志賀原子力発電所適合性審査資料

SK2一地036-02

2020年4月28日

志賀原子力発電所2号炉 敷地の地質・地質構造について

補足資料

2020年4月28日 北陸電力株式会社

	目	次
<u>補足資料1.1-1</u> 文献調査	••••• 1.1–1– 1	<u>補足資料2.2-1</u> 破砕部周辺の岩石名についての2017.3.10審査会合前後 における対応関係
<u>補足資料1.2-1</u> 敷地の地形に関する調査 (1)航空レーザ計測仕様 (2)敷地の地形に関する文献調査	····· 1.2-1- 1 ····· 1.2-1- 2 ···· 1.2-1- 4	補足資料2.2-2 固結した破砕部と岩盤の針貫入試験結果 ・・・・・2.2-2-1
<u>補足資料1.3-1</u> 調査手法 (1)反射法・VSP探査	····· 1.3-1- 1 ····· 1.3-1- 2	
 補足資料2.1-1 露頭調査結果 (1) 1・2号機基礎掘削面 (2) 重要な安全機能を有する施設の基礎地盤面等 (3) 海岸部 (4) 防潮堤基礎掘削法面 (4) -1 既往スケッチ・写真データの整理 (4) -2 トレンチ(①~⑧)再掘削調査 (4) -3 岩盤未確認部の周辺地質の確認 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
補足資料2.1-2		

取水路建設時のグラウトの影響範囲について	••••• 2.1-2- 1
----------------------	----------------

	目	次	
<u>補足資料2.3-1</u>		<u>補足資料2.3-3</u>	
破砕部の幅と長さの関係	••••• 2.3-1-1	断層分布(陸域)の水平方向・深度方向のデータ	••••• 2.3-3- 1
		(1) S-1とB-1の水平方向・深度方向のデータ	••••• 2.3-3- 3
<u>補足資料2.3-2</u>		(2) S-1とS-4の水平方向・深度方向のデータ	••••• 2.3-3- 8
断層端部の調査結果	2.3-2- 1	(3) S-1とS-9の水平方向·深度方向のデータ	••••• 2.3-3- 15
(1) S-1端部の調査結果	2.3-2- 2	(4) S-1とB-2の水平方向・深度方向のデータ	••••• 2.3-3- 20
(2) S-2-S-6端部の調査結果	2.3-2- 9	(5) S-1とS-2・S-6の水平方向・深度方向のデータ	••••• 2.3-3- 25
(3) S-4端部の調査結果	2.3-2- 18	(6) S-2・S-6とS-8の水平方向・深度方向のデータ	••••• 2.3-3- 31
(4) S-5端部の調査結果	2.3-2-23	(7) S-2・S-6とB-2の水平方向・深度方向のデータ	••••• 2.3-3- 37
(5) S-7端部の調査結果	2.3-2- 27	(8) S-2・S-6とS-7の水平方向・深度方向のデータ	••••• 2.3-3- 42
(6) S-8端部の調査結果	••••• 2.3-2- 33	(9) S-2・S-6とS-9の水平方向・深度方向のデータ	•••• 2.3-3- 47
(7) S-9端部の調査結果	2.3-2- 41	(10) S-2·S-6とB-3の水平方向·深度方向のデータ	••••• 2.3-3- 52
(8) B-1端部の調査結果	•••• 2.3-2- 45	(11) S-4とS-5の水平方向·深度方向のデータ	••••• 2.3–3– 57
(9) B-2端部の調査結果	•••• 2.3-2- 51	(12) S-4とB-1の水平方向のデータ	••••• 2.3-3- 64
(10) B-3端部の調査結果	•••• 2.3-2- 55		
(11) K-1端部の調査結果	•••• 2.3-2- 61	<u>補足資料2.3-4</u>	
(12) K-2端部の調査結果	•••• 2.3-2- 65	取水路沿いの調査における破砕部の抽出結果	••••• 2.3-4- 1
(13) K-3端部の調査結果	2.3-2-71		
(14) K-4端部の調査結果	2.3-2- 76	<u>補足資料2.4-1</u>	
(15) K-5端部の調査結果	2.3-2- 79	破砕部性状一覧表	••••• 2.4-1- 1
(16) K-6端部の調査結果	2.3-2- 83	 S-1~B-3の性状一覧表 	2.4-1-2
(17) K-7端部の調査結果	••••• 2.3-2- 87	(2) K-1~K-21の性状一覧表	••••• 2.4–1– 55
(18) K-8端部の調査結果	2.3-2- 91	(3) 取水路沿いの追加調査で確認された幅3cm以上	••••• 2.4-1- 138
(19) K-9端部の調査結果	••••• 2.3-2- 95	の破僻部(K-1~K-21以外)性状一覧表 (4) 各断層の走向・傾斜データのシュミットネットへ	
(20) K-10端部の調査結果	••••• 2.3-2- 99	の投影	••••• 2.4–1– 159
(21) K-11端部の調査結果	2.3-2-103		
(22) K-12端部の調査結果	2.3-2-107		
(23) K−13端部の調査結果	••••• 2.3-2- 110		

灰色:第788回,第849回審査会合で提出済

<u>補足資料2.4-2</u>		(3) 露頭観察・コア観察・研磨片観察・薄片観察結果	2.5-1-186
X線回折分析結果	2.4-2- 1	(3)-1 S-1の研磨片観察結果	2.5-1-187
(1) 2号機建設以前の調査	2.4-2- 2	(3)-2 S-1の薄片観察結果	2.5-1-190
(2) 2号機建設以後の調査	2.4-2- 20	(3)-3 S-2·S-6の露頭観察結果(会合部)	2.5-1-197
(3) 第671回審査会合以降の調査	2.4-2- 80	(3)-4 S-2·S-6の薄片観察結果	2.5-1-199
		(3)-5 S-4のコア観察結果	2.5-1-207
<u>補足資料2.5-1</u>		(3)-6 S-4の薄片観察結果	2.5-1-210
運動方向調査結果	••••• 2.5-1- 1	(3)-7 S-7の薄片観察結果	2.5-1-213
(1) 最新面及び変位センスの認定方法について	2.5-1-2	(3)-8 S-8の薄片観察結果	2.5-1-217
(2) 条線観察結果	2.5-1- 4	(3)-9 B-3の蒲片組容結里	
(2)-1 S-1の条線観察結果	2.5-1-5	(3)-10 K_1の研防上組の対用	2.0 1 222
 (2)-2 S-2*S-6の余線観祭結果 (2)-2 S-4の冬娘組宛結里 	2.5-1-92	(3)-10 K-100 川府 観宗加末 (2)-11 K-2の 平麻 上 組 図 妹 用	2.5 1 275
 (2)-3 3-400未稼観会和未 (2)-4 S-5の各線組突結里 		(3)-11 K-200 研磨力 観奈和未	2.5 1 275
(2)-5 S-7の条線観察結果	2.5 1 137	(3)-12 K-300 研磨斤観祭結果	2.5-1-277
(2)-6 S-8の条線観察結果	2.5 1 112	(3)−13 K-4の研磨片観祭結果	2.5-1-2/9
(2)-7 S-9の条線観察結果	2.5-1-166	(3)-14 K-4の薄片観察結果	••••• 2.5–1–281
(2)-8 B-1の条線観察結果	2.5-1-171	(3)-15 K-5の薄片観察結果	2.5–1–285
(2)-9 B-2の条線観察結果	••••• 2.5-1-177	(4) 断層の運動方向調査結果(取水路)	2.5-1-291
(2)-10 B-3の条線観察結果	••••• 2.5-1-182	(4)-1 K-2の運動方向調査結果	2.5-1-292
(2)-11 K-2の条線観察結果	•••• 2.5-1-226	(4)-2 K-12の運動方向調査結果	
(2)-12 K-4の条線観察結果	••••• 2.5-1-236	(4)-3 K-13の運動方向調査結果	
(2)-13 K-5の条線観察結果	••••• 2.5-1-239	(4)-4 K-14の運動方向調査結果	
(2)-14 K-12の条線観察結果	••••• 2.5-1-242		2.0 1 000
(2)-15 K-13の条線観察結果	•••• 2.5-1-248		
(2)-16 K-14の条線観察結果	••••• 2.5–1–252	(4)-6 K-16の理動方回調査結果	2.5-1-323
(2)-17 K-15の条線観察結果	2.5-1-261	(4)-7 K-17の運動方向調査結果	
(Z)-18 K-10の余祢観祭結果 (a) 10 K 17の冬娘細宛姑田	••••• 2.5-1-265	(5) 各断層の粘土状破砕部の運動方向	••••• 2.5-1-335
(Z)=13 N=1/00末旅観祭結未	2.0-1-2/1	(rangent-ineation diagram)	

目 次

	日	次	
<u>補足資料5.2-1</u>		補足資料5 2-4	
敷地の安山岩に関する調査結果	••••• 5.2-1- 1	<u> </u>	••••• 52-4-1
(1) 薄片観察結果	••••• 5.2-1- 2		••••• 52-4-2
(2)K-Ar年代分析結果	••••• 5.2-1- 5	(1)-1 K-6 2-2 利	5 2-4- 3
(3) 化学分析結果	••••• 5.2-1- 25	(1)-2 F-8.5' 7.	••••• 5.2-4- 6
		(1)-3 = -8.5-27!	••••• 5.2-4- 9
<u>補足資料5. 2一2</u>		(2) SEM観察	••••• 5.2-4- 14
変質鉱物に関する調査結果	••••• 5.2-2- 1		
(1) 試料採取位置	••••• 5.2-2- 2	補足資料5.2-5	
(2) XRD分析(粘土分濃集)結果 (I/S混合層の構造判定 八面体シート構造判定)	••••• 5.2-2- 23	<u> 鉱物脈法等に関する調査結果(S-4)</u>	••••• 5.2-5- 1
(3) 粘土鉱物のEPMA分析(定量)結果	••••• 5.2-2- 49	(1) 薄片観察	••••• 5.2–5– 2
(4)粘土鉱物のCEC分析, XAFS分析結果	••••• 5.2-2- 77	(1)-1 E-8.60孔	••••• 5.2–5– 3
(5) XRD分析結果(白色鉱物(オパールCT))	••••• 5.2-2- 84	(1)-2 E-11.1SE-2孔	••••• 5.2-5- 6
(6)XRD分析結果(白色鉱物(フィリプサイト))	••••• 5.2-2- 102	(2) SEM観察	••••• 5.2–5– 10
(7) 変質鉱物の生成環境の検討結果	••••• 5.2-2- 111		
(8)斜長石のアルバイト化の検討	••••• 5.2-2- 116	<u>補足資料5. 2-6</u>	
(9)粘土鉱物のK−Ar年代分析の信頼性確認	••••• 5.2-2- 123	鉱物脈法等に関する調査結果(S-5)	••••• 5.2-6- 1
		(1) 薄片観察	••••• 5.2-6- 2
<u>補足資料5. 2一3</u>		(1)-1 R-8.1-1-3孔	••••• 5.2–6– 3
鉱物脈法等に関する調査結果(S-1)	••••• 5.2–3– 1		
(1) 薄片観察	••••• 5.2–3– 2	<u>補足資料5. 2-7</u>	
(1)-1 H-6.5-2孔	••••• 5.2–3– 3	鉱物脈法等に関する調査結果(S-7)	••••• 5.2-7- 1
(1)-2 H-6.6-1孔	••••• 5.2–3– 6	(1) 薄片観察	••••• 5.2-7- 2
(1)-3 K-10.3SW孔	••••• 5.2–3– 9	(1)-1 H-5.7'孔	••••• 5.2-7- 3
(1)-4 岩盤調査坑No.25切羽	••••• 5.2–3– 12		
(2) SEM観察	••••• 5.2–3– 17	<u>補足資料5. 2-8</u>	
(3) 岩盤調査坑切羽からのボーリング調査結果	••••• 5.2–3– 19	鉱物脈法等に関する調査結果(S-8)	••••• 5.2-8- 1
		(1) 薄片観察	••••• 5.2-8- 2

(1) 薄片観察 (1)-1 F-6.75孔

••••• 5.2-8- 3

	目	次
<u>補足資料5. 2-9</u>		<u>補足</u>]
鉱物脈法等に関する調査結果(K−2, K−3)	••••• 5.2-9- 1	Ŧ
(1) 薄片観察(K-2)	••••• 5.2-9- 2	
(1)-1 H-1.1孔	••••• 5.2–9– 3	
(2) K-2露頭	••••• 5.2–9– 7	
(3) 薄片観察(K-3)	••••• 5.2-9- 18	
(4) K−3露頭	••••• 5.2–9– 20	
<u>補足資料5.2-10</u>		<u>補足</u>]
鉱物脈法等に関する調査結果(K-14)	••••• 5.2-10- 1	Ŧ
(1) 薄片観察	••••• 5.2-10- 2	
(1)-1 H'1.3孔	••••• 5.2-10- 3	
(1)-2 H0.3-80孔	••••• 5.2–10– 7	
補足資料5 2-11		<u>補足</u> 資
	EO 11 1	<u>ل</u>
	5.2-11- 1	
(1) X線回折分析結果 (2) 冬娘組፼結甲	5.2-11-2	
(2) 木椒既奈加木 (2) コア宇宙	5.2 11 52	
	0.2 11 40	+ <u>+</u> +□ ×
		<u> </u>
上載地層法に用いる地層に関する調査結果	5.3-1-1	5
	5.3-1-2	
	5.3-1-69	
(3) S-2·S-6 No.2トレンチにおける薄片観祭結果	5.3-1-88	参考了
	••••• 5.3–1– 125	2.37
(5) 甲位段丘1面にステーン5cの段丘堆積物か 混在しないことに関する検討	••••• 5.3–1– 129	
(6) H I a段丘堆積物の堆積年代に関する 海水準変動曲線と能登半島南西岸の隆起速度を 用いた検討	••••• 5.3–1– 133	
(7) 古期斜面堆積物の年代評価	••••• 5.3–1– 137	
(8) 石英粒子の起源	••••• 5.3–1– 139	
(9) 礫種及び礫の形状の計測データ	••••• 5.3–1– 141	

<u>補足資料5. 3-2</u>

上載地區		5.3-2-	1	
(1)	旧A・Bトレンチ	•••••	5.3-2-	2
(2)	掘削法面	••••	5.3-2-	16
(3)	駐車場南側法面	••••	5.3-2-	19
(4)	えん堤左岸トレンチ	••••	5.3-2-	23

上載地層法に関する調査結果(S-2・S-6)	••••• 5.3–3– 1
(1) No.1トレンチ	••••• 5.3–3– 2
(2) 事務本館前トレンチ	••••• 5.3–3– 8

<u> 補足資料5. 3-4</u>

上載地層	層法に関する調査結果(S-4)	••••	5.3-4-	1
(1)	35m盤トレンチ	•••••	5.3-4-	2
(2)	35m盤法面	•••••	5.3-4-	8
(3)	S-4トレンチ	••••	5.3-4-	17

<u> 補足資料6. 2-1</u>

S-2・S-6周辺の地形等に関する調査結果	•••••	6.2-1-	1
(1) S-2・S-6周辺の地形		6.2-1-	2
(2) 凸状地形に関する調査データ		6.2-1-	14

補足資料5.2-1

敷地の安山岩に関する調査結果

(1) 薄片観察結果

敷地の安山岩に関する調査(安山岩 薄片観察)

■薄片観察により、安山岩の岩石組織・構成鉱物を確認した。

単ニコル

直交ニコル

1mm

1mm

(凡例)
PI:斜長石
Cpx:単斜輝石
Opx:斜方輝石
Op:不透明鉱物
Ahi:水酸化鉄
Sm:スメクタイト様粘土鉱物
MX:石基

敷地に分布する安山岩(GC-1)の薄片顕微鏡写真

(顕微鏡観察結果) ・ 安山岩は両輝石安山岩であり,斑状組織をもつ。

敷地の安山岩に関する調査(安山岩 薄片観察)

■薄片観察により、安山岩の岩石組織・構成鉱物を確認した。

単ニコル

直交ニコル

1mm

1mm

(凡例) PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石 Sm:スメクタイト様粘土鉱物 MX:石基

敷地に分布する安山岩(K-13.6-9)の薄片顕微鏡写真

(顕微鏡観察結果) • 安山岩は両輝石安山岩であり、斑状組織をもつ。

(2) K-Ar年代分析結果

○敷地の安山岩の形成年代等を明らかにするために、K-Ar年代分析を実施した。 ○敷地内の安山岩のK-Ar年代値は、22~15Maを示す。

STP:標準状態(0℃, 1気圧), Ma:100万年前

対象物	試料No.	試料採取箇所		測定物 (粒径)	カリウム含有量 (wt. %)	放射性起源 ⁴⁰ Ar (10 ⁻⁸ cc STP/g)	K−Ar年代 (Ma)	非放射性起源 ⁴⁰ Ar (%)	備考
	K-13.6-10	大深度ボーリング(K-13.6) 深度22.40-22.60m	EL+12.72m	斜長石 (#150-250)	0.151 ± 0.008	11.35±0.17	19.3±1.0	26.0	
	J-9''-1	J−9"孔 深度35.40−35.55m	EL-14.40m	斜長石 (#150-250)	0.147 ± 0.007	10.51 ± 0.17	18.3 ± 1.0	32.3	
	GC-1	岩盤調査坑 No7~8付近 底盤(EL-18.25m) 南西側	EL-18.25m	斜長石 (#150-200)	0.133 ± 0.007	8.04±0.15	15.5±0.8	40.7	
	GC-2	岩盤調査坑 No30切羽 北東側	EL-18.25m	斜長石 (#150-200)	0.204 ± 0.004	12.24±0.20	15.4±0.4	36.0	
	GC-7	岩盤調査坑 No10~11付近 南西側	EL-18.25m	斜長石 (#150-250)	0.134 ± 0.007	10.04±0.17	19.2±1.0	30.0	
	GC-8	岩盤調査坑 No10~11付近 北東側	EL-18.25m	斜長石 (#150-250)	0.182 ± 0.009	13.35±0.22	18.8±1.0	29.5	
	K-13.6-11	大深度ボーリング(K-13.6) 深度66.40-66.55m	EL-31.28m	斜長石 (#150-250)	0.133 ± 0.007	9.48±0.15	18.3±1.0	27.4	
_{数地の} K-	K-13.6-12	大深度ボーリング(K-13.6) 深度95.55-95.75m	EL-60.43m	斜長石 (#150-250)	0.149±0.007	10.48±0.17	18.0±0.9	28.2	
安山岩	K-13.6-13	大深度ボーリング(K-13.6) 深度135.25-135.55m	EL-100.18m	斜長石 (#150-250)	0.136±0.007	10.22±0.19	19.3±1.0	30.5	
	K-13.6-1	大深度ボーリング(K-13.6) 深度233.00-233.20m	EL-197.90m	斜長石 (#150-250)	0.102 ± 0.005	8.90±0.19	22.4±1.2	39.0	
	I-9-3	I−9孔 深度228.55−228.80m	EL-200.05m	斜長石 (#150-250)	0.111±0.006	8.75±0.20	20.2±1.1	37.1	
	K-13.6-2	大深度ボーリング(K-13.6) 深度241.00-241.30m	EL-205.93m	斜長石 (#100-200)	0.138±0.007	10.64±0.21	19.8±1.1	41.2	
	I-9-4	I−9孔 深度286.70−286.80m	EL-258.10m	斜長石 (#150-250)	0.146 ± 0.007	10.73±0.24	18.8±1.0	44.3	
	K-13.6-3	大深度ボーリング(K-13.6) 深度314.25-314.60m	EL-279.23m	斜長石 (#150-250)	0.157 ± 0.008	12.16±0.23	19.8±1.1	33.8	
	K-13.6-4	大深度ボーリング(K-13.6) 深度539.50-539.95m	EL-504.48m	斜長石 (#150-250)	0.158±0.008	12.29±0.22	19.9±1.1	32.4	
	K-13.6-5	大深度ボーリング(K-13.6) 深度754.10~754.50m	EL-719.1m	斜長石 (#150-250)	0.442 ± 0.009	25.06±0.44	14.6±0.4	38.0	

*低カリウム試料(0.2wt.%未満)の定量は, Itaya et al. (1996)による極低ブランク法により行った。なお, 標準試料(Itaya et al., 1996)の分析誤差が5%未満であることから, 分析誤差は5%とした。

K-Ar年代について ー安山岩 試料採取位置ー

岩盤調査坑底盤スケッチ

安山岩の年代分析試料の薄片観察 (K-13.6-10)

第788回審査会合 机上配布資料1 P.5.1-2-9 再掲

直交ニコル

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-10)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は19.3±1.0Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

5.2-1-9

1mm

安山岩の年代分析試料の薄片観察 (J-9"-1)

<u>単ニコル</u>

1mm

1mm

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(J-9"-1)の薄片顕微鏡写真

・斜長石を対象としたK-Ar年代値は18.3±1.0Maを示す。
 ・薄片観察において斜長石の変質が顕著でないことを確認した。
 5.2

5.2-1-10

安山岩の年代分析試料の薄片観察(GC-1)

第788回審査会合 机上配布資料1 P.5.1-2-11 再掲

直交ニコル

- 試料採取位置

<u>単ニコル</u>

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(GC-1)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は15.5±0.8Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(GC-2)

第788回審査会合 机上配布資料1 P.5.1-2-12 再掲

- 試料採取位置

<u>単ニコル</u>

直交ニコル

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(GC-2)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は15.4±0.4Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(GC-7)

第788回審査会合 机上配布資料1 P.5.1-2-13 再掲

岩盤調査坑 No.10~11付近 南西側

<u>単ニコル</u>

直交ニコル

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(GC-7)の薄片顕微鏡写真

・斜長石を対象としたK-Ar年代値は19.2±1.0Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(GC-8)

第788回審査会合 机上配布資料1 P.5.1-2-14 再掲

╱ 試料採取位置

<u>単ニコル</u>

<u>直交ニコル</u>

1mm

1mm

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(GC-8)の薄片顕微鏡写真

・斜長石を対象としたK-Ar年代値は18.8±1.0Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

5.2-1-14

安山岩の年代分析試料の薄片観察(K-13.6-11)

<u>単ニコル</u>

1mm

1mm

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-11)の薄片顕微鏡写真

・斜長石を対象としたK-Ar年代値は18.3±1.0Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

5.2-1-15

安山岩の年代分析試料の薄片観察(K-13.6-12)

<u>単ニコル</u>

<u>直交ニコル</u>

1mm

1mm

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-12)の薄片顕微鏡写真

・斜長石を対象としたK-Ar年代値は18.0±0.9Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(K-13.6-13)

<u>単ニコル</u>

<u>直交ニコル</u>

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-13)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は19.3±1.0Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(K-13.6-1)

直交ニコル

1mm

1mm

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-1)の薄片顕微鏡写真

・斜長石を対象としたK-Ar年代値は22.4±1.2Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

5.2-1-18

安山岩の年代分析試料の薄片観察(I-9-3)

第788回審査会合 机上配布資料1 P.5.1-2-19 再掲

<u>単ニコル</u>

<u>直交ニコル</u>

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(I-9-3)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は20.2±1.1Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

5.2-1-19

1mm

安山岩の年代分析試料の薄片観察(K-13.6-2)

<u>単ニコル</u>

直交ニコル

1mm

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-2)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は19.8±1.1Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(I-9-4)

第788回審査会合 机上配布資料1 P.5.1-2-21 再掲

<u>単ニコル</u>

<u>直交ニコル</u>

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(I-9-4)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は18.8±1.0Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(K-13.6-3)

<u>単ニコル</u>

<u>直交ニコル</u>

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-3)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は19.8±1.1Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

5.2-1-22

1mm

安山岩の年代分析試料の薄片観察(K-13.6-4)

第788回審査会合 机上配布資料1 P.5.1-2-23 再掲

直交ニコル

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-4)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は19.9±1.1Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

5.2-1-23

1mm

安山岩の年代分析試料の薄片観察(K-13.6-5)

第788回審査会合 机上配布資料1 P.5.1-2-24 再掲

<u>単ニコル</u>

直交ニコル

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-5)の薄片顕微鏡写真

・斜長石を対象としたK-Ar年代値は14.6±0.4Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

(3)化学分析結果

敷地の安山岩に関する調査(化学分析)

■ 敷地の安山岩の化学組成を確認するため、大深度ボーリング及び岩盤調査坑から採取した敷地内の安山岩(均質)について、化学分析を実施した。

生	ギ	
<u> </u>	,	

対象物	試料No.	採取標高 (m)	(wt.%) SiO ₂	TiO ₂	AI_2O_3	FeO*	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	Total	FeO*/MgO	Na ₂ O+K ₂ O
安山岩	GC-1	-18.25	56.77	0.80	16.83	6.79	0.13	3.60	6.99	3.59	1.16	0.16	96.82	1.89	4.75
安山岩	I-9-1	-27.65	60.15	0.72	16.39	5.49	0.07	1.82	5.93	3.81	1.37	0.16	95.91	3.02	5.18
安山岩	I-9-2	-156.50	57.61	0.88	15.43	6.59	0.13	3.62	7.15	3.90	1.17	0.17	96.65	1.82	5.07
安山岩	K-13.6-1	-197.88	58.05	0.77	16.86	6.15	0.15	4.12	7.01	3.68	1.13	0.16	98.08	1.49	4.81
安山岩	I-9-3	-199.90	56.61	0.78	16.06	6.73	0.12	4.70	6.60	3.41	0.82	0.16	95.99	1.43	4.23
安山岩	K-13.6-2	-205.93	56.90	0.73	17.98	6.14	0.12	3.64	7.48	3.66	1.03	0.15	97.83	1.69	4.69
安山岩	I-9-4	-258.80	57.49	0.80	15.99	6.54	0.10	4.04	6.78	3.70	1.18	0.16	96.78	1.62	4.88
安山岩	K-13.6-3	-279.23	58.56	0.77	16.11	6.14	0.08	3.57	6.35	3.85	1.26	0.16	96.85	1.72	5.11
安山岩	K-13.6-4	-504.38	58.20	0.95	16.41	6.56	0.12	3.96	6.74	3.83	1.24	0.18	98.19	1.66	5.07
安山岩	K-13.6-5	-719.08	55.37	0.69	16.74	6.63	0.11	4.46	5.98	3.75	1.51	0.14	95.38	1.49	5.26
安山岩	K-13.6-6	-942.58	58.75	0.61	17.51	4.09	0.13	2.37	5.13	3.99	1.99	0.15	94.72	1.73	5.98
安山岩	K-13.6-7	-982.93	57.03	0.70	16.74	6.05	0.20	3.52	4.91	4.35	1.62	0.14	95.26	1.72	5.97
安山岩	K-13.6-8	-1039.93	53.95	0.74	15.50	6.84	0.13	4.29	6.26	3.72	1.28	0.15	92.86	1.59	5.00
安山岩	K-13.6-9	-1072.88	53.90	0.68	17.02	6.82	0.14	4.47	5.89	3.88	0.95	0.16	93.91	1.53	4.83
<u>[100%ノーマライズデータ]</u>															
[100%ノーマライズデータ] 対象物	試料No.	採取標高 (m)	(wt.%) SiO ₂	TiO ₂	Al ₂ O ₃	FeO*	MnO	MgO	CaO	Na ₂ O	K₂O	P_2O_5	Total	FeO*/MgO	Na ₂ O+K ₂ O
[100%ノーマライズデータ] 対象物 安山岩	試料No. GC-1	採取標高 (m) -18.25	(wt.%) SiO ₂ 58.63	TiO ₂ 0.83	Al ₂ O ₃ 17.38	FeO* 7.01	MnO 0.13	MgO 3.72	CaO 7.22	Na ₂ O 3.71	K ₂ O 1.20	P ₂ O ₅ 0.17	Total 100.00	FeO*/MgO 1.89	Na ₂ O+K ₂ O 4.91
[100%ノーマライズデータ] 対象物 安山岩 安山岩	試料No. GC-1 I-9-1	採取標高 (m) -18.25 -27.65	(wt.%) SiO ₂ 58.63 62.72	TiO ₂ 0.83 0.75	Al ₂ O ₃ 17.38 17.09	FeO* 7.01 5.72	MnO 0.13 0.07	MgO 3.72 1.90	CaO 7.22 6.18	Na ₂ O 3.71 3.97	K ₂ O 1.20 1.43	P ₂ O ₅ 0.17 0.17	Total 100.00 100.00	FeO*/MgO 1.89 3.02	Na ₂ O+K ₂ O 4.91 5.40
[100%ノーマライズデータ] 対象物 <u>安山岩</u> 安山岩 安山岩	試料No. GC-1 I-9-1 I-9-2	採取標高 (m) -18.25 -27.65 -156.50	(wt.%) SiO ₂ 58.63 62.72 59.61	TiO ₂ 0.83 0.75 0.91	Al ₂ O ₃ 17.38 17.09 15.96	FeO* 7.01 5.72 6.82	MnO 0.13 0.07 0.13	MgO 3.72 1.90 3.75	CaO 7.22 6.18 7.40	Na ₂ O 3.71 3.97 4.04	K ₂ O 1.20 1.43 1.21	P ₂ O ₅ 0.17 0.17 0.18	Total 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82	Na ₂ O+K ₂ O 4.91 5.40 5.25
[100%ノーマライズデータ] 対象物 安山岩 安山岩 安山岩 安山岩	試料No. GC-1 I-9-1 I-9-2 K-13.6-1	採取標高 (m) -18.25 -27.65 -156.50 -197.88	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19	TiO ₂ 0.83 0.75 0.91 0.79	Al ₂ O ₃ 17.38 17.09 15.96 17.19	FeO* 7.01 5.72 6.82 6.27	MnO 0.13 0.07 0.13 0.15	MgO 3.72 1.90 3.75 4.20	CaO 7.22 6.18 7.40 7.15	Na ₂ O 3.71 3.97 4.04 3.75	K ₂ O 1.20 1.43 1.21 1.15	P ₂ O ₅ 0.17 0.17 0.18 0.16	Total 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90
[100%ノーマライズデータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97	TiO ₂ 0.83 0.75 0.91 0.79 0.81	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73	FeO* 7.01 5.72 6.82 6.27 7.01	MnO 0.13 0.07 0.13 0.15 0.13	MgO 3.72 1.90 3.75 4.20 4.90	CaO 7.22 6.18 7.40 7.15 6.88	Na ₂ O 3.71 3.97 4.04 3.75 3.55	K ₂ O 1.20 1.43 1.21 1.15 0.85	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17	Total 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41
[100%ノーマライズデータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	試料No. GC-1 I-9-1 K-13.6-1 I-9-3 K-13.6-2	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38	FeO* 7.01 5.72 6.82 6.27 7.01 6.28	MnO 0.13 0.07 0.13 0.15 0.13 0.12	MgO 3.72 1.90 3.75 4.20 4.90 3.72	CaO 7.22 6.18 7.40 7.15 6.88 7.65	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15	Total 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79
[100%ノーマライズデータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15 0.17	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04
[100%ノーマライズデータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.55 3.74 3.82 3.98	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30	P ₂ O ₅ 0.17 0.18 0.16 0.17 0.15 0.17 0.17	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28
[100%ノーマライズデータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-3 K-13.6-4	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63 16.71	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26	P ₂ O ₅ 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.17	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72 1.66	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16
[100%ノーマライズデータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-4 K-13.6-5	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27 58.05	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63 16.71 17.55	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.17 0.18 0.15	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72 1.66 1.49	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51
[100%ノーマライズデータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-3 K-13.6-5 K-13.6-5 K-13.6-6	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08 -942.58	SiO2 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27 58.05 62.72	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72 0.64	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63 16.71 17.55 18.49	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95 4.32	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12 0.12 0.14	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68 2.50	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27 5.42	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93 4.21	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58 2.10	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.18 0.15 0.16	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72 1.66 1.49 1.73	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51 6.31
[100%ノーマライズデータ] 対象物 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-3 K-13.6-5 K-13.6-6 K-13.6-6 K-13.6-7	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08 -942.58 -982.93	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27 58.05 62.02 59.87	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72 0.64 0.73	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63 16.71 17.55 18.49 17.57	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95 4.32 6.35	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12 0.12 0.14 0.21	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68 2.50 3.70	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27 5.42 5.15	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93 4.21 4.57	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58 2.10 1.70	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.17 0.18 0.15 0.16 0.15	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72 1.66 1.49 1.73 1.72	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51 6.31 6.27
[100%ノーマライズデータ] 対象物 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-3 K-13.6-5 K-13.6-6 K-13.6-7 K-13.6-7 K-13.6-8	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08 -942.58 -982.93 -1039.93	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27 58.05 62.02 59.87 58.10	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72 0.64 0.73 0.80	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63 16.71 17.55 18.49 17.57 16.69	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95 4.32 6.35 7.37	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12 0.12 0.14 0.21 0.14	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68 2.50 3.70 4.62	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27 5.42 5.15 6.74	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93 4.21 4.57 4.01	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58 2.10 1.70 1.38	P ₂ O ₅ 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.17 0.18 0.15 0.16 0.15 0.16	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.62 1.72 1.66 1.49 1.73 1.72 1.59	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51 6.31 6.27 5.38

FeO^{*}:全鉄をFeOとして表示

敷地の安山岩に関する調査(化学分析 文献との比較①

第788回審査会合 机上配布資料1 P.5.1-2-27 再掲

■ 地質の形成環境について検討するため,前頁で示した敷地内の安山岩の化学組成と文献で示されている能登半島の火山岩の化学組成との比較検討を行った。

文献による能登半島の火山岩と敷地における安山岩(均質)の主要成分(ハーカー図)

• 敷地の安山岩(均質)の主要成分は,平井(2004MS)の能登半島の別所岳安山岩の主要成分の分布範囲に含まれる。

敷地の安山岩に関する調査(化学分析 文献との比較②)

第788回審査会合 机上配布資料1 P.5.1-2-28 再掲

■ 敷地内の安山岩の化学組成と文献で示されている能登半島の火山岩の化学組成との比較について、周藤・小山内(2002)の区分により検討した結果について示す。

• 敷地の安山岩(均質)は、周藤・小山内(2002)の区分によれば非アルカリ岩系に属し、平井(2004MS)の能登半島の別所岳安山岩の主要成分の分布範囲に含まれる。
敷地の安山岩に関する調査(化学分析 文献との比較③)

第788回審査会合 机上配布資料1 P.5.1-2-29 再掲

■ 敷地内の安山岩の化学組成と文献で示されている能登半島の火山岩の化学組成との比較について、Miyashiro(1974)とSato(1989)の区分により検討した結果について示す。

補足資料5.2-2

変質鉱物に関する調査結果

(1) 試料採取位置

試料採取位置 一粘土鉱物, XRD分析(粘土分濃集)-

試料h~ult, 第788回審査会合時からの追加分析試料

各試料の回折チャート(定方位(粘土分濃集))は補足資料5.2-2(2)

		試料採取箇所 (XRD分析(粘土分濃集)試料)		
	採取位證	置(左位置図)	深度	標高	
а	C 1.C 6	E-8.5+5″孔	9.30m	EL 11.82m	
b	5-2-3-0	E-8.4'孔	31.70m	EL -10.61m	
с	S-4	F-9.3-4孔	66.40m	EL -45.82m	
d	非破砕部	H-6.5-2孔	81.90m	EL-59.10m	
е	S-1	岩盤調査坑 No.27孔	0.25m	EL -16.45m [%]	※今回修正
f	S-8	F-6.82-6孔	17.08m	EL -1.97m	
g	S-7	H-5.5-27L	19.33m	EL -3.75m	
h	o 1	岩盤調査坑No.7-1孔	0.30m	EL -17.45m	
i	5-1	岩盤調査坑No.16付近	(底盤面)	EL -17.90m	
j	S-4	E-11.1SE-6孔	1.50m	EL 19.91m	
k	S-5	R-8.1-1-3孔	22.24m	EL -11.12m	
Ι	S-7	H-5.64-2孔	9.53m	EL 2.84m	
m	S-8	F-6.80-2孔	18.69m	EL -5.83m	
n	K-2	H-0.9-40孔	19.65m	EL -6.36m	
ο	K-14	H0.3-807L	31.65m	EL -27.48m	
р	非破砕部	M-12.5"孔	55.55m	EL -27.25m	
q		K-10.8SW-1孔	49.80m	EL -18.88m	
r		E-6.2孔	137.45m	EL -123.37m	
s		H-6.5' 孔	47.70m	EL -24.19m	
t		H-1.1-80孔	43.45m	EL -36.01m	
u		H− −1.80 孔	48.30m	EL -44.66m	

試料b, e

XRD分析 測定諸元

装置:Rigaku Ultima IV

Detector: D/teX Ultra

Divergence Slit: 0.5°

Step size: 0.01°

Target: $Cu(K\alpha)$

Voltage:40kV

試料a, c, d, g~u

XRD分析 測定諸元 装置:Rigaku RINT2500V Target: Cu(Kα) Voltage: 40kV Detector: SC Divergence Slit: 0.5° Receiving Slit: 0.15mm Step size: 0.02° 試料f

XRD分析 測定諸元 装置:島津製作所 XRD-6100 Target: Cu(Kα) Voltage: 30kV Detector: SC Divergence Slit: 1.0° Receiving Slit: 0.30mm Step size: 0.02°

5.2-2-3

粘土脈部分を採取し,水簸と遠心分離によって粒径 0.2~2.0µmの粘土分を濃集した。

粘土分を濃集した試料 5 2-2-4

粘土状破砕部から粘土分を採取し、水簸と遠心分離によって 粒径0.4~1.0µmの粘土分を濃集した。

粘土分を濃集した試料

試料採取位置 一粘土鉱物, XRD分析(粘土分濃集)-

粘土分を濃集した試料 5.2-2-6

試料採取位置 一粘土鉱物, XRD分析(粘土分濃集)-

粘土分を濃集した試料 5.2-2-7

粒径0.2~2.0µmの粘土分を濃集した。

粘土分を濃集した試料

試料採取位置 一粘土鉱物, XRD分析(粘土分濃集)-

粘土分を濃集した試料

試料J~Rは、第788回審査会合時からの追加分析試料

試料採取位置図

各試料のEPMA分析結果は補足資料5.2-2(3)

試料採取箇所 (EPMA分析試料)					
	採取位置(左位置図) 深度 標高				
Α	S-4	E-11.1SE-2孔	1.65m	EL 19.72m	
В	C 1	K-10.3SW孔	27.81m	EL -6.17m	
С	5-1	岩盤調査坑No.25切羽	(切羽面)	EL -17.60m	
D		E-8.5-2孔	8.55m	EL 12.66m	
Е	5-2-5-0	F-8.5'孔	8.50m	EL 12.63m	
F	0.0	F-6.75孔	26.85m	EL -15.76m	
G	5-8	F-6.8孔	23.75m	EL -12.63m	
Н	S-7	H-5.7'孔	14.35m	EL -3.26m	
Ι	S-2•S-6	K-6.2-2孔	30.94m	EL -19.45m	
J		H-6.5-2孔	70.70m	EL -49.50m	
к	S -1	H-6.6-1孔	57.25m	EL -37.95m	
L		M-12.5"孔	49.96m	EL -21.66m	
М	S-4	E-8.60孔	104.68m	EL -35.91m	
Ν	S-5	R-8.1-1-3孔	22.24m	EL -11.12m	
0	K-2	H-0.9-40孔	19.65m	EL -6.36m	
Р	12 14	H0.3-80孔	31.65m	EL -27.48m	
Q	n−14	H'1.3孔	125.58m	EL -104.86m	
R	非破砕部	H-6.5-2孔	81.80m	EL -59.02m	

全試料

EPMA分析 測定諸元
装置:Jeol JXA-8230
加速電圧:15kV
試料電流:30nA
ビーム径:(定量)1μm, (マッピング)5μm
電子線照射時間:(定量)ピーク10s/BG5s, (マッピング)5ms
主成分組成計算方法:ZAF補正法

研磨片写真

右研磨片作成箇所

ブロック写真

右ブロック採取箇所

ブロック写真

Т

EPMA / 分析箇列

1cm

薄片チップ写真

5.2-2-15

ブロック写真 <u>5cm</u> 5.2-2-16

盲所

試料vii~ixは、第788回審査会合時からの追加分析試料

試料採取位置図

	白色鉱物(オパールCT)確認箇所				
	試料採耳	及位置(左位置図)	深度	標高	
i	非破砕部	岩盤調査坑No.30切羽	(切羽面)	EL -15.56m	
ii	S-1	KR-13孔	2.47m	EL -16.75m	
iii	非破砕部	H-6.4孔	112.95m	EL -68.78m	
iv		F-4.9孔	136.57m	EL -125.44m	
v		R-4.5孔	68.63m	EL -57.56m	
vi		K-4.2孔	80.63m	EL -69.36m	
vii		R-4.5孔	71.10m	EL -60.03m	
viii	K-2	H−1.1孔	103.62m	EL -96.84m	
ix	非破砕部	H-1.5-95孔	176.71m	EL -168.01m	

各試料の回折チャートは補足資料5.2-2(5)

試料 ii 以外

Current: 40mA

Detector: SC

Calculation Mode: cps

XRD分析 測定諸元 装置:理学電気製 MultiFlex Target:Cu(Kα) Monochrometer:Graphite 湾曲 Voltage:40KV

Divergency Slit:1° Scattering Slit:1° Recieving Slit:0.3mm Scanning Speed:2° /min Scanning Mode:連続法 Sampling Range:0.02° Scanning Range:2~61°

試料 ii

5.2-2-19

試料採取位置 ー白色鉱物(オパールCT)-

試料採取位置図

	白色鉱物(フィリプサイト)確認箇所			
試料採取位置(左位置図)		深度	標高	
Ι	S-2•S-6	E-5.7孔	170.73m	EL -158.08m
Π	非破砕部	J-10.8SW-1孔	86.18m	EL -62.11m
Ш	K-14	H'1.3孔	125.58m	EL -121.91m
IV	非破砕部	H1.0孔	126.88m	EL -123.22m

各試料の回折チャートは補足資料5.2-2(6)

全試料

XRD分析 測定諸元	
装 置:理学電気製 MultiFlex	Divergency Slit: 1°
Target: $Cu(K\alpha)$	Scattering Slit:1°
Monochrometer:Graphite 湾曲	Recieving Slit: 0.3mm
Voltage: 40KV	Scanning Speed: 2° /min
Current: 40mA	Scanning Mode:連続法
Detector: SC	Sampling Range: 0.02°
Calculation Mode: cps	Scanning Range:2~61°

試料採取位置 一白色鉱物(フィリプサイト)ー

5.2-2-22

(2) XRD分析(粘土分濃集)結果 (I/S混合層の構造判定,八面体シート構造判定)

〇敷地の粘土鉱物(試料a~u)のXRD分析結果を渡辺(1981)にプロットした位置は、イライト混合率10~35%部分に該当する。

試料採取箇所 (XRD分析(粘土分濃集)試料)		渡辺(1986, 1981)の図 へのプロット結果			
断層名		採取位置	標高	ライヒバイテ	イライト混合率
	e	岩盤調査坑 No.27孔	EL −16.45m [※]	R=0	20%程度
S-1	h	岩盤調査坑No.7-1孔	EL -17.45m	R=0	20%程度
	i	岩盤調査坑No.16付近	EL -17.90m	R=0	10%程度
	a	E-8.5+5"孔	EL 11.82m	R=0	10%程度
5-2-3-0	b	E-8.4' 孔	EL -10.61m	R=0	35%程度
5.4	с	F-9.3-4孔	EL -45.82m	R=0	20%程度
5-4	j	E-11.1SE-6孔	EL 19.91m	R=0	15%程度
S-5	k	R-8.1-1-3孔	EL -11.12m	R=0	10%程度
6.7	g	H-5.5-2孔	EL -3.75m	R=0	15%程度
3-7	I	H-5.64-2孔	EL 2.84m	R=0	10%程度
6.0	f	F-6.82-6孔	EL -1.97m	R=0	10%程度
5-6	m	F-6.80-2孔	EL −5.83m	R=0	15%程度
K-2	n	H-0.9-40孔	EL -6.36m	R=0	20%程度
K-14	o	H0.3-80孔	EL -27.48m	R=0	15%程度
	d	H-6.5-2孔	EL-59.10m	R=0	10%程度
	р	M-12.5"孔	EL -27.25m	R=0	10%程度
北市市市の	q	K-10.8SW-1孔	EL -18.88m	R=0	10%程度
→ F吸件部の 粘土鉱物脈	r	E-6.2孔	EL -123.37m	R=0	20%程度
(梦有)	s	H-6.5' 孔	EL -24.19m	R=0	35%程度
	t	H-1.1-80孔	EL -36.01m	R=0	15%程度
	u	H− −1.80 孔	EL -44.66m	R=0	10%程度

各試料の回折チャートは、次頁以降

試料a, c, d, g∼u		
XRD分析 測定諸元		
装置:Rigaku RINT2500V		
Target:Cu(K α)		
Voltage:40kV		
Detector:SC		
Divergence Slit:0.5°		
Receiving Slit:0.15mm		
Step size:0.02°		

試料b, e XRD分析 測定諸元 装置:Rigaku Ultima IV Target:Cu(Kα) Voltage:40kV Detector:D/teX Ultra Divergence Slit:0.5° Step size:0.01°

試料f XRD分析 測定諸元 装置:島津製作所 XRD-6100 Target:Cu(Kα) Voltage:30kV Detector:SC Divergence Slit:1.0° Receiving Slit:0.30mm Step size:0.02°

※今回修正

渡辺(1986, 1981)によるI/S混合層の構造判定結果

第788回審査会合 机上配布資料1 P.5.1-3-15 再掲

E-8.5+5"孔 -X線回折チャート 定方位(粘土分濃集)-

5.2-2-25

E-8.4'孔 -X線回折チャート 定方位(粘土分濃集)-

F-9.3-4孔 -X線回折チャート 定方位(粘土分濃集)-

Sm:スメクタイト

第788回審査会合 机上配布資料1 P.5.1-3-17 再掲

イライトが20%程度混合

		PI :斜長石		
Intensity (cps)	2500 2000 1500 500		スメクタイトのピーク回射 5.14° 10.18° 8° 15.98° (②-①) 5.04°	ff 角 一 一 一 一 一
	300	$\Delta 2 \theta_2 ($	(3-2) 5.80°	
	0	$\Delta 2 \theta_1 \xrightarrow{\Delta 2 \theta_2} 13.98$		
	0 5.14 5	10 15 20 25 30 35 40 L	/S混合層構造判定	
		20/0 (°) 渡辺(1986) I/S混合層相)による 構造判定 I/S混合層(R	(=0)
本に	試料は,水簸と遠心分離 よって,粒径0.2~2.0μmの	水簸(無処理) 水簸(EG処理) 渡辺(1981) イライト混合)による 含割合 イライトが209	%程
粘:	土分を濃集している。			

回折チャート (EG処理も合わせて表示)

H-6.5-2孔 -X線回折チャート 定方位(粘土分濃集)-

第788回審査会合 机上配布資料1 P.5.1-3-18 再掲

Sm:スメクタイト	
PI :斜長石	

回折チャート (EG処理も合わせて表示)

岩盤調査坑No.27孔 -X線回折チャート 定方位(粘土分濃集)-

(EG処理も合わせて表示)

F-6.82-6孔 -X線回折チャート 定方位(粘土分濃集)-

第788回審査会合 机上配布資料1 P.5.1-3-20 再掲

(EG処理も合わせて表示)

H-5.5-2孔 -X線回折チャート 定方位(粘土分濃集)-

岩盤調査坑No.7-1孔 -X線回折チャート 定方位(粘土分濃集)-

5.2-2-32

岩盤調査坑No.16付近 -X線回折チャート 定方位(粘土分濃集)-

EG処理スメクタイトのピーク回折角

	-
(1)5~8°	5.17°
②9~11°	10.36°
316~18°	15.92°
$\Delta 2\theta_1$ (2)–(1))	5.19°
$\Delta 2\theta_2$ (3–2)	5.56°

I/S混合層構造判定

渡辺(1986)による I/S混合層構造判定	I/S混合層(R=0)
渡辺(1981)による イライト混合割合	イライトが10%程度混合

回折チャート (EG処理も合わせて表示) E-11.1SE-6孔 -X線回折チャート 定方位(粘土分濃集)-

回折チャート (EG処理も合わせて表示)
R-8.1-1-3孔 -X線回折チャート 定方位(粘土分濃集)-

(EG処理も合わせて表示)

H-5.64-2孔 -X線回折チャート 定方位(粘土分濃集)-

F-6.80-2孔 -X線回折チャート 定方位(粘土分濃集)-

5.2-2-37

回折チャート (EG処理も合わせて表示)

H--0.3-80孔 -X線回折チャート 定方位(粘土分濃集)-

回折チャート (EG処理も合わせて表示) M-12.5"孔 -X線回折チャート 定方位(粘土分濃集)-

回折チャート (EG処理も合わせて表示)

K-10.8SW-1孔 -X線回折チャート 定方位(粘土分濃集)-

(EG処理も合わせて表示)

E-6.2孔 -X線回折チャート 定方位(粘土分濃集)-

(EG処理も合わせて表示)

H-6.5'孔 -X線回折チャート 定方位(粘土分濃集)-

回折チャート (EG処理も合わせて表示)

EG処理スメクタイトのピーク回折角

(1)5~8°	5.24°
②9 ~ 11°	10.06°
316~18°	16.02°
$\Delta 2\theta_1$ (2)–(1)	4.82°
$\Delta 2\theta_2$ (3–2)	5.96°

I/S混合層構造判定

渡辺(1986)による I/S混合層構造判定	I/S混合層(R=0)
渡辺(1981)による イライト混合割合	イライトが35%程度混合

(EG処理も合わせて表示)

(EG処理も合わせて表示)

八面体シート構造の検討

〇粘土鉱物の八面体シート構造を検討するため,粘土分を濃集した試料でXRD分析(不定方位)を実施し,d(060)ピーク位置により八面体 シート構造を判定した。分析の結果,敷地の粘土鉱物は「2八面体型」の粘土鉱物と判断される。

> d<1.52で2八面体, d≧1.52で3八面体

とする。

【d(060)からの2八面体・3八面体の判定】

粘土鉱物学 (白水, 2010)	 ・d(060)から、b=6×d(060)によって得られた"b値"は、 層面方向の周期を示す値として用いることができる。 2八面体型鉱物のd(060)の値は、一般のAI質では1.49 ~1.50Åであるが、鉄を含む海緑石などでは1.52Å近 くまで大きくなる。 3八面体型は1.52Åよりも大で、Mg質は1.53~1.54Å、 鉄を多く含めば1.56Å程度になる。
粘土鉱物の判 定のしかた (三條, 1992)	 ・粘土鉱物の識別は、一般には単位構造の高さd(Å) をもとに粘土鉱物を確認する方法がとられ、大区分法 として、プリズム反射(6軸方向)の周期による区別法 が行われている。 プリズム反射(060)が1.52Å以下のものは、 dioctahedral(2八面体型)、1.53Å以上のものは、 trioctahedral(3八面体型)として分けている。

グループ		主要八面体 陽イオン	代表的鉱物種	(060)のd (Å)
スメクタイト	2八面体型	AI	モンモリロナイト	1.49~1.5
		Fe ³⁺	ノントロナイト	1.51~1.52
	3八面体型	Mg, Fe	サポナイト	1.52~1.54
雲母	2八面体型	Al, Fe	イライト	1.48~1.50
		Fe ³⁺	海緑石	1.51
	3八面体型	Mg, Fe	黒雲母	1.54~1.56
緑泥石	3八面体型	Mg, Fe	クリノクロア	1.54
混合層鉱物	2八面体型	Al, Fe	イライト/スメクタイト混合層	1.50~1.51
	3八面体型	Mg, Fe	緑泥石/スメクタイト混合層	di:1.50
				tri:1.54

吉村(2001)を基に作成

【敷地の粘土鉱物の判定】

	試料採取位置	粒径	(060)のd (Å)	判定結果
		<0.1 <i>µ</i> m	1.506	
	岩盤調査坑 No.27孔 (試料e, S-1)	<0.4 µ m	1.507	
		<1 µ m	1.510	
		<5 <i>µ</i> m	1.508	っい両休刑
	E-8.4'孔 深度31.70m (試料b, S-2•S-6)	<0.1 <i>µ</i> m	1.509	2八面冲空
		<0.4 µ m	1.504	
		<1 µ m	1.510	
		<5 <i>µ</i> m	1.509	

・試料採取位置は,補足資料P.5.2-2-3 ・各試料の回折チャートは,次頁,次々頁

岩盤調査坑 No.27孔 -X線回折チャート 不定方位-

第788回審査会合 机上配布資料1 P.5.1-3-23 再掲

E-8.4'孔_深度31.70m -X線回折チャート 不定方位-

第788回審査会合 机上配布資料1 P.5.1-3-24 再掲

5.2-2-48

(3) 粘土鉱物のEPMA分析(定量)結果

第788回審査会合 机上配布資料1 P.5.1-3-26 加工

E-11.1SE-2孔_分析範囲A -EPMA分析結果, 化学組成検討-

単ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5
〔EPMA分析值	(%)]				
SiO ₂	48.73	47.61	51.39	45.29	45.28
TiO ₂	0.60	0.17	0.28	0.29	0.28
Al_2O_3	16.91	15.58	11.05	13.68	11.15
TFe_2O_3	9.60	10.24	11.76	11.32	9.58
MnO	0.02	0.04	0.04	0.04	0.08
MgO	2.88	3.80	4.71	2.60	4.72
CaO	2.14	1.01	1.80	1.93	1.14
Na ₂ O	0.90	0.14	0.08	0.35	0.11
K₂O	0.87	0.39	0.72	0.73	0.67
total	82.63	78.98	81.82	76.22	73.01

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

位置 組成式

- $1 \qquad (\mathsf{Ca}_{0.17}\mathsf{Na}_{0.13}\mathsf{K}_{0.08})\,(\mathsf{Fe}_{0.54}\mathsf{AI}_{1.13}\mathsf{Mg}_{0.32})\,(\mathsf{Si}_{3.64}\mathsf{AI}_{0.36})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $2 \qquad (Ca_{0.08}Na_{0.02}K_{0.04}Mg_{0.16})(Fe_{0.60}AI_{1.12}Mg_{0.28})(Si_{3.69}AI_{0.31}) O_{10}(OH)_2$
- $3 \qquad (\mathsf{Ca}_{0.15}\mathsf{Na}_{0.01}\mathsf{K}_{0.07}\mathsf{Mg}_{0.07})(\mathsf{Fe}_{0.67}\mathsf{Al}_{0.87}\mathsf{Mg}_{0.46})~(\mathsf{Si}_{3.88}\mathsf{Al}_{0.12})~\mathsf{O}_{10}\left(\mathsf{OH}\right)_2$
- $4 \qquad (\mathsf{Ca}_{0.17}\mathsf{Na}_{0.05}\mathsf{K}_{0.08}\mathsf{Mg}_{0.02})(\mathsf{Fe}_{0.70}\mathsf{AI}_{1.01}\mathsf{Mg}_{0.29})(\mathsf{Si}_{3.70}\mathsf{AI}_{0.30}) \ \mathsf{O}_{10}(\mathsf{OH})_2$
- $5 \qquad (\mathsf{Ca}_{0.10}\mathsf{Na}_{0.02}\mathsf{K}_{0.07}\mathsf{Mg}_{0.13})(\mathsf{Fe}_{0.61}\mathsf{AI}_{0.93}\mathsf{Mg}_{0.46})~(\mathsf{Si}_{3.82}\mathsf{AI}_{0.18})~\mathsf{O}_{10}\left(\mathsf{OH}\right)_2$

直交ニコル

分析位置(分析範囲A)

第788回審査会合 机上配布資料1 P.5.1-3-26 加工

E-11.1SE-2孔_分析範囲B -EPMA分析結果,化学組成検討-

単ニコル

直交ニコル

分析位置(分析範囲B)

【EPMA分析結果】

分析位置	6	7	8	9	10
EPMA分析值 (9	6)]				
SiO ₂	43.65	46.01	47.87	51.58	47.32
TiO ₂	0.21	0.25	0.44	0.33	0.26
Al ₂ O ₃	15.87	15.53	16.66	19.20	12.62
TFe_2O_3	10.20	7.57	7.89	6.22	12.07
MnO	0.04	0.01	0.01	0.01	0.02
MgO	1.79	2.09	3.89	2.39	3.63
CaO	1.68	1.62	2.03	2.97	1.51
Na ₂ O	0.53	0.94	0.35	1.48	0.36
K₂O	0.30	0.57	1.01	1.54	0.58
total	74.27	74.60	80.14	85.72	78.37

カリウムを含むことを確認した。

 \neg

【EPMA分析結果に基づく組成式】

位置 組成式

- $6 \qquad (\mathsf{Ca}_{0.15}\mathsf{Na}_{0.09}\mathsf{K}_{0.03}\mathsf{Mg}_{0.04})(\mathsf{Fe}_{0.64}\mathsf{AI}_{1.18}\mathsf{Mg}_{0.18})(\mathsf{Si}_{3.63}\mathsf{AI}_{0.37}) \ \mathsf{O}_{10}(\mathsf{OH})_2$
- 7 $(Ca_{0.14}Na_{0.15}K_{0.06})(Fe_{0.47}AI_{1.26}Mg_{0.25})(Si_{3.76}AI_{0.24})O_{10}(OH)_{2}$
- $8 \qquad (\mathsf{Ca}_{0.17}\mathsf{Na}_{0.05}\mathsf{K}_{0.10}\mathsf{Mg}_{0.07})(\mathsf{Fe}_{0.45}\mathsf{AI}_{1.17}\mathsf{Mg}_{0.38})\,(\mathsf{Si}_{3.66}\mathsf{AI}_{0.34})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- 9 $(Ca_{0.23}Na_{0.21}K_{0.14})(Fe_{0.33}AI_{1.31}Mg_{0.25})(Si_{3.69}AI_{0.31}) O_{10}(OH)_2$
- 10 $(Ca_{0.13}Na_{0.06}K_{0.06}Mg_{0.08})(Fe_{0.72}AI_{0.93}Mg_{0.35})(Si_{3.75}AI_{0.25}) O_{10}(OH)_{2}$

K-10.3SW孔_分析範囲A -EPMA分析結果, 化学組成検討-

第788回審査会合 机上配布資料1 P.5.1-3-27 一部修正

単ニコル

0.5mm

直交ニコル

0.5mm

分析位置(分析範囲A)

【EPMA分析結果】

分析位置	1	2	3	4	5			
〔EPMA分析值 (%)〕								
SiO ₂	44.89	46.74	49.02	50.94	45.01			
TiO ₂	0.69	0.59	0.61	0.43	0.32			
Al ₂ O ₃	10.92	11.59	10.23	13.53	8.24			
TFe ₂ O ₃	10.90	12.21	19.74	15.14	18.81			
MnO	0.03	0.05	0.01	0.03	0.18			
MgO	2.53	1.76	2.39	2.02	3.79			
CaO	2.50	2.74	1.74	2.98	1.64			
Na₂O	1.19	1.83	0.22	1.14	0.05			
K₂O	0.57	0.83	0.73	1.01	0.62			
total	74.21	78.34	84.69	87.22	78.67			

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

位置 組成式

- $1 \qquad (Ca_{0.23}Na_{0.19}K_{0.06})(Fe_{0.69}AI_{0.87}Mg_{0.32})(Si_{3.79}AI_{0.21}) O_{10}(OH)_{2}$
- $2 \qquad (Ca_{0.24}Na_{0.29}K_{0.09})(Fe_{0.74}AI_{0.87}Mg_{0.21})(Si_{3.77}AI_{0.23})O_{10}(OH)_2$
- $3 \qquad (\mathsf{Ca}_{0.14}\mathsf{Na}_{0.03}\mathsf{K}_{0.07}\mathsf{Mg}_{0.01})(\mathsf{Fe}_{1.12}\mathsf{Al}_{0.62}\mathsf{Mg}_{0.26})\,(\mathsf{Si}_{3.71}\mathsf{Al}_{0.29})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $4 \qquad (\mathsf{Ca}_{0.23}\mathsf{Na}_{0.16}\mathsf{K}_{0.09})(\mathsf{Fe}_{0.83}\mathsf{AI}_{0.86}\mathsf{Mg}_{0.22})\,(\mathsf{Si}_{3.70}\mathsf{AI}_{0.30})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $5 \qquad (\mathsf{Ca}_{0.14}\mathsf{Na}_{0.01}\mathsf{K}_{0.06}\mathsf{Mg}_{0.10})(\mathsf{Fe}_{1.16}\mathsf{AI}_{0.48}\mathsf{Mg}_{0.36})\,(\mathsf{Si}_{3.69}\mathsf{AI}_{0.31})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$

K-10.3SW孔_分析範囲B -EPMA分析結果,化学組成検討-

単ニコル

0.5mm

直交ニコル

0.5mm

分析位置(分析範囲B)

【EPMA分析結果】

分析位置	6	7	8	9	10		
<u>〔EPMA分析值 (%)〕</u>							
SiO ₂	50.19	50.61	45.91	48.25	48.47		
TiO ₂	0.52	0.30	0.53	0.46	0.89		
Al ₂ O ₃	12.55	20.12	11.45	11.93	12.41		
TFe ₂ O ₃	8.93	5.23	12.50	10.74	8.66		
MnO	0.08	0.02	0.04	0.04	0.02		
MgO	3.69	1.06	2.37	2.70	2.97		
CaO	2.72	7.10	2.77	2.85	2.62		
Na₂O	1.24	3.43	0.92	1.24	1.16		
K₂O	2.14	0.43	0.54	1.26	0.40		
total	82.06	88.29	77.02	79.47	77.60		

カリウムを含むことを確認した。

\frown

【EPMA分析結果に基づく組成式】

位	置	且成式	
	6 (Ca _{0.22} Na _{0.18} K _{0.21}) (Fe _{0.51} Al _{0.95} Mg _{0.42}) (Si _{3.82} Al _{0.18}) O ₁₀ (OH) ₂	_
	7 (Ca _{0.54} Na _{0.47} K _{0.04}) (Fe _{0.28} Al _{1.24} Mg _{0.11}) (Si _{3.57} Al _{0.43}) O ₁₀ (OH) ₂	
	8 (Ca _{0.24} Na _{0.15} K _{0.06}) (Fe _{0.77} Al _{0.85} Mg _{0.29}) (Si _{3.75} Al _{0.25}) O ₁₀ (OH) ₂	
	9 ($Ca_{0.24}Na_{0.19}K_{0.13})(Fe_{0.64}Al_{0.91}Mg_{0.32})(Si_{3.80}Al_{0.20})\;\;O_{10}(OH)_2$	
	10 (Ca _{0.22} Na _{0.18} K _{0.04}) (Fe _{0.52} Al _{1.01} Mg _{0.35}) (Si _{3.85} Al _{0.15}) O ₁₀ (OH) ₂	
$\overline{\nabla}$	Ŀ		_
		SCUTTON TO THE TOTAL SCIENCE S	分析値(K-10.3SW孔)
	セラドナイ		その他の分析値(敷地の粘土鉱物) いずれの分析値も 「I/S混合層」に分類される。
CEL	セラドナイ ADONIT	E INCREASING OCTRAHEDRAL CHARGE PYROL	その他の分析値(敷地の粘土鉱物) いずれの分析値も 「I/S混合層」に分類される。 ^{イト} PHYLLITE

第788回審査会合 机上配布資料1 P.5.1-3-28 一部修正

岩盤調查坑No.25切羽 - EPMA分析結果, 化学組成検討-

単ニコル

0.1mm

0.1mm

【EPMA分析結果】

分析位置	1	2	3	4	5		
〔EPMA分析值 (%)〕							
SiO ₂	48.50	48.32	48.48	45.99	49.61		
TiO ₂	0.07	0.05	0.07	0.86	0.35		
Al_2O_3	2.96	2.75	2.99	10.76	12.03		
TFe_2O_3	22.53	21.78	23.23	13.42	12.65		
MnO	0.13	0.00	0.08	0.11	0.09		
MgO	4.47	4.56	4.31	3.37	3.89		
CaO	0.76	0.75	0.69	0.94	1.09		
Na ₂ O	0.08	0.09	0.07	0.39	0.41		
K₂O	1.64	1.80	1.95	0.88	1.61		
total	81.14	80.10	81.87	76.72	81.73		

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

位置 組成式

- $1 \qquad (\mathsf{Ca}_{0.07}\mathsf{Na}_{0.01}\mathsf{K}_{0.17}\mathsf{Mg}_{0.09})\,(\mathsf{Fe}_{1.37}\mathsf{AI}_{0.19}\mathsf{Mg}_{0.44})\,(\mathsf{Si}_{3.91}\mathsf{AI}_{0.09})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $2 \qquad (\mathsf{Ca}_{0.07}\mathsf{Na}_{0.01}\mathsf{K}_{0.19}\mathsf{Mg}_{0.09}) (\mathsf{Fe}_{1.34}\mathsf{AI}_{0.20}\mathsf{Mg}_{0.46}) \ (\mathsf{Si}_{3.94}\mathsf{AI}_{0.06}) \ \mathsf{O}_{10} \left(\mathsf{OH}\right)_2$
- $3 \qquad (\mathsf{Ca}_{0.06}\mathsf{Na}_{0.01}\mathsf{K}_{0.20}\mathsf{Mg}_{0.09})\,(\mathsf{Fe}_{1.40}\mathsf{AI}_{0.17}\mathsf{Mg}_{0.43})\,(\mathsf{Si}_{3.89}\mathsf{AI}_{0.11})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $4 \qquad (\mathsf{Ca}_{0.08}\mathsf{Na}_{0.06}\mathsf{K}_{0.09}\mathsf{Mg}_{0.03})\,(\mathsf{Fe}_{0.83}\mathsf{AI}_{0.80}\mathsf{Mg}_{0.38})\,(\mathsf{Si}_{3.76}\mathsf{AI}_{0.24})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $5 \qquad (\mathsf{Ca}_{0.09}\mathsf{Na}_{0.06}\mathsf{K}_{0.16}\mathsf{Mg}_{0.05})\,(\mathsf{Fe}_{0.73}\mathsf{AI}_{0.88}\mathsf{Mg}_{0.39})\,(\mathsf{Si}_{3.80}\mathsf{AI}_{0.20})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$

【文献との対応】

 $\overline{}$

第788回審査会合 机上配布資料1 P.5.1-3-29 一部修正

E-8.5-2孔_分析範囲A -EPMA分析結果,化学組成検討-

単ニコル

0.5mm

直交ニコル[※]

※EPMA分析実施前の薄片写真に変更

0.5mm

分析位置(分析範囲A)

【EPMA分析結果】

分析位置	1	2	3	4	5			
〔EPMA分析值 (%)〕								
SiO ₂	48.78	45.53	51.65	49.16	50.02			
TiO ₂	0.40	0.57	0.48	0.28	0.34			
Al_2O_3	15.42	16.80	16.14	16.15	15.57			
TFe_2O_3	8.92	9.23	10.37	8.25	8.73			
MnO	0.01	0.01	0.04	0.00	0.01			
MgO	3.31	2.89	3.24	2.55	2.82			
CaO	1.22	1.36	1.83	2.14	2.09			
Na ₂ O	0.12	0.06	0.39	0.67	0.81			
K₂O	0.35	0.29	0.34	0.25	0.38			
total	78.53	76.74	84.48	79.46	80.76			

カリウムを含むことを確認した。

 \bigcirc

【EPMA分析結果に基づく組成式】

位置 組成式

- $1 \qquad (\mathsf{Ca}_{0.10}\mathsf{Na}_{0.02}\mathsf{K}_{0.03}\mathsf{Mg}_{0.09})\,(\mathsf{Fe}_{0.52}\mathsf{AI}_{1.18}\mathsf{Mg}_{0.30})\,(\mathsf{Si}_{3.78}\mathsf{AI}_{0.22})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $2 \qquad (\mathsf{Ca}_{0.12}\mathsf{Na}_{0.01}\mathsf{K}_{0.03}\mathsf{Mg}_{0.10})(\mathsf{Fe}_{0.55}\mathsf{AI}_{1.21}\mathsf{Mg}_{0.24}) \ (\mathsf{Si}_{3.63}\mathsf{AI}_{0.37}) \ \mathsf{O}_{10} \left(\mathsf{OH}\right)_2$
- $3 \qquad (\mathsf{Ca}_{0.14}\mathsf{Na}_{0.05}\mathsf{K}_{0.03}\mathsf{Mg}_{0.04})(\mathsf{Fe}_{0.57}\mathsf{AI}_{1.13}\mathsf{Mg}_{0.31}) \ (\mathsf{Si}_{3.75}\mathsf{AI}_{0.25}) \ \mathsf{O}_{10} \ (\mathsf{OH})_2$
- $4 \qquad (\mathsf{Ca}_{0.18}\mathsf{Na}_{0.10}\mathsf{K}_{0.02})(\mathsf{Fe}_{0.48}\mathsf{AI}_{1.23}\mathsf{Mg}_{0.29})\,(\mathsf{Si}_{3.77}\mathsf{AI}_{0.23})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- 5 $(Ca_{0.17}Na_{0.12}K_{0.04})(Fe_{0.50}AI_{1.17}Mg_{0.32})(Si_{3.78}AI_{0.22}) O_{10}(OH)_2$

E-8.5-2孔_分析範囲B -EPMA分析結果,化学組成検討-

単ニコル

0.5mm

直交ニコル

0.5mm

分析位置(分析範囲B)

【EPMA分析結果】

分析位置	6	7	8	9	10
〔EPMA分析值	(%)]				
SiO ₂	48.90	53.28	50.47	51.73	52.39
TiO ₂	0.43	0.39	0.42	0.41	0.46
Al ₂ O ₃	15.20	16.28	18.08	15.42	16.10
TFe ₂ O ₃	9.66	9.61	8.89	9.22	9.82
MnO	0.00	0.03	0.02	0.00	0.02
MgO	3.25	3.72	3.39	3.59	3.54
CaO	1.50	1.36	1.37	1.32	1.28
Na₂O	0.40	0.21	0.10	0.13	0.24
K₂O	0.31	0.30	0.28	0.31	0.34
total	79.64	85.18	83.01	82.12	84.19

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

F-8.5'孔 - EPMA分析結果, 化学組成検討-

単ニコル

0.1mm

直交ニコル

0.1mm

【EPMA分析結果】

分析位置	1	2	3	4	5
<u>[EPMA分析值</u>	(%)]				
SiO ₂	46.88	48.94	49.85	51.69	46.72
TiO ₂	0.41	0.32	0.22	0.35	0.27
Al ₂ O ₃	16.90	15.86	17.53	16.95	15.62
TFe ₂ O ₃	10.76	12.26	10.68	11.58	12.00
MnO	0.05	0.07	0.03	0.06	0.07
MgO	3.19	3.07	3.02	3.27	2.77
CaO	1.21	1.25	1.41	1.28	1.26
Na₂O	0.12	0.14	0.26	0.17	0.13
K₂O	0.35	0.35	0.39	0.32	0.32
total	79.86	82.26	83.39	85.66	79.15

カリウムを含むことを確認した。

\square

【EPMA分析結果に基づく組成式】

位置 組成式

- $1 \qquad (\mathsf{Ca}_{0.10}\mathsf{Na}_{0.02}\mathsf{K}_{0.03}\mathsf{Mg}_{0.13})\,(\mathsf{Fe}_{0.62}\mathsf{AI}_{1.14}\mathsf{Mg}_{0.23})\,(\mathsf{Si}_{3.61}\mathsf{AI}_{0.39})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $2 \qquad (Ca_{0.10}Na_{0.02}K_{0.03}Mg_{0.11})(Fe_{0.69}AI_{1.08}Mg_{0.23})(Si_{3.67}AI_{0.33}) \ O_{10}(OH)_2$
- $3 \qquad (\mathsf{Ca}_{0.11}\mathsf{Na}_{0.04}\mathsf{K}_{0.04}\mathsf{Mg}_{0.11})\,(\mathsf{Fe}_{0.59}\mathsf{AI}_{1.18}\mathsf{Mg}_{0.23})\,(\mathsf{Si}_{3.66}\mathsf{AI}_{0.34})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $4 \qquad (\mathsf{Ca}_{0.10}\mathsf{Na}_{0.02}\mathsf{K}_{0.03}\mathsf{Mg}_{0.11})(\mathsf{Fe}_{0.62}\mathsf{AI}_{1.13}\mathsf{Mg}_{0.24})\,(\mathsf{Si}_{3.70}\mathsf{AI}_{0.30})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $5 \qquad (\mathsf{Ca}_{0.11}\mathsf{Na}_{0.02}\mathsf{K}_{0.03}\mathsf{Mg}_{0.11})(\mathsf{Fe}_{0.70}\mathsf{AI}_{1.09}\mathsf{Mg}_{0.21})(\mathsf{Si}_{3.65}\mathsf{AI}_{0.35}) \ \mathsf{O}_{10}\left(\mathsf{OH}\right)_2$

単ニコル

【EPMA分析結果※】 ※:分析値3,5は三角ダイアグラム検討に用いない(詳細は次頁)。分析値6~9は追加分析した値である。

分析位置	1	2	4	6	7	8	9	
〔EPMA分析值(9	%)]							
SiO ₂	44.41	45.39	47.02	44.90	46.12	50.01	43.01	
TiO ₂	0.55	0.61	0.37	0.49	0.46	0.46	0.52	
Al ₂ O ₃	13.73	14.13	12.46	9.17	10.91	13.23	8.77	
TFe ₂ O ₃	11.51	8.53	11.53	13.73	13.06	10.29	16.74	
MnO	0.06	0.04	0.02	0.03	0.02	0.06	0.00	
MgO	2.23	2.87	1.83	3.78	2.25	2.01	2.18	
CaO	3.38	2.70	2.80	1.30	2.64	3.19	1.79	
Na ₂ O	0.87	0.56	0.92	0.26	0.69	1.86	0.47	
K₂Ō	0.45	0.22	0.41	0.45	0.49	0.55	0.56	カリウムを含むことを確認した。
total	77.19	75.04	77.35	74.11	76.64	81.66	74.03	
\checkmark								

2八面体型雲母粘土鉱物及び関連

(Srodon et al. (1984)に一部加筆)

セラドナイト

CELADONITE

LEUCOPHYLLITE

鉱物の化学組成

【EPMA分析結果に基づく組成式】

位置	組成式	位置	組成式
1	$(Ca_{0.30}Na_{0.14}K_{0.05})(Fe_{0.71}AI_{0.94}Mg_{0.27})(Si_{3.62}AI_{0.38})O_{10}(OH)_2$	7	$(Ca_{0.23}Na_{0.11}K_{0.05})(Fe_{0.81}Al_{0.84}Mg_{0.28})(Si_{3.78}Al_{0.22})O_{10}(OH)_2$
2	$(Ca_{0.24}Na_{0.09}K_{0.02})(Fe_{0.53}AI_{1.09}Mg_{0.35})(Si_{3.72}AI_{0.28})O_{10}(OH)_2$	8	$(Ca_{0.26}Na_{0.28}K_{0.05})(Fe_{0.59}AI_{1.00}Mg_{0.23})(Si_{3.81}AI_{0.19})\;\;O_{10}(OH)_2$
4	$(Ca_{0.24}Na_{0.14}K_{0.04})(Fe_{0.70}AI_{0.97}Mg_{0.22})(Si_{3.79}AI_{0.21})O_{10}(OH)_2$	9	$(Ca_{0.17}Na_{0.08}K_{0.06})(Fe_{1.09}Al_{0.61}Mg_{0.28})(Si_{3.72}Al_{0.28})O_{10}(OH)_2$
6	$(Ca_{0.12}Na_{0.04}K_{0.05}Mg_{0.07})(Fe_{0.88}AI_{0.72}Mg_{0.40})(Si_{3.80}AI_{0.20})O_{10}(OH)_2$		
	\bigtriangledown		
	【文献との対応】		

八面体電荷

1mm

1mm

5.2-2-58

直交ニコル

〇第788回審査会合時の分析結果のうち、分析位置3および5のEPMA分析値は、Fe₂O₃の値が25%以上であるため、三角ダイアグラム検討に用いないこととした。

■第788回審査会合時の分析結果

単ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5
<u>〔EPMA分析值</u>	(%)]				
SiO2	44.41	45.39	39.92	47.02	51.92
TiO ₂	0.55	0.61	0.40	0.37	0.40
Al_2O_3	13.73	14.13	6.09	12.46	9.13
TFe ₂ O ₃	11.51	8.53	30.60	11.53	26.43
MnO	0.06	0.04	0.01	0.02	0.03
MgO	2.23	2.87	1.38	1.83	3.31
CaO	3.38	2.70	1.29	2.80	1.66
Na ₂ O	0.87	0.56	0.08	0.92	0.10
K₂O	0.45	0.22	0.64	0.41	0.39
total	77.19	75.04	80.40	77.35	93.35

EPMAマッピング上では、明瞭な酸化鉄の 沈着が見られないが、Fe₂O₃が多くなって いる(25%以上)ため、検討に用いない。 EPMAマッピングにおいて、酸化鉄が沈着してFe₂O₃が 多くなっている(25%以上)部分であり、Totalの値も90% 以上であることから、検討に用いない。

酸化鉄が沈着して多くなっている部分

1mm

1mm

分析位置

0.5mm

※:分析値1, 2,5は三角ダイアグラム検討に用いない(詳細は次頁)。分析値6~11は追加分析した値である。

【EPMA分析結果[※]】

※:第788回審査会合時のTotal値は、Feの値として換算値(TFe₂O₃)に分析値(FeO)も加えて算出していたため、 換算値(TFe₂O₃)のみで算出したTotal値に修正。

単ニコル

分析位置	3	4	6	7	8	9	10	11
〔EPMA分析值	(%)]							
SiO ₂	53.54	46.71	44.79	46.09	47.42	47.79	48.88	47.52
TiO ₂	0.30	0.37	0.63	0.45	0.64	0.66	0.73	0.68
Al_2O_3	16.62	11.72	8.55	9.12	12.89	8.21	11.92	9.40
TFe_2O_3	6.81	6.00	11.48	7.99	8.07	9.57	11.71	12.85
MnO	0.15	0.18	0.07	0.37	0.07	0.19	0.06	0.08
MgO	2.85	3.30	3.61	3.90	3.17	4.46	3.13	4.27
CaO	4.51	2.78	1.55	2.13	2.38	2.69	2.13	1.47
Na ₂ O	2.64	1.74	0.47	0.77	1.32	0.49	0.54	0.21
K₂O	1.01	0.57	1.27	0.86	0.85	0.71	0.87	1.20
total💥	88.43	73.37	72.41	71.68	76.82	74.77	79.99	77.68

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

位置	組成式	位置	組成式
3	$(Ca_{0.33}Na_{0.35}K_{0.09})(Fe_{0.51}AI_{1.05}Mg_{0.29})(Si_{3.70}AI_{0.30})\;\;O_{10}(OH)_2$	8	$(Ca_{0.20}Na_{0.20}K_{0.09})(Fe_{0.69}AI_{0.93}Mg_{0.37})(Si_{3.74}AI_{0.26}) \hspace{0.1 cm}O_{10}(OH)_2$
4	$(Ca_{0.25}Na_{0.28}K_{0.06})(Fe_{0.54}AI_{0.98}Mg_{0.41})(Si_{3.85}AI_{0.15})O_{10}(OH)_2$	9	$(\text{Ca}_{0.23}\text{Na}_{0.08}\text{K}_{0.07}\text{Mg}_{0.04})(\text{Fe}_{0.85}\text{Al}_{0.66}\text{Mg}_{0.50})(\text{Si}_{3.87}\text{Al}_{0.13})\text{O}_{10}(\text{OH})_2$
6	$(Ca_{0.14}Na_{0.08}K_{0.14}Mg_{0.12})(Fe_{1.05}AI_{0.61}Mg_{0.33})(Si_{3.77}AI_{0.23})\;\;O_{10}(OH)_2$	10	$(Ca_{0.17}Na_{0.08}K_{0.08}Mg_{0.09})(Fe_{0.97}AI_{0.77}Mg_{0.26})(Si_{3.70}AI_{0.30})~O_{10}(OH)_2$
7	$(Ca_{0.19}Na_{0.13}K_{0.09}Mg_{0.02})(Fe_{0.74}AI_{0.79}Mg_{0.47})(Si_{3.89}AI_{0.11}) \ O_{10}\left(OH\right)_2$	11	$(Ca_{0.12}Na_{0.03}K_{0.12}Mg_{0.18})(Fe_{1.10}AI_{0.59}Mg_{0.32})(Si_{3.72}AI_{0.28}) \ O_{10}(OH)_2$

直交ニコル

分析位置

〇第788回審査会合時の分析結果のうち,分析位置1,2,5のEPMA分析値は,Totalの値が70%未満であるため,三角ダイアグラム検討に用いないこととした。

単ニコル

0.5mm

直交ニコル

<u>0.5mm</u>

分析位置

※:第788回審査会合時のTotal値は、Feの値として換算値(TFe₂O₃)に分析値(FeO)も加えて算出していたため、 換算値(TFe₂O₃)のみで算出したTotal値に修正。

分析位置	1	2	3	4	5
〔EPMA分析值	(%)]				
SiO ₂	43.75	40.37	53.54	46.71	42.45
TiO ₂	0.39	0.27	0.30	0.37	0.30
Al_2O_3	8.99	7.72	16.62	11.72	10.43
TFe ₂ O ₃	8.30	11.72	6.81	6.00	6.55
MnO	0.07	0.07	0.15	0.18	0.06
MgO	3.41	3.07	2.85	3.30	3.26
CaO	1.59	1.45	4.51	2.78	2.42
Na₂O	0.66	0.52	2.64	1.74	1.43
K₂O	0.53	0.54	1.01	0.57	0.54
total💥	67.69	65.73	88.43	73.37	67.44
	l				

Totalの値が小さい(70%以下)ため,三角ダイアグラム検討に 用いないこととした。

K-6.2-2孔 - EPMA分析結果, 化学組成検討-

1mm

1mm

【EPMA分析結果※】 ※:分析値1,2は三角ダイアグラム検討に用いない(詳細は次頁)。分析値6~9は追加分析した値である。

単ニコル

分析位置	3	4	5	6	7	8	9	
<u>〔EPMA分析值</u>	(%)]							
SiO ₂	53.80	54.59	49.03	52.09	53.08	49.02	50.04	
TiO ₂	0.64	0.66	0.89	1.06	1.01	1.39	1.32	
Al_2O_3	13.08	15.53	12.56	13.87	13.36	16.03	15.90	
TFe ₂ O ₃	9.40	7.11	8.94	9.41	9.56	10.30	10.67	
MnO	0.10	0.00	0.05	0.07	0.06	0.07	0.07	
MgO	4.82	3.85	4.97	5.13	4.23	3.66	3.67	
CaO	1.01	3.01	1.56	0.96	1.25	0.99	1.01	
Na₂O	0.60	1.78	0.48	0.67	1.58	0.69	0.69	
<u>K₂</u> O	1.24	1.38	1.17	0.73	1.16	0.78	0.69	カリウムを含むことを確認
tota	84.69	87.91	79.66	83.98	85.29	82.93	84.06	

【EPMA分析結果に基づく組成式】

位置	組成式	位置	組成式
3	$(Ca_{0.08}Na_{0.08}K_{0.11}Mg_{0.04})(Fe_{0.51}AI_{1.01}Mg_{0.48})(Si_{3.89}AI_{0.11})\;\;O_{10}(OH)_2$	7	$(Ca_{0.10}Na_{0.22}K_{0.11})(Fe_{0.52}Al_{0.98}Mg_{0.46})(Si_{3.84}Al_{0.16})\;\;O_{10}(OH)_2$
4	$(Ca_{0.23}Na_{0.24}K_{0.12})(Fe_{0.37}AI_{1.10}Mg_{0.40})(Si_{3.82}AI_{0.18})\;\;O_{10}(OH)_2$	8	$(Ca_{0.08}Na_{0.10}K_{0.07}Mg_{0.04})(Fe_{0.58}AI_{1.05}Mg_{0.37})(Si_{3.65}AI_{0.35})\;\;O_{10}(OH)_2$
5	$(Ca_{0.13}Na_{0.07}K_{0.12}Mg_{0.04})(Fe_{0.52}AI_{0.94}Mg_{0.54})(Si_{3.80}AI_{0.20})O_{10}(OH)_2$	9	$(Ca_{0.08}Na_{0.10}K_{0.06}Mg_{0.04})(Fe_{0.59}Al_{1.05}Mg_{0.37})(Si_{3.67}Al_{0.33})\;\;O_{10}(OH)_2$
6	(Ca _{0.07} Na _{0.09} K _{0.07} Mg _{0.07}) (Fe _{0.52} Al _{0.99} Mg _{0.49}) (Si _{3.80} Al _{0.20}) O ₁₀ (OH) ₂		

直交ニコル

分析位置

〇第788回審査会合時の分析結果のうち,分析位置1,2のEPMA分析値は,Totalの値が90%以上※であるため,三角ダイアグラム検討に 用いないこととした。

■第788回審査会合時の分析結果

単ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5
〔EPMA分析值	(%)]				
SiO ₂	56.36	53.59	53.80	54.59	49.03
TiO ₂	0.88	1.42	0.64	0.66	0.89
Al_2O_3	14.87	19.05	13.08	15.53	12.56
TFe_2O_3	10.31	11.20	9.40	7.11	8.94
MnO	0.04	0.08	0.10	0.00	0.05
MgO	4.35	3.98	4.82	3.85	4.97
CaO	1.34	0.83	1.01	3.01	1.56
Na ₂ O	0.62	0.31	0.60	1.78	0.48
K₂O	0.75	0.67	1.24	1.38	1.17
total	89.52	91.11	84.69	87.91	79.66
		7			

Totalの値が大きい(小数点第1位を四捨五入で90%以上)ため、 三角ダイアグラム検討に用いないこととした。

直交ニコル

1mm

※小数点第1位の四捨五入による値

H-6.5-2孔(深度70.70m)_分析範囲A -EPMA分析結果, 化学組成検討-

単ニコル

1mm

直交ニコル

分析位置(拡大範囲A)

【EPMA分析結果】

分析位置	1	2	3	4	5	
〔EPMA分析值(%)]					
SiO ₂	47.95	50.25	50.28	53.08	49.51	
TiO	0.58	0.34	0.85	0.52	0.41	
Al_2O_3	8.75	10.66	9.47	11.15	10.29	
TFe ₂ O ₃	12.39	11.36	13.13	12.37	11.42	
MnO	0.15	0.03	0.05	0.00	0.00	
MgO	3.98	3.47	3.31	3.49	5.11	
CaO	0.64	1.84	1.42	1.90	0.67	
Na ₂ O	0.54	1.25	1.04	1.52	0.42	
K_2_O	1.71	1.63	1.61	2.37	2.28	カリウムを含むことを確認した。
tota	76.69	80.82	81.15	86.41	80.10	

【EPMA分析結果に基づく組成式】

位置	組成式
1	$(Ca_{0.06}Na_{0.09}K_{0.18}Mg_{0.01})(Fe_{0.76}Al_{0.76}Mg_{0.48})(Si_{3.92}Al_{0.08})O_{10}(OH)_2$
2	$(Ca_{0.15}Na_{0.19}K_{0.16})(Fe_{0.66}AI_{0.86}Mg_{0.40})(Si_{3.89}AI_{0.11})\;O_{10}\left(OH\right)_2$
3	$(Ca_{0.12}Na_{0.16}K_{0.16})(Fe_{0.77}AI_{0.76}Mg_{0.38})(Si_{3.90}AI_{0.10}) O_{10}(OH)_2$
4	$(Ca_{0.15}Na_{0.22}K_{0.22})(Fe_{0.68}AI_{0.83}Mg_{0.38})(Si_{3.87}AI_{0.13})O_{10}(OH)_2$
5	$(Ca_{0.06}Na_{0.06}K_{0.23}Mg_{0.08})(Fe_{0.67}Al_{0.81}Mg_{0.52})(Si_{3.86}Al_{0.14})O_{10}(OH)_2$

H-6.5-2孔(深度70.70m)_分析範囲B -EPMA分析結果,化学組成検討-

単ニコル

1mm

【EPMA分析結果】

分析位置	6	7	8	9	10	
[EPMA分析值(%	6)]					
SiO ₂	52.84	47.83	51.16	51.25	48.10	
TiO	0.53	0.53	0.69	0.22	0.24	
Al ₂ O ₃	15.47	10.11	13.13	5.05	10.16	
TFe ₂ O ₃	9.13	12.26	12.44	20.43	11.21	
MnO	0.00	0.05	0.05	0.00	0.04	
MgO	3.04	3.98	3.35	5.37	3.00	
CaO	3.87	1.00	1.74	1.18	1.91	
Na ₂ O	1.56	0.58	1.22	0.87	2.86	
K₂0	0.64	0.96	1.37	1.40	0.68	カリウムを含むことを確認した
total	87.07	77.29	85.14	85.77	78.21	

【EPMA分析結果に基づく組成式】

位置	組成式
6	$(Ca_{0.29}Na_{0.21}K_{0.06})(Fe_{0.49}AI_{1.05}g_{0.32})(Si_{3.76}AI_{0.24})O_{10}(OH)_2$
7	$(Ca_{0.09}Na_{0.09}K_{0.10}Mg_{0.04})(Fe_{0.74}Al_{0.82}Mg_{0.44})(Si_{3.86}Al_{0.14}) O_{10}(OH)_2$
8	$(Ca_{0.14}Na_{0.17}K_{0.13})(Fe_{0.69}AI_{0.90}Mg_{0.37})(Si_{3.76}AI_{0.24})\;O_{10}(OH)_2$
9	$(Ca_{0.10}Na_{0.13}K_{0.13}Mg_{0.08})(Fe_{1.16}AI_{0.32}Mg_{0.53})(Si_{3.87}AI_{0.13})\;O_{10}(OH)_2$
10	$(Ca_{0.16}Na_{0.45}K_{0.07})(Fe_{0.68}Al_{0.83}Mg_{0.36})(Si_{3.86}Al_{0.14})O_{10}(OH)_2$

MUSCOVITE 【文献との対応】 INCREASING 2八面体型雲母粘土鉱物及び関連 鉱物の化学組成 (Srodon et al. (1984)に一部加筆) \bigcirc

● 分析値(H-6.5-2孔(深度70.70m))

その他の分析値(敷地の粘土鉱物)

いずれの分析値も 「I/S混合層」に分類される。

直交ニコル

分析位置(拡大範囲B)

H-6.6-1孔_分析範囲A -EPMA分析結果,化学組成検討-

単ニコル

1mm

直交ニコル

分析位置(分析範囲A)

1mm

【EPMA分析結果】

	1	2	3	4	5				
〔EPMA分析值 (%)〕									
SiO ₂	49.75	49.54	46.94	52.95	53.14				
TiO ₂	0.47	0.63	0.68	0.59	0.50				
Al ₂ O ₃	11.93	10.69	12.00	13.52	12.95				
TFe_2O_3	10.52	15.00	13.26	13.97	12.19				
MnO	0.06	0.07	0.04	0.02	0.04				
MgO	3.42	3.80	2.85	2.31	3.09				
CaO	1.45	1.29	2.06	1.99	1.20				
Na ₂ O	1.90	1.00	1.49	1.92	1.76				
K₂O	1.34	1.24	1.03	0.99	0.89				
tota	80.83	83.24	80.35	88.26	85.76				

カリウムを含むことを確認した。

 $\overline{}$

【EPMA分析結果に基づく組成式】

H-6.6-1孔_分析範囲B -EPMA分析結果,化学組成検討-

単ニコル

1mm

直交ニコル

分析位置(分析範囲B)

1mm

【EPMA分析結果】

分析位置	6	7	8	9	10	
〔EPMA分析值(%)]					
SiO ₂	49.25	46.55	50.13	47.39	45.22	
TiO	1.16	0.38	0.59	0.43	0.29	
Al ₂ O ₃	13.61	17.39	15.10	12.27	15.67	
TFe ₂ O ₃	9.16	5.92	7.92	9.80	5.69	
MnO	0.52	0.41	0.09	0.01	0.03	
MgO	2.14	1.89	2.27	3.09	2.23	
CaO	1.58	3.69	3.11	1.44	4.34	
Na ₂ O	1.70	3.05	1.91	1.07	1.79	
K₂O	0.94	0.62	0.94	1.09	0.60	カリウムを含
total	80.04	79.89	82.06	76.58	75.85	

リウムを含むことを確認した。

 \checkmark

【EPMA分析結果に基づく組成式】

M-12.5"孔 - EPMA分析結果, 化学組成検討-

単ニコル

砕屑岩脈中の粘土鉱物 【EPMA分析結果】 分析位置 2 3 4 5 8 9 10 1 6 7 [EPMA分析值(%)] SiO₂ 43.67 48.23 49.82 53.10 49.11 51.31 49.22 48.87 49.79 49.28 TiO₂ 0.58 0.41 0.35 0.32 0.57 0.43 0.45 0.39 0.39 0.47 Al_2O_3 8.56 10.15 10.50 9.35 14.55 10.68 11.89 9.13 12.15 12.58 TFe₂O₃ 14.05 14.05 14.47 15.86 11.38 15.05 11.98 15.74 12.90 12.93 MnO 0.05 0.03 0.07 0.08 0.08 0.19 0.09 0.09 0.04 0.07 MgO 3.52 3.71 3.69 4.53 2.31 4.09 3.69 3.64 3.47 2.94 CaO 1.92 4.68 2.57 2.41 1.57 2.42 3.24 1.99 3.40 3.44 Na₂O 1.03 0.94 0.93 0.56 2.00 0.71 1.24 0.60 1.30 1.47 カリウムを含むことを 2.35 3.23 3.07 3.40 1.45 1.49 K₂O 0.34 0.94 1.49 2.50 確認した。 75.72 83.31 total 85.31 88.76 86.12 85.22 82.74 81.93 85.94 84.66

分析位置(下は砕屑岩脈を加筆)

【EPMA分析結果に基づく組成式】

 $\overline{}$

位置	組成式	位置	組成式
1	$(Ca_{0.18}Na_{0.17}K_{0.26})(Fe_{0.90}AI_{0.58}Mg_{0.45})(Si_{3.72}AI_{0.28})\;\;O_{10}(OH)_2$	6	$(Ca_{0.19}Na_{0.10}K_{0.03}Mg_{0.01})(Fe_{0.84}Al_{0.72}Mg_{0.44})(Si_{3.79}Al_{0.21}) \hspace{0.1 cm}O_{10}\left(OH\right)_2$
2	$(Ca_{0.21}Na_{0.14}K_{0.32})(Fe_{0.82}AI_{0.66}Mg_{0.43})(Si_{3.73}AI_{0.27})O_{10}(OH)_2$	7	$(Ca_{0.26}Na_{0.18}K_{0.09})(Fe_{0.69}AI_{0.81}Mg_{0.42})(Si_{3.75}AI_{0.25})O_{10}(OH)_2$
3	$(Ca_{0.19}Na_{0.14}K_{0.30})(Fe_{0.82}AI_{0.68}Mg_{0.41})(Si_{3.75}AI_{0.25})\;\;O_{10}(OH)_2$	8	$(Ca_{0.17}Na_{0.09}K_{0.15})(Fe_{0.92}AI_{0.64}Mg_{0.42})(Si_{3.80}AI_{0.20})O_{10}(OH)_2$
4	$(Ca_{0.12}Na_{0.08}K_{0.31})(Fe_{0.86}AI_{0.63}Mg_{0.49})(Si_{3.84}AI_{0.16})\;\;O_{10}(OH)_2$	9	$(Ca_{0.27}Na_{0.19}K_{0.24})(Fe_{0.72}AI_{0.77}Mg_{0.38})(Si_{3.70}AI_{0.30})\;\;O_{10}(OH)_2$
5	$(Ca_{0.37}Na_{0.29}K_{0.14})(Fe_{0.63}AI_{0.89}Mg_{0.25})(Si_{3.62}AI_{0.38})\;\;O_{10}(OH)_2$	10	$(Ca_{0.28}Na_{0.21}K_{0.14})(Fe_{0.73}AI_{0.81}Mg_{0.33})(Si_{3.70}AI_{0.30})\;\;O_{10}(OH)_2$

E-8.60孔 - EPMA分析結果, 化学組成検討-

単ニコル

1mm

直交ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5
<u>〔EPMA分析值(</u>	(%)]				
SiO ₂	51.73	49.34	52.14	52.03	50.10
TiO ₂	0.57	0.53	0.54	0.64	0.54
Al ₂ O ₃	15.44	17.80	16.89	15.03	14.44
TFe ₂ O ₃	10.37	8.53	9.33	10.88	10.82
MnO	0.12	0.19	0.12	0.08	0.08
MgO	2.95	2.24	2.78	2.99	3.06
CaO	3.20	4.86	4.01	3.17	2.37
Na ₂ O	0.90	1.49	1.36	1.30	0.94
K₂O	0.78	0.63	0.73	1.02	1.10
total	86.05	85.62	87.89	87.13	83.44

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

CELADONITE

LEUCOPHYLLITE

INCREASING OCTRAHEDRAL CHARGE 八面体電荷

分析位置

R-8.1-1-3孔 - EPMA分析結果, 化学組成検討-

単ニコル

1mm

直交ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5
〔EPMA分析值	(%)]				
SiO ₂	53.42	51.59	52.73	51.24	48.25
TiO ₂	0.56	0.50	0.75	0.68	0.67
Al ₂ O ₃	13.86	15.17	14.59	13.53	13.34
TFe_2O_3	10.42	9.49	12.76	10.83	10.46
MnO	0.01	0.04	0.05	0.01	0.00
MgO	4.03	3.28	3.94	3.57	3.37
CaO	1.82	2.62	2.09	2.03	1.79
Na₂O	0.28	0.92	0.73	0.44	0.35
K₂O	0.61	0.48	0.55	0.73	0.62
total	85.00	84.10	88.18	83.07	78.85

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

分析位置
H-0.9-40孔 - EPMA分析結果, 化学組成検討-

単ニコル

1mm

直交ニコル

1mm

分析位置

【EPMA分析結果】

分析位置	1	2	3	4	5
<u>〔EPMA分析值(</u>	%)]				
SiO ₂	48.68	53.28	48.15	52.61	51.37
TiO ₂	0.71	0.76	0.40	0.56	0.63
Al ₂ O ₃	11.07	13.58	12.38	10.92	13.02
TFe₂O ₃	11.00	12.15	11.85	13.98	11.89
MnO	0.01	0.01	0.03	0.00	0.02
MgO	4.13	3.60	3.13	3.82	3.42
CaO	0.51	0.64	0.70	0.49	0.49
Na ₂ O	1.10	1.93	1.47	1.60	1.82
K₂O	0.88	0.82	0.77	1.13	0.84
total	78.09	86.76	78.88	85.12	83.49

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

H--0.3-80孔 -EPMA分析結果, 化学組成検討-

単ニコル

1mm

直交ニコル

1mm

分析位置

【EPMA分析結果】

分析位置	1	2	3	4	5
〔EPMA分析值	(%)]				
SiO ₂	46.71	49.39	48.95	44.23	52.32
TiO ₂	0.55	0.38	0.45	0.49	0.94
Al_2O_3	10.61	11.65	10.60	9.86	13.66
TFe_2O_3	14.17	14.62	15.29	16.03	10.29
MnO	0.17	0.20	0.20	0.32	0.06
MgO	2.17	1.86	2.39	1.95	3.48
CaO	2.43	0.95	1.18	0.76	1.11
Na₂O	1.20	2.54	3.01	1.24	2.78
K₂O	0.97	1.52	1.05	1.29	1.56
total	78.97	83.11	83.12	76.18	86.20

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

	位置	組成式	
	1	$(Ca_{0.21}Na_{0.19}K_{0.10})(Fe_{0.86}AI_{0.76}Mg_{0.26})(Si_{3.76}AI_{0.24}) \hspace{0.1 cm}O_{10}(OH)_2$	
	2	$(Ca_{0.08}Na_{0.38}K_{0.15})(Fe_{0.84}AI_{0.83}Mg_{0.21})(Si_{3.78}AI_{0.22})O_{10}(OH)_2$	
	3	$(Ca_{0.10}Na_{0.45}K_{0.10})(Fe_{0.88}AI_{0.72}Mg_{0.27})(Si_{3.76}AI_{0.24}) \hspace{0.1 cm}O_{10}(OH)_2$	
	4	$(Ca_{0.07}Na_{0.20}K_{0.14})(Fe_{1.01}Al_{0.70}Mg_{0.24})(Si_{3.72}Al_{0.28}) O_{10}(OH)_2$	
-	5	$(Ca_{0.09}Na_{0.39}K_{0.14})(Fe_{0.56}AI_{0.95}Mg_{0.38})(Si_{3.79}AI_{0.21})\;\;O_{10}(OH)_2$	
	7		
【文南 2八面体 鉱物の ⁴ (Srodor	状との対応 本型雲母 化学組成 n et al. (1)	5】 MUSCOVITE 384)に一部加筆) 984)に一部加筆) 10% 10% 10% 10% 10% 10% 10% 10%	分析値(H0.3-80孔)
с	セラド: ELADON		その他の分析値(敷地の粘土鉱物) いずれの分析値も 「I/S混合層」に分類される。 YLLITE
LEUCO	OPHYLLI		5.2-2-72

H'--1.3孔_分析範囲A -EPMA分析結果, 化学組成検討-

単ニコル

1mm

直交ニコル

1mm

分析位置(分析範囲A)

EPMA分析結果		
	 1	_

ľ

分析位置	1	2	3	4	5
<u>〔EPMA分析值(</u>	%)]				
SiO ₂	46.10	46.27	46.37	45.50	48.11
TiO ₂	0.49	1.83	0.70	0.41	0.56
Al ₂ O ₃	8.99	10.53	10.30	13.78	11.37
TFe ₂ O ₃	11.97	9.56	9.81	6.28	8.60
MnO	0.03	0.04	0.07	0.01	0.02
MgO	5.19	3.66	4.73	3.78	5.05
CaO	1.58	1.47	1.30	3.06	1.98
Na ₂ O	1.28	1.69	1.38	1.74	1.40
K₂O	1.93	1.82	1.78	1.18	1.94
total	77.57	76.85	76.43	75.74	79.02

カリウムを含むことを確認した。

 $\overline{}$

【EPMA分析結果に基づく組成式】

位置 組成式

- $1 \qquad (\mathsf{Ca}_{0.14}\mathsf{Na}_{0.20}\mathsf{K}_{0.20}\mathsf{Mg}_{0.02})(\mathsf{Fe}_{0.74}\mathsf{Al}_{0.64}\mathsf{Mg}_{0.62})\,(\mathsf{Si}_{3.78}\mathsf{Al}_{0.22})\,\,\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $2 \qquad (Ca_{0.13}Na_{0.27}K_{0.19})(Fe_{0.59}AI_{0.80}Mg_{0.45})(Si_{3.78}AI_{0.22}) O_{10}(OH)_2$
- $3 \qquad (\mathsf{Ca}_{0.11}\mathsf{Na}_{0.22}\mathsf{K}_{0.19})(\mathsf{Fe}_{0.61}\mathsf{AI}_{0.80}\mathsf{Mg}_{0.58})(\mathsf{Si}_{3.81}\mathsf{AI}_{0.19}) \ \mathsf{O}_{10}(\mathsf{OH})_2$
- 4 $(Ca_{0.27}Na_{0.28}K_{0.12})(Fe_{0.39}AI_{1.05}Mg_{0.46})(Si_{3.72}AI_{0.28}) O_{10}(OH)_2$
- 5 $(Ca_{0.17}Na_{0.21}K_{0.20})(Fe_{0.51}AI_{0.86}Mg_{0.59})(Si_{3.80}AI_{0.20}) O_{10}(OH)_{2}$

H'--1.3孔_分析範囲B -EPMA分析結果, 化学組成検討-

単ニコル

1mm

直交ニコル

1mm

分析位置(分析範囲B)

分析位置	6	7	8	9	10
〔EPMA分析値 (%)〕					
SiO ₂	49.45	48.25	50.10	45.30	49.85
TiO ₂	0.50	0.77	0.50	0.56	0.60
Al ₂ O ₃	12.44	10.17	14.82	15.40	12.35
TFe ₂ O ₃	8.92	9.52	6.76	5.11	7.33
MnO	0.03	0.05	0.02	0.00	0.02
MgO	4.90	5.72	3.92	3.22	5.73
CaO	2.07	0.82	2.72	4.32	1.51
Na ₂ O	1.54	1.18	2.08	2.11	1.65
K₂O	2.37	2.46	1.24	1.32	1.76
total	82.21	78.95	82.17	77.35	80.79

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

【EPMA分析結果】

位置 組成式 (Ca_{0.17}Na_{0.23}K_{0.23}) (Fe_{0.51}Al_{0.89}Mg_{0.56}) (Si_{3.77}Al_{0.23}) O₁₀ (OH)₂ 6 (Ca_{0.07}Na_{0.18}K_{0.25}Mg_{0.03})(Fe_{0.57}Al_{0.78}Mg_{0.65})(Si_{3.83}Al_{0.17})O₁₀(OH)₂ 7 (Ca_{0.22}Na_{0.30}K_{0.12})(Fe_{0.38}Al_{1.08}Mg_{0.44})(Si_{3.77}Al_{0.23})O₁₀(OH)₂ 8 (Ca_{0.37}Na_{0.33}K_{0.14}) (Fe_{0.31}Al_{1.10}Mg_{0.39}) (Si_{3.64}Al_{0.36}) O₁₀ (OH)₂ 9 $(Ca_{0.12}Na_{0.24}K_{0.17}Mg_{0.01})(Fe_{0.42}AI_{0.93}Mg_{0.64})(Si_{3.82}AI_{0.18}) O_{10}(OH)_{2}$ 10 $\overline{}$ 【文献との対応】 MUSCOVITE 2八面体型雲母粘土鉱物及び関連 INCREASING 鉱物の化学組成 (Srodon et al. (1984)に一部加筆) 分析値(H'--1.3孔) ^{DIOCTANKEDRAL MICAS} その他の分析値(敷地の粘土鉱物) \bigcirc 3 TETRAHEDRAL CHARGE いずれの分析値も 「I/S混合層」に分類される。 セラドナイト イロフィライト PYROPHYLLITE CELADONITE INCREASING OCTRAHEDRAL CHARGE 八面体電荷 5.2-2-74 LEUCOPHYLLITE

H-6.5-2孔(深度81.90m) - EPMA分析結果, 化学組成検討-

単ニコル

2mm

直交ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5
〔EPMA分析值	(%)]				
SiO ₂	48.89	49.72	53.54	51.67	49.30
TiO ₂	0.46	0.28	0.44	0.47	0.45
Al_2O_3	11.72	13.54	17.19	15.47	13.22
TFe_2O_3	11.16	10.93	8.67	9.92	11.44
MnO	0.03	0.02	0.02	0.03	0.01
MgO	5.00	3.43	3.93	3.87	4.33
CaO	0.70	1.53	0.77	0.83	0.71
Na ₂ O	0.21	0.55	0.30	0.38	0.28
K₂O	0.69	0.73	0.79	0.62	0.63
total	78.85	80.74	85.65	83.26	80.38

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

位置	組成式	
1	$(Ca_{0.06}Na_{0.03}K_{0.07}Mg_{0.14})(Fe_{0.66}AI_{0.90}Mg_{0.44})(Si_{3.82}AI_{0.18})O_{10}(OH)_2$	_
2	$(Ca_{0.13}Na_{0.08}K_{0.07}Mg_{0.04})(Fe_{0.63}AI_{1.02}Mg_{0.35})(Si_{3.80}AI_{0.20})O_{10}(OH)_2$	
3	$(Ca_{0.06}Na_{0.04}K_{0.07}Mg_{0.10})(Fe_{0.46}Al_{1.22}Mg_{0.31})(Si_{3.79}Al_{0.21}) \hspace{0.1 in}O_{10}\left(OH\right)_2$	
4	$(Ca_{0.07}Na_{0.05}K_{0.06}Mg_{0.09})(Fe_{0.55}AI_{1.12}Mg_{0.33})\left(Si_{3.79}AI_{0.21}\right)O_{10}\left(OH\right)_2$	
5	$(Ca_{0.06}Na_{0.04}K_{0.06}Mg_{0.13})(Fe_{0.66}AI_{0.97}Mg_{0.37})(Si_{3.78}AI_{0.22})\;\;O_{10}(OH)_2$	_
【文献との対 2八面体型雲母 鉱物の化学組成 (Srodon et al.() CELA LEUCOPH	応】 #粘土鉱物及び関連 t 1984)に一部加筆) 45% 0.8 0.6 0.4 0.2 PYR 10% 0.6 0.4 0.2 PYR 10% 10% 0.4 0.2 PYR 10% 10% 10% 10% 10% 10% 10% 10%	 分析値(H-6.5-2孔(深度81.90m)) その他の分析値(敷地の粘土鉱物) いずれの分析値も 「I/S混合層」に分類される。 COPHYLLITE 5 2-2-75

分析位置

三角ダイアグラム検討に用いる分析値の基準

○三角ダイアグラム検討に用いる分析値の基準は、日本粘土学会編(2009)に記載の2八面体型スメクタイトの化学組成を参考に設定した。
 ○敷地の粘土鉱物のEPMA分析値のTotalの値が100%とならない要因としては、粘土鉱物に含まれるH₂Oの存在が考えられる。
 ○日本粘土学会編(2009)に記載の2八面体型スメクタイトの化学組成分析結果を参考に、Feの割合を最大で概ね25%、H₂Oを除いたTotalの値を70~90%と評価し、三角ダイアグラム検討に用いる基準を「Totalの値70~90%かつFe₂O₃の割合25%未満」と設定した。

日本	▷粘土	学会	編(2	2009)												>	三角ダイアグラム検討 に用いる基準
				表	2.8.1	2 八面体	型スメク	タイト	の化学組	成と化学	《構造式							
	1	L	2	3	9	10	C1	C2	W1	W2	4	5	6	7	8			
SiO_2	53	.98 51	.14	50.72	55.80	59.30	61.77	62.23	64.80,	-62.00	47.38	53.12	51.66	39.92	42.40			
Al_2O	3 15	.97 19	9.76	18.12	28.60	36.11	19.85	21.03	24.54	23.42	21.27	0.36	8.13	5.37	5.60			
Fe ₂ O	3 0.	95 0	.85	2.41	0.41	0.50	1.95	1.75	1.27	3.74	10.66	29.69	14.08	29.46	32.53		5	Fe(Fe ₂ O ₃)の割合は,最大で
FeO	0.	19	-	1.02	-	-		0.48	0.56	0.32	-		0.51	0.28				概ね25%とする。
MgO	4.	47 3	.22	4.29	2.03	0.10	5.56	5.70	1.60	0.93	0.42	2.49	4.21	0.93	0.32	i í		
CaO	2.	30 1	.62	0.80	2.23	0.02	1.89	0.00	0.00	0.68	0.78	1.51	0.15	2.46		i		
Na ₂ C	0.	13 0	.04	3.00	0.09	3.98	0.07	0.65	0.40	0.72	0.12		1.21			i		
K_2O	0.	12 0	.11	0.62	0.48	0.11	0.09	0.00	0.60	2.63	0.08	0.30	0.71	1	5.14	i		
H ₂ O	+ 9.	12 7	.99	6.87	9.70		7.72	7.38	6.71	5.21	9.08		6.74	7.00				H。Oを除いたTotalの割合は
H ₂ O ⁻	- 13.	06 14	1.81	11.90	*	100 10h	*	*	*	*	9.60	12.5#	10.13	14.38	14.03#		>	70~00%程度とする
Total(9	%) ^a 100	.62 99	0.75	99.90	99.60	100.12^{5}	99.14	99.22	100.48	99.65	99.39	100.05	98.40	99.88	100.02			70~30701至反こ9 る。
Si	4.	00 3	.88	3.85	3.65	3.48	3.91	3.86	3.96	3.92	3.56	4.00	3.97	3.50	3.46			
Al	0.	0 00	.12	0.15	0.35	0.52	0.09	0.14	0.04	0.08	0.44	0.00	0.03	0.50	0.38			
Σ	4.	00 4	.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00**			
Al	1.	48 1	.64	1.46	1.85	1.98	1.38	1.39	1.72	1.66	1.45	0.03	0.74	0.03	0.14			
Fe ³⁺	0.	05 0	.05	0.13	0.02	0.02	0.09	0.08	0.06	0.18	0.60	1.70	0.81	2.02	1.84			
Fe ²⁺			-	0.06	-	-		0.02	0.03	0.02	-		0.03					
Mg	0.	52 0	.36	0.45	0.20	0.01	0.54	0.55	0.15	0.09	0.05	0.27	0.48		0.02			
Σ	2.	05 2	.05	2.10	2.07	2.01	2.01	2.04	1.96	1.95	2.10	2.00	2.08	2.05	2.00			
Ca/2	2 0.	39 0	.20	0.03	0.31	-					0.13	0.12	0.01	0.35				
Na	0.0	02 0	.02	0.42	0.01	0.50					0.02	0.00	0.18	0.02	0 50			
.K			~	0.02	0.04	-	0.00	0.50	0.04	0.04	0.01	0.03	0.07	0.05	0.56			
I.L.O	. U.	37 0	.33	0.36	0.34	0.50	0.60	0.59	0.34	0.34	0.19	0.27	10506	0.35	0.56			
# : H ₂ 1. Ke 2. Ro 3. Ali 4. Oy 5. Eg Au 6. Ao	O ⁺ & I rr et al. ss and I etti and awoye a gleton (ustralia. ki et al.	H_2O^- (1950) Hendric Aliett nd Hirs 1977): (1974)	の両者): mo ks (1 i (19 st (19 st (19 iron-	, wind すの計, ontmor 1945): 62): m 964): in orich m	rillonite montmo ron-ricl nontmo montmo	: Fe ²⁺ を e; altered norillonite rillonite; h montm rillonite; orillonite	0.16 含 rhyolit e; nests Lower orillonit altered ; marin	ic and penetr Miocen te; hydr heden	andesit ating a ne bento rotherm bergite, nent at	ic tuff, i shale, i onite ma al vein Siluria the nor	Santa F Montmo arl, Ger in gran n limes theaste	Rita, Ne orillon, 1 mano, I ite, Rop tone, Gi rn Pacif	w Mex Fance. taly. p, nort iralang	hern N	A. igeria. erra,			
7. Ke 8. Be 9. He 10. We C1 and Ca W1 an	rr et al. sson et a ystek (1 eir and (d C2: Af alif., U.S d W2: A	(1950) al. (198 962): 1 Gree-K ter Gri S.A.) After G): not 83): 1 beide elly (im an crim a	ntronif nontro llite; h (1962): nd Kul and K	te; alte nite; p nydroth beide bicki (: ulbicki	ration of otassium ermally llite; Gou 1961) Ch (1961) V	basalt, satura altered uge clay eto typ	Manit ted for rock, C , Black e mont	o, Wash analysi Castle M Jack M morillor montm	nington, s, Garfi Iountain Iine, Be nites, (C orillonit	U.S.A. eld, Wa n, Ivanp eidell, C 21: Che tes, W1	shingto oah, cali colo., U. to, Ariz : Hojun	n, U.S. f., U.S S.A. ., U.S.	A. .A. A.; C2: na. Jan	Otay,	日: モ:	本料ンモ	出土学会編(2009)に記載の2八面体型スメクタイトのうち, リロナイト(montmorillonite)の値を参考とした。
W	2: Tala	Heras	, Mer	ndoza,	Argen	tina.										;日. !	中有	血上子云孺(2009) ⊂━帥川聿

(4) 粘土鉱物のCEC分析, XAFS分析結果

CEC分析結果

【岩盤調査坑No.24~25付近】

〇カリウム全量の定量結果に比べて、交換性カリウムは十分に小さい。

<CEC分析結果>

容積(ml)	24.81
質量(g)	0.3062

\sum	Fe	Mn	Mg	Ca	Na	к
測定結果 (mg/L)	0.04	<0.01	62.9	70.9	2.63	13.5

	Mg	Ca	Na	К	CEC 陽イオン交換容量
陽イオン量 (cmol/kg)	41.9	28.7	0.9	2.8	74.3 (cmol/kg)
重量比 (wt.%)	0.51	0.57	0.02	0.11	

タイプ	鉱物種名(過剰電荷量の範囲*)	陽イオン交換容量 (CEC, cmol _c kg ⁻¹)
1:1	カオリナイト(~0)	2~15
1:1	アンティゴライト(~0)	_
2:1	パイロフィライト(~0)	. — 1
2:1	タルク(~0)	<1
2:1	モンモリロナイト(-0.2~-0.6)	80~150
2:1	バイデライト(-0.2~ -0.6)	-
2:1	ノントロナイト(-0.2~ -0.6)	-
2:1	サポナイト(-0.2~ -0.6)	
2:1	ヘクトライト(-0.2~ -0.6)	
2:1	2八面体バーミキュライト(-0.6~ -0.9)	10~150
2:1	3八面体バーミキュライト(-0.6~-0.9)	100~200
2:1	イライト(-0.6~ -0.9)	10~40
*半崖	位胞あたりの値	

代表的な層状ケイ酸塩鉱物の陽イオン交換容量

日本粘土学会編(2009)を編纂

<湿式分析結果>

①カリウム全量(wt.%) 湿式化学分析	②交換性カリウム(wt.%) CEC分析	試料中のカリウム全量のうち 非交換性カリウムの割合 (①-②)/①
0.69	0.11	84%

【岩盤調査坑No.27孔】

Oカリウム全量の定量結果に比べて、交換性カリウムは十分に小さい。

<CEC分析結果>

容積(ml) 24.85							
質量(g) 0.1507							
	Fe	e	Mn	Mg	Ca	Na	К
測定結果 (mg/L)	0.0	3	<0.01	31.1	33.5	0.81	5.24

	Mg	Ca	Na	к	CEC 陽イオン交換容量
陽イオン量 (cmol/kg)	42.2	27.6	0.6	2.2	72.5 (cmol/kg)
重量比 (wt.%)	0.51	0.55	0.01	0.09	

代表的な層状ケイ酸塩鉱物の陽イオン交換容量

タイプ	鉱物種名(過剰電荷量の範囲*)	陽イオン交換容量 (CEC, cmol _c kg ⁻¹)				
1:1	カオリナイト(~0)	2~15				
1:1	アンティゴライト(~0)					
2:1	パイロフィライト(~0)	-				
2:1	タルク(~0)	<1				
2:1	モンモリロナイト(-0.2~-0.6)	80~150				
2:1	バイデライト(-0.2~ -0.6)	-				
2:1	ノントロナイト(-0.2~ -0.6)	_				
2:1	サポナイト(-0.2~ -0.6)					
2:1	ヘクトライト(-0.2~ -0.6)	-				
2:1	2八面体バーミキュライト(-0.6~-0.9)	10~150				
2:1	3八面体バーミキュライト(-0.6~-0.9)	100~200				
2:1	イライト(-0.6~ -0.9)	10~40				
*半串						

日本粘土学会編(2009)を編纂

<EDS分析結果(参考)>

\sum	Fe	Mn	Mg	Ca	Na	к
重量比 (wt.%)	11.88	0.10	3.48	0.84	0.11	0.64

<湿式分析結果>

カリウム全量 定量結果 (wt.%)	0.50

1

①カリウム全量(wt.%) 湿式化学分析	②交換性カリウム(wt.%) CEC分析	試料中のカリウム全量のうち 非交換性カリウムの割合 (①-②)/①
0.50	0.09	82%

【E-8.5+5″孔】

Oカリウム全量の定量結果に比べて、交換性カリウムは十分に小さい。

<CEC分析結果>

容積(ml)	24.98
質量(g)	0.3015

\sum	Fe	Mn	Mg	Ca	Na	К
測定結果 (mg/L)	0.02	0.01	45.1	110	4.59	9.52

	Mg	Ca	Na	К	CEC 陽イオン交換容量
陽イオン量 (cmol/kg)	30.7	45.5	1.7	2.0	79.9 (cmol/kg)
重量比 (wt.%)	0.37	0.91	0.04	0.08	

タイプ	鉱物種名(過剰電荷量の範囲*)	陽イオン交換容量 (CEC, cmol _c kg ⁻¹)
1:1	カオリナイト(~0)	2~15
1:1	アンティゴライト(~0)	
2:1	パイロフィライト(~0)	-
2:1	タルク(~0)	<1
2:1	モンモリロナイト(-0.2~-0.6)	80~150
2:1	バイデライト(-0.2~ -0.6)	_
2:1	ノントロナイト(-0.2~ -0.6)	-
2:1	サポナイト(-0.2~ -0.6)	-
2:1	ヘクトライト(-0.2~ -0.6)	-
2:1	2八面体バーミキュライト(-0.6~-0.9)	10~150
2:1	3八面体バーミキュライト(-0.6~-0.9)	100~200
2:1	イライト(-0.6~ -0.9)	10~40
*半単	位胞あたりの値.	

代表的な層状ケイ酸塩鉱物の陽イオン交換容量

日本粘土学会編(2009)を編纂

<湿式分析結果>

カリウム全量	
定量結果	0.42
	0.12
(VVL.70)	

1

①カリウム全量(wt.%) 湿式化学分析	②交換性カリウム(wt.%) CEC分析	試料中のカリウム全量のうち 非交換性カリウムの割合 (①-②)/①
0.42	0.08	81%

【H-1.3-88孔】

Oカリウム全量の定量結果に比べて、交換性カリウムは十分に小さい。

<CEC分析結果>

容積(ml)	24.65
質量(g)	0.0509

\sum	Fe	Mn	Mg	Ca	Na	к
測定結果 (mg/L)	<0.01	0.01	7.52	2.77	8.30	4.10

	Mg	Ca	Na	К	CEC 陽イオン交換容量
陽イオン量 (cmol/kg)	30.0	6.7	17.5	5.1	59.2 (cmol/kg)
重量比 (wt.%)	0.36	0.13	0.40	0.20	

伴手的た層性ケイ	融冶鉱物の限。	オンな協家員
11、衣的な唐秋71	酸塩鉱物の 啄1	イノ父揆谷里

タイプ	鉱物種名(過剰電荷量の範囲*)	陽イオン交換容量 (CEC, cmol _c kg ⁻¹)
1:1	カオリナイト(~0)	2~15
1:1	アンティゴライト(~0)	-
2:1	パイロフィライト(~0)	-
2:1	タルク(~0)	<1
2:1	モンモリロナイト(-0.2~-0.6)	80~150
2:1	バイデライト(-0.2~ -0.6)	-
2:1	ノントロナイト(-0.2~ -0.6)	-
2:1	サポナイト(-0.2~ -0.6)	-
2:1	ヘクトライト(-0.2~ -0.6)	—
2:1	2八面体バーミキュライト(-0.6~-0.9)	10~150
2:1	3八面体バーミキュライト(-0.6~-0.9)	100~200
2:1	イライト(-0.6~-0.9)	10~40

日本粘土学会編(2009)を編纂

<湿式分析結果>

	a1
カリウム全量 定量結果	0.75
(wt.%)	

1

①カリウム全量(wt.%) 湿式化学分析	②交換性カリウム(wt.%) CEC分析	試料中のカリウム全量のうち 非交換性カリウムの割合 (①-②)/①
0.75	0.20	74%

- ーXAFS(ザフス:X線吸収微細構造 X-ray Absorption Fine Structure)とは (雨宮(2008)より抜粋)ー
 - ・XAFS分光法は、試料によるX線の吸収強度をX線エネルギーの関数として測定するものである。
 - ・XAFSは内殻電子の励起を対象とする。内殻準位は元素によってほぼ固有のエネルギーを有するため、それぞれの元素の内殻電子 がちょうど真空準位まで励起されるようなX線のエネルギーにおいて、X線吸収スペクトルは急激な立ち上がりを示す(吸収端)。
 - ・XAFSは吸収端後(高エネルギー側)に現れるピークや周期的な波打ち構造のことを指しており、これらを解析することによって、以下のような情報を得ることができる。
 - 1)吸収端に対応する原子(吸収原子)の周辺にどのような原子が,いくつ,どの方向に,どのくらいの原子間距離で存在しているか。 2)吸収原子と周辺の原子との原子間距離が,どの程度の分布を持っているか。

3)吸収原子の付近の電子状態がどのようになっているか。

(b) (a) XAFS •XANES (X線吸収端近傍構造, X-ray Absorption) XANES Near Edge Structure) 吸収端 (NEXAFS) ⇒吸収端付近の大きく波打つ構造 吸収係数 吸収係数 III EXAFS •EXAFS (広域X線吸収微細構造, Extended X-ray Absorption Fine Structure) ⇒エネルギーの高い領域ある小さいながら緩や Κ かな波打ち構造 •XAFSは、XANESとEXAFSの総称。 X線エネルギー X線エネルギー (a) X線吸収スペクトルの模式図および(b) K吸収端の拡大図 日本XAFS研究会(2017)に一部加筆

<u>■分析内容</u>

- ・場所: 高エネルギー加速器研究機構(KEK)(つくば市)
- ・分析装置:BL-9A
- ·分析試料:①イライト標準試料(Imt-2)
 - ②敷地の粘土鉱物(試料e, 岩盤調査坑No.27孔)
 - ③カリウム置換したスメクタイト標準試料(Wyoming)
 - ④硝酸カリウム溶液

・分析のポイント;カリウム原子周りの分子構造(カリウム原子周りの水和の有無, H₂Oの配位状況)

外圏錯体(R+ΔR=2Å付近)の寄与は,敷地の粘土鉱物では内圏錯体に比べて小さい。

5.2-2-83

(5) XRD分析結果(白色鉱物(オパールCT))

岩盤調査坑No.30切羽 -X線回折チャート 不定方位-

第788回審査会合 机上配布資料1 P.5.1-3-42 再掲

KR-13孔 -X線回折チャート 不定方位-

H-6.4孔 -X線回折チャート 不定方位-

Oクリストバライトとトリディマイトのピークが見られるため、この白色鉱物脈には、オパールCTが含まれる。

回折チャート

F-4.9孔 -X線回折チャート 不定方位-

F-4.9孔 -X線回折チャート 定方位 EG処理-

5.2-2-91

R-4.5孔(深度68.63m) -X線回折チャート 不定方位-

第788回審査会合 机上配布資料1 P.5.1-3-46 再掲

R-4.5孔(深度68.63m) -X線回折チャート 定方位 EG処理-

K-4.2孔 -X線回折チャート 不定方位-

R-4.5孔(深度71.10m) -X線回折チャート 不定方位-

Oクリストバライトとトリディマイトのピークが見られるため、この白色鉱物脈には、オパールCTが含まれる。

回折チャート

回折チャート (EG処理も合わせて表示)

H-1.5-95孔 -X線回折チャート 不定方位-

Oクリストバライトとトリディマイトのピークが見られるため、この白色鉱物脈には、オパールCTが含まれる。

回折チャート

H-1.5-95孔 -X線回折チャート 定方位 EG処理-

回折チャート (EG処理も合わせて表示)

(6) XRD分析結果(白色鉱物(フィリプサイト))

E-5.7孔 -X線回折チャート 不定方位-

E-5.7孔 -X線回折チャート 定方位 EG処理-

J-10.8SW-1孔 -X線回折チャート 不定方位-

J-10.8SW-1孔 -X線回折チャート 定方位 EG処理-

H'--1.3孔 -X線回折チャート 不定方位-

Oフィリプサイトのピークが認められる。

