推載地路子が発達(PE 6/7 分与死 (9017.12.20.02) 顕磁芝 (2017.12.20.02) 電荷 (2017.2.20.02) 電荷 (2017.2.20.02)		まとめ資料比較表 〔有効性評価 添付資料 2.	. 6. 2]	
11日またのため、価格技能なるストム1 いーー品を発展】 第4世世界4.2.2 第4世世界4.2.2 第4世世界4.2.2 21世上をかため、価格技能なるストム1 いーー品を発展】 第4世世界4.2.2 第4世世界4.2.2 第4世世界4.2.2 21世上をかため、価格技能なるストム1 いーー品を発展】 第4世世界4.2.2 第4世世界4.2.2 第4世世界4.2.2 21世上をかため、価格技能などの大部体量準備について 第4世世界4.2.2 第4世世界4.2.2 第4世世界4.2.2 第4世世界4.2.2 21世上の日本の「日本日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<complex-block><complex-block></complex-block></complex-block>	【比較のため,「添付資料 2.3.1.1」の一部を記載】	添付資料 2.6.2	添付資料 2.6.2	
	<section-header><section-header><section-header><section-header><section-header><complex-block></complex-block></section-header></section-header></section-header></section-header></section-header>	<section-header></section-header>	 敷地境界での実効線量評価について 【事象の概要】 1. LOCAが発生し、高圧・低圧注水機能が喪失するが低圧原子炉代替注水系(常設)による原子炉注水により原子炉水位は回復・維持される。 発生した蒸気は逃がし安全弁を通じてサブレッション・チェンバ(S/C)に移行する。 2. 事象発生から約27時間後、サブレッション・ブール水位が、通常水位+約1.3mに到達することにより格納容器ペントを実施する。 【評価結果】 敷地境界での実効線量は、5mSvに対して十分小さい。(ドライウェル、サブレッション・チェンバのいずれのベントラインを経由した場合であっても、原子炉圧力容器から逃がし安全弁を経由し、サブレッション・チェンバに排出された気体を排出するため、サブレッション・チェンバでのスクラビング効果に期待できる。 なお、LOCA時注水機能喪失においては、破断日より原子炉格納容器内に直接蒸気が排出されるものの、本評価では考慮していないが、原子炉格納容器内での自然沈着や格納容器スブレイによる除去に期待できるため、S/C内でのスクラビング等による除染係数(DF10)に対して通色ない効果:が得られるものと考える。 ※「59-11 原子炉制御室の居住性に係る被ばく評価について ※「59-11 原子炉制御室の居住性に係る被ばく評価について ※「59-11 原子炉制御室の居住性に係る被ばく評価について ※「59-11 原子炉制御室の居住性に係る被ばく評価について 	 ・解析結果の相違 【柏崎 6/7,東海第二】 ・設備設計の相違 【柏崎 6/7,東海第二】 島根 2 号炉(Mark-I 改)と柏崎 6/7(ABWR) の最高使用圧力の相違。 ・運用の相違 【柏崎 6/7,東海第二】 島根 2 号炉では,耐圧 強化ベントを自主対策 設備と位置付けている。

	備考
出について	
炉水中のよう素 (無機よう素) 約 1.0×10 ¹² [Bq] (I-131 等価量)	
無機よう素 100% 炉内気相郎移行	
無機よう素の 無機よう素気相移行割合 7.15% S/Cスクラビング	
無機よう素 DF 5 1.43% フィルタベント 無機よう素:DF10 無機よう素:DF10	
無機よう素 有機よう素 : DF50 0.014% 約6.8×10 ⁷ [Bq] (減衰を考慮)	

~炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	燃料棒から追加放出される希ガス 約 6.0×10 ¹⁵ Bq		
	● 原子炉圧力容器気相部への放出 放出割合:100%		
	原子炉圧力容器内気相中の希ガス		
	放出割合:100% 体納容器内気相中の希ガス		
	(耐圧強化ベントから大気へ放出 放出割合:100%)		
	耐圧強化ベント系から放出される希ガス 約 1.5×10 ¹⁴ Bq ^{**}		
	↓ 耐圧強化ベント 排気筒放出		
	※:ベント開始(事象発生 28 時間後)までの放射性物質の自然減衰を考慮		
	<u>第3図 耐圧強化ベント系による格納容器ベント時の</u> <u>放射性希ガスの大気放出過程</u> <u>(γ線実効エネルギ0.5MeV 換算値)</u>		

~炉	備考

まとめ資料比較表 〔有効性評価 添付資料 2.6.3〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料2.6.2	添付資料 2.6.5	添付資料 2.6.3	
安定状態について	安定状態について(LOCA時注水機能喪失)	安定状態について (LOCA時注水機能喪失)	
LOCA 時注水機能喪失時の安定状態については以下のとおり。	LOCA 時注水機能喪失時の安定状態について <u>は</u> ,以下のとお	LOCA時注水機能喪失時の安定状態については以下のとおり。	
	9 °		
原子炉安定停止状態:事象発生後,設計基準事故対処設備及び	原子炉安定停止状態:事象発生後,設計基準事故対処設備及び	原子炉安定停止状態:事象発生後,設計基準事故対処設備及び	
重大事故等対処設備を用いた炉心冷却に	重大事故等対処設備を用いた炉心冷却	重大事故等対処設備を用いた炉心冷却	
より、炉心冠水が維持でき、また、冷却	が維持可能であり、また、冷却のための	により、炉心冠水が維持でき、また、冷	
のための設備がその後も機能維持できる	設備がその後も機能維持でき、かつ、必	却のための設備がその後も機能維持で	
と判断され、かつ、必要な要員の不足や	要な要員の不足や資源の枯渇等のあら	きると判断され,かつ,必要な要員の不	
資源の枯渇等のあらかじめ想定される事	かじめ想定される事象悪化のおそれが	足や資源の枯渇等のあらかじめ想定さ	
象悪化のおそれがない場合、安定停止状	ない場合に安定停止状態が確立された	れる事象悪化のおそれがない場合…安定	
態が確立されたものとする。	ものとする。	停止状態が確立されたものとする。	
原子炉格納容器安定状態:炉心冠水後に,設計基準事故対処設	格納容器安定状態 : 炉心冷却が維持された後に,設計基準事	原子炉格納容器安定状態: 炉心冠水後に, 設計基準事故対処設	
備及び重大事故等対処設備を用いた	故対処設備及び重大事故等対処設備を	備及び重大事故等対処設備を用い	
原子炉格納容器除熱機能(格納容器	用いた <u>格納容器除熱</u> により格納容器圧	た原子炉格納容器除熱機能(格納容	
<u>圧力逃がし装置等</u> ,残留熱除去系又	力及び温度が安定又は低下傾向に転じ,	器フィルタベント系, 残留熱除去系	・運用の相違
は <u>代替循環冷却系</u>)により,格納容	また, <u>格納容器除熱の</u> ための設備がその	又は <u>残留熱代替除去系</u>)により,格	【柏崎 6/7,東海第二】
器圧力及び温度が安定又は低下傾向	後も機能維持でき…かつ、必要な要員の	納容器圧力及び温度が安定又は低	耐圧強化ベントを使
に転じ、また、原子炉格納容器除熱	不足や資源の枯渇等のあらかじめ想定	下傾向に転じ、また、原子炉格納容	用しない。(以降、同様
のための設備がその後も機能維持で	される事象悪化のおそれがない場合に	器除熱のための設備がその後も機	な相違については記載
きると判断され、かつ、必要な要員	安定状態が確立されたものとする。	能維持できると判断され、かつ、必	省略)
の不足や資源の枯渇等のあらかじめ		要な要員の不足や資源の枯渇等の	
想定される事象悪化のおそれがない		あらかじめ想定される事象悪化の	
場合、安定状態が確立されたものと		おそれがない場合…安定状態が確立	
する。		されたものとする。	
【安定状態の確立について】	【安定状態の確立について】	【安定状態の確立について】	
原子炉安定停止状態の確立について	原子炉安定停止状態の確立について	原子炉安定停止状態の確立について	
逃がし安全弁を開維持することで,低圧代替注水系(常設)に	逃がし安全弁により原子炉減圧状態を維持し、常設低圧代替注	逃がし安全弁を開維持することで,低圧原子炉代替注水系(常	
よる注水継続により炉心が冠水し、炉心の冷却が維持され、原	水系ポンプを用いた低圧代替注水系(常設)による原子炉注	<u>設)</u> による <u>注水継続により炉心が冠水し</u> , 炉心の冷却が維持さ	
子炉安定停止状態が確立される。	水を継続することで、 炉心の冷却は維持され原子炉安定停止状	れ、原子炉安定停止状態が確立される。	
	態が確立される。		
原子炉格納容器安定状態の確立について	格納容器安定状態の確立について	原子炉格納容器安定状態の確立について	
炉心冷却を継続し,事象発生から約17時間後に格納容器圧力逃	炉心冷却を継続し,事象発生の約28時間後に格納容器圧力逃	炉心冷却を継続し、事象発生から約27時間後に格納容器フィ	・解析結果の相違
<u>がし装置等</u> による原子炉格納容器除熱を開始することで,格納	がし装置等を用いた <u>格納容器除熱を実施</u> することで,格納容器	ルタベント系による原子炉格納容器除熱を開始することで、格	【柏崎 6/7】
容器圧力及び温度は安定又は低下傾向になり、格納容器温度は	圧力及び温度は安定又は低下傾向となる。格納容器雰囲気温度	納容器圧力及び温度は安定又は低下傾向になり,格納容器温度	
150℃を下回るとともに、ドライウェル温度は、低圧注水継続の	は 150℃を下回るとともに, <u>ドライウェル雰囲気温度</u> は,低圧	は 150℃を下回るとともに, <u>ドライウェル温度</u> は,低圧注水継	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
ための逃がし安全弁の機能維持が確認されている126℃を上回	注水継続のための逃がし安全弁の機能維持が確認されている	続のための逃がし安全弁の機能維持が確認されている 126℃を	
ることはなく、原子炉格納容器安定状態が確立される。なお、	126℃ を上回ることはなく,格納容器安定状態が確立される。	上回ることはなく、原子炉格納容器安定状態が確立される。な	
除熱機能として <u>格納容器圧力逃がし装置等</u> を使用するが, <u>本事</u>	なお、除熱機能として <u>格納容器圧力逃がし装置等</u> を使用する	お、除熱機能として格納容器フィルタベント系を使用するが、	
象より使用までの時間が短く放射性物質の減衰効果が少ない	が,敷地境界における実効線量の評価結果は <u>約6.2×10⁻¹mSv</u>	<u>敷地境界における実効線量の評価結果は約1.7×10⁻²mSv とな</u>	・解析結果の相違
「2.3.1 全交流動力電源喪失(外部電源喪失+DG 喪失)」の実	となり、また、燃料被覆管の破裂も発生しないことから、周辺	り,また,燃料被覆管の破裂も発生しないことから,周辺公衆	【東海第二】
効線量約4.9×10 ⁻² mSv 以下となり、燃料被覆管破裂は発生しな	公衆に対して著しい放射線被ばくのリスクを与えることはな	に対して著しい放射線被ばくのリスクを与えることはない。	・記載箇所の相違
いため,周辺の公衆に対して著しい放射線被ばくのリスクを与	1 V.		【柏崎 6/7】
えることはなく,敷地境界での実効線量評価は5mSv を十分に下			島根2号炉は,敷地境
回る。			界での実効線量評価は,
			格納容器フィルタベン
			ト系の使用までの時間
			が最も短い本事象によ
			り実施しているが, 柏崎
			6/7 は「2.3.1」が最も
			短くなることから,
			「2.3.1」の評価を代表
			としている。
また,重大事故等対策時に必要な要員は確保可能であり, また,	また、重大事故等対策時に必要な要員は確保可能であり、必要	また、重大事故等対策時に必要な要員は確保可能であり、必要	
必要な水源,燃料及び電源を供給可能である。	な水源,燃料及び電源を供給可能である。	な水源、燃料及び電源を供給可能である。	
【安定状態の維持について】	【安定状態の維持について】	【安定状態の維持について】	
上記の炉心損傷防止対策を継続することにより安定状態を維持	上記の炉心損傷防止対策を継続することにより安定状態を維	上記の炉心損傷防止対策を継続することにより安定状態を維	
できる。	持できる。	持できる。	
また、代替循環冷却系を用いて又は残留熱除去系機能を復旧し	また、代替循環冷却系又は残留熱除去系の復旧により除熱を行	また,残留熱代替除去系を用いて又は残留熱除去系機能を復旧	
て除熱を行い、さらに原子炉格納容器を隔離することによって、	い,格納容器ベントを閉止し格納容器を隔離することで,安	して除熱を行い、さらに原子炉格納容器を隔離することによっ	
安定状態の更なる除熱機能の確保及び維持が可能となる。(添付	定状態の更なる除熱機能の確保及び維持が可能となる。	て,安定状態の更なる除熱機能の確保及び維持が可能となる。	
資料2.1.1 別紙1)	(添付資料 2. 1. 2 別紙 1)	(添付資料 2.1.2 別紙 1 参照)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	Ų	<i>備 考</i>
ラメータに中える外ラメータに中える影響 評価項目となるパラメータに与える影響 このサド外糸位を適切に評価することから、評価項目となる (ラメータに与える影響は小さい。 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	パラメータによったいえる影響 たちっとノンドンなどの、新作品展示であった。 たちっとうとうとしたえる影響 (たちっパラノータにしたえる影響 (たちっパラノータにしたえる影響 (たちっぷうノータにしたえる影響 (たちっぷうノータにしたえる影響 (たちっぷって、「「「「「」」」、 (たちっぷっし、「「」」、 (たちっぷっし、「「」」、 (たちっぷっし、 (たちっっつ、 (たちっっつ、 (たちっぷっし、 (たちっぷっし、 (たちっっ、 (たちっっつ、 (たちっっ、 (たちっっ、 (たちっっ、 (たちっっ、 (たちっっつ、 (たちっっつ、 (たちっっ、 (たちっつ、 (たちっっ、 (たちっつ、 (たちっっつ、 (たちっつ、 (たちっつつ、<	「解析条件を最確条件とした場合の運転員等操作 時間及び評価項目となるバラメータに与える影響」 にて確認。	
い運転員等操作時間及び評価項目となる $>$ 時注水機能喪失) $(2/2)$ 時注水機能喪失) $(2/2)$ 運転員等性時間及び評解のの	かう運転員等操作時間及び評価項目となる影響 A F E R) $(2/2)$ A F E R) $(2/2)$ asen by a set of the fill b C C 評価 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	生水流 「解析条件を最確条件とした場合の運転員等操作時間及び 少なめ 評価項目となるパラメータに与える影響」にて確認。	
一下における重要現象の不確かされて、 「「「しして人」 「ボブレナムの二相木(心を除き、ダウンカマの二相 本値、ビュラウド外本(の)に関する不能かさを取り 「ボブレナムの二相木(心を除き、ダウンカマの二相 本値、ビュラウド外本(の)に関する不能かさを取り 成長の昭振山線信のどもらになして、 に体育では、 は後の昭振山線信のどもらになして、 に体育では なたるで現在した。 「「」のこ人」 「」のこ人」 「して、 「」のこ人」 「して、 「」のこ人」 「して、 「」のこ人」 「」のこれを次にする 「」、 「」、 「」、 「」、 「」、 「」、 「」、 「」、	1. トドレンはける重要現象の不確かえ、 1. トドレンはける重要現象の不確かさ 8. (3. (3. (4. (1. (1. (1. (1. (1. (1. (1. (1. (1. (1	1値に含まれる。各系統の設計条件に基づく原子炉圧力と 1関係を使用しており、実機設備仕機に対して注水流量を 1発、燃料被覆管温度を高めに評価する。 - 2、燃料被覆管温度を高めに評価する。	
表 1-1 解析・ゴ 解析・ゴ 分類 ①数風・濃縮・ボ 小菜用・デール 一 小菜和肉菜 一 第二、日本 一 小菜肉湯 一 小菜 二 小菜 二<	第1-1 決 和1-1 法 第2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ECCS注水 (給水系・代 原子炉注水 長力 替注水設備含 系モデル に与 む)	

	柏崎刈	羽原	子力発電	ŝ所 6∕7号炉	(2017.12	2.20版)		東海第二発電所 (2018.9.12版)							島根原子力発電所 2号炉				備	考							
タに与える時間							タに与える影響		パラメータにらえる影響	場合の運転員等級作時間及び計論項 影響」にて確認。 場合の評試員等級作時間及び評価項	#日のPWに具み際目を同及ら計画見 影響」にて確認。	(おいて区面によって格養狩業専用気 田分の11週程法命のに評価する傾向 高常容器内の区面とは異なるな、実験 お、実験体系においては不確かさが 今体としては格翰浴器田力及び雰囲 全たとしては格翰浴器田力及び雰囲 かているつとかの、評価項目となる	動、構造村との熱伝達友び内部発伝 下 実験解析により体部容認等開気量 遺在データと良く、数することを確 用となるバラメータに与える影響は 日となるバラメータに与える影響は		場合の連座員等操作時間及び評価項 影響」にて確認。	街令の運転県学業作時間及び詳備点 防衛」にて業認。	タに与える時間		メークに与える影響	と場合の運転良等操作時間 ータに与える影響」にて確	も場合の運転員等操作時間 ータに与える影響」にて確	よって格納容器温度を十 開設度高めに評価する傾向 のと考えられ、実職体系に った不確かさばからくなる した不確かさばかさくなる 一体をしては務納容器圧力 意体としては務納容器圧力 意体としては務約容器圧力 電信するい。詳価項目 職は小さい。 一にていたしておい。評価項目 一についることから、評価項	と場合の運転員等操作時間 ータに与える影響」にて確	5場合の運転員等級作時間 - タに与える影響」にて確			
となるパラメー	ラメークに与える影響	済等依住時間及の評価項目となるパテメータ	首等操作時間及び評範項目となるバラメータ	はならしまでいた。 本語のでは、 本語のでは、 たまれた。 におっては、 の時代であんしたいため、 の時代であん。 たまれたでは、 の時代であん。 たまれたでは、 の時代であん。 たまれたでは、 の時代であん。 ままれた。 では、 ではれた。 ではれた。 では、 ではれた。 では、 では、 では、 では、 では、 では、 では、 では、	兵等兼任時間及び計量低日となるバラメータ	は将来印刷剤なびが耐用したなるメラメータ	となるパラメー		米価項目となる/	 「弊船条件を最確条件とした 田となるバラメータに与える 田となるバラメータに与える 「解析条件を最確条件とした 	「味剤水叶を我能水口としい」	解析コードは、IUR 実験解析に 運送を十数で把設、格納浴器 ご確認されているが、INRWの計 体系に国因するものと考えら 小さくなるものと推定され、 デ油法の前の金道のに再現で パームームドレルを付除離けん	来た、格望谷龍谷向海 東の不需かなにおいては、CS 成の子羅がねにおいては、CS 度及び寺羅藩件ガスの茶節は 認していいめしやら、沖雪型 ナゆい。		「解析条件を最確条件とした 目となるバラメータに与える	「解析条件を最確条件とした日となるバラメータに与える	となるパラメー	-	評価項目となるパラ、	 「解析条件を最確条件とし、 及び評価項目となるパラメ・ 認。 	「解析条件を最確条件とし」 及び評価項目となるバラメ・ 認。	日日天美藤峰圻では反面に などした実藤峰圻では反面に などした、参加客田ナター1 ないたいこの称いしかい さめ、実験体系に起因するよ さいてはこの解析で確認さた。 となるバラメータに与える影 となるバラメータに与える影 となるバラメータに与える影 たったが読む回辺に再見 たるが、当社ではないない にしたい したい したい したい したい したい したい したい	 「解析条件を最確条件とし」 及び評価項目となるバラメー認。 	「解析条件を最確条件とし 及び評価項目となるバラメー 認。			
間及び評価項目。	夫)	「解析条件を表慮条件とした場合の運転 に与える影響」にて発品。	イー「解析条件を表摘条件とした場合の運転」 に与える影響」にて確認。	代表 の の の の の の の の の の の の の	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	メー (東天奈平小政務金年とした単心の単成) (東天永安田)にへ登載、 に与える影響」にへ登載、	間及び評価項目		くらえる影響)速転員等操作時間及び計補現 にて確認。 2世転員等操作時間及び評価項	原始は全体に特別及び計画なして確認。	・て区画によって希筆辞準券囲 き、12000年にあるに準備する意 に、12000年にあるに準備する意 に、実装体気に置いた其実みるな。 ・、実装体気においては天命な。 ・、実装体気においては不確定 にたいしたいない。、素質検護に ・、しているいとか。、素質検護に ・、しているたまななど。、素質検護に	(1)通ぶし報道等に深る通常に 通点との表面接近の各部算 第時においく希報部第四項 第時においく希報部部第回文 データショムを参加またし及び かけの。 本書が第エントスのの	、技営等に係る運転口等操作時	逆応員等操作時間及び評価項 にて確認。	運転員等操作時間及び評価項ドて確認。	間及び評価項目。	夫)	キえる影響	(等機作時間及び評価項目となる>	(等執作時間及び評価項目となる)	は埋を十款C程度、格納容器圧対 にとあた。BWRの格納容器においてた ときたられ、実施体系においてに ときたられ、実施体系においてに ときたられ、実施体系において になったがらしたがし、 適切に再見てきていることから、 体納容器はアメルタイベント系によい、 の熟伝道及び特部額伝導の不能加 神容器は度及び特部器伝導の不能加 がている格制容器の不能加 でているにおい、からが思ばからいこと」 でいる情報意認ったか。 し、 たる影響は少ない。	等操作時間及び評価項目となるノ	員等操作時間及び評価項目となる			
さが運転員等操作時	OCA時注水機能喪 <u>分</u>	4件とした場合の途転前等税付時間及び賃留税目となる^)<br こで産品。	4年とした司合の連条式与教授時間別の研究団日となるバラッ 11年初	中国によって物研究構成を「先て回点」物研究出しを17時 に体現しているが、国家の特別などの広範によりを17時 に体現しているが、国家の特別などの広範によれるとない。 またまたいい。在後に、日本のし、在後にしては物研究においていたの 前できたら、しゃい、在後にしては物研究においていたの時で、確認したです。 前できたし、しゃい、在後にしていたは物研究には、次の時ののことで は、ことも、日本のし、日本のし、在後にしていた時のの前によりに、 はこれ、物情が認知にない。 は、日本のの時の目的にない。 は、日本のの時の目的によった。 は、日本のの時の目的によった。 は、日本のの時の目的によった。 は、日本のの時の目的にようた。 は、日本のの時の目的にようた。 は、日本のの時の目的にようた。 とのの時間がありたい。	6日とした場合の運転具守統計増用及び5輪当日となるパラン こで部分。	4年とした単心の運転は特徴を利用及び予約項目 とならべつ。 1.4番級。	さが運転員等操作時	(MAAP)	運転口等操作時間。	- 「郫桁条件を最確条件とした場合の - 用となるパラメータに与える影響」 - 「解析条件を最確条件とした場合の	- 「中旬ネロで本館ネロ・しん参互の所 日となるパラメータに与える影響」	使 解析コードは、IDR 実験解析におい 」 実施化を十数で日気、格読者第に力 の高齢能を十数で日気、格読者第に力 の語解説を170.5点、BRR の称者 高、実験体系に起因するものと考えられ、 に きが少さくなるものと推定され、全 に すが可能度の面白を違むに再現でき わしかのな理由な通知を準備理論の更正	7人治道派(密設)及び務論容解出 基礎保存期目に上える影響なかかい。 素容認知をした、素容認知ないたい。 準定、業者容認的機構的の認識的の影響の 進ん、痛少においては、CSTF 実態 数 通路及び手腕端先ガスの楽器力達(CSTF 実態 電感しており、から発展に力かいしつ の発展出帯の認定としたい。	条(常設)及び格納容器圧力進がし 間に与える影響は小さい。	 「解析条件を最確条件とした場合の 「相となるバラメータに与える影響」 な 	「解析条件や収蔵条件とした拠合の い 田やなめメリメータに与える影響」 で	さが運転員等操作時	OCA時注水機能喪分	運転員等操作時間に	「解析条件を最確条件とした場合の運転員 ラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員 ラメータに与える影響」にて確認。	HDR実験解析では医面によって格納容器 を1器度変動のに評価するのに発展するで体制容器 面と1器度支払い業験体系に起因するもの この解析では医面によって体制容器して かとしては物感認された不確からはパントさな 体としていた確認された不確からはパントさな 体としていなる 体がにてたる運転員等数件理解の が、 たたいでは、こ名TFF実験解析により からい 都容器に力を操作理論の起点としている ない 体がでいている などしため などしている などしている などしている などしている などしている などしている などしている などの などしている などの などしている などの などの などしている などの などの などの ないる などの などの などの ないる などの ないる などの ないる などの ないる などの ないる ないる ないる ないる ないる ないる ないる ないる ないる ないる	「解析条件を最確条件とした場合の運転員 ラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転」 バラメータに与える影響」にて確認。			
ける重要現象の不確か	<u>رال</u>	ル (R) り及び 入り航に含まれる。 タに与える影響」。	ダル ビデした デデッム 入り館にさまれる。 7.1542,48時464年6月66	国政 実験時代では、特洲所常出 したびになって、本舗が存出し したびになって、本舗の長端 ちょこを含めて出れたが、市現火場 ちょこを含めて出れたがした。 はたいではないたい。 はたいではないたい。 はたいではないたい。 はたいではないたいでは、 はたいではないたいでは、 はたいではないたいでは、 はたいではないたいでは、 はたいではないたいでは、 はたいではないたいでは、 はたいではないたいでは、 はたいではないたいでは、 はたいではないたいでは、 はたいではないたいでは、 はたいではないではないではないでは、 はたいではないたいではないではないではないではないではないでは、 はたいではないではないではないではないではないではないではないではないではないではな	Hubbertain Yell, 1979年8月 Hubbertain Yell, 1979年8月 Harten Antennovember Harten Antennovember Yell, 大学校、人会社会主要な自己の Alternovember BRA スワンドの主張の記述は自由的で Hythere Yell, 1970年10日 Harten Yell, 1970年11日 Harten Yell, 1970年1111日 Harten Yell, 1970年1111日 Harten Yell, 1970年1111日 Harten Yell, 1970年11111日 Harten Yell, 1970年111111 Harten Yell, 1970年111111 Harten Yell, 1970年111111 Harten Yell, 1970年111111 Harten Yell, 1970 Harten Yell, 1970 Harten Yell, 1970 Harten Yell, 1970 Harten Yell, 1	・・・ 私を、人が時に含まれる。 私が、日本のでは、読得品を考え、 したってい、読得品を考える。 第50 2、後期学習会が成正確とし、 学びり、時代のが算み出が明いられてい 5.	ける重要現象の不確か		不能が改	1回に言まれる。 自な崩壊熱を人力値に用いており、解析 の不確かさの影響はない。 1値に含まれる。	1回い口まれの。 1的な注水特性を人力値に用いており、解 さんの不確かさの影響はない。	実験解析では、格兼常諾圧力反びが囲気値 いて、通貨を図書でもので値向やよく内 こことことを確認した。特徴発酵原用気道 ても見ためを信じた。特徴発酵の回気通信 でで見ためらに、特徴発酵の「自然症 でものでいた。特徴が出した。 「計るものでも来えるい、実験が本述において 通のた晶やよばしたと、対応やレメンジ、	また、「洋緑縮柱力ス濃度の筆動について 読書が適価子ータとはく、彼々るいとや 活器が適価子ータとはく、彼々るいとや 活器を構成回の消動、構造材との熱伝道 「活器を構め方面の消動、構造材との熱伝道 「では、修和結果が適用でしい、解析結果が適価子 「限の学動について、解析結果が適価子	- <一致することや確認した。	1値に含まれる。 ドレイの水滴温度は短時間で雰囲気温度と こ至ることから伝熟モデルの不確かさは	値になまれる。 「学齢かく」については、設計流域に広っ 「学業かく」前としていた、防御装護体 経面値載を入り煎としていた、物源装護体 日の道動と回葉の止算が完が用いられて	ける重要現象の不確か	<u>T</u>	不確から	に含まれる	に含まれる	実験解析では、格納容器圧力及び温度につ 温度成層化でない、格納容器圧力及び温度につ 温度成層化合金ので傾向を良く再現できる 確認した。格舎容ので傾向を良く再現できる 補容器した。特容器温度を十数で程度高め 音されたが、実験体系に起けてものと考え、 これついて、解析温来が測定データと良く ことを確認した。 素式の時間からにおかていた。CSTF実験 伝導の不能がらにおかいた、CSTF実験 に第二部ので非能解化力表態での いれ、精齢容器温度及び非能解化力表態での いっかで、解析温泉が測定データと良く一 こっかで、解析温泉が測定データと良く	に含まれる。 イロ水流進度は短時間で雰囲気温度と平 さことから伝熱モデルの不確かさはない。	に含まれる。 ドコードでは稀納容器ペントについては、 上国ードでは稀納容器ペントについては、 最にあっいて流路面積を入力値として与 時間等を領域用の流動と回線の計算力法が れている。			
はンバーロ	LUAP ¹ 分類 重要現象 帮新平	在 登載語 (1-2-14-14-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	展展 一方 一方 一方 一方 一方 一方 一方 一方 一方 一方			(1) 	テレードにお		解析モデル	やらモアル(東十 人7 炉田 人7 瀬)	安全系モデル(非 保 常用炉心冷却系) モラ	80円でで 11日にで十め起て 21日にで十め起い	花 建 全 一 一 一 一 一 一 一 一 一 一 一 一 一	<u>ل</u>	入力 入力 安全系モデル(格 スワ 納容器スプレイ) 衡応	株舗容器モデル 株舗 (格部谷器の際 (特) 大力モデル) 成 間 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	におい、 ー ヒ	-	解析モデル	炉心モデル(原 子炉出力及び 入力量 崩壊熱)	安全系モデル (非常用炉心 合却形) 安全系モデル (代替注水設 備)	HDR (1) (1) (1) (1) (1) (1) (1) (1)	安全系モデル 入力健 (格納容器ス スプレ ブレイ) 衡に至	格納客器モデ ル (格納容器 設計述 の熟水方モデ え、格 ル) 用いで			
き12 解析							1-2 表 解初		重要現象	崩뉋熟	HCCS 注水(給水 系・代替注水設備 含む。)	格制容器各領域 問の流動	構造材 との熱伝 速及び内部熱伝 専	泫淡芽国の熱 藤	スプレイ冷却	大いたい。	₹12 解析	[MAAP]	分類 重要現象	「「「「」」である。	ECCS注 本 (給木糸・代 精准子木製舗 由なり)	格書音の読 動作目の読 動作目の読 動作しての 構成はたいの 構成に確実しての 支援派集画の 強度調査の 構成に確定する	オプレイ学	格響容響な			
¥									今	译 之	圧力容器 駅子炉		 	E 於 雎			#										

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<section-header><section-header></section-header></section-header>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
3 となるパラメータにとすえる影響 (LOCA時注水機能喪火) (2/3) 運転は常確何可加にたえる影響 薄くのしたりえる影響 (LOCA時注水機能喪火) (2/3) 通転は常確何可加にたえる影響におして常 のが、やきによるが確認に分した時のは、からの「より確認者におして変換やな得るが、 のが、やきによるが確認にためにする。 した語られ、からではよる力に有余るがない、回れば、中心のでしたがの、 があるのに対して、ため、活動です。 に、ため、ごとから、ごとかし、「時間になって、からの「よう」の「たか」 に、ため、「時間によえる影響にからい、「いた」の「たい」の「たい」の「たか」 に、ため、「時間になる」の、 に、ため、「たか」の「たい」の「たい」の「たい」の「たい」の「たい」の「たか」 に、ため、「たか」の「たい」の「たい」の「たい」の「たい」の「たい」の「たか」 に、ため、「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たかって、「また」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たかって、「また」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たかって、「また」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たかって、「また」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」 に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」 に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「で、 に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「で、 に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「で、 に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「 このは」の「い」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「で、 に、たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「たい」の「	BACKPM回日日となくうくいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい	
操行由書目及び許可 条件設定の考え方 条件設定の考え方 系件設定の考え方 高別規範時の務論容器に力と 整確な方式 市式設定 自己。 自己 自己 自己 自己 自己 自己 自己 自己 自己 自己	合人心運転員等ないない。 合人心運転員等項 条件設定のあた方 14、人、シントの運動調査(13、ケリント) 14、人、シントの一般、力、シントの運動」 15、「「「「「「」」」」」 15、「「」」」」 15、「「」」」 15、「」」」」 15、「「」」」 15、「」」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」」 15、「」」」 15、「」」」」 15、「」」」 15、「」」」」 15、「」」」 15、「」」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」 15、「」」」」 15、「」」」 15、「」」」」 15、「」」」 15、「」」」」 15、「」」」 <	
 小谷(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(学校やとした場 法条から 私ASL/ANS-5.1-1979 本内的感感中 約.3.1004人1 (実験値) 約.1.7kba[gage] 約.1.7kba[gage] 約.1.7kba[gage] 約.1.7kba[gage] 約.1.7kba[gage] 約.1.7kba[gage] 約.1.7kba[gage] 約.1.7kba[gage] 約.1.00a 5.700m 約.1.00a 5.700m 約.3.302m 約.3.302m 3.3.302m 3.3.302m 3.3.302m 3.7.00m 3.1.00m 3.1	
 主条件とした場 新好条件(初期条件) 新好条件(初期条件) 新好条件 新好条件 新子 5.2kPa [Rasge] 5.2kPa [Rasge] (F) = 4 - 4 - 4 - 7 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 7	お小子 シ 長子 小子 シ 長子 小子 シ 長子 小子	
法 本 本 本 本 本 本 本 本 本 本 本 本 本	、 本 本 本 本 本 本 本 本 本 本 本 本 本	
★		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所	新 2 号炉 備 考
	 3後 勝 る後 勝 ため、 にない、後期はあたら、 ため、 など、、後期は にに、の時間がで、 でから、 でした、 での、 で、 で、 たいの、 の に、 の の の に、 の の の の の の の の の の の の の	酸化: ~
	(乙与える駅御(4/6) (乙与える駅御(4/6) 第価項日となるバッメータに与える (敵ノーケンスタルーの) (敵ノーケンスタルーの) (敵ノーケンスタルーの) (敵ノーケンスタルーの) (海市の) (第していた) (第の) (第の) (第の) (第の) (第の) (第の) (第の) (第の) (第四) (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	 本 外部電源がある場合を包含するお ご もないによからの影響がありを使いたいためい、お部に調査してきた。 た 中金道ににたいていたいの影響ないない た 中のにないの影響はない
	(小計・価)項目に与えるがの方式、 通気目しとなるパックシックメータ 通常点は深葉市時間に与えるがの方、 方、デンクシーブにしてる「時江水確認確定」の 一ケンズグレーブにしてる「時江水確認確定」の 一ケンズグレーブにしてる「時江水確認確認」の 第一次のあきるます。 ため、 第一次のあるます。 ため、 第一次のあるます。 ため、 第一次のあるます。 ため、 第一次のあるます。 ため、 第一次のあるます。 ため、 第一次のあるます。 ため、 第一次のあるます。 ため、 第一次のあるます。 ため、 第一次ののまずにはたが認識をないます。 第一次ののまずにはたいであった。 市 前のの事件でしておりによる市の点面でのないでによりの、 第一次の 第一次の一次のたいで、 第一次の一次の、 第一次の 第二次の業件書前にない、 第二次の業件書前にない、 第二次の業件書前にない、 第二次の事件書「「いた」が、 第二次の学校のは、 第二次の学校のから、 第二次の小量には、 第二次の学校の前にない、 第二次の小量には、 第二次の小量には、 第二次の小量にはので、 第二次の小量にはない。 第二次の小量には、 第二次の小量には、 第二次の小量にはない。 第二次の小量にはない。 第二次の小量にはない。 第二次の小量に用にしたいるの。 第二次の小量に用にしたい。 第二次の一次の小量にはないのいでは、 第二次の小量にはないのいで、 第二次の小量にはない。 第二次の小量にする 第二次の小二次の小量のにはないか。 第二次の小二次の小一次の小量 第二次の小量にはないのいで、 第二次の小二次の小量のにたいたいののののいで、 第二次の一次の小一次の小量 第二次の一次の小量にはないかい、 第二次の一次の小一次の小量 第二次の一次の小量にはないのいで、 第二次の一次の小量 第二次の一次の小量 第二次の一次の小量 第二次の一次の小量 第二次の一次の小量 第二次の一次の小量 第二次の一次の小量 第二次の小量 第二次の小量 第二次の小量 第二次の一次の小量 第二次の小量 第二次の小量 第二次の小量 第二次の小量 第二次の小量 第二次の小量 第二次の小量 第二次の一次の小量 第二次の小量 第二次の小量 第二次の小量 第二次の小量 第二次の小量 第二次の小量 第二次の小量 第二次の小量 第二次の一一次の小量 第二次の一一次の小量 第二次の小量 第二次の小量 第二次の一一次の小量 第二次の一一次の小量 第二次の一一次の小量 第二次の一一次の一一次の小量 第二次の一次の一一次の小量 第二次の小量 第二次の一一次の小量 第二次の一次の一一次の小量 第二次の一一次の一次の一次の小量 第二次の一次の一次の一次の一次の一次の一次の一次の小量 第二次の一次の一次の一次の一次の一次の一次の一次の一次の一次の一次の一次の一次の一次	外部電源がある場合を包含する条件設定してい ことから、外部電源かりを想定する場合でも、事象 限に与える影響は小ささく, 運転良等操作時間に与え 影響はない。
	こ場合に運転した。 本保護者のあえ方 本保護者のあえ方 本保護者のあえ方 本保護者のあえ方 本保護者のあえ方 本保護者のあえ方 本保護者のの時代。 本のなためたいではないです。 たなるため方での者はないです。 たなるためたでするないです。 たれななたいでして、 たれななたいでして、 たれななたいでした。 たれななたいでした。 ななからいですない。 たれななたいでして、 なないのすずに、 なないのすずに、 ななからいでした。 ななから、 のす来なに たれななたい。 たれななたい。 を構成する、 たれななたい。 の本様に、 では、 ななから、 のすずな、 たいて、 ななた。 ななから、 のすずな、 たいて、 なななた。 ななから、 たいたが、 ななから、 なななた。 ななから、 なななた。 ななから、 たいたが、 なななた。 なななた。 なななた。 なななた。 なななた。 なななた。 なななた。 なななた。 なななた。 なななた。 なななた。 なななた。 なななた。 なななた。 ななから、 なななた。 ななななた。 ななななた。 ななななた。 ななななかか、 ななななた。 ななななた。 ななななた。 ななななた。 ななななた。 ななななた。 ななななた。 ななななななた。 なななななた。 ななななた。 ななななななた。 なななななた。 なななななた。 なななななた。 なななななた。 なななななた。 なななななた。 なななななた。 なななななななななな	NIEVをおっていたい。 「「「「「「」」」、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので
		人物
	発 日 単次ペキ 各 日 </td <td>大</td>	大
	表	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	与える影響 (5人6) 評価項目となるバラメータに与える影響 たと最確条件は同様であることから,事象進展に影く,評価項目となるバラメータに与える影響はな く,評価項目となるバラメータに与える影響はな く,評価項目となるバラメータに与える影響はな く,評価項目となるバラメータに与える影響はな く,評価項目となるバラメータに与える影響はな	、OC人由時注水機能把要大人(4) 評価項目となるバラメータに与える影響 運動が解析上の想定より早くスグラムした場合、 変動が解析上の想定より早くスグラムした場合、 意料確認置度は低かの結果を与えることにな るため、評価項目となるバラメ ータに対する余裕 感許不能で認っている。 確新条件と最適条件は同能であることから、事象 確新条件と最適条件は同能であることから、事象 確新条件と見適条件は同能であることから、事象 確新条件と見適条件は同能であることから、事象 確新条件と見適条件は同能であることから、事象 確新条件と見適条件に同能であることから、事象 確認に与える影響はない。 主要のの保守地、加子方をからすメータに対する余裕 大さくなる。 スプレイ酒は温耐の県にたる調整が行われ、その 情報により圧力抑励効果に影響を受けるものの、 格納発語的に溶調される所破脱患に変か の、 でしとから、評価項目となるバラメータに対する余裕 は大きくなる。 またさく。 素がない。 本のにそれてる。 にため作じな たからいら、 なの のの、 解釈各件と最確条件が同能であることから、事象 確認に与える影響はない。 能解れない。 能和項目となるバラメータに与える。 なの ないことから、評価項目となるバラメータに対する余裕 は大きくなる。 またる、 なの たちょうが。 本 のの、 作用の なの なの ない ない ない ない ない ない なの ない ない ない ない ない ない ない ない ない ない	
	 び評価項目となるパラメーダに ^{運転}転具等操作時間に与える影響 ^{産転}載条件と同等であることから、事象進展に 幣析者 中は最融条件と同等であることから、事象進展に 幣付 中は最融条件と同等であることから、事象進展に 幣析者 中は最融条件と同等であることから、事象進展に 幣析者 中は最高条件と同等であることから、事象進展に 幣析者 中は最高条件と同等であることから、事象進展に 幣 	よるパラメータに中える影響(1) 運転員等操作時間に与える影響 運転員等操作時間に与える影響 実施が解析上の規定より中くスクラムした場合、事象 進術時間は設やかになり、原子が注水開始までの運転員等 横術時間に対する余裕が大きくため。 解析条件と最確条件は同様であることから,事象進展 に与える影響はなく,運転員等操作時間に与える影響 はない。 実際の注水量が明確なされていた。 整件をして記水離時間になえる。記水後の 操作として記水離時間にない。 実際の注水量にあることから,運転員等操作時間に与える影響 はない。 メプレイ流量は運転員による調整が行われ、その増減 によりに力助制効果に影響を受けるが、操作事間に支え影響 はない。 オプレイ流量は運転員による調整が行われ、その増減 によったい。 新行業から、運転員等操作時間に与える影響 はない。 メポレインのの一般作時間に与える影響 はない。 メポレインのの一般作時間に与える影響 はない。 またい。 またい。	
	した場合に運転員等操作時間及	引用 学校 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	 	た場合の運車 原子原本低(レベル 原子原本低(レベル 調査: L字機能 3)等低(レベル 3)等かで1.734ma[[ange] 367~3710.04個 367~3710.04個 367~3710.04個 176.250.150 子炉急速減圧 子炉急速減圧 子炉急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が急速減圧 子が合いて、 本 数 200 1200 1200 1201	
		 、 ・ 時所条件(初期条件(初期条件、)	
	西人市女等分策に因近する機器条件 第 項 「「」」」」 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	番目 「 「 「 「 」 「 」 「 」 「 」 」 」 「 」 」 」 「 」 」 」 「 」 「 」 」 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 一 一 一 一 一 一 一 一 一 一 一 一 一	
		表 7	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉 備 著	考
	クルンチン ふ水 ゆい しん (6, 6) 詳価項目となるパラメータに与える影響 正和項目となるパラメータに与える影響 天然の社 なおが得かまり多い場合(社本社性(設計値)の 取得出), 原子伊水信の回復が中くなることから, 評価項)の 取得出), 原子伊水信の回復が中くなることから, 評価項)の の上昇さり得しない、「読者に執う容器に大きくなる。 コースに含べラメータに対する余裕は大きくなる。 「ご思わりはなく、結論容器にしの長点値におおむれ落朝容 部公とト時のに力で決定されるため, 評価項目となるパラ メージになる影響にない。 たったに参加容器に力のなる値には参加格 就に変わりはなく, 格納容器に力のな客側点 は度上昇の抑制効果は人きくなるが, 許納容器に力んで雰囲気 能のよい。 たりに対応した時以に情報音楽である。 メージになる影響にない。		
	第2 表 解析条件を見確条件とした場合に運転員等操作時間及び評価項目となるがラメーメ (1) 1 (1) (1) (1) (1) (1) (1) (1) (1) (1		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版) 島根原子力発電所 2号	号炉 備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		<section-header></section-header>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所 (2018	. 9. 12 版)	島根原子力発電所 2号炮	戶 備考
	·瞿 (4/4) 2番 副編字論等	大学校学校 (164 次のでいん) (164 次のでいる) (164 次の次援部の第 (164 次の次援部の第 (164 次の決議) (164 次の決議の第 (164 次の決議の書 (10 次の支援部の書 (10 公のにの) (10 公のでいる) (10 公のでいる) (10 公のではの書 (10 公のでいる) (10 公のでいる) (10 公のではの書 (10 公のではの) (10 公会ではの) (10 公会ではの) (10 公のではの) (10 (10 (10 (10 (10 (10 (10 (10 (10 (10			
	余裕に与える影				
	<u>50)操作時間</u> ^[14]				
	ペラメータ及	光 や 合 行 中 行 合 二 一			
)配置による他の操作, 評価項目となる/ ^{*#۴^#かき要因}	代替液水貯槽の払満までには24時間以上の時間余裕があり、補給開始3 準備時間180分を考慮しても、十分な時間余裕がある。 山酸型代替注水中型ボンプの燃料構満までには約210分の時間余裕があ 通腸結までの準備時面110分(タンクローリへの溶消90分及び可要型作 水中型ボンブへの給油20分)を考慮しても、十分な時間余裕がある。			
	(件が要員の ************************************	本部の支援を行うたち、			
	3 表 操作 <u>条</u> ###L#0 ###L#0	# 「 「 「 「 」 」 「 」 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 二 二 二 二 三 二 六 二 三 二 六 二 二 二 六 二 六 二 六 二 六 二 六 二 六 二 六 二 六 二 六 二 六 二 六 二 二 二 二 二 二 二 二 二 二 二 二 二			
	新 新	機作条件 代へ たへい替ン給 なの 皆のる注グ油 水給 が描明水へ説 水給 た約館中の作			

まとめ資料比較表 〔有効性評価 添付資料 2.6.5〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	添付資料 2.6.7	添付資料 2.6.5	
	原子炉注水開始が遅れた場合の影響について (LOCA時注水機能喪失)	減圧・注水操作の時間余裕について	
	逃がし安全弁(自動減圧機能)の手動による原子炉減圧操作が 遅れることで,常設低圧代替注水系ポンプを用いた低圧代替注水 系(常設)による原子炉注水の開始時間が有効性評価における設 定よりも遅れた場合の評価項目となるパラメータに与える影響を 確認した。	事故シーケンスグループ「LOCA時注水機能喪失」では,原 子炉冷却材圧力バウンダリを構成する配管の中小破断の発生後, 高圧注水機能,低圧注水機能が喪失することから,逃がし安全弁 を用いた急速減圧及び低圧原子炉代替注水系(常設)による原子 炉注水を実施することとしている。 ここでは,逃がし安全弁を用いた原子炉急速減圧操作が遅れ, 事象発生35分後(遅れ時間5分)に開始した場合の影響について	
	なお, 解析は, ペースケースと同様に輻射熱伝達を保守的に取り	<u>評価した。</u> なお、解析は、ヘースケースと回様に輻射熱伝達を保 完的に取り扱うSAFFPコードを使用している	
	 1. 燃料被覆管破裂を回避可能な範囲での原子炉減圧の時間余裕 逃がし安全弁(自動減圧機能)の手動による原子炉減圧操作が有効性評価における設定よりも 10 分及び 25 分遅れた場合の 感度解析結果を第1表に示す。 また,燃料棒破裂発生時点の燃料被覆管温度と燃料被覆管の 円周方向の応力の関係を第1図に,逃がし安全弁(自動減圧機 能)の手動による原子炉減圧操作が 10分遅れた場合の原子炉圧 力,原子炉水位(シュラウド内外水位),燃料被覆管温度及び燃料被覆管酸化割合の推移を第2図から第5図に示す。 第1図に示すとおり,10分の遅れ時間を想定した場合でも, 燃料被覆管の破裂は発生しないことから,運転員による原子炉 減圧操作には少なくとも 10分程度の時間余裕は確保されてい る。 	自動減圧機能付き逃がし安全弁の手動による原子炉減圧操作が 有効性評価における設定よりも <u>5分</u> 遅れた場合の感度解析結果を 表1に示す。 また,燃料棒破裂発生時点の燃料被覆管温度と燃料被覆管の円 周方向の応力の関係を図1に,自動減圧機能付き逃がし安全弁の 手動による原子炉減圧操作が <u>5分</u> 遅れた場合の原子炉圧力,原子 炉水位(シュラウド内外水位),燃料被覆管温度及び燃料被覆管酸 化割合の推移を図2から図5に示す。 図1に示すとおり, <u>5分</u> の遅れ時間を想定した場合でも,燃料 被覆管破裂は発生しないことから,運転員による原子炉減圧操作 には少なくとも <u>5分</u> 程度の時間余裕は確保されている。	 ・解析結果の相違 【東海第二】 ベースケースの破断 面積の設定が異なるこ とによる,減圧操作の余 裕時間の相違,
	2. 燃料被覆管に破裂が発生した場合の非居住区域境界及び敷地 境界での実効線量評価 炉心損傷防止対策の有効性評価においては,周辺の公衆に対 して著しい放射線被ばくリスクを与えないことを考慮し,燃料 被覆管の破裂が発生しないことを目安としている。 一方で,実際の炉心は線出力密度の異なる燃料棒から構成されており,線出力密度の高い一部の燃料棒のみに破裂が発生し,		 ・記載方針の相違 【東海第二】 島根2号炉は,減圧・ 注水操作が遅れて,燃料 被覆管が破裂した場合の評価を添付資料 2.1.4「減圧・注水操作

柏崎刈羽原子力発電所 6/7号炉 (201	17.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		その他の燃料棒には破裂が発生しない場合もある。一部の燃料		が遅れる場合の影響に
		棒に破裂が発生しても,炉心全体に対する破裂割合が低い場合		ついて(高圧・低圧注水
		には、非居住区域境界及び敷地境界での実効線量が評価項目で		機能喪失)」に記載して
		ある 5mSv 以下となることが考えられる。よって,逃がし安全弁		いる。
		(自動減圧機能)の手動による原子炉減圧操作が有効性評価に		
		おける設定よりも 25 分遅れ, 線出力密度の高い一部の燃料棒に		
		破裂が発生するとした場合の非居住区域境界及び敷地境界にお		
		ける実効線量を評価した。具体的には、燃料棒線出力密度の違		
		いによる燃料被覆管の破裂発生の有無を解析により確認し、許		
		認可で想定する代表的な9×9燃料(A型)平衡炉心において,		
		破裂が発生する燃料棒線出力密度を超える燃料棒本数から炉心		
		全体に対する燃料棒の破裂発生割合を設定し、この破裂発生割		
		合を考慮した非居住区域境界及び敷地境界での実効線量を評価		
		した。評価結果を第2表及び第3表に示す。		
		評価の結果,25分の減圧操作遅れを仮定した場合には,燃料		
		棒線出力密度が約 36.1k₩/m を超える燃料棒に破裂が発生し,		
		その割合は全燃料棒の約 0.2%となる。これを踏まえて,実効		
		線量の評価においては,保守的に全燃料棒の 1%に破裂が発生		
		<u>するものとすると,非居住区域境界及び敷地境界での実効線量</u>		
		の最大値は約4.4mSvとなり,評価項目である5mSvを下回る。		
		なお、この場合には、格納容器内空間線量率がドライウェルで		
		<u>最大約 4.8×10³Gy/h, サプレッション・チェンバで最大約</u>		
		<u>4.3×10⁴Gy/h となり、炉心損傷後の運転操作へ移行する判断</u>		
		基準を上回る。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	第1表 減圧遅れによる燃料被覆管温度及び酸化量への影響 ベースケースの 燃料被覆管 減圧時間からの遅れ時間 最高温度 10分 約706℃ 25分 約1,000℃	表1 減圧・注水操作遅れによる燃料被覆管温度及び酸化量への 影響 ベースケースの 影響 減圧操作からの遅れ時間 燃料被覆管最高温度 5分 約842℃	・解析結果の相違 【東海第二】
	<u>第2表</u> 燃料被覆管の破裂本数と全炉心の破裂割合 (遅れ時間 25 分)		 ・記載方針の相違 【東海第二】 島根2号炉は,減圧・ 注水操作が遅れて,燃料 被覆管が破裂した場合 の評価を添付資料 2.1.4「減圧・注水操作 が遅れる場合の影響に ついて(高圧・低圧注水 (満転本)」に記載して
	第3表 非居住区域境界及び敷地境界での実効線量評価結果 (遅れ時間 25分) 使用するベント設備 客納容器圧力逃がし装置による ドライウェルベント 動地境界 前1.1mSv 敷地境界 約2.8mSv 新圧強化ベント系による ドライウェルベント 教地境界 約4.4mSv		機能喪失)」に記載して いる。

劳炉	備考
	・解析結果の相違
MP731	
NL3626	【東海第二】
(NL3626(19391) (MP683	
$VNC(0.56^{\circ}C/s)(8 \times 8)(Vallecitos OF - \mathcal{P})$	
$VNC(2.8 ^{\circ}C/s)(8 \times 8)(Vallecitos \mathcal{OF} - \mathcal{P})$	
$VNC(5.6 C/s)(8 \times 8)(Vallecitos O \mathcal{F} - \mathcal{F})$ $VNC(0.56 C/s)(7 \times 7)(Vallecitos O \mathcal{F} - \mathcal{F})$	
WNC(2.8℃/s)(7×7)(Vallecitosのデータ)	
WNC(5.6 ℃/s)(7×7)(Vallecitosのデータ)	
REG-0630,DATA H(URNL) REG-0630,DATA H(KfK FABIOLA)	
REG-0630,DATA I(ORNL)	
REG-0630,DATA J(KfK)	
NU.8~1.6K/S/REDEKA Single Rod) S(内圧破裂試験)	
他(内圧破裂試験)	
ベストフィット曲線	
· 平均値-2 σ 曲線	
54. 555 co.c. Culticitize(\$555.51)	
~~	
× x x +	
00 1100 1200 1300 1400 1500 1600	
C)	
温度と燃料被覆管の	
~	
Ŕ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	※ 燃料被覆管の円周方向の応力算出方法について		・記載方針の相違
			【東海第二】
	燃料被覆管の破裂については、SAFERの解析結果である燃		島根2号炉は,燃料被
	料被覆管温度と燃料被覆管の円周方向の応力の関係から判定す		覆管の円周方向の応力
	る。		算出方法を添付資料
	燃料被覆管の円周方向応力σについては、次式により求められ		2.1.4「減圧・注水操作
	る。		が遅れる場合の影響に
	D		ついて(高圧・低圧注水
	$\sigma = \frac{B}{2t}(P_{in} - P_{out})$		機能喪失)」に記載して
			いる。
	ここで,		
	D : 燃料被覆管内径		
	t : 燃料被覆管厚さ		
	P _{in} :燃料被覆管内側にかかる圧力		
	P _{out} :燃料被覆管外側にかかる圧力(=原子炉圧力)		
	である。		
	燃料被覆管内側にかかる圧力P _{in} は、燃料プレナム部とギャッ		
	プ部の温度及び体積より、次式で計算される。		
	$V_P T_F$		
	$P_{in} = \left(\frac{\overline{V_F T_P}}{W_T}\right) \frac{NRT_P}{W_T}$		
	$1 + \frac{V_P I_F}{V_F T_P} V_P$		
	V · 1 仲禎 你于 $_{P}$ · 旅村 / レ / ム司 T · 1 中 · ゼロップ如		
	I : 価皮 $_{F}$: イヤツノ市		
	R : ルヘル数		
	୯ ଡ ବ୍		
	燃料棒に破刻が発生する時点の燃料並要答泪度し燃料並要答		
	MITIPICIN及が元エッジ時示ジ旅村恢復目価度と旅村恢復目 の田周方向の広力の関係団に示される実験け IOCA条件下		
	での燃料様の膨れ破裂米動を如据するとしが日的でなり。 しして		
	くいがいいやいかいので、がついてのフィッパイ 被覆管内にガスを封入して圧力をかけた平能で加数オストレバー		
	より 2000 A 不 IT で 候放している。このにの, これらの 天歌 く けペレット - 被 磨 倍 の 培 軸 I 本 を 孝 虐 し て い わい		
	は、アノー 取扱 日 ジェ で つ 感 し し い ない。 すた		
	よに, ※1710復目11回にババる圧力のフラり, 、レットー 恢復		
	目い1な四川は、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、		

柏崎刈羽原子力発電所 6/7号炉 (2017.1	12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
		する最大燃焼度、すなわち燃料被覆管温度評価を最も厳しくす	
		る燃焼度の時に運転中の最大値を取るものの、スクラムによる	
		出力低下に伴って接触圧は緩和される。このため、燃料被覆管	
		内側にかかる圧力にペレットー被覆管の接触圧を考慮しない。	

炉	備考

计炉	備考
自動減圧機能付き逃がし安全弁 ,6 個による手動減圧(35 分)	・解析結果の相違 【東海第二】
40 50 60 時間 <u>5分)</u>	
L8 138L	
開始後 にたなが回復 し 1 1 1 1 1 1 1 1 1 1 1 1 1	
<u>ト水位)の推移</u>	

まとめ資料比較表 〔有効性評価 添付資料 2.6.6〕

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
7 日間における水原の対応について (LOCA時注水機能喪失) ○水源 低水時漸水量:約1,700㎡ 低水時漸水量:約1,700㎡ 低水時漸水量:約1,700㎡ 低水時漸水量:約1,700㎡ 低水時和水油:約18,000㎡ 低水時和水油:約18,000㎡ 低水時和水油:約18,000℃ ○大使用パターン ①大使用パターン ①大使用パターン ①大使用パターン ③大使用パターン ③大使用パターン ③大作用パターン ③大作和水油の(120㎡/h)。 ③大作品和菜(常設)による代存格納容器スプレイ ③大作品和菜(常設)による代存格納容器スプレイ ③大作品和菜(常設)による代存格納容器スプレイ ③大作品の(120㎡/h)。 ③大作品の(120㎡/h)。 ③大作品の(120㎡/h)。 ③大作子(130 (120㎡/h)。 ③大作子(130 (120㎡/h)。 ③大作品の(120㎡/h)。 ③大作子(130 (120㎡/h)。 ③大作子(130 (120㎡/h)。) ③大作子(130 (120㎡/h)。 ③大作子(130 (120㎡/h)。) ③大作子(130 (120㎡/h)。(130㎡/h)。) ③大作子(130 (120㎡/h)。(130㎡/h) ③大作子(130 (120㎡/h))。(130㎡/h)。(130㎡/h) ③大作子(130 (120㎡/h)。(130㎡/h)。(130㎡/h) ③大作子(130 (120㎡/h)。(130㎡/h)。(130㎡/h) ③大(130 (120㎡/h)。(130㎡/h)。(130㎡/h) ③大(130 (120㎡/h))。(130㎡/h) ④、(130 (120㎡/h)) ④、(130 (120\%/h)) ④、(130 (120\%/h))	〇時間評価(右上図) 事象発生12時間までは復水貯蔵槽を水源として原子炉注水及び代替格納容器スプレイを実施するため,復水貯蔵槽水量は減少する。事象発 生12時間後から復水貯蔵槽への補給を開始するため,水量の減少割合は低下する。格納容器ベントと同時に格納容器スプレイを停止し、その 後は崩壊熱相当で注水することから復水貯蔵槽水量は回復し,以降安定して冷却が可能である。 (人旅評価応報果) の水源評価の結果から復水貯蔵槽が粘渇することはない。また、7日間の対応を考慮すると,6号及び7号炉のそれぞれで約5,400m ³ 必要となる。 6号及び7号炉の同時被災を考慮すると,約10,800m ³ 必要となる。各号炉の復水貯蔵槽に約1,700m ³ 及び形舟炉のそれぞれで約5,400m ³ 必死を保有する ことから,6号及び7号炉の同時被災を考慮した場合も必要水量を確保可能であり,安定して冷却を継続することが可能である。	 添付資料2.6.8 7日間における水源の対応について(LOCA時注水機能喪失) 1. 水源に関する評価 後水源(有効水量) ・代替淡水貯槽:約4,300 m³ ・西側淡水貯水設備:約4,300 m³ ・西側淡水貯水設備:約4,300 m³ 2. 水使用パターン 常設低圧代替注水系ポンプを用いた低圧代替注水系(常設) による原子炉注水事象発生2.5分後,定格流量で代替淡水貯槽を水源とした常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)による原子炉注水を実施する。 炉心冠水後は,原子炉水位高(レベル8) 設定点から原子炉水位低(レベル3) 設定点の範囲で注水する。 常設低圧代替注水系ポンプを用いた代替格納容器スプレイ冷却系(常設)による格納容器冷却格納容器エカが0.279 MP a[ga ge]に到達する事象発生約16時間後,代替淡水貯槽を水源とした常設低圧代替注水系ポンプを用いた代替格納容器スプレイ冷却系(常設)による格納容器冷却を実施する。 サプレッション・ブール水位が通常水位+6.5 mに到達後,常設低圧代替注水系ポンプを用いた代替格納容器スプレイ冷却系(常設)による格納容器冷却を停止する。 アジロション・ブール水位が通常水位+6.5 mに到達後,常設低圧代替注水系ポンプを用いた代替格納容器スプレイ冷却系(常設) による格納容器冷却を停止する。 3.時間評価 原子炉注水等によって,代替淡水貯槽へ補給する。 可搬型代替注水中型ポンプによる水源補給の準備が完了する事象発生約360分時点で代替淡水貯槽への補給を実施する。 (替淡水貯槽は枯渇することがない。 	3.3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	 ・水量評価結果の相違 【柏崎 6/7,東海第二】 ・解析条件の相違 【柏崎 6/7】 島根 2 号炉は,事象発 生後から必要な可搬型 設備を準備し,使用する ことを想定。

炉	備考

									まとめ資料比較表 〔7	F効性評価	西 添付資料2	. 6. 7]			
柏崎	刘羽原	(子力系	论電所	6 /	⁄7号	炉	(2017.	12.20版)	東海第二発電所 (2018.9.	12版)		島根原子力発電所	2 号炉		備考
										添	《付資料 2.6.9			系付資料 2.6.7	・設備設計の相違 【柏崎 6/7】
									7日間における燃料の対応について(LO	CA時注7	水機能喪失)	<u>7日間における燃料の対応について(</u>	<u>LOCA時注</u>	水機能喪失)	島根2号炉は,緊急時
									保守的に全ての設備が,事象発生直後から ものとして評価する。	7 日間燃	料を消費する	保守的に全ての設備が,事象発生直後 ものとして評価する。	から7日間燃	料を消費する	対策所用発電機用の燃料タンクを有している。 また,モニタリングポス
					1	1		添付資料 2.6.6							トは非常用交流電源設
	1 - ク容量は - のあり、	イク容量は (<u>3)</u> であり, E	イク容量は () であり、 () () () () () () () () () () () () () (イク容量は <u>)</u> であり, ¹⁶	イク容量は し、であり、 6000000000000000000000000000000000000	/ク容量は <u>)</u> であり,	イク容量は <u>)</u> であり, ¹⁶ 。	タビー 「りちょうな」、シビー 「りちょうなな」。 は、「ちょうない」 は、「ちょうない」 「小売谷」 「「小売」 「おお」 「おお」 「おお」 「おお」 「おお」 「おお」 「おお」 「お	時系列	合計	判定	時系列	合計	判定	備又は常設代替交流電
	利页 7号炉軽油タン 約1,020kL(※ 7日間対応可能	6号炉軽油ク、 約1,020kL(※ 7日間対応可	1 号炉軽油タン 約 632kL (※3 7 日間対応可能	2 号炉軽油ク、 約 632kL(※3 7 日間対応可信	3 号炬軽油タン 約 632kL(※3 7 日間対応可領	4号炉軽油タン 約632kL(※3 7日間対応可能	5 号炉軽油ク; 約 632kL(※3 7 日間対応可能	1~7 号炉磁油 及びガスター 用機計タンノ 100k1)の 務策量 (合計 7 日間対応可約	非常用ディーゼル発電機 2台起動 ^{※1} (燃料消費率は保守的に定格出力運転時を想定) 1,440.4L/h(燃料消費率)×168h(運転時間)×2台(運転台数 =約 484 0bl			非常用ディーゼル発電機 2 台起動 ^{※1} (燃費は保守的に最大負荷時を想定) 1.618m ³ /h×24h×7日×2台=543.648m ³	7 日間の 	ディーゼル燃料 貯蔵タンクの容 量け約 730m ³ で	源設備による電源供給 が可能である。
喪失)		2 日間の 軽油消費量 約 768kL	7日間の 軽油消費量 約632kL	7 日間の 軽油消費量 約 632kL	7 日間の 軽油消費量 約 632kL	7日間の 軽油消費量 約632kL	7 日間の 軽油消費量 約 632kL	7日間の 軽油消費量 約138L	 ホリ 10 00L 高圧炉心スプレイ系ディーゼル発電機 1台起動^{※2} (燃料消費率は保守的に定格出力運転時を想定) 775.6L/h(燃料消費率)×168h(運転時間)×1台(運転台数) 	- 7日間の 軽油消費量 約755.5kL	軽油貯蔵タ ンクの容量 は約 800kL こであり,7日	高圧炉心スプレイ系ディーゼル発電機 1台起動 (燃費は保守的に最大負荷時を想定) 0.927m ³ /h×24h×7日×1台=155.736m ³	約 700m ³	立 (本),7日間対 応可能	・評価結果の相違
注水機能									 〒村 130.3kL 常設代替高圧電源装置 2台起動^{※3} (燃料消費率は保守的に定格出力運転時を想定) 420.0L/h (燃料消費率)×168h (運転時間)×2台(運転台数) =約141.2kL 	_	間対応可能	 ガスタービン発電機 1台起動 (燃費は保守的に最大負荷時を想定) 2.09m³/h×24h×7日×1台=351.12m³ 	7日間の — 軽油消費量 約 363m ³	ガスタービン発 電機用軽油タン クの容量は約 450m ³ でたり、7	【柏崎 6/7,東海第二】
CA時 ^{行る。}	プ (A-2 殺)	プ (A-2 殺)							可搬型代替注水中型ポンプ 1台起動	7日間の	可搬型設備 用軽油タン	大量送水車 1 台起動 0.0652m ³ /h×24h×7 日×1 台=10.9536m ³	¥J 202Ш	日間対応可能	
していて (LO 連載するものとして評価 趣電商設価等、 グラント	用 可機型代替注水ボン: 日×4台=14,112L	用 可親望代替注水ポン: 日×4 台=14,112L						冬を想定) 合を起動させて評価した 台を起動させて評価した	(西側淡水貯水設備から代替淡水貯槽への補給) 35.7L/h(燃料消費率)×168h(運転時間)×1台(運転台数) =約 6.0kL	軽油消費量 約 6.0kL	 クの容量は 約 210kL で あり,7日間 対応可能 緊急時対策 所用発電機 	緊急時対策所用発電機 1台 0.0469 m ³ /h×24h×7日×1台=7.8792m ³	7日間の 軽油消費量 約8m ³	緊急時対策所用 燃料地下タンク の容量は約 45m ³ であり,7日間 対応可能	
の対応に	時系列 復水貯藤槽給水 4 台起動。 21L/h×24h×7	復水貯蔵槽給水 4 台起動。 21L/h×24h×7						費は保守的に最大負荷 荷時を想定) (用ディーゼル発電機3 (用ディーセル発電機3	緊急時対策所用発電機 1 台起動 (燃料消費率は保守的に定格出力運転時を想定) 411L/h(燃料消費率)×168h(運転時間)×1 台(運転台数) =約 70.0kL	7日間の 軽油消費量 約70.0kL	燃料油貯蔵 タンクの容 量は約 75kL であり,7日 間の対応可	※1 事故収束に必要な非常用ディーゼル発電機は1台 ル発電機2台を起動させて評価した。	 白であるが,保守的	に非常用ディーゼ	
3ける燃料 ^{#的に全ての設備が、3} とし、5号が原子が地								(設備 1台起動) (悠 (悠貴は保守的に最大角 (悠貴に保守的に最大) (約5) 保守的に非常 であるが, 保守的に非常	 ※1 事故収束に必要なディーゼル発電機は非常用ディーゼル発電 ディーゼル発電機2台の起動を仮定した。 ※2 事故収束に必要ではないが,保守的に起動を仮定した。 ※3 緊急用母線の電源を,常設代替高圧電源装置2台で確保する 	 幾1台であるカ ことを仮定しナ	ue が,保守的に た。				
7日間人でよ アラント状況:6号及び7号が運転中、1~6号が修止中。 本象: LDCA 時法は醸練気は6号及び7号がを認定、除さ なる。 金ブラントで外部運搬長が後生すること。		事象発生成後~事象発生成?目前 事常別学工一生か電電線 (燃飲丸候守的に最大負弱的を思定) 1,493L/h×24h×7 日×3 市=752,4721	事業生産産産産産産産産産産産 事業用学生生産産産産 1.8年期 1.8年期人産産産産 1.8年期人産産産産産 1.8年期人産産産産産 1.8年期人産産産産 1.8年期人 1.8年間人 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85	3.94/ 非常指示人一些心能就是不目间 非常指示人一些心能就能。2.64@%, %2 (能費比保守的に最大負責的を想定) 1,879L/h×24h×7 日×2 台=631,34fL	事業発生直後、事業発生生後7日期 事業発行ディーゼルを蓄積。2.台段動、※2 (法費:14代中的にま大息病時を進定) 1.879L/hン2hhン7日22合=651,544L	事業税害主産後へ事業発生後7日間 事業税調売、一から発電職。2台優職、※2 (総営兵保守協行に表大費の単会地定) 1,5%1人かどは大量(142,24)	事要染生成後一事業業業生後7日間 事業用学工一生か業電機 (燃料上級学的に最大負責的参加E) 1.879L/h×24h×7月×2台=631,340L	事業発生産後、事業発生後7日間 5.5分が県子が建造内容急等対策所用可確型電源 その他 45.1かと3.147、日元、500. モニカンシリング・ポスト用発産0. モニクリング・ポスト用発産0. 9.1.カン24かズ1日ス3台=4,550. ※1 事務収定実に必要な非常用ディーセル必要職職は2台で ※3 非公規定によるへ合整。							

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018. 9. 12 版)	島根原子力発電所 2号炉	備考
資料なし	添付資料 2.6.10 常設代替交流電源設備の負荷(LOCA時注水機能喪失)	添付資料 2.6.8 常設代替交流電源設備の負荷(LOCA時注水機能喪失)	 ・設備設計の相違 【東海第二】 常設代替電源設備か ら電源供給する負荷が
	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><figure></figure></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	常設代替電源設備から電源供給する負荷が異なる。

まとめ資料比較表 〔有効性評価 添付資料 2.6.8〕

まとめ資料比較表 〔有効性評価 2.7 格納容器バイパス(インターフェイスシステムLOCA)〕

東海第二発電所 (2018.9.12版)

2.7 格納容器バイパス (インターフェイスシステムLOCA)

2.7.1 事故シーケンスグループの特徴,炉心損傷防止対策	2.7.1 事故シーケンスグループの特徴, 炉心損傷防止対策	2.7.1 事故シーケンスグループの特徴,炉
(1) 事故シーケンスグループ内の事故シーケンス	(1) 事故シーケンスグループ内の事故シーケンス	(1) 事故シーケンスグループ内の事故シー
事故シーケンスグループ「格納容器バイパス(インターフ	事故シーケンスグループ「格納容器バイパス(インターフ	事故シーケンスグループ「格納容器
ェイスシステム LOCA)」において,炉心損傷防止対策の有効	ェイスシステムLOCA) (以下「格納容器バイパス(ISL	ェイスシステムLOCA) 」 <u>において</u> ,
性を確認する事故シーケンスは、「1.2 評価対象の整理及び評	<u>OCA)」という。)</u> 」に含まれる事故シーケンスは、「1.2 評	有効性を確認する事故シーケンスは,
価項目の設定」に示すとおり、「インターフェイスシステム	価対象の整理及び評価項目の設定」に示すとおり、「インター	及び評価項目の設定」に示すとおり、「
LOCA」(インターフェイスシステム LOCA の発生後,隔離でき	フェイスシステムLOCA (以下「ISLOCA」という。)」	ンターフェイスシステムLOCA)(以
ないまま炉心損傷に至るシーケンス)である。	(ISLOCAの発生後、隔離できないまま炉心損傷に至る	<u>という。</u>)」(<u>ISLOCA</u> の発生後,
	シーケンス)である。	損傷に至るシーケンス)である。
(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基	(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基	(2) 事故シーケンスグループの特徴及び
本的考え方	本的考え方	本的考え方
事故シーケンスグループ「格納容器バイパス(インターフ	事故シーケンスグループ「格納容器バイパス(ISLOC	事故シーケンスグループ「格納容器
<u>エイスシステム LOCA</u>)」では,原子炉冷却材圧力バウンダリ	A)」では,原子炉冷却材圧力バウンダリと接続された系統で,	<u>A</u>)」では,原子炉冷却材圧力バウンダリ
と接続された系統で、高圧設計部分と低圧設計部分のインタ	高圧設計部分と低圧設計部分のインターフェイスとなる配管	高圧設計部分と低圧設計部分のインタ
ーフェイスとなる配管のうち、隔離弁の隔離失敗等により低	のうち、隔離弁の隔離失敗等により低圧設計部分が過圧され	のうち、隔離弁の隔離失敗等により低加
圧設計部分が過圧され破断することを想定する。このため,	破断することを想定する。このため、破断箇所から原子炉冷	破断することを想定する。このため、そ
破断箇所から原子炉冷却材が流出し、原子炉水位が低下する	却材が流出し、原子炉水位が低下することから、緩和措置が	却材が流出し、原子炉水位が低下する。
ことから、緩和措置がとられない場合には、原子炉水位の低	とられない場合には,原子炉水位の低下により炉心が露出し,	とられない場合には,原子炉水位の低下
下により炉心が露出し、炉心損傷に至る。	炉心損傷に至る。	炉心損傷に至る。
本事故シーケンスグループは、インターフェイスシステム	本事故シーケンスグループは、ISLOCAが発生したこ	本事故シーケンスグループは、IS
LOCA が発生したことによって、最終的に炉心損傷に至る事故	とによって、最終的に炉心損傷に至る事故シーケンスグルー	とによって、最終的に炉心損傷に至る
シーケンスグループである。このため、重大事故等対策の有	プである。このため、重大事故等対策の有効性評価には、 I	プである。このため,重大事故等対策(
効性評価には、インターフェイスシステム LOCA に対する重大	SLOCAに対する重大事故等対処設備及びISLOCAの	<u>SLOCA</u> に対する重大事故等対処設
事故等対処設備及びインターフェイスシステム LOCA の発生	発生箇所の隔離に期待することが考えられる。	発生箇所の隔離に期待することが考え
箇所の隔離に期待することが考えられる。		
ここで, <u>インターフェイスシステム LOCA</u> が生じた際の状		<u>ここで、ISLOCAが生じた際の</u>
況を想定すると、原子炉を減圧した後、低圧注水機能による		<u>子炉を減圧した後,低圧注水機能によ</u>
原子炉注水を実施することも考えられるが、本事故シーケン		ることも考えられるが、本事故シーケン
スグループにおいては、低圧注水機能による原子炉への注水		は,低圧注水機能による原子炉への注
には期待せず,高圧注水機能に対する対策の有効性を評価す		<u>注水機能に対する対策の有効性を評価</u>
ることとする。		
したがって、本事故シーケンスグループでは、原子炉隔離	したがって、本事故シーケンスグループでは、原子炉隔離	したがって、本事故シーケンスグル・
時冷却系及び高圧炉心注水系により炉心を冷却することによ	時冷却系により炉心を冷却することによって炉心損傷の防止	時冷却系 <u>及び高圧炉心スプレイ系</u> によ
って炉心損傷の防止を図り,また,逃がし安全弁によって原	を図り、また、逃がし安全弁によって原子炉を減圧すること	によって炉心損傷の防止を図り,また,

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

2.7 格納容器バイパス (インターフェイスシステム LOCA)

設備運用又は体制等の相違	(設計方針の相違)

波線・・記載表現,設備名称の相違(実質的な相違なし)

島根原子力発電所 2号炉	備考
2.7 格納容器バイパス (インターフェイスシステムLOCA)	
2.7.1 事故シーケンスグループの特徴,炉心損傷防止対策	
(1) 事故シーケンスグループ内の事故シーケンス	
事故シーケンスグループ「格納容器バイパス(インターフ	
ェイスシステムLOCA)」において,炉心損傷防止対策の	
<u>有効性を確認する</u> 事故シーケンスは, 「1.2 評価対象の整理	
及び評価項目の設定」に示すとおり、「 <u>格納容器バイパス(イ</u>	
ンターフェイスシステムLOCA)(以下,「ISLOCA」	
<u>という。)」(ISLOCA</u> の発生後,隔離できないまま炉心	
損傷に至るシーケンス)である。	
(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基	
本的考え方	
事故シーケンスグループ「格納容器バイパス(<u>ISLOC</u>	
<u>A</u>)」では,原子炉冷却材圧力バウンダリと接続された系統で,	
高圧設計部分と低圧設計部分のインターフェイスとなる配管	
のうち、隔離弁の隔離失敗等により低圧設計部分が過圧され	
破断することを想定する。このため、破断箇所から原子炉冷	
却材が流出し、原子炉水位が低下することから、緩和措置が	
とられない場合には,原子炉水位の低下により炉心が露出し,	
炉心損傷に至る。	
本事故シーケンスグループは, <u>ISLOCA</u> が発生したこ	
とによって、最終的に炉心損傷に至る事故シーケンスグルー	
プである。このため,重大事故等対策の有効性評価には, <u>I</u>	
<u>SLOCA</u> に対する重大事故等対処設備及び <u>ISLOCA</u> の	
発生箇所の隔離に期待することが考えられる。	
ここで、ISLOCAが生じた際の状況を想定すると、原	・解析条件の相違
子炉を減圧した後、低圧注水機能による原子炉注水を実施す	
ることも考えられるが、本事故シーケンスグループにおいて	島根2号炉は、ISLOCA
は、 低圧 江水機能による 原子炉への 圧水には 期待せず、 高圧	第生下において、局圧注
<u> 江水機能に対する対束の有効性を評価することとする。</u>	水機能に対する対策の有
したぶって、大声払い、レンフドゥーやベル・ドフトに回か	タリヤユを評価している。
しにかつし、平争政ンークンスクルーンでは、原于炉隔離	。細仁久仲の七生
时行却米 <u>及い間上別心人ノレイ米</u> により別心を行却すること によって応じ出作の吐止た回り。また、Winit ウヘムによう。	・ 脾
によつ(炉心損傷の防止を図り,また,逃かし安全开によっ	【果御界—】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
子炉を減圧することによる原子炉冷却材の漏えいの抑制及び	による原子炉冷却材の漏えいの抑制及びISLOCAの発生	て原子炉を減圧することによる原子炉冷却材の漏えいの抑制	島根2号炉は, ISLOCA
インターフェイスシステムLOCA の発生箇所の隔離によって,	箇所の隔離によって, <u>格納容器</u> 外への原子炉冷却材の流出の	及び <u>ISLOCA</u> の発生箇所の隔離によって,原子炉格納容	発生下において、高圧注
原子炉格納容器外への原子炉冷却材の流出の防止を図る。ま	防止を図る。また、残留熱除去系(サプレッション・プール	器外への原子炉冷却材の流出の防止を図る。また,残留熱除	水機能に対する対策の有
た,残留熱除去系(サプレッション・チェンバ・プール水冷	<u>冷却系</u>)による <u>格納容器除熱</u> を実施する。	去系(<u>サプレッション・プール水冷却モード</u>)による <u>原子炉</u>	効性を評価している。
却モード)による原子炉格納容器除熱を実施する。		格納容器除熱を実施する。	
(3) 炉心損傷防止対策	(3) 炉心損傷防止対策	(3) 炉心損傷防止対策	
事故シーケンスグループ「格納容器バイパス(インターフ	事故シーケンスグループ「格納容器バイパス(ISLOC	事故シーケンスグループ「格納容器バイパス(<u>ISLOC</u>	
エイスシステム LOCA)」における機能喪失に対して、炉心が	A)」における機能喪失に対して、 炉心が著しい損傷に至るこ	<u>A</u>)」における機能喪失に対して、炉心が著しい損傷に至るこ	
著しい損傷に至ることなく、かつ、十分な冷却を可能とする	となく、かつ、十分な冷却を可能とするため、初期の対策と	となく、かつ、十分な冷却を可能とするため、初期の対策と	
ため、初期の対策として原子炉隔離時冷却系及び高圧炉心注	して原子炉隔離時冷却系, <u>低圧炉心スプレイ系及び低圧代替</u>	して原子炉隔離時冷却系 <u>及び高圧炉心スプレイ系</u> による原子	・解析条件の相違
<u>水系</u> による原子炉注水手段,逃がし安全弁による原子炉減圧	<u>注水系(常設)</u> による原子炉注水手段,逃がし安全弁 <u>(自動</u>	炉注水手段,逃がし安全弁による原子炉減圧手段及び運転員	【東海第二】
手段及び運転員の破断箇所隔離による漏えい停止手段を整備	減圧機能)による原子炉減圧手段及び運転員の破断箇所隔離	の破断箇所隔離による漏えい停止手段を整備し、安定状態に	島根2号炉は, ISLOCA
し、安定状態に向けた対策として、高圧炉心注水系による炉	による漏えい停止手段を整備し、安定状態に向けた対策とし	向けた対策として, <u>高圧炉心スプレイ系による</u> 炉心冷却を継	発生下において、高圧注
心冷却を継続する。また、原子炉格納容器の健全性を維持す	て,逃がし安全弁(自動減圧機能)を開維持することで低圧	続する。また,原子炉格納容器の健全性を維持するため,安	水機能に対する対策の有
るため、安定状態に向けた対策として残留熱除去系(サプレ	<u> 炉心スプレイ系による</u> 炉心冷却を継続する。また, <u>格納容器</u>	定状態に向けた対策として残留熱除去系による原子炉格納容	効性を評価している。
<u>ッション・チェンバ・プール水冷却モード</u>)による原子炉格	の健全性を維持するため、安定状態に向けた対策として残留	<u>器除熱手段</u> を整備する。これらの対策の概略系統図を <u>第2.7.1</u>	
納容器除熱手段を整備する。これらの対策の概略系統図を第	熱除去系(サプレッション・プール冶却系)による格納容器	<u>-1(1)図及び第2.7.1-1(3)図</u> に,手順の概要を <u>第2.7.1-2</u>	
<u>2.7.1 図から第2.7.3 図</u> に, 手順の概要を <u>第2.7.4 図</u> に示す	<u>除熱手段</u> を整備する。これらの対策の概略系統図を <u>第2.7-1</u>	図に示すとともに、重大事故等対策の概要を以下に示す。ま	
とともに、重大事故等対策の概要を以下に示す。また、重大	図に、手順の概要を第 <u>2.7-2</u> 図に示すとともに、重大事故	た,重大事故等対策における設備と操作手順の関係を <u>第2.7.1</u>	
事故等対策における設備と操作手順の関係を <u>第2.7.1</u> 表に示	等対策の概要を以下に示す。また,重大事故等対策における	<u>-1表</u> に示す。	
す。	設備と操作手順の関係を <u>第2.7-1</u> 素に示す。		
本事故シーケンスグループの重要事故シーケンスにおい	本事故シーケンスグループの重要事故シーケンスにおい	本事故シーケンスグループの重要事故シーケンスにおい	
て,6 号及び 7 号炉同時の重大事故等対策に必要な要員は,	て,重大事故等対策に必要な要員は, <u>災害対策要員(初動)</u>	て,重大事故等対策に必要な要員は, <u>緊急時対策要員 10 名</u> で	・運用及び設備設計の相
<u>中央制御室の運転員及び</u> 緊急時対策要員 <u>で構成され,合計20</u>	<u>12 名</u> である。その内訳は次のとおりである。中央制御室の運	ある。その内訳は次のとおりである。中央制御室の運転員は、	違
<u>名</u> である。その内訳は次のとおりである。中央制御室の運転	転員は, 当直発電長1名, 当直副発電長1名, 運転操作対応	<u>当直長</u> 1名, <u>当直副長1名</u> ,運転操作対応を行う <u>運転員3名</u>	【柏崎 6/7,東海第二】
員は,当直長1名 <u>(6号及び7号炉兼任)</u> ,当直副長 <u>2名</u> ,	を行う <u>ための当直運転員5名</u> である。発電所構内に常駐して	である。発電所構内に常駐している要員のうち,通報連絡等	プラント基数,設備設
運転操作対応を行う運転員 <u>12 名</u> である。発電所構内に常駐	いる要員のうち,通報連絡等を行う <u>要員は4 名及び現場操作</u>	を行う <u>要員は5名</u> である。必要な要員と作業項目について <u>第</u>	計及び運用の違いにより
している要員のうち、通報連絡等を行う緊急時対策本部要員	<u>を行うための重大事故等対応要員1名</u> である。必要な要員と	<u>2.7.1-3図</u> に示す。	必要要員数は異なるが,
は5 名である。必要な要員と作業項目について <u>第2.7.5 図</u> に	作業項目について <u>第2.7-3</u> 図に示す。		タイムチャートにより要
示す。			員の充足性を確認してい
			る。なお,これら要員 10
			名は夜間・休日を含め発
			電所に常駐している要員
			である。
a. インターフェイスシステム LOCA 発生	a. ISLOCA発生	a. <u>ISLOCA</u> 発生	
原子炉冷却材圧力バウンダリと接続された系統で、高圧	原子炉冷却材圧力バウンダリと接続された系統で、高圧	原子炉冷却材圧力バウンダリと接続された系統で、高圧	
設計部分と低圧設計部分のインターフェイスとたる配管の			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
うち、隔離弁の隔離失敗等により低圧設計部分が過圧され	うち、隔離弁の隔離失敗等により低圧設計部分が過圧され	うち、隔離弁の隔離失敗等により低圧設計部分が過圧され	
破断することで, インターフェイスシステム LOCA_が発生	破断することで、 ISLOCAが発生する。破断箇所から	破断することで、 <u>ISLOCA</u> が発生する。破断箇所から	
する。破断箇所から原子炉冷却材が流出することにより,	原子炉冷却材が流出することにより、原子炉建屋外側ブロ	原子炉冷却材が流出することにより, <u>原子炉建物</u> ブローア	
原子炉建屋ブローアウトパネルが開放する。	ーアウトパネルが開放する。	ウトパネルが開放する。	
b. 外部電源喪失及び原子炉スクラム確認	b. 外部電源喪失及び原子炉スクラム確認	b. 外部電源喪失及び原子炉スクラム確認	
事象発生後に外部電源喪失が発生し、原子炉がスクラム	事象発生後に外部電源喪失が発生し、原子炉がスクラム	事象発生後に外部電源喪失が発生し、原子炉がスクラム	
したことを確認する。	したことを確認する。	したことを確認する。	
原子炉のスクラムを確認するために必要な計装設備は、	原子炉のスクラムを確認するために必要な計装設備は,	原子炉のスクラムを確認するために必要な計装設備は,	
<u>半均出力領域モニタ等</u> である。	半均出力領域計装等である。	半均出力領域計装である。	・設備の相違
			【柏崎 6/7, 東海第二】
			島根2号炉は、中性子源 (毎はき)は(2001() 平ざ
			 中间 頑 或 訂 表 (1 K M), ・
			和响 0/1, 宋伊弗—(4起) 動領城計法(SPNM)
			勤 頃 戦 司 表 (SKNM)
			6/7 東海第 ^一 け 運転時
			「挿入されているSRNM
			により確認が可能な設備
			として、等を記載してい
			るが、島根2号炉は、S
			RM及びIRMが運転時
			引き抜きのため、平均出
			力領域計装 (APRM)
			により確認することとし
			ている。
c. 原子炉隔離時冷却系による原子炉注水	c. 原子炉隔離時冷却系による原子炉注水	c. 原子炉隔離時冷却系 <u>及び高圧炉心スプレイ系</u> による原子	
		炉注水	
原子炉スクラム後、原子炉水位は低下するが、原子炉水	原子炉スクラム後、原子炉水位は低下するが、原子炉水	原子炉スクラム後、原子炉水位は低下し、原子炉水位低	
位低(レベル 2)で原子炉隔離時冷却系が自動起動し,原子	位異常低下(レベル2)で原子炉隔離時冷却系が自動起動	(レベル2)で原子炉隔離時冷却系が自動起動するが,原子	・解析結果の相違
<u>炉注水を開始することにより、原子炉水位が回復する。</u>	し <u>,</u> 原子炉注水を開始することにより,原子炉水位が回復	<u>炉水位は低下し続け、原子炉水位低(レベル1H)で高圧</u>	【柏崎 6/7, 東海第二】
		<u> 炉心スプレイ糸が目動起動する。</u> 医スに原始性炎性で及び立下に、ここの、イズに、トニーズ	島根2号炉は,原子炉
原子炉隔離時 常知 時 一 二 二 二 二 二 二 二 二 二 二 二 二 二	県子炉隔離時伶却糸による原子炉注水を確認するために いまれませた。 医スセム (c++++) 医スピアがたい	原子炉隔離時伶却糸 <u>及び高圧炉心スブレイ糸</u> による原子	隔離時 行 却 糸 起 動 後 も 原
必要な計装設価は、原子炉水位、原子炉隔離時份却糸糸統	ム要な計装設価は、 <u>原子炉水位(広帯域)</u> 、 <u>原子炉隔離時</u> 治	ア注水を確認するために必要な計装設備は、各ボンブの出 ロ波見燃です。	ナ炉水位は低トを継続。
孤黒寺でめる。	型	山孤萬寺である。	よに、水位低下に伴い、
			向庄炉心ヘノレイ 米か目 動却動士で
			判起則 りる。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
d. インターフェイスシステム LOCA 発生確認	d. ISLOCA発生確認	d. ISLOCA発生確認	
原子炉水位及び原子炉圧力の低下により LOCA 事象を確	原子炉水位及び原子炉圧力の低下によりLOCA事象を	原子炉水位及び原子炉圧力の低下によりLOCA事象を	
認し、格納容器温度、格納容器圧力の上昇がないことから	確認し、格納容器雰囲気温度及び格納容器圧力の上昇がな	確認し、格納容器温度、格納容器圧力の上昇がないことか	
原子炉格納容器外での漏えい事象であることを確認し, <u>高</u>	いことから格納容器外での漏えい事象であることを確認	ら原子炉格納容器外での漏えい事象であることを確認し、	
	し,残留熱除去系ポンプ <u>吐出圧力</u> の上昇(破断面積が大き	<u>残留熱除去ポンプ出口圧力指示</u> の上昇(破断面積が大きく	・解析条件の相違
く漏えい量が多い場合は、運転員の対応なしに低下傾向を	く漏えい量が多い場合は,運転員の対応なしに低下傾向を	漏えい量が多い場合は、運転員の対応なしに低下傾向を示	【柏崎 6/7】
示す場合もある)により低圧設計部分が過圧されたことを	示す場合もある)により低圧設計部分が過圧されたことを	す場合もある)により低圧設計部分が過圧されたことを確	破断想定箇所の相違。
確認し, <u>インターフェイスシステム LOCA</u> が発生したこと	確認し、ISLOCAが発生したことを確認する。	認し, <u>ISLOCA</u> が発生したことを確認する。	
を確認する。			
<u>インターフェイスシステム LOCA</u> の発生を確認するため	ISLOCAの発生を確認するために必要な計装設備	<u>I.S.L.O.C.A</u> の発生を確認するために必要な計装設備	
に必要な計装設備は, <u>原子炉水位,格納容器内圧力</u> , <u>高圧</u>	は,原子炉水位 (広帯域), <u>ドライウェル圧力</u> ,残留熱除去	は, <u>原子炉水位(広帯域),ドライウェル圧力(SA),残</u>	
<u>炉心注水系ポンプ</u> <u>吐出圧力</u> 等である。	系ポンプ <u>吐出圧力</u> 等である。	<u>留熱除去ポンプ出口圧力</u> 等である。	
なお、監視可能であればエリア放射線モニタ、床漏えい	なお,監視可能であれば <u>原子炉建屋内空間線量率,区画</u>	なお,監視可能であればエリア放射線モニタ,床漏えい	
警報,火災報知器動作等により原子炉建屋内の状況を参考	浸水警報、火災警報等により原子炉建屋原子炉棟内の状況	<u>警報,火災警報</u> 等により <u>原子炉棟内</u> の状況を参考情報とし	
情報として得ることが可能である。	を参考情報として得ることが可能である。	て得ることが可能である。	
e. 中央制御室での <u>高圧炉心注水系</u> 隔離失敗	e. 中央制御室での <u>残留熱除去系(低圧注水系)</u> 隔離失敗	e. 中央制御室での <u>残留熱除去系</u> 隔離失敗	・解析条件の相違
中央制御室からの遠隔操作により <u>高圧炉心注水系</u> の隔離	中央制御室からの遠隔操作により残留熱除去系の隔離操	中央制御室からの遠隔操作により <u>残留熱除去系</u> の隔離操	【柏崎 6/7】
操作を実施するが, <u>高圧炉心注入隔離弁</u> の閉操作に失敗す	作を実施するが,残留熱除去系注入弁の閉操作に失敗する。	作を実施するが, <u>残留熱除去系注水弁</u> の閉操作に失敗する。	破断想定箇所の相違。
る。			
<u>高圧炉心注水系</u> の隔離失敗を確認するために必要な計装	残留熱除去系の隔離失敗を確認するために必要な計装設	<u>残留熱除去系</u> の隔離失敗を確認するために必要な計装設	
設備は、原子炉水位及び原子炉圧力である。	備は,原子炉水位(広帯域)及び原子炉圧力である。	備は, <u>原子炉水位 (広帯域), 原子炉圧力 (SA) 等</u> である。	
f. 逃がし安全弁による原子炉急速減圧	f. 逃がし安全弁による原子炉急速減圧	f. 逃がし安全弁による原子炉急速減圧	
中央制御室からの遠隔操作による <u>高圧炉心注水系</u> の隔離	中央制御室からの遠隔操作による残留熱除去系の隔離が	中央制御室からの遠隔操作による <u>残留熱除去系</u> の隔離が	・解析条件の相違
が失敗するため、破断箇所からの漏えい量を抑制するため	失敗するため, <u>原子炉急速減圧の準備として,中央制御室か</u>	失敗するため,破断箇所からの漏えい量を抑制するため原	【柏崎 6/7】
原子炉を急速減圧する。	らの遠隔操作により低圧炉心スプレイ系を起動する <u>。</u>	子炉を急速減圧する。	破断想定箇所の相違。
	<u>原子炉急速減圧の準備が完了後,</u> 破断箇所からの漏えい量		【東海第二】
	を抑制するため原子炉を急速減圧する。		東海第二では原子炉
原子炉急速減圧を確認するために必要な計装設備は、原	原子炉急速減圧を確認するために必要な計装設備は、原子	原子炉急速減圧を確認するために必要な計装設備は,原	減圧後に低圧注水手段
子炉圧力である。	炉圧力である。	<u>子炉圧力(SA)及び</u> 原子炉圧力である。	へ切り替えを実施。
g. 高圧炉心注水系による原子炉注水	g. 低圧代替注水系(常設)による原子炉注水	g. <u>高圧炉心スプレイ系</u> による原子炉注水	・解析条件の相違
	外部水源にて注水可能な系統として中央制御室からの遠		【東海第二】
	<u> </u>		島根2号炉は, ISLOCA
			発生下において、高圧注
			水機能に対する対策の有
			効性を評価している。
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------------	---	---	-----------------
原子炉急速減圧操作により原子炉水位が低下し、原子炉	原子炉急速減圧により,原子炉圧力が低圧代替注水系(常		・解析結果の相違
水位低(レベル 1.5)で健全側の高圧炉心注水系が自動起動	設)の系統圧力を下回ると、原子炉注水が開始され、原子		【柏崎 6/7】
する。	炉水位が回復する。		島根2号炉は,原子炉
高圧炉心注水系の自動起動を確認するために必要な計装	低圧代替注水系(常設)による原子炉注水を確認するた		水位低下により自動起動
設備は、高圧炉心注水系系統流量である。	めに必要な計装設備は,原子炉水位 (広帯域),原子炉水位		している高圧炉心スプレ
	(燃料域),低圧代替注水系原子炉注水流量(常設ライン用)		イ系による原子炉注水を
	等である。		継続。
原子炉水位回復後は,破断箇所からの漏えい抑制のため,	原子炉水位回復後は,破断箇所からの漏えい抑制のため,	原子炉急速減圧後は,破断箇所からの漏えい抑制のため,	
破断箇所の隔離が終了するまで原子炉水位は <u>高圧炉心注水</u>	破断箇所の隔離が終了するまで原子炉水位は原子炉水位異	破断箇所の隔離が終了するまで原子炉水位は <u>原子炉水位低</u>	・運用の相違
<u>系ノズル部以下</u> で維持する。	<u>常低下(レベル2)以上</u> で低めに維持する。	<u>(レベル2)以上</u> で低めに維持する。	【柏崎 6/7】
			原子炉水位低下時の目
原子炉水位の維持を確認するために必要な計装設備は,	原子炉水位の維持を確認するために必要な計装設備は,	原子炉水位の維持を確認するために必要な計装設備は, 原	標水位の相違。
原子炉水位及び高圧炉心注水系系統流量である。	原子炉水位(広帯域) <u>及び低圧代替注水系原子炉注水流量</u>	子炉水位(広帯域),高圧炉心スプレイポンプ出口流量 <mark>等</mark> で	
	<u>(常設ライン用)で</u> ある。	ある。	
h. 残留熱除去系(<u>サプレッション・チェンバ・プール水冷</u>	h. 残留熱除去系(<u>サプレッション・プール冷却系</u>)運転	h. 残留熱除去系(<u>サプレッション・プール水冷却モード</u>)	
却モード)運転		運転	
原子炉急速減圧により <u>サプレッション・チェンバ・プー</u>	原子炉急速減圧によりサプレッション・プール水温度が	原子炉急速減圧により <u>サプレッション・プール水温度</u> が	
ル水温が 35℃を超えた時点で,残留熱除去系によるサプレ	<u>32℃に到達した</u> 時点で,残留熱除去系 <u>(サプレッション・</u>	<u>35℃を超えた</u> 時点で,健全側の残留熱除去系 <u>(サプレッシ</u>	・運用の相違
<u>ッション・チェンバ・プール水冷却モード</u> 運転を開始する。	<u>プール冷却系)の</u> 運転を開始する。	<u>ョン・プール水冷却モード)の</u> 運転を開始する。	【東海第二】
残留熱除去系(<u>サプレッション・チェンバ・プール水冷</u>	残留熱除去系(<u>サプレッション・プール冷却系</u>)運転を確	残留熱除去系(<u>サプレッション・プール水冷却モード</u>)運	除熱開始温度の相違。
却モード)運転を確認するために必要な計装設備は、サプ	認するために必要な計装設備は、サプレッション・プール水	転を確認するために必要な計装設備は、サプレッション・プ	
レッション・チェンバ・プール水温度等である。	温度等である。	ール水温度(SA)等である。	
		<u>i. 残留熱除去系(原子炉停止時冷却モード)運転</u>	・運用の相違
			【柏崎 6/7,東海第二】
			島根2号炉は、現場隔
		停止時冷却モード運転に切り替える。	離操作等のアクセスを考
		残留熱除去系 (原子炉停止時冷却モード)の運転を確認す	 慮し,原子炉棟内の環境
		るために必要な計装設備は,残留熱除去系熱交換器入口温度	緩和のために, S/P 冷却
		等である。	モードから原子炉停止時
			冷却モードへの切替操作
			を行う。
i. 現場操作での高圧炉心注水系隔離操作	i. 現場操作での残留熱除去系隔離操作	j. 現場操作での残留熱除去系隔離操作	・解析条件の相違
破断箇所からの漏えい抑制が継続し、現場操作により高	破断箇所からの漏えい抑制が継続し、現場操作により残	破断箇所からの漏えい抑制が継続し、現場操作により残	【柏崎 6/7】
圧炉心注入隔離弁の全閉操作を実施し、高圧炉心注水系を	留熱除去系注入弁の全閉操作を実施し、残留熱除去系を隔	留熱除去系注水弁の全閉操作を実施し、残留熱除去系を隔	破断想定箇所の相違。
<u></u>	離する。	<u></u>	
			l

	志海宮二秋東正 (2010-0-10 匹)	白相臣又九恋承託一百日后	/=====
相喻利羽原于刀笼電所 6/ (芳炉 (2017.12.20版)	東御弗二先竜所 (2018.9.12 版)	島根原ナ刀発電所 2 芳炉	伽ろ
<u> 高 上 炉 心 注 水 糸</u> の 隔 離 を 確 認 す る た め の 計 装 設 備 は , <u>原</u>	援留熱除去糸の隔離を確認するための計装設備は, 原子	<u>残留熟除去糸</u> の隔離を確認するための計装設備は, <u>原子</u>	
<u> </u>	炉水位(広帯域)である。	炉水位(広帯域)等である。	
<u>j高圧炉心注水系</u> 隔離後の水位維持	<u>j</u> 残留熱除去系隔離後の水位維持	<u>k. 残留熱除去系</u> 隔離後の水位維持	・解析条件の相違
高圧炉心注水系の隔離が成功した後は、 <u>健全側の高圧炉</u>	残留熱除去系の隔離が成功した後は、 <u>低圧炉心スプレイ</u>	残留熱除去系の隔離が成功した後は、高圧炉心スプレイ	【柏崎 6/7】
心注水系により,原子炉水位を原子炉水位低(レベル3)	系により,原子炉水位を原子炉水位低(レベル3)から原	系により、原子炉水位を原子炉水位低(レベル3)から原	破断想定箇所の相違。
から原子炉水位高(レベル8)の間で維持する。	子炉水位高(レベル8)の間で維持する。	子炉水位高(レベル8)の間で維持する。	
原子炉水位の維持を確認するために必要な計装設備は、	原子炉水位の維持を確認するために必要な計装設備は,	原子炉水位の維持を確認するために必要な計装設備は,	
原子炉水位及び高圧炉心注水系系統流量である。	原子炉水位(広帯域)及び低圧炉心スプレイ系系統流量で	原子炉水位(広帯域),高圧炉心スプレイポンプ出口流量等	
	ある。	である。	
以降 后心冷却及び盾子后枚纳交哭险執け 建空執险主	以降 恒心冷却け 低圧恒心スプレイ系に上ろ注水に上	以降 恒心冷却及び恒子恒枚劾交哭险執け 建塑執险主	・運田の相違
Sに上り継続的に行う	h 継続的に行い、また 枚納容哭险執け 建図執险主系()	系に上り継続的に行う	「重海第一】
	プレッション・プール冷却系)に上り継続的に行う		▲本海第二↓ 市海第二け 「「「小冷却」
			と
			こ名納泊部が無たろ
2.7.2 炉心損傷防止対策の有効性評価	2.7.2 炉心損傷防止対策の有効性評価	2.7.2 炉心損傷防止対策の有効性評価	
(1) 有効性評価の方法	(1) 有効性評価の方法	(1) 有効性評価の方法	
本事故シーケンスグループを評価する上で選定した重要事	本事故シーケンスグループを評価する上で選定した重要事	本事故シーケンスグループを評価する上で選定した重要事	
故シーケンスは,「1.2 評価対象の整理及び評価項目の設定」	故シーケンスは、「1.2 評価対象の整理及び評価項目の設定」	故シーケンスは、「1.2 評価対象の整理及び評価項目の設定」	
に示すとおり、原子炉冷却材圧力バウンダリと接続された系	に示すとおり、原子炉冷却材圧力バウンダリと接続された系	に示すとおり、原子炉冷却材圧力バウンダリと接続された系	
統で,高圧設計部分と低圧設計部分とのインターフェイスが,	統で,高圧設計部分と低圧設計部分とのインターフェイスが,	統で,高圧設計部分と低圧設計部分とのインターフェイスが,	
直列に設置された2 個の隔離弁のみで隔離された系統におい	直列に設置された2 個の隔離弁のみで隔離された系統におい	直列に設置された2個の隔離弁のみで隔離された系統におい	
て、隔離弁が両弁ともに破損又は誤開放することで、低圧設	て、隔離弁が両弁ともに破損又は誤開放することで、低圧設	て、隔離弁が両弁ともに破損又は誤開放することで、低圧設	
計部分が過圧される「 <u>インターフェイスシステム LOCA</u> 」であ	計部分が過圧される「ISLOCA」である。	計部分が過圧される「 <u>ISLOCA</u> 」である。	
る。			
本重要事故シーケンスでは、炉心における崩壊熱、燃料棒	本重要事故シーケンスでは、炉心における崩壊熱、燃料棒	本重要事故シーケンスでは、炉心における崩壊熱、燃料棒	
表面熱伝達,気液熱非平衡,沸騰遷移,燃料被覆管酸化,燃	表面熱伝達, 気液熱非平衡, 沸騰遷移, 燃料被覆管酸化, 燃	表面熱伝達, 気液熱非平衡, 沸騰遷移, 燃料被覆管酸化, 燃	
料被覆管変形,沸騰・ボイド率変化,気液分離(水位変化)・	料被覆管変形,沸騰・ボイド率変化,気液分離(水位変化)・	料被覆管変形,沸騰・ボイド率変化,気液分離(水位変化)・	
対向流、三次元効果並びに原子炉圧力容器における沸騰・凝	対向流及び三次元効果並びに原子炉圧力容器における沸騰・	対向流, 一三次元効果並びに原子炉圧力容器における沸騰・凝	
縮・ボイド率変化,気液分離(水位変化)・対向流,冷却材放	凝縮・ボイド率変化、気液分離(水位変化)・対向流、冷却材	縮・ボイド率変化、気液分離(水位変化)・対向流、冷却材放	
出(臨界流・差圧流),ECCS 注水(給水系・代替注水設備含	放出(臨界流・差圧流)及びECCS注水(給水系・代替注	出(臨界流・差圧流), ECCS注水(給水系・代替注水設備	
む)が重要現象となる。よって、これらの現象を適切に評価	水設備含む)が重要現象となる。よって、これらの現象を適	含む)が重要現象となる。よって、これらの現象を適切に評	
することが可能である長期間熱水力過渡変化解析コード	切に評価することが可能である長期間熱水力過渡変化解析コ	価することが可能である長期間熱水力過渡変化解析コードS	
SAFER により原子炉圧力,原子炉水位,燃料被覆管温度等の	ードSAFERにより原子炉圧力,原子炉水位,燃料被覆管	AFERにより原子炉圧力,原子炉水位,燃料被覆管温度等	
過渡応答を求める。	温度等の過渡応答を求める。	の過渡応答を求める。	
また、解析コード及び解析条件の不確かさの影響評価の範	また、解析コード及び解析条件の不確かさの影響評価の範	また、解析コード及び解析条件の不確かさの影響評価の範	

· · · · · · · · · · · · · · · · · · ·		-	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
囲として、本重要事故シーケンスにおける運転員等操作時間	囲として、本重要事故シーケンスにおける運転員等操作時間	囲として、本重要事故シーケンスにおける運転員等操作時間	
に与える影響,評価項目となるパラメータに与える影響及び	に与える影響,評価項目となるパラメータに与える影響及び	に与える影響,評価項目となるパラメータに与える影響及び	
操作時間余裕を評価する。	操作時間余裕を評価する。	操作時間余裕を評価する。	
(2) 有効性評価の条件	(2) 有効性評価の条件	(2) 有効性評価の条件	
本重要事故シーケンスに対する初期条件も含めた主要な解	本重要事故シーケンスに対する初期条件も含めた主要な解	本重要事故シーケンスに対する初期条件も含めた主要な解	
析条件を第2.7.2表に示す。また、主要な解析条件について、	析条件を <u>第 2.7-2 表</u> に示す。また,主要な解析条件につい	析条件を <u>第2.7.2-1表</u> に示す。また,主要な解析条件につい	
本重要事故シーケンス特有の解析条件を以下に示す。	て、本重要事故シーケンス特有の解析条件を以下に示す。	て、本重要事故シーケンス特有の解析条件を以下に示す。	
a. 事故条件	a. 事故条件	a. 事故条件	
(a) 起因事象	(a) 起因事象	(a) 起因事象	
破断箇所は、運転中に弁の開閉試験を実施する系統の	破断箇所は,運転中に弁の開閉試験を実施する系統の	破断箇所は,運転中に弁の開閉試験を実施する系統の	
うち,原子炉圧力容器から低圧設計配管までの弁数が 2	うち,原子炉圧力容器から低圧設計配管までの弁数が 2	うち,原子炉圧力容器から低圧設計配管までの弁数が2	
個であり, <u>インターフェイスシステム LOCA</u> が発生する	個であり, <u>開閉試験時に隔離弁1 個にて隔離状態を維持</u>	個であり、 <u>ISLOCAが発生する可能性が最も高い残</u>	・解析条件の相違
可能性が最も高い <u>高圧炉心注水系の吸込配管</u> とする(<u>原</u>	する系統**のうち, 低圧設計部の耐圧バウンダリとなる箇	<u>留熱除去系(低圧注水モード)の注水配管とする(残留</u>	【柏崎 6/7,東海第二】
子炉隔離時冷却系及び残留熱除去系(低圧注水モード)	所の中で最も大きなシール構造を有する残留熱除去系の	熱除去系(原子炉停止時冷却モード)及び低圧炉心スプ	破断想定箇所の相違。
の注水ラインについては、原子炉圧力容器から低圧設計	熱交換器フランジ部とする。	レイ系注水ラインについても原子炉圧力容器から低圧設	
配管までの弁数が3 個であり,高圧炉心注水系の吸込配		<u>計配管までの弁数が2個であるが,運転中定期試験時の</u>	
<u>管</u> に比べて <u>インターフェイスシステム LOCA</u> の発生頻度		ヒューマンエラーによる発生可能性の有無を考慮した発	
は低くなる)。		<u>生確率の観点から、残留熱除去系(低圧注水モード)の</u>	
		<u>注水配管に比べてISLOCAの発生頻度は低くなる</u>)。	
破断面積は、低圧設計部の耐圧バウンダリとなる箇所	破断面積は、低圧設計部の耐圧バウンダリとなる箇所	破断面積は、低圧設計部の耐圧バウンダリとなる箇所	・解析条件の相違
に対して,実耐力を踏まえた評価を行った結果, <u>1cm² を</u>	に対して,実耐力を踏まえた評価を行った結果, <u>系統に</u>	に対して,実耐力を踏まえた評価を行った結果, <u>保守的</u>	【柏崎 6/7,東海第二】
超えないことを確認しているが,保守的に 10cm ² とする。	<u>破断が発生しないことを確認しているが,保守的に約</u>	に以下を設定する。	
(添付資料 2.7.1)	<u>21cm²とする。</u>	<u>(i)残留熱除去系熱交換器フランジ部(破断面積 16cm²)</u>	
		(ii)残留熱除去系機器等(破断面積 1 cm ²)	
	※ 具体的には,低圧炉心スプレイ系並びに残留熱除去系		
	<u> A系, B系及びC系をいう。このうち, 残留熱除去系</u>		
	A系及びB系が熱交換器を有する系統である。		
	(添付資料 2.7.2)	(添付資料 2.7.2)	
(b) 安全機能の喪失に対する仮定	(b) 安全機能の喪失に対する仮定	(b) 安全機能の喪失に対する仮定	
<u>インターフェイスシステム LOCA</u> が発生した側の <u>高圧</u>	ISLOCAが発生した <u>残留熱除去系B系</u> が機能喪失	<u>ISLOCA</u> が発生した側の <u>残留熱除去系</u> が機能喪失	・解析条件の相違
<u>炉心注水系</u> が機能喪失するものとする。	するものとする。	するものとする。	【東海第二】
	また,原子炉冷却材の漏えいにより残留熱除去系B系		島根2号炉は、区分分
	が設置されている原子炉建屋西側は高温多湿となるた		離等により期待している
	め,保守的に同じ原子炉建屋西側に設置されている高圧		機器への影響はない。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	炉心スプレイ系及び残留熱除去系C系も事象発生と同時		
	に機能喪失するものとする。		
(c) 外部電源なしの場合は、 <u>給復水系</u> による給水がなく、 原子炉水位の低下が早くなることから、外部電源は使用 できないものと仮定し、非常用ディーゼル発電機によっ て給電を行うものとする。	(c)外部電源なしの場合は、給水・復水系による給水がなく、原子炉水位の低下が早くなることから、外部電源は使用できないものと仮定し、非常用ディーゼル発電機等及び常設代替交流電源設備によって給電を行うものとする。	(c) 外部電源なしの場合は、 <u>給水・復水系</u> による給水がなく、原子炉水位の低下が早くなることから、外部電源は使用できないものと仮定し、非常用ディーゼル発電機 <u>等</u> によって給電を行うものとする。	 ・設備設計の相違 【柏崎 6/7】 島根 2 号炉は,高圧炉 心スプレイ系ディーゼル 発電機もある。 ・解析条件の相違 【東海第二】 東海第二は,外部電源 がない場合には緊急用母 線は常設代替高圧電源装 置から受電されるため, 本電源装置も記載。
	また,原子炉スクラムまでの原子炉出力が高く維持され,原子炉水位の低下が大きくなることで,炉心の冷却 の観点で厳しくなり,外部電源がある場合を包含する条 件として,原子炉スクラムは,原子炉水位低(レベル3) 信号にて発生し,再循環系ポンプトリップは,原子炉水 位異常低下(レベル2)信号にて発生するものとする。	<u>また,原子炉スクラムまでの原子炉出力が高く維持され,原子炉水位の低下が大きくなることで,炉心の冷却の観点で厳しくなり,外部電源がある場合を包含する条件として,原子炉スクラムは,原子炉水位低(レベル3)</u> 信号にて発生し,再循環系ポンプトリップは,原子炉水 位低(レベル2)信号にて発生するものとする。	・解析条件の相違 【柏崎 6/7】 島根2号は,事象進展 に対する影響を考慮し外 部電源がある場合を包含 する条件を設定。
 b.重大事故等対策に関連する機器条件 (a)原子炉スクラム信号 原子炉スクラムは、<u>事象発生と同時に想定している外</u> 部電源喪失に起因する再循環ポンプ・トリップに伴う炉 心流量急減信号によるものとする。 	 b.重大事故等対策に関連する機器条件 (a)原子炉スクラム信号 原子炉スクラムは、外部電源がある場合を包含する条件として、原子炉水位低(レベル3)信号によるものとする。 	 b. 重大事故等対策に関連する機器条件 (a) 原子炉スクラム信号 原子炉スクラムは, <u>外部電源がある場合を包含する条</u> <u>件として, 原子炉水位低(レベル3)信号</u>によるものとする。 	
(b) 原子炉隔離時冷却系 原子炉隔離時冷却系が原子炉水位低(レベル 2)で自 動起動し, <u>182m³/h(8.12~1.03MPa[dif]において)</u> の流 量で注水するものとする。	 (b) 原子炉隔離時冷却系 原子炉隔離時冷却系が原子炉水位異常低下(レベル2) で自動起動し、<u>136.7m³/h(7.86MPa[gage]~1.04MPa</u> [gage]において)の流量で注水するものとする。 	 (b) 原子炉隔離時冷却系 原子炉隔離時冷却系が原子炉水位低(レベル2)で自動起動し, <u>91m³/h (8.21~0.74MPa[dif]において)</u>の流量で注水するものとする。 	・設備設計の相違 【柏崎 6/7,東海第二】
	 (c) 低圧炉心スプレイ系 逃がし安全弁(自動減圧機能)による原子炉減圧後に, 1,419m³/h(0.84MPa [dif]において)(最大1,561m³/ h)の流量で注水するものとする。ISLOCA発生時は 		・解析条件の相違 【東海第二】 島根2号炉は,ISLOCA 発生下において,高圧注

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
相崎刈羽原子力発電所 6/7号炉 (2017.12.20版) (c) 高圧炉心注水系 高圧炉心注水系が原子炉水位低 (レベル 1.5) で自動 起動し, <u>727m³/h (0.69MPa[dif]において)</u> の流量で注水 するものトナス	 東海第一発電所 (2018.9.12 版) 隔離成功までの期間において外部水源による注水を優先 するため、原子炉減圧後に低圧代替注水系(常設)によ る注水が開始し原子炉水位が原子炉水位低(レベル3) まで回復した後に注水を停止するものとし、隔離成功後 に注水を再開するものとする。 (d) 低圧代替注水系(常設) 逃がし安全弁(自動減圧機能)による原子炉減圧後に、 最大 378m³/h の流量で注水するものとする。ISLO CA発生時は隔離成功までの期間において、漏えい抑制 のために原子炉水位を原子炉水位異常低下(レベル2) 以上で可能な限り低めに維持することから、評価上は、 漏えい量を厳しくする観点で原子炉水位を原子炉水位低 (レベル3)以上に維持するものとし、隔離成功後に注 水を停止するものとする。 	 島根原子刀発電所 2号炉 (c) 高圧炉心スプレイ系 高圧炉心スプレイ系が原子炉水位低(レベル1H)で 自動起動し、<u>318~1,050 m³/h(8.14~1.38MPa[dif]にお</u> いて)の法号で注水するものとする 	 「 旅機能に対する対策の有 効性を評価している。 ・ 設備設計の相違 【 柏崎 6/7】
 (d) 逃がし安全弁 原子炉減圧には自動減圧機能付き逃がし安全弁<u>(8 個)</u> を使用するものとし、容量として、1 個あたり定格主蒸気 流量の約5%を処理するものとする。 	 (e) 逃がし安全弁 原子炉減圧には逃がし安全弁(自動減圧機能)(7個) を使用するものとし、容量として、1個当たり定格主蒸 気流量の約6%を処理するものとする。 	 (d) 逃がし安全弁 原子炉減圧には自動減圧機能付き逃がし安全弁(6個) を使用するものとし、容量として、1個あたり定格主蒸 気流量の約8%を処理するものとする。 	 ・設備設計の相違 【柏崎 6/7,東海第二】 急速減圧に必要な逃が し安全弁操作個数の相 違。 ・設備設計の相違 【柏崎 6/7,東海第二】
 c.重大事故等対策に関連する操作条件 運転員等操作に関する条件として、「1.3.5 運転員等の操 作時間に対する仮定」に示す分類に従って以下のとおり設 定する。 (a)逃がし安全弁による原子炉急速減圧操作は、インター フェイスシステム LOCA の発生を確認した後、中央制御室 において隔離操作を行うが、その隔離操作失敗の判断時 間及び逃がし安全弁の操作時間を考慮して事象発生から <u>15 分後</u>に開始するものとする。 	 c.重大事故等対策に関連する操作条件 運転員等操作に関する条件として、「1.3.5 運転員等の操 作時間に対する仮定」に示す分類に従って以下のとおり設 定する。 (a)逃がし安全弁による原子炉急速減圧操作は、ISLO CAの発生を確認した後、中央制御室において隔離操作 を行うが、その隔離操作失敗の判断時間並びに低圧炉心 スプレイ系及び逃がし安全弁(自動減圧機能)の操作時 間を考慮して事象発生から <u>15 分後</u>に開始するものとす 	 c.重大事故等対策に関連する操作条件 運転員等操作に関する条件として、「1.3.5 運転員等の操 作時間に対する仮定」に示す分類に従って以下のとおり設 定する。 (a)逃がし安全弁による原子炉急速減圧操作は、<u>ISLO</u> <u>CA</u>の発生を確認した後、中央制御室において隔離操作 を行うが、その隔離操作失敗の判断時間及び逃がし安全 弁の操作時間を考慮して事象発生から<u>30 分後</u>に開始す るものとする。 	・運用の相違 【柏崎 6/7,東海第二】

	古海谷一球電子 (2010 0 12 円)	自相臣了力戏電武 9.巴尼	<i>(</i> 世 北
柏崎利羽原于刀笼龟別 6/ (5炉 (2017.12.20版)	果/#弗→光电// (2018. 9. 12 版)	员依原于刀兜电 <u>用</u> 2 亏炉	111.4
			年日の村法
(0) <u>尚庄炉心注水糸</u> の破断固所隔離操作は、 <u>1ノターノエ</u>	(b) 残留熱尿云糸の破断固所隔離操作は、ISLOCA筅	(b) <u>残留熱味云系</u> の破断固所隔離操作は, <u>ISLOCA</u> 先	
1人ン人丁ムLUCA 発生時の現場境現余件を考慮し、事家	生時の現場境現余件を考慮し、事家発生から <u>約3時間後</u>	生時の現場東東条件を考慮し、事家発生から <u>約9時間後</u> に開催しました。現現な新一根佐族に悪たる味噌さ	【 相崎 6/7, 果海弗 】
発生から <u>3時間後</u> に開始するものとし, 操作時間は 60 分 開し トス	に開始するものとし、現場移動、操作等に要する時間を	に開始するものとし、現場移動、操作等に要する時間を	島根2号炉の操作開始
間とする。	考慮して事象発生の <u>5時間後</u> に完了するものとする。	考慮して事象発生の10時間後に完了するものとする。	時間及び完了時間を記
(添付資料 2.7.1)		(添付資料 2.7.2)	載。
(3) 有効性評価の結果	(3) 有効性評価の結果	(3) 有効性評価の結果	
本重要事故シーケンスにおける原子炉圧力,原子炉水位(シ	本重要事故シーケンスにおける原子炉圧力,原子炉水位(シ	本重要事故シーケンスにおける原子炉圧力,原子炉水位(シ	
ュラウド内及びシュラウド内外)※1,注水流量,逃がし安全	ュラウド内及びシュラウド内外)*, 注水流量, 逃がし安全弁	ュラウド内及びシュラウド内外) [※] , 注水流量, 逃がし安全弁	
弁からの蒸気流量,原子炉圧力容器内の保有水量の推移を <u>第</u>	からの蒸気流量及び原子炉圧力容器内の保有水量の推移を第	からの蒸気流量,…原子炉圧力容器内の保有水量の推移を <u>第</u>	
<u>2.7.6 図から第 2.7.11 図</u> に,燃料被覆管温度,高出力燃料	2.7-4.図から <u>第2.7-9</u> 図に,燃料被覆管温度,高出力燃料	<u>2.7.2-1(1)図から第2.7.2-1(6)</u> 図に,燃料被覆管温度,高	
集合体のボイド率,炉心下部プレナム部のボイド率,破断流	集合体のボイド率,炉心下部プレナム部のボイド率 <u>及び</u> 破断	出力燃料集合体のボイド率, 炉心下部プレナム部のボイド率,	
量の推移を <u>第2.7.12図から第2.7.15図</u> に示す。	流量の推移を <u>第2.7-10図から第2.7-13図</u> に示す。	破断流量の推移を <u>第 2.7.2-1(7)図</u> から <u>第 2.7.2-1(10)図</u> に	
		示す。	
※1 シュラウド内は、 炉心部から発生するボイドを含んだ二	※ シュラウド内は、炉心部から発生するボイドを含んだ二相	🢥 シュラウド内は、炉心部から発生するボイドを含んだ二	
相水位を示しているため、シュラウド外の水位より、見か	水位を示しているため、シュラウド外の水位より、見かけ	相水位を示しているため、シュラウド外の水位より、見か	
け上高めの水位となる。一方,非常用炉心冷却系の起動信	上高めの水位となる。一方、非常用炉心冷却系の起動信号	け上高めの水位となる。一方、非常用炉心冷却系の起動信	
号となる原子炉水位計(広帯域)の水位及び運転員が炉心	となる原子炉水位(広帯域)の水位並びに運転員が炉心冠	号となる <u>原子炉水位計(広帯域)</u> の水位及び運転員が炉心	
冠水状態において主に確認する原子炉水位計(広帯域・狭	水状態において主に確認する原子炉水位(広帯域)及び原	冠水状態において主に確認する原子炉水位計(広帯域・狭	
帯域)の水位は、シュラウド外の水位であることから、シ	<u>子炉水位(狭帯域)</u> の水位は,シュラウド外の水位である	<u>帯域)</u> の水位は、シュラウド外の水位であることから、シ	
ュラウド内外の水位を併せて示す。なお,水位が <u>有効燃料</u>	ことから、シュラウド内外の水位を併せて示す。なお、水	ュラウド内外の水位を併せて示す。なお,水位が <u>燃料棒有</u>	
<u>棒頂部付近</u> となった場合には,原子炉水位計(燃料域)に	位が燃料有効長頂部付近となった場合には,原子炉水位(燃	<u>効長頂部付近</u> となった場合には,原子炉水位計(燃料域)	
て監視する。6 号炉の原子炉水位計(燃料域)はシュラウ	<u>料域)</u> にて監視する。 <u>原子炉水位(燃料域)</u> はシュラウド	にて監視する。原子炉水位計 (燃料域) はシュラウド内を	
ド内を,7 号炉の原子炉水位計(燃料域)はシュラウド外	内を計測している。	計測している。	
を計測している。			
古色准显	本 在`妆园	末 在)妆园	
a. 争家進展 車免疫先後に対如電源電告したい。 にと法見免ば信日ぶ	a. 争家進展 重色变化%に対如電源重化したい。%小法見のへ重化式変	a. 争家连展 重色变先然达从如柔沥声先为为。 公表法具页入声先就	細七タルの相当
事家先生後に外部電源喪大となり、 <u>炉心流重急減信亏</u> が	事家先生後に外部電源設大となり、結水価重の主設大が発	事家充生後に外部電源喪天となり, <u>枯水流重の主喪天か</u>	
発生して原于炉はスクラムし、また、原于炉水位低(レヘ 1.0) で原こに原敷味冷却でおりまれます。	生することで原子炉水位は急速に低下する。原子炉水位低(レ	<u>発生することで原ナ炉水位は急速に低下する。原ナ炉水位</u> 低(1)、ボル 2) 信日ボ変先して原乙にはスカラノレーナキ	【 相 崎 6/7】
ル2) ご原ナ炉 隔離時 行却 糸か 日 動 起 動 う る。	ヘル3)信号が発生して原于炉はスクラムし、また、原于炉	<u>低(レベル3)信号</u> が発生して原于炉はスクラムし、また、 原子におた低(レージェク)で再新電光ンプタムクマボレル	局根25炉は, 手似余 (4の)かいたり 東色恋
五任四北、プロマンマル - 月如武派市中にとり、 古在水	水位英常低下(レベル2)で再循環系ホンノ (三) パトリッノ	原于炉水位低(レヘル2)で再循環ホンノ2000に、かトリ	件の遅いにより、事家充
再循環ホンフについては、 <u>外部電源喪失により、事象発</u>	するとともに、原子炉隔離時冷却糸か目動起動する。	ッフするとともに、原子炉隔離時冷却糸か目動起動する。	生後の事象進展に差異か
生とともに10 百主(か)トリツノする。			める。
	破断日から原ナ炉宿却材か流出することにより原ナ炉水位 は低工ナスボ 原スによた思想低工 () バスの) 不原スに原	戦 町 日 か り 原 ナ 炉 行 却 材 か 流 出 す る こ と に よ り 原 ナ 炉 水	
位は低下するか、原子炉水位低(レベル2)で原子炉隔離	は低下するか,原士炉水位美居低下(レベル2)で原子炉隔	1211111111111111111111111111111111111	
時府却米による原子炉 注水を開始する。	離時符却糸による原子炉汪水を開始する。	却糸か日朝起朝するか, <u>原子炉水位は低トし続け,原子炉</u>	
		<u>水位低(レベル1日)で高圧炉心スプレイ系</u> による原子炉	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		注水を開始する。	
事象発生 15 分後の中央制御室における破断箇所の隔離	事象発生 12 分後の中央制御室における破断箇所の隔離に	事象発生 <u>20分後</u> の中央制御室における破断箇所の隔離に	・運用の相違
に失敗するため、中央制御室からの遠隔操作によって逃が	失敗するため,低圧炉心スプレイ系を起動し,中央制御室か	失敗するため, <u>事象発生30分後に</u> 中央制御室からの遠隔操	【柏崎 6/7,東海第二】
し安全弁 <u>8個</u> を手動開することで,原子炉を減圧し,原子	らの遠隔操作によって逃がし安全弁(自動減圧機能)7個を	作によって <u>自動減圧機能付き逃がし安全弁6個</u> を手動開す	・設備設計の相違
炉冷却材の漏えいの抑制を図る。原子炉減圧により、原子	手動開することで、原子炉を減圧し、原子炉冷却材の漏えい	ることで,原子炉を減圧し,原子炉冷却材の漏えいの抑制	【柏崎 6/7,東海第二】
炉隔離時冷却系が機能喪失するものの, 原子炉水位低(レ	の抑制を図る。 <u>また,低圧代替注水系(常設)を起動する。</u>	を図る。原子炉減圧により、原子炉隔離時冷却系が機能喪	急速減圧に必要な逃が
ベル 1.5) で健全側の高圧炉心注水系が自動起動し, 原子	原子炉減圧により、原子炉隔離時冷却系が機能喪失するもの	失するものの, <u>高圧炉心スプレイ系による注水を</u> 再開し,	し安全弁操作個数の相
炉水位が回復する。また,主蒸気隔離弁は,原子炉水位低(レ	の,低圧炉心スプレイ系及び低圧代替注水系(常設)による	原子炉水位が回復する。また、主蒸気隔離弁は、原子炉水	違。
<u>ベル 1.5</u>)で全閉する。	<u>原子炉注水が開始することで</u> 原子炉水位が回復する。また,	位低(レベル2)で全閉する。	・解析結果の及び運用の
	主蒸気隔離弁は、原子炉水位異常低下(レベル2)で全閉す		相違
	る。		【柏崎 6/7,東海第二】
事象発生4時間後,現場操作により高圧炉心注水系の破	事象発生 5 時間後,現場操作により残留熱除去系の破断箇	事象発生10時間後,現場操作により残留熱除去系の破断	・解析結果の相違
断箇所を隔離した後は、健全側の高圧炉心注水系により原		箇所を隔離した後は, <u>高圧炉心スプレイ系</u> により原子炉水	【柏崎 6/7,東海第二】
子炉水位は適切に維持される。	適切に維持される。	位は適切に維持される。	
高出力燃料集合体及び炉心下部プレナム部のボイド率に	高出力燃料集合体及び炉心下部プレナム部のボイド率につ	高出力燃料集合体及び炉心下部プレナム部のボイド率に	
ついては,原子炉減圧により増加する。また,高圧炉心注	いては,原子炉減圧により増加する。また, <u>低圧炉心スプレ</u>	ついては,原子炉減圧により増加する。また, <u>高圧炉心ス</u>	・解析条件の相違
水系による原子炉注水が継続され、その原子炉圧力変化に	<u>イ系及び低圧代替注水系(常設)</u> による原子炉注水が継続さ	<u>プレイ系</u> による原子炉注水が継続され、その原子炉圧力変	【東海第二】
より増減する。	れ、その原子炉圧力変化により増減する。	化により増減する。	島根2号炉は, ISLOCA
その後は、残留熱除去系による原子炉圧力容器及び原子	その後は、残留熱除去系による原子炉圧力容器及び格納容	その後は、健全側の残留熱除去系による原子炉圧力容器	発生下において、高圧注
炉格納容器除熱手順に従い、冷温停止状態に移行すること	<u>器除熱手順</u> に従い,冷温停止状態に移行することができる。	及び原子炉格納容器除熱手順に従い、冷温停止状態に移行	水機能に対する対策の有
ができる。		することができる。	効性を評価している。
b. 評価項目等	b. 評価項目等	b. 評価項目等	
燃料被覆管の最高温度は, <u>第 2.7.12</u> 図に示すとおり,	燃料被覆管の最高温度は, <u>第2.7-10図</u> に示すとおり,	燃料被覆管の最高温度は, <u>第 2.7.2-1(7)図</u> に示すとお	
初期値(<u>約 310℃</u>)を上回ることなく,1,200℃以下となる。	初期値(約 309℃)を上回ることなく,1,200℃以下となる。	り,初期値(<u>約 309℃</u>)を上回ることなく,1,200℃以下と	・解析結果の相違
また、燃料被覆管の酸化量は酸化反応が著しくなる前の燃	また、燃料被覆管の酸化量は酸化反応が著しくなる前の燃料	なる。また,燃料被覆管の酸化量は酸化反応が著しくなる	【柏崎 6/7】
料被覆管厚さの1%以下であり、15%以下となる。	被覆管厚さの1%以下であり、15%以下となる。	前の燃料被覆管厚さの1%以下であり、15%以下となる。	
原子炉圧力は, <u>第 2.7.6</u> 図に示すとおり, <u>約</u>	原子炉圧力は, <u>第 2.7-4</u> 図に示すとおり, <u>約 7.79MPa</u>	原子炉圧力は, <u>第2.7.2-1(1)図</u> に示すとおり, <u>約</u>	・解析結果の相違
7.07MPa[gage]以下に抑えられる。原子炉冷却材圧力バウン	[gage] 以下に抑えられる。原子炉冷却材圧力バウンダリに	<u>7.59MPa[gage]</u> 以下に抑えられる。原子炉冷却材圧力バウン	【柏崎 6/7,東海第二】
ダリにかかる圧力は、原子炉圧力と原子炉圧力容器底部圧	かかる圧力は、原子炉圧力と原子炉圧力容器底部圧力との差	ダリにかかる圧力は、原子炉圧力と原子炉圧力容器底部圧	
力との差 (高々約 0.3MPa) を考慮しても, <u>約 7.37MPa[gage]</u>	(高々約 0.3MPa)を考慮しても, <u>約 8.09MPa [gage]</u> 以下で	力との差 (高々約 0. 3MPa) を考慮しても, <u>約 7. 89 MPa[gage]</u>	・解析結果の相違
以下であり,最高使用圧力の 1.2 倍(10.34MPa[gage])を	あり,最高使用圧力の 1.2 倍(10.34MPa [gage])を下回る。	以下であり,最高使用圧力の 1.2 倍(10.34MPa[gage])を	【柏崎 6/7,東海第二】
下回る。		下回る。	
原子炉格納容器バウンダリにかかる圧力及び温度は、原	格納容器バウンダリにかかる圧力及び温度は、原子炉減圧	原子炉格納容器バウンダリにかかる圧力及び温度は、原	
子炉減圧及び破断箇所隔離後の原子炉格納容器内への蒸気	及び破断箇所隔離後の格納容器内への蒸気流入により上昇す	子炉減圧及び破断箇所隔離後の原子炉格納容器内への蒸気	
はれたといし目ナス ナ 百乙后枚姉家兜 バウンガリア	ろ。一方、格納容器バウンダリにかかろ圧力及び温度が最も	流入により上昇する。一方、原子炉格納容器バウンダリに	
孤八により上升りる。一万,原于炉格納谷奋ハワンタリに			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
「原子炉格納容器内圧力,雰囲気等の異常な変化」の「原	気等の異常な変化」の「原子炉冷却材喪失」においては、I	「原子炉格納容器内圧力,雰囲気等の異常な変化」の「原	
子炉冷却材喪失」においては、 インターフェイスシステム	SLOCAとは異なり、事象開始から <u>格納容器内</u> に原子炉冷	子炉冷却材喪失」においては、 <u>ISLOCA</u> とは異なり、	
LOCA とは異なり、事象開始から原子炉格納容器内に原子炉	却材が流出し続ける事故を想定し解析しており、この場合で	事象開始から原子炉格納容器内に原子炉冷却材が流出し続	
冷却材が流出し続ける事故を想定し解析しており、この場	も <u>格納容器バウンダリ</u> にかかる圧力及び温度の最大値は、 <u>約</u>	ける事故を想定し解析しており,この場合でも <u>原子炉格納</u>	
合でも原子炉格納容器バウンダリにかかる圧力及び温度の	<u>0.25MPa [gage] 及び約 136℃</u> にとどまる。このため、本事象	<u>容器バウンダリ</u> にかかる圧力及び温度の最大値は,約	・解析結果の相違
最大値は, <u>約0.25MPa[gage]及び約138℃</u> にとどまる。この	においても格納容器バウンダリにかかる圧力及び温度は、格	<u>330kPa[gage]及び約 145℃</u> にとどまる。このため,本事象	【柏崎 6/7,東海第二】
ため、本事象においても原子炉格納容器バウンダリにかか	納容器の限界圧力及び限界温度を下回る。	においても原子炉格納容器バウンダリにかかる圧力及び温	
る圧力及び温度は、原子炉格納容器の限界圧力及び限界温	(添付資料 2. 7. 3)	度は, <u>原子炉格納容器</u> の限界圧力及び限界温度を下回る。	
度を下回る。			
中央制御室からの遠隔操作による高圧炉心注水系の破断	中央制御室からの遠隔操作による残留熱除去系(低圧注水	中央制御室からの遠隔操作による <u>残留熱除去系</u> の破断箇	
箇所隔離には失敗するが、逃がし安全弁による原子炉減圧	<u>系</u>)の破断箇所隔離には失敗するが,逃がし安全弁 <u>(自動減</u>)	所隔離には失敗するが、逃がし安全弁による原子炉減圧を	
を実施し破断箇所からの原子炉冷却材の漏えい抑制を図	圧機能)による原子炉減圧を実施し破断箇所からの原子炉冷	実施し破断箇所からの原子炉冷却材の漏えい抑制を図り,	
り,健全側の高圧炉心注水系による原子炉注水を継続する	却材の漏えい抑制を図り, <u>低圧炉心スプレイ系及び低圧代替</u>	<u>高圧炉心スプレイ系等</u> による原子炉注水を継続すること	・解析条件の相違
ことで、炉心の冷却が維持される。その後は、現場操作に	<u>注水系(常設)</u> による原子炉注水を継続することで、炉心の	で、炉心の冷却が維持される。その後は、現場操作にて残	【東海第二】
て高圧炉心注水系の破断箇所を隔離し, 健全側の高圧炉心	冷却が維持される。その後は,現場操作にて残留熱除去系(低	<u>留熱除去系</u> の破断箇所を隔離し, <u>高圧炉心スプレイ系</u> によ	島根2号炉は, ISLOCA
注水系による原子炉注水及び残留熱除去系による原子炉圧	<u>圧注水系)</u> の破断箇所を隔離し, <u>低圧炉心スプレイ系</u> による	る原子炉注水及び残留熱除去系による原子炉圧力容器及び	発生下において、高圧注
力容器及び原子炉格納容器除熱を開始することで安定状態	原子炉注水及び残留熱除去系(サプレッション・プール冷却	原子炉格納容器除熱を開始することで安定状態が確立し、	水機能に対する対策の有
が確立し、また、安定状態を維持できる。	<u>系)</u> による <u>格納容器除熱</u> を開始することで安定状態が確立し,	また、安定状態を維持できる。	効性を評価している。
	また、安定状態を維持できる。	(添付資料2.7.3)	
本評価では,「1.2.1.2 有効性を確認するための評価項目	本評価では、「1.2.1.2 有効性を確認するための評価項目の	本評価では「1.2.1.2 有効性を確認するための評価項目の	
の設定」に示す(1)から(4)の評価項目について,対策の有	設定」に示す(1)から(4)の評価項目について,対策の有効性	設定」に示す(1)から(4)の評価項目について,対策の有効性	
効性を確認した。	を確認した。	を確認した。	
2.7.3 解析コード及び解析条件の不確かさの影響評価	2.7.3 解析コード及び解析条件の不確かさの影響評価	2.7.3 解析コード及び解析条件の不確かさの影響評価	
解析コード及び解析条件の不確かさの影響評価の範囲として、	解析コード及び解析条件の不確かさの影響評価の範囲として、	解析コード及び解析条件の不確かさの影響評価の範囲として、	
運転員等操作時間に与える影響、評価項目となるパラメータに与	運転員等操作時間に与える影響、評価項目となるパラメータに与	運転員等操作時間に与える影響、評価項目となるパラメータに与	
える影響及び操作時間余裕を評価するものとする。	える影響及び操作時間余裕を評価するものとする。	える影響及び操作時間余裕を評価するものとする。	
格納容器バイパス (インターフェイスシステム LOCA) では, 原	ISLOCAでは、原子炉冷却材圧力バウンダリと接続された	格納容器バイパス(ISLOCA)では, 原子炉冷却材圧力バ	
子炉冷却材圧力バウンダリと接続された系統で、高圧設計部分と	系統で、高圧設計部分と低圧設計部分のインターフェイスとなる	ウンダリと接続された系統で、高圧設計部分と低圧設計部分のイ	
低圧設計部分のインターフェイスとなる配管のうち、隔離弁の隔	配管のうち、隔離弁の隔離失敗等により低圧設計部分が過圧され	ンターフェイスとなる配管のうち、隔離弁の隔離失敗等により低	
離失敗等により低圧設計部分が過圧され破断し、原子炉格納容器	破断し, 格納容器外へ原子炉冷却材が流出することが特徴である。	圧設計部分が過圧され破断し、原子炉格納容器外へ原子炉冷却材	
外へ原子炉冷却材が流出することが特徴である。また、不確かさ	また、不確かさの影響を確認する運転員等操作は、事象進展に有	が流出することが特徴である。また、不確かさの影響を確認する	
の影響を確認する運転員等操作は、事象発生から 12 時間程度ま	意な影響を与えると考えられる操作として、逃がし安全弁による	運転員等操作は事象進展に有意な影響を与えると考えらえる操作	・記載方針の相違
での短時間に期待する操作及び事象進展に有意な影響を与えると	原子炉急速減圧操作及び残留熱除去系の破断箇所隔離操作とす	として,逃がし安全弁による原子炉急速減圧操作及び残留熱除去	【柏崎 6/7】
考えられる操作として、逃がし安全弁による原子炉急速減圧操作	る。	<u>系</u> の破断箇所隔離操作とする。	島根2号炉は、事象発
及び <u>高圧炉心注水系</u> の破断箇所隔離操作とする。			生から 12 時間までの操
			作に限らず、事象進展に
			有意な影響を与えると考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			えられる操作を抽出。
(1) 解析コードにおける重要現象の不確かさの影響評価	(1) 解析コードにおける重要現象の不確かさの影響評価	(1) 解析コードにおける重要現象の不確かさの影響評価	
本重要事故シーケンスにおいて不確かさの影響評価を行う	本重要事故シーケンスにおいて不確かさの影響評価を行う	本重要事故シーケンスにおいて不確かさの影響評価を行う	
重要現象とは、「1.7 解析コード及び解析条件の不確かさの影	重要現象とは、「1.7 解析コード及び解析条件の不確かさの影	重要現象とは、「1.7解析コード及び解析条件の不確かさの影	
響評価方針」に示すとおりであり、それらの不確かさの影響	響評価方針」に示すとおりであり、それらの不確かさの影響	響評価方針」に示すとおりであり、それらの不確かさの影響	
評価は以下のとおりである。	評価は以下のとおりである。	評価は以下のとおりである。	
a. 運転員等操作時間に与える影響	a. 運転員等操作時間に与える影響	a. 運転員等操作時間に与える影響	
炉心における燃料棒表面熱伝達の不確かさとして,解析	炉心における燃料棒表面熱伝達の不確かさとして、解析	炉心における燃料棒表面熱伝達の不確かさとして、解析	
コードは、炉心が冠水維持する場合では燃料被覆管温度は	コードは、炉心が冠水維持する場合では燃料被覆管温度は	コードは、炉心が冠水維持する場合では燃料被覆管温度は	
上昇しないため不確かさは小さい。原子炉注水は原子炉隔	上昇しないため不確かさは小さい。原子炉注水は原子炉隔	上昇しないため不確かさは小さい。原子炉注水は原子炉隔	
離時冷却系及び高圧炉心注水系の自動起動により行われ,	離時冷却系の自動起動により行われ, <u>また,操作手順(原</u>	離時冷却系 <u>及び高圧炉心スプレイ系</u> の自動起動により行わ	・解析条件の相違
燃料被覆管温度を操作開始の起点としている運転員等操作	<u>子炉減圧後速やかに低圧注水に移行すること)に変わりは</u>	れ、燃料被覆管温度を操作開始の起点としている運転員等	【東海第二】
はないことから、運転員等操作時間に与える影響はない。	<u>なく,</u> 燃料被覆管温度を操作開始の起点としている運転員	操作はないことから、運転員等操作時間に与える影響はな	島根2号炉は, ISLOCA
	等操作はないことから、運転員等操作時間に与える影響は	<i>۷</i> ۰.	発生下において、高圧注
	ない。		水機能に対する対策の有
			効性を評価している。東
			海第二では原子炉減圧後
			に低圧注水手段へ切り替
			えを実施。
炉心における燃料被覆管酸化の不確かさとして、解析コ	炉心における燃料被覆管酸化の不確かさとして、解析コ	炉心における燃料被覆管酸化の不確かさとして、 解析コ	
ードは酸化量及び酸化反応に伴う発熱量の評価について保	ードは酸化量及び酸化反応に伴う発熱量の評価について保	ードは酸化量及び酸化反応に伴う発熱量の評価について保	
守的な結果を与えるため、解析結果は燃料被覆管酸化を大	守的な結果を与えるため、解析結果は燃料被覆管酸化を大	守的な結果を与えるため、解析結果は燃料被覆管酸化を大	
きく評価する可能性がある。よって、実際の燃料被覆管温	きく評価する可能性がある。よって、実際の燃料被覆管温	きく評価する可能性がある。よって、実際の燃料被覆管温	
度は低くなり、原子炉水位挙動に影響を与える可能性があ	度は低くなり、原子炉水位挙動に影響を与える可能性があ	度は低くなり、原子炉水位挙動に影響を与える可能性があ	
るが、原子炉注水は原子炉隔離時冷却系及び高圧炉心注水	るが、原子炉注水は原子炉隔離時冷却系の自動起動により	るが、原子炉注水は原子炉隔離時冷却系及び高圧炉心スプ	・解析条件の相違
系の自動起動により行われることから、運転員等操作時間	行われ、また、操作手順(原子炉減圧後速やかに低圧注水	レイ系の自動起動により行われることから、運転員等操作	【東海第二】
に与える影響はない。	に移行すること)に変わりはなく、燃料被覆管温度を操作	時間に与える影響はない。	島根2号炉は, ISLOCA
(添付資料 2.7.3)	開始の起点としている運転員等操作はないことから、運転	(添付資料 2.7.4)	発生下において、高圧注
	員等操作時間に与える影響はない。		水機能に対する対策の有
	(添付資料 2.7.5)		効性を評価している。東
			海第二では原子炉減圧後
b. 評価項目となるパラメータに与える影響	b. 評価項目となるパラメータに与える影響	b. 評価項目となるパラメータに与える影響	に低圧注水手段へ切り替
炉心における燃料棒表面熱伝達の不確かさとして、炉心	炉心における燃料棒表面熱伝達の不確かさとして、炉心	炉心における燃料棒表面熱伝達の不確かさとして、炉心	えを実施。
が冠水維持される実験解析では燃料被覆管温度をほぼ同等	が冠水維持される実験解析では燃料被覆管温度をほぼ同等	が冠水維持される実験解析では燃料被覆管温度をほぼ同等	
に評価する。有効性評価解析においても,原子炉水位は有	に評価する。有効性評価解析においても,原子炉水位はお	に評価する。有効性評価解析においても、原子炉水位はお	
<u>効燃料棒頂部</u> を下回ることなく,炉心は冠水維持されるた	おむね <u>燃料有効長頂部</u> を下回ることなく, 炉心はおおむね	おむね燃料棒有効長頂部を下回ることなく、炉心はおおむ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
め, 燃料被覆管の最高温度は初期値(<u>約 310℃</u>)を上回るこ	冠水維持されるため、燃料被覆管の最高温度は初期値(約	<u>ね</u> 冠水維持されるため,燃料被覆管の最高温度は初期値(<u>約</u>	・解析結果の相違
とはないことから、評価項目となるパラメータに与える影	309℃)を上回ることはないことから,評価項目となるパラ	<u>309℃</u>)を上回ることはないことから, 評価項目となるパラ	【柏崎 6/7】
響はない。	メータに与える影響はない。	メータに与える影響はない。	
炉心における燃料被覆管酸化の不確かさとして、解析コ	炉心における燃料被覆管酸化の不確かさとして、解析コ	炉心における燃料被覆管酸化の不確かさとして、解析コ	
ードは、燃料被覆管の酸化について、酸化量及び酸化反応	ードは燃料被覆管の酸化について、酸化量及び酸化反応に	ードは、燃料被覆管の酸化について、酸化量及び酸化反応	
に伴う発熱量に保守的な結果を与え、燃料被覆管温度を高	伴う発熱量に保守的な結果を与え、燃料被覆管温度を高め	に伴う発熱量に保守的な結果を与え、燃料被覆管温度を高	
めに評価するが,原子炉水位は <u>有効燃料棒頂部</u> を下回るこ	に評価するが,原子炉水位はおおむね <u>燃料有効長頂部</u> を下	めに評価するが、原子炉水位はおおむね燃料棒有効長頂部	
となく、炉心は冠水維持されるため、燃料被覆管の最高温	回ることなく、炉心はおおむね冠水維持されるため、燃料	を下回ることなく、炉心は <u>おおむね</u> 冠水維持されるため,	
度は初期値(<u>約 310℃</u>)を上回ることはないことから, 評価	被覆管の最高温度は初期値(約 309℃)を上回ることはな	燃料被覆管の最高温度は初期値(<u>約 309℃</u>)を上回ること	・解析結果の相違
項目となるパラメータに与える影響はない。	いことから、評価項目となるパラメータに与える影響はな	はないことから、評価項目となるパラメータに与える影響	【柏崎 6/7】
(添付資料 2.7.3)	لائی	はない。	
	(添付資料 2.7.5)	(添付資料 2.7.4)	
(2) 解析条件の不確かさの影響評価	(2) 解析条件の不確かさの影響評価	(2) 解析条件の不確かさの影響評価	
a. 初期条件,事故条件及び重大事故等対策に関連する機器	a. 初期条件,事故条件及び重大事故等対策に関連する機器	a. 初期条件,事故条件及び重大事故等対策に関連する機器	
条件	条件	条件	
初期条件、事故条件及び重大事故等対策に関連する機器	初期条件、事故条件及び重大事故等対策に関連する機器	初期条件、事故条件及び重大事故等対策に関連する機器	
条件は, <u>第2.7.2</u> 表に示すとおりであり,それらの条件設	条件は, <u>第2.7-2表</u> に示すとおりであり,それらの条件	条件は, <u>第2.7.2-1</u> 表に示すとおりであり,それらの条件	
定を設計値等,最確条件とした場合の影響を評価する。ま	設定を設計値等,最確条件とした場合の影響を評価する。	設定を設計値等,最確条件とした場合の影響を評価する。	
た、解析条件の設定に当たっては、評価項目となるパラメ	また、解析条件の設定に当たっては、評価項目となるパラ	また、解析条件の設定に当たっては、評価項目となるパラ	
ータに対する余裕が小さくなるような設定があることか	メータに対する余裕が小さくなるような設定があることか	メータに対する余裕が小さくなるような設定があることか	
ら、その中で事象進展に有意な影響を与えると考えられる	ら、その中で事象進展に有意な影響を与えると考えられる	ら、その中で事象進展に有意な影響を与えると考えられる	
項目に関する影響評価の結果を以下に示す。	項目に関する影響評価の結果を以下に示す。	項目に関する影響評価の結果を以下に示す。	
(a) 運転員等操作時間に与える影響	(a) 運転員等操作時間に与える影響	(a) 運転員等操作時間に与える影響	
初期条件の最大線出力密度は,解析条件の44.0kW/mに	初期条件の最大線出力密度は, 解析条件の 44.0kW/m	初期条件の最大線出力密度は,解析条件の44.0kW/mに	
対して最確条件は <u>約42kW/m以下</u> であり,解析条件の不確	に対して最確条件は <u>約 33kW/m~41kW/m</u> であり, 解析	対して最確条件は <u>約40.6kW/m以下</u> であり,解析条件の不	・実績値の相違
かさとして、最確条件とした場合は、燃料被覆管温度の	条件の不確かさとして、最確条件とした場合は、燃料被	確かさとして、最確条件とした場合は、燃料被覆管温度	【柏崎 6/7,東海第二】
上昇は緩和されるが、原子炉注水は原子炉隔離時冷却系	覆管温度の上昇は緩和されるが、原子炉注水は原子炉隔	の上昇は緩和されるが、原子炉注水は原子炉隔離時冷却	島根2号炉の最確条件
及び <u>高圧炉心注水系</u> の自動起動により行われ,燃料被覆	離時冷却系の自動起動により行われ, <u>また,操作手順(原</u>	系 <u>及び高圧炉心スプレイ系</u> の自動起動により行われ,燃	を記載。
管温度を操作開始の起点としている運転員等操作はない	子炉減圧後速やかに低圧注水に移行すること)に変わり	料被覆管温度を操作開始の起点としている運転員等操作	・解析条件の相違
ことから、運転員等操作時間に与える影響はない。	<u>はなく、</u> 燃料被覆管温度を操作開始の起点としている運	はないことから, 運転員等操作時間に与える影響はない。	【東海第二】
	転員等操作はないことから、運転員等操作時間に与える		島根2号炉は, ISLOCA
	影響はない。		発生下において、高圧注
			水機能に対する対策の有
			効性を評価している。東
			海第二では原子炉減圧後
			に低圧注水手段へ切り替

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼	初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼	初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼	えを実施。
度 33GWd/t に対応したものとしており,その最確条件は	度 33GWd/t に対応したものとしており, その最確条件は	度 33GWd/t に対応したものとしており, その最確条件は	
平均的燃焼度約 30GWd/t であり,解析条件の不確かさと	平均的燃焼度 <u>約 31GWd/t</u> であり, 解析条件の不確かさと	平均的燃焼度 <u>約 30GWd/t</u> であり,解析条件の不確かさと	・実績値の相違
して、最確条件とした場合は、解析条件で設定している	して、最確条件とした場合は、解析条件で設定している	して、最確条件とした場合は、解析条件で設定している	【東海第二】
崩壊熱よりも小さくなるため、発生する蒸気量は少なく	崩壊熱よりも小さくなるため、発生する蒸気量は少なく	崩壊熱よりも小さくなるため、発生する蒸気量は少なく	島根2号炉の最確条件
なり、原子炉水位の低下は緩和されるが、操作手順(炉	なり,原子炉水位の低下は緩和されるが,操作手順(炉	なり,原子炉水位の低下は緩和されるが,操作手順(炉	を記載。
心冠水操作)に変わりはないことから、運転員等操作時	心冠水操作)に変わりはないことから、運転員等操作時	心冠水操作)に変わりはないことから、運転員等操作時	
間に与える影響はない。	間に与える影響はない。	間に与える影響はない。	
初期条件の原子炉圧力,原子炉水位及び炉心流量は,	初期条件の原子炉圧力,原子炉水位及び炉心流量は,	初期条件の原子炉圧力,原子炉水位及び炉心流量は,	
ゆらぎにより解析条件に対して変動を与え得るが、事象	ゆらぎにより解析条件に対して変動を与え得るが、事象	ゆらぎにより解析条件に対して変動を与え得るが、事象	
進展に与える影響は小さいことから、運転員等操作時間	進展に与える影響は小さいことから,運転員等操作時間	進展に与える影響は小さいことから,運転員等操作時間	
に与える影響は小さい。	に与える影響は小さい。	に与える影響は小さい。	
事故条件の外部電源の有無については、事象進展を厳	事故条件の外部電源の有無については、事象進展を厳	事故条件の外部電源の有無については、事象進展を厳	
しくする観点から, <u>給復水系</u> による給水がなくなり,原	しくする観点から、給水・復水系による給水がなくなり、	しくする観点から, <u>給水・復水系</u> による給水がなくなり,	
子炉水位の低下が早くなる外部電源がない状態を設定し	原子炉水位の低下が早くなる外部電源がない状態を設定	原子炉水位の低下が早くなる外部電源がない状態を設定	
ている。なお,外部電源がある場合は, <u>給復水系</u> による	している。なお、外部電源がある場合は、給水・復水系	している。なお,外部電源がある場合は, <u>給水・復水系</u>	
原子炉圧力容器への給水機能は維持されることから、運	による原子炉圧力容器への給水機能は維持されることか	による原子炉圧力容器への給水機能は維持されることか	
転員等操作時間に与える影響はない。	ら、運転員等操作時間に与える影響はない。	ら、運転員等操作時間に与える影響はない。	
機器条件の原子炉隔離時冷却系及び高圧炉心注水系	機器条件の原子炉隔離時冷却系 <u>,低圧炉心スプレイ系</u>	機器条件の原子炉隔離時冷却系 <u>及び高圧炉心スプレイ</u>	・解析条件の相違
は、解析条件の不確かさとして、実際の注水量が解析よ	<u>及び低圧代替注水系(常設)</u> は、解析条件の不確かさと	<u>系</u> は、解析条件の不確かさとして、実際の注水量が解析	【東海第二】
り多い場合(注水特性(設計値)の保守性)、原子炉水位	して、実際の注水量が解析より多い場合(注水特性(設	より多い場合(注水特性(設計値)の保守性),原子炉水	島根2号炉は, ISLOCA
の回復は早くなる。冠水後の操作として冠水維持可能な	計値)の保守性),原子炉水位の回復は早くなる。冠水後	位の回復は早くなる。冠水後の操作として冠水維持可能	発生下において、高圧注
注水量に制御するが、注水後の流量調整操作であること	の操作として冠水維持可能な注水量に制御するが、注水	な注水量に制御するが,注水後の流量調整操作であるこ	水機能に対する対策の有
から、運転員等操作時間に与える影響はない。	後の流量調整操作であることから,運転員等操作時間に	とから、運転員等操作時間に与える影響はない。	効性を評価している。
(添付資料 2.7.3)	与える影響はない。	(添付資料 2.7.4)	
	(添付資料 2.7.5)		
(b) 評価項目となるパラメータに与える影響	(b) 評価項目となるパラメータに与える影響	(b) 評価項目となるパラメータに与える影響	
初期条件の最大線出力密度は,解析条件の44.0kW/mに	初期条件の最大線出力密度は, 解析条件の 44.0kW/m	初期条件の最大線出力密度は,解析条件の44.0kW/mに	
対して最確条件は <u>約42kW/m以下</u> であり,解析条件の不確	に対して最確条件は <u>約 33kW/m~41kW/m</u> であり,解析	対して最確条件は <u>約 40.6kW/m 以下</u> であり, 解析条件の不	・実績値の相違
かさとして, 最確条件とした場合は, 燃料被覆管温度の	条件の不確かさとして、最確条件とした場合は、燃料被	確かさとして、最確条件とした場合は、燃料被覆管温度	【柏崎 6/7,東海第二】
上昇は緩和されるが、原子炉水位は有効燃料棒頂部を下	覆管温度の上昇は緩和されるが,原子炉水位はおおむね	の上昇は緩和されるが、原子炉水位はおおむね燃料棒有	島根2号炉の最確条件
回ることなく、炉心は冠水維持されるため、燃料被覆管	燃料有効長頂部を下回ることなく,炉心はおおむね冠水	<u>効長頂部</u> を下回ることなく、炉心は <u>おおむね</u> 冠水維持さ	を記載。
の最高温度は初期値(<u>約 310℃</u>)を上回ることはないこと	維持されるため、燃料被覆管の最高温度は初期値(約	れるため,燃料被覆管の最高温度は初期値(<u>約 309℃</u>)	・解析結果の相違
から,評価項目となるパラメータに与える影響はない。	309℃)を上回ることはないことから, 評価項目となるパ	を上回ることはないことから,評価項目となるパラメー	【柏崎 6/7】
	ラメータに与える影響はない。	タに与える影響はない。	
初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼	初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼	初期条件の原子炉停止後の崩壊熱は,解析条件の燃焼	
度 33GWd/t に対応したものとしており, その最確条件は	度 33GWd/t に対応したものとしており, その最確条件は	度 33GWd/t に対応したものとしており, その最確条件は	
平均的燃焼度約 30GWd/t であり,解析条件の不確かさと	平均的燃焼度 <u>約31GWd/t</u> であり,解析条件の不確かさと	平均的燃焼度 <u>約 30GWd/t</u> であり,解析条件の不確かさと	・実績値の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
して、最確条件とした場合は、解析条件で設定している	して、最確条件とした場合は、解析条件で設定している	して、最確条件とした場合は、解析条件で設定している	【東海第二】
崩壊熱よりも小さくなるため、発生する蒸気量は少なく	崩壊熱よりも小さくなるため、発生する蒸気量は少なく	崩壊熱よりも小さくなるため、発生する蒸気量は少なく	島根2号炉の最確条件
なり、原子炉水位の低下は緩和され、それに伴う原子炉	なり、原子炉水位の低下は緩和され、それに伴う原子炉	なり、原子炉水位の低下は緩和され、それに伴う原子炉	を記載。
冷却材の放出も少なくなるが、本重要事故シーケンスは	冷却材の放出も少なくなるが、本重要事故シーケンスは	冷却材の放出も少なくなるが、本重要事故シーケンスは	
格納容器バイパス事象であることから、評価項目となる	格納容器バイパス事象であることから、評価項目となる	格納容器バイパス事象であることから、評価項目となる	
パラメータに与える影響はない。	パラメータに与える影響はない。	パラメータに与える影響はない。	
初期条件の原子炉圧力,原子炉水位及び炉心流量は,	初期条件の原子炉圧力,原子炉水位及び炉心流量は,	初期条件の原子炉圧力,原子炉水位及び炉心流量は,	
ゆらぎにより解析条件に対して変動を与え得るが、事象	ゆらぎにより解析条件に対して変動を与え得るが、事象	ゆらぎにより解析条件に対して変動を与え得るが、事象	
進展に与える影響は小さいことから、評価項目となるパ	進展に与える影響は小さいことから、評価項目となるパ	進展に与える影響は小さいことから、評価項目となるパ	
ラメータに与える影響は小さい。	ラメータに与える影響は小さい。	ラメータに与える影響は小さい。	
事故条件の外部電源の有無については、事象進展を厳	事故条件の外部電源の有無については、事象進展を厳	事故条件の外部電源の有無については、事象進展を厳	・解析条件の相違
しくする観点から, <u>給復水系</u> による給水がなくなり,原	しくする観点から,給水・復水系による給水がなくなり,	しくする観点から, <u>給水・復水系</u> による給水がなくなり,	【柏崎 6/7,東海第二】
子炉水位の低下が早くなる外部電源がない状態を設定し	原子炉水位の低下が早くなる外部電源がない状態を設定	原子炉水位の低下が早くなる外部電源がない状態を設定	
ている。なお,外部電源がある場合は, <u>給復水系</u> による	している。なお、外部電源がある場合は、給水・復水系	している。なお,外部電源がある場合は, <u>給水・復水系</u>	
原子炉圧力容器への給水機能は維持されるため、事象進	による原子炉圧力容器への給水機能は維持されるため,	による原子炉圧力容器への給水機能は維持されるため,	
展が緩和されることから、評価項目となるパラメータに	事象進展が緩和されることから、評価項目となるパラメ	事象進展が緩和されることから、評価項目となるパラメ	
対する余裕は大きくなる。	ータに対する余裕は大きくなる。	ータに対する余裕は大きくなる。	
機器条件の原子炉隔離時冷却系及び高圧炉心注水系	機器条件の原子炉隔離時冷却系 <u>,低圧炉心スプレイ系</u>	機器条件の原子炉隔離時冷却系及び高圧炉心スプレイ	・解析条件の相違
は、解析条件の不確かさとして、実際の注水量が解析よ	及び低圧代替注水系(常設)は、解析条件の不確かさと	<u>系</u> は、解析条件の不確かさとして、実際の注水量が解析	【東海第二】
り多い場合(注水特性(設計値)の保守性),原子炉水位	して、実際の注水量が解析より多い場合(注水特性(設	ー より多い場合(注水特性(設計値)の保守性),原子炉水	島根2号炉は, ISLOCA
の回復が早くなることから、評価項目となるパラメータ	計値)の保守性),原子炉水位の回復が早くなることから,	位の回復が早くなることから、評価項目となるパラメー	発生下において、高圧注
に対する余裕は大きくなる。	評価項目となるパラメータに対する余裕は大きくなる。	タに対する余裕は大きくなる。	水機能に対する対策の有
(添付資料 2.7.3)	(添付資料 2.7.5)	(添付資料 2.7.4)	効性を評価している。
b. 操作条件	b. 操作条件	b. 操作条件	
操作条件の不確かさとして、操作の不確かさを「認知」、	操作条件の不確かさとして、操作の不確かさを「認知」、	操作条件の不確かさとして,操作の不確かさを「認知」,	
「要員配置」,「移動」,「操作所要時間」,「他の並列操作有	「要員配置」,「移動」,「操作所要時間」,「他の並列操作有	「要員配置」,「移動」,「操作所要時間」,「他の並列操作	
無」及び「操作の確実さ」の6要因に分類し、これらの要	無」及び「操作の確実さ」の6 要因に分類し、これらの要	有無」及び「操作の確実さ」の6要因に分類し,これらの要	
因が運転員等操作時間に与える影響を評価する。また,運	因が運転員等操作時間に与える影響を評価する。また,運	因が運転員等操作時間に与える影響を評価する。また、運	
転員等操作時間に与える影響が評価項目となるパラメータ	転員等操作時間に与える影響が評価項目となるパラメータ	転員等操作時間に与える影響が評価項目となるパラメータ	
に与える影響を評価し、評価結果を以下に示す。	に与える影響を評価し、評価結果を以下に示す。	に与える影響を評価し、評価結果を以下に示す。	
(a) 運転員等操作時間に与える影響	(a) 運転員等操作時間に与える影響	(a) 運転員等操作時間に与える影響	
操作条件の逃がし安全弁による原子炉減圧操作は、解	操作条件の逃がし安全弁による原子炉急速減圧操作	操作条件の逃がし安全弁による原子炉急速減圧操作	
析上の操作開始時間として事象発生から 15 分後を設定	は,解析上の操作開始時間として事象発生から 15 分後	は,解析上の操作開始時間として,事象発生から 30 分後	・運用の相違
している。運転員等操作時間に与える影響として、破断	を設定している。運転員等操作時間に与える影響として、	を設定している。運転員等操作時間に与える影響として、	【柏崎 6/7,東海第二】
箇所の隔離操作の失敗の認知により原子炉減圧の操作開	破断箇所の隔離操作の失敗の認知により原子炉減圧の操	破断箇所の隔離操作の失敗の認知により原子炉減圧の操	
始時間は変動する可能性があるが、原子炉隔離時冷却系	作開始時間は変動する可能性があるが、原子炉隔離時冷	作開始時間は変動する可能性があるが、原子炉隔離時冷	
及び <u>高圧炉心注水系</u> による原子炉注水により,炉心は冠	却系による原子炉注水により、炉心はおおむね冠水維持	却系 <u>及び高圧炉心スプレイ系</u> による原子炉注水により,	・解析条件の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
水維持されるため、原子炉水位維持の点では問題となら されるため、原子炉水位維持の点では		炉心はおおむね冠水維持されるため、原子炉水位維持の	【東海第二】
<i>た</i> よい。		点では問題とならない。	島根2号炉は, ISLOCA
			発生下において、高圧注
			水機能に対する対策の有
			効性を評価している。
操作条件の高圧炉心注水系の破断箇所隔離操作は、解	操作条件の残留熱除去系の破断箇所隔離操作は、解析	操作条件の残留熱除去系の破断箇所隔離操作は、解析	
析上の操作開始時間として事象発生から <u>3時間</u> を設定し	上の操作開始時間として事象発生から約3時間後に開始	上の操作開始時間として, …事象発生から約9時間後に開	・運用の相違
ている。運転員等操作時間に与える影響として、隔離操	<u>し5 時間後の完了</u> を設定している。運転員等操作時間に	<u>始し 10 時間後の完了</u> を設定している。 運転員等操作時間	【柏崎 6/7,東海第二】
作を実施すべき弁を容易に認知でき、現場での操作場所	与える影響として、隔離操作を実施すべき弁を容易に認	に与える影響として、隔離操作を実施すべき弁を容易に	島根2号炉の操作開始
は漏えい箇所と異なる場所にあり、漏えいの影響を受け	知でき,現場での操作場所は漏えい箇所と異なる場所に	認知でき,現場での操作場所は漏えい箇所と異なる場所	時間を記載。
にくいため、実態の操作開始時間は解析上の設定とほぼ	あり、漏えいの影響を受けにくいため、実態の操作開始	にあり、漏えいの影響を受けにくいため、実態の操作開	
同等であり、操作開始時間に与える影響は小さいことか	時間は解析上の設定とほぼ同等であり、操作開始時間に	始時間は解析上の設定とほぼ同等であり、操作開始時間	
ら、運転員等操作時間に与える影響も小さい。	与える影響は小さいことから、運転員等操作時間に与え	に与える影響は小さいことから、運転員等操作時間に与	
(添付資料 2.7.3)	る影響も小さい。	える影響も小さい。	
	(添付資料 2.7.5)	(添付資料 2.7.4)	
(b) 評価項目となるパラメータに与える影響	(b) 評価項目となるパラメータに与える影響	(b) 評価項目となるパラメータに与える影響	
操作条件の逃がし安全弁による原子炉減圧操作は、運	操作条件の逃がし安全弁による原子炉急速減圧操作	操作条件の逃がし安全弁による原子炉急速減圧操作	
転員等操作時間に与える影響として、実態の操作開始時	は、運転員等操作時間に与える影響として、実態の操作	は、運転員等操作時間に与える影響として、実態の操作	
間が早まった場合、原子炉減圧時点の崩壊熱が大きくな	開始時間が早まった場合、原子炉減圧時点の崩壊熱が大	開始時間が早まった場合,原子炉減圧時点の崩壊熱が大	
るが、原子炉隔離時冷却系及び高圧炉心注水系の原子炉	きくなるが, 原子炉隔離時冷却系の原子炉注水により,	きくなるが,原子炉隔離時冷却系 <u>及び高圧炉心スプレイ</u>	・解析条件の相違
注水により、炉心は冠水維持されるため、評価項目とな	炉心はおおむね冠水維持されるため、評価項目となるパ	<u>系</u> の原子炉注水により、炉心は <u>おおむね</u> 冠水維持される	【東海第二】
るパラメータに与える影響はない。	ラメータに与える影響はない。	ため、評価項目となるパラメータに与える影響はない。	島根2号炉は, ISLOCA
操作条件の高圧炉心注水系の破断箇所隔離操作は、運	操作条件の残留熱除去系の破断箇所隔離操作は、運転	操作条件の残留熱除去系の破断箇所隔離操作は、運転	発生下において、高圧注
転員等操作時間に与える影響として、隔離操作の有無に	員等操作時間に与える影響として、隔離操作の有無に関	員等操作時間に与える影響として、隔離操作の有無に関	水機能に対する対策の有
関わらず,健全側の高圧炉心注水系の原子炉注水継続に	わらず, <u>低圧代替注水系(常設)</u> の原子炉注水継続によ	わらず, <u>高圧炉心スプレイ系</u> の原子炉注水継続により,	効性を評価している。
より、炉心は冠水維持されるため、評価項目となるパラ	り、炉心はおおむね冠水維持されるため、評価項目とな	炉心はおおむね冠水維持されるため、評価項目となるパ	
メータに与える影響はない。	るパラメータに与える影響はない。	ラメータに与える影響はない。	
(添付資料 2. 7. 3)	(添付資料 2.7.5)	(添付資料 2.7.4)	
(2) 場 佐 時間会 次の加提	(2) 据佐時間会がの加快	(2) 場佐時間会がの切根	
(の) 迷日時可用示(11/2)11/注 	(の) 床下町町ボ府(2)10)注 	(い) 迷日町町ボ宿の10座 	
深下近40による影響反口(で11))に使りる戦点から, 計画項目	深旧近40による影響反口('ど1)) とたるパラメータに対して、対策の右効地が確認できる範囲	保住住しによる影音反口(を1)) (注)) の観点から、 計画項目	
たでの場作時間令欲を確認し その結果を以下に示す	となるパノケークに対して、対象の有効性が確応できる範囲の	広での場作時間令欲を確認し その結果を凹下に示す	
	「1、い床」「中町回示府で40000, Cの相木でめ」にかり。	「「くの床」「町间示価で) 距応し、 この相不てめ」 にかり。	
ボドボドッピル しタエカによる「勤尿」 が 個山 深 FFC つい てけ	床IF不IFの起かしめ土井による <u>低山が燃止迷比</u> について け	ホーホージングル・レダエーによる <u>原一水の企業時に</u> してい てけ	・解析冬州の相造
	は、「小」が「喃喃」「ロームリホン」が在小により、が心はわわど わ冠水維持されることから一時間令欲がある	くい、「小」が「物理」で「ロムアルシンク」、「ハークシンクス」の原丁ア 注水により、「「いいい」、「いい」、「いい」、「いい」、「いい」、「いい」、「いい」、「	【宙海第一】
により、 μ っしっよ」に小作いにないることなり、「可用不性なる」。	a < j < j < j < j < j < j < j < j < j <		▲本1世初一▲ 自根9号临时 ISLOCA

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版)		備考
操作条件の高圧炉心注水系の破断箇所隔離操作は、隔離操	操作条件の残留熱除去系の破断箇所隔離操作は、隔離操作	操作条件の現場での残留熱除去系の破断箇所隔離操作は,	発生下において、高圧注
作の有無に関わらず、健全側の高圧炉心注水系の原子炉注水	の有無に関わらず, <u>低圧代替注水系(常設)</u> の原子炉注水継	隔離操作の有無に関わらず, <u>高圧炉心スプレイ系</u> の原子炉注	水機能に対する対策の有
継続により、炉心は冠水維持されることから、時間余裕があ	続により、炉心はおおむね冠水維持されることから、時間余	水継続により、炉心はおおむね冠水維持されることから、時	効性を評価している。
る。	裕がある。	間余裕がある。	
(添付資料 2.7.3)	(添付資料 2.7.5)	(添付資料 2.7.4)	
(4) まとめ	(4) まとめ	(4) まとめ	
解析コード及び解析条件の不確かさの影響評価の範囲とし	解析コード及び解析条件の不確かさの影響評価の範囲とし	解析コード及び解析条件の不確かさの影響評価の範囲とし	
て、運転員等操作時間に与える影響、評価項目となるパラメ	て、運転員等操作時間に与える影響、評価項目となるパラメ	て、運転員等操作時間に与える影響、評価項目となるパラメ	
ータに与える影響及び操作時間余裕を確認した。その結果,	ータに与える影響及び操作時間余裕を確認した。その結果,	ータに与える影響及び操作時間余裕を確認した。その結果,	
解析コード及び解析条件の不確かさが運転員等操作時間に与	解析コード及び解析条件の不確かさが運転員等操作時間に与	解析コード及び解析条件の不確かさが運転員等操作時間に与	
える影響等を考慮した場合においても、評価項目となるパラ	える影響等を考慮した場合においても、評価項目となるパラ	える影響等を考慮した場合においても、評価項目となるパラ	
メータに与える影響は小さい。この他,評価項目となるパラ	メータに与える影響は小さい。この他,評価項目となるパラ	メータに与える影響は小さい。この他,評価項目となるパラ	
メータに対して,対策の有効性が確認できる範囲内において,	メータに対して,対策の有効性が確認できる範囲内において,	メータに対して,対策の有効性が確認できる範囲内において,	
操作時間には時間余裕がある。	操作時間には時間余裕がある。	操作時間には時間余裕がある。	
2.7.4 必要な要員及び資源の評価	2.7.4 必要な要員及び資源の評価	2.7.4 必要な要員及び資源の評価	
(1) 必要な要員の評価	(1) 必要な要員の評価	(1) 必要な要員の評価	
事故シーケンスグループ「格納容器バイパス(インターフ	事故シーケンスグループ「格納容器バイパス(ISLOC	事故シーケンスグループ「格納容器バイパス(<u>ISLOC</u>	
ェイスシステム LOCA)」において,6号及び7号炉同時の重大	A)」において、重大事故等対策時における必要な要員は、	<u>A</u>)」において,重大事故等対策時における必要な要員は,	
事故等対策時における必要な要員は、「2.7.1(3) 炉心損傷防	「2.7.1(3) 炉心損傷防止対策」に示すとおり <u>12名</u> である。	「2.7.1(3) 炉心損傷防止対策」に示すとおり <u>10名</u> である。	・運用及び設備設計の相
止対策」に示すとおり 20 名である。「6.2 重大事故等対策時	「6.2 重大事故等対策時に必要な要員の評価結果」で説明し	「6.2 重大事故等対策時に必要な要員の評価結果」で説明し	違
に必要な要員の評価結果」で説明している <u>運転員,</u> 緊急時対	ている <u>災害対策要員(初動)</u> の <u>39 名</u> で対処可能である。	ている <u>緊急時対策要員</u> の <u>45名</u> で対処可能である。	【柏崎 6/7,東海第二】
策要員 <u>等</u> の <u>72 名</u> で対処可能である。			プラント基数,設備設
			計及び運用の違いにより
			必要要員数は異なるが,
			タイムチャートにより要
			員の充足性を確認してい
			る。なお,これら要員 10
			名は夜間・休日を含め発
			電所に常駐している要員
			である。
(2) 必要な資源の評価	(2) 必要な資源の評価	(2) 必要な資源の評価	
事故シーケンスグループ「格納容器バイパス(インターフェ	事故シーケンスグループ「格納容器バイパス(ISLOC	事故シーケンスグループ「格納容器バイパス(<u>ISLOC</u>	
イスシステム LOCA)」において、必要な水源、燃料及び電源は、	A)」において,必要な水源,燃料及び電源は,「6.1(2)資源	<u>A</u>)」において,必要な水源,燃料及び電源は,「6.1(2)資	
「6.1(2) 資源の評価条件」の条件にて評価を行い,その結果を	の評価条件」の条件にて評価を行い,その結果を以下に示す。	源の評価条件」の条件にて評価を行い、その結果を以下に示	
以下に示す。		す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
a. 水源	a. 水源	a. 水源	
インターフェイスシステム LOCA 発生後の隔離までの各	ISLOCA発生後の隔離までの <u>低圧代替注水系(常設)</u>	<u>ISLOCA</u> 発生後の隔離までの <u>流出量</u> は, <u>約 600m³</u> と	・水量評価結果の相違
<u> 号炉における</u> 流出量は, <u>約 100m³</u> となる。 <u>6 号及び 7 号炉</u>	<u>による原子炉注水に使用する水量</u> は, <u>約 490m³となる。水</u>	なる。 <u>高圧炉心スプレイ系及び原子炉隔離時冷却系</u> による	【柏崎 6/7,東海第二】
の同時被災を考慮すると、流出量は合計約 200m ³ となり、	源として,代替淡水貯槽に約4,300m ³ の水を保有している。	原子炉注水 <u>の水源</u> は, サプレッション・チェンバのプール	
流出量分の注水が必要となる。水源として、各号炉の復水	原子炉隔離時冷却系 <u>及び低圧炉心スプレイ系</u> による原子炉	水 <u>であり,約 2,800m³の水を保有している</u> ことから,水源	
<u> 貯蔵槽に約 1,700m³ 及び淡水貯水池に約 18,000m³ の水を</u>	注水は、サプレッション・チェンバのプール水を水源とし	が枯渇することはない。これにより必要な水量が確保可能	
保有している。インターフェイスシステム LOCA により復	て注水することから、水源が枯渇することはない。これに	であり,7日間の注水継続実施が可能である。	
水貯蔵槽が使用できない場合においても、各号炉のサプレ	より必要な水量が確保可能であり、7 日間の注水継続実施		
<u>ッション・チェンバに約 3,600m³ の水を保有しており,</u> <u>高</u>	が可能である。		
<u> 圧炉心注水系</u> による原子炉注水は,サプレッション・チェ	(添付資料 2.7.6)		
ンバのプール水を水源として注水することから、水源が枯			
渇することはない。これにより6. 号及び7. 号炉の同時被災			
を考慮しても, 必要な水量が確保可能であり, 7 日間の注			
水継続実施が可能である。			
b. 燃料	b. 燃料	b. 燃料	
<u>非常用ディーゼル発電機</u> による電源供給については,事	非常用ディーゼル発電機等 <u>及び常設代替交流電源設備</u>	<u>非常用ディーゼル発電機等</u> による電源供給については,	・設備設計の相違
象発生後 7 日間最大負荷で運転した場合, <u>号炉あたり約</u>	<u>(常設代替高圧電源装置 2 台)</u> による電源供給については,	事象発生後7日間最大負荷で運転した場合, 運転継続に約	【柏崎 6/7】
<u>753kL</u> の軽油が必要となる。 <u>5 号炉原子炉建屋内緊急時対策</u>	事象発生後 7 日間最大負荷で運転した場合, 合計約	<u>700m³の軽油が必要となる。ディーゼル燃料貯蔵タンク</u> にて	島根2号炉は,高圧炉
<u>所用可搬型電源設備及びモニタリング・ポスト用発電機</u> に	<u>755.5kL</u> の軽油が必要となる。軽油貯蔵タンクにて約800kL	<u>約 730m³の軽油を保有しており,この使用が可能であるこ</u>	心スプレイ系ディーゼル
よる電源供給については、事象発生直後からの運転を想定	の軽油を保有しており、この使用が可能であることから、	とから <u>非常用ディーゼル発電機等</u> による電源供給につい	発電機もある。
すると,7日間の運転継続に <u>合計約13kL</u> の軽油が必要とな	<u>非常用ディーゼル発電機等及び常設代替交流電源設備(常</u>	て,7日間の運転継続が可能である。	・解析条件の相違
る <u>(6 号及び 7 号炉合計約 1,519kL)。</u>	<u>設代替高圧電源装置 2 台)</u> による電源供給について,7 日		【東海第二】
	間の継続が可能である。		・燃料評価結果の相違
			【柏崎 6/7,東海第二】
<u>6 号及び7 号炉の各軽油タンク</u> にて <u>約1,020kL(6 号及</u>	緊急時対策所用発電機による電源供給については、事象	<u>緊急時対策所用発電機</u> による電源供給については, 事象	
び7 号炉合計約2,040kL)の軽油を保有しており、これら	発生直後からの運転を想定すると、7 日間の運転継続に約	発生直後からの運転を想定すると、7日間の運転継続に <u>約</u>	・設備設計の相違
の使用が可能であることから,非常用ディーゼル発電機に	70.0kL の軽油が必要となる。 <u>緊急時対策所用発電機燃料油</u>	<u>8m³の軽油が必要となる。緊急時対策所用燃料地下タンク</u>	【柏崎 6/7】
よる電源供給,5.号炉原子炉建屋内緊急時対策所用可搬型	<u>貯蔵タンク</u> にて約 <u>75kL</u> の軽油を保有しており,この使用	にて <u>約 45m³の</u> 軽油を保有しており,この使用が可能である	島根2号炉は、緊急時
<u>電源設備</u> による電源供給 <u>及びモニタリング・ポスト用発電</u>	が可能であることから,緊急時対策所用発電機による電源	ことから, <u>緊急時対策所用発電機</u> による電源供給について,	対策所用発電機用の燃料
<u>機による電源供給</u> について,7日間の継続が可能である。	供給について,7 日間の継続が可能である。	7日間の継続が可能である。	タンクを有している。ま
(添付資料 2.7.4)	(派付資料 2.7.7)	(添付資料 2.7.5)	た,モニタリングポスト
			は非常用交流電源設備又
			は常設代替交流電源設備
			による電源供給が可能で
			ある。
c. 電源	c. 電 源	c. 電源	
外部電源は使用できないものと仮定し、各号炉の非常用	外部電源は使用できないものと仮定し、非常用ディーゼ	外部電源は使用できないものと仮定し、非常用ディーゼ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
ディーゼル発電機によって給電を行うものとする。6 号及	ル発電機等及び常設代替交流電源設備(常設代替高圧電源	ル発電機 <u>等</u> によって給電を行うものとする。重大事故等対	
び7 号炉において重大事故等対策時に必要な負荷は、各号	<u>装置 2 台)</u> によって給電を行うものとする。重大事故等対	策時に必要な負荷は,非常用ディーゼル発電機 <u>等</u> の負荷に	・設備設計の相違
<u>炉の</u> 非常用ディーゼル発電機負荷に含まれることから,非	策時に必要な負荷は、非常用ディーゼル発電機等の負荷に	含まれることから,非常用ディーゼル発電機 <u>等</u> による電源	【柏崎 6/7】
常用ディーゼル発電機による電源供給が可能である。	含まれることから、非常用ディーゼル発電機等による電源	供給が可能である。	島根2号炉は、高圧炉
	供給が可能である。 <u>常設代替交流電源設備の電源負荷につ</u>		心スプレイ系ディーゼル
	いては, 重大事故等対策時に必要な負荷として, 約1,141kW		発電機もある。
	必要となるが、常設代替交流電源設備(常設代替高圧電源		・設備設計の相違
	装置2 台)は連続定格容量が約2,208k₩ であり, 必要負荷		【東海第二】
	に対しての電源供給が可能である。		島根2号炉は、必要負
			荷に対して非常用ディー
			ゼル発電機等で電源供給
			を行う。
また,5.号炉原子炉建屋内緊急時対策所用可搬型電源設	また、緊急時対策所用発電機についても、必要負荷に対	また、緊急時対策所用発電機についても、必要負荷に対	
<u>備及びモニタリング・ポスト用発電機</u> についても,必要負	しての電源供給が可能である。	しての電源供給が可能である。	・設備設計の相違
荷に対しての電源供給が可能である。	(添付資料 2. 7. 8)		【柏崎 6/7】
			モニタリングポストは
			非常用交流電源設備又は
			常設代替交流電源設備に
			よる電源供給が可能であ
			る。
2.7.5 結論	2.7.5 結 論	2.7.5 結論	
事故シーケンスグループ「格納容器バイパス(インターフェイ	事故シーケンスグループ「格納容器バイパス(ISLOCA)」	事故シーケンスグループ「格納容器バイパス(<u>ISLOCA</u>)」	
スシステム LOCA)」では、原子炉冷却材圧力バウンダリと接続さ	では、原子炉冷却材圧力バウンダリと接続された系統で、高圧設	では、原子炉冷却材圧力バウンダリと接続された系統で、高圧設	
れた系統で、高圧設計部分と低圧設計部分のインターフェイスと	計部分と低圧設計部分のインターフェイスとなる配管のうち、隔	計部分と低圧設計部分のインターフェイスとなる配管のうち、隔	
なる配管のうち、隔離弁の隔離失敗等により低圧設計部分が過圧	離弁の隔離失敗等により低圧設計部分が過圧され破断すること	離弁の隔離失敗等により低圧設計部分が過圧され破断すること	
され破断することで、原子炉格納容器外へ原子炉冷却材が流出す	で, 格納容器外へ原子炉冷却材が流出することで, 原子炉水位の	で、原子炉格納容器外へ原子炉冷却材が流出することで、原子炉	
ることで、原子炉水位の低下により炉心が露出して炉心損傷に至	低下により炉心が露出して炉心損傷に至ることが特徴である。事	水位の低下により炉心が露出して炉心損傷に至ることが特徴であ	
ることが特徴である。事故シーケンスグループ「格納容器バイパ	故シーケンスグループ「格納容器バイパス(ISLOCA)」に対	る。事故シーケンスグループ「格納容器バイパス (<u>ISLOCA</u>)」	
ス(インターフェイスシステム LOCA)」に対する炉心損傷防止対策	する炉心損傷防止対策としては、初期の対策として原子炉隔離時	に対する炉心損傷防止対策としては、初期の対策として原子炉隔	
としては、初期の対策として原子炉隔離時冷却系及び高圧炉心注	冷却系,低圧炉心スプレイ系及び低圧代替注水系(常設)による	離時冷却系及び高圧炉心スプレイ系による原子炉注水手段,逃が	・解析条件の相違
水系による原子炉注水手段、逃がし安全弁による原子炉減圧手段	原子炉注水手段,逃がし安全弁(自動減圧機能)による原子炉減	し安全弁による原子炉減圧手段及び運転員の破断箇所隔離による	【東海第二】
及び運転員の破断箇所隔離による漏えい停止手段、安定状態に向	圧手段及び運転員の破断箇所隔離による漏えい停止手段、安定状	漏えい停止手段、安定状態に向けた対策として残留熱除去系によ	島根2号炉は, ISLOCA
けた対策として残留熱除去系(サプレッション・チェンバ・プー	態に向けた対策として残留熱除去系(サプレッション・プール冷	る原子炉格納容器除熱手段を整備している。	発生下において、高圧注
ル水冷却モード)による原子炉格納容器除熱手段を整備している。	却系)による格納容器除熱手段を整備している。		水機能に対する対策の有
事故シーケンスグループ「格納容器バイパス(インターフェイ	事故シーケンスグループ「格納容器バイパス(<u>ISLOCA</u>)」	事故シーケンスグループ「格納容器バイパス(<u>ISLOCA</u>)」	効性を評価している。
スシステム LOCA)」の重要事故シーケンス「インターフェイスシ	の重要事故シーケンス「ISLOCA」について有効性評価を行	の重要事故シーケンス「 <u>ISLOCA</u> 」について有効性評価を行	
ステム LOCA」について有効性評価を行った。	った。	った。	
上記の場合においても、原子炉隔離時冷却系及び高圧炉心注水	上記の場合においても,原子炉隔離時冷却系, 低圧炉心スプレ	上記の場合においても,原子炉隔離時冷却系及び高圧炉心スプ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
系による原子炉注水,残留熱除去系(サプレッション・チェンバ・	<u>イ系及び低圧代替注水系(常設)</u> による原子炉注水並びに残留熱	レイ系による原子炉注水, 残留熱除去系 (サプレッション・プー	
プール水冷却モード)による原子炉格納容器除熱を実施すること	除去系 (サプレッション・プール冷却系) による格納容器除熱を	ル水冷却モード)による原子炉格納容器除熱を実施することによ	
により、炉心損傷することはない。	実施することにより、炉心損傷することはない。	り、炉心損傷することはない。	
その結果、燃料被覆管温度及び酸化量、原子炉冷却材圧力バウ	その結果、燃料被覆管温度及び酸化量、原子炉冷却材圧力バウ	その結果、燃料被覆管温度及び酸化量、原子炉冷却材圧力バウ	
ンダリにかかる圧力、原子炉格納容器バウンダリにかかる圧力及	ンダリにかかる圧力並びに格納容器バウンダリにかかる圧力及び	ンダリにかかる圧力,原子炉格納容器バウンダリにかかる圧力及	
び温度は、評価項目を満足している。また、安定状態を維持でき	温度は、評価項目を満足している。また、安定状態を維持できる。	び温度は、評価項目を満足している。また、安定状態を維持でき	
る。		る。	
解析コード及び解析条件の不確かさについて確認した結果、運	解析コード及び解析条件の不確かさについて確認した結果、運	解析コード及び解析条件の不確かさについて確認した結果,運	
転員等操作時間に与える影響及び評価項目となるパラメータに与	転員等操作時間に与える影響及び評価項目となるパラメータに与	転員等操作時間に与える影響及び評価項目となるパラメータに与	
える影響は小さい。また、対策の有効性が確認できる範囲内にお	える影響は小さい。また、対策の有効性が確認できる範囲内にお	える影響は小さい。また、対策の有効性が確認できる範囲内にお	
いて、操作時間余裕について確認した結果、操作が遅れた場合で	いて、操作時間余裕について確認した結果、操作が遅れた場合で	いて、操作時間余裕について確認した結果、操作が遅れた場合で	
も一定の余裕がある。	も一定の余裕がある。	も一定の余裕がある。	
重大事故等対策時に必要な要員は、運転員及び緊急時対策要員	重大事故等対策時に必要な要員は、災害対策要員にて確保可能	重大事故等対策時に必要な要員は、緊急時対策要員にて確保可	
にて確保可能である。また,必要な水源,燃料及び電源を供給可	である。また、必要な水源、燃料及び電源を供給可能である。	能である。また、必要な水源、燃料及び電源を供給可能である。	
能である。			
以上のことから,原子炉隔離時冷却系及び高圧炉心注水系によ	以上のことから,原子炉隔離時冷却系, <u>低圧炉心スプレイ系及</u>	以上のことから,原子炉隔離時冷却系 <u>及び高圧炉心スプレイ系</u>	
る原子炉注水,逃がし安全弁による原子炉急速減圧,運転員の破	び低圧代替注水系(常設)による原子炉注水、逃がし安全弁によ	による原子炉注水,逃がし安全弁による原子炉急速減圧,運転員	
断箇所隔離による漏えい停止,残留熱除去系 (サプレッション・	る原子炉急速減圧,運転員の破断箇所隔離による漏えい停止,残	の破断箇所隔離による漏えい停止,残留熱除去系 (サプレッショ	
<u>チェンバ・プール水冷却モード)</u> による原子炉格納容器除熱等の	留熱除去系 (サプレッション・プール冷却系) による格納容器除	ン・プール水冷却モード)による原子炉格納容器除熱等の炉心損	
炉心損傷防止対策は, 選定した重要事故シーケンスに対して有効	熱等の炉心損傷防止対策は、選定した重要事故シーケンスに対し	傷防止対策は、選定した重要事故シーケンスに対して有効である	
であることが確認でき、事故シーケンスグループ「格納容器バイ	て有効であることが確認でき,事故シーケンスグループ「格納容	ことが確認でき、事故シーケンスグループ「格納容器バイパス(I	
パス(<u>インターフェイスシステム LOCA</u>)」に対して有効である。	器バイパス(ISLOCA)」に対して有効である。	<u>SLOCA</u>)」に対して有効である。	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		<complex-block></complex-block>		・設備設計の相違 【柏崎 6/7,東海第二】
		<u>対策の概略系統図(3/3)</u> (隔離成功後の低圧炉心スプレイ系による原子炉注水及び残留熱 除去系に上る格納容器除熱段階)		

	備考
	差異理由は,島根2号炉
	「第 2.7.1-2 図 「格納
	容器バイパス(インター
	フェイスシステムLOC
	A)」の対応手順の概要」
	の備考欄参照
艱	
頁の	
対応	
6	
CA)	
07 Y	
TK	
シス	
Ϋ́	
Ĥ	
1	
ズ	
\sum	
$\overset{r}{\leqslant}$	
مَرَّر سُرَ	
部	
がない	
料	
ম	
.4	
2.2	
策	

	備考
	差異理由は,島根2号炉
	「第 2.7.1-2 図 「格納
	容器バイパス(インター
	フェイスシステムLOC
	A)」の対応手順の概要」
	の備考欄参照
要	
つ 御	
戸順 (
に応う	
の 対	
(A)	
O C	
T C	
I S	
谷器	
格	
5	
2.7	
"	
▲ 	
0:22	
→ 火災 輸 約 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3	

	備考
	・解析条件の相違
	【柏崎 6/7,東海第二】
	①破断想定箇所の相違
また、過かい安全争の作動に必要な窒素ガスが興失している場合は、窒素ガス性高設備、窒素ガス代費時設備に15 窒素ガス化晶を行う。 なおバイパス(ISLOCA)」の対応手順の概要	
<u>格</u>	
Ĩ	
X	
. 1-2	
だとする。 、処理すえ 、 の通子ス - - - - - - - - - - - - -	
(原子炉停住時が第三一下)により冷値停止状態(原子炉積内のサースイを実施し、溜火し次を特計 第二人の実施し、溜火し次を特計	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

格納容器バイパス (インターフェイスシステムLOCA)

											経過	時間(分)				/				経	過時間	(時間)			
								2	4 6	8	10	12 14	1 16	18	20 2	2	24	2	3	-1	5	6	7	8	9	10
			実施箇所·	必要人員数				▲ 半祭発生	۰۰. ۵		•			•			•	•				·	•			
	責任者	当;	直長	1人	中央 緊急時対1	·監視 憲本部連絡	1	1 <u>-</u>					$\mathbf{\nabla}$	○ 原子炉急	冰減圧											
操作項目	指揮者	6号 7-D	当直副長	1人	各分炉運	転操作指揮	操作の内容	V 401/080 ₽	泉于炉水拉瓜(L	×102)																
	通報連絡者	緊急時対:	<u>一 二 世 副 反</u> 策本部要員	万人	中央制行	御室連終 90.刻油級								マ約	8分 原子炉内	大位低	(レベル1,5)									
) 運道 (中山)	転員	運車	▲ 転員	緊急時:	対策要員	4				▽ 75	シント大沢判断	ŕ							^{3時間}	同 高圧炉心	注水系から	の漏えい将	ε.lt		
	6号	间调型/ 7号	6号	- 7月	6号	1977 J	-																			
							 高压炉心生水系收込配管破断確認 																			
							 ・外部電源喪失確認 																			
扶死 判断	2.人 A, B	2人 a, b	-	-	-	-	・原子婦スクラム、タービン・トリップ確認	-	10分																	
							・非常用ディーゼハ発電券 自動起動確認																			
							 原子炉隔繩時冷却系 自動起動確認 																			
高圧が心症水系からの漏えい停止操作 (中央洞御室操作)	(1 A) A	(1 A) B	-	-	-	-	・高圧炉心冷却系 注入隔離介閉操作					55)	江入橋	爾介全閉失明	文を想定											
原子加急速减压操作	(1A) A	(1,5) B	-	-	-	-	・逃ぶし安全介 8個 手動開攻操作							50												
	(1.6.)	0.51	-	-	-	-	 ・高圧炉心注水系(健全側) 自動範疇部 								3分					1						
高压炉心注水杀(建全卿) 自動起動資品	В	b	-	-	-	-	 ・高圧押心注水系(健全側) 在入発操作 							•			بر مرتبع	<ル/2011 ・レーベル、	幸後 1.3 /維持							
意向補給 とる、中立しょうション・ディーンス。	(14)						・残留熱除上系ホンフ 手動起動							ā%):						1						
スロールが高知 ディングラン ユンパー ブール水冷却 ー・ド操作	Å	à	-	-	-	-	・ 改留熱除去落 - 試験用調節介操作										Ť	プンット	ション・チ	-100K +	ブール 水冷:	却モート連続	まを継続			
常用撮合雑水感が良い環から際仕様の			4人 C, D R, F	4人 c, d e, f			 ・現場修動 ・保護具装音/装音補助 											30分	Π							
(現場操作)	-	-	(2.A.) C, D	(2人) c, d		-	・現場修動 ・高圧炉で希知系 - 注入陰廱弁閉操作												60	0 <i>5</i> 9						
原子症水位调整操作	(1人) B	(1 Å) b	-	_	-	-	,高压炉心注水系(健全侧)															レベル3	~レベルさ	維持		
■ 必要人員数 合計	ッ人 A, B	2人 a, b	4.K. C, D, E, F	4人 c, d, e, f		1.5		I																		

()内の数字は他の作業終了後、移動して対応する人員数。

第2.7.5 図 「格納容器バイパス(インターフェイスシステム LOCA)」の作業と所要時間

	備考
	差異理由は,島根2号炉
	「第 2.7.1-3 図 「格納
]	容器バイパス(インター
	フェイスシステムLOC
備考	の借考問会四
	· 77曲石欄

格納容器バイバス(1SLOCA) 经過時間 60 分 実施箇所・必要要員数 事象発生 ▶ 原子炉スクラム 【 】は他作業後 移動してきた要員 ▶ 約20秒 原子炉水位異常低下(レベル2) 剣達 ▼ プラント状況判断 中央監視 運転操作指揮 責任者 当直発電長 操作項目 操作の内容 ▼ 15分 原子炉減圧開始 ▼ 5時間 現場における残留書 除去系の注入弁の 止操作完了 運転操作指揮補佐 補佐 当面副孫電長 ▼ 約17分 原子炉圧力3MPa [gage] 到達 发害対策要員 (指揮者等) 初動での指揮 発電所内外連絡 指揮者等 当面運転員 (中央制御室) 重大事故等対応要員 (現場) 当直運転員 (現場) ●原子炉スクラムの確認 ●タービン停止の確認 ●外部電源喪失の確認 ●給水流量全喪失の確認 2人 A, B ●ISLOCA発生の確認 状况確認 _ 10 分 ●再循環系ボンプトリップの違認 ●主然気隔離弁閉止及び進がし安全介(安全介機能)による原子 炉圧力制御の確認 ●非常用ディーゼル毫慮機等の自動起動の確認 ●原子炉隔離時冷却系の自動起動の確認 中央制御室における役 留熱除去系の注人弁の 閉止操作 ●<>>●<>>></>
●</>
会留熱除去系の注入弁の開止操作(失敗)
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
● [1人] 2分 常設代替交流電源設備 による緊急用母線の受 【1人】 B ●當設代替高圧重潮装置2台の起動操作及び緊急用応線の受重機 1分 _ による緊急用世務の受 最操作 低圧振むスプレイ系の 起動操作 逃がし安全弁(自動減圧 機能)による原子が急速 対応した 【1人】 --●低圧炉心スプレイ系の起動操作 2分 【1人】 B _ ●逃がし安全弁(自動減圧機能)7個の手動開放操作 1分 減圧操作 常設低圧代替注水系ボ ンプを用いた低圧代替 注水系(常設)の起動操 [1人] ●常設低圧代替注水系パンプを用いた低圧代替注水系(常設)に よる原子炉注水の系術構成操作及び起動操作 3分 _ _ 許
 弐値熱除去系(サブン>>
 ション・ブール治却系)
 によるサブレッション
 ン・ブ・ル冷却操作
 原子炉水位の調整操作
 (低圧代替注水系(常 ●残留熱除去系(サブレッション・ブール冷却系)によるサブレ ッシェン・プール冷却操作 [1人] 6分 [1人] ●常設低圧代替注水系ボンフを用いた低圧代替注水系(常設)に よる原子炉注水の調整操作 漏えい抑制のため原子炉水位を原子炉水位異常低下(ンベル2)以上で可能な限り低めに維持 --中央制御室における残 留感除去系の弁の閉止 操作 DA1 --●残留熱除去系熱交換器出入口等の閉止操作 適宜実施 現場における残留熱除 去系の注入弁の関止操 ● 依璧具装備/装備補助
 ● 夜留熱除去系の注入弁問止操作のための現場移動
 ● 夜留熱除去系の注入弁の閉止操作 3人 C, D, E 1人 a 115分 原子炉水位低(レベル3); 原子炉水位高(レベル8)。 原子炉木位の調整操作 (低圧炉心スプレイ系) [1人] - B ●低圧炉心スプレイ系による原子炉水位調整操作 _ ●常設低圧代替注水系ホンプによる代替燃料ブール注水系(注ホ ライン)を使用した使用清脆料ブールへの注水操作 適宜実施 使用斎塘料ブールの除 熱操作 【1人】 A _ ●緊急用海水系による海水通水の系統構成操作及び解動操作 20 53 ●代替燃料ブール冷却系の起動操作 15 3

 必要要員合計
 2人
 3人
 1人

 A, B
 C, D, E
 a

<u>第2.7-3 図 格納容器バイパス(ISLOCA)の作業と所要時間</u>

東海第二発電所 (2018.9.12版)

	備考
	差異理由は,島根2号炉
	「第 2.7.1-3 図 「格納
	容器バイパス(インター
25 備 考 間	フェイスシステムLOC
	A)」の作業と所要時間」
	の備考欄参照
熱 閉	
 外部電源変失の確認及び 	
 デロカノョー こと先に壊 等の自動起動の確認は、外 第電源がない場合に実施 する 	
N 10 (100)	
解析上考慮しない	
移動:67分(放射線防護具 着用含む) 現場隔離操作:48分	
論	
解析上考慮しない スロッシングによる水位 低工業も支援会社が特徴	
は	
解析上考慮しない 	
\sim	

島根原子力発電所 2号炉

格納容器バイパス (インターフェイスシステムLOCA)

									経過時間 (分)			経過	時間(時間)	
							10 20 3	0 40 5	60 70 80 90	100 110 1	20 130	8 9 1	0 11 12	備考
		実施箇所・	必要人員数			↓ ₩ ₩	「象発生 〔子炉スクラム							
	責任者	当直長	1人	中央制御室監視		∀ ≉	20秒 原子炉水位	1低(レベル2)						
				繁急時对東本部連絡			▽ プラント状況	1111年に / /						
操作項目	指揮者	当直副長	1人	運転操作指揮	操作内容		♥ 約12分 周	「子炉水位低(レ 7 30分 原子#	ベル1H) 『急速滅圧					
	通報連絡等を行う	指示者	1人	初動での指揮						7	7 2時間 務	留熱除去系(原子	炉停止時冷却モード)	
		連絡担当者	4人	発電所内外運絡							ji i	[#云 7	7 10時間	
	連転員 (中央制御室)	·運幣 (現	5月 [場)	復旧班要員									残留熱除去系からの 漏えい停止	
					• 外部電源喪失確認									
					・ 給水流量の全喪失確認									
					・ 原子炉スクラム確認, タービントリップ確認									
					 非常用ディーゼル発電機等自動起動確認 									
					・ 再循環ポンプトリップ確認									
状况判断	1人 A	-	_	_	 主蒸気隔離弁全閉/逃がし安全弁による原子炉圧力制御確認 	10分	L							
					 原子炉隔離時冷却系自動起動確認 									
					・ 原子炉水位低下継続確認									
					・ 高圧炉心スプレイ系自動起動確認									
					 ISLOCA発生を確認 									
					・ 非常用ガス処理系自動起動確認									解析上考慮せず
原子炉注水操作	(1人) A	-	-	_	 原子炉隔離時冷却系 原子炉注水確認 		適宜実施							
194 - 2 - 29 - 1946 - 2946 - 1 - 1	(1人) A	-	_	_	・ 高圧炉心スプレイ系 原子炉注水確認		適宜実施				0			
na - wall i M- an airin 1	(1人) A	-	_	-					漏えい抑制のため原 レベル2以上で低	『子炉水位を stめに維持				
原于炉水位酮整操作	(1人) A	-	_	_	 満圧炉心ヘノレイ末による原ナ炉水位調金焼作 								原子炉水位をレベル3 ~レベル8に維持	
学问教练士艺术	(11)	-	-	-	 残留熱除去系 注水弁隔離操作(中央制御室) 		10分	注水弁全閉步	敗を想定					
茨爾系 ボ云ボの 漏えい停止操作(中央制御室)	A	-	_	-	 ・ 狭留熱除去ボンブ起動阻止操作 ・ 残留熱除去系封水ボンブ停止操作 ・ 残留熱除去系 熱交換器入口弁等の閉止操作 				適宜実	施				解析上考慮せず
原子炉急速減圧操作	(1人) A	-	_	_	 自動減圧機能付き逃がし安全弁 6個 手動開放操作 			10分			•			
残留熱除去系	(1人) A	-	_	_	• 残留熱除去來起動操作			10分						
(サノレッション・ノール水 冷却モード)運転	(1人) A	-	_	-	 ・				残留熱除去系(サプレッション プール水冷却モード)運転を編	/ • 送続				
残留熱除去系 (サプレッション・プール水 冷却モード)から残留熱除去系 (原子炉停止時冷却モード)切替	(1,5,) A	-	_	_	・ 残留熱除去系 (原子炉停止時冷却モード)系統構成					20分				
残留熱除去系	(1人) A	-	-	_	・ 残留熱除去系 (原子炉停止時冷却モード) 起動						10分			
(原子炉停止時冷却モード)運転	(1人) A	-	-	I	・ 原子炉冷却材温度調整						\square	残留熱除: 冷却モ	■系(原子炉停止時 一ド)運転継続	
残留熱除去系からの	-	2	人		• 放射線防護具準備				10分		•	8		
漏えい停止準備操作 	-	В,	, C	_	・ 残留熱除去系隔離準備 (電源ロック)				30分					
残留熱除去系からの	-	(2.	<i>L</i>)	_	・ 保護具装着							30分		
漏えい停止操作 (現場操作)	-	В,	, C	_	・ 残留熱除去系 注水弁隔離操作 (現場)								1時間	
燃料プール冷却 再開	(1人) A	-	-	-	・ 燃料プール冷却系再起動		・燃料プールネ ・必要に応じて	却水ポンプを再 スキマサージタ	起動し燃料プールの冷却を再開す ンクへの補給を実施する。	^õ, й	i 宜実施 人			解析上考慮せず 燃料プール水温66℃以下維持
必要人員数 合計	1人 A	2. B,	人 , C	_										
	() 内の数字は他の)作業終了後,	移動して対応	する人員数。	1									

第2.7.1-3図 「格納容器バイパス(ISLOCA)」の作業と所要時間

備考
・解析結果の相違に基づ
く差異
・設備設計・手順に基づ
く想定時間の差異
・解析上考慮しない操作
を含めて実際に実施す
る操作について要員の
充足性を確認(ただし、
事前に対応する要員を
定めることが難しい機
たの る こ こ ※ 知 し い
記回夜床Fでゆく)

 ・解析結果の相違 【柏崎 6/7】 ①島根 2 号炉及び東海第 二は、MSIV 閉作動の原子 炉水位設定点(L2)に到 達するため、原子炉圧力 が上昇し、逃がし安全弁 により原子炉圧力が制御 される。一方で、柏崎 6/7 では MSIV 閉作動の原子 炉水位設定点(L1.5)に は原子炉減圧後に到達す るため同様の挙動は見ら れない。 【柏崎 6/7、東海第二】 ②島根 2 号炉は、原子炉 手動減圧前に、高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で、柏 崎 6/7 及び東海第二は、 手動減圧前に、高圧 ECCS 系が作動していない**こ とから、原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定 	计炉	備考
【柏崎 6/7】 ①島根 2 号炉及び東海第 二は、MSIV 閉作動の原子 炉水位設定点(L2)に到 達するため、原子炉圧力 が上昇し、逃がし安全弁 により原子炉圧力が制御 される。一方で、柏崎 6/7 では MSIV 閉作動の原子 炉水位設定点(L1.5)に は原子炉減圧後に到達す るため同様の挙動は見ら れない。 【柏崎 6/7、東海第二】 ②島根 2 号炉は、原子炉 手動減圧前に、高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で、柏 崎 6/7 及び東海第二は、 手動減圧前に、高圧 ECCS 系が作動していない*こ とから、原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		・解析結果の相違
 ①島根2号炉及び東海第 二は、MSIV 閉作動の原子 炉水位設定点(L2)に到 達するため、原子炉圧力 が上昇し、逃がし安全弁 により原子炉圧力が制御 される。一方で、柏崎6/7 では MSIV 閉作動の原子 炉水位設定点(L1.5)に は原子炉減圧後に到達す るため同様の挙動は見ら れない。 【柏崎6/7,東海第二】 ②島根2号炉は、原子炉 手動減圧前に、高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で、柏 崎6/7 及び東海第二は、 手動減圧前に、高圧 ECCS 系が作動していない**こ とから、原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定 		【柏崎 6/7】
 二は、MSIV 閉作動の原子 炉水位設定点(L2)に到 達するため、原子炉圧力 が上昇し、逃がし安全弁 により原子炉圧力が制御 される。一方で、柏崎6/7 では MSIV 閉作動の原子 炉水位設定点(L1.5)に は原子炉減圧後に到達す るため同様の挙動は見ら れない。 【柏崎6/7、東海第二】 ②島根2号炉は、原子炉 手動減圧前に、高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で、柏 崎6/7 及び東海第二は、 手動減圧前に、高圧 ECCS 系が作動していない**こ とから、原子炉圧力は低 下しない。 ※ 柏崎6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定 		①島根2号炉及び東海第
 「ケ水位設定点(L2)に到 達するため、原子炉圧力が制御 される。一方で、柏崎6/7 では MSIV 閉作動の原子 炉水位設定点(L1.5)に は原子炉減圧後に到達す るため同様の挙動は見ら れない。 【柏崎6/7、東海第二】 ②島根2号炉は、原子炉 手動減圧前に、高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で、柏 崎6/7及び東海第二は、 手動減圧前に、高圧 ECCS 系が作動していない**こ とから、原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定 		二は, MSIV 閉作動の原子
 達するため、原子炉圧力が上昇し、逃がし安全弁により原子炉圧力が制御される。一方で、柏崎6/7では MSIV 閉作動の原子炉水位設定点(L1.5)には原子炉減圧後に到達するため同様の挙動は見られない。 【柏崎6/7、東海第二】 ②島根2号炉は、原子炉手動減圧前に、高圧炉心スプレイ系が作動し蒸気凝縮によって原子炉圧力が低下する。一方で、柏崎6/7 及び東海第二は、手動減圧前に、高圧 ECCS系が作動していない*ことから、原子炉圧力は低下しない。 ※ 柏崎6/7:高圧炉心注水系作動の原子炉水位設定点(L1.5)に到達しない。 薬 		炉水位設定点(L2)に到
 が上昇し、逃がし安全弁 により原子炉圧力が制御 される。一方で、柏崎 6/7 では MSIV 閉作動の原子 炉水位設定点(L1.5)に は原子炉減圧後に到達す るため同様の挙動は見ら れない。 【柏崎 6/7、東海第二】 ②島根 2 号炉は、原子炉 手動減圧前に、高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で、柏 崎 6/7 及び東海第二は、 手動減圧前に、高圧 ECCS 系が作動していない*こ とから、原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定 		達するため, 原子炉圧力
 により原子炉圧力が制御される。一方で、柏崎6/7では MSIV 閉作動の原子炉水位設定点(L1.5)には原子炉減圧後に到達するため同様の挙動は見られない。 【柏崎6/7、東海第二】 ②島根2号炉は、原子炉手動減圧前に、高圧炉心スプレイ系が作動し蒸気凝縮によって原子炉圧力が低下する。一方で、柏崎6/7及び東海第二は、手動減圧前に、高圧 ECCS系が作動していない**ことから、原子炉圧力は低下しない。 ※ 柏崎6/7:高圧炉心注水系作動の原子炉水位設定点(L1.5)に到達しない。 薬海第二:原子炉冷却材の漏えいによる高圧炉心スプレイ系の機能喪失を仮定 		が上昇し,逃がし安全弁
 される。一方で、柏崎 6/7 では MSIV 閉作動の原子 炉水位設定点(L1.5)に は原子炉減圧後に到達す るため同様の挙動は見ら れない。 【柏崎 6/7、東海第二】 ②島根 2 号炉は、原子炉 手動減圧前に、高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で、柏 崎 6/7 及び東海第二は、 手動減圧前に、高圧 ECCS 系が作動していない**こ とから、原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定 		により原子炉圧力が制御
10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15 10 14 6/7, 東海第二 12 15 11 12 13 14 15 15 12 13 14 6 17 東海第二1 14 15 15 15 14 15 15 15 15 15 14 15 15 14 15 15 15 15 12 12 13 14 15 15 15 12 14 15 15 15 14 15 15 15 14 15 15 15 14 15 15		される。 一方で, 柏崎 6/7
10 11 12 13 14 15 「炉水位設定点(L1.5)に は原子炉減圧後に到達す 20推移 名ため同様の挙動は見ら れない。 【柏崎 6/7、東海第二】 ②島根2号炉は、原子炉 手動減圧前に、高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で、柏 6/7 及び東海第二は、 手動減圧前に、高圧 ECCS 系が作動していない**こ とから、原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 案作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		では MSIV 閉作動の原子
100推移 は原子炉減圧後に到達す るため同様の挙動は見られない。 【柏崎 6/7、東海第二】 ②島根 2 号炉は、原子炉 手動減圧前に、高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で、柏 崎 6/7 及び東海第二は、 手動減圧前に、高圧 ECCS 系が作動していない**こ とから、原子炉圧力は低 下しない。 ※ 柏崎 6/7 : 高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定	10 11 12 13 14 15	炉水位設定点(L1.5)に
200推移 るため同様の挙動は見られない。 【柏崎 6/7,東海第二】 ②島根 2 号炉は,原子炉 手動減圧前に,高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で,柏 崎 6/7 及び東海第二は, 手動減圧前に,高圧 ECCS 系が作動していない**こ とから,原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		は原子炉減圧後に到達す
れない。 【柏崎 6/7,東海第二】 ②島根 2 号炉は,原子炉 手動減圧前に,高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で,柏 崎 6/7 及び東海第二は, 手動減圧前に,高圧 ECCS 系が作動していない**こ とから,原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定	つの推移	るため同様の挙動は見ら
【柏崎 6/7,東海第二】 (2)島根 2 号炉は,原子炉 手動減圧前に,高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で,柏 崎 6/7 及び東海第二は, 手動減圧前に,高圧 ECCS 系が作動していない*こ とから,原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		れない。
【柏崎 6/7,東海第二】 ②島根 2 号炉は,原子炉 手動減圧前に,高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で,柏 崎 6/7 及び東海第二は, 手動減圧前に,高圧 ECCS 系が作動していない*こ とから,原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		
 ②島根2号炉は、原子炉 手動減圧前に、高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で、柏 崎6/7及び東海第二は、 手動減圧前に、高圧 ECCS 系が作動していない**こ とから、原子炉圧力は低 下しない。 ※ 柏崎6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定 		【柏崎 6/7,東海第二】
手動減圧前に、高圧炉心 スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で、柏 崎 6/7 及び東海第二は、 手動減圧前に、高圧 ECCS 系が作動していない*こ とから、原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		②島根2号炉は,原子炉
スプレイ系が作動し蒸気 凝縮によって原子炉圧力 が低下する。一方で,柏 崎 6/7 及び東海第二は, 手動減圧前に,高圧 ECCS 系が作動していない*こ とから,原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		手動減圧前に,高圧炉心
凝縮によって原子炉圧力 が低下する。一方で,柏 崎 6/7 及び東海第二は, 手動減圧前に,高圧 ECCS 系が作動していない**こ とから,原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		スプレイ系が作動し蒸気
が低下する。一方で,柏 崎 6/7 及び東海第二は, 手動減圧前に,高圧 ECCS 系が作動していない*こ とから,原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		凝縮によって原子炉圧力
崎 6/7 及び東海第二は, 手動減圧前に,高圧 ECCS 系が作動していない**こ とから,原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		が低下する。一方で、柏
手動減圧前に,高圧 ECCS 系が作動していない**こ とから,原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		崎 6/7 及び東海第二は,
 系が作動していない**ことから、原子炉圧力は低下しない。 ※ 柏崎 6/7:高圧炉心注水系作動の原子炉水位設定点(L1.5)に到達しない 東海第二:原子炉冷却材の漏えいによる高圧炉心スプレイ系の機能喪失を仮定 		手動減圧前に、高圧 ECCS
とから,原子炉圧力は低 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		系が作動していない*こ
 下しない。 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定 		とから、原子炉圧力は低
 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定 		下しない。
 ※ 柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定 		
柏崎 6/7:高圧炉心注水 系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		*
系作動の原子炉水位設 定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		柏崎 6/7:高圧炉心注水
定点(L1.5)に到達し ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		系作動の原子炉水位設
ない 東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		定点(L1.5)に到達し
東海第二:原子炉冷却材 の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		ない
の漏えいによる高圧炉 心スプレイ系の機能喪 失を仮定		東海第二:原子炉冷却材
心スプレイ系の機能喪 失を仮定		の漏えいによる高圧炉
失を仮定		心スプレイ系の機能喪
		失を仮定

予炉	備考
	・解析結果の相違
	【柏崎 6/7】
	①島根2号炉は, ISLOCA
	の発生により高圧炉心ス
	プレイ系が自動起動して
	いる。一方で,柏崎 6/7
	では高圧炉心注水系の自
	動起動の原子炉水位設定
燃料棒有効長底部	点(L1.5)には原子炉減
	圧後に到達する。
12 13 14 15	【東海第二】
ウド内水位)の推移	①島根2号炉は, ISLOCA
	の発生による高圧炉心ス
	プレイ系の機能喪失を想
	定しておらず,原子炉水
	位低(レベル 1H)で高圧
	炉心スプレイ系が自動起
	動する。

炉	備考
	・解析結果の相違 【柏崎 6/7,東海第二】
	の弁数(島根2号炉:6
	個, 柏崎 6/7:8個, 東
	海第二:7個)等の差異
	による蒸気流量の違い。
10 11 12 13 14 15	
)蒸気流量の推移	
高圧炉心スプレイ系の起動/ 停止に伴う水量の維持	【柏崎 6/7, 東海第二】 ②破断箇所隔離前の解析 上の原子炉水位制御 [*] の 違いによる保有水量及び 熱出力に依存した保有水
	量の差異。
10 11 12 13 14 15	※ 島根2号炉,東海第 二:L2以上
の保有水量の推移	柏崎 6/7:L1-L1.5

	借 老
	1 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
	・解析結果の相違
	【柏崎 6/7,東海第二】
)	
変化に応じて飽和温度が変化し	
温度もこれに追従する(燃料被覆 用値を上回らない)	
0 11 12 13 14 15	
目底の堆移	
高圧炉心スプレイ系の起動/	
停止に伴うボイド率の変化	
10 11 12 13 14 15	
10 11 12 13 14 13	
Dボイド率の推移	

「 」 「 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、

柞	白崎刈	」羽原子力	発電所	6/7号炉	(2017. 12. 20 版)	東海第	京二発電所	(2018.9.12版)				島根原	子力発電所	f 2号	异炉			備	考	
等対策について(2/2)	すうる事故対処設備 計業設備	サブレッション・チェンバ・ブーラ水温度 【残留熟除去系系総派量】	原子炉水位(sə) 原子炉水位	 原子炉水位 (SA) 原子炉水位 「悪圧炉心注水系系統流量】 サプレッション・チェンバ・ブール水位 【】: 重大事故等対処設備 (設計基準拡張) 	ついて (2/3)	 処設備 計装設備 子炉圧力(SA) 子炉圧力* 子炉水位(SA広帯域) 子炉水位(SA燃料域) 子炉水位(SA燃料域) 子炉水位(K報料域) 	子炉压力 (SA) 子炉压力*	子炉圧力(SA) 子炉圧力* 子炉水位(SA広帯域) 子炉水位(SA族料域) 子炉水位(広帯域)* 子炉水位(感料域)* 王代替社水系原子炉注水流量(痛	<u></u> アレッション・ブール水温度 翌熟除去系系統流量 [∗]	牧等対処設備に位置付けるもの		FI (美田王力 (S A) 原子炉圧力 (S A) 原子炉正力 (S A) 原子炉水位 (広都城) 原子炉水位 (燃料城) ドライウェル圧力 (S A) ドライウェル正力 (S A) [残留熟除去ポンプ出口圧力]	原子炉圧力 (SA) 原子炉圧力 原子炉水位 (SA) 原子炉水位 (広帯域)	原于为"水业(1884年9月) 原子炉圧力(SA) 原子炉圧力	原子炉水位(S A) 原子炉水位(広帯域) 原子炉水位(微料域) 【高圧炉心スプレイボング出口流量】	サプレッション・プール水温度(SA) 【残留熟除去ポンプ出口流量】	、 事故等対処設備(設計基準拡張) 有効性評価上考慮しない操作			
の重大事故	有効性評価上期行 可搬型設備	ा स्	I	1	故 等 対 策 (7	横 一 線 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	」 「」 」	一原原原原原原低数4	- - - - - - - - - - - - - - - - - - -	る設備を重大事	寺が承にく 重大事故等対処器	mil 2013 2016 1-1	I	1	I	Į				
システム LOCA)]	常設設備	【残留熱除去系(サブレッシン・チェンバ・ブール水冷 _技 レ・チェンバ・ブール水冷 _技 ード)】	【高庄炉心注入隔離弁】	【南田垣心往水系】	いたける重大事	調整に	低圧 好 心 スプレイ 系* 逃がし安全弁(自動 減圧機能)* サプレッション・チ	エンバ* 常設代替交流電源 設備 発設低圧代替注水 系ポンプ 格油貯蔵タンク 庭油貯蔵タンク	陵留熟除去系(サプ レッション・プール 冷却系) * サブレッション・チ	毛許可の対象となってい	A)」の単大事政 ********	[[] [] [] [] [] [] [] [] [] [] [] [] []	1	滅圧機能付き逃がし安	圧炉心スプレイ蒸】 レッション・チェンバ	留熟除去系(サプレッシ ・ブール水浴却モード)】				
納容器バイパス(インターフェイス)	御生	◎急速減圧によりサブレッション・チェンパ・ブール水温が 認えた時点で、残留熟練去系によるサブレッション・チェ ブール水治却モード運転を開始する。	研からの漏えい抑制を継続し、現場操作により高圧炉心注 持の全閉操作を実施し、高圧炉心注水系を隔離する。	sib注水系の隔離に成功した後は、確全側の高圧炉心注水系 1、原子炉水位を原子炉水位低(レベル 3)から原子炉水位高 や 8)の間で維持する。	格納容器バイパス (ISLOCA)	手 順 中央制御室からの遠隔操作により残留熱除去 系の隔離操作を実施するが、残留熱除去系 入弁の閉操作に失敗し、残留熱除去系の隔離 に失敗する。	残留熱除去系の隔離に失敗するため、低圧炉 1 心スプレイ系を起動した後、破断箇所からの 漏えい量を抑制するため原子炉を急速減圧す る。	外部水源にて注水可能な系統として低圧代替 注水茶、常設)を起動する。逃がし安全弁に よる原子炉急速減圧により、低圧代替注水素 (常設)の系統圧力を下回ると原子炉注水が 調協生され、原子炉水位が回復する。原子炉水 位回復後は、破断箇所からの漏えい抑制のた も、原子炉水位異常低下(レベル2)以上で 低めに維持する。	原子炉急速減圧によりサブレッション・プー ル水温度が 32℃に到達した時点で、残留熱除 去系(サブレッション・ブール冷却系)の運 転を開始する。	*	1 格納谷岙ハイハス(I S L U C [≠] [#] [●]	■水位及び原子炉圧力の低下によりLOCA事象を 、格納容器進度、格納容器圧力の上昇がないことか 一炉圧力容器外での漏えい事象であることを確認し、 素除去ポンプ出口圧力指示の上昇(破断面積が大きく い量が多い場合は,運転員の対応なしに低下傾向を示 きもある)により低圧設計部分が過圧されたことを確 インターフェイスシステムLOCAが発生したこと おする。	4御室からの遠隔操作により残留熟除去系の隔離操 甚前するが,残留熟除去系注水弁の閉薬作に失敗し, 気除去系の隔離に失敗する。	紫除去系の隔離に失敗するため、破断箇所からの潮え 自動 た抑制するため原子炉を急速減圧する。 金弁	■水位回復後は、破断箇所からの漏えい抑制のため、 ■水位低(レベル2)以上で低めに維持する。 サプ	「急速減圧によりサプレッション・プール水温度が と超えた時点で、種全側の残留熟除去系によるサプレ コン・プール水浴却モード運転を開始する。				
第2.7.1表 「格	判断及び操作	業除去系(サブレッション・チェ 第5℃を ・ブール水治却モード)運転 ンパ・	機作での高圧炉心注水系隔離操作 入隔離	唐山 市で により (「くく)	第2.7-1 表	操作及び確認 中央制御室での残留熟除 去系隔離失敗	逃がし安全弁による原子 炉急速減圧	低圧代替注水系(常設) による原子炉注水	残留熟除去系 (サプレッション・ブール冷却系) 道転 道転		<u>現 2. (. 1-1 赤</u> ^{判断及び操作}	 「二、 「二、<td>中央制御室での残留熟 作を実 除去系隔離失敗 残留熱</td><td>逃がし安全弁による原 残留業 子炉急速減圧 い量を</td><td>高圧炉心スプレイ系に 『高子が よる原子炉注水 原子炉</td><td> 残留熟除去系(サプレッ 原子ケション・ノール水浴均干 35℃を ード)運転 ッショ </td><td></td><td></td><td></td><td></td>	中央制御室での残留熟 作を実 除去系隔離失敗 残留熱	逃がし安全弁による原 残留業 子炉急速減圧 い量を	高圧炉心スプレイ系に 『高子が よる原子炉注水 原子炉	 残留熟除去系(サプレッ 原子ケション・ノール水浴均干 35℃を ード)運転 ッショ 				
		家 ア ベ	現場	19																

柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	第2.7-1表格納容器バイパス(ISLOCA)における重大事故等対策について(3/3) 操作及び確認 手 順 <u>重大事故等対処設備</u>	株FEACOMEND 中 R 密設備 計業設備 計業設備 現場線作での残留熟除法 確認定の確認 第二中水位 (S ALTFAU) 系隔離線作 第二中水位 (S ALTFAU) 系隔離線作 第三中水位 (S ALTFAU) 系局部 第三中水位 (S ALTFAU) 第三中水位 (S ALTFAU) 第三中水位 第三中水位 (S ALTFAU) 第三中水位 第三中水位 (S ALTFAU) 第三中水位 「他 第三中水位 (S ALTFAU) 「市 第三中水位 (S ALTFAU) 「市 第三中小水位 (S ALTFAU) 「他 「日 (S ALTFAU) 「市 「日 (S ALTFAU) 「市 「日 (S ALTFAU) 「日 (S ALTFAU) 「市 「日 (L < < > 1) (L < >)) 「日 (L < < > 1) (L < >)) (S ALTFAU) 「日 「日 (L < > >)) (L < > >) (S ALTFAU) 「日 「日 (L < < > >)) (S ALT > >) (S ALT > >)	第2.7.1-1 表 「私給容器ハイバス(1SLOCA)」の重大事故等対策について(3/3) 通知及び線市 手順 東大寺林舎工業設備 連防及び線市 手順 東大寺林舎工業設備 建設備 東大寺林舎工業設備 東大寺林舎工業設備 建設備市からの職人が中間 市 東大寺林舎工業設備 建築市中口 市 東大寺林舎工業設備 建築市中口 市 東大寺林舎工業設備 建築市中口 市 東大寺林舎工に加速 建築市中口 市 市 市 市 市<	

柏峰	奇刈	羽原	〔子力	発電展	斤 (3 /	7号	炉	((2017	7.12	2.20版)				東海	毎第二	発電	弎所	(2	2018.	. 9. 12	2版)							É	島根原	原子之	力発育	電所	2 号炉				備考
ーフェイスシステム LOCA))(1/4)		定格原子炉熱出力として設定	定格原子炉圧力として設定	下 通常運転時の原子炉水位として設定	定格流量として設定	熱平衡計算による値	熱平衡計算による値		① 設計限界値として設定	・サイクル末期の燃焼度のばらつきを考慮し、10%の	《保守性を考慮して設定	復水移送ボンプ吐出温度を参考に設定	(ISLOCA)) (1/5)	文年記むとせい十	жнахемалл		(田刀として)政府 セット ア製炉		原子炉水位として設定	て設定	よる値	よる値	1	熱的制限値として設定	運転期間(13 ヶ月)に調整運転期間(約1 ヶ月)を考慮した運 する燃焼度として設定	(ISLOCA)) (1∕4)	条件設定の考え方	1	子炉熱出力として設定	子炉圧力として設定	転時の原子炉水位として設定	心流量として設定	計算による値	計算による値 ぬ町 (- 町) - ついつぬむ (- 町) いい数ようからい口が	燃料(A型), 9×9燃料(B型)は熟水力的な特性は同等 、その相違は燃料棒最大線出力密度の保守性に包絡される また、9×9燃料の方がMOX燃料よりも崩壊熱が大きく、 覆管温度上昇の観点で厳しいため、MOX燃料の評価は9 料(A型)の評価に包絡されることを考慮し、代表的に9 料(A型)を設定	転時の熟的制限値を設定(高出力燃料集合体)	ル末期の燃焼度のばらつきを考慮し、10%の保守性を考慮	ッション・チェンパからの泣水における作素温度を設定	・解析条件の相違 【柏崎 6/7】 ①条件設定は同じだが, 通常運転時の熱的制限値 を設定していることを明 確に記載。 【東海第二】 ②条件設定は同じだが, 設定プロセスが異なり, 平衡炉心サイクル末期の 炉心平均燃焼度に対し て,ばらつきとして10% の保守性を考慮し設定。
ペインタ・	-			-タスカート								以降は 45°C, 40°C)	スペイシス			地 西 七	正 倫 県 士 児 熱 会 始 盾 己 栢 丘	佐佑派 J が 上	通常運転時の	定格流量とし	熱平衡計算に	熱平衡計算に		通常運転時の	1 サイクルの) 転期間に対応	器メイパス			定格原	定格原	通常運	定格炉	熱平衡	熱平衡	0 - 0 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	1 通常運	2 +17	ン プ キ	
要解析条件(格納容器バイパ +===	SAFER	3,926MWt	7.07MPa[gage]	通常運転水位(セパレー 端から+119cm)	52, 2001/h	約 278°C	約 10℃	9×9 燃料 (A型)	44. 0kW/m	ANSI/ANS-5. 1-1979	燃焼度 33GWd/t	50℃(事象開始12時間) 事象開始24時間以降は	2 表 主要解析条件(格納容器	→ 亜 <i>甸</i> 元 久 小	土汝烨如 米 叶	AFER	A MMS 29500 Correct Correct	abun a [gage]	<u> カート下諸から+126 cm</u>)	3, 300t ⁄h	1 278°C	1 9°C	×9 燃料(A型)	l. 0kW∕m 1 1	VSI/ANS-5.1-1979 2 1 法度 336Wd/t 2 単	表 主要解析条件(格納容器	主要解析条件	SAFER	2, 436MW	6.93MPa[gage]	通常水位 (気水分離器下端から+83 cm)	$35.6 \times 10^3 t/h$	※ 5 278℃	約 9 ℃	9 × 9 燃料(A型)	44. OkW/m	ANSI/ANS-5.1-1979 (級焼度 33GWd/t)	49°C	
第2.7.2表 主 面目	解析コード	原子炉熱出力	原子炉圧力	原子炉水位	炉心流量	炉心入口温度	炉心入口サブクール度	燃料	最大線出力密度	原子炉停止後の崩壊熱	24 1 W 17 TH C 2 W 20	外部水源の温度	第 2.7-2	ц ц	П ²	離村コード 国人品都田七 。	レートン 8, 10 10 10 10 10 10 10 10 10 10 10 10 10	(圧力容器ドーム部) 0. T-1 - T. 通	原子炉水位 ス ス	炉心流量 48	炉心入口温度 約	炉心入口サブクール度 約	燃料 9	最大線出力密度 44.	NN 原子炉停止後の崩壊熱 機	第 2. 7. 2-1	通目	解析コード	原子炉熱出力	原子炉圧力	原子炉水位	垣心流量	炉心入口温度	初 炉心入口サブクール度 期	·杀午 紫	然料棒最大線出力密度	原子炉停止後の崩壊熱	本源温度	
					_	Ц¥	2期冬	¥件												倏	朝 条 は	<u>+</u>																	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版))	備考																																				
--	--	---	---------------------------																																				
			・解析条件の相違 【柏崎 6/7,東海第二】																																				
-フェイスシステム LOCA)) (2/4) 条件設定の考え方 圧力応答評価に基づき評価された漏えい面積に十分 に余裕をとった値として設定 インターフェイスシステム LOCA が発生した側の高圧 炉心注水系が機能喪失するものとして設定 外部電源の有無を比較し,外部電源なしの場合は給 後水系による給水がなく,原子炉水位の低下が早く なることから,外部電源なしを設定	 (1 SLOCA)) (2/5) 条件設定の考え方 条件設定の考え方 条件設定の考え方 (添付資料 2.7.2) (次付資料 2.7.2) (添付資料 2.7.2) (添付資料 2.7.2) (添付資料 2.7.2) (添付資料 2.7.2) (添付約 2.7.2) (二、(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 	ISLOCA) $(2/4)$ ISLOCA) $(2/4)$ 来件設定の考え方 来件設定の考え方 和に弁の開開試験を実施する実動力を踏まえた影響評価 に始まえて設定 ビロチュスで動力を踏まえた影響評価 に対えれるものとして設定 就の有無を比較し、外部調測なしの場合は給水、復水系 気かがなく、原子炉水のの低下が早くなることから、外 見たったを開い、現子炉水クラムは、 部に行ったの合約の観点で厳しくなり、外 見たって発生し、再循環ポソプトリ は、原子炉水のとううま件をして、原子炉水クラムは、 いたかい3) 信号にて発生するものとす なんたん(レベル2) 信号にて発生するものとす に発生するものとす このに下を保守的に評価するスクラム条件を設定 「前露時冷却系の設計値として設定 「																																					
条件(格納容器バイパス(インター 主要解析条件 直圧炉心注水系の吸込配管の破断 破断面積は 10cm ² インターフェイスシステム LOCA が発 生した側の高圧炉心注水系の機能喪失 外部電源なし	 三要解析条件(格納容器バイパス) 主要解析条件 主要解析条件 古系B系の熱交換器フ 市乃応答評価に は約21cm² 古系B系の機能喪失 1 SLOCAが 大プレイ系及び 大プレイ系及び 大プレイ系及び たたり高温後 たたの機能喪失 1 SLOCAが 市行やスカ たたのにより高温後 たたかることが 中へなることが 	 王要解析条件(格納芬器/シイノ%ス) 王 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一																																					
第2.7.2表 主要解析 項目 項目 「 第 第 5	「 「 「 「 「 「 「 「 「 「 」 「 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 一 」 一 」 一 一 一 一 一 一 一 一 一 一 一 一 一	中枢条件 一個大事校等な紙/100000 周期 市																																					
事故条件 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	事文先生 周 次 月 役 四 介 四 介 四 介 点 約 点 約																																						
	↓																																						

ł	泊崎	奇刈之	羽原子力発電所	6/7号炉	(2017.12.20版)				東海第二発電所 (2018	3. 9. 12 版)	島根原子力発電所 2号
(3/4)			行大		子炉压		<i>хћ</i>	談定	「設定 「子炉隔離時冷却系ポンプ よる注水特性	r設定 注石心スプレイ系ポンプ よる注水特性	
ターフェイスシステム LOCA))	条件設定の考え方	安全保護系等の遅れ時間を考慮して設定	原子好隔離時待却系の設計値として設定 10.1000	諸圧炉心注水茶の設計値として設定 高圧炉心注水系 ポンプ1台 パンプ1台 による注水特性	述がし安全弁の設計値に基づく蒸気流量及び原 力の関係から設定	ス(I S L O C A)) (3/5)		安全保護系等の遅れ時間を考慮して		低圧炉心スプレイ糸の設計値として ************************************	
件 (格納容器バイパス(イン)	主要解析条件	炉心流量急减 (遅れ時間:2.05秒)	原子枦水位低(レベル 2)にて自動起動 182m ³ /h(8.12~1.03MPa[dif]において) にて注水	原子炉水位低(レベル 1.5)にて自動起動 727㎡/h(0.69MPa[dif]において)にて注 水	自動減圧機能付き逃がし安全弁の8個を 開 <i>出すス・とによろ低子炉金油減圧</i> (原子炉圧力と逃がし安全弁1個あたりの) 蒸気流量の関係> (1000000円の) (100000円の) (1000000円の) (100000円の) (1000000円の) (1000000000000000000000000000000000000	度解析条件(格納容器バイパン	主要解析条件	(レベル3) 1.05秒)	諸低下(レベル2)にイ自動起動 1.86MPa [gage] ペ1.04MPa [gage] は 注水	.84MPa[dif]において) (最大 1, 561	
2.7.2表 主要解析条	項目	原子炉スクラム信号	東子炉隔離時冷却系	高圧炉心注水系	あがし安全弁	第2.7-2 表 主		信号 (遅れ時間:	胡系 原子垣水位異 おいて)にて おいて)にて	イ 米 ゴ イ (1,419 ^{m 3} / h ((ゴ / h) につ	
第 [<u> </u>	重大=	●故等対策に関連する3	機器条件		通	原子炉スクラム1	重大事故等対策に関連 「 「 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「	速する機器条件低田 低日 シンプ	

号炉	備考
	・解析条件の相違
	【柏崎 6/7,東海第二】

柏	崎刈羽原子力発電所	6/7号炉 (20)17.12.20版)			東海第二発電所	所 (2018. 9. 12 版)			島根原	子力発電所	2 号炉		備考
・エイスシステム LOCA)) (4/4) タル設定の老ヶ方	インターフェイスシステムTockの発生を確認した後、中央制御室において隔離操作を行うが、その隔離操作失敗の判断時間及び逃がし安全弁の操作時間を考慮して事象発生 15 分後を設定	破断面積 10cm ^e のインターフェイスシステム LOCA 発生時における原子炉建屋原子炉区域の現 場環境条件を考慮し,運転員の現場移動時間及 び操作時間等を踏まえて設定		S L O C A)) (4⁄5)	条件設定の考え方 値に注入配管の流路圧損を考慮した値として設定	常設低圧代替注水系 ポンプ2台による注水特性	************************************	SLOCA)) (3/4)	条件設定の考え方 並スプレイ系の設計値として設定		安全弁の逃がし弁機能の設計値として設定		安全弁の設計値に基づく蒸気流量及び原子炉圧力の関 設定	 ・解析条件の相違 【東海第二】 ③ 島根2号炉及び柏崎 6/7は,逃がし安全弁1 弁当たりの蒸気流量をグ ラフに記載。
条件(格納容器バイパス(インターフ 	事象発生 15 分後	事象発生 4時間後		要解析条件(格納容器バイパス(1	主要解析条件 設計	1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	安全弁(自動減圧機能)の7個を開するこ 50原子伊急速減圧 炉圧力と逃がし安全弁7個の蒸気流星の 186が 1866	要解析条件(格納容器バイパス(I	主要解析条件	水位低(レベル1H)にて自動起動 ,050 ㎡/h(8.14~1.38MPa[dif]におい て注水	弁機能 a[gage]×2個,367t/h/個 a[gage]×3個,370t/h/個 逃がし [gage]×3個,373t/h/個 a[gage]×4個,377t/h/個	圧機能付き逃がし安全弁の6個を開す による原子炉急速減圧 Eカと逃がし安全非蒸気流量の関係>	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
第2.7.2表 主要解析多 项目	述がし安全弁による原子炉減圧操作	高圧炉心注水系の破断箇所隔離操作		第2.7-2表主	項 目	低压代替注水系(常設) 最大 37 等效	公等対策に関連する機器条件 がし、 が送して、 で、 「、」、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	第2.7.2-1 表 主	通日	原子炉 高圧炉心スプレイ系 318~1 て)に 大	世世 地 一 1.58MP 7.58MP 7.55MP 7.75MP 2.72MP 2.770MP	ゆる 酸酸 繊繊 激がし安全弁 の の の の の の の の の の の の の	《 年	
	重大事故等対策	に関連する操作条件												

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
		 ・解析条件の相違 【東海第二】
	 ス(15LOCA)) (5/5) 条件設定の考え方 15LOCAの発生を確認した後、中央創創室において隔離 操作を行うぶ、その隔離操作失敗の判断時間並びに低圧労心 スプレイ系及び逃びし安全弁の操作時間を考慮して半象発 生15分後を設定 生15分後を設定 生15分後を設定 株15分後を設定 (15LOCA) 15LOCA発生時における原子不確 展示手序構内の場場作業現後条件を考慮し、現場移動時間、 操作時間等を踏まえて余裕時間を確認する観点で設定 ス(15LOCA)) (4/4) ス(15LOCA)) (4/4) 15LOCA発生を確認した後、中央制創室において隔離操 推手用で考慮して事象発生30分後を設定。 15LOCA発生を確認した後、中央制創室において隔離操 作手行うが、その隔離操作失敗の判断時間及び逃ぶし安全弁の 操作時間を考慮し、運転員の現場移動時間及び逃がし安全弁の 酸断面積合計 17cm⁶ 015LOCA発生を応じ、運転員の現場移動時間及 原作時間等を踏まえて設定。 	
	2 表 主要解析条件(格納容器バイパ、 主要解析条件(格納容器バイパ、 事象発生15 分後 事象発生5時間後 事象発生5時間後に隔離完了	
	第 2.7.2 第 2.7.2 第 周 市の場合な学校 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市	
	重大事故等対策に関連する操作条件	

まとめ資料比較表 〔有効性評価 添付資料 2.7.1〕

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		添付資料2.7.1	添付資料 2.7.1	
		インターフェイスシステムLOCA発生時の対応操作について	インターフェイスシステムLOCA発生時の対応操作について	
		残留熱除去系 <u>B系</u> にてインターフェイスシステムLOCA(以	<u>A</u> 一残留熱除去系にてインターフェイスシステムLOCA(以	
		下「ISLOCA」という。)が発生した場合の対応操作について,	下「ISLOCA」という。)が発生した場合の対応操作につい	
		以下に示す。	て、以下に示す。	
		ISLOCAの発生を確認した場合には、中央制御室からの遠	ISLOCAの発生を確認した場合には、中央制御室からの遠	
		隔操作により残留熱除去系 <u>B系注入弁</u> の閉止操作を実施すること	隔操作により <u>A</u> -残留熱除去系注水弁の閉止操作を実施すること	
		で低圧設計部への加圧を停止する。これに失敗した場合には、中	で低圧設計部への加圧を停止する。これに失敗した場合には、中	
		央制御室からの遠隔操作により原子炉を減圧することで漏えい量	央制御室からの遠隔操作により原子炉を減圧することで漏えい量	
		を抑制するとともに、可能な限り系統の隔離状態を確保するため、	を抑制するとともに、可能な限り系統の隔離状態を確保するため	
		中央制御室からの遠隔操作が可能な注入弁以外の電動弁の閉止操	, 中央制御室からの遠隔操作が可能な <u>注水弁</u> 以外の電動弁の閉止	
		作を実施するとともに,現場操作により残留熱除去系 <u>B系注入弁</u>	操作を実施するとともに、現場操作によりA一残留熱除去系注水	
		を閉止する。	弁を閉止する。	
		また、不要な系統加圧を防止する観点で、残留熱除去系ポンプ	また,不要な系統加圧を防止する観点で, <u>A</u> 一残留熱除去ポン	
		(B)のコントロールスイッチを停止位置に固定するとともに,	プのコントロールスイッチを停止位置に固定するとともに, A-	
		残留熱除去系レグシールポンプを停止する。	残留熱除去系封水ボンブを停止する。	

まとめ資料比較表 〔有効性評価 添付資料 2.7.2〕

東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料2.7.2	添付資料 2.7.2	
インターフェイスシステムLOCA発生時の 破断面積及び現場環境等について	インターフェイスシステムLOCA発生時の 破断面積及び現場環境等について	・資料構成の相違 【柏崎 6/7,東海第二】
1. 評価対象系統について 事故シーケンスグループ「格納容器バイパス(インターフェイ スシステムLOCA)」(以下「ISLOCA」という。)では、 原子炉冷却材圧力バウンダリと接続し <u>格納容器外</u> に敷設された 配管を有する系統において、高圧設計部分と低圧設計部分 <u>を分離</u> <u>する</u> 隔離弁の誤開放等により低圧設計部分が過圧され、格納容器 外での原子炉冷却材の漏えいが発生することを想定する。原子炉 冷却材圧力バウンダリに接続し <u>格納容器外</u> に敷設された配管を 第1図に示す。	1. 評価対象系統について 事故シーケンスグループ「格納容器バイパス(インターフェイ スシステムLOCA)」(以下「ISLOCA」という。)では ,原子炉冷却材圧力バウンダリと接続し原子炉格納容器外に敷設 された配管を有する系統において,高圧設計部分と低圧設計部分 のインターフェイスとなる配管のうち,隔離弁の誤開放等により 低圧設計部分が過圧され,格納容器外での原子炉冷却材の漏えい が発生することを想定する。原子炉冷却材圧力バウンダリに接続 し原子炉格納容器外に敷設された配管を図1に示す。	
 ISLOCAの評価対象となる系統は、第1表に示すとおり以下の条件を基に選定している。 ①出力運転中に高圧設計部と低圧設計部とを分離する隔離弁が閉止されており、隔離弁の誤開放等により低圧設計部が過圧されることでISLOCA発生の可能性がある系統。 ②出力運転中に高圧設計部と低圧設計部とを分離する隔離弁の開閉試験を実施する系統。 ③出力運転中に高圧設計部と低圧設計部とを分離する隔離弁が2個以下であり、開閉試験時に隔離弁1個にて隔離機能を維持する系統。 	原子炉冷却材圧力バウンダリと接続し、原子炉格納容器外に系 統配管があるラインは下記の通りである。 ・高圧炉心スプレイ系注入ライン ・残留熱除去系(低圧注水モード)注入ライン ・残留熱除去系炉頂部ライン ・残留熱除去系炉頂部ライン ・残留熱除去系炉頂部ライン ・残留熱除去系炉頂部ライン ・残留熱除去系炉頂部ライン ・残留熱除去系炉頂部ライン ・残留熱除去系停止時冷却モード戻りライン ・残留熱除去系停止時冷却モード抜出ライン ・成日炉心スプレイ系注入ライン ・原子炉隔離時冷却系蒸気ライン ・「原子炉浄化系系統入ロライン ・「原子炉浄化系系統入ロライン ・「原子炉浄化系系統入ロライン ・「息御棒駆動系挿入ライン ・「前御棒駆動系引抜ライン ・ 詰約本原注入ライン ・ 前御棒駆動系引抜ライン ・ 主蒸気系ライン ・ 主蒸気系ライン ・ 注放気を見てい ・ 三力容器計装系ライン ・ 「」 「」 S L O C A の対象としない。影響の観点から、配管の口径	 ・評価条件の相違 【東海第二】 島根2号炉は,ISLOC A の評価対象となる系 統について,発生頻度 の観点も踏まえて選定 している。
	 東海第二発電所 (2018.9.12版) 添付資料2.7.2 インターフェイスシステムLOCA発生時の 成断面積及び現場環境等について 1. 評価対象系統について 事故シーケンスグループ「格納容器バイバス(インターフェイ スシステムLOCA)」(以下「ISLOCA」という。)では、 原子炉冷却材圧力バウンダリと接続し<u>格納容器外</u>に敷設された 配管を有する系統において、高圧設計部分が過圧され、格納容器 外での原子炉冷却材の漏えいが発生することを想定する。原子炉 冷却材圧力バウンダリに接続し<u>格納容器外</u>に敷設された配管を 第1図に示す。 ISLOCAの評価対象となる系統は、第1表に示すとおり以 下の条件を基に還定している。 ①出力運転中に高圧設計部と低圧設計部とを分離する隔離 弁の開閉試験を実施する系統 ②出力運転中に高圧設計部と低圧設計部とを分離する隔離 弁が30円試験を実施する系統 ③出力運転中に高圧設計部と低圧設計部とを分離する隔離 弁が2個以下であり、開閉試験時に隔離弁1個にて隔離機 進を維持する系統 	東海棠三条電計 (2018.9.12 版) 品根原子力発電計 2 号が 旅付資料2.7.2 添付資料2.7.2 添付資料2.7.2 インターフェイスシステムLOCA発生時の 政防面積反び現場環境等について スレターフェイスシステムLOCA発生時の 政防面積反び現場環境等について スレターフェイスシステムLOCA発生時の 取り面積反び現場環境等について 事故か、ウンスグル・ブ 「略納容器パイパス(インターフェイ スシステムLOCA)」(以下「ISLOCA」という、)では 、原子炉冷却材圧力パウングリと検索し原子原合却材圧力パウングリと検索し原子原合却材圧力パウングリと検索し原子原合却材圧力パウングリと検索し原子原合却材圧力パウングリと検索し原子原合却材圧力パウングリに検検 の加圧力が有少が増加薄えいが発生することを引起する。原子炉 か加材圧力パウングリに検検し参加空設構造になる、原子が が加水圧力パウングリに検検し参加空設構造になる。原子が の加圧力パウングリに検検し参加空設構成になるまた記号な 1. 評価対象系統について 事成シークンスグル・ブ 「略納容器パイパス(インタ・フェイ スシステムLOCA)」(以下「ISLOCA」という、)で、 のデザの市設計の満足いが発生することを引起する。原子炉 が加水圧力パウングリンと検索し原子炉為納が開始にたり が知水圧力パウングリンと検索し原子炉為純の強ない、 が発生することを引起する。原子炉 加速定動加空加た力の、空切りと検索し、原子炉為納容量がか、 が多点することではまたする「読む」 第二日の東京社会社会社会社会社会会会報する原確 かかうり、開催したたるため、 こまEFC-ルズを注入レイン ・ 実営熱除主気法したノイン 15LOCAの発生のか能力があるを 超 (加力薄集中に高圧設計部と会会報する原確 かかえうクルマイ 、たいウングリンと検索した原子中込納容量が上本 を空間使する感謝 原子炉の油材が加速した 、 原子炉の加材性力パウングリンと検索した。 原子炉の加材圧力パウングリンと検索した。 原子炉の加材性力パウングリンと検索した。 原子炉の加材性力パウングリンと検索した。 原子炉の加材性力パウングリンと検索した。 原子炉の加材モナパクシングリン ・ 度留熱なたるシイン(二素)、 の通知な動気が加速した。 、 原子炉の加材生力パクシングリン ・ たい方いて補助理解型したの、 記述のたれてるたい の加速したの、記述の加速したの、 記述のたれてるたい の加速したの、 記述のたれたの の加速したの、 ことの ・ たいたい のコンレクシンクレン 、 ことの の加速したの の加速

エレーにして、たりの時代の時代です。この時代のです。この時代のです。この時代のです。この時代の時代です。 のにのする、の時代の時代です。 では、こので、たり、たいで、この時代の時代です。 こので、このまた、いたいで、このまた、いたいで、この時代の時代です。 こので、このまた、いたいで、このまれ、いたいで、このまた、いたいで、このまれ、いたいで、このまれ、いたいで、このまた、いたいで、このまれ、いたいで、このまれ、いたいで、いたいで、このまれ、いたいで、このまれ、いたいで、このまれ、いたいで、いたいで、このまれ、いたいで、いたいで、このまれ、いたいで、いたいで、いたいで、いたいで、いたいで、いたいで、いたいで、いたい	柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20版) 東海領	第二発電所	(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
エレンドレーン・つきないのでした。ことのないのでした。ここのないのでした。ここのないのでした。ことのないのでした。ここのないのでした。このないのでした。ここのないのでした。ここのないのでした。このないのでした。このないのでいた。このないのでした。このないのでした。このないので、このないのでした。このないのでいで、このないのでした。このないのでした。このないのでした。このないのでした。このないのでいいのでした。このないのでいいので、このないのでいいので、このないのでいた。このないのでいいいのでいいのでいいい。このないのでいいいのでいいいのでいいいので、このないのでいいいいのでいいいのでいいいいのでいいいいので、このないのでいいいいのでいいいいのでいいいいのでいいいいいのでいいいのでいいいいいのでいいいいいい					<u>さらに,ISLOCA発生頻度の観点から,高圧炉心スプレ</u>	
 					<u>イ系注入ライン,残留熱除去系炉頂部ライン,原子炉隔離時冷却</u>	
1-12-12、主義の名が2-2023年の名称のなるとしない、 2021日の第20日本のでは「日本ののでは「日本ののでは」」の「日本のでは」の「日本のでは」」の「日本のでは」」の「日本のでは」」の「日本のでは」」の「日本のでは」」の「日本のでは」」の「日本のでは」」の「日本のでは」」の「日本のでは」」の「日本のでは」。」の「日本のでは」。」の「日本のでは」」の「日本のででは」」。」の「日本のでは」」の「日本のでは」」の「日本のでは」」の「日本のでは」」の「日本のでは」」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」の「日本のでは」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本のでは」の「日本のでは」。」の「日本の「					系蒸気ライン,ほう酸水注入系注入ライン,原子炉浄化系系統入	
Defense of the second secon					<u>ロライン,主蒸気系ライン及び給水系注入ラインは低圧設計部が</u>	
単位取の分かについて、PRAFEWERE 単位取の分かについて、PRAFEWERE ごとしてしるを進む(国家)のまた・レン、 とこうべたしる表面(国家)のまた・レン、 とこうでは、日本の目的には、「おしつなの定ち、」のこのなうべい、日本の になって、いたののでなり、していたのそれ、 「ない」の、「ない」が、「いたのでなり、 日本のない」が、「いたのです」、このであり、「いたのです」のでいたのです。 「ない」でいたの、「おお」のなり、「いたのです」のでいたのです。 「ない」でいたの、「おお」のなり、「おお」のなり、「おお」のです。 「ない」でいたの、「おお」のなり、「おん」のでは、 「おん」の「ない」」、「おん」のなり、「おん」のでいたのです。 「ない」でいたの、「おん」のなり、「おん」のでいたのです。 「ない」でいたの、「おん」のなり、「おん」のなり、「おん」のでいたのです。 「ない」でいたの、「ない」が、「おん」のなり、「おん」の「ない」、 「ない」の「おん」の「ない」」、 「ない」のでいた」では、「おん」のなり、「おん」の、 「おん」のない」の、 「ない」のでいたのです。 「ない」のでいたいです。」 「ない」のでいたいです。 「ない」のでいていたいです。 「ない」のでいたいです。 「ない」のでいたいです。 「ない」のでいたいです。 「ない」のでいたいです。 「ない」のでいたいです。 「ない」のでいていたいです。 「ない」のでいです。 「ない」のでいたいです。 「ない」のでいたいです。 「ない」のでいたいです。 「ない」のでいたいです。 「ない」のでいでいです。 「ない」のでいたいです。 「ない」のでいでいです。					<u>3 弁以上の弁で隔離等されていることから評価の対象としない。</u>	
小花水の支援に取りまますないごないのはないで、マーマ 小花水の支援に取りまますないごないのはないで、マーマ シンドニンを支援に対しておいたので、「ためにないていたい」」、「しいいいのの空き」」、「おいいの」の空き キン・イン・気気が出するいたので、「ためにないていたい」」、「ためいたので、「ためにないたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたい」」、「ためいたいたい」」」、「ためいたい」」」、「たいたいたい」」」、「たいたいたい」」、「たいたいたい」」、「たいたいたい」」」、「たいたいたい」」」」、「たいたいたい」」」、「たいたいたいたい」」」、「たいたいたい」」」、「たいたいたい」」、「たいたいたいたい」」、「たいたいたいたい」」、「たいたいたい」」」、「たいたいたい」」」、「たいたいたい」」」、「たいたいたい」」」、「たいたいたい」」」、「たいたいたい」」、「たいたいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたいたい」」、「たいたいたいたい」」、「たいたいたいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたい」」、「たいたいたい」」、「たいたいたい」」、「たいたいたいたいたい」」、「たいたいたい」」、「たいたいたいたい」」、「たいたいたいたいたい」」、「たいたいたいたい」」、「たいたいたいたいたいたい」、「たいたいたい」」、「たいたいたいたいたいたいたいたいたいたいたい」」、「たいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたい					<u>発生頻度の分析について、PRAにおいては、主に原子炉圧</u>	
・シーンシーンシスシューンシーンジーの「日本のからした」」 ・シーンシーンジーの「日本のからした」」 ・シーンシーンジーの「日本のからした」 ・シーンジーの「日本のからした」 ・コンジーの「日本のからした」 ・コンジーの「日本のからした」の「日本のからした」の「日本のからし」 ・コンジーの「日本のからし」」の「日本のからし」の「日本のからし」」の「日本のからし」 ・コンジーの「日本のからし」 ・コンジーの「日本のからし」 ・コンジーの「日本のからし」 ・コンジーの「日本のからし」の「日本のからし」の「日本のからし」の「日本のからし」の「日本のからし」 ・コンジーの「日本のからし」の「日本のからし」の「日本のからし」の「日本のからし」の「日本のからし」の「日本のからし」の「日本のからし」」 ・コンジーの「日本のからし」の「日本のからし」の「日本のからし」」の「日本のからし」」 ・コンジーの「日本のからし」の					力容器から低圧設計配管までの弁数及び定期試験時のヒューマ	
					ンエラーによる発生可能性の有無を考慮し, ISLOCAの発生	
ごしていて、たちの声音の目ましていた。「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」					確率が高いと考えられる配管(残留熱除去系(低圧注水モード)	
					注入ライン,残留熱除去系停止時冷却モード戻りライン,残留熱	
					除去系停止時冷却モード抜出ライン、低圧炉心スプレイ系注入ラ	
$\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_$					イン)について,各々の箇所でのISLOCA発生確率を算出し	
 送生について、知道「金融につから気」の全様のないでは、ないたいした多かの完美した。 を描えていて、知道「金融につから気」の全様のないでは、ないたいした多かの完美した。 ない、このでした多かのであるのであるのであるのであるのであるのです。 ない、このでした多かのであるのであるのであるのです。 ない、このでした多か、このないでない、な気気が使きたいた。 ない、このでした多か、いては人のくない、な気気が使きたいた。 ない、このでした事で、このないでない、な気気が使きたいては、していてした多か。 ない、このでした事で、このない、な気気が使きたいては、レアンプロシントにより、コントンロシントンにおいては、レアンプロシントンロシントンロシントンロシントンロシントンロシントンロシントンロシン					ている。(事故シーケンスグループ及び重要事故シーケンス等の	
					選定について 別添 島根原子力発電所2号炉 確率論的リス	
					<u>ク評価(PRA)について)</u>	
広					<u>表1の整理の通り、PRA上は低圧設計配管までの弁数が少</u>	
					なく, 定期試験時のヒューマンエラーによる発生が考えられる残	
					<u>留熱除去系(低圧注水モード)注入ラインでのISLOCA発生</u>	
					<u>確率が最も高い。各配管におけるISLOCAの発生頻度は、定</u>	
以上により、1 S L O C A の評価対象としては、以下が選定さ としたより、1 S L O C A の評価対象としては、以下が選定さ たた。 以上により、1 S L O C A の評価対象の起気は、2 L × 10 ⁻¹⁰ [/伊年], 残留熟除去素 (使止時冷却モード抜出ラインにおいては 2.1 × 10 ⁻¹⁰ [/伊年]であ 之。 ・評価対象の相違 と、 <u>いた。</u> <u>いた</u> <u>いた。</u> <u>いた…</u> <u>いた…</u> <u>いた…</u> <u>いた…</u> <u>いた…</u> <u>いた</u> <u>いた…</u> <u>いた</u> <u>い</u>					期試験のある残留熱除去系(低圧注水モード)注入ラインにおい	
以上により、ISLOCAの評価対象としては、以下が選定さ 以上により、ISLOCAの評価対象の記管点、運転中に問題 ・ 評価対象の相違 1.た_ 以上により、ISLOCAの評価対象としては、以下が選定さ 以上により、ISLOCAの評価対象の記管点、運転中に問題 1.た_ ・ 低圧炉心スプレイ系注入配管 ・ 低圧炉心スプレイ系注入配管 ・ 低圧炉心スプレイ系注入配管 ・ ちるく、ISLOCAが発生した場合の影響が最も大きい改留器 ・ 評価対象の相違 1. 使用炉心スプレイ系注入配管 ・ ちるく、ISLOCAが発生した場合の影響が最も大きい改留器 ・ 評価対象の相違 1. 使用炉心スプレイ系注入配管 ・ 5 (低圧注水系) A系原子炉注入配管 ・ 5 (低圧注水をマード) 注入ラインを覆定する。 ・ 評価対象の相違 2. 大容割除た系 (低圧注水系) A系原子炉注入配管 ・ 5 (低圧注水をマード) 注入ラインを覆定する。 ・ 1 (価約 6/7、東海第二) 2. たちの評価対象に対して構造健全地評価を実施し、この諸理 ・ 5 (低圧注水をマード) 注入ラインを覆定する。 ・ 1 (価約 6/7、東海第二) 2. たちの評価対象に対して構造健全地評価を実施し、この諸理 ・ 5 (低圧注水をマード) 注入ラインを覆定する。 ・ 2 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1					<u>ては 6.0×10⁻⁸[/炉年],低圧炉心スプレイ注入ラインにおいて</u>	
以上により、ISLOCAの評価対象としては、以下が選定されては、2.1×10 ⁻¹⁰ [/炉年],残留熱除去系 停止時冷丸モード抜出ラインにおいては 2.1×10 ⁻¹⁰ [/炉年]であ。 ・評価対象の相違 1.					は 2.0×10 ⁻⁸ [/炉年], 定期試験のない残留熱除去系停止時冷却	
以上により、ISLOCAの評価対象としては、以下が選定され、ISLOCAの評価対象の配管は、運転中に開開 以上により、ISLOCAの評価対象としては、以下が選定され、ISLOCAの評価対象の配管は、運転中に開開 ・評価対象の相違 れた。 <					<u>モード戻りラインにおいては 5.8×10⁻¹⁰[/炉年],残留熱除去系</u>	
公正 公正 公正 ·評価対象の相違 1.た_の 以上により、ISLOCAの評価対象としては、以下が選定され、 いた_ 以上により、ISLOCAの評価対象の配管は、運転中に問問 ごれた_ ·評価対象の相違 · 低圧炉心スプレイ系注入配管 ・読留熱除去系(低圧注水系)A系原子炉注入配管 ・詰っ、ISLOCAが発生した場合の影響が最も大きい残留熱 【相崎 6/7、東海第二】 · 残留熱除去系(低圧注水系)A系原子炉注入配管 ・読玉系(低圧注水モード)注入ラインを選定する。 「日本の · 残留熱除去系(低圧注水系)A系原子炉注入配管 ・ごの評価対象に対して構造健全性評価を実施し、その請果に基 「日本の · 残留熱除去系(低圧注水系)C系原子炉注入配管 この評価対象に対して構造健全性評価を実施し、その結果に基 ・ジョイの · たいの評価対象に対して構造健全性評価を実施し、この結果 この評価対象に対して構造健全性評価を実施し、その結果に基 ・ジョイの · たいの評価検診の工作 「一時間、物理の ・ジョイの ・ジョイの · たろう ごとの こ んつ がた い し い し い し い し い し い い い い い い い い い					<u>停止時冷却モード抜出ラインにおいては 2.1×10⁻¹⁰[/炉年]であ</u>	
以上により、ISLOCAの評価対象としては、以下が遵定され、以下が遵定され、運転の工作開始、 ・評価対象の相違 れた。 ・低圧炉心スプレイ系注入配管 ・残留熱除去系(低圧注水系)A系原子炉注入配管 ・残留熱除去系(低圧注水系)B系原子炉注入配管 ・残留熱除去系(低圧注水系)C系原子炉注入配管 ・残留熱除去系(低圧注水系)C系原子炉注入配管 ・たの評価対象に対して構造健全性評価を実施し、この結果 ・たの評価対象に対して構造健全性評価を実施し、この結果 ・たの評価対象に対して構造健全性評価を実施し、この結果 ・広の評価対象に対して構造健全性評価を実施し、この結果 ・たちの対性が低に対して構造健全性評価を支援し、この結果 ・たちの対性が低に対して構造健全性評価を支援し、この結果 ・たちの対性が低に対して構造健全性評価を支援し、この結果 ・たちの対性が低に対して構造健全性評価を支援し、この結果 ・たちの対性が低に対して構造健全性評価を支援し、この結果 ・たちの対性が低に対して構造健全性評価を支援し、この ・たちの支援したその ・たちの ・たちの ・注意を ・注意を ・たちの ・たちの ・たちの ・注意を ・注意を ・注意を					<u> </u>	
以上により、ISLOCAの評価対象としては、以下が選定された。 以上により、ISLOCAの評価対象の配管は、運転中に開閉・評価対象の相違 れた。 ・評価対象の相違 ・化工炉心スプレイ系注入配管 <						
れた。 試験を実施する系統のうち、ISLOCAが発生する可能性が最 【柏崎 6/7,東海第二】 ・低圧炉心スプレイ系注入配管 も高く、ISLOCAが発生した場合の影響が最も大きい残留熱 ・残留熱除去系(低圧注水系)A系原子炉注入配管 ・残留熱除去系(低圧注水系)B系原子炉注入配管 ・残留熱除去系(低圧注水系)B系原子炉注入配管 ・残留熱除去系(低圧注水系)C系原子炉注入配管 ・残留熱除去系(低圧注水系)C系原子炉注入配管 ・残留熱除去系(低圧注水系)C系原子炉注入配管 ・方留割除法系 ・方留熱除去系(低圧注水系)C系原子炉注入配管 ・方留熱除去系(低圧注水系)C系原子炉注入配管 ・方台効性評価における破断面積を設定する。 「店店グさ有効性評価における破断面積を設定する。 なお、出力運転中に隔離弁の開閉試験を実施する系統として は、高圧炉心スプレイ系及び原子炉隔離時冷却系も該当するが、 開閉試験時に隔離弁1個にて隔離機能を維持する範囲は高圧設計 となっている。これらの系統にて低圧設計部の圧力上昇が確認さ		<u>以上により, IS</u>	LOCAの	評価対象としては、以下が選定さ	<u>以上により、ISLOCAの評価対象の配管は、運転中に開閉</u>	・評価対象の相違
・低圧炉心スプレイ系注入配管 も高く、ISLOCAが発生した場合の影響が最も大きい残留熱 ・残留熱除去系(低圧注水系)A系原子炉注入配管 除去系(低圧注水モード)注入ラインを選定する。 ・残留熱除去系(低圧注水系)B系原子炉注入配管 ・ ・残留熱除去系(低圧注水系)C系原子炉注入配管 ・ ・残留熱除去系(低圧注水系)C系原子炉注入配管 ・ ・残留熱除去系(低圧注水系)C系原子炉注入配管 ・ ・残留熱除去系(低圧注水系)C系原子炉注入配管 ・ ・ <td< th=""><th></th><th><u>れた。</u></th><th></th><th></th><th>試験を実施する系統のうち, ISLOCAが発生する可能性が<u>最</u></th><th>【柏崎 6/7,東海第二】</th></td<>		<u>れた。</u>			試験を実施する系統のうち, ISLOCAが発生する可能性が <u>最</u>	【柏崎 6/7,東海第二】
・残留熱除去系(低圧注水系)A系原子炉注入配管 除去系(低圧注水モード)注入ラインを選定する。 ・残留熱除去系(低圧注水系)B系原子炉注入配管 ・残留熱除去系(低圧注水系)C系原子炉注入配管 ・残留熱除去系(低圧注水系)C系原子炉注入配管 ・ための評価対象に対して構造健全性評価を実施し、この結果 この評価対象に対して構造健全性評価を実施し、その結果に基 ごとづき有効性評価における破断面積を設定する。 この評価対象に対して構造健全性評価を実施し、その結果に基 なお、出力運転中に隔離弁の開閉試験を実施する系統として ごき有効性評価における破断面積を設定する。 なお、出力運転中に隔離弁の開閉試験を実施する系統として ごき有効性評価における破断面積を設定する。 なお、出力運転中に隔離弁の開閉試験を実施する系統として ごき有効性評価における破断面積を設定する。 となっている。これらの系統にて低圧設計部の圧力上昇が確認さ		・低圧炉心スプ	。レイ系注入的		<u>も高く、ISLOCAが発生した場合の影響が最も大きい残留熱</u>	
・残留熱除去系(低圧注水系) B系原子炉注入配管 ・残留熱除去系(低圧注水系) C系原子炉注入配管 ・残留熱除去系(低圧注水系) C系原子炉注入配管 こからの評価対象に対して構造健全性評価を実施し、この結果 これらの評価対象に対して構造健全性評価を実施し、この結果 この評価対象に対して構造健全性評価を実施し、その結果に基 に基づき有効性評価における破断面積を設定する。 ごき有効性評価における破断面積を設定する。 なお、出力運転中に隔離弁の開閉試験を実施する系統として づき有効性評価における破断面積を設定する。 は、高圧炉心スプレイ系及び原子炉隔離時冷却系も該当するが、 開閉試験時に隔離弁1個にて隔離機能を維持する範囲は高圧設計 となっている。これらの系統にて低圧設計部の圧力上昇が確認さ となっている。これらの系統にて低圧設計部の圧力上昇が確認さ		・残留熱除去系	(低圧注水)	系)A系原子炉注入配管	除去系(低圧注水モード)注入ラインを選定する。	
・残留熱除去系(低圧注水系)C系原子炉注入配管 これらの評価対象に対して構造健全性評価を実施し、この結果 に基づき有効性評価における破断面積を設定する。 なお,出力運転中に隔離弁の開閉試験を実施する系統として は,高圧炉心スプレイ系及び原子炉隔離時冷却系も該当するが, 開閉試験時に隔離弁1個にて隔離機能を維持する範囲は高圧設計 となっている。これらの系統にて低圧設計部の圧力上昇が確認さ		・残留熱除去系	(低圧注水)	系)B系原子炉注入配管		
これらの評価対象に対して構造健全性評価を実施し、この結果 この評価対象に対して構造健全性評価を実施し、その結果に基 に基づき有効性評価における破断面積を設定する。 ごき有効性評価における破断面積を設定する。 なお、出力運転中に隔離弁の開閉試験を実施する系統として ごき有効性評価における破断面積を設定する。 は、高圧炉心スプレイ系及び原子炉隔離時冷却系も該当するが、 開閉試験時に隔離弁1個にて隔離機能を維持する範囲は高圧設計 となっている。これらの系統にて低圧設計部の圧力上昇が確認さ		・残留熱除去系	(低圧注水)	系)C系原子炉注入配管		
に基づき有効性評価における破断面積を設定する。 づき有効性評価における破断面積を設定する。 なお,出力運転中に隔離弁の開閉試験を実施する系統として うき有効性評価における破断面積を設定する。 は,高圧炉心スプレイ系及び原子炉隔離時冷却系も該当するが, 開閉試験時に隔離弁1個にて隔離機能を維持する範囲は高圧設計 となっている。これらの系統にて低圧設計部の圧力上昇が確認さ		これらの評価対象	に対して構成	造健全性評価を実施し、この結果	この評価対象に対して構造健全性評価を実施し、その結果に基	
なお,出力運転中に隔離弁の開閉試験を実施する系統として は,高圧炉心スプレイ系及び原子炉隔離時冷却系も該当するが, 開閉試験時に隔離弁1個にて隔離機能を維持する範囲は高圧設計 となっている。これらの系統にて低圧設計部の圧力上昇が確認さ		に基づき有効性評価	における破壊	新面積を設定する。 	<u>づき有効性評価における破断面積を設定する。</u>	
は,高圧炉心スプレイ系及び原子炉隔離時冷却系も該当するが, 開閉試験時に隔離弁1個にて隔離機能を維持する範囲は高圧設計 となっている。これらの系統にて低圧設計部の圧力上昇が確認さ		なお、出力運転中	<u>コに隔離弁の</u>	開閉試験を実施する系統として		
開閉試験時に隔離弁1個にて隔離機能を維持する範囲は高圧設計 となっている。これらの系統にて低圧設計部の圧力上昇が確認さ		は,高圧炉心スプレ	イ系及び原	子炉隔離時冷却系も該当するが、		
となっている。これらの系統にて低圧設計部の圧力上昇が確認さ		開閉試験時に隔離弁	<u>1個にて隔离</u>	離機能を維持する範囲は高圧設計		
		<u> となっている。これ</u>	らの系統に~	て低圧設計部の圧力上昇が確認さ		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		れた場合には,運転手順に従い注入弁の隔離状態を確認する等,		
		圧力上昇時の対応操作を実施する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9	9.12版))		島	根原子力発電所	斤 2号炉		備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 東海第二発電所 第1表ISLOCA 系統名 原子炉冷却材圧力バウンダリ に接続されている配管 絵水系 給水系注入配管 高圧炉心スブ 成子炉隔離時冷却系原子炉圧 アイ系 原子炉隔離時冷却系原子炉圧 原子炉隔離時冷却系原子炉圧 容器頂部スブレイ配管 原子炉隔離時冷却系素気供給 管 低圧炉心スブ 低圧炉心スブレイ系注入配管 皮留熱除去系 残留熱除去系(原子炉注入配管 残留熱除去系(原子炉停止時冷:系)の以込配管 残留熱除去系(原子炉停止時冷:系)原子炉正力容器 寒留熱除去系 成留熱除去系(原子炉停止時冷:系)原子炉圧力容器 泉日熱除去系 規御棒駆動水圧系制御棒挿入 創御棒駆動水圧系制御棒引抜: 配管	 (2018.9 の評価対 結論 対象外 対象外 対象外 詳価対象 評価対象 評価対象 詳級外 試象外 対象外 	9.12版) 学家の選(③隔離弁 2個以下 	 ま1 低圧設計配 系統 飛線留熱除去系(低圧注水モ ード)注入ライン*1 残留熱除去系(低圧注水モ ード)注入ライン*2 残留熱除去系停止時冷却 モード戻りライン*2 残留熱除去系停止時冷却 モード抜出ライン*3 低圧炉心スプレイ系注入 ライン ¥1:残留熱除去系(低 数えて2弁目まで 目以降から残留 配管で構成されて 中圧設計の配管に は考慮の対象とせ ¥2:残留熱除去系停止 て2弁目までの範 	 根原子力発電房 (管までの弁数, ISLOCA (低圧設計配管ま での弁数 2弁 3弁目は中り は低圧設計の配管よ 二時冷却モード戻り 5 5<	所 2 号炉 運転中定期 発生頻度 運転中定期 試験の有無 有 無 有 生みラインは、) (8.62MPa)の配 までみの範囲は中 取りも破断確率が得 考 シーンは、原子 MPa)の配管で構	 試験の有無及び ISLOCA 発生頻度[/炉年] 6.0×10⁻⁸ 5.8×10⁻¹⁰ 2.1×10⁻¹⁰ 2.0×10⁻⁸ 原子炉圧力容器から 管で構成され、2弁 圧設計(3.92MPa)の に設置されている。 低いが、3弁目まで た。 炉圧力容器から数え 転され、2弁目以降 	備考
<u>また,低圧注水系についても,運転中に弁の開閉試験を実施す</u>	配管 ほう酸水注入 系 原子炉冷却材 原子炉冷却材 浄化系 主蒸気系 主蒸気系 東子炉圧力容 原子炉圧力容器計装系 試料採取系 試料採取系	対象外 対象外 対象外 対象外 対象外 対象外 対象外	O × × × ×	× - - -		て2弁目までの から残留熱除去 構成されている。 ※3:残留熱除去系停止 て2弁目までの から残留熱除去 で構成されている	値囲が高圧設計(10.4 ポンプの吐出までの ご時冷却モード抜出 値囲が高圧設計(8.62 ポンプの吸込みまで 5。	MPa)の配管で構 範囲は中圧設計 ラインは,原子: 2MPa)の配管で構 の範囲は低圧設	成され,2弁目以降 ·(3.92MPa)の配管で 炉圧力容器から数え 輸だされ,2弁目以降 注計(1.37MPa)の配管	・評価条件の相違
<u>るものの、原子炉圧力容器から低圧設計部までに3 弁が存在する</u> ため、インターフェイスシステムLOCA の発生頻度は高圧炉心注 水系に比較して低いと考えられる。しかし、3 弁目は中圧設計の 配管上に存在するため、添付資料1.5.2 において、過圧時もその 機能が確保されることを確認していることを示した。本資料にお いては、低圧注水系の中圧設計部についても実耐力評価を行った 結果も合わせて示す。										【柏崎 6/7】 島 根 2 号 炉 は, ISLOCA 評価対象の選定 において,中圧設計部 の耐力を期待していな いため,評価対象なし。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
1. 想定するインターフェイスシステムLOCA 及び低圧設計部に	2. ISLOCA発生時に低圧設計部に負荷される圧力及び温度	2. ISLOCA発生時に低圧設計部に負荷される圧力及び温度	
おける過圧条件について	条件の設定	条件の設定	
申請解析と同様に、高圧炉心注水系の電動弁開閉試験にて、原	1. で選定された I SLOCAの評価対象に対して隔離弁の	1. で選定された I SLOCAの評価対象に対して,実機の系	・評価条件の相違
子炉注入逆止弁が故障により開固着しており、原子炉注入電動弁	誤開放等による加圧事象が発生した場合の構造健全性評価を	統構成、各機器の特徴を踏まえて隔離弁の誤開放等による加圧事	【柏崎 6/7,東海第二】
が誤動作した場合,高圧炉心注水系の低圧設計部であるポンプ吸	実施した結果、いずれの評価対象においても構造健全性が維持	象が発生した場合の構造健全性評価の内容について示す。	
込配管の過圧を想定する。	される結果が得られた。いずれの評価対象においても低圧設計	なお, A-残留熱除去系(低圧注水モード)とB-残留熱除去系	
低圧設計部の配管等に対しては、運転中の原子炉圧力(約	部の機器設計は同等であることを踏まえ,以下では加圧範囲に	(低圧注水モード)の系統構成に大きな相違はないため,代表と	
7.2MPa) 及び水頭による圧力を考慮し, 7.5MPa の圧力が伝播す	<u>大きなシール構造である熱交換器が設置されている残留熱除</u>	してA-残留熱除去系(低圧注水モード)について評価を行った	
るものとして低圧設計部の構造健全性について評価を行うこと	<u>去系A系に対する構造健全性評価の内容について示す。</u>	<u>•</u>	
とする。		<u> 残留熱除去系(低圧注水モード)の系統概要図を図2に示す。</u>	
	残留熱除去系は、通常運転中に原子炉圧力が負荷される高圧	残留熱除去系(低圧注水モード)は,通常運転中に原子炉圧力が	
	設計部と低圧設計部とを内側隔離弁(逆止弁(テスタブルチェ	負荷される高圧設計部分と低圧設計部分とを内側隔離弁(逆止弁	
	ッキ弁))及び外側隔離弁(電動弁)の2個により隔離してい)及び外側隔離弁(電動仕切弁)の2弁により隔離されている。	
	る。外側隔離弁には、弁の前後差圧が低い場合のみ開動作を許	内側隔離弁(逆止弁)も運転中に弁の開閉試験を行うが、弁の前	
	可するインターロックが設けられており、開許可信号が発信し	後に差圧がある場合には弁が開放しない構造であるため、外側隔	
	た場合は警報が発報する。また、これらの弁の開閉状態は中央	離弁(電動仕切弁)が開放する事象を想定する。評価においては	
	制御室にて監視が可能である。本重要事故シーケンスでは、内	, 厳しい想定として, 内側隔離弁(逆止弁)が全開した状態で外	
	側隔離弁の内部リーク及び外側隔離弁前後差圧低の開許可信	側隔離弁(電動仕切弁)が全開するとした。	
	<u> 号が誤発信している状態を想定し、この状態で外側隔離弁が誤</u>		
	開放することを想定する。また、評価上は、保守的に逆止弁の		
	全開状態を想定する。		
隔離弁によって高圧設計部分と低圧設計部分が物理的に分離	隔離弁によって原子炉定格圧力が負荷されている高圧設計	隔離弁によって原子炉定格圧力が負荷されている高圧設計部	
されている状態から、隔離弁が開放すると、高圧設計部分から低	部と低圧設計部が物理的に分離されている状態から隔離弁を	分と低圧設計部分が物理的に分離されている状態から隔離弁を	
<u> 圧設計部分に水が移動し、配管内の圧力は最終的にほぼ等しい圧</u>	開放すると、高圧設計部から低圧設計部に水が移動し、配管内	開放すると、高圧設計部分から低圧設計部分に水が移動し、配管	
力で落ち着く。高圧設計部分が原子炉圧力容器に連通している場	の圧力は最終的に原子炉定格圧力にほぼ等しい圧力で静定す	内の圧力は最終的に原子炉定格圧力にほぼ等しい圧力で静定す	
合, 最終的な配管内の圧力は原子炉圧力とほぼ等しくなる。	る。	Jan	
隔離弁の急激な開動作(以下「急開」という。)を想定した場	一般に、大きな圧力差のある系統間が隔離弁の誤開放等によ	一般に、大きな圧力差のある系統間が隔離弁の誤開放等により	
合,高圧設計部分及び原子炉圧力容器内から配管の低圧設計部分	り突然連通した場合、低圧側の系統に大きな水撃力が発生する	突然連通した場合,低圧側の系統に大きな水撃力が発生すること	
に流れ込む水の慣性力により、配管内の圧力が一時的に原子炉圧	ことが知られている。特に低圧側の系統に気相部が存在する場	が知られている。特に低圧側の系統に気相部が存在する場合、圧	
力よりも大きくなることが知られている。この現象は水撃作用と	合, 圧力波の共振が発生し, 大きな水撃力が発生する場合があ	力波の共振が発生し、大きな水撃力が発生する場合があるが、残	
呼ばれる*1。しかし、隔離弁が緩やかな開動作をする場合、水撃	るが、残留熱除去系は満水状態で運転待機状態にあるため、そ	留熱除去系は満水状態で運転待機状態にあるため、その懸念はな	
作用による圧力変化は小さく、配管内の圧力が原子炉圧力を大き	の懸念はない。また、残留熱除去系以外の非常用炉心冷却系及	い。また、残留熱除去系以外の非常用炉心冷却系及び原子炉隔離	
く上回ることはない。	び原子炉隔離時冷却系も満水状態で運転待機状態にある。	時冷却系も満水状態で運転待機状態にある。	
	一方、満水状態であったとしても、隔離弁が急激に開動作す	一方,満水状態であったとしても,隔離弁が急激に開動作する	
	る場合は大きな水撃力が発生するが、緩やかな開動作であれば	場合は大きな水撃力が発生するが,緩やかな開動作であれば管内	
	管内で生じる水撃力も緩やかとなり、また、後述するとおり圧	で生じる水撃力も緩やかとなり、また、後述するとおり圧力波の	
	力波の共振による大きな水撃力も発生せず, 圧力がバランスす	共振による大きな水撃力も発生せず, 圧力がバランスするまで低	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	るまで低圧側の系統が加圧される。	圧側の系統が加圧される。	
電動仕切弁は、駆動機構にねじ構造やギアボックス等があるた	電動弁は、駆動機構にねじ構造やギアボックス等があるため	電動仕切弁は、駆動機構にねじ構造やギアボックス等があるた	
め,機械的要因では急開となり難い。また,電動での開弁速度は,	機械的要因では <u>急激な開動作(以下「急開」という。)とは</u> な	め,機械的要因では <u>急開と</u> なり難い。また,電動での開弁速度は,	
<u>約6秒</u> となっており、電気的要因では急開とならないことから、	り難い。また, 電動での <u>開放時間は約 10.6 秒</u> であり, 電気的	<u>約8秒(全ストローク217mm)</u> となっており,電気的要因で <u>は</u> 急	・設備設計の相違
誤開を想定した場合,水撃作用による圧力変化が大きくなるよう	要因でも急開とならないことから、誤開放を想定した場合、水	開とならないことから、誤開を想定した場合、水撃作用による圧	【柏崎 6/7,東海第二】
な急開とならない。	撃作用による圧力変化が大きくなるような急開と <u>は</u> ならない。	力変化が大きくなるような急開とならない。	設備仕様の相違。
文献 ^{※1} によると、配管端に設置された弁の急開、急閉により	文献*1によると,配管端に設置された弁の急開により配管内	文献*1によると、配管端に設置された弁の急開, 急閉により配	
配管内で水撃作用による圧力変化が大きくなるのは、弁の開放時	で水撃作用による圧力変化が大きくなるのは,弁の開放時間	管内で水撃作用による圧力変化が大きくなるのは、弁の開放時間	
間もしくは閉止時間(T)において, 圧力波が長さ(L)の管路内	(Τ) <u>が</u>圧力波の管路内往復時間(μ)より短い場合であると	もしくは閉鎖時間(T)において,圧力波が長さ(L)の管路内を往復	
を往復するのに要する時間(μ)より短い場合であるとされてい	されている。	するのに要する時間(μ)より短い場合であるとされている。	
る。			
$\theta - \frac{T}{T} < 1$	$\theta = \frac{T}{-} \leq 1$	$\theta - \frac{T}{T} < 1$	
μ^{μ}	μ	μ^{μ}	
$\mu = \frac{2L}{2}$	2L	$\mu = \frac{2L}{2}$	
$\alpha = \alpha$	$\mu = \frac{1}{\alpha}$	$\alpha = \alpha$	
		<u>θ:弁の時間定数</u>	
T :弁の開放時間もしくは閉鎖時間(s)	T:弁の開放時間(s)	T : 弁の開放時間 <u>もしくは閉鎖時間</u> (s)	
μ : 管路内を圧力が往復する時間(s)	μ : <u>圧力波の管路内往復時間</u> (s)	μ: <u>管路内を圧力が往復する時間</u> (s)	
L :配管長(m)	L:配管長 (m)	L : 配管長(m)	
α : 圧力波の伝播速度(m/s)	α : 圧力波の伝搬速度(m/s)	α:圧力波の伝播速度(m/s)	
ここで(α)は管路内の流体を伝わる圧力波の伝播速度であり,	ここで, αは管路内の流体を伝わる圧力波の伝播速度であ	ここで, αは管路内の流体を伝わる圧力波の伝播速度であり,	
音速とみなすことができ、配管長(L)を実機の高圧炉心注水系	り、音速とみなすことができ、保守的に圧力波の管路内往復時	音速とみなすことができ,配管長(L)を実機の残留熱除去系(低	・評価条件の相違
の注水配管の配管長*2 を元に保守的に <u>100m*3</u> とし、水の音速	間が長くなるように水の音速 (α) を <u>1,400m/s^{*2}</u> とし, 実機	<u>圧注水モード)の注水配管の配管長*2 を元に保守的に 200m*3 と</u>	【柏崎 6/7】
(α)を1,500m/s ^{*4} とすると、管路内を圧力波が往復する時間	の残留熱除去系(低圧注水系)の注水配管の配管長を基に配管	し,水の音速(α)を <u>1,500m/s^{*4}</u> とすると、管路内を圧力波が往	 ・設備設計の相違(L)
(μ) は <u>約0.14 秒</u> となる。	長(L)を保守的に <u>130m</u> とすると、圧力波の管路内往復時間	<u>復する時間(µ)は約0.27秒</u> となる。	【柏崎 6/7,東海第二】
	(μ)は <u>約0.19秒</u> となる。		
			【東海第二】
			島根2号炉は、二次
			格納施設内の温度とし
			C 38Cでの音速を設 ₋
			定。
以ら、 开開 放 时间(1) を 尚上 炉 心 注 水 が の 電 期 仕 切 开 の <u>約6 秒</u>	次軍恐族云赤の外側隔離开(電動开)の開放時間(1)(約 10.6	いり, 开開放時間(1)を残留熱尿去糸(低圧注水モード)の電動	 ・評価結果の相遅(µ) 【地域 c/2 また (如一)
と9 ると小挙作用による入さな圧力変化は生しることはなく、低 「記書如八の機関に直えににもたももく」目えままがもよう。	<u>炒てのることから</u> ,小挙作用による大さな圧力変化か生しるこ	11.191井91約870とすると水挙作用による大さな圧力変化は生し	【 11 町 b/ (, 果) 田 町 b/ (, 果) 田 町 b/ (, 東)
工		ることはなく、 10月1日前近00歳宿に原ナ炉圧力を入さく上回 て 共重が かかてこ トロ かっ	
$C (A, A, V) \subset C C (A, O)$	$T \square O \subset C I A (A V) C T X D A V O $	$\odot \underline{\mathbf{M}} \underline{\mathbb{H}} \underline{\mathbf{M}} $	
なお、仮に高圧炉心注水系の電動弁開閉に伴う水撃作用が生じ			
とはないこととなる。 なお,仮に高圧炉心注水系の電動弁開閉に伴う水撃作用が生じ	上回ることはない <u>と考えられる。</u>	る何重がかかることはないこととなる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
た場合であっても,極めて短時間(数秒間)に起きる現象であり, かつ,大幅な圧力上昇を引き起こすことは考えにくい。さらにこ の時の配管内の流体は,一次冷却材(288℃)の水が低圧部まで 到達せず低温の状態であると推測され,温度による影響(熱伸び 等)を受けることはない。			
また, 次項以降, 強度評価において, 例えば配管について最も 厳しいNo.①の管の最小厚さ(ts)8.31mm での許容圧力は約10MPa (1 次一般膜応力0.6Su 適用値)であり十分な余裕がある。さら に, 設計引張強さ(Su)までの余裕を考えると, さらなる余裕が 含まれることとなる。 よって, この影響は無視し得る程小さいものと考え, 構造健全 性評価としては考慮しないこととする。		<u>なお, 次項にて示す強度評価において, 例えば配管で最も厳</u> しい No. 23 配管の最小厚さ (ts) 13. 21mm における許容圧力 (1 次一般膜応力 0. 6Su 適用値) は 10MPa を超えており, 十分な余 裕がある。さらに, 設計引張強さ (Su) までの余裕を考えると, さらなる余裕が含まれることとなる。	 ・記載方針の相違 【東海第二】 島根2号炉は,裕度 に関する説明を記載。
 ※1:水撃作用と圧力脈動〔改訂版〕第2 編「水撃作用」((財) 重力中央研究所 元特任研究員 秋元徳三) ※2:高圧炉心注水系の原子炉圧力容器開口部から低圧設計部分 の末端の逆止弁までの長さは約70m ※3:配管長を実機より長く設定することは相対的に弁の開放時 間を短く評価することになり、水撃作用の発生条件に対し 保守的となる。 ※4:圧力7.2MPa[abs],水温38℃の場合,水の音速は約1,540m/s となる。 	 ※1 水撃作用と圧力脈動[改定版]第2編「水撃作用」 ((財)電力中央研究所 元特任研究員 秋元徳三) ※2 圧力0.01MPa[abs],水温0℃の場合,水の音速は約 1,412.3m/sとなる。なお,液体の音速の圧力及び 温度の依存性は小さいが,圧力については小さいほ ど,温度については約70℃までは小さいほど音速は 小さくなる傾向がある。 	 *1:水撃作用と圧力脈動〔改訂版〕第2編「水撃作用」((財) 重力中央研究所 元特任研究員 秋元徳三) *2:残留熱除去系(低圧注水モード)の原子炉圧力容器開口部 から低圧設計部分の末端の逆止弁までの長さは約150m *3:配管長を実機より長く設定することは相対的に弁の開放時 間を短く評価することになり,水撃作用の発生条件に対 し保守的となる。 *4:圧力 7.2 MPa[abs],水温 38℃の場合,水の音速は約1540m/s となる。 	 ・評価条件の相違 【柏崎 6/7】 ・設備設計の相違 【柏崎 6/7,東海第二】 配管長の相違。 ・記載方針の相違 【東海第二】 ・評価条件の相違 【東海第二】 島根2号炉は、二次 格納施設内の温度として38℃を適用。
	以上より,残留熱除去系の隔離弁の誤開放等により系統が加 圧される場合においても,原子炉圧力を大きく超える圧力は発 生しないものと考えられるが,残留熱除去系の逆止弁が全開状 態において電動弁が 10.6 秒で全閉から全開する場合の残留熱 除去系の圧力推移をTRACGコードにより評価した。 残留熱除去系過圧時の各部の圧力最大値を第2表に,圧力推 移図を第2図に示す。	以上より,残留熱除去系の隔離弁の誤開放等により系統が加 圧される場合においても,原子炉圧力を大きく超える圧力は発 生しないものと考えられるが,残留熱除去系の外側隔離弁(電 動仕切弁)が8秒で全閉から全開することにより,図3に示す 低圧設計部の範囲が過圧された場合の圧力推移をTRACG コードにより評価した。 残留熱除去系(低圧注水モード)注入ライン過圧時の各部の 圧力最大値を表2に,圧力推移図を図4に示す。	 ・記載方針の相違 【柏崎 6/7】 島根2号炉は,TRACG による解析を実施。 ・設備設計の相違 【東海第二】 設備仕様の相違。

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所 (2018.9.12版)	島根原子力発電所	2 号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所 (2018.9.12 版) 第2 表 残留熱除去系過圧時の各部の圧力最大値 (日本) 位置 圧力最大値 (MPa[abs]) 注入弁 (F042A) 入口 (系統側) 約7.50 逃がし弁 (F025A) 入口 約7.10 熱交換器 約8.00 ポンプ出口逆止弁 (F031A) 出口 約8.01	島根原子力発電所 麦2 残留熱除去系(低圧注水モード の圧力最大 位置* 月 注水弁入口(①) 逃し弁入口(②) 残留熱除去系熱交換器(③) ポンプ出口逆止弁出口(④) ※数字は図3における位置を表す。	2 号炉 <u>注入ライン過圧時の各部</u> <u>値</u> ご力最大値 (MPa[abs]) 7.7 7.4 7.9 8.0	備考 ・解析結果の相違 【東海第二】 ・記載方針の相違 【柏崎 6/7】 島根 2 号炉は,TRACG による解析を実施。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	fright rest in the second se	10.0 0.0 10.0 0.0	
	弁開放直後は,定格運転状態の残留熱除去系の注入弁出口 (原子炉圧力容器側)の圧力(7.2MPa[abs])に比べて最大約 0.8MPa 高い圧力(約 8.01MPa[abs])まで上昇し,その後,上 昇幅は減衰し10秒程度で静定する。	弁開放直後は,定格運転状態の残留熱除去系の注入弁出口 (原子炉圧力容器側)の圧力 に比べて最大約 0.8MPa 高い圧力 まで上昇し,その後,上昇 幅は減衰し10秒程度で静定する。	 ・解析結果の相違 【東海第二】 ・記載方針の相違 【柏崎 6/7】 島根2号炉は,TRACG による解析を実施。
	次項の構造健全性評価に当たっては、 <u>圧力の最大値であるポ ンプ出口逆止弁出口における約8.01MPa [abs] に、加圧される</u> 範囲の最下端の水頭圧(0.24MPa)を加えた約8.25MPa [abs]を 丸めてゲージ圧力に変換した8.2MPa [gage]が保守的に系統に 負荷され続けることを想定する。また、圧力の上昇は10秒程 度で静定することからこの間に流体温度や構造材温度が大き く上昇することはないと考えられるが、評価上は保守的に構造 材温度が定格運転状態の原子炉冷却材温度である288℃となっ ている状態を想定する。	次項の構造健全性評価に当たっては、 <u>TRACGの解析結果を踏まえ、隔離弁開直後の最大圧力と系統待機水の温度(室温程度)との組み合わせ、隔離弁開から10秒程度以降の静定圧力と静定温度(炉圧及び炉水温度相当)との組み合わせを考慮して評価圧力・温度を設定し、評価対象機器の構造健全性評価を実施した。</u> として評価を実施した。 として評価を実施した。 また、破断面積の算出においては、隔離弁開直後の最大圧力と漏えい発生後の静定温度を保守的に組み合わせて評価を実施した。	 ・資料構成の相違 【柏崎 6/7】 柏崎 6/7 の評価条件 については、「1. 想定 するインターフェイス システム LOCA 及び低 圧設計部における過圧 条件について」に記載。 柏崎 6/7 の評価結果」に 記載。 ・評価方針の相違 【東海第二】 東海第二の構造健全 性評価においては、保 守的に圧力の最大値が 系統に負荷され続ける

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所	2 号炉	備考
					ことを想定している
					が、島根2号炉は、現
					実的な条件にて評価を
					実施。

まとめ資料比較表 〔有効性評価 添付資料 2.7.2〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	3. 構造健全性評価	3. 構造健全性評価	
2. 構造健全性評価の対象とした機器等について	3.1 構造健全性評価の対象とした機器等について	3.1 構造健全性評価の対象とした機器等について	
<u>高圧炉心注水系の低圧設計部において圧力バウンダリとなる</u>	残留熱除去系の隔離弁の誤開放等により加圧される範囲に	残留熱除去系の隔離弁の誤開放等により加圧される範囲に	・評価対象の相違
範囲を抽出し、具体的には下記対象範囲について評価を行った。	おいて, 圧力バウンダリとなる以下の箇所に対して 2. で評価し	おいて, 圧力バウンダリとなる以下の箇所に対して2.で評価	【柏崎 6/7】
a) 配管(ドレン/ベント,計装配管等の小口径配管も対象に含	た圧力(<u>8.2MPa[gage]</u>),温度(288℃)の条件下に晒された場	した圧力(7.4MPa[gage]),温度(288℃)の条件下に晒され	・評価方針の相違
<u>tr)</u>	合の構造健全性評価を実施した。	た場合の構造健全性評価を実施した。	【東海第二】
b)計装設備(ポンプ吸込側に設置されている圧力計)	① 熱交換器	 ① 熱交換器 	・評価対象の相違
c) 弁 (圧力バウンダリとなる弁)	 ② 逃がし弁 	 ② 逃がし弁 	【柏崎 6/7】
d)フランジ部(ボルトの伸びによる漏えい量評価を実施)	③ 弁	③弁	
e)ポンプ(ポンプ吸込側の低圧設計部)	④ 計 器	④計器	
具体的な対象箇所については図1-1 から図1-5 に示す。	⑤ 配管・配管フランジ部	<u>⑤ 配管・配管フランジ部</u>	
	詳細な評価対象箇所を第3図及び第3表に示す。	詳細な評価対象箇所を図5及び表3に示す。	

计炉	備考
	・設備設計の相違 【柏崎 6/7】
	・設備設計の相違 【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			 設備設計の相違 【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12 版)		島根原子力	」発電所 2号炉	備考
	第3表 評価対象筆	範囲に設置された機器	表 3	3 評価対象	範囲に設置された機器	・設備設計の相違
			機器		弁番号, 個数等	【東海第二】
	機 器	并番号, 個数等 1 個	残留熱除去系熱交換 逃がし弁	與器 1個 1台		・記載方針の相違
		1 //FF	* -+	RV222	2-1A	【柏崎 6/7】
		F025A	<i># / ¹ / ¹ / ¹</i>	V222-	-1A, V222-3A, V222-12A, V222-18A,	
	③ 弁 フロセス弁	20 個 F003A, F016A, F023, F024A, F027A, F031A,		V222- MV222	-20A, V222-39, V222-37A, V222-83, 2-2A, MV222-3A, MV222-5A, MV222-11A,	
		F047A, F048A, F049, F051A, F053A, F063A, F085A, F086, F087A, F098A, F170A, FF012,		MV222 MV222	2-13, MV222-15A, MV222-16A, MV222-20,	
	その他の弁 ベント弁	FF101A, FF104A 17 個	その他の弁	ベント弁 15 台		
	ドレン弁	F065A, F072A, F073A, F074A, F080A, F171, F179A, F181A, FF020-201		ドレン弁 V222- V222- V222-	–504A, V222–507AX, V222–527AX, V222–529AX, –530AX, V222–543AX, V222–559X, V222–560X,	
		FF020-205, FF020-215, FF020-230,		V222- V222-	-561X, V222-562X, V222-563AX, V222-564X, -568X, V222-578AX, V222-579AX	
		FF022-223, FF022-230		計器 6台 厚離台 V000		
	計器	10 個 FF006-201, FF006-202, FF007-203,		隔離开 V222- V222- V222-	-703A, V222-704A, V222-705A, V222-708A, -725, V222-726	
		FF007-204, FF007-206, FF007-207, FF007-208, FF009-201, FF018-201,		サンプル 2台 弁 AV222	2-706A, MV278-402	
	サンプル弁	FF018-202 4 個	計器	10 個 DS22	2_4A_1_DC999_4A_9_DV999_4A_EV999_1A	
	④ 計 器	F060A, FF029-201, FF029-202, V25-606 10 個		FX222	2-2A, FX222-3, dPX222-1A, TE222-1A,	
		TE-N004A, TE-N027A, PT-N002A-1, PT-N026A, PT-N053A, dPT-N058A	低圧注水系配管	TE222 1式	2–2A, TT222–13A	
		FT-N013, FT-N015A, FT-N060A, ET-C61-N001				
	⑤ 配 管	1式				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	3.2 構造健全性評価の結果	3.2 構造健全性評価の結果	・資料構成の相違
	(1)	(1)熱交換器(<u>別紙2</u>)	【柏崎 6/7】
	隔離弁の誤開放等による加圧事象発生時に加圧、加温され	隔離弁の誤開放等による加圧事象発生時に加圧、加温され	柏崎 6/7 は, 「3. 構
	る熱交換器の各部位について、「東海第二発電所工事計画	る熱交換器の各部位について、「 <u>島根原子力発電所工事計</u>	造健全性評価の結果」
	認可申請書」(以下「既工認」という。)を基に設計上の裕度	<u> 画認可申請書</u> 」(以下「既工認」という。)を基に設計上の裕	に記載。
	を確認し,裕度が <u>評価上の想定圧力(8.2MPa[gage])と系統</u>	度を確認し,裕度が <u>2以上の</u> 部位を除く <u>水室フランジ,水室</u>	・評価条件の相違
	<u>の最高使用圧力(3.45MPa[gage])との比である 2.4 より大</u>	<u>フランジボルト, 管板及び伝熱管</u> について評価した。	【東海第二】
	<u>きい</u> 部位を除く <u>胴板(</u> 厚肉部,薄肉部),胴側鏡板,胴側入		・評価対象の相違
	<u>ロ・出口管台及びフランジ部</u> について評価した。		【東海第二】
			設計裕度が異なるた
			め,評価対象部位が異
			なる。
	a. 胴側胴板 (厚肉部, 薄肉部)		・評価対象の相違
	「発電用原子力設備規格 設計・建設規格(2005 年版		【東海第二】
	<u>(2007 年追補版を含む))<第 I 編 軽水炉規格>(JSME S</u>		設計裕度が異なるた
	<u>NC1-2005/2007)」(以下「設計・建設規格」という。)</u>		め,評価対象部位が異
	「PCV-3122 円筒形の胴の厚さの規定」を適用し, 胴板の		なる。
	<u>必要最小厚さを算出した。その結果,実機の最小厚さは必</u>		
	<u>要厚さ以上であり、評価した各部位は破損せず漏えいは発</u>		
	<u>生しないことを確認した。</u>		
	評価部位 材料 実機の最小厚さ 計算上必要な厚さ 判 定 ^金 [t _s](mn) [t](mn) (t _s ≥t)		
	厚肉部 SB410 53.32 35.71 〇 護肉部 SB410 37.05 35.71 〇 ※ 実機の最小厚さが計算上必要な厚さ以上であること		
			・評価対象の相違
	設計・建設規格「PCV-3225 半た円形鏡板の厚さの規定		【果海第二】
	1]を適用し、胴側鏡板の必要最小厚さを昇出した。その		設計裕度が異なるた
	<u> 結果, 美機の最小厚さは必要厚さ以上であり, 評価した谷</u> 如供いな根に、 になったたち、 ないこともないことも		め、評価対象部位が異
			7よる。
	評価部位 材料 (t _s)(m) (t _s) (t		
	※ 実機の最小厚さが計算上必要な厚さ以上であること		
	。 胴側入口・出口签台		・ 証価対象の相違
	<u> </u>		「市Ш刈豕()/旧連
	<u> 取前 建取加油 110 3010 目口の序での規定」を適用</u> 〕 胴側入口・出口答台の公西基小国々た管中」た この		▲本14477
			い町 1712 が 共 なるため 一 証価 対象部 位 が 思
			5 20

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12 版)	 島根原子力発電所 2号炉 <u>a. 水室フランジ,水室フランジボルト</u> 日本工業規格 JIS B8265「圧力容器の構造-一般事項」 を適用して算出したボルトの必要な断面積及び許容応力 を算出した。その結果,ボルトの実機の断面積はボルトの 必要な断面積以上,かつ発生応力は許容応力以下であり, 評価した各部位は破損せず漏えいは発生しないことを確 	備考
	PLC U/Co 評価部位 ボルトの ボルトの 評価部位 実機の断面積 必要な断面積 発生応力 許容応力 (MPa) 判定* フランジ部 106.961 74.184 239 262 〇 ※ ボルトの実機の断面積がボルトの必要な断面積以上,かつ発生応力が許容圧力以下であること		・評価結果の相違 【東海第二】
		b.管板 設計・建設規格「PVC-3510 管穴の中心間距離および管板の厚 さ規定」を適用し、管板の必要最小厚さを算出した。その結果、 実機の最小厚さは必要厚さ以上であり、評価した各部位は破損 せず漏えいは発生しないことを確認した。 評価部位 材料 「 t_s](mm) [t](mm) ($t_s \ge t$) 管板 SFVC2B ※実機の最小厚さが計算上必要な厚さ以上であること	 ・評価対象の相違 【東海第二】 設計裕度が異なるため,評価対象部位が異なる。
		<u> c. 伝熱管</u> <u> 設計・建設規格「PVC-3610 管台の厚さの規定」を適用し,管</u> <u> 板の必要最小厚さを算出した。その結果,実機の最小厚さは必</u> <u> 要厚さ以上であり,評価した各部位は破損せず漏えいは発生し</u> <u> ないことを確認した。</u>	 ・評価対象の相違 【東海第二】 設計裕度が異なるため,評価対象部位が異なる。
		評価部位 材料 実機の取小厚さ 計昇上必要な厚さ 判定 ^{**} 「た ₃ 」(mm) [t](mm) [t](mm) (t _s \geq t) 伝熱管 SUS304TB 〇 ※実機の最小厚さが計算上必要な厚さ以上であること 〇	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	 (2) 逃がし弁(別紙4) a. 弁 座 設計・建設規格「VVC-3230 耐圧部に取り付く管台の必要最小厚さ」を適用し、必要な最小厚さを算出した。その結果、実機の最小厚さは必要厚さ以上であり、評価した各部位は破損せず漏えいは発生しないことを確認した。 	 (2)逃がし弁(別紙3) a. 弁座 設計・建設規格「VVC-3230 耐圧部に取り付く管台の必要最小厚さ」を適用し、必要な最小厚さを算出した。その結果、実機の最小厚さが必要厚さ以上であり、評価した各部位は破損せず漏えいは発生しないことを確認した。 	・評価結果の相違 【東海第二】
	 b. 弁 体 弁体下面にかかる圧力が全て弁体の最小肉厚部に作用 するとして発生するせん断応力を評価した。その結果,発 生せん断応力は許容せん断応力以下であり,評価した部位 は破損せず漏えいは発生しないことを確認した。 <u>評価部位 発生せん断応力 (UPa) 料 定* <u>第 体 381 88 0</u> <u>88 0</u> <u>88 0</u> <u>88 0</u> <u>0</u> </u> 	b. 弁体 弁体下面にかかる圧力 <u>(7.4MPa)</u> が全て弁体の最小肉厚 部に作用するとして発生するせん断応力を評価した。その 結果,発生せん断応力は許容せん断応力以下であり,評価 した部位は破損せず漏えいは発生しないことを確認した。 評価部位 発生せん断応力 (MPa) 判定* 弁体 41 88 〇 ※発生せん断応力が許容せん断応力以下であること	・評価結果の相違 【東海第二】
	 c. 弁本体の耐圧部 設計・建設規格「解説 VVB-3100 弁の圧力温度基準」を 適用し,必要な最小厚さを算出した。その結果,実機の最 小厚さは必要厚さ以上であり,評価した部位は破損せず漏 えいは発生しないことを確認した。 <u>評価部位 案機の最小厚さ を要な最小厚さ 地 定*</u> (m) 1 2 0 <u>**本体の耐圧部 9.0 12 0 </u> (m) 12 0 (m) 12 0	 c.弁本体の耐圧部 設計・建設規格「解説 VVB-3100 弁の圧力温度基準」 を適用し、必要な最小厚さを算出した。その結果、実機 の最小厚さは必要な最小厚さ以上であり、評価した部位 は破損せず漏えいは発生しないことを確認した。 	・評価結果の相違 【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (201	17.12.20版)	東海第二発電所	(2018.9.12版)		島	根原子力発電	所 2号炉		備考
	d. 弁i	耐圧部の接合部			d. 弁耐圧部の打	妾合部			
	設	計・建設規格「VVC-3	310 弁箱と弁ふう	をがフランジ結					・評価方針の相違
	<u>合の</u> :	弁のフランジの応力詞	評価」を適用して筆	算出したボルト					【東海第二】
	の必	要な断面積及び許容の	<u> 応力を算出した。</u>						島根2号炉は、当該
		ボルトの ボルト	D xx + rt + area	to rtr -t-					評価によるスクリーニ
	評価部位	実機の断面積 (mm ²) 必要な断 (mm ²) 481-2 422	「面積 <u>発生応力</u> 」計4 (MPa) (1)	PMPa) 判 定 [※]					ングを実施しておら
	<u>非面圧的の場合地</u> ※ ボルトの集	<u>481.3</u> 機の断面積がボルトの必要な断面積以	5 214 以上,かつ発生応力が許容圧力以「	42					ず,全ての評価を実施
									している。
	Ŀ	記の評価の結果,ボノ	レトの実機の断面積	責がボルトの必					
	要な	断面積以上であるが,	発生応力が許容	王力以上であっ					
	たた	め <u>,</u> ボンネットボル	トの内圧と熱によ	る伸び量及びボ	ボンネットボル	レトの内圧と熱	熟による伸び量及び	ボンネッ	
	ンネ	ットフランジと弁箱	フランジの熱によ	こる伸び量を算	トフランジと弁須	箱フランジの教	熟による伸び量を算	出した。そ	
	出し	た。その結果,ボンジ	ネットボルトの伸び	び量からボンネ	の結果、ボンネッ	ットボルトの伸	申び量からボンネッ	トフランジ	
	ット	フランジと弁箱フラ	ンジの伸び量を差	きし引いた伸び	と弁箱フランジロ	の伸び量を差し	し引いた伸び量がマ	イナスで	
	量が	マイナスであり,弁社	耐圧部の接合部が	王縮されること	あり、弁耐圧部の	の接合部が圧約	宿されることになる	が, <u>ボンネ</u>	・設備設計の相違
	にな	るが, <u>ボンネットナ</u>	ット締付部の発生の	芯力が許容応力	<u>ットフランジと</u>	リフト制限板が	がメタルタッチして	おり, それ	【東海第二】
	以下	であり、評価した部位	立は破損せず漏えい	いは発生しない	以上ガスケット7	が圧縮しない材	冓造となっているこ	<u>とから, ボ</u>	島根2号炉の安全弁
	こと	を確認した。			ンネットナット	<u> </u>	ネットフランジとリ	フト制限	は,ボンネットフラン
					板の合わせ面の	発生応力が許な	容応力以下であり,	評価した部	ジとリフト制限板がメ
					位は破損せず漏;	えいは発生し	ないことを確認した	• 0	タルタッチする構造。
		発生応力	許容応力	atur atu W		水山十上			
	評価部位	(MPa) 部 <u>67</u>	(MPa) 152	判 定 ^{**} 〇	評価部位	発生応刀 (MPa)	計谷応力 (MPa)	判定*	・評価結果の相違
	※ 発生応力が	許容応力以下であること			ボンネットナット座面	68	632	0	【東海第二】
					ホ ンネットフランシ と	59	438 (ホ゛ンネットフランシ゛)	0	
					リフト制限板の合わせ面		392(リフト制限板)	0	
					※発生応力が許容応力以下	であること			
	I								

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12 版) (3) 弁 (別紙5) a. 弁本体 設計・建設規格「解説 VVB-3100 弁の圧力温度基準」を 適用し、必要な最小厚さを算出した。その結果、実機の最 小厚さは計算上必要な厚さ以上であり、評価した部位は破 損せず漏えいは発生しないことを確認した。 1064 10774 1085 1085 22.0 10.6 10.7 10.6 10.7 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.7 10.6 10.6 10.7 10.6 10.7 10.6 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	島根原子力発電所 2号炉 (3) 弁 (別紙4) a. 弁本体 設計・建設規格「解説 VVB-3100 弁の圧力温度基準」を適用し、必要な最小厚さを算出した。その結果、実機の最小厚さ は計算上必要な最小厚さ以上であり、評価した部位は破損せず 漏えいは発生しないことを確認した。 評価部位 実機の最小厚さ 「[t] (mm) (t _s ≥ t) 弁本体の耐圧部 0.2~3.3 ※実機の最小厚さが計算上必要な厚さ以上であること	備考 ・評価結果の相違 【東海第二】 ・評価方針の相違 【東海第二】 島根2号炉は,当該 評価によるスクリーニ
	合の弁のフランジの応力評価」を適用して算出したボルト の必要な断面積及び許容応力を算出した。その結果,F086, F080A,F060A,FF029-201及びFF029-202の弁はボルトの 実機の断面積がボルトの必要な断面積以上であり,かつ発 生応力が許容圧力以下であり,評価した部位は破損せず漏 ないは発生しないことを確認した。 ************************************		【東海第二】 島根2号炉は,当該 評価によるスクリーニ ングを実施しておら ず,全ての評価を実施 している。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	また,上記の条件を満たさない弁については,ボンネッ	ボンネットボルトの内圧と熱による伸び量及びボンネッ	
	トボルトの内圧と熱による伸び量及びボンネットフラン	トフランジと弁箱フランジの熱による伸び量を算出した。そ	
	ジと弁箱フランジの熱による伸び量を算出した。その結	の結果, ボンネットボルトの伸び量からボンネットフランジ	
	果, ボンネットボルトの伸び量からボンネットフランジと	と弁箱フランジの伸び量を差し引いた伸び量がプラスであ	
	弁箱フランジの伸び量を差し引いた伸び量がプラスであ	る弁については、伸び量がガスケットの復元量以下であり、	
	る弁については、伸び量がガスケットの復元量以下であ	評価した部位は漏えいが発生しないことを確認した。伸び量	
	り,評価した部位は漏えいが発生しないことを確認した。	がマイナスの弁についてはボンネットフランジと弁箱フラ	
	伸び量がマイナスの弁についてはボンネットフランジと	ンジがメタルタッチしており、それ以上ガスケットが圧縮し	
	<u>リフト制限板</u> がメタルタッチしており,それ以上ガスケッ	ない構造となっていることから, ボンネットナット座面及び	
	トが圧縮しない構造となっていることから, ボンネットナ	ボンネットフランジと弁箱フランジの合わせ <u>面</u> の発生応力	・設備設計の相違
	<u>ット締付部</u> の発生応力が材料の許容応力以下であり,評価	が許容応力以下であり、評価した部位は破損せず漏えいが発	【東海第二】
	した部位は破損せず漏えいが発生しないことを確認した。	生しないことを確認した。	島根2号炉の弁は、
			ボンネットフランジと 弁箱フランジがメタル タッチする構造。
	弁番号 伸び量 (mm) が スクット 復元量 発生応力 (MPa) 許容応力 (MPa) 判 定*	発生応力 許容応力 判定* 評価部位 (MPa) (MPa)	・評価結果の相違
	F003A 0.008 0.1 O F016A 0.004 0.1 O	**ンネットナット座面 <u>36~280 524~865</u> 〇	「山和木♥> 「」 【 車海箆一】
	F024A -0.023 - オ*ソネットサット座面:128 オ*ソネットサット座面:427 ○ F027A 0.015 0.1 - ○ <t< td=""><td>ポンネットフランジンと 438 (ポンネットフランジン) クローンド 45~92 105 (分類で) ○</td><td></td></t<>	ポンネットフランジンと 438 (ポンネットフランジン) クローンド 45~92 105 (分類で) ○	
	F047A 0.008 0.1 - <	※発生応力が許容応力以下であること	
	ねむ いてのおけ加了吐の沮疾 アカいしべきむしてい	ねれ、いての台は加了吐の沮疾、「日いしで訊書」でい	
	スや、以下の开は加上時の温度、上力以上で設計してい ストレカム 破損け発生せず漏ういが発生したいことを確	スマレカム 破損け発生せず漏えいが発生したいことを確	
	るここから, 戦損は光王と y m ん v か 光王 じな v ここと 唯 認 た	るここがら、戦損は光王ピッ個人 ^{いか} 光王じな ^い ここと確 取した	
		现	
	許価的位	итшплш 77 нуп луп нуп нуп нуп нуп нуп нуп нуп нуп нуп н	・設備設計の相違
		プロセス弁 <u>MV222-11A 10.4MPa 302℃</u>	【東海第二】
		$\frac{MV222-13}{Z_{c}} = \frac{8.62MPa}{302^{\circ}C} = \frac{302^{\circ}C}{202}$	
		マント弁 V222-530AX 10.4MPa 302℃	
	また,以下の弁は設計・建設規格第 I 編 別表1にて温	また,以下の弁は設計・建設規格第 I 編 別表1にて温	
	度 300℃における許容圧力を確認し,加圧時の圧力を上回	度 300℃における許容圧力を確認し,加圧時の圧力を上回	
	ることから, 破損は発生せず漏えいが発生しないことを確	ることから、破損は発生せず漏えいが発生しないことを確	
	認した。	認した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		新田田市 新田田市 新田田市 新田田市 新田田市 新田田市 新田田市 「フロセス弁 V222-154, V222-200A 9.97MPa その他の弁 ドレン弁 V222-507AX 14.97MPa V222-568X, V22-568X, V22-56X, V22-568X, V22-568X, V2X, V2X, V2X, V2X, V2	 ・設備設計の相違 【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
相呵利羽原于刀变电角 6775分 (2017.12.20版)	 (4) 計 器 (別紙 6) a. 圧力計,差圧計 以下の圧力計及び差圧計は,隔離弁の誤開放等による加 圧事象発生時の圧力以上の計装設備耐圧値を有しており, 破損は発生しないことを確認した。なお,構造材の温度上 昇に伴う耐力低下(温度-30~40℃における設計引張強さ に対する 288℃における設計引張強さの割合は SUS316Lの 場合で約 79%)を考慮しても,計装設備耐圧値は加圧時に 	 (4)計器(別紙5) a. 圧力計,差圧計 以下の圧力計及び差圧計のうち PS222-4A-1, PS222-4A-2 については,漏えいが想定されるため,株部のプロセス取合 い(外径:5mm)の断面積から,破断面積を下表のとおり評 価した。 以下の圧力計及び差圧計のうち, PS222-4A-1, PS222-4A-2 以外の計器は,隔離弁の誤開放等による加圧事象発生時の圧 力以上の計装設備耐圧値を有しており,破損は発生しないことを確認した。なお,構造材の温度上昇に伴う耐力低下(温度-30~40℃における設計引張強さに対する288℃における設計引張強さの割合はSUS316Lの場合で約79%)を考慮して 	¹ (14) 小子
	おける圧力以上となる。 計器番号 計装設備新圧 (MPa) 判定 PT-E12-N002A-1 約14.7(150kg/cm ²) ① PT-E12-N026A 約14.7(150kg/cm ²) ① PT-E12-N058A 約14.7(150kg/cm ²) ① PT-E12-N058A 約13.7(140kg/cm ²) ① FT-E12-N013 約14.7(150kg/cm ²) ① FT-E12-N015A 約14.7(150kg/cm ²) ① FT-E12-N060A 約14.7(150kg/cm ²) ① FT-C61-N001 約14.7(150kg/cm ²) ①	も,計装設備耐圧値は加圧時における圧力以上となる。	・評価結果の相違 【東海第二】
	b.温度計 日本機械学会「配管内円柱状構造物の流量振動評価指 針」(JSME S012-1998)を適用し、同期振動発生の回避又 は抑制の判定並びに応力評価及び疲労評価を実施した。そ の結果、換算流速 V,が1より小さく、組合せ応力が許容値 以下、かつ応力振幅が設計疲労限以下であることから、評 価した部位は破損せず漏えいは発生しないことを確認し た。	b. 温度計 日本機械学会「配管内円柱状構造物の流量振動評価指針」 (JSME S012-1998)を適用し,同期振動発生の回避又は抑制 の判定並びに応力評価及び疲労評価を実施した。その結果, 換算流速 V,が1より小さく,組合せ応力が許容値以下,かつ 応力振幅が設計疲労限以下であることから,評価した部位は 破損せず漏えいは発生しないことを確認した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	(同期振動発生の回避又は抑制評価)	(同期振動発生の回避又は抑制評価)	
	計器番号 流 速 V 換算流速 V _γ 換算係数率 C _n 判 定 [∞]	流速 V 換算流速 換算減衰率	・評価結果の相違
	TE-N004A 0.77 0.08 0.05 $(V_{\chi} < 1 \ \sigma \chi \sigma \beta)$ TE-N027A 0.76 0.08 0.05 $(V_{\chi} < 1 \ \sigma \chi \sigma \beta)$	計器番号 (m/sec) V_r C_n 判定*	【東海第二】
	※ 「V _y <1」、「C _n >64」又は「V _y <3.3かつC _n >2.5」のいずれかを満足すること	TE222-1A 1.26 0.03 0.21 $(V_{z} < 1 \text{ \mathcal{O}} t, z \black))$	
		$1E222-2A \qquad 1.26 \qquad 0.03 \qquad 0.21 \qquad (V_r < 1 \text{ Otr d})$	
		TE222-13A 1.26 0.03 0.21 \bigcirc (V < 1 \mathcal{O} t ϕ)	
		※「 $V_r < 1$ 」, $C_n > 64$ 」又は「 $V_r < 3.3$ かつ $C_n > 2.5$ 」のいずれかを満足すること	
	(流体振動に対する強度評価)	(流体振動に対する強度評価)	・評価結果の相違
	計器番号 組合せ応力 組合せ応力の 応力振幅 応力振幅の 設計疲労限 判 定*	応力振幅の	【東海第二】
	TE-N004A -14.7 184 0.43 76. O TE-N027A 14.7 184 0.43 76. O	計器番号 組合せ応力の 応力振幅 (MPa) 許容値(MPa) (MPa)	
	※ 組合せ応力が組合せ応力の許容値以下であること、かつ応力振幅が応力振幅の設計疲労限以下であること	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		TE222-2A 17.0 145 0.07 84 O	
		TE222-13A 17.0 165 0.07 84 ○ ※組合せ応力が組合せ応力の許容値以下であること、かつ応力振幅が応力振幅の設計疲労限以下で	
		あること	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	(5) 配 管(別紙 <u>7</u>) a.管 設計・建設規格「PPC-3411 直管(1)内圧を受ける直管」 を適用し,必要最小厚さを算出した。その結果、実機の最 小厚さは必要厚さ以上であり、評価した部位は破損せず漏 えいは発生しないことを確認した。	 (5)配管(別紙6) a.管 設計・建設規格「PPC-3411(1)内圧を受ける直管」を適用し、必要最小厚さを算出した。その結果、実機の最小厚さは、必要厚さ以上であり、評価した部位は破損せず漏えいは発生しないことを確認した。 	・評価結果の相違 【東海第二】
	b. フランジ部 設計・建設規格「PPC-3414 フランジ」を適用してフラ ンジ応力算定用応力を算出し,フランジボルトの伸び量を 評価した。その結果,伸び量がマイナスであり,フランジ 部が圧縮されることになるが,ガスケットの許容圧縮量が 合計圧縮量以上であり,評価した部位は破損せず漏えいは 発生しないことを確認した。	b. フランジ部 設計・建設規格「PPC-3414 フランジ」を適用してフラ ンジ応力算定用応力を算出し,フランジボルトの伸び量を 評価した。その結果,伸び量がマイナスであり,フランジ 部が圧縮されることになるが,ガスケットの許容圧縮量が 合計圧縮量以上であり,評価した部位は破損せず漏えいは 発生しないことを確認した。	
	評価部位 伸び量 ガスクラŀの ガスクラŀの ガスクラŀの ガスクラŀの ガスクラŀの ガスクjlの ji xôjlo ji xôjlo	評価部位 伸び量 ガスケットの ガスケットの ガスケットの h゙xbyhの h゙xbyhの h゙xbyhの 許容圧縮量 判定** 【最小值】 (mm) (mm) 【最大值】 (mm) ① ○ 75ンジ部 -0.02 ○ ○ ○ ○ ○ *#03量がマイナスの場合は、ガスケットの合計圧縮量が許容圧縮量以下であること ** ** ** ** ** **	・評価結果の相違 【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
3. 構造健全性評価の結果			・資料構成の相違
各機器に対する評価結果について以下に示す。			【柏崎 6/7】
破断が想定される箇所としては計装設備であり、また、フラン			島根2号炉の評価結
ジ部についてもボルトの伸びによる漏えいが想定されるものの,			果は,「3.2 構造健全
合計でも漏えい面積は1cm ² を超えることはないとの結果となっ			性評価の結果」に記載。
teo			
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
a / 配官 $rac{}{}$ $rac{$			
No. (MPa) (°C) (mm) (mm) (mm) (ts \geq t)			
① 406.4 9.5 S1P142 (STPT410) 8.31 6.22 ^{3/3} O			
② 406.4 12.7 STPT42 (STPT410) 11.11 6.22 ^{3/3} ○			
(3) 27.2 3.9 STPT42 3.40 0.97 ()			
7 5 288 STPT42			
① 100 200 60.5 5.5 CHTPL 4.81 2.14 O			
⑤ 34.0 4.5 STPT42 (STPT410) 3.93 1.21 〇			
17.3 2.3 2.0 0.6			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$\times 1$: t=PD ₀ /(2S η +0.8P)			
※2:管の最小厚さ(ts)が管の計算上必要な厚さ(t)以上であること ※3:1 次一般膜応力 0.6Su 適用値			
1 \ 21.3+-20, ##			
D 用 20 開 正力 計装設備耐圧 <u>地安 西斯氏相定效</u> 開口面積			
ハロ・ (MPa) (MPa) サイル サイル (m2) (cm ²) ① ①			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
② 1.65 × 破断 (F22-PI-002) 1.65 × (Ф5 導圧)			
※1:計装設備内部のダイヤフラムは破損する可能性はあるものの、その外側の高圧フラン			
ジ面は約 15MPa までの耐圧構造であるため,外部への漏えいはないと判断した			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
---	----------------------	--------------	----
<page-header><image/><image/><image/><image/></page-header>	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	

まとめ資料比較表 〔有効性評価 添付資料 2.7.2〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
4. インターフェイスシステムLOCA における破断面積の設定	4. 破断面積の設定について(別紙8)	4.破断面積の設定について(別紙7)	
3. で述べたとおり,高圧炉心注水系の電動弁開閉試験にて,原	3. の評価結果から, 隔離弁の誤開放等により残留熱除去系の	3.の評価結果から,隔離弁の誤開放等により残留熱除去系	
子炉注入逆止弁が故障により開固着し、原子炉注入電動弁が誤操	低圧設計部分が加圧されたとしても, <u>破損は発生しない</u> ことを	の低圧設計部分が加圧され、計器が破損する可能性があること	・評価結果の相違
作又は誤動作した場合、高圧炉心注水系の低圧設計のポンプ吸込	確認した。	を確認した。	【東海第二】
配管の過圧を想定しても,その漏えい面積は1cm ² を超えることは			
true.			
そこで,インターフェイスシステムLOCA における破断面積は,		上記評価に基づき、有効性評価では、計器の破断面積として	
保守的な想定とはなるがフランジ部の漏えい面積として保守的		<u>保守的に約1cm²を想定する。</u>	・評価条件の相違
<u>に10cm²を想定することとする。</u>			【柏崎 6/7】
	<u>そこで</u> ,残留熱除去系の加圧範囲のうち最も大きなシール構	さらに、残留熱除去系の加圧範囲のうち最も大きなシール構	・評価対象の相違
	造である熱交換器フランジ部に対して,保守的に弁開放直後の	<u>造である熱交換器フランジ部に対して、保守的に弁開放直後の</u>	【柏崎 6/7】
	ピーク圧力(<u>8.2MPa [gage]</u>)及び原子炉冷却材温度(288℃)	ピーク圧力(7.9MPa[gage])及び原子炉冷却材温度(288℃)	・評価条件の相違
	が同時に継続して負荷され、かつガスケットに期待しないこと	が同時に継続して負荷され、かつガスケットに期待しないこと	【東海第二】
	を想定した場合の破断面積を評価した。	を想定した場合の破断面積を評価した。	
	評価部位 圧力 (MPa) 温度 (°C) 伸び量(mm) //L1 内径 (mm) 全部材 伸び量 (mm) 破断面積 (cm ²) 熱交換器 フランジ部 8.2 288 0.19 1.31 1.19 2,120 0.31 約 21 /L1: ボルトの内圧による伸び量 /L2: ボルトの熱による伸び量 //L3: 管板及びフランジ部の熱による伸び量 //L3: 管板及びフランジ部の熱による伸び量 //L3: 管板及びフランジ部の熱による伸び量 //L3: 管板及びフランジ部の熱による伸び量	正力 (MPa) 温度 ($^{\circ}$ C) $\# U \frac{1}{2}$ (mm) $P \frac{2}{4}$	・評価結果の相違 【東海第二】
	上記評価に基づき,有効性評価では,残留熱除去系熱交換器 フランジ部 <u>に約 21 cm²の漏えいが発生すること</u> を想定する。	上記評価に基づき,有効性評価では,残留熱除去系熱交換器 フランジ部の破断面積として保守的に約16cm ² を想定する。	・評価結果の相違 【東海第一】
	なお. 評価対象のうち残留熱除去系(低圧注水系)A系及び	なお. 評価対象のうちA-残留熱除去系(低圧注水モード)	
	残留熱除去系(低圧注水系)B系以外の低圧炉心スプレイ系及	及びB-残留熱除去系(低圧注水モード)以外の低圧炉心スプ	
	び残留熱除去系(低圧注水系)と系には、加圧範囲に熱交換器	レイ系及びC-残留熱除去系(低圧注水モード)には、加圧範	
	のような大きなシール構造を有する機器は設置されていない。	囲に熱交換器のような大きなシール構造を有する機器は設置	
		されていない。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
5. 現場の想定	5. 現場の環境評価	5. 現場の環境評価	・資料構成の相違
・評価の想定と事象進展解析	ISLOCAが発生した場合,事象を収束させるために,健	ISLOCAが発生した場合,事象を収束させるために,健	【柏崎 6/7】
破断面積10cm ² のインターフェイスシステムLOCA による炉心内	全な原子炉注水系統による原子炉注水,逃がし安全弁による原	全な原子炉注水系統による原子炉注水,逃がし安全弁による原	
の挙動は、「2.7.2(3) 有効性評価の結果」に示したとおりである。	子炉減圧及び残留熱除去系によるサプレッション・プール冷却	子炉減圧及び残留熱除去系によるサプレッション・プール水冷	
<u>ここでは, 破断面積10cm² のインターフェイスシステムLOCA 発</u>	を実施する。また,漏えい箇所の隔離は,残留熱除去系(低圧	<u>却</u> を実施する。また,漏えい箇所の隔離は, <u>残留熱除去系(低</u>	
生時の現場環境(原子炉建屋内)に着眼し評価を行った。評価条	<u>注水系)</u> の注入弁を現場にて閉止する想定としている。	<u>圧注水モード)の注入弁</u> を現場にて閉止する想定としている。	
件を表1 に示す。また,評価に使用する原子炉建屋のノード分割	ISLOCA発生に伴い原子炉冷却材が原子炉建屋原子炉	ISLOCA発生に伴い原子炉冷却材が原子炉棟内に漏え	
モデルを図1 に示す。	棟内に漏えいすることで,建屋下層階への漏えい水の滞留並び	いすることで,建物下層階への漏えい水の滞留並びに高温水及	
事象進展解析 (MAAP) の実施に際して主要な仮定を以下に示す。	に高温水及び蒸気による建屋内の雰囲気温度,湿度,圧力及び	び蒸気による建物内の雰囲気温度,湿度,圧力及び放射線量の	
	放射線量の上昇が想定されることから, 設備の健全性及び現場	上昇が想定されることから, 設備の健全性及び現場作業の成立	
前提条件:事象発生と同時に外部電源喪失し原子炉スクラム,	作業の成立性に与える影響を評価した。	性に与える影響を評価した。	
インターフェイスシステムLOCA 時破断面積10cm ² ,	現場の環境評価において想定する事故条件,重大事故等対策	現場の環境評価において想定する事故条件,重大事故等対策	
健全側高圧炉心注水系による注入	に関連する機器条件及び重大事故等対策に関連する操作条件	に関連する機器条件及び重大事故等対策に関連する操作条件	
事象進展:弁誤開又はサーベイランス時における全開誤操作	は,有効性評価の解析と同様であり,ISLOCAは <u>残留熱除</u>	は、有効性評価の解析と同様であり、ISLOCAは <u>A-残留</u>	
(連続開)	<u>去系B系</u> にて発生するものとする。	<u>熱除去系(低圧注水モード)注入ライン</u> にて発生するものとす	
(この時内側テスタブルチェッキも同時に機能喪		る。	
<u>失(全開))</u>	なお,ISLOCAが <u>残留熱除去系A系</u> にて発生することを	なお, ISLOCAが <u>B-残留熱除去系(低圧注水モード)</u>	・評価条件の相違
・状況判断の開始(弁の開閉状態確認, HPCF 室	想定した場合,破断面積(約 <u>21</u> cm ²)及び破断箇所(熱交換器	<u>注入ライン</u> にて発生することを想定した場合,破断面積(約	【東海第二】
漏えい検出,ポンプ吐出圧力,エリアモニタ	フランジ部)はB系の場合と同じであり、漏えい発生区画は東	<u>17</u> cm ²)及び破断箇所(残留熱除去系熱交換器フランジ部 <u>及び</u>	
指示值上昇)	側となることから、原子炉建屋原子炉棟の東側区画の建屋内雰	<u> 残留熱除去系機器等</u>)は <u>A-残留熱除去系(低圧注水モード)</u>	
原子炉水位L2 到達:原子炉隔離時冷却系の自動起	囲気温度等が同程度上昇する。	<u>注入ラインの場合と同等であり、原子炉建物における雰囲気温</u>	
動		度等は同程度上昇する。	
事象発生約15 分後:急速減圧		<u>C-残留熱除去系(低圧注水モード)注入ライン及び低圧炉</u>	
原子炉水位L1.5 到達:高圧炉心注水系の自動起動		心スプレイ系注入ラインにて発生することを想定した場合,漏	
事象発生約4 時間後:インターフェイスシステム		<u>えい箇所が圧力スイッチ(各ポンプ室)のみであり,漏えい量</u>	
LOCA 発生箇所隔離		がA-残留熱除去系(低圧注水モード)注入ラインのISLO	
		<u>CAより小規模となるため、原子炉建物における雰囲気温度等</u>	
 ·評価の結果 		<mark>の上昇</mark> は,A-残留熱除去系(低圧注水モード)注入ラインの	
○温度・湿度・圧力の想定		<u>ISLOCA<mark>発生時よりも小さくな</mark>る。</u>	
主要なパラメータの時間変化を図2 から図4 に示す。			
原子炉建物内の温度は、事象発生直後は上昇するものの15 分			
後に原子炉減圧した後は低下する。また、弁隔離操作のために			1
アクセスする弁室の温度も同様に,原子炉減圧操作後に低下し			
た後,約38℃程度で推移する。湿度については破断箇所からの			I
漏えいが継続するため高い値で維持されるものの,原子炉減圧			1
及び破断箇所隔離操作を実施することで、事象発生約4 時間以			1
降低下する傾向にある。圧力については破断直後に上昇するも			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
ののブローアウトパネルが開放され、その後は大気圧相当とな			
<u>る。</u>			
○冷却材漏えいによる影響			
破断面積10cm ² のインターフェイスシステムLOCAに伴う原子			
炉建屋内への原子炉内及び復水貯蔵槽からの漏えい量は,原			
子炉圧力容器及び復水貯蔵槽からの流出量を考慮しても最大			
で約200m ³ /h であり,高圧炉心注入ポンプ吸込弁または復水貯			
蔵槽側吸込弁の閉止や原子炉水位を漏えい配管の高さ付近で			
維持することでさらに漏えい量を少なくすることができる。			
破断した系統の区分と他区分の非常用炉心冷却系が機能喪			
<u>失に至る約1,800m³(浸水高さ約2.5m)に到達するには9 時間</u>			
以上の十分な時間余裕がある。			
○現場の線量率の想定について			
・評価の想定			
原子炉格納容器バウンダリが喪失することで、原子炉圧力			
容器から直接的に放射性物質が原子炉建屋原子炉区域内に放			
出される。			
漏えいした冷却材中から気相へと移行される放射性物質及			
び燃料から追加放出される放射性物質が原子炉建屋から漏え			
いしないという条件で現場の線量率について評価した。			
評価上考慮する核種は現行許認可と同じものを想定し(詳			
細は表2,3 参照), 全希ガス漏えい率(f 値)については,			
近年の運転実績データの最大値である3.7×10 ⁸ Bq/s を採用し			
て評価する。なお,現行許認可ベースのf 値はこの値にさら			
に一桁余裕を見た10 倍の値である。これに伴い,原子炉建屋			
内へ放出される放射性物質量は,許認可評価のMSLBA(主蒸気			
管破断事故)時に追加放出される放射性物質量の1/10 とな			
る。なお、冷却材中に存在する放射性物質量は、追加放出量			
の数%程度であり大きな影響はない。また,現場作業の被ば			
くにおいては、放射線防護具(酸素呼吸器等)を装備するこ			
とにより内部被ばくの影響が無視できるため、外部被ばくの			
みを対象とした。			
 ・評価の方法 			
原子炉建屋内の空間線量率は、以下のサブマージョンモデ			
ルにより計算する。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
$D = 6.2 \times 10^{-14} \cdot \frac{Q_Y}{V_{R/B}} E_Y \cdot \{1 - e^{-\mu \cdot R}\} \cdot 3600$			
ここで, D :放射線量率 (Gv/h)			
B ・ 派 新藤重平 (Gy/H) 6.2×10^{-14} : サブマージョンモデルによる換算係数 $\left(\frac{dism^3 - Gy}{MeV Bqs}\right)$ Q_{γ} : 原子炉区域内放射能量 (Bq : γ 線実効エネルギ 0.5MeV 換算値) $V_{R/B}$: 原子炉区域内気相部容積 (86,000m ³) E_{γ} : γ 線エネルギ (0.5MeV/dis) μ : 空気に対する γ 線のエネルギ吸収係数 (3.9×10 ⁻³ /m) R :評価対象部屋の空間容積と等価な半球の半径 (m) V_{OF} : 評価対象エリア (原子炉建屋地上1階) の容積 (2,500m ³)			
$R = \sqrt[3]{\frac{3V_{OP}}{2\pi}}$			
 ・評価の結果 評価結果を図5 に示す。外部被ばくは最大でも約15mSv/h 程度であり、時間減衰によってその線量率も低下するため、 線量率の上昇が現場操作や期待している機器の機能維持を妨 げることはない。 なお、事故時には原子炉建屋内に漏えいした放射性物質の一部が ブローアウトパネルを通じて環境へ放出されるが、中央制御室換 気空調系の換気口の位置はプルームの広がりを取り込みにくい箇 所にあり、中央制御室内に放射性物質を大量に取り込むことはな いと考えられる(図6)。さらに、これらの事故時においては原子 炉区域排気放射能高の信号により中央制御室換気空調系が非常時 運転モード(循環運転)となるため、中操にいる運転員は過度な 被ばくを受けることはない。 			
	(1) 設備の健全性に与える影響について 有効性評価において、 <u>残留熱除去系B系</u> におけるISLO CA発生時に期待する設備は、原子炉隔離時冷却系、低圧炉 心スプレイ系、残留熱除去系A系及び低圧代替注水系(常 設)、逃がし安全弁並びに関連する計装設備である。 ISLOCA発生時の原子炉建屋原子炉棟内環境を想定 した場合の設備の健全性への影響について以下のとおり評 価した。	 (1)設備の健全性に与える影響について 有効性評価において、<u>A-残留熱除去系(低圧注水モー</u>) <u>注入ライン</u>におけるISLOCA発生時に期待する設備 , <u>隔離操作を行う注水弁、原子炉隔離時冷却系、高圧炉心</u> プレイ系、B-残留熱除去系及び逃がし安全弁並びに関連 る計装設備である。 漏えい量が最も多く環境条件の厳しくなるA-残留熱 去系(低圧注水モード)注入ラインでのISLOCA発生の原子炉棟内環境を想定した場合の設備の健全性への暴 について、以下のとおり評価した。なお、有効性評価でれ した以外の系統(B-残留熱除去系(低圧注水モード)注 	・評価条件の相違 は 【東海第二】 島根2号炉は,ISLOC A発生下において,高圧 注水機能に対する対策 の有効性を評価してい る。 影響 主入

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		ライン、C-残留熱除去系(低圧注水モード)注入ライン及	
		び低圧炉心スプレイ系注入ライン)においてISLOCA発	
		生時の原子炉棟内環境を想定した場合でも, 表 4-1~4-4 に	
		示すとおり、ISLOCA対応に必要な設備の健全性に影響	
		がないことを確認している。	
	a. 溢水による影響(別紙9,10)	<u>a. 溢水による影響(別紙8)</u>	
	東海第二発電所の原子炉建屋原子炉棟は、地下2階から		
	5 階まで耐火壁を設置することで東側区分と西側区分を物		
	理的に分離する方針である。ISLOCAによる原子炉冷	<u>ISLOCAによる原子炉冷却材の漏えいのうち, A-</u>	
	却材の漏えいは, 残留熱除去系 B系が設置されている西側	残留熱除去系圧力スイッチからの溢水は,漏えい発生区画	
	区画において発生するのに対して,原子炉隔離時冷却系,	と隣接する原子炉隔離時冷却系のポンプ室との境界に水密	
	低圧炉心スプレイ系及び残留熱除去系A系は東側区画に	扉を設置し区画化されているため,原子炉隔離時冷却系の	
	位置していることから、溢水の影響はない。	ポンプ室は溢水の影響を受けない。また, A-残留熱除去	
	低圧代替注水系(常設)は、ポンプが原子炉建屋原子炉	系熱交換器からの溢水は、漏えい発生区画で滞留したのち	・設備設計の相違
	<u>棟から物理的に分離された区画に設置されているため、溢</u>	に, 隣接区画へ伝播し, 最終滞留箇所であるトーラス室に	【東海第二】
	水の影響はない。また、低圧代替注水系(常設)の電動弁	排出されるが, 高圧炉心スプレイ系及びB-残留熱除去系	
	のうち原子炉建屋原子炉棟内に設置されるものは原子炉	のポンプ室は、トーラス室との境界に水密扉を設置し区画	
	建屋原子炉棟3階以上に位置しており、事象発生から評価	化されているため、これらのポンプ室は溢水の影響を受け	
	上,現場隔離操作の完了時間として設定している5時間ま	ない。また、系統の運転に必要な補機冷却系等の設備も溢	
	での原子炉冷却材の流出量は約 300t であり, 原子炉冷却	水の影響を受けないため,系統の機能は維持される。	
	材が全て水として存在すると仮定しても浸水深は地下2階	逃がし安全弁は,区画として分離されている原子炉格納	
	の床面から約 2m 以下であるため, 溢水の影響はない。	容器内に設置されており, 関連計装設備も含め溢水の影響	
	なお,ブローアウトパネルに期待しない場合でも,同様	はなく,逃がし安全弁の機能は維持される。	・評価方針の相違
	<u>に必要な設備への影響はない。</u>		【東海第二】
			島根2号炉は,SA設
			備である BOP の開放に
			期待した評価としてい
			る。
	b. 雰囲気温度・湿度による影響 <u>(別紙 9, 10)</u>	b. 雰囲気温度・湿度による影響 <u>(別紙8)</u>	
	<u>東側区画</u> における温度・湿度については,初期値から有	原子炉隔離時冷却系,高圧炉心スプレイ系及びB-残留	
	意な上昇がなく、原子炉隔離時冷却系、低圧炉心スプレイ	熱除去系のポンプ室等の溢水の流入がない区画における温	
	系及び残留熱除去系A系への影響はない。また、低圧代替	度・湿度については、初期値から有意な上昇はないため、	
	<u>注水系(常設)の原子炉建屋原子炉棟内の電動弁は、西側</u>	系統の運転に必要な補機冷却系等を含め、これらの系統機	
	区画に位置するものが2個あるが、これらはISLOCA	<u>能は維持される。</u> また, <u>隔離操作を行う注水弁(MV222-5A</u>	
	発生時の原子炉建屋原子炉棟内の環境を考慮しても機能	<u>)は、</u> ISLOCA発生時の雰囲気温度・湿度に対し耐性	
	が維持される設計とすることから影響はない。さらに、逃	を有していることから、機能維持される。さらに、逃がし	
	がし安全弁及び関連する計装設備についても, <u>ISLOC</u>	安全弁及び関連する計装設備についても、区画として分離	1

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	A発生時の原子炉建屋原子炉棟内の環境において機能喪	されている原子炉格納容器内に設置されており、ISLO	
	失することはない。	CA発生時の雰囲気温度・湿度に伴う影響はなく、逃がし	
	なお、ブローアウトパネルに期待しない場合でも、同様		・評価方針の相違
	に必要な設備への影響はない。		【東海第二】
			島根2号炉は、SA設
			備である BOP の開放に
			期待した評価としてい
			ろ.
			℃ 0
	c 放射線に上ろ影響(別紙11)	c	
	同子 行減 圧時 に 燃料 から 追加 放出 され ろ核 分裂 生成物の	原子恒減圧時に燃料から追加放出される核分裂生成物	
	全量が 原子恒建屋原子恒棟内に瞬時に移行するという保	の全量が「原子恒棟内に瞬時に移行するという保守的た冬	
	字的か冬件で評価した結果 地上3階におけろ吸収線量率	供で評価した結果 車側 PCV ペネトレーション室における	
	は最大でも約 15 2mGy /h 程度であり 設計基準事故対象設	吸収線量率は最大でも約80mGy/h 程度であり 設計基準事	 ・評価結果の相違
	備の設計条件であろ1 $7kGv$ と比較しても十分か余裕があ	故対象設備の設計条件であろ1 76kGy と比較しても十分な	【東海第二】
	ろため 期待していろ機器の機能維持を妨げることけたい	全裕があるため 期待している機器の機能維持を妨げるこ	
		とはかい	
6. 現場の隔離操作	(2) 現場操作の成立性に与える影響について	(2) 現場操作の成立性に与える影響について	
現場での高圧炉心注水隔離弁の隔離操作が必要となった場合、			
運転員は床漏えい検知器やサンプポンプの起動頻度増加等により	CA発生時に必要な現場操作は、残留熱除去系B系の注入弁	A発生時に必要な現場操作は、A-残留熱除去系の注水弁の閉	
現場状態を把握するとともに、換気空調系による換気や破断から	の閉止操作である。	止操作である。B-残留熱除去系、C-残留熱除去系、低圧炉	
の蒸気の漏えいの低減(原子炉減圧や原子炉停止時冷却(実施可		心スプレイ系でISLOCAが発生した場合も現場操作は,注	
能な際において))等を行うことで現場環境の改善を行う。		水弁の閉止操作である。	
現場の温度は3時間程度で約38℃程度まで低下することから,	残留熱除去系B系の注入弁の操作場所及びアクセスルー	ISLOCA発生時における原子炉棟内状況概要を図6に,	
酸素呼吸器及び耐熱服等の防護装備の着用を実施することで現場	トを第4図に示す。残留熱除去系B系におけるISLOCA	A-残留熱除去系の注水弁の操作場所, アクセスルート及び漏	
での隔離操作は実施可能である。	発生時は、原子炉建屋原子炉棟内の環境を考慮して、主に漏	えい水が伝播する範囲を図7に示す。また,漏えい水が伝播す	
	えいが発生している <u>西側区画とは逆の東側区画</u> を移動する	<u>る範囲の溢水水位を表6に示す。A-残留熱除去系</u> における I	・評価条件の相違
	こととしている。	SLOCA発生時は、 <u>原子炉棟</u> 内の環境を考慮して、漏えいが	【柏崎 6/7,東海第二】
		発生している <u>階より上階</u> を移動することとしている。	ISLOCA 時の事象想定
	ISLOCA発生時の原子炉建屋原子炉棟内環境を想定	<u>漏えい量が最も多いA-残留熱除去系での</u> ISLOCA発	の違いにより、事象収
	した場合のアクセス性への影響を以下のとおり評価した。	生時の <u>原子炉棟内</u> 環境を想定した場合のアクセス性への影響	束のための対応操作が
		を以下のとおり評価した。	異なる。(操作場所及び
		なお,有効性評価で想定した以外の系統(B-残留熱除去系	アクセスルート含む)
		(低圧注水モード)注入ライン,C-残留熱除去系(低圧注水	・記載表現の相違
		モード)注入ライン及び低圧炉心スプレイ系注入ライン)にお	【東海第二】
		いてISLOCA発生時の原子炉棟内環境を想定した場合で	島根2号炉は,各
		も,表4-1~4-4に示すとおり,漏えい隔離操作に影響がない	系統からのISLOC

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		ことを確認している。	A時の影響確認を記載
	a. 溢水による影響(<u>別紙 9,10</u>)	a. 溢水による影響(<u>別紙8</u>)	
	<u>東側区画は、</u> ISLOCAによる原子炉冷却材漏えいが	図6及び図7に示すとおり、ISLOCAによる原子炉	・記載表現の相違
	発生する西側区画とは物理的に分離されていることから,	冷却材漏えいが発生する <u>階より上階を移動することから</u> ,	【柏崎 6/7】
	溢水による <u>東側区画の</u> アクセス性への影響はない。また,	溢水によるアクセス性への影響はない。また, <u>注水弁</u> は <u>原</u>	島根2号炉は、溢水、
	<u>注入弁は西側区画の3階</u> に設置されており,この場所にお	<u>子炉棟内中1階(EL19.0m)の床面上</u> に設置されており,こ	雰囲気温度, 放射線に
	いて <u>注入弁</u> の現場閉止操作を実施するが,事象発生から評	の場所において <u>注水弁</u> の現場閉止操作を実施するが、事象	よる影響について,個
	価上,現場隔離操作の完了時間として設定している <u>5時間</u>	発生から評価上,現場隔離操作の完了時間として設定して	別に評価結果を記載。
	までの原子炉冷却材の流出量は <u>約 300t</u> であり,原子炉冷	いる <u>10 時間</u> までの原子炉冷却材の流出量は <u>約 600m³</u> であり	・評価条件の相違
	却材が全て水として存在すると仮定しても浸水深は地下 2	,原子炉冷却材が全て水として存在すると仮定しても <u>アク</u>	【東海第二】
	階の床面から <u>約 2m 以下であるため</u> ,操作及び操作場所へ	セスルート上に溢水はなく,操作及び操作場所へのアクセ	ISLOCA 時の事象想定
	のアクセスへの影響はない。	スへの影響はない。	の違いによる操作場所
	なお、ブローアウトパネルに期待しない場合でも、同様		及びアクセスルートの
	に操作及び操作場所へのアクセスへの影響はない。		相違
			・解析結果の相違
			【東海第二】
			・評価方針の相違
			【東海第二】
			島根2号炉は,SA設
			備である BOP の開放に
			期待した評価としてい
			る。
	b. 雰囲気温度・湿度による影響(<u>別紙 9, 10</u>)	b. 雰囲気温度・湿度による影響(別紙8)	
	東側区画における温度及び湿度については、初期値から		・設備設計の相違
	有意な上昇がなく、アクセス性への影響はない。		【東海第二】
	<u>また,西側区画のうち</u> アクセスルート及び操作場所となる	アクセスルート及び操作場所となる原子炉棟内において	・評価条件の相違
	原子炉建屋原子炉棟3階西側において,原子炉減圧後に建	,原子炉減圧後に原子炉棟内環境が静定する事象発生の <u>約</u>	【東海第二】
	屋内環境が静定する事象発生の約2時間後から現場隔離操	<u>9時間後</u> から現場隔離操作の完了時間として設定している	ISLOCA 時の事象想定
	作の完了時間として設定している5時間後までの温度及び	<u>10時間後</u> までの温度及び湿度は,最大で約 44℃及び約 100	の違いによる操作場所
	湿度は,最大で約44℃及び約100%である。残留熱除去系	%である。 <u>A-残留熱除去系の注水弁</u> の閉止操作での原子	及びアクセスルートの
	<u> B系の注入弁</u> の閉止操作は <u>2</u> チーム体制にて交代で実施	炉棟内の滞在時間は <u>約38分(表5参照)</u> であるため,操作	相違
	し,1 チーム当たりの原子炉建屋原子炉棟内の滞在時間は	場所へのアクセス及び操作は可能である*1。なお、操作場	・解析結果の相違
	約36分であるため,操作場所へのアクセス及び操作は可	所への移動及び現場操作を実施する場合は、保護具(汚染	【東海第二】
	能である**。なお、操作場所への移動及び現場操作を実施	防護服, <u>耐熱服</u> ,個人線量計, <u>作業用長靴,酸素呼吸器</u> ,	 ・運用の相違 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	する場合は, <u>放射線防護具</u> (タイベック, <u>アノラック</u> ,個	綿手袋,ゴム手袋)を着用する。	【東海第二】
	人線量計,長靴・胴長靴,自給式呼吸用保護具,綿手袋,		島根2号炉は、2名
	ゴム手袋)を着用する。		1チームにて対応す

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	※ 想定している作業環境(最大約 44℃)においては、主に低温	※1 想定している作業環境(約44℃)においては、主に低温や	る。
	やけどが懸念されるが、一般的に、接触温度と低温やけどに	けどが懸念されるが、一般的に、接触温度と低温やけどに	・運用の相違
	なるまでのおおよその時間の関係は、44℃で3時間~4時間	なるまでのおおよその時間の関係は,44℃で3時間~4時	【東海第二】
	として知られている。(出典:消費者庁 News Release (平成	間として知られている。(出典:消費者庁 News Release	島根2号炉は、温度
	25年2月27日))	(平成 25 年 2 月 27 日))	の緩和対策として耐熱
			服を着用する。
	c. 放射線による影響(<u>別紙 11</u>)	c. 放射線による影響(<u>別紙9</u>)	
	原子炉減圧時に燃料から追加放出される核分裂生成物	原子炉減圧時に燃料から追加放出される核分裂生成物の	
	の全量が,原子炉建屋原子炉棟内に瞬時に移行するという	全量が,原子炉棟内に瞬時に移行するという,保守的な条	
	保守的な条件で評価した結果,線量率は最大で <u>約 15.2mSv</u>	件で評価した結果,線量率は最大で <u>約 8.0mSv/h</u> である。 <u>A</u>	
	<u>/h</u> である。残留熱除去系B系の注入弁の閉止操作 <u>は2チ</u>	<u>ー残留熱除去系</u> の注水弁の閉止操作での <u>原子炉棟内の滞在</u>	・評価結果の相違
	ーム体制にて交代で実施し,1 チーム当たりの原子炉建屋	<u>時間は約 38 分^{※1}である</u> ため, 作業時間を保守的に 1 時間と	【東海第二】
	<u>原子炉棟内の滞在時間は約 36 分である</u> ため,作業時間を	設定し時間減衰を考慮しない場合においても作業員の受け	
	保守的に1時間と設定し時間減衰を考慮しない場合におい	る実効線量は最大で <u>約 8.0mSv</u> となる。また,有効性評価に	
	ても作業員の受ける実効線量は最大で約 <u>15.2mSv</u> となる。	おいて現場操作を開始する事象発生の約 <u>9</u> 時間後における	・評価結果の相違
	また、有効性評価において現場操作を開始する事象発生の	線量率は <u>約1.3mSv/h</u> であり,この場合に作業員の受ける実	【東海第二】
	約 <u>3</u> 時間後における線量率は <u>約5.6mSv/h</u> であり,この場	効線量は <u>約1.3mSv</u> となる。	・評価結果の相違
	合に作業員の受ける実効線量は <u>約 5.6mSv</u> となる。		【東海第二】
	なお、事故時には原子炉建屋原子炉棟内に漏えいした放	なお、事故時には原子炉棟内に漏えいした放射性物質の	
	射性物質の一部はブローアウトパネルを通じて環境へ放	一部は <u>原子炉建物</u> ブローアウトパネルを通じて環境へ放出	
	出されるおそれがあるが、これらの事故時においては原子	されるおそれがあるが、これらの事故時においては原子炉	
	炉建屋放射能高の信号により中央制御室の換気系は閉回	建物放射能高の信号により中央制御室の換気系は再循環運	
	路循環運転となるため、中央制御室内にいる運転員は過度	<u>転モード</u> となるため、中央制御室内にいる運転員は過度な	
	な被ばくの影響を受けることはない。	被ばくの影響を受けることはない。	
1. 公 來 做 は < に つ い ()			次が進みの相当
インターノエイスシステムLOCA が発生した場合、原于炉建産内			・ 資料(構成の)相遅
に放山された核力表生成物がフローノリトハイルの用放により入			111回 0/1
<u> 风中に放山される。この場合にわける知地現外での</u> 美知禄里を計 低した。 証価条件は $=1_{\circ}2$ (但) $=1_{\circ}0$ (面子 同子 同社 日本 の 二 日子 同子 同社 日本 1 0 2 (日) $=1_{\circ}0$ (1) (1) (1) (1) (1) (1) (1) (1			局限 2 万炉は, 敖地 倍周での宝林娟長にの
$ $			現外での美効縁重にう
<u> 産路朱</u> 件」は味く)に使りものとし、その他の朱件として、			いて「0. 敖地現外の
ロから痛えいりる行动材が減圧の騰によって気体となる方が建産			夫効禄里評価につい
<u> 内</u> メ相部、移11されるものとし、 阪樹口がら備えいりる行却材中 のお射性物質が気相。 投行されて割合け、 海転時冷却状景し減圧			
<u>「你嗎による然光刀の前日から昇化した。然料から迫加成田される</u> 抜射桃物質が写相。我行されて割合け、 嫌料 体内 ギャップ 如 の せ			
<u></u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所	2号炉	備考
割合から算定した。また、破断口及び逃がし安全弁から流出する					
蒸気量は、各々の移行率に応じた量が流出するものとした(詳細					
は図7 参照)。					
評価の結果,敷地境界における実効線量は約4.7×10 ⁻² mSv とな					
り,「2.3.1 全交流動力電源喪失(外部電源喪失+DG 喪失)」にお					
ける耐圧強化ベント系によるベント時の敷地境界での実効線量					
<u>(約4.9×10⁻²mSv)及び5mSv を下回った。</u>					
なお,評価上は考慮していないものの,原子炉建屋内に放出さ					
れた放射性物質はブローアウトパネルから外部に放出されるまで					
の建屋内壁への沈着による放出量の低減に期待できること、及び					
冷却材中の放射性物質の濃度は運転時冷却材量に応じた濃度を用					
いているが実際は原子炉注水による濃度の希釈に期待できること					
により、更に実効線量が低くなると考えられる。					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		C A 発生時)	
		(法人におけるISLO(潮えい協所隔離操作 潮えい協所隔離操作 准本介(W222-5A) 東側PCVベネルーション第(EL16h) 東側PCVベネルーション第(EL16h) 市のたつだしてよりも上層に低 さり潮えいが発生する機器の設置 さいあえているたつでAに まりあたいるたつですとない 正しているため、溢水の影響を会 です、隔離操作及び操作場所への アクセスは可能である。 所作時間でののため、約40のた のであるため、「第4400年 ではたいるでの である。 第1.3mSv/hに対して、操作 時間(後動時間含む)を約1.時間 と想たした場合でも、実効線融は が1.3mSv/hに対して、操作 時間(後動時間含む)を約1.時間 と想たした場合でも、実効線融は が1.3mSv/hに対して、操作 時間(後動時間含む)を約1.時間 と想たした場合でも、実効線融は が1.3mSv/hに対して、操作 時間といるがのがかないな作場所への でする。 第4400年 第4400年 第440年 第540年 第550	
		A 一残留熱疾去法(原子有 長宿熱疾去法(原子有 存止時治却モード)に よる原子病陰熱 商子病理物(加工)。) 非免疫理熱除去2時間後 同点 一方い。 本日一残留熱除去3時間後 同子 一方い。 一方い。 一方い。 一方い。 一方い。 一方い。 一方い。 一方い。 一方い。 一方い。 一方い。 一方の。 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	
		 (生産認約結果(サブレ ※留熱線法系(サブレ	
		応操行の成立 総構築及び 総構築及び 部長期のスプレイ系 原子原始後に1.300 東京原始後に1.300 第次アレイション 本常能後のに1.300 前点 市市で、スプレイ系 市市で、大レイ系 市市で、 本市でに高田町で、 大レイのの創作 市たい。 市市で、 市で、	
		(建全性及び対) 海圧炉心スプレイ3 原子炉隔離時待却系 原子炉隔離時待却系 原子炉隔離時待却系が 原子炉隔離時待却系が 可定 可た 可た 一 一 一 一 一 一 一 一 一 一 一 一 一	
) C A 時の設備の 進がし安全弁による 膨子が減圧 進がし安全弁による 原子が減圧 進がし安全弁は原子炉格 調査がらの操作の ため,操作可能である。 やり、関値計要品も含め影 響はない。 整はない。 整はない。 一中央制御室からの操作の ため,操作可能である。 でもの、操作可能である。 でもの、操作可能である。 でもの、操作可能である。 が、並がし安全弁は原子炉格	
		ISLC	
		★ 4 - 1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉 備	考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二季	発電所	(2018. 9. 12 版						島根原子	力発電度	近 2 長	予炉		備考	
							表4-4 ISLOCA時の設備の健全性及び対応操作の成立性確認結果(低圧炉心スプレイ系におけるISLOCA発生時)	進がし安全弁による 原子姫隔離時治却承及び 残留熟除去系(サブレ)残留熟除去系(ボ子炉 が応手順 原子炉滅圧 高圧炉心スプレイ系による原子炉注水 ジンョン・ブール水浴 停止時冷却モート)に 漏えい箇所隔離操作 却モート)による原子 よる原子炉除熟	機器 透がし安全非 原子手腕離時治現系 高圧中心スプレイ系 A(B)-残留熟除去系 注水弁(W23-2) mmm maximum maximum maximum maximum maximum maximum	設置場所 原子炉粉密容約9 原子炉弛物(ELI.3m) 原子炉弛物(ELI.3m) 原子炉弛物(E.I.1.3m) 南角PCV<ネレー>ュン室(ELI.9m) 時間 事象発生から波にまで 事象発生が 事象発生の う後 事象発生きは分後 事象発生き時間後 非象発生り時間 24-4-4-4-4-4-4-2-2-2-2-2-2-2-2-2-2-2-2-		警示ない。 常用気湿 中央規御室からの操作の 同広 エレない。 生しない。 アクセスは可能である。 雰囲気 アクセスは可能である。 アクセスは可能である。 アクローンはいい。 アクローンローンはいい。 アクローンローンローンローンローンローンローンローンローンローンローンローンローンロ	新常語の「2011年1月11日」では「10月1日」	放射線量 ・中央制鋼室からの操作の 同左	工程:機器の機能維持		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		 田田市	
		間及び操作の想定時 こ-残留熟除去系注水弁 C-残留熟除去系注水弁 「所要時間目安39分) (所要時間目安時間2分(後 動経路:原子炉棟地上1階 (第2チェックボイント) から原子炉棟地上2階(東 備工アロック) (2)移動: 所要時間目安時間6分(後 動経路:原子炉棟地上2階(東 (実働工アロック) (3)花水寺隔離政作: 所要時間時間31分(操作 対象1弁:原子炉棟地上2 (東檜田上2階(東 個工アロック)の (3)花水寺隔離政作: 所要時間時間31分(操作 対象1弁:原子炉棟地上2 階(西側PCVベネトレー ション室) 時間となる。	
		路生時の現場滞在時 B-残留熟除去系注水弁 B-残留熟除去系注水弁 高離操作の場合 約37分*2 約37分*2 (所要時間目安39分) (所要時間目安時間2分(移 動經路:原子炉棟地上2階(東 (第2チェックボイント) から原子炉棟地上2階(東 個エアロック) (2)移動: 所要時間目安時間6分(移 動經路:原子炉棟地上2階(東 (東 個エアロック) (2)移動: 所要時間目安時間6分(移 動経路:原子炉棟地上2階(東 個エアロック) (3)注水弁隔離換作: 所要時間時間31分(操作 対象1弁:原子炉棟地上2 時(西創下CVペネトレー ション室) 1時間が、原子炉棟内の滞在	
		表5 ISLOCA 大一段留熟除去系注水弁 局離操作の場合 約38分 ^{#2} 約38分 ^{#2} 約38分 ^{#2} 1時間 (所要時間目安時間2分(後 動経路:原子炉棟地上1階 (第2チェックボイント) から原子炉棟地上2階(東 側エアロック) (3)移動: 所要時間日安時間7分(後 動経路:原子炉棟地上2階 (東側エアロックから原 子炉棟地上2階 (東側エアロックから原 子炉棟地上2階 (東側20) の往復 (3)注水寺隔離操作: 所要時間時間31分(操作 対象1弁:原子炉棟地上2階 (東側270) の在復 (3)注水寺隔離操作: 所要時間時間31分(操作 対象1弁:原子炉棟地上 中1階(東側20) の合花 (3)注水寺隔離操作: (3)注水寺隔離操作: (3)注水寺隔離操作: (3)注水寺隔離操作: (3)注水子所離離作: (3)注水子所	
		注水弁の閉止操作での 原子炉棟内の滞在時間 想定時間 (所要時間目安) (所要時間目安)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所 (2018.9.12版) 1-7274/LO~胎野功難 図 F蹠 1-7274/LO~胎野功難 図 F蹠	島根原子力発電所 2号炉	備考 ・記載表現の相違 【東海第二】 島根2号炉は,図6 及び図7に,溢水状況 概要,溢水状況及び現 場アクセスルート図を 記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	<u>島根原子力発電所 25</u> E.34.8a E.34.8a E.34.8a E.34.8a E.13.8a E.13.8a E.13.8a E.13.8a E.1.3a 図 6 A-残留熱除去系 原子炉
		<u>図7 A一残留熱除去系 溢水</u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		[
		図7 A-残留熱除去系 溢水範囲 (2/2)	
		表 <u>6</u> — <u>A</u> -残留熟除去系 溢水水位	
		破断箇所 漏えい量[m ³] ^{※1} 伝播する区画 溢水水位 (EL[m]) (FL+[m] ^{*2}) (FL+[m] ^{*2}) (FL+[m] ^{*2}) (FL+[m] ^{*2})	
		A一残留熱除去系 1階 0.17 ^{※3}	
		熱交換器 000 (13.3 Lm) // ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		A-残留熱除去系 35 1.3[m]) 0.65 圧力スイッチ 35 (1.3[m]) 0.65	
		※1 事象発生10時間後の溢水量 ※2 伝播を考慮した水位	
		※3 ハッチからの排出評価を実施	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
8. まとめ	(3) 結 論	(3)結論	
5. 及び6. で示した評価結果より, 破断面積10cm ² のインターフェ	ISLOCA発生時の原子炉建屋原子炉棟内環境を想定	ISLOCA発生時の原子炉棟内環境を想定した場合で	
イスシステムLOCA 発生による現場の温度上昇は小さく(3 時間程	した場合でも、ISLOCA対応に必要な設備の健全性は維	も、ISLOCA対応に必要な設備の健全性は維持される。	
度で約38℃程度),また,現場線量率についても15mSv/h 以下であ	持される。また、中央制御室の隔離操作に失敗した場合でも、	また、中央制御室の確認操作に失敗した場合でも、現場での	
ることから現場操作の妨げとはならず、また設備の機能も維持さ	現場での隔離操作が可能であることを確認した。	隔離操作が可能であることを確認した。	
れる。したがって、炉心損傷防止対策として期待している原子炉			
隔離時冷却系による炉心冷却、残留熱除去系による原子炉格納容			
器除熱等の機能も維持可能である。			

まとめ資料比較表 〔有効性評価 添付資料 2.7.2〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	6. 非居住区域境界及び敷地境界の実効線量評価について	6. 敷地境界の実効線量評価について	・評価条件の相違
	ISLOCAの発生後,原子炉建屋原子炉棟が加圧されブロー	ISLOCAの発生後,原子炉棟が加圧され原子炉建物ブロー	【東海第二】
	アウトパネルが開放された場合,原子炉建屋原子炉棟内に放出さ	アウトパネルが開放された場合、原子炉棟内に放出された核分裂	島根2号炉は,隣接する
	れた核分裂生成物がブローアウトパネルから大気中に放出される	生成物が原子炉建物ブローアウトパネルから大気中に放出される	原子力事業者がないた
	ため、この場合における <u>非居住区域境界及び</u> 敷地境界の実効線量	ため、この場合における敷地境界の実効線量を評価した。	め敷地境界を評価地点
	を評価した。		としている。
	その結果、非居住区域境界及び敷地境界における実効線量はそ	その結果,敷地境界における実効線量は <u>約3.9mSv</u> となった。	・評価結果の相違
	<u>れぞれ約1.2×10⁻¹mSv及び約3.3×10⁻¹mSv</u> となり, <u>「2.6 LO</u>		【東海第二】
	<u>CA時注水機能喪失」における耐圧強化ベント系によるベント時</u>		
	の実効線量(非居住区域境界:約 6.2×10 ⁻¹ mSv,敷地境界:約		
	$6.2 \times 10^{-1} \text{mSv}$)及び事故時線量限度の 5mSv を下回ることを確認		
	した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙1	別紙1	
	や印地区上で、「ロズボギム」とおいって、		
	残留熱除去糸A, B糸電動开作動試験について	A, B-残留熱除去糸龍動开作動試験について	
	この試験は、保安規定第39条に基づく試験であり、原子炉	この試験は、保安規定第39条に基づく試験であり、原子炉	
	の状態が運転、起動又は高温停止において1ヶ月に1回の頻	の状態が運転、起動又は高温停止において1箇月に1回の頻	
	度で実施する。	度で実施する。	
	保安規定第39条(抜粋)	保安規定第39条(抜粋)	
	低圧注水系における注入弁,試験可能逆止弁,格納容器スプ	低圧注水系(格納容器冶却系)の注水弁、ドライウェルスプ	
	レイ弁、サプレッションプールスプレイ弁及び残留熱除去系	レイ弁, トーラススプレイ弁, 残留熱除去系テスト弁および	
	テストバイパス弁が開することを確認する。また、動作確認	<u>試験可能逆止弁</u> が開することを確認する。また,動作確認後,	
	後、動作確認に際して作動した弁の開閉状態及び主要配管が	動作確認に際して作動した弁の開閉状態および主要配管が満	
	満水であることを確認する。	水であることを確認する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙3	<u>別紙2</u>	・記載方針の相違
			【柏崎 6/7】
	熱交換器からの漏えいの可能性について	熱交換器からの漏えいの可能性について	
	既工認から設計上の裕度を算出し、裕度が 2.4 より大きい部位	既工認から設計上の裕度を算出し,裕度が <u>2以上の</u> 部位を除く	・評価条件の相違
	を除く 胴板 (厚肉部, 薄肉部), 胴側鏡板及び胴側入口・出口管台	<u>水室フランジ,水室フランジボルト,管板,伝熱管</u> について, <u>I</u>	【東海第二】
	及びフランジ部について、保守的に弁開放直後のピーク圧力	<u>SLOCA発生時の圧力(7.4MPa[gage]*)</u> 及び原子炉冷却材温度	・評価対象の相違
	<u>(8.2MPa [gage])</u> 及び原子炉冷却材温度(288℃)が同時に継続	(288℃)が同時に継続して負荷された条件下で破損が発生しない	【東海第二】
	して負荷された条件下で破損が発生しないことを以下のとおり確	ことを以下のとおり確認した。	設計裕度が異なるた
	認した。	* 弁開放直後の圧力上昇に比べ, 弁開放から 10 秒程度以降の構	め,評価対象部位が異な
		<u>造材の温度上昇に伴う耐力低下の方が,系統全体への影響が</u>	る。
		大きいため、静定圧力を採用した。	・評価方針の相違
			【東海第二】
	1. 強度評価	1. 強度評価	
	1.1 評価部位の選定	1.1 評価部位の選定	
	既工認から設計上の裕度を算出し、裕度が 2.4 (隔離弁の誤開	既工認から設計上の裕度を算出し、裕度が <u>2以上の</u> 部位	・評価条件の相違
	放等による加圧事象発生時のピーク圧力 8. 2MPa[gage]と最高使用	を除く水室フランジ,水室フランジボルト,管板,伝熱管	【東海第二】
	<u> 圧力 3.45MPa[gage]の比)より大きい</u> 部位を除く <u>胴板(厚肉部,</u>	について評価した。	・評価対象の相違
	薄肉部), 胴側鏡板, 胴側入口・出口管台及びフランジ部について		【東海第二】
	評価した。		設計裕度が異なるた
	別第3-1表に既工認強度計算結果の設計裕度及を示す。	別表2-1に既工認強度計算結果の設計裕度,別図2-	め,評価対象部位が異な
		1に残留熱除去系熱交換器構造図を示す。	る。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 別第 3-1 表 既工認強度計算結果の設計裕度 (3.45MPa, 249℃) 評価部位 支機の値 型定基準 体度 期低 (厚肉部) 第.32mm 最小厚さ 必要好き 期低 (厚肉部) 第.7.05mm ≥3.42mm 期低 (厚肉部) 第.7.05mm ≥3.42mm 期間 (場面部) 第.7.05mm ≥3.42mm 1.08 期間 (年) 2.4.7m 2.08 2.9mm 期間 (年) 2.4.7m 2.08 2.9mm 1.99 期間 (年) 2.4.7m 2.9mm 2.9mm 1.99 期間 (日 14.55mm ≥1.78mm 1.92 期間 (日) 14.55mm ≥0.48mm 2.3.80 期間 (マント(1) 2.5.9mm 2.3.80 1.87 期間 (マント(2) 10.00mm ≥0.42mm 2.3.80 期間 (マント(2) 10.00mm ≥0.42mm 2.3.80 期間 (本) (年 (確) 2.4.7mm 2.00 Mm ≥0.80mm 1.87 期間 (本) (年 (確) 2.4.7mm 2.00 Mm 2.0.80mm 1.87 期間 (本) (年 (確) 2.4.7mm 2.00 Mm 2.0.80mm 1.87 順 (14.55mm 2.0.80mm 2.0.80mm 4.00 1.97	島根原子力発電所 2号炉 別表2-1 既工認強度計算結果の設計裕度(40kg/cm², 185℃) 評価部位 実機の準 判定基準 裕度※ 備考 水室鏡板 (最小厚3) (2 委厚3) (2 管棚出入口管台 (最小厚3) (2 委厚4) (2 管棚出入口管台 (最小厚3) (2 委厚4) (2 管棚出入口管台 (2.47 (3.170m) (4 強度4) (補強計第) (補強活力効な面積) (4 抽過に必要な面積) 2.47 (補強計第) (第金店力) (第客広力) 1.87 水室フランジ 64029ma² (3.06 (3.06 アクンジメ 64029ma² (3.06 (3.06 アクンジ (5 8 (加²)ma² 2.00 (5 8 ((س²)) (ボルト (3.06 (3.06 長小俗 アクンジ (5 4 ((金原5)) (2 2 & (の m²)) 2.00 (第ルト (3.06 ((金原第位)) (第 応 方) 2.00 (第 ((金 定 方)) ((三 座 5)) 2.00 (金 部 位 アランジ (5 (金 に 5 力)) ((金 要 章)) 2.00 (金 部 位 アランジ (金 生 5 力) (金 座 章)) (金 2 & 0.0 0m) (金 小 俗 アランジ (金 生 5 力)	備考 ・評価結果の相違 【東海第二】

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
					<image/> <text></text>	 ・資料構成の相違 【東海第二】 東海第二は、「別第 3-1 図」に記載。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)		島根原子力発電所	2 号炉
	1.2 評価方法	1.2 評価方法		
	<u>(1)</u> 胴側胴板の評価			
	設計・建設規格「PVC-3122 円筒形の胴の厚さの規定」を			
	<u>適用して必要な最小厚さを算出し、実機の最小厚さが計算上</u>			
	必要な厚さ以上であることを確認した。			
	$t = \frac{PD_i}{2S\eta - 1.2P}$			
	t:胴側胴板の計算上必要な厚さ(mm)			
	<u>P:隔離弁の誤開放等による加圧事象発生時のピーク圧力</u>			
	(=8.2MPa)			
	<u>D:</u> : 胴の内径 (=2,000mm)			
	<u>S:胴板の設計引張強さ(Su=391MPa, at 288℃ SB410)</u>			
	η :継手効率 (=1.0)			
	<u>(2) 胴側鏡板の評価</u>			
	<u>設計・建設規格「PVC-3225</u> 半だ円形鏡板の厚さの規定1」			
	<u>を適用して必要な最小厚さを算出し、実機の最小厚さが計算</u>			
	上必要な厚さ以上であることを確認した。			
	$t = \frac{PD_{\cdot}K}{2S\eta - 0.2P}$			
	t:胴側鏡板の計算上必要な厚さ(mm)			
	<u>P:隔離弁の誤開放等による加圧事象発生時のピーク圧力</u>			
	(=8.2MPa)			
	<u>D_i:鏡板の内面における長径 (=2,000mm)</u>			
	<u>K:半だ円形鏡板の形状による係数(=1.0)</u>			
	<u>S:鏡板の設計引張強さ(Su=391MPa, at 288℃ SB410)</u>			
	$\underline{\eta}$:継手効率 (=1.0)			
	(3) 胴側入口, 出口管台			
	設計・建設規格「PVC-3610 管台の厚さの規定」を適用し			
	て必要な最小厚さを算出し,実機の最小厚さが計算上必要な			
	厚さ以上であることを確認した。			
	$t = \frac{PD_{\circ}}{2S\eta + 0.8P}$			
	t:胴側入口,出口管台の計算上必要な厚さ(mm)			
	P:隔離弁の誤開放等による加圧事象発生時のピーク圧力			
	(=8.2MPa)			
	<u>D_o:管台の外径 (=558.8mm)</u>			
	<u>S:管台の設計引張強さ(Su=438MPa, at 288℃ SF490A)</u>			
	η :継手効率 (=1.0)			

炉	備考
	・評価対象の相違 【東海第二】 設計裕度が異なるた め,評価対象部位が異な る。
	・評価対象の相違 【東海第二】 設計裕度が異なるた め,評価対象部位が異な る。
	 ・評価対象の相違 【東海第二】 設計裕度が異なるた め,評価対象部位が異なる。

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12	2版)	島根原子力発電所 2号炉	備考
			<u>(4) フランジ部</u>	^	(1) 水室フランジ(ボルト含む)	
			日本工業規格 JIS B8265「圧力容器の)構造-一般事項」を	日本工業規格 JIS B8265「圧力容器の構造-一般事項」を	
			適用してボルトの必要な断面積及び許容!	『応力を算出した。そ	適用してボルトの必要な断面積及び許容応力を算出した。そ	
			の結果、ボルトの実機の断面積はボルトの	の必要な断面積以上	の結果、ボルトの実機の断面積はボルトの必要な断面積以上	
			であり,かつ発生応力が許容応力以下であ	あることを確認した。	であり, かつ発生応力が許容応力以下であることを確認した。	
			Image: state of the state of	フランジ部	(2) 管板 室板は、JSME 設計・建設規格 PVC-3510「管穴の中心間距離 および管板の厚さの規定」の手法を適用して評価を行い、管 板の必要な厚さは、実機の最小厚さより小さいため、問題な いことを確認した。 $t = \frac{FD}{2} \frac{P}{Su} = 163(mm(< 実際の最小厚さ ((mm))))$ <u>t:管板の必要な厚さ</u> <u>F:管板の支え方による係数 (=1,25)</u> <u>D:パッキンの中心円の径 (=1997,18 (mm))</u> Su:管板の設計引張強さ (=438 (MPa) [SFVC2B (288°C)])	 ・資料構成の相違 【東海第二】 島根2号炉は,「別図 2-1」に記載。 ・評価対象の相違 【東海第二】 設計裕度が異なるた め,評価対象部位が異なる。

柏崎刈羽原子力発電所 6/7号炉 ((2017. 12. 20 版)	東海第二発電	 1所 (2018. 9. 12 版)		島根原子力発電	新 2 号炉		備考
				(3)伝熱管				・評価対象の相違
				伝熱管	の評価は, JSME 設計・	建設規格 PVC-3610)「管台の厚	【東海第二】
				さの規定	」の手法を適用して評	「価を行い,伝熱管	の必要な厚	設計裕度が異なるた
				さは, 実	機の最小厚さより小さ	いため、問題ない	ことを確認	め,評価対象部位が異な
				した。				る。
				<u>a.内圧に</u>	E力を受ける管台の必要	要厚さ t ₁		
				$t_1 = \frac{1}{2 \times Su}$	$\frac{PD_0}{(n+0.8\times P)} = \square < \exists$	€機の最小厚さ(=	(mm))	
				D	伝熱管の外径 (-	(mm))		
				<u>D₀ . /</u> Su ·	ム烈官の27位(-	(-302) (MP ₂)		
				su.		(-392 (MFa)		
				n •		_		
				<u> </u>				
		1.3 評価結果		1.3 評価結身	畏			
		熱交換器の各部位につい	て評価した結果,別第3-2表及び別第	残留	<u>熱除去系</u> 熱交換器の各	・部位について評価	した結果,	
		<u>3-3</u> 表に示すとおり実機の	値は判定基準を満足し, <u>保守的に弁開</u>	別表 2	<u>-2</u> に示すとおり実機	の値は判定基準を	満足し, <u>I</u>	
		<u> 放直後のピーク圧力(8.2</u>	<u>MPa [gage])</u> 及び原子炉冷却材温度	SLO	CA発生時の圧力(7.	<u>4MPa[gage])</u> 及び	原子炉冷却	・評価方針の相違
		(288℃)が同時に継続して	負荷された条件下で破損せず,漏えい	材温度	(288℃)が同時に継続	もして負荷された条	件下で破損	【東海第二】
		は発生しないことを確認し	た。	せず,	漏えいは発生しないこ	とを確認した。		
			ミンパカロはで並作が用					芝生生のおう
		<u> </u>			<u>別表2-2</u>	<u>評価結果</u>		・評価結果の相遅 【東海第二】
		胴側胴板(厚肉部)	大阪 の値 刊定選挙 53.32mm 35.71mm (実権の最小原さ) (計算上必要か厚さ)	評 価部位	実機の値	判定基準	備考	【果御弗二】
		胴側胴板(薄肉部)	37.05mm 35.71mm (実機の最小厚さ) (計算上必要な厚さ)	水室フランジ	120MPa	≤ 438 MPa		
		胴側鏡板 (56.95mm 35.08mm (実機の最小厚さ) (計算上必要な厚さ)		(発生応力)	(許容応力)		
		胴側入口・出口管台 (14.55mm 8.62mm (実機の最小厚さ) (計算上必要な厚さ)	水室フランジ	$64029 \mathrm{mm}^2$	≥ 26161 mm ²		
				ボルト	(ボルト総断面積)	(ホルトの所要		
		別第3-3 表	フランジ部の評価結果			総断面積)		
		<u>が1975 5 4</u> ボルトの実機の断面積		管板		≥ 163 mm		
		評価部位 (mm ²) フランジ部 106,961	(mm ²) (MPa) (MPa) 74,184 239 262		(最小厚さ)	(必要厚さ)		
				伝熱管				
					(最小厚さ)	(必要厚さ)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
		別紙4	別紙3	・記載方針の相違
				【柏崎 6/7】
	逃がし弁からの漏えい	いの可能性について	逃がし弁からの漏えいの可能性について	
	逃がし弁について, <u>保守的に</u> 弁	開放直後のピーク圧力(8.2MPa	逃がし弁について, <u>ISLOCA発生時の圧力(7.4MPa [gage]</u>	・評価方針の相違
	<u>[gage])</u> 及び原子炉冷却材温度	(288℃)が同時に継続して負荷	*)及び原子炉冷却材温度(288℃)が同時に継続して負荷された	【東海第二】
	された条件下で破損が発生しない	ことを以下のとおり確認した。	条件下で破損が発生しないことを以下のとおり確認した。	
			* 弁開放直後の圧力上昇に比べ, 弁開放から 10 秒程度以降の構	
			<u>造材の温度上昇に伴う耐力低下の方が、系統全体への影響が</u>	
			大きいため,静定圧力を採用した。	
		司明礼林宫之子也下去在水儿叶		
	逃かし テレン デレー 「「「「「「」」 いい ご た こ いい ご た さ いい デン・セース) 誤開放等による加圧事象発生時	逃かし开については、隔離开の誤開放等による加圧事象発生時	
	において吹き出し前に加圧される	アビー ア体及び人口配管亚びに	において吹き出し前に加圧される弁座、弁体及び入口配官並びに	
	吹き出し後に加圧される并耐圧部 	る 及び 弁耐 圧部の 	吹き出し後に加圧される平耐圧部及び平耐圧部の接合部について	
	評価した。		評価した。別図3-1に逃がし弁の構造を示す。	
			A: 井体蔵小阪面積	
			サイト かんしょう かんしょ かんしょ かんしょ かんしょ かんしょ かんしょ かんしょ かんしょ	
				次灯構代の担当
			加凶3-1 処かし井禰垣凶	・貝科佛成の相遅
				果御弗→は、「別弟
				4-1 凶」に記載。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	1.2 評価方法	1.2 評価方法	
	隔離弁の誤開放等による加圧事象発生時には <u>8.2MPa[gage]</u> にな	隔離弁の誤開放等による加圧事象発生時には 7.4MPa[gage]にな	・評価方針の相違
	る前に逃がし弁が吹き出し、圧力は低下すると考えられるが、こ	る前に逃がし弁が吹き出し、圧力は低下すると考えられるが、こ	【東海第二】
	こでは、逃がし弁の吹き出し前に加圧される箇所と吹き出し後に	こでは、逃がし弁の吹き出し前に加圧される箇所と吹き出し後に	
	加圧される箇所ともに <u>8.2MPa[gage]</u> , 288℃になるものとして評	加圧される箇所ともに <u>7.4MPa[gage]</u> , 288℃になるものとして評	・評価方針の相違
	価する。	価する。	【東海第二】
	(1) 弁座の評価	(1)弁座の評価	
	設計・建設規格には安全弁に関する強度評価手法の記載が	設計・建設規格には安全弁に関する強度評価手法の記載が	
	ない。弁座は円筒形の形状であることから、設計・建設規格	ない。弁座は円筒型の形状であることから、設計・建設規格	
	「VVC-3230 耐圧部に取り付く管台の必要最小厚さ」を準用	「VVC-3230 耐圧部に取り付く管台の必要最小厚さ」を準用	
	し、計算上必要な厚さを算出し、実機の最小厚さが計算上必	し、計算上必要な厚さを算出し、実機の最小厚さが計算上必	
	要な厚さ以上であることを確認した。	要な厚さ以上であることを確認した。	
	$t = \frac{PD_{o}}{2}$	P D _o	
	$2S\eta + 0.8P$	$t = \frac{1}{2S\eta + 0.8P}$	
	t: 管台の計算上必要な厚さ (mm)	t: 管台の計算上必要な厚さ (mm)	
	P: <u>隔離弁の誤開放等による加圧事象発生時のビーク圧力</u> (=8.2MPa)	P: <u>ISLOCA発生時の圧力 (=7.4MPa</u>)	・評価万針の相違 【東海第二】
	 D ₀ :管台の外径 (mm)	$D_0: 管台の外径 (mm)$	
	S:使用温度における許容引張応力 (MPa)	S:使用温度における許容引張応力 (MPa)	
	η :継手効率 [※]	η : 継手効率 [*]	
	※ 弁座は溶接を実施していないため、1.0を使用	※ 弁座は溶接を実施していないため、1.0を使用	
	設計・建設規格には安全弁に関する強度評価手法の記載が	設計・建設規格には安全并に関する强度評価手法の記載が	
	ない。	ない。 一体の中心部を 一体で 文持されており、 外周付近は 構	
	造上拘束されていることから、 开体下面にかかる圧力	造上拘束されていることから、 开体 ト 面にかかる圧力	
	(8.2MPa[gage])が全ての并体の最小肉厚部に作用するとし	(<u>7.4MPa [gage]</u>)が全て开体の最小肉厚部に作用するとし	・評価万針の相違
	て発生するせん断応力を算出し、許容せん断応力以下である	て発生するせん断応力を算出し、許容せん断応力以下である	【東海第二】
	ことを確認した。	ことを確認した。	
	$\sigma = \frac{F}{A}$	$\sigma = \frac{F}{A}$	
	$F = 1.05 \times \frac{\pi}{4} \times D^2 \times P$	$F = 1.05 \times \frac{\pi}{4} \times D^2 \times P$	
	σ : せん断応力 (MPa)	σ : せん断応力 (MPa)	
	F: せん断力 (N)	F: せん断力 (N)	
	A: 弁体最小断面積 (mm ²)	A: 弁体最小断面積 (mm ²)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	D:弁座口の径 (mm)	D:弁座口の径 (mm)	
	P: 隔離弁の誤開放等による加圧事象発生時のピーク圧力	P: <u>ISLOCA発生時の圧力(=7.4MPa</u>)	・評価方針の相違
	(=8.2 MPa)		【東海第二】
	(3) 弁本体の耐圧部の評価	(3)弁本体の耐圧部の評価	
	設計・建設規格「解説 VVB-3100 弁の圧力温度基準」を適	設計・建設規格「解説 VVB-3100 弁の圧力温度基準」を適	
	用し必要な最小厚さを算出し、実機の最小厚さが計算上必要	用し必要な最小厚さを算出し、実機の最小厚さが計算上必要	
	な厚さ以上であることを確認した。	な厚さ以上であることを確認した。	
	$t = \frac{Pd}{2S - 1.2P}$	Pd	
	25-1.21	$t = \frac{1}{2S - 1.2P} \qquad (\text{ff} \ \text{if} \ \text{VVB} - 1)$	
	t:弁箱の必要な厚さ	t:弁箱の必要な厚さ (mm)	
	P:隔離弁の誤開放等による加圧事象発生時のピーク圧力	P: <u>ISLOCA発生</u> 時の圧力 (=7.4MPa)	・評価方針の相違
	(=8.2 MPa)		【東海第二】
	d:内径(mm)	S:設計引張強さ (Su=438 (MPa), at288℃,	・評価方針の相違
	S: 設計降伏点 (MPa)		【東海第二】
			島根2号炉は,Su値
			にて評価を実施。
	(4) 弁耐圧部の接合部の評価	(4)弁耐圧部の接合部の評価	
	設計・建設規格「WC-3310 弁箱と弁ふたがフランジ結合		・評価方針の相違
	<u>の弁のフランジ応力評価」を適用しボルトの必要な断面積及</u>		【東海第二】
	び許容応力を算出し、実機のボルトの断面積がボルトの必要		島根2号炉は,当該評
	な断面積以上であるが、発生応力が許容応力以下であること		価によるスクリーニン
	を確認した。		グを実施しておらず,全
	四次在于大学生人名英格兰尔德人名英格兰		ての評価を実施してい
	<u> 別第4-1 表 ホルトの必要な断面積と計谷応力</u>		る。
	評価部位 ポルトの実機の断面積 (mm ²) ポルトの必要な断面積 (mm ²) 発生応力 (MPa) 許容応力 (MPa) 弁耐圧部の接合部 481.3 438.5 214 142		
			1

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		<u>別第4-1図 弁耐圧部の接合部</u>		 ・資料構成の相違 【東海第二】 島根2号炉は、「別図 3-1」に記載。
		上記を満たさない場合は、ボンネットボルトの内圧と熱に	弁本体の耐圧部の接合部については、ボンネットボルトの	
		よろ伸び量及びボンネットフランジと弁箱の熱によろ伸び量	内圧と熱による伸び量及びボンネットフランジと弁箱の熱に	
		を評価し、ボンネットボルトの伸び量からボンネットフラン	よる伸び量からボンネットフランジと弁箱フランジの伸び量	
		ジと弁箱フランジの伸び量を差し引いた伸び量がプラスの場	を差し引いた伸び量がプラス側の場合とマイナスの場合につ	
		合とマイナスの場合について評価した。	いて評価した。	
		・伸び量がプラスの場合	・伸び量がプラスの場合	
		ボンネットボルトの伸び量からボンネットフランジと弁	ボンネットボルトの伸び量からボンネットフランジと弁	
		箱フランジの伸び量を差し引いた伸び量がガスケットの復	箱フランジの伸び量を差し引いた伸び量がガスケットの復	
		元量**以下であることを確認した。	元量*以下であることを確認した。	
		※ ガスケットに締付面圧を加えていくと弾性変形が生じ,更	※ ガスケットに締付面圧を加えていくと弾性変形が生じ,更	
		に締付面圧を加えていくと塑性変形が生じる。塑性変形し	に締付面圧を加えていくと塑性変形が生じる。塑性変形し	
		たガスケットの締付面圧を緩和した場合,弾性領域分のみ	たガスケットの締付面圧を緩和した場合,弾性領域分のみ	
		が復元する性質がある。弁耐圧部の接合部のシールのため、	が復元する性質がある。弁耐圧部の接合部のシールのため,	
		ガスケットには塑性領域まで締付面圧を加えており、締付	ガスケットには塑性領域まで締付面圧を加えており,締付	
		面圧緩和時に弾性領域分の復元が生じ、復元量以下であれ	面圧緩和時に弾性領域分の復元が生じ,復元量以下であれ	
		ばシール性は確保される。ガスケットの復元量は、メーカ	ばシール性は確保される。ガスケットの復元量は、メーカ	
		試験によって確認した値。	試験によって確認した値。	
		・伸び量がマイナスの場合	・伸び量がマイナスの場合	
		伸び量がマイナスの場合は、 <u>弁耐圧部の接合部は増し</u> 締	伸び量がマイナスの場合は、弁耐圧部の接合部は圧縮さ	
		<u>めされることになることから</u> ,ボンネットナット座面の発	れることになる。弁耐圧部の接合部については、ボンネッ	・設備設計の相違
		生応力が材料の許容応力以下であることを確認した。	トフランジとリフト制限板がメタルタッチしており、それ	【東海第二】
			以上ガスケットが圧縮しない構造となっていることから,	島根2号炉の安全弁は,

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		ボンネットナット座面及びボンネットフランジとリフト制	ボンネットフランジと
		<u>限板の合わせ面</u> の発生応力が材料の許容応力を下回ること	リフト制限板がメタル
		を確認した。	タッチする構造。
	a. 伸び量によるフランジの評価	a. 伸び量によるフランジの評価	
	(a) 内圧による伸び量	(a)内圧による伸び量	
	・ボンネットボルトの発生応力	・ボンネットボルトの発生応力	
	$(4)' = (1,000 \times (1)' \times (2)') / (0.2 \times (3)')$	$(4)' = (1000 \times (1)' \times (2)') / (0.2 \times (3)')$	
	(8)' = $(\pi \times (5)' \times (8.2/4) \times ((5)' + 8 \times (6)' \times (5))$	$(8)' = (\pi \times (5)' \times (7.4/4) \times ((5)' + 8 \times (6)' \times (7)')$	・評価方針の相違
	⑦')		【東海第二】
	(9), =(4), -(8),	(9)' = (4)' - (8)'	
	⑩'=⑨'∕②'	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
	⑫'=⑪'∠⑪'	(2)' = (0)' / (1)'	
	 : 締付けトルク値 (N・m) 	①':締付けトルク値 (N・m)	
	②':ボンネットボルト本数(本)	②':ボンネットボルト本数(本)	
	③':ボンネットボルト外径 (mm)	③':ボンネットボルト外径 (mm)	
	④':ボンネットボルト締付けトルクによる全締	④':ボンネットボルト締付トルクによる全締付荷重(N)	
	付荷重(N)		
	⑤':ガスケット反力円の直径 (mm)	⑤':ガスケット反力円の直径 (mm)	
	⑥':ガスケット有効幅 (mm)	⑥':ガスケット有効幅 (mm)	
	⑦':ガスケット係数	⑦':ガスケット係数	
	⑧': <u>8.2MPa</u> の加圧に必要な最小荷重(N)	⑧': <u>7.4MPa</u> の加圧に必要な最小荷重(N)	・評価方針の相違
	⑨':不足する荷重(N)	⑨':不足する荷重 (N)	【東海第二】
	⑩':ボンネットボルト1本当たりに発生する荷	⑩':ボンネットボルト1本当たりに発生する荷重 (N)	
	重 (N)		
	① : ボンネットボルト径面積 (mm ²)	⑪':ボンネットボルト径面積 (mm ²)	
	⑫':ボンネットボルトの発生応力 (MPa)	⑫':ボンネットボルトの発生応力(MPa)	
	・ボンネットボルトの内圧による伸び量	・ボンネットボルトの内圧による伸び量	
	$7 = (2, \times (1+2)) / 3$	$7 = (2' \times (1+2)) / 3$	
	①:ボンネットフランジ厚さ (mm)	①:ボンネットフランジ厚さ (mm)	
	 (2):弁箱フランジ厚さ (mm) 	②:弁箱フランジ厚さ (mm)	
	③:ボンネットボルト材料の縦弾性係数(MPa at	③:ボンネットボルト材料の縦弾性係数(MPa at	
	288°C)	288°C)	
	⑦:ボンネットボルトの熱による伸び量 (mm)	⑦:ボンネットボルトの <u>内圧</u> による伸び量(mm)	
	(b) 熱による伸び量	(b)熱による伸び量	
	・ボンネットボルトの熱による伸び量	・ボンネットボルトの熱による伸び量	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	$()=()\times(()+())\times(288^{\circ}C-20^{\circ}C^{*})$	$()=()\times()+()\times(288^{\circ}C-20^{\circ}C^{*})$	
	①:ボンネットフランジ厚さ (mm)	①:ボンネットフランジ厚さ (mm)	
	 (mm) 	②:弁箱フランジ厚さ (mm)	
	④:ボンネットボルト線膨張係数(mm/mm°C at	④:ボンネットボルト線膨張係数 (mm/mm℃ at 288℃)	
	288°C)		
	⑧:ボンネットボルトの熱による伸び量(mm)	⑧:ボンネットボルトの熱による伸び量 (mm)	
	※ 伸び量を大きく見積もるため,隔離弁の誤開放等 による加圧事象発生前後の温度差を大きくするように保守的に低めの温度を設定	※ 伸び量を大きく見積もるため、隔離弁の誤開放等による加圧事象発生前後の温度差を大きくするように保守的に低めの温度を設定	
	・ボンネットフランジ及び弁箱フランジの熱による伸	・ボンネットフランジ及び弁箱フランジの熱による伸び量	
	び量		
	$(9) = (5) \times (1) \times (288^{\circ}C - 20^{\circ}C) + (6) \times (2) \times (288^{\circ}C - 20^{\circ}C) + (6) \times (20^{\circ}C) \times (20^{\circ}C) + (6) \times (20^{\circ}C) \times $	$ (9 = 5 \times 1) \times (288^{\circ}\text{C} - 20^{\circ}\text{C}) + (6 \times 2) \times (288^{\circ}\text{C} - 20^{\circ}\text{C}^{*}) $	
	20°C**)		
	①:ボンネットフランジ厚さ (mm)	①:ボンネットフランジ厚さ (mm)	
	 (2): 弁箱フランジ厚さ (mm) 	②:弁箱フランジ厚さ (mm)	
	⑤:ボンネットフランジ線膨張係数(mm/mm℃ at 288℃)	⑤:ボンネットフランジ線膨張係数 (mm/mm℃ at 288℃)	
	⑥:弁箱フランジ線膨張係数(mm/mm℃ at 288℃)	⑥:弁箱フランジ線膨張係数 (mm/mm℃ at 288℃)	
	⑨:ボンネットフランジ及び弁箱フランジの熱に	⑨:ボンネットフランジ及び弁箱フランジの熱による伸	
	よる伸び量 (mm)	び量 (mm)	
	※ 伸び量を大きく見積もるため,隔離弁の誤開放等 による加圧事象発生前後の温度差を大きくするよ うに保守的に低めの温度を設定	※ 伸び量を大きく見積もるため,隔離弁の誤開放等による 加圧事象発生前後の温度差を大きくするように保守的 に低めの温度を設定	
	(c) 伸び量	(。)仲バ曼	
	伸び量 (mm) =⑦+⑧-⑨		
	⑦:ボンネットボルトの内圧による伸び量(mm)	(
	⑧:ボンネットボルトの熱による伸び量(mm)	①・ボンネットボルトの数による中び量(mm)	
	⑨:ボンネットフランジ及び弁箱フランジの熱に	 ①・ボンネットフランジ及び全路フランジの執に上ろ伸 	
	よる伸び量 (mm)	(mm)	
	b. ボンネット座面の面圧 ボンネットボルト締付荷重として評価された荷重®'を ボンネットナット座面の面積 S で除し面圧を算出する。	b. ボンネット座面の面圧 ボンネットボルト締付荷重として評価された荷重®'をボ ンネットナット座面の面積 S で除し面圧を算出する。ボンネ	
	・ボンネットナット座面の面積 (ナット座面丸面の場合) S=(a ² -b ²)/4×π	<u>ットナット座面を別図3-2に示す。</u> ・ボンネットナット座面の面積(ナット座面丸面の場合) S=(a ² -b ²)/4×π	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			a:ボンネットナット面外径 (mm)	a:ボンネットナット面外径 (mm)	
			b:ボンネット穴径 (mm)	b:ボンネット穴径 (mm)	
			S:ボンネットナット面面積(mm ²)	S:ボンネットナット面面積(mm ²)	
				・ボンネットナット座面の面積 (ナット座面平面の場合)	
			・ボンネットナット座面の面積(ナット座面平面の場合)	$S = (\sqrt{3}/16 \times a^2 \times 6) - (b^2 \times \pi/4)$	
			$S = (\sqrt{3}/16 \times a^2 \times 6) - (b^2 \times \pi/4)$	a・ボンネットナット面外径 (mm)	
			a・ボンネットナット面外径 (mm)	h・ボンネット穴径 (mm)	
			h:ボンネット穴径 (mm)	S:ボンネットナット面面積 (mm^2)	
			S:ボンネットナット面面積 (mm ²)	・ボンネットナット座面の面圧	
			・ボンネット座面の面圧	$d = (8)' \neq (S \times c)$	
			$d = (8)^{\circ} / (S \times c)$	c: ボンネットボルト本数(本)	
			c:ボンネットボルト本数(本)	d:ボンネットナット応力 (MPa)	
			d:ボンネットナット応力 (MPa)	S:ボンネットナット面面積 (MPa)	
			S:ボンネットナット面面積(MPa)		
			c. ボンネットフランジ及び弁箱フランジの合わせ面の面圧	に、ボンネットフランジ及び弁箱フランジの合わせ面の面圧	・記載方針の相違 【東海第二】
			C. 小ノイツトノフノン及の升相ノフノンの合わせ面の面圧 ザンネットギルト焼け芸香トレマ評価されたの'た合わ	C. ホン不ツトノフンン及び升相ノフンシの合わせ面の面圧 ギンネットギルト焼け芸手トリア証価された芸手の'た会わ	
			ホンホットホルト柿竹何重として計画されたの を日42	ホンネットホルト柿竹何里として計画された何里の そ日4	
			と回び回復らて床し面圧を昇口する。		
			 ・ホンネットノフンン及びリント制限板の合わせ面の面積 s=(-2 + 2) / 4 × 	 ・ ホンイットノフンン及びリノト制限面の合わせ面の面積 s=(-2, +2) / 4× 	
			$S = (a^{2} - b^{2}) / 4 \times \pi$	$S = (a^{*} - b^{*}) / 4 \times \pi$	
			a:メタルタップ部外径(mm)	a:メタルタッナ部外全(mm)	
			b:メタルタップ部内全(mm)	D: メタルタップ部内全 (mm) C: メタルタップ部内全 (mm)	
			S:メダルダッナ部面積(mm ²)	S:メタルタッナ部面積 (mm ²)	1
			・ホンネットフフンジ及びリフト制限板の合わせ面の面圧	・ホンネットファンジ及びリフト制限板の合わせ面の面圧	l .

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	d=®' ∕S	d=®' ∕S	
	d:メタルタッチ部応力 (MPa)	d:メタルタッチ部応力 (MPa)	
	S:メタルタッチ部面積 (mm ²)	S:メタルタッチ部面積 (mm ²)	
		ボンネットフランジとリフト制限板の合わせ面	
		ボンネットボルト ボンネットナット リフト制限板 イボンネットフランジ イボンネットフランジ	
		、 バルブガイド	
		別図3-3 ボンネットフランジとリフト制限板の合わせ面	・記載方針の相違 【東海第二】
	1.3 評価結果	1.3 評価結果	
	逃がし弁の各部位について評価した結果,別第 4-2 表から別第	逃がし弁の各部位について評価した結果,別表3-1から	
	<u>4-6</u> 素に示すとおり実機の値は判定基準を満足し、保守的に弁開	<u>3-7</u> に示すとおり実機の値は判定基準を満足し、 <u>ISLO</u>	・評価方針の相違
	<u>放直後のピーク圧力(8.2MPa [gage])</u> 及び原子炉冷却材温度	<u>CA発生時の圧力(7.4MPa [gage])</u> 及び原子炉冷却材温度	【東海第二】
	(288℃)が同時に継続して負荷された条件下で破損せず,漏えい	(288℃)が同時に継続して負荷された条件下で破損せず,漏	
	は発生しないことを確認した。	えいは発生しないことを確認した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	原子力発電所 6/7号炉 (2017.12.20版) 頁							〔海第二発電所 (2018.9.12版)						電所
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		用温度におけ 洋繊の最小厚さ 非算上必要な厚さ (mm)			 ・ 連直の径 許容せん断応力** 発生せん断応力 (mm) (MPa) (MPa) (MPa) 15 88 81 	18.9.12版)	設計降伏点 実機の最小厚さ 計算上必要な厚さ (Mba) (mm) (mm)	設計降伏点 実機の最小厚さ 計算上必要な厚さ (MPa) (mm) (mm) 191 9.0 1.2		ける 実機の最小厚さ (mm) (mm)	0.8		1の径 許容せん断応力* 発生せん断応力 シ (MPa) (MPa) (MPa) (MPa)	■ 17 17 18 18 18 18 18 18 18 18 18 18
	別第4-2 表 評価結果 (弁座)	引王 $D_0:外径 (mm)$ S:使用 $S:使用 3)$	2 19	別第4-3 表 評価結果(弁体)	圧 A: 弁体最小断面積 D: 折) (mm ²) 19 19	より設計の許容値として 0.85 を適用した。 別第 4-4 表 評価結果(弁本体の耐E	压	SCPH2 8.2 50	別表3-1 評価結果(弁座)	D ₀ :外径 S:使用温度におい D ₀ :外径 第1換応力 (mm) (MPa)	110	别表 3 - 2 評価結果(弁体)	A: 并体最小断面積 D: 弁座口 (mm ²) (mm)	60.04 て 0.85 を適用した。
		村将 P:F	SUS304 8.		村料 P:片 (MP SUS304 8.1		村料 [] P: 内			村将 (MPa)	区		村料 P:内圧 (MPa)	★ 7.4 1格より設計の許容値とし
		評価部位	弁座		評価部位 弁体	※ ボイラー構造規格	評価部位 [1]	弁本体の耐圧部		■ 評価部位	RV222-1A 弁通		評価部位	RV222-1A 弁体 *: ボイラー構造携

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	<section-header></section-header>	III3 - 1 IIII2 - 1 IIIII2 - 1 IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	 ・評価結果の相違 【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	
	別紙5	別紙4	・記載方針の相違
			【柏崎 6/7】
	弁(逃がし弁を除く。)からの漏えいの可能性について	弁(逃がし弁を除く。)からの漏えいの可能性について	
	逃がし弁を除く弁について、保守的に弁開放直後のビーク圧力	逃がし弁を除く并について、 <u>ISLOCA発生時の圧力(7.4MPa</u>	・評価方針の相違
	(8.2MPa [gage]) 及び原子炉冷却材温度(288℃)が同時に継続	[gage]*) 及び原子炉冷却材温度(288℃)が同時に継続して負	【東海第二】
	して負荷された条件下で破損か発生しないことを以下のとおり確	何された条件下で破損か発生しないことを以下のとおり確認し	
		* 开開放直後の圧力上昇に比へ, 开開放から 10 秒程度以降の構	
		<u>垣材の温度上升に住う耐力低下の方か、糸統生体への影響が</u> + きいため、熱空圧力な採用した	
	ここで、以下の弁についてけ隔離弁の誤開放等によろ加圧事象	ここで、以下の弁については隔離弁の誤開放等によろ加圧事象	
	発生時の圧力、温度以上で設計していることから破損が発生しな	発生時の圧力、温度以上で設計していることから破損が発生しな	
	いことを確認した。	いことを確認した。	
	<u>別第 5-1 表</u> 弁の設計圧力・温度	別表4-1 弁の設計圧力・温度	・設備設計の相違
	機器等 弁番号 設計圧力 設計温度	機器等 弁番号 設計圧力 設計温度	【東海第二】
	ノロセス井 F023, F051A 8. 62MPa 302 C	弁 プロセス弁 MV222-5A 8.62MPa 302℃	
		MV222-11A 10.4MPa 302°C	
		MV222-13 8.62MPa 302°C	
		その他 ベント弁 V222-507AX 8.62MPa 302℃	
		の弁 ドレン弁 V222-530AX 10.4MPa 302°C	
	また,以下の弁は設計・建設規格第Ⅰ編 別表1にて温度300℃	また,以下の弁は設計・建設規格第I編 別表1にて温度300℃	
	における許容圧力を確認し、加圧時の圧力を上回ることから、破	における許容圧力を確認し、加圧時の圧力を上回ることから、破	
	損は発生しないことを確認した。	損は発生しないことを確認した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	(2) 弁耐圧部の接合部の評価	(2) 弁耐圧部の接合部の評価	
	設計・建設規格「VVC-3310 弁箱と弁ふたがフランジ結合		・評価方針の相違
	の弁のフランジ応力評価」を適用しボルトの必要な断面積及		【東海第二】
	び許容応力を算出し、実機のボルトの断面積がボルトの必要		島根2号炉は,当該評
	な断面積を上回り、かつ発生応力が許容応力を下回ることを		価によるスクリーニン
	<u>確認した。</u>		グを実施しておらず, 全
			ての評価を実施してい
	別第 5-3 表 ボルトの必要な断面積と許容応力		る。
	弁番号 ボルトの実機の断面積 (mm ²) ボルトの必要な断面積 (mm ²) 発生応力 (MPa) 許容応力 (MPa) F086 901 694 117 177 F080A 901 833 116 177 F060A 321 190 98 165 FF029-201 601 318 73 165		
	上記の条件を満たさない弁については, ボンネットボルト	<u> 弁本体の耐圧部の接合部については、</u> ボンネットボルトの	
	の内圧と熱による伸び量及びボンネットフランジと弁箱の熱	内圧と熱による伸び量及びボンネットフランジと弁箱の熱に	
	による伸び量を評価し、ボンネットボルトの伸び量からボン	よる伸び量を評価し、ボンネットボルトの伸び量からボンネ	
	ネットフランジと弁箱フランジの伸び量を差し引いた伸び量	ットフランジと弁箱フランジの伸び量を差し引いた伸び量が	
	がプラスの場合とマイナスの場合について評価した。	プラスの場合とマイナスの場合について評価した。	
	・伸び量がプラスの場合	・伸び量がプラスの場合	
	ボンネットボルトの伸び量からボンネットフランジと弁	ボンネットボルトの伸び量からボンネットフランジと弁	
	箱フランジの伸び量を差し引いた伸び量がガスケットの復	箱フランジの伸び量を差し引いた伸び量がガスケットの復	
	元量 ^{**3} を下回ることを確認した。	元量 ^{※3} を下回ることを確認した。	
	※3 ガスケットに締付面圧を加えていくと弾性変形が生じ,	※3 ガスケットに締付面圧を加えていくと弾性変形が生じ,	
	更に締付面圧を加えていくと塑性変形が生じる。塑性変	更に締付面圧を加えていくと塑性変形が生じる。塑性変	
	形したガスケットの締付面圧を緩和した場合,弾性領域	形したガスケットの締付面圧を緩和した場合,弾性領域	
	分のみが復元する性質がある。弁耐圧部の接合部のシー	分のみが復元する性質がある。弁耐圧部の接合部のシー	
	ルのため、ガスケットには塑性領域まで締付面圧を加え	ルのため、ガスケットには塑性領域まで締付面圧を加え	
	ており、締付面圧緩和時に弾性領域分の復元が生じ、復	ており、締付面圧緩和時に弾性領域分の復元が生じ、復	
	元量以下であればシール性は確保される。ガスケットの	元量以下であればシール性は確保される。ガスケットの	
	復元量は、メーカ試験によって確認した値。	復元量は、メーカ試験によって確認した値。	
	・伸び量がマイナスの場合	・伸び量がマイナスの場合	
	伸び量がマイナスの場合は、弁耐圧部の接合部は増し締	伸び量がマイナスの場合は、弁耐圧部の接合部は増し締	
	めされることになることから、ボンネットナット座面の発	めされることになることから、ボンネットナット座面の発	
	生応力が材料の許容応力を下回ること、ボンネットフラン	生応力が材料の許容応力を下回ること、ボンネットフラン	
	ジと弁箱フランジの合わせ面がメタルタッチする弁につい	ジと弁箱フランジの合わせ面がメタルタッチする弁につい	
	ては合わせ面の発生応力が材料の許容応力を下回ることを	ては合わせ面の発生応力が材料の許容応力を下回ることを	
	確認した。	確認した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	a. 伸び量によるフランジの評価	a. 伸び量によるフランジの評価	
	(a) 内圧による伸び量	(a)内圧による伸び量	
	・ボンネットボルトの発生応力	・ボンネットボルトの発生応力	
	$(4)' = (1,000 \times (1)' \times (2)') / (0.2 \times (3)')$	$(4)' = (1000 \times (1)' \times (2)') / (0.2 \times (3)')$	
	(8)' = $(\pi \times 5)' \times 8.2/4 \times (5)' + 8 \times 6' \times 8.2/4 \times 10^{-1}$	$(\$)' = (\pi \times (5)' \times (7.4/4) \times ((5)' + 8 \times (6)' \times (7)'))$	・評価方針の相違
	⑦')		【東海第二】
	(9)' = (4)' - (8)'	(9)' = (4)' - (8)'	
	⑩'=⑨'∕②'	''')'=(9)'∕②'	
	⑫'=⑪'∕⑪'	(2)' = (0)' / (1)'	
	 : 締付けトルク値(N・m) 	①':締付トルク値 (N・m)	
	②':ボンネットボルト本数(本)	②':ボンネットボルト本数(本)	
	③':ボンネットボルト外径 (mm)	③':ボンネットボルト外径 (mm)	
	④':ボンネットボルト締付けトルクによる全締 付荷重 (N)	④':ボンネットボルト締付トルクによる全締付荷重(N)	
	⑤':ガスケット反力円の直径(mm)	⑤':ガスケット反力円の直径 (mm)	
	⑥':ガスケット有効幅(mm)	⑥':ガスケット有効幅(mm)	
	⑦':ガスケット係数	⑦':ガスケット係数	
	⑧': <u>8.2MPa</u> の加圧に必要な最小荷重(N)	⑧': <u>7.4MPa</u> の加圧に必要な最小荷重(N)	・評価方針の相違
	⑨':不足する荷重(N)	⑨':不足する荷重 (N)	【東海第二】
	⑩':ボンネットボルト1本当たりに発生する荷	⑩':ボンネットボルト1本あたりに発生する荷重 (N)	
	重(N)		
	⑪':ボンネットボルト径面積 (mm ²)	⑪':ボンネットボルト径面積 (mm ²)	
	⑫':ボンネットボルトの発生応力(MPa)	⑫':ボンネットボルトの発生応力(MPa)	
	・ボンネットボルトの内圧による伸び量	・ボンネットボルトの内圧による伸び量	
	$(7) = ((2)' \times ((1+2))) / (3)$	$7 = (2' \times (1+2)) / 3$	
	①:ボンネットフランジ厚さ (mm)	①:ボンネットフランジ厚さ (mm)	
	 (2): 弁箱フランジ厚さ (mm) 	 (2): 弁箱フランジ厚さ(mm) 	
	③:ボンネットボルト材料の縦弾性係数(MPa at	③:ボンネットボルト材料の縦弾性係数(MPa at	
	288°C)	288°C)	
	⑦:ボンネットボルトの内圧による伸び量(mm)	⑦:ボンネットボルトの内圧による伸び量(mm)	
	(b) 熱による伸び量	(b)熱による伸び量	
	・ボンネットボルトの熱による伸び量	・ボンネットボルトの熱による伸び量	
	$()=()\times(()+())\times(288^{\circ}C-20^{\circ}C)$	$(1) = (1) \times ((1) + (2)) \times (288^{\circ}C - 20^{\circ}C)$	
	①:ボンネットフランジ厚さ (mm)	①:ボンネットフランジ厚さ (mm)	
	 (2):弁箱フランジ厚さ(mm) 	 (2): 弁箱フランジ厚さ(mm) 	
	④:ボンネットボルト線膨張係数 (mm/mm° at	④:ボンネットボルト線膨張係数 (mm/mm℃ at 288℃)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	288℃) ⑧:ボンネットボルトの熱による伸び量(mm) ※ 伸び量を大きく見積もるため,隔離弁の誤 開放等による加圧事象発生前後の温度差を 大きくするように保守的に低めの温度を設 定	 ⑧:ボンネットボルトの熱による伸び量(mm) ※ 伸び量を大きく見積もるため,隔離弁の誤 開放等による加圧事象発生前後の温度差を 大きくするように保守的に低めの温度を設定 	
	 ・ボンネットフランジ及び弁箱フランジの熱による伸び量 ⑨=⑤×①×(288℃-20℃)+⑥×②×(288℃-20℃) 	・ボンネットフランジ及び弁箱フランジの熱による伸び量 ⑨=⑤×①×(288℃-20℃)+⑥×②×(288℃-20℃*)	
	 1:ボンネットフランジ厚さ(mm) 2:弁箱フランジ厚さ(mm) 5:ボンネットフランジ線膨張係数(mm/mm℃ at 288℃) 	 ①:ボンネットフランジ厚さ(mm) ②:弁箱フランジ厚さ(mm) ⑤:ボンネットフランジ線膨張係数(mm/mm℃ at 288℃) 	
	 (6):弁箱フランジ線膨張係数(mm/mm℃ at 288℃) (9):ボンネットフランジ及び弁箱フランジの熱による伸び量(mm) 	 ⑥:弁箱フランジ線膨張係数(mm/mm℃ at 288℃) ⑨:ボンネットフランジ及び弁箱フランジの熱による伸び量(mm) 	
	※ 伸び量を大きく見積もるため,隔離弁の誤開放等 による加圧事象発生前後の温度差を大きくするように保守的に低めの温度を設定	※ 伸び量を大きく見積もるため,隔離弁の誤開放等 による加圧事象発生前後の温度差を大きくするように保守的に低めの温度を設定	
	 (c) 伸び量 伸び量 (mm) =⑦+⑧-⑨ ⑦:ボンネットボルトの内圧による伸び量 (mm) ⑧:ボンネットボルトの熱による伸び量 (mm) ⑨:ボンネットフランジ及び弁箱フランジの熱による伸び量 (mm) 	 (c)伸び量 伸び量(mm)=⑦+⑧-⑨ ⑦:ボンネットボルトの内圧による伸び量(mm) ⑧:ボンネットボルトの熱による伸び量(mm) ⑨:ボンネットフランジと弁箱フランジの熱による伸び量(mm) 	
	b. ボンネット座面の面圧 ボンネットボルト締付荷重として評価された荷重⑧'を ボンネットナット座面の面積 S で除し面圧を算出する。	b. ボンネット <u>ナット</u> 座面の面圧 ボンネットボルト締付荷重として評価された荷重®'をボン ネットナット座面の面積 S で除し面圧を算出する。ボンネット ナット座面を別図4-1,4-2に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	・ボンネットナット座面の面積(ナット座面丸面の場合)	・ボンネットナット座面の面積(ナット座面丸面の場合)	
	$S = (a^2 - b^2) / 4 \times \pi$	$S = (a^2 - b^2) / 4 \times \pi$	
	a:ボンネットナット面外径 (mm)	a:ボンネットナット面外径(mm)	
	b:ボンネット穴径 (mm)	b:ボンネット穴径 (mm)	
	S:ボンネットナット面面積(mm ²)	S:ボンネットナット面面積 (mm ²)	
	・ボンネットナット座面の面積(ナット座面平面の場合)	・ボンネットナット座面の面積(ナット座面平面の場合)	
	$S = (\sqrt{3} \neq 16 \times a^2 \times 6) - (b^2 \times \pi \neq 4)$	$S = (\sqrt{3} \neq 16 \times a^2 \times 6) - (b^2 \times \pi \neq 4)$	
	a:ボンネットナット面外径 (mm)	a:ボンネットナット面外径 (mm)	
	b:ボンネット穴径 (mm)	b:ボンネット穴径 (mm)	
	S:ボンネットナット面面積(mm ²)	S:ボンネットナット面面積 (mm ²)	
	・ボンネット座面の面圧	・ボンネットナット座面の面圧	
	d=⑧' ∕(S×c)	d = (S×c)	
	c:ボンネットボルト本数(本)	c:ボンネットボルト本数(本)	
	d:ボンネットナット応力(MPa)	d:ボンネットナット応力(MPa)	
	S:ボンネットナット面面積 (mm ²)	S:ボンネットナット面面積 (mm ²)	

柏崎刈羽原子力発電所 6 / 7 号炬 (2017 12 20 版)	東海第 ^一 発電所 (2018 9 12 版)	島根原子力発電所 2号炉	
伯呵小羽床丁刀光电/ 0 / 1 万炉 (2011.12.20 m)	果御弟—光电内 (2016. 9. 12 成)	高位(県丁刀)光电内 2万州	/用
		<u>別図4-1 ボンネットナット座面<ナット座面丸面></u> <u>ポンネットナット座面</u> a <u>単び産</u>	・記載方針の相違 【東海第二】
	c. ボンネットフランジ及び弁箱フランジの合わせ面の面圧 ボンネットボルト締付荷重として評価された⑧'を合わ せ面の面積 S で除し面圧を算出する。	<u>別図4-2 ボンネットナット座面<ナット座面平面></u> c. ボンネットフランジ及び弁箱フランジの合わせ面の面圧 ボンネットボルト締付荷重として評価された荷重®'を合わ せ面の面積 S で除し面圧を算出する。ボンネットボルト締付時 のボンネットフランジと弁箱フランジの合わせ面を別図4- 3,別図4-4に示す。	・記載方針の相違 【東海第二】
	 ・ボンネットフランジ及びリフト制限板の合わせ面の面積 S=(a²-b²)/4×π a:メタルタッチ部外径(mm) b:メタルタッチ部内径(mm) S:メタルタッチ部面積(mm²) 	・ボンネットフランジ <u>と弁箱フランジ</u> の合わせ面の面積 S=(a^2-b^2)/4× π a:メタルタッチ部外径 (mm) b:メタルタッチ部内径 (mm) S:メタルタッチ部面積 (mm ²)	
	 ・ボンネットフランジ及び<u>リフト制限板</u>の合わせ面の面圧 d=⑧'/S d:メタルタッチ部応力(MPa) S:メタルタッチ部面積(mm²) 	 ・ボンネットフランジ<u>と弁箱フランジ</u>の合わせ面の面圧 d=⑧'/S d:メタルタッチ部応力 (MPa) S:メタルタッチ部面積 (mm²) 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		ボンネットフランジ ガスケット ガスケット	
		<u>別図4-3 ボンネットフランジと弁箱フランジの合わせ面</u> <u><パターン1></u>	・記載方針の相違 【東海第二】
		<u>別図4-4 ボンネットフランジと弁箱フランジの合わせ面</u> <u><パターン2></u>	・記載方針の相違 【東海第二】
	1.3 評価結果 弁(逃がし弁を除く。)の各部位について評価した結果,別第 <u>5-4 表から別第5-7</u> 表に示すとおり実機の値は判定基準を満足し, <u>保守的に弁開放直後のピーク圧力(8.2MPa[gage])</u> 及び原子炉冷 却材温度(288℃)が同時に継続して負荷された条件下で破損せず, 漏えいは発生しないことを確認した。	2. 評価結果 弁(逃がし弁を除く。)の各部位について評価した結果, <u>別第4</u> <u>-3表から別第4-7表</u> に示すとおり実機の値は判定基準を満足 し, <u>ISLOCA発生時の圧力(7.4MPa[gage])</u> 及び原子炉冷却 材温度(288℃)が同時に継続して負荷された条件下で破損せず, 漏えいは発生しないことを確認した。	・評価方針の相違 【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
		・評価結果の相違 【東海第二】
	実機の長小厚さ 計算上必要な厚さ (mm) 22.0 9.5 24.0 9.5 22.0 9.6 22.0 9.6 22.0 10.6 22.0 10.6 22.0 10.6 22.0 10.6 32.2 11.0 11.0 4.1 7.0 4.1 11.0 11.1 11.0 4.1 11.0 4.1 11.0 4.1 11.0 4.1 11.0 4.1 11.0 4.1 11.0 4.1 11.0 4.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 12.5 1.5 12.5 1.5 12.5 1.5 12.5 1.5 12.5 1.6 0.9 0.9 0.9 0.9 0.9	0.7
	度評価結果 S:設計降伏点 191 <td>357</td>	357
	表 弁耐圧部の場 d: 内径 (mm) 480 480 480 480 660 660 660 660 500 500 500 500 500 50	
	別第5-4 別第5-4 P: 約E (MPa)	7.4
	評価部位 評価部位 F003A F003A F003A F003A F003A F003A F0049 F031A F031A F031A F031A F031A F031A F031A F031A F032A F0365 F0	ZUP-402

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			・評価結果の相違 【東海第二】
旧做 F.E. 进,和福田拉山拉企构建植种里(-记1-人名 4. 1-11-11-11-11-11-11-11-11-11-11-11-11-1	Matrix constrained and	<section-header><section-header><section-header></section-header></section-header></section-header>	【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			・記載方針の相違
			【東海第二】
		(本) (10 年 2 年 2 年 2 年 2 年 2 年 2 年 2 年 2 年 2 年	
)), * 24発掘(* 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,	
		ペット (ネット (1) 10 に約 (1) 10 に約 (1) 10 (1)	
		$\begin{array}{c c} (1) \\ (1)$	
		 (N) 入名: A (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) 	
		トレンジャン (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
		前 第 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	
		(m) (m) (m) (m) (m) (m)	
		井田 (N) (N) (N) (N) (N) (N) (N) (N)	
		$表 _{4-}$ - $k + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $	
		 ○○・ボンシット ボール・本様 (本) (本) 112 116 115 116 116 116 116 116 116 116 116 116 112 112 116 112 116 116 116 116 116 112 116 116 116 116 116 112 116 112 116 116 116 <l< th=""><th></th></l<>	
		年 (0-2-10) 	
		1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
		$\begin{array}{c} \left\{ \begin{array}{c} \mathcal{T}^{2} \sqcap \\ \pm \# \\ \pm \# \\ \end{array} \right. \\ \left\{ \begin{array}{c} \mathcal{T}^{222-3} \\ \mathcal{T}^{222-3$	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			・評価結果の相違 【東海第二】
	果) **'ンネットナット 総仕部の 第4日和 (MPa) 128 128 128 202 202	果) (別であり) (別であり) (別であり) (別であり) (別であり) (別であり) (別であり) (159 (159 (159 (159 (159 (159 (159 (159 (159 (159 (159 (159 (159 (159 (159 (159 (164 (164 (164 (164 (164 (164 (164 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116 (116	
	前正評価 **** </td <td>7面圧評価結 (ma) 14 (ma) 第44 (ma) 第44 (ma) 第45 (ma) 145 171 280</td> <td></td>	7面圧評価結 (ma) 14 (ma) 第44 (ma) 第44 (ma) 第45 (ma) 145 171 280	
	ナット座面の ^{&**} > ^{ky+yy+} ^{&= 00 (mn²) 132 132}	ナット座面の (************************************	
	(北ンネット ** ^y /** 注面型 (mm ²) (mm ²) (mm ²) (mm ²) (mm ²) (mm ²)	(式 、	
)評価結果 ** ^{* 2 * 9 + 1 * 1 * 1} (mm ²) (mm ²))計価結果 $1^{5/6}$ (加) $1^{5/6}$ (五) $1^{5/6}$ (五) $1^{665.2}$ 377.0 96.60 96.22 161.0 214.4 214.9 214.9 214.9 214.9 214.9 214.9 214.9 214.9 214.9 214.9 214.9 214.9 214.9 213.9 214.9	
	80接合部0 ***** (mm) 19 19	部の接合部の (mm) (mm) (mm)	
	表 弁耐圧 ¹¹ (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	6 升前圧式 2.247h a ポンネ 1.247h b h面外 1.24 m h h m h M16 mm M16 mm	
	211 第 5-6 の 市野び経 (mm) M13 M16 M16		
	本 本 本 本 本 本 本 本 本 本 本 本 本 本	イプロセ 弁番号 (1222-14 (1222-12 (1222-12 (1222-12 (1222-15 (1222-15 (1222-15 (1222-15 (1222-15 (1222-15 (1222-22 (1222-22)	
	年 下0244 F0653 F06554		

柏崎刈羽原子力発電所 6/7号炉 ((2017.12.20版) 東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
	別第 5-7 表 弁耐圧約の接合約の評価結果(ポンネットフランジ及び弁着フランジの合わせ面の面圧) 非参し ポ25,113,32/10 非常13,332/10 月39,95,655/14 139,95,655/14 第73,572/20 473,572/20 非常 *73,113,270 第48,75 (110,10) (110,10) (110,10) #87,572/10 非常 *14 (100) (100) (100,10) (110,10) #87,572/10 #87,572/10 F066A \$256 \$5782 130 156.5 1,560.3 #88,673/10 #88,673/10		Nž 4 – 7 Авінтійно Желіколіянийня (x' /2×) Г/Эг/Эл/Эл/Эл/Эл/Эл/Эл/Эл/Эл/Эл/Эл/Эл/Эл/Эл/	・ 評価結果の相違 【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙6	別紙5	・記載方針の相違
			【柏崎 6/7】
	計器からの漏えいの可能性について	計器からの漏えいの可能性について	
	計器について, 保守的に弁開放直後のピーク圧力 (8.2MPa	計器について, <u>ISLOCA発生時の圧力(7.4MPa[gage]*)</u>	・評価方針の相違
	[gage]) 及び原子炉冷却材温度(288℃)が同時に継続して負荷	及び原子炉冷却材温度(288℃)が同時に継続して負荷された条件	【東海第二】
	された条件下で破損が発生しないことを以下のとおり確認した。	下で破損が発生しないことを以下のとおり確認した。	
		* 弁開放直後の圧力上昇に比べ, 弁開放から 10 秒程度以降の構	
		<u>造材の温度上昇に伴う耐力低下の方が,系統全体への影響が</u>	
		大きいため、静定圧力を採用した。	
	1. 圧力計,差圧計	1. 圧力計, 差圧計	
		別表5-1に示す圧力計及び差圧計が、ISLOCA時に	・評価結果の相違
		過圧される範囲に設置されており, そのうち PS222-4A-1 及び	【東海第二】
		<u>PS222-4A-2</u> については,計器耐圧値が I S L O C A 時の圧力	
		<u>(7.4MPa [gage]) よりも低いため,漏えいするとした。別図</u>	
		5-1に示すように計器内部のブルドン管やその接続部で漏	
		<u>えいすることが想定されるため、漏えい面積は株部のプロセ</u>	
		<u>ス取合い(外径:5mm)の断面積とした。</u>	
	隔離弁の誤開放等による加圧事象発生時に加圧される以下の圧	<u>別表5-1に示す圧力計及び差圧計のうちPS222-4A-1及</u>	
	<u>力計及び差圧計は</u> ,隔離弁の誤開放等による加圧事象発生時の圧	び PS222-4A-2 以外の計器については、隔離弁の誤開放等によ	
	力以上の計装設備耐圧値を有しており、破損は発生しないことを	る加圧事象発生時の圧力以上の計装設備耐圧値を有してお	
	確認した。なお、構造材の温度上昇に伴う耐力低下(温度-30~	り,破損は発生しないことを確認した。なお,構造材の温度	
	40℃における設計引張強さに対する 288℃における設計引張強さ	上昇に伴う耐力低下(温度-30~40℃における設計引張強さ	
	の割合は SUS316L の場合で約 79%)を考慮しても、計装設備耐圧	に対する 288℃における設計引張強さの割合は SUS316L の場	
	値は加圧時における圧力以上となる。	合で約 79%)を考慮しても、計装設備耐圧値は加圧時におけ	
		る圧力以上となる。	
			1
			1
			1
			1

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 東海第二発電所	(2018. 9. 12 版)		島根	原子力発電	所 2号炉		備考
	別第 6-1 表 圧力計	+, 差圧計の設計圧力		別表 5 -	-1 計器優	建全性評価結果		・評価結果の相違
	計器番号 PT-E12-N002A-1 PT-E12-N026A	計装設備耐圧 (MPa) 14.7(150kg/cm ²) 14.7(150kg/cm ²)	計器番号 PS222-4A-1	計器耐圧* 5.4MPa	漏えい有無 漏えい	漏えい想定箇所 プロセス取合 の Φ 5 導圧口	漏えい面積 $\pi \times 5^2 / 4$ = 19.63mm ²	【東海第二】
	PT-E12-N053A dPT-E12-N058A FT-E12-N013 FT-E12-N015A	$ \begin{array}{r} 14.7(150 \text{kg/cm}^2) \\ 13.7(140 \text{kg/cm}^2) \\ 14.7(150 \text{kg/cm}^2) \\ 14.7(150 \text{kg/cm}^2) \\ 14.7(150 \text{kg/cm}^2) \\ \end{array} $	PS222-4A-2	4.4MPa	漏えい	プロセス取合 のΦ5 導圧口	$\pi \times 5^2 / 4$ = 19.63mm ²	
	FT-E12-N060A FT-C61-N001	14.7(150kg/cm ²) 14.7(150kg/cm ²)	PX222-4A	14.7MPa	漏えいなし	_	_	
			FX222-1A	22.1MPa	漏えいなし	_	_	
			FX222-2A	22.1MPa	漏えいなし	_	_	
			FX222-3	22.1MPa	漏えいなし	_	_	
			dPX222-1A	15MPa	漏えいなし	_	—	
	2. 温度計		マイクロスイッチ デジュフィッチ - 設定調整軸 - 設定調整軸 - 設定調整軸 - 数定調整軸 - プロセス取: 最小内径前 (外径の5)	7ルドンT で か ドンT 下 か 一 町 一 一 町 一 町 一 一 町 一 一 町 一 一 町 一 一 一 一 一 一 一 一 一 一 一 一 一	① 2 2 ① ② ② ① ② ③ ① ② ③ ① ③ ○ ① ○ ○ ① ○ ○ ① ○ ○ ① ○ ○ ① ○ ○ ① ○ ○ ① ○ ○ 1 計器内	★#78 #76 #76 ##76 ##76 ##76 ##76 ##76 ##7	漏えい箇所	・記載方針の相違 【東海第二】
	 2.1 評価方針 隔離弁の誤開放等による加圧 ついて,耐圧部となる温度計ウ 法として,日本機械学会「配管 針(JSME S 012-1998)」に従い 価,一次応力評価並びに疲労評 た。評価条件を<u>別第 6-2 表</u>に示 <u>別第 6-2 表</u>に示 	 事象発生時に加圧される温度計に <i>ェ</i>ルの健全性を評価した。評価手 内円通状構造物の流量振動評価指 , 同期振動発生の回避又は抑制評 価を実施し,破損の有無を確認し す。 表 評価条件 	2.1 評価方針 2.1 評価方針 隔離弁 計につい 評価手法 振動評価 回避また 破損の有 圧力 7.4MPa 2	針 の誤開放等 にて、耐圧部 にとして、同 話針(JSM には抑郁認し <u>別表</u> <u>温度</u> 88℃ 2		王事象発生時に加 計ウェルの健全 (配管内円柱状 98)」に従い,同 評価並びに疲労調 た件を <u>別表5-2</u> (<u>ま計評価条件</u> 流体密度 736kg/m ³ 1.2	圧される温度 生を評価した。 構造動発生の 評価を実施し, に示す。 動粘度 5×10 ⁻⁷ m ² /s	・評価方針の相違 【東海第二】

 2.2 評価方法 (1) 評価手順 成力振動字価指針に従った評価手順な<u>効気から</u>図に示す。 2.2 評価方法 (1) 評価手順 成力振動字価指針に従った評価手 (1) 評価手順 (1) 評価 (1) 評価<!--</th--><th>柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)</th><th>東海第二発電所 (2018.9.12版)</th><th>島根原子力発電所 2号</th>	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
 (1) 評価手順 (1) 評価 (1) 評価		2.2 評価方法	2.2 評価方法
 (次力振動評価指針に従った評価手順を<u>辺底 6-1</u>図に示す)。 (次)振動評価指針に従った評価手順を (小) (小) (小) (小) (小) (小) (小) (小) (小) (小)		(1) 評価手順	(1)評価手順
第二日 第二日 </th <th></th> <th>流力振動評価指針に従った評価手順を<u>別第 6-1 図</u>に示す。</th> <th>流力振動評価指針に従った評価手順を</th>		流力振動評価指針に従った評価手順を <u>別第 6-1 図</u> に示す。	流力振動評価指針に従った評価手順を
第二日 第二日 <td< td=""><td></td><td></td><td></td></td<>			
		JusticityJust	スタート 基本図有擬動数の第出 換算流速 V,の算出 換算流速 V,の算出 換算流速 V,の算出 換算流速 V,の算出 (a) V,<1 (b) Cn>64 (c) V,<3.3 かつ Cn>2.5 (c) V,<3.5 かつ Cn>2.5 (c) V,<3.5 かつ Cn>2.5 (c) V,<5.5 かつ Cn>2.5 (c) V,<5.5 かの Cn>2.5 (c) V,<5.5 か

	古海営=改委託 (0010 0 10 ℃)	白田匠フ九恋愛託の日
	東海弗→発竜所 (2018.9.12 放)	局根原于刀発電所 2 号
		(2)評価式
	流力振動評価指針に従い評価を実施する場合に使用する評	流力振動評価指針に従い評価を
	価式を <u>別第6-3</u> 表に示す。	る評価式を別表5-3に示す。
	<u>別第6-3</u> 表 評価式(その1)	<u>別表5-3</u> 評価式(その
	項目評価式	項目 評価式
	1. 合種ハラ ・基本固有振動数 Γ_0 メータの 体定 、 λ_c^2 、 $E \cdot I$	1. 各種パラメー・基本固有振動数 f ₀
	$\mathcal{F}_{0} = 2 \cdot \pi \cdot L^{2} \sqrt{m}$	ダの昇走 $f_0 = \frac{\lambda_0^2}{2 + \pi + 12} \cdot \sqrt{\frac{E \cdot I}{m}}$
	$I = \frac{\pi}{64} \cdot (d_{\circ}^{4} - d_{i}^{4})$	$I = \frac{\pi}{2} \cdot (d^4 - d^4) \cdots$
	$\lambda_{\rm o} = 1.875$	$\begin{array}{c} 64 \\ \lambda_{a} = 1.875 \end{array}$
	$m = \frac{\pi}{4} \left\{ \rho_{s} \cdot (d_{o}^{z} - d_{i}^{z}) + \rho \cdot d_{o}^{z} \right\}$	$\mathbf{m} = \frac{\pi}{\cdots} \cdot \{\rho_s \cdot (\mathbf{d}_s^2 - \mathbf{d}_i^2) + \rho \cdot \mathbf{d}_s^2\}$
	 ・換算流速 V, V 	4 ・換算流速 V _r
	$V_{\gamma} = \frac{1}{f_0 \cdot d_0}$	V — V
	大きい。)の場合は、構造物周辺平均流速 V を用いる。	
	$= 2 \cdot \left\{ \frac{n}{n+1} \left(\frac{L_*}{D/2} \right)^{\frac{1}{n+1}} - \frac{n}{2 \cdot n+1} \left(\frac{L_*}{D/2} \right)^{\frac{1}{n+2}} \right\} (n+1)(2 \cdot n+1)$	加速 ∨ には加速分布が非一様(週帯, 官中心 い。)の場合は,構造物周辺平均流速 ⊽を用
	$V = \frac{1}{1 - \left\{1 - \left(\frac{L_{s}}{D_{s}}\right)^{2}} \cdot \frac{1}{2 \cdot n^{2}} \cdot V_{s}\right\}$	$2 \cdot \int n \int L_e \int^{\frac{1}{n} + 1} n \int L_e$
	また,流速 V はエルボ等による偏流の影響を考慮して構造物周辺平均	$\overline{\mathbf{v}} = \frac{\left[\frac{1}{\mathbf{n}+1}\left(\frac{1}{\mathbf{D}/2}\right)\right]^{-1} - \frac{1}{2 \cdot \mathbf{n}+1}\left(\frac{1}{\mathbf{D}/2}\right)^{-1}}{\mathbf{v}}$
	流速 \overline{V} に以下の割増係数を乗じた値とするが、今回は十分な保守性が確保されていることを確認するために割増係数「2」として計算する。	$1 - \left\{1 - \left(\frac{L_e}{D/2}\right)\right\}^2$
	割増係数 − x: 偏流発生源から構造物 1.5 x / D ≤ 3 までの距離	また, 流速 V はエルボ等による偏流の影響
	1.25 3 <x d≤5<="" th=""> D:配管内径 ・換算減衰率C_ - - - -</x>	速▼ に以下の割増係数を乗じた値とするが、 れていろことを確認するために割増係数を「
	$C_{\rm p} = \frac{2 \cdot m \cdot \sigma}{\sigma}$	割増係数 — X:偏道
	$ \begin{array}{c} \rho \cdot d_{\circ} \\ \delta = 2 \cdot \pi \cdot \xi \end{array} $	1.5 x/D≦3 距離
	$\xi = 0.002$ (ねじ接合), 0.0005 (溶接接合)	<u> 1.25 3< x / D ≦5 D: </u> 配電 ・ 換算減衰率 C _n
		$C_n = \frac{2 \cdot m \cdot \delta}{1 - m \cdot \delta^2}$
		$\delta = 2 \cdot \pi \cdot \xi \qquad \dots \qquad \dots$
		た=0.002(わざ接合) 0.0005 (注

分炉	備考
実施する場合に使用す	
01)	
(3.1)	
(3.3)	
(3.4) い部で管壁部よりも流速は大き	
$\left. \frac{1}{2} \right)^{\frac{1}{n} + 2} \left. \frac{1}{2 \cdot n^{2}} \right\} \cdot \frac{(n+1) (2 \cdot n+1)}{2 \cdot n^{2}} \cdot V_{n}$	
(3.5) 夢を考慮して構造物周辺平均流 今回は十分な保守性が確保さ 2」として計算する。	
流発生源から構造物までの 離 管内径	
(3.6)	
溶接接合)	

柏崎刈羽原子力発電所 6/7号炉 (2	2017. 12. 20 版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		<u>即第6-3. 表</u> 評価式 (その2)	(4) B = Base (1 - b	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	(3) 記号説明	(3)記号説明	
	B_1, B_2 $\ddot{\kappa}$ J K b $(-)$	B1, B2 応力係数(-) Ca 一垂亚均値からピーク値への換算係数(-)	
	C ₀ 二来平均値からビーグ値への換算係数(-) C _D 定常抗力係数(-) C _n 換算減衰率 C' ランダム励振力係数(-) d 構造物の代表外径(-)	Cp 定常抗力係数(-) Cn 換算減衰率(-) C' ランダム励振力係数(-)	
	di 構造物の代表内径(-) E 構造物の縦弾性係数(Pa) f ₀ 円柱状構造物の基本固有振動数(Pa) F ₋ 単位長さ当たりの流体抗力(N/m)	d。 構造物の代表外径(m) di 構造物の代表内径(m) E 構造物の縦弾性係数(Pa) fa 田柱状構造物の基本固有振動数(Hz)	
	G 単位長さ当たりのランダム励振力のパワースペクトル密度 (N ² ・S/m ²) I 構造物の断面二次モーメント(m ²) K 応力集中係数(-)	FD 単位長さ当たりの流体抗力(N/m) G 単位長さ当たりのランダム励振力のパワースペクトル密度(N ² ・s/m ²) I 構造物の断面二次モーメント(m ⁴)	
	L 構造物の長さ(m) L。 流体中に突き出た構造物長さ(m) m 付加質量を含む構造物の単位長さ当たり質量(kg/m) n Re 数に基づく係数(-)	K 応力集中係数(-) L 構造物の長さ(m) L _e 流体中に突き出た構造物長さ(m) m 付加質量を含む構造物の単位長さ当たり質量(kg/m)	
	P 配管の最高使用圧力(MPa) S _m 設計応力強さ(MPa) V 流速(m/s) V _m 断面平均流速(m/s)	n Re 数に基づく係数(一) P 配管の最高使用圧力(MPa) S _m 設計応力強さ(MPa)	
	構造物周辺平均流速 (m/s) Vr 換算流速 (-) yR(L) ランダム振動変位振幅 (m) Z 構造物の断面係数 (m³)	V 流速 (m/s) Vm 断面平均流速 (m/s) V 構造物周辺平均流速 (m/s) V 換算流速 (-)	
	β ₀ 基本振動モードの刺激係数(-) δ 空気中における構造物の対数減衰率(-) ξ 空気中における構造物の臨界減衰比(-) ξ 流体減衰(-)	y _R (L) ランダム振動変位振幅(m) Z 構造物の断面係数(m ³) β ₀ 基本振動モードの刺激係数(-)	
	ρ 流体の密度(kg/m³) ρ s 構造物の密度(kg/m³) σ D 定常抗力による応力(MPa) σ F 設計疲労限(MPa)	δ 空気中における構造物の対数減衰率(-) ξ 空気中における構造物の臨界減衰比(-) ξ 流体減衰(-) ρ 流体の密度(kg/m³)	
	σ _R ランダム振動応力振幅(MPa) σ _G 外圧により構造物に発生する応力(MPa) Φ ランダム励振力の規格化パワースペクトル密度(-)	ρ _s 構造物の密度 (kg/m ³) σ _D 定常抗力による応力 (MPa) σ _F 設計疲労限 (MPa)	
		σ _R ランダム振動応力振幅 (MPa) σ _G 外圧により構造物に発生する応力 (MPa) Φ ランダム励振力の規格化パワースペクトル密度 (-)	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)		東海第二発電所	(2018.9.12版)			島根原子力発電所 2号
			(4) 判定基流力振定基準を	準 動評価指針に従い割 別第 6-4 表に示す。	平価を実施する場合に使用	(4)	判定基準 流力振動 判定基 ³	動評価指針に従い評価を実施 準を <u>別表5-4</u> に示す。
			項目 1. 同期振動の回避又は抑制評価 2. 流力振動。 強度評価	<u>別第 6-4 表</u> 下記のいずれかを満足するこ (a)V _v <1 (b)C _n >64 (c)V _v <3.3かつC _n >2.5 ・応力制限 組合せ応力は、設計建設共 下の条件を満足すること。 (クラス1)B ₁ ・σ _G B ₁ =1.0(ねじ接合), B ₂ =4.0(ねじ接合), ・疲労評価 応力集中係数Kを考慮した K・σ _R ≤σ _F K=4.0(ねじ接合),	戦 判定基準 国格より PPB-3520 (クラス1)を適用 +B ₂ ・(σ _D +σ _R) ≤min (1.5・Sm, 0.75 (溶接接合) 1.5 (溶接接合) た応力振幅が以下の条件を満足するこ 4.2 (溶接接合)	コート 日 した以 1.5・S) と。	項目 司期振動の回 避又は抑制評 面 流力振動に対 する強度評価	<u>則表 5 4</u> 判定基準 ¹¹ 定基準 下記のいずれかを満足すること。 (a) V _x <1 (b) C _n >64 (c) V _x <3.3 かつ C _n >2.5 ・応力制限 組合せ応力は,発電用原子力設備規格(S NC 1 - 2005)(日本機械学会 2005 設規格」という。)より PPB-3520(クラス を満足すること。 (クラス 1)B ₁ ・ σ _c +B ₂ · (σ _p + σ _R B ₁ =1.0(ねじ接合), 0.75(溶 B ₂ =4.0(ねじ接合), 1.5(溶材 ・疲労評価 応力集中係数 K を考慮した応力振幅が以 K・ σ _R ≤ σ _F K=4.0(ねじ接合), 4.2(溶材

炉	備考
拖する場合に使用する	5
 (設計・建設規格 JSME 年8月)(以下「設計・建 1)を準用した以下の条件 	
_R)≦min (1.5・S _m , 1.5・S) 序接接合) 接接合)	
以下の条件を満足すること。	
接接合)	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.12版)		島根原子力発電所 2号炉	備考
					<u>(5)</u> 構造図の形:	状	・記載方針の相違
					構造物の形状	犬を別図5-3に示す <u>。</u>	【東海第二】
						↓ ↓ (単位:×10 ⁻³ m)	
					5		
						-/	
					$\xrightarrow{\phi 29} < \rightarrow$		
					d		
						$\phi 25$	
						材料:SUS316L,SUS304	
						別図5-3 温度計ウェル形状図	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			2.3 評価結果	2.3 評価結果	
			計器について評価した結果,別第 6-5 表に示すとおり実機の値	計器について評価した結果,別表5-5に示すとおり実機	
			は判定基準を満足し, <u>保守的に弁開放直後のピーク圧力(8.2MPa</u>	の値は判定基準を満足し, <u>ISLOCA発生時の圧力(7.4MPa</u>	・評価方針の相違
			<u>[gage])</u> 及び原子炉冷却材温度(288℃)が同時に継続して負荷	<u>[gage])</u> 及び原子炉冷却材温度(288℃)が同時に継続して	【東海第二】
			された条件下で破損せず、漏えいは発生しないことを確認した。	負荷された条件下で破損せず、漏えいは発生しないことを確	
				認した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			・評価結果の相違
		恒	【東海第二】
		н Ц С	
	f ⁶ (Hz) 398.1 398.1 76 76 76		
	5 講曲 (×10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	L480.09 日480.09 合計画 合計画 合計画 合計画 合 合 合 計 1480.09 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇	
	回 编 微量 (kg/(kg/))) (kg/(a))) (kg/(a)) (kg/(a)))) (kg/(a))) (kg/(a)))) (kg/(a)))) (kg/(a)))) (kg/(a)))) (kg/(a))))) (kg/(a))))))))))))))))))))))))))))))))))))	²¹¹ 1111111111111111111111111111111111	
	1 1 1 1 1 5 5 5	同期統動 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	10 10 10 10 10 10 10 10 10 10	⁽¹⁾ (1) (1) (1) (1) (1) (1) (1) (1)	
	や c c (MPa) (A (* (* (* (* (* (* (* (* (* (* (* (* (*		
	L ^e (×10 - ³ m) 203 203 155.2 155.2 推正し、	$(\times 10^{2} k_{g/m}^{p}, (\times 10^{2} k_{g/m}^{p$	
	世 世 世 世 世 世 世 世 日 日 日 日 日 日 日 日 日 日 日 日 日	17.0 17.	
	→ A T T T T T T T T T T T T T T T T T T	田 	
	や 画	「 二 二 二 二 二 二 二 二 二 二 二 二 二	
	(mba do no 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	引第 6 44 44 ASTN-A 105 105 105 105 105 次素鋼の 次 次 1.30 以の288 次素鋼の	引表 5 31.0 37.0 0.05 0.05 0.05 0.05 0.05 1.1 たまなけ、 27.0	
	ダ 本 茶 茶 茶 茶 茶 茶 茶 茶 茶 茶 茶 茶 茶	A A A A A A A A A A A A A A	
	○ 第二日本 100 mm ○ 第二日本 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	カイブ おに接合 おに接合 おに接合 18.9 19.8	
	宿 	neifettee neifettee 27.40 7.40	
	日本 日本 日本 日本 日本 日本 日本 日本 日本 日本		
	年 (kg/ 5 5 736 736 月 二 7 7 8 8 1 7 7 8 8 7 7 8 8 7 7 8 6 7 7 8 6 7 7 8 7 8	·····································	
	第 条条 10.00.17 15 15 15 15 15 15 15 15 15 15 15 15 15	^{1.26} · ^(m/s) · ^(m/s)	
	流体種別 水 水 、 0.0.0 と 約 、 0.088 、 0.088 、 2000 、 0.088 、 2000 、 2000 、 2000 、 2000 、 2000 、 2000 、 2000 、 2000 、 2000 、 2000 、 2000 、 2000 、 2000 、 2000 、 2000 、 2000 、 2000 20		
	本 Z 本 Z 本 Z 本 ジャ ジャ ジャ ジャ ジャ ジャ ジャ ジャ ジャ シャ		
	田 二 田 - - - - - - - - - - - - -	第一版語 第一版書 第 版書 第 版書 第 版書 第 版書 第 版書 第 版書 第 版書 第 版書 第 版書 第 版書 第 版書 第 版書 第 版書 第 版 第 版	

	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
Rest on elegistic out orRest on elegistic out or elegistic		別紙7	別紙6	・記載方針の相違
				【柏崎 6/7】
		配管からの漏えいの可能性について	配管からの漏えいの可能性について	
クエア・(3.20% [mus.]) (20% Fmus.]) (20%		配管及び配管フランジ部について、保守的に弁開放直後のピー	配管及び配管フランジ部について、ISLOCA発生時の圧力	・評価方針の相違
1. 組織して食荷された条件下で破損が発生しないことを取用のと あり確認した。 純して食荷された条件下で吸損が発生しないことを取用のと 確認した。 純して食荷された条件下で吸損が発生しないことを取用のと 確認した。 1. 通貨幣価 小類買幣価 1 1. 通貨幣価 1 治療が増加した。 1.1 再供配例の対理 1 計算研修の対理であった。素面化の可能ない。 1.1 再供配例の対理 1 計算研修の対理であった。 2.1 再供配例の対理 1 計算研修の対理であった。 2.1 再供配例の対理 1 計算研解の効果を必須加りた。 2.1 再供配例の効果を、通信を建築をのたマクランダがあかり、 一部ののの意思で、活動がないが見ておれる部分は、画は 2.1 可加のため起き、信意を認知を知るためた。 一部のかん知う、 2.1 再供配例の効果を必須加りた。 一部のかん知う、 2.2 評価のため 一部のかん知う、 2 評価のため 一部のかん知う、 2 評価のため 一部のかん知う、 2 評価のため 一部のかん知う、 1.2 評価のため 一部のかん和学、 1.1 したのので加した。 一部のかん和学・ 2 評価のため 1		ク圧力 (8.2MPa [gage]) 及び原子炉冷却材温度 (288℃) が同時	(7.4MPa [gage]*)及び原子炉冷却材温度(288℃)が同時に継	【東海第二】
29 Radi, 5 . $\frac{920}{10}$ D/2 <td< th=""><th></th><th></th><th>続して負荷された条件下で破損が発生しないことを以下のとおり</th><th></th></td<>			続して負荷された条件下で破損が発生しないことを以下のとおり	
<th></th> <th>おり確認した。</th> <th>確認した。</th> <th></th>		おり確認した。	確認した。	
上 2世の通道上正しておした正の支払、系統会体への空襲の 大支にため、数定比力を括用した。 1. 特徴調査のうち湯入いが思定される新化は、高温・ 配合の構成部系のうち湯入いが思定される新化は、高温・ 配の加ける配管型、配管と理なをつなくフランジ部からり、そ おおについて評価を実施した。評価の報知管を加速上しては す。 1. 非認知の配定した。新加工の報告を加速した。 通知の加ける配管型、配管と理なったくフランジ部からり、 たおおについて評価を実施した。評価の報問を加速した。 におっす。 1.2 評価が加く 1.2 評価の加ける配管型、加工の工作の支払、高温・ 和しの加ける配管型、配管型にの支払した。 たのは「の注意を実施した」 におす。 1.2 評価が加く 1.2 評価がお出 のの知力の配合業にした。 のフスを監定の可能に発展な深さを上回ることを確 認した。 1.2 評価が加く 1.1 1.1 1.2 評価が加く 1.2 評価が加く 0.1 1.2 評価が加く 1.2 評価の加く 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.5			* 弁開放直後の圧力上昇に比べ, 弁開放から 10 秒程度以降の構	
1. 激怒評価 1. 激怒評価 1. 源価報金の選擇 1. 激怒評価 1.1 評価報金の選擇 記名「報告報金の方も高えいが認定される報益は、高量・高 一般の加水気が見た。詳価は物類になった。詳価は物類になる測量に上します。 記名「報告報金の方も高えいが認定されるお道な、高量・高 一般の加水気が見た。詳価は物類になる測量に上しま。 記名「新聞・高量・高量・公式・クランク知込みの、 たたいたついて評価を実施した。評価対象相信を測量に上しま。 記名の加水気が見た。ごろいてござ価を実施した。評価対象相信を測量にた。 1.2 評価方法 1.2 評価方法 (1) 起きの評価 クシス2記号の評価を決てるる設計・建設規格 (1) 記書が評価 クシス2記号の評価を決する法を注意になる支援になる変な厚えを算 (1) 定要が加 たまのがに、「美田・大会がなる設計・建設規格 (1) 定要が加 たまのが「第二本要素な厚など生同ることを確 認した。 「一般の使いが」」、 1.1 管の計算上を要な厚きにな力加生事業を生用のこと 「一般の正式」」、 1.2 読録の評価 た、 1.3 読録の調査を注意していた。 「一般のな」 1.4 読者の評価 「第の計算上を要な厚きを注意していた。 1.5 読録の調査を注意していた。 「一日の方法」 1.1 読者の通知の意味 「1.1 記書が可能のである設計・準備の 1.2 読録の評価 「「1.1 記録の「「「1.1 記」」」 1.1 読者の評価 「「1.1 記録の「「1.1 記」」」 1.2 読品の意味 「1.1 ごのご称」」 1.3 読者の評価 「「1.1 記」」 1.4 読者の評価 「「1.1 記」」」 1.5 ごのご称」」 「「1.1 記」」」 1.5 ごのご称」」 「1.1 記」の 1.5 空び音話」」」 「1			<u>造材の温度上昇に伴う耐力低下の方が、系統全体への影響が</u>	
1.1 読載計価 1. 挑成計価 1.1 評価単位の選定 1.1 評価単位の選定 正の加わる起苦え、起苦と自情かつなマクランジ部かりのされらについて評価を実施した。評価対象配管を加速した。非価対象配管を加速した。評価対象配管を加速した。非価対象配管を加速した。非価対象配管を加速した。非価対象配管を加速した。非価対象配管を加速した。非価対象配管を加速した。非価対象配管を加速した。非価対象配管の推動にを取じした。			<u>大きいため,静定圧力を採用した。</u>	
1.1 評価部位の選定 1.1 評価部位の選定 配管の構成体品のうち強えいが環定される特位は、高温・高 一部の加える観望と、配営を知営をつなぐフランジ部があり、 たいこついて評価を実施した、評価対象加管を知道でした。評価対象加管を知道でし、評価対象加管を知道しまし、 す。 1.2 評価方法 1.2 評価方法 1.1 現価額位の選定 1.2 評価方法 1.2 評価方法 1.2 評価方法 1.1 現価額位の運営 1.2 評価方法 1.2 評価方法 1.2 評価方法 1.1 現価額位の運営 1.2 評価方法 1.1 現価額位の運営 1.3 評価的の当ち強えいが環定される特位は、高温・ 高いの知わる観望と加速される考古の違いが見た。計価対象加量を迎通しましま 1.2 評価方法 1.2 評価方法 1.1 現価額位の運営を加量をつなぐフランジ部があり、 それらについて評価を実施した。計価対象加量を迎回しまま クラス2 位置の評価 1.2 評価方法 1.1 現価の資価 クラス2 位置の評価 クラス2 位置の評価 1.2 評価方法 1.1 現価の資価 1.2 評価方法 1.1 現価の資価 1.2 評価方法 1.1 現価の資価 1.2 評価方法 1.1 現価の資価 1.2 評価方法 1.1 実施の資本 1.1 評価の資金 1.1 実施の資本 1.1 評価		1. 确度評価	1. 強度評価	
配量の増成部品のうち漏えいが退意される部体は、高品、為 にの加わる板管と、企幣を危管をつなくフランジ部があり、そ れるについて評価を実施した、評価が象配管を別第二日回に不 す、 田管の増成部品のうち漏えいが返意される部体は、高品、 		1.1 評価部位の選定	1.1 評価部位の選定	
田田の加らる監管と、配管と監管をつなぐフランジ部があり、それらについて評価を実施した。評価対象配管を <u>別回点</u>		配管の構成部品のうち漏えいが想定される部位は、高温・高	配管の構成部品のうち漏えいが想定される部位は、高温・	
れらについて評価を実施した。評価対象配管を別第二日回にボ す。 それらについて評価を実施した。評価対象配管を別図6-1 に示す。 1.2 評価方法 1.2 評価方法 (1) 配管の評価 クラス2配管の評価手法である設計・建設規格 「PTC-3411(1)内圧を受ける直管すを適用して必要な厚さを算 III)、実効の最小厚さが計算上必要な厚さを算 III)、実効の最小厚さが計算上必要な厚さを算 III)、実数の最小厚さが計算上必要な厚さを算 III)、実数の最小厚さが計算上必要な厚さを算 III)、実数の最小厚さが計算上必要な厚さを算 III)、実数の最小原さが計算上必要な厚さ(ma) F: 医酶生の調査上を要な厚さ(ma) F: 医酶生の調査検索(ma) S: 設計研究後(ma) n : 長手進手効率 1.2 評価方法 5: 設計研究後(ma) n : 長手進手効率 1.2 評価方法		圧の加わる配管と、配管と配管をつなぐフランジ部があり、そ	高圧の加わる配管と,配管と配管をつなぐフランジ部があり,	
す. に示す。 1.2 評価方法 1.2 評価方法 (1) 部営の評価 クラス2配管の評価手法である設計・建設規格 「PC-3411(1)内圧を受ける宣誓」を適用して必要な厚きを準備 クラス2配管の評価手法である設計・建設規格 「PC-3411(1)内圧を受ける宣誓」を適用して必要な厚きを準備 アPC-3411(1)内圧を受ける宣誓」を適用して必要な厚きを算 認した。 「PC-3411(1)内圧を受ける宣誓」を適用して必要な厚きを準備 「PC-3411(1)内圧を受ける宣誓」を適用して必要な厚きを準備 アPC-13年 「PC-3411(1)内圧を受ける宣誓」を適用して必要な厚きを準備 「PC-3411(1)内圧を受ける宣誓」を適用して必要な厚きを重 認した。 「PC-3411(1)内圧を受ける宣誓」を適用して必要な厚きを重 「PC-3411(1)内圧を受ける宣誓」を適用して必要な厚きの (PC-13年) 「PC-3411(1)内圧を受ける宣誓」を適用して必要な厚きを重 「PC-13年) 「PC-3411(1)内圧を受ける宣誓」を適用して必要な厚き(mm) (PC-13年) 「PC-3411(1)内圧を受ける宣誓」を適用して必要な厚きを重 「PC-13年) 「PC-3411(1)内圧を受ける宣誓」を適用して必要な厚きを 「PC-13年) 「PC-13年) 「PC-13年 「PC-13年 「PC-13年 「PC-13年 「PC-13年 「PC-13年 「PC-13年 「PC-13年 「PC-14H1」」」」 「PC-13年 「PC-13年 「PC-13年 「PC-14H1」」」」 「PC-13年 「PC-14H1」」」」」 「PC-13年 「PC-14H1」」」」 「PC-14H1」」」 「PC-14H1」」」」 「PC-14H1」」」」 「PC-14H1」」」」		れらについて評価を実施した。評価対象配管を別第 7-1 図に示	それらについて評価を実施した。評価対象配管を <u>別図6-1</u>	
1.2 評価方法 1.2 評価方法 (1) 配管の評価 クウス 2 配管の評価 クウス 2 配管の評価 クウス 2 配管の評価 クウス 2 配管の評価 クウス 2 配管の評価 アPPC-311 (1)内圧を受ける宣管)を適用して必要な厚さを集 アPPC-311 (1)内圧を受ける宣管)を適用して必要な厚さを上回ることを確 惑した。 1 * = <u>200</u> 1.2 評価方法 (PPC-311 (1)内圧を受ける宣管)を適用して必要な厚さを上回ることを確 認した。 * * = <u>200</u> 1.2 評価方法 (PPC-311 (1)内圧を受ける宣管)を適用して必要な厚さを上回ることを確 部した。 * * = <u>200</u> 1.2 評価方法 (PPC-311 (1)内圧を受ける宣管)を適用して必要な厚さを上回ることを確 部した。 * * : * : * : * : * : * : * : * : D: : D: : D: : : : : : : : : : : : : : :		す。	に示す。	
(1) 配管の評価(1) 配管の評価 $/ 9 > X 2 配管 の評価 手法である設計・建設規格「PPC-3411(1)内压を受ける直管」を適用して必要な厚さを算出し、実機の成小厚さが計算上必要な厚さを注回ることを確認した。/ 9 > X 2 配管の評価手法である設計・建設規格「PPC-3411(1)内压を受ける直管」を適用して必要な厚さを算出し、実機の成小厚さが計算上必要な厚さを上回ることを確認した。t = \frac{PD_1}{23g+0.84P}t = \frac{PD_0}{23g+0.84P}(PPC-13 準元)(PC-13 準元)t : 管の計算上必要な厚さ (mm)t : 管の計算上必要な厚さ (mm)t : 管の計算上必要な厚さ (mm)P : I SL-OC A 発生時の圧力 (=5 : 設計引張強さ (MPa)\eta : 長手継手効率・評価方針の相違(其第第二]$		1.2 評価方法	1.2 評価方法	
クラス2配管の評価手法である設計・建設規格 「PPC-3411(1)内圧を受ける直管」を適用して必要な厚きな算 出し、実機の最小厚きが計算上必要な厚きを上回ることを確 認した。 $t = \frac{PD_{-}}{2Sry+0.8P}$ t: 管の計算上必要な厚き(mm) P: 腐難弁の誤問放等による加圧事象発生時の圧力(= 8.20Pa) D.: 管の外径(mm) S: 設計引張強さ(MPa) η : 長手維手効率 η : 長手維手効率		(1) 配管の評価	(1) 配管の評価	
「PPC-3411(1)内圧を受ける直管」を適用して必要な厚さを集 「PPC-3411(1)内圧を受ける直管」を適用して必要な厚さを集 「PPC-3411(1)内圧を受ける直管」を適用して必要な厚さを集 出し、実機の最小厚さが計算上必要な厚さを上回ることを確 認した。 こし、実機の最小厚さが計算上必要な厚さを上回ることを確 記した。 $t = \frac{PD_0}{25\eta + 0.8P}$ (PPC-13 準肌) し、等価が計算上必要な厚さ(mm) 1: 管の計算上必要な厚さ(mm) 1: 管の計算上必要な厚さ(mm) P: 隔離弁の誤開放等による加圧事象発生時の圧力(= No.: 管の外径(mm) 1: I SLOCA発生時の圧力(=7,4MPa) 0.: 管の外径(mm) Su: 設計引張強さ(MPa) 新第二】 1.: 長手継手効率 1: 長手継手効率 1: 長手継手効率		クラス2配管の評価手法である設計・建設規格	クラス2配管の評価手法である設計・建設規格	
出し、実機の最小厚さが計算上必要な厚さを上回ることを確認した。出し、実機の最小厚さが計算上必要な厚さを上回ることを確認した。 $\ell = \frac{PO}{2S\eta + 0.8P}$ 出し、実機の最小厚さが計算上必要な厚さを上回ることを確認した。 $t : \frac{PO}{2S\eta + 0.8P}$ $t : \frac{PO}{2S\eta + 0.8P}$ $t : \hat{T} = 0$ $t : \hat{T} = \frac{D}{2S\eta + 0.8P}$ $P : IM M FO 2M M K S (L L S A M E T & S A M$		「PPC-3411(1)内圧を受ける直管」を適用して必要な厚さを算	「PPC-3411(1)内圧を受ける直管」を適用して必要な厚さを算	
認した。 認した。 認した。 認した。 認した。 第202 第203		出し、実機の最小厚さが計算上必要な厚さを上回ることを確	出し,実機の最小厚さが計算上必要な厚さを上回ることを確	
$t = \frac{PD_0}{25\pi + 0.8P}$ $t = \frac{PD_0}{25u \eta + 0.8P}$ (PPC - 1.3 準用) ・評価方針の相違 1. : 管の計算上必要な厚さ(mn) P: <u>ISLOCA発生時の圧力(=7,4MPa)</u> ・評価方針の相違 8. 2MPa) D ₀ : 管の外径(mn) Su: 設計引張強さ(MPa) り ₀ : 管の外径(ma) 3. : 設計引張強さ(MPa) η : 長手継手効率 「長手継手効率 「長手継手効率		認した。	認した。	
t:管の計算上必要な厚さ(mm) t:管の計算上必要な厚さ(mm) t:管の計算上必要な厚さ(mm) P:ISLOCA発生時の圧力(=7.4MPa) ・評価方針の相違 8.2MPa) D ₀ :管の外径(mm) S: 設計引張強さ(MPa) A: 設計引張強さ(MPa) (東海第二) n:長手継手効率 n:長手継手効率 1.5手継手効率 1.5手継手効率 (中国) (中国)		$t = \frac{PD_{\circ}}{2S\eta + 0.8P}$	$t = \frac{PD_0}{2Su\eta + 0.8P} \tag{PPC-1.3 準用}$	
P: 協離弁の誤開放等による加圧事象発生時の圧力(= P: ISLOCA発生時の圧力(=7.4MPa) ・評価方針の相違 8.2MPa) D ₀ : 管の外径(mm) S: 設計引張強さ(MPa) 「東海第二] n: 長手継手効率 n: 長手継手効率 1.5 LOCA発生時の圧力(=7.4MPa) 「評価方針の相違		t:管の計算上必要な厚さ(mm)	・ t:管の計算上必要な厚さ (mm)	
8.2MPa) D ₀ :管の外径(mm) 【東海第二】 D ₀ :管の外径(mm) Su:設計引張強さ(MPa) S:設計引張強さ(MPa) η:長手継手効率 η:長手継手効率		P:隔離弁の誤開放等による加圧事象発生時の圧力(=	P: ISLOCA発生時の圧力 (=7.4MPa)	・評価方針の相違
D ₀ :管の外径(mm) Su:設計引張強さ(MPa) S:設計引張強さ(MPa) η:長手継手効率 η:長手継手効率 (MPa)		8.2MPa)	$D_0: 管の外径 (mm)$	【東海第二】
S:設計引張強さ(MPa) η:長手継手効率 η:長手継手効率 η		D _o :管の外径 (mm)	Su:設計引張強さ (MPa)	
η:長手継手効率		S:設計引張強さ (MPa)	η:長手継手効率	
		η:長手継手効率		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	(2) フランジ部の評価	(2)フランジ部の評価	
	設計・建設規格「PPC-3414 フランジ」 <u>を適用してフラン</u>	設計・建設規格「PPC-3414 フランジ」の手法を適用してフ	
	<u>ジの手法</u> を適用してフランジ応力算定用圧力からフランジボ	ランジ応力算定用圧力からフランジボルトの伸び量を算出し	
	ルトの伸び量を算出したところ,伸び量がマイナスの場合は,	たところ、伸び量がマイナスの場合は、フランジ部が増し締	
	フランジ部が増し締めされるため、ガスケット最大圧縮量を	めされるため、ガスケットの最大圧縮量を下回ることを確認	
	下回ることを確認した。	した。	
	なお、熱曲げモーメントの影響については、設計・建設規	なお、熱曲げモーメントの影響については、設計・建設規	
	格で規定されている(PPC-1.7)式を使用し, フランジ部に作	格で規定されている(PPC-1.7)式を使用し,フランジ部に作	
	用するモーメントを圧力に換算して評価を実施した。	用するモーメントを圧力に換算して評価を実施した。	

Image: set in the set in	<complex-block></complex-block>	柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所 (2018.9.12版)		島根原子力発電所 2号
						别第 7-1 図 残留熱除去系A系 必要板厚評価対象配管(既工認系統図)	The second se

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12 版) 島根原子力発電所 2 号炉					備考																					
																											・評価結果の相違 【東海第二】
		必要厚さt (mm)	8.26	5. 20 5. 94	1.91	1.91	2.76	3.61	6.23	1. 28 10. 09	5.32	7.63	7.63			必要厚さ[t] (mm)	3. 24	3. 24	2.44	1.97	1.97	1.04	2.44	2.44	1.04	2.44	
	an in the second	S:設計引張 強さ (MPa)	223. 80	242.40	242.40	242.40 242.40	242.40	242.40	264.60	242. 40 223. 80	242.40	242.40	242.40			Su (MPa)	404	404	404	404	404	404	404	404	404	404	
		最小厚さ (mm)	12.80	9.71	5.25	5.25 5.25	6.21	7.17	11.20	4. 55 14. 40	9.01	12.51	12.51			最小厚さ (mm)	13.21	16.63	13.21	11.11	11.11	7.53	11.11	13.21	7.53	11.11	
		公差 (%)	1.5	1. 0 12. 5	12.5	12.5	12.5	12.5	1.5	12.5	12.5	12.5	12.5			公 (%)	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	
	半曲結果	71: 維手 効率	1.00	1. 00 1. 00	1.00	1.00	1.00	1.00	1.00	1. 00	1.00	1.00	1.00	运 (元) (元) (元) (元) (元) (元) (元) (元) (元) (元)	大量直	变	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	公要厚な	評価温度 (°C)	288	288	288	288 288	288	288	288	288 288	288	288	288	に に に に に に に に に に に に に に	以太子い	評価追」 (°C)	288	288	288	288	288	288	288	288	288	288	
- - -	7-1 表 4	評価圧力 (MPa)	8.20	8.20	8.20	8.20	8.20	8.20	8.20	8.20	8.20	8.20	8.20	- 		評価圧力 (MPa)	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	
	別第	材料	SM41B (SM400B) SM41B	(SM400B) STPT42 (STPT410)	STPT42 (STPT410) STPT42	STPT410) STPT42	(STPT410) STPT42 (STPT410)	STPT42 (STPT410)	SM50B (SM490B) STPT42	(STPT410) SM41B (SM400B)	STPT42 (STPT410)	STPT42 (STPT410) stpt40	SIF142 (STPT410)	쏶 西	が女	材料	STS42 (STS410)	STS42 (STS410)	STS42 (STS410)	STS42 (STS410)	STPT42 (STPT410)	STPT42 (STPT410)	STPT42 (STPT410)	STPT42 (STPT410)	STPT42 (STPT410)	STPT42 (STPT410)	
		公称厚さ (mm)	14.30	14. 30	6.00	6.00	7.10	8.20	12.70	5. 20 15. 90	10.30	14.30	14.30			公称厚さ (mm)	15.1	19.0	15.1	12.7	12.7	8.6	12.7	15.1	8.6	12.7	
		D ₀ :外径 (mm)	457.20	355, 60	114.30	114.30	165.20	216.30	406.40	76. 30 558.80	318.50	457.20	457.20			外径〔D ₀ 〕 (mn)	355. 6	355.6	267.4	216.3	216.3	114. 3	267.4	267.4	114.3	267.4	
		クラス 区分	53	v 0	73	67 67	1 01	53	61	N 01	2	53	2			クラス 区分	7	2	5	7	7	7	5	67	5	2	
		配管 No	3	6 6	6	10	26	31	34	37	40	56	58			配管 No.	23	24	25	26	27	28	32	33	39	40	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
				・評価結果の相違
				【東海第二】
		勝及藻語ドレン フランジ 31.0 31.0 28.0 28.0 28.0 28.0 28.0 0.11 0.11 1.20 1.20 1.21 1.21 1.30		
		F4 安全弁取合フランジ 50.0 47.0 - - - - - - - - - - - - -		
	結果(2/2)	F3 350A 後出フランジ 130.0 16.0 6.0 0.38 0.38 0.03 0.07 0.03 -0.01 2.41 2.40 2.60		
	フランジ部評価術	F_2 450A 承出フランジ 131.8 131.8 131.8 131.8 131.8 131.8 6.0 6.0 0.46 0.46 0.42 0.02 0.02 0.03 -0.01 2.41 2.41 2.60		
	別第 7-2 表	F1 1504 検出 フランジ 85.2 76.2 3.0 6.0 6.0 0.01 0.01 0.01 2.40 2.40 2.40 2.60		
		フランジ用途 ボルト熱伸び対象長さ L2 (nm) フランジ熟伸び対象長さ L3 (nm) オリフィス熱伸び対象長さ L3 (nm) ガスケット内外輪熱伸び L2 = α 1 · L2 · Δ T (nm) ブスケット内外輪熱伸び L2 = α 1 · L2 · Δ T (nm) ガスケット内外輪熱伸び L2 = α 1 · L2 · Δ T (nm) ガスケット内外輪素伸び L2 = α 1 · L2 · Δ T (nm) ガスケットの初期圧縮量: 最大 (nm) ガスケットの部第任縮重 (nm)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	1.3 評価結果	1.3 評価結果	
	配管の各部位について評価した結果,別第 7-1 表及び別第 7-2	配管の各部位について評価した結果, <u>別表6-1</u> 及び <u>別表</u>	
	表に示すとおり実機の値は判定基準を満足し、 <u>保守的に弁開放直</u>	<u>6-2</u> に示すとおり実機の値は判定基準を満足し、 <u>ISLO</u>	・評価方針の相違
	後のピーク圧力(8.2MPa [gage])及び原子炉冷却材温度(288℃)	<u>CA発生時の圧力(7.4MPa [gage])</u> 及び原子炉冷却材温度	【東海第二】
	が同時に継続して負荷された条件下で破損せず、漏えいは発生し	(288℃)が同時に継続して負荷された条件下で破損せず,漏	
	ないことを確認した。	えいは発生しないことを確認した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉 (新)	備考
	別紙8	別紙7	・記載方針の相違
			【柏崎 6/7】
	破断面積の設定について	破断面積の設定について	
	1. 評価部位の選定と破断面積の評価方法	1. 評価部位の選定と破断面積の評価方法	
	別紙 3~別紙 7 の評価結果から,隔離弁の誤開放等により残	別紙2~別紙6の評価結果から、隔離弁の誤開放等により残	
	留熱除去系の低圧設計部分が加圧されたとしても、破損が発生	留熱除去系の低圧設計部分が加圧 <u>され,計器が破損する可能性</u>	・評価結果の相違
	しないことを確認した。	<u>がある</u> ことを確認した。	【東海第二】
	<u>そこで</u> , 隔離弁の誤開放による加圧事象発生時の加圧範囲の	<u>さらに</u> ,隔離弁の誤開放による加圧事象発生時の加圧範囲の	
	うち最も大きなシール構造であり、損傷により原子炉冷却材が	うち最も大きなシール構造であり、損傷により原子炉冷却材が	
	流出した際の影響が最も大きい熱交換器フランジ部に対して,	流出した際の影響が最も大きい熱交換器フランジ部に対して,	
	保守的に弁開放直後のピーク圧力(<u>8.2MPa [gage]</u>)及び原子炉	保守的に弁開放直後のピーク圧力(<u>7.9MPa [gage]</u>)及び原子炉	・評価条件の相違
	冷却材温度(288℃)が同時に継続して負荷され、かつガスケッ	冷却材温度(288℃)が同時に継続して負荷され、かつガスケッ	【東海第二】
	トに期待しないことを想定した場合の破断面積を評価した。	トに期待しないことを想定した場合の破断面積を評価した。	TRACG の解析結果の
	a. 内圧による伸び量	a. 内圧による伸び量	相違により圧力が異な
	・フランジのボルト荷重乙W	・フランジのボルト荷重乙W	る。
	$\Delta W = \frac{\pi}{4} \times G^2 \cdot (P_2 - P_1)$	$\Delta W = \frac{\pi}{4} \times G^2 \cdot (P_2 - P_1)$	
	G:ガスケット反力円の直径 (=D ₀ -2b= <u>2,153mm</u>)	G:ガスケット反力円の直径(=D ₀ -2b= <u>2,000mm</u>)	・設備設計の相違
	$b = 2.5\sqrt{\frac{1}{2} \times (\frac{D_{\circ} - D_{\downarrow}}{2} - 2)}$	$b = 2.5\sqrt{\frac{1}{2} \times (\frac{D_{\circ} - D_{\downarrow}}{2} - 2)}$	【東海第二】
	D ₀ :ガスケット接触面の外径(= <u>2,170mm</u>)	D _o :ガスケット接触面の外径(= <u>2,017.5mm</u>)	・設備設計の相違
	D _i :ガスケット接触面の内径 (= <u>2,120mm</u>)	D _i :ガスケット接触面の内径(= <u>1,965mm</u>)	【東海第二】
	P ₁ :設計条件における圧力(<u>5.18MPa</u>)	P ₁ :設計条件における圧力(<u>5.88MPa</u>)	
	P ₂ :隔離弁の誤開放による加圧事象発生時の圧力(=	P ₂ :隔離弁の誤開放による加圧事象発生時の圧力	
	<u>8. 2MPa</u>)	$(=\underline{7.9MPa})$	・評価条件の相違
			【東海第二】
	・内圧による伸び量/L1	・内圧による伸び量/L1	TRACG の解析結果の
	$\Delta U = H \times \frac{\Delta W}{\Delta W} \times \frac{1}{1}$	$\Delta U = H \times \frac{\Delta W}{\Delta W} \times \frac{1}{1}$	相違により圧力が異な
	$N_{b} \cdot A E$	$N_{b} \cdot A E$	る。
	H_b :ボルト長さ (<u>ナット下面</u> -ボルト留め部間) (=	H _b :ボルト長さ(<u>ナット間</u>)(= <u>415.4mm</u>)	・設備設計の相違
	<u>349.5mm</u>)	N _b :ボルト本数 (= <u>76</u>)	【東海第二】
	N _b :ボルト本数 (= <u>68</u>)	A:ボルト有効径における断面積(=π/4× <u>34.051</u> ²	島根2号炉の RHR 熱
	A:ボルト有効径における断面積(=π/4× <u>46.051</u>	= <u>911mm²</u>)	交換器は,管板と水室フ
	$^{2} = 1,665 \text{mm}^{2})$	E:ボルトのヤング率(= <u>187,000N/mm²</u> at288℃	ランジにボルトを通し,
	E:ボルトのヤング率(= <u>187,000N/mm²</u> at288℃	[<u>SNB23-1</u>])	ボルトの両端からナッ
	[<u>SNCM8</u>])		トにより締結する構造

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉 (新)	備考
			である。
	b. 熱による伸び量	b. 熱による伸び量	
	・ボルトの熱による伸び量/L2	・ボルトの熱による伸び量∠L2	
	$\Delta L2 = \alpha_1 \times H_b \times (288^{\circ}\mathrm{C} - 20^{\circ}\mathrm{C})$	$\Delta L2 = \alpha_{1} \times H_{b} \times (288^{\circ}\mathrm{C} - 20^{\circ}\mathrm{C})$	
	α ₁ :ボルトの熱膨張係数(= <u>13.98</u> ×10 ⁻⁶ mm/mm℃	α ₁ :ボルトの熱膨張係数(= <u>13.04</u> ×10 ⁻⁶ mm/mm℃	・設備設計の相違
	at288°C[<u>SNCM8</u>])	at288°C[<u>SNB23-1</u>])	【東海第二】
	N _b :ボルト長さ (= <u>349.5mm</u>)	N _b :ボルト長さ (= <u>415.4mm</u>)	
	・管板及びフランジの熱による伸び量/L3	・管板及びフランジの熱による伸び量⊿L3	
	$\Delta L3 = \alpha_{z} \times (h \ 1 + h2) \times (288^{\circ}\text{C} - 20^{\circ}\text{C})$	$\Delta L3 = \alpha_{a} \times (h \ 1 + h2) \times (288^{\circ}\text{C} - 20^{\circ}\text{C})$	
	α ₂ :管板及び <u>胴側フランジ</u> の熱膨張係数(=12.91	α ₂ :管板及び <u>水室フランジ</u> の熱膨張係数(=12.91	・設備設計の相違
	$\times 10^{-6} \text{ mm}/\text{mm}^{\circ}\text{C} \text{ at}288^{\circ}\text{C}[SF50, SFV1])$	$\times 10^{-6} \text{ mm} / \text{mm}^{\circ} \text{C} \text{ at} 288^{\circ} \text{C} [SFVC2B])$	【東海第二】
	h1:胴側フランジ厚さ (= <u>150mm</u>)	h1: <u>水室フランジ</u> 厚さ(= <u>170mm</u>)	
	h2:管板厚さ(= <u>195mm</u>)	h2:管板厚さ (= <u>239mm</u>)	
	c. 破断面積 A	c. 破断面積 A	
	$A = \pi \times D_1 \times (\angle L1 + \angle L2 - \angle L3)$	$A = \pi \times D_1 \times (\angle L1 + \angle L2 - \angle L3)$	
	D _i :ガスケット接触面の内径(= <u>2,120mm</u>)	D _i :ガスケット接触面の内径(= <u>1,965mm</u>)	・設備設計の相違 【東海第二】
	 2. 破断面積の評価結果	 2. 破断面積の評価結果	
	熱交換器フランジの破断面積について評価した結果、別第	熱交換器フランジの破断面積について評価した結果、別表	
	8-1 表に示すとおり破断面積は <u>約 21 cm²</u> となる。	7-1 に示すとおり破断面積は <u>約 14.88 cm²</u> となる。	・評価結果の相違
			【東海第二】
	別第 8-1 表 破断面積の評価結果	別表7-1 破断面積の評価結果	・評価結果の相違
	評価部位 圧力 (MPa) 温度 (°C) 伸び量(mm) 内径 (mm) 全部材 伸び量 破断 面積 (mm) フランジジ部 8-9 288 0.10 1.21 1.10 2.120 0.21 約21	圧力 温度 伸び量 内径 全部材 破断 評価部位 (MPa) (℃) + + - 内径 伸び量 面積 (MPa) (℃) (⊥1 (⊥2 (⊥3 (mm) (mm) (mm) (mm) (mm)	【東海第二】
		フランジ部 7.9 288 0.024 1.452 1.415 1,965 0.241 14.88	
	∠L3:管教及びフラジジ部の熱による伸び驚	∠L1:ボルトの内圧による伸び量 ∠L2:ボルトの熱による伸び量	
		∠L3:管板及びフランジ部の熱による伸び量	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
	別紙9	
	ISLOCA発生時の原子炉冷却材漏えい量評価	ISLOCA発生時の原子炉冷却材
	及び原子炉建屋原子炉棟内環境評価	及び原子炉建物原子炉棟内環
		 A-残留熱除去系における I S L O C A
5. 現場の想定		
・評価の想定と事象進展解析	1. 評価条件	1.1 評価条件
破断面積 10cm2 のインターフェイスシステム LOCA による炉心	有効性評価の想定のとおり, <u>残留熱除去系B系</u> における I S	<u>A-</u> 残留熱除去系におけるISLOCA
内の挙動は、「2.7.2(3) 有効性評価の結果」に示したとおりであ	LOCA発生時の原子炉冷却材の漏えい量及び原子炉建屋原子	材の漏えい量及び原子炉建物原子炉棟内の
る。ここでは,破断面積 10cm2 のインターフェイスシステム LOCA	炉棟内の環境(雰囲気温度,湿度及び圧力)を評価した。	湿度,圧力及び溢水による影響)を評価し
発生時の現場環境(原子炉建屋内)に着眼し評価を行った。		原子炉建物原子炉棟内の環境評価特有の
評価条件を表1 に示す。また, 評価に使用する原子炉建屋のノ	原子炉建屋原子炉棟内の環境評価特有の評価条件を別第 9-1	に,原子炉建物ノード分割モデルを別図8
ード分割モデルを図1に示す。	表に, 原子炉建屋原子炉棟のノード分割図及び原子炉建屋平面	
	<u>図を別第9-1 図</u> 及び <u>別第9-2 図</u> に示す。	
事象進展解析 (MAAP) の実施に際して主要な仮定を以下に示す。		
前提条件:事象発生と同時に外部電源喪失し原子炉スクラム,		
インターノエイスンステムLOCA 時破断面積10cm2,		
健主側向庄炉心注水糸による注入 東色、佐屋、台記間辺は止し、バイランフ味にわけて へ間記場(ない)		
事家連展: 井融囲又はり ニバイノン へ时にわける 生用設保住(連		
120日本の時内側テスタブルチェッキを同時に機能転生		
・状況判断の開始(弁の開閉状能確認 HPCF 室漏えい		
原子炉水位1.2 到達:原子炉隔離時冷却系の自動起動		
事象発生約15 分後:急速減圧		
発生箇所隔離	なお,高圧炉心スプレイポンプ室及び原子炉隔離時冷却系	
	ポンプ室は他室と水密扉で区切られており、蒸気の移動がほぼ	
	ないため、解析においても蒸気の移動を考慮していない。	
		l l

炉	備考
<u>別紙8</u>	
	・資料構成の相違
「漏えい量評価	【柏崎 6/7,東海第二】
境評価	資料構成は異なるも
	のの, 3プラントとも
A発生時の評価	ISLOCA 発生時の原子炉
	建物原子炉棟内環境を
	評価している。
A発生時の原子炉冷却	
の環境(雰囲気温度.	
ンだ。 の評価条件を別表 8-1	
8-1 に示す	
	・評価条件の相違
	【東海第二】
	島根2号炉は,解析に
	おいて漏えい水の伝播
	及び蒸気の移動につい
	て考慮している。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所 (2018.9.12版)			島根原子力発電所 2号炉			備考	
表1 破断面積10cm ² のインターフェイスシステムLOCA 時における		別第 9-1 表 原子炉建屋原子炉棟内の環境評価特有の評価条件			別表 8-1 原子炉建物原子炉棟内の環境評価特有の評価条件			・評価条件の相違	
			N. most from Last day. Jul	to be standard and the large	項目	解析条件	条件設定の考え方	【柏崎 6/7, 東海第二】	
			項目	王要解析条件	条件設定の考え方 格納容器及び原子炉建屋原子	外部電源	外部電源なし	外部電源なしの場合は給水・復水系に	
項目	内容	根拠 外部電源なしの場合は給復水系による			炉棟等の詳細ノードのモデル 化が可能であり、隔離弁の閉止			早くなることから設定	
外部電源	外部電源なし	給水がなく,原子炉水位の低下が早く なることから設定	解析コード	MAAP4	操作等の重大事故等対策を考	漏えい箇所及び漏え	 A-残留熱除去ポンプ室:1 cm² A-残留熱除去系熱交換器室:16cm² 	圧力応答評価に基づき評価された漏 えい両穂に全裕をとった値	
漏えい箇所	高圧炉心注水 (B) ポンプ室	漏えいを想定した高圧炉心注水系の低 圧設計部(計装設備やフランジ部等)			慮した事家 進展を 模擬 りる こ とが可能である解析コード		原子炉水位低(レベル3)で自動スクラム	保有水量の低下を保守的に評価する	
行をいて声が	古田県と冷却変配際・102(1 0×10-3-2)	の設置場所 圧力応答評価に基づき評価された漏え	漏えい箇所	残留熱除去系 B 系 熱交換器室	有効性評価の解析と同様		「百子恒水位任(レベル?)で百子恒陽離時	条件を設定 インターロック設定値	
の相え」、「田村県	同子炉水位L2 到達時点で,原子炉隔離時冷	い面積に十分に余裕をとった値	漏えい面積	約 21 cm ²	有効性評価の解析と同様		冷却系,原子炉水位低(レベル1H)で高		
	却系による原子炉注水開始	中央制御室における破断箇所の隔離操		・原子炉小位乗吊低下(レベル2)設 定点到達時に,原子炉隔離時冷却系	有効性計画の解析と向様 ただし、本事故シーケンスグル		圧炉心スプレイ系が自動起動 事象発生から 30 分後に述がし安全弁6 弁	中央制御室におけろ破断箇所の隔離	
東枚シナリオ	事象発生15分後に手動減圧(逃がし安全弁 8個)	弁 作失敗の判断時間及び逃がし安全弁の 操作時間を考慮して事象発生 15 分後 を設定 溜えい量低減のために実施する操作を		による原子炉注水開始 ・低圧炉心スプレイ系を起動し,事象	ープは格納容器バイパス事象 であることを踏まえ、有効性評	事故シナリオ	を手動開放	操作失敗の判断時間及び逃がし安全	
	水位回復後は崩壊熱除去相当の注水を実施			発生 15 分後に逃がし安全弁(自動	価では格納容器の挙動が設計			弁の操作時間を考慮して事象発生か ら 30 分後を設定	
	し破断配管の高さにて水位制御 サプレッション・チェンバ・プール水冷却	想定」		・事象発生 17 分後に低圧代替注水系	本単争取に包含されることを 示していることから,サプレッ		原子炉急速減圧後,漏えい箇所の隔離が終	漏えい量低減のために実施する操作	
	モード運転は急速減圧後に実施(事象発生	レバのプール水の温度上昇を抑えるた かの場体を相定	事故シナリオ	(常設)を起動・原子炉水位回復後、低圧炉心スプレ	 ション・プール冷却の開始時間 は、有効性評価における作業と 		了するまで原子炉水位を原子炉水位低(レ ベル2) いたで低めに維持	を想定	
	20万後) 事象発生約4時間後にインターフェイスシ	の切像作ど恋足 運転員の現場移動時間及び操作時間等 さいまさご認定		イ系を停止し,原子炉水位を原子炉	所要時間の想定及び「1.3.5		残留熱除去系(サプレッション・プール水	サプレッション・プール水の温度上昇	
原子炉建屋への流出経路条	スデム LOCA 発生箇所隔離 原子炉格納容器及び原子炉建屋からの漏え	 を踏まえて設定 保守的に考慮しない 		水位低(レベル3)設定点以上に維持	運転員等の操作時間に対する 仮定」に基づき 25 分後と設定		冷却モード)による原子炉格納容器除熱は	を抑えるための操作を想定	
<u>件</u> 評価コード	MAAP4	_		 ・事象発生25分後、サプレッション・ プール冷却開始 	している。		事家先生から40万後に開始 残留熱除去系のサプレッション・プール水	原子炉建物内の環境を改善するため	
原子炉建屋モデル 原子炬建屋膝からの放熱	分割モデル 者庫したい	現実的な伝播経路を想定 保守的に考慮したい		·事象発生5時間後,残留熱除去系隔			冷却モードによる原子炉格納容器除熱を事	の操作を想定	
原子炉スクラム	事象発生とともにスクラム	事象発生とともに外部電源喪失し、原	両フに神見ァブル	離完了	原子炉建屋原子炉棟東西の物		象発生から1時間40分後に停止し,原子炉 停止時冷却モードによる原子炉格納容器除	なお、事象発生後の状況確認および原 子炉減圧操作等に余裕を加味し、操作	
主蒸気隔離弁	原子炉水位 L1.5 にて自動閉	子炉スクラムすることを想定 インターロック設定値	原子炉建産モアル	別弟 9-1 図参照	理的分離等を考慮して設定		熱を事象発生から2時間後に開始	可能な時間として2時間後を設定	
高圧炉心注水系の水源	復水貯蔵槽 0~12 時間: 50℃	高圧炉心注水系設計条件	原ナ炉運産型から環 境への放熱	考慮しない	券囲気温度, 湿度及び圧力の観 点から厳しい想定として設定		事象発生 10 時間後にインターフェイスシ ステムLOCA発生箇所隔離	運転員の現場移動時間及び操作時間 等を踏まえて設定	
復水貯蔵槽の水温	12~24 時間:45℃ 24 時間以降:40℃	復水移送ポンプ吐出温度を参考に設定	原子炉建屋换気系	考慮しない	雰囲気温度,湿度及び圧力の観 点から厳しい想定として設定	原子炉建物への流出	原子炉格納容器から原子炉建物への漏えい	原子炉建物内の雰囲気温度を保守的	
ブローアウトパネル 開放圧力	3.4kPa[gage]	ブローアウトパネル設定値	ブローアウトパネル 開放圧力**	6.9kPa[gage]	設計値を設定	経路条件 評価コード	めり。原于炉建物から環境への痛えいなし MAAP4	に計画する栄牛を設定	
			※:現在設置されてい	るブローアウトパネル 12 枚のうち 2 枚	(を閉止する方針であるが、本評	原子炉建物モデル	分割モデル(別図8-1参照)	現実的な伝播経路を想定	
			価では 12 校主で 評価を別紙 10 に対	こ期待している。なお、全てのフローア 示している。	ワトハネルに期待しない場合の	泉子炉運物壁がら壊 境への放熱	考慮しない	厳しい想定として設定	
						原子炉建物换気系	考慮しない	雰囲気温度,湿度及び圧力の観点から 業しい想会しして認定	
						原子炉スクラム	原子炉水位低(レベル3)	敵しい思定として設定 インターロック設定値	
						主蒸気隔離弁	原子炉水位低 (レベル2)	インターロック設定値	
						原子炉隔離時 (分却糸 および高圧炉心スプ	サプレッション・プール水	_	
						レイ系の水源			
						サブレッション・ブールの水源初期水温	35℃	通常運転時の制限値を設定	
						ブローアウトパネル	7.0kPa[gage]	安全要求値	
						開放圧力			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	31.第 9-2 図 頂子海隆屋平面図 (1 階)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	31.第 9-2 图 证子规辑		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	11.000 (11.000 11.000 (11.000		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	11.000 (11.000 11.000 (11.000		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
・評価の結果 :	 ・評価の結果 2. 評価結果 		
【比較のため、「〇冷却材漏えいによる影響」を記載】		解析結果に基づく、ISLOCA発生時の原子炉棟内状況概	
○冷却材漏えいによる影響		要を別図 8-2 に、各漏えい発生区画における原子炉冷却材の積	・評価条件の相違
破断面積10cm2 のインターフェイスシステムLOCA に伴う原子	原子炉冷却材の積算漏えい量の推移を別第 9-3 図に,原子炉	算漏えい量の推移を別図8-3に、原子炉建物内の雰囲気温度,	【柏崎 6/7,東海第二】
炉建屋内への原子炉内及び復水貯蔵槽からの漏えい量は、原子	建屋内の雰囲気温度 (西側区画), 雰囲気温度 (東側区画), 湿	湿度及び圧力の推移を別図 8-4 から別図 8-6 に示す。	ISLOCA 時の事象想定
炉圧力容器及び復水貯蔵槽からの流出量を考慮しても最大で約	度(西側区画),湿度(西側区画),圧力(西側区画)及び圧力		等の違いにより,評価結
200m3/h であり,高圧炉心注入ポンプ吸込弁または復水貯蔵槽	(東側区画)の推移を別第9-4図から別第9-9図に示す。		果が異なり,事象進展に
側吸込弁の閉止や原子炉水位を漏えい配管の高さ付近で維持す		ブローアウトパネル	応じた対応操作も異な
ることでさらに漏えい量を少なくすることができる。		ĺ.	る。
破断した系統の区分と他区分の非常用炉心冷却系が機能喪失に			
至る約 1,800m3 (浸水高さ約 2.5m) に到達するには 9 時間以上		アクセス用様子 (1) 水密扉 (1) 10 10 10 10 10 10 10 10 10 10 10 10 10	
の十分な時間余裕がある。		EL23.8m 注水弁 東側PCV 周回通路 A-残留熱除去系 約次換器室 ・ オ (ない)	
【ここまで】			
		EL15.3m トーラス室 ・コース ・コース ・コース	
		EL8.8m その他ポンプ室 その他ポンプ室 てたわれ てたわれ てたわれ てたわれ	
		**電師の正水方向 注力計 が異なるとから 伝播する	
		ELI. 3m	
		<u>別図 8-2 ISLOCA発生時の原子炉棟内状況概要</u>	
		○各漏えい発生区画における漏えい量	
	別第9-3図に示すとおり、現場隔離操作の完了時間として設	別図8-3に示すとおり、現場隔離操作の完了時間として設定	
	定している事象発生 <u>5時間</u> までの原子炉冷却材の漏えい量は <u>約</u>	している事象発生 <u>10時間</u> までの原子炉冷却材の漏えい量は <u>約</u>	
	<u>300t</u> である。	<u>600m³</u> である。	
	500	100 500 A - 残留熱除去ポンプ室(EL1.3m)	
		000 A 一残留熱除去系熱交換器室(EL15.3m) 潤 500 合計	
	冷原子炉減圧による 原子炉冷却材漏えい量の低下 ■		
	材 300 流 出 量	育 算 值 300 -	
	(t) 200	(m ³) 200 -	
	100	100	
		$0 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	事故後の時間 (1)	事故後の時間(時)	
	別第 9-3 図 原子炉冷却材の積算漏えい量の推移	別図 8-3 谷漏えい発生区画における原子炉冷却材の	
		<u> 積算漏えい重の推移</u> 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
〇温度・湿度・圧力の想定		○温度・湿度・圧力の想定	
主要なパラメータの時間変化を図2 から図4 に示す。	また, <u>別第 9-4 図</u> 及び <u>別第 9-5 図</u> に示すとおり,原子炉減圧	<u>別図8-4から別図8-6</u> に示すとおり, <u>アクセスルートとなる「原</u>	
原子炉建物内の温度は,事象発生直後は上昇するものの15 分	操作後に建屋内環境が静定する事象発生2時間から5時間まで	<u>子炉棟その他(二次格納施設)」及び操作場所である「東側PC</u>	
後に原子炉減圧した後は低下する。また,弁隔離操作のために	のアクセスルート及び操作場所の雰囲気温度の最大値は <u>41℃</u> で	<u>Vペネトレーション室」における雰囲気温度の最大値は約78℃</u>	
アクセスする弁室の温度も同様に、原子炉減圧操作後に低下し	ある。	<u>となるが、原子炉減圧操作後は漏えい箇所からの高温水及び蒸</u>	
た後,約38℃程度で推移する。湿度については破断箇所からの	なお,ブローアウトパネルが設置されている 4~5 階西側区	気の流出量が減少するため、雰囲気温度は低下傾向となり、建	
漏えいが継続するため高い値で維持されるものの,原子炉減圧	画,4~5 階東側区画及び6 階全ての圧力はブローアウトパネル	物内環境が静定する事象発生9時間後から10時間後までの雰囲	
及び破断箇所隔離操作を実施することで,事象発生約4 時間以	の設定圧力に到達し、ブローアウトパネルが開放している。	気温度の最大値は <mark>約</mark> 44℃である。湿度については漏えい箇所か	
降低下する傾向にある。圧力については破断直後に上昇するも		らの漏えいが継続するため高い値で維持されるものの、破断箇	
ののブローアウトパネルが開放され、その後は大気圧相当とな		所隔離操作を実施することで約10時間以降低下する傾向にあ	
<u> </u>		る。圧力については漏えい発生直後に上昇するものの、ブロー	
		 アウトパネルが開放され、その後は大気圧相当となる。	
○冷却材漏えいによる影響			
破断面積10cm2 のインターフェイスシステムLOCA に伴う原子			
<u>炉建屋内への原子炉内及び復水貯蔵槽からの漏えい量は,原子</u>			
<u>炉圧力容器及び復水貯蔵槽からの流出量を考慮しても最大で約</u>			
200m3/h であり,高圧炉心注入ポンプ吸込弁または復水貯蔵槽			
側吸込弁の閉止や原子炉水位を漏えい配管の高さ付近で維持す			
破断した系統の区分と他区分の非常用炉心冷却系が機能喪失			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		1.2.1 溢水による影響	
		別図 8-2 に示すとおり、「A-残留熱除去系熱交換器室」で発	
		生した漏えい水は,原子炉建物1階(EL15.3m)に伝播し,ハッ	
		チ開口部を通じて最終滞留箇所である「トーラス室」に排出さ	
		れる。	
		「A-残留熱除去ポンプ室」で発生した漏えい水は、境界に	
		水密扉を設置していることから「原子炉隔離時冷却ポンプ室」	
		へ伝播しないが、「トーラス室」に対しては、境界に設置してい	
		る水密扉の止水方向が異なることから伝播する。	
		溢水範囲を別図 8-7 に, 想定する漏えい量を別表 8-2 に示す。	
		(1)注水弁(MV222-5A)へのアクセス性に対する影響	
		A-残留熱除去系の隔離操作を行う注水弁(MV222-5A)は,	
		<u> 原子炉建物</u> 中1階(EL19.0m)の床面上に設置されており, IS	
		LOCAにより漏えいが発生する機器は、1階(EL15.3m)及び	
		地下2階(EL1.3m)に設置されている。隔離操作場所へは溢水	
		影響のない2階(EL23.8m)からアクセスするため,アクセス性	
		への影響はない。	
		(2) I S L O C A 時に必要となる系統(原子炉隔離時冷却系,高	
		圧炉心スプレイ系,残留熱除去系及び逃がし安全弁)への影響	
		- Δ - 建図執除去ポンプ家と原子恒隔離時冷却ポンプ家の暗	
		界 トーラス室とB-残留熱除去ポンプ室及び高圧炉心スプレ	
		イポンプ室の境界は水密扉の設置により区画化されているた	
		め、これらのポンプ室は溢水の影響を受けない。	
		逃がし安全弁は、区画として分離されている原子炉格納容器	
		内に設置されており、関連計装部品も含め溢水の影響はなく、	
		逃がし安全弁の機能は維持される。	
		漏えい水が伝播する区画においてISLOCA時に必要とな	
		る系統の溢水評価結果を別表 8-3 に示す。	

柏崎刈羽原子力発電所 6/7号炉 (201	17.12.20版) 東海第二発行	這所 (2018.9.12版)	島根原子力発電所 2号炉	備考
			別図 8-7 A-残留熱除去系 溢水範囲 (1/2)	
			別図δ=(A=残留熱除去杀 溢水範囲 (2/2)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)		島根原子力発電所 2号	 步炉	備考
			別表 8-2 想定する漏え	い <u>量</u>	
			漏えい	量[m ³]	
		事故後の時間	A-残留熱除去ポン	A-残留熱除去系	
		[h]	プ室	熱交換器室	
			(R-B2F-02N)	(R-1F-05N)	
		0.5	約 7	約 107	
		1.0	約 9	約 130	
		2.0	約 11	約 165	
		3.0	約 14	約 214	
		4.0	約 17	約 265	
		5.0	約 20	約 315	
		6.0	約 23	約 364	
		7.0	約 26	約 414	
		8.0	約 29	約 463	
		9.0	約 32	約 512	
		10.0	約 35	約 560	
		速物 EL FIF-03N FOR 0 (1)	別表 8-3 溢水評価結式 ************************************	必要となる系統 ② 影響 備考 流き ド価 備考 江内容器計器フリ 0.56 0.02 一 能用外側隔離弁 0.30 0.02 一 取フスト弁 1.99 0.02 一 T 明第2ミニマムフロー弁 ア、63 0.02 」	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		1.2.2 漏えいした蒸気の回り込みに伴う雰囲気温度・湿度上昇の	
		影響	
		別図 8-2 に示すとおり、「A-残留熱除去系熱交換器室」、「A	
		-残留熱除去ポンプ室」において漏えいした蒸気及び溢水の伝	
		播区画において発生した蒸気は、各隣接区画の圧力差に応じて	
		原子炉棟内を移動し,原子炉 <mark>棟</mark> 内の圧力や温度を一時的に上昇	
		させる。原子炉棟内の圧力上昇に伴いブローアウトパネルが開	
		放し、環境へ蒸気が放出されるとともにハッチ開口部等を通じ	
		てガス流動が発生することで、原子炉棟内の環境条件はほぼ一	
		様になる。なお、ブローアウトパネルが開放された以降は、原	
		子炉棟から環境への蒸気の放出の流れが支配的となるため、そ	
		の他ポンプ室等への蒸気の流入はない。蒸気の滞留範囲を別図	
		8- <mark>8</mark> に示す。	
		(1) 注水弁 (MV222-5A) への影響	
		隔離操作を行う注水弁(MV222-5A)は, 原子炉格納容器バ	
		ウンダリにかかる圧力及び温度が最も高くなる設計基準事故	
		である「原子炉格納容器内圧力,雰囲気等の異常な変化」の	
		「原子炉冷却材喪失」時の環境条件に耐性を有する設備であ	
		り,湿度 100%,温度 100℃以上の耐性を有していることから	
		機能維持される。	
		ISLOCA発生時において必要な対応操作のうち,注水	
		弁(MV222-5A)の隔離操作を除いては,全て中央制御室から	
		の操作による。注水弁(MV222-5A)の隔離操作については,	
		事象発生9時間後から行うこととしており、その際の原子炉	
		建物内雰囲気温度及び湿度は約44℃及び約100%である。防	
		護具等の着用により現場へのアクセス及び隔離操作は可能で	
		あり、注水弁の隔離操作における原子炉棟内の滞在時間は約	
		38 分である。	
		(2) ISLOCA時に必要となる系統 (原子炉隔離時冷却系,高	
		圧炉心スプレイ系,残留熱除去系 <mark>及び逃がし安全弁)</mark> への	
		影響	
		A-残留熱除去ポンプ室と原子炉隔離時冷却ポンプ室の境	
		界, トーラス室とB-残留熱除去ポンプ室及び高圧炉心スプ	
		レイポンプ室の境界は水密扉の設置により区画化されている	
		ため、これらのポンプ室には溢水の流入がなく、蒸気による	
		有意な雰囲気温度の上昇もないため、系統の運転に必要な補	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所	(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
					機冷却系等の設備も含めて、系統の機能は維持される。なお、	
					原子炉隔離時冷却系,高圧炉心スプレイ系及びB-残留熱除	
					去系のポンプ,弁及び計器等は,湿度 100%,温度 100℃以上	
					の耐性を有している。	
					逃がし安全弁は、区画として分離されている原子炉格納容	
					器内に設置されており、関連計装部品も含め、原子炉建物内	
					及びトーラス室の雰囲気温度上昇に伴う影響はなく、逃がし	
					安全弁の機能は維持される。	
					<u>別図 8-8 A-残留熱除去系 蒸気滞留範囲(1/2)</u>	

東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	□□□□	
	東海第二発電所 (2018.9.12版)	東南第二条館所 (2018.8.12 域) 島根原子力発電所 2 5/2 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第二 第二

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		<u>2. B-残留熱除去系におけるISLOCA発生時の評価</u>	
		2.1 評価条件	
		B-残留熱除去系におけるISLOCA発生時の原子炉冷却	
		材の漏えい量及び原子炉建物原子炉棟内の環境(雰囲気温度,	
		湿度,圧力及び溢水による影響)を評価した。	
		B-残留熱除去系における I SLOCA発生時の漏えい箇所	
		及び漏えい面積は、別表 8-1 に示すA-残留熱除去系の評価条	
		件と同等(B-残留熱除去ポンプ室:1cm ² , B-残留熱除去系	
		熱交換器室:16cm ²)であり、その他評価条件も同等となる。原	
		子炉建物ノード分割モデルを別図 8-9 に示す。	
		Image: Serie Se	
		要を別図 8-10 に、各漏えい発生区画における原子炉冷却材の積	
		算漏えい量の推移を別図 8-11 に,原子炉建物内の雰囲気温度,	
		湿度及び圧力の推移を別図 8-12 から別図 8-14 に示す。	
		○事象進展	
		事象進展は、「2.7 格納容器バイパス(インターフェイスシ	
		ステムLOCA)」に示す, A-残留熱除去系にてISLOCA	
		が発生した場合と同様である。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号
		E134.8
		る「原子炉棟その他(二次格納施設)」& 側PCVペネトレーション室」における 約77℃となるが、原子炉減圧操作後は漏
		及び烝気の流出量が減少するため、雰囲 り,建物内環境が静定する事象発生9時 の雰囲気温度の最大値は約44℃である。 箇所からの漏えいが継続するため高い値

柏崎刈羽原	〔子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.12版)		島根原子力発電所 2号
						破断箇 向にあ ブロー ²⁰⁰	所隔離操作を実施することで約10 る。圧力については漏えい発生直行 アウトパネルが開放され,その後に
						原 150 子 炉建 物 内 温 度 (℃) 50	■ ■ ■ ■ ■ ■ ■ ■ ■ ■
						0	0 1 2 3 4 5 6 7 8 9 事故後の時間(時) 別図 8-12 原子炉建物内の雰囲気
						100 第 子 炉建 物 内 混 度 (%) 40 20	原子炉急速減圧や水位調整に より、蒸気等の漏えい量を低 減させる。また、残留熟除去 系(サプレッション・プール 水冷却モード)により、格納 容器圧力の上昇を抑制するこ とで原子炉圧力容器内から発 生した蒸気の多くはサプレッ ション・チェンバへ移行し、 さらに残留熟除去系(原子炉 停止時冷却モード)により、 漏えい水の温度が抑制される ことで、現場の環境が改善さ れる
						0	し 1 2 3 4 5 6 7 8 9 事故後の時間(時) 別図 8-13 原子炉建物内の湿
						110 原 子 デ 炉 100 建 物 内 圧 力 104 (kPa[chcl])	0 原 8 函 6 B 7 B 7 の 3 ため、原子炉建物内の圧力はほぼ大気圧 程度で維持される
						(Mataus)) 10	2 0 0 0 1 2 3 4 5 6 7 8 9 事故後の時間(時)
							別図 8-14 原子炉建物内の圧

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		2.2.1 溢水による影響	
		別図 8-10 に示すとおり、「B-残留熱除去系熱交換器室」で	
		発生した漏えい水は、原子炉建物1階(EL15.3m)に伝播し、ハ	
		ッチ開口部を通じて最終滞留箇所である「トーラス室」に排出	
		される。	
		「B-残留熱除去ポンプ室」で発生した漏えい水は、境界に	
		設置している水密扉の止水方向が異なることから「トーラス室」	
		及び「C-残留熱除去ポンプ室」に伝播する。	
		溢水範囲を別図 8-15 に,想定する漏えい量を別表 8-4 に示す。	
		(1)注水弁(MV222-5B)へのアクセス性に対する影響	
		B-残留熱除去系の隔離操作を行う注水弁(MV222-5B)は,	
		原子炉建物2階(EL23.8m)の床面上に設置されており, ISL	
		OCAにより漏えいが発生する機器は、1階(EL15.3m)及び地	
		下2階(EL1.3m)に設置されている。隔離操作場所へは溢水影	
		響のない2階(EL23.8m)からアクセスするため,アクセス性へ	
		の影響はない。	
		 (2) I SLOCA時に必要となる系統(原子炉隔離時冷却系,高 圧炉心スプレイ系,残留熱除去系及び逃がし安全弁)への影響 トーラス室とA-残留熱除去ポンプ室及び高圧炉心スプレイ ポンプ室の境界は水密扉の設置により区画化されているため, これらのポンプ室は溢水の影響を受けない。 原子炉隔離時冷却ポンプ室は,隣接する区画に漏えい水が伝 播しないため,溢水の影響を受けない。 逃がし安全弁は,区画として分離されている原子炉格納容器 内に設置されており,関連計装部品も含め溢水の影響はなく, 逃がし安全弁の機能は維持される。 漏えい水が伝播する区画においてISLOCA時に必要とな る系統の溢水評価結果を別表 8-5 に示す 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		所因。10 日 人田派你女人 仙水桂西 (172)	
		別図 8-15 B-残留熱除去系 溢水範囲(2/2)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)		島根原子力発電所 2号	寻炉	備考
			別表 8-4 想定する漏え	い量	
			漏えい	量[m ³]	
		事故後の時間	Bー残留熱除去ポン	B-残留熱除去系	
		[h]	プ室	熱交換器室	
			(R-B2F-15N)	(R-1F-11N)	
		0.5	約 7	約 106	
		1.0	約 9	約 129	
		2.0	約 11	約 164	
		3.0	約 14	約 213	
		4.0	約 17	約 264	
		5.0	約 20	約 314	
		6.0	約 23	約 364	
		7.0	約 26	約 414	
		8.0	約 29	約 463	
		9.0	約 32	約 512	
		10.0	約 35	約 560	
	建物 建物 建物 建物 建物 建物	EL [m] 評価 (M) 読入を (M) 読入を (M) 読い 15.3 R-1F-03N R-1F-22N R-1F-10N R-1F-03N R-1F-10N R-1F-03N F 1.3 R-82F-31N R-1F-03N R-1F-03N R-1F-03N R-1F-03N F 1.3 R-82F-31N R-1F-03N R-1F-03N R F 2 基準床からの高 3 評価対象区画で 4 ハッチからの排 小ッチからの排 1 1 1	別表 8-5 溢水評価結: *** *** ① ① ① ① ② ③ ○ </th <th>(2) 影響 備考 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (3) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)</th> <th></th>	(2) 影響 備考 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (3) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		2.2.2 漏えいした蒸気の回り込みに伴う雰囲気温度・湿度上昇の	
		影響	
		別図 8-10 に示すとおり,「B-残留熱除去系熱交換器室」,「B	
		ー残留熱除去ポンプ室」において漏えいした蒸気及び溢水の伝	
		播区画において発生した蒸気は、各隣接区画の圧力差に応じて	
		原子炉棟内を移動し、原子炉棟内の圧力や温度を一時的に上昇	
		させる。原子炉棟内の圧力上昇に伴いブローアウトパネルが開	
		放し、環境へ蒸気が放出されるとともにハッチ開口部等を通じ	
		てガス流動が発生することで、原子炉棟内の環境条件はほぼ一	
		様になる。なお、ブローアウトパネルが開放された以降は、原	
		子炉棟から環境への蒸気の放出の流れが支配的となるため、そ	
		の他ポンプ室等への蒸気の流入はない。蒸気の滞留範囲を別図	
		8-16 に示す。	
		(1) 注水弁(MV222-5B)への影響	
		隔離操作を行う注水弁(MV222-5B)は、原子炉格納容器バ	
		ウンダリにかかる圧力及び温度が最も高くなる設計基準事故	
		である「原子炉格納容器内圧力,雰囲気等の異常な変化」の	
		「原子炉冷却材喪失」時の環境条件に耐性を有する設備であ	
		り,湿度 100%,温度 100℃以上の耐性を有していることから	
		機能維持される。	
		ISLOCA発生時において必要な対応操作のうち、注水	
		弁(MV222-5B)の隔離操作を除いては,全て中央制御室から	
		の操作による。注水弁(MV222-5B)の隔離操作については,	
		事象発生9時間後から行うこととしており、その際の原子炉	
		建物内雰囲気温度及び湿度は約44℃及び約100%である。防	
		護具等の着用により現場へのアクセス及び隔離操作は可能で	
		あり、注水弁の隔離操作における原子炉棟内の滞在時間は約	
		37 分である。	
		(2) ISLOCA時に必要となる系統(原子炉隔離時冷却系,高	
		圧炉心スプレイ系、残留熱除去系及び逃がし安全弁)への	
		影響	
		A-残留熱除去ポンプ室と原子炉隔離時冷却ポンプ室の境	
		界、トーラス室とA-残留熱除去ポンプ室及び高圧炉心スプ	
		レイポンプ室の境界は水密扉の設置により区画化されている	
		ため、これらのポンプ室には溢水の流入がなく、蒸気による	
		有意な雰囲気温度の上昇もないため、系統の運転に必要な補	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
					機冷却系等の設備も含めて,系統の機能は維持される。なお,	
					原子炉隔離時冷却系,高圧炉心スプレイ系及びA-残留熱除	
					去系のポンプ, 弁及び計器等は, 湿度 100%, 温度 100℃以上	
					の耐性を有している。	
					逃がし安全弁は、区画として分離されている原子炉格納容	
					器内に設置されており、関連計装部品も含め、原子炉建物内	
					及びトーラス室の雰囲気温度上昇に伴う影響はなく、逃がし	
					安全弁の機能は維持される。	
					加因 8-10 D - 次宙烈际 古米 然 风 佈 笛 範 囲 (1/2)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		□	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所	(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
				<u>3. C-残留熱除去系におけるISLOCA発生時の評価</u>	
				3.1 評価条件	
				C-残留熱除去系におけるISLOCA発生時の原子炉冷却	
				材の漏えい量及び原子炉建物原子炉棟内の環境(雰囲気温度,	
				湿度,圧力及び溢水による影響)を評価した。	
				C-残留熱除去系において ISLOCAが発生した場合の漏	
				えい箇所は圧力スイッチ(C-残留熱除去ポンプ室)のみであ	
				り,漏えい面積は1 cm ² (圧力応答評価に基づき評価された,圧	
				カスイッチ2台分の漏えい面積に余裕をとった値)となる。そ	
				の他の評価条件は、別表 8-1 において設定した評価条件と同様	
				とした。原子炉建物ノード分割モデルを別図 8-17 に示す。	
				<complex-block></complex-block>	
				3.2 評価結果	
				解析結果に基づく, ISLOCA発生時の原子炉棟内状況概	
				要を別図 8-18 に,漏えい発生区画における原子炉冷却材の積算	
				漏えい量の推移を別図 8-19 に,原子炉建物内の雰囲気温度,湿	
				度及び圧力の推移を別図 8-20 から別図 8-22 に示す。	
				○事象進展	
				事象発生後に外部電源喪失となり、給水流量の全喪失が発生	
				することで原子炉水位は急速に低下する。原子炉水位低(レベ	
				ル3) 信号が発生して原子炉はスクラムし、また、原子炉水位	
				低(レベル2)で再循環ボンブ2台全てがトリップするととも	
				に、原子炉隔離時冷却系が自動起動する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		事象発生20分後の中央制御室における破断箇所の隔離に失	
		敗するため,事象発生30分後に中央制御室からの遠隔操作によ	
		って自動減圧機能付き逃がし安全弁6個を手動開することで,	
		原子炉を減圧し、原子炉冷却材の漏えいの抑制を図る。原子炉	
		減圧により、原子炉隔離時冷却系が機能喪失するものの、高圧	
		炉心スプレイ系による原子炉注水を開始することで原子炉水位	
		が回復する。また、主蒸気隔離弁は、原子炉水位低(レベル2)	
		で全閉する。	
		事象発生10時間後,現場操作により残留熱除去系の破断箇所	
		を隔離した後は、高圧炉心スプレイ系により原子炉水位は適切	
		に維持される。	
		ブローアウトパネル 	
		EL34. 8m	
		四個アビマへネト レーション室 注水弁 日一残留熱除去系熱交換器 凡例	
		EL23. 8m 月回通路 B — 残留熟除去系	
		EL19.0m EL19.0m EL19.0m	
		EL15.3m	
		トーフス型 : 漏えい水の 伝統経験	
		EL8. Sm ハッナ開口部 C 一残留熟絵去ボンブ室 〇 口田相生田 日:蒸気の 1:蒸気の	
		たいTE ホンプ室 エリア 移動経路	
		EL1. 3m	
		別図 8-18 ISLOCA発生時の原子炉棟内状況概要	
		○漏えい発生区画における漏えい量	
		別図 8-19 に示すとおり、C-残留熱除去系における漏えい	
		は,事象発生30分後の原子炉減圧操作によって停止し,原子炉	
		冷却材の漏えい量は約7m ³ となる。これは,破断箇所からの漏	
		えいは原子炉圧力と漏えい発生区画の圧力の関係に応じて発生	
		するが、漏えい発生区画である「C-残留熱除去ポンプ室」は	
		水密扉により他室と区切られているため、漏えい水や蒸気はこ	
		の区画内に留まっており、また評価上、原子炉建物から環境へ	
		の漏えいを考慮しない条件としていることから、原子炉減圧操	
		作によって原子炉圧力が「C-残留熱除去ポンプ室」の圧力を	
		下回るためである。	
		なお、「C-残留熱除去ポンプ室」から隣接する区画への伝播	
		を仮定した場合には、隔離操作完了まで漏えいが継続すること	
		となるが、この場合でも漏えいはA-残留熱除去系に比べ小規	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所	(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
					 棟となる。 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	

島根原子力発電所 2号	東海第二発電所 (2018.9.12版)	(2017.12.20版)	柏崎刈羽原子力発電所 6/7号炉
100 80 原 子 炉 建 後 60 内 湿 度 (%) 100 原子炉棟 西側 PC 西側 PC 西側 PC 			
0 0 0 0 1 2 3 4 5 6 7 8 9 事故後の時間(時) 野田図 8-21 百子 行建物内の混乱			
700 600 一 原子均 600 一 原子均 600 一 正 西側日 一 一 西側日 一 一 西側日 一 一 西側日 一 一 西側日 一 一 西側日 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一			
200 100 0 1 2 3 4 5 6 7 8 9 事故後の時間(時) 別図 8-22 原子炉建物内の圧;			
3.2.1 溢水による影響 「C-残留熱除去ポンプ室」で発生した 水密扉を設置していることから,隣接する ンプ室」及び「原子炉隔離時冷却ポンプ雪 水範囲を別図 8-23 に,想定する漏えい量			
 (1) 注水弁(MV222-5C)へのアクセス性に C-残留熱除去系の隔離操作を行う注水 原子炉建物2階(EL23.8m)の床面上に設置 OCAにより漏えいが発生する機器は、地 設置されている。隔離操作場所へは溢水影 (EL23.8m)からアクセスするため、アクセ 			
(2) ISLOCA時に必要となる系統(原			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		高圧炉心スプレイ系、残留熱除去系及び逃がし安全弁)への	
		影響	
		C-残留熱除去ポンプ室と原子炉隔離時冷却ポンプ室の境	
		界, C-残留熱除去ポンプ室とB-残留熱除去ポンプ室の境界	
		は水密扉の設置により区画化されているため、これらのポンプ	
		室は溢水の影響を受けない。	
		A-残留熱除去ポンプ室及び高圧炉心スプレイポンプ室につ	
		いては、隣接する区画に漏えい水が伝播しないため、溢水の影	
		響を受けない。	
		逃がし安全弁は、区画として分離されている原子炉格納容器	
		内に設置されており、関連計装部品も含め溢水の影響はなく、	
		逃がし安全弁の機能は維持される。	
		別図 8-23 C-残留熱除去系 溢水範囲(1/2)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力	発電所 2号炉	備考
		別図 8-23 C-残留熱	除去系 溢水範囲(2/2)	
		別表 8-6 想	定する漏えい量	
		事故後の時間	漏えい量[m ³]	
		[h] C	こー残留熱除去ポンプ室	
			(R-B2F-03N)	
		0.5	約 6.7	
		1.0	約 7.1	
		2.0	約 7.1	
		3.0	約 7.1	
		4.0	約 7.1	
		5.0	約 7.1	
		6.0	約7.1	
		7.0	約7.1	
		8.0	約7.1	
		9.0	术·1 (. 1	
		10.0	示し 1.1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		3.2.2 漏えいした蒸気の回り込みに伴う雰囲気温度・湿度上昇の	
		影響	
		別図 8-18 に示すとおり、「C-残留熱除去ポンプ室」におい	
		て漏えいした蒸気は、境界に設置した水密扉により、隣接する	
		区画に伝播せず、「C-残留熱除去ポンプ室」内に留まる。蒸気	
		の滞留範囲を別図 8-24 に示す。	
		(1) 注水弁(MV222-5C)への影響	
		隔離操作を行う注水弁 (MV222-5C) は, 原子炉格納容器バ	
		ウンダリにかかる圧力及び温度が最も高くなる設計基準事故	
		である「原子炉格納容器内圧力,雰囲気等の異常な変化」の	
		「原子炉冷却材喪失」時の環境条件に耐性を有する設備であ	
		り,湿度 100%,温度 100℃以上の耐性を有していることから	
		機能維持される。	
		ISLOCA発生時において必要な対応操作のうち、注水	
		弁(MV222-5C)の隔離操作を除いては,全て中央制御室から	
		の操作による。注水弁(MV222-5C)の隔離操作において,原	
		子炉建物内雰囲気温度は想定している作業環境(約44℃)未	
		満で推移するため、防護具等の着用により現場へのアクセス	
		及び隔離操作は可能である。なお,注水弁(MV222-5C)の隔	
		離操作における原子炉棟内の滞在時間は、約37分である。	
		(2) ISLOCA時に必要となる系統(原子炉隔離時冷却系,高	
		圧炉心スプレイ系、残留熱除去系及び逃がし安全弁)への	
		影響	
		C-残留熱除去ポンプ室と原子炉隔離時冷却ポンプ室の境	
		界, C-残留熱除去ポンプ室とB-残留熱除去ポンプ室の境	
		界は水密扉の設置により区画化されており、またA-残留熱	
		除去ポンプ室, B-残留熱除去ポンプ室及び高圧炉心スプレ	
		イポンプ室については、漏えい水が伝播する区画に隣接して	
		いないため、これらのポンプ室には溢水の流入がなく、蒸気	
		による有意な雰囲気温度の上昇もないため、系統の運転に必	
		要な補機冷却系等の設備も含めて,系統の機能は維持される。	
		なお、原子炉隔離時冷却系、高圧炉心スプレイ系及びA-残	
		留熱除去系(又はB-残留熱除去系)のポンプ,弁及び計器	
		等は,湿度 100%,温度 100℃以上の耐性を有している。	
		逃がし安全弁は、区画として分離されている原子炉格納容	
		器内に設置されており、関連計装部品も含め、原子炉建物内	

	柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所	(2018. 9. 12版)	島根原子力発電所 2号炉	備考
文公中の構成以現特される。 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					及びトーラス室の雰囲気温度上昇に伴う影響はなく、逃がし	
川内&+24 C 一発術的出来で、第文研究範囲 (1/2)					安全弁の機能は維持される。	
別同 8-2+ C - 供開點評畫希 - 游风港留敏冠 (1/2)						
- 別図→24 C - 皮質製除主系 家気爆留軸図 (1/2)						
5月回 8-24 (二一炭留熱鈴云系 - 薫気滞留範囲(1/2)						
別図 8-24 - C- 秩留製紙(共系 - 英気滞留範囲 (1/2)						
3/10 8-24 C一获留熟除去系 - 蔡宏带留節曰(1/2)						
別図 8-24 C-残留熱除去落 蒸気滞留範囲 (1/2)						
 別図 8-24 C − 残留熱除去系 蒸気滞留範囲 (1/2)						
別図 8-24 C-短留熱除去系 蒸気滞留範囲 (1/2)						
月回8-24 C-残留熱除去丞 蒸気滞留範囲(1/2)						
3月図 8-24 C 一残留熱除去系 蒸気滞留範囲 (1/2)						
別図 8-24 C - 残留熱除去系 蒸気滞留範囲 (1/2)						
別図 8-24 C - 残留熱除去系 蒸気滞留範囲 (1/2)						
別図 8-24 C 一残留熱除去系 蒸気滞留範囲 (1/2)						
					加因 o 24 C 戏曲然际公示 然头(伸 自範四 (1/ 2)	
					□ □ □ 0 2-91 C 建网a 除土衣 苏与洪网络田 (0 / 0)	
					加回 0 44 0 7及田杰际五不 涂入价 田 毗西 (4/4)	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考			
--------------------------------	----------------------	---	----			
		<u>4.低圧炉心スプレイ系におけるISLOCA発生時の評価</u>				
		4 1 評価条件				
		低圧炉心スプレイ系におけるISLOCA発生時の原子炉冷				
		却材の漏えい量及び原子炉建物原子炉棟内の環境 (雰囲気温度,				
		湿度、圧力及び溢水による影響)を評価した。				
		低圧炉心スプレイ系においてISLOCAが発生した場合の				
		漏えい箇所は圧力スイッチ(低圧炉心スプレイポンプ室)のみ				
		であり、漏えい面積は 0.5cm ² (圧力応答評価に基づき評価され				
		た、圧力スイッチ1台分の漏えい面積に余裕をとった値)とな				
		る。その他の評価条件は,別表 8-1 において設定した評価条件				
		と同様とした。原子炉建物ノード分割モデルを別図 8-25 に示				
		t.				
		<complex-block></complex-block>				
		4.2 評価結果				
		安を別図 8-20 に, 備えい発生区画にわける原于炉桁却材の積昇 遅うい鼻の堆積な凹図 9-97 に 直子炉建物内の季囲気測度 洞				
		備えい重の推移を別図 6-21 に,尿丁炉建物内の分囲丸価度,祉				
		反次 U11111177世79で加回 0-20 ル19加回 0-30 (C小 9。				
		○事象進展				
		生することで原子炉水位は急速に低下する。原子炉水位低(レ				
		ベル3)信号が発生して原子炉はスクラムし、また、原子炉				
		水位低(レベル2)で再循環ポンプ2台全てがトリップする				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		とともに、原子炉隔離時冷却系が自動起動する。	
		事象発生 20 分後の中央制御室における破断箇所の隔離に	
		失敗するため,事象発生 30 分後に中央制御室からの遠隔操作	
		によって自動減圧機能付き逃がし安全弁6個を手動開するこ	
		とで,原子炉を減圧し,原子炉冷却材の漏えいの抑制を図る。	
		原子炉減圧により、原子炉隔離時冷却系が機能喪失するもの	
		の、高圧炉心スプレイ系による原子炉注水を開始することで	
		原子炉水位が回復する。また、主蒸気隔離弁は、原子炉水位	
		低(レベル2)で全閉する。	
		事象発生 10 時間後, 現場操作により低圧炉心スプレイ系の	
		破断箇所を隔離した後は、高圧炉心スプレイ系により原子炉	
		水位は適切に維持される。	
		プローアウトパネル	
		EL34. 8m	
		▲ 一残留熱除去系熱交換器 凡例	
		EL23. 8m 注水弁 正之3. 8m 注水弁 正 正 二 二 二 二 二 二 二 二	
		EL19.5m アクセス用柿子 ##### 00000000000000000000000000000000	
		BL15.3m BL15.3m 日.15.3m	
		時段度を通って 二次格納施設内に 二次格納施設内に 二次格納施設内に 二次格納施設内に	
		EL8.8m 研研留心スプレイポンプ家 ハッチ開口部 1.5.0% ご 価値 EL8.8m 研研留心スプレイポンプ家 こ ののポンプ家 1.5.0%	
		ELI. 3m	
		別図 8-26 ISLOCA発生時の原子炉棟内状況概要	
		○漏えい発生区画における漏えい量	
		別図 8-27 に示すとおり, 低圧炉心スプレイ系における漏えい	
		はA-残留熱除去系に比べ小規模となるため、現場での隔離操	
		作は比較的早期に実施可能と考えられるが, 事象発生 10 時間後	
		まで隔離が実施できないことを想定した場合、原子炉冷却材の	
		漏えい量は約 16m ³ である。	

P 10 0

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号
					100
					0 0 1 2 3 4 5 6 7 8 9 事故後の時間(時) 第 数後の時間(時) 別図 8-29 原子炉建物内の湿
					110
					102 100 0 1 2 3 4 5 6 7 8 9 事故後の時間(時) 別図 8-30 原子炉建物内の圧
					 4.2.1 溢水による影響 「低圧炉心スプレイポンプ室」で発生し に設置している水密扉の止水方向が異なる 室」に伝播する。溢水範囲を別図 8-31 に, 別表 8-7 に示す。
					 (1)注水弁(MV223-2)へのアクセス性にす 低圧炉心スプレイ系の隔離操作を行う注 原子炉建物中1階(EL19.5m)の床面上に LOCAにより漏えいが発生する機器は、 に設置されている。隔離操作場所へは溢れ (EL15.3m)からアクセスするため、アクセ

柏崎刈羽原子力発電所 6/75	号炉 (2017.12.20版)	東海第二発電所	(2018.9.12版)	島根原子力発電所 2号炉	備考
				(2) I S L O C A 時に必要となる系統(原子炉隔離時冷却系,高	
				圧炉心スプレイ系、残留熱除去系及び逃がし安全弁)への影	
				響	
				トーラス室とAー残留熱除去ポンプ室,Bー残留熱除去ポン	
				プ室及び高圧炉心スプレイポンプ室の境界は水密扉の設置によ	
				り区画化されているため、これらのポンプ室は溢水の影響を受	
				けない。	
				原子炉隔離時冷却ポンプ室は、隣接する区画に漏えい水が伝	
				播しないため、溢水の影響を受けない。	
				逃がし安全弁は、区画として分離されている原子炉格納容器	
				内に設置されており,関連計装部品も含め溢水の影響はなく,	
				逃がし安全弁の機能は維持される。	
				漏えい水が伝播する区画においてISLOCA時に必要とな	
				る系統の溢水評価結果を別表 8-8 に示す。	
				別図 8-31 低圧炉心スプレイ系 溢水範囲	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原	至了力発電所 2号炉	備考
		別表 8-	-7 想定する漏えい量	
		事故後の時間	漏えい量[m ³]	
		[h]	低圧炉心スプレイポンプ室	
			(R-B2F-09N)	
		0.5	約 3.2	
		1.0	約 4.0	
		2.0	約 5.0	
		3.0	約 6.3	
		4.0	約 7.7	
		5.0	約 9.0	
		6.0	約 10. 4	
		7.0	約 11.7	
		8.0	約 13.1	
		9.0	約 14.4	
		10.0	約 15.8	
		別家	長8−8 溢水評価結果	
		建物 EL 評価 流入を 溢水量 滞留 床 う成する ごんを 一面積 西	勾 ① ① ② ☆水水位 機器番号 ISLOCA 時に必要となる系統 機能喪失 影響	備考
			I IL+[m] ⁽⁰⁾ の溢水防護対象設備 ^{*3} 高さ I FL+[m] ⁽⁰⁾ IL+[m] ⁽⁰⁾	X
		原子炉 建物 1.3 R-B2F-31N R-B2F-02N 15.8 1039 0.0	75 0.10 MV224-9 HPCS ボンブ CST 側第 2 ミニマルフリー弁 7.63 ①<②	
		二 : 溢水源のある区画		
		 ※1 事象発生10時間後の溢 ※2 基準庄からの高さ 	水量	
		※2 室車床がらの高さ※3 評価対象区画で機能喪失	高さが最も低い機器	
		1		1

柏崎刈羽原子力発電所 6/7号炉 (2017	7.12.20版) 東海第二発電所	(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
			4.2.2 漏えいした蒸気の回り込みに伴う雰囲気温度・湿度上昇の	
			影響	
			別図 8-26 に示すとおり、「低圧炉心スプレイポンプ室」にお	
			いて漏えいした蒸気及び溢水の伝播区画において発生した蒸気	
			は、各隣接区画の圧力差に応じて原子炉棟内に伝播する。蒸気	
			の滞留範囲を別図 8-32 に示す。	
			(1) 注水开 (MV223-2) への影響	
			隔離操作を行う注水弁(MV223-2)は、原子炉格納容器パウ	
			ンダリにかかる圧力及び温度が最も高くなる設計基準事故で	
			ある「原子炉格納容器内圧力,雰囲気等の異常な変化」の「原	
			子炉冷却材喪失」時の環境条件に耐性を有する設備であり、	
			湿度 100%, 温度 100℃以上の耐性を有していることから機能	
			維持される。	
			ISLOCA発生時において必要な対応操作のうち,注水	
			弁(MV223-2)の隔離操作を除いては,全て中央制御室からの	
			操作による。注水弁(MV223-2)の隔離操作において,原子炉	
			建物内雰囲気温度は想定している作業環境(約44℃)未満で	
			推移するため、防護具等の着用により現場へのアクセス及び	
			隔離操作は可能である。なお,注水弁 (MV223-2)の隔離操作	
			における原子炉棟内の滞在時間は,約 41 分である。	
			(2) ISLOCA時に必要となる系統(原子炉隔離時冷却系,高	
			圧炉心スプレイ系、残留熱除去系及び逃がし安全弁)への	
			影響	
			トーラス室とA-残留熱除去ポンプ室, B-残留熱除去ポ	
			ンプ室及び高圧炉心スプレイポンプ室の境界は水密扉の設置	
			により区画化されており、また原子炉隔離時冷却ポンプ室に	
			ついては、漏えい水が伝播する区画に隣接していないため、	
			これらのポンプ室には溢水の流入がなく、蒸気による有意な	
			雰囲気温度の上昇もないため、系統の運転に必要な補機冷却	
			系等の設備も含めて、系統の機能は維持される。なお、原子	
			炉隔離時冷却系,高圧炉心スプレイ系及びA-残留熱除去系	
			(又はB-残留熱除去系)のポンプ,弁及び計器等は,湿度	
			100%,温度100℃以上の耐性を有している。	
			逃がし安全弁は、区画として分離されている原子炉格納容	
			器内に設置されており、関連計装部品も含め、原子炉建物内	
			及びトーラス室の雰囲気温度上昇に伴う影響はなく、逃がし	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		安全弁の機能は維持される。	
		別図 8-32 低圧炉心スプレイ系 蒸気滞留範囲	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙11	別紙 9	
	ISLOCA発生時の原子炉建屋原子炉棟内線量率評価 及び <u>非居住区域境界及び</u> 敷地境界の実効線量評価	ISLOCA発生時の原子炉棟内線量率評価及び敷地境界の実効 線量評価	・評価条件の相違 【東海第二】 島根2号炉は,隣接する 原子力事業者がないた め敷地境界を評価地点 としている。
 ○現場の線量率の想定について …評価の想定 	 原子炉建屋内線量率について (1) 評価の想定 	 原子炉建物内線量率について (1) 評価の想定 	
原子炉格納容器バウンダリが喪失することで,原子炉圧力 容器から直接的に放射性物質が原子炉建屋原子炉区域内に放 出される。			
漏えいした冷却材中から気相へと移行される放射性物質及	破断口から原子炉建屋原子炉棟に漏えいした原子炉冷却材	<u>A-残留熱除去系の破断口から原子炉棟に</u> 漏えいした <u>原</u>	
び燃料から追加放出される放射性物質が原子炉建屋から漏え	中の放射性物質のうち気相に移行する放射性物質及び燃料か	子炉冷却材中の放射性物質のうち気相に移行する放射性物	
いしないという条件で現場の線量率について評価した。	ら追加放出される放射性物質が原子炉建屋原子炉棟から環境	質及び燃料から追加放出される放射性物質について原子炉	
	への漏えいは考慮せずに原子炉建屋原子炉棟内に均一に分布	棟から環境への漏えいを考慮せずに原子炉棟内に均一に分	
	するものとして <u>原子炉建屋</u> 原子炉棟内の線量率を評価した。	布するものとして原子炉棟内の線量率を評価した。	
評価上考慮する核種は現行許認可と同じものを想定し(詳	評価上考慮する核種は現行設置許可と同じものを想定し,	評価上考慮する核種は現行設置許可と同じものを想定	
細は表2,3 参照),全希ガス漏えい率(f 値)については,	線量評価の条件となる I-131 の追加放出量は、実績データか	し,線量評価の条件となる I-131 の追加放出量は,実績デ	
近年の運転実績データの最大値である3.7×10 ⁸ Bq/s を採用	ら保守的に設定した。	ータから保守的に設定した。	
して評価する。なお,現行許認可ベースのf値はこの値にさ	運転開始から施設定期検査による原子炉停止時等に測定し	運転開始から施設定期検査による原子炉停止時等に測定	
らに一桁余裕を見た10 倍の値である。これに伴い,原子炉建	ている I –131 の追加放出量の最大値は <u>約 41Ci(約 1.5×10^{1 2}</u>	している I-131 の追加放出量の最大値は約 8.1×10 ⁷ Bq)「平	・測定実績値の相違
屋内へ放出される放射性物質量は、許認可評価のMSLBA(主蒸	<u>Bq) [昭和 62 年 4 月 9 日(第 8 回施設定期検査)]</u> であり, 評	<u>成元年1月18日(起動試験)」であり,評価に使用する I-131</u>	【東海第二】
気管破断事故)時に追加放出される放射性物質量の1/10 とな	価に使用する I-131 の追加放出量は、実績値を包絡する値と	の追加放出量は,実績値を包絡する値として 100Ci	
<u>Ze</u>	して 100Ci (3.7×10 ¹² Bq) と設定した。	<u>(3.7×10¹²Bg)と設定した。(別表 9-1 参照)</u>	
なお、冷却材中に存在する放射性物質量は、追加放出量の	また、放出される放射性物質には、冷却材中に含まれる放	また、放出される放射性物質には、冷却材中に含まれる	
数%程度であり大きな影響はない。	射性物質があるが, 追加放出量と比較すると数%程度であり,	放射性物質があるが,追加放出量と比較すると数%程度で	
	追加放出量で見込んだ余裕分に含まれるため考慮しないもの	あり,追加放出量で見込んだ余裕分に含まれるため考慮し	
	とする。	ないものとする。	
<u>また,現場作業の</u> 被ばくにおいては,放射線防護具(酸素	原子炉建屋原子炉棟内の作業の被ばく評価においては、放	原子炉棟内の作業の被ばく評価においては,放射線防護	
<u>呼吸器等</u>)を装備することにより内部被ばくの影響が無視で	射線防護具(<u>自給式呼吸用保護具等</u>)を装備することにより	具(酸素呼吸器)を装備することにより内部被ばくの影響	
きるため、外部被ばくのみを対象とした。	内部被ばくの影響が無視できるため、外部被ばくのみを対象	が無視できるため、外部被ばくのみを対象とする。	
	とする。		

まとめ資料比較表 〔有効性評価 添付資料 2.7.2〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版) 島根原子力発電所 2号 別第11-1 表 評価条件(追加放出量) 表2 評価条件(f值,追加放出量) 別表 9-1 評価条件(追加加 現行許認可ベース 評価ケース 項目 項目 評価値 (参考) 項 目 評価値 実績値(最大) 3.7 \times 10⁸Bq/s f 値 3.7 $\times 10^{9}$ Bq/s 約 1.5×10¹² I-131 追加放出量(Bq) 3.7 $\times 10^{12}$ (現行許認可の 1/10) I-131 追加放出量 3. 7×10^{12} (昭和62年4月9日 追加放出量(Bq) (Bq) 2.28 $\times 10^{14}$ 2. 28×10^{15} (第8回施設定期検査)) (γ線0.5MeV換算値) 希ガス及びハロゲン等の追加放 希ガス及びハロゲン等の 2.3 $\times 10^{14}$ 出量 (γ線 0.5MeV 換算値) (Bq) 追加放出量 2. 3×10^{14} -(γ線0.5MeV 換算値) (Bq) 各系統においてIS-LOCAが 炉建物へ漏えいした冷却材からの気 表 9-2 のとおり, A-残留熱除去系 に包絡される。また,評価対象エリ <u>除去系(東側PCVペネトレーショ</u> 留熱除去系(西側PCVペネトレー 大きいことから,線量率はA-残留熱 別表 9-2 原子炉建物へ漏えいし 追加放出FPの気相部への 項目 漏えい面積 (cm^2) A-残留熱除去系 17 B-残留熱除去系 17 C-残留熱除去系 1 低圧炉心スプレイ系 0.5 なお,線量率評価においては保守的

なお,線量率評価においては保守 におけるISLOCA時の追加放出 割合を全量として評価する。

・測定実績値の相違
【東海第二】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
・評価の方法	(2) 評価の方法	(2) 評価の方法	
原子炉建屋内の空間線量率は、以下のサブマージョンモデ	原子炉建屋原子炉棟内の空間線量率は、以下のサブマージ	原子炉棟内の空間線量率は、以下のサブマージョンモデ	
ルにより計算する。	ョンモデルにより計算する。サブマージョンモデルの概要を	ルにより計算する。サブマージョンモデルの概要を別図9-1	
	別第 11-1 図に示す。	に示す。	
	$D = 6.2 \times 10^{-1 4} \cdot \frac{Q_{\gamma}}{V_{\text{R/B}}} E_{\gamma} \cdot \left(1 - e^{-\mu \cdot R}\right) \cdot 3600$	$D = 6.2 \times 10^{-14} \cdot \frac{Q_{\gamma}}{V_{R/B}} E_{\gamma} \cdot (1 - e^{-\mu \cdot R}) \cdot 3600$	
	ここで、	ここで、	
	D : 放射線量率 (Gy/h)	D : : 放射線量率 (Gy/h)	
$D = 6.2 \times 10^{-14} \cdot \frac{q_Y}{v_{R/B}} E_Y \cdot \{1 - e^{-\mu \cdot R}\} \cdot 3600$	6.2×10 ⁻¹⁴ : サブマージョンモデルによる換算係数 $\begin{pmatrix} dis \cdot m^3 \cdot Gy \\ MeV \cdot Bots \end{pmatrix}$	6.2×10 ⁻¹⁴ :サブマージョンモデルによる換算係数	
ここで, D :放射線量率 (Gv/h)		((dls·m°·Gy)/(MeV·Bq·s))	
6.2×10^{-14} ・サブマージョンモデルによろ換算係数 $\left(\frac{dism^3 - Gy}{dism^3 - Gy}\right)$	Q_{γ} : <u>原于炉建库</u> 原于炉棟内放射性物質重		
Q_{γ} : 原子炉区域内放射能量 (Bq: γ 線実効エネルギ 0.5MeV 換算値)	(Bq: γ 禄夫幼エネルキ 0.5MeV 換昇値)	(Bq:γ禄美効エイルキ0.5MeV換鼻値)	
V _{R/B} : 原子炉区域内気相部容積(86,000m³)E _γ : γ線エネルギ(0.5MeV/dis)	V _{R/B} : <u>原十炉建産</u> 原十炉棟空间体積(85,000m°)	V _{R/B} : 原于炉棟內空间体積 (「」 n ³)	
μ : 空気に対する γ 線のエネルギ吸収係数 (3.9×10 ⁻³ /m)	E _γ :γ線エネルギ (0.5MeV/dis)	E _γ : γ線エネルギ (0.5MeV/dis)	
R :評価対象部屋の空間容積と等価な半球の半径(m) V :評価対象部屋の空間容積と等価な半球の半径(m)	μ : 空気に対するγ線のエネルギ吸収係数	μ : 空気に対するγ線のエネルギ吸収係数	
	$(3.9 \times 10^{-3} / m)$	$(3.9 \times 10^{-3} / \text{m})$	
$R = \sqrt{\frac{370P}{2\pi}}$	R :評価対象エリア <u>(原子炉建屋原子炉棟地上3階)</u>	R :評価対象エリア <u>(東側PCVペネトレー</u>	・評価条件の相違
	の空間体積と等価な半球の半径(m)	ション室気相部)の空間体積と等価な半	【柏崎 6/7,東海第二】
		球の半径 (m)	作業場所の相違
	$R = \sqrt[3]{\frac{3 \cdot V_{OF}}{2 \cdot \pi}}$	$R = \sqrt[3]{\frac{3 \cdot V}{2 \cdot \pi}}$	
	V _{OF} : :評価対象エリア(原子炉建屋原子炉棟地上3階)の体	V :評価対象エリア(東側PCVペネトレー	・評価条件の相違
	積 (5,000m ³)	ション 室気相部)の 体積 (m ³)	【柏崎 6/7,東海第二】
			作業場所の相違

·炉	備考
2出された放射性物質の全 原子炉棟内に均一に分布 ものとし,建物内の放射性 濃度を設定する。 空的に原子炉棟から環境 か射性物質の放出は考慮 い。 炉建物1階 業フロア)	 ・評価条件の相違 【東海第二】 島根2号炉は,作業エリア周囲の遮蔽で囲ま れた範囲を評価対象としている。
リア周囲の遮蔽で囲まれ 評価対象とする。 に, 建物内の配管, 機器等 考慮しない。 業員	
単内象戦団 範囲の体積を保存し半球状の 性物質が均一に分布するもの 線量率を評価する。	
<i>いの概要</i>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
・評価の結果	(3) 評価の結果	(3) 評価の結果	・評価結果の相違
評価結果を図5_に示す。 <u>外部被ばく</u> は最大でも <u>約15mSv/h</u>	評価結果を <u>別第 11-2 図</u> に示す。線量率の最大は <u>約 15. 2mSv</u>	評価結果を <u>別図 9-2</u> に示す。 <u>線量率の</u> 最大は <u>約 8.0mSv/h</u>	【柏崎 6/7,東海第二】
程度であり、時間減衰によってその線量率も低下するため、	<u>/h</u> 程度であり,時間減衰によって低下するため,線量率の	程度であり、時間減衰によって低下するため、線量率の上	
線量率の上昇が現場操作や期待している機器の機能維持を妨	上昇が現場操作に影響を与える可能性は小さく,期待してい	昇が現場操作に影響を与える可能性は小さく, 期待してい	
げることはない。	る機器の機能は維持される。	る機器の機能は維持される。	
なお,事故時には原子炉建屋内に漏えいした放射性物質の	なお,事故時には <u>原子炉建屋</u> 原子炉棟内に漏えいした放射	なお、事故時には原子炉棟内に漏えいした放射性物質が	・施設配置の相違
<u>一部が</u> ブローアウトパネルを通じて <u>環境へ</u> 放出されるが,中	性物質が環境へ放出される可能性があるが、これらの事故時	環境へ放出される可能性があるが, <u>中央制御室換気系の給</u>	【東海第二】
央制御室換気 <u>空調</u> 系の換気口の位置はプルームの広がりを取	においては <u>原子炉建屋放射能高</u> の信号により <u>中央制御室の換</u>	気口の位置はプルームの広がりを取り込みにくい箇所にあ	
り込みにくい箇所にあり、中央制御室内に放射性物質を大量	気系は閉回路循環運転となるため、中央制御室内にいる運転	り、中央制御室内に放射性物質を大量に取り込むことはな	
に取り込むことはないと考えられる_(図 6)。さらに,これら	員は過度な被ばくの影響を受けることはない。	<u>いと考えられる(別図 9-3)。さらに,</u> これらの事故時にお	
の事故時においては原子炉区域排気放射能高の信号により中		いては原子炉棟放射線異常高又は換気系放射線異常高の信	
央制御室換気 <u>空調</u> 系が <u>非常時運転モード(循環運転)</u> となる		号により <u>中央制御室換気系が系統隔離運転</u> となるため、中	
ため, 中操にいる運転員は過度な被ばくを受けることはない。		央制御室内にいる運転員は過度な被ばくの影響を受けるこ	
		とはない。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
出量 追加依出量(Bq) 追加依出量(Bq) 2.82E+12 2.87E+13 2.47E+13 1.07E+13 1.07E+13 5.45E+13 5.45E+13 5.45E+13 1.04E+10 4.40E+12 2.56E+12 1.29E+14 6.90E+09 1.29E+14 6.90E+09 1.05E+13 3.64E+13 4.17E+09 1.05E+13 3.64E+13 4.17E+09 1.55E+13 3.64E+12 3.87E+12 9.93E+12 8.64E+12 3.87E+12 9.93E+13 9.93E+13	(火薬実効エネルギ0.5MeV換算価) (火薬実効エネルギ0.5MeV換算価) (火薬実効エネルギ0.5MeV換算値) 2.82E+12 2.45E+13 1.07E+13 5.45E+13 5.45E+13 5.45E+13 5.45E+13 5.45E+13 1.07E+13 5.45E+13 5.45E+13 1.04E+10 4.40E+12 2.56E+12 1.29E+14 6.90E+09 1.09E+12 2.56E+12 2.8E+12 1.09E+12 2.8E+14 1.29E+14 1.29E+14 5.45E+13 3.64E+13 3.64E+13 3.64E+13 5.45E+13 3.87E+13 1.04E+10 1.99E+12 2.8E+12 1.04E+10 1.99E+12 2.8E+12 1.04E+10 1.04E+10 1.04E+10 1.04E+10 1.04E+10 1.04E+10 1.04E+12 2.8E+12 1.04E+10 1.04E+10 1.04E+12 2.8E+12 2.8E+13 3.64E+13 3.64E+13 3.86E+12 1.04E+10 1.96E+12 2.8E+14 3.86E+12 1.04E+10 1.96E+12 2.8E+14 3.86E+12 3.86E+12 3.87E+13 3.86E+12 3.87E+13 3.86E+12 2.88E+12 1.29E+14 2.28E+14 3.87E+13 3	
 、LOCA 時の追加放出 追加放出量(Bq) (916+12 5.486+12 5.486+12 9.916+12 8.356+12 9.916+12 9.916+12 1.266+12 7.996+12 7.996+12 1.266+12 1.386+12 1.386+12 1.386+12 1.386+12 1.386+12 1.386+12 1.386+12 1.386+12 1.046+11 1.046+11 1.046+11 1.046+11 1.046+11 1.046+11 1.766+13 2.766+12 1.046+11 1.766+13 1.566+13 1.296+14 1.296+14 	A時の放出量(Bq) 追加放出量(Bq) 第.706:H2 5.488:H22 5.488:H22 5.488:H22 5.488:H22 5.488:H22 5.488:H22 6.906:H11 1.266:H22 7.0916:H22 7.0916:H22 7.0916:H12 1.266:H13 1.585:H2 6.906:H11 1.766:H23 7.566:H3 1.766:H23 1.766:H23 1.766:H2 8.825:H2 6.906:H1 1.736:H13 1.766:H2 7.96:H11 1.296:H14 1.296:H14 1.296:H13 1.766:H3 2.768:H2 7.98:H22 6.935:H2 1.945:H13 1.766:H3 1.776;H3 1.766:H3 1.776;H3 1.766:H3 1.776;H4 1.776;H4 1	
線 実効エネルギ 線 実効エネルギ (MeV) 0. MeV) 0. MeV) 0. 0.003 0. 608 2. 75 1. 645 0. 0075 1. 742 0. 0075 1. 742 0. 0075 1. 742 0. 0075 0. 0025 0. 0.025 0. 0.025 0. 0.025 0. 0.025 0. 0.025 0. 0.025 0. 0.025 0. 0.045 0. 0.055 0. 0.	2 表 I SLOC 2 表 I SLOC $ \frac{2}{38}$ $ \frac{1}{2}$ SLOC $ \frac{283}{(MeV)} $ $ \frac{2331}{(MeV)} $ $ \frac{1.742}{0.0075} $ $ \frac{1.742}{0.113} $ $ \frac{1.742}{0.0025} $ $ \frac{1.750}{0.116} $ $ \frac{1.1650}{0.113} $ $ \frac{1.1650}{0.0025} $ $ \frac{1.1650}{0.113} $ $ \frac{1.1650}{0.0025} $ $ \frac{1.1650}{0.0025} $ $ \frac{1.1650}{0.113} $ $ \frac{1.1650}{0.0025} $ $ \frac{1.160}{0.0025} $ $ \frac{1.160}{$	
表 3 <i>インター</i> 、 崩壊症数 <i>v</i> (d ⁻¹) (d ⁻¹)	別語11- 別語11- 「1,3005-011」。 8.605-02 7.300 8.605-02 7.300 8.605-02 7.300 8.605-01 1.905+01 2.52 6.96 3.145+01 2.52 6.94 5.94 1.315-04 1.315-04 1.315-01 5.94 5.94 5.94 5.94 5.94 5.94 5.94 1.315-01 1.	
東京 10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	、 、 、 、 、 、 、 、 、 、 、 、 、	
核種 I-131 I-132 I-133 I-134 I-135 Br-84 Br-84 Br-83 Br-84 Mo-99 Tc-99m Nr-85 Kr-85m Kr-87m Kr-87m Kr-87m Kr-87m Kr-87m Kr-87m Kr-87m Kr-87m Kr-87m Kr-135m		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
(a) 平田区 (b) 新田区 (b) 新田区 (b) 新田区 (b) 新田区 (c) 大田田 (c) 大田 (c) 大田 <td></td> <td>(a) 平面観略図 (b) 断面観略図 別図 9-3 原子炉建物/中央制御室の配置と給気ロ・ブローアウ トパネルの位置関係 (ISLOCA)</td> <td> ・施設配置の相違 【東海第二】 島根2号炉は施設の 位置関係から中央制御< 室換気系の吸気口にプレームを取込みにくい 設計となっている。 </td>		(a) 平面観略図 (b) 断面観略図 別図 9-3 原子炉建物/中央制御室の配置と給気ロ・ブローアウ トパネルの位置関係 (ISLOCA)	 ・施設配置の相違 【東海第二】 島根2号炉は施設の 位置関係から中央制御< 室換気系の吸気口にプレームを取込みにくい 設計となっている。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
7公衆被ばくについて	2. 非居住区域境界及び敷地境界の実効線量評価について	2. 敷地境界の実効線量評価について	・評価条件の相違
	(1) 評価想定	(1) 評価想定	【東海第二】
インターフェイスシステムLOCA が発生した場合,原子炉建屋内	<u>非居住区域境界及び</u> 敷地境界の実効線量評価では、ISL	敷地境界の実効線量評価では、ISLOCAにより原子炉	島根2号炉は,隣接する
に放出された核分裂生成物がブローアウトパネルの開放により大	OCAにより原子炉建屋原子炉棟内に放出された核分裂生成	棟内に放出された核分裂生成物がブローアウトパネルを経由	原子力事業者がないた
気中に放出される。この場合における敷地境界での実効線量を評	物が大気中に放出されることを想定し, <u>非居住区域境界及び</u>	して大気中に放出されることを想定し,敷地境界の実効線量	め敷地境界を評価地点
価した。	敷地境界の実効線量を評価した。	を評価した。	としている。
評価条件は表1~3(但し,表1の「原子炉建屋への流出経路条	評価条件は <u>別第11-1</u> 表から <u>別第11-5表</u> に従うものとする。		
件」は除く)に従うものとし、その他の条件として、破断口から	破断口から漏えいする原子炉冷却材が原子炉建屋原子炉棟内	評価条件は <u>別表 9-1</u> 表から <u>別表 9-6</u> に従うものとする。破	
漏えいする冷却材が減圧沸騰によって気体となる分が建屋内気相	に放出されることに伴う減圧沸騰によって気体となる分が建	断口から漏えいする原子炉冷却材が原子炉棟内に放出される	
部へ移行されるものとし、破断口から漏えいする冷却材中の放射	屋内の気相部へ移行するものとし、破断口から漏えいする冷	<u>ことに伴う</u> 減圧沸騰によって気体となる <u>蒸気量に対応する放</u>	
性物質が気相へ移行される割合は、運転時冷却材量と減圧沸騰に	却材中の放射性物質が気相へ移行する割合は、運転時の原子	<u>射性物質</u> が建物内の気相部へ移行 <u>する</u> ものとし、破断口から	
よる蒸発分の割合から算定した。	炉冷却材量に対する原子炉建屋原子炉棟放出に伴う減圧沸騰	漏えいする冷却材中の放射性物質が気相部へ移行する割合	
	による蒸発量の割合から算定した。	は、運転時の原子炉冷却材量に対する原子炉棟放出に伴う減	
燃料から追加放出される放射性物質が気相へ移行される割合	燃料から追加放出される放射性物質が気相へ移行する割合	圧沸騰による蒸発量の割合から算定した。	
は、燃料棒内ギャップ部の放射性物質が原子炉圧力の低下割合に	は、燃料棒内ギャップ部の放射性物質が原子炉圧力の低下割	燃料から追加放出される放射性物質が気相へ移行する割合	
応じて冷却材中に放出されることを踏まえ、同様に運転時冷却材	合に応じて冷却材中に放出されることを踏まえ,同様に運転	は、燃料棒内ギャップ部の放射性物質が原子炉圧力の低下割	
量と減圧沸騰による蒸発分の割合から算定した。また、破断口及	時の原子炉冷却材量に対する原子炉減圧に伴う減圧沸騰によ	合に応じて冷却材中に放出されることを踏まえ、同様に運転	
び逃がし安全弁から流出する蒸気量は、各々の移行率に応じた量	る蒸発量の割合から算定した。また、破断口及び逃がし安全	時の原子炉冷却材量に対する原子炉減圧に伴う減圧沸騰によ	
が流出するものとした(詳細は図7_参照)。	弁から放出される蒸気量は、各々の移行率に応じた量が流出	る蒸発量の割合から算定した。また、破断口及び逃がし安全	
	するものとした。(<u>別第 11-3 図</u> 及び <u>別第 11-4 図</u> 参照)	弁から放出される蒸気量は、各々の移行率に応じた量が流出	
		するものとした。(<u>別図 9-4</u> 参照)	
		原子炉棟内の気相部に移行した放射性物質は、ブローアウ	・記載方針の相違
		トパネルの開口部より大気中に徐々に放出されることとなる	【柏崎 6/7,東海第二】
		<u>が,被ばく評価上は,事象発生直後に大気中に放出されるも</u>	島根2号炉では,放射性
		のとし、放出高さは地上放出として評価した。	物質の大気中への放出
	その結果,放出量は別第11-4表に示すとおりとなった。	その結果,放出量は別表 9-5 に示すとおりとなった。	の評価条件がブローア
			ウトパネル開口部面積
			に依存しないことを記
			載。
		(2) 評価方法	・記載方針の相違
		<u>敷地境界外における実効線量は、次に述べる内部被ばくに</u>	【柏崎 6/7,東海第二】
		よる実効線量及び外部被ばくによる実効線量の和として計算	島根2号炉では,評価方
		<u>する。</u>	法を記載気合。
		<u>a. よう素による内部被ばく</u>	
		よう素の内部被ばくによる実効線量H ₁ は次の式で計算す	
		<u> </u>	
	·	·	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		$H_I = R \cdot H_\infty \cdot \chi / Q \cdot Q_I$	
		<u> </u>	
		<u>R:</u> 呼吸率(m ³ /s)	
		呼吸率Rは,事故期間が比較的短いことを考慮し,小児	
		の活動時の呼吸率 0.31 (m ³ /h) を用いる。	
		<u>H∞</u> :よう素(I-131)を1Bq 吸入した場合の小児の実効線	
		<u>量</u> 係数(1.6×10 ⁻⁷ Sv/Bq)	
		<u>χ/Q</u> :相対濃度(s/m ³)(別表 9- <u>6</u> のとおり)	
		<u>Q1</u> :よう素の放出量(Bq)	
		(I-131 等価量−小児実効線量係数換算)(別表 9- <mark>5</mark> のとおり)	
		b . γ 緑による外部彼はく ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	
		<u>敷地境界外における希力ス及びハロケン等のγ線外部被は</u>	
		くによる美効様重Hyは次の式で計算する。	
		$H_{\gamma} = K \cdot D / Q \cdot Q_{\gamma}$	
		<u>、</u> K:空気カーマから実効線量への換算係数(K=1Sv/Gv)	
		D/O・相対線量 (Gy/Bg) (別表 9-6 のとおり)	
		0.:: 希ガス及びハロゲン等の大気放出量(Ba)	
		(v線=効エネルギー0.5MeV 換算値)(別表 9-5 のとおり)	
	(2) 評価結果	(3) 評価結果	
<u>評価の結果</u> ,敷地境界における実効線量は <u>約4.7×10⁻²mSv</u> とな	非居住区域境界及び敷地境界における実効線量はそれぞれ	敷地境界における実効線量は <u>約 3.9mSv</u> となり事故時線量	
	約 1.2×10 ⁻¹ mSv,約 3.3×10 ⁻¹ mSv となり,「LOCA時注		
ける耐圧強化ベント系によるベント時の敷地境界での実効線量	水機能喪失」における耐圧強化ベント系によるベント時の実		
 (約4.9×10 ⁻² mSv)及び5mSv を下回った。			
	<u>6.2×10⁻¹mSv)及び</u> 事故時線量限度の 5mSv を下回った。		
		本事象は、放射性物質の放出に際し格納容器フィルタベン	・評価条件の相違
		ト系や非常用ガス処理系による放射性物質の捕集効果及び高	【東海第二】
		所放出による大気希釈に期待できないため、敷地境界におけ	島根2号炉は,隣接する
		る実効線量評価において,設計基準事故や他の炉心損傷防止	原子力事業者がないた
		シナリオにおける評価条件に比べて厳しい評価結果となって	め敷地境界を評価地点
		いると考えられる。また,ISLOCA 発生後,30 分後に急速減圧	としている。
		を実施する評価としているため、それまでの間に、高圧炉心	・評価結果の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
		スプレイ系の自動起動に伴う蒸気凝縮により原子炉圧力低下	【柏崎 6/7,東海第二】
		が起きており、この期間における燃料棒内ギャップ部の放射	・記載方針の相違
		性物質の追加放出が大きくなっている。この期間は破断口か	【柏崎 6/7,東海第二】
		らの冷却材漏洩量も大きいため、大気中への放射性物質の放	島根2号炉では評価結
		出量が大きくなる結果となる。	果に影響を与えている
			主な原因について記載。
		<u>なお,評価に使用した I-131 追加放出量の 100Ci</u>	・評価条件の相違
		(3.7×10 ¹² Bq)は,運転開始からの I-131 追加放出量の実測	【東海第二】
		値の最大値である約 8.1×10 ⁷ Bq「平成元年1月 18 日(起動	島根2号炉の評価上の
		試験)」に対し保守性を有した設定となっている。	保守性について記載。
なお、評価上は考慮していないものの、原子炉建屋内に放出され	なお,評価上は考慮していないものの,原子炉建屋原子炉	また、評価上は考慮していないものの、原子炉棟に放出さ	
た放射性物質はブローアウトパネルから外部に放出されるまでの	棟に放出された放射性物質は外部に放出されるまでの建屋内	れた放射性物質は外部に放出されるまでの建物内壁への沈着	
建屋内壁への沈着による放出量の低減に期待できること,及び冷	壁への沈着による放出量の低減に期待できること及び冷却材	による放出量の低減に期待できること、冷却材中の放射性物	
却材中の放射性物質の濃度は運転時冷却材量に応じた濃度を用い	中の放射性物質の濃度は運転時の原子炉冷却材量に応じた濃	質の濃度は運転時の原子炉冷却材量に応じた濃度を用いてい	
ているが実際は原子炉注水による濃度の希釈に期待できることに	度を用いているが、実際は原子炉注水による濃度の希釈に期	るが、実際は原子炉注水による濃度の希釈に期待できること	
より、更に実効線量が低くなると考えられる。	待できることにより、さらに実効線量が低くなると考えられ	及び破断口から放出されるまでの時間減衰により、さらに実	
	る。 	効線量が低くなると考えられる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (20	18. 9. 12版)	島根原子力発電所	2 号炉	備考
	<u>別第11-3 表</u> 放出 項 目 主要解析条件 原子炉運転日数(日) 2,000	評価条件 条件設定の考え方 十分な運転時間として仮定した時間 変近の1-131 追加放出号の実装値を	<u>別表 9-4</u> 放出評价 項目 原子炉運転日数(日) 2,000	西条件 条件設定の考え方 十分な運転時間として仮定した時 間	・評価条件の相違 【東海第二】 冷却材保有量等の相違
	追加放出量 (I -131) (Bq) 3.7×10 ¹²	2007-131 迫加放出量の実績進を 包絡する値として設定し、その他の 核種はその組成を平衡組成として求 め、希ガスについてはよう素の2倍 の放出があるものとする。 I-131 の追加放出量に基づく全希ガ	追加放出量 (I-131) (Bq) 3.7×10 ¹²	至近の I-131 追加放出量の実績値 を包絡する値として設定し、その 他の核種はその組成を平衡組成と して求め、希ガスについてはよう 素の2倍の放出があるものとす	により冷却材中濃度 (I-131)が異なる。ま
	冷却材中濃度(I-131) (Bq∕g) 1.5×10 ²	ス漏えい率から冷却材中濃度を設定 し、その組成を拡散組成とする。 (運転実績の最大の I-131 の冷却材 中濃度(5.6×10 ⁻¹ Bq√g)を十分に 包絡する値である。)	冷却材中濃度(I-131) (Bq∕g) 1.4×10 ²	る。 全希ガス漏えい率から冷却材中濃 度を設定し、その組成を拡散組成 とする。	た, SAFER解析結果 の相違に伴い, 有機よう 素の移行率 冷却材から
	燃料から追加放出されるよう 無機よう素:96 素の割合(%) 有機よう素:4 速がし安全かからサプレッジ 無機よう素,	「発電用軽水型原子炉施設の安全評 価に関する審査指針」に基づき設定 無機よう素,ハロゲン等については	燃料から追加放出される 無機よう素:96% よう素の割合(%) 有機よう素:4%	「光電用電加室原子が施設の女王 評価に関する審査指針」に基づき 設定	気相への放出割合が相
	通がじ気主弁が59リンレジー、ハロゲン等:100 ョン・チェンバへの移行率(%) ハロゲン等:100 有機よう素:99.958 破断口から原子炉建屋原子炉 棟への移行率(%) 無機よう素, ハロゲン等:100 有機よう素:0.042	保守的に全量が逃がし安全弁からサ プレッション・チェンバ及び破断口 から原子炉建量原子炉棟のそれぞれ に移行するものとするものとして設 定 有機よう素についてはSAFER解	逃がし安全弁からサプレ ッション・チェンバへの 移行率(%) 無機よう素, ハロゲン等:2 有機よう素:99.98	は「発電用軽水型原子炉施設の安 全評価に関する審査指針」に基づ き設定 有機よう素についてはSAFER 解析の積算蒸気量の割合に基づき 設定	違している。
	サプレッション・チェンパのプ ール水でのスクラビング等に 10 よる除去係数 逃がし安全弁からサプレッシ ョン・チェンバへ移行した放射 2	 析の積算蒸気量の割合に基づき設定 Standard Review Plan6.5.5 に基づき設定 「発電用軽水型原子炉施設の安全評 	破断口から原子炉棟への 務行率(%) 無機よう素,ハロゲン等:100 有機よう素:0.02	無機よう素,ハロゲン等について は保守的に全量が破断口から原子 炉棟へ移行するものとして設定。 有機よう素についてはSAFER 解析の積算蒸気量の割合に基づき 設定	
	性物質の気相部への移行割合 11 冷却材から気相への放出割合 11	価に関する審査指針」に基づき設定 原子炉冷却材量に対する原子炉建屋 原子炉棟放出に伴う減圧沸騰による	サプレッション・チェン バのプール水のスクラビ 5 ング等による除去係数	Standard Review Plan6.5.5 に基 づき設定	
	 (帝却材中の放射性物質)(%) 冷却材から気相への放出割合 (追加放出される放射性物質) 4 	蒸気量の割合を設定 原子炉減圧により燃料棒内ギャップ 部から冷却材中へ放出されることを	 冷却水から気相への放出 割合 (冷却材中の放射性物 24 (管)(%) 	原子炉冷却材量に対する原子炉棟 放出に伴う減圧沸騰による蒸気量 の割合を設定	
	(%) 格納容器からの漏えい率 0.5	踏まえ、原子炉冷却材量に対する減 圧沸騰による蒸気量から算出 格納容器の設計漏えい率から設定	冷却材から気相への放出 割合 (追加放出される放射性 物質)(%)	原子炉減圧により燃料棒内ギャッ プ部から冷却材中へ放出されるこ とを踏まえ,原子炉冷却材量に対 する減圧沸騰による蒸気量から算 出	
			格納容器からの漏えい率 (%/d) 0.5	格納容器の設計漏えい率から設定	
			原子炉棟の気密性 考慮しない	に依存せず,原子炉棟内気相部の 放射性物質が事象発生直後に大気 中に放出されるものとする。	
	<u>別第11-4 表 敖</u>	女出 <u>量</u>	<u>別表9-5</u> 放出	<u>里</u>	・評価結果の相違
	核 種	放出量 (Bq)	核 種 希ガス+ハロゲン等	放出量 (Bq)	【東海第二】 冷却材から気相への放
	希ガス+ハロゲン等 (ガンマ線実効エネルギ 0.5MeV 換算値)	9. 5×10 ^{1 2}	 (ガンマ線実効エネルギ 0.5MeV 換算値) よう素 (T-121 笠硬景 (小周宝効線景係教 換算)) 	7. 9×10 ¹¹	出割合の相違による。
	(I-131 等価量(小児実効線量係数換算))	2.8×10 ¹¹	└ュ 151 守Ⅲ里(小ツL大刃I你里怵奴快异//		
	<u>別第11-5 表 大気拡散条</u>	件(地上放出)	<u>別表 9-6</u> 大気拡散条件	(地上放出)	・評価条件の相違
	核種	放出量 (Bq)	大気拡散条件	敷地境界	【果海第二】
	相対濃度(χ∕Q) (s∕m ³)	非居住区域境界:2.9×10 ⁻⁵ 敷地境界 :8.2×10 ⁻⁵	相対濃度 (χ∕Q) (s∕m ³)	$3.5 imes 10^{-4}$	敖地及び凤家余件の相 違による。
	相対線量 (D/Q) (Gy/Bq)	非居住区域境界:4.0×10 ⁻¹⁹ 敷地境界:9.9×10 ⁻¹⁹	相対線量 (D/Q) (Gy/Bq)	2.1×10^{-18}	

疗炉	備考
※5 被ばく評価上はブローアウト パネルの開口面積に依存せず、原子 炉建物内気相中の放射性物質は事 象発生直後に大気中に放出される ものとして評価した。	・評価条件の相違 【柏崎 6/7,東海第二】
.7%) 原子授権物内気相中のよう素、ハロゲン(約24%) 約1.5×10 ⁿ [Bq] ※1 約1.5×10 ⁿ [Bq] ※2 約1.5×10 ⁿ [Bq] ※2 約1.5×10 ⁿ [Bq] ※2 .5環境中へ放出(よう素, ハロゲン)※5 7,9×10 ⁿ [Bq] ※1 1.7×10 ⁿ [Bq] ※2 ハロ ゲン等の環境への放出過程	
原子授建物内気相中のよう素、ハロゲン(約11 約7.6×10 ⁿ [B4] ※1 約1.5×10 ⁿ [B4] ※2 プローアウトバネルか 約 別凶 9-4 希ガス, よう素,	
原子炉建物内気相中の希ガス (約3.3%) ブローアウトパネルから環境中へ放出(希ガス)※5 約3.5×10 ¹³ [Bq] ※2	

炉	備考
	・構成の相違 【東海第二】 別図 9-4 中に記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
	I -131 追加放出量の測定結果について	I-131 追加放出量の測定結果について	・測定実績値の相違 【東海第二】
	運転開始から施設定期検査による原子炉停止時等に測定してい	運転開始から施設定期検査による原子炉停止時等に測定している	
	る I - 131 の追加放出量の測定値は以下のとおり。 	1-131の追加放出量の測定値は以下のとおり。	
	運転開始から施設定期検査による原子炉停止時等に測定してい る I — 131 の追加放出量の測定値は以下のとおり。	運転開始から施設定期検査による原子炉停止時等に測定している I-131の追加放出量の測定値は以下のとおり。 定検回数 停止年月日 増加量(Bq) (起動減驗) 日1.1.18 8.10×10 ⁷ 第1回 H2.2.5 2.22×10 ⁷ 第2回 H3.5.7 7.67×10 ⁶ 第3回 H4.9.7 2.0×10 ⁷ 第3回 H4.9.7 2.0×10 ⁷ 第3回 H4.9.7 2.0×10 ⁷ 第5回 H7.4.27 1.9×10 ⁷ 第5回 H7.4.27 1.9×10 ⁷ 第6回 H8.9.6 2.3×10 ⁷ 第6回 H1.5.11 2.2×10 ⁷ 第7回 H10.1.5 2.4×10 ⁷ 第8回 H11.5.11 2.2×10 ⁷ 第10回 H14.1.8 2.0×10 ⁷ 第11回 H15.4.15 3.6×10 ⁷ 第12回 H16.9.7 2.6×10 ⁷ 第13回 H18.2.28 2.9×10 ⁷ 第14回 H19.5.8 3.9×10 ⁷ 第15回 H20.9.7 1.9×10 ⁷ 第16回 H22.3.18 2.2×10 ⁷	【東海第二】

まとめ資料比較表 〔有効性評価 添付資料 2.7.3〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料2.7.2	添付資料2.7.4	添付資料 2.7.3	
安定状態について	安定状態について	安定状態について	
()	(格納容器バイパス(インターフェイスシステムLOCA))	(格納容器バイパス (インターフェイスシステムLOCA))	
格納容器バイパス(インターフェイスシステムLOCA)時の安定状 格	各納容器バイパス(インターフェイスシステムLOCA)時の	格納容器バイパス(インターフェイスシステムLOCA)時の安	
態については以下のとおり。 安定	を状態については,以下のとおり。	定状態については以下のとおり。	
原子炉安定停止状態:事象発生後,設計基準事故対処設備及び 原子	子炉安定停止状態: 事象発生後,設計基準事故対処設備及び	原子炉安定停止状態:事象発生後,設計基準事故対処設備及び	
重大事故等対処設備を用いた炉心冷却に	重大事故等対処設備を用いた炉心冷却	重大事故等対処設備を用いた炉心冷却	
より、炉心冠水が維持でき、また、冷却	が維持可能であり、また、冷却のための	<u>により、炉心冠水が維持でき、</u> また、冷	
のための設備がその後も機能維持できる	設備がその後も機能維持でき、かつ、必	却のための設備がその後も機能維持で	
と判断され、かつ、必要な要員の不足や	要な要員の不足や資源の枯渇等のあら	きると判断され,かつ,必要な要員の不	
資源の枯渇等のあらかじめ想定される事	かじめ想定される事象悪化のおそれが	足や資源の枯渇等のあらかじめ想定さ	
象悪化のおそれがない場合、安定停止状	ない場合に安定停止状態が確立された	れる事象悪化のおそれがない場合…安定	
態が確立されたものとする。	ものとする。	停止状態が確立されたものとする。	
原子炉格納容器安定状態:炉心冠水後に,設計基準事故対処設 格紙	納容器安定状態 : 炉心冷却が維持された後に,設計基準事	原子炉格納容器安定状態:炉心冠水後に、設計基準事故対処設	
備及び重大事故等対処設備を用いた	故対処設備及び重大事故等対処設備を用	備及び重大事故等対処設備を用い	
原子炉格納容器除熱機能(格納容器	いた格納容器除熱により格納容器圧力及	た原子炉格納容器除熱機能(格納容	
<u>圧力逃がし装置等</u> ,残留熱除去系又	び温度が安定又は低下傾向に転じ、また、	器フィルタベント系,残留熱除去系	・運用の相違
は代替循環冷却系)により、格納容	格納容器除熱のための設備がその後も機	又は残留熱代替除去系)により、格	【柏崎 6/7】
器圧力及び温度が安定又は低下傾向	能維持でき、かつ、必要な要員の不足や資	納容器圧力及び温度が安定又は低	島根2号炉は,耐圧強
に転じ、また、原子炉格納容器除熱	源の枯渇等のあらかじめ想定される事象	下傾向に転じ、また、原子炉格納容	化ベントを使用しな
のための設備がその後も機能維持で	悪化のおそれがない場合に安定状態が確	器除熱のための設備がその後も機	$\langle v_{\circ} \rangle$
きると判断され、かつ、必要な要員	立されたものとする。	能維持できると判断され、かつ、必	
の不足や資源の枯渇等のあらかじめ		要な要員の不足や資源の枯渇等の	
想定される事象悪化のおそれがない		あらかじめ想定される事象悪化の	
場合、安定状態が確立されたものと		おそれがない場合,…安定状態が確立	
する。		されたものとする。	
【安定状態の確立について】	安定状態の確立について】	【安定状態の確立について】	
原子炉安定停止状態の確立について	子炉安定停止状態の確立について	原子炉安定停止状態の確立について	
事象発生4時間後に高圧炉心注水系の破断箇所を現場操作に 事業	象発生の 5 時間後に残留熱除去系の破断箇所を現場操作に	事象発生 10 時間後に残留熱除去系の破断箇所を現場操作にて	・解析結果の相違
て隔離されることで漏えいが停止し、健全側の高圧炉心注水系 て	隔離することで漏えいが停止し、逃がし安全弁により原子炉	隔離されることで漏えいが停止し,高圧炉心スプレイ系による	【柏崎 6/7,東海第二】
による注水継続により炉心が冠水し、炉心の冷却が維持され、 減圧	正状態を維持し低圧炉心スプレイ系を用いた原子炉注水を継	注水継続により炉心が冠水し,健全側の残留熱除去系による炉	・解析条件の相違
原子炉安定停止状態が確立される。 続き	することで炉心の冷却は維持され、原子炉安定停止状態が確	心の冷却が維持され、原子炉安定停止状態が確立される。	【柏崎 6/7,東海第二】
立志	される。		破断想定箇所の相違。
			・運用の相違
原子炉格納容器安定状態の確立について	納容器安定状態の確立について	原子炉格納容器安定状態の確立について	【柏崎 6/7,東海第二】
残留熱除去系による原子炉格納容器除熱を <u>開始</u> することで、冷 残留	留熱除去系による <u>格納容器除熱を開始</u> することで、冷温停止	残留熱除去系による <u>炉心の冷却</u> を <u>継続</u> することで、冷温停止状	・運用の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
温停止状態に移行することができ,原子炉格納容器安定状態が	状態に移行することができ,格納容器安定状態が確立される。	態に移行することができ、 <u>格納容器圧力及び温度も安定又は低</u>	【柏崎 6/7,東海第二】
確立される。		下傾向となり、原子炉格納容器安定状態が確立される。	
キャーチ上市北於地体吐き以西と西日に破旧司代できる キャ		キャーチーナルが見你中に以来なま見い彼但ゴペペチ かーナチー	
よに, 里入事 改 寺 対 東 時 に 必要 な 要 貝 は 帷 保 可 肥 じ め り , よ に ,	また、 重大争议等対束時に必要な要員は確保可能であり、 必	よに, 里入事故寺対束時に必要な要員は帷保可能でめり, <u>まに</u> ,	
必要な小原,燃料及い电源を供給可能である。	安な小原,	公安な小源, 然村及い电源を供和可能である。	
【安定状態の維持について】	【安定状能の維持について】	【安定状態の維持について】	
上記の炉心損傷防止対策を継続することにより安定状態を維	ト記の炉心損傷防止対策を継続することにより安定状態を維持	上記の炉心損傷防止対策を継続することにより安定状態を維	
持できる。	できる。	持できる。	
また,残留熱除去系機能を維持し,除熱を行うことによって,	また、残留熱除去系の機能を維持し除熱を継続することで、安	また,残留熱除去系機能を維持し,除熱を行うことによって,	
安定状態の維持が可能となる。	定状態の維持が可能となる。	安定状態の維持が可能となる。	
	(添付資料2.1.2別紙1)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉 備考 添付資料 2.7.3 添付資料 2.7.3 添付資料 2.7.5 添付資料 2.7.5 添付資料 2.7.5 添付資料 2.7.5 ・相違理由は2 輸 ※ <th>考</th>	考
添付資料 2.7.3 添付資料 2.7.5 添付資料 2.7.5 添付資料 2.7.5 添付資料 2.7.4	
現金 1 2 2 3 3 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4	は本文参照
<section-header></section-header>	は本文参照

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉	備考
	バラメータに与える影響(2)、2)、2)、2)、2)、2)、2)、2)、2)、2)、2)、2)、2)、2	
	転換した。 転換にない。	
	車要現象の不確かさいる。 本種が自動を 、 、 、 、 、 、 、 、 、 、 、 、 、	
	「 、 、 、 、 、 、 、 、 、 、 、 、 、	
	本本 物で、 「 「 「 「 「 」 」 」 」 」 」 」 」 」 」 」 」 」	
	第 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)								東海第二発電所 (2018.9.12版)										島村	艮原子	力発	電所 2 長	炉				備考										
-揚合の運転員等操作時間及び評価項目となるパラメータに与える影響 インターフェイスシステム LOCA) (1/2)	開始時から の 大作行法だの年太人 通転子学習慣研究にして法認 一般性が下して活躍 一般性が 一般性が 一般性 一般	1001 ADDMですりロドレイトにしている。 14.6人が主要義の国民になるる業業またらよってきなら、通貨用、中心で中に2014年のこの名が、中国のようなどの手事業の国によった人の時間は、そ人の時間は、人の名前には、中心では、ことなど、日本日、日本日、日本日、日本日、日本日、日本日、日本日、日本日、日本日、日本	スメラットド 通貨業業時の原子があるとし、1.2.できなころでは、日本は、中国人であっているの特徴業業業件であったがあった。1.5.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	916~	9.9.5時代、100、5.0.50歳。 1月17日、北海道の大学術会は国主語の東京市とした社会化主から単分によりやな日本がかかいとし、農業業務とした協会化、からの名がためたない、日本の争びたため名の、それら 1月14日である、西洋の人間は、なるの、それらの国内であった金を含成していたの部分の階層、2000年などをさる時、いぞれらが広く直接中の時からの特徴にはは15年なであり、 2月14日の人間には自然までも、1月14日は1月1日である、生命な機能にはその意識におりたる部分におりたいではなく直接中の時からの特徴にはは15年なであり、 ことさらい、住宅的たいでのまです。ことから、美術品は当時時の時にごろえる部分がようない、たるの部分があったことから、美術現代目主とならいケメードにす	(4.1) を必定 法律を許していた。 ため、ため、ため、ため、ため、ため、ため、ため、ため、ため、ため、ため、ため、た		extrements 本義にした記録 一般の美して記録 一般の美していた記録 一般の後の主体のの後年、一般の時代は後期の時代の時代でした。1月1日の時代には、1月1日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日	商業のあるドメールに用意業を使いて、低くなるの可能的ななどの、小学校であったことができるのは、「新潟業件」にした時代、「新潟業件」でも含ままで、「お茶」の「広くなるの情 「東洋湖」、「「「「「」」」、「「」」、「「」」、「」」、「」」、「」」、「」、「」、「	様々が大水山長と海峡であった。「「「「「」」」「「」」」」「「」」」」」」」」」」」」」」」」」」」」」	- - - - - - - - - - - - -	今に運転員等橰作時間及び評価項目となるパラメータに与える影響 (1/4)		条件設定の考え方 運転員等執件時間に与える影響 評価項目となるパラメータに与える影響 学校園子印製出カシーに学ど 参議条件シーン組合には最大適出力素度なび回子的低い 委員条件シーン協会には最大適出力差定の小	NetworkをWindows Networkを使用しているからのションドロードを使うの場合の「「「「「「「「」」」」「「」」」「「」」」」「「」」」」「「」」」」「「」」」」	16.2 定務原子伊圧力として設定 定務原子伊圧力として設定 で変動を与え得るが、原子伊圧力は進がし安全弁により 変動を与え得るが、原子伊圧力は進がし安全弁により 「変動を与え得るが、原子伊圧力は進がし安全弁により問題 「「「「「「「」」」」」」 「「「「」」」」」」」」 「「「「」」」」」」」」	通常運転降り原井炉木位とした酸、酸産金化には、ゆらぎにより解析条件に対し、廃職条件とした場合には、ゆらぎにより解析条件に対した 「「「「「「「「「」」」」」、「「」」」、「「」」」、「「」」」、「「」」、「」」、「」」、「」」、「」、「	定格派量として設定 展確条件とした場合には、炉心流量の運転範囲において 廃職条件とした場合には、炉心流量の運転範囲において産 解析条件から変動し得るが、事象初期において原子がが 好条件から変動し得るが、事象初期において原子サジスク スクラムするとともに、再確顕系ポンプがトリップする ラムするとともに、再確顕系ポンプがトリップするため、 ため、初期でも読量が事象道裏にたなてい 初期がら読量が事象道展に大学ない とから、運転員等級作時回に与える影響はいない、 評価項目となるパラメータに与えいことから、	9×9歳時(人類)と9×9歳時(B) 換慮条件とした場合には、9×9歳時(人類) 数び9×9 酸痛条件とした場合には、9×9歳年(人類) ひび9×9歳 2011、歳×2:約20歳時はほぼ同等 後時(日間)の混在むらズはそれぞれ型式の単級がひとな ためり、その他の彼的特徴をの違い る場合があるが、回型式の単級がひとな 場合があるが、回型式の単級がとなる に必要に確認でのないない、ことから、事後最細胞に反ばすが鬱朧にから、「最低良等論」から、Pio-Arab SA: 回型式の時時の中絶ははば同等であること に包括されることから、代表的に9 件時間に与える影響はたい。 、メータに生える影響はない。	×9歳時(A型)を設定 ×9歳時(A型)を設定 (文)の統約網尿値として設 務備条件とした場合は、統計級種常温度の上界は認わる、検護条件とした場合は、統計級種客温度の上昇は能力され さるが、端子が太低はおおむた試修構築やさいと、「「「」」、「」、「」、「」、」、」、「」、」、「」、」、」、「」、」、」、「」、」、」、」、」、「」、」、」、 は、一般に、一般に、一般に、一般に、一般に、一般に、一般に、一般に、一般に、一般に	1サイクルの運転期間(13ヶ月)に 具金融作時間によるの影響にない。 1サイクルの運転期間(13ヶ月)に 環境条件とした場合は、術行条件で設定している場場熱 最後条件とした場合は、病行条件で設定している励業物よ 調整運転期間(約1ヶ月)を考慮し よりも小さくならため、発生する蒸気(無は少なくなり、 りも小さくなるため、発生する蒸気(単立なくなり、原子 た運転期間に対応する燃焼度とし 見子が火化の低下は緩わされるが、操作手順(切心脱水 数水化の低下は緩和され、それに伴り原子的冷却好の放出 入設定 最作りに対応する燃焼度とし 原子が水化の低下は緩わされるが、操作手順(切心脱水)などの低下は緩和され、それに伴り原子的冷却好の放出 える影響はない。 える影響はない。 ありばないい。		- 場合の運転員等操作時間及び評価項目となるパラメータに与える影響	パス(インターフェイスシステムLOCA))(1/2)	条件設定の考え方 運転員等機件時間に与える影響 評価項目となるバラメータに与える影響 最重要計量とした単分化、最大酸化力、適大酸化力、適素素が上した進分化、最重要素が上した進分化、最美量化力が能容な10位子が30年後の値	定格原子母胞出力として設定 社会の回線表が最困される。最後に外生した協会の通 被洗の装置にされる。この一部分の単語をとした協会の運動業件とした協会の運動業件でした協会の運動業業を作とした協会の運動業化 化酸子素 タータビンネスの影響は、最大線出力密度及び防子学校止後の値 毎時の主義の自線表記にて設置中する。。 最高年年とした場合は、ゆるぎにより解析条件に対し 最級条件とした協会は、ゆらがにより解析条件に対して変動を	定格原子伊圧力として設定 定格原子伊圧力として設定 との時期をおったため非常追視に反は子根は自体されてい。 本会通貨に与える防衛自体にのたけ、 という、通信は見機構作時間に与える防鬱的とかい。 素価条件とした組合は、ゆらぎにより解析条件に対し、 数確条件とした組合は、ゆらぎにより解析条件に対し、 数確条件とした組合は、ゆらぎにより解析条件に対し、 数確条件とした組合は、 の6 ぎにより解析条件に対して変動を	「 てきからないため」の「「「「「」」」」、「「」」、「「」」、「」」、「」、「」、「」、「」、「」、「	がいのために医療補助へために開始化成で化さめが、事業業、利止のの反応保護補助のとかが開催は変化である。事業を使用期 また体がのに影響者の流量として設定 急速体の時に用いたするとないますのないとしてあり、調整の人体は、に加下すけよういてしたから、評価項目となるパラメータに与える 最中国的間に与える影響はんない。	11数点が的な20時間に、100、2000年に、100、100、2000年に、100に実成される他的には図像、単体上した場合は、100にに協信される他的は実施卵心体に 11数点が的な2000年には「第マキの」、その 11数点が的な2000年には第マキの」、その 11数点が的な2001年に、第マキの、その 11数点がのな2001年に、11年、2001年の40、2001年の40、2010日、2010年の11年、11年、2010年年の50、2010年年(132)、10人 11数点での11年に、11年、2010年年の11年、2010年の11年、2010年の11年、2010年年の11年、2010年年の50、2010年年(132)、10人 113人にの2010年年の11年、2011年の11年、2011年の11年の11年の11年の11年の11年の11年の11年の11年の11年	最確全性とした場合は、海科権保留度の上れ、加利権権保留度の上昇は減化、数確条件とした場合は、海科権機構成の上対は適合である。 通常通貨用の動物制度能を設定(成出力 さなため)、原子やなんはたい子術植物等的ないため、原子の子がないは物料を下回ることとなく、900-0-2-2-5-5-9-0-2-2-2-5-5-5-5-5-5-5-5-5-5-5-5 動態来合わ)、国家会会研究している「動品数」により下すが、800-800-0-2-1-1-5-5-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2	サイグル末期の階級の店台の含金香 展示を行いて、単語に不能であるこという時間、実施条件としておけた、単語が生きで設定している防衛施上りも 表示を行うためまた期の態度の店台の含金香 施たりもそくなたたが、発生する感染化になった。たまにする高に最近する高に成品になってため、研究やかたはの 他に、10%の原代性を考慮。	実施業件として基金では、新作業件でのため、「新作業件で認定していらみ通 サンプッション・チェンスからのの注水に オロット成長のの会社が、ため一般性主があるため、「新生学業人にため ための自能性にあるが、 ための自能性にあるが、 一の語性にあるが、「「の顔能分の影響」では、 「の語情ではあるが、」 「の語語」とない。 「の語言ではあるが、」「の顔能分の影響」では、 「の語言ではない。 「の語言ではない」	時間の主要の主要の主要の主要の主要の主要の主要の主要の主要の主要の主要の主要の主要の		
条件とし7 (年 (昭和命代, 予統条件及C/ - 予約:2010年1 - 2, 92508年1 - 3, 92508年1 - 4, 93508 - 4, 93508 - 3, 93508 - 3	大澤東(従順 (規制設定)	K代 - グスカートド 減かられ + 118cm) 9cm) (実践的)	定任成品で 第110% (以前的) (以前的)	こでは規算 (社 V)	#01-42.6W/m (364.8P(M)	SXV/TSNV 6261-1-9	WERCHART	(開始 12 時間以 (単発開約 24 時 (3気間約 24 時 (3支援(約)	a ¹ 21,400m ² 以 (永水町24 第2(職代幣水単	2, 010hL 以 (朝f)治タン	ドイレン	魚かさ	最確条件	約3,279MW~ 約3,293MW (実績値)	9.6.91MPa[gage]~ 約.6.94MPa[gage] (実績値)	 通常運転水位 5-4 cm ~約+6 cm (セパレータスカー (セパレータスカー (世パレー32cm) 約+132cm) (実験曲) 	定格流量の 約 86%~約 104% (実績値)	装荷炉心と	約 33kW/m~ 約 41kW/m (実績値)	NSI/ANS-5.1-1979 平均的燃焼度 約310Md/t (実績値)		条件としず	内容器 ************************************	中成ポロメロ (酸かさ) 最盛条件	2,435ME以下 (実績値)	6. 790Pa[gage] (実績能)	通信水位(気水分離 下端から約+83car 約+85 al)	定格流业の 85~10′ (実測値)	装荷炉心体	約 40.6k#/m以下 (実績値)	ANSI/ANS-5.1-197 平均的挑独度彰 300:84/1 (実績能)	約19°C~約35°C (実測値)	1180m ¹ 以上 (合計貯蔵量)		
件を最確	36.1H M#Y-866 M M M デオか-8664127 3, 9200401 M M - 446145-0 2, 9200401-1	94.4.5.77	道保運行。 「たくフー 高やのも1	加心地區 (定格波)	14.6¥ 6×6	款大碗造力密 d4.0kW/m	-307/1307 第 平 (5 4 5 50	のMixは語 第2週点 83	冬出米県の道 BGYC (大学 現 幕に 450C 国辺暦は	外部水園の筆 兼	#544の容量	世務後年	解析条件の不	解析条件	3, 293МЖ	3MPa[gage]	端橋永位 参運転永位 いータメガー から+126cm)	3,300t/h 定格流量)) 0%流量))	× 9 撚料 (A型)	4. 0kW/m	ANS-5, 1-1979 度 336Wd/t		件を最確	(格納	歴代末年、60.1903年75、 の子 解析条件	2, 43600	6.93MPa[gage]	通常木位(気水分離器 下編から+83 cm)	$35.6\!\times\!10^3 \mathrm{t/h}$	9×9統約(A型)	ی 44. 0kW/m	د ANSI/ANS-5,1-1979 %%%ይደርጃ36/rd/t	3,6F	1180m ³		
解析条					224	¥¢.						军 析条件3			出力	力 - ム部) 6.9	合 (七)、 トト協	46 46 (10	6	務 東	後の 新務		解析条		項目	原子炉熟出力	原子炉圧力	原子炉水位	炉心流量	定 報 定 五 米 七	燃料棒最大躺 出力密度	原子 好 停止 待 の 前 壊熟	水源温度	燃料の容量		
表2												第2世		- H	原子存熟出	原子如正: (正力寄贈下:	1本小子加	送送業業	· · · · · · · · · · · · · · · · · · ·	展大線出力3	11日本 11日本 11日本 11日本 11日本 11日本 11日本 11日本		表2													

vi134	原	于刀	7発電度	所 6/1	7 号炉	i (20	017. 12. 2	20版)			<u></u>	東海第	;二発'	電所 (201	8.9.12版)	島根原子力発電所 2号炉									
講師所 コンカンパウメータご なん			1	事象進成を破しくする観点から、絵像水系による術ががなくなり、原子が 水位の低下が早くなる分部電源がない状態を成立している。 なお、外部電話がある場合は、術後水系による原子炉子力容器への鈴水機 能は確認されるため、事象通道が緩和されることから、評価項日となるパ ラメータに対する余裕は大きくなる。	弊所条件と政務条件は回線でもることから、 本条通展に与える影響はなく、 洋衡低田となるメラメータに与える影響はない。	実際の注水来が解析より多い場合(注水特性(設計値)の成分性)、以イ が水位の回位が下くなることから、評価項目となるバラメータに対する公 将注火きくなる。	実際の注水量が解析上り多い場合(注水特純(波針柄)の既守例), 原子 炉水的の回復が早くなることから,評価項目となるバラメークに対する余 裕は大きくなる。	解析条件と最確条件は同様であることから、予集進展に与える影響はなく、評価項目となるバラメータに与える影響はない、	ラメータに与える影響 (2/4)	評価項目となるバラメークに与える影響	客様 <u></u> 他の余 た は 社 満 じ -	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		I	いること 外部電源がある場合を包含する条件設定としていること 進展に与 から、外部電源ありを地定する場合でも、事象進展に与え 影響はな る影響は小さく、評価項目となるバラメータに与える影響 はない。	るパラメータに与える影響) (2/2)	採飯項目とためべラメータに与える影響	Ĩ	1.11年1月1日、11月1日、11日、11日、11日、11日、11日、11日、11日、1	■のでいた、、、●語のいた、いた、国のやわた、○目的です。 「新子や人体の低下が中くとなら補電機がない、実験を必須、 ている。たま、予約、時間に加速さらの協合は、新会な系による 工業であっため、清潔価値には載やえため、等な通数が確む ちことから、評価項目となるパラメータに対する余裕は大 なる。	作中もからは近水を維持するため、実能が解析上の悪況 耳くスクラムした場合でも、事象進展は強守われたなこと 評価項目となるパラメージに与える影響はない、	条件と最端条件は回時であることから、事象通販に与える またく、評価項目となるパウメータに与える影響はない。	作作でもがらは近大を確Pするため、実際の注水振が修行 多い場合 (在水存性 点話計組)の保守性)でも、事象連載 と50階回いらいことから、評価項目とならパラメータに 2018間にない。	転件と成確素件は回販であることから、実象通販に与える はなく、評価項目となるバラメータに与える影響は26%、 該件と正確素件は回販であることから、事象通販に与える
運転員等機作時間に与える影響		ļ	I	発油限を使しくよる観点から、結気水差にはる店水がな なり、原ナサオ公の氏すがはくなる卒留地置がない状態 観光したいる。 は、など用意がもの場合は、結策水差にはの原子が子力 は、のでお木酸酸にはないない、通常は発展作時 同一の汚水酸酸はない。。	市条件と技術条件は回家であることから、事象通販にち る影響はなく、 単転員等操作時間になえる影響はない。	部の洋水県が解析より多い現合(洋水粉紙(流小園)の で売)、ボイが米位の回転は平くなる。這水鏡の靴作し て酒水毒券可能でおよれに動師するが、洋水袋の満米闌 既行であることから、道気は単物能行時間に与える影響は	い、 部の止水温が解析より多い場合(出水材料(設計値)の 部の止水温が解析より多い場合(出水材料(設計値)の 一中時、「原子が交化の阿彼は早くなる。若水後の確保調 一て出水維持可能な出水量に制御するが、生水後の減量調 職件であることから、運転員等職件時間に与える影響は	マン 市金市の設備金田は互振らどのいいからの、戸袋通販バラ の活動はなく、当然工体数全早町に万水の活動はない。	時間及び評価項目となるパ	選紙員等操作時間に与える影響	予報告報告報告報告には、解析条件よりも水源: 後は大きくなる。管理値下限の容量として事象: 1月間後までに必要な資産を構成でおり、水源(2月間後までに必要な資産を通知によったおいたが)	本いここの追旋的中来作中的ロチャーの中のローチスの砂磨に 引 最適条件とした場合には、解析条件よりも影料: 茶は大きくなる。管理値下限の容量として事象: 7 日間会までに必要な容量を離点でおり、然料 かい、とから運転用電価値時間にたもろ影響計と		1	本部電源がある場合を包含する条件数だとして、 をおき、外部電源かりを想定する条件数だとして、 から、外部電源かりを想定する場合でも、事業、 ため影響は小さく、通転員等操作時間に与える」 い。	<u> 操作時間及び評価項目とな</u> ;	'エイスシステムLOCA)	運転回等調告になる影響	ļ	- 東京の日本では、1999年19月1日	結本がなくなり、「「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、	実能が特折上の他定より早くスクラムした場合、事業 解析注 進度に続やかになり、運転員等操作時間に対する余子 から、 は大きくなる。	解析条件と最確条件は回接であることから、事象連載 に与える影響はなく、運転員等操作時間に与える影響 影響は はない。	実際の主法価が解析上り多い場合(注水特性(認計値)) 第一次の2015年1月、第三学会長の国民は主任くたま、本区回復 後の解析として冠水細胞可聞に主任くたま、本区回復 1月、1月、1日、1月、1日、1日 1日、1日、1日、1日、1日、1日、1日、1日、1日、1日、1日、1日、1日、1	1980年の大学の部門によっていた。 1987年代上級権権は回復であることから、事業通貨 操作 に与える影響になく、連続員等権件時間に与える影響 はない、 1987年上長権者件は回復であることから、事業通信 1987年上長権者件は回復であることから、事業通信 1987年
条件設定の考え方	圧力応答評価に基づき評価さ	れた語をい言葉に一つにおわれた。	インターレドイメシステム 100%が発生した値の商圧炉や 注水米が機能戦失するものと した酸活	外部把握の有無な比較し、外部 特別で加速な比較し、外部 に認なしの場合は新貴水系に を よる給水がなく、原子炉水(が)の た 取下が下くなることから、外部 新醇なしを設定	安全保護系等の遅れ時間を考 解4 厳して決定	1111日本 11111月月月月月月月月月月	(2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	→ 遠がし安全介の設計値に共っ < 蒸気電量及び原子9/円力の </td <td></td> <td>条件設定の考え方</td> <td>酉皗淡水貯水設備及び代替淡水貯 槽の管理下限値を設定</td> <td>軽油貯蔵タンク及び可鞭型設備用 軽油タンクの管理下限値を設定</td> <td>圧力応答評価に基づき評価した結 果に十分に余裕をとった値として 設定</td> <td>15LOCAが発生した浜能が構 能養失するものとして設定 酸価醇除生素のとして設定 の用子の確量面面は原子が冷却す の原子の確量面面に原子が冷却す の第えいにより高温多麗となる方 め、家中的に同じ原子が確認面面に 説、家中的に同じ原子が確認面面に</td> <td>失するらのとして設定 条件をものとして記録定 による語水がなく、原子学水伝の協 下が中くなることから、外部構築な 下が中くなることから、外部構築な 上を設定 また、原子がなくのしまでがしの等 は、日本設定 また、原子がなくのした。外部構築が ある場合で酸しくなり、外部構築が ある場合で酸しくなり、外部構築が ある場合でして、50 一部の観点で酸しくなり、外部構築が かる。 かる。 一部の観点で酸しくなり、外部構築が していた。 一部の観点で酸した。 一本の一本の 一本の</td> <td>- 場合の運転員等損</td> <td>パス (インターフ</td> <td>条件設定の考え方 連転中に弁の開閉試験を実施 する素がのうら、転田設計師の</td> <td>対する実的力を提まえた影響 評価的を提まえて設定 インターフェイスシステムし OCAが発生した側の残留熱</td> <td>国本が金属肥炭大士なものと して設定 外部電源の有無を比較し、外部 電源なしの場合に強水・病水子 による結水がなく、原子が水位 の能子が早くなることから、外 油電部としてきなることから、外</td> <td>また。原子がスクラムまでがら、 また。原子がスクラムまでがら、 の冷却の異点で能してなり、外 総種語原があると対金含を包括する 条件として、原子がスクラムは ・原子が水色紙(レベル3)信 サルビス酸生し、再確認レイト ロップは、由正の基本体的に「レイ</td> <td>ハンは、ポナダベルは、バーダインは、 ル2)信号にて発生するものと する (いろ)信号にて発生するものと する (いろ)信号に発生するものと する (いろ)信号に、 (いろ) (いろ) (いろ) (いろ) (いろ) (いろ) (いろ) (いろ)</td> <td>ペル2) 原子炉隔離時冷却系の設計値 として設定</td> <td> ペル1 商田 (中心・スプレイ系の設計値) ピレて設定 として設定 </td> <td>「あがし安全弁の遥がし守織能 る82」 進がし安全弁の遥がし守織能 国 の読計値として設定 あがし、透ぶし安合弁の読計値に基づ わざし、透気が農長び原子炉圧力の トちこ、<蒸気流県及び原子炉圧力の</td>		条件設定の考え方	酉皗淡水貯水設備及び代替淡水貯 槽の管理下限値を設定	軽油貯蔵タンク及び可鞭型設備用 軽油タンクの管理下限値を設定	圧力応答評価に基づき評価した結 果に十分に余裕をとった値として 設定	15LOCAが発生した浜能が構 能養失するものとして設定 酸価醇除生素のとして設定 の用子の確量面面は原子が冷却す の原子の確量面面に原子が冷却す の第えいにより高温多麗となる方 め、家中的に同じ原子が確認面面に 説、家中的に同じ原子が確認面面に	失するらのとして設定 条件をものとして記録定 による語水がなく、原子学水伝の協 下が中くなることから、外部構築な 下が中くなることから、外部構築な 上を設定 また、原子がなくのしまでがしの等 は、日本設定 また、原子がなくのした。外部構築が ある場合で酸しくなり、外部構築が ある場合で酸しくなり、外部構築が ある場合でして、50 一部の観点で酸しくなり、外部構築が かる。 かる。 一部の観点で酸しくなり、外部構築が していた。 一部の観点で酸した。 一本の一本の 一本の	- 場合の運転員等損	パス (インターフ	条件設定の考え方 連転中に弁の開閉試験を実施 する素がのうら、転田設計師の	対する実的力を提まえた影響 評価的を提まえて設定 インターフェイスシステムし OCAが発生した側の残留熱	国本が金属肥炭大士なものと して設定 外部電源の有無を比較し、外部 電源なしの場合に強水・病水子 による結水がなく、原子が水位 の能子が早くなることから、外 油電部としてきなることから、外	また。原子がスクラムまでがら、 また。原子がスクラムまでがら、 の冷却の異点で能してなり、外 総種語原があると対金含を包括する 条件として、原子がスクラムは ・原子が水色紙(レベル3)信 サルビス酸生し、再確認レイト ロップは、由正の基本体的に「レイ	ハンは、ポナダベルは、バーダインは、 ル2)信号にて発生するものと する (いろ)信号にて発生するものと する (いろ)信号に発生するものと する (いろ)信号に、 (いろ) (いろ) (いろ) (いろ) (いろ) (いろ) (いろ) (いろ)	ペル2) 原子炉隔離時冷却系の設計値 として設定	 ペル1 商田 (中心・スプレイ系の設計値) ピレて設定 として設定 	「あがし安全弁の遥がし守織能 る82」 進がし安全弁の遥がし守織能 国 の読計値として設定 あがし、透ぶし安合弁の読計値に基づ わざし、透気が農長び原子炉圧力の トちこ、<蒸気流県及び原子炉圧力の
¥故条件及び機器条件)の [カンさ	以截米汗	I	I	I	が心流氓急減 (並れ時間:2.05秒)	原子培永位領(マベル 2) ドバー山動砲動 182㎡/h(8, 12~1, 0381Pa 182㎡/h(8, 12~1, 0381Pa	原子炉水松低(レベル 原子炉水松低(レベル 1.5)にて自動危動 727㎡/h (0.69MPaldif]に おいて)にて注水	自動減圧機能付き逃がし 安全介の8個開による原 下が急速減圧	条件とした場(不確かさ	政備来计 約 8,600m ³ 以上 (西側淡水貯者) 十代替淡水貯槽)	約1,010kL以上 (軽油貯蔵タンク+ 可搬型設備用軽油タ ンク)		1 1	Ĵ	長確条件とした	格納容器バイ ####################################	- 不確かさ 東確条件 低圧注水モ	交換器フラ 器等:1 cm ² スシステ 生した歯	· 11 · 11 · 11 · 11 · 11 · 11 · 11 · 1	ן אר	レベル3) 原子原水位低(レイ - 06秒)	レベル2) 原子資水位低 (レ にて自動風動 Buvて)に 91m ⁵ /h (8.21~ Buvて)に 0.74/ma[dif]におい	 7.住水 7.住水 1. 「一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	 (正木 、協がし弁機構 「あがし弁機構 「あって、7.94Pals ・1.58~7.794Pals ・1.58~7.794Pals ・1.58~7.794Pals ・1.58~7.794Pals ・1.58~7.744Pal ・1.58~7.744Pal ・1.54~7.444 ・1.54~7.444 ・1.54~7.444 ・1.54~7.444 ・1.54~7.4444 ・1.54~7.444 ・1.54~7.4444 ・1.5444 ・1.5444 ・1.5444 ・1.5444 ・1.5444 ・1.5444 ・1.5444 ・1.5444 ・1.5444 ・1.5444 ・1.5444 ・1.5444 ・1.5444 ・1.54444 ・1.54444 ・1.54444 ・1.54444
解析条件(初393案/F。 7 不確	解告業件 高圧担心注水系の吸込配	管の破断(破野直積 10cm ³)	インターフェイスシステム 10CA が発生した値の あ 10CA が発生した値の 高圧炉心让水系の機能喪 火	外部電源なし	が心流品急減 (逆わ時間:2.05秒)	原子母永位低(レベル 2) にて自動植動 182㎡/A (8, 12~1, 03階a 「at D でおいて)並え	原子炉水(()() (レベル 原子炉水(() (レベル 1.6) (ニマ白動起動 727m ² /h (0.69MPaldif にはいて) にて注水	自動減圧機能付き進がし 安全介の8個間による原 下が急速減圧	「条件を最確	解析条件の	ባቶ ፅፐ ጓዩ የተ	約1,010kL	残留熟除去系 B系の 熟交機器フランジ部 の破壊 4 100000000000000000000000000000000000	機断面積に約21cm 機能原法の 機能喪失 高に浮心スプレイ系 及び 残留熱除去系に系の 機能酸失去系に系の	外部漁舗なし	解析条件を最	()	項目 <u> 解析条件</u> <u> 秋田熟師主系(</u> 一下)の破断 一下)の破断			外部電源、	子垣スクラ 原子炉水位低() 信号 (遅れ時間:1.	子 / 存留 / 市 - 子 / 存留 / 市 - 子 / 市 - 一 - 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	で注水 原子炉水位低(用) にて自動起 11) にて自動起 318~L,050m/h イ系 	、 に比水 通知した時 第1、583、1.79% がし安全弁 自動滅圧機能付 安全弁の6 弁を1
項目		起因事象	母 来 水 な 線 売 の 環 、 に 対 す る 板 売 の 原 。 売 を 線 能 の 原 。 売 。 た に が た 。 た 。 読 能 の 問 。 売 。 だ に 、 に 、 だ に が た 、 に が か ー の 思 の 思 の 思 。 四 た 。 た 。 の 思 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 の 思 。 … 、 か っ の る た の 思 の 思 。 … 、 か っ か っ の る を 。 の こ 、 … か っ の る の こ 、 … 、 … か っ の る 、 … 、 … か っ の る 、 … か っ の こ の こ 、 … 、 、 、 の こ の こ 、 、 、 、 、 の こ の こ 、 、 、 、 の こ の こ の こ 、 、 、 の こ の こ 、 、 、 の こ の こ 、 、 、 、 の 。 、 、 、 、 の 。 、 の 。 、 の 。 、 、 、 っ の 。 の 。 。 。 、 。 の 。 。 、 、 、	4 外部性類	原子がスクラ ム信号	点 小竹 隔離 导 论 小村 隔離 导	後来 作 を に で に 光 木	邁がし父介介	第2表解	項目	外部水源の容量	燃料の容量	起因事象	安全機能の奥先 に対する仮定	外部寬源	表 2				事故条件	*	187 184	新作	- 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	<u></u>
											Ê	明 条件		冲 投	 ≪ 走										

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)
柏崎刈羽原子力発電所 6 √ 7 号炉 (2017.12.20 版)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<section-header></section-header>	近要員の配置による他の操作、評価項目となるパラスータ及び操作時間余裕に与える影響(1/2) ・読載の ・読述の ・ごの ・読述の ・読述の ・読述の ・読述の ・ごの ・ごの		備考
 ・レーンンの ・レーンショー ・レーン・ ・レーン・ ・ローン・ ・ ・<	1 一 夏季、 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
ま	表 操 操 作 行 术 名 条 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》 》	 新作条年 品 品 品 必要推進市 必要推進市 のに回激 のに回激 のに回激 のにに回激 のにに回激 のにに回激 のにに回激 のにに回激 のにに回激 のにに回激 のにに回激 のにに回家 のにに回家 のにに回家 のにに回激 のにに回激 のにに回激 のにに回激 のにに回激 のにに のにに の の の の	
表)) 「 長 一 二 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	横行条件 横竹条件 単式 一番		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所 (2018.9.1	2版)	島根原子力発電所	2 号炉	備考
		問題しとて来る写実もあ				
	2)回樂実績等	現 、 、 、 、 、 、 、 、 、 、 、 、 、				
	戸える影響 (2, ^{操作時間余裕}	隔離操作の者無に固 わらず,底田代韓任本 派(常設)の原子専注 系(常設)の原子専注 大都設により,切心す おおむとわ選水維持な 約がある。 特がある。				
	年時間余裕(こ	隔離操作の含素無に関 おらず、低田代替は水 本能時により、知らばの別・すずは 水能時により、知らは おおける水子素 たるたち、評価項目と たる形響はない。				
	メータ及び操(^{運転真等最作時間に}	議議員会員、 「 市 の の の の の の の の の の の の の				
	♪配置による他の操作, 評価項目となるパラ. ^{₩∉の不輸かき要因}	[1834] 1830Gは江津期鉄築による隔離弁の開操作中に発生する事象であり、隔離弁の 1830Gは江津期鉄築による隔離弁の開操作中に発生する事象であり、5840Gの 加速加げるため、1840Gの関連、デラメータを継続置、現しているため、1840Gの 発生の認知に大幅な避れが生じることは考えにくい、さらに、当航運転員の認 かき加げるため、1840Gは発生にもごを解決発展する。事象効制のひ状況判断に余 茶時間を含めて10分を想定しており、十分な余裕時間を確保していることか 5、認知違わが操作開始時間に影響を及ぼす可能性は非常に小さい。 19歳(201) 現場(からか、中央前御室の当航運転員しは別に現場候化を行う当航運転員 (現場)を配置している。当航運転員(現場)は、操作の実施期間中に他の操 作を担っていないことから、要員配置が操作開始時間に与える影響はない。 16歳(201) 現場(からないにとから、要員配置が操作開始時間に与える影響はない。 16歳(201) 分を認定しておう。当前運転員(現場)は、操作の実施期間中に他の 権 作を担っていないことから、要員配置が操作開始時間に与える影響はない。 16歳(201) 分を認定しており、十分な応防の目前で指したいることから、操作開始時間に与 える影響はない。 16歳(201) 素別整件はに執作者無し 1600年初報手部(201) 素別整件は主義作では個年の回しを要員の安全のため、操作要員2人成で補助 要員2人の4人で実施することとしており、誤論作はまでりにくいことから、 誤換作等が操作開始時間に思想を及ぼす可能は非常に小さい。				
	件が要員の ^{条件設定の}	後周囲 を を の の し に の た な し に の た な た の し に の た の し た の し た の し た の し の し し し し し し し し し し し し				
	表操作条	举 短後後 後 在 5 時				
	≝ 第3	操作条件 残系所留の開始機械機械機械機械機械機械機構				
		\$\$\$ \$\$ 10 \$\$				

	まとの資料比較衣 〔有効		【个十 乙,				/#* #*
相崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	▶ 東海第二発電所 (2018.9.12)	版)		局根原子力発電所	2 号炉		備考
7. 5		添付資料2.	7.7		・設備設計の相違		
5 5							【柏崎 6/7】
	7日間における燃料の対応につ	いて		<u>7日間における燃料の対</u>	島根2号炉は、緊急		
添作	(格納容器バイパス (インターフェイスシス	ベテムLOCA))	<u>(格納容器バイパス(インターフェイ</u>	'スシステム	LOCA))	時対策所用発電機用の
							燃料タンクを有してい
	保守的に全ての設備が、事象発生直後からて	7 日間燃料を消費	費す	保守的に全ての設備が,事象発生直後た	いら7日間燃	料を消費する	る。また,モニタリン
	るものとして評価する。			ものとして評価する。			グポストは非常用交流
				時系列	合計	判定	電源設備又は常設代替
(市場) (1999) (1	時系列	合計 判定		非常用ディーゼル発電機 2 台起動*1			交流電源設備による電
	非常用ディーゼル発電機 2 台起動*1 (燃料消費率は保守的に定格出力運転時を想定)			 (燃費は保守的に最大負荷時を想定) 1.618m³/h×24h×7日×2台=543.648m³ 	7日間の	ディーゼル燃料 貯蔵タンクの容	源供給が可能である。
〇〇〇〇 第5,999 (11) (11) (11) (11) (11) (11) (11) (1,440.4L/h (然科消費率) ×168h (運転時間) ×2 台 (運転台数) =約 484.0kL	#7 34 B4 3%	14	高圧炉心スプレイ系ディーゼル発電機 1台起動	軽油消費量	量は約 730m ³ で あり 7日開対	
→ 「 「 「 「 「 」 」 」 」 」 」 」 」 」 」 」 」 」	高圧炉心スプレイ系ディーゼル発電機 1 台起動 ^{※2} (燃料消費率は保守的に定格出力運転時を想定)	1 年間の 1 日間の 1 日間の 2 日間の 2 日間の 2 日間の 2 月間の 2 月 2 月 2 月 2 月 2 月 2 月 2 月 2 月	ク 量	(燃費は保守的に最大負荷時を想定) 0.005-34×204×7.4×1.4-155.726-3	*3 700m	あり, 7日間 同人 応可能	・評価結果の相違
 (1) (1)	775.6L/h (燃料消費率) ×168h (運転時間) ×1 台 (運転台数) =約 130.3kL	栓油 相賀重 は 約 800 約 755.5kL であり,7		0.92/m ⁻ /n×24n×7 H×1 H=155.730m ⁻			「価檔床♥>相建
	常設代替高圧電源装置 2 台起動 ^{※3} (燃料消費率は保守的に定体出力運転時を想定)	间对加中非	2		7日間の	緊急時対策所用 燃料地下タンク	【11时 0/1, 木1 中
	420.0L/h (燃料消費率)×168h (運転時間)×2台 (運転台数) =約141.24			緊急時対東所用発電機 1台 0.0469 m ³ /h×24h×7日×1台=7.8792m ³	軽油消費量 約8m ³	の容量は約 45m ³ であり 7 日間	
		緊急時対	策		<u>₩10</u> Ш	对応可能	
1	緊急時対策所用発電機 1 台起動	所用発電 7日間の 然料油貯	藏	※1 事故収束に必要な非常用ディーゼル発電機は1台	であるが,保守的	に非常用ディーゼ	
マーム 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人	(熱料捐資率は株寸的に定格出力運転時を想定) 411L/h(燃料消費率)×168h(運転時間)×1台(運転台数) - 約.70.0比						
	$= \pi J 70.0 \text{KL}$	であり, 7 間の対応	可				
() () () () () () () () () () () () () (※1 事故収束に必要なディーゼル発電機は非常用ディーゼル発電機1	ー 台であるが,保守的に					
「「・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ティーセル発電機2台の起動を仮定した。 ※2 事故収束に必要ではないが,保守的に起動を仮定した。	2 /m- 14 1 2					
(二) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	※3 緊急用は棘の電源を,常設代替尚圧電源装置2日で確保すること	を仮定した。					
分析的: 1.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1							
・ からのの からの の の の の 、 た と と と し し し し た の の の の の の の の の の の の の							
(大学) (大) (大) (大) (大) (大) (大) (大) (大							
25、 11、11、11、11、11、11、11、11、11、11、11、11、11、							
「します」のである。							
1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日							
インティー 本来来来 1 1 4 年 1 1 1 4 年 1 1 1 4 年 1 1 1 1 4 年 1 1 1 1							
I							
				1			
				1			
				1			
				1			

まとめ盗割比較書 〔右动批評価 沃付盗割 9.7.5〕