパネル <u>閉止装置</u> の開口面積合計は,約32m ²	・設備の相違
		◆ブローアウトパネル <u>12枚</u> の開口面積合計は、 <u>186.51</u> m ⁻	◆ブローアウトパネルが全て開放し、当該パネル全てを再閉 3	【東海第二】
		◆フローアワトパネル12枚が全て開放し、当該パネル全てを	止した後の1h当たりの通気量は,約 <u>403.2m[°]/h</u>	BOP 闭止装置開口面
		再閉止した後の 1h 当たりの通気量は、 $2,350.02$ m /h	◆SGTの排風機の容量は、 <u>4,400m</u> /h であり、上記の通気量 たまたくしまわえ (しひに色広ませば マヤ)	植及び SGI 谷重の相
		◆SGTSの排風機の容量は、 <u>3,570</u> m /h であり、上記の通		
		気重を入さく上よわる。(十分に負圧達成かり能) へん飲知豆ノノーごた第2.7 c回に 「一家放知娘回 (人人飲)	気密寺被線図(A4等赦)を図59-14-3に示す。	
		A4 守		
		1次/ で 売3.1~1凶に小 9。		
				1

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18)	島根原子力発電所 2号炉	備考
		File 第3.7-6図 A4等級扉イメージ 第3.7-7図 気密等級線図(A4等級)	(III) STB98000 (IIII) STB98000 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
			図 59-14-3 気密等級線図(A 4 等級)	
				・資料構成の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18)	島根原子力発電所 2号炉	備考
		2. ブローアウトパネル関連設備の要求機能について	【柏崎 6/7】
		(1) ブローアウトパネル関連設備の要求機能について	【東海第二】
		ブローアウトパネル関連設備(原子炉建物燃料取替階ブロー	島根2号炉はブロー
		アウトパネル (以下,「オペフロBOP」という。),主蒸気管ト	アウトパネル関連設
		ンネル室ブローアウトパネル(以下、「MSトンネル室BOP」	備の要求機能につい
		という。),原子炉建物燃料取替階ブローアウトパネル閉止装置	て記載
		(以下,「オペフロBOP閉止装置」という。))について,要求	
		事項を整理する。	
		(2) オペフロBOPの要求事項	
		a. 開放機能	
		オペフロBOPは、主蒸気配管破断(以下、「MSLBA」	
		という。)を想定した場合の放出蒸気による圧力から原子炉建	
		物及び原子炉格納容器等を防護するため、放出蒸気を建物外	
		に放出することを目的に設置されている。このため、オペフ	
		ロBOPには、建物の内外差圧により自動的に開放する機能	
		が必要である。	
		設計基準対象施設であるオペフロBOPは,待機状態(閉状	
		態)にて, 基準地震動Ssにより開放機能を損なわないように	
		する必要があるため,基準地震動Ssに対する耐震健全性(建	
		物躯体の健全性)を確保する設計とする。また,設計竜巻によ	
		り開放機能を損なわないようにする必要があるが、設計竜巻	
		は,その発生頻度が非常に小さく,設計基準事故との重畳は,	
		判断基準の目安となる10-7回/年を下回り十分小さいこと,	
		プラント運転中又は停止中の設計竜巻を想定してもプラント	
		停止及び冷却に必要な設備は確保でき原子炉安全に影響しな	
		いことから、安全上支障のない期間に補修が可能な設計とす	
		ることで安全機能を損なわない設計とする。	
		重大事故等対処設備であるオペフロBOPは、格納容器バ	
		イパス(インターフェイスシステムLOCA)(以下, 「IS	
		LOCA」という。)の発生を想定した場合の発生箇所を隔離	
		するための操作等の活動ができるよう、所定の時間内に原子	
		炉棟内の圧力及び温度を低下させるため、確実に開放する必	
		要がある。	
		ISLOCA発生時においては,原子炉格納容器外かつ原	
		子炉棟内で低圧設計配管が破断することを想定しているた	
		め,原子炉棟内で瞬時に減圧沸騰して大量の水蒸気が発生し,	
		原子炉棟内の圧力が急上昇することとなる。このため、外気	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18)	島根原子力発電所 2号炉	備考
		との差圧(設計圧力 5.95kPa 以下)により,燃料取替階に設置	
		したオペフロBOPが自動的に開放し、原子炉棟内を減圧す	
		る設計とする。	
		また, ISLOCA発生時においては, 基本的に中央制御	
		室で隔離弁を閉操作するが、万が一、中央制御室から操作で	
		きない場合には、現場で隔離弁を操作することとしている。	
		なお,開放したオペフロBOPの開口面(全面)を経由して外	
		気と熱交換が行われることにより原子炉棟内でも人力でIS	
		LOCA発生箇所を隔離するための隔離弁が操作可能とな	
		る。重大事故等対処設備であるオペフロBOPは、待機状態	
		(閉状態)にて,基準地震動Ssにより開放機能を損なわない	
		ようにする必要があるため,基準地震動Ssに対する耐震健	
		全性(建物躯体の健全性)を確保する設計とする。	
		スペノロBOPは、上記(1)の開放機能を満足させるに	
		め、原于炉棟外壁に設直しており、原子炉棟の壁の一部であ	
		ることから、2次格納施設のハワンダリとしての機能維持か	
		必要じめる。 このため、記計其進出免状況でするよう。マラロのDは、休	
		このにめ、設計基準対象施設であるオヘノロBOPは、付換小鉄(間小鉄)にて、甘渡地震動のによりなかけたかい	
		機状態(闭状態)にく,基準地震動SSにより2次格納施設と	
		してのハリンタリ機能を損なわないようにする必要かめる	
		か, その一方で, 地震動により開放しないように設計する場	
		合, 本米の左上による用放機能を阻害するり能性かめる。 の 0 ~ の 亜 土 燃 他 た 老 唐 」 た 社 田 ○ 2 本 牧 她 佐 記 の ぶ ウ ン ば	
		の2つの安水機能を与慮した結末、2次俗剤施設のハリンタ	
		リ機能維持に対しては、オペノロBOPの設直日的である左	
		上による用加機能を阻害しない範囲で耐晨性を確保 り る 設計	
		とりる。具体的には原ナガ発電所順慶設計技術指針 里安度 八類、新家内力須(LEAC4001、補 1094)によれば、其準	
		$ ⑦ 頬・計谷心刀禰(JEAG4001・禰-1984)によれは、基準 毗雪和らら(c, 相火)してむ地能\mathbf{w}(記記其進事状)の組合は$	
		地展期52(55相目)と連転状態IV(設計基準事故)の組合で	
		は小安でめるか, 基準地長期SI(SC 相当)と連転状態IV(設 計其進声状)の共手の知久止は必要したれていてため、た。??	
		計基準事政)の何里の組合では必要とされているため、オペノ	
		ロ D O F は 2 (八俗称) 他 政 と し し (の ハ ワ ン グ リ 機 肥 を 有 す る に み	
		Ø,	
		地展期うなく用放しない設計とする。設計电容についくは、	
		てい取入风圧低下重かるペノロBOF開放の設計差圧より入 キノ 記載会業の存在業に上が開たの可や歴史不安なたか、	
		さく、設計电をの気圧差により開放のり能性を省定できない	
		か,設計竜香の発生頻度は非常に小さく,設計基準事故との	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18)	島根原子力発電所 2号炉	備考
		重畳は、判断基準の目安となる 10-7回/年を下回り十分小	
		さいこと、プラント運転中又は停止中の設計竜巻を想定して	
		もプラント停止及び冷却に必要な設備は確保でき原子炉安全	
		に影響しない。このため、万が一、地震や竜巻により開放し、	
		安全上支障のない期間に復旧できず,2次格納施設としての	
		バウンダリ機能が維持できない場合には、安全な状態に移行	
		(運転中は冷温停止へ移行,停止中は炉心変更又は原子炉棟内	
		で照射された燃料に係る作業の停止) することを保安規定に	
		定める。	
		(3) MSトンネル室BOPの要求事項	
		a. 開放機能	
		MSトンネル室BOPは、MSLBAを想定した場合の放	
		出蒸気による圧力から原子炉建物及び原子炉格納容器等を防	
		護するため、放出蒸気を建物外に放出することを目的に設置	
		している。このため、主蒸気系トンネル室(以下、「MSトン	
		ネル室」という。)内外の差圧(設計圧力 9.81kPa 以下)により	
		自動的に開放する機能が必要である。	
		設計基準対象施設であるMSトンネル室BOPは、待機状	
		態(閉状態)にて,基準地震動Ssにより開放機能を損なわな	
		いようにする必要があるため,基準地震動 S s に対する耐震	
		健全性(建物躯体の健全性)を確保する設計とする。	
		b. 2 次格納施設のバウンダリ機能	
		MSトンネル室BOPは、上記(1)の開放機能を満足させる	
		ため、原子炉棟のMSトンネル室に設置しており、原子炉棟	
		の壁の一部となるMSトンネル室BOPについては、2次格	
		納施設のバウンダリとしての機能維持が必要である。	
		このため、設計基準対象施設及び重大事故等対処設備であ	
		るMSトンネル室BOPは,待機状態(閉状態)にて,基準地	
		震動Ssにより2次格納施設としてのバウンダリ機能を損な	
		わないようにする必要があるが、その一方で、地震動により	
		開放しないように設計する場合、本来の差圧による開放機能	
		を阻害する可能性がある。この2つの要求機能を考慮した結	
		果,2次格納施設のバウンダリ機能維持に対しては,MSト	
		ンネル室BOPの設置目的である差圧による開放機能を阻害	
		しない範囲で耐震性を確保する設計とする。具体的には原子	
		力発電所耐震設計技術指針重要度分類·許容応力編(JEAG	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18)	東海第二発電所(2018.9.18) 島根原子力発電所 2号炉	
		4601・補-1984)によれば,基準地震動S2(Ss相当)と運転	
	状態IV(設計基準事故)の組合せは不要であるが,基準地震!		
		S1(Sd相当)と運転状態Ⅳ(設計基準事故)の荷重の組合せ	
		は必要とされているため, MSトンネル室BOPは2次格納	
		施設としてのバウンダリ機能を有するため、長期にわたり事	
		象が継続した場合も考慮し、弾性設計用地震動Sdで開放し	
		ない設計とする。	
		(4) オペフロBOP閉止装置の要求事項	
	a. 閉止機能		
		設置許可基準規則第 59条 (運転員が原子炉制御室にとどま	
		るための設備)の解釈では、「原子炉制御室の居住性を確保す	
		るために原子炉建屋に設置されたブローアウトパネルを閉止	
		する必要がある場合は、容易かつ確実に閉止操作ができるこ	
		と。また、ブローアウトパネルは、現場において人力による	
		操作が可能なものとすること。」が要求されている。	
		島根原子力発電所2号機のオペフロBOPは,構造上,開放	
		した場合には,容易に再閉止操作を行うことが困難であるた	
		め,設置許可基準規則第 59 条要求に適合させるためにオペ	
		フロBOP閉止装置を設置する。	
		このため、重大事故等対処設備であるオペフロBOP閉止	
		装置は、待機状態(開状態)にて、基準地震動Ssにより閉止	
		機能を損なわないようにする必要があるため,基準地震動 S	
		sに対する耐震健全性を確保することが必要である。	
		トの佐奴如佐乳のバウング目拠出	
		D. 2 (人俗和) 他成のパワンクリ (後眠 オペフロ P O D 閉止 壮景け、オペフロ P O D に 伴わって 頂	
		ス・シュロロ π 和正表 π に、ス・シュロロ π に、 π の π の π	
		一方、オペフロBOP閉止生置の閉機能維持が必要な状況	
		全である 設置許可其進相則第 50 条 (運転員が原子恒制御室	
		にとどまるための設備)では 7日間で 100mSy を超うない	
		とが要求されており 7日間で相定する地震動け 設置並可其	
		准相則第 30 条(地震に下ス指進の防止)で敕理するの 惑化	
		+ / パパカ の 不(地展による)頃めいり山」(世社)るこれ光生 後の最大荷重の組合社の考う方を踏まうスレ オペフロRO	
		P閉止装置が閉状能で組合せるべき地震動け磁性設計田地震	
		動 S d であるが、長期の閉止機能維持を考慮して其準地電動	
	1	2000~2011年12月11日20日1月1日の1月1日の1日日の100~100~100~10日日日	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18)	東海第二発電所(2018.9.18) 島根原子力発電所 2 号炉							
	S s とする。								
	(5) ブローアウトパネルの開放要因および閉止の必要性検討								
	ブローアウトパネルの開放要因および閉止の必要性の検討								
	結果を表 59-14-1 に, ブローアウトパネル関連設備に要求さ								
	れる機能の整理を表 59-14-2 に示す。								
	表 59-14-1 ブローアウトパネルの開放要因および閉止の必要性								
		検討							
			閉止の	l					
		開放箇所	開放要因	開放可能性	閉止の必要性検討	要否			
			有	S s 相当までの本震による全炉心損傷頻 度の累積は 3.3×10 ⁻⁷ /炉年であり, 地震		l			
			地震	(Sdを超える地震 動で開放)	によるオペフロBOPの開放が考えられ	要			
					ることから閉止する設計とする。		l		
				有	外部電源喪失が発生した場合の条件付炉				
			竜巻	(設計竜巻の差圧以	心損傷確率(7.8×10 ⁻⁺)が極めて低いこ とから, 開放しても原子炉制御室の居住	否			
		オペフロ		下で開放)	性を確保するためにオペフロBOPの閉				
		ВОР	Р	有 (設計で考慮)	止が必要となる可能性は極めて低い。 主蒸気管破断については,発生頻度,プ				
			主蒸気管破断		ラントの影響等の観点から、リスク評価	価 否 ら			
					上の重要性は低いと考え、評価対象から 除外する。				
			ISLOCA	有 (設計で考慮) 無	ISLOCAの炉心損傷頻度(3.3×10 ⁻⁹		l		
					/ 炉年)は十分低いことから,原子炉制御 室の居住性を確保するためにオペフロB	否	l		
					OPの閉止が必要となる可能性は極めて 低い。				
			地展	(Ss機能維持)	_	台			
			竜巻	無 (建物内に設置され ているため竜巻の影 	- 主蒸気管破断については,発生頻度,プ	否	l		
		MSトンネル室		習い文けない					
		ВОР	主蒸気管破断	有 (設計で考慮)	ラントの影響等の観点から、リスク評価	否	l		
					上の重要性は低いと考え,詳価対象から 除外する。		l		
				無 (101004時の		T	l		
			ISLOCA	(ISLOCA時の 流路にならない)		召			
	※閉止必要性検討にあたっては、「原子力発電所耐震設計技術指針 重要度分類・許容応力								
	編(JEAG4601・補-1984)」のスクリーニング基準である 10 ⁻⁷ /炉年を参考にした。								
							1		
							1		
							1		
							1		

$k = 59 - 14 - 2$ $\vec{J} = U - \vec{J} = U - $	
V, T_A, T_B V, T_A, T_A, T_B $V, T_B,	
Image: state	
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$(\& \& \& \Im x \otimes t)$ $(\bigcirc & 79 \times t)$ $(\& \& b i)$ $(& 28 \otimes t)$ $(& 32 \otimes t)$ $(& 32 \otimes t)$ $(& 53 \otimes $	
MSトンネ 開放機能 O - - - - $\mu^{2}SOP$ (MSLBA) (9%) (9%) (Ss) - - - - -	
$ \begin{array}{ c c c c c } MS & V & BOP \\ \hline & \nu & BOP \\ \hline & \nu & BOP \\ \hline & (MS & LBA) \\ \hline & (9 & \%) \\ \hline & (9 & \%) \\ \hline & (\gamma & \gamma & $	
バウンダリ機能	
(建屋気密性) 〇 - 〇*1	
(26条, 32条, (Sd)) (Sd) 59条) (Sd)	
A×2/1 B 府止後能 _	
和設備) (閉止後) - - - (S s) (59 条) (59 条) (S s) -*3 -*3	
パウンダリ機能 (閉止時) - - - - - (Ss) - - - - - ***	
(59条) (59条) 凡例: ○:考慮要, -:考慮不要	
注記 *1:Ssでも閉維持が可能な設計とする	
*2:オペフロBOP閉止装置は、SA緩和設備であるため共通要因故障としての考慮は不要	
*3: SA後の閉止状態での設計竜巻は,事象の重ね合わせの頻度から組合せ不要	