

<u>海底地すべり Ms-7</u>

音波探査記録 の添付範囲

7-2. 海底地すべり 海上音波探査記録(44/52)

<u>海底地すべり Ms-7</u>

____ No.24測線(反射断面図)_{Ms⁻⁷}

639 640

 ∇

0.8 (600m)

 $\stackrel{\bigtriangledown}{\longleftrightarrow}$ 地形判読結果による当該地すべり範囲

解析結果による断層位置及び落下側

258 **V POWER**

<u>海底地すべり Ms-7</u>

- B₁層が比較的厚く堆積し、北西に傾斜するプログラデーション構造が認められ、水深約100mより 浅い大陸棚では上位にA層が薄く分布する。
- ・当該範囲は、大陸棚沖合いの斜面上部に位置し、海底面は北西に向かって緩やかに傾斜する平坦面で、最上位のB」層は平行な層理パターンを示し、乱れた層理パターンは認められない。
- 大陸棚縁辺部で認められる凹状地形は、底層流により形成された堆積構造あるいは海面低下時に 形成された谷地形と考えられる。

7-2. 海底地すべり 海上音波探査記録(46/52) (第627回審査会合 資料1-2 P.227再掲

<u>海底地すべり Ms-7</u>

POWER

7-2. 海底地すべり 海上音波探査記録 (47/52) (^{第627回審査会合} 資料1-2 P. 228再掲

<u>海底地すべり Ms-7</u>

- •褶曲するC層からB2層をB1層及びA層が覆っている。
- ・当該範囲の海底面はおおむね平坦で、最上位のA層もおおむね水平な平行層理パターンで下位層の凹部を埋めている。
- •地すべりによるものと考えられる堆積構造は認められない。

POWER

7-2. 海底地すべり 海上音波探査記録(48/52) (^{第627回審査会合} 資料1-2 P. 229再掲

261 **V POWER**

<u>海底地すべり Ms-7</u> Gb-(4B)測線(反射断面図・解釈断面図)

Gb-(4B) [産総研ブーマー] Gb-(4B) 「産総研ブーマー」 M_s−7 F – 2 5 M_s-7 F - 2513 -0.1sec -0.1sec (75m 音波散乱層 音波散乱層 (100m) (100m) -0.2sec -0.2sec (200m) (200m) B₂ 約500m -0.3sec 約500m -0.3sec V.E.≒15 V.E.≒15 (250m) (250m)

- B₁層が厚く堆積し、東から西に向かうプログラデーション構造が認められる。
 当該範囲で認められる凹地形は、東側から発達してきたプログラデーション構造と津
- 軽半島側の大陸棚沖合いの斜面にはさまれて形成されたものである。
- ●当該範囲のB₁層上部は、連続性のよい層理パターンを示すことから、凹地形は地すべりによるものではないと考えられる。
- 大陸棚縁辺部で認められる凹状地形は、底層流により形成された堆積構造あるいは海面低下時に形成された谷地形と考えられる。
- ✓ 地形判読結果による当該地すべり範囲 解析結果による断層位置及び落下側

(余白)

第627回審査会合 7-2. 海底地すべり 海上音波探査記録(49/52) 資料1-2 P.231再掲

高野崎

<u>海底地すべり Ms-7</u> Gb-(6B)測線(反射断面図) M_s-7 Gb-(6B) [産総研ブーマー] ∇ F-25 12 11 15 14 13 10 17 16 3 2 Gb-(6B) Ms+7 1

解析結果による断層位置及び落下側

263

POWER

POWER

7-2. 海底地すべり 海上音波探査記録(51/52) 資料1-2 P.233再掲

✓ 地形判読結果による当該地すべり範囲

解析結果による断層位置及び落下側

265

第627回審査会合

(250m)

7-2. 海底地すべり 海上音波探査記録(52/52)

266

POWER

第627回審査会合

資料1-2 P.234再掲

<u>海底地すべり Ms-7</u>

次 Ħ

- 1. 津波堆積物調杳(現地調杳) 2. 日本海東縁部に設定された地方自治体による波源モデル 3. 2011年東北地方太平洋沖地震を始めとするM9クラスの超! 巨大地震から得られた知見 3-1. 2011年東北地方太平洋沖地震から得られた知見 3-2. 世界のM9クラスの超巨大地震から得られた知見の 整理 3-3. まとめ 4. 三陸沖から根室沖のプレート間地震に伴う津波 4-1. 2011年東北地方太平洋沖地震による津波等の 10-4. まとめ 再現性確認 4-2. 分岐断層に関する検討 4-3. ライズタイムの影響検討 5. チリ沖に想定される地震に伴う津波の影響検討 6. 陸上の斜面崩壊に起因する津波 6-1. 地すべり地形分布図 6-2. 二層流モデルの適用性について 7. 海底地すべりに起因する津波 7-1. 急傾斜部を対象とした地形判読 7-2. 海底地すべり海上音波探査記録 7-3. 海底地すべり地形崩壊量算定 7-4. ハワイ付近の海底地すべりの影響について
- 8. 火山現象に起因する津波
 - 8-1 kinematic landslideモデルによる追加検討
 - 9. 津波発生要因の組合せに関する検討
 - 9-1. 組合せ対象地すべりエリアの選定
 - 9-2. 線形足し合せ評価位置の検討
 - 10. 津軽海峡・発電所専用港湾及び津波の周期特性

10-1. 検討方法

- 10-2. 日本海側からの津波に対する検討
- 10-3. 太平洋側からの津波に対する検討
- 11. 津波の伝播特性について

各海底地すべり地形について、崩壊量の算定に係る詳細情報を整理した。

7-3. 海底地すべり地形崩壊量算定(2/16)

<u>検討対象海底地すべり地形の選定【ステップ3】:海底地すべり地形崩壊量算定フロー</u>

- ・抽出した発電所に影響のある津波を発生させる可能性がある海底地すべり地形(Ms-1~Ms-3)の崩壊量の算定 については、以下の検討方針に基づき算定した。検討フローは以下のとおり。
 - ✓ 原則として、地すべり前地形を復元し、すべり面との差分から算定する。また、すべり面は保守側に乱れた地層の 下限とする。

検討フロー

- ✓ なお、音波探査記録で、すべり面が明瞭で、且つ削剥が殆ど認められず地すべり移動体が保存されている場合 (Ms-3)は、地すべり後の地形から算定する。
- 【ステップ3-1】:推定崩壊範囲(平面形状)の設定

7-3. 海底地すべり地形崩壊量算定(3/16)

資料1-2 P.238再掲 【ステップ3-1】 推定崩壊範囲(平面形状)は、地形判読により設定。(本編資料P.311参照) 【ステップ3-2】 地すべり前地形(復元)は、現地形から判読される凹み地形を埋め戻す等により設定。 【ステップ3-3】 すべり面は、音波探査記録からすべり面を読み取って設定。 【ステップ3-4】 地すべり前地形(復元)とすべり面との差分を崩壊土塊としてモデル化し、土塊の体積を崩壊量として算定。

【ステップ3-2】

海底地すべり地形 Ms-1

【ステップ3-3】

【ステップ3-4】

第627回審査会合

崩壊土塊(地すべり前地形-すべり面) 崩壊量:0.09km^{3※2} ※2:3D CADにより崩壊量算定

A-A'断面 -200 -地すべり前地形 (復元) -240 すべり面 現 地 形 崩壊範囲(地すべり前) ٥ 1000 2000 3000 4000 5000 6000 7000 距離(m)

POWER

7-3. 海底地すべり地形崩壊量算定(4/16)

第627回審査会合 資料1-2 P.239再掲

<u>海底地すべり地形 Ms-1:【ステップ3-3】すべり面の設定(1/3)</u>

凡例 黒数字:音波探査記録から算出した崩壊物の厚さ(現地形標高ーすべり面標高)(m) ロは採用値 青コンター:現地形コンター 赤コンター:すべり面コンター 【ステップ3-3】すべり面の設定方法

- (1) 地形判読により設定した推定崩壊範囲(左図茶色線)と交わる音 波探査記録NO. F-6-1及びNO. F-103の2測線に対し,すべり面を 設定し(P. 272, P. 273参照),崩壊範囲内の任意の点における 崩壊物の厚さ(現地形標高ーすべり面標高)(左図:黒字)を 算出した(下図参照)。
- (2)すべり面のモデル化にあたっては、算定した崩壊物の厚さを基 に、三次元的に滑らかな形状になるように設定した。なお、算 定した崩壊物の厚さに測線間でバラつきが認められる場合は、 安全側の設定となるよう厚い値を採用値(左図:□で囲まれた 黒字)とすることを基本とした。

7-3. 海底地すべり地形崩壊量算定(5/16)

<u>海底地すべり地形 Ms-1:【ステップ3-3】すべり面の設定(2/3)</u>

音波探査記録NO.F-6-1からは明らかなすべり線が認められず,乱れた地層の下限が認められるため,乱れた地層の下限をすべり 面に設定した。判読される崩壊物の厚さは以下のとおり。

7-3. 海底地すべり地形崩壊量算定(6/16)

地質時代

新 中期

世 前期

完新世

鮮新世

中新世

後期

敷地前面海域

A層

|B₁層

B₂層

B₃層

C 層

D 層

E 層

海底地すべり地形 Ms-1:【ステップ3-3】すべり面の設定(3/3)

音波探査記録NO.F-103からは明らかなすべり線が認められず、乱れた地層の下限が認められるため、乱れた地層の下限をすべり 面に設定した。判読される崩壊物の厚さは以下のとおり。

NO.F-103測線(解釈断面図)

4 Ms-1

虱間浦村 下風呂

7-3. 海底地すべり地形崩壊量算定(7/16)

<u>海底地すべり地形 Ms-1:【ステップ3-4】崩壊量算定</u>

・地すべり前地形(復元)とすべり面との差分を崩壊土塊として3D CADでモデル化して崩壊量を算定した。 ・作成した地形に係る断面図は以下のとおり。

7-3. 海底地すべり地形崩壊量算定(8/16)

第627回審査会合 資料1-2 P.243再掲

<u>海底地すべり地形 Ms-2</u>

- 【ステップ3-1】 推定崩壊範囲(平面形状)は,地形判読により設定。(本編資料P.311参照)
- 【ステップ3-2】 地すべり前地形(復元)は、現地形から判読される凹み地形を埋め戻す等により設定。
- 【ステップ3-3】 すべり面は、音波探査記録からすべり面を読み取って設定。
- 【ステップ3-4】 地すべり前地形(復元)とすべり面との差分を崩壊土塊としてモデル化し、土塊の体積を崩壊量として算定。

7-3. 海底地すべり地形崩壊量算定(9/16)

第627回審査会合 資料1-2 P.244再掲

OWER

<u>海底地すべり地形 Ms-2:【ステップ3-3】すべり面の設定(1/6)</u>

凡例		
黒数字:音波探査記録から算出した崩壊物の厚さ	(現地形標高-すべり面標高)	(m)
口は採用値		
青コンター:現地形コンター		
<mark>赤コンター</mark> : すべり面コンター		

7000

距離(m)

8000

6000

9000 10000 11000

12000 13000

1000 2000 3000 4000 5000

7-3. 海底地すべり地形崩壊量算定(10/16)

<u>海底地すべり地形 Ms-2:【ステップ3-3】すべり面の設定(2/6)</u>

音波探査記録NO.F-4-1からは明らかなすべり線が認められず,乱れた地層の下限が認められるため,乱れた地層の下限をすべり 面に設定した。判読される崩壊物の厚さは以下のとおり。

7-3. 海底地すべり地形崩壊量算定(11/16)

<u>海底地すべり地形 Ms-2:【ステップ3-3】すべり面の設定(3/6)</u>

音波探査記録NO.F-4.5からは明らかなすべり線,及び乱れた地層の下限が認められないため,地層境界をすべり面に設定した。 判読される崩壊物の厚さは以下のとおり。

278

7-3. 海底地すべり地形崩壊量算定(12/16)

<u>海底地すべり地形 Ms-2: 【ステップ3-3】すべり面の設定(4/6)</u>

音波探査記録NO.F-5-1からは明らかなすべり線が認められず、乱れた地層の下限が認められるため、乱れた地層の下限をすべり面に設定した。判読される崩壊物の厚さは以下のとおり。

<u>NO.F-5-1測線(解釈断面図)</u>

	地質	時代	敷地前面海域	
	完	新世		4 層
第	帀	後期		B₁層
四	天新	rt tita		B₂層
紀	**	H-141	眉	B₃層
	Щ	前期	(C 層
新	餁	新世		
第	лят	471 IE	'	ノ層
Ę	ф	新世		
杧	т	AVI 102	6	E層
先	新	有三紀		

7-3. 海底地すべり地形崩壊量算定(13/16)

280

<u>海底地すべり地形 Ms-2:【ステップ3-3】すべり面の設定(5/6)</u>

音波探査記録NO.F-102からは明らかなすべり線,及び乱れた地層の下限が認められないため,地層境界をすべり面に設定した。 判読される崩壊物の厚さは以下のとおり。

NO.F-102測線(解釈断面図)

	地質	時代	敷地	前面海域
	完	新世		4 層
第	т	後期		B₁層
四	史	ch#8	1읊	B₂層
紀	利 ##	무痢	層	B₃層
	ш	前期	(C 層
新第	鮮	新世	1	D 層
三紀	中	新 世		E 層
先	新	第三紀	1	

↓
地形判読結果による当該地すべり範囲

7-3. 海底地すべり地形崩壊量算定(14/16)

281

<u>海底地すべり地形 Ms-2:【ステップ3-3】すべり面の設定(6/6)</u>

音波探査記録NO.F-103からは明らかなすべり線,及び乱れた地層の下限が認められないため,地層境界をすべり面に設定した。 判読される崩壊物の厚さは以下のとおり。

NO.F-103測線(解釈断面図)

	地質	時代	敷地	前面海域
	完	新世		4 層
第	面	後期		B₁層
四	天新	山間	日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	B₂層
紀	わ +++	-1-301	/百	B₃層
	щ	前期	(C 層
新第	鮮	鮮新世		D 層
紀	中	新 世	1	E層
先	新	第三紀		

7-3. 海底地すべり地形崩壊量算定(15/16)

海底地すべり地形 Ms-2:【ステップ3-4】崩壊量算定

・地すべり前地形(復元)とすべり面との差分を崩壊土塊として3D CADでモデル化して崩壊量を算定した。 ・作成した地形に係る断面図は以下のとおり。

7-3. 海底地すべり地形崩壊量算定(16/16)

第627回審査会合 資料1-2 P.251誤りを修正

283 **V**POWER

<u>海底地すべり地形 Ms-3【ステップ3-4'】崩壊量算定</u>

海底地すべり地形Me-3 崩陸景質出表

海底地すべり地形Ms-3については、音波探査記録で、すべり面が明瞭で、且つ削剥が殆ど認められず地すべり移動体が保存されていることから、崩壊量は、各音波探査記録から読み取れる崩壊後の地すべり移動体の面積を基に平均断面法により算定した。

	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一		衣里并山孜		-
測線	測線間距離(m)	断面積(m ²)	平均断面積(m ²)	体積(m ³)	備考
No. 214	0.0	0	0	0	—
No. 111SM	655	6, 627	3, 313	2. 17 × 10 ⁶	P.226参照
No. 215	265	20, 606	13, 616	3.60×10^{6}	P.227参照
No. 216	581	39, 848	30, 227	1.76×10 ⁷	P.228参照
No. 111. 5-3	527	63, 281	51, 565	2. 72 × 10 ⁷	P. 229参照
No. 217	438	57, 350	60, 316	2. 64 × 10 ⁷	P.230参照
No. 218	518	48, 689	53, 019	2. 74 × 10 ⁷	P.231参照
No. 112SM-2	602	48, 482	48, 586	2. 93 × 10 ⁷	P.232参照
No. 219	418	37, 477	42, 979	1.80×10 ⁷	P. 233参照
No. 220	478	30, 075	33, 776	1.61×10 ⁷	P.234参照
No. 221	499	25, 204	27, 639	1. 38 × 10 ⁷	P.235参照
No. 113SM	1, 609	0	12, 602	2. 03×10^7	—
合計				2.02×10^{8}	

(余白)

目 次

次回以降ご説明予定

1. 津波堆積物調杳(現地調杳) 8. 火山現象に起因する津波 8-1 kinematic landslideモデルによる追加検討 2. 日本海東縁部に設定された地方自治体による波源モデル 3. 2011年東北地方太平洋沖地震を始めとするM9クラスの超! 9. 津波発生要因の組合せに関する検討 巨大地震から得られた知見 9-1. 組合せ対象地すべりエリアの選定 3-1. 2011年東北地方太平洋沖地震から得られた知見 9-2. 線形足し合せ評価位置の検討 3-2. 世界のM9クラスの超巨大地震から得られた知見の 10. 津軽海峡・発電所専用港湾及び津波の周期特性 整理 10-1. 検討方法 3-3. まとめ 10-2. 日本海側からの津波に対する検討 4. 三陸沖から根室沖のプレート間地震に伴う津波 10-3. 太平洋側からの津波に対する検討 4-1. 2011年東北地方太平洋沖地震による津波等の 10-4. まとめ 再現性確認 11. 津波の伝播特性について 4-2. 分岐断層に関する検討 4-3. ライズタイムの影響検討 5. チリ沖に想定される地震に伴う津波の影響検討 6. 陸上の斜面崩壊に起因する津波 6-1. 地すべり地形分布図 6-2. 二層流モデルの適用性について 7. 海底地すべりに起因する津波 7-1. 急傾斜部を対象とした地形判読 7-2. 海底地すべり海上音波探査記録 7-3. 海底地すべり地形崩壊量算定 7-4. ハワイ付近の海底地すべりの影響について

ハワイ付近の海底地すべりに起因する津波の影響について検討した。

7-4. ハワイ付近の海底地すべりの影響について(2/10) (資料1-2 P.255再場)

<u>検討フロー</u>

 以下のフローに従い、ハワイ付近の海底地すべりに関する調査及び津波評価を実施し、ハワイ諸島周辺の海底地すべりが 敷地に与える影響を確認した。

第627回審査会合

287

POWER

〇海底地すべ	りに関する調査
	文献調査 ✓ハワイ付近の海底地すべりに関する文献調査を実施し、海底地すべり地 形の有無を確認
	<u>評価対象の選定</u> ✓発生年代,規模等から,評価対象とする海底地すべりを選定
	<u>海底地が刊読</u> ✓選定した海底地すべり地形について、地形データを用いて地形判読を行 い、海底地すべりの規模を確認
〇津波評価	
	✓敷地の津波水位を推定

7-4. ハワイ付近の海底地すべりの影響について(3/10) (資料1-2 P.256再場)

<u>ハワイ諸島の概要</u>

- ハワイ諸島は日本の南東約6,400kmの太平洋上に位置しており、ハワイ島、マウイ島、オアフ島、カウアイ島、モロカイ島、 ラナイ島、ニイハウ島及びカホオラウェ島の8つの島のほか多数の島と環礁からなる。
- ハワイ諸島をのせる太平洋プレートは北西方向へ年間10cm程度の速さで動いているので、ハワイ諸島は北西へ行くほど古い (佐竹(1997)⁽⁷⁴⁾)。

Eakins et.al. (2003) ⁽⁷⁵⁾ に一部加筆

第627回審査会合

288

POWER

7-4. ハワイ付近の海底地すべりの影響について(4/10)

資料1-2 P.257再揭

289

OWER

第627回審査会合

<u> 文献調査及び評価対象の選定(1/3):1975年Kalapana津波(1/2)</u>

- 1975年にハワイ島南岸の Kalapana付近に強震が起こり、日本沿岸各地で津波が観測された(羽鳥(1976)⁽⁷⁶⁾)、その地震の規模はMw7.7である(Nettles and Ekström(2004)⁽⁷⁷⁾)。
- 日本沿岸における検潮記録の最大全振幅の最大値は、鮎川検潮所における55cmであり(羽鳥(1976)⁽⁷⁶⁾), ハワイ沿岸では最大15m弱の津波が観測された(Day et al.(2005)⁽⁷⁸⁾)。

	-	Initial wave						Maximum wave	
No.	Tide station	A			В				
		Arrival time, GMT	Rise	Period	Arrival time, GMT	Rise	Double ampl.	Occurred time, GMT	
1	Hanasaki	Nov. 30 8:48	cm 6	min 8	Nov. 30 7:56	em 10	cm 27	Nov. 30 13:32	
2	Kushiro	?					12	13:08	
3	Hiroo	7:42	15	12			23	10:06	
4	Urakawa	9:00	-6	15	7:42	3	12	12:11	
5	Hakodate	?					17	13:30	
6	Same	8:56	2	10	7:55	2	5	11:15	
7	Miyako	8:50	8	8	7:35	6	14	9:48	
8	Enoshima	8:46	-4	10					
9	Ayukawa	9:00	-6	8	7:44	4	55	10:44	
10	Onahama	8:10	4				21	9:20	
11	Hitachi	7:27	5	16			24	10:14	
12	Mera	8:28	5	16	7:22	4	19	11:22	
13	Miyake Is.	8:22	4	7			24	10:15	
14	Chichijima	6:53	6	18			18	10:18	
15	Minami-Izu	7:20	3				20	11:46	
16	Omaezaki	7:33	4	10			14	13:50	
17	Owase	9:14	8	22	7:40	2	22	10:00	
18	Kushimoto	10:00	7	12			22	17:00	
19	Muroto	8:50	3	8			11	11:50	
20	Tosa-Shimizu	8:00	8	22			23	16:23	
21	Aburatsu	?					18	15:32	
22	Naha	8:35	3	18			13	16:43	

A: Evident wave commences. B: Wave front is indefinite. Wave front is determined with the aid of the refraction diagram.

|: 鮎川の検潮記録

羽鳥(1976)⁽⁷⁶⁾に一部加筆

Fig. 7. Distribution of the maximum double amplitude (unit: cm) and wave rays which are emitted from the origin subdivided into equal angles of 30 degrees.

羽鳥(1976)⁽⁷⁶⁾による波向線

Location	Observed
	(m)
Honokahau (W)	2.1
Kailua (W)	3.4
Kahaluu (W)	1.8
Keauhou (W)	2.4
Napoopoo (W)	2.4
Honaunau (W)	1.8
Milolii (W)	<1.8
South Point (W)	6.7
Kaalualu (S)	4.0
Honuapo (S)	6.1
Punaluu (S)	6.1
Kalue (S)	9.4
Halape (S)	7.0
Apua Point (S)	14.6
Kamoamoa (S)	6.4
Kalapana (S)	2.6
Pohoiki (S)	2.4
Cape Kumukahi (S)	3.4
Hilo (E)	3.0

.0 -155.6 -155.4 -155.2 -155 -154.6 -154.6 -154.4 -154.2

ハワイ沿岸の痕跡地点及び遡上高

<u> 文献調査及び評価対象の選定(2/3):1975年Kalapana津波(2/2)</u>

• Ma et al. (1999) ⁽⁷⁹⁾ は、①海底地すべり、②低角逆断層のいずれでもハワイ周辺の検潮記録を説明できるとし、これらの 組合せにより津波が発生したであろうとしている。

1975年Kalapana津波のメカニズムの解釈(上),海底地すべりの分布(左下)及び低角逆断層による初期波形(右下) →左下図のハッチ部は沈降域,白抜き部は隆起域である。数字は時間遅れ(分)を表す。

Ma et al. (1999) (79)

7-4. ハワイ付近の海底地すべりの影響について(6/10)

<u> 文献調査及び評価対象の選定(3/3):評価対象の選定</u>

 ・以下のハワイ諸島で発生した海底地すべりの特徴,発生年代に関する知見も踏まえ,後期更新世以降に生じた地すべりのうち,巨大津波を伴った可能性があり,面積が大きい「Alika-2」を評価対象として選定した。
 ✓ Moore et al. (1989)⁽⁸⁰⁾ によれば,ハワイ諸島で発生した17の海底地すべりの特徴が示されている。
 ✓ 横瀬(2007, 2010)⁽⁸¹⁾⁽⁸²⁾ では,詳細なDEMデータに基づきハワイ諸島の流山地域の微地形解析を実施し,ハワイ諸島で 想定されている17の巨大海底地すべり堆積物の中で,巨大津波を伴った可能性があるのは,オアフ島東部のNuuanu地 すべり、ハワイ島西部のAlika-2地すべり及びハワイ島南部の東KaLae地すべりの3つに限定されるとしている。

Fig. 2. Map of southeastern Hawaiian Ridge showing major slides bounded by dashed lines identified by number in text and Table 1: compare with Figure 1. Dotted area, hummocky ground (widde yspaced where subduet); hachtured lines, scarps; thin, downslop-directed lines, submarine canyons and their subserial counterparts; heavy dashed line, axis of the Hawaiin Deep: dash-dotted line, create of the Hawaiin Arch.

TABLE 1. Hawaijan Submarine Slides							
No.	Name	Location	Area, km ²	Length, ^a km	Width, ^b km	Typè ^c	年代(Ma) ^{※1}
1	North Kauai	North Kauai	14,000	140	100	D (0.6-0.9)	5.0
2	South Kauai	South Kauai	6,800	100	50	D (0.6-1.2)	5.0
3	Kaena	NE Oahu	3,900	80	45	D	3.6
4	Waianae	SW Oahu	6,100	50	80	S (1.0)	2.9-3.1
5	Nuuanu	NE Oahu	23,000	235	35	D (0.8-1)	2.1-2.2
6	Wailau	North Molokai	13,000?	<195	40	D (0.7)	1.0±0.1
7	Hana	NE Maui	4,900	85	110	S	0.86
8	Clark	SW Lanai	6,100	150	30	D (0.5-1)	1.3±0.06
9	Pololu	North Hawaii	3,500	130	20	D	0. 254-0. 306
10	South Kona	West Mauna Loa	4,600	80	80	S	0. 200-0. 240
11	Alika-1	West Mauna Loa	2,300	88	15	D (0.9–1)	>0. 112-0. 127
12	Alika-2	West Mauna Loa	1,700	95	15	D (2-5)	>0. 112-0. 127
13	Ka Lae, west	South Hawaii	850	85	10	D	>0.032-0.060?
14	Ka Lae, east	South Hawaii	950	75	10	D (2)	>0. 032-0. 010?
15	Hilina	South Hawaii	5,200	40	100	S	>0. 010-0. 100
16	Papa'u	South Hawaii	200	20	6	SF	0.001~0.005 ^{*2}
17	Loihi	South Hawaii	500	15	10-30	L	0.001~ 0.115 ^{**3}
Total			97,600				

Located by number in Figure 2.

"Length of Waianae and South Kilauea landslides omits indistinct irregular topography beyond steep toe.

^bWidth at head of landslide.

^cD, Debris avalanche; (number) is average number of hummocks appearing in GLORIA images per square kilometer; S, Slump; SF, sand rubble flow; L, three unclassified landslides.

□□:後期更新世よりも前に生じた地すべり

- □: 評価対象として選定した地すべり
- ※1 McMurtry et al. (2004) ⁽⁸³⁾

※2 Papa'u (No.16)の年代はMoore et al. (1989)⁽⁸⁰⁾の "several thousand years ago"との記述に基づく。

※3 Loihi(No.17)の年代はGuillou et al.(1997)⁽⁸⁴⁾がLoihi火山東斜面の試料から求めた5±4~102±13kaに基づく。

Moore et al. (1989)⁽⁸⁰⁾に一部加筆

291

OWER

第627回審査会合

資料1-2 P.259再掲

7-4. ハワイ付近の海底地すべりの影響について(7/10) (資料1-2 P. 260再掲

<u>海底地形判読(1/2):検討方針</u>

- Alika-2地すべり周辺(ハワイ島西部周辺)を対象に、ハワイ大学マノア校海洋地球科学技術学部(SOEST)による海底 地形デジタルデータ(50mグリット)を用いて海底地形コンター図及び標高段彩陰影図を作成し、海底地形判読を行った。
- なお、海底地形判読にあたっては、以下の判読基準により、海底地すべりの可能性のある地形を抽出した。

海底地すべりの可能性がある地形判読基準

ポイント	典型的特徴
地形	 ・地すべり地形としては滑落崖とその下部にある地すべり土塊 (滑落土塊)が対をなす。 ・陸上の地すべりに比べて、大規模、薄く広がる傾向がある。薄 く広がるケースでは土塊は認定しにくいので滑落崖だけを認 定する。
滑落崖	 ・馬蹄形,半円形,□の字形の平面形で,斜面下方へ開く急斜面。 ・急斜面は平面的に出入りがなくスムースな形状で,傾斜も一定傾向。 ・下方に地すべり土塊が対をなして存在すると確実度が上がる。
地すべり土塊	 ・滑落崖の下部にある扇状地状,舌状の高まり及び台地状を呈す。 ・典型的な場合には,土塊の表面に不規則な凹凸,低崖,凹地があり,全体として上に凸形の斜面を呈す。

第627回審査会合

292

POWER

海底地形コンター図及び標高段彩陰影図

ハワイ大学マノア校海洋地球科学技術学部(SOEST)による海底地形デジタルデータを使用

7-4. ハワイ付近の海底地すべりの影響について(8/10) (資料1-2 P.261再掲

<u>海底地形判読(2/2):判読結果</u>

• 海底地形判読の結果,「Alika-2」付近に海底地すべりと判断される地形(滑落崖,崩壊物堆積域)が認められた(左図)。

第627回審査会合

293

POWER

- 地すべり滑落崖周辺の現況地形から滑落崖を埋め戻し、地すべり崩壊前地形を復元した(右図)。
- 復元地形と現況地形との差から算出した崩壊量は約105km³である。

7-4. ハワイ付近の海底地すべりの影響について(9/10) (資料1-2 P.262再掲

<u>津波評価</u>

- 「Alika-2」の海底地すべりによる津波の敷地への影響を確認することを目的に、地すべり規模から津波水位を推定することを検討した。
- 津波水位の推定は、Papadopoulos and Kortekaas(2003)⁽⁸⁵⁾による20世紀以降に発生した世界の地すべり津波のデータ分析 に基づく、崩壊量と沿岸における津波の最高水位の関係が日本沿岸でも成立すると仮定して実施した。
- Ma et al. (1999)⁽⁷⁹⁾より, 1975年Kalapana津波の地すべり崩壊量を2.5km³とし、その地すべりに伴う日本沿岸における津波 水位を検潮記録最大全振幅の最大値である55cm(鮎川検潮所)(羽鳥(1976)⁽⁷⁶⁾)と仮定する。
- Papadopoulos and Kortekaas(2003)⁽⁸⁵⁾による地すべり体積と津波水位の関係式から、「Alika-2」のような地すべり(崩 壊量約105km³)がハワイで発生した場合の日本沿岸における水位は3.8m程度と推定される。

崩壊量(m³)と沿岸における津波の最高水位の関係※

※ 赤線は包絡線を直線近似して加筆したもの。PNG(1998パプアニュー ギニア)及びIzmit(1999トルコ)は断層運動による津波への寄与が含 まれる。

Papadopoulos and Kortekaas (2003)⁽⁸⁵⁾に加筆

- 地すべり1の体積をV1,日本沿岸における津波水位をh1とする。
 地すべり2の体積をV2,日本沿岸における津波水位をh2とする。
- Papadopoulos and Kortekaas (2003) ⁽⁸⁵⁾の関係により,

```
h2 = a · log (V2) + b
h1 = a · log (V1) + b
両式の差をとれば、
h2 - h1 = a ( log(V2) - log(V1))
よって、
```

- h2 = h1 + a · log(V2/V1)となる。
- 添え字1を1975年Kalapana津波,添え字2を想定津波に対応させると、津波水位h2 は以下のようになる。なお、定数aは、 Papadopoulos and Kortekaas (2003)⁽⁸⁵⁾に基 づき2とする。

1975年の日本沿岸における津波水位 h1	0.55m
1975年Kalapana津波の崩壊量V1	2.5km ³
想定津波の崩壊量∨2	105km ³
想定津波の日本沿岸における津波水位 h2	3.8m

294

POWER

第627回審査会合

<u>まとめ</u>

- ハワイ付近の海底地すべり「Alika-2」による日本沿岸における津波水位は3.8m程度と推定される。
- 大間原子力発電所は、津軽海峡内に位置していることから、敷地への津波の影響はさらに小さくなると推測されるため、ハワイ付近の海底地すべりによる津波の敷地への影響は大きくないと考えられる。

(余白)

目 次

次回以降ご説明予定

1. 津波堆積物調杳(現地調杳) 8. 火山現象に起因する津波 2. 日本海東縁部に設定された地方自治体による波源モデル 8-1. kinematic landslideモデルによる追加検討 3. 2011年東北地方太平洋沖地震を始めとするM9クラスの超! 9. 津波発生要因の組合せに関する検討 巨大地震から得られた知見 9-1. 組合せ対象地すべりエリアの選定 3-1. 2011年東北地方太平洋沖地震から得られた知見 9-2. 線形足し合せ評価位置の検討 3-2. 世界のM9クラスの超巨大地震から得られた知見の 10. 津軽海峡・発電所専用港湾及び津波の周期特性 整理 10-1. 検討方法 3-3. まとめ 10-2. 日本海側からの津波に対する検討 4. 三陸沖から根室沖のプレート間地震に伴う津波 10-3. 太平洋側からの津波に対する検討 4-1. 2011年東北地方太平洋沖地震による津波等の 10-4. まとめ 再現性確認 11. 津波の伝播特性について 4-2. 分岐断層に関する検討 4-3. ライズタイムの影響検討 5. チリ沖に想定される地震に伴う津波の影響検討 6. 陸上の斜面崩壊に起因する津波 6-1. 地すべり地形分布図 6-2. 二層流モデルの適用性について 7. 海底地すべりに起因する津波 7-1. 急傾斜部を対象とした地形判読 7-2. 海底地すべり海上音波探査記録 7-3. 海底地すべり地形崩壊量算定 7-4. ハワイ付近の海底地すべりの影響について

火山現象 (渡島大島の山体崩壊) に起因する津波評価に係るkinematic landslideモデルの解 析パラメータを, 二層流モデル解析結果を反映して設定する場合の検討を実施した。 8-1. kinematic landsileモデルによる追加検討(2/3)

比高

100m

<u>解析パラメータの設定(二層流モデル解析結果を反映)</u>

 火山現象(渡島大島の山体崩壊)に起因する津波に係るkinematic landslide モデルの解析パラメータは、Satake(2007)⁽⁸⁶⁾に基づき設定(P.300参照)しているが、参考に二層流モデル解析結果を反映して設定したケースの検討を実施した。

kinematic landslideモデルに用いるU及びT (二層流モデル解析による崩壊測線上の崩壊物の移動状況より設定) 8-1. kinematic landsileモデルによる追加検討(3/3)

<u>(補足)解析パラメータの設定(Satake(2007))</u>

- Satake(2007)⁽⁸⁶⁾による火山現象(渡島大島の山体崩壊)に起因する津波に係るkinematic landslideモデルの解析パラ メータは以下のとおり。これらは既往の事例等を参照してU及びTそれぞれに対し複数の値[※]を設定の上,UとTの組合 せによるパラメータスタディを実施して,既往津波高さの再現性が良好な組合せとして設定されている。
 - ▶ 水平移動速度U:40m/s
 - ▶ 比高変化継続時間 T: 120秒
 - ※U:1980年のMt.St.Helens等の事例を参照して、海底における崩壊域・堆積域の区別なく一定値として20,40,60,80及び100m/sを設定。 T:海底における崩壊域・堆積域の区別なく一定値として1分,2分及び5分を設定。

U (m/s)	T (min)	6	" grid (n=36	j)	1' an	d 6" grids (n	=49)	•
		K	κ	r	K	κ	r	
20	1	1.34	1.42	0.68	1.48	1.48	0.80	
40	1	0.93	1.39	0.72	1.04	1.52	0.82	
60	1	0.90	1.46	0.71	1.04	1.62	0.81	
80	1	0.99	1.49	0.66	1.15	1.65	0.78	
100	1	1.11	1.52	0.60	1.28	1.66	0.74	
10	2	2.35	1.42	0.70	2.66	1.53	0.81	
20	2	1.49	1.41	0.69	1.62	1.46	0.81	
40	2	0.99	1.37	0.75	1.11	1.50	0.84	
50	2	0.94	1.39	0.76	1.09	1.55	0.85	
60	2	0.94	1.39	0.75	1.11	1.58	0.84	
80	2	1.02	1.41	0.71	1.20	1.60	0.82	
100	2	1.14	1.44	0.64	1.34	1.62	0.78	
20	5	2.64	1.49	0.56	2.57	1.49	0.71	
40	5	2.16	1.42	0.67	2.29	1.44	0.80	K:幾何平均値
60	5	2.15	1.43	0.69	2.27	1.45	0.81	<i>κ</i> :幾何標準偏差
80	5	2.34	1.44	0.64	2.52	1.47	0.78	r:相関係数
100	5	2.63	1.47	0.55	2.86	1.50	0.73	

パラメータスタディーの比較

Satake(2007) ⁽⁸⁶⁾ に一部加筆