廃棄物埋設施設における許可基準規則への適合性について

第九条第二号 異常時の放射線障害の防止等(廃止措置開始以後の評価)

線量評価パラメータ

- 分配係数 -

2019年10月16日

日本原燃株式会社

目次

1.	はじめに	1
2.	前提条件	2
3.	分配係数設定の考え方	18
4.	初期状態の分配係数	19
5.	影響事象による各バリア材料への放射性物質の収着影響	31
6.	分配係数低下係数の算出	54
7.	分配係数設定值	60
8.	分配係数の管理の考え方について	63
9.	参考文献	67

参考資料 分	分配係数試験に用いたセメント系材料の配合表	補 8 参-1
--------	-----------------------	---------

	:補正に伴い変更する箇所(コメント対応含む)
	: 上記以外の審査会合コメント反映箇所
緑字	: 第 298 回審査会合(2019/8/26)までに自主的に変更した箇所
赤字	: 第 298 回審査会合(2019/8/26)からの変更箇所

1. はじめに

本資料は資料 2-2-1 のうち線量評価パラメータ(分配係数)を補足説明するものである。

各シナリオで用いる線量評価パラメータのうち、移行抑制機能である収着性に関す るパラメータである分配係数は、影響事象の状態変化の評価及び状態設定を踏まえ、 想定される廃棄物埋設施設の環境条件で取得した試験データ等により設定する。

設定した分配係数は、許可基準規則第九条第二号に求められる線量基準の要求事項 に適合していることを確認するために行う線量評価に用いる線量評価パラメータであ る。

2. 前提条件

2.1. 廃棄体の仕様について

3 号廃棄物埋設施設、1 号廃棄物埋設施設 7,8 群及び 2 号廃棄物埋設施設に埋設 する充填固化体は、固体状の放射性廃棄物をセメント系充填材で一体に固型化した ものである。分配係数の設定において、放射性廃棄物に含まれる有機物については、 適切に分別除去されるが、僅かに残留する可能性を考慮し、その影響を考慮する。

1 号廃棄物埋設施設に埋設する均質・均一固化体は、濃縮廃液、使用済樹脂、焼 却灰等を、セメント等を用いて固型化したものである。分配係数の設定において、 濃縮廃液については、可溶性塩が含まれることから、その影響を考慮する。

廃棄体のセメント系材料を用いた固型化材料については、JIS R 5210(1992)又は JIS R 5211(1992)と同等以上の品質を有するセメントを使用しており、適切に品質 管理がなされたものである。廃棄体の仕様を第1表に示す。

	3号	1号		2 号	
種類	充填固化体*1	均質·均一固化体	充填固化体*1	充填固化体*1	
重量	1 本当たり 1,000kg を超えな いもの	1 本当たり 500kg を	超えないもの	1 本当たり 1,000kg を超えな いもの	
内容物	金属類、 プラスチック類、 保温材・フィルタ 類	廃液、 使用済樹脂、 スラッジ、 焼却灰	金属類、プラスチ ック類、保温材・ フィルタ類、均 質・均一固化体と して製作されたセ メント固化体を破 砕したもの	金属類、 プラスチック類、 保温材・フィルタ 類	
固型化 材料	セメント*2	セメント*2、 アスファルト*3、 プラスチック*4	セメント*2	セメント*2	
廃棄物 発生元	BWR*5、PWR*6	BWR*5、PWR*6、GCR*7	BWR ^{*5} , PWR ^{*6}	BWR*5、PWR*6、GCR*7	
廃棄物発 生からの 経過期間	発生後6ヶ月以上 経過したもの	固型化後6ヶ月以 上経過したもの	発生後6ヶ月以上 経過したもの	発生後6ヶ月以上 経過したもの	

第1表 廃棄体の仕様

*1 充填固化体の標準的な製作方法⁽¹⁾により製作。

- *2 「JIS R 5210(1992)」若しくは「JIS R 5211(1992)」に定めるセメント又はこれと同 等以上の品質を有するセメント。
- *3 「JIS K 2207(1990)」に定める石油アスファルトで針入度が 100 以下のもの又はこれ と同等以上の品質を有するアスファルト。
- *4 スチレンに溶解した不飽和ポリエステル。
- *5 沸騰水型軽水炉
- *6 加圧水型軽水炉
- *7 黒鉛減速ガス冷却炉

2.2. 1,2号埋設設備のセメント系材料の仕様実績

これまでに1号埋設設備及び2号埋設設備に用いたセメント系材料の仕様につい て第2表及び第3表に示す。これまで用いられたセメント系材料のうち混和材の仕 様が変更された箇所は2号埋設設備のコンクリートのみであり、1号埋設設備及び 2号埋設設備の充填材のセメント種類は変更されていない。

2 号埋設設備は、5 群以降(覆いは 3 群以降)、高炉スラグ(BF)混合の普通ポルト ランドセメント(OPC)からフライアッシュ(FA)混合の中庸熱ポルトランドセメント (MPC)に変更した。

セメント種(OPC、MPC等)やポゾラン性混和材(BF、FA等)の添加割合によって、 水和生成物の割合は多少変化するものの、主要な水和生成物の種類やセメント間隙 水が高アルカリ性を示すといった収着性に係るセメント系材料の化学環境特性に は大きな変化は想定されない。そのため、このコンクリート材料の仕様変更による 分配係数への影響は軽微なものと考えられる。2 号コンクリート仕様変更時には、 配合変更後のコンクリートを用いて収着機構が異なると考えられる主要な放射性 核種(Ni-63、Cs-137)の分配係数を取得し、事業変更許可申請書に記載されている 分配係数に対して、配合変更での試験結果を用いた場合でも線量へ与える影響はみ られないことを確認している。

本変更申請における2号埋設設備のコンクリートの分配係数設定においても、こ のコンクリート材料の仕様変更を考慮した値を初期健全時のセメント系材料の分 配係数値として設定している。

	使用設備		セメント種類 (セメントと混和材の混合比)	化学混和剤(減水剤)
充塡材		1 群~6 群	中庸熱ポルトランドセメント +高炉スラグ(1:9)	・リグニンスルホン酸系・メラミン系
コンク	側壁	1 群~6 群		
リート	底版	1 群~6 群	普通ポルトランドセメント	・ヒドロキシ系
	内部仕切	1 群~6 群	+高炉スラグ(45:55)	・リグニンスルホン酸系
	覆い	1 群~6 群		

第2表 1号埋設設備のセメント系材料仕様

	使用設備		セメント種類 (セメントと混和材の混合比)	化学混和剤(減水剤)
充塡材		1 群へら 群	中庸熱ポルトランドセメント	・リグニンスルホン酸系
		1 拍手 0 拍手	+高炉スラグ(1:9)	・メラミン系
コンク	側壁	1	普通ポルトランドセメント	・ポリオールズ
リート		1 相手 2 4 相手	+高炉スラグ(45:55)	· ~ / / / / / / /
		5 彩 2 8 彩	中庸熱ポルトランドセメント	・ポリオールズ
		う相子での相手	+FA(7:3)	・ホリオールデ
	底版	1	普通ポルトランドセメント	・ポリオールズ
			+高炉スラグ(45:55)	・
		5 群~8 群	中庸熱ポルトランドセメント	・ポリオールズ
			+FA(7:3)	
	内部仕切	1 群~8 群	普通ポルトランドセメント	・リグニンスルホン酸系
				・ポリオール系
覆い 1 群 ~ 2 群 音		1	普通ポルトランドセメント	・Ⅱガーンフルナン融玄
			+高炉スラグ(45:55)	シッシーンハル小ン酸ポ
		2世~2世	中庸熱ポルトランドセメント	・ポリオールズ
			+FA(7:3)	・ かりる ニアドボ

第3表 2号埋設設備のセメント系材料仕様

2.3. JIS 規格について

セメントの JIS 規格である「JIS R 5210(ポルトランドセメント)」及び「JIS R 5211(高炉セメント)」には、セメントの品質として、比表面積、凝結(始発、終結時間)、安定性、圧縮強さ、水和熱及び化学組成(酸化マグネシウム、三酸化硫黄等)が規定されている。これまでに規格は数回改訂されているが、主な改訂の内容は第4表のとおりであり、セメント品質についての実質的な変更ではない。

化学組成の規格値の見直しについては、数%程度の少量混合成分の変更であり、 分配係数への影響は軽微であると考えられ、他の影響事象(「2.5.分配係数設定 において対象とする影響事象」参照)の評価に十分包含される。また、分配係数に 影響を及ぼすと考えられるセメント種類の追加も行われているが、追加されたセ メントはこれまでに用いられていない。

	JIS R 5210	JIS R 5211		
1986 年	・セメント中の全アルカリ 0.6%以下	—		
1992 年	・全アルカリ含有率 0.75%以下			
	・塩化物イオン含有率 0.02%以下	回左		
1997 年	・圧縮強さの規格値の変更			
	・低熱ポルトランドセメントの追加	问工		
2003 年	・普通ポルトランドセメントの塩化物			
	イオン許容値引き上げ	回工		
2009 年	・低アルカリ型ポルトランドセメント	・原材料の少量成分3種類規定		
	の本体への規定	· 製造方法規定削除		
	・原材料の少量成分4種類規定	・高炉スラグの高炉水砕スラグへの改		
	・製造方法規定削除	名		
	・三酸化硫黄の規格値見直し			

第4表 セメントの JIS 規格の主な改訂内容

2.4. 分配係数設定において対象とするバリア材料のデータ

廃棄物埋設地の状態設定の安全機能(移行抑制機能)の整理より、収着性を期待す るバリア材料は、セメント系材料(廃棄体固型化材、埋設設備)、難透水性覆土、上 部覆土及び岩盤(鷹架層)を対象とする。これらのバリア材料の収着性を期待するこ とにより、廃棄物埋設地からの放射性物質の漏出量を低減し、移行を遅延させる。 廃棄物埋設地の状態設定の安全機能(移行抑制機能)の整理より、収着性を期待する バリア材料の仕様及び用いるデータは以下のとおりとする。

2.4.1. 廃棄体

廃棄体の固型化材の仕様は、1,2 号廃棄物埋設施設に定置されている廃棄体 の使用材料とする。各廃棄物埋設施設の埋設対象廃棄体は以下のとおりである。

- ·3号廃棄物埋設施設:充填固化体
- ・1 号廃棄物埋設施設(1 群~6 群):均質・均一固化体
- ・1 号廃棄物埋設施設(7 群~8 群:1 基):均質・均一固化体
- ·1号廃棄物埋設施設(7群~8群:9基):充填固化体
- ·2号廃棄物埋設施設:充填固化体

3号廃棄物埋設施設及び1号廃棄物埋設施設7,8群の廃棄体(充塡固化体)に

ついては、2 号廃棄物埋設施設の廃棄体と同様のセメント系材料とする。ただ し、充填固化体を埋設する1号廃棄物埋設施設の埋設設備9基のうち、1基に は均質・均一固化体として製作されたセメント固化体を破砕し、セメント系充 填材で一体に固型化した充填固化体(以下「セメント破砕物充填固化体」とい う。)を埋設する。このため、セメント固化体の破砕物の分配係数については 均質・均一固化体と同様とする。

なお、線量評価においては保守側となるよう、廃棄体中の体積割合を破砕 物:20%、充填モルタル(固型化材):70%、上部空隙:10%と設定する。また、 線量評価に用いる埋設設備内の各媒体の体積分率は、充填モルタル(固型化材) の体積を分配係数が同じ設定となる埋設設備のセメント系充填材に含めて算 出し、廃棄物(破砕物):0.055、セメント系充填材(固型化材+埋設設備):0.505、 コンクリート:0.315 と設定する(詳細は補足説明資料 9 線量評価パラメーター パラメータ設定根拠集-参照)。

均質・均一固化体の固型化材は、セメント、アスファルト又はプラスチック である。

固型化材がセメントのものには収着性を期待するが、アスファルト及びプラ スチックのものには収着性を期待しないものとする。ただし、同等の性能を有 する場合は必要に応じてその性能を考慮する。

充填固化体の固型化材は、OPC(普通ポルトランドセメント)又は高炉スラグを用いたモルタルである。

廃棄体によって固型化材の種類が異なるため、JAEA-SDB⁽²⁾等の分配係数デー タを用いてモルタルの収着性の傾向を比較した。分配係数にばらつきはあるが、 保守側に分配係数が低い高炉スラグを分配係数設定で用いる材料種類とした。

一例として、セメント系材料種類ごとの Ni の分配係数の比較を第1図に示す。

OPC:普通ポルトランドセメント、BFC:高炉セメント、FAC:フライアッシュセメント

第1図 セメント系材料種類ごとの Ni の分配係数の比較

2.4.2. 充填材

埋設設備の充塡材の仕様は、1,2 号廃棄物埋設施設で使用した材料とし、高 炉スラグを混合したモルタルであるため、用いるデータは高炉スラグのデータ とした。

2.4.3. コンクリート

埋設設備のコンクリートの仕様は、1,2号廃棄物埋設施設で使用した材料と する。3号廃棄物埋設施設のコンクリートについては、2号廃棄物埋設施設の コンクリートと同様とする。

1~3 号廃棄物埋設施設(1 号廃棄物埋設施設(1 群~6 群)を除く)のコンクリート仕様は、高炉スラグ又はフライアッシュ(FA)を混合したコンクリートである。

1号廃棄物埋設施設(1群~6群)のコンクリート仕様は、高炉スラグを混合したコンクリートである。

高炉セメントやフライアッシュセメントにおいても、その水和生成物はこれ

まで主に研究が進められてきた OPC と同等の鉱物で構成されているが⁽³⁾、1~3 号廃棄物埋設施設(1号廃棄物埋設施設(1群~6群)を除く)と1号廃棄物埋設施 設(1群~6群)では材料仕様が異なるため、バリア材料の種類は、1~3号廃棄 物埋設施設(1号廃棄物埋設施設(1群~6群)を除く)では高炉スラグ及びFA コ ンクリート、1号廃棄物埋設施設(1群~6群)では高炉スラグコンクリートのデ ータとする。

2.4.4. 難透水性覆土

難透水性覆土の仕様は、ベントナイトと細骨材を混合したものとし、Ca 型 30wt%配合、Na 型 30wt%配合、Na 型 20wt%配合及び Na 型 15wt%配合のデータを 用いる。

2.4.5. 上部覆土及び岩盤(鷹架層)

上部覆土及び岩盤(鷹架層)は、埋設設備から尾駮沼までの移行経路上の主な 岩層とする。

上部覆土の収着性は、現地発生土を主体とするため、岩盤(鷹架層)の収着性 と同じとし、用いるデータは岩盤(鷹架層)と同じとする。

分配係数設定のため抽出する代表的なバリア材料の種類を第5表に示す。

廃棄物埋設施設			セメント系材料			浙沃水州 英上	山郎(確加民)																						
			廃棄体	充塡材	コンクリート	難透水性復工	石盜(鳥朱眉)																						
3 号		高炉スラグモルタル ^{*1}		高炉スラグコンク リート* ³ FA コンクリート* ⁴		砂質軽石凝灰岩(Tspt2) 軽石質砂岩(Tpps2) 砂岩(Tcs12) 軽石凝灰岩(Tpt2)																							
	1 群 ~6 群	均質・均 一固化体	高炉スラグ セメント*2		高炉スラグコンク リート	Ca型 30wt%配合 Na型 30wt%配合																							
1号	7,8 群																										高炉スラグコンク リート	Na 型 20wt%配合 Na 型 15wt%配合	砂質軽石凝灰岩(Tspt2) 軽石質砂岩(Tpps2) 砂出(Tss12)
		+ 充填 固化体	高炉スラグモ	ールタル	FA コンクリート		初后(Ics12) 粗粒砂岩(Tcs11)																						
2 号		高炉スラグモルタル		高炉スラグコンク リート FA コンクリート																									

第5表 分配係数設定のため抽出する代表的なバリア材料の種類

*1:高炉スラグを混合したモルタル

*2:高炉スラグを混合したセメント

*3:高炉スラグを混合したコンクリート

*4:フライアッシュ(FA)を混合したコンクリート

2.5. 分配係数設定において対象とする影響事象

影響事象分析(補足説明資料3「廃棄物埋設地の状態設定-影響事象分析-」参照) より、熱、水理、力学及び化学の観点から廃棄物埋設地に生ずる物理的・化学的現 象の影響事象分析の結果を第6表に示す。分配係数設定は、影響事象分析で選定さ れた収着性に関する影響事象(第6表の赤枠)を対象とする。

第6表 影響事象分析の結果

項	主要な影響事象	影響を与える 移行抑制機能	影響*1	影響評価結果
T (熱)	火砕物密度流の熱	収着性		ベントナイトを混合した覆土やセメント系材料が 変質するためにはより高い温度が必要であること から、火砕物密度流の熱による影響は生じないもの とする。
Н	生ませる	低透水性	0	廃棄物埋設地周辺の地下水流速が十分に小さいた め、直接的な影響は生じないと判断される。 (ただし、「C(化学)地下水との反応」において考慮 する)。
(水理)	地下水流動	収着性	0	廃棄物埋設地周辺の地下水流速が十分に小さいた め、直接的な影響は生じないと判断される。 (ただし、「C(化学)地下水との反応」において考慮 する)。
	金属腐食による膨張 (塩の影響を含む)	低透水性	0	難透水性覆土の隅角部等には、厚さの減少及び変位 に伴う透水性が変化した領域の発生が予想される。
M (力学)	ガス発生	低透水性	_	透水・透気試験の結果、ガス破過前後の透水係数に ほとんど変化が生じなかったことから、難透水性覆 土及び下部覆土の低透水性に影響は生じないもの とする。 ガスの発生と同時に間隙水の押し出しが発生する ことを考慮する。
	地震	低透水性	_	力学的な変形は金属腐食に伴う埋設設備の変形量 と比較して非常に小さい。液状化は容易に生じない よう配慮した設計としていることから、覆土の低透 水性に有意な影響は生じないものとする。
	地下水との反応 (塩の影響を含む)	低透水性 収着性	0	モンモリロナイト及びケイ酸カルシウム水和物が 溶解し、二次鉱物の生成等による変質が考えられ、 低透水性及び収着性に影響すると考えられる。
	有機物	収着性	Δ	セルロースはアルカリ性の環境下において分解し、 イソサッカリン酸が生成することによって放射性 物質と錯体を形成し、収着性に影響することが考え られる。
C (化学)	コロイドの形成	収着性	—	埋設設備の間隙水はセメント平衡水でありコロイ ドが安定に分散できる環境ではないと考えられる ことから、収着性に影響は生じないものとする。
	微生物	収着性	\bigtriangleup	岩盤中では微生物活動によって有機物が無機化す るため、収着性の設定に関して考慮する。
	降下火砕物・ 火砕物密度流	収着性	_	+分な厚さの上部覆土が設置され、変質の影響範囲 は限定されることから、有意な影響は生じないもの とする。

*1 〇 :影響有り(状態評価を実施する)

△ :影響有り(パラメータ設定に際して考慮したもの)

- :有意な影響は生じない(状態評価不要と判断)

2.6. 対象とした放射性物質及び化学的類似性による元素のグループ分け

分配係数設定において対象とした放射性物質は、埋設処分の観点で考慮すべき放射性物質(170種類(73元素))とする。

主要な放射性物質については、当社及び電気事業者が取得した分配係数(以下「当 社分配係数」という。)の試験結果を基に設定し、主要な放射性物質以外で試験結 果があるものについては、試験結果を基に分配係数を設定する。これら以外の放射 性物質については、文献値^{(4)~(8)}又は主要な放射性物質の化学的類似性を基に分配 係数を設定する。

元素の化学的類似性においては、収着機構(イオン交換、表面錯体)に着目して元 素をグルーピングした。元素は一般的にイオンの電荷が等しく最外殻の電子の状態 が似ていれば互いによく似た性質を示し、その上イオンの大きさが似ていればさら によく似た性質を示す⁽⁹⁾。各元素の化学形態及び周期表に基づく特徴を加味した化 学的類似性を考慮した元素のグループ分けを第7表に示す。

グループ	特徴	元素*1	備考
А	水分子として存在	Η	
В	イオン交換、アルカリ金属	Na,K,Rb, <mark>C</mark> s	
С	イオン交換、アルカリ土類金属	Ca, <mark>Sr</mark> , Ba, Ra	
D-1	中性付近で炭酸錯体、高アルカリで酸化物イ	Y, La, Ce, Nd, Pm, Sm, Eu, Gd,	グループ
	オン	Tb, Dy, Ho, Tm, Yb, Lu, Pb	D-2 と同じ
D-2	二価のイオン、ヒドロキシ錯体	Tl,Mn,Ni,Zn,Cd,Hg,Po	
D-3	二価のイオン、ヒドロキシ錯体等	Be, Fe, Co	
Е	ヒドロキシ錯体	Sc, In, Bi, Zr, <mark>Nb</mark> , Hf, Sb, V	
F	白金族	Pd, Ru, Rh, Os, Ir, Pt	文献値
G-1	ヒドロキシ錯体、炭酸錯体	U	実験値
G-2	中性付近で炭酸錯体、高 pH でヒドロキシ錯体	Ac, <mark>Am</mark> , Cm, Bk, Cf, Es	
G-3	ヒドロキシ錯体あるいは炭酸錯体	Th, Pa, Pu	
G-4	酸化物イオン、炭酸錯体、ヒドロキシ錯体	Np	実験値
Н	一価の陰イオン	C1, I	
Ι	酸化物の陰イオン	Mo, W, <mark>Tc</mark> , Ta, Re	Mo は実験値
т	塩素と錯休生成	Ag	グループ B
J	温示と如仲工版	пд	と同じ
K-1	高アルカリ性環境下で二価の陰イオン	Si, S, Se, Sn, Te	文献値
K-2	高アルカリ性環境下で二価の陰イオン	С	

第7表 化学的類似性を考慮した元素のグループ分け

*1 で囲われている元素は主要な放射性物質を示す。

- 2.7. 分配係数試験条件及び試験方法
 - 2.7.1. 分配係数試験条件

分配係数を設定するに当たって、当社分配係数データ及び JAEA-SDB の分配 係数データを用いた。JAEA-SDB の分配係数データは、材料の多様性を考慮し、 セメント系材料の分配係数の設定において参照した(当社分配係数データと JAEA-SDB データの比較は「4.1.セメント系材料の初期状態の分配係数」を参照)。

それぞれの分配係数データ抽出の考え方は以下のとおりである。

(1) 当社分配係数データ抽出の考え方

当社分配係数データに関しては、日本原子力学会標準⁽¹⁰⁾を参考に、第8表に 示す標準的な試験条件かつ第9表に示す試験で用いる固相及び液相の種類で実 施した試験のうち、埋設環境を模擬した適切な試験条件で取得されたデータを 採用した。また、一部のデータにおいて、第8表の標準的な試験条件に該当し ていない場合でも、個々のデータを精査し、保守側な結果の場合は、データの 充足を重視し採用した。

なお、明らかに試験操作に問題がある場合等のデータを除外した。

温度40℃未満固液分離メンブランフィルタ(0.45µm)固液比1/10(g/mL)浸漬期間7日

第8表 標準的な試験条件

第9表 試験で用いる固相及び液相の種類

固相	セメント系材料、難透水性覆土、岩盤(鷹架層)
液相	セメント平衡水、模擬地下水、純水

(2) JAEA-SDB 分配係数データ抽出の考え方

JAEA-SDB 分配係数データに関しては、詳細な試験条件等が不明なものもある が、セメント系材料における分配係数の傾向を把握することを重視し、第 10 表の条件以外のデータは基本的に採用した。

第10表 JAEA-SDB 分配係数データを抽出するに当たって除外した条件

固相	•	一般的ではない材料 セメント系材料以外
液相	•	塩などを含有した溶液
分離	•	ろ過未実施
рН	•	pH13以上

2.7.2. 分配係数試験方法

分配係数設定において、実際の施設を構成するバリア材料種類及び廃棄物埋 設施設周辺から採取された実際の岩盤材料種類を使用し、想定される環境条件 (温度、pH、地下水組成)に近い試験系で実測された分配係数を適用することが 現実的かつ合理的な方法であると考える。

当社分配係数取得において、セメント系材料(均質・均一固化体を除く)、難 透水性覆土及び岩盤(鷹架層)については、固相を液相に浸漬した後にトレーサ を添加する試験方法とした(収着分配係数試験)。均質・均一固化体については、 濃縮廃液等をセメントと混練し製作される実際の廃棄体の性状・状態を考慮し、 セメント系材料とトレーサを混練したセメント固相を粉砕し液相に浸漬する 試験方法とした(脱着分配係数試験)。 2.7.3. 脱着分配係数試験の妥当性について

実際のセメント固化体の幾何学的状態が健全な状態であれば、セメント固相 内を拡散移行し、セメント固化体外に核種が漏えいするには相応の時間が必要 となる。一方で、脱着分配係数試験では、セメント系材料を砂程度に粉砕して 実施しているため、前述のようなセメント固化体中の拡散移行によるバリア効 果はほぼ期待できない状態で試験を実施している。したがって、実際の固化体 の性状にあわせて浸漬試験を実施したとしても、脱着分配係数の方が収着分配 係数に比較して著しく大きい値となることは考えられない。

Tits ら⁽¹¹⁾のセメント系材料に対するユウロピウム(Eu)の収着・脱着試験に よる収着・脱着分配係数の比較を第2図に示す。Eu(Ⅲ)の CSH ゲル(ケイ酸カ ルシウム水和物)(C/S=0.75, 1.25)に対する収着期間1日及び60日の試料を 用いた脱離試験を実施した結果、両者の脱着分配係数は、収着期間に関わらず 良く一致し、また、収着分配係数とも一致した。これより60日後でもCSH ゲ ルに対するEu(Ⅲ)の収着は可逆的であると推察している。

Fig. 10: Eu(III) desorption tests onto C–S–H phases in ACW at pH = 13.3 after one day and 60 days sorption. a) C:S = 0.75; b) C:S = 1.25. Experimental conditions: S:L = $2.5 \cdot 10^{-3} \text{ kg L}^{-1}$, [Eu]_{tot} = $3.0 \cdot 10^{-8} \text{ M}$. The dashed lines represent the R_{d,max} value.

第2図 セメント系材料に対するユウロピウム(Eu)の収着・脱着試験による

収着・脱着分配係数の比較

また、主要核種について脱着分配係数試験を7日以降も継続した場合の脱着 分配係数の推移を第11表に示す。7日以降試験を継続しても分配係数が大きく 低下する事象は確認されなかった。そのため、吸脱着挙動は7日で平衡に到っ ていると考えられる。

文献⁽¹²⁾によると、収着試験において粒子内拡散や鉱物化などを除けば収着反応の主要機構であるイオン交換反応は、通常瞬時に平衡に達するが、従来の実験では十分な収着平衡を得るために数十分から1週間程度の固液接触時間を設定しており、原子力学会標準⁽¹³⁾においても、多くの試料である程度収着平衡が確認されている合理的な時間として1週間を設定している。

以上のことより、一般的におおむね1週間以内に収着平衡に達するものと考 えられ、第11表の脱着分配係数試験の7日のデータを用いることは妥当だと 考える。

技種			分配係劵	$x[m^3/kg]$	
修悝		7 日	18 日	30 日	48 日
実 C-14①)	0.31	_	0.43	_
実 C-14②)	_	0.34	_	0.24
	Pu	>53 >53	_	>53	_
PWK 廃 莱 14	Am	>43 >52		>49	
	Pu	>53 >53		>56	
DWK	Am	>52 35	_	>52	_

第11表 浸漬時間による脱着分配係数試験結果(14)

2.7.4. 分配係数試験におけるセメント系材料の組成

分配係数設定で用いた当社分配係数データの分配係数試験におけるセメン ト系材料の組成を第12表に示す。また、分配係数試験に用いたセメント系材 料の配合表を参考資料に示す。

セメント系材料 データ数 組成 結合材比 PWR 濃縮廃液バーミキュライトセメント固化体 45_ 廃棄体 BWR 濃縮廃液高炉 C セメント固化体 35 _ OPC+(BF+FA)+膨張材 3:738 高炉スラグ 1:9 42 MPC+BF 3:743 充塡材 MPC+FA 7:316 フライアッシュ*1 LPC+FA+膨張材 7:341 LPC+FA 7:324 高炉スラグ OPC+BF 45:55 41 コンクリート フライアッシュ MPC+FA 7:342

第12表 分配係数試験におけるセメント系材料の組成

OPC:普通ポルトランドセメント、BF:高炉スラグ、FA:フライアッシュ、
 MPC:中庸熱ポルトランドセメント、LPC:低熱ポルトランドセメント
 *1 コンクリートの分配係数設定において使用

2.7.5. セメント系材料に含まれる化学混和剤について

セメント系材料に含まれる化学混和剤による分配係数への影響が考えられ るが、化学混和剤を含んだ実セメント系材料を用いたデータを用いることを基 本方針としているため、化学混和剤(減水剤)による影響が仮に存在したとして も試験結果はその影響を包含したものである。また、添加量がセメント主成分 に比較して微量であること、混和剤主成分である高分子化合物の溶出は認めら れないとの報告⁽¹⁵⁾があることから分配係数への影響は軽微なものと考えられ る。 3. 分配係数設定の考え方

分配係数設定の考え方は第3図に示すとおり、初期状態の分配係数に分配係数低下 係数を乗じた値を分配係数設定値とする。

第3図 分配係数設定の考え方

初期状態の分配係数、分配係数低下係数及び分配係数設定値の説明を以下に示す。

① 初期状態の分配係数

バリア材料ごとに抽出した分配係数データの平均値。

② 分配係数低下係数

各影響事象の収着影響度*1を掛け合わせ、初期状態の分配係数の低下割合を 示した係数⁽¹⁶⁾。

- *1 分配係数試験結果や文献から求めた影響事象ごとの収着影響の度合い。
- ③ 分配係数設定值

初期状態の分配係数に分配係数低下係数を乗じ、保守側に端数処理した値。

4. 初期状態の分配係数

初期状態の分配係数は、固相の仕様及び分配係数試験条件が把握できることから、 当社分配係数の試験結果を用いる。セメント系材料においては、材料の多様性を考慮 し当社分配係数データと JAEA-SDB データを比較した(詳細は「4.1.セメント系材料の 初期状態の分配係数」参照)。

分配係数データは、「2.7.1.分配係数試験条件」で示した試験条件で取得されたデ ータの平均値とする。

4.1. セメント系材料の初期状態の分配係数

セメント系材料の分配係数は、セメント系材料が固液平衡になった状態を想定し 設定するが、液相となるセメント平衡水の主な組成やセメント平衡水の化学平衡を 支配する主要な水和生成物の鉱物種等の化学環境場は類似のため、健全なセメント 系材料に対する分配係数のデータ群に大きな違いはないと考えられる⁽³⁾。線量評価 パラメータとして分配係数を設定する際は、混和材の添加種類及びポゾラン反応の 進展度の違い、測定試験のばらつき等の不確実性を考慮して、セメントの混和材ご とにデータ群を整理し、平均値を比較した上で、保守側に平均値のうち最も小さい 値を初期状態のセメント系材料の分配係数として設定した。

セメント系材料の分配係数の設定に用いるデータは、混和材種類、化学混和剤、 骨材等のセメント系材料の仕様(固相条件)及び分配係数試験条件が把握できるこ とから、基本的に当社分配係数データを用いた。

分配係数の設定に当たっては当社で用いるセメント種類に加え、国内外の多様な セメント系材料のデータが含まれる JAEA-SDB の分配係数データも参照した。

JAEA-SDB 分配係数データと当社分配係数データの平均値を比較したところ、当社 分配係数データの平均値は JAEA-SDB データの範囲内又は最大値を超えていないが、 JAEA-SDB のデータの平均値が当社分配係数データの平均値より 1/10 以下の場合は、 保守側に JAEA-SDB のデータを用いる。JAEA-SDB 分配係数データと当社分配係数デ ータの比較を第4回に示す。

第4図 JAEA-SDB 分配係数データと当社分配係数データの比較

初期状態の分配係数を設定する際に考慮したセメント系材料の種類は第5表に示 したとおりである。

以下に各バリア材料における初期状態の分配係数の設定内容を示す。

4.1.1. 廃棄体及び充塡材(1~3 号廃棄物埋設施設(均質・均一固化体を除く))

当社分配係数データの高炉スラグモルタルのデータと JAEA-SDB のセメント データについて、元素ごとに平均値を求めて比較する。JAEA-SDB のデータが当 社分配係数データより 1/10 以下の場合には、JAEA-SDB のデータを初期状態の 分配係数とし、1/10 より大きい場合には、当社分配係数データを初期状態の分 配係数とする。廃棄体及び充填材の初期状態の分配係数の考え方(1~3 号廃棄 物埋設施設(均質・均一固化体を除く))を第 5 図に、廃棄体及び充填材の初期 状態の分配係数(1~3 号廃棄物埋設施設(均質・均一固化体を除く))を第 13 表 に示す。

第5図 廃棄体及び充塡材の初期状態の分配係数の考え方

(1~3 号廃棄物埋設施設(均質・均一固化体を除く))

第13表 廃棄体及び充塡材の初期状態の分配係数

	当社	分配係数データ	JAE	A-SDB のデータ	廃棄体及び充塡材の
元素	高炉	スラグモルタル		セメント	初期状態の分配係数
	N^{*3}	N ^{*3} 平均值(m ³ /kg) N		平均值(m ³ /kg)	(m^3/kg)
C*1(2,3号)	37	0.088	_	—	0.05
C ^{*2} (1 号)	15	0.0078	_	_	0.004
C1	3	0.00057	7	0.013	0.00057
Со	3	2.5	46	1.214	2.5
Ni	20	0.098	302	0.15	0.098
Sr	3	0.022	90	0.0091	0.022
Nb	16	2.744	116	0.867	2.744
Тс	3	0.00022	13	0.00054	0.00022
Ι	3	0.00016	161	0.0044	0.00016
Cs	15	0.133	140	0.015	0.133
Pu	9	8.860	151	16.969	8.860
Am	2	52	85	2.877	2.877

(1~3 号廃棄物埋設施設(均質・均一固化体を除く))

*1 C(2,3号)はばらつきを考慮し保守側に 0.05m³/kgとする。

*2 C(1号)は廃棄体を除いた値とする。また、ばらつきを考慮し保守側に0.004m³/kgとする。

*3 データ数(以下同様)

- 4.1.2. 廃棄体(1 号廃棄物埋設施設 均質・均一固化体)
 - (1) 1 号廃棄物埋設施設 均質・均一固化体(1 群~6 群)の初期状態の分配係数の考 え方

1 群~6 群については、セメント系材料で固型化した廃棄体の埋設割合を考 慮する。均質・均一固化体のデータについて、元素ごとに発電所(PWR、BWR)と 液相(純水、塩含有)の4条件それぞれの平均値を求め比較し、最小値を選定す る。選定した最小値に 0.8^{*1}を乗じた値を初期状態の分配係数とする。廃棄体 の初期状態の分配係数の考え方(1号廃棄物埋設施設 均質・均一固化体(1群~ 6 群))を第6図に示す。

*1 セメント以外で固型化した廃棄体が 2 割を超えないよう(セメント固化体は 8 割以上)定置の管理を行う。ただし、C についてはアスファルト固化体が閉じ込め性を有すること及び BWR のプラスチック固化体に含まれる C-14 は無機形態であることから、セメント固化体と同等の性能を有するものとし、1 と設定する。

第6図 廃棄体の初期状態の分配係数の考え方

(1号廃棄物埋設施設 均質・均一固化体(1群~6群))

(2) 1号廃棄物埋設施設 均質・均一固化体(7,8群)の初期状態の分配係数の考え方 1号廃棄物埋設施設のうち 7,8 群(均質・均一固化体に限る)については、均 質・均一固化体及びセメント破砕物充填固化体の埋設割合を考慮する必要があ る。これについては、線量評価の段階で収着体積の割合として考慮する。

均質・均一固化体のデータについて、元素ごとに発電所(PWR、BWR)と液相(純

水、塩含有)の4条件それぞれの平均値を求め比較する。最小値を初期状態の 分配係数とする。廃棄体の初期状態の分配係数の考え方(1号廃棄物埋設施設 均質・均一固化体(7,8群))を第7図に示す。

(3) 廃棄体(1号廃棄物埋設施設 均質・均一固化体)の初期状態の分配係数
 廃棄体の初期状態の分配係数(1 号廃棄物埋設施設 均質・均一固化体)を第
 14表に示す。

				当社分配係	系数ラ	データ					肉産・均一日	
		新水ち	デーメ	Ż		指今右	デー	R			の貝・均一位	11614
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一		小七 / 1、 /		, 				/		1 君	羊~6 群	78群
声		PWR		BWR		PWR		BWR	最小值	1 1/1	т о ит	1,0 4+
术	Ν	平均值 (m ³ /kg)	Ν	平均值 (m ³ /kg)	N	平均值 (m ³ /kg)	Ν	平均値 (m ³ /kg)		2 割 制限	初期状態 の分配係 数(m ³ /kg)	初期状態 の分配係 数(m ³ /kg)
C*1	12	0.557	3	7.767	1	0.35^{*2}	—		0.5	1	0.5	0.5
C1*3	—		—	_	_		—	_	0.00057		0.00046	0.00057
Со	2	14.555	2	0.251	2	5.825	2	0.159	0.159		0.128	0.159
Ni	2	91.035	2	0.446	2	22.092	2	0.436	0.436		0.349	0.436
Sr	2	0.045	2	1.886	2	0.099	2	0.854	0.045		0.036	0.045
Nb	2	100	2	67.528	2	100	2	79.632	67.528	0.0	54.022	67.528
Тc	2	0.00066	2	1.016	_	_	_	_	0.00066	0.8	0.00053	0.00066
Ι	2	0.124	2	0.0027	_	_	—	_	0.0027		0.0022	0.0027
Cs	2	0.083	2	0.005	2	0.036	2	0.0045	0.0045		0.0036	0.0045
Pu	2	53	2	53	2	46.13	2	42.988	42.988		34. 391	42.988
Am	2	47.286	2	42.661	2	44.452	2	49	42.661		34.129	42.661

第14表 廃棄体の初期状態の分配係数(1号廃棄物埋設施設 均質・均一固化体)

*1 PWR は有機 C、BWR は無機 C の値である。C の値は、PWR の有機 C の平均値を使用する。また、ばらつきを考慮し保守側に 0.5m³/kg とする。

*2 同一サンプルを用いた純水データの試験結果(0.23m³/kg)よりも、塩含有データの方が高い 値が得られており、塩含有による分配係数低下の影響がないと判断した。

*3 C1 に関しては脱着分配係数のデータが無いため、充塡固化体の高炉スラグモルタルの収着 分配係数データを使用する。

4.1.3. コンクリート

仕様変更があった2号廃棄物埋設施設のコンクリートについては、高炉スラ グコンクリートとFAコンクリートの平均値を比較し小さい方を設定した。3号 廃棄物埋設施設及び1号廃棄物埋設施設のうち7,8群も、2号廃棄物埋設施設 と同様の設定手法とした。1号廃棄物埋設施設のうち1群~6群については高 炉スラグコンクリートのデータを用いた。

コンクリートの初期状態の分配係数設定に当たり、FA モルタルのデータがあ る元素については、主要な水和生成物である CSH ゲルの量の割合に応じて分配 係数が変化するものとし、CSH ゲル量を元に FA モルタルのデータを FA コンク リート相当に保守側に換算したデータを用いる。 単位体積当たりの水和生成物(CSH ゲルで代表)生成量を求め、この比(FA コ ンクリートの CSH ゲル量/FA モルタルの CSH ゲル量)を換算係数とし、FA モル タルのデータに乗じた値を FA コンクリートのデータとして用いる。求めたコ ンクリート換算係数を第15表に示す。

		セメン	トペースト		CSHゲル	モル数	
材料種類	結合;	材	-	結合材	単位重量	単位体積	協管反粉
的样性短	(kg/n	n ³)	$\sqrt{1}$	+ 水	当たり	当たり	换异体效
	セメント	FA	(Kg/m ⁻)	(kg/m^3)	(mol/kg)	$(mo1/m^3)$	
FAコンクリ ート	233	100	155	488	0.91	444	0.44
FAモルタル	338	153	230	721	1.40	1,009	

第15表 コンクリート換算係数

(1) コンクリート(2,3 号廃棄物埋設施設及び1号廃棄物埋設施設(7,8 群))

当社分配係数データのうち、高炉スラグコンクリート及び FA コンクリートの データをそれぞれ元素ごとに平均値を求めて比較し最小値を選定する。その最小 値と JAEA-SDB のセメントデータの平均値を比較し、JAEA-SDB のデータが 1/10 以 下の場合には、JAEA-SDB のデータを初期状態の分配係数とし、1/10 より大きい場 合には、当社分配係数データを初期状態の分配係数とする。コンクリートの初期 状態の分配係数の考え方(2,3号廃棄物埋設施設及び1号廃棄物埋設施設(7,8群)) を第8回に、コンクリートの初期状態の分配係数(2,3号廃棄物埋設施設及び1号 廃棄物埋設施設(7,8群))を第16表に示す。

第8図 コンクリートの初期状態の分配係数の考え方

(2,3 号廃棄物埋設施設及び1号廃棄物埋設施設(7,8 群))

第16表 コンクリートの初期状態の分配係数

				当社分曹	记係数	データ			JAEA	-SDB のデータ	
	高州	戸スラグ		FA			FA				コンクリ
	コン	クリート	コン	クリート		モ	ルタル			セメント	ートの初
元素								FAモルタ			期状態の
	N	平均值	N	平均值	N	平均值	換算	ル平均値	N	平均值	分配係数
	IN	(m^3/kg)	IN	(m^3/kg)	IN	(m^3/kg)	係数	×換算係	IN	(m^3/kg)	(m^3/kg)
								数(m³/kg)			
C*1	18	0.11	—	—	—	—	_	_	_		0.05*2
C*3	3	0.0039	—	_	—	—	_	_	_	_	3
C1	3	0.00099	_	_	8	0.00198		0.00087	7	0.013	0.00087
Со	2	1.846	_	_	3	0.084		0.037	46	1.214	0.037
Ni	2	2.893	13	0.132	35	0.113		0.05	302	0.15	0.132
Sr	2	0.019	_	_	3	0.0067		0.0029	90	0.0091	0.0029
Nb	2	0.62	3	2.22	—	_		_	116	0.867	0.62
Tc	2	0.0016	_	_	8	0.00015	0.44	0.000066	13	0.00054	0.000066
Ι	2	0.00033	_	_	8	0.0014		0.00062	161	0.0044	0.00033
Cs	5	0.184	13	0.026	18	0.0065		0.0028	140	0.015	0.026
Pu	_		3	2.358	1	3.7		1.628	151	16.969	2.358
Am	_	_	_		1	7.727		3.4	85	2.877	3.4

(2,3 号廃棄物埋設施設及び1号廃棄物埋設施設(7,8 群))

*1 2,3 号廃棄物埋設施設及び1号廃棄物埋設施設(7,8 群 充塡固化体)

*2 Cはばらつきを考慮し保守側に 0.05m³/kgとする。

*3 1号廃棄物埋設施設(7,8群 均質・均一固化体)

(2) コンクリート(1号廃棄物埋設施設(1群~6群))

当社分配係数データのうち、高炉スラグコンクリートのデータ及び JAEA-SDB のセメントデータについて、元素ごとに平均を求めて比較する。当社分配係数デ ータと比較し JAEA-SDB のデータが 1/10 以下の場合には、JAEA-SDB のデータを初 期状態の分配係数とし、1/10 より大きい場合には、当社分配係数データを初期状 態の分配係数とする。コンクリートの初期状態の分配係数の考え方(1 号廃棄物埋 設施設(1 群~6 群))を第9 図に、コンクリートの初期状態の分配係数(1 号廃棄物 埋設施設(1 群~6 群))を第17表に示す。

第9図 コンクリートの初期状態の分配係数の考え方(1号廃棄物埋設施設(1群~6群))

				当社分酬	记係数	データ		JAEA-	-SDB のデータ		
	高	炉スラグ		FA			FA			「百40万	コンクリ
	コン	/クリート	コン	·クリート		モ	ルタル		同	が炉イフク	ートの初
元素	N	平均值 (m ^{3/kg)}	N	平均值 (m ³ /kg)	N	平均値 (m ³ /kg)	换算 係数	FA モルタ ル平均値 ×換算係 数(m ³ /kg)	N	平均値 (m ³ /kg)	期状態の 分配係数 (m ³ /kg)
C^{*1}	3	0.0039	—	—	_	_	_	_	—	—	0.003
C1	3	0.00099	_	_	8	0.00198		0.00087	7	0.013	0.00099
Со	2	1.846	_	_	3	0.084		0.037	46	1.214	1.846
Ni	2	2.893	13	0.132	35	0.113		0.05	302	0.15	0.15
Sr	2	0.019	_	_	3	0.0067		0.0029	90	0.0091	0.019
Nb	2	0.62	3	2.22	_	_	0 11		116	0.867	0.62
Тc	2	0.0016	—	_	8	0.00015	0.44	0.000066	13	0.00054	0.0016
Ι	2	0.00033	—	—	8	0.0014		0.00062	161	0.0044	0.00033
Cs	5	0.184	13	0.026	18	0.0065		0.0028	140	0.015	0.015
Pu	_	_	3	2.358	1	3.7		1.628	151	16.969	2.358
Am	_	—	_	—	1	7.727		3.4	85	2.877	3.4

第17表 コンクリートの初期状態の分配係数(1号廃棄物埋設施設(1群~6群))

*1 ばらつきを考慮し保守側に 0.003m³/kgとする。

4.2. 難透水性覆土初期状態の分配係数

当社分配係数データのうち、候補材料である Ca 型 30wt%配合の平均値と Na 型 30wt%配合、20wt%配合、15wt%配合のデータの平均値を比較し、最小値を初期状態 の分配係数とする。ただし Na 型のデータについては、難透水性覆土の配合仕様を 考慮し、30wt%配合のデータを優先する。難透水性覆土の初期状態の分配係数の考 え方を第 10 図に、難透水性覆土の初期状態の分配係数を第 18 表に示す。

		Na型 Ca型										
— =	元素 15wt%配合		20)wt%配合	30)wt%配合	30)wt%配合	の初期状態の			
兀茶	N	平均值	N	平均值	N	平均值	N	平均值	分配係数			
	IN	(m^3/kg)	IN	(m^3/kg)	IN	(m^3/kg)	IN	(m^3/kg)	(m^3/kg)			
C^{*1}	3	0.0012	_	_	—	_	—	_	0			
C1	3	0.00021	—	—	3	0	5	0	0			
Со	2	0.051	2	0.04	—	_	5	2.543	0.04			
Ni	2	0.056	2	0.04	3	0.799	5	1.802	0.799			
Sr	2	0.251	2	0.192	—	—	5	0.389	0.192			
Nb	—	_	_	_	3	0.547	5	0.542	0.542			
Тc	2	0	2	0	—	—	5	0.00025	0			
Ι	2	0	2	0	—	—	5	0.00049	0			
Cs	5	0.482	2	0.147	3	1.343	5	1.721	1.343			
Pu	2	1.149	_		_		8	0.03	0.03			
Am	_	_	_		3	6.479	5	8.29	6.479			

第18表 難透水性覆土の初期状態の分配係数

*1 Cは難透水性覆土による収着を見込まない。

4.3. 岩盤(鷹架層)初期状態の分配係数

当社分配係数データのうち、埋設設備から尾駮沼までの移行経路上の主な岩層の データについて、それぞれ元素ごとに平均値を求めて比較し、最小値を初期状態の 分配係数とする。岩盤(鷹架層)の初期状態の分配係数の考え方を第11図に、岩盤(鷹 架層)の初期状態の分配係数(3号廃棄物埋設施設)を第19表に、岩盤(鷹架層)の初 期状態の分配係数(1,2号廃棄物埋設施設)を第20表に示す。

*2 1,2号廃棄物埋設施設

第11図 岩盤(鷹架層)の初期状態の分配係数の考え方

		凝灰	党岩			砂	岩		
	砂質輻	圣石凝灰岩	軽る	「凝灰岩	軽	石質砂岩		砂岩	る盤(鷹架 屋)の初期出
元素	(Tspt2)		(Tpt2)		(Tpps2)			(Tcs12)	唐)の初期次 能の八町度
	N	平均值	N	平均值	N	平均值	N	平均值	思の力配体
	IN	(m^3/kg)	IN	(m^3/kg)	IN	(m^3/kg)	IN	(m^3/kg)	安X (III / Kg)
C^{*1}	3	0.0016	_	_	_	—	_	_	0.0001
Со	—	_	67	0.332	15	0.206	3	0.19	0.19
Ni	46	0.276	119	0.239	19	0.184	29	0.726	0.184
Sr	83	0.328	67	0.165	29	0.924	53	0.347	0.165
Nb	3	0.024	10	5.5	10	0.022	3	2.115	0.022
Тc	14	0.00016	29	0.00013	19	0.0001	11	0.002	0.0001
Ι	8	0.00009	22	0.00014	9	0.00003	11	0.00037	0.00003
Cs	89	1.896	169	0.923	32	2.851	53	1.981	0.923
Pu	10	0.309	5	0.222	3	0.028	3	0.027	0.027
Am	_	_	10	0.151	3	1.453	3	1.6	0.151

第19表 岩盤(鷹架層)の初期状態の分配係数(3号廃棄物埋設施設)

*1 Cは微生物影響による無機化を考慮し0.0001m³/kgとする。

第 20 表	岩盤(鷹	[[絮解層]の	初期状態の	分配係数	(1, 2)	号廃棄物埋設施設)
--------	------	---------	-------	------	--------	-----------

		凝灰岩			7	砂岩			
	砂質軽石凝灰岩		軽る	石質砂岩		砂岩	粗	粒砂岩	右盤(鷹架僧) の知期世能の
元素		(Tspt2)	(*	Tpps2)	(1	`cs12)	(1	`cs11)	の初期状態の
	N	平均值		平均值	NT.	平均值	NT.	平均值	
	N	(m^3/kg)	N	(m^3/kg)	Ν	(m^3/kg)	Ν	(m^3/kg)	(III / Kg)
C^{*1}	3	0.0016	_	_	_	_	3	0.0023	0.0001
C1	9	0.00012	16	0.000067	3	0.00029	6	0.00012	0.000067
Со	_	_	15	0.206	3	0.19	_	_	0.19
Ni	46	0.276	19	0.184	29	0.726	49	0.444	0.184
Sr	83	0.328	29	0.924	53	0.347	85	0.243	0.243
Nb	3	0.024	10	0.022	3	2.115	_	_	0.022
Тc	14	0.00016	19	0.0001	11	0.002	10	0.00026	0.0001
Ι	8	0.00009	9	0.00003	11	0.00037	7	0.00016	0.00003
Cs	89	1.896	32	2.851	53	1.981	88	1.35	1.35
Pu	10	0.309	3	0.028	3	0.027	2	4.543	0. 027
Am		_	3	1.453	3	1.6	2	36.332	1.453

*1 Cは微生物影響による無機化を考慮し 0.0001m³/kgとする。

- 5. 影響事象による各バリア材料への放射性物質の収着影響
 - 5.1. 放射性物質の収着性に影響すると考えられる事象

「2.5. 分配係数設定において対象とする影響事象」の影響事象分析を元に抽出 された影響事象を第 21 表に示す。これらの影響事象について、分配係数試験結果 や文献から収着影響度を求め、影響事象の比較、重畳を考慮し、分配係数低下係数 を求める。

なお、岩盤(鷹架層)については、地下水との反応(溶脱)、有機物及び地下水との 反応(塩)の影響が埋設設備近傍の領域に限られるため収着影響はないものとする。

影響事	象	バリア材料	内容
地下水との反応	溶脱	セメント系材料	 主要鉱物(CSH ゲル等)が地下水との接触により溶脱し、収着性が低下し得る。 地下水浸入量が大きいほど影響が大きい。 溶脱に伴いCSH ゲルの電荷が正から負に変化することで収着性が変化する。
	LE:	セメント系材料	 ・ 均質・均一固化体中の塩物質(硫酸塩、ほう
	塭	難透水性覆土	酸塩)か、放射性物質の収着性に影響を及ば す可能性がある。
		セメント系材料	・ 廃棄物埋設施設中(埋設設備、廃棄体)の有機
有機物		難透水性覆土	物か、放射性物質と錯体を形成することで収 着性が低下する。
海牛物		難透水性覆土	 ・ 微生物の活動により、炭素が無機化すること
似土物		岩盤(鷹架層)	により収着性が低下すると考えられる。

第21表 影響事象分析で抽出された影響事象

5.2. 考慮する影響事象

影響事象については、地下水との反応(溶脱、塩)、有機物及び微生物の影響がある。

地下水との反応(溶脱)は非調和的な溶解が緩慢に進展するもので長期的な変化 である。また、主要な水和生成物である CSH ゲルの溶脱において、CSH ゲル以外の 鉱物や C/S 比が小さい CSH ゲルの存在も考慮すれば、放射性核種の液相濃度に対し て線形領域である関係性は持続していると想定されることから、評価期間 1,000 年 ではセメント系材料の地下水との反応(溶脱)の収着影響については考慮しないも のとする。 微生物については、炭素の初期状態の分配係数は微生物の影響を考慮しているため、収着影響としては考慮しないものとする。

影響事象ごとの各バリア材料への収着影響の考慮の有無を第22表に示す。

影郷東色		バリマけれ	収着影響の	考慮の有無
<i></i>			2,3 号廃棄物 埋設施設	1 号廃棄物 埋設施設
	溶脱	セメント系材料	_	_
地下水との反応	右*1	セメント系材料	_	0
	垣	難透水性覆土	_	0
右撇枷		セメント系材料	0	0
有機物		難透水性覆土	0	0
海片地		難透水性覆土	_	_
网生物		岩盤(鷹架層)	_	_

第22表 影響事象ごとの各バリア材料への収着影響の考慮の有無

○: 収着影響を考慮する

-: 収着影響を考慮しない

*1 1号廃棄物埋設施設のみ

5.3. 基本シナリオ及び変動シナリオにおける収着影響の考え方

影響事象による収着影響として、基本シナリオ及び変動シナリオで異なるものは、 有機物では、イソサッカリン酸(ISA)*1の生成率とした。基本シナリオ及び変動シナ リオにおける収着影響の考え方を第23表に示す。

*1 セルロースの分解生成物

用 43 衣	第 23 表	基本シナリ	オ及び変動シ	イナリオにおり	ける収着影響の考え
--------	--------	-------	--------	---------	-----------

影響事象	基本シナリオ	変動シナリオ	
地下水との反応(塩)	共通		
有機物	イソサッカリン酸(ISA)の 生成率 30%を想定 ⁽⁴⁾	イソサッカリン酸(ISA)の 生成率 100%を想定	

5.4. 収着影響の重畳

1 号廃棄物埋設施設における収着影響は、地下水との反応(塩)による収着影響を 考慮するため、有機物の収着影響との重畳を考慮する。具体的には、有機物による 収着影響度と地下水との反応(塩)による収着影響度を掛け合わせる。

5.5. 炭酸の影響について

コメント No.71 炭酸の影響について記載

炭酸の影響については、4元素(Co, Ni, Pu, Am)が炭酸錯体を生成する。Co及びNi は、中性~pH11程度では炭酸錯体が生成するが、pH11以上では水酸化物が支配的 となる。また、Puについては、中性~pH11ではヒドロキソ炭酸錯体(Pu(CO₃)₂(OH)₂²⁻) が支配化学種となるが、pH11以上では水酸化物(Pu(OH)₄)が支配的となる。Am につ いても、中性~pH11では炭酸錯体(AmCO₃⁺、Am(CO₃)₃³⁻)、pH11以上では水酸化物 (Am(OH)₃)が支配的となる。以上のように、中性~弱アルカリ性では炭酸が化学形態 に及ぼす影響があるが、廃棄物埋設施設中(セメント系材料)の元素の支配的な化学 形態は、いずれでも水酸化物であると想定されるため、影響はないこととする。廃 棄物埋設施設で想定される元素の化学形態(pH11以上)を第24表に示す。

元素	化学形態
С	多様な化学形態
C1	C1 ⁻
Со	$Co(OH)_2(aq)$
Ni	Ni(OH) ₃ -
Sr	Sr^{2^+}
Nb	Nb (OH) 6 ⁻
Tc	TcO_4^{-}
Ι	I-
Cs	Cs ⁺
Pu	Pu(OH) ₄ (aq)
Am	Am (OH) ₃

第24表 廃棄物埋設施設で想定される元素の化学形態(pH11以上)

5.6. 地下水との反応(塩)による収着影響

5.6.1. 塩による収着影響について

塩による収着影響は、1 号廃棄物埋設施設の均質・均一固化体に含まれる塩 を対象とし、分配係数試験のデータを用いて評価する。均質・均一固化体に含 まれる可溶性塩の量を第25表に示す。

第25表 均質・均一固化体に含まれる可溶性塩の量

	平均重量(kg/本)*1	備考
硫酸塩 約 21		硫酸塩は、主に BWR 廃棄体に含まれている (BWR 廃棄体 1 本当たり、約 15kg~約 120kg 含まれて いる)。
ほう素 (ほう酸塩)	約 3.0	ほう素(ほう酸塩)は、主に PWR 廃棄体に含まれて いる(PWR 廃棄体 1 本当たり、約 3.0kg~約 18kg 含まれている)。

*1 これまでの埋設実績から、炉型別の区別をせずに廃棄体1本当たりに含まれる平均重量を 算定。

> 均質・均一固化体に関しては、実廃棄体を用いた塩による収着影響の評価を 含んだデータのため、収着影響度を考慮しない。ただし、C1 に関しては、実固 化体を用いた分配係数試験データがないことから、塩を用いた充填材の収着分 配係数試験データを用いて収着影響を評価する。

> 塩による収着影響は、影響を保守側に考慮するため、基本シナリオと変動シ ナリオで共通とする。

> 埋設設備内の塩の濃度は、1 号均質・均一固化体中の塩量を基に、廃棄体からの塩の溶出挙動及び地下水の流れを考慮し、「各種バリア材の分配係数について」⁽¹⁴⁾で設定された濃度(硫酸塩 3%、ほう酸塩 0.1%)とする。

- 5.6.2. 塩を用いた分配係数試験結果及び塩による収着影響度
 - (1) セメント系材料(廃棄体(充塡固化体)及び充塡材)

塩を用いた分配係数試験結果及び塩による収着影響度(廃棄体(充塡固化体) 及び充塡材)を第26表に示す。

塩を添加した場合の分配係数を塩なしの場合の分配係数で除し、それぞれ元素ごとに収着影響度を求める(除した値が1以上の場合は収着影響度を1とす
る)。

Pu 及び Am 以外の元素については、最も収着影響が大きい(赤枠の中で収着影響度の数値が最も小さい)値を保守側に端数処理した値を収着影響度とする。

Pu 及び Am に関しては収着影響度が 1 未満となるものもあるが、分配係数の 値が大きく、収着する割合は誤差レベルとなるため収着影響度は 1 とする。

第26表 塩を用いた分配係数試験結果及び塩による収着影響度

	分配係	数試験結果(m ³ /kg)	各塩による	収着影響度	指に上ス	
元素	塩なし	3% 硫酸塩	0.10% ほう酸塩	3% 硫酸塩	0.10% ほう酸塩	収着影響度	
С	0.0078	0.01	_	1	_	1	
C1	0.00198	_	_	—	—		
Со	4.96	0.771	3.669	0.16	0.74		
N.:	3.754	1.338	1.296	0.36	0.35		
IN 1	0.076	0.1	—	1	—		
Sr	0.027	0.039	0.02	1	0.74	0.1	
Nb	2.869	0.656	0.664	0.23	0.23		
Tc	0.00031	_	—	—	_		
Ι	0.00037	_	_	_	_		
Cs	0.115	0.036	0.06	0.31	0.52		
Pu	58	53	48	0.91	0.83	1	
Am	52	61	56	1	1	1	

(廃棄体(充塡固化体)及び充塡材)

(2) セメント系材料(コンクリート)

塩を用いた分配係数試験結果及び塩による収着影響度(コンクリート)を第 27表に示す。

塩を添加した場合の分配係数を塩なしの場合の分配係数で除し、それぞれ元素ごとに収着影響度を求める(除した値が1以上の場合は収着影響度を1とする)。

Pu 及び Am 以外の元素については、最も収着影響が大きい(赤枠の中で収着影響度の数値が最も小さい)値を保守側に端数処理した値を収着影響度とする。

Pu 及び Am に関しては収着影響度が 1 未満となっているが、分配係数の値が 大きく、収着する割合は誤差レベルとなるため収着影響度は 1 とする。

	分配係	数試験結果(m ³ /kg)	各塩による	収着影響度	塩に上ろ	
元素	垢わし	3%	0.10%	3%	0.10%	収着影響度	
	塩なし	硫酸塩	ほう酸塩	硫酸塩	ほう酸塩		
С	0.0039	0.0082		1		1	
C1	_	_	_	_	—		
Со	1.846	0.154	0.415	0.084	0.22		
Ni	2.9	0.498	0.079	0.17	0.027		
Sr	0.019	0.037	0.0096	1	0.51	0.00	
Nb	0.62	0.09	0.234	0.15	0.38	0.02	
Тc	0.0015	_		_			
Ι	0.00033	_		_			
Cs	0.065	0.033	0.046	0.51	0.71		
Pu	61	54	34.943	0.89	0.57	4	
Am	72	58	48	0.81	0.67		

第27表 塩を用いた分配係数試験結果及び塩による収着影響度(コンクリート)

(3) 難透水性覆土

塩を用いた分配係数試験結果及び塩による収着影響度(難透水性覆土)を第 28表に示す。

難透水性覆土への塩による収着影響については、塩を用いた分配係数試験結 果から、塩を添加した場合の分配係数を健全試料の分配係数で除し、それぞれ 塩による収着影響度を求め、最も影響が大きい値を保守側に端数処理し、塩に よる収着影響度とする。

塩による収着影響は、影響を保守側に考慮するため、基本シナリオと変動シ ナリオで共通とする。

Cについては難透水性覆土で収着性を期待しない。

	分配係数試驗	資結果(m ³ /kg)	広動指に上て	按にトス
元素	 定素 健全試料 0.5M(7%) Na₂SO₄ 収着長 		硫酸塩による 収着影響度	塩による 収着影響度
С	—		—	_
C1	—		—	
Со	—	_	—	
Ni	1.803	0.133	0.074	
Sr	—	_	—	
Nb	0.539	0.046	0.085	0.07
Тc	_	_	_	0.07
Ι	—	_	—	
Cs	1.696	0.127	0.075	
Pu	—	_	—	
Am	8.289	1.766	0.21	

第28表 塩を用いた分配係数試験結果及び塩による収着影響度(難透水性覆土)

5.6.3. 塩による収着影響度まとめ

塩による収着影響度(基本シナリオ・変動シナリオ共通)を第29表に示す。

第29表 塩による収着影響度(基本シナリオ・変動シナリオ共通)

		塩による収着影響度									
— =	廃棄	体									
九糸	均質・均一 固化体 ^{*1}	充塡固化体	充塡材	コンクリート	難透水性覆土						
С	1	1	1	1	_						
C1	$1 \times 10^{-1*2}$	1×10^{-1}	1×10^{-1}	2×10^{-2}	$7 imes10^{-2}$						
Со	1	1×10^{-1}	1×10^{-1}	2×10^{-2}	7×10^{-2}						
Ni	1	1×10^{-1}	1×10^{-1}	2×10^{-2}	$7 imes10^{-2}$						
Sr	1	1×10^{-1}	1×10^{-1}	2×10^{-2}	$7 imes10^{-2}$						
Nb	1	1×10^{-1}	1×10^{-1}	2×10^{-2}	7×10^{-2}						
Tc	1	1×10^{-1}	1×10^{-1}	2×10^{-2}	$7 imes10^{-2}$						
Ι	1	1×10^{-1}	1×10^{-1}	2×10^{-2}	$7 imes10^{-2}$						
Cs	1	1×10^{-1}	1×10^{-1}	2×10^{-2}	$7 imes 10^{-2}$						
Pu	1	1	1	1	7×10^{-2}						
Am	1	1	1	1	$7 imes 10^{-2}$						

*1 均質・均一固化体に関しては、塩による収着影響の評価を含むデータのため、収着影響度を考慮しない。

*2 充塡材の収着影響度を用いる。

5.7. 有機物による収着影響

有機物は、放射性物質と錯体を形成することが想定され、錯体を形成する場合に は収着性に影響すると考えられる。

有機物による収着影響については、有機物の分解生成物を用いた分配係数試験の 結果を用いて評価する。

埋設設備に使用される有機物の種類及び量は、1,2 号廃棄物埋設施設の施工実績 を考慮する。

廃棄体に含まれる有機物の種類及び量は、「低レベル放射性廃棄物処分用廃棄体 製作技術について(各種固体状廃棄物)」⁽¹⁶⁾を考慮する。

5.7.1. 有機物を用いた収着影響の評価

分解生成物のうち、ISA は既往知見⁽³⁾⁽¹⁸⁾より、金属元素と錯体を形成して金 属元素のバリア材料への収着性を低下させ、ISA の濃度が高いほど収着影響が 大きいことが知られている。

また、ISA 以外の分解生成物でも収着性を低下させる可能性が考えられる。 有機物による収着影響については、廃棄物埋設施設中の分解生成物の濃度(計 算値)を基に、有機物の飽和濃度及び有機物の収着性等を考慮した濃度条件で 試験を行い、セメント系材料及び難透水性覆土の有機物による収着影響を評価 する。

C については既往知見⁽³⁾⁽¹⁹⁾より有機物影響がみられないと考えられるため、 有機物による収着影響はないこととする。

5.7.2. 廃棄物埋設施設中の有機物及びその量について

廃棄物埋設施設に存在する有機物は、埋設設備に使用されるものと廃棄体に 含まれるものがある。埋設設備に使用される主な有機物は、補修材のウレタン 樹脂及びエポキシ樹脂、埋設設備構築のためのポリ塩化ビニル樹脂(シート)で ある。廃棄体に含まれる有機物は、ポリ塩化ビニル樹脂及びセルロースである。 これら有機物はそのままの状態では収着性に影響しないが、これらの施設環境 下での分解生成物が収着性に影響すると考えられる。

ウレタン樹脂はジアミノトルエン(DAT)が、エポキシ樹脂やポリ塩化ビニル 樹脂中の可塑剤はフタル酸が、セルロースはイソサッカリン酸(ISA)が主な分 解生成物であるため、これらの影響を評価する。 なお、埋設設備の充填材にはセルロース系の化学混和剤(増粘剤)が用いられ ているが、長期的なセルロースの分解によって生じる ISA が収着性に大きく影 響を及ぼすと考えられる。ISA の影響は、廃棄体に含まれるセルロースの分解 生成物を全量 ISA とした保守側の評価をしており、埋設設備の充填材における セルロース系の化学混和剤(増粘剤)の影響はこの評価に包含される。

(1) 3号廃棄物埋設施設

埋設設備に使用される有機物は、1,2号廃棄物埋設施設の使用量実績を基に、 廃棄体に含まれる有機物は、「低レベル放射性廃棄物処分用廃棄体製作技術に ついて(各種固体状廃棄物)」を基に、3号の埋設廃棄体 211,200本分に換算し て、各施設での存在量を試算し、いずれかの施設で存在量の大きい値を廃棄物 埋設施設の有機物存在量とした。3号廃棄物埋設施設に存在する有機物の存在 量算出に用いたデータを第30表に示す。

DAT については、ウレタン樹脂の施工量を1号廃棄物埋設施設と2号廃棄物 埋設施設で比較して、量の多い2号廃棄物埋設施設の量とする。

フタル酸については、エポキシ樹脂の施工量を1号廃棄物埋設施設と2号廃 棄物埋設施設で比較して、量の多い1号廃棄物埋設施設の量とし、これに2号 廃棄物埋設施設及び充塡固化体のポリ塩化ビニル量を加えた合計量とする。

ISA については、充塡固化体にのみ存在するのでこの量を使用する。

	廃棄物 埋設施設	有機物	分子量 (g/mol)	有機物量 (g)	分解生成物
埋設設備		ウレタン樹脂	122.1	3. 0×10^{6}	DAT
	一号	エポキシ樹脂	148.1	1.3×10^{7}	フタル酸
	2 号	ポリ塩化ビニル樹脂	390.5	4.7 × 10 ⁴	フタル酸
		ウレタン樹脂	122.1	3.9 $\times 10^{6}$	DAT
		エポキシ樹脂	148.1	8.3 $\times 10^{6}$	フタル酸
廃棄体	0 1	セルロース	180.15	3. 1×10^{7}	ISA
	2 号	ポリ塩化ビニル樹脂	390.5	1.2×10^{9}	フタル酸

第30表 3 号廃棄物埋設施設に存在する有機物の存在量算出に用いたデータ

(2) 1号廃棄物埋設施設

埋設設備に使用される有機物であるウレタン樹脂、エポキシ樹脂及びポリ塩

化ビニル樹脂について、1 号廃棄物埋設施設及び2 号廃棄物埋設施設の使用量 (実績)をそれぞれ8群分に換算し、それぞれ量の多い廃棄物埋設施設の有機物 量を用いる。

廃棄体に含まれる有機物は、「低レベル放射性廃棄物処分用廃棄体製作技術に ついて(各種固体状廃棄物)」を基に、1号8基分の埋設廃棄体40,960本分に換算 して、廃棄体に含まれる有機物存在量とした。1号廃棄物埋設施設に存在する有 機物の存在量算出に用いたデータを第31表に示す。

DAT については、1 号廃棄物埋設施設と2 号廃棄物埋設施設のウレタン樹脂を 比較して量の多い2 号廃棄物埋設施設量とする。

フタル酸については、1号廃棄物埋設施設と2号廃棄物埋設施設のエポキシ樹 脂を比較して量の多い1号廃棄物埋設施設の量に、2号廃棄物埋設施設及び充填 固化体40,960本分のポリ塩化ビニルの合計量とする。

ISA については充塡固化体 40,960 本分の量を使用する。

	廃棄物 埋設施設	有機物	分子量 (g/mol)	有機物量 (g)	分解生成物
		ウレタン樹脂	122.1	3. 0×10^{6}	DAT
	一方	エポキシ樹脂	148.1	1.3×10^{7}	フタル酸
埋設設備	2号	ウレタン樹脂	122.1	3.9 $\times 10^{6}$	DAT
		エポキシ樹脂	148.1	8.3 $\times 10^{6}$	フタル酸
		ポリ塩化ビニル樹脂	390.5	4.7×10 ⁴	フタル酸
	a 🗖	セルロース	180.15	6. 0×10^{6}	ISA
廃兼体	2 号	ポリ塩化ビニル樹脂	390.5	2. 3×10^{8}	フタル酸

第31表 1号廃棄物埋設施設に存在する有機物の存在量算出に用いたデータ

(3) 2号廃棄物埋設施設

埋設設備に使用される有機物は、2 号廃棄物埋設施設の使用量実績を基に、 廃棄体に含まれる有機物は、「低レベル放射性廃棄物処分用廃棄体製作技術に ついて(各種固体状廃棄物)」を基に、207,360本分に換算して埋設設備に使用 される有機物存在量とした。2 号廃棄物埋設施設に存在する有機物の存在量算 出に用いたデータを第 32 表に示す。

	有機物	分子量(g/mol)	有機物量(g)	分解生成物
	ポリ塩化ビニル樹脂	390.5	4.7 × 10 ⁴	フタル酸
埋設設備 ウレタン樹脂 122.1 エポキシ樹脂 148.1	ウレタン樹脂	122.1	3.9 $\times 10^{6}$	DAT
	8.3 $\times 10^{6}$	フタル酸		
	セルロース	180.15	3. 1×10^{7}	ISA
廃兼体	ポリ塩化ビニル樹脂	390.5	1.2×10^{9}	フタル酸

第32表 2号廃棄物埋設施設に存在する有機物の存在量算出に用いたデータ

5.7.3. 有機物の分解率

Glaus らの報告によるセルロースの分解割合⁽¹⁸⁾を第 12 図に示す。この図か ら Paper におけるセルロースの分解率は 0.05 を超えないことから(図右下)、 基本シナリオにおいては分解率を 0.05 と設定した。Aldrich におけるセルロー スの分解率は 0.3 を超えないことから(図左上)、変動シナリオにおいては分解 率を 0.3 と設定した。

ポリ塩化ビニル樹脂(可塑剤)、ウレタン樹脂及びエポキシ樹脂は、瞬時に全 量分解するものとし、基本シナリオと変動シナリオともに分解率を1とした。

FIGURE 3. Extent of cellulose degradation based on ISA data as a function of time during degradation of various cellulose types in ACW-I. Comparison of the prediction of Pavasars et al. (16) with the best-fit parameters for eq 3 given in Table 2.

第12図 セルロースの分解割合

- 5.7.4. 分解生成物の物質量
 - (1) 3号廃棄物埋設施設

1,2号廃棄物埋設施設に存在する有機物の存在量及び有機物の分解率から、3
 号廃棄物埋設施設における分解生成物の物質量を求める。分解生成物の物質量
 (3号廃棄物埋設施設)を第33表に示す。

分解 生成物	有機物	シナリオ	有機物量 (g)	分解率	係数	分解生成 物量(g)	分子量 (g/mol)	物質量 (mol)			
	ポリ塩化ビ ニル樹脂	基本・ 変動	1.2×10^{9}	1	0.4^{*1}	4.8×10 ⁸	390.5	1 0 \ / 1 0 6			
フタル酸	エポキシ 樹脂	基本・ 変動	1.3×10^{7}	1	1	1.3×10^{7}	148.1	$1.3 \times 10^{\circ}$			
DAT	ウレタン 樹脂	基本・ 変動	3.9 $\times 10^{6}$	1	1	3.9 $\times 10^{6}$	122.1	3. 2×10^4			
ISA		基本	3. 1×10^{7}	0.05	1.1^{*2}	1. 7×10^{7}	180.15	9. 5×10^{3}			
	セルロース	変動	3.1×10^{7}	0.3	1.1^{*2}	1.0×10^{7}	180.15	5. 7×10^4			

第33表 分解生成物の物質量(3号廃棄物埋設施設)

*1 ポリ塩化ビニル樹脂中にフタル酸系の可塑剤として 40%添加されているものとした。

*2 セルロースから ISA が生成する際の加水分解に伴う分解生成物量の増加を考慮し1.1とした。

(2) 1号廃棄物埋設施設

1,2号廃棄物埋設施設に存在する有機物の存在量及び有機物の分解率から、1
 号廃棄物埋設施設における分解生成物の物質量を求める。分解生成物の物質量
 (1号廃棄物埋設施設)を第34表に示す。

分解 生成物	有機物	シナリオ	有機物量 (g)	分解率	係数	分解生成 物量(g)	分子量 (g/mol)	物質量 (mol)
フタル酸	ポリ塩化ビ ニル樹脂	基本・ 変動	2. 3×10^{8}	1	0. 4*1	9. 2×10^{7}	390. 5	0.0.4105
	エポキシ 樹脂	基本・ 変動	1.3×10^{7}	1	1	1.3×10^{7}	148.1	$3.3 \times 10^{\circ}$
DAT	ウレタン 樹脂	基本・ 変動	3. 9×10^{6}	1	1	3.9 $\times 10^{6}$	122.1	3.2×10 ⁴
ISA	セルロース	基本	6. 0×10^{6}	0.05	1.1^{*2}	3.3 $\times 10^{5}$	180.15	1.8×10 ³
		変動	6. 0×10^{6}	0.3	1.1^{*2}	6.6 × 10 ⁶	180.15	1.1×10^{4}

第34表 分解生成物の物質量(1号廃棄物埋設施設)

*1 ポリ塩化ビニル樹脂中にフタル酸系の可塑剤として 40%添加されているものとした。

*2 セルロースから ISA が生成する際の加水分解に伴う分解生成物量の増加を考慮し1.1とした。

(3) 2号廃棄物埋設施設

2 号廃棄物埋設施設に存在する有機物の存在量及び有機物の分解率から、2
 号廃棄物埋設施設における分解生成物の物質量を求める。分解生成物の物質量
 (2 号廃棄物埋設施設)を第 35 表に示す。

第35表 分解生成物の物質量(2号廃棄物埋設施設)

分解 生成物	有機物	シナリオ	有機物量 (g)	分解率	係数	分解生成 物量(g)	分子量 (g/mol)	物質量 (mol)
フタル酸	ポリ塩化ビ ニル樹脂	基本・ 変動	1.2×10^{9}	1	0.4^{*1}	4.8×10 ⁸	390.5	
	エポキシ 樹脂	基本・ 変動	1.3×10^{7}	1	1	1.3×10^{7}	148.1	$1.3 \times 10^{\circ}$
DAT	ウレタン 樹脂	基本・ 変動	3.9 $\times 10^{6}$	1	1	3.9 $\times 10^{6}$	122.1	3. 2×10^4
ISA	セルロース・	基本	3. 1×10^{7}	0.05	1.1^{*2}	1. 7×10^{7}	180.15	9. 5×10^{3}
		変動	3. 1×10^{7}	0.3	1. 1*2	1.0×10^{7}	180.15	5.7 $\times 10^{4}$

*1 ポリ塩化ビニル樹脂中にフタル酸系の可塑剤として 40%添加されているものとした。

*2 セルロースから ISA が生成する際の加水分解に伴う分解生成物量の増加を考慮し 1.1 とした。

5.7.5. 各廃棄物埋設施設の間隙体積

廃棄体、充塡材、コンクリートそれぞれの全体積に間隙率(0.2)を乗じ間隙 体積を求める。 廃棄体の上部空隙は、廃棄体1本当たり、10L(200L×5%)とし、3号廃棄物埋 設施設は211,200本、1号廃棄物埋設施設は204,800本、2号廃棄物埋設施設 は207,360本を乗じて求めた。

充塡材は、コンクリート2次製品とドラム缶の体積を、コンクリートの体積 については、鉄筋の体積を除いた値を用いた。

各廃棄物埋設施設の間隙体積を第36表に示す。

		全体	積(m ³)		間隙体積(m ³)			
	0日成玄伽	1 号廃棄物埋設施設		0 巴皮克娜	問附家	0日皮衣伽	1 日 皮 幸 姗	0日皮衣/m
	3 与廃棄初 埋設施設	均質・均一 固化体	充填固化体	埋設施設	间欧平	3 5 廃果物 埋設施設	1 5 廃果物 埋設施設	2 5 廃果物 埋設施設
廃棄体	21,120	23, 284	4,096	20,736	0.2	4,224	5,562	4,147
廃棄体上部空 隙	2, 112	(1, 587)	(410)	2,074	1.0	2, 112	2,048	2,074
充填材(コンク リート2次製 品体積、ドラム 缶体積除く)	37, 590	31, 258	8,067	46, 391	0.2	7, 518	8,067	9, 278
コンクリート (鉄筋体積除 く)	33, 307	33, 931	8,756	46, 233	0.2	6, 661	8,756	9, 247
合計	92,017	88, 473	20,919	113, 359		20, 515	24, 433	24, 745

第36表 各廃棄物埋設施設の間隙体積

5.7.6. 分解生成物濃度の設定

分解生成物の物質量を各廃棄物埋設施設の間隙体積で除し、各廃棄物埋設施 設中の分解生成物濃度に、有機物の溶解度及びセメント系材料への収着性等を 考慮して求めた廃棄物埋設施設中の分解生成物の濃度を第37表に示す。

分解生成物濃度を求めるに当たり、最も濃度が高い3号廃棄物埋設施設の濃 度を使用した。

分解生成 物	シナリオ	分解生成物 除	分解生成物の物質量を各廃棄物埋設施設の間隙体積で 除して求めた分解生成物濃度(mol/L)					
		3 号廃棄物	1号廃棄物	7 埋設施設	2 号廃棄物	物濃度		
		埋設施設	1 群~6 群	7,8 群	埋設施設	(mol/L)		
フタル酸	基本・変動	6. 4×10^{-2}	1.3×10^{-2}	1.3×10^{-2}	5. 2×10^{-2}	1×10^{-2}		
DAT	基本・変動	1. 6×10^{-3}	1.3 $\times 10^{-3}$	1. 3×10^{-3}	1.3×10^{-3}	2×10^{-3}		
	基本	4.6 $\times 10^{-4}$	-	7.5 $\times 10^{-5}$	3.8 $\times 10^{-4}$	1×10^{-5}		
ISA	変動	2.8 × 10 ⁻³	_	4.5 $\times 10^{-4}$	7. 7×10^{-3}	2×10^{-3}		

第37表 廃棄物埋設施設中の分解生成物の濃度

第37表で示した分解生成物濃度の設定の考え方は以下のとおり。

- フタル酸の分解生成物濃度は、フタル酸カルシウムの飽和溶解度(2× 10⁻²mol/L)を考慮し、1×10⁻²mol/L とした。可塑剤が瞬時に分解しフタル酸が 生成するものとし、基本シナリオと変動シナリオで分解生成物濃度を共通と した。
- ・ DAT の分解生成物濃度は、ウレタン樹脂が瞬時に分解し DAT が生成するものとし、基本シナリオと変動シナリオで分解生成物濃度を共通とした。
- ・ ISA の分解生成物濃度は、飽和溶解度(1.8×10⁻²mo1/L)及び廃棄物埋設施設の セメント系材料への ISA の収着を考慮した。
- 5.7.7. 有機物を用いた分配係数試験結果(セメント系材料)

有機物影響による分配係数試験の有機物濃度を「5.7.6.分解生成物濃度の 設定」で求めた分解生成物濃度とするが、Cs、Ni、Nb に関してはより保守側に、 基本シナリオで 3×10⁻⁴mo1/L、変動シナリオで 1×10⁻²mo1/L の試験結果を用い た。セメント系材料における有機物を用いた分配係数試験結果を第 38 表に示 す。

		分配係数(m ³ /kg)									
	有機物	フクル新	DAT		IS	SA					
元素		ノグル酸	DAT	基本シナリオ		変動シナリオ					
	なし	1×10^{-2}	5×10^{-3}	3×10^{-4}	1×10^{-5}	1×10^{-2}	2×10^{-3}				
		mol/L	mol/L	mol/L	mol/L	mol/L	mol/L				
Cs	0.1	0.113	0.111	0.13	—	0.125	_				
Ni	0.144	0.113	0.017	0.1	_	0.079	-				
Nb	>4.923	>0.06	>5.268	5.803	_	0.322					
Pu	>9.857	>6.067	>15. 193	_	*1		0.0013				

第38表 有機物を用いた分配係数試験結果(セメント系材料)

*1 Puの1×10⁻⁵mo1/LはTRU2次レポート⁽¹⁹⁾から収着影響度を設定する。

放射性物質は有機物と錯体を形成することにより、バリア材料への収着性が 低下する。錯体の形成は一種類の有機物と形成するため、複数の有機物による 収着影響は重畳しないものとし、有機物による収着影響は、最も大きい収着影響のある有機物で代表する。

各有機物を添加した場合の分配係数を、有機物なしの場合の分配係数で除し た値を保守側に端数処理し、放射性物質ごとにそれぞれの有機物について収着 影響度を求め(除した値が1以上の場合は収着影響度を1とする)、その中でも 影響が最も大きいものをそれぞれの放射性物質における有機物による収着影 響度とする。

5.7.8. 有機物による収着影響度(セメント系材料)

第 38 表に示した有機物を用いた分配係数試験結果から、有機物を添加した 場合の分配係数を有機物なしの場合の分配係数で除し、保守側に端数処理した 値を有機物による収着影響度とする。

(1) 2,3 号廃棄物埋設施設

セメント系材料における 2,3 号廃棄物埋設施設の有機物による収着影響度を 第 39 表に示す。

		各有機物によ	1 HX	右挫厥にトス四羊尾郷疾			
元素	フタル酸	DAT	Ι	SA	有機物による収有影響度		
	基本・変動	基本・変動	基本	変動	基本	変動	
Cs	1	1	1	1	1	1	
Ni	1	1×10^{-1}	5×10^{-1}	5×10^{-1}	1×10^{-1}	1×10^{-1}	
Nb	1	1	1	5×10^{-2}	1	5×10^{-2}	
Pu	1	1	5×10^{-2}	1×10^{-2}	5×10^{-2}	1×10^{-2}	

第39表 2,3 号廃棄物埋設施設の有機物による収着影響度(セメント系材料)

第39表で示した有機物影響による収着影響度は以下の考え方で設定した。

- フタル酸は計算上では収着影響度が1未満になる放射性物質もあるが、装置の検出限界の問題であり、収着性の観点ではフタル酸による収着影響はないものとし、全て1とした。
- Niの ISA による収着影響度は計算上では基本シナリオ 0.69、変動シナリオ
 0.55 だが、基本と変動で ISA による収着影響に差異はないものとし基本、変動ともに保守側に 5×10⁻¹とした。
- Nbの変動シナリオにおける ISA による収着影響度は計算上では 0.065 となり、
 保守側に 5×10⁻² とした。
- Puの基本シナリオにおける ISA による収着影響度は TRU2 次レポート⁽¹⁹⁾から5
 ×10⁻²とした。
- Puの変動シナリオにおける ISA による収着影響度は計算上 0.026 となり、保 守側に 1×10⁻² とした。
- (2) 1号廃棄物埋設施設

有機物を用いた分配係数試験結果から求めたセメント系材料における1号廃 棄物埋設施設の有機物による収着影響度を第40表に示す。

		各有機物に	よる収着影響度	r L	有機物による収着影響度			
元素	施設(1~8群)		廃棄体 (1 群~6 群では考慮しない)		1 群~6 群	7,8 群		
	フタル酸	DAT	IS	SA				
	基本・変動	基本・変動	基本	変動	基本・変動	基本	変動	
Cs	1	1	1	1	1	1	1	
Ni	1	1×10^{-1}	5×10^{-1}	5×10^{-1}	1×10^{-1}	1×10^{-1}	1×10^{-1}	
Nb	1	1	1	5×10^{-2}	1	1	5×10^{-2}	
Pu	1	1	5×10^{-2}	1×10^{-2}	1	5×10^{-2}	1×10^{-2}	

第40表 1号廃棄物埋設施設の有機物による収着影響度(セメント系材料)

第40表で示した有機物影響による収着影響度は以下の考え方で設定した。

- ・ 有機物よる収着影響は、1 群~6 群に関しては、埋設設備に使用される有機物のみ(フタル酸及び DAT)を考慮し、ISAの収着影響は考慮しない。一方で、7,8
 群に関しては、廃棄体に含まれる有機物もあるため、埋設設備に使用される
 有機物に加えて ISA の収着影響も考慮する。
- フタル酸は計算上では収着影響度が1未満になる放射性物質もあるが、装置の検出限界の問題であり、収着性の観点ではフタル酸による影響はないものとし、全て1とした。
- Niの ISA による収着影響度は計算上では基本シナリオ 0.69、変動シナリオ
 0.55 だが、基本と変動で ISA による収着影響に差異はないものとし基本、変動ともに保守側に 5×10⁻¹とした。
- Nbの変動シナリオにおける ISA による収着影響度は、計算上では 0.065 となり、保守側に 5×10⁻² とした。
- Puの基本シナリオにおける ISA による収着影響度は、TRU2 次レポート⁽¹⁹⁾から 収着影響度を 5×10⁻² とした。
- Puの変動シナリオにおける ISA による収着影響度は、計算上 0.026 となり、
 保守側に 1×10⁻² とした。
- 5.7.9. 有機物による収着影響度(セメント系材料)まとめ

C1、Co、Sr、Tc、I及びAmに関しては、以下のとおり収着影響度を設定した。

・ Coは、同じ遷移金属である Ni、Nb の結果を比較し、収着影響が大きい方 (収着影響度の数値が小さい方)とした。

- ・ Sr は同じ陽イオンの Cs と同じとした。
- ・ 陰イオン(C1、Tc、I)は、セメント系材料への収着性が小さいこと、また、 フタル酸や ISA は液相中では解離して負に帯電しており、陰イオンとの 錯体形成等による収着影響は小さいと想定されることから有機物による 収着影響はないものとした。

Amは、TRU2 次レポート⁽¹⁹⁾より Pu と収着影響度を同じとした。

TRU2 次レポートでは、III価及びIV価のアクチノイドについては、溶 解度上昇に及ぼす有機物(ISA)の影響が同程度であり、収着影響度は溶 解度上昇の影響と等しいとの仮定のもと、Pu(IV)と Am(III)の収着分配 係数の影響割合は同じ値が設定されている。Puの pH-Eh 図を第13 図に 示す。Pu の酸化数は酸化還元環境によって、III価からVI価の酸化数と なるが、セメント環境中で(pH12 程度)は、極端な酸化雰囲気を除けば IV価(溶存化学種 Pu(OH)₄)と推定される。そのため、Am の有機物による 収着影響度については、Pu(IV)と同じとした。

以上のことから求めたセメント系材料における有機物による収着影響度を 第41表に示す。

		有機!	物による収着影	響度			
	のの日感素		1 号廃棄物埋設施設				
兀素	2,3 亏廃莱	彻埋設施設	1 群~6 群	~6群 7,8群			
	基本	変動	基本・変動	基本	変動		
C1	1	1	1	1	1		
Со	1×10^{-1}	5×10^{-2}	1×10^{-1}	1×10^{-1}	5×10^{-2}		
Ni	1×10^{-1}						
Sr	1	1	1	1	1		
Nb	1	5×10^{-2}	1	1	5×10^{-2}		
Tc	1	1	1	1	1		
Ι	1	1	1	1	1		
Cs	1	1	1	1	1		
Pu	5×10^{-2}	1×10^{-2}	1	5×10^{-2}	1×10^{-2}		
Am	5×10^{-2}	1×10^{-2}	1	5×10^{-2}	1×10^{-2}		

第41表 有機物による収着影響度(セメント系材料)

5.7.10. ISA を用いた分配係数試験結果及び ISA による収着影響度(難透水性覆土)

ISA を添加した場合の分配係数を、有機物なしの場合の分配係数で除した値 を保守側に分数に丸めたものを、ISA による収着影響度とする(除した値が1以 上の場合は1とする)。難透水性覆土における ISA を用いた分配係数試験結果 及び ISA による収着影響度を第42表に示す。

	分配係	数試験結果(m	³ /kg)	ISA による収着影響度		
二主		IS	A*1			
兀茶	有機物なし	1.5×10^{-3}	1×10^{-2}	甘卡	亦動	
		mol/L	mol/L	基平	<u> </u>	
Ni	1.802	1.753	0.751	1^{*2}	3. 3×10^{-1}	
Nb	0.542	0.570	0.128	1	2×10^{-1}	
Pu	0.059	0.547	0.567	1	1	
Am	8.290	8.538	3.239	1	3. 3×10^{-1}	

第42表 ISA を用いた分配係数試験結果及び ISA による収着影響度(難透水性覆土)

*1 基本シナリオに 1.5×10⁻³ mol/L のデータを、変動シナリオに 1×10⁻² mol/L のデータを 使用する。

*2 Niの ISA による基本シナリオの収着影響度は計算上では 0.97 となるが、測定誤差と考 えられることから、収着影響度は 1(影響なし)とした。

- 5.7.11. 有機物による収着影響度(難透水性覆土)
 - (1) 2,3 号廃棄物埋設施設

難透水性覆土におけるフタル酸及び DAT による収着影響度については、セメント系材料における有機物による収着影響度を用いる。

各有機物による収着影響が最も大きいもの(収着影響度の数値が最も小さい もの)をそれぞれの元素における有機物による収着影響度とする。求めた 2,3 号廃棄物埋設施設の難透水性覆土における有機物による収着影響度を第 43 表 に示す。

第43表 2,3 号廃棄物埋設施設の有機物による収着影響度(難透水性覆土)

		各有機物によ		右地地にトス四美影響座			
元素	フタル酸	DAT	IS	SA	1 機物による収着影響度		
	基本・変動	基本・変動	基本	変動	基本	変動	
Cs	1	1	_	_	1	1	
Ni	1	1×10^{-1}	1	3. 3×10^{-1}	1×10^{-1}	1×10^{-1}	
Nb	1	1	1	2×10^{-1}	1	2×10^{-1}	
Pu	1	1	1	1	1	1	
Am	_	_	1	3. 3×10^{-1}	1	3. 3×10^{-1}	

(2) 1号廃棄物埋設施設

難透水性覆土におけるフタル酸及び DAT による収着影響度については、セメント系材料における有機物による収着影響度を用いる。

各有機物による収着影響が最も大きいもの(収着影響度の数値が最も小さい もの)をそれぞれの元素における有機物による収着影響度とする。求めた 1 号 廃棄物埋設施設の難透水性覆土における有機物による収着影響度を第 44 表に 示す。

	各	有機物による	る収着影響度	F	有機物による収着影響度			
		7,8	群					
核種	1 群~	~6 群			1 群~6 群	7,8 群		
	フタル酸	DAT	ISA					
	基本・変動	基本・変動	基本	変動	基本・変動	基本	変動	
Cs	1	1	_	_	1	1	1	
Ni	1	1×10^{-1}	1	3. 3×10^{-1}	1×10^{-1}	1×10^{-1}	1×10^{-1}	
Nb	1	1	1	2×10^{-1}	1	1	2×10^{-1}	
Pu	1	1	1	1	1	1	1	
Am	_	_	1	3. 3×10^{-1}	1	1	3. 3×10^{-1}	

第44表 1号廃棄物埋設施設の有機物による収着影響度(難透水性覆土)

5.7.12. 有機物による収着影響度(難透水性覆土)まとめ

C1、Co、Sr、Tc及びIは、以下の考え方により有機物による収着影響度を設定した。

- ・ Coは、同じ遷移金属である Ni、Nb の結果を比較し、収着影響が大きい方(収 着影響度の数値が小さい方)と同じとした。
- ・ Sr は同じ陽イオンの Cs と同じとした。
- ・ 陰イオン(C1、Tc、I)は、セメント系材料への収着性が小さいこと、また、 フタル酸や ISA は液相中では解離して負に帯電しており、陰イオンとの錯 体形成等による収着影響は小さいと想定されることから有機物による収着 影響はないものとした。
- ・ 1 群~6 群の Am は、TRU2 次レポート⁽¹⁹⁾より Pu と収着影響度を同じとした。
- ・ 以上のことから求めた難透水性覆土における有機物による収着影響度を第 45表に示す。

	有機物による収着影響度									
二主	0 0 日 成 壺									
兀茶	2,3 万廃莱	彻埋盿旭砇	1 群~	~6 群	7,8	3群				
	基本	変動	基本	変動	基本	変動				
C1	1	1	1	1	1	1				
Со	1×10^{-1}	1×10^{-1}	1×10^{-1}	1×10^{-1}	1×10^{-1}	1×10^{-1}				
Ni	1×10^{-1}	1×10^{-1}	1×10^{-1}	1×10^{-1}	1×10^{-1}	1×10^{-1}				
Sr	1	1	1	1	1	1				
Nb	1	2×10^{-1}	1	1	1	2×10^{-1}				
Tc	1	1	1	1	1	1				
Ι	1	1	1	1	1	1				
Cs	1	1	1	1	1	1				
Pu	1	1	1	1	1	1				
Am	1	3. 3×10^{-1}	1	1	1	3. 3×10^{-1}				

第45表 有機物による収着影響度(難透水性覆土)

5.8. 微生物による収着影響

微生物の活動により、固相、液相及び化学形態が変化するため収着性に影響する と考えられるが、セメント系材料は、高 pH 環境のため、微生物の活性は低く⁽³⁾収 着性に影響しないものとする。

難透水性覆土及び岩盤(鷹架層)は、微生物の活動により、炭素が無機化⁽²⁰⁾すると するが、収着影響を包含した初期状態の分配係数を用いるため考慮しない。

- 6. 分配係数低下係数の算出
 - 6.1. セメント系材料の分配係数低下係数
 - 6.1.1. 2,3 号廃棄物埋設施設

2,3 号廃棄物埋設施設の難透水性覆土における収着影響は、有機物による影響のみを考慮するため、有機物による収着影響度が分配係数低下係数となる。 セメント系材料の分配係数低下係数(2,3 号廃棄物埋設施設)を第46表に示す。

第46表 セメント系材料の分配係数低下係数(2,3 号廃棄物埋設施設)

	基本シ	ナリオ	変動シナリオ		
元素	収着影響度	分配係数低下係数	収着影響度	分配係数低下係数	
	①有機物	1)	②有機物	2	
C1	1	1	1	1	
Со	1×10^{-1}	1×10^{-1}	5×10^{-2}	5×10^{-2}	
Ni	1×10^{-1}	1×10^{-1}	1×10^{-1}	1×10^{-1}	
Sr	1	1	1	1	
Nb	1	1	5×10^{-2}	5×10^{-2}	
Tc	1	1	1	1	
Ι	1	1	1	1	
Cs	1	1	1	1	
Pu	5×10^{-2}	5×10^{-2}	1×10^{-2}	1×10^{-2}	
Am	5×10^{-2}	5×10^{-2}	1×10^{-2}	1×10^{-2}	

6.1.2. 1号廃棄物埋設施設

セメント系材料における収着影響については、有機物による収着影響度に塩に よる収着影響度を乗じたものが分配係数低下係数となる。

1号廃棄物埋設施設のセメント系材料における分配係数低下係数を第47表から 第53表に示す。

		基本シナ	ーリオ	変動シナリオ			
一步	収着影	影響度	分配係数低下係数 収着影		5響度	分配係数低下係数	
九亲	①有機物	②塩	1×2	③有機物	④ 塩	$(3) \times (4)$	
С	1	1	1	1	1	1	
C1	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Со	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	
Ni	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	
Sr	1	1	1	1	1	1	
Nb	1	1	1	1	1	1	
Tc	1	1	1	1	1	1	
Ι	1	1	1	1	1	1	
Cs	1	1	1	1	1	1	
Pu	1	1	1	1	1	1	
Am	1	1	1	1	1	1	

第47表 廃棄体(均質・均一固化体)の分配係数低下係数(1号廃棄物埋設施設 1 群~6 群)

第48表 廃棄体(均質・均一固化体)の分配係数低下係数(1号廃棄物埋設施設 7,8群)

		基本シナ	ーリオ	変動シナリオ			
元素	収着影響度		分配係数低下係数 収着影		影響度	分配係数低下係数	
	①有機物	②塩	1×2	③有機物	④塩	3×4)	
С	1	1	1	1	1	1	
C1	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Со	1×10^{-1}	1	1×10^{-1}	5×10^{-1}	1	5×10^{-1}	
Ni	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	
Sr	1	1	1	1	1	1	
Nb	1	1	1	5×10^{-2}	1	5×10^{-2}	
Тc	1	1	1	1	1	1	
Ι	1	1	1	1	1	1	
Cs	1	1	1	1	1	1	
Pu	5×10^{-2}	1	5×10^{-2}	1×10^{-2}	1	1×10^{-2}	
Am	5×10^{-2}	1	5×10^{-2}	1×10^{-2}	1	1×10^{-2}	

	基本シナリオ			変動シナリオ			
元素	収着影	/響度	分配係数低下係数	収着累	影響度	分配係数低下係数	
	①有機物	②塩	①×②	③有機物	④塩	$(3) \times (4)$	
С	1	1	1	1	1	1	
C1	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Со	1×10^{-1}	1×10^{-1}	1×10^{-2}	5×10^{-2}	1×10^{-1}	5×10^{-3}	
Ni	1×10^{-1}	1×10^{-1}	1×10^{-2}	1×10^{-1}	1×10^{-1}	1×10^{-2}	
Sr	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Nb	1	1×10^{-1}	1×10^{-1}	5×10^{-2}	1×10^{-1}	5×10^{-3}	
Tc	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Ι	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Cs	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Pu	5×10^{-2}	1	5×10^{-2}	1×10^{-2}	1	1×10^{-2}	
Am	5×10^{-2}	1	5×10^{-2}	1×10^{-2}	1	1×10^{-2}	

第49表 廃棄体(充填固化体)の分配係数低下係数(1号廃棄物埋設施設 7,8群)

第50表 充填材の分配係数低下係数(1号廃棄物埋設施設 1 群~6 群)

		基本シナ	ーリオ	変動シナリオ			
二丰	収着影響度		分配係数低下係数	数低下係数 収着緊		分配係数低下係数	
儿亲	①有機物	②塩	1×2	③有機物	④塩	$(3) \times (4)$	
С	1	1	1	1	1	1	
C1	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Со	1×10^{-1}	1×10^{-1}	1×10^{-2}	1×10^{-1}	1×10^{-1}	1×10^{-2}	
Ni	1×10^{-1}	1×10^{-1}	1×10^{-2}	1×10^{-1}	1×10^{-1}	1×10^{-2}	
Sr	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Nb	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Tc	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Ι	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Cs	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Pu	1	1	1	1	1	1	
Am	1	1	1	1	1	1	

		基本シナ	ーリオ	変動シナリオ			
一志	収着影	影響度	分配係数低下係数	収着影	彡響度	分配係数低下係数	
儿亲	①有機物	②塩	1×2	③有機物	④塩	$(3) \times (4)$	
С	1	1	1	1	1	1	
C1	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Со	1×10^{-1}	1×10^{-1}	1×10^{-2}	5×10^{-2}	1×10^{-1}	5×10^{-3}	
Ni	1×10^{-1}	1×10^{-1}	1×10^{-2}	1×10^{-1}	1×10^{-1}	1×10^{-2}	
Sr	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Nb	1	1×10^{-1}	1×10^{-1}	5×10^{-2}	1×10^{-1}	5×10^{-3}	
Tc	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Ι	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Cs	1	1×10^{-1}	1×10^{-1}	1	1×10^{-1}	1×10^{-1}	
Pu	5×10^{-2}	1	5×10^{-2}	1×10^{-2}	1	1×10^{-2}	
Am	5×10^{-2}	1	5×10^{-2}	1×10^{-2}	1	1×10^{-2}	

第51表 充填材の分配係数低下係数(1号廃棄物埋設施設 7,8群)

第52表 コンクリートの分配係数低下係数(1号廃棄物埋設施設 1 群~6 群)

		基本シナ	ーリオ	変動シナリオ			
二丰	収着影響度		分配係数低下係数 収着影		影響度	分配係数低下係数	
儿亲	①有機物	②塩	1×2	③有機物	④塩	3×4)	
С	1	1	1	1	1	1	
C1	1	2×10^{-2}	2×10^{-2}	1	2×10^{-2}	2×10^{-2}	
Со	1×10^{-1}	2×10^{-2}	2×10^{-3}	1×10^{-1}	2×10^{-2}	2×10^{-3}	
Ni	1×10^{-1}	2×10^{-2}	2×10^{-3}	1×10^{-1}	2×10^{-2}	2×10^{-3}	
Sr	1	2×10^{-2}	2×10^{-2}	1	2×10^{-2}	2×10^{-2}	
Nb	1	2×10^{-2}	2×10^{-2}	1	2×10^{-2}	2×10^{-2}	
Tc	1	2×10^{-2}	2×10^{-2}	1	2×10^{-2}	2×10^{-2}	
Ι	1	2×10^{-2}	2×10^{-2}	1	2×10^{-2}	2×10^{-2}	
Cs	1	2×10^{-2}	2×10^{-2}	1	2×10^{-2}	2×10^{-2}	
Pu	1	1	1	1	1	1	
Am	1	1	1	1	1	1	

		基本シナ	ーリオ	変動シナリオ			
一志	収着影響度		分配係数低下係数	·配係数低下係数 収着影		分配係数低下係数	
九糸	①有機物	②塩	1×2	③有機物	④ 塩	$(3) \times (4)$	
С	1	1	1	1	1	1	
C1	1	2×10^{-2}	2×10^{-2}	1	2×10^{-2}	2×10^{-2}	
Со	1×10^{-1}	2×10^{-2}	2×10^{-3}	5×10^{-2}	2×10^{-2}	1×10^{-3}	
Ni	1×10^{-1}	2×10^{-2}	2×10^{-3}	1×10^{-1}	2×10^{-2}	2×10^{-3}	
Sr	1	2×10^{-2}	2×10^{-2}	1	2×10^{-2}	2×10^{-2}	
Nb	1	2×10^{-2}	2×10^{-2}	5×10^{-2}	2×10^{-2}	1×10^{-3}	
Tc	1	2×10^{-2}	2×10^{-2}	1	2×10^{-2}	2×10^{-2}	
Ι	1	2×10^{-2}	2×10^{-2}	1	2×10^{-2}	2×10^{-2}	
Cs	1	2×10^{-2}	2×10^{-2}	1	2×10^{-2}	2×10^{-2}	
Pu	5×10^{-2}	1	5×10^{-2}	1×10^{-2}	1	1×10^{-2}	
Am	5×10^{-2}	1	5×10^{-2}	1×10^{-2}	1	1×10^{-2}	

第53表 コンクリートの分配係数低下係数(1号廃棄物埋設施設 7,8群)

6.2. 難透水性覆土の分配係数低下係数

6.2.1. 2,3 号廃棄物埋設施設

2,3 号廃棄物埋設施設の難透水性覆土における収着影響は、有機物による影響のみを考慮するため、有機物による収着影響度が分配係数低下係数となる。 難透水性覆土の分配係数低下係数(2,3 号廃棄物埋設施設)を第54表に示す。

	基本シ	ナリオ	変動シ	ナリオ
元素	収着影響度	分配係数低下係数	収着影響度	分配係数低下係数
	①有機物	1	②有機物	2
C1	1	1	1	1
Со	1×10^{-1}	1×10^{-1}	1×10^{-1}	1×10^{-1}
Ni	1×10^{-1}	1×10^{-1}	1×10^{-1}	1×10^{-1}
Sr	1	1	1	1
Nb	1	1	2×10^{-1}	2×10^{-1}
Тc	1	1	1	1
Ι	1	1	1	1
Cs	1	1	1	1
Pu	1	1	1	1
Am	1	1	3. 3×10^{-1}	3. 3×10^{-1}

第54表 難透水性覆土の分配係数低下係数(2,3号廃棄物埋設施設)

6.2.2. 1号廃棄物埋設施設

1 号廃棄物埋設施設の難透水性覆土における収着影響については、有機物に よる収着影響度に塩による収着影響度を乗じたものが分配係数低下係数とな る。1 号廃棄物埋設施設における難透水性覆土の分配係数低下係数を第55表及 び第56表に示す。

第55表 難透水性覆土の分配係数低下係数(1号廃棄物埋設施設 1 群~6 群)

		基本シ	ナリオ	変動シナリオ			
元素	収着影響度		分配係数低下係数	収着影	響度	分配係数低下係数	
	①有機物	②塩	①×②	③有機物	④塩	$(3) \times (4)$	
C1	1	7×10^{-2}	7×10^{-2}	1	$7 imes10^{-2}$	$7 imes10^{-2}$	
Со	1×10^{-1}	7×10^{-2}	$7 imes10^{-3}$	1×10^{-1}	$7 imes10^{-2}$	7×10^{-3}	
Ni	1×10^{-1}	7×10^{-2}	$7 imes10^{-3}$	1×10^{-1}	$7 imes10^{-2}$	7×10^{-3}	
Sr	1	7×10^{-2}	$7 imes 10^{-2}$	1	$7 imes10^{-2}$	$7 imes 10^{-2}$	
Nb	1	7×10^{-2}	7×10^{-2}	1	$7 imes10^{-2}$	$7 imes 10^{-2}$	
Тc	1	7×10^{-2}	$7 imes 10^{-2}$	1	$7 imes10^{-2}$	$7 imes 10^{-2}$	
Ι	1	7×10^{-2}	7×10^{-2}	1	$7 imes10^{-2}$	$7 imes 10^{-2}$	
Cs	1	7×10^{-2}	7×10^{-2}	1	$7 imes10^{-2}$	$7 imes 10^{-2}$	
Pu	1	7×10^{-2}	7×10^{-2}	1	7×10^{-2}	7×10^{-2}	
Am	1	7×10^{-2}	7×10^{-2}	1	7×10^{-2}	7×10^{-2}	

第56表 難透水性覆土の分配係数低下係数(1号廃棄物埋設施設7,8群)

		基本シ	ナリオ	変動シナリオ			
元素	収着影響度		分配係数低下係数	収着影	響度	分配係数低下係数	
	①有機物	②塩	1×2	③有機物	④塩	$(3) \times (4)$	
C1	1	$7 imes 10^{-2}$	7×10^{-2}	1	7×10^{-2}	7×10^{-2}	
Со	1×10^{-1}	$7 imes10^{-2}$	7×10^{-3}	1×10^{-1}	7×10^{-2}	7×10^{-3}	
Ni	1×10^{-1}	$7 imes10^{-2}$	7×10^{-3}	1×10^{-1}	7×10^{-2}	7×10^{-3}	
Sr	1	$7 imes10^{-2}$	7×10^{-2}	1	7×10^{-2}	7×10^{-2}	
Nb	1	$7 imes10^{-2}$	7×10^{-2}	2×10^{-1}	$7 imes10^{-2}$	1.4×10^{-2}	
Tc	1	$7 imes10^{-2}$	7×10^{-2}	1	$7 imes10^{-2}$	7×10^{-2}	
Ι	1	$7 imes10^{-2}$	7×10^{-2}	1	$7 imes10^{-2}$	7×10^{-2}	
Cs	1	$7 imes10^{-2}$	7×10^{-2}	1	$7 imes10^{-2}$	7×10^{-2}	
Pu	1	$7 imes 10^{-2}$	7×10^{-2}	1	$7 imes 10^{-2}$	7×10^{-2}	
Am	1	7×10^{-2}	$7 imes 10^{-2}$	3. 3×10^{-1}	7×10^{-2}	2. 3×10^{-2}	

7. 分配係数設定值

初期状態の分配係数に、分配係数低下係数を乗じ、有効数字1桁(端数切捨て)とした値を分配係数設定値(評価期間は0年及び1,000年後)とする。各廃棄物埋設施設における分配係数設定値を第57表から第61表に示す。

_	第 5	7表 3 長	房廃棄物埋	目設施設の	分配係数	設定值 <mark>(</mark> 0	年、1,00	0 年後)	
				分配	係数設定	値(m ³ /kg)			
枝毛	孟		セメント	系材料			添水灶磨-	F-	岩盤
1/2/13	座 房	軽棄体・ 充	塡材	コンク	リート	天田	. 22 / 11 12 1復 _	L. (鷹架層)
	基	本	変動	基本	変動	基本	本 変	動	共通
Н-3	3	0	0	0		0	0	0	0
C-1	4 5	$ imes 10^{-2}$	5×10^{-2}	5×10^{-2}	5×10)-2	0	0	1×10^{-4}
Co-6	60 2	$ imes 10^{-1}$	1×10^{-1}	3×10^{-3}	1×10	$^{-3}$ 3×	10 ⁻³ 32	$\times 10^{-3}$	1×10^{-1}
Ni-	59 9	$\times 10^{-3}$	9×10^{-3}	1×10^{-2}	1×10	$^{-2}$ 7×	10 ⁻² 72	$\times 10^{-2}$	1×10^{-1}
Ni-6	63 9	$ imes 10^{-3}$	9×10^{-3}	1×10^{-2}	1×10	$^{-2}$ 7 ×	10 ⁻² 72	$\times 10^{-2}$	1×10^{-1}
Sr-9	90 2	$ imes 10^{-2}$	2×10^{-2}	2×10^{-3}	2×10	1^{-3} 1×	10 ⁻¹ 12	$\times 10^{-1}$	1×10^{-1}
Nb-9	94 2	$\times 10^{\circ}$	1×10^{-1}	6×10^{-1}	3×10^{-3}	5×5^{-2}	10 ⁻¹ 12	$\times 10^{-1}$	2×10^{-2}
Tc-9	99 2	$ imes 10^{-4}$	2×10^{-4}	0		0	0	0	0
I-12	29 1	$ imes 10^{-4}$	1×10^{-4}	3×10^{-4}	3×10^{-3})-4	0	0	0
Cs-1	.37 1	$\times 10^{-1}$	1×10^{-1}	2×10^{-2}	2×10^{-10}	1^{-2} 1×	10 0 1	$ imes 10^{\circ}$	9×10^{-1}
Pu-2	239 4	$\times 10^{-1}$	8×10^{-2}	1×10^{-1}	2×10^{-10}	$)^{-2}$ 3×	10 ⁻² 32	$\times 10^{-2}$	2×10^{-2}
Am-2	241 1	$\times 10^{-1}$	2×10^{-2}	1×10^{-1}	3×10^{-3}	6 > 6	<10 [°] 2	$\times 10^{0}$	1×10^{-1}
	*		/ Im an 14 a						
<u></u>	第 58 表 	1 号廃棄4	勿埋設施調	受(1 群~6	5 群) の分	配係数設定	疋値(0年、	1,000 ±	F後)
				分配位	系数設定值	直(m ³ /kg)			- 1
核種			セメン	卜系材料			難透水	性覆土	岩盤
NE	廃事	棄体	充均	眞材	コンク	リート			(鷹架層)
	基本	変動	基本	変動	基本	変動	基本	変動	
H-3	0	0	0	0	0	0	0	(0 0
0-14	5×10^{-1}	5×10^{-1}	4×10^{-9}	4×10^{-5}	3×10 °	3×10 °	0	(1×10^{-1}
$C_{1} = 30$	0 1 × 10 ⁻²	0 1 × 10 ⁻²	0×10^{-2}	$0 > 10^{-2}$	$\frac{0}{2 \times 10^{-3}}$	0×10^{-3}	0×10^{-4}	2×10^{-1}	$\frac{1}{4}$ 1×10^{-1}
Ni-59	1×10 3×10^{-2}	1×10 3×10^{-2}	2×10^{-4}	2×10^{-4}	$\frac{3 \times 10}{2 \times 10^{-4}}$	3×10^{-4}	5×10^{-3}	5×10^{-3}	1×10^{-1}
Ni-63	3×10^{-2}	3×10^{-2}	9×10^{-4}	9×10^{-4}	2×10^{-4}	2×10^{-4}	5×10^{-3}	5×10^{-3}	1×10^{-1}
Sr-90	3×10^{-2}	3×10^{-2}	2×10^{-3}	2×10^{-3}	3×10^{-4}	3×10^{-4}	1×10^{-2}	1×10^{-3}	$2 2 \times 10^{-1}$
Nb-94	1×10^{1}	1×10^{1}	2×10^{-1}	2×10^{-1}	1×10^{-2}	1×10^{-2}	3×10^{-2}	3×10^{-3}	2×10^{-2}
_		- · · · ·							
Tc-99	5×10^{-4}	5×10^{-4}	0	0	0	0	0	() 0
Tc-99 I-129	$ \begin{array}{r} 5 \times 10^{-4} \\ 2 \times 10^{-3} \end{array} $	$ \begin{array}{r} 5 \times 10^{-4} \\ 2 \times 10^{-3} \end{array} $	0	0	0	0	0	($\begin{array}{c c} \hline \\ \hline $
Tc-99 I-129 Cs-137	$ \begin{array}{r} 5 \times 10^{-4} \\ 2 \times 10^{-3} \\ 3 \times 10^{-3} \end{array} $	$ \begin{array}{r} 5 \times 10^{-4} \\ 2 \times 10^{-3} \\ 3 \times 10^{-3} \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 1 \times 10^{-2} \end{array} $	$0 \\ 0 \\ 1 \times 10^{-2}$	$\begin{array}{c} 0\\ 0\\ 3\times 10^{-4} \end{array}$	$\begin{array}{c} 0\\ 0\\ 3\times10^{-4} \end{array}$	$\begin{array}{c} 0\\ 0\\ 9\times 10^{-2} \end{array}$	9×10^{-3}	$\begin{array}{c c} & 2.110 \\ \hline 0 & 0 \\ \hline 0 & 0 \\ \hline 2 & 1 \times 10^{0} \end{array}$
Tc-99 I-129 Cs-137 Pu-239	$5 \times 10^{-4} 2 \times 10^{-3} 3 \times 10^{-3} 1 \times 10^{1}$	$\begin{array}{c} 5 \times 10^{-4} \\ 2 \times 10^{-3} \\ 3 \times 10^{-3} \\ 1 \times 10^{1} \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 1 \times 10^{-2} \\ 8 \times 10^{0} \end{array} $	$ \begin{array}{c} 0 \\ 1 \times 10^{-2} \\ 8 \times 10^{0} \end{array} $	$ \begin{array}{r} 0 \\ 0 \\ 3 \times 10^{-4} \\ 2 \times 10^{0} \end{array} $	$ \begin{array}{r} 0 \\ 0 \\ 3 \times 10^{-4} \\ 2 \times 10^{0} \end{array} $	$ \begin{array}{r} 0 \\ 9 \times 10^{-2} \\ 2 \times 10^{-3} \end{array} $	$\begin{array}{c} 0 \\ 0 \\ \hline 0 \\ 2 \times 10^{-3} \end{array}$	$\begin{array}{c c} & 2 \times 10^{\circ} \\ \hline 0 & 0 \\ \hline 0 & 0 \\ \hline 2 & 1 \times 10^{\circ} \\ \hline 3 & 2 \times 10^{-2} \end{array}$

	化14の分配係数設定値(0年、1,000年後)								
				分配係	数設定値	(m^3/kg)			
技種	セメント系材料 一部 天水性 要 し 岩盤								岩盤
修理	廃棄	美体	充塡	材	コンク	リート	<u>新田</u> 辺小	住復上	(鷹架層)
	基本	変動	基本	変動	基本	変動	基本	変動	共通
H-3	0	0	0	0	0	0	0	0	0
C-14	5×10^{-1}	5×10^{-1}	4×10^{-3}	4×10^{-3}	3×10^{-3}	3×10^{-3}	0	0	1×10^{-4}
C1-36	0	0	0	0	0	0	0	0	0
Co-60	1×10^{-2}	7×10^{-3}	2×10^{-2}	1×10^{-2}	0	0	2×10^{-4}	2×10^{-4}	1×10^{-1}
Ni-59	4×10^{-2}	4×10^{-2}	$9 imes10^{-4}$	9×10^{-4}	2×10^{-4}	2×10^{-4}	5×10^{-3}	5×10^{-3}	1×10^{-1}
Ni-63	4×10^{-2}	4×10^{-2}	$9 imes10^{-4}$	9×10^{-4}	2×10^{-4}	2×10^{-4}	5×10^{-3}	5×10^{-3}	1×10^{-1}
Sr-90	4×10^{-2}	4×10^{-2}	2×10^{-3}	2×10^{-3}	0	0	1×10^{-2}	1×10^{-2}	2×10^{-1}
Nb-94	1×10^{1}	$3 \times 10^{\circ}$	2×10^{-1}	1×10^{-2}	1×10^{-2}	6×10^{-4}	3×10^{-2}	7×10^{-3}	2×10^{-2}
Tc-99	6×10^{-4}	6×10^{-4}	0	0	0	0	0	0	0
I-129	2×10^{-3}	2×10^{-3}	0	0	0	0	0	0	0
Cs-137	4×10^{-3}	4×10^{-3}	1×10^{-2}	1×10^{-2}	5×10^{-4}	5×10^{-4}	9×10^{-2}	9×10^{-2}	1×10^{0}
Pu-239	2×10^{0}	4×10^{-1}	4×10^{-1}	8×10^{-2}	1×10^{-1}	2×10^{-2}	2×10^{-3}	2×10^{-3}	2×10^{-2}
Am-241	2×10^{0}	4×10^{-1}	1×10^{-1}	2×10^{-2}	1×10^{-1}	3×10^{-2}	4×10^{-1}	1×10^{-1}	$1 \times 10^{\circ}$

第59表 1号廃棄物埋設施設(7,8群:2基)均質・均一固化体及びセメント破砕物充填固

化体の公司核粉設定値(0 年 1 000 年後)

第60表 1号廃棄物埋設施設(7,8群:8基)充填固化体(セメント破砕物充填固化体を除く)

の分配係数設定値(0年、1,000年後)

	分配係数設定值(m ³ /kg)									
技種			セメント	、系材料			難沃水	州更上	岩盤	
1次 1里	廃棄	毛体	充垟	真材	コンク	リート	<u>美田 155</u> /八	注復上	(鷹架層)	
	基本	変動	基本	変動	基本	変動	基本	変動	共通	
H-3	0	0	0	0	0	0	0	0	0	
C-14	5×10^{-2}	5×10^{-2}	5×10^{-2}	5×10^{-2}	5×10^{-2}	5×10^{-2}	0	0	1×10^{-4}	
C1-36	0	0	0	0	0	0	0	0	0	
Co-60	2×10^{-2}	1×10^{-2}	2×10^{-2}	1×10^{-2}	0	0	2×10^{-4}	2×10^{-4}	1×10^{-1}	
Ni-59	9×10^{-4}	9×10^{-4}	9×10^{-4}	9×10^{-4}	2×10^{-4}	2×10^{-4}	5×10^{-3}	5×10^{-3}	1×10^{-1}	
Ni-63	9×10^{-4}	9×10^{-4}	9×10^{-4}	9×10^{-4}	2×10^{-4}	2×10^{-4}	5×10^{-3}	5×10^{-3}	1×10^{-1}	
Sr-90	2×10^{-3}	2×10^{-3}	2×10^{-3}	2×10^{-3}	0	0	1×10^{-2}	1×10^{-2}	2×10^{-1}	
Nb-94	2×10^{-1}	1×10^{-2}	2×10^{-1}	1×10^{-2}	1×10^{-2}	6×10^{-4}	3×10^{-2}	7×10^{-3}	2×10^{-2}	
Tc-99	0	0	0	0	0	0	0	0	0	
I-129	0	0	0	0	0	0	0	0	0	
Cs-137	1×10^{-2}	1×10^{-2}	1×10^{-2}	1×10^{-2}	5×10^{-4}	5×10^{-4}	9×10^{-2}	9×10^{-2}	$1 \times 10^{\circ}$	
Pu-239	4×10^{-1}	8×10^{-2}	4×10^{-1}	8×10^{-2}	1×10^{-1}	2×10^{-2}	2×10^{-3}	2×10^{-3}	2×10^{-2}	
Am-241	1×10^{-1}	2×10^{-2}	1×10^{-1}	2×10^{-2}	1×10^{-1}	3×10^{-2}	4×10^{-1}	1×10^{-1}	$1 \times 10^{\circ}$	

	另 01 衣	4 万庑来初	埋成旭政の	力配体效应	定值(0平、	1,000 牛夜)			
	分配係数設定值(m³/kg)									
拉種		セメント	、系材料		継承水	とてて	岩盤			
似性	廃棄体・充填材		コンクリート		無透小	(鷹架層)				
	基本	変動	基本	変動	基本	変動	共通			
H-3	0	0	0	0	0	0	0			
C-14	5×10^{-2}	$5 imes 10^{-2}$	5×10^{-2}	5×10^{-2}	0	0	$1 imes 10^{-4}$			
C1-36	$5 imes 10^{-4}$	$5 imes 10^{-4}$	8×10^{-4}	8×10^{-4}	0	0	0			
Co-60	2×10^{-1}	1×10^{-1}	3×10^{-3}	1×10^{-3}	3×10^{-3}	3×10^{-3}	1×10^{-1}			
Ni-59	9×10^{-3}	9×10^{-3}	1×10^{-2}	1×10^{-2}	7×10^{-2}	7×10^{-2}	$1 imes 10^{-1}$			
Ni-63	9×10^{-3}	9×10^{-3}	1×10^{-2}	1×10^{-2}	7×10^{-2}	7×10^{-2}	$1 imes 10^{-1}$			
Sr-90	2×10^{-2}	2×10^{-2}	2×10^{-3}	2×10^{-3}	1×10^{-1}	1×10^{-1}	2×10^{-1}			
Nb-94	$2 \times 10^{\circ}$	1×10^{-1}	6×10^{-1}	3×10^{-2}	5×10^{-1}	1×10^{-1}	2×10^{-2}			
Tc-99	2×10^{-4}	2×10^{-4}	0	0	0	0	0			
I-129	1×10^{-4}	1×10^{-4}	3×10^{-4}	3×10^{-4}	0	0	0			
Cs-137	1×10^{-1}	1×10^{-1}	2×10^{-2}	2×10^{-2}	1×10^{0}	1×10^{0}	1×10^{0}			
Pu-239	4×10^{-1}	8×10^{-2}	1×10^{-1}	2×10^{-2}	3×10^{-2}	3×10^{-2}	2×10^{-2}			
Am-241	1×10^{-1}	2×10^{-2}	1×10^{-1}	3×10^{-2}	6×10^{0}	2×10^{0}	1×10^{0}			

第61表 2 号廃棄物埋設施設の分配係数設定値(0年、1,000年後)

7.1. 分配係数設定値の妥当性について

現状の分配係数設定値のうち、大きな相違があるものについて、その妥当性について以下に整理した。

PuとAmについては同じアクチノイド系であるが、難透水性覆土の分配係数設定値 が大きく異なる(2オーダー)。PuやAmなどの主要な放射性物質は試験値から得られ た値を用いているが、難透水性覆土の初期状態の分配係数は、Puは 0.03m³/kg、Am は 6.5m³/kg と 200 倍以上の違いがある。Pu の試験結果がAmと比べ小さくなった理 由は、ブランク試験(固相試料が入らない状態で、測定条件と同様に実施する試験) における濃度低下によって液相濃度が検出下限値未満となったためであり、実際の Puの分配係数は 0.03m³/kg より大きくなると考えられる。また、Nbの廃棄体(1 号廃 棄物埋設施設 均質・均一固化体)の分配係数設定値は、他の放射性物質や Nbの廃棄 体(1 号廃棄物埋設施設 均質・均一固化体)以外の分配係数設定値に比べて大きな値 となっている。Nb の初期状態の分配係数において、第4 図の JAEA-SDB 分配係数デー タと当社分配係数データの比較で示したように、Nb の廃棄体(1号廃棄物埋設施設 均 質・均一固化体)の当社分配係数データ(68m³/kg)は JAEA-SDB データの最大値 (120m³/kg)を超えていないため、ばらつきの範囲内として妥当であると考える。

コメント No. 123, 135 分配係数の管理の考え方について記載

8. 分配係数の管理の考え方について

現状の分配係数設定値は、前項までに示したように、スラグ等の混和材や化学混和 剤を含む実セメント系材料及び候補となる覆土材料で取得した分配係数の試験結果に 基づき材料種類ごとの平均値等の最小値を抽出し、廃棄体含有塩、有機物、セメント 溶脱等の影響による長期状態変化を保守側に考慮して安全率(分配係数低下係数)を乗 じた値を設定している。したがって、セメント系材料及び覆土材料の施工単位の品質 変動等が分配係数に与える影響は十分に包含していると考えられる。また、海外にお いても、事前に分配係数の確認を行ない、それを評価に用いており、埋設設備の施工 や廃棄体の製作の観点から事前に確認する現在の考え方と同様と考えている。

しかしながら、従来の品質管理で十分かどうかの判断に足るデータが十分にあると 言い切れないため、データの蓄積及び廃棄物埋設施設の更なる安全管理の充実のため に、各材料の分配係数については、以下に示すように適切な条件及び頻度*1 で分配係 数データを取得することで、廃棄物埋設施設の安全性を確保できる状態であることを 確認することとし、最適な管理方法を検討する。なお、前述のとおり分配係数は平均 値等を使用しており、実測データのばらつき等の影響により、今回申請した値以下と なることも想定されることから、それを考慮しても問題ないような最適な管理方法に ついても検討を行う。

- *1:実廃棄物を用いた測定は、サンプル採取の可否及びサンプル採取時の作業者の 被ばく低減の観点を考慮する。また、分配係数データの蓄積状況に応じて測定頻 度を設定する。
- 8.1. 埋設設備(外周仕切設備、内部仕切設備、覆い及び充塡材)

屋外で施工する埋設設備については、周辺環境の影響及び打設ロット間の品質変 動等が分配係数に与える影響を考慮し、打設の際に試験体を採取し、分配係数を取 得することでデータの蓄積を図るとともに、安全性が確保できる状態であることを 管理する。

分配係数の取得に際しては、種々の分配係数への影響因子を試験等により事前に 把握した上で、適切な条件(材料仕様、対象とする核種等)、頻度(分配係数データ の蓄積状況等により設定)で分配係数データを取得し、分配係数データの取得が困 難な場合は代替指標となるデータを取得する。また、廃棄物埋設施設の安全性は、 廃棄体の固型化材を含めて廃棄物埋設地全体の収着性が確保できることを確認す ることにより管理する。

コメント No. 123, 135 分配係数の管理の考え方について記載

なお、セメントの配合変更などを行う場合は、その都度分配係数データを取得・ 管理する。

8.2. 廃棄体の固型化材

充填固化体は、固体状の放射性廃棄物を収納した廃棄体容器にモルタルを注入し 製作されるため、埋設設備を充填するモルタルと材料は基本的に同様である。均 質・均一固化体は、濃縮廃液等の放射性廃棄物をセメントと混練し製作するため、 セメント固化体の種類等によって適切に区分し分配係数を管理する。

埋設する廃棄体は、埋設設備と異なり周辺環境の影響を受け難い屋内設備等で製 作されること及び固型化条件も設備の運転条件等として一定に管理されており頻 繁に変更になることはない。また、廃棄体の種類もこれまでに埋設した廃棄体と同 様であることから、これまでに取得した分配係数データに加え、今後数年間に分配 係数データ等を取得・蓄積し、埋設する廃棄体の分配係数の管理方法を検討してい く。その管理方法に基づいて、埋設する廃棄体の固型化材の分配係数が種々の分配 係数への影響因子を踏まえて適切に評価、設定されていることを廃棄体の受入れ前 に確認する。なお、廃棄体の分配係数データ取得は、埋設設備と異なり高線量とな る実廃棄物(均質・均一固化体など)を取り扱うことで作業者の過度な被ばくが懸念 されるため、並行して実施する埋設設備側の知見等も取り入れながら代替となるデ ータ取得も視野に入れて検討する。

これにより、埋設設備を含めて廃棄物埋設地全体の収着性が確保できる状態であ ることを確認・管理する。また、これまでと同様に充塡固化体に充塡するモルタル の種類又は均質・均一固化体のうちセメント固化体の種類(廃棄物の種類、セメン ト系材料)が新しく追加される場合*2には、その都度分配係数データを取得し、固型 化方法の違い等が分配係数に与える影響を確認する。

*2:分配係数に影響を及ぼすと考えられる	廃棄物の種類の追加・変更(例:廃棄物
の化学的性状の変更)及びセメント系材	材料仕様の追加・変更(例:セメント種
類の変更)とする。なお、均質・均一個	国化体と化学的性状の異ならない破砕物
充塡固化体は含まない。	コメント No.145_分配係数の追加取得が必 要となる新たな廃棄体の考え方を記載
	•••••••••••••••••••••••••••••••••••••••

8.3. 覆土(難透水性覆土、上部覆土)	コメント No. 123, 135 分配係数の管理の考え方について記載

埋設設備と同様に、施工時の品質変動などが分配係数に与える影響を考慮し、施 工の際に試験体を採取し採取した試験体を用いて分配係数を取得することで分配 係数データの蓄積を図るとともに、安全性が確保できる状態であることを管理する。

分配係数の取得に際しては、種々の分配係数への影響因子を試験等により事前に 把握した上で、適切な条件(材料仕様、対象とする核種等)、頻度(データの蓄積状 況等により設定)で分配係数データを取得し、分配係数データの取得が困難な場合 は代替指標となるデータを取得する。また、廃棄物埋設施設の安全性は、覆土全体 の収着性が確保できることを確認することにより管理する。

8.4. 分配係数等のデータ取得・蓄積及び管理の流れについて

上述の分配係数の管理の考え方に基づいた、今後の分配係数等のデータ取得・蓄 積及び管理の流れ(案)を第14図に示す。埋設施設の構築ごとに分配係数データを取 得・蓄積し、覆い設置段階では埋設設備内全体の収着性(埋設設備内の間隙水中の放 射性物質濃度)、覆土施工段階では廃棄物埋設地全体で収着性が確保されていること を確認する。

また、分配係数の管理に当たり、数年間で分配係数データの取得・蓄積を図り、 具体的な管理基準、新規に設置する3号廃棄物埋設施設、埋設する廃棄体の変更を 行う1号廃棄物埋設施設の7,8群及びこれらに埋設する廃棄体を対象に管理を行う。

なお、分配係数データ取得・蓄積によって得られた知見をもとに新たに適用する 管理方法については、今後当社手順を定めて正式に運用する。ただし、本管理方法 を適用するまでに構築された埋設設備、製作した廃棄体については遡及しての適用 は困難であることから、従来の固型化材料の管理項目又は既存データ(申請書に用い た値)を用いた管理を行う。また、分配係数データの取得・蓄積の結果から、分配係 数取得に替わる代替指標等の検討を実施し、分配係数の管理に適用する。

> コメント No.145_分配係数等のデー タ取得・蓄積及び管理の流れを記載

- 9. 参考文献
 - (1) 北海道電力株式会社、東北電力株式会社、東京電力ホールディングス株式会社、 中部電力株式会社、北陸電力株式会社、関西電力株式会社、中国電力株式会社、
 四国電力株式会社、九州電力株式会社、日本原子力発電株式会社(2016):充填固 化体の標準的な製作方法
 - (2) 陶山忠宏、舘幸男(2012):「収着データベース (JAEA-SDB)の開発:土壌系及びセメント系を含む収着データの拡充」、JAEA-Data/Code 2011-022
 - (3) 電気事業連合会 核燃料サイクル開発機構(2005): TRU 廃棄物処分技術検討書-第
 2次 TRU 廃棄物処分研究開発取りまとめー根拠資料集 分冊 3 FEP
 - (4) INTERNATIONAL ATOMIC ENERGY AGENCY(1994) : Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments, TECHNICAL REPORTS SERIES No. 364
 - (5) INTERNATIONAL ATOMIC ENERGY AGENCY (1987) : EXEMPTION OF RADIATION SOURCES AND PRACTICES FROM REGULATORY CONTROL, IAEA-TECDOC-401
 - (6) INTERNATIONAL ATOMIC ENERGY AGENCY(1998) : Clearance of materials resulting from the use of radionuclides in medicine, industry and research, IAEA-TECDOC-1000
 - (7) C. F. Baes III, R. D. Sharp, A. L. Sjoreen and R. W. Shor(1984) : A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture, ORNL-5786
 - (8) 日本エヌ・ユー・エス株式会社(2010):塩素の土壌-農作物移行係数、社団法人 日本原子力学会「2010 年春の年会」
 - (9) 栃山修 他(1998): 核種移行モデルにおける収着分配係数の概念とその適用性, 原子力バックエンド研究 Vol.5 No.1
 - (10)(社)日本原子力学会(2003):収着分配係数の測定方法―浅地中処分のバリア材料 を対象としたバッチ法の基本手順―2002年10月
 - (11) Jan Tits and Erich Wieland(2018) : Actinide Sorption by Cementitious
 - (12)(財)原子力環境整備センター(1990):土壌と土壌溶液間の放射性核種の分配係数
 環境パラメータ・シリーズ2 RWMC-90-P-13
 - (13)(社)日本原子力学会(2006):収着分配係数の測定方法 標準委員会技術レポート
 AESJ-SC-TR001:2006

- (14)(財)原子力環境整備センター、(株)東芝、日揮(株)、三菱金属(株)、三菱重工業
 (株)(平成元年):各種バリア材の分配係数について
- (15) JNC TJ8400 2001-034(2001 年):セメントを起源とする処分環境の変遷に関す る研究
- (16) Yukio Tachi, Michael Ochs(2018):Sorption parameter setting approaches for radioactive waste disposal considering perturbation effects: sorption reduction factors for organics, Progress in Nuclear Science and Technology, Volume 5, pp. 229-232
- (17) (財)原子力環境整備センター(平成 10 年):低レベル放射性廃棄物処分用廃棄体 製作技術について(各種固体状廃棄物)
- M. A. GLAUS et. al (2008):Degradation of Cellulose under Alkaline Conditions: New Insights from a 12 years Degradation Study, Env. Sci. & Tech., Vol. 42, No. 8, p. 2906~2911
- (19) 電気事業連合会(2005): TRU 廃棄物処分技術検討書 -第2次 TRU 廃棄物処分研究
 開発取りまとめ-
- (20)(財)電力中央研究所(平成22年):地下環境における有機態14Cの化学形態変化挙動に及ぼす微生物影響-13C標識酢酸イオンを用いた原位置トレーサー試験-

参考資料

分配係数試験に用いた セメント系材料の配合表

分配係数試験に用いたセメント系材料(コンクリート及び充填モルタル)の配合表を第1 表及び第2表に示す。

3 号						
水セメント比	単位量(kg/m ³)					
(%)	水	結合材*1	混和材*2	細骨材*3	粗骨材	
47	155	333	60	729	1019	
1号						
水セメント比	単位量(kg/m ³)					
(%)	水	結合材*4	混和材*2	細骨材*3	粗骨材	
55	159	290	85	852	973	
2 号						
水セメント比	 単位量(kg/m ³)					
(%)	水	結合材*1	混和材*2	細骨材*3	粗骨材	
47	155	333	60	729	1019	

第1表 コンクリートの配合

*1 中庸熱ポルトランドセメント 70%及びフライアッシュ 30%の混合セメントとし、必要に 応じて膨張材を置換する。また、施工時には所定のフレッシュ性状確保のため結合材 料に比例して混和剤を添加する。

*2 石灰石微粉末

*3 陸砂と砕砂の混合品

*4 普通ポルトランドセメント 45%及び高炉スラグ微粉末 55%の混合セメントとし、必要に 応じて膨張材を置換する。また、施工時には所定のフレッシュ性状確保のため結合材 料に比例して混和剤を添加する。
		e e	3 号					
	単位量(kg/m ³)							
水セメント		結合	計材	細骨] 材			
比 (%)	水	中庸熱ポル トランドセ メント	高炉スラグ 微粉末	砕砂	陸砂			
55.0	252	131	307	872	582			
	-]	[号		-			
			単位量(kg/m ³))				
水セメント		結合	合材	細骨材				
比 (%)	比 (%) 水	中庸熱ポル トランドセ メント	高炉スラグ 微粉末	砕砂	陸砂			
67.1	283	42	380	877	585			
	-	- - -	2 号					
			単位量(kg/m ³))				
水セメント		結合	合材	細骨材				
比 (%) 水	水	中庸熱ポル トランドセ メント	高炉スラグ 微粉末	砕砂	陸砂			
67.1	283	42	380	877	585			

第2表 充塡モルタルの配合

以上

廃棄物埋設施設における許可基準規則への適合性について

第九条第二号 異常時の放射線障害の防止等(廃止措置開始以後の評価)

線量評価パラメータ -パラメータ根拠集-

2019 年 10 月 16 日 日本原燃株式会社

コメント No. 70 を踏まえ、全パラメータの根拠の充実を行った コメント No. 147 を踏まえ、沢水の利用経路を保守側に基本シナリオ においても考慮することに伴い、関係するパラメータの記載を見直し

目次

1.	よじめに1
第1	表 線量の計算に用いる廃棄体中の放射性物質の組成及び総放射能量2
21• = ·	線量の計算に用いろ廃棄体中の放射性物質の組成及び総放射能量 3
第2	表 核種に依存する評価パラメータ5
<i>></i> ↓ = .	核種 i の半減期 6
	核種 <i>i</i> の吸入摂取による実効線量換算係数 7
	核種 i の経口摂取による実効線量換算係数 9
第3	表 元素に依存する評価パラメータ12
	埋設設備内の媒体 <i>i</i> の核種 <i>i</i> の分配係数(廃棄体)
	埋設設備内の媒体 jの核種 iの分配係数(充塡材)15
	埋設設備内の媒体 <i>i</i> の核種 <i>i</i> の分配係数(コンクリート)
	難透水性覆土の核種 <i>i</i> の分配係数19
	上部覆土の核種 i の分配係数
	鷹架層の核種 <i>i</i> の分配係数
	灌漑土壌の核種 <i>i</i> の分配係数23
	廃棄物埋設地の土壌の核種 <i>i</i> の分配係数24
	水産物 mにおける核種 i の濃縮係数(魚類)
	水産物 mにおける核種 i の濃縮係数(無脊椎動物)
	灌漑農産物への核種 i の移行係数
	農耕農産物への核種 <i>i</i> の移行係数31
	畜産物 n への核種 i の移行係数(牛肉、ミルク)
	畜産物 n への核種 i の移行係数(豚肉)35
	畜産物 n への核種 i の移行係数(鶏肉、鶏卵)
第4	表 廃棄物埋設地に関連する評価パラメータ38
	分配平衡となる埋設設備の体積
	難透水性覆土の拡散寄与面積40
	難透水性覆土の厚さ41
	埋設設備内の媒体 jの体積分率42
	埋設設備内の媒体 jの間隙率44
	難透水性覆土の間隙率45
	上部覆土の間隙率
	鷹架層の間隙率
	灌漑土壌の間隙率48
	廃棄物埋設地の土壌の間隙率49
	埋設設備内の媒体 jの粒子密度50
	難透水性覆土の粒子密度
	上部覆土の粒子密度

	鷹架層の粒子密度	53
	灌漑土壌の粒子密度	54
	廃棄物埋設地の土壌の粒子密度	55
第5表	生活様式に関連する評価パラメータ	56
	水の摂取量	57
	水産物 mの摂取量	58
	畜産物 nの摂取量	59
	灌漑農産物の摂取量	60
	農耕農産物の摂取量	60
	家畜 n の家畜用水摂取量	61
	飲用における放射性物質を含む <mark>沢水</mark> の利用率	
	畜産における放射性物質を含む <mark>沢水</mark> の利用率	63
	灌漑農耕における放射性物質を含む <mark>沢水</mark> の利用率	63
	公衆 p の飲用水の市場希釈係数	64
	公衆 pの水産物 mの市場希釈係数	65
	公衆 pの畜産物 nの市場希釈係数	66
	公衆 p の 農産物の 市場希釈係数	67
	屋外労働作業中の空気中ダスト濃度	68
	居住中の空気中ダスト濃度(屋外、屋内)	69
	公衆 p の 屋外労働作業中の 核種 i の 遮蔽係数	70
	居住者の屋外における核種 i の遮蔽係数	
	屋外労働作業中の呼吸率	73
	<u> 公衆</u> <i>p</i> の 灌漑 農耕作業時間	
	廃棄物埋設地における公衆 pの屋外労働作業時間	
	公衆 <i>p</i> の居住中の屋外における居住時間	
	公衆 <i>p</i> の居住中の屋内における居住時間	77
第6表	基本シナリオにおける放射性物質の移行計算に用いるパラメータ及びその数値	
<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	難透水性覆土の実効拡散係数	80
	埋設設備から上部覆土への流出水量	81
	埋設設備から鷹架層への流出水量	82
	核種が流入する上部覆土の地下水流向方向長さ	83
	上部覆土の地下水流速	84
	上部覆土内地下水流量	85
	核種が流入する鷹架層の地下水流向方向長さ	
	鷹架層の地下水流速	
	鷹架層内地下水流量	
	核種が流入する上部覆土下流端から尾駮沼又は河川又は沢までの評価上の距離	90
	核種が流入する鷹架層下流端から尾駮沼又は河川 <mark>又は沢</mark> までの評価上の距離	91
	核種が流入する上部覆土から尾駮沼又は河川又は沢への地下水流量	
	核種が流入する鷹架層から尾駮沼又は河川又は沢への地下水流入量	93
	尾駮沼又は河川の交換水量	94
	敷地中央部の沢の交換水量	

	灌漑土壌への放射性物質の残留割合 単位面積当たりの灌漑水量 灌漑土壌の有効体積 灌漑土壌浸透水量 核種が流入する上部覆土下流端から濃度算出地点までの評価上の距離 廃棄物埋設地の土壌の希釈係数	
第7表	基本シナリオにおける線量の計算に用いるパラメータ及びその数値	
第8表	変動シナリオにおける線量の計算に用いるパラメータ及びその数値 埋設設備内の媒体 jの核種 iの分配係数(廃棄体) 埋設設備内の媒体 jの核種 iの分配係数(充塡材) 埋設設備内の媒体 jの核種 iの分配係数(コンクリート) 難透水性覆土の核種 iの分配係数	103 104 106 108 110 112 112 113 114 115 116
第9表	基本・変動以外のシナリオにおける線量の計算に用いるパラメータ及びその数値. 核種が流入する上部覆土下流端から井戸までの評価上の距離 廃棄体の総体積 土壌の希釈係数	117 118 119 120

	: 補正に伴い変更する箇所(コメント対応含む)
	: 上記以外の審査会合コメント反映箇所
緑字	: 第 298 回審査会合(2019/8/26)までに自主的に変更した箇所
赤字	: 第 298 回審査会合(2019/8/26)からの変更箇所

1. はじめに

本資料は、資料 2-2-1「廃棄物埋設施設における許可基準規則への適合性について 第九条第二号 異常時の放射線障害の防止等(廃止措置開始以後の評価)」に示す安全評価に用いる線量評価パラメー タを取りまとめたものである。線量評価パラメータを第1表から第9表に示す。

第1表 線量の計算に用いる廃棄体中の放射性物質の組成及び総放射能量

パラメータ名	頁	備考
線量の計算に用いる廃棄体中の放射性物質の組成及び総放射能量	3	_

α核種組成を現実的な値に見直した

I

i

_

L

					名	称			 単 位	
パラメータ	線量の計算に用いる廃棄体中					射性物質の組成	能量	[Bq]		
		共通			□基本			変動		
ンチリオ区方		性能無	視		□ 人	為事象				
	> 3	号廃棄4	勿埋設	施設	·		·			
			杉	種		設定値	既	申請値*1		
			H	-3		1.5×10^{13}	1.	22×10^{14}		
			- <u></u> Co	-14		2.0×10^{12} 1.5 × 10 ¹⁴	3.	37×10^{12} 11 × 10 ¹⁵		
			Ni	-59		$\frac{1.0 \times 10}{5.0 \times 10^{10}}$	3.	48×10^{12}		
			Ni	-63		5. 5×10^{12}	4.	44×10^{14}		
			Sr	-90		6. 7×10^{11}	6.	66×10^{12}		
			Nb	-94		8.1×10 ⁹	3.	33×10^{10}		
			Tc	-99		7.4×10^{7}	7.	40×10^{9}		
			1- (s-	129		$\frac{8.3 \times 10^{\circ}}{7.3 \times 10^{11}}$	1.	$11 \times 10^{\circ}$ 07 × 10 ¹³		
			05	U-2	34	2.3×10^{8}	ч.	07×10		
				U-2	35	7. 6×10^{6}	管理期間内	1 管理其	期間	
				Np-2	237	8. 1×10^{7}		終了」	以後	
		全	α	Pu-2	238	9. 0×10^{10}	4.66×10^{11}	0.22	10 ¹¹	
				Pu-2	239	3.9×10^{10}	4.00×10	2.00^	10	
				Am-2	240	3.3×10^{11}		1.17×	1.17×10^{11}	
	▶ 1	号廃棄	勿埋設	施設						
					7 群	8 群	7,8群			
凯卢体	1	核種	1-	6群	均質·均一 固化体	充填固化体*2	充填固化体	既申	請値*1	
		H-3	9.2	$\times 10^{13}$	3. 1×10^{12}	3.1×10^{12}	1.5×10^{12}	1.22	2×10^{14}	
	(U-14	2.5	$\times 10^{12}$ $\times 10^{10}$	8.4×10^{10}	8.4×10^{10}	1.9×10^{11}	3. 37	× 10 ¹²	
	C	0-60	2.0	$\times 10$ $\times 10^{14}$	9.2×10 2.8×10^{13}	$\frac{9.2 \times 10}{2.8 \times 10^{13}}$	1.5×10^{13}	1, 11	$\times 10^{15}$	
	N	i-59	2.6	$\times 10^{12}$	8. 7×10^{10}	8. 7×10^{10}	4.9×10^{9}	3. 48	3×10^{12}	
	Ν	i-63	3.3	$\times 10^{14}$	1.1×10 ¹³	1.1×10^{13}	5. 4×10^{11}	4.44	$\times 10^{14}$	
	S	r-90	5.0	$\times 10^{12}$	1.7×10^{11}	1.7×10^{11}	6. 5×10^{10}	6.66	5×10^{12}	
	N	b-94	2.5	$\times 10^{10}$	8.3×10^{8}	8.3×10^{8}	7.9×10^{8}	3.33	3×10^{10}	
	T	$\frac{c-99}{-129}$	5.0 8.3	3×10^{7}	1.9×10 2.8 × 10 ⁶	1.9×10 2.8 × 10 ⁶	7.2×10 8 1×10 ⁵	1.4	1×10^8	
	Cs	5-137	3.1	$\times 10^{13}$	1.0×10^{12}	1.0×10^{12}	7.1×10^{10}	4.07	1.10^{13}	
		U-234	1.7	$' \times 10^{8}$	5.7 $\times 10^{6}$	5.7 $\times 10^{6}$	2.9 $\times 10^{7}$			
		U-235	5.6	5×10^{6}	1.9×10^{5}	1.9×10^{5}	9.6 $\times 10^{5}$	管理	管理期間	
	全	Np-237	6.0	$10^{10} \times 10^{10}$	$2.0 \times 10^{\circ}$	$2.0 \times 10^{\circ}$	1.0×10^{4}	期间内	於丁以仮	
	α	Pu=238	2.9	$\times 10^{10}$	2.3×10^{8} 9.9×10 ⁸	2.3×10^{8}	1.1×10 4.9×10^9	4. 66×10^{1}	¹ 2. 33 \times 10 ¹¹	
		Pu-240	2.6	$\times 10^{10}$	8. 7×10^8	8.7×10^{8}	4.4×10^9			
		Am-241	2.4	$\times 10^{11}$	8.1×10 ⁹	8. 1×10^{9}	4. 1×10^{10}		1.17×10^{11}	

	▶2 号磨	棄物埋計	设施設				
			核種	設定値	既申請値*1		Ţ
		H-3		1.2×10^{14}	1.22×10^{14}		1
			C-14	3. 3×10^{12}	3.37	$\times 10^{12}$	
			C1-36	8.0 $\times 10^{8}$		_	1
			Со-60	1.1×10^{15}	1.11	$\times 10^{15}$	1
			Ni-59	3. 4×10^{12}	3.48	$ imes 10^{12}$	1
			Ni-63	4. 4×10^{14}	4.44	$ imes 10^{14}$	1
			Sr-90	6. 6×10^{12}	6.66	$\times 10^{12}$	1
			Nb-94	3. 3×10^{10}	3. 33	$ imes 10^{10}$	Ī
			Tc-99	7.4×10^{9}	7.40	$\times 10^{9}$	
			I-129	1.1×10^{8}	1.11	$\times 10^{8}$	
		(Cs-137	4. 0×10^{13}	4.07	$\times 10^{13}$	
			U-234	2. 3×10^{8}			
			U-235	7. 6×10^{6}	管理期間内	管理期間終了	
			Np-237	8. 1×10^{7}		以後	
		全 α	Pu-238	9. 0×10^{10}			
			Pu-239	3. 9×10^{10}	4. 66×10^{11}	2. 33×10^{11}	
			Pu-240	3. 5×10^{10}			
			Am-241	3. 2×10^{11}		1.17×10^{11}	
設定根拠	中心で	- 500 €0 - る廃棄(- 4 1-1-1	本の種類及び放「線量評価に用	- 射能量の設定 いる α 核種組成	2 「 生設	』及び第 284 回	審査会
備考	*1 参許を 既均 材 化 化	きとして、 う こ す ま 前 む 少 に 『 い に い 、 、 、 、 、 、 、 、 、 、 、 、 、	平成 10 年 10 た廃棄物埋設事 なお、3 号廃勇 記載する。 固化体として製 固型化した充塡	月8日付け10 業変更許可申請 医物埋設施設はは 作されたセメン 固化体(均質・ ¹	安(廃規)第49 青書の値(以下「 北較対象として ~ト固化体を破る 勾一固化体と放	号をもって事業 「既申請値」とい 2 号廃棄物埋設 砕し、セメント 射能量が同等の	変更のう。う。設充近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺辺<
文献							

パラメータ名	頁	備考
核種 iの半減期	6	-
核種 iの吸入摂取による実効線量換算係数	7	-
核種 iの経口摂取による実効線量換算係数	9	-
核種 iの外部放射線に係る実効線量換算係数	11	_

第2表 核種に依存する評価パラメータ

α核種組成の見直しに伴い追記

1

I.

			名	际		単 位		
パラメータ	核種 <i>i</i> の半減期							
	■ 共通		□ 基7	本	□変動			
シナリオ区分				- 本・変動以外				
シナリオ区分 設定値	 ■ 共通 □ 性能無視 □ <l< td=""><td>核 H C- Cl- Co- Ni- Ni- Sr- Nb- Tc- I-1 Cs-</td><td>□ 基元 種 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3</td><td>本 表 、変動以外</td><td>原申請値 1.233×10^1 5.730×10^3 - 5.271×10^0 7.5×10^4 1.00×10^2 2.88×10^1 2.0×10^4 2.0×10^4 2.14×10^5 1.6×10^7 3.017×10^1 - <tr< td=""><td></td></tr<></td></l<>	核 H C- Cl- Co- Ni- Ni- Sr- Nb- Tc- I-1 Cs-	□ 基元 種 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	本 表 、変動以外	原申請値 1.233×10^1 5.730×10^3 - 5.271×10^0 7.5×10^4 1.00×10^2 2.88×10^1 2.0×10^4 2.0×10^4 2.14×10^5 1.6×10^7 3.017×10^1 - - <tr< td=""><td></td></tr<>			
			Pu-240 Am-241		- 4. 33 × 10 ²			
設定根拠	 ・半減期に関する文献は、ICRP Pub. 107⁽¹⁾以外にも Table of Isotope⁽²⁾などがある が、最終的に人への被ばくを考慮するため、線量評価のための推奨値として設定 された ICRP の最新の文献(ICRP Pub. 107)の値を使用した。 ・地質環境に係る長期変動事象、将来における生活環境及び廃棄物埋設地の状態設 定に応じて変動するものではないため、各シナリオで共通の数値とした。 ・ICRP Pub. 107 で記載されている半減期には、変動幅は与えられていない。半減期 のような核壊変に関するデータは、主要な核種については既に多くのデータが取 得されており、文献によりわずかに値が異なる場合もあるが、一般的に不確実性 は小さい。 							
備考								
文献	 Internat: Data for I Richard E 	ional Comm Dosimetric 3. Firestor	ission on R e Calculati ne(1996) : 1	adiological Pro ions, ICRP Publ Fable of Isotop	tection (2008) :1 ication 107 es: Eighth Editi	Nuclear Decay on		

α核種組成の見直しに伴い追記

L

l

パラメーク 核種 1 の吸入摂取による実効線量換算係数 [Sv/Bq] シナリオ区分 共通 基本 変動 生能無視 基本・変動以外 使能無視 基本・変動以外 使能無視 基本・変動以外 検醒 税2位 考慮した子孫族種等(生成割合) 原中請値 1.7×10⁴¹ C-14 2.0×10⁴⁰ 1.7×10⁴¹ C-14 2.0×10⁴⁰ C-16 1.0×10⁴¹ 1.7×10⁴¹ 1.4×10⁴⁰ Scoluble Report 1.0×10⁴¹ 1.1×10⁴¹ Scoluble N=94 1.1×10⁴¹ Scoluble Sr-90 3.8×10⁴¹ Scoluble Scoluble		名称 単位									
シナリオ区分 共通 □ 基本 □ 変動 世能無視 □ 基本・変動以外 □ 歴中諸値 H-3 4.5×10 ⁻⁰¹ - 1.7×10 ⁻¹¹ C1-36 7.3×10 ⁻³ - - 5.6×10 ⁻¹⁹ C1-36 7.3×10 ⁻³ - - 4.1×10 ⁻⁵ C1-36 7.3×10 ⁻¹⁹ - 3.6×10 ⁻¹⁹ - (1-36 7.3×10 ⁻¹⁹ - 3.6×10 ⁻¹⁹ - Ni-59 1.3×10 ⁻¹⁹ - 3.6×10 ⁻¹⁹ - Ni-63 4.8×10 ⁻¹⁰ - 9.0×10 ³ 3.4×10 ¹⁹ Sr-90 3.8×10 ⁴ Y-90(1008) - 8.4×10 ¹⁹ Sr-90 3.8×10 ⁴ Y-90(1008) - 8.7×10 ³ (C-11 1.2×10 ⁴ Bi-210(1008) - - (Scala) - 9.0×10 ³ - - (C-129) 3.6×10 ⁴ - - - (D-210) 3.3×10 ⁴ - - <t< td=""><td>パラメータ</td><td></td><td colspan="9">核種 <i>i</i> の吸入摂取による実効線量換算係数 [Sv/Bq]</td></t<>	パラメータ		核種 <i>i</i> の吸入摂取による実効線量換算係数 [Sv/Bq]								
シリッイ区方 世能無視 三基本・変動以外 様種 おび 新金工作 「三基本・変動以外 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 1.0.0% <t< td=""><td></td><td></td><td colspan="8">■ 共通 □ 基本 □ 変動</td></t<>			■ 共通 □ 基本 □ 変動								
設定値 設定値 考慮した子孫核種等(生成割合) 既中諸値 H-3 4.5×10^{-1} - 1.7×10^{-1} C-14 2.0×10^3 - - C-36 7.3×10^3 - - C-36 7.3×10^3 - 4.1 \times 10^n Ni-69 1.3×10^n - 4.1 \times 10^n Ni-63 4.8×10^{-10} - 8.4 \times 10^{-10} Sr-90 3.8×10^3 Y-90(1008) 3.4×10^{-10} Nb-94 1.1×10^4 - 9.0×10^n I-129 3.6×10^4 - 4.7×10^n R-205 3.6×10^4 - 4.7×10^n R-226 3.6×10^4 R-223 (1008), Ph-21 (1008) - H-231 1.4×10^4 - - R-223 1.4×10^4 - - R-223 1.4×10^4 - - H-233 3.6×10^4 - - L223 3.6×10^4 - - H-233	ンテリオ区分		性能無	視		」 差	基本・変動以外				
設立 (a) (b) (a) (b) (b) (a) (b) (b) (a) (b) (b) (a) (b) (b) (b) (b) (b) (b) (b) (b) (c) (c) <th< td=""><td></td><td>Г</td><td>核</td><td>禾</td><td>設定値</td><td>ŧ</td><td>老庸」た子孫核種</td><td>笔(生成割合)</td><td>既由請値</td></th<>		Г	核	禾	設定値	ŧ	老庸」た子孫核種	笔(生成割合)	既由請値		
設定値 C_{-14} 2.0×10^{-9} - 5.6×10^{-10} Cl-36 7.3×10^{-9} - - - Co-60 1.0×10^{-9} - 4.1 \times 10^{-9} Ni-59 1.3×10^{-9} - 8.6 \times 10^{-10} Ni-63 4.8×10^{-9} - 8.6 \times 10^{-10} Ni-94 1.1×10^{-9} - 9.0 \times 10^{-9} N:-94 1.1×10^{-9} - 9.0 \times 10^{-9} N:-94 1.1×10^{-9} - 9.0 \times 10^{-9} Ro-210 1.2×10^{-9} - 4.7×10^{-9} Cs-137 4.6×10^{-9} - 4.7×10^{-9} Cs-137 4.6×10^{-9} - 4.7×10^{-9} Cs-137 4.6×10^{-9} - 4.7×10^{-9} Ro-226 (1008), h-2216(1008), h-2216(1008), h-2216(1008), h-216(1008), h-216(108), h-216(1008), h-216(-	H-	-3	4.5×10	<u>-</u>) ⁻¹¹	一 一 一	+()&=11/	1.7×10^{-11}		
設定値 C1-36 7.3×10° -		-	C-	-14	2.0×1	0 ⁻⁹	-		5.6×10^{-10}		
設定値 Co-60 1.0×10^{-3} $ 4.1 \times 10^{+5}$ Ni-59 1.3×10^{-10} $ 8.6 \times 10^{-10}$ Ni-63 4.8×10^{-10} $ 8.6 \times 10^{-10}$ Sr-90 3.8×10^{-9} $ 8.4 \times 10^{-7}$ Nb-94 1.1×10^{-6} $ 9.0 \times 10^{+7}$ To-99 3.6×10^{-9} $ 2.0 \times 10^{-9}$ To-99 4.0×10^{-9} $ 2.0 \times 10^{-9}$ To-99 4.0×10^{-9} $ 2.0 \times 10^{-9}$ To-99 4.0×10^{-9} $ 2.0 \times 10^{-9}$ Po-210 3.3×10^{-9} $ 4.7 \times 10^{-9}$ Re-227 5.7×10^{-4} Th-227 (98.62%), Fr-223 (1.38%), Re-225 (100%), Po-211 (100%) $-$ Th-229 8.6×10^{-5} $-225 (100%)$, Po-211 (100%) $-$ Th-229 8.6×10^{-5} $ -$ U-233 3.6×10^{-5} $ -$ U-234 3.5×10^{-6} $ -$ U-233 $5.0 \times 10^$			C1-36		7.3×1	0 ⁻⁹	-		-		
Ni-59 1.3×10 ⁻¹⁰ - 3.6×10 ⁻¹⁰ Ni-63 4.8×10 ⁻¹⁰ - 8.4×10 ⁻¹⁰ Sr-90 3.8×10 ⁻³ Y-90(100%) 3.4×10 ⁻⁷ Nb-94 1.1×10 ⁻⁶ - 9.0×10 ⁻⁹ I-99 4.0×10 ⁻⁹ - 2.0×10 ⁻⁹ I-129 3.6×10 ⁻⁴ - 4.7×10 ⁻⁹ Cs-137 4.6×10 ⁻⁹ - 8.7×10 ⁻⁹ Pb-210 1.2×10 ⁻⁶ Bi-210(100%) - Pc-213 3.3×10 ⁻⁶ - - Ra-226 3.6×10 ⁻⁶ Th-227(98.62%), Fr-223(1.38%), - Ra-225 1.0%), Rb-214(100%) - - Th-229 8.6×10 ⁻⁵ Bi-213(100%), Rb-229(100%) - Th-229 8.6×10 ⁻⁵ - - - U-233 3.6×10 ⁻⁶ - - - U-234 3.5×10 ⁻⁶ - - - U-235 3.1×10 ⁻⁶ - - - Pu-239 5.0×10 ⁻⁵ -		-	Co-	-60	1.0×1	0 ⁻⁸	-		4. 1×10^{-8}		
Ni-63 4.8×10 ⁻¹⁰ - 8.4×10 ¹⁰ Sr-90 3.8×10 ³ Y-90(100%) 3.4×10 ⁷ No-94 1.1×10 ³ - 9.0×10 ³ Tc-99 4.0×10 ² - 2.0×10 ⁴ Tc-99 4.0×10 ² - 8.7×10 ³ Cs-137 4.6×10 ² - 8.7×10 ³ D ⁻ D-210 1.2×10 ⁴ Bi-210(100%) - Ra-226 3.6×10 ⁴ - - Ra-227 5.7×10 ⁴ Ra-223(100%), PF-223(1.38%), - Ra-228 1.6×10 ⁵ - - Th-229 8.6×10 ⁵ Ra-225(100%), Ac-225(100%), - Th-229 8.6×10 ⁵ - - Th-230 1.4×10 ⁵ - - Th-233 3.6×10 ⁶ - - - <tr< td=""><td></td><td></td><td>Ni</td><td>-59</td><td>1.3×10</td><td>)-10</td><td>-</td><td></td><td>3. 6×10^{-10}</td></tr<>			Ni	-59	1.3×10)-10	-		3. 6×10^{-10}		
設定値 Sr-90 3.8×10^3 $V-90(100\%)$ 3.4×10^7 Nb-94 1.1×10^5 - 9.0×10^6 Tc-99 4.0×10^3 - 2.0×10^6 Tc-99 4.0×10^3 - 2.0×10^6 Cs-137 4.6×10^3 - 4.7×10^6 Cs-137 4.6×10^5 - 4.7×10^6 Cs-137 4.6×10^5 - - Po-210 1.2×10^6 Bi-210(100\%) - Ra-226 3.6×10^6 - - Ra-225 (100%), Pb-211(100%) - - Ra-225 (100%), Pb-209(100\%) - - Th-229 8.6×10^{-5} - - Th-230 1.4×10^{-6} - - Th-231 1.4×10^{-6} - - U-233 3.6×10^5 - - U-234 3.5×10^6 - - Pu-230 5.0×10^5 - - Pu-235 5.0×10^5 <td></td> <td></td> <td>Ni</td> <td>-63</td> <td>4.8×10</td> <td>$)^{-10}$</td> <td>-</td> <td></td> <td>8.4 $\times 10^{-10}$</td>			Ni	-63	4.8×10	$)^{-10}$	-		8.4 $\times 10^{-10}$		
Nb-94 1.1×10^8 - 9.0 \times 10^3 Ic-99 4.0×10^9 - 2.0×10^3 Ic-99 3.6×10^9 - 2.0×10^3 Ic-129 3.6×10^9 - 4.7×10^3 Ic-129 3.6×10^5 - 4.7×10^3 Ic-120 3.3×10^6 - - Po-210 1.2×10^6 Bi-210 (100%) - Ic-129 3.6×10^5 - - Ra-226 3.6×10^5 - - Ra-227 5.7×10^4 Th-227 (98.62%), Fb-214 (100%) - Th-229 8.6×10^5 Ra-225 (100%), Pb-211 (100%) - Th-230 1.4×10^5 - - Th-230 1.4×10^5 - - U-233 3.6×10^5 - - U-234 3.5×10^6 - - Pu-234 5.0×10^5 - - Pu-235 0.14^5 - - Pu-236			Sr	-90	3.8×1	0 ⁻⁸	Y-90 (100%)		3. 4×10^{-7}		
設定値 $\frac{1-99}{1-129}$ $4.0 \times 10^{\circ}$ - $2.0 \times 10^{\circ}$ Bbcful G_{S}^{-137} $4.6 \times 10^{\circ}$ - $4.7 \times 10^{\circ}$ Cs ⁻¹³⁷ $4.6 \times 10^{\circ}$ - $8.7 \times 10^{\circ}$ - Pb-210 $1.2 \times 10^{\circ}$ Bi-210(100%) - - Po-210 $3.3 \times 10^{\circ}$ - - - Ra-226 $3.6 \times 10^{\circ}$ Pb-214 (100%) - - Ra-226 $3.6 \times 10^{\circ}$ Pb-214 (100%) - - Ac-227 $5.7 \times 10^{\circ4}$ Ra-223 (100%), Pb-214 (100%) - Ra-223 (100%), Pb-214 (100%) - Th-229 $8.6 \times 10^{\circ5}$ - - - - Pa-231 $1.4 \times 10^{\circ5}$ - - - - U-233 $3.6 \times 10^{\circ6}$ - - - - W-232 $3.1 \times 10^{\circ6}$ - - - - W-233 $3.6 \times 10^{\circ5}$ - - - - Pu-230 5.0×1		_	Nb	-94	1.1×1	0 ⁻⁸	-		9. 0×10^{-8}		
設定値 $ \frac{1-129}{C_{S}-137} 4.6 \times 10^{-9} - 4.7 \times 10^{-3}}{4.6 \times 10^{-9}} - 8.7 \times 10^{-3}} - 4.6 \times 10^{-9}} 4.7 \times 10^{-3}}{8.7 \times 10^{-3}} - 1.2 \times 10^{-5}} - 1.2 \times 10^{-5}$ $ \frac{Pb-210}{Ra-226} 1.2 \times 10^{-6} Bi-210 (100\%)$		-	Tc	-99	4.0×1	0 ⁻⁹	-		2. 0×10^{-9}		
設定値 $ \begin{array}{c} $		-	I-	129	3.6×1	0-8	-		4. 7×10^{-8}		
設定値 設定値 P^{D-210} 1.2×10 ⁶ 1-210(100%) - P^{D-210} 3.3×10 ⁶ - R^{D-210} 3.3×10 ⁶ - R^{D-211} (100%) - R^{D-210} 3.3×10 ⁶ - R^{D-211} (100%) - R^{D-223} 3.6×10 ⁵ Pb-214(99,98%),Bi-214(100%) - R^{D-223} (10%),Pb-211(100%) - R^{D-223} (10%),Pb-211(100%) - R^{D-223} (10%),Pb-211(100%) - R^{D-223} (10%),Pb-211(100%) - R^{D-223} (10%),Pb-201(10%) - R^{D-223} (1.4×10 ⁵ - R^{D-223} (1.0%) - R^{D-223} (1.2×10 ⁵ - R^{D-224} (1.2×10 ⁴) - R^{D-224} (1.2×10 ⁴) - R^{D-224} (1.2×10 ⁵ - R^{D-224} (1.2×10 ⁵ - R^{D-224} (1.2×10 ⁵ - R^{D-24} (1.2×10 ⁴) - R^{D-224} (1.2×10 ⁵ - R^{D-24} (1.2×10 ⁴) - R^{D-244} (1.2×10 ⁵ - R^{D-24} (1.2×10 ⁵)		-	Cs-	-137	4.6×1	0-9	- -		8. 7×10^{-9}		
設定植 設定植				Pb-210	1.2×1	0 0	B1-210(100%)		-		
Ref 220 3.0×10^{-4} The 214 (95), 907, 917 (214 (05), 917 (214 (05)) Ac-227 5.7×10^{-4} The 223 (10.0%), PF-223 (1.38%), Ra-223 (10.0%), PF-211 (100%) - Th-229 8.6×10^{-5} Ra-225 (100%), Ac-225 (100%), Bi-213 (100%), PF-209 (100%) - Th-229 8.6×10^{-5} - - - Pa-231 1.4×10^{-5} - - - U-233 3.6×10^{-6} - - - U-234 3.5×10^{-6} - - - U-234 3.5×10^{-6} - - - U-235 3.1×10^{-6} Th-231 (100%) - - Np-237 2.3×10^{-5} Pa-233 (100%) - - Pu-239 5.0×10^{-5} - - - Pu-240 5.0×10^{-5}	設定値			Po-210	3.3×1	0-6	-	.914(100%)	_		
$\frac{Ac-227}{ERP} = \frac{5.7 \times 10^{-4}}{8.6 \times 10^{-5}} = \frac{Ra-223(100\%), R-211(100\%)}{Ra-225(100\%), Ac-225(100\%), Ac$				Na 220	5.0×1		Th-227 (98, 62%), Fr-	223 (1.38%)			
				Ac-227	5.7×1	0 ⁻⁴	Ra-223 (100%), Pb-21	1 (100%)	-		
全 α Th-2301.4×10 ⁻⁵ Pa-2311.4×10 ⁻⁴ U-2333.6×10 ⁻⁶ U-2343.5×10 ⁻⁶ U-2353.1×10 ⁻⁶ Th-231(100%)-Pu-2384.6×10 ⁻⁵ Pu-2384.6×10 ⁻⁵ Pu-2405.0×10 ⁻⁵ Pu-2405.0×10 ⁻⁵ Pu-2405.0×10 ⁻⁵ Pu-2414.2×10 ⁻⁵ -1.2×10 ⁻⁴ **ICRP Pub. 68 は作業者への被ばくに関するデータであり、今回の評価は一般公衆 被ばくに対するものであるため、ICRP Pub. 72 が適している。************************************		全。		Th-229	8.6×1	0^{-5}	Ra-225 (100%), Ac-22 Bi-213 (100%), Pb-20	Bi-213 (100%), Pb-209 (100%)			
全 α Pa-2311.4×10 ⁻⁴ U-2333.6×10 ⁻⁶ U-2343.5×10 ⁻⁶ U-2353.1×10 ⁻⁶ Th-231(100%)-Pu-2372.3×10 ⁻⁵ Pa-233(100%)-Pu-2384.6×10 ⁻⁵ Pu-2395.0×10 ⁻⁵ Pu-2405.0×10 ⁻⁵ Pu-2405.0×10 ⁻⁵ Pu-2414.2×10 ⁻⁵ Pu-2405.0×10 ⁻⁵ Pu-2414.2×10 ⁻⁵ -1.2×10 ⁻⁴ *specific fagteconder for the system of			全 α	Th-230	1.4×1	0^{-5}	-		-		
し-233 3.6×10° - - - U-234 3.5×10° - - - U-234 3.5×10° - - - U-235 3.1×10° Th-231(100%) - - Np-237 2.3×10° Pa-233(100%) - - Pu-238 4.6×10° - - - Pu-239 5.0×10° - - - Pu-240 5.0×10° - - - Pu-240 5.0×10° - - - Am-241 4.2×10° - - - - Am-241 4.2×10° - 1.2×10° • ICRP Pub. 68 は作業者への被ばくに関するデータであり、今回の評価は一般公衆 被ばくに対するものであるため、ICRP Pub.72 が適している。 • ICRP Pub. 68 は作業者への被ばくに関するデータであり、今回の評価は一般公衆 被ばくに対するものであるため、ICRP Pub.72 が適している。 • ICRP Pub. 72 には一般公衆の年齢別線量係数が示されているが、このうち成 (Adult)の数値で、肺での吸収型が不明な場合の推奨値が示されている核種はそ 数値を、推奨値が示されていない核種は最大の数値を引用した。また、経口摂 と同様に、短半減期の子孫核種のうち ICRP Pub.72 に示されている核種の寄与 考慮した。 - 設定根拠 ・子孫核種種については、生成割合を考慮して親核種のうち、ICRP Pub.72 に示されている 種については、生成割合を考慮して親核種のうち、ICRP Pub.72 に示されている -<				Pa-231	1.4×1	0-4	-		-		
し-234 3.5×10° - <				U-233	3.6×1	0-0	-		-		
Np-237 2.3×10 ⁻⁵ Pa-233 (100%) - Pu-238 4.6×10 ⁻⁵ - - Pu-239 5.0×10 ⁻⁵ - - Pu-239 5.0×10 ⁻⁵ - - Pu-240 5.0×10 ⁻⁵ - - Pu-240 5.0×10 ⁻⁵ - - Am-241 4.2×10 ⁻⁵ - - Am-241 4.2×10 ⁻⁵ - 1.2×10 ⁻⁴ • ICRP Pub. 68 は作業者への被ばくに関するデータであり、今回の評価は一般公衆 被ばくに対するものであるため、ICRP Pub. 72 が適している。 ・ ICRP Pub. 72 には一般公衆の年齢別線量係数が示されているが、このうち成 (Adult)の数値で、肺での吸収型が不明な場合の推奨値が示されている核種はそ 数値を、推奨値が示されていない核種は最大の数値を引用した。また、経口摂 と同様に、短半減期の子孫核種のうち ICRP Pub. 72 に示されている核種の寄与 考慮した。 設定根拠 ・子孫核種については、短半減期の子孫核種のうち、ICRP Pub. 72 に示されている 種については、生成割合を考慮して親核種の換算係数に足し合わせた。ただし ICRP Pub 72 に示されていたい子孫核種については、細枝種に記載された地質係				U=234	3.5×1	0-6	-		_		
中u-238 4.6×10 ⁻⁵ - - Pu-238 4.6×10 ⁻⁵ - - Pu-239 5.0×10 ⁻⁵ - - Pu-240 5.0×10 ⁻⁵ - - Am-241 4.2×10 ⁻⁵ - - Am-241 4.2×10 ⁻⁵ - 1.2×10 ⁻⁴ • 国際的に信頼性の高い ICRP の文献(ICRP Pub. 72 ⁽¹⁾ , ICRP Pub. 68 ⁽²⁾)を参照した。 • • ICRP Pub. 68 は作業者への被ばくに関するデータであり、今回の評価は一般公衆 被ばくに対するものであるため、ICRP Pub. 72 が適している。 • ICRP Pub. 72 には一般公衆の年齢別線量係数が示されているが、このうち成 (Adult)の数値で、肺での吸収型が不明な場合の推奨値が示されている核種はそ 数値を、推奨値が示されていない核種は最大の数値を引用した。また、経口摂 と同様に、短半減期の子孫核種のうち ICRP Pub. 72 に示されている核種の寄与 考慮した。 設定根拠 ・子孫核種については、短半減期の子孫核種のうち、ICRP Pub. 72 に示されている 種については、生成割合を考慮して親核種の換算係数に足し合わせた。ただし ICRP Pub 72 に示されていたい子孫核種については、朝路種に記記書かたぬ質係				Np-237		0-5	$P_{2}=233(100\%)$		_		
Pu-239 5.0×10 ⁻⁵ - - Pu-240 5.0×10 ⁻⁵ - - Pu-240 5.0×10 ⁻⁵ - - Am-241 4.2×10 ⁻⁵ - 1.2×10 ⁻⁴ • 国際的に信頼性の高い ICRP の文献(ICRP Pub. 72 ⁽¹⁾ , ICRP Pub. 68 ⁽²⁾)を参照した。 • 1.2×10 ⁻⁴ • ICRP Pub. 68 は作業者への被ばくに関するデータであり、今回の評価は一般公衆 彼ばくに対するものであるため、ICRP Pub. 72 が適している。 • ICRP Pub. 72 には一般公衆の年齢別線量係数が示されているが、このうち成 (Adult)の数値で、肺での吸収型が不明な場合の推奨値が示されているが、このうち成 (Adult)の数値で、肺での吸収型が不明な場合の推奨値が示されている核種はそ 数値を、推奨値が示されていない核種は最大の数値を引用した。また、経口摂 と同様に、短半減期の子孫核種のうち ICRP Pub. 72 に示されている核種の寄与 考慮した。 設定根拠 ・子孫核種については、短半減期の子孫核種のうち、ICRP Pub. 72 に示されている 核種の寄与 考慮した。 ・子孫核種については、短半減期の子孫核種のうち、ICRP Pub. 72 に示されている ただし ICRP Pub. 72 に示されていない				Pu-238	4.6×1	0^{-5}	-		_		
Pu-240 5.0×10 ⁻⁵ - -				Pu-239 5.0×10 ⁻⁵ -		_					
Am-241 4.2×10 ⁻⁵ - 1.2×10 ⁻⁴ ・ 国際的に信頼性の高い ICRP の文献(ICRP Pub. 72 ⁽¹⁾ , ICRP Pub. 68 ⁽²⁾)を参照した。 ・ ICRP Pub. 68 は作業者への被ばくに関するデータであり、今回の評価は一般公衆 被ばくに対するものであるため、ICRP Pub. 72 が適している。 ・ ICRP Pub. 72 には一般公衆の年齢別線量係数が示されているが、このうち成 (Adult)の数値で、肺での吸収型が不明な場合の推奨値が示されている核種はそ 数値を、推奨値が示されていない核種は最大の数値を引用した。また、経口摂 と同様に、短半減期の子孫核種のうち ICRP Pub. 72 に示されている核種の寄与 考慮した。 設定根拠 ・ 子孫核種については、短半減期の子孫核種のうち、ICRP Pub. 72 に示されている 額位を、ただし ICRP Pub 72 に示されていない子孫核種については、知識な種に記載された換算係				Pu-240	5.0×1	0 ⁻⁵	-	_			
 ・国際的に信頼性の高い ICRP の文献(ICRP Pub. 72⁽¹⁾, ICRP Pub. 68⁽²⁾)を参照した。 ・ICRP Pub. 68 は作業者への被ばくに関するデータであり、今回の評価は一般公衆 被ばくに対するものであるため、ICRP Pub. 72 が適している。 ・ICRP Pub. 72 には一般公衆の年齢別線量係数が示されているが、このうち成 (Adult)の数値で、肺での吸収型が不明な場合の推奨値が示されている核種はそ 数値を、推奨値が示されていない核種は最大の数値を引用した。また、経口摂 と同様に、短半減期の子孫核種のうち ICRP Pub. 72 に示されている核種の寄与 考慮した。 ・子孫核種については、短半減期の子孫核種のうち、ICRP Pub. 72 に示されている 種については、生成割合を考慮して親核種の換算係数に足し合わせた。ただし ICRP Pub 72 に示されていない子孫核種については、親核種に記載された換算係 				Am-241	4.2×1	0 ⁻⁵	-		1.2×10^{-4}		
 ・国際的に信頼性の高い ICRP の文献(ICRP Pub. 72⁽¹⁾, ICRP Pub. 68⁽²⁾)を参照した。 ・ICRP Pub. 68 は作業者への被ばくに関するデータであり、今回の評価は一般公衆 被ばくに対するものであるため、ICRP Pub. 72 が適している。 ・ICRP Pub. 72 には一般公衆の年齢別線量係数が示されているが、このうち成 (Adult)の数値で、肺での吸収型が不明な場合の推奨値が示されている核種はそ 数値を、推奨値が示されていない核種は最大の数値を引用した。また、経口摂 と同様に、短半減期の子孫核種のうち ICRP Pub. 72 に示されている核種の寄与 考慮した。 ・子孫核種については、短半減期の子孫核種のうち、ICRP Pub. 72 に示されている。 											
の数値をそのまま使用した。 ・ α 核種の子孫核種の影響を評価するため、子孫核種の値を新たに設定した。 ・ 地質環境に係る長期変動事象、将来における生活環境及び廃棄物埋設地の状態 定に応じて変動するものではないため、各シナリオで共通の数値とした。	設定根拠	 ・国際的に信頼性の高い ICRP の文献(ICRP Pub. 72⁽¹⁾, ICRP Pub. 68⁽²⁾)を参照した。 ・ICRP Pub. 68 は作業者への被ばくに関するデータであり、今回の評価は一般公衆の 被ばくに対するものであるため、ICRP Pub. 72 が適している。 ・ICRP Pub. 72 には一般公衆の年齢別線量係数が示されているが、このうち成人 (Adult)の数値で、肺での吸収型が不明な場合の推奨値が示されている核種はその 数値を、推奨値が示されていない核種は最大の数値を引用した。また、経口摂取 と同様に、短半減期の子孫核種のうち ICRP Pub. 72 に示されている核種の寄与を 考慮した。 ・子孫核種については、短半減期の子孫核種のうち、ICRP Pub. 72 に示されている核 種については、生成割合を考慮して親核種の換算係数に足し合わせた。ただし、 ICRP Pub. 72 に示されていない子孫核種については、親核種に記載された換算係数 の数値をそのまま使用した。 ・ α核種の子孫核種の影響を評価するため、子孫核種の値を新たに設定した。 ・地質環境に係る長期変動事象、将来における生活環境及び廃棄物埋設地の状態設 定に応じて変動するものではないため、各シナリオで共通の数値とした。 									

備考	
文献	 International Commission on Radiological Protection(1996) : Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 5 Compilation of Ingestion and Inhalation Dose Coefficients, ICRP Publication 72 International Commission on Radiological Protection (1994) : Dose Coefficients for Intakes of Radionuclides by Workers, ICRP Publication 68

ι

I

				名 称		単 位
パラメータ		[Sv/Bq]				
シナリナマム		共通		□ 基本	□ 変動	
7794区月		生能無視		□ 基本·変動以外		
	;	核種	設定値	考慮した子孫核種等(生	 上成割合)	既申請値
		H-3	4. 2×10^{-11}	保守側な有機結合型トリ Organiaally Round Tritium)	チウム(OBT : D粉値を引用	1.7×10^{-11}
	(C-14	5.8 $\times 10^{-10}$	-	ク奴他を介用	5.6 $\times 10^{-10}$
	C	21-36	9. 3×10^{-10}	-		-
	0	Co-60	3. 4×10^{-9}	-		7.0 $\times 10^{-9}$
	N	li-59	6.3×10^{-11}	-		5.5×10^{-11}
	N	1-63	1.5×10^{-10}	- V_00(100%)		1.5×10^{-10}
		br-90	3.1×10^{-9}	1-90(100%)		3.6×10^{-9}
	Т	10 94 °c-99	1.7×10^{-10} 6.4 × 10 ⁻¹⁰			1.3×10^{-10} 3.4 × 10 ⁻¹⁰
	I	-129	1.1×10^{-7}			7.4×10^{-8}
	C	s-137	1.3×10^{-8}	_		1.4×10^{-8}
		Pb-210	6. 9×10^{-7}	Bi-210(100%)		_
設定値		Po-210	1.2×10^{-6}	-		-
成足恒		Ra-226	2.8 $\times 10^{-7}$	Pb-214 (99.98%), Bi-214 (100%)		-
		Ac-227	1.2×10^{-6}	Th-227 (98. 62%), Fr-223 (1. 38% Ra-223 (100%), Pb-211 (100%)	-	
		Th-229	6.1×10 ⁻⁷	Ra-225(100%), Ac-225(100%), Bi-213(100%), Pb-209(100%)		_
	全 α	Th-230	2. 1×10^{-7}			-
		Pa-231	7.1 \times 10 ⁻⁷	-		-
		U-233	5. 1×10^{-8}	-		-
		U-234	4.9×10^{-8}	-	_	
		U-235	4. 7×10^{-8}	Th-231 (100%)		_
		Np=237	1.1×10^{-7}	Pa-233 (100%)		_
		Pu-239	2.5×10^{-7}	_		_
		Pu-240	2.5×10^{-7}	_		_
		Am-241	2.0×10^{-7}	_		9. 7×10^{-7}
				•		
設定根拠	・ ICR ジゴCR (子種ICR ジ本型) ・ ・ ・ 定	祭 P Pub. 68 P Pub. 68 P Pub. 72 Pub. 72 Pub. 72 のにて2の境じて3 のにたて2の子にて3	 [性の高い IC [[] [] []] [] [] [] [] [] [] [] [] [] []] [] [] [] [] [] []] [] [] []] [] [] [] []] [] [] [] [] [] [] [] [] [] []] [] [] []] []] []] [] [] []] []] []] []] [] []] []] []] []] []] []] []] []] []] [] []] []] []] []] [] []] []] []] []] [] []] []] []] []] []] []] []] []] []] []] []] []] []] []] []] []] [] []] [] []] []]]]]] [RP の文献(ICRP Pub. 72 ⁽¹⁾ , 換算係数の記載はあるが、 一般公衆の被ばくに対する 衆の年齢別線量係数が示され 。 半減期の子孫核種のうち、I(を考慮して親核種の換算係数 かない子孫核種については、 た。 を評価するため、子孫核種の 事象、将来における生活環境 ではないため、各シナリオで	ICRP Pub. 68 ⁽²⁾) 作業者への被ば ものであるため れているが、こ CRP Pub. 72 に示 数に足し合わせ 観核種に記載さ の値を新たに設定 寛及び廃棄物埋 に ま通の数値とし	を参照した。 くに関するデ 、ICRP Pub. 72 のうちの成人 されている核 た。換算係数 とした。 設地の状態設 した。

備考	
文献	 International Commission on Radiological Protection(1996) : Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 5 Compilation of Ingestion and Inhalation Dose Coefficients, ICRP Publication 72 International Commission on Radiological Protection (1994) : Dose Coefficients for Intakes of Radionuclides by Workers, ICRP Publication 68

I

			名	称		単 位	
パラメータ		女	[(Sv/h)/(Bq/kg)]				
	■ 共通			基本	□ 変動]	
シナリオ区分	□ 性能	無視		 基本・変動以外		<u>.</u>	
		14.00					
	;	核植	設定値	考慮した子孫核種	等(生成割合)	此甲請値	
		H=3	2.2×10^{-16}	-		0	
		14 1-36	1.0×10 1.3×10^{-13}				
		20-60	7.3×10^{-10}	_		7.7×10^{-10}	
	N	Vi-59	4.9×10^{-15}	_		0	
	N	Vi-63	1. 1×10^{-17}	-		0	
	S	Sr-90	1.7×10^{-12}	Y-90 (100%)		9.5 $\times 10^{-18}$	
	N	lb-94	4. 7×10^{-10}	-		4. 7×10^{-10}	
	I	°c-99	5. 2×10^{-15}	-		6.9 $\times 10^{-19}$	
	I	-129	7. 2×10^{-13}	-		8.0 $\times 10^{-13}$	
	C	s-137	1. 7×10^{-10}	Ba-137m(94.4%)		1.7×10^{-10}	
		Pb-210	4. 0×10^{-13}	Bi-210 (100%), Hg-206 (1.900E-6%),	-	
		Po-210	2.5×10^{-15}				
		10 210	2.3×10	Rn-222(100%) $Po-218($	100%)		
設定値		D 000	5 0 1 (1 0 - 10	Pb-214(100%), Bi-214(100%),		
		Ra-226	5. 0×10^{-10}	Po-214(100%), At-218(-		
				T1-210 (0. 021%)			
		Ac-227	1.2×10^{-10}	Th-227 (98. 62%), Fr-22	3(1.38%),	_	
		110 221	1.2/(10	Ra-223(100%), Pb-211(100%)		
		Th-229	9.3 $\times 10^{-11}$	9. 3×10^{-11} Ra-225 (100%), Ac-225 (100%), Bi-213 (100%), Pb-209 (100%)		-	
	至 α	Th-230	9.0 \times 10 ⁻¹⁴				
		Pa-231	1.1×10^{-11}	-			
		U-233	8. 5×10^{-14}	_		_	
		U-234	2. 7×10^{-14}	-		_	
		U-235	5. 1×10^{-11}	Th-231 (100%)		-	
		Np-237	6. 7×10^{-11}	Pa-233 (100%)	3 (100%)		
		Pu-238	6. 6×10^{-15}	-		-	
		Pu-239	1.5×10^{-14}	-		_	
		Pu-240	7.1×10^{-13}	-		-	
		Am-241	3. 5 × 10 ···	-		3.8×10	
	・点減衰	核積分コー	- ド QAD-CGGP	2 ⁽¹⁾ を使用して計算し	た。		
	・計算モ	デルは、地	表からの被に	ばくを近似するため、	直径 200m、厚	፤さ2mの円板状線	
	源を想	定し、その	中央表面か	ら距離 1m の地点を評	価点とした。		
그미, 나는 부미, 부미	・地表の	組成は JAE	RI-M-6928 ⁽²⁾	の普通コンクリート	を用いた。		
設正恨拠	・核種別	換算係数算	【出に用いる	各核種の壊変当たりの)放出光子に~	ついては、ORIGEN2	
	のライ	ブラリ(18	群)を用いた				
	• 地質環	境に係る長	期変動事象	。 、将来における生活理	景境及び廃棄	物埋設地の状態設	
	定に応	じて変動す	るものでは	ないため、各シナリス	トで共通の数値	直とした。	
備考	, _ , _ , _ ,	~ / - / /					
V 111	(1) Yuk	io SAKAMOT	0 and Shun-i	chi TANAKA(1990): ດ	AD-CGGP2 AND	G33-GP2: REVISED	
	VFRS	IONS OF OF	AD-CGGP AND	G33-GP (CODES WITH	THE CONVERS	ION FACTORS FROM	
小品	FXPO	SURF TO AN	MRIENT AND M	MAXIMIM DOSE FOUTVA	LENTS) TAFR	T-M = 90-110	
入町八	(2) Jul	[[謹一 肉]		107 加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加	7) ・	の 群 定 数 ・ 山 性 ス	
	100君	¬==ニー、 、 デ 羊・ガンマ	ほんのだい。 線20群・P₋沂	似: TAERT-M-6928	•7 • KEINKAAAA	·· / / / / / / / / / / / / / / / / / /	

パラメータ名	頁	備考
埋設設備内の媒体 jの核種 iの分配係数(廃棄体)	13	_
埋設設備内の媒体 jの核種 iの分配係数(充塡材)	15	_
埋設設備内の媒体 jの核種 iの分配係数(コンクリート)	17	_
難透水性覆土の核種 i の分配係数	19	_
上部覆土の核種 i の分配係数	21	_
鷹架層の核種 i の分配係数	22	-
灌漑土壌の核種 iの分配係数	23	_
廃棄物埋設地の土壌の核種 iの分配係数	24	_
水産物 mにおける核種 i の濃縮係数(魚類)	25	_
水産物 mにおける核種 i の濃縮係数(無脊椎動物)	27	_
灌漑農産物への核種 i の移行係数	29	_
農耕農産物への核種 i の移行係数	31	-
畜産物 nへの核種 iの移行係数(牛肉、ミルク)	33	_
畜産物 n への核種 i の移行係数(豚肉)	35	-
畜産物 nへの核種 iの移行係数(鶏肉、鶏卵)	36	-

第3表 元素に依存する評価パラメータ

コメント No. 56 を踏まえパラメータを見直した L

1

.

	名称						単 位			
パラメータ	埋設設備内の媒体 jの核種 iの分配係数(廃棄体)							[m ³ /kg]		
	□ 共通				■ 美	志本			□ 変動	
シナリオ区分	□ 性能無視			[二基	基本・変	動以	外		
	▶3 号及び2 号	卒棄	物坦	設施調	 					
			元素		3 号廃棄物埋		2号	·廃棄物埋 設施設	既申請値]
	-		Н		12	0	,	0	0	-
			С		5	$ imes 10^{-2}$	Ę	5×10^{-2}	5×10^{-2}	
			C1			-	Ę	5×10^{-4}	-	
	-		Co		2	$\times 10^{-1}$	2	2×10^{-1}	7×10^{-1}	_
	-		N1 Sr		9	$\times 10^{-3}$, ,	9×10^{-2}	4×10^{-1} 1×10^{-2}	_
	-		Nb		2	$\times 10^{\circ}$	2	2×10^{-0}	4×10^{-1}	-
	-		Tc		2	$\times 10^{-4}$	2	2×10^{-4}	3×10^{-4}	-
			Ι		1	$\times 10^{-4}$	1	1×10^{-4}	0	
			Cs		1	$ imes 10^{-1}$]	1×10^{-1}	3×10^{-2}	
			Ļ	Pb	9	$\times 10^{-3}$	ę	0×10^{-3}	-	4
			-	Po	9	$\times 10^{-3}$	9	0×10^{-3}	-	_
			-	Ka	2	$\times 10^{-1}$	2	2×10^{-1}		_
		-	Th	4	$\times 10^{-1}$		4×10^{-1}	_	-	
		全	α	Pa	4	$\times 10^{-1}$	4	4×10^{-1}	-	_
				U		0		0	-	
				Np	0			0	-	
			Ļ	Pu	4	$\times 10^{-1}$	4	4×10^{-1}	1×10^{1}	_
	L			Am	1	$\times 10^{-1}$]	1×10^{-1}	1×10^{1}	
	▶1号廃棄物埋	設施								
設定値		元		1 -		号廃棄物地	里設施	記		
				1_6	#光	7,8群	: 	7,8群 	既申請値	
				10	り 中十	均員·均 固化体	*1	10項 固化体		
			Н	()	0		0	0	
			С	$5 \times$	10^{-1}	5×10^{-1}	-1	5×10^{-2}	5×10^{-1}	
		(C1	()	0		0	—	
		(Co	$1 \times$	10 ⁻²	1×10	-2	2×10^{-2}	1×10^{-1}	
		1	N1 Sr	$3 \times$	10^{-2}	4×10^{-10}	-2	9×10^{-4} 2×10^{-3}	3×10^{-1} 3×10^{-2}	
			Nh	1 X	$\frac{10}{10^1}$	4×10 1 × 10	1	$\frac{2 \times 10}{2 \times 10^{-1}}$	3×10^{-1}	
			Гс	$5\times$	10^{-4}	6×10	-4	0	5×10^{-4}	
			Ι	$2 \times$	10^{-3}	2×10	-3	0	2×10^{-3}	
		(Cs	$3 \times$	10^{-3}	4×10 ⁻	-3	1×10^{-2}	3×10^{-3}	
			Pb	$3 \times$	10 ⁻²	4×10	-2	9×10 ⁻⁴	-	
			Po	3×	10^{-2}	4×10	-2	9×10^{-4}	-	
			Ка	3× 1×	10 ² 10 ¹	4×10 $2 \times 10^{\circ}$	0	$\frac{2 \times 10^{-1}}{1 \times 10^{-1}}$	_	
		全	Th	1×	10 ¹	2×10 2×10	0	4×10^{-1}	_	
		α	Pa	1×	101	$2 \times 10^{\circ}$	0	4×10^{-1}	-	
			U	()	0		0	-	
			Np	$2 \times$	10^{-1}	1×10^{-1}	-2	1×10^{-2}	-	
			Pu	1×	10 ¹	2×10	0	4×10^{-1}	1×10^{1}	
			Am	$1 \times$	101	2×10^{-10}	v	1×10^{-1}	1×10^{1}	

設定根拠	 ・詳細については、補足説明資料8「線量評価パラメータ-分配係数-」を参照。 ・解析上の設定値としては、覆土完了後から1,000年程度の状態設定を見込んだ値を設定する。
備考	*1 8 群の充塡固化体のうち、均質・均一固化体として製作されたセメント固化体を 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・均一固化体と 放射能量が同等の充塡固化体)の分配係数については、均質・均一固化体と同じ 値とした。
文献	

コメント No. 56 を踏まえパラメータを見直した

					名	称				単 位	
パラメータ	埋設設	:備P	内の	媒体	の核権	重 <i>i</i> の分	配的	系数(充塡	才)	[m ³ /kg]	
	□ 共通				基	本			□ 変動		
シナリオ区分	□ 性能無視				〕基	本・変動	助以	外			
	> 3 号及び 9 号	至在	物埋	設協設	Ļ						
			元素		、 3号 埋言	廃棄物 空施設	2 月 埋	号廃棄物 1設施設	既申請値]	
			Н			0		0	0	-	
			С		5>	$ \times 10^{-2} $	5	5×10^{-2}	5×10^{-2}		
			C1			-	5	5×10^{-4}	-		
			Со		2>	< 10 ⁻¹	2	2×10^{-1}	7×10^{-1}	_	
			Ni		9>	$\times 10^{-3}$	ç	9×10^{-3}	4×10^{-1}	_	
			Sr		22	$\times 10^{2}$	2	2×10^{2}	1×10^{-1}	_	
	-		ND To		2.	$\times 10^{\circ}$		$2 \times 10^{\circ}$	$\frac{4 \times 10^{-4}}{2 \times 10^{-4}}$	_	
			T		1	$\times 10^{-4}$	1	1×10^{-4}	0	-	
	-		Cs		1>	< 10 ⁻¹	1	1×10^{-1}	3×10 ⁻²	4	
				Pb	9>	×10 ⁻³	ç	0×10^{-3}	-	1	
			F	Ро	9>	×10 ⁻³	ç	0×10^{-3}	-	1	
				Ra	2>	$ \times 10^{-2} $	2	2×10^{-2}	-]	
				Ac	1>	$ < 10^{-1} $	1	1×10^{-1}	_		
		全。	α	Th	4>	×10 ⁻¹	4	4×10^{-1}	-		
			-	Pa	4>	< 10 ⁻¹	4	4×10 ⁻¹	_	_	
			-	U		0		0	_	-	
			-	Np	1	0 × 10 ⁻¹		$0 \\ 1 > 10^{-1}$	- 1 × 10 ¹	_	
			-	Am	1	$\times 10^{-1}$	- 4	1×10^{-1}	1×10^{1}	-	
				1111	1,	.10			1710		
	▶1 号廃棄物埋設	^廃 棄物埋設施設									
設定値				1		房棄物均	目設施	起			
		-	元素								
		元	溸		лМ	7,8群	ŧ	7,8群	既申請値		
		元	素	1-6	群	7,8群 均質・均 田化体	羊 J -*1	<u>7,8群</u> 充塡	- 既申請値		
	-	元	·素	1-6	群	7,8 群 均質・均 固化体	羊 J ズ*1	7,8 群 充塡 固化体 0	- 既申請値 0		
		元	法素 H C	1-6 0 4×1	群) 10 ⁻³	7,8 お質・均 固化体 0 4×10	単 J て*1	7,8群 充填 固化体 0 5×10 ⁻²	- 既申請値 0 4×10 ⁻³		
		元 (法素 H C C1	1-6 0 4×1 0	群) 10 ⁻³	7,8 郡 均質・均 固化体 0 4×10 0	¥ J→ Հ*1 −3	7,8群 充填 固化体 0 5×10 ⁻² 0	- 既申請値 0 4×10 ⁻³ -		
		元 ((法素 H C C1 C0	1-6 0 4×1 0 2×1	群 10 ⁻³ 10 ⁻²	7,8 郡 均質・均 個化体 0 4×10 0 2×10	¥ J→ ⁺¹ -3	7,8 群 充填 固化体 0 5×10 ⁻² 0 2×10 ⁻²	- 既申請値 0 4×10 ⁻³ - 7×10 ⁻¹		
		元 ((N	法素 H C C1 C0 Ni	1-6 0 4×1 0 2×1 9×1	群 10 ⁻³ 10 ⁻² 10 ⁻⁴	7,8 郡 均質・埃 固化体 0 4×10 0 2×10 9×10	+ -3 -2 -4	7,8 群 充塡 固化体 0 5×10 ⁻² 0 2×10 ⁻² 9×10 ⁻⁴	 既申請値 0 4×10⁻³ - 7×10⁻¹ 4×10⁻¹ 		
		л (() () () () () () () () ()	E素 H C C1 C0 Ni Sr	$ \begin{array}{c} 1-6\\ 0\\ 4\times1\\ 0\\ 2\times1\\ 9\times1\\ 2\times1 \end{array} $	群 10 ⁻³ 10 ⁻² 10 ⁻⁴ 10 ⁻³	7,8 # 均質・均 固化体 0 4×10 0 2×10 9×10 2×10	¥ -3 -2 -4 -3	7,8 群 充填 固化体 0 5×10 ⁻² 0 2×10 ⁻² 9×10 ⁻⁴ 2×10 ⁻³	- 既申請値 0 4×10^{-3} - 7 × 10^{-1} 4 × 10^{-1} 1 × 10^{-2}		
		元 () () () () () () () () () () () () ()	三素 H C C1 C0 Ni Sr Nb	1-6 0 4×1 9×1 2×1 2×1 2×1	群 10 ⁻³ 10 ⁻² 10 ⁻⁴ 10 ⁻¹	7,8 # 均質·埃 固化体 0 4×10 0 2×10 9×10 2×10 2×10	¥ -3 -2 -4 -3 -1	7,8 群 充填 固化体 0 5×10 ⁻² 0 2×10 ⁻² 9×10 ⁻⁴ 2×10 ⁻³ 2×10 ⁻¹	- 既申請値 0 4×10^{-3} - 7×10^{-1} 4×10^{-1} 1×10^{-2} 4×10^{-1}		
		デロ () () () () () () () () () () () () ()	E素 H C C1 C0 Ni Sr Nb Fc	1-6 0 4×1 9×1 2×1 2×1 2×1	群 10 ⁻³ 10 ⁻² 10 ⁻⁴ 10 ⁻³	7,8 郡 均質・埃 固化体 0 4×10 0 2×10 9×10 2×10 2×10 0	¥ -3 -2 -4 -3 -1	7,8 群 充塡 固化体 0 5×10^{-2} 0 2×10^{-2} 9 × 10^{-4} 2×10^{-3} 2×10^{-1} 0	既申請値 0 4×10^{-3} - 7×10^{-1} 4×10^{-1} 1×10^{-2} 4×10^{-1} 3×10^{-4}		
) (((((((((((((((()))))))	法素 H C C C C C C C C C C C C C C C C C C	1-6 0 4×1 0 2×1 2×1 2×1 2×1 0 0 0	群 10^{-3} 10^{-2} 10^{-4} 10^{-3} 10^{-1})	7,8 # 均質・均 個化体 0 4×10 0 2×10 9×10 2×10 2×10 0 0 0	¥ J→ * ¹¹ -3 -2 -4 -3 -1 -2 -4 -3 -1	7,8 群 充填 固化体 0 5×10^{-2} 0 2×10^{-2} 9×10^{-4} 2×10^{-1} 0 0 1 \times 10^{-2}	既申請値 0 4×10^{-3} - 7×10^{-1} 4×10^{-1} 1×10^{-2} 4×10^{-1} 3×10^{-4} 0 3×10^{-2}		
		л (((((()))) () () ()) () () () () () () () () () () () ()) ()) ()) ()) ()) ()) ()) ()) ()) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())))()))()))()))())(法素 H C C C C C C C C S C S C S C S C S C S	1-6 0 0 2×1 9×1 2×1 2×1 0 0 0 0 1×1 9×1	群 10^{-3} 10^{-2} 10^{-4} 10^{-3} 10^{-1} 10^{-1} 10^{-2} 10^{-4}	7,8 郡 均質・埃 固化体 0 4×10 0 2×10 2×10 2×10 0 2×10 0 0 1×10 9×10	# J	7,8 群 充填 固化体 0 5×10^{-2} 0 2×10^{-2} 9×10^{-4} 2×10^{-3} 2×10^{-1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	既申請値 0 4×10^{-3} $ 7 \times 10^{-1}$ 4×10^{-1} 1×10^{-2} 4×10^{-1} 3×10^{-4} 0 3×10^{-2}		
		л () () () () () () () () () () () () ()	法素 H C C C C C C C O N i C C S r C S r C S r C S r C S r C C C C	1-6 0 4×1 9×1 2×1 2×1 2×1 0 0 0 1×1 9×1 9×1	群 10^{-3} 10^{-2} 10^{-4} 10^{-1} 10^{-1} 10^{-2} 10^{-2} 10^{-4}	7,8 # 均質・埃 固化体 0 4×10 0 2×10 9×10 2×10 2×10 0 0 1×10 9×10 9×10	¥ J→ ×*1 -3 -3 -3 -2 -4 -3 -1 -1 -2 -4 -4 -4 -4 -4	7,8 群 充填 固化体 0 5×10^{-2} 0 2×10^{-2} 9×10^{-4} 2×10^{-1} 0 0 1×10^{-2} 9×10^{-4} 9×10^{-4}	既申請値 0 4×10^{-3} - 7×10^{-1} 4×10^{-1} 1×10^{-2} 4×10^{-1} 3×10^{-4} 0 3×10^{-2} - -		
		元 () () () () () () () () () () () () ()	H C C C C C C C C C C C C C C C C C C C	1-6 0 2×1 9×1 2×1 2×1 2×1 0 0 0 1×1 9×1 9×1 2×1	群 10^{-3} 10^{-2} 10^{-4} 10^{-1} 10^{-2} 10^{-4} 10^{-4} 10^{-4} 10^{-3}	7,8 # 均質・均 個化体 0 4×10 0 2×10 2×10 2×10 0 1×10 9×10 9×10 9×10 2×10		7,8 群 充填 固化体 0 5×10^{-2} 0 2×10^{-2} 9×10^{-4} 2×10^{-1} 0 0 1×10^{-2} 9×10^{-4} 9×10^{-4} 9×10^{-4} 2×10^{-3}	既申請値 0 4×10^{-3} $ 7 \times 10^{-1}$ 4×10^{-1} 1×10^{-2} 4×10^{-1} 3×10^{-2} $ -$		
		π () () () () () () () () () () () () ()	H C C C C C C C C C C C S C S C S P D P O Ra Ac	1-6 0 0 2×1 9×1 2×1 2×1 0 0 0 0 1×1 9×1 9×1 2×1 2×1	群 10 ⁻³ 10 ⁻² 10 ⁻⁴ 10 ⁻³ 10 ⁻¹ 0 10 ⁻² 10 ⁻⁴ 10 ⁻⁴ 10 ⁻³ 10 ⁰	7,8 # 均質・埃 固化体 0 4×10 0 2×10 2×10 2×10 0 2×10 0 1×10 9×10 9×10 2×10 1×10	¥ -3 -3 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -3 -3 -1 -1 -1 -3 -1 -1 -3 -1 -1 -1 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	7,8 群 充填 固化体 0 5×10^{-2} 0 2×10^{-3} 2×10^{-3} 2×10^{-3} 2×10^{-3} 9×10^{-4} 9×10^{-4} 9×10^{-4} 2×10^{-3} 1×10^{-3}	既申請値 0 4×10^{-3} $ 7 \times 10^{-1}$ 4×10^{-1} 1×10^{-2} 4×10^{-1} 3×10^{-4} 0 3×10^{-2} $ -$		
		元 () () () () () () () () () () () () ()	H C Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl C	1-6 0 0 2×1 9×1 2×1 2×1 2×1 0 0 0 1×1 9×1 2×1 2×1 2×1 2×1 2×1 2×1 2×1 2×1 0	群 10^{-3} 10^{-2} 10^{-4} 10^{-3} 10^{-1} 10^{-2} 10^{-4} 10^{-4} 10^{-3} 10^{0} 10^{0}	7,8 # 均質・埃 固化体 0 4×10 0 2×10 9×10 2×10 0 0 1×10 9×10 9×10 9×10 1×10 4×10		7,8 群 充填 固化体 0 5×10^{-2} 0 2×10^{-3} 2×10^{-3} 2×10^{-3} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1×10^{-1} 9×10^{-4} 2×10^{-3} 1×10^{-1} 4×10^{-1}	既申請値 0 4×10^{-3} $ 7 \times 10^{-1}$ 4×10^{-1} 1×10^{-2} 4×10^{-1} 3×10^{-4} 0 3×10^{-2} $ -$		
		元 () () () () () () () () () () () () ()	H C Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl C	1-6 0 0 2×1 9×1 2×1 2×1 2×1 2×1 2×1 2×1 2×1 2×1 2×1 2	群 10^{-3} 10^{-2} 10^{-4} 10^{-3} 10^{-1} 10^{-2} 10^{-4} 10^{-4} 10^{-3} 10^{0} 10^{0} 10^{0}	7,8 # 均質・埃 固化体 0 4×10 0 2×10 2×10 2×10 2×10 0 1×10 9×10 9×10 9×10 9×10 4×10 4×10	¥ -3 -2 -4 -3 -1 -2 -4 -3 -1 -2 -4 -3 -1 -1 -1 -1 -1 -1	7,8 群 充填 固化体 0 5×10^{-2} 0 2×10^{-2} 9×10^{-4} 2×10^{-1} 0 1×10^{-2} 9×10^{-4} 9×10^{-4} 2×10^{-3} 1×10^{-1} 4×10^{-1}	既申請値 0 4×10^{-3} - 7×10^{-1} 4×10^{-1} 1×10^{-2} 4×10^{-1} 3×10^{-4} 0 3×10^{-2} - - - - - - - -		
		元 () () () () () () () () () () () () ()	H C Cl CCo Co Nu Scr Nu Ccs Pb Ra Ac Cs Ra Ac Th Pa U	1-6 0 0 0 0 0 0 0 0 0 0 0 0 0	群 10^{-3} 10^{-2} 10^{-4} 10^{-3} 10^{-1} 10^{-4} 10^{-4} 10^{-4} 10^{-4} 10^{-3} 10^{0} 10^{0} 10^{0} 10^{0}	7,8 # 均質·埃 固化体 0 4×10 0 2×10 2×10 2×10 0 1×10 9×10 9×10 9×10 9×10 1×10 4×10 0 0	¥ -3 -3 -3 -3 -3 -3 -3 -4 -4 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	7,8 群 充填 固化体 0 5×10^{-2} 0 2×10^{-3} 2×10^{-3} 2×10^{-3} 2×10^{-3} 2×10^{-4} 9×10^{-4} 9×10^{-4} 2×10^{-3} 1×10^{-4} 2×10^{-3} 1×10^{-1} 4×10^{-1} 4×10^{-1} 0	既申請値 0 4×10^{-3} $ 7 \times 10^{-1}$ 4×10^{-1} 1×10^{-2} 4×10^{-1} 3×10^{-2} $ -$		
		元 () () () () () () () () () () () () ()	H C C C C C C C C C C C C C C C C C C C	1-6 0 0 0 0 0 0 0 0 0 0 0 0 0	群 10^{-3} 10^{-2} 10^{-4} 10^{-1} 10^{-1} 10^{-4} 10^{-4} 10^{-4} 10^{-3} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{-1} 10^{-2}	7,8 # 均質・均 個化体 0 4×10 0 2×10 9×10 2×10 0 1×10 9×10 2×10 0 0 1×10 4×10 4×10 1×10 1×10		7,8 群 充填 固化体 0 5×10^{-2} 0 2×10^{-3} 9×10^{-4} 9×10^{-4} 9×10^{-4} 4×10^{-1} 4×10^{-1} 0 1×10^{-1}	既申請値 0 4×10^{-3} $ 7 \times 10^{-1}$ 4×10^{-1} 1×10^{-2} 4×10^{-1} 3×10^{-4} 0 3×10^{-2} $ -$		
		元 () () () () () () () () () () () () ()	H C Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl C	1-6 0 0 0 0 0 0 0 0 0 0 0 0 0	群 10^{-3} 10^{-2} 10^{-4} 10^{-1} 10^{-1} 10^{-2} 10^{-1} 10^{-2} 10^{-4} 10^{-3} 10^{-4} 10^{-3} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0}	7,8 # 均質·埃 固化体 0 4×10 0 2×10 9×10 2×10 0 2×10 0 0×10 0×10 9×10 9×10 9×10 9×10 9×10 9×10 1×10 4×10 0 1×10 4×10		7,8 群 充填 固化体 0 5×10^{-2} 0 2×10^{-3} 2×10^{-3} 2×10^{-1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1×10^{-1} 4×10^{-1} 0 1×10^{-2} 4×10^{-1}	既申請値 0 4×10^{-3} $ 7 \times 10^{-1}$ 4×10^{-1} 1×10^{-2} 4×10^{-1} 3×10^{-2} $ -$ <		

設定根拠	 ・詳細については、補足説明資料8「線量評価パラメータ-分配係数-」を参照。 ・解析上の設定値としては、覆土完了後から1,000年程度の状態設定を見込んだ値を設定した。
備考	*1 8群の充填固化体のうち、均質・均一固化体として製作されたセメント固化体を 破砕し、セメント系充填材で一体に固型化した充填固化体(均質・均一固化体と 放射能量が同等の充填固化体)の分配係数については、均質・均一固化体と同じ 値とした。
文献	

コメント No. 56 を踏まえパラメータを見直した

_

					名	称				単 位
パラメータ	埋設設備	内の	媒体	ミョの権	亥種 i	の分配	係数	τ(コンクリ	ート)	[m ³ /kg]
	□ 共通				■ 基	本			□ 変動	
ンナリオ区分	□ 性能無視				〕基	本・変	動以	外		
	>3号及び2号	廃棄	物埋	設施割	L Z					
			元素		、 3号 埋調	廃棄物 設施設	2 - 坦	号廃棄物 里設施設	既申請値]
			Н			0		0	0	
			С		52	$\times 10^{-2}$	ļ	5×10^{-2}	5×10^{-2}	-
	-		CI		2	-	5	8×10^{-4}	-	-
	-		Ni		1	$\times 10^{-2}$		1×10^{-2}	$\frac{1 \times 10}{8 \times 10^{-2}}$	-
	-		Sr		22	$\times 10^{-3}$		2×10^{-3}	1×10 ⁻²	-
	-		Nb		62	$\times 10^{-1}$	(6×10^{-1}	8×10^{-2}	-
			Tc			0		0	0]
			Ι		32	$\times 10^{-4}$		3×10^{-4}	0	
			Cs	D1	22	$\times 10^{-2}$	4	2×10^{-2}	3×10^{-2}	_
			ł	Po	1>	$\times 10^{-2}$		1×10^{-2} 1×10^{-2}	_	4
		全。	ł	Ra	2	$\times 10^{-3}$		1×10^{-3}		-
			ŀ	Ac	12	$\times 10^{-1}$		1×10^{-1}	_	-
			f	Th	12	$\times 10^{-1}$		1×10^{-1}	_	-
			α	Pa	12	$\times 10^{-1}$		1×10^{-1}	_]
			Ļ	U		0		0	-	_
			Ļ	Np	7>	$\times 10^{-3}$,	7×10^{-3}	-	_
			ł	Pu	12	$\times 10^{-1}$		1×10^{-1}	1×10^1	-
	L			Alli	17	~ 10		1 ~ 10	1 ~ 10	J
	▶1 号廃棄物埋	設施	設	1						
設定値						房棄物埋設加		も お し に の が が の お の の が の の が の の が の の の が の の の の	_	
		ラ	云素	1-6	尹父	7,8君	‡ 5	7,8群	既申請値	
				1-0 4半		固化体	5 5*1	12項 固化体		
			Н	()	0		0	0	
			С	$3 \times$	10^{-3}	3×10	-3	5×10^{-2}	5×10^{-1}	
		(C1	()	0		0	—	
		(Co	3×	10^{-3}	0	-4	0	1×10^{-1}	
			N1 Sr	$2\times$	10 ⁻⁴	2×10	т	2×10^{-4}	3×10^{-1} 3×10^{-2}	
		1	Nh	1×	10 ⁻²	1 × 10	-2	1×10^{-2}	1×10^{-1}	
			Tc	()	0		0	5×10^{-4}	
			Ι	()	0		0	2×10^{-3}	
		(Cs	$3 \times$	10^{-4}	5×10	-4	5×10^{-4}	3×10^{-3}	
			Pb	$2 \times$	10 ⁻⁴	2×10	-4	2×10^{-4}	-	
			Po	$2\times$	10^{-4}	2×10	-4	2×10^{-4}	-	
			Ka Ac	3× 2×	10^{-10}	0 1 × 10	-1	0 1×10^{-1}	_	
		全	Th	2×	10^{0}	1×10	-1	1×10^{-1}	-	
		α	Pa	2×	100	1×10	-1	1×10^{-1}	-	
			U	()	0		0	-	
			Np	$1 \times$	10^{-1}	7×10	-3	7×10^{-3}	-	
			Pu	2×	10^{0}	1×10) ⁻¹	1×10^{-1}	1×10^{1}	
			Am	$3 \times$	100	1×10	-1	1×10^{-1}	1×10^{1}	

L

設定根拠	 ・詳細については、補足説明資料8「線量評価パラメータ-分配係数-」を参照。 ・解析上の設定値としては、覆土完了後から1,000年程度の状態設定を見込んだ値を設定した。
備考	*1 8群の充填固化体のうち、均質・均一固化体として製作されたセメント固化体を 破砕し、セメント系充填材で一体に固型化した充填固化体(均質・均一固化体と 放射能量が同等の充填固化体)の分配係数については、均質・均一固化体と同じ 値とした。
文献	

				名 称			単 位		
パラメータ	難透水性覆土の核種 <i>i</i> の分配係数 [m ³ /kg]								
いよりよ豆八	□ 共通			基本		□ 変動			
ンノリオ区方	□ 性能夠	無視		基本・変動	動以外				
	▶3 号及て	ド2 号廃	棄物埋設施設						
	Ţ	元素	3 号廃棄物均	里設施設	2 号廃棄物埋	設施設	既申請値		
		Н	0		0		0		
		С	0		0		1×10^{-3}		
		C1	-	2	0	2	-		
		Co N:	3×10) ⁻²	3×10^{-3}	2	5×10^{-2}		
		NI Sr) -1	1 × 10 ⁻¹	1	3×10^{-1}		
		Nb	5×10) ⁻¹	5×10^{-1}	1	5×10^{-2}		
		Тс	0		0		0		
		Ι	0		0		0		
		Cs	1×10) 0	$1 \times 10^{\circ}$)	1×10^{-1}		
		Pb	7×10)-2	7×10^{-1}	2	_		
		Po	7×10)-2	7×10^{-1}	1	-		
		Ka		00	$1 \times 10^{\circ}$)	_		
		Th	0×10 3×10	0) ⁻²	$\frac{0 \times 10}{3 \times 10^{-3}}$	2	_		
	全 <i>α</i>	Pa	3×10) ⁻²	3×10^{-3}	2	_		
		U	9×10	⁻³ 9×10		3	_		
		Np	0		0		_		
		Pu	3×10	⁻² 3×10		2	1×10^{0}		
		Am	6×10	00	$6 \times 10^{\circ}$)	1×10^{1}		
	▶ 1 旦 南五	≤₩~₩=ハ-	七动						
設定値	▶1万焼井	*初生议)	他政	1号廃棄物	埋設施設				
	元素	<u>,</u>			7,8群		既申請値		
		1-6 群		均質·均· 固化体*	充	塡固化体			
	Н		0	0		0	0		
	С		0	0		0	1×10^{-3}		
	<u>C1</u>		0	0	-4	$\frac{0}{0 \times 10^{-4}}$	-		
	LO Ni		2×10^{-3}	2×10 5×10^{-1}	-3	2×10^{-3}	5×10^{-2}		
	Sr		$\frac{3 \times 10}{1 \times 10^{-2}}$	1×10	-2	$\frac{3 \times 10}{1 \times 10^{-2}}$	2×10^{-1}		
	Nb		3×10 ⁻²	3×10-	-2	3×10^{-2}	5×10^{-2}		
	Tc		0	0		0	0		
	Ι		0	0		0	0		
	Cs		9×10 ⁻²	9×10	-2	9×10^{-2}	1×10^{-1}		
		Pb	5×10^{-3}	5×10^{-1}	-3	5×10^{-3}	_		
		Po	$\frac{5 \times 10^{-9}}{1 \times 10^{-2}}$	5×10	-2	5×10^{-2}			
	-	Ac	$\frac{1 \times 10}{4 \times 10^{-1}}$	1×10 4×10^{-1}	-1	4×10^{-1}	_		
		Th	2×10^{-3}	2×10	-3	2×10^{-3}	_		
	<u>全α</u>	Pa	2×10^{-3}	2×10	-3	2×10^{-3}	-		
		U	6×10^{-4}	6×10	-4	6×10^{-4}	_		
		Np	0	0		0	-		
		Pu	2×10^{-3}	2×10	-3	2×10^{-3}	1×10^{0}		
		Am	4×10^{-1}	4×10-	-1	4×10^{-1}	1×10^{1}		

設定根拠	・詳細については、補足説明資料8「線量評価パラメータ-分配係数-」を参照。
備考	*1 8 群の充塡固化体のうち、均質・均一固化体として製作されたセメント固化体を 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・均一固化体と 放射能量が同等の充塡固化体)の分配係数については、均質・均一固化体と同じ 値とした。
文献	

			名称			単 位	
パラメータ		[m ³ /kg]					
	■ 共通		□ 基本		□ 変動		
ンチリオ区分	□ 性能無	無視	□基本・	変動以外			
設定値	 共通 性能無視 元素 H C C1 Co Ni Sr Nb Tc I Cs Pb Po Ra Ac Th Pa U Np Pu Am 		□ 基本・2 設置 3 号廃棄物埋設施設 0 1×10^{-4} - 1×10^{-1} 1×10^{-1} 1×10^{-1} 2×10^{-2} 0 0 0 0 9×10^{-1} 1×10^{-2} 2×10^{-2} 1×10^{-2} 1×10^{-2} 1×10^{-2} 1×10^{-1}	王朝以外 三値 1,2号廃棄物埋設施設 0 1×10^{-4} 0 1×10^{-1} 2×10^{-1} 2×10^{-1} 2×10^{-2} 0 0 1×10^{0} 1×10^{0} 1×10^{-1} 1×10^{-1} 1×10^{-1} 1×10^{-1} 1×10^{-1} 1×10^{-1} 2×10^{-2} 1×10^{-2} 2×10^{-2} 1×10^{-3} 2×10^{-2} 1×10^{0}		既申請値 0 1×10^{-3} - 3×10^{-1} 2×10^{-1} 7×10^{-2} 2×10^{-1} 8×10^{-4} 3×10^{-4} 1×10^{0} - - - - 2 × 10 ⁰ 2 × 10 ⁰ 2 × 10 ⁰	
設定根拠 備考	 詳細に 	ついては	、補足説明資料 8「線	量評価パラメー	タ−分配係数	換−」を参照。	
文献							

			名利	尓		単 位	
パラメータ			鷹架層の核種 i	の分配係数		[m ³ /kg]	
いたりません	■ 共通		□ 基本	□ 変動			
ンチリオ区方	□ 性能	無視	□ 基本	×・変動以外			
設定値	 共通 仕能無視 元素 Π C C1 Co Ni Sr Nb Tc I Cs Pb Po Ra Ac Th Pa U Np Pu 		口 基本 記 基本 3 号廃棄物埋設施設 0 1×10^{-1} - 1×10^{-1} 1×10^{-1} 1×10^{-1} 2×10^{-2} 0 0 0 9×10^{-1} 1×10^{-1} 1×10^{-1} 1×10^{-1} 1×10^{-1} 1×10^{-2} 2×10^{-2} 1×10^{-3} 9×10^{-4} 2×10^{-2} 1×10^{-1}	x · 変動以外 r定値 1, 2 号廃棄物埋設施 0 1×10^{-4} 0 1×10^{-1} 2×10^{-1} 2×10^{-1} 2×10^{-2} 0 1×10^{0} 1×10^{0} 1×10^{0} 1×10^{-1} 2×10^{-2} 1×10^{-2} 2×10^{-2} 1×10^{-3} 2×10^{-2} 1×10^{0}	i設 既 2 2 6 5 2 4 5 1 1 1 1 1 1 1 1 2 2 4 5 1 1 1 1 1 2 2 1 1 1 2 2 2 1 2 2 2 2 2	既申請値 0 2×10^{-3} - 6×10^{-1} 5×10^{-1} 2×10^{-1} 4×10^{-1} 5×10^{-4} 1×10^{-4} 1×10^{0} - - - - - 2×10^{0} 2×10^{0}	
設定根拠 備考 文献	• 詳細に	ついて	は、補足説明資料 8	「線量評価パラメータ	′−分配係数−」	を参照。	

		名称		単 位
パラメータ	灌	配係数	[m ³ /kg]	
シナリオ区分	■ 共通	□ 基本	□ 変動	
ノノノ々 匹力	□ 性能無視	□ 基本・変動	以外	
	元素 設定値 H 0 C 2.0×10		備考 0 cm ³ /g	既申請値 0 1×10 ⁻³
	$C1 1.5 \times 10^{-10}$	-3 · · · · · · · · · · · · · · · · · · ·		
	$\begin{array}{c c} 0 \\ \hline 0 \hline$	-1 × ff(\(2)	小田上坡 NU V 成門十四 organic 9 9×10 ²	$\frac{11}{3 \times 10^{-1}}$
	Ni 1 1×10	<u>)0</u>	$\frac{1}{\text{organic } 1} \frac{1 \times 10^3}{1}$	2×10^{-1}
	$rac{1}{5}$ Sr 1.5×10	-1	organic 1.5×10^2	7×10^{-2}
	0.00000000000000000000000000000000000	<mark>)0</mark>	organic 2.0×10^3	2×10^{-1}
	Te 1.5×10	-3	organic $1.5 \times 10^{\circ}$	8×10 ⁻⁴
	I 2.7×10	-2	organic 2.7 \times 10 ¹	3×10^{-4}
設定値	Cs 2.7×10	-1	organic 2.7 \times 10 ²	1×10^{0}
	Pb 2.2×10)1	organic 2.2×10 ⁴	
	Po 6.6×10) ⁰ 文献(3)	organic 6.6×10^3	
	Ra 2.4×10) ⁰	organic 2.4 \times 10 ³	-
	Ac 5.4×10) ⁰	organic 5.4×10 ³	
	全 Th 8.9×10	$)^{1}$	organic 8.9×10 ⁴	-
	α Pa 6.6×10) ⁰	organic 6.6×10 ³	-
	U 4.0×10	-1	organic 4.0 $\times10^2$	-
	Np 1.2×10)0	organic 1.2×10^3	-
	Pu 1.8×10) ⁰	organic 1.8×10 ³	2×10^{0}
	Am 1.1×10) ²	organic 1.1×10 ⁵	2×10^{0}
	、遊海上塔の八町だ		1)の順にはち引用した	
設定根拠	 ・C1 については、文 ・既申請書では、上 ・既申請書では、上 ・漉土壌は上部覆土 値を引用した。 ・灌漑土壌は、廃棄 も他の土壌データ 	数は又畝(3)、又畝(3) (献(2)より塩素の土均 部覆土の核種 <i>i</i> の分 と異なるため、実際 物埋設地周辺に存在 に比べ保守側である	第一農作物移行係数の値を 配係数と同じ数値として に灌漑土壌に類似した土 する土壌を想定したもの ため、各シナリオで共通0	・引用した。 いたが、実際の灌 壌の分配係数の数 ではなく、設定値 D数値とした。
備考				
文献	 International and Practices 社団法人日本原 International for the Predic TECHNICAL REPO 	Atomic Energy Agend from Regulatory Cor 〔子力学会 2010 年春 Atomic Energy Agen tion of Radionuclio RTS SERIES No.364	cy(1987):Exemption of R ntrol, IAEA-TECDOC-401 季の年会:塩素の土壌一農 ncy(1994):Handbook of de Transfer in Temperat	adiation Sources 作物移行係数 Parameter Values e Environments,

			名 称		単 位			
パラメータ	廃	廃棄物埋設地の土壌の核種 iの分配係数						
	■ 共通		□ 基本	□ 変動				
ンテリオ区分	□ 性能無視		□ 基本·変動以外	外				
設定値		素 L D C D C D C D C D C D C D C D C D C D	□ 基本・変動以2 3 号廃棄物埋設施設 0 1×10^{-4} - 1×10^{-1} 1×10^{-1} 1×10^{-1} 2×10^{-2} 0 0 0 9×10^{-1} 1×10^{-1} 1×10^{-1} 1×10^{-1} 1×10^{-1} 1×10^{-1} 1×10^{-2} 2×10^{-2} 1×10^{-2} 2×10^{-2} 1×10^{-3} 9×10^{-4} 2×10^{-2} 1×10^{-1}	安定値 1,2号廃棄物埋設施 0 1×10^{-4} 0 1×10^{-1} 2×10^{-1} 2×10^{-1} 2×10^{-2} 0 0 1 × 10 ⁰ 1×10^{-1} 2×10^{-1} 1×10^{-1} 2×10^{-2} 2×10^{-2} 2×10^{-2} 1×10^{-3} 2×10^{-2} 1×10^{0}				
設定根拠	・廃棄物埋設地 の核種 <i>i</i> の分配	 ひその し 係 数 と	∩近傍の土壌は、上部覆 ≤同じ数値とした。	土と同等であることか	ら、上部覆土			
備考								
文献								

		単 位								
パラメータ		[m ³ /kg]								
シナリオ区分		共通			基本	□ 変動				
		性能無	转視		基本・変動り	以外				
	Ŧ	⇒⇒	到完估	淡水	〈魚	海7	×魚	旺由洼庙		
	Л	」芥	成化恒	設定値	根拠資料	設定値	根拠資料	<u></u> 见中 甫 但		
		Н	1.0×10^{-3}	1.0×10^{-3}	文献(2)	1.0×10^{-3}	文献(3)	1.0×10^{-3}		
		С	8. $4 \times 10^{\circ}$	8. $4 \times 10^{\circ}$	測定値	2. 0×10^{1}	文献(3)	4. $6 \times 10^{\circ}$		
	(21	1.0×10^{0}	$1.0 \times 10^{\circ}$	文献(2)	6.0×10^{-5}	文献(3)	-		
	(20	1.0×10^{0}	4.0×10^{-1}	文献(7)	$1.0 \times 10^{\circ}$	文献(1)	3.0×10^{-1}		
	ſ	Ni	1.0×10^{-1}	1.0×10^{-1}		1.0×10^{-3}	又献(1)	5.0×10^{-1}		
		Sr	1.9×10^{-1}	1.9×10^{-1}	又厭(7) 支款(1)	2.0×10^{-9}	又厭(1) 支款(1)	6.0×10^{-1}		
	ſ		3.0×10^{-2}	3.0×10^{-1}	乂厭(1) ★赴(1)	3.0×10^{-2}	又歌(1) 文献(1)	3.0×10^{-2}		
		IC T	3.0×10^{-1}	2.0×10^{-1}		3.0×10^{-2}	又\\(1) 	2.0×10^{-2}		
設定値			6.5×10^{-1}	0.5×10^{-1}	又\(\) (1)	1.0×10^{-1}	又\\(1)	4.0×10^{-2}		
		JS Ph	1.0×10 3.7×10^{-1}	1.0×10 3.7×10^{-1}	文献(1)	1.0×10 2.0 × 10 ⁻¹	文献(1) 文献(1)	2.0×10		
		Po	3.7×10^{-2}	5. 1×10^{-2}	文献(1)	2.0×10^{0}	文献(1) 文献(1)			
		Ra	5.0×10^{-1}	2.1×10^{-1}	文献(1)	5.0×10^{-1}	文献(1) 文献(1)	_		
		Ac	5.0×10^{-2}	1.5×10^{-2}	文献(1) 文献(1)	5.0×10^{-2}	文献(1) 文献(1)	_		
	全	Th	6.0×10^{-1}	1.9×10^{-1}	文献(1)	6.0×10^{-1}	文献(1)	_		
	α	Pa	5.0×10^{-2}	1.0×10^{-2}	文献(1)	5. 0×10^{-2}	文献(1)	_		
		U	1.0×10^{-2}	1.0×10^{-2}	文献(1)	1.0×10^{-3}	文献(1)	_		
		Np	3.0×10^{-2}	3. 0×10^{-2}	文献(1)	1.0×10^{-2}	文献(1)	_		
		Pu	4. 0×10^{-2}	3. 0×10^{-2}	文献(1)	4. 0×10^{-2}	文献(1)	-		
		Am	2. 4×10^{-1}	2. 4×10^{-1}	文献(7)	5.0 $\times 10^{-2}$	文献(1)	3. 0×10^{-2}		
設定根拠	 ・淡水魚及び海水魚の濃縮係数は、文献(1)~(6)の順で数値を引用した。ただし、これらの文献よりも新しい文献である文献(7)に、より大きい数値が示されている核種については、その数値を引用した。 ・Cの淡水魚については、より実態に近い値を設定するため、文献値ではなく尾駮沼における現地測定値を用いた。 ・Puの文献(7)の数値は、他の文献と比較し、1,000倍以上も大きいためデータの信頼性から考慮しないこととした。 ・淡水魚、海水魚のそれぞれのデータセットのうち、大きい方の値を設定値とした。ただし、Cについては、淡水魚の値を設定値とした。 ・水産物の濃縮係数は固有の数値であるため、各シナリオで共通の数値とした。 									
				又雨(1)		1				
				文献(2)		2				
				文献(3)	:	3				
				文献(4)	4	4				
				文献(5)	!	5				
				文献(6)	(6				

備考	
文献	 International Atomic Energy Agency(2001) : Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment, Safety Reports Series No. 19 International Atomic Energy Agency(2005) : Derivation of Activity Concentration Values for Exclusion, Exemption and Clearance, Safety Reports Series No. 44 International Atomic Energy Agency(2004) : Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment, Technical Reports Series No. 422 International Atomic Energy Agency(1994) : Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments, TECHNICAL REPORTS SERIES No. 364 International Atomic Energy Agency(1982) : Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides form Routine Releases, Exposures of Critical Groups, IAEA Safety Series No. 57 International Atomic Energy Agency (1985) : Sediment Kds and Concentration Factors for Radionuclides in the Marine Environment, IAEA Technical Reports Series No. 247 International Atomic Energy Agency (2010) : Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments, Technical Reports Series No. 472

濃縮係数をより現実的な値に見直した

				名	称			単 位			
パラメータ		水産物 mにおける核種 iの濃縮係数(無脊椎動物)									
		共通		□ 変動							
シナリオ区分	L (性能無	視		基本・変	動以外					
							1				
				淡7	 大貝	海水無礼	皆椎動物				
	フ	亡茶	設定値	設定値	根拠資料	設定値	根拠資料	 眈甲請値			
		Н	1.0×10^{-3}	9.0×10 ⁻⁴	文献(7)	1.0×10^{-3}	文献(3)	1.0×10^{-3}			
		С	9.1 $\times 10^{\circ}$	9. 1×10^{0}	文献(7)	2. 0×10^{1}	文献(3)	9. $1 \times 10^{\circ}$			
		C1	1.6×10^{-1}	1.6×10^{-1}	文献(7)	6. 0×10^{-5}	文献(3)	_			
		Со	1.0×10^{1}	1.0×10^{1}	文献(5)	5. $0 \times 10^{\circ}$	文献(1)	1.0×10^{1}			
		Ni	2. $0 \times 10^{\circ}$	1.0×10^{-1}	文献(5)	2. $0 \times 10^{\circ}$	文献(1)	1.0×10^{-1}			
		Sr	3. 0×10^{-1}	3. 0×10^{-1}	文献(5)	2. 0×10^{-3}	文献(1)	3. 0×10^{-1}			
]	Nb	1.0×10^{0}	1.0×10^{-1}	文献(5)	1.0×10^{0}	文献(1)	1.0×10^{0}			
	,	Tc	1.0×10^{0}	2.6 $\times 10^{-2}$	文献(8)	1.0×10^{0}	文献(1)	1.0×10^{0}			
乳会店		Ι	4. 0×10^{-1}	4. 0×10^{-1}	文献(5)	1.0×10^{-2}	文献(1)	4. 0×10^{-1}			
		Cs	1.0×10^{0}	1. 0×10^{0}	文献(5)	3. 0×10^{-2}	文献(1)	1.0×10^{0}			
		Pb	1.0×10^{0}	1.0×10^{-1}	文献(5)	1.0×10^{0}	文献(1)	-			
		Ро	5. 0×10^{1}	2. 0×10^{1}	文献(5)	5. 0×10^{1}	文献(1)	_			
		Ra	1.0×10^{0}	3. 0×10^{-1}	文献(5)	1.0×10^{0}	文献(1)	-			
		Ac	1.0×10^{0}	1. 0×10^{0}	文献(7)	1.0×10^{0}	文献(1)	-			
	全 α	Th	2.9 $\times 10^{\circ}$	2.9 $\times 10^{\circ}$	文献(8)	1.0×10^{0}	文献(1)	-			
		Pa	5. 0×10^{-1}	1. 0×10^{-1}	文献(5)	5. 0×10^{-1}	文献(1)	-			
		U	1. 7×10^{-1}	1. 7×10^{-1}	文献(8)	3. 0×10^{-2}	文献(1)	-			
		Np	9.5 $\times 10^{\circ}$	9.5 $\times 10^{0}$	文献(8)	4. 0×10^{-1}	文献(1)	-			
		Pu	3. $0 \times 10^{\circ}$	1. 0×10^{-1}	文献(5)	3. $0 \times 10^{\circ}$	文献(1)	-			
		Am	2. 0×10^{1}	2. $4 \times 10^{\circ}$	文献(8)	2. 0×10^{1}	文献(1)	2. $0 \times 10^{\circ}$			
	 ・ 次こに ・ Pu ・ 次た ・ 水 	ドれつのなドだ産人のて南こ洋、の	び 海水 より も 親 れ よ り も 親 ん で 数 値 は 、 その 数 値 は 、 その 数 値 、 その 数 値 、 その 数 値 、 その 数 値 、 その 数 値 、 その 数 値 、 その 数 値 、 その 数 値 、 その 数 値 、 その 数 値 、 その 数 値 は 、 その 数 値 は 、 その 数 値 は こ の 数 値 は こ の 数 値 は こ の 数 値 は こ の 数 値 は こ の 数 値 は こ の 数 値 は こ の 数 値 は こ の 数 値 は こ の 数 値 は こ の 数 値 は こ の 数 値 は こ の 数 値 は こ の の い て は こ の い て は こ の い て に こ の 、 二 本 一 か て に つ い て は こ し た こ の 一 か て に つ い て は ま か て に つ い て は ま う い て に は ま う い て に は ま う い て に は ま う い て に は ま う い て に は ま う の い て は ま う の い て に ち い て に ち い て に し た っ の い て し た う の 、 の う の う の の の し た う の う い て ら つ い て ら つ い て し た う の う い て し つ い つ い て い て ら つ い つ い て し つ い て い つ い つ い し つ い し い つ い い つ い つ い つ い つ い つ い つ い つ い つ い つ い つ い つ い い い い つ い つ い い い し い つ い つ い つ い つ い い こ い つ い い い つ い つ い い い い い い い つ い つ い つ い い い い い つ い い い い い い い い い い い い い	 動物の濃縮 新しい文献で 直を引用した。 、他の文献る 物のそれぞれ 淡水貝の数値で 	※数は、文献 ある文献(8) と比較し過度 いのデータセ 直を設定値と あるため、	:(1)~(7)の)に、より大・ Eに大きいた ットのうち、 こした。 各シナリオで	貝で数値を ∮ きい数値が示 め、データの 大きい方の ⁵ 共通の数値	用した。ただし、 にされている核種 つ信頼性から考慮 数値を使用した。 とした。			
하고 수수 수요 분세				文献 N	o 優	先順位					
				文献(1)	1					
				文献(2)	2					
				文献(3)	3					
				文献(4)	4					
				文献(5)	5	_				
				文献(6)	6	4				
				文献(7)	7	4				
				文献(8) 入献(1) 大きい)~(7)より \場合採用					

備考	
文献	 International Atomic Energy Agency (2001) : Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment, Safety Reports Series No. 19 International Atomic Energy Agency (2005) :Derivation of Activity Concentration Values for Exclusion, Exemption and Clearance, Safety Reports Series No. 44 International Atomic Energy Agency (2004) : Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment, Technical Reports Series No. 422 International Atomic Energy Agency (1994) : Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments, TECHNICAL REPORTS SERIES No. 364 International Atomic Energy Agency (1982) : Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides form Routine Releases, Exposures of Critical Groups, IAEA Safety Series No. 57 International Atomic Energy Agency (1985) : Sediment Kds and Concentration Factors for Radionuclides in the Marine Environment, IAEA Technical Reports Series No. 247 Stanley E. Thompson, C. Ann Burton, Dorothy J. Quinn, Yook C. Ng(1972) : CONCENTRATION FACTORS OF CHEMICAL ELEMENTS IN EDIBLE AQUATIC ORGANISMS, UCRL-50564 Rev. 1 International Atomic Energy Agency (2010) : Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments, Technical Reports Series No. 472

	名称									単 位		
パラメータ	灌漑農産物への核種 iの移行係数								[(Bq/kg-wet 農作物)			
		11.13	TE INDIX				-		/ (Bq/)	kg-dry 土壤)]		
シナリオ区分			千之日				- 亦勈	<u>い</u> み	□ 変動			
		工肥带				巫牛	~ 发到	<u>کرکہ</u>				
		元	元素 設定		値	根	処資料	備	考	既申請値		
		ŀ	ł	$1.0 \times$	100	文	献(3)	-	_	5. $0 \times 10^{\circ}$		
		(С		10 ⁻¹	<u>文</u>	献(3)	-	_	1.0×10^{-3}		
		C	Cl		10°	文	献(3)	-	-	-		
			0	$4.3\times$	10^{-2}	<u></u> 士	歌(5) 赴(1)	5. 1×10^{-9}	× 0. 845	3.0×10^{-2}		
		IN S	l r	2.0^	10^{-1}	<u>义</u> 士	附(1)	3.0×10 2 1 × 10 ⁻¹	$\times 0.86$	2.0×10 3.0×10^{-1}		
		N	h	$1.0\times$	10^{-2}	<u>入</u> 文	献(1) 献(2)	2.1×10	-	1.0×10^{-2}		
		Т	c	6.3×	10^{-1}	<u>~</u> 文	献(1)	7.3 $\times 10^{-1}$	×0.86	$5.0 \times 10^{\circ}$		
			[$2.0 \times$	10^{-2}	文	献(2)	-	_	2. 0×10^{-2}		
設定値		С	S	7.1 imes	10 ⁻²	文	献(1)	8.3 $\times 10^{-2}$	×0.86	3. 0×10^{-2}		
			Pb	7.1 imes	10 ⁻³	文	献(5)	8. 4×10^{-3}	×0.845	-		
			Ро	$1.1 \times$	10 ⁻²	文	献(5)	1. 3×10^{-3}	×0.845	-		
			Ra	$7.4 \times$	10-4	文	献(5)	8. 7×10^{-4}	×0.845	-		
			Ac	1.0×10^{-3}		文	献(2)	-	-	_		
		全 α	Th	1.4×10^{-2}				1.6×10^{-4}	×0.845	-		
			Pa	1.0×10^{-3}				$-\frac{1}{2} \times 10^{-3}$	- 	_		
			U Np	2.3×10^{-3}		文献(1)		1.3×10 2 7 × 10 ⁻³	$\times 0.86$	_		
			Pu	7.4×10^{-6}		文献(1)		$8.6 \times 10^{-6} \times 0.86$		_		
			Am	1.9×	1.9×10^{-5}		献(1)	2. 2×10^{-5}	×0.86	1.0×10^{-3}		
					$a = \frac{1}{2} $					1		
	・ 済	雚漑農産 ♪ ♪ の ヤ	を物(米))の移行(系数は、	、文蘭	甙(1)~(・ ト h + .	4)の順に数 きい を値が	(値を引用し 三されてい	した。ただし、 ヽヱ 按種につい	í r	
	400の文献よりも利しい、文献(のにより入さい数値が小さ4000のる修理につい)										. (
	• 7	・文献(1)及び文献(5)の数値は dry 農作物の値が示されているため、文献(1)は乾燥										
	ЦЩ	重量 86%を、文献(5)は文献(6)に記載のある米の含水率 15.5%(乾燥重量 84.5%)を										
	月	用いて、wet農作物の重量に変換した。										
	• 狷 ナ	罣胱晨卤 ∻	宦物(米))の移行(米数は	固有り	り致値で	あるため、	谷シナリス	すで共通の値と	20	
	7.	_0										
設定根拠					文献	No	優	先順位				
					文献	(1)		1				
					文献	(2)		2				
					文献	(3)		3				
					文献	(4)		4				
					文献	(5)	文献(1 大きレ)~(4)より [、] 場合採用				
					文献	(6)		-				
	•	医由詰:	書でけ	米を代	表的か	豊産	物として	あっていた	・が 新たっ	ヤシナリオがみ	自力口	
備老		になっ	ョ 、 la、 たこと	により、	水利用	で生	産される	農産物を米	-~、、 /////// そとし、土±	もうノノスがしても	され	
ک : تتاب		になったことにより、小利用で生産される展産物を不とし、工地利用で生産される農産物を米以外(野菜)として、設定を行った。										

	 International Atomic Energy Agency(1994) : Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments,
文献	 TECHNICAL REPORTS SERIES No. 364 (2) International Atomic Energy Agency(2001) : Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment, Safety Reports Series No. 19 (3) International Atomic Energy Agency(2005) : Derivation of Activity Concentration Values for Exclusion, Exemption and Clearance, Safety Reports Series No. 44 (4) International Atomic Energy Agency(1982) : Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides form Routine Releases, Exposures of Critical Groups, IAEA Safety Series No. 57 (5) International Atomic Energy Agency(2010) : Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments, Technical Reports Series No. 472
	(6) 文部科学省(平成 22 年):日本食品標準成分表

			単 位					
パラメータ	HH +14 B		[(Bq/kg-wet 農作物)					
	辰秋ß	ミ 医物へ	の修理 1	の移行	徐毅		/ (Bq/k	ag-dry 土壤)]
シナリナマム	■ 共通			基本			□ 変動	
	□ 性能無視			基本・	変動以外			
			姜	⊒⊥	定值	相	圳咨判]
			示 	1.0	× 10 ⁰	ער לד	∩融(9)	
		1	7	7.0	$\times 10^{-1}$	 	「献(2)	
		C	1	3.1	$\times 10^1$			
		C	0	8.0	$\times 10^{-2}$	_ خ	て献(1)	
		N	i	5.0	$\times 10^{-2}$	Ż	(6)	•
		S	r	1.2	$\times 10^{\circ}$	¢	て献(5)	
		N	b	1.2	$\times 10^{-2}$	Ż	て献(5)	
		Т	с	1.6	$\times 10^{1}$	Ŕ	て献(5)	
]	I	2.1	$\times 10^{-2}$	ڑ لا	て献(5)	
設定値		C	s	4.0	$\times 10^{-2}$	ك	て献(1)	
			Pb	2.0	$\times 10^{-2}$	<u>خ</u>	て献(1)	
			Po	2.0	$\times 10^{-3}$	<u>ح</u>	C 献(1)	
			Ka	4.0	$\times 10^{-3}$	× +	く (新 (1) r 赤 (1)	
			AC Th	1.0	$\times 10^{-3}$	× ح	て耐(1) r 計(5)	
		全 α	Pa	1.0	$\times 10^{-2}$	× +	、歌(5) r 献(1)	
			I U	1.3	$\times 10^{-2}$	/ /	<u>(1)</u> (前(5)	
			Np	4.0	$\times 10^{-2}$	 t	c献(1)	
			Pu	1.0	$\times 10^{-3}$	۲ ۲	て献(1)	
			Am	2.0	$\times 10^{-3}$	¢	て献(1)	
設定根拠	 ・農耕農産物(米 これらの文献 ては、その数(・Ni については ・農耕農産物(米 値とした。 ・文献(5)を根拠 最大値を設定(以外)の親国、(以外)の親国の(以外)の親国の(して)の(して)の(して)の(して)の(して)の(して)の(して)の(して)	移行した。 7 7	yは、文 数は、文 数は(5)に 参考にし 数は固有 関してい No (1) (2) (3) (4) (5) (6)	献(1)~(4 より大きい こて文献(6) すの数値で は、(平均値 て ま、(平均値 優先順 1 2 3 4 文献(1)~(6 大きい場合 Ni で採	L)の数 のる す (1· の数 た (1· 人) (1· 人) (1· 人) (1· 人) (1· 人) (1· 人) (1· 人) (1· 人) (1· 人) (1· 人) (1· 人) (1· 人) (1·) (1·) (1·) (1·) (1·) (1·) (1·) (1·	に数値を引 が示されて 直を引用し; c.め、各シナ -含水率))か	用した。ただし、 いる核種につい た。 リオで共通の数 いら値を算出し、
備考	 ・ 既申請書では になったこと る農産物を米 	、米をf により、 以外(野	弋表的な 水利用 菜)とし	農産物 で生産 て、設	として扱っ される農産 定を行った	ていた 物を米	こが、新たた そとし、土地	€シナリオが追加 №利用で生産され
	(1) International Atomic Energy Agency(2001) : Generic Models for Use in							
----	---							
	Assessing the Impact of Discharges of Radioactive Substances to the							
	(2) International Atomic Energy Agency(2005) : Derivation of Activity							
	Concentration Values for Exclusion, Exemption and Clearance, Safety							
	Reports Series No. 44							
	(3) International Atomic Energy Agency(1982) : Generic Models and Parameters							
	for Assessing the Environmental Transfer of Radionuclides form Routine							
	Releases, Exposures of Critical Groups, IAEA Safety Series No.57							
	(4) International Atomic Energy Agency(1994) : Handbook of Parameter Values							
	for the Prediction of Kadionuclide Transfer in Temperate Environments, TECHNICAL REPORTS SERIES No. 364							
	(5) International Atomic Energy Agency(2010) : Handbook of Parameter Values							
文献	for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater							
	Environments, Technical Reports Series No.472							
	(6) National Council on Radiation Protection and Measurements (1999) :							
	RECOMMENDED SCREENING LIMITS FOR CONTAMINATED SURFACE SOIL AND REVIEW OF							
	Therefore Relevant to still silent to studies, non report no. 125							

	名 称 畜産物 n への核種 i の移行係数(牛肉、ミルク)							単 位	
パラメータ								[d/kg]	
シナリオ区分		共通			基本			□ 変動	
• 7 7 7 A 区力		性能	無視		基本・	変動以	外		
		++		牛肉				ミルク	
	兀	茶	設定値	根拠資料	既国	∃請値	設定値	根拠資料	既申請値
	H	I	1.0×10^{-2}	文献(4)	1 2	$\times 10^{-2}$	1.5×10^{-1}	² 文献(2)	1×10^{-2}
	C	2	2. 0×10^{-2}	文献(4)	2 2	$\times 10^{-2}$	5.0×10 ⁻	³ 文献(4)	1. 4×10^{-2}
	С	1	2. 0×10^{-2}	文献(2)		-	1.7×10^{-1}	² 文献(2)	-
	C	0	7.0 $\times 10^{-2}$	文献(1)	3 2	$\times 10^{-2}$	1.0×10^{-1}	² 文献(1)	2×10^{-3}
	Ν	i	5. 0×10^{-2}	文献(1)	5 2	$\times 10^{-3}$	2. 0×10^{-1}	¹ 文献(1)	1×10^{-2}
	S	r	1.0×10^{-2}	文献(1)	6 2	$\times 10^{-4}$	3.0×10^{-1}	³ 文献(1)	1×10^{-3}
	N	b	3.0×10^{-6}	文献(1)	3 2	$\times 10^{-1}$	4.0×10^{-1}	⁶ 文献(1)	2×10^{-2}
	T	c	1.0×10^{-3}	文献(1)	1 2	$\times 10^{-2}$	1.0×10^{-1}	<u>³ 文献(1)</u>	1×10^{-2}
設定値	I	-	5.0×10^{-2}	文献(1)	1 2	$\times 10^{-2}$	1.0×10^{-1}	$\frac{2}{2}$ 文献(1)	1×10^{-2}
	C	S	5.0×10^{-4}		2 2	×10 ²	1.0×10	$\frac{2}{4}$ 又献(1)	8×10 ³
		Pb	7.0×10^{-3}	又厭(1) 支款(1)		-	3.0×10^{-10}	*	_
		Po D-	5.0×10^{-3}			-	3.0×10^{-1}	^o 又歌(1)	_
		ка	3.0×10^{-5}	又\(1) 文計(1)		-	1.0×10 2.0×10^{-1}	⁶ 文献(1)	_
		AC Th	2.0×10 2.2 × 10 ⁻⁴	又\\(1)		_	2.0×10^{-10}		_
	ά. Α	Pa	2.3×10^{-6}	文献(5)		_	5.0×10^{-5}		
		I a II	3.0×10^{-3}	文献(1)		_	1.8×10^{-1}	→ × (1) ³ → 廿(5)	
		Nn	1.0×10^{-2}	文献(1) 文献(1)		_	5.0×10^{-1}	5 文献(1)	_
		Pu	2.0×10^{-4}	文献(1) 文献(1)		_	1.0×10^{-1}	<u></u> 5	_
		Am	5.0×10^{-4}	文献(1)	2.2	$\times 10^{-5}$	2.0×10^{-10}	⁵ 文献(1)	4×10^{-7}
		1 1111	0.0.10			. 10	1. 0 · · · 10		110
	・牛 れは牛 し	肉ら、肉たのそ及。	びミルクの利 文献よりも新 の数値を引用 びミルクの利	多行係数は、 新しい文献 月した。 多行係数は[文献 (5)によ 固有の	(1)~(4) こり大き 数値であ)の順に数 い数値が っるため、	値を引用した。 示されている [;] 各シナリオで	。ただし、こ 核種について 共通の数値と
				文献	文献 No 偏失				
設定根拠				文献((1)		1	_	
				文献((2)		2		
				文献((3)		3		
				文献((4)		4		
				文献((5)	文献(1) 大きい	~(4)より 場合採用		
備考									

	 International Atomic Energy Agency(2001) : Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the
	Environment, Safety Reports Series No.19
	(2) International Atomic Energy Agency(1994) : Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments, TECHNICAL REPORTS SERIES No. 364
	(3) International Atomic Energy Agency(1982) : Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides form Routine Releases, Exposures of Critical Groups, IAEA Safety Series No. 57
マ朝	(4) International Atomic Energy Agency (1987) : Exemption of Radiation Sources and Practices from Regulatory Control _ IAFA-TFCDOC-401
	(5) International Atomic Energy Agency(2010) : Handbook of Parameter Values
	for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater
	Environments, lechnical Reports Series No. 472

				名;	称			単 位
パラメータ	畜産物 n への核種 i の移行係数(豚肉) [d/kg]							
いよりよ豆八	■ 共通			□ 基				
ンテリオ区分	□ 性能無			□ 基	本・変動	山以外		
		_				豚肉		
		フ	工素	設定	ſ値	根拠資料	既申請値	
			Н	8.0×	10^{-2}	文献(2)	8. 0×10^{-2}	
			С	1.7×	10^{-1}	文献(2)	1.7×10^{-1}	
			C1	2.2×	10^{-1}	文献(3)	-	
			Со	2.0×	10^{-3}	文献(1)	1.7×10^{-1}	
			Ni	4.1×	10^{-2}	文献(3)	5. 0×10^{-3}	
			Sr	4.0×	10 ⁻²	文献(1)	3.9×10^{-2}	
			Nb	2.0×	10-4	文献(1)	1.0×10^{-3}	
			Tc	1.5×	10 ⁻⁴	文献(1)	9.9 $\times 10^{-4}$	
設定値			1	4.1×	10-2	又献(4)	3.3×10^{-3}	
			US DI	2.4×	10 1		2.5×10^{-1}	
			PD D-	3.1×	10-4			
			Po	9.9	10^{-2}			
				$3.3 \land$	10^{-2}	文献(3)		
			Th	1.0×	1.0×10^{-2}			
		全 α	Pa	1.0×	10^{-2}	文献(2)	_	
		I		6.2×	10^{-2}	文献(1)	_	
			Np	1.0×	10 ⁻²	文献(2)	-	
			Pu	8.0×	10^{-5}	文献(1)	-	
			Am	1.7×	10^{-4}	文献(1)	1.0×10^{-2}	
	 ・豚肉の種 新しいろ した。 ・H及びC ・豚肉の種 	多行係数 文献(4)に につい 多行係数	は、文献 こより大き ては、文 は固有の	Ҟ(1)~(3) きい数値カ 献(2)から 数値であ	の順に引 示され 比放射能 るため、	引用した。た ている核種に 指法を用いて 各シナリオ	だし、これらの ついては、そう 移行係数を算け で共通の数値と	の文献よりも の数値を引用 出した。 : した。
設定根拠				文献 No	ſ	憂先順位		
				文献(1)		1		
				文献(2)		2		
				文献(3)		3		
				文献(4)	文献(_{大き}	(1)~(3)よりい場合採用		
					76	♥ 勿口1水/11		
	(1) Inte	rnation	nal Atomi	c Energy	Agency	(1994) · Hand	book of Para	meter Values
	for t	he Pred	diction of	of Radion	uclide	Transfer in	Temperate E	nvironments.
	TECHN	ICAL RE	EPORTS SE	RIES No. 3	364		. remperate 2	
	(2) B. A	Nanie	er. W. E.	Kennedv.	Īr.	L. K. Soldat	(1980) : Asse	ssment of
	Effec	tivenes	s of Geo	logic Iso	olation	Systems. PN	VL-3209	
文献	(3) I As	shton ar	nd T T S	Sumerling	Associ	ated Nuclear	r Services En	som (1988) ·
	Biosp (Edit	here Da ion1),	tabase f DOE/RW/8	or Asses: 8.083	sments (of Radioacti	ive Waste Dis	posals
	(4) Inte	rnation	nal Atomi	c Energy	Agency	(2010) : Hand	lbook of Para	meter Values
	for t Envir	he Pred onments	iction of , Techni	f Radionu cal Repo	clide Ti cts Ser:	ransfer in T ies No.472	errestrial an	d Freshwater

	名称							単 位	
パラメータ	畜産物 n への核種 i の移行係数(鶏肉、鶏卵)								
シナリオ区分	■ 共通 □ 基本 □ 変動								
	口性	能無視	l	□基	本・変動以	外			
		- #		鶏肉			鶏卵		
	元素		設定値	根拠資料	既申請値	設定値	根拠資料	既申請値	
]	Н	2. $5 \times 10^{\circ}$	文献(2)	2. $5 \times 10^{\circ}$	2. $7 \times 10^{\circ}$	文献(2)	2. $7 \times 10^{\circ}$	
		C	3. $7 \times 10^{\circ}$	文献(2)	3. $7 \times 10^{\circ}$	$2.8 \times 10^{\circ}$	文献(2) 文献(2)	$2.8 \times 10^{\circ}$	
			8. $7 \times 10^{\circ}$	又\\(3)	-	8. $7 \times 10^{\circ}$ 1. 0×10^{-1}	又\\(3)	-	
		Ji	1.7×10^{0}	文献(1) 文献(3)	1.0×10^{-3}	1.0×10 1.7×10^{0}	文献(1) 文献(3)	1.0×10^{-1}	
	S	Sr	8.0×10^{-2}	文献(0)	3.5×10^{-2}	3.5×10^{-1}	文献(0) 文献(4)	3.0×10^{-1}	
	Ν	l b	3. 0×10^{-4}	文献(1)	2.0×10 ⁻³	1.0×10^{-3}	文献(1)	3. 0×10^{-3}	
	1	Îc.	3. 0×10^{-2}	文献(1)	6. 3×10^{-2}	3. $0 \times 10^{\circ}$	文献(1)	1.9×10^{0}	
設定値		Ι	1.0×10^{-2}	文献(1)	4. 0×10^{-3}	3. $0 \times 10^{\circ}$	文献(1)	2.8 $\times 10^{\circ}$	
取足區	0	Cs	1.0×10^{1}	文献(1)	4. $4 \times 10^{\circ}$	4. 0×10^{-1}	文献(1)	4. 9×10^{-1}	
		Pb	$1.2 \times 10^{\circ}$	文献(3)	_	$1.2 \times 10^{\circ}$	文献(3)	-	
		Po	$2.4 \times 10^{\circ}$	又歌(4) 文献(2)		3. $1 \times 10^{\circ}$ 2. 5×10^{-1}	又厭(4) 文融(2)	_	
		Ас	4.0×10^{-3}	文献(3) 文献(3)		2.5×10 1 6 × 10 ⁻²	文献(3) 文献(3)	_	
	全	Th	1.8×10^{-1}	文献(3)	_	1.0×10^{-1} 1.8×10^{-1}	文献(3)	_	
	α	Pa	4.1×10^{-3}	文献(3)	_	4.1×10^{-3}	文献(3)	_	
		U	1.0×10^{0}	文献(1)	_	1.1×10^{0}	文献(4)	-	
		Np	4. 0×10^{-3}	文献(2)	Ι	1.7×10^{-2}	文献(3)	_	
		Pu	3. 0×10^{-3}	文献(1)	-	1.2×10^{-3}	文献(4)	-	
		Am	6. 0×10^{-3}	文献(1)	1.8×10^{-4}	4. 0×10^{-3}	文献(1)	8.5 $\times 10^{-3}$	
設定根拠	 ・鶏肉及び鶏卵の移行係数は、文献(1)~(3)の順に引用した。ただし、これらの文献よりも新しい文献(4)により大きい数値が示されている核種については、その数値を引用した。 ・H及びCについては、文献(2)から比放射能法を用いて移行係数を算出した。 ・鶏肉及び鶏卵の移行係数は固有の数値であるため、各シナリオで共通の数値とした。 文献 No 優先順位 文献(1) 1 文献(2) 2 								
備考				文献(4)	文献(1) 大きいț	~ (3)より 場合採用			

	 International Atomic Energy Agency(1994) : Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments, TECHNICAL REPORTS SERIES No. 364
	(2) B. A. Napier, W. E. Kennedy, Jr., J. K. Soldat(1980) : Assessment of Effectiveness of Geologic Isolation Systems, PNL-3209
	 J. Ashton and T. J. Sumerling, Associated Nuclear Services, Epsom. (1988) : Biosphere Database for Assessments of Radioactive Waste Disposals (Edition1), DOE/RW/88.083
文献	(4) International Atomic Energy Agency(2010) : Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments, Technical Reports Series No. 472

パラメータ名	頁	備考
分配平衡となる埋設設備の体積	39	-
難透水性覆土の拡散寄与面積	40	-
難透水性覆土の厚さ	41	_
埋設設備内の媒体 jの体積分率	42	-
埋設設備内の媒体 jの間隙率	44	_
難透水性覆土の間隙率	45	_
上部覆土の間隙率	46	_
鷹架層の間隙率	47	_
灌漑土壌の間隙率	48	_
廃棄物埋設地の土壌の間隙率	49	_
埋設設備内の媒体 jの粒子密度	50	_
難透水性覆土の粒子密度	51	_
上部覆土の粒子密度	52	_
鷹架層の粒子密度	53	_
灌漑土壌の粒子密度	54	-
廃棄物埋設地の土壌の粒子密度	55	_

第4表 廃棄物埋設地に関連する評価パラメータ

埋設設備の寸法を現実的な値に見直した

_

		名 称		単 位			
パラメータ	分配平衡		[m ³]				
	■ 共通	□基本	□ 変動				
ンテリオ区分	□ 性能無視	□ 基本·変動以外					
設定値	 > 3 号廃棄物埋設施設 20×10⁵ > 1 号廃棄物埋設施設 40×10⁵ 1-6 群 40×10⁵×30/40^{*1} 7,8 群(均質・均一固化体*²): 1.40×10⁵×2/40^{*1} 7,8 群(充塡固化体) 1.40×10⁵×8/40^{*1} > 2 号廃棄物埋設施設 40×10⁵ (既申請値:1 号 1.38×10⁵、2 号 1.46×10⁵) 						
設定根拠	 ・埋設設備内の放射性核種が地下水の流出に伴って漏出する際に分配する領域の体積であり、埋設設備の設計値に基づき保守側に設定した。 ◆評価式 (埋設設備幅(m))×(埋設設備長さ(m))×(埋設設備高さ(m)) ×(埋設設備数(基)))=(埋設設備全体の体積(m³)) ◆3 号 						
備考	 *1 埋設設備数に応じて設定値に対する係数を算出した。 *2 8 群の充塡固化体のうち、均質・均一固化体として製作されたセメント固化体を 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・均一固化体と 放射能量が同等の充塡固化体)を含む。 						
文献							

L

		単 位					
パラメータ	難透水	$[m^2]$					
シナリナマム	■ 共通	□ 基本	□ 変動				
	□ 性能無視	□ 基本・変動以外					
設定値	 > 3 号廃棄物埋設施設 19,000 > 1 号廃棄物埋設施設 24,000 1-6 群 : 24,000×30/40*1 7,8 群(均質・均一固化体*2) : 24,000×2/40*1 7,8 群(充塡固化体) : 24,000×8/40*1 > 2 号廃棄物埋設施設 22,000 						
設定根拠	 ・埋設設備上部の面積から求められる値から保守側に切り上げて設定した。 ◆評価式 (埋設設備幅(m))×(埋設設備長さ(m))×(埋設設備数(基)) =(埋設設備全体の上部面積(m²)) ◆3号 						
備考	 *1 埋設設備数に応じて設定値に対する係数を算出した。 *2 8群の充塡固化体のうち、均質・均一固化体として製作されたセメント固化体を 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・均一固化体と 放射能量が同等の充塡固化体)を含む。 						
文献							

		単 位		
パラメータ	難	[m]		
シナリオ区分	■ 共通	□ 基本	□ 変動	
	□ 性能無視	□ 基本・変動以外		
設定値	2.0 (設定値は3号、1号及び2 (既申請値:1号2.0、2号	号で共通の値とした。) 2.0)		
設定根拠	 ・設計仕様に基づいて保守 ・難透水性覆土の厚さは、 度も小さいことから、各 	側に設定した。 設計に基づき設定されるパラ シナリオで共通の数値とした	・メータであり 。	、線量への感
備考				
文献				

埋設設備の寸法を現実的な値に見直した

_ _ _ _

I

				名	称					単 位
パラメータ	埋設設備内の媒体 jの体積分率									[-]
シナリオ区分		共通			基本			□ 変動		
✓ / / A 匹力		性能無視			基本・変動	動以外				
	≥ 3	号及び2号廃棄物	埋設施調	設						
		部位	[3号 埋記	廃棄物 段施設	2 坦	号廃棄物 묕設施設		既申請値
		セメント系充塡	【材(廃す	棄体)	0.	169		0. 141		0. 141
		セメント系充填	才(埋設	設備	j) 0.	313		0.343		0.342
		コンクリ	- +		0.	291		0.321		0. 321
	> 1	号廃棄物埋設施設						[
						1.0	пМ	7,8群		3群
		出		1-63	타	均質·均一 固化体*1		充填固化体		
		廃 (均質・均		0.19	94	0.055		_		
		セメント系充填材(廃棄体) (充填固化体)						-		0.139
設定値		廃棄体上部空隙						_		-
	セメント系充塡材(埋設設備)						1	0. 505		0.311
		ポーラスコンクリート						-		-
		コンク		0.31	315 0. 315			0.315		

I

	 ・体積分率は、埋設設備を構成する媒体 jの体積から計算した。以下に 3 号の係示す。 ◆評価式 (媒体 jの体積分率) = (媒体 jの体積)/(埋設設備全体の体積) ◆セメント系充填材(廃棄体): 0.1(m³/本)*2×211,200(本)=21,120(m³) ◆セメント系充填材(埋設設備):39,060(m³)(コンクリート二次製品を除く) 							
	 ◆コンクリート: 36,270 (m³) (全コンクリートを対象とする。鉄筋を除く。) ◆埋設設備全体: 64.1 (m) × 36.51 (m) × 6.66 (m) × 8 (基) ≒ 124,691 (m³) 埋設設備を構成する各要素の体積 							
	セメント系充塡材(廃棄体)	21, 120m ³						
設定根拠	セメント系充塡材(埋設設備)	39, 060m ³						
	コンクリート	36, 270m ³						
	埋設設備全体 124,691m ³							
	 ・計算に用いる各要素の体積は概数とし、計算値を保守側に設定した。 ・埋設設備内の媒体の体積分率は、設計に基づき設定されるパラメータであるため、 各シナリオで共通の数値とした。 ・セメント系材料の溶解・変質に伴い、長期的に体積が変化する可能性があるが、 セメント系材料の間隙率の設定においてあらかじめ長期劣化後の値を設定しており、このような体積変化を考慮しない。 							
備考	 *1 8 群の充塡固化体のうち、均質・均一固化体として製作されたセメント固化体を 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・均一固化体と 放射能量が同等の充塡固化体)を含む。 *2 ドラム缶の寸法を、内径 56.7 cm、高さ 83.0 cm、廃棄体のセメント系充塡材の充 塡島を平均的に 0.1m³/本⁽¹⁾として設定 							
文献	 填量を平均的に 0.1m³/本⁽¹⁾として設定。 (1) 財団法人 原子力環境整備センター(平成 10 年):低レベル放射性廃棄物処分 用廃棄体製作技術について(各種固体状廃棄物) 							

		単 位									
パラメータ		埋設設備内の媒体 jの間隙率									
シナリナマハ	■ 共通		基本			変動					
ンノリオ区分	□ 性能無視		基本・	変動以外							
	部位	3 号 廃棄物 埋設施設	1 5 1-6 群	 房廃棄物埋設 7,8 均質・均一 固化体*1 	施設 群 充塡 固化体	2 号 廃棄物 埋設施設	既申請値				
	セメント系充塡材 (廃棄体)	0. 35	0.35	0.35	0.35	0.35	0.35				
設定値	廃棄体上部空隙	Ι	1	_	_	_	_				
	セメント系充塡材 (埋設設備)	0.35	0.35	0.35	0.35	0.35	0.35				
	コンクリート	0.35	0.35	0.35	0.35	0.35	0.35				
設定根拠	 ・セメント系充填材 あるため、既申請 廃棄体固型化材 ・劣化後の値とはセ ・埋設設備内の媒体 動シナリオ相当)と 	(廃棄体)の 値と同じ値 : 0.278(メント成分 の間隙率は こし、基本シ	間を 健 の、 イ で 埋 リ オ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	対象廃棄体 た。 0.334(劣化 を考慮した でも同じ値を	が 2 号廃 ご後) 値である。 の劣化後の 注設定した	棄物埋設加 つ数値を丸 。	施設と同様で めたもの(変				
備考	*1 8 群の充塡固化 破砕し、セメン 放射能量が同等	本のうち、* ト系充塡材 の充塡固化	均質・均- で一体に 体)の間[ー固化体とし :固型化した; 隙率は、均質	〜て製作さ 充塡固化(賃・均一固	れたセメン 本(均質・均 化体と同)	✓ト固化体を 均一固化体と ご値とした。				
文献											

		名 称		単 位
パラメータ	—————————————————————————————————————	透水性覆土の間隙率		[-]
シナリオ区分	■ 共通	□ 基本	□ 変動	
✓/ 9 4 区力	□ 性能無視	□ 基本・変動以外		
設定値	0.40 (設定値は3号、1号及び (既申請値:1号 0.4、2号	2 号で共通の値とした。) 号 0.4)		
設定根拠	 【考え方】 ・覆土施工の管理方法から 【難透水性覆土状態の想象 ・これまでに試験等でを 2. 612g/cm³ ・砂の粒子密度は、土質 2. 6g/cm³~2. 76g/cm³ ・難透水性覆土の粒子密度く、主質 く評価する観点で保守(・難透水性覆土の施工は、とから、含水比は 17%~ 1. 7g/cm³~1. 8g/cm³であ 工された難透水性覆土の 【難透水性覆土の間隙率】 ・間隙比 e=(粒子密度/車 比 e は 0. 52~0. 60 と想 ・間隙率=e/(1+e)より間 する観点から、 ・保守側の設定値を設定し 	ら密度、含水比を想定し、間 定】 使用している難透水性覆土 "工学ハンドブック ⁽¹⁾ に示さ 度は、2.6g/cm ³ と設定(粒子密 則)した。 締固め試験の最適含水比wo ~20%程度で施工される。その 50、施工管理はこの値の95 の乾燥密度は1.62g/cm ³ ~1.7 乾燥密度)-1 で求められるこ 定される。 間隙率は0.34~0.38 以下とな したことから、基本・変動で	隙率を算定した。 の粒子密度は、 れる各種砂の粒- 5度が小さい方が pt(15%~16%)+2%)際の締固め試験 %以上で行うこと '1g/cm ³ 以上と想; ことから、難透水 見定され、収着性	 2.604g/cm³~ 子密度から、 収着性を小さ ~4%で行うこの乾燥密度がから、現場施 定される。 性覆土の間隙 を小さく評価 ⇒0.40
備考				
文献	(1) 社団法人 地盤工学会	会(1982):土質工学ハンドブ	ック	

			名 称					単 位	
パラメータ		Ŀ	部覆土の間	隙率				[-]	
	■ 共通		□ 基本				変動	1	
ンテリオ区分	□ 性能無視		□ 基本・	変動以外					
		3 号廃棄物 埋設施設	1 号廃棄物 埋設施設	2 号廃 埋設加	2 号廃棄物 埋設施設		∃請値		
設定値		0.55	0.45 0.46 1 号 0.45 2 号 0.46						
	 【考え方】 ・上部覆土は、 を想定して、 からないこに3号の例 【第四紀層及び、 ・第四紀層及び、 	、覆土施工中) いる。現状でし とから、現地 を示す。 び盛土の間隙 り び盛土の間隙	に発生してい はその際に 盤の第四紀 む と <i>e</i> は以下の	いる土砂 (軭 ě生してい 層及び盛土 ひとおり。	経石凝 る土砂 の間隙	灰岩の いによる 資率をす	掘削土) る覆土時 参考に設	を用いること の間隙率はわ 定した。以下	
		区分	間隙比 試験(平均値 標準偏差		個数				
		盛土	0.92	0.09	0.09 9				
設定根拠		火山灰層	1.73	0.38	2	1			
		段丘堆積層	0.94	0.19	3	6			
 ・間隙率= e/(1+e)より、それぞれの間隙率は 0.479、0.627、0.481 で、全平均 0.528 である。 【上部覆土の間隙率】 ・第四紀層及び盛土の間隙率の平均値から、 →0. ・線量への感度が小さいことから、基本・変動で共通の値とした。 									
備考									
文献									

		名称									
パラメータ			[-]								
シナリオマム	■ 共通		□ 基2	4			□ 変重	հ			
シノリオ区方	□ 性能無視		□ 基2	本・変	動以外	k					
設定値		3 号廃棄物 埋設施設	1 号廃 埋設旅	棄物 西設	2 号) 埋郬	廃棄物 段施設	既申請	值			
		0.55	0.4	4	0	. 47	1 亏 0. 2 号 0	44 47			
							250.	47			
	【考え方】 ・埋設施設周 示す。 【鷹架層の間 ・鷹架層の間	辺の鷹架層(標 隙率】 隙比 e は以下の	高-50mり のとおり。	以浅) <i>0</i>	D間隙	率から設	定した。	以下	こ3号の例を		
		区分	राई है।	間随		試験	個数				
				平 耳	习但	標準偏差					
		軽石凝灰岩		1.	28	0.12	3	9			
		砂質軽石嶺	疑火岩	1.	02	0.08	15	,9			
設定根拠	 ・間隙率=e/(ある。 ・線量評価上、 ・線量への影響 ていることま 	(1+ <i>e</i>)より、そ 間隙率が大き 響が小さいこう から、基本・3	それぞれ(きい方が) と、収着 変動で共:	の 間 隙 (保 (住 の 値	(率は) 」となる いさく 「 」とし7	0.561、0. ることかり 評価する た。	503 で、 う、 観点で保	全平 ¹ :守側0	勾は 0. 515 で ⇒0. 55 の値を採用し		
備考											
文献											

			名 称			単位					
パラメータ		灌漑土壌の間隙率									
シナリオマム	■ 共通	共通 □ 基本 □ 変動									
	□ 性能無視		□ 基本・ 羽	医動以外							
	:	3 号廃棄物 埋設施設	1 号廃棄物 埋設施設	2 号廃棄 埋設施	^{活物} 既申請値 設						
設定値											
【考え方】 ・灌漑土壌は、第四紀層と同等の土壌と考えられることから、現地盤の第四 び盛土の間隙率を参考に設定した。以下に3号の例を示す。 【第四紀層及び盛土の間隙比】 ・第四紀層及び盛土の間隙比 e は以下のとおり。											
		区分		間隙比 〔 │ 標準偏	試験個数						
		盛土	0.92	0.09	9 9						
		火山灰属	· · · · · · · · · · · · · · · · · · ·	0.38	3 21						
乳学相加		段丘堆積	層 0.94	0.19) 36						
	・間隙率=e/(1 0.528 である。 【灌漑土壌の間 ・第四紀層及び ・線量への感度	+ <i>e</i>)より、そ 隙率】 盚土の間隙 [⊠] が小さいこと	それぞれの間 率の平均値か とから、基本	隙率は 0.4 ら、 ・変動で共	79、0.627、0.48 通の値とした。	31 で、全平均は ⇒0.55					
備考	・上部覆土の間	隙率と同じ。									
文献											

			名 称			単 位
パラメータ		廃棄物均	里設地の土壌の)間隙率		[-]
シナリオマム	■ 共通		□ 基本		□ 変動	
	□ 性能無視		□ 基本・変	動以外		
-11 -12 /24	ſ	3 号廃棄物 埋設施設	1 号廃棄物 埋設施設	2 号廃棄物 埋設施設	既申請値	
設定値		0.55	0. 45	0.46	1 号 0.45 2 号 0.46	
	 【考え方】 ・埋設地近傍の 盛土の間隙率 【第四紀層及び ・第四紀層及び 	の土壌は第四; 	紀層や盛土でな と。以下に3号 七 と <i>e</i> は以下のと	ある。したが~ 号の例を示す。 こおり。	って、現地盤の	第四紀層及び
		区分	『 平均値	引隙比 ┃標準偏差	試験個数	
		盛土	0.92	0.09	9	
		火山灰		0.38	21	
設会規切		段丘堆積	層 0.94	0.19	36	
	 ・間隙率=e/(1 0.528である 【埋設地近傍の ・第四紀層及び ・線量への感度 	1+ <i>e</i>)より、 ² 。 ○土壌の間隙 [™] [™] 盛土の間隙 [™] [™] が小さいこ。	それぞれの間隙 率】 率の平均値から とから、基本・	(率は 0.479、 の 、 変動で共通の	0.627、0.481 D値とした。	で、全平均は ⇒0.55
備考						
文献						

パラメ				単 位				
ータ	坦	目設設備内の	媒体 <i>j</i> の	粒子密度				$[kg/m^3]$
シナリ	■ 共通		基本		□ 変	動		
才区分	□ 性能無視		基本・変	動以外				
	部位	3 号 廃棄物 埋設施設	1 1-6 群	号廃棄物埋設 7,8 均質・均一 固化体*1	施設 群	2 廃棄 埋設;	号 寒物 施設	既申請値
	セメント系充塡材 (廃棄体)	2, 500	2, 400	2,400	2, 500	2,5	500	1号 2,400 2号 2,500
設定値	セメント系充塡材 (埋設設備)	2, 500	2, 500	2, 500	2, 500	2,5	500	1号2,500 2号2,500
	コンクリート	2,600	2,600	2,600	2, 600	2,6	600	1号 2,600 2号 2,600
	・囲設設備内の柑休	;①約乙容		心保守側の巻	術に設定し	7117	スため	久:>+11+
設定根拠	で同じ数値とした。	,	£(よ、干♡	方 (木 寸)則 (7) 数			(× _1 C	、谷ンノリス
備考	*1 8 群の充塡固化 し、セメント系 同等の充塡固化	体のうち、± 充塡材で一体 体) の粒子密	均質・均- sに固型化 度は、均	ー固化体とし こした充塡固つ 質・均一固(て製作され 化体(均質・ と体と同じ値	たセン 均一回 直とし	×ント 国化体 た。	固化体を破砕 と放射能量が
文献								

		単 位				
パラメータ		難透れ	k性覆土の粒子	密度		$[kg/m^3]$
シナリオ区分	■ 共通		□ 基本		□ 変動	
	□ 性能無視		□ 基本・変	動以外		
設定値		3 号廃棄物 埋設施設	1 号廃棄物 埋設施設	2 号廃棄物 埋設施設	既申請値	
		2, 600	2,700	2, 700	1号2,700 2号2,700	
設定根拠	【考え方】 ・難透水性覆: 「難透水性覆: ・これまでに 2.612g/cm ³ ・砂の粒子密見 ・2.6g/cm ³ ~2 ・難透水性覆: あることかい ・保守側の設分	土と砂の粒子線 土の粒子密度】 試験等で使用 度は、土質工 ⁴ .76g/cm ³ 土の粒子密度 ら、 定値を設定し ⁷	密度を参考に部 目している難 学ハンドブック は、小さい方な たことから、基	ま定した。以下 透水性覆土の (¹¹⁾ に示される が収着性を小さ 基本・変動で共	に3号の例を 粒子密度は、 各種砂の粒子 く評価する観 通の値とした。	示す。 2.604g/cm ³ ~ 密度から、 点で保守側で ⇒2,600kg/m ³
備考						
文献	(1) 社団法人	、 地盤工学会	:(1982):土質	工学ハンドブ	ック	

			名 称			単 位					
パラメータ		上部覆土の粒子密度									
シナリオ区分	■ 共通		□ 基本		□ 変動						
	□ 性能無視		□ 基本・変	動以外							
		3 号廃棄物 埋設施設	1 号廃棄物 埋設施設	2 号廃棄物 埋設施設	既申請値						
設定値		2, 400	1号2,700 2号2,700								
	【考え方】 ・上部覆土は、 を想定してい 例を示す。 【軽石凝灰岩の ・軽石凝灰岩の ・軽石凝に岩の のとおり。	覆土施工中(いる。したが・ の粒子密度】 の粒子密度(ある。 四紀層及び盛:	に発生してい? って、軽石凝励 18 試料の平5 土を参考にし7	る土砂(軽石嶺 反岩の粒子密度 勾値)は、2.3 たが、第四紀 ^月	「灰岩の掘削」 夏で設定した。 9g/cm ³ である 層及び盛土の	 こ)を用いること 以下に3号の る。標準偏差は 粒子密度は以下 					
設定根拠		区分	粒子密 平均値	晉度(g/cm ³) 標準偏差	試験個数						
		盛土	2.72	_	2						
		火山灰屋	· 图 2.68	0.03	6						
		段丘堆積	〔層 2.66	0.03	7						
	【上部覆土の株 ・線量評価上、 ことから、♥ ・線量への感	立子密度】 粒子密度が 経石凝灰岩の まが小さいこ。	小さい方が収着 並子密度で設定 とから、基本・	着性を小さく を動で共通の	評価する観点 つ値とした。	で保守側となる ⇒2,400kg/m ³					
備考	 ・既申請時は、 る測定値を見 を想定したり 	 ・既申請時は、上部覆土に現地の段丘堆積砂を用いることから、段丘堆積層に対する測定値を基に設定していた。今回は、上部覆土材料に軽石凝灰岩を用いることを想定したため、その材料変更を想定して設定した。 									
文献											

		名称									
パラメータ		鷹	架層の粒	子密	变				$[kg/m^3]$		
シナリオ区分	■ 共通		□ 基本	ī.				変動			
	□ 性能無視		□ 基本	、・変	動以外	•					
設定値		3 号廃棄物 埋設施設 1 号廃棄 埋設施設 2,400 2,700		便物 記	2 号 / 埋設	廃棄物 と施設	既	申請値			
				0	2,800		1天 2天	子 2,700 子 2,800			
設定根拠	【考え方】 ・埋設施設周 示す。 【鷹架層の間 ・鷹架層の粒 ・ 金平均評合、 ・ 泉量への感) ・ 線量への感	辺の鷹架層 (標	高-50m 以 のとおり。 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	人浅)の 粒 2. 2. び収着	D 間隙 変 す 値 39 48 作 変 動 て	率から設 (g/cm ³) 標準偏 0.01 0.03 小さく評 で共通の ⁴	定 差 価 値	レた。以下 試験個数 <u>18</u> 76 - る観点で した。	に3号の例を 【 保守側となる ⇒2,400kg/m ³		
備考											
文献											

			名	; 称			単 位		
パラメータ		灌油	旣土壌	夏の粒子密	度		$[kg/m^3]$		
シナリナマム	■ 共通			基本		□ 変動			
2794区月	□ 性能無視			基本・変	動以外				
設定値		3 号廃棄物 埋設施設	1 号 埋	·廃棄物 設施設	2 号廃棄物 埋設施設	既申請値 1号2,700	_		
		2,600	2	, 700	2,700	2号 2,700			
	 【考え方】 ・灌漑土壌は、 び盛土の間隙 【第四紀層及び ・第四紀層及び 	第四紀層と 率を参考に 盛土の粒子領 盛土の粒子領	司等0 設定し 密度に	D土壌と考 した。以下 は以下のと	えられること に 3 号の例を おり。	:から、現地想 ·示す。	盗の第四紀層及		
				粒子変	度(g/cm ³)				
		区分	ŀ	平均值 標準偏差		試験個数			
		盛十		2.72		2			
		火山灰層		2.68	0.03	6			
設定根拠		段丘堆積	層	2.66	0.03	7			
	 ・全平均は、2. 【灌漑土壌の粒 ・線量評価上、ことから、 ・日本原子力学を根拠として ・線量への感度 	 ・全平均は、2.68g/cm³である。 【灌漑土壌の粒子密度】 ・線量評価上、粒子密度が小さい方が収着性を小さく評価する観点で保守側となる ことから、 ⇒2,600kg/m³ ・日本原子力学会標準⁽¹⁾では、土質工学ハンドブック⁽²⁾に示される各種砂の粒子密度 を根拠として、2,600kg/m³を推奨値としている。 ・線量への感度が小さいことから、基本・変動で共通の値とした。 							
備考									
文献	(1) 社団法人 評価手法:(2) 社団法人	日本原子力 2008 地盤工学会(学会 (1982)	(2009):目):土質工	日本原子力学会 学ハンドブッ	会標準 余裕 [•] ク	深度処分の安全		

			名移	东			単 位
パラメータ		廃棄物埋	設地の土	壌の粒	子密度		$[kg/m^3]$
シナリオ区分	■ 共通		□ 基本	:		□ 変動	
ンプリス区力	□ 性能無視		□ 基本	・変動	山 以外		
設定値		3 号廃棄物 埋設施設 2,600	1 号廃棄 埋設施 2,700	(新)	2 号廃棄物 埋設施設 2,700	既申請値 1号2,700 2号2,700)
設定根拠	 【考え方】 ・埋設地近傍の 盛土の粒子名 【第四紀層及び ・第四紀層及び ・第四紀層及び ・全平均は、2 【埋設地付近の ・線量への感見 ・線量への感見 	D 土壤は第四 予度から設定 が盛土の粒子 が盛土の粒子 区分 盛 土 取山灰 段丘堆積 . 68g/cm ³ であ D 土壌の粒子 の粒子 、 の粒子 、 の粒子 、 の粒子 、 の 物 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の た の 、 の 、 の た の 、 の 、 の た の 、 の 、 の た の 、 の た の 、 の た の 、 の た の 、 の た の 、 の た の 、 の た の 、 の た の 、 の の 、 の 、 の 、 の 、 の 、 の の の 、 の の 、 の 、 の 、 の の 、 の 、 の の 、 の 、 の の の 、 の 、 の の 、 の の 、 の の の の の 、 の の の 、 の 、 の 、 の 、 の 、 、 の 、 の 、 の 、 の の 、 の の の の 、 の 、 の 、 の の の 、 の の の 、 の の の 、 の の の の の の の の 、 の の の の の の の の の の の の の	紀	土であま Fのとま のとま のとま . 68 . 66 が な 本・ 多 が 本	る。したがっ うの例を示す さり。 度(g/cm ³) 標準偏差 0.03 0.03 性を小さく評 変動で共通の	oて、現地盤 。 試験個数 <u>2</u> 6 7 平価する観点 何値とした。	の第四紀層及び で保守側となる ⇒2,600kg/m ³
備考							
文献							

パラメータ名	頁	備考
水の摂取量	57	_
水産物 mの摂取量	58	_
畜産物 nの摂取量	59	_
灌漑農産物の摂取量	60	_
農耕農産物の摂取量	00	
家畜 n の家畜用水摂取量	61	_
飲用における放射性物質を含む <mark>沢水</mark> の利用率	62	-
畜産における放射性物質を含む沢水の利用率	62	_
灌漑農耕における放射性物質を含む沢水の利用率	03	
公衆 pの飲用水の市場希釈係数	64	_
公衆 pの水産物 mの市場希釈係数	65	-
公衆 pの畜産物 nの市場希釈係数	66	-
公衆 pの農産物の市場希釈係数	67	-
屋外労働作業中の空気中ダスト濃度	68	-
居住中の空気中ダスト濃度(屋外、屋内)	69	_
公衆 p の 屋外労働作業中の 核種 i の 遮蔽係数	70	_
居住者の屋外における核種 i の遮蔽係数	71	-
呼吸率	72	-
屋外労働作業中の呼吸率	73	-
公衆 pの灌漑農耕作業時間	74	-
廃棄物埋設地における公衆 pの屋外労働作業時間	75	-
公衆 pの居住中の屋外における居住時間	76	-
公衆 pの居住中の屋内における居住時間	77	-

第5表 生活様式に関連する評価パラメータ

	名称			
パラメータ			$[m^3/y]$	
シナリオ区分	■ 共通	□ 基本	□ 変動	
	□ 性能無視	□ 基本·変動以外		
設定値	0.6 (設定値は3号、1号及び2 (既申請値:0.61)	2 号で共通の値とした。)		
設定根拠	 ・水の摂取量は、IAEA SRS ・水の摂取量は、生活様式 値とした。 	5 No. 19 ⁽¹⁾ に基づき設定した に関するパラメータである	。 5ため、各シナリ	オで共通の数
備考				
文献	(1) International Atomi Assessing the Impac Environment, Safety	c Energy Agency(2001) :G et of Discharges of Rad Reports Series No.19	eneric Models f ioactive Substa	or Use in nces to the

	名称				単 位
パラメータ		水産物	mの摂取量		[kg/y]
シナリオ区分	■ 共通		基本	□ 変動	
	□ 性能無視		基本・変動以外		
設定値		魚類 無脊椎動物 (設定値は3号、	設定値 5.7 1.4 1 号及び 2 号で共通	既申請値 9.2 1.1 通の値とした。)	
設定根拠	 ・六ヶ所村周辺 魚類 ・一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	2の食品摂取量調査 : 15.4(g/d)×36 g: 3.6(g/d)×36 : 平成 22 年度(オ : 六ヶ所村及びデ 地町、横浜町、 抽出し、摂研し た。(放医研方 業態別として 選定。 : 平均は調査地域 な量として、上記で した。 な量は、生活様式に こ。	E ⁽¹⁾ に基づき設定しま 5 (d/y) ≒5.7 (kg/y) 5 (d/y) ≒1.4 (kg/y) 5 (d/y) ≒1.4 (kg/y) (kg/y) 5 (d/y) ≒1.4 (kg/y) (た。 5 市町村(三沢市、 可村約 10 世帯の台 について聞き取り 畜産)及び自営・勤 考慮して導出。 は、漁業従事者と であるため、各シ	東北町、野辺 計 60 世帯を 調査を実施し 労(会社員)を 平均を比較し ナリオで共通
備考					
文献	(1) (財)環境: 報告書	科学技術研究所(平	☑成 23 年):平成 22	年度 排出放射能	環境分布調査

	名 称				
パラメータ		畜産物 n の摂取量			[kg/y]
シナリオ区分	■ 共通	口基	本	□ 変動	b .
	□ 性能無視	□基	本・変動以外		
			設定値	既申請値	
		牛	3.5	2.2	
		豚	13	14	
設定値		鶏	12	7.3	
		鶏卵	22	18	
	(20)	ミルク	73	73	、 、
	(設	定値は3号、1	号及び2号で美	共通の値とした。)
設定根拠	 ・ 、 麻、 海及 0 % 設定した。 ・ ミルクの摂取量は 値評価指針⁽²⁾より 牛 : 9.5(g 豚 : 33.4(g 鶏卵 : 58.6(g ミルク: 200(g ・ 畜産物の摂取量はの数値とした。 	(スケ所村周辺の 小さい値であっ (d)×365(d/y) (d)×365(d/y) (d)×365(d/y) (d)×365(d/y) (d)×365(d/y) (d)×365(d/y)	①食品摂取量調 ○たため、線量 ≒3.5(kg/y) ≒13(kg/y) ≒12(kg/y) ≒22(kg/y) ≒73(kg/y) 類するパラメー	重 ^{/(i)} では 65kg/y 目標値評価指針 ⁽	 小X風量画量 より であり、線量目標 ²⁾より設定した。 各シナリオで共通
備考					
文献	 (1) (財)環境科学者 報告書 (2) 原子力委員会(周辺の線量目標 	支術研究所(平向 (昭和 51 年決定 関値に対する評価	戈 23 年): 平成 、平成 13 年最 西指針	22 年度 排出放 終改訂):発電用	(射能環境分布調査)軽水型原子炉施設

	名称			単 位				
パラメータ		灌漑農産物の摂	取量		[kg/y]			
		[Kg/y]						
シナリオ区分	■ 共通			□ 変動				
	□ 性能無視	□ 基本・3	变動以外					
			設定値	既由請値				
			100	-				
設定値			100	120				
		(設定値は3号,1号及7	 ド2 号で共通0)値とした。)				
	・沢水を利用して	て生産する農産物(米)の摂	長取量は、排出	放射能環境分	布調查報告書(1)			
	より辰耒促争	るの授取重を用いて保守 [、]	側に設止した。	5				
	246. $4(g/d)$	$\times 365 (d/v) \doteqdot 90 (kg/v)$						
					⇒100kg/y			
	・国民健康・栄養調査報告 ⁽²⁾ では、平成 19 年度の米・加工品の 20 歳以上の全国平							
	均の摂取量は	均の摂取量は、346.7(g/d)×365(d/y)=126000(g/y)=126(kg/y)となっているが、						
	半成13年から	o食品群分類において、食 たけ、食り電公主 ^③ のト	これの里重は調 たり 半の消	理を加味した。 毒量は減小し、	奴重となってい			
	日本 日	には、良田市和衣 のこ 調査報告書においても過	おり、木り宿 去の調査結果	貢重は減少し と比較して減小	い個面にある			
	・土地を利用し	て生産する農産物(米以外	.)は、農作物約	た計 ⁽⁴⁾ 及び園芸	作物統計 ⁽⁵⁾ に基			
	づき設定した	0						
設定根拠	・六ヶ所村での	収穫量のうち、飼料作物.	以外で多い作!	物は、だいこん	 やまのいも、 			
	ばれいしょで	ある。これより、排出放	射能環境分布	調査報告書に	基づき、農業従			
	事者のいも類及び根菜(だいこんが含まれる)の摂取量(それぞれ 63.8g/d、							
	$(63.8(g/d) + 180.3(g/d)) \times 365(d/y) \approx 89(kg/y)$							
	⇒100kg/y							
	・国民健康・栄養調査報告に基づき、いも類及びその他野菜(だいこんが含まれる)							
	0 20							
	 ・農産物の摂取 	量は、生活様式に関する	。 パラメータで	あるため、各	シナリオで共通			
	の数値とした	0						
備考								
	(1) (財)環境利	科学技術研究所(平成23年	三):平成 22 年	度 排出放射	能環境分布調査			
	₩ 一 報告書 (9) 原生学無点	2(亚武 20 年),亚武 10 年	- 日日侍年	必美調木却生				
文献	(4) 写生力側1 (3) 農林水産4	a (十成 20 平): 半成 19 年 (平成 18 年)・ 食品雪給	- 国氏健康・ 表	木食硐笡報古				
	(4) 東北農政局	3、1/2 10 平)・ 良叫 回相 哥(平成 19 年)・ 平成 18 年	~ 三産 農作物網	☆ 書+				
	(5) 東北農政局	哥(平成 19 年):平成 18 年	三 園芸作物約					

	名 称					
パラメータ		$[m^3/d]$				
シナリオ区分	■ 共通	口基	基本	□ 変動		
	□ 性能無視		基本・変動以外			
			設定値	既申請値		
		肉牛	4. 0×10^{-2}	4. 0×10^{-2}		
設定値		乳牛	8. 0×10^{-2}	8.0×10 ⁻²		
設足恒		豚	1.6×10^{-2}	1.6×10^{-2}		
		鶏	2. 2×10^{-4}	2.2×10^{-4}		
		設定値は3号、1	号及び2号で共	通の値とした。)		
	 ・社会環境実態調査⁽¹⁾に基づき、井戸水を家畜の飼育水に用いる畜産における家畜 					
	の井戸水の摂取量として、次のようにして設定した。					
	肉牛 , 彭剑	中の乳牛の水谷	饵 而 昌 40 gī /J,		雨々れて水八昌	
	内十 、 和44 8L/d	〒011〒00小川 を減じた値を基	に保守側に設定	たら、副科がら家」 した。	れ C 4 し G 小 刀 里	
	乳牛 :社会	環境実態調査の	最大値を採用し			
	豚 : 社会環境実態調査の飼料量 3.2kg/d の 5 倍の数値に設定した。					
	鶏 :採卵鶏ブロイラーのゲージ飼いに対する数値に設定した。					
	・家畜の家畜用水	摂取量は、生活	様式に関するパ	ラメータであるた	め、各シナリオ	
	で共通の数値と	した。				
設定根拠						
備考						
····· •						
	(1) 日本エヌ・コ	・エス株式会	*社(昭和 63 年)	: 六ヶ所村周辺の	社会環境実態調	
	查結果報告書	,				
文献						

	名 称	単 位
パラメータ	飲用における放射性物質を含む <mark>沢水</mark> の利用率	[-]
シナリオ区分	 ■ 共通 □ 基本 □ 変動 □ 性能無視 □ 基本・変動以外 	
設定値	0.1 (設定値は3号、1号及び2号で共通の値とした。)	
設定根拠	 ・青森県の水道⁽¹⁾に基づくと六ヶ所村の実績年間取水量は地下水が10 り、社会環境の状態から沢水の水道への利用は想定されないが、仮想 与があると様式化した。 ・飲用における沢水の利用率は、生活様式に関するパラメータである リオで共通の数値とした。 	0%を占めてお (的に 10%の寄 ため、各シナ
備考		
文献	(1) 青森県健康福祉部(平成 21 年):平成 19 年度版 青森県の水道	

	名称	単 位
パラメータ	畜産における放射性物質を含む <mark>沢水</mark> の利用率	ГЛ
	灌漑農耕における放射性物質を含む <mark>沢水</mark> の利用率	
シナリオ区分	■ 共通 □ 基本 □ 変動	
✓/ 9 A 区力	□ 性能無視 □ 基本·変動以外	
設定値	1 (設定値は3号、1号及び2号で共通の値とした。) (既申請値:1)	
設定根拠	 ・最も保守側の設定値とした。 ・最も保守側な設定であるため、各シナリオで共通の数値とした。 	
備考		
文献		

	名 称	単 位
パラメータ	公衆 p の飲用水の市場希釈係数	[-]
シナリオ区分	 ■ 共通 □ 基本 □ 変動 □ 性能無視 □ 基本・変動以外 	
設定値	1 (設定値は3号、1号及び2号で共通の値とした。)	
設定根拠	 経口摂取による被ばく線量を評価する際に使われる係数で、飲用水 ち、放射性物質で汚染された飲用水の摂取量の割合を示す。 全ての評価対象個人について、廃棄物埋設地からの影響を受ける地 利用するとし、市場希釈係数は1とした。 最も保守側な設定であるため、各シナリオで共通の数値とした。 	の摂取量のう
備考		
文献		

河川化に伴う漁獲量の減少を保守側に想定しないこととしたため、パラメータを見直した

	名 称					
パラメータ	公衆」	っの水産物 mの市場希釈	係数	[-]		
シナリナマム	■ 共通	□ 基本	□ 変動	<u> </u>		
✓ / 9 A 区力	□ 性能無視	□ 性能無視 □ 基本·変動以外				
		評価対象個人	設定値			
		漁業従事者	1			
		農業従事者	0.1			
設定値		畜産業従事者	0.1			
		建設業従事者	0.1			
		居住者	0.1			
	(設定値	直は3号、1号及び2号	で共通の値とした。)			
設定根拠	 ・陸口探取による被は、 放射性物質で汚染され ・漁業従事者については 数は1とした。 ・漁業従事者以外の市場 ・平成10年の尾駮沼の 六ヶ所村の人口11,09 10,408(kg/年)÷11,0 ・ここで、既申請値での とから、0.9kg以外は ・市場希釈係数は、0.90 側に0.1と設定した。 荷されるものもあるこ ・水産物の市場希釈係数 共通の数値とした。 	歴史の中では、 「秋重を見つりの時に使いた水産物の摂取量の割 は、漁獲した水産物につ 高希釈係数は、0.1とし 淡水魚介類の漁獲量(10 5人 ⁽¹⁾)で摂取した場合 95(人) =0.9(kg/(年・人 0六ヶ所村の淡水魚介類 な、六ヶ所村外からのも (kg/(年・人)) ÷10.3(kg 実際には尾駮沼で捕獲 さないら保守側な値と考 なは、生活様式に関する の被ばくを受けると合明 のなばくを受けると合明	Pれる係数で、水産物の引 合を示す。 いては自家消費するとし た。詳細は次のとおりで 0,408kg)を六ヶ所村のみ 、一人当たりの淡水魚介 3)となる。 の摂取量は、10.3kg/(年 のを摂取することとなる /(年・人))≒8.8×10 ⁻² (一) された淡水魚介類は、六 された淡水魚介類は、六 された水水魚介類は、六	★取重のうら、 小、市場希釈係 ある。 (平成 22 年の 夏の摂取量は、 小人)であるこ。 となり、保守 ケ所村外に出 各シナリオで		
備考	 ・既申請書では、"最大(と設定していたが、評 	の破はくを受けると合理 平価対象者に応じて適切	理旳に想定される個人")に設定した。	と設定せす、1		
文献	(1) 六ヶ所村(平成 27 -	年):平成 26 年版 六	r 所村統計書			

	名称			単 位	
パラメータ	小	[-]			
シナリナマハ	■ 共通	■ 共通 □ 基本 □ 変動			<u> </u>
シアリオ区方	□ 性能無視	□ 基本・3	変動以外		
設定値	(設	評価対象個人 漁業従事者 農業従事者 畜産業従事者 建設業従事者 居住者 定値は3号、1号及て	設定値 0.1 0.1 1 0.1 び2号で共通のf		
設定根拠	 ・経口摂取による初ち、放射性物質で、 ・畜産数を1とした ・畜産数を1とした ・畜産、一方が、10⁷m²)であり、 ・六ヶ所村統計書(11.37×10⁷m²)であり、 ・るる。さん、最近、 ・畜産のの市場希利で共通の数値とし 	なばく線量を算出する で汚染された畜産物の かいては、養畜した畜 の市場希釈係数は、 によれば、平成17年 る。それに対し、施設 なの領域のうち現 か約6×10 ⁴ m ² であり、 /六ヶ所村の牧草地) = ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 、 ・ 、 ・ 、 、 、 、 、 、 、 、 、 、 、 、 、	際に使われる係 原取量の割合を 適定 の1とした。詳 でで、 でで、 でで、 でで、 でで、 でで、 でで、 でで	※数で、畜産物 示す。 は自家消費する 細は次のとおり のな草地は、1 約5.0×10 ⁴ m ² (2 のが物地割合(1 のあるため が(m ²))÷(1.37) 、ケがを 0.1 と保 ータであるため	 の摂取量のう とし、市場希 いである。 ,374.59ha(約00m×250m)でも3.58km²(約.6%)で放牧地 つ割合は、 ×10⁷(m²)) するとする最 守側に設定し 、各シナリオ
備考	 ・既申請書では、": 1と設定していた 	最大の被ばくを受ける が、評価対象者に応	ると合理的に想知 じて適切に設定		を設定せず、
文献	(1) 六ヶ所村(平成	t 27 年): 平成 26 年h	反 六ヶ所村統言	計書	

	名称				
パラメータ		公衆 p の農産物の市場	希釈係数		[-]
シナリナマハ	■ 共通	□ 基本		□ 変動	<u> </u>
ンノリオ区分	□ 性能無視	□ 基本・変	医動以外		
設定値	(設	評価対象個人 漁業従事者 農業従事者 畜産業従事者 建設業従事者 居住者 定値は3号、1号及び	設定値 0.1 1 0.1 0.1 0.1 32号で共通の ⁴	 値とした。)	
設定根拠	 ・経口摂取による被ち、放射性物質で ・農業従事者につい係数は1とした。 ・農業従事者以外の ・六ヶ所村統計書(1) 1366.81ha(約1. 5.0×10⁴m²(200m> 沼の面積も3.58k 面積割合(16.1%)) る農産物の割合は (汚染源の面積) となる。さらに 最も保守側な場 定した。 ・農産物の市場希新 で共通の数値とし 	なばく線量を算出する ご汚染された農産物の いては、栽培した農産 の市場希釈係数は、0.1 つによれば、平成17年 37×10 ⁷ m ²)である。 く250m)である。また、 (本)である。また、 (本)でか所村の耕作面積) こた、所村で生産した) そ合を想定しているここ になった。	際に使われる 原取量の割合を 物については たした。詳細 度の六ヶ所村 それに対し した。詳細 それに対し も も な の領域の も 約 ((0.50+6) = $((0.50+6)$ = $((4.8\times10^{-2}))$ とから、市場希 関するパラメー	系数で、農産物 系数で、農産物 :示す。 引家消費すると は次のとおりて ひかにおりて 、次のとおりて 、源の可能 なる在の可 のであり、 、 、 (m ²))÷(1. -)) て六ヶ所村で消 テ釈係数を 0.1 ータであるため	 の摂取量のう し、市場希釈 ためる。 ご面でのは、 ご面でのは、 範疇ののは、 取動のの なる尾耕地 るの 37×10⁷(m²)) 費するとする とする 、各シナリオ
備考	・既申請書では、"」 1 と設定していた	最大の被ばくを受ける が、評価対象者に応じ	と合理的に想? こて適切に設定	定される個人" した。	を設定せず、
文献	(1) 六ヶ所村(平成	 え 27 年): 平成 26 年版	六ヶ所村統	計書	
	名 称			単 位	
--------	--	--	--	--	---
パラメータ	屋外労働作業中の空気中ダスト濃度			$[kg/m^3]$	
シナリナ区分	■ 共通 □ 基本 □ 変動				
	□ 性能無視	口基	基本・変動以外		
			設定値	既申請値	
		漁業従事者	2. 0×10^{-8}	_	
		農業従事者	3. 0×10^{-8}	3. 0×10^{-8}	
設定値		畜産業従事者	2. 0×10^{-8}	_	
		建設業従事者	1.0×10^{-7}	1.0×10^{-7}	
		居住者	-	_	
		(設定値は3号、1	号及び2号で共通	の値とした。)	
設定根拠	 ・農六 1.1×10⁻⁸kg ・建をも業し定外 ・漁施設屋外 ・漁施た働りオ 	 ついては、当社が昭和 較沼付近の道路建設: /m³~2.3×10⁻⁸kg/m³。 ついては、同じ実測 保守側の値として、1 作業については、当着 周辺でのダスト濃度の 業中の空気中ダスト 滞 で共通の数値とした。 	62 年 10 月 14 日、 工事現場での浮遊 より、保守側に設定 値を基に設定する) ×10 ⁻⁷ kg/m ³ を設定 生が昭和 60 年 11 の実測結果の最大値 農度は、生活様式に	15日の両日にかけ 位子(ダスト)濃度 Eした。 豊耕作業時の空気 した。 月~昭和 61 年 10 直 1.8×10 ⁻⁸ kg/m ³ J 二関するパラメーク	けて実施した、 の実測結果の 中ダスト濃度 月にかけて実 こり、保守側に マであるため、
備考					
文献					

	名称			単 位	
パラメータ	居住中の空気中ダスト濃度(屋外、屋内)				$[kg/m^3]$
シナリオ区分	■ 共通		基本	□ 変動	
	□ 性能無視		基本・変動以外		
			設定値	既申請値	
設定値		屋外	2.0×10 ⁻⁸	2. 0×10^{-8}	
		屋内	5. 0×10^{-9}	5. 0×10^{-9}	
	(訳	定値は3号、	1 号及び 2 号で‡	に通の値とした。)	
	・当社が昭和 60 年	11月~昭和6	51 年 10 月にかけ	て実施したサイト周	辺における浮
	遊粒子(ダスト)激	農度の実測結果	の最大値は 1.8	×10 ⁻⁸ kg/m ³ より、仔	は守側に設定し
	に。 ・屋内における空気	l 「中ダスト濃度	は、IAEA-TECDO	C-401 ⁽¹⁾ の居住シナリ	リオにおける屋
	内の数値を採用し	た。			
	・居住中の空気中な	ダスト濃度は、	生活様式に関す	るパラメータである	ため、各シナ
	リオで共通の数値	重とした。			
設定根拠					
備考					
		1			
	(1) Internationa	I Atomic Energ	gy Agency (1987)	: Exemption of Radi	ation Sources
文献		TIOM Negulat	, control, 1	NEN ILODOC HOI	

α核種組成の見直しに伴い追記

_ _ _ _ _ _ _ _ _ _

L

ι_

I

	名 称						単 位	
パラメータ		公衆 pの	屋外労働作業	業中の核種 <i>i</i>	の遮蔽係数		[-]	
シナリオ区分	■ 共通	■ 共通 □ 基本 □ 変動			1			
	□ 性能無			基本・変動じ	以外			
		核種	設定値	既申請値	核種	設定値	既申請値	
		H-3	0.02	0	Ra-226	0.4	-	
		C-14	0.02	0	Ac-227	0.3	-	
		C1-36	0.02	-	Th-229	0.4	-	
		Co-60	0.4	0.4	Th-230	0.02	-	
		Ni-59	0.02	0	Pa-231	0.2	-	
		Ni-63	0.02	0	U-233	0.02	-	
設定値	建設業	Sr-90	0.02	0	U-234	0.02	-	
成化恒	化爭有	Nb-94	0.4	0.4	U-235	0.2	-	
		Tc-99	0.02	0	Np-237	0.2	-	
		I-129	0.02	0	Pu-238	0.02	_	
		Cs-137	0.3	0.3	Pu-239	0.02	-	
		Pb-210	0.2	-	Pu-240	0.02	-	
		Po-210	0.02	-	Am-241	0.02	0.02	
	上記	全核種 1						
	以外	(設定	値は2早	1	「一一」	· レ た)		
			旧はひ方、	1 与风0-2 与		$C U (C_0)$		
設定根拠	 ・掘削工事に用いる建設機器の遮蔽として、IAEA-TECDOC-401⁽¹⁾で廃棄物埋め立て作業の機器に採用されている、厚さ 2cm の鉄で半分の時間を、厚さ 1cm のガラスで残りの半分の時間を遮蔽されているときに相当する数値に設定した。 ・上述の文献に値が示されていない核種については、その放射線のエネルギーを参考に設定した。 ・具体的には、ICRP.Pub.107⁽²⁾で示されている photon の放出エネルギー(子孫核種を有する場合はそれらを含めた最大値)が、Cs-137 のそれよりも大きければ0.4、Np-237 よりも大きければ0.3、Am-241 よりも大きければ0.2、上記以外は0.02 とした。また、photon を放出しない核種については、遮蔽材内で発生する制動放射線を考慮し、保守側にAm-241 と同じく0.02 とした。 ・建設作業以外の屋外労働者については、建機等を利用しない作業を考慮し、保守側に全核種1と設定した。 ・屋外労働作業中の核種の遮蔽係数は、生活様式に関するパラメータであるため、各シナリオで共通の数値とした。 							
備考								
文献	(1) Inte and P(2) Inte Data	 International Atomic Energy Agency(1987) : Exemption of Radiation Sources and Practices from Regulatory Control, IAEA-TECDOC-401 International Commission on Radiological Protection (2008) : Nuclear Decay Data for Dosimetric Calculations, ICRP Publication 107 						

	名	称	単 位
パラメータ	居住者の屋外における	[-]	
シナリオ区分	■ 共通 □ 基2 □ ##### □ 其2	▶ ② 変動	
設定値	全核種 1 (設定値は3号、1号及び2号で共通 (既申請値:全核種 1)	の値とした。)	
設定根拠	 全ての核種が、遮蔽されないとし、 居住者の屋外における核種 i の遮ため、各シナリオで共通の数値と 	た保守側の設定にした。 ៈ蔽係数は、生活様式に関するべ した。	パラメータである
備考			
文献			

		名 称		単 位
パラメータ			$[m^3/h]$	
シナリオ区分	■ 共通	□ 基本	□ 変動	
設定値	0.93 (設定値は3号、1号及び2 (既申請値:0.96)	号で共通の値とした。)		
設定根拠	 ICRP Pub. 89⁽¹⁾に示されてた値を設定した。 22. 2(m³/d)÷24(h/d 呼吸率は、生活様式に関いした。 	いる成人男性の1日の平均四)) =0.925 (m ³ /h) ≑0.93m ³ /h するパラメータであるため、	呼吸率から、次	式により求め 共通の数値と
備考				
文献	(1) International Commis Anatomical and Physi Reference Values, ICF	ssion on Radiological Prot ological Data for Use in RP Publication 89	ection(2002) Radiological	:Basic Protection:

	名称	単 位
パラメータ	屋外労働作業中の呼吸率	$[m^3/h]$
シナリオ区分	 ■ 共通 □ 基本 □ 変動 □ 性能無視 □ 基本・変動以外 	
設定値	1.2 (設定値は3号、1号及び2号で共通の値とした。) (既申請値:1.2)	
設定根拠	 ICRP Pub. 89⁽¹⁾に示されている成人男性の就業中の平均呼吸量から設 9.6(m³/8h) =1.2(m³/h) 屋外労働作業中の呼吸率は、生活様式に関するパラメータであるた オで共通の数値とした。 	定した。 め、各シナリ
備考	 吸入摂取による実効線量換算係数を見直したため、既申請のように ばくを考慮する必要はない。 	H−3の皮膚被
文献	 (1) International Commission on Radiological Protection(2002) Anatomical and Physiological Data for Use in Radiological Reference Values, ICRP Publication 89 	:Basic Protection:

	名称			単 位		
パラメータ		公衆 pの灌漑農耕作業時間				
シナリオ区分	■ 共通	 ■ 共通 □ 基本 □ 変動 				
	□ 性能無視	□ 基本	・変動以外			
			設定値	既申請値		
		漁業従事者	0	-		
		農業従事者	500	500		
設定値		畜産業従事者	0	-		
		建設業従事者	0	_		
		居住者	0	-		
		(設定値は3号、1号)	及び2号で共通	の値とした。)		
設定根拠	 ・農業(社) ・計算に際してに 均耕地面積4, 及び水稲の労付 (264.5a/y)もの 264.5(a/y) ・灌漑農耕作業 通の数値とした。 	湯合、平均的農家 1 序 は、日本の統計 2010 ⁽ 628,000(ha)÷1,750, 動時間(2.85h/a)を用 のとして、次式によっ ×0.544(−)×2.85(h/a) 時間は、生活様式に関 た。	[□] が経営する耕 ¹⁾ に示されてい 000(戸)≒264. い、1 人で 1 ☆ って計算し、保 a) ≒410.1(h/y) ≒500(h/y) 引するパラメー	地での水稲栽培に るデータから、- 5(a/戸)、耕地の 年間に平均耕地面 午側に設定した。 タであるため、名	- 戸当たりの平 水田率(0.544) j積を耕作する	
備考	 ・ 既申請では、 	灌漑農耕作業時間は、	農耕作業時間	となっている。		
文献	(1) 総務庁統計	·局編(平成 22 年版):	日本の統計 20	10		

	名称			単	単 位	
パラメータ	廃棄物埋設地	しにおける公衆 p の屋タ	\ 労働作業時間	[1	[h/y]	
シナリオ区分	■ 共通	□ 基本		□ 変動		
	□ 性能無視	□ 基本・	変動以外			
			設定値	既申請値		
		漁業従事者	0	-		
		農業従事者	0	_		
設定値		畜産業従事者	0	_		
		建設業従事者	500	250		
		居住者	0	_		
		(設定値は3号、1号	みび2号で共通	の値とした。)		
設定根拠	 ・ 漁業名、 (133) ・ 建る 500m²の (240m³/d)から 掘削時間(・ 仮に時間(・ 仮に時間働作業 の数値とした 	 長素健事者、 歯産素体 生しない。 については、既申請時 面積で地下 3m の深さの ら保守側に設定した。 (h) = 1,500 (m³) ÷ 240 (n 深さが 3m の能力を持 時間程度である。また 時間は、生活様式に関 	E事者及び居住者 時の考え方を踏襲 D掘削を想定し、 a ³ /d)×6(h/d)=3 った小型の掘削材 、設定値は約1.1 見するパラメータ	については、廃 し、一般的な住 標準的な機器の 37.5(h) 機器を用いたとし 5ヶ月間の工事期 であるため、各	** 率物理設地にお 宅を十分包含で 掘削能力 こても、その掘 間に相当する。 シナリオで共通	
備考						
文献						

	名 称 公衆 p の居住中の屋外における居住時間				単 位
パラメータ					[h/y]
シナリオ区分	■ 共通	□ 基本		□ 変動	
	□ 性能無視	□基本・	変動以外		
設定値	 ・居住者につい 廃棄物埋設 を10%程度と 	居住者 居住者以外 (設定値は3号、1号及て いては、日本人の生活時間 地の居住地(勤務地であるま こした。	設定値 1,000 700 び2号で共通の ⁽¹⁾ 及び社会生 湯合も含む)で	既申請値 1,752 - 0値とした。) 活基本調査報告の屋外活動と考慮の	ト ⁽²⁾ に基づき、 考えられる時間
設定根拠	8,760(h/y ・労働者につい し、残りのF (8,760(h/ ・居住中の屋 シナリオでま	n)×0.1(-)=876(h/y)≒1, いては、1 年のうち 2,000 時 時間の 10%を屋外に滞在し (y) -2,000(h/y))×0.1(-) 外における居住時間は、生 共通の数値とした。	000 (h/y) f間は労働のた ているものとし =676 (h/y) ≒7 :活様式に関す	めに居住地から した。 700 (h/y) るパラメータで	ら離れるものと
備考					
文献	 NHK 放送 総務省統 	文化研究所(2006):日本人 計局(2008):社会生活基z	の生活時間・2 本調査報告 平	2005 NHK 国民 ² 成 18 年、第 7	生活時間調査 巻

	名称				単 位
パラメータ		[h/y]			
シナリナマム	■ 共通	□ 基本		□ 変動	
シアリオ区方	□ 性能無視	□基本・	変動以外		
設定値	 ・居住者につい 外活動以外の 	居住者 居住者以外 (設定値は3号、1号及び いては、日本人の生活時間 ⁽ の時間に屋内に滞在してい	設定値 7,760 6,060 び2号で共通の ⁽¹⁾ 及び社会生活 るものとした。	既申請値 7,008 -)値とした。) 話基本調査報告 ⁽²⁾	のに基づき、屋
設定根拠	8,760(h/y) ・労働者につい し、残りの時 間は、1年の 8,760(h/y) ・居住中の屋 シナリオで	 -1,000(h/y) =7,760(h/y いては、1年のうち2,000時 時間の10%を屋外に滞在して うち労働時間と屋外滞在に -2,000(h/y) -700(h/y) = 内における居住時間は、生 共通の数値とした。) 時間は労働のた ているものとし 時間を引いた =6,060(h/y) E活様式に関す	めに居住地から た。よって屋内 特間とした。 るパラメータで	離れるものと に滞在する時 あるため、各
備考					
文献	 NHK 放送 総務省統 	文化研究所(2006):日本人 計局(2008):社会生活基2		005 NHK 国民生 成 18 年、第 7 5	

パラメータ名	頁	備考
線量の計算に用いる廃棄体中の放射性物質の組成及び総放射能量	3	第1表
核種 i の半減期	6	第2表
埋設設備内の媒体 jの核種 iの分配係数(廃棄体)	13	
埋設設備内の媒体 jの核種 iの分配係数(充塡材)	15	
埋設設備内の媒体 jの核種 iの分配係数(コンクリート)	17	
難透水性覆土の核種 i の分配係数	19	塗りま
上部覆土の核種 i の分配係数	21	
鷹架層の核種 i の分配係数	22	
灌漑土壌の核種 i の分配係数	23	
廃棄物埋設地の土壌の核種 i の分配係数	24	
分配平衡となる埋設設備の体積	39	
難透水性覆土の拡散寄与面積	40	
難透水性覆土の厚さ	41	
埋設設備内の媒体 jの体積分率	42	
埋設設備内の媒体 jの間隙率	44	
難透水性覆土の間隙率	45	
上部覆土の間隙率	46	
鷹架層の間隙率	47	竺 4 主
灌漑土壌の間隙率	48	
廃棄物埋設地の土壌の間隙率	49	
埋設設備内の媒体 jの粒子密度	50	
難透水性覆土の粒子密度	51	
上部覆土の粒子密度	52	
鷹架層の粒子密度	53	
灌漑土壌の粒子密度	54	
廃棄物埋設地の土壌の粒子密度	55	
難透水性覆土の実効拡散係数	80	-
埋設設備から上部覆土への流出水量	81	-
埋設設備から鷹架層への流出水量	82	-
核種が流入する上部覆土の地下水流向方向長さ	83	-
上部覆土の地下水流速	84	-
上部覆土内地下水流量	85	-
核種が流入する鷹架層の地下水流向方向長さ	87	-
鷹架層の地下水流速	88	-
鷹架層内地下水流量	89	-

第6表 基本シナリオにおける放射性物質の移行計算に用いるパラメータ及びその数値

核種が流入する上部覆土下流端から尾駮沼又は河川又は沢までの評 価上の距離	90	-
核種が流入する鷹架層下流端から尾駮沼又は河川又は沢までの評価 上の距離	91	_
核種が流入する上部覆土から尾駮沼又は河川 <mark>又は沢</mark> への地下水流量	92	-
核種が流入する鷹架層から尾駮沼又は河川又は沢への地下水流入量	93	-
尾駮沼又は河川の交換水量	94	-
敷地中央部の沢の交換水量	95	-
灌漑土壌への放射性物質の残留割合	96	-
単位面積当たりの灌漑水量	97	-
灌漑土壌の有効体積	98	-
灌溉土壤浸透水量	99	-
核種が流入する上部覆土下流端から濃度算出地点までの評価上の距 離	100	-
廃棄物埋設地の土壌の希釈係数	101	-

		名 称		単 位
パラメータ	難透	水性覆土の実効拡散係数		$[m^2/s]$
シナリオ区分	■ 共通	□ 基本	□ 変動	
	□ 性能無視	□ 基本·変動以外		
設定値	1×10 ⁻¹⁰ (設定値は3号、1号及び	、2 号で共通の値とした。)		
設定根拠	・実測値に基づいて保守	側に設定した。		
備考				
文献				

_ __

		名 称		単 位
パラメータ	埋設設備太		$[m^3/y]$	
パラメータ シナリオ区分 設定値	 埋設設備が 共通 性能無視 3 号廃棄物埋設施設 設定値:10 1 号廃棄物埋設施設 設定値:130 1-6 群:上記流量×30 7,8 群(均質・均一固ん 7,8 群(方塡固化体): 2 号廃棄物埋設施設 設定値:20 (既申請値:1号 80、2 号 	名 称 から上部覆土への流出水量 ■ 基本 □ 基本・変動以外 0/40*1 と体*2):上記流量×2/40*1 上記流量×8/40*1 60)	□ 変動 	単位 [m ³ /y]
	 ・詳細については、補足説明 	明資料 7「線量評価パラメー	-タ-埋設設備から	の流出水量-」
設定根拠	を参照。 ・解析上の設定値としては を設定した。	、覆土完了後から 1,000 4	年程度の状態設定	を見込んだ値
備考	 *1 埋設設備数に応じて設 *2 8 群の充塡固化体のう 破砕し、セメント系充 放射能量が同等の充塡 	定値に対する係数を算出し ち、均質・均一固化体とし、 填材で一体に固型化した充 個化体)を含む。	た。 て製作されたセメ 5塡固化体(均質・	ント固化体を 均一固化体と
文献				

i

_ _ _ _ _ _

- 1

	名称	単 位
パラメータ	埋設設備から鷹架層への流出水量	$[m^3/y]$
シナリオ区分	□ 共通 ■ 基本 □ 変動 □ 性能無視 □ 基本・変動以外	
設定値	 3号廃棄物埋設施設 設定値:630 1号廃棄物埋設施設 設定値:2,200 1-6 群:上記流量×30/40*1 7,8 群(均質・均一固化体*2):上記流量×2/40*1 7,8 群(充填固化体):上記流量×8/40*1 (既申請値:600) 2号廃棄物埋設施設 設定値:920 (既申請値:1号 600、2号 600) 	
設定根拠	 ・詳細については、補足説明資料7「線量評価パラメータ-埋設設備からを参照。 ・解析上の設定値としては、覆土完了後から1,000 年程度の状態設定を設定した。 	の流出水量−」 を見込んだ値
備考	 *1 埋設設備数に応じて設定値に対する係数を算出した。 *2 8群の充塡固化体のうち、均質・均一固化体として製作されたセメ 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・: 放射能量が同等の充塡固化体)を含む。 	ント固化体を 均一固化体と
文献		

	名 称	単 位
パラメータ	核種が流入する上部覆土の地下水流向方向長さ	[m]
シナリオ区分	■ 共通 □ 基本 □ 変動 □ 性能無視 □ 基本・変動以外	
	 3 号及び2 号廃棄物埋設施設 30 	
設定値	 1 号廃棄物埋設施設 20 1-6 群:20 7,8 群(均質固化体埋設領域):20 7,8 群(充填固化体埋設領域):20 (既申請値:1号 30、2号 30) 	
設定根拠	【設定モデル】 核種が流入する地下水流向方向の長さ ・ 南 第四紀層 単設 豊備 単設 豊備 単設 豊備 建設 豊備 建設 豊備 建設 豊備 建設 豊備 豊備 豊備 豊備 豊備 豊備 豊備 豊備 豊備 豊備	北→ 透水性覆土 ± 入すると設定 として設定さ きく評価する、 1号:24.4m、
備考	・既申請時と同様の考え方で設定した。	
文献		

		名 称		単 位
パラメータ	上部覆土の地下水流速			[m/y]
シナリオ区分	■ 共通	□ 基本	□ 変動	
	□ 性能無視	□ 基本·変動以外		
設定値	10 (設定値は3号、1号及び2 (既申請値:1号 10、2号	2 号で共通の値とした。) 10)		
設定根拠	 【考え方】 ダルシー流速(透水係数) 時間に係るものであるこ 【評価式】 上部覆土の地下水流速= ここで、K₆:その他覆 ご理設設備 【設定に用いるパラメータ その他覆土の透水係数 第四紀層及び盛土の設 3.6×10⁻⁶m/s)を参考に 動水勾配 基本設定:3%、変動設 【上部覆土の地下水流速】 上記設定で最大の流速に 	×動水勾配)を保守側に割 とから、流速が速い方が 主の透水係数(m/s) 付近の動水勾配(-) 】 透水係数(3 号:3.0×10 こ設定した。 完定:4%	を定した。本パラメ 保守側の設定となる ⁶ m/s、1 号 2.5×1 = %) ≒4.5(m/y)より	ータは、移行 3。 $10^{-6}m/s$ 、2 号 $3.6 \times 10^{-6}m/s$ $\rightarrow 10m/y$
備考	・ 本ハフメータについて た。	は変期放止も包召した設	. 庄とし、共进の八 	ファーダとし
文献				

1

			名 称			単 位
パラメータ		上部	邓覆土内地下水济	充量		$[m^3/y]$
シナリナマハ	■ 共通		□ 基本		□ 変動	
シノリオ区分	□ 性能無視		□ 基本・変	動以外		
設定値		3 号廃棄物 埋設施設 1,800	1 号廃棄物 埋設施設 1,500	2 号廃棄物 埋設施設 2,500	既申請値 1号2,400 2号2,700	
設定根拠	1,800 1,500 2,500 1号 2,400 2号 2,700 【評価式】 • 上部覆土内地下水流量=&×i×A ここで、					
	/Co					\Rightarrow 5.0m

	・ いトトり - 河価トの断両積け 130(m)×5.0(m)ー650(m ²)	
	「	$\rightarrow c \in \Omega_m^2$
		→050m
	「「如亜」中世子も法見】	
	【上部復土内地下水流量】	
	• 3. $0 \times 10^{-6} (\text{m/s}) \times 3 (\%) \times 650 (\text{m}^2) \rightleftharpoons 1,846 (\text{m}^3/\text{y})$	
	・試験結果を参考に保守側に設定した。	
		⇒1,800m³/y
備考		
文献		
> \ 14\		

		名称		単 位
パラメータ	鷹	架層の地下水流速		[m/y]
シナリオマ分	■ 共通	□ 基本	□ 変動	
✓/ 9 A 区力	□ 性能無視	□ 基本・変動以外		
設定値	0.2 (設定値は3号、1号及び2 (既申請値:1号1、2号1)	号で共通の値とした。))		
設定根拠	 【考え方】 ・ダルシー流速(透水係数2時間に係るものであるこ 【評価式】 ・鷹架層の地下水流速=Kg ここで、Kg:鷹架層(N i:埋設設備 【設定に用いるパラメータ ①鷹架層(N値 50以上)の ⇒3号 ②動水勾配 ⇒3%(1) 【鷹架層の地下水流速】 ・上記設定で最大の流速に 	<動水勾配)を保守側に設定し とから、流速が速い方が保守 × <i>i</i> 値 50 以上)の透水係数(m/s) 付近の動水勾配(-)	た。本パラメ 側の設定となる 10 ⁻⁷ m/s、2号:).10(m/y)より	ータは、移行 5。 7.8×10 ⁻⁸ m/s ⇒0.2m/y
備考				
文献				

-----コメント No. 56 を踏まえパラメータを見直した 📘 L

_

	名称	単 位
パラメータ	鷹架層内地下水流量	$[m^3/y]$
シナリオマ分	□ 共通 ■ 基本 □ 変動	
	□ 性能無視 □ 基本·変動以外	
設定値	 3 号廃棄物埋設施設 設定値:630 1 号廃棄物埋設施設 設定値:2,200 1-6 群:上記流量×30/40*1 7,8 群(均質・均一固化体*2):上記流量×2/40*1 7,8 群(充填固化体):上記流量×8/40*1 2 号廃棄物埋設施設 設定値:920 	
	(既申請値:1号 600、2号 600)	
設定根拠	・鷹架層内の地下水流量は、(鷹架層の透水係数×動水勾配×通過断面 れることから、同様の評価をしている埋設設備から鷹架層への流出 して設定した。	ī積)で評価さ 流量と同じと
備考	 *1 埋設設備数に応じて設定値に対する係数を算出した。 *2 8 群の充塡固化体のうち、均質・均一固化体として製作されたセメ 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・ 放射能量が同等の充塡固化体)を含む。 	ント固化体を 均一固化体と
文献		

		名 称			単 位
パラメータ	核種が流入する鷹架層下流域	F 7			
	の距離			Lm]	
	□ 共通	■ 基本		□ 変動	
シナリオ区分	□ 性能無視	□ 基本・変	動以外		
設定値	 □ 1生能無視 3 号廃棄物 埋設施設 30 30 	 □ 基本・変響 1 号廃棄物 埋設施設 20 	2 号廃棄物 埋設施設 20	既申請値 1号20 2号20	1t→
	沼または河川 鷹架層 下	上 2222 2223 2224 2224 2225 2225 2225 2225	_ 部覆土	埋設 設備 難透水	第四紀層 鷹架層 (性種土 :
設定根拠	【考え方】 ・核種が流入する鷹架層下流 の例)】 ・核種が流入する鷹架層下流 下流端から45°上向に流 ・核種が流入する鷹架層下流 ・核種が流入する鷹架層下 ・核種が流入する鷹架層下 ・核種が流入する鷹架層下 ・ 、 、 に 、 、 、 、 、 、 、 、 、 、 、 、 、	 布(位置から尾駮) 布端から尾駮沼 (流端から埋設地れ、鷹架層(N値 布端から埋設地 担設深度が15m (1)=36.2(m) 	沼又は河川又は 又は河川又は 1 下流端まで水 50 以上)上端 下流端まで 15 程度から、15	は沢までの距离 尺までの評価」 平に流れ、そ こ流出する場合 m (m)÷sin45° =	 #を設定した。 =の距離(3 号の後は埋設地などを想定した。 =21.2(m) ⇒30m
備考	 ある程度侵食が進んだ状態 ・既申請時は、沢との水平路 込んで設定している。 	態から、最短経 拒離(中央沢まて	路に近い経路 ご約 250m、西沪	を想定して設定 Rまで約 100m)	ミした。 に保守性を見
文献					

1

.

			名 称			単 位
パラメータ	核種が流入する上部覆土から尾駮沼又は河川 <mark>又は沢</mark> への地下水流量			$[m^3/y]$		
いたります人	■ 共通		□ 基本		□ 変動	
シテリオ区分	□ 性能無視		□ 基本·変	動以外		
設定植	 上部覆土が 量が尾駮沼 流量と同じ 	3 号廃棄物 埋設施設 1,800 ふら尾駮沼又は えていて設定した	1 号廃棄物 埋設施設 1,500 可川又は沢へ流 沢に流れ出ると こ。	2 号廃棄物 埋設施設 2,500	 既申請値 1号 2,400 2号 2,700 	土内地下水流覆土内地下水
備考						
文献						

_

		名 称		単 位
パラメータ	核種が流入する鷹架	の地下水流入量	$[m^3/y]$	
	□ 共通	■ 基本	□ 変動	
ンテリオ区分	□ 性能無視	□ 基本·変動以外		
設定値	 3 号廃棄物埋設施設定値:630 1 号廃棄物埋設施設定値:2,5 1 号廃棄物埋設施設定値:2,5 1-6 群:上記流量7,8 群(均質・均-7,8 群(均質・均-7,8 群(充塡固化)) 2 号廃棄物埋設施設定値:920 (既申請値:1号 600、 	設 200 ★×30/40 ^{*1} 一固化体 ^{*2}):上記流量×2/40 ^{*1} 体):上記流量×8/40 ^{*1} 設 0 2号 600)		力地下水流县
設定根拠	・鷹架層から尾駮沼ス が尾駮沼又は河川ス と同じとして設定し	Zは河川又は沢へ流れる地下水泊 Zは沢に流れ出ると考えられる、 した。	流入量は、鷹架層 ことから、鷹架層	为地下水流量 为地下水流量
備考	 *1 埋設設備数に応じ *2 8 群の充塡固化体 破砕し、セメント 放射能量が同等の 	こて設定値に対する係数を算出し のうち、均質・均一固化体とし、 系充塡材で一体に固型化した充 の充塡固化体)を含む。	ンた。 て製作されたセメ E塡固化体(均質・:	ント固化体を 均一固化体と
文献				

.

		名 称		単 位
パラメータ	ター 尾駮沼又は河川の交換水量		$[m^3/y]$	
シナリオ区分	□ 共通 □ 性能無視	■ 基本□ 基本・変動以外	□変動	
設定値	 ・ 尾駮沼又は河川 設定値:1. (設定値は3号、1号	3×10 ⁷ 及び2号で共通の値とした。) ×10 ⁷ 、2号 3.4×10 ⁷)		
設定根拠	 ・詳細については、 ・解析上の設定値と を設定した。 	補足説明資料1「地質環境に係る しては、覆土完了後から1,000	る長期変動事象」を 年程度の状態設定さ	:参照。 を見込んだ値
備考				
文献				

- - 1 _ コメント No. 56 を踏まえパラメータを見直した _ _ _ _ _ _ _ _ _ _ _

_

_ _

_ _

		名称		単 位
パラメータ	敷地中央部の沢の交換水量			$[m^3/y]$
シナリオ区分	■ 共通	□ 基本	□ 変動	
	□ 性能無視	□ 基本・変動以外		
設定値	設定値:2.4×10 ⁵ (設定値は3号、1号及び2 (既申請値:2.4×10 ⁵)	号で共通の値とした。)		
設定根拠	 ・既申請値と同様に、敷地 に降った降水量から蒸発 	中央部の沢中流部における、 散量を除いた量が評価点に流	保守側に設定し 入するものと言	した流域面積 没定する。
備考				
文献				

	名称	単 位
パラメータ	灌漑土壌への放射性物質の残留割合	[-]
シナリオ区分	■ 共通 □ 基本 □ 変動 □ 性能無視 □ 基本・変動以外	
設定値	1 (設定値は3号、1号及び2号で共通の値とした。) (既申請値:1)	
設定根拠	 ・保守側の設定値とした。 ・最も保守側な数値を設定したことから、各シナリオで同じ数値とした 	
備考		
文献		

	名称 単位面積当たりの灌漑水量			
パラメータ				
シナリオ区分	■ 共通 □ 基本 □ 変動			
	□ 性能無視 □ 基本·変動以外			
設定値	2.3 (設定値は3号、1号及び2号で共通の値とした。) (既申請値:2.3)			
	・青森県地下水調査報告書 ⁽¹⁾ 及び農作物統計表 ⁽²⁾ における青森県の水 稲作付面積から下式により筧出し。設定した。	田用灌漑水量と		
	^{hh1F1} 川 山根から下式により昇出し、設定した。 (年間水田用灌漑水量)/(稲作付面積) =(1,846,672×10 ³ (m ³ /y))÷(81,800(ha)) =(1,846,672×10 ³ (m ³ /y))÷(81,800×10 ⁴ (m ²)) =2.26(m ³ /(m ² ·y))			
		$\Rightarrow 2.3 \text{m}^3/(\text{m}^2 \cdot \text{y})$		
設定根拠	・単位面積当たりの灌漑水量は、生活様式に関連するパラメータでお ナリオで共通の数値とした。	あるため、各シ		
備考				
文献	 (1) 青森県企画部(昭和56年):青森県地下水調査報告書 (2) 東北農政局青森統計情報事務局(昭和52年):農作物統計表 			

	名 称		単 位	
パラメータ	灌漑土壌の有効体積		$[m^3/m^2]$	
シナリオ区分	■ 共通□ 性能無視	□ 基本□ 基本・変動以外	□変動	
設定値	0.15 (設定値は3号、1号及び2 (既申請値:0.15)	号で共通の値とした。)		
設定根拠	 Regulatory Guide 1.109 Other Parameters)耕作層 施した社会環境実態調査 保守側の設定である。 井戸水の灌漑による耕作 釈する土壌類が少ないほ 灌漑土壌の有効体積は、 で共通の数値とした。 	⁽¹⁾ に示されている(Table E-1 引厚さ(15cm)に基づき、上記の によれば、現地の水田の耕作 土への核種の移行を想定して ど、評価は保守側になる。 生活様式に関連するパラメー	5. Recommende D値を採用した 深度は 15cm〜2 こおり、移行し -タであるため	d Values for が、当社が実 20cm であり、 た核種量を希 、各シナリオ
備考				
文献	 U. S. Nuclear regula to Man from Routine Evaluating Compliance Guide 1.109 Rev.1 	atory Commission(1977) : Ca Releases of Reactor Effl with 10 CFR part 50, Appen	lculation of uents for the ndix I, U.S.NR	Annual Doses Purpose of C Regulatory

	名称	単 位
パラメータ	灌溉土壤浸透水量	
シナリオ区分	 ■ 共通 □ 基本 □ 変動 □ 性能無視 □ 基本・変動以外 	
設定値	2.3 (設定値は3号、1号及び2号で共通の値とした。) (既申請値:0.50)	
設定根拠	 ・灌漑水量がすべて浸透するとして設定。 (年間水田用灌漑水量)/(稲作付面積) = (1,846,672×10³(m³/y))÷81,800(ha) = (1,846,672×10³(m³/y))÷(81,800×10⁴(m²)) ≒2.26(m³/(m²·y)) ・灌漑土壌浸透水量は、生活様式に関連するパラメータであるため、 共通の数値とした。 	⇒2.3m ³ /(m²•y) 各シナリオで
備考		
文献		

	名称		単 位	
パラメータ	核種が流入する上部覆土下流端から濃度算出地点までの評価上の距離			[m]
シナリオ区分	■ 共通	□ 基本	□ 変動	
	□ 性能無視	□ 基本・変動以外		
設定値	0 (設定値は3号、1号及び2 (既申請値:0)	号で共通の値とした。)		
設定根拠	 ・距離を短く設定する方が、 側に設定した。 	. 安全評価において線量を大き	きく評価するこ	とから、保守
備考				
文献				

	名称		単 位
パラメータ	廃棄物埋設地の土壌の希釈係数		[-]
シナリオ区分	□ 共通 ■ 基本 □ 3 □ 性能無視 □ 基本・変動以外	変動	
設定値	掘削を伴う土壌 : 0.34 農産物を栽培する土壌: 0.1 牧草が生育する土壌 : 0 (設定値は3号、1号及び2号で共通の値とした。)		
設定根拠	 ・掘削を伴う土壌については、一般的な住宅を十分に包含でき 500m²、深さ 3m の掘削作業を想定した。 ・埋設地の地下水面が基本設定では地上表面から 2m 以深にある 壌は埋設設備から流入する核種で汚染されているとした。 ・上記の値は、このような状況で、土留め工法によって掘削され 染土壌の比より、次式によって設定した。 1(m)÷3(m)=0.3333≒0.34 ・農産物を栽培する土壌については、基本的に汚染は考えられ 一部が埋設設備から流出する核種で汚染されている土壌に至 て、保守側に0.1とした。 ・牧草が生育する土壌は0とした。 	* る掘削。 るとし、- れる全土: ないが、)	として、面積 それ以深の土 壌に占める汚 豊産物の根の ことを想定し
備考	・掘削を行う土壌の希釈係数については、既申請値と同じ数値	である。	
文献			

パラメータ名	頁	備考
核種 iの経口摂取による実効線量換算係数	9	笠の主
核種 iの外部放射線に係る実効線量換算係数	11	
水産物 mにおける核種 iの濃縮係数(魚類)	25	
水産物 mにおける核種 iの濃縮係数(無脊椎動物)	27	
灌漑農産物への核種 iの移行係数	29	体。主
農耕農産物への核種 iの移行係数	31	弗 3 衣
畜産物 nへの核種 iの移行係数(牛肉、ミルク)	33	
畜産物 nへの核種 iの移行係数(豚肉)	35	
畜産物 nへの核種 iの移行係数(鶏肉、鶏卵)	36	
水の摂取量	57	
水産物 mの摂取量	58	
畜産物 nの摂取量	59	
灌漑農産物の摂取量	60	
農耕農産物の摂取量	60	
家畜 nの家畜用水摂取量	61	
飲用における放射性物質を含む沢水の利用率	62	
畜産における放射性物質を含む沢水の利用率	6.2	
灌漑農耕における放射性物質を含む沢水の利用率	03	
公衆 pの飲用水の市場希釈係数	64	
公衆 pの水産物 mの市場希釈係数	65	
公衆 pの畜産物 nの市場希釈係数	66	第5表
公衆 pの農産物の市場希釈係数	67	
屋外労働作業中の空気中ダスト濃度	68	
居住中の空気中ダスト濃度(屋外、屋内)	69	
公衆 pの屋外労働作業中の核種 iの遮蔽係数	70	
居住者の屋外における核種 i の遮蔽係数	71	
呼吸率	72	
屋外労働作業中の呼吸率	73	
公衆 pの灌漑農耕作業時間	74	
廃棄物埋設地における公衆 pの屋外労働作業時間	75]
公衆 pの居住中の屋外における居住時間	76]
公衆 pの居住中の屋内における居住時間	77	

第7表 基本シナリオにおける線量の計算に用いるパラメータ及びその数値

パラメータ名	頁	備考
埋設設備内の媒体 jの核種 iの分配係数(廃棄体)	104	-
埋設設備内の媒体 jの核種 iの分配係数(充塡材)	106	_
埋設設備内の媒体 jの核種 iの分配係数(コンクリート)	108	_
難透水性覆土の核種 i の分配係数	110	_
埋設設備から上部覆土への流出水量	112	_
埋設設備から鷹架層への流出水量	113	-
鷹架層内地下水流量	114	-
核種が流入する鷹架層から尾駮沼又は河川又は沢までの地下水流入 量	115	_
廃棄物埋設地の土壌の希釈係数	116	_

第8表 変動シナリオにおける線量の計算に用いるパラメータ及びその数値

				名称							
パラメータ	埋設設備内の媒体 jの核種 iの分配係数(廃棄体)									[m ³ /kg]	
	□ 共通				〕基	本			■ 変動		
シナリオ区分	□ 性能無視 □					本・変動	勆以	外			
	▶3号及び2号廃棄物埋設施設										
			元素		3		2 坦	号廃棄物 里設施設	既申請値		
	_		Н			0		0	0	_	
	_		С		5>	×10 ⁻²		5×10^{-2}	5×10^{-1}	-	
	_		CI		4.5	-		5×10^{-4}	-	-	
	_		Co			< 10 ⁻¹		1×10^{-1}	1×10^{-1}	-	
	-		N1		92	× 10 °		9×10^{-2}	3×10^{-2}	-	
	_		Sr		1	× 10 ⁻¹		2×10^{-1}	3×10^{-1}	-	
	-				1/	$\times 10$ $\times 10^{-4}$		1×10 2×10^{-4}	$\frac{1 \times 10}{5 \times 10^{-4}}$	-	
			T		1	$\times 10^{-4}$		1×10^{-4}	2×10^{-3}	-	
	-		L Cs		1>	$< 10^{-1}$		1×10^{-1}	$\frac{2 \times 10}{3 \times 10^{-3}}$	-	
			03	Ph	9>	< 10 ⁻³		9×10^{-3}	-		
			ł	Po	9>	< 10 ⁻³		9×10 ⁻³	_	1	
			F	Ra	2>	< 10 ⁻²		2×10^{-2}	_	-	
			f	Ac	2>	$< 10^{-2}$		2×10^{-2}	_	1	
		~	f	Th	8>	$< 10^{-2}$		8×10^{-2}	-	-	
		至.	α	Pa	8>	$< 10^{-2}$		8×10^{-2}	_		
			Ī	U		0		0	-	1	
				Np		0		0	_		
				Pu	8>	$< 10^{-2}$		8×10^{-2}	1×10^{1}		
				Am 2		$< 10^{-2}$		2×10^{-2}	1×10^{1}		
設定値	▶1 号廃棄物埋	設施	設								
				1 号廃棄物埋設施設							
		元素				7,8 穁	4	7,8群	既由請値		
				1-6		均質·均	j <i></i> →	充填			
						固化体	*1	固化体			
			H	0	0-1	0	-1	0	0		
		<u> </u>	C	5×1	.0 1	5×10^{-1}	1	5×10 ⁻²	5×10^{-1}		
		\vdash		1 \lambda 1	0-2	U 7 \> 10 ⁻	-3	$1 > 10^{-2}$	- 1 \times 1.0 ⁻¹		
		-	Ni	3×1	0-2	4×10^{-10}	-2	9×10^{-4}	3×10^{-1}		
		\vdash	Sr	3×1	0-2	4×10	-2	2×10^{-3}	3×10^{-2}		
			Nb	1×	10 ¹	3×10	0	1×10^{-2}	1×10^{-1}		
			Гс	5×1	0 ⁻⁴	6×10	-4	0	5×10^{-4}		
			Ι	2×1	0-3	2×10	-3	0	2×10^{-3}		
			Cs	3×1	.0 ⁻³	4×10	-3	1×10^{-2}	3×10^{-3}		
			Pb	3×1	.0 ⁻²	4×10	-2	9×10^{-4}	-		
		1	Ро	3×1	0 ⁻²	4×10^{-1}	-2	9×10^{-4}	-		
		1	Ra	3×1	.0 ⁻²	4×10	-2	2×10^{-3}	-		
			Ac	1×1	101	4×10	-1	2×10^{-2}	-		
		全	Th	1×1	10 ¹	4×10	-1	8×10 ⁻²	-		
		α	Pa	1×1	101	4×10^{-1}	*	8×10 ⁻²	-		
		1	U	0 > 1	0-1	0	-3	$0 > 10^{-3}$	-		
		1	тур Р11		10 ¹	$3 \wedge 10$ 4×10^{-1}	-1	3×10^{-2} 8 × 10 ⁻²	- 1 × 10 ¹		
		1	Am	1 × 1	10 ¹	4×10^{-4}	-1	2×10^{-2}	1×10^{1} 1×10^{1}		
		L	L	<u> </u>	-	1.110					

設定根拠	 ・詳細については、補足説明資料8「線量評価パラメータ-分配係数-」を参照。 ・解析上の設定値としては、覆土完了後から1,000 年程度の状態設定を見込んだ値を設定した。
備考	*1 8 群の充塡固化体のうち、均質・均一固化体として製作されたセメント固化体を 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・均一固化体と 放射能量が同等の充塡固化体)の分配係数については、均質・均一固化体と同じ 値とした。
文献	

. . . コメント No. 56 を踏まえパラメータを見直した L

1

					名	称				単 位
パラメータ	埋設諸	埋設設備内の媒体 jの核種 iの分配係数(充塡材)								
	□ 共通				〕基	本			■ 変動	L
シナリオ区分	□ 性能無視				〕基	本・変動	勆以	外		
	> 3 号及び 2 号廃棄物埋設施設									
			元素		3 号 埋詞	廃棄物 改施設	2 · 坦	号廃棄物 里設施設	既申請値	_
			H			0		0	0	-
	-		C1		52	× 10 °	į	5×10^{-4}	5×10 *	-
	-		Co		1)	$\times 10^{-1}$		1×10^{-1}	1×10^{-1}	-
			Ni		9>	$< 10^{-3}$	(9×10^{-3}	3×10^{-1}	1
			Sr		2>	$ < 10^{-2} $	4	2×10^{-2}	3×10^{-2}	-
			Nb		1>	$ \times 10^{-1} $		1×10^{-1}	1×10^{-1}	
			Tc		2>	$ \le 10^{-4} $	4	2×10^{-4}	5×10^{-4}]
			Ι		1>	$ < 10^{-4} $		1×10^{-4}	2×10^{-3}	
			Cs	51	1>	×10 ⁻¹		1×10^{-1}	3×10^{-3}	4
			-	Pb	9>	$\times 10^{-3}$	(9×10^{-3}	-	-
			-	Po	92	$\times 10^{-3}$		9×10^{-3}		-
			ŀ	Ka Ao	27	$\times 10^{-2}$	4	2×10^{-2}	_	-
			ŀ	Th	82	$\times 10^{-2}$		8×10^{-2}	_	-
		全。	α	Pa	8>	$\times 10^{-2}$	8	8×10^{-2}	_	
			F	U		0	0		_	-
				Np		0		0	_	
				Pu	Pu 8×10^{-2} $8 >$		8×10^{-2}	1×10^{1}		
				Am	2>	$ < 10^{-2} $	4	2×10^{-2}	1×10^{1}]
設定値	▶ 1 号廃棄物埋	設施詞	設							
					1 号	房棄物地	里設旗			
		元素		1-6 群		7,8郡 均質·均	¥ J→ -*1	7,8 群 充塡 田化体	- 既申請値	
			Н	()	回1114	x	回111件	0	
			 С	4×	10^{-3}	4×10	-3	5×10 ⁻²	5×10 ⁻¹	
		C	21	C)	0		0	-	
		C	Co	$2 \times$	10^{-2}	1×10	-2	1×10^{-2}	1×10^{-1}	
		N	Vi	$9 \times$	10 ⁻⁴	9×10	-4	9×10^{-4}	3×10^{-1}	
		S	Sr	$2\times$	10^{-3}	2×10	-3	2×10^{-3}	3×10^{-2}	
		N	ND ND	$2\times$	10-1	1×10	4	1×10^{-2}	1×10^{-1}	
			.c T)	0		0	5×10^{-3}	
			l Ìs	1 X	10^{-2}	1 × 10	-2	1×10^{-2}	3×10^{-3}	
			Pb	9×	10 ⁻⁴	9×10	-4	9×10 ⁻⁴	-	
			Ро	$9 \times$	10^{-4}	9×10	-4	9×10 ⁻⁴	-	
			Ra	$2 \times$	10^{-3}	2×10	-3	2×10^{-3}	-	
			Ac	$2 \times$	10^{0}	2×10	-2	2×10^{-2}	-	
		全	Th	8×	100	8×10	-2	8×10 ⁻²	-	
		α	Pa	8×	100	8×10	-z	8×10 ⁻²	-	
			U) • ~ •	10 ⁻¹	0	-3	$0 > 10^{-3}$	-	
			тр Р11	3×. 8×	10 ⁰	3×10 8×10	-2	3×10^{-2} 8×10^{-2}	- 1 × 10 ¹	
			Am	2×	100	2×10	-2	2×10^{-2}	1×10^{1}	
					-				- **	

設定根拠	 ・詳細については、補足説明資料8「線量評価パラメータ-分配係数-」を参照。 ・解析上の設定値としては、覆土完了後から1,000年程度の状態設定を見込んだ値を設定した。
備考	*1 8 群の充塡固化体のうち、均質・均一固化体として製作されたセメント固化体を 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・均一固化体と 放射能量が同等の充塡固化体)の分配係数については、均質・均一固化体と同じ 値とした。
文献	

_

_ _

_ _

				名	称				単位
パラメータ	埋設設備	内の媒体	はうの権	亥種 <i>i</i>	の分配	係数	x(コンクリ	ート)	[m ³ /kg]
	□ 共通			」基	本			■ 変動	1
ンナリオ区分	□ 性能無視								
	▶3号及び2号	廃棄物埋	設施設	L Z			L		
		元素	H	3 号 埋調	廃棄物 没施設	2 · 坦	号廃棄物 里設施設	既申請値	
		Н			0		0	0	
		С		5>	$ \le 10^{-2} $		5×10^{-2}	5×10^{-2}	
		C1			-	8	8×10^{-4}	-	_
	_	Со		1>	< 10 ⁻³		1×10^{-3}	7×10^{-1}	_
		Ni		1>	< 10 ⁻²		1×10^{-2}	4×10 ⁻¹	_
	-	Sr		2>	$\times 10^{-3}$		2×10^{-3}	1×10^{-2}	_
	-	Nb T-		32	× 10 °		3×10 -	4×10^{-4}	-
	-	1C		3 \	0 × 10 ⁻⁴		$0 \\ 3 \times 10^{-4}$	3×10 -	-
	-	۱ ۲		25	$\times 10^{-2}$		2×10^{-2}	3×10^{-2}	-
	-	05	Pb	1>	$\times 10^{-2}$		1×10^{-2}	-	-
			Po	1>	$\times 10^{-2}$		1×10^{-2}	_	-
			Ra	2>	×10 ⁻³		2×10^{-3}	_	
			Ac	3>	$ \times 10^{-2} $		3×10^{-2}	-	_
		<u>ک</u> م	Th	2>	$ < 10^{-2} $	4	2×10^{-2}	_	
		±. u	Pa	2>	2×10^{-2}		2×10^{-2}	-	
			U		0		0	_	
			Np	1>	< 10 ⁻³		1×10^{-3}	-	_
			Pu	2>	2×10^{-2}		2×10^{-2}	1×10^{1}	_
	L		Am	3>	< 10 2		3×10 ²	1×10^{1}	_
設定値	▶ 1 号廃棄物埋	設施設							
				1 長	房棄物地	目設加	拖設		
		二主			7,8君	¥	7,8群	町山洼店	
		兀糸	1-6	群	均質·均	J—	充塡	死中前他	
					固化体	* 1	固化体		
		H	2 \) 10 ⁻³	0	-3	0 5 \times 10 ⁻²	0 4×10^{-3}	
			3^	10 -	3×10	-	0 0	4×10	
		Co	3×	10^{-3}	0	0		7×10^{-1}	
		Ni	2×	10^{-4}	2×10	-4	2×10^{-4}	4×10^{-1}	
		Sr	3×	10^{-4}	0	0		1×10^{-2}	
		Nb	$1 \times$	10^{-2}	6×10	-4	6×10^{-4}	4×10^{-1}	
		Tc	()	0		0	3×10^{-4}	
		Ι	()	0		0	0	
		Cs	$3 \times$	10 ⁻⁴	5×10	-4	5×10^{-4}	3×10^{-2}	
		Pb	2×	10^{-4}	2×10	-4	2×10^{-4}	-	
		Po	2×	10 ¹ 10 ⁻⁴	2×10	1	2×10 *	-	
		Ka Ac	১ × ২ ×	$\frac{10}{10^0}$	0 3 × 10	-2	3×10^{-2}		
		全 Th	2×	10^{0}	2×10	-2	2×10^{-2}		
		α Pa	2×	100	2×10	-2	2×10^{-2}		
		U	()	0		0	-	
		Np	$1 \times$	10^{-1}	1×10	-3	1×10^{-3}	-	
		Pu	$2 \times$	10^{0}	2×10	-2	2×10^{-2}	1×10^{1}	
		Am	$3 \times$	10^{0}	3×10	-2	3×10^{-2}	1×10^{1}	

設定根拠	 ・詳細については、補足説明資料8「線量評価パラメータ-分配係数-」を参照。 ・解析上の設定値としては、覆土完了後から1,000 年程度の状態設定を見込んだ値を設定した。
備考	*1 8群の充填固化体のうち、均質・均一固化体として製作されたセメント固化体を 破砕し、セメント系充填材で一体に固型化した充填固化体(均質・均一固化体と 放射能量が同等の充填固化体)の分配係数については、均質・均一固化体と同じ 値とした。
文献	

	名称									単	位
パラメータ			難這	透水性覆土の植	亥種 <i>i</i> (の分配値	系数			[m	³ /kg]
	□ 共通	甬		□	本			■ 変	「動		
シナリオ区分	□ 性能無視 □				本・変	变動以外	Ŷ				
	▶3号及	び2号	廃棄物	埋設施設							
		元素		3 号廃棄物埋設	施設	2号)	廃棄物埋設	施設	既申	請値	
		Н		0			0		0		
		С		0			0		0		
		C1		_			0		5×1	10^{-1}	
		Со		3×10 ⁻³			3×10 ⁻³		-		
		Ni		7×10 ⁻²			7×10^{-2}		1×1	10-1	
		Sr		1×10^{-1}			1×10^{-1}		3×1	0-2	
				1×10 -			1×10 -		1 × 1	0-1	
	-	IC I		0			0		5×1	0-4	
		Cs		1×10^{0}			1×10^{0}		2×1	0-3	
	-		Pb	7×10^{-2}			7×10^{-2}		-		
			Po	7×10^{-2}			7×10^{-2}		-		
			Ra	1×10^{-1}			1×10^{-1}		-		
			Ac	2×10^{0}			2×10^{0}		-		
		全 _	Th	3×10 ⁻²		3×10^{-2}					
		α	Pa	3×10^{-2}		3×10^{-2}					
		-	U Nn	9×10 -		9×10					
		F	Pu	3×10 ⁻²		3×10 ⁻²			1×	10 ¹	
			Am	2×10^{0}		$2 \times 10^{\circ}$			1×10^{1}		
											I
	▶1 号盛	畜物押	設協設	L .							
設定値			成加西的				7.8 群				
		元素		1-6 群	均質	1,0 神 〔·均一		休	既申請値		
					固亻	上体*1 。	<u>本*1</u> 70-英国旧杆		0		
			H	0		0	0		0		
			01	0		0	0		5 × 10 +		
			CI	0	0.14	10-4	0	-4	-	_	
			UO N.:	2×10^{-3}		10 1	2×10	-3	1×10^{-1}	_	
			NI Sr	3×10 1 × 10 ⁻²		10-2	3×10 1×10^{-1}	-2 4	3×10^{-2}	_	
			Nh	1×10 3×10^{-2}	$7 \times$	10-3	1×10^{-1}	-3 -	$\frac{3 \times 10}{1 \times 10^{-1}}$	-	
			Тс	0	17	0	0		$\frac{1 \times 10}{5 \times 10^{-4}}$	_	
			T	0		0	0		$\frac{3 \times 10}{2 \times 10^{-3}}$	_	
			Cs	9×10 ⁻²	$9\times$	10 ⁻²	9×10	2	3×10^{-3}	_	
			Pb	5×10^{-3}	$5\times$	10 ⁻³	5×10^{-1}	-3	_	_	
			Ро	5×10^{-3}	$5 \times$	10-3	5×10^{-1}	-3	_		
			Ra	1×10^{-2}	$1 \times$	10^{-2}	1×10 ⁻	-2	_		
			Ac	4×10^{-1}	$1 \times$	10^{-1}	1×10 ⁻	·1	-	1	
		全	: Th	2×10^{-3}	$2\times$	10-3	2×10^{-1}	-3	-	1	
		α	Pa	2×10^{-3}	$2\times$	10^{-3}	2×10^{-1}	-3	-	1	
			U	6×10^{-4}	$6 \times$	10^{-4}	6×10	-4	-		
			Np	0		0	0		-		
			Pu	2×10^{-3}	$2 \times$	10^{-3}	2×10^{-1}	-3	1×10^{1}		
			Am	4×10^{-1}	$1 \times$	10^{-1}	1×10^{-1}	-1	1×10^{1}		

設定根拠	・詳細については、補足説明資料8「線量評価パラメータ-分配係数-」を参照。
備考	*1 8 群の充填固化体のうち、均質・均一固化体として製作されたセメント固化体を 破砕し、セメント系充填材で一体に固型化した充填固化体(均質・均一固化体と 放射能量が同等の充填固化体)の分配係数については、均質・均一固化体と同じ 値とした。
文献	

- 1

_

_ _ _ _

	名 称	単 位
パラメータ	埋設設備から上部覆土への流出水量	$[m^3/y]$
シナリオ区分	□ 共通 □ 基本 ■ 変動	
	□ 性能無視 □ 基本·変動以外	
	 3 号廃棄物埋設施設 設定値:510 	
	▶ 1号廃棄物埋設施設 設定値:150	
	1-6 群:上記流量×30/40 ^{*1} 7,8 群(均質・均一固化体 ^{*2}):上記流量×2/40 ^{*1} 7,8 群(充填固化体):上記流量×8/40 ^{*1}	
設定値	▶ 2 号廃棄物埋設施設	
	設定値:350	
	・詳細についてけ、補兄説明資料7「線量評価パラメーター押設設備から	の流出水量
設定根拠	を参照。 ・解析上の設定値としては、覆土完了後から 1,000 年程度の状態設定 を設定した。	を見込んだ値
備考	 *1 埋設設備数に応じて設定値に対する係数を算出した。 *2 8群の充塡固化体のうち、均質・均一固化体として製作されたセメ 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・ 放射能量が同等の充塡固化体)を含む。 	ント固化体を 均一固化体と
文献		

_ _ _

_ _

----,

_ _

	名称	単 位
パラメータ	埋設設備から鷹架層への流出水量	[m ³ /y]
シナリオ区分	□ 共通 □ 基本 ■ 変動 □ 性能無視 □ 基本・変動以外	1
	➤ 3号廃棄物埋設施設 設定值:1,500	
	 ▶ 1号廃棄物埋設施設 設定値: 2,200 1-6 群:上記流量×30/40^{*1} 7,8 群(均質・均一固化体*²):上記流量×2/40^{*1} 7,8 群(充塡固化体):上記流量×8/40^{*1} 	
設定値	▶ 2号廃棄物埋設施設 設定値:1,300	
設定根拠	 ・詳細については、補足説明資料7「線量評価パラメーター埋設設備から を参照。 ・解析上の設定値としては、覆土完了後から1,000 年程度の状態設定 を設定した。 	の流出水量−」 を見込んだ値
備考	 *1 埋設設備数に応じて設定値に対する係数を算出した。 *2 8 群の充塡固化体のうち、均質・均一固化体として製作されたセメ 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・ 放射能量が同等の充塡固化体)を含む。 	ント固化体を 均一固化体と
文献		

l L

_ _ _ _ _ _

----,

_ _ _

	名称	単 位
パラメータ	鷹架層内地下水流量	$[m^3/y]$
シナリオ区分	□ 共通 □ 基本 ■ 変動 □ 性能無視 □ 基本・変動以外	
設定値	 ▶ 3 号廃棄物埋設施設 設定値:1,500 ▶ 1 号廃棄物埋設施設 設定値:2,200 1-6 群:上記流量×30/40*1 7,8 群(均質・均一固化体*2):上記流量×2/40*1 7,8 群(充填固化体):上記流量×8/40*1 ▶ 2 号廃棄物埋設施設 設定値:1,300 	
設定根拠	 ・鷹架層内の地下水流量は、鷹架層の透水係数×動水勾配×通過断面 ることから、同様の評価をしている埋設設備から鷹架層への流出流 リオと同じとして設定した。 ・解析上の設定値としては、覆土完了後から 1,000 年程度の状態設定 を設定した。 	積で評価され 量の変動シナ を見込んだ値
備考	 *1 埋設設備数に応じて設定値に対する係数を算出した。 *2 8群の充塡固化体のうち、均質・均一固化体として製作されたセメ 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・ 放射能量が同等の充塡固化体)を含む。 	ント固化体を 均一固化体と
文献		

I L

	名称	単 位
パラメータ	核種が流入する鷹架層から尾駮沼又は河川又は沢までの地下水流入	ГЗИЛ
	量	[m°/y]
シナリオ区分	□ 共通 □ 基本 ■ 変動	
	□ 性能無視 □ 基本·変動以外	
設定値	 3 号廃棄物埋設施設 設定値:1,500 1 号廃棄物埋設施設 設定値:2,200 1-6 群:上記流量×30/40*1 7,8 群(均質・均一固化体*2):上記流量×2/40*1 7,8 群(充塡固化体):上記流量×8/40*1 2 号廃棄物埋設施設 設定値:1,300 	
設定根拠	 ・鷹架層から尾駮沼又は河川又は沢へ流れる地下水流入量は、鷹架層 が尾駮沼又は河川又は沢に流れ出ると考えられることから、鷹架層 の変動シナリオと同じとして設定した。 ・解析上の設定値としては、覆土完了後から 1,000 年程度の状態設定 を設定した。 	内地下水流量 内地下水流量 を見込んだ値
備考	 *1 埋設設備数に応じて設定値に対する係数を算出した。 *2 8群の充塡固化体のうち、均質・均一固化体として製作されたセメ 破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・: 放射能量が同等の充塡固化体)を含む。 	ント固化体を 均一固化体と
文献		

I L

保守側にパラメータを見直した

.

	名称	単位
パラメータ	廃棄物埋設地の土壌の希釈係数	[-]
シナリオ区分	□ 共通 □ 基本 ■ 変重 □ 性能無視 □ 基本・変動以外	<u>,</u> 助
設定値	掘削を伴う土壌 :1 農産物を栽培する土壌:0.1 牧草が生育する土壌 :0 (設定値は3号、1号及び2号で共通の値とした。)	
設定根拠	 ・掘削を伴う土壌については、地下水位が地表面にあることを考慮設定した。 ・農産物を栽培する土壌については、基本的に汚染は考えられない一部が埋設設備から流入する核種で汚染されている土壌に到達て、保守側に0.1とした。 ・牧草が生育する土壌は0とした。 	意して最も保守側に いが、農産物の根の 会することを想定し
備考		
文献		

- 弟9表 基本・変動以外のシナリオにおける緑重の計算に用いるハフメータ及びその数値 _				
パラメータ名	頁	備考		
核種が流入する上部覆土下流端から井戸までの評価上の距離	118	_		
廃棄体の総体積	119	_		
土壌の希釈係数	120	_		

第9表 基本・変動以外のシナリオにおける線量の計算に用いるパラメータ及びその数値

	名称			単 位
パラメータ	核種が流入する」	評価上の距離	[-]	
シナリナ区公	□ 共通	□ 基本	□ 変動	
✓/ 9 A 区力	□ 性能無視	■ 基本・変動以外		
設定値	0 (設定値は3号、1号	-及び2号で共通の値とした。)		
設定根拠	・距離を短く設定す 保守側に設定した	。	量を大きく評価す	ることから、
備考				
文献				

	名称			単 位	
パラメータ	廃	$[m^3]$			
シナリオ区分	□ 共通	□ 基本	□ 変動		
	□ 性能無視	■ 基本・変動以外			
設定値	 3 号廃棄物埋設施設 42,240 1 号廃棄物埋設施設 40,960 1-6 群:30,720 7,8 群(均質・均一固化体*1):2,048 7,8 群(充塡固化体):8,192 2 号廃棄物埋設施設 41,472 				
設定根拠	 ・3号:廃棄体本数211,200(本)×0.2(m³/本)=42,240(m³) ・1号:廃棄体本数204,800(本)×0.2(m³/本)=40,960(m³) ・2号:廃棄体本数207,360(本)×0.2(m³/本)=41,472(m³) 線量評価に当たっては、第298回審査会合(2019/8/26)資料1-2-1「廃棄物埋設施設における許可基準規則への適合性について 第九条第二号異常時の放射線障害の防止等(廃止措置開始以後の評価)」等では、分配平衡領域として埋設設備の体積での希釈を見込んでいたが、保守的に既申請と同じ廃棄体の総体積のみでの希釈を見込んで評価することとする。 				
備考	*1 8群の充塡固化体のうち、均質・均一固化体として製作されたセメント固化体 を破砕し、セメント系充塡材で一体に固型化した充塡固化体(均質・均一固化 体と放射能量が同等の充塡固化体)を含む。				
文献					

	名称				単 位	
パラメータ		土壌のネ	爷釈係数			[-]
シナリナ区八	□ 共通	口麦	基本		□ 変動	
ンノリオ区方	□ 性能無視	■ 書	基本・変動以外			
設定値		3 号廃棄物 1 号廃棄物 2 号廃棄物 埋設施設 埋設施設 埋設施設		廃棄物 と施設		
		0.079	0.072	0.	071	
設定根拠	 ・地下数階を有する建物の建設工事に伴う掘削土壌の希釈係数は、埋設設備寸法、 掘削形状及び掘削深度等から以下のように設定した。以下に3号の例を示す。 ・埋設設備1基に占める廃棄体の体積割合(12) 埋設施設の規模 : 36.51m×64.10m×6.66m 廃棄体収納本数 : 400本/区画×66 区画 廃棄体体積 : 0.2m³/本(200L/本) f1=(0.2(m³/本)×400(本/区画)×66(区画)) ÷ (36.51(m)×64.10(m)×6.66(m))=0.339(-) ・埋設施設の平面積に占める埋設設備の平面積割合(12) 埋設地の平面積 : 210m×160m 埋設設備の平面積 : 36.51m×64.10m f2=(36.51(m)×64.10(m)×8(基))/(210(m)×160(m))=0.557(-) ・掘削土に占める埋設設備層の体積割合(53) 堀削深度 :約21.6m(ただし、埋設設備との混合に寄与するのは、埋 設設備下端より12.6mである。) 埋設設備高さ : 6.66m 掘削法面傾斜 : (1:1) 建築面積 : 約2000m²(44.8m×44.8m) f3=埋設設備層÷掘削土量=17,692(m³) ≑42,382(m³) ≒0.417 					
	・土壌の希釈係数=	$f1 \times f2 \times f3 \Rightarrow 0.$	079 (-)			
備考						
文献						

廃棄物埋設施設における許可基準規則への適合性について

第九条第二号 異常時の放射線障害の防止等 (廃止措置開始以後の評価)

線量評価結果

-経年変化グラフ-

2019 年 10 月 16 日 日本原燃株式会社

コメント No.131_線量評価に用いる放射能量 の α 核種組成の見直しに伴い線量を再評価

目次

- 第1図 3号廃棄物埋設施設における各シナリオの線量評価結果 …………2
- 第2図 1号廃棄物埋設施設における各シナリオの線量評価結果・・・・・5
- 第3図 2号廃棄物埋設施設における各シナリオの線量評価結果・・・・・8

1. はじめに

本資料は、資料 2-2-1「廃棄物埋設施設における許可基準規則への適合性について 第 九条第二号 異常時の放射線障害の防止等(廃止措置開始以後の評価)」に示す線量評価 結果の経年変化グラフを取りまとめたものである。1~3 号廃棄物埋設施設における各シ ナリオの線量評価結果を第1図から第3図に示す。

なお、第1図から第3図における数値中のEは、指数表記における基数の10を示す(例 えば、1E+2は1×10²を示す。)。また、第1図から第3図における下線部の記載は、各 シナリオにおける線量の最大値を示す。

- ①:覆土完了後~廃止措置開始前まで
- ②:廃止措置開始以後~

第1図 3号廃棄物埋設施設における各シナリオの線量評価結果(1/3)

- ①:覆土完了後~廃止措置開始前まで
- ②:廃止措置開始以後~

第1図 3号廃棄物埋設施設における各シナリオの線量評価結果(2/3)

: 覆土完了後~廃止措置開始前まで

②:廃止措置開始以後~

*2 大規模掘削に伴い廃棄物埋設施設が認知されることを考慮し、現在の申請では被ばく経路として考慮しないため、参考として記載している。 なお、廃棄物埋設地における地下数階を有する建物の建設作業による外部被ばく及び内部被ばくと大きく変わらない線量評価結果となっている。

第1図 3号廃棄物埋設施設における各シナリオの線量評価結果(3/3)

①:覆土完了後~廃止措置開始前まで

②:廃止措置開始以後~

第2図 1号廃棄物埋設施設における各シナリオの線量評価結果(1/3)

: 覆土完了後~廃止措置開始前まで

②:廃止措置開始以後~

第2図 1号廃棄物埋設施設における各シナリオの線量評価結果(2/3)

*1 谷凡例の息味は以下に示すとおり。

①:覆土完了後~廃止措置開始前まで

②:廃止措置開始以後~

*2 大規模掘削に伴い廃棄物埋設施設が認知されることを考慮し、現在の申請では被ばく経路として考慮しないため、参考として記載している。 なお、廃棄物埋設地における地下数階を有する建物の建設作業による外部被ばく及び内部被ばくと大きく変わらない線量評価結果となっている。

第2図 1号廃棄物埋設施設における各シナリオの線量評価結果(3/3)

: 覆土完了後~廃止措置開始前まで

②:廃止措置開始以後~

第3図 2号廃棄物埋設施設における各シナリオの線量評価結果(1/3)

①:覆土完了後~廃止措置開始前まで

②:廃止措置開始以後~

第3図 2号廃棄物埋設施設における各シナリオの線量評価結果(2/3)

*1 谷凡例の息味は以下に示すとおり。 ①:覆土完了後~廃止措置開始前まで

①:復工元」 仮 ~ 廃止 指 直 開 炉 削

②:廃止措置開始以後~

*2 大規模掘削に伴い廃棄物埋設施設が認知されることを考慮し、現在の申請では被ばく経路として考慮しないため、参考として記載している。 なお、廃棄物埋設地における地下数階を有する建物の建設作業による外部被ばく及び内部被ばくと大きく変わらない線量評価結果となっている。

第3図 2号廃棄物埋設施設における各シナリオの線量評価結果(3/3)