東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 16	別紙3.	
フレキシブルシャフトが常時接続されている状態における弁操作の詳細メカニズム	フレキシブルシャフトが常時接続されている状態における弁操作の詳細メカニズム	
隔離弁の駆動方式は, 電動(電動機による駆動)と遠隔手動(フレキシブルシャフトによる 操作)があり,これらの方式の切替えには「オートデクラッチ機構」を採用している。	隔離弁の駆動方式は,電動(電動機による駆動)と遠隔手動(フレキシブルシャフトによ る操作)があり,これらの方式の切替えには「オートデクラッチ機構」を採用している。 フレキシブルシャフトが接続されているベント弁は,通常状態においては電動側のギアが かみ合い,中央制御室からの遠隔操作によって,モータのトルクが弁棒に伝達され開閉する。	
 オートデクラッチ機構は、従来、弁駆動部のレバー操作により実施していたクラッチの切替 操作を、フレキシブルシャフトを操作することで、自動的に通常電動側にあるクラッチを手動 (人力)側に切り替えることを可能とした機構である。 また、弁駆動部に動力を伝えるためのウォームシャフト部への動力の伝達は、クラッチ機構 を採用しており、電動側又は手動側のウォームシャフト部と切り離されるため、トルク伝達に 影響を与えない構造となっている。 オートデクラッチ機構付の電動駆動弁の概要を第1図に示す。 	人力操作の際は,弁設置場所での電動/手動切替え操作が不要なオートデクラッチ機構に よりクラッチが手動操作側に切り替わることで手動側のギアがかみ合い,フレキシブルシャ フトの回転トルクが弁棒に伝達され開閉する。 なお,手動操作時に電源が復旧した際は,モータの起動により電動側のギアがかみ合い, 中央制御室からの遠隔操作が可能となる。 オートデクラッチ機構付き電気作動弁の概要を図1,電動操作,手動操作及び切替え時の 弁駆動部の状態を図2~5に示す。	
オートデクラッチ機構は、ウォームシャフトクラッチが保持される位置により、弁へのトル クの伝わり方が変動する。 電動操作時と手動操作時のオートデクラッチ機構の動作の違いについて第2図,第3図に示す。	オートデクラッチ機構は, ウォームシャフトクラッチが保持される位置により, 弁へのトルクの伝わり方が変動する。	

		備考
	設備の相違	
要		
年の神		
自動		
家 人		
精介		
す		
ア		
デ		
<u> </u>		
Ŕ		
1 X		

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
第2図 开駆動部の詳細図(電動駆動時(通常状態))	
	図2 弁駆動部の状態(電動操作時(通常状態))
第3図 弁駆動部の詳細図(手動操作時)	
	図3 弁駆動部の状態(通常状態から手動操作位置への切替え(オートデ

	Т
東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
(参考)オートデクラッチ機構の操作概要	
	図4 弁駆動部の状態(手動操作時)
	図5 弁駆動部の状態(手動操作位置から電動操作位置への自動復帰

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	

備考
1

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 17	別紙8	
ベント実施に伴うベント操作時の作業員の被ばく評価	ベント実施に伴う現場操作地点等における被ばく評価について	
ベント実施に伴うベント操作を手動で行う場合の作業員の被ばく評価を以下のとおり行った。 ベント操作としてサプレッション・チェンバ(以下「S/C」という。)からのベントを行う場合及びドライウェル(以下「D/W」という。)からのベントを行う場合のそれぞれにお ける第一弁及び第二弁の開操作時の被ばく評価を行った。	ベント実施に伴う現場作業は、放射線環境下での作業となることから、作業の成立性を確認 するために各作業場所における線量影響を評価する。 なお、中央制御室又は現場のいずれにおいても同等の操作が可能な場合については、高線量 環境が予想される現場での作業線量のみについて記載する。 線量影響の評価に当たっては、「実用発電用原子炉に係る重大事故時の制御室及び緊急時対 策所の居住性に係る被ばく評価に関する審査ガイド」(以下「審査ガイド」という。)を参照 した。ベント実施に伴うベント操作を手動で行う場合の作業員の被ばく評価を以下のとおり行 った。	
(1) 評価条件	 (1) 評価条件 <u>a. 想定シナリオ</u> <u>想定シナリオは以下のとおりとした。</u> <u>・発災プラント:2号炉</u> <u>・想定事象:冷却材喪失(大破断LOCA)+ECCS注水機能喪失+全交流動力電源</u> 喪失 <u>・以下の2ケースについて評価*1</u> <u>-W/Wベントにより事象収束に成功</u> <u>-D/Wベントにより事象収束に成功</u> 	
a. 放出量評価条件 想定事象として格納容器破損モード「雰囲気圧力・温度による静的負荷(格納容器過圧・ 過温破損)」で想定される事故シーケンスにおいて,代替循環冷却系を使用できない場合を 想定した事故シナリオを選定する。また,放出量評価条件を第1表,大気中への放出過程及 び概略図を第1図~第5図に示す。	 ※1 島根原子力発電所2号炉においては、原子炉格納容器破損防止対策に係る有効性評価における雰囲気圧力・温度による静的負荷のうち、原子炉格納容器過圧の破損モードにおいて想定している「冷却材喪失(大破断LOCA)+ECCS注水機能喪失+全交流動力電源喪失」シナリオにおいても、格納容器ベントを実施することなく事象を収束することのできる残留熱代替除去系を整備している。したがって、仮に重大事故が発生したと想定する場合であっても、第一に残留熱代替除去系を用いて事象を収束することとなる。しかしながら、被ばく評価においては、代替循環冷却に失敗することも考慮し、格納容器フィルタベント系を用いた格納容器ベントを想定する。格納容器ベントに至る事故シーケンスとしては、前述の「冷却材喪失(大破断LOCA)+ECCS注水機能喪失+全交流動力電源喪失」を選定した。なお、よう素放出量の低減対策として導入した原子炉格納容器内pH制御については、その効果に期待しないものとした。 	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
 東海第二発電所 (2018.9.18版) b. 被ばく評価条件 数ばく経路は、第6回〜第8回に示すとおり大気中へ放出される放射性物質による外部披 ばく及び内部被ばく,格納容器圧力透がし装置配管及び原子炉建屋からの直接ガンマ線等に よる外部被ばくを考慮した。 太気中へ放出される放射性物質については、第2表及び第3表に示すとおり拡散効果を考 直した。また、作業場所に流入する広射性物質による数ぱくについては、屋外の放射性物質 の濃度と作業場所の空制体積を保存したサブマージョンモデルで評価を行い、内部被ば くについては作業場所の空間体積を保存したサブマージョンモデルで評価を行い、内部被ば くについては呼吸率、線量換算係数等から評価を行った。たお、第二弁の操作においては、 空気ボンベにより加圧された待選室(塗板厚 □ コンクリート相当)内で作業することを 考慮し評価を行った。 婚約容器圧力透がし装置配管、原子炉建屋からの直接ガンマ線等による外部被ばくについ ては、第6表及び第7表に示すとおり原子炉建屋の外壁、作業場所の遮蔽壁の遮蔽効果を考 慮し評価を行った。 	島根原子力発電所 2号炉 価 ²² と同様の評価力法にて評価した。なお、D/Wベント時においては、ベントライン経由 で放出される無機よう素に対しサブレッション・ブールのスクラビング効果を見込まないも のとした。 評価結果を表1に示す。 ¥2 「59-11 原子炉制御室の居住性に係る被ばく評価について」の「添付資料 中央 制御室の居住性(炉心の著しい損傷)に係る被ばく評価について」の「添付資料 中央 制御室の居住性(炉心の著しい損傷)に係る被ばく評価について」を参照 g. 被ばく評価条件 被ばく経路の機念図を図1及び図2に示す。 大気拡散評価の主な評価法条件を表2に示す。放射性物質の大気拡散評価で用 いた放出点,評価点な除き,中央制御室の居住性(炉心の著しい損傷)に係る 被ばて評価を行してした。 放射性物質の大気拡散評価の主な評価条件を表2に示す。放射性物質の大気拡散評価で用 いた放出点,評価点な除き,中央制御室の居住性(炉心の場所とした。 放射性物質の大気拡散評価の主な評価条件を表2に示す。 放射性物質の大気拡散評価で用 いた放出点,評価点なびに評価結果を表3に示す。 辞価点は,行にまるべント操作を行う作業地点として以下の場所とした。 ・W/Wベント第一隔離弁操作位置(原子炉建物」1階) ・D/ベント第一隔離弁操作位置(原子炉建物」2階) ・第二隔離弁操作位置(原子炉建物)2階) ・第二隔離弁操作位置(代表した。 太気中への放出量及び大気拡散評価以外に関する主な評価条件を表4に示す。 格納容器ペントの実施前及び実施後における作業の作業場所を図3から図7に示す。 植物容器ペントの実施前及び実施後における作業の作業場所を図3から図7に示す。 植物容器ペントの実施前及び実施後における作業の作業場所を図3から図7に示す。 体が容易 2 い 大気社物質の気管発振弾強度、施設の位置、連載構造、評価 価点の位置等を構まえて評価した。 直接ガンマ線にこいてはQAD-CGGP2R= ードを用い、スカイシャインガンマ線にころが認てくは、事故期間中の大気中 のお灯と気が開きのたのプンマ線によるが認てくした。 たりの放射性物質からのガンマ線によるが認てく 広りの放射性物質からのガンマ線によるが認てく たりの放射性物質のたのプンマ線による形成にくは、事故期間中の大気中 のおけたちのがよきを認知した。	備考 ・設備の相違 島根2号炉は原子炉建 物の二次格納施設外で の作業実施
	 (a-2)放射性雲中の放射性物質からのガンマ線による被ばく 放射性雲中の放射性物質からのガンマ線による外部被ばくは、事故期間中の大気中への放射性物質の放出量を基に大気拡散効果を踏まえ評価した。 (a-3)放射性雲中の放射性物質を吸入摂取することによる被ばく 放射性雲中の放射性物質を吸入摂取することによる内部被ばくは、事故期間中の大気中への放射性物質の放出量及び大気拡散効果を踏まえ評価した。なお、評価に当たってはマスクの着用を考慮した。 	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	(a-4) 地表面に沈着した放射性物質からのガンマ線による被ばく	
	地表面に沈着した放射性物質からのガンマ線による外部被ばくは、事故期間中の大	
	気中への放射性物質の放出量を基に、大気拡散効果、地表面沈着効果を踏まえて評価	
	Lta	
	<u>(b)</u> 原子炉建物内での作業	
	(b-1) 原子炉建物内の放射性物質からのガンマ線による被ばく	
	原子炉建物内の放射性物質からのガンマ線による被ばくは、作業エリアの放射性物	
	質濃度が外気と同濃度 ^{*3} になると仮定し、サブマージョンモデルを用いて評価した。	
	なおサブマージョンモデルでの計算に用いる空間容積は,2号炉の一次隔離弁,二次	
	隔離弁の作業エリアの空間容積を包絡する原子炉建物西側エリアの最下階から最上階	
	までの値 m^3 を設定した。	
	(b-2) 放射性雲中の放射性物質からのガンマ線による被ばく	
	放射性雲中の放射性物質からのガンマ線による外部被ばくは、事故期間中の大気中	
	への放射性物質の放出量を基に大気拡散効果と建物による遮蔽効果を踏まえて評価し	
	1 them	
	(b-3) 原子炉建物内の放射性物質を吸入摂取することによる被ばく	
	原子炉建物内の放射性物質を吸入摂取することによる内部被ばくは、作業エリアの	
	放射性物質濃度が外気と同濃度 ^{**3} になると仮定して評価した。	
	なお、評価に当たってはマスクの着用を考慮した。	
	(b-4) 地表面に沈着した放射性物質からのガンマ線による被ばく	
	地表面に沈着した放射性物質からのガンマ線による外部被ばくは、事故期間中の大	
	気中への放射性物質の放出量を基に、建物外壁による遮蔽、大気拡散効果、地表面沈	
	着効果を踏まえて評価した。	
	(b-5) 格納容器フィルタベント系の配管内の放射性物質からのガンマ線による被ばく	
	原子炉建物内の配管内の放射性物質による作業エリアでの被ばくは、配管内の放射	
	性物質からの直接ガンマ線による実効線量を、作業エリアの位置、配管の位置と形状	
	並びに作業エリアを囲む壁等によるガンマ線の遮蔽効果を考慮し評価した。評価に当	
	たっては、QAD-CGGP2Rコードを用いた。	
	なお、格納容器フィルタベント系のフィルタ装置及び屋外の配管内の放射性物質か	
	らのガンマ線による外部被ばくは、第1ベントフィルタ格納槽躯体厚による遮蔽が十	
	分厚いことから影響は軽微であるとし、評価の対象外とした。	
	また、原子炉建物内の配管においても、配管と作業エリアとの間に十分厚い遮蔽が	
	存在する場合は、影響は軽微であるとし評価の対象外とした。	
	※3 格納容器ベント実施時に格納容器フィルタベント系排気管(EL.65m)から放出	・評価条件の相違
	されたベント流体は、熱エネルギーを持つため放出後に上昇し、さらに周囲の風	
	場の影響を受け原子炉建物から時間と共に離れていくものと考えられる。また,	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	ベント流体の放出口(EL.65m)と一次隔離弁の開操作場所(W/Wベント時:原 子炉建物1階(),D/Wベント時:原子炉建物2階(」」は少 なくとも40m程度の高低差があることから放出されたベント流体が一次隔離弁の 開操作場所に直接流入することはほとんど無いものと考えられる。このことから 一次隔離弁の開操作に伴う被ばくの評価においては、ベント流体が原子炉建物内 に流入することによる影響を考慮しないものとした。	
 c. アクセスルート及び評価地点 第一弁(S/C側)のベント操作を行う場合のアクセスルートは,第9図~第11図に示 すとおりである。第一弁(D/W側)のベント操作を行う場合のアクセスルートは,第12 図~第15図に示すとおりである。屋外移動時のアクセスルートは第16図に示すとおりであ る。第二弁のベント操作を行う場合のアクセスルートは第17図~第19図に示すとおりであ る。 評価点は,第9図~第20図に示すとおり,ベント操作時は作業場所とし,移動時はアク セスルートで被ばく評価上最も厳しい地点とする。 		
 d. 作業時間 第一弁の開操作は、ベント実施前に行うものとし、第一弁(S/C側)の作業時間は160 分(移動時間(往復)70分+作業時間90分),第一弁(D/W側)の作業時間は190分(移動時間(往復)100分+作業時間90分)とする。また、第二弁の開操作は、ベント実施直後から180分作業場所(待避室)に滞在するものとし、作業時間は410分(移動時間(往復)90分+待機時間140分+作業時間(待避室滞在)180分)とする。 	 e. 作業時間 格納容器ベントの実施前及び実施後における作業時間及び作業時間帯を表5及び図8,9 に示す。 各作業時間には,作業場所への往復時間を含めた。 各作業場所への移動中における線量率が作業場所における線量率よりも高い場所が存在する可能性があるため,各作業時間とは別に,作業場所への往路及び復路での評価を行った。 	
 (2) 評価結果 ベント実施に伴うベント操作を手動で行う場合の作業員の被ばく評価結果は以下に示すとおりであり、作業員の実効線量は緊急作業時の線量限度である100mSv以下であり、ベント実施に伴うベント操作を手動で行うことができることを確認した。また、実効線量の内訳を第8表~第10表に示す。 a. S/Cからのベント操作時の作業員の実効線量 作業員の実効線量は第一弁開操作で約37mSv,第二弁開操作で約28mSvとなった。 b. D/Wからのベント操作時の作業員の実効線量 作業員の実効線量は第一弁開操作で約52mSv,第二弁開操作で約42mSvとなった。 	 (2) 評価結果 格納容器ベント(W/Wベント)の実施前及び実施後の作業における被ばく線量の評価結果を表6に示す。また,格納容器ベント(D/Wベント)の実施前及び実施後の作業における被ばく線量の評価結果を表7に示す。 最も被ばく線量の評価結果を表7に示す。 最も被ばく線量が大きくなる作業においても約19mSvとなった。したがって,緊急時作業に係る線量限度100mSvに照らしても,作業可能であることを確認した。 なお,表6,7の評価結果は,表5に示す各作業の作業開始時間の範囲のうち,評価結果が最も大きくなる時間帯で作業を実施した場合の被ばく線量を記載しており,その他の時間帯における被ばく線量は前述の評価結果以下となる。したがって,表5に示す各作業の作業開始時間の範囲においては,いずれの時間帯においても作業可能である。 また,炉心損傷前ベント後に炉心損傷の兆候が見られた場合における隔離弁の閉操作等の作業については,当該作業に係る被ばく線量が,炉心損傷後の格納容器ベントに伴う作業時の被ばくに包含されるものと考えられるため,作業可能である。 	・評価結果の相違

東海第二発電所 (2018.9.18版)				
第1表 放出量評価条件(1/3)				
	項目	評価条件	選定理由	
	評価事象	「大破断LOCA+高圧炉心冷却失敗+低圧 炉心冷却失敗」(代替循環冷却系を使用でき ない場合)(全交流動力電源喪失の重畳を考 慮)	格納容器破損防止対 策の有効性評価で想 定する格納容器破損 モードのうち、中 制御室の員の転しくの 観点から結果が最も 厳しくなる事故シー ケンスを選定	
	炉心熱出力	3,293MW	定格熱出力	
	運転時間	1 サイクル当たり 10,000 時間(約 416 日)	1 サイクル 13 ヶ月 (395日)を考慮して 設定	
	取替炉心の 燃料装荷割合	1 サイクル: 0.229 2 サイクル: 0.229 3 サイクル: 0.229 4 サイクル: 0.229 5 サイクル: 0.084	取替炉心の燃料装荷 割合に基づき設定	
	炉内蓄積量	希ガス類 : 約2.2×10 ¹⁹ Bq よう素類 : 約2.8×10 ¹⁹ Bq CsOH類 : 約1.1×10 ¹⁸ Bq Sb類 : 約1.3×10 ¹⁸ Bq TeO2類 : 約6.7×10 ¹⁸ Bq SrO類 : 約1.2×10 ¹⁹ Bq BaO類 : 約1.2×10 ¹⁹ Bq MoO2類 : 約2.4×10 ¹⁹ Bq CeO2類 : 約7.4×10 ¹⁹ Bq La2O3類 : 約5.5×10 ¹⁹ Bq (核種ごとの炉内蓄積量を核種グループごと に集約して記載)	「単位熱出力当たり の炉内蓄積量(Bq/ MW)」×「3,293MW(定 格熱出力)」 (単位熱出力当たり の炉内蓄積量(Bq/ MW)は, BWR共通 条件として,東海約 (9×9燃料(A 型)),運転時間 (10,000時間)で算 出したABWRのサ イクル末期の値を使 用)	
	放出開始時間	格納容器漏えい:事象発生直後 格納容器圧力逃がし装置による格納容器減圧 及び除熱:事象発生から約19h後	MAAP解析結果	
	原子炉格納容器 内 p H制御の効 果	考慮しない	 サブレッション・ブ ール水内pH制御設 備は,重大事故等対 処設備と位置付けて いないため,保守的 に設定 	
	よう素の形態	粒子状よう素 : 5% 無機よう素 : 91% 有機よう素 : 4%	R.G.1.195 ^{*1} に基 づき設定	

島根原子力発電所 2号炉				備考
表1 大気中への放出放射能量(7日間積算値)(1/2)				
(W/Wベントの実施を想定する場合)				_
停止時炉内内蔵量		放出放射能量[Bq] (gross 値)		
核植類	[Bq] (gross 値)	格納容器フィルタベン	原子炉建物から大気	
		ト系を経由した放出	中への放出	
希ガス類	約 1.6×10 ¹⁹	約 5.1×10 ¹⁸	約 2.3×10 ¹⁶	
よう素類	約 2.1×10 ¹⁹	約 4.2×10 ¹⁵	約 1.9×10 ¹⁵	
C s OH類	約 8.3×10 ¹⁷	約 5.5×10 ⁹	約 3.4×10 ¹²	
S b 類	約 9.5×10 ¹⁷	約 2.2×10 ⁸	約 3.1×10 ¹¹]]
T e O ₂類	約 5.0×10 ¹⁸	約 4.2×10 ⁹	約 2.9×10 ¹²]]
S r O類	約 9.0×10 ¹⁸	約 1.6×10 ⁹	約 1.5×10 ¹²	
B a O類	約 8.8×10 ¹⁸	約 2.2×10 ⁹	約 1.6×10 ¹²	
M o O 2類	約 1.8×10 ¹⁹	約 8.4×10 ⁸	約 5.5×10 ¹¹	
C e O ₂類	約 5.5×10 ¹⁹	約 5.3×10 ⁸	約 3.4×10 ¹¹	
L a 2O3類	約 4.1×10 ¹⁹	約 1.2×10 ⁸	約 9.1×10 ¹⁰	
<u></u> <u></u> <u></u>	L 大気中への放出放射 (D/Wベ)	T能量(7日間積算値)(ノトの実施を想定する場合	<u>2/_2)</u>	
	停止時炉内内蔵量	放出放射能量[Bq](gross 値)	
核種類	「Ba」(gross 值)	格納容器フィルタベン	原子炉建物から大気	
		ト系を経由した放出	中への放出	
希ガス類	約 1.6×10 ¹⁹	約 5.0×10 ¹⁸	約 2.5×10 ¹⁶	
よう素類	約 2.1×10 ¹⁹	約4.6×10 ¹⁵	約 2.0×10 ¹⁵	
C s OH類	約 8.3×10 ¹⁷	約 1.3×10 ¹³	約 3.4×10 ¹²	
S b 類	約 9.5×10 ¹⁷	約 5.1×10 ¹¹	約 3.1×10 ¹¹	
T e O ₂類	約 5.0×10 ¹⁸	約 9.7×10 ¹²	約 2.9×10 ¹²	
S r O類	約 9.0×10 ¹⁸	約 3.7×10 ¹²	約 1.5×10 ¹²	
B a O類	約 8.8×10 ¹⁸	約 5.1×10 ¹²	約 1.6×10 ¹²	
M o O ₂類	約 1.8×10 ¹⁹	約 1.9×10 ¹²	約 5.6×10 ¹¹	
C e O ₂類	約 5.5×10 ¹⁹	約 1.2×10 ¹²	約 3.4×10 ¹¹	
L a 2O3類	約 4.1×10 ¹⁹	約 2.9×10 ¹¹	約 9.2×10 ¹⁰	

	備考			
表1 大気中への放出放射能量(7日間積算値)(1/2)				
(W/Wベントの実施を想定する場合)				
停止時炉内内蔵量		放出放射能量[Bq](gross 値)		
核植類	[Bq] (gross 値)	格納容器フィルタベン	原子炉建物から大気	
		ト系を経由した放出	中への放出	
希ガス類	約 1.6×10 ¹⁹	約 5.1×10 ¹⁸	約 2.3×10 ¹⁶	
よう素類	約 2.1×10 ¹⁹	約 4.2×10 ¹⁵	約 1.9×10 ¹⁵	
C s OH類	約 8.3×10 ¹⁷	約 5.5×10 ⁹	約 3.4×10 ¹²	
S b 類	約 9.5×10 ¹⁷	約 2.2×10 ⁸	約 3.1×10 ¹¹	
T e O ₂類	約 5.0×10 ¹⁸	約 4.2×10 ⁹	約 2.9×10 ¹²	
S r O類	約 9.0×10 ¹⁸	約 1.6×10 ⁹	約 1.5×10 ¹²	
B a O類	約 8.8×10 ¹⁸	約 2.2×10 ⁹	約 1.6×10 ¹²	
M o O 2類	約 1.8×10 ¹⁹	約 8.4×10 ⁸	約 5.5×10 ¹¹	
C e O ₂類	約 5.5×10 ¹⁹	約 5.3×10 ⁸	約 3.4×10 ¹¹	
L a 2O3類	約4.1×10 ¹⁹	約 1.2×10 ⁸	約 9.1×10 ¹⁰	
表」	L 大気中への放出放射 (D/Wベ)	†能量(7日間積算値)(>トの実施を想定する場合	2 <u>2</u>)	1
	停止時炉内内蔵量	放出放射能量[Bq](gross 値)	
核植類	[Bq] (gross 値)	格納容器フィルタベン	原子炉建物から大気	
		ト系を経由した放出	中への放出	
希ガス類	約 1.6×10 ¹⁹	約 5.0×10 ¹⁸	約 2.5×10 ¹⁶	
よう素類	約 2.1×10 ¹⁹	約 4.6×10 ¹⁵	約 2.0×10 ¹⁵	
C s OH類	約 8.3×10 ¹⁷	約 1.3×10 ¹³	約 3.4×10 ¹²	
S b 類	約 9.5×10 ¹⁷	約 5.1×10 ¹¹	約 3.1×1011	
T e O ₂類	約 5.0×10 ¹⁸	約 9.7×10 ¹²	約 2.9×10 ¹²	
S r O類	約 9.0×10 ¹⁸	約 3.7×10 ¹²	約 1.5×1012	
B a O類	約 8.8×10 ¹⁸	約 5.1×10 ¹²	約 1.6×10 ¹²	
M o O 2類	約 1.8×10 ¹⁹	約 1.9×10 ¹²	約 5.6×1011	
C e O ₂類	約 5.5×10 ¹⁹	約 1.2×10 ¹²	約 3.4×1011	
L a 2O3類	約4.1×10 ¹⁹	約 2.9×10 ¹¹	約 9.2×10 ¹⁰	

		\ \
	東海第二発電所 (2018.9.18 版)
	第1表 放出量評価条件(2)	<u>(3)</u>
項目	評価条件	選定理由
原子炉格納容器 から原子炉建屋 への 漏 えい 率 (希ガス,エア ロゾル及び有機 よう素)	1Pd以下:0.9Pdで0.5%/日 1Pd超過:2Pdで1.3%/日	MAAP解析にて原 子炉格納容器の開口 面積を設定し格納容 器圧力に応じるも納容 し、原子炉格納容器 の設計漏えい (0.9Pdで0.5%/ 日)及びAECの式 等に基づき設定(補 足1参照)
原子炉格納容器 から原子炉建屋 への 漏 えい 率 (無機よう素)	1.5h後~19.5h後:1.3%/日(一定) その他の期間 :0.5%/日(一定)	原子炉格納容器の設 計漏えい率(0.5%/ 日)及びAECの式 等に基づき設定(格 納容器圧力が0.9Pd を超える期間を包絡 するように1.3%/ 日の漏えい率を設 定)(補足1参照)
原子炉格納容器 の漏えい孔にお ける捕集効果 原子炉枚納容器	考慮しない	保守的に設定
ホテル 内での除去効果 (エアロゾル)	MAAT 所有に置って(12者, ックレッション・プールでのスクラビング及びドライウェ ルスプレイ)	MAAPのFP挙動 モデル(補足2参照)
原子炉格納容器 内での除去効果 (有機よう素)	考慮しない	保守的に設定
原子炉格納容器 内での除去効果 (無機よう素)	自然沈着率:9.0×10 ⁻⁴ (1/s) (原子炉格納容器内の最大存在量から1/200 まで) サプレッション・プールでのスクラビングに	CSE実験及び Standard Review Plan 6.5.2 ^{※2} に基づ き設定(補足3参照) Standard Review
	よる除去効果:10(S/Cベントのみ)	rlanb. 5. 5*°に基づ き設定(補足4参照)
原子炉格納容器 から原子炉建屋 への漏えい割合	S/Cペント D/Wベント 希ガス類 :約4.3×10 ⁻³ :約4.3×10 ⁻³ CsI類 :約6.2×10 ⁻⁵ :約6.2×10 ⁻⁵ CsOH類 :約3.1×10 ⁻⁵ :約6.2×10 ⁻⁵ Sb類 :約6.7×10 ⁻⁶ :約6.8×10 ⁻⁶ TeO2類 :約6.7×10 ⁻⁶ :約6.8×10 ⁻⁶ SrO類 :約2.7×10 ⁻⁶ :約2.7×10 ⁻⁶ BaO類 :約2.7×10 ⁻⁶ :約3.4×10 ⁻⁷ MoO2類 :約3.4×10 ⁻⁷ :約3.8×10 ⁻⁸	MAAP解析結果及 びNUREG-1465 **4に基づき設定(補 足5参照)

備考

東海第二発電所 (2018.9.18版)			
第1表 放出量評価条件(3/3)			
項目	評価条件	選定理由	
原子炉建屋から 大気への漏えい 率(非常用ガス 処理系及び非常 用ガス再循環系 の起動前)	無限大/日(地上放出) (原子炉格納容器から原子炉建屋へ漏えいし た放射性物質は、即座に大気へ漏えいするも のとして評価)	保守的に設定	
非常用ガス処理 系から大気への 放出率(非常用 ガス処理系及び 非常用ガス再循 環系の起動後)	1回/日(排気筒放出)	設計値に基づき設 定(非常用ガス処理 系のファン容量)	
非常用ガス処理 系及び非常用ガ ス再循環系の起 動時間	事象発生から2時間後	起動操作時間(115 分)+負圧達成時間 (5分)(起動に伴 い原子炉建屋原子 炉棟内は負圧にな るが,保守的に負圧 達成時間として5分 を想定)	
非常用ガス処理 系及び非常用ガ ス再循環系のフ ィルタ除去効率	考慮しない	保守的に設定	
原子炉建屋外側 ブローアウトパ ネルの開閉状態	閉状態	原子炉建屋原子炉 棟内の急激な圧力 上昇等による原子 炉建屋外側ブロー アウトパネルの開 放がないため	
格納容器圧力逃 がし装置への放 出割合	S/Cベント D/Wベント 希ガス類 :約9.5×10 ⁻¹ :約9.5×10 ⁻¹ CsI類 :約1.0×10 ⁻⁶ :約3.9×10 ⁻³ CsOH類 :約4.0×10 ⁻⁷ :約7.5×10 ⁻³ Sb類 :約8.9×10 ⁻⁸ :約1.4×10 ⁻³ TeO2類 :約8.9×10 ⁻⁸ :約1.4×10 ⁻³ SrO類 :約3.6×10 ⁻⁸ :約5.8×10 ⁻⁴ BaO類 :約3.6×10 ⁻⁹ :約5.8×10 ⁻⁴ MoO2類 :約8.9×10 ⁻¹⁰ :約1.4×10 ⁻⁵ La2O3類 :約3.6×10 ⁻¹⁰ :約5.8×10 ⁻⁶	MAAP解析結果 及びNUREG- 1465 に基づき設定 (補足5参照)	
格納容器圧力逃 がし装置の除去 係数	布ガス :1 有機よう素:50 無機よう素:100 エアロゾル(粒子状よう素含む):1,000	設計値に基づき設 定	

- ※1 Regulatory Guide 1.195, "Methods and Assumptions for Evaluating Radiological Consequences of Desigh Basis Accidents at Light-Water Nuclear Power Reactors", May 2003
- %2 Standard Review Plan6.5.2, "Containment Spray as a Fission Product Cleanup System", December 2005
- X3 Standard Review Plan6.5.5, "Pressure Suppression Pool as a Fission Product Cleanup System", March 2007
- *4 NUREG-1465, "Accident Source Terms for Light-Water Nuclear Power Plants", 1995

島根原子力発電所 2号炉

備考

備考

島根原子力発電所 2号炉

備老
加行

備考

備考

備考

	備考

線	
長面からのガンマ線	

	備考
	UTA U
シマ線	

備考
・設計の相違
島根2号炉は原子炉建
物の二次格納施設外で
の作業実施

	東海第二発電所 (2018.9	9.18版)		島根原子力発電所 2号炉		備考
	第2表 大気拡散評価	条件		表2 放射性物質の大気拡散評価条件	(1/2)	・評価条件の相違
項目	評価条件	選定理由	項目	評価条件	選定理由	東海第二の排気筒放出
大気拡散評価 モデル	ガウスプルームモデル	発電用原子炉施設の安全解析に関 する気象指針(以下「気象指針」と いう。)に基づき評価 格納容器圧力逃がし装置排気ロ及	大気拡散 評価モデ ル	ガウスプルームモデル	発電用原子炉施設の安全解析 に関する気象指針(以下「気 象指針」という。)に基づき評 価	は近接する建屋高さの 2.5 倍を超えることか ら建屋巻き込みを考慮
気象資料	東海第二発電所における1年 間の気象資料(2005年4月~ 2006年3月) 地上風 :地上10m 排気筒風:地上140m	び原子炉建屋からの放出は地上風 (地上10m)の気象データを使用 非常用ガス処理系排気筒からの放 出は排気筒風(地上140m)の気象 データを使用(補足11参照) 格納容器圧力逃がし装置排気口か	気象資料	島根原子力発電所における 1年間の気象資料 (2009 年 1 月〜2009 年 12 月)	建物影響を受ける大気拡散評 価を行うため保守的に地上風 (地上約 20m)の気象データ を使用 審査ガイドに示されたとお り 発電所において観測され	していないのに対し 根2号炉ではすべての 放出点で巻き込みを考 慮する
放出源及び放出源	原子炉建屋漏えい:地上0m 格納容器圧力逃がし装置 排気口からの放出:地上57m	らの放出は建屋影響を考慮し原子 炉建屋屋上からの放出と想定し設 定	放出源及	原子炉建物 : 地上 Om	た1年間の気象データを使用 実高さを参照	
高さ(有効高さ)	非常用ガス処理系排気筒 からの放出:地上95m	非常用ガス処理系排気筒からの放 出は方位ごとの風洞実験結果のう ち保守的に最低の方位の有効高さ	び放出源 高さ	格納容器フィルタベント系排気管:地上50m 非常用ガス処理系排気筒 :地上110m	なお,放出エネルギーによる 影響は未考慮	
実効放出継続時間	1時間	を設定 保守的に最も短い実効放出継続時 間を設定(補足9参照)	実効放出 継続時間	原子炉建物 :1時間	格納谷器フィルクパント未存 気管及び原子炉建物からの放 出については保守的に1時間	
累積出現頻度	小さい方から 97%	気象指針に基づき設定		非常用ガス処理系排気筒 :30時間	気象指針に従い、全放出量を	
		格納容器圧力逃がし装置排気口放 出及び原子炉建屋漏えいにおいて			最大放出量で除した値を保守 的に丸めた値とする。	
建屋の影響	考慮する	は放出源から近距離の原子炉建屋 の影響を受けるため,建屋による巻 き込み現象を考慮	累積出現 頻度	小さい方から累積して 97%	気象指針を参照	
巻き込みを生じる 代表建屋	原子炉建屋	放出源から最も近く,巻き込みの影響が最も大きい建屋として選定 屋外移動時は敷地内の最大濃度点	建物巻き 込み	考慮する	放出点から近距離の建物の影 響を受けるため,建物による 巻き込み現象を考慮	
大気拡散評価点	第 20 図参照	で設定 屋内移動時は原子炉建屋付近の最 大濃度点で設定 作業時は作業地点のある原子炉建	巻き込み を生じる 代表建物	2号原子炉建物及び2号タービン建物	放出源又は放出源から最も近 く,巻き込みの影響が最も大 きい建物として設定	
着目方位	非常用ガス処理系排気筒: 1 方位 原子炉建屋及び 格納容器圧力逃がし装置 排気口: 9方位	屋外壁で設定 非常用ガス処理系排気筒(排気筒放 出)については評価点の方位とし, 原子炉建屋漏えい及び格納容器圧 力逃がし装置排気口については放 出源が評価点に近いことから,180 度をカバーする方位を対象とする。	放射性物 質濃度の 評価点	図4~図7参照	屋外移動時は,敷地内の最大 濃度点で設定 屋内移動時は,原子炉建物1 階~3階において最も評価結 果が厳しくなる原子炉建物3 階の第二隔離弁操作位置で設 定	
建屋影響	3, 000m ²	原子炉建屋の最小投影断面積を設定		2号原子炉建物:2600m ²	審査ガイドに示されたとおり	
形状係数	0.5	~ 気象指針に基づき設定	建物投影	(原子炉建物,格納容器フィルタベント系放出時)	設定	
	1		面積	2 号タービン建物: 2100m ²	風向に垂直な投影面積のうち	
				(排気筒放出時)	最も小さいもの	
			形状係数	0.5	番	

東海第二発電所 (2018.9.18版)		島根原子力発電所 2号炉	
		表2 放射性物質の大気拡散評価条件(2/2)	
	項目	評価条件	译
		 W 【原子炉建物放出時】 9 方位 9 方位 (SW,WSW,W,WNW,NW,NNW,NNE,NE) ト 第 3 方位 隔 離 (ENE,E,ESE,SE,SSE,S,SSW,SW,WSW) 弁 操 【格納容器フィルタベント系排気管放出時】 9 方位 置 (WSW,W,WNW,NW,NNW,NNE,NE,ENE) 	
	着目方位	D 【原子炉建物放出時】 W 9 方位 ジ (SSW,SW,WSW,W,WNW,NW,NNW,NNW,NNE) ト 【排気筒放出時】 9 方位 隔 (ENE,E,ESE,SE,SSE,SSW,SW,WSW) 弁 【格納容器フィルタベント系排気管放出時】 9 方位 位 (WSW,W,WNW,NW,NNW,NNE,NE,ENE)	審査 オ れた 言 づき 記
		第 【原子炉建物放出時】 9方位 第 (WSW,W,WNW,NW,NNW,N,NNE,NE,ENE) 「 「 (WSW,W,WNW,NW,NNW,N,NNE,NE,ENE) 【排気筒放出時】 9方位 (NE,ENE,E,ESE,SE,SSE,S,SSW,SW) 【格納容器フィルタベント系排気管放出時】 9方位 (W,WNW,NW,NNW,N,NNE,NE,ENE,E)	

	東海	二発電所 (2018.9.18版)				島根原子力発行	電所 2号炉		備考
第3	3表 評価に使用す	する相対濃度(χ/Q)及び	1 封線量(D	()		表3 相対濃度	及び相対線量		
作	業内容	放出箇所	χ/	Q及びD/Q	評価点	放出点及び放出高さ	相対濃度[s/m ³]	相対線量[Gy/Bq]	
第一弁	屋内外移動時/	原子炉建屋漏えい (地上放出)	χ∕Q (s∕m³)	約 8.0×10 ⁻⁴		原子炉建物中心 (地上 0m)	1.6×10^{-3}	6.0×10^{-18}	
開操作	作業時	非常用ガス処理系排気筒 (排気筒放出)	χ∕Q (s∕m³)	約 3.0×10 ⁻⁶	W/Wベン ト第一隔離	排気筒 (地上 110m)	3. 5×10^{-4}	2.8×10^{-18}	
	長内 从 23 動時	原子炉建屋漏えい (地上放出)	χ∕Q (s∕m³)	約 8.0×10 ⁻⁴	弁操作位置	格納容器フィルタベント系		10	
	/型 P 17 P 19 助 P 可	非常用ガス処理系排気筒 (排気筒放出)	χ∕Q (s∕m³)	約 3.0×10 ⁻⁶		排気管 (地上 50m)	7. 4×10^{-4}	6. 2×10^{-18}	
第一弁 (D/W側) 開操作		原子炉建屋漏えい (地上放出)	χ∕Q (s∕m³)	約 7.4×10 ⁻⁴		原子炉建物中心 (地上 0m)	1.6×10^{-3}	5.9×10^{-18}	
	作業時	非常用ガス処理系排気筒 (排気筒放出)	χ∕Q (s∕m³)	約 2.1×10 ⁻⁶	D/Wベン ト第一隔離		3. 5×10^{-4}	2.8 \times 10 ⁻¹⁸	
		(34-又同以又山)	D∕Q (Gy∕Bq)	約 6.4×10 ⁻²⁰	弁操作位置	格納容器フィルタベント系			
		原子炉建屋漏えい (地上放出)	χ∕Q (s∕m³)	約 8.3×10 ⁻⁴		排気管 (地上 50m)	7. 5×10^{-4}	6. 1×10^{-18}	
		格納容器圧力逃がし装置	χ∕Q (s∕m³)	約 4.2×10-4		原子炉建物中心	1.6×10^{-3}	5.8×10^{-18}	
	屋外移動時	(建屋屋上放出)	D∕Q (Gy∕Bq)	約 8.7×10 ⁻¹⁹		(地上 0m) 			
		七海田武立加速支持反応	χ / Q (s/m ³)	約 3.0×10 ⁻⁶	第二隔離弁	(地上 110m)	3.5×10^{-4}	2.8×10^{-18}	
		非常用力之处理系排或同 (排気筒放出)	D∕Q (Gy∕Bq)	約 1.2×10 ⁻¹⁹		格納容器フィルタベント系 排気管	7.5 $\times 10^{-4}$	6. 1×10^{-18}	
第二弁 開操作		原子炉建屋漏えい (地上放出)	χ∕Q (s∕m³)	約 8.0×10 ⁻⁴		(地上 50m)			
	屋内移動時	格納容器圧力逃がし装置 排気口 (建屋屋上放出)	χ∕Q (s∕m³)	約 4.0×10 ⁻⁴					
		非常用ガス処理系排気筒 (排気筒放出)	χ∕Q (s∕m³)	約 3.0×10 ⁻⁶					
		原子炉建屋漏えい (地上放出)	χ∕Q (s∕m³)	約 7.4×10 ⁻⁴					
	作業時	格納容器圧力逃がし装置 排気口 (建屋屋上放出)	χ∕Q (s∕m³)	約 3.7×10 ⁻⁴					
		非常用ガス処理系排気筒 (排気筒放出)	χ∕Q (s∕m³)	約 3.0×10 ⁻⁶					

項 目 評価条件 邊定理由					
サブマージ ョンモデル (評価式)	$D = 6.2 \times 10^{-14} \cdot Q_{\gamma} \cdot \chi / Q \cdot E_{\gamma} \cdot (1 - e^{-\mu \cdot R}) \cdot 3600$ $D : 放射線量率 (Sv/h)$ $Q_{\gamma} : 大気に放出された放射性物質放出率 (Bq/s)$ $(0.5MeV 換算値)$ $E_{\gamma} : ガンマ線エネルギ (0.5MeV/dis)$ $\mu : 空気に対するガンマ線エネルギ吸収係数$ $(3.9 \times 10^{-3} / m)$ $R : 作業エリア等の空間体積と等価な半球の半径 (m)$ $R = \sqrt[3]{3 \cdot V_R} / \frac{3 \cdot V_R}{2 \cdot \pi}$ $V_R : 作業エリア等の空間体積 (m^3)$				
作業場所等 の空間体積 (V _R)	<s cからのベントを行う場合=""> 第一弁 操作場所 : 2,200m³ 屋内移動アクセスルート: 2,200m³ 第二弁 操作場所 : 590m³ 屋内移動アクセスルート: 2,200m³ <d wからのベントを行う場合=""></d> ・第一弁 屋外のため相対線量より評価 ・第二弁 操作場所 : 590m³ 屋内移動アクセスルート: 2,200m³ </s>	アクセスルートとなる建 屋内の区画で最も線量率 が高くなる区画の空間体 積で設定 操作エリアは作業区画の 空間体積で設定			
屋内作業場 所流入率の 考慮	考慮しない	保守的に外気濃度と同一 濃度とする。			
待避室の遮 蔽及び空気 ボンベ加圧 考慮(第二弁 操作場所)の み)	待避室の遮蔽厚 : *1 (コンクリート相当) 空気ボンベによる加圧時間:ベント実施から3時間 ※1 格納容器圧力逃がし装置配管がある部分の遮蔽厚は (コンクリート相当)	第二弁操作場所にベント 後3時間滞在する。			
許容差	評価で考慮するコンクリート遮蔽は,公称値からマイナス側許容 差 (-5mm) を引いた値を適用	建築工事標準仕様書 JASS 5N・同解説(原子力発電所 施設における鉄筋コンク リート工事,日本建築学 会)に基づき設定			
コンクリー ト密度	2.00g∕cm³	建築工事標準仕様書 JASS 5N・同解説(原子力発電所 施設における鉄筋コンク リート工事,日本建築学 会)を基に算出した値を設 定(補足12参照)			

島根原子力発電所 2号炉

備考

	東海第二発電所 (2018.9.18版)			島根原子力発電所	2号炉
	第5表 線量換算係数,呼吸率等			表4線量換算係数及び地表	長面への沈着速度等
項目	評価条件	選定理由	項目	評価条件	選定理由
線量換算係数	成人実効線量換算係数を使用 (主な核種を以下に示す) I-131:2.0×10 ⁻⁸ Sv/Bq I-132:3.1×10 ⁻¹⁰ Sv/Bq I-133:4.0×10 ⁻⁹ Sv/Bq I-134:1.5×10 ⁻¹⁰ Sv/Bq I-135:9.2×10 ⁻¹⁰ Sv/Bq Cs-134:2.0×10 ⁻⁸ Sv/Bq Cs-136:2.8×10 ⁻⁹ Sv/Bq Cs-137:3.9×10 ⁻⁸ Sv/Bq 上記以外の核種は ICRP Pub.71 等に基づく	ICRP Publication 71 に基づき設定	線量換算係数	成人実効線量換算係数使用 (主な核種を以下に示す) $I - 131 : 2.0 \times 10^{-8}$ Sv/Bq $I - 132 : 3.1 \times 10^{-10}$ Sv/Bq $I - 133 : 4.0 \times 10^{-9}$ Sv/Bq $I - 134 : 1.5 \times 10^{-10}$ Sv/Bq $I - 135 : 9.2 \times 10^{-10}$ Sv/Bq $C s - 134 : 2.0 \times 10^{-8}$ Sv/Bq $C s - 136 : 2.8 \times 10^{-9}$ Sv/Bq $C s - 137 : 3.9 \times 10^{-8}$ Sv/Bq L記以外の核種は ICRP Pub.71 等に基づく	ICRP Publication 71 等に基づき
呼吸率	1.2m³∕h	成人活動時の呼吸率 を設定	呼吸率	1.2m ³ /h	「発電用軽水型原子炉施設の安全 指針」の第2表の成人活動時のM
マスクの 除染係数	D F 50	性能上期待できる値から設定	マスクによる防 護係数	50	着用を考慮し、期待できる防護係
地表面への 沈着速度	粒子状物質:0.5 cm/s 無機よう素:0.5 cm/s 有機よう素:1.7×10 ⁻³ cm/s	 東海第二発電所の実 気象から求めた沈着 速度から保守的に設 定(補足 6~補足 8 参照) 	地表への 沈着速度	エアロゾル: 0.5 cm/s 無機よう素: 0.5 cm/s 有機よう素: $1.7 \times 10^{-3} \text{ cm/s}$ 希ガス :沈着無し	湿性沈着を考慮し設定(補足1参

	備考
E Contraction of the second seco	
づき設定	
安全評価に関する審査 の呼吸率を設定	
獲係数として設定した	
1 参照)	

東海第二発電所 (2018.9.18版)			島	根原子力発電所	f 2号炉			備考
			表5	格納容器ベン	ト実施前後の作	業		
			格納容器	ベント実施前		格納容器ベ	ント実施後	
		水素濃度 測定装置	可搬式窒素 供給装置準 備	ベント弁(第二隔離弁)開操作	ベント弁 (第 一隔離弁) 開 操作	ベント弁閉操 作	窒素供給操 作	
		屋外	屋外	屋内 ^{*1}	屋内 ^{※1}	屋内 ^{※1}	屋外	
	作業開始時 間(事象開 始後)	約 27 時間 ~ 約 32 時間	約10時間~	約 27 時間 ~ 約 32 時間	約 32 時間	168 時間後 以降	168 時間後 以降	
	作業時間	移動 50 分 作業 60 分	移動:50分 作業:95分	移動(往):10分 作業:60分 移動(復):10分	移動(往):15分 作業 :60分 移動(復):15分	移動(復):15分 作業:60分 移動(復):15分	移動:50分 作業:40分	
	※1 二次	格納施設内で	この作業は不要	要であるため,	二次格納施設以	以外の屋内操作#	場所について検	
	討す	る。						

	東海第二発電所 (2018.9.18版)						
	第6表 格納容器圧力逃がし装置配管からの直接ガンマ線						
項目評価条件			件	選定理由			
	第一弁 (S/C側)	作業場所 移動ルート					
遮蔽厚さ※1	第一弁	作業場所	· · ·	ベント操作エリアにおける 原子炉建屋壁,補助遮蔽設			
	(D/ W1則)	移動ルート 作業場所		備寺を考慮 (弟9凶~弟19 図参照)			
	第二弁	移動ルート					
許容差		評価で考慮するコ は,公称値からマ (-5mm)を引いた(ンクリート遮蔽 イナス側許容差 直を適用	建築工事標準仕様書 JASS 5N・同解説(原子力発電所 施設における鉄筋コンクリ ート工事,日本建築学会) に基づき設定			
コンクリート密度		2.00g∕cm ³		建築工事標準仕様書 JASS 5N・同解説(原子力発電所 施設における鉄筋コンクリ ート工事,日本建築学会) を基に算出した値を設定 (補足 12参照)			
	第一弁						
	(5/0側)	移動ルート					
配管中心から 評価点までの	配管中心から 第一弁						
距離	(D/W側)	移動ルート					
	第二令	作業場所					
	弗 二开	移動ルート					

※1 遮蔽厚はコンクリート相当の厚さとする。

第7表 原子炉建屋からの直接ガンマ線及びスカイシャインガンマ線

項日	評価条件	選定理由
原子炉建屋内線源強度 分布	原子炉建屋内に放出された放射性 物質が均一に分布	審査ガイドに示されたと おり設定
原子炉建屋のモデル	原子炉建屋の幾何形状をモデル化	建屋外壁を遮蔽体として 考慮
直接ガンマ線・スカイ シャインガンマ線評価 コード	直接ガンマ線評価: QAD-CGGP2R スカイシャインガンマ線評価: ANISN G33-GP2R	現行許認可(添十)に同 じ

1
備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
第9図 第一弁 (S/C側) 操作場所及びアクセスルート	図3 第一隔離弁(W/Wベント)操作場所(原子炉建物地下1
第10図 第一弁(S/C側)操作場所及びアクセスルート	図4 第一隔離弁(W/Wベント)操作場所(原子炉建物地上1

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
第11図 第一弁(S/C側)操作場所及びアクセスルート	
第 12 図 第一弁(D/W側)操作場所及びアクセスルート	図 5 第一隔離弁(D/Wベント)操作場所(原子炉建物地上 21

	備考
2階)	
	1

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	
第13図 第一弁(D/W側)操作場所及びアクセスルート		
第14図 第一弁(D/W側)操作場所及びアクセスルート		

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
第15図 第一弁(D/W側)操作場所及びアクセスルート	
	図6 屋外作業場所
第16図 屋外移動時のアクセスルート	

 備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
	図7 第二隔離金操作場所(原子恒建物地上3階)
第17図 第二弁操作場所及びアクセスルート	
第 18 図 第 一 弁 握 作 場 所 及 び ア ク ヤ ス ル ー ト	

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所	2号炉
弗 19 図 弗二·开操作場所及びアクセスルート		
第20図 大気中に放出された放射性物質の濃度評価点		

1
備考

			東海	第二	発電	所	(2018	8.9.18	8版)					島根原子力発電所
(I / NCm :	屋外移動時 (付属棟入口⇒ 緊急時対簧所)	約1.9×10 ⁰	第 54.8×10 ⁻²	1.0×10 ⁻² 以下			屋外移動のため 対象外**3	約1.2×10 ¹	約1.4×10 ¹	35分(復路)	約8.2×10 ⁰ mSv			
(甲 <u>11</u> 7個) 開操作 ^{※1}	屋内/屋外移動 時(作業場所⇒ 付属権入口)	約5.4×10 ⁰	¥52.6×10 ⁻²	1.0×10 ⁻² 以下	いた放射性物質の	絡される	約4.6×10 ⁻¹	約1.2×101	約1.8×10 ¹	15分(復路)	約4.4×10 ⁰ mSv	10 ¹ mSv		
第一并 (D/W	開内/開外物費 時(中央問貨曲) ⇒后撤議所)	新5.4×10 ⁰	約2.6×10 ⁻²	1.0×10 ⁻² LF	大気中へ放出さま	影響に包	約4.6×10 ⁻¹	¥51.2×10 ¹	約1.8×10 ¹	50分 (往路)	約1.5×10 ¹ mSv	約 5.2×		
	スント操作時	約5.4×10 ⁰	約2.6×10-2	1.0×10 ⁻² 以下			約4.6×10 ⁻¹	約1.1×10 ¹	約1.7×10 ¹	(5 06	約2.5×10 ¹ mSv		。 発外とする。	
作業1	屈外移動時 (作業場所⇒) 製食時対策所)	約1.9×10 ⁰	\$ 94.8×10 ^{−2}	1.0×10 ⁻² βLF	大気中へ放出された放射性物質	の影響に包絡さ れる	屋外移動のため 対象外※3	約1.2×10 ¹	約1.4×10 ¹	35分(復路)	約8.2×10 ⁰ mSv		1物質を 北慮 する こるため、評価対 の	
▶ (S/C包) 選桨	國内移動時 (中央制御館) 危機編所)	新3.1×10 ⁰	放射性物質の	格される	1.0×10 ⁻² LTF	$1.0\!\times\!10^{-2}\mathrm{grF}$	1.0×10 ⁻² LLF	約1.2×10 ¹	約1.5×10 ¹	35分 (往路)	約8.6×10 ⁰ mSv	約3.7×10 ¹ mSv	に浮遊した放射性の距離が離れてい	
年 振	ベント操作時	約2.1×10°	屋内に流入する	機 前 行 也	$1.0\!\times\!10^{-2}\mathrm{gLF}$	1.0×10 ⁻² BLF	約1.4×10 ⁻¹	¥51.2×101	約1.4×10 ¹	长06	約2.1×10 ¹ mSv			
		(からの まく	外部被ばく	内部後ばく	外部後ばく	内部被ばく	質からの < ^{楽2}	た着した よる彼ばく		8	(特働時)	H)	「新聞」を見ていた。 「大人」でして、 「ショー」	
	後ばく経路	原十炉準屋内の放射性物量 ガンと線による外部後1	大気中へ放出された	放射性物質による被ばく	外気から作業場所内へ流入	した放射性物質による被ばく	ベント系配管内の放射性物 ガンと線による外部被は	大気中へ放出され地表面に 放射性物質からのガンマ線に	作業線量率	作業時間及び移動時	作業員の実効線量(作業時及)	作業員の実効線量(台	※1 #	

備考

			耳	〔海第	三発	電所	(2	2018	. 9. 1	8版)								島根原子力	発電所 25	2 号炉 (件う被ばく評価結果() (第 ベント弁(第 ペント (第 ベント弁(第 ペント (第 一隔離弁) 開 ペント 1 屋内 屋 0 ⁻¹ 1.4×10 ⁰ 3.4× 0 ⁻¹ 1.5×10 ⁰ 1.4× 0 ⁰ 1.5×10 ⁰ 1.4× 0 ⁰ 1.8×10 ⁰ 3.5× 0 ¹ 1.0×10 ⁻² 1.0× 0 ¹ 4.8×10 ⁻² 9.7×			
		1 191	00	1-0	5-0			_	101	101	(縦	"Sv			_	表6 格納容器	号ベント(W	<u>/Wベント)</u>	実施に伴う	被ばく評価	結果(単位		
▲ 世 世 世	₩ 71)	ベ東ノが増援	約1.9×1	約1.1×1	約2.7×1		刘敏介	対象外町	\$)1.2×1	約1.4×1	35分(徽)	98.2×10					格納容器ベント実施前格約						
(単位:mS 屋外移 (開合時か)	(柴尚厚刈) 東十戸藩園	べん 予報	% J1.9×10°	約4.8×10-2	1.0×10 ⁻² g/F		医外移動のため	屋外移動のため	¥91.2×10 ¹	\$91.4×10 ¹	35分(往路)	¥)8.2×10°mSv 影	-			評価内容	水素濃度測定 装置 ^{※1}	可搬式窒素供 給装置準備 ^{※1}	ベント弁(第 二隔離弁)開 操作 ^{*1}	ベント弁(第 一隔離弁)開 操作	ベント弁閉 作 ^{※1}		
		人 後	010			10-2	10-2	10-1	101	101	(塩)	0°mSv	1				屋外	屋外	屋内	屋内	屋内		
記名物動品 古谷町と口	- 炉桶限人口∈ 業場所)	く実	0 #J2.6×	性物質の	ħ.5	XF 約4.1×	以下 約2.7×	-1 \$]2.9×	1 Ø1.2×	1 Ø1.4×	() 10分 (後	Sv 第)2.4×10		厞 疍	原子炉棟内の放射性物 質からの直接線・スカ	8.5×10 ⁻¹	1.1×10 ⁰	9. 2×10 ⁻¹	1.4×10 ⁰	3.4×10 ⁻			
100) H	± ₩	べ 新 新 手	2.6×10	する放射	加線回し	×10-2£	×10-2£	.3×10	1.2×10	1.4×10	み (注惑	4×10°	Sv			インヤイン脉による) 部被ばく							
			XF ₩	屋内に流入	*	XF 1.0	XF 1.0		2- 2-		105	" "Sv #)2	.8×10 ¹ m	Q AJ		放射性雲中の放射性物 質からのガンマ線によ	6. 7×10^{-1}	3.7×10^{-1}	7.6×10 ⁻¹	1.5×10^{0}	1.4×10 ⁰		
世界の	白銀行	大坂 (文) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	×10-2			× 10 ⁻² (×10-2	1.3×10	2.3×10	1.7×10	140分	0×10_1	約2	网络外	る外部被ばく	る外部被ばく			<u> </u>				
		~ ₽	2.UF 1.0			-2gF 1.0	1.0	(10-1 #)	(10-2 #);	(10-1 #)	\$) ^{−1} <u>s</u> V ∦)4.	-	てめ, 詳備メ		建物内に取込まれた放 射性物質による外部被	8. 2×10 ⁻¹	2.9×10 ⁻¹	1.0×10^{0}	1.5×10 ^{0 ± 3}	1.4×10 ⁰		
4		2時 3時 1.0×10 ⁻	1.0×10 ⁻	物質の	1番買の とる		1%L	¥)4.6×	創2.2×	¥94.8×	約4.8> 60: 約4.8×10		れている	-	地表面に沈着した放射					0.5.440			
中開操作	~ 下実施時	[専聞~ 2専聞	10-2以下	する放射性	に包轄され	5.2×10 ⁻²	により流入	1.6×10 ⁻¹	2.2×10 ⁻²	5.3×10 ⁻¹	60 分	3×10 ^{−1} шSv				性物質からのカンマ線 による外部被ばく	9.9×10°	1.4×10 ⁺	9.4×10°	1.8×10°	$3.5 \times 10^{\circ}$		
11 ##	2	- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.8.F 1.0×	屋内に減入 影響	199 199	(10° #98	正压化	10-1	10-2 #12	(10° #)5	-	°±5v \$95.3	-	「「「「」」「」」「」」「」」」」		ベント系配管内の放射 性物質からのガンマ線	_	_	_	1.0×10 ⁻² 以下	1.0×10 ⁻ 以下		
		× 、 、 、 、 、 、 、 、 、 、 、 、 、	1.0×10 ⁻			\$ 34.7>		¥)4.6×	< #32.2×	\$]5.2>	605	¥J5.2×10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	SGTフィルタの放射 性物質からのガンマ線	*5	*5	2. 6×10^{-1}	4.8×10 ⁻²	9.7×10 ⁻		
			69	嵌ばく	振ばく	憲法へ	製店へ	\$P50	着したく			(約時)		5		による外部被ばく							
;	掘		性性 物 動 数 定	外部	玉	外部	七部	発行物質	えに 唐安 ちょう いちょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し	樹	修動時間	業時及び	量 (合計)	794		被ばく線量	約 13	約 16	約 13	約 6.3	約 6.8		
	後ばく絶		原十戸藩園内の放棄 ガンと線による	大気中へ放出された放	射性物質による被ばく	外良から作業場所内へ 流入した放射性物質 による彼ばく		メント※配管内の放け ガント線による/	大気中へ放出され地	作業線量	作業時間及び	作業員の実効線量(作	作業員の実効線	※1 磨外移動時に,	× × ×	 1 被ばく線量が最く 2 マスク着用 (PF5 3 ベント流体が厚= 	5大きくなる 0)による防 7-15建物内に	ら時間帯で作う 「護効果を考」	業を実施した 載する。 とによる影響	と場合の被ば	く線量を言い		
															*	 4 ベント系配管内に 放射性物質がドロ 5 線源との聞に十分 	こ浮遊及び沈 ~ンだまりに うな遮蔽がぁ	に着した放射 「蓄積するもの」	性物質を考慮 のとして評値 響は軽微であ	意する。なお 面する。 らり,評価の	, ベント酉 対象外と		

		備考
(単位:	mSv)	
納容器べ	ント実施後	
ト弁閉操 ⊨ ^{※1}	窒素供給操作	
屋内	屋外	
$\times 10^{-1}$	7. 0×10 ⁻¹	
×10 ⁰	1.0×10 ⁻² 以下	
×10 ⁰	1.0×10 ⁻² 以下	
$\times 10^{0}$	5.5×10 ⁰	
×10 ⁻² 以下	1.2×10 ⁰ **4	
$\times 10^{-2}$	*5	
6.8	約7.5	
量を記載	龙。	
/ト配管	う内に沈着した	5
本とした	-0	

東海第二発電所 (2018.9.18版)										島根原子力発電所 2号炉																					
時 (1) (1) (1) (1) (1) (1) (1) (1)	i 人 人 後 後 後 人	∳1.9×10°	\$1.5×10 ¹	91.3×10°		讨能外 ®1	†象外≋1	\$1.6×10 ¹	\$3.5×10 ¹	(後路)	2. 0×10 ¹ mSv				表7 格納容器	ベント (D	<u>/Wベント)</u> 格納容器~	<u>実施に伴う</u> ジト実施前	被ばく評価約	<u>吉果(単位:</u> 格納容器~	mSv) ニント実施後										
/////////////////////////////////////	が よ い よ に ま ま で ま の で の で の で の で の で の で の で の で の で の の の の の の の の の の の の の	¥)1.9×10 ⁰	創4.8×10 ⁻²	1.0×10 ⁻² 以下		屋外移動のためタ	屋外移動のためタ	\$01.2×10 ¹ \$	∰11.4×10 ¹ ∦	35分(往路) 35	約8.2×10 ⁰ mSv 約1				評価内容	水素濃度測 定装置 ^{※1}	可搬式窒素 供給装置準 備 ^{※1}	ベント弁 (第 二隔離弁)開 操作 ^{*1}	ベント弁 (第 一隔離弁) 開 操作	ベント弁閉 操作 ^{*1}	窒素供給操 作										
		100			10.0	100	0	101	101	(嶺	° ≣Sv					屋外	屋外	屋内	屋内	屋内	屋外										
修動時 首屋入口⇔ 14月)	(1/100 マンズ) 「2)端実	約2.6 ×:	6間の	10	#J8.3×	\$01.3×	約3.2×1	#)1.6×	#]2.8×	10分(復	\$)4.7×10				原子炉棟内の放射性物質 からの直接線・スカイシ	8. 7×10^{-1}	1.1×10^{0}	9. 3×10^{-1}	1.5×10^{0}	3.5×10^{-1}	7.1×10^{-1}										
(町 (町 (町 市 (町 本	(減十位素 (減十位素 人 人 大 大 大 大 大 大 大 大 大 大 大	2.6×10 ⁰	する放射体量	する放射性物	×10-2以下	×10-2以下	3.1×10 ⁻²	31.2×10^{1}	91.4×10^{1}	分(往幣) 4×10 ⁰ mSv	$0.4 \times 10^{0} \mathrm{mSv}$	mSv X	10 [°]		ャイン線による外部被ば く	0.17/10	1.1×10	5. 57 10	1. 5 × 10		1.1×10										
	上海	*# 10°	人派に支援	屋内に浅入 影響	歴内に洗 影響 * 2.1 下 1.0	*以下 1.(2以下 1.0	10-2 #]	10-2	10-2 🖗	10	1 ^{−1} ±Sv #32	均4.2×10 ¹ 바��셔 レ카	対象外とす		放射性雲中の放射性物質 からのガンマ線による外 部被げく	6. 7×10 ⁻¹	3. 7×10^{-1}	7.6×10 ⁻¹	7.3×10 ⁻¹	7.5×10 ⁻¹	1.0×10 ⁻² 以下									
称	べ 実	1.0×10 ⁻			1.0×10 ⁻	1.0×10 ⁻	₩)3.1×1	約2.3×1	約7.3×1	1405	v ₩1.7×10	·····································					建物内に取込まれた放射 性物質による外部被ばく	8. 1×10 ⁻¹	2.9×10 ⁻¹	1. 0×10 ⁰	1.5×10 ⁰	1.4×10 ⁰	1.6×10 ⁻²								
	2時間~ 3時間	0×10-2℃F	6		約8.4×10 ⁻²		\$)5.1×10 ⁻¹	約2.9×10 ⁻²	約6.2×10 ⁻¹	60分	6.2×10 ⁻¹ mSv	キャインス				及び内部被ばく** ² 地表面に沈着した放射性				*3											
王 被 行 早 小 紙 稿 罪)	~麗寺	0-2以下 1.	る放射体物量	白爺される	1×10-1	より流入なし	1×10-1	9×10-2	1×10-1	60 .	10 ⁻¹ mSv #9	の記録サミロ		-	物質からのガンマ線によ る外部被ばく	9.9×10 ⁰	1.4×10 ¹	9. 4×10 [°]	1.8×10 ⁰	3.5×10 ⁰	1.2×10 ¹										
年 二 (根) (根)	開始~ 1県 間 21	2以下 1.0×10	原内に派入す	12 () () () () () () () () () () () () ()	(10° \$93.1	正田化に	10-1 #35.1	10-2 #92.9	(10° #38.4	•	0°nSv ₿98.4×	御福芝			-		-	-	-			ベント系配管内の放射性 物質からのガンマ線によ る外部被ばく	_	_	_	1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	6.2×10 ⁰ **4			
	間上 / Y 雪二 / Y	0 1.0×10 ⁻	~	~	< #14.0>	~	D \$95.1×	た ばく 約2.9×	¥)4.6×	605	時) 約4.6×10	Z 0 h th 6.0																			
	5	生物質からの 部被ばく	外部被ば	内部被试	外部被ば	内部被试	在物質から(彼林ばく	町に洋着し」 第万十の第1	Dil.	動時間	時及び移動	(合計) + アク ル	. 772.		被ばく線量	約 13	約 16	約 13	約 5.6	約 6.2	約 19										
	彼ばく経路 原十炉確屋内の放射性 ガソと練による外毎		大気中へ放出された放	大気中へ放出された放 身性物質による彼ばく 外気から作業場所内へ 流入した放射性物質		 パンパンパンパンパンパンティングを含めていたのまたもので パントを肥着もの状態 メントを肥着もの状態 		大郎中へ放出され地帯	作業線量目	作業時間及び移	作業員の実効線量(作業	作業員の実効線量 ※1 歴め経動時に	※1 屋外移動時に	**1 **2 **3 **4	被ばく線量が最も マスク着用 (PF50) ベント流体が原子類 ベント系配管内に著 放射性物質がドレン	 	時間帯で作業 養効果を考慮 充入すること 着した放射性: 蓄積するもの	を実施した場 する。 による影響に 物質を考慮す として評価す	島合の被ばく は考慮しない ⁻る。なお, ⁻る。	線量を記載。 。 ベント配管P	内に沈着した										
東海第二発電所 (2018.9.18片	坂)	島根原子力発電所	2号炉																												
---	--	----------	-----																												
補足1 格納容器漏えい率の設定について																															
原子炉格納容器からの原子炉建屋への漏えい率は, MAAF	内で模擬した漏えい孔の等価漏え																														
い面積及び原子炉格納容器の圧力に応じて設定している。																															
模擬する漏えい孔の等価漏えい面積は、以下に示す格納容器	圧力が最高使用圧力である 310kPa																														
[gage](1Pd)以下の場合と最高使用圧力を超過した後の場合	·の2種類を設定する。																														
ただし, MAAP解析においては, よう素の化学組成につい	いて考慮されておらず,全て粒子状																														
よう素として扱われることから, 無機よう素及び有機よう素の	格納容器漏えい率は別途設定する。																														
1 枚如宏昭にわぶ具支は田にわいての担合																															
1. 俗酌谷裔圧力が東南使用圧力以下の場合 認識混えい変(() 0月で 0 50/ /日) た甘に管山 1																														
格納谷裔江刀が取同使用江刀以下仍獨古,設訂佩之()平(() た空無遅うい西巷(約2×10 ⁻⁶ m^2)を設定] MAAD内で回	1.9Fd C 0.5%/ 日)を茎に昇山し																														
に守恤禰えい面禎(約3~10 皿)を成定し、MAAF的C白 ス																															
う な 9 枚 9 枚																															
	い家13%/日とたろ笑価漏えい面																														
	「「「「」」、「」」、「」」、「」」、「」」、「」、「」、「」、「」、「」、「」																														
2Pd k k k L S M k L S M k L S M k L S M k L M K L M K L M K L M K L M K L M K L M K L M K L M K L M K M K	GEの評価式及び定営流の式によ																														
って評価した漏えい率の結果を包絡する値として設定した。こ	れらの式は、設計基準事故の原子																														
「「「「「」」」の「「」」「「」」」「「」」」「「」」」「「」」」「「」」」	へている理論式※1である。格納容器																														
「 「 「 」 「 」 」 」 」 」 」 」 」 」 」 」 」 」	納容器雰囲気温度 200℃までは、事																														
故後7日間に渡り、格納容器本体並びに開口部及び貫通部の健	全性が確保されていることを確認																														
していることから、これらの理論式を用いて格納容器圧力 2Pd	及び雰囲気温度 200℃における漏																														
えい率を設定することは可能と判断した。																															
○AECの評価式																															
$L = L_0 \left \frac{(P_t - P_a) \times R_t \times T_t}{(P_t - P_a) \times R_t \times T_t} \right $																															
$\sqrt{(Pd - Pa) \times Rd \times Id}$																															
L : 事故時の格納容器漏えい率 (2Pd)	【約 1.28%/日】																														
L ₀ : 設計漏えい率 (0.9Pd)	【0.5%/日】																														
Pt : 事故時の格納容器内圧力 (2Pd)	【721.325kPa [abs]】																														
Pd : 設計圧力 (0.9Pd)	【380.325kPa [abs]】																														
Pa : 格納容器外の圧力(大気圧)	【101.325kPa [abs]】																														
<i>Rt</i> : 事故時の気体定数 ^{※2}	[523.7J/Kg·K]																														
<i>Rd</i> : 空気の気体定数	[287J/Kg·K]																														
Tt : 事故時の格納容器雰囲気温度(200℃)	【473.15K】																														
<i>Td</i> : 格納容器雰囲気温度(20℃)	【293.15K】																														

備考
・記載箇所の相違
島根2号炉では、有効
性評価「添付資料
3.1.2.6 原子炉格納容
器漏えい率の設定につ
いて」で記載している

東海第二発電所 (2018.9.18版)		島根原子力発電所	2 号炉	
○GEの評価	町式(General Electric 社の漏えいモデル式)			
	$L = L_0 \sqrt{\frac{1 - \left(\frac{Pa}{Pt}\right)^2}{1 - \left(\frac{Pa}{Pd}\right)^2}}$			
L :	事故時の格納容器漏えい率 (2Pd)	【約 0.51%/日】		
L ₀ :	設計漏えい率 (0.9Pd)	【0.5%/日】		
Pt :	事故時の格納容器内圧力(2Pd)	【721.325kPa [abs]】		
Pd :	設計圧力 (0.9Pd)	【380.325kPa [abs]】		
Pa :	格納容器外の圧力(大気圧)	【101.325kPa [abs]】		
○定常流の封				
	$\mathrm{L} = \mathrm{L}_0 \sqrt{rac{ ho_d(P_t - P_a)}{ ho_t(P_d - P_a)}}$			
L :	事故時の格納容器漏えい率 (2Pd)	【約 0.93%/日】		
L_0 :	設計漏えい率(0.9Pd)	【0.5%/日】		
ρ_t :	事故時の格納容器内気体の平均密度*3	[2.9kg/m ³]		
ρ_d :	設計温度・圧力における格納容器内気体の平均密度 [※] 4	$[4.5 \text{kg/m}^3]$		
P_t :	事故時の格納容器内圧力(2Pd)	【721.325kPa [abs]】		
P_d :	設計圧力 (0.9Pd)	【380.325kPa [abs]】		
P_a :	格納容器外の圧力(大気圧)	【101.325kPa [abs]】		
※1 「沸騰 日立集	水型原子力発電所 事故時の被ばく評価手法について(平 操作所)	成 16 年 1 月)」(株式会社		
※2 事故時 <i>R_t</i> [J/k	の気体定数 R_t は、以下の式により算出した。 g·K] =モル気体定数約 8.314 [J/K・mol] /平均分子量	M [kg∕mol]		
AEC	の評価式より、事故時の気体定数が大きくなるほど漏えい	率は高くなる。また、上記		
計算式より、事故時の気体定数は、平均分子量が小さくなるほど大きくなる。事故時の原子炉				
格納容器内は水素,窒素及び水蒸気で構成されるため,分子量の小さい水素の割合が増加する				
はと半羽	万丁重は小さくなり, 結朱として争政時の気体正数は大き 			
に当たり,水素, 窒素及び水蒸気のカス組成を 34%:33%:33%とし,水素の割合(34%)				
は、有効	性評価(「芬囲気」上刀・温度による静的負荷(格納容器過)	土・週温吸預)」)における		
水素発生	重 (約700kg (内訳:シルコニウム-水反応 約325kg,アル	/ミニワム/ 亜鉛の反応 約		

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
246kg, 水の放射線分解 約 115kg))を包含した値であることから, 保守的な設定であると考		
える。		
3 事故時の格納容器内気体の平均密度 ρ_t は、以下の式により算出した。 $\rho_t [kg/m^3] = 平均分子量M [kg/mol] ×物質量n [mol] /格納容器体積V [m^3]$ 定常流の式より、事故時の原子炉格納容器内気体の平均密度が小さくなるほど漏えい率は大 きくなる。また、上記計算式より、事故時の原子炉格納容器内気体の平均密度は、平均分子量 が小さくなるほど小さくなる。平均分子量は2 と同じであり、保守的な設定であると考える。 **4 原子炉格納容器内気体の平均密度 ρ_d は、以下の式により算出した。 $\rho_d [kg/m^3] = 1.205 [kg/m^3] × (P_d [Pa] / P_a [Pa])$		
1.205 [kg/ III]. 転除主気(名) (200) 3 無機上う表及び右機上ら表の放納容器漏ラい密		
(1) 無機よう素 他の核種と同様に格納容器圧力に応じて漏えい率が変動すると考えるが, MAAP解析にお いて無機よう素を模擬していないため, MAAP解析結果による格納容器圧力を基に漏えい率 を設定する。 漏えい率の設定に当たっては, 第1 図のとおりMAAP解析結果による格納容器圧力を包絡 した格納容器圧力を設定し, その格納容器圧力に対する漏えい率を設定している。 このように設定した漏えい率は, 0.9Pd以下で 0.5%/ 日, 0.9Pd 超過で 1.3%/ 日を一律に 与えるものであり, MAAP解析における漏えい率を包絡した保守的な設定であると考える。		
(2)有機よう素 有機よう素についても、無機よう素と同様の漏えい率の設定が可能であるが、有機よう素がガ ス状として振る舞うこと及び原子炉格納容器内での除去効果を受けない点で希ガスに類似してい		

 備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
ることから、MAAP解析における希ガスと同じ挙動を示すものとし、1.及び2.に基づき漏えい	
率を設定する。	
補足2 原子炉格納容器内での除去効果について	
MAAPにおけるエアロゾルに対する原子炉格納容器内の除去効果として、沈着、サプレッシ	
ョン・プールでのスクラビング及びドライウェルスプレイを考慮している。また、沈着について	
は、重力沈隆、拡散泳動、熱泳動、慣性衝突、核分裂生成物(以下「FP」という。)ガス凝縮/	
いて」の「第5部 $M \land \land P \downarrow$ (抜粋) 参昭)	
「重十重劫笑対策の右効性評価に係るシビアアカシデント解析ュードについて」の「第5部」)	
AAP」(扱件)	
(2) F P の状態変化・輸送モデル	
高温燃料から出た希ガス以外のFPは雰囲気の温度に依存して凝固し、エアロゾ	
ルへ変化する。気相及び液相中のFPの輸送においては、熱水力計算から求まる体	
積流量からFP輸送量を計算する。FPがガス状とエアロゾル状の場合は、気体の	
流れに乗って、原子炉圧力容器内と原子炉格納容器内の各部に輸送される。水プー	
ル上に沈着したFPの場合は、区画内の水の領域間の移動に伴って輸送される。ま	
た、炉心あるいは溶融炉心中のFPの場合は、溶融炉心の移動量に基づいて輸送さ	
れる。	
FPの輸送モデルは上述の仮定に基づいており、炉心燃料から放出されてから原	
子炉格納容器に到達する経路としては一次のとおりである。燃料から原子炉圧力容	
男内に 放出された F P け 原子 恒圧力 容器破損前に け L O C A 破損 口 あるいけ 逃が	
1 安全金から百子后枚納容哭へ放出される。また。百子后圧力容哭破損後にけ百子	
し、 「「「」」」、「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	
日本、 版山される。 処	
リノレッション・フェンハ攸相部、移口りる。原丁炉格納谷番の风相部、放田され	
にFPは、気体の流れに伴って原ナ炉格納谷益内を移行する。	

原子炉圧力容器及び原子炉格納容器内での気体,エアロゾル及び構造物表面上(沈 着)の状態間の遷移を模擬している。原子炉格納容器内のFP輸送モデル概要を図 3.3-15 に示す。 エアロゾルの沈着の種類としては、重力沈降、拡散泳動、熱泳動、慣性衝突、F	
 1 カス焼綿, FTカス特無差を実験とている。なお、花着じたエグエグルの特許並は考慮していない。 重力沈降は、Stokes の重力沈降式とSmoluchowski 方程式(エアログルの粒径分布に対する保存式)の解から得られる無次元相関式を用いて、浮遊するエアログル質量濃度から沈着率を求める。なお、Smoluchowski 方程式を無次元相関式としているのは解析時間短縮のためであり、この相関式を使用したMAAPのモデルは様々な実験データと比較して検証が行われている。 拡散泳動による沈着は、水蒸気凝縮により生じるStefan流(壁面へ向かう流体力学的気流)のみを考慮して沈着率を求める。 熱泳動による沈着は、Epsteinのモデルを用い、沈着面での温度勾配による沈着速度及び沈着率を求める。 慣性衝突による沈着は、原子炉格納容器内でのみ考慮され、流れの中にある構造物に、流線から外れたエアロゾルが衝突するものと仮定し、沈着率は重力沈降の場合と同様にSmoluchowski 方程式の解から得られる無次元相関式を用いて求める。 FPガスの凝縮は、FPガスの構造物表面への凝縮であり、雰囲気中の気体状FP圧力がFP飽和蒸気圧を超えると構造物表面への凝縮を計算する。 	
5-66 F P ガスの再蒸発は、凝縮と逆であり、気体状 F P の圧力が F P の飽和蒸気圧を 下回ると、蒸発が起こると仮定している。 エアロゾルのプール水によるスクラビング現象による除去効果の取り扱いに関し ては、スクラビングによる除染係数(D F)を設定し、エアロゾル除去効果が計算さ れる。D F の値は、クエンチャ、垂直ベント、水平ベントの3つの種類のスクラビ ング機器に対し、詳細コード SUPRA ^[9] を用いて、圧力、プール水深、キャリアガス 中の水蒸気質量割合、プール水のサブクール度及びエアロゾル粒子径をパラメータ として評価した結果を内蔵しており、これらのデータから求める。 また、格納容器スプレイによる F P 除去も模擬しており、スプレイ液滴とエアロ ゾルとの衝突による除去率を衝突効率、スプレイの液滴径、流量及び落下高さから 計算する。	

備考

	市海第二改重正 (2010 0 10 €)	白田居マム水帯町、A日村	
		局限原于刀笼黾所 2 亏炉	
沈者及びドライワェルスフレイによる除去効果を確認するため、感度解析を行った。感度解		•	
析結果を第1図に示す。な	なお, 感度解析では, 以下の式により原子炉格納容器内の除去効果る		
算出している。			
原子炉格納容器内DF=	=原子炉格納容器内へのCsI放出割合/ベントラインから大気への		
C s I 放出割合			
	$S(C \sim)$		
1.0E+07			
	·		
1.0E+06 -			
1.0E+05			
	·		
☐ 1.0E+04			
DDF(\ <u></u>		
S 1.0E+03 -			
۵	ーー・感度解析1(D/Wスプレイなし)		
1.0E+02			
1 05+01			
1.0E+00			
0 5 10	15 20 25 30 35 40 45 50 事故後の時間(br) JOB No MA47BNT2453GBU007		
第1図 エアロゾ	ルに対する原子炉格納容器内の除去効果(感度解析結果)		
第1図より,全除去効果を	と考慮したベースケースにおけるDF(10 ⁶ オーダー)との比較から		
重力沈降のDFは10 ³ 程度,	ドライウェルスプレイのDFは10~10 ² 程度であることがわかる。		
これより、重力沈降及びドラ	・ イウェルスプレイ両方によるDFは10 ⁴ ~10 ⁵ 程度となるため、エ	~	
ロゾルに対する原子炉格納容	≤器内の除去効果は重力沈降及びドライウェルスプレイの影響が大き		
いと考える			
9 サプレッション・プー	ルでのフクラビンガにトス除土益田		
$(1) z z = z = y y \neq y \neq z = y \neq y \neq z = y \neq z \neq$	かくの人 クラビンクによる际云刻未		
(1) スクラビング効果にご			
スクラビングは, エア	「ロソルを含む気体かフール内に移行する場合、気泡か分裂しなから		
上昇していく過程におい	、てエアロゾルが気泡界面に到達した時点で水に溶解して気体から 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、		
去される現象である。ス	<クラビングにおけるエアロゾル除去のメカニズムは,プールへの		
入時の水との衝突や気泡	回がプール水中を上昇していく過程における慣性衝突等が考えられ		
る。			

備考

東海第二発電所	(2018.9.	18版)
木(西舟)元 电//	(2010.9)	

(2) MAAP解析上の扱いについて

スクラビングによる除去効果について, MAAP解析ではスクラビング計算プログラム(S UPRAコード)により計算されたDF値のデータテーブルに, プール水深, エアロゾルの 粒子径, キャリアガス中の水蒸気割合, 格納容器圧力及びサプレッション・プールのサブク ール度の条件を補間して求めている。

SUPRAコードでは、スクラビングに伴う初期気泡生成時及び気泡上昇時のエアロゾルの除去効果をモデル化しており、気泡挙動(気泡サイズ及び気泡上昇速度)、初期気泡生成時のDF,気泡上昇時のDFを評価式により与えている。第2図に、気泡中のエアロゾルが気泡界面に到達するまでの過程を示す。気泡上昇時における各過程の除去速度を評価することでエアロゾルのDFを与えている。

第2図 スクラビングによるエアロゾル捕集効果

(3) SUPRAコードによる計算結果と実験結果の比較について

SUPRAコードによる計算結果については、電力共同研究*1にて実験結果との比較検討 が行われている。試験条件及び試験装置の概要を第1表及び第3図に示す。また、試験結果 を第4図から第10図に示す。

試験結果より、SUPRAコードによる計算結果と実験結果について、キャリアガス流量 等のパラメータ値の増減によるDF値の傾向は概ね一致していることを確認した。

また, 粒径 _____ µm までの粒子について, SUPRAコードによる計算結果が実験結 果より小さいDF値を示しており, 保守的な評価であることを確認した。

ー方, 粒径 μ m の粒子について, SUPRAコードによる計算結果が実験結果より大きいDF値を示しているが,これは実験とSUPRAコードで用いている粒子の違い(実験:LATEX粒子(密度 g/cm^3), SUPRAコード:CsOH(密度 g/cm^3))が影響しているためである。SUPRAコードの計算結果を密度補正*2した第7図及び第9 図では,SUPRAコードによる計算結果は実験結果より概ね小さいDF値を示すことが確認できる。

以上より、SUPRAコードにより計算されたDF値を用いることは妥当と考える。 ※1 共同研究報告書「放射能放出低減装置に関する開発研究」(PHASE2)最終報告書 平成5年3月

備考

島根原子力発電所	2 号炉
----------	------

東海第二発電所 (2018.9.18版)
※2 実験ではLATEX粒子を用いているため、その粒径は
となる。一方、SUPRAコードではCsOHの粒径を基にしているため、粒径に粒子
密度(g/cm ³)の平方根を乗じることにより に換算する。

第1表 試験条件

	Parameter		Standard Value	Range
Geometric	injection nozzle diamete	r (cm)	15	1~15
property	scrubbing depth	(meters)	2.7	0~3.8
Hydraulic property	pool water temperature carrier gas temperature steam fraction corrier gao flow rate	(°C) (°C) (vol.%) (L/min)	80 150 50 500	20~110 20~300 0~80 300~2000
Aerosol	particle diameter	(µ m)	0.21~1.1	0.1~1.9
property	material		LATEX	LATEX.CsI

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
第4図 キャリアガス流量に対するDFの比較	
第5図 ブール水温に対するDFの比較	

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
第6図 水蒸気割合に対するDFの比較	
第2回 水蒸気制合に対わてりたの比較(密度速工)	
界(因)小杰式剖古に対りるDFの比較(名及補正)	

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
第8図 スクラビング水深に対するDFの比較	
第9図 スクフビング水深に対するDFの比較(密度補止)	

備考

第10図 ガス温度に対するDFの比較

(4) 沸騰による除去効果への影響について

「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」の代替循環冷却系を使用 できない場合における事故シーケンスでは,第11図のとおり,格納容器圧力逃がし装置によ る格納容器減圧及び除熱の実施に伴いサプレッション・プールは飽和状態(沸騰状態)にな るため,サプレッション・プールの沸騰による除去効果への影響を確認した。MAAP解析 条件及び評価結果を第2表及び第3表に示す。なお,エアロゾルの粒径については,スクラ ビング前後でそれぞれ最も割合の多い粒径について除去効果への影響を確認した。その結果, 第3表のとおり沸騰時の除去効果は非沸騰時に比べて小さいことを確認した。

ただし、「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」の代替循環冷却 系を使用できない場合における事故シーケンスでは、第12回のとおり、原子炉圧力容器内の Cs-137は、大破断LOCAにより生じた破断口より格納容器内気相部へ移行し、その後 重力沈降等により、事象発生5時間程度で大部分が原子炉格納容器内液相部へ移行するため、 本評価においてサプレッション・プールの沸騰による除去効果の減少の影響はほとんどない と考える。

なお、CsI、CsOHの沸点はそれぞれ1,280℃,272.3℃以上*2であり、シビアアクシ デント時に原子炉格納容器内でCsI、CsOHが揮発することは考えにくいが、サプレッ ション・プールの沸騰に伴い液相部中のCsI、CsOHの一部が気相部へ移行する可能性 がある。ただし、その場合でも、ドライウェルから格納容器圧力逃がし装置を介した場合の Cs-137放出量(事象発生7日間で約18TBq)に包絡されると考えられる。

※2 化合物の辞典 髙本 進・稲本直樹・中原勝儼・山崎 昶[編集] 1997年11月20日

備考

備考

島根原子力発電所 2号炉

備考

島根原子力発電所	2 号炉
----------	------

東海第二発電所 (2018.9.18版) 補足3 原子炉格納容器内における無機よう素の自然沈着効果について 1. 無機よう素の自然沈着率の設定 原子炉格納容器内での無機よう素の除去効果として、自然沈着率9.0×10⁻⁴(1/s)(原子炉 格納容器内の最大存在量から1/200まで)を用いている。以下に、自然沈着率の算出に関する 概要を示す。 原子炉格納容器内における無機よう素の自然沈着について,財団法人原子力発電技術機構(以 下「NUPEC」という。)による検討「平成9年度NUREG-1465のソースタームを用いた 放射性物質放出量の評価に関する報告書(平成10年3月)」において、CSE(Containment Systems Experiment) A6 実験に基づく値が示されている。 原子炉格納容器内での無機よう素の自然沈着率を λ_d ($\mu g/m^3$)とすると、原子炉格納容器内 における無機よう素濃度 ρ の濃度変化(1/s)は式1で表され,自然沈着率 λ_d は時刻 t_0 におけ る無機よう素濃度 ρ₀と時刻 t₁における無機よう素濃度 ρ₁を用いて式2のとおりとなる。 $\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\lambda_{\mathrm{d}}\rho \qquad (\not \exists 1)$

$$\lambda_{d} = -\frac{1}{t_{1} - t_{0}} \log\left(\frac{\rho_{1}}{\rho_{0}}\right) \qquad (\not \Xi \ 2 \)$$

なお, NUPECの報告書では, Nuclear Technology "Removal of Iodine and Particles by Sprays in the Containment Systems Experiment"の記載(CSE A6実験)より,時刻0分 における無機よう素の気相濃度 10⁵ μg/m³及び時刻 30 分における無機よう素の気相濃度 1.995 ×10⁴ μ g/m³を上式に代入することで、式3のとおり、無機よう素の自然沈着率 9.0×10⁻⁴ (1 /s)を算出したとしている。

 $\lambda_{d} = -\frac{1}{30 \times 60 - 0} \log\left(\frac{1.995 \times 10^{4}}{10^{5}}\right) \approx 9.0 \times 10^{-4} \qquad (\mbox{\rlap{red}}\ 3 \)$

この自然沈着率は、BNWL-1244、"Removal of Iodine and Particles from Containment Atmospheres by Spray-Containment Systems Experiment Interim Report"のCSE A6実験 による無機よう素の気相部濃度の時間変化を表す図に基づくものである。時刻 0 分~30 分の濃 度変化は、よう素の浮遊量が多く、格納容器スプレイを考慮していない事故初期の状態を模擬し ていると考えられる。(第1図参照)

備老
島根2号炉では.59条
補足説明資料 59-11 添
付資料2 [2-5 格納容]
器等への無機よう素の
沈差効里について」で
記載している

備考

島根原子力発電所 2号炉

東海第二発電所 (2018.9.18版)

CSE実験の適用について

CSE実験条件と東海第二発電所の評価条件の比較を第1表に示す。

第1表 CSE実験と東海第二発電所の評価条件の比較

	CSE実験のRun No.		古海体一水母王	
	A 6 ** 1, ** 2	A 5 ^{**}	A 1 1 ^{**}	果御弗—允竜所
雰囲気	蒸気+空気	同左	同左	同左
雰囲気圧力 (MPa[gage])	約 0.20	約 0.22	約 0.24	約 0.47 以下 ^{※4}
雰囲気温度 (℃)	約 120	約 120	約 120	約 200 以下**4
格納容器 スプレイ	間欠*5	なし	なし	間欠**6
₩1 R.K.Hilliard	et.al, "Removal	l of iodine and	particles by s	sprays in the containment
systems exper	riment", Nucl.	Technol. Vol	10 pp499-519,	1971
※2 R.K.Hilliard by sprays",	et.al, "Removal BNWL-1244	of iodine and p	articles from	containment atmospheries
★3 R.K.Hilliard	and L.F.Colema	n, "Natural tr	ansport effec	ts on fission product
behavior in t	the containment	systems exper	iment", BNWL	-1457
※4 評価事故シー 載	ケンスにおける	格納容器圧力及	び雰囲気温度の	DMAAP解析結果より記
※5 A6 実験はスプ	レイを伴う実験	だが,自然沈着率	の算出には1[回目のスプレイ実施前にお
ける原子炉格線	納容器内の濃度変	変化より設定して	いる	
※6 格納容器スプ	レイを実施するか	バ,評価上は無機	よう素の除去	効果に対しては自然沈着の
み考慮し,格約	納容器スプレイに	こよる除去効果に	は考慮しない	
スプレイを使用し	、ていないA5及び	びA11における	ふ無機よう素の 原	原子炉格納容器内気相部濃
度の時間変化を第2	図に示す。初期の	の沈着については	tA6 と同様の傾	向を示すとともに、初期濃
度より数百分の1 程	建度まで低下した	後は緩やかとなる	傾向が見られる	5。また. 米国 SRP6.5.2 で
け 百子 后枚 納 宏 男	2000年終上ら表:	唐 康 が 1 / 200 に	かるまでけ無機	よう表の除土が目沢まれる
は、原丁炉俗和谷宿	11107無機よノ糸(辰戌//³1/200 (⊂	はるまては悪險	よノ糸の际云が兄込まれる
としている。				

備考

自然沈着率は,評価する体系の体積と内表面積の比である比表面積の影響を受け,比表面積が 大きいほど自然沈着率は大きくなると考えられるため,CSE実験における体系と東海第二発電 所の比表面積について第2表に示す。表からCSE実験と東海第二発電所の比表面積は同程度と なっていることが確認できる。

第2表 CSE	実験と東海第	二発電所の比	と表面積の比較
---------	--------	--------	---------

	CSE実験体系	東海第二発電所
体積 (m ³)	約 600	約 5,700
表面積(m ²)	約 570	約 5,900
比表面積(1/m)	約 0.96	約 1.04

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
補足4 サプレッション・プールでのスクラビングによる除去効果(無機よう素)		
サプレッション・プールでのスクラビングによる無機よう素の除去効果(以下「DF」という。)		
として, Standard Review Plan 6.5.5に基づきDF10を設定している。これは Standard Review		
Plan 6.5.5 において,「無機よう素のスクラビングによる除去効果として, Mark - Ⅱ及びM		
ark - Ⅲに対してDF10以下, Mark - Iに対してDF5以下を主張する場合は,特に計算		
を必要とせず容認しても良い」との記載に基づくものであり(抜粋参照),東海第二発電所はMa		
r k-Ⅱ型原子炉格納容器を採用していることから、サプレッション・プールの沸騰の有無に関		
わらず, DF10を適用することとしている。		
なお、有機よう素についてはガス状の性質であることから、本DFの効果には期待していない。		
粒子状よう素のDFについては、MAAP解析のスクラビング計算プログラム(SUPRAコー		
ド)にて評価している。		
「Standard Review Plan 6.5.5」(抜粋)		
1. <u>Pool Decontamination ractor</u> . The decontaminate entering the pool to the amount leaving. Decontamination factors for each fission product form as functions of time can be calculated by the SPARC code. An applicant may use the SPARC code or other methods to calculate the retention of fission products within the pool, provided that these methods are described in the SAR adequately to permit review. If the time-integrated IDF values claimed by the applicant for removal of particulates and elemental iodine are 10 or less for a Mark II or a Mark III containment, or are 5 or less for a Mark II containment, or are 5 or less for a Mark II containment, or are 5 or less for a Mark II containment, or are 5 or less for a Mark II containment and encents or any DF values greater than those given above. The reviewer has an option to perform an independent confirmatory calculation of the DF. If the SPARC code is used for a confirmatory calculation of fission product decontamination, the review should take care in proper establishment of the input parameters for the calculations.		

 備考		
・記載箇所の相違		
島根2号炉では, 59条		
補足説明資料 59-11 添		
付資料2「2-5 格納容		
器等への無機よう素の		
沈着効果について」で		
記載している		

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
サプレッション・プールでのスクラビングによる		
無機よう素の除去効果に関する他の知見について		
サプレッション・プールでのスクラビングによる無機よう素の除去効果に関する他の知見とし		
て、SPARCコードによる計算結果並びにUKAEA及びPOSEIDONにて行われた実験		
がある。		
1. SPARCコードによる計算結果		
Standard Review Plan 6.5.5の引用文献 ^{*1} において、SPARCコードを用いたよう素のス		
クラビングによる除去効果を計算している。当該文献では, Mark-I型原子炉格納容器を		
対象として無機よう素(I ₂),粒子状よう素(CsI)及び有機よう素(CH ₃ I)に対する		
スクラビングによる除去効果を計算している。計算結果は第1図のとおりであり、無機よう素		
に対するDFは最小で10程度である。		
なお,選定した事故シーケンスは,原子炉停止機能喪失であり,以下の事故進展を想定して		
いる。		
・過渡時において制御棒の挿入不良が発生		
・緊急炉心冷却システムは作動するが、原子炉出力レベルはサプレッション・プールの冷却能		
力を超過		
・原子炉圧力容器の過圧破損の発生により冷却材が喪失した結果、炉心損傷が発生		
※1 P.C.Owczarski and W.K.Winegarder, "Capture of Iodine in Suppression Pools", 19th		
DOE/NRC Nuclear Air Cleaning Conference.		

備考

6114
-

備考

東海第二発電所 (2018.9.18版)

島根原子力発電所 2号炉

			第1表	実験条件					
Program	Aerosol	Aerosol Aerosol size, µm		Aerosol Aerosol size, µm		Steam mass fraction	Water temp., ℃	Pool pressure	Injector
ACE	CsI CsOH MnO	1.7 - 2.7 1.6 - 2.8 1.7 - 2.3	N ₂ + steam	0.008 - 0.31	25 83	ambient	sparger		
EPRI	CsI TeO ₂ Sn	0.2 - 3.0 0.4 - 2.7 2.7	air, N ₂ or He + steam	0 - 0.95	 ambient near sa- turated 	ambient	single orifice		
EPSI	CsI CsOH	~4.5 (radius)	steam	1	273 (initially)	1.1 MPa 3.1 MPa 6.1 MPa	single orifice		
GE	Eu ₂ O ₃ CsI	0.1 - 40.0 < 0.3	air	0	ambient	ambient	single orifice		
JAERI	DOP	0.3 - 10.0	air	0	ambient	ambient	single orifice		
LACE - España	Csi	1.7 - 7.2	N ₂ + steam	0.07 - 0.85	110	3 bar (abs.)	-single orifice -multior.		
SPARTA	CsI	0.7	air + N ₂	0	close to saturation	ambient	2 orifices		
UKAEA	Cr/Ni	0.06	air + steam	0.25 - 0.96	ambient	ambient	4 orifices (downco- mers)		
UKAEA	I ₂ vapour	-	air and/or steam	0 - 1	ambient	ambient	4 orifices (downco- mers)		
POSEI- DON	I ₂ vapour		N ₂	0	ambient	ambient	-single orifice - multior.		

第2表 実験結果

Experiments	Species tested	DF range
ACE	Cs Mn I DOP	145 - 3000 11 - 260 47 - 1500 6 - 12
EPRI	CsI, TeO ₂ Sn	1.4 - 1600 110 - 6800
EPSI	CsI	2100 - 3300
GE	Eu ₂ O3 CsI	68 - 2900 7 - 10
JAERI	DOP	10 - 150
LACE-España	CsI	16 - 3000
SPARTA	CsI	7*
UKAEA	Ni/Cr	<u>15</u> - <u>1680</u> 14 - 240
POSEIDON	I ₂	20 - 300 000

* Only one test performed.

 備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
補足 5 原子炉格納容器外への核分裂生成物の放出割合の設定について	
大気への放出量は、炉内蓄積量に原子炉格納容器外への放出割合を乗じることで算出する。(参	
考1参照)	

原子炉格納容器外への放出割合の評価に当たっては、想定事故シナリオ「大破断LOCA+高 圧炉心冷却失敗+低圧炉心冷却失敗」(全交流動力電源喪失の重畳を考慮)において原子炉圧力容 器が健全な状態で事故収束するため、そのプラント状態を模擬可能なMAAPコードを用いるこ ととするが、以下の考察から、NUREG-1465の知見を用いて一部補正する。MAAP解析結 果を第1表、NUREG-1465の知見を用いて一部補正した結果を第2表に示す。

第1表 放出割合の評価結果(MAAP解析)

技種	原子炉格納容器	から原子炉建屋	格納容器圧力逃がし装置への			
修理	への漏え	い割合 ^{※1}	放出割合**1			
910-9	S/Cベント	D/Wベント	S/Cベント	D/Wベント		
希ガス類	約 4.3×10 ⁻³	約 4.3×10 ⁻³	約 9.5×10 ⁻¹	約 9.5×10 ⁻¹		
C s I 類	約 6.2×10 ⁻⁵	約 6.2×10 ⁻⁵	約 1.0×10 ⁻⁶	約 3.9×10 ⁻³		
C s OH類	約 3.1×10 ⁻⁵	約 3.2×10 ⁻⁵	約 4.0×10 ⁻⁷	約 7.5×10 ⁻³		
S b 類	約 7.6×10 ⁻⁵	約 7.5×10 ⁻⁵	約 2.7×10 ⁻⁶	約 1.8×10 ⁻²		
TeO₂類	約 4.4×10 ⁻⁵	約 4.4×10 ⁻⁵	約 3.8×10 ⁻⁷	約 9.9×10 ⁻⁴		
SrO類	約 8.6×10 ⁻⁵	約 7.1×10 ⁻⁵	約 2.6×10 ⁻⁵	約 2.4×10 ⁻¹		
BaO類	約 9.1×10 ⁻⁵	約 8.3×10 ⁻⁵	約 1.5×10 ⁻⁵	約 1.4×10 ⁻¹		
M o O 2類	約 9.1×10 ⁻⁵	約 9.0×10 ⁻⁵	約 3.5×10 ⁻⁶	約 3.0×10 ⁻²		
C e O ₂類	約 1.6×10 ⁻⁵	約 8.3×10 ⁻⁶	約 1.1×10 ⁻⁵	約 7.1×10 ⁻²		
L a 2 O 3類	約 1.6×10 ⁻⁵	約 8.3×10 ⁻⁶	約 1.1×10 ⁻⁵	約 7.1×10 ⁻²		

※1 小数点第2位を四捨五入

第2表 放出割合の評価結果(中・低揮発性の核種グループに対する補正後)

44 55	原子炉格納容器	から原子炉建屋	格納容器圧力法	心がし装置への			
核性	への漏え	い割合※1	放出割合**1				
11-1	S/Cペント	D/Wペント	S/Cベント	D/Wペント			
希ガス類	約 4.3×10-3	約 4.3×10-3	約 9.5×10-1	約 9.5×10 ⁻¹			
CsI類	約 6.2×10 ⁻⁵	約 6.2×10 ⁻⁵	約 1.0×10 ⁻⁶	約 3.9×10 ⁻³			
CsOH類	約 3.1×10 ⁻⁵	約 3.2×10 ⁻⁵	約 4.0×10 ⁻⁷	約 7.5×10 ⁻³			
C s 類※2	約 3.4×10-5	約 3.4×10-5	約 4.5×10-7	約 7.2×10-3			
S b 類	約 6.7×10-6	約 6.8×10-6	約 8.9×10 ⁻⁸	約 1.4×10-3			
T e O ₂類	約 6.7×10-6	約 6.8×10-6	約 8.9×10 ⁻⁸	約 1.4×10-3			
SrO類	約 2.7×10 ⁻⁶	約 2.7×10 ⁻⁶	約 3.6×10 ⁻⁸	約 5.8×10 ⁻⁴			
BaO類	約 2.7×10 ⁻⁶	約 2.7×10 ⁻⁶	約 3.6×10 ⁻⁸	約 5.8×10 ⁻⁴			
M o O 2類	約 3.4×10-7	約 3.4×10-7	約 4.5×10-9	約 7.2×10-5			
C e O 2類	約 6.7×10-8	約 6.8×10-8	約 8.9×10 ⁻¹⁰	約 1.4×10-5			
La ₂ O ₃ 類	約 2.7×10-8	約 2.7×10-8	約 3.6×10 ⁻¹⁰	約 5.8×10-6			
※1 小数点第2位を四捨五入							
※2 CsI 類及び CsOH 類の値から評価(評価式は式 1)							

	備考 ・記載箇所の相違				
	島根2号炉では, 59 条				
	補足説明資料 59-11 添				
	付資料2「2-3 核分				
	裂生成物の格納容器外				
	への放出割合の設定に				
	ついて」で記載してい				
	る				

		東	海第二	発電所	f (20	18.9.18	8版)					島根原子力発電所 2号炉
①TMIや福島第-	ー原子力	」発電所	「事故で	の観測	则事実に	ついて						
第 1 表によると,高揮発性核種(C s I, C s O H)の格納容器圧力逃がし装置からの放出割												
合(10 ⁻⁶ ~10 ⁻⁷ オーダー)と比べ、中・低揮発性核種の放出割合の方が大きい(10 ⁻⁵ オーダー)												
という結果になっている。												
	、 京皀笠	- 佰 子 †	「恣雷可	事故で	での緝泪	国宝か	ふ 重	故が発	生した	場合に	最も多く	
お山 さわる お子 小	からた	トスヨ	「いもい」	小山人名	さの宣母	事夫の	いかで	取が見	上した	·雷松州	取しタ、の物質の	
放田される他子代作	のしてい	よりオ	「小县で	527	+ V 内内 - し がわ	ホエッ		<i>a</i>),		小平元工	• • • • • • • • • • • • • • • • • • •	
成山里は同伊光住 ^の	ノ初貝と	シレーズ	、ツ里し	<i>と</i>) つし - +++++++	- こかね~ 小坊種の		いる。 * しの左	ナート	ホフム	、 <u>ネ</u> .	っめ古畑	
用う衣は, IM	1争政任	友(二計1		_ 双豹 1:	生物性の	ノ笏川に	- との行 :1ま見の		めるが	、布刀	へて同理	
発性核種(センリン	ふやよう)茶)刀	い原子炉	11上 力2	予希外に いっ / ロ は	-炉内音	積重の	半分程	度放出 (ア) ト	2115	一方で, マ	
甲・低揮発性核種に	まほぼ全	全量が周	1.子炉上	力容器	皆に保持	されて	いると	いう評	価とな	ってい	る。	
第3表	ТΜ	I 事故:	後に評価	雨され	た放射	生核種の	の場所こ	~とのを	「「「「「「」」	× % 3		
X • X				10	. = /*/*/11		о њи	I.	_ + H + H +		〔単位:%〕	
核種	14	低 ^⁴ Ce	<u>挿発性</u> ¹⁵⁴ Eu	¹⁵⁵ Eu	90Sr	<u>中揮</u> 第 ¹⁰⁶ 日	的 王 Ru ¹²⁵ 8		137Cs	<u>局揮発性</u> ¹²⁹]	⁸⁵ Kr	
原子炉建屋	10	5.4	100.7	100 5	00.7		447	0	40.1	40		
原于炉谷奋 原子炉冷却系	10	5.4 -	-	-	89.7	93.2	0	.2 .2	40.1 3	42	-	
地階水、気相タンク	頃 (0.01	-	-	2.1	0.5	0	.7 7	47	(47) [†] 7	54	
	10	5	122	110	93	94	119		95	97	85	
† 広範囲のI濃度測 回る分析結果とな	定値と多う ふってしまう	量のデフ う。したが	リ(おもに地 って, ここに	也下水沈 こ保持さ	殿物)のた れたIのイ:	こめ, ここで ンベントリ	での保持量 一はCsと	は炉心1 司等であっ	「ンベント ると考える	リーを大き る。	《上	
※3 存在割合=サ	ンプル	試料の	分析結學	₹∕O	RIGI	E N 2 =	コード解	解析結果	Ę			
出典:「TMI-2+	号機の 詞	周査研究	宅成果 (渡会偵	〔祐,井」	_康,桝	田藤夫	日本原	原子力学	学会誌	Vol.32,	
No. 4 (1990))]											
また 箆 4 表け	福自會	隺————————————————————————————————————	乙力登雷	∲所重‡	故後に自	三施され	た発雷	「前動曲	肉の土	·撞中劫	射性核種	
のサンプリング社員	画面ク	わ が	リカ元モ	上でした。	シターフ	このけ	って元电	が成地	(セン	ふしん		
のサンノリンク 相声) //* , 月 & h++	なひタヽ もみてや	1 (1 (1 ⊂		いるな	同理元	王候催	. (Ľ /	1) 41	よノ糸ノ	
じめり、多くの中で	• 1仏押知	的生候種	割は小俠	Щ (N	ND) 2	いり袷	未とな	2 (V	୦ ୦			
笛 / 書	€ 垣自?	卒 — 百二	乙力涨雪	言正す:	坂谷にも	多田 そう	1 た 上陸	すった	または	插		
日本 1 1 1 1 1 1 1 1 1 1 1 1 1	く油西ク	村 /小	1 77元頁	리기 쿠니		л Са		(TV)	(3) 114/2	<1里 ()]	重位:Bq/kg•乾土)	
【定点①】*1 試料採取場所 グランド (西北西約500m)	*2		【定点②】*1 野鳥の森 (西約500m)*2		【定点③】*1 産廃処分場近例 (南南西約500m	5) *2	④5.6号機サービス ビル前 (北約1,000m)*2	⑤固体廃棄物貯 蔵庫1,2棟近傍 (北約500m)*2	⑥南南西 約500m*2	⑦南南西 約750m*2	⑧南南西 約1,000m*2	
試料採取日 3/21	3/25	3/28 日本分析	3/25	3/28 日本分析	8 3/25	3/28日本分析	3/25	3/22	3/2	2 3/2	2 3/22	
分析機関 JAEA 測定日 3/24	JAEA 3/28	センター *3 3/30	JAEA 3/28	センター *3 3/30	JAEA 0 3/28	センター *3 3/30	JAEA 3/28	JAEA 3/25	JAEA 3/2	JAEA 5 3/2	JAEA 4 3/25	
核 I-131(約8日) 5.8E+06 種 I-132(約2時間) *4	5.7E+06 *4	3.8E+06 2.3E+05	3.0E+06 *4	3.9E+04 1.3E+02	4 1.2E+07 2 *4	2.6E+06 1.5E+05	4.6E+05 *4	3.1E+06 *4	7.9E+0	5 2.2E+0	6 5.4E+06	
Cs-134(約2年) 3.4E+05	4.9E+05	5.3E+05	7.7E+04	3.2E+02	2 3.5E+06	9.7E+05	6.8E+04	9.5E+05	8.7E+0	3 1.7E+0-	4 1.6E+05	
Cs-136(約13日) 7.2E+04 Cs-137(約30年) 3.4E+05	6.1E+04 4.8E+05	3.3E+04 5.1E+05	1.0E+04 7.6E+04	2.8E+01 3.2E+02	1 4.6E+05 2 3.5E+06	6.9E+04 9.3E+05	8.6E+03 6.7E+04	1.1E+05 1.0E+06	1.9E+0	3 2.2E+03 4 1.6E+04	3 2.5E+04 4 1.6E+05	
Te-129m(約34日) 2.5E+05	2.9E+05	8.5E+05	5.3E+04	ND	2.7E+06	6.0E+05	2.8E+04	8.9E+05	9.5E+0	3 1.9E+0	4 1.7E+05	
Te-132(約3日) 6.1E+05	3.4E+05	3.0E+05	6.5E+04	1.4E+02	2 3.1E+06	2.0E+05	3.2E+04	1.9E+06	2.1E+04	4 3.9E+0	4 3.8E+05	
Nb-95(約35日) 1.7E+03	2.4E+03	ND	ND	NE	5.3E+03	ND	ND	8.1E+03	NE		D 7.9E+02	
Ru-106(約370日) 5.3E+04	ND	ND	6.4E+03	NC	2.7E+05	ND	ND	6.8E+04	1.9E+03	3 N) 3.2E+04	
Mo-99(約66時間) 2.1E+04 To-99m(約6時間) 2.3E+04	2 0E+04	ND	ND	ND	0 6.6E+04	ND	ND	2 3E+04	NE		ND 8 3E+03	
La-140(約2日) 3.3E+04	3.7E+04	ND	2.3E+03	NC	9.7E+04	ND	2.5E+03	2.3E+04 2.1E+05	4.2E+02	2 6.2E+0	2 7.8E+03	
Be-7(約53日) ND	ND	ND	ND	NE	D ND	ND	ND	3.2E+04	NE	D NE	ND	
Ag-110m(約250日) 1.1E+03	2.6E+03	ND	ND	ND	D ND	. ND	1.7E+02	1.8E+04	NE		D ND	
出典:東京電力株式	式会社	HP (h	ttp://w	ww.te	pco. co.	jp/cc/	press/	110406	09-j.h	tml)		

備考

東海第二発電所 (2018.9.18版)	 2 号炉
②各元素の放出挙動について	
燃料からの核分裂生成物の放出及び移行挙動に関する研究結果より、各元素の放出挙動は以下	
のように整理されており**4,高揮発性核種が高温でほぼ全量放出されるのに対し、中・低揮発性	
核種は雰囲気条件に大きく左右される。	
希ガス:高温にてほぼ全量放出される。	
I, Cs : 高温にてほぼ全量放出される。放出速度は希ガスと同等。	
S b , T e : 被覆管と反応した後, 被覆管の酸化に伴い放出される。	
Sr,Mo,Ru,Rh,Ba:雰囲気条件(酸化条件 or 還元条件)に大きな影響を受ける。	
Ce、Np、Pu、Y、Zr、Nb:高温状態でも放出速度は低い。	
※4 「化学形に着目した破損燃料からの核分裂生成物及びアクチニドの放出挙動評価のための	
研究(JAEA-Review 2013-034, 2013 年 12 月)」	
③補正について	
①及び②より、第1表の中・低揮発性核種の放出割合が高揮発性核種よりも大きいという結果	
は実態に即しておらず、これは、MAAP解析において、中・低揮発性核種の放出割合が過度に	
大きく評価されたためと考えられ、要因としては、溶融燃料が再冠水し溶融燃料の外周部が固化	
した後でも、燃料デブリ表面からの放射性物質の放出評価において溶融燃料の平均温度を参照し	
て放出量を評価していることや、溶融燃料上部の水によるスクラビング効果を考慮していないこ	
とが挙げられる。なお、MAAPコードの開発元であるEPRIからも、以下の報告がなされて	
いる。	
・ 炉心が再冠水した場合の低揮発性核種(Ru及びMo)の放出について、低温の溶融燃料表	
面付近ではなく、溶融燃料の平均温度を基に放出速度を算出しているため、MAAP解析が	
保守的な結果を与える場合がある。	
・Moの放出量評価について、NUREG-1465よりもMAAPの方が放出量を多く評価する。	
したがって、TMI事故や福島第一原子力発電所事故の実態により見合った、環境中への放出量	
を評価するため、中・低揮発性核種の放出割合を補正することとした。補正するに当たり、「M 「事故を契機として行われたシビアアクシデントに係るソースターム研究を踏まえ」被覆管材で	
あるジルコニウムの酸化量の違い等により核分裂生成物の放出量や放出タイミングに相違が生じ	
ることを考慮し、BWR及びPWRそれぞれに対して放出割合を設定する等、より現実的なソー	
スタームの設定を目的として制定されたNUREG-1465の知見を利用する。事象発生後、炉心 損傷が開始し 原子恒圧力容器が破損するまでのMAAP解析とNUREC-1465の相定の比較	
は第5表のとおりであり、想定事故シーケンスでは重大事故等対処設備による原子炉注水により	
原子炉圧力容器破損には至らないが、NUREG-1465の想定とMAAP解析の事象進展に大き	
な差はなく、本評価においてNUREG-1465の知見は利用可能と判断している。	

備考

	東海第二発電所 (2018.9.1	8版)
第5表	MAAP事象進展とNUREG-	1465の想定の比較
	燃料被覆管損傷が開始し,ギャ ップから放射性物質が放出され る期間	炉心溶融が開始し,溶融燃料が原 子炉圧力容器破損するまでの期 間
МААР	約4分~約27分*5	約 27 分~約 3.3 時間*6
NUREG-1465	~30分	30 分~2 時間

※5 炉心損傷開始(燃料被覆管 1,000K)~燃料溶融開始(燃料温度 2,500K)

※6 原子炉注水をしない場合における原子炉圧力容器破損時間(本評価においては原子炉注水により原子炉圧力容器破損には至らない)

以下、各核種グループにおける放出割合の具体的な評価手法を示す。

(1) 希ガスグループ, Cs I グループ, Cs OHグループ

希ガスを含めた高揮発性の核種グループについては,MAAP解析結果から得られた放出割 合を採用する。

なお、Csの放出割合については、CsIグループ及びCsOHグループの放出割合、I元 素とCs元素の原子炉停止直後の炉内蓄積重量より、式1を用いて評価する。(式1の導出過 程は、参考2参照)

 $F_{CS}(T) = F_{CSOH}(T) + \frac{M_I}{M_{CS}} \times \frac{W_{CS}}{W_I} \times (F_{CSI}(T) - F_{CSOH}(T)) \qquad (\not \exists 1)$

<i>F_{Cs}(1)</i> :	哈
----------------------------	---

 $F_{C_sOH}(T)$: 時刻 T におけるC s OHグループの放出割合

- *F_{Csl}(T)* :時刻 T におけるC s I グループの放出割合
- *M*₁:停止直後の I の炉内蓄積重量
- *M_{Cs}*:停止直後のCsの炉内蓄積重量

*W*₁ : I の分子量

W_{Cs} : C s の分子量

(2) 中・低揮発性の核種グループ

中・低揮発性の核種グループについては、MAAP解析から得られた放出割合は採用せず、 MAAP解析の結果から得られたCsの放出割合、希ガスグループの放出割合及びNUREG -1465の知見を利用して放出割合を評価する。

ここで、中・低揮発性の核種における放出割合の経時的な振る舞いは、格納容器圧力逃がし 装置への放出については希ガス、原子炉建屋への漏えいについてはCsと同一になるものとし **7、事象発生から 168 時間経過時点におけるCsの放出割合に対する当該核種グループの放 出割合の比率はNUREG-1465で得られた比率に等しいとして、式2及び式3に基づき評 価する。また、第6表に、NUREG-1465で評価された格納容器内への放出割合を示す。

島根原子力発電所 2号炉

備考

018.9.18 版)	島根原子力発電所	2 号炉
2)		
)		
重グループの放出割合 計割合 AAP核種グループに相当する核種グループ する核種グループの原子炉格納容器への放出		
 •核種グループは、粒子状として振る舞い、沈 ·快速を受けると考えられる。したがって、中・ ·の漏えいについては、沈着等による除去効果を ·o · ·		
	018.9.18 成) (1)	018.9.18 成) 島根原十刀発電所 (グルーブの放出割合 (湖合) A A P核種グルーブに相当する核種グルーブ する核種グルーブの原子炉格納容器への放出 (核種グルーブは、粒子状として振る舞い、沈 (煤を受けると考えられる。したがって、中・ 潮えいについては、沈芳等による除去効果を (5) C s に比べて原子炉格納容器内に放出される したがって、税納容器圧力逃がし装置への放 に放出された後も、健面等に付着した放射性 C s に比べて原子炉格納容器気相部に浮遊 功出割合の振る舞いに近いと考えられる。 ルーブの「各時刻における放出割合」は、「各 (市都約容器への放出割合」は、「各 (市場容器への放出割合」に、「各 0.002 0.005 0.002 9 3 0.005 0.002 9 3 0.002 9 3 0.002 9 3 1 0.002 1 0.002 1 0.002 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

備老

東海第二発電所	(2018. 9. 18 版)	島根原子力発電所	2号炉
参考1 大気への放出量評価過程について			
大気への放出量は、「核種ごとに評価した炉」	り蓄積量」に「MAAPにより評価した核種グル	_	
プごとの格納容器外への放出割合」を乗じるこ	とで算出する。本評価において考慮したMAA	5	
における核種グル―プと各グループの核種を第	37表に示す。なお、MAAPにおける核種グルー	-	
プとNUREG-1465 における核種グループの	D比較は第1図のとおりであり,分類数に違いは	5	
るが、取り扱っている核種は同等である。			
第7表 MAAPにおけろね	を種グループと各グループの核種		
核種グループ	核種**9		
	Kr. Xe		
C s I 類	I		
C s OH類	Cs, Rb		
S b 類	S b		
T e O ₂ 類	Те		
SrO類	S r		
ВаО類	Ва		
M o O ₂ 類	Mo, Co, Tc, Ru, Rh		
C e O ₂ 類	Ce, Np, Pu		
	La, Y, Zr, Nb,		
	Pr, Nd, Am, Cm		
がゼロのため、対象外とした。			

備考

備考

東海第二発電所 (2018.9.18 版	反)	島根原子力発電所	2 号炉
$M_{Cs(CsI)}(T) = M_I \times \frac{W_{Cs}}{W_I} \times F_{CsI}(T)$			
<i>M_{Cs(CsI)}(T)</i> :時刻TにおけるCsI中に含まれ	しるC s の放出量		
2. C s OHに含まれるC s			
CsはCsI又はCsOHのいずれかの形態で存在している	らため, C s OH中に含まれるC s		
は、1. で算出したCsI中に含まれるCsを差引くことで算	〕出する。		
$M_{Cs(CsOH)}(T) = (M_{Cs} - M_I \times \frac{W_{Cs}}{W_I}) \times F_{CsOH}(T)$			
<i>M_{Cs(OH)}(T)</i> :時刻TにおけるC s OH中に含まれ	れるCsの放出量		
3. C s の放出割合			
1. 及び 2. で得られたC s の放出量をC s の炉内蓄積重量	で除することで、C s の放出割合		
と昇山りる。 M (T) M (T)			
$F_{CS}(T) = \frac{M_{CS(CSI)}(T) + M_{CS(CSOH)}(T)}{M_{CS}}$			
$M_{I} \times \frac{W_{CS}}{W} \times F_{CSI}(T) + (M_{CS} - M_{CS}(CSI)) \times F_{CSOH}(T)$	r)		
$=\frac{1}{\frac{W_{I}}{M_{CS}}}$			
$M_{I} \times \frac{W_{CS}}{W_{I}} \times F_{CSI}(T) + (M_{CS} - M_{I} \times \frac{W_{CS}}{W_{I}}) \times F_{CSOH}$	(T)		
\equiv			
$-E \qquad (T) + M_I \qquad W_{Cs} \qquad (E \qquad (T) - E \qquad (T))$			
$= r_{CsOH}(I) + \frac{1}{M_{Cs}} \times \frac{1}{W_I} \times (r_{CsI}(I) - r_{CsOH}(I))$			
 	うして		
被ばく評価への寄与が大きい核種に対するMAAP解析結果	- 及びNURG-1465 の放出割合		
を第8表に示す。第8表のとおり、Cs及びIについてはMA	A P 解析結果の方が大きい。また,		
希ガスについては、NUREG-1465の放出割合の方が大きい	が、これは東海第二の想定事故シ		
ナリオでは、原子炉注水により炉心が再冠水することで炉心内	に健全な状態の燃料が一部存在す		
るためと考える。			
第8書 MAAP解析結果及びNUREC-	1465 の故出割今		
MAAP	$\overline{\text{NURFG}}$		
Aňガス 約0.95	1		
I 約0.78	0.30		
Cs 約0.37	0.25		

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
補足 6 地表面への沈着速度の設定について	補足1 現場作業の線量影響評価における地表面への沈着速度の設定について	
地表面への放射性物質の沈着は、第1図に示すように乾性沈着と湿性沈着によって発生する。		
乾性沈着は地上近くの放射性物質が、地面状態等によって決まる沈着割合(沈着速度)に応じて		
地表面に沈着する現象であり、放射性物質の地表面濃度に沈着速度をかけることで計算される。		
湿性沈着は降水によって放射性物質が雨水に取り込まれ、地表面に落下・沈着する現象であり、		
大気中の放射性物質の濃度分布と降水強度及び沈着の割合を示すウォッシュアウト係数によって		
単本期間 無降本期間 日本規範 日本規範 第1回 地表面沈着のイメージ		
現場作業の線量影響評価においては、地表面の放射性物質の沈着速度として、乾性沈着及び降	現場作業の線量影響評価においては、エアロゾル粒子及び無機よう素の地表面への沈着速度と	
雨による湿性沉着を考慮した <u>地表面</u> 沉着速度として 0.5cm/s を用いる。	して、乾性沈着及び降雨による湿性沈着を考慮した沈着速度として 0.5 cm/s を用いる。	
以下では, <u>無機よう系の</u> 運性化看を考慮した地衣面化看速度として 0.5cm/s ^m を用いることの 適田性について確認した	以下では、 征住化者を考慮した <u>エノロノル粒子及い</u> 無機より <u>系の</u> 地衣面 <u>への</u> 化者速度として 0.5 $cm/s^{\times 1}$ を用いることの適用性について確認した	
※1 有機よう素の地表面への沈着速度としては 1.7×10 ⁻³ cm/s	※1 有機よう素の地表面への沈着速度としては 1.7×10 ⁻³ cm/s	
1. 評価手法 湿性沈着を考慮した地表面沈着速度 <u>(0.5cm/s)</u> の適用性は,乾性沈着率と湿性沈着率を合 計した沈着率の累積出現頻度 97%値を求め,乾性沈着率の累積出現頻度 97%値との比を求め る。その比と乾性沈着速度(0.3cm/s <u>,補足 8 参照</u>)の積が 0.5cm/s を超えていないことを 確認する。乾性沈着率及び湿性沈着率は以下のように定義される。	1. 検討手法 湿性沈着を考慮した地表面沈着速度の適用性は, 乾性沈着率と湿性沈着率を合計した沈着率の 累積出現頻度 97%値を求め, 乾性沈着率の累積出現頻度 97%値との比を求める。その比と, <u>エ</u> <u>アロゾル粒子及び無機よう素の</u> 乾性沈着速度(0.3cm/s)の積が 0.5cm/s を超えていないことを 確認する。乾性沈着率及び湿性沈着率は以下のように定義される。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(1) 乾性沈着率	(1) 乾性沈着率	
乾性沈着率は,「日本原子力学会標準 原子力発電所の確率論的安全評価に関する実施基準	乾性沈着率は, 「日本原子力学会標準 原子力発電所の確率論的安全評価に関する実施基準	
(レベル 3PSA 編): 2008」(社団法人 日本原子力学会)(以下「学会標準」という。)解説	(レベル 3PSA 編):2008」(社団法人 日本原子力学会)(以下「学会標準」という。)解説	
4.7 を参考に評価した。学会標準解説 4.7 では、使用する相対濃度は地表面高さ付近としてい	4.7を参考に評価した。 「学会標準」解説 4.7では、使用する相対濃度は地表面高さ付近とし	
るが、ここでは「原子力発電所中央制御室の居住性に係る被ばく評価手法について(内規)」	ているが、ここでは「原子力発電所中央制御室の居住性に係る被ばく評価手法について(内	
[【解説 5.3】(1)] に従い,放出経路ごとの相対濃度を用いて評価した。	規)」(原子力安全・保安院平成 21 年 8 月 12 日) [解説 5.3](1)]に従い放出経路ごとの	
	相対濃度を用いて評価した。	
$(\chi/Q)_{D}(x, y, z)_{i} = V_{d} \cdot \chi/Q(x, y, z)_{i} \cdot \cdot \cdot \cdot \cdot \square$	$(x/Q)_D(x, y, z)_i = V_d \cdot x/Q(x, y, z)_i \cdot \cdot \cdot \cdot \cdot \square$	
$\left(\chi/Q\right)_{D}(x,y,z)_{i}$:時刻 i での乾性沈着率 $\left[1/m^{2}\right]$	(x/Q) _D (x,y,z) _i :時刻 i での乾性沈着率 [1/m ²]	
χ /Q(x,y,z) _i : 時刻 i での相対濃度 $[s/m^3]$	x/Q(x,y,z) i :時刻iでの相対濃度 [s/m ³]	
V _d :沈着速度 [m/s] (0.003 NUREG/CR-4551 Vol.2 より)	V _d :沈着速度 [m/s] (0.003 NUREG/CR-4551 Vol.2より)	
(2) 湿性沈着率	(2) 湿性沈着率	
降雨時には、評価点上空の放射性核種の地表への沈着は、降雨による影響を受ける。湿性	降雨時には、評価点上空の放射性核種の地表への沈着は、降雨による影響を受ける。湿性	
沈着率(χ / Q)w (x,y) i は学会標準解説 4.11 より以下のように表される。	沈着率 (x/Q)w(x,y)i は 「学会標準」 解説 4.11 より以下のように表される。	
$\left(\chi/Q\right)_{w}(x,y)_{i} = \Lambda \cdot \int_{0}^{\infty} \chi/Q(x,y,z)_{i} dz = \chi/Q(x,y,0)_{i} \Lambda_{i} \sqrt{\frac{\pi}{2}} \Sigma_{zi} \exp\left[\frac{h^{2}}{2\Sigma_{zi}}\right]$	$(x/Q)_{w}(x,y)_{i} = \Lambda_{i} \cdot \int_{0}^{\infty} x/Q(x,y,z)_{i} dz = x/Q(x,y,0)_{i} \cdot \Lambda_{i} \sqrt{\frac{\pi}{2}} \Sigma_{zi} \exp[\frac{h^{2}}{2\Sigma_{zi}^{2}}] \cdot \cdot \text{(2)}$	
$\cdots $		
$\left(\chi/Q\right)_w(x,y)_i$:時刻 i での湿性沈着率 $\left[1/m^2\right]$	(x/Q) _w (x,y) _i :時刻 i での湿性沈着率 [1/m ²]	
χ/Q(x,y,0) ₀ :時刻 i での地表面高さでの相対濃度 [s/m ³]	x/Q(x,y,0) _i :時刻 i での地表面高さでの相対濃度 [s/m ³]	
Λ _i :時刻 i でのウォッシュアウト係数 [1/s]	Λ _i :時刻 i でのウォッシュアウト係数 [1/s]	
(= 9.5×10 ⁻⁵ ×Pr _i ^{0.8} 学会標準より)	(=9.5×10 ⁻⁵ ×Pri ^{0.8} 学会標準より)	
P _{ri} :時刻 i での降水強度 [mm/h]	Pri :時刻iでの降水強度 [mm/h]	
Σ _{zi} : :時刻 i での建屋影響を考慮した放射性雲の鉛直方向の拡散幅 [m]	Σ _{zi} :時刻iでの建物影響を考慮した放射性雲の鉛直方向の拡散幅[m]	
h : 放出高さ [m]	h : 放出高さ [m]	
乾性沈着率と湿性沈着率を合計した沈着率の累積出現頻度 97%値と,乾性沈着率の累積出	乾性沈着率と湿性沈着率を合計した沈着率の累積出現頻度 97%値と、乾性沈着率の累積出	
現頻度 97%値の比は以下で定義される。	現頻度 97%値の比は以下で定義される。	
乾性沈着率と湿性沈着率を合計した沈着率の累積出現頻度 97%値 (①+②)	乾性沈着率と湿性沈着率を合計した沈着率の累積出現頻度 97%値	
乾性沈着率の累積出現頻度 97%値 (①)	乾性沈着率の累積出現頻度 97%値	
$\left(V_{d} \cdot \chi / Q(x,y,z)_{i} + \chi / Q(x,y,0)_{i} \Lambda_{i} \sqrt{\frac{\pi}{2}} \Sigma_{zi} \exp\left[\frac{h^{2}}{2 \Sigma_{zi}}\right] \right)_{2^{\pi 0/2}}$	$\left(V_{d} \cdot x/Q(x,y,z)_{i} + x/Q(x,y,0)_{i} \cdot \Lambda_{i} \sqrt{\frac{\pi}{2}} \Sigma_{zi} exp[\frac{h^{2}}{2\Sigma_{zi}^{2}}]\right)_{\alpha = 0}$	
$= \frac{(V_{d} \cdot \chi / Q(x,y,z)_{i})_{97\%}}{(V_{d} \cdot \chi / Q(x,y,z)_{i})_{97\%}} \cdot \cdot \cdot \cdot \cdot (3)$	$= \frac{(V_{d} \cdot x/Q(x,y,z)_{i})_{97\%}}{(V_{d} \cdot x/Q(x,y,z)_{i})_{97\%}} \cdot \cdot \cdot (3)$	

	東海第二発電所 (2018.9.18版)						島根原子力発電所	2号炉				
2. 地表面沈	2. 地表面沈着率の累積出現頻度 97%値の求め方											
地表面沈	地表面沈着率の累積出現頻度は、気象指針に記載されているχ/Qの累積出現頻度 97%値の								<u>まの</u>			
求め方*26	に基づ	いて計算	il <i>t</i> z.	具体的	には以下	の手順で言	+算を行	った(第	2.図参照)。			
(1) 各時	刻にお	ける気象	象条件が	ら, 式	し及び式	②を用い	<u>ζχ/6</u>	2, 乾性沈	着率,湿性沈着*	感を		
1.時間	ごとに	算出する	ち。なお	,評価	讨象方位	以外に風	が吹いた	時刻につ	いては、評価対象	志		
位におり	けるχ	/Qがt	ゼロとな	るため	, 地表面	<u>沈着率(</u>	乾性沈着	下率+湿性	沈着率)もゼロと			
3												
第2	図の例	1は, 評価	西対象力	<u>「位をS</u>	SWとした	場合であ	<u>μ</u> , χ./	(Qによる	乾性沈着率及び降	私		
による	湿性沈	着率から	如表面	沈着率	を算出す	る。評価	対象方位	<u>SW以外</u>	の方位に風が吹い	た		
時刻に	<u> 2017</u>	は、地表	医面沈着	率はゼ	ロとなる	.Q						
(2) 上記	(1) 7	求めた	1時間ご	ごとの地	也表面沈着	音率を値の	大きさ川	頁に並びか	え、小さい方から	效数		
えて累れ	積出現	頻度が	97%値を	超えた	こところの	つ沈着率を	,地表面	i沈着率の	97%値とする(せ	肢表		
面沈着	率の累	積出現頻	夏度であ	るため	<u>, χ/Q</u>	の累積出	現頻度と	異なる)。	~			
※2(気象指	旨針解言	兑抜粋)										
<u>VI. 想定</u>	事故時	等の大気	気拡散の	解析力	运							
1. 線量計	十算に月	用いる相	対濃度									
(2) 着目	1地点の	2相対濃	度は,自	手時刻 <i>0</i>	2相対濃度	まを年間に	ついて /	いさい方が	ら累積した場合,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
の累積	責出現步	夏度が 97	7%に当	たる相	対濃度と	t-3em						
						Star All Par	- Sheeper	l				
						握性比着	#12 C D					
Г		方位	風速	大概	x/9	教性沈春丰	**#	個性沈景率	地尝面饮着率			
	11 inte	(風向)	(a./s)	安定度	(x/n ³)	(⊈) (⊕)	(nn/hr)	(2)	(D+Q)			
4	1/1 1:00	SW (NE)	4.3	F	O×10 ⁻⁴	O×10 ⁻⁹	0	۰ ،	O×10 ⁻⁹			
4	1/1 2:00	SW (NE)	4.5	E	O×10 ⁻⁶	O×10 ^{−8}	1.0	O×10 ⁻⁸	O×10 ⁻⁸			
4	/1 3:00	8	1.4	F	O×10 ⁻⁸	O×10 ⁻⁹	1.5	O×10 ⁻⁸	O×10-*			
-												
3/	/31 24:00	SW (NE)	5, 5	D	O×10-7	O×10 ⁻¹⁰	0	0	O×10 ⁻¹⁰			
	5	平価対象 方位	の時刻のみ	x/9	/	評価対象方位	≹SW≿L,					
	7	EU載性沈着	車が出現			送費面沈着率 出現頻度	の出現機変す	と昇順に並び着 /Q 1	2、			
	評価	画対象方位以 コとなるため	外の x / Q 、地会面は	位 着年位、	1	(%)	(a/	(m ³) 0	(D+2) 0			
	123	7295. m			2	0.003	1	D	0			
		展長	田現頗度:	1796 411	• 00	97.004	O×	10-4	0×10 ⁻⁺			
地震而	記法事業の	金び替えでは はぶました」	59、気象(- 00	97.010	O×	10 ⁻⁶	O×10 ^{-*}			
限らな	2 C 3 2 M 200 800 - 200	1000 C 1000		5 IA 1	×××	100.000	O×	10-*	0×10**			
1545.0	NY 27 9	10.0010344085		,								
第2区	3地表	長面沈着	率の累積	責出現步	<u> 須度 97%</u>	値の求める	5(評価	対象方位/	がSWの場合)			

備考

島根原子力発電所 2号炉	備考
り評価結果を表1に示す。	
平価においてめったに遭遇しないと思われる厳しい気象条件として累 している。このことから,地表面沈着率の評価においても同様に,実 こ遭遇しないと思われる気象条件として累積出現頻度 97%値を評価し 音率(乾性+湿性)は乾性沈着率の約 1.00~1.28 程度となった。 安定度,降雨状況等様々な条件から計算を行うため,厳しい気象条件 音率の累積出現頻度 97%値は,必ずしも降雨があるとは限らない。	
子及び無機よう素の湿性沈着を考慮した沈着速度として、乾性沈着速 から保守的に 0.5 cm/s と設定することは適切であると考えられる。 量を考慮した沈着速度は、有機よう素の乾性沈着速度(10 ⁻³ cm/s)に対 (0.3) を参照し、値を丸め1.7×10 ⁻³ cm/s を採用した。 生評価及び緊急時対策所の居住性評価においては、更に保守性を持た s を採用している。	
全部がらていま。 全解析は、想定事故期間中の線量を評価するものであるので、この場か時刻に起こること及び実効的な放出継続時間が短いことを考慮して、ひしろ出現頻度からみてめったに遭遇しないと思われる厳しい気象条このため、指針では、気象観測資料を基に出現確率的観点から想定事がし、その出現頻度が極めて小さいものを選ぶことによって、放射性条件に相当するものとなるように考慮することとした。の解析方法 こおいてめったに遭遇しない気象条件下の濃度を導くため、相対濃度こ照らして 97%を採用して解析することとした。	

東海第二発電所 (2018.9.18版)							島根原子力発電所 2号炉				
		<u>第1表</u>	沈着率評価結果				表	1 沈着率評価	結果		
放出点	相対濃度 (s/m ³)	乾性沈着率(①) (1/m ²)	地表面沈着率(①+②) (1/m ²)	3比 ((1+2) /①)	湿性沈着を考慮 した沈着速度 (cm/s)	放出点及び	評価点	相対濃度	①乾性沈着率	②乾性; +湿性;	
原子炉建屋	約 8.3×10 ⁻⁴	約 2.5×10 ⁻⁶	約 3.0×10 ⁻⁶	約 1.22	約 0.36	放出点高さ		$[s/m^3]$	$[1/m^2]$	[1/n	
原子炉 建屋屋上	約 4.2×10 ⁻⁴	約 1.2×10 ⁻⁶	約 1.5×10 ⁻⁶	約 1.22	約 0.36	原子炉建物	W/Wベント第一隔離弁	$1.5 imes 10^{-3}$	$4.5 imes 10^{-6}$	4.5 imes	
排気筒	約 3.0×10 ⁻⁶	約 8.9×10 ⁻⁹	約 1.2×10 ⁻⁸	約 1.34	約 0.40	(地上 0m)	D/Wベント第一隔離弁	$1.5 imes10^{\cdot3}$	$4.5 imes 10^{-6}$	4.5 imes	
							第二隔離弁	$1.5 imes 10^{-3}$	$4.6 imes 10^{-6}$	4.6 imes	
						排気筒	W/Wベント第一隔離弁	$3.5 imes 10^{\cdot 4}$	$1.0 imes 10^{-6}$	1.3×	
						(地上 110m)	D/Wベント第一隔離弁	$3.5 imes 10^{-4}$	$1.0 imes 10^{-6}$	1.3 imes	
							第二隔離弁	$3.4 imes 10^{-4}$	$1.0 imes 10^{-6}$	1.3 imes	
						格納容器フィルタ	W/Wベント第一隔離弁	$7.4 imes 10^{.4}$	$2.2 imes 10^{-6}$	2.3 imes	
						ベント系排気管	D/Wベント第一隔離弁	$7.5 imes 10^{\cdot 4}$	$2.2 imes 10^{-6}$	2.3×	
						(地上 50m)	第二隔離弁	$7.4 imes 10^{-4}$	$2.2 imes 10^{-6}$	2.3 imes	
	第2表 東海領	第二発電所におけ	る地表面沈着率(放出	点:原子炉建	屋)	<u> </u>					

No	方位 ^{※4} (風向)	降水量 (mm/hr)	χ∕Q (s∕m³)	地表面沈着率 (1/m ²) (①+②)	乾性沈着率の累積出現 頻度 97%値との比率 (③)	累積出現頻度 (%)
•••	• • •	•••	•••	•••		• • •
8497	SW (NE)	14.0	約 6.4×10 ⁻⁵	約 2.9×10 ⁻⁶	約 1.22	96.990
<u>8498</u>	<u>SW</u> (NE)	<u>5. 0</u>	<u>約1.4×10⁻⁴</u>	<u>約3.0×10⁻⁶</u>	<u>約 1.22</u>	<u>97.001</u>
8499	SW (NE)	3. 0	約 2.0×10 ⁻⁴	約 3.0×10 ⁻⁶	約 1.22	97.013
	• • •	• • •	• • •	• • •		

※4 評価対象方位(E, ESE, SE, SSE, S, SSW, SW, WSW,W)

第3表 東海第二発電所における地表面沈着率(放出点:原子炉建屋屋上)

No	方位 ^{※5} (風向)	降水量 (mm/hr)	χ / Q (s/m ³)	地表面沈着率 (1/m ²) (①+②)	乾性沈着率の累積出現 頻度 97%値との比率 (③)	累積出現頻度 (%)
•••	•••	•••	•••	•••	• • •	• • •
8497	SW (NE)	14.0	約 3.2×10 ⁻⁵	約 1.5×10 ⁻⁶	約 1.22	96.990
<u>8498</u>	<u>SW</u> (NE)	<u>5. 0</u>	<u>約7.0×10⁻⁵</u>	<u>約1.5×10⁻⁶</u>	<u>約 1.22</u>	<u>97. 001</u>
8499	SW (NE)	3. 0	約1.0×10 ⁻⁴	約 1.5×10 ⁻⁶	約 1.22	97.013
•••	•••	•••	•••	•••		• • •

※5 評価対象方位(E, ESE, SE, SSE, S, SSW, SW, WSW,W)

		備考
比着率 ℃着率 1 ²]	比 (②/①)	
10-6	1.00	
10.6	1.00	
10-6	1.00	
10-6	1.23	
10-6	1.23	
10^{-6}	1.28	
10-6	1.03	
10.6	1.02	
10^{-6}	1.03	
島根原子力発電所 2号炉

東海第二発電所 (2018.9.18版)

第4表 東海第二発電所における地表面沈着率(放出点:排気筒)						
No	方位 ^{※6} (風向)	降水量 (mm/hr)	χ / Q (s/m ³)	地表面沈着率 (1/m ²) (①+②)	乾性沈着率の累積出現 頻度 97%値との比率 (③)	累積出現頻度 (%)
• • •	•••	• • •	• • •	•••	• • •	• • •
8497	SW (NE)	0.5	約7.1×10 ⁻⁷	約 1.2×10 ⁻⁸	約 1.33	96. 983
<u>8498</u>	<u>S₩</u> (NE)	<u>0</u>	<u>約4.0×10⁻⁶</u>	<u>約1.2×10⁻⁸</u>	<u>約 1.34</u>	<u>97.006</u>
8499	SW (NE)	0	約4.0×10 ⁻⁶	約 1.2×10 ⁻⁸	約 1.34	97.018
• • • •	•••	• • •	• • •	• • •		

※6 評価対象方位 (SW)

4. 降雨時における被ばく低減について

事故発生後は,原子炉建屋を取り囲むようにモニタリング・ポスト又は可搬型モニタリング・ ポストを設置し,敷地内の放射線環境状況を監視するとともに,作業の際は個人線量計を着用し, 作業員の被ばく線量を管理することとしている。

降雨時においては,屋外の移動又は作業をする場合には,現場作業員はアノラック,ゴム手袋 及び長靴を着用することにより,体表面の汚染を防止する。

また,実際には,事故時の降雨や風向といった気象条件によって,敷地内の放射性物質の沈着 の濃淡ができると考えられることから,モニタリング・ポスト等の測定値より著しい線量率の上 昇がある方位や作業時及び移動時に携行するサーベイ・メータ等により高線量となる場所を把握 し,著しく線量率が高くなると想定されるルート等を避けて移動することやルート上の高線量物 の移動などの運用により,被ばく低減を図ることが可能である。

備考
1

東海第二発電所 (2018.9.18版)	島根原子力発電所	2号炉
補足7 有機よう素の乾性沈着速度について		
原子炉建屋から放出されるよう素のうち、無機よう素はエアロゾルと同じ沈着速度を用いる。		
有機よう素についてはエアロゾルと別に設定した。以下にその根拠を示す。		
(1) 広国放射線防護庁 (NRPR) による報告		
(1) 英国放射線防護庁 大気拡散委員会に上ろ年次レポート(NRPB-R322 ^{×1})に沈着速度に関		
する報告がなされている。本レポートでは、有機よう素について、植物に対する沈着速度に関		
する知見が整理されており、以下のとおり報告されている。		
・植物に対する沈着速度の"best judgement"として 10 ⁻⁵ m/s(10 ⁻³ cm/s)を推奨		
(2) 日本原子力学会による報告		
日本原子力学会標準レベル 3PSA 解説 4.8 に沈着速度に関する以下の報告がなされている。		
・ヨウ化メチルは非反応性の化合物であり、沈着速度が小さく、実験で $10^{-4} \mathrm{cm/s} \sim 10^{-2}$		
cm/sの範囲である。		
 ・ヨウ化メチルの沈着は、公衆のリスクに対し僅かな寄与をするだけであり、事故影響評価 		
においてはその沈着は無視でさる。		
以上のことから、有機よう素の乾性沈着速度はエアロゾルの乾性沈着速度 0.3cm/s に比べて小		
さいことがいえる。		
また,原子力発電所内は,コンクリート,道路,芝生及び木々で構成されているがエアロゾル		
への沈着速度の実験結果(NUREG/CR-4551)によると、沈着速度が大きいのは芝生や木々で		
あり、植物に対する沈着速度が大きくなる傾向であった。		
したがって,有機よう素の乾性沈着速度として,NRPB-R322の植物に対する沈着速度である		
10 ⁻³ cm/s を用いるのは妥当と判断した。		
%1 NRPB-R322-Atmospheric Dispersion Modelling Liaison Committee Annual Report, 1998-99		

備考
・記載箇所の相違
島根2号炉では, 59 条
補足説明資料 59-11 添
付資料2「2-11 有機よ
う素の乾性沈着速度に
ついて」で記載してい
3

NRPB-R322 ANNEX-A 「2.2 Iodine」の抜粋

2.2.2 Meadow grass and crops

Methyl iodide

There are fewer data for methyl iodide than for elemental iodine, but all the data indicate that it is poorly absorbed by vegetation, such that surface resistance is by far the dominant resistance component. The early data have been reviewed elsewhere (Underwood, 1988; Harper *et al*, 1994) and no substantial body of new data is available. The measured values range between 10^{-6} and 10^{-4} m s⁻¹ approximately. Again, there are no strong reasons for taking r_s to be a function of windspeed, so it is recommended that v_d is taken to be a constant. Based on the limited data available, the 'best judgement' value of v_d is taken as 10^{-5} m s⁻¹ and the 'conservative' value as 10^{-4} m s⁻¹. Where there is uncertainty as to the chemical species of the iodine, it is clearly safest to assume that it is all in elemental form from the viewpoint of making a conservative estimate of deposition flux.

2.2.3 Urban

Methyl iodide

There appear to be no data for the deposition of methyl iodide to building surfaces: the deposition velocity will be limited by adsorption processes and chemical reactions (if any) at the surface, for which specific data are required. No recommendations are given in this case. For vegetation within the urban area (lawns and parks etc), it is recommended that the values for extended grass surfaces be used.

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
補足8 エアロゾルの乾性沈着速度について		
現場作業の線量影響評価では、地表面への放射性物質の沈着速度として乾性沈着及び降水によ		
る湿性沈着を考慮した沈着速度(0.5cm/s,補足6参照)を用いており,沈着速度の評価に当た		
っては、乾性沈着速度として 0.3cm/s を用いている。以下に、乾性沈着速度の設定の考え方を示		
す。		
エアロゾルの乾性沈着速度は, NUREG/CR-4551 ^{**1} に基づき 0.3cm/s と設定した。		
NUREG/CR-4551 では郊外を対象としており、郊外とは道路、芝生及び木々で構成されるとして		
いる。原子力発電所内も同様の構成であるため、この沈着速度が適用できると考えられる。また、		
NUREG/CR-4551 では 0.5 µ m~5 µ m の粒径に対して検討されているが, 格納容器内の除去過程		
で、相対的に粒子径の大きなエアロゾルは格納容器内に十分捕集されるため、粒径の大きなエア		
ロゾルの放出はされにくいと考えられる。		
また, W.G.N. Slinn の検討※2によると、草や水、小石といった様々な材質に対する粒径に応		
じた乾性の沈着速度を整理しており、これによると $0.1 \mu m \sim 5 \mu m$ の粒径では沈着速度は $0.3 cm$		
/s程度(第1図)である。以上のことから、現場作業の線量影響評価におけるエアロゾルの乾		
性の沈着速度として 0.3cm/s を適用できると判断した。		

備考
・記載箇所の相違
島根2号炉では, 59 条
補足説明資料 59-11 添
付資料2「2-10 エアロ
ゾル粒子の乾性沈着速
度について」で記載し
ている

備考

東海第二発電所 (2018.9.18版)			島根原子力発電所	2号炉	
に,海外の規制機関 (NRC 等) や各国の合同で実施されているシビアアクシデント時のエアロゾ					
ルの挙	動の試験等(第1表の	①, ③, ④) を調査	した。以上の調査結果を第1表に示す。		
この	表で整理した試験等は	,想定するエアロゾル	レ発生源,挙動範囲(格納容器,原子炉冷却材		
配管等),水の存在等に違い	があるが、エアロゾル	レ粒径の範囲に大きな違いはなく,格納容器内		
環境で	のエアロゾル粒径はこ	れらのエアロゾル粒谷	圣と同等な分布範囲を持つものと推定できる。		
した	がって,過去の種々の	調査・研究により示さ	されている範囲をカバーする値として, 0.1μm		
$\sim 5\mu$ r	n のエアロゾルを想定	することは妥当である	0 ₀		
	第1表 シビア	アクシデント時のエア	ロゾル粒径についての文献調査結果		
番 号	試験名又は 報告書名等	エアロゾル粒径 (μm)	備考		
1	LACE LA2 ^{**1}	約0.5~5 (第1図参照)	シビアアクシデント時の評価に使用され るコードでの格納容器閉じ込め機能喪失 を想定した条件とした比較試験		
2	NUREG/CR-5901 * 2	0.25~2.5 (参考1-1)	格納容器内に水が存在し,溶融炉心を覆っ ている場合のスクラビング効果のモデル 化を紹介したレポート		
3	AECLが実施した 試験 ^{※3}	0.1~3.0 (参考1-2)	シビアアクシデント時の炉心損傷を考慮 した1次系内のエアロゾル挙動に着目し た実験		
4	PBF-SFD ^{**} 3	0.29~0.56 (参考1-2)	シビアアクシデント時の炉心損傷を考慮 した1次系内のエアロゾル挙動に着目し た実験		
5	PHEBUS-FP ^{**3}	0.5~0.65 (参考1-2)	 シビアアクシデント時のFP挙動の実験 (左記のエアロゾル粒径はPHEBUS FP 実験の格納容器内のエアロゾル挙動に着 目した実験の結果) 		
*1 J A F (0 *2 I S *3	J. H. Wilson and P. C. Aerosol Containment I P.C. Arwood, PRETES CONTAINMENT TES D. A. Powers and J. L. Scrubbing by a Water STATE-OF-THE-A	Arwood, Summary o Experiments (LACE) T AEROSOL CODE TS LA1 AND LA2 Sprung, NUREG/CH Pool Overlying Core RT REPORT ON NU			

備考

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
so-called "quench" temperature. At temperatures below this quench temperature the kinetics of gas phase reactions among CO, CO ₂ , H ₂ , and H ₂ O are too slow to maintain chemical equilibrium on useful time scales. In the sharp temperature drop created by the water pool, very hot gases produced by the core debris are suddenly cooled to temperatures such that the gas composition is effectively "frozen" at the equilibrium composition for the "quench" temperature. Experimental evidence suggest that the "quench" temperature is 1300 to 1000 K. The value of the quench temperature was assumed to be uniformly distributed over this temperature range for the calculations done here.	
(6) <u>Solute Mass</u> . The mass of solutes in water pools overlying core debris attacking concrete has not been examined carefully in the experiments done to date. It is assumed here that the logarithm of the solute mass is uniformly distributed over the range of $\ln(0.05 \text{ g/kilogram H}_2\text{O}) = -3.00$ to $\ln(100 \text{ g/kilogram H}_2\text{O}) = 4.61$.	
(7) <u>Volume Fraction Suspended Solids</u> . The volume fraction of suspended solids in the water pool will increase with time. Depending on the available facilities for replenishing the water, this volume fraction could become quite large. Models available for this study are, however, limited to volume fractions of 0.1. Consequently, the volume fraction of suspended solids is taken to be uniformly distributed over the range of 0 to 0.1.	
(8) <u>Density of Suspended Solids</u> . Among the materials that are expected to make up the suspended solids are Ca(OH) ₂ ($\rho = 2.2 \text{ g/cm}^3$) or SiO ₂ ($\rho = 2.2 \text{ g/cm}^3$) from the concrete and UO ₂ ($\rho = 10 \text{ g/cm}^3$) or ZrO ₂ ($\rho = 5.9 \text{ g/cm}^3$) from the core debris or any of a variety of aerosol materials. It is assumed here that the material density of the suspended solids is uniformly distributed over the range of 2 to 6 g/cm ³ . The upper limit is chosen based on the assumption that suspended UO ₂ will hydrate, thus reducing its effective density. Otherwise, gas sparging will not keep such a dense material suspended.	
(9) <u>Surface Tension of Water</u> . The surface tension of the water can be increased or decreased by dissolved materials. The magnitude of the change is taken here to be $S\sigma(w)$ where S is the weight fraction of dissolved solids. The sign of the change is taken to be minus or plus depending on whether a random variable ϵ is less than 0.5 or greater than or equal to 0.5. Thus, the surface tension of the liquid is:	
$\sigma_{1} = \begin{cases} \sigma(w) \ (1-S) & for \ \epsilon < 0.5 \\ \sigma(w) \ (1+S) & for \ \epsilon \ge 0.5 \end{cases}$	
where $\sigma(w)$ is the surface tension of pure water.	
(10) <u>Mean Aerosol Particle Size</u> . The mass mean particle size for aerosols produced during melt/concrete interactions is known only for situations in which no water is present. There is reason to believe smaller particles will be produced if a water pool is present. Examination of aerosols produced during melt/concrete interactions shows that the primary particles are about 0.1 μ m in diameter. Even with a water pool present, smaller particles would not be expected.	

 備考

Consequently, the natural logarithm of the mean particle size is taken here to be uniformly distributed over the range from ln (0.25 μ m) = -1.39 to ln (2.5 μ m) = 0.92.

(11) Geometric Standard Deviation of the Particle Size Distribution. The aerosols produced during core debris-concrete interactions are assumed to have lognormal size distributions. Experimentally determined geometric standard deviations for the distributions in cases with no water present vary between 1.6 and 3.2. An argument can be made that the geometric standard deviation is positively correlated with the mean size of the aerosol. Proof of this correlation is difficult to marshall because of the sparse data base. It can also be argued that smaller geometric standard deviations will be produced in situations with water present. It is unlikely that data will ever be available to demonstrate this contention. The geometric standard deviation of the size distribution is assumed to be uniformly distributed over the range of 1.6 to 3.2. Any correlation of the geometric standard deviation with the mean size of the aerosol is neglected.

(12) Aerosol Material Density. Early in the course of core debris interactions with concrete, UO_2 with a solid density of around 10 g/cm³ is the predominant aerosol material. As the interaction progresses, oxides of iron, manganese and chromium with densities of about 5.5 g/cm³ and condensed products of concrete decomposition such as Na₂O, K₂O, Al₂O₃ SiO₂, and CaO with densities of 1.3 to 4 g/cm³ become the dominant aerosol species. Condensation and reaction of water with the species may alter the apparent material densities. Coagglomeration of aerosolized materials also complicates the prediction of the densities of materials that make up the aerosol. As a result the material density of the aerosol is considered uncertain. The material density used in the calculation of aerosol trapping is taken to be an uncertain parameter uniformly distributed over the range of 1.5 to 10.0 g/cm³.

Note that the mean aerosol particle size predicted by the VANESA code [6] is correlated with the particle material density to the -1/3 power. This correlation of aerosol particle size with particle material density was taken to be too weak and insufficiently supported by experimental evidence to be considered in the uncertainty analyses done here.

(13) <u>Initial Bubble Size</u>. The initial bubble size is calculated from the Davidson-Schular equation:

$$D_b = \epsilon \left(\frac{6}{\pi}\right)^{1/3} \frac{V_s^{0.4}}{g^{0.2}} \ cm$$

where ϵ is assumed to be uniformly distributed over the range of 1 to 1.54. The minimum bubble size is limited by the Fritz formula to be:

$$D_b = 0.0105 \ \Psi[\sigma_l / g(\rho_l - \rho_s)]^{1/2}$$

where the contact angle is assumed to be uniformly distributed over the range of 20 to 120°. The maximum bubble size is limited by the Taylor instability model to be:

/ 世 土
(順考)

参考1-2 STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS, NEA/CSNI/R(2009)5の抜粋及び試験の概要

9.2.1 Aerosols in the RCS

9.2.1.1 AECL

The experimenters conclude that spherical particles of around 0.1 to 0.3 μ m formed (though their composition was not established) then these agglomerated giving rise to a mixture of compact particles between 0.1 and 3.0 μ m in size at the point of measurement. The composition of the particles was found to be dominated by Cs, Sn and U: while the Cs and Sn mass contributions remained constant and very similar in mass, U was relatively minor in the first hour at 1860 K evolving to be the main contributor in the third (very approximately: 42 % U, 26 % Sn, 33 % Cs). Neither break down of composition by particle size nor statistical size information was measured.

9.2.1.2 PBF-SFD

Further interesting measurements for purposes here were six isokinetic, sequential, filtered samples located about 13 m from the bundle outlet. These were used to follow the evolution of the aerosol composition and to examine particle size (SEM). Based on these analyses the authors state that particle geometrical-mean diameter varied over the range $0.29-0.56 \,\mu\text{m}$ (elimination of the first filter due to it being early with respect to the main transient gives the range $0.32-0.56 \,\mu\text{m}$) while standard deviation fluctuated between 1.6 and 2.06. In the images of filter deposits needle-like forms are seen. Turning to composition, if the first filter sample is eliminated and "below detection limit" is taken as zero, for the structural components and volatile fission products we have in terms of percentages the values given in Table 9.2-1.

9.2.2 Aerosols in the containment

9.2.2.1 PHÉBUS FP

The aerosol size distributions were fairly lognormal with an average size (AMMD) in FPT0 of 2.4 μ m at the end of the 5-hour bundle-degradation phase growing to 3.5 μ m before stabilizing at 3.35 μ m; aerosol size in FPT1 was slightly larger at between 3.5 and 4.0 μ m. Geometric-mean diameter (d₅₀) of particles in FPT1 was seen to be between 0.5 and 0.65 μ m a SEM image of a deposit is shown in Fig. 9.2-2. In both tests the geometric standard deviation of the lognormal distribution was fairly constant at a value of around 2.0. There was clear evidence that aerosol composition varied very little as a function of particle size except for the late settling phase of the FPT1 test: during this period, the smallest particles were found to be cesium-rich. In terms of chemical speciation, X-ray techniques were used on some deposits giving a clue as to the potential forms of some of the elements. However, post-test oxidation of samples cannot be excluded since storage times were long (months) and the value of speculating on potential speciation on the basis of the available information is debatable. Nevertheless, there is clear evidence that some elements reached higher states of oxidation in the containment when compared to their chemical form in the circuit.

試験名又は報告書名等	試験の概要
A DOI が守持した守野	CANDUのジルカロイ被覆管燃料を使用した,1次系でも核分裂
AFULが 天地 した 天候	生成物の挙動についての試験
	米国アイダホ国立工学環境研究所で実施された炉心損傷状態で
PBF-SFD	の燃料棒及び炉心のふるまい並びに核分裂生成物及び水素の放
	出についての試験
	フランスカダラッシュ研究所のPHEBUS研究炉で実施された,
PHEBUS FP	シビアアクシデント条件下での炉心燃料から1次系を経て格納
	容器に至るまでの核分裂生成物の挙動を調べる実機燃料を用い
	た総合試験

1+++ -++
偏考

市 海第二 孫雲 所 (2018 0 18 版)	自 根百子力 愁雪 斫	9 是临
本(四第二元电)// (2010.3.10 版) 補足の 字執故山继续時間の乳空について	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	
十年世界証在に用いて定めなり継续時期は「惑素田臣乙辰佐弥の左合敏だに開きて左角性社」		
八、私国社園に用いる美知旗山継続時間は、「光电用原丁ゲ旭霞の女主牌別に関する、《相副」		
~ に使い, 争取朔间中の放射性物員の主放山重を1 時间目だりの取入放山重で床した値として計 答去了。 字執故山姚结味開は、 去気は對萩原本故山姚結味問た老虎した尚は味明来たりのは對係		
昇9つ。夫効成山椪統时间は,入気拡散計価で成山椪統时间を考慮した単位时间目たりの拡散体 教なませてために記号まてきのできり。 地球ノ河ケルマロー河ケルのお出来に対数の		
数を水めるにのに設定するものであり, 彼はく評価にわいては, 評価対象期間の放出率に拡散係 数さま ジステレビト した いちょう まま しょ 話 (たち)		
数を乗じることにより大気拡散を考慮した評価を行う。		
美効放出継続時間は放出経路ことに設定しており、原子炉建屋、非常用カス処理糸排気筒及び		
格納容器圧力逃がし装置排気口のそれぞれの放出経路について実効放出継続時間を計算した結果		
を第1表~第2表に示す。		
原子炉建屋及び格納容器圧力逃がし装置からの放出の実効放出継続時間は1時間程度であり、		
非常用ガス処理系排気筒からの放出の実効放出継続時間は 20 時間~30 時間程度となっている。		
大気拡散評価に用いる風速,風向などの気象データは,1時間ごとのデータとして整理されて		
おり、実効放出継続時間として設定できる最小単位は1時間である。		
また,実効放出継続時間を2時間以上で設定した場合,その期間に同一風向の風が吹き続ける		
ことを想定し、その期間の拡散係数の平均を単位時間当たりの拡散係数としている。なお、平均		
する期間に異なる風向が含まれる場合は、拡散係数を0として平均を計算する。このため、実効		
放出継続時間が長くなるほど平均される期間が長くなり拡散係数は小さい傾向となる。		
このことから、ベント実施に伴う被ばく評価では、保守的に被ばく評価上の影響が大きい原子		
炉建屋及び格納容器圧力逃がし装置からの放出における実効放出継続時間である1時間を適用し		
大気拡散評価を行った。		
なお、参考として実効放出継続時間の違いによる拡散係数(相対濃度、相対線量)の変化につ		
いて第3表に示す。		
また、評価対象期間の放出率及び拡散係数(相対線量)から行う被ばく評価の例として、第二		
弁開操作後(S/Cからベントを行う場合)に大気中へ放出された放射性物質による屋外移動時		
の外部被ばく評価結果について第4表に示す。		
※1 (気象指針解説抜粋)		
(3) 実効放出継続時間(T)は、想定事故の種類によって放出率に変化があるので、放出モー		
ドを考慮して適切に定めなければならないが、事故期間中の放射性物質の全放出量を1時		
间目にりの取入放出重ぐ味しに値を用いることもいとつの方法である。		

備考

第1表 S/Cからベントを行う場合の実効放出継続時間

		00 放出重(Bq)		最	②., 大放出率(Bq/h))	実文	(①÷②)」 b放出継続時間(1	υ.,
故出経路。	原子炉建屋。 放出分。	非常用ガス処理 系排気簡放出分。	ペント。 放出分り	原子炉建屋。 放出分。	非常用ガス処理 系排気簡放出分 。	ペント。 放出分り	原子炉建屋 放出分	非常用ガス処理 系排気簡放出分。	ペント』 放出分词
希ガス.,	豹 4.6×10 ¹⁶ .,	\$47 3.1×10 ¹⁶ .,	約 8.9×10 ¹⁸ .,	約3.1×10 ¹⁶ .,	約 1.2×10 ¹⁶ .,	約 8.7×10 ^{1 8} .,	約 1.5.,	約 25.1.,	約 1.0.,
もガス以外。	約 1.3×10 ¹⁶ .,	約 1.6×10 ¹⁶ .,	約 7.2×10 ¹⁶ .,	¥5 9.2×10 ^{1 ຢ} .,	約 6.2×10 ^{1 2} .,	約 7.1×10 ¹⁶ .,	約 1.4.,	約 26.3,	約 1.0.,
5 5	て出経路。 希ガス。 ガス以外。	 (出経路、原子炉建屋、放出分。) 希ガス。約4.6×10¹⁵。 ガス以外。約1.3×10¹⁵。 	原子炉建屋。 放出分。 非常用ガス処理 条排気筒放出分。 希ガス。 約4.6×101 ¹ 。 約3.1×10 ¹¹ 。 ガス以外。約1.3×10 ¹¹ 。 約1.6×10 ¹¹ 。	原子炉建屋。 放出分。 非常用ガス処理 糸排気筒放出分。 ベント。 放出分。 希ガス。 約 4.6×10 ¹⁶ 。 約 3.1×10 ¹⁶ 。 約 8.3×10 ¹⁸ 。 ガス以外。 約 1.3×10 ¹⁶ 。 約 1.6×10 ¹⁶ 。 約 7.2×10 ¹⁶ 。	原子炉建屋。 放出分。 非常用ガス処理 糸損気簡放出分。 ベント。 放出分。 原子炉建屋。 放出分。 希ガス。 約 4.6×10 ¹ ¹ 約 3.1×10 ¹ ¹ 約 8.9×10 ¹ ¹ 約 3.1×10 ¹ ¹ ガス以外。 約 1.3×10 ¹¹ 約 1.6×10 ¹¹ 約 7.2×10 ¹¹ 約 9.2×10 ¹¹	原子炉建屋。 放出分。 非常用ガス処理 米排気管放出分。 ベント。 放出分。 原子炉建屋。 放出分。 非常用ガス処理 米排気管放出分。 希ガス。 約 4.6×101 ¹ 6。 約 3.1×10 ¹ 6。 約 8.9×101 ¹ 6。 約 3.1×10 ¹ 6。 約 1.2×10 ¹ 6。 ガス以外。 約 1.3×10 ¹¹⁶ 。 約 1.6×10 ¹¹⁶ 。 約 7.2×10 ¹¹⁶ 。 約 9.2×10 ¹¹⁴ 。 約 6.2×10 ¹¹² 。	原子炉建屋。 放出分。 非常用ガス処理 水井気簡放出分。 ベント。 放出分。 原子炉建屋。 放出分。 非常用ガス処理 米井気簡放出分。 ベント。 放出分。 希ガス。 約 4.6×101 ¹ 。 約 3.1×10 ¹ 。 約 8.9×10 ¹ 。 約 3.1×10 ¹ 。 約 1.2×10 ¹ 。 約 8.7×10 ¹ 。 ガス以外。 約 1.3×10 ¹ 。 約 1.6×10 ¹ 。 約 7.2×10 ¹¹ 。 約 9.2×10 ¹⁴ 。 約 6.2×10 ¹² 。 約 7.1×10 ¹⁵ 。	原子炉建屋。 放出分。 非常用ガス処理 系排気簡放出分。 パント。 放出分。 原子炉建屋。 放出分。 非常用ガス処理 放出分。 ペント。 放出分。 原子炉建屋。 放出分。 非常用ガス処理 素指気簡放出分。 ペント。 放出分。 原子炉建屋。 放出分。 希ガス。 約 4.6×101 ¹ 約 3.1×101 ¹ 約 8.9×101 ¹ 約 3.1×101 ¹ 約 3.1×101 ¹ 約 1.2×101 ¹ 約 8.7×101 ¹ 約 1.5。 ガス以外。 約 1.3×101 ¹ 約 1.6×101 ¹ 約 7.2×101 ¹ 約 9.2×101 ¹ 約 6.2×101 ¹ 約 7.1×101 ¹ 約 1.4。	原子炉建屋。 放出分。 非常用ガス処理 糸排気筒放出分。 ベント。 放出分。 原子炉建屋。 放出分。 非常用ガス処理 放出分。 ベント。 放出分。 原子炉建屋。 放出分。 非常用ガス処理 放出分。 ベント。 放出分。 原子炉建屋。 放出分。 非常用ガス処理 放出分。 希ガス。 約 4.6×101 ¹ 約 3.1×10 ¹ 約 8.9×10 ¹ 約 3.1×10 ¹ 約 3.1×10 ¹ 約 3.1×10 ¹ 約 1.2×10 ¹ 約 8.7×10 ¹ 約 1.5 約 25.1 ガス以外。 約 1.3×10 ¹ 約 1.6×10 ¹ 約 7.2×10 ¹ 約 9.2×10 ¹⁴ 約 6.2×10 ¹² 約 7.1×10 ¹⁵ 約 1.4 約 26.3

第2表 D/Wからベントを行う場合の実効放出継続時間

÷											_
	л		①		朂	②., 大放出率(Bq/h))	実交	(①÷②), b放出維統時間(I	h) .,	÷
	放出経路。	原子炉建屋 放出分.。	非常用ガス処理 系排気筒放出分,	ペント。 放出分り	原子炉建屋 放出分.。	非常用ガス処理 系排気簡放出分。	ペント。 放出分。	原子炉建屋。 放出分。	非常用ガス処理 系排気筒放出分,	ペント。 放出分。	¢
	希ガス。	約 4.6×10 ¹⁶ .,	約3.1×10 ¹⁶ .,	¥5)8.8×10 ¹⁸ .,	約 3.1×10 ^{1 6} .,	約 1.2×10 ¹⁶ .,	約 7.4×10 ¹⁸ 。	約 1.5.,	約 25.2.,	約 1.2.,	þ
	希ガス以外。	約 1.3×10 ¹⁶ ,	約 1.7×10 ¹⁶ .,	約 7.5×10 ¹⁶ .,	約 9.2×101 4,	\$5 6.3×10 ¹² .,	約 6.4×10 ¹⁶ ,	約 1.4.,	約 26.4.,	約 1.2.,	¢

第3表 実効放出継続時間の違いによる拡散係数の変更

	相対濃度 (s/m ³)	相対線量 (Gy/Bq)
1時間	約 3.0×10 ⁻⁶	約 1.2×10 ⁻¹⁹
5 時間	約 2.9×10 ⁻⁶	約 8.8×10 ⁻²⁰
10 時間	約 1.7×10 ⁻⁶	約 7.5×10 ⁻²⁰
20 時間	約 1.2×10 ⁻⁶	約 6.2×10 ⁻²⁰

第4表 第二弁開操作後(S/Cからベントを行う場合)に大気に放出された放射性物質による

屋外移動時の外部被ばく評価結果					
項目	ベント実力 放射性物質によ	備考			
放出経路	非常用ガス処理 系排気筒	格納容器圧力逃がし装置排気ロ	ベント実施後の放出経 路		
放出率 (Bq/h)	約 3.3×10 ¹⁴	約 8.3×10 ¹³	 (①)事故後約 22 時間 ~約 23 時間の放 出率 		
相対線量 (Gy/Bq)	約 1.2×10 ⁻¹⁹	約 8.7×10 ⁻¹⁹	(②)実効放出継続時間1時間の相対線量(拡散係数)		
線量率 ^{*1} (mSv/h)	約 3.8×10 ⁻²	約 7.1×10 ⁻²	(①×②×10 ³) 評価対象期間の 線量率		
屋外移動時 線量率 約 1.1×10 ⁻¹ (mSv∕h)					
※1 事故時に	おいては換算係数を	1Sv/Gy として計算			

島根原子力発電所 2号炉

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
補足 10 ベント実施に伴うベント操作時の作業員の被ばく評価で考慮している線源の選定につ	
LIT.	
ベント実施に伴うベント操作時の作業員の被ばく評価では、放出さる放射性物質による被ばく	
経路として以下の被ばく経路を考慮している。	
・大気中へ放出された放射性物質からのガンマ線による被ばく	
・原子炉建屋内の放射性物質からのガンマ線による被ばく	
・外気から作業場所に流入した放射性物質による被ばく	
・ベント系配管内の放射性物質からのガンマ線による外部被ばく	
・地表面に沈着した放射性物質からのガンマ線による被ばく	
上記の被ばく経路以外にアクセスルート等には、第1表に示すとおり、換気系フィルタ、貯	
蔵タンク等の線源となる設備があるが,設備からアクセスルート等が十分に離れていること, 設備とアクセスルートの間の時に十分な渡藤効果が得られること。移動時間を考慮すると設備	
からの影響は短時間であることなどから、被ばく評価への影響が小さいため評価上考慮してい	
ない。設備とアクセスルート等の関係を第1図~第7図に示す。	

備考
1

		東	海第二	発電所	(201	8.9.18	版)				島根原子力発電所	2 号炉
	設備位置	① (第 6 図)	② (第4図)	③ (第3図)	④ (第3図)	⑤ (第3図)	⑥ (第4図)	⑦ (第1図)	かない。			
	アクセスルート等 における線量率	10 ⁻¹ mSv/h 以下	0. 5mSv∕h Ľ(下	10 ⁻² mSv/h 以下	10 ⁻² mSv/h 以下	10 ⁻² mSv/h 以下	10 ⁻² mSv/h 以下	10 ⁻² mSv/h 以下	被ばく評価上影響は、			
たってん	離隔距離, 遮蔽厚等	遮蔽厚 (床,壁) :約 100 cm 距 離:10m以上	遮蔽厚:なし 距 離:10m以上	遮蔽厚:約 100 cm 距 離:20m 以上	遠蔽厚:約100 cm 距 離:10m以上	遠蔽厚:約 80 cm 距 離:10m以上	遮蔽厚:約80 cm 距 離:1m以上	遠蔽厚:160 cm以上 距 離:40m以上	満) にある設備であり, 4			
1表 線源となる設備とアクセスルート等への影響	考慮していない理由	原子存建屋原子炉棟 5Fの設備であり、アクセスルート等から十分離れており,設備とアクセスルートの間には原子炉建屋原子炉棟の壁、床があり十分な進截効果に期待でき、被ばく評価への影響は小さいため。	アクセスルートから十分に離れており,移動時における影響は短時間であり被ばく評価への影響は小さいため。	アクセスルートから十分に離れており, アクセスルート等の間には補助遮蔽がある。また, 移動時における影響は短時間であることから被ばく評価への影響は小さいため。	アクセスルートから十分に離れており, アクセスルート等の間には補助遮蔽がある。また, 移動時における影響は短時間であることから被ばく評価への影響は小さいため。	アクセスルートから十分に離れており、アクセスルートとの間には補助遮蔽がある。また、移動時における影響は短時間であることから被ばく評価への影響は小さいため。	アクセスルート等の間には補助連截があり,移動時における影響は短時間であることから被ばく評価への影響は小さいため。	アクセスルートから十分に離れており,格納容器圧力逃が し装置格納槽からの直接線等は遮蔽設備により十分に低い線量となるため。	ンク等があるが, 管理区域の区域区分 I 又は II (0. 1mSv/h オ			
溌	設 備*1	非常用ガス処理系フィルタ, 非常用ガス再循環系フィルタ	中央制御室機気系フィルタ	凝集沈殿装置供給ポンプ	凝集沈殿装置供給タンク	艞液鸐縮機	廃液濃縮機循環ポンプ	格納容器圧力逃がし装置格納 槽	※1 麦の設備以外にも貯蔵タ			

111 - Lu
備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
用1図 産外アクセスルート	
第9回 原子恒建屋1階の撮作場所及びアクセスルート	

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
第3図 原子炉建屋2階の操作場所及びアクセスルート		
第4図 原子炉建屋3階及び原子炉建屋付属棟4階の		
操作場所及びアクセスルート		

備考
1

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
第5図 原子炉建屋4階の操作場所及びアクセスルート		
第6回 原子炉建屋5階		

備考
1

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
第7図 原子炉建屋6階		

東海第二発電所 (2018.9.18版)	島根原子力発電所	2号炉
補足 11 線量評価に用いた気象データについて		
1. はじめに		
新規制基準適合性に係る設置変更許可申請に当たっては,東海第二発電所敷地内で2005年度		
データを用いて線量評価することの妥当性について説明する。		
2. 設置変更許可申請において 2005 年度の気象データを用いた理由		
新規制基準適合性に係る設置変更許可申請に当り、添付書類十に新たに追加された炉心損傷		
防止対策の有効性評価で、格納容器圧力逃がし装置を使用する場合の敷地境界における実効線		
量の評価が必要となった。その際、添付書類六に記載している1981年度の気象データの代表性		
について、申請準備時点の最新気象データを用いて確認したところ、代表性が確認できなかっ		
た。このため、平常時線量評価用の風洞実験結果(原子炉熱出力向上の検討の一環で準備)※		
が整備されている 2005 年度の気象データについて,申請時点での最新気象データにて代表性を		
確認した上で、安全解析に用いる気象条件として適用することにした。これに伴い、添付書類		
九(通常運転時の線量評価),添付書類十(設計基準事故時の線量評価)の安全解析にも適用し、		
評価を見直すこととした(参考1参照)。		
※:線量評価には「発電用原子炉施設の安全解析に関する気象指針」(以下,気象指針という。)		
に基づき統計処理された気象データを用いる。また,気象データのほかに放射性物質の放出		
量,排気筒高さ等のプラントデータ,評価点までの距離,排気筒有効高さ(風洞実験結果)		
等のデータが必要となる。		
風洞実験は平常時,事故時の放出源高さで平地実験,模型実験を行い排気筒の有効高さを		
求めている。平常時の放出源高さの設定に当たっては,吹上げ高さを考慮しており,吹上げ		
高さの計算に 2005 年度の気象データ(風向別風速逆数の平均)を用いている。		
これは,2011 年 3 月以前,東海第二発電所において,次のように 2005 年度の気象データ		
を用いて原子炉熱出力の向上について検討していたことによる。		
原子炉熱出力向上に伴い添付書類九の通常運転時の線量評価条件が変更になること(主蒸		
気流量の5%増による冷却材中のよう素濃度減少により、換気系からの気体状よう素放出量		
の減少等,参考2参照),また,南南東方向(常陸那珂火力発電所方向),北東方向(海岸方		
向)の線量評価地点の追加も必要であったことから、中立の大気安定度の気流条件での風洞		
実験を新たに規定した「(社)日本原子力学会標準 発電用原子炉施設の安全解析における放		
出源の有効高さを求めるための風洞実験実施基準:2003」に基づき,使用済燃料乾式貯蔵建		
屋,固体廃棄物作業建屋等の当初の風洞実験(1982年)以降に増設された建屋も反映し,2005		
年度の気象データを用いて風洞実験(参考3参照)を実施した。		
東海第二発電所の添付書類九では、廃止措置中の東海発電所についても通常運転状態を仮		
定した緑量評価を行っている。この評価においては、1981年度と2005年度の気象データか		
ら吹上げ高さを加えて評価した放出源高さの差異が、人の居住を考慮した線量評価点のうち		
線量が最大となる評価点に向かう風向を含む主要風向において僅かであったため、従来の風		

· · · · · · · · · · · · · · · · · · ·
 備考
・記載箇所の相違
島根2号炉では, 59 条
補足説明資料 59-11 添
付資料2「2-7 被ばく
評価に用いた気象資料
の代表性について」で
記載している

	東海第二発電所 (2018.9.18	;版)	島根原子力発電所	2 号炉
洞実験(198	2年)の結果による有効高さを用いることにし	た(参考4参照)。		
3. 2005 年度の	気象データを用いて線量評価することの妥当	性		
線量評価に	用いる気象データについては、気象指針に従	い統計処理された1年間の気象デー		
タを使用して	いる。気象指針(参考参照)では,その年の	気象がとくに異常であるか否かを最		
寄の気象官署	の気象資料を用いて調査することが望ましい	としている。		
以上のこと	から,2005年度の気象データを用いることの	D妥当性を最新の気象データと比較		
し、以下につ	いて確認する。			
・想定事故	x時の線量計算に用いる相対濃度			
・異常年検	定			
4. 想定事故時の	D線量計算に用いる相対濃度と異常年検定の許	平価結果		
(1) 想定事故時	時の線量計算に用いる相対濃度の最新の気象と	の比較		
想定事故明	寺の線量計算に用いる相対濃度について, 線量	量評価に用いる気象(2005 年度)と		
最新の気象	(2015年度)との比較を行った。その結果, 20	005 年度気象での相対濃度**2は2.01		
$ imes 10^{-6}\mathrm{s/n}$	n ³ ,2015年度気象では2.04×10 ⁻⁶ s/m ³ で	ある。2005年度に対し2015年度の		
相対濃度は約	約1%の増加(気象指針に記載の相対濃度の年	変動の範囲 30%以内)であり, 2005		
年度の気象が	データに特異性はない。			
※2 排気管	新放出における各方位の1時間ごとの気象デー	ータを用いた年間の相対濃度を小さ		
い方カ	いら累積し、その累積頻度が97%に当たる相対	対濃度を算出し,各方位の最大値を		
比較				
(2) 異常年検知	2			
a. 検定に用	いた観測記録			
検定に用	いた観測記録は第1表のとおりである。			
なお、参	考として、最寄の気象官署(水戸地方気象台)	,小名浜特別地域気象観測所)の観		
測記録につ	いても使用した。			
	第1表 検定に用いた観	測記録		
検定年	統計年*3	観測地点**4		
	① 2001年4月~2013年3月	・敷地内観測地点		
	(申請時最新 10 年の気象データ)	(地上高 10m,81m,140m)		
2005年度:		(地上高 10m,81m,140m)		
2005年4月 ~	② 2004年4月~2016年3月			
2006年3月	(最新10年の気象データ)	<参考>		
		•小名浜特別地域気象観測		
		所		
※ 3 2006	年度は気象データの欠測率が高いため統計年	から除外		
※4 敷地内	N観測地点地上 81m は東海発電所の排気筒付	近のデータであるが、気象の特異性		
を確認	なするため評価			

備考

		東海第二発	電所 (201	8.9.18版)			島根原子力発電所
b. 検定方法	去						
不良標本	本の棄却検定に	ニ関するF分布	市検定の手順に	こより異常年権	倹定を行った	(参考5参照)	
c. 検定結界	果(①~16 募	医却検定表参照	爰)				
検定結果	果は第2表のと	:おりであり,	最新の気象	データ(2004	年4月~201	6年3月)を用	
いた場合	でも,有意水	準(危険率)	5%での棄却	数は少なく,	有意な増加は	ない。また,聶	
寄の気象	官署の気象デ	ータにおいて	も,有意水準	(危険率)59	%での棄却数	は少なく, 200	
年度の気	象データは異	常年とは判断	されない。				
	-		第2表 検	定結果			
				棄却数			
			數地内観測地.	点 	参	考	
検定年	統計年**5	地上高 10m	地上高 81m ^{※6}	地上高 140m	水戸地方 気象台	小名浜特 別地域気 魚翅測55	
						<i>家</i> 観側所	
	1	1個	0個	3個	_	_	
2005 年度							
	2	3個	1 個	4 個	1 個	3個	
¥5 ①·	<u> </u> 2001 年 4 日 ~		(由諸陆星岛	 〒10 年の気象	 データ)		
xu (). Ø·	2001 平 4 月 2001 年 4 月 ~	-2015年3月 -2016年3月	(最新10年	- 10 中の 気象 の気象データ)		
200	2004 - 4 月 3 年度け気象う	2010 平 0 JJ ^デ ータの欠測図	気が高いため	※計年から除く	, 7L		
→6 敷掛	」 一人観測地占地	ト 81m け東洲	ーズ 同く 2001 毎発電所の排	気筒付近のディ	- タであろが	気象の特異性	
ふひ 気花 を確	認するため評	王 OIIII (本)代() 価	₽/0 ₽0/) > ⊅F>				
里堂 年 給 定 帰	に上ろ棄却項	四 日の線量評価	に与える影響	3			
星常年橋?	存については.	風向別出現患	值度 17 項目。	' 風谏階級別出	現	目についてそれ	
ぞれ検定を行	〒っている。		~~~~~~~~~~~~,				
線量評価	こ用いる気象	(2005 年度)	を最新の気象	データ(2004	年4月~201	6年3月)に~	
検定した結果	果, 最大の棄刦	数は地上高1	40m の観測地	也点で 27 項目	中4個であっ	た。棄却された	
項目につい	て着目すると,	棄却された理	頁目は全て風[句別出現頻度~	であり,その	方位はENE,	
E, ESE,	SSWである) _o					
ここで, ქ	最新の気象デ-	-タを用いた場	易合の線量評値	面への影響を確	潅認するため,	棄却された名	
風向の相対派	農度について,	2005 年度と	2015 年度を	第3表のとお	り比較した。		
ENE, 1	E, ESEK-	oいては 2005	年度に対し2	2015年度は0	.5 倍~0.9 倍	程度の相対濃度	
となり、200)5 年度での評	価は保守的な	評価となって	おり、線量評	価結果への影	響を与えない。	
なお、SSV	Wについては2	2005年度に対	†し 2015 年度	は約1.1倍の	相対濃度とほ	ぼ同等であり,	
また,SSV	Wは頻度が比較	交的低く相対激	農度の最大方(立とはならない	いため線量評	価への影響はな	
V_{\circ}							

備考

				1	白枳皮又上水香ギ	
	果御弟二	光竜所 (2018.9.18 版)		 局恨原于刀免竜所	2 亏炉	
	第3表 乗却され	ルた谷風同の相対濃度の比!	較結果 			
風巾	$f = 1$ 相対濃度 ^{* γ} (s/m ³)	相対濃度*7(s/m ³)	比 (B/A)			
	(2005 年度):A	(2015 年度): B				
ΕN	E 1.456×10^{-6}	$1.258 imes 10^{-6}$	0.864			
E	$1.982 imes 10^{-6}$	$1.010 imes 10^{-6}$	0.510			
ΕS	E 1.810×10^{-6}	$1.062 imes 10^{-6}$	0.587			
S S	W 1.265×10^{-6}	$1.421 imes 10^{-6}$	1.123			
※7 炊	料集合体落下事故を想定した	排気筒放出における、各力	5位の1時間ごとの気象デ			
_	タを用いた年間の相対濃度を	小さい方から累積し、その)累積頻度が 97%に当たる			
相	対濃度を算出					
6. 結 論						
2005 $\frac{4}{2}$	F度の気象データを用いること	との妥当性を最新の気象デー	ータとの比較により評価した			
結果は以	下のとおり。					
(1) 想定	事故時の線量計算に用いる相対	す濃度について、線量評価 に	に用いる気象(2005 年度)と			
最新の気	〔象(2015 年度)での計算結界	≹について比較を行った結 5	果, 気象指針に記載されている			
相対濃度	その年変動(30%以内)の範囲	国に収まり,2005年度の気	象データに特異性はない。			
(2) 2005	年度の気象データについて申	請時の最新気象データ(20	001年4月~2013年3月)及			
び最新気	〔象データ(2004 年 4 月~201	16年3月)で異常年検定を	行った結果, 棄却数は少なく,			
有意な地	創加はない。また、気象指針に	て調査することが推奨され	いている最寄の気象官署の気象			
データに	においても、2005年度の気象 ³	データは棄却数は少なく	異常年とは判断されない。			
(3) 異常4	E 検 定 に て 棄 却 さ れ た 風 向 の 林	日対濃度については 最新	気象データと比べて保守的 あ			
ろいけ	快速同等となっており 線量	■ 「「「「「」」」 「」」「「」」」 「」」「」」 「」」」 「」」」 「」」」 「」 「				
	いた。 9005 年度の気象データン	応加加れ、 ○家子とうた。 を線島証価に田いることけ	で いで ある			
外工 3	(9,2003 千度の风歌) / /					

 備考

棄却検定表(風向)(標高148m)

観測場所:敷地内A地点(標高148m,地上高140m)(%)

統計年	0001	0000	0000	0004	0007	0000	0000	0010	0011	0010	亚柏体	検定年	棄却限界	界(5%)	判定
風向	2001	2002	2003	2004	2007	2008	2009	2010	2011	2012	平均旭	2005	上限	下限	○採択 ×棄却
Ν	3.96	5.85	3.78	3.40	5.01	4.27	4.11	4.62	4.43	4.50	4.39	3.52	6.02	2.77	0
NNE	8.89	8.15	6.91	6.22	11.41	13.51	18.30	14.74	15.31	14.20	11.76	6.67	21.42	2.11	0
NE	19.71	24.49	23.29	18.45	18.06	20.80	16.75	14.99	14.71	13.60	18.49	18.41	27.13	9.84	0
ENE	8.31	8.38	10.04	8.97	7.09	6.97	5.51	5.25	5.40	4.10	7.00	9.80	11.55	2.46	0
Е	4.39	3.76	4.56	4.42	4.59	4.14	3.49	3.17	3.13	1.70	3.74	5.55	5.88	1.59	0
ESE	2.79	2.86	2.93	2.99	2.32	2.85	2.26	2.26	2.22	2.20	2.57	3.66	3.37	1.76	×
SE	2.90	2.61	2.95	2.66	2.15	2.85	2.59	2.74	2.82	3.00	2.73	3.09	3.31	2.14	0
SSE	3.35	3.34	3.74	3.54	3.69	3.73	4.18	4.89	4.68	5.50	4.06	3.32	5.80	2.33	0
S	5.00	4.13	5.02	6.63	6.33	5.38	5.19	6.03	5.83	7.00	5.65	4.99	7.72	3.59	0
SSW	3. 79	3.56	4.35	5.02	4.54	4.55	4.43	5.35	4.76	5.70	4.61	3.13	6.15	3.06	0
SW	4.32	4.90	4.93	5.16	3.92	3.40	4.53	5.16	5.76	5.40	4.75	3.67	6.44	3.06	0
WSW	4.38	4.09	3.53	4.31	4.66	3.29	4.11	4.67	4.07	4.70	4.18	4.25	5.31	3.05	0
W	5.44	4.16	4.23	4.65	3.89	3.81	4.47	5.55	4.26	4.40	4.49	5.13	5.88	3.09	0
WNW	5.95	5.05	6.19	6.71	5.87	6.13	6.26	6.05	6.37	6.30	6.09	7.65	7.12	5.06	×
NW	7.95	7.42	7.60	9.12	9.02	8.06	7.95	7.99	8.94	10.10	8.42	9.54	10.41	6.42	0
NNW	7.63	6.60	5.19	6.97	7.03	5.86	4.90	5.27	5.98	6.60	6.20	6.53	8.35	4.05	0
CALM	1.24	0.65	0.75	0.76	0.42	0.39	0.98	1.26	1.32	1.2	0.90	1.10	1.73	0.06	0

注1) 1996年9月までは超音波風向風速計, 1996年10月からはドップラーソーダの観測値である。

注2) 2006年度は標高148mのデータにノイズの影響があったため除外し, 2001年度を追加した。

② 棄却検定表(風速)(標高148m)

観測場所:敷地内A地点(標高148m,地上高140m)(%)

統計年	2001	2002	2002	2004	2007	2008	2000	2010	2011	2012	亚齿荷	検定年	棄却限	界(5%)	判定
風速(m/s)	2001	2002	2005	2004	2007	2008	2009	2010	2011	2012	平均恒	2005	上限	下限	×棄却
0.0~0.4	1.24	0.65	0.75	0.76	0.42	0.39	0.98	1.26	1.32	1.20	0.90	1.10	1.73	0.06	0
0.5~1.4	6.70	5.19	5.56	6.43	5.00	4.91	6.14	6.91	6.97	7.40	6.12	6.99	8.26	3.98	0
1.5~2.4	10.58	8.92	9.61	11.42	8.63	9.44	10.82	11.16	10.43	11.00	10.20	11.28	12.53	7.87	0
2.5~3.4	12.17	11.15	12.55	13.72	11.36	12.24	11.61	12.66	12.49	12.40	12.24	14.10	13.99	10.48	×
3.5~4.4	12.57	12.25	12.80	13.58	12.63	13.41	13.26	12.52	12.24	12.10	12.74	13.85	13.97	11.51	0
4.5~5.4	11.54	10.97	11.30	12.07	13.08	12.09	12.67	13.40	12.60	11.00	12.07	12.03	14.11	10.03	0
5.5~6.4	10.66	9.62	10.10	9.68	11.98	10.33	10.78	10.64	10.24	10.00	10.40	9.92	12.02	8.79	0
6.5~7.4	7.67	8.18	8.82	7.95	8.74	8.28	8.19	8.89	8.08	8.60	8.34	7.40	9.30	7.38	0
7.5~8.4	6.17	7.68	7.35	5.34	6.97	7.05	5.91	6.39	6.28	7.30	6.64	5.51	8.40	4.89	0
8.5~9.4	5.14	6.84	6.01	5.03	5.60	4.77	5.03	4.82	5.52	6.00	5.48	4.82	7.03	3.92	0
9.5以上	15.56	18.54	15.15	14.02	15.61	17.08	14.61	11.35	13.84	13.00	14.88	13.00	19.70	10.05	0

注1) 1996年9月までは超音波風向風速計, 1996年10月からはドップラーソーダの観測値である。

注2) 2006年度は標高148mのデータにノイズの影響があったため除外し, 2001年度を追加した。

島根原子力発電所 2号炉

備考

③ 棄却検定表(風向) (標高89m)

観測場所:敷地内A地点(標高 89m, 地上高 81m)(%)

統計年	2001	2002	2003	2004	2007	2008	2009	2010	2011	2012	亚均值	検定年	棄却限	界(5%)	判定
風向	2001	2002	2003	2004	2001	2008	2005	2010	2011	2012	十多世	2005	上限	下限	○ ★ 新 二 本 却
Ν	4.09	4.59	3.42	3.25	4.84	4.64	4.84	5.88	5.68	5.5	4.67	3. 79	6.79	2.56	0
NNE	8.41	7.81	7.03	6.03	10.15	12.15	17.45	14.51	16.54	14.50	11.46	6.60	21.28	1.64	0
NE	17.97	21.91	21.50	17.51	16.08	19.04	16.64	13.25	12.20	11.40	16.75	17.88	25.36	8.14	0
ENE	7.76	8.22	9.86	7.84	6.78	7.22	5.33	4.72	3.74	3. 30	6.48	8.95	11.52	1.44	0
Е	3.34	3.80	4.30	4.02	4.35	4.18	3.00	2.48	2.26	1.80	3.35	4.32	5.55	1.16	0
ESE	2.40	2.79	2.47	2.75	2.29	2.79	2.30	2.05	1.83	1.70	2.34	2.77	3.26	1.42	0
SE	2.74	2.86	2.96	2.80	2.21	2.96	2.89	2.53	2.99	3.20	2.81	2.75	3.47	2.16	0
SSE	3.78	3. 48	3.96	3.77	3.74	3.90	4.83	5.80	4.88	6.10	4.42	4.16	6.63	2.22	0
S	4.77	3.66	4.43	6.82	5.76	4.74	4.64	5.94	5.42	5.70	5.19	4.88	7.35	3.03	0
SSW	2.86	2.56	3.20	3.86	3.40	3.06	3. 59	4.46	4.16	4.30	3. <mark>5</mark> 5	2.43	5.07	2.02	0
SW	3.26	3.62	3.42	3.63	3.07	2.30	2.96	3.33	4.04	4.10	3.37	2.64	4.63	2.11	0
WSW	3.32	3. 33	3.11	3.09	3.28	2.75	3.08	3.37	3.10	3.80	3.22	3.08	3.87	2.58	0
W	4.53	4.08	4.57	4.17	4.04	3.59	4.13	5.19	4.29	4.40	4.30	4.58	5.30	3.30	0
WNW	8.29	7.52	8.02	9.03	7.66	7.81	8.17	8.29	8.59	8.70	8.21	9.14	9.34	7.08	0
NW	15.13	13.32	12.41	15.17	15.33	12.82	10.66	11.34	13.08	14.10	13.34	15.31	17.17	9.50	0
NNW	6.67	5.88	4.76	5.67	6.32	5.42	4.60	5.65	6.05	6.30	5.73	6.03	7.32	4.15	0
CALM	0.65	0.58	0.59	0.61	0.68	0.65	0.90	1.21	1.14	1.10	0.81	0.69	1.41	0.21	0

注1)1996年9月までは超音波風向風速計, 1996年10月からはドップラーソーダの観測値である。

注2)2006年度は標高148mのデータにノイズの影響があったため除外し,2001年度を追加した。

④ 棄却検定表(風速) (標高89m)

観測場所:敷地内A地点(標高 89m, 地上高 81m)(%)

統計年	2001	2002	2002	2004	2007	2009	2000	2010	2011	2012	亚坎荷	検定年	棄却限	界(5%)	判定
風速(m/s)	2001	2002	2003	2004	2007	2008	2009	2010	2011	2012	平均恒	2005	上限	下限	×棄却
0.0~0.4	0.65	0.58	0.59	0.61	0.68	0.65	0.90	1.21	1.14	1.10	0.81	0.69	1.41	0.21	0
0.5~1.4	4.92	4.95	5.23	5.62	4.89	5.08	6.94	7.56	7.82	7.80	6.08	5.79	9.13	3.03	0
1.5~2.4	10.06	10.15	10.09	11.31	9.38	10.83	12.09	12.36	12.35	12.90	11.15	10.58	14.05	8.25	0
2.5~3.4	13.91	14.28	14.41	14.52	13.35	14.11	14.46	16.20	14.86	14.10	14.42	15.24	16.19	12.65	0
3.5~4.4	15.55	14.93	14.78	16.34	14.98	15.93	15.47	15.05	15.26	14.60	15.29	16.48	16.57	14.01	0
4.5~5.4	13.97	12.98	12.75	13.85	14.76	13.52	13.42	13.75	12.61	12.80	13.44	13 . 66	15.04	11.84	0
5.5~6.4	11.36	10.40	11.85	10.73	11.54	10.67	10.40	10.51	9.52	10.40	10.74	11.14	12.35	9.13	0
6.5~7.4	8.16	8.38	8.75	7.90	8.66	7.72	7.14	7.22	7.49	8.10	7.95	8.04	9.29	6.62	0
7.5~8.4	6.41	6.50	6.98	5.44	6.25	5.74	5.23	5.40	6.17	6.10	6.02	5. 64	7.35	4.70	0
8.5~9.4	4.97	5.31	4.65	4.10	4.85	4.30	4.12	3.20	4.43	4.40	4.43	4.02	5.81	3.06	0
9.5以上	10.04	11.52	9.92	9.58	10.65	11.45	9.84	7.54	8.37	7.80	9.67	8.74	12.98	6.36	0

注1) 1996年9月までは超音波風向風速計, 1996年10月からはドップラーソーダの観測値である。

注2) 2006年度は標高148mのデータにノイズの影響があったため除外し,2001年度を追加した。

備考

⑤ 棄却検定表(風向)(標高18m)

観測場所:敷地内A地点(標高 18m, 地上高 10m)(%)

統計年	2001	2002	2003	2004	2007	2008	2000	2010	2011	2012	亚均荷	検定年	棄却限	界(5%)	判定
風向	2001	2002	2003	2004	2007	2008	2009	2010	2011	2012	平均恒	2005	上限	下限	×棄却
Ν	3.29	3.24	2.85	2.50	2.57	2.17	2.52	2.81	2.62	2.40	2.70	2.15	3.54	1.85	0
NNE	12.39	12.29	12.11	10.30	7.29	9.57	11.21	9.18	11.62	8.50	10.45	9.93	14.64	6.26	0
NE	12.70	15.12	17.57	13.28	15.17	17.51	16.15	12.25	12.18	11.60	14.35	15.15	19.68	9.02	0
ENE	3.27	3. 57	3.90	3.74	5.42	6.41	5.52	5.07	4.14	6.40	4.74	4.49	7.52	1.97	0
Е	2.51	2.86	2.84	2.62	3.05	2.44	2.85	2.19	1.78	1.80	2.49	2.60	3.55	1.43	0
ESE	3.04	3.68	3.30	3.81	3.44	3.44	3, 98	3.36	3.25	2.30	3.36	3.49	4.46	2.26	0
SE	5.14	5.79	5.80	5.63	4.29	4.37	4.59	5.21	4.53	4.60	5.00	5.73	6.40	3.59	0
SSE	4.00	3.66	3.99	5.62	5.03	4.47	4.63	6.32	5.73	6.00	4.95	4.59	7.16	2.73	0
S	2.41	2.22	2.63	3.85	3.68	3.79	3.25	4.55	3.54	4.20	3.41	2.31	5.25	1.57	0
SSW	3.52	3.26	3.07	3.20	3.19	2.35	3.28	3.64	3.38	3.40	3.23	2.36	4.06	2.40	×
SW	1.37	0.79	1.35	1.08	1.53	1.09	1.06	1.00	1.12	1.30	1.17	1.22	1.68	0.66	0
WSW	2.94	2.70	2.48	2.15	1.44	1.25	2.47	2.66	2.34	1.90	2.23	2.40	3.54	0.92	0
W	12.93	11.05	10.01	11.71	4.73	4.55	6.91	6.99	7.88	6.30	8.31	10.13	15.30	1.31	0
WNW	19.82	18.95	18.46	19.53	24.91	22.81	21.72	22.62	22.60	22.90	21.43	21.68	26.45	16.42	0
NW	6.86	6.86	6.03	6.52	9.65	8.87	6.09	7.67	8.35	10.90	7.78	7.42	11.65	3.91	0
NNW	2.97	2.92	2.33	2.61	3.51	3.10	2.43	2.87	3.04	3. 50	2.93	2.65	3.87	1.99	0
CALM	0.82	1.03	1.29	1.85	1.11	1.82	1.35	1.6	1.9	2.00	1.48	1.69	2.46	0.49	0

注1) 2006年度は標高148mのデータにノイズの影響があったため除外し,2001年度を追加した。

⑥ 棄却検定表(風速)(標高18m)

観測場所:敷地内A地点 (標高 18m, 地上高 10m) (%)

統計年	2001	2002	2002	2004	2007	2008	2000	2010	2011	2012	亚坎荷	検定年	棄却限易	界(5%)	判定
風速(m/s)	2001	2002	2003	2004	2007	2008	2009	2010	2011	2012	平均恒	2005	上限	下限	×棄却
0.0~0.4	0.82	1.03	1.29	1.85	1.11	1.82	1.35	1.60	1.90	2.00	1.48	1.69	2.46	0.49	0
0.5~1.4	12.24	12.79	13.24	14.96	14.40	15.93	13.88	15.83	15.92	16. 70	14.59	15.14	18.20	10.98	0
1.5~2.4	30.43	30. 39	28.56	31.22	32.03	33.39	32.69	32.91	33.15	31.40	31.62	32.77	35.24	28.00	0
2.5~3.4	22.23	21.48	21.80	22.97	21.70	21.95	23.48	23.08	23.60	21.90	22.42	20, 88	24.29	20.55	0
3.5~4.4	10.85	10.91	11.31	9.77	10.95	10.88	10.69	11.19	10.19	10.70	10.74	10.16	11.83	9.66	0
4.5~5.4	7.69	8.16	9.27	6.25	6.89	6.66	7.22	6.75	6.01	7.10	7.20	7.09	9.49	4.91	0
5.5~6.4	5.21	6.40	6.23	4.34	4.69	4.15	3.91	3.58	4.17	4.50	4.72	4.79	6.97	2.46	0
6.5~7.4	4.20	4.07	3.92	3.30	3.31	2.25	2.60	2.02	2.44	2.60	3.07	3. 01	4.96	1.18	0
7.5~8.4	2.84	2.51	2.18	2.34	2.24	1.20	1.70	1.39	1.25	1.60	1.93	2.29	3.28	0.57	0
8.5~9.4	1.77	1.12	1.07	1.33	1.24	0.86	1.20	0.72	0.60	0.70	1.06	1.09	1.90	0.22	0
9.5以上	1.70	1.13	1.13	1.67	1.45	0.90	1.30	0.94	0.75	0.80	1.18	1.10	1.99	0.36	0

注1) 2006年度は標高148mのデータにノイズの影響があったため除外し, 2001年度を追加した。

局根原子力発電所 2	2	号炉
------------	---	----

備考

⑦ 棄却検定表(風向)(標高148m)

観測場所:敷地内A地点(標高148m,地上高140m)(%)

統計年	2004	2007	2008	2000	2010	2011	2012	2012	2014	2015	亚均荷	検定年	棄却限	界(5%)	判定
風向	2004	2007	2008	2009	2010	2011	2012	2013	2014	2015	平均恒	2005	上限	下限	○ ★ 棄却
Ν	3.40	5.01	4.27	4.11	4.62	4.43	4.50	4.48	4.38	5.20	4.44	3.52	5.60	3.28	0
NNE	6.22	11.41	13.51	18.30	14.74	15.31	14.10	11.42	14.59	20.56	14.02	6.67	23.32	4.72	0
NE	18.45	18.06	20.80	16.75	14.99	14.71	13.66	15.68	13.11	13.60	15.98	18.41	21.91	10.05	0
ENE	8.97	7.09	6.97	5.51	5.25	5.40	4.16	5.74	5.59	4.95	5.96	9.80	9.21	2.72	×
Е	4.42	4.59	4.14	3.49	3.17	3.13	1.65	3.02	3.06	3.04	3. 37	5.55	5.40	1.34	×
ESE	2.99	2.32	2.85	2.26	2.26	2.22	2.17	2.00	2.36	2.20	2.36	3.66	3.10	1.62	×
SE	2.66	2.15	2.85	2.59	2.74	2.82	2.98	2.99	2.79	2.26	2.69	3.09	3.36	2.01	0
SSE	3.54	3.69	3.73	4.18	4.89	4.68	5.52	4.76	5.29	5.12	4.54	3.32	6.23	2.85	0
S	6.63	6.33	5.38	5.19	6.03	5.83	6.96	6.48	5.87	5.76	6.04	4.99	7.36	4.73	0
SSW	5.02	4.54	4.55	4.43	5.35	4.76	5.68	6.07	4.89	5.45	5.08	3.13	6.37	3.78	×
SW	5.16	3.92	3.40	4.53	5.16	5.76	5.38	4.94	4.64	5.05	4.79	3.67	6.46	3.13	0
WSW	4.31	4.66	3.29	4.11	4.67	4.07	4.63	4.81	5.16	4.10	4.38	4.25	5.62	3.14	0
W	4.65	3.89	3.81	4.47	5.55	4.26	4.40	4.64	5.07	4.24	4.50	5.13	5.74	3.26	0
WNW	6.71	5.87	6.13	6.26	6.05	6.37	6.29	6.75	7.56	5.62	6.36	7.65	7.65	5.07	0
NW	9.12	9.02	8.06	7.95	7.99	8.94	10.14	8.95	9.69	6.99	8.68	9.54	10.90	6.47	0
NNW	6.97	7.03	5.86	4.90	5.27	5.98	6.57	6.52	5.08	4.81	5.90	6.53	7.92	3.88	0
CALM	0.76	0.42	0.39	0.98	1.26	1.32	1.21	0.75	0.88	1.04	0.90	1.10	1.68	0.12	0

注1) 2006年度は標高148mのデータにノイズの影響があったため除外し,2004年度を追加した。

⑧ 棄却検定表 (風速) (標高148m)

観測場所:敷地内A地点(標高148m,地上高140m)(%)

統計年	2004	2007	2000	2000	2010	2011	2012	2012	2014	2015	亚坎荷	検定年	· 棄却限界(5%)		判定
風速(m/s)	2004	2007	2008	2009	2010	2011	2012	2015	2014	2015	平均旭	2005	上限	下限	×棄却
0.0~0.4	0.76	0.42	0.39	0.98	1.26	1.32	1.21	0.75	0.88	1.04	0.90	1.10	1.68	0.12	0
0.5~1.4	6.43	5.00	4.91	6.14	6.91	6.97	7.32	5.92	6.20	6.78	6.26	6.99	8.18	4.33	0
1.5~2.4	11.42	8.63	9.44	10.82	11.16	10.43	10.94	10.58	9.76	10.98	10.42	11.28	12.50	8.33	0
2.5~3.4	13.72	11.36	12.24	11.61	12.66	12.49	12.38	12.89	12.13	13.45	12.49	14.10	14.24	10.75	0
3.5~4.4	13.58	12.63	13.41	13.26	12.52	12.24	12.12	14.22	13.05	13. 51	13.05	13.85	14.64	11.47	0
4.5~5.4	12.07	13.08	12.09	12.67	13.40	12.60	11.01	12.52	12.25	11.78	12.35	12.03	13.95	10.75	0
5.5~6.4	9.68	11.98	10.33	10.78	10.64	10.24	10.01	10.35	11.29	9.51	10.48	9.92	12.23	8.73	0
6.5~7.4	7.95	8.74	8.28	8.19	8.89	8.08	8.62	8.57	9.22	7.47	8.40	7.40	9.61	7.19	0
7.5~8.4	5.34	6.97	7.05	5.91	6.39	6.28	7.32	7.01	6.63	5.89	6.48	5.51	7.98	4.98	0
8.5~9.4	5.03	5.60	4.77	5.03	4.82	5.52	6.08	5.01	5.14	4.97	5.20	4.82	6.17	4.22	0
9.5以上	14.02	15.61	17.08	14.61	11.35	13.84	12.98	12.18	13.45	14.63	13.97	13.00	17.90	10.05	0

注1) 2006年度は標高148mのデータにノイズの影響があったため除外し,2004年度を追加した。

備考

⑨ 棄却検定表(風向)(標高89m)

観測場所:敷地内A地点(標高 89m, 地上高 81m)(%)

統計年	2004	2007	2008	2009	2010	2011	2012	2013	2014	2015	亚均值	検定年	棄却限身	判定	
風向	2004	2001	2000	2005	2010	2011	2012	2015	2014	2015	十构直	2005	上限	下限	× 業却
Ν	3.25	4.84	4.64	4.84	5.88	5.68	5.50	5.04	5.05	6.22	5.09	3. 79	7.05	3.14	0
NNE	6.03	10.15	12.15	17.45	14.51	16.54	14.50	11.55	14.10	19.46	13.64	6.60	22.84	4.45	0
NE	17.51	16.08	19.04	16.64	13.25	12.20	11.40	14.95	13.31	12.28	14.67	17.88	20.77	8.56	0
ENE	7.84	6. 78	7.22	5.33	4.72	3.74	3.30	5.73	4.21	4.52	5.34	8.95	8.97	1.71	0
Е	4.02	4.35	4.18	3.00	2.48	2.26	1.80	2.89	2.33	2.47	2.98	4.32	5.11	0.85	0
ESE	2.75	2.29	2.79	2.30	2.05	1.83	1.70	2.17	2.07	1.91	2.19	2.77	3.04	1.33	0
SE	2.80	2.21	2.96	2.89	2.53	2.99	3.20	2.56	3.40	2.60	2.81	2.75	3.64	1.98	0
SSE	3.77	3.74	3.90	4.83	5.80	4.88	6.10	4.79	5.78	5. 58	4.92	4.16	7.03	2.81	0
S	6.82	5.76	4.74	4.64	5.94	5.42	5.70	5.01	4.67	4.87	5.36	4.88	7.03	3.68	0
SSW	3.86	3.40	3.06	3.59	4.46	4.16	4.30	4.07	3.53	4.25	3.87	2.43	4.95	2.79	×
SW	3.63	3.07	2.30	2.96	3. 33	4.04	4.10	3.45	3.38	3. 56	3.38	2.64	4.63	2.13	0
WSW	3.09	3.28	2.75	3.08	3. 37	3.10	3.80	3.50	4.06	3.23	3.33	3. 08	4.23	2.42	0
W	4.17	4.04	3. 59	4.13	5.19	4.29	4.40	4.66	4.76	4.26	4.35	4.58	5.39	3.31	0
WNW	9.03	7.66	7.81	8.17	8.29	8.59	8.70	9.54	10.05	7.43	8.53	9.14	10.51	6.54	0
NW	15.17	15.33	12.82	10.66	11.34	13.08	14.10	13.28	12.90	10.98	12.97	15.31	16.82	9.11	0
NNW	5.67	6.32	5.42	4.60	5.65	6.05	6.30	5.80	5.54	5.08	5.64	6.03	6.90	4.38	0
CALM	0.61	0.68	0.65	0.90	1.21	1.14	1.10	1.01	0.86	1.29	0.95	0.69	1.53	0.37	0

注1) 2006年度は標高148mのデータにノイズの影響があったため除外し, 2004年度を追加した。

⑩ 棄却検定表(風速)(標高89m)

-															
統計年	2004	2007	2008	2009	2010	2011	2012	2013	2014	2015	亚均值	検定年	棄却限	界(5%)	判定
風速(m/s)	2004	2001	2000	2005	2010	2011	2012	2015	2014	2015	十初间	2005	上限	下限	× 業却
0.0~0.4	0.61	0.68	0.65	0.90	1.21	1.14	1.10	1.01	0.86	1.29	0.95	0.69	1.53	0.37	0
0.5~1.4	5.62	4.89	5.08	6.94	7.56	7.82	7.80	7.41	6.47	7.60	6.72	5.79	9.42	4.01	0
1.5~2.4	11.31	9.38	10.83	12.09	12.36	12.35	12.90	12.41	11.84	13.06	11.85	10.58	14.46	9.24	0
2.5~3.4	14.52	13.35	14.11	14.46	16.20	14.86	14.10	15.47	15.34	15.31	14.77	15.24	16.74	12.80	0
3.5~4.4	16.34	14.98	15.93	15.47	15.05	15.26	14.60	15.94	15.26	14.65	15.35	16.48	16.71	13.98	0
4.5~5.4	13.85	14.76	13.52	13.42	13.75	12.61	12.80	12.85	13.64	12.56	13.38	13.66	15.00	11.75	0
5.5~6.4	10.73	11.54	10.67	10.40	10.51	9.52	10.40	10.94	10.49	9.78	10.50	11.14	11.84	9.16	0
6.5~7.4	7.90	8.66	7.72	7.14	7.22	7.49	8.10	7.38	8.49	7.34	7.74	8.04	9.01	6.48	0
7.5~8.4	5.44	6.25	5.74	5.23	5.40	6.17	6.10	4.94	5.67	5.51	5.64	5.64	6.66	4.63	0
8.5~9.4	4.10	4.85	4.30	4.12	3.20	4.43	4.40	4.20	3.89	4.42	4.19	4.02	5.22	3.16	0
9.5以上	9.58	10.65	11.45	9.84	7.54	8.37	7.80	7.44	8.05	8.47	8.92	8.74	12.21	5.63	0
注1) 2006年	注1) 2006年度は標高148mのデータにノイズの影響があったため除外し, 2004年度を追加した。														

観測場所:敷地内A地点(標高 89m, 地上高 81m)(%)

備考

① 棄却検定表(風向)(標高18m)

統計年	2004	2007	2002	2000	2010	2011	2012	2012	2014	2015	亚坎店	検定年	棄却限身	界(5%)	判定
風向	2004	2007	2008	2009	2010	2011	2012	2013	2014	2015	平均恒	2005	上限	下限	×棄却
Ν	2.50	2.57	2.17	2. 52	2.81	2.62	2.39	2.26	2.16	2.70	2.47	2.15	2.99	1.95	0
NNE	10.30	7.29	9.57	11.21	9.18	11.62	8.49	8.24	8.84	11.06	9.58	9. 93	12.98	6.18	0
NE	13.28	15.17	17.51	16.15	12.25	12.18	11.58	12.60	12.33	13.45	13 . 65	15.15	18.32	8.98	0
ENE	3.74	5.42	6.41	5.52	5.07	4.14	6.39	7.34	6.61	7.12	5.78	4.49	8.65	2.90	0
Е	2.62	3.05	2.44	2.85	2.19	1.78	1.78	2.84	2.14	3.40	2.51	2.60	3. 79	1.23	0
ESE	3.81	3.44	3.44	3.98	3.36	3.25	2.38	3.01	3.47	2.82	3.30	3.49	4.40	2.19	0
SE	5.63	4.29	4.37	4.59	5.21	4.53	4.58	4.04	4.56	4.03	4.58	5.73	5.76	3.40	0
SSE	5.62	5.03	4.47	4.63	6.32	5.73	6.01	4.96	4.74	5.63	5.31	4.59	6.81	3.82	0
S	3.85	3.68	3. 79	3.25	4.55	3.54	4.20	3.69	3.42	3.50	3.75	2.31	4.66	2.84	×
SSW	3.20	3.19	2.35	3.28	3.64	3.38	3. 39	3.47	3.14	3.32	3.23	2.36	4.05	2.42	×
SW	1.08	1.53	1.09	1.06	1.00	1.12	1.27	1.47	1.34	1.78	1.27	1.22	1.88	0.67	0
WSW	2.15	1.44	1.25	2.47	2.66	2.34	1.91	1.97	2.52	1.97	2.07	2.40	3.16	0.97	0
W	11.71	4.73	4.55	6.91	6, 99	7.88	6.34	5.87	6.41	5.74	6.71	10.13	11.52	1.91	0
WNW	19.53	24.91	22.81	21.72	22.62	22.60	22.88	22.63	24.11	20.77	22.46	21.68	26.09	18.83	0
NW	6.52	9.65	8.87	6.09	7.67	8.35	10.93	9.78	9.37	7.93	8.51	7.42	12.10	4.93	0
NNW	2.61	3.51	3.10	2.43	2.87	3.04	3.49	4.17	3.20	3.09	3.15	2.65	4.32	1.98	0
CALM	1.85	1.11	1.82	1.35	1.60	1.90	2.00	1.68	1.64	1.70	1.66	1.69	2.30	1.03	0

観測場所:敷地内A地点(標高 18m, 地上高 10m)(%)

注1) 2006年度は標高148mのデータにノイズの影響があったため除外し,2004年度を追加した。

① 棄却検定表(風速)(標高18m)

統計年	2004	2007	2008	2000	2010	2011	2012	2012	2014	2015	亚坎荷	検定年	棄却限	界(5%)	判定
風速(m/s)	2004	2007	2008	2009	2010	2011	2012	2015	2014	2015	平均恒	2005	上限	下限	×棄却
0.0~0.4	1.85	1.11	1.82	1.35	1.60	1.90	2.00	1.68	1.64	1.70	1.66	1.69	2.30	1.03	0
0.5~1.4	14.96	14.40	15.93	13.88	15.83	15.92	16.73	15.60	15.63	16.08	15.50	15.14	17.51	13.48	0
1.5~2.4	31.22	32.03	33. 39	32.69	32.91	33.15	31. 38	32.64	33.04	31.24	32.37	32.77	34.35	30.39	0
2.5~3.4	22.97	21.70	21.95	23.48	23.08	23.60	21.94	22.79	24.23	23.94	22.97	20.88	25.05	20.88	×
3.5~4.4	9.77	10.95	10.88	10.69	11.19	10.19	10.67	11.34	11.65	11.54	10.89	10.16	12.28	9.49	0
4.5~5.4	6.25	6.89	6.66	7.22	6.75	6.01	7.06	7.04	6.89	7.48	6.83	7.09	7.87	5.79	0
5.5~6.4	4.34	4.69	4.15	3.91	3. 58	4.17	4.48	3.78	3.36	4.17	4.06	4.79	5.04	3.09	0
6.5~7.4	3.30	3. 31	2.25	2.60	2.02	2.44	2.63	2.19	1.59	1.93	2.43	3.01	3.75	1.10	0
7.5~8.4	2.34	2.24	1.20	1.70	1.39	1.25	1.55	1.37	0.94	1.05	1.50	2.29	2.62	0.39	0
8.5~9.4	1.33	1.24	0.86	1.20	0.72	0.60	0.72	0.71	0.47	0.49	0.83	1.09	1.58	0.09	0
9.5以上	1.67	1.45	0.90	1.30	0.94	0.75	0.84	0.86	0.56	0.37	0.96	1.10	1.91	0.01	0

観測場所:敷地内A地点(標高 18m, 地上高 10m)(%)

注1) 2006年度は標高148mのデータにノイズの影響があったため除外し,2004年度を追加した。

備考

① 棄却検定表(風向)(水戸地方気象台)

観測場所:水戸地方気象台(%)

統計年	2004	2007	2008	2000	2010	2011	2012	2012	2014	2015	亚坎荷	検定年	棄却限夠	界(5%)	判定
風向	2004	2007	2008	2009	2010	2011	2012	2013	2014	2015	平均恒	2005	上限	下限	×棄却
Ν	15.34	17.09	18.48	14.84	16.36	17.58	14.82	13.31	12.53	11.75	15.21	13.38	20.47	9.95	0
NNE	6.78	6.87	8.19	7.57	7.63	7.52	7.05	7.07	6.68	7.83	7.32	6.68	8.51	6.13	0
NE	6.22	6.14	8.14	9.37	6.51	7.25	6.82	6.01	6.65	8.23	7.13	7.36	9.76	4.51	0
ENE	8.70	8.79	9.94	10.20	7.40	7.33	7.71	9.20	8.31	8.81	8.64	9.50	10.97	6.30	0
Е	9.92	9.38	10.94	9.26	8.55	7.28	6.49	9.98	8.95	8.87	8.96	10.92	12.05	5.87	0
ESE	4.37	3.22	5.08	3.38	4.19	3.72	4.02	3.43	3.79	3.81	3.90	4.41	5.21	2.60	0
SE	3.11	3.02	3.38	3.05	2.99	3.05	3.74	2.82	2.95	3.07	3.12	2.91	3.74	2.50	0
SSE	1.30	1.50	1.12	1.15	1.29	1.47	1.36	1.10	1.28	1.17	1.27	1.43	1.61	0.94	0
S	2.99	2.43	1.56	2.49	2.82	2.74	2.98	2.96	2.17	2.47	2.56	1.96	3.62	1.50	0
SSW	5.32	5.83	4.64	5.28	6.78	6.32	6.22	5.78	5.79	6.40	5.84	4.24	7.34	4.33	×
SW	5.47	4.84	3.40	3.77	4.86	5.08	4.00	4.01	3.92	3. 97	4.33	4.20	5.93	2.73	0
WSW	2.97	3.28	2.61	2.74	3.62	2.91	3. 41	3.21	3.66	3.56	3.20	3.26	4.09	2.31	0
W	3.18	2.86	2.83	2.84	3.49	3.07	3. 70	3.27	4.34	2.82	3.24	3.81	4.40	2.08	0
WNW	2.75	2.57	2.17	1.72	1.84	2.24	2.89	2.56	2.54	1.59	2.29	3.17	3.35	1.22	0
NW	6.63	5.69	3.15	4.59	4.86	4.11	6.10	6.47	7.06	5.48	5.41	7.67	8.34	2.49	0
NNW	13.20	14.77	12.63	16.29	15.44	16.86	17.84	17.99	18.01	19.29	16.23	13.36	21.45	11.01	0
CALM	1.75	1.73	1.74	1.45	1.36	1.47	0.83	0.85	1.38	0.87	1.34	1.74	2.22	0.46	0

注1) 2006年度は標高148mのデータにノイズの影響があったため除外し,2004年度を追加した。

⑭ 棄却検定表(風速)(水戸地方気象台)

観測場所:水戸地方気象台(%)

統計年	2004	2007	2008	2000	2010	2011	2012	2012	2014	2015	亚坎荷	検定年	棄却限	界(5%)	判定
風速(m/s)	2004	2007	2008	2009	2010	2011	2012	2013	2014	2015	平均恒	2005	上限	下限	×棄却
0.0~0.4	1.75	1.73	1.74	1.45	1.36	1.47	0.83	0.85	1.38	0.87	1.34	1.74	2.22	0.46	0
0.5~1.4	33.41	35.08	36.96	37.22	32.05	33.83	31. 50	32.61	32.82	26.35	33.18	35.02	40.51	25.85	0
$1.5 \sim 2.4$	29.63	29.88	30.31	28.20	30.41	29.79	31. 92	31.80	30.66	35.10	30.77	29.14	35.18	26.36	0
2.5~3.4	16.75	17.72	16.28	15.96	17.80	16.66	16.03	16.83	16.86	17.36	16.83	16.52	18.36	15.29	0
3.5~4.4	9.81	9.42	8.08	8.85	9.43	9.50	9.63	9.81	10.24	11.26	9.60	10.01	11.57	7.63	0
4.5~5.4	4.93	3. 73	3.76	4.08	4.11	4.18	5.29	4.44	4.23	4.93	4.37	4.93	5.61	3.13	0
5.5~6.4	2.05	1.30	1.53	2.14	2.59	2.17	2.47	1.80	1.97	2.78	2.08	1.84	3.18	0.98	0
6.5~7.4	0.96	0.63	0.51	1.14	1.19	1.13	1.25	0.82	1.14	0.98	0.98	0.46	1.57	0.38	0
7.5~8.4	0.41	0.26	0.31	0.46	0.53	0.56	0.67	0.39	0.43	0.20	0.42	0.19	0.76	0.08	0
8.5~9.4	0.18	0.15	0.18	0.21	0.29	0.37	0.24	0.21	0.18	0.08	0.21	0.09	0.40	0.02	0
9.5以上	0.11	0.11	0.34	0.30	0.25	0.34	0.16	0.43	0.08	0.09	0.22	0.06	0.52	0.00	0
注1) 2006年	三度は標高	高148mのう	データに、	ノイズの	影響があ	ったため	除外し,	2004年度	を追加し	た。					

備考

① 棄却検定表(風向)(小名浜気象観測所)

観測場所:小名浜気象観測所(%)

統計年	2004	2007	2002	2000	2010	2011	2012	2012	2014	2015	亚坎荷	検定年	棄却限夠	界(5%)	判定
風向	2004	2007	2008	2009	2010	2011	2012	2013	2014	2015	平均恒	2005	上限	下限	> 棄却
Ν	15. 61	18.08	19.49	16.90	17.05	16.58	16.86	16.92	16.52	18.76	17.28	14.97	20.03	14.53	0
NNE	9. 51	9.46	11.94	13.36	9.44	11.36	9.70	10.37	9.91	12.46	10.75	9.71	14.14	7.36	0
NE	5.07	5.21	5.40	6.15	5.19	4.83	5.89	5.79	5.13	5.70	5.44	4.45	6.44	4.43	0
ENE	1.70	2.19	2.22	2.20	2.22	1.88	2.00	2.43	2.69	2.79	2.23	1.89	3.03	1.43	0
Е	2.15	2.92	2.36	2.48	2.38	2.37	1.90	2.42	2.68	2.52	2.42	2.17	3.07	1.76	0
ESE	1.32	1.95	2.02	1.75	1.78	1.60	1.68	2.15	2.14	1.88	1.83	1.77	2.44	1.22	0
SE	2.96	2.68	2.94	2.19	2.64	2.86	2.81	2.98	2.96	2.60	2.76	3.36	3.35	2.18	×
SSE	5.80	4.93	4.51	4.91	5.09	5.79	5.05	4.80	4.77	4.66	5.03	6.02	6.07	3.99	0
S	11.32	9.73	8.58	9.45	11.91	10.63	10.26	8.92	9.93	12.47	10.32	10.33	13.33	7.31	0
SSW	7. 56	5.71	5.88	6.43	7.42	6.79	7.04	7.74	6.28	7.56	6.84	4.77	8.59	5.09	×
SW	2.13	1.79	1.58	2.68	2.70	2.29	2.70	2.79	3.04	1. 79	2.35	1.69	3.55	1.15	0
WSW	0.95	0.82	1.05	1.13	0.97	0.97	1.18	1.11	1.07	1.15	1.04	0.95	1.30	0.78	0
W	1.80	1.70	1.58	1.70	1.44	1.71	1.50	1.42	1.75	1.46	1.61	1.89	1.94	1.27	0
WNW	4.70	4.69	3.84	3.98	3. 98	4.36	4.28	4.43	4.94	2.88	4.21	6.05	5.60	2.82	×
NW	9.27	8.70	7.85	7.77	7.62	8.06	10.22	9.14	9.83	6.42	8.49	10.63	11.23	5.75	0
NNW	15. 51	17.31	16.04	14.80	15.83	15.60	16.16	16.05	15.40	13.91	15.66	16.88	17.78	13.54	0
CALM	2.64	2.15	2.73	2.11	2.33	2.34	0.80	0.56	0.94	1.00	1.76	2.47	3.74	0.00	0

注1) 2006年度は標高148mのデータにノイズの影響があったため除外し,2004年度を追加した。

16 棄却検定表(風速)(小名浜気象観測所)

観測場所:小名浜気象観測所(%)

統計年	2004	2007	2008	2000	2010	2011	2012	2012	2014	2015	亚坎荷	検定年	棄却限	界(5%)	判定
風速(m/s)	2004	2007	2008	2009	2010	2011	2012	2013	2014	2015	平均恒	2005	上限	下限	×棄却
0.0~0.4	2.64	2.15	2.73	2.11	2.33	2.34	0.80	0.56	0.94	1.00	1.76	2.47	3.74	0.00	0
0.5~1.4	21.92	21.13	22.45	22.79	22.30	22.11	16.85	18.40	18.83	18.49	20.53	20.97	25.64	15.41	0
1.5~2.4	28.61	30.72	31.17	29.65	30.58	28.79	30. 61	29.38	32.17	31.56	30.32	30.33	33.13	27.52	0
2.5~3.4	17.92	18.99	17.19	18.04	20.06	19.71	21.00	20.11	20.21	20.27	19.35	18.36	22.32	16.38	0
3.5~4.4	11.69	11.62	10.66	12.27	11.79	12.18	12.28	13. 73	12.06	12.35	12.06	10.84	13.89	10.23	0
4.5~5.4	7.47	7.33	6.90	7.80	7.11	6.84	7.96	7.82	7.11	7.86	7.42	7.32	8.42	6.42	0
5.5~6.4	5.06	3.87	4.62	3.81	3. 73	3.96	5.41	5.02	3.85	4.28	4.36	4.91	5.83	2.89	0
6.5~7.4	2.45	2.43	2.27	1.93	1.32	2.23	2.79	2.55	2.47	2.17	2.26	2.56	3.22	1.30	0
7.5~8.4	1.11	1.08	0.99	0.96	0.48	1.03	1.21	1.45	1.37	1.05	1.07	1.14	1.70	0.45	0
8.5~9.4	0.75	0.34	0.70	0.43	0.15	0.50	0.59	0.45	0.63	0.60	0.51	0.72	0.94	0.09	0
9.5以上	0.39	0.34	0.32	0.21	0.15	0.31	0.50	0.54	0.37	0.36	0.35	0.39	0.63	0.07	0
注1) 2006年	度は標高	5148mのう	データに、	ノイズの影	影響があ	ったため	除外し,	2004年度	を追加し	た。					

備考

(参考) 引原子炉施設の安全解析に関する気象指針」の解説 X.での記載 現象の年変動 現象は、ほぼ1年周期でくり返されているが、年による変動も存在する。このた 定事故時の線量計算に用いる相対濃度についてその年変動を比較的長期にわた 査してみると、相対濃度の平均値に対する各年の相対濃度の偏差の比は、30% あった。 ことから、1年間の気象資料にもとづく解析結果は、気象現象の年変動に伴って るものの、その程度はさほど大きくないので、まず、1年間の気象資料を用いて	
周原子炉施設の安全解析に関する気象指針」の解説 X.での記載 現象の年変動 現象は,ほぼ1年周期でくり返されているが,年による変動も存在する。このた 定事故時の線量計算に用いる相対濃度についてその年変動を比較的長期にわた 査してみると,相対濃度の平均値に対する各年の相対濃度の偏差の比は,30% ちった。 ことから,1年間の気象資料にもとづく解析結果は,気象現象の年変動に伴って るものの,その程度はさほど大きくないので,まず,1年間の気象資料を用いて	
周原于炉施設の安全解析に関する気象指針」の解説 X. での記載 現象の年変動 現象は,ほぼ1年周期でくり返されているが,年による変動も存在する。このた 定事故時の線量計算に用いる相対濃度についてその年変動を比較的長期にわた 査してみると,相対濃度の平均値に対する各年の相対濃度の偏差の比は,30% あった。 ことから,1年間の気象資料にもとづく解析結果は,気象現象の年変動に伴って るものの,その程度はさほど大きくないので,まず,1年間の気象資料を用いて	
現象の年変動 現象は、ほぼ1年周期でくり返されているが、年による変動も存在する。このた 定事故時の線量計算に用いる相対濃度についてその年変動を比較的長期にわた 査してみると、相対濃度の平均値に対する各年の相対濃度の偏差の比は、30% あった。 ことから、1年間の気象資料にもとづく解析結果は、気象現象の年変動に伴って るものの、その程度はさほど大きくないので、まず、1年間の気象資料を用いて	
現象は、ほぼ1年周期でくり返されているが、年による変動も存在する。このた 定事故時の線量計算に用いる相対濃度についてその年変動を比較的長期にわた 査してみると、相対濃度の平均値に対する各年の相対濃度の偏差の比は、30% あった。 ことから、1年間の気象資料にもとづく解析結果は、気象現象の年変動に伴って るものの、その程度はさほど大きくないので、まず、1年間の気象資料を用いて	
定事故時の線量計算に用いる相対濃度についてその年変動を比較的長期にわた 査してみると,相対濃度の平均値に対する各年の相対濃度の偏差の比は,30% あった。 ことから,1年間の気象資料にもとづく解析結果は,気象現象の年変動に伴って るものの,その程度はさほど大きくないので,まず,1年間の気象資料を用いて	
査してみると,相対濃度の平均値に対する各年の相対濃度の偏差の比は,30% あった。 ことから,1年間の気象資料にもとづく解析結果は,気象現象の年変動に伴って るものの,その程度はさほど大きくないので,まず,1年間の気象資料を用いて	
あった。 ことから,1年間の気象資料にもとづく解析結果は,気象現象の年変動に伴って るものの,その程度はさほど大きくないので,まず,1年間の気象資料を用いて	
ことから、1年間の気象資料にもとづく解析結果は、気象現象の年変動に伴って るものの、その程度はさほど大きくないので、まず、1年間の気象資料を用いて	
るものの,その程度はさほど大きくないので,まず,1年間の気象資料を用いて	
ることとした。	
場合には、その年がとくに異常な年であるか否かを最寄の気象官署の気象資料	
て調査することが望ましい。また,2年以上の気象資料が存在する場合には,	
有効に利用することが望ましい。	

備考

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
参考2		
平常時の気体状よう素放出量について		
平常時の気体状よう素放出量の主要な放出経路である換気系からの放射性よう素放出量は、「発		
電用軽水型原子炉施設周辺の線量目標値に対する評価指針」に基づき、換気系の漏えい係数に冷		
却材中の放射性よう素濃度を乗じて求めている。		
一方,冷却材中の放射性よう素濃度は、次式により求めている。例えば、ここで主蒸気流量F		
Sが増加した場合γが増加するため、放射性よう素濃度は減少する。		
$Ii = 2.47 \cdot f \cdot Yi \cdot \lambda_i^{0.5}$		
=		
$M(\lambda_i + \gamma)$		
I i:核種 i の炉心燃料からの漏えい率 (Bq/s)		
I · 三布刀 / 備えい率 (1.11×10 ⁻) Yi: 核種 i の核分裂収率 (%)		
$\lambda_i:核種iの崩壊定数 (s-1)$		
Ai:核種 i の冷却材中濃度 (Bq/g)		
M: (分却材保有量 (g) β : 原子 「「「」」「「」」「「」」」「」」、「」」、「」、「」、「」、「」、「」、「」、		
$\beta = \left(1 - \frac{1}{DF}\right) \cdot \frac{1}{M}$		
DF:原子炉冷却材浄化系の除染係数 FC:原子炉冷却材浄化系の除染係数		
γ :よう素の主蒸気への移行率 (s ⁻¹)		
FS		
$\gamma = CF \cdot \frac{1}{M}$		
CF:よう素の主蒸気中への移行割合 ES: ナ素与法是 (m/m)		
「 S· 土 ※ X / 加 単 (g/ S) 前述の 換気系の 漏えい 係数 け変わらたいため 放射性よう 素濃度の 減少に 伴い 気体状よう 素放		

備考

東海第二発電所 (2018.9.18版)	 2 号炉
参考3	
東海第二発電所風洞実験結果の概要について	
風洞実験結果は,参考文献「東海第二発電所大気拡散風洞実験報告書」(平成 25 年 12 月,三	
菱重工業株式会社)で公開している。風洞実験結果の概要を以下に示す。	
なお、風洞実験は「(社)日本原子力学会標準 発電用原子炉施設の安全解析における放出源	
の有効高さを求めるための風洞実験実施基準」(2003年6月,社団法人 日本原子力学会)に基	
づき実施している。	
その後,風洞実験実施基準:2003 は改訂され風洞実験実施基準:2009 が発刊されているが,実験	
の要求事項は変更されておらず、複雑地形の発電所で風洞実験で求めた有効高さを用いて大気拡	
散評価を行う際の留意点,野外拡散実験結果と野外拡散条件を模擬した風洞実験結果を用いて平	
地用の基本拡散式(ガウスプルーム拡散式)で評価した結果の比較等の参考事項が追加されたも	
ので,2005年に実施した風洞実験結果は風洞実験実施基準:2009も満足している。	
1. 実験手順	
(1) 大気安定度で中立(C~D) ^{注)} に相当する条件になるように風洞実験装置(第1図参照)内	
の気流(風速分布,乱流強度分布)を調整する(第2図参照)。	
(2) 排気筒有効高さを決定するスケールを作成するため,風洞実験装置内に縮尺模型を入れな	
いで高度を変えて模型排気筒からトレーサガス	
(CH ₄)を放出し、地表濃度を測定する平地実験を実施する(第3図参照)。	
(3) 風洞実験装置内に縮尺模型(1/2,000, 風下 10Km)を入れ, 所定の高度の模型排気筒から	
トレーサガスを放出し、地表濃度を測定する模型実験を行い平地実験結果と照合し、排気筒	
源有効高さを求める(第4図参照)。これにより、建屋、地形の大気拡散に及ぼす影響を把	
握する。	
整流格子	
通風管 「「「「「」」」 「「」」 「「」」 「「」」 「」」 「「」」 「」」 「	
電動機 消息性	
+ L - サ · ガス	
第1図 風洞実験装置	
注)風洞実験の気流条件を大気安定度で中立相当にする効果について	
風洞実験装置内の気流は、風洞測定部入口付近に設置した表面粗度模型で調整している。初	
期の風洞実験では、アングル鋼等を用いて気流の乱れを与えており、中立よりも安定側の気流	
状態になっていたが、風洞実験の知見が蓄積されるに従い専用の表面粗度模型(スパイア)が	

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
製作,採用されるようになり,風洞実験実施基準を制定した時期には中立相当の気流状態に調		
整できるようになった。		
このため,放出源高さが同じ事故時の排気筒有効高さを比較すると,1987年の風洞実験の80		
~110mに対し、今回は95~115mと高く評価されている。今回の風洞実験では中立の大気安定		
度(C~D)を再現したしたため、建屋模型がない平地の気流の乱れが大きくなり、建屋模型		
の追加により生じる気流の乱れの影響が相対的に小さく、見掛け上の放出源高さの減少が小さ		
くなったためと推定される。前回は、D~Eの大気安定度に相当する気流の乱れであり、建屋		
模型の追加で生じる気流の乱れが大きく作用して,見掛け上の放出源高さの減少が大きくなっ		
たと考えられる。		
一方,平常時の排気筒有効高さを比較すると,1987年の風洞実験の120~180mに対し,今回		
は150~220mと高く評価されている。これは、上記の気流の調整方法の違いよる影響に加え、		
気象データの変更及び吹出し速度の増加(14m/sから16m/sに増加)により模型実験時の放		
出源高さが大きくなった影響によると推定される。		
図5及び図6に1987年の平地実験の結果、模型実験結果の一例を示す。		
2. 放出源高さ		
放出源高さは、事故時は通常の換気系は運転されないと想定し、排気筒実高H ₀₁ =Hs、平常時は		
換気系の運転による吹上げ効果を考慮し、次式のように排気筒実高に吹上げ高さを加えた放出高		
さH ₀₂ とする。ここで、1/Uには、2005年度の気象データを用いた。第1表に風洞実験の放出源		
高さを示す。		
$H_{02} = HS + \Delta H$		
$\Delta H = 3 \frac{W}{U} D$		
Hsu · 排气筒 宝高(m)		
D : 排気筒出口の内径(m)		
W : 吹出し速度 (m/s)		
1/U :風速逆数の平均 (s/m)		

備考
V 111 V
•

		第1表	放出源高さ		
風向 着目方位	****	風速逆数の平均	at 1. Print 2 ()	放出源高さ(GL m	
	(s/m)	外上の向き切り	事故時	平常町	
N	s	0.42	90.7	140	231
NNE	ssw	0.32	69.1	140	209
NE	SW	0.21	45.4	140	185
ENE	wsw	0.30	64.8	140	205
E	w	0.40	86.4	140	226
ESE	WNW	0.47	101.5	140	242
SE	NW	0.49	105.8	140	246
SSE	NNW	0.36	77.8	140	218
s	N	0.31	67.0	140	207
ssw	NNE	0.40	86.4	140	226
sw	NE	0.35	75.6	-	216
wsw	ENE	-	-	-	-
w	E		1	-	1000
WNW	ESE		-	-	-
NW	SE	0.27	58.3		198
NNW	SSE	0.29	62.6	140	203
排気筒出口	の内径 (m)			4	.5
吹出し速度	(m/s)			16	5.0
排気筒高さ	(GL) (m)			14	0.0

*1 風速逆数の平均(2005年4月~2006年3月)

*2 排気筒設置位置標高:EL8m

島根原子力発電所 2号炉

備考
3. 排気筒有効高さ

縮尺模型を入れない平地実験と縮尺模型を入れた模型実験(平常時及び事故時)の結果から, 第4回のように求めた排気筒有効高さを第2表に示す。

		平常時			布拉時			
肌的	着目力位	評価地点 (m)	放出販高さ (m)	有効高さ (m)	評価地点 (m)	設出資高さ (m)	有劲应3 (m)	
N	8	330	231	210	1870	140	105	
NNE	ssw	350	209	180	1690	140	100	
NE	SW	450	185	150	1300	140	110	
ENE	wsw	640	205	195	930	140	110	
Б	W	530	226	205	530	140	115	
ESE	WNW	600	242	205	600	140	105	
SE	NW	660	246	220	660	140	105	
SSE	NNW	890	218	200	890	140	105	
ŝ	Ν	850	207	190	850	140	105	
ssw	NNE	600	226	200	600	140	95	
aw	NB	380	210	130	-		-	
WSW	ENE	-	_		-		-	
W	E				_			
WNW	ESE				-			
NW	SE	290	198	170	-	-	-	
NNW	SSE	350	203	185	2900	140	115	

第2表 排気筒有効高さ

備考

備考

備考

備考

1
備考

備考

東海第二発電所 (2018.9.18版)	Ē.
	参考 4
東海発電所の排気筒有効高さについて	
東海第二発電所の添付書類九では、廃止措置中の東海発電所について	も通常運転状態を仮定し
た線量評価を行っている。ここでは,排気筒有効高さは1982年に実施	- た風洞実験結果を使用し
ている。	
風洞実験実施基準:2003の解説「2.原子炉増設の際の実験の必要性に	ついて」*1では,建屋配
置から増設建屋の影響が大きいと考えられる、既設・増設建屋の並びに	.直角な風向と, 既設排気
筒と増設建屋を結ぶ風向で風洞実験を行い、有効高さの変動が10%以	Jであれば従来の風洞実験
結果を継続使用できるとしている。これを参考に、平常時の線量評価に	あたり人の居住を考慮し
た希ガスによる線量評価点のうち線量が最大となる評価点(SW方向)	.向かう風の風向を含む主
要風向において、風洞実験で用いる放出源高さを1981年度と2005年月	気象データから求め比較
した結果+5~-3%と変動が10%以内であった。放出源高さと有効高さ	はほぼ比例である*2ため
有効高さの変動も10%以内に収まると推定されることから、1987年に	こ施した風洞実験結果を用
いることにした。これに対し、東海第二発電所は+6~+14%と10%を	超えていた(下図参照)。

	8 8.88	1982年8月7日-7 (1982年8月7月1日)		2009127-9			8.1853)
		St. Soffield	20183 (m)	大上げある	2010 B.2	8	CONTRACT,
N	8	-	138	8	122		3.79
NNR	204	30	=				6.60
NB	8	A	ţ,	ñ	8	Ÿ	17.88
1948	WOW.	ŀ	le I	3	1	Ļ	8.95
8	w	81	122		129	-	6.33
ESE.			2		161	۲	2.77
*	NW.		18	8	27	8	175
308	NOME	н	115	ų	28		6.36
8	N	35	116	6 0	121	4	6.88
339	2	3	Ħ	8	1	1	2.43
(1) 第10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		3.7		-		_	
大学がある		38					
998,988,5642		81		-			

備考

(参考)

	第 月为位	1881年度データ (1882年)美国(東部)		2005年月77 (2007年月3(18日)		****	8.255.20
		91598 3		大山が高さ	1 1 1	00	000480
N		1	Ŧ	8	ñ		3.52
NNE	3394	4			209	3	6.67
10	a.	34	Ħ	-		٠	1840
858	WiW	51		-65	25		8.80
8	w		a,		8		5.55
	WOW	81	Ħ	102	볋		3.66
	200	3	3	18	8	R	3.09
	1000	44	ä	18	22	2	3.32
8	N	51		-	20	٠	4.99
234	NVR.	47			22		3.13
御史 王王 臣(二)		4.5		-			
今日に連邦につ		16		18			l
御気気振さい		140		+			

※1 風洞実験実施基準:2003 解説抜粋

2. 原子炉増設の際の実験の必要性について、

必 本体の「既設御気質に対する増設健園の影響が楽しくないと子思される場合」とは、設 出源近傍の技形が増設により極端に変化しない場合であって、かつ、既設好気質高さが 増設建屋の高さのまち倍以上ある場合。または相互の距離が十分ある場合をいう。 ただし、このうち増設建屋の影響については、上記の条件が資なされない場合でも、 次のように取り知うことかできる。

1) 既設、増設建築配置により、①建築の並びに向角な風向、②低設準気管と増設速量を 結ぶ風向を求め、既設建屋のみで実施した既存の実験風向のうち、優も③、②に近い 2.風向を選定して増設建置を加えた実験を行い、その結果が既存の実験結果と比較し てあまり変わらない場合*は,既存の実験結果をそのまま使用できる(解脱間 2-1 参照)。

* ここで、あまり変わらない場合とは、有効高さの変化が10%以内であり、かつ、援 並目標値。めやす線量等を下回ることが明らかな場合である。

備考

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
参考5		
異常年検定法の概要について		
F分布検定の手順により異常年検定を行った。		
この検定方法は、正規分布をなす母集団から取り出した標本のうち、不良標本と見られるもの		
を X ₀ (検定年), その他のものを X ₁ , X ₂ , X ₃ , …Xi, …Xn(比較年)とした場合, X ₀ を除く他の		
n 個の標本の平均を $\overline{\mathbf{X}} = \sum_{i=1}^{n} X_i / n$ として,標本の分散から見て \mathbf{X}_0 と $\overline{\mathbf{X}}$ との差が有意ならば \mathbf{X}_0 を		
棄却とする方法である。検定手順を以下に示す。		
(1) 仮説:不良標本 X ₀ と他の標本(その平均値) \bar{X} との間に有意な差はないとする。		
$H_0: X_0 = \bar{X}(\bar{X} = \sum_{i=1}^n X_i/n)$		
(2) 分散比 F ₀ を計算する。		
$F_0 = \frac{(n-1)(X_0 - \bar{X})^2}{(n+1)S^2}$		
$S^{2} = \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} / n$		
(3) 検定年は1年,比較年は10年,有意水準(危険率)は5%として,F分布表のF境界値		
$(F_9^1(0.05) = 5.12)$ を求める。		
(4) $F_0 \ge F$ 境界値を比較して, $F_0 < F$ 境界値であれば仮説は採択する。具体的には、次のよう		
に棄却限界の上限値と下限値を求め、その範囲に検定年 X ₀ が収まっているかを確認して		
検定している。		
$\bar{X} - S_{\sqrt{\frac{(n+1)}{(n-1)}}} F \frac{\#}{\#} F \frac{\#}{m} < X_0 < \bar{X} + S_{\sqrt{\frac{(n+1)}{(n-1)}}} F \frac{\#}{\#} F \frac{\#}{m}$		

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
補足 12 コンクリート密度の根拠について		
1. はじめに		
日本建築学会 建築工事標準仕様書・同解説「原子力発電所施設における鉄筋コンクリート工		
事(以下, JASS 5N)」に基づき、コンクリート密度を乾燥単位容積質量として計算を実施した。		
2. 乾燥単位容積質量の推定方法		
JASS 5N に記載されている予測式(解 3.6)を用いて,以下の手順で推定した。		
 ① 骨材(砂,砂利)試験記録より絶乾比重最小値と表乾比重最大値の割合を求め,調合表上 		
の骨材重量を表乾から絶乾に変換		
② JASS 5N の予測式(解 3.6)により,含水率を0とした場合の乾燥単位容積質量 ρpを算		
③ コンクリートのばらつきを考慮して, ρpから 3σaを差し引く。(解説図 3.10)		
標準偏差 σ d は JASS 5N に記載されている既往の原子力発電所工事の品質管理試験の結果		
から 0.024t/m ³ (最大値)を採用		
$\rho_{\rm p} = G_0 + S_0 + 1.2C_0 + W \qquad (\text{P} 3.6 \pm 9)$		
\cdot · · · · · · · · · · · · · · · · · · ·		
$\rho_{\rm p}$. 紀保半位谷槓貝里 (Kg/ III) C 調合計画における知母な景 (統族) ($h_{\rm g}/m^3$) ※ 参考参照		
G_0 · 調合計画における祖自将重(紀報) (kg/m) · ※参考参照 S · 調合計画における細骨材量(純乾) (kg/m ³) ※ 法考考昭		
C_{-} · 調合計画におけるセメント量(kg/m ³)※ 会考参照		
w・コンクリート中の含水量 (kg/m ³) ※安全側に 0 とすろ		
 3. 推定乾燥単位容積質量について(参考参照)		
推定乾燥単位容積質量の最小値は2.016g/cm ³ となり、遮蔽計算に使用するコンクリート密度		
はこれを包絡する 2.00 g/cm ³ とする。		

備考

東海第二発電所 (2018.9.18版)		島根原子力発電所	2 号炉
	参考		
コンクリート調合(東海第二発電所建設記録より)からの推	定乾燥容積質量		
No. HIBBLE Statistic (sp. sc) BEAM Diff. Diff. <thdiff.< th=""> <thdift.< th=""> <thdiff.< th=""></thdiff.<></thdift.<></thdiff.<>	10 10		
1 3 4 -£389	2181 3.1.08 2177 3.1.09 201 3.1.29		
8 4 7 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	201 2.123 229 3.137 111 3.167		
8 8 90	044. 2.1892 136- 2.1894 946- 2.893		
	NE 1.000 TE 1.100 NO 1.000		
	117 2.130 (01 8.00)		
	100 <u>5.000</u> 5.000 <u>5.000</u> 000 <u>5.000</u>		
	VV D.10 100 3.100 001 3.100 001 3.100		
	151. 3. 002 154. 5. 002		
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	194 5. 1972 195 5. 1959 195 5. 1977		
20 27 28	10. 3. mii 10. 3. mm 10. 3. mm		
31 3. 12 3. 31 2.	14. 3.000 145 <u>5.001</u> 500 <u>5.008</u>		
	00 1,000 12 1,000 14 1,000		
1	001 2, 0006 555 3, 005 557 3, 005		
41 2 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 1	102 1. 1058 116 5. 1046 167 5. 1055		
41	(77 <u>5,000</u> (5) <u>5,000</u> (57 <u>5,000</u>		
41	117 3. 840 148 3. 874 16. 3. 864		
80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	102. 8 mm 117: 2.9-09 208: 2.10.8		
10	189 1.117 111 1.180 181 1.189		
8	107 1.880 004 1.889 005 1.800		
0 0 0 0 0 0 0 0 0 0 0 0 0 0	107 1.000 100 1.000 111 1.000		
	00 1.004 20 2.122 20 3.000		
	122 A. 108 109 A. 107 109 A. 107		
	119 1.198 199 1.103		
	104 1.80 119 1.100		
24 34 (2)	182 2.111 184-58+1.225		
	能令-假 2. 网系		

1
備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
別紙 18	
スクラビング水補給及び窒素供給作業の作業員の被ばく評価	
格納容器圧力逃がし装置格納槽へのスクラビング水の補給及び原子炉建屋系統内への窒素	
ガスの供給作業における作業員の被ばく評価を以下のとおり行った。なお, 評価に当たっては,	
サプレッション・チェンバ(S/C)からのベントを行う場合及びドライウェル(D/W)か	
らのベントを行う場合のそれぞれについて評価を行った。	
(1) 評価条件	
a. 放出量評価条件	
想定事象として格納容器破損モード「雰囲気圧力・温度による静的負荷(格納容器過圧・	
過温破損)」で想定される事故シーケンスにおいて、代替循環冷却系を使用できない場合	
を想定した事故シナリオを選定する。また,放出量評価条件を第 1 表,大気中への放出過	
程及び概略図を第1図~第5図に示す。	
b. 被ばく評価条件	
被ばく経路は,第6図及び第7図に示すとおり大気中へ放出される放射性物質による外	
部被ばく及び内部被ばく,地表面に沈着した放射性物質からのガンマ線,原子炉建屋から	
の直接ガンマ線等による外部被ばくを考慮した。	
大気中へ放出される放射性物質による外部被ばく及び内部被ばく、地表面に沈着した放	
射性物質からのガンマ線による外部被ばくについては, 第2表〜第4表に示すとおり拡散	
効果等を考慮し,作業場所における相対線量(D/Q)及び相対濃度(χ/Q)から被ば	
く評価を行った。なお、内部被ばくについてはマスク等の放射線防護効果を考慮し評価を	
行った。	
原子炉建屋及び <u>格納容器圧力逃がし装置格納槽</u> からの直接ガンマ線等による外部被ばく	
については,第5表及び第6表に示すとおり原子炉建屋の外壁及び格納容器圧力逃がし装	
<u>置格納槽</u> の遮蔽壁の遮蔽効果を考慮し評価を行った。	
c. 評価地点	
評価地点は、第8図に示すとおりとした。	
d. 作業開始時間	
スクラビング水の補給及び窒素ガスの供給は事象発生から7日後に実施することを想定	
し評価した。	
(2)評価結果	
スクラビング水の補給及び窒素ガスの供給作業場所の線量率は,第7表及び第8表に示す	
とおり,サプレッション・チェンバ(S/C)からのベントを行う場合,スクラビング水の	
補給作業については13mSv/h,窒素ガスの供給作業については3.6mSv/hとなり,ドライウ	
ェル(D/W)からのベントを行う場合,スクラビング水の補給作業については 15mSv/h,	
窒素ガスの供給作業については 4.6mSv/h となり、スクラビング水の補給及び窒素ガスの供	
給作業を行うことができる放射線環境であることを確認した。	

備考
・資料構成の相違
島根2号炉は「別紙8 弁の現
場操作地点等における被ばく
評価について」に記載

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
なお、スクラビング水の補給作業及び窒素ガスの供給作業の作業時間は、移動及び補給等		
の準備を含めても2時間~3時間であり、作業が可能である。		

備考
1

	評価冬件	强定理由
評価事象	「大破断LOCA+高圧炉心冷却失敗+低圧 炉心冷却失敗」(代替循環冷却系を使用でき ない場合)(全交流動力電源喪失の重畳を考 慮)	格納容器破損防止対 策の有効性評価で想 定する格納容器破損 モードのうち,中央 制御室の運転員又は 対策要員の被ばくの 観点から結果が最も 厳しくなる事故収束 に成功した事故シー ケンスを選定
炉心熱出力	3, 293MW	定格熱出力
運転時間	1 サイクル当たり 10,000 時間(約 416 日)	1 サイクル 13 ヶ月 (395日)を考慮して 設定
取替炉心の 燃料装荷割合	1 サイクル: 0.229 2 サイクル: 0.229 3 サイクル: 0.229 4 サイクル: 0.229 5 サイクル: 0.084	取替炉心の燃料装荷 割合に基づき設定
炉内蓄積量	希ガス類 : 約2.2×10 ¹⁹ Bq よう素類 : 約2.2×10 ¹⁹ Bq C s O H類 : 約2.8×10 ¹⁹ Bq C s O H類 : 約1.1×10 ¹⁸ Bq S b 類 : 約1.3×10 ¹⁸ Bq T e O ₂ 類 : 約6.7×10 ¹⁸ Bq S r O類 : 約1.2×10 ¹⁹ Bq B a O類 : 約1.2×10 ¹⁹ Bq M o O ₂ 類 : 約2.4×10 ¹⁹ Bq C e O ₂ 類 : 約5.5×10 ¹⁹ Bq L a $_2O_3$ 類 : 約5.5×10 ¹⁹ Bq (核種ごとの炉内蓄積量を核種グループごと に集約して記載)	「単位熱出力当たり の炉内蓄積量(Bq/ MW)」×「3,293MW(定 格熱出力)」 (単位熱出力当たり の炉内蓄積量(Bq/ MW)は,BWR共通 条件として,東海第 二と同じ装荷燃料 (9×9燃料(A 型)),運転時間 (10,000時間)で算 出したABWRのサ イクル末期の値を使 用)
放出開始時間	格納容器漏えい:事象発生直後 格納容器圧力逃がし装置による格納容器減圧 及び除熱:事象発生から約19h後	MAAP解析結果
原子炉格納容器 内 p H 制御の効 果	考慮しない	 サプレッション・プ ール内 p H制御設備 は,重大事故等対処 設備と位置付けてい ないため,保守的に 設定
よう素の形態	粒子状よう素 : 5% 無機よう素 : 91% 有機よう素 : 4%	R.G.1.195 ^{※1} に基 づき設定

備考
5

	第1表 放出量評価条件(2/3)	
項目	評価条件	選定理由
原子炉格納容器 から原子炉建屋 への 漏 えい 率 (希ガス,エア ロゾル及び有機 よう素)	1Pd以下:0.9Pdで0.5%/日 1Pd超過:2Pdで1.3%/日	MAAP解析にて原子 炉格納容器の開口面積 を設定し格納容器圧力 に応じ漏えい率が変化 するものとし,原子炉 格納容器の設計漏えい 率(0.9Pd で 0.5%/ 日)及びAECの式等 に基づき設定(別紙17 補足1参照)
原子炉格納容器 から原子炉建屋 への 漏 えい 率 (無機よう素)	1.5h後~19.5h後:1.3%/日(一定) その他の期間 :0.5%/日(一定)	原子炉格納容器の設計 漏えい率(0.5%/日) 及びAECの式等に基 づき設定(格納容器圧 力が0.9Pdを超える期 間を包絡するように 1.3%/日の漏えい率 を設定)(別紙17補足1 参照)
原子炉格納容器 の漏えい孔にお ける捕集効果	考慮しない	保守的に設定
原子炉格納容器 内での除去効果 (エアロゾル)	MAAP解析に基づく(沈着,サプレッショ ン・プールでのスクラビング及びドライウェ ルスプレイ)	MAAPのFP挙動モ デル(別紙17補足2参 照)
原子炉格納容器 内での除去効果 (有機よう素)	考慮しない	保守的に設定
原子炉格納容器 内での除去効果 (無機よう素)	自然沈着率:9.0×10 ⁻⁴ (1/s) (原子炉格納容器内の最大存在量から1/200 まで) サプレッション・プールでのスクラビングに よる除去効果:10 (S/Cベントのみ)	CSE実験及び Standard Review Plan 6.5.2 ^{**2} に基づき設定 (別紙17補足3参照) Standard Review Plan6.5.5 ^{*3} に基づき 設定(別紙17補足4参 昭)
原子炉格納容器 から原子炉建屋 への漏えい割合	 希ガス類 C s I 類S/Cベント 約4.3×10 ⁻³ D/Wベント : 約4.3×10 ⁻³ C s I 類 C s O H類 : 約6.2×10 ⁻⁵ : 約6.2×10 ⁻⁵ : 約6.2×10 ⁻⁵ : 約6.2×10 ⁻⁵ : 約6.2×10 ⁻⁵ S b 類 T e O 2類 S n O 類 : 約2.7×10 ⁻⁶ : 約6.8×10 ⁻⁶ : 約6.8×10 ⁻⁶ S r O 類 B a O 類 : 約2.7×10 ⁻⁶ : 約2.7×10 ⁻⁶ : 約3.4×10 ⁻⁷ : 約3.4×10 ⁻⁷ C e O 2 類 : 約6.7×10 ⁻⁸ : 約6.8×10 ⁻⁸ : 約2.7×10 ⁻⁸ L a 2 O 2 類 : 約2.7×10 ⁻⁸ : 約2.7×10 ⁻⁸ : 約2.7×10 ⁻⁸	MAAP解析結果及び NUREG-1465 ^{**4} に基づき設定(別紙17 補足5参照)

備考
5

第1表 放出量評価条件 (3/3)

項目	評価条件		選定理由
原子炉建屋から 大気への漏えい 率(非常用ガス 処理系及び非常 用ガス再循環系 の起動前)	無限大/日(地上放出) (原子炉格納容器から原子炉 た放射性物質は,即座に大気 のとして評価)	建屋へ漏えいし 〔へ漏えいするも	保守的に設定
非常用ガス処理 系から大気への 放出率(非常用 ガス処理系及び 非常用ガス再循 環系の起動後)	1回/日(排気筒放出)		設計値に基づき設 定 (非常用ガス処理 系のファン容量)
非常用ガス処理 系及び非常用ガ ス再循環系の起 動時間	事象発生から2時間後		起動操作時間(115 分)+負圧達成時間 (5分)(起動に伴 い原子炉建屋原子 炉棟内は負圧にな るが,保守的に負圧 達成時間として5分 を想定)
非常用ガス処理 系及び非常用ガ ス再循環系のフ ィルタ除去効率	考慮しない		保守的に設定
原子炉建屋外側 ブローアウトパ ネルの開閉状態	閉状態		原子炉建屋原子炉 棟内の急激な圧力 上昇等による原子 炉建屋外側ブロー アウトパネルの開 放がないため
格納容器圧力逃 がし装置への放 出割合	希ガス類 	D/Wベント :約9.5×10 ⁻¹ :約3.9×10 ⁻³ :約7.5×10 ⁻³ :約1.4×10 ⁻³ :約1.4×10 ⁻³ :約5.8×10 ⁻⁴ :約5.8×10 ⁻⁴ :約7.2×10 ⁻⁵ :約1.4×10 ⁻⁵ :約5.8×10 ⁻⁶	MAAP解析結果 及びNUREG- 1465 に基づき設定 (別紙17補足5参 照)
格納容器圧力逃 がし装置の除去 係数	希ガス : 1 有機よう素:50 無機よう素:100 エアロゾル(粒子状よう素含む	s) : 1,000	設計値に基づき設 定

備考
5

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
※1 Regulatory Guide 1.195, "Methods and Assumptions for Evaluating Radiological Consequences of Desigh Basis Accidents at Light-Water Nuclear Power Reactors", May 2003	
X2 Standard Review Plan6.5.2, "Containment Spray as a Fission Product Cleanup System", December 2005	
3 Standard Review Plan6.5.5, "Pressure Suppression Pool as a Fission Product Cleanup System", March 2007	
X4 NUREG-1465, "Accident Source Terms for Light-Water Nuclear Power Plants", 1995	

備考
5

備考
5

備考
5

備考
5

備考
5

備考
5

備考
5

備考
5

第2表 大気拡散評価条件

項目	評価条件	選定理由
大気拡散評価 モデル	ガウスプルームモデル	発電用原子炉施設の安全解析に関す る気象指針(以下「気象指針」とい う)に基づき評価
気象資料	東海第二発電所における1年 間の気象資料(2005年4月~ 2006年3月) 地上風:地上10m 排気筒風:地上140m	格納容器圧力逃がし装置排気口及び 原子炉建屋からの放出は地上風(地 上高10m)の気象データを使用 非常用ガス処理系排気筒からの放出 は排気筒風(地上高140m)の気象デ ータを使用(別紙17補足11参照)
放出源及び放出 源高さ(有効高 さ)	原子炉建屋漏えい:地上0m 格納容器圧力逃がし装置 排気口からの放出:地上57m 非常用ガス処理系排気筒 からの放出:地上95m	格納容器圧力逃がし装置排気口から の放出は建屋影響を考慮し建屋屋上 からの放出と想定し設定 非常用ガス処理系排気筒からの放出 は方位ごとの風洞実験結果のうち保 守的に最低の方位の有効高さを設定
実効放出継続時 間	1時間	保守的に最も短い実効放出継続時間 を設定(別紙17補足9参照)
累積出現頻度	小さい方から 97%	気象指針に基づき設定
建屋の影響	考慮する	格納容器圧力逃がし装置排気口放出 及び原子炉建屋漏えいにおいては放 出源から近距離の原子炉建屋の影響 を受けるため,建屋による巻き込み 現象を考慮
巻き込みを生じ る代表建屋	原子炉建屋	放出源から最も近く,巻き込みの影 響が最も大きい建屋として選定
大気拡散評価点	第8図参照	屋外移動時は敷地内の最大濃度点で 設定 作業時は作業地点のある原子炉建屋 外壁で設定
着目方位	非常用ガス処理系排気筒: 1 方位 原子炉建屋及び 格納容器圧力逃がし装置 排気口: 9方位	非常用ガス処理系排気筒(排気筒放 出)については評価点の方位とし, 建屋放出及び格納容器圧力逃がし装 置排気口については放出源が評価点 に近いことから,180度をカバーする 方位を対象とする。
建屋影響	3, 000m ²	原子炉建屋の最小投影断面積を設定
形状係数	0.5	気象指針に基づき設定

1+++ -++
偏考

作業内容		放出箇所	χ/Q及びD/Q	
		原子炉建屋漏えい (地上放出)	χ / Q (s/m ³)	約 8.3×10 ⁻⁴
		格納容器圧力逃がし装置排	χ / Q (s/m ³)	約 4.2×10 ⁻⁴
スクラビング 水補給作業	屋外移動時 /作業時	(建屋屋上放出)	D∕Q (Gy∕Bq)	約 8.7×10 ⁻¹⁹
		非常用ガス処理系排気筒	χ / Q (s/m ³)	約 3.0×10 ⁻⁶
		(排気筒放出)	D/Q (Gy/Bq)	約 1.2×10 ⁻¹⁹
		原子炉建屋漏えい (地上放出)	χ / Q (s/m ³)	約 8.3×10 ⁻⁴
窒素供給作業		格納容器圧力逃がし装置 排気口 (建屋屋上放出)	χ / Q (s/m ³)	約 4.2×10 ⁻⁴
	屋外移動時		D∕Q (Gy∕Bq)	約 8.7×10 ⁻¹⁹
		非常用ガス処理系排気筒	χ∕Q (s∕m ³)	約 3.0×10 ⁻⁶
		(排気筒放出)	D/Q (Gy/Bq)	約 1.2×10 ⁻¹⁹
	作業時	原子炉建屋漏えい (地上放出)	χ∕Q (s∕m ³)	約 7.4×10 ⁻⁴
		核 納	χ/Q (s/m ³)	約 3.7×10 ⁻⁴
		気口(建屋屋上放出)	D∕Q (Gy∕Bq)	約 7.7×10 ⁻¹⁹
		非常用ガス処理系排気筒 (排気筒放出)	χ⁄Q (s⁄m ³)	約 3.0×10 ⁻⁶
			D∕Q (Gy∕Bq)	約 6.3×10 ⁻²⁰
	1	<u> </u>		

備考
5

第4表線量換算係数,呼吸率等 項目 評価条件 運定理由 成人実効線量換算係数を使用 (主な核種を以下に示す) パー33 : 2.0×10 ⁻⁸ Sv/Bq 1-132 : 3.1×10 ⁻¹⁰ Sv/Bq 1-132 : 3.1×10 ⁻¹⁰ Sv/Bq 1-133 : 4.0×10 ⁻⁹ Sv/Bq 1-133 : 4.0×10 ⁻⁹ Sv/Bq C s-134 : 2.0×10 ⁻⁸ Sv/Bq C s-137 : 3.9×10 ⁻⁹ Sv/Bq C s-137 : 3.9×10 ⁻¹⁰ Sv/Bq
項目評価条件選定理由成人実効線量換算係数を使用 (主な核種を以下に示す)成人実効線量換算係数を使用 (主な核種を以下に示す)ごな核種を以下に示す)I-131:2.0×10 ⁻⁸ Sv/Bq I-132:3.1×10 ⁻¹⁰ Sv/Bq I-133:4.0×10 ⁻⁹ Sv/Bq C s-134:2.0×10 ⁻¹⁸ Sv/Bq C s-134:2.0×10 ⁻⁸ Sv/Bq C s-137:3.9×10 ⁻⁸ Sv/Bq L記以外の核種は ICRP Publication 71に基づき設定ICRP Publication 71に基づき設定呼吸率1.2m ³ /h成人活動時の呼吸率を設定 ICRP Publication 71に基づき設定マスクの除 染係数DF50性能上期待できる値から設定地表面への 沈着速度粒子状物質:0.5cm/s 無機よう素:1.7×10 ⁻³ cm/s東海第二発電所の実気象から求めた沈着 速度から保守的に設定(別紙 17 補足 6~ 補足 8 参照)
成人実効線量換算係数を使用 (主な核種を以下に示す)成人実効線量換算係数を使用 (主な核種を以下に示す)R (主な核種を以下に示す)I-131 : 2.0×10^{-8} Sv/Bq I-132 : 3.1×10^{-10} Sv/Bq I-133 : 4.0×10^{-9} Sv/Bq I-135 : 9.2×10^{-10} Sv/Bq C s -134 : 2.0×10^{-8} Sv/Bq C s -134 : 2.0×10^{-8} Sv/Bq C s -137 : 3.9×10^{-8} Sv/Bq L 2.0×10^{-9} Sv/Bq L 2.0×10^{-8} Sv/Bq L 2.0×10^{-9} Sv/Bq L 2.0
呼吸率 1.2m³/h 成人活動時の呼吸率を設定 ICRP Publication 71に基づき設定 マスクの除 染係数 DF50 性能上期待できる値から設定 地表面への 沈着速度 粒子状物質:0.5cm/s 無機よう素:0.5cm/s 有機よう素:1.7×10 ⁻³ cm/s 東海第二発電所の実気象から求めた沈着 速度から保守的に設定(別紙 17 補足 6~ 補足 8 参照)
マスクの除 染係数 DF50 性能上期待できる値から設定 地表面への 沈着速度 粒子状物質:0.5cm/s 無機よう素:0.5cm/s 有機よう素:1.7×10 ⁻³ cm/s 東海第二発電所の実気象から求めた沈着 速度から保守的に設定(別紙 17 補足 6~ 補足 8 参照)
地表面への 沈着速度 粒子状物質:0.5cm/s 無機よう素:0.5cm/s 有機よう素:1.7×10 ⁻³ cm/s 東海第二発電所の実気象から求めた沈着 速度から保守的に設定(別紙17 補足 6~ 補足 8 参照)

1+++ -++
偏考

島根原子力発電所 2号炉

第5表 原子炉建屋からの直接ガンマ線及びスカイシャインガンマ線

項目	評価条件	選定理由
原子炉建屋内線源強 度分布	原子炉建屋内に放出された放射性 物質が均一に分布	審査ガイドに示されたとお り設定
原子炉建屋のモデル	原子炉建屋の幾何形状をモデル化	建屋外壁を遮蔽体として考 慮
直接ガンマ線・スカ イシャインガンマ線 評価コード	直接ガンマ線評価: QAD-CGGP2R スカイシャインガンマ線評価: ANISN G33-GP2R	現行許認可(添十)に同じ
許容差	評価で考慮するコンクリート遮蔽 は,公称値からマイナス側許容差 (-5mm)を引いた値を適用	建築工事標準仕様書 JASS 5N・同解説(原子力発電所 施設における鉄筋コンクリ ート工事,日本建築学会)に 基づき設定
コンクリート密度	2.00g∕cm³	建築工事標準仕様書 JASS 5N・同解説(原子力発電所 施設における鉄筋コンクリ ート工事,日本建築学会)を 基に算出した値を設定

第6表 フィルタ装置からの直接ガンマ線

項目	評価条件	選定理由
スクラビング水補給 場所作業場所壁厚		格納容器圧力逃がし装置格納槽遮蔽設計 値(10mSv/h以下)に基づき設定
格納容器圧力逃がし 装置格納槽外壁壁厚		格納容器圧力逃がし装置格納槽遮蔽設計 値(0.62mSv/h以下)に基づき設定
コンクリート密度	2.10g∕cm³	新設遮蔽はコンクリート密度 2.10g/cm ³ 以上で施工

備考
5

東海第二発電所 (2018.9.18版)	島根原子力発電所	2号炉
第8回 大気中に放出された放射性物質の濃度評価占		

備考
5

S/Cからのベント操作の場合)
$\overset{o}{\mathbb{C}}$
スクラビング水補給作業及び窒素供給作業における被ばく評価
第7表

東海第二発電所					(2018	. 9. 18 片	反)
哈作業	屋外移動時	1.0×10 ⁻² 以下	$1.0 imes 10^{-2}$ L F	1.0×10 ⁻² 以下	約3.3×10 ⁰	約6.3 $\times 10^{-1}$	約3.9×10 ⁰
窒素供	供給作業時	1.0×10 ⁻² 以下	$1.0 imes 10^{-2}$ LF	$1.0 imes 10^{-2} m kF$	約2.9×10 ⁰	$ m \% 16.3 imes 10^{-1}$	約3. 6×10^{0}
<i>"</i> 水補給作業	屋外移動時	1.0×10 ⁻² 以下	1.0×10^{-2} L F	$1.0 imes 10^{-2}$ U F	約3.3×10 ⁰	約6.3 $ imes$ 10 $^{-1}$	約3.9 $ imes$ 10 ⁰
スクラビング	補給作業時	1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	約3.3×10 ⁰	約1.0×10 ¹	約1.3×10 ¹
		物質からの 3被ぼく	外部被ぼく	内部被ばく	fiに沈着した ルによる被ばく	し装置 らの直接線	
40 A2 < 30 44	伙 (しく 産節	原子炉建屋内の放射性/ ガンマ線による外部	大気中へ放出された	放射性物質よる被ぼく	大気中へ放出され地表面 放射性物質からのガンマ絲	格納容器圧力逃が フィルク装置格納槽か	作業線量率

備考
5

備考
5

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
別紙 19	
格納容器内の圧力が計測できない場合の運用について	格納容器内の圧力が計測できない場合の運用について

格納容器内の圧力が計測できない場合には、格納容器雰囲気温度を計測し、飽和圧力に換算 することにより操作判断を行うこととする。このため、第1表及び第1図に示すような飽和温 度と飽和圧力の換算表等を手順書類に記載する。

具体的には、重大事故等発生時に格納容器への注水等が十分である場合においては、格納容 器雰囲気は飽和状態に近い状態であることから,第2図に示す格納容器雰囲気温度計のうち, より飽和状態に近いと考えられるサプレッション・チェンバ空間部に設置した格納容器雰囲気 温度計(第2図の⑨及び⑩)の計測値を飽和圧力に換算し、ベントの実施を判断する。

ただし、有効性評価で想定する範囲を超える場合ではあるが、重大事故等発生時に格納容器 への注水等が不十分な場合は、格納容器雰囲気温度が格納容器圧力に対する飽和温度以上にな るとともに、溶融炉心からの輻射熱等によって局所的に格納容器雰囲気温度が大きく上昇する 可能性がある。

このような場合は、全ての格納容器雰囲気温度計の最大値を圧力換算し、ベントの実施を判 断する。この運用により,格納容器雰囲気温度に対する圧力換算値は実際の格納容器圧力と同 等又はそれ以上となることから、格納容器の限界圧力を下回る最高使用圧力の2倍(620kPa [gage])に到達する前のベントが可能であると考える。

格納容器内の圧力が計測できない場合には、格納容器雰囲気温度を計測し、食 することにより操作判断を行うこととする。このため、表1及び図1に示すよ 飽和圧力の換算表等を手順書類に記載する。

具体的には、重大事故等発生時に格納容器への注水等が十分である場合にお 器雰囲気は飽和状態に近い状態であることから,図2に示す格納容器雰囲気温 り飽和状態に近いと考えられるサプレッション・チェンバ空間部に設置した格利 度計(図2の⑩及び⑪)の計測値を飽和圧力に換算する。

ただし、有効性評価で想定する範囲を超える場合ではあるが、重大事故等発 への注水等が不十分な場合は、格納容器雰囲気温度が格納容器圧力に対する飽 るとともに、溶融炉心からの輻射熱等によって局所的に格納容器雰囲気温度が 可能性がある。

このような場合は、全ての格納容器雰囲気温度計の最大値を圧力換算する。こ 格納容器雰囲気温度に対する圧力換算値は実際の格納容器圧力と同等又はそれ とから、格納容器の限界圧力を下回る最高使用圧力の2倍(853kPa [gage]) ベントが可能であると考える。

	備考
別紙 39	
跑和圧力に換算 うな飽和温度と	
いては,格納容 度計のうち,よ 納容器雰囲気温	・運用の相違
生時に格納容器 和温度以上にな 大きく上昇する	ベント実施基準の相違
の運用により, 1以上となるこ こ到達する前の	 ・運用の相違 ・炉型の相違 島根2号炉(Mark-I改)と東海第二(Mark-II)の最高使用 圧力の相違

東海第二多	発電所 (2018.9	. 18 版)			島根原	原子力発電所 2	号炉		備考
第1表 飽	和温度と飽和圧ス	りの換算表			表1 飽和	口温度と飽和圧力	の換算表		・炉型の相違
	飽和圧	力 [kPa]			約和21 座「20]	飽和圧	力 [kPa]		島根2号炉 (Mark-Ⅰ改)と東
[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	絶対圧力	ゲージ圧力			胞相温度しし」	絶対圧力	ゲージ圧力		海第 ^一 (Mark-Ⅱ)の最高使用
100	101	0			100	101	0		
105	121	20			105	121	20		上力00相選
110	143	42			110	143	42		
115	169	68			115	169	68		
120	199	97			120	199	97		
125	232	131			125	232	131		
130	270	169			130	270	169		
135	313	212			135	313	212		
140	362	260			140	362	260		
144.6	411	310 (1Pd)			145	416	314		
	416	314			150	476	375		
	476	375			153.9	528	427 (IPd)		
155	543 619	44Z			155	543 619	44Z		
165	018 701	517			165	701	500		
166 2	701	620 (2Pd)			170	701	691		
100.2	721	691			175	892	791		
175	892	791			177 8	954	853 (2Pd)		
180	1003	901			180	1003	901		
参考:日本機械学会	会蒸気表 [1999年	 []			参考:日本機械学会	会蒸気表 [1999年	±		
1000 900 ([800 700 日 (gage] 700 日 (gage] 70	520kPa 520kPa 130 140 3納容器温度(℃)	1000 900 ([agge]] 700 600 500 400 400 400 100 0 100	427kF	853k Pa 130 140 S納容器温度(℃	Pa	180	
<u>第1図</u> 飽和	温度と飽和圧力の	D <u>換算グラフ</u>			<u>図1 飽和</u> 温	<u>温度と飽和圧力の</u>)換算グラフ		 ・炉型の相違 島根2号炉(Mark-Ⅰ改)と東 海第二(Mark-Ⅱ)の最高使用 圧力の相違

番号	名称	名称	
1), 2)	ドライウェル雰囲気温度(上部)	フランジ高さ	$0^{\circ}\text{C}\sim300^{\circ}\text{C}$
3, 4	ドライウェル雰囲気温度(中部)	燃料有効長頂部高さ	0°C∼300°C
5,6	ドライウェル雰囲気温度(下部)	機器ハッチ高さ	$0^{\circ}\mathrm{C}\sim300^{\circ}\mathrm{C}$
7, 8	ドライウェル雰囲気温度(ペデスタル部)	ドライウェル床面高さ	0°C∼300°C
9, 10	サプレッション・チェンバ雰囲気温度	サプレッション・チェンバ上部	0°C∼200°C

第2図 格納容器雰囲気温度計の計測点

番号	名称	設置場所	
1, 2, 3	ドライウェル温度(SA)	フランジ高さ近傍	
4, 5	ドライウェル温度(SA)	TAF高さ近傍	
6, 7	ドライウェル温度(SA)	RPV底面高さ近傍	
8, 9	ペデスタル温度(SA)	ペデスタル上部	
	サプレッション・チェンバ	サプレッション・チェンバ	
<u>(</u>), (<u>)</u>	温度 (SA)	頂部近傍	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 20	別紙 42	
ベント停止手順について	ベント停止手順について	
 (1) <u>格納容器圧力速がし装置</u>によるペント停止の判断について <u>格納容器内に残存するな</u>ジトを停止した後は、以下の機能が必要となるため、以 下の機能が全て使用可能と判断した場合にペント停止の判断を実施する。 a. 格納容器の除熱機能(留留熱除去系等) 格納容器内に残存するな分裂生成物から発生する崩壊熱を除去し、最終的な熱の遥がし 場へ熬を輸送するため b. 格納容器への窒素供給機能(窒素供給設備) ・残留熱除去系の運転に伴う蒸気疑縮により,格納容器内が負圧になることを防止するため ・水の放射線分解によって発生する水素及び酸素の濃度が可燃限界濃度に到達することを 防止するため c. 格納容器内の可燃性ガス濃度制御機能(可燃性ガス濃度制御系) ・水の放射線分解によって発生する水素及び酸素の濃度が可燃限界濃度に到達することを 防止するため (2) ペント停止手順について ペント停止手順について ペント停止手順について ペント停止手順について ペント停止手順について ペント停止手順について ペント停止するため (2) 	 <u>格納容器フィルタベント系</u>によるベント停止の判断について <u>格納容器フィルタベント系</u>によるベント停止した後は、以下の機能が必要となるため、 以下の機能が全て使用可能と判断した場合にベント停止の判断を実施する。 	 記載方針の相違 島根2号炉は、ベント停止手 順の有効性を確認するため、 MAAP解析による評価を実 施

	備考
空能断にす。りと可から、「「「」」」。 案でを至プーのという。 にす。こう、こう、こう、こう、こう、こう、こう、こう、こう、こう、こう、こう、こう、こ	備考 ・運用の相違 ベント実施基準の相違 島根2号炉は,空間容量の大 きいドライウェルから窒素を 封入する。サプレッション・ チェンバへの切替え基準はS /C酸素濃度4%到達 ・運用の相違 残留熱除去系又は残留熱代替 除去系にて格納容器除熱を実施する場合の圧力制御範囲の 相違 ・運用の相違 島根2号炉は,格納容器除熱 停止後もサプレッション・プ ール水による原子炉注水を実 施していることから,外部水 源による注水は実施しない

別添1-465r2

	備考
	 ・記載方針の相違 島根2号炉は、ベント停止手順の有効性を確認するため、 MAAP解析による評価を実施
- 400	
400	
<u>)</u> ており, 重大事 ス濃度制御系の	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
第6図 可燃性ガス濃度制御系の設置場所	図7 可燃性ガス濃度制御系の設置場所	
(4) ベント実施中及びベント停止後の格納容器負圧防止対策について a.ベント実施中における格納容器負圧防止対策について 通常運転中は格納容器内に窒素を封入しているが、ベント実施中は窒素を含む格納容器 内の非凝縮性ガスが排出され、格納容器内は崩壊熱により発生する蒸気で満たされた状態 となる。その状態で代替格納容器スプレイ系(常設)による格納容器スプレイを実施する と、蒸気の凝縮により格納容器圧力が負圧になるおそれがあるが、ベント実施前に代替格 納容器スプレイ系(常設)を停止する運用としているため、ベント実施中に格納容器圧力 が負圧になることはない。	(5) ベント実施中及びベント停止後の格納容器負圧防止対策について a.ベント実施中における格納容器負圧防止対策について 通常運転中は格納容器内に窒素を封入しているが、ベント実施中は窒素を含む格納容器 内の非凝縮性ガスが排出され、格納容器内は崩壊熱により発生する蒸気で満たされた状態 となる。その状態で格納容器代替スプレイ系(可搬型)による格納容器スプレイを実施す ると、蒸気の凝縮により格納容器圧力が負圧になるおそれがあるが、ベント実施前に格納 容器代替スプレイ系(可搬型)を停止する運用としているため、ベント実施中に格納容器 圧力が負圧になることはない。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
b. ベント停止後における格納容器負圧防止対策について	b. ベント停止後における格納容器負圧防止対策について	・運用の相違
ベント停止時は,最初に可搬型窒素供給装置により格納容器内に窒素注入を開始し,そ	ベント停止時は,最初に可搬式窒素供給装置により格納容器内に窒素注入を開始し,そ	残留熱除去系又は残留熱代替
の後、残留熱除去系又は代替循環冷却系を用いた格納容器除熱を開始する。除熱による蒸	の後,残留熱除去系又は残留熱代替除去系を用いた格納容器除熱を開始する。除熱による	除去系にて格納容器除熱を実
気凝縮量が窒素供給量を上回った場合,格納容器圧力が負圧に至る可能性があるため,除	蒸気凝縮量が窒素供給量を上回った場合,格納容器圧力が負圧に至る可能性があるため,	施する場合の圧力制御範囲の
熱量 (熱交換器のバイパス流量) を調整し格納容器圧力を13.7kPa [gage] - <u>310kPa</u> [gage]	除熱量(熱交換器のバイパス流量)を調整し格納容器圧力を13.7kPa[gage]- <u>245kPa[</u> gage]	相違
の間でコントロールすることで格納容器圧力を正圧に維持しつつ,格納容器気相部を蒸気	の間でコントロールすることで格納容器圧力を正圧に維持しつつ,格納容器気相部を蒸気	・運用の相違
雰囲気から窒素雰囲気へ置換する。また,格納容器圧力が13.7kPa [gage] まで低下した	雰囲気から窒素雰囲気へ置換する。また,格納容器圧力が13.7kPa [gage] まで低下した	島根2号炉は、格納容器除熱
場合には,負圧を防止するため格納容器除熱を停止し,外部水源による注水を実施する。	場合には,負圧を防止するため格納容器除熱を停止 <u>する</u> 。格納容器内気相部が窒素雰囲気	停止後もサプレッション・プ
格納容器内気相部が窒素雰囲気へ置換された以降は、格納容器が負圧となることはない。	へ置換された以降は,格納容器が負圧となることはない。	ール水による原子炉注水を実
また,窒素供給装置以外の手段として,設計基準対象施設ではあるが,不活性ガス系に	また、窒素供給装置以外の手段として、設計基準対象施設ではあるが、窒素ガス制御系	施していることから、外部水
よる格納容器への窒素供給が可能である。格納容器への窒素供給手段の概略図を第7図に	による格納容器への窒素供給が可能である。格納容器への窒素供給手段の概略図を図8に	源による注水は実施しない
示す。	示す。	
<complex-block><image/></complex-block>	<image/> <complex-block></complex-block>	・設備の相違 設計方針の相違による系統構 成の相違

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 21	別紙 52	
格納容器雰囲気温度によるベントの運用について	格納容器雰囲気温度によるベントの運用について	
(1) 格納容器雰囲気温度の監視について	(1)格納容器雰囲気温度の監視について	
格納容器雰囲気温度計は、ドライウェルに36点、サプレッション・チェンバに4点の計40	格納容器雰囲気温度計は,ドライウェルに31点,サプレッション・チェンバに6点の計37	・設備設計の相違
点を設置しており,各所に分散して配置することにより格納容器全体の雰囲気温度を監視す	点を設置しており、各所に分散して配置することにより格納容器全体の雰囲気温度を監視す	測定個数の相違
ることができる。このうち、重大事故等発生時における監視を確実なものとするため、重大	ることができる。このうち、重大事故等発生時における監視を確実なものとするため、重大	
事故等発生時の格納容器内の環境条件においても計測可能な温度計を、ドライウェルに8点、	事故等発生時の格納容器内の環境条件においても計測可能な温度計を, ドライウェルに 7	
サプレッション・チェンバに2点に分散し、格納容器内の雰囲気温度を一様に計測すること	点、サプレッション・チェンバに2点に分散し、格納容器内の雰囲気温度を一様に計測する	
としている。	こととしている。	
重大事故等発生時の格納容器内の環境条件においても計測可能な温度計の計測点を第1図	重大事故等発生時の格納容器内の環境条件においても計測可能な温度計の計測点を第1	
に示す。	図に示す。	
(2) 局所的な温度上昇について	(2)局所的な温度上昇	
格納容器雰囲気温度が局所的に大きく上昇する要因としては,原子炉圧力容器が高圧状態	格納容器雰囲気温度が局所的に大きく上昇する要因としては,原子炉圧力容器が高圧状態	
で破損する際に溶融炉心が飛散し,格納容器内に溶融炉心が付着することなどが考えられる	で破損する際に溶融炉心が飛散し、格納容器内に溶融炉心が付着することなどが考えられる	
が,原子炉圧力容器破損前に原子炉圧力容器を減圧することにより,このような状況に至る	が、原子炉圧力容器破損前に原子炉圧力容器を減圧することにより、このような状況に至る	
可能性を低減する。また、原子炉圧力容器が破損した場合には、溶融炉心がペデスタル部に	可能性を低減する。また、原子炉圧力容器が破損した場合には、溶融炉心がペデスタル部に	
落下するが、ペデスタル(ドライウェル部)はドライウェル床面より掘り下げられた構造と	落下するが、ペデスタル(ドライウェル部)はドライウェル床面より掘り下げられた構造と	
なっているため、溶融炉心はペデスタル(ドライウェル部)に保持され、ドライウェル床面	なっているため、溶融炉心はペデスタル(ドライウェル部)に保持され、ドライウェル床面	
に流出することはない。さらに、格納容器スプレイ実施時には格納容器雰囲気が冷却される	に流出することはない。さらに、格納容器スプレイ実施時には格納容器雰囲気が冷却される	
こと及び格納容器への注水等による溶融炉心の冷却に伴い発生する蒸気により格納容器内	こと及び格納容器への注水等による溶融炉心の冷却に伴い発生する蒸気により格納容器内	
では自然対流が起きていることを踏まえると, 溶融炉心からの輻射熱等により格納容器雰囲	では自然対流が起きていることを踏まえると, 溶融炉心からの輻射熱等により格納容器雰囲	
気温度が局所的に大きく上昇する可能性は低い。また、格納容器圧力限界圧力を下回る最高	気温度が局所的に大きく上昇する可能性は低い。また、格納容器圧力限界圧力を下回る最高	
使用圧力の2倍(<u>620kPa [gage]</u>)到達までにベントを実施することとしているが, <u>620kPa</u>	使用圧力の2倍(<u>853kPa [gage]</u>)到達までにベントを実施することとしているが, <u>853kPa</u>	・設備の相違
<u>[gage]</u> に対する飽和温度が約166℃であることを踏まえると、過温破損に至ることはない	<u>[gage]</u> に対する飽和温度が約178℃であることを踏まえると,過温破損に至ることはない	島根2号炉(Mark-I改)と東
と考えられる。	と考えられる。	海第二(Mark-Ⅱ)の最高使用
なお,格納容器圧力が計測できない場合は,「別紙 19.格納容器内の圧力が計測できない	なお,格納容器圧力が計測できない場合は,「別紙39.格納容器内の圧力が計測できない場	圧力の相違
場合の運用について」に記載のとおり、格納容器雰囲気温度によりベントを判断することと	合の運用について」に記載のとおり、格納容器雰囲気温度によりベントを判断することとし	
している。	ている。	
(3) 格納容器破損のおそれがある場合の影響緩和のためのベント実施について	(3) 格納容器破損のおそれがある場合の影響緩和のためのベント実施について	
炉心部の燃料、ペデスタル(ドライウェル部)に落下した燃料デブリ及び格納容器内を冷	炉心部の燃料、ペデスタル(ドライウェル部)に落下した燃料デブリ及び格納容器内を冷	
却するため、格納容器への注水等に期待するが、十分な注水等ができない場合には、格納容	却するため、格納容器への注水等に期待するが、十分な注水等ができない場合には、格納容	
器雰囲気が過熱状態になり,格納容器雰囲気温度が格納容器圧力に対する飽和温度以上にな	器雰囲気が過熱状態になり,格納容器雰囲気温度が格納容器圧力に対する飽和温度以上にな	
るとともに、溶融炉心からの輻射熱等により格納容器雰囲気温度が局所的に大きく上昇し、	るとともに、溶融炉心からの輻射熱等により格納容器雰囲気温度が局所的に大きく上昇し、	
格納容器が過温破損に至るおそれがある。このように、重大事故等対処設備が健全に機能せ	格納容器が過温破損に至るおそれがある。このように、重大事故等対処設備が健全に機能せ	
ず,格納容器の健全性が脅かされる可能性が高い状況では,格納容器圧力逃がし装置からの	ず、格納容器の健全性が脅かされる可能性が高い状況では、格納容器フィルタベント系から	
ベントを実施し、フィルタ装置を介した放射性物質の放出経路を形成することで、格納容器	のベントを実施し、フィルタ装置を介した放射性物質の放出経路を形成することで、格納容	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
の過温破損時に大気へ放出される放射性物質の総量を低減させる運用とする。	器の過温破損時に大気へ放出される放射性物質の総量を低減させる運用とする。	
ベントの実施は過圧破損防止の観点では有効な手段であるが,格納容器雰囲気の過熱状態	ベントの実施は過圧破損防止の観点では有効な手段であるが,格納容器雰囲気の過熱状態	
による温度上昇に対しては一定の抑制効果はあるものの過温破損そのものを防止できる手	による温度上昇に対しては一定の抑制効果はあるものの過温破損そのものを防止できる手	
段ではない。したがって、格納容器温度上昇に対するベントにおいて,過温破損の観点では	段ではない。したがって、格納容器温度上昇に対するベントにおいて、過温破損の観点では	
可能な限り格納容器内に存在する希ガスの減衰に期待するため,格納容器の限界温度に到達	可能な限り格納容器内に存在する希ガスの減衰に期待するため,格納容器の限界温度に到達	
するおそれのある「格納容器温度 200℃以上において温度上昇が継続している場合」をベン	するおそれのある「格納容器温度 200℃以上において温度上昇が継続している場合」をベン	
ト実施判断基準として設定した。格納容器温度の上昇継続を判断基準として設定した理由	ト実施判断基準として設定した。格納容器温度の上昇継続を判断基準として設定した理由	
は、200℃以上にて温度上昇が継続する場合には、格納容器過温破損に至る可能性があり、	は、200℃以上にて温度上昇が継続する場合には、格納容器過温破損に至る可能性があり、	
事前に環境緩和のための格納容器ベントを実施するためである。	事前に環境緩和のための格納容器ベントを実施するためである。	
なお、格納容器が過温破損するような状況では、格納容器温度が全体的に上昇することが	なお、格納容器が過温破損するような状況では、格納容器温度が全体的に上昇することが	
考えられること及び計器故障等による誤ベントを防止する観点から, 第1図に示すドライウ	考えられること及び計器故障等による誤ベントを防止する観点から, 第1図に示すドライウ	
ェルに設置した温度計の指示値のうち2点が200℃以上にて温度上昇が継続する場合におい	ェルに設置した温度計の指示値のうち2点が200℃以上にて温度上昇が継続する場合におい	
て、格納容器圧力逃がし装置からのベントを実施することとする。	て, 格納容器フィルタベント系からのベントを実施することとする。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
<u>別紙 22</u> 格納容器減圧に伴うベント管からサプレッション・チェンバへの冷却水の流入について	<u>別紙6</u> 格納容器減圧に伴うベント管からサプレッション・チェンバへの冷却水の流入について	
代替格納容器スプレイ冷却系(常設)等による代替格納容器スプレイを実施する場合,外部 水源の持ち込みによるサプレッション・プール水位の上昇により,ベントラインが水没するお それがある。サプレッション・プールの水位は,ベント時のサプレッション・チェンバ圧力低 下に伴う体積膨張及びベント管からの水の流入によっても上昇するため,これらを考慮しても ベント実施後にベントラインが水没しないよう代替格納容器スプレイを停止する必要がある。 原子炉注水した冷却材が破断口からサプレッション・チェンバに移行し,サプレッション・	格納容器フィルタベント系の使用(ベント開始)のタイミングは,重大事故等の事象収束シナ リオにより異なり,外部水源からの注水量に関しては,サプレッション・プール通常水位+約 1.3mをベント実施判断基準としている。 格納容器への注水からベントに至る概要は以下のとおりであり,対策の概要を図1に示す。	 ・設備の相違 島根2号炉は Mark-1 改型原 子炉格納容器のため容積が異なる(以下,別紙6においては①の相違)
プール水位の上昇が最も厳しいシーケンスとなる「雰囲気圧力・温度による静的負荷(格納容 器過圧・過温破損)」におけるサプレッション・プール水位の挙動を第1図に示す。格納容器 スプレイ停止後,ドライウェル圧力が上昇することでベント管内の冷却材の一部が押し出され サプレッション・プール水位が上昇する。ベントを開始すると、サプレッション・チェンバの 圧力が低下し、ベント管内に残存する冷却材がサプレッション・プールに押し出されることで さらに水位が上昇する。その後は、破断口から流出する冷却材の流入等による水位上昇効果と、 ベント時の圧力低下やサプレッション・プール内の核分裂生成物からの崩壊熱によるサプレッ ション・プール水の蒸発による水位低下効果のバランスによりサプレッション・プール水位が 変動するが、ベントライン下端まで到達しない。また、ベント実施時の減圧沸騰によるサプレ ッション・プールの水位上昇を考慮してもベントライン下端まで到達しない。	 	 ・設備の相違 島根2号炉は Mark-1 改型原 子炉格納容器のため設計圧力 が異なる(以下,別紙6においては②の相違)
	② サプレッション・プール水位が通常水位+約1.3mに到達した時点で格納容器スプレイを 停止する。その後,速やかに格納容器フィルタベント系によるベントを実施する。ベント 開始後は,低圧原子炉代替注水系(常設)による原子炉への崩壊熱相当の注水を継続する。	・記載方針の相違

別添1-475r10

別添1-476については欠頁

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
	サプレッション・プール水位が通常水位+約1.3mに到達した時点で格納容器ス 止し,その後速やかにウェットウェルベントを実施するため,ベント後のサプレ プール水位はベントライン下端に対して余裕がある。
	原子炉格納容器 修納容器スプレイライン ドライウエルベントライン 原子炉注水ライン ゲント弁「開」により、 ウブレッション・プール通常 水位 + 約1.3m到達 レビー・約1.3m到達 真空破壊弁 レビー・約1.4m 約4m
	<u>図4 ペント後の状態</u>

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	(参考) ウェットウェルベントにおける考慮事項について	・資料構成の相違
	1. 格納容器内に蓄水する水源について	
	<u>ウェットウェルベントの実施判断のうちサプレッション・プール通常水位+約 1.3</u>	n につい
	<u>ては、中央制御室により格納容器水位を監視し、サプレッション・プール通常水位+</u>	<u>約 1.3m</u>
	に到達した場合にベントを開始する運用としているため, 外部水源からの注水以外に)	原子炉圧
	<u>力容器等からの漏えいがある場合でも、ウェットウェルベントラインが水没すること</u>	はない。
	有効性評価のうち,格納容器過圧・過温破損モード(大 LOCA+SBO+ECCS 機能喪失)	<u>におけ</u>
	<u>る外部注水量の内訳を表1に示す。外部注水量は格納容器代替スプレイ(約 321m³)</u>	の他,原
	<u>子炉注水(約 <mark>999</mark>m³)および配管破断に伴う原子炉からの漏水(約 <mark>167</mark>m³)がある。</u>	
	なお,制御棒駆動水圧系アキュムレータ(約2.5m ³)およびほう酸水注入系(約20	$m^3) の水$
	<u>量については流入量が小さく,サプレッション・プール</u> 水位の上昇に与える影響は小さ	いため,
	ほぼ変化はない。	
	表1 格納容器への注水量(格納容器過圧・過温破損モード)	
	注水元 注水量	
	格納容器代替スプレイ 約 321 m ³	
	原子炉注水 約 999 m ³	
	原子炉からの漏水 約 167 m ³	

	借考
	加力
lm)	
.) 	
168	
<u>4.)</u>	
品スプレイを停 り,ベント時の こ対して余裕が	 ・設備の相違 ①の相違 ・解析結果の相違 東二と島根で設備及び評価条 件が異なる
	 ・評価結果の相違 島根2号炉は,真空破壊弁が 水没しない

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
また,減圧沸騰が発生すると考えられるベント実施時(サプレッション・プール水位:約14.19m)	このとき、サプレッション・プールの水が全て減圧沸騰するという保守的な低
について,減圧沸騰を考慮した場合の水位を評価した結果,水位上昇幅は約0.85mとなり,サプ	上昇を評価すると、ベント時のサプレッション・プール水位は、約 4.9m に対し
レッション・プール水位は約15.04mに到達するが、ベントライン下端高さである約15.17mに対	より若干上昇するが、ほぼ変化はない。サプレッション・チェンバのベントラィ
して余裕があるため、減圧沸騰の影響によってベントが妨げられることはない。	<u>約9.1m</u> であるため,エントレインメントは回避できると考えられる。
<u>また,最も高い位置に設置されている真空破壊弁の下端高さが約14.88m であることから,一時</u>	
的に最も高い位置に設置されている真空破壊弁の下端以上となるが,減圧沸騰が収束することで	
再度真空破壊弁は露出する。さらに、真空破壊弁が水没した場合、サプレッション・チェンバの	
<u>圧力が上昇することが考えられるが、サプレッション・チェンバの圧力が上昇すれば減圧沸騰が</u>	
抑制され、再度真空破壊弁が露出することなることから、減圧沸騰によって一時的に最も高い位	
<u>置に設置されている真空破壊弁が水没することによる影響はほとんどないと考えられる。</u>	
なお、以上の減圧沸騰による水位上昇評価は、サプレッション・プールの圧力がサプレッショ	なお、現実的にはサプレッション・チェンバの下部には水頭圧がかかるため自
ン・チェンバ圧力に等しいと仮定して評価しているが、現実的にはサブレッション・ブールのト	することはないことから、水位は全て減圧沸騰した場合よりも低くなると考え
部には水頭圧がかかることにより、フール全体が減圧沸騰することはないため、水位は約15.04m	
より低くなると考えられる。	
	また。サプレッション・プール水面の飛沫が、ベント時に同伴してベント配管
	れたとしても、配管内に滞留水が形成されない構造設計としているため、ベント
	することはない。

	備考
反定により水位	・評価結果の相違
」て減圧沸騰に	減圧沸騰に係る計算に用いる
イン下端高さは	条件の相違により水位計算結
	果が異なる
	・設備の相違
	ベントライン下端高さが異な
	3
	・評価 <mark>結果</mark> の相違
	島根2号炉は, <u>真空破壊弁</u> が
	水没しない
全体が減圧沸騰	
5hZon	
	・評価結果の相違
	減圧沸騰に係る計算に用いる
	条件の相違により水位計算結
	果が異なる
管内に取り込ま	・記載方針の相違
トラインが閉塞	

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	<サプレッション・プール水位上昇評価>	・記載方針の相違
	減圧沸騰時のボイド率からサプレッション・プール水位の上昇分を求める。	
	サプレッション・プール水中で一様な蒸気発生がある場合の平均ボイド率αは、ドリフトフラ	
	<u>ックスモデルから以下の計算により求める。</u>	
	j _g	
	$\alpha = \frac{\sigma}{V_{a} + j_{a} C_{0}}$	
	5 5 0	
	<u>j_g:サプレッション・プール表面での見かけの蒸気速度(3.3×10⁻³[m/s])</u>	
	<u>V_g:ドリフト速度 (0.225[m/s])</u>	
	<u>C₀:分布定数(1.0)</u>	
	トーマー 正均ポノドボー たやみてし 一份の 014 したて	
	<u>よつし、平均小イト半αを氷めると、約0.014とぼる。</u> いたため、海広沸騰にたり井プレムション、プニルやけ始1.40/仕事時調子で、途に海際にた	
	<u>以上より、「欧工の鷹によりリノレツンヨン・ノール水は約1.4%0件</u> 限版する。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 23	別紙 40	
有効性評価における炉心損傷の判断根拠について	有効性評価における炉心損傷の判断根拠について	
 炉心損傷の判断基準は,設計基準事故の状態を有意に超えるとともに、炉心損傷の判断が遅くならないよう,追加放出量の10倍に相当するFPが燃料から放出された状態を設定しており、以下の理由から妥当と考えている。 ① <u>東海第二発電所</u>では,設計基準事故における原子炉冷却材喪失時の評価では燃料棒の破裂は発生していない。そのため、設計基準事故時の追加放出量を超える放出量を確認した場合には、設計基準事故を超える状態と判断されること。 ② 炉心冷却が不十分な事象において,<u>格納容器雰囲気モニタ</u>のガンマ線線量率が追加放出量の10倍に相当する値に至る場合には、その後、ごく短時間で10倍に相当する値を大きく上回る線量率に至っていること。また、これは、大量のFPが格納容器内に放出されたことを意味しており、これ以降,格納容器の健全性を確保することが極めて重要となること(第1 図の線量率の上昇を参考³²)。 ③ 追加放出量の10倍のFPが放出された時点では、有効性評価における評価項目(燃料被覆管最高温度1,200℃以下,酸化量15%以下)に至っていない可能性もあるが、上記②のとおり、炉心冷却が不十分な事象において,追加放出量の10倍に相当するFPが放出された以降の事象進展は非常に早く、有効性評価において炉心損傷と判断する時間との差異が小さいと考えられること。 	 炉心損傷の判断基準は、設計基準事故の状態を有意に超えるとともに、炉心損傷の判断が遅くならないよう、追加放出量の10倍に相当するFPが燃料から放出された状態を設定しており、以下の理由から妥当と考えている。 ① <u>島根2号炉</u>では、設計基準事故における原子炉冷却材喪失時の評価では燃料棒の破裂は発生していない。そのため、設計基準事故時の追加放出量を超える放出量を確認した場合には、設計基準事故を超える状態と判断されること。 ② 炉心冷却が不十分な事象において、<u>格納容器雰囲気放射線モニタ</u>のガンマ線線量率が追加放出量の10倍に相当する値に至る場合には、その後、ごく短時間で10倍に相当する値を大きく上回る線量率に至っていること。また、これは、大量のFPが格納容器内に放出されたことを意味しており、これ以降、格納容器の健全性を確保することが極めて重要となること(図1の線量率の上昇を参考※1)。 ③ 追加放出量の10倍のFPが放出された時点では、有効性評価における評価項目(燃料被覆管最高温度1,200℃以下,酸化量15%以下)に至っていない可能性もあるが、上記②のとおり、炉心冷却が不十分な事象において、追加放出量の10倍に相当するFPが放出された以降の事象進展は非常に早く、有効性評価において炉心損傷と判断する時間との差異が小さいと考えられること。 	
なお,「炉心損傷」と判断した場合は,格納容器内に放出される希ガスの影響を考慮し,格納 容器スプレイ及びベントの運用を変更することとしている。(第1表)	なお、「炉心損傷」と判断した場合は、格納容器内に放出される希ガスの影響を考慮し、格納 容器スプレイ及びベントの運用を変更することとしている。(表1) <u>また、格納容器雰囲気放射線モニタの使用不能の場合は、「原子炉圧力容器表面温度:300℃以</u> 上」を炉心損傷の判断基準として手順に追加する方針である。 <u>原子炉圧力容器表面温度は、炉心が冠水している場合には、逃がし安全弁動作圧力(安全弁機</u> 能の最大 8.35MPa [gage])における飽和温度約 299℃を超えることはなく、300℃以上にはなら ない。一方、原子炉水位の低下により炉心が露出した場合には過熱蒸気雰囲気となり、温度は飽 和温度を超えて上昇するため、300℃以上になると考えられる。上記より、炉心損傷の判断基準 を 300℃以上としている。	 ・運用の相違 島根2号炉は,格納容器雰囲 気放射線モニタが使用できない場合,原子炉圧力容器表面 温度にて炉心損傷を判断する 手順を整備
第1表 炉心損傷の有無による格納容器スプレイ及びベント運用	表1 炉心損傷の有無による格納容器スプレイ及びベント運用	
炉心損傷の有無 格納容器スプレイ実施基準 ベント実施基準	炉心損傷の有無 格納容器スプレイ実施基準 ベント実施基準	・運用の相違
炉心損傷がない場合格納容器圧力格納容器圧力217kPa [gage] ~279kPa [gage]310kPa [gage] 到達	炉心損傷がない場合格納容器圧力 334kPa [gage] ~384kPa [gage]サプレッション・プール 通常水位+約 1. 3m 到達	ベント実施基準の相違
炉心損傷を判断した場合格納容器圧力 400kPa [gage] ~465kPa[gage]サプレッション・プール 通常水位+6.5m 到達	炉心損傷を判断した場合格納容器圧力 588kPa [gage] ~640kPa[gage]サプレッション・プール 通常水位+約 1. 3m 到達	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
第1図 炉心損傷判定図	図1 炉心損傷判定図

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 24	別紙 46	
格納容器からの異常漏えい時における対応について	格納容器からの異常漏えい時における対応について	
(1) 格納容器からの異常漏えい時における対応方針	(1) 格納容器からの異常漏えい時における対応方針	
事故時に炉心損傷を判断した際は,格納容器の過圧破損の防止又は格納容器内での水素燃	事故時に炉心損傷を判断した際は,格納容器の過圧破損の防止又は格納容器内での水素燃	
焼をするため, <u>サプレッション・プール水位が通常水位+6.5m 到達した場合</u> 又は <u>格納容器</u>	焼を <mark>防止</mark> するため, <u>サプレッション・プール水位が通常水位+約 1.3m に到達した場合</u> 又は	・運用の相違
酸素濃度がドライ条件で 4.3vo1% に到達した場合は,格納容器圧力逃がし装置におけるべ	格納容器酸素濃度がドライ条件で 4.4vo1%及びウェット条件で 1.5vo1%に到達した場合	ベント実施基準の相違
ントを実施することとしている。	は, 格納容器フィルタベント系におけるベントを実施することとしている。	
一方,万が一,ベントを実施する前に,格納容器からの異常な漏えいにより,原子炉建屋	一方, 万が一, ベントを実施する前に, 格納容器からの異常な漏えいにより, 原子炉棟 (以	
原子炉棟(以下「R/B」という。)内に放射性物質が放出されるような状況になれば,大	下「R/B」という。)内に放射性物質が放出されるような状況になれば、大気へ放出され	
気へ放出される放射性物質の総量を可能な限り防止する対応として, 格納容器圧力逃がし装	る放射性物質の総量を可能な限り防止する対応として, 格納容器フィルタベント系によるベ	
置によるベントを実施することとしている。この対応により、フィルタ装置を介した放射性	ントを実施することとしている。この対応により、フィルタ装置を介した放射性物質の放出	
物質の放出経路を形成することで、大気へ放出される放射性物質の総量を低減し、公衆への	経路を形成することで、大気へ放出される放射性物質の総量を低減し、公衆への影響を緩和	
影響を緩和する運用とする。	する運用とする。	
また,異常な漏えい発生時において,格納容器から漏えいする水素により,R/B水素濃	また,異常な漏えい発生時において,格納容器から漏えいする水素により, R/B水素濃	
度が上昇する場合には、原子炉建屋水素爆発を防止する観点から、格納容器圧力逃がし装置	度が上昇する場合には,原子炉建物水素爆発を防止する観点から,格納容器フィルタベント	
によるベントを実施し、格納容器内の水素を排出することによって水素漏えいを抑制し、水	系によるベントを実施し、格納容器内の水素を排出することによって水素漏えいを抑制し、	
素爆発防止を図る運用とする。	水素爆発防止を図る運用とする。	
(2) 格納容器の異常漏えい時における運用方法	(2) 格納容哭の異堂漏えい時における運用方注	
(2) 福州存留の英市協大でいてにおりる運用力伝 可搬型モニタリング・ポスト及び原子恒建屋内放射線モニタの指示値が刍激た上昇が発生	(2) 福州存留の英田協之でいてにおりる運用力な 可搬式モニタリング・ポスト及び原子恒建物内放射線モニタの指示値が刍激た上昇が発生	・運用の相違
した場合又は原子炬建屋水素濃度計指示値が2 0vo1%に到達した場合には 格納容器からの	上た場合又は原子炬建物水素濃度計指示値が2.5 v_0 1%に到達した場合には 格納容器からの	ベント実施基準の相違
異常な漏えいが発生していると判断し、格納容器圧力逃がし装置によるベントを実施する。	異常な漏えいが発生していると判断し、格納容器フィルタベント系によるベントを実施す	
	S.	
ベントについては、ドライウェル内に存在する粒子状物質のサプレッション・プール水で	ベントについては、ドライウェル内に存在する粒子状物質のサプレッション・プール水で	
のスクラビングによる捕集効果に期待するため、サプレッション・チェンバ側からのベント	のスクラビングによる捕集効果に期待するため、サプレッション・チェンバ側からのベント	
を実施する。仮に格納容器からの漏えい発生個所がドライウェル側であっても、サプレッシ	を実施する。仮に格納容器からの漏えい発生個所がドライウェル側であっても、サプレッシ	
ョン・チェンバからのベントによりドライウェル圧力を低下させることで、格納容器からの	ョン・チェンバからのベントによりドライウェル圧力を低下させることで、格納容器からの	
漏えいを抑制することが可能である。	漏えいを抑制することが可能である。	
また, 原子炉建屋ガス処理系については, 当該系統内での水素爆発発生防止の観点から,	また, <u>非常用ガス処理系</u> については,当該系統内での水素爆発発生防止の観点から,R/	
R/B水素濃度計指示値が <u>2.0vo1%</u> に到達した時点で停止する。	B水素濃度計指示値が <u>1.8vo1%</u> に到達した時点で停止する。	・運用の相違
		非常用ガス処理系の停止基準
(3) ベント実施基準設定の考え方	(3) ベント実施基準設定の考え方	の相違
可搬型モニタリング・ポスト及び原子炉建屋内放射線モニタの指示値が急激に上昇する場	可搬式モニタリング・ポスト及び原子炉建物内放射線モニタの指示値が急激に上昇する場	・運用の相違
合には,格納容器から異常な漏えいが発生していると判断する。また,R/B水素爆発防止	合には、格納容器から異常な漏えいが発生していると判断する。また、R/B水素爆発防止	水素濃度ベント実施基準の考
の観点からは, <u>PAR動作開始水素濃度(1.5vol%),R/B水素濃度計の誤差(±0.25vol%)</u>	の観点からは,水素の可燃限界(4vo1%)に計器誤差(±1.1vol)及び運転操作の余裕時間	え方の相違
<u>及び評価の不確かさを踏まえ, R/B水素濃度計指示値が2.0vo1%</u> に到達した時点でベント	<u>を踏まえ,R/B水素濃度計指示値が2.5vo1%</u> に到達した時点でベント実施を判断する。	
実施を判断する。		

	備考
囲気放射線モ 故の冷却材喪 相当する値の る。 室により非常	・運用の相違 ベント実施基準の相違
急激に上昇す 異常な漏えい 格納容器ベン	
計指示値の上 度2.5vol%到 行う。 がらのベント する	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 25	別紙 41	
格納容器スプレイが実施できない場合のベント運用について	格納容器スプレイが実施できない場合のベント運用について	
(1) 格納容器スプレイが実施できない場合における対応について 炉心損傷を判断した場合,格納容器圧力が <u>465kPa [gage]</u> (1.5Pd) に到達した時点で代 <u>替格納容器スプレイ</u> を実施することで,格納容器圧力の上昇を抑制し,ベント実施するまで の格納容器内に存在する希ガスの減衰期間を確保することとしている。 ただし,万が一,何らかの要因により格納容器スプレイが実施できない場合には,希ガス の減衰時間が十分に確保されていない場合においても,格納容器破損の緩和のため,ベント 操作に移行する。	(1) 格納容器スプレイが実施できない場合における対応について 炉心損傷を判断した場合,格納容器圧力が <u>640kPa [gage]</u> (1.5Pd)に到達した時点で <u>格</u> 納容器代替スプレイを実施することで,格納容器圧力の上昇を抑制し,ベント実施するまでの格納容器内に存在する希ガスの減衰期間を確保することとしている。 ただし,万が一,何らかの要因により格納容器スプレイが実施できない場合には,希ガスの減衰時間が十分に確保されていない場合においても,格納容器破損の緩和のため,ベント 操作に移行する。	 ・設備の相違 島根2号炉 (Mark-I改)と東 海第二 (Mark-Ⅱ)の最高使用 圧力の相違
(2) 格納容器スプレイが実施できない場合のベント判断基準 格納容器スプレイの手段として、 <u>重大事故等対処設備である、残留熱除去系、代替格納容</u> 器スプレイ系(常設),代替循環冷却系及び代替格納容器スプレイ系(可搬型))があるが、 これら全ての機能喪失を確認した時点でベント実施を判断し、速やかにベント操作を開始す るため、第一弁及び第二弁の開操作を実施する。なお、格納容器スプレイの失敗については、 系統流量が必要流量以上流れないこと又は必要流量以上流れていた場合においても格納容 器の圧力抑制ができない場合に判断する。	(2) 格納容器スプレイが実施できない場合のベント判断基準 格納容器スプレイの手段として、 <u>重大事故等対処設備(設計基準拡張)である、残留熱除 主系、</u> 重大事故等対処設備である、 <u>格納容器代替スプレイ系(常設)、残留熱代替除主系</u> 及 び <u>格納容器代替スプレイ系(可搬型)</u> があるが、これら全ての機能喪失を確認した時点でベ ント実施を判断し、速やかにペント操作を開始するため、第1弁及び第2弁の開操作を実施 する。なお、格納容器スプレイの失敗については、系統流量が必要流量以上流れないこと又 は必要流量以上流れていた場合においても格納容器の圧力抑制ができない場合に判断する。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2 号炉
別紙 26	
<u>ベント準備操作開始タイミングについて</u>	
(1) ベント準備操作について	
東海第二発電所では、ベント実施時の作業時間短縮を目的として、他系統との隔離確認、	
ベント実施に必要な隔離弁の健全性確認, 第一弁の開操作をベント準備と位置付けて, ベン	
ト実施操作判断基準到達までに実施し、その他のベント実施に関連する作業をベント実施操	
作判断基準到達後に実施することとしている。	
ベント準備操作は,サプレッション・プール水位が通常水位+5.5m に到達したことを起	
点として開始する。これは、仮に第一弁の中央制御室からの遠隔操作失敗を想定しても、ベ	
ント実施操作判断基準到達までにベント準備が完了する基準として設定している。	
(2) ベント準備操作判断基準の考え方	
ベント準備操作の所要時間か長くなる甲央制御室からの遠隔操作矢敗を想定したタイム	
テヤートを弗1凶に示す。所要時间は2時间45万でめる。	
化类容白 坦你坦己,以而而且来	
IF素項目 操FF 健FF 図の分 1時間 2時間 3時間 MCRからの第一弁 中央制御室 1 50 50 1 50	
開操作及び失敗確認 「へいっマー」 第一弁開操作のための 1 1 3	
装備着用及び現場移動 2.000 30.73 第一弁開操作 現場 【3】 90分	
第一弁開操作終了後の 現場 【3】 35分	
現場を動 第二弁開操作のための 装備善田及び間堪移動 現場 3 45分	
& ※ ※ ※ 第 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
第1図 ベント準備所要時間タイムチャート	
また、ベント準備操作判断基準であるサフレッション・フール水位通常水位+5.5m 近辺	
の水位から、サノレッション・ノール連吊水位+0.5m(外部水源による格納谷奋人ノレイ停止其進)までの水量及び到達時間を第1まにデオ	
山差平)まての小重及び判逢时間を第1 衣に小り。 ベント準備撮作斫亜時間が9 時間 45 公であること及びスプレイ信止其進であるサプレッ	
ション・プール通常水位+6 5m 到達時間の関係から、ベント準備握作の開始タイミングと	
してはサプレッション・プール通常水位+5.5m 到達を基準とすることが妥当と考える。	
サプレッション・プール水位とベント実施に係る操作タイミングを第2図に示す。	

備考
・記載箇所の相違
島根2号炉は,「4.1.3 格納
容器フィルタベント系操作手
順について (2)e.ベント準
備操作の余裕時間」に記載

東海第二発電所 (2018.9.18版)		島根原子力発電所	2 号炉	
	第1表 スプレイ停止基準までの	水量		
サプレッション ・プール水位	サプレッション・プール水位 通常水位+6.5m までの水量	サプレッション・プール水位 通常水位+6.5m 到達時間 ^{*1}		
通常水位+6.0m	約 230m ³	約1時間40分		
通常水位+5.5m	約 450m ³	約3時間20分		
通常水位+5.0m	約 680m ³	約 5 時間		
通常木位+6.0m 約 230m ³ 約 1時間 40 分 通常木位+5.5m 約 450m ³ 約 3時間 20 分 通常木位+5.0m 約 680m ³ 約 5時間 ※1 外部水源を用いた代替格納容器スプレイは20m ³ /h で連続して格納容器スプレイした場合。実際には、代替格納容器スプレイは130m ³ /h よりも少ない流量でスプレイを実施することとしており、実運用上は表中の到達時間よりも長くなる。 ※1 小部水源を用いた代替格納容器スプレイは130m ³ /h よりも少ない流量でスプレイを実施することとしており、実運用上は表中の到達時間よりも長くなる。 ダニットウェルベントライン (シト準備) 明治水位 第210 サプレッション・プール水位と各操作タイミングについて				

備考
5

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙27	別紙 26	
格納容器圧力逃がし装置の計装設備の網羅性について	格納容器フィルタベント系の計装設備の網羅性について	
格納容器圧力逃がし装置の計装設備については,以下の考えに基づき網羅性を有する設計と	格納容器フィルタベント系の計装設備については,以下の考えに基づき網羅性を有する設計	
している。	としている。	
①格納容器圧力逃がし装置の待機時,運転時,事故収束時の各状態で,系統の要求上確認す	①格納容器フィルタベント系の待機時,運転時,事故収束時の各状態で,系統の要求上確認	
べき項目の全てが監視可能であること。	すべき項目の全てが監視可能であること。	
②上記の各状態において、管理すべき値を網羅した計測範囲であること。	②上記の各状態において、管理すべき値を網羅した計測範囲であること。	
(1) 確認すべき項目について	(1) 確認すべき項目について	
格納容器圧力逃がし装置の待機時、運転時、事故収束時の各状態で確認すべき項目を下記	格納容器フィルタベント糸の待機時、運転時、事故収束時の各状態で確認すべき項目を下	
a~eに抽出し、各確認すべき項目に対する計装設備が設置されていることを第1表に示	記 a ~ e に抽出し、各確認すべき項目に対する計装設備が設置されていることを表1に示	
す。(「2.4.1 計装設備」の記載内容の一部再掲)	す。(12.8.1 計装設備」の記載内容の一部再掲)	
付機時の状態か,以下のとわり指握り能である。 () フェルク状界の歴代など都たてパライークの変刺	() フィルカ状界(フカラック型)の批判ないよろいことのない。	
(a) ノイルタ装直の性能に影響するハフメータの確認	(a) ノイルタ装直(ムクフハ谷谷)の性能に影響するハフメータの確認	
ノイルク装置小位計にて、ヘクノビンク水の水位が、付機時の設定範囲	<u>へりノハ谷孫</u> 水位計にし、ヘリノビンク水の水位か、付機時の設定範囲 肉になることを監視することで、西式される故財姓物質の除去姓能が発展で	
ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー	トレージョン・シャン・シャン・シャン・シャン・シャン・シャン・シャン・シャン・シャン・シャ	
ムビ能が光揮くさることを確応することで10座くさる。	さることを確応することし1/1/2とさる。	
よ放射性物質の除去性能を維持し、ベント開始後7日間け水補給が不要とたるよう設定	*税村機時における水匠の範囲は、ペント時のバノノビンノ水の水匠変動を考慮して も放射性物質の除去性能を維持1 ベント開始後7日間け水補給が不要とたろよう設定	
している。(別紙 12)		
また、フィルタ装置スクラビング水n日計にて、n日がアルカリ性の状態(n日13	また スクラバ水 n 日計にて n 日がアルカリ性の状態 であろこと	
以上)であることを監視することで、フィルタ装置の性能維持に影響がないことを確認	を監視することで、フィルタ装置の性能維持に影響がたいことを確認することで把握	
することで把握できる。(別紙 41)		
(b) 系統不活性状態の確認	(b) 系統不活性状態の確認	
フィルタ装置排気ライン圧力計及びフィルタ装置圧力計にて、封入した窒素圧力	フィルタ装置出口配管圧力計及びスクラバ容器圧力計にて,封入した窒素圧力	
を継続監視することによって、系統内の不活性状態を確認する	を継続監視することによって、系統内の不活性状態を確認することで把	
ことで把握できる。	握できる。	
	D. 米杭理転時の状態 () 実転味の単能素、以下のしたり加快可能できる。	
連転時の仏歴が,以下のこわり指推り起くのる。 (a) 枚如宏聖内の乗囲気ガスがフィルタ准要へ道かれていることの確認	理転時の仏版が,以下のこわり花佐り屁じのる。 (a) 枚如宏架内の乗囲気ガスがファルタ壮器(フタラバ宏架)。道かれていることの確認	
(a) $11 \pi^{1} + 10 \pi$	(a) 11初日台ビックケロス(ハヘル・ノイルク 衣具 (ヘンノハ谷谷)、今川40 しいることの唯認 スクラバ宏哭圧力計にて、ベント開始にとり圧力が上見し、ベント継续にとり技術会	
<u> </u>	ハノノバは前上ノリーにし、、、、、「開知により圧力が上升し、、、、「融税により格納谷 哭の圧力に追従して圧力が低下傾向を示すことで、故姉家哭肉の乗囲気ガマがファルタ	
曲ッパンパに追促してエバルは「厩門を小りことて、恒阳社台P100分回スルヘルノイルク 生置に道かれていることを確認することで抑振できる	##シルバービにしてエバル・低ー咳回をホリーとし、低耐な品にか分回メルクパノイルク 生置に道かれていることを確認することで知場できる	
また、フィルタ装置スクラビング水温度計にて、ベント開始によりスクラビング水が	また、スクラバ容器温度計にて、ベント開始によりスクラビング水が待機状態から飽	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
待機状態から飽和温度まで上昇することを監視することで, 格納容器のガスがフィルタ	和温度まで上昇することを監視することで,格納容器のガスがフィルタ装置に導かれて	
装置に導かれていることを確認することで把握できる。さらに, フィルタ装置出口放射	いることを確認することで把握できる。さらに、第1ベントフィルタ出口放射線モニタ	
線モニタが初期値から上昇することを計測することによりガスが通気されていること	が初期値から上昇することを計測することによりガスが通気されていることを把握で	
を把握できる。	きる。	
(b) フィルタ装置の性能に影響するパラメータの確認	(b) フィルタ装置 (スクラバ容器) の性能に影響するパラメータの確認	
フィルタ装置水位計にて,スクラビング水の水位が,ベント後の下限水位から上限水	スクラバ容器水位計にて, スクラビング水の水位が,ベント後の下限水位から上限水	
位の範囲 内にあることを監視することで,要求され	位の範囲 内にあることを監視することで,要求される放射性物質	
る放射性物質の除去性能が維持できることを確認することで把握できる。	の除去性能が維持できることを確認することで把握できる。	
ベント後における下限水位については, ベンチュリノズルが水没していることを確認	ベント後における下限水位については, ベンチュリノズルが水没していることを確認	
するため,上限水位については,金属フィルタの性能に影響がないことを確認するため	するため、上限水位については、金属フィルタの性能に影響がないことを確認するため	
にそれぞれ設定する。(<u>別紙 12</u>)	にそれぞれ設定する。(別紙21)	
(c) ベントガスが放出されていることの確認	(c) ベントガスが放出されていることの確認	
<u>フィルタ装置出口放射線モニタ</u> にて,フィルタ装置出口を通過するガスに含まれる放	<u>第1ベントフィルタ出口放射線モニタ</u> にて,フィルタ装置出口を通過するガスに含ま	
射性物質からのγ線強度を計測することで,フィルタ装置出口配管よりベントガスが放	れる放射性物質からのγ線強度を計測することで,フィルタ装置出口配管よりベントガ	
出されていることを確認することで把握できる。	スが放出されていることを確認することで把握できる。	
c. 事故収束時の状態	c. 事故収束時の状態	
事故収束時の状態が、以下のとおり把握可能である。	事故収束時の状態が、以下のとおり把握可能である。	
(a) 系統内に水素が滞留していないことの確認	(a) 系統内に水素が滞留していないことの確認	
<u>フィルタ装置入口水素濃度計</u> にて、 <u>窒素供給による系統パージ停止後において、</u> 水素	<u>第1ベントフィルタ装置出口水素濃度計</u> にて,水素が長期的に系統内に滞留していな	・運用の相違
が長期的に系統内に滞留していないことを確認することで把握できる。	いことを確認することで把握できる。	島根2号炉は、可搬式窒素供
(b) <u>フィルタ装置</u> の状態確認	(b) フィルタ装置(スクラバ容器)の状態確認	給装置により、ベント停止後
フィルタ装置に異常がないことを確認するため、フィルタ装置水位計にて、 スクラビ	フィルタ装置に異常がないことを確認するため, スクラバ容器水位計にて, スクラビ	もパージを継続する運用とし
ング水の水位が確保されていること (フィルタ装置のスクラビング水の移送後を除く),	ング水の水位が確保されていること (フィルタ装置のスクラビング水の移送後を除く),	ている
<u>フィルタ装置スクラビング水温度計</u> にて温度の異常な上昇がないこと及びフィルタ装	<u>スクラバ容器温度計</u> にて温度の異常な上昇がないこと及び <u>第1ベントフィルタ出口放</u>	
<u>置出口放射線モニタ</u> の指示値が上昇傾向にないことを確認する。(<u>別紙 39</u>)	射線モニタの指示値が上昇傾向にないことを確認する。(別紙17)	
d. フィルタ装置の水位調整時の確認	d. フィルタ装置 (スクラバ容器) の水位調整時の確認	
格納容器圧力逃がし装置の待機時、運転時、事故収束時に、フィルタ装置の水位調整を	格納容器フィルタベント系の待機時,運転時,事故収束時に,フィルタ装置の水位調整	
以下のとおり把握可能である。	を以下のとおり把握可能である。	
(a) フィルタ装置の水位調整の確認	(a) フィルタ装置(スクラバ容器)の水位調整の確認	
フィルタ装置水位計にて、フィルタ装置の排出又は水張りを実施する際に、フィルタ	スクラバ容器水位計にて、フィルタ装置の排出又は水張りを実施する際に、フィルタ	
(b) フィルタ装置スクラビング水の水質管理	(b) フィルタ装置(スクラバ容器)スクラビング水の水質管理	
フィルタ装置水位計にて、フィルタ装置の排出又は水張りを実施する際に、フィルタ	スクラバ容器水位計にて、フィルタ装置の排出又は水張りを実施する際に、フィルタ	
装置の水位を把握できるとともに、必要な追加薬液量の把握ができる。	装置の水位を把握できるとともに、必要な追加薬液量の把握ができる。	
また,フィルタ装置スクラビング水 p H計にて,フィルタ装置へ薬液を補給する際に,	また, スクラバ水 p H計にて, フィルタ装置へ薬液を補給する際に, スクラビング水	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
スクラビング水の p Hを把握できる。	の p Hを把握できる。	
 e. 想定される機能障害の把握 <u>格納容器圧力速がし装置</u>の運転時に,想定される機能障害を以下のとおり把握可能であ る。 (a) <u>フィルタ装置</u>の運転時に,想定される機能障害を以下のとおり把握可能であ る。 (a) <u>フィルタ装置の</u>閉塞 ·<u>フィルタ装置</u>の囲塞 ·<u>フィルタ装置スクラビング水温度計</u>にて,ベント関始により待機状態から温度が上昇 することを確認することで,フィルタ装置が閉塞していることを把握できる。 ·<u>フィルタ装置スクラビング水温度計</u>にて,ベント開始により待機状態から温度が上昇 することを監視することで,格納容器のガスがフィルタ装置に導かれていることを確 認することにより把握できる。 ·<u>フィルタ数置出口放射線モニタ</u>が初期値から上昇しないことを確認することにより把 握できる。 (b) 金属フィルタの閉塞 ·<u>フィルタ支置出口放射線モニタ</u>にて,ベント実施により待機状態から上昇した放射線 量率が,低下傾向を示さないこと及び<u>フィルタ装置圧力計</u>が上昇傾向を示すことを確 認することで,金属フィルタの閉塞を把握できる。 (c) <u>フィルタ装置</u>人口配管の破断 ·<u>フィルタ装置</u>口放射線量率が初期値から上昇した圧力が低下傾向を 示すが、フィルタ装置出口放射線量率が初期値から上昇した正力が低下傾向を 示すが、フィルタ装置出口放射線量率が初期値から上昇したに立たを確認することにより把握できる。 (d) <u>フィルタ装置</u>スクラビング水の漏えい ·<u>フィルタ装置</u>スクラビング水の漏えい ·<u>フィルタ装置</u>水位計にて、タンクからのスクラビング水漏えいによるフィルタ装置の 水位低下を確認することで把握できる。(<u>別紙 47</u>) 	 ・ 想定される機能障害の把握 <u>格納容器フィルタベント系</u>の運転時に,想定される機能障害を以下のとおり把握可能で ある。 (a) <u>フィルタ装置(スクラバ容器)</u>の閉塞 ・ スクラバ容器圧力計にて,ベント実施により特機圧力から上昇した圧力が,低下傾向 を示さないことを確認することで、フィルタ装置が閉塞していることを把握できる。 ・ <u>スクラパ容器温度計</u>にて,ベント開始により特機状態から温度が上昇することを監視 することで,格納容器のガスがフィルタ装置に導かれていることを確認することによ り把握できる。 ・ <u>第1ベントフィルタ出口放射線モニタ</u>が初期値から上昇しないことを確認することに より把握できる。 (b) 金属フィルタの閉塞 ・ <u>第1ベントフィルタ出口放射線モニタ</u>にて,ベント実施により待機状態から上昇した 放射線量率が,低下傾向を示さないこと及び<u>スクラバ容器圧力計</u>が上昇傾向を示すこ とを確認することで,金属フィルタの閉塞を把握できる。 (c) <u>フィルタ装置(スクラバ容器)</u>入口配管の破断 ・ <u>スクラバ容器</u>圧力計にて,ベント実施により待機圧力から上昇した圧力が低下傾向を 示すが、フィルタ装置出口放射線量率が初期値から上昇しないことを確認することに より把握できる。 (d) <u>フィルタ装置(スクラバ容器)</u>スクラビング水の漏えい ・ <u>スクラバ容器</u>水位計にて,タンクからのスクラビング水漏えいによるフィルタ装置の 水位低下を確認することで把握できる。 ・ <u>漏えい検知器</u>により,<u>第1ベントフィルタ格納槽</u>に漏えいしたスクラビング水を検知 することで把握できる。(<u>別紙18</u>) 	
(2) 計測範囲について <u>格納容器圧力逃がし装置</u> の待機時,運転時,事故収束時の各状態で確認すべき項目につい て,管理すべき値を網羅した計測範囲であることを第2表に示す。	(2) 計測範囲について <u>格納容器フィルタベント系</u> の待機時,運転時,事故収束時の各状態で確認すべき項目について,管理すべき値を網羅した計測範囲であることを表2に示す。	

フィルタ装置の状態	確認すべき項目	計装設備	多重性又は多様性	
a. 系統待機時	(a)フィルタ装置の性能に影響するパラメータの確認	①フィルタ装置水位 ◎コ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	①②で多様性あり ①ユタキャャロ	
	(b)系統不活性状態の確認	 (のノイルク表電ベクフェンク水 p.i.) (①フィルク装置排気ライン圧力 (③フィルク装置圧力 	 Uは多単性めり ①②で多様性あり 	
b. 系統運転時	(a)格納容器内の雰囲気ガスがフィルタ装置に導かれているの確認	5こと ①フィルタ装置圧力 ②フィルタ装置スクラビング水温度 ③フィルタ堆置出口帖射鉛エータ	①2③で多様性あり③は多重性あり	
	(b)フィルタ装置の性能に影響するパラメータの確認	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	①は多重性あり	
	(c)ベントガスが放出されていることの確認	①フィルタ装置出口放射線モニタ	①は多重性あり	
c. 事故収束時	(a)系統内に水素が滞留していないことの確認 (b)フィルタ装置の状態確認	 ①フィルタ装置入口水素濃度 ①フィルタ装置水位 ②フィルタ装置スクラビング水温度 	①は多重性あり ①②③で多様性あり ①②は多重性あり	
d. フィルタ装置の水位調整時	(a) フィルタ装置の水位調整の確認 (r) フィルタ装置の水位調整の確認	 ③ノイルク装置田口成野漱モニタ ①フィルク装置水位 ①フィルクな堆墨水位 	①は多重性あり ①のでを総触まり	
	(b) ノイルタ装直イクフロンクがの水貨官理		しどで多様性めり ①は多重性あり	
e.想定される機能障害	 (a) フィルタ装置の閉塞 (b) 金属フィルタの閉塞 	 ①フィルタ装置圧力 ②フィルタ装置スクラビング水温度 ③フィルタ装置出口放射線モニタ ①フィルタ装置圧力 	①23で多様性あり 3は多重性あり ①ごで多様性あり	
		 ③フィルタ装置出口放射線モニタ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	②は多重性あり	
	(c)フィルタ装置入口配管の破断 (d)フィルタ装置スクラビング水の漏えい	 ①フィルタ装置圧力 ②フィルタ装置出口放射線モニタ ①フィルタ装置水位 ③格納槽漏えい検知器 	 ①②で多様性あり ②は多重性あり ③ご多様性あり ①②で多様性あり ①は多重性あり 	
	表1 格納容器フィルタベント系 計装	設備の網羅性について		
フィルタ装置の状態	離認すべき項目	計装設備	重性又は多様性	
- 医标准撇杆	 (a) フィルタ装置(スクラバ容器)の性能に影響する (パラメータの確認 ③ス 	クラバ容器水位 クラバ本 p H ①②1	ご多様性あり は多重性あり	
	(b) 系統不活性状態の確認 ①フ ②ス	イルタ装置出口配管圧力 0.001 クラバ容器圧力 0.020	で多様性あり さ多重性あり	
	 (a)格納容器内の雰囲気ガスがフィルタ装置へ導かれて ①ス いることの確認 ③第 	クラバ容器圧力 クラバ容器温度 1ベントフィルタ出口放射線モニタ 020	③で多様性あり 3は多重性あり	
b. 系統運転時	(b)フィルタ装置(スクラバ容器)の性能に影響する パラメータの確認	クラバ容器水位 ①は3	多重性あり	
	(c)ベントガスが放出されていることの確認 ①第	1 ベントフィルタ出口放射線モニタ ①は§	多重性あり	
	(a) 系統内に水素が滞留していないことの確認 ①第	 1ベントフィルタ装置出口水素濃度 ①は多 	多重性あり	/] / [[
c. 事故収束時	 (b)フィルタ装置(スクラバ容器)の状態確認 ②ス ③第 	クラバ容器水位 クラバ容器温度 1ペントフィルタ出口放射線モニタ 020	③で多様性あり ③は多重性あり	±//I
d. フィルタ装置(スク ニュルem、 a.t.tem	(a) フィルタ装置(スクラバ容器)の水位調整の確認 ①ス	クラバ容器水位 ①は3	多重性あり	<u> </u>
アハ谷帝)の水位調 整時	 (b) フィルタ装置(スクラバ容器)スクラビング水の ①ス 水質管理 ③ス 	クラバ容器水位 クラバ本 p H ①②7	で多様性あり は多重性あり	·
	(a) フィルタ装置(スクラバ容器)の閉塞 ①ス (b) 金属フィルタの閉塞 ①ス	 クラバ容器圧力 クラバ容器温度 カラバ容器温度 1ベントフィルタ出口放射線モニタ 020 クラバ容器圧力 020 	3で多様性あり 3は多重性あり で多様性あり	
e. 想にされる機能 障害	 (c)フィルタ装置(スクラバ容器)入口配管の破断 (c)フィルタ装置(スクラバ容器)入口配管の破断 	1ペントフィルタ出口放射漱モニタ U20に クラバ容器圧力 0.001 1 ペントレマ・ルク出口放射強エータ 0.001	1多単性めり ご多様性あり + ターポルキャロ	
	 (d) フィルタ装置(スクラバ容器)スクラビング水の ①本 1.24 1.24	 クラバ容器水位 ①② ②い検知器 ①は多 	● マート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
			1	• 1
			相違	設備の相違 設備設計の
				 童 の相違に。
				よる構成

			東海	第二発	電所	(20)	18.9.	18版)						島根	原子力発	電所 2	号炉				備考
計測範囲の根拠	系統待機時における水位の範囲 及び系統運転時の下限水位 から上隔水位の範囲 を計測可能な範囲とよる	がり上版が座い車四 系統運転時に、格納容器圧力逃がし装置の最高圧力(0.62MPa [gage])が監視可 能。また、系統待機時に、窒素置換 が維持されていることを 計測可能な範囲とする。		系統持機時に, 窒素置換 が維持されていることを計測可能な が用レオス	和回しとつ。 系統運転時(炉心損傷している場合)に、想定されるフィルタ装置出口の最大線量 出手声(や Evinits. イレンセヨ湖回名も各曲 ルナス	当重率(ホン b×10.5v/ b) を計測可能な範囲とする。 系統運転時(炉心損傷していない場合)に、想定されるフィルタ装置出口の最大線量	当量率(約 7×10°mSv/h)を計測可能な範囲とする。 事故収束時に, 窒素供給による系統パージ停止後において, フィルタ装置の配管	内に滞留する水素濃度が可燃限界濃度(4vo1%)以下であることを計測可能な範囲とする。	系統待機時に、フィルタ装置スクラビング水のpH(pH0~pH14)を計測可能 な範囲とする。	ミ計装設備の計測範囲の網羅性ついて 計測範囲の根拠	に対するような用	での範囲を計測可能な範囲とする。	射に格納容器フィルタベント系の最高使用圧力である0.853MPa[gage](2 見可能。また,系統待機時に,窒素置換 ことを計測可能な範囲とする。	将使用温度(200℃)を計測可能な範囲とする。	Fic, 窒素置換 が維持されていることを計測可能 - る。	軒に、フィルタ装置の配管内に滞留する水素濃度が可燃限界(4vo1%)未 とを計測可能な範囲とする。	铮(炉心損傷している場合)に,想定される第1ベントフィルタ出口の最大 ≧(約3×10²Sv/h)を計測可能な範囲とする。	铮(炉心損傷していない場合)に,想定される第1ベントフィルタ出口の最 ∐率を計測可能な範囲とする。	判に、フィルタ装置スクラビング水のpH(pH 0~14)が計測可能な範囲	°°¢	 ・設備の相違 設備設計の相違によ 相違
計測範囲	$180 \mathrm{mm} \sim 5, 500 \mathrm{mm}$	0∼1MPa [gage]	$0^\circ \mathbb{C} \sim 300^\circ \mathbb{C}$	0∼100kPa [gage]	> 10 ⁻² Sv∕h~10 ⁵ Sv∕h	$10^{-3}\text{mSv}\diagup\text{h}{\sim}10^{4}\text{mSv}\diagup\text{h}$	0~100vo1%		p H0∼14	 		の上限大の	系統運転# の~1MPa[gage] Pd) が監わ れているこ	0~300℃ 条統の最高	0~100kPa[gage] 系統待機 ^m な範囲とす	20vo1%/0~100vo1% 満であるご	✓ンジ:10 ⁻² ~10 ⁵ Sv/h 次射線量 ²	バンジ:10 ⁻³ ~10 ⁴ mSv/h 大放射線量	pH 0~14 系統待機m とする。	t第 2. 8. 1−2 図の○数字に対応 ⁻	
監視パラメータ*1	①フィルタ装置水位	②フィルタ装置圧力	③フィルタ装置スクラビング水温度	④フィルタ装置排気ライン圧力	⑤フィルタ装置出口放射線モニタ(高レ、 ジュルロンシジン	ン・商フッシン	⑥フィルタ装置入口水素濃度		①フィルタ装置スクラビング水 p H	表 監視パラメータ ^{%1}		①スクラバ容器水位	②スクラバ容器圧力	③スクラバ容器温度	④フィルタ装置出口配管 圧力	⑤第1ベントフィルタ装 置出ロ水素濃度	追い ⑤第1 ベントフィルタ出	ロ放射線モニタ低レ	①スクラバ水 p H	※1 監視パラメータの数字は	

 ・設備の相違 島根2号炉は、スクラバ容器 水位について、現場計器も設置している
 ・設備の相違 設備設計の相違による構成の 相違

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
 (2) フィルタ装置圧力 フィルタ装置圧力は、重大事故等対処設備の機能を有しており、フィルタ装置圧力の検出 信号は、弾性圧力検出器にて圧力を検出し、演算装置にて電気信号へ変換する処理を行った 後、フィルタ装置圧力を中央制御室に指示し、記録する。また、機械式圧力計(自主対策設 備)を用いて現場(格納容器圧力逃がし装置格納槽内)にて監視可能な設計としている。(第 2図「フィルタ装置圧力の概略構成図」参照。) 	(2) <u>スクラバ容器</u> 圧力 <u>スクラバ容器</u> 圧力は,重大事故等対処設備の機能を有しており, <u>スクラバ容器</u> 圧力の検出 信号は,弾性圧力検出器 <u>からの電流信号を中央制御室の指示部にて圧力信号</u> へ変換する処理 を行った後, <u>スクラバ容器</u> 圧力を中央制御室に指示し, <u>緊急時対策所にて</u> 記録する。(図2 「 <u>スクラバ容器</u> 圧力の概略構成図」参照。)	・設備の相違 島根2号炉は現場計器を設置 していない
弊性正力 (() () () () () () () () () (神性的 中央制御室 「「」」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」」 「」」」 「」」 「」」 「」」 「」」 <td< td=""><td> 設備の相違 設備設計の相違による構成の 相違 </td></td<>	 設備の相違 設備設計の相違による構成の 相違

	備考
<u>容器温度</u> の検出 た後, <u>スクラバ</u> ラバ容器温度の	
器 <u>からの電流信</u> 管 <u>圧力</u> を中央制 王力の概略構成	
. <u>-</u>	

	備考
ており, <u>第1</u> ベ 増幅器で増幅 量当量率を中央 <u>出口放射線モニ</u>	 ・設備の相違 設備設計の相違による構成の 相違
	 設備の相違 設備設計の相違による構成の 相違

	備考
おり, <u>第1ベン</u> を前置増幅器で フィルタ出口水 ントフィルタ出 既略構成図及び	・設備の相違
NH御室 指示 1 記録	島根2号炉は,第1ベントフ ィルタ出口水素濃度が可搬型 であり,第1ベントフィルタ 出口分析車から第1ベントフ ィルタ出口配管に接続する設 備構成としている
SPDS)	 ・設備の相違 設備設計の相違による構成の 相違
	 ・設備の相違 設備設計の相違による構成の 相違

備考
 ・設備の相違 設備設計の相違による構成の 相違
 ・設備の相違 設備設計の相違による構成の 相違

	東海第二発電所 (2018.9.18版)			島根原子力発電所 2号炉
参考	格納容器圧力逃がし装置 計装設備の機器配置図	100	参考	格納容器フィルタベント系計装設備の機器配置図
	第10回 機器配置図 (原子炉建屋付属棟1階)			図11 機器配置図(原子炉建物地下2階)

	備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
第11凶 機器配置凶(原子炉建屋付属棟3階)	図 12 一機器配置図(第1ベントフィルタ格納槽)(1/2)

備老
בי איז

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
第12回 爆哭配罟図(みの地の建民 民外)	図 13 機巺 配 罟 図 (笠 1 べ い ト フ ノ ル 友 故 姉 逓) (9 / 9)	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	図14 機器配置図(屋外)	

東海第二発電所 (2018.9.18版) 島根原子力発電所 2号炉 別紙 29 フィルタ装置入口水素濃度計の計測時間遅れについて 第1ベントフィルタ出口水素濃度計の計測時間遅れについて フィルタ装置入口水素濃度は、格納容器圧力逃がし装置の使用後に配管内に水素が残留し 第1ベントフィルタ出口水素濃度は、格納容器フィルタベント系の使用後に ていないことにより不活性状態が維持されていることを把握するため、フィルタ装置入口配 が残留していないことにより不活性状態が維持されていることを把握するため 管内のガスをサンプルポンプで引き込み、除湿器で水分が除去されて、水素濃度検出器にて フィルタ出口配管内のガスをサンプルポンプで引き込み、除湿器で水分が除去 測定されるようにしている。水素計測後のサンプルガスは格納容器圧力逃がし装置の配管に 濃度検出器にて測定されるようにしている。水素計測後のサンプルガスは格納 戻す構成としている。水素濃度検出器により計測した電気信号は演算装置で水素濃度信号に ベント系の配管に戻す構成としている。水素濃度検出器にからの電流信号を前 変換し、中央制御室に指示し、記録する。 幅し、演算装置で水素濃度信号に変換し、中央制御室に指示し、緊急時対策所 第1ベントフィルタ出口分析車 原子炉建屋付属棟3階 中央制御室 中 サンプルポンプ 接続 サンプルポンプ 指示 フィルタ装置 第1ベントフィ 水素濃度 水素濃度 入口配管 ルタ出口配管 検出器 検出器 除湿器 冷却器 除湿器 冷却器 記録 接続 _ _ _ _ _ _ _ _ 緊急時対策所 残留熱除去系海水系又は 緊急 緊急用海水系 第1図 フィルタ装置入口水素濃度 システム概要図 図1 第1ベントフィルタ出口水素濃度 システム概要図 なお、フィルタ装置入口配管内のガスのサンプリング点は、フィルタ装置入口配管の頂部 なお、<u>第1ベントフィルタ出口配管</u>内のガスのサンプリング点は、フィルタ の原子炉建屋原子炉棟5階であり、そこから水素濃度検出器までの時間遅れは以下のとおりで の集合部であり、そこから水素濃度検出器までの時間遅れは以下の通りである ある。 ・サンプリング配管長(サンプリング点~水素濃度検出器):約99m ・サンプリング配管長(サンプリング点~水素濃度検出器):約46m ・サンプリング配管の断面積:359.7mm² (3.597×10⁻⁴ m²) ・サンプリング配管の内容積:11.25×10⁻³ m³ ・サンプルポンプの定格流量:約1L/min(約1×10⁻³ m³/min) ・サンプルポンプの定格流量:約1L/min(約1×10⁻³ m³/min) ・サンプルガス流速(流量÷配管断面積):約2.8m/min ・時間遅れ(配管内容積÷流量):約11.25 min なお,ガスは標準状態(0℃,101.325kPa [abs])として算出。 なお,ガスは標準状態 (0℃, 101.325kPa [abs])として算出。

第1表 フィルタ装置入口水素濃度の時間遅れ

約36分

時間遅れ

表1 第1ベントフィルタ出	日水素濃度の時間遅れ
時間遅れ	約12分

	備考
別紙 28	
こ配管内に水素 5, <u>第1ベント</u> まされて,水素 <u>約容器フィルタ</u> <u>前置増幅器で増</u> <u>にて</u> 記録する。	 ・設備の相違 島根2号炉は,第1ベントフィルタ出口配管の水素濃度を 測定する設計としている
央制御室 指示 記録 記時対策所	
	・設備の相違
7 <u>装置出口配管</u> 5。	 ・設備の相違 島根2号炉は,第1ベントフィルタ出口配管の水素濃度を 測定する設計としている
	 ・設備の相違 設備設計の相違による構成の 相違
	・設備の相違

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
<参考>	<参考>	
a. 水素濃度計の測定原理 水素濃度検出器は,熱伝導式を用いる計画であり,第2図に示すとおり,検知素子と補償素 子(サーミスタ)及び2つの固定抵抗でブリッジ回路が構成されている。検知素子の部分に, サンプリングされたガスが流れるようになっており,補償素子には基準となる標準空気が密 閉されており測定対象ガスとは接触しない構造になっている。 水素濃度指示計部より電圧を印加して検知素子と補償素子の両方のサーミスタを約120℃ に加熱した状態で,検知素子側に水素を含む測定ガスを流すと,測定ガスが熱を奪い,検知 素子の温度が低下することにより抵抗が低下する。 この検知素子の抵抗が低下するとブリッジ回路の平衡が失われ,第2図のAB間に電位差が 生じる。この電位差が水素濃度に比例する原理を用いて,水素濃度を測定する。	a. 水素濃度計の測定原理 水素濃度検出器は,熱伝導度式であり,第2図に示すとおり,検知素子と補償素子(サーミ スタ)及び2つの固定抵抗でブリッジ回路が構成されている。検知素子の部分に,サンプリ ングされたガスが流れるようになっており,補償素子には基準となる標準空気が密閉されて おり測定対象ガスとは接触しない構造になっている。 水素濃度指示計部より電圧を印加して検知素子と補償素子の両方のサーミスタを加熱した 状態で,検知素子側に水素を含む測定ガスを流すと,測定ガスが熱を奪い,検知素子の温度 が低下することにより抵抗が変化する。 この検知素子の抵抗の変化によりブリッジ回路の平衡が失われ,第2図のAB間に電位差が 生じる。この電位差が水素濃度に比例する原理を用いて,水素濃度を測定する。	
水素濃度計描示部 作出部 「「「「「」」」」」」 「「」」」」 「「」」」」」 「」」」 「」」」」 「」」」 第223 水素濃度計検出回路の概要因	*##@differation 使出部 レレレレレレレレレレレレレレレレ 1.0.02 加速 近日 加速 1.0.02 加速 1.0.02	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
b. 水素濃度の測定 水素濃度検出器は「a.」で示したとおり標準空気に対する測定ガスの熱伝導の差を検出する方 式のものであり,酸素,窒素などの空気中のガスに対し,水素の熱伝導率の差が大きいことを利 用しているものである。水素の熱伝導率は,約0.18W/(m・K) at27℃である一方,酸素,窒素は, 約0.02W/(m・K) at27℃と水素より1桁小さく,これらのガス成分の変動があっても水素濃度計 測に対する大きな誤差にはならない。	b. 水素濃度の測定 水素濃度検出器は「a.」で示したとおり標準空気に対する測定ガスの熱伝導の差を検出する方 式のものであり,酸素,窒素などの空気中のガスに対し,水素の熱伝導率の差が大きいことを利 用しているものである。水素の熱伝導率は,約0.18W/(m・K) at27℃である一方,酸素,窒素は, 約0.02W/(m・K) at27℃と水素より1桁小さく,これらのガス成分の変動があっても水素濃度計 測に対する大きな誤差にはならない。	
c. 水素濃度測定のシステム構成 <u>フィルタ装置入口配管</u> 内のガスをサンプルポンプで引き込み,除湿器で水分が除去されて, ほぼドライ状態で水素濃度検出器にて測定されるようにしている。	c. 水素濃度測定のシステム構成 第1ベントフィルタ出口配管内のガスをサンプルポンプで引き込み,除湿器で水分が除去されて,ほぼドライ状態で水素濃度検出器にて測定されるようにしている。 第1ベントフィルタ出口分析車 中央制御室 第1ベントフィルタ出口の新車 中央制御室 第1ベントフィ 中央制御室 第1ベントフィ ド急器 第1ベントフィ 原急器 第1ベントフィ 原急器 第1ベントフィ 原急時対策所	 ・設備の相違 島根2号炉は,第1ベントフィルタ出口配管の水素濃度を 測定する設計としている
<u>第3図 フィルタ装置入口水素濃度 システム概要図</u>	図2 第1ベントフィルタ出口水素濃度 システム概要図	・設備の相違

水素濃度計の計測範囲0~100vo1%において,計器仕様は最大±2.5%の誤差を,計測範囲0~20vo1%に切り替えた場合は±0.5%の誤差を生じる可能性があるが,この誤差があることを理解した上で,フィルタ装置使用後の配管内の水素濃度の推移,傾向(トレンド)を監視していくことができる。

図3 第1ベントフィルタ出口水素濃度の概略構成図

水素濃度計の計測範囲0~100vo1%において,計器仕様は最大±3.0vo1%の計 囲0~20vo1%に切り替えた場合は±0.6vo1%の誤差を生じる可能性があるが, ることを理解した上で,フィルタ装置使用後の配管内の水素濃度の推移,傾向 を監視していくことができる。

	備考
	 ・設備の相違 設備設計の相違による構成の 相違
SPDS)	・設備の相違
誤差を, 計測範 この誤差があ 可 (トレンド)	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 30	別紙 19	
配管内面に付着した放射性物質による発熱の影響について	配管内面に付着した放射性物質による発熱の影響について	
ベントフィルタ上流の配管内面には放射性物質(エアロゾル)が付着することが想定される	フィルタ装置上流の配管内面には放射性物質(エアロゾル)が付着することが想定されること	
ことから、その放射性物質の崩壊熱による温度上昇か配官の構造健全性に与える影響について	から、その放射性物質の崩壊熱による温度上昇か配官の構造健全性に与える影響について検討し	
使到した。 検討社会しまる世能は、ベントガスの添わたよる配答の必知が期待できるケースレベントガ	た。	
便的対象とりる状態は、、シートルへの価値による配置の用却が期付てきるクニーへと、シートル ての流れのないケースを相定した	候討対象とする状態は、此下の227年人を心圧した。	
【ケース1】	【ケース1】	
ベント中を想定し、配管内に高温の蒸気が流れ、なおかつ配管内面に付着した放射性物	ベント中を想定し、配管内に高温の蒸気が流れ、なおかつ配管内面に付着した放射性物質	
質からの発熱が加わった状態。	からの発熱が加わった状態。	
【ケース2】	【ケース2】	
ベント停止後を想定し、配管内面に放射性物質が付着した後で配管内ベントガス流れが	ベント停止後を想定し, 配管内面に放射性物質が付着した後で配管内ベントガス流れがな	
ないため、放射性物質からの発生熱がこもる状態。	いため、放射性物質からの発生熱がこもる状態。	
ます、【クース1】として、 <u>第12</u> に示すような配官の手栓方向の温度分布を考慮して評価を 行った。配答内には真視のベントガス法れが存在し、配答内面にはお射性物質が付差して崩壊	よう、【クース1】として、 <u>図」</u> に示うような配官の手径方向の温度分布を考慮して評価を行	
1.5 C。 配目的には同価のペントガス流れが存在し、配目的面には成別任初員が的有して崩壊 執に上る発熱を行っている この提合 放射性物質の崩壊執に上る執畳け配管内面・外面双方	この場合では同価のペントガス加れい特征し、配置的面には放射性物質が竹着して崩壊然に よる発熱を行っている。この場合、放射性物質の崩壊熱による熱量け配管内面・外面双方に放執	
に放勢され、配管板厚方向に勢勾配ができるが、本評価では保守的に配管外面は断勢されてい	され、配管板厚方向に熱勾配ができるが、本評価では保守的に配管外面は断熱されているものと	
るものとした。	した。	
【ケース1】の温度評価条件を <u>第1表</u> に示す。	【ケース1】の温度評価条件を表1に示す。	
なお、ベントガス温度については、 <u>第2図</u> に示すとおりベント開始後、格納容器圧力及び雰	なお,ベントガス温度については,図2に示すとおりベント開始後,格納容器圧力及び雰囲気	
囲気温度が低下し、その後溶融炉心からの放熱によって格納容器雰囲気温度が170℃以下とな	温度が低下し、その後溶融炉心からの放熱によって格納容器雰囲気温度が170℃以下となる。	
る。		

東海第二発電所

(2018.9.18版)

半径方向分布 X

第1図 配管内表面の温度評価(ケース1のイメージ)

第1表 配管内表面の温度上昇評価条件【ケース1】

項目	条件
評価シナリオ	有効性評価シナリオ「雰囲気圧力・温度による静的負
	荷(格納容器過圧・過温破損)(代替循環冷却系を使用
	できない場合)」
PCVより流入する崩壊熱量	19.8kW
配管内発熱割合	10%/100m
(FP付着割合)	
配管外径,板厚	450A, 14.3mm
配管熱流束	14.7 W/m^{2}
質量流量	2.1kg/s
	(ベント後期(ベント1ヶ月後の蒸気流量))
ベントガス温度	170°C

注;実際の伝熱状態は―― で示すような分布になると想定されるが,保守的な評価 となるよう配管外面を断熱し,全ての熱流束がベントガス側に移行する評価とした。 (赤線で示されるような熱流束の与え方と分布)

図1 配管内表面の温度評価(ケース1のイメージ)

表1 配管内表面の温度上昇評価条件【ケース1】

項目	条件
評価シナリオ	有効性評価シナリオ「大破断 LOCA+全交
	失+全 ECCS 機能喪失(D/W ベン
PCVより流入する崩壊熱量	7.2kW
配管内発熱割合	100/ /100-
(FP付着割合)	10%/100m
配管外径,板厚	300A, Sch40
配管熱流束	7.7W/m^2
質量流量	1.4 kg/s(ベント後期(ベント1ヶ月後)
ベントガス温度	170°C

	備考
<u>CA+SBO+</u> <u>ベント時に最</u> なる。	
6 168	・設備の相違
割合は <u>(参考)</u>	 ・解析結果の相違 ・評価条件の相違
の式で算出した	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
$\Delta T = q / h$ $\cdot \cdot \cdot \vec{x}(1)$	$\Delta T = q / h$ · · 式 (1)	
ΔT : 放射性物質の崩壊熱による配管内表面の温度上昇 (℃)	ΔT:放射性物質の崩壊熱による配管内表面の温度上昇 (℃)	
q	q:配管熱流束 (W/m ²)	
h : 配管内表面の熱伝達率(W/ $(m^2 \cdot K)$)	h:配管内表面の熱伝達率(W/(m ² ・K))	
$h = Nu \times k \times d \cdot \cdot \cdot \vec{x}(1)$	$h = Nu \times k / d$ · · · 式 (2)	
Nu : ヌッセルト数	Nu:ヌッセルト数	
k : 水蒸気の熱伝達率(約0.034(W /($m^2 \cdot K$))	k:水蒸気の熱伝導率(0.034(W/(m・K)))	
d : 水力等価直径(m)	d:水力等価直径(m)	
ここで、Muを昇山りるに当たり円官内乱加の款伝達率を表現りるものとしてMaysの式を引用	ここで、Nu を昇面りるに目だり円官内乱流の熱伝達率を表現りるものとして Kays の式を引	
\mathcal{L}/\mathcal{Z} $(\mathbb{I}(3))$		
$N_{11} = 0.022 \text{ Re}^{0.8} \times Pr^{0.5} \cdot \cdot \cdot \vec{\tau}(3)$	Nu = 0.022Re ^{0.8} ×Pr ^{0.5} ・・・式 (3)	
Re : レイノルズ数	Re:レイノルズ数	
Pr : プラントル数(<u>1.130</u> ;保守的に170℃の飽和蒸気の値を設定)	Pr:プラントル数(<u>1.1</u> :保守的に 170℃の飽和蒸気の値を設定)	
Re = v \times d \swarrow v	Re = $\mathbf{v} \times \mathbf{d} / \mathbf{v}$ · · · 式 (4)	
v : 流速(<u>約13.0(m/s)</u> :質量流量から換算	v:流速(<u>約 22.5(m/s)</u> : 質量流量から換算)	・設備の相違
	<u>d:水力等価直径(m)</u>	
ν :水蒸気の動粘性係数(約3.6×10 ⁻⁶ (m ² /s))	ν :水蒸気の動粘性係数(約 3.6×10 ⁻⁶ (m²/s))	
これにより、配官内面の温度上昇は <u>0.090</u> 程度であると評価できる。ヘントガスの温度は	これより,配官内面の温度上昇は <u>0.030</u> 程度であると評価できる。ヘントカスの温度は 1700	・評価結果の相遅
170 C程度であることから、上記の温度上昇分を考慮しても、配官内表面温度は配官設計にお	程度であることから、烝気の温度上升分を考慮しても、配官内表面温度は配官設計における最高	
ける最高使用温度200℃を下回っているため、配官の構造健全性に影響を与えることはない。	使用温度である200℃を下回っているため,配官の健全性に影響を与えることはない。	
次に、【ケース2】として、第3図に示すような配管の半径方向の温度分布を考慮して評価	次に、【ケース2】として、図3に示すような配管の半径方向の温度分布を考慮して評価を行	
を行った。配管内はベントガス流れがないものとし、配管内面には放射性物質が付着して崩壊	った。配管内はベントガス流れがないものとし、配管内面には放射性物質が付着して崩壊熱によ	
熱による発熱を行っている。	る発熱を行っている。	
ここで,評価対象の配管板厚は14.3mmであり.炭素鋼の熱伝導率が50w/(m·K)程度であるこ	ここで、評価対象の配管板厚は 10.3 mmであり、炭素鋼の熱伝導率が 50W/(m・K) 程度である	・設備の相違
とから、板厚方向の温度勾配は微小であると考えることができる。そのため 配管内表面の温	ことから、板厚方向の温度勾配は微小であると考えることができる。そのため、配管内表面の温	BY MH IN THAT
度はほぼ配管外表面温度と同等であると考え また 保温材の執通過索を考慮する 配管内部	度はほぼ配管外表面温度と同等であると考え 配管内部の執量に上る温度を評価する方法として	
の熱量による温度を評価する方法としてIISA9501 "保温保冷工事施工標準"の表面温度及7K	JISA 9501 "保温保冷工事施工基準"の表面温度および表面執伝達率の質出方法を用いて 配管	
表面執伝達率の寛出方法を用いて 配管外表面温度を評価する		

	備考
力雷源柬牛十全	

東海第	東海第二発電所 (2018.9.18版) 島根原子力発電所 2号炉		表原子力発電所 2号炉	備考	
第2表 配管	第2表 配管内表面の温度上昇評価条件【ケース2】 表2 配管内表面の温度上昇評価条件【ケース2】			・評価条件の相違	
項目	条件	項目	条件		
評価シナリオ	有効性評価シナリオ「雰囲気圧力・温度による静的負	評価シナリオ	有効性評価シナリオ「大破断 LOCA+全交流動力電源喪		
	荷(格納容器過圧・過温破損)(代替循環冷却系を使用		失+全 ECCS 機能喪失(D/W ベント)」		
	できない場合)」	PCVより流入する崩壊熱量	7.2kW		
PCVより流入する崩壊熱量	19. 8kW	配管内発熱割合	100/ /100		
配管内発熱割合	10%/100m	(FP付着割合)	10%/100m		
(FP付着割合)		配管外径,板厚	300A, Sch40		
配管外径,板厚	450A, 14.3mm	配管熱流束	7.7W/m ²		
配管熱流束	14.7W/m ²	配管外表面放射率	0.80 (酸化鉄相当の放射率 ^{**1})		
配管外表面放射率	0.22 (アルミニウム板の放射率**1)	環境温度	120°C		
環境温度	100°C	※1:日本機械学会 伝熱工学資料	· 改訂第5版		
L	※1 JISハンドブック 6-1 配管 I				
評価式の概要は以下のとおりと	なる。	評価式の概要は以下の通りとなる。			
$\underline{Th} = (\underline{qL} \nearrow \lambda) + \underline{T1}$	・・・式(<u>5)</u>	$T = (q / h_{se}) + T_{atm}$			
Th:配管外表面温度	(<u>°C)</u>				
T1:保温材表面温度	(<u>°C)</u>	<u>T:配管外表面温度(℃)</u>			
	(m ²)	q:配管熱流束(W/m²)			
L : 保温材厚さ(0.0	03m)	hse:配管外表面熱伝達率	$(W/(m^2 \cdot K))$		
λ:保温材熱伝導率	$(2.103 \times 10^{-2} \text{W/} (\text{m}^2 \cdot \text{K}))$	Tatm:環境温度(℃)			
$\underline{T1} = (\underline{q} / \underline{h_{se}}) + \underline{T_{atm}}$	・・・式(<u>6</u>)				
この式 <u>(6)</u> における, qとh _{se} は以	「下の式で表される。	この式 (<u>5</u>) における q と h _{se} は以	下の式で表される。		
$q = Q / S \cdot \cdot \cdot \ddagger(7)$		$\mathbf{q} = \mathbf{Q} / \mathbf{S}$.	・・式 (<u>6</u>)		
$h_{se} = h_r + h_{cv} \cdot \cdot \cdot \vec{z}$	(8)	$h_{\rm se} = h_{\rm r} + h_{\rm cv}$.	・・式 (<u>7</u>)		
<u>上記の式(6)における, gとh_{se}は</u>	以下の式で表される。				
Q : 単位長さ当たり	の配管内面での発熱量(W/m)	Q:単位長さあたりの配管	内面での発熱量(W/m)		
S :単位長さ当たり	の配管外面表面積(m ²)	S :単位長さあたりの配管	外表面積(m ²)		
h _r :放射による配管	外表面熱伝達率(W/(m ² ・K))	hr :放射による配管外表面熱伝達率 (W/ (m ² ・K))			
h _{cv} :対流による配管	外表面熱伝達率(W/(m ² ・K))	hev:対流による配管外表面	ī熱伝達率(W/(m ² ・K))		

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
上記のh _r は以下の式で表される。	上記の hr は以下の式で表される。	
$h_{r} = \varepsilon \times \sigma \times \left(\frac{(T+273.15)^{4} - (T_{atm}+273.15)^{4}}{T - T_{atm}} \right) \qquad \cdot \cdot \cdot \overrightarrow{\pi} (9)$	$h_r = \varepsilon \times \sigma \times \left(\frac{(T + 273.15)^4 - (T_{atm} + 273.15)^4}{(T - T_{atm})} \right) \qquad \cdot \cdot \cdot \vec{\chi} (8)$	
ε : 配管外表面放射率 <u>(0.22)</u>	ε:配管外表面放射率 <u>(0.80)</u>	・評価条件の相違
σ :ステファン・ボルツマン定数(5.67×10 ⁻⁸ (W/(m ² ·K ⁴)))	σ:ステファン・ボルツマン定数(5.67×10 ⁻⁸ (W/(m ² ・K ⁴)))	
h_{cv} については、JIS A 9501 "保温保冷工事施工標準"付属書E(参考)表面温度及び表面熱 伝達率の算出方法における、垂直平面及び管(Nusseltの式)及び水平管(Wamsler, Hinlein の式)をもとに対流熱伝達率を算出した。垂直管(式(10),(11))と水平管(式(12))とで得 られる h_{cv} を比較し、小さい方の値を用いることで保守的な評価を得るようにしている。 h_{cv} (垂直管) =2.56×(T-T _{atm}) ^{0.25} ((T-T _{atm}) ≧10K) ···式(10) h_{cv} (垂直管) =3.61+0.094×(T-T _{atm})((T-T _{atm}) ≥10K) ···式(11) $h_{cv}($ 本平管)=1.19× $\left(\frac{T-T_{atm}}{D_0}\right)^{0.25}$ ···式(12) $D_o:$ 配管外径(m)	h_{ev} については,JIS A 9501 "保温保冷工事施工基準"付属書 E (参考) 表面温度および表面 熱伝達率の算出方法における,垂直平面及び管 (Nusselt の式) 及び水平管 (Wamsler,Hinlein の式)をもとに対流熱伝達率を算出した。垂直管 (式 (9), (10))と水平管 (式 (11))とで得 られる h_{ev} を比較し,小さいほうの値を用いることで保守的な評価値を得るようにしている。 h_{ev} (垂直管) = 2.56×(T-T _{atm}) ^{0.25} ((T-T _{atm}) \geq 10K) ···式 (9) h_{ev} (垂直管) = 3.61 +0.094×(T-T _{atm}) ((T-T _{atm})<10K) ···式 (10) h_{ev} (水平管) = 1.19× $\left(\frac{(T-T_{atm})}{D_0}\right)^{0.25}$ ···式 (11) D_0 : 配管外径 (m)	
これらにより評価した結果,配管外表面温度は <u>約124.2℃</u> となる。 以上の結果から,配管内表面温度は配管設計における最高使用温度である200℃を下回って いるため,配管内表面に付着した放射性物質の崩壊熱は,ベント後における配管の構造健全性 に影響を与えることはない。 なお,これらの式を含めた評価については,JIS A 9501において,適用範囲が -180℃~ 1,000℃となっており,適用に対して問題にないことを確認している。また,管外径などの寸 法にかかる制約条件は規定されていない。	これらにより評価した結果,配管外表面温度は <u>約121℃</u> となる。 以上の結果から,配管内表面温度は配管設計における最高使用温度である200℃を下回ってい るため,配管内表面に付着した放射性物質の崩壊熱は,ベントにおける配管の構造健全性に影響 を与えることはない。 なお,これらの式を含めた評価については,JISA9501において,適用範囲が-180℃~1000℃ となっており,適用に対して問題ないことを確認している。また管外径などの寸法にかかる制約 条件は規定されていない。	・評価結果の相違

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(参考)配管内面への放射性物質付着量の考え方について	(参考)配管内面への放射性物質付着量の考え方について	
配管内面への放射性物質(エアロゾル)の付着量を設定するに当たっては,	配管内面への放射性物質(エアロゾル)の付着量を設定するにあたっては, NUREG/CR-4551を	
NUREG/CR-4551 を参照し、付着量を設定する主要なパラメータとして沈着速度に着目	参照し,付着量を設定する主要なパラメータとして沈着速度に着目して,配管内面への沈着割合	
して、配管内面への沈着割合を検討した。	を検討した。	
$\rm NUREG{\swarrow}CR{-}4551$ "Evaluation of Severe Accident Risks: Qualification of Major	NUREG/CR-4551 "Evaluation of Severe Accident Risks: Qualification of Major Input	
Input Parameters MACCS INPUT"※1は, 環境拡散評価 (MELCOR Accident Consequence Code System :	Parameters MACCS INPUT" ^{※1} は, 環境拡散評価(MELCOR Accident Consequence Code System:	
MACCS 計算)についての文献となっており、その評価には、エアロゾル粒子径、エアロゾル粒子	MACCS 計算)についての文献となっており、その評価には、エアロゾル粒子径、エアロゾル粒子	
密度,対象物の表面粗さで沈着速度を整理したSehmelのモデルが用いられている。	密度,対象物の表面粗さで沈着速度を整理した Sehmel のモデルが用いられている。	
このSehmelの沈着速度モデルに基づき,配管内面の表面粗さ0.001cm (10µm)	この Sehmel の沈着速度モデルに基づき, 配管内面の表面粗さ 0.001cm(10µm)と粒子密度4	
と粒子密度4g/cm ³ を想定した,格納容器より放出される粒子径ごとの沈着速度(第1図参照)を	g/cm ³ を想定した、PCVより放出される粒子径ごとの沈着速度(図1参照)を用いて配管内面	
用いて配管内面への沈着割合(エアロゾルの沈着速度と配管内のベントガス通過時間から算出さ	への沈着割合(エアロゾルの沈着速度と配管内のベントガス通過時間から算出された、流れてい	
れた,流れているベントガス中のエアロゾルが壁面に到達する割合)を以下のとおり評価した。	るベントガス中のエアロゾルが壁面に到達する割合)を以下のとおり評価した。	
	Litim	
	p-11.5/ / /	
	STABLE ATMOSPHERE WITH	
Stuble annochere with roughness height, cm		
	Ξ - <u>p. g/cm³</u> -	
	10^{-2} -10 -40 -10	
²² 粒子密度		
ρ , (g/cm ³) $ -$		
	A Kit	
	10 ⁻¹ 1 10 10 ²	
	PARTICLE UTAMETER, AM	
<u> 東1凶</u> エアロソル粒子径と沉着速度の関係	図1 エアロゾル粒子径と沈着速度の関係	

	備考	
00mm, 2 Pd 及び	・評価条件の相違	
材喪失 (大破断	島根2号炉は配管内径	300mm
<u> 48 (参考1図</u>	も考慮	
寺間に粒径ごと		
ゾルが移動する		
レ総量に対する		
布の確率密度		
に基づき, 各		
没定する。		

東海第二発電所 (2018.9.18版)			島根原子力発電所 2号炉				備考			
<u>第1表</u> 排気される蒸気流量に対する沈着割合評価結果 <u>表1</u> 排気			<u>表1 排気される</u>	蒸気流量に対する	沈着割合評価結果		・評価結果の相違			
		格納容器圧力		300A配管部						
- 項日	ハフメーダ	単化	620kPa[gage] ^{%1}	69kPa[gage] ^{%2}	項目	パラメータ	単位	2Pd	最小流量	
	長さ	m	10	00	配管条件	長さ	m]	100	
配管条件		m	0	6		内径	m	(). 3	
		111			沈着条件	沈着速度の分布	cm/s	2×10^{-3}	\sim 5×10 ⁻¹	
2017年1月11日1月11日11日11日11日11日11日11日11日11日11日11日	北看速度の分布	cm∕s	2×10 °~	~5×10 1	排気条件	蒸気流量	kg/s	17.7	3.1	
排気条件	蒸気流量	kg⁄s	23.7	3.8		蒸気流速	m/s	56.9	42.3	
	蒸気流速	m⁄s	23	14	次	了看割合	%	0.2	0.3	
Ũ	七着割合	%	1.0	1.6	600 A 配答实(P	2 C V 出口部)				
	*1	:最高使用	圧力 (2Pd)		項目	パラメータ	単位	2Pd	最小流量	
	※ 2	: 事象発生	7日後の最小流量とな	る圧力		長さ	m]	100	
					配管条件	内径	m	(0. 6	
					沈着条件	沈着速度の分布	cm/s	2×10^{-3}	$\sim 5 \times 10^{-1}$	
					山后夕山	蒸気流量	kg/s	17.7	3.1	
					排风余件	蒸気流速	m/s	13.1	10.1	
					沈	着割合	%	0.5	0.6	
<u>第1表</u> より,最小 エルボ部などとい 割合として放射性 ※1 "Evaluation INPUT", NURE	、流量であっても <u>約1.6</u> った部位での沈着量が 物質の付着量を設定す n of Severe Accident CG/CR−4551 Vol.	<u>9%</u> の沈着害 ばらつくこ る。 Risks: Qua 2 Rev. 1 P	N合となることが評価さ ことを考慮し, 100m当た lification of Major I t.7, 1990	Sれた。以上を踏まえ, り10%を配管への沈着 nput Parameters MACCS	<u>表1</u> より,最/ エルボ部などとい 着割合として放射 ※1: "Evaluati INPUT", NUREG/0	小流量であっても <u>約 0.</u> いった部位での沈着量な 討性物質の付着量を設た on of Severe Accident CR-4551 Vol.2 Rev.1 P ⁻	<u>6%</u> の沈着割合とな がばらつくことを 定する。 Risks: Qualifica t.7, 1990	cることが評価され 考慮し, 100m あた tion of Major Inp	た。以上を踏まえ, り 10%を配管への沈 ut Parameters MACCS	・評価結果の相違