柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料-2	添付資料-2	添付資料-2	
森林火災による影響評価について	森林火災による影響評価について	森林火災による影響評価について	

まとめ資料比較表 〔6条 外部からの衝撃による損傷の防止(外部火災) 別添4-1 添付資料-2〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. はじめに	1. 且的	1. はじめに	
本評価は、発電所敷地外で発生する火災に対して安全性向上	発電所敷地外で発生する森林火災が、発電所に迫った場合で	本評価は,発電所敷地外で発生する火災に対して安全性向上	
の観点から、森林火災が柏崎刈羽原子力発電所へ迫った場合で	も発電用原子炉施設に影響を及ぼさないことを以下の項目によ	の観点から、森林火災が島根原子力発電所へ迫った場合でも発	
も発電用原子炉施設に影響を及ぼさないことを評価するもので	り評価した。	電用原子炉施設に影響を及ぼさないことを評価するものであ	
ある。2 章にて火炎の到達時間及び防火帯幅の評価,3 章にて	<u>(1) 火炎の到達時間</u>	る。2章にて火炎の到達時間及び防火帯幅の評価,3章にて危	
危険距離及び温度評価を実施する。	(2) 防火带幅	険距離及び温度評価を実施する。	
	(3) 熱影響		
	(4) 危険距離		
2. 火炎の到達時間及び防火帯幅の評価		2. 火炎の到達時間及び防火帯幅の評価	
2.1 森林火災の想定	2. 森林火災の影響評価要領	2.1 森林火災の想定	
森林火災の想定は以下のとおりである。	「原子力発電所の外部火災影響評価ガイド 附属書A 森林火	森林火災の想定は以下のとおりである。	
・植生データは、森林の現状を把握するため、樹種や生育状	災の原子力発電所への影響評価について」(以下「評価ガイド」	・植生データは、森林の現状を把握するため、樹種や生育	
況に関する情報を有する自然環境保全基礎調査植生調査デ	という。)に従い森林火災を想定**し,発電所への影響について	状況に関する情報を有する <u>森林簿</u> の空間データを島根県	・条件の相違
<u>ータ</u> の空間データを入手し、その情報を元に植生調査を実	評価した。	より入手し、その情報を元に植生調査を実施する。その	【柏崎 6/7】
施する。その結果から、保守的な可燃物パラメータを設定	なお、森林火災の解析に当たっては、評価ガイドにおいて推	結果から、保守的な可燃物パラメータを設定し、土地利	島根2号炉,東海第二
し、土地利用データにおける森林領域を、樹種・林齢によ	奨されている森林火災シミュレーション解析コードFARS I	シミュレーション解析コードFARSI 用データにおける森林領域を、樹種・林齢によりさらに	
りさらに細分化する。	<u>TEを使用し解析を実施した。</u> 細分化する。		ガイドを踏まえて,
・気象条件は過去 10 年間(2003~2012 年)を調査し,森林火		・気象条件は過去 10 年間(2003 年~2012 年)を調査し,	「森林簿」の空間デー
災の発生件数の多い 3~5_月の最小湿度,最高気温,及び	※森林火災の想定(評価ガイドより)	森林火災の発生件数の多い3~8月の最小湿度,最高気	タを使用
最大風速の組み合わせとする (第 2.1-1 図)。	(1) 森林火災における各樹種の可燃物量は現地の植生から	温,及び最大風速の組み合わせとする(第2.1-1図)。	
・風向は最大風速観測時の風向及び卓越方向とし、柏崎刈羽	求める。	・風向は最大風速観測時の風向及び卓越風向とし、島根原	
原子力発電所の風上に発火点を設定する。気象条件を第	(2) 気象条件は過去10年間を調査し、森林火災の発生件数	子力発電所の風上に発火点を設定する。気象条件を第	
2.1-1 表に示す。	の多い月の最小湿度,最高気温,及び最大風速の組合せ	2.1-1 表に示す。	
・ <u>柏崎刈羽</u> 原子力発電所からの直線距離 10km の間で設定す	とする。	・島根原子力発電所からの直線距離 10km の間で設定する。	
る。	(3) 風向は卓越方向とし,発電所の風上に発火点を設定す	・発火源は最初に人為的行為を考え,道路沿いを発火点と	
・発火源は最初に人為的行為を考え、道路沿いを発火点とす	る。ただし、発火源と発電所の位置関係から風向きを卓	する。発火点位置を第 2.1-3 図に示す。	
る。発火点位置を第2.1-4 図, 第 2.1-5 図に示す。	越方向に設定することが困難な場合は,風向データ等か	・放水等による消火活動は期待しない。	
・放水等による消火活動は期待しない。	ら適切に設定できるものとする。		
	(4) 発電所からの直線距離 10km の間で設定する。		
<u>第 2.1-1 表 気象条件</u>	(5) 発火源は最初に人為的行為を考え,道路沿いを発火点と	<u>第2.1-1 表 気象条件</u>	
風向 3~5月 3~5月 3~5月	する。さらに,必要に応じて想定発火点を考え評価する。	風向 3~8月 3~8月 3~8月	
[16 方位] 最大風速[m/s] 最高気温[℃] 最小湿度[%]		[16 方位] 最大風速[m/s] 最大気温[°C] 最小湿度[%]	
ケース1 南南東 16.0 31.9 12 ケース0 声声声 10.0 31.9 12		グース1 角西 22.1 37.5 12 ケース2 南西 22.1 37.5 12	
クーム2 附開東 16.0 31.9 12 ケース3 南東 16.0 31.9 12		ケース3 東北東 22.1 37.5 12	
		ケース4 東北東 22.1 37.5 12 ケース5 東北東 22.1 37.5 12	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		<figure></figure>	
(1) 発火点の設定方針 ・ <u>柏崎刈羽</u> 原子力発電所からの直線距離 10km の間に設定す		(1) 発火点の設定方針・島根原子力発電所からの直線距離 10km の間に設定する。	
 る。 ・陸側方向(<u>柏崎刈羽</u>原子力発電所の<u>西側</u>が海)の発電所風 上を選定する。 ・風向は,最大風速記録時の風向と卓越風向の風である<u>南南</u> 東を選定する(第 2.1-2 図)。 ・人為的行為<u>を考え,交通量が多く火災の発生頻度が高いと</u> 		 ・陸側方向(島根原子力発電所の北側が海)の発電所風上を選定する。 ・風向は,最大風速記録時の風向と卓越風向の風である南西及び東北東を選定する。 ・人為的行為及び過去に発電所のある松江市鹿島町内で発	 ・条件の相違 【柏崎 6/7】 地域特性を踏まえた 森林火災における発

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		況(河川の有無等)も加味し,火災の発生頻度が高いと	
		<u>想定される集落部又は道路沿いのうち、森林部との境界</u>	
		を具体的な発火点として選定する。	
なお, 平成 15~24 年度の新潟県の林野火災の主な発生原因		なお, 平成 15 年~24 年度の <u>島根県</u> の林野火災の主な発生原	
は, 第 2.1-3 図に示すとおり, 件数の多い順で火入れ 71 件,		因は、第2.1-2図に示すとおり、件数の多い順でたき火、火入	
たき火 61 件, たばこ 19 件となっている。いずれの発生原因		れ、火遊びとなっている。いずれの発生原因も、民家、田畑周	
も、民家、田畑周辺あるいは道路沿いで発生する人為的行為と		辺あるいは道路沿いで発生する人為的行為となっている。	
なっている。			
2003~2012年3~5月の 2003~2012年3~5月の 最多風向[回] 最大風速観測時の風向[回]			
北北西 300 北北東 北北西 300 北北東			
北西 2000 北東 北西 2000 北東			
西北西 100 東北東 西北西 100 東北東			
西((())東 西(()))東			
西南西 東南東 西南西 東南東			
南西南東南東			
南南西(南南東) 南南西(南南東) 南			
第 2.1-2 図 最多風向及び最大風速観測時の風向			
H1524年		林野火災の出火原因割合	
		(松江市:平成15年~平成24年)	
		- 火遊び	
097+ - たばこ ロマッチ・ライター		6% 12% 18% ■たき火 ■ たき火	
■放火·放火の疑い ■焼却炉 新潟県報道資料「全火災		■ 不明	
の他 の他 の総合出火原因別・主な			
3件4件 61件 11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		64%	
144 144 194 出火件数」より作成		出典:消防年報(松江市消防本部) (平成16年度刊行~平成25年度刊行)	
 第 2.1-3 図 新潟県の森林火災の出火原因割合(H15~24 年)		第 2.1-2 図 島根県松江市の森林火災の出火原因割合(H15~H24)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2) 立地条件を考慮した発火点の設定		(2) 立地条件を考慮した発火点の設定	
(ケース 1)		<u>(ケース1)</u>	・条件の相違
発電所近隣からの発火の方が防火帯周辺に火災が到達するま		発電所に対し、最大風速記録時の風上方向約2km付近に河川	【柏崎 6/7】
での時間が短くなることから,発電所敷地境界周辺の国道 352		(佐陀川) があり,これより遠方については,河川によって森	地域特性を踏まえた
<u> 号線沿いの発火を想定する。防火帯までの距離が短くなる南南</u>		林部・田畑が分断されていることから、森林火災は延焼しない。	森林火災における発
東方向の国道 352 号線沿いに発火点を選定する。(防 火帯から		<u>河川以降で発電所に向かう間にある集落は恵曇地区,深田地</u>	火点の選定の相違
約 0.6km)		区がある。風下方向の地形が上り勾配となっている場合に火災	
		が延焼し易いこと、遠方からの火災は広範囲に延焼することを	
		考慮して,発電所の周囲にある標高差約 150m の山林の麓にあ	
		り,発電所に対して,より南西方向にある恵曇地区を発火点に	
		選定する。	
$\frac{(\mathcal{F}-\mathcal{Z} \ 2)}{(\mathcal{F}-\mathcal{Z} \ 2)}$		$\frac{(\tau - \chi_2)}{\tau}$	
発電所遠方からの発火の方が火災の規模が大きくなる(火災		発電所に近接する地点での森林火災延焼による影響を評価す	
前線が広がり、発電所構内を同時期に取り囲むような火災とな		る地点として,敷地境界と近い県道37号線沿いを発火点に選定	
る) ことから, 国道 8 号線沿いの発火を想定する。火入れ・た		<u></u>	
<u>き火等による火災も考慮し、家屋・田畑がある南南東方向の国</u>			
道 8 号線沿いに発火点を選定する。(防火帯から約 3.4km)		$(f - \lambda 3, 4)$	
		発電所に対し、卓越風向の風上にある集落として、御津地区、	
(ケース 3)		<u>島根町(大芦地区),上講武地区がある。</u>	
卓越風向として南東方向からの風も一部存在すること、及び		このうち、御津地区、上講武地区では過去に森林火災の発生	
防火帯までの距離が南南東方向より短くなることから、参考の		があったことから、ケース3で御津地区、ケース4で上講武地	
ため防火帯までの距離が短くなる南東方向の国道 352 号線沿		区を発火点に選定する。	
いに発火点を選定する。(防火帯から約 0.4km)			
たち 国道 116 号線からの発水についてけ 水炎が到達する		$(\tau - \tau 5)$	
時間けケース 1 及びケース 3 の方が短くたり k 災の相横け			
<u>「「「」」、「、」、、、、、、、、、、、、、、、、、、、、、、、、、、、、、</u>		<u>平磁風雨の速力がもの大火は広範囲に遮虎することを冷慮し</u> て 阜根町(大苫地区)を発火占に選定する	
(3) 森林火災評価における発火点の妥当性		(3) 森林火災評価における発火点の妥当性	
(ケース 1, 3)		発電所周辺から発電所へ向かう地形は、敷地境界までは約	・条件の相違
ケース 1,3 の発火点周辺は,マツ 40 年生以上(評価では 10		150mの山林に向けて緩やかな上り勾配となっており、これを越	【柏崎 6/7】
年生のデータを入力)の植生が広がっており柏崎刈羽原子力発		えるとどの方向からもほぼ同等な下り勾配となっている。	地域特性を踏まえた
電所に向けて下り勾配である。敷地周辺道路沿いで発火地点を		このことから、地形を考慮した発火点としても、解析ケース	森林火災における発
		1~5の発火点により代表評価可能である。	火点の選定の相違
結果に違いが出ることはない。			

設定	
地及び樹木の乾燥に伴い、火線強度が増大す	5
らを考慮して火線強度が最大となる発火時刻;	2
<complex-block> 第 2. 1-3 図 想定発火点 タークス 5 日期町(大井地区) 日期町(大井地区) 日期町(大井地区) 日期町(大井地区) 日本町 日本町 2000 日本町</complex-block>	
	ケース4 正成地区 正成地区 正地理院撮影の空中写真に発火点を追記して掲載 第 2. 1-3 図 想定発火点位置

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
2.2 森林火災による影響の有無の評価		2.2 森林火災による影響の有無の評価	
(1) 評価手法の概要		 (1) 評価手法の概要 	
本評価は, <u>柏崎刈羽</u> 原子力発電所に対する森林火災の影響の		本評価は、島根原子力発電所に対する森林火災の影響の有	
有無の評価を目的としている。具体的な評価指標と観点を以下		無の評価を目的としている。具体的な評価指標と観点を以下	
に示す。		に示す。	
第 2.2-1 表 評価指標と観点		第 2. 2-1 表 評価指標と観点	
評価指標 評価の観点		評価指標 評価の観点	
 延焼速度[km/h] ・ 火災発生後,どの程度の時間で柏崎刈羽原子力発電所に到達 するのか 		延焼速度[km/h] ・火災発生後,どの程度の時間で島根原子力発電所に到達	
火線強度[kW/m] ・ 柏崎刈羽原子力発電所に到達し得る火災の規模はどの程度			
反応強度[kW/m ²] か		反応強度[kW/m ²]	
・ 必要となる消火活動の能力や防火帯の規模はとの程度か 水茶転射発散度		火炎長[m] ・島根原子力発電所に到達1 得ろ火災の相横けどの程度か	
$\begin{bmatrix} kW/m^2 \end{bmatrix}$		[kW/m ²] ・必要となる消火活動の能力や防火帯の規模はどの程度か	
火炎輻射強度		火炎輻射強度	
LkW/m ² 」 水炎到達幅[m]		[kW/m [*]] 水炎利達幅[m]	
(9) 評価社务範囲		(2) 評価対象範囲	
(2) 計画対象範囲 		(2) 町回八豕靼四 河伝社毎年田は双電武に傍の登止相字地占な 101	
評価対象範囲は発電所近傍の先代想定地点を 10km 以内と		評価対象範囲は発電所延防の発欠恐足地点を 10km 以内と	
し、評価対象範囲は四側が海岸という発電所周辺の地形を考慮		し、評価対象範囲は北側が海岸という発電所周辺の地形を考	
し <u>柏崎刈羽</u> 原子力発電所 <u>から南に 12km, 北に 15km, 東に 12km,</u>		慮し,島根原子力発電所 <u>から東側,西側及び南側</u> に 12km,北	・条件の相違
<u>西に 9km</u> とする。		側は海岸線までとする。	【柏崎 6/7,東海第二】
			地域特性を踏まえた
			入力データの相違
(3) 必要データ	 2.1 FARSITE評価に用いたデータ	(3) 必要データ	
評価に必要なアータ以下のとおり設定し、本評価を行った。	FARSTIEに入力したテータは評価カイト記載に対し	評価に必要なデータを以下のとおり設定し、本評価を行	
	第2.1-1 表のとおりとした。	∽Tem	

柏崎刈羽	原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉		備考
	第 2.2-2 表 入力条件	第2.1-1表 FARS I TE入力データ		第 2. 2-2 表 入力条件		
データ種類	内容	データ種類	入力データ	データ種類	内容	
土地利用デー タ 	現地状況をできるだけ模擬するため,公開情報の中でも高い空間 解像度である100m メッシュの土地利用データを用いる。 (第 2. 2-1 図, 第 2. 2-2 図) (国土交通省 国土数値情報 土地利用細分メッシュ H21 年度) 現地状況をできるだけ構築するため、樹種に関する情報を有する	地形データ	公開情報の中でも高い空間解像度である「基盤地図情報 数値標高モデル 10m メッシュ」の標高データを用いた。 傾斜,傾斜方位については標高データから計算した。	土地利用データ	現地状況をできるだけ模擬するため、公開情報のなかでも高い空間解像度である100mメッシュの土地利用データを用いる。 (国土数値情報 土地利用細分メッシュH21年度) 現地状況をできるだけ模擬するため、樹種や育成状況に関する情	
植生ノーク	現地(尻をできるたけ模擬) るため, 樹種に関うる情報を有うる 環境省 自然環境保全基礎調査 植生調査データ(H18 年度)を用い る。また,現地調査を実施し発電所構外及び構内の植生を反映す る。(第 2.2-1 図, 第 2.2-2 図) 現地の状況をできるだけ模擬するため, 公開情報の中でも高い空	土地利用データ	公開情報の中でも高い空間解像度である「国土数値情報 土地利用細分メッシュ(100m)」の土地利用データを用 いた。	植生データ	報を有する森林簿の空間データを島根県より入手する。森林簿の 情報を用いて土地利用データにおける森林領域を,樹種・林齢に よりさらに細分化する。 また,敷地内においては,現地調査により森林縁の植生の状態を	
	間解像度である10mメッシュの標高データを用いる。傾斜度,傾		茨城県より受領した森林簿(東西南北12km)の情報を用		確認し入力データに反映した。(第2.2-1図,第2.2-2図) (森林簿 平成25年5月交付申請により,島根県より入手)	
	新方向については標高テータから訂算する。(第2.2-3 図) (国土地理院基盤地図情報 数値標高モデル 10m メッシュ H20 年 度)	植生データ	にて細分化し 10m メッシュで入力した。 発電所敷地内は,植生調査を実施し,入力データに反映 した。	地形データ	現地の状況をできるだけ模擬するため、公開情報の中でも高い空間解像度である10mメッシュの標高データを用いる。傾斜度、傾斜方向については標高データから計算する。	
気象データ 	現地にて起こり得る最悪の条件とするため,森林火災の発生件数 が多い 3~5月の過去 10 年間(2003~2012 年)の最大風速,最高気 温,最小湿度の条件を採用する。(第 2.2-3 表)	気象データ	茨城県に森林火災の発生件数の多い12月~5月の過去 10年間の気象条件を調査し,最大風速,最高気温,最小 湿度,卓越風向及び最大風速時の風向を用いた。	気象データ	(基盤地図情報 数値標高モデル 10mメッシュH20年度) 現地にて起こり得る最悪の条件とするため,森林火災発生件数が 多い3月~8月の過去10年(2003~2012年)の最大風速,最高気温,	
		(2) 地形データの 公開情報の 値標高モデル 傾斜方位につ データを第2.	2.設定 中でも高い空間解像度である「基盤地図情報 数 10m メッシュ」の標高データを用いた。傾斜, いては標高データから計算した。設定した地形 1-1 図に示す。			

计炉	備考
子炉	備考

備考

#(本(m) - 10 - 20 - 30 - 40 - 50 - 60 - 70 - 80 - 90 - 110 - 120 - 130 - 140 - 150 - 130 - 140 - 50 - 90 - 110 - 120 - 130 - 110 - 120 - 130 - 110 - 10 - 50 - 70 - 80 - 90 - 10 - 10 - 70 - 10 - 10 - 50 - 70 - 10 - 70 - 10 - 100 - 120 - 130 - 150 - 130 - 150 - 150 - 150 - 150 - 110 - 150 - 150	, 炉	備考
2 - 190 2 - 200	3 7 7 7 7 7 7 7 7 7 7	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(5) 気象条件の設定		
b. 気象条件の設定	<u>a</u> . 気象データの整理	<u>b</u> . 気象条件の設定	
気象データは気象庁が公開している気象統計情報を用い、森	気象データは気象庁が公開している気象統計情報を用い、	気象データは気象庁が公開している気象統計情報を用い, <u>森</u>	
林火災発生件数の多い 3~ <u>5 月</u> の過去 10 年間の気象データを	<u>第 2.1-2</u> 表に示すFARSITE入力に必要なデータ(最高	林火災発生件数の多い3月~8月の過去 10 年間の気象データ	・条件の相違
調査し、卓越風向、最大風速、最高気温、最小湿度の条件を選	気温,最大風速,最大風速記録時の風向,最小湿度)を全て	を調査し、卓越風向、最大風速、最高気温、最小湿度の条件を	【柏崎 6/7,東海第二】
定した (第 2.2-3 表)。この調査結果に基づき FARSITE の入力	観測・記録している観測所のうち, 東海第二発電所に最も近	<u> 選定した(第 2.2-3 表)。この調査結果に基づき FARSITE の入</u>	地域特性を踏まえた
値は第 2.2-4 表のとおり設定した。風向,風速及び気温は拍崎	い距離(約15km)にある水戸地方気象台の気象観測データを	力値は第 2.2-4 表のとおり設定した。風向,風速及び気温は島	条件設定の相違
<u>刈羽</u> 原子力発電所付近の <u>柏崎市</u> の地域気象観測システム(アメ	それぞれ過去 10 年間(2007 年~2016 年)の月別データから	根原子力発電所付近の鹿島町の地域気象観測システム(アメダ	
ダス)(以下「地域気象観測所」という。)の値とした。 <u>湿度を</u>	<u>第 2.1-2 表のとおり抽出・整理した。</u>	ス) (以下「鹿島地域気象観測所」という。)と松江地方気象	
観測している観測所は「新潟」「高田」「相川」とあるが、「高田」		台があることから、鹿島地域気象観測所及び松江地方気象台の	
は柏崎刈羽原子力発電所とは山越の位置で内陸 に位置し,「相		気象統計情報(気象庁)の値とした。	
川」は離島であることから、最も柏崎刈羽原子力発電所の気象		なお、データの値は、鹿島地域気象観測所及び松江地方気象	
に近いと考えられる「新潟地方気象台」の値を用いた <u>。</u> 新潟県		台のデータから,評価上厳しい値とし,湿度については鹿島地	
における気象統計情報の観測所位置を第 2.2-4 図に示す。		域気象観測所のデータがないことから、松江気象台のデータの	
	茨城県内における気象庁気象観測所位置を第 2.1-4 図に示	<u>値を用いた。島根県に</u> おける <u>気象統計情報の</u> 観測所位置を第	
	す。	2.2-4図に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
With A (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	<image/> <image/> <text><text><text></text></text></text>	<image/> <image/> <text><text></text></text>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				7 号炉	(2017.12.2	20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
							最大風速記録時の風向となる3月の南西を選定した。	
							「「「」」」」」「「」」」」」」「「」」」」」」」」「「」」」」」」」」」」	
							める北と、発電所の気象観測アータの最多割合を占める四	
							北西を選定した。	
							上記で選定したデータを第2.1-2表に赤枠で示す。	
第	2.2-3	3表	$2003 \sim 2012$	2 年の 3~	5 月の気象	ミデータ	第2.1-2表 気象観測データと月別火災発生件数(過去10年間) 第2.2-3表 2003年~2012年の3月~8月の気象データ	
í			1		1			
		卓越風向	最大風速	最大風速観 測時の風向	最高気温	最小湿度	水戸地方気象台 気象観測データ 売払加 売払 売払 売払	
年	月	(柏崎) 「16 古位]	(柏崎)	(柏崎)	(柏崎)	(新潟)	月 最高気温 最大風速 最八風速 最八風速 最小湿度 森林火災件数 [®] 年 月 最高気温 東(×) 車越 電局 電小 (°C) (m/s) (m/s) (%) <	
				[16 方位]		L 70 J	第1位第2位 第2位 100 100 100 100 3月 20.1 9 西南西 北北東 20.2 12 11.3	
0000	3	北西	8.0	西南西	17.4	21	1 16.9 17.5 北東 北東 17 79 4月 26.2 14 南西 東北東 26.9 14 17.7 5月 30.1 8 北北東 東南東 30.8 30 13.8	
2003	4		8.0	西南西 西南西	26.4	18	2 24.3 17.5 北北東 北東 13 86 6月 29.1 14 南西 東 29.9 24 17.0 7月 29.7 9 南西 北 31.7 53 13.3	
	3	南南東	11.0	西南西	23.9	10	3 25.9 14.3 北東 北東東 11 131 131 8月 33.6 9 西西 北東 36.2 39 15.0 3 14.3 市西 11 131 131 33,6 9 西西西 北東 24.5 15 14.4	
2004	4	西	11.0	西西	26.1	15	4 29.3 15.1 北北東 北東 13 126 4月 20.0 13 南西 東北東 26.6 21 10.4 4 29.3 15.1 北北東 北東 13 126 2004 5月 29.0 10 南西 南西 28.8 21 14.4 13 14 13 14 <td< td=""><td></td></td<>	
	5	北西	8.0	西	28.1	22	5 30.8 13.5 北東 北北東 13 54 601 10 110 111 111 10 111 10 111 10 111 111 10 111	
	3	南南東	9.0	北西	16.4	25	6 33.5 14.2 北北東 2.1 10 31 20.4 11 西南西 20.8 2.9 14.4	
2005	4	南南東	9.0	南西	28.8	17	7 36.4 11.8 北北東 北北東 35 13 2005 5月 26.4 9 西南西 東北東 28.1 15 12.7	
	5	北北西	7.0	西	29.6	14	1 1	
	3	南南東	10.0	西	19.4	19	8 31.0 12.5 北米 55 24 0 36.1 12.5 12.5 12.5 12.5 13.9 1 12.5 12.5 12.5 12.5 11 南西 南西 19.1 22 13.9	
2006	4	 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	16.0	南南東	22.3	12	9 30.1 13.9 14.4束 南南四 29 23 10 市西 西 西 31.1 26 12.6 10 東南東 南西 30.4 35 12.3	
	3	用用用 而	8.0	一日泉	22 1	20	10 31.4 17.4 北北東 22 11 7月 33.3 11 南西 南西 33.5 53 13.0	
2007	4	南南東	10.0	西西	22. 1	14	11 24.5 11.8 北北東 18 4 4月 25.3 10 南西 23.3 20 19.1 4月 25.3 10 南西 北 26.7 15 13.7	
	5	西	10.0	西	25.4	15	12 23.8 10.6 北東 西 17 33 2007 5月 27.5 11 南西 29.4 20 15.4	
	3	南南東	8.0	西	16.7	26	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2008	4	南東	8.7	西南西	24.1	19	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	5	南東	8.6	南南東	28.1	18	2008 6月 31.4 9.5 所西 北東 31.2 27 14.5 北北西 7月 33.9 10.2 西 東北東 36.3 47 11.9	
	3	北西	11.5	南南西	23.6	16	3% 8月 34.5 9.2 南西 北東 36.3 36 13.4 3月 24.3 10.8 西南西 東北東 25.3 29 14.4	
2009	4	南南東	11.0	西	25.6	13	北 北北東 北西 北市 15% 7% 北東 15% 7%	
 	5	 	10.5		29.3	18	9% 北東 6月 31.4 9.8 西 東北東 32.3 32 12.2 7月 32.6 9.3 西南西 南西 33.4 48 14.1	
2010	3	 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	13.6	一 用用四 西西市	23.2	24	現北東 8月 32.7 9.1 南西 北東 34.1 41 10.2 北北西 9% 3月 24.7 13.9 西南西 北東 26.4 22 18.0	
2010	5		13.5	南南東	27.3	20	17% 東北東 23% 東北東 6% 中 2010 5月 28.2 10.9 西南西 東北東 23.5 17 14.7 2010 5月 28.2 10.9 西南西 東北東 28.1 23 13.8	
	3		10.0	西南西	18.1	22	95 東 6月 31.2 9.8 西南西 東北東 31.5 23 9.8 3% 7月 33.8 11.1 南西 南西 34.0 47 11.3	
2011	4	南南東	8.4	西	22.4	17	北西 東南東 東南東 東南東 東南東 23 1 1 1 1 1 1 1 1 1	
	5	南南東	11.2	西南西	27.8	19	5% 再東 4% 7% 1 4月 24.8 9.9 四 東北東 26.3 23 14.1 5% 西南西 7% 65 市東 5% 2011 5月 28.8 11.3 南西 東北東 29.5 31 16.7 3% 西南西 4% 2011 5月 28.8 11.3 南西 東北東 29.5 31 16.7	
	3	南南東	10.0	西南西	21.3	31	西北西ノ 3% 西南西南西南西南南西南 南南東 1111 南西 南西 南西 南西 南西 東 32.4 33 11.7 2% 3% 4% 6% 3% 1% 5% 5% 7月 34.5 10.7 北東 東 35.6 46 16.4 2% 3% 4% 6% 3% 1% 3% 1% 2% 1% 3% 10.7 北東 東 35.6 46 16.4 10.4 19.1	
2012	4	南南東	15.2	西	25.8	31	0/1 35.2 9.0 1円四 央 35.0 45 13.1 3月 21.4 12.6 西 西 21.4 22 16.2 4月 25.2 20.9 志道町 西町 27.9 17 09.1	
	5	南南東	9.7	西南西	27.8	23	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
青で塗	りつぶし	た箇所が,卓	越風向,最大	風速, 最高気	温,最小湿度		(水戸地方気象台:2007年~2016年)(発電所:2007年~2016年)	
							着色箇所が、卓越風向、最大風速、最高気温、最小湿度	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>(6) 発火点の設定</u>		
	<u>a. 発火点の設定方針</u>		
	評価ガイドにある森林火災の想定に基づき,発火点の設		
	定は以下の方針とした。		
	・卓越風向及び最大風速記録時の風向が発電所の風上に		
	なる地点		
	・たき火等の人為的な火災発生原因が想定される地点		
	なお,茨城県内での主な火災発生原因は,「消防防災年報」		
	(茨城県 2006 年~2015 年) によると,たき火,こんろ,た		
	ばこである。 		
	第2.1-7図に出火原因割合を示す。		
	この結果に加え, 発電所周囲の地理的状況等を考慮し,		
	人為的な火災発生原因を想定した。		
	火遊び		
	風呂かまど 3% ストーブ 8% 火の粉 12% たばこ 16% こんろ		
	2000 「※呼呼中、彼に知」(志中国 2000 年 - 2015 年))とり		
	「何時が火牛報」(次級索 2000 年~2013 年)より		
	第2.1-7 図 出火原因割合		
	b. 立地条件を考慮した発火点の設定		
	発電所周囲の特徴としては、以下の4点が挙げられる。		
	・発電所周囲は平坦な地形であり、住宅街や水田が多い。		
	・発電所のすぐ脇を国道が通る。		
	・・発電所立法に砂浜海岸がある。		
	・発電所に産業施設が隣接する。		
	このため、上記を踏まえ、卓越風向及び最大風速記録時		
	の風回として抽出した4万回(西北西,北,南西,北東)		
	に対し、発火点を以下のとおり設定した。設定した発火点		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	を第 2.1-8 図,発火点と植生データの関係を第 2.1-9 図,		
	発火点と標高データとの関係図を第2.1-10図に示す。		
	<u>(a)</u> 西北西方向(発火点1,3)		
	霊園における線香等の裸火の使用と残り火の不始末,		
	国道245号線を通行する人のたばこの投げ捨て等を想		
	定し,国道245号線沿いの霊園に発火点1を設定した。		
	火入れ・たき火等を想定し,県道284号線沿いの水		
	田に,発火点1より遠方となる発火点3を設定した。		
	(b) 北方向(発火点 2, 4)		
	<u>バーベキュー及び花火の不始末等を想定し,海岸沿い</u>		
	に発火点2を設定した。		
	釣り人によるたばこの投げ捨て等を想定し、海岸沿い		
	に発火点2より遠方となる発火点4を設定した。		
	(c) 南西方向(発火点 5, 6)		
	発電所南方向にある危険物貯蔵施設の屋外貯蔵タンク		
	からの火災が森林に延焼することを想定し、南方向の危		
	<u>険物貯蔵施設の近くに発火点5を設定した。</u>		
	交通量が多い交差点での交通事故による車両火災を想		
	定し、国道245号線沿いに発火点6を設定した。		
	(d) 北東方向(発火点7)		
	釣り人によるたばこの投げ捨て等を想定し、一般の人		
	が発電所に最も近づくことが可能である海岸沿いに発火		
	<u>点.7.を設定した。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第2.1-8 図 発火点と発電所の位置関係		

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>c. 森林火災評価における発火点の妥当性</u>		
	<u>(a) 発火点 1, 3 の妥当性</u>		
	発火点1の周辺はマツ40年以上(評価ではマツ10年		
	以上20年未満を入力)と広葉樹の森林,発火点3の周辺		
	<u>は水田(評価では Tall grass を入力)である。発火点を</u>		
	多少移動させたとしても周囲の植生・標高差に大きな違		
	いはないことから,風が発電所に向う発火点1,3の評価		
	結果に包絡される。また、同じ風向で評価を行う発火点		
	1,3を比較することで,発火地点から発電所までの距離		
	の違いによる延焼速度、火災規模等の確認が可能である。		
	(b) 発火点 2, 4, 7の妥当性		
	<u> 発火点 2, 4, 7の周辺は, マツ 40 年以上(評価ではマ</u>		
	ツ10年以上20年未満を入力)の植生が支配的である。		
	北側森林内で発火点を移動させたとしても、植生・標高		
	差に違いはないことから,評価結果は発火点 2, 4, 7の		
	結果に包絡される。また、同じ風向・同じ植生で評価を		
	行う発火点2,4を比較することで,発火地点から発電所		
	までの距離の違いによる延焼速度、火災規模等の確認が		
	可能である。		
	<u>(c) 発火点 5, 6 の妥当性</u>		
	発火点5は,発電所に影響を及ぼすおそれのある危険		
	物貯蔵施設がある地点に設定した。		
	発火点6は,最大風速記録時の風向を考慮し,発火点		
	1 と発火点 5 から比較的離れた間の地点を補間するよう		
	設定 した 。		
	(d) 発火点 1~7 以外の火災について		
	設定した発火点以外の火災については,発火点1~7の		
	評価結果に包絡される。以下の2か所において, 評価結		
	果が包絡される理由を示す。		
	・北西方向の居住地域		
	北西方向の居住地域で発生した火災が発電所へ延		
	焼する場合,まず発電所北側森林に延焼する。北側		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	森林の火災は風が発電所に向う発火点2,3,4,7の		
	評価結果に包絡される。		
	・ガソリンスタンド及び周辺居住区域		
	発電所に最も近いガソリンスタンド(県道284		
	<u> 号線沿い)及び周辺居住区で発生した火災が発電所</u>		
	へ延焼する場合,まず発電所西側森林が火災になる。		
	西側森林の火災は風が発電所に向う発火点 1,3,6		
	の結果に包絡される。		
	<u>d. 出火時刻の設定</u>		
	日照による草地及び樹木の乾燥に伴い、火線強度が増大		
	することから、これらを考慮して火線強度が最大となる出		
	火時刻を設定する。		
	<u>e評価対象範囲</u>		
	評価対象範囲は発電所から南北及び西側に 12km, 東側は		
	海岸線までとする。		
	<u>2.2 FARSITE入出力データについて</u>		
c. FARSITE 入出力データ	<u>(1)</u> FARSITE入力データ	<u>c</u> . FARSITE 入出力データ	
FARSITE については,保守的な評価となるよう以下の観点から	<u>FARSITE入力データとして気象,位置,時刻等に関</u>	FARSITE については, 保守的な評価となるよう以下の観点か	
入力値及び入力条件を設定する。	<u>するデータを第2.2-1表,土地利用に関するデータを第2.2-2</u>	ら入力値及び入力条件を設定する。	
	表,植生に関するデータを第 2.2-3 表,植生入力に関するフ		
	ローを第2.2-1図に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			東海第二発電所(2018.9.12版)				島根原子力発電所 2号炉				備考		
	<u>メ</u> ド	育 2.2-	-4 表 FARSITE 入力データ	第2.2-1表 FAR		表 FAR	<u>SITE入力データ(地形・気象等)</u>		<u>第2.2-4表 FARSITE 入力データ</u>				
大区分	小区分	入力値	入力値の根拠		項目	入力データ	備考		大区分	小区分	入力値	入力値の根拠	
	風速 [km/h]	58	火災の延焼・規模の拡大を図るため,森林火災発生件数が 多い月(3~5月)の発電所周辺の最大風速を入力 出火地点1.2:気象観測データに基づき3~5月の最大風	地形	標高 傾斜,傾 斜方位	第 2.1-1 図 参照	「基盤地図情報 数値標高モデル 10m メッシュ」の標高デー タ及び標高データから算出した傾斜,傾斜方位を入力(評価 ガイドどおり)			風速 [km/h]	80	火災の延焼・規模の拡大を図るため,森林火災件数が 多い月(3月~8月)の過去10年での最大風速を換算 して入力	
気象 データ 	風向 [deg]	158 (南南東) 135	出火地点1,2: (気象観病) シーモニション・5,500 (月)の最大風速 速記録時の風向及び最多風向 出火地点3: 気象観測データに基づき3~5月の最大風速		風速 (km/hr)	63	評価ガイドに基づき、茨城県内で森林火災発生件数が多い (12月~5月)の水戸地方気象台で観測された最大風速 (17.5m/s)に相当する 63km/hr を入力(評価ガイドどお り)		层鱼	風向	225 (南西)	森林火災が多く発生している月(3月~8月)の過去 10年での最多風向及び最大風速を観測した風向を角度 地質してみた	
	気温	(南東)	記録時の風向及び最多風向のうち, 南南東の次に多い風向 向 樹木の燃焼性を高めるため, 森林火災発生件数が多い月		風向	293 (西北西) 0 (北)	評価ガイドに基づき、茨城県内で森林火災発生件数が多い月		メ承 データ	[deg]	68 (東北東)	毎年 解析ケース1,2 :南西 解析ケース3,4,5 :東北東	
	[℃] 湿度 [%]	12	(3~5月)の発電所周辺の最高気温を入力 樹木の燃焼性を高めるため,森林火災発生件数の多い月 (3~5月)の発電所周辺の最小湿度を入力		(deg)	225 (南西) 45 (北東)	- (12 月~5 月)の早越風回と最大風速記録時の風回を入力 (評価ガイドどおり)			気温 [℃] 湿度	38	樹木の燃焼性を高めるため,森林火災発生件数が多い 月(3月~8月)の過去10年での最高気温を入力 樹木の燃焼性を高めるため,森林火災発生件数が多い	
	場所	_	植生調査データ、現地調査等で特定した樹種ごとの植生場所を入力	気象	最高気温 (℃) 最低気温	31	茨城県内で森林火災発生件数が多い月(12月~5月)の最高 気温(30.8℃)に対して、小数点以下を切り上げた31℃を 最高気温・最低気温として入力。最低気温に対しても31℃			[%]	12	月(3月~8月)の過去10年での最小湿度を入力 島根県から入手した森林簿の記載事項,現地植生調査 で特定した樹種により再現	
	441 6 5	10 豆八	植生調査データ, 現地調査等で特定した樹種を入力 1:Short grass, 3:Tall grass, 4:Chaparral, 5:Brush, 6:Dormant brush・hardwood slash, 10:Timber, 13:		(℃) 最高湿度 (%)	11	を入力することで保守的に気温の変化を考慮しない。(評価 ガイドどおり) 茨城県内で森林火災発生件数が多い月(12月~5月)の最小 湿度(11%)を入力。最高湿度に対しても11%を入力する			場所		植生不明の森林(小規模な道路含む)は樹種を燃えや すいスギを入力	
植生データ	倒裡	12 区分 Heavy logging slash, 14:スギ 林齢 10 年生未満, 19: マツ 林齢 10 年生未満, 20:マツ 林齢 10 年生, 24:落 葉広葉樹, 99:非植生 ※		最小湿度 (%) 降水量 (mm) 雲量	11 0	ことで,保守的に湿度の変化を考慮しない。(評価ガイドど おり) 降水が無い方が可燃物の水分量が少なくなり燃えやすくなる ため,保守性を考慮して,降水量は0を入力 日射が多い方が可燃物の水分量が少なくなり燃えやすくなる	3	植生 データ			島根県から入手した森林簿の記載事項及び現地調査 で特定した樹種を入力 1. Short grass, 3. Tall grass, 4. Chaparral, 5. Brush, 14. スギ (林齢 10 年生未満), 15. スギ (林齢 10 年生), 19. マツ (林齢 10 年生未満), 20. マツ (林齢 10 年生), 24. 落葉広葉樹, 99. 非植生※ 田, その他農用地, ゴルフ場, 発電所敷地外の草地は,		
	林齢 樹冠率	2区分 区分3	 植生調査テータに基つき、スキ・ビノキ、アカマツ・クロマツについて、10年生未満、10年生の2区分を設定 日照や風速への影響を考慮し、針葉樹、落葉広葉樹について、保守的な樹冠率区分(3・一般的な森林)を入力 	位置	(%) 0 緯度 0 (deg) 0 置 発火点 第 2.1-8 図 位置 参照	ため,保守性を考慮して,雲量は0を入力 日射が多い方が可燃物の水分量が少なくなり燃えやすくなる ことから,保行性考慮して,日射強度の高い赤道に設定 航空写真から位置を確認し,発電所から10km以内の当座標 位置に認定(評価サイドドキャ)			樹種	10 区分			
土地利用	建物,道 路,湖沼	_	発電所周辺の建物用地,交通用地,湖沼,河川等を再現 (国土交通省データ)	時刻	発火日時 発火時刻	3月 10時~14時 に火災が到達	茨城県内で森林火災発生件数が最も多い3月に設定 日射が多い方が可燃物の水分量が少なくなり燃えやすくなる ことわた 日射が多い時刻(10時〜14時)に発電可に火災					稲等の農作物の栽培状況により高さが異なることを考 慮しTall grass(高い草)を入力	
地形	等 標高,地	_	発電所周辺の土地の標高, 地形(傾斜角度, 傾斜方向)を再 現		樹冠率	<u>する時刻</u> 区分3	が到達するように設定 日照や風速への影響を考慮し,植生調査結果を踏まえ保守性 考慮して,樹冠率区分3(一般的な森林)を入力						
7-9	形		(国土地理院データ)	樹冠	樹高 (m) 樹冠下高さ	15	評価結果への寄与が大きい発電所周囲の植生調査結果(平均		坦日	小区刀	八刀帼	入力値の根拠 林齢により燃えやすさの異なる針葉樹(スギ,マツ) は,10年生未満,10年生,20年生,30年生,40年生以	
時刻	発火時刻	_	日照による草地及び樹木の乾燥に伴い, 延焼速度・火線強 度が増大することから, これを考慮して火線強度が最大		(m) 樹冠 かさ密度 (kg /m ³)	0.2	樹高13.4m)を踏まえた場合でも保守的となる, デフォルト 値を一律に適用した。		植生	林齢	2区分	上の5区分のうち,敷地内では現地調査で20年以上で あることを確認のうえ,より燃えやすい10年生を入力 敷地外では、火災の延焼,規模の拡大を図ること、当社	
*:1	 ~99 の数字	 ニは、FAR	となる発火時刻を設定 SITE の植生番号に対応。		(1187 111 7				データ			が管理できないことを考慮し最も燃えやすい 10 年生未 満を入力	
ן ק נ	 No. 1~13,99 は, FARSITE 内蔵値(FARSITE が保有する可燃物データ)。 No. 1~24 は, 福島第一原子力発電所への林野火災に関する影響評価(独立行政法人原子力安全基盤機構(INES)平成24年6月)。 								樹冠率	区分3	日射や風速への影響を考慮し,針葉樹,落葉広葉樹に ついて,保守的な樹冠率:区分3(一般的な森林)を入 力		
									土地利用 データ	建物, 道路, 河川等	_	発電所周辺の建物用地,交通用地,湖沼,河川等を再 現 (国土交通省データ)	
									地形 データ	標高, 地形	_	発電所周辺の土地の標高,地形(傾斜角度,傾斜方向) を再現 (国土地理院データ)	
									時刻 データ	発火時刻	_	日照による草地及び樹木の乾燥に伴い、延焼速度・火 線強度が増大することから、これを考慮して夏至の昼頃 (10:00~14:00 付近)に林縁に到達する発火時刻を設定	
									※ 1~9 No1 ² No14	99 の数字は ~13, 99 は 4~24が, 褚 (独立行	、,FARSITE 、,FARSITE 富島第一原子 政法人原子	の植生番号に対応。 内蔵値(FARSITE が保有する可燃物データ)。 - 力発電所への林野火災に関する影響評価 力安全基盤機構(JNES)平成24年6月)。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電	所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第2.2-2表	FARSIT	<u> E入力データ(土地利用データ)</u>		
	土地利用 区分	入力データ	備考		
	Ħ		森林火災の多い 12 月~5 月に田の可燃物量は少 ないが保守的に Tall Grass を入力		
	その他農用地	Tall Grass (高草:2.5ft)	草地・畑が多いが保守的に Tall Grass を入力		
	ゴルフ場		ゴルフ場の芝生は管理されているが,保守的に Tall Grassを入力		
	森林	森林簿及び植生調査 結果に従い,樹種・ 林齢ごとに設定	第 2.2-3 表 FARSITE 入力データ (植生データ) 参照		
	荒地	Provel	草の繁殖を考慮し, Brush を入力		
	建物用地	Brusn (茂み:2.0ft)	コンクリート等の非植生が多く延焼しにくいと 考えられるが,街路樹・庭等を考慮して Brush を入力		
	道路	-			
	鉄道	-			
	その他用地 	非燃焼領域	FARSITE 内蔵値を設定		
	及び湖沼 海浜	_			
	海水域	-			
		1	1		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二	発電所(2018.	9.12版)	島根原子力発電所 2号炉	備考
	第2.2-3 表 FAR	<u>S I T E 入力ラ</u>	「一タ(植生データ)」		
	樹種・林齢 区分	入力データ	備考		
	スギ・ヒノキ・カイズカイブキ 林齢 10 年未満	スギ林齢 10 年未満	JNES-RC-Report の FARSITE 植生 データを使用		
	スギ・ヒノキ・カイズカイブキ 林齢 10 年以上 20 年未満	スギ林齢 10 年以上 20 年未満	JNES-RC-Report の FARSITE 植生 データを使用		
	スギ・ヒノキ・カイズカイブキ 林齢 20 年以上 30 年未満		JNES-RC-Report の FARSITE 植生 データを使用		
	スギ・ヒノキ・カイズカイブキ 林齢 30 年以上 40 年未満	スギ林齢 10 年以上 20 年未満	20 年以上のスギに対しては保守 性を考慮して全て「林齢 10 年以		
	スギ・ヒノキ・カイズカイブキ 林齢 40 年以上		上 20 年未満」を入力		
	マツ・クロマツ林齢 10 年未満	マツ林齢 10 年未満	JNES-RC-Report の FARSITE 植生 データを使用		
	マツ・クロマツ林齢 10 年以上 20 年未満	マツ林齢 10 年以上 20 年未満	JNES-RC-Report の FARSITE 植生 データを使用		
	マツ・クロマツ林齢 森 20 年以上 30 年未満 林		JNES-RC-Report の FARSITE 植生 データを使用		
	簿 マツ・クロマツ林齢 ・ 30 年以上 40 年未満	マツ林齢 10年以上 20年未満	20 年以上のマツに対しては保守 性を考慮して全て「林齢 10 年以		
	生 調 査 40年以上		上 20 年未満」を入力		
	福 果 広葉樹 (クヌギ,サクラ等)	落葉広葉樹	JNES-RC-Report の FARSITE 植生 データを使用		
	竹林	Chaparral (低木の茂み:6ft)	竹林は直径が細く,密集度が高い ことから可燃物量・可燃物厚さが 大きい Chaparral を設定。なお, Chaparral は,低層植生の中で最 も保守的なパラメータである。		
	芝, 観葉植物	Short Grass (低草:1ft)	発電所構内は管理が可能なため, Short Grassを入力		
		Tall Grass (高草:2.5ft)	敷地外は Tall Grass を入力		
	植生が存在しない 範囲	Brush (茂み:2.0ft)	コンクリート等の非植生が多く延 焼しにくいと考えられるが,保守 性を考慮して Brush を入力		
	津波防護施設の火災防護のた め管理が必要となる 敷地外の範囲	非燃燒領域	定期的に管理を行い,植生がない 状態を維持するため非燃焼領域を 入力		
					1

No. 1.4.1 No. 1.4.1 No. 1.4.1 No. 1.4.1 No. 1.4.1	

	柏崎刈羽原	子力発	電所 6	6/7号炉 (20)17.12.20版)	東海第二発電所(2018.9.12版)		島	根原子	力発電所	2号炉	備考
第	2.2-6 表	各種	重土地利	用情報と FARSIT	Έ 入力データとの			第2.2-6表 各種土:	地利用	情報とFARS	ITE入力データとの関係	
			関係	§ (1/3)						(1/3)		
			КИ	(1/0)						(1/0)		
	十批利用	FARSIT	入力データ	備考		植生 (国十数值情報十批利用細分	FARSI	<u>IE 入力データ</u>				
		区分*1	種類			-		メッシュ)	区分*1	種類	5 ···	
				森林火災発生件数の多	い 3~5 月の田の可燃物量						PARCITE to #	
	田	3	Tall grass	は少ないと考えられる	が,保守的に「Tall grass」						FARSIIE 内蔵値 森林火災発生件数が多い 3~8 月	
				とする。 INES-DC-Demont*2 トログ	体子和学			H H	3	tall grass	の田の可燃物量は少ないと考え	
				JNES-RC-Report - と同-	守な設定			per l		turi grubb	られるが,保守的に「Tall grass」	
	ゴルフ場	3	Tall grass	えられろが 保守的に	「Tall grass」とする。						JNES-RC-Report ^{*2} と同等な設定	
	- / • / • •	0	Tall glass	INES-RC-Report ^{*2} と同	等な設定							
玉				その他農用地となって	いる箇所は草地のほかに果	-						
土				樹園等を含むため、延	焼速度が速く、火線強度も						FARSITE 内蔵値 ゴルフ場け管理されており可燃	
数	その他農用地	4	chaparral	高くなる「chaparral	低木の茂み」とする。			ゴルフ相		4-11	物量は少ないと考えられるが、	
自住				JNES-RC-Report*2よりイ	保守的な設定			コルノ場	3	tall grass	保守的に「Tall grass」として	
情				延焼速度,火炎長が大	きく、火災の勢いが強くな						入力した。 INES-RC-Report ^{*2} と同等な設定	
報	杰林	10	Timbor	る植生条件である FARS	SITE の「Timber リターと低							
	港水小小	10	TIMBET	木」とする。								
利				JNES-RC-Report*2より1	保守的な設定						FARSITE 内蔵値	
用				草の繁茂を考慮し, FAI	RSITE の「Brush 茂み」とす			この他の豊田地		4-11	その他農用地は可燃物量が少な	
細	荒地	5	Brush	る。				ての他の展用地	3	tall grass	として入力した。	
分				JNES-RC-Report*2と同生	等な設定						JNES-RC-Report ^{*2} と同等な設定	
*				植生が連続しておらず	, コンクリート等の非植生							
7	建脑田桃	-	David	も多く含まれ延焼しに	くいと考えられるか、仕毛 :et L FADSITE の [Puwer 英			森林	_	各樹種	森林簿データから各樹種を入力	
シ	建初用地	9	brush	1 2111日1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	思し、FARSITE の「brush 及 ·スこととする							
2				INES-RC-Report ^{*2} より	保守的な設定						FARSITE 内蔵値	
				Jille ne neper e oc y ,		-		: 11	_	Deve als	草の繁殖を考慮し保守的に	
	鉄道	-						元坦	5	Brush	「Brush」として入力した。	
	その他の用地	-		樹木等がないと考えら	れるため,「非植生(延焼し						JNES-RC-Report**と同等な設定	
	河川地及び湖沼	- 99	非植生	ない)」とする。	がた よ _い ラロィニナーナント			建物用地				
	海浜			JNES-RU-Report ~ 2 [6]	寺な設正方法。			道路			FARSITE 内蔵値	
	海水域							鉄道		北古什	樹木等がないと考えられるた	
*1:	可燃物データの出	典:						河川地及び湖沼	99	并他生	8,「非恒生(延焼しない)」と して入力した。	
	No. 1~13, 99 FAR	SITE 内蔵	値(FARSITE;	が保有する可燃物データ))			海浜			JNES-RC-Report ^{*2} と同等な設定	
	No. 14~24 JNES-R	C-Report*	² の FARSITE 桁	直生データ				海水域				
*2:	福島第一原子力発 (nma) 平式 at 2	電所への	林野火災に閉	関する影響評価 独立行政	y 法人原子力安全基盤機構			*1:可燃物データの出典:No.	1~13, 99	FARSITE 内蔵値	(FARSITE が保有する可燃物データ)	
	(JNES) 平成 24 年	り月						NC まで、毎日笠一百乙九珍蚕託。	5.14~24 JI の#±■によが	NES-KU-Keport ^{**} (クFARSIIE 旭生アーダ	
								* 2: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	リヤトヨアクスタ	に関りる影響計1	1 强立11或法八原于刀女主塞篮機構	
								(JNE3) 十成 24 平 0 万				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原	子力発電所 2号炉		備考
第 2.2-6 表 各種土地利用情報と FARSITE 入力データとの		第2.2-6表 各種土地利	用情報とFARSITE入力ラ	「ータとの関係	
関係(2/3)			(2/3)		
土地利用 FARSITE 入力データ 備考 区分 種類		植生 (森林簿及び構内植生調査結果) 区	FARSITE 入力データ 公分*1 種類	備考	
アカマツ群落 19 マツ 林齢 10 年生未満 発電所構外のマツの林齢が不明である ため、可燃物データは保守的に「マツ林 齢 10 年生未満」とする。		アカマツ, クロマツ, カラマツ 林齢 10 年生未満	19 <発電所敷地外> マツ 林齢 10 年生未満		
スギ・ヒノキ・ サワラ植林 14 スギ 林齢 10 年生未満 発電所構外のスギの林齢が不明である ため,可燃物データは保守的に「スギ林 齢 10 年生未満」とする。		アカマツ, クロマツ, カラマツ 林齢 10 年生	19 <発電所敷地外> マツ 林齢 10 年生未満		
竹林 4 chaparral FARSITE デフォルト植生の中で最も可燃 物量,可燃物深さが大きく火線強度等が 高くなり保守的な値として「Chaparral」 とする。		アカマツ, クロマツ, カラマツ 林齢 20 年生	19 <発電所敷地外> マツ 林齢 10 年生未満		
※ オニグルミ群落 境 コナラ群落 全 ブナーミズナラ		アカマツ, クロマツ, カラマツ 林齢 30 年生	19 <発電所敷地外> マツ 林齢 10 年生未満	JNES-RC-Report ^{*2} のFARSITE 植生デー	
		アカマツ、クロマツ、カラマツ	19 <発電所敷地外> マツ 林齢 10 年生未満	タを使用 <発電所敷地外> 当社が調査・管理が	
植 生 調 オーズルミ联邦		林師40年生以上(~数日年)	20 < 先電所数地内ク	できないことを考慮し、保守的に全て	
査 イークルく群落 植 ヤナギ低木群落 生 ヤナギ高木群落		スギ, ヒノキ, ヒバ, モミ, その他針葉樹 林齢 10 年生未満	14 <発電所敷地外> スギ 林齢 10 年生未満	林齢10年生未満と して入力した。 <発電所敷地内> 保守的にすべて林	
デ ハンノキ群落 24 落葉広葉樹 広葉樹の樹種をひとつにまとめ、「落葉 1 イヌシデーアカ シデ群落 24 落葉広葉樹 広葉樹」とする。		スギ, ヒノキ, ヒバ, モミ, その他針葉樹 林齢 10 年生	14<発電所敷地外> スギ 林齢 10 年生未満	齢 10 年生として入 力した。	
エゾイタヤ-シ ナノキ群団 カシワ群団		スギ, ヒノキ, ヒバ, モミ, その他針葉樹 林齢 20 年生	14 <発電所敷地外> スギ 林齢 10 年生未満 15 <発電所敷地内> コギ 林齢 10 年生		
チシマザサ-ブ ナ群団		スギ, ヒノキ, ヒバ, モミ,	スキ 林師 10 年生 14 <発電所敷地外> スギ 林齢 10 年生未満		
コナラ群落 スダジイ群落		その他針集樹 林齢 30 年生	15<発電所敷地内> スギ 林齢 10 年生		
タブノキ祥落		スギ, ヒノキ, ヒバ, モミ, その他針葉樹	14 <発電所敷地外> スギ 林齢 10 年生未満 < 発電所敷地内>		
		林齢 40 年生以上(~数百年) *1:可燃物データの出典:No.1~13.	15 スギ 林齢 10 年生 99 FARSITE 内蔵値(FARSITE が保	有する可燃物データ)	
		No. 14~2	4 JNES-RC-Report ^{*2} の FARSITE 植生	データ	
		*2:福島第一原子力発電所への林野 (JNES) 平成 24 年 6 月	火災に関する影響評価 独立行政法	去人原子力安全基盤機構	

	柏崎刈羽原	夏子力	発電所 6/7-	号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
第	2.2-6 表	名	和主地利用情報	eと FARSITE 入力データとの	第2.2-6表 各種土地利用情報とFARSITE入力データとの関係	
			関係(3/3	3)	(3/3)	
	土地利用	FARSI	TE 入力データ 種類	— 備考	植生FARSITE 入力データ(森林簿及び構内植生調査結果)区分*1種類	
	草地	1	Short grass	管理された植生に対して草の繁殖を考 慮し FARSITE デフォルト値の「Short mass」とする	広葉樹(クヌギ,ケヤキ,サク ラ,ナラ等) 24 落葉広葉樹 JNES-RC-Report ^{*2} の FARS ITE 植生デー タを使用	
構内植生調	荒地 街路樹(中低 木)	5 6 6	Brush Dormant brush, hardwood slash 姿章広泰樹	草の繁茂を考慮し、FARSITEの「Brush 茂 みとする。」 草の繁茂を考慮し、FARSITEの「Brush 茂 み」よりも林床可燃物の多い「Dormant brush、hardwood slash」とする。 租地調査の結果 広葉敏が主な植生の工	竹林(ハチク,マダケ,モウソ ウ等)4FARSITE 内蔵値 FARSITE 内蔵値の中 で最も可燃物量,可 燃物深さが大きく 火線強度が高くな り保守的な値であ る「Chaparral」と して入力した。	
查結果	構内のマツ林 (10 年生以	24	マツ 林齢 10 年生	 現地植生調査の結果,20年生以上のマツ でも林床に下草・中低木が存在する箇所 	14 <発電所敷地外> スギ 林齢10年生未満 JNES-RC-Report*2 0 FARSITE 植生デー タを使用 <発電所敷地外> 当社が調査・管理が できないことから	
	上)			があることから,保守的に「マツ 林齢 10 年生」とする。	 樹種不明の森林 24 <発電所敷地内> <発電所敷地内> ※幕葉広葉樹 <年(中的に全てスギ 本齢10年生未満として入力した。 <発電所敷地内> 発電所敷地内 発電所敷地内は落 薬広葉樹であることを確認した。 	
					3 tall grass 日本地 日本地 日本地 日本地 日本地 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	
					^{早地} 1 Short grass 1 Short grass 1 Short grass 1 L	
					 *1:可燃物データの出典:No.1~13,99 FARSITE 内蔵値(FARSITE が保有する可燃物データ) No.14~24 JNES-RC-Report[∞]の FARSITE 植生データ *2:福島第一原子力発電所への林野火災に関する影響評価 独立行政法人原子力安全基盤機構 (JNES) 平成 24 年 6 月 	

柏崎刈	羽原子力	発電所	6/7号	·炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>d.</u> 自然環	境保全基	礎調査					・条件の相違
植生調	査データ	と森林簿	との関係	系「原子力発電所の外部火災			【柏崎 6/7】
影響評価	ガイド」	の附属書	► A 「森材	林火災の原子力発電所への影			島根2号炉は,「森林
響評価に	ついて」	において	,植生デ	ータの整備に当たって、「森			簿」に基づき, 影響評
林簿の情	報を用い	て、土地	利用デー	-タにおける森林領域を,樹			価を実施
種・林齢	によりさ	らに細分	・化する」	とされている。			
柏崎刈	羽原子力	発電所で	は,個人	、情報保護の観点から森林簿			
の入手が	困難であ	ったため	,環境省	自然環境保全基礎調查植生			
調査デー	タ及び現	地調査の	結果を用	引い、森林簿を用いたものと			
同等の植	生データ	を作成し	し,評価	を実施した。			
第 2.2	-8 表に,	各資料0)記載内約	容の比較と, FARSITE 入力デ			
ータの設	定方針を	示す。					
樹種に	ついて,	森林簿と	同等の情	青報が利用可能な自然環境保			
全基礎調	査植生デ	ータ及び	現地調査	E結果に基づき設定し,自然			
環境保全	基礎調査	植生デー	タに記載	成がない林齢は、水分量が多			
い生きた	木質の可	燃物量が	より少な	く燃焼しやすい、若く保守			
的な値に	設定して	いること	から, 柔	森林簿を用いた場合と同等か			
より保守	的な森林	火災影響	評価結果	が得られる。			
第 2.2-8 录	長 植	生データ	作成に用	引いる資料の比較と設定方針			
FADSITE	本壮盛	白����	· 田小調本	FADSITE入力データ設定支針			
「FARSITE 入力データ	*****薄 (ガイド	日然環境保全調査	(構内)	FARSILE 八刀子一ク設定力更			
4 示	記載)			は仕調本データ 現地調本堂で株字			
*///			0	福生調査) - ク, 現地調査等 (特定 した樹種ごとの植生場所を入力			
樹種	0	0	0	植生調査データ,現地調査等で特定			
林齢	0	×	0	スギ・ヒノキ, アカマツ・クロマツ			
		(保守的に 記定)		について, 10 年生未満, 10 年生の			
		に取足り		2 区方を用いる 発電所構外については,林齢の特定			
				が困難であることから、保守的に			
				10年生未満を入力 発電所構内については、現地調査の			
				結果を踏まえ入力			
樹冠率	×	×	×	樹冠率については,植生調査からの			
		(保守的 (保守的)	(保守的に	特定が困難であることから、日照や			
		[に設定]	設正)	四述への影響を考慮し, 針栗樹, 洛 葉広葉樹について 保守的た樹写率			
				区分(3:一般的な森林)を入力			
○:情報あり),×:情報	なし		·			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
e. 植生調査の詳細について	(2) 発電所周囲の植生調査	<u>d</u> .植生調査の詳細について	
植生調査は,発電所構内林及び防火帯周辺についてウォークダ	発電所周囲の森林に対して植生調査を行い、樹種、林齢等	植生調査は、発電所構内及び防火帯周辺についてウォークダ	
ウンをし,樹種,林齢,低木及び下草の有無を確認した。	の状況を確認し、 FARSITE入力データに反映する。	ウンをし, 樹種, 林齢, 低木及び下草の有無を確認した。	
(a)調査内容		(a) 調査内容	
発電所構内の森林全域の植生及び防火帯予定地に沿って森林		発電所構内の森林全域の植生及び防火帯予定地に沿って森林	
側の植生を調査し記録した。(第 2.2-5 図 <u>, 第 2.2-6 図</u>)		側の植生を調査し記録した。(第 2. 2-5 図)	
(b)調査者の力量	<u>a. 植生調査期間</u>	(b) 調査者の力量及び調査期間	
発電所構内の植生について詳しく,かつ1級造園施工管理技	平成28年8月1日~8月3日	①構内植林の管理を行っている森林管理業務の委託責	
士の国家資格を有する者が調査を実施した。	<u>b. 植生調査者の力量</u>	任者等2名(一級造園施工管理技士1名を含む)を	
	植生調査に適した資格・経験年数を有している3名で実	含む計10名により調査を実施した。	
(c)調査期間	施した。調査者の所有資格・経験年数を第2.2-4表に示す。	調査期間: 平成 26 年 2 月 25 日 (火) ~ 28 日 (金)	
2014 年 4 月 23 日~5 月 30 日(約 40 人日)		②構内植林の管理を行っている森林管理業務の委託責	
2016 年 11 月 9 日~11 月 30 日(約 20 人日)	第2.2-4表 植生調査実施者 所有資格・経験年数	任者等3名(一級造園施工管理技士1名を含む)を	
	资格	含む計6名により調査を実施した。	
	A 技術士(森林部門),林業技士,森林情報士 10年以上	調査期間: 平成 28 年 4 月 4 日 (月)	
	B 林業技士 10 年以上	③構内植林の管理を行っている森林管理業務の委託責	
	C — 5年	任者等3名(一級造園施工管理技士1名を含む)を	
		含む計5名により調査を実施した。	
		調査期間: 平成 30 年 1 月 22 日 (月)	
(d)調査結果	c. 植生調査結果	(c) 調査結果	
現地調査は、発電所構内林及び防火帯周辺で実施した。	<u>(a) 植生調査ポイント</u>	現地調査は、発電所構内及び防火帯周辺で実施した。	
	植生調査は当社敷地内及び発電所に隣接する日本原子		
	力研究開発機構敷地を調査範囲とする。調査ポイントを		
	第2.2-2図に示す。		

和喻刈羽原子刀発電所 6/7号炉 (2017.12.20版)	
Image: Control of the second secon	

柏崎	奇刈羽原子力	発電所 6	/7号炉	(2017.12.20)版)			東海第二発電	所(2018.9.12	版)		島根原子力発電所 2号炉							備考	
第_2	2.2-9 表	代表的な記	間査ポイン	ント及び植生調	查結果		2 1 3	第2.2-5 表 植	直生調査結果(1/3)		第2.2	-8.表代	表的な記	周査ポイン	/ト及び	植生調査	結果(1/4)	
ポイン	胡	上調本結果		EADSITE 7 -	万荷	ポイント	植生区分	店 徵	林齡起圳	FARSITE	保守性		植生調	を前						
	植種	工 前 旦 和 未 一 林 齢	下草	横種・林齢	下草	No.	恒工区力	741 171	77 HP 12 22	入力データ	INVILL	ポイント	(森林簿べ	ニース)	植生調子	至結果	FARSITE 🌶	力値	下草	
1)-a	マツ	25 年生以上	約 50cm	マツ 10 年生	約 183cm			海岸抜生の熱海し」	1975年(空中写真か			No.	樹種	林齢	樹種	林齢率	樹種	林齡		
(2)−a	スダジイ	25 年生以上	約 30cm	落葉広葉樹	約 183cm	1	クロマツ 40 年以上	一 一 一 年 他 生 の 特 倒 と し て 強 風 の 影響に よ り	ら判読)においてク ロマツの森林が成	マツ林齢 10年以上20年末満	0				広葉樹	-	広葉樹	_	約 183cm	
3-a	マツ	40 年生以上	約 50cm	マツ 10 年生	約 183cm		40 7 Ø T	矮性化している。	立。節の数。	10 平秋1.20 平州间		1	広葉樹	_	マツ	40 年生以上	マツ	10 年生	約 183cm	
(13-a	雑草	-	約 50cm	Brush	約 61cm							1			発電所用地	—	発電所用地	—	-	
16-a	マツ	40年生以上	なし	マツ 10 年生	約 183cm			強風の影響化にあ り 一般的な成長と	1975 年 (空中写直か)				森林	-	海岸	-	<u></u> #2	_	-	
	シャリンバ	30 年生以上	約 30cm	Dormant Brush,	約 76cm	2	クロマツ	り, 成時な成長と 比較して樹高は低め	ら判読) においてク	マツ林齢	0	2	広葉樹	_	広葉樹	-	広葉樹	—	約 183cm	
I⑦−a	イ,シロダモ			Hard Wood slash			40 年以上	である。常緑広葉樹 の低木が繁茂してい	ロマツの森林が成 立。節の数。	10年以上20年未満		-	スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
	等							る。				3	広葉樹	-	広葉樹	-	広葉樹	—	約 183cm	
								造成後に捕載された				4	スギ	10 年生	発電所用地	-	発電所用地	-	-	
								林分であり,一般的	1980年代(空中写真			5	スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
						3	クロマツ20 年以上	な成長を示してい る。立木密度が高	から判読)に植栽。	マツ林齢 10 年以上20 年末満	0	6	スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
								く、低木は見られない	前の数。			7	スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
								v 'o				8	スギ	10 年生	発電所用地	-	発電所用地	_	_	
												9	スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
						4	_	開発されて植生なし	_	_	_	10	森林	-	広葉樹	-	広葉樹	_	約 183cm	
								(2017年現在)				11	広葉樹	_	広葉樹	-	広葉樹	_	約 183cm	
												12	広葉樹	-	広葉樹	-	広葉樹	_	約 183cm	
									1975 年(空中写直か			13	広葉樹	_	広葉樹	-	広葉樹	_	約 183cm	
						5	クロマツ	クロマツの下層に, クロマツが一部補植	ら判読) においてク	マツ林齢	0				(敷地内)	_	広葉樹	_	約 183cm	
							40 年以上	されている。	ロマツの森林が成立。節の数。	10年以上20年末満			(敷地内)	_	広葉樹					
													広葉樹		(敷地内)	_	発電所用地	_	_	
															発電所用地					
												14	(敷地外)	_	(敷地外)	_	スギ	10 年生	約 183cm	
													その他森林		その他森林			未満		
													(敷地外)	40 年生	(敷地外)	_	スギ	10 年生	約 183cm	
													スギ	以上	スギ			未満		
													(敷地外)	40 年生	(敷地外)	_	マツ	10 年生	約 183cm	
													マツ	以上	77			未満		
												15	広葉樹	-	発電所用地	_	発電所用地	_	_	
												×1 : ×0 · · *	早か 180cm 以	下であるこ	. とを催認。 - End					
												×2 : ∄	「戸廠形状を評	価モテルに	-					
																				,

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)						島根原子力発電所 2号炉							備考
		第2.2-5表	植生調査結果(2/3)		第2.	2-8表	、表的な	周査ポイン	ント及び	植生調査組	結果(2	<u>/4</u>)	
	ポルト No. 植生区分	• 特 徵	林齡根拠	FARSITE 入力データ	保守性	ポイント	植生調	『査前 ベース)	植生調	查結果	FARSITE 2	入力値	下草	
			1975 年(空中写真か			190.	樹種	林齢	樹種	林齡 ^{術1}	樹種	林齡		
	6 クロマツ 6 40 年以」	 クロマツの下層に, クロマツが自然発生 	ら判読)においてク ロマツの森林が成	マツ林齢 10 年以上 20 年未満	0	16	広葉樹		発電所用地		発電所用地	-	—	
		している。	立。節の数。			17	大葉樹		96电所用地 広葉樹		光电所用地 広葉樹	_		
						18	その他森林		発電所用地		発電所用地	_		
	アカマン	アカマツの下層には	1975年(空中写真か ら判読)においてア	マツ林齢			広葉樹	_	広葉樹	_	広葉樹	_	約 183cm	
	40年以_	- 常 線 茂 している。 - 、 - - - - - - - - - - - - -	カマツの森林が成 立。節の数。	10年以上20年末満		19					(敷地内) マツ	10 年生	約 183cm	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	アカマツの下層は低	1975年(空中写真か				77	40 年生以上	77	40 年生以上	(敷地外) マツ	10 年生 未満	約 183cm	
	8 40年以」	木を取り払い管理されている。	ら刊記)において) カマツの森林が成	10年以上20年未満	0	20	広葉樹	_	広葉樹	_	広葉樹	_	約 183cm	
			立。町の数。			21	広葉樹	_	広葉樹	-	広葉樹	-	約 183cm	
			1075 年(沈市写古ふ、			22	広葉樹	-	広葉樹	-	広葉樹		約 183cm	
	9 クロマツ 9 のない	 クロマツの下層に落 葉広葉樹の低木が繁 	1975 年 (空中与真か) ら判読) においてク	マツ林齢	0		スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
	40年以_	茂している。	ロマツの森林か成 立。節の数。	10年以上20年末商		23	スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
						24	スギ	10 年生	発電所用地		発電所用地	-	-	
		クロマツの下層に,	1975年(空中写真か				広栗樹		公果樹 		広果樹 		約 183cm	
	10 クロマツ 40 年以」	自然に発生したと見 られるアカマツが生	ら判読)においてクロマツの森林が成	マツ林齢 10年以上20年未満	0	25	竹林	_	広葉樹		広葉樹		約 183cm	
		育している。	立。節の数。				森林		広葉樹		広葉樹		_	
							スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
	11 アカマツ	 アカマツの下層に常 緑広葉樹の低木が繁 	1975 年(空中写真か ら判読)においてク	マツ林齢		26	広葉樹	_	広葉樹	_	広葉樹	-	約 183cm	
	40 年以		 ロマツの森林が成 立。節の数。 	10年以上20年末満		27	広葉樹	_	広葉樹	-	広葉樹	-	約 183cm	
							スギ	40 年生以上	スギ	20 年生以上	スギ	10 年生	約 183cm	
		アカマツの下層低木				28	広葉樹	_	広葉樹		広葉樹	-	約 183cm	
	12 常緑 広葉樹林	 であった常用広葉樹 が 生育 し 支 配 的 と 	_	落葉広葉樹	-	29	広葉樹	_	広葉樹		広葉樹	-	約 183cm	
		なった。					広葉樹		広葉樹		広葉樹		赤J 183cm	
						30	森林	_	広葉樹	_	広葉樹	_	約 183cm	
	アカマン	 極地的にアカマツが 植栽されている。植 	Arte an state			31	広葉樹		広葉樹		広葉樹	_	約 183cm	
	13 10 年以」	生図に反映するほど の面積はない。	前の数。	洛果丛果樹	_	≫1 :	下草が 180cm J	以下であるこ	とを確認。			1		
		million or - 0												

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)							島根原子力発電所 2号炉							備考	
			第 2. 2-5 表 析	直生調査結果(3/3)		第.2	. 2-8	表代	表的な訓	間査ポイン	(ト及び)	植生調查維	結果 (3	3/4)	
	ポイント No.	植生区分	特徵	林齡根拠	FARSITE 入力データ	保守性	ポイン	~ ŀ	植生調3 (森林簿べ	査前 ニース)	植生調查結果		FARSITE J	人力值	下草	
-			1096 年間前に靖恭さ				No.		樹種	林齢	樹種	林齢 ^{率1}	樹種	林齢		
	14	クロマツ	1560 牛び前に福秋された林分であり、一	1980年代(空中写真 から判読)ど施設	マツ林齢		32		スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
	1.4	20 年以上	私的な成長を示して いる。低木は見られ	節の数。	。 10 年以上20 年未満				広葉樹	_	広葉樹	-	広葉樹	_	約 183cm	
-			14.0.0				33		森林	-	発電所用地	-	発電所用地	-	-	
			クロマツの下層に常	1975年(空中写真か)			34	-	スキ 広葉樹	10 年生	広葉樹	20 年生以上	広葉樹	10 年生	約 183cm	
	15	クロマツ 40 年以上	緑広葉樹の低木が繁 茂している。	ら 判読) において森 林が成立。 筋の数。	マツ林齢 10年以上20年未満	0			スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
			,	11-W 194-110 140-1940			35		広葉樹	_	広葉樹	-	広葉樹	_	約 183cm	
							36		マツ	40 年生以上	マツ	40 年生以上	マツ	10 年生	約 183cm	
	16	落葉	クロマク林の下層低 木であった落葉広葉	_	落葉広葉樹	_	37		スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
		広葉樹	樹が生育し支配的に なった。				38		広葉樹	_	広葉樹	-	広葉樹	_	約 183cm	
-								-	スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
		white white	クロマツ林の下層低				39	-	広果樹	_	必栗樹 	_	広栗樹 発電所田地		新] 183cm	
	17	洛莱 広葉樹	本であった落葉広葉 樹が生育し支配的に	-	落葉広葉樹	-			広葉樹	_	広葉樹	_	広葉樹		約 183cm	
			なった。				40		スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
									マツ	40 年生以上	マツ	40 年生以上	マツ	10 年生	約 183cm	
	18	低草地	雑草等の 0.3m低草	_	Short Grass	_			広葉樹	_	広葉樹	-	広葉樹	_	約 183cm	
			地。		(仏卓:1ft)		41		スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
-									マツ	40 年生以上	マツ	40 年生以上	マツ	10 年生	約 183cm	
			しょうなりなってい、知		世辺しまるショントが用し		42	_	荒地	_	発電所用地	-	発電所用地	_	-	
	19	高草地	セイタガ等の1.0m栓 度の草地。	-	早刈りを行い Brush 管理と する。	-	40	_	広葉樹	_	発電所用地	_	発電所用地			
							44		スギ	10 年生	発電所用地	_	発電所用地		_	
					コンクリート等の非				広葉樹	-	発電所用地	-	発電所用地	_	_	
	20	建物用地	_	_	植生が多く延焼しに くいと考えられる	_	45		スギ	40 年生以上	発電所用地	_	発電所用地	_	_	
					が,保守性を考慮し て Brush を入力		46		スギ	10 年生	発電所用地	-	発電所用地		_	
							47		スギ	10 年生	スギ	20 年生以上	スギ	10 年生	約 183cm	
							48	-	広葉樹	-	広葉樹	-	広葉樹	-	約 183cm	
							×1	 · 下甘+	メキ が 180cm じ	 下であろ [►]	レシロ語	20 年生以上	74	10 年生	彩 183cm	
							×1	• 平4	04 1000m JA		こ "江中田小心"					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉								
	第2.1	2-8表	代表的な	調査ポイン	ント及び	植生調査	結果(4	4/4)		
		植生調查的								
	ボイント Na	ト (森	(簿ベース)	植生調	查結果	FARSITE	入力値	下草		
		樹稚	林齢	樹種	林齢 ^{率1}	樹種	林齢			
	49	広葉樹	40 45 45 21 1.	広葉樹		広葉樹	10 45 45	約 183cm		
		広華樹	40 平生以上	広葉樹	20 中主以上	広塞樹		※9 183cm		
		スギ	40 年生以上	スギ	20 年生以上	スギ	10 年生	約 183cm		
	50	マツ	40 年生以上	マツ	40 年生以上	マツ	10 年生	約 183cm		
		竹林	_	広葉樹	_	広葉樹	_	約 183cm		
	51	竹林	_	広葉樹	_	広葉樹	_	約 183cm		
	52	広葉樹	_	広葉樹	_	広葉樹	_	約 183cm		
		スギ	40 年生以上	スギ	20 年生以上	スギ	10 年生	約 183cm		
		その他森		広葉樹	-	広葉樹	-	約 183cm		
	53	11.11		発電所用地		発電所用地	_	-		
		竹林		広葉樹		広集樹	10 45 45	彩 183cm		
	54		40 平生以上	(敷地外)	20 中主以上	~+	10 - 生	#9 183cm		
		その他森	. –	その他森林	_	スギ	10 年生未満	約 183cm		
		その他森	; _	広葉樹	_	広葉樹	_	約 183cm		
	55	The other at 111		発電所用地						
		発電所用:		(一部植生)	_	Short grass	_	_		
	56	広葉樹	_	広葉樹	_	広葉樹	_	約 183cm		
	57	その他森		広葉樹	-	広葉樹	-	約 183cm		
	58	広葉樹		広葉樹	-	広葉樹	-	約 183cm		
		その他森		スキ (唐伝統例)	20 年生以上	スギ	10 年生	彩 183cm		
		その他森	. –	その他森林	_	スギ	10 年生未満	約 183cm		
	59	(敷地外)		(敷地外)						
		マツ	10 年生	マツ	_	マツ	10 年生未満	約 183cm		
		広葉樹	_	広葉樹	_	広葉樹	_	約 183cm		
	60	(敷地外)	_	岩地	_	茂み	_	_		
		荒地								
	*1:	下草が 1800	n以下である、	ことを確認。						
									1	
									1	
									1	
									1	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考							
---	---------------------	--------------	----							
<figure><image/><image/><image/><image/><image/><image/></figure>										

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海	第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
マルルセン 砂利が敷かれているところ	ホ°イント No.	植生区分	植生写真		植生サンプル	
かあるか雑草の繁茂や鳥等 が這う可能性を考慮し、全面 を「Brush」とする。		クロマツ 40 年以上		落葉広葉植	t 福主アラブル 雑木林(落葉樹 , 広葉 樹)の植生は落葉広葉樹 とする。	
<中低木> 草の繁茂を考慮し, FARSITE の「Brush 茂み」よりも林床	1	強風の影響によ り矮性化してい る。			敷地内のマツは発電 所建設以前より自生し	
可 燃 物 の 多 い 「 Dormant brush, hardwood slash」と する。		アカマツ 40 年以上		マツ	ているものが多く樹齢 は40年生以上と推測さ れるが,保守的に植生を 10年生のマツとして入 力する。	
<落葉広葉樹> 構内で一部広葉樹が群生しているエリアについては、 「落葉広葉樹」とする。なお、 広葉樹の下草の状況は林齢によってほとんど変わらな	11	アカマツの下層 に常縁広葉樹の 低木が繁茂して いる。		スギ	新地内のスキは発電 所敷地造成時の緑化対 策として造林したもの が多く樹齢は少なくと も20年生以上であり、下 草刈り等の手入れもさ れているが、保守的に植 生を10年生のスギとす	
 いことを考慮し,落葉広葉樹 の可燃物データは,林床には 草や低木が存在する状況を 想定している。 第 2.2-7 図 発電所構内の植生 (1/3) 	12	常緑 広葉樹林 アカマツ林の下 層低木であった 常用広葉樹が生 育し支配的と なった。		草地	る。 多。 発電所の法面用地は森林部からの延焼は考えにくいが、保守的に植生を草地とする。 第2.2-6図 発電所構内の植生(1/2)	
		<u>第.2.2</u>	2-3 図 代表植生写真 (1/2)			

寺炉	備考
敷地内の竹林は伐採 管理がされており支配 的に存在する箇所はな い。発電所敷地外では広 範囲に群生している。	
アスファルト舗装, 砂 利敷きがされているこ とから非植生とする。	
(2/2)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二	発電所(2018. 9. 12	2版)	島根原子力発電所 2号炉	備考
	<u>(c)</u> 樹種	・林齢が混	在してい	るエリアの	のデータ入力について		
	樹和	重・林齢が	混在してい	いるエリ	アについては、単位面		
	積当1	りの材積	割合から	入力デーグ	タを決定した。マツ40		
	年生0)下層に細	いマツ・ノ	<u>広葉樹が</u>	字在したとしても,材		
	積割合	からみれ	ば微量でる	あるため,	材積割合が支配的な		
	樹種	林齢を選	択する。	下層に広望	葉樹の侵入・クロマツ		
	の補植	「等がみら	れたポイン	<u>> ト No. 2</u> ,	5, 6, 7, 9, 10, 11,		
	<u>12, 1</u>	5 の材積割	合を第2.	2-6 表に	示す。		
		第 2. 2-6 表	き 各プロ	ットの材	積割合		
		ha 当たりの标	才積 (m³/ha)				
	ボ イント No. マツ	胸高直径	広葉樹	胸高直径	支配的な樹種と その材積割合		
	8cm 以上	8cm 未満	8cm 以上	8cm 未満			
	2 196	0	9	0	マツ 8cm 以上 95%		
	5 166	0	2	1	マツ 8cm 以上 98%		
	6 103	4	0	0	マツ 8cm 以上 96%		
	7 443	0	11	1	マツ 8cm 以上 97%		
	9 287	0	0	2	マツ 8cm 以上 99%		
	10 342	1	0	0	マツ 8cm 以上 99%		
	11 232	0	0	1	マツ 8cm 以上 99%		
	12 60	0	236	0	広葉樹 8cm 以上 79%		
	15 55	0	3	1	マツ 8cm 以上 93%		
	(d) 今後の植生管理について 植生管理については火災防護計画に定め,設定した防 火帯幅が変わることがないよう,定期的に植生調査を実 施し植生の管理を行う。また,津波防護施設と植生の間 の離隔距離を確保するために管理が必要となる隣接事業 所敷地については,隣接事業所が有する当該箇所の敷地 において,当社が必要とする植生管理を当社が実施(維 持・管理)する。						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
ƒ. FARSITE の入力条件(林齢の設定)	(3) 針葉樹, 広葉樹の可燃物データ設定について	.e FARSITE の入力条件(林齢の設定)	
福島第一原子力発電所への林野火災に関する影響評価(独立行	マツ,スギ,落葉広葉樹等の可燃物パラメータは「福島第	東京電力福島第一原子力発電所への林野火災に関する影響評	
政法人原子力安全基盤機構(JNES) 平成 24 年 6 月) では, <u>マツ</u>	一原子力発電所への林野火災に関する影響評価」(独立行政法	価(独立行政法人原子力安全基盤機構(JNES) 平成24年6月)	
を 10 年生未満から 40 年生以上の 5 つに分類した追加植生デー	人原子力安全基盤機構) で使用されているデータを使用した。	では, <u>スギ (スギ, ヒノキ) 及びマツ (アカマツ, クロマツ)</u>	
タを作成している。10 年生未満, 10~20 年生及び 20~30 年生	<u>a. 針葉樹の設定</u>	を10年生未満から40年生以上の5つに分類した追加植生デー	
のマツについては, FARSITE のデフォルト植生の中で最大の可燃	発電所周囲の植生はほとんどが林齢 40 年以上のマツ・ク	タを作成している。10 年生未満,10~20 年生及び 20~30 年生	
物深さである 2m 程度の下草・低木がある状況としている。 <u>また</u> ,	ロマツであるが,保守性を考慮して,林齢 20 年以上のマ	のスギ・マツについては, FARSITE のデフォルト植生の中で最	
林床可燃物量(下草・低木の量)は 10 年生未満及び 10~20 年	ツ・クロマツの林齢を一律に 10 年以上 20 年未満としてF	大の可燃物深さである2m 程度の下草・低木が有る状況として	
生のマツについては, FARSITE の低層植生の中で最も可燃物量の	<u>ARSITEに設定した。</u>	いる。林床可燃物量(下草・低木の量)は 10 年生未満及び 10	
多い状況としている。	針葉樹(スギ、ヒノキ、カイズカイブキ、マツ、クロマ	~20 年生のマツについては, FARSITE の低層植生の中で最も可	
なお,…生きた木質の fuel 量は,…林齢が大きくなるにつれて大	ツ)については、人工林であり、森林簿において、樹木の	燃物量が多い状況としている。また,生きた木質の fuel 量は林	
きい値を使用している。	生長状況を示す林齢が記載されている。	齢が大きくなるにつれて大きい値を使用している。	
	<u>FARSITE入力データとして針葉樹の設定について</u>		
	は、実際の森林状況を可能な限り反映するため、針葉樹の		
	地面下草等の可燃物量を林齢に基づき区分している。なお、		
	林齢が増えると、地面下草が減少する。第2.2-7表に針葉		
	樹と広葉樹の林齢による地面下草の違いを示す。		
	<u>b. 広葉樹の設定</u>		
	広葉樹は多くが天然林であるため、林齢は一般に高齢で		
	正確には把握されていない状況にある。広葉樹については、		
	林齢によって地面下草は大きく変化しないことから、保守		
	性を考慮して, 針葉樹 (林齢 10 年未満) と同じ設定にした。		
第 2.2-10 表 林齢の設定	第2.2-7表 針葉樹よ広葉樹の林齢による地面下草の違い	第2.2-9表 林齢の設定	
10 年生未満 10~20 年生 20~30 年生 30~40 年生 40 年生以上	(イメージ)	《マツ》	
	樹種/林齢 10 年生未満の場合 10~20 年生の場合 30 年生以上の場合	10年生未満 10~20年生 20~30年生 30~40年生 40年生以上 敷地外の林齢 敷地内の林齢	
	日照が入りやすい 日照が少し入りやすい 日照が入りにくい		
6cm 6cm	針葉樹		
下草・低木の状況			
2m 程度の下草や低木がある状態を想定。 (FADGITER のデス・ルートはたて見たの可能性)	日照が入りやすい		
(PARSILE 0) フォルト植生で取入の可然物 深さを想定)。低木には実生松 (10 年生未満	広葉樹 (四)	林床可燃物の深さ	
の松)も含まれる。	aus der finder der Anteren auf der Bereiten der Bestehen an Bestehen und	多 中 少 生きた木質の fuel 量	
		$\psi \rightarrow \psi \rightarrow \varphi$	
生きた木質の fuel 量 少 → 中 → 多			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
発電所構内のマツは, 40 年生以上のマツ林の中に 2m 程度の		島根原子力発電所敷地内の植生調査を行い、少なくとも 20 年	
下草や低木があるエリアと下草がないエリアが存在する。これら		生以上であることを確認しているが、本評価では、保守的にす	-
の植生は,可燃物深さが大きい 20 年生のマツでモデル化しても		べて林齢10年生として評価を行う。	
保守的であると考えるが、さらに厳しい条件となるよう 10 年生			
のマツで設定する。			
		第 2.2-10 表 マツの林齢の設定	
第 2.2-11 表 マツの林齢の設定		島根原子力発電所FARSITE のインプットデータ	
発電所構内の植生 FARSITE のインプットデータ		敷地内の植生 10年生 10年生未満	
40 年生 10 年生 2m 2m		20 30 中土 10 中土 10 中土 敷地内の林齢 敷地外の林齢 2m 2m 2m 2m	
下草なし 丁草あり 林床可燃物深さ:0~2m (実生松含む) 林床可燃物深さ:2m (実生松含む) 林床可燃物量:少~多 林床可燃物量:多 生きた木質の fuel 量:多 生きた木質の fuel 量:少			
		林床可燃物深さ:0~2m(実生松含む) 林床可燃物深さ:2m(実生松含む) 林床可燃物量:少~多 林床可燃物量:3 生きた木質 fuel量:3 生きた木質の fuel量:少	
g. 樹冠率の設定	(4) 樹冠率の設定 <u>について</u>	<u>f</u> . 樹冠率の設定	
樹冠率は,上空から森林を見た場合の平面上の樹冠が占める割	樹冠率は、上空から森林を見た場合の平面上の樹冠が占め	樹冠率は、上空から森林を見た場合の平面上の樹冠が占める	
合をいう。	る割合をいう。 <u>イメージ図は第 2. 2-4 図に示す。</u>	割合をいう。	
FARSITE では、実際の森林状況による自然現象を可能な限り反	FARSITEでは,実際の森林状況による自然現象を可	FARSITE では,実際の森林状況による自然現象を可能な限り	
映するため、樹冠率の割合が高くなると、風速の低減、地面草地	能な限り反映するため、樹冠率の割合が高くなると、風速の	反映するため、樹冠率の割合が高くなると、風速の低減、地面	Ī
への日照が低減(水分蒸発量が減ることで燃えにくくなる)する。	低減、地面下草への日照が低減(水分蒸発量が減ることで燃	草地への日照が低減(水分蒸発量が減ることで燃えにくくなる	
具体的には FARSITE において樹冠率を 4 つに区分し,4 つの	えにくくなる)する。具体的には、FARSITEでは樹冠	する。	
いずれかを設定するようになっている。	率を 4 つに区分し、いずれかを設定するようになっている。	具体的には FARSITE において樹冠率を4つに区分し, 4つの)
	各区分の説明を第2.2-8表, 樹冠率区分によるFARSIT	いずれかを設定するようになっている。	
	<u> E上の効果を第2.2-9表に示す。</u>		
今回の評価では、植生調査データにより森林と定義できる区分	今回の評価においては、東海第二発電所周囲の森林は現地	今回の評価では、植生調査データにより森林と定義できると	・条件の相違
3,4 から選択することとし、保守的に区分 3 を設定する。	調査において、樹冠率(樹冠映密度)か60%~90%であるこ	分3、4から選択することとし、保守的に区分3を設定する。	
	<u>とを確認したため,区分3を選択した。</u>		局根2 <u></u>
			正義でさる区分から
			1 休寸的に区分3を選
			次

柏崎刈羽原子力発電所 6/7号炉 (2017.12.2	(2018.)	9.12版)	島根原子力発電所	2号炉	備考
樹冠率:平面上の樹冠の割合 していたの様冠の割合 樹冠本 (1)の時間の割合 していたいの時間の割合 していたいの時間の割合 していたいの時間の割合 していたいの時間の割合 していたいの時間の割合 していたいの時間の割合 していたいの時間の割合 していたいの時間の割合 していたいの時間の割合 していたいのもの割合 していたいのもの していたいの していたいのもの していたいの し	第 2.2-8 表 FARSITE	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	樹冠率: 平面上の樹 樹冠 { 樹冠 {	冠割合 	
FARSITE 区分 樹冠率[%] 備初	FARSITE 区分 樹冠率%	備考	FARSITEでの区分 樹冠率(%) 1 ~ 20%	備考	
1 ~ 20 2 21 ~ 50 非森林を含		_	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	非森林を含む領域	
3 51 ~ 80 一般的 4 81 ~ 100 原生林を含	× <u>2</u> 緑林 2 21∼50		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	一般的な森林 原生林を含む森林	
区分3の場合 区分40	3 51~80	 一般的な森林	FARSITEでの区分	3 FARSITEでの区分4	
風速低減効果 風速が弱まりにくい 風速が弱	4 81~100	原生林等	風速低減効果 風速が弱まりにく	い 風速が弱まる	
第.2.2-8.図 樹冠率の設定	第2.2-9表 FARSITE上の株	財冠率区分による効果	第2.2-7 図 樹冠	率の設定	
	区分3の場合	区分4の場合			
	風速低減効果 風速が弱まりにくい	風速が弱まる			
	日照低減効果 地面下草が燃えやすい	地面下草が燃えにくい			

柞	崎刈羽原	子力発電	所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)			島根原	子力発電所 2号炉	備考
h. FAI	RSITE $\sim a$	の入力値ま	ミとめ		g.	FARSITE ~	への入力値	直まとめ	
	第	5 2.2-12	表FARSITE への入力値			第	<u>52.2-11</u>	長 FARSITE への入力値	
大区分	小区分	入力値	備考		大区分	小区分	入力値	入力値の根拠	
気象	気温	32°C	気温が高い方が可燃物の水分量が少なく燃えやす		人区方	1.27	八川直	気力にの保険	
			くなることから,森林火災が多い 3~5 月における					大山が同い方が「小然初の小方重からなく然たく	
			過去 10 年間の最高気温を設定(ガイドどおり)			与泪	38°C	9 くなることがら, 株林八次が多く光生してい る 3 日~8 日における過去 10 年間での是真気泪	
			解析期間中最高気温が継続するように設定			XIIII	300	る5月~6月における過去10年间での取向风温	
	湿度	12%	湿度が低い方が可燃物の水分量が少なく燃えやす					を設定(以上下通り)	
			くなることから、緑体火火が多い 3~5 月にわける					滞在が低いちが可燃物の水公量が小なく燃える	
			- 個云 10 中間の取小征度を設定(パイトとおり) - 解析期間由豊小温度が継続するように設定					湿皮が低い力が可然初の小力量が少なく然んで	
	風速	16m/s	AF(7,5)同一般/1世及/1世及/1世及/1世及/1世及/1世及/1世及/1世及/1世及/1世及			湿度	190/	9 くなることがら, 淋杯久久が多い 5 月 6 7	
	1.242	1011/ 5	から. 森林火災が多い 3~5 月における過去 10 年間		层鱼	仙皮	12 /0	(これ) る過ム10 平向の取力征及を反応(スイト)	
			の最大風速を設定(ガイドどおり)					通り) 報近期間由長小湿度が継続するよう設定	
			解析期間中最大風速が継続するように設定)-3			所例別间下取小値及小継続するよう設定 国が強い古が延続事度・止迫強度が十きくなる	
	雲量	0%	日射が多い方が可燃物の水分量が少なくなるため、					風が強い力が延光速度・八線強度が入さくなる	
			日射量が多くなるように, 雲量 0%に設定			風速	22.1m/s	ことから, 林怀八次の多い 3 月~6 月にわける 過去 10 年間の是十周連を訊字 (ガイド通り)	
	降水量	Omm	降水がない方が可燃物の水分量が少なくなるため、					過去10年前の取入風速を設た(以4下通り) 敏近期間由島士風油が継続するように設定	
			降水量は Omm に設定					時初期间中取入風速が確認するように設定 日射がタい士が可憐物のセハーーが小ねくなるた	
地形	高低差	数值標高	現地状況を模擬するため,基盤地図情報 数値標高			雲量	0 %	日射か多い方が可然初の小方里が少なくなるに	
		モデル	モデルの10mメッシュデータを用いる。					Ø, 日利里が多くなるように会里0%に改た 際北が無いたが可憐悔鳥の北八島が小ねくねる	
	緯度	37 度	日射量が多い方が可燃物量の水分量が少なく燃え			降水量	O mm	降水が悪い方が可然物重の水方重が少なくなる	
			やすくなることから、日射量が多くなるように、相				料店抽古	ル(ダ)、 陸小里は U 皿 に 取 た 田 地 山 れ 志 持 転 ナ ス た よ 古 歌 地 図 唐 却 数 広	
			岡川羽原十刀発電所の編度(37度25分)より亦追			高低差	奴但信向	現地状況を模擬りるため、基盤地区情報 数値	
植生	樹木喜さ	15m	「側に設た」		++++ ==>			保局モノルの10mメッシュノークを使用 日射号が多い大が可燃物号の水八号が小なく嫌	
	樹下高さ	4m	フォルト値を一律に適用		地形			日射星が多い方が可然初星の小方里が少なく然	
	かさ密度	$\frac{1}{2}$ 0. 2 kg/m ³) — 2	緯度	35 度	んでりてなることから、日州里が多てなるよう	
	樹冠率	0.2kg/m 区分3	森林と定義される区分3.4のうち、風速が弱まりに					(こ, 局限原丁刀光电所の輝度 (35 度 52 万)よ り去道側に設定	
			くく、日射の影響を受けやすくなる区分3を設定			中午中イ	1.5m	りが迫害に設定	
	fuel 初期	コンディ	水分量は気温・湿度・日射等により変化する。発火			樹小同で	10m	データを正確に調査することは困難であること	
	水分量	ショニン	時刻より 30 日前から現地の状況をシミュレートし			収下向さ	4 III	から、デフォルト値を一律に適用	
		グ機能	て初期水分量が平衡に達した状態から発火させる。			かさ密度	0.2 kg/m	本井上会善さわていて反八9ー4のさた「国法	
					** +-	바디자	屋八の	米林と定義されている区分3,40006,風速 が記まれたく、日時の影響も受けるよくわる。	
					植生	倒心伞	区方 3	が弱まりにくく、日外の影響を受けやすくなる	
					7-9			区方3を設正	
						C1 777#79	コンディ	水分重は気温・湿度・日射などにより変化する。	
						Tuel 初期 本八昌	ショニン	衆火時刻より 30 日前から現地の状況をシミュ レート」 て知期水八県ボ亚海に法した快能から	
						小万里	グ機能	レートして初期小力重が平衡に運じた状態がら	
								光代させる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.9.12版)							島根原子力発電所 2号炉	備考
(4) FARSITE の解析結果	<u>3. FARSITE解析結果</u>								<u>(4)</u> FARSITE の解析結果	
各ケースの FARSITE による解析結果図を以下に示す。	<u>3.1 FARSITE解析結果</u>								各ケースの FARSITE による解析結果図を以下に示す。	
	(1) 火炎到這	<u> </u>	と最大	<u> と線強度</u>	夏につい	T				
	各発火	気にお	ける防	<u> と 帯 外 総 </u>	家に最も	早く火	炎が到近	達する火		
	炎到達時間	間と防	火带外網	<u> 素より</u>	100m Ø	範囲に	おける	是大火線		
	強度を第	3.1-1	表に示す	Fam						
			第3.1	-1.表	解析結果	₹				
	発火点位置	発火点 1	発火点 2	発火点 3	発火点 4	発火点 5	発火点 6	発火点 7		
	延焼速度 (m/s)	0.45	0.52	0.69	0.65	0.64	0.67	0.37		
	最大火線強度 (kW/m)	4,167	4, 771	6, 278	5, 961	5,006	5, 890	3, 391		
	火炎到達時間	0.2	4.0	0.7	6.0	2.9	1.1	0.7		
	(nr)									
	(2) 斫娃状	· 沪中								
	各举火	「シの死」	ケポート ケット 使用 がっかい しょう	を第31	-2 表か	ら第3	1-8 表に	示す		
			<u>2017/200</u>				1	- Contraction Contraction		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>第3.1-7 表 発火点6の延焼状況</u> <u>廃火点6</u> <u>水</u> 藤 強 度		
	火 火 火 火 火 人 1 <th1< th=""> 1 1 1</th1<>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>第3.1-8 表 発火点7 の延焼状況</u> <u>廃火点7</u> 人 泉 度 度 ()) () ()) () ()) ()) ()) ()) ()) ()) ()) ()) ())) ())) ())) ()))) ())) ())) ())))) ())))) ())))) ())))) ()))))))))))))		
	火 分 1 1/2 2/3 3/3 4/4 4/3 5/-00 2/0-25 5/-20 2/0-20 2/0-20 2/0-20 2/0-20 2/0-20 2/0-20 2/0-20 2/0-20 2/0-20 <t <="" td=""><td></td><td></td></t>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(5) 延焼速度及び火線強度の算出結果		(5) 延焼速度及び火線強度の算出結果	・条件の相違
ホイヘンスの原理に基づく火炎の拡大モデルを用いて延焼速		ホイヘンスの原理に基づく火炎の拡大モデルを用いて延焼速	【柏崎 6/7,東海第二】
度や火線強度を算出した。防火帯外縁より <u>100m</u> の範囲におけ		度や火線強度を算出した。防火帯外縁より 50m の範囲における	防火帯幅は,防火帯外
る延焼速度及び火線強度の算出結果を第2.2-13 表に示す。		延焼速度及び火線強度の算出結果を第2.2-12表に示す。	縁での火線強度から
			算出することとし,外
(6) 火炎の到達時間の算出結果		(6) 火炎の到達時間の算出結果	縁から一定距離の範
延焼速度より,発火点から <u>柏崎刈羽</u> 原子力発電所までの到達		延焼速度より、発火点から島根原子力発電所までの到達時間	囲を考慮し評価
時間を算出した。また、火炎の到達時間をもとに柏崎刈羽原子		を算出した。また、火炎の到達時間をもとに島根原子力発電所	
力発電所の自衛消防隊が対応可能であるか否かを評価する。延		の自衛消防隊が対応可能であるか否かを評価する。延焼速度及	
焼速度及び到達時間の算出結果を <u>第2.2-13</u> 表に示す。		び到達時間の算出結果を第2.2-12表に示す。	
第 2.2-13 表 火炎の到達時間及び防火帯幅評価に伴う		第2.2-12表 火炎の到達時間及び防火帯幅評価に伴う評価項目	
評価項且			
評価項目 ケース1 ケース2 ケース3		評価項目 ケース1 ケース2 ケース3 ケース4 ケース5	
延焼速度[m/s] 0.35 0.37 0.25		延焼速度[m/s] 0.36 2.15 0.07 0.08 0.08	
最大火線強度[kW/m] 2715 3002 1929		最大火線強度[kW/m] 4,154 3,057 734 811 931 水炎到達時間[b] 5.9 2.3 10.6 18.7 26.9	
八次07到建时间[11001] 4.122 5.000 2.071			
(7) 防火帯幅の算出		(7) 防火帯幅の算出	
火線強度より、柏崎刈羽原子力発電所に必要な最小防火帯幅		火線強度より、島根原子力発電所に必要な最小防火帯幅を算	
を算出した。ここでは「Alexander and Fogarty の手法(風上		出した。ここでは、「Alexander and Fogarty の手法(風上に	
に樹木がある場合)」(第 2.2-13 図 右図)を用い,火炎の防火		樹木が有る場合)」(第2.2-13図 右図)を用い、火炎の防火	
帯突破確率 1%の値を <u>柏崎刈羽</u> 原子力発電所に最低限必要な防		帯突破確率 1%の値を島根原子力発電所に最低限必要な防火帯	
火帯幅とした。防火帯外縁より <u>100m</u> の範囲における最大火線		幅とした。防火帯外縁より <u>50m</u> の範囲における最大火線強度は	
強度は第2.2-13表のとおりとなり、最も火線強度が高かった		第2.2-12表のとおりとなり、最も火線強度が高かったケース1	
ケース2の結果から防火帯幅を決定する。最小防火帯幅の算出		の結果から防火帯幅を決定する。最小防火帯幅の算出結果を第	
結果を <u>第 2.2-14 図</u> に示す。		<u>2.2-14</u> 図に示す。	
なお、評価では、気温は最高気温で一定、湿度は最小湿度で		なお、評価では、気温は最高気温で一定、湿度は最小湿度で	
一定としており、時刻変化による火線強度の増減に寄与するの		一定としており,時刻変化による火線強度の増減に寄与するの	
は日射量となる。		は日射量となる。	
そこで, FARSITE 解析における最大火線強度と日照時間の影		そこで, FARSITE 解析における最大火線強度と日照時間の影	
響を以下のとおり確認した。日照の影響は、地形の傾斜方向と		響を以下のとおり確認した。日照の影響は、地形の傾斜方向と	
太陽の角度が関係しており、火線強度が高くなるのは、10 時~		太陽の角度が関係しており、火線強度が高くなるのは、10時~	
14 時の間と考えられる。		14時の間と考えられる。	
第 2.2-14 表に示すとおり,最大火線強度到達時刻が 10 時		第2.2-13表に示すとおり、最大火線強度が最も高かったケー	
から 14 時の時間に収まっており、火線強度が最大となったケ		ス1について比較した結果,最大となった火線強度は4,154kW/m	

炉				備考
福を設定	宦する。			
郡の老家	₹ (左_	-71		
<u>第00万</u> 多			~	
00	8	:30		
:47	15	5:01		
154	2,	178		
←空破確率	1%外插			
. 10%	50%			
/ /	/	90%		
/ /	/ ,	99%		
/				
	·····			
5000 10	000 15 000	20 000		
File Interis の風上 20m 内	に樹木が存在す	「る場合		
広ル世	の相関	W.		
) ~				
)				
炎の防火帯	持突破率1%	6)		
0000 1500	00 20000	25000		
4.9 29.	7 34.4	39.1		
		1		
ōm				
]				
設定				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(8) 危険物施設の火災が森林等に延焼した場合の <u>拍崎刈羽</u> 原子力		(8) 危険物施設の火災が森林等に延焼した場合の島根原子力発	
発電所への影響について		電所への影響について	
<u>ケース 2</u> 発火点は, <u>柏崎刈羽</u> 原子力発電所への熱影響を大		<u>ケース1</u> 発火点は, <u>島根</u> 原子力発電所への熱影響を大きく	
きくするため, <u>柏崎刈羽</u> 原子力発電所から遠方(火炎前線が		するため,島根原子力発電所から遠方(火炎前線が広がり,	
広がり,発電所構内を同時期に取り囲むような火災となる),		発電所構内を同時期に取り囲むような火災となる)、並びに、	
並びに, 柏崎刈羽原子力発電所の風上(南南東方向:最大風		島根原子力発電所の風上(<u>南西方向</u> :最大風速観測時の風向)	
速観測時の風向及び卓越風向)に設定している。		に設定している。	
危険物施設の火災を想定した場合、 <u>柏崎刈羽</u> 原子力発電所		危険物施設の火災を想定した場合、島根原子力発電所への	
への熱影響が最大となっているケース 2 の発火点以遠の風		熱影響が最大となっているケース1の発火地点以遠の風上	
上(南南東方向)に危険物施設はなく、柏崎刈羽原子力発電		(南西方向)に危険物施設はなく,島根原子力発電所への熱	
所への熱影響が大きくなるような火災にはならないと考えら		影響が大きくなるような火災にはならないと考えられる。	
れる。			
(9) 3~5 月の気象条件に 8 月を加えた解析結果について			・評価条件の相違
森林火災の想定における気象条件は, 過去 10 年間(2003~			【柏崎 6/7】
2012 年)を調査し,森林火災の発生件数の多い 3~5 月の卓越			島根2号炉は,気象条
風向,最大風速,最高気温,及び最小湿度の組み合わせとして			件の設定として 3 月
いる。3~5 月を除く月としては,新潟県,柏崎市・刈羽村・出			~8月を選定
雲崎町における 8 月の森林火災発生件数が比較的多いが、3~5			
月に 8 月を加えた気象条件を採用すると,発電所立地地域とし			
て起こりえないような高気温・低湿度の気象条件となるため,			
ベースケースの解析条件としていない。			
以下に, 3~5 月に 8 月を加えた気象条件を考慮した場合の			
感度解析の結果を示す。			
なお、発火点は最大火線強度が大きくなると考えられるケー			
ス2の発火点とし、これを代表ケースとして評価を実施した。			
<u>a. 気象条件の設定</u>			
3~5 月の気象条件に 8 月を加えた気象条件を第 2.2-15 表			
<u>(</u> 上段)に示す。			

柏崎刈羽原子力発電	■「「「「「「「」」」	i (2017.12	2.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2.2-15 表 3~5	月に 8 月を加え	た気象条件	と 3~5 月の			
	気象条件との比	較				
風向	最大風速	最高気温	最小湿度[%]			
3~5月 南南東	16. 0	37.5	12			
+8月 3~5月 南南東	16.0	31.9	12			
(ケース 2)						
<u>b. 必要データ</u>						
気象条件以外の植生	主データ等の FAI	RSITE 入力テ	ータは, ケー			
<u>ス 2 と同等とする。</u>						
c. 解析結果						
FARSITE による解れ	所結果を第 2.2-	15 図, 第 2	.2-16 図に示			
<u>す。</u>						
防火带 100m 範囲 防火帯 一 発火点 2 牧地境界	Hide M(D) -		<u>施火点 2</u> 1			
<u>第 2.2-15 凶</u> 解析	<u>結果(左:火炎</u> 至	<u> 達時間分布</u>	<u>,右:火緑強</u>			
	<u>1×17111</u>					
防火帯 100m 範囲 防火帯 到達時間 3.743h 敷地境界 集 2. 2-16 図 解析新	★#\$##(N)	E 2, 652kW/m 大 (左:火炎到	1			
2	<u>日:火線強度分</u> 有	<u>])</u>				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
d. 火線強度及び火炎の到達時間の算出結果火線強度及び火炎			
の到達時間の算出結果を第2.2-16 表に示す。			
第 2.2-16 表 火線強度及び火炎の到達時間			
評価項目 3~5月+8月 3~5月			
最大火線強度[kW/m] 2652 3002 ^{※1} 水炎の利達時間[hour] 3.743 2.871 ^{※2}			
(人気の)到足時前[[holf]] 3.743 2.871 ※1:ケース2の火線強度(最大値) 2.871			
※2:ケース3の火炎の到達時間(最小値)			
e. 評価結果			
8月の気象条件を加えたケースは、3~5月の気象条件に対し			
て,最大火線強度が 350kW/m 程度小さくなっていることから,			
発電用原子炉施設への熱影響はケース 2 の評価に包絡される。			
最大火線強度が低下した主な原因として, FARSITE に入力す			
る最小湿度は相対湿度であることが挙げられる。つまり,			
FARSITE にて相対湿度を一定としても,気温の上昇による飽和			
水蒸気圧の増加によって、絶対湿度(水分量)が上昇すること			
から、結果として、気温上昇の効果(可燃物の水分量が減少し			
火線強度が上昇する効果)よりも、絶対湿度の増加の効果(可			
燃物の水分量が増加し火線強度が低下する効果)が大きくなり,			
最大火線強度が若干低下したと考えられる。			
また,火炎の到達時間はケース 3 以上となっており,自衛消			
防隊の対応に影響をおよぼすことはないと評価する。			
(10) 8 月の気象条件を適用した森林火災について			
a. 森林火災の想定			
森林火災の想定では, 過去 10 年間 (2003~2012 年) の気象			
条件を調査し,森林火災の発生件数の多い 3~5 月の卓越風向,			
<u>最大風速,最高気温,及び最小湿度の組み合わせとしているが,</u>			
新潟県、柏崎市、刈羽村、出雲崎町における森林火災の発生件			
(a) 気象条件			
8月における過去 10 年間の気象条件を調査した結果を第			
<u>2.2-17</u> 表 (上 段) に示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2.2-17 表 8 月の気象条件と 3~5 月の気象条件との比較 風向[16方位] 最大風速[m/s] 最高気温[℃] 最小湿度[%] 8月 南南東 11.0 37.5 31 3~5月 南南東 16.0 31.9 12			
 (b)考察 8月の気象条件は、3~5月の気象条件と比較して、①及び② の効果により火線強度が低下することから、3~5月の気象条件 を適用した場合の評価に包絡される。 ①3~5月に8月の気象条件を加えた解析では、気温の上昇によって絶対湿度が増加し、火線強度が低下する結果となっている。 ②8月の気象条件は、下記のとおり、3~5月の気象条件と比較して火線強度を低下させる気象条件となっている。 ・最大風速の低下による延焼速度、火線強度の低下(延焼速度と火線強度は比例関係にある)。 			
・最小湿度(相対湿度)の上昇により可燃物の水分量が増加 し火線強度が低下。 参考として,8月の気象条件が3~5月の気象条件を適用し た解析結果に包絡されることを感度解析にて確認している。その結果を参考資料2-3に示す。			
2.3 森林火災時の対応の評価結果 森林火災影響評価においては,以下に示す到達時間及び防火 帯幅の条件を満足していること,森林火災時の可搬型モニタリ ングポスト <u>及び可搬型気象観測装置</u> の対応が可能であることを 確認した。	<u>4. 森林火災の影響評価結果</u>	2.3 森林火災時の対応の評価結果 森林火災影響評価においては,以下に示す到達時間及び防火 帯幅の条件を満足していること,森林火災時の可搬式モニタリ ングポストの対応が可能であることを確認した。	
 2.3.1 火炎の到達時間の評価結果 2.3.1.1 到達時間 FARSITE の解析により,森林火災を想定した場合,火炎が防 火帯に到達する時間は,発電所敷地境界付近からの出火(ケー ろ.3)を想定しても.3.時間程度である。 防火帯により森林火災が発電用原子炉施設へ影響を及ぼすこ 	 4.1 火炎到達時間の評価結果 (1) 火炎到達時間 防火帯を設置することで,森林火災が発電用原子炉施設へ 延焼する可能性は低いが,森林火災の状況に応じて防火帯付 近にて散水を行い,万が一の飛び火による延焼を防止する。 FARSITE解析結果より,発火点1の火災が防火帯外 	 2.3.1 火災の到達時間の評価結果 2.3.1.1 到達時間 FARSITE の解析により,森林火災を想定した場合,火災が防 火帯に到達する時間は,発電所敷地境界付近からの出火(ケー ろ2)を想定しても2.3時間程度である。 防火帯により森林火災が発電用原子炉施設への影響を及ぼす 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
とはないが、森林火災の状況に応じて防火帯付近へ予防散水を	縁に到達する最短時間は0.2時間(約12分)であるため、こ	ことはないが、森林火災の状況に応じて防火帯付近へ予防散水	
行う。また、外部からの情報により森林火災を認識し、発電所	の時間以内で予防散水が可能であることを確認する。	を行う。また、外部からの情報により森林火災を認識し、発電	
敷地境界へ到達するまでに時間的な余裕がある場合には、発電	発火点1の位置関係を第4.1-1図に示す。	所敷地境界へ到達するまでに時間的な余裕がある場合には、発	
所構内への延焼を抑制するために敷地境界近傍への予防散水を		電所構内への延焼を抑制するために敷地境界近傍への予防散水	
行う。		を行う。	
2.3.1.2 予防散水に関わる評価		2.3.1.2 予防散水に関わる評価	
敷地境界域から防火帯までの火炎到達時間が_3_時間程度で		敷地境界域から防火帯までの火炎到達時間が 2.3 時間程度で	
あるのに対して、防火帯付近への予防散水は、敷地境界域での		あるのに対して、防火帯付近への予防散水は、敷地境界域での	
火災発見から <u>約 90 分</u> で開始可能である。		火災発見から約 60 分(想定所要時間:約 50 分)で開始可能で	・条件の相違
		ある。	【柏崎 6/7】
			訓練実績の相違
	第4.1-1図 発火点1との位置関係		
くよ業の発用に	(2) よぶの登切	くた後の残日へ	
< 火火の先兄/	(2) 火火の見却	< 火火の先見/	
光电// 敖地現外域については、書傭員が足夠的にハトロール	光电// 放地及び放地現かり近にわりる八次については、以下の本法で目期営知が可能である	光电// 叙地現外域については、24 時间吊起している言哺貝に トス 字期的わぷトロールト 動地培用防視田カメラに上ス監視	
を打っていること、激地現外監視用ルメノにより 24 時間帯時 監担(監担担託は防止業上的内側の監視振動)を行っているこ	「の力伝で干別見和小り肥くのる。	よる足別的なハトロールと、 叙地現外監視用ルクノによる監視	・運用の相違
	a. 光电///用りてIF未を11 / 14に対し、 久火を光兄しに笏口、 半声字海号に声やかに通知する東ち社内担知で字やてい	を11.7。 <u>また, 構内監視カケノにより, 運転負か 24 時間吊駐し</u> ている中央制御安から監想な行ら	・運用の推選
こにより、回境外域での欠次や欠次原因となり待る共常を光光	<u>当時可用員に迷いがに通報する事を社内効性でためてい</u> て 通知な受けた通知演算の事だ者は相相指揮者 淡水相当	<u>ている中天前御主がら監視を行う。</u> これこのことから、同時周城での火災や火災原因となり得る	【伯呵 0/ 1】 自相 9 马后注 携内院
することが可能である。	公。 埋取 (又) に 埋取 (相) 目 (は 次 物 相) (110 釆)	これらのことがら、回境介域ての穴灰や穴灰床囚となり待る	品似 2 万炉 は, 博 11 血 祖 カ イ ラ た 佶 田 ナ ろ
	及びがり周床在に座相することもに、相切成周(113 番)	英市を先元することが可能である。	流みアノも使用する
	いた思想を出いた。 ト 相定される白鉄祖角竿の影響について 尿友にわたれ発		「古海蛮一】
	雪所周辺の状況を押握する日的で設置する津油・構内監視		▲本1世紀一】 市海第二け 動地倍用
	現代になることであた。 カメラを伸用して本林水災に対する監想を行う 津油・構		が防水帯と近接して
	がたため、ため、は、ため、は、ため、ため、ため、ため、ため、ため、ため、ため、ため、ため、ため、ため、ため、		いろため 執咸知カメ
			ラを設ける設計とし
	らの監視が可能な設計とする。		ている
	c. 熱感知力メラを設けることで早期覚知が可能な設計とす		
	る。熱感知力メラが火災を感知した場合、中央制御室及び		
	守衛所に警報がなる設計とすることに加え、中央制御室及		
	<u>る。熱感知力メラが火災を感知した場合、中央制御室及び</u> 守衛所に警報がなる設計とすることに加え、中央制御室及		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電	所(2018. 9. 12 版)		島根原子力発電所 2号炉	備考
	び守衛所から可視カメラ	ラで現場の状況が瞬時	に確認でき,		
	速やかに火災現場に向か	<u>ふえる設計とする。</u>			
	<u>d. 下記の火災が発生した</u>	こ場合、消防機関から	発電所へ連絡		
	<u>が入る。</u>				
	・発電所周辺で発生した	<u>森林火災</u>			
	・発電所へ迫る可能性が	「あると消防機関が判	断した火災		
	(3) 消火活動				
	a. 初期消火活動体制及C				
	発電所の初期消火活動				
	間常駐させる。自衛消防	5組織のための要員を	第 4.1-1 表,		
	消防訓練の実績と頻度を	<u>◇第 4.1-2 表,消防訓</u>	練の状況を第		
	4.1-2 図に示す。なお,	消火担当7名のうち	一部は委託員		
	となるが、社員同様の教	<u>故育,訓練を実施して</u>	おり,必要と		
	なる力量を有している。	~			
	竺 4 1 1 末 白 年				
	<u>男4.1-1 衣 日祖</u>	* *	3.		
	田当 (人数) 東正管理区域内及び周辺防護区域 (0/位堂・電気室・5/8年、C/Pより中側の区域) 休日・夜間 平日島間	友記以外 休日、夜間 平日堊間	主な役割		
	通報連結責任者《1名》 坦蓝発電長	社員守衛員	 消防機関への適報 所内関係者への連絡 		
	· 建新担当 (1名) 当直道征员	社員守衛員	 ・火災現場への移動及び状況確認 ・現場状況の所内関係者への伝達 ・可能な範囲での初期消火 		
	現場指揮者(1名) 持衛当番者1(这所系管理指) 技织系管理指	待嘎当番者1 (技術系管理職) 技術系管理職	 出勤の孝儀/火災現場への移動 火災状況の肥糧 火災現場での初期消火活動の指揮 		
	沒場這結死任者(1-6) - 仲貌当番者之(智理能) - 繁現戦	持续当番者2(管理院) 党程院	 済防機関への情報提供 済防機関の現場誘導 		
	清火橋山① (7名) 勇託守衛員	委託守衛員	 出勤の準備/火災現場への移動 消防自動車 消火器 消火栓等による初期消火活動 		
	消火担当② 当直運転員 当直運転員 社員守衛員 社員守衛員 あらかじの指名された所員	社員守衛員 社員守衛員 あらかじの指名された所員	 出勤の準備/火災現場への移動 消防自動車、消火器、消火粒等による初期消火活動 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東	海第二列	隆電所(2018.	9.12版)		島根原子力発電所 2号炉	備考
	第 4.1−2 表	消防	訓練実績と頻	度(平成:	27 年度)		
	訓練項目	頻度	実績	対象者	訓練内容		
	油火災消火訓練	4回/年	実績無し	自衛消防隊	 油火災(タンク火災 等)を想定した消火 訓練 		
	消防自動車放水訓練他	1回以上/ 月	99 回	自衛消防隊	建物火災を想定した 消火訓練		
	消防機関との 合同訓練	1回/年	H27.10.28	自衛消防隊	管理区域内建物火災 を想定した通報連 絡,消火訓練		
	海上災害防止 センター消防訓練	4回/年	H27. 9. $24 \sim 25$ H27. 11. $26 \sim 27$ H27. 12/14 ~ 18 H28. 2. $1 \sim 2$	自衛消防隊	外部施設(横須賀) による実火訓練		
	総合火災訓練	1回/年	H27.10.28	発電所全体 自衛消防隊	管理区域内建物火災 を想定した通報連 絡,避難,消火訓練		
	防火訓練	2 回/年	H27.9.19 H28.3.9	一般所員 協力会社	初期消火の基本動作 訓練		
	森林火災 散水訓練	—	実績無し	自衛消防隊	森林火災を想定した 散水訓練		
		第 4. 1-	 注 図 消防訓 	前本			
<予防散水> <u>柏崎刈羽</u> 原子力発電所の自衛消防隊は,発電所敷地内に24時 間常駐していることから,敷地内に待機している消防車による 予防散水が可能である。 (1) <u>そ</u> 広告れ						<予防散水> <u>島根</u> 原子力発電所の自衛消防隊は,発電所敷地内に24時間常 駐していることから,敷地内に待機している消防車による予防 散水が可能である。 (1) <u>子味物水の実施体制</u>	
 (1) ア防散水の美施体制 <u>拍崎刈羽</u>原子力発電所においては,発電所構内の火災に対 し,消防活動を行うために自衛消防隊を組織している。自衛 消防隊の組織体制を第 2.3.1.2-1 図及び第 2.3.1.2-1 表に 示す。 予防散水は,この自衛消防隊により対応する。 						 (1) 予防取水の実施(本制 島根原子力発電所においては,発電所構内の火災に対し, 消防活動を行うために自衛消防隊を組織している。自衛消防 隊の組織体制を第2.3.1.2-1 図及び第2.3.1.2-1 表に示す。 予防散水は,この自衛消防隊により対応する。 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 25
柏崎刈羽原子力発電所 $6 / 7 9 / 9 / (2017.12.20 / b)$ 管理権限者 (小学) 全 第 第 第 第 一 1 第 里 和 四 四 四 四 四 四 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	東海第二発電所 (2018. 9. 12 版)	島根原子力発電所 25 「火災対策本部」 小川 「火災対策本部」 山本部足 本部足 上内外通報通路 東線花街 皮球総括 「建 東京 西 東京 西 東京 西 東京 西 東京 西 東京 西 東京 東京 東京 東京 <tr< td=""></tr<>

柏岬	奇刈羽原子力発電所 6/7	7 号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発	電所 2号炉	備考
第	2.3.1.2-1 表 自衛消防	隊編成(現場指揮本部)			第 2.3.1.2-1 表	自衛消防隊編成	
構成	所属等	役割		構成	所属等	役割	
消防隊長 (1)	平日昼間:①防災安全GM ②防災安全担当 ③運転管理担当 平日夜間,休祭日:自衛消防隊専属の宿直者	 ①現場指揮本部の責任者 ②消火活動全体の指揮 ③当直長への消火活動の情報提供・ブラント情報の共有 ④公設消防窓口(プラント状況・消火活動の情報提供) 		自衛消防隊長 (1)	 【平日昼間】 ① 保修部課長(保修管理) ② 保修部課長(保修技術) ③ 保修部課長(建築) 【夜間・休日昼間】 	 自衛消防隊の責任者 消火活動全体の指揮 当直長への消火活動の情報提供・プラント 情報の共有 公設消防窓口(プラント状況・消火活動の 	
	1 号炉[1] 2 号炉[1] 3 号炉[1] 4 号炉[1] 5 号炉[1] 6,7 号炉[1] 1 号炉[3] 9 長町[0] 38	 ①公政消防への通報(発電関連設備) ②運転員(初期消火要員)への初期消火指示 ③ブラントの情報提供,消防活動の材料(株)(有限活動のオンバーには属さない) ①屋内・屋外での消火活動(発電関連設備) 			自衛消防隊専属の宿直者 当直長(1)	情報提供) 公設消防への通報 自衛消防隊長,消防チームへの連絡 運転員への初期消火指示 プラントの情報提供,消火活動の情報共有 	
初期消火到 (15)	2 59月12] 運転員(3) ^{※2} 4 号炉[2] ^{※3} 5 号炉[2] ^{※4} 5 号炉[2] ^{※4}	 ②消火戦略の検討・指揮(現場支援担当又は当直主任) ③火災発生場所での消火活動の指揮(現場支援担当又は当直主任) ④火災発生現場(建屋内)への公設消防誘導・説明 				 (当直長は,現場での消火活動のメンバーに 属さない) ① 火災現場での消火活動 	
(16)**	[6,7 分か[3] (4) ^{ws}] 正門警備員 (2) ^{※6}	 ①屋内・屋外での消火活動(その他区域) ②火災発生現場(構内全域)への公設消防誘導 		初期消火要員 (11)	運転員(2)	 次災現場での消火戦略検討 火災現場(屋内)への公設消防誘導・説明 放射線量測定 	
	放射線測定要員・放射線測定当番(2)	線量測定			連絡責任者(1)	関係者への連絡	
	防護・副防護本部警備員(1) 消防車隊	指揮者から消防車隊への指示伝達係			·····································	山((変圧))の()の()の()の()の()の()の()の()の()の()の()の()の(
	安武貝(0)	① 盛い・ 産外 での消失活動 【参集状況に応じ,現場にて副班長が役割分担を指名】			防导員 (1)	火火先主先笏(博内主域)、0万公 政 府防诱等	
		●消火係 ①消火活動(消火器・屋外消火栓等の使用) →現現教研,溶除たた60.200			消防チーム(6)	屋内・屋外での消火活動	
消火班 (30)	副班長:専任(2),兼任可(1) 班員:専任(16),兼務可(11) (専任) 消火専任の要員 (兼務) 機能班との兼務可	2.8%型理・食機材類送除 ①現場交運整理(公気消防庫南の誘導) ②大災現場保存(関係者以外の立入規制含む) ③消火活動資機材の運搬(現場指揮本部機材含む) ●清報係 ①発電所本部への情報連絡		消火班 (8)	班長(1) 班員(7)	【参集状況に応じ, 班長が役割分担を指名】 ① 消火活動(消火器・屋外消火栓等の使用) ② 緊急時対策本部への情報連絡 ③ 火災発生現場での情報収集・記録	
		 ②大災現場での情報収集・記録 ●救護係 ①負傷者の救護 ②総務班医療係到着までの介護 		() 内は最	· :小人数		
 () 内は人気 ※1:10-55 ※2:発電開 ※3:単強火、 ※4:単強火、 ※5:40 ※5:40 ※6:40 ※6:40 第6:40 第6:40<!--</td--><td>★ 歩は各号炉15名で構成。6号及び7号炉は通常15名、6号 遮設備での火災発生時が対象。[]内は各号炉の初期消火要員 災発生時は1号炉の初期消火要員1名を補充。 災発生時は1号炉の初期消火要員1名を補充。 ジス号炉のパオれか一方の号炉の火災では3名で活動。6号及 火肝警備員(2)は、発電所周辺警備を行うために正門警備所 ご規規制に誘導すう。なお、火災の影響がおよぶ場合には安全 認備 認定域内において、原子力発電所の運転時に直接関係する建特 電所、66kV開閉所、給木建屋等の運転員の巡視区域の建物等 減 難の備以料で、発電所敷地内にある当社所有の建物(事務本館、 軟化、原子炉保修測練機、千備品倉庫(大湊)、発電倉庫(大湊)</td><td>及び7 号炉同時火災では16名で構成。 員。 なび7 号炉同時火災では運転員1名を補充し4名で活動。 (防火帯外側)に常駐しているが、森林火災発生時には、公設消 とな場所へ付避する。 物(原子炉建屋等),防護区域外であっては木処理建屋、 等をいう。 ,免援重要地,防護本部,副防護本部,サービスホール,)等),高台低等場所,森林、伐除木仮置き場等をいう。</td><td></td><td></td><td></td><td></td><td></td>	★ 歩は各号炉15名で構成。6号及び7号炉は通常15名、6号 遮設備での火災発生時が対象。[]内は各号炉の初期消火要員 災発生時は1号炉の初期消火要員1名を補充。 災発生時は1号炉の初期消火要員1名を補充。 ジス号炉のパオれか一方の号炉の火災では3名で活動。6号及 火肝警備員(2)は、発電所周辺警備を行うために正門警備所 ご規規制に誘導すう。なお、火災の影響がおよぶ場合には安全 認備 認定域内において、原子力発電所の運転時に直接関係する建特 電所、66kV開閉所、給木建屋等の運転員の巡視区域の建物等 減 難の備以料で、発電所敷地内にある当社所有の建物(事務本館、 軟化、原子炉保修測練機、千備品倉庫(大湊)、発電倉庫(大湊)	及び7 号炉同時火災では16名で構成。 員。 なび7 号炉同時火災では運転員1名を補充し4名で活動。 (防火帯外側)に常駐しているが、森林火災発生時には、公設消 とな場所へ付避する。 物(原子炉建屋等),防護区域外であっては木処理建屋、 等をいう。 ,免援重要地,防護本部,副防護本部,サービスホール,)等),高台低等場所,森林、伐除木仮置き場等をいう。					
(2) 予	防散水計画			(2) 予防	散水計画		
ß	方火帯により森林火災が発電	11日前日本にある「「「「「「「「「「」」」		防火帯	により森林火災が発電	電用原子炉施設へ影響を及ぼすこ	
ت ر ح	トロないが 森林火災の状況	品に広じて防火帯付近へ予防散		とはたい	が 森林火災の状況	こ応じて防火帯付近へ予防散水を	
	と行う また 外部からの情	青報に上り森林水災を認識し		行う す	た 外部からの情報	こ上り 本林水 災 を認識し 発電所	
ぶる	「」」。。。に、、、「品、」」。 「「」」。。。に、、、「品、」」。 「」」。。。こ、、、、、」、「品、」」。	でに時間的か全裕がある場合に		動 地 倍 思	へ到達するまでに時間		
ルー	経営が成地先が一切上するよう ※電前構内への延悟を抑制	副するために動地音界近座への		が応先が 前構内へ	の延悔を抑制するため	めに動地管界近座への予防費水を	
いよ。 子(で	おもか時に、少処死をが加	所 外 る 7という(こ友) 地元の「足」方 パック		行為	の運動を抑制するにの		
- 1,1	ッ取小で11 ノ。 5一 防水帯の内側に飛バー	レーを担合け 白海鸿陆隊の洋		コノン。 下一	防水準の内側に悪バ	レーた担合け 白海池咕咲の汗動	
新立	5 、四八市の門風に低しや	いいのロは, 日間旧町10000 の初期消水汗動に打り株ら		<i>」</i> , お 予 咕 期	水から防水準内水の	へしに効可は, 巨弾(HPD)称り位期 の初期消水活動に切り抜う 消水	
判る	い」の取小からの八市的次ク しか及び消防市ちは田1 約	ベッ1が初日八位期に切り省ん, W结して消防医しの地母のまし		やなってが		い100歳1日八伯勤に切り省ん, 旧八 して白衛浩防隊長の地田のまし知	
(日ク 七日日	1111月10日1日日の1日日の1日日の1日日の1日日の1日日の1日日の1日日の1日日の1			世及した	1977年で区用し、 1477	して日間1日町10天い1日1年のもこか	
彻界	明何代伯動・延焼防止活動を	ビロフ。なわ、了忉耿水につい		别们火估	動・延焼的止估動をf	リフ。なや、ア防敗水については、	
てド	は、火災防護計画に定める。			火災防護	計画に定める。		

 a. 音波散水に或称する効果 b. 直水推動立ての可感期的 b. 直水推動立ての可感期的 c. 高水酸加に或称する効果 c. 市政大学会議業 10.5 への「「「「「」」」、大学会議業時間が通知点なる売去点」なら点したられた。 方法大学の支援市会社 た. 方法、原水学校可含着6575267次の時の発生やす た. 方法、原水学校可含着6575267次の時の発生やす た. 方法、原水学校可含着6575267次の時の発生やす た. 方法、原水学校可含着6575267次の時の発生やす た. 方法、原水学校可含着6575267次の時の発生やす た. 方法、原水学校可含者6575267次の時の発生やす た. 方法、原水学校可含者6575267次の時の発生やす た. 方法、原水学校可含者6575267次の時の発生やす た. 方法、原水学校可含者6575267次の時の発生やす た. 方法、原水学校正常が生きたり た. 方法、原生の教生やす た. 方法、正常な活動にないたきたかま た. 方法、正常な活動にないたきたか。 た. 方法、正常な活動にないたきたかま た. 方法、正常な活動にないたきたか。 た. 方法、正常な活動にないたきたか。 た. 方法、た. 今長水・中でと使用する た. 方法、正常な活動にないたきたか。 た. 方法、た. 今長水・中でと使用する た. 方法、正常な活動にないたきたか。 た. 方法、正常な活動にないたきたか。 た. 方法、た. 今長水・中できた、水中できた、水中できたが、水中でたきた。 た. 方法、正常な活動にないたきたか。 た. 方法、正常な活動にないたきたか。 た. 方法、た. 今長水・中できた、水中できたか。 た. 方法、市時の、 た. 方法、市時の、 た. 方法、た. 今長水・中できた、水中できたか。 た. 方、一の原レメールできた。 た. 方、た. 今長水・中できたか、水中できたか。 た. 方、一の原レメールできたか、たきた、 た. 方、二の原レメールできたか、たきた、 た. 方、二の原レメールできたか。 た. 方、二の原レメールできたか、 た. 方、二の原レメールできたか。 た. 方、二の原レメールできたか。 た. 方、二の原レメールできたか。 た. 方、二の原レメールできたか。 た. 方、二の原レメールできたか。 た. 方、一般な、 た. 方、二の原レメールできたか。 た. 方、二の原レメールできたか。 た. 方、二の原レメールできたか。 た. 方、二の原レメールできたか。 た. 方、二の原レメールできたか。 た. 方、一般な、 た. 方、一般な、 た. 方、日本 た. 方	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
防水構造、防水構築繊維1%となな意味素植 1½.加に対 (加) 防水構造 (1) 水酸量 (1) 水酸 (1) 水酸量 (1) 小酸量 (1) 小酸量 (1) 小酸量 (1) 小酸量 (1) 小 m <li< td=""><td>a. 予防散水に期待する効果</td><td><u>b.</u> 散水開始までの所要時間</td><td>a.予防散水に期待する効果</td><td></td></li<>	a. 予防散水に期待する効果	<u>b.</u> 散水開始までの所要時間	a.予防散水に期待する効果	
 し、約2回2の防火帯を没なしている。 予防散水は、防火帯付近や塗塗成する。 上火蒸型速度加速気量なら発気点したら点火た点 土ノ火蒸型速度加速気量なら発気点したら点火た点 土ノ火蒸型速度加速気量なら発気点したりためたる。 オード防水水は、防火帯付近やの予防散水計画 上蒸気量が洗火性の予防散水は、加水帯付近やの予防散水計画 上蒸気量が洗火性の予防散水は、加水帯付近やの予防散水計画 上蒸気量が洗火性の予防散水計画 上蒸気量が洗火性のか子防散水計画 上蒸気量が洗火性のか子防散水計画 上蒸気量が洗火性のか子防散水計画 上蒸気量が洗火性のか子防散水計画 上蒸気量が洗火性のか子防散水計画 上蒸気量が洗火性のか子防散水計画 上蒸気量が洗火性のか子防散水計画 上蒸気量が洗火性のか子防散水計画 上蒸気量が洗火性のか子防散水計画 上蒸気量が洗火性のか差やを変化する。 水準 <l< td=""><td>防火帯は,防火帯突破確率 1%となる防火帯幅 <u>18.4m</u>に対</td><td><u>(a) 防火帯への散水</u></td><td>防火帯は,防火帯突破確率1%となる防火帯幅<u>19.5m</u>に</td><td></td></l<>	防火帯は,防火帯突破確率 1%となる防火帯幅 <u>18.4m</u> に対	<u>(a) 防火帯への散水</u>	防火帯は,防火帯突破確率1%となる防火帯幅 <u>19.5m</u> に	
 Tob散水は、By大常付近を始らすことで大の約の発生やれ、 になん消激を行う。 ため、原大素の機能をより強化するために実 加合用の気効に大い、 ため、原大素の機能をより強化するために実 になん消激を行う。 ため、原大型のな影響を発しまる風に式は、 ため、原大型のな影響を発しまる風に大い、 ため、原大型のな影響を発しまる風に大い、 ため、原大型のな影響を発しまる風に大い、 たい、 たが、原大型のな影響を発したるため、 たが、 たです。 たです。 たです。 たです。 たです。 たです。 たです。 た、 たです。 たです。 た、 たです。 た、 たです。 たです たです。 た、 たです たです。 た、 たです たです たです たです たです たです たです たた、 たてきな、 たてきな、 たた、 たてきな、 たてきな、 たてきな、 たてきな たです たてきな たてきな たてきな たてきな たてきな たた、 たた、 たた、 たた、 たた、 たた、 たた、 たた、 たた、 たまをまま たた、 たた、 たできな たた、 たた、 たです たた、 たた、 たた、 たた、 たた、 たた、 たた、 たた、 たた、 たた、 たた、 たた、 たた、 たた、	し,約 20m の防火帯を設定している。	i) 火炎到達時間が最短となる発火点1から出火した森	対し,約 <u>21m</u> の防火帯を設定している。	
び移りの抑制を図り、防火器の機能をより強化するために表 施する。ご整水活動を行う、重水活動を行う、重水活動を行う、重水活動を行う、重水活動を行う、重水活動 加入加設とないた。 加入加設しためたが、一般化学の「好影水計画 ・活動用水は、常内量外消水性等を使用する。 ・活動用水は、常内量外消水性等と使用する。 ・「防水滑付近時本 2 作、対応要員数に 10.5。 ・「防水滑付近時本 2 作、対応要員数に 5.5。「原水水 2 にないしたきなの対応、たきなの対応、たきなの対応、たきなの対応、たきなの対応、たきなの対応、たきなの対応、たきなの対応、たきないした。 ・「防水滑付近時本 2 作、対応要員数に 5.5。「防水 2 にないしたきなの対応、たきなの対応、たきなの対応、たきなの対応、たきなの対応、たきなの対応、たきないした。 ・「防水滑付近時本 2 作、対応要員数は 5.5。 ・「防水滑付近時本 2 作、対応要員数は 5.5。「防水滑付近時本 2 作、対応要員数は 5.5。 ・「防水滑付近常か本 1 アン 2 使用する。 ・「防水滑付近常水 1 アン 2 使用する。 ・「防水滑付近常水 1 アン 2 使用 1 た 2、 ・「防水滑付近常水 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	予防散水は、防火帯付近を濡らすことで火の粉の発生や飛	林火災が、最短で発電所に到達する散水地点Aにおい	予防散水は、防火帯付近を濡らすことで火の粉の発生や	
広する。 かの、気気に数水、残点に気が、気気、気気など、システスタ、、気気、気、な、シスク、スタの、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	び移りの抑制を図り、防火帯の機能をより強化するために実	て散水活動を行う。散水位置を第4.1-3図に示す。	飛び移りの抑制を図り、防火帯の機能をより強化するため	
b. 防火常付近今の万防散水計画 広志小、「見分消水栓の本瓶は原水シンクてあり、このク シクの水原は工業用水より自動輸給会れるため、連結 散水が可能である。原水火ダンク活動人もため、加速、 b. 防火常付近への万防散水計画 b. 防火常付近数水エリアと消火栓位置を第 2.3.1.22 因 に示す、また、各散水エリアと消火栓位置を第 2.3.1.22 因 に示す、また、各散水エリアと使用する。 m. 1.23 前自動車1.45を使の対応人数を第 2.3.1.22 表示す。 m. 1.23 前自動車1.45を使の対応人数を第 2.3.1.22 表示す。 m. 1.23 前自動車1.45を使の対応人数を第 2.3.1.22 表示す。 m. 1.25 点式 いたいため、液林火災の影響は受けない。 b. 防火常付近数水エリアと使用する m. 1.25 点式 2015 ため、ため状火災の影響により水火酸素 m. 1.25 点式 2015 ため、液林火災の影響は受けない。 m. 1.25 点式 2015 ため、液林火災の影響は受けない。 b. カパーの構成と使用する m. 1.25 点式 2015 ため、液林火災の影響は受けない。 m. 1.25 点式 2015 ため、液林火災の影響は受けない。 m. 1.25 点式 2015 ため、液林火災の影響は受けない。 c. 3.1.22 表示す。 m. 2.3.1.22 表示す。 m.2.3.1.22 表示す。 m.2.3.1.22 表示す。 m.2.3.1.22 表示す。 b. 力が一の増成火化(加) m.3.6 m.2.5 気がに助けた m.3.6 m.3.6 m.3.6 m.4.1.2 表示す。 m.3.6 m.3.6 m.3.6 m.3.6 m.4.1.2 表示す。 m.5.5 条状火災のためた m.5.5 条状火災の少ど、動化(加) m.5.5 条 m.5.5 条状火災のど、しておした m.5.5 条状火災のどとりま m.5.5 条状火災の必要 m.5.5 条状火災の必要 m.5.5 条 m.5.5 条状火災のご m.5.5 条 m.5.5 条 m.5.5 条状火災の参加 m.5.5 条 m.5.5 条 m.5.5 条 m.5.5 条 m.5.5 条 </td <td>施する。</td> <td>ii) 水源は散水地点に最も近い屋外消火栓**を使用する。</td> <td>に実施する。</td> <td></td>	施する。	ii) 水源は散水地点に最も近い屋外消火栓**を使用する。	に実施する。	
 b. 防火帯付近への予防数水計画 ご動用水は、構内医外満水検*®を使用する。 ご動用水は、構内医外満水検*®を使用する。 ・防火帯付近欧、コフト ・防火帯付近欧、コフト ・防火帯付近欧、コフト ・防火帯行近欧、コフト ・防火帯行近欧、エリアと ・ボホッシン ・ボホッシッ ・ボホッシン ・ボホッシッ <li< td=""><td></td><td>なお,屋外消火栓の水源は原水タンクであり,このタ</td><td></td><td></td></li<>		なお,屋外消火栓の水源は原水タンクであり,このタ		
 ・ 活動用水は、構内堅外消火检*を使用する。 ・ 使用費機材は消防車 2 台。効応要員数は 10 名。 ・ (広元す 6 数/広 エリアと消火检位置を第 2.3.1.2-2 図 に示す。また、各数/広 エリアと消火检位置を第 2.3.1.2-2 図 に示す。また、各数/広 エリアに使用する消火栓等*を使用する。 ・ (加) 消防自動車(1 な を (1 + 2 ≤ 0 文) (加) 自動車(1 な を (1 + 2 ≤ 0 文) (加) 自動車(1 + 2 ≤ 0 文) (1 + 2 ≤ 0 × (1	b. 防火帯付近への予防散水計画	ンクの水源は工業用水より自動補給されるため、連続	b.防火帯付近への予防散水計画	
 ・使用電機構は消防車 2 台。対応要員数は 10 名。 ・防火帯付近散水エリアと<u>消入強軟</u>の置きる。2.3.1.2-2 図 に示す。また,各数水エリアに使用する近大陸零 2.3.1.2-2 表にがす。 ※ 活動気が液体の確保を優先とするが、状況に応じて 防火水槽、海水を活動用水として使用する。 ※ 活動気がた水サアと使用水類 ※ 活動気がたいア・サアと使用水類 ※ 活動気がたいア・サアと使用水数 ※ 活動気がたいア・サアと使用水類 ※ 不可能でなかったため、 ※ 活動気がたいア・サアと使用水類 ※ 不可能でなかったため、 ※ 不可能でなかったの ※ 不可能でなかったため、 ※ 不可能でなかったの ※ 不可能でなかったか、 ※ 不可能でなかったか、 ※ 不可能でなかったか、 ※ 不可能でなかったか。 ※ 不可能でなかったか。 ※ 不可能でなかったか。 ※ 不可能でなかったの ※ 不可能でなかかったの ※ 不可能でなかったの ※ 不可能でなかたの ※ 不可能でなかったの ※ でなかったの ※ 不可能でなかったの <l< td=""><td>・活動用水は,構内屋外消火栓*を使用する。</td><td>散水が可能である。原水タンクは防火帯の内側に設置</td><td>・活動用水は、防火帯内側の構内屋外消火栓等※を使用す</td><td></td></l<>	・活動用水は,構内屋外消火栓*を使用する。	散水が可能である。原水タンクは防火帯の内側に設置	・活動用水は、防火帯内側の構内屋外消火栓等※を使用す	
 ・防火帯付近散水エリアと<u>消火栓</u>位置を第 2.3.1.2-2 割 ・広示す。また、各散水エリアに使用する<u>消火栓</u>を奪 2.3.1.2-2 表に示す。 ※: 構内屋外消火栓の確保を優先とするが、状況に応じて 防火水槽、海水を活動用水として使用する。 (上) 消防自動車1 台を使用したときの対応人数を第 (上) 表に、消防自動車仕様を第 4.1-4 表に示す。 (上) 方が一の飛び火等による火炎の雄速を確認した場合 (上) 方が一の飛び火等による火炎の雄速を確認した場合 (上) 方が一の飛び火等による火炎の雄速を確認した場合 (上) 前防自動車1 台を使用したときの対応人数を第 (上) 前防自動車仕様を第 4.1-4 表に示す。 (上) 前防自動車1 台を使用したときの対応人数を第 (上) 二 3 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	・使用資機材は消防車 2 台。対応要員数は 10 名。	されているため、森林火災の影響は受けない。	る。	
に示す。また、各散水エリアに使用する消火栓 2.3.1.2-2 表に示す。2.3.1.2-2 表に示す。※: 構内屋外消火栓の確保を優先とするが、状況に応じて 防火水槽、海水を活動用水として使用する。放水槽、海水を活動用水として使用する。放水槽、海水を活動用水として使用する。放水槽、海水を活動用水として使用する。放水槽、海水を活動用水として使用する。放水槽、海水を活動用水として使用する。放水槽、海水を活動用水として使用水源放水槽、海水を活動用水として使用水源放水槽、海水を活動用水として使用水源放水槽、海水を活動用水として使用水源(A) 5.9mg/MAR/MAR/MAR/MAR/MAR/MAR/MAR/MAR/MAR/MAR	・防火帯付近散水エリアと <u>消火栓</u> 位置を第 2.3.1.2-2 図	iii) 消防自動車 1 台を使用したときの対応人数を第	・使用資機材は消防車2台。対応要員数は6名。	
1.3.1.2-2 表に示す。 ※: 構内屋外消火栓の確保を優先とするが,状況に応じて 防火水槽,海水を活動用水として使用する。 第 2.3.1.2-2 表 防火帯付近散水エリアと使用水源 第 2.3.1.2-2 表 防火帯付近散水エリアと使用水源 (使用消火栓 平力 小一人展開那 (使用消火栓 10.2.3-6.8.6) 小一人展開市 5.97回及外消火栓回0.8 小一人展開市 6.97回及外消火栓回0.8 小一人展開市 7.4 5.97回及外消火栓回0.8 6 5.97回及小消火栓回 7.4 5.97回及小消火栓回 7.4 5.97回及小消火栓回0.8 7.4 5.97回及小消火栓回 7.4 (41.3~7.7.3) 7.4 (41.3~7.7.3) 7.4 (41.3~7.7.3) 7.4 (41.3~6.4.1.9) 7.4 (41.3~6.4.1.9) 7.4 (41.3~6.4.1.9) 7.4 (41.3~6.4.1.9) 7.4 (41.3~6.4.1.9) 7.5 (41.3~6.4.1.9) 7.5 (41.3.4.1.9.1.2.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1	に示す。また,各散水エリアに使用する <u>消火栓</u> を第	4.1-3 表に,消防自動車仕様を第4.1-4 表に示す。	・防火帯付近散水エリアと水源位置を第2.3.1.2-2 図に	
 ※: 構内屋外消火栓の確保を優先とするが、状況に応じて 防火水槽,海水を活動用水として使用する。 <u>第 2.3.1.2-2 表 防火帯付近散水エリアと使用水源</u> <u>水下 使用清火栓</u> <u>1.1.22 表 防火帯付近散水エリアと使用水源</u> <u>水下 水原薄荷板屋外消火栓00 (1.2.3~68.5)</u> (12.3~68.5) <u>2 愛耐構内屋外消火栓00 (1.1.40m) (13.3.0m)</u> (14.4.3~77.3) <u>及電所構内屋外消火栓00 (1.4.0m) (13.4.77.3)</u> <u>夏電所構内屋外消火栓00 (1.4.0m) (13.4.77.3)</u> <u>夏電所構内屋外消火栓00 (13.4.77.3)</u> <u>夏電所構内屋外消火栓00 (13.4.77.3)</u> <u>夏電所構内屋外消火栓00 (13.4.77.3)</u> <u>夏電所構内屋外消火栓00 (13.4.77.3)</u> <u>夏電所構内屋外消火栓00 (13.4.77.3)</u> <u>夏電所構内屋外消火栓00 (13.4.77.3)</u> (13.4.72.1) <u>2 電所構内層外消火栓00 (13.4.77.3)</u> <u>夏電所構内屋外消火栓00 (13.4.77.3)</u> (13.4.72.1) <u>度電所構内屋外消火栓00 (13.4.77.3)</u> <u>夏電所構内屋外消火栓00 (13.4.77.3)</u> (13.4.72.1) <u>2 電所構内層外消水栓00 (13.4.77.3)</u> (13.4.72.1) <u>2 電所構内屋外消水栓00 (13.4.77.3)</u> (13.4.72.1) <u>2 電所構内屋外消水栓00 (13.4.77.3)</u> (13.4.72.1) <u>2 電所構内屋外消水栓00 (13.4.77.3)</u> (13.4.72.1) <u>2 電所構内屋外消水栓00 (13.4.77.3)</u> (13.4.72.1) <u>1 (1.1.10.10.10.10.10.10.10.10.10.10.10.10.</u>	2.3.1.2-2 表に示す。	iv) 万が一の飛び火等による火炎の延焼を確認した場合	示す。また,各散水エリアに使用する <u>水源</u> を第	
防火水槽,海水を活動用水として使用する。 外部からの情報により森林火災を認識し,防火帯にする。 ※< # <	※:構内屋外消火栓の確保を優先とするが、状況に応じて	には, 自衛消防隊による初期消火活動を行う。なお,	2.3.1.2-2表に示す。	
	防火水槽、海水を活動用水として使用する。	外部からの情報により森林火災を認識し、防火帯に到	※:構内屋外消火栓の確保を優先とするが、状況に応	
第 2.3.1.2-2 表 防火带付近散水エリアと使用水源 内への延焼を抑制力るために防火帯近傍への予防散水 散水 使用通外粒 ホース展開距離 高低差 エリア (上長:主,下長:補助) (水平距離) (消火栓へ散水筒所) を行う。 A 5 号厚屋外消火栓 10-8 (水平距離) (消火栓へ散水筒所) を行う。 A 5 号厚屋外消火栓 10-10 ~ 860m (12.3 ~ 68.5) ※ 外部電源要失により 屋外消火栓の駆動ボンプである構 第 2.3.1.2-2 表 防火帯付近散水エリアと使用水源 B 電源情容局外消火栓の ~ 1,440m (4.3 ~ 77.3) ※ 外部電源要央により 消防自動車を用いて散水する。なお。 消防自動車のボンプ圧力性能(約 2.1MPa) は、防火水 第 5.4m 第 2.3.1.2-2 表 防火帯付近散水エリアと使用水源 C 発電所構内屋外消火栓の ~ 3.3m		達するまでに時間的な余裕がある場合には、発電所構	じて防火水槽,海水等を活動用水として使用する。	
水 使用消火栓 ホース展開距離 高低差 (消火栓~散水箇所) エリア (上段: 註, 下段: 補助) (水平距離) (消火栓~散水箇所) (上段: 註, 下段: 補助) (水平距離) (泊火栓~散水箇所) (注及: 註, 下段: 補助) (八平距離) (泊火栓~散水箇所) (注力: 注, 下段: 補助) (八平距離) (泊火栓~散水箇所) (注力: 注, 下段: 補助) (八平距離) (12, 3~68, 5) (12, 3~68, 5) (14, 3~77, 3) (14, 3~77, 3) (13, 5~74, 9) (13) (13) (13) (13) (13) (13) (14) (13) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (16) (14) (16) (14) (16) (14) (16) (14) (16) (14)	第 2.3.1.2-2 表 防火帯付近散水エリアと使用水源	内への延焼を抑制するために防火帯近傍への予防散水		
エリア (上段:主,下段:補助) (水平距離) (消火栓~散×箇所) λ 5号炉屋外消火栓 FI0-08 ~860m 56.2m (12.3~68.5) 5号炉屋外消火栓 FI0-10 ~1.40m (12.3~68.5) (12.3~68.5) 発電所構内屋外消火栓 60 ~1.40m (14.3~77.3) 後電所構内屋外消火栓 00 ~1.440m (14.3~77.3) 第登電所構内屋外消火栓 00 ~30m (39.5~44.9) 発電所構内屋外消火栓 00 ~30m (39.5~44.9) 発電所構内屋外消火栓 00 ~290m 5.4m (39.4~33.7) (3.4~33.7) 予範疇 市内屋外消火栓 00 ~290m 3.3m (30.4~33.7) (30.4~33.7) 予範市構内屋外消火栓 00 ~400m (13.1~22.1) 発電所構内屋外消火栓 00 ~400m (13.1~22.1) 発電所構内屋外消火栓 00 ~400m (13.1~22.1) 交流所構内屋外消火栓 00 ~100m (13.1~22.1)	散水 使用消火栓 ホース展開距離 高低差	を行う。	第2.3.1.2-2表 防火帯付近散水エリアと使用水源	
A $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{12}$ $\frac{5}{12}$ $\frac{6}{12}$ $$	エリア (上段:主,下段:補助) (水平距離) (消火栓~散水箇所)	※ 外部電源喪失により屋外消火栓の駆動ポンプである構	教水 使用水源 ホース展開距離 高低差	
B 発電所構內屋外消火栓① ~1,440m 33.0m 描を水源とし、消防自動車を用いて散水する。なお、 第 $(9 \sim 15)$ C 発電所構內屋外消火栓③ ~340m 5.4m 消防自動車のボンプ圧力性能(約 2.1MPa)は、防火水 行 $(9 \sim 15)$ C 発電所構內屋外消火栓③ ~340m 5.4m $(39.5 \sim 44.9)$ $(39.5 \sim 44.9)$ $(30.5 \sim 44.9)$ $(30.4 \sim 33.7)$ D 発電所構內屋外消火栓③ ~290m $3.3m$ $(30.4 \sim 33.7)$ $(13.1 \sim 22.1)$ $(20.5 \sim 44.9)$ $(31.4 \sim 22.1)$ E 発電所構內屋外消火栓② $(30.4 \sim 33.7)$ $(30.4 \sim 33.7)$ $(13.1 \sim 22.1)$ $(20.5 \sim 44.9)$ $(30.4 \sim 33.7)$ E 発電所構內屋外消火栓② $(30.4 \sim 33.7)$ $(30.4 \sim 33.7)$ $(13.1 \sim 22.1)$ $(20.5 \sim 44.9)$ $(20.5 \sim 44.9)$ E 発電所構內屋外消火栓② $(30.4 \sim 33.7)$ $(30.4 \sim 33.7)$ $(20.5 \sim 44.9)$ $(30.4 \sim 33.7)$ $(20.5 \sim 44.9)$ $(20.6 \sim 44.9)$ $(40.6 \sim 70.9)$ E 発電所構內屋外消火栓② $(30.6 \sim 61.9)$ $(30.6 \sim 61.9)$ $(30.6 \sim 61.9)$ $(20.6 \circ 61$	A 5 号炉屋外消火栓 FH0-8 ~860m 56.2m (12.3~68.5)	内消火用ポンプが使用不能となった場合には、防火水	エリア (上段:主,下段:補助) (水平距離) (水源へ散水箇所)	
空 発電所構内屋外消火栓⑥ 1100000000000000000000000000000000000	B 発電所構內屋外消火栓① ~1.440m 33.0m	槽を水源とし、消防自動車を用いて散水する。なお、	3号機消火用水タンク ~365m 0000 ① (9~15)	
C 近記が時が月屋外消火栓③ ~340m 0.5.4m 0.5.4m 0.5.4m 39.5.44.9) 39.6 24m D 発電所構内屋外消火栓③, ⑤ ~290m 3.3m 個から最も遠い防火帯外縁への散水を想定した最大の 個体室報助貯蔵所D棟 ~500m 24m D 発電所構内屋外消火栓③, ⑥ ~290m 3.3m 個から最も遠い防火帯外縁への散水を想定した最大の 個体室報助貯蔵所D棟 ~500m 24m E 発電所構内屋外消火栓④, ③, ④ ~100m 9.0m 10.1.2MPa) を上回るため, 防火帯外縁の全 44m 盤屋外消火栓 ~13am 7m E 発電所構内屋外消火栓①, ③, ④ 9.0m 13.1~22.1) -3.9m -3.9m Cの箇所について散水可能である。 Cの箇所について散水可能である。 個体室報助貯蔵所B棟 ~13am 11m 学者の構内屋外消火栓② -3.9m -3.9m -3.9m -3.9m -3.9m -3.9m -3.9m	予 発電所構内屋外消火栓⑥ 5,000 (44.3~77.3) 発電所構内屋外消火栓⑥ 5,4m	消防自動車のポンプ圧力性能(約2.1MPa)は、防火水	宇中貯水槽 ~395m 6m (9~15)	
	C 分配量为用为化量变量 ~340m 0.1 m 発電所構內屋外消火栓⑤ ~340m (39.5~44.9)	せいたいには、していたいでは、したいのです。 あっていたいでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、したいのでは、いいいのでは、いいいいいのでは、いいのでは、いいのでは、いいいいのでは、いいいのでは、いいのでは、いいのでは、いいいのでは、いいいいいいいいいい	3号機開閉所屋外消火栓 ~500m 24m (46~70) (46~70)	
第電所構內屋外消火栓②, ⑥ (30.4~33.1) B 発電所構內屋外消火栓② ~400m 9.0m (13.1~22.1) Cの箇所について散水可能である。 発電所構內屋外消火栓② ~108m 経電所構內屋外消火栓② ~108m (50~61)	D 発電所構內屋外消火栓③, ⑤ ~290m 3.3m	指生圧力(約 1 2MPa)を上回ろため 防火帯外縁の全	固体廃棄物貯蔵所D棟 24m 屋外消火栓 ~500m (46~70)	
E 発電所構内屋外消火栓①,③,④ ~400m (13.1~22.1) 発電所構内屋外消火栓② -3.9m	光電所構内室外消火栓② (30.4~33.7) 発電所構内屋外消火栓② 9.0m	ての箇所について散水可能である	44m 盤屋外消火栓 7m (54~61)	
<u> 発電所構内屋外消火栓(2)</u> -3.9m	E 発電所構内屋外消火栓①,③,④ ~400m (13.1~22.1)		③ 44m 盤消火タンク ~118m (500-61)	
F 1号炉屋外消火栓 FHO-9, ~720m ~340m	発電所構內屋外消火栓(2) -3.9m F 1号炉屋外消火栓 FHO-9, ~720m		固体廃棄物貯蔵所B棟 ~340m 25m 日本 (50 - 51) (50 - 51)	
経電所構内屋外消火栓③ (13.1.~9.2) ④ 確<	発電所構內屋外消火栓③ (13.1.~9.2)		④ 屋外消火程 (50~75) 輸谷貯水槽(東側) ~407m 26m	
$ \frac{1 - 5 \sqrt{2} \sqrt{2} \sqrt{2}}{\sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}} \sim \frac{18 \sqrt{2} \sqrt{2}}{\sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}} \sim \frac{4.0 \text{m}}{\sqrt{2} \sqrt{2} \sqrt{2}} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt$	G 1号炉屋外消火栓 FH0-9 4.0m % % % % %		2.日本本文ング (49~75) 2.日本本文ング ~193m 24m	
ころうがパインシート 100mm 100mm 100mm (31~45) 技術訓練センター 010			⑤ 2353/2017 100m (31~45) 技術訓練センター 23m	
屋外消火栓 ~240m (22~45) 38m 38m 38m			屋外消火栓 ~240m (22~45) 38m 38m 38m	
免震重要棟廻り屋外消火栓 ~739m 08 ⑥ (88~50)			免震重要棟廻り屋外消火栓 ~739m 000000000000000000000000000000000000	
50m 盤消火タンク ~665m 350m (88~50) (50m)			50m 盤消火タンク ~665m 35m (88~50) (100) (100)	
免震重要棟廻り屋外消火栓 -10m (7) (50~40)			免震重要棟廻り屋外消火栓 ~730m -10m ⑦ (50~40) (50~40)	
免震重要棟東側防火水槽 ~680m -10m (50~40)			免震重要棟東側防火水槽 ~680m (50~40)	
サイトバンカ南側 屋外消火栓31m (9~40)			サイトバンカ南側 31m 屋外消火栓 ~380m	
(8) サイトバンカ消火ダンク ~319m 31m (9~40)			③ サイトパンカ消火タンク ~319m 31m (9~40)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二	発電所(2018	. 9. 12 版)		島根原子力発電所 2号炉	備考
	第4.1-3表 散	<u> </u>	応人数(防火	:带)		
	散水地点	発電所可	互侧 散水地点A			
	消火栓位置	屋外消火	(設置予定)			
	ホース展張距離		約 100m			
	消防自動車台数		1 台			
	現場指 散水筒 ホース 連絡責 合計	 軍者:1名 七:2名 監視:1名 壬者:1名 :1名 :11名 	現場連絡責(ホース展張 燃料補給 連絡担当	壬者 :1名 :3名 :1名 :1名 :1名		
					第2.3.1.2-2 図 防火帯付近散水エリアと水源位置	
第 2.3.1.2-2 図 防火帯付近散水エリアと <u>消火栓</u> 位置						
	<u>第4.1-3</u> 」 第4.1-3	3 散水位置 1 表 消防白	(防火帯)			
		数量	水槽容量	薬液槽容量		
	設備	(台)	(L)	(L)		
	化学消防自動車	1	1,500	300		
	水槽付消防ポンプ自動車	1	2,000	-		
c. 対応手順と所要時間 対応手順と所要時間を第 2.3.1.2-3 表に示す。また,「(d) 訓練実績(1)森林火災を想定した予防散水訓練実績(防火帯 付近)」において,検証した所要時間(実績)を下段に示す。	 (b) 所要時間 第4.1-5表に示す 活動を開始可能である 	-とおり、火 5る。	災情報入手後	<u>, 11 分で散水</u>	c.対応手順と所要時間 対応手順と所要時間を第2.3.1.2-3表に示す。また,「f.予 防散水の検証結果(a)森林火災を想定した予防散水訓練実績(防 火帯付近)」において,検証した所要時間(実績)を下段に示 す	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所		島根原子	備考		
第 2.3.1.2-3 表 防火帯付近への予防散水手順と所要時間	第4.1-5表 散水開始	までの所要時間(防火帯)	第2.3.1			
手順 内容 所要時間 0 10 20 30 40 50 60 70 80 90 100	項目 活動内容	活動に必要となる所要時間(分) 0 10 20 30	手順	内容	所要時間	
火災発生 (敷地境界まで発見が 遅れることを想定) 森林火災発生	火災発生 連絡・火災延焼 上(1)は細た1.エ		火災発生	森林火災発生	0 10 20 30 40 50 60 70 森林火災発生 ▽	
火災発見 警備員が発見し,消防 火災発見 ~散水指示 隊長へ連絡 想定 (5)	確認 火災情報を入手 出動準備	× 5 分		火災発見者からの連	火災発見 相会 ▽	
消防隊長は、風向き等 から火災進行方向を評 ^{想定} (10)	消火活動準備 消火活動場所までの移動	2分	火災発見 ~数水指示	 Aを受け有防テーム へ出動要請 消防隊長は、風向き 	遼走 (5)	
価し,散水場所を消防 車隊へ指示	ホース展張・散水準備	4分		等から火災進行方向 を考慮し,散水場所 を消防チームへ指示	想定 (15)	
出動準備 出動準備~現場到着 ^{想定} (15) 実績 ※ (12) 枚水準備 水和確保 ホース施設 想定 (40)	消火活動開始 防火帯への散水開始	▼散水判備完了	出動進備	出動進備~現場到着	想定 (15)	
送水 想定 (30)		こした時間			実績* (10)	
実績 ※ (16) 放水開始 放水開始 想定			放水準備	水利確保,ホース敷 設	想定 (15) 実績* (13)	
			放水開始	放水開始	↓ 放水開始	
	(c) 評価結果					
	発火点1の火炎到達時	f間 0.2 時間(約 12 分)以内で散水				
	かり能である。なお、発	火点」と防火帯の間は幅1mの道路				
	ルのり、胜利モリルへん	山ていて、宇際には非燃焼領域で				
	レ、八次判理时间を昇山	コレビいる。天际には升が沈明型で				
	のるこの理由がのること	- にようて, 八次判定时间はより及				
	→ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	周囲と同じ植生(菠葉広葉樹)を				
	入力					
	(4) 森林火災時のモニタリン:	グポストへの対応				
	モニタリングポストについ	いては、発電所周辺監視区域付近に				
	おける空間線量率の監視を行	<u> 行うために発電所敷地境界付近(防</u>				
	火帯の外側)に4箇所設置し	TNZ.				
	モニタリングポストは防火	<u> </u>				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	林火災による影響を確実に防止できるとは考えていない。		
	モニタリングポストが森林火災の影響を受け機能を喪失した		
	場合は、防火帯内側に保管してある可搬型モニタリングポスト		
	を設置し、代替監視を行う。可搬型モニタリングポストはモニ		
	タリングポスト用として4台準備する。また、電源は外部バッ		
	テリーを適時交換することで連続供給可能であり、データ伝送		
	は衛星回線による通信機能を有しており、中央制御室及び緊急		
	時対策所にて、常時監視が可能である。		
	なお、可搬型モニタリングポストを配置場所まで運搬・設置		
	し,監視・測定を開始するまでの所要時間は,1台当たり約50		
	分を想定(10台設置する場合は、約8時間10分を想定)。		
	可搬型モニタリングポストのイメージ図を第4.1-4 図,配置		
	図を第4.1-5 図に示す。		
	森林火災が発生した場合、防火帯内側にある発電用原子炉施		
	設の防護を第一に考える。ただし、風向き等から森林火災が発		
	電用原子炉施設へ影響を与えないと判断した場合は、モニタリ		
	ングポスト付近への散水を行う。		
	モニタリングポスト付近への散水開始までの所要時間を訓練		
	にて測定した。		
	*## (機由器・制定部) アンテナ部 *##xxycycyu-cesha# アンテナ *##xxycycyu-cesha# では、2000 *##xxycycyu-cesha# では、2000 *##xxycycyu-cesha# では、2000 *##xxycyu-cesha# では、2000 *##xxycyu-cesha# では、2000 *##xxycyu-cesha# では、2000 *##xxycyu-cesha# では、2000 *##xxycyu-cesha# *##xxycyu-cesha# *##xxycyu-cesha# *##xxycyu-cesha# *##xxycyu-cesha# *##xxycyu-cesha#		
	第4.1-4 図 可搬型モニタリングポストのイメージ		
	<u>a. 散水開始までの所要時間</u>		
	(a) モニタリングポストへの散水訓練		
	i) 消防自動車待機位置,初期消火活動要員集合場所か		
	ら遠いモニタリングポスト D において散水活動を行		
	う。散水位置を第4.1-5図に示す。		
	ii) 水源は,散水地点に一番近い北地区防火水槽(北側)		
	<u>(保有水量:40m³)を使用。</u>		
	iii) 消防自動車 1 台を使用したときの対応人数を第		
	4.1-6表に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東	海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.1-6表 散	水地点及び対応人数(モニタリングポスト)		
	散水地点	モニタリングポストD		
	防火水槽位置	北地区防火水槽(北側)		
	ホース展張距離	150m		
	消防自動車台数	1 台		
	対応人数	現場指揮者 :1名 現場連絡責任者 :1名 散水筒先 :2名 ホース展張 :3名 ホース監視 :1名 燃料補給 :1名 連絡責任者 :1名 連絡担当 :1名 合計 :11名		
	第 4. 1-	-5 図 モニタリングポスト位置及び		
		吸型モニタリングポスト設置位置		
	 (b) 訓練結果 第 4.1-7 第 水活動を開始 設を考慮し 実施し、散 	表に示すとおり,火災情報入手後,約16分で散 始可能である。ただし,この結果は津波防護施 ていないため,津波防護施設設置後に再訓練を 水開始までの所要時間を確認する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所	(2018.	9.12版)				島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	 第 4.1-7 表 項目 火災発生 連絡・火災延焼確 消火活動準備 消火活動開始 	東海第二発電所 散水開始までの所 活動内容 活動内容 火災情報を入手 出動準備 消水活動場所までの移動 ホース展張・散水準備 モニタリングボストへの散水開始 調練実績 []: 過去の実績等から想が	(2018. 要時間 ○ ▽ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	9.12版) (モニタ) 活動に必要とな 10 5分 7分	リングポス る所要時間(分) 20 16分後 散水準備完	30 30		島根原子力発電所 2号炉	備考
	 (5) ホース原 これます 能であるご 帯周辺ます 帯内の散z 	展張距離を踏まえた散 でのホース展張検証に ことを確認している。 での離隔距離は,最長 Kは可能である。(別新	:水可 より, 防火 でも3 氏2.9)	皆範囲 約 900m の 特内の屋外 00m 未満て	ホース展 消火栓か *あるため	張がī ら <u>防</u> , , 防,	可 <u> </u> <u> </u>		
d. 発電所敷地境界への予防散水計画								d.発電所敷地境界への予防散水計画	
<u>発電所周辺の 5 方向</u> を代表ポイントとし,発電所敷地境界								発電所敷地境界に設置されているモニタリングポスト6	・条件の相違
への予防散水計画を定めた。発電所敷地境界への予防散水計								<u>箇所</u> を代表ポイントとし,発電所敷地境界への予防散水計	【柏崎 6/7】
画を第 2.3.1.2-4 表に示す。								画を定めた。発電所敷地境界への予防散水計画を第	島根2号炉は,発電所
								2.3.1.2-4 表に示す。	敷地境界の代表ポイ
 ・代表ポイントは、森林火災影響評価において卓越方向 									ントとしてモニタリ
と評価した南南東とホース展開に最も時間を要すると									ングポストを選定
考えられる刈羽トンネル方向*を含めることとし、この									
2 方向の中間方向となる 3 方向を加え,発電所外周を									
ほぼ等間隔に分割できる 5 ポイントとした。									
※: 刈羽トンネルポイントは, 消火栓からのホース展開 距離が最も長く(1500m), 放水位置の高低差も最も 大きい(46.4m)ことから, 予防散水の実施条件が最 も厳しい。									

柏崎>	间羽原子力列	後電所 6	/7号炉	(2017.12	2.20版)		東海第二発電所	(2018.9.12版)		ļ	 	力発電所	2号炉			備考
	・活動用水に	は構内屋外	消火栓と	し,代表ポ	イントまでホ				<u>た</u>	お,活動	用水は防	<u>j火水槽,</u>	山林消火	:栓等とし	, 代表ポ	
	ースを展開	開する。ホ	ース展開	距離, <u>消</u> 火	栓から散水ボ	2			イン	トまでホ	ースを展	開する。	ホース展	と開距離,	水源から	
	イントまつ	での高低差	を考慮し,	・中継用の	消防車を配置				散水	ポイント	までの高	「低差を考	慮し,中	「継用の消	筋車を配	
	する。敷却	地境界への)予防散水	を第 2.3.	1.2-4 図に示				置す	る。						
	J.															
	第 2.3.1.2	2-4 表 敷却	地境界への)予防散水言	十画				答	第 2. 3. 1. 2	2-4表 剪	敷地境界~	への予防間	教水計 画		
火災ポイント	①北側ポイント	②刈羽トンネルオ イント	3 ③正門ポイント	④南南東ポイン	ット ⑤南側ポイント				火 災到達 ポイント	No. 1 モニタリング ポスト	No. 2 モニタリング ポスト	No. 3 モニタリング ポスト	No. 4 モニタリング ポスト	No.5 モニタリング ポスト	No. 6 モニタリング ポスト	
消火栓位置	大湊側軽油タンク 消火栓	第2企業センター 北側消火栓	・ 第2企業センタ 南側消火栓	 一 青山南通りグラ 付近消火栓 	シド 青山通り事務本 館付近消火栓				水源位置	No. 7 防火水槽	No. 6 防火水槽	山林消火栓東	山林消火栓西	No. 1 防火水槽	3号機消火用 水タンク	
ホース展開距離 (水平距離)	1, 230m	1, 500m	525m	900m	675m				ホース展開距離 (水平距離)	305m	25m	35m	133m	185m	566m	
高低差(消火栓~ 散水箇所	~ 16. 5m (12. 1~28. 6)	46. 4m (44. 3~90. 7	14. 5m) (44. 3~58.	8) (30. 7~52.	24. 3m 5) (13. 2~37. 5)				高低差 (水源~散水箇所)	-20m (75~55)	-4 m (131~127)	-4 m (151~147)	-10m (146~136)	-16m (124 \sim 108m)	61m (9~70)	
消防車台数	2台	3台	2台	2台	2台				消防車台数	2台	2台	2台	2台	2台	2台	
対応人数(含む) 揮者)	盲 指揮者:1名 ホース展開:4名 散水筒先:2名	指揮者:1名 ホース展開:6名 散水筒先:2名	指揮者:1名 ホース展開:42 散水筒先:2名	指揮者:1名 名 ホース展開:4: 散水筒先:2名	指揮者:1名 名 ホース展開:4名 散水筒先:2名				対応人数 (含む指揮者)	6名	6名	6名	6名	6名	6名	
	燃料補給:2名 ホース監視:2名	燃料補給:2名 ホース監視:2名	燃料補給:2名 ホース監視:22	燃料補給:2名 名 ホース監視:23	燃料補給:2名 名 ホース監視:2名				予想準備時間	1時間	1時間	1時間	1時間	1時間	1時間	
	合計 11名	合計 13名	合計 11名	合計 11名	合計 11名											
予想準備時間	1. 5時間	2. 0時間	1. 0時間	1. 5時間	1. 5時間											
									笛:	2. 3. 1. 2-2	3 図 載†	地境界散力	水エリアン	レ水源位間	音	

 a. Taykanyo / a kuwa / a kuwa	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
Extra description and descript	e. 予防散水時のアクセスルート		e.予防散水時のアクセスルート	
 Action Action Actio Action Action Action Action Action Action Action Action A	森林火災が発生し発電所構内へ延焼するおそれがある場		原則,発電所構内の道路は初期消火活動を行う消防車等	・条件の相違
Partic Distance (Participation Participation Particip	合には、構内道路の一部を防火帯として機能させる。その		の移動ルートとなることから防火帯へは含めず、道路と防	【柏崎 6/7】
Astronomy tes. tes. Portaria Astronomy tes. tes. Portaria Astronomy tes. tes. Portaria Astronomy tes. tes. Portaria Astronomy tes. Portaria Portaria Astronomy tes. Portaria Portaria Portaria Astronomy tes. Portaria	際には、防火帯内の車両通行を規制し、防火帯内から車両		火帯が近接する箇所は道路の際を起点として防火帯を設定	島根2号炉は,構内ア
1 Ab. 10.0526/3.0127 20.24 - L. STRUCTURE # A L Calge LC W # A L Calge LC W 10.05216/2.0526/2.0527.0526.0526.0526 Ab. 10.0526/2.0527.0526.0526.0526 # A L Calge LC W Ab. 10.0526/2.0527.0526.0526.0526 # A L Calge LC W Ab. 10.0526/2.0527.0526.0526.0526 # A L Calge LC W Ab. 10.0526/2.0527.0526.0527.0526.0526.0526 Ab. 10.0526/2.0527.0526.0527.0526.0527.0526.0526.0526 # A L Calge LC W Ab. 10.0526/2.0527.0526.0527.0526.0526.0526 # A L Calge LC W Ab. 10.0526/2.0527.0526.0527.0526.0526.0526 Ab. 10.0526/2.0527.0526.0527.0526.0526.0526 # A L Calge LC W Ab. 10.0526/2.0527.0526.0527.0526.0526.0526 # A L Calge LC W Ab. 10.0526/2.0527.0526.0527.0526.0527.0526.0527.0526.0527.0526.0526.0526.0526.0526.0526.0526.0526	がない状態を確立する。(予防散水活動を行う消防車両を除		<u>する。</u>	クセスルートを防火
ため、空のなるまでにすのタマムートがいたでに立ちた。 ため、売のなるまのにすいたのかのクラマスを活用のないため、などのため、ため、売かしていため、売かした。 ため、売のなるたいため、ののクラマスを活用のないため、全部のなか、ため、ため、ため、売かした。 ため、売のなため、ため、ののクラマスを活用のないため、全部のなか、ため、ため、ため、売却にはないため、日本時からいため、ため、ため、売却になるため、この、このなどかした。 ため、売のなたしたしためいため、日本時からいため、ためでもため、ため、ため、売却になるため、日本時からいため、ため、売却などのため、ため、小さいため、ため、市場にないたいため、日本時からいため、ため、日本時からいため、ため、日本時からいため、ため、日本時からいため、ため、日本時からいため、ため、日本時からいため、ため、日本時からいため、ため、日本時からいため、ため、日本時からいため、ため、日本時からいため、	\leq)			帯として設定してい
TV2.1.2.5.0, 3.2.8.2.8.4.2.9.2.0.2.4.0.1.2.1.8.2.0.2.1.0.	なお、中央交差点ではアクセスルートが防火帯に近接し		ただし、敷地外からのアクセス道路に交わる箇所は森林	ない
int	ていることから、「3.3 建屋外壁の温度評価」と同様の方法		火災時に複数同時に使用不可とならないと考えることか	
L. Z. 21 にと加える単加速使を発出したなところ、電気振動に 対ける基本収入販売の推発速度を発出したなところで、通数 のので、単面塗り直にに変えたなかにとなな 起していな、(死)にあるはないです。を防災加 なの、単心液分を発加すにいける素体収入の発展維健時間 (加)は空む)のうち、作成な差点において、を防災加 なか、中央交差点が前にいける素体収入の発展維健時間 (加)は空む)のうち、作成な差点において、人が保密加 たるたち 生気を激化していない、飲料剤(推健時間) (加)は空む)のうち、作成な差点において、人が保密加 たるたち 生気を激化のい放射剤(推健時間) (加)は空む)のうち、作成な差点において、人が保密加 たるたち 生気を激化のい放射剤(推健時間) (加)は空む)のうち、作成な差点において、人が保密加 たるたち 生気を激化のい放射剤(推健時間) (加)は空む)のうち、作成な差点において、人が保密加 たるたち 生気を激化のい放射剤(推健時間) (加)は空む)の たち、作成を差点において、人が保密加 たるたち 生気を激化のい放射剤(低)) (本)は空む)の たち、作成を差点において、人が保密加 たるたち 生気を激化のい放射剤(低)) (本)は 空む)の たち、(本)なか)(元)(本)(にて、最大火線強度が最も高い評価となった森林火災(ケ		ら,防火帯として機能させる。	
超力金維林交通の運動機能支払たても、198/mil 程度 第ペ-027-92-24-4-上については、効力時の影響を急いた。とされても定 Humid 67 適応ててる、電気、12-300	ース 2) における輻射強度を算出したところ, 当該箇所に		また,可搬型重大事故等対処設備の保管場所及び当該場	・評価結果の相違
ごちり、車店等の部行は洗濯を及ぼすことはないことを接 認してい、作用にいた場合においても、各物講好 急なして、中所通信を提明した場合においても、各物講好 急な点、40~2 年の通信を支払したは国家にで、広ク大規製成が払れる11 电報店です。 当該運用にて、広ク大規製成が払れる11 电報信をすった。 株式 (5 - 2 - 1) においる 福村 免疫を算用したところ。 なり、44 4 2 - 0 - 1 - 1 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2	おける森林火災時の輻射強度は最大でも 2.1kW/m ² 程度**		所へのアクセスルートについては、対応時の影響緩和のた	【柏崎 6/7】
認している、(第 24)上2-3 個) 当該憲庫にて、最大人線勉強定発生高い注意したことろ、 主へて、車両運行を規制した場合においても、角筋設計 象立置のクククセスシートの聴保が可能である。(第 2.0.1.2-4 [k]) 当該憲庫にて、最大人線勉強定必要になった本 主人で、クラントスシーにおける無体地定必定すたなから、車両 の通行に影響を及ぼうことはないことを確認している。 時間 65 られてもデ 強な びない放射熱 (MB) 独立 2.0.1.2-4 [k]) た4. 中文交変点点ではける事件大災の燃み構成使 (MB) 独立 2.0.1.2-4 [k]) た4. 中文交流点ではける事件大災の燃み構成性 (MB) 独立 2.0.1.2-4 [k]) 市 2.0.1.2-4 [k])<	であり、車両等の通行に影響を及ぼすことはないことを確		め,森林縁から防火帯(約21m)に加え約11m離隔する。	島根2号炉は,人が長
上って、車面通行を規制した場合においても、各倍読列 第々感じないな射熱 第大災(ケーム1)における感射強度を登出したところ、 第々感じないな射熱 変な値へのブクをスペートの確保が可覧である。(第 <	認している。(第 2.3.1.2-3 図)		当該箇所にて、最大火線強度が最も高い評価となった森	時間さらされても苦
<u>9 取成価へのアクセスルートの確保が可能である。(在 2.1.2-1 図) <u>森林大災時の編茶焼度は1.6kv/@以下となるため、車面等</u> <u>の通信に影響を及ぼすことはないことを確認している。 (編4) 独度とされる <u>1.6kv/@</u>以下Jを基 <u>アと窓 なられても完確な近かいなお燃気速度(価格)強度)である。 (編4) 独度とされる <u>の通信に影響を及ぼすことはないことを確認している。 (編4) 独度とされる <u>1.6kv/@</u>以下Jを基 <u>年に評価を実施</u> <u>第</u>に評価を実施 <u>第</u>に評価を実施 <u>なられても完成を成じない放き熱(健好) 独 <u>たらまれても完成を成じない放き熱(健好) 独 <u>度を 1.6kv/@ 1.0m以何</u>としている。 <u>※</u>: 石油コンビナートの防災アセスメント指針では、人 が長時間さらされても完成を成じない放き熱(健好) 独 <u>度を 1.6kv/@ 2.1 分回以内で備みを成じる 強度を <u>2.xxv/@</u>している。 <u>※</u>: 石油コンビナートの防災アセスメント指針では、人 が長時間さらされても完成を成じない放き熱(健好) <u>強度を 1.6kv/@ 2.1 公司以内で備みを成じる 強度を <u>2.xxv/@</u>している。 <u>※</u>: 石油コンビナートの防災アセスメント指針では、人 が長時間としている。 (場合) <u>ないが@ 1.0m以内で備みを成じる 強度を <u>3.xxv/@</u>している。 <u>1.0mu/@</u>としている。 (編4) <u>4.0000000000000000000000000</u></u></u></u></u></u></u></u></u></u>	よって、車両通行を規制した場合においても、各防護対		林火災(ケース1)における輻射強度を算出したところ,	痛を感じない放射熱
2.3.1.2-4 (図) の通行注影響を及ぼすことはないことを確認している。 「1.66%/#以下jを基 (約) 14 時間)のうち、中央交差点において、人が反時間 さらされても支痛を感じない数無強度(幅計強度)であ。 第: 石油ロンビワートの防災アセスメント指針では、人が 長時間は気をわれても実痛を感じない数射熱(幅計)強 度を 1.66%/#/」1 分間以内で進みを感じる強度を <u>2.3%/#/</u> している。 ※: 石油ロンビワートの防災アセスメント指針では、人 ※: 石油ロンビワートの防災アセスメント指針では、人	象設備へのアクセスルートの確保が可能である。(第		森林火災時の輻射強度は 1.6kW/m ² 以下となるため、車両等	(輻射)強度とされる
	2.3.1.2-4 図)		の通行に影響を及ぼすことはないことを確認している。	「1.6kW/m ² 以下」を基
(約) 14 時間)のうち、中央交差点において、人が長時間 さらされても苦痛を感じない放射熱強度(輻射強度)であ 3 1.6%/㎡ を超えている時間は数十秒程度である。 ※: 石油コンビナートの防災アセスメント指針では、人が 長時間さらされても苦痛を感じない放射熱(幅射)強 度を 1.6%/㎡、1 分間以内で痛みを感じる強度を 2.3%%/㎡ している。	なお、中央交差点近傍における森林火災の燃焼継続時間			準に評価を実施
[×] らされても苦痛を感じない放射熱強度(編射強度)であ [×] らされても苦痛を感じない広射熱性度である。 ※: 石油コンビナートの防災アセスメント指針では、人が 長時間さらされても苦痛を感じない広射熱(編射)強 度を 1.6km/m ² 上 分間以内で痛みを感じる強度を 2.3km/m ² している。 ※: 石油コンビナートの防災アセスメント指針では、人 ※: 石油コンビナートの防災アセスメント指針では、人 ※: 日本・ロンド・シートの防災アセスメント指針では、人 ※: 日本・ロンド・シートの防災アセスメント指針では、人 ※: 日本・ロシートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートの ※: 日本・ロンビナートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートの ※: 日本・ロンビナートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートの ※: 日本・ロンビナートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートートの ※: 日本・ロンド・シートートの ※: 日本・ロンド・シートートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートの ※: 日本・ロンド・シートートの ※: 日本・ロンド・シートートの ※	(約 14 時間)のうち,中央交差点において,人が長時間			
ろ 1.6kW/m ² を超えている時間は数十秒程度である。 ※: 石油コンビナートの防災アセスメント指針では、人が 長時間さらされても苦痛を感じない放射熱(輻射)強 度を 1.6kW/m ² している。 ※: 石油コンビナートの防災アセスメント指針では、人 が長時間さらされても苦痛を感じない放射熱(輻射) 強度を 1.6kW/m ² としている。	さらされても苦痛を感じない放射熱強度(輻射強度)であ			
 ※: 石油コンビナートの防災アセスメント指針では、人が 長時間さらされても苦痛を感じない放射熱(輻射)強 度を 1.6kW/m² 1 分間以内で痛みを感じる強度を 2.3kW/m² している。 ※: 石油コンビナートの防災アセスメント指針では、人 が長時間さらされても苦痛を感じない放射熱(輻射) 強度を 1.6kW/m² としている。 	る 1.6kW/m ² を超えている時間は数十秒程度である。			
長時間さらされても苦痛を感じない放射熱(輻射)強度を1.6kW/m ² ,1分間以内で痛みを感じる強度を2.3kW/m ² している。 が長時間さらされても苦痛を感じない放射熱(輻射)強度を1.6kW/m ² としている。 2.3kW/m ² している。	※:石油コンビナートの防災アセスメント指針では、人が		※:石油コンビナートの防災アセスメント指針では、人	
度を 1.6kW/m ² _1 分間以内で痛みを感じる強度を 2.3kW/m ² している。	長時間さらされても苦痛を感じない放射熱(輻射)強		が長時間さらされても苦痛を感じない放射熱(輻射)	
<u>2.3kW/m²</u> している。	度を 1.6㎏/m ² , 1 分間以内で痛みを感じる強度を		強度を 1.6kW/m ² としている。	
	<u>2.3kW/m²</u> している。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2.3.1.2-3 図 中央交差点における輻射強度の時間			
<u>第 2.3.1.2-4</u> 図 敷地境界への予防散水			
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
---	---------------------	---	-----------
f. 予防散水の検証結果		f.予防散水の検証結果	
(a)森林火災を想定した予防散水(防火帯付近)		(a) 森林火災を想定した予防散水(防火帯付近)	
実施日: 平成 29 年 1 月 23 日 (月) 13 時 20 分~16 時		実施日: <u>令和元年6月23日</u>	
40. 分			
想定火災到達地点: <u>散水エリア B</u>		想定火災地点: <u>散水エリア⑥</u>	・条件の相違
訓練内容:ホース展開,消防車連結,散水を行う		訓練内容:ホース展開,消防車連結,散水を行う	【柏崎 6/7】
評価:		評価:	地域特性を踏まえた
・消防車 2 台連結による散水を実施し,散水可能であっ		・消防車2台連結による散水を実施し、散水可能であった。	条件設定の相違
た。		・出動から散水開始までの所要時間は約 60 分であった。	
・出動から散水開始までの所要時間は約 60 分であった。		・防火帯散水エリアのうち、水源から散水箇所の高低差及	
・防火帯散水エリアのうち,予防散水の実施条件が厳しい		びホース展開距離を考慮して、予防散水の実施条件が厳	
<u>エリア B</u> で散水が可能であることから,全ての防火帯		しい <u>エリア⑥</u> で散水が可能であることから,全ての防火	
散水エリアに対し,所定の時間内で散水が可能であると		帯散水エリアに対し、所定の時間内で散水が可能である	
評価する。		と評価する。	
<image/> <image/> <image/> <image/> <image/> <image/>		<image/> <image/> <image/> <image/> <image/> <image/>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(b)森林火災を想定した予防散水 (敷地周辺)		(b) 森林火災を想定した予防散水(敷地境界)	
実施日: 平成 25 年 10 月 31 日(木) 9 時 30 分~13 時		実施日: <u>令和元年6月20日</u>	
30.分			
想定火災到達地点: <u>刈羽トンネルポイント</u>		想定火災到達点: <u>モニタリングポスト No. 6</u>	・条件の相違
訓練内容:ホース展開,消防車連結,散水を行う		訓練内容:ホース展開,消防車連結,散水を行う	【柏崎 6/7】
評価:		評価:	地域特性を踏まえた
・消防車 3 台連結により実施し、散水可能であった。		・消防車2台連結により実施し、散水可能であった。	条件設定の相違
・準備開始から散水開始までの所用時間は約 <u>2 時間</u> であ		 ・準備開始から散水開始までの所要時間は約<u>1時間</u>であっ 	
った。		₹ _c 。	
※:所要時間は、消火栓やホースの接続位置、操作手順及		※:所要時間は、消火栓やホースの接続位置、操作手	
び送水圧力等を確認しながらの時間		順及び送水圧力等を確認しながらの時間	
 ・予防散水の実施条件が厳しい<u>刈羽トンネル</u>ポイントで散 		・水源から散水箇所の高低差及びホース展開距離を考慮し	
水可能であることから、発電所敷地境界全域に対して散		<u>て</u> ,予防散水の実施条件が厳しいポイントで散水可能で	
水が可能であると評価する。		あることから,発電所敷地境界全域に対して散水が可能	
		であると評価する。	
<image/> <image/>		<image/> <image/> <caption><image/><image/><image/></caption>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉				備考
(c)自衛消防隊の力量維持のための訓練	(c) 自復	所消防隊の力量維持のための訓練			
自衛消防隊は,消火対応の力量を維持するために,訓練	自行	衛消防隊は,消火対応の力量を維	持するた	とめに, 訓	
を計画的に実施する。自衛消防隊に係る訓練を第	練を	計画的に実施する。自衛消防隊	豢に係る	訓練を第	
2.3.1.2-5 表に示す。	2.3.1	2-5 表に示す。			
第 2.3.1.2-5 表 自衛消防隊に係る訓練		52.3.1.2-5表 自衛消防隊に係る	5訓練		
項目 対象者 訓練內容 備考 消止::::::::::::::::::::::::::::::::::::	教育・訓練名称	内容	対象者	実施頻度	
1) 1	総合消防訓練	 公設消防と自衛消防隊との連携を考慮した総合的な火災対応訓練(本部組織設置訓練を含む) 	発電所員	1回/年	
総合用の調練 自朝用の原本 ・管理区域内欠次を効応して用の者 の合同調練 初期対応調練(通報連絡 初期消火班(運転員,警備員) ・欠災発見,通報,現場確認,消火活動 当直全班必修項目 の演動調練() の大災発見,近報,現場確認,消火活動 当直全班必修項目 の次動調練()	自衛消防隊 連携訓練	・自衛消防隊の連携向上を目的として,火災確 認から鎮圧までを一連で実施する訓練	自衛消防隊	2回/年	
連動して実施 初期消火班連係訓練 初期消火班(運転員,警備員) ・火災発見から消防車隊出動,消火活動 当直全班必修項目 初期消火帝消防車隊(条計員) までのい声を渉防車隊の連係訓練	火災初期対応	・火災対応手順に関する知識	消火班	1回/年	
火災対応訓練(運転員) 初期清火班(運転員) ・消防用設備取扱訓練(固定式消火設 備,排煙設備の取扱訓練含む),消防	教育訓練 	 ・消火活動に関する知識・技能 ・消火班の位置付け及び役割 	(発電部)		
車操作訓練、消防異員誘導、人災対応 等に関する初動対応軟育 ・違屋内外の火災(中央制御室内火災) 原子炉格納容器内火災を含む)の教 育・演習 自衛消防隊(消火班)訓練・消火班 ・消火設備使用訓練(消防署による指導 金々な)) ショウロ 単体は町や松香の油油	消火班(保修部) 火災対応教育	 ・火災発生時の対応手順 ・消防設備及び資機材(消火器,消火栓,防火服,現場指揮所設営資機材等)の配置及び使用支法 	消火班 (保修部)	2回/年	
	消火班(保修部) 消防訓練	 消防装備(防火服,空気呼吸器)の装着訓練 消防設備及び資機材(消火器,消火栓,可搬 式消防ポンプ,消防用ホース,トランシーバ 一等)の取扱訓練 	消火班 (保修部)	1回/月	
	消防チーム 火災対応教育	 ・消火班の位置付け及び役割 ・火災発生時の対応手順 ・消防設備及び資機材(消火器,消火栓,防火服等)の配置及び使用方法 	消防チーム	1回/班・年	
	消防チーム 現場レイアウト教育	 ・火災現場へのアクセス方法,消火設備の配置, 設備(電気設備,危険物内包設備等)の配置 について,現場で教育を行う 	消防チーム	1回/班・年	
	消防チーム 消防訓練	 ・消防装備(防火服,空気呼吸器)の装着訓練 ・消防設備及び資機材(消火器,消火栓,可搬 式消防ボンプ,消防用ホース,トランシーバ 一等)の取扱訓練 	消防チーム	1回/班・月	
	実火訓練	・実火に対する消火訓練(社外訓練)	自衛消防隊	1回/年	

 2.3.2 防火帯幅の評価結果 <u>第2.2-12</u>表の評価結果から,評価上必要とされる防火帯 	
<u>第2.2-12</u> 表の評価結果から,評価上必要とされる防火帯	
<u>幅19.5m</u> に対し,約 <u>21m</u> 幅の防火帯を設置する。(第2.3.2-1	
図)	
<u>a.</u> 森林火災の延焼を防止するために,防火帯を設置する。	
b防火帯は、安全施設及び重大事故等対処設備を原則防護す	
るように設定する(防火帯の外側となる設備は、送電線、	
通信線及び <u>放射線</u> 監視設備)。	
<u>c.</u> 防火帯は,発電所設備及び駐車場の配置状況を考慮し,干	
渉しないように設定する。	
d防火帯の設定にあたっては、草木を伐採する等、可燃物を	
排除する。その後、除草剤の散布やモルタル吹付け等を行	
い、草木の育成を抑制し、可燃物がない状態を維持する。	
また、防火帯の管理(定期的な点検等)の方法を火災防護	
計画に定める。(別紙2-1)	
f () () () () () () () () () (
	 ¹¹ <u>110</u> ¹² <u>100</u> ¹² <u>100</u> ¹² <u>100</u> ¹² <u>100</u> ¹³ <u>100</u> ¹⁴ <u>100</u> ¹⁵ <u>100</u> <

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
2.3.3 外部火災時のモニタリングポスト及び気象観測装置の対	2.3.3 外部火災時のモニタリングポストの対応について	
応について		
外部火災が発生した場合においても、発電用原子炉を安	外部火災が発生した場合においても、発電用原子炉を安全に	
全に停止するための設備に影響がないように防火帯を設置	停止するための設備に影響がないように防火帯を設置し、安全	
し、安全上重要な設備はその内側に配置し、外部火災によ	上重要な設備はその内側に配置し、外部火災による影響がない	
る影響がないことを確認している。	ことを確認している。	
モニタリングポストについては、柏崎刈羽原子力発電所	モニタリングポストについては,島根原子力発電所の周辺監	
の周辺監視区域付近における空間線量率の監視を行うため	視区域付近における空間線量率の監視を行うために発電所敷	
<u>に</u> 発電所敷地境界付近(防火帯の外側)に <u>9.箇所</u> 設置して	地境界付近(防火帯の外側)に <u>6箇所</u> 設置している。	
いる。		
また, 気象観測装置については, 風向, 風速等を測定, 記		・設備の相違
録するため構内林内(防火帯の外側)に設置している。		【柏崎 6/7】
測定器は屋外に設置されており、外部火災による影響を	測定器は屋外に設置されており、外部火災による影響を確実	島根2号炉では,気象
確実に防止できるものとは考えないが、可能な限り影響の	に防止できるものとは考えないが、可能な限り影響の軽減を図	観測装置は,防火帯の
軽減を図ることから、外部からの情報により森林火災を認	ることから、外部からの情報により森林火災を認識し、発電所	内側に設置
識し、発電所敷地境界へ到達するまでに時間的な余裕があ	敷地境界へ火災が到達するまでに時間的な余裕がある場合に	
る場合には、敷地境界近傍への予防散水を行う。	は、敷地境界近傍への予防散水を行う。	
なお、森林火災の進展によりモニタリングポスト及び気	なお,森林火災の進展によりモニタリングポストの機能が喪	
象観測装置の機能が喪失した場合は、防火帯の内側に保管	失した場合は,防火帯の内側に保管している可搬式モニタリン	
している可搬型モニタリングポスト(バッテリー駆動可	グポスト(バッテリー駆動可能: <u>6</u> 台)により代替測定を実施	
能:9 台)及び可搬型気象観測装置(バッテリー駆動可能:	する。(第2.3.3-1図,第2.3.3-2図)	
<u>1台)</u> により代替測定を実施する(第 2.3.3-1 図, 第		
2.3.3-2 図)。		
可搬型モニタリングポストがモニタリングポスト周辺に	可搬式モニタリングポストがモニタリングポスト周辺に設	
設置できる場合は、その周辺に設置し、森林火災の延焼に	置できる場合は、その周辺に設置し、森林火災の延焼によりモ	
よりモニタリングポスト周辺に設置できない場合は、発電	ニタリングポスト周辺に設置できない場合は,発電所構内の同	
所構内の同一 <u>方向</u> に設置する。 <u>可搬型</u> モニタリングポスト	一 <u>方位</u> に設置する。 <u>可搬式</u> モニタリングポストを設置場所まで	・条件の相違
等を配置場所まで運搬・設置し、監視・測定を開始するま	運搬・設置し,監視・測定を開始するまでの所要時間は,1台	【柏崎 6/7】
での所要時間は, 1 台当たり約 30 分を想定 (<u>9 台</u> 設置す	あたり約30分を想定(<u>6台</u> を設置する場合は, <u>約5時間</u> を想	地域特性を踏まえた
る場合は, <u>約 4 時間 30 分</u> を想定)。	定)。	想定時間の相違
可搬型気象観測装置が気象観測装置周辺に設置できる場		・設備の相違
合は,その周辺に設置し,森林火災の延焼により気象観測		【柏崎 6/7】
<u>装置周辺に設置できない場合は、周囲に障害物や照明がな</u>		島根2号炉では,気象
いエリアに設置する。		観測装置は,防火帯の
		内側に設置

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<image/> <image/> <image/> <image/> <image/> <image/> <image/> <image/> <image/>		第2.3.3-1図 可搬式モニタリングポスト	
<figure></figure>		<image/>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	4.2.防火带幅		
	(1) 防火帯幅の設定		
	<u>FARSITE解析結果から算出された,防火帯外縁から</u>		
	100mの範囲における最大火線強度は,発火点3の6,278kW/m		
	であり,「Alexander and Fogartyの手		
	法(風上に樹木が有る場合)」を用いて、防火帯幅(火炎の防		
	火帯突破確率1%の値)を算出した結果,評価上必要とされ		
	る防火帯幅 21.4m に対して,約 23m 幅の防火帯を設定する。		
	火線強度に対する防火帯の相関図を第4.2-1図に示す。		
	最大火線强度 6,278kW/m (発火点3)		
	$\overline{\Box}$		
	風上に樹木が有る場合の大線弧度と最小防火帯軸の関係(火炎の防火帯突破瞳率1%) 火線強度 500 1000 2000 3000 4000 5000 10000 15000 20000 25000		
	(kW/m) 000 1000 2000 0000 4000 10000 20000 20000 防火帯幅 <		
	(m) 16 16.4 17.4 18.3 19.3 20.2 24.9 29.7 34.4 39.1		
	$\overline{\Box}$		
	評価上必要とされる防火帯幅 21.4m		
	\overline{C}		
	想定する防火帯幅 約23m		
	15 日 防火带を突破する確率 15 日 10 10 10 10 10 10 10 10 10 10 10 10 10		
	50% 50% 99% 99% 99%		
	0 0		
	0 5000 10 000 15 000 20 000 0 5000 15 000 20 000 Faid latensity (WV/m) Fire Intensity (WV/m)		
	n・ビアハロmmaとSU2ハロンmaLavmersでのカルッドはレンない。Mar B: 防火帯幅と防火帯の風上20m内に樹木が存在する場合		
	第4.2-1図 火線強度に対する防火帯の相関図		
	(2) 火線強度抽出範囲の設定について		
	防火帯幅は,防火帯外縁に存在する植生からの延焼を考慮		
	して、防火帯外縁の最大火線強度に基づき算出するが、防火		
	帯外縁から離れた地点でより大きい火線強度が存在する可能		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	Ţ	東海第二列	そ電所(2	018. 9. 12	:版)		島根原	子力発電所 2号
	性を考慮して	5,防火带	外縁から	100m 範囲	国の火線引	食を確認		
	ている。この	結果から	得られた	最大火線	強度 6,27	78kW/m l	工基	
	づく防火帯幅	<u>国 21.4m</u> に	保守性を	持たせた	こ約 23m 0	D防火带衣	と設	
	定する。なお	5,防火带	外縁から	100m より	り遠くに存	宇在する		
	シュについて	、必要な	防火带幅	<u>が 100m Ľ</u>	以上となる	るものはた		
	ことを確認し	しているた	<u>こめ,防火</u>	く帯幅の決	た定におい	いて考慮っ	13	
	必要はない。	~						
		- >++ - > >		- 11- 1	-			
	(3) 出火時刻の)違いによ	る感度解	許につい		- 日/ 2日7	_ >	
	FARSI		「日射重加」	<u>1 印然初(</u>	2水分重6		7	
		黒小変く	(50日里)	<u>時間常に</u> ~ オーロル	火藤畑皮	<u>か向くな</u> ト -		
	創始度に清い	いがたじょ	5 to 5 (- Den HUZ > XX 小 占 a	いけ刻にす			
	線強度となっ	か玉水	i 3 に対1	て4パメ	ターンのと	山山、山、山、山、山、山、山、山、山、山、山、山、山、山、山、山、山、山、山、山		
	けて、威度領	留析を行っ	かた。解析	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	〔4. 2−1 表	記念れる		
							~	
		第 4.2-	1表 感	度解析結	果			
							1	
	発火点位置			発火点3				
	最大火線強度 発生時刻	7:09	10:16	12:27	13:57	17:17		
	最大火線強度 (kW/m)	4, 080	5, 959	6, 278	6, 193	4, 436		
	設定する防火	と帯幅約2	<u>3m</u> に相当	自する火紡	<u> </u>	78kW/m	t.	
	第4.2-2 図にえ	示すとおり),感度角	驿析から 算	算出された	こ火線強度	度を	
	十分に上回るこ	ことを確認	いた。					

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	● 発火点3 ● 防火帯幅23m ● りの0 0 <td></td> <td></td>		
	 (4) 防火帯の設定 a. 防火帯の設定方針 (a) 防火帯幅は,防護対象設備(安全重要度分類のクラス 1,クラス2及びクラス3のうち防火帯幅の確保により 防護する設備)を囲むように設定する。 (b) 駐車場等,延焼の可能性があるものと干渉しないよう に設定する。 b. 防火帯の設定方法 防火帯の配置図を第4.2-3 図に示す。 なお,防火帯を9のエリアに分割し,設定方法の違いと 特徴について第4.2-2 表に示す。 		
	第.4.2-3 図 防火帯の配置図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.2-2 表 エリア別防人帯の設定方法 (の) 「「」」」」」」 (市成り薄電空インドリア1 「大売りの場のタイン2常地現界に除するように りたきの分類のタイン2常地現界に除するように りたきの分類のタイン2常地現界に除するように りたきの分類のタイン2常地現界に除するように いたきを定ます。 (の) 「」」」 (市成り薄電空インドリア1 「開発り薄電空インドリア1 「開発り薄電空インドリア1 「開発り薄電空インドリア1 「開発り薄電空インドリア1 「「」」」」 「「」」」」 「「」」」」 「「」」」」」 「「」」」」 「「」」」」 「「」」」」 「」」」」」 「」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」 「」」」」」 「」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」」 「」」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」」 「」」」」 「」」 「」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」		
	① I#家坊溝幅設から敷地県界の野灘がミョ以上のエリ アより薄板の薄板のかる動地に分の丁では、防大帯外側のラ インに設するよう に防火帯を設定する。 から防滞を設定する。 から防滞を設定する。 ⑦ I#家坊溝幅設から敷地県下の野灘がミョ以上のエリ アより薄板の薄化と強いていたい関端については、23mの 幅で東側の商に関連させる。 ⑦ I#家坊溝幅設から敷地県下の野溝がミョ以上のエリ アより薄板設から敷地県下の野濱かさョンにないては、23mの 幅で東側の商に関連させる。 ⑦ I#家坊溝幅設から敷地県下の野溝がミョ以上のエリ アより薄板設のち敷地県下の野濱かさョのマインに設たるた着地県 が豊富造み外側のラインに設するように防大者を設定 たる。 ⑧ I#家坊溝幅設から敷地県下の野濱がミョ以わのエリ アより薄板の原で開から敷地県市の街道がごに以内のエリ アよの薄板の原で開から敷地県市の街道がごに以内のエリ アよ あを設定する。 ⑨ I#家坊溝幅設から敷地県原の街道がごは以内のエリ アよ の一個留街棚を確保する。 ◎ I#家坊溝幅設から敷地県原の街道がごは以内のエリ アよ の一個留街棚を確保する。 ◎ I#家坊溝幅設から敷地県原の街道がごはいなりのエリ アよ る21mの増留街棚を確保する。 ◎ I#家坊溝幅設から敷地県原の街道がごしいがのカエリ アよ る21mの増留街棚を確保する。 ◎ I#家坊溝幅設たますする。 ◎ I#家坊溝幅設たまする。		
	<u>c.防火帯の管理</u> 防火帯の管理については火災防護計画に定め,駐車車両 等の可燃物及び消火活動に支障となるものは原則として配 置しない管理を行う。(別紙 2.6)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3. 危険距離及び温度評価		3. 危険距離及び温度評価	
3.1 森林火災の想定		3.1. 森林火災の想定	
前述の 2.1 森林火災の想定と同じ。		前述の2.1.森林火災の想定と同じ。	
3.2 森林火災による影響の有無の評価		3.2. 森林火災による影響の有無の評価	
 (1) 評価手法の概要 		 (1) 評価手法の概要 	
本評価は、輻射強度という指標を用いて、発電用原子炉施設		本評価は、輻射強度という指標を用いて、発電用原子炉施	
に対する森林火災の影響の有無の評価を目的としている。具体		設に対する森林火災の影響の有無の評価を目的としている。	
的な評価指標とその内容を以下に示す。		具体的な評価指標とその内容を以下に示す。	
第 3.2-1 表 評価指標及びその内容		第3.2-1表 評価指標とその内容	
評価指標 内容		評価指標 内容	
輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度		輻射強度[W/m ²] 火炎の炎から任意の位置にある点(受熱点)の輻射強度	
火炎到達幅[m] 和崎刈羽原子刀発電所に到達する火炎の傾幅 形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数		火炎到達幅[m] 島根原子刀発電所に到達する火炎の傾幅 形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数	
燃焼半径[m] 森林火災の火炎長より算出する値		燃焼半径[m] 森林火災の火炎長より算出する値	
危険距離[m] 火災による輻射熱により許容限界温度になる距離		危険距離[m] 火炎による輻射熱により許容限界温度になる距離	
上記の評価指標は、受熱面が輻射体の底部と同一平面上にあ		上記の評価指標は,受熱面が輻射体の底部と同一平面上に	
ると仮定して評価する。		あると仮定して評価する。	
森林火災の火炎形態については、土地の利用状況(森林、農		森林火災の火炎形態については、土地の利用状況(森林、	
地,居住地等の分布),地形 (標高,傾斜角度等),気象条件 (風		農地、居住地等の分布)、地形(標高、傾斜角度等)、気象条	
向・風速、気温、湿度等)に大きく依存することから、これら		件 (風向・風速, 気温, 湿度等) に大きく依存することから,	
をすべて反映した火炎モデル仮定することは難しい。したがっ		これらをすべて反映した火炎モデルを仮定することは難し	
て、森林火災の火炎は円筒火災をモデルとし、火炎の高さは燃		い。したがって、森林火災の火炎は円筒火炎をモデルとし、	
焼半径の3倍とする。なお、危険距離の評価では、発電用原子		火炎の高さは燃焼半径の3倍とする。なお、危険距離の評価	
炉施設への火炎到達幅の分だけ円筒火炎モデルが横一列に並ぶ		では、発電用原子炉施設への火炎到達幅の分だけ円筒火炎モ	
ものとする (第 3.2-1 図)。		デルが横一列に並ぶものとする。	
		(第3.2-1図)。	
各円筒火炎モデルからの輻射熱 火 炎 到 達 幅 ん 人			
第 3.2-1 図 円筒火炎モデルの並べ方		 受熱点 第 3. 2−1 図 円筒火炎モデルの並べ方	

柏崎刈羽原子力発	電所 6/7号	·炉 (2017. 1	2.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉				備考		
(2)評価対象範囲					(2) 評価対象範囲						
評価対象範囲は相	白崎刈羽原子力	発電所に迫る	森林火災とし		評価対象範囲は島根原子力発電所に迫る森林火災とした。						
*									• /// // • • •	• • • • • • •	
/											
(2) 以西三一万					(2) 証価に必要が	ッデータ					
								→).			
評価に必要なアー	タを以下に示す	0			評価に必要な	なアータを	以下にオ	下す。			
笛 3 9-9 丰	杰林ル巛影響	駆逐価に必要な	データ		笛3 9-9書	ミ 杰林ル	巛髾鄕菿	価に必要	ロカデーム	,	
\$7 J. 2 2 A	林小八火泉ノ音	雪町Ⅲ(⊂20安/。			773.2 24		火炉音叮	- Щ(⊂必安			
評価項目	ケース1	ケース2	ケース3		項目	ケース1	ケース2	ケース3	ケース4	ケース5	
火炎輻射発散度[kW/m ²]	94.8	100	78.8		火灸輻射発散度 「kW/m ²]	118	99.5	46.9	49.3	52.4	
火炎輻射强度[kW/m [*]]	205	211	222		火炎輻射強度[kW/m ²]	364	288	346	279	345	
八称短度[k₩/m] □	544	560	501		火線強度[kW/m]	4, 154	3,057	734	811	931	
<u>次</u> 応强度[k₩/Ⅲ] 水炎長[m]	2 94	3.08	2 51		反応強度[kW/m ²]	980	776	917	739	930	
/ 灰灰 [m]	2.94	3730	2.01		火炎長[m]	3.6	3.2	1.7	1.7	1.8	
然燒絲続時間[min] ^{※1}	52	51	57		火灸到達幅[m] 		21	4,870	81	77	
危険輻射強度[kW/m ²]	15.441	15. 477	15.275		危険輻射強度[kW/m ²]	20. 265	20. 537	17.635	17.652	17.725	
※1:防火帯周辺の森林(」	」 奥行き 100m)が燃	える平均時間	1]		※1:防火帯周辺の森林	林(奥行き50	m)が燃える	平均時間			
(4) 歴は北辺の管山						午口					
(4) 燃焼手栓の鼻出					(4)	単山					
次の式から燃焼半	径を算出する。	算出結果を第	3.2-4 表に示		次の式から炒	然焼半径を	:算出する	5。算出約	詰果を第	3.2-4 表に	
す。					示す。						
	Н						H				
	$R = \frac{1}{2}$						$R = \frac{1}{2}$				
	3								7		
	K	:燃焼半佺[m]	,H:火炎長[m]				R:燃	&焼芋径し	m], H:	火炎長[m]	
 (5)円筒火炎モデル数	の算出				 (5) 円筒水炎エテ	デル数の質	Ή				
次の式から田管	レ が か か お や か お ち の 数 ち	を篁出すス	篁出結果を筆		次の式から	田筒水浴	ー モデル数	を質出す	トろ、管理	出結果を笆	
3 2-4 表に示す		сянції Фо	жции с м		3 9-4 表に示す						
	117				0.2 1 2 (0.1)	0	117				
	$F = \frac{W}{W}$						F =				
2R					2R						
F:円筒火炎モデル数 [-], W:火炎到達幅 [m], R:燃焼半径[m]					F:円筒火炎モデル	レ数 [-],	W:火炎	到達幅[m	n], R : 燉	☆焼半径[m]	
(6) 火炎輻射発散度の算出					(6) 火炎輻射発散度の算出						
火災で発生する発熱量から輻射熱に寄与する割合(輻射熱割						火災で発生する発熱量から輻射熱に寄与する割合(輻射熱					
合)を考慮し、その	輻射熱は円筒り	と炎の側面及び	『上面から放射		割合)を考慮し、その輻射熱は円筒火炎の側面及び上面から						
されると仮定し,円	筒火炎の火炎轉	辐射発散度 Rf	[kW/m²]を求め		放射されると仮定し,円筒火炎の火炎輻射発散度 Rf[kW/m²]						
る。発熱量が保存さ	れるため,以下	「の式で表現て	ぎきる。		を求める。発熱量が保存されるため、以下の式で表現できる。						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号烷
(円筒火炎1個の側面積+上部面積[m ²])×円筒火炎個数×		(円筒火炎1個の側面積+上部面積[m ²])×
火炎輻射発散度[kW/m²]=火線強度[kW/m]×火炎到達幅[m]		輻射発散度[kW/m²]=火線強度[kW/m]×リ
×輻射熱割合[-]		熱割合[-]
$(2\pi RH + \pi R^2) \times F \times Rf = I_B \times W \times \chi$		$\left(2\pi RH + \pi R^2\right) \times F \times Rf = I_B \times W \times g$
また,上記(4)(5)の式より,以下の式が求まる。火線強度は		また,上記(4)(5)の式より,以下の式
2.2 森林火災による影響の有無の評価で算出された値を用い		は 2. 2. 森林火災による影響の有無の評価
た。算出結果を第 3.2-4 表に示す。		いた。算出結果を第 3.2-4 表に示す。
$Rf = \frac{6\chi I_B}{2}$		$Rf = \frac{6\chi I_B}{2}$
3 $7\pi H$		$7\pi H$
Rf:火炎輻射発散度[kW/m ²], IB:火線強度 [kW/m], H:火炎長 [m]		Rf:火炎輻射発散度[kW/m ²], I _B :火線強度[k
<火炎輻射発散度の算出方法>		<火炎輻射発散度の算出方法>
火線強度(IB)[kW/m]は, 第 3.2-2 図に示すような火炎		
構造(幅 W[m], 奥行き D[m], 火炎長 H[m]) において「火		
炎最前線での単位幅あたりの発熱速度」と定義でき、反応		最前線での単位幅あたりの発熱速度」
強度 (IR) [kW/m ²]とは次の関係にある。		度:I _R [kW/m ²]とは次の関係にある。
$I_{B} = I_{R} \times D$ $\cdots \cdots = T(1)$		$I_B = I_R \times D$
火線強度 (I _B) 火袋長 (H) (L) 反応強度 (I _B) Fiame Depth (D) Fiame Depth (D)		火線強度(L ₀) 火線強度(L ₀) 反応強度(L ₀) Flame Depth (D) Burned Area Discontinuous Flaming Zone Lung Active Flaming Zone Lung Active Active Active Active
有効火炎領域 (出典 : Andrews, P.L., et. al. (2011): How to Generate and Interpret Fire Characteristics		(出典:Andrews,P.L., et. al.(2011):H
Charts for Surface and Crown Fire Behavior. USDA Forest Service General Technical Report RMRS-GTR-253.)		Interpret Fire Characteristics Charts for
		Fire Behavior. USDA Forest Service Genera
		RMRS-GTR-253.)
第 3.2-2 図 - 火線強度及び円筒火炎モデルの考え方		第 3.2-2 図 火線強度及び円筒火炎

计炉	備考
×円筒火炎個数×火炎	
《火炎到達幅[m]×輻射	
< Y	
`λ	
式が求まる。火線強度	
価で算出された値を用	
「lww/m] u・ル 火毛 [m]	
図に示すような火炎構	
_ _f [m])において「火炎	
」と定義でき、反応強	
· · · · · 式①	
1	
Ju	
Fuel Bed Depth 円筒火炎	
t	
火炎	
の幅	
Unburned (W)	
How to Generate and	
or Surface and Crown	
ral Technical Report	
ドアビッカサン 上	

柏崎刈羽原子力発電所 6/7号炉 (2017.1	12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所	2号炉	備考
火炎輻射発散度を計算するための円筒火炎モ	モデルでは, 第		火炎輻射発散度を計算するための)円筒火炎モデルでは,第	
3.2-2 図の有効火炎領域を, 火炎の幅 (₩) にネ	沿って円筒火炎		3.2-2 図の有効火炎領域を,火炎の	>幅:₩[m]に沿って円筒火	
(半径 R[m], 高さ H[m])を F 個一列に並べ [~]	て模擬する。こ		炎 (半径:R[m], 高さ:H[m])をF個-	-列に並べて模擬する。こ	
こで、有効火炎領域の発熱量のうち輻射熱割	合χ[-]を考慮		こで、有効火炎領域の発熱量のうち	う輻射熱割合χ[-]を考慮	
し、円筒火炎の側面及び上面からの輻射熱とし	して放射される		し、円筒火炎の側面及び上面からの)輻射熱として放射される	
として,発熱量が保存されるよう火炎輻射発間	故度を求める。		として,発熱量が保存されるように	火炎輻射発散度を求める。	
円筒火炎での火炎輻射発散度を Rf[kW/m²]とす	けると, 有効火		円筒火炎での火炎輻射発散度を Rf	[kW/m ²]とすると有効火炎	
炎領域の発熱量は保存されることから,以下の	の式で表現でき		領域の発熱量は保存されることから	,以下の式で表現できる。	
る。					
総発熱量(側面,上面からの輻射)[kW]			総発熱量(側面,上面からの輻射[kW	[])	
=火線強度[kW/m]×火炎到達幅[m]×輻射	熱割合[-]より		=火線強度[kW/m]×火炎到達幅[m	ı]×輻射熱割合[-]より	
$(2\pi RH + \pi R^2) \times F \times Rf = I_B \times W \times \chi (= I_R)$	$\times D \times W \times \chi$)		$\left(2\pi RH + \pi R^2\right) \times F \times Rf = I_B \times I_B$	$W \times \chi (= I_R \times D \times W \times \chi)$	
	(2)			····式2	
また,評価ガイドより,円筒火炎モデルは	t		また,評価ガイドより,円筒火炎モデ	・ルは	
R = H/3	(3)		R = H/3	····式③	
F = W/2R	(4)		F = W/2R	····式④	
と定義されるので、(3)、(4)式を(2)式に代7	入することによ		と定義されているので、 ③, ④式	くを②式に代入することに	
り、次式が得られる。			より、次の式が得られる。		
$Rf = \frac{6\chi I_B}{7\pi H}$	(5)		$Rf = \frac{6\chi I_B}{7\pi H}$	····式⑤	
発電所敷地近傍には草地,針葉樹,落葉広葉	 棲樹がある。そ		発電所敷地近傍には、針葉樹、落	;葉広葉樹がある。そのた	
のため, 輻射熱割合は, <u>草地 : 0.35(米国国</u>	立標準技術研究		め, 輻射熱割合は, 針葉樹: 0.377 及	:び落葉広葉樹:0.371 (米	
<u>所 (NIST)の使用値),</u> 針葉樹:0.377 <u>並びに</u> 落芽	套広葉樹:0.371		国防火技術者協会(SFPE)が発行して	ているハンドブック(THE	
(米国防火技術者協会(SFPE)が発行している	るハンドブック		SFPE HANDBOOK of Fire Protecti	ion Engineering FOURTH	
(THE SFPE HANDBOOK of Fire Protection Engi	neering FOURTH		EDITION)より算出) <u>を発火点周辺の</u>)植生に合わせ, 以下のと	
EDITION) より算出) <u>のうち保守的に最も大</u>	きい値である		<u>おり</u> 採用した。		
<u>0.377 を</u> 採用した。			<u> 発火点1,2,5:0.371(落</u> す	<u> 棄広葉樹)</u>	・条件の相違
			<u> 発火点3,4 :0.377(針</u>	<u> </u>	【柏崎 6/7】
なお、反応強度は炎から輻射として放出され	いる熱エネルギ		なお,反応強度は炎から輻射とし	て放出される熱エネルギ	島根2号炉は,植生に
ー(火炎輻射強度)と火炎・煙として対流放出	出される熱エネ		ー(火炎輻射強度)と火炎・煙とし	、て対流放出される熱エネ	合わせた値を使用す
ルギー(火炎対流発散度)の和により求めら≵	いることから,		ルギー(火炎対流発散度)の和によ	.り求められることから,	るため, 針葉樹だけで
針葉樹の輻射熱割合(0.377)は、針葉樹代表種	重の火炎輻射強		針葉樹の輻射熱割合(0.377)は、針	▶葉樹代表種の火炎輻射強	なく、広葉樹も記載
度:4.9[kJ/g]と反応強度:13.0[kJ/g]の比(周	反応強度に対す		度:4.9[kJ/g]と反応強度:13.0[kJ/	/g]の比(反応強度に対す	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
る火炎輻射強度の割合)から算出した。	2	る火炎輻射強度の割合)から算出した。同様に,落葉広葉樹	
	<u></u>	の輻射熱割合 (0.371) は, 落葉広葉樹代表種の火炎輻射強度:	
	4.	.6[kJ/g]と反応強度:12.4[kJ/g]の比(反応強度に対する火	
	<u> </u>	&輻射強度の割合)から算出した <u>。</u>	
針葉樹代表種の発熱量	金子 金	 南樹代表種	・条件の相違
火炎輻射強度:4.9[kJ/g]+ 火炎対流発散度:8.1[kJ/g]=反応強度 13.0[kJ/g]	<u>لر</u>	大炎輻射強度 4.9[kJ/g]+火炎対流発散度 8.1[kJ/g]=反応	【柏崎 6/7】
(ΔHrad) (ΔHcon) (ΔHch)		魚度 13.0[kJ/g]	島根2号炉は,植生に
		晶射熱割合(針葉樹)=火炎輻射強度 4.9[kJ/g]/反応強度	合わせた値を使用す
輻射熱割合	1	3.0[kJ/g]	るため, 針葉樹だけで
Δ Hrad <u>4.9 [kJ/g]</u>		<u>=0.377</u>	なく、広葉樹も記載
= 0.377	落变	 底葉樹代表種	
Δ Hch <u>13.0 [kJ/g]</u>	<u>لا</u>	k炎輻射強度4.6[kJ/g]+火炎対流発散度7.8[kJ/g]=反応強	
	度1	2.4[kJ/g]	
	<u> </u>	晶射熱割合(落葉広葉樹)=火炎輻射強度4.6[kJ/g]/反応強	
	度1	2.4[kJ/g]	
		<u>=0.371</u>	
また、火炎輻射強度については、輻射熱割合が火炎輻射強度		また、火炎輻射強度については、輻射熱割合が火炎輻射強	
と反応強度の比であることから、これに反応強度を乗じること	度	度と反応強度の比であることから、これに反応強度を乗じる	
により算出する。		ことにより算出する。	
(7) 火炎到達幅の算出	(7)	火炎到達幅の算出	
火炎到達幅を第 3.2-3 図の黒線で示す。6 号及び 7 号炉東		火炎到達幅を第 3.2-3 図の黒線で示す。FARSITE 評価で延	
面から見える林縁(防火帯森林側)の長さを火炎到達幅とする。	· · · · · · · · · · · · · · · · · · ·	<u> 売した敷地内の</u> 林縁(防火帯森林側)の長さを火炎到達幅と	
	j	+3。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2-
<image/>		<image/> <image/>
 (8) 燃焼継続時間の算出 燃焼継続時間は,林縁周辺<u>100m</u>の森林が燃える時間とし, FARSITE 計算結果から次の計算式により算出する。 燃焼継続時間[h]=林縁の奥行き÷延焼速度 林縁奥行:<u>100[m]</u> 延焼速度:林縁から<u>100m</u>以内の延焼速度の平均値 		 (8) 燃焼継続時間の算出 燃焼継続時間は、林縁から <u>50m</u>の^章 とし、FARSITE 計算結果から次の計算 燃焼継続時間[h] = 林縁奥行 林縁奥行: <u>50[m]</u> 延焼速度:林縁から<u>50m</u>以内の延知
(9) 危険輻射強度の算出 火災の燃焼継続時間の間一定の輻射熱が外壁面に入熱した場 合を仮定し、外壁面での対流熱伝達と輻射放熱を考慮し、以下 の式に示す一次元非定常熱伝導方程式を用いて、コンクリート の表面温度が許容限界温度 200℃に達する輻射強度を危険輻射 強度として求める(第 3.2-4 図,第 3.2-5(a)(b)(c)図)。		 (9) 危険輻射強度の算出 火災の燃焼継続時間の間,一定の軟た場合を仮定し,外壁面での対流熱伝以下の式に示す一次元非定常熱伝導た リートの表面温度が許容限界温度 200< 危険輻射強度として求める。 (第 3. 2-4 図, 第 3. 2-5(a) (b) (c) (d)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原	子力発電所 2号炉	備考
$\frac{dT}{dt} = \alpha \frac{d^2 T}{dx^2}$		$\frac{dT}{dt} = \kappa \frac{d}{dt}$	$\frac{d^2T}{dx^2}$		
T:温度,t:時刻,x:建物壁内における外面からの距離, <u>α</u> :熱拡散率 以下に使用したパラメータを示す。		T:温度, t <u>た</u> :熱拡散 ^図 以下に使用し	: 時刻, x : 率 したパラメー	: 建物壁内における外面からの距離, -タを示す。	
第 3.2-3 表 輻射強度算出時の入力パラメータ		第3	3.2-3表 輻	射強度算出の入力パラメータ	
AII Image 外気温度 50 ℃ 日射の影響を考慮し設定		項目	パラメータ 50 °C	備考 ロ社の影響な考慮し犯字	
内気温度 45 ℃ 非常用ディーゼル発電機室最高温度		外 风仙度	50 C	日初の影響を考慮し設定 保守的に内気への熱伝達がない条件としている	
外面熱伝達率 62.595 W/m²K Jurges の式より(風速 16m/s)		内気温度	-	ため、本数値は評価結果に影響しない。	
内面熱伝達率 3.4883 W/m ^c K / 建築設計改上図書 原子炉建屋構造計算書より 8.42×10 ⁻⁷		外面熱伝達率	80.53 W/m ² K	ユルゲスの式より(風速22.1m/s)	
熱拡散率 m ² /s 建築設計竣工図書 原子炉建屋構造計算書より		内面熱伝達率	OW/m ² K (断熱)	保守的にコンクリートから内気に熱伝達がない 断熱条件とした。	
壁面の厚さ 1.5 m 建屋外壁厚さの最大値		熱拡散率:κ (κ=k/(ρ・c)) 壁面の厚さ	8. 42×10 ⁻⁷ m ² /s	コンクリート 比熱 c =879.1J/(kg・K) 密度 ρ =2,200kg/m ³ 熱伝導率 k =1.628W/(m・K) 各建物のうち最も薄い厚さ	
建屋外 建屋壁(均質体) 建屋内 外気との熱伝達 Q _{v,out} 「「「」」」」」 内気との熱伝達 Q _{v,in} 「「」」」」」 火炎からの輻射 E _t 熱伝導 Q _{v,in} 第 3.2-4 図 建屋温度評価体系図		「 外気との熟化 の 重 の 転射:Q _r	建物外側 伝達 :Q _{y,out} (mathematical series of the series of t	建物壁(均質) 建物内側 熱伝導:0 新伝導:0, m 教伝導:0, m 新杰導:0, m 文書物温度評価体系図	 ・条件の相違 【柏崎 6/7】 島根2号炉は,壁面と 内気との熱伝達が無い断熱条件として評 価を実施。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
000 0000 000 </th <th></th> <th>300 200 200 9 第温度(輻射強度: 17.634kW/m²) 9 第温度(輻射強度: 17.634kW/m²) 9 第温度(輻射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(200*C) 9 9 9 9 9 200.00 0.20 0.40 0.60 0.80 1 200.01 9</th>		300 200 200 9 第温度(輻射強度: 17.634kW/m²) 9 第温度(輻射強度: 17.634kW/m²) 9 第温度(輻射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(200*C) 9 9 9 9 9 200.00 0.20 0.40 0.60 0.80 1 200.01 9
福射強度 時間 外面温度 1 15274 0.95 199.98 2 15275 0.95 200.00 第 3. 2-5(c)図 危険輻射強度の算出(ケース 3)		1 17634 82 1366667 199 2 17635 82 1366667 199 3 17636 82 1366667 200 第3.2-5(c)図 危険輻射強度の算

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2 异
				300 300 200 200 200 150 300 9 300 1.3495 1.3495 1.35000 1.3495 1.35000 1.3495 1.35000 1.3495 1.35000 1.3495 1.35000 1.3495 1.35000 1.35000 1.35000 1.35000

柏崎メ	山羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
					300 300 200 0 100 0 </td

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(10) 形態係数の算出		(10) 形態係数の算出	
次の式から各円筒火炎モデルの形態係数を算出した。算出結		次の式から各円筒火炎モデルの形態係数を算出した。算出	
果を第 3.2-4 表に示す。		結果を第3.2-4表に示す。	
$\phi_{i} = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^{2} - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$		$\phi_{i} = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^{2} - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$	
$\vec{\tau} \in \vec{\tau} \subset \vec{L}$, $m = \frac{H}{R} \cong 3, n = \frac{L_i}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$		だだし, $m = \frac{H}{R} \cong 3, n = \frac{L_i}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$	
φ _i :各円筒火炎モデルの形態係数,L _i :離隔距離[m], H・水炎長[m] R・燃焼半径[m]		φ _i :各円筒火炎モデルの形態係数,L _i :離隔距離[m], H・水炎長「m] R・燃焼半径「m]	
したがって、各円筒火炎モデルの形態係数を合計した値が、		したがって、各円筒火炎モデルの形態係数を合計した値	
発電用原子炉施設に及ぼす影響について考慮すべき形態係数		が、発電用原子炉施設に及ぼす影響について考慮すべき形態	
φt となる。		係数φ、となる。	
$\phi_t = (\phi_i + \phi_{i+1} + \phi_{i+2} \cdots)$		$\phi_t = (\phi_i + \phi_{i+1} + \phi_{i+2} \cdots)$	
↓:各円筒火炎モデルの形態係数を合計した値		φ _t :各円筒火炎モデルの形態係数を合計した値	
なお, 1, 2, 3, ・・・, F の円筒火炎モデル数の合計は F 個と		なお, 1, 2, 3, ・・・, Fの円筒火炎モデル数の合計	
なる。		はF個となる。	
(11) 危険距離の算出		(11) 危険距離の算出	
輻射熱に対する発電用原子炉施設の危険輻射強度を調査し,		輻射熱に対する発電用原子炉施設の危険輻射強度を調査	
輻射強度がその危険輻射強度以下になるように発電用原子炉施		し、輻射強度がその危険輻射強度以下になるように発電用	
設は危険距離を確保するものとする。		原子炉施設は危険距離を確保するものとする。	
火炎輻射発散度の炎から任意の位置にある点(受熱点)の輻		火炎輻射発散度の炎から任意の位置にある点(受熱点)の	
射強度は、火炎輻射発散度に形態係数をかけた値になる。次の		輻射強度は,火炎輻射発散度に形態係数をかけた値になる。	
式から形態係数 φ を求める。		次の式から形態係数φを求める。	
$E = Rf \bullet \phi$		$E = R_f \cdot \phi$	
E:輻射強度 [kW/m²], Rf:火炎輻射発散度 [kW/m²],		E: 輻射強度 [kW/m²], R _f :火炎輻射発散度 [W/ m²],	
φ : 形態係数[-]		φ:形態係数 [-]	
$\phi > \phi_{t}$ となる最大の距離として危険距離を算出する。算出		$\phi > \phi_t$ となる最大の距離として危険距離を算出する。算出	
結果を第 3.2-4 表 に示す。		結果を第3.2-4 表に示す。	

柏崎刈羽原子力発電	電所 6/7号	炉 (2017.1	12.20版)		東海第二	発電所(2018.9.12版)		島根原	子力発電所	斤 2号炉	ī		備考
(12) 危険距離の評価結	果						(12) 危険距離の	>評価結果	1				
想定される森林火災	炎において,評	価上必要とさ	される危険距離	隹	想定される森林火災において,評価上必要とされる危険距								
(約 21m) に対し, 柞	泊崎刈羽原子力	発電所に設置	置される防火帯	+ 7			離(22m))	こ対し,島	,根原子力	発電所に認	設置される	る防火帯の	
の外縁(火炎側)か	ら発電用原子焼	戸施設の間の	離隔距離(約	j			外縁(火炎	側)から	発電用原	子炉施設の	の間の離隣	鬲距離(約	
439m) が危険距離以_	上あることを確	認した。					140m)が危	険距離以	上あるこ	とを確認し	した。		
		0									0		
第 3.2-4 表	危険距離の言	平価に伴う評	価項目				第 3. 2-	4表 危障	食距離の 評	平価に伴う	評価項目		
評価項目	ケース1	ケース2	ケース3				評価項目	ケース1	ケース2	ケース3	ケース4	ケース5	
燃焼半径[m]	0.98	1.02	0.83	_			燃焼半径[m]	1. 193	1.037	0.537	0.563	0.600	
火炎円筒モデル数[-]	1900	1815	2224	_				2,041	2, 349	4, 538	4, 323	4,059	
火災輻射発散度[kW/m ²] 火炎輻射強度[kW/m ²]	94.8 205	211	78.8				火炎輻射発散度	110	00.5	46.0	40.2	59.4	
形態係数[-]	0.162	0. 154	0. 194	-			$[kW/m^2]$	118	99. 5	46.9	49.3	52.4	
燃焼継続時間[min]	52	51	57	-			形態係数[-]	0.172	0.205	0.371	0.357	0.333	
危険輻射強度[kW/m²]	15.441	15.477	15.275				燃焼継続時間[min]	23	21	82	81	77	
危険距離[m]	19	21	14				厄陝輻射强度 「kW/m ²]	20.265	20. 537	17.635	17.652	17.725	
							危険距離[m]	22	16	5	5	6	
				4 0 表加良く網路 1	上下を正確の	新した。							
				4.3 款影響と	10陝距離()								
				<u>評価対象</u>	評価対象施設に対して、森林火災による熱影響評価を行った。								
				4.3.1 パラメータの算出									
				FARS	火								
				炎長から、温度評価に必要なデータを算出した。温度評価に用			二月						
				いたデータの説明を第 4.3.1-1 表, FARSITE解析結果及			 						
				び筧出デー	び 箟出データを 第4.3.1-2 表 温度評価の 流れを 第4.3.1-1 図								
				10-11-9-0									
				hts.									
				第4	. 3. 1-1 表	温度評価に用いたデータ内容							
				ų	E	内容							
					火炎到達時間 (hr)	出火から火炎の前線が該当地点に到達するまでの時間。 火炎継続時間の算出に使用する。							
				FARSITE 解析結果	反応強度 (kW/m ²)	単位面積当たりの熱放出速度であり、火炎輻射強度の根 拠となる火災規模。火炎輻射強度の算出に使用する。							
					火炎長 (m)	反応強度が最大位置の火炎の高さ。円筒火炎モデルの形 態係数の算出に使用する。							
					火炎継続時間 (hr)	到達時間から算出され、円筒火炎モデルを用いた温度上 昇の算出に使用する。							
				FARSITE 解析結果 トロ質用	火炎輻射強度 (k₩/m ²)	反応強度に米国 NFPA の係数 0.377 を乗じて算出され, 円筒火炎モデルを用いた温度上昇の算出に使用する。							
				したデータ	燃焼半径 (m)	火炎長に基づき算出され,円筒火炎モデルの形態係数の 算出に使用する。							
					火炎到達幅 (m)	防火帯外縁における火炎到達セル数×セル幅 (10m)							

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考	
	<u>第4.3.1-2表 FARSITE解析結果及び算出データ</u>			
	項目 発火点 第 第 1 2 3 4 5 6 7 7			
	火炎到達時間 (hr) 0.2 4.0 0.7 6.0 2.9 1.1 0.7			
	火炎長 (m) 0.7 0.9 1.6 1.1 1.5 1.6 1.5			
	火炎継続時間 (hr) 0.36 0.16 0.07 0.16 0.10 0.06 0.08			
	火炎輻射強度 (kW/m ²) 442 441 442 440 444 443 439			
	燃焼半径 (m) 0.2 0.3 0.5 0.4 0.5 0.5 0.5			
	火炎到達幅 (m) 1,960 1,550 1,960 1,460 1,960 1,960 1,330			
	到達時間 反応強度 火炎長 火炎到達幅 10mメッシュごとに離隔 距離が変化する。 火炎縮射強度 燃焼半径 一 一 円筒火炎行* b数 形態係数			
	↓温度影響評価: FARSITE出力データ			
	第4.3.1-1 図 温度評価流れ図			
	 (1) 火炎継続時間 最大火炎輻射強度の発生メッシュと隣接メッシュにおける 火炎到達時間の差を火炎継続時間とする。2 つ以上の伝播方 			
	<u>向がある場合は,最大時間を選択する。火炎継続時間の概念</u> 図を第4.3.1-2 図に示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	小奏到達時間 [hr] 2.5 (0.3) b,大带外縁 小奏到達時間 [hr] 2.3 (0.1) 2.4 (0.2) image: Christian and the state of the st		
	 (2) 火炎輻射強度はFARSITE出力データである反応強度から算出する。 反応強度は炎から輻射として放出される熱エネルギと、火炎・煙として対流放出される熱エネルギの和から求められることから、反応強度に対する火炎輻射強度の割合を求めることで、反応強度から火炎輻射強度を算出する。「THE SFPH HANDBOOK OF Fire Protection Engineering」から各樹木の発熱量を引用し、反応強度に対する火炎輻射強度の割合を算出する。 東海第二発電所の周囲は、針葉樹で囲まれていることから、針葉樹の係数 0.377 を使用する。火炎輻射強度と反応強度の発熱量の関係を第4.3.1-3 表に示す。 		
	<u>散度 (W/m²)</u> 第 4. 3. 1-3 表 火炎輻射強度と反応強度の発熱量		
	発熱量(/H) 火炎輻射強度 火炎対流発散度 反応強度 係数 (/ltrad) (/lcon) (/lch) (/ltad//lth)		
	レッドオーク発熱量 (落葉広葉物の代表和) 4.6kJ/g 7.8kJ/g 12.4kJ/g 0.371		
	米松 発熱量 (射薬物の大麦種) 4.9kJ/g 8.1kJ/g 13.0kJ/g 0.377		
	※:「THE SFPE HANDBOOK OF Fire Protection Engineering」 (SFPE:米国防火技術者協会)より		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(3) 燃焼半径		
	燃焼半径は、火炎長から算出する。		
	$R = \frac{H}{3}$		
	<u>R:燃焼半径(m)</u> <u>H:火炎長さ(m)</u>		
	(4) 火炎到達幅		
	発電所周囲の森林境界に到達した火炎のセル数×10m(セル 幅)を火炎到達幅Wとして算出する。		
	(5) 円筒火炎モデル数 円筒火炎モデル数及び 10m メッシュ内の円筒火炎モデル数 を 火炎到達幅 燃焼半径から筧出する		
	$F = \frac{W}{2R} \qquad F' = \frac{10}{2R}$		
	F :円筒火炎モデル数 W :火炎到達幅(m) F' :円筒火炎モデル数(10m メッシュ) R :燃焼半径(m)		
	(6) 形態係数の算出 外部火災の影響評価ガイドに基づき形態係数を算出する。 各円筒モデルから受熱面までの距離が異なるため,各円筒火 炎モデルにおける形態係数を算出する。		
	$\phi_{i} = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^{2} - 1}} \right) + \frac{m}{\pi} \left[\frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left(\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right) - \frac{1}{n} \tan^{-1} \left(\sqrt{\frac{(n - 1)}{(n + 1)}} \right) \right]$		
	$m = \frac{1}{R}, n = \frac{1}{R}, A = (1 + n)^{2} + m^{2}, B = (1 - n)^{2} + m^{2}$ $\boldsymbol{\Phi}_{i} : \boldsymbol{\Pi}$ 筒火炎モデルの形態係数 $L_{i} : 離隔距離 (m), \boldsymbol{H} : 火炎長 (m)$ R : 燃焼半径 (m)		
	(7) 輻射強度の算出 10m メッシュ内には燃焼半径から算出した F' 個の火炎が 存在するものとして,受熱面への輻射強度を算出する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$E_0=\varnothing_0 \times F' \times R_f$ (中心火炎の場合)		
	E _i =∞ _i ×F'×R _f ×2 (中心以外の火炎の場合)		
	∅ _i :形態係数		
	R _f :最大火炎輻射強度(kW/m ²)		
	F':円筒火炎モデル数 (10m メッシュ <u>)</u>		
	(8) 温度評価条件		
	受熱面への輻射強度は、円筒火炎モデルを火炎到達幅の長		
	さ分並べて、各々の輻射強度を積算し評価した。火炎輻射強		
	度は各々の位置で強度の違いがあるが、本評価では保守的に		
	最大火炎輻射強度の円筒火炎モデルが一様に存在するものと		
	して評価する。円筒火炎モデルの燃焼時間は火炎継続時間で		
	ある。円筒火炎モデルの概念図を第4.3.1-3図に示す。		
	10mメッシュ内にはF,個の 円筒火炎モデルが燃焼		
	離隔距離		
	火灸到運幣 W(m) U(m)		
	▶: F'個分の火炎から放射▶: F'個分を2カ所から同時に放射		
	第4.3.1-3 図 円筒火炎モデルの概念図		
	4.3.2 熱影響評価		
3.3 建屋外壁の温度評価	4.3.2.1 建屋外壁の熱影響評価	3.3. 建物外壁の温度評価	
本評価で用いる許容限界温度は、一般的にコンクリートの強	(1) 影響評価対象範囲	本評価で用いる許容限界温度は、一般的にコンクリートの	
度にほとんど影響がないとされている 200℃とする。	評価対象施設の外壁について、森林火災を想定して評価を	強度にほとんど影響がないとされている 200℃とする。	
火災の進展により原子炉建屋外壁面が受ける輻射熱は,	実施した。	火災の進展により原子炉建物外壁面が受ける輻射熱は,	
FARSITE による森林火災解析結果から、1 メッシュ (10m×10m)	(2) 評価対象施設から最も近い防火帯外縁までの離隔距離を用	FARSITE による森林火災解析結果から,1メッシュ(10m×10m)	
ごとに火炎長、単位面積当り発熱量及び火炎到達時間が出力さ	いて評価を行う。評価対象施設から最も近い防火帯外縁まで	ごとに火炎長、単位面積当たりの発熱量及び火炎到達時間が	
れるので、メッシュごとに円筒火炎モデルを並べ(円筒火炎の	の離隔距離を第4.3.2.1-1図, 第4.3.2.1-1表に示す。	出力されるので、メッシュごとに円筒火炎モデルを並べ(円	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
直径が 1m であれば, 1 メッシュに 10 個の円筒火炎を考慮),		筒火炎の直径が 1m であれば, 1 メッシュに 10 個の円筒火炎	
各メッシュに火炎が到達してから燃え尽きるまでの間輻射に寄		を考慮),各メッシュに火炎が到達してから燃え尽きるまでの	
与するとして受熱点の輻射強度を積算する。受熱点への輻射強		間輻射に寄与するものとして受熱点の輻射強度を積算する。	
度計算方法の概念を <u>第_3.3-1_図</u> に示す。		受熱点への輻射強度計算方法の概念を <u>第3.3-2</u> 図に示す。	
外壁面の温度は、外壁面での対流熱伝達と輻射放熱を考慮し		外壁面の温度は、外壁面での対流熱伝達と輻射放熱を考慮	
以下の式に示す一次元非定常熱伝導方程式を用いて評価を実施		し以下の式に示す一次元非定常熱伝導方程式を用いて評価を	
する(<u>第 3.3-2 図</u>)。原子炉建屋外壁表面の温度は約 <u>55℃</u> とな		実施する(第3.3-3図)。原子炉建物外壁表面の温度は約63℃	
り,森林火災の熱影響に対して許容温度以下であることを確認			
した(第 3.3-2 表, 第 3.3-3(a)(b)(c)図)。		を確認した(第 3. 3-2 表, 第 3. 3-4 (a) (b) (c) (d) (e) 図)。	
	第4.3.2.1-1 図 評価対象施設から最も近い防火帯外縁までの	$dT = d^2T$	
$\frac{dT}{dt} = \alpha \frac{d^2T}{dt}$	離隔距離	$\frac{dT}{dt} = K \frac{dT}{dr^2}$	
$dt dx^2$		u ux	
T:温度,t:時刻,x:建物壁内における外面からの距離,	第4.3.2.1-1 表 評価対象施設から最も近い防火帯外縁までの	T:温度, t:時刻, x:建物壁内における外面からの距離,	
α :熱拡散率	離隔距離	<u>к</u> :熱拡散率	
以下に使用したパラメータを示す。	評価対象施設 原子炉建屋 ポンプ室 乾式貯蔵建屋 建屋 ゲート	以下に使用したパラメータを示す。	
	(m) 267 242 37 221 41		
第 3.3-1 表 建屋外壁温度算出時の入力パラメータ		第3.3-1表 建物外壁温度算出時の入力パラメータ	
項目 パラメータ 備考	(3) 判断の考え方	項目 パラメータ 備考	
外気温度 50 ℃ 日射の影響を考慮し設定 中点泪座 45 ℃ 1世常田戸 いっぱり変重地定見立泪座		外気温度 50 ℃ 日射の影響を考慮し設定 (月空的に肉気の効果) (月空的に肉気の効果)	
 内気温度 45 C 非常用フィーセル発電機室取高温度 外面熱伝達率 62.595 W/m ² K Jurges の式より (風速 16m/s)	火災時における短期温度上昇を考慮した場合において、コ	内気温度 - 「味可切に内気への熱気運がない条件として」	
内面熱伝達率 3.4883 W/m²K 建築設計竣工図書 原子炉建屋構造計算書より	ンクリート圧縮強度が維持される保守的な温度 200℃以下と	外面熱伝達率 第3.3-1 図参照 周囲温度 50℃の場合の自然対流熱伝達率	
熱拡散率 8.42×10 ⁻⁷ m ² /s 建築設計竣工図書 原子炉建屋構造計算書より	する。なお、外壁にはガラリ、配管貫通部等が存在するが、	(Bayleyの式) 0 W/m ² K 保守的にコンクリートから内気に熱伝達が	
壁面の厚さ 1.5 m 建屋外壁厚さの最大値	これらに対する火災影響は敷地内火災に包絡されるため本評	内面熱伝達率(断熱)ない断熱条件とした。	
	価では対象外とした。	熱拡散率: κ 8.42×10 ⁻⁷ 比熱 c =879.1J/(kg・K)	
h 評価方法		($\kappa = k/(\rho \cdot c)$) m ² /s 密度 $\rho = 2,200 kg/m^3$ 熱伝道索 h = 1,620W/(n + K)	
		壁面の厚さ 2.3 m 原子炉建物南面外壁の厚さ	
	の輻射強度で外時が昇温されるものとして、式1の一次元非		
	完学執伝道古程式を美公法上り解くことで、外辟表面の温度		
	た 笛山ナス		
	La transmission		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
	$\rho C_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) $ (式1) $-k \frac{\partial T}{\partial x} = E $ (x=0) $\frac{\partial T}{\partial x} = 0 $ (x=L) (出典: 伝熱工学, 東京大学出版会) T: 初期温度 (50°C) * E: 輻射強度 (W/m ²) $\rho: 密度 (2,400 kg/m3) k: 熱伝導率 (1.63W/m/K) C_{p}: 比熱 (880 J/kg/K) L: 厚さ[m] * 水戸地方気象台で観測された過去高気温 38.4°Cに保守性を 持たせた値$	自然対流熱伝達率(Bayleyの式) 7.0 8.0 5.0 4.0 3.0 2.0 1.0 0.0 5.0 100 150 200 250 300 350 400 温度[℃]
サイト林緑 時刻T₂での 遅焼前線 計算メッシュ 10m×10m 受熱面 単小点 (時刻Tslc出火) 受熱面の代表位置点 (受熱点) 時刻T₂~T₂+ Δ Tの 輻射強度に寄与する 円筒火炎 時刻T₁~T₁+ Δ Tの 輻射強度に寄与する 円筒火炎	式1で求めた危険輻射強度Eとなる形態係数 Φ を,式2より 算出する。 E = R f • Φ (式 2) E : 輻射強度(W/m ²), R f : 火炎輻射強度(W/m ²), Φ : 形態係数 (出典:評価ガイド) 式2で求めた形態係数Φとなる危険距離Lを,式3より算出 する。 $\Phi = \frac{1}{\pi^{n}} \tan^{-1} \left(\frac{m}{\sqrt{n^{2}-1}} \right) + \frac{m}{\pi} \left\{ \frac{(A-2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{B(n+1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right] \right\} (式 3)$ $\hbar \pi \ln \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^{2} + m^{2}$, $B = (1-n)^{2} + m^{2}$ $\Phi : \pi \hbar \ln K$, L: 離隔距離 (m), H: 炎の高さ (m),	第 3. 3-1 図 熱伝達率(自然対流熱伝達率) サイト林線 時刻T₂での 延焼前線 受熱面 一 受熱面の代表位置点 時刻T₂~T₂+ Δ TO 電射強度に寄与する 円筒火炎
$ f = 1 \\ f = 1 \\ $	 R:燃焼半径(m) (出典:評価ガイド) 上記のとおり危険距離を算出し,最も近い防火帯外縁から評価対象施設までの離隔距離を下回るか評価を実施した。なお、 天井スラブは以下の理由により,外壁の評価に包絡されるため 実施しない。建屋外壁の評価概念図を第4.3.2.1-2 図,天井ス ラブへの輻射熱の影響の概念図を第4.3.2.1-3 図に示す。 ・火炎長が天井スラブより短い場合,天井スラブに輻射熱を 与えないことから熱影響はない。 ・火炎長が天井スラブより長い場合,天井スラブに輻射熱を 与えるが,その輻射熱は外壁に与える輻射熱より小さい。 	愛熱点の輻射強度 $ $

炉		備考
建物内 ; 導:Q _{c,in}	[則] N	
		・条件の相違
<u>i概念図</u>		【柏崎 6/7】 島根2号炉は,壁面と 内気との熱伝達が無 い断熱条件として評 価を実施
この評価項目		
3 ケース4	ケース5	
炉建物南側壁面		
218	238	
58	58	
50	50	
ことする。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)			島根原子力發	発電所 2号炉		備考
3.4 内気温度評価	4.3.2.2 建屋内部の室内温度評価		3.4. 内気温度評	価			・条件の相違
森林火災において燃焼が継続している間、一定の輻射強度で	(1) 評価対象範囲		森林火災に	おいて燃焼が	継続している間,	一定の輻射強度	【東海第二】
発電用原子炉施設が昇温されるものとして、内壁の温度上昇を	評価対象施設に対し,室内で人員の活動	が必要な中央制御	で発電用原子	炉施設が昇温	されるものとして	,内壁の温度上	島根 2 号炉は, 柏崎
求め建屋内部に設置されている機器等への影響について評価す	<u>室について、森林火災を想定し、室内温度る</u>	と評価した。	昇を求め建物	内部に設置し	ている機器等への	影響について評	6/7 と同様, 防火帯に
<u>a</u> .	<u>(2) 判断の考え方</u>		価した。				近接している固体廃
なお,対象は防火帯に近接している固体廃棄物処理建屋とし,	<u>a.</u> 許容温度		なお、対象	は防火帯に近	接している固体廃	棄物貯蔵所D棟	棄物貯蔵所D棟にて
森林火災における最も厳しいケース 2_の条件で評価する。固体			とし,森林火	災における最	も厳しいケース1	の条件で評価す	温度評価を実施
廃棄物処理建屋について温度評価を行う。			る。固体廃棄	物貯蔵所D棟	について温度評価	を行う。	
以下に概念図を示す。		外壁内面温度は	以下に概念	図を示す。	-		
	53℃を想定した。なお,4.3.2.1の外壁外	·面の評価結果は,					
	原子炉建屋南側の壁であり、中央制御室の	りある東側の壁と		建昆蒜 (45%)			
	は異なるが. 保守的に南側の壁の評価結	果を想定すること	建物外側	建產至(均肖)	3建物(内)(例)		
建屋外 建屋壁(均)資体) 建屋内 排気	とした。			-			
外気との熱伝達 Q _{v, out} 内気温度 T _{room} 内気との熱伝達 Q _{v, in}	<u></u>	刘. 室内温度評価			室温:TR		
周囲への輻射 trout 熱伝導 Qc, aut 換気空調系給気温度 T。	の評価条件を第4322-1表に示す。		外気との熱伝達:Q _{vat}	点伝導:Q _{cont}	内壁面温度:TS1		
熱伝導 Q _{c, in} 風量 m ◆)高田(小心)華富男1: Q _{rout}	熱伝導:Q _{cin}	壁面からの入熱量:qin	記号説明 qin:壁面からの入熱量[1] TR :安調[92]	
火炎からの幅射 E 室内負荷 Q			火災養羅射: E,		室内負荷iq	IS1:内壁石温度[℃] A :表面積[w²] ⊿t:時間ステップ	
	建屋壁					C :空気熱容量[kJ/m³)	・条件の相違
第34-1 図 伝教の概念図	建屋外 建屋内	小田にして持ち		3 4-1図 内冬	気温度評価概念図		【柏崎 6/7】
	Qin:外壁内面温度上昇	空調による排気	<u></u>				自根の子室 自根の子室 自根の子室 自根の子室 自根の子室 自根の子室 自想の子室 自想の子室 自想の子室 自想の子室 自想の子室 自想の子室 自想の子室 自想の子室 自想の子室 自想の子室 自想の子室 自想の子室 自想の子室
評価に必要なパラメータを以下に示す	外壁外面に伴う熟負荷		証価に必要な	パラメータを	以下に示す		応伝2 5% は, 主100 空気け出入りがたい
		空調による給気	可回に近める				<u> 全</u> 供 として 証価を 実
第 3 4-1 表 内気泪産質出時の入力パラメータ	Q:室内熱:	員荷		- 内気沮 南河	医価質出時の入力が	ペラメータ	本日として日回と天
	輻射熱			. 「八仙」又曰	Ш₩ЦМУ/СЛ	.,,,.,	лн
項目 パラメータ 備考 め与担席[??] 50 日射の影響を考慮し恐定	室内設備による熱	負荷	項目 外気泪度[℃]	パラメータ	備考 日射の影響を考慮し設定	-	
外壁面熱伝達率[W/m ² K] 62.595 Jurges の式より(風速 16m/s)	第19991回 安内沮疾証任の押		内気温度[℃]	50	初期温度は外気温度と同	- 同じ 50℃に設定	
内壁面熱伝達率[W/m ² K] 3.4883 コンクリートの内壁面熱伝達率	<u> 弗4.3.2.2-1 図 至内温度評価の</u> 做		外壁面熱伝達率	第3.3-1 図参照	周囲温度 50℃の場合の (Baylowの式)	の自然対流熱伝達率	
壁の熱伝導率[W/mK] 1.6279 コンクリートの熱伝導率 執持弊点[2/1] 0.6279 コンクリートの熱伝導率			内壁面熱伝達率	2	伝熱工学資料第5版に基	長づく自然対流熱伝達	
熱拡散率[m²/s] 8.42×10 ⁻¹ コンクリートの熱拡散率 壁厚[m] 0.4 固体廃棄物処理建屋	第4.3.2.2-1 表 室内温度評価の評1	<u> </u>	[W/m ² K]	1. 628	率を算出 コンクリートの執伝道惑	<u>z</u>	
		中央制御室			コンクリート 比熱 c	- K)	
	評恤条件項目 (原	原子炉建屋)	熱拡散率[m²/s]	8.42×10 ⁻⁷	密度 ρ =2,200kg/m ³		
	壁面寸法 壁面 表面積(m²)	188		0.5	 ● 熱伝導率 k =1.628₩/ ■ 固体廃棄物貯蔵所D棟外 	(m・K) ト壁の厚さ	
	室内熱負荷(W)	210, 579					
		15.5					
以下の式に示す一次元非定常熱伝導方程式を用いて、外壁及び	室内許容温度 室内許容温度(℃)	40	以下の式に	示す一次元非	定常熱伝導方程式	を用いて、外壁	
内壁面温度を求める。			及び内壁面温	度を求める。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$\frac{dT}{dt} = \alpha \frac{d^2 T}{dx^2}$	<u>4.3.2.1 の一次元非定常熱伝導方程式を用いて算出した第</u> <u>4.3.2.2-2 表の外壁内面温度より、下式を用いて室内温度評価</u>	$\frac{\frac{dT}{dt}}{\frac{dT}{dt}} = \kappa \frac{d^2 T}{dx^2}$	
T:温度, t :時刻, x :建物壁内における外壁面からの距離, <u>α</u> :熱拡散率	<u>を昇出した。</u> <u>第 4. 3. 2. 2−2 表</u> 熱評価結果	T:温度, t:時刻, x:建物壁内における外壁面からの距離, <u></u> :熱拡散率	
<u>外壁及び内壁面温度上昇に伴う熱負荷は次式で計算される。</u> $Q_{v,in} = h_{in}A(T_{in} - T_{room})$	火災源 評価対象 外壁内面温度[℃] 森林火災 中央制御室 53 (発火点1) (原子炉建屋) 53	<u>内壁面からの入熱量は以下の式より算出される。</u> $qin = \alpha 1 \times (TR^{j} - TS1^{j})$	・条件の相違 【柏崎 6/7,東海第二】
<u>h_{in}:内壁面熱伝達率,A:内壁の表面積,T_{in}:内壁面温度,</u> <u>T_{room}:内気温度</u>	$Q_{in} = h_{in} A (T_{in} - T_{room})$ $Q_{in} : 外壁内面温度上昇に伴う熱負荷(W)$	gin:壁面からの入熱量[₩], α1:内面熱伝達率, <u>TR:室温[℃], TS1:内壁面温度[℃]</u>	地域特性を踏まえた 評価条件に伴う評価 式の相違
内気温度は,森林火災による内壁面温度上昇に伴う熱負荷と室 内の熱負荷及び換気空調系による除熱を考慮し,次式で求める。	<u>h_{in}</u> :外壁内面熱伝達率(8.29W/m²/K) <u>A</u> :受熱壁の表面積(m²) <u>T_{in}</u> :外壁内面最高温度(℃),T _{room} :室温(℃)	上記の式より,内気温度は,以下の式より求めることがで きる。	
$T_{room} = \frac{Q + Q_{um}}{m_{\rho}C} + T_{\mu}$ Q:室内負荷,m:風量, ρ :空気密度,C:空気比熱, <u>T_a</u> :换気空調系給気温度	<u>室内温度の評価は、森林火災による外壁内面温度上昇に伴う</u> 熱負荷と室内の熱負荷及び空調による除熱を考慮し算出した。	$TR^{j+1} = TR^{j} + (q^{j} - \sum(qin \times A)) \times \Delta t / C$ TR:室温[℃], qin:壁面からの入熱量[W], A:内壁面の表面積[m ²], Δt :時間ステップ,	
(1) <u>固体廃棄物処理建屋</u> 森林火災における <u>固体廃棄物処理建屋</u> の評価結果を以下に示す	^{room} mρC _p ⁻¹ ^a <u>Q:室内熱負荷(210,579W), m:風量(42,504m³/h)</u> <u>ρ:空気密度(1.2kg/m³)</u> <u>C_p:空気比熱(1,007J/kg/K), T_a:空調給気温度(℃)</u>	(1) <u>固体廃棄物貯蔵所D棟</u> <u>森林火災における固体廃棄物貯蔵所D棟</u> の評価結果を以下 に示す。	
80	<u> </u>	<u>当</u> 120 100 100 100 100 100 100 100 100 100	
10 0 0 0.2 0.4 0.6 0.8 1 1.2 時間[hour]	火災源評価対象建屋内部の到達温度 (℃)許容温度 (℃)森林火災 (発火点 1)中央制御室 (原子炉建屋)33<40℃	40 20 0 5 10 15 20 25 30 35 時間 (h)	
第 3.4-2 凶 外壁及び内壁面温度(固体廃棄物処理建屋)		<u>第3.4-2 図 外壁及び内壁面温度(固体廃棄物貯蔵所D棟)</u>	
柏崎刈羽原子力発電	所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
---	--	---------------------	--
第 3.4-2 表 森林火	災影響評価結果(固体廃棄物処理建屋)		第3.4-2表 森林火災影響評価結果(固体
	· 成弃协加 理建 民 亚 伍		固体廃棄物貯蔵所D棟評価
単回	産業初処理建産計1個		項目 森林火災(ケー
項日 	秋仲八次(ケース 2)		輻射強度[W/m ²] 15,678 [※]
			燃燒継続時間[min] ^{**2} 23(1380[s
燃焼継続時間[m1n]~~	51 (3060[s])		外壁面温度[℃] 89
外壁面温度[℃]	79		内壁面温度[℃] 54
内壁面温度[℃]	39		内気温度[℃] 53
内気温度[℃]	31		許容温度[℃] 100 ^{※3}
[許容温度[℃]	40***3		※1:外壁面の初期温度は50℃,内壁面の初期温度
 ※1:離隔距離を 105m, その他の式より輻射強度を算 ※2:防火帯周辺の森林(奥行 ※3:固体廃棄物処理建屋内の用温度 	の数値はケース2と同様とし,3.2(10)及び(11) 出 fき 100m)が燃える平均時間 D電気設備(固型化処理装置制御盤等)の最高使		※2:防火帯周辺森林(奥行き50m)が燃える平均間 ※3:固体廃棄物貯蔵所D棟内部に保管する低レベ ラム缶で使用しているパッキンの耐熱温度限
評価の結果,内気温」	度は_31℃(最大値)まで上昇するが、室		評価の結果,内気温度は53℃(最大/
内の電気設備(固型化物	処理装置制御盤等)の最高使用温度 40℃		室内に保管する低レベル放射性固体廃
た下向ステレた確認し、	+-		しているパッキンの耐熱児産限度 100 ⁹
を下凹ることを推診し、			
			した。
3.5 屋外施設の影響評価			3.5. 屋外施設の影響評価
 (1) 評価手法の概要 			(1) 証価手注の概要
(1) 前面11公约成女	ゲールチャーショー しょうさいゆは		
森林火災の火炎は円	同火炎をモテルとし、火炎の高さは燃焼		森林火災の火炎は円同火炎モアルと
半径の3倍とする。ま	ミた, 火炎到達幅の分だけ円筒火炎モデル		半径の3倍とする。また、火炎到達幅の
が横一列に並ぶものと	する (第 3.5-1 図)。		ルが横一列に並ぶものとする。(第3.5-
火 炎 到 達 幅 防 火 帯	各円筒火炎モデルからの輻射熱 評価対象施設 難隔距離L		受熱面
第 3.5-1 図	円筒火炎モデルの並べ方		第 3. 5-1 図 円筒火炎モデル

~炉	備考
医 <u>廃棄物貯蔵所D棟)</u>	
s])	
は50℃とする。 寺間	
ル放射性固体廃棄物用ド 度(100℃)	
値)まで上昇するが, 棄物用 <i>ドラム</i> 缶で使用	
Cを下回ることを確認	
レル火の直ちけ燃焼	
し, 八 <u></u> の分だけ円筒火炎モデ	
-1 因 <i>)</i>	
炎到達幅:₩	
危険距離:L _t	
~の並べ方	

(2) 必要データ タロンドレ下のトなり タロンドレ下のトなり	
証価に必要なデータけ以下のとおり	
「「「町町に必安なノークなめ」のこれに、「「「「「「」」」」「「「」」」「「「」」「「「」」「「」」「「」」「「」」	
水炎輻射発散度が最も大きい森林水災(ケース 2)のデータ	
を用いて評価する。	
第 3.5-1 表 屋外施設影響評価時の入力データ 第 3.5-1 表 屋外施設影響評価時の入力データ	
項目 軽油タンク 燃料移送ポンプ 主排気筒	
(防護板 (鋼板)) *1 118	
火炎輻射発散度[kW/m²] 100 火炎輻射強度[kW/m²] 364	
<u>火炎輻射強度[kW/m⁴]</u> <u>3.58</u>	
火炎到達幅[m] 3730	
然焼継続時間[min] 51	
$m \ m \ m \ m \ m \ m \ m \ m \ m \ m \$	
初期温度[$^{\circ}$] 38 ^{*2} 38 ^{*3} (55 ^{*2}) 50 ^{*2} 初期温度[$^{\circ}$] 38 ^{*3} 55 ^{*2}) 50 ^{*2}	
if $A^{(R,r)}$ (\mathbb{R}^{p}) ($\mathbb{R}^{p})$ (\mathbb{R}^{p}) ($\mathbb{R}^{p})$ ($\mathbb{R}^{p})$ (\mathbb{R}^{p}) (\mathbb{R}^{p}) ($\mathbb{R}^{p})$ (
$\bigcirc 2matrix matrix m$	
※1:燃料移送ホンブの温度評価体系は、「別紙 2-4 2.2 軽油タンク火災以外の外部 ※2:鹿島地区の最高気温(気象庁)に日射の影響を考慮	
※2: 柏崎市の過去最高気温(気象庁)に日射の影響を考慮 ※2: 白崎市の過去最高気温(気象庁)に日射の影響を考慮	
※3:燃料移送ポンプは防護板の裏面に設置されており日射の影響を受けないため、	
柏崎市の過去最高気温(気象庁)とする。	
※4: 軽油の発火点(理科年表) 3. 2000 (2000) 2000 (200	
※5:端子ボックスバッキンの耐熱温度(JIS K6380) 燃料移送ポンプの周囲に設置されている防護振(網振)のめ声温度をたって	
燃料移送ホンプに熱影響がみばないことを確認する。この場合、当該ポンプの	
許容限界温度(100℃)を踏まえ、防護板外面の許容温度を 100℃とする(防護	
板(鋼板)の外面温度が 100℃以下であれば,燃料移送ポンプ(エリア)の温	
度は100℃を超えない)。	
※6:鋼材の制限温度(建築火災のメカニズムと火災安全設計,日本建築センター)	
(3) 温度評価 (3) 温度評価	
a. <u>軽油タンク</u> の温度評価	
一定の輻射強度で <u>軽油及び軽油タンク</u> が昇温されるものと	東海第二】
して、下記の式より、軽油の温度上昇を求め、軽油の温度が	「では,軽油
許容温度以下であるか評価を実施した。評価体系を第 3.5-2 タンク,燃	料移送ポン
	ディーザル
発電機は、	地卜構造等
$T = \frac{\varepsilon ES_1 + hS_2T_{air}}{\varepsilon ES_1 + hS_2T_{air}} = T$) $a(\frac{hS_2}{\varepsilon})t$	備のため影
$\frac{1}{hS_2} = \left(\frac{hS_2}{hS_2} - \frac{1}{0}\right)^{e_1 e_2}$	刺
T ₀ :初期温度[38℃],E:輻射強度[W/m ²],ε: <u>軽油タンク</u> 表 また,放水	路ゲートに
面の放射率 $(0.9)^{*1}$, h: 軽油タンク表面熱伝達率 $[17W/m^2K]^*$	設置してい
2 , S ₁ =S ₂ : 軽油タンク受熱・放熱面積[m ²], C:軽油タンク及 ないため、	影響評価対

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>び軽油</u> の熱容量[<u>8.72×10⁸</u> J/K], t : 燃焼継続時間 [s], T _{air} :			象外
外気温度[℃]			また,島根2号炉で
			は, 海水ポンプは, 屋
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧			外設置のため影響評
			価を実施
空気との熱伝達			
輻射熱の反射 (1-ε) E			
輻射熱 E			
: 受熱面, 放熱面			
第 3.5-2 図 軽油タンクの熱影響評価(概念図)			
b. <u>燃料移送ポンプ(防護板(鋼板))</u> の温度評価		a . <u>海水ポンプ</u> の温度評価	
一定の輻射強度で <u>燃料移送ポンプの周囲に設置されている</u>		一定の輻射強度で <u>海水ポンプの冷却空気</u> が昇温されるも	
<u>防護板(鋼板)</u> が昇温されるものとして,下記の式より, <u>防</u>		のとして,下記の式より, <u>冷却空気</u> の温度 <u>上昇</u> を求め, <u>海</u>	
<u>護板(鋼板)</u> の最大温度を求め、 <u>防護板(鋼板)</u> の温度が許		<u>水ポンプの冷却空気</u> 温度が許容温度以下であるか評価を実	
容温度以下であるか評価を実施した。評価体系を第 3.5-3 図		施した。	
に, 評価結果を第 3.5-2 表に示す。		評価体系を第 3. 5- <mark>2</mark> 図に, 評価結果を第 3. 5-2 表に示す。	
r^{S} r^{S} r^{S} r^{S} r^{S}		$T - T \rightarrow E \times A_T$	
$T = \frac{\varepsilon E_2 + hST_{air}}{hS} - \left(\frac{\varepsilon E_2 + hST_{air}}{hS} - T_o\right) e^{\left(-\frac{hS}{c}\right)t}$		$I = I_0 + \frac{1}{G \times C_p}$	
T_0 :初期温度[55℃],E:輻射強度[W/m ²], ε:防護板 (鋼板)		$\underline{T}: 評価温度[C], \underline{T}_0: 通常運転時の上昇温度[C],$	
外面の放射率(0.9) ^{※1} ,h:防護板(鋼板)表面熱伝達率		<u>E:輻射強度[W/m²], A_T:受熱面積[m²], G:重量流量[kg/s],</u>	
[17W/m ² K] ^{※2} , S:防護板(鋼板) 放熱面積[32.4m ²](S/2:受		<u>Cp:空気比熱[1007J/(kg・K)]*1</u>	
熱面積は外面のみ), C:防護板(鋼板)の熱容量[2.41×			
<u>10⁶J/K], t:燃燒継続時間[s], T_{air}:外気温度[55℃]</u>		※1: 伝熱工学資料	
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧			

齐炉	備考
電動機	
端子箱	
随	
価(概念図)	
れるものとして, 下記 , <u>排気筒</u> の温度が許容	
杲を第 3. 5−2 表に示す。	
W/m²], ε: <u>排気筒</u> 表面 伝達率[17W/m²K] ^{※2} 和・衛生工学便覧	
排気筒 赤:受熱面 青:放熱面 黒:断熱面	
缶(概念図)	
離隔距離を危険距離と まえ方について第 3.5- <mark>4</mark>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
各円筒火炎モデルからの輻射熱 火 炎 到		火炎到達幅 危険距離 離隔距離 危険距離:許容限界温度となる距離	
<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>		第3.5-4 図 危険距離の考え方 a. 危険輻射強度の算出 (a) <u>海水ポンプ</u> の危険輻射強度の算出 一定の輻射強度で <u>海水ポンプの冷却空気</u> が昇温される ものとして,下記の式より,許容温度となる輻射強度を 危険輻射強度とする。算出結果を第3.5-2 表に示す。 $Emax = (T - T_0) \times \frac{G \times C_p}{A_T}$	・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉では,軽油 タンク,燃料移送ポン プ,非常用ディーゼル 発電機は,地下構造等 の屋内設備のため影 響評価対象外 また,放水路ゲートに ついても,設置してい ないため,影響評価対 象外 また,島根 2 号炉で は,海水ポンプは,屋 外設置のため影響評 価を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
<u>ε</u> :防護板(鋼板)外面の放射率(0.9) ^{※1} , S:防護板(鋼		<u>T:許容温度[℃],T₀:通常運転時の</u>
<u>板)受熱面積[16.2m²],h:防護板(鋼板)表面熱伝達率[17W/m²K]</u>		<u>A_T:受熱面積[m²],G:重量流量[kg/s</u>
<u>**2, C:防護板(鋼板)の熱容量[2.41×10⁶J/K], t:燃焼継続</u>		<u>C_v:空気比熱[1007J/(kg・K)]^{※1}</u>
<u>時間[s], T:許容温度[100℃], T_{air}:外気温度(初期温度)</u>		
[55°C]		
※1:伝熱工学資料, ※2 : 空気調和·衛生工学便覧		<u>※1: 伝熱工学資料</u>
(c) <u>主排気筒</u> の危険輻射強度の算出		(b) <u>排気筒</u> の危険輻射強度の算出
一定の輻射強度で <u>主排気筒</u> が昇温されるものとして、下記の		一定の輻射強度で排気筒が昇温。
式より、許容限界温度となる輻射強度を危険輻射強度とする。		記の式より、許容限界温度となる
算出結果を第 3.5-2 表 に示す。		度とする。算出結果を第3.5-2表し
$E_{\max} = \frac{2h(T-T_o)}{\varepsilon_o} e^{j}$		$E_{max} = \frac{2h(T - T_0)}{\varepsilon}$
T₀:初期温度[50℃],T:許容限界温度[℃],ε:主排気筒表		T ₀ :初期温度[50℃], T:許容限界温质
面の放射率 (0.9) ^{*1} , h: <u>主排気筒</u> 表面熱伝達率[17W/m ² K] ^{*2}		面の放射率[0.9] ^{*1} ,h: <u>排気筒</u> 表面素
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧		※1: 伝熱工学資料, ※2: 空気調利
b. 形態係数の算出		b. 形態係数の算出
次の式から各円筒火炎モデルの形態係数を算出する。算出結果		次の式から各円筒火炎モデルの形態
を第 3.5-2 表		出結果を第 3.5-2 表に示す。
$\phi_i = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$		$\phi_i = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 2n)}{B(n - 2n)}} \right] \right\}$
		$\hbar \mathcal{T} \mathcal{L}, m = \frac{H}{R} \cong 3, n = \frac{L_i}{R}, A = (1+n)^2 + n$
ただし, $m = \frac{H}{R} \cong 3, n = \frac{L_i}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$		φ _i :各円筒火炎モデルの形態係数,L
φ _i :各円筒火炎モデルの形態係数,L _i :離隔距離[m],H:火炎長[m],R:燃		H:火炎長[m], R:燃焼半径[m]
焼半径[m]		
したがって,各円筒火炎モデルの形態係数を合計した値が,		したがって、各円筒火炎モデルの
発電用原子炉施設に及ぼす影響について考慮すべき形態係数		が、発電用原子炉施設に及ぼす影響に
$\phi_t \ge table \delta_{o}$		態係数 ϕ_t となる。
$\phi_t = (\phi_i + \phi_{i+1} + \phi_{i+2} \cdots)$		$\phi_t = (\phi_i + \phi_{i+1} + \phi_{i+2} \cdots)$
♦ t:各円筒火炎モデルの形態係数を合計した値		↓ ↓:各円筒火炎モデルの形態係数を含

炉	備考
上昇温度[℃],	
5],	
されるものとして, ト	
こ示す。	
度[℃], ε: <u>排気筒</u> 表	
※伝達率[17W/m²K]**	
中 南上上于区员	
態係数を算出する。算	
-1 1 $\left[\left((n-1) \right] \right]$	
$\frac{1}{-1} \left[-\frac{1}{n} \tan^{-1} \left[\sqrt{\frac{n}{(n+1)}} \right] \right]$	
$m^2, B = (1-n)^2 + m^2$	
・函作収回の日本の作「…」	
i· 内由IP的IIC内出LIII」,	
形態係数を合計した値	
について考慮すべき形	
計した値	

	」発電所 6/	~7 号炉 (2017.	12.20版)	東海第二発電所(2018.9.12版)	島	根原子力発電所 2-	号炉	備考
なお, 1, 2, 3,	, …, F の円	筒火炎モデル数の	合計は F 個と		なお, 1,2,3,	,…, F の円筒火炎モ	デル数の合計は F 個と	
なる。					なる。			
c. 危険距離の	算出				c.危険距離の算	出		
輻射熱に対す	する発電用原	子炉施設の危険輻	国射強度を調査		輻射熱に対す	る発電用原子炉施設	の危険輻射強度を調査	
し、輻射強度が	ぶその危険輻射	†強度以下になる。	ように発電用原		し、輻射強度が	ぶその危険輻射強度以	「下になるように発電用	
子炉施設は危険	御御を確保す	-るものとする。	と炎輻射発散度		原子炉施設は危	5険距離を確保する*	のとする。火炎輻射発	
⑦ ※ から任音 ℓ	の位置にあると	「(受執占)の幅的	は 御 度け 水 炎		散 度の 炎 から 相	手音の位置にある占(受執占しの輻射強度け	
前日 な あ 市日 な あ 市 市 市 ま あ 、 、 、 、 、 、 、 、 、 、 、 、 、	必能反粉なかい		「玉反は、八八		水火転射発数度		(ないかる) 次の式から	
細別 光 取及に ル	ク忠怀奴をかり ・	に値になる。次の	りれからが態体		八次 軸別 光 散ら	とに形態体数をかりた	」 個になる。 伏り氏がら	
致 φ を氷める	D ₀				形態係数φを氷	くめる。		
$E = R_f \cdot \phi$					$E = R_f \cdot \phi$			
F: 輻射強度	[k₩/m²] Rf	· 火炎輻射発散度	$[kW/m^2]$.		F: 輻射強度	F「kW/m²]、R ₄ :水浴輻	射発散度[kW/m²]	
ム・形能区数	θ[_]		,		▲·形能係数			
ψ · D \mathbb{E} W \mathcal{Y}					サール本体			
	マトゥに合腐	宇宙がない	質用結果を第		$\phi > \phi + t$	、ストうに合除距離な	·笛出する 誕価結里を	
$\psi > \psi_t \subset \phi$		спересяния об	新田加水で別		$\psi > \psi_t \subset \phi$		井口 りつ。 町 風 加 木 で	
3.5-2 衣(C/19					第 3. 5 [−] 2 衣に介	` 9 ₀		
			`		1 ()	$\left(\left(A - 2n \right) \right) = \left[\int A \left(A - 2n \right) \right]$	\overline{n} 1 1 $\left[\sqrt{n}$ 1 $1 \right]$	
$\phi_t = \frac{1}{m} \tan^{-1} \left(\frac{m}{\sqrt{m}} \right)$	$+\frac{m}{\sqrt{2}}\left\{\frac{(A-2n)}{\sqrt{2}}$ tan	$-1 \left \sqrt{\frac{A(n-1)}{n}} \right - \frac{1}{n} \tan^{-1}$	$\left \sqrt{\frac{(n-1)}{(n-1)}} \right $		$\phi_t = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) +$	$\left[\frac{m}{\pi}\right] \left[\frac{(A-2\pi)}{n\sqrt{AB}} \tan^{-1}\right] \sqrt{\frac{A}{B}}$	$\left \frac{n-1}{n-1}\right - \frac{1}{n} \tan^{-1} \left \sqrt{\frac{(n-1)}{(n+1)}} \right $	
$\pi n \qquad (\sqrt{n^2-1})$	$\pi \left(n \sqrt{AB} \right)$	$\left[\bigvee B(n+1) \right] n$	$\left[\bigvee (n+1) \right] \right]$					
ただし, $m = \frac{H}{R} \cong 3, n =$	$=\frac{L_t}{R}, A=(1+n)^2$	$+m^2, B = (1-n)^2 + m^2$			ただし, $m = \frac{H}{R} \cong 3$,	$n = \frac{L_t}{R}, A = (1+n)^2 +$	$-m^2, B = (1-n)^2 + m^2$	
φ_ι:各火炎モデルの形	* 態係数を合計し	た値,L _i :危険距離[m],H:火炎長[m] ,		φ.:各火炎モ	デルの形態係数を合	計した値,	
R:燃焼半径[m]					L.: 危険距離[[m]. H:火炎長[m]. R	:燃燒半径[m]	
第 3.5-2 表	長 温度評	価及び危険距離評	価結果		第3.5−2表	温度評価及び危険路	巨離評価結果	
·····						海水ポンプ	排与筒	
	軽油タンク	燃料移送ポンプ (防護板 (綱板))	主排気筒		最高温度[℃]	31	92	
最高温度[℃]	39	62	64		危険輻射強度[kW/m ²]	5.95	10.39	
危険輻射強度[kW/m²]	266.30	3. 37	10.38		形態係数[-]	5.06 $\times 10^{-2}$	8.83×10 ⁻²	
形態係数[-]	2.6584444	0.0337244	0.1037108		危険距離[m]	70	41	
危険距離[m]	1	90	30		附距時。距降Lm」	270	250	
 前温度[C] た険輻射強度[kW/m²] 形態係数[-] た険距離[m] 離區距離[m] 	39 266. 30 2. 6584444 1 390	62 3.37 0.0337244 90 539	64 10.38 0.1037108 30 494		形態係数[-] 危険距離[m] 離隔距離[m]	5.06×10 ⁻² 70 270		

3.6 まため ストニカ、本体大式式変生した場合を知らしたしても、 特徴集構業を始まないことなびな意味的取しの実際内容が発展 かないかことから、から山東中式就能は感染をおよしたこ となないと前価する。 4.0.2.2 二世歌気に対する必然素質加上な調問能が進出 1.0.3 二世歌気に対する必然素質加上な調問能が進出 1.0.3 二世歌気に対する必然素質加上な調問能が進出 1.0.3 二世歌気に対する必然素質加上な調問能が進出 1.0.3 二世歌気に対する必然素質加上な調問能が進出 1.0.3 二世歌気に対する必然素質加上な調問能が進出 1.0.3 二世歌気に対する必然素質加上な調問能が進出 1.0.3 二世歌気に対する必然素質加上な調問能が進出 1.0.3 工師が発展する 1.0.3 工師が発展する	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
取用式電気化ないことないための特徴にの確認な必要な必須強いた。 取用式電気化ないことないための特徴にの確認な必要な必須強いた。 取用式電気化ないことないための特徴にの確認な必要な必須強いた。 とれないなきなかい、発気用気子が電気に急速解発を起源通じた。 4.5.2.5.1.1.1.1.1.1.1.5.45%系気化な伝染度した。 取用式電気化ないことないたの特徴について、気化ならなからいたしていた。 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	3.6まとめ		3.6 まとめ	
 ・(株式現式のいてよびの登録期以上の構築理解が解除 されていることから、発費用用テク損式に必要参会注意は ・ ・ ・	以上より、森林火災が発生した場合を想定したとしても、許		以上より,森林火災が発生した場合を想定したとしても,	
されていることから、発電用原子学能数に数料論を含むます。 	容限界温度を超えないこと及び危険距離以上の離隔距離が確保		許容限界温度を超えないこと及び危険距離以上の離隔距離が	
とれないと無面する。 ①二丁面含酸和 ①二丁面含酸和 1.0.二丁面含酸和 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	されていることから,発電用原子炉施設に熱影響を <u>およぼす</u> こ		確保されていることから、発電用原子炉施設に熱影響を及ぼ	
4.3.3.3.2 法規定数据になって、水行火気を充立して評価を構成した。 (1) 計量支援制度になって、水行火気を充立して評価を構成した。 (2) 計量支援制度の仕様を発表3.3.2.1 方に、主持支援の外点図を 差4.3.2.2.1 表に、非常支援制度の仕様 第4.3.2.2.1 表に、計量支援制度の仕様 第4.3.2.2.1 表に、計量支援制度の仕様 第4.3.2.2.1 表に、計量支援制度の仕様 第4.3.2.3.1 表 、計量支援制度の仕様 第4.3.2.3.1 表 、計量支援制度の仕様 第4.3.2.3.1 表に、計量支援制度の仕様 第4.3.2.3.1 表に、計量支援制度の代表 第4.3.2.3.1 表に、計量支援制度の代表 第4.3.2.3.1 点に、計量支援制度の代表 第4.3.2.3.1 点に、計量支援制度の代表 第4.3.2.3.1 点に、計量支援制度の代表 第4.3.2.3.2.1 点に、 第4.3.2.3.2.1 点に、 第4.3.2.3.3.1 点に、 第4.3.2.3.3.1 点に、 第4.3.2.3.3.1 点に、 第4.3.2.3.3.3.1 点に、 第4.3.2.3.3.2 点回 第4.3.2.3.3.3.2 点回 第4.3.2.3.3.3.3 点回 第4.3.2.3.3.3 点回 第4.3.2.3.3.3 点回 第4.3.2.3.3.3 点回 第4.3.2.3.3 点回 第4.3.2.3.3 点回 第4.3.2.3.3 点回 第4.3.2.3.3 点回 第4.3.2.3.3 点回 第4.3.3.3 点回 第4.3.3.3.3 点回 第4.3.3.3.3 点回 第4.3.3.3.3 点回 第4.3.3.3.3 点回 第5.3.3.3.3 点回 第5.3.3.3 点回 第5.3.3.3 点回 第5.3.3.3 点回 第5.3.3.3 点回 第5.3.3.3 点回 第5.3.3.3 点回	とはないと評価する。		<u> </u> 主ことはないと評価する。	
	とはないと評価する。	 4.3.2.3 主排気筒に対する熱影響評価と危険距離の算出 (1) 評価対象施設 主排気筒について,森林火災を想定して評価を実施した。 (2) 評価対象施設の仕様 主排気筒の仕様を第4.3.2.3-1 表に、主排気筒の外形図を 第4.3.2.3-1 表 評価対象施設の仕様 第4.3.2.3-1 表 評価対象施設の仕様 (1) 証券 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	王ことはないと評価する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(4) 判断の考え方		
	<u>a許容温度</u>		
	主排気筒鉄塔(SS400, STK400)の許容温度は, 火災時に		
	おける短期温度上昇を考慮した場合において、鋼材の強度		
	が維持される保守的な温度325℃以下とする。		
	<u>b評価方法</u>		
	一定の輻射強度で主排気筒鉄塔が昇温されるものとし		
	て, 表面での輻射による入熱量と対流熱伝達による外部へ		
	の放熱量が釣り合うことを表した式1により主排気筒鉄塔		
	表面の温度が 325℃となる輻射強度(=危険輻射強度)を求		
	める。評価において対流による放熱を考慮している。		
	$T = T_0 + \frac{E}{2h} \tag{₹1}$		
	(出典:建築火災のメカニズムと火災安全設計,		
	財団法人日本建築センター)		
	<u>T:許容温度(325℃), T₀:初期温度(50℃)*1</u>		
	<u>E:輻射強度 (W/m²), h:熱伝達率 (17W/m²/K) ^{※2}</u>		
	※1 水戸地方気象台で観測された最高気温 38.4°Cに保守		
	性を持たせた値		
	※2 「空気調和ハンドブック」に記載されている表面熱		
	伝達率のうち、 保守的に最少となる垂直外壁面にお		
	ける夏場の表面熱伝達率(空気)を採用		
	式1で求めた危険輻射強度Eとなる形態係数 Φ を, 式2より		
	算出する。		
	$\mathbf{E} = \mathbf{R} \mathbf{f} \cdot \mathbf{\Phi} \tag{\textbf{$\vec{\mathbf{x}}$} 2)}$		
	<u>E:輻射強度(W/m²), Rf:火炎輻射強度(W/m²),</u>		
	$\Phi:$ 形態係数		
	(出典::評価ガイド)		
	式2で求めた形態係数 Φ となる危険距離Lを,式3より算出		
	<u>ta</u>		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad ($		
	ただし m= $\frac{H}{P}$ =3, n= $\frac{L}{P}$, A=(1+n) ² +m ² , B=(1-n) ² +m ²		
	K K X X X X X		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>Φ:形態係数, L:離隔距離 (m), H:炎の高さ (m),</u>		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		
	上記のとおり危険距離を算出し、最も近い防火帯外縁から影		
	響評価対象までの離隔距離を下回るか評価を実施した。		
	なお, 主排気筒は鉄塔と筒身で構成されるが, 鉄塔は筒身よ		
	りも火災源との距離が近いこと,材質も鉄塔は SS400, STK400,		
	筒身は SS400 であり物性値がともに軟鋼で同一であることか		
	ら、鉄塔の評価を実施することで筒身の評価は包絡される。主		
	排気筒の評価概念図を第4.3.2.3-2 図に示す。		
	対流による放熱		
	主排気筒		
	円筒火炎		
	■:受熱面※		
	■:放熱面		
	※ 全方面から放熱するのに対し,		
	受熱面はその半分となる。		
	第 4. 3. 2. 3-2 図 主排気筒の評価概念図		
	飛杯火災によって上昇する王排気筒鉄塔表面温度及び,王		
	排気同鉄塔表面温度か325℃となる危険距離を評価した結果,		
	<u> 合評価結果が計谷値以下であることを確認した。また、津波</u>		
	<u> り 護 他 設 の 止 水 ン ョ イ ン ト 部 の 朝 製 防 </u>		
	非気筒と同じ鋼材であることから、同式により危険距離を評 て、 、 、 、 、 、 、 、 、 、 、 、 、		
	1回し、 准波防護施設に対しても離隔距離が確保されているこ		
	とを確認した(別紙 2.5)。王排気筒の熱影響評価結果を第		
	<u>4.3.2.3-3</u> 表に, 王排気筒に対する危険距離を第 4.3.2.3-4		
	<u>表に示す。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.3.2.3-3表 主排気筒の熱影響評価結果		
	評価温度 (℃) 許容		
	評価対象施設 発火点 発火点 発火点 発火点 発火点 発火点 発火点 (℃)		
	主排気筒 51 52		
	第4.3.2.3-4 表 主排気筒に対する危険距離		
	1 2 3 4 5 6 7 (m) 主排気筒 12 14 20 15 19 20 19 266		
	4.3.2.4 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ		
	ル発電機を含む。)に対する熱影響評価と危険距離の算出		【柏崎 6/7, 東海第二】
	(1) 評価灯影範囲		島根2
			クンク, 燃料移送ホン プ 非常田ディーゼル
			発電機は、地下構造等
	(2) 評価対象施設の仕様及び外形		の屋内設備のため影
	空気の流入口となり熱影響を受ける非常用ディーゼル発電		響評価対象外
	機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口仕		また, 放水路ゲートに
	様を第 4. 3. 2. 4-1 表に,外形図を第 4. 3. 2. 4-1 図に示す。		ついても, 設置してい
			ないため,影響評価対
	第4.3.2.4-1表 評価対象施設の仕様		象外
	非常用ディーセル発電機(高圧炉		また, 島根 2 号炉で
			は, 海水ポンプは, 屋
	種類四筒縦形		外設置のため影響評
	主要寸法 円筒高さ:2.46m		価を実施
	材料 SS400		
	第4.3.2.4-1 図 吸気口の外形図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(3) 評価対象施設までの離隔距離		
	評価対象施設から最も近い防火帯外縁までの離隔距離を第		
	4.3.2.4-2表に示す。		
	第4.3.2.4-2表 評価対象施設から最も近い防火帯外縁までの		
	離隔距離		
	評価対象施設 非常用ディーゼル発電機(高圧炉心スプレ		
	離隔距離 267		
	(m)		
	<u>(4)</u> 判断の考え方		
	<u>a.</u> 許容温度		
	非常用ティーセル発電機(高圧炉心スプレイ糸ティーセ		
	ル発電機を含む。)の流入空気の許容温度は、火災時におけ		
	る温度上昇を考慮した場合において、非常用ティーセル発		
	電機(局圧炉心スクレイ糸ティーセル発電機を含む。)の性 ************************************		
	※ 非吊田ケイーセル先龍機(高庄炉心人)レイネケイー		
	<u>い計皿22</u> 価 火災が発生した時間から燃料が燃え尽きるまでの問 一		
	一 <u>への</u> におかった <u>ていた</u> 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一		
	にいるプレイ系ディーゼル発電機を今ま。) に流入する空気		
	の温度と見に客与することを表した式1にとり、流入する		
	空気の温度が 53 とたろ輻射強度(=6 協輻射強度)を求		
	めろ.		
	F · A		
	$T = T_0 + \frac{D - T}{G \cdot C_p} + \Delta T \qquad (\vec{x} 1)$		
	<u>T</u> :許容温度 (53℃), T ₀ :初期温度 (40℃) ^{※1} ,		
	<u> </u>		
	<u>G:重量流量(4kg/s)^{*2}, A:輻射を受ける面積(7.8m²)</u>		
	C _P :空気比熱(1,007J/kg/K) ^{※3}		
	<u>ΔT:構造物を介した温度上昇(5°C)^{※4}</u>		

柏崎刈羽原子力発電所 6/	7号炉 (2017.12	2.20版)	東海第二発電所(2018.9.12版	.)	島根原子力発電所	2号炉	備考
			※1 水戸地方気象台で観測され	1た過去最高気温			
			<u>38.4℃に保守性を持たせた</u>	直			
			※2 ディーゼル発電機の内,給気	「流量が少ない高圧			
			炉心スプレイ系を評価対象と	+ <u>5</u>			
			ディーゼル発電機吸気流量	<u>(228m³/min) ×</u>			
			空気密度(1.17kg/m ³)÷60				
			※3 日本機械学会 伝熱工学資料	·			
			※4 最高到達温度を想定した場合	の温度上昇			
		Ĕ	式1で求めた危険輻射強度Eとなる形態係	数Φを,式2より			
		算上	出する。				
		E =	$= R f \cdot \Phi$	(式2)			
		E	: 輻射強度(W/m ²), R f : 火炎輻射強度	(₩ <u>/m²</u>),			
		<u></u>	: 形態係数				
				1典:評価ガイド)			
		Ţ ,	式2で求めた形態係数Φとなる危険距離I	を,式3より算出			
		Ţ.	Ž _{em}				
		$\Phi = \frac{1}{\pi}$	$\frac{1}{n} \tan^{-1}\left(\frac{m}{\sqrt{n^2-1}}\right) + \frac{m}{\pi} \left\{\frac{(A-2n)}{n\sqrt{AB}} \tan^{-1}\left[\sqrt{\frac{A(n-1)}{B(n+1)}}\right] - \frac{1}{n} \tan^{-1}\left(\sqrt{\frac{A(n-1)}{B(n+1)}}\right] - \frac{1}{n} \tan^{-1}\left(\frac{A(n-1)}{B(n+1)}\right) - \frac{1}{n}$	$\left\{ \sqrt{\frac{(n-l)}{(n+l)}} \right\} \qquad (\overrightarrow{x}, 3)$			
		ただし	$m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = \frac{1}{2}$	$=(1-n)^{2}+m^{2}$			
		<u>.</u>	:形態係数,L:離隔距離(m),H:炎の	<u>高さ (m)</u> ,			
		R	: 燃焼半径 (m)				
			<u>(H</u>	典:評価ガイド)			
		~	上記のとおり危険距離を算出し、森林火災	によって上昇する			
		非	常用ディーゼル発電機(高圧炉心スプレイ	系ディーゼル発電			
		機さ	と含む。) に流入する空気の温度が, 許容	温度 53℃以下であ			
		57	<u>い評価を実施した。また、危険距離が離降</u>	距離以下となるか			
		評价	西を実施した。空気の流入口となり熱影響	を受ける非常用デ			
			- ゼル発電機(高圧炉心スプレイ系ディ	ーゼル発電機を含			
		む。) 吸気口の評価概念図を第 4. 3. 2. 4-2 図(こ示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)							島根原子力発電所 2号炉	備考
			輻射強	非常用ディー ディー 度 : E	ゼル発電	機(高圧炉心ス 機を含む。) 吸:	:プレイ <i>系</i> 気口			
					:	: 受熱面				
		第4.3.2.4-2 図	非常用	ディーゼ	ル発電	機(高圧炉	心スフ	。レイ系		
		ディー	ゼル発電	『機を含む	。)吸	気口の評価	概念図			
		ディーゼル発電機を含む。)吸気口の評価概念図 c. 評価結果 森林火災によって上昇する非常用ディーゼル発電機(高 圧炉心スプレイ系ディーゼル発電機を含む。)を通して流入 する空気の温度及び、非常用ディーゼル発電機(高圧炉心 スプレイ系ディーゼル発電機を含む。)吸気口を通して流入 する空気の温度が 53℃となる危険距離を評価した結果、各 評価結果が許容値以下であることを確認した。 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ ル発電機を含む。)の熱影響評価結果を第4.3.2.4-3 表に、 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)に対する危険距離を第4.3.2.4-4 表に示 す。						i機 (高入) (近元) (近元) (元元) (元元) (元元) (元元) (元元) (元元		
							- >	•• • -		
		売 4. 3. 2. 4-3 表 ご・	非吊用	アイーセ		<u>機(局上炉</u> 動影網歌/研	いろフ 独田	レ1 糸		
		2		酸を古り		松影奮計Ш	疝太			
		評価対象施設	発火点 1	評 火点 発火点 2 3	価温度(℃ 発火点 4	 C) 発火点 発火点 5 6 	系 発火点 7	許容 温度 (℃)		
		非常用ディーゼル発電 機(高圧炉心スプレイ系 ディーゼル発電機を含 む。)	45	45 45	45	45 45	45	< 53		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.3.2.4-4表 非常用ディーゼル発電機(高圧炉心スプレ	江系	
	ディーゼル発電機を含む。) に対する危険距離		
	危険距離(m)		
	評価対象施設 発火点 発火点 発火点 発火点 発火点 発火点 発火点 発火点 1 2 3 4 5 6 7	距離 (m)	
	非常用ディーゼル発電		
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	267	
	4395 建図執除キ系海水系ポンプ及び非常田ディーゼル	恣 雪	 ・設備の相違
	巻(高圧炉心スプレイ系ディーゼル発電機を含む。)		【柏崎 6/7. 東海第二】
	水ポンプに対する熱影響評価と危険距離の算出		島根2号炉では,軽油
	(1) 評価対象範囲		タンク,燃料移送ポン
	残留熱除去系海水系ポンプ電動機及び非常用ディーゼ	ル発	プ,非常用ディーゼル
	<u>電機(高圧炉心スプレイ系ディーゼル発電機を含む。)</u> 用	海水	発電機は,地下構造等
	ポンプ電動機は、海水ポンプ電動機高さより高い海水ボ		の屋内設備のため影
	室の壁で囲まれており、側面から直接火災の影響を受け	J.	響評価対象外
	とはないが,上面は熱影響を受ける可能性がある。評価	にお	また, 放水路ゲートに
	いては,海水ポンプ室の壁による遮熱効果を考慮せず,	側面	ついても, 設置してい
	から直接火災の影響を受けることを想定する。また、残	留熱	ないため,影響評価対
	除去系海水系ポンプ電動機及び非常用ディーゼル発電機		象外
	圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン		また, 島根 2 号炉で
	動機は、電動機本体を全閉構造とした全閉外扇形の冷却	方式	は、海水ポンプは、屋
	であり、外部火災の影響を受けた場合には、周囲空気の		外設置のため影響評
	上升により、行却機能への影響が懸念されることから、		恤を美施
	電動機内部の空気冷却対象は固定子業線及び軸受であ	n	
	そのうち許容温度が低い軸受温度の機能維持に必要とな	ふ と 、 、 、 、 、 、 、 、 、 、 、 、 、	
	却空気の温度が、許容温度以下となることを確認する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20 別	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4325-1図 火災発生位置と海水ポンプの位置関係		
	 第.4.3.2.5-1 図 欠決発生位直と海水ホシワの位直関係 (2) 評価対象施設の仕様 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン プの海水ポンプ室内の配置図を第4.3.2.5-2 図,外形図を第 4.3.2.5-3 図に示す。仕様を第4.3.2.5-1 表に示す。 		
	第4.3.2.5-2 図 海水ポンプの配置図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.	. 9. 12 版)	島根原子力発電所 2号炉	備考
	第4.3.2.5-3 図 海水ポ、	ンプの外形図		
	第4995_1 主 荻毎号4	免掘雲の仕垟		
	历4.5.2.5 ⁻¹ 衣 时间为	<u> </u>		
	残留熱除去系海水系ポンプ	非常用ディーゼル発電機 (高圧炉心スプレイ系		
	電動機	ディーゼル発電機を含		
	主要寸法 全 幅:1.9 m	<u>全</u> 幅:0.51m		
	高さ:2.73m 材料 SS400,SUS304	局 さ:0.98m SS400		
	基数 4	3		
	(3) 評価対象施設までの離隔距離			
	残留熱除去系海水系ポンプ及び非	常用ディーゼル発電機(高		
	圧炉心スプレイ系ディーゼル発電機	を含む。)用海水ポンプを内		
	包する海水ポンプ室から最も近い防	火帯外縁までの離隔距離を		
	第4.3.2.5-2表に示す。			
	第4.3.2.5-2表 評価対象施設から最 座 回 5 歳	も近い防火帯外縁までの		
	評価対象施設 海 離隔距離 第	F水ポンプ室 242		
	(m)	242		
	(4) 判断の考え方			
	<u>a. 許容温度</u>			
	残留熱除去系海水系ポンプ電	動機及び非常用ディーゼル		
	発電機(高圧炉心スプレイ系ディ	ィーゼル発電機を含む。)用		
	海水ボンブ電動機の冷却空気の	許容温度は、上部及び下部		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海	第二発電所(2018	. 9. 12 版)	島根原子力発電所 2号炉	備考
	軸受のうち,	運転時の温度上昇	が高い下部軸受の上昇温度		
	を考慮し,軸	受の機能維持に必	要な冷却空気の許容温度を		
	第4.3.2.5-3	<u>表に示す。</u>			
	第4.3.2.5-3表	下部軸受の機能維	<u> 持に必要な冷却空気の</u>		
		許容温度			
	名称	残留熱除去系海水系 ポンプ	非常用ディーゼル発電機(高圧炉心 スプレイ系ディーゼル発電機を含 む。)用海水ポンプ		
	軸受の機能維持に必要な 冷却空気の許容温度	70°C ^{₩1}	$60^{\circ}C^{\pm 2}$		
	 ※1 ボンブ運転により、 め電気規格調査会標 定するときの温度限 ※2 ボンプ運転により、 め電気規格調査会標 使用する場合の温度 	「 下部軸受は最大で約 10℃上身 準規格 JEC-2137-2000「誘導 度 80℃から 10℃を差し引い 下部軸受は最大で約 35℃上身 準規格 JEC-2137-2000「誘導 限度 95℃から 35℃を差し引	早することから、軸受の機能を維持するた 機」で定める自由対流式軸受の表面で測 た70℃を冷却空気の許容温度に設定 早することから、軸受の機能を維持するた 機」で定める耐熱性の良好なグリースを いた 60℃を冷却空気の許容温度に設定		
	b. 評価方法				
	火災が発生	した時間から燃料	が燃え尽きるまでの間,残		
	留熱除去系海	水系ポンプ電動機	及び非常用ディーゼル発電		
	機(高圧炉心	スプレイ系ディー	ビル発電機を含む。)用海水		
	ポンプ電動機	が受ける輻射熱に	よって上昇する冷却空気温		
	度を求め,第	4.3.2.5-3 表に示	す許容温度を下回るかを熱		
	エネルギの式	より求まる下式で	評価を実施した。評価に用		
	いた諸元を第	4.3.2.5-4 表に,	評価概念図を第 4.3.2.5-4		
	図に示す。				
	$T - T_0 = \frac{E \times A}{G \times C}$	$\frac{A}{D_p} + \Delta T$	(式 1)		
	<u>T:評価温度</u>	<u>(℃), T₀:初期</u> 沿	<u> L度(39°C)*1</u> ,		
	<u>E:輻射強度</u>	(W/m ²),			
	<u>G:重量流量</u>	(kg/s), A:輻	射を受ける面積 (m²)		
	<u>C</u> _: 空気比素	孰 (1,007J/kg/K)		
	<u>ΔT:構造物</u>	を介した温度上昇	<u>(5°C) *2</u>		
	<u>※1 水戸</u>	地方気象台で観測	された過去最高気温 38.4℃		
	に保	守性を持たせた値			
	※2 航空	機火災による構造	物を介した冷却空気の温度		
	上昇	$(\Delta T b = 2.2^{\circ}C)$	を包絡する5℃に設定		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(20	018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第4.3.2.5-4表 評价	価に用いた諸元		
	残留素 海水3 G:重量流量(kg/s) A:輻射を受ける面積(m ²)	非常用ディーゼル 熱除去系 系ボンプ 診職機 デ゙ィーt゙ル発電機を含む。)用 海水ボンプ電動機 2.6 0.72 12 1.6		
	· · · · · · · · · · · · · · · · · · ·	電動機端子箱		
	第 4.3.2.5-4 図			
	式1で求めた危険輻射強度Eと 算出する。 E=Rf・Φ E:輻射強度(W/m ²), Rf:火約 Φ:形態係数	<u>:なる形態係数Φを,式2より</u> (式2) <u>炎輻射強度(W/m²),</u> <u>(出典:評価ガイド)</u>		
	式2で求めた形態係数Φとなる する。 $\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \begin{cases} (A - 2n) \\ n \sqrt{AB} \\ tan^{-1} \end{cases} \left[\sqrt{\frac{A(n)}{B(n)}} \right]$ ただし $m = \frac{H}{R} \Rightarrow 3$, $n = \frac{L}{R}$, $A = (1 + n)$ Φ :形態係数, L:離隔距離 (m) R:燃焼半径 (m)	5 5 5 た険距離Lを、式3より算出 $\overline{\binom{(n-1)}{(n+1)}} - \frac{1}{n} \tan^{-1} \left[\sqrt{\binom{(n-1)}{(n+1)}} \right]$ (式3)) ² +m ² , B=(1-n) ² +m ²), H:炎の高さ (m), (出典・評価ガイド)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第	育二発電	 昏所(2018. 9). 12 片	反)			島根原子力発電所 2号炉	備考
	<u>c.</u> 評価結	Ł									
	輻射熱	KL2	て上昇	まする	冷却空	気の	到達温	度を第	出した		
結果,許容温度以下であることを確認した。評価結果を第										ž	
	4.3.2.5-	5表,	第4.3.	2.5-0	5 表に	示す。	~				
		<u>第4.3</u>	. 2. 5-5	表	熱影響	評価組	結果				
				評(而温度(℃	C)			許容		
	評価対象施設	発火点 1	発火点 2	発火点 3	発火点 4	発火点 5	発火点 6	発火点 7	温度 (℃)		
	残留熱除去系 海水系ポンプ	45	45	45	45	45	45	45	< 70		
	非常用ディーゼル発電 機(高圧炉心スプレイ系	45	45	45	45	45	45	45	< 60		
	ディーゼル発電機を含 む。)用海水ポンプ										
) 第	4.3.2	. 5-6 表	夏危	険距離	の評	面結果				
	The first is the line of the			危	険距離(m)			離隔		
	評価対象施設	発火点 1	発火点 2	発火点 3	発火点 4	発火点 5	発火点 6	発火点 7	距離 (m)		
	残留熱除去系 海水系ポンプ	17	19	27	21	26	27	26	242		
	非常用ディーゼル発電 機(高圧炉心スプレイ系 ディーゼル発電機を含	14	16	23	18	23	23	22	242		
	む。)用御本ホンノ				<u> </u>						乳供の担当
		タビ	1)-44	十フカ	トロイタルミ	τ <i>ί</i> πτι.	户心口		勾口		
	(1) 亚西岩角	<u> </u>		りつれ	家會可	т /ш С	儿陕西	ヒ肉田マノリ	科山		111 回 0/1, 米伊男二
		<u>甲U円</u> ニートア	~1.7	- *	おんぷ	お相の	之し イ	「証価さ	(宝坛)		品似 4 万炉 C は, 軽加 タンカ 燃料 教送ポン
	<u>1)X/\\EG/2</u>			ze za	<u> </u>			рт III (大旭し	~	プレク, 旅村移込ホンプ 非常田ディーゼル
	(2) 亚価対象	歯雪の	₩₩₩	57KAL	ТÝ						ア・デーボディー こん 必 雪桃け 地 下 構 告 生
	<u>为</u>		和出现	こ い い い い い い い い い い い い い い い い い い い	瓜とた	ス協・	水敗ゲ	「一下町	御術		元電域は、地下構造守の民内設備のため影
<u> 从小田</u>										-	郷証価対象外
	示す			······································	1	////242	G. XY. I.				また 放水路ゲートに
	and an										ついても、設置してい
											たいため 影響評価対
											象外
											また、島根2号炉で
											は、海水ポンプは、屋
											外設置のため影響評
											価を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2	号炉 備考
	第4.3.2.6-1表 評価対象施設の仕様		
	名称 放水路ゲート駆動装置 床面高さ T.P. + 11.0m 外設材料 炭素鋼 個数 3 第 4.3.2.6-1 図 評価対象施設の外形図		
	(3) 評価対象施設までの離隔距離		
	評価対象施設から最も近い防火帯外縁までの離隔距離を第		
	4.3.2.6-2表に示す。		
	<u>第4.3.2.6-2表</u> 評価対象施設から最も近い防火帯外縁までの 離隔距離 評価対象施設 放水路ゲート 離隔距離 (m) 41		
	(4) 判断の考え方		
	<u>a.</u> 許容温度		
	放水路ゲート駆動装置外殻の許容温度は、火災時におけ		
	る短期温度上昇を考慮した場合において、鋼材の強度が維		
	持される保守的な温度325℃以下とする。		
	b. 評価方法 一定の輻射強度で放水路ゲート駆動装置外殻が昇温され るものとして,表面での輻射による入熱量と対流熱伝達に よる外部への放熱量が釣り合うことを表した式1により外 殻表面の温度が325℃となる輻射強度(=危険輻射強度)を 求める。評価において対流による放熱を考慮している。		

$T = T_0 + \frac{E}{1} \tag{(式 1)}$	
2h	
(出典:建築火災のメカニズムと火災安全設計,)	
財団法人日本建築センター)	
$\underline{T}: 許容温度 (325°C), \underline{T}_0: 初期温度 (50°C) **1$	
$E: H H f 强 使 (W/m^2), h: 熱伝達率 (17W/m^2/K) ***$	
※1 水戸地方気象台で観測された最高気温 38.4℃に保守	
性を持たせた値	
※2 「空気調和ハンドフック」に記載されている表面熱	
伝達率のうち、保守的に最少となる垂直外壁面にお	
ける夏場の表面熱伝達率(空気)を採用	
式1 C水のC/D. 陝輻射強度とどなる形態係数 Ψ を、式2より	
$\frac{\underline{A} \Box \mathcal{I} \Omega_{a}}{\nabla - D} \left(-\frac{\Delta}{2} \Omega \right)$	
$\mathbf{E} = \mathbf{R} \mathbf{I} \cdot \boldsymbol{\Psi} \tag{(3.2)}$	
$\frac{\text{E}: \text{Hall } \text{Hall } (\text{W} / \text{m}^2), \text{K} \text{I}: (\sqrt{22} \text{Hall } \text{Hall } (\text{W} / \text{m}^2), \text{K} \text{I}: (\sqrt{22} \text{Hall } \text{Hall } (\sqrt{22} \text$	
式?で求めた形能係数Φとたろ合除距離Ⅰを一式3上り質出	
$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad (\vec{x} \cdot 3)$	
ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$	
<u> Φ:形態係数,L:離隔距離(m),H:炎の高さ(m)</u> B:燃焼米谷(m)	
上記のとおり危険距離を筧出し、最も近い防火帯外縁から影	
響評価対象までの離隔距離を下回ろか評価を実施した。	
ゲートの評価概念図を第4.3.2.6-2図に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	放水路ゲート駆動装置外殻 輻射強度:E : 受熱面		
	 第4.3.2.6-2 図 放水路ゲートの評価概念図 底. 評価結果 森林火災によって上昇する放水路ゲート駆動装置外殻の 表面温度及び,放水路ゲート駆動装置外殻の表面温度が 325℃となる危険距離を評価した結果,各評価結果が許容値 以下であることを確認した。熱影響評価結果を第4.3.2.6-3 表に,危険距離を第4.3.2.6-4 表に示す。なお,放水路ゲート駆動装置は津波防護施設が障壁となり,森林火災の影響を受ける可能性は低いが,外殻内面への熱影響防止のた め,外殻裏面に断熱材を設置し,内部の放水路ゲート駆動 装置へ熱影響がない設計とする。(別紙2.11) 		
	評価対象施設 アイレイ・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・		
	第4.3.2.6-4 表 放水路ゲートに対する危険距離 第価対象施設 危険距離(m) 産火点 発火点 発火点 発火点 発火点 発火点 発火点 発火点 パー 放水路ゲート 12 14 20 15 19 20 19 41		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙	2-1 別紙 2.6	別紙 2-1	
防火帯の管理方針について	防火帯の管理方針について	防火帯の管理方針について	
防火帯の管理方針について 1. はじめに 森林火災評価結果に基づき,森林火災による外部火災防 設への延焼防止対策として,発電所構内道路及び地形状況 考慮し,約 20m 幅の防火帯を設定する。 防火帯内に他の法令要求等により可燃物を含む機器等を する場合は必要最小限の機器等とし,防火帯の延焼防止効 損なわない設計とする必要があるため,防火帯の管理方法 いて以下に示す。 2. 防火帯の管理方針 防火帯の設定に当たっては,草木を伐採する等,可燃物 除し,除草剤の散布やモルタル吹付け等を行う。また,防 は表示板等で明確に区分するとともに,構内道路の一部を 帯として使用している箇所については,駐車禁止の措置等 り,常時可燃物のない状態を維持する。 防水帯のには延焼防止効果に影響を与えるような可燃物	防火帯の管理方針について はじめに 森林火災評価結果に基づき,森林火災による発電用原子炉施 設への延焼防止対策として,発電所構内道路及び地形を考慮し, 約23m 幅の防火帯を設定する。 防火帯内に他の法令要求等による可燃物を含む機器等を設置 する場合は必要最小限とし,防火帯の延焼防止効果を損なわな い設計とする。防火帯の管理方針について以下に示す。 防火帯の管理方針 防火帯の設定に当たっては,樹木を伐採する等,可燃物を排 除し,モルタル吹付け等を行う。また,防火帯は表示板等で明 確に区別するとともに,構内道路の一部を防火帯として使用し ている箇所については,駐車禁止の措置等により,原則的に可 燃物がない状態を維持する。 防水帯には延焼防止効果に影響を与えるような可燃物を含む 	防火帯の管理方針について 1. はじめに 森林火災評価結果に基づき,森林火災による外部火災防護施 設への延焼防止対策として,発電所内道路及び地形状況等を考 慮し,約21m幅の防火帯を設定する。 防火帯内に他の法令要求等により可燃物を含む機器等を設 置する場合は必要最小限の機器等とし,防火帯の延焼防止効果 を損なわない設計とする必要があるため,防火帯の管理方針に ついて以下に示す。 2. 防火帯の管理方針 防火帯の設定に当たっては、草木を伐採する等、可燃物を排 除し、除草剤の散布やモルタル吹付け等を行う。また、防火帯 は表示板等で明確に区分するとともに、構内道路の一部を防火 帯として使用している箇所については、駐車禁止の措置等によ り、常時可燃物のない状態を維持する。 防火帯のには延焼防止効果に影響を与えるような可燃物を	
あべ市内には延焼的工効木にあ者を子たらような内点物 む機器は、原則設置しない方針であるが、防火帯の位置設 おいては発電所敷地内道路配置及び地形形状等を考慮して したことから、防火帯内の一部には他の法令要求等による の可燃物を含む機器等が存在する。このため、防火帯内に された機器等の延焼防止効果への影響の有無を評価し、必 対策を講ずる設計とする。 第 1 表に防火帯に設置される機器等の管理 <u>方針</u> につい す。	定に 機器等は、原則的に設置しない方針であるが、防火帯の位置設 定においては構内道路等の条件を考慮して設定 <u>するため、</u> 他の 少量 法令要求等により <u>標識等を設置する場合は、</u> 延焼防止効果への 影響の有無を評価し、必要な対策を講じる設計とする。 要な て示 表1に防火帯内に設置される機器等の例について示す。	おび、市価には違死的並為末に影響を与えるような可応初定 含む機器は、原則設置しない方針であるが、防火帯の位置設定 においては発電所敷地内道路配置 <u>及び地形形状等</u> を考慮して 設定 <u>したことから、防火帯内の一部には</u> 他の法令要求等による 少量の可燃物を含む機器等が存在する。このため、防火帯内に 設置された機器等の延焼防止効果への影響の有無を評価し、必 要な対策を講ずる設計とする。 第1表に防火帯内に設置される機器等の管理 <u>方法</u> について 示す。	

柏崎	刈羽原子力	発電所 6/7号	号炉 (2017.12.20版)	0版) 東海第二発電所(2018.9.12版)			島根原子力発電所 2号炉			備考			
第 1	31表防火帯内に設置される機器等の評価及び管理方針 表1 防火帯内に設置される機器等の評価及び管理方針の例			第1表 防火帯内に設置される機器等の評価及び管理方法									
	分類	機器例	評価及び管理方針	5		対象例	評価及び管理方針			~#石	松兕仞	亚 年 五 7 8 谷 田 七 3 土	
不燃性の機	器	 ・送電線 	火災により燃焼しない。防火帯延焼防			・送電線	火災により燃焼しない。防		73	「我	·送電線	計価及び管理方法 火災により延焼しないため、防火帯延焼	
		・ガードパイプ	止効果に影響を与えないことから,機	不燃性の機器	导等	 ・津波防護施設 ・防潮扉 	人帯 延尻 的 丘 効 未 に 影 替 を 与えないことから, 当該対		不燃性の機	機器	・フェンス	防止効果に影響を与えないことから、機	
		・マンホール (鋼製)	器に対して対策は不要。			・ケーフ N	象に対して対策は不要である				 配管(鋼製) 	器に対して対策は不要。	1
可燃物を	局所的な設置	・標識	局所的な火災となる。防火帯延焼防止				。 局所的な火災に留まるため			 局所的な設置	・監視カメラ	局所的な火災となるため、防火帯延焼防	1
含む機器	機器	・カーブミラー	効果に影響を与えないことから,機器		局所的な設	・標識	防火帯の機能に影響はな い。防火帯延焼防止効果に			機器	・照明	止効果に影響を与えないことから、機器	1
			に対して対策は不要。		置機器	 ・津波・構内監 視カメラ 	影響を与えないことから、		可燃物を			に対して対東は不安。 防火帯の延焼防止効果に影響を及ぼすこ	1
	防火帯を横断 、 - 3 mm	なし		可燃性を含			当該対象に対して対策は个 要である。		含む機器	防火帯を横断	1	とが想定されるため,以下の対策を実施。	1
	して設置			む機都寺			道路上に設定される防火帯			して設置	・ケージル	・不燃性の電線管、トレイ内に敷設	1
					防火帯を横	・道路	物を配置しない管理を行う					・埋設化,不燃材で養生	1
					MUCRAE		ことで,延焼防止効果に影 響を与えない。						1
				L	1		ber Crink ¥ '0	_					
							以	上					
													l l
													l l
													l l
													l l
													l l
													l l
													l l
													1
													1
													l l
													l l
													1
													1
													1
													1
													1
													1
													1
													1
													1
													1
L													L

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-2	別紙2.1	別紙 2-2	
コンクリートの許容限界温度 200℃の設定根拠について	許容温度について	コンクリートの許容限界温度200℃の設定根拠について	
コンクリートの圧縮強度は、200℃程度までは常温とほとんど変	1. コンクリート及び鋼材の許容温度	「建築火災のメカニズムと火災安全設計(財団法人 日本建築	
わらないかむしろ増加する。しかし、その後は徐々に低下し、500℃	「建築火災のメカニズムと火災安全設計(財団法人)日本建築	センター)」では、コンクリートの圧縮強度は、200℃程度までは	
で常温強度の 2/3 に低下する。火災後(冷却後)の残存強度を確	センター)」に基づき, 常温時の強度が維持される保守的な温度	常温と殆ど変らないかむしろ上昇するが、その後は徐々に低下し	
保する場合には 450℃が限界となる。*1	(コンクリートは200℃,鋼材は325℃)を許容温度とする。	て,500℃で常温強度の2/3になるとしている。また,火災後(冷	
	以下に「建築火災のメカニズムと火災安全設計」の抜粋を示	却後)の残存強度を確保する場合には450℃が限界としている ^{※1} 。	
また,他の文献*2 では,コンクリートの強度を著しく低下させ	-tuen		・条件の相違
る温度の境界を300℃とし、コンクリート表面の受熱温度が300℃			【柏崎 6/7】
以下で許容ひび割れ幅以上のひび割れが認められない場合の構造			引用している文献の
体は健全であり、仕上げのみの補修でよいとしている。第1図に			相違
コンクリートの強度と温度の関係,第1表,第2表に火災による			
<u>コンクリートの被害等級及びその補修・補強方法について示す。</u>			
よって本評価では、保守的に圧縮強度に変化がないとされる	コンクリートの許容温度に係る抜粋	よって本評価では、保守的に圧縮強度に変化がないとされる	
200℃を許容限界温度とし、評価を実施する。	(1)素材の高温強度 常調時のコンクリートの圧縮強度低下来も図14に示す。圧縮強度は200℃程度までは常	200℃を許容限界温度とし、評価を実施する。	
	市価時のコンプリードの圧縮強度低「半を因」ドに示す。圧縮強度は200℃往後までは市 温と殆ど変わらないか、むしろ上昇する。しかし、その後は徐々に低下して500℃で常温強	1.4Fe<60	
	度の2/3に,800℃では殆ど零となる。2/3はコンクリートの短期許容応力に相当するの て、500℃がませい。この問題思定にあることになった。同時ににこれたこに意思するとかけい	∑ 12	
	で、500Cが案材としての限界温度と考えられる。また、図15に示すように高温から宿却した後の残存強度は、高温時の強度よりもさらに低下する。長期許容応力度を加熱前強度の1	9.8 短期許容応力度:(2/3)F。	
	/3相当と考えると、火災後の残存強度を確保する場合には450℃が限界となる。	4 0.6 BY	
100 ★ (通報): FR-60(a) - 100 ★ (編報): FR-60(a) - 100 ★ (編集): FR-60(a) - 100 ★ (編集): FR-60(a) + 100 ★ (編集): FR-60(a) + 100 ★ (MR)	14 E 12 12 12 12 12 12 12 12 12 12		
	2 1.0 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0	
		0 200 400 600 800 1000 温度 <i>T</i> [℃]	
	0.2 0.0 0 [°] 200 400 650 880 1000	図14 コンクリートの高温時圧縮強度(常温強度に対する比)	
	<u>激素 ポロ</u> 図 14 コンクリートの高温時圧縮強度(覚温温度に対する比)	\Box 1.0 $-\overline{F_{0}}$ Fo > 60	
20 - 20 - 20	(参考文献 18) ~23)のデータより作成	他 H	
	12 T 10 T 10 T 10		
加熱温度(°C) 加熱温度(°C)		後期 報題 0.4 新聞 1.4	
第1図 コンクリートの強度と温度の関係*2	新聞 0.4 		
	0.0 0 200 400 coo tooo	0.0 200 400 600 800 1000	
*1:建築火災のメカニズムと火災安全設計,原田和典	加熱温度で 図 15 加熱後のコンクリート残存圧縮強度(加熱前強度に対する比)	加熱温度[°C]	
*2:建物の火害診断及び補修・補強方法,日本建築学会	(参考文献 24) ~26))のデータより作成	図15 加熱後のコンクリートの残存圧縮強度(加熱前強度に対する比)	
		第1図 コンクリートの強度と温度の関係 ^{※1} (一部加筆)	
		※1:建築火災のメカニズムと火災安全設計,日本建築センター	

	刘羽原子力発電所	6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		- 水実卒級と坐温*1			
1.1000	<u>77 I 12</u>	八百寺版と仏仏			
	<u>Б</u>	状況			
I級	無被害の状態で,たと; ①被害全くたし	えば,			
1 ///X	②仕上げ材料等が残っ	っている。			
	仕上げ部分に被害がある	る状態で、例えば、			
Ⅱ級	①躯体にすす、油煙等	等の付着, の受熱温度が 300℃以下			
	③床・梁のはく落わる	ずか。			
	鉄筋位置へ到達しない	被害で、例えば、			
Ⅲ級	 ①コンクリートの変も ②微細なひびわれ。 	色はビンク色			
III (I)X	③コンクリート表面の	の受熱面温度が 300℃以上,			
	 ④柱の爆裂わずか。 ◇ なしのは美に主席がる 				
IV級	 土肪との付着に文庫がる ①表面に数 mm 幅のひ 	める彼書で,例えは, いびわれ.			
	②鉄筋一部露出。				
	主筋の座屈などの実質的	的被害がある状態で,例えば, 号復士			
	2爆裂広範囲,	其協入			
V級	③鉄筋露出大,				
1 400	 ④たわみが目立つ, ⑤健全時計算値に対す 	さる田友振動教測完値が 0.75 主漢			
	⑥載荷試験において、	試験荷重時最大変形に対する残留変形の割合が			
	A 法で 15%, B 法で	10%を超える。			
第2表	鉄筋コンクリート	構造物の火害等級と補修・補強の基本*			
	_				
火害等級	: 状況	補修・補強の基本			
1 祓	 	一			
Ⅱ級	る状態				
	鉄筋位置へ到達しない	強度、耐久性が低下している場合は、かぶりコ			
Ⅲ級	被害	レクリートをはつり落とし、現場打コンクリー			
		a_{a}			
	主筋との付着に支障が	部材体力が低下しているので、かぶりコンクリ			
IV級	ある被害 	ートをはつり落とし、主筋を完全に露出させ、 理想打っンクリートで被覆する 埋合に上り補			
		現場打コンクリートで恢復する。場合により相			
	主筋の座屈などの実質	補強, 取替え, 増設			
 V 級	的な被害がある状態				
V級	THE IS TO DEAL AND A DEAL AND A CONTRACT A CONTRACT OF	力法, 日本建築学会			
V級 *:建物の	八音診例及い補修・補強				
V級 *:建物の	八舌診め及い補修・補強)				
 *:建物の	八音診め及び補修・補強/				
 *:建物の	八 舌 診 切 及 い 袖 修・ 袖 強 が				
 *:建物の	八舌診め及い袖修・袖頭 。				
 *:建物の	○「一番記例及○○冊修・補強」				
 *:建物の	八 舌 診 め				
 *:建物の	○ 舌 診 例 及 ○ 桶 № ・ 桶 強 /				
IV級	主筋との付着に支障がある被害 主筋の座屈などの実質的な被害がある状態	トまたはモルタルで被覆するなどの処置をと る。 部材体力が低下しているので、かぶりコンクリ ートをはつり落とし、主筋を完全に露出させ、 現場打コンクリートで被覆する。場合により補 修も行う。 補強、取替え、増設 方法、日本建築学会			

分炉	備考
別紙2-3	
根拠について	
低下するが,その高温 一方,発電用原子力設 日本機械学会)では, た,文献 ^{*1} では,鋼材 れており,一般的な鋼材 度が常温時と変わらな	
が常温時と変わらない	
と実施する。 	
- SS400 (F=235) - SN400B (F=235) - SN490B (F=325) - SM490 (F=325) - SM490A (F=325) - SM58 (F=400)	
800 1000	
~ ⁶⁾ のデータから作成)	
「率 ^{※1} (一部加筆)	
+, 日本建築センター 力の測定値を常温の基 率κ(T)であり, 鋼材の (T)=1となる。	

1. #EHEF r_i = 14.9 & 22 & & (20 ± 0 + 2 \times 2	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所	2号
	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海二子電雨「(2018.9.12 版) 2. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電 機を含む。)の許容温度 過給機効率ncの算出式①より,流入空気温度を求める式② に変換し,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電 一ゼル発電機を含む。)の性能維持に必要な流入空気温度 53℃ を算出し許容温度に設定した。 ① ① 1 三丁 ₀ × {(P ₁ /P ₀) ^{0.286} - 1) / (t ₁ -t ₀) · · · · ① t ₁ =T ₀ × {(P ₁ /P ₀) ^{0.286} - 1) / n _c +t ₀ · · · · ① t ₁ =T ₀ × {(P ₁ /P ₀) ^{0.286} - 1) / n _c +t ₀ · · · · ① 1 1 t ₁ : ジリンダ への必要空気量を確保するための過給機出口最高温度 (142℃) *1 t ₀ : 流入空気温度(℃), P ₀ : 過給機入口圧力(0.101MPa) *2 P ₁ : 過給機出口圧力(0.186MPa) *2, n _c : 過給機効率(0.7) wa ※1 空気冷却器での冷却が可能な最高温度 ※2 試験記録より ※3 製品仕様より Freeを取り (2014年) が3 製品仕様より メリンダ グリンダ (回 非常用ディーゼル発電機(高圧炉ムプレイ系 メリンダ グリンダ (回 第 (回 (国に使るなり、) 愛知 (回 (国に たってアレ発電機 (回 非常用ディーゼル発電機 (回 (国に たってアレ発電機 <td>島根原子力発電所</td> <td>2号</td>	島根原子力発電所	2号

炉	備考
	・設備の相違
	【東海第二】
	評価対象としている
	設備の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-4		別紙 2-4	
各施設等の温度評価体系		各施設等の温度評価体系	
1. <u>軽油タンク</u> の温度評価体系			・設備の相違
 ・火災時の輻射熱が<u>軽油タンク</u>に入射し、<u>軽油及びタンク構造</u> 			【柏崎 6/7,東海第二】
<u>物</u> の温度上昇に寄与すると想定する。			島根2号炉では,軽油
・空気との熱伝達による放熱を考慮する。			タンク,燃料移送ポン
・ <u>軽油タンク</u> の受熱時の面積 S ₁ 及び放熱時の面積 S ₂ は,タン			プ,非常用ディーゼル
ク屋根面積+タンク側面面積/2 とする。			発電機は,地下構造等
D_0 , π p U [12]			の屋内設備のため影
$S_1 - S_2 = \pi \frac{1}{4} + \frac{1}{2} D_0 H$ [m ⁻]			響評価対象外
・熱容量 C は、軽油の熱容量+タンク構造物の熱容量とする。			島根2号炉では,海水
			ポンプは,屋外設置の
			ため影響評価を実施
$C = \rho_p V c_p + \rho_s \left\{ \pi \frac{D_o^2 - D_i^2}{4} H + \pi \frac{D_0^2}{4} (e_1 + e_2) \right\} c_s \qquad [J/K]$			
・タンクの温度上昇,輻射による入熱及びタンク表面からの放			
熱の関係は以下の式で表される。			
$C\frac{dT}{dt} = \varepsilon ES_1 - h(T - T_{air})S_2 \qquad [W].$			
air · ハ ハ 血反しつ」 温度 T け以下の式となる			
$\varepsilon ES_1 + hS_2T_{old}$ ($\varepsilon ES_2 + hS_2T_{old}$) (hS_2)			
$T = \frac{\delta S_1 + \delta S_2 + \delta T}{hS_2} - \left(\frac{\delta S_1 + \delta S_2 + \delta T}{hS_2} - T_0\right) e^{\left(\frac{1}{C}\right)t} \qquad \begin{bmatrix} C \end{bmatrix}$			
・使用するパラメータを第 1 表に示す			
「 空気との熱伝達			
輻射熱の反射 (1-ε) Ε			
輻射熱E			
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●			
第1図 軽油タンク温度評価体系図			

柏崎刈羽原子力)発電所	6/7号/	炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第1	表 評価に	こ使用する	らパラメータ			
パラメータ	数値	単位	備考			
T ₀ :初期温度	38	°C	柏崎市の最高気温			1
ε :放射率	0.9	[-]	伝熱工学資料			1
ρ,:軽油密度	918	[kg/m ³]	NUREG-1805			1
c _p :軽油比熱	1700	[J/kg·K]	石油便覧			1
V :軽油体積	528	[m ³]	保安規定による最低保有油量			1
ρ _s :タンク構造材密 度	7860	[kg/m ³]	伝熱工学資料			
c _s : タンク構造材比 熱	473	[J/kg•K]	伝熱工学資料			
D _i : タンク内径	9.8	[m]	基本設計計算書			1
D ₀ : タンク外形	9.872	[m]	設計図書			1
e ₁ : タンク屋根厚	0.022	[m]	設計図書			1
e₂:タンク底板厚	0.009	[m]	基本設計計算書			1
H :タンク高さ	9.5	[m]	基本設計計算書			1
h : 熱伝達率	17	$[W/m^2K]$	空気調和衛生工学便覧			1
C : 熱容量	8.72 \times 10 ⁸	[J/K]	計算			1
2 燃料移送ポンプ	の温度評値	西体系			1 . 海水ポンプの温度評価体系	
燃料移送ポンプに	は,その周	囲に設置	する防護板によって、外部		・火災時の輻射熱が海水ポンプに入射し、冷却空気の温度上	
火災からの輻射によ	とる熱影響	響を受けな	いよう防護する。 防護板		昇に寄与すると想定する。	
は、燃料移送ポンフ	プの近傍で	発生する	軽油タンク火災を想定し,		・電動機内部の空気冷却対象は固定子巻線及び上部,下部軸	
火炎の方向に面した	-箇所は,	竜巻防護	用の鋼板に耐火材・断熱材		受であり、そのうち許容温度が低い下部軸受を対象とする。	
<u>を設置することによ</u>	こり, その	輻射によ	る熱影響を受けないように		 ・海水ポンプ電動機の冷却空気が一定の輻射強度によって昇 	
する。					温されるものとして,比熱と熱容量の関係式より温度 T は	
なお, それ以外の)面につい	ては、他の	の外部火災による熱影響が		以下の式となる。	
軽微であることから	っ,耐火材	・断熱材	を設置しない竜巻防護用の			
鋼板のみの仕様とす	-3。				$T = T_0 + \frac{E \times A_T}{E}$	
防護板の仕様とし	ては、以	下のとお	<u>り。</u>		$G \times C_p$	
① 防護板(断熱) 燃料移	送ポンプ	に隣接している軽油タンク			
火災を想定。	-					
燃料移送ポンプ が輻射による熱影響を受けないようにす						
るため、火炎に面した箇所に設置する耐火材・断熱材・鋼						
板(竜巻防護用)を有する防護板。						
②防護板(鋼板)) 熱影響	が軽微な	面に設置する防護板 <u>。</u> 耐火			
材・断熱材は認	と置せず,	竜巻防護周	用の鋼板のみの仕様。			
						1
						l

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所	2号炉	備考
防護板の仕様を踏まえた燃料移送ポンプの温度評価体系は,以				
<u>下のとおり。</u>				
 2.1 軽油タンク火災時 ・火災時の一定の輻射熱が燃料移送ポンプの周囲に設置されて いる防護板(断熱)外面に入射し,一定時間維持されたと想 定する。 以下に概念図を示す。 		輻射熱 E	電動機 端子箱	
			:受熱面	
外気との熱伝達 Q _{v, out} 周囲への輻射 Q _{r, out} 熱伝導 Q _{c, out}		<u>第</u> 1図 海水ポンプの	<u> 温度評価体系図</u>	
▲ 林伝導 Q _{c, in} 内気との熱伝達 Q _{v, in}		<u>第1</u> 表 評価に使用す	るパラメータ	
火炎からの輻射 E 燃料移送ポンプ		パラメータ 数値 T _a : 通常運転時の上昇温度「℃] 下部軸号	值 備考 備考	-
防護板		A _T :受熱面積[m ²] 10.5	3 構造図	-
第2図 防護板(断熱)におけろ伝熱の概念図		G:重量流量[kg/s] 1.9 C _n :空気比熱[J/(kg・K)] 100	6 設計値 7 伝熱工学資料	-
・以下の式に示す一次元非定常熱伝導方程式を用いて,防護板 (断熱)の内面並びに燃料移送ポンプエリア温度を求める。 $\frac{dT}{dt} = \alpha \frac{d^2T}{dx^2}$ <u>T:温度,t:時刻,x:防護板(断熱)外面からの距離, \alpha:</u> 熱拡散率				
・防護板(断熱)の外面及び内面温度上昇に伴う熱負荷は次式 で計算される。				
$Q_{v,in} = h_{in} A (T_{in} - T_{room})$				
<u>h_{in}:防護板(断熱)内面熱伝達率,A:防護板(断熱)内面の</u> <u>表面積,T_{in}:防護板(断熱)内面温度,T_{room}:燃料移送ポン プエリア温度</u>				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
・燃料移送ポンプエリア温度は、火災による防護板(断熱)内			
<u> 面温度上昇に伴う熱負荷がポンプエリア内に蓄熱されること</u>			
を考慮し、次式で求める。			
0			
$\Delta T_{room} = \frac{\mathcal{L}_{v,in}}{2CV}$			
$\rho \in V$			
<u>ρ</u> :空気密度, C:空気比熱, V:ポンプエリア体積			
2.2 軽油タンク火災以外の外部火災時			
・軽油タンク火災以外の外部火災時は、保守的に輻射熱が防護			
板(鋼板)に入射し、防護板(鋼板)の温度上昇に寄与する			
と想定する。			
 ・空気との熱伝達による放熱を考慮する。 			
・防護板(鋼板)の外面にて受熱(面積 S/2),放熱は外面及び			
内面 (面積 S) とし, 受熱は, 面積が最大となるよう側面の 2			
面とした。			
 ・熱容量 C は、防護板(鋼板)の熱容量とする。 			
$C = \rho c V$ [J/K]			
・防護板(鋼板)の温度上昇、輻射による入熱及び防護板(鋼			
板)からの放熱の関係は以下の式で表される。			
$C \frac{dT}{dt} = \varepsilon E \frac{S}{2} - h(T - T_{air})S$ [W]			
T _{air} :外気温度[℃]			
温度 T は以下の式となる。			
$T = \frac{\varepsilon E \frac{S}{2} + hST_{air}}{hS} - \left(\frac{\varepsilon E \frac{S}{2} + hST_{air}}{hS} - T_o\right)e^{\left(-\frac{hS}{C}\right)t} \qquad [^{\circ}C]$			
<記号>			
T_0 :初期温度[℃],E:輻射強度[W/m ²],ε:防護板(鋼板)外			
面の放射率[−] ^{**1} ,h:防護板 (鋼板)表面熱伝達率[W/m ² K] ^{*2} ,S:			
<u>防護板(鋼板)放熱面積[m²](S/2:受熱面積は外面のみ), C:</u>			
防護板(鋼板)の熱容量 $[J/K]$, $ ho$: 密度 $[kg/m^3]^{st n}$, c : 比熱			
<u>[kJ/kgK]^{*1}, v:体積[m³],t:燃焼継続時間[s],T_{air}:外気温</u>			
度[℃]			
※1:伝熱工学資料, ※2:空気調和·衛生工学			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
空気との熱伝達 「」」」」 解射熱の反射(1-ε)E 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」 「」」 「」 「」」 「」 「」」 「」 <td< td=""><td></td><td></td><td></td></td<>			
3. <u>主排気筒</u> の温度評価体系 ・火災時の輻射熱が <u>主排気筒</u> に入射し, <u>主排気筒</u> の温度上昇に 寄与すると想定する。 ・ <u>主排気筒</u> 外表面からの放熱を考慮し以下の式を解く。 $\rho CV \frac{dT}{dt} = \epsilon \frac{s}{2} - h(T - T)S$. t→∞の場合で最大温度となり,その温度は以下の式となる。 $T = T_0 + \frac{\epsilon E}{2h}$ $\rho: \pm i \pm s \pm s \pm s$		2. <u>排気筒</u> の温度評価体系 ・ 火災時の輻射熱が <u>排気筒</u> に入射し, <u>排気筒</u> の温度上昇に寄 与すると想定する。 ・ <u>排気筒</u> 外表面からの放熱を考慮し以下の式を解く。 $\rho CV \frac{dT}{dt} = \varepsilon E \frac{S}{2} - h(T - T_0)S$ t→∞の場合で最大温度となり,その温度は以下の式となる。 $T = T_0 + \frac{\varepsilon E}{2h}$ $\rho : 排気筒部材密度[kg/m3], C:排気筒部材比熱[J/kg/K],$	
S: <u>主排気筒</u> 単位長さあたりの外周面積[m ²], V: <u>主排気筒</u> 単 位長さあたりの体積[m ³], T:最高温度[℃], T ₀ :初期温度[℃] <u>(柏崎市の最高気温)^{*1}</u> , E:輻射強度[W/m ²], h:熱伝達係 数[W/m ² /K](出典:空気調和・衛生工学便覧), ε:反射率[-] (出典:伝熱工学資料) <u>※1:別紙 2-5 参照</u>		S: 排気筒単位長さあたりの外周面積[m ²], V: 排気筒単位 長さあたりの体積[m ³], T:最高温度[\mathbb{C}], T ₀ : 初期温度[\mathbb{C}], E: 輻射強度[\mathbb{W} /m ²], h: 熱伝達係数[\mathbb{W} /m ² /K](出典: 空気 調和・衛生工学便覧), ε : 反射率[-](出典: 伝熱工学資 料)	
 輻射熱の反射(1-ε) E 車射熱E 車射熱E 丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁		輻射熱の反射(1-ε)E 輻射熱E 「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
4. 建屋内気温度の温度評価体系		3. 建物内気温度の温度評価体系	
・火災時の一定の輻射熱が建屋外壁面に入射し、一定時間維持		・火災時の一定の輻射熱が建物外壁面に入射し、一定時間維	
されたと想定する。		持されたと想定する。	
以下に概念図を示す。		以下に概念図を示す。	
建屋外 外気との熱伝達 Q _{v, out} 周囲への輻射 Q _{r, out} 火炎からの輻射 E 使気空調系給気温度 T _n 熱伝導 Q _{e, out} 熱伝導 Q _{e, in} 熱伝導 Q _{e, in} 熱伝導 Q _{e, in} 東気空調系給気温度 T _n 風量 m 室内負荷 Q		建履盤(均衡) 建物外側	
<u>第 5 図 伝熱の概念図</u>		<u>第3</u> 図 伝熱の概念図	・条件の相違 【 柏崎 6/7】
・以下の式に示す一次元非完党執伝道方程式を用いて、外辟及		・以下の式に示す一次元非完党執伝道方程式を用いて、外辟	▲ 自根9号には 室内の
び内陸西辺 度を求める		あて、内陸両担府を求める	西低 2 万 / は, 主 1 い
して1年田価 反と不のる。		及び行生面温度を不明る。	主気は山八りがない
$\frac{dT}{dT} - \alpha \frac{d^2T}{dT}$		$dT = d^2T$	本日として計画を天
$dt = \frac{dt}{dx^2}$		$\frac{dt}{dt} = \frac{1}{2} \frac{1}{dx^2}$	加也
T・泪度 +・時刻 w・建物時内における外辟西からの距離			
		T・泪産 +・時刻 v・建物辟内における外辟面からの距離	
		1.1皿皮, 1.1町次1, A. 定物型自体の分子型面がりの距離,	
・ 从 時 乃 び 内 時 面 泪 度 上 見 に 伴 ら 執 白 荷 け 次 式 で 計 筒 さ れ る			・冬川の扣造
//重次の71重面価及工并に件/派員間は広共で前昇で403。		・内陸両からの入熱号け以下の式とり質出される	▲口の加建
$Q_{v,in} = h_{in} A (T_{in} - T_{room})$		「「生面からの八派星は以上の代より昇山と40分。」	山崎の石
		$qin = \alpha 1 \times (TR^{j} - TS1^{j})$	地域付任て始よんに
<u>n_{in}:内壁面熱伝達率,A:内壁の衣面積,1_{in}:内壁面偏度,1_{room}:</u> 由乍调 血		・、陸工みとの1劫見「W」 1・山陸工劫仁法委	計画条件に作り計画
<u> </u>		$qln: 室面//らの人然重[W], \alpha 1. 内壁面然伝達率, TP: 京洞[20] TO1: 中時天洞 座[20]$	式0)相遅
古房洞市33、 九巡35 5 7 古时子洞底上月36 似之劫女世) 卢古		IR: 至温[C], ISI: 内壁面温度[C]	
・ <u> 内风温度は、 火炎による内壁面温度上升に伴う熱貝荷と至内</u>			
<u>の 然 貝 何 及 い 換 気 空 調 糸 に よ る 际 熱 を 考 慮 し, </u>		・上記の式より、内気温度は、伏式で求める。	
$T_{room} = \frac{Q + Q_{v,in}}{m \rho C} + T_a$		$TR^{j+1} = TR^{j} + (q^{j} - \sum (qin \times A)) \times \Delta t / C$	
Q:室内負荷,m:風量,ρ:空気密度,C:空気比熱,T <u>a</u> :换		<u>TR:室温[℃], qin:壁面からの入熱量[W], A:内壁面の表</u>	
<u>気空調系給気温度</u>		面積[m²], Δt:時間ステップ, C:空気の熱容量[kJ/m³],	
		<u>q</u> :室内熱負荷[W]	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
5. 一定の輻射熱を受ける壁面(コンクリート)の温度評価体系		4. 一定の輻射熱を受ける壁面(コンクリート)の温度評価体系	
十分に厚い固体の表面が放射熱で加熱される場合の温度分布		十分に厚い固体の表面が放射熱で加熱される場合の温度分布	
は、以下の一次元の熱伝導方程式により表すことができる。		は、以下の一次元の熱伝導方程式により表すことができる。	
$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right)$		$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right)$	
これを表面(x=0)における境界条件		これを表面(x=0)における境界条件	
$\varepsilon q = h\{T(0,t) - T_0\} - k \frac{\partial T}{dx}\Big _{x=0}$		$\varepsilon q = h\{T(0,t) - T_0\} - k \frac{\partial T}{\partial x}\Big _{x=0}$	
の下で入射熱流束が時間的に一定であれば、次式が得られる。		の下で入射熱流束が時間的に一定であれば、次式が得られる。	
$T_{s}(t) = T_{0} + \frac{\epsilon q}{h} \{1 - \exp(\frac{h^{2}t}{k\rho c})\operatorname{erfc}(\sqrt{\frac{h^{2}t}{k\rho c}})\}$		$Ts(t) = T_0 + \frac{\varepsilon q}{h} \left\{ 1 - \exp\left(\frac{h^2 t}{kpc}\right) \operatorname{erfc}\left(\sqrt{\frac{h^2 t}{kpc}}\right) \right\}$	
ただし, erfc(z)は余誤差関数であり, T_s (t) =T(0,t)とお		ただし, erfc(z)は余誤差関数であり, <i>Ts(t)=T(0, t)</i> とおいた。	
t^{\prime} 、 t^{\prime} $t^$		$= t_{f_{a}} = t_{a} / h (T_{s} - T_{a}) < 10$ の範囲でけ 以下のとおり近似でき	
できる。			
$ \frac{\epsilon q}{h(T_s - T_0)} = \frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} \frac{1}{\sqrt{t}} + 1 $ $ T_s = T_0 + \frac{1}{\left(\frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} + 1\right)\frac{h}{\rho q}} $ < 記号> c : 比熱[kJ/kgK], T_0: 初期温度[K], erfc(z) : 余誤差関数, T_s: 表面温度[K], h: 熱伝達率[kW/mK], ρ : 密度[kg/m ³], q: 入射熱流束[kW/m ²], t: 燃焼継続時間[s] 出典: 原田和典, 建築火災のメカニズムと火災安全設計, 日本建築センター		$\frac{\epsilon q}{h(T_{s} - T_{0})} = \frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} \frac{1}{\sqrt{t}} + 1$ $T = T_{0} + \frac{1}{\left(\frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} + 1\right)\frac{h}{\epsilon q}}$ <2記号> c:比熱[kJ/kgK], T_{0}:初期温度[K], erfc(z):余誤差関数, Ts 表面温度[K], h:熱伝達率[kW/m²K], ϵ :表面の放射率, k:熱伝導率[kW/mK], ρ :密度[kg/m³], q:入射熱流束[kW/m²], t:燃焼継続時間[s] 出典:原田和典,建築火災のメカニズムと火災安全設計, 日本建築センター	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
---	---------------------	--	----
 熱損失h(Ts, To) 		 熱損失h(T_s, T_o) 壁面 シーン 壁面内の 熱伝導 第4図 建物温度評価体系図 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-5	別紙2.2	別紙 2-5	
初期温度の考え方	初期温度の考え方について	初期温度の考え方	
 1. 外壁(コンクリート)面の初期温度	 外壁の初期温度 	1. 外壁(コンクリート)面の初期温度	
空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当	空気調和・衛生工学便覧を基に、外気温度に日射の影響を考	空気調和・衛生工学便覧を基に、日射の影響を考慮した相当	
外気温を求め、その値を切り上げた値を外気温及び評価対象施設		外気温を求め、その値を切り上げた値を外気温及び評価対象施	
の初期温度として設定した。なお、受熱面は各壁面の方向(東西	温度として設定した。	設の初期温度として設定した。なお,受熱面は各壁面の方向(東	
南北)とした。		西南北)とした。	
柏崎市の最高気温 37.6℃に対して,外壁面の相当外気温の最大	水戸地方気象台の過去最高気温 38.4℃に,外気温度が最も高	鹿島地区の最高気温 37.5℃に対して,外壁面の相当外気温の	
値は 46.5℃となる。46.5℃を切り上げ,50℃を外気温及び初期温	くなる時間帯(11~15時)の日射量とコンクリートの日射吸収	最大値は46.1℃となる。46.1℃を切り上げ、50℃を外気温及び	
度として設定する。	率 0.7 を考慮すると、外壁面の相当外気温の最大値は 45.5℃と	初期温度として設定する。	
	なり、これを切り上げ、50℃を初期温度として設定する。		
なお、原子炉建屋内で最も室温が高いのは、主蒸気管トンネル	なお、原子炉建屋内で最も室温が高いのは、主蒸気管トンネ	なお、原子炉建物内で最も室温が高いのは、主蒸気管室(設	
室(設計温度:55℃)であり、外壁面の初期温度 50℃より高いも	ル室(設計温度:60℃)であり、外壁面の初期温度 50℃より高	計温度: <u>60℃</u>) であり, 外壁面の初期温度 50℃より高いものの,	
のの,その外壁は原子炉建屋とタービン建屋の間に位置しており,	いものの,その外壁は原子炉建屋とタービン建屋の間に位置し	その外壁は原子炉建物とタービン建物の間に位置しており、外	
外部火災による輻射の影響を受けない。	ており、外部火災による輻射の影響を受けない。	部火災による輻射の影響を受けない。	
	次に室温が高いのは,非常用ディーゼル発電機(高圧炉心ス		
	プレイ系ディーゼル発電機を含む。)室(設計温度:40℃)とな		
	るが、外壁面の初期温度 50℃未満であることから、初期温度の		
	設定は妥当なものと考えられる。		
		空気をの執行法	
	太陽輻射の反射		
		輻射熱の反射	
		太陽輻射	
	血		
最高级温-31.0011日当外数 温:46.5℃。 壁面内の	空気との熱伝達	相当外気温:46.1℃ 壁面内の熱伝導	
→外気温・初期温度:50°C。 熱伝導。		→外気温・初期温度:50°C	
第 1 図 百之后建長が時売担 時証価は 玄回	第1回め降の証毎期合同	第1回 百乙后建物 从联查泪度亚伍休조回	
新 1 凶 际丁炉建度7°笙囬価及計Ⅲ件术凶		宏 <u>山</u> 四 <u>一次</u> 工 <u>次</u> 建初2C <u>笔</u> 即师及武则代示因	

, 炉	備考
主 蒸気管室 小 メージ)	備考 ・設備の相違 【柏崎 6/7】 島根 2 号炉では,軽油 タンク,燃料移送ポン プ,非常用ディーゼル 発電機は,地下構造等 の屋内設備のため影 響評価対象外 島根 2 号炉では,海水 ポンプは, 屋外設置の
	島根2号炉では,海水 ポンプは,屋外設置の ため影響評価を実施

2. abkwart/2 (Table) obmarate Warten Sam Laboration Same Same Same Same Same Same Same Same	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$ 2 \exp 2 \operatorname{a.s. a.s. transfer out of the transfer out of transfer out of$	3. 燃料移送ポンプ(防護板)の初期温度			
<u>Audezeka</u> , zeutezen <u>Lurdz</u> (audezega <u>Zurdz</u>	<u>空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当</u>			
脳振動したで強化した。ため、全部面はポンプ四周に認定していた。 な 「 な 、 な 、 な 、 な 、 な 、 な 、 な 、 な 、 な 、	外気温を求め、その値を切り上げた値を外気温及び評価対象の初			
	期温度として設定した。なお,受熱面はポンプ周囲に設置してい			
	る防護板とする。			
<u> </u>	柏崎市の最高気温 37.6℃に対して,燃料移送ポンプの周囲に設			
<u>20.22299 DLFT. BCZ各外组建会AUT组合定LCZ設立40, たた. 燃料発展/22/ConvCit. 国際に防設設設設置されたも 20.1022-001LfT. BCZ在外加組金とLCZ設立40, 20.022-001LfT. BCZ在外加組金とLCZ設立40, 20.022-001LfT. BCZ在和加組金とLCZ設立40, 20.022-001LfT. BCTCZ 20.022-001LfT. BCTCZ </u>	置している防護板外表面の相当外気温の最大値は 52.3℃となる。			
<u> とた、燃料移送ボンプについては、田畑に防護板会定置されてお</u> <u> 1. 時の必要着を受けないことから、推動面の最高な温の最高な 3. Gでを切り上げ、33でを加減温度として設定する。 <u> 1. 時ののではのした</u>, 3. STC - 加減温度として設定する。 <u> 1. 市場のでは、明確した、では、1. 時ののです。 <u> 1. 市場のでは、明確した、たままにない、日間の影響を考慮したの時</u> 水気温を大いた、その値を切り上げ、1. GTC - 加減二度 <u> 1. 市場の定価でなる。低いでと切り上げ、33でな加減温</u> 2. <u> 1. 市場のです。 1. 市場のです。 2. 市場の面のではない、1. 市場の影響を考慮したの時 水気温を大いた、その値を切り上げ、1. GTC - 加減二度 1. 市場のです。 2. 市場気度して設定した。たお、3. StC - 同日の影響を考慮したの時 水気温を大いた、その様を切り上げ、1. GTC - の加減温度 2. 市場気度して設定した。たお、3. StC - 同日の影響を考慮したの時 水気温を大いた。 2. 市場気度のの助場面で 2. 市場気筒のの助場面で 二、た用したのました。 2. 市場気筒のの助場面で 二、た用したのました。 2. 市場気筒のの助した、 本世にかられ、日時の気度のの自たした。 本世にかられ、その価を切り上げ、前面の表面のの目がした。 本世にかられ、見たの気気温感、4. StC - に見か、3. StC - に見か、3. StC - に見か、3. StC - に見か、3. StC - に見か、5. StC - にない、5. StC - に見か、5. StC - に見か、5. StC - にのまい、5. StC - にのす。 2. たたの - 5. StC - い、4. StC - に見か、5. StC - にのまい、5. StC - い、5. StC - にのまい、5. StC - い、5. StC </u></u></u>	52.3℃を切り上げ,55℃を外気温度の初期温度として設定する。			
$ \begin{array}{ c } \underline{9} & \underline{1} & 1$	また、燃料移送ポンプについては、周囲に防護板が設置されてお			
ST + 6C + 6g + D + DT + 3SC + 2g + 2	り、日射の影響を受けないことから、柏崎市の最高気温の最高値			
	37.6℃を切り上げ,38℃を初期温度として設定する。			
・ (本) (本) (本) (本) (A)				
$\sum_{\substack{a \in a \\ b \neq a \\ c \neq a$				
● 非然の反射 ・ 満切案の ・ 満切案の ・ 満切案の ・ 満切案の ・ 満切案の ・ 満切案の ・ 通知表していたの ・ 部である。 ・ 市である。 ・ かってきましてきまた。 ・ たままたる。 ・ 市できたる。 ・ たっできまる。 ・ たっできまる。	空気との熱伝達 防 難			
M = M = M = M = M = M = M = M = M = M =	福射熱の反射			
$Aaska : 12.60$ $Mis My Sale : 52.61$ $-i Agaa : image (Maga) : 50.71 -i Agaa : image (Maga) : 50.71Image (Maga) : 50.71Image (Maga) : 50.71Image (Maga) : 50.71A : \underline{iH} S \underline{m} on m \underline{m} \underline{a} \underline{c}\underline{A} : \underline{a} \underline{f} \underline{A} \underline{C} \cdot \underline{A} \underline{C} \cdot \underline{A} \underline{A} \underline{C} \underline{A} \underline{A} \underline{C} \cdot \underline{A} \underline{A} \underline{C} \underline{C} \underline{C} + \underline{A} \underline{A} \underline{A} \underline{C} \underline{C} + \underline{A} \underline{A} \underline{A} \underline{A} \underline{C} \underline{C} + \underline{A} \underline{A} \underline{A} \underline{A} \underline{A} \underline{C} \underline{C} + \underline{A} \underline{A} \underline{A} \underline{A} \underline{A} \underline{A} \underline{A} \underline{A}$				
$n = 5x = 23 \cdot 20^{\circ}$ $\rightarrow x = 34 \cdot 20^{\circ}$ $n = 10^{\circ}$ n = 10^{\circ} <td>最高気温:37.6℃</td> <td></td> <td></td> <td></td>	最高気温:37.6℃			
- 外気温・初界温度(防護板):55℃ - 初期温度(医満秋):55℃ - 初期温度(医満秋):55℃ - 前期温度(医満秋):55℃ - 第4回(医料移送ボンブ温度評価体系図) - 生排気筒の初期温度 - 主排気筒の初期温度 空気調和・衛生工学便覧を支上に、日射の影響を考慮した相当 - 大気温を求め、その値を切り上げた値を外気温及び評価対象の初 期温度として設定した。なお、受熱面は主排気筒の側面とした。 - 指転筒の最高気温 37.6℃に対して、主排気筒の利用当気気 - 広相時市の最高気温 37.6℃に対して、主排気筒の利用当気気 - 広相時市の最高気温 37.6℃に対して、主排気筒の利用当外気温 - 上で認定する - して設定した。なお、受熱面は主排気筒の側面とした。 - 大戸地方気象台の過去最高気温 38.4℃に、外気温度が目射吸収率1.0 - して設定する - してごごさる - してごごさる - 小 の目が量と主排気筒の相当の数 - なる時間帯(11~15時)の目射量と主排気筒の目射吸収率1.0 - 公本時古た - 土地気管の和当め気気(日本14.8 ℃とたね) - してごごさく - 北方気の大値は 4.2℃となる。44.2℃をすの1.4 ℃とを切り上げ、50℃を切り	相当外気温:52.3℃ 熱伝導 ()			
・前風龍優(熊林移送ボンブ温度評価体系図 第 4 図 燃料移送ボンブ温度評価体系図 第 4 図 燃料移送ボンブ温度評価体系図 年期気筒の初期温度 ②気調和・衛生工学便覧を <u>5</u> とに、日射の影響を考慮した相当 次調和・衛生工学便覧を <u>5</u> とに、日射の影響を考慮した相当 》 ②気調和・衛生工学便覧を <u>5</u> とに、日射の影響を考慮した相当 《にた相当外気温を求め、その値を切り上げた値を外気温及び評価対象の初 温度として設定した。なお、受熱面は主排気筒の側面とした。 本声地方気象台の過去最高気温 37.6℃に対して、主排気筒の外期温度 《広格当外気温を求め、その値を切り上げ、前でか気温及び評価対象の初 温度として設定した。なお、受熱面は主排気筒の側面とした。 本戸地方気象台の過去最高気温 38.4℃に、外気温度が最も 《広格当外気温を求め、その値を切り上げ、値を外気温及び評価対象の初 』 出度として設定した。なお、受熱面は主排気筒の側面とした。 本声地方気象台の過去最高気温 38.4℃に、外気温度が最も 《人口・25時)の目針最と主排気筒の目射吸収率 《ムの時間帯(11~15時)の目針吸収率 《ムの時間帯(11~15時)の目針吸し率) 《ムの時間帯(11~15時)の目針吸し率) 《ムの時間帯(11~15時)の目針吸し率) 《ムの時間・11~15時)の目針吸し率 《ムの時間帯(11~15時)の目針吸し率) 《ムの時間帯(11~15時)の目針吸し率) 《ムの時間帯(11~15時)の目針吸し率) 《ムの時間帯(11~15時)の目針吸し本) 《ムの時間帯(11~15時)の目針吸し率) 《ムの時間本(11~15時)の目針吸し率) 《ムの時間本(11~15時)の目針吸し率) 《ムの時間本(11~15時)の目針吸し本) 《の日本)の 《ムのしへ) "「」」 《ムのしへ)の目前、 《ムのしへ)の目前、 《ムのしへ)の目前、 《国上地区の最高気温 37.5℃に対して、排気筒外表面の相当外 《温地区の見高気温 37.5℃に対して、排気筒外表面の相当外 《国上地区の見高気温 37.5℃に対して、排気筒外表面の相当外 《国上地区)の 《国上地区)の 《国上地区)の 《国上地区)の 《ムのしへ)の 【国上区)の 《ムしへとなる) 《国上地区) 《国上地区) 《国上地区) 《ロー ① ① ①	→外気温・初期温度(防護板):55°C			
第4回燃料移送ポンプ温度評価体系図 第4回燃料移送ポンプ温度評価体系図 第4回燃料移送ポンプ温度評価体系図 5. 主排気筒の初期温度 2. 主排気筒の初期温度 2. 主排気筒の初期温度 空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当 空気調和・衛生工学便覧を基に、外気温度に日射の影響を考慮した相当外 小気温を求め、その値を切り上げた値を外気温及び評価対象の初 慮した相当外気温を求め、その値を切り上げ、評価対象の初 調度として設定した。なお、受熱面は主排気筒の側面とした。 1 水戸地方気象白の過去最高気温 38.4℃に外気温度が最も。 1 人口で設定する くなる時間帯(11~15 時)の日射量と主排気筒の目が吸取率1) たる時間帯(11~15 時)の日射量と主排気筒の目が吸取率1) 気温の最大値は 4.2℃となる。44.2℃を切り上げ、50℃を初期 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2	→初期温度(燃料移送ホンク):38℃			
4.主排気筒の初期温度 2.主排気筒の初期温度 2.非気筒の初期温度 空気調和・衛生工学便覧をもとに,日射の影響を考慮した相当 空気調和・衛生工学便覧を基に,0分気温度に日射の影響を考慮した相当外 2.排気筒の初期温度 外気温を求め,その値を切り上げた値を外気温及び評価対象の 慮した相当外気温を求め,その値を切り上げ,評価対象の初 気温を求め,その値を切り上げた値を外気温及び評価対象の初 期温度として設定した。なお, 受熱面は主排気筒の側面とした。 1 1 1 植崎市の最高気温 37.6℃に対して,主排気筒の相当外気 水戸地方気象台の過去最高気温 38.4℃に外気温度が最もる 1 1 上口で設定する くなる時間帯(11~15時)の目射量と主排気筒の目射吸取率1 5 2 1 上口で設定する たま費すると、主排気筒の相当外気温の量士値は48.6℃とかたり 1 1 1	第4図 燃料移送ポンプ温度評価体系図			
4. 主排気筒の初期温度 2. 主排気筒の初期温度 2. 排気筒の初期温度 2. 排気筒の初期温度 空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当 空気調和・衛生工学便覧を基に、外気温度に日射の影響を考慮した相当 空気調和・衛生工学便覧を基に、日射影響を考慮した相当 外気温を求め、その値を切り上げた値を外気温及び評価対象の初 慮した相当外気温を求め、その値を切り上げ、値を外気温及び評価対象の初 気温を求め、その値を切り上げた値を外気温及び評価対象の初 期温度として設定した。なお、受熱面は主排気筒の側面とした。 温度として設定した。なお、受熱面は主排気筒の側面とした。 期温度として設定した。なお、受熱面は排気筒の側面とした。 温の最大値は45.1℃となる。45.1℃を切り上げ、50℃を初期温度 くなる時間帯(11~15 時)の目射量と主排気筒の目射吸収率1.0 気温の最大値は44.2℃となる。44.2℃を切り上げ、50℃を初期 トレて設定する を客慮するとと 支排気筒の相当め気温の量す値は48.6℃とたの 国産上して設定する				
4. 主排気筒の初期温度 2. 主排気筒の初期温度 2. 排気筒の初期温度 空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当 空気調和・衛生工学便覧を基に、外気温度に日射の影響を考慮した相当外 空気調和・衛生工学便覧を基に、日射影響を考慮した相当外 外気温を求め、その値を切り上げた値を外気温及び評価対象の初 慮した相当外気温を求め、その値を切り上げ、評価対象の初期 気温を求め、その値を切り上げた値を外気温及び評価対象の初 期温度として設定した。なお、受熱面は主排気筒の側面とした。 温度として設定した。なお、受熱面は主排気筒のの側面とした。 期温度として設定した。なお、受熱面は排気筒の側面とした。 通の最大値は45.1℃となる。45.1℃を切り上げ、50℃を初期温度 くなる時間帯(11~15時)の日射量と主排気筒の日射吸収率1.0 気温の最大値は44.2℃となる。44.2℃を切り上げ、50℃を初期 たま晴するとト 主排気筒の相当外気温の量す値は48.6℃とかり 温度として設定さたる。44.2℃をなる。44.2℃をする。44.2℃をするのり上げ、50℃を初期				
空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当 外気温を求め、その値を切り上げた値を外気温及び評価対象の初 期温度として設定した。なお、受熱面は主排気筒の側面とした。 柏崎市の最高気温 37.6℃に対して、主排気筒外表面の相当外気 この最大値は 45.1℃となる。45.1℃を切り上げ、50℃を初期温度 たま慮すると、主排気筒の相当体気温の相当体気温の相当体気温の目的とした。 たま慮すると、主排気筒の相当体気温の相当体気温の相当体気温の目的とした。 たま慮すると、主排気筒の相当体気温の相当体気温の相当体気温の目的とした。 たま慮すると、主排気筒の相当体気温の高力相当体気温の見す値は 48.6℃とたわ 温度として設定した。なお、受熱面は注が気筒の目前とした。 たま慮すると、主排気筒の相当体気温の見す値は 48.6℃とたわ 温度として設定した。なお、1000000000000000000000000000000000000	4. 主排気筒の初期温度	2. 主排気筒の初期温度	<u>2排気筒</u> の初期温度	
 外気温を求め、その値を切り上げた値を外気温及び評価対象の初 劇温度として設定した。なお、受熱面は主排気筒の側面とした。 抽崎市の最高気温 37.6℃に対して、主排気筒外表面の相当外気 温度として設定した。なお、受熱面は主排気筒の側面とした。 水戸地方気象台の過去最高気温 38.4℃に、外気温度が最も高 人なる時間帯(11~15時)の日射量と主排気筒の日射吸収率1.0 た表慮すると、主排気筒の相当外気洞の長大値は48.6℃となり 温度として設定した3.44.2℃を切り上げ、50℃を初期 	空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当	空気調和・衛生工学便覧を基に、外気温度に日射の影響を考	空気調和・衛生工学便覧を基に、日射影響を考慮した相当外	
 期温度として設定した。なお、受熱面は主排気筒の側面とした。 油崎市の最高気温 37.6℃に対して、主排気筒外表面の相当外気 水戸地方気象台の過去最高気温 38.4℃に、外気温度が最も高 現温度として設定した。なお、受熱面は排気筒の側面とした。 水戸地方気象台の過去最高気温 38.4℃に、外気温度が最も高 人なる時間帯(11~15時)の日射量と主排気筒の日射吸収率1.0 た考慮すると、主排気筒の相当外気 た考慮すると、主排気筒の相当外気 第温度として設定した。なお、受熱面は排気筒の側面とした。 第温度として設定した。なお、受熱面は排気筒の側面とした。 第温度として設定した。なお、受熱面は排気筒の側面とした。 第温度として設定した。なお、受熱面は排気筒の側面とした。 第温度として設定した。なお、受熱面は排気筒の側面とした。 第温度として設定した。なお、受熱面は排気筒の側面とした。 第二度として設定した。なお、受熱面は排気筒の側面とした。 第二度として設定した。なお、受熱面は非気筒の側面とした。 第二度として設定した。なお、受熱面は非気筒の側面とした。 	外気温を求め、その値を切り上げた値を外気温及び評価対象の初	慮した相当外気温を求め、その値を切り上げ、評価対象の初期	気温を求め、その値を切り上げた値を外気温及び評価対象の初	
柏崎市の最高気温 37.6℃に対して,主排気筒外表面の相当外気 水戸地方気象台の過去最高気温 38.4℃に,外気温度が最も高 鹿島地区の最高気温 37.5℃に対して,排気筒外表面の相当外 温の最大値は 45.1℃となる。45.1℃を切り上げ,50℃を初期温度 くなる時間帯(11~15時)の日射量と主排気筒の日射吸収率1.0 気温の最大値は 44.2℃となる。44.2℃を切り上げ,50℃を初期 を考慮すると 主排気筒の相当外気 りんていたい りょうになる。45.1℃を切り上げ,50℃を初期	期温度として設定した。なお、受熱面は主排気筒の側面とした。	温度として設定した。なお、受熱面は <u>主排気筒</u> の側面とした。	期温度として設定した。なお,受熱面は排気筒の側面とした。	
温の最大値は 45.1℃となる。45.1℃を切り上げ,50℃を初期温度 として設定する た考慮すると、主排気筒の日射吸収率1.0 気温の最大値は 44.2℃となる。44.2℃を切り上げ,50℃を初期	柏崎市の最高気温 37.6℃に対して,主排気筒外表面の相当外気	水戸地方気象台の過去最高気温 38.4℃に,外気温度が最も高	鹿島地区の最高気温 37.5℃に対して,排気筒外表面の相当外	
として設定する	温の最大値は45.1℃となる。45.1℃を切り上げ、50℃を初期温度	くなる時間帯(11~15時)の日射量と主排気筒の日射吸収率1.0	気温の最大値は44.2℃となる。44.2℃を切り上げ、50℃を初期	
	として設定する。	を考慮すると,主排気筒の相当外気温の最大値は48.6℃となり,	温度として設定する。	
これを切り上げ、50℃を初期温度として設定する。		これを切り上げ,50℃を初期温度として設定する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
 最高気温:37.6℃ 相当外気温:45.1℃ →外気温・初期温度:50℃ 太陽輻射: C 空気との熱伝達・輻射熱の反射・熱伝導: □ 	・ ・ ・ 太陽輻射 ・ ・ ・ ・ ・ 転射 ・ ・ ・ ・ 転射 か ・ ・ 空気との伝熱・ 輻射熱の反射 ・	With a state of the	
第 5 図 主排気筒温度評価体系図	第2図 主排気筒の評価概念図	第3図 排気筒温度評価体系図	
	3. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発 電機を含む。),残留熱除去系海水系ポンプ及び非常用ディーゼ ル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海 水ポンプ内への流入空気の初期温度 水戸地方気象台の過去最高気温 38.4℃を切り上げた 39 ℃を 流入空気の初期温度とした。	 海水ポンプの冷却空気初期温度 産島地区の最高気温 37.5℃を切り上げた 40℃を冷却空気の 初期温度とした。 	
		 <i>读 i</i>	
	第3図 非常用ディーゼル発電機(高圧炉心スプレイ系	第4図 海水ポンプ温度評価体系図	
	ディーゼル発電機を含む。)の評価概念図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-6		別紙 2-6	
建屋天井面への熱影響評価		建物天井面への熱影響評価	
建屋側面への熱影響を実施したが、天井面についての熱影響を		<u>建物</u> 側面への熱影響 <u>評価</u> を実施したが,天井面についての熱影	
検討する。		響を検討する。	
・火炎長が建屋天井面より短い場合は天井面に輻射熱は届かな		・火炎長が建物天井面より短い場合は天井面に輻射熱は届かな	
いことから熱影響はない。(第 1 図)		いことから熱影響はない。(第1図)	
・火炎長が建屋天井面より長くなる場合は輻射熱が天井面に届		・火炎長が建物天井面より長くなる場合は輻射熱が天井面に届	
くが,その輻射熱は側面の輻射熱より小さい。(第1図)		くが、その輻射熱は側面の輻射熱より小さい。(第1図)	
・火炎からの離隔距離が等しい場合、垂直面(側面)と水平面		 ・火炎からの離隔距離が等しい場合,垂直面(側面)と水平面 	
(天井面)の形態係数は,垂直面の方が大きいことから,天		(天井面)の形態係数は,垂直面の方が大きいことから,天	
井面の熱影響は側面に比べて小さい。(第 2 図)		井面の熱影響は側面に比べて小さい。(第2図)	
・コンクリートの厚さは側面より天井面の方が薄いことから,		 ・コンクリートの厚さは側面より天井面の方が薄いことから、 	
天井面の方が建屋内側の熱伝達による放熱の効果が大きくな		天井面の方が建物内側の熱伝達による放熱の効果が大きく	
るため熱影響は小さい。		なるため熱影響は小さい。	
以上より、側面の熱影響を実施することで天井面の熱影響は包		以上より,側面の熱影響評価を実施することで天井面の熱影響	
絡されることを確認した。		は包絡されることを確認した。	
建屋天井面が輻射熱を受ける範囲 建屋側面が輻射熱を受ける範囲		建物天井面が輻射熱を受ける範囲 建物側面が輻射熱を受ける範囲	
第1図 天井面への輻射熱の影響		第1図 天井面への輻射熱の影響	
重直面 (側面):形態係数 F 垂直 ●		垂直面 (側面):形態係数F _{重直} ● ●	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		<u>別紙2-7</u>	
		防火帯が入り組んでいる箇所の影響評価について	・設備の相違 【柏崎 6/7,東海第二】
		<u>1. 概要</u>	島根2号炉特有の防
		<u>防護対象設備については、モニタリンクホストを除き防火帯</u> 内側に設置しているため水災影響けたいが、防火帯が入り組ん	火帯が入り組んでい ろ笛町について 影響
		でいる箇所の防護対象設備に対する影響評価を行う。	評価を実施
		<u>2.</u> 評価対象施設	
		<u>(1)</u> 固体廃棄物貯蔵 <u>所B棟</u> (2) ろ過水タンク	
		<image/>	
		<u>3. 影響評価</u> <u>(1)火線強度による評価</u>	
		評価対象施設周辺の最大火線強度は、林縁で最大火線強度	
		<u>となる条件で評価した結果,固体廃棄物貯蔵所B棟で</u>	
		<u>715kW/m, ろ過水タンクで 296kW/m となることを確認した。発</u> 電話での見たい的な商(4.1541W())に対し、したなななたな	
		<u> 电灯での東天火緑独度(4,154kW/m)に対し、十分な余俗を催</u> 保していることを確認した	
		<u> </u>	
		配の位置にあり、火災が延焼し難いことから火線強度が大き	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
				<u>くなり難い。</u>	
				第1表 近傍の火線強度の最大値	
				ケース 対象施設 近傍の火線強度最大値 (kW/m) 可燃物	
				①ろ過水タンク 296 落葉広葉樹	
				1 ②固体廃棄物貯蔵所 B 棟 714 スギ 10 年生	
				①ろ過水タンク 274 落葉広葉樹	
				2 ②固体廃棄物貯蔵所 B 棟 715 落葉広葉樹	
				火線強度[kW/m] - 500 - 500 - 500 - 500 - 1000 - 2.000 - 3.000 - 4,000 - 5.000 - 10.000 - 5.000 - 10.000 - 15.000	
				 ■ 1,000 ■ 2,000 ■ 10,000 ■ 10,000	
				<u>第2図</u> ろ過水タンク及び固体廃棄物貯蔵所(B棟)周辺の	
				FARSITEの結果(ケース1の場合)	

柏崎刈羽原子力発電所 6/7号炉 (2	2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
柏崎刈羽原子力発電所	6 / 7 号炉	(2017. 12. 20 版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2 気 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 <

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-7	別紙 2.4	別紙2-8	
斜面に設定している防火帯の地盤安定性の観点からの考え方に ついて	斜面に設定している防火帯の地盤安定性 <u>について</u>	斜面に設定している防火帯の地盤安定性の観点からの考え方に ついて	
1. 防火帯の概要 防火帯は、第 1 図に示すとおり発電所設備の配置状況等を考 慮し、干渉しないように設定している。 設定に当たっては、草木を伐採する等、可燃物を排除し、そ の後、除草剤を散布した上で、モルタル吹付け等を行い、草木 の育成を抑制し、可燃物がない状態を維持する。		1. 防火帯の概要 防火帯は、第1図に示すとおり発電所設備の配置状況等を考慮し、干渉しないように設定している。 設定に当たっては、草木を伐採する等、可燃物を排除し、その後、除草剤を散布した上で、モルタル吹付け等を行い、草木の育成を抑制し、可燃物がない状態を維持する。	
第1図防火帯位置		第1図 防火帯位置図	
 2. 地震時の斜面崩壊による防火帯への影響評価 (1) 評価方針について 地震が起因となり,発電所敷地外にて森林火災が発生する ことは否定できないことから,安全上の配慮として,仮に地 震と森林火災が重畳した場合を想定し,地震時の斜面崩壊に よる防火帯への影響評価を行う。 	斜面に設定する防火帯範囲を下図に示す。この斜面については、 基準地震動を想定した地盤安定性評価を実施しており、崩落しな いことを確認している。このため、斜面に設定している防火帯が 斜面の崩落により機能を喪失することはない。	 2. 地震時の斜面崩壊による防火帯への影響評価 (1) 評価方針について <u>地震が起因となり,発電所敷地外にて森林火災が発生する</u> <u>ことは否定できないことから,安全上の配慮として,仮に地</u> <u>震と森林火災が重畳した場合を想定し,地震時の斜面崩壊に</u> <u>よる防火帯への影響評価を行う。</u> 	 ・条件の相違 【東海第二】 島根2号炉,柏崎6/7 は,安全上の配慮とし て評価を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2)森林火災が防火帯を突破する可能性について		(2) 森林火災が防火帯を突破する可能性について	
森林火災(単独事象)の影響評価では、下記に示す保守的な		森林火災(単独事象)の影響評価では、下記に示す保守的	
前提条件としている。		な前提条件としている。	
① 気象条件(湿度, 気温, 風速)は, 過去 10 年間におけ		① 気象条件(湿度,気温,風速)は,過去10年間にお	
る森林火災発生件数の多い 3~5.月のうち,最も厳しい		ける森林火災発生件数の多い3~8月のうち、最も	
条件の組み合わせとしている。		厳しい条件の組み合わせとしている。	
② 植生は,現地調査等で特定した樹種ごとに,より厳しい		② 植生は,現地調査等で特定した樹種ごとに,より厳	
評価となるような 林齢及び下草を設定している。		しい評価となるような林齢及び下草を設定してい	
		る。	
③ 日照時間の影響を考慮し,防火帯近傍における火線強度		③ 日照時間の影響を考慮し,防火帯近傍における火線	
が最大となるよう に森林火災の発火時刻を設定してい		強度が最大となるように森林火災の発火時刻を設定	
る。		している。	
自然現象の重畳を検討する場合、主事象(地震)に対して、		自然現象の重畳を検討する場合、主事象(地震)に対して、	
副事象(森林火災)の規模を小さくすることは一般的に用いら		副事象(森林火災)の規模を小さくすることは一般的に用い	
れている手法である。		られている手法である。	
森林火災については、定量的な規模を示すことは困難である		森林火災については、定量的な規模を示すことは困難であ	
が、同様に、主事象である地震と重畳する森林火災の規模が単	図 崩落評価の実施箇所と防火帯位置の関係	るが、同様に、主事象である地震と重畳する森林火災の規模	
独事象の森林火災より小さくなると考えられ、防火帯内に多く		が単独事象の森林火災より小さくなると考えられ、防火帯内	
の可燃物(草木等)が流入しなければ、防火帯の延焼防止機能		に多くの可燃物(草木等)が流入しなければ、防火帯の延焼	
が直ちに喪失することはない。		防止機能が直ちに喪失することはない。	
(3) 地震と森林水災重畳時の重大事故等への対応について		(3) 批震と森林水災重農時の重大重故笑への対応について	 ・冬供の相違
(b) 地震で飛行び火星星への星代学校寺への対応について 第 9 図に防火帯とアクセスルートを示す		(b) 地震で採用の東京市の東大学成寺 の方応について 第9回に防火帯とアクセスルートを示す	【柏崎 6/7】
防火帯についてけ、アクセスルートの周辺斜面の崩壊と同様		アクセスルート周辺の防火帯についてけ、アクセスルート	鳥根り号炉け アクセ
の考え方※に基づき(第3図)。斜面崩壊に伴い防火帯に可燃物		の周辺斜面の安定性評価と同様の考え方※に基づき安定性評	スルート周辺の安定
が流入し、延焼防止機能に影響がある場合は、機能の低下を想		価を行っており、アクセスルートへの影響がないことを確認	性評価を実施し,崩落
定する。		している。	の影響がないことを
<u>、こうでい</u> 防火帯の機能が低下した場合.防火帯の内側への森林火災の		アクセスルート周辺以外の斜面は、安定性評価を実施して	確認
延帰が想定されるものの,発電所敷地内には道路(幅 10m 程度)		いないため、斜面崩壊に伴い防火帯に可燃物が流入し、延焼	
や非植生のエリアが多くあることから、更なる延焼の可能性は		防止機能に影響がある場合は、機能の低下を想定する。	
低いと考えられる(「別紙 2-8 防火帯内植生による火 災につ		防火帯の機能が低下した場合、防火帯の内側への森林火災	
<u></u>		の延焼が想定されるものの、発電所敷地内には道路(概ね幅	
斜面崩壊の影響を受けるアクセスルートの範囲を第 4 図に、		員7m)や非植生のエリアがあることから、更なる延焼の可能	
地震時におけるアクセスルートを第 5-1 図,第 5-2 図に示す。		性は低いと考えられる。	
地震時に使用するアクセスルートのうち、中央交差点及び荒		※:「技術的能力 添付資料 1.0.2 可搬型重大事故等対	
浜側高台保管場所付近については、地震時の斜面崩壊の影響を		処設備保管場所及びアクセスルートについて」参照	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
受けないことから、防火帯の機能は維持され、当該箇所のアク			
セスルートは通行可能であり重大事故等に対処できる。			
※アクセスルートの周辺斜面の崩壊と同様の考え方は、「技術的			
能力 添付資料 1.0.2 可搬型重大事故等 対処設備保管場所			
及びアクセスルートについて」と同様とする。			
また、地震時に使用するアクセスルートのうち、中央交差点			
及び荒浜側高台保管場所付近を除く範囲については、森林火災			
が発生し、防火帯機能が低下する範囲から延焼してきたとして			
<u>も、防火帯の内側への更なる延焼の可能性は低いことから、当</u>			
該箇所のアクセスルートは通行可能(仮復旧の実施を含む)で			
あり重大事故等に対処できる。さらに、現場の状況に応じた自			
衛消防隊による予防散水により、防火帯内への森林火災の延焼			
リスク低減も可能である。			
l []			
第2図 防火帯とアクセスルート			
斜面のすべり範囲に応じた崩壊形状のイメージ			
【凡例】 すべり線の 崩壊土砂の 大きさ 到遠距離		第2図 防火帯とアクセスルート	
→ すべり線 小 短 → 崩壊後の土砂の堆積形状 → → → → → → → → → → → → →			
t Ę			
保守的な雄雄士砂の形状を設定			
アクセスルート料面の創味形状 (保守的な設定)			
第3図 斜面崩壊時の堆積土砂の形状			

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 4 図 斜面崩壊の影響を受けるアクセスルートの範囲			
第 5-1 図 地震時におけるアクセスルートの選定結果			

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 5-9 図 地震時におけるアクセスルートの選定結果			
<u> かりて</u> 回 地展时に4300 37 / こハル 下の 医足相木			
(4) 斜面崩壊に対する対策について			
(3)に示すようた斜面の崩壊によって防火帯の延焼防止機能低			
下が相定される場合は一安全上の配慮として当該箇所の新焼防止			
機能の低下を緩和するために 崩壊後の堆積十砂の影響範囲※を考			
第 6 図及び第 7 図に、対策を行う範囲の例を示す。			
※崩壊後の堆積十砂による影響範囲は、「技術的能力 添付資料			
102 可搬型重大事故等対机設備保管場所 及びアクセスル			
ートについて」と同様とする			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
斜面崩壊の影響範囲			
斜面崩壊を考慮した 可燃物が無いエリア (20m以上)			
★ 防火帯			
第 6 図 防火帯の延焼防止機能の低下緩和対策イメージ			
]		
第7図 可燃物がないエリア			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-8	別紙 2.3	別紙2-9	
防火帯内植生による火災について	防火帯内植生による評価対象施設への火災影響について	防火帯内植生による火災について	
 第1図に防火帯内の植生(平成27年1月現在)を示す。 発電用原子炉施設の周囲の植生は一部が低中木や広葉樹である ものの大半が芝地である。また,重大事故等対処設備の周囲は広 葉樹や10年生以上のマツで火線強度が低くなる植生であること から,…防火帯内の植生による発電用原子炉施設及び重大事故等対 処設備に対しての影響はない。 なお,重大事故等対処設備からの出火を想定した場合,炎感知 器やサーモカメラにて火災の早期検知が可能であること,周囲の 広葉樹等に延焼した場合を想定したとしても,柏崎刈羽原子力発 電所の防火帯内には道路(幅10m程度)や非植生のエリアが多く あることから,更なる延焼の可能性は低い。 	防火帯内の植生調査結果(平成28年8月現在)を基に作成した 防火帯内植生図を下図に示す。 発電所敷地内で,現場作業に伴い「屋外の危険物保管」や「火 気の使用」をする場合は,社内文書に基づき危険物や火気を管理 した状態で取り扱うことから,敷地内植生に火が延焼することは なく,火災が発生することはない。万が一火災が発生した場合で も,防火帯内の発電用原子炉施設周囲の主な植生は,火線強度が 低い,マツ(樹齢10年以上)や短い草であり,道路(幅約10m) や非植生のエリアも多くあることに加え,防火の観点から定期的 なパトロール等にて現場の状況を確認しており,迅速に消火対応 が可能であるため発電用原子炉施設への影響はない。	第1図に防火帯内の植生(平成31年2月現在)を示す。 <u>発電用原子炉施設,可搬型重大事故等対処設備の保管エリア及</u> <u>びアクセスルート近傍の防火帯内側については,樹木等伐採する</u> <u>こととしており,</u> 防火帯内の植生による発電用原子炉施設及び重 大事故等対処設備に対しての影響はない。 なお,重大事故等対処設備の発火を想定した場合,炎感知器や 熱感知器にて火災の早期検知が可能であること, <u>近傍の樹木等を</u> <u>伐採していること及び</u> 島根原子力発電所の防火帯内には道路や 非植生のエリアが多くあることから,更なる延焼の可能性は低 い。	・条件の相違 【柏崎 6/7,東海第二】 島根 2 号炉は,可搬型 重大事故等対処設備 の保管エリア及びア クセスルート近傍の 防火帯内側は,樹木等 伐採
第1図 発電所防火帯内植生図	図 防火帯内植生図	<figure></figure>	

柏崎刈羽	图原子力発電所 6/7号	炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所	2号炉	備考
		参考資料 2-1				参考2-1	
被ばく	評価で使用している気象条	条件との違いについて		被ば	く評価で使用している気質	象条件との違い	
神げく 証句	「一下」でいる気象を供	との違いについて以下に示		抽げく証価で	「庙田」でいる気免冬供と	の違いについて出下に示	
収はく町単				一次はく計画、	(使用している気象本件と		
-9 o	· · · · · · · · · · · · · · · · · · ·			9 0			
なお、被に	ばく評価は、柏崎刈羽原子	力発電所からの放射性物質		なお, 被ば<	、評価は、島根原子力発電	所からの放射性物質の拡	
の拡散状況を	:把握するために発電所構	内の気象観測所のデータを		散状況を把握す	トるために発電所構内の気	象観測所のデータを用い	
用いている。	一方,森林火災は発電所	構外からの火災の進展を評		ている。一方,	森林火災は発電所構外か	らの火災の進展を評価す	
価するため,	発電所周辺の気象を代表	するように発電所構外の気		るために、発電	這所周辺の気象を代表する	ように発電所構外の気象	
象観測所のラ	「一タを用いている。			観測所のデータ	タを用いている。		
	= サバノシーマン	、大厅在在供上的选议。		答1 末	ゆぶく証何では日していて	「一日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	
- − − − − − − − − − − − − − − − − − − −	マ 彼はく評価で使用してい	る気象余件との遅い		− − − − − − − − − − − − − − − − − − −	破ねく評価で使用している	気象余件との遅い	
	森林火災	被ばく評価		項目	森林火災	被ばく評価	
データ取得	柏崎気象観測所	発電所構内気象観測装置		評価項目	森林火災の延焼	放射性物質の大気拡散	
場所	新潟気象台			テータ取得場所	一 鹿島観測所, 松江気象台 - 過去 10 年 (2002~2012)		
データ取得期	過去 10 年(2003~2012 年)	1985 年 10 月から 1 年間(KK7)		<u> </u>	過去10年(2003~2012) 3~8月の最大風速	2009 年1月~12月の1年间 大気安定度の算出に使用	
同志	2~5日の是十国連	大気空空産の管山に使用		/ LN / LT	風速が大きいほど延焼しや	風速が小さい方が高濃度	
風速	3~5月の取入風速 岡速が大きい方が延悔しやすく	人気安定度の鼻面に使用 風速が小さい方が拡散しやすく			すく保守的	で拡散しやすくなる	
	保守的	なる		風向	3~8月の卓越風向(16方位)	16 方位の風向出現回数を考	
風向	3~5月の卓越風向(16方位)	16 方位の風向出現回数を考慮し				慮して評価	
		て評価		気温	3~8月の最高気温	評価には使用しない	
気温	3~5月の最高気温	評価には使用しない			ス温か高い方か可燃物の水 分量が小たくたり保守的		
	気温が高い万が可燃物の水分量			湿度	3~8月の最低湿度	評価には使用しない	
湿度	3~5月の最小湿度	評価には使用したい			湿度が低い方が可燃物の水		
	湿度が低い方が可燃物の水分量				分量が少なくなり保守的		
	が少なくなるため保守的			日射量	最大日射量(雲なし)とする	大気安定度の算出に使用	
日射量	最大日射量(雲なし)とする	大気安定度の算出に使用			日射が多い方が可燃物の水	日射量が大きい方が拡散	
	日射量が多い方が可燃物の水分	日射量が大きい方が拡散しやす			分量が少なくなり保守的	しやすくなる	
改五县	量が少なくなるため保守的	くなる		座羽里	降水重なしとする	計画には使用しない	
年 1重	降水重なしとする 降水がない方が可燃物の水分量	評価には使用しない			分量が少なくなるため保守的		
	が少なくなるため保守的					1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>参考資料 2-2</u>			
			・条件の相違
マツ 10 年生と設定することの妥当性について			【柏崎 6/7】
			島根2号炉は,植生調
マツ 10 年生未満とマツ 10 年生では, 可燃物データのうち生			査の結果,発電所構内
きた木質の fuel 量のみ異なり他のパラメータは同じである。			に 10 年生未満のマ
10 年生未満のマツが1本でも存在していれば 10 年生未満の			ツは存在しない
マツを選択するのではなく、10 年生未満のマツが一様に広がり、			
生きた木質の fuel 量が少ない状態であれば 10 年生未満とす			
る。10 年以上のマツが存在している中に 10 年生未満のマツが存			
在するようなエリアであれば、10 年生未満よりも生きた木質の			
fuel 量は多く延焼を抑制する効果があることから 10 年生未満			
のデータではなく 10 年生のデータを用いることは適当である。			
また,発電所構内の森林簿から生きた木質の fuel 量を算出す			
<u>ると*2</u> ,約 80ton/ha であり,マツ 10 年生の生きた木質の fuel			
量より大きいことから、10年生のデータを入れることは妥当であ			
<u>る。</u>			
第 1 表 マツ及び落葉広葉樹の可燃物データ			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
福島第一原子力発電所への林野火災に関する影響評価独立行政法			
人原子力安全基盤機構(JNES) 平成 24 年 6 月より抜粋			
※1:fuel 量とは、単位面積当たりの可燃物(燃料)の量[ton/ha]			
※2:森林簿に記載の区画ごとの面積 S[ha], 材積 V[m ³]及び, マツ			
の気乾比重 520[kg/m ³] ^{**3} から, 生きた木質の fuel 量			
<u>[ton/ha] を算出した。</u>			
<u>生きた木質の fuel 量=520×V÷S×1000</u>			
※3:一般財団法人日本木材総合情報センターより			
気乾比重:大気中に放置された木材が大気の温度条件と湿度			
条件に対応し、含有水分が平衡に達した状態での比重			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
参考資料 2-3			
8月の気象条件及び 3~5月の気象条件を適用した解析結果の比			・条件の相違
較について			【柏崎 6/7】
			地域特性を踏まえた,
<u>1. 森林火災の想定</u>			森林火災における気
<u>森林火災の想定における気象条件は,過去 10 年間(2003〜2012</u>			象条件の相違
年)を調査し,森林火災の発生件数の多い 3~5 月の卓越風向,			
最大風速,最高気温,及び最小湿度の組み合わせとしているが,			
新潟県,柏崎市・刈羽村・出雲崎町における森林火災発生件数は,			
3~5 月を除き,8 月にも発生している。このため,8 月の気象条			
件を適用した森林火災について、現在のプラント状況と植生等が			
異なっている箇所はあるが、過去に感度解析を実施している。			
発火点は最大火線強度が大きくなると考えられるケース 2 の			
<u> 発火点とし、これを代表ゲースとした解析結果の比較である。</u>			
(1) 后角冬州の乳空			
(1) <u>ス</u> 家未什の設定 8 日における過去 10 年間の気象条件を調本した結果を第 1			
<u> </u>			
第 1 表 8 月の気象条件を適用した気象条件と 3~5 月の気象条			
件との比較			
■向[16 方位] 最大風速[m/c] 最高気温[℃] 最小湿度[%]			
8月 南南東 11.0 37.5 31			
3~5月 南南東 16.0 31.9 12 (ケース 2) 1 1 1 1			
(2) 必要データ			
気象条件以外の植生データ等の FARSITE 入力データは,ケー			
ス 2 と同等とする。			
(2) よ始砕産まただよ水の知識に明の答用が出せて			
(3) 八禄独皮わよい八次の到達时间の鼻田結果			
<u> </u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第2表 火線強度および火炎の到達時間			
評価項目 8月 3~5月			
最大火線強度[kW/m] 1362 2948 ^{※1} レベの回遠時間[hum] 6.004 2.053 ^{※2}			
<			
※2:ケース3の火炎の到達時間(最小値)			
<u>2. 評価結果</u>			
過去に実施した解析であるが,8月の気象条件を適用したケー			
スでは、これまでと同様に、気象条件における気温の上昇に対し			
て、風速の低下や湿度の上昇による影響が大きく最大火線強度が			
低下する傾向を示しており、発電用原子炉施設への熱影響はケー			
ス 2 の評価に包絡される結果となっている。なお,最大火線強度			
の低下に対して、風速と湿度のうち、どちらの影響が大きいかに			
ついては確認できていない。			
また、同様の影響によって延焼速度が遅く、火炎の到達時間は			
ケース 3 に対して 2 倍以上となっており, 自衛消防隊の対応に			
影響をおよぼすことはないと評価する。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 2.5		
	<u>津波防護施設等に対する森林火災影響について</u>		・設備の相違 【東海第二】
	1. 評価対象の検討		島根2号炉は,評価対
	津波防護施設のうち森林火災の影響を受ける対象を表 1, 各		象となる津波防護施
	対象の設置箇所を図1に示す。		設等は存在しない
	<u>表1</u> 森林火災の影響を受ける対象		
	対象名 設置箇所 構造概要		
	鋼管杭鉄筋 ・丸ハ イブ 形状の鋼管を地下に埋設 コンクリート防潮壁 全体 ・地上部は厚さ 70cm のコンクリート被覆 ・地上部は厚さ 70cm のコンクリート被覆 ・地上部は厚さ 70cm のコンクリート被覆		
	通行抗鉄筋コンク リート防潮壁のう ち一定間隔の施 Tブ ロックの境界 ・鋼製アンカー、止水ゴム、鋼製防護部材等か ら構成される。 ・北上高さ(上端):T.P.+18m~T.P.20m		
	広 敷地南側境界付 ・鋼材製 防潮扉 近 ・地上高さ(上端):TP ±17m		
	<figure></figure>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	 2. 津波防護施設等に対する影響評価 2.1 鋼管杭鉄筋コンクリート防潮壁に対する熱影響評価 (1) 鋼管杭鉄筋コンクリート防潮壁の概要図 鋼管杭鉄筋コンクリート防潮壁(以下「防潮壁」という。)は, 地上部表面は鉄筋コンクリート製であるため,評価対象は鉄筋 コンクリートとして熱影響評価を実施した。 		
	<u>地盤高さの満上げ</u> 堤内側 <u>本層改良体</u> <u>東外側</u> <u>東外側</u> <u>東小値</u> <u>東小値</u> <u>東小値</u> <u>東小値</u> <u>東小値</u> <u>東小値</u> <u>東小値</u> <u>東小値</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東</u> <u>東小</u> <u>東</u> <u>東小</u> <u>東</u> <u>東</u> <u>東</u> <u>東</u> <u>東</u> <u>東</u> <u>東</u> <u>東</u>		
	<u>図2 防潮壁の概要図</u>		
	(2) 評価対象施設から最も近い防火帯外縁までの離隔距離 評価対象施設から最も近い防火帯外縁までの離隔距離を表 2 <u>に示す。</u> 麦2 評価対象施設から最も近い防火帯外縁までの離隔距離 評価対象施設から最も近い防火帯外縁までの離隔距離 渡価対象施設 渡価対象施設 渡価対象施設 渡価対象施設 渡価対象施設 渡価対象施設 渡価対象施設 渡価対象施設 渡崎距離 21		
	<u>(3)</u> 判断の考え方		
	 <u>a.許容温度</u> <u>火災時における短期温度上昇を考慮した場合において</u>, <u>コンクリート圧縮強度が維持される保守的な温度</u> 200℃以 		
	下とする。		
	b.評価方法 火災が発生した時間から燃料が燃え尽きるまでの間		
	定の輻射強度で外壁が昇温されるものとして,式1の一次		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>元非定常熱伝導方程式を差分法より解くことで、外壁表面</u>		
	の温度及び外壁表面の温度が 200℃となる輻射強度(=危険		
	輻射強度)を算出する。		
	$\rho C_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) \qquad (\vec{x} 1)$		
	$-k \frac{\partial T}{\partial x} = E \qquad (x=0)$		
	$\frac{\partial T}{\partial x} = 0 \qquad (x=L)$		
	(出典: 伝熱工学, 東京大学出版会)		
	<u>T :初期温度(50℃)** _ E:輻射強度(W/m²)</u>		
	<u>ρ</u> :密度(2,400kg/m ³) k:熱伝導率(1.63W/m/K)		
	<u>C_p:比熱(880J/kg/K) L:厚さ(m)</u>		
	※ 水戸地方気象台で観測された過去最高気温 38.4℃に保守		
	性を持たせた他		
	式1で求めた危険輻射強度Eとなる形態係数Φを、式2より		
	算出する。		
	$E = R f \cdot \Phi \tag{(式2)}$		
	$E:輻射強度(W/m^2), Rf: 火炎輻射強度(W/m^2),$		
	$\Phi:$ 形態係数		
	<u>(出典:評価ガイド)</u>		
	式2で求めた形態係数Φとなる危険距離Lを、式3より算出		
	する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (\vec{x} 3)$		
	ただし m= $\frac{H}{R}$ =3, n= $\frac{L}{R}$, A=(1+n) ² +m ² , B=(1-n) ² +m ²		
	Φ:形態係数.L:離隔距離(m).H:炎の高さ(m).		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		
	防潮壁の危険距離を算出した結果、森林からの離隔距離が危		
	<u>険距離を上回ることを確認した。防潮壁の評価結果を表3に示</u> オ		
	<u> 9 </u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	表3 防潮壁の評価結果		
	Thin スリ また (m) (m) 防湖 壁 18 21		
	2.2 止水ショイント部及び防潮扉に対する熱影響評価		
	(1) 止水ショイント部及び防閉床の協要区		
	<u> 血水ショインド的な病袋の後的物で衣面を復うているため</u> , 鋼型防護部材を熱影響対象として評価を実施した		
	防潮扉は鋼製の防潮扉を熱影響対象として評価を実施した。		
	上水ゴム 堤内側 止水ジョイント部 堤外側		
	提外側 断熱材 止水ゴム等の鋼製防護部材		
	提内側		
	図3 止水ジョイント部の概要図		
	堤外側 🖊 堤内側		
	<u>凶4</u> 防潮扉の		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(2) 各評価対象施設から最も近い森林火災位置までの離隔距離		
	各評価対象施設から最も近い森林火災位置までの離隔距離を		
	<u>表4に示す。</u>		
	表4 各対象から最も近い森林火災位置までの離隔距離		
	評価対象施設 止水ジョイント部 防潮扉		
	離隔距離 (m) 21 35		
	(3) 判断の考え方		
	<u>a. 許容温度</u>		
	鋼製防護部材及び防潮扉の許容温度は, 火災時における		
	短期温度上昇を考慮した場合において, 鋼材の強度が維持		
	される保守的な温度 325 て以下とする。		
	<u> </u>		
	一足の輻射強度で調要防護部材及び防衛肺が升価される		
	ものとして、衣面ての輻射による八然重と対加然仏厓によ		
	「「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」		
	転射強度)を求める。		
	$T = T_0 + \frac{E}{2h} \tag{$\frac{1}{2}}$		
	(出典:建築火災のメカニズムと火災安全設計,		
	財団法人日本建築センター)		
	<u>T</u> :許容温度(325℃), <u>T₀</u> :初期温度(50℃) ^{*1}		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値		
	※2 「空気調和ハンドブック」に記載されている表面		
	<u>熱伝達率のうち、保守的に最少となる垂直外壁面</u>		
	における夏場の表面熱伝達率(空気)を採用		
	式1で求めた危険輻射強度Eとなる形態係数 Φ を,式2よ		
	り算出する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	$E = R f \cdot \Phi$	(式2)		
	<u>E:輻射強度(W/m²), R</u> f	f : 火炎輻射強度(₩/m²),		
	$\Phi:$ 形態係数			
		(出典:評価ガイド)		
	式 2 で求めた形態係数 Φ	<u>となる危険距離Lを,式3より算</u>		
	出する。			
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \right\}$	$\left[\sqrt{\frac{A(n-l)}{B(n+l)}}\right] - \frac{1}{n} \tan^{-1}\left[\sqrt{\frac{(n-l)}{(n+l)}}\right] \qquad (\overrightarrow{z} \overleftarrow{\zeta} 3)$		
	ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = ($	$(1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	Φ:形態係数, L:離隔距離	(m), H:炎の高さ (m),		
	R:燃焼半径(m)			
		(出典:評価ガイド)		
	上記のとおり危険距離を	算出し、最も近い森林火災位置か		
	ら影響評価対象までの離隔	距離を下回るか評価を実施した。		
	ぎ ケイトロ			
	正示ショイント部は、正	<u>水コム寺を防護する鋼製防護部材</u> 本サル災位置からの離厚距離が		
	6 除距離を上回ることを確			
	する綱製防護部材の裏面に	いていた。また, エバーム そこの (1) には不燃性の 断熱材を設置するた		
	め、止水ジョイント部への	影響はない。(別紙 2.10)		
	防潮扉は、鋼製の扉に対	して危険距離を算出した結果,森		
	林火災位置からの離隔距離	が危険距離を上回ることを確認し		
	た。また、防潮扉には水密	ゴムがあるが,直接火災の影響を		
	受けることはなく、周囲に	火災が迫った際は必要に応じ散水		
	し温度上昇を抑制する。ま	た万が一,防潮扉からの熱により		
	水密ゴムの機能が喪失した	場合には、速やかに取り替え等の		
	対応を図る。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	表 5 止水ジョイント部及び防潮扉の評価結果		
	評価対象施設 危険距離 森林からの離隔距離 (m) (m)		
	(鋼製防護部材で評価) 防湖扉 20 35		
	<u>(4) その他の設備</u>		
	その他の設備として津波監視設備がある。津波防護施設上部		
	に設置している④北西側及び⑦南西側の津波・構内監視カメラ		
	は森林から近い位置にあるため、火災の影響を受け機能を喪失		
	<u>する可能性があるが、他の津波・構内監視カメラを用いて監視</u>		
	することで対応は可能である。また、状況を確認し速やかに予		
	備品と交換する対応をとる。各津波・構内監視カメラの位置を		
	図5に, 主な監視範囲を表6に示す。 		
	図5 津波・構内監視カメラの配置図		
	表 6 津波・構内監視カメラの主な監視範囲		
	主な監視範囲		
	設置場所 敷地 津波防護施設 放水路 東側<西側< 西側 北側 東側 南側 北側		
	原子炉建屋 ① 北東側 〇 〇 〇		
	(4) 北西側 〇 〇 津波防護施設 ⑤ 北東側 〇 〇		
	上部 ⑥ 南東側 〇 〇 〇 〇 ⑦ 南西側 〇 〇 〇 〇 〇		
			<u> </u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 2.7		
	特定の安全重要度分類のクラス3施設に対する熱影響評価		・設備の相違
			【東海第二】
	放射性物質を内包する施設及び人員が長時間居住する可能性が		島根2号炉は,防火帯
	ある安全重要度分類のクラス3施設に対して、森林火災により上		に近接している固体
	昇する外壁表面温度が許容温度200℃以下であることを確認した。		廃棄物貯蔵所D棟を
	各外壁表面温度を下表,該当する施設の位置と離隔距離を下図に 示す。		評価
	表 該当する安全重要度分類のクラス3施設の外壁表面温度		
	該当930/mity (℃) 固体廃棄物貯蔵庫 [※] 60 廃棄物処理建屋 54		
	廃業物に発送 の1 緊急時対策所建屋 89 ※:防火帯外縁からの距離が近く火災影響が大きいB棟を代表として評価		
	図 該当する施設の位置と離隔距離		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 2.8		
	可搬型重大事故等対処設備及びアクセスルートへの熱影響		・条件の相違
	について		【東海第二】
			島根2号炉は,アクセ
	1. 概要		スルートへの熱影響
	森林火災の延焼による影響を防止するため、可搬型重大事故		については,保管アク
	等対処設備及びアクセスルートは防火帯の内側に配備してい		セス側で詳細に評価
	<u>a.</u>		
	<u>このうち,防火帯近傍に配備する可搬型重大事故等対処設備</u>		
	<u>保管場所及びアクセスルートについては,森林外縁からの必要</u>		
	な離隔距離を確保しており、森林火災による熱影響を受けるこ		
	<u>とはない。</u>		
	2. 森林火災の熱影響評価		
	FARSITE解析結果に基づき、防火帯外縁において最も		
	高い火炎輻射強度が、一様に防火帯外縁に存在すると保守的に		
	仮定し、一定の離隔距離において物体が受ける輻射強度を算出		
	した。離隔距離と輻射強度の関係を図1に示す。		
	図1より,防火帯外縁から53m 以上の離隔距離を確保するこ		
	とにより, 輻射強度は, 一人か長時間さらされても舌痛を感しな		
	い輻射強度」とされる 1.6KW/m [*] 以下となり、緑林火災による 熱影響な受けてわてわざわいてした体認した。た時熱(一頭時		
	然影響を受けるわてれかないことを確認した。 放射熱 (三輪射 改在) の影響に開きて知見たま1に二十		
	<u>強度」の影響に関する和兄を衣1に小り。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 30 35 40 45 50 55 6	0	
	商作隔 距离距 (m)		
	図1 離隔距離と輻射強度の相関図		
	<u>表1 輻射強度の影響(石油コンビナートの防災アセスメン</u> 指針より抜粋)	<u></u>	
	表 5.17 放射熱の影響		
	放射熱強度 状況および説明 出典		
	0.9 800 太陽(真夏)放射熱強度 *1)		
	1.3 1.080 人が長時間荼蘼されても安全な强度 **2) 1.6 1,400 長時間さらされても苦痛を感じない強度 *5)		
	2.3 2,000 露出人体に対する危険範囲(接近可能) *3) 1 分問以内で痛みを感じる強度 *3) 現指針(平成 13 年)に示されている液面火災の基準値		
	2.4 2,050 地震時の市街地大火に対する避難計画で用いられる許容限界 *4) 4.0 3,400 20,秒で痛みを威じる強度、皮膚に水疱を生じる場合があるが	-	
	4.0 0,400 2019 Cm がをむこう 3.0 (2) (大雨に小池を上して3.5 (1.5 (1.5 (1.5 (1.5 (1.5 (1.5 (1.5 (1		
	4.6 4,000 10~20 秒で舌痛を感じる強度 古い木板が長時間受熱すると引火する強度 *2)		
	フレアスタック直下での熱量規制(高圧ガス保安法他) 8.1 7,000 10~20 秒で火傷となる強度 *2)	4	
	9.5 8,200 8 秒で痛みの限界に達し、20 秒で第 2 度の火傷 (赤く斑点がで *5) き水疝が生じる) た合う *5)		
	11.6 10,000 現指針(平成13年)に示されているファイヤーボールの基準 値(ファイヤーボールの継続時間は概ね数秒以下と考えられる *3)		
	11.6~ 10,000~ 約 15 分間に木材繊維などが発火する強度 *2)		
	12.5 10,800 木片が引火する、あるいはプラスチックチューブが溶ける最小 *5) エネルギー		
	25.0 21,500 長時間暴露により木片が自然発火する最小エネルギー *5) 37.5 32.300 プロセス爆発に被害を与えるのに十分な強度 *5)		
	 *1) 連科年表 *2) 高圧ガス保安協会:コンピナート保安・防災技術指針(1974) *3) 高防庁特殊災害室:石油コンピナートの防災アセスメント指針(2001) *4) 長谷見雄二,重川希志依:火災時における人間の耐放射限界について,日本火災学会論 集,Vol.31,No.1(1981) *5) Manual of Industrial Hazard Assessment Techniques, ed.P.J.Kayes. Washington, DC: Office Environmental and Scientific Affairs, World Bank. (1985) 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	3. 森林火災による熱影響評価結果		
	<u>保管場所に近接した場所で森林火災が発生し、火炎が防火帯</u>		
	<u>外縁まで到達した場合, 輻射強度が 1.6kW/m²※以下となる森林</u>		
	からの離隔距離は 53m となるが,西側及び南側保管場所の可搬		
	型重大事故等対処設備保管スペースは,森林から 53m 以上の離		
	<u>隔を確保しているため,熱影響を受けない。また,熱影響を受</u>		
	けないアクセスルートを確保していることから,可搬型設備の		
	走行及び運搬に影響はない。輻射強度が 1.6k₩/m²以上となる		
	範囲を図2に示す。		
	※ 人が長時間さらされても苦痛を感じない強度(出典:石油コ		
	ンビナートの防災アセスメント指針)		
	図 2 輻射強度が 1.6kW/m ² 以上となる範囲		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 2.9		
	<u>外部火災を想定したモニタリングポストAへのホース展張検証</u>		・条件の相違
			【東海第二】
	<u>1. ホース展張距離が長いケース</u>		島根2号炉は,一番廠
			しいケースでもホー
	日時: 平成 26 年 11 月 18 日(火) 14:00~15:00		ス展開が可能なこと
	<u>場所:モニタリンクホストAエリア</u>		を既に記載
	水槽竹相防ホンノ日動車及び化子相防日動車を連結させ、約		
	900回のホース展示便証を行い、日単伯の隊が来自した時点がら		
	<u>20) で 展 派 引 能 て 認 る こ と 2 確 能 じ た 。</u> (3) 絵 証 結 里 の 分 析		
	防火帯内の屋外消火栓から防火帯周辺までの最も離隔距離が		
	長い敷地北西側は、300m 程度のホース展張が必要となる。この		
	敷地南西側に、最も早く到達する発火点3の結果(火炎到達時		
	間 0.7 時間(約 40 分))を考慮しても,検証結果はホース展張		
	900m を 20 分で実施しているため,長いホース展張が必要とな		
	る箇所であっても火炎到達前に散水活動を行うことは可能であ		
	<u>a.</u>		
	$\begin{array}{c} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} P$		
	モニタリングポストム		
	図1 検証概要図(モニタリングポストA消火)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	2. 火炎到達時間が短いケース		
	<u>(1) 検証日時,場所</u>		
	日時: 平成 26 年 10 月 23 日(木) 14:30~15:30		
	場所:モニタリングポストDエリア		
	<u>(2) 検証内容</u>		
	水槽付消防ポンプ自動車及び化学消防自動車を用いて,約		
	150mのホース展張検証を行い,自衛消防隊が集合した時点か		
	ら 10 分で移動からホース展張までが可能であることを確認		
	<u>Lt.</u>		
	<u>(3) 検証結果の分析</u>		
	防火帯外縁に最も早く到達する発火点1の結果(火炎到達		
	時間 0.2 時間(約 12 分))を考慮しても,検証結果はホース		
	展張 150m を 10 分で実施しているため,防火帯外縁に最も早		
	く到達する火災であっても火炎到達前に散水活動を行うこと		
	は可能である。		
	<u>図 2 検証概要図(モニタリングポストD消火)</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 2.10		
	止水ゴム等を防護する鋼製防護部材について		・設備の相違
			【東海第二】
	1. 鋼製防護部材の裏面に設置する断熱材		島根2号炉は,評価対
	<u> 鋼製防護部材が火災影響になり高温になると、裏面にある止</u>		象となる津波防護施
	水ゴム等に影響を与える可能性があるため、鋼製防護部材の裏		設等は存在しない
	<u> </u>		
	<u>か約10m 柱度で、表面の止水コム寺に影響を与えないことを唯</u> 初した。証価拠合図し証価は用ない下にデオ		
	<u> 認した。計価税</u> ぶ 因 と 計 価		
	森林火災からの輻射		
	断熱材裏面からの輻射 鋼製防護部材		
	Ptt-SáB Bě		
	図1 鋼製防護部材と断熱材の概念図		
	$\lambda \times (T - T)$		
	$d = \frac{\kappa \wedge (\Gamma_{out} - \Gamma_{in})}{h \times (T_{in} - T)} = 0.015m$		
	<u>(出典:JIS 9501 2016)</u>		
	<u>d</u> :断熱材の厚さ(m)		
	λ : 断熱材の熱伝導率 $(0.034W/(m \cdot K))^{\times 1}$		
	T_{out} : 断熱材表面(鋼製部材側)温度(325 °C)* ²		
	<u>1 in</u> : <u></u> (加烈 100 C) ***		
	<u>1: 向囲空気温度(3(U) ***</u> ト・麹伝法索(2 20W / (-2 - V)) *5		
	<u>II: 款価運業 (8.23W/ (II・ N/) \sim</u> ※1		
	<u> ※1 仏然上子貝科(クノヘリールの他)</u> ※9 毎期温度上見時において細けの強度が維持される		
	<u>※2 応労価度上升时にねい、調約の知度が推行される</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	温度		
	<u>※3 裏面への放熱が太陽輻射熱強度(0.9kW/m²)未満</u>		
	<u>となる温度(100℃)</u>		
	<u>※4</u> 水戸地方気象台で観測された過去 10 年間の最高		
	気温		
	<u>※5 空気調和・衛生工学便覧(静止空気に対する垂直</u>		
	表面の値)		
	<u>2. 鋼製防護部材の構造</u>		
	鋼製防護部材は、止水ジョイント部の側面を防護するよう設		
	置する。FARSITE解析の結果、津波防護施設周囲で発生		
	する森林火災の最長の火災長1.6mであり,津波防護施設の地上		
	高さは約3m以上で火炎長よりも高くなるため、津波防護施設上		
	部が熱影響を受ける可能性は低い。方一、火炎長が高い森林火		
	災が発生した際には、必要に応じ、地上局さが低い敷地北西側 の決決はまたには、の要に応じ、地上局さか低い敷地北西側		
	の津波防護施設を優先して散水活動により温度上昇を抑制す		
	<u>a.</u>		
	止水ゴム		
	<u> 上水ジョイント部 </u>		
	図2 止水ジョイント部と鋼製防護部材		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------	---	--------------	-------------------------
	<u>別紙 2.11</u>		
	お水吹だ。し取動状異体却。の影動対象異なっいで		、乳供の扣当
	<u> </u>		・ ・ ・
	故水敗ゲート取動法置外恐が水災影響にたり真混にたると		▲本毎年一】 自根 2 号 后け 証価対
	内部にあろ駆動装置に影響を与える可能性があろため 車面に		象とたろ津波防護施
	断熱材を設置する。		設等は存在しない
	断熱材は一般的に使用されている硬質ウレタンフォームを想		
	定し,断熱材厚さが約 27cm 程度で,放水路ゲート駆動装置外殻		
	裏面の温度上昇は 1℃未満となり内部への熱影響を与えないこ		
	とを確認した。評価概念図と評価結果を以下に示す。		
	$(T_1 - T_2)$		
	$Q = \frac{1}{\left(\frac{1}{b} + \frac{\delta}{2}\right)}$		
	t' $= \frac{Q}{h} + T_2$		
	Q : 放散熱量 (W/m ²)		
	λ : 断熱材の熱伝導率 (0.021W/m/K) ^{*1}		
	<u>T</u> ₁ :外殼表面温度(126℃) ^{※2}		
	<u>T₂</u> :内気温度(20℃)		
	t':断熱材表面温度(℃)		
	<u>h</u> : 熱伝達率 (8.29W/m ² /K) ^{※3}		
	※1 硬質ウレタンフォーム断熱材の熱伝導率		
	※2 森林火災の熱影響を受けた場合の到達温度		
	※3 空気調和・衛生工学便覧(静止空気に対する垂		
	直表面の値)		
	熱伝達率 h		
	外気温度 T ₁ 外 設 鋼 板 材 の気温度 T ₂ 文 散散熱量 Q		
	断熱材厚さ δ		
	図 評価概念図		